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Abstract

Cancer is among the leading causes of death in both developed and developing
countries. Through gene expression profiling of tumors, the accuracy of cancer clas-
sification has been enhanced, leading to correct diagnoses and the application of
effective therapies. Here, we discuss a comparative review of the binary class pre-
dictive ability of seven classification methods (support vector machines, with the
radial basis kernel (SVM(RK)), linear kernel (SVM(LK)) and the polynomial kernel
(SVM(PK)), artificial neural networks (ANN), random forests (RF), k-nearest neigh-
bor (KNN), and naive Bayes (NB)), using publicly-available gene expression data
from cancer research. Results indicate that NB outperformed the other methods in
terms of the accuracy, sensitivity, specificity, kappa coefficient, area under the curve
(AUC), and balanced error rate (BER) of the binary classifier. Thus, overall the Naive
Bayes (NB) approach turned out to be the best classifier with our datasets.
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Chapter 1

Introduction

1.1 Background

Classification plays an essential role in understanding diseases. It is a form of
data analysis that uses statistical and mathematical methods or models to classify
observations or samples into different distinct categories. To classify the data, two
steps are followed; the learning step and the classification step. The learning step
is where the classification model is constructed based on training data. The classi-
fication step is where the constructed model is used to predict classes for a given
data. Predictive modeling is a statistical method used to build predictive models to
separate and classify new data points. There are two types of learning approaches,
namely, the supervised and unsupervised learning. Supervised learning is where
the class labels of each training observation or sample is provided. In contrast, un-
supervised learning (or clustering) is where the class label of each training data is
unknown, and the number of classes to be learned may not be known in advance
(Han et al., 2011). Disease classification is very important for early detection, treat-
ment, containment and other etiological and intervention applications. This ulti-
mately helps to improve health and reduce negative outcomes such as death.

Recent global public health research shows an epidemiological transition from
infectious to non-communicable diseases, the latter including different types of can-
cers. The incidence and prevalence of cancer is on the increase worldwide, both in
the developing and developed countries (Olsen, 2015; Morhason-Bello et al., 2013).

Cancer is a disease in which cells in particular tissues in the body undergo uncon-
trolled division. This situation results in a malignant growth or tumor. Cancerous
cells very often invade and destroy surrounding healthy tissues and organs. When
there is no intervention, the body cells continue to divide and spread into adjacent
tissues. The tumor can occur at any part of the human cells. Normally, the human
cells grow and separate to make new cells as needed by the body to replace the old
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cells. When cancer occurs, this process does not go as it is supposed to be, rather the
cells abnormally split without constraint and form outgrowths in the body called
tumors. The tumors can spread or attack the surrounding tissues, which in this case,
these are called malignant tumors. Furthermore, some growth cells can move to a dis-
tant part of the body, either through blood or lymph nodes and produce new tumors
far from the original tumor location. This process is called metastasis in oncology re-
search. There is another type of tumor growth called benign tumors which are not
like the malignant tumors. They do not spread or attack the surrounding tissues.
They are slow in growth and non-metastatic which when it is removed either by
surgery or other treatment do not grow again. In contrast, the malignant tumors are
fast in growing than metastatic ones, which sometimes recur after removal (Ganti,
2015; WHO, 2002).

There are many risk factors for cancer such as tobacco, alcohol, overweight and
obesity, etc. In the United States alone, cancer has been identified as the second
leading cause of death. The American Cancer Society, in a report published in 2017,
indicated that more than 15.5 million Americans with a history of cancer existed by
January 1, 2016 (ACS, 2017). Moreover, about 1.7 million new cases were expected,
and close to 0.7 million expected to die of cancer in 2017 (Siegel, 2017).

Cancer remains the leading killer in the developed world and is emerging to
be the second or third leading cause of mortality (after malaria) in developing coun-
tries, including Sub-Saharan Africa (Jemal et al., 2011; Moten et al., 2014), where HIV
has also had a devastating effect. A high proportion of cancers that are relatively
curable in developed countries are detected only at advanced stages in developing
countries, due to late or inaccurate diagnoses (WHO, 2002). This motivates the eval-
uation of methods for the classification of different cancer-types and stages of the
disease, in order to improve early detection and the design of targeted treatment
strategies that may reduce mortality.

Microarray data have had a profound impact in disease diagnoses and prog-
noses, through accurate disease classification. This has helped clinicians to choose
the appropriate treatment plans for patients (Abusamra, 2013). However, using gene
expression data for cancer classification has been challenging because the data type
is different in structure from other commonly used structures. Microarray data con-
sists of small sample sizes, where each sample has a large number of the genes. As
a way to mitigate this problem, it has been suggested to first perform filtration and
gene selection through methods such as the two-sample t-test at a given stringent
significance threshold such as 0.001 (Haury et al., 2011). This procedure ensures that
only informative and sufficiently differentially expressed genes between the out-
come classes are used in building the classifiers.

Microarrays provide a unique view into the biology of DNA. Previously, biolo-
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gists worked hard to produce sufficient amounts of biological data for a given re-
search problem (Seidel, 2008). Recently, DNA microarrays have provided a pow-
erful tool to study thousands of genes simultaneously, leading to the production of
massive amounts of data that have made research in microarrays so attractive. How-
ever it is important to note that there are many types of microarrays depending on
the type of specimen placed on the microscope slides (e.g DNA, RNA, protein, and
tissue). DNA microarrays are commonly utilized, and used to determine the expres-
sion levels and sequence of genes in a sample (Tuimala & Laine, 2003). Generally,
microarrays experiments can be prepared from a variety of sources such as human,
mouse, rat, and yeast.

Different methods for cancer classification using gene expression data have been
proposed, including SVM, ANN, RF, linear discriminant analysis (LDA), and Bayesian
network analysis (Dudoit et al., 2002; Chu & Wang, 2003; Hu et al., 2006; Musa, 2014;
Vanitha et al., 2015; Mahmoud et al., 2014; Stephens & Diesing, 2014; Khan et al.,
2001). These classification methods have been applied and their predictive perfor-
mance compared in many studies (Furey et al., 2000; Hu et al., 2006; Abusamra, 2013;
Vanitha et al., 2015).

1.2 Microarray Technology

There are several microarray technologies available in the market (e.g. the spotted
two-color arrays, oligonucleotide (single-channel) arrays, etc.). The most commonly
used technology is the single-color microarray (Affymetrix), hence its choice in this
thesis. At the most general level, a microarray is a flat surface (slide) on which
one molecule interacts with another. What differentiates the dual-channel from the
single-channel microarray is the way probes are placed on the slide.

1.2.1 Affymetrix Gene Expression Array Technology

The Affymetrix system hybridizes only one sample per chip. This requires more
slides per experiment and does not enjoy the advantage of using competitive hy-
bridization. However, it simplifies experimental design and is based on a much
more sensitive technology.
Affymetrix arrays, also commonly known as GeneChips, are microscopic slides that
contain an ordered series of samples (DNA, RNA, protein, or tissue). The experi-
ment starts with constructing the microarray, where single extracted RNA sample
are fixed to a glass slide at known positions in the array. RNA is obtained from the
cells, under different experimental conditions. Consequentially, these samples un-
dergo labeling and hybridization, and the comparisons are then made computation-

3



1.3. Literature Review

ally, and then purification of the labeled products. Then thereafter the Affymetrix
are hybridized with labeled sample. This is then eventually followed by scanning
the sample to measures the ratio of each sample using laser scanners.
In the Affymetrix arrays each gene is represented as a probe set of 10 to 25 oligonu-
cleotide pairs instead of one full length or partial cDNA clone. The oligonucleotide
pair (probe pair) comprises of one oligonucleotide perfectly matching to the gene
sequence (Perfect Match, PM) and a second oligonucleotide having one nucleotide
mismatch in the middle of it (Mismatch, MM). Probes are designed within 500 base
pairs of the 3’ end of each gene to hybridize uniquely in the same, predetermined
hybridization conditions (Dalma-Weiszhausz et al., 2006; Brown et al., 1999; Tuimala
& Laine, 2003; Robinson & Speed, 2007). See Figure 1.1.

Figure 1.1 – Work flow of the Affymetrix microarray experiment.

Generally, the data is from m series of experiments (samples) and n genes (gene
expression matrix). Thus the gene expression matrix is represented as follows

G =


g11 g12 . . . g1m

g21 g22 . . . g2m
...

...
. . .

...
gn1 gn2 . . . gnm


1.3 Literature Review

Recent literature has reported an increased spread of non-communicable dis-
eases such as cancer (of all types). This has made cancer classification in early stages
necessary to enhance disease diagnoses and prognoses. Such improvements in clas-
sification will help physicians to choose the suitable treatment (Abusamra, 2013) in
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order to avoid negative outcomes such as death. The last decade has seen a grow-
ing trend towards non-communicable disease classification using microarray gene
expression data.

Over the past decades, biologists had to work hard to produce a small amount
of data for use to explore a hypothesis with one observation at a time (Seidel, 2008).
When microarray gene expression was invented, one experiment can now generate
thousands of observations. Hence, this has led to decrease in the amount of time
needed to generate data.

Since the discovery of microarray technology, cancer classification research has
rapidly gained attention. During the past few years contribution have been made
in the literature regarding the classification of various type of cancers or cancer
subtypes. Also, various classification methods have been applied to cancer. These
methods include support vector machines (SVM), artificial neural networks (ANN),
K-nearest neighbor (KNN), Naive Bayes (NB), and decision trees (DT). In addition
ensemble methods such as Bootstrap aggregating (bagging) and Boosting are also
among methods of interest.

Valentini (2002) applied the SVM with linear, polynomial, and radial basis ker-
nel functions and multi-layer perceptrons (MLP) with one hidden layer on a lym-
phoma, using gene expression data named Lymphochip (DNA microarray devel-
oped at stanford university school of medicine). The data consisted of 96 tissue sam-
ples from normal and malignant population of human lymphocytes, and 4026 dif-
ferent genes expressed in lymphoid cells with known roles in processes importance
in immunology or cancer. The samples contained missing gene expression levels of
about 6% of all the data whose values were replaced with zeros. They considered
two problems, which are the classification of cancerous and non cancerous lymphoid
tissues, and the identification of Diffuse Large B-cell Lymphoma (DLBCL). The sec-
ond problem above includes the Germinal Centre B-like DLBCL (GCB-like), and
Activated B-like DLBCL (AB-like). The analysis showed that the SVM with a linear
kernel had the best performance. For classifying malignant and normal tissues the
author estimated the generalization error using 10 fold cross validation and found
that SVM with linear kernel achieved the best results with 1.04 error and 100% sensi-
tivity. In identifying DLBCL subgroups, they performed 5 classification tasks using
SVM and leave one out cross validation to estimate the generalization. For each clas-
sification task performed using different expression signatures (proliferation, T cell,
lymphnode, and genes that distinguish germinal centre B-cells from other stages in
B-cell ontogeny (GCB expression signature)) and all signatures together, the results
showed that SVM with RBF had good results on GCB expression signatures with
4% of an estimated generalization error and 91% sensitivity. That means GCB ex-
pression signatures are specifically related to the separation of GCB-like and AB-like
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subgroup of lymphoma inside the DLBCL group.
Wu et al. (2003) compared the performance of SVM, RF, KNN, LDA, quadratic

discriminant analysis (QDA), and bagging and boosting classification trees, using an
ovarian cancer mass spectrometry data. The dataset was obtained from the National
Ovarian Cancer Early Detection Program at Northwestern University Hospital. This
data set consists of MS spectra that extend from 800 to 3500 Da that were obtained
on serum samples from 47 patients with ovarian cancer and 44 normal patients. Pre-
processing were done using approaches such as taking the log of the intensities,
background subtraction, and peak identification, etc. Thereafter, the feature selec-
tion were done using two methods to select subset features. First they ranked the
features based on the t-statistic, and used the RF to select the subset feature based on
the a variable importance measure. Then they applied the classifiers on the data with
15 and 25 selected markers (features) and compared their performance based on the
prediction error rate using 10-fold cross validation and 0.632+ bootstrap methods.
The results showed that the 0.632+ rule provides more stable estimates of the er-
ror rate than 10 fold cross validation for some methods. Comparatively the results
showed that RF and LDA performed well among other approaches. Using 15 mark-
ers selected using the t-statistic, SVM achieved the lowest error rate followed by the
LDA method and the RF approach was among the top three. When the number of
selected markers increases from 15 to 25, SVM had the lowest error rate and RF fol-
lowed closely in performance. While RF outperformed all the methods when the
selected variable are derived from the importance measures based on RF. In gen-
eral RF had lower prediction error rate than the minimum error rate obtained using
variables selected through t-statistics.

Liu et al. (2005) proposed a novel analysis procedure, which involved reduc-
ing the dimension using kernel principal component analysis (KPCA) and classi-
fication using logistic regression (LR) for discrimination. Gene (features) selection
was done based on the likelihood ratio, to obtain the most informative genes based
on the highest likelihood ratio score. The proposed method was applied to five
gene expression datasets involving human tumor samples such as leukemia, colon,
lung cancer, lymphoma, and NCI. The procedure was then compared with SVM and
ANN. Thereafter, the classification performance were assessed using the leave one
out cross validation for all the datasets except for the leukemia data set which was
based on one training and test data only. They showed that the new procedure was
able to distinguish between different classes with high accuracy.

Delen et al. (2005) compared three methods, namely, ANN, decision trees (DT),
and LR prediction models using a large dataset from breast cancer. The authors used
data contained in the SEER cancer Incidence Public-Use Database for the years 1973
and 2000. This dataset contained of 433, 272 records/cases and 72 variables which
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provided social demographic and cancer specific information. In an exploratory
analysis of the data it was found 40% of the records contained missing data. In the
subsequent analysis the missing data were dealt with by removing the records with
missing information leading to the so called complete case analysis. Furthermore,
they examined the impact of removing these records on other variables and the anal-
ysis showed there was no significant effect on the distribution of the variables. After
the preliminary data cleaning and preparation for analysis step, the final analysis
dataset consisted of 16 predictor variables with one dependent variable in a total of
202, 932 records. Their results indicated that the DT model was the best predictive
model with 93.6% accuracy on the holdout sample, while the ANN model had an
accuracy of 91.2% and the LR model an accuracy of 89.2%.

Hu et al. (2006) conducted a comparison of five classification methods (LibSVMs,
C4.5, BaggingC4.5, AdaBoostingC4.5, and RF) on seven distinct microarray cancer
datasets, namely breast, lung, lymphoma, ALL-AML leukemia, colon, ovarian, and
prostate. Preprocessing of the microarray data was done via information gain ratio
for gene selection and used (Fayyad and Irani’s MDL) attribute discretization meth-
ods. Ten fold cross validation was used for performance estimation. Two statistical
methods, namely, the Wilcoxon signed rank test and sign test were used to vali-
date the average accuracies of ten-fold cross validation on all the data sets. They
showed that all the ensemble methods (BaggingC4.5, AdaBoostingC4.5, and RF)
performed better than single-classification methods (LibSVMs, C4.5) and that the
Wilcoxon signed rank test was better than the sign test.

In order to determine the best feature selection method, Haury et al. (2011) com-
pared 32 feature selections methods using five classification methods, namely, the
nearest centroid (NC), KNN with k = 9, linear SVM with C = 1, linear discriminant
analysis (LDA), and NB, to evaluate their performance. They showed that the simple
t-test feature selection method provided the best results out of 32 feature selection
methods among the classification methods used.

A more general comparative study on classification methods was performed
by Abusamra (2013), who applied SVM, KNN, and RF, and eight different feature
selection methods, namely, information gain, twoing rule, sum minority, max mi-
nority, Gini’s index, sum of variances, t-statistics, and one-dimension SVM, on two
publicly-available glioma datasets. Five-fold cross-validation was used to evaluate
the classification performance. In terms of accuracy, the SVM approach was the best
in comparison to all other models even before feature selection, due to its suitability
for high dimensional data. These results suggest that by performing feature selec-
tion, the accuracy of classification can be significantly improved by using a smaller
number of genes.

Dwivedi (2016) presented a classification of leukemia (the data set consisted of 46
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samples in which there were 32 acute lymphoblastic leukemia (ALL) samples and 14

acute myleloid leukemia (AML) samples), using ANN but also compared the ANN
approach to five other methods (SVM, NB, LR, KNN, and classification trees). This
study applied the leave-one-out and ten-fold cross-validation methods to assess the
performance of the methods using eight measures. ANN had a significant classi-
fication accuracy of 98% on ten-fold cross-validation and leave-one-out approach.
While, SVM had the second best classification accuracy of 91%. Furthermore, ANN,
KNN and NB simultaneously had the highest sensitivity. However ANN had both
the highest sensitivity and specificity of 100% and 93% respectively.

Huang et al. (2018) concluded that SVM are a very powerful method in vari-
ous fields, including cancer genomics, compared to the other methods. To date SVM
have been applied in many application such as classification/ subtyping, biomarker/
signature discovery, drug discovery, driver gene discovery, and gene interaction.
The success of SVM is partly related to the flexibility of any kernel approach and
partly related to the robustness of SVM in the presence of bias in the training data.

A review of the literature suggests that SVM, KNN and RF are the three top most
commonly used classification methods in microarray studies. In most of the previ-
ous comparative studies, the methods have been evaluated based on a single cancer-
type data (Abusamra, 2013; Valentini, 2002; Wu et al., 2003; Dwivedi, 2016), without
replication across the cancer spectrum, to ensure robustness. In studies that have
employed different cancer-types, the comparisons have been between ensemble and
single-classification methods (see Hu et al. (2006)). Generally, factors that influence
performance of the classification methods such as microarray platform, disease un-
der study and the gene selection method, have not been addressed (Novianti et al.,
2014). Consequently, none of the methods have been unanimously agreed upon as
the best method in microarray based cancer classification.

In this study, we performed a comparative review of the SVM (with the linear,
polynomial and radial basis kernels), KNN, RF, NB and ANN, in an attempt to iden-
tify the best method for microarray-based cancer classification. The methods were
evaluated based on classification accuracy, sensitivity, specificity, kappa coefficient,
AUC, receiver operating curve (ROC), and BER (Stephens & Diesing, 2014), using
ten publicly-available microarray datasets from the same platform.

1.4 Problem Statement

Cancer tumor classification based on morphological characteristics alone has
been shown to have serious limitations in some studies (Golub et al., 1999). The use
of gene expression data from microarrays has improved the classification. However,
numerous classification algorithms have been developed in this regard but none has
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been unanimously accepted as the best method for microarray data. Here, we seek
to review these methods with the goal of identifying a superior method, based on
publicly-available microarray data.

1.5 Objectives of the Study

The general objective of the thesis is to review cancer classification techniques,
and apply these methods on publicly available microarray gene expression data.
The specific objectives of this study are:

• To obtain and analyze microarray data from a public repository (GEO).

• To perform gene selection, i.e. obtain a small panel of genes to employ as input
variables/predictors in the classification algorithms.

• To identify a classification method that can be regarded as the best method for
cancer classification, based on certain statistical measures of performance.

1.6 The Structure of the Dissertation

This study is concerned with classification methods for disease applied to cancer
datasets. There are five chapters in the dissertation, which are structured as follows:

Chapter 1: This chapter introduces the study, by giving the background, a litera-
ture survey, and the aims and objectives of the study.

Chapter 2: This chapter presents the background information on the data in gen-
eral, a description of the each dataset used in the study, and a summary table for the
datasets.

Chapter 3: In this chapter, we discuss the methods support vector machines, arti-
ficial neural networks, naive Bayes, random forests, and k-nearest neighbor models
as used in cancer classification. The write up explains the methodology and steps
that will be used to compute the classification performance of each method.

Chapter 4: Here, we present results for each methods on the ten datasets. The
results compares the performance of the different methods based on seven different
measures of performance namely accuracy, sensitivity, specificity, kappa coefficient,
ROC, area under the curve (AUC), and balanced error rate (BER).

Chapter 5: This chapter gives the discussion, conclusion and future research ar-
eas emanating from the current research.

9



Chapter 2

Data description

In this study, we used ten gene expression datasets on the most common cancer-
types among men and women, which were downloaded from Gene Expression Om-
nibus (https://www.ncbi.nlm.nih.gov/geo/), with accession numbers
GSE23988, GSE7670, GSE8401, GSE10072, GSE10245, GSE25136, GSE35896,
GSE103091, GSE5851 and GSE32962. The description for each dataset is as given
below. Clinical information would have been useful. But not all datasets in GEO
contain clinical information for the samples, which is a limitation in clinical studies.
Table 2.1 below provides a concise summary of the gene expression datasets used in
the study.

Table 2.1: Summary of the gene expression datasets used in the study. Here Pos and Neg
represents positive and negative, respectivlely. GSE(GEO Sample), GPL(GEO
Platform).

Cancer
type

Accession
number

Platform Class
attribute

Pos(Neg)
class

Pos(Neg)
class size

Sample
type

Colorectal GSE5851 GPL571 Response status No(Yes) 43 (25) Independent

Lung GSE7670 GPL96 Tissue type Tumor(Normal) 27 (27) Paired

Melanoma GSE8401 GPL96 Tumor type Prim(Met) 31 (52) Independent

Lung GSE10072 GPL96 Tissue type Tumor(Normal) 33 (33) Paired

Lung GSE10245 GPL570 Tumor type SCC(AC) 18 (40) Independent

Breast GSE23988 GPL96 Estrogen receptor (ER) ERpos(ERneg) 32 (29) Independent

Prostate GSE25136 GPL96 Recurrence status Rec(NonRec) 39 (40) Independent

Leukemia GSE32962 GPL570 Prednisolone
Sensitivity

Sens(Resist) 19 (24) Independent

Colorectal GSE35896 GPL570 Mutation status Yes(No) 29 (33) Independent

Breast GSE103091 GPL570 Metastasis status Met(MetFree) 31 (76) Independent

10
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2.1. Dataset 1: GSE5851

2.1 Dataset 1: GSE5851

The dataset contains 22, 277 probes from 68 metastatic colorectal cancer tumors,
subjected to cetuximab monotherapy. Samples were classified by response status as
either a non-responder (No) with 43 or a responder (Yes) with 25 cases (Khambata-
Ford et al., 2007). After filtration and normalization, 12, 084 genes were retained.
Fourteen (14) differentially expressed genes between the two classes were employed
in model training and validation downstream.

2.2 Dataset 2: GSE7670

The dataset consists of 22, 283 probes from 66 lung adenocarcinoma tissues, 27 of
which were matched normal-tumor samples (Su et al., 2007). Filtration and probe re-
duction to one per gene resulted in 12, 084 genes. Analysis of differentially expressed
genes 19 paired training samples yielded 1, 450 genes for classification. Here, we
used the tumor status (Tumor/Normal) as classification variable for model training
and validation.

2.3 Dataset 3: GSE8401

The dataset consists of 22, 283 probes from 83 samples. There are 31 primary
(Prim) and 52 metastatic (Met) melanoma tumors from patients undergoing surgery,
collected from 1992 to 2001 as a part of the diagnostic work-up or therapeutic strat-
egy (Xu et al., 2008). Probe filtration and reduction to one per gene yielded 12, 084

genes, of which 1, 483 were differentially expressed between the 59 training primary
and metastatic samples. Model training and validation were based on 1, 483 genes.

2.4 Dataset 4: GSE10072

There was a total of 22, 283 probes from each of the 33 paired (tumor and normal)
samples used in this analysis (Landi et al., 2008). Filtration reduced the initial 22, 283

probes to 12, 084 genes, of which 3002 were differentially expressed genes hence
were selected for model training and validation.

2.5 Dataset 5: GSE10245

The dataset contains 54, 675 probes from 58 non-small cell lung cancer (NSCLC)
tumor samples, classified as either adenocarcinoma (AC) with 40 or squamous cell
carcinoma (SCC) with 18 cases (Kuner et al., 2009). Filtration reduced the probes to
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2.6. Dataset 6: GSE23988

18, 978 genes, and differential expression analysis selected 819 genes from 41 training
samples, for model training and validation.

2.6 Dataset 6: GSE23988

The dataset consists of 22, 283 probes taken from 61 patients with HER2-normal
stage I-III breast cancer who received preoperative chemotherapy to identify gene
sets associated with pathological complete response to therapy (Iwamoto et al., 2010).
Estrogen receptor (ER) status (32 ERpos) and (29 ERneg) was used as the class at-
tribute. After filtration and normalization, 12, 084 genes were retained, out of which
579 were selected for model building and validation.

2.7 Dataset 7: GSE25136

The dataset consists of 22, 283 probes from 79 prostate cancer tumors, classified
as either having disease recurrence (Rec) with 39 or non-recurence (NonRec) with 40

cases. Recurrent status was used as the positive class in the model building and val-
idation processes (Sun & Goodison, 2009). Filtration reduced the probes to 12, 084

genes, and differential expression analysis selected 52 genes from 56 training sam-
ples, for model training and validation.

2.8 Dataset 8: GSE32962

The dataset contains 54, 517 probes from blood samples from 43 infants with
Acute Lymphoblastic Leukemia (ALL), subjected to prednisolone treatment. The
samples were classified by prednisolone sensitivity as either sensitive (Sens) with 19

or resistant (Resist) with 24 cases (Spijkers-Hagelstein et al., 2012). Filtration reduced
the probes to 18, 956 genes, of which 117 genes were differentially expressed and
used for model training and validation.

2.9 Dataset 9: GSE35896

The dataset contains 54, 675 probes from 62 colorectal cancer tumors, classified
by KRAS mutation status as either a KRAS-mutant (Yes) with 29 or KRAS wild-type
(No) with 33 cases sub-type (Schlicker et al., 2012). Filtration reduced the probes to
18, 978 genes. Differential gene expression analysis yielded 43 genes, based on 45

training samples, for subsequent model training and validation.
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2.10. Dataset 10: GSE103091

2.10 Dataset 10: GSE103091

The dataset also contains 54, 675 probes from 107 primary breast tumours (Jézéquel
et al., 2015). The tumors were classified by metastasis status as either metastatic
(Met) with 31 or metastatis-free (MetFree) with 76 cases, with metastasis-free as the
positive class attribute. Probe filtration and reduction to one per gene yielded 18, 978

genes. Differential gene expression analysis resulted in a 54 gene list, which was em-
ployed in model training and validation.
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Chapter 3

Methodology

Several methods have been developed for classification using microarray gene
expression data, each with its advantages and disadvantages. In this study, we
present a comparative analysis of seven classification methods using ten cancer
datasets described in Chapter 2. Below we present an overview of each method.

3.1 Support Vector Machines (SVM)

The SVM method was first presented by Boser et al. (1992) at the Computational
Learning Theory (COLT92) ACM Conference in 1992. SVM are based on the idea of
the plane that lies furthermost from both classes. This plane is known as the optimal
(maximum) margin hyperplane. The hyperplane is completely determined by a sub-
set of the samples known as the support vectors (Moguerza & Muñoz, 2006). SVM
have the ability to handle problems where the data are not linearly separable by
transforming the data using mapping kernel functions such as the radial basis func-
tion (RBF) kernel, polynomial function, and the linear function (Stephens & Diesing,
2014). Moreover, SVM have strong capability in handling high dimensional data,
which is clearly an add advantage. Accordingly, this strength makes SVM widely ap-
pealing and have been successfully applied to real-life data analysis problems such
as handwritten character recognition, human face recognition, radar target identifi-
cation, speech identification, and gene expression data analysis (Brown et al., 1999;
Chu & Wang, 2003).

Suppose we have m samples and n genes. Further, assume samples belong to
two distinct outcome classes represented by +1 or −1 and a feature vector gi such
that (gi, yi) ∈ G × Y i = 1, 2, . . .m, where gi = (gi1, gi2, . . . , gin)′ is the sample
profile (vector) and yi ∈ {+1,−1} is the outcome class dichotomy. The goal is
to classify the samples into the two classes by training the SVM to map the input
data (using a suitable kernel function) onto a high-dimensional space (feature space)
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3.1. Support Vector Machines (SVM)

{
(Φ(gi), yi)

}m
i=1

. This is achieved by constructing an optimal separating hyperplane
that lies furthest from both classes (see Fig 3.1).

The general form of a separating hyperplane in the space of the mapped data is
defined by

wTΦ(g) + b = 0. (3.1)

Here, w = (w1, w2, . . . , wn)′, is the weight vector. We can rescale the w and b such
that the following equation determines the point in each class that is nearest to the
hyperplane

|wTΦ(g) + b| = 1. (3.2)

Therefore, it should follow that for each sample i, i ∈ {1, 2, . . . ,m},

wTΦ(gi) + b =

≥ 1 if yi = +1

≤ −1 if yi = −1
(3.3)

After the rescaling, the distance from the nearest point in each class to the hy-
perplane is 1

‖w‖ . Thus, the distance between the two classes is 2
‖w‖ , which is called

the margin. To maximize the margin, the following optimization problem has to be
solved

min
w,b

‖w‖2 (3.4)

subject to
yi(wTΦ(gi) + b) ≥ 1, i = 1, 2, . . . ,m. (3.5)

The square in the norm of w is introduced to make the problem quadratic. Sup-
pose w∗ and b∗ are the solutions to Eq (3.4). Then this solution determines the hy-
perplane in the feature space where (w∗)TΦ(g) + b∗ = 0. The points Φ(gi) that
satisfy the qualities yi((w∗)TΦ(gi) + b∗) = 1 are called support vectors as shown in
Fig 3.1 (b) (Moguerza & Muñoz, 2006). There are many packages in R for SVM im-
plementation (e.g. e1071 package), but we have chosen the kernlab package because
it contains various kernelized learning algorithms and all the features that we need
as well, Moreover, kernlab is customized for kernel methods in R (Karatzoglou et al.,
2016).
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3.1. Support Vector Machines (SVM)

Figure 3.1 – (a) Original data in the input space. (b) Mapped data in the feature space.

3.1.1 Kernel Function

The real world problems are not usually linearly separable. Therefore, there is
need for a function which maps the original space to some higher dimensional fea-
ture space where the training set is separable. Thus, we need to find a non-linear
transformation function Φ(g), to achieve this task hence a class of functions called
kernels is used.

A kernel K(g,y) is a real valued function K : GXG → R for which there exist
a function Φ : G → Z, where Z is a real vector space, with the property K(g,y) =

Φ(g)TΦ(y).
The kernel K(g,y) acts as a dot product in the space of Z. In the literature G and

Z are called input space and feature space, respectively. As well as, theK(g,y) must
satisfy Mercer’s condition, hence it is known as a Mercers kernel.

There are many kernel functions, and in Table 3.1 below we present the ones
used in the current study.

Table 3.1: Kernel Functions.

Name Kernel Function
Linear K(g,y) = gTy

Polynomial K(g,y) = (c+ gTy)d

RadialBasisFunction(RBF ) K(g,y) = exp(−γ||g− y||2)

Where c is the constant value, d is the polynomial degree, and γ is a parameter that
sets the spread of the kernel, it defines how far the influence of a single training
example reaches. Intuitively, a small gamma value define a Gaussian function with
a large variance.
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3.2. Artificial Neural Networks (ANN)

3.2 Artificial Neural Networks (ANN)

Artificial neural networks (ANN) are multi-layered models that are constructed
from three layers, each layer consisting of nodes called neurons (Dwivedi, 2016). The
input layer contains nodes whose number is based on the input features. The output
layer contains nodes equal to the number of classes, and finally the hidden layer con-
tains nodes determined by the level of tuning required. The inputs are weighted by
multiplying each input by a weight as a measure of its contribution. The layers are
connected together via connection weights. These weights are determined through
stages of model fitting. The hidden nodes receive the sum weighted from the input
layer plus some bias. This summation is passed onto the transform function (activa-
tion function) to generate the results. These results are called outputs and interpreted
as class probability in our case.

There are many types of architectures of ANN. The choice of the number of hid-
den layers is an important part of deciding the overall neural network architecture
and can affect the results. Here, we used the default setting for the nnet package,
which is the single hidden layer and is sufficient for our purposes. Neural networks
are used widely in different fields such as prediction in time series models, economic
modeling and medical applications among others (Stephens & Diesing, 2014). In
addition, ANN can be applied to the classification problem using microarray gene
expression data (Dwivedi, 2016).

Consider the simplest multi-layered network, with one hidden layer, as in Fig 3.2
below. Assume we have gene expression data where n denotes the number of genes.
Then the input layer receives the n gene expression levels for a sample, each multi-
plied by the corresponding weight, w(1)

ij gj , as shown in Eq 3.6, below:

bi =

n∑
j=0

w
(1)
ij gj i = 1, 2, . . . ,m, (3.6)

where g = (g0, g1, g2, . . . , gn)′ is a vector of input features and g0 = 1 is a constant
input feature with weight wi0. The quantities, bi, are called activations, and the pa-
rametersw(1)

ij are the weights. Note that alternatively bi can be viewed as a summary
of the n genes from sample i. The superscript “(1)” indicates that this is the first layer
of the network. Each of the activations is then transformed by a nonlinear activation
function f , typically a sigmoid, as in Eq 3.7 below:

zi = f(bi) =
1

1 + exp(−bi)
. (3.7)
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3.2. Artificial Neural Networks (ANN)

The quantities zi are interpreted as the output of hidden units, so called because
they do not have values specified by the problem (as is the case for input units) or
target values used in the training (as is the case for output units).

In the second layer, the outputs of the hidden units are linearly combined to give
the activations of the K output units:

ak =
m∑
i=0

w
(2)
ik zi k = 1, 2, . . . ,K. (3.8)

Again, z0 = 1 corresponds to the bias. The transformations in the second layer
of the neural networks are parameterized by weights w(2)

ik . The output units are
transformed using an activation function. Again, a sigmoid function may be used as
shown below:

yk = f(ak) =
1

1 + exp(−ak)
. (3.9)

These equations may be combined to give the overall equation that describes the
forward propagation through the network, and describes how an output vector is
computed from an input vector, given the weight matrices as

yk = f

 m∑
i=0

w
(2)
ik

f
 n∑

j=0

w
(1)
ij gi

 . (3.10)

ANN are implemented using the R package nnet, because it is the simplest one
and restricted to a single layer (Ripley et al., 2016).
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3.3. Naive Bayes (NB)

Figure 3.2 – Multi-layer neural networks architecture.

3.3 Naive Bayes (NB)

The Naive Bayes classifier uses probability theory to find the most likely of the
possible classes in a classification problem. The NB classifier relies on two assump-
tions, namely, that each attribute is conditionally independent from the other at-
tributes given the class and that all the attributes have influence on the class (De Cam-
pos et al., 2011). The popularity of this classifier is mainly due to its simplicity,
yet exhibiting a surprisingly competitive predictive accuracy. The NB classifier has
previously been applied in many fields, including microarray gene expression data
(Stephens & Diesing, 2014; Dwivedi, 2016).

Consider an m by n gene expression data matrix, where m is the number of the
samples and n is the number of the genes (features). Let gkj , j = 1, 2, . . . , n, denote
the j-th gene on the k-th sample. Let Ci be the i-th class, i = 1, 2, . . . , L. The Naive
Bayes classifier uses the maximum a posteriori (MAP) classification rule to classify
these samples. The probability of the k-th sample vector, Gk = (gk1, gk2, . . . , gkn)′,
is calculated and then the sample is assigned the class with largest probability from
L conditional probabilities. That is, let P (C1|Gk), P (C2|Gk), . . . , P (CL|Gk) denote
the set of L conditional probabilities. The NB classification depends on the Bayes
rule, which states that a posterior probability

P (Ci|Gk) =
P (Gk|Ci)P (Ci)

P (Gk)
∝ P (Gk|Ci)P (Ci), k = 1, 2, . . . ,m, (3.11)
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3.4. Random Forests (RF)

where P (Gk) is considered a common factor for all the L probabilities.
The NB classification assumes all input features are conditionally independent,

that is,

P (gk1, gk2, . . . , gkn|Ci) = P (gk1|gk2, . . . , gkn, Ci)P (gk2, . . . , gkn|Ci)

= P (gk1|Ci)P (gk2, . . . , gkn|Ci)

= P (gk1|Ci)P (gk2|Ci) . . . P (gkn|Ci)

(3.12)

Ultimately, NB classifies a new sample, G∗, according to the model with MAP
probability given the sample, as

Class(G∗)MAP = argmax(P (Ci|G∗)). (3.13)

NB are implemented using the R package naivebayes.

3.4 Random Forests (RF)

Random forests were first introduced in 2001 (Friedman et al., 2001; Breiman,
2001). They are an extension of classification and regression trees, and also an im-
provement over bagged trees by the way of a random small tweak to de-correlate the
trees. Growing random forests leads to an improvement in prediction accuracy com-
pared to single or bagged trees (Qi, 2012). We build a number of forests of decision
trees on bootstrapped training samples from the original data. A tree is obtained by
recursively splitting the genes set of size p. At each node of the tree, a candidate
gene for splitting is obtained from a random sample of size v. A typical choice for v
is such that v ≈ √p. We then grow the trees to maximum depth. Therefore, the two
step randomization help to decorrelate the trees (Chen & Ishwaran, 2012). To deter-
mine the prediction for an unknown sample, an average over all the trees is taken
for a regression problem and a majority vote for a classification problem (Friedman
et al., 2001; Pappu & Pardalos, 2014; Do et al., 2009).

Random Forests Algorithm for Regression or Classification (Friedman et al., 2001)

1. For b = 1 to B (# random-forest trees):

• Draw a bootstrap sample of size N from the training data.

• Grow a random-forest tree, Tb to the bootstrapped data, by recursively
repeating the following steps for each terminal node of the tree, until the
minimum node size, nmin, is reached.

(a) Select v genes at random from the p genes.
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3.5. k-Nearest Neighbor (KNN)

(b) Pick the best gene to split on among the v based on an impurity mea-
sure.

(c) Using the selected gene, split the node into two daughter nodes.

2. To make a prediction for a new sample, x:

Let Ĉb(x) be the class prediction of the b-th random-forest tree. Then

ĈB
rf (x) = majority vote

{
Ĉb(x)

}B

b=1

Random forests comprise a number of decision trees, and each node in the decision
tree is a condition on a single feature, which divides the data into two. Ginis index
was used for the impurity measure in this work because it is the best for classification
problems (Pal, 2005; Breiman et al., 2011). Ginis index is a measure of how often a
randomly chosen element from a set would be incorrectly labeled if it was randomly
labeled according to the distribution of labels in the subset. It is computed as

Gini(D) = 1−
m∑
i=1

p2i

WhereD is a set of training samples and their associated class labels belongs to class
i, pi is the probability that a sample in D, the sum is computed over m classes.

RF are implemented using the R package randomForest (Breiman et al., 2011).

3.5 k-Nearest Neighbor (KNN)

The k-nearest neighbor classifiers (KNN) are known to be most useful instance-
based learners. KNN is a non-parametric model (Yao & Ruzzo, 2006). If the classifi-
cation is based on Euclidean distance in feature space, then k determines the number
of neighbors to be used. In the testing set assign the new sample the class that is most
likely among the k neighbors. The number of neighbors can be tuned to choose the
optimal value of k (Stephens & Diesing, 2014; Dwivedi, 2016).

There are many types of similarity measure, such as Euclidean distance, cosine
similarity, and Mahalanobis distance. The knn function uses the Euclidean distance
as the default to find the k-th neighbors. Moreover, the Euclidean distance is sim-
ple and works well with continuous data (Wilson & Martinez, 1997; Ding & Peng,
2005). Since the gene expression data is continuous, the Euclidean distance was the
preferred similarity measure.

The KNN uses the Euclidean distance measure to find the closest samples for the
new sample. Suppose we have two samples, each one containing n genes. Specifi-
cally denote the two samples as S1 = (g11, g12, . . . , g1n)′ and S2 = (g21, g22, . . . , g2n)′.
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3.6. Performance Measures

Then the Euclidean distance is calculated as squared root of the sum of the squared
differences in their corresponding values. Using the Euclidean distance definition,
the distance between two points, dist(S1, S2), is given as

dist(S1, S2) =

√√√√ n∑
j=1

(g1j − g2j)2. (3.14)

Figure 3.3 below present the idea of the k-nearest neighbor.

Figure 3.3 – k-nearest neighbor approach.

3.6 Performance Measures

In this paper, the comparison was based on seven performance measures, as de-
fined below. These measures were calculated from the generic confusion matrix
below.

Table 3.2: Structure of the confusion matrix

True Condition

Predicted Condition Positive Negative

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

1. Accuracy is the percentage of correctly classified samples:

Accuracy =
TP + TN

TP + TN + FP + FN
.
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3.6. Performance Measures

2. Kappa is a chance-corrected measure of agreement between the classifications
and the true classes:

Kappa =
Accuracy− Random Accuracy

1− Random Accuracy
.

Random Accuracy =
ActNegitave× PredNegitave + ActPositive× PredPositive

Total× Total

=
(TN + FP )× (TN + FN) + (FN + TP )× (FP + TP )

(TP + TN + FP + FN)× (TP + TN + FP + FN)
.

3. Specificity is the proportion of actual negatives which are predicted negative:

Specificity =
TN

(TN + FP )
.

4. Sensitivity is the proportion of actual positives which are predicted positive:

Sensitivity =
TP

(TP + FN)
.

5. Balanced Error Rate (BER) is the average of the proportion of wrong classifi-
cations in each class:

BER =
1

2

(
FP

(TN + FP )
+

FN

(FN + TP )

)
.

6. Receiver Operating Characteristic Curve (ROC) is a two-dimensional curve
parameterized by one parameter of the classification algorithm, e.g. some
threshold in the (true positive rate / false positive rate). That is, ROC curve
is a plot of sensitivity against 1-specificity.

7. Area Under the Curve (AUC):

AUC =
1

2

(
TP

(TP + FN)
+

TN

(TN + FP )

)
.

The AUC is between 0 and 1.
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Chapter 4

Application and Results

Here, we discuss in detail the application steps that were followed in the study.
Thereafter, we present the results of the application. First, we downloaded the
datasets then processed them in several phases as shown in Fig 4.1. The data prepa-
ration included filtration, normalization and transformation, partitioning the dataset,
and gene selection. Thereafter, the training of the candidate methods was done us-
ing the 10-fold cross validation sampling method using the training set, from which
model comparison and selection of the best model(s) was achieved. Consequently,
validation of the best model(s) was done using the validation data set. Finally, the
performance results were used to distinguish between the different classification
methods.

Figure 4.1 – Flow diagram of the data processing stages until final model comparison and
performance.
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4.1. Data Source

4.1 Data Source

The ten datasets were downloaded from the gene expression omnibus (GEO) web
site (https://www.ncbi.nlm.nih.gov/geo/).

4.2 Data Preparation

The data preparation ( data preprocessing ), included many tasks for manipu-
lation of the data into a suitable form for further analysis. These tasks included
avoidance of inconsistency, poor quality data, missing data, removing poor genes
which are not able to differentiate the classes, etc. The sequence of the specific tasks
such as filtration, normalization, transformation, partitioning of the dataset to train-
ing and validation, and genes selection are illustrated in Fig 4.1. The details of each
task are shown below.

4.2.1 Filtration

In most cases the microarray data contains probes for many genes that are either
not expressed, expressed in only a few samples or expressed at a relatively constant
level. So, filtering microarray data is a process of selecting a subset of available
probes for exclusion or inclusion in the analysis. Filtration was performed to elim-
inate insufficiently expressed probes across the samples and those with excessive
missing expression levels (Simon et al., 2007; Chaba et al., 2016). It allows for the ex-
clusion of uninformative probes, hence a reduction in the number of genes leading to
an increase in power of the results (Hackstadt & Hess, 2009). BRB-ArrayTools (Bio-
metric Research Branch) software (https://brb.nci.nih.gov/BRB-ArrayTools/)
was used to implement the filtration.

4.2.2 Normalization and Transformation

Normalization is a process of reducing the variation in gene expression. In other
words, the reduction or removal of experimental variation. Each dataset was thus
quantile-normalized and log2-transformed (Bolstad et al., 2003) under this sub-process.
BRB-ArrayTools (Biometric Research Program) software (https://brb.nci.nih.
gov/BRB-ArrayTools/) was used to implement normalization and log2 transfor-
mation of the datasets.

4.2.3 Datasets Partitioning

Each dataset was partitioned into two parts (the training and validation sets) in
the ratio of 7 to 3, while keeping the distribution of the class attributes in the training
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4.3. Model Training

and validation sets the same as as in the original dataset. The partitioning was done
using createDataPartition function from the R package called caret.
Since we did not have two separate datasets containing the same genes for each
cancer-type, we used the split-validation method, while keeping the distribution of
the class in the training and the validation sets the same as in the original data. We
applied the 10-fold cross-validation method on the training set (which divides the
training into 10 parts (folds), 9 folds for training and 1 fold for testing the models).
The selected model was then validated using the validation set. We used the split-
validation method due to its simplicity and wide application in microarray data
analysis (see Valentini (2002); Wu et al. (2003); Hu et al. (2006); Dwivedi (2016)).

4.2.4 Features (Genes) Selection

Each component of a sample in the training data is called a feature (attribute).
Feature selection is an important part of modelling because selecting the optimal
data and representing it in the right order can affect the end results greatly. We used
the two-sample and paired t-tests, with the 0.001 significance level threshold, for
feature (gene) selection from the training set for building classification models. In
this process the t-test is used to rank the genes based on the p-value comparing the
mean expression values for each gene across the two classification groups. A gene
which attains or exceeds the threshold p-value of 0.001 is considered informative (or
differentially expressed) between the two groups.

4.3 Model Training

The ten-fold cross-validation method was used as the model training and testing
method on each dataset. In a ten-fold cross-validation, a training dataset is equally
divided into 10 partitions (folds), then each 9-fold data is used for “training” and the
remaining one-fold for “testing”. This implies that the training-testing step is iter-
ated 10 times. The overall accuracy of a classification algorithm (method) would be
calculated as the average of the ten accuracy measures from the 10 iterations. Con-
sequantly, the best parameters model are obtained. The training was implemented
using train function from the R package called caret.

4.4 Model Validation

After the training and testing stage, the trained model was applied to the valida-
tion set to yield the method accuracy and other performance measures for compari-
son with the other classification methods. The classification measures are then used
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4.5. Baseline Model

to compare the performance of the classification methods.

4.5 Baseline Model

The baseline model is a model that gives some sense of what we are trying to
achieve, thus conceptually the baseline model represents a very simple model. KNN
with k=1 was selected as the baseline reference model to compare the performance
of the other models against (Stephens & Diesing, 2014; Ganti, 2015).

4.6 Kruskal-Wallis (KW) Test

In the (Konig et al., 2008), they used exact McNemars test for the statistical com-
parison. Also, in the (Kruppa et al., 2014), they used the bootstrap test for comparing
the Brier scores (BS), which is used for evaluating the performance of a probability
estimator, unlike the other mentioned studies. In this thesis, we used the Kruskal-
Wallis (KW) test for comparing the methods.

The Kruskal-Wallis (KW) ANOVA is the non-parametric equivalent of a one-way
ANOVA. It is used when the assumptions of normality in the one-way ANOVA anal-
ysis may not hold. For this reason the KW test, tests the null hypothesis of no differ-
ence between three or more group medians against the alternative hypothesis that a
significant difference exists between at least two medians. The KW test assume the
samples in each group drawn from the population are random and have the same
shape of the distribution (Ostertagová et al., 2014). The procedure for implementing
the KW test are as follows:

1. Arrange the data from all samples in a single series in ascending order.

2. Rank the observations in the combined data in ascending order. In the case of
repeated values assign the averaged rank position to all the repeated observa-
tions.

3. Sum the ranks for each of the different groups.

4. Calculate the value of H

H =
12

N(N + 1)

g∑
i=1

R2
i

ni
− 3(N + 1) ,

where H = Kruskal-Wallis Test statistic, N is the total number of observations in
all samples, Ri is the sum of the ranks assigned to group i, ni is the number of
observations in group i, g is the number of groups.
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4.7. Results

If the calculated value of KW is less than the critical value from the chi square
distribution, then we cannot reject the null hypothesis and conclude that there is no
significant difference between the group medians. However, when the KW statistic
is significant, a multiple comparison approach becomes necessary for further analy-
sis to determine exactly which groups are different.

4.7 Results

The results of microarray gene expression data were obtained using the R pack-
age caret (version 3.4.2). The optimal values of the parameters were determined au-
tomatically by training (tuning) each method on the training set using the train func-
tion, in order to achieve valid results. Thereafter, the model was validated using the
validation set. The performance of the methods were based on seven measures (ac-
curacy, sensitivity, specificity, kappa, ROC, AUC, and BER) as shown in Table 4.16
- 4.24. In addition, the respective ROC curves and the BER plots are given in Fig-
ure 4.4 - 4.21 for each data set. The ROC and the BER provide more insight into the
performance of the methods used.

4.7.1 Training Results of the Methods on the GSE8401

Here, we present training results from the GSE8401 data set for all the methods
in order to show the steps of how the best model was selected and how the selected
model parameters were tuned. For the remaining nine data sets only validation
results are presented. However, full details as those for the GSE8401 data set are
provided in Appendix B.

Summary for the data set from the software for all models;
Number of samples: 59
Number of predictors: 1483
Re-sampling method: Cross-Validation (10 fold)

For all the models, accuracy was used to select the optimal model using the largest
value.
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4.7. Results

k-Nearest Neighbors (KNN)

Table 4.1: Tuning Parameter Results of KNN for GSE8401

k Accuracy Kappa

5 0.9157143 0.8335385
7 0.9157143 0.8335385

9 0.8990476 0.7918718

The parameter k is the number of neighbors ”voting” on the test samples class.
The optimal model is that with k that maximizes the accuracy and kappa coefficient.

Table 4.2: Confusion Matrix of KNN on GSE8401 Validation Set

Reference

Prediction Met Prim

Met 14 1

Prim 1 8

Naive Bayes (NB)

Table 4.3: Tuning Parameter Results of NB for GSE8401

usekernel Accuracy Kappa

FALSE 0.932381 0.8668718
TRUE 0.952381 0.9053333

The final tuning parameter values used for the model were fL = 0, usekernel =
TRUE and adjust = 1 where fL is the factor for Laplace correction, default factor is
0, i.e. no correction, usekernel is logical; if TRUE, density is used to estimate the
densities of metric predictors, and adjust is the bandwidth adjustment. The adjust
parameter is ignored when usekernel = FALSE.

Table 4.4: Confusion Matrix of NB on GSE8401 Validation Set

Reference

Prediction Met Prim

Met 14 1

Prim 1 8
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4.7. Results

Random Forests (RF)

Table 4.5: Tuning Parameter Results of RF for GSE8401

mtry Accuracy Kappa
2 0.9323810 0.8515455

54 0.9323810 0.8503550
1483 0.8990476 0.7848788

The parameter mtry is the number of variables randomly sampled as candidates
at each split. Note that the default values are different for classification (square
root(p) where p is number of variables in the feature (x)) and regression (p/3). Accu-
racy was used to select the optimal model using the largest value.
The final value used for the model was mtry = 2.

Table 4.6: Confusion Matrix of RF on GSE8401 Validation Set

Reference

Prediction Met Prim

Met 15 0

Prim 2 7

Support Vector Machines with Radial Basis Function Kernel (SVM(RK))

Table 4.7: Tuning Parameter Results of SVM(RK) for GSE8401

C Accuracy Kappa

0.25 0.9523810 0.9053333
0.50 0.9690476 0.9386667

1.00 0.9690476 0.9386667

The parameter sigma is the inverse kernel width used by the Gaussian, the
Laplacian, the Bessel and the ANOVA kernel, while C is the trade off parameter
for misclassification of training examples against simplicity of the decision surface.
The final values used for the model were sigma = 0.0004198846 and C = 0.5.
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4.7. Results

Table 4.8: Confusion Matrix of SVM(RK) on GSE8401 Validation Set

Reference

Prediction Met Prim

Met 15 0

Prim 2 7

Support Vector Machines with Linear Kernel (SVM(LK))

Table 4.9: Tuning Parameter Results of SVM(LK) for GSE8401

C Accuracy Kappa
1 0.9690476 0.9386667

The tuning parameter C was held constant at a value of 1, where C it is defined
as above in SVM(RK).

Table 4.10: Confusion Matrix of SVM(LK) on GSE8401 Validation Set

Reference

Prediction Met Prim

Met 15 0

Prim 1 8
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4.7. Results

Support Vector Machines with Polynomial Kernel (SVM(PK))

Table 4.11: Tuning Parameter Results of SVM(PK) for GSE8401

degree scale C Accuracy Kappa
1 0.001 0.25 0.9690476 0.9386667

1 0.001 0.50 0.9690476 0.9386667
1 0.001 1.00 0.9690476 0.9386667
1 0.010 0.25 0.9690476 0.9386667
1 0.010 0.50 0.9690476 0.9386667
1 0.010 1.00 0.9690476 0.9386667
1 0.100 0.25 0.9690476 0.9386667
1 0.100 0.50 0.9690476 0.9386667
1 0.100 1.00 0.9690476 0.9386667
2 0.001 0.25 0.9690476 0.9386667
2 0.001 0.50 0.9690476 0.9386667
2 0.001 1.00 0.9690476 0.9386667
2 0.010 0.25 0.9490476 0.8932121
2 0.010 0.50 0.9490476 0.8932121
2 0.010 1.00 0.9490476 0.8932121
2 0.100 0.25 0.8957143 0.7525195
2 0.100 0.50 0.8623810 0.6775195
2 0.100 1.00 0.8957143 0.7525195
3 0.001 0.25 0.9490476 0.8932121
3 0.001 0.50 0.9490476 0.8932121
3 0.001 1.00 0.9490476 0.8932121
3 0.010 0.25 0.9123810 0.8049004
3 0.010 0.50 0.9123810 0.8049004
3 0.010 1.00 0.9123810 0.8049004
3 0.100 0.25 0.8957143 0.7632338
3 0.100 0.50 0.9123810 0.8049004
3 0.100 1.00 0.9123810 0.8049004

The additional tuning parameters are the degree of the polynomial and the scale
parameter which is c is the scaling parameter of the polynomial and tangent kernel
is a convenient way of normalizing patterns without the need to modify the data
itself. The final values used for the model were degree = 1, scale = 0.001 and C =
0.25.
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4.7. Results

Table 4.12: Confusion Matrix of SVM(PK) on GSE8401 Validation Set

Reference

Prediction Met Prim

Met 15 0

Prim 2 7

Neural Networks (ANN)

Table 4.13: Tuning Parameter Results of ANN for GSE8401

size decay Accuracy Kappa

1 0e+00 0.6438095 0.06666667
1 1e-04 0.7990476 0.53353846
1 1e-01 0.9690476 0.93866667

3 0e+00 0.7890476 0.43866667
3 1e-04 0.8504762 0.69840160
3 1e-01 0.9690476 0.93866667
5 0e+00 0.7004762 0.21666667
5 1e-04 0.9523810 0.90533333
5 1e-01 0.9690476 0.93866667

The parameter size is the number of units in the hidden which can be zero if
there are skip-layer units while decay is the parameter for weight decay with the
default is 0. The final values used for the model were size = 1 and decay = 0.1.

Table 4.14: Confusion Matrix of ANN on GSE8401 Validation Set

Reference

Prediction Met Prim

Met 15 0

Prim 1 8

After the training step for all the models on each data set, validation was done
on the 30% of the data with the results as given in Table 4.15 for GSE8401. Similar
summary tables for the remaining data sets as shown in Table 4.16 - 4.24 without
training detail steps which are all indicated in Appendix B of the thesis.
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4.7. Results

4.7.2 GSE8401:

For this dataset, SVM (with linear kernel) and ANN scored the highest accuracy,
kappa, AUC, and 1-BER values, while KNN and NB had the lowest values in terms
of 1-BER (Table 4.15). The results were validated by the ROC curve (Fig 4.2) and
the plot of kappa against 1-BER (Fig 4.3). Sensitivity was perfect for all the methods
except for KNN and NB which both gave a value of 0.889.

Table 4.15: Summary accuracy measures for all the candidate methods using the GSE8401
data set. Accuracy and Kappa values were obtained for both the validation and
training (in bracket) sets.

Method Accuracy Kappa Sensitivity Specificity AUC BER
KNN 0.917 (0.916) 0.822 (0.834) 0.889 0.933 0.911 0.089
RF 0.917 (0.932) 0.814 (0.852) 1 0.882 0.889 0.059
NB 0.917 (0.952) 0.822 (0.905) 0.889 0.933 0.911 0.089
ANN 0.958 (0.969) 0.909 (0.939) 1 0.938 0.944 0.031

SVM(RK) 0.917 (0.969) 0.814 (0.939) 1 0.882 0.889 0.059
SVM(LK) 0.958 (0.969) 0.909 (0.939) 1 0.938 0.944 0.031
SVM(PK) 0.917 (0.969) 0.814 (0.939) 1 0.882 0.889 0.059

Figure 4.2 – ROC curves for all the methods applied to the GSE8401 dataset.
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4.7. Results

Figure 4.3 – Plot of 1 - BER against kappa for the GSE8401 dataset. The dashed lines rep-
resent the values of the baseline model. The best performing models are to the
top-right.

4.7.3 GSE23988:

For this dataset, SVM with linear kernel, ANN, NB, and RF achieved the highest
accuracy, kappa, AUC and 1-BER values, while SVM (radial and polynomial kernels)
and KNN had a good results (Table 4.16). These results were further validated by
the ROC curve (Fig 4.4) and the plot of kappa against 1-BER (Fig 4.5).

Table 4.16: Summary accuracy measures for all the candidate methods using the GSE23988
data set. Accuracy and Kappa values were obtained for both the validation and
training (in bracket) sets.

Method Accuracy Kappa Sensitivity Specificity AUC BER
KNN 0.824 (0.93) 0.648 (0.855) 0.875 0.778 0.826 0.174
RF 0.882 (0.93) 0.767 (0.855) 1 0.8 0.889 0.1
NB 0.882 (0.955) 0.767 (0.905) 1 0.8 0.889 0.1
ANN 0.882 (0.955) 0.767 (0.905) 1 0.8 0.889 0.1

SVM(RK) 0.824 (0.955) 0.648 (0.905) 0.875 0.778 0.826 0.174
SVM(LK) 0.882 (0.955) 0.767 (0.905) 1 0.8 0.889 0.1
SVM(PK) 0.824 (0.955) 0.648 (0.905) 0.875 0.778 0.826 0.174
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4.7. Results

Figure 4.4 – ROC curves for all the methods applied to the GSE23988 dataset.

Figure 4.5 – Plot of 1 - BER against kappa for the GSE23988 dataset. The dashed lines rep-
resent the values of the baseline model. The best performing models are to the
top-right.

4.7.4 GSE7670:

For this dataset, all the methods had perfect accuracy, kappa, AUC, and 1-BER
values (Table 4.17). These results were further confirmed by the ROC curve (Fig 4.6)
and the plot of kappa against 1-BER plot in (Fig 4.7). Logically it means under this
dataset we cannot differentiate between the different methods.
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4.7. Results

Table 4.17: Summary accuracy measures for all the candidate methods using the GSE7670
data set. Accuracy and Kappa values were obtained for both the validation and
training (in bracket) sets.

Method Accuracy Kappa Sensitivity Specificity AUC BER
KNN 1 (0.975) 1 (0.950) 1 1 1 0
RF 1 (0.975) 1 (0.950) 1 1 1 0
NB 1 (0.950) 1 (0.900) 1 1 1 0
ANN 1 (0.975) 1 (0.950) 1 1 1 0

SVM(RK) 1 (0.950) 1 (0.900) 1 1 1 0
SVM(LK) 1 (0.975) 1 (0.950) 1 1 1 0
SVM(PK) 1 (0.975) 1 (0.950) 1 1 1 0

Figure 4.6 – ROC curves for all the methods applied to the GSE7670 dataset.
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4.7. Results

Figure 4.7 – Plot of 1 - BER against kappa for the GSE7670 dataset. The dashed lines repre-
sent the values of the baseline model.

4.7.5 GSE10072:

For this dataset, all the methods showed perfect accuracy, kappa, AUC, and 1
- BER values (Table 4.18). These results were further validated by the ROC curve
(Fig 4.8) and the plot of kappa against 1-BER (Fig 4.9). However under this dataset
one cannot place any method better than any other.

Table 4.18: Summary accuracy measures for all the candidate methods using the GSE10072
data set. Accuracy and Kappa values were obtained for both the validation and
training (in bracket) sets.

Method Accuracy Kappa Sensitivity Specificity AUC BER
KNN 1 (1) 1 (1) 1 1 1 0
RF 1 (0.98) 1 (0.962) 1 1 1 0
NB 1 (0.98) 1 (0.962) 1 1 1 0
ANN 1 (1) 1 (1) 1 1 1 0

SVM(RK) 1 (1) 1 (1) 1 1 1 0
SVM(LK) 1 (1) 1 (1) 1 1 1 0
SVM(PK) 1 (1) 1 (1) 1 1 1 0
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4.7. Results

Figure 4.8 – ROC curves for all the methods applied to the GSE10072 dataset.

Figure 4.9 – Plot of 1 - BER against kappa for the GSE10072 dataset. The dashed lines repre-
sent the values of the baseline model.

4.7.6 GSE10245:

For this dataset, SVM (with radial, polynomial, and linear kernels), RF, and NB
achieved perfect accuracy, kappa, AUC, and 1-BER values, while ANN and KNN
had high values (Table 4.19). These results were further supported by the ROC curve
(Fig 4.10) and the plot of kappa against 1-BER (Fig 4.11).

39



4.7. Results

Table 4.19: Summary accuracy measures for all the candidate methods using the GSE10245
data set. Accuracy and Kappa values were obtained for both the validation and
training (in bracket) sets.

Method Accuracy Kappa Sensitivity Specificity AUC BER
KNN 0.941 (0.930) 0.850 (0.805) 1 0.923 0.9 0.038
RF 1 (0.980) 1 (0.955) 1 1 1 0
NB 1(0.955) 1 (0.905) 1 1 1 0
ANN 0.941 (0.980) 0.850 (0.955) 1 0.923 0.9 0.038

SVM(RK) 1 (0.980) 1 (0.955) 1 1 1 0
SVM(LK) 1 (0.980) 1 (0.955) 1 1 1 0
SVM(PK) 1 (0.980) 1 (0.955) 1 1 1 0

Figure 4.10 – ROC curves for all the methods applied to the GSE10245 dataset.
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4.7. Results

Figure 4.11 – Plot of 1 - BER against kappa for the GSE10245 dataset. The dashed lines rep-
resent the values of the baseline model.

4.7.7 GSE25136:

For this dataset, ANN and KNN methods achieved the highest accuracy, kappa,
AUC, and 1-BER values, while NB had the lowest values (Table 4.20). The results
were supported by the ROC curve (see Fig 4.12) and the plot of kappa against 1-BER
(Fig 4.13).

Table 4.20: Summary accuracy measures for all the candidate methods using the GSE25136
data set. Accuracy and Kappa values were obtained for both the validation and
training (in bracket) sets.

Method Accuracy Kappa Sensitivity Specificity AUC BER
KNN 0.696 (0.960) 0.388 (0.916) 0.700 0.692 0.693 0.304
RF 0.652 (0.930) 0.298 (0.862) 0.667 0.643 0.648 0.345
NB 0.565 (0.947) 0.129 (0.895) 0.546 0.583 0.564 0.436
ANN 0.696 (0.910) 0.388 (0.816) 0.700 0.692 0.693 0.304

SVM(RK) 0.609 (0.927) 0.213 (0.850) 0.600 0.615 0.606 0.392
SVM(LK) 0.609 (0.927) 0.219 (0.842) 0.583 0.636 0.610 0.390
SVM(PK) 0.652 (0.927) 0.303 (0.850) 0.636 0.667 0.652 0.348
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4.7. Results

Figure 4.12 – ROC curves for all the methods applied to the GSE25136 dataset.

Figure 4.13 – Plot of 1 - BER against kappa for the GSE25136 dataset. The dashed lines rep-
resent the values of the baseline model. The best performing models are to the
top-right.

4.7.8 GSE35896:

For this dataset, the NB achieved the highest accuracy, kappa, AUC, and 1-BER
values, while SVM (with linear kernel) had the lowest values (Table 4.21). These
were validated by the ROC curve (Fig 4.14) and the plot of kappa against 1-BER
(Fig 4.15).
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4.7. Results

Table 4.21: Summary accuracy measures for all the candidate methods using the GSE35896
data set. Accuracy and Kappa values were obtained for both the validation and
training (in bracket) sets.

Method Accuracy Kappa Sensitivity Specificity AUC BER
KNN 0.706 (0.935) 0.414 (0.867) 0.667 0.750 0.708 0.292
RF 0.765 (0.960) 0.514 (0.929) 1 0.692 0.750 0.154
NB 0.882 (0.980) 0.764 (0.962) 0.875 0.889 0.882 0.118
ANN 0.706 (0.960) 0.414 (0.917) 0.667 0.750 0.708 0.292

SVM(RK) 0.824 (0.980) 0.643 (0.962) 0.857 0.800 0.819 0.171
SVM(LK) 0.647 (0.955) 0.292 (0.912) 0.625 0.667 0.646 0.354
SVM(PK) 0.824 (1) 0.643 (1) 0.857 0.800 0.819 0.171

Figure 4.14 – ROC curves for all the methods applied to the GSE35896 dataset.
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4.7. Results

Figure 4.15 – Plot of 1 - BER against kappa for the GSE35896 dataset. The dashed lines rep-
resent the values of the baseline model. The best performing models are to the
top-right.

4.7.9 GSE103091:

For this dataset, the RF achieved the highest accuracy, and 1-BER values. More-
over, NB had the highest kappa, AUC, and 1-BER, while KNN had lowest values
in terms of kappa, AUC, and 1-BER values. Besides, SVM (with linear and polyno-
mial kernels) performed nearly the same as KNN (Table 4.22). These results were
validated by the ROC curve (Fig 4.16) and the plot of kappa against 1-BER (Fig 4.17).

Table 4.22: Summary accuracy measures for all the candidate methods using the
GSE103091 data set. Accuracy and Kappa values were obtained for both the
validation and training (in bracket) sets.

Method Accuracy Kappa Sensitivity Specificity AUC BER
KNN 0.677 (0.903) 0.025 (0.701) 0.333 0.714 0.510 0.476
RF 0.710 (0.891) 0.157 (0.690) 0.500 0.741 0.566 0.380
NB 0.677 (0.867) 0.162 (0.660) 0.429 0.750 0.576 0.411
ANN 0.677 (0.889) 0.162 (0.749) 0.429 0.750 0.576 0.536

SVM(RK) 0.677 (0.892) 0.099 (0.706) 0.400 0.731 0.543 0.435
SVM(LK) 0.645 (0.892) 0.045 (0.714) 0.333 0.720 0.520 0.473
SVM(PK) 0.645 (0.917) 0.045 (0.771) 0.333 0.720 0.520 0.473
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4.7. Results

Figure 4.16 – ROC curves for all the methods applied to the GSE103091 dataset.

Figure 4.17 – Plot of 1 - BER against kappa for the GSE103091 dataset. The dashed lines
represent the values of the baseline model. The best performing models are to
the top-right.

4.7.10 GSE5851:

For this dataset, KNN and NB had the highest accuracy, kappa, AUC, and 1-BER
values, followed by SVM (with radial kernel) and RF, which performed nearly the
same. SVM (with linear kernel) had the lowest values (Table 4.23). The results were
further validated by the ROC curve (Fig 4.18) and the plot of kappa against 1-BER
(Fig 4.19).
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Table 4.23: Summary accuracy measures for all the candidate methods using the GSE5851
data set. Accuracy and Kappa values were obtained for both the validation and
training (in bracket) sets.

Method Accuracy Kappa Sensitivity Specificity AUC BER
KNN 0.700 (0.900) 0.341 (0.787) 0.769 0.571 0.670 0.330
RF 0.700 (0.870) 0.241 (0.632) 0.706 0.667 0.604 0.314
NB 0.700 (0.895) 0.341 (0.732) 0.769 0.571 0.670 0.330
ANN 0.600 (0.915) 0.059 (0.821) 0.667 0.400 0.527 0.467

SVM(RK) 0.700 (0.895) 0.294 (0.732) 0.733 0.600 0.637 0.333
SVM(LK) 0.550 (0.870) -0.023 (0.699) 0.643 0.333 0.489 0.512
SVM(PK) 0.650 (0.895) 0.205 (0.732) 0.714 0.500 0.599 0.393

Figure 4.18 – ROC curves for all the methods applied to the GSE5851 dataset.
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4.7. Results

Figure 4.19 – Plot of 1 - BER against kappa for the GSE5851 dataset. The dashed lines repre-
sent the values of the baseline model. The best performing models are to the
top-right.

4.7.11 GSE32962:

For this dataset, SVM (with linear kernel) and NB achieved the highest accuracy,
kappa, AUC, and 1-BER values, while RF had the lowest values (Table 4.24). Besides,
SVM (with polynomial kernel), ANN, and KNN had the same performance, and
SVM (with radial kernel) had a similar performance to RF. These results were further
supported by the ROC curve (Fig 4.20) and the plot of kappa against 1-BER (Fig 4.21).

Table 4.24: Summary accuracy measures for all the candidate methods using the GSE32962
data set. Accuracy and Kappa values were obtained for both the validation and
training (in bracket) sets.

Method Accuracy Kappa Sensitivity Specificity AUC BER
KNN 0.667 (0.950) 0.314 (0.900) 0.600 0.714 0.657 0.343
RF 0.583 (1) 0.167 (1) 0.500 0.667 0.586 0.417
NB 0.667 (1) 0.351 (1) 0.571 0.800 0.686 0.314
ANN 0.667 (0.950) 0.314 (0.900) 0.600 0.714 0.657 0.343

SVM(RK) 0.583 (1) 0.211 (1) 0.500 0.750 0.614 0.375
SVM(LK) 0.667 (1) 0.351 (1) 0.571 0.800 0.686 0.314
SVM(PK) 0.667 (1) 0.314 (1) 0.600 0.714 0.657 0.343
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4.7. Results

Figure 4.20 – ROC curves for all the methods applied to the GSE32962 dataset.

Figure 4.21 – Plot of 1 - BER against kappa for the GSE32962 dataset. The dashed lines rep-
resent the values of the baseline model. The best performing models are to the
top-right.
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Table 4.25: Average accuracies of the seven classification methods based on the ten valida-
tion datasets.

Dataset SVM(RK) SVM(LK) SVM(PK) ANN RF NB KNN
GSE23988 0.824 0.882 0.824 0.882 0.882 0.882 0.824
GSE7670 1 1 1 1 1 1 1
GSE8401 0.917 0.958 0.917 0.958 0.917 0.917 0.917
GSE10072 1 1 1 1 1 1 1
GSE10245 1 1 1 0.941 1 1 0.941
GSE25136 0.609 0.609 0.652 0.696 0.652 0.565 0.696
GSE35896 0.824 0.647 0.824 0.706 0.765 0.882 0.706
GSE103091 0.677 0.645 0.645 0.677 0.710 0.677 0.677
GSE5851 0.700 0.550 0.650 0.600 0.700 0.700 0.700
GSE32962 0.583 0.667 0.667 0.667 0.583 0.667 0.667

Average 0.813 0.796 0.818 0.813 0.821 0.829 0.813
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Chapter 5

Discussion and Conclusion

Different types of cancer are increasingly becoming prevalent and continue to
affects millions of people worldwide. Due to the alarming increase of cancer inci-
dence, both in developed and developing countries, detection and classification in
the early stages of the disease are very important for the diagnosis, treatment, and
containment of the disease. Microarray technology allows the study of thousand
of genes simultaneously, unlike traditional molecular biology tools, which only al-
low the study of single genes at a time. The use of the high-dimensional microarray
gene expression data has necessitated the development of powerful statistical classi-
fication methods such as support vector machines (SVM), artificial neural networks
(ANN), random forests (RF), and linear discriminant analysis (LDA), naive bayes
(NB), k-nearest neighbor (KNN) among others.

In this work, we compared the performance of seven of such methods (SVM (lin-
ear kernel), SVM(polynomial kernel), SVM(radial basis kernel), ANN, RF, NB, and
KNN), using seven performance measures (accuracy, kappa, sensitivity, specificity,
area under the curve (AUC), receiver operating curve (ROC), balanced error rate
(BER)). We controlled for platform effect by using datasets from a single platform.
Novianti et al. (2014) showed that applying different methods to datasets from dif-
ferent platforms may yield misleading results, due to confounding. We used KNN
with k = 1 as the baseline model in the comparisons (Stephens & Diesing, 2014).
We also used ten datasets from the top five common cancers in men and women
as reported in Torre et al. (2015), as opposed to previous studies that compared the
methods based on one dataset from a particular cancer type as in Delen et al. (2005);
Dwivedi (2016); Valentini (2002); Haury et al. (2011), and Abusamra (2013).

In seven of the ten datasets, NB performed the best, followed by SVM(LK), ANN,
and RF (see Table 4.16, 4.17, 4.18, 4.19, 4.21, 4.23, and 4.24), while in the remaining
datasets, NB had nearly the same or equal performance to SVM, ANN, RF and KNN.
For one dataset, RF had the best performance in terms of accuracy, sensitivity, and

50



Discussion and Conclusion

BER (Table 4.22).
To further validate the statistical results, we plotted 1-BER against kappa for each

of the datasets, as in Stephens & Diesing (2014). The best performing methods ap-
peared in the top right quadrant (top right corner). Methods in the bottom right
corner of the plot were good in terms of the kappa coefficient but poor in terms of
1-BER. Methods to the top left corner were good with respect to 1-BER but poor in
terms of the kappa coefficients. Methods in the bottom left corner are poor both in
terms of the kappa coefficient and 1-BER. All methods performed the same for the
GSE7670 and GSE10072 datasets, which contained paired samples. On average,
the top three methods were NB, RF, and SVM(PK), as shown in Table 4.25. However,
there were no statistically significant differences in accuracies among the methods
(Kruskal-Wallis test statistic = 0.60229, p = 0.9964), despite the visual and absolute
value differences in performance.

Thus, our approach further validates the superiority of NB in cancer classifica-
tion and could help in the identification of robust methods in similar high dimen-
sional settings. The success of NB as a classifier is attributed to its simplicity to
implement and the fact that it requires fewer training samples to achieve a good
accuracy. NB assumes that the attributes are conditionally independent given the
class (see Kelemen et al. (2003); Ahmed et al. (2017)). Future research should extend
our approaches to multiple classification problems, using other “omics” datasets. It
would also be interesting to compare the performance of the nearest shrunken cen-
troids method discussed in Tibshirani et al. (2003) to NB, which is currently missing
in the literature. Moreover, our ongoing research efforts are geared toward the en-
semble methods, in which a set of the classifiers are combined to produce improved
results.

Our study was limited by the type of class attribute arising from the type of
medical question of interest in the dataset (e.g. tumor type, prognostic or treatment
response/status) and class size imbalance. Our class attributes consisted of prognos-
tic response (metastasis status and recurrence status), estrogen receptor, tumor and
tissue type. Moreover, the handling of the missing data plays role in the methods
performance. With the exception of the datasets with paired samples, the positive
and negative class size were unbalanced (Table 2.1). Some of these limitations have
been encountered in previous studies as well (see Novianti et al. (2014)). The current
analysis focused on data where the outcome variable is dichotomous but in reality
data where the outcome variable is polychotomous are ubiquitously encountered.
Thus, extension of the research to methods that can deal with such more informa-
tive high dimensional type of data sets is necessary.
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Appendix A

In appendix A we provide the R code for all the methods.

A.1 Support Vector Machines (SVM) R Code

# To speedup the performance and utilize all the computer processor.
library(doParallel)
nocores = detectCores() - 1
cl = makeCluster(nocores)
registerDoParallel(cl)

#Training SVM Models
library(caret)
library(dplyr) #(Used by caret)
library(kernlab) #(support vector machines)
library(pROC) #(plot the ROC curves)

set.seed(1)
#Setup for cross validation
ctrl = trainControl( method=”CV”,

number = 10,
classProbs=TRUE,
savePredictions = TRUE,
allowParallel = TRUE,
)

#Train and Tune the SVM Radial
svmRadial.tune = train( x= trainX,

y= trainData$CLASS,
method = ”svmRadial”, # Radial kernel
#tuneLength = 5, # 5 values of the cost function
metric=”Accuracy”,
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trControl=ctrl
)

svmRadial.tune
set.seed(1)
svmRadial.pred = predict(svmRadial.tune, testData[,-which(names(testData) %in%

c(”CLASS”))])
svmRadial.tab = table(pred = svmRadial.pred, true = testData[,c(”CLASS”)])
svmRadial.Conf = confusionMatrix(testData[,c(”CLASS”)],svmRadial.pred,positive
= levels(testData[,c(”CLASS”)])[2])
svmRadial.Conf

#Linear Kernel
set.seed(1)
#Train and Tune the SVM Linear
svmLinear.tune = train( x= trainX,

y= trainData$CLASS,
method = ”svmLinear”,
#tuneLength = 5,
metric=”Accuracy”,
trControl=ctrl
)

svmLinear.tune
svmLinear.pred = predict(svmLinear.tune, testData[,-which(names(testData) %in%

c(”CLASS”))])
svmLinear.tab = table(pred = svmLinear.pred, true = testData[,c(”CLASS”)])
svmLinear.Conf = confusionMatrix(testData[,c(”CLASS”)],svmLinear.pred,positive
= levels(testData[,c(”CLASS”)])[2])
svmLinear.Conf

#Polynomial Kernel
set.seed(1)
#Train and Tune the SVM Polynomial
svmPoly.tune = train( x= trainX,

y= trainData$CLASS,
method = ”svmPoly”,
#tuneLength = 5,
metric=”Accuracy”,
trControl=ctrl
)
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svmPoly.tune
svmPoly.pred = predict(svmPoly.tune, testData[,-which(names(testData) %in% c(”CLASS”))])
svmPoly.tab = table(pred = svmPoly.pred, true = testData[,c(”CLASS”)])
svmPoly.Conf = confusionMatrix(testData[,c(”CLASS”)],svmPoly.pred,positive = lev-
els(testData[,c(”CLASS”)])[2])
svmPoly.Conf

A.2 Artificial Neural Networks (ANN) R Code

library(doParallel)
nocores = detectCores() - 1
cl = makeCluster(nocores)
registerDoParallel(cl)

library(caret)
library(dplyr) # Used by caret
library(nnet) # ANN
library(pROC) # plot the ROC curves

set.seed(1)

# Setup for cross validation
ctrl = trainControl( method= ”CV”,

number = 10,
classProbs=TRUE,
allowParallel = TRUE,
savePredictions = TRUE
)

set.seed(1)

ANNModel.tune = train( x= trainX,
y= trainData$CLASS,
method = ”nnet”, # Artificial neural networks
#tuneLength = 5,
trace = F,
trControl=ctrl,
metric=”Accuracy”,
MaxNWts =13 * (13 *(ncol(trainX) + 1) + 13 + 1)
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)

ANNModel.tune
plot(ANNModel.tune)
set.seed(1)
ANNModel.pred = predict(ANNModel.tune, testData[,-which(names(testData) AN-
NModel.tab = table(pred = ANNModel.pred, true = testData[,c(”CLASS”)])
ANNModel.Conf = confusionMatrix(testData[,c(”CLASS”)],ANNModel.pred,positive
= levels(testData[,c(”CLASS”)])[2])
ANNModel.Conf

A.3 Naive Bayes (NB) R Code

library(doParallel)
nocores = detectCores() - 1
cl = makeCluster(nocores)
registerDoParallel(cl)

library(caret)
library(dplyr) # Used by caret
library(pROC) # plot the ROC curves
library(naivebayes) # naive Bayes method

set.seed(1)

# Setup for cross validation
ctrl = trainControl( method= ”CV”, # cross validation

number= 10,
savePredictions = TRUE,
classProbs=TRUE,
allowParallel = TRUE
)

set.seed(1)

NBModel.tune = train( x= trainX,
y= trainData$CLASS,
method = ”naive bayes”, # Naive Bayes
#tuneLength = 5,
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metric=”Accuracy”,
trControl=ctrl
)

NBModel.tune
print(NBModel.tune)
set.seed(1)
NBModel.pred = predict(NBModel.tune, testData[,-which(names(testData) %in% c(”CLASS”))])
NBModel.tab = table(pred = NBModel.pred, true = testData[,c(”CLASS”)])
NBModel.Conf = confusionMatrix(testData[,c(”CLASS”)],NBModel.pred,positive =
levels(testData[,c(”CLASS”)])[2])

NBModel.Conf

A.4 Random Forests (RF) R Code

library(doParallel)
nocores = detectCores() - 1
cl = makeCluster(nocores)
registerDoParallel(cl)

library(caret)
library(caTools)
library(dplyr) # Used by caret
library(pROC) # plot the ROC curves
library(randomForest)
library(mlbench)

set.seed(1)
# Setup for cross validation

ctrl = trainControl( method= ”CV”,
number= 10,
savePredictions = TRUE,
classProbs=TRUE,
allowParallel = TRUE
)
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RFModel.tune = train( x= trainX,
y= trainData$CLASS,
method = ”rf”, # Random Forests
#tuneLength = 5,
metric=”Accuracy”,
trControl=ctrl
)

RFModel.tune
plot(RFModel.tune)
set.seed(1)
RFModel.pred = predict(RFModel.tune, testData[,-which(names(testData) %in% c(”CLASS”))])
RFModel.tab = table(pred = RFModel.pred, true = testData[,c(”CLASS”)])
RFModel.Conf = confusionMatrix(testData[,c(”CLASS”)],RFModel.pred,positive =
levels(testData[,c(”CLASS”)])[2])

RFModel.Conf

A.5 k-nearest neighbor (KNN) R Code

library(doParallel)
nocores = detectCores() - 1
cl = makeCluster(nocores)
registerDoParallel(cl)

library(caret)
library(pROC)

set.seed(1)
ctrl = trainControl( method= ”CV”,

number= 10,
savePredictions = TRUE,
classProbs=TRUE,
allowParallel = TRUE,
)

KNNModel.tune = train( x= trainX,
y= trainData$CLASS,
method = ”knn”, # k-Nearest Neighbor
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#tuneLength = 5,
metric=”Accuracy”,
trControl=ctrl
)

KNNModel.tune
plot(KNNModel.tune)
set.seed(1)
KNNModel.pred = predict(KNNModel.tune, testData[,-which(names(testData) %in%

c(”CLASS”))])
KNNModel.tab = table(pred = KNNModel.pred, true = testData[,c(”CLASS”)])
KNNModel.Conf = confusionMatrix(testData[,c(”CLASS”)],KNNModel.pred,positive
= levels(testData[,c(”CLASS”)])[2])

KNNModel.Conf

A.6 The ROC Curves R Code

library(ROCR)
ROCpred = prediction( as.numeric(ANNModel.pred) , as.numeric(testData[,c(”CLASS”)]))
ROCperf = performance(ROCpred,”tpr”,”fpr”)
AUC = performance(ROCpred,measure = ”auc”)
AUCval = AUC@y.values[[1]]
AUCval
plot(ROCperf,col=”DarkGray”, lwd=4, add = TRUE)
legend(”right”, legend = c(”KNN”, ”RF”, ”NB”, ”ANN”, ”SVM (RK)”, ”SVM (LK)”,
”SVM (PK)”), col = c(”Yellow”, ”Green”, ”DarkMagenta”, ”DarkGray”, ”Blue”, ”Or-
ange”, ”Red”), lty = 1,lwd = 3,bty = ”n”)
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Here we present additional information about the tuning process and the results of
the training phase to select the optimal parameters model. Moreover, we provided
the confusion matrix on the validation set of each dataset see tables (B.2 - B.126).

B.1 Training (Tuning) Results of the methods on the GSE23988

44 samples
579 predictors
2 classes: ’ERneg’, ’ERpos’

Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 39, 39, 40, 39, 40, 40, ...
Resampling results across tuning parameters:

B.1.1 k-Nearest Neighbors (KNN)

Table B.1: Tuning Parameter Results of KNN for GSE23988

k Accuracy Kappa

5 0.93 0.8545455
7 0.93 0.8545455
9 0.93 0.8545455

The final value used for the model was k = 9.
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Table B.2: Confusion Matrix of KNN on GSE23988 Validation Set

Reference

Prediction ERneg ERpos

ERneg 7 1

ERpos 2 7

B.1.2 Naive Bayes (NB)

Table B.3: Tuning Parameter Results of NB for GSE23988

usekernel Accuracy Kappa
FALSE 0.955 0.9045455

TRUE 0.955 0.9045455

The final values used for the model were laplace = 0, usekernel = FALSE and adjust
= 1.

Table B.4: Confusion Matrix of NB on GSE23988 Validation Set

Reference

Prediction ERneg ERpos

ERneg 8 0

ERpos 2 7

B.1.3 Random Forests (RF)

Table B.5: Tuning Parameter Results of RF for GSE23988

mtry Accuracy Kappa
2 0.93 0.8545455

34 0.93 0.8545455
578 0.93 0.8545455

The final value used for the model was mtry = 2.
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Table B.6: Confusion Matrix of RF on GSE23988 Validation Set

Reference

Prediction ERneg ERpos

ERneg 8 0

ERpos 2 7

B.1.4 Support Vector Machines with Radial Basis Function Kernel (SVM(RK))

Table B.7: Tuning Parameter Results of SVM(RK) for GSE23988

C Accuracy Kappa
0.25 0.955 0.9045455

0.50 0.955 0.9045455
1.00 0.955 0.9045455

The final values used for the model were sigma = 0.001065516 and C = 0.25.

Table B.8: Confusion Matrix of SVM(RK) on GSE23988 Validation Set

Reference

Prediction ERneg ERpos

ERneg 7 1

ERpos 2 7

B.1.5 Support Vector Machines with Linear Kernel (SVM(LK))

Table B.9: Tuning Parameter Results of SVM(LK) for GSE23988

C Accuracy Kappa
1 0.955 0.9045455

Tuning parameter C was held constant at a value of 1

Table B.10: Confusion Matrix of SVM(LK) on GSE23988 Validation Set

Reference

Prediction ERneg ERpos

ERneg 8 0

ERpos 2 7
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B.1.6 Support Vector Machines with Polynomial Kernel (SVM(PK))

Table B.11: Tuning Parameter Results of SVM(PK) for GSE23988

degree scale C Accuracy Kappa
1 0.001 0.25 0.955 0.9045455

1 0.001 0.50 0.955 0.9045455
1 0.001 1.00 0.955 0.9045455
1 0.010 0.25 0.955 0.9045455
1 0.010 0.50 0.955 0.9045455
1 0.010 1.00 0.955 0.9045455
1 0.100 0.25 0.955 0.9045455
1 0.100 0.50 0.955 0.9045455
1 0.100 1.00 0.955 0.9045455
2 0.001 0.25 0.955 0.9045455
2 0.001 0.50 0.955 0.9045455
2 0.001 1.00 0.955 0.9045455
2 0.010 0.25 0.955 0.9045455
2 0.010 0.50 0.955 0.9045455
2 0.010 1.00 0.955 0.9045455
2 0.100 0.25 0.905 0.8045455
2 0.100 0.50 0.930 0.8545455
2 0.100 1.00 0.925 0.8500000
3 0.001 0.25 0.955 0.9045455
3 0.001 0.50 0.955 0.9045455
3 0.001 1.00 0.955 0.9045455
3 0.010 0.25 0.930 0.8545455
3 0.010 0.50 0.930 0.8545455
3 0.010 1.00 0.955 0.9045455
3 0.100 0.25 0.925 0.8500000
3 0.100 0.50 0.925 0.8500000
3 0.100 1.00 0.925 0.8500000

The final values used for the model were degree = 1, scale = 0.001 and C = 0.25.
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Table B.12: Confusion Matrix of SVM(PK) on GSE23988 Validation Set

Reference

Prediction ERneg ERpos

REneg 7 1

ERpos 2 7

B.1.7 Neural Networks (ANN)

Table B.13: Tuning Parameter Results of ANN for GSE23988

size decay Accuracy Kappa

1 0e+00 0.560 0.1000000
1 1e-04 0.865 0.7500000
1 1e-01 0.955 0.9045455

3 0e+00 0.840 0.7000000
3 1e-04 0.880 0.7545455
3 1e-01 0.955 0.9045455
5 0e+00 0.685 0.3500000
5 1e-04 0.955 0.9045455
5 1e-01 0.955 0.9045455

The final values used for the model were size = 1 and decay = 0.1.

Table B.14: Confusion Matrix of ANN on GSE23988 Validation Set

Reference

Prediction ERneg ERpos

ERneg 8 0

ERpos 2 7

B.2 Training (Tuning) Results of the methods on the GSE7670

38 samples
1450 predictors
2 classes: ’Normal’, ’Tumor’

Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 35, 34, 34, 34, 34, 34, ...
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Resampling results across tuning parameters:

B.2.1 k-Nearest Neighbors (KNN)

Table B.15: Tuning Parameter Results of KNN for GSE7670

k Accuracy Kappa

5 0.975 0.95
7 0.975 0.95

9 0.975 0.95

The final value used for the model was k = 9.

Table B.16: Confusion Matrix of KNN on GSE7670 Validation Set

Reference

Prediction Normal Tumor

Normal 8 0

Tumor 0 8

B.2.2 Naive Bayes (NB)

Table B.17: Tuning Parameter Results of NB for GSE7670

usekernel Accuracy Kappa
FALSE 0.95 0.9

TRUE 0.95 0.9

The final values used for the model were fL = 0, usekernel = FALSE and adjust = 1.

Table B.18: Confusion Matrix of NB on GSE7670 Validation Set

Reference

Prediction Normal Tumor

Normal 8 0

Tumor 0 8
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B.2.3 Random Forests (RF)

Table B.19: Tuning Parameter Results of RF for GSE7670

mtry Accuracy Kappa
2 0.975 0.95

53 0.950 0.90
1449 0.950 0.90

The final value used for the model was mtry = 2.

Table B.20: Confusion Matrix of RF on GSE7670 Validation Set

Reference

Prediction Normal Tumor

Normal 8 0

Tumor 0 8

B.2.4 Support Vector Machines with Radial Basis Function Kernel (SVM(RK))

Table B.21: Tuning Parameter Results of SVM(RK) for GSE7670

C Accuracy Kappa
0.25 0.95 0.9

0.50 0.95 0.9
1.00 0.95 0.9

The final values used for the model were sigma = 0.0005699463 and C = 0.25.

Table B.22: Confusion Matrix of SVM(RK) on GSE7670 Validation Set

Reference

Prediction Normal Tumor

Normal 8 0

Tumor 0 8
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B.2.5 Support Vector Machines with Linear Kernel (SVM(LK))

Table B.23: Tuning Parameter Results of SVM(LK) for GSE7670

C Accuracy Kappa
1 0.975 0.95

Tuning parameter C was held constant at a value of 1

Table B.24: Confusion Matrix of SVM(LK) on GSE7670 Validation Set

Reference

Prediction Normal Tumor

Normal 8 0

Tumor 0 8
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B.2.6 Support Vector Machines with Polynomial Kernel (SVM(PK))

Table B.25: Tuning Parameter Results of SVM(PK) for GSE7670

degree scale C Accuracy Kappa
1 0.001 0.25 0.9750000 0.95

1 0.001 0.50 0.9750000 0.95
1 0.001 1.00 0.9750000 0.95
1 0.010 0.25 0.9750000 0.95
1 0.010 0.50 0.9750000 0.95
1 0.010 1.00 0.9750000 0.95
1 0.100 0.25 0.9750000 0.95
1 0.100 0.50 0.9750000 0.95
1 0.100 1.00 0.9750000 0.95
2 0.001 0.25 0.9750000 0.95
2 0.001 0.50 0.9750000 0.95
2 0.001 1.00 0.9750000 0.95
2 0.010 0.25 0.9500000 0.90
2 0.010 0.50 0.9750000 0.95
2 0.010 1.00 0.9500000 0.90
2 0.100 0.25 0.1833333 -0.63
2 0.100 0.50 0.1833333 -0.63
2 0.100 1.00 0.2166667 -0.58
3 0.001 0.25 0.9750000 0.95
3 0.001 0.50 0.9750000 0.95
3 0.001 1.00 0.9750000 0.95
3 0.010 0.25 0.9750000 0.95
3 0.010 0.50 0.9500000 0.90
3 0.010 1.00 0.9750000 0.95
3 0.100 0.25 0.9500000 0.90
3 0.100 0.50 0.9750000 0.95
3 0.100 1.00 0.9500000 0.90

The final values used for the model were degree = 1, scale = 0.001 and C = 0.25.
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Table B.26: Confusion Matrix of SVM(PK) on GSE7670 Validation Set

Reference

Prediction Normal Tumor

Normal 8 0

Tumor 0 8

B.2.7 Neural Networks (ANN)

Table B.27: Tuning Parameter Results of ANN for GSE7670

size decay Accuracy Kappa

1 0e+00 0.6083333 0.25
1 1e-04 0.6333333 0.30
1 1e-01 0.9750000 0.95

3 0e+00 0.5166667 0.10
3 1e-04 0.9500000 0.90
3 1e-01 0.9750000 0.95
5 0e+00 0.5666667 0.20
5 1e-04 0.9000000 0.80
5 1e-01 0.9750000 0.95

The final values used for the model were size = 1 and decay = 0.1.

Table B.28: Confusion Matrix of ANN on GSE7670 Validation Set

Reference

Prediction Normal Tumor

Normal 8 0

Tumor 0 8

B.3 Training (Tuning) Results of the methods on the GSE10072

46 samples
3002 predictors
2 classes: ’Normal’, ’Tumor’

Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 41, 42, 41, 40, 41, 42, ...
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Resampling results across tuning parameters:

B.3.1 k-Nearest Neighbors (KNN)

Table B.29: Tuning Parameter Results of KNN for GSE10072

k Accuracy Kappa

5 1 1
7 1 1
9 1 1

The final value used for the model was k = 9.

Table B.30: Confusion Matrix of KNN on GSE10072 Validation Set

Reference

Prediction Normal Tumor

Normal 10 0

Tumor 0 10

B.3.2 Naive Bayes (NB)

Table B.31: Tuning Parameter Results of NB for GSE10072

usekernel Accuracy Kappa
FALSE 0.98 0.9615385

TRUE 0.98 0.9615385

The final values used for the model were fL = 0, usekernel = FALSE and adjust = 1.

Table B.32: Confusion Matrix of NB on GSE10072 Validation Set

Reference

Prediction Normal Tumor

Normal 10 0

Tumor 0 10
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B.3.3 Random Forests (RF)

Table B.33: Tuning Parameter Results of RF for GSE10072

mtry Accuracy Kappa
2 0.98 0.9615385

77 0.98 0.9615385
3002 0.98 0.9615385

The final value used for the model was mtry = 2.

Table B.34: Confusion Matrix of on GSE10072 Validation Set

Reference

Prediction Normal Tumor

Normal 10 0

Tumor 0 10

B.3.4 Support Vector Machines with Radial Basis Function Kernel (SVM(RK))

Table B.35: Tuning Parameter Results of SVM(RK) for GSE10072

C Accuracy Kappa

0.25 0.98 0.9615385
0.50 0.98 0.9615385
1.00 1.00 1.0000000

The final values used for the model were sigma = 0.0002970603 and C = 1.

Table B.36: Confusion Matrix SVM(RK) on GSE10072 Validation Set

Reference

Prediction Normal Tumor

Normal 10 0

Tumor 0 10
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B.3.5 Support Vector Machines with Linear Kernel (SVM(LK))

Table B.37: Tuning Parameter Results of SVM(LK) for GSE10072

C Accuracy Kappa
1 1 1

Tuning parameter C was held constant at a value of 1

Table B.38: Confusion Matrix of SVM(LK) on GSE10072 Validation Set

Reference

Prediction Normal Tumor

Normal 10 0

Tumor 0 10
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B.3.6 Support Vector Machines with Polynomial Kernel (SVM(PK))

Table B.39: Tuning Parameter Results of SVM(PK) for GSE10072

degree scale C Accuracy Kappa
1 0.001 0.25 1.0000000 1.0000000

1 0.001 0.50 1.0000000 1.0000000
1 0.001 1.00 1.0000000 1.0000000
1 0.010 0.25 1.0000000 1.0000000
1 0.010 0.50 1.0000000 1.0000000
1 0.010 1.00 1.0000000 1.0000000
1 0.100 0.25 1.0000000 1.0000000
1 0.100 0.50 1.0000000 1.0000000
1 0.100 1.00 1.0000000 1.0000000
2 0.001 0.25 1.0000000 1.0000000
2 0.001 0.50 1.0000000 1.0000000
2 0.001 1.00 1.0000000 1.0000000
2 0.010 0.25 0.9800000 0.9615385
2 0.010 0.50 0.9800000 0.9615385
2 0.010 1.00 0.9800000 0.9615385
2 0.100 0.25 0.1866667 -0.6279387
2 0.100 0.50 0.1500000 -0.7125541
2 0.100 1.00 0.1666667 -0.6792208
3 0.001 0.25 0.9800000 0.9615385
3 0.001 0.50 0.9800000 0.9615385
3 0.001 1.00 0.9800000 0.9615385
3 0.010 0.25 0.9800000 0.9615385
3 0.010 0.50 0.9800000 0.9615385
3 0.010 1.00 0.9800000 0.9615385
3 0.100 0.25 0.9800000 0.9615385
3 0.100 0.50 0.9800000 0.9615385
3 0.100 1.00 0.9800000 0.9615385

The final values used for the model were degree = 1, scale = 0.001 and C = 0.25.
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Table B.40: Confusion Matrix of SVM(PK) on GSE10072 Validation Set

Reference

Prediction Normal Tumor

Normal 10 0

Tumor 0 10

B.3.7 Neural Networks (ANN)

Table B.41: Tuning Parameter Results of ANN for GSE10072

size decay Accuracy Kappa

1 0e+00 0.46 0.0000000
1 1e-04 0.78 0.6000000
1 1e-01 1.00 1.0000000

3 0e+00 0.46 0.0000000
3 1e-04 0.93 0.8615385
3 1e-01 1.00 1.0000000
5 0e+00 0.67 0.4000000
5 1e-04 0.96 0.9230769
5 1e-01 1.00 1.0000000

The final values used for the model were size = 1 and decay = 0.1.

Table B.42: Confusion Matrix of ANN on GSE10072 Validation Set

Reference

Prediction Normal Tumor

Normal 10 0

Tumor 0 10

B.4 Training (Tuning) Results of the methods on the GSE10245

41 samples
819 predictors
2 classes: ’AC’, ’SCC’

Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 37, 37, 37, 37, 37, 36, ...
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Resampling results across tuning parameters:

B.4.1 k-Nearest Neighbors (KNN)

Table B.43: Tuning Parameter Results of KNN for GSE10245

k Accuracy Kappa

5 0.93 0.8045455
7 0.93 0.8045455
9 0.93 0.8045455

The final value used for the model was k = 9.

Table B.44: Confusion Matrix of KNN on GSE10245 Validation Set

Reference

Prediction AC SCC

AC 12 0

SCC 1 4

B.4.2 Naive Bayes (NB)

Table B.45: Tuning Parameter Results of NB for GSE10245

usekernel Accuracy Kappa
FALSE 0.955 0.9045455

TRUE 0.955 0.9045455

The final values used for the model were fL = 0, usekernel = FALSE and adjust = 1.

Table B.46: Confusion Matrix of NB on GSE10245 Validation Set

Reference

Prediction AC SCC

AC 12 0

SCC 0 5
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B.4.3 Random Forests (RF)

Table B.47: Tuning Parameter Results of RF for GSE10245

mtry Accuracy Kappa
2 0.980 0.9545455

40 0.955 0.8545455
818 0.930 0.8045455

The final value used for the model was mtry = 2.

Table B.48: Confusion Matrix of RF on GSE10245 Validation Set

Reference

Prediction AC SCC

AC 12 0

SCC 0 5

B.4.4 Support Vector Machines with Radial Basis Function Kernel (SVM(RK))

Table B.49: Tuning Parameter Results of SVM(RK) for GSE10245

C Accuracy Kappa

0.25 0.955 0.9045455
0.50 0.980 0.9545455

1.00 0.980 0.9545455

The final values used for the model were sigma = 0.0008614187 and C = 0.5.

Table B.50: Confusion Matrix of SVM(RK) on GSE10245 Validation Set

Reference

Prediction AC SCC

AC 12 0

SCC 0 5
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B.4.5 Support Vector Machines with Linear Kernel (SVM(LK))

Table B.51: Tuning Parameter Results of SVM(LK) for GSE10245

C Accuracy Kappa
1 0.98 0.9545455

Tuning parameter C was held constant at a value of 1

Table B.52: Confusion Matrix of SVM(LK) on GSE10245 Validation Set

Reference

Prediction AC SCC

AC 12 0

SCC 0 5
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B.4.6 Support Vector Machines with Polynomial Kernel (SVM(PK))

Table B.53: Tuning Parameter Results of SVM(PK) for GSE10245

degree scale C Accuracy Kappa
1 0.001 0.25 0.980 0.9545455

1 0.001 0.50 0.980 0.9545455
1 0.001 1.00 0.980 0.9545455
1 0.010 0.25 0.980 0.9545455
1 0.010 0.50 0.980 0.9545455
1 0.010 1.00 0.980 0.9545455
1 0.100 0.25 0.980 0.9545455
1 0.100 0.50 0.980 0.9545455
1 0.100 1.00 0.980 0.9545455
2 0.001 0.25 0.980 0.9545455
2 0.001 0.50 0.980 0.9545455
2 0.001 1.00 0.980 0.9545455
2 0.010 0.25 0.980 0.9545455
2 0.010 0.50 0.980 0.9545455
2 0.010 1.00 0.980 0.9545455
2 0.100 0.25 0.885 0.7000000
2 0.100 0.50 0.910 0.7500000
2 0.100 1.00 0.910 0.7500000
3 0.001 0.25 0.980 0.9545455
3 0.001 0.50 0.980 0.9545455
3 0.001 1.00 0.980 0.9545455
3 0.010 0.25 0.955 0.9045455
3 0.010 0.50 0.980 0.9545455
3 0.010 1.00 0.980 0.9545455
3 0.100 0.25 0.935 0.8500000
3 0.100 0.50 0.935 0.8500000
3 0.100 1.00 0.935 0.8500000

The final values used for the model were degree = 1, scale = 0.001 and C = 0.25.
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Table B.54: Confusion Matrix of SVM(PK) on GSE10245 Validation Set

Reference

Prediction AC SCC

AC 12 0

SCC 0 5

B.4.7 Neural Networks (ANN)

Table B.55: Tuning Parameter Results of ANN for GSE10245

size decay Accuracy Kappa

1 0e+00 0.7366667 0.2000000
1 1e-04 0.8016667 0.3500000
1 1e-01 0.9550000 0.9045455
3 0e+00 0.8300000 0.4545455
3 1e-04 0.9300000 0.8045455
3 1e-01 0.9550000 0.9045455
5 0e+00 0.8300000 0.4545455
5 1e-04 0.9800000 0.9545455

5 1e-01 0.9550000 0.9045455

The final values used for the model were size = 5 and decay = 1e-04.

Table B.56: Confusion Matrix of ANN on GSE10245 Validation Set

Reference

Prediction AC SCC

AC 12 0

SCC 1 4

B.5 Training (Tuning) Results of the methods on the GSE25136

56 samples
52 predictors
2 classes: ’NonRec’, ’Rec’

Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 51, 50, 50, 50, 50, 50, ...
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Resampling results across tuning parameters:

B.5.1 k-Nearest Neighbors (KNN)

Table B.57: Tuning Parameter Results of KNN for GSE25136

k Accuracy Kappa

5 0.9466667 0.8878788
7 0.9433333 0.8827506
9 0.9600000 0.9160839

The final value used for the model was k = 9.

Table B.58: Confusion Matrix of KNN on GSE25136 Validation Set

Reference

Prediction NonRec Rec

NonRec 9 3

Rec 4 7

B.5.2 Naive Bayes (NB)

Table B.59: Tuning Parameter Results of NB for GSE25136

usekernel Accuracy Kappa
FALSE 0.9466667 0.8948718

TRUE 0.9466667 0.8948718

The final values used for the model were fL = 0, usekernel = FALSE and adjust = 1.

Table B.60: Confusion Matrix of NB on GSE25136 Validation Set

Reference

Prediction NonRec Rec

NonRec 7 5

Rec 5 6
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B.5.3 Random Forests (RF)

Table B.61: Tuning Parameter Results of RF for GSE25136

mtry Accuracy Kappa
2 0.9300000 0.8615385

27 0.8766667 0.7494172
52 0.8566667 0.7039627

The final value used for the model was mtry = 2.

Table B.62: Confusion Matrix of RF on GSE25136 Validation Set

Reference

Prediction NonRec Rec

NonRec 9 3

Rec 5 6

B.5.4 Support Vector Machines with Radial Basis Function Kernel (SVM(RK))

Table B.63: Tuning Parameter Results of SVM(RK) for GSE25136

C Accuracy Kappa
0.25 0.9266667 0.85

0.50 0.9266667 0.85
1.00 0.9266667 0.85

The final values used for the model were sigma = 0.01168756 and C = 0.25.

Table B.64: Confusion Matrix of SVM(RK)

Reference

Prediction NonRec Rec

NonRec 8 4

Rec 5 6
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B.5.5 Support Vector Machines with Linear Kernel (SVM(LK))

Table B.65: Tuning Parameter Results of SVM(LK) for GSE25136

C Accuracy Kappa
1 0.9266667 0.8424242

Tuning parameter C was held constant at a value of 1

Table B.66: Confusion Matrix of SVM(LK) on GSE25136 Validation Set

Reference

Prediction NonRec Rec

NonRec 7 5

Rec 4 7
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B.5.6 Support Vector Machines with Polynomial Kernel (SVM(PK))

Table B.67: Tuning Parameter Results of SVM(PK) for GSE25136

degree scale C Accuracy Kappa

1 0.001 0.25 0.7266667 0.5333333
1 0.001 0.50 0.8666667 0.7465201
1 0.001 1.00 0.9066667 0.8045455
1 0.010 0.25 0.9266667 0.8500000
1 0.010 0.50 0.9266667 0.8500000
1 0.010 1.00 0.9466667 0.8948718
1 0.100 0.25 0.9466667 0.8878788

1 0.100 0.50 0.9266667 0.8424242
1 0.100 1.00 0.9066667 0.8039627
2 0.001 0.25 0.8666667 0.7465201
2 0.001 0.50 0.9066667 0.8045455
2 0.001 1.00 0.9266667 0.8500000
2 0.010 0.25 0.9266667 0.8500000
2 0.010 0.50 0.9100000 0.8166667
2 0.010 1.00 0.9066667 0.8045455
2 0.100 0.25 0.9100000 0.8166667
2 0.100 0.50 0.8933333 0.7833333
2 0.100 1.00 0.8933333 0.7833333
3 0.001 0.25 0.9266667 0.8500000
3 0.001 0.50 0.9266667 0.8494172
3 0.001 1.00 0.9266667 0.8500000
3 0.010 0.25 0.9100000 0.8166667
3 0.010 0.50 0.9100000 0.8166667
3 0.010 1.00 0.8900000 0.7712121
3 0.100 0.25 0.9300000 0.8615385
3 0.100 0.50 0.9100000 0.8166667
3 0.100 1.00 0.9100000 0.8166667

The final values used for the model were degree = 1, scale = 0.1 and C = 0.25.
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Table B.68: Confusion Matrix of SVM(PK) on GSE25136 Validation Set

Reference

Prediction NonRec Rec

NonRec 8 4

Rec 4 7

B.5.7 Neural Networks (ANN)

Table B.69: Tuning Parameter Results of ANN for GSE25136

size decay Accuracy Kappa

1 0e+00 0.4933333 0.06666667
1 1e-04 0.6300000 0.32857143
1 1e-01 0.9100000 0.81608392

3 0e+00 0.6100000 0.30000000
3 1e-04 0.8866667 0.77798868
3 1e-01 0.9100000 0.81608392
5 0e+00 0.7100000 0.42857143
5 1e-04 0.9066667 0.81095571
5 1e-01 0.9100000 0.81608392

The final values used for the model were size = 1 and decay = 0.1.

Table B.70: Confusion Matrix of ANN on GSE25136 Validation Set

Reference

Prediction NonRec Rec

NonRec 9 3

Rec 4 7

B.6 Training (Tuning) Results of the methods on the GSE35896

45 samples
43 predictors
2 classes: ’No’, ’Yes’

Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 41, 41, 40, 40, 40, 41, ...
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Resampling results across tuning parameters:

B.6.1 k-Nearest Neighbors (KNN)

Table B.71: Tuning Parameter Results of KNN for GSE35896

k Accuracy Kappa

5 0.915 0.8282051
7 0.935 0.8666667

9 0.915 0.8282051

The final value used for the model was k = 7.

Table B.72: Confusion Matrix of KNN on GSE35896 Validation Set

Reference

Prediction No Yes

No 6 3

Yes 2 6

B.6.2 Naive Bayes (NB)

Table B.73: Tuning Parameter Results of NB for GSE35896

usekernel Accuracy Kappa
FALSE 0.980 0.9615385

TRUE 0.955 0.9115385

The final values used for the model were fL = 0, usekernel = FALSE and adjust = 1.

Table B.74: Confusion Matrix of NB on GSE35896 Validation Set

Reference

Prediction No Yes

No 8 1

Yes 1 7
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B.6.3 Random Forests (RF)

Table B.75: Tuning Parameter Results of RF for GSE35896

mtry Accuracy Kappa
2 0.960 0.9285714

22 0.885 0.7785714
43 0.910 0.8285714

The final value used for the model was mtry = 2.

Table B.76: Confusion Matrix of RF on GSE35896 Validation Set

Reference

Prediction No Yes

No 9 0

Yes 4 4

B.6.4 Support Vector Machines with Radial Basis Function Kernel (SVM(RK))

Table B.77: Tuning Parameter Results of SVM(RK) for GSE35896

C Accuracy Kappa
0.25 0.98 0.9615385

0.50 0.98 0.9615385
1.00 0.98 0.9615385

The final values used for the model were sigma = 0.01592371 and C = 0.25.

Table B.78: Confusion Matrix of SVM(RK) on GSE35896 Validation Set

Reference

Prediction No Yes

No 8 1

Yes 2 6
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B.6.5 Support Vector Machines with Linear Kernel (SVM(LK))

Table B.79: Tuning Parameter Results of SVM(LK) for GSE35896

C Accuracy Kappa
1 0.955 0.9115385

Tuning parameter C was held constant at a value of 1

Table B.80: Confusion Matrix of SVM(LK) on GSE35896 Validation Set

Reference

Prediction No Yes

No 6 3

Yes 3 5
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B.6.6 Support Vector Machines with Polynomial Kernel (SVM(PK))

Table B.81: Tuning Parameter Results of SVM(PK) for GSE35896

degree scale C Accuracy Kappa

1 0.001 0.25 0.955 0.9115385
1 0.001 0.50 0.955 0.9115385
1 0.001 1.00 0.935 0.8785714
1 0.010 0.25 0.980 0.9615385
1 0.010 0.50 0.980 0.9615385
1 0.010 1.00 0.980 0.9615385
1 0.100 0.25 0.980 0.9615385
1 0.100 0.50 0.955 0.9115385
1 0.100 1.00 0.955 0.9115385
2 0.001 0.25 0.935 0.8785714
2 0.001 0.50 0.955 0.9115385
2 0.001 1.00 1.000 1.0000000

2 0.010 0.25 0.980 0.9615385
2 0.010 0.50 0.980 0.9615385
2 0.010 1.00 0.980 0.9615385
2 0.100 0.25 0.980 0.9615385
2 0.100 0.50 0.980 0.9615385
2 0.100 1.00 0.980 0.9615385
3 0.001 0.25 0.935 0.8785714
3 0.001 0.50 0.955 0.9115385
3 0.001 1.00 0.980 0.9615385
3 0.010 0.25 0.980 0.9615385
3 0.010 0.50 0.980 0.9615385
3 0.010 1.00 0.980 0.9615385
3 0.100 0.25 0.980 0.9615385
3 0.100 0.50 0.980 0.9615385
3 0.100 1.00 0.980 0.9615385

The final values used for the model were degree = 2, scale = 0.001 and C = 1.
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Table B.82: Confusion Matrix of SVM(PK) on GSE35896 Validation Set

Reference

Prediction No Yes

No 8 1

Yes 2 6

B.6.7 Neural Networks (ANN)

Table B.83: Tuning Parameter Results of ANN for GSE35896

size decay Accuracy Kappa

1 0e+00 0.810 0.6000000
1 1e-04 0.905 0.8115385
1 1e-01 0.960 0.9166667

3 0e+00 0.910 0.8166667
3 1e-04 0.910 0.8166667
3 1e-01 0.960 0.9166667
5 0e+00 0.960 0.9166667
5 1e-04 0.910 0.8166667
5 1e-01 0.960 0.9166667

The final values used for the model were size = 1 and decay = 0.1.

Table B.84: Confusion Matrix of ANN on GSE35896 Validation Set

Reference

Prediction No Yes

No 6 3

Yes 2 6

B.7 Training (Tuning) Results of the methods on the GSE103091

76 samples
54 predictors
2 classes: ’Met’, ’MetFree’

Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 68, 69, 67, 67, 69, 69, ...
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Resampling results across tuning parameters:

B.7.1 k-Nearest Neighbors (KNN)

Table B.85: Tuning Parameter Results of KNN for GSE103091

k Accuracy Kappa

5 0.9031746 0.7187631
7 0.9031746 0.6903743
9 0.9031746 0.7011160

The final value used for the model was k = 9.

Table B.86: Confusion Matrix of KNN on GSE103091 Validation Set

Reference

Prediction Met MetFree

Met 1 8

MetFree 2 20

B.7.2 Naive Bayes (NB)

Table B.87: Tuning Parameter Results of NB for GSE103091

usekernel Accuracy Kappa

FALSE 0.8380952 0.6063250
TRUE 0.8666667 0.6602892

The final values used for the model were fL = 0, usekernel = TRUE and adjust = 1.

Table B.88: Confusion Matrix of NB on GSE103091 Validation Set

Reference

Prediction Met MetFree

Met 3 6

MetFree 4 18
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B.7.3 Random Forests (RF)

Table B.89: Tuning Parameter Results of RF for GSE103091

mtry Accuracy Kappa
2 0.8906746 0.6895048

28 0.8416667 0.5306812
54 0.8255952 0.5006812

The final value used for the model was mtry = 2.

Table B.90: Confusion Matrix of RF on GSE103091 Validation Set

Reference

Prediction Met MetFree

Met 2 7

MetFree 2 20

B.7.4 Support Vector Machines with Radial Basis Function Kernel (SVM(RK))

Table B.91: Tuning Parameter Results of SVM(RK) for GSE103091

C Accuracy Kappa

0.25 0.8492063 0.6290523
0.50 0.8634921 0.6525817
1.00 0.8920635 0.7064278

The final values used for the model were sigma = 0.01131729 and C = 1.

Table B.92: Confusion Matrix of SVM(RK) on GSE103091 Validation Set

Reference

Prediction Met MetFree

Met 2 7

MetFree 3 19
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B.7.5 Support Vector Machines with Linear Kernel (SVM(LK))

Table B.93: Tuning Parameter Results of SVM(LK) for GSE103091

C Accuracy Kappa
1 0.8920635 0.7144246

Tuning parameter C was held constant at a value of 1

Table B.94: Confusion Matrix of SVM(LK) on GSE103091 Validation Set

Reference

Prediction Met MetFree

Met 2 7

MetFree 4 18
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B.7.6 Support Vector Machines with Polynomial Kernel (SVM(PK))

Table B.95: Tuning Parameter Results of SVM(PK) for GSE103091

degree scale C Accuracy Kappa

1 0.001 0.25 0.8492063 0.6290523
1 0.001 0.50 0.8492063 0.6290523
1 0.001 1.00 0.8492063 0.6290523
1 0.010 0.25 0.8492063 0.6290523
1 0.010 0.50 0.8920635 0.7064278
1 0.010 1.00 0.9031746 0.7295048
1 0.100 0.25 0.8666667 0.6148770
1 0.100 0.50 0.8666667 0.6148770
1 0.100 1.00 0.9063492 0.7379540
2 0.001 0.25 0.8492063 0.6290523
2 0.001 0.50 0.8492063 0.6290523
2 0.001 1.00 0.8492063 0.6290523
2 0.010 0.25 0.9031746 0.7295048
2 0.010 0.50 0.9031746 0.7295048
2 0.010 1.00 0.8920635 0.6967775
2 0.100 0.25 0.9031746 0.7295048
2 0.100 0.50 0.9031746 0.7295048
2 0.100 1.00 0.9031746 0.7295048
3 0.001 0.25 0.8492063 0.6290523
3 0.001 0.50 0.8492063 0.6290523
3 0.001 1.00 0.8492063 0.6290523
3 0.010 0.25 0.9031746 0.7295048
3 0.010 0.50 0.9031746 0.7295048
3 0.010 1.00 0.9174603 0.7706812

3 0.100 0.25 0.9031746 0.7295048
3 0.100 0.50 0.9031746 0.7295048
3 0.100 1.00 0.9063492 0.7272123

The final values used for the model were degree = 3, scale = 0.01 and C = 1.
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Table B.96: Confusion Matrix of SVM(PK) on GSE103091 Validation Set

Reference

Prediction Met MetFree

Met 2 7

MetFree 4 18

B.7.7 Neural Networks (ANN)

Table B.97: Tuning Parameter Results of ANN for GSE103091

size decay Accuracy Kappa

1 0e+00 0.7817460 0.2315508
1 1e-04 0.7626984 0.2053118
1 1e-01 0.8888889 0.7489421

3 0e+00 0.7706349 0.2088235
3 1e-04 0.8634921 0.6459079
3 1e-01 0.8888889 0.7489421
5 0e+00 0.8081349 0.4674035
5 1e-04 0.8085317 0.5547890
5 1e-01 0.8888889 0.7489421

The final values used for the model were size = 1 and decay = 0.1.

Table B.98: Confusion Matrix of ANN on GSE103091 Validation Set

Reference

Prediction Met MetFree

Met 3 6

MetFree 4 18

B.8 Training (Tuning) Results of the methods on the GSE5851

48 samples
14 predictors
2 classes: ’No’, ’Yes’

Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 43, 43, 44, 43, 43, 43, ...
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Resampling results across tuning parameters:

B.8.1 k-Nearest Neighbors (KNN)

Table B.99: Tuning Parameter Results of KNN for GSE5851

k Accuracy Kappa

5 0.90 0.7878788
7 0.90 0.7872960

9 0.84 0.6655012

The final value used for the model was k = 7.

Table B.100: Confusion Matrix of KNN on GSE5851 Validation Set

Reference

Prediction No Yes

No 10 3

Yes 3 4

B.8.2 Naive Bayes (NB)

Table B.101: Tuning Parameter Results of NB for GSE5851

usekernel Accuracy Kappa
FALSE 0.895 0.7321678

TRUE 0.875 0.6937063

The final values used for the model were fL = 0, usekernel = FALSE and adjust = 1.

Table B.102: Confusion Matrix of NB on GSE5851 Validation Set

Reference

Prediction No Yes

No 10 3

Yes 3 4
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B.8.3 Random Forests (RF)

Table B.103: Tuning Parameter Results of RF for GSE5851

mtry Accuracy Kappa
2 0.87 0.6321678

8 0.87 0.6321678
14 0.81 0.5027972

The final value used for the model was mtry = 2.

Table B.104: Confusion Matrix of RF on GSE5851 Validation Set

Reference

Prediction No Yes

No 12 1

Yes 5 2

B.8.4 Support Vector Machines with Radial Basis Function Kernel (SVM(RK))

Table B.105: Tuning Parameter Results of SVM(RK) for GSE5851

C Accuracy Kappa

0.25 0.875 0.6937063
0.50 0.895 0.7321678

1.00 0.895 0.7321678

The final values used for the model were sigma = 0.05046808 and C = 0.5.

Table B.106: Confusion Matrix of SVM(RK) on GSE5851 Validation Set

Reference

Prediction No Yes

No 11 2

Yes 4 3
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B.8.5 Support Vector Machines with Linear Kernel (SVM(LK))

Table B.107: Tuning Parameter Results of SVM(LK) for GSE5851

C Accuracy Kappa
1 0.87 0.6994172

Tuning parameter C was held constant at a value of 1

Table B.108: Confusion Matrix of SVM(LK) on GSE5851 Validation Set

Reference

Prediction No Yes

No 9 4

Yes 5 2
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B.8.6 Support Vector Machines with Polynomial Kernel (SVM(PK))

Table B.109: Tuning Parameter Results of SVM(PK) for GSE5851

degree scale C Accuracy Kappa

1 0.001 0.25 0.850 0.6603730
1 0.001 0.50 0.850 0.6603730
1 0.001 1.00 0.875 0.6937063
1 0.010 0.25 0.850 0.6603730
1 0.010 0.50 0.850 0.6603730
1 0.010 1.00 0.875 0.6937063
1 0.100 0.25 0.875 0.6937063
1 0.100 0.50 0.895 0.7321678

1 0.100 1.00 0.895 0.7321678
2 0.001 0.25 0.850 0.6603730
2 0.001 0.50 0.850 0.6603730
2 0.001 1.00 0.875 0.6937063
2 0.010 0.25 0.875 0.6937063
2 0.010 0.50 0.875 0.6937063
2 0.010 1.00 0.875 0.6937063
2 0.100 0.25 0.895 0.7321678
2 0.100 0.50 0.895 0.7321678
2 0.100 1.00 0.855 0.6488345
3 0.001 0.25 0.875 0.6937063
3 0.001 0.50 0.875 0.6937063
3 0.001 1.00 0.850 0.6603730
3 0.010 0.25 0.875 0.6937063
3 0.010 0.50 0.875 0.6937063
3 0.010 1.00 0.875 0.6937063
3 0.100 0.25 0.875 0.6867133
3 0.100 0.50 0.835 0.6167832
3 0.100 1.00 0.835 0.6167832

The final values used for the model were degree = 1, scale = 0.1 and C = 0.5.
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Table B.110: Confusion Matrix of SVM(PK) on GSE5851 Validation Set

Reference

Prediction No Yes

No 10 3

Yes 4 3

B.8.7 Neural Networks (ANN)

Table B.111: Tuning Parameter Results of ANN for GSE5851

size decay Accuracy Kappa

1 0e+00 0.670 0.1000000
1 1e-04 0.715 0.2712121
1 1e-01 0.890 0.7372960
3 0e+00 0.810 0.5206294
3 1e-04 0.875 0.7372960
3 1e-01 0.890 0.7372960
5 0e+00 0.750 0.3757576
5 1e-04 0.915 0.8206294

5 1e-01 0.890 0.7372960

The final values used for the model were size = 5 and decay = 1e-04.

Table B.112: Confusion Matrix of ANN on GSE5851 Validation Set

Reference

Prediction No Yes

No 10 3

Yes 5 2

B.9 Training (Tuning) Results of the methods on the GSE32962

31 samples
117 predictors
2 classes: ’Resist’, ’Sens’

Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 28, 28, 27, 27, 28, 29, ...
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Resampling results across tuning parameters:

B.9.1 k-Nearest Neighbors (KNN)

Table B.113: Tuning Parameter Results of KNN for GSE32962

k Accuracy Kappa

5 0.9166667 0.84
7 0.9166667 0.84
9 0.9500000 0.90

The final value used for the model was k = 9.

Table B.114: Confusion Matrix of KNN on GSE32962 Validation Set

Reference

Prediction Resist Sens

Resist 5 2

Sens 2 3

B.9.2 Naive Bayes (NB)

Table B.115: Tuning Parameter Results of NB for GSE32962

usekernel Accuracy Kappa
FALSE 1 1

TRUE 1 1

The final values used for the model were fL = 0, usekernel = FALSE and adjust = 1.

Table B.116: Confusion Matrix of NB on GSE32962 Validation Set

Reference

Prediction Resist Sens

Resist 4 3

Sens 1 4
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B.9.3 Random Forests (RF)

Table B.117: Tuning Parameter Results of RF for GSE32962

mtry Accuracy Kappa
2 1.0000000 1.00

59 0.9416667 0.89
117 0.9083333 0.83

The final value used for the model was mtry = 2.

Table B.118: Confusion Matrix of RF on GSE32962 Validation Set

Reference

Prediction Resist Sens

Resist 4 3

Sens 2 3

B.9.4 Support Vector Machines with Radial Basis Function Kernel (SVM(RK))

Table B.119: Tuning Parameter Results of SVM(RK) for GSE32962

C Accuracy Kappa
0.25 1 1

0.50 1 1
1.00 1 1

The final values used for the model were sigma = 0.005723221 and C = 0.25.

Table B.120: Confusion Matrix of SVM(RK) on GSE32962 Validation Set

Reference

Prediction Resist Sens

Resist 3 4

Sens 1 4
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B.9.5 Support Vector Machines with Linear Kernel (SVM(LK))

Table B.121: Tuning Parameter Results of SVM(LK) for GSE32962

C Accuracy Kappa
1 1 1

Tuning parameter C was held constant at a value of 1.

Table B.122: Confusion Matrix of SVM(LK) on GSE32962 Validation Set

Reference

Prediction Resist Sens

Resist 4 3

Sens 1 4
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B.9.6 Support Vector Machines with Polynomial Kernel (SVM(PK))

Table B.123: Tuning Parameter Results of SVM(PK) for GSE32962

degree scale C Accuracy Kappa

1 0.001 0.25 0.9083333 0.83
1 0.001 0.50 0.8750000 0.77
1 0.001 1.00 1.0000000 1.00
1 0.010 0.25 1.0000000 1.00

1 0.010 0.50 1.0000000 1.00
1 0.010 1.00 1.0000000 1.00
1 0.100 0.25 1.0000000 1.00
1 0.100 0.50 1.0000000 1.00
1 0.100 1.00 1.0000000 1.00
2 0.001 0.25 0.9083333 0.83
2 0.001 0.50 1.0000000 1.00
2 0.001 1.00 1.0000000 1.00
2 0.010 0.25 1.0000000 1.00
2 0.010 0.50 1.0000000 1.00
2 0.010 1.00 1.0000000 1.00
2 0.100 0.25 1.0000000 1.00
2 0.100 0.50 1.0000000 1.00
2 0.100 1.00 1.0000000 1.00
3 0.001 0.25 0.9750000 0.95
3 0.001 0.50 1.0000000 1.00
3 0.001 1.00 1.0000000 1.00
3 0.010 0.25 1.0000000 1.00
3 0.010 0.50 1.0000000 1.00
3 0.010 1.00 1.0000000 1.00
3 0.100 0.25 0.9166667 0.84
3 0.100 0.50 0.9166667 0.84
3 0.100 1.00 0.9166667 0.84

The final values used for the model were degree = 1, scale = 0.01 and C = 0.25.
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Table B.124: Confusion Matrix of SVM(PK) on GSE32962 Validation Set

Reference

Prediction Resist Sens

Resist 5 2

Sens 2 3

B.9.7 Neural Networks (ANN)

Table B.125: Tuning Parameter Results of ANN for GSE32962

size decay Accuracy Kappa

1 0e+00 0.8166667 0.60
1 1e-04 0.8500000 0.60
1 1e-01 0.9500000 0.90

3 0e+00 0.9500000 0.90
3 1e-04 0.9166667 0.84
3 1e-01 0.9500000 0.90
5 0e+00 0.9500000 0.90
5 1e-04 0.9500000 0.90
5 1e-01 0.9500000 0.90

The final values used for the model were size = 1 and decay = 0.1.

Table B.126: Confusion Matrix of ANN on GSE32962 Validation Set

Reference

Prediction Resist Sens

Resist 5 2

Sens 2 3
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Here we provide the links of the datasets used in this study.
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23988

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7670

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8401

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10072

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10245

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25136

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35896

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103091

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5851

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32962
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