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ABSTRACT

Maize production plays an important socio-economic role in rural communities of the Highveld

region of South Africa, yet it is becoming increasingly difficult to produce maize economically

with current agricultural policy conditions and existing management systems. This has direct

socio-economic impacts for both commercial farmer and small-scale farmer. Sustainable

commercial maize production is not only a question of yields, but also of protection of the

environmental resource base, social welfare, and the livelihoods of farmers per se as well as

the surrounding rural and urban communities. Sustainability for the small-scale farmer, on the

other hand raises questions of equity, economic viability and household food security.

Therefore, information is required to ascertain whether an existing agro-ecosystem can be

identified as sustainable, and what facets of that system make it sustainable or

unsustainable. To begin to answer these key questions it is important to state, and to some

extent attempt to standardise, the definitions of agricultural sustainability.

Agro-ecosystem sustainability with regard to maize production was assessed at the regional

scale of the Highveld of South Africa as well as at, the Quaternary Catchment scale and the

smallholder farm scale. Von Wiren-Lehr's (2001) goal orientated system was considered an

appropriate and practical system by which agro-ecosystem sustainability across a range of

scales could be investigated.

At the regional scale, optimum management strategies for each of the 497 Quaternary

Catchments in the Highveld region were devised, based on present climatic conditions and

using an index which was based on mean yields and yield variability. Economic returns and

their impact on sustainability were then also assessed under plausible future climate

scenarios.

At the Quaternary Catchment scales optimum management strategies were ascertained by

using a sustainability index. These strategies were then modelled under present and

plausible future climate scenarios. The results from the sustainability modelling showed that a

maize crop will benefit, especially with respect to mean grain yields, from an effective

doubling of atmospheric CO2 concentrations. However, this benefit can be counteracted when

there is a concurrent increase in temperature, particularly of 2°C or more.
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At the smallholder scale, a range of management options was assessed. These options

included several types of tillage practices in combination with applications of either inorganic

fertiliser or manure. The management strategies were modelled under present climate

conditions and under plausible climate change scenarios for southern Africa. The

conventional tillage type (disc) was ranked highest under most of the climatic conditions

modelled, including present climate conditions. This was in contrast to actual yields from

smallholder farmers (-1 ha field size) in the Potshini area, near Bergville in the KwaZulu­

Natal province of South Africa, who have experienced an increase in yield when conservation

tillage practices have been used on their land (Smith et al., 2004).

The sustainability of agro-ecosystems depends on the maintenance of the economic,

biophysical and social components that make up the system (Belcher et al., 2004). The

modelling performed for the Highveld region built on previous work and for the first time

incorporated daily temperatures and ISCW soil information into CERES-Maize. The intention

was to incorporate other agro-ecosystem functions, as well as yield, into the sustainability

assessment. Only limited research has previously been carried out in South Africa with

respect to modelling smallholder agro-ecosystems and sustainability. This research sought to

model the smallholder system along with the impacts that climate change would have on

sustainability and associated food security.
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1 INTRODUCTION AND OBJECTIVES

'God has lent us the earth for our life; it is a great entail. It belongs as much to those who are

to come after us, and whose names are already written in the book of creation, as to us; and

we have no right, by anything we do or neglect, to involve them in unnecessary penalties, or

deprive them of benefits which it is our power to bequeath' (Ruskin, 1925; pp. 337-338).

The underlying concepts of Ruskin's statement have re-emerged in the past thirty years or so

with growing concern about global environmental problems, issues surrounding development

and also food security. The basic concept of sustainability is not new, but now has wider

recognition as a goal worth achieving.

The term sustainability is used in phrases such as sustainable planet, sustainable

development and sustainable agriculture, and numerous definitions of these phrases have

been offered, with wide ranging perspectives. The meaning of sustainability, therefore, 'is

strongly dependent on the context in which it is applied and on whether its use is based on a

social, economic, or ecological perspective. Sustainability may be defined broadly or

narrowly, but a useful definition must specify explicitly the context as well as the temporal and

spatial scales being considered' (Brown et al., 1987; p. 713).

A literal definition of sustainability would be 'the capacity to continue into the future

indefinitely' (Ekins, 1995; p.186). However, sustainability has been defined using ideas from

many sources including physics, ecology, anthropology, philosophy, economics and

psychology. These ideas can be synthesised into a rational, interdisciplinary analysis of the

potential for sustaining industrial civilisation (Pezzey, 1992).

The term 5ustainability has been used to refer to both sustainable development and

sustainable resource use and is generally accepted as an objective that is desirable to attain.

Even with problems of ambiguity in defining sustainability, O'Riordan (1993) remarks that

sustainable development has become as an enduring a political concept as democracy,

justice and liberty. Maser (1997; p.16) warns against a half-hearted approach to implementing

sustainability and maintains that 'sustainability is an absolute. A system is either sustainable

in a given state or it is not; there are no degrees of sustainability'.
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In 1987 the report on the World Commission on Environment and Development (WCED),

commonly referred to as the Brundtland Report, defined sustainable development 'as

development that meets the needs of the present without compromising the ability of future

generations to meet their own needs. Sustainable development requires meeting the basic

needs of all and extending to all the opportunity to satisfy their aspirations for a better life'

(WCED, 1987; p.43).

The aim of sustainable development is to improve quality of life, not merely to raise the

standard of living, and it is based on a broad definition including social, environmental and

economic factors. It views these factors as inter-linked. It considers the needs of future

generations as well as those of people today, and seeks to avoid problems in the future by

acting today. This type of development also takes into consideration the views of all the

people who are stakeholders in any proposed project. Clearly all stakeholders will be part of

the current generation, but by applying long term views to projects, future generations can be

considered. This is discussed further in Section 2.7. A proposed project is, therefore, planned

by co-operation between organisations and the general public so that the plans and

proposals will meet peoples' needs. It also balances the importance of the individual with the

rights of collective responsibility.

The concept of sustainability needs to be applied to agriculture. Agro-ecosystems are

ecological systems modified by human beings to produce food, fibre or other agricultural

products (Conway, 1987). In order to be able to predict with any degree of certainty what is

sustainable over the long-term, and in turn to design sustainable agro-ecosystems, specific

questions about agro-ecosystem functions need to be answered. It is, therefore, necessary to

determine what sustainability encompasses and what the key functions of that agro­

ecosystem are, as well as determining the degree to which these functions must be

maintained. A working definition for this thesis is given in Section 2.7. By undertaking this

process, indicators of sustainability can be identified along with those conditions which are

necessary for specific agro-ecosystem sustainability (Gliessman, 2001).

The question of whether an agro-ecosystem is sustainable or not encompasses a wide range

of topics which include climate variability and change, management practices, government

policy, equity, food security, livelihoods and biodiversity. There is a lack of knowledge in how
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to maintain the ecological integrity of an agro-ecosystem should a major perturbation occur

(O'Riordan, 2002).

For example, a change in the mean climate, or an increase in climatic variability, will have

complex impacts on the agro-ecosystem. Climate comprises of complex relationships

between variables such as temperature, precipitation, evaporation, wind, and cloud. Such

relationships are generally independent of atmospheric carbon dioxide (C02), but CO2 and

other greenhouse gases contribute largely through their effect on the radiation balance of the

atmosphere. An increased level of CO2 in the atmosphere has a positive influence on plant

photosynthesis (Sombroek and Gommes, 1996).

The risk and uncertainty associated with agriculture affects all decisions made by the farmer.

As a direct consequence, uncertainty can cause inefficiencies to occur in the agricultural

sector along with concerns over food supply. Chen and Kates (1996) define a food-secure

nation as one that provides security at all levels of human organisation from the individual

household members, and their differing nutritional requirement, through to regional and

national level. Agricultural sustainability is linked to the food security of a nation. The need

for food security at different human organisational levels is of crucial importance, particularly

in a developing nation such as South Africa which has a high variation in inter-seasonal

rainfall. Agro-ecosystems are required to produce the food and fibre for the nation and

consequently, sustainability is relevant to the issue of food security. Therefore, it is useful to

consider agricultural sustainability at the same scales as food security.

Informed decision making under risk involves the combining of the decision makers'

expectations about what is likely to happen in the future and individual preferences. Part of

managing risk in agriCUlture consists of coping with the variability of production between

years. At the household level it may be crucial for the farmer to minimise the fluctuations in

household income over time, or to maintain or increase a particular wealth level and

nutritional status. At the national level, governments have to ensure an adequate food supply

to the population of all sectors of society (Thornton and Wilkens, 1998).

The primary· objective of this thesis is to investigate sustainability in regard to maize

production in South Africa (Figure 1.1). This objective was divided into three main sub­

objectives:
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PROBLEM STATEMENT

Using the concept of sustainability, attempt to integrate this
abstract and dynamic concept into achievable goals. Integration of
models, databases and GIS may provide farmers, scientists and

decision makers with the tools to explore future environmental
scenarios, particularly on a regional scale

OBJECTNES

1. Consider the concept of sustainability and its relevance to agro-ecosystems

a) Review definitions of sustainability (Chapter 2)
b) Derive working definitions (Chapter 2)
c) Review ways of applying the concept of sustainability to practical situations

(Chapter 2)

2. Devise a framework for agro-ecosystems to be assessed in regard
to sustainability

a) Review suitable tools that can be used to investigate sustainability (Chapter 3)
b) Devise a framework to answer the main objective and the following key questions

(Chapter 4):
i How can an existing agro-ecosystem be identified as sustainable or not?

ii What are the facets of a system that make the agro-ecosystem sustainable or not
sustainable?

iii How can a sustainable system be built in a particular region, given realistic
economic constraints?

3. Investigate sustainability at different scales for both the commercial
and smallholder agricultural sectors

a) Regional: maize production in the Highveld of South Africa, consisting of all
Quaternary Catchments in the Highveld region (Chapter 5)

i Simulate maize production under different management regimes
ii Simulate maize production for plausible climate scenarios

b) Quaternary Catchment: for five selected catchments in the Highveld
i Simulate maize production under different management regimes

(Chapter 6)
ii Simulate maize production under plausible climate scenarios (Chapter 7)

c) Farm level: for smallholders in the Bergville district of KWa2ulu-Natal,
South Africa (Chapter 8)

i Simulate maize production under different management regimes
ii Compare simulated results with field data

iii Simulate maize production under selected climate scenarios

Figure 1.1 Objectives of this study
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• First, consider the concept of sustainability and its relevance to agro-ecosystems.

• Secondly, devise a methodology (Figure 1.2) for agro-ecosystems to be assessed in

regard to sustainability and one which can answer the following key questions

(discussed in Chapter 4):

- How can an existing agro-ecosystem be identified as being sustainable or not?

- What are the facets of a system that make it sustainable or not sustainable?

- How can a sustainable system be built in a particular region, given realistic economic

constraints? (Gliessman, 2001; pp 3-4).

- How will the agro-ecosystem respond to climate change?

• Thirdly, investigate agro-ecosystem sustainability of maize production under present

climatic conditions and plausible future climate scenarios at the following scales:

- Regional (Chapter 5), Le. for maize production in the Highveld of South Africa,

consisting of all the Quaternary Catchments in the Highveld region;

- Quaternary Catchment (Chapters 6 and 7), Le. for five selected catchments in the

Highveld; and

- Farm level (Chapter 8), Le. for smallholders in the Bergville district of KwaZulu-Natal,

in South Africa.

A review was carried out in Chapter 2, in Which the concept, definition and problems of

defining sustainability were explored, along with how to then apply sustainability to the

decision making process. The definition of sustainable development and agricultural

sustainability are difficult to put into practical terms. Sophocleous (2000) has stated that the

challenge is to turn this type of definition into achievable policy goals. For example, how can

the concept of sustainability with the multiple definitions and the ambiguity associated with it

be put into practical terms and decisions? Working definitions derived from a literature review

on sustainability are given in Section 2.7.

5



~ .. Define sustainability and
select goals

r··············· -.
Environmental, economic I:

... --- --- ~ and social analyses of crop -~

model results :
,,
,
,
~ -.. ----.-l Socio-economic evaluation

~ .... __ .. _.... .../ What are the required outputs
from the system?

Conclusions drawn from
.. ... _.. _... _...._~ evaluation and making these

available to agricultural
decision makers

Selection of indicators
from crop model ouput

... _..
Environmental Index

Environmental databases,
DSSAT crop models, GIS

.......Integrated rvbdelling
Environment

··-····l

..- - _ ~

Goal Definition

"

Sustainability M:ldelling

l'
Evaluation Strategy

"
Management Advice

Figure 1.2 Adapted goal-orientated framework to assess agro-ecosystem sustainability (Chapter 4)
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One way of implementing sustainable practices into development and agriculture is to

adopt a systems approach and devise a framework to investigate sustainability (Chapter

4). Such a framework is required in any attempt to understand the inter-relationships

between social, economic and environmental influences that are associated with

sustainability. The framework can incorporate a number of tools such as complex crop

models, environmental databases and geographic information systems (GIS).

The methodology devised was applied to various case studies which encompassed

.different scales from regional down to farm level and which considered both the

commercial farmer and subsistence smallholder. On a regional scale (Chapter 5) maize

production in the Highveld region of South Africa was chosen, as it is the major maize

producing region of that country. The effects of climatic change on regional economic

returns are assessed as well as the bio-physical and social aspects.

The Highveld region encompasses large tracts of the provinces of North-West, Free State,

Gauteng and Mpumalanga (Figure 1.3). In this region, 70 per cent of agricultural land is

used to grow cereals, with 90 per cent of South Africa's maize being grown here. As a

result, maize production plays an important socio-economic role in the lives of the rural

communities in the Highveld region. However, it is becoming increasingly more difficult to

produce maize economically with existing management systems and this has a direct

socio-economic impact on the already resource-limited inhabitants of the rural areas as

well as on large scale commercial growers. Concerns remain about migration to cities,

regional unemployment, illiteracy, HIV/AIDS and widespread poverty. Any policies

implemented that have an influence on maize production and land use within the Highveld

region will consequently influence sustainability and rural development.

According to research carried out by du Toit et al. (1999), maize yields decrease with

decreasing rainfall in the western areas of the Highveld. The rainfall decreases are,

furthermore, associated with increases in rainfall variability. Average maize yields in the

drier western half of the Highveld are particular vulnerable to climate variability, with

current average yields being between 1 and 3 tonnes per hectare, depending on farming

practices and the amount of rainfall during the growing season. This raises food security

issues at a regional and national level, as breakeven yields for a commercial farmer in the

western Highveld of South Africa are just over 2 tonnes per hectare (du Toit et al., 1999).

Whether maize production is sustainable or not, is of huge consequence to the Highveld

region. The sustainability of agriculture in the region will be influenced, inter alia, by the El

Nino phenomenon, climate change and resulting land use changes. The El Nino
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phenomenon is one of the major factors causing droughts in South Africa. The influence

of El Nino on the seasonal rainfall in the Highveldregion is a reality for farmers. since it

influences directly both the economic security and food security in the short term. Climatic

changes such as increases in temperature and increased levels of carbon dioxide in the

atmosphere also could also affect food security and agro-ecosystem sustainability in the

long run. Irrigation is one possible option to reduce rainfall related risk in agriculture.

However, in the western Highveld demand for water resources already exceeds supply so

it is difficult to justify irrigation on a large scale. Rainwater harvesting and other water

storage methods could play their part in reducing risk, particularly for the farmer that has

few resources.

Northern Cape

Western Cape

Eastern Cape

i PrOVinces
#;"M Highveld Region
'. . KwaZuu-Natal

6O.0~~~ ~O~~~~~~~600 KUometresL i

Figure 1.3

s

Location of the Highveld region in South Africa and the Bergville district in

KwaZulu-Natal
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For analysis of sustainability using a broader range of biophysical indicators, five

Quaternary Catchments, with a range of mean annual precipitation from 432 mm to 903

mm, were chosen from within the Highveld region (Chapter 6). The Primary drainage

regions of South Africa have been divided into Secondary, Tertiary and Quaternary

catchments. The Quaternary Catchment is the smallest scale that the Department of

Water Affairs and Forestry (DWAF) uses for planning purposes. The School of

Bioresources Engineering and Environmental Hydrology (BEEH) at the University of

KwaZulu-Natal in Pietermaritzburg has developed an environmental database of

information at the Quaternary Catchment scale. The South African Quaternary Catchment

database comprises of soils information, land cover information, daily maximum

temperatures, daily minimum temperature, daily rainfall and reference potential

evaporation information for each Quaternary Catchment.

In Chapter 6, using five selected Quaternary Catchments, management options where

explored and these included planting dates, planting strategies involving plant populations

and row widths, and nitrogen fertiliser application. Comparisons of different plausible

climate scenarios were made in Chapter 7 in the selected Quaternary Catchments using

the management options with a high likelihood of sustainability.

Intensification of cropping practices and the increased productivity on small-scale farms

are required in order to produce food for an increasing population. However, this should

be pursued in a manner which uses sustainable levels of external input in combination

with local resources and knowledge (Smith et al., 2004). At the farm level, this implies that

many of the decisions made would need to consider the tradeoffs between different

biophysical and socio-economic objectives (Kropff et al., 2001). Furthermore,

sustainability for the small-scale farmer raises questions of equity, economic Viability and

household food security. The Bergville district of KwaZulu-Natal, although it falls outside

the Highveld region, is such an area which has many smallholder farmers producing

maize.

The Institute for Soil, Climate and Water of the AgriCUltural Research Council (ARC­

ISCW) is working with smallholders in the Bergville area in the form a LandCare

development project in which appropriate land management technologies are

. implemented at the field level by participating farmers. Because the ARC-ISCW

development project also facilitated comparisons of modelling output with field trial results

this area was chosen to explore sustainability at the small-scale farm level (Chapter 8).

The Bergville district does not fall within the Highveld region as designated for this thesis
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(Figure 1.3), which is the area used for the assessment of sustainability at a regional and

Quaternary Catchment scale. The choice of Bergville was nevertheless considered a valid

one as upscaling of the findings from the farm level was not an aim of the study.

For small-scale farmers in the Bergville area sustainable maize production is not only a

question of yields, but of protection of the environmental resource base, social welfare,

and the livelihoods of farmers' as well as rural and urban communities. It is valuable to

investigate sustainability at the field scale using both field data and model simulations for

an understanding of food security at the household level. In this study a range of

management options was assessed under both present climate conditions and different

plausible future climate scenarios.

In summary, agro-ecosystem sustainability at different scales is of major importance to

national, regional and household food security in South Africa. Figure 1.1 shows the three

objectives that this study addresses and Figure 1.2 illustrates the methods employed to

accomplish this. Chapter 2 considers Objective 1, as shown in Figure 1.1, which is to

review the concept of sustainability, its use in terms such as sustainable development and

its relevance to agro-ecosystems. The process of turning a dynamic and abstract concept

such as sustainability into practical terms is also discussed in Chapter 2.
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2 LITERATURE REVIEW OF THE CONCEPT OF SUSTAINABILlTY AND

ITS APPLICATION TO AGRO-ECOSYSTEMS

'So far man has been so busy "conquering" nature that he has yet given little thought or

effort towards reconciling the conflicts in his dual role, that of manipulator of and inhabitant

in ecosystems' (Odum, 1971; p. 23)

The concept of sustainability has emerged from concern over environmental and socio­

economic problems caused by the manipulation or destruction of ecosystems in pursuit of

development and profit. A review of the concept of sustainability and its many definitions

is thus deemed important, as sustainability is an evolving concept and has a broad usage.

It is important to state, and to some extent attempt to standardise, the definitions of

sustainability, so that sustainable systems can then be identified and the facets that make

the system sustainable determined (Gliessman, 2001).

In regard to producing a working definition of sustainability, this author believes that two

approaches are possible. One, is to propose a definition from experience and compare it

to definitions in existing literature, the second is to review the literature and on the basis of

that to synthesise a working definition. In this thesis the second approach is taken.

The concept of sustainability is reviewed in Section 2.1. The main components of

sustainability and their inter-linkage are discussed in Section 2.2, with particular attention

given to sustainable development and sustainable livelihoods in Sections 2.3 and 2.4.

Understanding and establishing sustainable agro-ecosystems is of major importance to

national, regional and household food security. The application of sustainability to

agriculture and appropriate ways to assess agro-ecosystem sustainability are evaluated in

Sections 2.5. To understand the inter-linkages between the components of sustainability a

systems approach has been deemed vital (Hansen and Jones, 1996). Therefore, the use

of a systems approach to assess agro-ecosystem sustainability is discussed in Section

2.6. A working definition and framework for use in the research carried out in the thesis is

proposed in Section 2.7.

2.1 The Concept of Sustainability

The sustainability ideal has been recognised by Park and Seaton (1996) as the driving

force behind a philosophy in which there is an awareness today of the needs of future

generations. Gold (1999) is in agreement with Park and Seaton (1996) and adds that
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there is an increasing acceptance of the aspiration to achieve a sustainable planet which

will meet the basic needs of the present inhabitants while preserving resources for future

generations to flourish.

A literal definition of sustainability would be 'the capacity to continue into the future

indefinitely' (Ekins, 1995; p. 186). Alternatively Pezzey (1992; p. 321) gives a wide­

ranging definition as 'maintaining the utility, that is average human well-being, over the

very long term future encompassing ideas from physics, ecology, evolutionary biology,

anthropology, history, philosophy, economics and psychology, into a coherent,

interdisciplinary analysis of the potential for sustaining industrial civilisation.'

Sustainability has been defined by researchers from a range of perspectives. This renders

the meaning of sustainability dependent on the context in which it is applied, Le. whether it

be from a social, economic or ecological perspective. Brown (1987), comments that a

useful definition of sustainability must include the context as well as the temporal and

spatial scales.

For example, Costanza et al. (1991; pp 8-9), writing from an ecological standpoint state

that 'sustainability is a relationship between dynamic human economic systems and larger

dynamic, but normally slower-changing ecological systems, in which 1) human life can

continue. indefinitely, 2) human individuals can flourish, and 3) human cultures can

develop; but in which effects of human activities remain within bounds, so as not to

destroy the diversity, complexity, and function of the ecological life support system.'

Chambers (1997; p. 11) states that 'sustainability means that long-term perspectives

should apply to all policies and actions, with sustainable well-being and sustainable

livelihoods as objectives for present and future generations'. Chambers (1997; p. 9)

maintains that a change in precedence has taken place for the concept of sustainability to

be considered by decision makers. A move has taken place away from 'things and

infrastructure to people and capabilities.'

Equity and livelihood security are usually considered as components of the concept of

sustainability (WCED, 1987; Lal and Ragland, 1993; Gold, 1999). However, Chambers

(1997) regards them as separate. This is illustrated in Figure 2.1.1. Although equity,

livelihood security and sustainability are considered separately, they are intrinsically

linked. In this web, responsible well-being, or a good quality of life, is seen as the goal.
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The capabilities of people and secure livelihood are the means of achieving responsible

well-being and sustainability and equity as the foundational principles.

Chambers (1997) argues further that sustainability and equity are not sacrificed to achieve

responsible well-being, and that the quality of life is enhanced when sustainability and

equity contribute to well-being.

hiiveBllQ,oc1
S'~,ctldt,y

--'.~""":,,,,,,-,,,-,,,,

Figure 2.1.1 Web of responsible well-being (after Chambers, 1997)

2.2 The Components of Sustainability

From the plethora of definitions of sustainability some common themes emerge. Hurni

(2000) refers to these themes as the five major pillars of sustainability. The folloWing have

to occur for something to be sustainable:

• Protection of ecology

• Acceptability to society
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• Economically viable

• Economically productive and

• Effective in reducing risk.

Coupled with these five pillars of sustainability is the recognition of the needs of future

generations and to not reduce the ability of future generations to meet these needs by the

decisions that are made now. However, in the context of South African Highveld

conditions and the goal of intensifying production in agro-ecosystems, the following

components are imperative to achieving sustainability:

• Resilience of agro-ecosystems

• Social concerns and reducing risk

• Economic viability and production and

• Political constraints.

2.2.1 Agro-Ecosystem Resilience

'Agriculture is an ecological enterprise that depends on ecosystem processes and

functions such as soil formation, nutrient cycling, the maintenance of hydrological cycles,

the pollination of crops, etc. that are all driven by interactions between the elements of

biodiversity' (Williams, 2001; p. 23). Conway (1987) describes agro-ecosystems as

'ecological systems modified by human beings to produce food, fibre or other agricultural

products.'

The term resilience has been described as the ability of the system to return to the original

state after a disturbance (Scheffer et al., 2002). Agro-ecosystem resilience is, therefore,

the magnitude of disturbance that can be absorbed before the system changes structure

by changing the variables and processes that control its behaviour (Holling and

Gunderson, 2002). This definition of agro-ecosystem focuses on persistence,

adaptiveness, variability and unpredictability, which are attributes considered by Holling

and Gunderson (2002) to be at the heart of understanding sustainability.

In agro-ecosystems where there is a complex interaction between nature and people,

flexibility is required to maintain resilience. Attempting to stabilise these systems to a

perpetual optimal state, particularly in regard to production, reduces resilience and often

results in the system being close to a critical threshold, Le. where the nature and extent of

feedbacks within the system change to such an extent that the result is a change of
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direction for the system itself. The reduced resilience of the agro-ecosystem permits

critical thresholds to be crossed more easily (Walker and Meyers, 2004)

Walker et al. (2004) suggest there are four fundamental aspects concerning the resilience

of an agro-system at a particular organisational scale:

• Latitude: This is the maximum amount of change a system can experience before

losing its ability to recover, Le. before crossing a threshold which, if breached,

makes recovery difficult or impossible.

• Resistance: This relates to the ease or difficulty of changing the system Le. - how

resistant it is to being changed.

• Precariousness: This questions how close the system currently is to a limit or

threshold.

• Panarchy: Because of cross-scale interactions, the resilience of a system at a

particular focal scale will depend on the influences from states and dynamics at

scales above and below it. For example, external oppressive politics, invasions,

market shifts or global climate change can trigger changes in local agro-ecosystems.

Extreme change to both natural and social systems is part of humanity's history. The

remarkable resilience of natural ecosystems, in particular, can be found in examining the

scales at which processes operate to control the system. In many terrestrial systems, it is

the geophysical controls that dictate at scales larger than tens of kilometres. At smaller

scales than this, interacting biotic processes can control structure and variability. These

are also the scale ranges at which human activities interact with the landscape (Holling et

al., 2002; p. 15).

The controls established by each biotic structuring process within terrestrial ecosystems

are generally robust to the stresses placed upon them, and the resulting behaviour is

resilient. That robustness comes from functional diversity and spatial heterogeneity in the

species and physical variables which control the key processes that structure and

organise patterns in ecosystems and landscapes (Holling et al., 2002; p. ·15).

Ecosystem integrity refers to the system being whole and unimpaired. The integrity of an

agro-ecosystem implies the integrity of both system structure and function, maintenance

of system components and the ensuing dynamics of the system (Regier, 1993). Agro­

ecosystems with high integrity are ones that are relatively resistant to environmental

change and stresses and can recover their original conditions after a perturbation
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(Andreasen et al., 2001). Sustainability, therefore, can be considered a fundamental part

of agro-ecosystem integrity. Ecosystem integrity can be characterised into compositional,

structural and functional components and measurable indicators can be selected that

correspond to these components (Noss, 2000). For example, the different components of

ecosystem integrity can be measured in the following way:

• Compositionally, i.e. by functional groups of organisms or mapped plant

communities

• Structurally, Le. by landscape patterns and

• Functionally, Le. ecological processes.

Noss (2000) suggests that more attention should be given to structural and functional

components of ecosystems. The notion of integrity must recognise a human perspective,

such as the ability of an agro-ecosystem to continue to provide the goods and services

that humans expect (De Leo and Levin, 1997). Examples of ecosystem services which are

particularly important for agro-ecosystems are: continuation of the genetic diversity

essential for successful crop and animal breeding; recycling of nutrients; biological control

of pests and diseases; erosion control and sediment retention; and regUlation of local

hydrological processes. At a global scale other services become important, such as the

regulation of the gaseous composition of the atmosphere (Swift et al., 2004).

Ecosystem functions can be divided into four primary categories (De Groot et al., 2002):

•

•

•

•

Regulation functions, Le. the capacity of natural and semi-natural ecosystems to

regulate essential ecological processes and life support systems· through bio­

geochemical cycles and other biospheric processes, where the regulation functions

are also able to provide clean air and water, as well as biological controls;

Habitat functions, Le. where natural ecosystems provide refuge and reproduction

habitat to wild plants and animals;

Production functions, Le. photosynthesis and nutrient uptake by autotrophs which

convert energy, carbon dioxide, water and nutrients into a wide variety of

carbohydrate structures which are then used by secondary producers to create an

even larger variety of living biomass; and

Information functions, e.g. recreation and aesthetic experience (De Groot et al.,

2002).
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In regard to achieving sustainability of agro-ecosystems there needs to be an emphasis

on conserving biodiversity at multiple scales within a landscape, along with the ecological

processes within it and· by doing so, preserve biodiversity and ensure sustainability

(Jewitt, 2002).

2.2.2 Social concerns and reducing risk

For a complete analysis of sustainability, any investigation must not only consider the

protection of the environmental resource base, but must include social welfare, as well as

the livelihoods of farmers and rural and urban communities.

Both Stinner et al. (1997) and Giampietro (1997) have stressed the importance of

indigenous knowledge and experience when looking to implement sustainable farming

practices, understanding the conservation of local resources and diversity of agro­

ecosystems.

If sustainability is the desired goal then any development projects should include

community participation. Development projects such as irrigation schemes have

frequently failed because of neither involving local people in the decision making process

nor using local knowledge. Doughty and Hall (1995), highlight that considerable negative

consequences have occurred owing to a lack of understanding of the people and society,

even when the aim was to help them. In considering environmental issues, Doughty and

Hall (1995) continue by recommending that communities should not only be consulted, but

also be actively involved. In observing small-scale farming and soil conservation projects

in Africa, Critchley (1991) found that success occurred when farmers were treated as part

of the solution and not part of the problem.

The concept of sustainability is concerned with the welfare of the individual and the

community. A problem for many communities is the migration of people to the cities for

employment and better social care. To prevent this, there is a need for employment

opportunities in rural areas, improved education, health care and cultural activities.

Another issue in southern Africa is one of land tenure. The ownership and the right to .

work the land in traditional rural areas are a major political concern and, as Mkhabela

(2002; p. 143) concludes, 'land tenure remains a complex and precarious issue in rural
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South Africa' and security of tenure is not assured under the system of land being vested

in the local tribal chiefs.

For a farming system to be sustainable it not only needs to be profitable and·

environmentally sound, but also needs to enhance community and rural life (Gold, 1999).

The management practices on the farm also affect the local community. Potential health

hazards to farm workers and consumers are tied to sub-therapeutic use of antibiotics in

animal production, and pesticide and nitrate contamination of water and food. For

example, farm workers have been poisoned in fields, and toxic residues have been found

on foods, and certain human and animal diseases have developed resistance to currently

used antibiotics (Gold, 1999).

2.2.3 Economic viability and production

Using agriculture as an example, economic viability and production need to be considered

from the farm level through to national level, in particular with concerns over food security.

If a farm is not profitable then it is not sustainable, as 'unprofitable agricultural systems will

not continue' (Edwards-Jones and Howells, 2001; p. 32). Chambers (1997) writes of the

need of agriculture to be able to sustain livelihoods of farmers and their families. On a

regional scale it is also important that individual farms are profitable, as the resulting

production creates business opportunities for both rural and urban communities. Farmers

should be encouraged to diversify and have less dependency on one particular crop. The

farmer would then be less susceptible to a change in a crop's price (Gold. 1999).

A major challenge to agriculture in southern Africa is to meet production requirements for

food demand, as the population is expected to double in the next thirty years (du Toit et

al., 2002a). A food-secure nation should provide security at all levels of human

organisation, from the individual household members and their differing nutritional

requirement. through to regional and national level. At the national level food security is

associated with the sufficiency of the national food balance (Chen and Kates, 1995).

Depending on the level of human organisation, the definition of food security is viewed in

different ways.

A concern with the need to increase food production is whether the food will be produced

in what may be regarded as a sustainable manner. When considering a food security

scenario, or system, Rothman and Coppock (1995) point out that the inter-linkages of
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components in a system must be considered in regard to sustainability and that inter­

regional linkages in the food system must also be contemplated.

2.2.4 Political constraints to sustainability

For sustainability to be possible there has to be the political will to drive it. However, this

has its difficulties, for as Stroup and Shaw (1992; p. 267) point out, 'when environmental

goals and controls are politically determined, they are subject to a process that is often

driven by groundless accusations, supported by public fear, and legislated with special

interests in mind.' In developed countries 'too often the quest for growth, jobs and

industrialisation has caused a cycle of unsustainable reactions and almost invariably lead

to ecological breakdown and environmental deterioration' (Roberts, 1995; p. 18).

A political issue that is stressed by the concept of sustainability is that of equity in the

distribution of income and resources. In developing countries equity is often a key goal of

development for governments. Taylor (2002) writes that often a significant part of

government policy is to redistribute income in order to reduce poverty. Failure to do so

could have a variety of impacts which include social unrest and a slower economic

growth.

The destruction of ecosystems has occurred because of failure by economic and political

institutions to provide appropriate incentives. Farber (1991) highlights five major causes of

this as:

• short-term perspectives

• failure in property rights

• concentration of economic and political power

• immeasurability and

• institutional and scientific uncertainty.

A short-term perspective with regard to policies can be the result of fear of imminent

political change, the need for foreign currency or population growth (Farber, 1991). Failure

to have adequate property rights in place will mean that farmers will be unable to gain

loans for land improvement, also making it· economically difficult for potential farmers to

enter commercially into agriculture (Gold, 1999). Therefore, the possibility of sustainability

can be increased by an enhanced definition of land tenure and property rights (Farber,

1991). When economic power is concentrated both between and within countries, there is
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the potential for ecosystems to be destroyed and benefits of the economic enterprise to be

taken out of the country, for example, by mining firms exploiting one area and moving to

another. The benefits of sustainability to the developer are minimal, but the environmental

and social costs to the area are high as the developer may have shorter-term

perspectives than local rural and urban communities (Farber, 1991).

The United Nations (1992) has identified that there is a general lack of capacity for the

collection and assessment of environmental and ecological data, particularly in developing

countries. This, in turn, hinders the dissemination of useful information to decision makers.

Therefore, the need for simplicity in policy-making could promote economic growth over

the ecosystem protection simply because of problems with environmental data collection

and dissemination (Farber, 1991). It has been suggested by Farber (1991) that lack of

available environmental and ecological information about biophysical interactions will

hinder sustainability policies, especially if the policies directly affect industry.

2.3 Sustainable Development

Development has been described as economic growth, or a raise in living standards

(Clark, 1991; p. 23). The US Department of Commerce (2002) defines economic

development as 'enhancing the factors of productive capacity - land, labour, capital, and

technology - of a national, state or local economy.' Brown (1998) considers this traditional

view of development as inappropriate, as its environmental impacts are often negative, as

illustrated in Figure 2.3.1.

Inappropriate
Development

Development .t-------. Impacts------I~.,

Adversely
Affects

Environment

i r---H-e-a'-th-I 1
Slows .......r--------j ~...---Undermines

Figure 2.3.1 Inappropriate development (after Brown, 1998)
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'Decades of experience have shown that economic growth does not by itself lead to

improved living standards for the majority' (Clark, 1991; p. 24). An alternative to the

traditional form of development is one that is termed sustainable.

In 1987 the report of The World Commission on Environment and Development (WCED),

commonly referred to as the Brundtland Report, defined sustainable development as

'development that meets the needs of the present without comprising the ability of future

generations to meet their own needs. Sustainable development requires meeting the

basic needs of all and extending to all the opportunity to satisfy their aspirations for a

better life' (WCED, 1987; p. 43).

Braat (1991; p. 61) states that the WCED concept of sustainability 'combines two basic

notions: economic development and ecological sustainability. Ecologically sustainable

economic development can be thought of as the process of related changes of structure,

organization and activity of an economic-ecological system, directed towards maximum

welfare, which can be sustained by the resources to which that system has access.'

Sustainable development is described by Liverman et al. (1998; p. 133) as the 'indefinite

survival of the human species (with a quality of life beyond mere biological survival)

through the maintenance of basic life support systems (air, water, land, biota) and the

existence of infrastructures and institutions which distribute and protect the components of

these systems.'

The WCED definition of sustainable development is concerned with meeting the needs of

people in the present and in the future. Park and Seaton (1996; p. 87) point out that 'there

are clearly dangers in predicting the future and then planning for it,' as the understanding

of what is sustainable may change and that what is seen 'as sustainable today may be

undesirable a decade into the future.' A prediction on future generations' needs has to be

made if this definition is used, but predicting what people will require fifty years hence is,

at best, an estimate.

Reid (1995) asks whether we should be concerned with future generations' needs at all

when little is done about intra-generational equity. Member governments of the United

Nations often call for an end to poverty and the continuance of human deprivation on

massive scales, but then allow numbers of the homeless, malnourished and the

unemployed to increase in their own countries. A large proportion of the world's population
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do not have access to basic needs such as clean water, housing and education; therefore,

should not the main consideration be of meeting peoples' needs now?

Attfield (1983; pp. 90-91) answers this question by stating that 'the same reasoning which

suggests that we have obligations, wherever we can to prevent suffering or misery to

contemporary strangers, however distant in space, suggests that we have similar

obligations to future strangers, however distant in time: for distance in time is just as

irrelevant as distance in space.'

To ensure that sustainable development is possible in all countries in the future the United

Nations (1992) suggests that two areas need to be addressed.

• First, the environmental and ecological data gap which exists between developed

and developing countries needs to be bridged

• Secondly, the availability of information needs to be improved.

The gap in the availability, quality, coherence, standardisation and accessibility of

environmental data between the developed and the developing world has been

increasingly and seriously impairing the capacities of countries to make informed

decisions concerning the environment and development. There is a general lack of

capacity, particularly in developing countries, and in many areas at the international level,

for the collection and assessment of data, for their transformation into useful information

and for their dissemination.

The objectives of sustainable development need to be expounded to provide solid bases

for decision-making at all levels and to contribute to a self-regulating sustainability of

integrated environment and development systems. Such a model of sustainable

development is illustrated in Figure 2.3.2, and should be contrasted with the model of

inappropriate development which was shown in Figure 2.3.1.
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Sustainable
Maintains,----+t Development

Health

Improves.......I-----1 Development I.......I----Encourages

Figure 2.3.2 A model of sustainable development (after Brown, 1998)

In sustainable development, everyone is simultaneously a user and provider of

information in the broadest sense. The need for information arises at all levels, from that

of senior decisions at national and international levels through to decisions made by the

individual.

The idea of mixing the technical considerations on whether an activity is sustainable, with

moral considerations, is a view that Beckermann (1995) considers flawed. The main

reason for this is that definitions that include ethical instruction generally fail to state why

the ethical route suggested is any better than alternative routes.

The WeED definition of sustainable development, with the inclusion of the idea of

peoples' needs is difficult to convert into economic terms. Pearce et al. (1989) have

developed an approach that focuses on natural capital assets and they suggest that the

capital assets should not decline over time.

Pearce (1993) categorises the types of sustainable development into four broad bands,

with the categories defined from an economic point of view. Figure 2.3.3 shows the range

of views which can exist under the banner of sustainable development.
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Very Weak - Resource
exploitative, maximum

t----+leconomic growth, free markets
and technological progress will
counter scarcity and limits to
constraints

Weak - Resource
conservation, modified
economic growth,
intergenerational equity,
intrinsic value in nature

TECHNO-CENTRIC

Very Strong - Deep ecology
philosophy influential, extreme
resource preservation, reduced
scale of economy and
population, acceptance of
bioethics, Gaia as a
personalised agent to which
moral obligations are owed

...-.._--_ __._._.•.....-..__.__.__.__ ._-_ .

ECO-CENTRIC

Strong - Preserve resources,
0.0% growth of economy and

--~population, interests of the
collective take preference over
those of the individual, primary
value of ecosystem, influenced
by Gaia hypothesis

Figure 2.3.3 Types of sustainability based on Pearce's (1993) concepts

The techno-centric views are the principles that a vast majority of the world's countries are

following in terms of government policies and 'this mode values the natural world as a

resource rather than for its intrinsic value. Its approach to problems of environment and

development is based on a faith in human abilities to use technologies to control natural

processes' (Reid, 1995; p. 130).

The classification of sustainability by Pearce (1993; pp. 18-19) is in terms of how a 'stock

of capital' is transferred between generations. The stock of capital can either be natural

resources or man-made capital, including knowledge. How this transfer of capital is

24



perceived, and consequently achieved, will determine which sustainable development

option the decision-makers fall into.

The very weak and weak sustainability options do not place much importance on how the

stock of capital is passed on. Termed 'techno-centric' options, they argue that any

reduction in natural resources would need to be compensated by increased infrastructure.

Fewer infrastructures would have to be offset by increased natural habitats. Any

environmental issues that occur would be dealt with through legislation, for example 'the

polluter pays' principle. The weaker versions of sustainability have a common theme in

that a deterioration of the environment and reduction in the resource base is acceptable,

. as long other forms of capital replace them (Turner, 1993).

Proponents of the stronger versions of sustainable development are termedeco-centric by

Pearce (1993). Eco-centrics believe that markets cannot solve the environmental

problems, but that direct regulation and planning are required and that the range of

economic activity should be scaled down.

Eco-centric views are influenced to a greater or lesser extent by Jim Lovelock's Gaia

hypothesis (Lovelock, 1987). Gaia seems to be much more than stewardship on behalf on

the planet, Le. humans should be hands-off and let the living organism of planet earth

regulate and steward itself, stipulating that humans should take a peripheral role.

It could be argued that the picture of 'very strong' sustainability could, in fact present

strong threats to sustainability given the negative environmental impacts of poverty. This

is a view that the author of thesis agrees with. There seems to be a conflict between

strong sustainability and poverty alleviation. In Africa, only 60% of people have access to

safe water supplies and the number of undernourished exceeds 200 million (Wright et al.,

2002). In the author's view development must take place along relatively weak

sustainability pathway. Economic development must occur in such. a way as to provide

people with access to safe drinking and adequate sanitation. The very strong sustainable

pathways hints at letting the 'organism of the earth' steward itself and regulate human

population levels. This is a concerning viewpoint as it takes no account of people in dire

circumstances, and is void of any human compassion. It is the author's view that western

philosophers/scientists associated with Gaia philosophy have replaced the Judeo­

Christian God with one their own, namely 'Mother Earth', particularly as a key to 'very

strong' sustainability is embracing Gaia as a personalised agent to which moral

obligations are owed.
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The very weak sustainability and very strong sustainability options have, however,

similarities in certain respects. Both suggest that the earth is able to adjust and counter

any environment problem that may occur. However, it is in the response to this idea where

the differences occur. The very weak sustainability response is that the earth can deal

with any environmental problems and the ones it cannot, technology will solve. Therefore,

we are free to exploit the earth resources to make profit and meet our needs. Very strong

sustainability treats the earth with reverence and states that it is our moral duty to make

sure that the earth resources are heavily protected.

Reid (1995) explains that the main obstacles to a move by decision-makers to eco-centric

.thinking are political. A shift by governments away from a pursuit of economic growth to

one that endorses the protection of resources would result in strong opposition from

businesses, unions and individuals worried about job losses.

2.4 Sustainable Livelihoods

The term 'sustainable livelihoods' emerged in the early 1990s through its use by the World

Commission on Environment and Development. The concept of sustainable livelihoods

started as a methodology to improve resource productivity and encompass issues such as

ownership and access to assets, jobs and resources in order to meet basic needs. Singh

and Gilman (2000) report that the need for such a concept evolved out of the realisation

that food security was not merely an issue connected with agricultural productivity, but

involved all the elements associated with poverty in general. The concept has since

developed through its use at the 1992 United Nations Conference on Environment and

Development (UNCED) and at the Copenhagen World Summit for Social Development in

1995, as well as at the Fourth World Conference on Women (FWCW) in Beijing in 2003.

These conferences have moved the concept to one of action and have emphasised the

relationships between sustainability, employment, social integration, gender and poverty

eradication for policy and development programming.

The United Nations Development Programme (UNDP, 1999) has defined livelihoods as

the assets, activities and entitlements which people use to make a living. Sustainable

livelihoods are those that are able to cope with, and recover from, shocks and stresses

such as drought and policy failure and are also economically efficient, ecologically sound,

and socially equitable. The definition of sustainable livelihoods presented here is similar to

the definition of agro-ecosystem resilience presented in Section 2.2.1, implying that
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sustainable livelihoods that are based on agro-ecosystems are dependent on agro­

ecosystems resilience.

In defining sustainable livelihoods a clear distinction is made between livelihoods and

jobs. Jobs are characterised as carrying out a particular activity for payment. A livelihood

is identified as a number of activities that do not necessarily have a formal agreement and

are not restricted to one type of activity. A job, therefore,can form part of a livelihood

(UNDP, 1999). Livelihood systems include a complex and multi-faceted sets of physical

economic and social strategies. A sustainable livelihood is one that encompasses the

major themes of general sustainability definitions such as equity, conservation and access

to resources and economic productivity. Singh and Gilman (2000) stress that sustainable

livelihoods are also about the manner in which people, particularly those living in poverty

perceive their own reality, and how this appreciation of reality interacts with what happens

in the rest of society. To turn sustainable livelihood theory into practice, the UNDP, along

with other international agencies, have a developed a framework for implementation at a

country level. This framework is summarised in Figure 2.4.1.

Local Adapti-.e
Strategies - Assets,

knowledge,
technology

Figure 2.4.1 A framework for promoting sustainable livelihood (after Singh and Gilman,

2000)
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The beginning of the process is a participatory assessment of attributes such as assets,

risks, entitlements and the indigenous knowledge base found in a particular community.

This is followed by an analysis of the macro-, micro and district policies, along with

governance procedures. Some of the questions raised by the analysis of policy will

include the following:

• What are the livelihood priorities of people living in poverty?

• How do policies impact peoples' livelihood strategies? and

• How do people participate in the policy making process? (Pasteur, 2001 )

Also required is an evaluation of the possible use of contemporary technology that would

complement indigenous knowledge systems in order to improve livelihoods. The final

stage is to identify a macro-micro investment strategy so that the two levels of finance

complement each other. For a successful implementation the stages of the framework

should be integrated (Singh and Gilman, 2000). An alternative framework is presented by

the UK government's Department for International Development, DFID (Figure 2.4.2). This

particular sustainable livelihoods framework highlights five interacting elements: contexts;

resources; institutions; strategies; and outcomes (Solesbury, 2003). Hinshelwood (2003)

argues that when used flexibly the DFID framework can be an effective tool for organising

and analysing ideas in regard to sustainable livelihoods.

Figure 2.4.2 DFID sustainable livelihoods framework (Carney, 1998)
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Campbell et al. (2001) identify five categories they consider to be fundamental in a

sustainable livelihoods framework. The categories are physical, financial, social, natural

and human capital. These categories also constitute the core of the DFID framework

(Figure 2.4.2). Using sustainable livelihoods frameworks (Campbell et al., 2001;

Solesbury, 2003) can assist in integrating across disciplines, scales, stakeholders and

components (Sayers and Campbell, 2001).

2.5 Sustainability in Agriculture

Commercial agriculture has undergone significant transformation, particularly since World

War 11. New technologies, mechanisation, increased use of chemicals, government

policies and new types of cultivars and hybrids have all contributed to an increase in farm

productivity and have led to a marked decrease in relative farm labour costs. However,

these advances and management practices have created environmental problems such

as soil erosion, groundwater contamination and social changes such as a decline in

family-owned farms, poor conditions for farm labourers, rural to urban migration and

increasing the costs of production (Feenstra, 1997). With this in mind Maser (1997; p. 13)

asks 'Will the ecosystems of the future, which we are today shaping, continue to function

in such a way that the quality of human life we have come to expect continue?'

Gliessman (2001; pp. 3-4) raises the following three questions:

• 'How do we identify an existing agro-ecosystem as sustainable or not?

• What are the facets of a system that make it sustainable or unsustainable?

• How can we build a sustainable system in a particular region, given realistic

economic constraints?'

To begin to answer these key questions it is important to state, and to some extent

attempt to standardise, the definitions of agricultural sustainability.

2.5.1 Definitions of sustainability in agriculture

'The principle objective of agricultural sustainability is to meet human needs by improving

standards of living, alleviating drudgery and human suffering, and providing a respectable

way of life for a majority of the population' (Lal and Ragland, 1993; pp. 1-2). Conway

(1987; p. 101) considers sustainability in agricUlture to be 'the ability of the agro-
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ecosystem to maintain productivity when subject to a major disturbing force.' O'Connell

(1992) describes sustainability in agriculture as a combination of practices such as crop

rotation and integrated pest management. In contrast to this, Feenstra (1997) explains

that sustainable agriculture is not about using a set of practices, but rather that it

challenges producers to think about the long-term effects of management decisions and

how these impact the dynamics of agricultural systems. From a plethora of definitions and

contributing philosophies. three common goals of sustainable agriculture appear,

• those of environmental health,

• economic profitability and

• socio-economic equity.

Rigby and Caceres (2001; p. 23) found that it was extremely difficult to determine whether

certain agriculture practices were sustainable or not. It is only in retrospect that

sustainable techniques could truly be identified.

A definition of agricUltural sustainability that is widely used is one by the American Society

of Agronomy (1989). This states that 'a sustainable agriculture is one which, over the long

term. enhances environmental quality and the resource base on which agriculture

depends; provides for basic human food and fibre needs; is economically viable; and

enhances the quality of life for farmers and society as a whole' (quoted in Hansen, 1996;

p.118).

The United States Farm Bill that was passed 1990 built on the principles of the definition

by the American Society of Agronomy. It states that the term sustainable agricUlture

means an integrated system of plant and animal production practices having a site­

specific application that will. over the long term:

• Satisfy human food and fibre needs

• Enhance environmental quality and the natural resource base upon which the

agricUltural economy depends

• Make the most efficient use of non-renewable resources and on-farm resources and

integrate, where appropriate. natural biological cycles and controls, and

• Sustain the economic viability of farm operations and enhance the quality of life for

farmers and society as a whole (Gold, 1999).
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Pretty (1995) describes agricultural sustainability as a system which engages in:

• Incorporating natural processes such as nutrient cycling into the production

processes

• Reducing non-renewable inputs that damage the environment and harm the

farmers health and minimising variable costs

• Progressing towards a more socially-just from of agriculture

• Making increasing the use of biological and genetic potential of plant and animal

species

• Increasing the use of local knowledge and practices

• Allowing farmers and rural communities to become more self-reliant

• Matching crop patterns with production potential and environmental constraints of

climate and landscape

• Facilitating profitable and efficient production using integrated farm management

• Conserving soil, water, energy and biological resources.

For sustainability in agriculture to occur, Pretty (1995) suggests that certain conditions

need to transpire, as summarised in Figure 2.5.1.

Resource
Cbl'l;servil1g
"fechnol:ogies

Local
fustitptions
and Groups

Figure 2.5.1 The conditions required for sustainability in agriculture (after Pretty, 1995)
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Local institutions and groups need to use resource-conserving practices such as soil and

water conservation and be supported by external research, extension and development

institutions. To prevent sustainability in agriculture from being limited to a specific locality,

the local, regional and national governments must have policies in place that facilitate the

expansion of sustainability.

2.5.2 Conserving resources

Agricultural sustainability involves, inter alia, the protection of the water and soil

resources, reduction in the reliance on finite fuels, reduction in air pollutants,

environmentally safe livestock production and the support of rural communities.

According to Gregorich (1995), the question as to whether agricultural practices are

sustainable or not depends on the amount of degradation of the soils. If the soil is not

protected to some extent then resources such as time, money and chemicals will be

required in increasing quantities to maintain agricultural production. If degradation is

prevented, or reversed, in areas where degradation has already occurred, then

agricultural sustainability can be realised. Methods of protecting and enhancing the

productivity of the soil suggested by Feenstra (1997) include using cover crops, compost

and/or manure, reducing tillage, avoiding traffic on wet soils and maintaining soil cover

with plants and/or mulches.

If the cost of the conservation measures is perceived to be more than the expected

benefits then farmers will be unwilling to introduce resource-conserving measures.

Farmers may not conserve soil and water if the future is uncertain in regard to political

instability, imminent conflict or if land tenure is uncertain (Pretty, 1995). Other factors of

concern include those about the risks involved, fear of innovation and insecurity about the

change in practice (Roberts, 1995).

2.5.3 Sustainability in small-scale agriculture

Sustainability for the small-scale farmer raises questions of equity, economic viability and

household food security. The term 'small-scale farmer' in the context of this stUdy is used

to refer to subsistence and emerging commercial farmers and those farmers who work

communal plots.
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2.5.3.1 Gender issues in agriculture

A large number of farmers in Africa are females. It has been suggested that 60-80% of the

agricultural labour force is female (Williams, 1994), implying that women are responsible

for -70% of the total agriculture in Africa. The role of the female is, therefore, of significant

importance in African agriculture.

In southern Africa, because of the traditional migratory system where men seek work in

urban areas, the majority of women live and earn livelihoods for themselves and their

families in rural areas (Tshatsinde, 1990). They are involved in many activities involving

the agricultural processes, in the raising of animals and in commercial activities.

The farmers who are situated in the rural areas tend to be full-time as they are often too

far from the urban centres to find work there. Additionally, in rural South Africa the current

(2004) employment situation is particularly depressed. In terms of employment, 90 per

cent of women in rural areas are employed in the rural sector. Tshatsinde (1990) has

suggested that the contribution of women in agricultural production is not easy to quantify

in statistical terms, as most of the work is unpaid and is, therefore, unseen. Rural women

contribute more than 20% to the average family income and sometimes their routines

involving agriculture and household activities take more than 18 hours a day (Tshatsinde,

1990).

2.5.3.2 Food Security

Agriculture is full of risk and uncertainty, and as a consequence, risk has a weighty

influence on decisions made. Production instability at the household level can have

serious effects on income and food security (Jones and Thornton, 2002). Chen and Kates

(1996) define a food-secure nation as one that provides security at all levels of human

organisation, from the individual household members and their differing nutritional

requirement, through to regional and national level. At the household level it may be

crucial for the farmer to minimise the fluctuations in household income over time, or to

maintain or increase a particular wealth level and nutritional status. At the national level,

governments have to ensure an adequate food supply to the population for all sectors of

society (Thornton and Wilkens ,1998).
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Crucial to rural household food security are householder plots and community gardens. A

community garden is a communal plot of land usually 1-2 ha in size. Each member of the

garden has their own section of land in which to grow crops. Generally this tends to be

vegetables as they have a higher cash value than other crops. Each farmer is then able to

decide what crops to grow when to do 50 and when to irrigate.

Many of the community gardens do not grow the amount of produce they have the

potential for. Generally, in community gardens which are close to towns the farmers are

part-time and they have other ways of generating income as they are close to the areas

where there is work (Walker, 1999). Community gardening is unique in the opportunity it

can provide the poorest of the poor people to improve their standard of living (de Lange,

1994).

Gellen (1994) reports that there are some vital components to ensuring food security. At

the household level it would include securing a family's ability to grow and purchase

enough food and address inequality regarding access to resources. Also, support and

incentives would need to be channelled to small-scale farmers, targeting in particular

women. At a community level, procedures should be established to protect those most

vulnerable to climatic extremes. Amalu (2002) comments that people struggling for

survival generally will not consider long-term 5ustainability, even if initially their practices

destroy their long-term basis for survival.

Food security at the household level is implicitly linked to land and water quality.

Degradation of these resources can affect rural household consumption by:

•
•
•
•
•

reducing subsistence food supplies

reducing food purchases due to higher food prices

reducing household incomes

reducing agricultural employment and

negative health effects due to reduced water quality or food consumption (Penning

de Vries et al., 2002).
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2.5.4 Climate change and agricultural productivity

An important element of the regional expression of global change is climate driven, which

in turn is driven by a changing atmosphere and land surface. The regional change arising

out of global change is much more than only the effect of climate change; it is the

interaction of a variety of forcings, the human dimensions of which are of fundamental

importance (Tyson et al., 2002).

On a global scale South Africa, and particularly the southern African region, has low

carbon emissions (Tyson et al., 2002). Given these apparently low emission figures, it is

tempting to minimise the contribution of the region to global change. According to Tyson

et al. (2002) this would be misleading. The urban and industrial emissions of aerosols and

trace gases, along with biomass burning in the tropics have major implications for regional

change.

Climate change in the southern African region could have important consequences for the

production of cereal crops (Perks, 2001). A particularly negative aspect in Africa is that

local production of cereals has not increased at the same rate as the population

(Sombroek and Gommes, 1996), this being in contrast to the rest of the world, where food

production has increased at a faster rate than human populations. Also, the production of

tuber and root crops is rising faster than that of the nutritionally more important cereals

(Sombroek and Gommes, 1996). Any change in the climate that may have negative

impacts could, therefore, exacerbate the situation where production of food is not

increasing with anticipated demand.

Downing et al. (1996) describe four ways which climate change is likely to alter the plant

environment:

• CO2 : The direct effects of carbon dioxide enrichment on plants are beneficial.

• Temperatures: It is projected that across southern Africa temperatures will

increase (Schulze and Perks, 2000; Schulze et al., 2005). Warmer climates will

affect, inter alia, the distribution of agro-ecological zones.

• Water: Since thermal suitability is not a major constraint on agriculture in southern

Africa, the dominant effect of climate change is likely to be through altered water

balances which may alter significantly (Schulze et al., 2005).
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• Frequency distributions of temperature, rainfall and other climate elements may

change: For example, rainfall that occurs with less regularity would exacerbate

water stress.

The productivity of agro-ecosystems could be significantly impacted by the effects of

climate change. This could result in highly productive areas to become less so. The direct

impacts on marginal areas could either be to make agriculture unsustainable or,

conversely, to increase the potential productivity considerably (Reilly, 1996). Agricultural

crops grow optimally within ranges of temperature and rainfall specific to each given crop

(Schulze, 1997). A consequence of future climate change is that agricultural production

belts for different crops may shift. Perks and Schulze (2000) found that sorghum's

optimum growth areas in South Africa to be relatively robust to anticipated climate

change. The area under maize production however, is likely to shrink mainly along the

western margin of the present-day distribution of production.

Reilly (1996) refers to two basic methodologies to assess the impacts of climate change

on agricultural productivity:

• Structural modelling of the agronomic response of plant and management

decisions of farmers based on controlled experimental evidence; and

• Dependence on the observed response of crops and farmers to varying climate.

The most certain aspects of climate change in southern Africa are local warming and

higher atmospheric carbon dioxide concentrations. Their effects on crops suggest faster

growth and higher yields per unit of water required. Southern African countries with

comparatively wealthy economies, such as Botswana and South Africa, may be able to

cope with any adverse impacts through imports and agricultural developments.

Sustainable development depends on continued prosperity and investment (Downing et

al., 1996). These anticipated changes may mean that areas currently under commercial

agriculture and forestry may have to shift geographically, often at considerable cost to the

changing environmental conditions. However, not all changes will be negative and new

opportunities will be presented for the enterprising to exploit (Tyson et al., 2002).
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2.6 Characterising Agricultural Sustainability

Hansen (1996) categorises sustainability characterisation into three approaches:

•

•

•

Characterisation based on adherence to prescribed approaches and an

interpretation of sustainability as an approach to agriculture (O'Connell, 1992);

Characterisation by multiple qualitative indicators and attempts to integrate such

indicators being consistent with interpreting sustainability as an ability to satisfy

diverse goals (e.g. Troquebiau, 1992, L6pez-Ridaura et al., 2000); and

Characterisation by combining varied indicators of sustainability into integrated

quantitative measures (e.g. Sands and Podmore, 2000).

Torquebiau (1992) investigated bio-physical and socio-economic conditions of agro­

forestry home gardens in order to contribute to an operational understanding of

sustainability. This consisted of identifying sustainability descriptors (e.g. soil or external

inputs) and devising hypotheses to assess the effects of agro-forestry on these

descriptors. Measurable indicators that characterise the system descriptor are then

employed to evaluate if a particular production system has a negative or positive effect on

the descriptors. If there is a negative effect on a descriptor, then the system is deemed

unsustainable.

L6pez-Ridaura et al. (2000) suggest that the operationalising of sustainability requires

new evaluation methods which are qualitatively distinct and facilitate an integrated

assessment of the ecological, social, and economic features of agro-ecosystems, and that

this should be achieved through the use of appropriate indicators. L6pez-Ridaura et al.

(2000) highlight a need to develop indicators to assess the relative degree of sustainability

of contrasting production systems, especially those throughout the rural sector of the

developing world. The framework is based on sustainability being defined by seven

general attributes: productivity, stability, reliability, resilience, adaptability, equity, and self­

reliance. Sustainability evaluations would only be valid for a specific management system

in a given geographic location.

Sands and Podmore (2000) designed an Environmental Sustainability Index (ESI) for use

with agricultural systems (Figure 2.6.1). The calculation of the index involves two steps:

• simulating the crop management system and then
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• calculating the index from model output.

The indicators used in the environmental sustainability index were chosen to represent

soil properties and groundwater availability. This index takes on an environmental

perspective and consists of both on- and off-site effects.

Figure 2.6.1 shows (from left to right) the ESI's computational steps from daily outputs, to

annual sub-indices, to sustainability sub-indices, which are then aggregated to produce

the ESI. The component sub-indices are based on transformations obtained from

simulations of the agricultural system using a daily model. The sustainability sub-indices

characterise the status of specific soil and water resources over the simulation period, in

response to agricultural management practices.

Simulated
Environmental
Variables (daily)

Component
Sub-indices
(annual series)
Processes

Sustainability
Sub-indices

Final Index

Soil / "-X5 productivity; Soil water

X3 I ;> Groundwater I resources I ) ESI
X4 availability;

Soil water Losses from
X2 resources; system

X1 Leaching \" /'

normalization,
depth integration

time
integration

aggregation

Figure 2.6.1 Flow of information to calculate the environmental sustainability index, ESI

(after Sands and Podmore, 2000)

In discussing agricultural sustainability, Hansen (1996) considers it necessary to

characterise the concept of sustainability when using it to identify constraints, concentrate

research and for policy development. These characteristics are: the definition of

sustainability should be literal and in turn system-orientated, quantitative, predictive and

stochastic (Le. treating variability as a determinant of sustainability), as well as diagnostic,

·in nature (Le. using an integrated measure of sustainability to identify and prioritise

constraints).
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2.7 Sustainability: A Working Definition

A working definition of sustainability was derived from the literature review on

sustainability (Chapter 2). The derived definition for sustainability will be used as the basis

for the framework outlined in Chapter 4 that will be employed to assess agricultural

sustainability at various scales in South Africa (Chapters 5,6,7, 8).

From the sustainability definitions reviewed and from an examination of the philosophies

and schools of thought behind the definitions, this author regards the work of Chambers

(1997) as being highly influential and also pertinent to agriculture. Chambers (1997)

recognises that humans are at the centre of agricultural systems and that their well-being

is a key for the sustainability of agro-ecosystems.

Based on the work of Chambers (1997) the definition of sustainability used by the author

in this thesis is:

I Sustainability is applying long term perspectives, in regard to human well-being

and ecological integrity, to policies and actions. '

To use Pearce's (1993) terminology, this definition follows a 'weak sustainability' pathway

in regard to development and it would be categorised as techno-centric. However, it does

recognise intergenerational equity, resource conservation and the value of the goods and

services provided by ecosystems. The definition is also essentially void of any influence of

the Gaia hypothesis (Section 2.3), as this author believes that it is fundamentally unethical

to have a moral obligation to the earth, and this author further believes that the philosophy

also entails a reduction in the value of human life.

The sustainability timeframe used in the working definition is worded as 'long term'. How

long is long term? In regard to this thesis long term is considered to be two generations, or

40-50 years. This is also the length of the datasets readily available for the agro­

ecosystem modelling in southern Africa and it is felt that this length of time frame is useful

particularly in looking at possible impacts of climatic changes on agro-ecosystems. This

definition does not ignore future generations per se, but considers the next one to two

generations of being of more significance, as beyond this, timeframe assumptions about

humans needs and what society will be like. and what the environmental conditions will

be, become considerably more uncertain.
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Human well-being is simply the quality of life that a person has. For the purposes of this

thesis the 'quality of life' is referring to peoples' physical life, such as whether the person

has enough food to eat, access to clean water, basic sanitation etc. and not necessarily

the persons emotional or spiritual state.

Ecological integrity refers to the completeness of both agro-ecosystem structure and

function, the maintenance of system components and the resulting dynamic of the system.

Using a broad term such as integrity allows scope to include the resilience of agro­

ecosystems to disturbances. This is particularly important when considering climatic

changes or the inter-annual variation of environmental conditions.

This author contends that the working definition of sustainability proposed in this section

fulfils Hurni's (2000) five pillars of sustainability (Section 2.2). These pillars are what Hurni

(2000) suggests are the fundamentals in the vast majority of sustainability definitions. With

human well-being as an essential element of the working definition this author considers

four of the pillars (viz. acceptable to society, economically viable, economically productive

and effective in reducing risk) would be met, although human well-being itself

encompasses more than these 'four pillars'. The fifth pillar, that of protection of ecology,

would be included as part of maintaining ecological integrity.

According to Brown et al. (1987) the working definition of sustainability proposed requires

the context to be stated as well as the spatial scales being considered (Chapter 1).

Therefore, when applied to agricultural sustainability in South Africa the context and

spatial scales need to be stated within the definition. Two definitions of agricultural

sustainability which have different spatial scales are given, one for agro-ecosystems in the

Highveld region of South Africa and one for smallholder agro-ecosystems in KwaZulu­

Natal, South Africa. The working definition of sustainability applied to agriculture in the

Highveld of South Africa (Chapters 5, 6, 7) is:

'for the agro-ecosystems in the Highveld region to continue in the long term providing

quality well-being for farmers and local communities and to maintain the ecological

integrity of the agro-ecosystem. '

The working definition of sustainability applied to small-holder agro-ecosystems in the

Potshini area, near Bergville KwaZulu-Natal, South Africa (Chapter 8) is:
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'for smallholder agro-ecosystems in the Potshini area to continue in the long term,

providing quality well-being for farmers and local communities and to the maintain

ecological integrity of the agro-ecosystem. '

These working definitions of agricultural sustainability will be used as the goal of the

framework to assess sustainability, which is described in Section 4.2.

A range of tools is available to decision makers when utilising a systems approach to

explore sustainability. These include crop growth models, water and soil simulation

models, regional and national databases of environmental information and GIS. When a

range of these tools is employed, the outputs from them can provide an array of

information to help the decision making process. These tools are discussed in Chapter 3.
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3 LITERATURE REVIEW OF TOOLS FOR THE ASSESSMENT OF

AGRO-ECOSYSTEM SUSTAINABILlTY

A range of tools is available to assist researchers and decision makers in investigating the

issues su rrounding sustainability in agriculture. An assessment of agro-ecosystem

sustainability involves future events being examined. Therefore, tools that can simulate

the relevant processes of an agro-ecosystem, even in a simple representation, help the

decision maker in developing strategies to achieve sustainability. Relevant tools would be

ones which, inter alia, allow the decision-maker to ask 'what if' questions. These tools

include certain crop models and spatial databases. In Section 3.1 the use of crop yield

and crop growth models are discussed in regard to sustainability. Models from three

research teams which form part of the informal network known as the International

Consortium for Agricultural Systems Applications (ICASA) are discussed in Section 3.1.2.

The CERES suite of crop yield models is reviewed in Section 3.1.3. Section 3.2 first

reports on spatial databases in general and then discuss how they can be used in co­

operation with crop models.

3.1 Crop Models

A system is a limited part of reality that contains inter-related elements. A model is a

simplified representation of a system, and simulation may be defined as the art of building

mathematical models and a study of their properties with reference to those systems (de

Wit, 1982; p. 3).

In agro-ecosystems the production of crops involves complex relationships between crop

genotype, the soil, the environment and management practices. These interactions within

the agro-ecosystem can be simulated with computer models using suitable data sources

(Hoogenboom et al., 1990). Crop models are developed as tools to aid crop system

decision-making and policy analysis (800te et al., 1996). A valuable property of crop

models is their ability to utilise long-term climate data in order to provide long-term yield

simulations which can then serve to quantify risk (Hensley et al., 1997).

A definition of a crop model has been given as a 'quantitative scheme for predicting the

growth, development and yield of a crop, given a set of genetic coefficients and relevant

environmental variables' (Monteith, 1996; p. 695).
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There are numerous organisational levels when considering the biology of crops. Usual

levels would include crop, plant, organ, tissues, cells, organelles, macromolecules,

molecules and atoms. It is important to remember that the response of the system at a

certain level is related to the response at lower levels and successful operation at that

level is dependent on the lower levels functioning correctly, and not vice-versa (Thornley

and Johnson, 1990).

800te et al. (1996) list the uses of crop models as follows:

• Models can assist researchers in their understanding about the interactions of

genetics, physiology, and the environment.

• They can assist in pre-season and in-season management decisions on cultural

practices, fertilization, irrigation and pesticide use.

• Crop models can assist policy-makers by predicting rates of soil erosion, leaching of

agrochemicals, effects of climatic change and large-area yield forecasts.

An application of crop production models is to determine the yield that can be achieved

with current varieties in a specific environment and to ascertain opportunities for yield

improvement in well managed systems (Kropff et al., 2001). In systems that are low

yielding due to factors such as limited access to external inputs, it is not always possible

to simulate the optimum yield. Therefore, to simulate yields in such environments

alternative approaches are required.

It is conventional to distinguish between mechanistic and empirical models (Monteith,

1996; p. 695). In empirical models the observed data are examined and an equation, or

set of equations, is formulated to fit these data. The mechanisms that trigger the

responses are not investigated. The model is, therefore, basically a mathematical

description of observed data. However, empirical models can provide the decision maker

with a robust tool with which to summarise and interpolate data (Thornley and Johnson,

1990).

A mechanistic crop model contains the crop system broken down into components, with

the model then assigning processes and properties to these components. Mechanistic

modelling follows the reductionism method, Le. responses at a certain level of the

biological system are related to the responses at lower levels. Responses at the whole­

plant level are synthesised by combining the set of equation that define the system

components (Thornley and Johnson, 1990).
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There is a need for both complex and simple models. In some cases, simple model are

not appropriate because they are not programmed to address a particular phenomenon.

In other cases, complex models are not appropriate because they may require inputs that

are not practical to obtain in a field situation (Boote et al., 1996; p. 704).

3.1.1 Crop yield models

The major use of crop yield models is to evaluate how crop production can be increased

and how the efficiency of the resources used can be enhanced. Examples of computer

models that have the capacity to produce yield estimates include ACRU and GAPS.

In the ACRU, agrohydrological modelling system (Schulze, 1995) crop-related sub-models

have been developed that are not site or climate specific. These sub-models include

maize, sugarcane and wheat yield simulation models, as well as one for primary

production. These models have been developed and tested widely under southern African

conditions (e.g. Schulze et al., 1995a; Lumsden, 2000). The ACRU maize yield model has

three growth stages for maize:

• Growth stage 1 - emergence to flower initiation

• Growth stage 2 - flowering stage, and

• Growth stage 3 - end of flowing to maturity.

The length of time for each phenological stage is driven by growing degree days. The

seasonal maize grain yield is calculated using potential maize grain yield for the season

and this model operates when ACRU splits crop transpiration from soil water evaporation

(Schulze et al., 1995). This daily time step model can also simulate crop yields under

2xC02 atmospheric conditions.

GAPS is a model which simulates components of the atmosphere and the soil and plant

system. GAPS was initially designed for use in research into environmental biophysics

(Rossiter and Rhia, 1999). This model enables the user to compare different means of

simulating the same processes and these selections are separate from other modelling

choices. Photosynthesis is computed each time step for both the sunlit and diffuse-lit leaf

areas and the model is able to simulate photosynthesis in situations where water

becomes limiting during mid-afternoon hours, when stomata tend to close. The growth of

the maize crop is simulated on a daily time step and included are processes that change
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the leaf area index as well as accounting for canopy expansion and root expansion

(Rossiter and Rhia, 1999).

The GAPS model has been used to estimate crop yields on a regional scale in Illinois,

USA (Moen et al., 1994). Melkonian et al. (1998) compared different re-orientations of

crop responses to elevated carbon dioxide, while Rossiter and Rhia (1999) implemented

two routines for use in GAPS to model plant competition.

The GAPS and ACRU maize models replicate yield responses in different ways. The

GAPS model produces estimations based on the yield responses to climate. However,

ACRU, which is an agrohydrological model, has a soil water budget as the basis for the

model and yield responses are estimated in response to the changing soil water budget.

3.1.2 Crop growth simulation models

Simulation models are an appealing tool to investigate crop improvement, as growth and

development can be predicted in regard to the effect of soil and climatic conditions,

agronomic practices and cultivar traits (White 1998).

The International Consortium for Agricultural Systems Applications, ICASA, is an informal

network which seeks to develop and apply compatible and complementary crop simulation

models and other systems analysis tools. In particular, three research groups associated

with ICASA have sought to develop crop simulation models that are modular in structure,

so as to increase the ease with which new components can be added and maintained

(Jones, 2001). These groups are

• the Agricultural Production Systems Research Unit in Australia (APSRU), which

developed the APSIM model

• the 'School of de Wit' at the Agricultural University, Wageningen in the

Netherlands and

• the erstwhile International Benchmark Sites for Agro-Technological Transfer,

IBSNAT. IBSNAT ended in 1991 but the models developed have been adapted to

various regions in the world and are Widely used by researchers and decision­

makers.

Each of the groups was made up of researchers from a range of institutions in different

countries.
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3.1.2.1 APSIM

The Agricultural Production Systems Simulator, or APSIM, was developed by the APSRU

in Australia in response to existing crop system models' not providing all of the following

criteria:

• satisfactory sensitivity in regard to extremes of climatic inputs for economic risk

assessment of yield variability

• simulation of trends of various management strategies on soil productivity and

• software that allows research teams to continually improve the models in the APSIM

shell (McCown et al., 1996).

The significant difference between APSIM and other model systems is that the soil and its

response to weather, crops and management is the focus, rather than the crops being the

centre point of the model system. The structure of APSIM is shown in Figure 3.1.1. The

different processes relate to each other through a central control unit. Several of the

models of APSIM that are used to model various processes have been adapted from

other systems. For example, the soil nitrogen model has been adapted from the DSSAT­

CERES model. McCown et al. (1996) comment that the key difference between DSSAT

and APSIM is that DSSAT is unable to simulate the cumulative effects of the crop on the

soil. However, this is no longer the case, as the DSSAT models have been developed to

simulate the effect.

In the APSIM model high order processes such as crop production and the soil water

balance are represented as modules which relate to each other only through a central

control unit, which is referred to as the program engine (Figure 3.1.1). The crop growth

modules can be interchanged, and more than one growth module can be connected

concurrently (McCown et al., 1996).
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Figure 3.1.1 The structure of the APSIM program (after McCown et al., 1996)

The APSIM wheat and sorghum crop models have been used to characterise major

drought periods in Australia. A range of cropping systems at different locations was

studied. The results from APSIM were compared with rainfall estimates of drought for the

same period and APSIM was deemed a superior measure of drought severity on farm

performance. This was due mainly to the agricultural simulator's being able to reflect on

the impacts of rainfall timing, intensity and soil water storage (Keating and Meinke, 1998).

Asseng et al. (1998) found APSIM to be a useful tool in estimating the yield for wheat as

well as for nitrogen leaching from a sandy soil in Australia. The soil was found not to meet

potential yield estimates OWing to its high drainage and leaching potential. Also in

Australia, Muchow and Keating (1998) used APSIM for irrigation scheduling and yield

estimates for sugarcane. These results enabled a range a management options for

sugarcane production to be investigated.
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Keating and McCown (2001) report on the APSIM model's being adapted and used for

small-scale agriculture in Africa, particularly in Kenya and Zimbabwe. Research was

carried out on soil fertility in areas that experience extremes in climate variability. Different

scenarios were investigated regarding processes at work in both the soil and plant.

Results emphasise the value of matching investments in fertiliser with early establishment

and weed control.

3.1.2.2 School of de Wit crop models

Crop simulation models have been developed at the Agricultural University, Wageningen

in the Netherlands by the 'School of de Wit'. In general the models produced by the

School have similar characteristics:

• Rates of change are calculated as functions of time.

• The system is divided into hierarchical levels of organisation.

• The system is characterised by a set of state variables.

• The models are explanatory because the calculations involving rate variables are

based on knowledge of the variables in the system.

• All plants in the crops are considered to be of the same genotype (Bouman et al.,

1996).

Two of the more important models developed by the researchers at Wageningen are

MACROS and SUCROS (Bouman et al., 1996). Figure 3.1.2 shows the relationship

between state, rate and auxiliary variables and the flow of matter. The diagram is for the

SUCROS model, but is considered a standard structure of a crop simulation model from

the School (Bouman et al., 1996). The rectangles indicate state variables, the rounded

rectangles rate variables and the oval an auxiliary variable, the dotted lines the flow of

information and the solid lines the flow of matter.
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Figure 3.1 .2 Relationships in a standard 'School of de Wit' crop model (after Bouman et

al., 1996)

In the SUCROS model the physical and physiological processes can be applied to a

range of environmental conditions. The model simulates, from emergence to maturity, the

time course of dry matter production of a crop, and is reliant on the daily total irradiation

and air temperature. The dry matter produced is divided into roots, leaves, stems and

storage organs (van Keulen et al., 1982). Partitioning factors are introduced as a function

of the phenological state of the crop. Simane et al. (1994) used the SUCROS-87 model to

investigate moisture stress on potential yield of wheat in Ethiopia. The average simulated

yields were found to be high compared with national yields. This could be due to
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influences on the agro-ecosystem such as pests or poor management not being

incorporated.

The MACROS model was developed as part of a project to transfer technology and

systems methodology to researchers in Southeast Asia (Jones et al., 2001). The model is

generic and consists of a series of basic modules for potential and water-limited crop

growth, with parameters given for a large number of crops (Bouman et al., 1996). Bouman

(1994) used the MACROS model to illustrate the simulation of crop yield on rain-fed

upland rice in the Philippines. The accuracy of the model was found to be dependent on

the availability of accurate soil and management parameters.

3.1.2.3 International Benchmark Sites Network for Agrotechnology Transfer
(IBSNAT)

The International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) Project

has involved multiple institutions and organisations (Hoogenboom et al., 1994). The

overall aim of the IBSNAT project was to 'apply systems analysis to problems faced by

resource-poor farmers in the tropics and sub-tropics, specifically in the area of evaluating

new and untried agricultural technologies' (Uehara, and Tsuji, 1998; p. 1).

In order to achieve this purpose, the project organised researchers and resources to

concentrate on the following objectives:

• Creation of a decision support system capable of simulating the risks and

consequences of different choices;

• Defining the minimum amount of data required to make simulations;

• Testing and application of the decision support system on global agricultural

problems requiring site-specific yield simulation (Uehara, 1998); and

• Using a systems analysis approach to assist developing countries in agrotechnology

transfer and decision-making (Hoogenboom et al., 1994).

One of the outcomes of the IBSNAT Project is a systems analysis based decision support

system. As a result, the Decision Support System for Agrotechnology Transfer (DSSAT)

Version 2.1 was released in 1989 (Hoogenboom et al., 1994).

50



Decision makers require tools that will enable them to make choices now, and that will

have favourable outcomes that are both environmentally safe and economically sound,

perhaps up to 50 years into the future. DSSAT allows the user to answer 'what if'

questions (Tsuji et al., 1'994).

A characteristic of IBSNAT crop models is that they have generic input files which can be

used by all the models. The input variables required fall into five categories: climate, soil

water, soil nitrogen, crop management and genetics (CIESIN, 1997). These are described

in Section 3.1.3.

3.1.3 The Decision Support System for Agrotechnology Transfer (DSSAT)

The goal of decision support systems is to improve the performance of decision makers

while reducing the time and human resources required for analysing complex decisions'

(Jones et al., 1998 p.158).

The OSSAT was therefore designed to allow the user to:

• Input, organise and store data;

• Retrieve, analyse and display data;

• Calibrate and evaluate crop growth model; and

• Evaluate different management practices at a site (Jones et al., 1998).

The OSSAT software consists of a Data Base Management System, a set of validated

crop models and a program for analysing and displaying outcomes. Users of DSSAT are

able to fit the biological requirements of the crops to the physical characteristics of the

land (Tsuji et al., 1994).

Climate related data required to operate the models includes the latitude and longitude of

the climate station being used, as well as daily values of solar radiation (MJ/m2/day),

maximum and minimum air temperature (DC) and rainfall (mm) at that station. Atmospheric

carbon dioxide concentration (ppmv) is also required for studies involving climate change

impacts.

The soil water attributes required are soil albedo, permeability, drainage from the soil

profile and first stage soil water evaporation. Every soil layer necessitates a value for

thickness of soil horizon, saturated soil water content, soil water content at field capacity
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and permanent wilting point, initial soil water content and relative root distribution

(Hoogenboom et al., 1995).

The information needed to express crop management options comprises of planting date,

plant density, row spacing, selection of cultivars and soil type (CIESIN, 1997). For the

CERES models there is the ability of the program to incorporate irrigation management

and nitrogen fertilizer management.

Each model uses one input file that contains parameters that characterise the growth and

development traits for various cultivars (Hoogenboom et al., 1995).

3.1.3.1 CERES suite of models: General structure

One of the crop model options in DSSAT is the CERES-Cereal model. This is a suite of

models which operates on a daily time step and simulates the main physiological

processes for barley, maize, millet, rice, sorghum and wheat. The main processes that

CERES simulates are:

• Photosynthesis

• Respiration

• Accumulation and partitioning of biomass

• Phenology

• Extension growth of leaves, stems, and roots

• Soil water extraction

• Evapotranspiration and

• Nitrogen transformation processes (Wu et al., 1989).

Potential dry matter production is determined by using a function of solar radiation, leaf

area index and reduction factors for temperature and moisture stress. Six phenological

stages of leaf and stem growth are replicated, based primarily on thermal time. Accessible

photosynthate is at first partitioned to leaves and stems, and later for ear and grain

growth. Any residual photosynthate is assigned to root growth unless the dry matter

available for root growth is below a minimum limit, whereupon grain, leaf and stem

allocations are reduced and the minimum level of root growth occurs (CIESIN, 1997).
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CERES-Maize (Jones and Kiniry, 1986) is one of the options within the CERES-Cereal

model.

In version DSSAT v3 the crop simulation modules require information from the DSSAT

database. The association between the modules and input files is shown schematically in

Figure 3.1 .3. The experiment detail file is referred to as FILEX and contains information to

document field experiments or farm management. The soil profile data are stored in a file

that is accessed by the module with the profile data selected using a soil number from

FILEX. Daily climate data are stored in yearly files. For the seasonal modelling discussed

in Section 5.3 the IBSNAT30.INP file (Figure 3.1.3) is created outside the DSSAT shell

and run consecutively for all Quaternary Catchments with the use of a batch file. The

sequential modelling using CERES-Maize and the creation of input files within the DSSAT

shell is discussed in Sections 6.2, 7.2 and 8.3.
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Figure 3.1.3 Schematic of relationships between the crop model driver program (MDRIV940.EXE), the crop model input program

(MINPT940.EXE), the temporary files read by the crop model modules (IBSNAT30.INP), and the crop simulation model modules

(after Jones et al., 1999; p. 16)
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Cultivar information is read from crop-specific files and FILEX specifies which cultivar to

select from this file. Outputs files are from the crop model depend on the options selected

in a simulation control in FILEX (Jones et al., 1998).

The schematic relationships of the crop model driver program (MDRIV940.EXE), the crop

model input program (MINPT940.EXE), the temporary files read by the crop model

modules (IBSNAT30.INP), and the crop simulation model modules (Jones et al., 1998) are

illustrated in Figure 3.1.4. The model driver controls entry to the input module and to the

correct crop model. It is performed every time a crop is to be simulated (Jones et al.,

1998).

The DSSAT v3 crop models were originally developed for simulating the growth of annual

crops during a single season. The various crop models have a similar structure, which has

allowed their use for long-term simulation of cropping sequences.

The term sequence in DSSAT models refers to the growing of a crop in continuous

succession or a rotation of different crops for a stated length of time (Thornton et al.,

1995). Since DSSAT operates on a daily time step, the simulation of cropping in sequence

necessitates continuous calculations of soil and water process on daily basis, which will

include those days when no crop is growing. A temporary file named 'TMP.DAT', which

contains the relevant variables to pass from one model to the next, assists the running of

the models in sequence. Consequently, the majority of. variables in the temporary file

which are passed on from season to season are those that are required for the simulation

of soil water, carbon and nitrogen processes (Bowen et al., 1998).

The links between the model driver and crop simulation models are shown in Figure 3.1.5.

At the beginning of the simulation the driver program reads the order of the cropping

sequence from an experimental details file. The driver then continues running the

respective models for the number of years specified in the same experimental details file

(Bowen et al., 1998).
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continuous cropping sequences in DSSAT v3 (after Bowen et al., 1998; p.
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3.1.3.2 CERES-Maize applications in the USA

The CERES-Maize model has been used both on its own and in combination with other

models to evaluate management and cropping strategies, predict yields, assess impacts of
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climate change on growth and yield, assess drought severity, and model the effects of

irrigation, drainage, water flows and solute transportation as well as, nitrogen uptake, fertiliser

impacts, root growth and pests. A few examples of its applications in the USA follow below.

CERES-Maize was utilised in the evaluation of maize irrigation strategies in Michigan, USA.

Boggess and Ritchie (1998) found that profit maximising strategies called for significantly less

water than maximum yield strategies and that irrigation was unique as a production input, in

that increasing rates of application reduced the weather related variability in yield.

Paz et al. (1999) developed a technique to use the CERES-Maize model to characterise

maize yield variability. The model gave predictions of the yield trend along field transects,

explaining over half of the yield variability. Results showed high spatial distribution of

optimum nitrogen fertiliser recommendation for grids across the field. Grid-level nitrogen

fertiliser management and lower amounts of fertiliser produced higher yields and was found

to be more profitable than either transect- or field -level fertilizer application rate.

Hook (1994) used crop models to plan water withdrawals for irrigation in drought years. The

potential and the lowest yields for maize, soybean and peanut were calculated using three

crop growth and water use models, viz. CERES-Maize, SOYGRO and PNUTGRO. Most of

the irrigation needs of maize in the drought years occurred before those of peanut or

soybean.

A methodology was developed to estimate the economic value of 'perfect information'

concerning the optimum application schedule of nitrogen using CERES-Maize (Thornton and

MacRobert, 1994). It was concluded that in farming areas of comparatively high levels of

weather-related risk, use of appropriate forecasting and input optimisation techniques could

result in moderate economic benefits over the long term.

Improving irrigation schedUling strategies for maize is important for both water conservation

and growth of the crop. Hodges et al. (1987) identified optimal thresholds for several maize

irrigation strategies in the south eastern USA. Net returns and irrigation amounts were

determined for each growth stage using the growth simulator CERES-Maize.
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CERES-Maize has been used widely for yield prediction. Hodges et al. (1987) applied the

model in North American conditions to estimate production from the US corn-belt and tested

the model to assess if it was able to accurately predict annual fluctuations in maize

production. The results indicated that the model could be used in other parts of the world for

large area yield estimation where daily maximum and minimum temperatures, precipitation,

and solar radiation data are available.

CERES-Maize has been valuable in its use under North American conditions for a wide range

of agricultural assessments. For it to be used effectively outside of these conditions

adaptations are required to take into account different environmental conditions.

3.1.3.3 CERES-Maize applications in South Africa: Some examples

Various studies have been carried out in South Africa using the CERES-Maize model.

Schulze et al. (1993) used the CERES-Maize model as part of an analysis tool investigating

agricultural productivity in southern Africa and its response to climatic changes. The study

revealed a large dependence of production and crop yield on the intra-seasonal and inter­

annual variation of rainfall.

Tsuji et al. (2002) reported on the progress made by the South African Agricultural Research

Council's Grain Crops Institute in Potchefstroom in adapting CERES-Maize to conditions in

the dry western areas of the Highveld in South Africa. Several studies have been carried put

to determine the necessary inputs, such as genetic coefficients, phenology and row widths,

required to run CERES-Maize under South African conditions. These studies have enabled

further research to be carried out with CERES-Maize, including work on yield prediction,

drought impacts and climatic change.

An investigation by du Toit et al. (1994a) found that a significant difference existed between

observed and optimised genetic coefficients. The conclusion was that the genetic parameters

in the subroutines of CERES-Maize would need to be calibrated for South African growing

conditions.

CERES-Maize was evaluated (du Toit et al., 1994b) in regard to optimising the planting date

of cultivars. Different stages of the plant growth were calibrated in CERES-Maize to improve

59



phenological predictions. The silking date of maize is important as this coincides with the mid­

summer drought which frequently occurs in the western Highveld of South Africa and which

can affect yield negatively. As a result of the modifications made by du Toit et al. (1994b)

systematic errors were reduced.

In the western Highveld region of South Africa rainfall is the major limiting factor to maize

yields. Management practices employed to combat the lack of rainfall include reducing plant

populations and widening row spacing. CERES-Maize was evaluated in regard to these

production practices. Yield differences between observed and simulated were found to be

due to the second ear on the predominant maize plant, which the CERES model does not

simulate (du Toit et al., 1994c). Furthermore, CERES-Maize v.3 was found to have low

accuracy in simulating the kernel numbers of maize under western Highveld conditions. The

factors that could have caused this were identified as the number of ears per plant and water

stress before and during silking (du Toit et al., 1997).

A field trial was carried out by du Toit et al. (1998) to improve the prediction of the silking date

of maize by CERES-Maize, which has been linked to the problem the model has in simulation

of the kernel number. The modifications made improved the simulation of the silking date (du

Toit et al., 1998; du Toit and Prinsloo, 2000).

The above adaptations made to the CERES-Maize model have been used to predict yields,

assess drought impacts and investigate effects of future climatic conditions on maize

production in South Africa. The El Nino-Southern Oscillation phenomenon is a significant

cause of drought and, therefore, reduction in maize yields in South Africa. The CERES-Maize

simulation was used with seasonal weather predictions and climatic data for historic El Nino

years to simulate production practices so that management options could be ascertained that

could help to reduce the negative impacts on yield of an El Nino year (du Toit and Prinsloo,

1998).

Using daily climate and soils databases, a Geographic Information System (GIS) in

combination with the CERES-Maize and Putu Maize models, de Jager et al. (1998)

developed a framework for drought assessment in the Free State Province of South Africa.

Drought hazard in maize was quantified and mapped by employing climate characteristics of

the Southern Oscillation Index and running crop models in a GIS.
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Du Pisani (1987) developed a methodology in which the CERES-Maize model was employed

to assess drought impacts on maize at an early stage in the season. The model was verified

using South African data. Excellent correlations were found between yield predictions based

on observed early season data in combination with median data for the remainder of the

season, and yield predictions based on observed data over the entire season.

Using a calibrated version of the CERES-Maize v3.0 model, du Toit et al. (1999) investigated

maize yield responses to climate change. Four potential scenarios were tested at 19

individual sites representing most of the current maize production areas in South Africa.

Thirty years of model simulation were conducted for each site with average, standard

deviation and yield distributions being calculated. The process was repeated using climate

scenarios proposed by different General Circulation Models (GCMs). The GCMs were the

Climate Systems Model, the Genesis Model, the Hadley Model with no sulphate forcing, and

the Hadley Model with sulphate forcing. Descriptions of the GCM versions have been given

by Perks et al. (2000). To investigate the effects of the different climate scenarios on a

regional and national level, the CERES model was linked to a Geographic Information

System.

The results of the crop model simulations run under the different climate scenarios showed

that maize yields would either remain at more or less current levels or decrease by between

10 and 20%, depending on which GCM scenario was used. In some of the marginal areas of

the Free State and North-West Province maize production would not be economically

sustainable under certain future climate scenarios.

De Vos and Mallet (1987) evaluated CERES-MAIZE with another simulation model, CORN F

(Stapper and Arkin, 1980), using South African data. The results indicated that both models

agreed well with observed values of total above-ground plant dry mass, leaf area index, grain

yield and soil water content. However, CORN F tended towards a systematic under-prediction

of leaf area index compare with CERES-Maize, while CERES-Maize provided more realistic

estimates of soil water content than CORN F.

The inability of CERES-Maize v3.0 to simulate a fluctuating shallow water table has been

identified bydu Toit et al. (2002b) as a major constraint in using the model under irrigated
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conditions in South Africa as well as in Kenya. A waterlogging sub-routine was therefore

written, so that it is now possible to simulate the fluctuation of the water table without the

need for additional soil inputs. It is now also possible to quantify the influence of oxygen

stress on maize by simulating waterlogging.

Jones and Thornton (2003) modelled the possible impacts of climate change on smallholder

maize production in Africa and Latin America using a third order Markov rainfall model, the

CERES-Maize model and output from a GCM (HadCM2). The results showed an overall 10%

reduction in maize production to 2055. On a regional scale large variability in yields occurred,

and Jones and Thornton's conclusion was that climate change needed to be assessed at the

household level so that the people who would be most vulnerable to its impacts could be

targeted with appropriate research and development. The results for South Africa showed

that the simulated baseline yield for smallholders was 1310 kg/ha compared with the FAO

yield figure for 2000 of 2029 kg/ha, with the simulated yield for the year 2055 being 1061

kg/ha for smallholder rainfed production systems.

Lumsden and Schulze (2004) studied management strategies for small-scale farmers

producing maize under conditions of climate variability, using the CERES-Maize model. An

analysis was made of the accuracy of yield forecasts based on rainfall forecasts, and to

ascertain whether these forecasts could be valuable to the small-scale farmer when planning

crop management strategies.

3.1.4 Discussion on Selection of Crop Models for Sustainability Modelling

South African agro-ecosystems respond to mechanisms that are interdependent and rely on

water, nutrients and crops. There is considerable variation of those factors from site-te-site.

For the purposes of this thesis a modelling system is required that can simulate maize

growth. From the model, outputs are required that can be used as indicators to assess farmer

and community well-being, the ecological integrity of the system and then the overall

likelihood of that system being sustainable. Two yield models were briefly explained (ACRU

and GAPS in Section 3.1.1) and three research groups (APSRU, IBSNAT and 'School of de

Wit') that have produced complex maize growth models were described in Section 3.1.2.
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Similarities exist between APSIM, DSSAT and the School of de Wit models. The three groups,.
each have models of the main food groups with the crop components being separate from the

environmental routines. This separation of components has allowed for routines of the

different processes to be 'borrowed' by another modelling group and to build on that existing

work. For example, as was already mentioned in Section 3.1.2.1, the soil nitrogen model for

APSIM has been adapted from the DSSAT-CERES model.

However, there are also considerable differences in the modelling systems. This is

particularly true of the file conventions and data formats, which appear to be quite dissimilar

from each other. In terms of being able to measure model performance from the literature,

this seems particularly difficult due to the different requirements of the models for inputs,

initial conditions and environmental information.

There appear to be three major differences in how maize is modelled in the 'School of de Wit'

WOFOST model and how it is modelled in the CERES-Maize model:

• The maize development in WOFOST is driven primarily by availability of assimilate from

photosynthesis, while temperature is the primary driving force in CERES-Maize model.

• Growth respiration and maintenance respiration are used in WOFOST to determine dry

matter production whereas in CERES-Maize dry matter production is derived from

intercepted solar radiation.

• In terms of phenological specification, CERES-Maize requires specification of six

phenological stages whereas WOFOST requires phenological specification of growing

degree days (Yang et al., 2003).

The APSIM model, WOFOST, or the ACRU model could have been used for the

sustainability modelling in this thesis. Nonetheless, this author determined that a more

complex growth model that had been regionally calibrated was the most suitable for the

research. The CERES-Maize model from the DSSAT suite of models met the criteria.

Extensive regional calibration has been carried out using CERES-Maize, particularly in the

dry western areas of the South African Highveld (du Toit et al., 1994 a, b, c; Tsuji et al.,

2002). This model is not only internationally recognised, but is also used Widely within South

Africa and many field trials have been performed to derive genetic coefficients for the various
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maize varieties grown in the country. The routines that simulate the runoff and drainage of

water from the soil in CERES-Maize are not as sophisticated as the ones in ACRU, especially

for South African conditions (the routines for runoff and drainage for CERES-Maize are

described in Sections 4.2.1.6 and 4.2.1.7 respectively). Despite this, the author concluded

that sensitivity of maize yield response to environmental conditions in CERES-Maize was

appreciably higher than in ACRU. The primary function of the ACRU model is to simulate the

soil water budget. As the grain yield forms an important part of the sustainability assessment,

particularly on a regional scale. a model that was highly sensitive to changing environmental

conditions was required.

The vast majority of the work carried out to calibrate CERES-Maize to South African

conditions has been carried out primarily to improve the estimates of yield. Therefore, the

ability of the routines that simulate runoff. drainage and nitrogen movement in the soil,

particularly at a regional or even at a Quaternary Catchment scale, has not been assessed to

the same extent as yield estimations. Therefore, when assessing sustainability at a regional

scale (Le. South African Highveld, Chapter 5) this author decided to base the sustainability

assessment on estimations of yield and the variations in yield only. The author recognises

that this presents a narrower view of what is happening in the overall agro-ecosystem,

particularly in term of goods and services performed by the agro-ecosystem. However, agro­

ecosystems exist primarily to produce food and fibre so that farmers can provide for their

families and supply urban areas with products. Focusing on yield is still valid in regard to

sustainability, as 'unprofitable agricultural systems will not continue' (Edwards-Jones and

Howells, 2001 ; p. 32).

Many studies (described in Section 3.1.3) have been carried out using the CERES-Maize

model in South Africa. This particular studywill build on the work by Schulze et al. (1993) by

incorporating the information available in the South African Quaternary Catchments Database

(Chapter 5). The research carried out by the South African Agricultural Research Council's

Grain Crops Institute in Potchefstroom in adapting CERES-Maize to South African conditions

(du Toit et al., 1994 a, b, c; du Toit et al., 1997; du Toit et al., 1998; du Toit and Prinsloo,

2000) has improved the simulation of maize growth, particularly in the drier western areas of

the Highveld (Chapters 6 and 7). Lumsden and Schulze's (2004) work on management

strategies serves as useful guide in modelling small-scale agriculture with CERES-Maize

(Chapters 6 and 8).
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3.2 Spatial Databases

3.2.1 Linking Crop Model Output with Geographical Information Systems (GIS)

A comprehensive list of GIS-model interfaces may be found in Hartkamp et al. (1999). The

benefit of linking a GIS database to a crop model is that 'the spatial data contained within a

GIS system can be used as the inputs to the models to simulate various scenarios which can

then be graphically depicted' (du Toit, 1999; p. 99).

There are GIS databases available in South Africa that can be used in conjunction with crop

models. These databases have been linked with both simple and complex crop models to

estimate potential yield and suitable cropping areas (Kiker, 1999; p. 23). Schulze (1997) used

a high spatial resolution database, which had its beginnings in the Water Research

Commission's rainfall mapping project carried out by Dent et al. (1989), in conjunction with

Smith's (1994) rule-based yield models to explore areas of climatic suitability and yield

potential for range of crops.

The School of Bioresources Engineering and Environmental Hydrology (BEEH) at the

University of KwaZulu-Natal in Pietermaritzburg has developed an environmental database

comprising of the 1946 Quaternary Catchments which have been delineated over South

Africa, Lesotho and Swaziland (Schulze et al., 2004). A Quaternary Catchment is the smallest

drainage area that the South African Department of Water Affairs and Forestry considers for

operational planning,

3.2.2 Quaternary Catchments Database

The South African Quaternary catchments database has been described by Schulze et al.

(2004). In this database, the so-called Primary drainage regions of South Africa have been

divided into Secondary, then Tertiary and followed by Quaternary catchments. The

hydrologically (and agriCUlturally) relatively homogenous Quaternary Catchment areas are

delineated according to the prevailing hydrological regime, Le. the more spatially variable the

hydrological responses of a region, the smaller the QCs are. The QCs have been numbered

alphanumerically in a downstream order. An example of a QC number is V12F, which lies

close to the town of Ladysmith in KwaZulu-Natal. The Quaternary Catchment number is

interpreted in the folloWing way:
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•
•
•

•

The letter V would denote the Primary drainage region of V.

The number 1 denotes the Secondary drainage region of the Primary region V.

The next number, 2 denotes the Tertiary sub-drainage region 2 within Secondary

region 1 of V.

The final upper case letter F refers to the specific Quaternary Catchment of Tertiary

region 2 (Midgley et al., 1995).

The School of BEEH's environmental database of the 1946 QCs includes, together with other

more hydrologically related information, soils characteristics, land cover attributes, daily

rainfall, daily maximum temperatures, daily minimum temperature, and daily as well as

monthly reference potential evaporation information for each QC.

The soils infonnation contained in the Quaternary Catchment Database is derived from the

Land Type information from the Institute for Soil, Climate and Water (ISCW). From this

information quantitative input of, for example, soil horizon thickness, soil water contents at

critical retention levels and drainage rates have been derived using a set of working rules and

equations. This work is detailed in Schulze et al. (1995c).

The database used in this study contains a daily rainfall record of 45 years (1950-1994) for

each QC. Meier (1997) used an automated inverse distance weighting technique to

synthesise any missing rainfall records occurring at the stations selected for the database.

The method involves the weighting of the recorded rainfall from stations surrounding a driver

station inversely, depending on the distance of those stations from the driver station. This

gives the closest station the highest and the furthest station selected the lowest weighting.

Data from over 9000 daily rainfall stations were considered in the process of selecting a

rainfall station (driver station) to represent as closely as possible the typical daily rainfall

regime occurring over each QC. The criteria for selecting a rainfall station to represent a QC

included that they require daily values to reflect short term temporal rainfall variations, have a

sufficient record length to account for inter-annual variation in rainfall and be positioned within

the catchment boundary (Meier, 1997). This database has been recently updated and

expanded (Schulze et al., 2005). The mean annual precipitation of the South Africa

Quaternary Catchments is shown in Figure 3.2.1. The Quaternary Catchments database has

been further refined (Schulze et al., 2004) to be able to perform spatially comparative

simulations of:
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• land use change impacts

• climate change impacts (using output from four GCMs)

• crop yields

• sediment yield

• irrigation demand and

• hydrological risk analysis.

A variety of models is available that can simulate processes which occur in a range of agro­

ecosystems. This information can assist in evaluating the possible sustainability of an agro­

ecosystem. Crop growth simulation models require detailed data and often operate the agro­

ecosystem functions on a daily time-step. Therefore, environmental databases that contain

daily rainfall and temperature values are invaluable. Chapter 4 discusses further how tools

such as crop growth simulation models, e.g. CERES-Maize, and environmental databases

can be incorporated into a goal-orientated frameYt/Ork to assess agro-ecosystem

sustainability.
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Figure 3.2.1 Mean Annual Precipitation of Quaternary Catchments in South Africa
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4 DESIGN OF A SYSTEM TO ASSESS AGRO-ECOSYSTEM

SUSTAINABILlTY

A systems approach to sustainability is essential in attempting to understand the inter­

relationships between social, economic and environmental influences that are associated with

sustainability (Ikard, 1993; Hansen and Jones, 1996). While there is debate about what a

sustainable system is, there is a consensus that the concept considers the distribution of

resources over long time frames and is based on maintaining system function for future

generations (Belcher et al., 2004). For a true systems analysis of sustainability, biophysical

assessments need to be complemented with socio-economic analysis before it will result in

benefits at any scale (Kropff et al., 2001).

In Section 4.1 a review of background literature is presented in regard to systems and the

framework components for assessments of agro-ecosystem sustainability.ln Section 4.2 the

framework used by the author for sustainability assessments in Chapters 5, 6, 7 and 8 is

given. Section 4.2 includes the selection and evaluation of biophysical indicators used in this

study.

4.1 Literature Review of Using a Systems Approach to Investigate Agro-Ecosystem

Sustainability

According to Farshad and Zinck (2001), a system requires six key requirements to be

considered sustainable. The requirements are:

• environmental soundness

• economic viability

• social acceptability

• institutional manageability

• agro-technical adaptability and

• political acceptability.

Criteria for each of the six requirements are given in Table 4.1.1. Farshad and Zinck (2002)

continue that in order to assess sustainability in these six areas would require a team of
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people each with specialist knowledge. Even when assessing one or two of the key

requirements, many data from different sources are needed to satisfy the criteria.

Table 4.1.1 Requirements and criteria of sustainable agricultural systems (after Farshad and

Zinck, 2001)

Requirements Criteria
Political Acceptability Ease of employment

Government willingness
Life expectancy

Economic Viability Attractiveness of land to non-aqricultural users
Food self-sufficiency
Efficiency of inputs
Meeting market requirements
Net-farm profitability

Institutional Manageabilitv Favourability of age distribution
Labour availability
Miqration balance
Security of water supply

Social Acceptability Human health
Infant mortality
Labour availability
Deqree of welfare
Literacy of rate

Agro-technical Adaptabilitv Access to water
Agricultural production densitv
Attractiveness of land to non-aqricultural users
Weed control
Pest control
Irrigation system status
Tillage

Environmental Soundness Soil pH
Soil compaction
Soil erosion status
Soil drainage
Water quality
Influence of aqro-ecosvstem on soil, water and air
Biological activity in soil
Attractiveness of land to non-agricultural users

Von Wiren-Lehr (2001) proposed a goal-oriented system to assess sustainability and

identified four concepts for the system as goal definition, indicator selection, evaluation based

on indicator sets and final formulation of management advice. The goal-orientated approach

is based on the formation of a desired sustainable state which is characterised by a set of
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indicators. To assess the sustainability of agro-ecosystems, a combination of the goal­

oriented strategy proposed by von Wiren-Lehr (2001) and the elements of characterising

sustainability of agricultural systems suggested by Hansen (1996) could be employed

(Section 2.6). This combined system is shown in Figure 4.1.1

GOAL DEFINITION

Has a literal definition of sustainability and specifies the system boundaries

INDICATOR

Uses quantitative measures, allowing comparisons to be made with other systems

EVALUATION STRATERGY

Assesses conditions of the system using an aggregated sustainability index, cons iders

the variability of the agro-ecosysteni, with the estimated sustainability given as a

possibility

1
MANAGEMENT ADVICE

Deals with the future, uses an integrated measure of sustainability to identify and

prioritise constraints for decision-makers and farmers

Figure 4.1.1 Combined system to assess sustainability (Sources: Hansen, 1996; von

Wiren-Lehr, 2001)
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In regard to Figure 4.1.1 the following should be noted:

• In assimilating Hansen's (1996) approach to characterising sustainability with von

Wiren-Lehr's (2001) goal-orientated strategy, elements of Hansen's characterisation

were assigned to the various stages of the goal-orientated system.

• In defining the goal of the agro-ecosystem, a literal definition of sustainability is used.

The literal definition should make clear that the system is to continue through time and

has to consider ecological, economic and social perspectives.

• The indicators selected should have a quantitative measure. allowing the comparison

of different strategies to managing the ecosystem.

• Sustainability deals with the future. Therefore, any assessment of a system in regard

to sustainability can only be an estimate. This is due to the variability of the system.

Therefore, prediction of system sustainability is expressed as a probability (Hansen.

1996).

• Any management advice given as a final output of the system. whether in the form of

recommendations or alternative options. should be predictive with any constraints to

sustainability identified.

• Accurate information is necessary to estimate with any certainty whether a farming

system is sustainable. Ikard (1993; p.159) states that 'sustainable farming systems

are fundamentally knowledge-based systems of farming'.

Systems approaches can quantify achievable yields of a specific genotype at different input

levels in different environments (Kropff et al., 2001). Background literature on the different

stages of von Wiren-Lehr's (2001) goal-orientated system is presented in Sections 4.1.1 to

4.1.4.

4.1.1 Selection of Indicators

Indicators have been described as tools to measure and monitor progress towards a

particular goal. They play a pivotal role in conveying information about progress towards

objectives and should be included in sustainability methodologies or frameworks (Walmsley

and Pretorius, 1996). Indicators should be:

• directly related to the subject investigated
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• give adequate knowledge of the performance of a system

• be able to apply to a number of systems

• show changes over time and

• be calculated at a reasonable cost (Stein et al., 2001).

Environmental indicators are typically quantitative measures of a specific condition which can

be compared with an existing threshold value (Stein et al., 2001). The variety of indicators

used in an environmental indicator system should be able to give a broad view of the state of

. the environment and not concentrate on specific selected environmental problems (Walz,

2000). Table 4.1.2 shows a wide range of' indicators, with the areas covered including

economic, environmental and social indicators.

Sets ofindicators have been suggested by Eswaran et al. (1993), Constanza et al. (1997),

and Dumanski and Pieri (2000) that measure both ecosystem function and directly visible

land changes. Indicators suggested include natural habitat loss, biodiversity, soil formation,

soil loss, nutrient cycling, food production, and reduction in water flows, water quality, human

resources and food security. Sustainability indicators will vary both temporally and spatially

(Rigby and Caceres, 2001). Agro-ecosystem goods and services such as nutrient cycling and

production of food and raw materials are central to the system's continuation. If the

prescribed goal of an existing agro-ecosystem is for food production to continue at the current

level, or to increase, then the maintenance of goods and services that the agro-ecosystem

provides is essential in achieving the goal. For example, an important service in rainfed

agriculture is water availability for plant production in the agro-ecosystem. This will determine

the nutrient release through biodegradation in the system and the facilitation of infiltration and

soil protection (Gordon and Folke, 2000). Any goal assigned to an agro-ecosystem should·

stress the importance of maintaining agro-ecosystem services for the goal to be realised.

Constanza et al. (1997) propose various indicators that could be used to create a

performance-based index for the agro-ecosystem. The index is determined by identifying

services provided by the ecosystem. The agro-ecosystem is split into functions and potential

indicators for that function are listed.

72



Table 4.1.2 Examples of indicators (Walmsley and Pretorius, 1996)

Field Example Indicators

Quality of Life Population numbers; Human Development Index

Atmosphere CO2, 802, NOxemissions; Ground level ozone emissions

Water Population served by treated water supply; Chemical properties

Biodiversity Wildlife species at risk; General biodiversity situation

Land Rural to urban land conversion

Productivity Agricultural yields

Income Income level

Soil Chemical properties; Level of erosion; Pesticide use

Natural vegetation Percentage of land under forestry and natural vegetation

Economic Employment; Total GDP; Food production; Inflation

4.1.2 Sustainability Modelling of Agro-Ecosystems

To gauge whether or not a system is sustainable, it is essential that methodologies be

developed to enable this process to be carried out (Rigby and Caceres, 2001). The simulation

of agro-ecosystems at a range of scales, as a component of such methodology and as part of

the goal orientated system, is explained in this section.

Agricultural decisions makers require information and recommendations concerning the

effects of climate variability on agro-ecosystems at a variety of scales. This has increased the

use of process-level crop models, with the assumption that the models are able to

encapsulate intra-seasonal and inter-annual responses to climate variability. However, there

are potential issues that should be considered when using crop models that have been tested

at the scale of homogenous plots to broader scales, and these include:

• variability in space and time

• regional calibration of the model

• the level of model complexity

• imperfect data
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• current and future climatic conditions and

• management (Hansen and Jones, 2000).

The inputs into the model define the environment of the simulated system. These inputs

include: daily climate input, soil properties and management decisions (Hansen and Jones,

2000). In this study this information is required on a regional basis to investigate agricultural

sustainability in the Highveld, as well at the subsistence farm level. The South African

Quaternary Catchments Database contains a daily rainfall record of 45 years (1950-1994) for

each QC, as well as soils information, land cover attributes, daily maximum temperatures,

daily minimum temperature, and daily as well as monthly reference potential evaporation

information for each QC.

Sustainability in this study is also modelled at the farm level for emerging farmers at Potshini

in the Bergville district of KwaZulu-Natal. From a climate station in Bergville, 10 km from

Potshini 50 years of daily rainfall data are available along with 50 years of daily maximum and

minimum temperatures from the South African Quaternary Catchments Database (Schulze et

al., 2005).

4.1.3 Socio-Economic Impacts

Socio-economic considerations are vital in assessing the sustainability of an agro-ecosystem,

as in reality people are at the centre of agro-ecosystems (Dent et al., 1995) and unprofitable

agricultural systems will not continue ad infinitum (Edwards-Jones and Howells, 2001). There

are a number of inter-linkages between the environmental and socio-economic facets of a

system.

The inter-linkages and outside influences will vary, depending on the spatial scale at which

sustainability is being assessed. Figure 4.2.4 illustrates general inter-linkages that are

relevant to the three spatial scales modelled in this study. Crop yield is of crucial importance

to the revenue and profit of the system. The individual farmer will decide if the profits are of a

sustainable nature. Unprofitable farms could warrant a change in land use. The yield

variability, or risk level, will also influence the farmer in terms sustainable land use. Other

agro-ecosystem functions such as nitrogen and carbon levels and soil quality affect

sustainability, Le. if the soil quality is declining the external inputs would need to increase,
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which in the long run may not be sustainable. If external inputs are increasing, pollution from

the agro-ecosystem is likely to increase. This could fall foul of environmental legislation and

will not be socially acceptable; thus the system is not sustainable.

Sustainability is a human centred concept that encompasses numerous attributes and

objectives of different interest groups (Zander and Kachele, 1999). The social influences on

agro-ecosystems are, therefore, important to identify. The farmer often makes decisions after

discussions with family and friends, or at least is influenced by their views and needs.

Important social influences and interactions also occur beyond the farm boundaries (Dent et

al., 1995). However, this is difficult to quantify, owing to the dynamic nature of sustainability

coupled with subjectivity of stakeholder interests.

It is, therefore, essential to identify amongst stakeholders the importance and interests of key

people, groups, or institutions that significantly influence policy making process. A range of

participatory methods for extracting information has been developed (an example of this is

stakeholder analysis, Table 4.1.3). Workshops, focus group discussions or community

meetings are useful for bringing together groups of stakeholders, with either similar or

contrasting perspectives in a particular issue. Smith et al., (2004) have used community

meetings to great effect in rural KwaZulu-Natal, South Africa. The meetings have been used

to bring together stakeholders to express views and for training and disseminating

information.

Stakeholder analysis (Table 4.1.3) is a method of investigating and analysing stakeholder

interests, attributes, relative power and circumstance (Pasteur, 2001). This could be derived

from a series workshops or community meetings with stakeholders. A

stakeholderlsustainability matrix based on Hurni's (2001) five pillars of sustainability can be

used to identify what circumstances would be socially acceptable to stakeholder groups. An

example of a stakeholder matrix developed for agriculture in the Highveld is shown in Table

4.1.4.
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Table 4.1.3 Basic premise of a stakeholder analysis (after Pasteur, 2001)

Stakeholder Nature of Interest in Potential Relative Importance Influence
Group Policy Decision Impact Importance of Group of Group

of Policy of Interest

Primary

Commercial Sustained yields High High High High
Farmers

Small-scale Improved income & High High High Medium
Farmers food security

Farm Higher wages & High High High Low
Workers better

workinQ conditions
Secondary

Rural Improved business Medium Low Medium Medium
Community opportunities

Urban Improved business Low Medium Medium High
Community opportunities

Ministry of Increasing production Medium Medium Medium Medium
Agriculture and regional food

security

Table 4.1.4 Example of a stakeholder and sustainability matrix for the Highveld region

Stakeholders Agro- Economically Economically Reduction in Risk

Ecosystem Viable Productive

Resilience

Commercial Farmers y y y

Smallholder Farmers y y y

Farm Workers y y

Rural Community y y y

Urban Community y y y y

Institutions y y y y

In Table 4.1.4 the agro-ecosystem resilience column refers to whether the stakeholder would

be concerned with that particular 'pillar of sustainability'. People's understandings of an issue
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will be influenced by their particular agendas and perspectives (Pasteur, 2001). A stakeholder

matrix helps to visualise possible conflicts of interest that may occur between stakeholders.

Again this would be derived from interaction with stakeholders in the form of workshops or

community meetings.

Although the practical implementation of the stakeholder analysis presented in Tables 4.1.3

and 4.1.4 go beyond the scope of this thesis and are ultimately not used to derive the

sustainability index, the author considers stakeholder analysis and understanding stakeholder

perceptions as essential in maintaining sustainable agro-ecosystems.

4.1.4 Indices for Agro-Ecosystem Assessment

Liebig et al. (2001) have developed a weighted index using agro-ecosystem functions in order

to compare various management practices. An example of how some of the indicators in

Table 4.1.2 have been developed into a weighted index is shown below. It is a four-step

process:

• Step 1: Group data within agro-ecosystem functions

For example:

Food Production = f (grain yield, grain N content)

Raw Materials Production =f (stover yield, stover N content)

Nutrient Cycling = f (soil N03, soil NH4, soil organic N)

Greenhouse Gas Regulation =f (soil organic C, early spring soil N03)

• Step 2: Calculate the averages for each indicator. These can be calculated from historical

datasets.

• Step 3: Rank and score the treatment. Treatment values are ranked for each indicator in

ascending or descending order, depending on whether a higher value for the indicator is

considered negative or positive with respect to enhancing agricultural sustainability.

• Step 4: Sum the scores within and across agro-ecosystem functions. If one indicator has

a dominant effect on an agro-ecosystem function, then the indicator should be given a

greater numerical weight to convey this.
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Problems with this index are that social and economic indicators are not considered, the

weighting of agro-ecosystems is subjective and it is best used with long-term agro-ecosystem

experiments.

Nambiar et al. (2001) proposed an agricultural sustainability index to measure sustainability

as a function of biophysical, chemical, economic and social indicators in order to determine

sustainability in the broader sense. The preliminary indicators were required to meet the

following criteria:

• social and policy relevance

• analytical soundness and measurability

• suitability for application at different scales

• inclusion of ecosystem processes and process orientated modelling

• .sensitivity to variations in management and climate and

• accessibility to multiple users.

The index comprises of broad categories with several indicators within each category, as

illustrated by Table 4.1.5.

Using long term crop yield trends to provide .information on the biological capacity of

agricultural land can assist in estimating the aptitude of agriculture to sustain resource

production. The agricultural nutrient balance is an importance category, as excessive fertiliser

can contribute to eutrophication, contamination of soil, water and air. Lack of fertiliser

application may cause soil degradation. This has implications for soil quality and agro­

environmental pollution. Soil quality indicators include physical, chemical and biological

properties.

The index is calculated by first rating each indicator, then calculating a rating for each

category and finally obtaining an overall index for each agro-ecosystem by mUltiplying the

category ratings.
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Table 4.1.5 Indicator categories (after Nambiar et al., 2001)

Category Indicator

Long Term Crop Yield Trends Crop yield

Agricultural Nutrient Balance Nutrient balances of nitrogen, phosphorus, and

potassium

Soil Quality Soil texture; depth; bulk density; water

retention characteristics; pH; organic matter

Agricultural Management Practices Fertilizers, irrigation systems; planting dates

Agro-Environmental Quality Soil degradation; water pollution

Agricultural Biodiversity Number of organisms; variety of plants and

livestock

Economic and Social Viability Farming practices; incomes for owners and

workers

Net Energy Balance Fossil fuels per unit of output; biomass

production

Indicators are useful as they can quantify what is happening in an ecosystem. However, in

assessing the health of an agro-ecosystem in the context of sustainability, ecological

thresholds need be known. Unfavourable threshold levels have been called critical zones for

resource conservation (Ciriacy-Wantrup, 1963) or thresholds of probable concern (Rogers

and Bestbier, 1997). If information in establishing thresholds is initially limited, then arbitrary

values could be used to act as warning flags in the system (Rogers and Bestbier, 1997).

4.1.5 Discussion on the Use Indicators to Characterise Sustainability

The working definition of sustainability stated in Section 2.7 is 'Sustainability is applying long

term perspectives, in regard to human well-being and ecological integrity, to policies and

actions.' Indicators are then required to assist the decision-maker in knOWing where the

system is in regard to this definition, which direction the system is headed towards and how

far the system is away from the desired goal.
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Indicators are required when there is a need for informed decision-making and associated

cost-effective data collection. The value of indicators as policy instruments is enhanced when

they are used in combination with goals that have been set as part of national policies. The

reason for this is that decision-making has become increasingly data driven (Esty, 2002). The

use of indicators can then assist decision-makers at all levels, and, with reference to this

thesis, can increase the focus on agricultural sustainability.

Procedures have been proposed in Section 2.6 to characterise sustainability in this way

(Troquebiau, 1992; L6pez-Ridaura et al., 2000; Sands and Podmore, 2000). Section 4.1.3

also describes proposed indices to evaluate the quantitative results from sustainability

modelling. Combining quantitative indicators into indices such as those of Sands and

Podmore (2000) presents the question of how indices measured with different units can be

integrated. The choice of using a weighting system has been dismissed by some as arbitrary

or lacking in theoretical rigour (e.g. Stoorvogel et al., 2004). However, this author believes

. such a weighting system can be useful if there is sufficient knowledge of the agro-ecosystem

under consideration.

Stoorvogel et al. (2004) present an approach involving trade-off analysis where high-priority

indicators are identified by the researchers and stakeholders and then provide decision­

makers with quantitative estimates of the relationships among those indicators. The task is

then left to the decision-maker to subjectively assess the implied tradeoffs. Tradeoff analysis

recognises that complex interactions between indicators are a key aspect of production

systems. Although tradeoff analysis is not performed in this thesis, the interaction and

relationships between indicators are recognised in the assessment of the results of

sustainability modelling in Chapters 5, 6, 7 and 8.

This author believes that it is of value to characterise sustainability using quantitative

. indicators from a complex crop growth model. However, this method has its inadequacies in

that the usefulness of the indicators is dependent on:

• The quality of the information which is inputted into the model

• The ability of the model to produce not only yield estimations but also estimations

associated with other agro-ecosystem functions

• The ability of the model to simulate these functions at different scales
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• The ability of the model to simulate the function under different climate scenarios and

• The technique used to integrate the indicators to produce an estimation of the 'likelihood

of sustainability' (Table 4.2.4).

The choice between categorical and continuous approaches for analyses of indicators

appears to have a substantial impact on how the results of a study are interpreted (Lindegarth

and Gamfeldt, 2005). The choice affects the immediate impression on the importance of

different agro-ecosystem processes which, if used as a basis for choosing management

strategies, will have further consequences. For example, the choice of method for analysis

might affect the emphasis and formulation of new hypotheses within the research, even

. though both approaches are valid. Lindegarth and Gamfeldt (2005) suggest that where

possible both types of analyses should be performed in order to identify contrasting results.

The categorical approach was chosen in this study as the classification into categories of

agro-ecosystem processes reduced the complexity of analysis and interpretation of results.

The weighting given to the indicators in this study is subjective and is meant to be illustrative.

A problem encountered in selecting indicators for the framework (described in Section 4.2) is

one of scale. A general framework that can be applied at different scales is one of the major

aims of this research (Figure 1.1). Some of the indicators used from the DSSAT model output

are perhaps limited in this regard. This is particularly true of runoff and drainage, which are

important at a farm scale and, indeed, at a Quaternary Catchment scale, but limited in value

for a region as large as the Highveld. Also, at a regional scale the routines included in the

DSSAT models for hydrological processes are not accurate enough to be incorporated into

an index for sustainability. This is one the reasons why grain yield was the only indicator used

at a regional scale (Chapter 5).

4.2 Adaptation of the Goal Orientated System for Use as a Framework to Assess

Agro-Ecosystem Sustainability at Various Scales in South Africa

The main aim of this study is to assess agro-ecosystem sustainability at the following scales:

regional (Chapter 5), Quaternary Catchment (Chapters 6 and 7) and at the small-scale

subsistence farmer level (Chapter 8). The employment of a systems approach is deemed

essential in achieving this and in understanding the inter-relationships between social,
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economic and environmental influences that are associated with sustainability (Ikard, 1993;

Hansen and Jones, 1996). A general system that can be applied at a range of scales and that

meets mUltiple goals and objectives is required. Henceforth in this thesis the adaptation of

von Wiren-Lehr's (2001) goal-orientated system will be referred to as a goal-orientated

framework.

The framework is required to answer the following questions:

• How can an actual existing agro-ecosystem be identified as being sustainable or not?

• What are the facets of a system that make it sustainable or unsustainable?

• How can a sustainable system be developed in a particular region, given realistic

econom ic constraints? (Gliessman, 2001)

• Are there research and operational implications associated with climate change?

The goal orientated framework, with modifications, is the framework that has been selected to

meet the criteria set about in the above questions. The general framework was described in

Section 4.1. The sustainability modelling stage and evaluation strategy of the framework are

described in the subsequent sections.

Ultimately the aim of the selected framework is to be able to state, with confidence, whether

growing a crop in a pre-stated way is sustainable or not. For sustainability to be a likely

outcome, then the working definition of sustainability given in Section 2.7 would need to be

met this states that: I Sustainability is applying long term perspectives, in regard to human

well-being and ecological integrity, to policies and actions. '

The information required to make an assessment and give a likelihood sustainability outcome

is shown in Figure (4.2.1). The working definition of sustainability (Section 2.7) is central to

the flow of information. Accurate information is required from a range of sources to assess if

the criteria for farmer and community well-being and the maintenance of ecological integrity

are being met. The information is then used to state the likelihood of sustainability. The goal

orientated framework has been adapted to suit the specific context of sustainable grain

production at different scales. Von Wiren-Lehr's (2001) goal orientated framework comprises

of the following four sections:
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•
•
•
•

goal definition

selection of indicators

an evaluation strategy and

formulation of management advice.

Views of Interest
Groups, Stakeholders
and Decision Makers

Output from Crop
fv'Iodels

Farmer and Local
Community
Well-Being;

Ecological Integrity

.Likelihood of
Sustainability

Figure 4.2.1 Flow of information in a system to investigate agro-ecosystem sustainability

The goal orientated framework used in this assessment meets the requirements of an

integrated model environment (Kropff et al., 2001). This integrated environment should be

based on the latest model concepts, an information and communication technology (ICT),

and on incorporating database management systems, as shown in Figure 4.2.2. The adapted

framework incorporates the DSSAT suite of crop models, GIS and the South African

Quaternary Catchments Database. Output from the CERES-Maize crop model can provide

information on the changes in the agro-ecosystem functions and possible environmental
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effects. Economic information and stakeholder views are also required as inputs into the

framework.

DSSAT
suite of crop

~del models

leT Database

Figure 4.2.2 An integrated model environment (after Kropff et al., 2001)

In selecting a suitable goal for a sustainable framework it is important that the goal is not

abstract, but one that is useful and realistic to obtain. The goals employed by this author for

the assessment of sustainability are the ones stated in Section 2.7, which were derived from

the sustainability literature review. For example, the goal or definition of sustainability within

the spatial area of the Highveld region and in regard to grain production, as stated by this

author, was:

'The goal is for the agro-ecosystems in the Highveld region to continue in the long term,

providing quality well-being for farmers and local communities and to maintain ecological

integrity' (Section 2.7).

The main adaptation to the original goal orientated framework of von Wiren-Lehr's (2001) is

to replace the selection of indicators with an integrated model environment and to make the

selection of indicators a sub-section of this. The rationale for the above adaptation is that this

is an assessment of sustainability which is achieved by simulating agro-ecosystem functions

rather than monitoring them. Although this study is based on simulation, there should

nevertheless be ongoing monitoring of agro-ecosystem integrity in some form.

The adapted framework is illustrated in Figure 4.2.3.
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Figure 4.2.3 Adapted goal-orientated framework to assess agro-ecosystem sustainability
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The assessment of agro-ecosystem sustainability requires an evaluation of the

environmental, economic and social components and the inter-linkages between them. To

evaluate the biophysical functions of the agro-ecosystem, an environmental index which is

based on the outcome of the sustainability modelling is used. The impacts of the results of

the modelling on socio-economic factors are then considered.

The formulation of management advice is based on the analysis of sustainability modelling

and the use of indices to quantify sustainable pathways for agriculture. In analysing modelling

results, the limitations of agro-ecosystem modelling need to be recognised. Sustainability

deals with the future: therefore, any assessment of a system in regard to sustainability can

only be an estimate (Hansen, 1996). The constraints to the estimate need to be identified and

accurate information, in the case of this study accurate environmental information, is

necessary to estimate with any certainty whether or not an agro-ecosystem is sustainable.

4.2.1 Sustainability Modelling with the DSSAT Suite of Crop Models

Indicators have been selected from the DSSAT suite of models for use in this thesis so that

changes to the agro-ecosystem functions can be highlighted. These indicators are then used

to derive a comprehensive index which is described in Section 4.1.3. Results from model runs

need to show whether the agro-ecosystem, and way it is managed, is sustainable, along with

identifying which components make it sustainable. Threshold figures for each of the indicators

selected would need to be established.

The indicators used in the study described in this thesis are limited to the output from the

OSSAT crop models. Crop model simulations will enable changes in climate variability,

climate change as well as agricultural management decisions to be investigated. The crop

models require inputs such as rainfall and temperature that consist of daily values. However,

the foundations of the index are the annual or seasonal output variables.

The OSSAT suite of crop models has been chosen primarily because of the regional

calibration carried out on CERES-Maize, particularly in the dry western areas of the South

African Highveld, discussed in Section 3.1.4, and because of its range of management

options. However, because management is seldom consistent from year to year, spatial

representations of management variables are generally not available. Typical, or
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recommended, practices are therefore often applied uniformly across a region. Using several

planting dates within the reported range can" improve regional yield predictions relative to

using a single average plating date (Hansen and Jones, 2000). Accordingly, in this study a

range of management options that include multiple planting dates, fertiliser applications and

plant densities are simulated (Chapters 5, 6, 7 and 8). The biophysical indicators chosen from

the DSSAT crop model output (Sections 4.2.1.1 - 4.2.1.7) provide quantitative information on

how the agro-ecosystem responds to both management and environmental changes. This

information is not an absolute and is dependent on the complexity and accuracy of the crop

growth model used and the quality of input information. Results from the biophysical

indicators provide a basis for socio-economic analysis of the agro-ecosystem. A

comprehensive assessment of the socio-economic components of the framework falls outside

the scope of this thesis. However, the author recognises the important inter-linkages between

the environmental, economic, social and political components of an agro-ecosystem. The

sustainability index, therefore, is derived purely from biophysical indicators; the socio­

economic impacts of the results of the index are then considered.

The working definition of sustainability stated in Section 2.7 requires indicators that can·

quantify farmer well-being and ecological integrity. The eight indicators taken from the output

of the CERES-Maize crop models to attempt to quantify farmer well-being and ecological

integrity are shown in Table 4.2.1.

Table 4.2.1 Indicators for sustainability assessment

Sustainability Criteria Indicator

Farmer and community well-being Yield at harvest

Grain nitrogen content

Ecological integrity Soil organic nitrogen

Soil organic carbon

Nitrogen recovery

Extractable water

Runoff

Drainage
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Yield at harvest and grain nitrogen content are the indicators used to assess farmer well­

being. The yield is an indicator of whether an agro-ecosystem is economically productive and

viable and, therefore, able to support the farmer and the farmers' families as well as supply

business opportunities to the local, regional and possibly export communities. The yield is

therefore of vital importance to the well-being and the quality of life to both the commercial

and small-holder farmers. The yield has significance both economically and socially on the

local communities. Since yield is of such importance to the agro-ecosystems in the South

African Highveld and also to the small-holder farmers in rural KwaZulu-Natal, it is given a

higher weighting in the sustainability index (Section 4.2.2). Nitrogen is crucial for the

production of proteins in maize, and in turn, the protein content in the grain. The protein

content of the grain is particularly important for the subsistence farmer for whom a low protein

diet is often common.

In order to try and quantify ecological integrity, six indicators have been selected. Three of

these give an indication of the soil quality. They are: soil organic carbon, soil organic nitrogen

and extractable water. A reduction in the level of organic matter along with organic nitrogen

and carbon could reduce the soil biodiversity of the agro-ecosystem. This would in turn

reduce the resilience of the agro-ecosystem to major disturbances such as drought or climatic

changes.

Nitrogen recovery reveals the efficiency to which the agro-ecosystem uses added nitrogen,

whether in the form of inorganic fertiliser or manure. Manure takes longer to break down than

inorganic fertiliser of which a significant proportion can be lost during rainfall events. This is

why it is important to estimate runoff and drainage of water from the system. Even if the

routines for runoff and drainage in CERES-Maize are not sophisticated ones, it is important to

obtain an idea of the magnitude of water leaving the system. High runoff or drainage coupled

with low nitrogen recovery of inorganic fertiliser could mean that surface and groundwater are

being polluted with high levels of nitrates.

To assess the impact of different management practices on agro-ecosystems, knowledge and

an assessment of those changes are required for informed evaluation. Selection of key

indicators as described above and their associated threshold values are required to monitor

changes and determine trends in improvement or deterioration of the agro-ecosystem at

various scales (Arshad and Martin, 2002).
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Thresholds for agro-ecosystem assessment at the various scales assessed in this study

where derived from existing literature. The thresholds for yields in the South African Highveld

where taken from du Toit and Durand (1999). Even though this work was already several

years old at the time of writing and much has changed, it still provides a useful basis by which

to compare Quaternary Catchments within the Highveld. The grain nitrogen threshold used is

one that is a suggested level required to produce maize grain of a good quality (Pioneer,

2004).

The nitrogen recovery level of 50% is an average figure given for agriculture in the world

rather than being regional specific (Godwin and Sing, 1998). A 50% level of nitrogen use by

the crop is an inefficient one, so any improvement on that is deemed favourable. The other

indicators used for assessing ecological integrity (soil organic carbon and nitrogen,

extractable water, runoff and drainage) have thresholds which are specific to the region, the

Quaternary Catchment or the farm, depending on the spatial scale at which the assessment

is performed. An acceptable change in these indicators is suggested by Arshad and Martin

(2002) to be up to ± 15% from baseline. The baseline figures were derived from running

simulations with CERES-Maize using suggested management practices by du Toit and

Durand (1999).

From CERES-Maize the eight outputs which have been selected as indicators to evaluate

farmer and community well-being and the ecological integrity of the agro-ecosystem are

discussed below.

4.2.1.1 Yield at harvest

For an acceptable yield estimate, accurate modelling of both duration of crop stages and crop·

growth rates is a necessary. In the CERES models the various stages of development of the

crop are simulated by quantifying the physiological age of the plant and the duration for the

growth stages. During the different stages of development the model partitions biomass into

the growing organs of the plant. This ·process is affected by environmental factors and the

choice of cultivar. The duration of growth is dependent on temperature and the length of the

photoperiod during floral induction (Ritchie et al., 1998).
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Hensley et al. (1997) carried out statistical tests of model reliability on the CERES-Maize and

CERES-Wheat crop models by comparing simulated results with observed data in South

Africa. The model output investigated was yield and soil water content. The following indices

relating to output were compared: root mean square error (RMSE), systematic root mean

square error (RMSEs). unsystematic root mean square error (RMSEu), the index of

agreement (D-index), and coefficient of determination (R2
).

In terms of yield prediction it was found that CERES-Maize tended to over-predict yields in

the range between 2 000 - 3 000 kg/ha, which causes there to be relatively high RMSEs.

Yields above 3 000 kg/ha were well predicted by the model, and the D-index and R2 (0.64 and

0.67 respectively) were considered acceptable.

In a study by Durand and du Toit (1999) a grain yield of 2 200 kg/ha was used as the

breakeven figure for the western Highveld, with the figure rising to 3 600 kg/ha in the eastern

parts of the region. These figures were calculated with a maize price of $95 per 1 000 kg with

a total production cost of $200 per hectare for the western region and $300 per hectare for

the eastern Highveld. Prices were based on those of the 1997/1998 season. Another useful

figure given by du Toit et al. (1999) is 900 kg/ha as the famine level. This is the estimated

yield a family of four needs to survive to the next harvest using a one hectare plot. These

breakeven fig ures were used as threshold values for the yield indicator.

4.2.1.2 Grain nitrogen content

For plant growth an adequate supply of nitrogen is vital, as it is needed for the synthesis of

chlorophyll, proteins and enzymes, as well as for carbohydrate use. Higher concentrations

are found in plant tissue in the early stage of plant development as nitrogen compounds are

needed for photosynthesis and growth (Godwin and Singh, 1998).

In cereal agro-ecosystems the crop has usually employed the majority of the nitrogen

available to it in the soil by the time the important phenological stage of grain filling occurs. To

compensate for this, the plant, as well as utilising nitrogen from the soil, will make available

protein nitrogen from vegetative organs. If soil nitrogen supply is then increased, the plant will

use the soil nitrogen and will decrease the amount of protein nitrogen taken from vegetative

organs to meet the demand from developing grains (Godwin and Singh, 1998).
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The rate of nitrogen accumulation in single grain cells is simulated as a function of

temperature, so that at higher temperatures grain nitrogen concentration will be higher. If the

plant is stressed as a result of the unavailability of moisture, this can increase grain nitrogen

concentrations as the plant has a reduced ability to dilute nitrogen in the grain. The growth

routines and nitrogen transformation processes in the DSSAT suite of crop models provide

pathways so that nitrogen stress during gain filling will have an effect on yield and grain

nitrogen content (Godwin and Singh, 1998). For grain at harvest 16 g nitrogen per kg of grain

is considered a valuable guide in terms of an adequate level of: nitrogen.

4.2.1.3 Soil Organic Nitrogen and Carbon

In attempting to provide guidelines for setting critical limits for changes in soil organic matter,

Arshad and Martin (2002) suggest that a 15% increase or decrease from the average

baseline would be an appropriate limit. Should the change exceed the 15% limit, it can be

assumed that a positive or negative effect is occurring within the agro-ecosystem. If the result

is a decrease of greater than 15% and this would mean that remedial measures should be

put in place.

Nitrogen, both in organic and inorganic form, can undergo various changes while in the agro­

ecosystem and both forms are impacted upon by climate. OWing to these changes and their

complex interaction with the climate, the management of nitrogen in the system can prove to

be difficult. The use of models which simulate these processes and describe the effects can

prove to be useful in providing information on crop growth and crop water requirements

(Godwin and Singh, 1998).

4.2.1.4 Nitrogen recovery

In the routines contained in DSSAT for the simulation of cereal crop growth, the movement of

nitrogen across layer boundaries is reliant on the water movement. The movement of urea

and nitrate are simulated in the same way, but the movement of ammonium is not

considered. Nitrate loss from each soil layer is calculated from the volume of water present

and volume of water moving through each layer in the soil profile (Godwin and Singh, 1998).
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Nitrogen uptake and use by the crop is also modelled by the DSSAT models. This enables

the nitrogen recovery from added fertiliser to be calculated, Le. the amount of added nitrogen

that is actually used by the plant. The figure is given as a percentage and is calculated as: (N·

uptake/fertiliser N added *100). The general efficiency by which crops use added nitrogen is

considered poor. An average for grain crops world-wide is 50% recovery of added nitrogen

(Craswell and Godwin, 1984).

4.2.1.5 Extractable water

The potential supply of water to the root system is dependent on the relationship between the

potential evaporation and the current soil water status, with the root system also playing a

role. The supply of water will exceed potential evaporation when the soil is wet and the root

system is established. When the soil is dry, the conductivity of the soil will decrease to a

value below potential transpiration, and actual transpiration will them be reduced due to the

partially closed stomata in the root water uptake. In the model routine it is assumed that when

this occurs, the potential biomass production rate is reduced in the same proportion as

transpiration (Ritchie, 1998). Predicted values for soil water content were found in the study

by Hensley et al. (1997) to be generally good when all the data for the different ecotypes

simulated were pooled, with the D-index being 0.90 and RMSEu 94% of the RMSE.

4.2.1.6 Runoff

The water balance sUbroutine used by DSSAT is based on an adaptation of the USDA Soil

Conservation Service curve number method. The SCS method uses total precipitation for a

single day to estimate runoff, with the intensity of rainfall not being considered. Explicitly the

routines developed for layered soil incorporates the wetness of soil near the surface as a

factor. This concept was derived empirically so that an approximate amount of runoff could be

estimated (Ritchie, 1998), and not to provide accurate runoff and infiltration information for a

specific storm as would be done with the ACRU model (Schulze, 1995).

In research performed by Hensley et al. (1997) it was shown that in predicting runoff from

South African soils, the DSSAT suite of models yielded unsatisfactory results when its

simulated runoff was compared to actual measured data.
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4.2.1.7 Drainage

From field drainage information a functional model has been developed to calculate the

redistribution of water in the soil profile and drainage out of the root zone. Field drainage

information was required, as many agricultural soils drain slowly and provide considerable

amounts of water for plant use before the drainage, driven by gravity, ceases. Water can be

taken up by plants while drainage out of the root zone is occurring (Ritchie, 1997).

Hensley et al. (1997) found at four sites in the Highveld region that drainage prediction from

DSSAT v3 was much higher than measured data.

An example of critical limits for a Quaternary Catchment (QC) is shown in Table 4.2.2. For

extractable water, cumulative runoff and drainage, simulated baseline figures were acquired

by running the CERES-Maize model for the most appropriate management option observed

from the results of operating CERES in seasonal mode. The table gives QC specific

thresholds against which comparisons can be made when investigating the impacts of

different climate scenarios. A change from the baseline value of ± 15% is considered as

exceeding the critical threshold and will affect the sustainability pathway of that agro­

ecosystem (Arshad and Martin, 2002).

In this section the selection of indicators from sustainability modelling when using the DSSAT

suite of crop models has been discussed. The following section describes how the results

from the modelling can be used to assess agro-ecosystem sustainability.

4.2.2 Evaluation of the Results from Sustainability Modelling

It is imperative that any evaluation strategy utilised has the capacity to assess the condition of

the agricultural system. One way of achieving this is by using an aggregated sustainability

index.

The flow of information reqUired to investigate the changes in an agro-ecosystem functions is

shown in Figure 4.2.4. An investigation was carried out on a Quaternary Catchment scale

with the reqUired soil and climate information extracted from the South African Quaternary
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Catchment database. This information was then turned into an input file for use with the

DSSAT crop models so that different climate scenarios and management decisions could be

examined. The output from the crop models was evaluated using a weighted index. The steps

involved in calculating the index were a modified version of the weighted index of Liebig et al.

(2001), described in Section 4.1.3, and this process formed part of the evaluation.

• Step 1: Initially, after the indicators have been decided, they need to be grouped into

agro-ecosystem functions. Table 4.2.1 shows how the eight indicators chosen from the

CERES model have been grouped into two agro-ecosystem functions. The variables

are grouped so that the facets that make a system sustainable or not can be identified.

• Step 2: Averages were calculated for each indicator, Le. for grain yield, grain nitrogen

content, cumulative runoff and drainage, as well as extractable water in the soil at the

end of the season, from the simulated values over 44 seasons of maize production. For

soil organic carbon and nitrogen, the content in the soil at the end of 44 seasons was

used.

• Step 3: The average figure was compared against a critical limit or threshold value

(Table 4.2.2) and was then scored accordingly. If the value for a variable was within the

critical limit, then it was scored 1 and if it was outside then it is scored 0.5. Grain yield

was the exception to this, it being given a higher weighting due to its importance in

commercial agriculture. If it was above the break-even value it was given a score of 2

and if the value was below the break-even value then it scored 0.5. An example of this

is shown in Table 4.2.3.
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Table 4.2.2 Summary of thresholds used in the Sustainability Index for the Bothaville

Quaternary Catchment

Farmer and community Threshold Description Threshold
well-beina level
Grain yield (kg/ha) Breakeven level (Durand and du Toit, 2200

1999)
Grain N content (g/kg) Pioneer (2004) 16

Ecological integrity

Nitrogen recovery Craswell and Godwin (1984) 50%

lower upper

Soil organic C (kg/ha) ±15% Baseline (Arshad and Martin, 2002) 53 71

Soil organic N (kg/ha) ±15% Baseline (Arshad and Martin, 2002) 5175 7001

Extractable water (mm) ±15% Baseline (Arshad and Martin, 2002) 9 12

Runoff (cumulative, mm) ±15% Baseline (Arshad and Martin, 2002) 15 21

Drainage (cumulative, mm) ±15% Baseline (Arshad and Martin 2002) 32 44

• Step 4: The scores for each agro-ecosystem function were summed for the treatment.

The result of this gave a likelihood of sustainability for the agro-ecosystem under a

particular management or climate regime. Four options are given for likelihood of

sustainability: minimal, low, medium and high (Table 4.2.4). The likelihood of

sustainability is one way of interpreting the score given for each treatment in the

sustainability index. The four categories of minimal, low, medium and high give an

indication of long term ability of the agro-ecosystem to produce maize under the

prescribed management practices and environmental scenarios for each treatment.

96



Table 4.2.3 Example of Sustainability Index for treatment 14, with a 15 October planting

date, a high plant density and a 120 kg/ha of inorganic fertiliser applied

Bothaville: Treatment 14

Food Production Simulated Result Threshold Score
level

Grain yield (kg/ha) 2596 2200 2.0

Grain N content (g/kg) 37 16 1.0

Soil Quality and Function
Nitrogen recovery (%) 73 50 1.0

lower upper
Soil organic C (kg/ha) 45 53 71 0.5
Organic N in soil (kg/ha) 4357 5175 7001 0.5
Extractable water (mm) 10 9 12 1.0
Runoff (cumulative, mm) 16 15 21 1.0
Drainage (cumulative, mm) 45 32 44 0.5

Total Score 7.5
Likelihood of Sustainability Medium

Table 4.2.4 Spectrum of sustainability

Score Likelihood of Sustainability

4.0-5.5 Minimal

5.5-7.0 Low

7.0-8.0 Medium

8.0-9.0 High

These concepts will be used to assess agro-ecosystem sustainability at different scales, Le.

at regional scale (Chapters 6 and 7), for five selected Quaternary Catchments in the Highveld

and at the farm level (Chapter 8) for smallholders in the Bergville district of KwaZulu-Natal,

South Africa.

Using threshold values and the upper and lower limits (Table 4.2.2), an index was created

which could give an indication of the likelihood of whether specific management choices were
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sustainable. The thresholds and limits serve as gUidelines, and are not considered absolute

values.

For a particular set of management choices (Le. treatment) at a particular location, for

example, with a planting date of 15 October, a high plant density and a 120 kg/ha inorganic

nitrogen fertiliser application the resulting likelihood of sustainability is shown in Table 4.2.3.

In this case the likelihood of sustainability was considered to be medium, as the average yield

over 44 seasons was above the break-even level of 2 200 kg/ha, and grain nitrogen level was

well above threshold level. However, both the level of soil organic carbon and nitrogen

depletion exceeded the thresholds suggested for the soil to remain at a similar level of

productivity.

If the necessary information is not available to produce the agro-ecological index described in

Table 4.2.3, then an index incorporating yields and the coefficient of variation (CV) of yields

could be used. This method of analysis is used for regional sustainability analysis in Chapter

5. The CV of annual yields is an index of the risk of production, indicating a likelihood of

fluctuations in crop yield from year to year, which enables different management scenarios to

be assessed. Agriculturally it is, perhaps, a more crucial statistic in marginal areas than in

either very dry areas, where farming practices have adapted to variability, or in wet areas,

where relatively lower inter-annual variabilities are generally expected (Schulze, 1997).

The following steps were used to calculate the index using yields and CV of yields:

• Rank yields for the scenario simulated (highest to lowest) =Ryd

• Rank CVs for the scenario simulated (lowest to highest) =Rcv

• Multiply Ryd x Rcv

• Highest value is best treatment

In Chapter 5, a combination of five planting dates and three plant densities are modelled. The

yields are ranked, with the highest yield given the highest score. The CVs of yields are also

ranked, with the lowest CV receiving the highest score (as a low CV is favoured). The scores

are then mUltiplied together to produce a total score for the treatment, with the highest score

then considered the 'best' treatment (Figure 5.5.1). The purpose of multiplying the scores

together and producing a total score was to produce a quick, uncomplicated yet meaningful
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index of the combination of yield and the inter-annual variation of yield, so that optimum

planting strategies could be determined.

A high inter-annual variability could be viewed as favourable from an ecological perspective

as it could produce systems that are resilient. However, high variability in yields in agro­

ecosystems can be stressful for farmers and their families, especially if yields are low over a

number of consecutive years. The small-scale farmer is particularly at risk to fluctuating yields

and is unlikely to have insurance for crop failure. Farmers are generally cautious and

circumspect in the face of downside risk. They exhibit risk aversion. This is particularly so for

resource-poor small farmers whose livelihood can often be at stake from risk. Their basic risk

management strategy of caution is displayed in a wide variety of operational strategies aimed

at risk mitigation, such as use of tolerant cultivars, spreading sales of maize over time and

maintaining flexible management strategies. Personal judgement is then exercised by the

farmer to choose that alternative which, for him or her, has the most preferred probability

distribution of outcomes. Such a process of choice is generally carried out by the farmer in an

informal rather than a formal manner. This is particularly true for the smallholder both

subsistence and part-commercial (McConnell and Dillon, 1997). The author, therefore,

considers a high yield, even if not the highest, together with a low CV of yield to be the most

desirable scenario in general for the Highveld farmer and for the smallholder farmer

elsewhere in South Africa. It is assumed by the author that this would provide the highest

returns for the lowest risk.

Different frameworks have been proposed to aid understanding of decision making under

risk. The methodologies contained in the DSSAT software are based on Bernoullian utility

theory and stochastic efficiency criteria. Bernoullian utility theory hypothesises the existence

of a utility function that relates outcomes to the decision-makers level of satisfaction with that

particular outcome. The use of stochastic efficiency criteria entails a comparison of random

variables that relate to financial gains and losses. For risk assessment using the OSSAT

model the user can set seasonal strategies, for example planting dates and plant densities,

and simulate these using historical climate data. Efficient or optimum strategies can then be

identified on the basis of mean-variance analysis and stochastic dominance (Thornton and

Wilkens, 1998).
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This chapter has sought to adapt a goal-orientated framework so that it can be used to assist

in assessing maize agro-ecosystem sustainability at different scales. A thorough investigation

of sustainability necessitates that environmental, economic and social aspects be considered.

In the framework proposed in this chapter, more emphasis is given to the biophysical than

socio-economic aspects of the agro-ecosystem. From the results of the biophysical analysis,

inferences about economic and social impacts are made, rather than modelling the socio­

economic components of the system per se. The flow of information through the framework,

from the initial inputs from the environmental database to .the result of likelihood of

sustainability, is shown in Figure 4.2.4.

This study sought to assess sustainability across a range of scales, the broadest of which is

the regional scale. Regional sustainability of the Highveld is assessed in Chapter 5 using the

adapted goal-orientated framework and in the chapter a range of management options for

optimum planting strategies of maize is investigated.
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5 AGRICULTURAL SUSTAINABILlTY AT A REGIONAL SCALE:

ASSESSMENT OF MAIZE PRODUCTION IN THE HIGHVELD SOUTH

AFRICA UNDER DIFFERENT MANAGEMENT AND CLIMATE SCENARIOS

Agricultural land in the Highveld region produces 70 per cent of South Africa's cereal crops,

with 90 per cent of the country's maize being cultivated there (du Toit et al., 1999). Therefore,

this region is of vital importance regarding food security for the nation, under both present

climate conditions and for plausible future climate scenarios associated with global warming.

The physical and environmental features of the Highveld vary across the region and are

summarised in Section 5.1. In order to assess agricultural sustainability with respect to maize

yields at the regional level of the Highveld, the adapted goal orientated system discussed in

Chapter 4 is employed. This system has four stages:

• Identifying the goal (Section 5.2)

• Sustainability modelling (Section 5.3)

• Evaluation (Section 5.4) and

• Management advice (Section 5.5).

Impacts on food security at both household and regional levels are, to a large extent,

associated with farm management. The objective of regional food security is strongly

connected to yield stability. Information on yield stability at the regional level is of crucial

importance. Consequently in sustainability modelling, the use of crop models can be useful
. .

for assessing production variability (Thornton and Wilkens, 1998) as well as changes in agro-

ecosystem functions. The simulated changes that result from anticipated future climatic

scenarios can then be examined under different management strategies.

5.1 Description of Highveld Region

The Highveld region of South Africa (Figure 5.1.1) ranges in altitude from 900 to 1800m

above sea level. It is part of the inland plateau of the southern African subcontinent. The

Highveld region includes parts of the provinces of North-West, Free State,· Gauteng and the

eastern part of Mpumalanga. The region is characterised by plains with low to moderate

relief. generally low drainage density and low stream frequency. The section of the Highveld

that stretches into Mpumalanga province has low mountains with high relief, as well as plains
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(Schulze, 1997). The soils are of a sandy clay loam texture, with soil thickness ranging from

400-1200mm. Clay soils occur in parts of Gauteng and Mpumalanga (Schulze, 1997).

N

Eastern Cape

o Provinces
1:~E~f;1 Highveld Region

s

Figure 5.1.1 Highveld region of South Africa (after du Toit et al., 2002a)

The Highveld region consists of what may be described as two agro-ecological zones, one

sub-humid and the other semi-arid. The semi-arid west receives mean average precipitation

(MAP) of up to 600 mm whereas in the eastern agro-ecological zone MAP is 600-1400 mm.

Figure 5.1.2 shows that the MAP in the Highveld region increases from west to east. The
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Highveld is a summer rainfall area which receives the vast majority of its precipitation

between the months of October and March. Schulze (1997) used the Markham technique to

delineate southern Africa into regions of rainfall seasonality. The eastern Highveld was

designated an early summer rainfall area (December maximum), central Highveld a mid­

summer rainfall area (January maximum), and the western Highveld as a late summer rainfall

area (February maximum). A mid-summer dry spell occurs in 9 out of 10 years, with a low

rainfall spell for days to weeks and high temperatures (du Toit et al., 1999).

Solar radiation is higher in the western parts of the Highveld (Schulze, 1997). In January the

solar radiation ranges from 32-34 MJ.m-2.day"1 in the west and 28-30 MJ.m-2 .day-1 in the

eastern parts of the Highveld. In midwinter, Le. July, solar radiation is lower, ranging from 16­

19 MJ.m-2.day-1 (Schulze, 1997). Monthly means of daily maximum temperature in the

summer months, Le. December to March, range from 28-30 DC in the west and 26-30 DC in

the east, while the means of minimum temperatures in these months are between 12-16 DC

across the region. The first heavy frost of the year occurs, on average, in late May. However,

in the southern and eastern parts of the Free State the first frost can be experienced in early

May. Heavy frost can continue to occur, on average, up until September (Schulze, 1997).

Average annual precipitation maps do not show the year-to-year variability of precipitation.

The inter-annual coefficient of variation (CV) of rainfall for the Highveld region is shown in

Figure 5.1.3. The CV of rainfall can be used for relatiVe comparisons of variability between

one region and the next (Schulze, 1997). The CV of inter-annual rainfall in the Highveld

region decreases from west to east. As a general rule the drier areas, which are already the

marginal areas for farming as a result of their low annual MAP, also have to contend with a

more variable inter-annual rainfall.
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Figure 5.1.2 The mean annual precipitation for the Quaternary Catchments in the Highveld

of South Africa (after Schulze, 1997)
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Figure 5.1.3 The inter-annual coefficient of variation of rainfall in South Africa (after

Schulze, 1997).

The differences in the amount of rainfall, the CV of inter-annual rainfall, temperature ranges

and frost severity across the region are important factors when identifying sustainability goals

and strategies to achieve those goals. Those goals and strategies for regional agricultural

sustainability are discussed in the sections which follow.
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5.2 Goal Definition

In using the adapted goal orientated system, a suitable main objective, or goal, is obliged to

be both relevant and obtainable. In this particular assessment the goal would need to

encompass regional sustainability, under both current and changed climatic conditions. The

identified goal regarding agricultural sustainability and the production of maize in the Highveld

is as follows:

'The goal is for the agro-ecosystems in the Highveld region to continue in the long term

providing quality well-being for farmers and local communities and to maintain ecological

integrity of the agro-ecosystem' (Section 2.7).

If different management scenarios are made up of 5 planting dates and 3 plantdensities, then

this assessment requires the following to be identified:

• Mean yields

• Regional yield differences

• Yields in the driest year in 5

• Yields in the wettest year in 5 and

• Inter-annual coefficient of variation of the yields.

The above statistics would assist in ascertaining optimum plant dates and plant densities at

different locations within the region. Optimum planting strategies under certain conditions are

important when identifying sustainable pathways for agriculture.

The profitable production of maize in a way that takes cognisance of the long-term is of

crucial importance to the rural economy and the social structure of rural communities in the

Highveld. Maize marketing in the Highveld region transformed completely in 1997 from a

single channel marketing system to a free market system. Historically, the Minister of

Agriculture determined the maize price after the February yield forecast by the National Yield

Forecast Committee, and the Maize Board was the only marketing channel. After a

transitional period the maize marketing system became a free market, unsubsidised by

government and with only modest protection from imports (du Toit et al., 2002a). With the

106



current management practices, the economically profitable production of maize has become

progressively more difficult to achieve, owing to variations in climatic conditions, rising input

costs and unstable maize prices. This has had a negative bearing on the local economy and

the rural communities involved in maize production.

In the western section of the Highveld the maize yields are likely to reduce and become less

predictable with increased variability in the precipitation and possibly even a reduction in the

mean annual precipitation associated with future climate change scenarios (du Toit et al.,

1999a). This area of the Highveld is considered especially vulnerable to any negative climatic

changes as current yields, on average, range between only 1 and 3 tonnes per hectare.

The susceptibility of the drier western Highveld to potential climatic change was investigated

by du Toit et al. (1999). The study is described in more detail in Section 3.1.3.3. The work

carried out by du Toit et al. (1999a) highlights the necessity of identifying strategies to

moderate yield variability. The CERES-Maize model has been used previously to simulate

maize agro-ecosystems (Schulze et al., 1993; de Jager et al., 1998; du Toit and Prinsloo,

1998). The methodology behind using the CERES-Maize model for sustainability modelling

on a regional scale in this study is described Section 5.3.

5.3 Sustainability Modelling in the Highveld

5.3.1 Background

The CERES-Maize model was adapted for South African conditions at the ARC Grain Crops

Institute in Potchefstroom (du Toit et al., 1994 a, b, c; du Toit et al., 1997; du Toit et al., 1998;

du Toit and Prinsloo, 2000; du Toit et al., 2002a; du Toit et al., 2002b). The DSSAT input file

for each Quaternary Catchment was created with environmental information from the School

of BEEH Quaternary Catchment Database, QCDB (Schulze et al., 2004).

The QCDB is now available in PC format and has been created using Microsoft Access. Input

parameters can be selected for any of the Primary, Secondary, Tertiary or Quaternary

Catchments. The database output is in the form of CSV files. Using a series of FORTRAN

programs developed by the School of BEEH and adapting them from use in the UNIX

environment to PC format, an input file for the DSSAT crop models can be created from the
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CSV files. The extracted CSV files do not contain the daily rainfall data. The ACRU agro­

hydrological model has to be run and daily rainfall for each of the 1946 Quaternary

Catchments for the years 1950-1994 is given as an output option. The output from the crop

model is converted into a format for a GIS by another FORTRAN program written at the

School of BEEH.

Modelling of maize yields on a Quaternary Catchment scale has been conducted previously

by Schulze et al. (1993), Schulze et al. (1996) and du Toit et al. (1999a). The modelling

performed for the Highveld region discussed in this chapter, builds on previous work by

incorporating daily maximum and minimum temperatures in the model whereas previously

monthly means of daily temperatures were used. Furthermore, the soils information used for

each QC is from the current Land Type soils database of the Institute of Soil, Climate and

Water in South Africa, whereas previous work used the soil input from the much simpler 84

soil zones (Schulze, 1997).

CERES-Maize was operated in seasonal mode when the aforementioned study by du Toit et

al. (1999) was performed. Seasonal modelling refers to experiments of a single cropping

season. Successive seasons can be run in a sequence, but there are no carry-over effects

from one season to next, Le. the system is reset with the same initial conditions. This method

of modelling is valuable for evaluating management decisions such as planting dates,

varieties of crop, or fertiliser application regimes (Thornton et al., 1995).

In order to assess sustainability at a regional scale, estimations of yield and the variations in

yield are the only indicators used (Section 3.1.4). This author recognises that this presents a

restricted analysis of the agro-ecosystem assessed, particularly in term of goods and services

performed by the agro-ecosystem. However, yield is an important indicator of sustainability

and is linked to the other indicators that are used in more detailed studies in Chapters 6, 7

and 8.
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5.3.2 Management and climate scenarios modelled

5.3.2.1 Management scenarios

In regard to management scenarios, five planting dates were selected along with three plant

densities, based on typical practice in the area, the details of which are shown in Table 5.3.1.

The designation 'Iow plant density' refers to a plant density of 1.5 plants/m
2

with a row

spacing of 1.5 m, 'the medium plant density' is 2 plants/m2 and row spacing at 1.2 m and

'high plant density' refers to 3.0 plants 1m2 with a row spacing of 0.9 m. Planting densities are

those used in previous studies carried out by du Toit et al. (1999) and du Toit et al. (2002a).

By investigating a range of planting dates and plant densities for maize, optimum planting

strategies can be ascertained under present climatic conditions for any given QC in the

Highveld region. Optimum planting strategies can then be utilised to investigate how climatic

changes could impact the sustainability of maize agro-ecosystems. The planting dates are

based on climatically optimum planting dates presented by Schulze (2003), which were

determined with the ACRU maize yield model.

Table 5.3.1 Different management options investigated using GERES-Maize

Option No. Planting Date Plant Density Row Spacing
(m2

) (m)
1 15 October 1.5 1.50
2 15 October 2.0 1.20
3 15 October 3.0 0.90
4 1 November 1.5 1.50
5 1 November 2.0 1.20
6 1 November 3.0 0.90
7 15 November 1.5 1.50
8 15 November 2.0 1.20
9 15 November 3.0 0.90
10 1 December 1.5 1.50
11 1 December 2.0 1.20
12 1 December 3.0 0.90
13 15 December 1.5 1.50
14 15 December 2.0 1.20
15 15 December 3.0 0.90
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5.3.2.2 Climate scenarios

In addition to modelling under present climatic conditions, climate change scenarios were

also considered. The climate change strategy adopted was not to use perturbations per se of

future climates generated from either a single General Circulation Model (GCM) or an

ensemble of GCMs (as was the case in some earlier studies in South Africa, e.g. du Toit et

al., 1999; Schulzeand Perks, 2000), but rather to use plausible climate change scenarios for

the region. These plausible scenarios consisted either of an individual "driver" of climate

change (e.g. an effective doubling of atmospheric CO2 concentrations, or an increase in

temperature or a change in rainfall by itself) or more than one driver changing simultaneously

(e.g. 2xC02 + ~T).

The plausible future scenarios were based on. climate perturbations for South Africa from

several GCMs which displayed consistent trends and magnitudes (Perks et al., 2000; Schulze

and Perks, 2000; Engelbrecht, 2005). These climate scenarios were used in what is

tantamount to a sensitivity analysis. The scenarios used were:

• The enhancement of atmospheric CO2 concentrations from present levels around 370

ppmv to 555 ppmv, abbreviated as the '2xC02' scenario. A 2xC02 scenario implies

enhanced photosynthetic rates .plus stomatal closure, with resultant reductions in

transpiration rates. The hypothesis is that this scenario would increase yields, more so

with higher plant densities than with lower ones.

• An increase in both maximum and minimum daily temperatures by 2°C is designated

the '+2 0 C' scenario. An increase temperature promotes rate of crop development, but

simultaneously, through increased evaporative demand, can dry out soil more rapidly.

An increase in the rate of development would reduce the time available for the crop to

capture solar radiation and convert CO2 to biomass. The hypothesis, in a southern

African context in which climates are rainfall limited but not radiation limited, is that

yields would generally decrease with an increase in temperature by itself..

• A 10% increase in rainfall constitutes a further scenario. In the Highveld, particularly in

the western parts, rainfall is the major limiting factor to crop development. The

hypothesis is that this scenario would increase yields.

• A 10% reduction in rainfall is another scenario used. A reduction in rainfall, particularly

in the Quaternary Catchments that have a low MAP, would lead to the maize crop
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•

•

becoming stressed and crop development being inhibited. The hypothesis is that this

scenario would reduce yields.

The combination of effective doubling of atmospheric CO2 plus increased temperatures

is abbreviated to the '2x C02 with +2°C' scenario. The hypothesis is that the "drivers" in

this climate change scenario are self cancelling up to a point.

The combination of effective doubling of atmospheric CO2 and a 10% decrease in

rainfall is termed the '2xC02with 10% rainfall reduction scenario. The hypothesis is that

the drivers in this climate scenario will be self cancelling up to a point, but that in the

western drier areas of the Highveld the reduced rainfall would affect yields negatively

even with 2xC02.

In order to model sustainability under climate change scenarios, optimum planting dates and

plant densities for present conditions were retained. It is recognised that future climatic

changes could result in the optimum planting date for a particular Quaternary Catchment to

alter, most likely to on an earlier date. The two management options used were:

• 15 October planting date with high plant density and

• 15 November planting date with high plant density.

In practice fixed planting dates are not generally used in South Africa. Planting dates are

based on sufficient spring/early summer rains having been received within a specified

window. In South Africa this would be in the region of 25 mm in a five day period between 1

October and 31 December (Schulze, 1995). The planting dates would also be based on

recommendations from crop insurance companies, fertiliser advisors and agricultural

extension workers. These recommendations are often based on research of optimum planting

dates. This research investigated early, medium and late planting dates so that a regional

average optimum planting date could be given.

In this research with future climate scenarios the same fixed optimum planting dates that

were used for present climate have been kept. Planting dates in future climate scenarios are

. likely to change as farmers adapt to the gradual changes in climate. The plausible scenarios

that were. used in this research involve quantum decreases or increases of input climate

variables. In order to determine the climatically optimum planting date for a region under a

future climate the distribution and magnitude of rainfall (and not merely a quantum increase
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or decrease) of that future climate would need to be investigated. This is because

temperature and solar radiation are not limiting factors in South Africa under present

conditions and research indicates that these variables will not be limiting in a future climate

(Schulze et al., 2005). Deriving optimum planting dates under future scenarios is an area for

future research, and it is beyond the parameters of this thesis.

5.4 Evaluation Strategy

5.4.1 Responses under present climatic conditions

The results from the seasonal modelling are illustrated in Figures 5.4.1 through to 5.4.15.

Each figure shows the average yield of each Quaternary Catchment over forty-four seasons

along with the results for the driest year in 5, Le. the 20th percentile of non-occurrence and

the wettest year in 5, Le. the 80th percentile of non-occurrence, as well as the coefficient of

variation of yields. The average grain yield is used as a sustainability indicator, since

unprofitable agricultural systems will not continue (Edwards-Jones and Howells, 2001). Yields

in the western part of the Highveld are required to be above 2 200 kg/ha (Durand and du Toit,

1999) for maize production to be financially sustainable and in the eastern region over 3 600

kg/ha.

With an early planting date of 15 October and a low plant density (Figure 5.4.1) the majority

of QCs in this region have an average yield below the breakeven yield (2 200 kg/ha) for this

area. In the driest year in 5 the yields falls below the famine level of 900 kg/ha when using the

low planting density. The majority of the QCs have a CV of over 80%, implying that the risk

factor is high with this particular planting strategy. Even when the plant density is increased to

a medium (Figure 5.4.2) or high (Figure 5.4.3) value, the average yield in most of the western

parts is still below the 2 200 kg/ha breakeven level. However, with a higher plant density the

variability in yield is reduced.

With a planting date two weeks later on 1 November and with a low plant density (Figure

5.4.4) the number of QCs with an average yields below 900 kg/ha is reduced. With a medium

(Figure 5.4.5) or high (Figure 5.4.6) plant density no QCs are below the 900 kg/ha level. In a

wet year most QCs in western parts are above the breakeven level. The CV of the yield are
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generally over 80% for a low or medium plant density, but with a high plant density the CV is

reduced, in some QCs by as much as 40%.

A low plant density with a planting date of 15 November (Figure 5.4.7) produces yields

between 1 000-3 000 kg/ha in an average as well as a 1 in 5 dry year. Many QCs in the

western areas have yields below 900 kg/ha. In a 1 in 5 wet year yields are above breakeven

in all but 13 QCs and in some QCs yields are over 4 500 kg/ha. However, the inter-annual

CVs of yields remain high (at minimum >60%; in most QCs above 80%). An increase in the

plant density (Figures 5.4.8 and 5.4.9) reduces variability in yields and reduces a number of

QCs with a yields below 900 kg/ha for a dry year.

A planting date of 1 December increases the number of QCs in western parts with average

yields over the breakeven figure of 2 200 kg/ha. With a medium planting density (Figure

5.4.11) the variability of yield is reduced when compared with that for a planting date of 15

November. The later planting date of 15 December (Figures 5.4.13, 5.4.14 and 5.4.15) is

beneficial in terms of yield in those QCs which are on the fringe of the western Highveld. This

later date enables maize production to be economically viable in an increased number of

QCs. In a 1 in 5 wet year with a medium plant density all QCs in the western parts have

yields above 2200 kg/ha. The simulations favour a late planting date for the western

Highveld only. This is a realistic result when compared with the common practice of farmers

in the region, as described by du Toit et al. (1999).

In the eastern parts of the Highveld the mean grain yield is above 3 600 kg/ha in all of the

QCs using all three plant density scenarios (Figure 5.4.1, 5.4.2 and 5.4.3) when using a

planting date· of 15 October. On the fringes of the eastern Highveld the grain yield is above

6 000 kg/ha.. The CV of yield is low in comparison with the rest of the Highveld, with a vast

majority of QCs having a CV below 50%. Using this planting date, the eastern Highveld has

the potential to produce high yields with a low year-to-year variation.

With a planting date of 1 November (Figures 5.4.4, 5.4.5 and 5.4.6) the mean grain yield is

reduced compared with the earlier planting date of 15 October. The yields are still above

4 500 kg/ha in those QCswhich are on the periphery of the eastern Highveld, but in general

the mean grain yield in many QCs falls below the break-even threshold of 3600 kg/ha. In the

eastern Highveld the later planting dates produce lower mean grain yields. The QCs in this
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area produced higher yields when the planting date was either 15 October or early

November. The CV in yield increases with later planting dates as well. A high plant density

coupled with a planting date of either 15 October or 1 November is the management strategy

that will produce the highest maize yields.

In the central Highveld the average yields when the planting date is 15 October (Figures

5.4.1, 5.4.2 and 5.4.3) are commonly between 2 200 and 3 600 kg/ha. An increase in plant

density generally realises an increase in the mean grain yield. At a lower plant density there

is less variation in yields. In a 1 in 5 wet year the yields are above 4500 kg/ha in many of the

central QCs with all three plant densities. The yields in the central area increase with a

planting date of 1 November or 15 November. The CV of yields is higher in the central areas

with a November planting compared with planting on 15 October, but the CVs are lower when

compared with those planting dates in December.

Some general trends may be identified regarding planting date and plant densities for

different areas in the Highveld region. For maize production to be financially sustainable in

the eastern Highveld, a planting date in mid-October coupled with a high plant density is

favoured. In the central and western Highveld a later plant date is preferred as a result of the

rains falling later in the season. In the eastern areas, where MAP is higher, the inter-annual

variability of 9 rain yields is lower than in the west.
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Figure 5.4.1 Simulated maize yields (mean, plus driest and wettest years in 5) and, inter-seasonal coefficient of variation of maize

yields for a planting date of 15 October with low plant density
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Figure 5.4.2 Simulated maize yields (mean, plus driest and wettest years in 5) and, inter-seasonal coefficient of variation of maize

yields for a planting date of 15 October with medium plant density
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Figure 5.4.3 Simulated maize yields (mean, plus driest and wettest years in 5) and, inter-seasonal coefficient of variation of maize

yields for a planting date of 15 October with high plant density
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Figure 5.4.4 Simulated maize yields (mean, plus driest and wettest years in 5) and, inter-seasonal coefficient of variation of maize

yields for a planting date of 1 November with low plant density
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Figure 5.4.5 Simulated maize yields (mean, plus driest and wettest years in 5) and, inter-seasonal coefficient of variation of maize

yields for a planting date of 1 November with medium plant density
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Figure 5.4.6 Simulated maize yields (mean, plus driest and wettest years in 5) and, inter-seasonal coefficient of variation of maize

yields for a planting date of 1 November with high plant density
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Figure 5.4.7 Simulated maize yields (mean, plus driest and wettest years in 5) and, inter-seasonal coefficient of variation of maize

yields for a planting date of 15 November with low plant density
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Figure 5.4.8 Simulated maize yields (mean, plus driest and wettest years in 5) and, inter-seasonal coefficient of variation of maize

yields for a planting date of 15 November with medium plant density
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Figure 5.4.9 Simulated maize yields (mean, plus driest and wettest years in 5) and, inter-seasonal coefficient of variation of maize

yields for a planting date of 15 November with high plant density
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Figure 5.4.10 Simulated maize yields (mean, plus driest and wettest years in 5) and, inter-seasonal coefficient of variation of maize

yields for a planting date of 1 December with low plant density
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Figure 5.4.11 Simulated maize yields (mean, plus driest and wettest years in 5) and, inter-seasonal coefficient of variation of maize

yields for a planting date of 1 December with medium plant density
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Figure 5.4.12 Simulated maize yields (mean, plus driest and wettest years in 5) and, inter-seasonal coefficient of variation of maize

yields for a planting date of 1 December with high plant density
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Figure 5.4.13 Simulated maize yields (mean, plus driest and wettest years in 5) and, inter-seasonal coefficient of variation of maize

yields for a planting date of 15 December with low plant density
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Figure 5.4.14 Simulated maize yields (mean, plus driest and wettest years in 5) and, inter-seasonal coefficient of variation of maize

yields for a planting date of 15 December with medium plant density
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Figure 5.4.15 Simulated maize yields (mean, plus driest and wettest years in 5) and, inter-seasonal coefficient of variation of maize

yields for a planting date of 15 December with high plant density
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5.4.2 Future climate scenarios

The assessment of agro-ecosystem sustainability by definition requires an evaluation of the

environmental, economic and social components and the inter-linkages between them. Yields

and the variability of yields under present climatic conditions have been considered in the

previous section. In a sensitivity analysis on future climates for the Highveld region the socio­

economic impact of selected plausible climatic changes were considered. This has been

determined by calculating possible effects on economic returns for different climate

scenarios. A change in economic returns has consequences for the sustainability of agro­

ecosystems of both the commercial and smallholder farmer in the Highveld.

The economic returns were calculated by using an average production cost per hectare for

the entire Highveld region of R750 (-U8$110) with a selling price of R1800 (-$265) per tonne

of maize grain. These figures where taken from the study by du Toit et al. (1999), and

although the figures are from several years ago, this author considers them a useful guide for

purposes of illustration. Mean economic returns under present climatic conditions were

calculated over 44 seasons and compared with mean economic returns from different climate

change scenarios to establish the possible impacts climatic change could have on regional

food security and sustainability.

With a planting date of 15 October an effective doubling of atmospheric CO2 concentration by

itself (Figure 5.4.16, top) is modelled to have a positive effect in regard to increasing

economic returns throughout the region. Even in the western parts of the Highveld,. where a

later plating date is the preferred planting strategy, there is a significant increase in economic

returns. An effective doubling of CO2 coupled with a 10% reduction in rainfall (Figure 5.4.16,

bottom) will see economic returns still increasing over most parts of the Highveld. Areas

negatively affected are those on the western fringes of the Highveld, which have a low MAP

and a later planting date. In those areas where 15 October is the optimum planting date, even

a reduction in rainfall may increase economic returns. An increase in temperature of 2°C

(Figure 5.4.17, top) will impact yields in the region considerably with a reduction in profit per

hectare over most of the region. A temperature increase of 2°C in combination with an

effective doubling of CO2 (Figure 5.4.17, bottom) will increase returns. The negative impacts

that a temperature increase causes are counteracted by the increase in plant growth and

reduction in transpiration that is associated with a CO2 increase.
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An effective doubling of CO2 by itself with a 15 November planting date (Figure 5.4.18, top)

will have a positive effect on yields in the western areas compared to those in the eastern

areas. There appear to be big increases in returns in the eastern Highveld. compared with

reductions in the west. The increase is substantial in the east, considering that 15 November

is not the normal planting date there (15 October is the optimum plant date). The economic

returns in actual amounts are larger for a 15 October than a 15November planting date. An

effective doubling of CO2 combined with a 10% rainfall reduction (Figure 5.4.18, bottom)

reduces returns in those QCs that have a low MAP.

For a 15 November planting date an increase in temperature by 2°C (Figure 5.4.19, top) will

impact the western Highveld substantially. This area is the drier zone with already generally

higher temperatures in the growing season than the eastern part of the region. A CO2

increase in combination with a temperature increase of 2°C (Figure 5.4.19, bottom) will

reduce the negative effects of the higher temperature by themselves in many of the QCs in

the western areas. However, in some QCs the benefits of an effective dOUbling of CO2 on

crop growth are nullified by the temperature increase.

Figure 5.4 .20 (top) shows the effect on returns for a 10% increase in rainfall by itself using a

15 October planting date. An increase in rainfall sees economic returns increase in all but 1

QC in the Highveld. In the eastern Highveld, where under present climate conditions 15

October is a planting date that is often used, some of the QCs see an increase in returns over

500 Rlha. With a reduction in rainfall by itself using a 15 October planting date and a high

plant density sees a reduction in economic returns in every QC in the Highveld region (Figure

5.4.20, bottom). Changing the planting date to 15 November brings a similar response to that

using a 15 October planting date, Le.. an increase in rainfall gives an increase in economic

returns (Figure 5.4.21, top) and a reduction in rainfall causes a decrease in economic returns

(Figure 5.4.21, bottom).
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Comparison of Changes in Economic Returns
from Maize Production in the Highveld Over
44 Seaons Under Different Climate Regimes
with 15 October Planting Date
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Figure 5.4.16 Comparison with present climate of changes in economic returns from

simulated maize yields in the Highveld under different climate regimes (2XC02

and 2XC02 with a 10% reduction in rainfall) with a 15 October planting date
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Comparison of Changes in Economic Returns
from Maize Production in the Highveld Over
44 Seaons Under Different Climate Regimes
with 15 October Planting Date
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Figure 5.4.17 Comparison with present climate of changes in economic returns from

simulated maize yields in the Highveld under different climate regimes (2°C

temperature increase and 2XC02 with a 2°C temperature increase) with a 15

October planting date
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Comparison of Changes in Economic Returns
from Maize Production in the Highveld Over
44 Seaons Under Different Climate Regimes
with 15 November Planting Date
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Figure 5.4.18 Comparison with present climate of changes in economic returns from

simulated maize yields in the Highveld under different climate regimes (2XC02

and 2XC02 with a 10% reduction in rainfall) with a 15 November planting date

134



Comparison of Changes in Economic Returns
from Maize Production in the Highveld Over
44 Seaons Under Different Climate Regimes
with 15 November Planting Date
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Figure 5.4.19 Comparison with present climate of changes in economic returns from

simulated maize yields in the Highveld under different climate regimes (2°C

temperature increase and 2XC02 with a 2°C temperature increase) with a 15

November planting date
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+10% Rainfall

Comparison of Changes in Economic Returns
from Maize Production in the Highveld Over
44 Seaons Under Different Climate Regimes
with 15 October Planting Date
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Figure 5.4.20 Comparison with present climate of changes in economic returns from

simulated maize yields in the Highveld under different climate regimes (10 %

increase in rainfall and a 10% reduction in rainfall) with a 15 October planting

date
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Comparison of Changes in Economic Returns
from Maize Production in the Highveld Over
44 Seaons Under Different Climate Regimes
with 15 November Planting Date
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Figure 5.4.21 Comparison with present climate of changes in economic returns from

simulated maize yields in the Highveld under different climate regimes (10%

increase in rainfall and a 10% reduction in rainfall) with a 15 November

planting date
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5.5 Management Advice

The original goal of this assessment of sustainability at a regional scale, as set out at the

beginning of this chapter, was as follows:

'The goal ;s for the agro-ecosystems in the Highveld region to continue in the long term,

providing quality well-being for farmers and local communities and to maintain ecological

integrity. ' (Section 5.2)

An important part of achieving this goal is applying management strategies that can reduce

yield variability. For the optimum strategies to be established, maize production using five

planting dates and three plant densities were simulated using CERES-Maize using current

climatic conditions.

The optimum planting dates and plant densities for the Highveld Quaternary Catchments

under current climatic conditions are shown in Figure 5.5.1. The final results were calculated

using the index described in Chapter 4.4. This index ranked average maize yields and inter­

seasonal CVs of yields for each Quaternary Catchment in the Highveld for the 15 scenarios

simulated with CERES-Maize.

For the eastern Highveld 15 October is the planting date that generally produces the highest

yields with least inter-annual variation in those yields. Surprisingly, the optimum plant density

for most of the QCs in the eastern parts is a low or medium density. Although a high plant

density will produce higher yields in above average rainfall years, it also produces high

variability in yields. Optimum planting dates in the western Highveld are from 1 November

through to 15 December. A higher plant density in the areas that have a later planting date

generally reduces the variability in yields. Du Toit et al. (1999) state that generally in the

western Highveld a medium plant density would be employed in practice, but simulated

results show that a higher plant density would reduce variability in yields. Climatically

optimum planting strategies are important when identifying pathways for agricultural

sustainability.

In considering climate change, optimum planting dates and plant densities for present

conditions were used. A decrease in rainfall by itself was found to reduce yields and

economic returns with an increase in rainfall by resulting causing economic returns to

increase. A 2xC02 climate scenario brought about an increase in economic returns in the vast
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majority of QCs with both planting dates used (15 October and 15 November). An increase in

temperature by itself brought a reduction in most of the Highveld, except for those QCs in the

eastern region that have high MAPs.

N

s

Optimum Planting Date and Density

I
D~:g:~

/ 15 Oct High
'r'1 Nov Low

1 NovMed
1 Nov High

. 16 NovLow
16 NovMed
16 NovHlgh
1 DecLaw
1 Dec Med
1 Dec High
16 Dec High

SOO 0 300 Kilometres
~i~~~§iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii~~~~~~~~i

Figure 5.5.1 Optimum planting dates and plant densities for maize for the Highveld

Quaternary Catchments under present climatic conditions, determined by

considering simulated maize yields and the inter-seasonal coefficient of

variation of yield

An increase in atmospheric CO2 when in combination with an increase in temperature of 2°C

was found to counteract the negative impacts of the temperature increase, except in the drier

western fringe of the Highveld. An increase in atmospheric CO2 was also found to counteract
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the negative effects of a reduction in rainfall in most QCs. It is recognised that future climatic

changes could cause the optimum planting date for a particular Quaternary Catchment to

alter. If the future climate is warmer, then the planting dates could shift to an earlier date

compared with the present ones as soil would warm earlier. However, rainfall is the major

driver of maize growth in the Highveld and the optimum planting sets are dependent on there

being enough rainfall. There is as yet uncertainty as whether, and to what extent, seasonality

of rainfall will change in the future.

The optimum climatic planting date for maize varies geographically as a function of rainfall

distribution within the growing season rather than total seasonal rainfall amount (Schulze,

2003). Compared with other variables such as plant density and levels of fertilizer

application, the "correct" planting date has a considerably greater effect on maize yields from

commercial units than the other two (du Toit and Prinsloo, 2001). In deriving optimum

planting dates for the different Quaternary Catchments in the Highveld, five planting dates

were used in the modelling. These dates were chosen after consultation with previous work

on optimum planting dates for maize in South Africa (du Toit et al., 1999; Schulze, 2003). The

planting dates presented in Figure 5.5.1 are the climatically optimum ones for each

Quaternary Catchment based on which date will result in the highest mean yield with the

lowest inter-season variation. This is an optimum planting date as defined by the author, and

it is recognised that it might not necessarily be the optimum date for the farmer or for other

stakeholders who have other considerations and not just highest yield at the lowest risk, since

no cognisance is taken for incidences of pests, diseases, and the occurrence of hail, or

competition from other crops. Planting dates for rainfed agriculture are usually based on

responses by the farmer to observed rainfall within a specified window for that geographical

area rather than a fixed planting date. The fixed planting dates used in this chapter were

based on previous research into climatically optimum planting dates for maize in the Highveld

(du Toit et al., 1999; Schulze, 2003). The optimum dates proposed are the best from the set

of options modelled.

Identifying climatically optimum planting strategies for an important maize producing region

such as the Highveld is vital in terms of a nation's food security. Chapter 6 explores

sustainability at a Quaternary Catchment scale using an index based on a range of indicators

from the CERES-Maize model.
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6 AGRICULTURAL SUSTAINABILlTY AT A QUATERNARY CATCHMENT

SCALE: ASSESSMENT OF MAIZE PRODUCTION USING SUSTAINABILlTY

INDICATORS IN FIVE SELECTED QUATERNARY CATCHMENTS

The sustainability assessment in Chapter 5 focused on the Highveld region as a whole and

investigated sustainable management strategies under various climate regimes. In this

chapter, five Quaternary Catchments (QCs) have been selected that are considered

representative of the wide range of MAP found in the Highveld. The sustainability modelling

used concentrates not only on yield and the socio-economic impacts of yield, but also on

agro-ecosystem responses such as soil organic matter levels. Management options explored

in this chapter include planting dates, planting densities and application of both inorganic

nitrogen fertiliser and manure.

For this study five Quaternary Catchments were selected with a range of mean annual

precipitation (MAP) from 432 mm through to 903 mm. Details of the selected sites are shown

in Table 6.1.1 and the location of the five QCs are shown in Figure 6.1.1.

Table 6.1.1 Details of Quaternary Catchments used in this study

Christiana Bothaville Frankfort Ermelo Piet Retief

Description Very Dry Dry Medium Wet Very Wet

Quaternary Catchment ID C91B C24J C83M C11F W51C

MAP (mm) 432 552 639 704 903

Average Maize Yield (kg/ha) 2169 3178 3801 3792 6299

Thickness A Horizon (m) 0.24 0.21 0.23 0.25 0.28

Thickness B Horizon (m) . 0.33 0.30 0.31 0.42 0.50

Dominant Soil Texture Class SaLm SaCILm Cl SaCILm SaCILm

Heat Units (Odays) Oct-March 2078 2011 1713 1443 1872

Reference Potential Evaporation 1600 1493 1313 1124 1143

(mm), (A-pan equiv): Oct-March
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For this assessment a framework adapted from von Wiren-Lehr's (2001) goal orientated

system, which was described in Chapter 4, was employed to gauge various sustainability

pathways. This system has four stages, viz.

• Identifying the goal (Section 6.1)

• Sustainability modelling (Section 6.2)

• Evaluation (Section 6.3) and

• Management advice (Section 6.4).

s

100 0 100 200 300 400 Kilometres
I"""'l_

Figure 6.1.1 Location of five Quaternary Catchments selected for sustainability assessment
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6.1 Goal Definition

Agriculture forms the economic base of the rural economy in South Africa. The importance of

adequate food supply for human and animal consumption can not be overemphasised, as it

influences farmer and community well-being and ecological integrity (Thornton et al., 1997).

The creation of employment opportunities both on and off the farm is important in preventing

large scale migration to urban areas and in achieving sustainable agro-ecosystems. Vast

areas in South Africa are planted under maize even though they could be classified as semi­

arid (du Toit et al., 1999). Therefore, a sustainability framework is required (Section 4.2) so

that different options can be explored and more informed decision making can take place.

The concept of agro-ecosystem integrity must recognise a human perspective such as the

ability of an agro-ecosystem to continue to provide the goods and services that humans

expect (De Leo and Levin, 1997). Examples of ecosystem services particularly important for

agro-ecosystems are: continuation of the genetic diversity essential for successful crop

breeding; recycling of nutrients; biological control of pests and diseases; erosion control and

sediment retention; and regulation of local hydrological processes. The indicators used to

assess sustainability are biophysical in nature and are based on the output from the CERES­

Maize model (Section 6.2). There are no direct indicators for economic and social

components of sustainability. However, inferences can be made regarding the socio­

economic aspect of agro-ecosystems from the results of the biophysical indicators particular

yield.

As was the case in Chapter 5, the goal, in this assessment, of the system in regard to

sustainability is as follows:

'The goal is for the agro-ecosystems in the Highveld region to continue in the long term,

providing quality well-being for farmers and local communities and to maintain ecological

integrity.' (Section 5.2)

Maize production in the five selected quaternary catchments will be assessed in relation to

this goal.
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6.2 Sustainability Modelling and Indicator Selection

The OSSAT suite of crop yield models can be used for long-term simulation of cropping

sequences. A sequence refers to the growing of crops one season after the other for a stated

duration (Thornton et al., 1995). Using CERES-Maize in sequential mode, levels of variables

such as soil water, soil organic carbon and nitrogen are passed on from the end of one

season to the beginning of the next. Therefore, the appeal of sequential modelling is that

trends in the end-of-season output such as yield, nitrogen uptake, or soil organic carbon level

can be determined. The propensity of the output variables to change with time in a consistent

direction will define the trend. Any trend can then be used to estimate the potential of

biophysical sustainability for a given cropping sequence and management strategies (Bowen

et al., 1998).

The simulation of a cropping sequence entails the setting of initial conditions for the start of

the run. The model then simulates crop growth and yields for a number of successive growing

seasons with fallow periods when there is no planned crop cover (Thornton et al., 1995).

The utilisation of indicators is useful in assessing the suitability of different management

options in terms of sustainability and can also highlight the effects on an agro-ecosystem of

climate variability.

Bio-physical indicators (described in Section 4.2.1) from output of CERES-Maize simulations

that can be employed are:

• <3rain yield

• <3rain nitrogen content

• Soil organic nitrogen

• Soil organic carbon

• Extractable soil water

• Cumulative runoff

• Cumulative drainage and

• Nitrogen recovery (N used by crop/N applied *100).

144



A variety of scenarios can be modelled using the sequential approach. Various sustainability

pathways were assessed by investigating the effect of different management practices on

selected sustainability indicators. The results of these were used to create a sustainability

index (Section 6.3). A DSSAT input file was created which included 54 treatments. These

were run sequentially for 44 year with daily rainfall, daily temperatures and soils information

from the School of BEEH Quaternary Catchments Database.

The 54 treatments consisted of three planting dates, three plant densities for each planting

date, with six fertiliser/manure regimes for each plant density, and are summarised in the first

five columns of Tables 6.3.1-6.3.3. The planting date, plant densities, and fertiliser/manure

levels were:

• Planting dates: 15 October, 15 November, and 15 December

• Plant densities: plant population 1.5/m2 with row space 1.5 m, plant population 2.0/m2

with row space 1.2 m, plant population 3.0/m2 with row space 0.90 m

• Fertiliser regimes: 80 kg N/ha, 120 kg N/ha, 160 kg N/ha

• Manure regimes: 22.6 kg N/ha, 45.2 kg N/ha, 67.8 kg N/ha (Lumsden and Schulze,

2004).

The use of crop rotations was not considered, as access to locally derived genetic

coefficients of soya for use in the DSSAT models was limited. Also the SOYGRO model has

not undergone the same extensive regional calibration in South Africa as CERES-Maize.

Fallow periods could be beneficial particularly in terms of retaining soil organic matter and for

the maintenance of ecological integrity. This is practised in the Highveld, but for analysis at

the Quaternary Catchment scale this author decided that effects of sustained maize

production alone should be assessed.

For the commercial farmer it becomes economically viable to produce maize when its

production exceeds 2 200 kg/ha in western Highveld and exceeds 3 600 kg/ha in the eastern

Highveld (Durand and du Toit, 1999). The yield levels were calculated assuming the maize

price to be $95 per 1 000 kg and total production costs to be $200 per hectare.

In the modelling performed, a maize crop was assumed to be planted each year with no

fallow seasons. The planting date and densities were the same that were used in Chapter 5,
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while manure levels were identical to those used by Lumsden and Schulze (2004) in a study

of management strategies for small-scale farmers producing maize under conditions of

.climate variability.

6.3 Evaluation Strategy Using a Sustainability Index

A sustainability index was employed to assess the sustainability of maize production at the

five selected QCs. This was the same index discussed in Chapter 4 with averages calculated

for each indicator from values over 44 seasons of maize production. The average figure was

compared against a critical limit, or threshold value, and was then scored accordingly. The

scores for each agro-ecosystem function were summed for the treatment. The result of the

above analysis gave a likelihood of sustainability for the agro-ecosystem under a particular

management regime or climate regime. Four options are given for likelihood of sustainability:

minimal, low, medium and high. The likelihood of sustainability for each of the 54 treatments

at the five selected QCs is shown in Table 6.3.1, Table 6.3.2 and Table 6.3.3.

In the Christiana catchment (very dry, QC C91 B) all management options with a planting date

of 15 October return a minimal chance of sustainability (Table 6.3.1). This is due to the

planting date being too early and the soil still being too parched from the dry winter months

for development of the crop.

Treatments in the Christiana catchment that have a low chance of sustainability are 31-33

(Table 6.3.2), 44, 45 and 49 (Table 6.3.3). These are all treatments with organic nitrogen

inputs. Although the treatments with manure inputs have a high nitrogen recovery, the yields

are low. The break-even figure used is one for commercial farmers, so in reality maize could

still be produced by the emerging farmers who currently do not have the same capital input

costs. The low yields might be acceptable if the maize production forms part of a broader

sustainable livelihoods strategy, Le. if the farmer or members of the farmer's family have off­

farm employment. At Christiana (QC C91 B) Treatments 50 and 51 (Table 6.3.3) receive a

high rating for sustainability. This is due in part to Treatment 50 being used to calculate

baseline values for the water related thresholds. However, it· is the optimum management

strategy according to the seasonal modelling performed in Chapter 5.
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Table 6.3.1 Likelihood of sustainability for five selected Quaternary Catchments, Treatments 1-18

Treatment Planting Plant Nitrogen Nitrogen Christiana Bothaville Frankfort Ermelo Piet Retief
Number Date Density Application Applied QC C91B QC C24J QC C83M QC C11F QCW51C

(plants/m2
) Type (kg/ha) (Very Dry) (Dry) (Medium) (Wet) (Very Wet)

1 15 Dct 1.5 Inorganic 80.0 Minimal Low Medium Low Medium
2 15 Dct 1.5 Inorganic 120.0 Minimal Low Medium Low Medium
3 15 Dct 1.5 Inorganic 160.0 Minimal Minimal Medium Low Medium
4 15 Dct 1.5 Manure 22.6 Minimal Minimal Minimal Minimal Low
5 15 Dct 1.5 Manure 45.2 Minimal Minimal Minimal Minimal Low
6 15 Dct 1.5 Manure 67.8 Minimal Minimal Minimal Minimal Minimal
7 15 Dct 2.0 Inorganic 80.0 Minimal Medium Medium High Medium
8 15 Dct 2.0 Inorganic 120.0 Minimal Medium Medium High Medium
9 15 Dct 2.0 Inorganic 160.0 Minimal Low Medium High Medium
10 15 Dct 2.0 Manure 22.6 Minimal Minimal Minimal Low Minimal
11 15 Dct 2.0 Manure 45.2 Minimal Minimal Minimal Low Minimal
12 15 Dct 2.0 Manure 67.8 Minimal Minimal Minimal Minimal Minimal
13 15 Dct 3.0 Inorganic 80.0 Minimal Medium High High Medium

14 15 Dct 3.0 Inorganic 120.0 Minimal Medium High High Medium
15 15 Dct 3.0 Inorganic 160.0 Minimal Medium High Medium Medium
16 15 Dct 3.0 Manure 22.6 Minimal Minimal Low Low Low

17 15 Dct 3.0 Manure 45.2 Minimal Low Low Low Low
18 15 Dct 3.0 Manure 67.8 Minimal Minimal Minimal Minimal Minimal
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Table 6.3.2 Likelihood of sustainability for five selected Quaternary Catchments, Treatments 19-36

Treatment Planting Plant Nitrogen Nitrogen Christiana Bothaville Frankfort Ermelo Piet Retief
Number Date Density Application Applied QC C91B QC C24J QC C83M QC C11F QCW51C

(plants/m2) Type (kg/ha) (Very Dry) (Dry) (Medium) (Wet) (Very Wet)

19 15 Nov 1.5 Inorganic 80.0 Minimal Medium Medium Minimal Medium

20 15 Nov 1.5 Inorganic 120.0 Minimal Medium Medium Minimal Medium

21 15 Nov 1.5 Inorganic 160.0 Minimal Medium Low Minimal Medium

22 15 Nov 1.5 Manure 22.6 Minimal Minimal Minimal Minimal Minimal

23 15 Nov 1.5 Manure 45.2 Minimal Minimal Minimal Minimal Minimal

24 15 Nov 1.5 Manure 67.8 Minimal Minimal Minimal Minimal Minimal

25 15 Nov 2.0 Inorganic 80.0 Minimal Medium Medium Low Medium

26 15 Nov 2.0 Inorganic 120.0 Minimal Medium Medium Low Medium

27 15 Nov 2.0 Inorganic 160.0 Minimal Medium Medium Minimal Medium

28 15 Nov 2.0 Manure 22.6 Minimal Minimal Minimal Minimal Minimal

29 15 Nov 2.0 Manure 45.2 Minimal Minimal Minimal Minimal Minimal

30 15 Nov 2.0 Manure 67.8 Minimal Minimal Minimal Minimal Minimal

31 15 Nov 3.0 Inorganic 80.0 Low Medium Medium Low Medium

32 15 Nov 3.0 Inorganic 120.0 Low High Medium Low Medium

33 15 Nov 3.0 Inorganic 160.0 Low Medium Medium Low Medium

34 15 Nov 3.0 Manure 22.6 Minimal Low Minimal Minimal Minimal

35 15 Nov 3.0 Manure 45.2 Minimal Low Minimal Minimal Minimal

36 15 Nov 3.0 Manure 67.8 Minimal Minimal Minimal Minimal Minimal
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Table 6.3.3 Likelihood of sustainability for 5 selected Quaternary Catchments, Treatments 37-54

Treatment Planting Plant Nitrogen Nitrogen Christiana Bothaville Frankfort Ermelo Piet Retief
Number Date Density Application Applied QC C91B QC C24J QC C83M QC C11F QCW51C

(plants/m2
) Type (Kg/ha) (Very Dry) (Dry) (Medium) (Wet) (Very Wet)

37 15 Dec 1.5 Inorganic 80.0 Minimal Medium Minimal Minimal Low
38 15 Dec 1.5 Inorganic 120.0 Minimal Low Minimal Minimal Low
39 15 Dec 1.5 Inorganic 160.0 Minimal Low Minimal Minimal Low
40 15 Dec 1.5 Manure 22.6 Minimal Minimal Minimal Minimal Minimal

41 15 Dec 1.5 Manure 45.2 Minimal Minimal Minimal Minimal Minimal

42 15 Dec 1.5 Manure 67.8 Minimal Minimal Minimal Minimal Minimal
43 15 Dec 2.0 Inorganic 80.0 Minimal Medium Minimal Minimal Low
44 15 Dec 2.0 Inorganic 120.0 Low Medium Minimal Minimal Low
45 15 Dec 2.0 Inorganic 160.0 Low Low Minimal Minimal Low
46 15 Dec 2.0 Manure 22.6 Minimal Minimal Minimal Minimal Minimal
47 15 Dec 2.0 Manure 45.2 Minimal Minimal Minimal Minimal Minimal

48 15 Dec 2.0 Manure 67.8 Minimal Minimal Minimal Minimal Minimal

49 15 Dec 3.0 Inorganic 80.0 Low Medium Low Minimal Low

50 15 Dec 3.0 Inorganic 120.0 High Medium Minimal Minimal Low

51 15 Dec 3.0 Inorganic 160.0 High Medium Minimal Minimal Low

52 15 Dec 3.0 Manure 22.6 Minimal Minimal Minimal Minimal Minimal

53 15 Dec 3.0 Manure 45.2 Minimal Minimal Minimal Minimal Minimal

54 15 Dec 3.0 Manure 67.8 Minimal Minimal Minimal Minimal Minimal
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At Bothaville (dry, QC C24J) treatments using manure that achieve higher than minimal rating

are numbers 17, 34 and 35. The result of Treatment 17 (Table 6.3.1) is surprising, as the

planting date of 15 October is very early for this area, but the output from the runoff and

drainage variables fall within the threshold values, there is high nitrogen recovery and

adequate nitrogen in the grain for protein formation. Treatment 32 (Table 6.3.2) has a high

sustainability rating and it is the optimum planting strategy for QC C24J. Treatments 31 and

33 achieve good yields along with higher than 60% nitrogen recovery.

The optimum planting date for Frankfort (medium rainfall, QC C83M) is 15 October, and by

using this planting date the highest sustainability ratings are achieved in this QC. When using

manure the best results are for Treatments 16 and 17 (Table 6.3.1). These treatments have a

high plant density and their likelihood of sustainability is low when using commercial break­

even figures.

At Ermelo (wet, QC C11 F) the high sustainability ratings are achieved for Treatments 7-9, 13

and 14 (Table 6.3.1). These treatments have a planting date of 15 October, a high plant

density and either 80 or 120 kg/ha of inorganic nitrogen applied. Planting later in the season

will result in reduced yields and higher yield variability, and as a consequence, a lower

sustainability likelihood rating. Management strategies with manure applications at Ermelo

require a planting date of 15 October and either a plant density of low or high and a manure

nitrogen input of either 22.6 or 44.2 kg/ha.

All treatments with inorganic nitrogen inputs used in the Piet Retief QC (very wet, QC W51 C)

achieve a least a medium sustainability rating. The optimum management strategy would be

a 15 October planting date with a high plant density and either 80 or 120 kg/ha application of

inorganic nitrogen fertiliser. The favourable sustainability ratings in this QC are due mainly to

the high rainfall. The high MAP also appears to be the reason for the high organic matter

loss, which is the highest for any of the five QCs investigated. The highest scores on the

sustainability index for treatments with manure as inputs into the system are for numbers 4, 5,

15 and 16 (Table 6.3.1).

In Tables 6.3.1, 6.3.2, and 6.3.3 the threshold for grain yield was set at a break:-even level for

commercial farmers (Table 4.2.3). This varied according to which region the QC was in, Le.
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the break-even level was higher is the eastern Highveld than the western Highveld. In Tables

6.3.4 and 6.3.5 the grain yield threshold for those treatments using manure as a nitrogen

input has been set at 900 kg/ha. This is a famine threshold (Durand and du Toit, 1999) and is

the amount of maize a family of four can survive on until the next harvest. If yields fall below

this level, the smallholder farmers will not be producing enough maize to live on.

Table 6.3.4 Comparison of sustainability likelihood outcome for Christiana (QC C91 B)

Treatment Planting Plant Nitrogen Nitrogen Christiana Christiana
Number Date Density Application Applied Yield Yield

(plants/m2
) Type (kg/ha) Threshold Threshold

Commercial Famine
Level

37 15 Dec 1.5 Inorganic 80.0 Minimal Minimal

38 15Dec 1.5 Inorganic 120.0 Minimal Minimal

39 15 Dec 1.5 Inorganic 160.0 Minimal Minimal

40 15 Dec. 1.5 Manure 22.6 Minimal Low

41 15Dec 1.5 Manure 45.2 Minimal Low

42 15Dec 1.5 Manure 67.8 Minimal Low

43 15Dec 2.0 Inorganic 80.0 Minimal Minimal
44 15Dec 2.0 Inorganic 120.0 Low Low
45 15Dec 2.0 Inorganic 160.0 Low Low
46 15Dec 2.0 Manure 22.6 Minimal Low
47 15Dec 2.0 Manure 45;2 Minimal Low
48 15Dec 2.0 Manure 67.8 Minimal Low
49 15Dec 3.0 Inorganic 80.0 Low Low
50 15Dec 3.0 Inorganic 120.0 High High
51 15 Dec 3.0 Inorganic 160.0 High High
52 15Dec 3.0 Manure 22.6 Minimal Minimal
53 15Dec 3.0 Manure 45.2 Minimal Minimal
54 15 Dec 3.0 Manure 67.8 Minimal Minimal

A comparison between using a commercial threshold and the famine threshold figure for yield

for those treatments using manure is shown for Christiana (QC C91 B) in Table 6.3.4. The

planting dates are for mid-December, which is the optimum planting time for this QC. For

those treatments which have a low or medium planting density, the sustainability likelihood

has increased from minimal to low.
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Table 6.3.5 gives a comparison of the sustainability indices at Bothaville (QC C24J). The

comparison has been made for those treatments using the optimum planting date for this

catchment, which is mid-November. For those treatments using a low or medium plant

density the sustainability likelihood has increased from minimal to low. Treatments 34 and 35

have moved from minimal sustainability likelihood to medium and Treatment 36 from minimal

to low.

Table 6.3.5 Comparison of sustainability likelihood outcome for Bothaville (C24J)

Treatment Planting Plant Nitrogen Nitrogen Bothaville Bothaville
Number Date Density Application Applied Yield· Yield

(plants/m2
) Type (kg/ha) Threshold Threshold

Commercial . Famine
Level

19 15 Nov 1.5 Inorganic 80.0 Medium Medium

20 15 Nov 1.5 Inorganic 120.0 Medium Medium

21 15 Nov 1.5 Inorganic 160.0 Medium Medium

22 15 Nov 1.5 Manure 22.6 Minimal Low

23 15 Nov 1.5 Manure 45.2 Minimal Low
24 15 Nov 1.5 Manure 67.8 Minimal Low
25 15 Nov 2.0 Inorganic 80.0 Medium Medium
26 15 Nov 2.0 Inorganic 120.0 Medium Medium
27 15 Nov 2.0 Inorganic 160.0 Medium Medium
28 15 Nov 2.0 Manure 22.6 Minimal Low
29 15 Nov 2.0 Manure 45.2 Minimal Low
30 15 Nov 2.0 Manure 67.8 Minimal Low
31 15 Nov 3.0 Inorganic 80.0 Medium Medium
32 15 Nov 3.0 Inorganic 120.0 High High
33 15 Nov 3.0 Inorganic 160.0 Medium Medium
34 15 Nov 3.0 Manure 22.6 Low Medium
35 15 Nov 3.0 Manure 45.2 Low Medium
36 15 Nov 3.0 Manure 67.8 Minimal Low

Optimum planting strategies can also be determined by investigation of yield and standard

deviation of yields at each Quaternary Catchment. Table 6.3.6 shows the average yield from

seasonal modelling along with standard deviations for the five selected Quaternary

Catchments. At the Christiana QC the optimum planting date from the range which was
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modelled is either 1 or 15 December, along with a high plant density. The results from the

modelling differ slightly from practice, where normally in this area a medium plant density

would be favoured (Durand and du Toit, 1999).

Table 6.3.6 Mean yields and coefficient of variation of seasonal modelling using a range of

planting dates and plant densities with CERES-Maize, with fixed inorganic

nitrogen application of 120 kg/ha

Planting QC C91B QC C24J QCC83M QC C11F QCW51C
Date and Christiana Bothaville Frankfort Ermelo Piet Retief
Plant
Densities Very dry Dry Medium Wet Very wet

150ct 1052 2219 3633 3426 5290
Low 109 52 44 43 24

150ct 1159 2179 3740 3703 5893
Medium 99 71 51 46 28
150ct 1654 2230 3801 3792 6299
High 79 62 59 45

15 Nov 1509 2577 3367 2431
Low 109 65 46 55 27
15Nov 1450 2732 3344 2559 5136
Medium 93 65 52 62 31
15 Nov 2000 3178 3527 2622 5786
High 69 63 60 68

15Dec 1743 2467 2485 2259
Low 85 70 46 51 36
15 Dec 1897 2547 2480 2331 4123
Medium 86 76 53 62 43
15 Dec 2169 2791 2608 2279 4233
High 78 75 62 69 50
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The coefficient of variation at the Christiana QC (very dry) decreases for each of the 5

planting dates when the plant density is increased. The highest yields at the Bothaville

catchment are with a 15 November or 1 December planting date, along with a high plant

density. The coefficient of variation increases for each of the five planting dates when the

plant density is increased.

The remaining three QCs, viz. at Frankfort, Ermelo and Piet Retief, all favour a 15 October

planting date with a high plant density. The coefficient of variation increases for each of the

five planting dates when the plant density is increased.

The sustainability likelihood is based on the results from a number of indicators of simulated

agro-ecosystem functions, pointing to the possibility of a particular management option being

sustainable or not. This analysis gives a general perspective of what is happening in the

agro-ecosystem at a particular location. In the section which follows two indicators, viz. soil

organic carbon and nitrogen, are evaluated in detail at each of the five selected QCs. Using

the sequential method of modelling with CERES-Maize permits the responses of soil organic

carbon and nitrogen under different management options to be analysed.

6.3.1 Christiana (very dry, QC C91 B)

The Christiana QC has a MAP of 432mm and is situated in the western edge of the Highveld

(Figure 6.1.1). The mean grain yield simulated using the seasonal method (Chapter 5) with

CERES-Maize is 2 169 kg/ha. For a given planting date and plant density the loss of organic

nitrogen is higher for manure than for fertilisers (Figure 6.3.1). This could be due to the low

amount of nitrogen added in the manure. The crop, therefore, uses the existing supply of

nitrogen in the soil. When the planting date is moved from 15 October to a later one the rate

of organic nitrogen depletion is reduced.

For a range of fertiliser regimes (80 kg N/ha, 120 kg N/ha, 160 kg N/ha) and all else being

held equal, there is no significant difference in the loss of organic nitrogen. For a range of

manure regimes (22.6kg N/ha, 45.2 kg N/ha, 67.8 kg N/ha), and all else being held equal,

there is no significant difference in the loss of organic nitrogen. There is a significant

difference between the October and December planting dates for both inorganic and manure
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nitrogen inputs into the system, with the loss being between 5-9% higher in October. Those

treatments with planting date in October and November are exposed to early summer rains

should they occur and, therefore, experience a higher percentage loss of soil organic nitrogen

over 44 seasons.

Soil organic carbon losses at the Christiana catchment are the lowest when the planting date

is in December (Figure 6.3.2). There are losses of soil organic carbon of over 30% with

planting dates of 15 October or 15 November when using manure as the source of added

nitrogen to the system. The highest losses occur with Treatments 22-24, which have a

planting date of 15 November, a low plant density and manure as the nitrogen input into the

system.

c::::
35.00

Q)
C)

30.000
~

~

Z 25.00
.~
c::::
C'tl 20.00C)
~

0
'0 15.00
en.... 10.000
11)
11)

5.000
..J
~Cl 0.00

1 3 5 7 9 11 13151719212325272931333537394143 45 47 4951 53

Treatment Number

Figure 6.3.1 Percentage loss of soil organic nitrogen at Christiana over 44 seasons
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Figure 6.3.2 Percentage loss of soil organic carbon at Christiana over 44 seasons

6.3.2 Bothaville (dry, QC C24J)

The selected dry QC, viz. Bothaville, has a MAP of 552 mm and simulated mean grain yield is

3 178 kg/ha when using a suitable planting date. The MAP in this QC is higher than

Christiana and the result is that the depletion rates of soil organic carbon and nitrogen are, in

general, higher at Bothaville than at Christiana.

The depletion rate of nitrogen for a December planting date is significantly less than when

planting in October and November (Figure 6.3.3). The highest soil organic nitrogen losses, at

over 32%, are for Treatments 4-6 (planting date 15 October, manure input, low plant density),

Treatments 22-24 (planting date 15 November, manure input, low plant density) and

Treatments 34-36 (planting date 15 November, manure input, high plant density). Those

treatments with planting date in October and November are exposed to early summer rains

should they occur and, therefore, experience a higher percentage loss of soil organic nitrogen
over 44 seasons.
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Figure 6.3.3 Percentage loss of soil organic nitrogen at Bothaville over 44 seasons

Treatments 49-51 (planting date 15 December, high plant density) show the lowest reduction

in soil organic carbon with Treatment 51 haVing a 23% reduction over 44 seasons when the

inorganic nitrogen input is 160 kg/ha/season. The low reduction rate could be due to much of

the early rains having been missed with this plant date and also the readily available high

inorganic nitrogen input implying that less of the organic soil nitrogen is utilised.

At the Bothaville site the highest losses of organic carbon occur with Treatment 6 (planting

date 15 October, 6 kg/N/ha, low plant density), at over 33 % loss over 44 seasons from the

starting value (Figure 6.3.4). Again the lowest depletion rate occurs with a December planting

date, with Treatment 49 having the least amount of carbon loss.
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Figure 6.3.4 Percentage loss of soil organic carbon at Bothaville over 44 seasons

6.3.3 Frankfort (medium rainfall, QC C83M)

This QC has a MAP of 639 mm and a mean grain yield over 44 seasons of 3 801 kg/ha

(Chapter 5) with a favourable planting date. The MAP is higher than at both Christiana and

Bothaville and results in higher yields as well as slightly higher depletion rates of soil organic

carbon and nitrogen.

When depletion rates of nitrogen were compared for those treatments using inorganic

nitrogen, the highest levels of depletion were recorded for those with 15 October planting

dates (Figure 6.3.5), with no significant differences in depletion apparent between the 15

November and 15 December planting dates.
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Figure 6.3.6 Percentage loss of soil organic carbon at Frankfort over 44 seasons

The smallest decrease occurs for those treatments with a December planting date and

inorganic nitrogen inputs.
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The highest depletion rates of soil organic carbon (Figure 6.3.6) occur with an October 15

planting date for both inorganic nitrogen and manure inputs. Treatment 4 (15 October,

22.6 kg/N/ha and low plant density) has the highest loss, at almost 34% reduction from the

starting value over 44 seasons.

6.3.4 Ermelo (wet, QC C11 F)

This QC has a MAP of 704 mm and a simulated mean grain yield of 3 792 kg/ha when using

a suitable planting date. Although Ermelo has a higher MAP than Frankfort, it has not resulted

in higher average yields and in general Ermelo displays a lower soil organic nitrogen and

carbon depletion over 44 seasons than does Frankfort.

The highest rate of depletion of soil organic nitrogen in the Ermelo QC over 44 seasons is for

Treatment 16 (plating date 15 October, manure input 22.6 kg/N/ha), with a 32% reduction in

soil organic nitrogen from the starting value (Figure 6.3.7). The lowest organic nitrogen loss is

for Treatments 31-33, which have a November planting date, high plant density and inorganic

nitrogen inputs.

c:::
Q)

~ 30.00 +---1ffi}------\!IIih!r----III-=-----------fl-------------J...
:!::

~ 25.00 iUimffiffiHHlHHlt-I!HITl!lfll..---Il~fl~_=___I_IHII--__I_III_/!l___-_I_l:HI_-___llHl:l_fd_-___ll_D~
'2
~ 20.00 ilHIHtIIHtIHHHlHHlHliHlflflfl-HH-KHHIHJHI-IlHH-IHHHHHHHHHHI-I-lI~1-I-lI1-Il...
o
.- 15.00 iUitltfjtitllHHl.....i!HtEHHI!HH!HHIHII-llHHJlfll-D-/II-~lH!HrHH!I-U-IlHHI-lII-mI-ll-ll--IJ-III-II-I!l-U-Ii-II--li-ll--lUlo
U)

'0 10.00 ilHIHtIHHHHHlHHHlflfl-/lHlfl-H~Hl-KHHIHJHI-IlHH-IHHHHHHHHI-I-lII-I-lI~1-I-lI1-Il

=.3 5.00 ilHtlitliHHHHHHlflflflfl-HKKHUIHJHI-IlHII-IlHHHII-IlHHHI-IlI-llI-l-lll-J"l-J"1--I-li1-ll
'eft.

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Treatment Number

Figure 6.3.7 Percentage loss of soil organic nitrogen at Ermelo over 44 seasons
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For soil organic carbon 1055 (Figure 6.3.8) both Treatment 5 (15 October, 45.2 kg/N/ha, low

plant density) and Treatment 16 (15 October, 22.6 kg/N/ha, with high plant density) incur

losses of 33% over 44 seasons. The higher losses occur with an October planting date and

the least organic carbon loss is simulated with a planting date in November.
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Figure 6.3.8 Percentage 1055 of soil organic carbon at Ermelo over 44 seasons

6.3.5 Piet Retief (very wet, QC W51 C)

The very wet QC, Piet Retief, has a MAP of 903 mm and a simulated average grain yield over

44 seasons with an October planting date of 6 299 kg/ha. The MAP of Piet Retief is

considerably higher than that at Ermelo and the resulting potential rainfed maize yields are

also significantly higher.

There is no marked difference between the soil organic nitrogen losses with a November and

December planting date when using inorganic nitrogen inputs (Figure 6.3.9). The highest rate

of depletion of soil organic nitrogen is for Treatment 4 (planting date 15 October, manure

input of 22.6 kg/N/ha).
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All things being equal there is no marked difference in losses of soil carbon when the planting

date is in November or December (Figure 6.3.10). The highest loss occurs with use of

Treatment 4 (15 October, 22.6 kg/N/ha, with a low plant density), the loss sustained being

35.3% over 44 seasons. The lowest losses transpire with a November planting date using

inorganic nitrogen as an input to the agro-ecosystem.
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Figure 6.3.9 Percentage loss of soil organic nitrogen at Piet Retief over 44 seasons

In all the five selected QCs losses for soil organic nitrogen was less when inorganic nitrogen

was added to the agro-ecosystem. This could be due to there being more readily available

nitrogen for the crop to utilise when compared with using manure as the nitrogen input, as it

takes time for the manure to break down and for the nitrogen to be available to plant

processes in the agro-ecosystem.
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Figure 6.3.10 Percentage loss of soil organic carbon at Piet Retief over 44 seasons

In general the higher the MAP of a catchment the higher the yields, but also the depletion rate

of both soil organic carbon and nitrogen. The exception to this is at Ermelo (wet QC, MAP

704mm) with its slightly lower yields and nitrogen and carbon losses than Frankfort (medium

rainfall, MAP 639mm). Continued depletion of soil organic carbon and nitrogen will have

impacts on the quality of the soil while the leaching of inorganic nitrogen has consequences

for water quality.

6.4 Management Advice

Soil organic carbon and nitrogen losses were highlighted in Section 6.3 and they affected all

five QCs. The losses were higher in those QCs that had a higher MAP. If the quality of the

soil decreases it will eventually have negative effects on the yield and thus threaten the long­

term economic and social sustainability of the agro-ecosystem. Possible solutions to this

would be to increase the amount of external inputs into the system, which itself is not a

sustainable pathway if external inputs continue to increase, or adopt some form of

conservation tillage to maintain soil quality. The losses were generally higher with an earlier
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planting date and were also higher with treatments that used manure as the nitrogen input

into the system.

The management strategies that are considered to cope best with the Highveld region's

biophysical constraints are the ones that will produce environmental and economic

sustainability for the agro-ecosystem. Once again, the goal of the system used to assess

agro-ecosystems in the five selected QCs in the Highveld is:

'The goal is for the agro-ecosystems in the Highveld region to continue in the long term,

providing quality well-being for farmers and local communities and to maintain ecological

integrity.' (Section 6.1)

The management strategies from the sustainability assessment that are considered the most

likely sustainable pathway for the each of the five QCs' agro-ecosystems are summarised in

Table 6.4.1. The management strategies are based on the sustainability likelihood analysis

(Tables 6.3.1, 6.3.2, 6.3.3) and the analyses of yield and CV of yield (Table 6.3.6).

The amount of nitrogen applied can be considered high by world standards in terms of the

plant density used, which is lower than in other major maize producing areas of the world.

The figures given in Table 6.4.1 were the climatically optimum results from the sustainability

modelling in Chapter 6. The amount of nitrogen applied, however, is not unusually high for

the Highveld region of South Africa (Schmidt and Smalberger, 1999). There are several

reasons why the optimum nitrogen level is higher in the Highveld than for agriculture in other

parts of the world. Most of the soils in the Highveld, especially those in the drier western

parts, are very low in organic matter content and over decades of intensive use the tillage

methods employed have depleted the soils to a large extent of organic matter, as illustrated in

Section 6.3. This could be attributed to the regular turnover of the soil, which exposes

accumulated organic matter to high temperatures, and to frequent wetting and drying spells

that increase the rate of decomposition by micro-organisms. Also many soils in the Highveld

are of sandstone origin, and as a result have very low levels of useable nutrients. The soil

types also contribute to loss of nutrients through leaching (Prinsloo, 2005).

The difference between the simulated optimum levels of nitrogen applied to that in practice

could be due to the way nitrogen use is simulated in CERES-Maize, particularly in semi-arid

areas. Alternatively, the difference could be in the way the optimum management strategies
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are calculated. The indicators involving nitrogen are grain nitrogen content, nitrogen recovery

and soil organ ic nitrogen levels and yield (Section 4.2.1). There is not an indicator for nitrogen

levels in runoff or in the groundwater. Therefore, a high level of nitrogen application could

produce a hig h yield, acceptable grain nitrogen content and prevent inorganic soil loss and

give a result of a medium or high likelihood of sustainability. This could still have a negative

effect on the agro-ecosystem due to high nitrogen levels in the ground and surface water.

This negative effect would then be masked, as there is no indicator to advise otherwise with

the overall result being that too high a nitrogen level is recommended for application.

Table 6.4.1 Optimum management strategies for maize production under present climate

conditions at five selected locations in the Highveld

Quaternary Treatment Planting Plant Nitrogen Amount of
Catchment Number Date Density Application Nitrogen

(plants/m2
) Type Applied (kg/ha)

Christiana 50 15 Dec 3.0 Inorganic 120

Bothaville 32 15 Nov 3.0 Inorganic 120

Frankfort 14 15 act 3.0 Inorganic 120

Ermelo 14 15 act 3.0 Inorganic 120

Piet Retief 14 15 act 3.0 Inorganic 120

Although the sustainability framework and methods were not formulated with up-scaling as an

aim, it is still valuable to consider upscaling so that possible lessons can be drawn. With the

Quaternary Catchment scale assessment there appears to be limited scope for up-scaling to

the regional level. This is particularly pertinent in regard to up-scaling results from the surface

and subsurface hydrology routines contained in CERES-Maize. These routines were not

designed for modelling hydrological responses at such a large scale especially for South

African conditions. A possible solution would be to link CERES-Maize to the ACRU

hydrological modelling system, as was done in the research by Schulze et al. (1996). This

would be of interest, as CERES-Maize has undergone extensive regional calibration in South

Africa since that work was performed.

The strategies summarised in Table 6.4.1 are used in Chapter 7 to investigate the impacts on

agro-ecosystems under different climatic regimes. The optimum strategies are based on

averages over 44 seasons. In practice a range of strategies may be utilised to counteract the

effects of, for example, El Nino years and extended periods of drought.
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7 AGRICULTURAL SUSTAINABILlTY AT A QUATERNARY CATCHMENT

SCALE: ASSESSING AGRO·ECOSYSTEM SUSTAINABILlTY UNDER

DIFFERENT CLIMATE REGIMES

A change in means of climate parameters, or an increase in climate variability, will have

complex impacts on agro-ecosystems. Climate comprises of complex relationships between

variables such as temperature, precipitation, evaporation, wind and cloud. Such relationships

are generally independent of atmospheric carbon dioxide (C02) concentrations, but CO2 and

other greenhouse gases contribute largely to climates changing through their effect on the

radiation balance of the atmosphere. An increased level of CO2 in the atmosphere has a

positive influence on plant photosynthesis (Sombroek and Gommes, 1996).

The risk and uncertainty associated with agriculture affects decision-making. As a direct

consequence, uncertainty can result in inefficiencies to occur in the agricultural sector, along

with concerns over food security. Informed decision making under risk involves combining

decision makers' expectations about what is likely to happen in the future with their

management preferences (Thornton and Wilkens, 1998).

For this assessment the five QCs used in the evaluation in Chapter 6 were again selected.

These QCs have a range of mean annual precipitation (MAP) from 432 mm through to

903 mm. In order to investigate sustainability on a Quaternary Catchment scale under

different climate regimes, an adapted goal orientated system of von Wiren-Lehr's (2001)

described in Chapter 4, was applied. This system has four stages:

• Identifying the goal (Section 7.1)

• Sustainability modelling (Section 7.2)

• Evaluation (Section 7.3)and

• Management advice (Section 7.4).

7.1 Goal Definition

The question as to whether an agro-ecosystem is sustainable for maize production, for

example, encompasses a wide range of considerations including climate variability and

change, management practices, government policy, equity goals, food security, livelihoods
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and biodiversity. What is certain is that there is a lack of knowledge on how specific agro­

ecosystem functions may change should the agro-ecosystem be transformed (O'Riordan,

2002). This lack of knowledge is related to being able to maintain the ecological integrity of

an agro-ecosystem. This is the integrity of both system structure and function, maintenance

of which is uncertain under climatic changes.

The intention of this assessment was to investigate how the agro-ecosystem functions may

be affected by modifications to the environment, and in particular to climate change. Any

major climate changes, be they positive or negative, are likely to have significant bearing on

the long-term sustainability of the agro-ecosystem. The goal of the system assessment must

therefore incorporate this.

The sustainability goal used for this particular assessment is given below:

'The goal is for the agro-ecosystems in the Highveld region to continue in the long term,

providing quality well-being for farmers and local communities and to maintain ecological

integrity.' (Sections 2.7, 5.2 and 6.1)

The objective of this assessment is to be able to summarise findings by simulating agro­

ecosystems at a QC scale under different climate scenarios. This information will then be

assessed in regard to agro-ecosystem sustainability.

7.2 Sustainability Modelling

The purpose of modelling in this particular assessment is to assess how different agro­

ecosystem functions respond to anticipated changes in climate. The five QCs used for the

sustainability assessment in Chapter 6 were again used in this study. The optimum

management strategies determined in Chapter 6, which include planting date, plant density

and nitrogen application level, were modelled for a variety of climate scenarios. A summary

of the five QCs used in Chapter 6 is given in Table 7.2.1, along with the optimum planting

strategies for each QC under present climatic conditions.
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Table 7.2.1 Summary of selected QC details and optimum management strategies under

present climatic conditions

Christiana Bothaville Frankfort Ermelo Piet Retief

General Description of Very dry Dry Medium Wet Very wet

Rainfall Regime

Quaternary Catchment ID C91B C24J C83M C11F W51C

MAP (mm) 432 552 639 704 903

Mean yield (kg/ha) 2169 3178 3801 3792 6299

Planting date 15 Dec 15 Nov 150ct 150ct 150ct

Plant density (plants/m") 3.0 3.0 3.0 3.0 3.0

Nitrogen source Inorganic Inorganic Inorganic Inorganic Inorganic

N applied (kg/ha) 120 120 120 120 120

With the uncertainties still surrounding the magnitudes and timing of climate changes, as

generated by General Circulation Models (IPCC, 2001), one approach is for plausible climate

scenarios to be utilised to estimate the impacts of climate change on a system (Rosenzweig

and Iglesias, 1998). In this stUdy eleven climate scenarios were regarded as plausible for

southern Africa based on output from GCMs (Schulze and Perks, 2000). These scenarios

were considered so that a range of effects could be identified. A present climate data set from

1950-1994 was used, with environmental modifications made to the input files of CERES­

Maize so that the folloWing scenarios could be modelled:

• a dOUbling of present CO2 atmospheric concentrations to 555 ppmv (2xC02)

• increasing both minimum and maximum daily temperatures by 2°C

• 2xC02 + 1°C minimum/maximum daily temperature increase

• 2xC02 + 2°C minimum/maximum daily temperature increase

• 2xC02 + 3°C minimum/maximum daily temperature increase

• 10% reduction in rainfall

• 10% increase in rainfall

• 2xC02 with 10% reduction in rainfall

• 2xC02 with 10% increase in rainfall

• 2xC02 +2°C minimum/maximum daily temperature increase with 10% reduction in

rainfall and
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• 2xC02 +2°C minimum/maximum daily temperature increase with 10% increase in

rainfall.

The climate scenarios listed above will have a range of effects on the agro-ecosystem in

regard to sustainability. The various scenarios and their possible effects are as follows:

• The enhancement of atmospheric CO2 concentrations from present levels around 360

ppmv to 555 ppmv, abbreviated to the '2x CO2' scenario: 2xC02 results in enhanced

photosynthetic rates plus stomatal closure, with the latter implying reduced transpiration

rates. The hypothesis is that this scenario will increase yield, more so with higher plant

densities.

• An increase in both maximum and minimum daily temperatures by 2°C is designated

the '+2°C' scenario. An increase temperature promotes rate of crop development, but

simultaneously, through increased evaporative demand, can dry out soil more rapidly.

An increase in the rate of development would reduce the time available for the crop to

capture solar radiation and convert CO2 to biomass. The hypothesis, in a southern

African context in which climates are rainfall limited but not radiation limited, is that

yields would generally decrease with an increase in temperature by itself.

• A 10% increase in rainfall scenario: In the Highveld, particularly in the western parts,

rainfall is the major limiting factor to crop development. The hypothesis is that this

scenario would increase yields.

• A 10% reduction in rainfall scenario: A reduction in rainfall, particularly in the Quaternary

Catchments that have a low MAP, will lead to the maize crop's becoming stressed more

frequently and crop development will be inhibited. The hypothesis is that this scenario

will reduce yields.

• The combination of an effective doubling of atmospheric CO2 plus increased

temperatures (the '2x CO2 with +1°C, +2°C, and +3°C' increases): The hypothesis is

that the "drivers" in this climate scenario are self cancelling up to a point, with the

climate scenario '2x CO2 +3°C' seeing reduced yields, particularly in the drier areas of

the Highveld.

• The combination of effective doubling of atmospheric CO2 and a 10% decrease in

rainfall (the '2xC02 with 10% rainfall reduction' scenario): In this case the hypothesis is

that the drivers in will result in self cancelling of impacts up to a point, but in the western
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drier areas of the Highveld the reduced rainfall will affect yields negatively even with

2xC02 .

• The combination of effective doubling of atmospheric CO2 and a 10% increase in rainfall

(the '2xC02 with 10% rainfall increase' scenario): The hypothesis is that the drivers in

this climate scenario would increase yields.

• The combination of an effective 2xC02 +2°C minimum/maximum daily temperature

increase with a 10% reduction in rainfall: In this case the hypothesis is that in the drier

areas the reduced rainfall and increased temperatures will inhibit crop development and

reduce yields, while in regard to soil organic nitrogen and carbon the combination of

drivers will result in higher losses.

• The combination of 2xC02 +2°C minimum/maximum daily temperature increase with a

10% increase in rainfall: The hypothesis is that yields would increase and in regard to

soil organic nitrogen and carbon the combination of drivers would cause higher losses

in yields.

CERES-Maize was operated in sequential mode so that values of soil water, soil organic

carbon and nitrogen would be passed on from the end of one season to the beginning of the

next. Any trend identified could then be used to estimate the potential of biophysical

sustainability for a given management strategy for different climate scenarios. From the

results of the modelling, an index was created that provides an indication of the impacts on

the agro-ecosystem sustainability for each QC.

7.3 Evaluation Strategy

The likelihood of sustainability for an agro-ecosystem under different climate scenarios was

ascertained by the use of the weighted index described previously in Chapter 4. This index

gives four options for the likelihood of sustainability: minimal, low, medium and high. The

mean figure of a selected indicator was compared against a critical limit and was then scored

accordingly. The scores for each agro-ecosystem function were summed for the climate

scenario. The sustainability Iikelihoods for each of the five QCs are shown in Table 7.3.1. The

indicators used for the sustainability modelling are:

• mean grain yield

• grain nitrogen content
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• soil organic carbon

• soil organic nitrogen

• nitrogen recovery

• extractable water

• cumulative runoff and

• drainage.

Table 7.3.1 Agro-ecosystem sustainability Iikelihoods in five selected QCs under different

climate regimes

Climate Scenario Christiana Bothaville Frankfort Ermelo Piet Retief

Present climate Medium Medium Medium Medium High

2xC02 Medium Low Medium Medium Medium

Temperature + 2°C Low Low Low Low Medium

2x CO2 +1°C Medium Low Low Medium Medium

2x CO2 +2°C Low Low Low Medium Medium

2x CO2 +3°C Low Low Low Low Low

+10% Rainfall Low Medium Low Low Medium

-10% Rainfall Low Low Low Low Low

2xC02 +10% Rainfall Low Medium Medium Medium Medium

2xC02 -10% Rainfall Low Low Low Medium Medium

2xC02 +10% Rainfall +2°C Low Medium Low Medium Medium

2xC02 -10% Rainfall +2°C Low Low Low Medium Medium

Under the present climate the sustainability Iikelihoods of the five QCs are medium or high

when optimum management strategies of planting date, plant density and fertiliser application

are chosen. The likelihood of sustainability is uncertain under different climate regimes. The

results from the sustainability modelling, summarised in Table 7.3.1, show that a maize crop

will benefit especially in terms of mean grain yields from an effective dOUbling of atmospheric

CO2• However, this benefit can be counteracted when there is an increase in temperature,

particularly of 2°C or more. Rising air temperatures are likely to increase water vapour deficits

which will increase the potential crop evapotranspiration (Rosenzwig and Hillel, 1998). It is

noteworthy that a very dry QC such as Christiana does not have an improved sustainability

likelihood with a scenario of a doubling of CO2 and a 10% increase in rainfall. Although there
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is an increase in the mean grain yield, the runoff and soil organic nitrogen and carbon also

increase, giving the Christiana QC reduced sustainability likelihood. In reality this climate

scenario should generally be highly beneficial to an agro-ecosystem, therefore management

changes could be made to take advantage of such favourable climate conditions.

In all QCs an increase in temperature of 3°C with a doubling of CO2 leads to the likelihood of

sustainability being reduced. Conversely, with a doubling CO2 and a1 0% increase in rainfall

the likelihood of sustainability is increased in all QCs except Christiana. The two QCs with the

higher MAP, Ermelo and Piet Retief, are able to absorb a temperature increase with lower

adverse effects than the other QCs with lower rainfalls. A decrease in rainfall by itself results

in a low sustainability likelihood in 5 of the QCs. However, an increase in rainfall by itself only

increases the sustainability rating at the Bothaville and Piet Retief QCs. The reasons for this

vary for each QC. At Christiana the increase in rainfall only increases mean grain yield over

44 seasons by 100 kg/ha, which is not enough to improve the sustainability likelihood. At

Frankfort and Ermelo QCs the increase in rainfall increases the soil organic carbon and

nitrogen loss and produces a higher amount of runoff. A weighted index resulting in a given

sustainability likelihood allows general agro-ecosystem health to be assessed. In the sections

which follow key indicators from the output of CERES-Maize are analysed for each QC to

identify impacts of climate change scenarios.

7.3.1 Christiana (very dry, QC C91 B)

Christiana is the driest of the five QCs selected and has a mean grain yield of 2 218 kg/ha

under present climate conditions With a doubling of CO2 the mean grain yield increases to

2 746 kg/ha because of the fertilisation effect of CO2 and reduction in transpiration rates.

Even though the mean grain yield is above the general break-even figure for maize

production in the area, the mean yield masks a marked inter-seasonal variability in the yield.

The variability of yields under different climate scenarios at the Christiana QC is shown in

Table 7.3.2. Under current conditions the inter-seasonal yields are highly variable at this very

dry Quaternary Catchment. For different climate scenarios the variability of yields was found

to generally decrease. An increase in temperature results in a reduction in variability. An

increase in temperature will induce an acceleration of crop growth and development, but

reduce soil moisture. The increase in temperature seems to reduce the number of 'extreme'
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good harvests, and therefore reduce variability. The reduction in variability in this case is not

a benefit to the farmer as it is the crop failures which need to be minimised. Furthermore, the

climate scenarios which include temperature increases appear to reduce the benefits to the

crop in higher rainfall years. It was hypothesised that with the scenario of '2x CO2 -10%

rainfall' that in a dry QC such as Christiana, a reduction in yields would occur. In fact the CO2

enrichment in the atmosphere was still able to result in an increase in yield of 200 kg/ha even

with a 10% reduction in rainfall. The reduction in rainfall with this scenario meant that soil

organic nitrogen loss was the lowest of the scenarios simulated.

Table 7.3.2 Mean yields and coefficients of variation of yields over 44 seasons for the

Christiana QC

Christiana QC
Climate Scenario Mean Yields (ko/ha) CV of Yields (%)
Present Climate 2216.6 86.8

~XC02 2730.7 79.8
h"emperature + 2°C 1 983.6 56.2
I2x CO2+1°C 2735.9 71.9
I2x CO2+2°C 2561.4 69.5
I2x CO2+3°C 2382.8 63.7
~x COr10% rainfall 2423.8 84.8
I2x CO2+10% rainfall 2967.3 73.4
Plus 10% rainfall 2345.9 77.7
Minus 10% ra infall 1 904.0 73.8
I2x CO2+ 2°C +10% rainfall 2721.5 68.5
2x CO2+ 2°C -10% rainfall 2 174.9 69.1

For 39 out of 44 seasons a doubling of CO2 will result in an increase of grain yield (Figure

7.3.1), the increase being particularly marked when the yields for present climate are around

3 000 kg/ha. From season 7-16 present yields fall below the break-even figure of 2 200

kg/ha, and over 44 seasons falls below this value 14 times with present climate and 9 times

when the CO2 level is increased. During extended periods of low rains, farmers would have to

look at other strategies with which to survive this climatic phenomenon. Even the fertilisation

effect of a doubling of CO2has only a marginal positive effect when the rainfall is low.

With a doubling of CO2 and a temperature increase of 2°C the maize yield increases for 27

out of 44 seasons modelled (Figure 7.3.2). However, in 19 of the seasons the yield under
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both present conditions and under 2xC02+2°C climate scenario falls below 2 000 kg/ha. For

this particular comparison there are some pronounced differences in yield in some seasons.

For example, in Season 6 the yield is much higher under present conditions and in Season

25 the yield is considerably higher for the 2xC02+2°C. In some years the increase in

temperatures inhibits crop development and as a consequence the maize is unable to take

advantage of possible CO2 enhancement of plant growth. In higher rainfall years, such as

Season 25, the negative impacts of the temperature increase in this QC are lessened and the

crop is benefits from CO2 fertilisation.
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Figure 7.3.1 The influence on maize yield of an effective doubling of atmospheric CO2

concentration for the Christiana Quaternary Catchment

Soil organic nitrogen loss from the system is shown in Figure 7.3.3. The climate scenario

under which most organic nitrogen is removed from the soil is an effective doubling of CO2

concentrations in combination with a temperature increase of 3°C.
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Figure 7.3.2 The influence on maize yield of an effective doubling of atmospheric CO2

concentration and a 2°C increase in minimum and maximum temperatures for

the Christiana Quaternary Catchment
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Figure 7.3.3 Decreases in soil organic nitrogen levels over 44 seasons at the Christiana QC

for selected climate scenarios
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A reduction in rainfall (Figure 7.3.3) will lead to less organic nitrogen being lost. However, this

is probably due to lower crop yields associated with less plant growth and, therefore, less

nitrogen being required by the crop. The general efficiency with which the maize crop uses

added nitrogen is shown in Figure 7.3.4. The mean nitrogen recovery under present climatic

conditions is 85%, while it is 78% with an effective doubling of atmospheric CO2• The figures

are high compared with the world-wide average of 50% (Craswell and Godwin, 1984). The

reasons for such high efficiency within this particular agro-ecosystem could be because the

optimum planting strategy is being utilised or that this QC had a low MAP so a smaller

percentage of added nitrogen is leached from the soil.
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Figure 7.3.4 Comparison of nitrogen recovery over 44 seasons at the Christiana QC for

present CO2 levels and an effective dOUbling of atmospheric CO2 concentration

The drier areas of the western Highveld are particularly vulnerable to rainfall changes. A

reduction in rainfall of 10% is a plausible future scenario for this area (Engelbrecht, 2005).

This scenario was modelled in CERES-Maize in a linear manner Le. by simply reducing the

rainfall of each day in the present climate data file by 10%. However, future work could

investigate the changes in distribution and magnitude of daily rainfalls under future climates

to assess their impacts on the agro-ecosystem goods and services.
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7.3.2 Bothaville (dry, QC C24J)

The selected dry QC, Bothaville, with a MAP of 552mm has a simulated mean grain yield of

3 178 kg/ha under present climatic conditions when using a planting date of 15 October with

a high plant density and 120 kg/ha of inorganic fertiliser. The inter-annual coefficient of

variation of yields in this part for the Highveld region is high (65%) and this is illustrated in

Figure 7.3.5. The average yields over 44 seasons with an effective doubling of atmospheric

CO2 increases to 4 281 kg/ha. For 38 out of 44 seasons the yields are higher with a doubling

of CO2 (Figure 7.3.5). There are 14 seasons under present climate conditions where the yield

is below 2 200 kg/ha, which is the break-even figure, with this reducing to 9 seasons out of 44

with a doubling of CO2. The yields fall below the 900 kg/ha on three occasions with present

climate and only once with the CO2 increase. The yield variability is lower with a 2x CO2

scenario compared to present climatic conditions (Table 7.3.3). In some seasons such as 5,

17 and 39 the increase in yield with this scenario is quite marked. The reason for this could

be the temperature, rainfall and solar radiation in these years enables the crop to benefit from

CO2 fertilisation, while in other years such as Seasons 24 and 25 this might not be the case.

Table 7.3.3 Mean yields and coefficients of variation of yields over 44 seasons for the·

Bothaville QC

Bothaville QC
Climate Scenario Mean Yields CV of Yields
Present Climate 3393.5 54.3
I2xco2 4280.7 42.7
Temperature + 2°C 2435.3 54.3
2xC02 +1°C 3700.4 46.9
2xC02 +2°C 3325.5 49.0
2xC02 +3°C 2 986.1 52.2
2xC02 -10% rainfall 3797.2 48.7
2xC02 +10% rainfall 4325.2 35.3
Plus 10% rainfall 2983.3 49.2
Minus 10% rainfall 2552.5 63.6
2xC02+ 2°C +10% rainfall 3799.2 42.7
2xC02+ 2°C -10% rainfall 3061.2 59.8
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With an effective doubling of CO2 plus a temperature increase of 2°C the maize yield

increases in 26 out of 44 seasons (Figure 7.3.6). The increase in temperature of 2°C

counteracts the photosynthetic benefit to the plant of an effective doubling of CO2- The yields

are still highly variable with this climate scenario due to the variability of rainfall.

The yield variability is affected in a negative manner when there is a 10% reduction in the

rainfall by itself (Table 7.3.3). This effect is reduced when in combination with 2xC02, but

when a temperature rise of 2°C is added to this, the variability again increases to a higher

percentage than under present conditions. The lowest yield variability occurs with those

climate scenarios that have a 10% increase in rainfall.
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Figure 7.3.5 The influence on maize yield of an effective doubling of atmospheric CO2

concentrations for the Bothaville QC

178



9000 • Present C02 at 360 ppmv

8000 • "Doubling" C02 to 555 ppmv +2°C

7000

- 6000ca
.s::.- 5000~- :

" 4000 \

Q)

>= 3000
,

2000

1000 11

~
11

11 I_I I0 I

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Seasons

Figure 7.3.6 The influence on maize yield of an effective doubling atmospheric CO2

concentration plus a 2°C increase in minimum and maximum temperatures for

the Bothaville QC
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Figure 7.3.7 Decreases in soil organic nitrogen levels over 44 seasons at the Bothaville QC

for selected climate scenarios
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Figure 7.3.8 Comparison of nitrogen recovery over 44 seasons at the Bothaville QC for

present CO2 levels and an effective doubling of atmospheric CO2

concentrations

The highest soil organic nitrogen loss occurs with a doubling of CO2 concentrations in

combination with either a 3°C increase in temperature or a 10% increase in rainfall (Figure

7.3.7). Higher temperatures and increased rainfall leads to an increase in microbial activity in

the soil and accelerates the breakdown of organic matter, and thereby increasing the readily

available nitrogen in the soil to the plant. The effective doubling of CO2 will increase plant

growth and increase the use of nitrogen from the soil. The nitrogen recovery level, Le. how

much nitrogen is being used compared with that added to the system, is high (Figure 3.7.8).

In 41 out of 44 seasons a doubling of CO2 leads to a higher percentage of nitrogen being

used. In some years the figure is above 100%, implying that more nitrogen is being used by

the crop than is added into the system for that particular year.

7.3.3 Frankfort (medium rainfall, QC C83M)

Mean grain yield over 44 seasons for the Frankfort QC is 4 274 kg/ha for present climate and

5 170 kg/ha with an effective doubling of atmospheric CO2 concentrations. A doubling of CO
2

resulted in increased grain yield, in 35 out of 44 of the seasons simulated (Figure 7.3.9). For
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both climate scenarios the yield was below 1 000 kg/ha in one year and below the break-even

value of 3 000 kg/ha in 9 seasons out of the 44. The mean grain yield is below the break­

even value for seasons 1-3 even with an increase in CO2, while the biggest differences in

yield for the two climate scenarios occur when the present yield is between 2 500-3 500

kg/ha. In these seasons favourable environmental conditions in terms of rainfall and

temperature exist, which enable the plant to be responsive to CO2 enrichment. In higher

rainfall years the crop appears to be less receptive to increases in CO2 levels.

In this catchment a doubling of CO2 and a temperature increase of 2°C causes the maize

yield to increase 18 out of 44 seasons (Figure 7.3.10). An increase in temperature negatively

affects the mean grain yield results in the Frankfort QC. If the temperature increases by 1°C

coupled with a CO2 doubling, then the yield is higher than for the present climate. If the

temperature increase is higher than that, then it counteracts the benefit to the crop of the CO2

increase.

The yield variability at Frankfort increases with the +2°C scenario and also with a reduction in

rainfall of 10% (Table 7.3.4). Yield variability reduces with those scenarios that have 2xC02 or

an increase in rainfall of 10%. The scenario which combines an effective doubling of CO2 with

a temperature rise and a reduction in rainfall (2xC02+2°C -10% rainfall), sees the positive

physiological effects of CO2 enrichment reduced due to less rainfall and an increase in

temperatures. At higher temperatures the crop could be experiencing higher rates of

respiration which negate the benefit of an enhanced rate of photosynthesis that is a

characteristic of higher levels of CO2 in the atmosphere (Rosenzweig and Hillel, 1993).

A 10% reduction in rainfall would result in a smaller loss in soil organic nitrogen than a 10%

increase (Figure 7.3.11). An increase in temperature by 3°C in addition to an effective

doubling of CO2 causes the greatest simulated loss of organic matter when compared with

losses under present climate conditions. The use of an optimum planting strategy has

resulted in high nitrogen recovery for the system (Figure 7.3.12). In 26 out of 44 seasons

simulated an effective doubling of CO2 produces a high nitrogen recovery figure for the agro­

ecosystem.
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Table 7.3.4 Mean yields and coefficients of variation of yields over 44 seasons for the

Frankfort QC

Frankfort QC
Climate Scenario Mean Yields (kg/ha) CV of yields (%)
Present Climate 4274.3 46.8
2xC02 5 170.1 34.7
rremperature + 2°C 2966.8 58.5
2xC02 +1°C 4641.5 42.7
I2xco2 +2°C 3996.2 45.3
I2xco2 +3°C 3492.3 42.8
2xC02 -1 0% rainfall 4794.5 39.0
2xC02 +10% rainfall 5377.6 31.2
Plus 10% rainfall 4 127.0 44.2
Minus 10% rainfall 3347.5 53.5
I2xco2 + 2°C +10% rainfall 4172.3 41.0
I2xco2 + 2°C -10% rainfall 3714.0 51.6
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Figure 7.3.9 The influence on maize yield of an effective doubling of atmospheric CO
2

concentrations for the Frankfort QC

182



9000 • Present C02 at 360 ppmv

8000 ."Doubling" C02 to 555 ppmv +2QC

7000

6000-co.c- 5000en.:.::-'C 4000a;
>= 3000

2000

1000

110

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Seasons

Figure 7.3.10 The influence on maize yield of an effective doubling of atmospheric CO2

concentrations and a 2°C increase in minimum and maximum temperatures for

the Frankfort QC
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Figure 7.3.11 Decreases in soil organic nitrogen levels over 44 seasons at the Frankfort QC

for selected climate scenarios
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Figure 7.3.12 Comparison of nitrogen recovery over 44 seasons at the Frankfort QC for

present· CO2 levels and an effective doubling of atmospheric CO2

concentrations

7.3.4 Ermelo (wet, QC C11F)

The average yields over 44 seasons at the Ermelo QC are 3 970 kg/ha for present climate

and with an effective doubling of atmospheric CO2 concentrations the yield increases to 5 317

kg/ha. An increase in yield was recorded in 40 out of 44 seasons simulated with a CO
2

increase (Figure 7.3.13). The grain yield falls below the break-even threshold in 19 seasons

out of 44 with the present climate compared with only 10 times when atmospheric CO
2

is

increased to 555 ppmv. In seasons 8-10 the yield is below 3 000 kg/ha, with the yield falling

below 2 000 kg/ha on a further five occasions. The largest variation in yield between the two

scenarios occurs when yield under present climate conditions is around 4 000 kg/ha

particularly in Seasons 5, 17, 25 and 30. The environmental conditions exist in these years

that permit the crop to increase biomass accumulation, as the transpiration feedback is

effective. In drier years, typified by low yields, the soil moisture is low and the transpiration

feedback is ineffective; so the crop is unable to take advantage of the CO
2

enriched

atmosphere. In high rainfall years such as Seasons 10 and 31, when yields are over 6 000

kg/ha under present conditions, the benefits of a doubling of CO2 are not as striking.
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Figure 7.3.13 The influence on maize yield of an effective doubling of atmospheric CO
2

concentration for the Ermelo QC

With a doubling of CO2 plus a temperature increase of 2°C the maize yield increases 33 out

of 44 seasons (Figure 7.3.14). Although the grain yield increases in most seasons, the mean

grain yield is lower with the present climate. If a temperature increase is coupled with a

doubling of CO2 the negative impact of the temperature increase is outweighed by the benefit

of the CO2 increase to the plant.

It is noteworthy that the yield variability is reduced at the Ermelo QC with those scenarios that

have an effective doubling of CO2, whether by itself or in combination with other drivers

(Table 7.3.5). The only climate scenario modelled that increases yield variability is a reduction

in rainfall of 10%. However, a temperature increase does result in an increase in soil organic

nitrogen loss in this wet QC, as illustrated in Figure 7.3.15.
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Table 7.3.5 Mean yields and coefficients of variation of yields over 44 seasons for the

Ermelo QC

Ermelo QC
Climate Scenario Mean Yields (kg/ha) CV of yields (%)
Present Climate 3970.9 46.5
2xC02 5317.9 33.5

[Temperature + 2°C 3880.7 40.6

12xco2 +1°C 5410.8 27.5
2xC02 +2°C 5332.4 26.4
12xco2 +3°C 4 845.2 30.3
2xC02 -10% rainfall 4853.3 36.0
2xC02 +10% rainfall 5874.0 28.2
Plus 10% rainfall 4104.5 43.2
Minus 10% rainfall 3123.6 49.7
2xC02 + 2°C +10% rainfall 5494.8 23.0
2xC02 + 2°C -10% rainfall 4979.1 30.4
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Figure 7.3.14 The influence on maize yield of an effective CO2 dOUbling of atmospheric CO
2

concentrations and a 2°C increase in minimum and maximum temperature for

the Ermelo QC
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Figure 7.3.15 Decreases in soil organic nitrogen levels over 44 seasons at the Ermelo QC

for selected climate scenarios

The higher MAP and increase in temperature results in a faster breakdown of organic matter

and it is either used by the crop or leached from the soil. With just an increase in CO2 the

nitrogen recovery for the system increases in 41 out of 44 seasons simulated.
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Figure 7.3.16 Comparison of nitrogen recovery at the Ermelo QC over 44 seasons for

present CO2 levels and an effective doubling of atmospheric CO
2

concentrations

7.3.5 Piet Retief (very wet, QC W51 C)

Piet Retief has the highest MAP (903 mm) of the five QCs selected for this study and it is

located on the eastern fringe of the Highveld region. On average'the yields increase by 300

kg/ha from 6 114 kg/ha to 6406 kg/ha with a doubling of atmospheric CO2. In only 18 of the

44 seasons modelled the yields are higher with an effective doubling of CO2 (Figure 7.3.17).

Grain yields fall below the break-even figure of 3 600 kg/ha on five occasions with present

climate and twice when the CO2 concentration is increased to 555 ppmv. The biggest positive

impact on yields is for the years when there is low rainfall. The largest variation in yield

between these scenarios occurs when the yield is around 3 000 kg/ha under present climate

conditions. It is in these lower rainfall years at Piet Retief QC that the doubling of atmospheric

CO2 benefits the crop, and where the transpiration feedback in most noticeable.
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In the Piet Retief catchment a doubling of CO2 plus a temperature increase of 2°C produces

maize yield increases in 17 out of 44 seasons (Figure 7.3.18). A rise in temperature even with

a doubling of effective CO2 will have a negative effect on the mean grain yield. The higher

temperatures cause the available soil water to reduce and, as a consequence, negatively

impacts yield.

Yield variability at Piet Retief is the lowest of the five Quaternary Catchments' assessed, as it

is the QC with the highest and most reliable rainfall (Table 7.3.6). The climate scenarios that

would reduce the variability even further and also increase the mean yields are the ones that

contain an effective doubling of CO2• However, yield variability increases with a rise

temperature or a reduction in rainfall.

Table 7.3.6 Mean yields and coefficients of variation of yields over 44 seasons for the Piet

RetiefQC

Piet Retief QC

Climate Scenario Mean Yield (kg/ha) CV of Yields (%)

Present Climate 6114.3 26.7

2xC02 6405.7 15.7

Temperature + 2°C 5130.5 33.8

2xC02 +1°C 5948.8 15.9

2xC02 +2°C 5 834.5 20.6

2xC02 +3°C 4930.9 28.8

2xC02 -10% rainfall 6402.0 16.9

2xC02 +10% rainfall 6502.8 13.0

Plus 10% rainfall 5679.1 25.3

Minus 10% rainfall 4927.1 39.9

2xC02 + 2°C +10% rainfall 5755.0 21.6

2xC02 + 2°C -10% rainfall 5716.9 24.5
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Figure 7.3.17 The influence on maize yield of an effective doubling of atmospheric CO2

concentration for the Piet Retief QC
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Figure 7.3.18 The influence on maize yield of an effective doubling of atmospheric CO
2

concentrations and a 2°C increase in minimum and maximum temperature for

the Piet Retief Quaternary Catchment
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The soil organic nitrogen losses are highest when climate change scenarios are associated

with an increase in temperature. The five scenarios compared with present conditions in

Figure 7.3.19 show that an increase in CO2 will yield organic nitrogen losses from the soil at a

faster rate then with the present climate. The recovery of nitrogen added to the soil increases

in a 31 out of 44 seasons, but the increase in efficiency is largely small (Figure 7.3.20).
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Figure 7.3.19 Decreases in soil organic nitrogen levels over 44 seasons at the Piet Retief

QC for selected climate scenarios
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Figure 7.3.20 Comparison of nitrogen recovery at the Piet Retief QC over 44 seasons for

present CO2 levels and an effective doubling of atmospheric CO2

concentrations

7.4 Management Advice

The intention of this assessment was to investigate how selected agro-ecosystem functions

are affected by modifications to the environment. The sustainability goal used for this

assessment was:

'for the agro-ecosystems in the Highveld region to continue in the long term, providing quality

well-being for farmers and local communities and to maintain ecological integrity'

(Section 7.1).

The results in Section 7.3 showed that environmental modifications could have both positive

and negative effect on agro-ecosystem sustainability. In general the hypothesised effects on

yields and other sustainability indicators of the future climate were shown to be correct. A

temperature increase by itself reduces yield, an increase in rainfall increases yields and a

decrease in rainfall decreases yield. A maize crop will benefit, especially in terms of mean

grain yields, from an effective doubling of CO2 (Table 7.4.1). However, this benefit can be
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counteracted when there is a concurrent increase in temperature, particularly of 2°C or more.

The effect of the combinations of drivers is of particular interest. The eleven climate scenarios

model all showed an increased the rate of depletion of soil organic nitrogen and carbon. The

highest losses of soil organic nitrogen (Table 7.4.2) and soil organic carbon (Table 7.4.3)

occur where there is a doubling of CO2 and in an increase in temperature of 2°C or 3°C.

The climate scenario '2xC02 -10% rainfall' did not perform as hypothesised. The reduction in

rainfall was expected to counteract the positive effect of a CO2 enriched atmosphere,

particular at the drier QCs modelled (Le. Christiana and Bothaville). However, this was not the

case,· as a mean yield increase was recorded in each of the five QCs modelled with this

scenario. In regard to soil organic nitrogen and carbon losses, differences in response to a

'2xC02 -10% rainfall' scenario were recorded at the five QCs. At the very dry QC, viz.

Christiana, there was a reduction in the carbon and nitrogen loss from the soil compared with

the present climate. At Bothaville the loss was at similar rate compared with present

conditions. At Frankfort and Piet Retief the soil organic nitrogen and carbon depletion were at

a higher rate, due in part to the higher MAPs for the QCs. At the Ermelo QC, which under the

'2xC02 -10% rainfall' scenario records a similar mean yield to Frankfort, but has a higher

MAP, the soil organic nitrogen and carbon depletion rate is lower. This could be due to both

the soil and temperature differences between the QCs.

The '2xC02 +3°C' scenario produces an unexpected result at the Ermelo QC. In the other

four QCs the temperature increase of 3°C either cancels out the positive effects of the

doubling of atmospheric CO2 (at Christiana) or has a negative impact on the mean yield (at

Bothaville, Frankfort and Piet Retief). However, in the Ermelo QC there is an increase in

mean yield of 874 kg/ha over 44 seasons. It is surprising that a large increase of minimum

and maximum temperature, even of 3°C, can still have a positive influence on yield if coupled

with a doubling of CO2. The soil organic carbon and nitrogen losses under the '2xC02 +3°C'

scenario increase at a rate comparable to that of the four other QCs modelled. The depletion

rate Ermelo is lower than that at Frankfort for this scenario even though Ermelo has a higher

MAP.

A similar response occurs at the Ermelo QC with the '2xC02 -10% rainfall +2°C' scenario as

with the '2xC02 +3°C' scenario, in that the rainfall and temperature changes would be

expected to cancel out the positive impacts of the increase in CO2, but instead a mean yield
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increase of 1008 kg/ha is recorded when compared with present conditions. The increase in

loss of soil organic carbon and nitrogen at the Ermelo QC is comparable to that other of the

other QCs modelled under this scenario.

Table 7.4.1 Mean grain yields over 44 seasons for five QCs under different climate

scenarios

Climate Scenario Christiana Bothaville Frankfort Ermelo Piet Retief

(kg/ha) (kg/ha) (kg/ha) (kg/ha) (kg/ha)

Present Climate 2217 3394 4274 3971 6114

2xC02 2731 4281 5170 5318 6406

Temperature + 2°C 1984 2435 2967 3881 5131

2xC02 +1°C 2736 3700 4642 5411 5949

2xC02 +2°C 2561 3326 3996 5332 5834

2xC02 +3°C 2383 2986 3492 4845 4931

+10% Rainfall 2346 2983 4127 4 104 5679

-10% Rainfall 1 904 2552 3 346 3124 4927

2xC02 -10% Rainfall 2424 3797 4795 4853 6402

2xC02 +10% Rainfall 2967 4325 5378 5874 6503

2xC02 +10% Rainfall +2°C 2722 3799 4172 5495 5755

2xC02 -10% Rainfall +2°C 2175 3061 3714 4979 5716

Figure 7.3.1 revealed that positive environmental conditions in terms of yield might not

necessarily be beneficial in terms of sustainability of the agro-ecosystem. The scenarios

'2xC02 +10% rainfall' and '2xC02 +10% Rainfall +2°C' both increase the soil organic nitrogen

and carbon depletion rates, although an increase in yield is also gained. With this scenario

the stakeholders concerned would need to decide if the increase in yield was worth the loss

in soil quality in the long term and whether ecological integrity of the agro-ecosystem and

other ecosystems functions and services would be impaired or damaged. It could be argued

that any substantial increase in yield would increase the farmer and community well-being.

However, stakeholders would need to consider tradeoffs between increasing yield and

maintaining agro-ecosystem integrity.
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It is noteworthy that a very dry QC such as Christiana does not have an improved

sustainability likelihood with a scenario of a doubling of CO2 and a 10% increase in rainfall.

Although there is an increase in the mean grain yield, there is increased runoff and increase

in the loss of soil organic nitrogen and carbon, giving the Christiana QC reduced sustainability

likelihood. In reality this climate scenario should generally be highly beneficial to an agro­

ecosystem, therefore management changes could be made to take advantage of such

favourable climate conditions. The thresholds assigned to Christiana are from existing

literature (Ourand and du Toit, 1999; Arshad and Martin, 2002). The results for the

'2xC02+10% rainfall' scenario illustrate the problem of assigning weights and measures for

sustainability indicators. In regard to sustainability and the results obtained at the Christiana

QC, stakeholders would need to consider the tradeoffs concerning the environmental and

health impacts of agricultural output. Not all outcomes from the agro-ecosystem need to be

viewed as tradeoffs, because win-win cases can occur, for example, a form of conservation

tillage could be employed which could help in reducing runoff and simultaneously reduce the

rate of loss of organic nitrogen and carbon from the soil while maintaining yield levels.

Table 7.4.2 Percentage changes in simulated soil organic nitrogen levels over 44 seasons

for five QCs under different climate scenarios

Climate Scenario Christiana Bothaville Frankfort Ermelo Piet Retief

(%) (%) (%) (%) (%)

Current -21.2 -27.3 -27.9 -25.5 -28.8

2xC02 -22.9 -28.8 -31.4 -27.8 -33.2

Temperature + 2°C -26.7 -31.5 -32.9 -30.5 -34.3

2xC02 +1°C -24.6 -30.2 -33.1 -30.3 -35.9

2xC02 +2°C -26.0 -32.1 -34.1 -32.2 -37.2

2xC02 +3°C -27.2 -33.3 -35.3 -33.4 -38.3

+10% Rainfall -24.5 -30.4 -30.6 -28.0 -31.0

-10% Rainfall -20.8 -26.8 -27.3 -25.0 -27.9

2xC02 -10% Rainfall -20.9 -27.4 -29.2 -26.3 -31.6

2xC02 +10% Rainfall -25.0 -30.9 -33.0 -29.1 -34.2

2xC02 +10% Rainfall +2°C -35.5 -46.9 -48.6 -44.5 -52.5

2xC02 -10% Rainfall +2°C -24.3 -31.1 -32.8 -30.5 35.6
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The organic nitrogen and carbon losses are less severe in those Quaternary Catchments with

the lower MAPs, namely Christiana and Bothaville. To limit soil organic nitrogen and carbon

losses, forms of tillage other than conventional could be used. A reduced tillage or no-till

system would. reduce organic matter loss and help prevent soil erosion. A negative aspect of

a no-till system is the increased used of herbicides. Alternatives to this method of weed

control could be investigated.

Table 7.4.3 Percentage changes in simulated soil organic carbon levels over 44 seasons for

five QCs under different climate scenarios

Climate Scenario Christiana Bothaville Frankfort Ermelo Piet Retief

(%) (%) (%) (%) (%)

Current -21.3 -25.8 -27.7 -24.6 -27.9

2xC02 -23.0 -27.4 -29.7 -26.2 -32.4

Temperature + 2°C -26.2 -30.6 -31.3 -29.2 -33.8

2xC02 +1°C -24.6 -29.0 -31.9 -29.7 -35.3

2xC02 +2°C -25.1 -30.6 -32.8 -30.8 -36.8

2xC02 +3°C -26.2 -32.3 -34.4 -32.3 -36.8

+10% Rainfall -24.6 -29.0 -29.7 -26.2 -29.4

-10% Rainfall -19.7 -25.8 -27.7 -24.6 -26.5

2xC02 -10% Rainfall -19.7 -25.8 -28.1 -24.6 -30.9

2xC02 +10% Rainfall -24.6 -30.6 -31.3 -27.7 -33.8

2xC02 +10% Rainfall +2°C -34.7 -45.7 -46.8 -42.9 -50.0

2xC02 -10% Rainfall +2°C -23.0 -30.6 -31.2 -29.2 -35.3

As discussed in Section 6.4, there appears to be limited scope for up-scaling from the

Quaternary Catchment scale to the regional level. Part of managing risk in agriculture

consists of coping with the inter-seasonal variability of production. At the regional level

(Chapter 5), governments have to ensure an adequate food supply to the population of all

sectors of society. At the household level it may be crucial for the farmer to minimise the

fluctuations in household income over time, or to maintain (or increase) a particular wealth

level and nutritional status (Thornton and Wilkens, 1998). Sustainability of the smallholder

agro-ecosystem and its effects on household food security are discussed in Chapter 8.
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8 ASSESSMENT OF AGRICULTURAL SUSTAINABILlTY FOR

SMALLHOLDER AGRO·ECOSYSTEMS: A CASE STUDY IN KWAZULU·

NATAL, SOUTH AFRICA

The population in sub-Saharan Africa is predicted to increase to over one billion by 2025

(Inocencio et al., 2003). To meet the food requirements of the population increase and

achieve food security by 2015, agricultural production would need to increase by 6 per cent

per annum (Inocencio et al., 2003). These advances will need to be made with the added

problem of climate change. Climate change will affect the lives of people in many ways,

particularly in Africa where many poor smallholders depend on agriculture for their livelihood

and where there are few alternatives of earning a living (Jones and Thornton, 2003).

The need to improve smallholder rainfed maize production in a sustainable manner is

important in South Africa as maize is a staple food. However, sustainable maize production is

not only a question of yields, but of government policy on agriculture, protection of the

environmental resource base, social welfare, and the livelihoods of farmers and rural and

urban communities. Sustainability for the small-scale farmer raises questions of equity,

economic viability and household food security. It is valuable to investigate sustainability at

the field scale using both field data and model simulations for a better understanding of food

security at the household level. At the household level it is crucial for the farmer to minimise

the fluctuations in household income over time, as well as to maintain or increase a particular

wealth level and nutritional status (Thornton and Wilkens, 1998). The small-scale farmer is

more susceptible to climate variability and its impact on yields, and to shocks to the agro­

ecosystem.

Small-scale maize production is often characterised by low yields. which are often

significantly lower than the potential for the land. Agricultural research and development

projects have often failed to reverse this. The applied research that is often carried out seeks

the optimum management system for a crop in a specific environment. According to Collinson

(2001; p. 29) the reasons for this type of research failing are that:

• 'It fails to recognise that physical productivity is never the evaluation criterion used by

farmers. Improved labour and capital productivity are their primary goals; they recognise

higher yield as a means to these ends;
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• It fails to recognise that beyond ecology, both economic and cultural diversity also

create discrete environments which require accommodation in technology choice and

design.

Intensification of cropping practices and the increased productivity of small-scale farming is

required in order to produce food for an increasing population. However, this should be

pursued in a manner which uses sustainable levels of external input in combination with local

resources and knowledge (Smith et al., 2004). This means that at the farm level many of the

decisions made would need to consider the trade-offs between different biophysical and

socio-economic objectives (Kropff et al., 2001). However, in assessing the socio-economic

component of small-scale agro-ecosystems, problems are encountered when incorporating

individuals, possibly from different backgrounds, and assuming that they will all react in the

same way or that they will all act in a unique way (Edwards-Jones et al., 1998).

In order to assess the sustainability of small-scale agro-ecosystems the goal orientated

system utilised in Chapter 5, 6 and 7 will be employed. The steps in the adapted goal

orientated system are:

• Identifying the goal (Section 8.2)

• Sustainability modelling (Section 8.3)

• Evaluation (Section 8.4) and

• Management advice (Section 8.5).

The aim of this assessment is to investigate sustainability at the small-scale agro-ecosystem

level by simulating the system under different management strategies and climate regimes.

The agro-ecosystem that has been simulated is at Potshini village, which is about 10 km from

the town of Bergville in the western-central region of KwaZulu-Natal province, South Africa

(Figure 8.1.1).

8.1 Background

The Bergville district of KwaZulu-Natal (Figure 8.1) is an area where maize is produced by

both commercial farmers and those emerging farmers who own smaller plots of land and

have limited access to external inputs. Maize production forms part of the smallholders'
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livelihood. Other work, if available, is often taken and families are also reliant on those in the

family who are able to claim a pension. The majority of the small-scale farmers in the

Bergville area are women. This is indicative of small-scale agriculture in much of Africa where

60-80% of the agricultural labour force is female (Williams, 1994).

s

40 0 40 80 120 kilometresr-.- i

Figure 8.1.1 Location of Bergville in KwaZulu-Natal, South Africa

Even though Bergville is situated outside of the Highveld this author thought the choice of

Bergville for modelling smallholder agro-ecosystems was a valid one as upscaling the results

from the main trial site was not an aim of this thesis~ The agricultural development work run

by the ARC-ISCW in the Bergville area through the LandCare project allowed comparisons of
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modelling work with field trials to be made. Soils data and yield results were made available

to this author, which allowed simulated yields to be compared with actual yields.

The small-scale farmers in the area generally have around one hectare of land to farm and

this is situated close to their homestead. A photo of a typical homestead and field at Potshini,

near Bergville, KwaZulu-Natal, South Africa is shown in Figure 8.1.2. The soils in the area are

highly acidic. Therefore, extensive liming is required to improve yields (Smith et al., 2004).

Although one of the local varieties of maize (Iandrace maize) has a high tolerance to acidic

soils, liming is still required. The soil in the agro-ecosystem simulated is an Avalon soil form

with a depth of 900 mm (Smith et al., 2004). Bergville is in South Africa's summer rainfall area

(October-March) and with rainfed agriculture the planting date for maize is around mid­

November. The altitude for the site is 1150 m above sea-level and it has a MAP of 684 mm

(Lynch, 2004).

Figure 8.1.2 Homestead at Potshini, near Bergville, KwaZulu-Natal, South Africa
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This area was chosen to assess sustainability at the farm level as there has been an

extensive LandCare project in the area. This has been carried out by the Department of

National Agriculture, the Agricultural Research Council's (ARC) Institute for Soil, Climate and

Water (ISCW) along with several other ARC institutes, and the School of Applied

Environmental Science from the University of KwaZulu-Natal in Pietermaritzburg. These

institutions have worked with local farmers to assist them with implementing appropriate land

management technologies, which have included conservation tillage, crop rotation and

grazing management (Smith et al., 2004). An experimental main trial site for maize used for

training purposes by the ARC is shown in Figure 8.1.3.

Figure 8.1.3 Maize (approximately 60 days after planting) at the ARC main trial site at

Potshini, near Bergville, KwaZulu-Natal, South Africa (13th January 2004)
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8.2 Goal Definition

The World Bank (1986; p. 1) defines food security as 'access by all people at all times to

enough food for an active healthy life.' Therefore, the goal definition for smallholder agro­

ecosystem sustainability in Potshini should have household food security incorporated into it.

The goal definition used for this assessment is:

'The goal is for smallholder agro-ecosystems in the Potshini area to continue in the long term,

providing quality well-being for farmers and local communities and to maintain ecological

integrity. '

At the smallholder agro-ecosystem level, the optimisation of resource use is a key issue to

achieve the different goals with respect to food supply, income and protection of the

environment. This requires an understanding of the interactions between genotype,

environment and management options. The objectives set by the farmer and society will

determine how these interactions can be optimised (Kropff et al., 2001).

One of the purposes of this evaluation was to examine how the agro-ecosystem functions are

affected by modifications to the environment. Any major changes, positive or negative, will

have significant bearing on the long-term food security of the village of Potshini.

8.3 Sustainability Modelling

A range of management options was assessed. These options include several types of tillage

practice in combination with applications of either inorganic fertiliser or manure. The various

management strategies that were modelled are shown in Table 8.3.1 and details of the site at

Potshini are shown in Table 8.3.2. The recommended inorganic fertiliser level is that given by

Smith et al. (2004) for small-scale farmers at the Potshini site near Bergville. The inorganic

nitrogen fertiliser used is ammonium nitrate (200 kg/ha). The amount of manure added has a

nitrogen content of 67.8 kg N/ha (Lumsden and Schulze, 2004). The plant density for maize

was 4.0 plants/m2 with a row space of 0.90 m (Smith et al., 2004).
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Table 8.3.1 Management strategies simulated over 49 seasons at the Potshini trial site near

Bergville in KwaZulu-Natal

Treatment Crop Tillage Type Fertiliser Application

1 Maize No Till Inorganic

2 Maize Rip Inorganic

3 Maize Disc Inorganic

4 Maize Shallow Tine Inorganic

5 Maize No Till Manure

6 Maize Rip Manure

7 Maize Disc Manure

8 Maize Shallow Tine Manure

Table 8.3.2 Details of the trial site at Potshini

Attribute Source

MAP (mm) 684 Lynch, 2004

Average Maize Yield (kg/ha) 4228 Simulated

Thickness A Horizon (m) 0.24 Quaternary Catchments Database

Thickness B Horizon (m) 0.60 Quaternary Catchments Database

Dominant Soil Texture Class SaCILm Quaternary Catchments Database

Heat Units (0 days) October-March 2000 Schulze, 1997

The CERES-Maize model version 3.5 is unable to distinguish between effects of different

tillage practices on evapotranspiration and root growth of crops. Therefore, du Toit et al.

(2002a) developed algorithms from extensive field tillage trials at Potchefstroom in South

Africa to calculate the soil root growth factor at different soil. depths for several tillage

practices which they simulated and they then compared simulated yield with actual yield. The

algorithms were developed as a function of water extraction patterns measured by time

domain reflectometry. The soil growth root factor is one of the input options in the CERES­

Maize soil file.
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The tillage practices simulated at Potshini consist of disc, rip, no till and shallow tine. The

functions for all tillage treatments resemble the form of a half normal distribution. Root length

density is expressed in terms of an index, which ranges between zero and one, where Y is

the corresponding root density index as determined by soil depth (X) for different tillage

treatments (du Toit et al., 2002a). The functions are:

•
•
•
•

No-till

Rip

Disc

Shallow tine

Y = (-18.13 -3.913E-10 / X) / (-18.13-3.913E-10 * X 1\6.437)

Y = (6.76 + 6.142E -8/ X) / (6.76 + 6.14E-8 * XI\4.511)

Y =(7.01 + 2.74E-4 / X) / (7.01 + 2.74E-4 * XI\2.914)

Y =(12.06 + 1.54E-5 / X) / (12.06 + 1.54E-5 *XI\3.709)

These tillage practices equate, respectively, to forms of conventional tillage, reduced tillage,

conservational tillage and reduced tillage (again). Conservation tillage is considered to be any

tillage or planting system that maintains at least 30% residue cover of the soil surface after

planting (Gold, 1999; Uri, 1999). The conservation tillage practiced at Potshini consists of a

no till. Reduced tillage is one that has between 15-30% residue cover after planting. At

Potshini this is represented by rip and also by shallow tine ploughing. Conventional tillage

types leave less than 15% residue cover after planting (Uri, 1999). The conventional tillage

simulated at Potshini consists of a plough and disc.

Yield is impacted by site specific factors which include soil characteristics, local climate

conditions and cropping patterns. A change from conventional tillage to conservation tillage

system can affect soil characteristics such as structure, organic matter content, and soil

microbial populations, which have the potential to increase yield. An increase in the amount

of crop residue cover on the soil would have beneficial impacts which include increased

organic matter, improved moisture retention and permeability, and reduced nutrient losses

from erosion (Uri, 1999).

The management strategies in Table 8.3.1 were modelled for present climate conditions and

under plausible climate change scenarios for southern Africa, which were also used in

Chapter 7. The climate change scenarios were as follows:

• a doubling of pre-industrial CO2 atmospheric concentrations to 555 ppmv
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• increasing both minimum and maximum daily temperatures by 2°C

• 2xC02 + 1°C minimum and maximum daily temperature increase

• 2xC02 + 2°C minimum and maximum daily temperature increase

• 2xC02 + 3°C minimum and maximum daily temperature increase

• 2xC02 with 10% reduction in rainfall and

• 2xC02 with 10% increase in rainfall.

The different scenarios were modelled over 49 seasons (Le. 50 years) and modifications to

the CERES-Maize input files were performed to model the different climate regimes. The

daily rainfall data used were from a climate station situated in Bergville and the daily

maximum and minimum temperatures were obtained from the School of BEEH's gridded

temperature database (Schulze and Maharaj, 2004). The use of nitrogen fixing crops was not

considered as access to genetic coefficients of soya for use in the DSSAT models was limited

(Section 6.2). The DSSAT model SOYGRO, which would be used to simulate soya growth,

has not undergone the same extensive regional calibration as CERES-Maize.

8.4 Evaluation Strategy

A sustainability index was employed to assess the sustainability of maize production under

different management and climate regimes. This was the same index discussed in Chapter 4

with averages calculated for each indicator from values over 49 seasons of simulated maize

production. The average value was compared against a critical limit, or threshold value, and

was then scored accordingly. The scores for each agro-ecosystem function were summed for

the treatment. The result gave a likelihood of sustainability for the agro-ecosystem under a

particular management or climate regime. Four options are given for likelihood of

sustainability: minimal, low, medium and high.

The break-even yield was set at 3 600 kg/ha for treatments involving inorganic fertiliser. This

is the same as for commercial farmers in the eastern Highveld, which also have conditions

that are favourable for growing maize (du Toit et al., 1999). For treatments using manure a

break-even is more difficult to assess as it will vary hugely from farmer to farmer. However, a

level of 2 000 kg/ha was assumed for sustainable maize production.
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Results from the sustainability modelling are shown in the tables below and consist of

sustainability likelihood, mean yield and the coefficient of variation of yield which is used here

as a measure of risk. The mean yield and CV have also been ranked and then multiplied

together for each treatment for the different climate regimes. The treatment which has the

combination of highest yield with the lowest CV will be ranked 1, Le. a rank of 1 being the

most favourable for sustainability and a score of 8 the least favourable. The procedure for

combining mean yield with CV might not always give a unique ranking, but allows for a quick

comparison of the effects of tillage practices on yield.

8.4.1 Present Climate Conditions

The results for the four tillage types modelled at Potshini under present climate conditions are

shown in Table 8.4.1. When using inorganic fertiliser as the nitrogen input into the system, all

four tillage types have medium sustainability likelihood. The simulated yields achieved using

inorganic fertiliser are above the break-even level set and the four tillage types have relatively

low yield variability. When manure is used as the nitrogen input into the system the mean

yield is significantly lower and the yield variability increases over time.

The organic carbon and nitrogen loss from the simulated agro-ecosystem are considerably

higher than the losses modelled on a Quaternary catchment scale in Chapter 6. This could be

due to the higher average daily temperatures at Potshini during the growing season, coupled

with a relatively high MAP for the area (MAP is 684mm for Bergville compared with 704 mm

for the Ermelo QC, which had been classed as a "wet QC" in Chapters 6 and 7). Figure 8.4.1

shows the soil organic nitrogen lost from the agro-ecosystem over 49 seasons with constant

nitrogen input each season. Under present climate conditions the CERES-Maize crop model

shows little difference in the amount of soil organic nitrogen loss between the tillage methods.

The treatments that utilise manure have higher soil organic nitrogen losses than those using

inorganic nitrogen. The differences between the losses from the different tillage types are

slight, with rip (reduced) tillage having the lowest organic carbon and nitrogen losses under

present climate conditions. However, using version 3.5 of CERES-Maize to model differences

in organic matter one encounters problems, as the method which is used to distinguish

between tillage types was designed primarily to show yield differences (du Toit et al., 2002a).
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Table 8.4.1 Agricultural sustainability under different management regimes for present

climate conditions

Trt No. Tillage Nitrogen Mean CV of Yield/CV Sustainability
Application Yield Yields Index Likelihood

(kg/ha) (%) Ranking

1 No till Inorganic 3857 36 3 Medium

2 No till Manure 1784 74 8 Minimal

3 Rip Inorganic 4050 38 2 Medium

4 Rip Manure 2121 66 5 Low

5 Disc Inorganic 4050 37 1 Medium

6 Disc Manure 2032 71 6 Low

7 Shallow tine Inorganic 4026 37 4 Medium

8 Shallow tine Manure 2000 71 7 Minimal

11 13 15 17 1921 23 25 27 29 31 33 35 37 39 41 4345 47 49

--+- No till; inorganic N

-l---::..JJi\_-----------------1 ---M--- No till; manure

Disc; inorganic N
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~-c 5000
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Figure 8.4.1 Soil organic nitrogen levels at Potshini over 49 seasons for different tillage

practices and modes of fertiliser application under present climate conditions

The use of this method shows that no till has higher soil organic carbon and nitrogen losses

than disc tillage. This is not the case in practice at Potshini, however, as the no till method

has been used successfully to maintain organic matter levels (Smith et al., 2004). The yield
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variability of present day conditions is compared with the yield variability for different climate

scenarios in the following sections of this chapter.

8.4.2 Increase in temperature of 2°C

The increase in temperature increases the potential evapotranspiration, and therefore, the

intensity of the mid-summer dry spell that often occurs in the Bergville area in January. The

result of the mid-summer dry spell is a reduction in yield. A prolonged dry spell at that time of

year also appears to reduce the range of yields that occur.

An increase in temperature of 2°C at Potshini results in a drop in yield of -600 kg/ha for the

four treatments using inorganic fertiliser, when compared to yield under present climate

conditions (Table 8.4.2). The reduction in yield for those treatments using manure is -100

kg/ha. The inter-annual variability of yields is reduced for all treatments; however, the largest

reductions in CV occur for treatments when manure is used, rather than for inorganic

fertiliser. Mean yields for those treatments using manure are much lower than those using

inorganic nitrogen. Yields could be improved by using an increased application of manure or

switching to another source of adding nitrogen to the soil. Maize could be growing in rotation

with soybean, as this is a nitrogen fixing plant. Another option is the use of inorganic fertiliser;

however, access to fertiliser would be required long term. The fertiliser should be used in

quantities that would not cause a lowering of the groundwater quality in the area, as this is

the source of drinking water for the community.

Figures 8.4.2 and 8.4.3 show comparisons of maize yields from two tillage systems, viz.

ripping and disc tillage, when the form of fertiliser used is manure. The simulations are for

present climatic conditions and for a future climate scenario with both maximum and

minimum temperatures increased by 2°C. Inorganic fertiliser is not always accessible to the

smallholder for reasons such as transport and access to credit.
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Table 8.4.2 Agricultural sustainability under different management regimes with an increase

in temperature of 2°C (bracketed values denote yields and CV for present

conditions)

Trt Tillage Nitrogen Mean Yield CV of Yield/CV Sustainability
No. Application (kg/ha) Yields Index Likelihood

(%) Rank

9 No till Inorganic 3260 (3 857) 34 (36) 4 Medium

10 No till Manure 1 766 (1 784) 65 (74) 8 Minimal

Rip
,

Inorganic 3408 (4050) 34 (38) 3 Medium11

12 Rip Manure 2051 (2121) 51 (66) 5 Low

13 Disc Inorganic 3413 (4 050) 33 (37) 1 Medium

14 Disc Manure 1 922 (2 032) . 60 (71) 6 Minimal

15 Shallow tine Inorganic 3390 (4 026) 33 (37) 2 Medium

16 Shallow tine Manure 1 888 (2 000) 62 (71) 7 Minimal

The simulated yields for disc tillage (Figure 8.4.3) show that yields are high when rainfall is

reliable, but in the seasons that have below average rainfall (seasons 36, 40, 42, 48 and 49)

the yield is lower when compared to that of rip tillage. In both Figure 8.4.2 and 8.4.3 the yields

are, in general, reducing over time for both climate scenarios. The use of the amount of

manure applied over an extended period of time does not provide enough nitrogen for the

crop. As a consequence yields reduce, along with the soil quality, due to increasing amounts

of soil organic nitrogen and carbon being lost.

There could be several reasons for the rapid loss of soil organic carbon and nitrogen loss.

The level of manure added (67.8kg N/ha, Section 8.3) might not be high enough for the plant

density used. The increase in temperature could also produce a higher rate of organic matter

decomposition. This will release more nutrients into the soil at a faster rate, which plants can

then utilise, or the nutrient may be leached from the system. This loss of organic nitrogen and

carbon produces a marked reduction in yield over the 49 seasons modelled. The

sustainability index in this case does not fully capture the effect of the reduction in organic

nitrogen, as the ecological integrity of the agro-ecosystem could be compromised by such a

decrease and the ability of the agro-ecosystem to produce vital services reduced. In regard to

treatments using manure as the source of nitrogen, perhaps mean yield is not a good

measure to include in the sustainability index as higher yields in the early seasons mask the

rapid decline in yields over the 49 seasons.
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A famine level of 900 kg of maize grain for smallholders with a 1 ha plot has been suggested

(Durand and du Toit, 1999). This is the amount of maize a family of four can survive on until

the next harvest. If yields fall below this level, the smallholder farmers will not be producing

enough maize to live on. Under present day climate conditions yields dropped below the

famine level in eight out of 49 seasons when using rip tillage with manure and in 10 out of 49

seasons for disc tillage with manure. With an increase in temperature of 2°C the yield is

below 900 kg in seven seasons for rip and 10 for disc tillage.

6000 ------- -_._.,----- • Present climatic conditions

5000 • Increase of temperature by 2°C

4000 f--- I--cu
.c-C)
..:.:: 3000 --"0
Gi

>= 2000

1000

V J IJ I ~d0

1 3 5 7 9 11 13 15 17 19 21 23 2527 29 31 33 35 37 39 41 4345 4749

Seasons

Figure 8.4.2 The influence of an increase in temperature of 2°C on maize yield for rip tillage

when fertilising with manure
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Figure 8.4.3 The influence of an increase in temperature of 2°C on maize yield for disc

tillage when fertilising with manure

The inter-seasonal yields for both disc and rip tillage, when using inorganic nitrogen in place

of manure, are shown in Figures 8.4.4 and 8.4.5. Under rip tillage the yield is higher under

present climate conditions in 36 out of 49 seasons than compared with yields when there is

2°C rise in temperature. For disc tillage the figure is slightly lower, at 36 out of 49 seasons

(Figure 8.4.4). The larger differences in yield between the climatic regimes occurs when yield

under present conditions is above 3 500 kg/ha. The soil organic nitrogen and carbon losses

are higher for all treatments with an increase in temperature of 2°C. Figure 8.4.6 shows soil

organic nitrogen for no till and disc with different nitrogen inputs. The results show little

difference between the tillage types.
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Figure 8.4.4 The influence of an increase in temperature of 2°C on maize yield for disc

tillage, when using inorganic fertiliser
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Figure 8.4.5 The influence of an increase in temperature of 2°C on maize yield for rip

tillage, when using inorganic fertiliser
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Figure 8.4.6 Soil organic nitrogen levels at Potshini over 49 seasons under a 2°C

temperature increase for different tillage practices and modes of fertiliser

application

8.4.3 An effective doubling of CO2

An effective doubling of CO2 by itself has a positive effect on the mean maize yield for all

treatments (Table 8.4.3). For farmers using inorganic nitrogen there is a simulated increase of

over 1 000 kg/ha and for those using manure, where nitrogen available to the plant is limited,

the yield gains are more modest at -300 kg/ha (Table 8.4.3). The possibility of sustainability

for those treatments using manure has increased and these treatments now have a low

sustainability likelihood rating, whereas it was minimal in two of four treatments under present

climate conditions.

Although an effective doubling of CO2 has a positive effect on plant growth and maize yield

for the treatment using manure, it also increases yield variability when compared with present

conditions. For the treatments using manure the increase in CO2 produces larger yields in

years where there is adequate rainfall (Figures 8.4.7 and 8.4.8). In the seasons when rainfall

is lower than average (e.g. seasons 36, 42, 44 and 46), crop failure is experienced for all

types of tillage modelled. Figures 8.4.7 and 8.4.8 show that there is a marked decrease in
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yields through the seasons. This is due to the lack of nitrogen being added to the soil and the

quality of the soil decreasing over the 49 seasons modelled.

For the treatments using inorganic fertiliser the potential yields are considerably enhanced

with the CO2 increase, as nitrogen is not a growth limiting factor (Figures 8.4.9 and 8.4.10).

With an increase in CO2 mean yields are over 5 000 kg/ha for all tillage types simulated

(Table 8.4.3) and variability is relatively low. The yield was below 3 000 kg/ha in 4 out of 49

seasons for rip tillage and 5 out of 49 seasons for disc.

For 2xC02 the organic nitrogen and carbon losses are higher than under present conditions,

but not as high when there is a temperature increase of 2°C. Figure 8.4.11 shows the soil

organic nitrogen trends over time for tillage options under manure compared with present

conditions. The rip tillage has the least amount of organic matter loss.

Table 8.4.3 Agricultural sustainability under different management regimes with an effective

doubling of CO2 (bracketed values denote yields and CV for present conditions)

Trt Tillage Nitrogen Mean Yield CV of Yield/CV Sustainability
No Application (kg/ha) Yields Index Likelihood

(%) Ranking

17 No till Inorganic 5003 (3 857) 32 (36) 2 Medium

18 No till Manure 2127 (1 784) 76 (74) 8 Low

18 Rip Inorganic 5279 (4 050) 33 (38) 2 Medium

20 Rip Manure 2502 (2121) 65 (66) 5 Low

21 Disc Inorganic 5277 (4 050) 33 (37) 1 Medium

22 Disc Manure 2355 (2 032) 71 (71) 6 Low

23 Shallow tine Inorganic 5238 (2 026) 33 (37) 4 Medium

24 Shallow tine Manure 2300 (2 000) 72 (71) 7 Low
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Figure 8.4.7 The influence of an effective doubling of CO2 on maize yield with rip tillage

when fertilising with manure

7000

6000

5000-cu
~ 4000
~-"C 3000(jj
:;:

2000

1000

0

~-------------------"--~----'-'--'--,..._-~~~'~_ ..~_.~_.-_.~--,-----

• Present C02 at 360 ppmv

• "Doubling" C02 to 555 ppmv

I---- I
II--

~ ] OJJ l,- 1lI B ,rb_~
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Seasons

Figure 8.4.8 The influence of an effective doubling of CO2 on maize yield with disc tillage

when fertilising with manure
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Figure 8.4.9 The influence of an effective doubling of CO2 on maize yield with rip tillage,

when using inorganic fertiliser
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Figure 8.4.10 The influence of an effective doubling of CO2 on maize yield with disc tillage,

when using inorganic fertiliser
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Figure 8.4.11 Soil organic nitrogen levels for a no till practice and different modes of fertiliser

application at Potshini over 49 seasons for present climate conditions and

under an effective doubling of CO2

8.4.4 An effective doubling of CO2 and a 1°C increase in temperature

An effective doubling of CO2 coupled with a 1°C increase in temperature increases yield

when compared with present climatic conditions (Table 8.4.4). The 1°C in temperature

implies that the yield increases are not as high as when there was just a doubling in CO2. The

yield variability is reduced compared to present climatic conditions. Treatment 27 (rip with

inorganic fertiliser) is the favoured tillage type under these climatic conditions.

For the treatment using manure, yields are below the famine level of 900 kg in seven out of

49 seasons for rip and nine out of 49 for disc (Figures 8.4.12 and 8.4.13). When nitrogen is

limited for both rip and disc tillage the yields do not fall below the famine level (Figure 8.4.14

and 8.4.15). Using inorganic fertiliser the yields are higher in 41 out of 49 seasons for rip

tillage under a climate regime with an effective doubling of CO2 and a 1°C temperature

increase. This figure is slightly less than with disc tillage, where increases are seen in 40 out

of 49 seasons.
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The temperature increases imply a higher rate of soil organic carbon and nitrogen loss than

with a CO2 increase only. The increase in organic carbon and nitrogen is illustrated in Figure

8.4.16, which shows the loss under no till for two climate regimes.

Table 8.4.4 Agricultural sustainability under different management regimes with an effective

doubling of CO2 and a 1DC increase in temperature (bracketed values denote

yields and CV for present conditions)

Trt Tillage Nitrogen Mean Yield CV of Yield/CV Sustainability
No. Application (kg/ha) Yields Index Likelihood

(%) Ranking

25 No till Inorganic 4576 (3 857) 34 (36) 4 Medium

26 No till Manure 2055 (1 784) 71 (74) 8 Low

27 Rip Inorganic 4799 (4 050) 32 (38) 1 Medium

28 Rip Manure 2375 (2121) 62 (66) 5 Low

29 Disc Inorganic 4786 (4 050) 32 (37) 2 Medium

30 Disc Manure 2332 (2032) 65 (71) 6 Low

31 Shallow tine Inorganic 4767 (4 026) 32 (37) 3 Medium

32 Shallow tine Manure 2288 (2 000) 65 (71) 6 Low
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Figure 8.4.12 The influence of an effective doubling of CO2 with a temperature increase of

1DC on maize yield with rip tillage and fertilising with manure
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Figure 8.4.13 The influence of an effective doubling of CO2 with a temperature increase of

1QC on maize yield with disc tillage and fertilising with manure
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Figure 8.4.14 The influence of an effective doubling of CO2 with a temperature increase of

1QC on maize yield with rip tillage, when using inorganic fertiliser
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Figure 8.4.15 The influence of an effective doubling of CO2 with a temperature increase of

1QC on maize yield with disc tillage, when using inorganic fertiliser
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Figure 8.4.16 Soil organic nitrogen levels for a no till practice and different modes of fertiliser

application at Potshini over 49 seasons for present climatic conditions under

an effective doubling of CO2 with a 1QC temperature increase
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8.4.5 An effective doubling of CO2 with a 2°C increase in temperature

An effective doubling of CO2 combined with a 2°C increase in temperature results in yield

increases when compared to presents day conditions, but less than with a 2XC02 +1°C

temperature increase (Table 8.4.5). The increase in temperature is reducing the positive

effect that the increase in CO2 is having on the maize yield.

The yield is less than 900 kg/ha in 11 out of 49 seasons for rip tillage using manure (Figure

8.4.17) and 13 out of 49 seasons for disc (Figure 8.4.18). The yield falls below the famine

level more often with this climate regime than with present day conditions.

For treatments using inorganic fertiliser the yield increases in 32 out of 49 seasons for both

rip (Figure 8.4.19) and disc tillage (Figure 8.4.20). Figures 8.4.19 and 8.4.20 illustrate that the

variability of yield over 49 seasons is significantly less than for present climate conditions.

Table 8.4.5 Agricultural sustainability under different management regimes with an effective

doubling of CO2 with a 2°C increase in temperature (bracketed values denote

yields and CV for present conditions)

Trt Tillage Nitrogen Mean Yield CV of Yield/CV Sustainability
No. Application (kg/ha) Yields Index Likelihood

(%) Ranking

33 No till Inorganic 4192 (3857) 31 (36) 4 Medium

34 No till Manure 2037 (1 784) 69 (74) 8 Low

35 Rip Inorganic 4410 (4 050) 30 (38) 1 Medium

36 Rip Manure 2387 (2121) 60 (66) 5 Low

37 Disc Inorganic 4385 (4 050) 30 (37) 1 Medium

38 Disc Manure 2246 (2 032) . 67 (71) 6 Low

39 Shallow tine Inorganic 4364 (4 026) 30 (37) 3 Medium

40 Shallow tine Manure 2227 (2 000) 67 (71) 6 Low

The inorganic matter loss is 5% higher for manure treatments under this climate regime

(Figure 8.4.21) with the increase in loss for treatments using inorganic nitrogen is 3.5%.
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Figure 8.4.17 The influence of an effective doubling of CO2 with a temperature increase of

2°C on maize yield with rip tillage and fertilising with manure
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Figure 8.4.18 The influence of an effective doubling of CO2 with a temperature increase of

2°C on maize yield with disc tillage and fertilising with manure
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Figure 8.4.19 The influence of an effective doubling of CO2 with a temperature increase of

2°C on maize yield with rip tillage, when using inorganic fertiliser
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Figure 8.4.20 The influence of an effective doubling of CO2 with a temperature increase of

2°C on maize yield with disc tillage, when using inorganic fertiliser
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Figure 8.4.21 Soil organic nitrogen levels for shallow tine practices and different modes of

fertiliser application at Potshini over 49 seasons for present climatic conditions

under an effective doubling of CO2 with a 2°C temperature increase

8.4.6 An effective doubling of CO2 with a 3°C increase in temperature

A 3°C increase with an effective doubling of CO2 still has a positive effect on yields (Table

8.4.6). However, the effect of the CO2 increase on yields is significantly reduced with the 3°C

increase in the maximum and minimum daily temperatures.

The increase of 1°C from 2XC02 with 2°C increase to 2XC02 with 3°C increase has not

caused the frequency of yield falling below the famine level with rip and disc tillage to

enlarged (Figures 8.4.22 and 8.4.23). In fact the figures are the same, at eleven out of 49

seasons, for rip tillage using manure and 13 out of 49 seasons for disc tillage using manure.

The treatments using inorganic nitrogen experience an increase in yields in 27 out of 49

seasons for rip and in 26 out of 49 seasons for disc tillage.

With each incremental temperature rise the loss of soil organic nitrogen and carbon also

rises. Figure 8.4.26 shows how the system under no till responds to the climate regime. The
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losses are 5% more for both manure and inorganic fertiliser treatments when compared with

present conditions.

Table 8.4.6 Agricultural sustainability under different management regimes with an effective

doubling of CO2 with a 3°C increase in temperature (bracketed values denote

yields and CV for present conditions)

Trt Tillage Nitrogen Mean Yield CV of Yield/CV Sustainability
No. Application (kg/ha) Yields Index Likelihood

(%) Ranking

41 No till Inorganic 3955 (3 857) 30 (36) 4 Medium

42 No till Manure 1 963 (1 784) 68 (74) 8 Minimal

43 Rip Inorganic 4121 (4050) 30 (38) 2 Medium

44 Rip Manure 2319 (2 121) 60 (66) 5 Low

45 Disc Inorganic 4103 (4 050) 30 (37) 1 Medium

46 Disc Manure 2 195 (2 032) 66 (71) 6 Low

47 Shallow tine Inorganic 4085 (4026) 29 (37) 2 Medium
48 Shallow tine Manure 2 165 (2 000) 66 (71) 7 Low
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Figure 8.4.22 The influence of an effective doubling of CO2 with a temperature increase of

3°C on maize yield with rip tillage and fertilising with manure
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Figure 8.4.23 The influence of an effective doubling of CO2 with a temperature increase of

3°C on maize yield with disc tillage and fertilising with manure
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Figure 8.4.24 The influence of an effective doubling of CO2 with a temperature increase of

3°C on maize yield with rip tillage, when using inorganic fertiliser
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Figure 8.4.25 The influence of an effective doubling of CO2 with a temperature increase of

3°C on maize yield with disc tillage, when using inorganic fertiliser
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Figure 8.4.26 Soil organic nitrogen levels for a no till practice and different modes of fertiliser

application at Potshini over 49 seasons for present climatic conditions and

under an effective doubling of CO2 with a 3°C temperature increase
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8.4.7 An effective doubling of CO2 with a 10% increase in rainfall

An increase in rainfall of 10% with an effective doubling of CO2 sees large gains in grain yield

(Table 8.4.7). The rip and disc tillage have the highest ranking of the treatments using

inorganic fertiliser and rip has the highest ranking of those treatments when using manure.

Even with the increased rainfall, yields fall below the famine level 10 out of 49 seasons with

rip and 12 out of 49 seasons with disc tillage (Figures 8.4.27 and 8.4.28). The limit on

available nitrogen for those treatments prevents yields being higher. Even though overall

rainfall has increased by 10% the mid-summer dry spell will still be experienced using this

type of modelling, as daily rainfall sequences have not been changed just the total MAP.

The increase in rainfall coupled with the CO2 increase sees yields increase in 48 out of 49

seasons with rip, and in 46 out of 49 seasons with disc tillage (Figures 8.4.29 and 8.4.30).

Table 8.4.7 Agricultural sustainability under different management regimes with an effective

doubling of CO2 with a 10% increase in rainfall (bracketed values denote yields

and CV for present conditions)

Trt Tillage Nitrogen Mean Yield CV of Yield/CV Sustainability
No. Application (kg/ha) Yields Index Likelihood

(%) Ranking

49 No till Inorganic 5265 (3 857) 31 (36) 4 Medium

50 No till Manure 2013(1784) 80 (74) 8 Low

51 Rip Inorganic 5508 (4 050) 30 (38) 1 Medium

52 Rip Manure 2486(2121) 69 (66) 5 Low

53 Disc Inorganic 5484 (4 050) 30 (37) 1 Medium

54 Disc Manure 2377 (2 032) 74 (71) 6 Low

55 Shallow tine Inorganic 5431 (4026) 30 (37) 3 Medium

56 Shallow tine Manure 2338 (2 000) 74 (71) 6 Low

This climate regime causes soil organic nitrogen and carbon to be lost at a higher rate than

under present climate conditions. Figure 8.4.31 shows the rate of loss of organic nitrogen

under shallow tine tillage.
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Figure 8.4.27 The influence of an effective doubling of CO2 with a 10% increase in rainfall on

maize yield using rip tillage and fertilising with manure
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Figure 8.4.28 The influence of an effective doubling of CO2 with a 10% increase in rainfall on

maize yield using disc tillage and fertilising with manure

229



10000 IiIIpresent C02 at 360 ppmv

9000 .'0oubling" C02 to 555 ppmv +10% rainfall

8000

7000

11=-'ii
6000.c-C)

~ 5000
"C
G) 4000 e-
>- 3000 e-

2000

1000

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Seasons

Figure 8.4.29 The influence of an effective doubling of CO2 with a 10% increase in rainfall on

maize yield with rip tillage, when using inorganic fertiliser
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Figure 8.4.30 The influence of an effective doubling of CO2 with a 10% increase in rainfall on

maize yield with disc tillage, when using inorganic fertiliser
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Figure 8.4.31 Soil organic nitrogen levels for shallow tine practice and different modes of

fertiliser application at Potshini over 49 seasons for present climate conditions

and under an effective doubling of CO2 with a 10% increase in rainfall

8.4.8 An effective doubling of CO2 with a 10% reduction in rainfall

An effective doubling of CO2 with a 10% reduction in rainfall still increases yields compared

with those under present climate conditions (Table 8.4.8). However, the reduction in rainfall

limits the positive effect the CO2 increase has on plant growth. The rip tillage gives the

highest ranked yields for both inorganic nitrogen and manure inputs.

With this climate regime the yields fall below the famine level on nine occasions for rip and six

for disc over the 49 seasons modelled (Figures 8.4.32 and 8.4.33). For the treatments using

inorganic fertiliser, yield is increased 48 out of 49 times using rip for this climate regime and

49 out of 49 for disc tillage (Figures 8.4.34 and 8.4.35). The yield increases are not as high as

with an increase in rainfall, but even with the reduced amount of precipitation the doubling of

CO2 increases yields in nearly all seasons compared with present conditions. With a

reduction in rainfall the soil organic nitrogen loss under no till is reduced by 2% using manure

and by 1% with inorganic fertiliser (Figure 8.4.36).
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Table 8.4.8 Agricultural sustainability under different management regimes with an effective

doubling of CO2 with a 10% reduction in rainfall (bracketed values denote yields

and CV for present conditions)

Trt Tillage Nitrogen Mean Yield CV of Yield/CV Sustainability
No. Application (kg/ha) Yields Index Likelihood

(%) Ranking

57 No till Inorganic 4709 (3857) 35 (36) 4 Medium

58 No till Manure 2199 (1 784) 70 (74) 8 Low

59 Rip Inorganic 5000(4050) 35 (38) 1 Medium

60 Rip Manure 2568 (2121) 58 (66) 5 Low

61 Disc Inorganic 4977 (4 050) 35 (37) 2 Medium

62 Disc Manure 2453 (2032) 62 (71) 6 Low

63 Shallow tine Inorganic 4931 (4026) 35 (37) 3 Medium

64 Shallow tine Manure 2418 (2000) 64 (71) 7 Low
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Figure 8.4.32 The influence of an effective doubling of CO2 a 10% reduction in rainfall on

maize yield using rip tillage and fertilising with manure
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Figure 8.4.33 .The influence of an effective doubling of CO2 a 10% reduction in rainfall on

maize yield using disc tillage and fertilising with manure
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Figure 8.4.34 The influence of an effective doubling of CO2 a 10% reduction in rainfall on

maize yield using rip tillage, when using inorganic fertiliser
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Figure 8.4.35 The influence of an effective doubling of CO2 a 10% reduction in rainfall on

maize yield using disc tillage, when using inorganic fertiliser
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Figure 8.4.36 Soil organic nitrogen for a no till practice and different modes of fertiliser

application levels at Potshini over 49 seasons for present climatic conditions

and under an effective doubling of CO2 with a 10% reduction in rainfall
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The two tillage types that consistently scored the highest rank under each of the selected

climate regimes was disc and rip, both with inorganic fertiliser added (Table 8.3.1).

Uri (1999) comments that conservation tillage has been found to be riskier in terms of yield

variability than conventional tillage practices. In the simulation for the trial site in Potshini no

significant difference was found in the yield variability between tillage practices. In terms of

yield variability it was found that the use of manure caused the variability of yields to be high

«60%) when compared with inorganic fertiliser as the nitrogen source for the system.

However, crop yields vary as a result of more to weather conditions than the tillage system

used.

The climate regimes which included an effective doubling of CO2 saw gains in terms of yield

compared with present climate conditions. However, an increase in temperature or a

reduction in rainfall reduces the positive impact of the CO2 on maize yield. A 3°C increase

almost negates the affect completely. The tillage system which was ranked the highest under

all the climate regimes was the rip type.

8.5 Management Advice

The author-defined goal for this assessment at a smallholder farm scale is:

'The goal is for smallholder agro-ecosystems in the Potshini area to continue in the long term,

providing quality well-being for farmers and local communities and to maintain ecological

integrity. '

Four tillage options were modelled, under different plausible climate scenarios using both

inorganic fertiliser and manure. In general the use of rip (reduced tillage) with manure was

found to reduce the number of times yield falls below the famine level when compared to disc

(conventional tillage). The modelling results showed that one way for smallholders to improve

yields considerably would be the addition of inorganic nitrogen to the system. It was found

that this management action would prevent the yield falling below the famine level of 900 kg

in all years for the scenarios run and therefore have a positive effect on household food

security. Obstacles that could prevent the smallholder from using fertiliser rather than manure

would be lack of access to credit and transport. Also the decision to use capital to buy
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fertiliser might not be a current family priority. However, increases in inorganic fertiliser could

have negative effects on groundwater quality, which is the main source of water for domestic

use in the area. It would prove useful to monitor the nitrate levels in boreholes, water from

which is used for domestic consumption.

The response of yield and other sustainability indicators were, for the most part, as

hypothesised in Section 8.3. A temperature increase by itself reduced yields and a doubling

of atmospheric CO2 increased yields for all treatments. It was hypothesised that with the

'2xC02 with -10% rainfall' scenario the drivers would be self cancelling up to a point. Yet all

treatments recorded an increase in yield when compared with those from present climate

conditions, for example, the yield for the 'no till inorganic fertiliser' treatment increased by 852

kg/ha and with the 'disc manure' treatment yield increased by 421 kg/ha.

The Bergville area often has a mid-summer dry spell in January (Smith et al., 2004). The dry

spell retards plant growth and can reduce maize grain yield. This is perhaps where

conservation tillage would be of advantage particular to rain-fed maize production; as the soil

under conservation tillage would hold moisture for longer and thus reduce the effect of the dry

spell. The results from the CERES-Maize model do not show this, however. Yields from the

conventional tillage type (disc) were ranked highest under most of the climatic conditions

modelled, including present climate conditions. This perhaps shows weaknesses in the

version of the CERES-Maize model used when simulating conservation tillage effects and

also in the algorithms used to calculate the soil growth root factor. Smallholder farmers (-1 ha

field size) in the Potshini area have seen an increase in yield when conservation tillage

practices have been used on their land (Smith et al., 1994).

These results suggest that further verification of the tillage practice routines is needed. The

difference between yields simulated and observed is a combination of factors. Tillage has a

complex effect on maize. The algorithms developed by du Toit et al. (2002a) account for

some of the effects, but not all, particularly in regard to the beneficial effect of no till and the

protection that a good mulch cover provides for the soil. Du Toit et al. (2002) attempted to

account for tillage within the existing CERES-Maize routines. New tillage routines need to be

incorporated into the model so that tillage can be modelled successfully across a range of

environments. This obviously requires funding and expertise to undertake.
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The climate and soils in the Potshini area have the potential for smallholder farmers to

produce yields in excess of four tonnes per hectare using inorganic fertiliser and conservation

tillage techniques. There is a desire within the Department of Agriculture in KwaZulu-Natal to

see the successful small-scale farmers in Potshini and its surrounding wards to become

commercial farmers. However, there are several factors that are preventing this, the main one

being that each farmer has only up to one hectare of land to farm. The limited supply of land

would seem to prevent farming more than this. However with good farming practice the small­

scale farmers are already on the way to becoming semi-commercial, Le. they are producing a

high yield on the small farms that they have. The income could then be supplemented by off

farm employment. Good farming practices would also reduce their vulnerability to climate

change. This would need to be coupled with sound grazing management for cattle and goats.

These measures would increase the ability of the agro-ecosystem to cope with shocks and

therefore increase the resilience of agro-ecosystem.

Maize production under rain-fed conditions, however, still remains vulnerable to the

adequacy, reliability and timeliness of rainfall. Farmers are averse to taking risks and

investing in inputs and improvements, resulting in low levels of productivity (lnocencio et al.,

2003). Along with conservation tillage another management option which could be utilised in

the Potshini area is rainwater harvesting. Rainwater harvesting is the process of conserving

rainfall runoff in the field or in storage structures. This can help mitigate the effects of

temporal and spatial variability of rainfall of the high risks of intra-seasonal dry spells

(Inocencio et al., 2003). The use of this technology would also help alleviate the reduction in

yields that a rise in temperature would bring.
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9 CONCLUSIONS

In this chapter a summary is provided on what has been learned from the research. The aims

of this study that were set out in Figure 1.1 in the first chapter were to review the concept of

sustainability and its relevance to agro-ecosystems and then to devise a framework to assess

sustainability across a range of spatial scales. Agro-ecosystem sustainability with regard to

maize production was then to be assessed at the regional scale of the Highveld of South

Africa, at Quaternary Catchment scale and at the smallholder farm scale, assuming both

presently prevailing climate conditions and those which could plausibly occur in the future.

9.1 Sustainability Summarised

In the review of sustainability definitions and concepts it found was that many of the

definitions assessed seemed cumbersome and problematic to apply practically to agro­

ecosystems. However, this is not considered a reason to abandon an ideal such as

sustainability of agro-ecosystems. Pertinent definitions of sustainability are vital if strategies

and methodologies are to be developed to achieve sustainability. These definitions can then

give understanding in the selection of relevant goals or objectives that should be realised for

long-term sustainability of agro-ecosystems.

Based on the work of Chambers (1997), the definition of sustainability used by the author in

this thesis is:

'Sustainabi/ity is applying long term perspectives, in regard to human well-being and

ecological integrity, to policies and action' (Section 2.7).

Working definitions of agricultural sustainability were then derived and used as the goal for

the sustainability assessments carried out at different scales. The working definition of

sustainability applied to agriculture in the Highveld of South Africa (Chapters 5, 6, 7) is:

'for the agro-ecosystems in the Highveld region to continue in the long term, prOViding quality

well-being for farmers and local communities and to maintain the ecological integrity of the

agro-ecosystem. '

The working definition of sustainability applied to smallholder agro-ecosystems in the Potshini

area, near Bergville in KwaZulu-Natal, South Africa (Chapter 8) is:
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'for smallholder agro-ecosystems in the Potshini area to continue in the long term, providing

quality well-being for farmers and local communities and to the maintain ecological integrity of

the agro-ecosystem.'

Having a pertinent working definition for sustainability and for agricultural sustainability was

found to be helpful as it enabled a clear framework to be developed in which to assess

sustainability. The working definitions also give direction to the assessment. These working

definitions were used as the goal of the framework that was developed in Chapter 4. The

framework has four stages:

• Identifying the goal

• Sustainability modelling

• Evaluation and

• Management advice.

Problems were encountered in selecting output from CERES-Maize to use as sustainability

indicators at a range of scales (in the sustainability modelling stage) and in applying CERES­

Maize to broader scales than the farm level and also with trying to account for tillage

variations within the model.

9.2 Lessons Learned with Developing a Sustainability Framework

The sustainability assessment was performed using a systems approach in an integrated

modelling environment. The work involved extensive programming in FORTRAN and linking

of national environmental database information with crop growth models and GIS (Section

5.3.1). The modelling performed for the Highveld region built on previous work (Schulze et al.,

1993; du Toit et al., 1994 a, b, c; du Toit et al., 1997, du Toit et al., 1998; du Toit and

Prinsloo, 2000) and for the first time incorporated daily temperatures in the model whereas

previously monthly means of temperatures had been used. Furthermore, the soils information

used for each QC is from the current land type soils database of the Institute of Soil, Climate

and Water in South Africa, whereas previous work used the soil input from the much simpler

84 soil zones. Previous work on a regional scale using information from the South African

Quaternary Catchments Database was performed in a UNIX environment. The FORTRAN

programs that were used for this were converted for use in PC format.
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Some inadequacies were found in version 3.5 of the CERES-Maize model, which was the

version readily available when this research commenced. The limitations of CERES-Maize v.

3.5 that were encountered by the author during this research were:

• The modelling of soil organic carbon and nitrogen levels

• The modelling of runoff and drainage at scales larger than the farm and

• The ability of the model to incorporate effects of tillage practices.

The above inadequacies could be solved in two possible ways: first, by writing new routines

and adding them to the model (which might involve changing the structure of the model), or

secondly, by linking CERES-Maize to other models. It is recognised that version 4 of the

OSSAT suite of models released in 2004 would have been better suited in terms of analysis

of soil organic nitrogen and carbon levels, as it has the soil organic matter residue model from

CENTURY incorporated into it (Gijsman et al., 2002). Likewise, the linking of CERES-Maize

to the ACRU agrohydrological model (particularly under South African conditions) would have

enabled runoff and drainage to have been modelled more accurately at the Quaternary

Catchment and regional scale. In terms of tillage practices, it is suggested that new routines

may need to be written to incorporate it fully into the CERES structure, as tillage can affect so

many different areas within the agro-ecosystem. For example, the type of tillage could affect

organic matter levels, soil loss, drainage and runoff generation.

The stated limitations of CERES-Maize for modelling the different agro-ecosystem functions

also then limits the scope of up-scaling results from the farm scale to the Quaternary

Catchment scale and on to the regional scale (although this was not an aim of the research).

An aim of the research was to derive a framework that could be used at various scales within

South Africa (Chapter 4). The derived framework was applied with a degree of success at the

different scales, but there were some difficulties in selecting indicators that could be used at

the various scales. This was a primary reason for yield being the only indicator of

sustainability used at a regional scale (Chapter 5). Only having one indicator for an

assessment of sustainability at a regional scale could be considered a narrow view. However,

this author decided that to use one indicator that could give good estimates was preferable to

using a combination of indicators with which there would be considerable doubt in the validity

of the simulated results. Using only yield as an indicator (Chapter 5) also limits the
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assessment of ecological integrity at a regional scale. This is the major criticism of the

sustainability assessment in Chapter 5. There is then a perceived need to incorporate either

an external model into the sustainability framework, or provide new routines, that can

simulate agro-ecosystem functions such as nutrient cycling on broader scales such as that of

the Highveld.

Mean grain yield was the dominant indicator at all the scales modelled. Yield is of vital

importance to the well-being and, therefore, the quality of life to both the commercial and

smallholder farmers. Yield has importance both economically and socially on the local

community. The hydrological indicators within CERES-Maize were found to be less sensitive

to the climatic changes and to threshold changes.

9.3 Final Conclusion to the Research

This research has been concerned with developing a framework to assess the sustainability

of maize production at various scales in South Africa. The use of a complex crop model such

as CERES-Maize within the sustainability framework meant that agro-ecosystem responses

to different management options and climate changes could be quantified. With an

understanding of the model limitations, inferences can be drawn regarding the effect on the

agro-ecosystem functions, as well as on goods and services. This type of assessment can

provide a tool so that the processes and components that constitute an agro-ecosystem can

be better understood, and as a result, ecological integrity and good quality farmer and

community well-being to be achieved.
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