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Abstract

Over the last two decades the field of quantum simulations has experienced incredi-

ble growth, which, coupled with progress in the development of controllable quantum

platforms, has recently begun to allow for the realisation of quantum simulations of a

plethora of quantum phenomena in a variety of controllable quantum platforms. Within

the context of these developments, we investigate within this thesis methods for the

quantum simulation of open quantum systems.

More specifically, in the first part of the thesis we consider the simulation of Marko-

vian open quantum systems, and begin by leveraging previously constructed universal

sets of single-qubit Markovian processes, as well as techniques from Hamiltonian simu-

lation, for the construction of an efficient algorithm for the digital quantum simulation

of arbitrary single-qubit Markovian open quantum systems. The algorithm we provide,

which requires only a single ancillary qubit, scales slightly superlinearly with respect

to time, which given a recently proven “no fast-forwarding theorem” for Markovian dy-

namics, is therefore close to optimal. Building on these results, we then proceed to

explicitly construct a universal set of Markovian processes for quantum systems of any

dimension. Specifically, we prove that any Markovian open quantum system, described

by a one-parameter semigroup of quantum channels, can be simulated through coherent

operations and sequential simulations of processes from the universal set. Under the as-

sumption that these universal Markovian processes can be efficiently implemented, this

allows us to propose an efficient algorithm for a wide class of Markovian open quantum

systems, while simultaneously providing a tool for combining and exploiting existing

simulation methods.

In the second part of this thesis we then consider the simulation of many-body non-

Markovian open quantum systems. In particular, we develop an algorithmic procedure

for the quantum simulation of system propagators which are not completely positive

maps, which allows us to provide an explicit algorithm for the digital quantum simulation

of many-body locally-indivisible non-Markovian open quantum systems described by

time-dependent master equations. Finally we construct generalised Suzuki-Lie-Trotter

theorems which allow us to analyse the efficiency of our method, which is expected to

be experimentally achievable for a variety of interesting cases.

II



Preface

The research contained in this thesis was completed by the candidate while based in the

School of Chemistry and Physics of the College of Agriculture, Engineering and Science,

University of KwaZulu-Natal, Westville Campus, South Africa. The research was finan-

cially supported by the National Research Foundation of South Africa.

The contents of this work have not been submitted in any form to another university

and, except where the work of others is acknowledged in the text, the results reported

are due to investigations by the candidate.

Signed:

Prof. Francesco Petruccione (Supervisor)

November 23, 2016

Dr. Ilya Sinayskiy (Co-supervisor)

November 23, 2016

III



Declaration 1: Plagiarism

I, Ryan Sweke, declare that

1. The research reported in this thesis, except where otherwise indicated, is my orig-

inal research.

2. This thesis has not been submitted for any degree or examination at any other

university.

3. This thesis does not contain other persons data, pictures, graphs or other infor-

mation, unless specifically acknowledged as being sourced from other persons.

4. This thesis does not contain other persons writing, unless specifically acknowledged

as being sourced from other persons. When other written sources have been quoted,

then:

(a) Their words have been re-written but the general information attributed to

them has been referenced.

(b) Where their exact words have been used, their writing has been placed inside

italics and quotation marks, and referenced.

5. This thesis does not contain text, graphics or tables copied and pasted from the

internet, unless specifically acknowledged, with the source detailed appropriately.

6. I know the meaning of plagiarism, and declare that all the work in this document,

save for that which is properly acknowledged, is my own.

Signed:

Ryan Sweke

November 23, 2016

IV



Declaration 2: Publications

The results of this thesis appear in the publications listed below. In all publications

I conceptualised the research, performed all the calculations following discussions with

co-authors, and was both the lead and corresponding author of the manuscript.

Chapter 2:

R. Sweke, I. Sinayskiy and F. Petruccione, Simulation of single-qubit open quantum

systems, Phys. Rev. A 90, 022331 (2014) .

Chapter 3:

R. Sweke, I. Sinayskiy, D. Bernard and F. Petruccione, Universal simulation of Marko-

vian open quantum systems, Phys. Rev. A 91, 062308 (2015).

Chapter 4:

R. Sweke, M. Sanz, I. Sinayskiy, F. Petruccione and E. Solano, Digital quantum simula-

tion of many-body non-Markovian dynamics, Phys. Rev. A 94, 022317 (2016).

In addition to the publications above, I have been involved as lead author in research

leading to the following publications, whose results are not included in this thesis.

1. R. Sweke, I. Sinayskiy and F. Petruccione, Dissipative Preparation of Large W

states in Optical Cavities, Phys. Rev. A 87, 042323 (2013).

2. R. Sweke, I. Sinayskiy and F. Petruccione, Dissipative Preparation of generalised

Bell States, J. Phys. B: At. Mol. Opt. Phys. 46 104004 (2013).

Signed:

Ryan Sweke

November 23, 2016

V



Acknowledgements

First and foremost I would like to thank my supervisors, Prof. Francesco Petruccione

and Dr. Ilya Sinayskiy, for the constant support, encouragement and guidance which

has been necessary to complete my Ph.D. in the slightly unusual manner that I have.

I am deeply appreciative of their faith and confidence in me, and of course this thesis

would not have been possible without them.

During the course of my Ph.D. I have also been extremely lucky to have the oppor-

tunity to spend prolonged periods visiting other groups. In this regard I would firstly
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Xiao-Hang and Adrián - for making my time in Bilbao so enjoyable. Thanks for all the

pintxo’s and table tennis matches!

Closer to home, I would firstly like to thank Maria Schuld. Both for the constantly

open door in Durban, as well as the support throughout this long process. It definitely

helps having someone who knows how you feel! I also need to thank Corrie, Alex and

Sarah for making home feel like home. Of course, I would also like to thank my Mom

and Dad, and my brother Jordan, for the bottomless love and support. It has been an

incredibly long road to get here, and their support has been ever present, and absolutely

instrumental.

Finally, I would like to thank Daniella Mooney. For being a true partner and a

constant source of joy.

VI



Contents

1 Introduction 1

1.1 Physics today: The role of simulations . . . . . . . . . . . . . . . . . . . . 1

1.2 Quantum simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Digital quantum simulation . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Analog quantum simulation . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 Digital/Analog quantum simulation . . . . . . . . . . . . . . . . . 12

1.2.4 Algorithmic quantum simulation . . . . . . . . . . . . . . . . . . . 15

1.2.5 Embedded quantum simulation . . . . . . . . . . . . . . . . . . . . 18

1.2.6 Verifying quantum simulations . . . . . . . . . . . . . . . . . . . . 19

1.3 Strategies for digital quantum simulation . . . . . . . . . . . . . . . . . . 21

1.4 Open quantum systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4.3 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.5 Structure and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.5.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1.5.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1.5.3 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2 Simulation of single-qubit open quantum systems 72

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.2 Problem and setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.3 Decomposition of arbitrary generator . . . . . . . . . . . . . . . . . . . . . 78

2.4 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.5 Simulation of constituent semigroups . . . . . . . . . . . . . . . . . . . . . 84

2.6 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

VII



CONTENTS

2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.7.1 Damping basis derivation of affine map representation . . . . . . . 92

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3 Universal simulation of Markovian open quantum systems 98

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3 Composition framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.4 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.5 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.5.1 Proof of sufficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.5.2 Proof of necessity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.6 Simulation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.7 Worked example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.9.1 Simulation of linear combinations . . . . . . . . . . . . . . . . . . . 126

3.9.2 Properties of the adjoint representation . . . . . . . . . . . . . . . 128

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4 Digital quantum simulation of many-body non-Markovian dynamics 135

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.3 Trotter decomposition of locally indivisible dynamics . . . . . . . . . . . . 139

4.4 Algorithmic implementation of non-positive maps . . . . . . . . . . . . . . 143

4.5 Algorithmic simulation of locally indivisible dynamics . . . . . . . . . . . 148

4.6 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.7.1 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . 155

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5 Conclusion 169

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

VIII





Chapter 1

Introduction

1.1 Physics today: The role of simulations

Since the advent of digital computers as a practical tool for physicists, it has been clear

that many-body quantum mechanical systems of even a moderate size are exceptionally

hard to simulate [1, 2]. As is now well known, the root of this difficulty is the so called

exponential explosion - the fact that the number of complex numbers necessary to fully

specify the state of a quantum many-body system is an exponential function of the

number of particles within the system itself. A direct consequence of this fundamental

property of quantum mechanics is that the number of computational resources required

for the simulation of such systems on classical computers, at least by any naive strategy,

scales exponentially with the size of the system. Adding one more spin-1/2 particle to

a simulation requires doubling the amount of memory, and long before 50 particles are

reached any straightforward strategy becomes totally infeasible.

However, meaningful progress in physics relies crucially not only on conceptual ad-

vances and the development of more sophisticated mathematical tools and techniques,

but also on our ability to perform experiments, of which simulations can be considered an

important special case. Simulations, and experiments more generally, allow us to both

verify our intuition and proposed physical models, as well as develop our intuition and

subsequently gain the inspiration for new conceptual frameworks. In particular, despite

the fact that the fundamental framework of quantum mechanics was established almost

100 years ago, there are now as many open questions, prospective new directions and

deep paradoxes in quantum many-body physics and its related fields as there ever have

been. In light of this exciting state of quantum many-body physics, the fundamental
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CHAPTER 1. INTRODUCTION

obstacles inherent in simulating quantum mechanical systems on classical computers,

and the critical role played by simulations in the maturation of any physical theory,

the development of novel and creative methods for the practically feasible simulation of

many-body quantum systems is crucial.

The subject of this thesis is situated within the field of quantum simulations, which

is by now a broad and mature field [2–4]. In particular, research within this field is

concerned with both exploiting and motivating progress in the experimental control

of individual quantum mechanical systems for the development and implementation of

methods for the simulation of many-body quantum physics, which are not hampered

by the same fundamental obstacles as traditional numerical methods [2–4]. Although

this thesis is primarily concerned with the development of quantum simulation methods

directly applicable to the simulation of open quantum systems, as introduced in Section

1.4, it is hoped that the methods and techniques introduced in this work will contribute

to both the broader conceptual foundation and growing toolbox of theoretical techniques

for quantum simulation. As alluded to above, there are currently a wealth of both novel

ideas and big open questions in quantum many-body physics and its related fields, all of

which may be directly explored and developed through the use of quantum simulations.

In particular, the following is a (brief and non-exhaustive1) selection of some of the

fundamental ideas and questions of interest at this moment in time, to which quantum

simulations have already provided, or promise to provide, new insights:

Condensed matter physics: In the late 1970’s it appeared as if Landau’s Fermi liquid

theory and symmetry-breaking paradigm provided all the tools necessary to understand

all possible phases of matter and their associated phase transitions [5]. However, the

discovery in the 1980’s of fractional quantum Hall systems [6, 7], which exhibit many

distinct zero-temperature phases with the same symmetries, and exotic materials such

as high Tc cuprate superconductors [8], which admit no description as a Fermi liquid, has

ushered in a new and exciting era of so called modern condensed matter physics [9, 10].

In particular, from a fundamental perspective, it is now clear that new models and

frameworks, such as that of topological order2, are necessary for obtaining a full under-

standing of novel and exotic phases of matter, such as quantum magnetism and high Tc

superconductivity, amongst many others. Furthermore, from a technological perspec-

1See the review [2] for a more comprehensive and detailed list of the potential applications of quantum
simulation.

2It is exciting to be able to note that the 2016 Nobel prize in Physics was awarded jointly to David
Thouless, Duncan Haldane and Michael Kosterlitz “for theoretical discoveries of topological phase tran-
sitions and topological phases of matter”.

2



1.1. PHYSICS TODAY: THE ROLE OF SIMULATIONS

tive, there are a multitude of suggestions for how such exotic materials may be exploited

- fault tolerant topological quantum computation with Majorana fermions is one such

example [11] - and it remains to be seen how and to what extent this might be achieved.

Non-equilibrium dynamics and quantum statistical mechanics: The majority of

fundamental principles of statistical mechanics were laid down by the early 1900’s [12,13].

However, we are as of yet to obtain a comprehensive understanding of how these now

familiar macroscopic notions, such as thermalisation and equilibration, arise from the

underlying microscopic unitary dynamics of closed many-body quantum systems. In

particular, amongst other things, we would like to understand what exactly it means for

a quantum mechanical system to either equilibrate or thermalise, under what conditions

this occurs, how typical are these conditions, and on what time scales such processes

occur [14–17]. In addition, it is now clear that there is an extremely interesting class of

systems which fail to thermalise in any conventional sense, retaining locally and indefi-

nitely information about their initial conditions, and exhibiting a wealth of fascinating

phenomenology, which has now been collected under the banner of many-body local-

isation. Such systems present a variety of interesting open questions, which are just

beginning to be explored, both theoretically and experimentally [14–18].

Quantum gravity and emergent space-time: Developing a proper understanding of

quantum gravity is one of the most pressing outstanding physical questions of our time.

Although a variety of approaches exist, in the late 1990’s an interesting and powerful

conceptual tool, known now as the AdS/CFT correspondence, was introduced [19]. This

holographic correspondence provides a relation between the physics of strongly corre-

lated many-body quantum systems and the classical dynamics of a gravitational theory

in one dimension higher [20]. Although it is worth pointing out that the model of clas-

sical gravity within the original AdS/CFT correspondence, a five-dimensional anti-de

Sitter space, does not describe the universe that we live in, generalised holographic cor-

respondences hold the potential for elucidating a mechanism via which the geometry of

space-time might arise naturally from the physics of an underlying many-body quantum

system [21]. Tensor Networks, which provide efficient “entanglement representations” of

many-body quantum states, developed originally as a tool for the efficient classical simu-

lation of many-body quantum systems [22,23], are of particular current interest as a tool

for the development of holographic approaches to quantum gravity, as they provide a

natural and elegant mechanism for the construction of bulk gravitational geometries from

the entanglement properties of boundary critical many-body systems [24–27]. In addi-

3



CHAPTER 1. INTRODUCTION

tion, very recently the first proposals for the quantum simulation of minimal AdS/CFT

models have appeared, ushering in the prospect of finally exploring notions of quantum

gravity within the laboratory [28].

Quantum chemistry: The field of quantum chemistry provides many difficult and

foundational open questions, with strong economic and technological motivations in a

broad range of contexts [29]. First and foremost, we would like to be able to calculate

the static electronic structure of complicated atoms and molecules - a problem which

in principle requires only a solution to the Schrödinger equation, but in practice runs

directly into an exponential explosion [30]. Secondly, it is of great interest to develop

methods for the elucidation of chemical reaction dynamics in a variety of contexts, an

effort which, as in the case of biological nitrogen fixation, promises important industrial

applications [31–33].

Quantum biology: Despite being predominantly “wet and warm”, there is currently

a large body of evidence which strongly suggests that quantum mechanical phenomena

may lie at the root of certain paradoxically efficient, or hitherto unexplained, biological

processes [34, 35]. More specifically, there are now a variety of biological processes for

which it has been suggested that a full quantum mechanical description of the system

may be necessary in order to obtain a complete understanding of the process. Of partic-

ular interest is the role that quantum mechanical effects may play in facilitating efficient

energy transport within light harvesting mechanisms of photosynthetic systems [36–41].

Again, despite being of fundamental interest, obtaining a full understanding of the mech-

anisms via which the observed efficiencies are achieved in such systems promises a variety

of high impact technological applications. In addition to processes related to photosyn-

thesis, there are also suggestions for the role quantum mechanics may play in avian

magnetoreceptive navigation, as well as more speculative suggestions concerning olfac-

tion, vision and enzyme catalysis. [34, 35].

1.2 Quantum simulations

At this point we have established that investigating and developing efficient methods

for the simulation of quantum many-body systems is certainly a worthwhile endeavour,

with a multitude of established and potential applications in a wide variety of contempo-

rary contexts. While it is certainly true that naive or straightforward approaches to the

classical simulation of quantum mechanical systems are often substantially restricted,

4



1.2. QUANTUM SIMULATIONS

it is definitely worth noting that the importance of simulations for making progress in

any of the directions mentioned in Section 1.1 has motivated the development of a va-

riety of more sophisticated classical numerical techniques, all of which make attempts

to circumvent the inevitable exponential explosion in some way. Of these techniques,

the broad class of so called Quantum Monte Carlo methods [42–44], based on random

sampling techniques, and the tensor network approaches, such as the Density Matrix

Renormalisation Group and Time Evolving Block Decimation [22,23], have been partic-

ularly successful in a variety of contexts and deserve special mention as widely utilised

practical tools. However, all such classical techniques rely on approximation methods of

some form, and while they often perform excellently within the contexts for which they

are tailored, they are often completely unsuitable for others. As an example, it is by now

well known that Monte Carlo methods suffer from the infamous sign problem when ap-

plied to large systems of strongly interacting fermions, while tensor network approaches

are generically constrained to systems with a low entanglement content, and are there-

fore often unsuitable for the simulation of such systems where this property cannot be

guaranteed. As a result of these inevitable limitations, even within the most sophisti-

cated currently available classical numerical techniques, quantum simulation methods,

as will be introduced in more detail in this section, are an exciting and important tool.

So, what exactly is a quantum simulation? In order to answer this question in a

precise way, and to provide the foundational context for this thesis, it is worthwhile

briefly exploring the history and development of quantum simulations as both a concept

and a set of techniques. Any such discussion should begin with Richard Feynman,

who, confronted in the early 1980’s with the difficulty of simulating quantum physics on

conventional computers, was the first to articulate a vision of quantum simulation [1].

In essence, Feynman envisaged having access to a controllable many-body quantum

system - one in which the parameters of the Hamiltonian, such as coupling strengths,

external fields and lattice geometry/connectivity amongst others, could be tuned at will

by the experimentalist inside the laboratory. The idea was then that one would tune the

parameters of the Hamiltonian describing the system in the lab until there was a clear

correspondence between the Hamiltonian of the controllable quantum platform in the

lab and the conjectured Hamiltonian of the inaccessible system you would like to study.

To be more precise, the two systems were said to be in correspondence, if by observing

the dynamics of the laboratory system you could extrapolate desired properties of the

inaccessible system. In modern language, as discussed in Section 1.2.2, we recognise

Feynman’s vision as that of analog quantum simulation - constructing an analog of the

system you wish to study in order to mimic aspects of its behaviour and observe its
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CHAPTER 1. INTRODUCTION

properties - the quantum equivalent of using a rubber band and a stone to predict where

a cannonball might land.

At this point there are two observations to make. Firstly, it must be noted that

the notion of analog simulations is indeed an ancient concept - see for example the

Greek Antikythera mechanism for making astronomical predictions [45] - and although

hindsight is 20/20, it is perhaps surprising that this idea was only first suggested in

the 1980’s, more than half a century into the age of quantum mechanics. The most

plausible reason for this delay is the considerable difficulty inherent in building truly

controllable quantum mechanical systems of the type Feynman envisaged. In fact, at

the time this was a completely implausible suggestion, and it is only relatively recently,

after a significant amount of effort that we have begun to obtain the necessary control

over individual quantum mechanical systems in a variety of platforms. Such control is

the foundation of all quantum simulation methodologies discussed here, and we refer to

the excellent review [2] for an overview of the state of the art, covering trapped ions,

cold gases, optical cavities, superconducting-circuits, photonic systems, NMR systems

and many others.

The second necessary observation concerns the properties of inaccessible systems that

we would like to have access to, in order to make meaningful progress on problems such

as the ones listed in the previous section. In particular, it is important to interrogate the

extent to which our systems need to be “in correspondence” to allow us to extract the

required information. For example, in the context of condensed matter and the study of

materials we are most often interested in linear responses, such as conductivity, modelled

mathematically by time-ordered correlation functions [9]. As a result, having an analogue

of the state we wish to study, prepared for example by mimicking the system’s dynamics

up to some point in time, may not be sufficient. This may be the case if the experimental

system does not respond to subsequent perturbations in an analogous way to the system

we are trying to study, or if time-ordered correlation functions cannot be extracted

easily by some other readily available experimental method. Another example can be

found in the high-energy context, where studying the scrambling of information in black

holes via the holographic dual theory requires obtaining out-of-time order correlation

functions, which are certainly not experimentally accessible in a straightforward way

[28,46]. Although the point is subtle, the crux is that in general we can only ever expect

our controllable quantum system to mimic certain aspects of the system we would like

to study, and ensuring the ability to extract the required information is an important

prerequisite of any quantum simulation scheme.

At this stage, building on the foundations laid by Feynman, and taking into account

6



1.2. QUANTUM SIMULATIONS

the subtleties and concerns mentioned above, we can put forward our own working

definition of quantum simulation.

Definition 1.1 (Quantum simulation). A quantum simulation of a system S, is any

procedure during which control over some quantum mechanical system S′, is exploited

for the calculation of pre-specificied properties of S.

This definition is deliberately broad, and we will see in the subsequent sections that it

allows us to take a much more nuanced view of quantum simulations than the conven-

tional digital/analog divide which is often discussed. In particular, such a definition,

which places a strong emphasis on the ability to extract information, allows for the con-

struction of hybrid simulation methods, with which this thesis will often be concerned.

Before continuing, we note that the definition of quantum simulation put forward

above makes no mention of efficiency. Of course, the original motivation for developing

quantum simulations is rooted in the inefficiency of classical simulation methods, and

as such we would like to gain at least a heuristic understanding of when an alternative

strategy can be considered efficient. We will postpone a rigorous definition of efficiency

(see Section 3.2), and note here that very loosely a simulation can be considered efficient

when the number of standard computational resources required to obtain the desired

pre-specified properties of S′ - to within some specified accuracy and with some speci-

fied probability of success - scales polynomially with respect to the size of S′, typically

specified by the number of particles S′ contains.

The first aspect of this notion of efficiency which requires interrogation is that of

“standard computational resources”. On a conventional computer we can think of both

space resources, such as the amount of memory required, and time resources, such as the

amount of clock time or number of fundamental operations required. Similarly, in any

controllable quantum platform, there will be both space and time resources, however as

we will discuss in detail below, the standard resources might vary widely between both

the controllable quantum platform and the quantum simulation strategy. The second

aspect which requires comment is the use of a polynomial function of the size of S′. While

a rigorous discussion of such a requirement can be found in any book on computational

complexity [47], the motivation behind such a definition is that asymptotically we would

like the number of resources required to grow in a slow manner as the size of the systems

we are trying to simulate grows. Although there are many subtleties to this definition, in

most senses polynomial functions capture well this behaviour, as opposed to exponential

growth functions typical of asymptotic behaviour one would like to avoid.

Given this setting, we can proceed to briefly survey the distinct approaches to quan-
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tum simulation which now exist, in order to properly locate the context and setting of

this thesis.

1.2.1 Digital quantum simulation

One way to interpret Feynman’s proposal for quantum simulators, is as a proposal to

build special purpose analog computers in which the information is encoded in the states

of the individual quantum mechanical systems comprising the simulator. In this sense,

“special purpose” should be understood as meaning that the quantum simulator is only

capable of implementing the dynamics of a restricted set of Hamiltonians (determined by

the experimental set-up and accessible range of tunable parameters), and subsequently

only capable of implementing a subset of all possible physical/unitary transformations.

However, a few years after Feynman’s original suggestion, inspired by the underlying no-

tion of encoding information into the quantum mechanical states of individual quantum

particles, and challenged by a physical reformulation of the Church-Turing thesis, David

Deutsch considered the possible structure and potential capabilities of a universal quan-

tum computer, capable in principle of implementing all unitary transformations [48].

Although Deutsch originally constructed the framework for such a universal quantum

computer through a quantum generalisation of a universal Turing machine, it is often now

more convenient to consider such a device within the computationally equivalent circuit-

model [49]. In this model, a universal quantum computer is typically considered to be

any device consisting of the following elements [50]: Firstly, such a device should contain

a collection of stable/long lived (typically) two-level quantum mechanical subsystems,

now known as qubits, in which information can be encoded3. Secondly, the device

should be capable of implementing a universal set of fundamental quantum gates, which

is a subset of unitary operations, such as CNOT’s and single qubit gates, with the

property that any unitary transformation of the global quantum mechanical state can

be implemented through sequential implementations of elements of the universal set.

Finally, the device should be able to implement arbitrary measurements on any subset

of qubits. This model allows us to move beyond just quantum simulations, and consider

constructing algorithms, specified via sequences of quantum gates, for more general

computational problems. Within this context, the space resources of such a quantum

algorithm are the required number of qubits, and the time resources can be taken as the

3To be truly universal the device should really consist of an infinite number of qubits. However,
just as the infinite number of tape cells of a classical universal Turing machine can never be realised in
practice, we understand that physically realisable approximations of such devices will always be confined
to finite numbers of qubits.
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Usys = e�i(Hsys)t| (0)i | (t)i

| ̃(t)i| ̃(0)i

U1

U2

U3

U4

U5
U6

U7

(b)
(a) (c)

Usim ⇡ Usys

Figure 1.1: An example of a digital quantum simulation for obtaining an approximation
to the time evolved state |ψ(t)〉 of a quantum system specified by a Hamiltonian Hsys.
(a) An approximation |ψ̃(0)〉 to the desired intital state |ψ(0)〉 needs to be prepared in
an array of qubits. (b) The unitary propagator Usys = e−i(Hsys)t needs to be decomposed

into a sequence of gates from a universal set, such that Usim =
∏N
i=1 Ui approximates

Usys to within a desired tolerance. (c) The output state of the quantum circuit |ψ̃(t)〉,
an approximation to |ψ(t)〉, needs to be measured to extract information about some
pre-specified property of either Hsys or |ψ(t)〉.

number of required gates from the universal set [49]. The study of which problems admit

efficient algorithms on a universal quantum computer, and how this set compares with

the corresponding set for a classical computer (the physical approximation to a classical

universal Turing machine), is now a mature field [51–53]. In particular, this field has

provided the impetus (and hype) for the development of such devices by demonstrating

the existence of problems, such as integer factorization and the searching of unsorted

lists, which admit algorithms on universal quantum computers demonstrating substantial

asymptotic speed-ups over the best known classical algorithms [53–55].

At this point, as illustrated in Fig. 1.1, it is possible to understand a digital quantum

simulation as a quantum algorithm, executed on a universal quantum computer, which

calculates some desired pre-specified properties of a given quantum mechanical system.

This approach to quantum simulation naturally has a variety of both advantages and

handicaps. Firstly, as a natural consequence of universality, digital quantum simulation

methods hold the potential to be extremely flexible and versatile. Furthermore, because

any controllable quantum platform which can realise the three conditions discussed above

can be considered a universal quantum computer, such simulations are not restricted

to a specific quantum technology. However, in order to achieve such versatility, we
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require platforms which can reliably and accurately implement universal gate sets on

large numbers of stable qubits - which is unfortunately a highly non-trivial task! Despite

these challenges, small scale quantum computers have now been realised in a variety

of technologies, and we once again point out the review [2] which offers an excellent

overview.

As of yet we have not mentioned how, given a specified quantum mechanical system

and a desired set of properties, one might go about designing an efficient quantum

algorithm (digital quantum simulation) for the calculation of these properties - which

is of course in itself a difficult task. As this thesis will be primarily concerned with the

construction of methods for the digital quantum simulation of open quantum systems,

we will present a technical and detailed discussion of existing digital quantum simulation

methods and strategies in Section 1.3.

1.2.2 Analog quantum simulation

In contrast to digital quantum simulations, which are executed on platform nonspecific

universal quantum computers, analog quantum simulations are designed to exploit the

naturally occurring time-evolution of specific non-universal controllable quantum plat-

forms. As illustrated in Fig. 1.2, and in line with Feynman’s seminal vision [1], one aims

to tune the parameters of a laboratory based controllable quantum mechanical system

until a well defined correspondence exists between the Hamiltonian of the simulator,

Hsim, and the Hamiltonian of the system to be simulated, Hsys. Using the details of this

correspondence one could then study a variety of phenomena by observing the dynamics

of the laboratory based system, possibly while the controllable parameters are being

varied. For example, one might be able to prepare an approximation to the ground state

of Hsys, or at least a state from which properties of the ground state of Hsys can be

extrapolated, by cooling the laboratory based system into its ground state. As another

example, one might study phase transitions within the inaccessible system by observing

the dynamics of the laboratory system as relevant parameters of Hsim are varied, or one

might study the time evolution via Hsys of an initial state |ψ(0)〉 by observing the time

evolution of an approximation to |ψ(0)〉 under Hsim.

As with all simulation methodologies, analog quantum simulation has a variety of

strengths and weaknesses. Once again we will briefly mention the most important of

these points here, while pointing to the review [2] in which such issues are discussed in

detail. Firstly, as a result of the fact that all that is required for an analog quantum simu-

lation is a controllable laboratory based system whose Hamiltonian is in correspondence
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Usys = e�i(Hsys)t| (0)i | (t)i

| ̃(0)i Usim = e�i(Hsim)t0

Hsim = f(Hsys)f

f�1

| ̃(t0)i

Figure 1.2: An example of a analog quantum simulation for obtaining an approximation
to the time evolved state |ψ(t)〉 of a quantum system specified by a Hamiltonian Hsys.
The starting point is developing a correspondence f between Hsys and the the Hamilto-
nian Hsim of some controllable quantum platform. Given this correspondence one then
prepares the initial state |ψ̃(0)〉, which is chosen in such a way to ensure that after time
evolution under Hsim for some period of time t′, desired properties of |ψ(t)〉 can be ob-
tained by applying details of the correspondence to measurement results obtained from
|ψ̃(t′)〉. We note that if the correspondence is truly one-to-one, then we may have t = t′,
but that generically this is not the case.

with the system you would like to study - as opposed to a fully universal quantum device

- the experimental obstacles one is required to overcome are typically far less than for

digital quantum simulation, which requires both long lived stable qubits and the ability

to accurately and efficiently implement a universal gate set. However, of course the price

that you pay for such non-universality is often a confinement to a specific controllable

quantum platform for the simulation of a specific class of quantum systems. Another

strength however, as a result of the fact that analog quantum simulation typically ex-

ploits the naturally occurring continuous time evolution of the laboratory based system,

is that analog quantum simulations have the potential to be far more robust than digi-

tal quantum simulations against errors and uncertainty within the experimental process,

which in digital quantum simulations have the potential to accumulate both with the im-

plementation of each fundamental gate and as the qubit coherence/stability lifetimes are

reached. As a result of this inherent robustness, and lower technological/experimental

barrier to entry, analog quantum simulations are by far the most advanced and widely

utilised quantum simulation methodology, and by this point an incredible number of suc-

cessful analog quantum simulations have been performed, of a plethora of phenomena,

in a large variety of platforms. A detailed list of such successes can be found in [2].

Finally, before moving on it is interesting to briefly explore the notion of efficiency
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within the context of analog quantum simulations, which is perhaps slightly more opaque

than in the setting of digital quantum simulations, in which the number of qubits and

fundamental gates provides a natural measure of space and time complexity. Within the

context of analog simulation, it is often most practical to consider the actual time taken

by the simulator to yield the desired state or result, and express this as a function of

either the system size of the simulated system, or the evolution time one would like to

simulate. There are some natural cases, as in the case of simulating time evolution with a

system Hamiltonian that is in one to one correspondence with the simulator Hamiltonian,

in which the time taken by the simulator will be identical to the time up until which

you are trying to simulate. However in other cases, in which the system/simulator

correspondence is perhaps more complex, or in which one is trying to perhaps prepare

a thermal state or a ground state, the time taken by the simulator might be a more

complicated function of either the number of particles in the system or the time which

would be naturally taken by the system to be simulated.

Obstacles of this nature are routinely encountered in adiabatic quantum computa-

tion, which can be thought of as an analog simulation approach to quantum computa-

tion [56, 57]. Very roughly, in this approach to quantum computation, the solution to

some computational problem is encoded in the ground state of some potentially compli-

cated Hamiltonian Hfin, and the task is to prepare this state. To do this, one looks for a

Hamiltonian Hini, whose ground state can be easily realised in the laboratory, and which

can be transformed into Hfin through a continuous variation of parameters over which

the experimentalist has control. The adiabatic theorem then tells us that if one “slowly”

varies the parameters in the Hamiltonian, starting from Hini and ending in Hfin, then

one can prepare the desired ground state of Hfin - i.e. one has to essentially perform

an analog simulation with a computational interpretation. The crux is that the how

“slowly” one must go depends on the properties of Hfin (the spectral gap, to be precise)

and in some cases the amount of time required by this process can be an exponential

function of the number of particles in the system [58].

1.2.3 Digital/Analog quantum simulation

Typical introductions to quantum simulation tend to separate all quantum simulations

into either analog or digital simulations. However, recent years have witnessed the birth

and evolution of a variety of hybrid approaches to quantum simulation, which aim to

incorporate strengths of both digital and analog methodologies. As a result, these meth-

ods offer a particularly promising and appealing approach to quantum simulation. Of
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these emerging strategies, the first hybrid approach that we shall discuss is (fittingly)

referred to as digital/analog quantum simulation [59–61]. In particular, this approach

aims to exploit the flexibility of digital quantum simulations while simultaneously lever-

aging the ability of analog simulation platforms to easily implement certain classes of

complex quantum dynamics.

In order to understand this approach it is useful to undertake a sceptical re-examination

of digital quantum simulation from a variety of perspectives. Firstly, what actually hap-

pens when one implements a gate Uj from a universal gate set? In essence, although at

a risk of being over simplistic for illustrative purposes, typically the experimentalist is

implementing the time evolution according to some corresponding Hamiltonian Hj , for a

specific period of time t, such that Uj = e−iHjt. Building a universal quantum computer

then, in a very loose sense, consists of building a controllable quantum platform which

is capable of realising (or simulating) all the Hamiltonians required to implement a com-

plete set of universal gates, which is a formidable task. However, as we have hinted at in

our discussion of analog quantum simulation, there are a plethora of currently available

quantum platforms, each of which can implement a specific class of interesting Hamil-

tonians [2]. Typically, in an analog quantum simulation as conventionally understood,

as illustrated in Fig. 1.2, one selects a specific setting of the simulator Hamiltonian pa-

rameters, in correspondence with some desired system Hamiltonian, and then completes

the simulation either slowly varying or keeping these parameters constant. However, if

we interpret the implementation of a quantum gate Uj as an analog simulation of some

Hamilton Hj for a specific period of time, then we see that in fact we could view a given

analog quantum simulator as being to implement a platform-specific, non-universal, set

of quantum gates - each one corresponding to the evolution of the simulator Hamilto-

nian with some specific parameter settings, for some specific amount of time. If one

views the capabilities of an analog quantum simulator in this way, then one can extract

more flexibility from the specific experimental platform by utilising the digital strategy

of implementing a desired task via a sequence of quantum gates.

With this point of view, one can view digital/analog quantum simulations, illus-

trated in Fig. 1.3, as being simulations in which the desired properties of some system

are calculated via quantum algorithms specified not in terms of sequences of gates from a

universal set, but rather in terms of platform specific (possibly non-universal) quantum

gates which exploit the naturally occurring physical properties of the quantum simulator

at hand. As a result, such a strategy inherits some of the flexibility of digital quantum

simulation (though not necessarily its universality), while retaining the practical advan-

tages of analog quantum simulation. Of course, there is a reasonable argument to be
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Usys = e�i(Hsys)t| (0)i | (t)i

| ̃(t)i| ̃(0)i
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(a) (c)

Usim ⇡ Usys

e�iH1t1

e�iH2t2 e�iH4t4
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Figure 1.3: An example of a digital/analog quantum simulation for obtaining an approx-
imation to the time evolved state |ψ(t)〉 of a quantum system specified by a Hamiltonian
Hsys. The methodology is very similar to that of digital quantum simulation, as il-
lustrated in Fig. 1.1, however in this case the unitary evolution to be approximated
is decomposed into a sequence of possibly non-universal naturally occurring (or more
readily available) platform specific quantum gates e−iHjtj .

made that the strategy described above is really nothing but an analog quantum simu-

lation, in which each subsequent “gate” just corresponds to a well timed changing of the

simulator Hamiltonian parameters! However, there is another reasonable argument to

be made that this is nothing but a digital quantum simulation with a restricted/natural

gate set [4]! However persuasive these arguments, typical approaches to both analog

and digital quantum simulation are not phrased in this manner, and we feel that one

can gain both a particularly useful perspective and novel design toolbox by drawing

a conceptual distinction between conventional analog simulations, conventional digital

simulations and digital/analog simulations as discussed here. In addition, recent years

have seen a variety of both proposals for, and realisations of, digital/analog simulations,

for a plethora of physical models, and as such the distinction drawn here represents

accurately the current state of the art [59–61].

Furthermore, another strong motivating factor for such an approach to quantum

simulation is that certain desired operations may be much more easily achieved by util-

ising naturally occurring interactions/processes within the available quantum platform,

as opposed to concatenations of gates from a conventional universal set. A first natural

example of such a situation can be found within the context of trapped ions, where a

particularly highly useful global entangling operation can be achieved extremely easily
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through one application of a readily available operation known as the Mølmer-Sørensen

(MS) gate, but would require multiple CNOT gates if decomposed into a conventional

sequence of universal gates [62, 63]. Within the context of trapped ions, it therefore

makes far more sense to express a given algorithm requiring such an entangling oper-

ation in terms of MS gates, as opposed to CNOT’s [64]. A second example of such

a situation, which is highly relevant to this thesis, is the simulation of open quantum

systems. As will be explained in much more detail in Section 1.4, conventional digital

approaches to the simulation of open quantum systems often involve the introduction

of a significant number of additional ancilla qubits. However, all physical controllable

quantum platforms have some type of environment induced naturally occurring dissipa-

tion and decoherence, and in many cases much more efficient simulation methods may

be devised if one utilises these dissipative processes as “gates” within the simulation

algorithm [65,66].

These last two examples force us once again to interrogate the notions of efficiency

and standard computational resources within the framework of digital/analog simula-

tion. In particular, using the example of the MS gate, if performing a simulation within

trapped ions it makes sense to view this gate as such a standard resource, and evaluate

the complexity of the algorithm not necessarily in terms of the number of CNOT gates

required, but rather in terms of the number of MS gates required. We therefore see that

the evaluation of efficiency within a digital/analog context needs to be performed on a

platform specific basis, given a reasonable evaluation of what can be considered standard

computational resources within the given platform. It is also clear how this approach

provides a more pragmatic strategy than the more abstract methodology of constructing

an algorithm in terms of sequences of universal gates, which may not be physically real-

isable in a straightforward manner. In addition, as we will see in subsequent chapters,

within the context of open quantum systems it allows us to shift our attitude towards dis-

sipation and decoherence - instead of viewing these processes as obstacles to be overcome

if one wants implement accurate fundamental gates or maintain long qubit lifetimes, one

can potentially view dissipation and decoherence as a computational resource [65]!

1.2.4 Algorithmic quantum simulation

In all of the strategies that we have discussed so far, there has been an implicit suggestion

that the entire simulation, or computational process, takes place within the controllable

quantum system (the simulator). While such an approach is potentially feasible - and

has definitely seen some success in the context of analog quantum simulations [2] - im-
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X classical algorithm

quantum
subroutine

X 0

Figure 1.4: An illustration of the algorithmic quantum simulation methodology. The
inputs to the simulation are a description of a system Hsys, as well as a specification of
some property X of the system one would like to calculate (in the case of time evolution,
the description of the system may include a particular desired initial state |ψ(0)〉). An
algorithmic simulation is then a classical algorithm, which makes calls to a quantum
subroutine executed either on a quantum simulator or universal quantum computer,
and which outputs X ′, an approximation to X.

plementing digital or digital/analog simulations which are beyond the reach of current

classical computers will require large scale quantum computational devices, capable of

fault-tolerantly implementing thousands of quantum gates, on at least hundreds (but

more realistically thousands) of stable qubits. Although rapid progress is being made

in our ability to perform digital and digital/analog simulations, especially within super-

conducting circuit architectures [67–69], scalability of these devices is still a formidable

challenge and it is unclear when the large scale quantum computational devices required

to consistently outperform the best classical algorithms will be available.

In light of this, one natural approach, which is variously referred to as either algo-

rithmic quantum simulation or hybrid quantum/classical simulation, seeks to outsource

to a conventional classical computer all possible computation which can be done effi-

ciently on such a platform [32, 70–73]. The hope is that many simulations of quantum

many-body systems might be broken down into classical algorithms, possibly employing

some approximation methods, which are inefficient because of the need to solve some

smaller problem than the entire simulation, which might be done efficiently on a quantum

computer. The entire process, as illustrated in Fig. 1.4, then involves a feedback loop

between a classical computer and a quantum simulator (of any type), and in the ideal

case will run efficiently while requiring a much smaller controllable quantum platform

than would be required if the entire simulation was to be done in a quantum manner.

As in the case of digital/analog simulation, the adoption and formulation of such a

strategy is clearly motivated by a realisation of the potential of quantum simulations,
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but with a strong view towards pragmatism and ensuring that minimal amounts of

expensive and complex quantum resources are required. Again, it is clear that one could

argue that all quantum simulations are in fact hybrid quantum/classical simulations, as

one inevitably has to use a classical computer to perform tasks such as processing of

final measurement results, and that in fact such an approach is clearly the most natural

strategy. However, while this is correct in some sense, it is clear that there is a conceptual

distinction between the use of a classical computer to perform processing of data, and

the use of a classical computer to perform a complex algorithm which calls a (potentially

small-scale) quantum simulator to execute a specific subroutine. As with digital/analog

quantum simulations, we believe that an advantage can be gained from referring to the

latter case (though the line may admittedly be hard to draw) as algorithmic, or hybrid

quantum/classical simulation, as this labelling may potentially prompt or inspire the

development of novel algorithms and techniques.

Given that the notion of algorithmic quantum simulation is indeed very natural, it

may not be surprising that there have recently been a number of proposals for algorithmic

quantum simulation of a large variety of systems. As a first example, it has been realised

that Dynamical Mean Field Theory, a widely utilised classical algorithm for calculating

properties of strongly correlated fermion systems, can be greatly improved by solving

the impurity problem at the root of the classical algorithm on a quantum simulator,

which may only need to contain hundreds of qubits to outperform the entire algorithm

running on a classical computer [70–72]. In the context of quantum chemistry, such

an approach has also been used to develop algorithmic methods for the calculation of

molecular energies, in which the quantum phase estimation algorithm is used as the

critical subroutine within a larger classical algorithm [29]. Then, in the context of open

quantum systems, it has been shown how simulations of memory effects in a specific

system may be achieved via a classical algorithm which requires simulations of different

open quantum systems exhibiting no memory effects [73], which is far easier to achieve

(and for which, in fact, a variety of methods are presented in this thesis). Finally, as

will be discussed in more detail in Section 1.5, in Chapter 4 we provide a method for

how one might implement non-completely positive maps, describing the evolution of

open quantum systems initially correlated with their environment, via an algorithmic

procedure only requiring simulations of conventional quantum channels [74].

17



CHAPTER 1. INTRODUCTION

1.2.5 Embedded quantum simulation

Apart from algorithmic quantum simulations, another implicit assumption in the other

simulation strategies presented in this section is that the simulations were one-to-one.

By this, we mean that typically (though, not always) the size/number of particles in the

simulator is the same as the number of particles in the system one is trying to simulate,

and as illustrated in Figs 1.1, 1.2 and 1.3, one typically obtains from the simulator a

state |ψ̃(t)〉 which is a direct approximation to some state |ψ(t)〉, about whose properties

you are interested. In order to obtain these properties, such as the expectation value of

some observable, one then has to prepare and appropriately measure the state multiple

times, which is relatively straightforward.

However, as stressed earlier, in order to answer the physical questions with which one

might be concerned, which motivate the simulation in the first place, it may very often

be necessary to obtain properties of Hsys or |ψ(t)〉 which cannot be straightforwardly

calculated from a one-to-one approximation |ψ̃(t)〉. Natural examples of such properties

are multi-time and out-of-time order correlation functions, as well entanglement mono-

tones, which require an expensive full quantum state tomography procedure [75]. In

order to address this critical issue, a natural approach, illustrated in Fig. 1.5 and which

has begun to be labelled as embedding quantum simulators, is to add additional ancillary

particles, and then design the simulation in such a way that is not necessarily one-to-one,

as is most intuitive, but that ensures that the properties one is interested in can be easily

obtained from an efficient number of straightforward measurements of either just the

ancillary particles, or the entire output state of the simulator [76]. Perhaps naturally,

there now exist explicit proposals for how one might embed quantum simulators for

the calculation of the properties discussed above, such as multi-time correlation func-

tions [77] and entanglement monotones [76]. Surprisingly, there have also been proposals

for the simulation of unphysical operations, such as charge conjugation, via embedded

quantum simulators [78]. It is interesting to note that embedding a quantum simulator

naturally involves optimising a trade-off between space and time complexity. An em-

bedded quantum simulator may require more qubits, however the time cost (number of

gates, real time or repetitions of the experiment required) may be drastically reduced

by virtue of being easily able to extract the desired information from the output state

of the simulator.

Once again it is clear, especially in light of the working definition of quantum sim-

ulation provided in this thesis (which prioritises the calculation of any pre-specified

property), that one could strongly argue that the notions of simulation previously dis-
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Figure 1.5: An illustration of the notion of an embedded quantum simulation. Again,
one is given a description of a system Hsys, as well as a specification of some property
X of the system one would like to calculate. On a quantum simulator with additional
ancillary qubits, shown as empty circles, one then executes either a digital, analog or
digital/analog quantum simulation, designed in such a way that an approximation to
X ′ can be extracted via measurements of the ancillary qubits. This is in contrast to a
one-to-one simulation which would typically mimic the dynamics of Hsys in a quantum
simulator consisting only of system qubits, shown as filled circles.

cussed already include the possibility of adding additional particles as a computational

device. Certainly, it is true that at no point in our discussion have we specified that any

of the previous simulation strategies are confined to being one-to-one. However, the crux

is that the vast majority of current simulation methods, both proposed and realised, are

one-to-one simulations. As such there is potentially a lot to be gained by making explicit

the distinction between one-to-one simulations and embedded simulations, as it not only

provides a spotlight on the issue of providing efficient means for calculating specific non-

trivial properties, but also suggests an avenue for how this might be achieved. Even so,

it is certainly true that the notion of embedded quantum simulators is not quite a com-

pletely distinct quantum simulation strategy, but rather a complimentary or additional

approach which could, and often should, be combined with another simulation strategy

as a means to enhance the versatility and flexibility of the underlying method.

1.2.6 Verifying quantum simulations

As quantum technology develops, and large scale quantum simulations become a reality,

an increasingly important question is: how do we know that our simulation is correct?

After all, a quantum simulation by (our) definition exploits the dynamics of some quan-

tum mechanical system, whose properties are often non-trivial to model in the first place

and require a host of simplifying assumptions. This is especially true as quantum simu-
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lators grow in size, and more and more complicated methodologies and interactions are

exploited. While this is certainly an important question, in some sense, as we will briefly

discuss now, the answer is as straightforward or as complicated as one prefers.

On the one hand, many will argue that the solution to this problem is both clear

and straightforward. We gain confidence in the correctness or accuracy of a simulation

if its results agree with both our analytical predictions and the results of alternative

simulation methods, both in classical and quantum devices. If one adopts this natural

approach, then the key to gaining confidence in the results of quantum simulations relies

on progress in multiple fronts. Firstly, given a specific system to be simulated, it is

essential to develop multiple methods for its simulation on alternative quantum and

classical devices, in order to facilitate benchmarking of the results. Secondly, given a

specific quantum platform or simulator, it is important to develop more accurate models

for the simulators themselves, and benchmark these models via experiments in a variety

of parameter regimes. Finally, it is important to invest effort in the development of

improved mathematical and analytical models of the systems we are trying to simulate.

This approach is certainly the most natural, and allows us to gain more and more

confidence in the results of quantum simulations as progress is naturally made in all

relevant fields, both experimental and theoretical.

However, often we would like to use a specific quantum simulation precisely because

the system that we are interested in cannot be easily simulated on a classical computer.

In addition, it might be true that the quantum simulation we have in mind relies on very

specific properties of a specific controllable quantum platform, and alternative quantum

simulation methods in different platforms cannot be easily derived. Furthermore, it may

be possible that we can propose alternative simulation methods on different quantum

technologies, but that these technologies are not currently well developed enough to

implement such proposals. In all such cases, which at present are certainly plausible, it

is necessary to develop intrinsic methods which allow us to trust the results of a single

computational process or simulation, which is a significantly more complicated approach.

At present there are a variety of strategies for achieving such methods. Firstly, within

the context of digital quantum simulations, there is a massive effort to develop quantum

error-correction methods. These methods allow for the implementation of quantum

algorithms in a manner which is fault-tolerant and robust against certain classes of noise

and errors, provided that these errors occur with a frequency less than some threshold

dictated by the error correction scheme. In this approach, provided the error rate is low

enough, and that the source of the errors is well understood, we can trust the result of

our simulation as long as our underlying algorithm is correct. This is an important and
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rapidly growing approach, incorporating a vast number of techniques, and we refer to

the excellent books and reviews [79–81] for an overview.

Another interesting and more recent approach is that of verification based on in-

teractive proofs. In this strategy, which incorporates methods from complexity theory

which we will only very briefly sketch here, one can design the simulation in such a way

that requires interaction with a “sceptical prover”, who is able to make a final decision

regarding the correctness of the computation [82–84]. These emerging methods certainly

hold both considerable conceptual appeal and potential, and it will be interesting to fol-

low the extent to which they can be generalised away from the highly specific contexts

in which they are being developed (such as measurement based quantum computing, or

provers with access to a quantum computer), towards more natural frameworks such as

analog quantum simulations and provers with purely classical resources [85–87].

1.3 Strategies for digital quantum simulation

So far our discussions of quantum simulation have been primarily conceptual, and per-

haps even partly philosophical. However, as this thesis will be uniquely concerned with

the presentation of novel digital and digital/analog techniques for the simulation of open

quantum systems, in this section we will provide a slightly more technical introduction

to digital quantum simulation methodologies, within the context of closed quantum sys-

tems for simplicity, with the aim of providing the formal foundations for the new results

presented in this work. Once again we note that a thorough and complete overview

of contemporary digital quantum simulation strategies is not necessary to provide the

background and context that we require, and so we refer to the reviews [2–4] for a survey

of additional techniques not covered in this section.

Firstly, in this thesis we will be uniquely concerned with digital or digital/analog

quantum simulation strategies for simulating time evolution, as opposed to for instance

finding ground states or preparing thermal states, and as such we restrict ourselves to

this setting here. Within the context of closed quantum systems this problem can be

formulated as follows:

Problem 1.1. Given a description of a time-independent Hamiltonian H, an initial

state |ψ(t0)〉, a desired final time t and an acceptable error tolerance ε, construct an

algorithm which yields a state |ψ̃(t)〉 such that

∣∣∣∣|ψ̃(t)〉 − |ψ(t)〉|| ≤ ε, (1.1)
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where |ψ(t)〉 = U(t, t0)|ψ(t0)〉 = e−iH(t−t0)|ψ(t0)〉.

In other words, more colloquially, we want an algorithm which provides an approxi-

mation to the time-evolved state of a system described by some Hamiltonian H, at some

given time t, having started from some well defined initial state |ψ(0)〉. At this point,

a few comments are in order. Firstly, the above problem can obviously be straight-

forwardly generalised to the context of time-dependent Hamiltonians, which would just

require specifying that

|ψ(t)〉 = U(t, t0)|ψ(t0)〉 = T e−i
∫ t
t0
H(τ)dτ |ψ(t0)〉, (1.2)

i.e. the system propagator U(t, t0) is just given in this case by the time-ordered exponen-

tial of the Hamiltonian [88]. With this straightforward generalisation in mind, we will

from now restrict ourself in this section to the simpler case of time-dependent Hamilto-

nians. Secondly, we have not specified the norm in Eq. (1.1). There are a variety of ways

to measure the distance between quantum states, and in principle any of these measures

might suffice within this problem definition, depending on the context and the desired

properties of |ψ(t)〉 one would like to calculate [49]. However, typically one would use

the so called trace or 1-norm, which provides a measure of how well two states can be

distinguished if one is allowed to perform arbitrary measurements on either state [49]. In

later chapters we will provide a more thorough definition and motivations of the utilised

norms, but for now we choose to leave this unspecified, and note that one may refer

to [49, 89] for a detailed discussion of such issues. Finally, we assume that the desired

initial state |ψ(0)〉 can be easily prepared, and is available as an input to our algorithm

at no cost. Although this assumption is often highly problematic in practice, and con-

structing methods for the efficient preparation of physically relevant classes of quantum

states is an active and important research topic [2], with this simplifying assumption the

problem above is equivalent to constructing a circuit/algorithm U such that

||U − U(t, t0)|| ≤ ε′, (1.3)

with the norm and the value of ε′ chosen in such a way so as to ensure that condition

(1.3) implies condition (1.1).

Now, given an algorithm which provides a solution to the problem specified above,

with the caveats concerning initial state preparation, how do we determine whether or

not our algorithm is efficient. Firstly, lets specify that the Hamiltonian H acts on n

qubits. Then, in line with our earlier discussions, we say that the algorithm, specified
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by a quantum circuit U of standard gates, is efficient if U consists of poly(n, t, 1/ε)

gates, where poly just denotes any polynomial function [2–4]. Once again, as per our

examination of the subtle difference between digital and digital/analog simulations, we

explicitly point out that the notion of “standard gates” may depend on the experimental

context. Given this definition of efficiency, we now say that a Hamiltonian H can be

efficiently simulated if there exists an efficient algorithm solving Problem 1.1 for all t > 0.

So, within this setting, given a description of a Hamiltonian H acting on n qubits,

when and how can we come up with an efficient algorithm for the digital quantum sim-

ulation of the time evolution of the system described by H? Although by no means

complete, “Childs’ rules” provide a list of Hamiltonians for which straightforward tech-

niques exist [57]. As generalisations of these techniques will form the foundation for our

efforts to provide methods for the digital(/analog) simulation of open quantum systems,

it is of value to reproduce here those rules which are of relevance to us, along with some

brief comments foreshadowing issues concerning their generalisation to the open quan-

tum systems context. The complete list of rules, from which the following are extracted,

can be found in the Ph.D. thesis of Andrew Childs [57].

Rule 1.1 (Strictly Local Hamiltonians). If H acts non-trivially on only a constant

(O(1)) number of qubits, then it can be efficiently simulated.

Any such Hamiltonian, which acts non-trivially on only a constant number of qubits,

as the size n of the system is possibly increased (as indicated by the Bachmann-Landau

“big-O” notation [47]), will be referred to as a strictly local Hamiltonian. In other words,

strictly local Hamiltonians can be thought of as Hamiltonians acting non-trivially on a

number of qubits which does not depend on the total system size. The fact that such

Hamiltonians can be efficiently simulated follows from the Solovay-Kitaev theorem [90],

a foundational result in the theory of quantum computing, which we will not present

here.

Rule 1.2 (Rescaling). If H can be efficiently simulated, then cH can be efficiently

simulated for c = poly(n).

Interestingly, for Hamiltonian simulation, this rule is not restricted to c > 0, as a

result of the reversibility of quantum computation. However, it is important to note

that the analogous rule will not hold for negative c in the context of digital/analog

simulation of open quantum systems, as discussed in detail in Chapter 4, as a result of

both the irreversibility of analog dissipative gates and additional subtleties concerning

completely-positive maps, as will be introduced in Section 1.4.
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Rule 1.3 (Unitary Conjugation). If H can be efficiently simulated, and the unitary

transformation U can be efficiently implemented, then UHU † can be efficiently simulated.

Essentially this rule, which follows straightforwardly from the identity

e−iUHU
†

= Ue−iHU †, (1.4)

tells us that the Hamiltonian H can be efficiently simulated in any basis, as long as

the basis transformation itself can be efficiently implemented. This rule provides an

extremely useful tool for algorithm construction, and in Chapters 2 and 3 we will provide

a generalisation of this rule to a particular class of open quantum systems, as first

presented in [91].

Rule 1.4 (Sums of Hamiltonians). If H1 and H2 can be efficiently simulated, then

H1 +H2 can be efficiently simulated.

In the simple case when H1 and H2 commute, this is easy to see, as

[H1, H2] = 0 =⇒ e−i(H1+H2)t = e−iH1te−iH2t. (1.5)

In the case when [H1, H2] 6= 0, the starting point for demonstrating the truth of Rule

1.4 is the Lie-Trotter product formula [92],

e−i(H1+H2)t = lim
m→∞

(
e−iH1t/me−iH2t/m

)m
. (1.6)

In particular, given some ε > 0, one can show that if one wants to truncate the right

hand side of eq. 1.6 such that

∣∣∣
∣∣∣
(
e−iH1t/me−iH2t/m

)m
− e−i(H1+H2)t

∣∣∣
∣∣∣ ≤ ε, (1.7)

then it suffices to take m = O((νt)2/ε), where ν ≡ max{||H1||, ||H2||} [57]. If H1 and

H2 can be efficiently simulated, this then implies that ν = poly(n), and therefore that

H = H1 + H2 can be efficiently simulated (as a result of the fact that compositions of

polynomials are again polynomials).

Now, either using compositions of Rule 1.4, or by using the same strategy as utilised

to prove Rule 1.4, one can in fact show that given k = poly(n) Hamiltonians {Hi}|ki=1,

each of which can be efficiently simulated, thenH =
∑k

i=1Hi can be efficiently simulated.
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This follows from the observation that

∣∣∣
∣∣∣
( k∏

i=1

e−iHit/m
)m
− e−i(

∑k
i=1Hi)t

∣∣∣
∣∣∣ ≤ ε, (1.8)

provided m = O(k(ν̃t)2/ε), where ν̃ ≡ maxi{||Hi||} [57].

At this stage, by combining Rules 1.1, 1.2 and 1.4, we see that in fact any linear com-

bination of k = poly(n) strictly local Hamiltonians can be efficiently simulated! This

was first pointed out by Lloyd in his seminal 1996 paper [93], and has extremely power-

ful implications for the simulation of physical Hamiltonians. In particular, particles in

generic many-body quantum mechanical systems typically interact directly only with a

small number of their closest nearest neighbours, and as a result Hamiltonians describ-

ing such realistic physical systems can naturally be written as a sum of strictly local

Hamiltonians. Furthermore, in physical systems with such geometrically local interac-

tions, a simple counting argument shows that the number of strictly local terms in the

Hamiltonian is generically proportional to the number of particles in the system [4], and

as such the system can be efficiently simulated. As an example, this is clearly illustrated

by the one-dimensional Ising model for a spin chain of length n with periodic boundary

conditions,

H =
n∑

j=1

(
− J(σzjσ

z
j+1)− µ σxj

)
(1.9)

=
n∑

j=1

H(j,j+1), (1.10)

which is the sum of n nearest-neighbour, or strictly 2-local, Hamiltonians.

Since Lloyd’s landmark result in 1996, which (along with Peter Shor’s 1995 quan-

tum algorithm for efficient integer factorisation [54]) provided a massive motivation for

the development of digital quantum computers, there has been a gigantic effort to both

improve upon the efficiency of Lloyd’s fundamental result, and extend the class of Hamil-

tonians which can be efficiently simulated [3, 4]. While we will not survey these efforts

in detail, it will be worthwhile to present a few key tools and directions, with the goal of

extracting the dominant strategies and approaches, which will later be adopted in this

thesis for the simulation of open quantum systems.

Firstly, given H =
∑k

i=1Hi, lets define Nexp as the number of short-time simulations

of individual Hamiltonians Hi required to simulate H to within an accuracy of some

given ε. From Eq. 1.8 we see that in Lloyd’s original method, which involves simulating
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each Hamiltonian Hi sequentially for a time period of t/m, and repeating this process

m times, we have that

Nexp = km = O(k2(ν̃t)2/ε). (1.11)

A natural question to ask is whether we might be able to improve the scaling of Nexp

with respect to parameters such as t and ε? It turns out that this is indeed the case,

and while many results have been achieved with respect to the scaling in ε (see [3]) for

a detailed discussion), we will focus here on the scaling with respect to t, which can

be improved through a more sophisticated approach to approximating the exponential

of sums of non-commuting operators, and will be of interest to us in the remainder of

the thesis. In particular, through the use of Suzuki’s higher order integrators [94, 95],

which will be presented here, one can achieve scaling in t which is arbitrarily close to

linear [96]. To do this, one defines a simple variant of the basic Lie-Trotter formula as

the first order Suzuki integrator,

S2(λ) =
k∏

j=1

eHjλ
1∏

j′=k

eHj′λ, (1.12)

from which the δ’th higher order integrator can be defined via the recursion relation

S2δ(λ) = [S2δ−2(pδλ)]2S2δ−2((1− 4pδ)λ)[S2δ−2(pδλ)]2, (1.13)

with pδ = (4 − 41/(2δ−1))−1 for δ > 1. Given this formalism, analogously to eqs. (1.7)

and (1.8), we would now like to understand the efficiency of approximating e−iHt with

expressions of the form [S2δ(−it/m)]m for various values of m and δ. Such an under-

standing is provided by the following theorem, summarising results originally proven

in [96]:

Theorem 1.1. Given any ε such that 0 < ε ≤ 1 ≤ 2k5δ−1||H||t, where δ is an arbitrary

positive integer, taking

m =
21/2δ(2k5δ−1||H||t)1+1/2δ

ε1/2δ
, (1.14)

guarantees that ∣∣∣
∣∣∣[S2δ(−it/m)]m − e−i(

∑k
i=1Hi)t

∣∣∣
∣∣∣ ≤ ε, (1.15)

and that

Nexp ≤ k52δ(k||H||t)1+1/2δ/ε1/2δ. (1.16)

In particular, it is now clear from Theorem 1.1 that by taking δ arbitrarily large we
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can achieve scaling in t which is arbitrarily close to linear. However, as noted in [96],

the right hand side of eq. (1.16) is minimized for

δ = round
[1

2

√
log5(k||H||t/ε) + 1

]
, (1.17)

which when substituted into eq. (1.16) yields

Nexp ≤ 2k2||H||te2
√

ln(5)ln(k||H||t/ε). (1.18)

As we set out to achieve, the scaling in (1.18), which is now independent of δ, is close

to linear in t for large values of k||H||t. Interestingly, as discussed in [89, 96], this

scaling is close to optimal, as one can show that sublinear scaling in t is not possible

for generic Hamiltonians, a result known as the “no fast-forwarding” theorem. However,

despite being very close to optimal, these results can in fact be slightly improved by

taking into account the norms of individual constituent Hamiltonians [97], and such

improved Suzuki-Lie-Trotter (SLT) results will be of use to us in Chapters 2 and 3,

where they will be presented in detail. Furthermore, it is also possible to generalise such

SLT constructions for the simulation of time-dependent Hamiltonians [98,99], and such

results will be extensively utilised in Chapter 4, where they will be presented in detail.

So far we have considered only the simulation of local Hamiltonians, which are natu-

rally specified as the sum of strictly-local Hamiltonians. In this case, we have seen that

through stroboscopic implementation of the (rescaled) constituent strictly-local Hamil-

tonians, formalised via some flavour of SLT decomposition, we can efficiently simulate

the total Hamiltonian. While such a setting is definitely the most natural for physical

Hamiltonians, it is also of interest, both for the simulation of certain physical systems

and for the construction of algorithms which rely on the simulation of some Hamilto-

nian, to consider methods for the efficient simulation of more general Hamiltonians. In

this regard, we begin by noting that if we have a system of n qubits, then a generic

Hamiltonian for such a system will be a 2n × 2n Hermitian matrix, and as such storing

or reading every matrix element is clearly not possible in an efficient manner. As such, a

natural setting for considering the simulation of more general Hamiltonians is to assume

the existence of an oracle, which when provided with a row and column number, can

provide the matrix entry at that location [57, 89]. Within this setting, a large amount

of effort has been invested into developing methods for the simulation of sparse Hamil-

tonians [3, 89, 100–106], while various fundamental limitations concerning the efficient

simulation of non-sparse Hamiltonians have been formulated [89,107].
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While a variety of methods are now known for the simulation of sparse Hamiltoni-

ans [100–106], with recent methods achieving scaling which is nearly optimal in almost

all relevant parameters [105,106], it is of interest to us to very briefly discuss the strategy

behind early approaches for the simulation of such Hamiltonians, as such strategies will

be heavily utilised in the remainder of this thesis. In particular, from our discussion of

Childs’ rules we have seen that there is a class of Hamiltonians which can be efficiently

simulated. From our discussion of SLT decompositions we then saw that any linear

combination of Hamiltonians which can be efficiently simulated, can again be efficiently

simulated. The natural idea behind early approaches to the simulation of sparse Hamil-

tonians, is then to come up with an efficient method for decomposing the given sparse

Hamiltonian into the linear combination of constituent Hamiltonians, which one can

prove can be efficiently simulated. As long as this decomposition results in a polynomial

number of constituent Hamiltonians, then SLT methods, as presented above, can be

utilised to efficiently recombine these Hamiltonians into an acceptable approximation of

the original Hamiltonian [89]. We will call such a strategy a decomposition/recombination

approach. As mentioned above, such an approach, largely exploiting graph-theoretic de-

compositions of the given sparse Hamiltonian, provided many of the first algorithms for

the simulation of sparse Hamiltonians [89]. Such a decomposition/recombination ap-

proach will also play a crucial role in the methods for the simulation of open quantum

systems presented in Chapters 2 and 3.

1.4 Open quantum systems

As of yet, to allow for both illustration and clarity, we have restricted ourselves to

discussions concerning closed, or isolated, quantum mechanical systems. However, most

realistic quantum systems are in contact with some environment to some extent, at

least over realistically accessible time scales, and as such developing an understanding

of so called open quantum systems is a crucial task. As this thesis is concerned with

the construction of methods for the digital, digital/analog and algorithmic quantum

simulation of certain classes of open quantum systems, we will now proceed to shift our

attention to such systems. In particular, we aim in this section to provide a motivation

for the study of open quantum systems, an introduction to the formalism of such systems,

and a brief overview of previous work regarding the quantum simulation of open quantum

systems. This will allow us to situate the novel contributions of this thesis within the

context of current research.
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1.4.1 Motivation

As discussed in Section 1.1, contemporary physics offers a wealth of fascinating direc-

tions, unanswered questions and important paradoxes to explore, and this is just as true

for the field of open quantum systems as it is for many-body quantum physics in general.

While a complete and thorough overview of contemporary research directions is beyond

the scope of this work, we will aim in this section to provide a (very) brief sketch of

a selection of current fields of interest, towards which it is hoped that the simulation

methods presented in this thesis may make some direct contribution.

Phase transitions and criticality in driven-dissipative many-body open quan-

tum systems: In recent years, largely resulting from developments in quantum tech-

nologies which have enabled the prospect of experimental preparation and observation of

driven-dissipative many-body quantum systems [66,108–110], there has been an incredi-

ble interest in obtaining a foundational understanding of the non-equilibrium phases and

phase transitions in such systems. In particular, it is now appreciated that the competi-

tion between coherent and dissipative dynamics in the non-thermal and non-equilibrium

steady states of such systems gives rise to an incredibly rich phenomenology, such as new

universality classes, often with no immediate analogue in conventional isolated many-

body systems [111–128]. Additionally, it is interesting to point out that developments

in quantum technologies have spurred the study not only of dissipative generalisations

of conventional many-body models from the condensed matter context, but also of novel

open many-body quantum systems, such as Jaynes-Cummings lattices in superconduct-

ing circuit QED systems [110], with no natural coherent condensed matter analogue.

Furthermore, many of the tools and techniques utilised for the study of isolated many-

body quantum systems are not applicable within this context, and as a result there is

a clear need for new analytical techniques [129], as well as both classical and quantum

simulation methods.

Thermalisation: Just as in the context of isolated many-body quantum systems, as

discussed in Section 1.1, there are a variety of open questions concerning the man-

ner in which open quantum systems thermalise to the thermal state of the underlying

Hamiltonian. In particular, it is of great interest to understand the conditions under

which thermalisation occurs in many-body quantum systems in contact with some type

of environment/bath, and the time scales on which such a process occurs under dif-

ferent constraints [130–136]. As in the context of isolated quantum systems, it is also
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of foundational interest to explore the manner in which correlations spread in different

classes of open quantum systems, and the insights that such correlation dynamics can

provide into thermalisation [137]. Finally, it is of interest to explore the robustness of

phenomena explored within the context of isolated many-body quantum systems, such

as many-body localisation, in order to understand the extent to which such phenomena

might be studied in the laboratory [138,139].

Dissipation as a resource: Typical approaches to quantum computation and quan-

tum information processing treat dissipation and decoherence as a fundamental obstacle

which needs to be overcome in order to implement robust information processing pro-

tocols and algorithms [49]. However, relatively recently a paradigm shift has occurred

through which it has become clear that dissipation and decoherence might in fact be

utilised as a computational resource [65]. Instead of designing ingenious methods for

suppressing or correcting the effects of dissipation and decoherence, this revised per-

spective suggests that one might rather focus on designing methods to exploit either

naturally occurring or engineered dissipation as the driver of some desired computational

process. A very natural first application of such a strategy would of course be the prepa-

ration of non-equilibrium steady states of driven-dissipative many-body models, whose

phenomenology is currently of great interest, as discussed above. This application has

shown vast potential, with many experimental proposals and successes [140–145]. How-

ever, it has also been shown, both experimentally and theoretically, that a dissipatively

driven state-preparation strategy can be utilised for the preparation of alternative states

of interest, such as topologically ordered ground states of certain Hamiltonians [66,146],

and various large-scale entangled states [147–150], which may then be exploited as a

computational or communication resource. In addition to state preparation driven by

dissipation, there have been various proposals for dissipatively driven quantum com-

putation [65, 151, 152]. Although it has recently been proven that dissipative quantum

computing and conventional quantum computing are equivalent from a computational

complexity perspective, a result known as the “Dissipative Church-Turing Thesis” [153],

this approach to quantum computing still holds considerable conceptual appeal as a re-

sult of the potential inherent robustness such an approach might demonstrate. Within

this vein, there have also very recently been suggestions for how one might exploit

dissipation and decoherence for the construction of robust decoders within topological

quantum error correction schemes [154–156].

In light of all these results, both experimental and theoretical, it is of both funda-

mental and practical interest to investigate and develop novel computational applications
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of dissipation and decoherence. Crucially however, all applications of “dissipation as a

resource” rely fundamentally on the ability to engineer and implement controlled dissi-

pation and decoherence, as the protocols are effectively implemented through the simu-

lation of some specified open quantum system. While there has been a rapid amount of

development in this direction, enabling the successful experimental demonstrations men-

tioned above, new techniques for the implementation of a wider variety of open quantum

systems, as will be discussed in this thesis, offer the potential to enable a wider class

of protocols. In particular, it is especially interesting to consider the manner in which

creative simulation strategies, such as digital/analog simulations, might be leveraged to

allow for full exploitation of naturally occurring dissipation and decoherence, or rather

“standard resources” in the complexity theoretic language previously utilised.

Memory effects in open quantum systems: As a result of the interaction between

an open quantum system and its possibly complex or highly structured environment,

there is the possibility of non-trivial “memory” effects in open quantum systems, and

there is currently a wide and growing interest in exploring this (currently very broad)

notion of memory in such systems. In particular, it is of interest to explore when and how

non-trivial “memory” effects might arise within open quantum systems, to rigorously cat-

alogue this broad phenomenology of memory, and to understand how such effects relate

to the plethora of competing definitions for quantum non-Markovianity [157–159]. Given

the notion of dissipation as a resource discussed above, it will also be exceedingly inter-

esting to understand the extent to which non-trivial memory effects in open quantum

systems might be used as either a computational or communication resource [160, 161].

Once again, in addition to the foundational motivation, this resource-theoretic perspec-

tive provides a potential practical motivation for the development of methods for the

implementation of various open quantum systems exhibiting memory effects.

Quantum Biology: Despite being “wet and warm”, biological systems, such as pho-

tosynthetic reaction centres for example, are most certainly complex open quantum

systems! As a result, progress in multiple directions in quantum biology, as discussed in

Section 1.1, relies heavily on gaining a more sophisticated understanding of the dynam-

ics and properties of various biologically inspired models for many-body open quantum

systems, often with highly complex structured environments [34, 35]. As an example,

within the context of photosynthesis, various proposals have already been suggested for

the role decoherence may play in efficient energy transfer [36–41], and it is currently of

interest to investigate alternative, possibly more biologically plausible, models.
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1.4.2 Formalism

From the working definition for a quantum simulation given in Section 1.1, it is clear that

the first key step in any quantum simulation is a description of the system one would like

to simulate! In the context of closed quantum systems, one typically provides the system

Hamiltonian H, either time-dependent or time-independent, and possibly specified via

some oracle for the matrix elements, or one provides the unitary time evolution system

propagator U(t, t0) for some specified initial and final times t0 and t respectively. In the

context of open quantum systems however, the situation is slightly more complicated, as

there is a selection of ways to specify an open quantum system depending on a variety

of factors, such as the number and type of approximations one is able to make. As

a result, in this section we will provide a brief introduction to the formalism of open

quantum systems, with a strong emphasis on providing the various descriptions possible

as starting points for meaningful simulations. As this discussion will be approached

with this specific goal in mind, we will omit many technical details and proofs, which

can easily be found in standard texts [162–166].

In order to facilitate this presentation, we will from now on adopt the following

notation: Given a finite-dimensional Hilbert space H ' Cd, we denote the space of all

bounded linear operators A : H → H as B(H). Furthermore, we will denote the set of

all positive semi-definite operators with unit trace (i.e. the set of density matrices) as

D(H) ⊂ B(H). Given this notation, we will be fundamentally concerned with bipartite

systems H = HS ⊗HE , where HS is the Hilbert space of the subsystem whose dynamics

or properties we are interested in (referred to as the open quantum system), and HE is

the Hilbert space of the environment with which the system is in contact.

As a starting point for our discussion, as illustrated in Fig. 1.6, we note that if we

are given an initially uncorrelated system/environment state ρ(t0) = ρS(t0) ⊗ ρE(t0),

then the state of the system at some time t > t0, after some unitary evolution of the

global system/environment combination under U(t, t0), can be obtained via

ρS(t) = trE

[
U(t, t0)

(
ρS(t0)⊗ ρE(t0)

)
U(t, t0)†

]
. (1.19)

In the above expression trE is the partial trace operation over the environment, which
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⇢SE(t)

⇢S(t)

U(t, t0)
⇢S(t0) ⌦ ⇢E(t0)

⇢S(t0)

T (t, t0)

trE trE

Figure 1.6: The state of an open quantum system at some time t ≥ 0 can either be
obtained through the unitary evolution of the global system/environment combination,
or through the action of an intrinsic system propagator which acts directly on the initial
state of the open quantum system.

satisfies the relationship

〈OS ⊗ 1E〉ρ = tr
[(
OS ⊗ 1E

)
ρ
]

(1.20)

= tr
[
OS
(
trE [ρ]

)]
(1.21)

= tr
[
OSρS

]
(1.22)

= 〈OS〉ρS , (1.23)

for any observable OS ∈ B(HS) and any state ρ ∈ D(HS ⊗HE), where ρS ≡ trE [ρ] ∈
D(HS) is the reduced state of the open quantum system. However, it is also possible

to obtain the final state of the system through the action of an intrinsic system prop-

agator T (t, t0) : B(HS) → B(HS), a linear superoperator (i.e. an operator that acts on

operators) with the property that

T (t, t0)(ρS(t0)) = trE

[
U(t, t0)

(
ρS(t0)⊗ ρE(t0)

)
U(t, t0)†

]
, (1.24)

for all ρS(t0) ∈ D(HS) and for all ρE(t0) ∈ D(HE). More specifically, with the assump-

tion of an initially uncorrelated system/environment state, one can show that the system

propagator T (t, t0) will be a quantum channel, a map which is both trace-preserving

and completely positive (CPTP) [166]. In this context, a map T ∈ B(B(H)) is trace-

preserving if

tr
[
T (ρ)

]
= tr[ρ], (1.25)
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for all ρ ∈ B(H), and completely-positive if it is both positivity-preserving, i.e. T (ρ) ≥ 0

for all ρ ≥ 0, and satisfies [
T ⊗ 1d

]
(ρ) ≥ 0, (1.26)

for all ρ ≥ 0 ∈ B(H⊗Cd), for all d > 0. From these properties it is clear that quantum

channels map density operators to density operators4. At this stage, as a result of

Eq. 1.24, we see that in order to perform a simulation of the dynamics of an open

quantum system, which should yield the state ρS(t) for some t > t0, any of the following

descriptions of the open quantum system, in addition to the initial state of the system

ρS(t0), will suffice as a reasonable starting point:

1. A description of the global system/environment Hamiltonian H and the initial

state of the environment ρE(t0).

2. A description of the global unitary propagator U(t, t0) and the initial state of the

environment ρE(t0).

3. A description of the CPTP system propagator T (t, t0).

While it is now clear that one could obtain an approximation to the desired state

ρS(t) through a Hamiltonian simulation of the global system/environment combination,

we will focus in this thesis on the development of methods for the simulation of open

quantum systems specified through some intrinsic means, such as a time-evolution prop-

agator, or family of propagators. In particular, this will allow for the construction of

algorithms which scale efficiently with respect to the size of the open quantum system,

as opposed to the size of the global system/environment combination. Furthermore, as

will be discussed below, this will also allow for the simulation of a broad range of open

quantum systems phenomenology, without necessarily requiring an understanding of the

underlying microscopic dynamics of the system/environment combination.

Because of the crucial role played by both linear superoperators and quantum chan-

nels in the dynamics of open quantum systems, we will now provide a brief summary

of the properties of, and relationships between, different methods for representing linear

superoperators and quantum channels. These fundamentals will then allow us to discuss

how one might specify different families of quantum channels, and the relation of these

families to corresponding classes of underlying microscopic dynamics. In order to keep

4Clearly maps which are merely linear, trace-preserving and positivity preserving would also maps
density matrices to density matrices, however there are examples of such maps, like the transposition
map, which then do not preserve positivity when acting on only part of a larger system [49,166].
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the presentation concise we will omit proofs of the relevant theorems, which can be found

in [166,167].

The first representation that we will introduce is often called the natural represen-

tation. In order to introduce this representation we first define the linear mapping

vec : B(H)→ H⊗H, which is defined via its action on basis elements for B(H),

vec(|i〉〈j|) = |i〉|j〉, (1.27)

where {|k〉}|dk=1 is any orthonormal basis for H h Cd. In terms of this mapping we then

provide the following definition.

Definition 1.2. The natural representation of a linear superoperator T ∈ B(B(H)) is

the unique linear operator T̂ ∈ B(H⊗H) satisfying

T (ρ) = vec−1
(
T̂ (vec(ρ))

)
, (1.28)

for all ρ ∈ B(H).

The second representation that we will introduce is most typically known as the

Choi-Jamiolkowski representation, and is defined as follows:

Definition 1.3. Given a linear superoperator T ∈ B(B(H)), the corresponding Choi-

Jamiolkowski state is the linear operator

τ(T ) =
(
T ⊗ 1B(H)

)
(vec(1H)vec(1H)†), (1.29)

where 1B(H) ∈ B(B(H)) is the identity superoperator, and 1H ∈ B(H) is the identity

operator.

Given such a representation for T , we call the rank of τ(T ) the Kraus rank of T ,

denoted as Kr(T ) = rank(τ(T )). As we will see in Theorem 1.2, this name comes from the

close relationship between the Choi-Jamiolkowski representation of a quantum channel,

and the next representation we will introduce, known as the Kraus representation.

Definition 1.4. Given a linear superoperator T ∈ B(B(H)), a Kraus representation of

T is any collection of linear operators {Ai ∈ B(H)}|ri=1 and {Bi ∈ B(H)}|ri=1, with r ≥ 1,

such that

T (ρ) =
r∑

i=1

AiρB
†
i , (1.30)

for all ρ ∈ B(H).

35



CHAPTER 1. INTRODUCTION

Notice that the Kraus representation of a linear superoperator is not unique - how-

ever in Theorem 1.2 we will show the existence of a minimal representation for quantum

channels. Finally, the last representation that we will introduce is the so called Stine-

spring representation, another representation which is not unique, and is defined as

follows:

Definition 1.5. Given a linear superoperator T ∈ B(B(H)), a Stinespring representation

of T is any pair of linear operators A,B : H → H⊗HE, for any ancillary Hilbert space

HE, such that

T (ρ) = trE
[
AρB†

]
, (1.31)

for all ρ ∈ B(H).

We will refer to the smallest Hilbert space HE from which it is possible to construct

a Stinespring dilation as the minimal dilation space. Given all these representations for

linear superoperators, the following theorem now provides a complete summary of both

their properties, and the relationships between them, in the case of quantum channels.

We refer to [166,167] for detailed proofs of these fundamental results.

Theorem 1.2. Given a linear superoperator T ∈ B(B(H)), with H ' Cd, the following

are equivalent:

1. T is a quantum channel.

2. τ(T ) ≥ 0, i.e the Choi-Jamiolkowski state is positive semidefinite, and trH1 [τ ] =

1H if we consider τ ∈ B(H1⊗H2) with H1 = H2 = H.

3. There exists a collection of operators {Ai ∈ B(H)}|ri=1, such that
∑r

i=1A
†
iAi = 1

and

T (ρ) =
r∑

i=1

AiρA
†
i (1.32)

for all ρ ∈ B(H).

4. Statement 3 holds for r = Kr(T ), and is the smallest possible r for which this

statement holds.

5. There exists a dilation Hilbert space HE and a linear isometry A : H → H⊗HE
such that

T (ρ) = trE
[
AρA†

]
, (1.33)

for all ρ ∈ B(H).
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6. Statement 5 holds for HE ' CKr(T ), and this is the minimal dilation space.

Before moving on it is of interest to make some brief observations concerning the

results contained in Theorem 1.2, without necessarily providing the full proof. Firstly,

it is of course no coincidence that the Kraus rank provides both the size of the minimal

Kraus representation and the minimal dilation space. This is because the minimal

set of Kraus operators can in fact be obtained directly from the eigenvalues and “un-

vectorised” eigenvectors of the Choi-Jamiolkowski state, while the minimal Stinespring

linear isometry can be constructed through “stacking” the Kraus operators (see [166,

167] for details). In addition, as a result of this close relationship between the Kraus

representation, the Stinespring dilation and the Kraus rank, we see that if T ∈ B(B(H))

with H ' Cd, then in the worst case scenario, when τ(T ) is full rank, we will require

d2 Kraus operators and subsequently a dilation space HE ' Cd
2
. Furthermore, we note

that as a result of the normalisation property in Statement 3, a quantum channel T has

Kr(T ) = 1 if and only if the single Kraus operator is a unitary operator. Therefore a

quantum channel describes unitary evolution if and only if the Kraus rank is equal to

one, and in this case the Stinespring dilation is clearly trivial (it is the unique Kraus

operator). Finally, as shown in [166], one can easily extend the linear isometry A in

Statement 5 of Theorem 1.2 into a unitary operator U ∈ B(H⊗HE), such that

T (ρ) = trE
[
U(ρ⊗ |0〉〈0|)U †

]
, (1.34)

for all ρ ∈ B(H), where |0〉 is some basis state of HE .

As a result, at this stage we see from both the definitions above and Theorem 1.2, that

one can specify a quantum channel, describing the possibly non-unitary evolution of some

system in an initially uncorrelated state with some environment, in a variety of closely

related ways. As we will see in the rest of the thesis, different representations will provide

different advantages in different contexts, however we note that the Stinespring dilation

is particularly suggestive of a natural method for the implementation of a quantum

channel through the unitary evolution of a minimally dilated space.

So far we have focused on methods for the description of quantum channels, the

time-evolution system propagators for open quantum system dynamics starting from an

initially uncorrelated system environment state. However, in the case of closed quantum

systems, one does not typically specify the unitary system propagator U(t, t0) as the

starting point of a simulation, but rather some Hamiltonian H(t), which then provides
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⇢S(t0)
⌦

⇢E(t0)

t1 t2

T (t1, t0) T (t2, t1)

T (t2, t0)

Figure 1.7: Given an open quantum system initially uncorrelated with the environment,
the system propagators T (t1, t0) and T (t2, t0) will be quantum channels for all t1, t2 ≥
0. However, if the global system/environment unitary evolution leads to correlations
between the system and the environment at time t1, then the propagator T (t2, t1) will
not be a quantum channel.

a family of unitary system propagators via

U(t, t0) = T e−i
∫ t
t0
H(τ)dτ

, (1.35)

for all pairs of final and initial times t ≥ t0. Similarly, in the open quantum systems

context, we will be interested in the simulation of different classes of families of system

propagators, each with some relationship to an underlying category of microscopic global

system/environment dyamics. In order to introduce these classes and the manner in

which they are specified, let’s consider the evolution of a generic open quantum system,

depicted in Fig. 1.7. Clearly, as a result of the continuity of time evolution, we require

that the system propagators fulfil

T (t2, t0) = T (t2, t1)T (t1, t0), (1.36)

T (t0, t0) = 1, (1.37)

for all t2 ≥ t1 ≥ t0 ≥ 0. We will refer to any two-parameter family of operators

satisfying conditions (1.36) and (1.37) as an evolution family (EF), and clearly any

physical family of system propagators is an evolution family. However, there are two

very important special cases of which we need to take note. Firstly, if we assume that the

initial state of the system is part of an uncorrelated global system environment state, i.e.

ρSE(t0) = ρS(t0)⊗ρE(t0), then we know that both T (t2, t0) and T (t1, t0) will be quantum

channels. However, it may be the case that the time evolution from t0 to t1 induced

correlations between the system and the environment which are present at t1, in which
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case T (t2, t1) will not be a quantum channel! In light of this we define an evolution family

of quantum channels as a family of two-parameter propagators satisfying conditions

(1.36) and (1.37), and for which T (tf , ti) is a quantum channel for all tf ≥ ti ≥ 0.

At this stage we therefore see that there are already two distinct possible classes of

families of system propagators in which one might be interested. At this stage it may

seem that the conditions required to obtain an evolution family of quantum channels are

extremely stringent. However as will be discussed in more detail shortly, we briefly note

that, among other requirements, if the coupling between the system and the environment

is extremely weak, or if any correlations between the system and the environment decay

on a time scale which is much faster then the time scale with which it is possible to probe

the open quantum system, than an evolution family of quantum channels may indeed

provide a good approximation to the dynamics of the open quantum system [162,165].

The next special case of which we need to take note is best illustrated through the

analogue of coherent unitary evolution. In this case, if the Hamiltonian of the system is

time dependent we clearly have that U(t, t0), given by (1.35), depends explicitly on both

t and t0. However, in the case when the Hamiltonian of the system is time independent,

we have that

U(t, t0) = e−iH(t−t0) (1.38)

= e−iH(∆t) (1.39)

= U(∆t), (1.40)

and we see that the system propagator in fact depends explicitly not on the two param-

eters t and t0, but only on the single parameter ∆t, the time difference. Analogously, in

the case of open system dynamics, we will call an evolution family of system propagators

a one-parameter semigroup (OPSG) if every propagator T (tf , ti) in fact depends only

on the time difference ∆t = tf − ti, i.e. T (tf , ti) = T (∆t), and the family of propagators

satisfies the conditions

T (r)T (s) = T (r + s), (1.41)

T (0) = 1 (1.42)

for all r, s ≥ 0. As per the previous discussion, we will call an OPSG of system prop-

agators an OPSG of quantum channels if conditions (1.41) and (1.42) are satisfied and

T (s) is a quantum channel for all s ≥ 0.

Given these fundamental classes of families of system propagators, the following
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theorems, originally stated in [165] where the proofs can be found, formalise the existence

of a generator for each class, which plays a role analogous to that of the Hamiltonian

in the closed quantum systems context. Before stating the theorems we note that an

OPSG is called uniformly continuous if the map

t→ T (t) (1.43)

is continuous [165]. With this in hand, we can now state the theorems.

Theorem 1.3. Any uniformly continuous OPSG can be written in the form T (t) = eLt,

where L is the time-independent generator of the semigroup and is the only solution to

the differential problem

dT (t)

dt
= LT (t), t ∈ R+ (1.44)

T (0) = 1. (1.45)

Theorem 1.4. A differentiable evolution family {T (t, s)} is the only solution to the

differential problems

dT (ts)

dt
= L(t)T (t, s), t ≥ s (1.46)

T (s, s) = 1, (1.47)

and

dT (ts)

ds
= −T (t, s)L(t) t ≥ s (1.48)

T (s, s) = 1, (1.49)

for some time-dependent generator L(t)

Theorem 1.5. If the generator L(t′) of a differentiable evolution family {T (t, s)} is

bounded in the interval [t, s] then the evolution family can be written in the form

T (t, s) = T e−i
∫ t
s L(t′)dt′ . (1.50)

As one can now see, it is possible to specify either an evolution family or one-

parameter semigroup of propagators, describing intrinsically the time-evolution of an

open quantum system, through the specification of a generator for the family of propa-

gators, analogous to the Hamiltonian of a closed quantum system. However, we have not
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as of yet provided any insight into how one might go about specifying these generators.

As we will see from the following theorems (whose proofs can be found in [165]), for

the case of EF’s and OPSG’s of quantum channels this question admits an elegant and

straightforward answer. Firstly, in the case of OPSG’s, the following landmark theo-

rem due to Gorini, Kossakowski, Sudarshan and Lindblad (GKSL) [162] provides the

characterisation we are looking for:

Theorem 1.6. A time-independent superoperator L ∈ B(B(H)) is the generator of a

OPSG of quantum channels if and only if it can be written in the form

L(·) = −i[H, ·] +
∑

k

γk

[
Lk · L†k −

1

2
{L†kLk, ·}+

]
, (1.51)

for some time-independent Hermitian operator H ∈ B(H), some set of k ≥ 0 time-

independent operators {Lk ∈ B(H)}, known as Lindblad operators, and some set of k

positive numbers {γk ∈ R+}.

Furthermore, from the definition of the system propagator, as well as both Theorem

1.3 and Theorem 1.6, we now see the state ρS(t) of any open quantum system undergoing

time evolution described by a one-parameter semigroup of quantum channels, can be

obtained by solving the differential equation

dρ(t)

dt
= L

(
ρ(t)

)
(1.52)

= −i[H, ρ(t)] +
∑

k

γk

[
Lkρ(t)L†k −

1

2
{L†kLk, ρ(t)}+

]
. (1.53)

for some H, {Lk} and {γk} which satisfy the same conditions as in Theorem 1.6. We

call an equation in the form of (1.53) a master equation in the GKSL form, and the

time evolution of an open quantum system according to such an equation is often known

as Markovian semi-group dynamics [162]. While we have arrived at this equation of

motion through primarily abstract considerations, we note that, as alluded to before,

such intrinsic Markovian master equations for the dynamics of an open quantum system

can in fact be derived from a microscopic model for the global/system environment

combination which satisfies certain assumptions. To be more precise, if we are given a

time-independent microscopic Hamiltonian HSE ∈ B(HS ⊗HE), with

HSE = HS ⊗ 1HE + 1HS ⊗HE + ωHI , (1.54)

then a master equation in the GKSL form for the subsystem dynamics can be derived if
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the Hamiltonian HSE satisfies the weak-coupling, Born-Markov and rotating-wave ap-

proximations [162,165], which place restraints on the time scales of correlation dynamics

in the global system/environment combination. We will not discuss these approxima-

tions in detail here, as a full derivation and discussion of these approximations can be

found in [162,165]. We will however note that if the Hamiltonian HSE does satisfy these

approximations, we will be able to derive a master equation in the GKSL form in which

the Hermitian operator H in eq. (1.51) is the Lamb-shifted system Hamiltionian HS ,

and the Lindblad operators represent physical dissipation processes, summarising the

effects of the interaction between the system and the environment.

Now, given this result for OPSG’s of quantum channels, we can move on to EF’s of

quantum channels. In this case the following Theorem, a proof of which can be found

in [165], generalises the seminal GKSL result:

Theorem 1.7. A time-dependent superoperator L(t) ∈ B(B(H)) is the generator of an

EF of quantum channels if and only if it can be written in the form

L(t)(·) = −i[H(t), ·] +
∑

k

γk(t)
[
Lk(t) · Lk(t)† −

1

2
{Lk(t)†Lk(t), ·}+

]
, (1.55)

where H(t) and Lk(t) are time-dependent operators, with H(t) Hermitian and γk(t) ≥ 0

for all k and for all t.

Once again, the definition of the system-propagator, along with the results of the

previous theorems, then allows us to see that the state ρS(t) of any open quantum system

undergoing time evolution described by an evolution family of quantum channels, can

be obtained by solving the differential equation

dρ(t)

dt
= L(t)

(
ρ(t)

)
, (1.56)

for some time-dependent generator in the form (1.55). An equation in the form of

(1.56) is known as a time-dependent master equation in the GKSL form, and can be

derived from a (possibly time-dependent) microscopic model for the system/environment

combination under similar approximations to those required for Markovian semigroup

dynamics [165].

So, what have we achieved so far? Up until now we have seen that the following are

all legitimate intrinsic ways to specify the dynamics of an open quantum system:

1. One can specify a quantum channel, via any of the representations given in Def-

initions 1.2-1.5, which provides a description of the time evolution of some open
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quantum system up to a particular point in time, under the assumption that the

system was initially uncorrelated with the environment.

2. One can provide a time-independent superoperator of the form given in Theorem

1.6, which provides a description of the evolution of an open quantum system via

a one-parameter semigroup of quantum channels.

3. One can provide a time-dependent superoperator of the form given in Theorem

1.7, which provides a description of the evolution of an open quantum system via

an evolution family of quantum channels.

As of yet we have not however discussed a method to specify the dynamics of an open

quantum system evolving via an evolution family which is not necessarily an evolution

family of quantum channels. This class of dynamics is particularly interesting for a

variety of reasons. Firstly, while there are physical systems (especially for instance in

quantum optics [163]) which do satisfy the microscopic assumptions necessary to derive

the time-local master equations given in eqs. (1.52) and (1.56), for many realistic physical

systems, in a wide variety of contexts, these assumptions are not satisfied. Secondly,

it is often within this class of systems that a plethora of interesting “memory effects”

may be observed [159]. In order to facilitate the discussion around such systems, we will

from now on refer to such evolution families as indivisible, and we provide the following

definition to make this notion precise:

Definition 1.6. An evolution family of linear superoperators {T (t, s)}|t≥s≥0 is called

indivisible if there exists some tf ≥ ti ≥ 0 for which T (tf , ti) is not a quantum channel.

Before we can continue, it is also necessary to define the slightly refined notion of a

completely positive indivisible evolution family:

Definition 1.7. An indivisible evolution family of linear superoperators {T (t, s)}|t≥s≥0

is called completely positive if T (t, 0) is a quantum channel for all t ≥ 0.

As quantum channels are the most general class of linear superoperators which pre-

serve density matrices (physical states), we therefore see that being completely positive

is actually a necessary requirement for an indivisible evolution family to describe the evo-

lution of a physically plausible open quantum system. If an evolution family is not com-

pletely positive, it means that there exists some time t for which T (t, 0) is not a quantum

channel, and therefore there exists some initial state ρ(0) for which ρ(t) = T (t, 0)
(
ρ(0)

)

is not a density matrix, and therefore does not represent a physical state. With this in
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mind we would therefore now like to present potential methods for specifying completely

positive evolution families. Unfortunately however, this case is significantly more com-

plex than the cases previously discussed, and is in fact still an open and active research

direction. As a result we will not attempt to present all current approaches and results,

and will rather briefly mention just two specific methods. For a more complete overview,

we refer to the reviews [159,165].

The first potential approach is through time-local time-dependent master equations

in the GKSL form, as shown in eq. (1.56), but with dissipation rates γk(t) which may be

negative for some periods of time. While the corresponding time-dependent generator

will certainly generate an indivisible evolution family, a concise and general statement

of the conditions which need to be satisfied by the dissipation rates in order for the

evolution family to be completely positive is currently not known. Despite the lack of

a general criterion, there are some simpler cases in which conditions are known, and

which are useful for exploring a variety of phenomena. As an example, if we consider

time-dependent generators of the form

L(t)(·) =

m∑

j=1

γ̃j(t)Lj(·), (1.57)

where each Lj is the time-independent generator of an OPSG of quantum channels, and

[Li,Lj ] = 0 for all i, j, then via the GKSL theorem and the properties of time-ordered

exponentials it is possible to show that L(t) will generate a completely positive indivisible

evolution family provided

Fj(t) =

∫ t

0
γ̃j(s)ds ≥ 0, (1.58)

for all j and for all t [168].

The second approach that we will briefly mention is that of time non-local memory

kernel master equations [165, 168, 169]. In this approach, one specifies a memory kernel

K(tf , ti) ∈ B(B(H)), and the dynamics of the system are then described by an integro-

differential equation of the form

d

dt
ρS(t) =

∫ t

0
K(t, τ)

(
ρ(τ)

)
dτ. (1.59)

In this phenomenologically motivated approach, which attempts to explicitly take into

account the memory effects in such systems, the state of the system at some time t ≥ 0

clearly depends on the history of the state for all times 0 ≤ τ ≤ t. While sufficient

conditions on the memory kernel, for eq. (1.59) to describe time evolution via a com-
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pletely positive evolution family, have been known for some time [169], very recently

necessary and sufficient conditions have been formulated [170]. These conditions enable

both the analysis of previously suggested classes of memory kernels [159, 165], as well

provide a framework for the formulation of new classes of completely positive memory

kernel equations. Before moving on, we quickly mention one particular class of mem-

ory kernels, which provides a clear connection with Markovian semigroup dynamics and

provides some physical intuition towards the “memory” interpretation of such integro-

differential equations. In particular, if we consider homogenous memory kernels of the

form

K(t, s)(·) = K̃(t− s)L(·), (1.60)

where L is the generator of an OPSG of quantum channels, then we see that (1.59)

reduces to a time-independent master equation in GKSL form in the limit that K̃(t− s)
tends to a delta function [165].

At this stage we have managed to obtain a broad, if not entirely complete, overview

of the methods and approaches for intrinsically specifying the dynamics of an open

quantum system. As will be detailed in Section 1.5, a selection of these methods will

be of interest to us in the remainder of this thesis as the fundamental starting point for

the design of digital and digital/analog simulation methods. Before continuing however,

we note for completeness that while intrinsic descriptions are of interest to us in this

work, there are definitely physical scenarios in which a description of the global system is

both more convenient and physically relevant. This is especially true in the case of open

quantum system dynamics via indivisible evolution families, where, as we have seen,

explicitly completely positive intrinsic descriptions may be hard to obtain. In this case,

a particularly convenient description is often obtained by assuming that the environment

can be modelled by a (potentially infinite) ensemble of harmonic oscillators, after which

the global microscopic dynamics can be specified by providing the system Hamiltonian

and the spectral density of the environment, which specifies the coupling strength of the

system to each mode of the environment. We refer to [162] for more details, as well as

discussion of which spectral densities result in equations of motion in the GKSL form.

1.4.3 Previous work

Given the above formalism for specifying the dynamics of open quantum systems, we

will now proceed to survey a selection of previously suggested methods for the simulation

of a variety of open quantum systems. As this survey will primarily serve as a vehicle to

provide the context for the contributions of this thesis, which will be detailed in Section
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1.5, we will focus on digital, digital/analog and algorithmic methods. Despite this focus

here, it is essential to briefly acknowledge that an analog approach to the simulation

of open quantum systems has in fact also been widely successful, particularly as a tool

for the preparation of non-equilibrium steady states of many-body driven-dissipative

systems. For details, we refer to the general reviews of quantum simulations in trapped

ions [64,171], ultracold quantum gases [172], superconducting circuits [110] and photonic

systems [173], all of which make mention of the current platform-specific state of the art

regarding analog simulation of open quantum systems, sometimes known as “reservoir

engineering”.

As in Section 1.4.2 we will start with methods for the simulation of quantum channels,

describing discrete time-evolution up to a specific point in time, under the assumption of

an initially uncorrelated system/environment state. In this direction, the first proposal

for the simulation of quantum channels was in fact made by Lloyd in his seminal 1996

paper on the simulation of local Hamiltonian systems [93]. In this paper, in a brief section

foreshadowing the importance and physical relevance of constructing methods for the

simulation of open quantum systems, Lloyd essentially recognises that the Stinespring

dilation, in the form detailed in Eq. (1.34), provides a natural method for the simulation

of quantum channels through unitary evolution of a dilated space. In particular, as

discussed in Section 1.4.2, Lloyd recognised that any quantum channel T ∈ B((B(HS '
Cd))) could be implemented on a universal quantum computer through the evolution

of the corresponding Stinespring unitary U ∈ B(H⊗Cd2), requiring only a dilation

space with dimension the square of the original system dimension, and the ability to

initialise the environment in a specified pure state. This natural strategy provided the

fundamental foundation for all subsequent quantum channel simulation methodologies,

and prompted the following questions: Firstly, might it be possible to design methods

which require smaller dilation spaces? Then secondly, can one construct upper and

lower bounds on the number of “difficult” fundamental gates, like CNOTs for example,

required for the simulation via dilation of different classes of quantum channels? With

regards to the first question, Lloyd conjectured that a dilation space of equal dimension

to the system may suffice if one is able to exploit initially mixed environment states,

setting the direction for future research.

Unfortunately it was very quickly realised that Lloyd’s conjecture was false. To be

more precise, it was shown that there exist single qubit quantum channels for which

a two qubit environment is necessary for the construction of a Stinespring dilation,

even if one allows initially mixed states of the environment [174]. This result dashed

hopes that straighforward digital Stinespring dilation strategies with optimally sized
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environments would be universally applicable, however it prompted research into more

sophisticated algorithmic methods. In particular, in 2002 Lloyd showed that if one

allowed for measurement of the system, computation on a classical device, and feedback

to the quantum simulator, then any quantum channel, acting on an arbitrarily sized

system, could be implemented via a procedure requiring only a single resettable ancilla

qubit [175].

Almost simultaneously, it was demonstrated how any single-qubit quantum channel

could be decomposed into the convex sum of so called “generalised extreme channels”,

which require only the minimal dilation space of a single qubit for implementation via

the Stinespring dilation [176]. Although this result was achieved primarily within the

context of investigations into the fundamental geometric properties of quantum chan-

nels, it suggested a natural algorithmic simulation methodology for the simulation of

an arbitrary quantum channel through classical random sampling of the generalised

extreme channels in its convex decomposition. Precisely this methodology was later

formalised by Wang and Sanders, through the construction of a “Solovay-Kitaev” type

algorithm for single-qubit channels [177]. To be more precise, directly inspired by the

fundamental Solovay-Kitaev algorithm in the context of closed quantum systems [90],

they constructed an algorithm which was able to provide an explicit quantum circuit,

consisting only of gates from any specified universal gate set, for the implementation

of an arbitrary single qubit quantum channel. In particular, through the construction

of their algorithm, which relied fundamentally on the geometric properties of quantum

channels, they were able to show that classical randomness, one ancilla qubit, one CNOT

gate and four single qubit operations suffice for the simulation of an arbitrary single qubit

quantum channel. Furthermore, this CNOT count was shown to be independent of the

universal gate set one chose.

Despite the fundamental difficulties inherent in gaining analytic insight into the ge-

ometric structure of the set of arbitrary quantum channels, Lloyd and Wang were later

able to generalise their single qubit result to the case of qudit channels on arbitrarily

sized Hilbert spaces [178]. In particular, through sophisticated methods for the approxi-

mate convex decomposition of qudit channels into the convex sum of generalised extreme

channels, they were able to construct a classical algorithm which yields a quantum circuit

(requiring classical randomness for the reconstruction of convex sums through classical

random sampling) for the simulation of any quantum channel. In particular, the circuits

generated by their algorithm required only a single ancillary qudit, and exhibited a time

complexity (number of fundamental gates) which was logarithmic with respect to the

allowed error tolerance and quadratic with respect to the Hilbert space dimension of the
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states on which the qudit channel acts (i.e. the dimension of the qudit).

Very recently Iten et al. have formalised the models in which all of the previous work

discussed here has taken place, and simultaneously constructed explicit upper and lower

bounds on the CNOT counts required within each model [179]. In particular, they define

the “Quantum Circuit Model” (QCM), in which only dilations and unitary operations

are allowed (as studied initially by Lloyd and Terhal [93, 174]), the “Random Quantum

Circuit Model” (RQCM), in which dilations, unitary operations and classical random-

ness is allowed (as studied by Wang and Sanders [177, 178]) and finally the “Measured

Quantum Circuit model” (MQCM), in which dilations, unitary operations, measurement

and classical feedback is allowed (as initially studied by Lloyd [175]). In all of these mod-

els, building on the previous work discussed here, they provide near optimal schemes,

with a focus on an algorithm within MQCM which improves upon Lloyd’s initial results

for channels from m to n qubits. This recent work has provided a rigorous formalism

for further research, and provided concrete lower bounds as a goal for future efforts.

Given this description of the state of the art concerning the simulation of individual

quantum channels, we now turn our attention to the simulation of Markovian semigroup

(MSG) dynamics, specified by a time-independent generator in the GKSL form, as shown

in eq. (1.51). Before we begin a discussion of the methods currently available, it is

essential to briefly discuss why such methods are even necessary! After all, a Markovian

semigroup is nothing but a one-parameter semigroup of quantum channels, and therefore

in principle any of the previously discussed methods for the simulation of quantum

channels could be used for the simulation of MSG dynamics up to a specific point in

time (i.e. for the simulation of any channel from the semigroup). The crux of the matter

however is that we are not provided with a conventional description of the quantum

channels (as discussed in Section 1.4.2) in the semigroup, but rather with a description

of the generator of the semigroup, and for an arbitrary generator there is no efficient

way to go directly from the generator to a useful description of the quantum channel

describing time evolution up to a specific point in time. This is completely analogous

to the situation in closed quantum systems discussed in Section 1.3, in which direct

exponentiation of the Hamiltonian to obtain the unitary propagator is not feasible, and as

a result one requires methods to efficiently decompose the Hamiltonian into constituents

which can be easily exponentiated, and from which the total unitary evolution can be

efficiently reconstructed. Similarly, in the open quantum systems context, in order to

obtain efficient algorithms we need methods for simulating the time evolution up to a

specific point in time directly from a description of the generator of the semigroup of

quantum channels.
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Once again, the first suggestion in this direction was by Lloyd in his seminal 1996 pa-

per [93]. Although extremely vague and devoid of details, Lloyd suggested that it might

be possible to utilise the naturally occurring dissipation within a universal quantum

computer to facilitate the simulation of a master equation in the GKSL form through

an “open” simulation of the system Hamiltonian, in which dissipative effects are delib-

erately not suppressed. In light of our previous discussions, we recognise in this idea

the seeds of the notion of “dissipation as a resource” [65]. Although it would take some

time for this notion to be satisfactorily formalised, once again this original paper set the

general direction for future research.

The first formal contribution in this direction was made by Bacon et al. in 2001,

in which they explicitly constructed a universal set of generators for the simulation of

arbitrary Markovian dynamics of a single qubit [180]. To be more precise, they provided

a set of MSG generators, parameterised by three continuous parameters, which, in the

spirit of the decomposition/recombination approach discussed in Sec 1.3, they showed

was universal in the sense that any MSG could be simulated provided one could simu-

late the MSG’s specified by generators within the universal set, and perform arbitrary

unitary basis transformations. This work, very much a first attempt at developing a set

of rules analogous to “Childs’ rules” for open quantum systems (Andrew Childs was in

fact a co-author of the work), left open a plethora of interesting open questions. In par-

ticular, the first open question was whether the simulations of channels from semigroups

generated by elements of the universal set could be efficiently recombined - i.e. the

issue of generalising the SLT results for closed quantum systems into the superoperator

context, and thereby rigorously proving the efficiency of recombination, was left open.

The next set of open questions concerned the construction of methods for the simula-

tion of semigroups generated by elements of the universal set, as efficient methods for

the simulation of these systems is clearly a necessary precondition for this decomposi-

tion/recombination strategy to yield an efficient algorithm. This is directly analogous to

how the availability of methods for the efficient simulation of strictly-local Hamiltonians

is a keystone of Lloyd’s decomposition/recombination algorithm for the simulation of

local Hamiltonians [93]. Finally, the question as to the structure and dimension of the

universal set for arbitrary MSG’s was left open, although the authors conjectured that

for a quantum system with Hilbert space H ' Cd a set of generators parameterised by

d2− 3 parameters would be necessary. As will be discussed in Section 1.5, the questions

arising from this work provide the foundations for the new results provided in Chapters

2 and 3 of this thesis, which serve to provide explicit answers to these questions.

Roughly concurrently to the work by Bacon et al., but in a completely different di-
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rection, there were a variety of proposals for the simulation of MSG dynamics inspired

by collision models [181]. In this approach, the dynamics of the open quantum system,

evolving via a master equation in the GKSL form, is modelled through the concep-

tual framework of an isolated system which constantly undergoes a series of discrete

“collisions” with a stream of “environment particles”. This collision model framework

naturally suggests a methods for the simulation of MSG dynamics via discretised coher-

ent simulations exploiting a continually refreshed ancilla system, and certainly exhibits

conceptual appeal. Unfortunately however suggestions for moving beyond the original

proposals for simulation of single qubit systems have not yet been developed.

The next major event in the development of methods for the simulation of open

quantum systems came in 2011, from the Innsbruck groups of P. Zolller and R. Blatt. In

particular, building on two decades of progress in the experimental control over atomic

and trapped ion systems, they were able to propose and realise a variety of methods

for the digital/analog simulation of a plethora of Markovian dissipative spin models

[66, 109, 146, 171, 182, 183]. In particular, in both Rydberg atom based and trapped ion

systems, it was demonstrated how platform specific global entangling operations, such as

the MS gate in trapped ions [62,63], could be used to digitally implement complex many-

body spin interactions, which when augmented with controlled dissipation, realised for

example by optical pumping, allowed for the simulation of specific classes of dissipative

spin models. This theoretical work, and the accompanying small scale experimental

implementations, demonstrated for the first time the true practical potential of both

digital/analog methodologies, and dissipation as a resource. In effect, this work has

layed the foundation for non-universal approaches to quantum simulation of physically

relevant models, which, as demonstrated in these works, often do not require the full

power of universal quantum computers, and benefit strongly from a deep understanding

of the physics of the simulator itself.

Given the foundation provided by the groundbreaking work of the Innsbruck groups,

a relatively large number of proposals have emerged in the last few years which seek to ei-

ther improve the efficiency of previous methods, extend the applicability of the approach,

or provide conceptual frameworks which are platform agnostic. In particular, there have

been a variety of proposals for how one might formalise experimentally plausible funda-

mental “dissipative gadgets”, or “dissipative modules”, through which the simulation of

arbitrary Markovian open quantum systems could be achieved [152,184,185] - a goal and

strategy which is in line with the vision of the original work by Bacon et al. [180], but

informed by the recent experimental successes of the Innsbruck groups. In the language

of quantum simulations utilised here, these dissipative modules are essentially dissipative

50



1.4. OPEN QUANTUM SYSTEMS

analog building blocks, motivated by experimental plausibility, but through which some

measure of universality can be obtained. Though the details of all these proposals differ,

and will not be fully discussed here, a common idea underlying all of the proposals is

to assume the existence and availability of a set of qubits, each of which is undergo-

ing some simple dissipation process, such as amplitude damping, and over which the

experimentalist has some measure of control. Given some type of fundamental analog

dissipative resource of this type, each of the proposals then puts forward different meth-

ods for combining these fundamental resources with conventional coherent resources, in

order to achieve the simulation of arbitrary Markovian generators. As mentioned above,

this work is clearly inspired by the practical success and pragmatic approach of the

digital/analog methods introduced by the Innsbruck groups, but with a view to achiev-

ing greater flexibility. However, as we have seen, universality and flexibility typically

comes at the price of experimental plausibility, and the future of this line of research

will depend strongly on the experimental feasibility of the required dissipative modules.

Before continuing, we mention briefly a recent proposal in the same vein as the works

on dissipative modules discussed here, but with the goal of simulating arbitrary purely

dissipative Markovian systems [186].

In addition to the methods already discussed, we mention two recent innovative and

distinct conceptual approaches to the simulation of arbitrary Markovian open quantum

systems. The first approach, proposed by Dive et al., can be thought of as an extension

of the Stinespring dilation methodology for individual quantum channels to families

of quantum channels [187]. To be more precise, as we have discussed at length, the

Stinespring dilation provides a correspondence between a single quantum channel and a

unitary operation on a dilated space. In Ref. [187] the authors consider the possibility

of extending this approach to a correspondence between a family of quantum channels

and a (controlled time-dependent) Hamiltonian on a finite minimally sized dilated space,

constructed in such a way so as to ensure that the time evolution of the open quantum

system, via the family of channels, can be simulated up to any point in time through a

simulation of the corresponding Hamiltonian on the dilated space. This approach is both

natural and conceptually extremely elegant, and allows for the exploitation of the by now

well developed toolbox for coherent quantum control. In particular, the authors show

that such a Hamiltonian (at least approximately) can be constructed for any Markovian

semigroup, and as such the extent to which this idea can be realised now depends on

our ability to implement the required controlled Hamitonians.

The second method we will mention for the simulation of Markovian semigroup

dynamics is an algorithmic approach proposed by Di Candia et al. [188]. In particular,
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using perturbation series techniques and leveraging previously proposed methods for the

calculation of multi-time correlation functions on a quantum computer, they show how

the expectation value of any physical observable can be obtained through a simulation

of the coherent part of the dynamics, and the calculation of perturbative corrections

extracted from the value of specific multi-time correlation functions. Once again, this

approach has considerable conceptual appeal, and adds to the toolbox of algorithmic

techniques with which it is hoped that the quantum resources required for the simulation

of open quantum systems can be drastically reduced.

Finally, very recently Childs. et al. have proposed a digital quantum simulation

method for the efficient simulation of Markovian quantum dynamics which is not nec-

essarily local, and which is specified by a sparse generator of a Markovian semigroup

of quantum channels [189]. In addition, they prove a “no fast-forwarding” theorem

for Markovian semi-group simulation, providing a fundamental limitations on the time

complexity of what may be achieved in this regard. This work provides a very natural

extension of the large body of work on simulation of sparse Hamiltonians into the open

quantum systems context [100–106] . In particular, as in the case of sparse Hamiltonian

simulation, this work opens up the potential of algorithmic applications of open quantum

system simulation.

At this stage we are now in a position to discuss various proposals for the simulation

of both divisible and indivisible evolution families. Firstly, in the case of evolution fami-

lies of quantum channels (divisible evolution families), M. Kliesch et al. have shown how

to efficiently simulate on a universal quantum computer the evolution of an open quan-

tum system via any local generator in the time-dependent GKSL form [153]. Essentially

their method is a straightforward extension of Lloyd’s seminal method for the simulation

of local Hamiltonians. To be more precise, they first observe that any strictly-local time-

independent generator in GKSL form can be simulated efficiently on a universal quantum

computer, via a straightforward implementation of the Stinespring dilation. Given this,

they then extend time-dependent SLT decompositions, developed for the simulation of

time-dependent local Hamiltonians, into the superoperator setting. These generalised

results prove rigorously that one can efficiently simulate any time-dependent local gen-

erator through the stroboscopic simulation of time-independent strictly-local generators,

which are obtained by averaging the time-dependent strictly-local generator within the

stroboscopic time interval. Interestingly, this archetypal decomposition/recombination

result was published as the “Dissipative Quantum Church-Turing Theorem”, as it ef-

fectively provides a polynomial time reduction between any dissipative quantum com-

puting algorithm and a corresponding algorithm on a conventional universal quantum
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computer. As a result, this work proves that coherent quantum dynamics and the dy-

namics of open-quantum systems via divisible evolution families are equivalent from a

complexity-theoretic point of view, settling an open question asking whether dissipative

quantum computing might be a more powerful computational model. As discussed in

the following section, in Chapter 4 we extend the applicability of these results to a class

of indivisible evolution families of quantum channels.

The next algorithm we mention, proposed by Alvarez-Rodriguez et al., suggests an

algorithmic approach to the simulation of indivisible evolution families of quantum chan-

nels specified via a specific class of time non-local memory kernel master equations [73].

In a very similar spirit to the work in Ref. [188], the authors use perturbation theory

techniques to show how any such system can in fact be efficiently simulated through the

algorithmic recombination of simulations of Markovian semigroups, specified by time-

independent generators in the GKSL form. This approach has considerable conceptual

appeal, as it allows for one to leverage all the previously mentioned techniques for the

simulation of OPSG’s of quantum channels, for the simulation of specific phenomenolog-

ically motivated indivisible evolution families. Once again, this algorithm demonstrates

the considerable potential algorithmic approaches hold for leveraging currently avail-

able or simpler to implement technologies. Finally, we mention a very recent simulation

method proposed by Chenu et al., which proposes to implement the evolution of (possibly

indivisible) evolution families of quantum channels, specified via strictly-local generators

in the GKSL form (but with possible negative rates), through the simulation of suitable

stochastic Hamiltonians, in which the strength of the coherent many-body interactions

are modulated via a stochastic process [190]. Once again, this proposal leverages a

hybrid methodology, in this case exploiting the availability of classical randomness, to

perform a simulation of a complicated system with significantly reduced experimental

resource requirements.

1.5 Structure and contributions

From the discussion in the previous section it is clear that there are currently a plethora

of different approaches to the simulation of open quantum systems, all of which exhibit

context dependent advantages and weaknesses, and therefore suggest natural open ques-

tions and directions for new research. Given this context, and the strong motivations

already discussed, in the following chapters we will explicitly address a selection of these

natural questions, as detailed below. Finally, we will conclude this thesis in Chapter 5

with some perspectives on the consequences of the work presented here, perspectives for
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new research directions, and some pressing remaining open questions.

1.5.1 Chapter 2

In this chapter we resolve a selection of the open questions remaining from the founda-

tional work of Bacon et al. [180], using tools and techniques from both digital Hamilto-

nian simulation methods and methods for the simulation of individual quantum channels.

In resolving these questions we provide a complete algorithm for the efficient digital quan-

tum simulation of arbitrary single qubit Markovian open quantum systems. To be more

precise, as discussed in the previous section, Bacon et al. have explicitly constructed a

set of generators for the Markovian dynamics of a single qubit, which is universal in the

sense that any MSG of single qubit channels can be simulated provided one can simulate

the MSG’s specified by generators within the universal set, and perform arbitrary single

qubit unitary basis transformations. In Chapter 3 we extend this result by making two

distinct contributions. Firstly, by generalising the most recent SLT results from Hamil-

tonian simulation [97] into the super operator context, we rigorously and constructively

prove that efficient simulation of arbitrary single-qubit MSG dynamics can be achieved

through stroboscopic simulations of semigroups generated by elements of the universal

set. Secondly, exploiting the methodology introduced by Wang and Sanders for the sim-

ulation of abitrary qubit quantum channels [177], we provide an explicit quantum circuit

(requiring classical randomness) for the efficient digital quantum simulation of any MSG

generated by an element of the previously constructed universal set, which requires only

a single ancilla qubit and a single CNOT gate. Together these two contributions allow

us to construct an efficient digital quantum algorithm for simulation of any Markovian

dynamics of a qubit, described by a semigroup of single qubit quantum channels {Tt}
specified by a generator L. This algorithm requires only single qubit and CNOT gates

and approximates the channel Tt = etL up to chosen accuracy ε, with slightly super-

linear cost O
(
(||L||(1→1)t)

1+1/2k/ε1/2k
)

for any integer k, which given a recently proven

“no fast-forwarding” theorem analogous to the Hamiltonian context [189], is close to

optimal.

1.5.2 Chapter 3

From both a foundational perspective and the results presented in Chapter 2, building

on the groundbreaking work of Ref. [180], it is clear that the existence and specifica-

tion of a universal set of MSG generators is a powerful tool for the construction of

algorithms for the efficient simulation of Markovian open quantum systems. As such,
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in this chapter, using the recombination framework introduced in [180], we explicitly

construct a universal set of MSG generators for quantum systems of any finite Hilbert

space dimension. To be more precise, for quantum systems of Hilbert space dimension

d, we explicitly construct a universal set of semigroup generators, parametrised by d2−3

continuous parameters, and prove that within this particular recombination framework

a necessary and sufficient condition for the dynamical simulation of a d dimensional

Markovian quantum system is the ability to implement a) quantum channels from the

semigroups generated by elements of the universal set of generators, and b) unitary op-

erations on the system. This result effectively resolves a long standing open question

originally posed in Ref. [180]. Furthermore, utilising superoperator SLT decompositions

developed in Chapter 2, we provide an explicit algorithm for simulating the dynamics

of an arbitrary Markovian open quantum system through simulations of MSG’s gen-

erated by elements of the universal set. In particular, we prove that this algorithm is

efficient when the number of distinct Lindblad operators (representing physical dissi-

pation processes) in the GKSL form of the generator scales polynomially with respect

to the number of particles in the open quantum system. As done in Chapter 2, this

result clearly allows one to focus both theoretical and experimental effort on designing

methods for the simulation of MSG’s generated by elements of the universal set, and in

principle any of the currently existing methods discussed in Section 1.4.3 may be utilised

for this task, depending on the context and the experimental constraints. As such, this

result provides a powerful practical tool for the simulation of arbitrary Markovian open

quantum systems, which is able to leverage the advantages of any other method for

the simulation of Markovian semigroups. From an alternative perspective, under the

assumption that the dynamics of MSG’s generated by elements of the universal set can

be considered “standard resources”, this algorithm provides an efficient digital/analog

methodology for the simulation of a large class of physically relevant Markovian open

quantum systems.

1.5.3 Chapter 4

In this chapter we focus our attention on the simulation of indivisible evolution families

of quantum channels, specified by generators in the GKSL form but with possibly neg-

ative rates. In particular, we concern ourselves with many-body open quantum systems

of this type, which as discussed earlier promise a wealth of fascinating phenomenology

for which we currently lack a rigorous understanding. To be more precise, we provide

in Chapter 4 the following results: Firstly, we prove rigorous SLT type results for sys-
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tems of this type, which allows us to bound the error made when simulating the time

evolution of an indivisible evolution family generated by a local time-dependent genera-

tor through the stroboscopic implementation of its indivisible strictly local constituents.

These results extend into the indivisible setting the time-dependent superoperator SLT

decompositions introduced in Ref. [153], and through the introduction of the concept

of local indivisibility, a new tool for the study of non-Markovianity in many-body open

quantum systems, we are able to prove a natural correspondence with the results of

Ref. [153] in the limit of local generators which are the sum of divisible strictly-local

constituents. Secondly, using the notion of quantum instruments [167], we provide an

algorithmic method for the simulation of system propagators which are not quantum

channels. This method then allows us to propose a complete algorithmic decomposi-

tion/recombination type algorithm for the simulation of indivisible evolution families

of quantum channels specified by time-dependent local generators in the GKSL form,

but with possibly negative dissipation rates. In particular, this algorithm exploits the

proposed algorithmic simulation method for non-completely positive propagators as a

subroutine for the implementation of the short-time stroboscopic dynamics required by

the SLT decomposition. Finally, we analyse in detail the complexity of the proposed

algorithm with respect to all relevant physical parameters, which allows us to show that

for weakly locally indivisible systems this algorithm provides an experimentally feasible

approach to the simulation of systems of this type.

56



BIBLIOGRAPHY

Bibliography

[1] R. P. Feynman. Simulating physics with computers. Int. J. Theoret. Phys., 21:467,

1982.

[2] I. M. Georgescu, S. Ashhab, and F. Nori. Quantum simulation. Rev. Mod. Phys.,

86:153, 2014.

[3] B. C. Sanders. Efficient Algorithms for Universal Quantum Simulation. In G. W.

Dueck and D. M. Miller, editors, Reversible Computation: 5th International Con-

ference, RC 2013, Victoria, BC, Canada, July 4-5, 2013. Proceedings, pages 1–10.

Springer, 2013.

[4] K. L. Brown, W. J. Munro, and V. M. Kendon. Using quantum computers for

quantum simulation. Entropy, 12:2268, 2010.

[5] E. M. Lifshitz and L. P. Pitaevskii. Statistical Physics, Part 2: Theory of the

Condensed State., volume 9 of Landau and Lifshitz: Course of Theoretical Physics.

Butterworth-Heinemann, 1980.

[6] R. B. Laughlin. Anomalous quantum hall effect: An incompressible quantum fluid

with fractionally charged excitations. Phys. Rev. Lett., 50:1395, 1983.

[7] D. C. Tsui, H. L. Stormer, and A. C. Gossard. Two-dimensional magnetotransport

in the extreme quantum limit. Phys. Rev. Lett., 48:1559, 1982.

[8] E. W. Carlson, V. J. Emery, S. A. Kivelson, and D. Orgad. Concepts in High

Temperature Superconductivity, pages 1225–1348. Springer, Berlin, Heidelberg,

2008.

[9] X.-G. Wen. Quantum Field Theory of Many-Body Systems. Oxford University

Press, 2007.

[10] B. Zeng, X. Chen, D.-L. Zhou, and X.-G. Wen. Quantum information meets

quantum matter - from quantum entanglement to topological phase in many-body

systems. arXiv:1508.02595 [cond-mat.str-el], 2015.

[11] A. Y. Kitaev. Fault-tolerant quantum computation by anyons. Ann. Phys., 303:20,

2003.

[12] J. W. Gibbs. Elementary principles in statistical mechanics. C. Scribner: New

York, 1902.

57



CHAPTER 1. INTRODUCTION

[13] L. D. Landau and E. M. Lifshitz. Statistical Physics, volume 3 of Landau and

Lifshitz: Course of Theoretical Physics. Butterworth-Heinemann, 3rd edition,

1980.

[14] C. Gogolin and J. Eisert. Equilibration, thermalisation, and the emergence of

statistical mechanics in closed quantum systems. arXiv:1503.07538 [quant-ph],

2015.

[15] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore. Colloquium :

Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys.,

83:863, 2011.

[16] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol. From quantum chaos and

eigenstate thermalization to statistical mechanics and thermodynamics. Adv. in

Phys., 65(3):239, 2016.

[17] J. Eisert, M. Friesdorf, and C. Gogolin. Quantum many-body systems out of

equilibrium. Nature Physics, 11:124, 2015.

[18] R. Nandkishore and D. A. Huse. Many-Body Localization and Thermalization in

Quantum Statistical Mechanics. Ann. Rev. Cond. Mat. Phys., 6:15, 2015.

[19] J. M. Maldacena. The large N limit of superconformal field theories and super-

gravity. Adv. Theor. Math. Phys., 2:231, 1998.

[20] H. Nastase. Introduction to AdS/CFT. arXiv:0712.0689 [hep-th], 2007.

[21] M. Van Raamsdonk. Lectures on Gravity and Entanglement. arXiv:1609.00026

[hep-th], 2016.
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Chapter 2

Simulation of single-qubit open

quantum systems

A quantum algorithm is presented for the simulation of arbitrary Markovian dynamics

of a qubit, described by a semigroup of single qubit quantum channels {Tt} specified

by a generator L. This algorithm requires only single qubit and CNOT gates and

approximates the channel Tt = etL up to chosen accuracy ε, with slightly superlinear cost

O
(
(||L||(1→1)t)

1+1/2k/ε1/2k
)

for any integer k. Inspired by developments in Hamiltonian

simulation, a decomposition and recombination technique is utilised which allows for the

exploitation of recently developed methods for the approximation of arbitrary single-

qubit channels. In particular, as a result of these methods the algorithm requires only a

single ancilla qubit, the minimal possible dilation for a non-unitary single-qubit quantum

channel.

This chapter has been been previously published in [1].
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2.1. INTRODUCTION

2.1 Introduction

One of the primary motivations for the development of quantum computation is the

possibility of efficiently simulating quantum systems [2–4], as suggested in Feynman’s

seminal paper on the topic [5]. The natural first step towards this vision is the simu-

lation of closed quantum systems, undergoing Hamiltonian generated unitary evolution,

and over the past two decades consistent progress has been made in this field. Initially,

Lloyd demonstrated a technique for the efficient simulation of sufficiently local Hamilto-

nians [6], and over time new methods and techniques have been introduced which have

generalised the class of Hamiltonians which can be efficiently simulated while simulta-

neously tightening the relevant cost and error bounds [7–14].

However, equally as important is the development of methods for the simulation

of open quantum systems [15, 16], crucial for enhancing our understanding of non-

equilibrium dynamics and thermalisation in a wide range of systems, from damped-

driven spin-boson models to complex many fermion-boson models [3, 4]. In particular,

one would like to begin by simulating quantum channels, representing the most general

quantum dynamics possible, and dynamical semigroups of quantum channels, which de-

scribe Markovian dynamics - continuous time processes resulting from interactions with

a Markovian environment in the Born approximation [17]. A straightforward methodol-

ogy for the simulation of these systems is instantly suggested by the Stinespring dilation

theorem [18], in which one introduces an initially pure state environment, with size the

square of the system size in the general case, such that one may simulate the open sys-

tem dynamics of the system via Hamiltonian dynamics of the larger system-environment

combination. Initially Lloyd [6] conjectured that this approach may be improved by util-

ising environments initialised in a mixed state, but this conjecture was quickly falsfied

by Terhal et al. [19], who prove that in the worst case an environment of dimension n2

is necessary for the simulation of n dimensional quantum channels via the Stinespring

dilation.

An important early contribution was also made by Bacon et al. [20], who provide a

method for decomposing the generators of Markovian evolution into simpler “primitive”

generators. In particular, they demonstrate that for the single qubit case universal sim-

ulation of Markovian dynamics requires only the ability to simulate a specific continuous

one parameter family of generators, as well as the ability to implement the recombination

methods of linear combination and unitary conjugation. The development of collision

models [21] for understanding quantum decoherence processes also suggests a construc-

tive approach for the simulation of open quantum systems, and combining these insights
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with the results of Bacon et al. allowed for the development of collision model based

methods for the simulation of single-qubit unital semigroups, generalised phase-damping

processes and indivisible qubit channels [22,23].

More recently the notion of dissipative quantum computation and state prepara-

tion [24] has been introduced, in which under the assumption of Markovian dynamics

described by a Lindblad master equation, the interactions of a system with its envi-

ronment are no longer considered destructive, but are instead utilised to drive a desired

computational process. This formalism offers a natural setting for the simulation of open

quantum systems and research in this direction has resulted in successful experimental

demonstrations of the dissipative simulation of complex many-body spin models [25,26].

In addition, dissipative quantum computation has allowed for alternative approaches

to state preparation [27–36] and universal quantum computation [37, 38]. Importantly

however, it has recently been shown that dissipative quantum computing is no more

powerful than the traditional circuit model - the so called “Dissipative Church Turing

Thesis” [39]. Specifically, it was shown that time evolution of an open quantum system

can be efficiently simulated by a unitary quantum circuit of size scaling polynomially in

the simulation time and size of the system.

Given these previous results we address in this paper the problem of construct-

ing explicitly these efficient quantum circuits for the simulation of arbitrary Marko-

vian processes within the traditional circuit model of quantum computation. In par-

ticular, we generalise into the super-operator regime recombination results, based on

higher order Suzuki-Lie-Trotter formulae [40, 41], from recent Hamiltonian simulation

approaches [9–11]. These results allow us to efficiently implement the recombination

methods of Bacon et al. [20], such that in order to construct efficient quantum circuits

for the simulation of arbitrary Markovian dynamics of a qubit it is only necessary to con-

struct efficient circuits for the simulation of semigroups corresponding to the continuous

one parameter family of generators defined by Bacon et al. [20]. Furthermore, recently

Wang et al. [42] have shown how to utilise convex properties of the set of single-qubit

quantum channels [43] to simulate any such channel via unitary circuits requiring only

a single ancilla qubit, as opposed to the two-ancilla qubits required by straightforward

implementations of the Stinespring dilation. We utilise these results for the construction

of circuits for the simulation of the semigroups required by Bacon et al. [20], such that

after recombination we obtain an explicit unitary circuit, with size scaling slightly su-

perlinearly with respect to time, consisting only of CNOT gates and single qubit gates

and requiring only a single ancilla qubit, for the simulation up to any desired accuracy

of an arbitrary single-qubit quantum dynamical semigroup.
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The structure of this chapter is as follows: We begin by introducing the setting

and rigorously defining the problem we wish to address. Following this we proceed in

Section 2.3 by presenting the method, introduced in [20], for the decomposition of an

arbitrary generator of a single-qubit Markov semigroup. In Section 2.4 we generalise

results from [10] into the setting applicable for the problem addressed here, effectively

demonstrating a method for the efficient recombination of the generators decomposed

in Section 2.3. Finally, in Section 2.5 we exploit the methods introduced in [42] in

order to provide explicit efficient unitary circuits for the semigroups corresponding to

the generators resulting from the decomposition in Section 2.3.

2.2 Problem and setting

Given a system with finite dimensional Hilbert space HS = Cd, a quantum state of this

system is described by a density matrix ρ ∈Md(C) ∼= B(HS), where ρ ≥ 0, tr[ρ] = 1 and

B(HS) is the algebra of bounded operators on HS . Quantum channels [17] provide the

most general framework for describing the evolution of quantum states, and are given

by completely positive, trace-preserving (CPT) maps,

T : B(HS)→ B(HS). (2.1)

Given any quantum channel T , there exists Kraus operators {Kj ∈ B(HS)}, such that

T (ρ) =

r∑

j=1

KjρK
†
j . (2.2)

In the above,
∑r

j=1K
†
jKj = 1 and r = rank(τ) ≤ d2 is the minimal number of Kraus

operators, with τ ∈ B(HS ⊗HS) the Jamiolkowski state,

τ = (T ⊗ 1S)|Ω〉〈Ω|, (2.3)

where 1S is the identity on HS and |Ω〉 ∈ HS ⊗ HS is any maximally entangled state

[17]. Furthermore, it is always possible to dilate the total Hilbert space in order to

include an environment, such that the action of the channel on the system can be viewed

as arising from the Hamiltonian generated unitary evolution of the total system and

environment. Technically, it is always possible to introduce a dilation space HE with
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dim(HE) = [dim(HS)]2 such that there exists a unitary matrix U ∈Md3(C) where

T (ρ) = trE
[
U(|e0〉〈e0| ⊗ ρ)U †

]
(2.4)

and |e0〉〈e0| ∈ HE is some initial state of the environment. However, in the case that d

is a factor of rank(τ) then it is possible to construct a dilation with dim(HE) = r and

U ∈ Mdr(C) - such a dilation space is called a minimal dilation. Quantum channels as

described above provide a complete picture of discrete time evolution. However, in this

paper we are concerned with the simulation of Markovian continuous time evolutions,

described by a continuous one parameter semigroup of quantum channels {Tt} satisfying

TtTs = Tt+s, T0 = 1, (2.5)

for t ∈ R+, where ρ(t) = Tt
(
ρ(0)

)
. Every continuous one parameter semigroup of

quantum channels {Tt} has a unique generator

L : B(HS)→ B(HS), (2.6)

such that

Tt = etL =

∞∑

k=0

tkLk
k!

(2.7)

and L satisfies the differential equation

d

dt
ρ(t) = L

(
ρ(t)

)
, (2.8)

known as a master equation. Furthermore, a linear super-operator L : B(HS)→ B(HS)

is the generator of a continuous dynamical semigroup of quantum channels, if and only

if it can be written in the form

L(ρ) = i[ρ,H] +
d2−1∑

k,l=1

Al,k
(
[Fk, ρF

†
l ] + [Fkρ, F

†
l ]
)
, (2.9)

where H = H† ∈ Md(C) is Hermitian, A ∈ Md2−1(C) is positive semidefinite and {Fi}
is a basis for the space of traceless matrices inMd(C). Eq. (2.9) is known as the Gorini,

Kossakowsi, Sudarshan and Lindblad form of the quantum Markov master equation and

we refer to A as the GKS matrix [17]. For the remainder of this paper we choose the basis

{Fi}, without loss of generality, to be the normalized Pauli operators 1√
2
{σx, σy, σz}.
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In order to quantify the error in approximations of quantum channels we will utilise

the (1 → 1)-norm for super-operators, where in general the (p → q)-norm of a super-

operator is defined as [44]

||T ||p→q := sup
||A||p=1

||T (A)||q. (2.10)

The (p → q)-norm defined above is induced from the Schatten p-norm of an opera-

tor, defined as ||A||p :=
(
tr(|A|p)

) 1
p . We use the (1 → 1)-norm as this is induced by

the Schatten 1-norm, which corresponds up to a factor of 1/2 with the trace distance,

dist(ρ, σ) := sup0≤A≤1 tr
(
A(ρ − σ)

)
, arising from a physical motivation of operational

distinguishability of quantum states [37]. At this stage it is possible to succinctly state

the problem which is addressed in this chapter.

Problem 2.1. Given a continuous one parameter semigroup of single-qubit quantum

channels {Tt}, generated by a generator L, specified by a GKS matrix A ≥ 0 ∈ M3(C)

and a Hamiltonian H = H† ∈M2(C), find a quantum circuit, acting on only the system

qubit and a single ancilla qubit and using at most poly
(
||L||(1→1), t, 1/ε

)
single qubit and

CNOT gates, that approximates the superoperator Tt = etL such that the maximum error

in the final state, as quantified by the 1-norm, is at most ε.

It is important to note that each member Tt of an arbitrary semigroup of single-qubit

channels {Tt} is itself a single-qubit channel, and therefore in principle, using the meth-

ods of Wang et al. [42], can be simulated within 1-norm distance ε using O(log3.97(1/ε))

gates from any specified single qubit set S and one CNOT, acting on only the system

qubit and a single ancilla. However in order to utilise this method, which may even

be improved [45, 46] to require only O(log(1/ε)) such gates, it is necessary to first ob-

tain a decomposition of the channel Tt into a convex sum of quasi-extreme channels,

which in order to do explicitly requires specification of the generator. Therefore in order

to exploit these methods for the simulation of a semigroup generated by an arbitrary

generator, we utilise the decomposition/recombination strategy outlined in Section 4.1.

This strategy is inspired by approaches in Hamiltonian simulation [9–11] and as such

we simultaneously adopt the notion of efficiency developed within that context. Due to

our restriction to the single qubit case our notion of efficiency has no dependence on

the system size, which remains a constant. However, as in [42], we restrict ourselves

to quantum circuits requiring only a single ancilla qubit, the smallest possible minimal

dilation for a non-unitary single-qubit channel.

As we are restricting ourselves to single-qubit channels we begin by recalling some
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geometric properties of single qubit states [43]. As {I, σx, σy, σz} forms a basis for

M2(C), every density matrix ρ can be written in this basis as ρ = 1/2(1+ r · σ) where

σ = (σx, σy, σz) and r ∈ R3 with |r| ≤ 1. Any single qubit quantum channel can then

be represented in this basis by a unique 4× 4 matrix M , with the following structure:

M =

(
1 0

m M̃

)
, (2.11)

where M̃ is a 3× 3 matrix, 0 and m are row and column vectors respectively, and if we

define

T (ρ) = ρ′ = 1/2(1+ r′ · σ), (2.12)

then M defines an affine map via

r′ = M̃ · r + m. (2.13)

At this stage we can proceed to develop the solution to the problem defined above, as

per the strategy outlined in Section 2.1.

2.3 Decomposition of arbitrary generator

As outlined in the description of our strategy, the first step is to provide a decomposition

of an arbitrary generator L, specified as per (2.9) by a GKS matrix A ≥ 0 ∈ M3(C)

and a Hamiltonian H = H† ∈ M2(C), into the combination of generators of simpler

semigroups. This problem was initially addressed by Bacon et al. [20] and we follow

their strategy here. As A ≥ 0 one can use the spectral decomposition to write,

A =

3∑

k=1

λkAk, (2.14)

and therefore via linearity of L

L = LH +

3∑

k=1

λkLk, (2.15)

where

LH(ρ) = i[ρ,H] (2.16)
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and

Lk(ρ) =

3∑

i,j=1

Ak,(i,j)
(
[Fj , ρF

†
i ] + [Fjρ, F

†
i ]
)
. (2.17)

Relabelling L0 := LH and defining λ0 = 1 we can then write

L =
3∑

k=0

λkLk, (2.18)

giving us that,

Tt = etL = exp
(
t

3∑

k=0

λkLk
)
. (2.19)

Furthermore, defining T
(k)
t′ := et

′Lk we see via a straightforward implementation of the

Lie-Trotter formula [40] that

Tt = lim
n→∞

[
3∏

k=0

e[tλk(Lk/2)]/n
0∏

k′=3

e[tλk′ (Lk′/2)]/n

]n
(2.20)

= lim
n→∞

[
3∏

k=0

T
(k)(
tλk
2n

)
0∏

k′=3

T
(k′)(
tλk′
2n

)
]n
. (2.21)

Using the language of [20] we say that Tt can be constructed via linear combination of

the semigroups {T (k)
t′ }. In Section 2.4 we present a method for the efficient recombina-

tion of linear combinations - i.e. we provide a method for the approximation of Tt, up

to arbitrary accuracy, using only a finite (polynomial in t) number of implementations

of channels from the constituent semigroups {T (k)
t }. Given such a method for the effi-

cient simulation of linear combinations, it is then clear that one can obtain an efficient

algorithm for the simulation of Tt, provided one can efficiently simulate the constituent

channels T
(k)
t .

However, as per [20], we can utilise basis transformations to further decompose the

constituent semigroups {T (k)
t }, and hence simplify the task of implementing channels

from these semigroups, which is tackled in Section 2.5. Firstly, note that for k = 1, Lk
simply generates Hamiltonian evolution, which can be simulated using a single unitary

operation on a single qubit. We therefore focus on the generators of dissipative evolution,

for which k ∈ [2, 4]. We begin by defining unitary conjugation of a channel Tt as the

procedure transforming Tt according to U†TtU , where U(ρ) = UρU † for some unitary

operator U . Unitary conjugation preserves all Markovian semigroup properties and is

clear that the effect of unitary conjugation is to apply Tt in an alternative basis. In order
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to use unitary conjugation to further decompose the semigroups {T (k)
t } we utilise the

following theorem, due to [20], establishing the manner in which unitary conjugation of

a semigroup {Tt} effects the GKS matrix defining the corresponding generator.

Theorem 2.1. For an N dimensional system, unitary conjugation of the semigroup

{Tt} by U ∈ SU(N) results in conjugation of the GKS matrix by a corresponding element

in the adjoint representation of SU(N).

One can then show [20] that given Ak, as per (2.14), there exists Gk ∈ SO(3), the

adjoint representation of SU(2), such that

Ak = GkA(θk)G
T
k , (2.22)

where

A(θk) =




cos2(θk) −i cos(θk) sin(θk) 0

i cos(θk) sin(θk) sin2(θk) 0

0 0 0


 (2.23)

for θk ∈ [0, π/4]. Therefore, as a result of Theorem 2.1 there exist unitary matrices

Uk ∈ SU(2) such that

T
(k)
t (ρ) = U †k

[
T

(θk)
t

(
UkρU

†
k

)]
Uk, (2.24)

where T
(θk)
t := etL(θk) and

L(θk)(ρ) =
3∑

i,j=1

A(θk),(i,j)

(
[Fj , ρF

†
i ] + [Fjρ, F

†
i ]
)
. (2.25)

In light of the above, we can then see that simulation of any channel from the semigroup

{T (k)
t } requires only simulation of channels from the semigroup {T (θk)

t }, along with

implementations of the single qubit unitary Uk.

2.4 Recombination

In this section we utilise methods developed within the context of Hamiltonian simulation

[9–11] to show that higher order Suzuki integrators [40,41] can be used to simulate Tt up

to arbitrary accuracy ε, using a finite sequence of implementations of T
(j)
t′ := et

′Lj . In

particular we wish to place an upper bound on the number of implementations of T
(j)
t′

required within this sequence.

Given the generator L =
∑m

j=1 Lj of a dynamical semigroup of quantum channels,
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as per (2.19) where m = 4, we begin by assuming that

||L1||1→1 ≥ ||L2||1→1 ≥ · · · ≥ ||Lm||1→1 (2.26)

and defining the normalised component generators L̂j = Lj/L1, where we have defined

L1 := ||L1||1→1. We then follow [10] and define the basic Lie-Trotter product formula

[40,41,47] as,

S2(L̂1, . . . , L̂m, λ) =
m∏

j=1

e(λ
2

)L̂j
1∏

j′=m

e(λ
2

)L̂j′ (2.27)

=

m∏

j=1

T
(j)
tλ

1∏

j′=m

T
(j′)
tλ

, (2.28)

where tλ = λ/(2L1). Suzuki’s higher order integrators are then defined using the recur-

sion relation

S2k(λ) = [S2k−2(pkλ)]2[S2k−2((1− 4pk)λ)][S2k−2(pkλ)]2, (2.29)

where pk = (4−41/(2k−1))−1 for k > 1 and for notational convenience we have used S2k(λ)

and S2k−2(λ) to denote S2k(L̂1, . . . , L̂m, λ) and S2k−2(L̂1, . . . , L̂m, λ) respectively. Note

that S2k(λ) consists of a product of

2(m− 1)5k−1 + 1 (2.30)

exponentials, so that we can define

Nexp = [2(m− 1)5k−1 + 1]x (2.31)

as the number of exponentials, and hence channels T
(j)
t′ , appearing in the expression

[S2k(t/r)]
x. In order to obtain the desired result, we then prove the following theorem,

a direct generalization of the work in [10] to the superoperator setting.

Theorem 2.2. Let 1 ≥ ε > 0 be such that 4met||L2||1→1 ≥ ε, then for any k ∈ N there

exists r such that

∣∣∣
∣∣∣exp

(
t
m∑

j=1

Lj
)
−
[
S2k(L̂1, . . . , L̂m, t/r)

]rL1

∣∣∣
∣∣∣
1→1
≤ ε (2.32)
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and the number of exponentials required is bounded by

Nexp ≤ (2m− 1)5k−1
[
L1t
(4emtL2

ε

)1/2k 4me

3

(5

3

)k−1]
(2.33)

where L2 := ||L2||1→1.

In order to prove Theorem 2.2 we first note that the following lemma can be proven

using the exact same proof as described in [10], provided one replaces the 1-norm with the

(1→ 1) norm and notes that ||T ||1→1 = 1 for any quantum channel T [39,44], as the proof

relies only on properties of the Taylor expansion of exponentials and generic properties of

the norm, which hold for both Schatten norms and the induced superoperator norms [44].

Lemma 2.1. For k ∈ N, dkλ < k + 1, dk = m(4/3)k(5/3)k−1 and

||L̂m||1→1 ≤ · · · ≤ ||L̂2||1→1 ≤ ||L̂1||1→1 = 1, (2.34)

we have that ∣∣∣
∣∣∣exp

(
λ

m∑

j=1

L̂j
)
− S2k(λ)

∣∣∣
∣∣∣
1→1
≤ 4L2

(2k + 1)!
(dkλ)2k+1, (2.35)

where S2k(λ) = S2k(L̂1, . . . , L̂m, λ).

In addition to Lemma 2.1, the following lemma is required:

Lemma 2.2. Given quantum channels T and V we have that

∣∣∣∣Tn − V n
∣∣∣∣

1→1
≤ n

∣∣∣∣T − V
∣∣∣∣

1→1
. (2.36)

Lemma 2.2 is a direct generalisation to the superoperator setting of an important re-

sult describing the accumulation of errors due to gate approximations in unitary circuits.

However, in the conventional operator setting the proof relies crucially on properties of

Hermitian operators and as a result an alternative proof is required within this more

general setting.

Proof (of Lemma 2.2). It is clear that in the case that n = 1 the lemma is true. Assume

the lemma holds for n = m. We now show that it holds for n = m + 1 and as a result
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prove the result by induction.

∣∣∣∣Tm+1 − V m+1
∣∣∣∣

1→1
=
∣∣∣∣TTm − TV m + TV m − V.V m

∣∣∣∣
1→1

(2.37)

≤
∣∣∣∣T
(
Tm − V m

)∣∣∣∣
1→1

+
∣∣∣∣(T − V

)
V m
∣∣∣∣

1→1
(2.38)

≤
∣∣∣∣T
∣∣∣∣

1→1

∣∣∣∣Tm − V m
∣∣∣∣

1→1
+
∣∣∣∣T − V

∣∣∣∣
1→1

∣∣∣∣V m
∣∣∣∣

1→1
(2.39)

≤
∣∣∣∣Tm − V m

∣∣∣∣
1→1

+
∣∣∣∣T − V

∣∣∣∣
1→1

(2.40)

≤ (m+ 1)
∣∣∣∣T − V

∣∣∣∣
1→1

(2.41)

In the above (2.39) follows from (2.38) via submultiplicativity of the norm, and (2.40)

follows from (2.39) due to the fact [39,44] that for any quantum channel T we have that

||T ||1→1 = 1. �

Given these two lemmas it is now possible to follow [10] in order to prove Theorem 2.2.

Proof (of Theorem 2.2). First note that

exp
(
t

m∑

j=1

Lj
)

=
[
exp
( t
r

m∑

j=1

L̂j
)]rL1

, (2.42)

and as a result we can utilise Lemma 2.1 and Lemma 2.2 to obtain

∣∣∣
∣∣∣exp

(
t

m∑

j=1

Lj
)
−
[
S2k(

t

r
)
]rL1

∣∣∣
∣∣∣
1→1
≤ 4tL2

d2k+1
k

(2k + 1)!

t2k

r2k
. (2.43)

Therefore taking

r ≥ t
(4tL2d

2k+1
k

ε(2k + 1)!

)1/(2k)
(2.44)

ensures that (2.32) is satisfied. Furthermore, via the argument in [10] it suffices to take

r ≥ t
(4emtL2

ε

)1/(2k) 2edk
2k + 1

, (2.45)

such that we can define r as the lower bound

r := t
(4emtL2

ε

)1/(2k) 2edk
2k + 1

, (2.46)

which is easily seen to satisfy the assumptions of Lemma 2.1. From (2.31) one can then
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see that the total number of exponentials required is

Nexp ≤ (2m− 1)5k−1rL1, (2.47)

so that substituting in the values of r and dk one obtains (2.33). �

As calculated in [10], if ε ≤ mtL2 then the minimum value of the right hand side in

(2.33) is achieved for

k = round

(√
1

2
log25/3

4emtL2

ε

)
, (2.48)

such that the number of exponentials required satisfies

Nexp ≤
8

3
(2m− 1)metL1e

2
√

1
2

ln(25/3)ln(4emtL2/ε). (2.49)

Furthermore, by definition of the (1 → 1) norm we have that for any density matrix ρ

and any superoperators P and Q,

||P (ρ)−Q(ρ)||1 ≤ ||P −Q||1→1 (2.50)

and as such the results of Theorem 2.2 bound the error in the output state obtained

when approximating Tt with [S2k(t/r)]
rL1 . At this point we have then established that

any channel Tt, a member of the semigroup {Tt} generated by L =
∑m

j=1 Lj , can be

simulated up to arbitrary accuracy using only a slightly super-linear, with respect to t,

number of implementations of T
(j)
t′ = et

′Lj .

2.5 Simulation of constituent semigroups

Given the results of Section 2.3 and Section 2.4, all that remains is to illustrate a method

for the construction of unitary circuits, consisting only of single-qubit and CNOT gates

and requiring only a single ancilla qubit, for the exact implementation of quantum chan-

nels from the semigroups {T (θk)
t }. We proceed by following the strategy, introduced

in [42], of decomposing the channels T
(θk)
t into the convex sum of quasi-extreme channels.

These quasi-extreme channels require only two Kraus operators for implementation, and

hence can be simulated using a unitary circuit acting on only a single ancilla qubit. Fur-

thermore, given a decomposition of T
(θk)
t into the convex sum of quasi-extreme channels,

T
(θk)
t can be simulated using classical random sampling of these channels.

In order to obtain this convex decomposition we proceed via the following steps:
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Firstly, we utilise the damping basis [48,49] in order to find the affine map representation

of T
(θk)
t . From this affine map representation it is then easy to construct the Jamiolkowski

state, from which it is possible to obtain the desired convex decomposition [43].

Using damping basis methods [48,49] (details can be found in the Appendix, Section

2.7.1) we find, as per (2.11)-(2.13), that the affine map representation M of T
(θk)
t is given

by

M =




1 0 0 0

0 Λ1 0 0

0 0 Λ2 0

m3 0 0 Λ3



, (2.51)

where

Λ1 = e(−2 sin2(θk)t), (2.52)

Λ2 = e(−2 cos2(θk)t), (2.53)

Λ3 = e(−2t), (2.54)

m3 = sin(2θk)(Λ3 − 1). (2.55)

Given this affine representation of T
(θk)
t , the Jamiolkowski state

τ(θk) = (T
(θk)
t ⊗ 1S)|ψ0〉〈ψ0|, (2.56)

with |ψ0〉 = (1/
√

2)(|00〉+ |11〉), is then given by [43]

τ(θk) =
1

4




a2 0 0 Λ1 + Λ2

0 b2 Λ1 − Λ2 0

0 Λ1 − Λ2 c2 0

Λ1 + Λ2 0 0 d2




(2.57)

with

a = (1 +m3 + Λ3)1/2, (2.58)

b = (1−m3 − Λ3)1/2, (2.59)

c = (1 +m3 − Λ3)1/2, (2.60)

d = (1−m3 + Λ3)1/2. (2.61)

In order to utilise τ(θk) to obtain the desired convex decomposition of T (θk), we
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follow the procedure established in [43]. Firstly, for any quantum channel T we define

β(T ) = 2τ and note that β(T ) can always be written in the block form

β(T ) =

(
A C

C† B

)
. (2.62)

Furthermore, if T̂ is the adjoint [17] of T then

β(T̂ ) = U †23β(T )U23 (2.63)

=

(
A C

C† I −A

)
, (2.64)

where

U23 = U †23 =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



. (2.65)

Given these facts we then utilise the following three results, all due to [43], in order to

obtain the desired convex decomposition.

Theorem 2.3. A quantum channel T is a generalised extreme point of the set of all

quantum channels of the same dimension if and only if β(T̂ ) is of the form

β(T̂ ) =

(
A

√
AU
√
I −A√

I −AU †
√
A I −A

)
. (2.66)

for some unitary matrix U .

Lemma 2.3. A matrix (
A C

C† B

)
(2.67)

is positive semidefinite if and only if A ≥ 0, B ≥ 0 and C =
√
AR
√
B for some

contraction R. Moreover, the set of positive semidefinite matrices with fixed A and B is

a convex set whose extreme points satisfy C =
√
AU
√
B for some unitary matrix U .

Lemma 2.4. Any contraction in M2(C) can be written as the convex combination of

two unitary matrices.

In light of the above three results, our strategy for obtaining a convex decomposition

of an arbitrary channel T is as follows: Given β(T ) we find β(T̂ ) using (2.63). As T is
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completely positive this ensures that β(T̂ ) ≥ 0 and as such we write β(T̂ ) in the form

described in Lemma 2.3. As R is a contraction we know, via Lemma 2.4, that R can

be decomposed into the convex combination of two unitary matrices, and as a result we

obtain that

β(T̂ ) =
1

2
β(T̂1) +

1

2
β(T̂2), (2.68)

where due to Theorem 2.3 we see that T1 and T2 are quasi-extreme channels (generalised

extreme points of the set of quantum channels) providing the desired convex decompo-

sition of T . Following these steps for T
(θk)
t we find that

β
(
T̂

(θk)
t

)
=

1

2
β
(
T̂ θk(t,1)

)
+

1

2
β
(
T̂ θk(t,2)

)
, (2.69)

where

β
(
T̂ θk(t,i)

)
=

(
A

√
AUi
√
I −A√

I −AU †i
√
A I −A

)
, (2.70)

with

U1 =

(
0 eiφ1

eiφ2 0

)
, U2 =

(
0 e−iφ1

e−iφ2 0

)
, (2.71)

φ1 = arccos
(Λ1 + Λ2

ad

)
, (2.72)

φ2 = arccos
(Λ1 − Λ2

bc

)
, (2.73)

and

A =
1

2

(
a2 0

0 c2

)
. (2.74)

As in [42], in order to construct the unitary circuits implementing T θk(t,i) it is necessary

to first find the Kraus operators Ki
1 and Ki

2, where

T θk(t,i)(ρ) =
2∑

j=1

(
Ki
j

)
ρ
(
Ki
j

)†
. (2.75)

To find these Kraus operators one then uses (2.63) to find the relevant Jamiolkowski

state, before exploiting the standard Choi-Jamiolkowski correspondence [17]. Following
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these steps one obtains

K1
1 =

1√
2

(
0 c

beiφ2 0

)
K1

2 =
1√
2

(
ae−iφ1 0

0 d

)
(2.76)

and

K2
1 =

1√
2

(
0 c

be−iφ2 0

)
K2

2 =
1√
2

(
aeiφ1 0

0 d

)
. (2.77)

Given these Kraus operators it is then possible to find a constant size unitary circuit

implementing T θk(t,i), consisting only of CNOT’s and single qubit gates, in a variety of

ways. A first method is to apply directly the results of [42] (requiring an additional

two basis transformations), or alternatively one can construct from the Kraus operators

unitary matrices U
(θk)
i , such that

T θk(t,i)(ρ) = trE
[(
U

(θk)
i

)
(|0〉〈0| ⊗ ρ)

(
U

(θk)
i

)†]
, (2.78)

and proceed by obtaining a circuit decomposition of these unitary matrices. We provide

an explicit demonstration of the latter strategy here. It is important to note that these

unitary matrices are not unique [17], however for the purposes of this paper we choose

to work with the following form for the unitary U
(θk)
1 ,

U
(θk)
1 =




e−iφ1 cos(β) 0 0 −e−iφ2 sin(β)

0 cos(α) − sin(α) 0

0 sin(α) cos(α) 0

eiφ2 sin(β) 0 0 eiφ1 cos(β)



, (2.79)

where we have written

cos(β) =
1√
2
a, sin(β) =

1√
2
b, (2.80)

cos(α) =
1√
2
d, sin(α) =

1√
2
c, (2.81)

as a result of the observation that a2 + b2 = 2 and c2 + d2 = 2. Furthermore, note that

U
(θk)
2 can be simply obtained by swapping the signs occurring within each exponential

function in U
(θk)
1 , and as such is not presented explicitly. In order to obtain an explicit

circuit decomposition for U
(θk)
1 we note that we can write U

(θk)
1 = U

(θk)
1,A U

(θk)
1,B , where
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1

Ũ
(θk)
1,A

U
(θk)
1,A =

•

Ũ
(θk)
1,B

U
(θk)
1,B =

FIG. 1: Circuit decompositions for the unitary operators

U
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(θk)
1,B , where the unitary operator U

(θk)
1 , imple-

menting the quasi-extreme channel T
θk
(t,i) via (??), is given

by U
(θk)
1 = U

(θk)
1,A U

(θk)
1,B . The single qubit unitary operations

Ũ
(θk)
1,A and Ũ

(θk)
1,B are defined in Eqs. (??) and (??) respectively.

Figure 2.1: Circuit decompositions for the unitary operators U
(θk)
1,A and U

(θk)
1,B , where the

unitary operator U
(θk)
1 , implementing the quasi-extreme channel T θk(t,i) via (2.78), is given

by U
(θk)
1 = U

(θk)
1,A U

(θk)
1,B . The single qubit unitary operations Ũ

(θk)
1,A and Ũ

(θk)
1,B are defined

in Eqs. (2.84) and (2.85) respectively.

U
(θk)
1,A and U

(θk)
1,B are the two-level unitary matrices

U
(θk)
1,A =




e−iφ1 cos(β) 0 0 −e−iφ2 sin(β)

0 1 0 0

0 0 1 0

eiφ2 sin(β) 0 0 eiφ1 cos(β)




(2.82)

and

U
(θk)
1,B =




1 0 0 0

0 cos(α) − sin(α) 0

0 sin(α) cos(α) 0

0 0 0 1



. (2.83)

Furthermore, if we define the unitary matrices,

Ũ
(θk)
1,A =

(
e−iφ1 cos(β) −e−iφ2 sin(β)

eiφ2 sin(β) eiφ1 cos(β)

)
(2.84)

and

Ũ
(θk)
1,B =

(
cos(α) − sin(α)

sin(α) cos(α)

)
, (2.85)

then we can implement U
(θk)
1,A and U

(θk)
1,B using the circuits given in Figure 2.1.

At this stage all that remains is to obtain circuit decompositions of the controlled-

Ũ
(θk)
1,i gates. In order to implement the controlled-Ũ

(θk)
1,B gate we note the equivalence

depicted in Figure 2.2, where AB = Ry(α) and BB = Ry(−α), with Ry the standard
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1

Ũ
(θk)
1,B =

BB AB

Ũ
(θk)
1,A =

AA BA CA

• • •

FIG. 1: Circuit decomposition for the controlled-Ũ
(θk)
1,i oper-

ations, required for implementation of the unitary operators

U
(θk)
1,i , into only single qubit and controlled-NOT gates. The

single qubit unitary gates are defined as AB = Ry(α), BB =
Ry(−α), AA = Rz(φ1 + φ2)Ry(β), BA = Ry(−β)Rz(−φ1)
and CA = Rz(−φ2), where Ry(θ) and Rz(θ) are defined in
Eqs. (??) and (??) respectively.

Figure 2.2: Circuit decomposition for the controlled-Ũ
(θk)
1,i operations, required for im-

plementation of the unitary operators U
(θk)
1,i , into only single qubit and controlled-NOT

gates. The single qubit unitary gates are defined as AB = Ry(α), BB = Ry(−α),
AA = Rz(φ1 + φ2)Ry(β), BA = Ry(−β)Rz(−φ1) and CA = Rz(−φ2), where Ry(θ) and
Rz(θ) are defined in Eqs. (2.86) and (2.87) respectively.

exponentiation of the Pauli y matrix, given by

Ry(θ) =

(
cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

)
. (2.86)

Similarly, in order to implement the controlled-Ũ
(θk)
1,A gate we note the equivalence de-

picted in Figure 2.2, where AA = Rz(φ1 + φ2)Ry(β), BA = Ry(−β)Rz(−φ1) and

CA = Rz(−φ2) with Rz the standard exponentiation of the Pauli z matrix, given by

Rz(θ) =

(
e−iθ/2 0

0 eiθ/2

)
. (2.87)

2.6 Conclusions and outlook

Combining the results of the previous three sections we obtain the following algorithm,

requiring only O
(
(||L||1→1t)

1+1/2j/ε1/2j
)

single qubit and CNOT gates, as a solution to

the problem defined in Section 4.2:

1. Given L, obtain as per Section 2.3 the spectral decomposition

L =

4∑

k=0

λkLk, (2.88)
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as well as Gk and θk specifying the decomposition

Ak = GkA(θk)G
T
k , (2.89)

for all k ∈ [1, 3].

2. Choose the desired approximation accuracy ε as well as the simulation time t.

Using Eqs. (2.28) and (2.29) construct S2j(t/r) with

j = round

(√
log25/3

8etL2

ε

)
(2.90)

and

r = t
(16etL2

ε

)1/(2j) 2edj
2j + 1

. (2.91)

3. Implement S2j(t/r) L1r times using

T
(k)
t′ (ρ) = U †k

[
T

(θk)
t′
(
UkρU

†
k

)]
Uk, (2.92)

where λk, L1 and r have been incorporated into t′, Uk is obtained from Gk as per

Section 2.3 and T
(θk)
t′ is implemented via classical random sampling of the circuits

derived in Section 2.5.

In light of this result two natural avenues arise for extension of this work. The first

is investigation of improvements to the method presented here for the simulation of

arbitrary single-qubit Markovian open quantum systems. However, in light of a very

recently proven “no fast-forwarding” theorem for Markovian open quantum systems [50],

which shows that simulation of Markovian systems with sublinear time complexity is not

possible, it is now clear that the time complexity of this method is very close to optimal.

It would however be of interest to investigate methods for improving the dependency

of the complexity on the error tolerance. The second natural extension of this work

is development of methods allowing for the construction of explicit algorithms for the

simulation of multi-qubit and multi-qudit Markovian open systems. However, the work

presented in this paper relies heavily on geometric properties of single-qubit channels

and as such generalisation of this work would require investigation into the geometric

and convex structure of multi-particle quantum channels. These questions are explicitly

addressed in the following Chapter.
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2.7 Appendix

2.7.1 Damping basis derivation of affine map representation

Given the generator L of a semigroup of quantum channels (with H = 0) one can find

the left and right eigenoperators Li and Ri satisfying [49],

LiL = λ(L,i)Li (2.93)

LRi = λ(R,i)Ri, (2.94)

where the left action of a superoperator is defined so that

tr
[
(XL)ρ

]
= tr

[
(L(ρ))X

]
(2.95)

for any Hermitian operator X and for all density matrices ρ. Using this left action one

finds that tr[LiRj ] = δij and λ(L,i) = λ(R,i). Furthermore, any density matrix ρ(0) can

be expressed in this basis (known as the damping basis), such that [48]

ρ(0) =
∑

i

tr
[
Liρ(0)

]
Ri (2.96)

and

ρ(t) = eLt[ρ(0)] (2.97)

=
∑

i

tr
[
Liρ(0)

]
ΛiRi (2.98)

with Λi = eλit. Furthermore, the sub-matrix M̃ in the affine map representation of

Tt = etL is then given by

M̃ =




Λ2 0 0

0 Λ3 0

0 0 Λ4


 . (2.99)

Utilising these methods for the semigroup T
(θk)
t generated by L(θk), as per (2.25), we

find that
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λ2 = −2 sin2(θk) (2.100)

λ3 = −2 cos2(θk) (2.101)

λ4 = −2. (2.102)

The full affine representation, (2.51)-(2.55), is then found using (2.99) and constructing

m in (2.11) such that (2.12) and (2.13) hold.
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tum dynamics on quantum logic networks. arXiv:quant-ph/0205008, 2005.

[23] T. Rybár, S. N. Filippov, M. Ziman, and V. Bužek. Simulation of indivisible qubit
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Chapter 3

Universal simulation of

Markovian open quantum systems

We consider the problem of constructing a “universal set” of Markovian processes, such

that any Markovian open quantum system, described by a one-parameter semigroup of

quantum channels, can be simulated through sequential simulations of processes from the

universal set. In particular, for quantum systems of dimension d, we explicitly construct

a universal set of semigroup generators, parametrized by d2 − 3 continuous parameters,

and prove that a necessary and sufficient condition for the dynamical simulation of a d

dimensional Markovian quantum system is the ability to implement a) quantum channels

from the semigroups generated by elements of the universal set of generators, and b)

unitary operations on the system. Furthermore, we provide an explicit algorithm for

simulating the dynamics of a Markovian open quantum system using this universal set

of generators, and show that it is efficient, with respect to this universal set, when

the number of distinct Lindblad operators (representing physical dissipation processes)

scales polynomially with respect to the number of subsystems.

This chapter has been been previously published in [1].
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3.1. INTRODUCTION

3.1 Introduction

All quantum systems are invariably in contact with some environment to some extent.

As a result, the development of tools for the study of such open quantum systems,

undergoing non-unitary dynamics as a result of system-environment interactions, is of

importance for understanding a rich variety of phenomena [2,3]. In particular, the study

of open quantum systems allows us to better understand the nature of dissipation and

decoherence [2, 3], thermalisation and equilibration [4, 5], non-equilibrium phase transi-

tions [6, 7] and transport phenomena in both strongly-correlated [8–10] and biological

systems [11–13]. Furthermore, it has been shown that dissipation and decoherence, tra-

ditional enemies of quantum information processing, can be exploited as a resource for

quantum computation [14, 15], the preparation of topological phases [16–18] and the

preparation of entangled states [19,20].

Simulations on controllable quantum devices promise to be one of the most effec-

tive tools for the study of open quantum systems, and while the majority of effort over

the past twenty years has focused on the development of methods for the simulation of

closed quantum systems [21–24], which undergo Hamiltonian generated unitary evolu-

tion, a plethora of methods have also been developed for the quantum simulation of open

quantum systems, on a wide variety of quantum devices. These methods include collision

model based approaches [25–27], simulation algorithms designed for conventional unitary

gate based universal quantum computers [28–43] and simulation algorithms designed for

more general quantum simulators incorporating feedback and dissipative elements in

addition to unitary gates [44–51].

However, despite the wide variety of methods for the simulation of open quantum

systems, there exists no “universal set” of non-unitary processes through which all such

processes can be simulated via sequential simulations from the universal set. This is in

clear contrast with the situation for Hamiltonian generated unitary evolution, for which it

is well known that any unitary operation can be implemented, up to arbitrary precision,

using some (not necessarily efficient) sequence of unitary gates from a finite universal

set [52]. Such universal sets are interesting not only from a fundamental perspective,

but also from a pragmatic perspective, as they allow for experimental development to

be focused on developing the capability of implementing a reduced set of significantly

simpler processes.

One natural response to this problem is via the Stinespring dilation [53]. Given

any non-unitary dynamics of some particular system, it is always possible to introduce

some environment, with size the square of the system size in the general case, such that
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CHAPTER 3. UNIVERSAL SIMULATION OF MARKOVIAN OQS

the non-unitary dynamics of the system may be simulated through unitary evolution

of the total system and environment [28, 29, 36, 40, 41, 43]. However, it is important to

note that for an arbitrary non-unitary process, there is no guarantee that the dilated

unitary admits an efficient decomposition into some sequence of unitary gates from a

universal set [52], and as such this strategy offers an advantage for the construction of

efficient simulation algorithms only when the original non-unitary process exhibits some

useful structure, such as local interactions [36]. Furthermore, in line with the spirit

of dissipative state preparation [19, 20], we would like to investigate the possibility of

developing a universal set which might allow us to exploit the natural dissipation and

decoherence present in any controlled quantum device.

Therefore, as an alternative approach, one can consider the problem of identifying

the smallest set of non-unitary dynamics, applied to the system only, such that if one

has the resources to simulate dynamics from this set, and implement unitary operations

on the system, then one will be able to simulate any non-unitary dynamics up to ar-

bitrary precision. This problem has been considered before. In particular, Wang et al.

have constructed a method for the simulation of arbitrary quantum channels through

the simulation of extreme channels [40, 41], and in effect identified such a universal set

for discrete time evolution of open quantum systems. However, for systems evolving

continuously in time, even in the simplest case of Markovian semigroup dynamics it is

necessary to first exponentiate the generator of the semigroup in order to obtain the

quantum channels describing time evolution. This is infeasible for an arbitrary semi-

group generator and in order to address this problem Bacon et al. [31] have constructed

a composition framework for the combination and transformation of semigroup gen-

erators. Using this framework they were able to identify a continuous one-parameter

set of semigroup generators and demonstrate that one can efficiently simulate arbitrary

Markovian dynamics of a single qubit through simulations of quantum channels from

the semigroups generated by this one parameter set of generators [31,43].

Despite this initial progress, extending these results to arbitrary Markovian open

quantum systems has remained a challenging open problem. In this work we address

this problem by using the composition framework of [31] to construct a continuous d2−3

parameter set of generators, which is universal in the sense that given the ability to

implement quantum channels from the semigroups generated by elements of this set of

generators, along with unitary operations on the system, one can simulate the dynamics

of an arbitrary d dimensional Markovian quantum system up to arbitrary precision.

This set of generators is minimal within this particular composition framework, and

by construction of this set we complete the program initiated in [31], proving that the
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dimension of this universal set is indeed as originally conjectured.

Furthermore, assuming the ability to implement unitary operations on the system

along with quantum channels from the semigroups generated by elements of the universal

set, we utilise recent error bounds for superoperator Suzuki-Lie-Trotter expansions [43] to

construct an explicit algorithm for the simulation of arbitrary Markovian open quantum

systems, and analyse the conditions under which a Markovian open quantum system

may be efficiently simulated, with respect to the constructed universal set, using this

algorithm.

This chapter is structured as follows: We begin in Section 3.2 by introducing the

formalism of Markovian semigroup dynamics and formulating the problem of simulating

such dynamics. We then proceed, in Section 3.3, to introduce the composition framework

of linear combination and unitary conjugation, introduced in [31], for the combination of

Markovian semigroup generators. Given this framework, we then present our main result

in Section 3.4, the construction of a universal set of generators for arbitrary Markovian

dynamics. A detailed proof of the main result is then given in Section 3.5, before

discussing in Section 3.6 the consequences for simulation of Markovian open quantum

systems.

3.2 Setting

Given a quantum system with Hilbert space HS ∼= Cd, we are concerned with Markovian

semigroup dynamics, in which the state of the system ρ(t) ∈ B(HS) evolves according

to a quantum Markov master equation

d

dt
ρ(t) = Lρ(t), (3.1)

where L ∈ B(B(HS)) is the generator of a uniformly continuous one parameter semigroup

of quantum channels {T (t)}, which we refer to as a Markovian semigroup [2]. The state

of the system at time t > t0 is then given by ρ(t) = T (t − t0)ρ(t0) = e(t−t0)Lρ(t0).

Furthermore, (3.1) may always be written in the form

L(ρ) = i[ρ,H] +
d2−1∑

l,k=1

Al,k

(
FlρF

†
k −

1

2
{F †kFl, ρ}+

)
, (3.2)

for some Hermitian operator H = H† ∈ Md(C) and some positive semidefinite A ∈
Md2−1(C), where {Fi} is some basis for the space of traceless matrices in Md(C), and
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without loss of generality from this point we will always utilise the Hermitian traceless

basis which generalises the Gell-Mann basis for su(3). Eq. (3.2) is known as the Gorini,

Kossakowski, Sudarshan and Lindblad (GKSL) form of the quantum Markov master

equation and we refer to A as the GKS matrix. Additionally, note that via diagonalisa-

tion of the GKS matrix A, Eq. (3.2) can always be brought into, and is often specified

in, the so called diagonal form,

L(ρ) = i[ρ,H] +
m∑

k=1

γk

(
LkρL

†
k −

1

2
{L†kLk, ρ}

)
, (3.3)

where m is the number of non-zero eigenvalues of A, and typically each Lindblad operator

Lk represents some physical dissipation process [2].

In order to discuss simulations of Markovian semigroups it is necessary to have some

means for quantifying the error in approximations of generators and quantum channels.

To achieve this we will utilise the (1 → 1)-norm for super-operators, where in general

the (p→ q)-norm of a super-operator T ∈ B(B(H)) is defined as [54]

||T ||p→q := sup
||A||p=1

||T (A)||q. (3.4)

The (p → q)-norm defined above is induced from the Schatten p-norm of an operator,

defined as ||A||p :=
(
tr(|A|p)

) 1
p for all A ∈ B(H). We use the (1 → 1)-norm as this

is induced by the Schatten 1-norm, which corresponds up to a factor of 1/2 with the

trace distance, dist(ρ, σ) := sup0≤A≤1 tr
(
A(ρ − σ)

)
, arising from a physical motivation

of operational distinguishability of quantum states [52], which is relevant when working

in the Schrödinger picture.

At this stage, given a Markovian semigroup {T (t)}, generated by L ∈ B(B(HS)) with

dim(Hs) = d, we say that the semigroup can be efficiently simulated if given any initial

state ρ(0) ∈ B(HS), any ε > 0 and any t > 0, there exists a well defined procedure,

requiring at most poly
(
||L||(1→1), t, 1/ε, ln(d)

)
applications of standard resources, such

that the output of the procedure is a state ρ̃ satisfying ||ρ̃− ρ(t)||1 < ε. Note that poly

denotes any polynomial function and that for many-body systems ln(d) is proportional

to the number of subsystems. Furthermore, note that the standard resources depend on

the simulator on which the well defined procedure, or algorithm, is executed. If we are

considering simulations on a universal quantum computer, then the procedure would be

a quantum circuit, and the resources would be unitary gates from some finite universal

set. However, motivated by the spirit of dissipative state preparation, in this chapter
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we are considering more general simulators whose standard resources might include

additional non-unitary elements capable of exploiting natural or engineered dissipation.

In particular, under the understanding that we are considering this more general context,

we will consider as standard resources all quantum channels from semigroups generated

by elements of the universal set constructed in Section 3.4, in addition to arbitrary

unitary operations.

3.3 Composition framework

In this section, following [31], we present a composition and transformation framework

through which one can combine and transform the generators of Markovian semigroups

to form the generator of a new Markovian semigroup. As described in Section 3.1, this

composition framework will allow us to identify in Section 3.4 a parametrized univer-

sal set of semigroup generators, through which all Markovian semigroups of a given

dimension can be simulated, up to arbitrary precision.

This composition framework consists of two procedures, linear combination and uni-

tary conjugation. Firstly, let La and Lb be the generators of Markovian semigroups

{T (a)(t)} and {T (b)(t)} respectively. The linear combination of La and Lb is then quite

simply defined as the super-operator La+b = La + Lb, the generator of a Markovian

semigroup {T (a+b)(t)} [31]. From a generalisation of the Lie-Trotter theorem [55] into

the superoperator regime [36,43], we see that

T (a+b)(t) = etLa+b = lim
n→∞

[
T (a)(t/n)T (b)(t/n)

]n
. (3.5)

The generalisation of this procedure to the linear combination of multiple generators

is then straightforward. Furthermore, as discussed in detail in Appendix 3.9.1, using

Suzuki-Lie-Trotter techniques [56,57], generalised from the context of Hamiltonian sim-

ulation [58, 59], one can show that the infinite sum in Eq. (3.5) can be effectively

truncated, such that any channel from the semigroup generated by the linear combi-

nation La+b can be implemented, up to arbitrary precision, through a finite number of

implementations of channels from the semigroups generated by the constituent genera-

tors La and Lb [36, 43]. A discussion of when the Markovian semigroup generated by

the linear combination of multiple generators can be efficiently simulated is postponed

until Section 3.6.

103



CHAPTER 3. UNIVERSAL SIMULATION OF MARKOVIAN OQS

Note that given any generator L we can always rewrite (3.2) as

L(ρ) = LH(ρ) + LA(ρ), (3.6)

where

LH(ρ) = i[ρ,H] (3.7)

and

LA(ρ) =
d2−1∑

l,k=1

Al,k

(
FlρF

†
k −

1

2
{F †kFl, ρ}+

)
. (3.8)

Therefore, if we assume the ability to implement arbitrary unitary operations on the

system, then without loss of generality we can set H = 0, as we can always reintroduce

the unitary contribution and implement the total generator L through linear combination

of LH and LA.

The second transformation procedure, unitary conjugation, is defined as follows:

Given a Hilbert space HS ∼= Cd and a Markovian semigroup {T (t)} with generator

L ∈ B(B(HS)), for any unitary operator U ∈ SU(d) the unitary conjugation via U of

the semigroup {T (t)} is the new Markovian semigroup

{TU (t)} ≡ {U†T (t)U}, (3.9)

where U(ρ) = UρU †. The following theorem, due to [31], is particularly important, as it

describes the manner in which the GKS matrix specifying L is transformed as a result of

unitary conjugation of the semigroup {T (t)}. The statement of this theorem relies on no-

tions related to the adjoint representation of a Lie group, presented in detail in Appendix

3.9.2. Note in particular that Int
(
su(d)

)
denotes the image of the adjoint representation

of SU(d), a Lie group itself, while Int
(
su(d)

)
is the Lie algebra of Int

(
su(d)

)
.

Theorem 3.1. Assume HS ' Cd and that L ∈ B(B(HS)) is the generator of a Marko-

vian semigroup with H = 0, such that

L(ρ) = LA(ρ) (3.10)

=

d2−1∑

l,k=1

Al,k

(
FlρF

†
k −

1

2
{F †kFl, ρ}+

)
. (3.11)

Furthermore, assume that {Fγ}|d
2−1
γ=1 is a Hermitian basis for the space of traceless ma-

trices in Md(C), such that {iFγ}|d
2−1
γ=1 is a basis for su(d) and U = exp

(∑d2−1
γ=1 irγFγ

)
∈
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SU(d) for any ~r ∈ Rd2−1. Then,

U†TtU = U†etLAU (3.12)

= etLÃ (3.13)

= TU (t), (3.14)

where,

LÃ(ρ) =
d2−1∑

l,k=1

Ãl,k

(
FlρF

†
k −

1

2
{F †kFl, ρ}+

)
, (3.15)

with Ã = G(U)AG
T
(U), where G(U) ∈ Int

(
SU(d)

)
is given by

G(U) = Âd
(
U
)

= exp
( d2−1∑

γ=1

irγGγ
)
, (3.16)

and {iGγ} is a basis for Int
(
su(d)

)
, with matrix elements [Gγ ]αβ = ifγαβ, where fγαβ

are the real structure constants of su(d), defined via

[Fγ , Fα] = i
d2−1∑

β=1

fγαβFβ. (3.17)

Colloquially, Theorem 3.1 states that unitary conjugation of the semigroup results

in conjugation of the GKS matrix by an element of the adjoint representation of SU(d).

As such, we see that by adding together the generators of Markovian semigroups (linear

combination), or conjugating the generators via elements of Int(SU(d)) (unitary conju-

gation), we obtain the generators of new Markovian semigroups which can be simulated

(though perhaps not necessarily efficiently), provided the semigroups corresponding to

the original constituent generators can be simulated and arbitrary unitary operations

can be implemented on the system.

3.4 Main result

Given the composition framework of Section 3.3, we can now present our main result,

the construction of a universal set of Markovian semigroup generators, parameterised by

d2 − 3 continuous parameters, for Markovian open quantum systems of any dimension

d. For d = 2 this set was first constructed in [31], and our construction, presented

as Theorem 3.2, generalises this original method to arbitrary dimension. As per the
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statement of the theorem, the constructed set is universal with respect to the composition

framework of linear combination and unitary conjugation, i.e. universal in the sense

that in order to simulate any Markovian semigroup it is necessary and sufficient to be

able to implement arbitrary unitary operations on the system, along with all quantum

channels from the semigroups generated by the d2 − 3 parameter family of generators.

It is important to note however that, as in the unitary case, if we consider operations

from the universal set as our “standard resources”, we do not necessarily expect to be

able to efficiently simulate all Markovian semigroups in terms of these resources. In

Section 3.6 we utilise the construction of the proof of Theorem 3.2, presented in Section

3.5, to construct an explicit algorithm for the (not necessarily efficient) simulation of an

arbitrary Markovian semigroup via simulations of semigroups from the universal set, and

then analyse the conditions under which a class of Markovian open quantum systems

may be efficiently simulated using this particular algorithm.

Theorem 3.2. In order to simulate, using linear combination and conjugation by uni-

taries, an arbitrary Markovian semigroup generated by L ∈ B(B(HS)) with HS ' Cd,
it is necessary and sufficient to be able to simulate all Markovian semigroups whose

generator is specified by a GKS matrix from the d2 − 3 parameter family

A(θ, ~αR, ~αI) = ~a(θ, ~αR, ~αI)~a(θ, ~αR, ~αI)†, (3.18)

where

~a(θ, ~αR, ~αI) = cos(θ)ãR(~αR) + i sin(θ)ãI(~αI) (3.19)

for θ ∈ [0, π/4], with ãR(~αR), ãI(~αI) ∈ Rd2−1 given by

ãR(~αR) =




aR1
...

aRd−1

0
...
...

0




ãI(~αI) =




aI1
...
...

aId2−d
0
...

0




, (3.20)
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with

|ãR(~αR)| = |ãI(~αI)| = 1 (3.21)

ãR(~αR) · ãI(~αI) = 0, (3.22)

such that for d ≥ 3,

aR1 = cos(αR1 ) (3.23)

aR2 = sin(αR1 ) cos(αR2 ) (3.24)

...

aRd−2 = sin(αR1 ) . . . sin(αRd−3) cos(αRd−2) (3.25)

aRd−1 = sin(αR1 ) . . . sin(αRd−3) sin(αRd−2) (3.26)

and

aI1 = cos(αI1) (3.27)

aI2 = sin(αI1) cos(αI2) (3.28)

...

aId2−d−1 = sin(αI1) . . . sin(αId2−d−2) cos(αId2−d−1) (3.29)

aId2−d = sin(αI1) . . . sin(αId2−d−2) sin(αId2−d−1) (3.30)

where,

αRj ∈ [0, π] for j ∈ [1, d− 3], (3.31)

αIk ∈ [0, π] for k ∈ [1, d2 − d− 2], (3.32)

αRd−2 ∈ [0, 2π], (3.33)

αId2−d−1 ∈ [0, 2π], (3.34)

and

cos(αI1) =
1

aR1

( d−1∑

j=2

aRj a
I
j

)
(3.35)
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is constrained by orthogonality, and for d = 2,

ãR(~αR) =




1

0

0


 ãI(~αI) =




0

1

0


 . (3.36)

3.5 Proof of Theorem 3.2

3.5.1 Proof of sufficiency

Firstly, without any loss of generality we assume H = 0. Let A ≥ 0 ∈ Md2−1(C) then

be the GKS matrix specifying the generator of the Markovian semigroup we wish to

simulate. A is positive semidefinite and therefore via the spectral decomposition one

can express A as

A =

m∑

k

λk~ak~a
†
k, (3.37)

where λk ≥ 0, m is the number of non-zero eigenvalues of A and |~ak| = 1 for all k. By

linear combination it is therefore sufficient to be able to simulate all GKS matrices ~a~a†

with |~a| = 1. Any such vector ~a can be split into real and imaginary part,

~a = ~aR + i~aI , (3.38)

where ~aR,~aI ∈ Rd2−1. Furthermore, ~a appears only in outer products and as such the

phase of ~a is irrelevant, i.e. if we define ~a′ = eiψ~a, then we see that ~a~a† = ~a′~a′†, and

therefore to simulate ~a~a† we could simulate ~a′~a′† for any value of ψ. If we now define

the two parameters

k1 ≡ |~aR|2 − |~aI |2 (3.39)

k2 ≡ 2~aR · ~aI , (3.40)

then we can see that a phase transformation

~a′ = eiψ~a (3.41)

= (~aR cosψ − ~aI sinψ) + i(~aR sinψ + ~aI cosψ) (3.42)
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maps k1 and k2 according to

(
k′1
k′2

)
=

(
cos 2ψ − sin 2ψ

sin 2ψ cos 2ψ

)(
k1

k2

)
. (3.43)

As we can choose ψ arbitrarily, we can always choose

tan 2ψ = −k2/k1, (3.44)

such that k′2 = 0, in which case ~a′R and ~a′I are orthogonal. In addition, we can always

choose k′1 = k1/ cos 2ψ ≥ 0 such that |~a′R| ≥ |~a′I |. Therefore, via the phase freedom in ~a,

we can assume, without loss of generality, that ~aR · ~aI = 0 and that |~aR| ≥ |~aI |. Taking

into account the fact that |~a| = 1, we see that in order to simulate any GKS matrix ~a~a†,

it is sufficient to consider only

~a = ~aR + i~aI (3.45)

= cos (θ)âR + i sin (θ)âI (3.46)

with |âR| = |âI | = 1, θ ∈ [0, π/4] and âR · âI = 0.

Now, as per Theorem 3.1, we see that conjugation via U ∈ SU(d), of the semigroup

whose generator is specified by GKS matrix ~a~a†, results in the transformation

~a~a† → G(U)~a~a
†GT(U) = (G(U)~a)(G(U)~a)†, (3.47)

where G(U) = Âd(U) ∈ Int
(
SU(d)

)
is a real matrix. Furthermore, using the natural

basis isomorphism f : su(d)→ Rd
2−1, we see that

G(U)~a = cos (θ)f
[
Ad(U)(ÂR)

]
+ i sin (θ)f

[
Ad(U)(ÂI)

]

= cos (θ)f
[
UÂRU †

]
+ i sin (θ)f

[
UÂIU †

]
, (3.48)

where we have defined ÂR ≡ f−1(âR) and ÂI ≡ f−1(âI).

At this stage it is useful to define an explicit basis for su(d). To this end, let {|j〉}|dj=1
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be a basis for Rd and define the Hermitian traceless matrices

d(l) =
1√

l(l + 1)

[ l∑

j=1

|j〉〈j| − l|l + 1〉〈l + 1|
]
, (3.49)

σ(j,k)
x =

1√
2

(
|j〉〈k|+ |k〉〈j|

)
, (3.50)

σ(j,k)
y =

1√
2

(
− i|j〉〈k|+ i|k〉〈j|

)
, (3.51)

such that {
{id(l)}

∣∣d−1

l=1
, {iσ(j,k)

x , iσ(j,k)
y }

∣∣d−1

j=1

∣∣
j<k≤d

}
(3.52)

is a basis for su(d) and {id(l)}
∣∣d−1

l=1
is a basis for the diagonal Cartan subalgebra of su(d).

As ÂR ∈ su(d), we can always find U1 ∈ SU(d) which diagonalises ÂR, such that

U1Â
RU †1 ≡ ÃRd =

d−1∑

l=1

dRl (id(l)), (3.53)

with real components {dRl }. Defining ÃI ≡ U1Â
IU †1 , we can also write

ÃI ≡ ÃId + ÃIσ (3.54)

=

d−1∑

l=1

dIl (id
(l)) +

d−1∑

j=1

d∑

k=j+1

(
ax(j,k)(iσ

(j,k)
x ) + ay(j,k)(iσ

(j,k)
y )

)
, (3.55)

with real components {dIl }, {ax(j,k)} and {ay(j,k)}.

Now, let U2 = exp(i
∑d−1

l=1 hld
(l)) for some ~h ∈ Rd−1 with components hl. One can

then see that for any ~h ∈ Rd−1,

U2Ã
R
d U
†
2 = ÃRd , (3.56)

U2Ã
I
dU
†
2 = ÃId, (3.57)

so that if we define B̃I
σ ≡ U2Ã

I
σU
†
2 and take G(U2U1) ≡ Âd(U2U1), then we obtain,

G(U2U1)~a = cos(θ)f
(
ÃRd
)

+ i sin(θ)f
(
ÃId + B̃I

σ

)
. (3.58)

In order to obtain an explicit expression for B̃I
σ let us define the matrices σ(j,k) ≡

110



3.5. PROOF OF THEOREM 3.2

(1/
√

2)|j〉〈k|, and rewrite ÃIσ as

ÃIσ =

d−1∑

j=1

d∑

k=j+1

(
a(j,k)(iσ

(j,k)) + a(j,k)(iσ
(k,j))

)
, (3.59)

where

a(j,k) = ax(j,k) − ia
y
(j,k) ≡ m(j,k)e

iφ(j,k) , (3.60)

and a(j,k) denotes the complex conjugate of a(j,k). The matrices σ(j,k) are eigenvectors

of the map which conjugates by U2, so that some algebra yields,

B̃I
σ =

d−1∑

j=1

d∑

k=j+1

i

[
m(j,k)e

if(j,k)(σ(j,k)) + H.C

]
, (3.61)

where H.C denotes the Hermitian conjugate, and

f(j,k) = φ(j,k) − (j − 1)ϕ(j − 1)hj−1 +
k−2∑

l=j

(
ϕ(l)hl

)
+ kϕ(k − 1)hk−1, (3.62)

with ϕ(j) ≡ 1/(
√
j(j + 1)) and h0 ≡ 0. If we choose

h1 = − 1

2ϕ(1)
φ(1,2), (3.63)

and then inductively set

hl = − 1

(l + 1)ϕ(l)

[
φ1,l+1 +

l−1∑

x=1

ϕ(x)hx
]
, (3.64)

we see that f(1,k) = 0 for all k ∈ [2, d]. As a result, we obtain that

B̃I
σ =

d∑

k=2

m(1,k)i(σ
(1,k) + σ(k,1)) +

d−1∑

j=2

d∑

k=j+1

i

[
m(j,k)e

if(j,k)(σ(j,k)) + H.C

]
(3.65)

=
d∑

k=2

m(1,k)(iσ
(1,k)
x ) +

d−1∑

j=2

d∑

k=j+1

(
bx(j,k)(iσ

(j,k)
x ) + by(j,k)(iσ

(j,k)
y )

)
. (3.66)

If we now define ãR = f(ÃRd ) and ãI = f(ÃId + B̃I
σ), then by fixing an appropriate order

for the basis vectors in (3.52), and relabelling the components in (3.53), (3.55), (3.66),
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we can write

ãR =




aR1
...

aRd−1

0
...
...

0




ãI =




aI1
...
...

aRd2−d
0
...

0




. (3.67)

Furthermore, via complete antisymmetry of the structure constants of su(d) one can

prove that Int(SU(d)) ⊆ SO(d2 − 1), and therefore that the adjoint action preserves

orthogonality and normalisation. As a result, we have now successfully shown that for

any GKS matrix ~a~a†, with ~a ∈ Cd2−1 and |~a| = 1, there always exists U = U2U1 ∈ SU(d)

such that

G(U)~a = cos(θ)ãR + i sin(θ)ãI , (3.68)

where G(U) = Âd(U) and ãR, ãI ∈ Rd2−1 are given by (3.67), with |ãR| = |ãI | = 1

and ãR.ãI = 0. Exploiting orthogonality and normalisation we can always find angles

{αRj }|d−2
j=1 and {αIk}|

d2−(d+1)
k=1 such that the parametrisation given in the statement of the

theorem exists. Finally, using the definition of G(U), along with complete antisymmetry

of the structure constants, one can show that GT(U) = G(U†) = Âd(U †), and therefore as

G(U) ∈ SO(d2 − 1) we have that

~a~a† = G(U†)

[
G(U)~a~a

†GT(U)

]
GT(U)† , (3.69)

and as a result the semigroup generated by ~a~a† can be simulated through the semigroup

generated by G(U)~a~a
†GT(U), a member of the universal set, using unitary conjugation via

U †.

3.5.2 Proof of necessity

We show here that using linear combination and unitary conjugation it is not possible to

simulate the Markovian semigroup specified by some GKS matrix A(θ, ~αR, ~αI), satisfying

the restrictions of the theorem statement, through simulation of some other combina-

tion/transformation of Markovian semigroups specified by GKS matrices satisfying the

same conditions for some different set of parameters.

Firstly, all A(θ, ~αR, ~αI), as projections onto the eigenspace of a single eigenvector of
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A, a basis vector of Cd
2−1, are rank one matrices. As rank one matrices are extreme

in the convex cone of positive matrices, no such A(θ, ~αR, ~αI) can be simulated through

the linear combination of Markovian semigroups specified by other such GKS matrices.

Note also that a phase transformation of ~a(θ, ~αR, ~αI) commutes with a rotation via

G ∈ Int(SU(d)), and as such we only need to prove that if ~a(θ, ~αR, ~αI) and ~a(θ′, ~α′R, ~α′I)

satisfy the restrictions (3.23)-(3.35), but for different sets of parameters, and

eiψG
[
~a(θ, ~αR, ~αI)

]
= ~a(θ′, ~α′R, ~α′I), (3.70)

for some ψ ∈ [0, 2π] and some G ∈ Int(SU(d)), then (θ, ~αR, ~αI) = (θ′, ~α′R, ~α′I). In order

to simplify the presentation of the proof, in what follows we drop from our notation the

explicit dependency of vectors on their parameters by defining

~a(θ, ~αR, ~αI) = cos(θ)ãR(~αR) + i sin(θ)ãI(~αI) (3.71)

≡ cos(θ)ãR + i sin(θ)ãI (3.72)

≡ ~aR + ~aI (3.73)

≡ ~a, (3.74)

and

~a(θ′, ~α′R, ~α′I) = cos(θ′)ãR(~α′R) + i sin(θ′)ã′I(~α′I) (3.75)

≡ cos(θ′)ã′R + i sin(θ′)ã′I (3.76)

≡ ~a′R + ~a′I (3.77)

≡ ~a′, (3.78)

with the goal of proving that if eiψG~a = ~a′ then ~a = ~a′. In this simplified notation we

can write,

eiψG
[
~a
]

= eiψ
[

cos(θ)
(
GãR

)
+ i sin(θ)

(
GãI

)]
, (3.79)

where, as G ∈ Int(SU(d)) ⊆ SO(d2− 1), we see that rotation of ~a(θ, ~αR, ~αI) via G leaves

θ unchanged. Furthermore, if we define

k̃1 ≡ | cos(θ)
(
GâR

)
|2 − | sin(θ)

(
GâI

)
|2 (3.80)

k̃2 ≡ 2
[

cos(θ)
(
GâR

)
] ·
[

sin(θ)
(
GâI

)]
(3.81)

then via the fact that G ∈ SO(d2 − 1) we obtain that k̃1 = k1 ≥ 0 and k̃2 = k2 = 0,
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where k1 and k2 are defined in (3.39) and (3.40). Let us now define

k′1 ≡ |~a′R|2 − |~a′I |2 (3.82)

k′2 ≡ 2~a′R · ~a′I . (3.83)

(k′1, k
′
2) is related to (k̃1, k̃2) via an expression such as (3.43), but as k′1 ≥ 0 and k′2 = 0

by assumption, we see that we must have ψ = 0, i.e. the phase transformation must be

trivial. As neither the phase transformation nor rotation via G effects θ, we have that

θ = θ′ and we can then write

~a′ = cos(θ)
(
GãR

)
+ i sin(θ)

(
GãI) (3.84)

= cos(θ)ã′R + i sin θã′I . (3.85)

Furthermore, again because G ∈ Int(SU(d)) ⊆ SO(d2 − 1) is real, eiψG~a = ~a′ implies

that GãR = ã′R and GãI = ã′I , and therefore all that remains is to prove that GãR = ãR

and GãI = ãI .

To this end, let us define

ÃR = f−1(ãR), (3.86)

Ã′R = f−1(ã′R). (3.87)

If G = Âd(U), for some U ∈ SU(d), then from GãR = ã′R we have that

Ã′R = UÃRU †. (3.88)

However, also by assumption, both Ã′R and ÃR are diagonal, and therefore U must also

be diagonal, i.e. we must have that U = exp(i
∑d−1

l=1 pld
(l)), for some ~p ∈ Rd−1 with

components pl. However, in this case one can show that

UÃRU † = ÃR, (3.89)

and therefore GãR = ãR. To prove that GãI = ãI we define

f−1(ãI) ≡ ÃId + B̃I
σ, (3.90)
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where

ÃId =
d−1∑

l=1

dIl (id
(l)), (3.91)

is diagonal and

B̃I
σ =

d∑

k=2

m(1,k)i(σ
(1,k) + σ(k,1)) +

d−1∑

j=2

d∑

k=j+1

i

[
m(j,k)e

if(j,k)(σ(j,k)) + H.C

]
. (3.92)

We then have that

GãI = f(UÃIdU
† + UB̃I

σU
†), (3.93)

but given diagonal U we again see that

UÃIdU
† = ÃId, (3.94)

and as such all that remains is to prove that UB̃I
σU
† = B̃I

σ. To show this, note that via

our assumptions we can write

f−1(ã′I) ≡ Ã′Id + B̃′Iσ , (3.95)

with Ã′Id diagonal and

B̃′Iσ =
d∑

k=2

m′(1,k)i(σ
(1,k) + σ(k,1)) +

d−1∑

j=2

d∑

k=j+1

i

[
m′(j,k)e

if ′
(j,k)(σ(j,k)) + H.C

]
. (3.96)

However, from (3.93)-(3.95) and the fact that GãI = ã′I , we can also see that

B̃′Iσ = UB̃I
σU
†, (3.97)

and therefore that

B̃′Iσ =
d−1∑

j=1

d∑

k=j+1

i

[
m(j,k)e

iγ(j,k)(σ(j,k)) + H.C

]
, (3.98)

where

γ(j,k) = f(j,k) − (j − 1)ϕ(j − 1)pj−1 +

k−2∑

l=j

(
ϕ(l)pl

)
+ kϕ(k − 1)pk−1, (3.99)
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and from (3.92) we have that f(1,k) = 0 for k ∈ [2, d]. By comparison of (3.96) and (3.98)

we see that we must have γ(1,k) = 0 for k ∈ [2, d], and therefore from (3.99) and (3.92)

we can show that we must have pl = 0 for l ∈ [1, d − 1]. This implies that U = 1, and

therefore G = 1 and G~a = ~a. �

3.6 Simulation algorithm

If we assume the ability to implement the necessary and sufficient set of resources implied

by Theorem 3.2, or in other words, if we consider arbitrary unitary operations on our

system along with quantum channels from the semigroups generated by elements of the

universal set as “standard resources”, then the construction of Theorem 3.2, along with

previous work on simulation of linear combinations [43] (described in Appendix 3.9.1),

implies a natural algorithm for the simulation of arbitrary Markovian open quantum

systems. This algorithm is not necessarily efficient for an arbitrary system, however after

presentation of the algorithm we discuss the conditions under which a Markovian open

quantum system can be efficiently simulated, with respect to the constructed universal

set, using this algorithm. This discussion of efficiency relies on the details concerning

simulation of linear combinations [43], as presented in detail in Appendix 3.9.1.

The algorithm, illustrated in Fig. 3.1 is as follows:

1. Given HS ∼= Cd and L = LH + LA ∈ B(B(HS)), the generator of a Markovian

semigroup, obtain the spectral decomposition of A such that

L = LH +

m∑

k=1

λkL~ak~a†k ≡
m∑

k=0

λkLk, (3.100)

where λ0 = 1 and L0 ≡ LH .

2. For each k ∈ [1,m] use phase freedom to find θk, and construct U
(k)
1 and U

(k)
2 as

per the proof of Theorem 3.2, such that by defining U (k) = U
(k)†
1 U

(k)†
2 ,

~ak~a
†
k = G(U(k))

[
A(k)(θk, ~α

R
k , ~α

I
k)
]
GT

(U(k))
, (3.101)

where A(k)(θk, ~α
R
k , ~α

I
k) is an element of the universal set of semigroup generators.

3. Given ε > 0 and t > 0, construct, as described in Appendix 3.9.1, the Suzuki
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higher order integrator S2k(L̂1, . . . , L̂m, t/r) [43,58], with

k = round

(√
1

2
log25/3

4emtL2

ε

)
, (3.102)

and

r = t
(4emtL2

ε

)1/(2k) 2edk
2k + 1

, (3.103)

where L2 := ||L2||1→1 and dk = m(4/3)k(5/3)k−1.

4. Given ρ(0), implement S2k(L̂1, . . . , L̂m, t/r) consecutively rL1 times, in order to

recombine the linear combination (3.100) through sequential implementations of

Tk(t̃) = et̃Lk . Each implementation of Tk(t̃) is achieved via

Tk(t̃) = U†k
(
TA(k)(t̃)

)
Uk, (3.104)

where Uk(ρ) = U (k)(ρ)U (k)† and TA(k)(t) = exp(tLA(k)).

As shown in [43], and presented in Appendix 3.9.1, as a result of the Suzuki-Lie-

Trotter procedure used for the recombination of linear combinations, the above algo-

rithm simulates the Markovian semigroup generated by (3.100), within precision ε, using

poly
(
||L||(1→1), t, 1/ε,m

)
applications of “standard resources”, i.e. implementations of

quantum channels from the semigroups generated by elements of the universal set and

unitary operations on the system. More precisely, the algorithm requires at most

N =
8

3
(2m− 1)metL1e

2
√

1
2

ln(25/3)ln(4emtL2/ε), (3.105)

implementations of channels Tk(t̃), each of which, as per Eq. (3.104), requires 3 “stan-

dard resources”, namely two unitary operations and one quantum channel from a semi-

group generated by an element of the universal set.

By comparison with our definition of efficient simulation in Section 4.2, we therefore

see that this algorithm will be efficient, with respect to this universal set, for any class

of Markovian semigroups for which m, the number of non-zero eigenvalues of the GKS

matrix A, is proportional to ln(d), or alternatively, if we are within a many-body context,

to the number of subsystems. As A ∈ Md2−1(C), we see that in the general case

m = d2 − 1 and the algorithm will not be efficient - however by comparing the GKSL

form of Eq. (3.2) with the diagonal form of Eq. (3.3) we see that the algorithm will

be efficient, with respect to this universal set, for any system for which the number
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A

�1~a1~a
†
1 + . . . + �m~am~a

†
m

�1

⇥
G(U(1))A

(1)GT
(U(1))

⇤
�m

⇥
G(U(m))A

(m)GT
(U(m))

⇤

T1(t) = U†
1TA(1)(t)U1 Tm(t) = U†

mTA(m)(t)Um

1

Figure 3.1: Any GKS matrix A ≥ 0 can be decomposed into the linear combination
of rank 1 GKS matrices ~ai~a

†
i . The semigroups whose generator is specified by these

matrices can be further decomposed into the unitary conjugation of semigroups whose
generator is specified by an element of the universal set A(i)(θi, ~α

R
i , ~α

I
i ). As a result any

quantum channel from the original semigroup can be implemented through the linear
combination and unitary conjugation of channels from the semigroups whose generators
belong to the universal set.

of distinct physical dissipation processes with non-zero rates (the number of distinct

Lindblad operators) scales polynomially with the number of subsystems.

3.7 Worked example

As an illustration of the above algorithm we consider as an example a three level atom

in the Λ configuration (see Fig. 3.2), experiencing effective dissipation described by the

Lindblad master equation

L(ρ) =
2∑

i=1

γi

(
LiρL

†
i −

1

2
{L†iLi, ρ}+

)
, (3.106)

where,

L1 = cosφ|1〉〈e|+ eiη sinφ|2〉〈e|, (3.107)

L2 = cosα|1〉〈2|+ sinα|2〉〈1|. (3.108)
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|1〉
|2〉

|e〉

1

Figure 3.2: Illustration of three level Λ atom experiencing effective collective spontaneous
emission and external incoherent driving.

We begin by transforming into the GKS form,

LA(ρ) =

8∑

l,k=1

Al,k

(
FlρF

†
k −

1

2
{F †kFl, ρ}+

)
, (3.109)

where {Fi}|8i=1 is a Hermitian basis for the traceless matrices in M3(C), defined via

{Fi}|2i=1 ≡ {d(l)}|2l=1 (3.110)

{Fi}|5i=3 ≡ {σ(j,k)
x }2j=1|j<k≤3 (3.111)

{Fi}|8i=6 ≡ {σ(j,k)
y }2j=1|j<k≤3. (3.112)

Setting φ = η = α = π/3, we find that with respect to this basis

A =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 a3,3 a3,4 0 ia3,3 a3,7 0

0 0 a3,4 3a3,3 0 a4,6 3ia3,3 0

0 0 0 0 a5,5 0 0 a5,8

0 0 −ia3,3 a4,6 0 a3,3 a3,4 0

0 0 a3,7 −3ia3,3 0 a3,4 3a3,3 0

0 0 0 0 a5,8 0 0 a8,8




, (3.113)
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where the overbar is used to denote the complex conjugate, and

a3,3 =
γ1

8
(3.114)

a3,4 =

√
3− 3i

16
γ1 (3.115)

a3,7 =
3 + i

√
3

16
γ1 (3.116)

a4,6 =
−3 + i

√
3

16
γ1 (3.117)

a5,5 =
2 +
√

3

4
γ2 (3.118)

a5,8 =
iγ2

4
(3.119)

a8,8 =
2−
√

3

4
γ2. (3.120)

The next step is to decompose A into the linear combination of rank 1 generators through

the spectral decomposition. Constructing this decomposition we obtain

A =

2∑

k=1

λk~ak~a
†
k, (3.121)

where λi = γi, and

~a1 =

√
3

2
√

2




1

0
1
2 + i

2
√

3

i

0

−1
2 i+ 1

2
√

3

1

0




, ~a2 =
1√

1 +
(
2 +
√

3
)2




0

0

0

0

(2 +
√

3)i

0

0

1




. (3.122)

At this stage each constituent generator ~ai~a
†
i of the linear combination needs to be

decomposed into the unitary conjugation of a semigroup from the universal set. We focus

first on decomposing the semigroup generated by ~a1~a
†
1. The first step in this regard is

to identify the phase ψ1 such that

eiψ1~a1 = cos(θ1)âR1 + i sin(θ1)âI1, (3.123)
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for some âR1 and âI1 such that âR1 · âI1 = 0, |âR1 | = |âI1| = 1 and θ1 ∈ [0, π/4]. For ~a1 as

per (3.122) no such phase transformation is necessary, (i.e. we use ψ1 = 0) and we see

that

~a1 =
1√
2




0

0
√

3
4

0

0
1
4√
3

2

0




+
1√
2
i




0

0
1
4√
3

2

0

−
√

3
4

0

0




(3.124)

= cos(θ1)âR1 + sin(θ1)âI1, (3.125)

with θ1 = π/4. The next step is to identify U
(1)
1 and U

(1)
2 such that

ãR1 ≡ f
(
U

(1)
2 U

(1)
1 f−1[âR1 ]U

(1)†
1 U

(1)†
2

)
, (3.126)

ãI1 ≡ f
(
U

(1)
2 U

(1)
1 f−1[âI1]U

(1)†
1 U

(1)†
2

)
, (3.127)

have the form given in (3.20), where f : su(d)→ R8 is the natural isomorphism defined

via f(iFj) = |j〉, where {iFj}|8j=1 and {|j〉}|8j=1 are the standard bases for su(d) and

R8 respectively. As per the proof of Theorem 3.2, U
(1)
1 is the matrix which diagonalises

ÂR1 ≡ f−1(âR1 ). For âR1 as per (3.124) we find that

ÂR1 =

√
3

2
√

2




0 1
6

(
3i+

√
3
)

1
1
6

(
3i−

√
3
)

0 0

−1 0 0


 , (3.128)

and

U
(1)
1 =

√
3

2
√

2




2i√
3

1
6

(
3i+

√
3
)

1

− 2i√
3

1
6

(
3i+

√
3
)

1

0
√

2
(
−1

2 − i
√

3
2

) √
2
3


 (3.129)

such that

ÃRd,1 ≡ U
(1)
1 ÂR1 U

(1)†
1 =




i√
2

0 0

0 − i√
2

0

0 0 0


 (3.130)
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and

AI1 ≡ U (1)
1 ÂI1U

(1)†
1 =




0 − 1√
2

0
1√
2

0 0

0 0 0


 . (3.131)

At this stage one would typically construct diagonal U
(1)
2 to eliminate 2 (i.e. d − 1

with d = 3) components of f(ÃI1) while leaving f(ÃRd,1) unchanged. However, in this

case we see that

f(ÃRd,1) =




1

0

0

0

0

0

0

0




f(ÃI1) =




0

0

0

0

0

−1

0

0




, (3.132)

so that if we define ãR1 ≡ f(ÃRd,1) and ãI1 ≡ f(ÃI1) then a second unitary transformation

is not necessary, as ãR1 and ãI1 already have the desired form. So, following the proof by

defining U (1) = U
(1)†
1 and G(U(1)) = Âd(U (1)), we now have that

~a1~a
†
1 = G(U(1))

[
A(1)(θ1, ~α

R
1 , ~α

I
1)
]
GT

(U(1))
, (3.133)

where A(1)(θ1, ~α
R
1 , ~α

I
1 is an element of the universal set of semigroup generators, with

θ1 = π/4, ~αR1 = 0 and

~αI1 =
π

2




1

1

1

1

3



. (3.134)

Furthermore, from Theorem 3.1 and (3.133), one has that for any channel T1(t) =

exp(tL
~a1~a
†
1
) from the semigroup generated by ~a1~a

†
1,

T1(t)(ρ) = U (1)†
(
TA(1)(t)

[
U (1)ρU (1)†]

)
U (1), (3.135)

where TA(k)(t) = exp(tLA(k)).

We can now proceed to decompose the semigroup generated by ~a2~a
†
2, the second
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component of the linear decomposition. We follow the same procedure, however in this

case if we simply rewrite (3.122) as

~a2 = ~aR2 + i~aI2 (3.136)

then we see that although ~aR2 · ~aI2 = 0, we have |~aI2| > |~aR2 |, and as such a non-trivial

phase transformation is necessary in order to be able to write

eiψ2~a2 = cos(θ2)âR2 + i sin(θ2)âI2, (3.137)

for some âR2 and âI2 such that âR2 · âI2 = 0, |âR2 | = |âI2| = 1 and θ2 ∈ [0, π/4]. As

~aR2 ·~aI2 = 0 we see that a phase transformation via ψ2 = π/2 is sufficient, and after such

a transformation we obtain an expression in the form (3.137) with

θ2 = arccos
( 2 +

√
3√

1 +
(
2 +
√

3
)2
)
, (3.138)

and

âR2 =




0

0

0

0

−1

0

0

0




âI2 =




0

0

0

0

0

0

0

1




(3.139)

Once again, the next step is to find the unitary matrix U
(2)
1 which diagonalises ÂR2 ≡

f−1(âR2 ). In this case we find

ÂR2 =




0 0 0

0 0 − i√
2

0 − i√
2

0


 , (3.140)

and

U
(2)
1 =




0 − 1√
2

1√
2

0 1√
2

1√
2

1 0 0


 , (3.141)
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such that

ÃRd,2 ≡ U
(2)
1 ÂR2 U

(2)†
1 =




i√
2

0 0

0 − i√
2

0

0 0 0


 , (3.142)

and

AI2 ≡ U (2)
1 ÂI2U

(2)†
1 =




0 − 1√
2

0
1√
2

0 0

0 0 0


 . (3.143)

From (3.142) and (3.143) we see that ÃRd,2 = ÃRd,1 and ÃI2 = ÃI1, and therefore its clear

that once again no second unitary transformation is necessary, and that

~a2~a
†
2 = G(U(2))

[
A(2)(θ2, ~α

R
2 , ~α

I
2)
]
GT

(U(2))
, (3.144)

where ~αR2 = ~αR1 , ~αI2 = ~αI1 and we have defined U (2) = U
(2)†
1 and G(U(2)) = Âd(U (2)).

Finally, for any channel T2(t) = exp(tL
~a2~a
†
2
) from the semigroup generated by ~a2~a

†
2,

T2(t)(ρ) = U (2)†
(
TA(2)(t)

[
U (2)ρU (2)†]

)
U (2), (3.145)

where TA(2)(t) = exp(tLA(2)).

At this stage, given ε > 0, t > 0 and ρ(0), in order to efficiently implement T (t) = etL

one constructs S2k(L̂1, . . . , L̂m, t/r) as per (3.149), with k given by (3.155). One then

implements S2k rL1 times, with r given by (3.154), and each call to Tk(t̃) is achieved

using the unitary conjugation of some channel from the universal set, as per (3.135) and

(3.145), where t̃ incorporates γk.

3.8 Conclusion

Utilising the composition framework of linear combination and unitary conjugation we

have constructed a universal set of generators for the simulation of Markovian semigroup

dynamics. More precisely, we have constructed a d2 − 3 parameter family of semigroup

generators, such that any Markovian semigroup describing the dynamics of a d dimen-

sional Markovian open quantum system can be simulated through the implementation

of unitary operations on the system and quantum channels from the semigroups gener-

ated by the d2− 3 parameter family of generators. Furthermore, assuming the ability to

implement all operations from the universal set, the construction of such a universal set
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implies a natural methodology for the simulation of Markovian open quantum systems:

Given such a system, one utilises the construction of Theorem 3.2 to decompose the

generator of the system into the linear combination and unitary conjugation of gener-

ators from the universal set, before utilising Suzuki-Lie-Trotter techniques [43, 58] to

simulate the original system through simulations of the constituent semigroups. This

approach will provide a method for the efficient simulation, with respect to this uni-

versal set, of any Markovian open quantum system for which the number of distinct

physical dissipation processes with non-zero rates (the number of Lindblad operators)

scales polynomially with the number of subsystems.

Given such a methodology, it is clear that in order to use this approach for the

simulation of arbitrary Markovian open quantum systems one need only to focus on ex-

plicitly constructing methods, and developing the experimental capability, for efficiently

simulating those systems whose generators are specified by GKS matrices belonging to

the universal set of Theorem 3.2. These generators provide a significant simplification

from the general case, and in principle, these systems could be simulated using any of

the previous methods [37–39,45–49] for the simulation of Markovian open quantum sys-

tems. Another appealing approach would be to investigate the possibility of utilising

the inherent dissipation and decoherence within currently available controllable quantum

devices for the implementation of non-unitary processes from the universal set, therefore

developing the potential of quantum simulators other than universal quantum comput-

ers. One other possibility, already explored in detail for the single qubit case [43], would

be to explicitly construct parametrised descriptions of the quantum channels appearing

in the semigroup generated by an arbitrary element of the universal set. Given such an

explicit parametrised family of quantum channels, the methods of [41] could be used to

implement any such channel for any given time, on a minimal dilation space, through

the simulation of constituent extreme channels.

Given these results, a natural open question concerns the extension of this approach

for more general open quantum systems, such as those described by time-dependent

generators [36]. In order to extend this approach one could investigate the possibility

of utilising more general composition frameworks which are not constrained to preserve

Markovianity, possibly including feedback [44] or probabilistic implementations of quan-

tum channels [40,41].
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3.9 Appendix

3.9.1 Simulation of linear combinations

Given the generator of a Markovian semigroup, L =
∑m

j=1 Lj , we want to show that for

any t > 0 it is possible to implement T (t) = etL, up to arbitrary accuracy ε > 0, using

only poly
(
||L||(1→1), t, 1/ε,m

)
number of implementations of T (j)(t′) = et

′Lj . Using

Suzuki-Lie-Trotter techniques [55–57] the analogous problem for linear combinations of

Hamiltonians has been studied extensively [21, 24, 58, 59], and generalisations to the

context of open quantum systems have been considered before for both the case of

time-dependent [36] and time-independent [43] generators. Here we present a direct

generalisation of the work in [58] to the super-operator setting, first presented in [43],

which provides the best current bounds on the number of implementations of T (j)(t′) =

et
′Lj required, within the context of time-independent generators L.

We begin by assuming that

||L1||(1→1) ≥ ||L2||(1→1) ≥ · · · ≥ ||Lm||(1→1) (3.146)

and defining the normalised component generators L̂j = Lj/L1, where we have defined

L1 := ||L1||(1→1). We then follow [58] and define the basic Lie-Trotter product formula

[55] as,

S2(L̂1, . . . , L̂m, λ) =
m∏

j=1

e(λ
2

)L̂j
1∏

j′=m

e(λ
2

)L̂j′ (3.147)

=

m∏

j=1

T (j)(tλ)

1∏

j′=m

T (j′)(tλ), (3.148)

where tλ = λ/(2L1). Suzuki’s higher order integrators [56,57] are then defined using the

recursion relation

S2k(λ) = [S2k−2(pkλ)]2[S2k−2((1− 4pk)λ)][S2k−2(pkλ)]2, (3.149)

where pk = (4−41/(2k−1))−1 for k > 1 and for notational convenience we have used S2k(λ)

and S2k−2(λ) to denote S2k(L̂1, . . . , L̂m, λ) and S2k−2(L̂1, . . . , L̂m, λ) respectively. Note

that S2k(λ) consists of a product of

2(m− 1)5k−1 + 1 (3.150)
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exponentials, so that we can define

Nexp = [2(m− 1)5k−1 + 1]x (3.151)

as the number of exponentials, and hence channels T (j)(t′), appearing in the expression

[S2k(t/r)]
x. The following theorem [43], a direct generalization of the work in [58] to the

superoperator setting, then gives the desired result

Theorem 3.3. Let 1 ≥ ε > 0 be such that 4met||L2||1→1 ≥ ε, then for any k ∈ N there

exists r such that

∣∣∣
∣∣∣exp

(
t
m∑

j=1

Lj
)
−
[
S2k(L̂1, . . . , L̂m, t/r)

]rL1

∣∣∣
∣∣∣
1→1
≤ ε (3.152)

and the number of exponentials required is bounded by

Nexp ≤ (2m− 1)5k−1
[
L1t
(4emtL2

ε

)1/2k 4me

3

(5

3

)k−1]
(3.153)

where L2 := ||L2||1→1.

In particular, we can take

r = t
(4emtL2

ε

)1/(2k) 2edk
2k + 1

, (3.154)

where dk = m(4/3)k(5/3)k−1 [43, 58]. As calculated in [58], if ε ≤ mtL2 then the

minimum value of the right hand side in (3.153) is achieved for

k = round

(√
1

2
log25/3

4emtL2

ε

)
, (3.155)

such that the number of exponentials required satisfies

Nexp ≤
8

3
(2m− 1)metL1e

2
√

1
2

ln(25/3)ln(4emtL2/ε). (3.156)

Furthermore, by definition of the (1 → 1) norm we have that for any density matrix ρ

and any superoperators P and Q,

||P (ρ)−Q(ρ)||1 ≤ ||P −Q||1→1 (3.157)

and as such the results of Theorem 3.3 bound the error in the output state obtained
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when approximating T (t) with [S2k(t/r)]
rL1 .

3.9.2 Properties of the adjoint representation

We summarise here properties and characterisations of the adjoint representation of

SU(d), in order to set the notation used for a rigorous description of the effect of unitary

conjugation and to provide the fundamental results used in the proof of our main result.

For more detail, and proofs of the statements which follow, the interested reader is

referred to [60,61].

For any Lie group G, with Lie algebra g, we define the conjugation map

ψg : G→ G (3.158)

via

ψg(h) = ghg−1 (3.159)

∀g, h ∈ G. The adjoint representation of G,

Ad : G→ GL(g), (3.160)

is then defined via

Ad(g) := dψg
∣∣
e

: g→ g, (3.161)

where dψg
∣∣
e

is the differential of ψg at the identity element of G. The adjoint represen-

tation of g,

ad : g→ End(g) ' gl(g), (3.162)

is then induced from Ad and defined via,

ad(X) = d(Ad)
∣∣
e
(X) : g→ g (3.163)

∀X ∈ g. We then define Int(g) = Im(Ad) ⊆ GL(g), the image of Ad, and Int(g) =

Im(ad) ⊆ gl(g), the image of ad. One can show that Ad is a Lie group homomorphism,

ad a Lie algebra homomorphism, and that Int(g) is a Lie group with Lie algebra Int(g).

As we will be concerned with SU(d), we assume here that g ' Rn is a real vector

space (where for g = su(d) we have that n = d2−1). Under this assumption, let {Xi}|ni=1

be a basis for g, with structure constant

[Xi, Xj ] = fijkXk, (3.164)
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where we have utilised the summation notation for repeated indices. Furthermore, for

arbitrary X ∈ g, let X = xiXi, so that by identifying basis elements we can define the

natural linear isomorphism

f : g→ Rn, (3.165)

such that f(X) = ~x. Given this, it is possible to show that ∀X,Y ∈ g,

ad(X)(Y ) = [X,Y ], (3.166)

such that via linearity of the Lie bracket

ad(X)(Y ) =
[
xiad(Xi)

]
(Y ). (3.167)

Furthermore, if ker(ad) = 0, which is indeed the case for g = su(d), then ad : g→ Int(g)

is also a linear isomorphism, such that {ad(Xi)}|ni=1 is a basis for the Lie algebra Int(g).

Using the structure constants, for any X ∈ g we can then define âd(X) ∈ Mn(C), the

matrix representation of ad(X), such that ∀Y ∈ g

ad(X)(Y ) = f−1
(
âd(X)f(Y )

)
, (3.168)

via âd(X) = xiâd(Xi), where the matrix elements of âd(Xi) are given by

[âd(Xi)]jk = fijk. (3.169)

In addition, one can show that ∀X ∈ g the Ad map satisfies

Ad
(
exp(X)

)
= exp

(
ad(X)

)
, (3.170)

and that for connected matrix groups G (such as SU(d))

Ad(g)(Y ) = gY g−1, (3.171)

∀g ∈ G and ∀Y ∈ g, such that for any g = exp(X) ∈ G we have the equivalence

Ad(g)(Y ) = f−1
(
eâd(X)f(Y )

)

= f−1
(
Âd(g)f(Y )

)

= gY g−1, (3.172)

where Âd(g) ∈Mn(C) is the matrix representation of Ad(g).
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states and phases in driven open quantum systems with cold atoms. Nature Physics,

4:878, 2008.

[21] B. C. Sanders. Efficient algorithms for universal quantum simulation. In G. W.

Dueck and D. M. Miller, editors, Reversible Computation: 5th International Con-

ference, RC 2013, Victoria, BC, Canada, July 4-5, 2013. Proceedings, pages 1–10.

Springer, 2013.

[22] K. L. Brown, W. J. Munro, and V. M. Kendon. Using quantum computers for

quantum simulation. Entropy, 12:2268, 2010.

[23] I. M. Georgescu, S. Ashhab, and F. Nori. Quantum simulation. Rev. Mod. Phys.,

86:153, 2014.

[24] D. W. Berry, A. M. Childs, and R. Kothari. Hamiltonian simulation with nearly

optimal dependence on all parameters. Proceedings of the 56th IEEE Symposium

on Foundations of Computer Science (FOCS 2015), pages 792–809, 2015.
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Chapter 4

Digital quantum simulation of

many-body non-Markovian

dynamics

We present an algorithmic method for the digital quantum simulation of many-body

locally-indivisible non-Markovian open quantum systems. It consists of two parts:

Firstly, a Suzuki-Lie-Trotter decomposition of the global system propagator into the

product of subsystem propagators, which may not be quantum channels, and secondly,

an algorithmic procedure for the implementation of the subsystem propagators through

unitary operations and measurements on a dilated space. By providing rigorous error

bounds for the relevant Suzuki-Lie-Trotter decomposition, we are able to analyse the

efficiency of the method, and connect it with an appropriate measure of the local indi-

visibility of the system. In light of our analysis, the proposed method is expected to be

experimentally achievable for a variety of interesting cases.

This chapter has been been previously published in [1].
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4.1 Introduction

All quantum systems are invariably in contact with an environment to some extent.

Therefore, the development of tools for the study of such open quantum systems, un-

dergoing non-unitary dynamics as a result of system-environment interactions, is of

importance for understanding a rich variety of phenomena [2, 3]. Historically, effort

has been focused on studying Markovian open quantum systems, whose dynamics is

described by master equations in the Gorini, Kossakowski, Sudarshan and Lindblad

(GKSL) form [2–4]. However, recently there has been an explosion of interest in open

quantum systems beyond the Markovian regime, in which, since the typical assumptions

made in deriving GKSL master equations are no longer valid, more complex, history-

dependent, descriptions of the system dynamics are necessary [5–7].

In particular, the study of non-Markovian open quantum systems promises to allow us

to better understand the nature of dissipation and decoherence [2–12], thermalisation and

equilibration [13,14], non-equilibrium phase transitions [15,16] and transport phenomena

in strongly correlated [17–19] and biological systems [20–26]. Furthermore, within the

Markovian context, it has been shown that dissipation and decoherence, traditional

enemies of quantum information processing, can be exploited as a resource for quantum

computation [27–29], the preparation of topological phases [30–32] and the preparation

of entangled states [33, 34]. In this sense, it is desirable to understand the extent to

which these protocols are robust against relaxation of the strict assumptions involved in

this setting.

Simulations on controllable quantum devices promise to be one of the most effective

tools for the study of open quantum systems. While a plethora of methods have been

developed for the simulation of Markovian open quantum systems, on a wide variety of

quantum devices [35–50], there have only recently begun to emerge proposals for either

classical [51–54] or quantum [29, 55–57] simulation of non-Markovian open quantum

systems. If one has knowledge of certain properties of the environment, then one of

the most natural approaches is through methods of embedding non-Markovian open

quantum systems in larger Markovian systems [7, 58–60], which can then be simulated

through any of the available methods. However, inspired by the recent success of digital

quantum simulations in a variety of contexts [61–63], largely based on “Trotterization”

of the system’s dynamics [64–66], one may wonder about the applicability of these digital

methods to a class of many-body non-Markovian dynamics, to which they appear well

suited.

In this work, we present a method for the digital quantum simulation of many-body
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k-local, locally-indivisible non-Markovian open quantum systems, rigorously defined in

Section 4.2. The first part of this method, described in Section 4.3, consists in a Suzuki-

Lie-Trotter (SLT) decomposition [64–67] of the global system propagator into the prod-

uct of local propagators, which due to the local-indivisibility of the system, may not

be quantum channels. Generalising the work of Ref. [35] to this context, we provide a

rigorous error bound for such an SLT decomposition, allowing us to study the efficiency

of the digital method. Importantly, as discussed in Section 4.3, we cannot expect to ob-

tain an efficient method for an arbitrary non-Markovian open quantum system, and as

such the primary aim of this analysis is to understand how the efficiency of the method

depends on appropriate measures of the indivisibility of the system of interest.

The second part of the method consists in an algorithmic procedure for the imple-

mentation of Hermiticity- and trace-preserving maps which are not quantum channels.

Specifically, inspired by the notion of quantum instruments [68, 69], we show in Section

4.4 how any such map may be algorithmically implemented through unitary operations

and measurements on a dilated space. In Section 4.5, we then combine the results of

Sections 4.3 and 4.4 to provide a complete method for the digital algorithmic simulation

of k-local, locally-indivisible, non-Markovian open quantum systems. Furthermore, we

provide in Section 4.5 a detailed analysis of the efficiency of this method, which then

allows for an assessment of whether a particular system may be feasibly simulated, given

a specified set of resources. In light of this analysis, it is expected that the proposed

method should be experimentally achievable for a variety of interesting cases, in partic-

ular those which are weakly indivisible with respect to the measures we define. Finally,

in Section 4.6 we summarise our results and present an outlook on future directions.

4.2 Setting

We consider finite lattices Λ, consisting of N lattice sites so that |Λ| = N . With each

x ∈ Λ there exists an associated finite Hilbert space Hx ' Cdx , and we define HX =⊗
x∈X Hx for all subsets X ⊂ Λ, and H ≡ HΛ. For simplicity, we assume that dx = d for

all x ∈ Λ. We denote the space of all bounded linear operators A : H → H as B(H), and

given A ∈ B(H), we define the support of A, denoted supp(A), as the smallest subset

X ⊂ Λ for which there exists a non-trivial AX ∈ B(HX) such that A = AX ⊗1Λ/X . For

any X ⊂ Λ, BX(H) ≡ {A ∈ B(H)|supp(A) ⊂ X} denotes the space of all bounded linear

operators on H with support contained in X. Given a Liouvillian L : B(H) → B(H) ∈
B(B(H)), the support of L is given by supp(L) ≡ ⋃{X ⊂ Λ|BΛ/X(H) ⊂ ker(L)}, which

is the set of sites on which L generates a non-trivial time evolution, and LX = {L ∈
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B(B(H))|supp(L) ⊂ X} is the set of Liouvillians with support in X

We are interested in k-local open many-body quantum systems described by time-

local master equations. These are systems whose dynamics satisfies

d

dt
ρ(t) = L(t)[ρ(t)] =

∑

Z⊂Λ

LZ(t)[ρ(t)], (4.1)

for some piece-wise continuous time-local Liouvillian L : R+ → B(B(H)), which can be

written as the sum of strictly k-local terms LZ : R+ → LZ , with Z ⊂ Λ. Here, strict

k-locality means that |Z| ≤ k for all LZ such that LZ(t) 6= 0 for all t - i.e. each LZ term

of the Liouvillian acts non-trivially on at most k subsystems. Given a system defined by

Eq. (4.1), we denote by K = |{LZ(t)|LZ(t) 6= 0}| ≤ Nk, the number of strictly k-local

terms in the decomposition of L. Labelling the K non-trivial strictly k-local Liouvillians

then allows us to redefine Eq. (4.1) as

d

dt
ρ(t) = L(t)[ρ(t)] =

K∑

i=1

Li(t)[ρ(t)]. (4.2)

We then define the system propagators as the family of superoperators {TL(t, s)} satis-

fying ρ(t) = TL(t, s)ρ(s), for all t ≥ s ≥ 0. These propagators uniquely solve the initial

value problem
d

dt
TL(t, s) = L(t)TL(t, s), TL(s, s) = 1. (4.3)

In addition, for each i ∈ [1,K], we define the local propagators {TLi(t, s)} as the family

of superoperators which uniquely solve the initial value problem

d

dt
TLi(t, s) = Li(t)TLi(t, s), TLi(s, s) = 1. (4.4)

In Ref. [35], the digital simulation of such systems has been considered, but in the case

of Markovian many-body open quantum systems, where each strictly k-local Liouvillian

can be written in the GKSL form [2–4]. More specifically, where

Li(t)[·] = −i[Hi(t), ·] +

dk∑

j=1

γi,j(t)D(Li,j(t))[·], (4.5)

with

D(Li,j(t))[·] = Li,j(t) · Li,j(t)† −
1

2
{Li,j(t)†Li,j(t), ·}+
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and with γi,j(t) ≥ 0, for all i ∈ [1,K], j ∈ [1, dk] and t ∈ R+. In this case, the system

is called locally divisible, meaning that, for all i ∈ [1,K], and for all 0 ≤ s ≤ t ∈ R+,

the local propagator TLi(t, s) is a quantum channel (completely positive trace preserving

map) [4, 6]. In this work, we aim to go beyond this case and consider locally indivisible

dynamics described by time-local master equations, i.e. dynamics generated by a k-local

Liouvillian as in Eq. (4.1), but for which TLi(t, s) may not be a quantum channel for

all i ∈ [1,K] and for all 0 ≤ s ≤ t ∈ R+. Time-local master equations of this type are

capable of describing many non-Markovian systems [5–7], and the simplest example of

such a process is given by a system whose dynamics is described by Eq. (4.5), but with

dissipation rates γi,j(t) which are not necessarily positive for all i, j and t [2,4]. We also

note that we do not attempt to address here the question of which k-local Liouvillians

generate legitimate completely positive dynamics, as the simulation method given here

is valid even in the case when the global dynamics is not completely positive.

In order to quantify errors made within the presented simulation scheme, we utilise

the (1 → 1)-norm for super-operators, where in general the (p → q)-norm of a super-

operator T ∈ B(B(H)) is defined as [68]

||T ||p→q := sup
||A||p=1

||T (A)||q. (4.6)

The (p → q)-norm defined above is induced from the Schatten p-norm of an operator,

defined as ||A||p :=
(
tr(|A|p)

) 1
p , for all A ∈ B(H). Notice that the definition corresponds

up to a factor of 1/2 with the trace distance, dist(ρ, σ) := sup0≤A≤1 tr
(
A(ρ−σ)

)
, arising

from a physical motivation of operational distinguishability of quantum states [69], which

is relevant when working in the Schrödinger picture.

4.3 Trotter decomposition of locally indivisible dynamics

In line with conventional digital quantum simulation techniques [61–63], our strategy

for the simulation of locally indivisible dynamics will be to implement TL(t, 0) through

stroboscopic implementations of small time slices of the strictly k-local propagators,

formalised via a Suzuki-Lie-Trotter (SLT) decomposition of TL(t, 0) [64–66]. In order to

evaluate the performance of this strategy, it is necessary to obtain error bounds on the

relevant SLT decomposition. To this end, we aim to generalise the results obtained in Ref.

[35] to the case of locally indivisible systems. It is essential to note that we cannot expect

to obtain an efficient simulation method for arbitrary non-Markovian systems [35]. This

is largely due to the fact that in many non-Markovian situations, in which the system
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of interest is strongly coupled to an environment, the dominant contribution to the

dynamics arises from the total system plus environment combination, and it is therefore

unrealistic to expect efficient scaling with respect to the size of only the measured system

of interest. As an illustration, if efficient simulation of arbitrary non-Markovian dynamics

were possible, then one could in principle imagine efficiently simulating an extremely

complicated process or computation occurring in the environment, whose results can flow

back into the system of interest due to the non-Markovian character of the environment.

In light of these considerations, the primary goal of our analysis will be to provide an

error bound for a relevant SLT decomposition. This will allow us to understand how the

efficiency of the SLT-based digital simulation method depends on various “measures of

local indivisibility” of the simulated system. Then, given a particular locally indivisible

non-Markovian system, this would permit an experimentalist the ability to determine

whether the resources required for such a simulation are practically feasible.

To this end, given a super-operator T ∈ B(B(H)), let us define the check function

Ch
(
T
)

=





0, if T is a quantum channel,

1, otherwise.

Note that, given a particular super-operator T ∈ B(B(H)), the value of Ch(T) can in

principle be determined through construction and analysis of the Choi-Jamiolkowski

state [69]. This procedure will be practical provided that the dimension of the Hilbert

space H is relatively small. Now, given a k-local system specified by a Liouvillian L,

as in Eqs. (4.1) and (4.2), let us consider a fixed final time t ≥ 0 and divide the time

interval [0, t] into m subintervals of length ∆t ≡ t/m, as required by any SLT scheme.

Given these values of t and m, let us then define T ji ≡ T
j
Li(tj/m, t(j−1)/m) for i ∈ [1,K]

and j ∈ [1,m]. This leads to the following “measures of local indivisibility”,

Ñm
i =

m∑

j=1

Ch
(
T ji

)
≤ m, (4.7)

N̂m
j =

K∑

i=1

Ch
(
T ji

)
≤ K. (4.8)

These quantities are defined such that Ñm
i measures the number of time intervals in the

SLT scheme for which the propagator T ji is not a quantum channel, while N̂m
j measures

the number of local propagators which are not quantum channels during some given

time interval [tj/m, t(j − 1)/m]. Note that, as a consequence of strict k-locality, it will

140



4.3. TROTTER DECOMPOSITION OF LOCALLY INDIVISIBLE DYNAMICS

generally be possible to calculate these measures on a conventional computer for realistic

systems in which k is small and independent of the total system size N . Given these

quantities, we then define

Ñm = max
1≤i≤K

[
Ñm
i

]
≤ m, (4.9)

N̂m = max
1≤j≤m

[
N̂m
j

]
≤ K. (4.10)

Clearly, for locally divisible dynamics Ñm = N̂m = 0. Note that all quantities defined

so far depend implicitly on the discretisation factor m, and that naively it is possible

to bound Ñm from above by m, which occurs in the worst case scenario when all local

propagators are not quantum channels - i.e. when the system is locally “totally indivis-

ible”. However, it is desirable to find a tighter upper bound than this and, to this end,

we define

tIDi = lim
m→∞

Ñm
i ∆t = lim

m→∞

Ñm
i t

m
≤ t, (4.11)

and tID = max1≤i≤K t
ID
i . Furthermore, let us define Cmi , the number of “disjoint indi-

visible intervals due to Li”, via Cmi =
∑m−1

j=1 Seq
(
T ji , T

j+1
i

)
, where

Seq
(
T ji , T

j+1
i

)
=





1 Ch(T j) = 0 ∧ Ch(T j+1) = 1

0 otherwise.

In addition, let us define Ci = limm→∞C
m
i , and C̃ = 2 max1≤i≤K Ci, so that, at this

stage, it is possible to see that

Ñm ≤ min
( tID

∆t
+ C̃,m

)
. (4.12)

Finally, we do not want to specify a priori that our local equations of motion are in a

specific form, so we specify the local quantity

β = sup
0≤s≤t

(
max

1≤i≤K

(
||Li(s)||1→1

))
, (4.13)

which allows us to state the following theorem:

Theorem 4.1. Given a system whose dynamics is described by Eqs. (4.1) and (4.2),

the error of a first order SLT decomposition of a time evolution up to time t in m steps
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is bounded by,

∣∣∣∣
∣∣∣∣TL(t, 0)−

m∏

j=1

K∏

i=1

T ji

∣∣∣∣
∣∣∣∣
1→1

≤ E(m,K, β, t, Ñm, N̂m),

where

E =
K2β2t2

m
e(3+K(2+Ñm)+Kmin[m,KÑm]+N̂m)β(t/m)

≤ K2β2t2

m
e(3+[3+C̃]K+C̃K2)β(t/m)e(K+K2)tIDβ. (4.14)

The proof of Theorem 4.1 can be found in Appendix 4.7.1. Note that we also have

the following important corollary:

Corollary 4.1. Given

0 ≤ ε ≤ (2K2βtln(2)e(K+K2)tIDβ)

(3 + [3 + C̃K + C̃K2])
, (4.15)

then ∣∣∣∣
∣∣∣∣TL(t, 0)−

m∏

j=1

K∏

i=1

T ji

∣∣∣∣
∣∣∣∣
1→1

≤ ε, (4.16)

provided m ≥ 2Kβ2t2e(K+K2)tIDβ/ε.

From Corollary 4.1 (also proven in Appendix 4.7.1), it is clear that, as expected,

in the case of locally indivisible dynamics, the number of strictly k-local propagators

scales exponentially in K, and therefore potentially exponentially in N because of the

the relationship K ≤ Nk, which is not necessarily saturated. However, note that, when

the dynamics is locally divisible, we have that tID = 0. Therefore, the number of local

propagators scales polynomially in N , reproducing the results of Ref. [35]. We also note

that it is possible to replace the strictly k-local propagators T ji , with the strictly k-local

propagators T j,avg
i = exp(∆tLj,avg

i ) of the averaged Liouvillians,

Lj,avg
i =

m

t

∫ tj/m

t(j−1)/m
Li(s)ds, (4.17)

without changing the scaling of the SLT error [35]. Furthermore, when the Liouvillian is

in GKSL form given in Eq. (4.5), but possibly with negative dissipation rates at certain
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time, the SLT error can be expressed in terms of

β̃ = sup
0≤s≤t

(
max

1≤i≤K

(
max

1≤j≤dk

(
||Li,j(s)||∞

))
, (4.18)

the largest operator norm of the Lindblad operators [35].

At this stage, the strategy in the locally divisible case is clear, as each strictly k-

local propagator, which is a quantum channel, can be implemented through a unitary

Stinespring dilation requiring an ancilla space whose dimension depends only on k and d

[35,68,69]. However, in the locally indivisible case, not all local propagators are quantum

channels (or even positive maps) and therefore, any realisation of an SLT scheme, such

as the one provided by Theorem 4.1, requires a method for the implementation of non-

positive maps.

4.4 Algorithmic implementation of non-positive maps

In this section, we construct a method to implement the strictly k-local propagators

emerging from the SLT decomposition given in Theorem 4.1, which are not quan-

tum channels. In particular we restrict ourselves to Hermiticity- and trace preserving

(HPTP), but not necessarily positive maps. Such maps would for instance arise in the

case of a k-local system specified by a Liouvillian in GKSL form, but with negative

dissipation rates for certain time intervals. As mentioned briefly in Section 4.3, we stress

that, due to strict k-locality of these propagators, the support of these maps for real-

istic many-body systems will be sufficiently small, so that it is possible to obtain their

spectrum either analytically or numerically.

Given an HPTP map T : B(H)→ B(H), there always exists completely positive, but

not necessarily trace preserving (CPnTP), maps T (0) and T (1) such that T = T (0)−T (1).

This can be proven via the spectral decomposition of the associated Choi-Jamiolkowski

state [68]. As a result, we see that, if one can implement the CPnTP maps T (0) and T (1),

then one can implement T algorithmically. Specifically, given any initial state ρ ∈ B(H)

and any observable A ∈ B(H), and defining ρ′ = T (ρ), we have

〈A〉ρ′ ≡ tr[Aρ′]

= tr[AT (0)(ρ)]− tr[AT (1)(ρ)]

= tr[Aρ′(0)]− tr[Aρ′(1)]

= 〈A〉ρ′
(0)
− 〈A〉ρ′

(1)
,

143



CHAPTER 4. SIMULATION OF MANY-BODY NON-MARKOVIAN DYNAMICS

i.e. expectation values of the desired state ρ′ can be algorithmically reconstructed from

the expectation values of the outputs ρ′(0) and ρ′(1) of CPnTP maps T (0) and T (1). In

light of this, we are able to restrict our attention to constructing a method for the

implementation of CPnTP maps.

To this end, let us consider a CPnTP map T (x) : B(HS) → B(HS), with HS ' Cd,
and Kraus representation {K(i)

x }|dxi=1, where dx ≤ d2. Furthermore, let us define the

“gauge” Gx via

Gx =

dx∑

i=1

(K(i)
x )†K(i)

x . (4.19)

As T (x) is not trace preserving, we know that Gx 6= 1. At this stage, we can identify two

cases: case 1 is when the gauge Gx is sub-normalised, 1−Gx ≥ 0, and case 2 is when the

gauge Gx is not sub-normalised. More specifically, let us define gx = max
[
spec(Gx)

]
.

From the structure of Gx (Hermitian and positive semi-definite), we know that that

gx ≥ 0. Then, we are in case 1 when gx ≤ 1, and in case 2 otherwise. If we are in case 2,

then we can define the “renormalised” map T̂ (x) via Kraus operators {K̂(i)
x }|dxi=1, where

K̂
(i)
x = (1/

√
gx)K

(i)
x . Let us denote the gauge of T̂ (x) as Ĝx, and note that

Ĝx =
1

gx
Gx, (4.20)

so that Ĝx is sub-normalised by construction. Furthermore, note that for all ρ ∈ B(HS),

we have that

T (x)(ρ) = gxT̂
(x)(ρ), (4.21)

so that, if we can implement T̂ (x), then T (x) can be implemented algorithmically.

Given this setup, the problem considered here is the following:

Problem: Given a CPnTP map T (x) : B(HS) → B(HS), with HS ' Cd, and an

observable A ∈ B(HS), and given multiple copies of ρ ∈ B(HS) (i.e. from some standard

preparation procedure or preliminary circuit), describe an algorithmic procedure which

yields 〈A〉ρ′
(x)

, where

〈A〉ρ′
(x)

= Tr[Aρ′(x)], (4.22)

with ρ′(x) = T (x)(ρ).

If we first restrict ourselves to case 1, then the protocol described below, inspired by

the notion of quantum instruments [68,69], provides a solution to the problem.
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Step 1: Construct K
(∞)
x such that

Gx + (K(∞)
x )†K(∞)

x = 1 (4.23)

Note that the existence of K
(∞)
x is guaranteed by virtue of the assumed sub-normalisation

of Gx. Furthermore, note that through the inclusion of the additional Kraus operator

K
(∞)
x , we can extend T (x) to a map T

(x)
e which is both completely positive and trace

preserving.

Step 2: Construct the unitary operator Ux ∈ B(Cdx+1 ⊗HS) via

Ux =




K
(1)
x

...
...

...
...

...
...

...

K
(dx)
x

...
...

...

K
(∞)
x

...
...

...



. (4.24)

Note that Ux is precisely the Stinespring dilation of T
(x)
e , the trace preserving extension

of T (x), with dilation space HEx ' Cdx+1.

Step 3: Define the set of projectors P (x) = {P (x)
1 , P

(x)
2 } via

P
(x)
1 =

dx∑

j=1

d∑

k=1

|j, k〉〈j, k| (4.25)

P
(x)
2 =

d∑

k=1

|dx + 1, k〉〈dx + 1, k| (4.26)

where {|j, k〉}|dx+1
j=1 |dk=1 is the basis for HEx ⊗HS in which Ux is given.

Step 4: Note now that, if one starts with the state |1〉〈1| ⊗ ρ, applies the unitary Ux,

and then performs the measurement defined by P (x), then the probability of obtaining

“measurement outcome 1” is given by

Prx(1) ≡ Tr[P
(x)
1 Ux(|1〉〈1| ⊗ ρ)U †xP

(x)
1 ], (4.27)

in which case the reduced state of the system is

ρ′ = TrEx

[
P

(x)
1 Ux(|1〉〈1| ⊗ ρ)U †xP

(x)
1

Tr[P
(x)
1 Ux(|1〉〈1| ⊗ ρ)U †xP

(x)
1 ]

]
. (4.28)

145



CHAPTER 4. SIMULATION OF MANY-BODY NON-MARKOVIAN DYNAMICS

Furthermore, note that by construction

T (x)(ρ) = TrEx
[
P

(x)
1 Ux(|1〉〈1| ⊗ ρ)U †xP

(x)
1

]
, (4.29)

so that we can rewrite Eq. (4.28), with the help of Eqs. (4.27) and (4.29), as

ρ′ =
T (x)(ρ)

Prx(1)
, (4.30)

or alternatively

ρ′(x) = Prx(1)ρ′. (4.31)

Step 5 (case 1): Finally, note that via Eq. (4.31)

〈A〉ρ′
(x)

= Tr[Aρ′(x)]

= Prx(1)Tr[Aρ′]

= Prx(1)〈A〉ρ′ . (4.32)

Now, 〈A〉ρ′ can be obtained from the state ρ′, which in turn can be produced through

unitary evolution of a dilated system via Ux, followed by the measurement P (x), and

postselecting on “measurement outcome 1”. Furthermore, the constant Prx(1) can be

asymptotically obtained through repetitions of the process of unitary evolution and

measurement (with the same initial state each time), by recording the proportion of

“measurement outcome 1” to “measurement outcome 2”. To sum up, through unitary

evolutions and measurements of a dilated system, it is possible to obtain algorithmically

the desired value of 〈A〉ρ′ , provided the assumption of sub-normalisation holds.

Now, let us consider the case when sub-normalisation is not satisfied, i.e. case 2. In

this case, we can repeat steps 1 through 4, not for the map T (x), but for the “renor-

malised” map T̂ (x). Finally, we slightly modify step 5, where the hats now just indicate

the relevant object defined from T̂ (x), as opposed to T (x):

Step 5 (case 2): Note that

〈A〉ρ′
(x)

= Tr[AgxT̂
(x)(ρ)]

= gxPrx(1)Tr[Aρ̂′]

= gxP̂rx(1)〈A〉ρ̂′ . (4.33)

Now, 〈A〉ρ̂′ can be obtained from the state ρ̂′ which, again, can be produced through
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unitary evolution of a dilated system via Ûx, followed by the measurement P (x). Again,

the constant P̂rx(1) can be obtained asymptotically through repetitions of the process

of unitary evolution and measurement.

Clearly, for this protocol to work, it is necessary to obtain the value of the constant

Prx(1). In a practical setting, it is necessary to construct some estimator PrNTx (1) for

Prx(1) from a finite number of measurementsNT . The error in approximating the desired

output state ρ′(x) = Prx(1)ρ′ with ρ̃′(x) = PrNTx (1)ρ′ is then given by

||ρ′(x) − ρ̃′(x)|| = |Prx(1)− PrNTx (1)|||ρ′|| (4.34)

= |Prx(1)− PrNTx (1)|. (4.35)

Therefore, given some error threshold ε ≥ 0, it is necessary to determine the minimum

number of repetitions of the process of unitary evolution and measurement which are

necessary to construct an estimator PrNTx (1) such that |Prx(1) − PrNTx (1)| ≤ ε. Given

that the measurement P only has two possible outcomes, this is essentially the problem

of constructing a binomial proportion confidence interval.

As discussed in Refs. [70,71], in order to construct an interval with reliable properties

for a potentially small number of trials, or a value of Prx(1) which is potentially close to

either 0 or 1, it is necessary to use the Wilson score interval [72]. Formally, let us denote

the number trials in which measurement outcome 1 is observed as N1, and define the

proportion p̂ = N1/NT . Furthermore, the maximum error associated with our estimator

will be associated with some confidence level, given by the z-value of a standard normal

distribution, and denoted here as z. The Wilson score interval then prescribes that the

best estimate PrNTx (1) is given by

PrNTx (1) =
p̂+ 1

2NT
z2

1 + 1
NT
z2
, (4.36)

with a confidence interval [PrNTx (1)− Ez,PrNTx (1) + Ez], where

Ez =
z
√

1
NT
p̂(1− p̂) + 1

4N2
T
z2

1 + 1
NT
z2

. (4.37)

As an example, given a z-value z = 4.42, associated with a 99.99% confidence [70], this

means that we will have

|Prx(1)− PrNTx (1)| ≤ Ez (4.38)
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99.99% of the times in which such an estimator is constructed. Therefore, given a

maximum error tolerance of ε ≥ 0, one can show, by noting that the right hand side of

Eq. (4.37) is maximized for p̂ = 1/2, that

|Prx(1)− PrNTx (1)| ≤ ε, (4.39)

with the confidence level associated with z, provided that

N2
T

NT + z2
≥ z2

4ε2
. (4.40)

Note, from Eqs. (4.36), (4.37) and (4.40), that in the large NT limit the best estimate

is given by PrNTx (1) = p̂, and the condition given by Eq. (4.40) becomes

NT ≥
z2

4ε2
, (4.41)

which is what one would expect from using the more intuitive Wald confidence interval

[70,71].

At this stage, we have therefore obtained a complete algorithmic procedure for the

approximate implementation of an arbitrary HPTP super-operator. In the following

section, we proceed to combine this technique with the results of Section 4.3, in order to

formulate a complete procedure for the simulation of k-local locally indivisible dynamics.

4.5 Algorithmic digital simulation of locally indivisible

dynamics

In this section, we present an algorithmic digital method for the implementation of

T̃ ≡
m∏

j=1

K∏

i=1

T ji , (4.42)

with m fixed by Corollary 4.1. In order to develop a concise notation, let us define a

multi-index γ = (j, i) ∈ [1,mK], such that T̃ can be rewritten as

T̃ =

mK∏

γ=1

T γ . (4.43)
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We stress that the γ indexes the strictly k-local propagators in the SLT decomposition,

and does not indicate an exponent. Given this notation, we will then say that T ji is the

nth non-CP map if T ji is non-CP (i.e. Ch(T ji ) = 1) and
∑(j,i)

γ=1 Ch(T γ) = n. Furthermore,

if T γ is non-CP, but HPTP, as we are assuming all non-CP strictly k-local propagators

are, then we denote the decomposition of T γ into the difference of CPnTP maps, as

shown in Section 4.4, via T γ = T γ,0− T γ,1. In addition, it will be useful for us to define

β(x, n) as the nth element of the binary representation of non-negative integer x, and

fx(T γ) =




T γ , if Ch(T γ) = 0,

T γ,β(x,n), if T γ is the n’th non-CP map.

Defining the total number of non-CP maps appearing in the decomposition of T̃ as

Ñm
TOT =

∑K
i=1 Ñ

m
i , allows us to define the rth circuit, denoted Cr and consisting only

of quantum channels and CPnTP maps, as

Cr =

mK∏

γ=1

fr(T
γ), (4.44)

where r ∈ [0, 2Ñ
m
TOT − 1]. Finally, defining the parity function P as

P(r) =





1, if the binary representation of

r has an odd number of 1’s,

0, otherwise.

allows us to obtain the expression

T̃ =

2Ñ
m
TOT−1∑

r=0

(−1)P(r)Cr. (4.45)

In essence, Eq. (4.45) shows how T̃ can be implemented algorithmically through the

implementation of circuits consisting only of quantum channels and CPnTP maps. In

other words, given an initial state ρ(0) and an observable A, and defining ρ̃(t) = T̃ (ρ(0))
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= =

= =C2 C3

T 2
T 2

T 2 T 2

T 1,0

C0 C1

T 3,0

T 1,0 T 3,1

T 3,0

T 3,1

T 1,1

T 1,1

Figure 4.1: Given a 2-local global propagator T̃ = T 3T 2T 1, with Ch(T 1) = Ch(T 3) =
1 and Ch(T 2) = 0, this propagator can be implemented algorithmically through the
implementation of the four circuits {Cr}|3r=0. Each circuit Cr consists only of quantum
channels and CPnTP maps.

and ρ(r)(t) = Cr(ρ(0)), it follows from Eq. (4.45) that

〈A〉ρ̃(t) = tr[Aρ̃(t)]

=
2Ñ

m
TOT−1∑

r=0

(−1)P(r)tr[Aρ(r)(t)]

=
2Ñ

m
TOT−1∑

r=0

(−1)P(r)〈A〉ρ(r)(t), (4.46)

i.e. expectation values of the desired state ρ̃(t) can be reconstructed from the expectation

values of ρ(r)(t), the outputs of circuits Cr.

As an example, illustrated in Fig. 4.1, let us consider a two-local global propagator

T̃ = T 3T 2T 1 acting on a total system of three sites. Here, T 2 is a quantum channel

acting non-trivially on sites 2 and 3, so Ch(T 2) = 0, while T 1 and T 3, acting non-trivially

on sites 1 and 2, are not quantum channels, so Ch(T 1) = Ch(T 3) = 1. In this simple

situation. we have that the total number of non-CP maps is two. Therefore, given an

initial state ρ(0), the expectation values of the state ρ̃(t) = T̃ (ρ(0)) can be reconstructed

algorithmically, via Eq. (4.45), from the states ρr(t) = Cr(ρ(0)) for r ∈ [0 : 3].

At this stage, what remains to be done is to incorporate explicitly into this algo-

rithmic procedure for implementing T̃ , the implementation of CPnTP maps within the

circuits Cr. To this end, given a CPnTP map T γ,i, with i ∈ {0, 1}, let us denote the as-
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sociated sub-normalised map as T γ,is = (1/gγ,i)T γ,i and the associated CPTP extension

of T γ,is as T γ,ie . We then denote the unitary Stinespring dilation of T γ,ie , constructed as

per Eq. (4.24), as Uγ,i. Furthermore, given an arbitrary state ρ, we denote the output

of a successful trial by

Aγ,i(ρ) =
trEγ,i

[
P γ,i1 Uγ,i(|1〉〈1| ⊗ ρ)(Uγ,i)†P γ,i1

]

Nγ,i(ρ)

=
T γ,is (ρ)

Nγ,i(ρ)

=
T γ,i(ρ)

gγ,iNγ,i(ρ)
, (4.47)

where P γ,i1 is defined as per Step 3 of the procedure described in Section 4.4, and we

denote the probability of measurement outcome 1 on the input state |1〉〈1|⊗ρ by Nγ,i(ρ).

Note at this stage, from Eq. (4.47), that

T γ,i(ρ) = gγ,iNγ,i(ρ)Aγ,i(ρ). (4.48)

Now, let us define

Mγ
r (ρ) =




T γ(ρ), if Ch(T γ) = 0,

Aγ,β(r,n)(ρ), if T γ is the n’th non-CP map.

Given an initial state ρ(0), then

ρ̃(r)(j) =

j∏

γ=1

Mγ
r (ρ(0)), (4.49)

such that

ρ(r)(t) = Cr(ρ(0)) = ρ̃(r)(mK)
(mK∏

γ=1

GγrN γ
r

)
, (4.50)

where

Gγr =





1, if Ch(T γ) = 0,

1, if T γ,β(r,n)is sub-normalised,

gγ,β(r,n), otherwise,
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and

N γ
r =





1, if Ch(T γ) = 0,

Nγ,β(r,n)(ρ̃r(γ − 1)), otherwise.

Note that Eqs. (4.49) and (4.50) formalise the algorithmic procedure to implement the

circuits Cr, by means of (a) quantum channels and (b) unitary operations and measure-

ments on a dilated space. The quantum channels can be straightforwardly implemented

via unitary Stinespring dilations [35]. At this stage, combining Eqs. (4.45), (4.49) and

(4.50), we end up with the expression

ρ̃(t) = T̃ (ρ(0))

=

(
2Ñ

m
TOT−1∑

r=0

(−1)P(r)
[mK∏

γ=1

GγrN γ
r

][ j∏

γ=1

Mγ
r

])
ρ(0).

Via a similar analysis to Eq. (4.46), it is therefore clear that expectation values of

the desired output state ρ̃(t) can be algorithmically reconstructed from the expectation

values of the states

ρ̃(r)(mK) =

mK∏

γ=1

Mγ
r (ρ(0)). (4.51)

These states can be obtained through unitary operations and measurements, involving

ancillary spaces whose dimensions, independent of N , depend only on d and k. Using

the same example illustrated in Fig. 4.1, this procedure of obtaining ρ̃(r)(mK) is shown

in Figure 4.2, for the case of r = 0.

From Eq. (4.50), it is clear that the algorithmic reconstruction of the states ρr(t)

from the states ρ̃(r)(mK), requires knowledge of the constantsN γ
r . However, as discussed

in Section 4.4, we approximate in practice the states ρr(t) with the states

φ(r)(t) = ρ̃(r)(mK)
(mK∏

γ=1

Gγr Ñ γ
r

)
, (4.52)

where Ñ γ
r is an estimator for N γ

r , constructed from a finite number of measurements.

The final output of the algorithmic procedure described here, an approximation of the

desired state ρ̃(t) = T̃ (ρ(0)), is therefore the state

φ̃(t) =
2Ñ

m
TOT−1∑

r=0

(−1)P(r)φ(r)(t). (4.53)
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|1i

⇢(0)

U1,0 =

P 1,0

T 2

U3,0 =

P 3,0

|1i

⇢̃(0)(3)⇢̃(0)(1) ⇢̃(0)(2)

“1”“2” “1”“2”

Figure 4.2: Considering the same example as shown in Figure 4.1, the circuit shown
here illustrates the method, given by Eq. (4.51), for constructing ρ̃(0)(3), from which
the state ρ(0)(t) = C0(ρ(0)) can be algorithmically reconstructed. Starting with the
specified initial state ρ(0), the first CPnTP map T 1,0 is implemented, as described in
Section 4.4, through a unitary operation U1,0 and a measurement P 1,0 on a dilated
space. It is crucial to note that if measurement outcome 1 is obtained when performing
the measurement, then the correct state ρ̃(0)(1) has been obtained and the procedure
can continue, but if measurement outcome 2 is obtained then the procedure needs to
be restarted. The quantum channel T 2 can then be implemented straightforwardly, via
a conventional Stinespring dilation (not shown), before the second CPnTP map T 3,0 is
implemented, analogously to T 1,0.

One can then show that the algorithmic error made in approximating ρ̃(t) with φ̃(t) is

bounded by

||ρ̃(t)− φ̃(t)|| ≤ 2Ñ
m
TOT−1 max

r
||ρ(r)(t)− φ(r)(t)||, (4.54)

and that the error made in approximating ρ(r)(t) with φ(r)(t) is bounded by

||ρ(r)(t)− φ(r)(t)|| ≤ GrÑm
TOT max

1≤γ≤mK
|N γ

r − Ñ γ
r |,

with Gr ≡
∏mK
γ=1 G

γ
r . As a result, if one requires that the total algorithmic error is less

than εA ≥ 0, one then needs to ensure that

max
r

(
max
γ

(
|N γ

r − Ñ γ
r |
))
≤ εA

GÑm
TOT2Ñ

m
TOT−1

, (4.55)

where G ≡ maxr
[
Gr
]
. From Eqs. (4.40) and (4.55), it is then straightforward to

calculate the number of trials necessary to obtain a sufficiently accurate estimator Ñ γ
r .

At this stage, given an initial state ρ(0), if the Trotterization error, given by Theorem
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4.1, is less than εT , i.e. if
∣∣∣∣TL(t, 0)− T̃

∣∣∣∣
1→1
≤ εT , and if the algorithmic error associated

with implementing T̃ is less than εA, then the total error will be upper bounded by

||ρ(t)− φ̃(t)|| ≤ εT + εA. (4.56)

Therefore, if one requires a total error less than ε, it suffices to choose m such that

εT ≤ ε/2, via Corollary 4.1, and the number of trials required for the construction of the

estimators N γ
r , via Eqs. (4.40) and (4.55), such that εA ≤ ε/2.

Finally, it is necessary to make some comments regarding the efficiency of the method.

As discussed earlier, it is not expected to obtain an efficient method for an arbitrary

locally-indivisible system. Indeed, from the analysis above one can see that the number

of strictly k-local CPnTP maps which need to be implemented, given by (2Ñ
M
TOT)mK,

where m is given by Corollary 4.1, depends strongly on the the indivisibility of the system

as measured by ÑM
TOT and tID. Furthermore, as a result of the algorithmic procedure

for implementing the non-CP strictly k-local propagators, each circuit Cr in fact needs

to be successfully implemented a number of times, given by Eqs. (4.40) and (4.55), to

construct the required estimators Ñ γ
r . However, as pointed out earlier, it is crucial to

note that, as a result of the definition of Aγ,i, a successful implementation of the circuit

Cr requires that all measurements involved in the circuit result in “measurement outcome

1”. Therefore, the probability of achieving a successful implementation of circuit Cr is

given by P (Cr) =
∏mK
γ=1N

γ
r , with

(
max

1≤γ≤mk

[
N γ
r

])Ñm
TOT ≥ P (Cr) ≥

(
min

1≤γ≤mk

[
N γ
r

])Ñm
TOT

.

In practice, as N γ,i(ρ) ≡ tr(T γ,is )(ρ), the value of N γ
r can be estimated by implementing

the strictly k-local propagator T
γ,B(r,n)
s on a classical computer for a random selection

of inputs ρ, and by taking the average value of output traces. This estimated value of

N γ
r , in conjunction with the value of tID and Ñm

TOT, can then be used to decide whether

the algorithmic procedure given here is plausible for the system of interest.

4.6 Conclusions and outlook

We have presented an algorithmic digital quantum simulation method for many-body

locally-indivisible non-Markovian open quantum systems. The method consists of an

SLT decomposition of the k-local global system propagator into the product of strictly

k-local propagators, which may not be quantum channels. In this case, we also provide

154



4.7. APPENDIX

an algorithmic method for the implementation of those strictly k-local propagators which

are not quantum channels, through unitary operations and measurements on a dilated

space. The efficiency of the method, which reduces to the method of Ref. [35] in the

case of locally divisible dynamics, expectably depends on various measures of the local

indivisibility of the system. For systems which are weakly indivisible, with respect to

the measures defined here, this method should be achievable with current experimental

setups [61,62].

In light of these results, various natural avenues arise for the extension of this work.

The first direction consists in investigating any potential improvements that could be

gained from utilising higher order SLT decompositions [65,66]. However, as discussed in

Refs. [61–63], due to practical experimental constraints on gate implementation, any such

analysis needs to take into account the tradeoff which arises between greater accuracy

in the SLT decomposition and a larger number of required gates. The second natural

direction involves investigating alternative or improved methods for the implementation

of strictly k-local propagators which are not quantum channels. In particular, it would

be of interest to construct methods for the simulation of maps which are not necessarily

Hermiticity and trace preserving.

Finally, given the necessary inefficiency of digital methods for the simulation of non-

Markovian systems, it would be of interest to investigate the potential of digital-analog

approaches [73–75]. In particular, it would be of interest to investigate whether effi-

cient simulations are possible through the utilisation of non-Markovian analog building

blocks, such as recently introduced quantum memristors [29, 76], combined with digital

steps. Furthermore, one should investigate whether such efficient simulations could play

any role in the emerging field of quantum machine learning [77], where purely digital

approaches may be restricted by fundamental obstacles.

4.7 Appendix

4.7.1 Proof of Theorem 4.1

In this appendix we will provide a proof for Theorem 4.1, and the associated Corollary

4.1, through a sequence of lemmas, following the strategy given in [35], but generalised to

the case of locally indivisible dynamics where necessary. In what follows, for notational

convenience, we will drop the subscript 1→ 1 notation from all super-operator norms, as

well as the subscript 1 for operator norms. In addition, given a k-local system described
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by Eqs. (4.1) and (4.2), and using the same notation as in Theorem 4.1, we will define

ξ ≡
∣∣∣∣
∣∣∣∣TL(t, 0)−

m∏

j=1

K∏

i=1

T ji

∣∣∣∣
∣∣∣∣. (4.57)

Given this notation we can then state our first lemma, which will allow us to bound

the norms of both local and global propagators.

Lemma 4.1. Given TL(t, s) ∈ B(B(H)), which solves the initial value problem (4.3) for

some piecewise continuous Liouvillian L : R+ → B(B(H)) and some 0 ≤ s ≤ t, then(
TL(t, s)

)−1
exists, denoted T−1

L (t, s), and we have that

||TL(t, s)|| ≤ exp

[ ∫ t

s
|| L(r)||dr

]
(4.58)

≤ exp

[
(t− s)

(
sup
s≤r≤t

||L(r)||
)]
, (4.59)

and

||T−1
L (t, s)|| ≤ exp

[ ∫ t

s
|| L(r)||dr

]
(4.60)

≤ exp

[
(t− s)

(
sup
s≤r≤t

||L(r)||
)]
, (4.61)

Furthermore, if TL(t, s) is a quantum channel (CPTP), then we have that ||TL(t, s)|| = 1.

The proof of lemma 4.1 can be found in [35] using properties of product integrals

given in [78]. We can now proceed to begin to construct a bound on ξ via the following

lemma:

Lemma 4.2. Given a k-local system, described by Eqs. (4.1) and (4.2), we have that

ξ ≤
[m−1∑

j=0

([ m∏

l=j+2

P l2

]
P j1

)](
max

1≤j≤m

∣∣∣
∣∣∣T jL −

K∏

i=1

T ji

∣∣∣
∣∣∣
)
, (4.62)

where

Pα1 =
∣∣∣
∣∣∣
α∏

j=1

K∏

i=1

T ji

∣∣∣
∣∣∣, Pα2 =

∣∣∣
∣∣∣TαL

∣∣∣
∣∣∣, (4.63)

and P 0
1 = 1.

Proof. Using the same strategy as in Ref. [35], but taking note that ||T ji || 6= 1 for all i, j,
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we find that

ξ =
∣∣∣
∣∣∣
m∏

j=1

T jL −
m∏

j=1

K∏

i=1

T ji

∣∣∣
∣∣∣ (4.64)

=
∣∣∣
∣∣∣TmL

m−1∏

j=1

T jL −
( K∏

i=1

Tmi

)(m−1∏

j=1

K∏

i=1

T ji

) ∣∣∣
∣∣∣

≤
∣∣∣
∣∣∣
m−1∏

j=1

K∏

i=1

T ji

∣∣∣
∣∣∣
∣∣∣
∣∣∣TmL −

K∏

i=1

Tmi

∣∣∣
∣∣∣+
∣∣∣
∣∣∣TmL

∣∣∣
∣∣∣
∣∣∣
∣∣∣
m−1∏

j=1

T jL −
m−1∏

j=1

K∏

i=1

T ji

∣∣∣
∣∣∣ (4.65)

≤
m−1∑

j=0

[([ m∏

l=j+2

P l2

]
P j1

)∣∣∣
∣∣∣T j+1
L −

K∏

i=1

T j+1
i

∣∣∣
∣∣∣
]

(4.66)

≤
[m−1∑

j=0

([ m∏

l=j+2

P l2

]
P j1

)](
max

1≤j≤m

∣∣∣
∣∣∣T jL −

K∏

i=1

T ji

∣∣∣
∣∣∣
)
.

In the above, (4.66) follows from (4.65) by comparing the last norm on line (4.65) with

the right hand side of (4.64), and then iterating.

We now note that

Pα1 ≤
K∏

i=1

m∏

j=1

∣∣∣
∣∣∣T ji

∣∣∣
∣∣∣ (4.67)

≤
K∏

i=1

([
eβ∆t

]Ñm
i

)
(4.68)

≤ eKβÑm∆t (4.69)

≤ eKβm∆t, (4.70)

and

m∏

i=j+2

P i2 ≤
m∏

i=1

∣∣∣
∣∣∣T iL

∣∣∣
∣∣∣ (4.71)

≤
min(KÑm,m)∏

i=1

eβK∆t (4.72)

≤ eKβ[min(KÑm,m)]∆t (4.73)

≤ eKβm∆t, (4.74)
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where (4.68) follows from (4.67), and (4.72) follows from (4.71) via Lemma 4.1 and the

definition of β. As a result of the above observations and the statement of Lemma 4.2

we then get the following corollary:

Corollary 4.2. Given a k-local system, described by Eqs. (4.1) and (4.2), we have that

ξ ≤ m
(
e[min(KÑm,m)+Ñm]Kβ∆t

)

(
max

1≤j≤m

∣∣∣
∣∣∣T jL −

K∏

i=1

T ji

∣∣∣
∣∣∣
)
.

From Corollary 4.2, it is clear that, to proceed, it is necessary to bound the quantity

||T jL −
∏K
i=1 T

j
i ||. Such a bound is provided by the following lemma:

Lemma 4.3. Using the notation and setting of Sections 4.2 and 4.3 we have that

||T jL −
K∏

i=1

T ji || ≤
(
KeβN̂

m
j ∆t

)(
max

2≤φ≤K
||T j∑φ

z=1 Lz
− T jφT

j∑φ−1
z=1 Lz

||
)
.

Defining χ ≡ ||T jL −
∏K
i=1 T

j
i || for notational convenience, the proof proceeds as

follows:

Proof. Taking proper account of the presence of non-CP strictly k-local propagators, we
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find that

χ = ||T j
LK+

∑K−1
z=1 Lz

− T jK
K−1∏

i=1

T ji || (4.75)

≤ ||T j
LK+

∑K−1
z=1 Lz

− T jKT
j∑K−1
z=1 Lz

+ T jKT
j∑K−1
z=1 Lz

− T jK
K−1∏

i=1

T ji || (4.76)

≤ ||T j
LK+

∑K−1
z=1 Lz

− T jKT
j∑K−1
z=1 Lz

||+ ||T jK ||||T
j∑K−1
z=1 Lz

−
K−1∏

i=1

T ji || (4.77)

≤
K∑

φ=2

[(
T j∑φ

z=1 Lz
− T jφT

j∑φ−1
z=1 Lz

)( K∏

i=φ+1

||T ji ||
)]

(4.78)

≤
[ K∑

φ=2

( K∏

i=φ+1

||T ji ||
)][

max
2≤φ≤K

||T j∑φ
z=1 Lz

− T jφT
j∑φ−1
z=1 Lz

||
]

(4.79)

≤ K
[ K∏

i=1

||T ji ||
][

max
2≤φ≤K

||T j∑φ
z=1 Lz

− T jφT
j∑φ−1
z=1 Lz

||
]

(4.80)

≤
(
KeβN̂

m
j ∆t

)(
max

2≤φ≤K
||T j∑φ

z=1 Lz
− T jφT

j∑φ−1
z=1 Lz

||
)

(4.81)

Note that line (4.78) follows from line (4.77) by comparing the last norm on line

(4.77) with the norm on line (4.75) and iterating. Similarly, line (4.81) follows from line

(4.80) via Lemma 4.1, the definition of N̂m
j and the definition of β.

We now focus our attention on bounding the quantity

Γ ≡ ||T j∑φ
z=1 Lz

− T jφT
j∑φ−1
z=1 Lz

||, (4.82)

To which end we use the following lemma:

Lemma 4.4. Given two arbitrary time-dependent Liouvillians K and L the following

relationship holds

||TK+L(t, s)− TK(t, s)TL(t, s)|| ≤ 1

2
(t− s)2

[
sup

s≤µ≤r≤t
||
[
K(u),L(r)

]
||
]

×
[
e

[
(t−s)

(
3 sups≤ν≤t ||K(ν)||+2 sups≤ν≤t ||L(ν)||

)]]
. (4.83)

Proof. For notational convenience let us define

ζ = ||TK+L(t, s)− TK(t, s)TL(t, s)||. (4.84)

159



CHAPTER 4. SIMULATION OF MANY-BODY NON-MARKOVIAN DYNAMICS

As shown in Ref. [35], using the fundamental theorem of calculus allows one to obtain

ζ =
∣∣∣
∣∣∣
∫ t

s
dr

∫ r

s
dµTK(t, s)TL(t, r)T−1

K (µ, s)
[
L(r),K(µ)

]
T−1
K (r, µ)TK+L(r, s)

∣∣∣
∣∣∣, (4.85)

from which, using Lemma 4.1, submultiplicativity of the 1 → 1 norm and the triangle

inequality, and again noting that not all propagators are necessarily quantum channels,

it follows that,

ζ ≤
∫ t

s
dr

∫ r

s
dµ

(
∣∣∣∣[L(r),K(µ)

]∣∣∣∣exp
[( ∫ t

s
||K(ν)||dν

)
+
(∫ t

r
||L(ν)||dν

)

+
(∫ r

µ
||K(ν)||dν

)
+
(∫ r

s
||K(ν) + L(ν)||dν

)])
(4.86)

≤
∫ t

s
dr

∫ r

s
dµ

(
∣∣∣∣[L(r),K(µ)

]∣∣∣∣exp
[ ∫ t

s

(
3||K(ν)||+ 2||L(ν)||

)
dν
])

(4.87)

≤
(∫ t

s
dr

∫ r

s
dµ
∣∣∣∣[L(r),K(µ)

]∣∣∣∣
)

exp
[ ∫ t

s

(
3||K(ν)||+ 2||L(ν)||

)
dν
]

(4.88)

≤ 1

2
(t− s)2

[
sup

s≤µ≤r≤t
||
[
K(u),L(r)

]
||
]

×
[
e

[
(t−s)

(
3 sups≤ν≤t ||K(ν)||+2 sups≤ν≤t ||L(ν)||

)]]
. (4.89)

Applying Lemma 4.4 to the special case of the norm

Γ ≡ ||T j∑φ
z=1 Lz

− T jφT
j∑φ−1
z=1 Lz

||, (4.90)

then yields the corollary,

Corollary 4.3. Using the notation and setting of Sections 4.2 and 4.3, we have that,

for all 2 ≤ φ ≤ K, the following inequality holds

||T j∑φ
z=1 Lz

− T jφT
j∑φ−1
z=1 Lz

|| ≤ (Kβ2)(∆t)2e(3+2K)β∆t.

Theorem 4.1 now follows straightforwardly as a consequence of Corollary 4.2, Lemma

4.3 and Corollary 4.3. Finally, we provide a proof of Corollary 4.1.
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Proof (Corollary 4.1). Assume that

0 ≤ ε ≤ (2K2βtln(2)e(K+K2)tIDβ)

(3 + [3 + C̃K + C̃K2])
, (4.91)

and

m ≥ 2Kβ2t2e(K+K2)tIDβ/ε. (4.92)

It follows from Theorem 4.1 and assumptions (4.91) and (4.92) that

ξ ≤ K2β2t2

m
e(3+[3+C̃]K+C̃K2)β(t/m)e(K+K2)tIDβ (4.93)

≤ ε

2
exp
[(3 + [3 + C̃]K + C̃K2

)
ε

2K2βte(K+K2)tIDβ

]
(4.94)

≤ ε

2
eln(2) (4.95)

≤ ε. (4.96)
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Chapter 5

Conclusion

At this point we have introduced and analysed a variety of algorithms for the quantum

simulation of the time evolution of various classes of intrinsically specified open quan-

tum systems. As the main contributions and results of this work have already been

summarised in Section 1.5 of Chapter 1, we will not repeat that summary here. How-

ever, as has been previously mentioned in the conclusion of each chapter, the results

obtained in this thesis naturally suggest a variety of new research directions, and allow

one to formulate a number of important open questions. Mindful of the rapid pace with

which the study of many-body physics and the development of quantum algorithms is

proceeding, we will attempt in this concluding chapter to briefly synthesise some of the

perspectives emerging from this thesis, within the context of current research.

In particular, as discussed at length in the introduction, it is becoming increasingly

clear that hybrid simulation methodologies offer the most promising path towards the

experimental implementation of quantum simulations which exhibit quantum supremacy

over the best possible classical simulation methods. As such, it is of interest to interrogate

how such methodologies, centred around the notion of “dissipation as a resource”, might

be utilised to both augment and ensure the implementation of the methods presented in

this thesis on a scale which allows for the study of the plethora of phenomena discussed

in Chapter 1. Firstly, within the context of Markovian open quantum systems, it is clear

that the results presented in Chapters 2 and 3 allow one to focus ones effort on devel-

oping methods for the simulation of processes from a well specified universal set, with

the knowledge that efficient simulation of these processes can be efficiently recombined

to allow for the simulation of arbitrary Markovian open quantum systems. As such, the

development of practical and experimentally feasible methods for the simulation of these

universal processes is clearly of the utmost importance if one wants to utilise the meth-
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ods presented here. As previously mentioned, and explicitly demonstrated in Chapter

2, while any alternative method for the simulation of Markovian open quantum systems

could be used for the implementation of the universal building blocks, it will be interest-

ing to investigate the extent to which naturally occurring dissipation and decoherence

can be exploited for this task. In particular, inspired by experimental developments in

the simulation of open quantum systems in superconducting circuits [1], as well as the

small scale open quantum simulators in trapped ion and Rydberg atom systems [2–8],

it would be of interest to catalogue the platform specific dissipative resources currently

available, and investigate the extent to which both the universality results of this thesis,

as well as the various “dissipative gadget” constructions [9–11], might be rephrased in

terms of these currently available experimental resources. In some sense one might think

of this as a “bottom up approach”, in contrast with the “top-down” approach adopted

in this thesis for the construction of the universal sets themselves. In line with the

philosophy of hybrid simulation methodologies, the hope is that these approaches might

converge to provide pragmatically motivated and practically feasible methods with the

minimum number of prohibitive experimental constraints.

In a similar vein, but within the context of non-Markovian open quantum systems,

the rigorous SLT results proven in Chapter 4 provide the foundation required to simulate

complex many-body models through the simulation of simpler building blocks. Although

we have provided an explicit proposal for how one might algorithmically simulate the

required non-completely-postive propagators using feedback with a universal quantum

computer, it is clear that there are fundamental obstacles involved in achieving efficient

simulation algorithms in this way. As such, it is once again clearly of interest to both

investigate methods for engineering simple non-Markovian open quantum systems [12–

15], and to catalogue experimentally accessible natural non-Markovian systems, which

might be utilised as building blocks within a hybrid digital/analog simulation strategy.

Although from a pragmatic point of view the investigation of hybrid simulation

methodologies capable of exploiting naturally occurring and simple to engineer dissipa-

tion is of the utmost importance, from a foundational complexity-theoretic perspective it

would also be extremely interesting if one was able to construct provably optimal digital

simulation strategies for arbitrary open quantum systems from specific classes. Further-

more, we note that Hamiltonian simulation has become a crucial subroutine in various

quantum machine learning algorithms [16, 17], and as such the development of optimal

algorithms for Hamiltonian simulation has become important outside of the physically

motivated context. This motivation has led to a plethora of new techniques for Hamil-

tonian simulation, resulting in algorithms which are close to provable complexity lower
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bounds in almost all relevant parameters [18–20]. With this in mind, it is interesting

to ask whether any of the innovative new tools or techniques from Hamiltonian simu-

lation could be generalised into the open quantum systems context, and whether the

simulation of specific open quantum systems might be of any computational use as a

subroutine for algorithms outside of the physically motivated context. In particular, it

would be worthwhile investigating the extent to which non-trivial memory effects present

in certain open quantum systems might be used as an algorithmic tool.

Finally, directly in line with this last point, given the rapid development of methods

for the simulation of open quantum systems, and the development of quantum tech-

nologies to implement these methods, it is important to ask how one might exploit the

dynamics of open quantum systems. As discussed in Chapter 1, there are by now a

large number of proposals for dissipative state preparation, but one might argue that

there is as of yet no “killer application” of dissipation as a resource. Considering our

rapidly improving ability to implement the dynamics of open quantum systems there

is therefore potentially a lot to be gained from creatively re-examining the potential

applications of dissipation and decoherence. One particularly interesting direction in

this regard is the recent suggestion of fault-tolerant dynamical decoders for topologi-

cal quantum memories which can be implemented through the evolution of Markovian

open quantum systems [21, 22], and it would be worthwhile to examine both how these

suggestions like this can be extended, and how these proposals can be realised through

existing simulation methodologies such as the ones presented in this thesis.

In conclusion, one can certainly say that we are living in an extremely exciting

period in the history of physics. The birth of quantum information science from a

merger of mathematics, physics and theoretical computer science has given us a new lens

through which to view the world, and a rapidly developing toolbox to approach difficult

and foundational questions throughout the natural sciences. Quantum simulations are

definitely at the forefront of this development and innovation, and despite the rapid

progress we have made, there remain endless rich directions to explore, which promise a

continued stream of fresh insights and new knowledge.
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