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ABSTRACT 
 

Sub-Saharan Africa (SSA) faces challenges of achieving nutrient and food security under water 

limitations due to climate change and variability. Under these conditions, it is important to 

adopt cropping systems that are likely to improve crop production. The aim of the study was 

to assess the feasibility of a legume - leafy vegetable intercrop system with a view to determine 

the yield and nutritional benefits. This was achieved through a series of studies which included 

conducting critical literature review, quantifying water use and nutritional water productivity 

efficiency of intercropping. Field trials were conducted at an Umbumbulu homestead and 

Fountain Hill Estate, in KwaZulu-Natal, during the 2016/2017 summer season, under rain-fed 

conditions. Intercrop combinations considered were sole cowpea, amaranth, garden pea and 

swiss chard, as well as intercrops of cowpea-amaranth, cowpea-garden pea and cowpea-swiss 

chard. Seed quality of selected crops were determined prior to planting to establish field 

planting value of seed lots. Data collection included plant growth (leaf number and plant 

height), and physiology (chlorophyll content index and stomatal conductance). Yield and yield 

components, water use (WU) and water use efficiency (WUE) were calculated at harvest. 

Nutritional analysis was determined after harvest. The results showed a significant (P≤0.05) 

difference between species with respect to seed vigour. There were significant differences 

(P<0.05) with respect to growth and physiological parameters among crop species. Significant 

differences (P<0.05) were also observed with respect to yield and yield components among 

crop species under cropping systems. Traditional species were significantly superior to exotic 

species with respect to seed germination and vigour. Field trials showed a general relationship 

between seed quality and crop performance. Although sole cropping showed better field crop 

performance than intercropping, there was evidence of significant water and nutrient 

productivity of the intercropping system. 
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CHAPTER 1. GENERAL INTRODUCTION AND OBJECTIVES 
 

1.1 Background and rationale 

South Africa is a physically water scarce country (Dabrowski et al., 2009). It is estimated that 

agriculture uses about 70% of freshwater resources. Despite this, water still remains a major 

limiting resource to crop production (Olayide et al., 2016). Rain-fed agriculture is practised on 

approximately 80% of the agricultural land. In addition, 95% of the population depends on a 

rain-fed based rural economy (Malézieux et al., 2009). Chauvin et al. (2012) indicated that 

rainfall can be unpredictable, unevenly distributed and highly erratic at the start and end of the 

rainy season, even in areas receiving enough rainfall for crop production. It is fundamental to 

focus on water productivity in both rain-fed and irrigated agriculture since the future food 

demands for production systems mostly depend on finite fresh water resources. Water demand 

in agriculture is predicted to increase by 90% in 2050, due to high competition for water (de 

Fraiture and Berndes, 2009).  

These challenges threaten the world’s food security, since there might be less available 

water for food production (Olayide et al., 2016). In semi- arid and arid areas of sub-Saharan 

Africa, the population mostly depends on small-scale rain-fed agriculture. In such farming 

systems, farmers produce very low yields, especially during years of drought (Mavhura et al., 

2015;  Hadebe et al., 2017). In water limited regions, intercropping has been found to enhance 

crop productivity per unit area of land through increased land and water use efficiency (Rezig 

et al., 2010;  Yang et al., 2011). African leafy vegetables (ALVs) are productive in semi-arid 

and arid areas of the region even without irrigation. In Africa, South America and Asia, local 

leafy vegetables play a significant role in food security systems of rural households. African 

leafy vegetables are indigenous plant species that have originated in Africa (Gockowski et al., 

2003) or plants that are traditionally (locally) used for food, and yet considered as weeds in 

both commercial and subsistence farming systems. They are mostly grown for their edible 

leaves, pods, seeds, tubers and roots (Wehmeyer and Rose, 1983).  

In South Africa, Wehmeyer and Rose (1983) distinguished over 100 individual plant 

species utilized as leafy vegetables. Most African leafy vegetables (ALVs) are found to be 

adapted to different conditions, including dryland production. African leafy vegetables offer 

different opportunities to expand farming systems, ensure food security, reduce poverty, 

improving human health and increase income.  These traditional crops are well adapted to the 
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sometimes harsh African conditions as they grow voluntarily in many areas of the world 

(Mavengahama et al., 2013). In Africa, it is estimated that starchy staples comprise 80% of 

diets. African leafy vegetables are an important source of vitamins and minerals. African leafy 

vegetables require less inputs than conventional crops, an attribute that is well suited for rural 

agriculture, where 70% of the malnourished population resides (Aliber and Hart, 2009;  

Chivenge et al., 2015). African leafy vegetables were found to be mostly consumed by rural 

villagers, but that has changed since current consumption is more widespread. 

African leafy vegetables have a potential to minimise effects of both micronutrient 

deficiency and water scarcity in regions where soils are characterised by drought and poor 

fertility. Despite this, ALVs grow wild with a few species being cultivated (Uusiku et al., 

2010). Currently, cereals occupy the highest land area in rural cropping systems. There is a 

need to incorporate them into cropping systems. Various studies have suggested that 

intercropping is a more productive and profitable system compared to sole cropping (Varghese, 

2000;  Baumann et al., 2001). Intercropping saves water by improving ground cover, there is 

less soil evaporation and the water can be productively used by the crop. Since different plant 

species are grown together at the same time, assuming that different plants have different root 

systems, means that all plants will have sufficient water for crop production. Under water 

limited areas, intercropping has appeared to be a suitable approach to sustainable agriculture 

(Chimonyo et al., 2016).  

  

1.2 Hypothesis and aim 

The null hypothesis was that intercropping  African leafy vegetables and  conventional legume 

vegetables under rain-fed conditions has no effect on crop growth, yield and nutritional value 

compared to monocropping. The aim of the study was to assess the feasibility of a legume - 

leafy vegetable intercrop system with a view to determine the yield and nutritional benefits.  

 

1.3 Specific objectives 

The study was based on four main objectives.  

(a) To determine seed quality (seed vigour and seed viability) of selected leafy vegetables 

[amaranthus (Amaranth hybridus) and swiss chard ( Beta vulgaris subsp. vulgaris)] and 

legumes [garden pea (Pisum sativum) and cowpea (Vigna unguiculata)]; 
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(b) To determine yield of intercrop system (cowpea-amaranth; cowpea-swiss chard, 

cowpea-garden pea) compared with monocrops (cowpea, amaranth, swiss chard and 

garden pea, respectively); 

(c) To determine water use of intercropping systems compared with the monocropping; 

and 

(d) To determine the nutritional value of leafy vegetables [amaranthus (Amaranth 

hybridus) and swiss chard (Beta vulgaris subsp)] and legumes [garden pea (Pisum 

sativum) and cowpea (Vigna unguiculata)] grown under an intercropping and 

monocropping, respectively.  
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CHAPTER 2. LITERATURE REVIEW 
 

2.1 Drought and water scarcity 

Drought occurs when there is not enough water in the soil to support plant development and 

growth (Passioura, 2002) for potential yield even when all other crop requirements are met. 

Mabhaudhi (2009) reported that there are different types of drought. Meteorological drought is 

a measure of the variation from the normal rainfall over time. Agronomic drought results due 

to meteorological drought or other management factors that may limit soil water availability. 

Drought reduces food production in a region that is already plagued with food insecurity 

(Chimonyo et al., 2016;  Ortmann and King, 2010) 

Sub-Saharan Africa (SSA) faces both physical and economic water scarcity (Hanjra and 

Qureshi, 2010). Water scarcity is when there no access to safe and affordable water for human 

needs (Rijsberman, 2006). Water scarcity is predominantly caused by limited amount of water 

resources combined with low and uneven seasonal and annual rainfall.Wenhold et al. (2007) 

indicated that water is important for crop production and food security. In water stressed 

countries, increasing agricultural water productivity and water use efficiency has become a 

priority (UN-Water, 2006). Cattivelli et al. (2002) stated that some crops have developed 

mechanisms for adaptation and survival during water stress periods (Cattivelli et al., 2002). 

African indigenous crops have been reported to be highly adapted to harsh environments, 

including drought stress (Vorster et al., 2002). 

 

2.2 Malnutrition 

In Sub-Saharan Africa (SSA) and South Africa (SA), nutritional deficiency is the major 

challenge. Micronutrients such as Iron (Fe) and Zinc (Zn) and vitamin A (Wenhold et al., 2007;  

Chianu et al., 2012) are generally lacking in diets. According to the FAO (2013), the majority 

of people in SSA depend on small-scale, rain-fed agriculture for their livelihoods. Agriculture 

remains the main channel for addressing nutrition and food security in a region where 70% of 

the population depends on agriculture. Increasing household agricultural productivity is 

important to improve food and nutrition security (Schmidhuber and Tubiello, 2007). 

Nutritional security is the foundation of human well-being (IFPRI, 2014). Neglected and 

underutilised crops could be promoted as part of efforts to ensure food and nutrition security 

(Modi and Mabhaudhi, 2013).  
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2.3 African leafy vegetables 

Some rural South Africans use ALVs as a complement to their daily staple food (Bvenura and 

Afolayan, 2015). These are highly nutritious and have high iron and vitamin A content (Table 

1). These vegetables are ranked higher in nutrition than many other crops. They supply 80% of 

the vitamin A (Kwenin et al., 2011). African leafy vegetables have significantly contributed to 

dietary vitamin and mineral intake of local populations (Nordeide et al., 1996) since they are 

great sources of minerals such as calcium, iron and vitamin C (Kwenin et al., 2011). Leafy 

vegetables are cheap and available sources of essential proteins, vitamins and crucial amino 

acids (Van Rensburg et al., 2004). 

Regarding income generation and subsistence, ALVs have potential to play a major role 

(Schippers, 2000). Compared with other food items, ALVs are relatively affordable, which is 

a good thing for poor households. Production of legume-leafy vegetables could create more 

jobs in rural areas. It has been reported that a large number of leafy vegetables have health 

protecting properties and uses (Toivonen and Hodges, 2010). Recent studies have shown that 

AVLs contain non-nutrient bioactive phytochemicals that have been associated with 

cardiovascular and other degenerative disease protection (Nyathi et al. 2016; Toivonen and 

Hodges, 2011) (Table 2.1). Vegetables contain large amounts of water, and when eaten the 

body does not need to use a lot of its own water to digest them (Lussier, 2010). 



    

6 
 

Table 2.1: Micronutrient and macronutrient content of selected leafy vegetables per 100 g of 

edible fresh mass. Recommended daily nutrient intakes: Vitamin A = 400 µg RE (1-3 years) to 

600 µg RE (19-65 years); Iron (Fe) = 5.8 mg (1-3 years) to 32.7 mg (10-14 years); Zinc (Zn) = 

8.3 mg (1-3 years) to 17.1 mg (10 to 14 years) (Sourced from Nyathi et al., 2016 with some 

modifications). 

 
   Micronutrients    
  
Scientific name  
 
Amaranthus spp.  

Vitamin A Iron  Zinc  Calcium 
µg RE 100 
g-1  

mg 100 g-1  mg 100 g-1  mg 100 g-1 

59-327 0.3-16.2 0.02-8.4 - 
Bidens pilosa  - 2-6  0.9-2.6 1.971 
Brassica rapa    - 1.44 0.3  - 
Corchorus spp.  717 2-6  0.05-0.8  25.7 
Citrullus lanatus  - 6.4  0.74 129.7-269.7 
Cleome spp.  1200  2-29  0.6-1  213-434 
Cucurbita pepo  194  4-16  0.6-0.9  - 
Ipomoea batatas  103-980 0.6-1 0.03-3.1 28.44 
Momordica 
balsamina  

- 
- 

3.5  
- 

1.8 
- 

941 
11.49 

Solanum nigrum  1070 7-13  0.6-3.5 73-400 
Vigna unguiculata  99 0.3-4.7  0.2-0.5 - 
Beta vulgaris  669 2.7  0.5  - 
Brassica oleracea  75  0.3-0.5 0.2-0.5 - 

   Note: - means that data were not available at the time of publication of the current study. 

2.4 Other uses and importance of African leafy vegetables  

African leafy vegetables play an important role in income generation and support (Adebooye 

and Opabode, 2004). Musotsi et al. (2003) reported that ALV production could be done with 

little capital investment and that they offered a significant opportunity to poor people in western 

Kenya.  For those that are outside the formal sectors, ALVs offer job opportunities as they are 

relatively easy to grow (Adebooye and Opabode, 2004). They do not require more agricultural 

input (irrigation and fertiliser), since genetically they are adapted to harsh environmental 

conditions (Van Jaarsveld et al., 2014). African indigenous vegetables’ chemical composition 

studies have shown that they contain significant amounts of crude protein, fat and oil, energy, 

vitamins and minerals (Adebooye and Bello, 1998). They are also known to make food more 

digestible and palatable. In southwest Nigeria, some of the plants are also sources of traditional 

medicine.  
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Modern science has shown that indigenous species have medicinal properties, which can be 

useful to humans (Adebooye and Opabode, 2004). Indigenous plants are well adapted to 

numerous tropical conditions, pests and diseases. These species can be used as a good reference 

of genes for genetic enhancement in developing new species that will be drought tolerant and 

resistant to diseases and pests (Adebooye and Opabode, 2004). Despite this, ALVs have been 

neglected for many years by farmers and researchers (Adebooye and Opabode, 2004). 

Therefore, there is a need to enhance their production and not only focus on sustaining their 

germplasm (Musotsi et al., 2003). Worldwide as the utilisation of ALVs increases, availability 

of good seed of known quality is important to meet the demand for these vegetables (Abukutsa-

Onyango, 2005). Seed systems for ALVs are informal and the quality of the seed is not known. 

 

2.5 Seed quality 

Seed quality is the sum of many individual components like genetic quality, physical purity, 

germination, vigour, uniform size and health (disease free seeds). De Geus et al. (2008) 

described seed quality as the physiological (seed germination ability and seed vigour) and 

genetic purity. According to Hampton (2002), seed quality is the standard of excellent features 

that regulate seed performance when seed is either sown or stored. Poor quality seeds generally 

exhibit low germination, reduced viability, poor emergence and seedling growth, and poor 

tolerance to sub-optimum conditions (Bedi and Basra, 1993). Odindo (2008) showed that 

germination capacity and physiological vigour were the two most essential indicators of seed 

quality, as they are inherent properties of the seed. Generally, good quality seeds are those that 

have the ability to germinate and produce normal seedlings under a wide range of 

environmental conditions (ISTA, 2012).  

 

2.5.1 Seed germination 
Seed germination is defined as emergence and development from the seed embryo of the key 

structures that signal the ability of the seed to produce a normal plant (ISTA, 2011). Cardwell 

(1984) defined germination as the sequence of processes transforming an inactive embryo into 

being metabolically active, after a seed takes up water (imbibition) and protrusion of embryo 

radicle through the seed coat. Laboratory germination tests are used to determine the ability of 

seeds to germinate, which then can be used to observe seed quality (ISTA, 2011). 
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2.5.2 Seed viability 

Seed viability is the ability of a seed to germinate and produce a normal seedling under 

favourable conditions (McDonald and Copeland, 2012). Viable seeds are those seeds that are 

alive and when exposed to favourable germination conditions, have the potential to germinate 

(Basra, 1995; McDonald and Copeland, 1997). A seed may be viable but unable to germinate 

due to germination processes being hindered by physical and/or chemical inhibitors (Basra, 

1995). This is referred to as dormancy. Seed viability measurement is an important necessity 

to evaluate seed quality before planting (Basra, 1995). Seed viability can be evaluated using 

tetrazolium chloride (TZ) test (Peter, 2000).  

2.5.3 Seed vigour 

Seed vigour comprises all the seed properties that determine the ability of the seed to have 

rapid germination, uniform emergence, and development of normal seedlings under a wide 

range of field conditions (McDonald and Copeland, 2012). Basra et al. (2005) stated that a 

vigorous seed lot is one that has the ability to perform well under unfavourable environmental 

conditions. Germination rate is taken as a tool for evaluation of seedling emergence and vigour 

(Maguire, 1962).  Vigorous seeds are able to efficiently synthesize new materials and rapidly 

transfer these new products to the emerging embryotic axis resulting in enhanced dry weight 

(Burris et al., 1976).  Finch-Savage et al. (2010) indicated that evaluation of seed vigour in 

small seeded crops can be done using natural variation in field conditions.  International Seed 

Testing Association (2011) stated that other methods that could be used to evaluate seed vigour 

were conductivity tests, controlled deterioration, accelerated aging and radicle emergence. 

 

2.5.4 Seed dormancy 

Dormant seeds are those seeds that do not have the ability to germinate even under favourable 

conditions (Bewley, 1997). There are several types of dormancy, primary dormancy which is 

caused by maternal tissues and secondary dormancy caused by metabolic blocks under an 

unfavourable germination environment (Basra, 2005). According to Baskin and Baskin (2004) 

seed dormancy is classified into five classes, namely, physiological dormancy (PD), 

morphological dormancy (MD), morpho-physiological (MPD), physical (PY) and 

combinational (PY + PD). Morphological dormancy (MD), is the kind of dormancy where the 

embryo is underdeveloped. In morphological dormancy, there is delay of germination due to 
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requirement of a certain cold period exposure before seeds can germinate. In the seed or fruit 

coat, one or more water- impermeable layers of palisade cells can cause physical dormancy 

(PY). Combination dormancy (PY + PD) is found when seed coat  is water impermeable and 

the embryo is physiologically dormant (Baskin and Baskin, 2004).  

2.6 Agronomy of African leafy vegetables 

African leafy vegetables are easy to grow since they take a short period to mature. They can 

grow in small areas and naturally in the field and in the wild without agricultural inputs (e.g., 

fertiliser and irrigation) (Neluheni et al., 2007). African leafy vegetables grow voluntarily in 

the wild and fallow with crops such as maize, sorghum and cotton; some are cultivated 

landraces. Commercial farming systems regard ALVs as weeds, which will make them to likely 

go extinct (Neluheni et al., 2007). Under small-scale farming, when they are seen in the field 

they are allowed to grow and are harvested (Metwally et al., 2005), whereas in large-scale 

farming, when identified in the field, they are mechanically and/or chemically removed (Taleni 

et al., 2012;  Mavengahama et al., 2013). A few examples of African leafy vegetables published 

by Araya (undated) include, but are not limited to the following: 

•  Amaranthus species (Amaranths, Pigweed) 

• Cleome gynandra (Spider Plant)  

• Corchorus spp (Gushe)  

• Brassica carinata (Kale)  

• Solanum retroflexum (Nightshade)  

• Cucurbita spp (traditional pumpkin) 

• Citrullus lanatus (Bitter melon)  

• Vigna unguiculata (cowpea) 

• Colocasia esculenta (Amadumbe) 

 

Modern agriculture has managed to enhance the productivity of farming systems, however, 

chemical use, among others, may affect sustainability (Lichtfouse, 2010). Morden farming 

systems involve simpler environmental structures over large landscapes; thus substitute natural 

plant diversity with restricted plants over large spaces of monocultures. In developing 



    

10 
 

countries, farm diversity common in traditional systems. Traditional farming systems are 

identified by genetic variety found in domesticated crop species and their wild related species 

(Altieri, 1999). These farming systems advance crop diversity for diet and income, stabilise 

and increase crop production with less resources, as well as minimise artificial crop protection 

needs (Anil et al., 1998;  Malézieux et al., 2009). 

2.7 Cropping systems 
Cropping systems are defined as the mixture of crops grown in a given space within a season 

(Hamza and Anderson, 2005). Throughout the world, agricultural cropping systems are a result 

of variation in local climate, soil, economic, social systems and improvement of soil structure. 

Resources like water, solar radiation, soil and temperature are the major determinants of the 

physical and biological potential of crops to grow and cropping systems to exist (Palada and 

Harwood, 1975;  Seran and Brintha, 2010). In the world, cropping systems differ from place to 

place.  Cropping systems are designed to improve a given agro-ecosystem over the existing 

systems which were adapted by the farmers in terms of their production stability and biological 

productivity with least harm to the ecosystem. Generally, farmers select technologies to be 

used based on cost, risk and return (De Bruin et al., 2009). There are many different cropping 

systems practiced in agriculture, including mono-cropping, intercropping, crop rotation, strip 

cropping, and fallow, among others.  

 

2.7.1 Mono-cropping 

Mono-cropping is an agricultural practice in which only one type of crop is grown year after 

year on a large area of land (Allaway, 1957). During the 1940s and 1950s, in industrialized 

countries mono-cropping was common as farming was more commodity-based and less 

subsistence-based. Mono-cropping is utilised to facilitate planting, application of pesticides 

and fertilisers, and harvest across a large piece of land (Zuo and Zhang, 2009). These 

techniques minimize labour needed for production, which is good because it eliminates labour 

cost. Mono-cropping allows farmers to specialize in a particular crop, meaning a farmer can 

invest in machinery designed specifically for that crop, along with high yield that will generate 

a great volume of the crop at harvest (Härdter et al., 1991). However, mono-cropping has been 

implicated in environmental damage due to nutritional loss from the soil and decreases in crop 

yield over time, which is a threat to agriculture and food security (Ahmad et al., 2013). Insects 

disperse more rapidly and easier in a monocrop, resulting in greater spreading of pests and 
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diseases than in a mixed crop. Presence of other crops in the field lessens rapid spread of these, 

since insects will require more time to search for the host plant (Risch et al., 1983). 

 

2.7.2 Crop rotation 

Crop rotation is the practice of changing what is grown in an area from year to year (West and 

Post, 2002). Crop rotation not only improves soil status but it is also important for economic 

sustainability (Reeves, 1997). Generally, crop rotation is assumed to increase yields, since it 

improves soil quality and nutrition. Crop rotation has a potential to improve productivity or to 

enhance crop yield and is generally associated with minimizing pests and diseases (Dick and 

Van Doren Jr., 1785; Dick et al., 1991).  

2.7.3 Intercropping 

Intercropping is an agricultural practice of growing two or more crops simultaneously in the 

same area at the same time (Andrews and Kassam, 1976). It is an agricultural practice found 

throughout the world and it results in economics, social structure, climate and soil variation 

(Zimmermann, 1996). The advantage of growing two or more crops together is that all the 

environmental resources are used to maximize crop production per unit area of land. It is also 

used to improve soil fertility through nitrogen fixation with the use of legumes. It also provides 

superior lodging resistance for crops susceptible to lodging and enhances soil conservation 

through greater ground cover. Intercrops often minimise pest incidence and enhance the quality 

of forage by increasing crude protein yield (Baumann et al., 2002). Under unstable market 

prices for a given commodity, intercropping provides a buffer against crop failure, especially 

in areas which have extreme weather conditions such as frost, drought and floods. Thus, it 

provides system stability relative to sole cropping, which makes it more suitable for small 

farmers. 

Guvenc and Yildirim (1999) reported that intercropping was a stable and safer cropping 

system for crop production than sole cropping for small farms. Studies have shown that 

intercropping with a variety of vegetables is more profitable and productive compared to sole 

cropping (Baumann et al., 2001). Agricultural sustainability supports the use of intercropping 

systems for sustainable intensification (Brooker et al., 2015). It is a productive soil 

conservation practice as it improves soil cover, and allows for  different root depths for different 

species to pass through soil layers (Jeranyama et al., 2000). Intercropping can significantly 



    

12 
 

increase productivity of crops compared with sole system, through more effective use of water, 

nutrients and solar energy (Midmore, 1993). 

 

2.8 Water use of intercrop systems 

Evapotranspiration (ET) is defined as a combination evaporation and transpiration, which 

occur simultaneously. Evaporation refers to the physical process of water vaporisation into 

gaseous phase from the soil surface, whereas, transpiration is a biophysical process where water 

is transported from the plant root zone through its cells xylem and stomata into the atmosphere 

(Annandale et al., 2002; Wegerich and Warner, 2010). In intercropping, enhanced root density 

and variation between rooting patterns ensures that a large volume of soil water is utilised and 

thus  water use efficiency (WUE) is improved (Anil et al., 1998;  Walker and Ogindo, 2003).  

2.8.1 Water use efficiency 

Improving water use efficiency  is essential to increasing food production under water scarcity. 

Given climate change projections, which show increasing temperature and decreasing rainfall 

in semi- and arid regions, enhancing crop WUE is necessary for ensuring food security. Water 

use efficiency, under water stress is an essential yield determinant (Molden et al., 2010;  

Chimonyo et al., 2016). Reduction in canopy size was reported as a trait that confers high WUE 

under water-limited conditions (Molden et al., 2010;  Chimonyo et al., 2016). Water use 

efficiency is expressed as:  

 

WUEY/B = Y/B
ET

 (kg ha-1 mm-1)    Equation 2.1 

 

where: WUE= water use efficiency (kg mm-1ha-1), Y = economic yield (kg ha-1), B= final 

biomass (kg ha-1) and ET = evapotranspiration (mm). 

 

2.9 Assessment of intercropping productivity 

2.9.1 Land Equivalent Ratio (LER) method 

Land equivalent ratio (LER) is the ratio of the area required under sole cropping to one of 

intercropping at the same management level to give an equal amount of yield. It is the sum of 
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the fractions of the yields of the intercrops relative to their sole crop yields (Andrews and 

Kassam, 1976;  Dariush et al., 2006). Generally, yield benefits from intercropping compared 

to sole cropping relate to mutual compatible crops and complementary resource utilisation. 

According to Willey (1979), LER can be mathematically expressed as: 

LER = La + Lb = 𝑌𝑌𝑌𝑌
𝑆𝑆𝑆𝑆

+  𝑌𝑌𝑌𝑌
𝑆𝑆𝑆𝑆

    Equation 2.2 

where: LER = Land equivalent ratio, La and Lb = LERs of component crop a (cowpea), and b 

(amaranth or swiss chard or garden pea), respectively; Ya and Yb represent intercrop yield 

component crop a (cowpea), and b (amaranth or swiss chard or garden pea), respectively; while 

Sa and Sb are their respective yield under sole cultivation. Land equivalent ratio values greater 

than 1.0 show a benefit to intercropping, while values less than 1.0 show a disadvantage to 

intercropping (Dariush et al., 2006).  

 

2.10 Crop response to water stress 

Plant responses to water stress vary, depending on the plant species, growth stage and intensity 

and duration of stress (Lisar et al., 2012). Blum (2011) indicated that such responses are 

regularly described as being complex. To plant breeders, understanding of crop responses to 

water stress is essential and basic for selection and breeding of drought tolerant plants 

(Mabhaudhi and Modi, 2010). 

 

2.10.1 Physiology 

2.10.1.2 Stomatal conductance 

Stomatal conductance is the rate of passage of water vapour or carbon dioxide through the 

stomata. At the site of carboxylation, it allows the leaf to change the partial pressure of carbon 

dioxide during the transpiration rate. It has been stated that during water stress, most plants 

respond by stomata closure, which results in lower stomatal conductance (Cornic and 

Massacci, 1996) and reduced water loss through transpiration.  

 

2.10.1.2 Chlorophyll content 

Chlorophyll is a green pigment found in chloroplasts of green plant cells. Chlorophyll content 

is normally determined quantitatively and is strongly correlated to nitrogen content in leaves. 

Chlorophyll accumulation was shown to decrease in water-stressed seedlings (Dalal and 
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Tripathy, 2012). Chlorophyll content may be useful for evaluating plant responses to water 

stress. Mabhaudhi et al. (2013) used chlorophyll content to evaluate drought tolerance in 

bambara groundnut selections. They observed that it was lower at the early stages of plant 

growth in stressed plants relative to unstressed plants. They concluded that chlorophyll content 

was a good indicator of drought tolerance and required more study. 

 

2.10.2 Plant growth and development 

Plant growth and development is attained through mitosis, expansion and finally 

differentiation. Under water stress conditions, cell growth processes are some of the most 

sensitive to water stress due to decreased turgor pressure (Taiz and Zeiger, 2006). Cell growth 

is a turgor driven process, since plant growth results from cell division and cell expansion. 

Thus, under water stress, there is reduced plant growth, due to low turgor pressure, resulting in 

less cell division, expansion and differentiation. Germination, emergence and vegetative stages 

all fall under plant growth. Low germination and emergence is taken as one of the first effects 

of water stress (Harris et al., 2002). According to Kaya et al. (2006), drought stress seriously 

reduced germination and seedling establishment. Poor seedling stand results in low yield due 

to decreased plant stand and often smallholder farmers cannot recover from this initial setback 

(Mabhaudhi and Modi, 2010). Hussain et al. (2008) stated that plant height, leaf number and 

area were all reduced under water stress. Similar to plant height, water stress has been reported 

to affect leaf number and area in many crops, including soybean (Zhang et al., 2004), and 

cowpea (Jaleel et al., 2009). 

 
2.10.3 Yield 

Yield refers to the harvestable part of the crop. Blum (2005) reported that many breeding 

programmes’ objective was to develop crops that will give high yields under all environmental 

conditions, including drought. Crop yields show significant differences under drought stress 

conditions (Jaleel et al., 2009). Numerous yield-determining processes are affected by water 

stress (Farooq et al., 2009). Many studies have demonstrated that yields are reduced under 

water stress (Frederick et al., 2001). Vurayai et al. (2011)  reported reduced yield in response 

to water stress in bambara groundnut landraces. 
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CHAPTER 3. SEED VIGOUR COMPARISON OF SELECTED TRADITIONAL 
AFRICAN AND EXOTIC VEGETABLEES 

 

3.1 Introduction 

Seed quality is an important indicator of crop performance under controlled environment and 

field conditions for establishment, growth and productivity (Basra 1995). Traditional 

vegetables are indigenous plant species grown for their edible leaves, pods and grain (van 

Rensburg et al., 2007). African leafy vegetables (ALVs) are also known as those plants that 

have originally been domesticated and cultivated in Africa for centuries (Gockowski et al., 

2003). They are well adapted to conditions like drought and poor soil quality since they can 

grow well under harsh conditions (Dweba and Mearns 2011). Traditional vegetables grow 

voluntarily (wild) and others can be cultivated. There are traditional vegetables that do not 

originate in Africa, but have been recognised and domesticated. These vegetables have also 

adapted to African conditions (van Rensburg et al., 2007). Early South African history showed 

that traditional vegetables played an important role (Laidler and Gelfand 1971), but  

information on their role in  food security is not widely published (Mnzava 1997). 

In South Africa, agricultural scientists and development communities have mostly 

neglected traditional vegetables used by indigenous Africans (Modi, 2003). Many South 

African subsistence farmers have known only organic farming until they were introduced to 

‘new seeds’ and agricultural chemicals (Modi 2003). Although the ‘green revolution’ played 

an essential role in preventing possible famine that would have a great significance in history, 

it also had negative effects on micronutrient malnutrition and environmental pollution (Welch 

and Graham 1999; Modi 2003). These vegetables were found to be mostly consumed by rural 

villagers but that has changed since current consumption has become widespread (Bvenura and 

Afolayan 2015). African leafy vegetables offer different opportunities to diversify farming 

systems, improve food security and reduce poverty, thus improving human health and income 

(Flyman and Afolayan 2006). They are highly nutritious and have a high iron and vitamin A 

contents (Achigan-Dako et al. 2014). More production of ALVs is needed to prevent food 

insecurity (Kenan et al. 2011). For high and successful production, crops require good quality 

seed (Slouch et al. 2009), something that is yet to be demonstrated for many African traditional 

vegetables. 

To seed scientists, good quality seed is the sum of many individual components like genetic 

quality, physical purity, germination and health (disease free seeds). To farmers, good quality 
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seeds are those that have all the physical, pathological, physiological and genetic characteristics 

that give high quality and quantity of final yield (Basra 1995; Chibarabada et al. 2014). Seed 

viability, germination and vigour are three aspects used to test seed performance before seeds 

are even planted in the field (McDonald and Copeland 2012a). Seed viability is the ability of 

a seed to germinate and produce a normal seedling under favourable conditions (McDonald 

and Copeland 2012b). Seed germination is defined as the sequence processes transforming an 

inactive embryo into being metabolically active, after a seed takes up water (imbibition) and 

embryo radicle protrusion through the seed coat (Cardwell 1984). Laboratory germination test 

is used to determine the ability of seeds to germinate, which then can be used to observe seed 

quality (ISTA 2011).  

Seed vigour comprises all the seed properties that determine the ability of the seed to have 

rapid germination, uniform emergence, and development of normal seedlings under a wide 

range of field conditions (McDonald and Copeland 2012). Seed viability and vigour are 

essential elements influencing seedling establishment, plant growth and productivity (TeKrony 

and Egli 1991). Rahim et al. (2007) indicated that shortage of quality seed and lack of high 

yielding varieties are the major restrictions to production of ALVs. Seed systems for ALVs are 

informal and comprise production of farmers from village markets or farmers who grow their 

own vegetables in their fields (Akubusta-Onyango 2007); the quality of their seed is not known. 

Worldwide as the utilisation of ALVs increases, availability of good seed of known quality is 

important to meet the demand for these vegetables (Akubusta-Onyango 2007). Lack of 

knowledge about ALVs and their seed quality has led to their poor utilisation (Modi et al. 

2006). In this study, it is hypothesized that there is no difference in seed quality between wild 

and cultivated vegetable species. The objective of the study was to determine germinability, 

viability and vigour of selected underutilised cultivated and wild vegetable crops based on seed 

quality.  

 

3.2 Materials and methods 

3.2.1 Plant material 
The study used seeds of traditional African traditional vegetables, red amaranthus (Amaranthus 

hybridus) and cowpea (Vigna unguiculata). These crops are traditionally and commercially 

used as sources both edible leaves and grain. Swiss chard (Beta vulgaris) and garden pea 

(Pisum sativum) were used to represent genetically improved commercial crops for comparison 

with traditional crops. Swiss chard seeds were obtained from McDonald Seed Co., 
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Pietermaritzburg, South Africa. Garden pea seeds were obtained from Stark Ayres Seeds, 

Pietermaritzburg, South Africa. Amaranth seeds were obtained from multiplication trials at the 

Agricultural Research Council, South Africa. Cowpea seeds were sourced from Capstone 

Seeds, Mooi River, South Africa. 

 

3.2.2 Standard germination test 
The International Seed Testing Association (ISTA 2017) rules for testing seed were used to 

test germination of red amaranthus (Amaranthus hybridus), Swiss chard (Beta vulgaris), 

garden pea (Pisum sativum) and cowpea (Vigna unguiculata) under laboratory conditions. A 

completely randomised design was used, where four seedlots were germinated using paper 

towel method (ISTA 2017b). Twenty-five seeds from each seedlot were placed between 

moistened double-layered paper towels and placed in an incubator set to 25°C to germinate. 

The experiment was replicated three times. Seeds were considered to be germinated when  

radicle protrusion was longer than 2 mm. The germination count was recorded daily for nine 

days. Seedling biomass, root length and shoot length were measured on the last day of the 

germination test.  

 

3.2.3 Seed vigour  
In order to assess seed vigour, the germination velocity index (GVI; germination speed) was 

calculated based on Maguire’s (1962) formula:  

GVI = G1/N1 + G2/ N2 + … + Gn/Nn            Equation 3.1 

where G1, G2, …Gn = number of germinated seeds in first, second, … last count, and N1, N2, 

… Nn = number of germination days.  

 

Mean germination time (MGT) was calculated according to Ellis and Roberts (1981): 

MGT = ∑𝐷𝐷𝐷𝐷
∑𝑛𝑛

             Equation 3.2 
 
Where n = number of seeds that were germinated on day D, and D = number of days counted 

from the beginning of germination. 
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3.2.4 Data analysis 
Data analysis (ANOVA) was performed using GenStat® version 18 (VSN International, Hemel 

Hempstead, UK, 2011) to determine significant differences at P≤0.05 and least significant 

difference (LSD) values (P ≤ 0.05) were used to separate mean differences.   

 

3.3 Results 

3.3.1 Standard germination test 
There were highly significant differences (P < 0.001) among crop species, with respect to 

germination (Fig 3.1). Amaranth showed 100% germination from the first day after incubation, 

whereas cowpea showed 13% germination on the first day and reached 100% germination by 

day six. Both garden pea and Swiss chard had 8% germination on day one and reached 100% 

germination by day nine after incubation. Amaranth had the fastest germination followed by 

cowpea and garden pea and Swiss chard showed slowest germination (Fig 3.1). 

 

 

Figure 3.1:  Daily germination percentage of traditional African vegetables (red-amaranth and 
cowpea) compared with exotic leafy vegetables (garden pea and swiss chard).  
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(46.9), while garden pea GVI  (33.3) and Swiss chard GVI ( 33.74) had the lowest GVI which 

were not significantly different (Fig 3.2).  

 

Figure 3.2: Germination velocity index (GVI) of traditional African vegetables (red-
amaranth and cowpea) compared with exotic leafy vegetables (garden pea and Swiss chard). 

 

There were highly significant differences (P<0.001) among crop species with respect to mean 

germination time (MGT) (Fig 3.3).  

 

 

Figure 3.3: Mean germination time (MGT) of traditional African vegetables (red-amaranth and 

cowpea) compared with exotic leafy vegetables (garden pea and Swiss chard). 
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3.3.2 Germination vigour characteristics 

There were highly significant differences (P<0.001) among crop species with respect to root 

length (Fig 3.4). Cowpea had the longest root length of 30.2 mm followed by amaranth (13.3 

mm), garden pea (9.8 mm) and Swiss chard (4.4 mm) (Figure 3.4). Results of shoot length 

showed highly significant differences (P<0.001) among crop species (Fig 3.5). The longest 

shoot length (119.6 mm) was observed in cowpea and garden pea, while Swiss chard showed 

the shortest shoot length (14.6 mm) followed by amaranth (16.4 mm) (Fig 3.5). There were 

highly significant differences (P<0.001) among crop species, with respect to seedling size (Fig 

3.6). Cowpea had the longest seedling length (151.6 mm) and Swiss chard had the smallest 

seedlings (18.9 mm) (Fig 3.6). There were no significant differences (P= 0.062) among crop 

species with respect to root: shoot ratio (Fig 3.7).  

 

 

Figure 3.4: Root length of traditional African vegetables (amaranth and cowpea) compared 
with exotic leafy vegetables (Swiss chard and garden pea) after germination. 
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Figure 3.5: Shoot length of traditional African vegetables (amaranth and cowpea) compared 
with exotic leafy vegetables (Swiss chard and garden pea) after nine days. 

  

 

Figure 3.6: Seedling length of African leafy vegetables (amaranth and cowpea) compared 
with exotic leafy vegetables (Swiss chard and garden pea) after germination. 
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Figure 3.7: Root: Shoot ratio of African leafy vegetables (amaranth and cowpea) compared 
with exotic leafy vegetables (Swiss chard and garden pea) after germination.  

 

It was informative to compare the average performance of crops (traditional vegetables vs. 

exotic vegetables; legumes vs leafy vegetables) with respect to seed quality parameters 

pertaining to seed vigour (Tables 3.1 and 3.2). Results clearly indicated superiority of 

traditional African vegetables, irrespective of use classification (legume or leafy vegetable) 

with respect to seed vigour (Tables 3.1 and 3.2). 

 

Table 3.1. Comparing traditional and exotic vegetables for seed quality parameters (GVI = 

Germination Vigour Index), MGT (Mean Germination Time) and seedling shoot length at the 

end of germination test (9 days) 
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Table 3.2.  Traditional legume vs. exotic legume and traditional vs. leafy vegetables for seed 
quality parameters (GVI = Germination Vigour Index), MGT (Mean Germination Time) and 
seedling shoot length at the end of germination test (9 days) 

 
Traditional 
vegetables Exotic vegetables 

Differences 
(traditional-exotic) 

(%) 

GVI 

Legume 46.9 33.3 29 

Leafy vegetable 70.72 33.74 52.3 

MGT (days) 

Legume 5.4 5.97 -10.6 

Leafy vegetable 5 5.99 -19.8 

Shoot length (cm) 

Legume 119.6 14.6 87.8 

Leafy vegetable 16.4 14.6 11 
 

3.4 Discussion and conclusion 

The objective of the study was to determine germinability, viability and vigour of selected 

African leafy vegetables and exotic vegetables based on seed quality. In any cropping system, 

good seed quality is found to be essential as it plays an important role in crop establishment, 

growth and yield (Goggi et al., 2008; Mazvimbakupa et al., 2015). Good seed quality allows 

better performance in the field in terms of germination, rapid emergence, and vigorous 

seedlings (Mabhaudhi and Modi, 2011; Mazvimbakupa et al., 2015). Seed germination is the 

most crucial stage in seedling establishment (Almansouri et al., 2001; Mabhaudhi and Modi, 

2010). Seed viability is measured using standard germination test (ISTA 1985; Mabhaudhi and 

Modi, 2010). The results of this study showed that all the crop species had viable seeds since 

they could germinate and produce normal seedlings (Basu, 1995).  

Traditional vegetables could germinate faster and more uniformly compared to exotic 

vegetables. According to Carvalho and Nakagawa (1980), germination velocity index (GVI) 

shows the relative physiological strength of a seedlot. The results showed strong link between 

final germination, GVI and MGT. Seeds that showed fast germination also had high GVI, 

which concurs with the results that were found by Sithole et al. (2016) that the higher the mean 
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germination time the higher the final germination. Cowpea had the longest root length, shoot 

length and seedling length. This may be related to it having bigger seed size, not because other 

crop species were not performing well. 

The significant differences in seedling size were likely associated with genetic differences 

among species. However, all species produced normal seedlings as indicated by root, shoot 

length and root: shoot ratio. Swiss chard and garden pea seeds had slow germination, which 

may suggest dormancy or poorer seed quality or vigour. Dormant seeds are those seeds that do 

not have ability to germinate even under favourable germination conditions. In morphological 

dormancy, there is delay of germination due to requirement of certain cold period of exposure 

before seeds are being germinated (Baskin and Baskin 2004). The results showed that 

traditional vegetables had lower MGT than exotic vegetables, which is a good indicator of seed 

vigour.  
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CHAPTER 4.  INTERCROPPING PERFORMANCE OF SELECTED AFRICAN 
TRADITIONAL CROPS COMPARED WITH COMMERCIAL CROPS 

 

4.1 Introduction 
Sub-Saharan Africa (SSA) is indicated as  having both physical and economic water scarcity 

(Hanjra and Qureshi, 2010). Globally SSA is indicated as having major variability and 

vulnerable to climate change according to the Intergovernmental Panel on Climate Change 

(IPCC, 2014). The SSA region is already experiencing extreme weather: temperature, drought 

and floods. In this region, climate change variability poses a major threat to agricultural 

production. Agriculture remains a source of livelihood and food security for the SSA 

population. Most of agriculture (ca. 90%) is practised under rain-fed conditions (Van 

Duivenbooden et al., 2000) and significant yield penalties have been attributed to water stress 

(Rockström, 2003). In rain-fed agriculture, drought stress is one of the most essential limiting 

factors and has a seriously influence on crop performance (Turner, 1996;  Mabhaudhi and 

Modi, 2010). According to Mabhaudhi and Modi (2010), this is a major concern to agriculture 

impact, vulnerability of rural households and the urban poor, regarding nutrition and food 

security.  

Water availability is a major priority to increase crop production, given the fundamental 

need to enhance food security (Chimonyo et al., 2016). Passioura (2006) indicated that the 

effect of water scarcity can be minimized using crops that contain drought tolerant traits. In 

water scarce agricultural systems, growing crop species with a genetic makeup that allows 

effective soil water uptake for transpiration and efficient exchange of CO2 could enhance yield 

production (Deng et al., 2006;  Zegada-Lizarazu et al., 2012). African leafy vegetables promise 

to be the best crops to be grown under water scarce environments, since they are genetically 

adapted to grow under harsh conditions. They grow voluntarily in the wild and few are 

cultivated. African leafy vegetables are essential in improving food security. Globally, SSA 

has the highest percentage of malnourished people (FAO, 2001). In this region, starchy staples 

contribute about 80% of diets. Vitamins and minerals are most lacking in diets because 

vegetables are seasonal and in most cases unaffordable. This creates a great opportunity to 

utilize ALVs because they are inexpensive to produce. In addition, indigenous crops require 

less inputs than conventional crops, an attribute that is well suited for rural agriculture where 

70% of the malnourished population resides.  

Intercropping, rain-fed production systems of vegetables can be used to enhance water 

management in crop production (Jun et al., 2014). Intercropping is an agricultural practice of 
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growing two or more crops simultaneously in the same land area during the same growing 

season period (Andrew and Kassam, 1976). Guvenc and Yildirim (1999) reported that 

intercropping is a stable cropping system for agriculture and safer system in terms of crop 

production than sole cropping for small farms. Intercropping can significantly increase 

productivity of crops compared with the sole system, through more efficient use of water, 

nutrients and solar energy (Midmore, 1993). In water-limited areas, intercropping has appeared 

to be a suitable approach for sustainable agriculture (Chimonyo et al, 2016) that can be used to 

improve production in subsistence small scale agricultural systems where land is limited and 

famers tend to intercop. It has been found that almost two of every three people in SSA live in 

rural areas and they depend on small-scale, rain-fed agriculture for their livelihood (FAO, 2014; 

Hadebe et al, 2017). Many studies have shown that under small-scale farming, intercropping 

main crops with short season vegetables can be more productive compared to sole cropping 

(Baumann et al., 2001). The aim of this study was to compare intercropping systems of 

traditional crops, amaranthus and cowpea, with those of commonly used commercial crops, 

Swiss chard and garden pea with respect to productivity, water use, and nutritional value under 

rain-fed conditions. 

 

4.2 Materials and methods 
 

4.2.1 Plant material 
The study used seeds of traditional African leafy vegetables, red amaranthus (Amaranthus 

hybridus), and cowpea (Vigna unguiculata). In Africa, these indigenous crops are traditionally 

used as sources of both edible leaves and grain, but they are not improved for commercial 

agriculture and industry (FAO, 2014). Swiss chard (Beta vulgaris) and garden pea (Pisum 

sativum), on the other hand, were used as improved commercial crops for comparison with 

traditional crops. Swiss chard seeds were obtained from McDonald Seed Co., Pietermaritzburg, 

South Africa. Garden pea seeds were obtained from Stark Ayres Seeds, Pietermaritzburg, South 

Africa. Amaranth seeds were obtained from multiplication trials at the Agricultural Research 

Council (ARC), South Africa. Cowpea seeds were sourced from Capstone Seeds, Mooi River 

(South Africa). 

4.2.2. Site description 
Two sites in different locations of KwaZulu-Natal, South Africa, namely, Umbumbulu 

(29°59'S, 30°42'E) and Fountain Hill Estate (29.42° S, 30.57° E), were used for field trials. 
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Fountain Hill Estate (FHE) is a commercial farming estate located 20 km east of 

Pietermaritzburg in the private Hlambamasoka Game Reserve. It (FHE) is classified as having 

a subtropical highland climate with mean annual rainfall of 905 mm. It has a mean annual 

temperature of 20.4 °C, with February being the hottest month of the year and June  the coldest 

month of the year. The soil is sandy-loam. Umbumbulu is a rural homestead subsistence 

agriculture area 60 km south-west of Pietermartzbutg with average rainfall of 1009 mm and 

mean annual temperature of 17.9 °C. The soil was classified as clayey loam. Field trials at both 

sites were planted in the same week in December 2016, the summer planting season in both 

areas. 

4.2.3. Experimental design and layout 
A completely randomized design with three replications was used under rain-fed conditions at 

both sites. The experiment comprised of two cropping systems, intercropping and mono-

cropping. Cowpea and garden pea were the main crops. Amaranthus and Swiss chard were 

intercrops. With a spacing of 0.75 m (inter-row) and 0.3 m (intra-row) for the main crop, 

intercrops were planted in a constant pattern (Amujoyegbe and Elemo, 2013;  Amujoyegbe and 

Elemo, 2013). 

 

4.2.4. Data collection 
4.2.4.1. Climate data 
Daily meteorological data, including minimum and maximum temperature, rainfall, minimum 

and maximum relative humidity, wind speed and direction, solar radiation and reference 

evapotranspiration were collected at both locations. At Umbumbulu data were obtained from 

the (within 6 km radius) automatic weather station (AWS), courtesy of the South African Sugar 

Research Institute (SASRI) (http://sasri.sasa.org.za/irricane/tables/). For Fountain Hill Estate 

data were obtained from an AWS within a 5 km radius of the trial site. 

4.2.4.2 Plant growth and development 
Emergence data were taken from sowing untill seedling establishment. Crop growth and 

development data were collected bi-weekly. Seedling emergence was considered as full leaf 

protrusion above the soil surface. Fully expanded leaves were assumed photosynthetically 

active and counted as number of leaves after emergence. Plant height, distance from soil 

surface to the tip of the youngest leaf, was measured (Mabhaudhi and Modi, 2013).  

Chlorophyll content index (CCI) was measured using a SPAD-502 Plus chlorophyll meter 

(Konica Minolta, Osaka, Japan). Stomatal conductance (SC) was measured using a SC–1 leaf 

http://sasri.sasa.org.za/irricane/tables/
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porometer (Decagon Devices®, Pullman, WA, USA). Leaf selection was done randomly and 

standardized through statistical analysis. All these measurements were taken at midday every 

two weeks on the adaxial surface of the first fully expanded, fully exposed leaf. For 

measurements of CCI and SC, six plants (a sample) were tagged per plot at crop establishment 

from which measurements were conducted throughout the growing season. Soil water content 

was determined from planting up to the end of grain filling stage using the gravimetric method 

(Mabhaudhi and Modi, 2013).  

4.2.4.3. Yield determination 
Harvesting of each component crop across the different treatments was done at harvest 

maturity. Since the cowpea variety is a semi-determinant crop, sequential harvesting of pods 

began at the first sign of pod drying. At harvest for all treatments, above ground plant matter 

of six representative plants of each treatment were taken for determination of yield parameters 

(harvest index) and overall yield. Pods were separated from the whole plant and air-dried in a 

glass house (ca. 20oC day/night average temperature) until seeds shuttered from pods. 

Thereafter, the grain was shelled and mass and nutritional content were determined. Nutritional 

content for all treatments was analyzed in the laboratory. Harvest index was calculated as 

follows: 

𝐻𝐻𝐻𝐻 = 𝑌𝑌𝑌𝑌
𝐵𝐵

                           Equation 4.1 

where: HI = harvest index (%); Yg = economic yield based on grain yield (kg); and B = 

aboveground biomass (kg).  

4.2.4.4. Water use 
Soil water content (SWC) was measured weekly using the normal gravimetric method. Soil 

samples were taken using an auger. Weekly SWC measurements were then used to calculate a 

soil water balance (Zhao et al., 2004) from sowing to physiological maturity as follows:  

ET = I + P + C – D – R ± ΔSWC                 Equation 4.2 

where: ET = evapotranspiration (mm); I = irrigation (mm); P = precipitation/rainfall (mm);  

C = capillary rise (mm); D = drainage (mm); R = runoff (mm); and ΔSWC = changes in soil 

water content.  

 

 Since the field trials were grown under rain-fed conditions, there was no irrigation (I) to be 

considered. Capillary rise (C) and drainage (D) were considered negligible (Ridolfi et al, 2008). 
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Runoff (R) was also considered negligible due to planting rows oriented across the slope 

limiting runoff.  Therefore, the ET equation was simplified to:  

ET = P - ΔSWC                       Equation 4.3 

Water productivity (WP) was calculated as follows (Renault and Wallander, 2000): 

WP = [drymass] / [actual evapotranspiration]             Equation 4.4 

 

4.2.4.5. Water use efficiency 
Water use efficiency refers to the ratio of water used by the plant in metabolism to water lost 

through transpiration and soil evaporation (evapotranspiration). Water use efficiency was 

calculated using the following formula (Kuslu et al., 2010):  

 

WUE = B / ET                        Equation 4.5 

 

Where: B = aboveground biomass (kg ha-1) and ET = actual field evapotranspiration (mm). 

 

Nutritional water productivity was determined according to a published formular (Renault and 

Wallender, 2000;  Van Halsema and Vincent, 2012):  

NWP = = 𝑌𝑌𝑌𝑌
𝐸𝐸𝐸𝐸𝐸𝐸

𝑁𝑁𝑁𝑁                       Equation 4.6 

Where, NWP is the nutritional water productivity (nutrition unit/ m3 of water); Ya = the actual 

harvested yield (kg/ha); ETa = actual evapotranspiration (m3/ ha); and NP = is the nutrition 

content per kg of product (nutrition unit/ kg).  

4.2.5. Agronomic practices 
 

Prior to planting, soil samples were obtained from the field trial site and analyzed for soil 

fertility and textural analyses. Land preparation involved ploughing, disking and rotating to 

achieve fine tilt. Planting was done manually and no fertilizer was added since recommended 

levels for N, P and K were met or exceeded for all the crops.  Upon full establishment (% 

emergence), seedlings were thinned to the required spacing. Routine weeding was done 

mechanically using hand hoes or hand-pulling.  
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4.2.6. Statistical analysis 
Data were analysed (ANOVA) using GenStat® version 18 (VSN International, Hemel 

Hempstead, UK, 2011) to determine significant differences at P≤0.05 and least significant 

difference (LSD) values (P ≤ 0.05) were used to separate mean differences.  

 

4.3. Results  
 

4.3.1 Weather data 
Comparing two sites (Umbumbulu and FHE), weather conditions varied. Seasonal maximum 

temperature at Umbumbulu (29.8°C) was 3.4°C higher than the observed temperature at FHE 

(26.4 °C) and minimum temperature at Umbumbulu (16.8°C) and FHE (13.2°C) also differed. 

Rainfall at Umbumbulu was 39.3% higher than at FHE and based on skewness it was more 

normally distributed (726 mm) than rainfall received at FHE (521 mm). However, there were 

more incidences of days where there was no rain at Umbumbulu compared to FHE (Fig 4.1). 

The observed results suggest that the possibility of intermittent water stress was higher at 

Umbumbulu than FHE. Cumulative reference evapotranspiration was 570.9 and 518.1 mm at 

Umbumbulu and FHE, respectively.   

 

Figure 4.1: Daily temperature (maximum and minimum), reference evapotranspiration (ETo), 
and rainfall for both sites [(A) – Umbumbulu and (B) FHE), KwaZulu-Natal South Africa. 
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4.3.2 Emergence 
There were highly significant differences (P < 0.001) among cropping systems and sites, with 

respect to emergence percentage (Fig 4.2). The FHE site showed high emergence percentage, 

whereas Umbumbulu had low emergence percentage. Cowpea at both sites showed great 

performance under both sole and intercropping systems. For FHE, under sole cropping system 

cowpea had highest emergence of 96.7% followed by amaranth (65%) and garden pea had least 

emergence (7.7%).  

 

 
 

Figure 4.2: Comparison of leafy vegetables emergence (%) in response to site [(A) - 
Umbumbulu, (B) - FHE], and cropping system (Mono-cropping and intercropping).  

 

4.3.3 Plant growth and development parameters 
There were significant differences (P< 0.05) with respect to plant height of cowpea under sole 

and intercropping systems (Fig 4.3) at both sites. For both sites, cowpea when intercropped 

with Swiss chard had taller plants compared to other plants. There were significant differences 

(P < 0.05) with respect to plant height of garden pea under sole and intercropping (Fig 4.4) at 

both sites. However, the sole crop plants were, on average, taller (7.4 cm) than plants under 

intercropping (6.4 cm) at Umbumbulu, while at FHE it was the opposite. There were significant 

differences (P<0.05) with respect to plant height of amaranth under sole and intercropping (Fig 

4.5). Plants grown under sole cropping were taller (129.6 cm) compared to those under 

intercropping (97.9 cm). 

There were significant differences (P < 0.05) observed with respect to the number of leaves 

obtained for cowpea under both sole and intercropping systems (Fig 4.6).  Plants under cowpea 
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intercrop developed more leaves compared to sole cropping system for both sites. There were 

significant differences (P < 0.05) with respect to the number of leaves obtained for garden pea 

under sole and intercropping systems (Fig 4.7). The results showed that plants under sole 

cropping at Umbumbulu develop more leaves than under intercrop system, while at FHE more 

plant leaves were developed under intercrop than sole cropping system. There were significant 

differences (P < 0.05) with respect to the number of leaves obtained for amaranth under sole 

and intercropping systems (Fig 4.8).  Plants grown under intercropping system developed more 

leaves compared to the ones grown under sole cropping system. 

There were no significant differences (P < 0.05) with respect to chlorophyll content index 

(CCI) for cowpea at both sites under sole and intercropping systems (Figure 4.9). There were 

significant differences (P < 0.05) with respect to garden pea CCI at both sites under sole and 

intercropping systems. For Umbumbulu, garden pea under intercropping had higher CCI than 

sole cropping, while at FHE it was the opposite (Figure 4.10). There was significant a 

difference (P < 0.05) with respect to amaranth CCI (Figure 4.11). There was low germination 

for amaranth at Umbumbulu compared to FHE. As a result, the amaranth that was planted at 

Umbumbulu failed to grow. The crop stomatal conductivity showed a general pattern of decline 

from the start to the end of the season (Figs 12 and 13). However, there was an unusual peak 

in stomatal conductance later in the season. 

 

 

Figure 4.3: Comparison of cowpea plant height in response to site [(A) - Umbumbulu, (B) - 
FHE] and cropping system (Mono-cropping and intercropping).  

 

 



    

43 
 

 

Figure 4.4: Comparison of garden pea plant height in response to site [(A) - Umbumbulu, 
(B) - FHE], and cropping system (monocropping and intercropping).  

 

 

 

Figure 4.5: Comparison of amaranthus plant height in response to cropping system 
(monocropping and intercropping).  
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Figure 4.6: Comparison of cowpea leaf number in response to site [(A) - Umbumbulu, (B) - 
FHE], and cropping system (monocropping and intercropping).  

 

 

 

Figure 4.7: Comparison of garden pea leaf number in response to site [(A) - Umbumbulu, 
(B) - FHE], and cropping system (monocropping and intercropping).  
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Figure 4.8: Comparison of amaranthus leaf number in response to cropping system 
(monocropping and intercropping).  

 

 

 

 

Figure 4.9: Comparison of cowpea CCI in response to site [(A) - Umbumbulu, (B) - FHE], 
and cropping system (monocropping and intercropping).  
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Figure 4.10: Comparison of garden pea CCI in response to site [(A) - Umbumbulu, (B) - 
FHE], and cropping system (onocropping and intercropping).  

 

 

 

Figure 4.11: Comparison of garden pea CCI in response to cropping system (monocropping 
and intercropping).  
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Figure 4.12: Comparison of cowpea stomatal conductance in response to site [(A) - 
Umbumbulu, (B) - FHE], and cropping system (monocropping and intercropping).  

 

 

 

 

Figure 4.13: Comparison of amaranthus stomatal conductance in response to cropping system 
(monocropping and intercropping).  
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chard had higher biomass. The reason for that might have been caused by less competition, 

since Swiss chard grew poorly for significant yield measurement. Yield for cowpea was about 

93% higher (P < 0.05) at FHE compared to Umbumbulu. However, cowpea sole had higher 

yield at both sites. Final biomass of garden pea was significantly (P < 0.05) affected by the 

interaction of site and cropping system (Table 4.1). Final biomass at Umbumbulu was 68% 

higher than final biomass at Fountain Hill. Final biomass of amaranth was significantly (P < 

0.05) influenced by cropping systems (Table 4.2). Final biomass for amaranth sole was 56% 

higher than intercropped amaranth. Amaranth only grew at FHE and at Umbumbulu it did not 

grow for significant measurement.  

Although not statistically significant, differences in water use were observed across the 

cropping systems and sites. Results showed that Umbumbulu had higher water use under 

intercropping while at FHE higher water use was observed under sole cropping system (Table 

4.3). Although not statistically significant, WUE calculated based on biomass varied across 

sites and cropping systems. The results showed that higher WUE of cowpea was observed 

under sole cropping compared to when intercropped at both sites. The same thing was observed 

for amaranth WUE at FHE (Table 4.3).  

With respect to fat content, it was observed that intercropped amaranth had high fat content 

followed by garden pea sole at FHE, while at Umbumbulu, garden pea was found to have high 

fat content under both cropping systems (Table 4.4). Cowpea had high protein content under 

sole and intercropping systems at both sites compared to amaranth and garden pea. For the 

micronutrients, amaranth had high Ca and Mg contents under sole and intercropping systems 

at FHE, while at Umbumbulu cowpea sole had higher Ca content (Table 4.4). For Zn, Mn and 

Fe, amaranth had higher content of these micronutrients under both sole and intercropping at 

FHE, while at Umbumbulu garden pea had higher content of these micronutrients under both 

cropping systems compared to other crops. For Cu, amaranth had higher content at FHE and at 

Umbumbulu garden pea both sole and intercropping systems had higher content of Cu (Table 

4.4). 

NWP results for FHE for all nutrients (protein, fat, Ca, Mg, Zn, Cu, Mn and Fe) showed 

significant differences (P < 0.05), while Umbumbulu NWP results were not significantly 

different (P < 0.05) among crop species (Table 4.5). There was no significant difference for 

water use among crop species at both sites (Table 4.5). For FHE, amaranth and cowpea under 

sole cropping had highest NWP fat compared to other crop species. Cowpea sole had highest 
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NWPprotein followed by cowpea and intercropped amaranth had the lowest NWPprotein among 

other crops. The results showed that cowpea and amaranth sole had higher NWPCa, Mg and Zn 

compared when intercropped system at FHE. Intercropped amaranth had 78.1% higher NWPCu 

than amaranth sole, while cowpea had higher NWPCu under sole cropping than intercropping 

system. Amaranth sole had the highest NWPMn and Fe, followed by amaranth intercropped and 

garden pea had the lowest of these micronutrients.
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Table 4.1: Final biomass, pod number, pod mass, seed number, seed mass and harvest index for leguminous vegetables.1 

Site 
 

    
 
Biomass 
(g) 

Biomass 
(kg/ha) 

Pod 
number 

Pod 
mass (g) 

Pod Mass 
(kg/ha) 

Seed 
number 

Seed 
mass (g) 

Seed mass 
(kg/ha) 

HI 
(%) 

FHE 

 Cowpea Sole  361.67 16073.91 42.61 93.5 4155.51 406.6 54.4 2657.54 21.3
9 

 Garden Pea 
Sole 5.82 258.79 2.54 3.62 160.84 19.8 1.41 62.81 22.9

3 
 Cowpea-

Amaranthus 176.94 7864.12 23.67 58.33 2592.57 168.4 26.76 1189.37 11.2
9 

 Cowpea-
Garden Pea 298.33 13259.13 42.61 84.44 3753.05 370.9 48.09 2137.09 14.3

2 
 Cowpea-

Swisschard 218.89 9728.3 38.72 40.28 1790.11 176.9 24.83 1103.35 19.6
3 

 Mean                  

UMbum
bulu 

 Cowpea Sole  66.63 2961.35 7.7 3.81 125.04 65.1 6.5 185.26 12.1
9 

 Garden Pea 
Sole 17.96 798.16 3.92 2.73 62.21 12.1 1.5 25.21 13.5

6 
 Cowpea-

Amaranthus 59.21 2631.58 4.49 4.98 191.5 27.5 3.61 160.59 6.06 

 Cowpea-
Garden Pea 37.49 1666.03 3.45 1.9 54.92 14.4 0.96 42.79 1.97 

 Cowpea-
Swisschard 75.74 3366.02 4.83 5.66 221.74 44.1 5.66 147.95 8.43 

 Mean                     
  LSD           
  Site  38.832 1725.83  12.626 757.177 35.07 5.41 224.773  
  Treatment 61.398 2728.776  19.964 1197.202 55.45 8.553 355.397  
   Site x Treat 86.83 3859.072   28.234 1693.099 78.41 12.096 502.607   
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Table 4.2:  Biomass, raw edible biomass (leaves), evapotranspiration (ETa) and WP for leafy 
vegetables. 

Cropping system Biomass Leaves  ETa WP 
 FM DM FM DM   
Sole kg ha-1 kg ha-1 kg ha-1 kg ha-1 mm kg m-3 
Amaranth 7320.9 60419.7 1227.7 777.77 353.6 0.47 
Swiss chard - - - - - - 
       
Intercrop       
Amaranth  3209.8 22345.67 400.0 224.7 354.5 0.20 
Swiss chard - - - - - - 
       

  

Table 4.3: Biomass, water use and WUE for selected leafy vegetables. 

Location  
Cropping 
system Treatment Biomass ETa WUE 

   kg ha-1 mm kg ha-1 mm-1 
FHE Sole Cowpea 16073.91 351.05 45.79 
FHE Sole  Amaranth 7320.93 353.58 20.71 
FHE Sole Gardenpea 258.79 356.04 0.73 

FHE Intercrop 
Cowpea 
(amaranth) 7864.12 354.52 22.18 

FHE Intercrop 
Amaranth 
(cowpea) 3209.83 354.52 9.05 

FHE Intercrop 
Cowpea 
(gardenpea) 13259.13 353.97 37.46 

FHE Intercrop 
Cowpea 
(swisschard) 9728.3 357.03 27.25 

      
Umbumbulu Sole Cowpea 2961.35 325.14 9.11 
Umbumbulu Sole Garden pea 798.16 342.75 2.33 

Umbumbulu Intercrop 
Cowpea 
(amaranth) 2631.58 389.55 6.76 

Umbumbulu Intercrop 
Cowpea 
(gardenpea) 1666.03 369.79 4.51 

Umbumbulu Intercrop 
Cowpea 
(swisschard) 3366.02 423.24 7.95 
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Table 4.4: Macro (protein and fat) and micro (Ca, Mg, Zn, Cu, Mn and Fe) nutrients of leafy-
legume crops (Cowpea, Amaranth, Garden pea and Swisschard) grown at two sites 
(Umbumbulu and Fountain Hill Estate) under two cropping systems (sole and intercropping). 

Location  
Cropping 
system Treatment Nutrient content /kg of product 

   Fat  
 
Protein  Ca Mg Zn Cu Mn Fe 

FHE Sole Cowpea 11.2 299.3 1000 1900 38 4 15 58 
FHE Sole  Amaranth 24.9 203.4 36700 20200 231 17 865 195 
FHE Sole Gardenpea 26.7 254.5 1000 1200 72 17 43 114 

FHE Intercrop 
Cowpea 
(amaranth) 6.5 295.4 1200 2000 43 4 24 75 

FHE Intercrop 
Amaranth 
(cowpea) 31.3 1.4 38800 18800 329 238 813 258 

FHE Intercrop 
Cowpea 
(gardenpea) 6.5 295.4 1200 2000 43 4 24 75 

FHE Intercrop 
Cowpea 
(swisschard) 6.5 295.4 1200 2000 43 4 24 75 

           
Umbumbulu Sole Cowpea 12 319.2 1100 2100 43 4 21 54 
Umbumbulu Sole Garden pea 16.4 287.8 1000 1400 71 9 53 70 

Umbumbulu Intercrop 
Cowpea 
(amaranth) 10.4 323.6 1000 2100 41 4 18 53 

Umbumbulu Intercrop 
Cowpea 
(gardenpea) 10.4 323.6 1000 2100 41 4 18 53 

Umbumbulu Intercrop 
Garden pea 
(cowpea) 18.1 293.4 1000 1400 69 9 52 70 

Umbumbulu Intercrop 
Cowpea 
(swisschard) 10.4 323.6 1000 2100 41 4 18 53 
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Table 4.5: Evapotranspiration (ETa, water productivity (WP) and nutrient water productivity (NWP for protein, fat, Ca, Mg, Zn, Cu, Mn and Fe) 
of selected leafy vegetables (cowpea, gardenpea, Swish chard and amaranth) grown under two cropping systems (sole and intercropping), at two 
sites (Umbumbulu and FHE). 

Location  
Cropping 
system Treatment ETa WP 

 
NWP (nutritional unit m-3) 

   m3 ha-1 kg m-3  Fat Protein Ca Mg Zn Cu Mn Fe 

      ––––––g kg-1–––––––– ––––––––mg kg-1––––––––– 
FHE Sole Cowpea 3510.5 0.8  8.5 226.6 757.0 1438.3 28.8 3.0 11.4 43.9 
FHE Sole  Amaranth 3535.8 0.3  8.6 70.6 12743.0 7013.8 80.2 5.9 300.3 67.7 
FHE Sole Gardenpea 3560.4 0.0  0.5 4.5 17.6 21.2 1.3 0.3 0.8 2.0 
FHE Intercrop Cowpea (amaranth) 3545.2 0.3  2.2 99.1 402.6 671.0 14.4 1.3 8.1 25.2 
FHE Intercrop Amaranth (cowpea) 3545.2 0.1  3.5 0.2 4377.8 2121.2 37.1 26.9 91.7 29.1 

FHE Intercrop 
Cowpea 
(gardenpea) 3539.7 0.6 

 
3.9 178.3 724.5 1207.5 26.0 2.4 14.5 45.3 

FHE Intercrop 
Cowpea 
(swisschard) 3570.3 0.3 

 
2.0 91.3 370.8 618.1 13.3 1.2 7.4 23.2 

LSD (P=0.05)      0.3  2.7 79.9 1508.9 939.2 14.9 5.5 34.1 19.4 
P value    12.0  0.0 0.0 <.001 <.001 <.001 <.001 <.001 <.001 

              
Umbumbulu Sole Cowpea 3251.4 0.2  2.8 74.5 256.6 489.9 10.0 0.9 4.9 12.6 
Umbumbulu Sole Garden pea 3427.5 0.0  0.6 10.6 36.7 51.3 2.6 0.3 1.9 2.6 
Umbumbulu Intercrop Cowpea (amaranth) 3895.5 0.2  2.3 71.7 221.6 465.3 9.1 0.9 4.0 11.7 

Umbumbulu Intercrop 
Cowpea 
(gardenpea) 3697.9 0.1 

 
1.4 44.2 136.7 287.1 5.6 0.5 2.5 7.2 

Umbumbulu Intercrop 
Garden pea 
(cowpea) 3697.9 0.0 

 
0.6 9.9 33.6 47.1 2.3 0.3 1.7 2.4 

Umbumbulu Intercrop 
Cowpea 
(swisschard) 4232.4 0.2 

 
1.7 53.6 165.5 347.5 6.8 0.7 3.0 8.8 

LSD (P=0.05)    0.2  2.0 66.4 211.4 454.0 7.3 0.6 2.6 10.1 
P value      0.19  0.16 0.19 0.18 0.20 0.17 0.2 0.13 2.57 
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4.4 Discussion and conclusion 
 
The objectives of the study were to determine yield and nutritional value of legume leafy 

vegetables grown under intercropping and mono-cropping systems in the context of water use. 

Crops differed in their response to monocropiing and intercropping. The differences were 

closely linked to crop combinations and production sites. These findings are consistent with 

those observed by Chimonyo et al (2016). Intercropping cowpea with amaranthus showed that 

both crops were not affected by the presence of the other crop. While in an intercropping of 

cowpea with garden pea, the two crops are not best competitors, since cowpea covers the whole 

area so garden pea failed to grow with it. This increases water uptake and loss through 

transpiration relative to what would have been lost through soil evaporation. This makes 

cowpea the best cover crop during crop production. Cowpea is also a leguminous crop species 

which fixes atmospheric nitrogen in to the soil and improves availability of soil nitrogen 

(Eskandari and Ghanbari, 2009). 

Plant growth and development largely depends on the availability of resources such as 

water, nutrients and radiation. There were significant differences with respect to growth 

responses (plant height and leaf number) and physiological responses (chlorophyll content and 

stomatal conductance) among crop species. The observed results showed that cowpea was not 

affected by the presence of other crops in intercropping systems in terms of plant growth, this 

indicates that cowpea is a good competitor. More so, the ability of cowpea to grow as an 

indeterminate crop makes it difficult to compete with.  However, amaranth was not affected by 

the presence of cowpea when intercropped compared to Swiss chard and garden pea. 

Additional benefits to cowpea and amaranth to survive water stress may be that these crops 

genetically are adapted to grow in water limited areas and poor soils (Mavengahama et al., 

2013).  

According to Lawlor and Cornic (2002)  plant photosynthetic capacity is controlled by the 

potential to absorb and assimilate. The observed response of physiological parameters (CCI 

and stomatal conductance) is basically linked to photosynthetic capacity of leafy vegetables 

and its potential to adapt. The observed results showed that although the cowpea is drought 

tolerant, the photosynthetic capacity is affected under water limited conditions According to 

Chaves et al (2003) reduction of stomatal conductance is expected under limited water 

conditions. Stomatal conductance is often the first sign of water stress while responses of CCI 

usually occur after prolonged exposure.  
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Molden et al (2010) indicated that under water stress, water use efficiency is an essential 

yield determinant.  Water use efficiency can be enhanced either by minimising water input with 

a fixed output or by enhancing output with a fixed water input. The observed results show that 

WUE and NWP were positively correlated.  Cowpea sole had high WUE compared to other 

crops at both sites. This could be related to an increase in cowpea yield due to increased plant 

population. Increasing plant population increases canopy size per unit area, resulting in soil 

available water being used up by plants instead of being lost through soil evaporation. The 

results showed that crops differed in their nutritional content. Cowpea had the highest protein 

water productivity compared to other crops at both sites. This verifies arguments that legumes 

can be used as an alternative for meat to avoid protein energy malnutrition (Foyer et al. 2016). 

Amaranth had the highest NWP Ca, Mg, Zn, Mn, Cu and Fe, which makes it a nutritious crop.  

In conclusion, the study showed that intercropping is a better system than mono-cropping. 

Intercropping optimises land use and crop quality while mono-cropping increases yield of one 

crop, which is minimised in an intercropping system.  
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CHAPTER 5. GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 

Drought and water scarcity have been shown to be a major challenge to agricultural 

productivity. Enhanced crop productivity is important in regions that are facing malnutrition 

like SSA. Thus, there is a need to identify crops that can grow under drought conditions. The 

review of literature showed that African leafy vegetables have potential to contribute to food 

and nutrition security. These crops have high nutritional value and are often drought tolerant. 

However, ALVs are neglected and there is lack of good quality seed. More studies need to be 

done on these crops, since ALVs are a potential solution to food and nutrition security. Use of 

intercropping systems for such crops could be explored for their production. The study 

hypothesis that there is no difference in seed quality between wild and cultivated vegetable 

species is rejected. Traditional African species performed significantly better than exotic 

improved species with respect to seed quality indicators. This finding suggests that exotic seeds 

can germinate faster and produce more vigorous seedlings than improved crop seeds. However, 

this finding cannot be used to suggest that exotic seeds will produce better yield than improved 

seeds. The field trials of this study showed that there was an agreement between seed quality 

and crop establishment under both sole and intercropping systems. That plant growth and 

development under these systems showed good yield is significant. The study also showed that 

water use, water productivity and nutrient water productivity of traditional vegetables was 

significantly measurable and comparable to those of exotic commercial crops. These findings 

suggest that neglected traditional vegetables have value in the context of agronomy for 

management of water scarcity and food security. 

The limitation of the current study was that selected crops belonged to different genera and 

species. Hence, their comparison is more general and useful for food production and less for 

botany. Future studies should compare genetics, morphology, physiology and nutritional value 

of crops within the same genera and species. Future studies should also include variables that 

are more relevant to climate change in relation to crop production. 
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