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Abstract

In South Africa, buffalo are the maintenance hosts of Mycobacterium bovis (M. bovis), a

pathogen that causes bovine tuberculosis in wildlife and domesticated animals. To understand

the transmission dynamics of M. bovis, mathematical epidemiological models are developed.

The models address various questions about the transmission dynamics of bovine tuberculosis

in both buffalo and cattle populations. The key questions addressed by the models are: can

buffalo carriers fuel the re-occurance of bovine tuberculosis in buffalo population? Is the cross-

infection transmission route responsible for the persistence of bovine tuberculosis in cattle

population? Can the movement of buffalo from one patch to another be the reason for the

spread of bovine tuberculosis in Kruger National Park? These questions are addressed in

Chapters 2, 3 and 4 respectively. Both the mathematical and numerical analysis suggest that

the infection parameters associated with buffalo carriers and cross-infection and movement

parameters associated with the movement of susceptible and exposed buffalo from one patch

to another are among the key drivers of bovine tuberculosis in buffalo and cattle populations.

The findings have very vital implications for bovine tuberculosis control. If bovine tuberculosis

is to be eliminated, there is need to develop tests that can detect buffalo carriers from buffalo

population. This will accelerate the eradication of bovine tuberculosis (BTB) infection from

the buffalo population. Measures need to be taken to prevent the mixing of cattle and buffalo

populations at the interface and also restrict the movement of buffalo from one patch to another

in Kruger National Park.
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Chapter 1

Introduction

1.1 Background

Bovine tuberculosis (BTB) is a chronic and emaciating infectious disease, caused by Mycobac-

terium bovis, which affects domesticated and wild mammals [6]. Mycobacterium bovis forms

part of the Mycobaterium tuberculosis complex. The Mycobacterium tuberculosis complex

comprises tubercle bacilli of 8 distinct subgroups: M. tubrculosis, M. bovis, M. africanum, M.

canettii, M. caprae, M. pinnipedii, M. microti, and M. mungi. Two other different branches

of the M. tuberculosis complex phylogenetic tree exist, the dassie and oryx bacilli, which are

causative agents of tuberculosis in the animal species after which they are named [8]. The BTB

infection wrecks more havoc in the cattle industry in sub-Saharan countries, where diagnostic

tests are not commonly used [16].

1.2 Epidemiology of bovine tuberculosis in Africa and

other continents

Despite some success of control and eradication programs for BTB implemented in various

countries which resulted in the drastic reduction of the new cases of BTB infection in certain
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Figure 1.1: Bovine tuberculosis occurance, Africa [5].

regions, the infection is still prevalent in many parts of the world, particulary in Africa. One

of the reasons for the lack of success is the high cost of sustainable testing procedures as well

as logistic inputs and financial constraints [7, 17]. The prevalence data on bovine tuberculosis

in developing countries are generally scarce but information on BTB occurrence is available.

Of the 55 African countries, 25 reported sporadic occurrence of BTB infection; six reported

enzootic disease, two were reported to have high prevalence, four did not report the disease and

the remaining 18 countries did not have data. Only seven African countries used disease control

measures and classified BTB as a notifiable disease [5]. This was attributed to the inadequate

knowledge about BTB transmission dynamics and its impact in most African countries. Figure

1.1 shows the countries with reported occurrence of bovine tuberculosis.

In Asia, out of 36 nations, 16 reported sporadic occurrence of BTB, one classified the disease

as enzootic, ten did not report cases on BTB and the remaining did not have data. Only seven

countries used disease control measures and considered BTB as a notifiable disease.
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Of the total Asian cattle and buffalo populations, 6% and less than 1%, respectively, are found

in countries where bovine tuberculosis is notifiable and a test-and-slaughter policy is used. Of

these populations 94% of the cattle and more than 99% of the buffalo are either only partly

controlled for bovine tuberculosis or not controlled at all [5]. This poses a huge threat of

the spill over of the BTB infection to human beings. Similar trends of the prevalence of the

BTB infection in Latin America were also observed. Erratic occurrence of BTB infection was

reported in 12 countries out of 34 countries. Enzootic was reported in seven countries and only

one country described occurrence as high. The other two remaining countries did not have

data for the disease [5]. (The data on the statistics of BTB in African and Asian countries was

collected in the years of 1990 and 1995.)

It has been estimated that M.bovis accounts globally for 3.1% of all human TB cases (2.1%

of all pulmonary and 9.4% of all extra-pulmonary TB cases). However the extent of M. bovis

involvement in the global TB burden in Africa is still largely unknown. This is explained by

the fact that in humans, TB due to M. bovis is indistinguishable from TB due to M.tuberculosis

in terms of clinical signs, radiological and pathological features [19].

BTB infection also poses an economic threat to trade in animals and their products [9]. In

South Africa, the average price for a disease-free buffalo in 2004 was almost ZAR150000, in

2008 was over ZAR160000, and in 2010 the price increased to over ZAR325000. In 2011 and

2012 the prices hit ZAR18 million and ZAR20 million per buffalo respectively. The advent of

BTB infection risks the economic benefits realized from buffalo sales [11]. Subsequently, a great

interest and commitment are devoted to studies that unravel the key drivers of the disease in

buffalo and cattle.

1.3 Epidemiology of bovine tuberculosis in Kruger Na-

tional Park

The area of Kruger National Park (KNP) in South Africa is 19488km2. It is South Africa’s

largest wildlife refuge and a critical biodiversity resource. The Park holds up to 147 mammal
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Figure 1.2: The map showing the spread of bovine tuberculosi in Kruger National Park [18]

species, including approximately 2700 African buffalo and 1700 lions. The park is bordered by

Zimbabwe to the north and Mozambique to the east. The KNP stretches 320km from north to

south and 65km from east to west. Several private game reserves have recently been combined

to form Greater Kruger National Park Complex (GKNPC). The private game reserves are

located on the western border of the park [14].

Bovine tuberculosis infection is said to be introduced in the park via co-grazing between cattle

and buffalo in the far south of KNP near Crocodile Bridge prior to the 1960’s (see Figure 1.2).

By the late 1980’s, BTB infection was largely eliminated from the domestic animal populations

surrounding KNP, but inside KNP it persisted undetected. The survey conducted in 1991/92

showed the bushfire like spread of BTB infection towards the north of the park. The southern

part of the park was heavily infected with a prevalence of 27.1%. The central part of the park

was moderately infected with a prevalence of 4.4% while 0% prevalence of the BTB infection

was found in the northern part of the park. In the 1998 survey, the prevalence of the BTB

infection in south, central and north of the park went up to 38.2%, 16% and 1.5% respectively

[18]. The chronological events of the occurrence of BTB infection in all three regions of the
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Figure 1.3: The map showing the spread trends of BTB infection in KNP from 1970 to 2003

[18]

park are depicted in Figure 1.3

The spreading trend of the BTB infection and its spill over effects have made scientists con-

cerned. The ecotourism aspect of the park is also heavily affected due to a large of number

of lions being infected. This is one of the reasons that has fueled more research activities of

bovine tuberculosis in Kruger National Park to understand the transmission dynamics of the

disease.

The 1998 survey revealed that BTB infection spread at a speed of about 6km per year. The

survey also indicated that buffalo less than 2 years old are mostly infected with BTB, which

suggested a vertical transmission route as the main route of transmission in the young buf-

falo. The weakness of young buffalo immunity may enhance this transmission mode. Table 1.1

summarises the results of the survey.
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Results from 1998 Survey

Zone Animals sampled Zonal prev. % buffalo≥ 9 yrs Buffalo ≤ 2 yrs. % infected

South 206 38.5% 5.3% 30.3%

Central 206 19.7% 5.8% 17.2%

North 206 1.5% 15% 0.0%

Table 1.1: The table showing the age specific prevalence of BTB infection in buffalo [18]

1.4 Bovine tuberculosis in cattle population

Farmers are being denied of their only source of income when their herds of cattle are infected

with M. bovis. Cattle die in large numbers when they are infected with M. bovis. The BTB

infection is mainly a serious problem in countries where the control measures are inadequately

or not applied at all [5]. Industrialised countries like England managed to reduce the negative

effects of BTB infection in the cattle industry but their efforts are being thwarted by the

existence of maintenance hosts like badgers [52]. The high prevalence of BTB infection is

recorded at the wildlife-livestock interface. For instance, in Zambia a high prevalence of BTB

infection in cattle is recorded at the Kafue basin, which interfaces with the rural areas [84]. In

South Africa, more cases of BTB infection in cattle are recorded in areas that interface with

Kruger National Park [18]. Considering the economic potential the cattle industry has in any

country’s economy, the priorities of most countries are tailored to research activities that aim

to enhance the understanding of the transmission dynamics of BTB infection. This study will

also explore the factors that promote the spread of the disease at the wildlife-livestock interface

through mathematical models.

1.5 Biology of Mycobacterium bovis

The M. bovis is a slow-growing, acid-fast, gram-positive, rod-filamentous-shaped bacterium.

It has a wide range of hosts and can infect all warm-blooded vertebrates, including humans.

The M. bovis is an intracellular microbe of macrophages and does not multiply outside the
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host except in cultured media [10]. The enviromental conditions dictate the survivability of

M. bovis outside the host. In moist conditions, particularly those in which oxygen and organic

matter are present, the pathogen survival time increases. A harsh environment decreases the

survival time of the pathogen [15]. Some hosts of M. bovis have the ability to turn into a

maintenance host, a host that is not harmed by the pathogen, but acts as a source of infection

to other animals. Maintenance hosts include the possum in New Zealand, badgers in Ireland

and Britain, Kudu in Zambia, cervids in United States and African buffalo in South Africa

[3, 4]. It is the existence of maintenance hosts that has led to the failure of many intervention

programs to eradicate bovine tuberculosis in developed countries. Other species have been

identified as spill over hosts or dead end such as humans, coyotes and cats. In spill over hosts,

infection in the population can not persist indefinitely unless there is re-infection from another

species or a change in the population that enhances interspecies transmission [4].

Despite the long history of disease recognition, the disease dynamics of M. bovis are not well

understood. The incubation period is not known for BTB infection. It ranges from days to

several months or longer. Some animals appear in the course of infection to be asymptomatic,

but the disease may progress rapidly in others. Progressive emaciation and weakness appear

with stress or age. Respiratory signs include coughing, dyspnea, or exercise intolerance [17].

Transmission of M. bovis can occur via various transmission mechanisms. A single bacillus

in a droplet may be sufficient to establish infection [15]. Aerosolization is thought to be the

most infectious route of transmission, accounting for 80 to 90% of infections in cattle [13]. The

gregarious behaviour of buffalo promotes this type of transmission mode. In Kruger National

Park, lions become infected through eating infected buffalo (which is a maintenance host).

Eating poorly cooked meat and drinking contaminated milk is another route that transmits

infection to human [4].

1.6 Metapopulations

A metapopulation is a population of populations in which different subpopulations occupy

spatially disconnected patches of habitat [12]. Initially, the metapopulation theory was par-
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ticularly useful to wildlife biologists because most wildlife are fragmented or maintain some

degree of patchiness. The idea of population persistence was achieved even in cases where local

populations undergo extinction [12].

The concept of metapopulation was coined by Richard Levins in 1969. His model was based

on a population in which individuals reproduce and die within local patches of the habitat,

and their offspring disperse into other patches. The variable of interest was p, the fraction of

occupied patches. The rate of change of p, dp
dt

, determines whether p will increase, decrease or

stay the same. The rate of change dp
dt

is given by the difference between colonization rate C and

the extinction rate E. This is analogous to population growth rate as the difference between

birth and death rates [12]. The governing equation of the assumed system is

dp

dt
= C − E = cp(1− p)− ep.

In this model, the colonization rate depends on the number of occupied and unoccupied patches.

This basic model was modified by various researchers as they tried to address problems in

ecology. The metapopulation concept was applied to the study of infectious diseases by Julien

Arino [2]. It was used in the field of mathematical epidemiology due: (i) The initial conditions of

disease are often heterogeneous, with disease spreading geographically with time. For example,

black death spread east to west and south to north along the trade routes of Europe between

1347 and 1350, and fox rabies spread west from Russian-Polish border in 1940 to reach France

by 1968; (ii) The environment itself is heterogeneous both in a geographical sense and in a

human sense with birth rates, death rates and health care facilities varying with location;

(iii) Different species have travel rates, a factor that plays a huge role for diseases involving

many species, for instance, the foot-and-mouth disease outbreak in the UK in 2001 and vector

transmitted diseases; and (iv) For human diseases, social groupings and mixing patterns vary

with geography and age. This is illustrated by comparing humans in a hospital setting with

those in isolated communities in Canada’s North and with children in schools [2].

To factor in the spatial variations in a model, two approaches may be used. The first approach

uses continuous spatial models with continuous time that yield partial differential equations

of reaction-diffusion type. The second approach uses discrete spatial models with continuous
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time that yield systems of ordinary differential equations, which are metapopulation models

involving movement of individuals between discrete spatial models [2]. The approach to be

used in any modelling project depends on the questions to be addressed and the experience of

the modeller.

1.7 Motivation

Despite the success in eradicating BTB infection in industrialized countries, the disease still

remains a big challenge in Sub-Saharan countries. The reasons for the menace to continuously

cause havoc in Sub-Saharan region are due to lack of awareness of the local authorities about

the economic implications, the high cost of sustainable testing procedures as well as their

logistic inputs and financial constraints, and the existence of maintenance hosts that act as the

source of infections to other species [17]. In South Africa, BTB infection is endemic in Kruger

National Park where significant research activities are being carried out. The benefits being

yielded from the research activities are outweighed by the negative impact of the infection. The

disease continues to spread and spill over to cattle in the areas closer to the park and other

species in the park. The lion, one of the “Big Five” animals in the park is heavily infected;

almost 90% of the lions are infected with M. bovis [1]. Worse still, the disease continues to

spread northwards at a rapid rate, an observation, which is of great concern to policy makers

and the park management structure. Additionally, BTB infection has a serious impact on the

cattle industry which experiences massive death of cattle. This is expensive to both cattle

owners and government. Cattle owners lose the source of income and government lose billions

of money as it initiates programs that minimise the further spread of the disease. It is against

this background that this project seeks to understand the transmission dynamics of the BTB

infection via mathematical modelling. Mathematical models of different forms incorporating the

environmental factors and movement factors are developed and analysed to help us to extract

insights into the transmission dynamics of the disease. The knowledge gained will help policy

makers to apply the correct intervention strategies to minimise the effects of the infection.
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1.8 Objectives of the study

The aim of this research project is to formulate mathematical epidemiological models that can

be used to study the dynamics of the bovine tuberculosis in both cattle and buffalo populations.

The specific objectives of this study are

(i) To analyse the transmission dynamics of bovine tuberculosis so as to find the necessary

conditions for the disease persistence.

(ii) To highlight the relative contribution of buffalo carriers and the environment in the disease

transmission dynamics.

(iii) To evaluate the impact of cross-infection transmission route in the persistence of the BTB

infection in cattle population.

(iv) To evaluate the role of movement of buffalo in the spread of bovine tuberculosis in buffalo

population in the Kruger National Park.

1.9 Outline of this work

This work consists of three publications, two of which are under review while one is under

revision. In Chapter 2, we provide a model for the transmission of bovine tuberculosis in

buffalo only. Mathematical analysis and simulations of the model are given.

In Chapter 3, we give a model for the role of multi-transmission routes in the epidemiological

of bovine tuberculosis in cattle and buffalo populations. Mathematical analysis in the presence

of the cross-infection route is given. A numerical analysis of the model is also given.

In Chapter 4, we consider a metapopulation model for the role of movement of buffalo in the

spread of bovine tuberculosis in Kruger National Park. Mathematical analysis and numerical

simulations are both given.

In Chapter 5, we give a comprehensive conclusion of our findings.
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Modelling the transmission dynamics

of bovine tuberclosis in buffalo
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1. Introduction

Bovine tuberculosis (BTB), an airborne, chronic bacterial disease, caused
by Mycobacterium bovis (M. bovis), is one of the most significant zoonotic
infections worldwide [1]. The significance of tuberculosis in wild animals
specifically has been acknowledged recently. Many wild animals, once in-
fected, demonstrated the potential to act as reservoirs of the disease for both
domestic cattle and other important wildlife species [2, 3]. The brushtail
Possum in New Zealand, European badger (meles meles) in United Kingdom
and Ireland, Bison (Bison bison) in North America, African buffalo (Syncerus
Caffer) in Africa, Kafue Lechwe (kobus leche) in Zambia and White-tailed
deer (Odocoileus Virginiarus) in Michigan can all act as maintenance hosts
for bovine tuberculosis, allowing the persistence of the infection in wildlife
and enabling the horizontal transmission of the pathogen between species
[1, 4, 5, 6].

The modes of transmission that promote the spread of BTB infection to
wildlife, livestock and human beings are: aerosol transmission that occurs
through inhaling the air droplets that contain M. bovis, vertical or pseu-
dovertical transmission which occurs when M. bovis is passed on to not yet
born offspring or through milk suckling from an infected mother and con-
suming inadequately cooked infected meat [7], or indirect transmission that
occurs through grazing the pastures contaminated with M. bovis. Most buf-
falo contract BTB infection through aerosol transmission. Vertical and psue-
dovertical transmission are rare modes of transmission of BTB infection in
buffalo. Some carnivores such as lions acquire BTB infection through the
ingestion of infected buffalo. BTB infection is also transmitted to human be-
ings through eating poorly cooked infected meat and drinking unpasteurised
milk, especially in rural areas [6, 8, 9, 10, 11]. Wildlife species may also
become infected through indirect transmission by grazing the contaminated
pasture. Irrespective of the type of the route of transmission, it takes either
months or years for clinical signs of BTB infection to appear [1, 4, 5, 6] .
The propagation of M. bovis within the animal is considered to be a rela-
tively slow process in ruminants and large carnivores, with the most infected
animals being asymptomatic until disseminated lesions develop during the
late stages of infection [3].

The BTB infection in buffalo progresses as follows: initial exposure of sus-
ceptible buffalo to M. bovis leads to the exposed stage, the stage in which
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the infected animal is not infectious but has M. bovis. This is followed by the
infective stage where an infected animal sheds off the M. bovis and spreads
the infection to other animals. The infective stage is followed by the chronic
or carrier stage. In the chronic stage, an infected animal still harbours and
spreads the pathogen but at a reduced rate. Note that both the latter stages
are asymptomatic. A few studies on BTB infection have been carried out so
far worldwide (Africa included). The studies are inadequate due to lack of
awareness of the local authorities about the economic implications, the high
cost of sustainable testing procedures as well as logistic inputs and financial
constraints [3, 16]. BTB infection studies conducted in South Africa, par-
ticularly in Kruger National Park (KNP), showed that BTB infection was
introduced in KNP from domestic cattle between 1950 and 1960. The pres-
ence of the disease was detected in 1990 [17]. It was established that BTB
infection was increasing in prevalence in the southern parts of KNP while
spreading northwards. This put the whole park at risk of being completely
infected. The studies further showed that more than 90% of lions in KNP
were infected with BTB infection [18]. The scenario in KNP prompted
further studies to enhance the understanding of the epidemiology of BTB
infection in KNP. A number of clinical and statistical studies have been car-
ried out on both animal and human tuberculosis in Africa. Studies in South
Africa showed that social contact prompted the fast transmission of BTB
infection from one animal to another [3, 19]. Transmission of BTB infec-
tion from one animal to another was increased when animals from different
herds were put into one grazing area where some animals were infected [20].
The mixing of infectious animals with non-infectious animals was the most
prominent mode of transmission of BTB infection among buffalo herds in
KNP [19].

Mathematical models carried out to understand the BTB infection in buffalo
are rare. A model assessing vaccination as a control strategy in an ongoing
epidemic of bovine tuberculosis was developed in [6]. The results showed
that vaccination alone can not completely control bovine tuberculosis and
that it should be combined with other control measures in order to eradicate
BTB infection. Related models were developed to understand BTB infection
in other animal species [21, 22, 23]. The models developed so far do not con-
sider the carrier sub-class as a confounding factor influencing the dynamics of
BTB infection in buffalo. The models did not factor in the effects of indirect
transmission of BTB infection as one of the modes of transmission that links
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the species under study and the environment as well as other species.

Our study seeks to develop a mathematical model that can be used to un-
derstand and analyse the transmission dynamics and control of bovine tu-
berculosis in buffaloes. We seek to answer the following question: Do the
buffalo carriers influence the persistence of BTB infection in buffalo popula-
tion? In section 2 we formulate the mathematical model incorporating the
carrier buffalo in the compartmental structure and indirect BTB transmission
as additional modes of infection. Section 3 deals with the model analysis.
In sections 4 and 5, we shall carry out simulations and present sensitivity
analysis results respectively. The discussion and conclusion of results are
presented in section 6.

2. Mathematical model

In this section, we present a continuous mathematical epidemiological model
for the transmission and evolution of bovine tuberculosis in the buffalo pop-
ulation. We are guided by the information on the natural history of BTB
infection to arrive at basic assumptions on the model formulation as it is
indicated in [24, 25, 26, 27]. The total population, N(t), is divided into four
sub-populations: susceptible buffalo population, Bs(t), that is free from M.
bovis but at risk of infection, exposed buffalo population, Be(t), with M. bovis
but not yet infectious, infected buffalo population, Bi(t), having M. bovis, do
not show show signs and are infectious and carrier buffalo population, Bc(t),
having M. bovis do not show signs of infection but infect the susceptible buf-
falo at a reduced rate compared to the infectious buffalo. Susceptible buffalo
are recruited through a constant natural birthrate π. The susceptible buffalo
leaves the class either through a constant death rate d or through infection
from infectious buffalo, carrier buffalo and external environment with a force
of infection defined in equation via

λ =
βBi + γβBc

N
. (1)

The effective contact rate of susceptible buffalo and infectious buffalo occurs
at constant rate β while that of carrier buffalo occur at a rate γβ, 0 ≤ γ < 1.
When the susceptible buffalo contracts M. bovis, they progress as a source to
the exposed buffalo population. The natural death rate d is the same for all
classes. The exposed buffalo leave their class either through natural death
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rate or when they develop clinical symptoms and begin to shed M. bovis
at a constant rate α into the infectious buffalo class Bi(t). The infectious
buffalo leave their class through natural death, through death induced by
BTB infection at a rate ε and through progression to the carrier buffalo class
at a constant rate θ. The progression to carrier buffalo occurs when the
infectious buffalo heal from the lesions so that their infectiousness is reduced
but they continue to shed M. bovis. The carrier buffalo can die naturally or
die due to BTB infection at a rate ε.

Bs Be Bi Bc
λ αBe θBi

γβBc

βBi

dBs dBe (d+ ε)Bi (d+ ε)Bc

π

Figure 1: The flow diagram for bovine tuberculosis infection in buffalo population as
defined in system 3. The dashed lines represent the transmission routes.

N(t) = Bs(t) +Be(t) +Bi(t) +Bc(t). (2)

We illustrate the conceptual model in Figure 1. It is translated into a math-
ematical model consisting of the following non-linear ordinary differential
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equations

dBs

dt
= π − λBs − dBs

dBe

dt
= λBs − (α + d)Be,

dBi

dt
= αBe − (θ + d+ ε)Bi

dBc

dt
= θBi − (d+ ε)Bc.

(3)

3. Model analysis

In this section, we prove the positivity and boundedness of the model (3) to
establish the well posedness of our model. We also determine the existence
of equilibrium points and their stability to gain insights into the prognosis
of the BTB infection in the buffalo population. We shall calculate the ba-
sic reproduction number R0, an epidemiological quantity that gives insight
on the processes that are key drivers of BTB infection. The reproduction
number is defined as the average number of buffalo secondary infections gen-
erated by one infectious buffalo during its entire infectious period in a wholly
susceptible buffalo population.

3.1. Feasible region

Since model (3) tracks the buffalo population, we assume that all the state
variables and parameters of model (3) are positive for time t ≥ 0. The
bovine tuberculosis transmission model (3) will then be analysed in a suitable
feasible region given by

Ω =
{

(Bs, Be, Bi, Bc) ∈ <4
+|0 ≤ N(t) ≤ π

d

}
.

We show that the region Ω is positively invariant. For model (3) to be
epidemiologically useful, it is important to show that all its state variables
are non-negative for all time. In other words, solutions of model (3) with
positive initial data remain positive for all time t ≥ 0.
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Let Bs ≥ 0, Be ≥ 0, Bi ≥ 0, Bc ≥ 0, ∀t ≥ 0. From the first equation of model
(3) we have

dBs

dt
= π − (d+ λ)Bs,

which can be solved to obtain

Bs(t) = Bs(0)exp

[
−
(
dt+

∫ t

0

λ(s)ds

)]
+ exp

[
−
(
dt+

∫ t

0

λ(s)ds

)]
(∫ t

0

πexp

[
dt+

∫ s

0

λ(w)dw

]
ds

)
≥ 0,∀t ≥ 0.

From the second equation of model (3) we have

dBe

dt
+ (d+ α)Be = λ(t)Bs,

with solution

Be(t) = e−(d+α)t

∫ t

0

λ(s)e(d+α)sBs(s)ds+Be(0)e−(d+α)t ≥ 0.

Using the same techniques we also show that Bi(t) ≥ 0 and Bc(t) ≥ 0. Thus
all the solutions of model (3) are non-negative in Ω.

We now show that all feasible solutions are bounded in a proper subset of Ω.
Adding all the equations in model (3) gives

Ṅ = π − dN(t)− ε(Bi +Bc),

≤ π − dN(t).

Solving the inequality gives

0 ≤ N(t) ≤ π

d
+
(
N(0)− π

d

)
e−dt,

where N(0) represents the initial value of N(t). Thus, as t → ∞, 0 ≤
N(t) ≤ π

d
. Therefore, all solutions of model (3) enter the region from the

boundary of Ω. This means that all possible solutions of model (3) will enter
the region Ω and stay inside Ω. Hence the region Ω, of biological interest, is
positively-invariant under the flow induced by model (3).
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3.2. Equilibrium points

In this section we investigate the existence of equilibria of model (3). Solving
the right hand side of the model by equating it to zero, we obtain the following
biologically relevant equilibria:

3.2.1. Disease-free equilibrium point and its stability

The disease-free equilibrium of model system (3) is given by

E0 =
(π
d
, 0, 0, 0

)
.

The stability of E0 is governed by the basic reproduction number. We shall
use the next generation operator [28, 30] to establish the stability of E0.
Using the notation in [30] for model (3), the matrix of new infections F into
compartments and the matrix of transfer terms V in and out of compartments
are given

F =

0
βπ

d

γβπ

d
0 0 0
0 0 0

 , V =

d+ α 0 0
−α θ + ε+ d 0
0 −θ ε+ d

 (4)

so that

V −1 =



1

d+ α
0 0

α(d+ ε)

(d+ α)(d+ ε)(d+ ε+ θ)

1

θ + ε+ d
0

αθ

(d+ α)(d+ ε)(d+ ε+ θ)

θ(d+ α)

(d+ α)(d+ ε)(d+ ε+ θ)

1

ε+ d


.

Following [28], the basic reproduction number of model (3) is

R0 = ρ(FV −1)

where ρ represents the spectral radius of the matrix FV −1. R0 is BTB
infection basic reproduction number given by

R0 =
π

d

(
βα

(d+ α)(d+ ε+ θ)
+

αθγβ

(d+ α)(d+ ε)(d+ ε+ θ)

)
8



The first term of R0 represents the contribution of infected buffalo and the
second term represents the contribution of buffalo carriers. The stability of
E0 is stated in the following theorem:

Theorem 1. The disease-free equilibrium E0 of model (3) is locally asymp-
totically stable whenever R0 < 1 and unstable otherwise.

Proof. The approach used to find R0 guarantees the local stability of disease-
free equilibrium E0. For stability of E0, we need to show that all the eigen-
values of the Jacobian matrix of model (3) evaluated at E0 are negative or
have negative real parts. It is sufficient to consider the stability of the matrix
F − V [28]:

F − V =


−(d+ e)

βπ

d

γβπ

d

α −(θ + ε+ d) 0

0 θ −(ε+ d)

 .

The eigenvalues of F − V are solutions to the characteristic equation

λ3 +G1λ
2 +G2λ+G3 = 0,

where

G1 = (3d+ α + θ + 2ε)

G2 = ((d+ α)(d+ ε) + (d+ α)(θ + ε+ d) + (θ + ε+ d)(ε+ d)− βπα

d
)

G3 = (ε+ d)(d+ α)(θ + ε+ d)(1−R0).

The Routh-Hurwitz Stability Criterion is used to establish that eigenvalues
are either negative or have negative real parts.

So G2G1 −G3 = B1 +B2 +B3 +B4(B5(1−R0) + αθγβ π
d
) > 0,

where
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B1 = (ε+ d)2(d+ α) + (ε+ d)(d+ α)2,

B2 = 2(ε+ d)(d+ α)(d+ θ + ε) + (d+ α)2(d+ θ + ε)2,

B3 = (d+ θ + ε)2(ε+ d) + αβ
π

d
γθ

B4 =
(d+ θ + ε+ d+ ε)

(ε+ d)
,

B5 = (d+ α)(d+ θ + ε).

Since all the Routh-Hurwitz conditions are satisfied when R0 < 1, then all
the eigenvalues are negative. Thus the disease free equilibrium point is locally
asymptotically stable when R0 < 1.

To guarantee the global asymptotic stability of the disease-free state, we
rewrite the model (3) in the form{

dX
dt

= F (X,Z),
dY
dt

= G(X,Z), G(X,0) = 0,

where X = Bs and Y = (Be, Bi, Bc)
T with X ∈ <+ denoting the number of

susceptible buffalo and Y ∈ <3
+ denoting the number of infected buffalo.

The disease-free equilibrium is now denoted by E0 = (X0,0) where X0 =
π

d
and 0 is a zero vector. The following conditions H1 and H2 should be
satisfied to guarantee global asymptotic stability:

• H1: For dX
dt

= F (X0,0), X0 is globally asymptotically stable.

• H2: G(X,Z) = AY − G̃(X, Y ), G̃(X, Y ) ≥ 0 for (X, Y ) ∈ Ω, where
A = DY (G(X0,0)) is an M-matrix. If model (3) satisfies the conditions
H1 and H2, then the following result holds.

Theorem 2. The disease-free equilibrium point E0 = (X0,0) is a globally
asymptotically stable equilibrium of the system (3) provided that R0 < 1 and
the assumptions H1 and H2 are satisfied.

Proof. Consider

F (X, 0) = π − dBs, G(X, Y ) = AY − G̃(X, Y )

where
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A =

−(d+ α) βπ
d

γβπ
d

α −(θ + ε+ d) 0
0 θ −(ε+ d)

 ,

and

G̃(X, Y ) =

λN(1− Bs

N
)

0
0

 .

The first condition H1 is satisfied when X is a globally asymptotically stable
equilibrium point of the equation

dBs

dt
= π − dBs. (5)

Solving (5) we obtain

Bs(t) =
π

d
−Bs(t)e

−dt,

Taking limits as t→∞ we obtain,

lim
t→∞

Bs(t) = X0.

This suggests that independent of the initial conditions the solution of the
equation (5) converges to X0. Thus, X0 is a globally asymptotically equilib-
rium point of (5). To prove condition H2, we observe that G̃(X, Y ) ≥ 0, so
this completes the proof of both conditions.

The significance of Theorem (2) is that BTB infection can be eradicated
completely from the buffalo population in the long run whenever R0 < 1.

3.2.2. Endemic equilibrium point

The coordinates of the endemic equilibrium point E∗1 = (B∗s , B
∗
e , B

∗
i , B

∗
c )

of model (3) are obtained in terms of the force of infection, using the approach
in [29] as follows

π − λ∗B∗s − dB∗s = 0, (6)

λ∗B∗s − (α + d)B∗e = 0, (7)

αB∗e − (θ + d+ ε)B∗i = 0, (8)

θB∗i − (d+ ε)B∗c = 0. (9)
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From equation (5) we have

B∗s =
π

λ∗ + d
. (10)

Substituting equation (9) into equation (6) we obtain

B∗e =
πλ∗

(λ∗ + d)(α + d)
. (11)

Substituting equation (11) into equation (7) we find that

B∗i =
απλ∗

(θ + d+ ε)(λ∗ + d)(α + d)
. (12)

Substituting equation (12) into equation (8) we obtain

B∗c =
απλ∗

(θ + d+ ε)(λ∗ + d)(α + d)(d+ ε)
. (13)

Our force of infection at the equilibrium point is

λ∗ =
β(B∗i + γB∗c )

N∗
, (14)

where

N∗ =
π(θ + d+ ε)(d+ ε)(α + d) + λ∗π((θ + d+ ε)(d+ ε) +Q

(θ + d+ ε)(α + d)(d+ ε)(λ∗ + d)
. (15)

where

Q = αλ∗π(d+ ε) + αλ∗π

If (12), (13) and (15) are substituted into (14), we obtain the equation in
terms of λ∗:

λ∗(D1λ
∗ +D2) = 0, (16)

where

D2 = 1−R0, D1 =
(θ + d+ ε)(d+ ε) + α((d+ ε) + 1)

(θ + d+ ε)(d+ ε)(α + d)
.

The roots of equation (16) are λ∗1 = 0 and λ∗2 =
R0 − 1

D1

. λ∗1 = 0 corresponds

to the disease free equilibrium point and λ∗2 is therefore the root that corre-
sponds to the endemic equilibrium point provided R0 > 1. We summarize
the existence results as follows:
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Theorem 3. The BTB endemic equilibrium point E∗1 exists and is unique
whenever R0 > 1.

Theorem 4. The unique endemic equilibrium E1 is locally asymptotically
stable for R0 > 1.

Proof. To determine the local stability of the equilibrium point E1, we use the
center manifold theory by making the following change of variables: Bs =
x1, Be = x2, Bi = x3 and Bc = x4. Let X = (x1, x2, x3, x4)

> where >
denotes the transpose of a matrix. Model (3) can be written in the form
dX
dt

= g = (g1, g2, g3, g4)
>, so that

dx1

dt
= g1 = π − (βx3 + γβx4)

x1 + x2 + x3 + x4

x1 − dx1,

dx2

dt
= g2 =

(βx3 + γβx4)

x1 + x2 + x3 + x4

x1 − (α + d)x2,

dx3

dt
= g3 = αx2 − (θ + d+ ε)x3,

dx4

dt
= g4 = θx3 − (d+ ε)x4.

(17)

Choosing β as a bifurcation parameter and noting that R0 = 1 gives the
bifurcation point, we obtain

β = β∗ =
d(d+ α)(d+ ε)(d+ ε+ θ)

πα(d+ ε+ γθ)
.

Substituting β = β∗ into the Jacobian matrix of (17) we obtain the following
eigenvalues:

λ1 = 0, λ2 = −(d+ α), λ3,4 = −d1

2
±
√(

d1

2

)2

− d0

where

d0 = k1k2 + k1k3 + k2k3 − αβ∗π
d

d1 = k1 + k2 + k2,
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and

k1 = d+ α, k2 = θ + ε+ d, k3 = d+ ε.

Clearly zero is a simple eigenvalue and thus the center manifold theory can
be used to analyse the dynamics of the system of equations (17) near β = β∗

. The Jacobian matrix of (17) evaluated at E0 using β = β∗ has a right
eigenvector associated with the zero eigenvalue given by

w = [w1, w2, w3, w4]
>,

where

w1 = − βπα

d(θ + d+ ε)

(
1 +

γθ

d+ ε

)
, w2 = 1, w3 =

α

θ + d+ ε
, w4 =

θα

d+ ε
.

The left eigenvector of J(E0) associated with the zero eigenvalue at β = β∗

is given by
v = [v1, v2, v3, v4]

>,

where

v1 = 0, v2 =
α

α + d
, v3 = 1, v4 =

γβπα

d(α + d)(d+ ε)
.

To calculate a we use the following non-vanishing partial derivatives of g

∂2g2

∂x2∂x3

=
−πβ
d

,
∂2g2

∂x2∂x4

=
−βγπ
d

,

so that

a =
4∑

i,j,k=1

vkwiwj
∂2gk
∂xi∂xj

(0, 0) = −2v2(
π

d
w1w3 +

γπ

d
w1w4) < 0.

We proceed to compute the bifurcation coefficient a and b as follows: The ex-
pression for b is obtained from the following non-vanishing partial derivatives
of g

∂2g2

∂x3∂β∗
=
π

d
,

∂2g2

∂x4∂β∗
=
γπ

d
,

so that

b =
4∑

i,k=1

vkwi
∂2gk
∂xi∂β∗

(0, 0) = v2(
π

d
w3 +

γπ

d
w4) > 0.

Thus, a < 0 and b > 0.
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Model (3) exhibits a transcritical bifurcation which is a supercritical bifurca-
tion. In a supercritical bifurcation scenario, the exchange of stability between
the uninfected and infected equilibrium points guarantees that the infected
equilibrium point is locally asymptotically stable whenever R0 > 1. This
means on one hand when R0 > 1, BTB infection persists in the buffalo pop-
ulation. On the other hand, if the condition on R0 is reversed to R0 < 1,
then the disease free equilibrium point is the only equilibrium point in ex-
istence [25]. Hence, according to the model prediction, it is possible to
eradicate BTB infection in buffalo population by introducing and maintain-
ing favourable conditions.

3.2.3. Analysis of R0

As earlier stated, the basic reproduction number measures the average num-
ber of new infections generated by a single infected buffalo in a completely
susceptible buffalo population. We can re-write R0 as

R0 = R0i +R0c (18)

where

R0i =
παβ

d(d+ α)(d+ ε+ θ)
,

R0c =
γβπαθ

d(d+ α)(d+ ε)(d+ ε+ θ)
,

R0i defines the reproduction number due to infective buffalo and R0c is the re-
production number due to carrier buffalo. The terms in (18) can be explained

as follows:
1

d+ α
,

1

θ + d+ ε
,

1

d+ ε
are the average times an individual spends

in exposed class Be, infected class Bi and the carrier class Bc respectively.

The term
α

α + d
is the probability that an individual progresses to an infective

class from the exposed class, while the term
θ

d+ ε+ θ
is the probability that

an individual progresses to a carrier class from an infective class. The terms
βπ

d

(
α

d+ α

)(
1

d+ ε+ θ

)
and

γβπ

d

(
α

d+ α

)(
1

d+ ε+ θ

)(
1

d+ ε

)
can be

explained as the secondary infections caused by infective and carrier buffalo
respectively. The conditions R0 < 1 and R0 > 1 can be interpreted as in
Table (1) in relation with the status of the equilibrium point indicated in
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Table 1: Table of R0 scenarios
Case R0i R0c R0 Region

(i) > 1 > 1 > 1 E
(ii) > 1 < 1 > 1 D
iii) < 1 > 1 > 1 C
iv) < 1 < 1 > 1 B
v) < 1 < 1 < 1 A

Figure 2: The figure showing four possible scenarios for bovine tuberculosis stages.

Figure (2).
In region A, the BTB infection dies out without any intervention. The

pseudo endemic equilibrium point exists in region B where BTB infection is
sustained by the combined effort from both infected and carrier buffalo. Re-
gion C represents an endemic equilibrium region where BTB infection is being
driven by carrier buffalo only. Region D represents an endemic equilibrium
point where the infection is being driven by infected buffalo only. Region E
represents an endemic equilibrium point where the infection is driven by both
infected buffalo and carrier buffalo. The pseudoendemic equilibrium point is
in the interface of the rest of the equilibria. Thus to move from one equilib-
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rium point to another, the system always passes through the pseudoendemic
equilibrium. The implication regarding the endemic equilibrium status is
that once the buffalo population is in equilibria C, D and E, reversing the
system to disease free status will call for persistence efforts towards achieving
this goal. This means highly accurate control measures need to be imple-
mented to be completely sure that the system has achieved the disease-free
status.

4. Numerical simulations

We present a detailed account on how the parameters used in the model are
estimated. We then use the parameters to carry out numerical simulations
that will enhance further understanding of the model predictions. For some
parameters, we shall perform sensitivity analysis to assess their influence on
the outputs of the model.

4.1. Parameter estimation

All parameter values used in the numerical simulations are given in Table
4 together with their sources. Some parameters are taken as they appear
in the literature while other parameter values are determined based on the
explanation given in the literature. Those with no known values from lit-
erature are determined by the conditions subjected to them in the model
formulation. The values used in the simulations are indicated on the legends
of the graphs. The values of β and α are obtained from [6]. The reduction
factor for the infective rate of the carrier buffalo, γ, is determined based on
the fact that it lies between 0 and 1. The parameter ε is determined based
on the fact that it takes a long time for an infected buffalo to die from the
infection and research shows that bovine tuberculosis increases mortality by
approximately 10% [3, 4, 20]. The parameter π is estimated from the es-
timates given in the literature, for instance in [31] and ranges from 252 to
1200. The parameter d is estimated using the life expectancy of a buffalo
which ranges between 20 and 29 years and so the death rate ranges between
1

29
and

1

20
[31]. The transfer rate, θ, is also assumed as there is no literature

that gives the estimate of the rate the infected buffalo class move to carrier
buffalo class. The estimated initial conditions we use are Bs(0) = 24052,
Be(0) = 948, Bi(0) = 100 and Bc(0) = 50 [20, 31].
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5. Sensitivity Analysis

The sensitivity analysis of parameters used in our simulation was done us-
ing the method of Latin Hypercube Sampling with partial rank correlation
coefficient index (PRCC). PRCC’s falls between −1 and 1, with an absolute
value of PRCC close to 1 indicating the parameter has a strong impact on
the model output. Furthermore, PRCC provides a measure of the relative
influence of these parameters on the targeted model output [33]. We test
the effects of all the input parameters used in our model on the output vari-
ables. Of particular interest is the influence of the parameters on the infected
buffalo and carrier buffalo which are the problematic variables towards the
progression of BTB infection. The PRCC’s are calculated at one year as well
as at fifteen years. The choice of the first point is influenced by the fact that
within a year, BTB infection is in its incubation period. The second point is
selected to compare the long term impact of the parameters over time. The
results in Table 2 suggest that β and Γ are some of the dominant parameters
that drive the BTB infection. The relative importance of some parameters
increases or decreases in the course of infection. For instance, the relative
importance towards the evolution of BTB infection of π increases to 1 from
0.998. The relative significance of α, the transition rate from exposed class
to infectious class increases to -0.7 from -0.5. This suggests that the effect
of parameters π and α increases in the course of infection. Table 2 gives
detailed account of the evolution of parameters from the initial stages of the
infection (1 year) up to the very late of the infection (15 years).

Sensitivity analysis done on carrier buffalo sub-population aimed to identify
the parameters that impact on the carrier buffalo. The parameters, π, β
and Γ also emerged as some of the parameters that play crucial role in the
epidemiology of carrier buffalo. The relative importance of other parameters
towards the dynamics of carrier buffalo either increases or decreases. For
instance, the relative importance of π increases to 0.91 from 0.84. The pa-
rameter, θ, shifted its relative importance from negative to positive. Table
3 has the details of the relative importance of model parameters from the
initial stages (1 year) to the late stages of the infection (15 years).
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PRCC: 1 year PRCC: 15 years
Parameter PRCC Index Parameter PRCC Index

π 0.998 π 1
β 0.6 β 0.6
γ 0.7 γ 0.46
d 0.1 d 0.087
θ 0.081 θ 0.084
ε -0.7 ε -0.7
α -0.5 α -0.7

Table 2: PRCC indices at two different time points on infected buffalo

PRCC: 1 year PRCC: 15 years
Parameter PRCC Index Parameter PRCC Index

π 0.84 π 0.91
β 0.07 β 0.07
γ -0.087 γ -0.1
d -0.8 d -0.8
θ -0.012 θ 0.01
ε -0.1 ε -0.067
α -0.089 α -0.1

Table 3: PRCC indices at two different time points on carrier buffalo

5.1. Simulations

We present numerical simulations of model (3) to explore the overall impact
of various transmission mechanisms of bovine tuberculosis in the buffalo pop-
ulation. The transmission mechanisms due to contaminated environment and
those due to effective contacts between susceptible, infected and carrier buf-
falo are explored. This is necessary to determine the control strategies of BTB
infection since we need to know which processes cause the greatest damage
towards the progression of BTB in the buffalo population. Using parameter
values in Table 4, we firstly explore the role of environmental transmission
mode in the epidemiology of BTB infection which is achieved by increasing
parameter Γ while keeping the horizontal and carrier transmission rates low.
Secondly, we investigate the effects of horizontal transmission represented by
β in the evolution of BTB infection by varying parameter β when Γ and γ
are kept low. Thirdly, we explore the effect of carrier buffalo in the evolution
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Table 4: Table of parameter values used in the model
Name Range Units Reference

π [252, 1200] year−1 [31]
α [0.03, 0.08] year−1 [6]
β [0.01, 0.053] year−1 [6]
ε [0.1, 0.53] year−1 [3, 32]
d [ 1

29
, 1

20
] year−1 [31]

θ [0.01, 0.05] year−1 estimated
γ [0, 1] year−1 see section (2)

of BTB infection in the cases of high and low β and Γ. Lastly, we carry out
sensitivity analysis to determine the influential parameter values that drive
BTB infection in the buffalo population.

Figure 3 explores the scenario of varying the horizontal transmission rate
in the epidemiology of bovine tuberculosis in buffalo population. The re-
sults show that horizontal transmission does not only have a negative effect
on buffalo population, but it also promotes the persistence of the infection.
Thus the endemic levels of infected and carrier buffalo when R0 > 1 are
high compared to endemic levels when the environmental transmission rate
is considered. From the veterinary public health point of view, this scenario
is a threat to the survival of buffalo since BTB infection can easily spill over
to other species, a situation that puts the whole park at risk of being com-
pletely invaded.
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Figure 3: Graph showing the effects of increasing the horizontal transmission rate of BTB
infection. π = 1200, ε = 0.2, α = 0.07, d = 0.05, θ = 0.02,Γ = 0.001, γ = 0.01

6. Discussion

The mathematical model presented in this paper captures the effects of var-
ious transmission routes of bovine tuberculosis such as indirect transmission
mechanism and horizontal transmission mechanism initiated by infected and
carrier buffalo. We ensured that the model was both biologically and math-
ematically tractable. The basic reproduction number R0 was calculated and
used to determine the global dynamics and the outcome of the disease and
if the threshold parameter R0 < 1, the solution trajectories converge to the
disease free equilibrium. On the other hand, if R0 > 1, the solution con-
verges to the endemic equilibrium point. The center manifold theory was
used to prove the local stability of endemic equilibrium point. We used nu-
merical simulations as baselines to illustrate the different scenarios from the
model analysis. Sensitivity analysis was also conducted using Latin Hyper-
cube Sampling method to determine the model parameters that drive the

21



transmission dynamics of BTB infection. Most baseline values for our pa-
rameters were taken from indicated sources and for some which were not
available in literature we resorted to estimation guided by the underlying bi-
ological scenarios from literature. The simulations allowed us to observe the
effect of the parameters on the transmission dynamics of bovine tuberculosis
in buffalo population.

Using the parameter values used in the simulations, the estimated value of R0

is 7.8, the value that shows the endemicity of BTB infection in buffalo pop-
ulation. To control the disease, the control measures that target at reducing
the horizantal transmission rate and at promoting the screening activities
should be adopted. For instance, a 50% decrease in horizontal transmission
rate, causes R0 to reduce to 3.9. A 50% decrease in the transition rate α,
results in a drop of only 0.79. A significant drop of 5.4 in R0 is observed
when the combined efforts are employed, thus control measures that reduce
the β and α simultaneously. The analysis shows that integrated efforts are
required from all stakeholders to reduce R0 < 1.

Numerical simulations also suggest the social behaviour of buffalo, a feature
captured in β, promotes the persistence of BTB infection in buffalo popula-
tion. The result is illustrated by the trajectory solutions of Bs(t), Be(t), Bi(t)
and Bc in Figure 3. The observation further confirms the fact that BTB in-
fection can only be eliminated if the transmission routes are well understood
and can be accurately measured. The greatest challenge is that these differ-
ent transmission routes cannot be quantified exactly so that any intervention
strategy is most likely to depend on estimates especially in large parks. If
there are only buffalo carriers in the ecosystem, BTB infection is not sus-
tained in the ecosystem. This becomes possible if we assume that the envi-
ronment is not heavily contaminated and very little activities that promote
horizontal transmission, which practically is not feasible. Ecologically this
means that the transmission through carriers remains a serious problem that
requires considerable attention from all players involved in BTB infection.

Further, through sensitivity analysis, our results show that if all three modes
of transmission are promoted, BTB infection can spread rapidly in buffalo
population as evidenced by the significant effects of parameters β and γ in
Table 2. This can cause direct economic loss plus secondary losses, for ex-
ample due to an accelerating death of lions, which attract many tourists in
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Kruger National Park. Sensitivity analysis also revealed that β is of the
parameters that drives the transmission dynamics of BTB infection. This
knowledge can be used by policy makers to come up with holistic control
measures to control the BTB infection. However, to effectively guide public
policy and public health decision making, the model and parameter values
would need to be tested against data from bovine tuberculosis field sites.
The current analysis, however, remains an important first step in comparing
the effectiveness of different control strategies.
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Abstract

A mathematical model that describes the transmission dynamics of bovine tu-
berculosis (BTB) in both buffalo and cattle populations is proposed. The model
incorporates cross-infection and contaminated environment transmission routes.
A full analysis of the model is undertaken. The reproductionnumber of the en-
tire model is comprised of cross-infection and contaminated parameters. This
underscores the importance of including both cross-infection and contaminated
environment transmission routes. Crucially our simulations suggest that the dis-
ease has a more devastating effect on cattle populations than on buffalo popula-
tions when all transmission routes are involved. This has important implications
for agriculture and tourism.

Keywords: Cattle, Cross-infection, Buffalo, Environment, Mathematical
modelling, Mycobacterium bovis

1. Introduction

Bovine tuberculosis (BTB) results from infection by mycobacterium bovis (M.
bovis), a Gram positive, acid-fast bacterium in the mycobacterium tuberculosis
complex of the family mycobacteriaceae [2]. BTB is a chronicbacterial disease
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that affects all species of mammals including buffalo, cattle and humans [1, 2]. It
is spread through inhaling contaminated aerosol droplets,drinking unpasteurised
milk, eating poorly cooked meat, scavenging infected animals, grazing on con-
taminated pasture and also through vertical transmission (from an infected fe-
male animal to a newly born animal) [3, 4, 13, 14, 15, 16, 17]. BTB infection
can be dormant for years and reactivate later in the lifespanof an animal due to
stress or old age [2, 3, 14, 18].

It has been estimated thatM. bovisaccounts globally for 3.1% of all human
tuberculosis cases (2.1% of all pulmonary and 9.4% of all extra-pulmonary tu-
berculosis cases). However, the extent ofM. bovisinvolvement in the global tu-
berculosis burden in Africa is still largely unknown. This can be partly explained
by the fact that in humans, tuberculosis due toM. bovisis indistinguishable from
that due toM. tuberculosisin terms of clinical signs, radiological and pathologi-
cal features. In addition, various laboratories in sub-Saharan Africa do not have
the capacity to differentiateM. bovisfrom M. tuberculosis[23]. The paucity of
information on BTB infection in Africa [5] with the exception of South Africa
where a substantial research in BTB infection has been carried [14], has led to
a poor understanding of its transmission dynamics in animals and humans. This
work aims to enhance the understanding of the transmission dynamics of BTB
infection through mathematical models.

Mathematical modelling has become an important tool in analysing the epidemi-
ological characteristics of infectious diseases and can provide insight into useful
control measures [24]. Various models have been formulatedto explore various
aspects of BTB infection. A non-linear transmission model consisting of sus-
ceptible and infected possum populations was developed [25]. The model was
used to explain bovine tuberculosis dynamics in a heterogeneous possum popu-
lation, taking into account the patchy distribution of the infection. A determinis-
tic/stochastic model was developed to explore the factors that drive the spread of
BTB infection in possum population and social contact was found to promote the
spread of BTB infection [6]. A spatial stochastic model was developed in [26] to
assess fertility control as a means of controlling bovine tuberculosis in badgers.
The results showed that fertility control alone cannot completely eradicate BTB
infection from badger populations.

Apart from using mathematical models to understand the transmission dynamics
of BTB infection in wildlife, epidemiological models were also used in livestock.
A model comprised of seven sub-populations was formulated to enhance the un-
derstanding of the transmission dynamics in cattle [4]. Oneof the main results of
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the model was that imported infected cattle were responsible for the persistence
of BTB infection in cattle population. A discrete mathematical model was devel-
oped in [14] to assess vaccination as a control strategy in anongoing epidemic
of bovine tuberculosis in African buffalo. The model established that BTB infec-
tion can be completely wiped out if various strategies are used in combination.
The concept of cross-infection of BTB between buffalo and cattle populations
was not considered in any of the models formulated so far. This is in contrast
to other zoonotic diseases like brucellosis disease that istransmitted from sheep
to people [27]. The inclusion of cross-infection transmission route in the model
was necessitated by the observation that BTB infection prevalence was higher in
cattle and buffalo populations, in areas at the interface with wildlife than those
that are not at the interface [7]. This suggested that cross-infection route may
play a role in the epidemiology of BTB infections in both populations. It is at
the interface where cattle/buffalo interactions are experienced [13].

We will build a model that will characterise the epidemiological features of BTB
infection transmission mechanisms involving buffalo and cattle populations. The
model will address the following questions:

• Does the shedding off of M. bovis in the environment promote the persis-
tence of the infection in cattle and buffalo populations?

• Is cross- infection of BTB infection from buffalo responsible for higher
prevalence of the infection in cattle?

2. Mathematical model

In this section, we introduce a continuous mathematical epidemiological model
for the transmission and evolution of bovine tuberculosis in both buffalo and
cattle populations. Guided by the information on the natural history of BTB
infection in both cattle and buffalo population to determine, the basic plausible
assumptions for the model formulation are determined [28, 29, 30]. A popula-
tion size of cattle,Nc(t), which is time varying, is partitioned into three classes
consisting of cattle that are susceptible to the disease,Cs(t), exposed cattle that
haveM. bovisbut are not infectious,Ce(t), and infectious cattle that spread the
disease to both cattle and buffalo, Ci(t). The buffalo population of size,Nb(t),
which is also time varying, is compartmentalised into buffalo that are susceptible
to disease,Bs(t), exposed and non-infectious buffalo, Be(t), and infectious buf-
falo that spread the disease to both buffalo and cattle,Bi(t). Due to the nature of
BTB infection, a recovery class is not considered because itis assumed that an
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animal does not recover from infection [9]. A variable,V, is used to denote the
quantity of infectiousM. bovisin the enviroment, which is shed off at a rateσ
by the infected buffalo and cattle through the activities of urination and excre-
tion of feces. We assume thatM. bovisin the environment decays at the rateθ.
The maximum carrying capacity ofM. bovisin the environment is represented
by K. We assume that a susceptible cow progresses to the exposed class,Ce(t),
through either an effective contact with the infected cattle at a constant rateβc,
an effective contact with the infected buffalo at a rateβcb or through contact with
the contaminated environment at a rateψc. The exposed cow progresses to the
infectious class at a rateφc. The natural and disease induced death rates of the
cattle areµc andǫc respectively. The recruitment rate of cattle to a susceptible
class isπ1. We also assume that a susceptible buffalo progresses to the exposed
buffalo class,Be(t), through either an effective contact with the infected buffalo
at the rateβb, an effective contact with the infected cattle at a rateβbc or through
contact with the contaminated environment at rateψb. The exposed buffalo pop-
ulation progresses to the infected class,Bi(t), at the rateφb. The recruitment
rateπ2 of susceptible buffalo is assumed to be constant. The natural and disease
induced death rates of buffalo areµb andǫb respectively. It is further assumed
that the infection rate from cattle to cattleβc is greater than the infection rate
from infected buffalo to susceptible cattle populationβcb. The same assumption
also holds in buffalo population, thusβb > βbc [10]. Homogeneous mixing is
assumed, thus all susceptible cattle have the same likelihood to be infected and
also susceptible buffalo have the same chance of being infected. The force of
infection for cattle is given by

λc =
βcCi

Nc
+
βcbBi

Nb
+
ψV
K
, (1)

and the force of infection for buffalo is defined by

λb =
βbBi

Nb
+
βbcCi

Nc
+
ψV
K
. (2)

The possible interactions among and between cattle and buffalo are illustrated in
Figure 1.
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Cs Ce Ci

Bs Be Bi

V

λcCs φcCe

λbBs φbBe

σb

σc

µcCs µcCe

θV

(µc + ǫc)Ci

µbBs µbBe (µb + ǫb)Bi

π1

π2

Figure 1: The flowchart of the transmission dynamics of bovine tuberculosis in buffalo and cattle
population. The dashed lines represent the transmission routes. The dotted lines represent the
shedding off of M. bovisin the environment.

The compartmental model in Figure 1 is thus represented by the following of
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non-linear system of ordinary differential equations ,

dCs

dt
= π1 − λcCs − µcCs,

dCe

dt
= λcCs − φcCe − µcCe,

dCi

dt
= φcCe − (µc + ǫc)Ci ,

dV
dt

= σcCi + σbBi − θV,

dBs

dt
= π2 − λbBs− µbBs,

dBe

dt
= λbBs− φbBe− µbBe,

dBi

dt
= φbBe − (µb + ǫb)Bi.

(3)

whereNc(t) = Cs(t) +Ce(t) +Ci(t) andNb(t) = Bs(t) + Be(t) + Bi(t) with

dNb

dt
= π2 − µbNb − ǫbBi,

dNc

dt
= π1 − µcNc − ǫcCi .

We introduce the following dimensionless parameters:
τ = µct, Bc =

βc

µc
,Ψc =

ψc

µc
,Ψb =

ψb

µc
, Bb =

βb

µc
, Bcb =

βcb

µc
, Bbc =

βbc

µc
,Σc =

σc

µc
,Σb =

σb

µc
,Θ = θ

µc
,Φc =

φc

µc
,Φb =

φb

µc
, Ec =

ǫc
µc
, Mb =

µb

µc
, Eb =

ǫb
µc
.

The dimensionless variables then are

x1 =
Cs

Nc
, x2 =

Ce
Nc
, x3 =

Ci
Nc
, x4 =

V
K , x5 =

Bs

Nb
, x6 =

Be
Nb
, x7 =

Bi
Nb
,Π1 =

π1
Ncµc

,Π2 =
π2

Nbµc
.

The forces of infection become

Λc = Bcx3 + Bcbx7 + Ψcx4, Λb = Bbx7 + Bbcx3 + Ψbx4.
6



Now our system (3) becomes

dx1

dτ
= Π1 − Λcx1 − x1,

dx2

dτ
= Λcx1 −Φcx2 − x2,

dx3

dτ
= Φcx2 − (1+ Ec)x3,

dx4

dτ
= Σcx3 + Σbx7 − Θx4,

dx5

dτ
= Π2 − Λbx5 − Mbx5,

dx6

dτ
= Λbx5 −Φbx6 − Mbx6,

dx7

dτ
= Φbx6 − ( Mb + Eb)x7.

(4)

We now proceed to analyse the transformed nonlinear system (4) as the dynamics
of system (4) are qualitatively equivalent to the dynamics of the system (3).

3. Cattle sub-population model

By setting Bcb = Bbc = Ψb = Σb = 0, we obtain the following cattle sub-
population model:

dx1

dτ
= Π1 − Λcx1 − x1,

dx2

dτ
= Λcx1 −Φcx2 − x2,

dx3

dτ
= Φcx2 − (1+ Ec)x3,

dx4

dτ
= Σcx3 − Θx4.

(5)

7



This sub-model describes the transmission dynamics of bovine tuberculosis in
cattle only. The sub-model also takes into account the role of contaminated pas-
ture in the evolution of bovine tuberculosis in the cattle population.

3.1. Feasible region
Since sub-model (5) monitors the cattle population, we assume that all state vari-
ables and parameters are positive for timeτ > 0. The bovine tuberculosis trans-
mission sub-model will then be analysed in a suitable feasible region given by

Ω1 =

{
(x1, x2, x3, x4) ∈ ℜ4

+|x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,Nc ≤ Π1, x4 ≤ Σc

Θ

}
.

We show that the regionΩ1 is positively invariant. For sub-model (5) to be
epidemiologically useful, it is important to show that all its state variables are
non-negative for all time.

Let x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, ∀τ ≥ 0. From the first equation of sub-model
(5) we have

dx1

dτ
= Π1 − (1+ Λc)x1,

which can be solved to obtain

x1(τ) = x1(0)exp

[
−

(
τ +

∫ τ

0
Λc(s)ds

)]
+ exp

[
−

(
τ +

∫ τ

0
Λc(s)ds

)]
(∫ τ

0
Π1exp

[
τ +

∫ τ

0
Λc(w)dw

]
ds

)
≥ 0,∀τ ≥ 0.

Similarly

x2(τ) = e−(1+Φc)τ

∫ τ

0
Λc(s)e

(1+Φc)sx1(s)ds+ x2(0)e−(1+Φc)τ ≥ 0.

x3(τ) = x3(0)e−(1+ Ec)τ,

x4(τ) = x4(0)e−Θτ ≥ 0.

Thus all the solutions of sub-model (5) are non-negative inΩ1.

We now show that all feasible solutions are bounded in a proper subset ofΩ1.
Adding all the equations in sub-model (5) gives

Ṅc = Π1 − Nc(τ) − Ecx3,

≤ Π1 − Nc(τ),
8



whereNc(τ) = x1 + x2 + x3.

Solving the inequality gives

0 ≤ Nc(τ) ≤ Π1 + (Nc(0)− Π1) e−τ,

whereNc(0) represents the initial value ofNc(t). Thus, asτ → ∞, 0 ≤ Nc(τ) ≤
Π1. Note that alsodx4

dτ = Σcx3 − Θx4 ≤ Σc − Θx4. We can thus easily obtain

0 ≤ x4 ≤ Σc

Θ
. Therefore, all solutions of sub-model (5) enter the region from

the boundary ofΩ1. This means that all possible solutions of sub-model (5)
will enter the regionΩ1 and stay insideΩ1. Hence the regionΩ1, of biological
interest, is positively-invariant under the flow induced bysub-model (5).

3.2. Equilibrium points

In this section we investigate the existence of equilibria of sub-model (5). Solv-
ing the right hand side of the sub-model by equating it to zero, we obtain the
disease free equilibrium given by

E0c = (Π1, 0, 0, 0) .

The stability ofE0c is governed by the basic reproduction number which is ob-
tained by the next generation operator [31, 32].

The basic reproduction number of model (5) is hence given by

R0c =
Π1 BcΦc

( Ec + 1)(1+ Φc)
+

ΨcΠ1ΣcΦc

Θ( Ec + 1)(1+ Φc)
.

Our R0c captures parameters from the two transmission routes that drive the in-
fection in cattle population and it is defined as the expectednumber of secondary
infections generated due to the interactions between susceptible cattle and infec-
tive cattle and contaminated environment. The first term ofR0c represents the
infection due to the interaction between susceptible cattle and infected cattle.
The infection due to the interaction of susceptible cattle and the environment is
represented by the second term ofR0c.

To test the parameters that significantly affect the transmission dynamics of BTB
in cattle, sensitivity analysis onR0c was carried out through differentiatingR0c
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with respect to parameters of the model. The following results were obtained

∂R0c

∂Ψc
=

Π1ΣcΦc

Θ( Ec + 1)(1+ Φc)
,

∂R0c

∂Σc
=

Π1ΨcΦc

Θ( Ec + 1)(1+ Φc)
,

∂R0c

∂Θ
= − ΨcΠ1ΣcΦ

Θ2( Ec + 1)(1+ Φc)
.

The sensitivity analysis onR0c shows thatΨc andΣc contributes towards the epi-
demiology of bovine tuberculosis in cattle community. Thusthe risk measure
of the outbreak of BTB is increased when the infective rate due to contaminated
environment and the shedding rate of infectious mycobacterium bovis into the
environment increase. However, any increase in the decaying rate of the infec-
tious unit in the environment leads to a decrease inR0c. From the policy maker
perspective, this implies that the controlling measures applied should focus on
reducing environment infective rate andM. bovisshedding off rate and increas-
ing the decaying rate ofM. bovisin the environment in order to reduce bovine
tuberculosis in cattle population.

The stability ofE0c is stated in the following theorem:

Theorem 1. If R0c < 1, the disease-free equilibrium E0c of the sub-model (5) is
locally asymptotically stable, and is unstable if R0c > 1.

Proof. For stability ofE0c, we need to show that all the eigenvalues of the Jaco-
bian matrix of model (5) evaluated atE0c are negative or have negative real parts.
It is sufficient to consider the stability of the matrixF − V, whereF is a matrix
that contains transmission terms that describe the production of new infections
andV is the matrix that contains the transition terms that describe changes in the
state variables [31] whose eigenvalues ofF−V are solutions to the characteristic
equation

λ3 + Aλ2 + Bλ +C = 0

where

A = Θ + Ec + 2+ Φc, B = Θ2(2+ EcΦc) + ΦcΠ1ΣcΨc +
1

Θ(1+ Ec)(Φc+1)(1− R0c),
C = 1

Θ(1+ Ec)(Φc+1)(1− R0c).

The Routh-Hurwitz Stability Criterion is used to establishthat eigenvalues are
10



either negative or have negative real parts. It can be observed thatA > 0 and
C > 0 whenR0c < 1. It can also be established that

BA−C = Q+ Θ2(2+ Ec + Φc) + ΦcΠ1ΣcΨc > 0

where

Q = (1+ Θ + Ec + Φc)

[
(J +

1
Θ(1+ Ec)(Φc + 1)

(1− R0c)

]
whereJ = Θ2(2+ EcΦc)+ΦcΠ1ΣcΨc.WhenR0c < 1, then all the eigenvalues are
negative or have negative real parts. IfR0c > 1, it is easy to see thatA > 0,C < 0,
and despite the sign ofB we have, using Descarte’s rule of signs, there is only
one positive eigenvalue. This makesE0c a saddle point and therefore unstable.
Thus the disease free equilibrium pointE0c is locally asymptotically stable when
R0c < 1 and unstable whenR0c > 1.

3.2.1. The endemic equilibrium and its stability
Here, we study the existence and stability of the endemic equilibrium point. By
straightforward computation, ifR0c > 1, then the cattle sub-model (5) has a
unique endemic equilibrium given byE∗c = (x∗1, x

∗
2, x
∗
3, x
∗
4) in Ω1 with

x∗1 =
ΘΠ1(Θ Bc + ΨcΣc)

(R0c − 1)(Θ Bc + ΨcΣc) + Θ(Θ Bc + ΨcΣc)
,

x∗2 =
(1+ Ec)Σc(R0c − 1)
Φc(Θ Bc + ΨcΣc)

, x∗3 =
(R0c − 1)
Θ Bc + ΨcΣc

,

x∗4 =
Σc(R0c − 1)
Θ Bc + ΨcΣc

.

Theorem 2. If R0c > 1, the endemic equilibrium E∗c of the model (5) is locally
asymptotically stable inΩ2.

Proof. In order to explore the local stability of the endemic equilibrium point
Ec, we evaluate the JacobianJ(x∗1, x

∗
2, x
∗
3, x
∗
4) at the endemic equilibrium point

and we get

J(E∗c) =


−Bcx∗3 −Ψcx∗4 − 1 0 − Bcx∗1 −Ψcx∗1

Bcx∗3 + Ψcx∗4 −(1+ Φc) Bcx∗1 Ψcx∗1
0 Φc −(1+ Ec) 0
0 0 Σc −Θ

 .
11



The eigenvalues ofJ(Ec) are calculated usingDet(J(Ec − λI4)) = 0

Det


−A1 0 −A2 −A3

A4 −A5 A2 A3

0 Φc −A6) 0
0 0 Σc −A7

 = 0.

where

A1 = Bcx
∗
3 + Ψcx

∗
4 + 1+ λ; A4 = Bcx

∗
3 + Ψcx

∗
4; A2 = Bcx

∗
1; A3 = Ψcx

∗
1

A5 = 1+ Φc + λ; A6 = 1+ Ec + λ; A7 = Θ + λ

The first two eigenvalues of the Jacobian matrix areλ1 = −
(
Bcx∗3 + Ψcx∗4 + 1

)
andλ2 = −(1+ Φc) The other eigenvalues are obtained from

λ2 + b1λ + b2 = 0,

where

b1 = Θ + n+ Σcc3; b2 = ΣcΦcA3( Bcx
∗
3 + Ψcx

∗
4),

The eigenvaluesλ3,4 are both negative due to the existence ofx∗3, x∗4 andx∗1 when
R0c > 1. This implies that all four eigenvalues of our Jacobian matrix are nega-
tive, which proves the local stability of endemic equilibrium pointEc.

4. Buffalo sub-population

By setting Bbc = Bcb = Σc = Ψc = 0, we obtain the following buffalo sub-
population model:

dx5

dτ
= Π2 − Λbx5 − Mbx5,

dx6

dτ
= Λbx5 −Φbx6 − Mbx6,

dx7

dτ
= Φbx6 − ( Mb + Eb)x7,

dx4

dτ
= Σbx7 − Θx4,

(6)

which describes the transmission dynamics of bovine tuberculosis in buffalo
only. The sub-model also takes into account the role of contaminated pasture
in the spread of bovine tuberculosis in the buffalo population.

12



4.1. Feasible region

Since the sub-model (6) tracks the buffalo population we assume that all state
variables and parameters are positive for allτ > 0. The bovine tuberculosis
transmission sub-model will then be analysed in a suitable feasible region given
by

Ω2 =

{
(x5, x6, x7, x4) ∈ ℜ4

+|x5 ≥ 0, x6 ≥ 0, x7 ≥ 0, x4 ≥ 0,Nb ≤ Π2

Mb
, x4 ≤ Σb

Θ

}
.

whereNb(τ) = x5 + x6 + x7

The techniques used to establish the invariance and boundedness ofΩ2 are the
same as outlined in section (3).

4.2. Equilibrium points

In this section we investigate the existence of equilibria of sub-model (6). Solv-
ing the right hand side of the sub-model by equating it to zero, we obtan the
disease free equilibrium given by

E0b =

(
Π2

Mb
, 0, 0, 0

)
.

The stability ofE0b is governed by the basic reproduction number which is ob-
tained by the next generation operator [31, 32]. Following [31], the basic repro-
duction number of model (6) given by

R0b =
Π2 BbΦb

Mb( Eb + Mb)( Mb + Φb)
+

ΨbΠ2ΣbΦb

Θ Mb( Eb + Mb)( Mb + Φb)
.

OurR0b is interpreted in the same way asR0c in section (3).

To test the parameters that significantly affect the transmission dynamics of BTB
infection in buffalo, sensitivity analysis onRob was carried out through differenti-
atingR0b with respect to parameters ofRob. The following results were obtained

∂R0b

∂Ψb
=

Π2ΣbΦb

Θ Mb( Eb + Mb)( Mb + Φb)
> 0,

∂R0b

∂Σb
=

Π2ΨbΦb

Θ Mb( Eb + Mb)( Mb + Φb)
> 0,

∂R0b

∂Θ
= − ΨbΠ2ΣbΦb

Θ2 Mb( Eb + Mb)( Mb + Φb)
< 0.

13



The explanation of the sensitivity analysis follows the same path as done in sec-
tion (3)

The stability ofE0b is stated in the following theorem:

Theorem 3. If R0b < 1, the disease-free equilibrium E0b of the sub-model (6) is
locally asymptotically stable, and is unstable if R0b > 1.

Proof. The proof of theorem (3) follows the same procedure as outlined in sec-
tion (3).

4.2.1. The endemic equilibrium and its stability
Here, we study the existence and stability of the endemic equilibrium point. By
straightforward computation, ifR0b > 1, then the buffalo sub-model (5) has a
unique endemic equilibrium point given byE∗b = (x∗5, x

∗
6, x
∗
7, x
∗
4) in Ω2 with

x∗5 =
ΘΠ2(Θ Bb + ΨbΣb)

Mb(R0b − 1)(Θ Bb + ΨbΣb) + Θ Mb(Θ Bb + ΨbΣb)
,

x∗6 =
( Mb + Eb)Σb Mb(R0b − 1)
Φb(Θ Bb + Ψbσb)

,

x∗7 =
Mb(R0b − 1)
Θ Bc + ΨbΣb

, x∗4 =
Σb Mb(R0b − 1)
Θ Bb + ΨbΣb

.

The approach used in section (3) to establish the local stability of the endemic
equilibrium is also used in this section.

5. Analysis of a full model

This section covers the analysis of the full model (4). Positivity of the model will
be established and the reproduction number will be determined. The association
of the amplification or abating of the disease with the reproduction number in
buffalo and cattle population will also be detailed.

5.1. Boundedness of the model

In this section, we establish the boundedness of the system (4) to ensure that all
solutions remain in the feasible regionΩ.
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Proposition 1. Let (x1, x2, x3, x4, x5, x6, x7), be a solution of the system (4) with
initial conditions (x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0, x7 ≥ 0) and a
closed set

Ω = ((x1, x2, x3, x4, x5, x6, x7) ∈ ℜ7
+,Nc ≤ Π1,Nb ≤ Π2

Mb
, x4 ≤ Σc + Σb

Θ
),

thenΩ is positively invariant and attracting under the flow described by the
system (4).

Proof. Consider the Lyapunov function as used in [8]

H(τ) = (Nc(τ),Nb(τ), x4(τ)) = x1 + x2 + x3, x5 + x6 + x7, x4. (7)

The time derivative of this equation is given by

dH
dτ
= (Π1 − Nc − Ecx3,Π2 − MbNb − Ebx7,Σcx3 + Σbx7 − Θx4) . (8)

It is easy to prove that

dNc

dτ
≤ Π1 − Nc ≤ 0 for Nc ≥ Π1

dNb

dτ
≤ Π2 − MbNb ≤ 0 for Nb ≥ Π2

Mb

dx4

dτ
≤ Σc + Σb − Θx4 ≤ 0 for x4 ≥ Σc + Σb

Θ

Thus it follows thatdH
dτ ≤ 0 which implies thatΩ is a positively invariant set. A

standard comparison theorem [33] is used to show that

0 ≤ (Nc,Nb, x4) ≤
(
Nc(0)e−τ + Π1(1− e−τ),W,

Σc + Σb

Θ
e−Θτ

)
(9)

whereW = Nb(0)e− Mbτ + Π2
Mb

(1− e− Mbτ)

Thus, asτ→ ∞, 0 ≤ (Nc,Nb, x4) ≤ (Π1,
Π2
Mb
, 0) and soΩ is an attracting set.

5.2. Reproduction number
The disease-free equilibrium point of model system (4) is given by

E0 f =

(
Π1, 0, 0, 0,

Π2

Mb
, 0, 0

)
.

Following [11, 31], the basic reproduction number of model (4) we obtain
15



F =


0 Bcx∗1 Ψcx∗1 0 Bcbx∗1
0 0 0 0 0
0 0 0 0 0
0 Bbcx∗5 Ψbx∗5 0 Bbx∗5
0 0 0 0 0

 ,

V =


Φc + 1 0 0 0 0
−Φc 1+ Ec 0 0 0

0 −Σc Θ 0 −Σb

0 0 0 Φb + Mb 0
0 0 0 −Φb ( Mb + Eb)

 ,

The inverse ofV is given by

V−1 =



Θ(1+ Ec)
Θ(1+ Ec)(1+Φc) 0 0 0 0

N2
Θ(1+Φc)

Θ(1+ Ec)(1+Φc) 0 0 0

N3
Σc(1+Φc)

Θ(1+ Ec)(1+Φc)
(1+Φc)(1+ Ec)
Θ(1+ Ec)(1+Φc) N4 N1

0 0 0 1
Φb+ Mb

0

0 0 0 N5
1

( Mb+ Eb)


,

where

N1 =
Σc(1+ Φc)(1+ Ec)

( Eb + Mb)Θ(1+ Ec)(1+ Φc)
, (10)

N2 =
ΘΦc( Eb + Mb)

(Eb + Mb)Θ(1+ Ec)(1+ Φc)
, (11)

N3 =
ΣcΦc(Σb + Mb)

Eb + MbΘ(1+ Ec)(1+ Φc)
, (12)

N4 =
ΣbΦb(1+ Φc)(1+ Ec)

( Eb + Mb)( Mb + Φb)Θ(1+ Ec)(1+ Φc)
, (13)

N5 =
(1+ Ec)(ΘΦcΦb + ΘΦb)

( Eb + Mb)Θ(1+ Ec)(1+ Φc)
. (14)

Our next generation matrix of the system (4) is
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FV−1 =


m11 m12 m13 m14 m15

0 0 0 0 0
0 0 0 0 0

m41 m42 m43 m44 m45

0 0 0 0 0

 ,
where

m11 =
x∗1 Bc(Θ EbΦc + Θ MbΦc)

( Eb + Mb)Θ(1+ Ec)(1+ Φc)
+

x∗1( EbΣcΦc + MbΣcΦc)Ψc

( Eb + Mb)(1+ Ec)(1+ Φc)Θ

m12 =
x∗1 BcΘ(1+ Φc)

Θ(1+ Ec)(1+ Φc)
+

x∗1ΣcΨc(1+ Φc)

Θ(1+ Ec)(1+ Φc)

m13 =
x∗1Ψc(1+ Ec)(1+ Φ1)

Θ(1+ Ec)(1+ Φc)

m14 =
x∗1 Bcb(1+ Ec)(ΘΦcΦc + ΘΦb)

( Eb + Mb)( Mb + Phic)Θ(1+ Ec)(1+ Φc)
+

x∗1ΣbΦcΨc(1+ Ec)(1+ Φc)

(Eb + Mb)( Mb + Φb)Θ(1+ Ec)(1+ Φc)

m15 =
x∗1 Bcb

Eb + Mb
+

x∗1Σb(1+ Ec)(1+ Φc)Ψc

( Eb + Mb)Θ(1+ Ec)(1+ Φc)

m41 =
x∗5 Bbc(Θ EbΦc + Θ MbΦc)

( Eb + Mb)Θ(1+ Ec)(1+ Φc)
+

x∗5Ψb( EbΣcΦc + MbΣcΦc)

( Eb + Mb)Θ(1+ Ec)(1+ Φc)

m42 =
x∗5 Bbc(Θ + ΘΦc)

Θ(1+ Ec)(1+ Φc)
+

x∗5Ψb(Σc + ΣcΦc)

Θ(1+ Ec)(1+ Φc)

m43 =
x∗5Ψb(1+ Ec)(1+ Φc)

Θ(1+ Ec)(1+ Φc)

m44 =
x∗5 Bb(1+ Ec)(ΘΦcΦc + ΘΦb)

( Eb + Mb)( Mb + Phic)Θ(1+ Ec)(1+ Φc)
+

x∗5ΣbΦbΨb(1+ Ec)(1+ Φc)

(Eb + Mb)( Mb + Φb)Θ(1+ Ec)(1+ Φc)

m45 =
x∗5 Bb

Eb + Mb
+

x∗5Σb(1+ Ec)(1+ Φc)Ψb

( Eb + Mb)Θ(1+ Ec)(1+ Φc)

So the basic reproduction number is given by

R0 f = ρ(FV−1) = m11+m44+
√

(m11 −m44)2 + 4m14m41, (15)

andρ denotes the spectral radius.

The expression ofR0 f contains two terms representing the direct transmission
routes and the other two representing the cross-infection transmission routes.
The components in our reproduction number can be interpreted as follows:m11

is the contribution of infected cattle and contaminated environment in the evolu-
tion and epidemiology of bovine tuberculosis in the cattle population only;m44
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is the contribution of infected buffalo and contaminated environment in the evo-
lution and epidemiology of bovine tuberculosis in the buffalo population only;
m14 is the contribution of infected buffalo and contaminated environment in the
evolution and epidemiology of bovine tuberculosis in the cattle population; and
m41 is the contribution of infected cattle and contaminated environment in the
evolution and epidemiology of bovine tuberculosis in the buffalo population.

The inclusion of cross-infection and environment routes intheR0 f signifies the
role these routes play in amplifying the infection in both cattle and buffalo pop-
ulations. To lower the negative impacts of the infection on livestock industry,
control measures should target reducing the mixing of cattle and buffalo at the
wildlife-livestock interface.

5.3. Stability of disease free equilibrium point

Let

M = F − V =


−(Φc + 1) Bcx∗1 Ψcx∗1 0 Bbcx∗1
Φc −(1+ Ec) 0 0 0
0 Σc −Θ 0 Σb

0 Bbcx∗5 Ψbx∗5 −(Φb + Mb) Bbx∗5
0 0 0 Φb −( Mb + Eb)

 .
Defines(M) = max

{
Reλ : λ is an eigenvalue ofM

}
, so s(M) is a simple eigen-

value of M with positive eigenvector [11]. ByTheorem 2 of [31], these two
equivalences hold

R0 > 1⇐⇒ s(M) > 0, R0 < 1⇐⇒ s(M) < 0.

Theorem 4. The bovine tuberculosis free equilibrium point, E0 f , is locally
asymptotically stable if R0 f < 1 and unstable otherwise.

Proof. To prove the local stability of disease free equilibrium of system (4),
we verify the hypotheses (A1 − A5) in [31]. Hypotheses (A1 − A4) are easy to
verify if all eigenvalues of 7× 7 matrix

J | E0 f =

(
M 0
J3 J2

)
are negative real parts, whereJ3 = −J2.

The matrixJ2 is given by
18



J2 =

(−1 0
0 − Mb

)
The eigenvalues ofJ2 are given by

s(J2) = max{−1,− Mb}

If R0 f < 1, thens(M) < 0 andJ | E0 f < 0, the disease free equilibrium ofE0 f of
system (4) is locally asymptotically stable.

Theorem 4 implies that BTB infection can be eliminated from the community
whenR0 f < 1. Thus the initial sizes of the sub-populations of the model(4) are
in the basin of attraction of the disease free equilibrium point.

To prove the global asymptotic stability of the disease freeequilibrium point, we
rewrite the model (4) in the formdX

dτ = F(X,Y),
dY
dτ = G(X,Y), G(X, 0) = 0,

whereX = (x1, x5)T andY = (x2, x3, x4, x6, x7)T with X ∈ ℜ2
+ denoting the num-

ber of susceptible cattle and buffalo andY ∈ ℜ5
+ denoting the number of exposed

cattle, infected cattle, contaminated environment, exposed buffalo and infected
buffalo.

The disease-free equilibrium is now denoted byE0 f = (X0, 0) where(
X0 = Π1,

Π2

Mb

)
and0 is a zero vector. The following conditions should be satis-

fied to guarantee global asymptotic stability:

• H1: For dX
dτ = F(X0, 0), X0 is globally asymptotically stable.

• H2: G(X,Y) = AY− G̃(X,Y), G̃(X,Y) ≥ 0 for (X,Y) ∈ Ω, where
A = DY(G(X0, 0)) is anM-matrix.

If model (4) satisfies the conditionsH1 andH2 [12], then the following result
holds.

Theorem 5. The bovine tuberculosis free equilibrium point, E0 f , is globally
asymptotically stable if R0 f < 1.
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Proof. Consider

F(X, 0) = (Π1 − x1,Π2 − Mbx5), G(X,Y) = AY− G̃(X,Y)

where

A =


−(Φc + 1) BcΠ1 ΨcΠ1 0 BcbΠ1

Φc −(1+ Ec) 0 0 0
0 Σc −Θ 0 Σb

0 BbcΠ2
Mb

ΨbΠ2
Mb

−(Φc + Mb)
BbΠ2
Mb

0 0 0 Φb −( Mb + Eb)


,

and

G̃(X,Y) =


Bcx3 + Bcbx7 + Ψcx4

0
0

Bbx7 + Bbcx3 + Ψbx4

0

 .
The first conditionH1 is satisfied whenX is a globally asymptotically stable
equilibrium point of the equations

dx1

dτ
= Π1 − x1,

dx5

dτ
= Π2 − Mbx5. (16)

Solving (16) we obtain

x1(τ) = Π1 − x1(τ)e
−τ, x5(τ) =

Π2

Mb
− x5(τ)e

− Mbτ.

Taking limits asτ→ ∞ we obtain,

lim
τ→∞ x1(τ) = Π1, lim

τ→∞ x5(τ) =
Π2

Mb
.

This suggests that, independent of the initial conditions,the solutions of the
equations (16) converge toX0. Thus,X0 is a globally asymptotically equilib-
rium point of (16). To prove conditionH2, we observe that̃G(X,Y) ≥ 0, so this
completes the proof of both conditions.

The significance of Theorem (4) is that BTB infection can be eradicated com-
pletely from cattle and buffalo population in the long run wheneverR0 f < 1. It
naturally follows that the endemic equilibrium point is unstable.
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5.4. Disease persistence

We now turn to the case whereR0 f > 1. We only establish the uniform persis-
tence for system (4) whenR0 f > 1, by applying the following result established
in [34].

Lemma 6. Let Kτ : X → X be a semiflow and X0 ⊂ X an open set. Define
∂X0 = X\X0 and M∂ = {x ∈ ∂X0 : Kτx ∈ ∂X0, τ ≥ 0} . Assume that

(C1) KτX0 ⊂ X0 and Kτ has a global attractor A;

(C2) there exists a finite sequenceM = {M1, ...,Mk} of disjoint, compact, and
isolated invariant sets in∂X0 such that

(a) Ω(M∂) := ∪x∈M∂
ω(x) ⊂ ∪k

i=1Mi;

(b) no subset ofM forms a cycle on∂X0;

(c) Mi is isolated in X.

(d) Ws(Mi) ∩ X0 = ∅ where Ws(Mi) = {x ∈ X0 : ω(x) ⊂ Mi} , for each
1 ≤ i ≤ k.

Then Kτ is uniformly persistent with respect to(X0, ∂X0), i.e., there existsη > 0,
such thatlim

τ→∞ in f d( Kτx, ∂X0) ≥ η for x ∈ X0.

Theorem 7. If R0 f > 1, then the system (4) is uniformly persistent, namely there
exist η > 0 such that lim

τ→∞ in f {x1(τ), x2(τ), x3(τ), x4(τ), x5(τ), x6(τ), x7(τ)} ≥ η

for initial conditions x1(0), x2(0), x3(0), x4(0), x5(0), x6(0), x7(0) > 0

Proof. ChooseX = ℜ7
+, X0 = {(x1, x2, x3, x4, x5, x6, x7) ∈ X, x2, x3, x4, x6, x7 > 0}

and∂X0 = X\X0 = {(x1, x2, x3, x4, x5, x6, x7) ∈ X, x2 = x3 = x4 = x6 = x7 = 0} .
LetΦt be the semiflow induced by the solutions of system (4).

Proposition 2. Let (x1, x2, x3, x4, x5, x6, x7), be a solution of the system (4) with
initial conditions (x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0, x7 ≥ 0) and a
closed set

Ω = ((x1, x2, x3, x4, x5, x6, x7) ∈ ℜ7
+,Nc ≤ Π1,Nb ≤ Π2

Mb
, x4 ≤ Σc + Σb

Θ
),

thenΩ is positively invariant and attracting under the flow described by the
system (4).

21



The proof of proposition 2 shows

H(τ) = (Nc(τ),Nb(τ), x4(τ)) = x1 + x2 + x3, x5 + x6 + x7, x4. (17)

The time derivative of this equation is given by

dH
dτ
= (Π1 − Nc − Ecx3,Π2 − MbNb − Ebx7,Σcx3 + Σbx7 − Θx4) . (18)

It is easy to prove that

dNc

dτ
≤ Π1 − Nc ≤ 0 for Nc ≥ Π1,

dNb

dτ
≤ Π2 − MbNb ≤ 0 for Nb ≥ Π2

Mb
,

dx4

dτ
≤ Σc + Σb − Θx4 ≤ 0 for x4 ≥ Σc + Σb

Θ
.

Thus it follows thatdH
dτ ≤ 0 which implies thatΩ is a positively invariant set. A

standard comparison theorem [33] is used to show that

0 ≤ (Nc,Nb, x4) ≤
(
Nc(0)e−τ + Π1(1− e−τ),W,

Σc + Σb

Θ
e−Θτ

)
, (19)

whereW = Nb(0)e− Mbτ + Π2
Mb

(1− e− Mbτ)

Thus, asτ→ ∞, 0≤ (Nc,Nb, x4) ≤ (Π1,
Π2
Mb
, 0) and soΩ is an attracting set.

that Kt x ⊂ X0 and Kt is ultimately bounded inX0; so there always exists a global
attractor forKt. It is obvious thatE0 f is the unique boundary equilibrium on∂X0,
which implies thatE0 f is globally stable on∂X0.Moreover, (x1, x4, x5) converges
to (Π1, 0,

Π2
Mb

) on ∂X0. Let M1 =
{
E0 f

}
andM = {M1}. Then∪x∈M∂

ω(x) = M1

and no subset ofM forms a cycle in∂X0. If R0 f > 1, thenE0 f is unstable inX0.
Therefore conditionsc andd are satisfied and the proof is complete.

6. Numerical simulations

In this section, we present a detailed account on how the parameters used in
this project are estimated. We then use the parameter valuesto carry out the
numerical simulations that will enhance further understanding of the model’s
predictions.
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Table 1: Table of parameter values used in the model
Name Range Reference Name Range Reference

Π1 [0.2, 0.9] [4] Σc [.10, .20] [27]
Π2 [0.2, 0.8] [36] Θ [0.1, 0.5] [27]
Ψc [0.01, 0.06] Assumed Φc [0.3, 0.8] [14]
Ψb [0.1, 0.6] Assumed Φb [0.3, 0.8] [14]
Bc [1, 5] [4] Ec [0.1, 0.5] [4]
Bb [0.1, 0.53] [14] Mb [0.1, 0.5] [35]
Bcb [0.1, 0.6] Assumed Eb [0.1, 0.8] [35]
Bbc [0.01, 0.06] Assumed Σb [.10, .20] [27]

6.1. Parameter estimation

All parameter values used in the numerical simulations are given in Table 1 with
their sources. Some parameter values are taken as they appear in literature while
others are determined based on the given information in literature. Those with
no known values from literature are determined by the conditions subjected to
them in the model formulation. The values ofBc, Bb, Mb, Ec, Eb, Φc, Φb,
Θ, Σc, Σb, Π1 andΠ2 are obtained from [4, 14, 25, 27, 35, 36]. There is a
paucity of data onBcb, Bcb, Ψc andΨb. However as the infection rate through
environment and other species is small [16, 21], we make estimations in line
with this constraint. This suggests that data have to be collected on the processes
to reasonably estimate the parameters. This in turn gives reasonable predictions
about the future scenarios of the system of interest.

6.2. Simulations

We present numerical simulations of the full model (3) to explore the impact of
various transmission mechanisms of bovine tuberculosis inboth cattle and buf-
falo populations. We first examine the role of the between cattle transmission
rateβc on the levels of the infectious unit in the environment and the overall
epidemiology of BTB infection in the cattle population only. This is followed
by the exploration of the impact of the between cattle transmission rate on the
evolution of BTB infection in cattle and buffalo populations and the level of in-
fectious unit in the environment. Thirdly, we investigate the role of the between
buffalo transmission rateβb on the levels of infectious unit and the time varying
behaviour of BTB infection in the buffalo population only. Lastly, we examine
the transmission dynamics of BTB infection in both cattle and buffalo popula-
tions when the between buffalo transmission rate is varied.

23



Figure 2: Graph showing the effect of varying only the between cattle transmission rateBc on
the evolution of BTB infection in cattle only.x1 = 0.7, x2 = 0.2, x3 = 0.1, x4 = 0.01,Π1 =

0.7,Ψc = 0.05, Ec = 0.1,Φc = 0,Σc = 0.15,Θ = 0.3.

Figure 2 displays the effects of varying the between cattle transmission rateBc

on the evolution of BTB infection in the cattle population and the levels of the
infectious unit in the environment. IncreasingBc, leads to a decrease of the
proportion of exposed and infected cattle in Figure 2 (b) and(c). This also cor-
responds to a decrease in the amount of infectious unit in theenvironment as
shown in Figure 2 (d). If it is only horizontal transmission route involved, the
disease eventually dies out from the community. This implies that one route of
disease transmission cannot sustain the infection in cattle. This agrees well with
the observation made in [1] that cattle are dead hosts, implying that the disease
cannot persist without the external infection sources.

Figure 3 shows the effects of varying the between cattle transmission rateBb

on the transmission dynamics of BTB infection in cattle population and also on
the levels of the infectious unit in the environment. The results show that the
intensity of BTB infection is aggravated in cattle population when all transmis-
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Figure 3: Graph showing the effect of varying only the between cattle transmission rateBb on
the evolution of BTB infection in cattle population and the levels of pathogen concentration in
the environment.x1 = 0.7, x2 = 0.2, x3 = 0.1, x4 = 0.01, x5 = 0.7, x6 = 0.2, x7 = 0.1,Π1 =

0.7,Ψc = 0.05, Ec = 0.1,Φc = 0.5,Σc = 0.15,Θ = 0.3, Bcb = 0.5, Bb = 0.25,Σb = 0.15,Π2 =

0.43, Bbc = 0.01,Ψb = 0.5,Φb = 0.5, Mb = 0.135, Ec = 0.2.

sion routes are incorporated in the model (4). The proportions of the exposed
and the infected cattle rise to endemic levels as shown in Figure 3 (b) and (c).
Even the concentration of pathogens in the environment has gone up in Figure
3. The simulations suggests that the impact of cross-infection and environment
transmission routes which is more severely felt in cattle population as evidenced
in plots (a)-(d) in Figure 3. The reader is advised to compareFigure 3 to Figure
2 to appreciate the role of cross-infection on the epidemiology of BTB infection
in cattle population. The results further suggest that the environment is seriously
contaminated when the practices that promote the mixing of cattle and buffalo
are encouraged.

To explore the role of the between buffalo transmission rateBb on the dynamics
of BTB infection in buffalo only and of the infectious unit in the environment,
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Figure 4: Graph showing the effect of increasing the between buffalo transmission rateBb on
the evolution of BTB infection in buffalo population only.x4 = 0.01, x5 = 0.7, x6 = 0.2, x7 =

0.1,Π2 = 0.23,Ψb = 0, Mb = 0.135, Eb = 0.2,Φb = 0.3,Σb = 0.15,Θ = 0.3.

Bb was varied. The results show an increase in the proportion ofthe exposed and
the infected buffalo in Figure 4 (b) and (c). The pathogen concentration in the
environment as shown in Figure 4 (d), has also gone up. This observation agrees
well with the observations made in [1], which show that buffalo are reservior
hosts. This implies that buffalo stay with the infection in absence of external
infection sources. Susceptible buffalo too decrease asBb is being varied as it is
indicated in Figure 4 (a).

Figure 5 investigates the effects of varying the between cattle transmission rate
Bc on the evolution of BTB infection on buffalo population and the levels of the
pathogens in the environment. The simulations show a very little effect on the
epidemiology of BTB infection in buffalo population. An increase inBc results
in a very small increase in the proportion of the exposed and the infected buffalo
as shown in Figure 5 (b) and (c). A small increase in the levelsof the pathogen in
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Figure 5: Graph showing the effect of increasing the between cattle transmission rateBc on the
evolution of BTB infection in buffalo population and the levels of pathogen in the environment.
x1 = 0.7, x2 = 0.2, x3 = 0.1, x4 = 0.01, x5 = 0.7, x6 = 0.2, x7 = 0.1,Π1 = 0.7,Ψc = 0.05, Ec =

0.1,Φc = 0.3,Σc = 0.15,Θ = 0.3, Bcb = 0.2, Bb = 2,Σb = 0.15,Π2 = 0.33, Bbc = 0.2,Ψb =

0.5,Φb = 0.3, Mb = 0.135, Ec = 0.2.

the environment is also observed in Figure 5 (d). The simulations further show
that all parameter values ofBc have the same effect on the dynamics of BTB
infection in all classes of buffalo population and on the levels of pathogen in the
environment. A significant impact of varyingBc is only observed when the birth
rate of the buffalo population increases.
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7. Discussion

A deterministic model for the transmission of bovine tuberculosis in cattle and
buffalo populations was formulated and analysed. The reproduction numbers
(R0c,R0b) for cattle only and buffalo only models were determined and used in
qualitative analyses. The disease free equilibrium for both models were proven
to be locally stable when their respective reproduction numbers were less than
one.

Sensitivity analysis was carried on both reproductive numbers (R0c,R0b). The
results indicated thatΨb,Ψb,Σc andΣb contribute positively towards the epi-
demiology of bovine tuberculosis in both buffalo and cattle populations, Thus
the risk measure of the outbreak of BTB is increased when the infective rate due
to contaminated environment and the shedding rate of infectious mycobacterium
bovis into the environment are increased. The results also showed that bothR0c

andR0b are reduced if the decaying rate of the infectious unit increases.

The endemic equilibrium points of both sub-models were found to be locally
stable. This ecologically implies that the disease remainsin the community if
there are no interventions.

The reproduction numberR0 f for the full model was then determined. It was
used to establish the global stability of the disease free equilibrium point when
R0 f < 1.WhenR0 f > 1, the disease persists in both populations of cattle and buf-
falo. The reproduction number of the full model comprised ofcross-infection pa-
rameters and contaminated environment parameter. This suggests that the trans-
mission dynamics of bovine tuberculosis are enhanced by thecross-infection and
contaminated environment parameters.

The numerical simulations also showed that the infection isonly sustained in cat-
tle and buffalo population when all transmission routes are involved. The disease
has a minimal negative impact in cattle or buffalo when there is no cross-infection
between the two populations. This suggests that the cross-infection route pro-
motes the persistence of BTB infection in cattle and buffalo populations. The
fact that buffalo populations are maintenance host ofM. bovispathogen, more
devastating effect is observed on cattle population when all routes are involved.
This ecologically implies that the disease can only be eradicated if the practices
that promote the mixing of cattle and buffalo are discouraged.

Finally, it is necessary to mention that our mathematical model considers the
evolution of bovine tuberculosis in cattle and buffalo populations. However, it
is of paramount importance to enhance our understanding about the disease by
incorporating factors like treatment, seasonality, and vertical transmission route.
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The role of temperature on the survival of microbes in the environment and age
classes of both cattle and buffalo populations should also be considered. These
are the subjects of future work.
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1. Introduction

African buffalo are the maintenance host for mycobacteriun bovis (M. bovis) in
the endemically infected Kruger National Park (KNP). Studies carried out on
bovine tuberculosis (BTB) incorporate both descriptive epidemiology and math-
ematical modelling approaches. Descriptive epidemiologyfocuses on issues of
transmission modes [13, 14, 15, 16, 17, 18, 19], susceptiblehosts to infection
[4, 12], economic impact of the infection [16, 17, 23, 24, 25], the diagnostic
tests used to detect the infection [14, 17, 20], global statistics of the infection
[3, 22] and the risk factors that promote the spread of BTB infection to wildlife,
livestock and human beings. Mathematical modelling approaches focus on con-
verting the biological system into a mathematical structure that mimics the dy-
namics of the system of interest. Mathematical modelling isan important tool
in analysing the epidemiological characteristics of infectious diseases and can
provide useful control measures [23].

Various models have been formulated to explore different aspects of BTB infec-
tion. A non-linear transmission model consisting of susceptible and infected pos-
sum populations was developed by Barlow[24]. The model was used to explain
bovine tuberculosis dynamics in a heterogeneous possum population, taking into
account the patchy distribution of the infection. A deterministic/stochastic model
was developed to explore the factors that drive the spread ofBTB infection in
possum populations and social contact was found to promote the spread of BTB
infection. A spatial stochastic model was developed in [25]to assess fertility
control as a means of controlling bovine tuberculosis in badgers. The results
showed that fertility control alone can not completely eradicate BTB infection
from badger population. The article [14] focussed on the impact of imported
cattle into the herd on the dynamics of bovine tuberculosis.The results indi-
cated the attainment of the unique endemic equilibrium by the model when the
infected cattle are imported into the herd.

Many mathematical models see for instance [23, 24, 25] assume that space is ho-
mogeneous and investigations are confined to a population. In reality infectious
diseases spread geographically over time. For example, West Nile virus, SARS
and Swine Flu (PH1N1) spread from one country to another through movement
of infected people [5, 6]. The same trend also occurs in BTB infection in buf-
falo populations in the Kruger National Park. The disease initially started at
the Southern tip of the Kruger National park and has spread spread towards the
Northern part of the park. When spatial homogeneity does notadequately ac-
commodate the observed behavior or disease transmission, spatial modelling be-
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comes necessary to account the spatially distinct individual characteristics. Some
of these characteristics include differences in mixing behaviour as well as migra-
tion which requires a heterogeneous model [7]. Spatial structure and the spatial
scale roughly operates in three major classes of heterogeneities namely: envi-
ronment, which covers geography and space including climate and hydrological
factors; contact, which involves contact patterns betweenhosts and pathogens
including movement of hosts; and host/pathogen heterogeneity [8, 26]. Hence,
spatial modelling has been widely applied to study disease behaviour to account
for the degree of uniqueness in one patch relative to another.

We use metapopulation models that capture homogeneity within a patch and
accounts for spatial heterogeneity through migration between patches. The ap-
proach uses ordinary differential equations [7, 8]. We seek to understand the
effects of migration between patches on the spread of bovine tuberculosis, an
aspect that has not been considered by previous studies on BTB. For instance,
studies carried out in [23, 24, 25] based their investigations on one population.
We consider an SEI metapopulation model for bovine tuberculosis describing
disease spread between two patches connected by movement. In the bovine tu-
berculosis transmission dynamics, we assume that only the exposed are capable
of moving from one patch to another. The patches considered in the model are
assumed to differ in the level of disease prevalence, the epidemiological features
existing in Kruger National park. The disease in the park is more prevalent in
the southern part of the park where the infection initially begun. The transmis-
sion ofM. bovisfrom the environment is affected by environmental factors such
as temperature and relative humidity. This effect is represented by a constant
parameterη j for 1 ≤ j ≤ 2 in our model. We also assume that the movement
between populations depends on the density of the population and the distance
separating the adjunct patches.

This manuscript is organised as follows: in section 2, we develop the mathe-
matical model and give a comprehensive mathematical analysis. In section 3 we
derive the equilibrium points and evaluate the patch specific disease threshold
values for the case of isolated and non-isolated patches. Insection 4, numerical
results are given and discussed, and in section 5 we present concluding com-
ments.

3



2. The mathematical model

We shall use two spatial patches of Kruger National Park. Patch 1 is the south-
ern part of the park and patch 2 is the center of the park. The two regions of the
park are separated by the river. The Figure 1 shows the map of Kruger National
Park. The northern part of the park is ignored in our work because the prevalence

Figure 1: The map showing the spread trends of BTB infection in KNP from 1970 to 2003

of the BTB infection in the region is almost zero. The sub-population in a sin-
gle patch denoted byNj is compartmentalised into a susceptible population,B js,
those exposed to mycobacterium bovis (M. bovis), B je, and those buffalo which
are infected,B ji , for 1 ≤ j ≤ 2.Within a patch, the sub-populations are assumed
to be mixing homogeneously. Our metapopulation model for bovine tuberculosis
accounts for two movement patterns. Firstly, the movement of susceptible buf-
falo from one patch to the other at ratemj. The ratem1 is assumed to be greater
thanm2. This is due to the availability of water sources in the central part of the
park. It is assumed that no infection occurs en route when thesusceptible indi-
viduals migrate. The recruitment of new susceptibles into patches occurs at rates
π1 andπ2 for patch 1 and patch 2 respectively. This recruitment is done via immi-
gration and new births. Secondly, there is movement of the exposed buffalo from
one patch to the other. These play a pivotal role in the metapopulation transmis-
sion modelling of bovine tuberculosis dynamics through thegeneration of the
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infectious buffalo. The infectious buffalo take part in the spread of the infection
through buffalo to buffalo transmission as well as shedding ofM. bovis in the
environment. The overall transmission dynamics of the general population are
accounted for by the contribution from both sub-populations of the two patches.
We assume that the infected buffalo population do not move from one patch to
the other due to weakness induced by the disease. The susceptible population in
patch one is reduced in size following contact from environmentM. bovisat rate
Ψ1 as well as through buffalo-to buffalo contact at rateβ1. The infection with
the contact withM. bovisin the environment occurs when the concentration of
M. bovisis very high in the environment. The rateη1 represent the probability
of the survival time of theM. bovisin the environment in patch one. The higher
the survival probability time, the more likely that environment transmission oc-
curs. The exposed population in patch one progress to the infectious class at rate
φ1. The infected population in patch 1 suffers both natural and disease induced
mortality at ratesµ1 andǫ1. The susceptible and exposed populations in patch
one suffer only natural mortality at rateµ1. The infected buffalo in the first patch
shed pathogens into the environment at rateσ1. This shedding rate in the patch
depends on the level of the disease prevalence. The state variableU1 represents
the concentration ofM. bovisin patch one. The parameterθ1 is the decay rate
of M. bovisin patch one. The susceptible population in patch two is reduced in
size following contact from environmentM. bovisat rateΨ2 as well as through
buffalo-to- buffalo contact at rateβ2. The infection with the contact withM. bo-
vis in the environment occurs when the concentration ofM. bovis is very high
in the environment. The rateη2 represents the probability of the survival time
of M. bovisin the environment in patch 1. The exposed population in patch two
progresses to the infectious class at rateφ2. The infectious population in patch
two suffers both natural and disease induced mortality at ratesµ2 and ǫ2. The
susceptible and exposed populations in patch two suffer only natural mortality
at rateµ2. The infected buffalo in the second patch shed pathogens into the en-
vironment at rateσ2. This shedding rate in the patch depends on the level of
the disease prevalence. The state variableU2 represents the concentration ofM.
bovisin patch two. The parameterθ2 is the decay rate ofM. bovisin patch two.
The flow diagram of the model is given in Figure 2. The resulting system of

5



equations for the sub-population in patch 1 is given by

dB1s

dt
= π1 +m2B2s− β1B1sB1i − η1Ψ1U1B1s− (µ1 +m1)B1s,

dB1e

dt
= β1B1sB1i + η1Ψ1U1B1s+ α2B2e − (µ1 + φ1 + α1)B1e,

dB1i

dt
= φ1B1e − (µ1 + ǫ1)B1i,

dU1

dt
= σ1B1i − θ1U1.

(1)

and for patch 2 is given by

dB2s

dt
= π2 +m1B1s− β2B2sB2i − η2Ψ2U2B2s− (µ2 +m2)B2s,

dB2e

dt
= β2B2sB2i + η2Ψ2U2B2s+ α1B1e − (µ2 + φ2 + α2)B2e,

dB2i

dt
= φ2B2e − (µ2 + ǫ2)B2i,

dU2

dt
= σ2B2i − θ2U2.

(2)

The initial conditions of the model are such thatB1s > 0, B1e ≥ 0, B1i ≥ 0 and
U1(0) ≥ 0 for the first patch andB2s > 0, B2e ≥ 0, B2i ≥ 0 andU2(0) ≥ 0 for the
second patch. The total population in each sub-population is Nj = B js+B je+B ji

and the total population in both patches is given byN = N1 + N2. In the absence
of movement i.e whenmj = 0 = α j is given by

dNj

dt
= π j − µ1Nj − ǫ jB ji ≤ π1 − µ1N1 (3)

The solution to equation (3) is given byNj ≤ π j

µ j
+ (N0 j − π j

µ j
)e−µ j t, whereN0 j are

initial populations. The solution of all equations from thesystems (1) and (2)
remain non negative for allt ≥ 0. The total populationis bounded byπ j

µ j
. In the

presence of animal movement the rate of change of the overalltotal population
is given by

dN
dt
= π1 + π2 − (µ1N1 + µ2N2).
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B1s B1e B1i

B2s B2e B2i

U2

U1

β1 φ1

β2 φ2

m1 m2 α1 α2

η1Ψ1

η2Ψ2

σ1

σ2

µ1 µ1

θ1

θ2

(µ1 + ǫ1)

µ2 µ2 (µ2 + ǫ2)

π1

π2

Figure 2: The flowchart of the transmission dynamics of bovine tuberculosis in two patched
buffalo population . The dashed lines represent the environmenttransmission route. The dotted
lines represent the shedding off of M. bovisin the environment.

If we let µ∗ = min{µ1, µ2} , then it can be shown that

lim sup
t→∞

≤ π1 + π2

µ∗
.
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The phase space of the model is given by

Ω :=

{
(B1s, B1e, B1i,U1, B2s, B2e, B2i,U2)|B1s+ B1e + B1i + B2s+ B2e + B2i ≤ π1 + π2

µ∗

}
The solutions inΩ are all non negative and bounded. Hence the domain of the
biological importance is positively invariant and attracting. Therefore all solu-
tions start and remain inΩ. The guide to the proof of positivity and boundedness
of solutions can be found in [2, 9, 10, 11].

3. Equilibrium points

Our model has four equilibrium points given by

E0 =
(
B∗1s, 0, 0, 0, B

∗
2s, 0, 0, 0

)
, (4)

E1 =
(
B∗1s, B

∗
1e, B

∗
1i,U

∗
1, B

∗
2s, 0, 0, 0

)
, (5)

E2 =
(
B∗1s, 0, 0, 0, B

∗
2s, B

∗
2e, B

∗
2i,U

∗
2

)
, (6)

E3 =
(
B∗1s, B

∗
1e, B

∗
1i,U

∗
1, B

∗
2s, B

∗
2e, B

∗
2i,U

∗
2

)
, (7)

of which E0 is the disease free equilibrium point. The equilibrium points E1

andE2 represent the first and second boundary endemic equilibria,whereasE3

represents the interior endemic equilibrium point in the domainΩ.

The disease free equilibrium pointE0 in both patches is obtained from both sub-
models (1) and (2). At this equilibrium point we assume that there is noM. bovis
in both environments, and that there are no infected buffalo in both patches.
Therefore, the sub-models (1) and (2) reduce to

dB1s

dt
= π1 +m2B2s− (m1 + µ1)B1s, (8)

dB2s

dt
= π2 +m1B1s− (m2 + µ2)B2s. (9)

Equating the right hand of equations (8-9) to zero and solving for the equilibrium
points we obtain

B∗1s =
π1(m2 + µ2) +m2π2

m2µ1 + µ2m1 + µ2µ1
B∗2s =

π2(m1 + µ1) +m1π1

m1µ2 + µ1m2 + µ2µ1
(10)
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3.1. The Reproduction number

The basic reproduction number for the model is obtained using the next gener-
ation matrix method described in [27]. If there is no movement of animals, the
patch specific basic reproduction numbers are

R01 =
π1φ1(β1θ1 + η1σ1Ψ1)
µ1θ1(ǫ1 + µ1)(µ1 + φ1)

, and R02 =
π2φ2(β2θ2 + η2σ2Ψ2)
µ2θ2(ǫ2 + µ2)(µ2 + φ2)

(11)

for the first and second patch respectively. The valuesR01 andR02 apply to com-
pletely isolated patches. If the infection exists in a single patch which is linked
to another patch through movement, the phenomenon related to the movement
of buffalo should be factored into the disease threshold. When the patches are
connected by movement, the patch specific basic reproduction numbers are given
by

R01m =
(π1(µ1 +m2) +m2π2)Q1

m2µ1 + µ2m1 + µ2µ1
, and R02m =

(π2(µ1 +m1) +m1π2)Q2

m1µ2 + µ1m2 + µ2µ1
.

where

Q1 = φ1θ1(β1θ1 + η1σ1Ψ1)(ǫ1 + µ1)(µ1 + φ1 + α1),

Q2 = φ2θ2(β2θ2 + η2σ2Ψ2)(ǫ2 + µ2)(µ2 + φ2 + α2).

The overall model reproduction number is given by

R0 =
1
2

m44+
1
2

m11+
1
2

√
m2

44 − 2m44m11+m11+ 4m41m14 (12)
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where

m11 =
(π1(µ2 +m2) + π2m2)φ1(µ2 + φ2 + α2)(θ1β1 + η1Ψ1σ1)
θ1(µ2µ1 +m2µ1 + µ2m1)(µ1 + ǫ1)(µ2 + φ2)(µ1 + φ1)

,

m12 =
(π1(µ2 +m2) + π2m2)(θ1β1 + η1Ψ1σ1)
θ1(µ1 + ǫ1)(µ2µ1 +m2µ1 + µ2m1)

,

m13 =
η1Ψ1(π1(µ2 +m2) + π2m2)
θ1(µ2µ1 +m2µ1 + µ2m1)

,

m14 =
(π1(µ2 +m2) + π2m2)φ1α2(θ1β1 + η1Ψ1σ1)

θ1(µ1 + ǫ1)(µ2 + φ2)(µ1 + φ1)(µ2µ1 +m2µ1 + µ2m1)
,

m41 =
(π2(µ1 +m1) +m1π1)φ2α1(θ2β2 + η2Ψ2σ2)
θ2(µ2 + φ2)(µ1 + φ1)(µ2µ1 +m2µ1 + µ2m1)

,

m44 =
(π2(µ1 +m1) +m1π1)φ2(µ1 + φ1 + α1)(θ2β2 + η2Ψ2σ2)
θ2(µ2 + ǫ2)(µ2 + φ2)(µ1 + φ1)(µ2µ1 +m2µ1 + µ2m1)

,

m45 =
(π2(µ1 +m1) +m1π1)(θ2β2 + η2Ψ2σ2)
θ2(µ2 + ǫ2)(µ2µ1 +m2µ1 + µ2m1)

,

m46 =
(π2(µ1 +m1) +m1π1)η2Ψ2

θ2(µ2µ1 +m2µ1 + µ2m1)
.

Note that the movement aspect of buffalo from one patch to another increases the
basic reproduction number. This may drive the establishment of the infection in
both patches or extinction of the infection in one of the patches.

3.1.1. Global stability of the disease free equilibrium E0

To prove the global asymptotic stability of the disease freeequilibrium point, we
use an approach used in [30] to rewrite the sub-models 1 and 2 in the form

dX
dt

= F(X,Y),
dY
dt

= G(X,Y), G(X, 0) = 0,

whereX = (B1s, B2s)T andY = (B1e, B1i,U1, B2e, B2i,U2)T with X ∈ ℜ2
+ denoting

the number of susceptible buffalo in both patches andY ∈ ℜ6
+ denoting the num-

ber of exposed buffalo, infected buffalo and contaminated environment in both
patches.

The disease-free equilibrium is now denoted byE0 = (X0, 0) where(
X0 =

π1

µ1
,
π2

mu2

)
and0 is a zero vector. The following conditions should be sat-

isfied to guarantee global asymptotic stability:
10



• H1: For dX
dt = F(X0, 0), X0 is globally asymptotically stable.

• H2: G(X,Y) = AY− G̃(X,Y), G̃(X,Y) ≥ 0 for (X,Y) ∈ Ω, where
A = DY(G(X0, 0)) is anM-matrix.

If sub-models (1) and (2) satisfy the conditionsH1 andH2, then the following
result holds.

Theorem 1. The disease free equilibrium point, E0, is globally asymptotically
stable if R0 < 1 and unstable otherwise.

Proof. Consider

F(X, 0) = (π1 − (µ1 +m1)B1s, π2 − (µ2 +m2)B2s), G(X,Y) = AY− G̃(X,Y)

where

A =



−R β1π1

µ1
S α2 0 0

φ1 −(µ1 +m1) 0 0 0 0
0 σ1 −θ1 0 0 0
α2 0 0 −(µ2 +m2)

β2π2

µ2
0

0 0 0 φ2 −(µ2 + ǫ2) 0
0 0 0 0 σ2 −φ2


,

where

R= (µ1 + φ1 +m1), S =
Ψ1π1η1

µ1
T =
Ψ2π2η2

µ2
.

and

G̃(X,Y) =



β1B1i + η1Ψ1U1

0
0

β2B2i + η2Ψ2U2

0
0


.

The conditionH1 is satisfied whenX is a globally asymptotically stable equilib-
rium point of the equations

dB1s

dt
= π1 − (µ1 +m1),

dB2s

dt
= π2 − µ2 +m2B2s. (13)
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Solving (13) we obtain

B1s(t) =
π1

µ1
− B1s(t)e

−(µ1+m1)t, B2s(t) =
π2

µ2
− B2s(t)e

−(µ2+m2)t.

Taking limits ast → ∞ we obtain,

lim
t→∞ B1s(t) =

π1

µ1
, lim

t→∞ B2s(t) =
π2

µ2
.

This suggests that, independent of the initial conditions,the solutions of the
equations (13) converge toX0. Thus,X0 is a globally asymptotically equilib-
rium point of (13). To prove conditionH2, we observe that̃G(X,Y) ≥ 0, so this
completes the proof of both conditions.

3.2. Patch 1 endemic equilibrium point E1 and its stability

The sub-model (1) has a unique boundary patch one endemic equilibrium point
E1 in Ω wheneverR01m > 1. The statement implies that bovine tuberculosis
persists in the first sub-population but dies in the second sub-population. The
components of the endemic equilibrium point are:

U∗1 =
σ1B∗1i

θ1
, B∗1e =

(µ1 + ǫ1)B∗1i

φ1

B∗1i =
1
F

(
1
C

(W
D
+m2m1

)
(m1 + µ1)(R01m − 1)

)
where

W = (m2µ1 + µ2m1 + µ2µ1)(π1(µ2 +m2) +m2π2), C = (µ2 +m2), D = π1(m2 + µ2) +m2π2

F = θ1(µ1 + φ1 + α1)(µ1 + ǫ1).

Therefore, whenR01m > 1 we have a unique disease persistent equilibrium lo-
calised in the first patch.

Theorem 2. If R01m > 1, the endemic equilibrium E1 of the model (1) is locally
asymptotically stable inΩ.

Proof. In order to explore the local stability of the endemic equilibrium pointE1,
we evaluate the JacobianJ(B∗1s, B

∗
1e, B

∗
1i,U

∗
1) at the endemic equilibrium point and

we get
12



J(E1) =


−D1 0 −β1B∗1s −η1Ψ1B∗1s

D2 −(µ1 + φ1 + α1) β1B∗1s η1Ψ1B1s

0 φ1 −(µ1 + ǫ1) 0
0 0 σ1 −θ1

 .

D1 = −β1B∗1i − η1Ψ1U
∗
1 − µ1 −m1

D2 = β1B∗1s+ η1Ψ1U
∗
1

After doing the row operation on the Jacobian matrix we obtain
−C1 0 −C2 −C3

0 −C1C5 C1C2 −C2C4 C1C3 −C3C4

0 0 P1 P2

0 0 0 −θ1P1 + σ1P2

 ,
where

P1 = φ1(C1C2 −C2C4) −C1C5C6; P2 = φ1(C1C3 −C3C4).

The eigenvalues ofJ(E1) are calculated usingDet(J(E1 − λI4)) = 0

Det


−C1 − λ 0 −C2 −C3

0 −C1C5 − λ C1C2 −C2C4 C1C3 −C3C4

0 0 P1 − λ P2

0 0 0 −θ1P1 + σ1P2 − λ

 = 0.

C1 = β1B∗1i + η1Ψ1U
∗
1 + µ1 +m1; C2 = β1B∗1s; C3 = η1Ψ1B∗1s;

C4 = β1B∗1i + η1Ψ1U
∗
1; C5 = µ1 + φ1 + α1; C6 = µ1 + ǫ1.

The first two eigenvalues of the Jacobian matrix areλ1 = −C1 andλ2 = −C1C5.
The other two eigenvalues are

λ3 = φ1C1C2 − φ1C2C4 −C1C5C6; λ4 = θ1P1 + σ1P2.

The eigenvaluesλ3,4 are both negative whenφ1C1C2 < θ1C2C3 + C1C5C6 and
θ1φ1C2C3 + σ1φ1C1C3 < θ1φ1C2C3 + θ1C1C5C6 + σ1φ1C3C4 hold. This implies
that all four eigenvalues of our Jacobian matrix are negative, which proves the
local stability of endemic equilibrium pointE1.
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3.3. Endemic equilibrium point E2 and its stability

The sub-model (2) has a unique boundary endemic equilibriumpoint E1 in Ω
wheneverR02m > 1. The statement implies that bovine tuberculosis persists
in the second sub-population but dies in the first sub-population. The process to
establish the existence ofE2 and its components is same as in (3.2). We conclude:

Theorem 3. If R02m > 1, the endemic equilibrium E2 of the model (2) is locally
asymptotically stable inΩ.

Proof. The proof for Theorem (3) follows the same procedure as outlined in
(3.2).

3.4. Existence of interior endemic equilibrium point E3

We consider two scenarios to establish the existence of the interior endemic
equilibrium point. We first assume thatm1 = m2 = 0. The interior endemic
equilibrium point can be expressed in closed form so we express our endemic
equilibrium point denoted byE31 =

(
B∗1s, B

∗
1e, B

∗
1i,U

∗
1, B

∗
2s, B

∗
2e, B

∗
2i,U

∗
2

)
in terms

of the forces of infection (λ∗1, λ
∗
2) using the approach in [29] as follows:

B∗1s =
π1

λ∗1 + µ1
, B∗2s =

π2

λ∗2 + µ2
, (14)

B∗1e =
π1λ

∗
1

(λ∗1 + µ1)(µ1 + φ1 + α1)
+

α2B∗2e

µ1 + φ1 + α1
, (15)

B∗1i =
sπ1λ

∗
1

rb(λ∗1 + µ1)
+

sα2π2λ
∗
2

rab(λ∗2 + µ2)
, U∗1 =

wsπ1λ
∗
1

rb(λ∗1 + µ1)
+

wsα2π2λ
∗
2

rab(λ∗2 + µ2)
, (16)

B∗2e =
π2λ

∗
2

(λ∗2 + µ2)(µ2 + φ2 + α2)
+

α1B∗1e

µ2 + φ2 + α2
, (17)

B∗2i =
dπ2λ

∗
2

ac(λ∗2 + µ2)
+

dα1π1λ
∗
1

abc(λ∗1 + µ1)
, U∗2 =

edπ2λ
∗
2

ac(λ∗2 + µ2)
+

edα1π1λ
∗
1

abc(λ∗1 + µ1)
, (18)

where

a = µ2 + φ2 + α2; b = µ1 + φ1 + α1; c = 1− α1α2

ab
; d =

φ2

µ2 + ǫ2
; e=

σ2

θ2
.

Substituting the equations (16) and (18) into the forces of infection we obtain

λ1 =
v11λ

∗
1

λ∗1 + µ1
+

v21λ
∗
2

λ∗2 + µ2
; λ2 =

n11λ
∗
2

λ∗2 + µ2
+

n12λ
∗
1

λ∗1 + µ1
,
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where

f =
β2dπ2

ac
; g =

β2dα1π1

abc
; h =

η2Ψ2edπ2

ac
; k =

η2Ψ2edα1π1

abc
; n11 = f + h;

n12 = g+ k r = 1− α2α1

ab
; s=

φ1

µ1 + ǫ1
; w =

σ1

θ1
; y1 =

β1sπ1

rb
; y2 =

β1sα2π2

rab
;

y3 =
η1Ψ1wsπ1

rb
; y4 =

η1Ψ1wsα2π2

rab
; v11 = y1 + y3; v21 = y2 + y4.

The equilibrium points of sub-model (1) and sub-model (2) can be obtained by

finding the fixed points of equationsϑ(λ1, λ2) =

ϑ1(λ1, λ2)

ϑ2(λ1, λ2)

 and are given by

ϑ1(λ1, λ2) =
v11λ1

λ1 + µ1
+

v21λ2

λ2 + µ2
(19)

ϑ2(λ1, λ2) =
n11λ2

λ2 + µ2
+

n12λ1

λ1 + µ1
(20)

Clearly, (λ∗1, λ
∗
2) = (0, 0) is a fixed point of equations (19)-(20) which corresponds

to the disease free equilibrium point.

Theorem 4. There exists a unique fixed point
(
λ∗1, λ

2
2

)
, λ∗1 > 0, λ∗2 > 0 satisfying

ϑ(λ1, λ2) =

λ∗1
λ∗2


corresponding to the interior endemic equilibrium point E31.

Proof. For eachλ2 > 0 we consider the following real valued function depending
onλ1:

ϑλ2
1 (λ1) =

v11λ1

λ1 + µ1
+

v21λ2

λ2 + µ2

Clearly,

ϑλ2
1 (0) =

v21λ2

λ2 + µ2
> 0,

and

lim
λ1→∞

ϑλ2
1 (λ1) = v11 < ∞.
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Thus 0< ϑλ2
1 (λ1) < ∞, which implies that the real valued functionϑλ2

1 (λ1) is
bounded for every fixedλ2 > 0.

The first derivative ofϑλ2
1 (λ1) with respect toλ1 is given by

∂ϑλ2
1 (λ1)

∂λ1
=

v11µ1

(λ1 + µ1)
2
> 0, (21)

and the second derivativeϑλ2
1 (λ1) with respect toλ1 is given by

∂2ϑλ2
1 (λ1)

∂λ2
1

= − 2v11µ1

(λ1 + µ1)
3
< 0. (22)

Since
∂ϑ
λ2
1 (λ1)

∂λ1
> 0 and

∂2ϑ
λ2
1 (λ1)

∂λ2
1
< 0, the functionϑλ2

1 (λ1) is an increasing concave

down function which has no change in convexity in the boundeddomain. This
implies that there exists a unique pointλ∗1 > 0 satisfyingϑλ2

1 (λ∗1) = λ
∗
1

Forλ1 > 0 we consider the following real valued function depending on λ2 :

ϑλ1
2 (λ2) =

n11λ2

λ2 + µ2
+

n12λ1

λ1 + µ1

Now

ϑλ1
2 (0) =

n12λ1

λ1 + µ1
> 0,

lim
λ2→∞

ϑλ1
1 (λ2) = n11 < ∞.

Thus 0< ϑλ1
2 (λ2) < ∞, which implies that the functionϑλ1

2 (λ2) is bounded for
every fixedλ1 > 0. The first derivative ofϑλ1

1 (λ2) with respect toλ2 is given by

∂ϑλ1
1 (λ2)

∂λ2
=

n11µ2

(λ2 + µ2)
2
> 0, (23)

and the second derivativeϑλ1
1 (λ2) with respect toλ1 is given by

∂2ϑλ1
1 (λ2)

∂λ2
2

= − 2n11µ2

(λ2 + µ2)
3
< 0. (24)

Since
∂ϑ
λ1
1 (λ2)

∂λ2
> 0 and

∂2ϑ
λ1
1 (λ2)

∂λ2
2
< 0, the functionϑλ1

1 (λ2) is an increasing concave

down function which has no change in convexity in the boundeddomain. This
implies that there exists a unique pointλ∗2 > 0 satisfyingϑλ1

1 (λ∗2) = λ
∗
2. Hence,

we have a unique fixed point (λ∗1, λ
∗
2) corresponding to the endemic equilibrium

point.
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3.5. Stability analysis of equilibrium points

The Jacobian matrix of the equations (19)-(20) evaluated atthe equilibrium point
(0, 0) is given by

J(0, 0) =


v11

µ1

v21

µ2

n12

µ1

n11

µ2

 ,
whose characteristics equation is

λ2 −
(
n11

µ2
+

v11

µ1

)
λ +

v11n11

µ1µ2
− n12v21

µ1µ2
(25)

The solutions for equation (25) are

λ1 =

(
n11

µ2
+

v11

µ1

)
+

√
1
4

(
n11

µ2
− v11

µ1

)2

+
n12v21

µ1µ2
; λ2 =

(
n11

µ2
+

v11

µ1

)
−

√
1
4

(
n11

µ2
− v11

µ1

)2

+
n12v21

µ1µ2

where

v11 =
φ1π1(µ2 + φ2 + α2)(θ1β1 + η1Ψ1σ1)
µ1θ1(µ1 + ǫ1)(µ2 + φ2)(µ1 + φ1)

; n11 =
φ2π2(µ1 + φ1 + α1)(θ2β2 + η2Ψ2σ2)
µ2θ2(µ2 + ǫ2)(µ2 + φ2)(µ1 + φ1)

,

(26)

n12 =
α1π1φ2(θ2β2 + η2Ψ2σ2)

θ2(µ2 + ǫ2)(µ2 + φ2)(µ1 + φ1)
; v21 =

α2π2φ1(θ1β1 + η1Ψ1σ1)
θ1(µ1 + ǫ1)(µ2 + φ2)(µ1 + φ1)

.

(27)

For stability, we needmax{|λ1|, |λ2|} < 1. Thus the equilibrium point (0, 0) is sta-
ble when the dominant eigenvalueλ1 < 1.

Remark 1.

(i) We observe that whenα1 = 0 = α2 the effect of n12 andv21 in equations
(30)-(31) disappears. This means that the disease dynamicsin both patches
are driven by the factors within the specific patches. The analysis further
shows thatv11 andn11 in equations (26)-(27) correspond to the patch 1 and
patch 2 specific reproduction numbers.
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(ii) The contribution of the movement is observed when the movement of the
exposed buffalo is allowed between patches. The equations (26)-(27) show
the role of movement in the transmission dynamics of BTB infection in both
patches.

The Jacobian ofϑ(λ1, λ2) evaluated at the unique fixed point
(
λ∗1, λ

∗
2

)
is given as

J(λ∗1, λ
∗
2) =


∂ϑ1

∂λ1
(λ1, λ2)|(λ∗1, λ∗2)

∂ϑ1

∂λ2
(λ1, λ2)|(λ∗1, λ∗2)

∂ϑ2

∂λ1
(λ1, λ2)|(λ∗1, λ∗2)

∂ϑ2

∂λ2
(λ1, λ2)|(λ∗1, λ∗2)

 ,
where

∂ϑ1

∂λ1
(λ1, λ2|(λ∗1, λ∗2) =

(
v11µ1

λ∗1 + µ1

)2

;
∂ϑ1

∂λ2
(λ1, λ2|(λ∗1, λ∗2) =

(
v12µ2

λ∗2 + µ2

)2

; (28)

∂ϑ2

∂λ1
(λ1, λ2|(λ∗1, λ∗2) =

(
n12µ1

λ∗1 + µ1

)2

;
∂ϑ2

∂λ2
(λ1, λ2|(λ∗1, λ∗2) =

(
n11µ2

λ∗2 + µ2

)2

. (29)

The characteristic equation ofJ(λ∗1, λ
∗
2) is given as

λ2 − λ
(
∂ϑ1

∂λ1
+
∂ϑ2

∂λ2

)
|(λ∗1,λ∗2) +

(
∂ϑ1

∂λ1

∂ϑ2

∂λ2
− ∂ϑ1

∂λ2

∂ϑ2

∂λ1

)
|(λ∗1,λ∗2) = 0. (30)

The solutions of the characteristic equation are given as

G1 =
1
2

(
X0 +

√
X2

0 − 4X1

)
; G2 =

1
2

(
X0 −

√
X2

0 − 4X1

)
, (31)

where

X0 =

(
∂ϑ1

∂λ1
+
∂ϑ2

∂λ2

)
|(λ∗1,λ∗2); X1 =

(
∂ϑ1

∂λ1

∂ϑ2

∂λ2
− ∂ϑ1

∂λ2

∂ϑ2

∂λ1

)
|(λ∗1,λ∗2).

The equilibrium point (λ∗1, λ
∗
2) is therefore stable whenmax(G1,G2) < 1.

The second scenario considers movement of both susceptibleand exposed buf-
falo populations between the patches. As before, the interior endemic equilib-
rium point is written in terms of the forces of infection (λ∗1, λ

∗
2). The coordinates
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of the equilibrium point are given as follows:

B∗2s =
π2λ1 + d

λ2λ1 + aλ2 + bλ1 + c
; B∗2e =

n1λ2λ
2
1 + n2λ2λ1 + n3λ

2
1 + n4λ1 + n5λ2

gλ2λ
2
1 + 2k1λ1λ2 + k2λ

2
1 + k3λ2 + k4λ1 + k5

;

B∗2i =
v1n1λ2λ

2
1 + v1n2λ2λ1 + v1n3λ

2
1 + v1n4λ1 + v1n5λ2

gλ2λ
2
1 + 2k1λ1λ2 + k2λ

2
1 + k3λ2 + k4λ1 + k5

;

U∗2 =
v2n1λ2λ

2
1 + v2n2λ2λ1 + v2n3λ

2
1 + v2n4λ1 + v2n5λ2

gλ2λ
2
1 + 2k1λ1λ2 + k2λ

2
1 + k3λ2 + k4λ1 + k5

; B1s =
π +m2B∗2s

λ1 + a
;

B∗1e =
S11

S12
; B∗1i =

θ1S11

(µ1 + ǫ1)S12
; U∗1 =

σ1φ1S11

θ1(µ1 + ǫ1)S12
;

where the constants in the coordinates of our endemic equilibrium are defined in
the appendix.

Our forces of infection become

λ1 =
RS11

S12
, (32)

λ2 =
Gv1n1λ2λ

2
1 +Gv1n2λ2λ1 +Gv1n3λ

2
1 +Gv1n4λ1 +Gv1n5λ2

gλ2λ
2
1 + 2k1λ1λ2 + k2λ

2
1 + k3λ2 + k4λ1 + k5

. (33)

The equilibrium points of sub-model 1 and sub-model 2 can be obtained by find-

ing the fixed points of equationsΥ(λ1, λ2) =

Υ1(λ1, λ2)

Υ2(λ1, λ2)

 and are given by

Υ1(λ1, λ2) =
RS11

S12
, (34)

Υ2(λ1, λ2) =
Gv1n1λ2λ

2
1 +Gv1n2λ2λ1 +Gv1n3λ

2
1 +Gv1n4λ1 +Gv1n5λ2

gλ2λ
2
1 + 2k1λ1λ2 + k2λ

2
1 + k3λ2 + k4λ1 + k5

. (35)

Clearly, (λ∗1, λ
∗
2) = (0, 0) is a fixed point of equations (34)-(35) which corresponds

to the disease free equilibrium point.

Theorem 5. There exists a unique fixed point
(
λ∗1, λ

∗
2

)
, λ∗1 > 0, λ∗2 > 0 satisfying

Υ(λ1, λ2) =

λ∗1
λ∗2


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corresponding to the interior endemic equilibrium point E32, whenever the fol-
lowing conditions are satisfied

c1d2

c2d1
> 1;

c1d3

c3d1
> 1;

c2d3

c3d2
> 1;

2d1k3

d3k1
+

d2k2

2k1d3
> 1;

2d2k3

k2d3
> 1.

a1b2

a2b1
> 1;

a1b3

a3b1
> 1;

a2b3

a3b2
> 1;

2b1r3

b3r1
+

b2r2

2r1b3
> 1;

2b2r3

r2b3
> 1.

Proof. For eachλ1 > 0 we consider the following real valued function depending
onλ2:

Υ
λ1
1 (λ2) =

RS11

S12

Clearly,

Υ
λ1
1 (0) =

R(u10λ
4
1 + u11λ

3
1 + u12λ

2
1 + u13λ1)

z10λ
4
1 + z11λ

3
1 + z12λ

2
1 + z13λ1 + z16

> 0,

and

lim
λ2→∞

Υ
λ1
1 (λ2) =

R(u1λ
4
1 + u2λ

3
1 + u4λ

2
1 + u8λ1 + u15)

z1λ
4
1 + z2λ

3
1 + z4λ

2
1 + z8λ1 + z14

< ∞.

Thus 0< Υλ1
1 (λ2) < ∞, which implies that the real valued functionΥλ1

1 (λ2) is
bounded for every fixedλ1 > 0. If we fix λ1 we obtain the following equation

Υ
λ1
1 (λ2) =

c1λ
2
2 + c2λ2 + c3

d1λ
2
2 + d2λ2 + d3

, (36)

where

c1 = R(u1λ
4
1 + u2λ

3
1 + u4λ

2
1 + u8λ1 + u15),

c2 = R(u3λ
5
1 + u6λ

2
1 + u7λ

4
1 + u9λ1 + u5λ

3
1 + u14),

c3 = R(u10λ
4
1 + u11λ

3
1 + u12λ

2
1 + u13λ1),

d1 = z1λ
4
1 + z2λ

3
1 + z4λ

2
1 + z8λ1 + z14,

d2 = z3λ
5
1 + z5λ

3
1 + z6λ

2
1 + z7λ

4
1 + z9λ1 + z15,

d3 = z10λ
4
1 + z11λ

3
1 + z12λ

2
1 + z13λ1 + z16.

The first derivative ofΥλ1
1 (λ2) with respect toλ2 is given by

∂Υλ1
1 (λ2)

∂λ2
=

(c1d2 − c2d1)λ2
2 + (2c1d3 − 2c3d1)λ2 + c2d3 − c3d2

(d1λ
2
2 + d2λ2 + d3)2

> 0 (37)
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provided the following holds

c1d2

c2d1
> 1;

c1d3

c3d1
> 1;

c2d3

c3d2
> 1,

and the second derivativeΥλ1
1 (λ2) with respect toλ2 is given by

∂2Υ
λ1
1 (λ2)

∂λ2
2

=
−2k1d1λ

3
2 − 3k2d1λ

2
2 + (−4d1k3 − d2k2 + 2k1d3)λ2 + k2d3 − 2d3k3

(d1λ
2
2 + d2λ2 + d3)3

< 0,

(38)

where

k1 = c1d2 − c2d1; k2 = 2c1d3 − 2c3d1; k3 = c2d3 − c3d2.

The second derivative in (38) is negative if the following conditions hold

2d1k3

d3k1
+

d2k2

2k1d3
> 1;

2d2k3

k2d3
> 1.

Since
∂Υ
λ1
1 (λ2)

∂λ2
> 0 and

∂2Υ
λ1
1 (λ2)

∂λ2
2
< 0, the functionΥλ1

1 (λ2) is an increasing concave

down function which has no change in convexity in the boundeddomain. This
implies that there exists a unique pointλ∗2 > 0 satisfyingΥλ1

1 (λ∗2) = λ
∗
2.

For eachλ2 > 0 we consider the following real valued function depending on λ1:

Υ
λ2
2 (λ1) =

Gv1n1λ2λ
2
1 +Gv1n2λ2λ1 +Gv1n3λ

2
1 +Gv1n4λ1 +Gv1n5λ2

gλ2λ
2
1 + 2k1λ1λ2 + k2λ

2
1 + k3λ2 + k4λ1 + k5

.

Clearly,

Υ
λ2
2 (0) =

Gv1n5λ2

k3λ2 + k5
> 0,

and

lim
λ1→∞

Υ
λ2
2 (λ1) =

Gv1n1λ2 +Gv1n3

gλ2 + k2
< ∞.

Thus 0< Υλ2
2 (λ1) < ∞, which implies that the real valued functionΥλ2

2 (λ1) is
bounded for every fixedλ2 > 0. If we fix λ2 we obtain the following equation

Υ
λ2
2 (λ1) =

a1λ
2
1 + a2λ1 + a3

b1λ
2
1 + b2λ1 + b3

, (39)
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where

a1 = Gv1n1λ2 +Gv1n3; a2 = Gv1n2λ2 +Gv1n4; a3 = Gv1n5λ2

b1 = gλ2 + k2; b2 = 2k1λ2 + k4; b3 = k3λ2 + k5.

The first derivative ofΥλ2
1 (λ1) with respect toλ1 is given by

∂Υλ2
1 (λ1)

∂λ1
=

(a1b2 − a2b1)λ2
1 + (2c1b3 − 2a3b1)λ1 + a2b3 − a3b2

(b1λ
2
1 + b2λ1 + b3)2

> 0 (40)

provided the following holds

a1b2

a2b1
> 1;

a1b3

a3b1
> 1;

a2b3

a3b2
> 1.

and the second derivativeΥλ2
1 (λ1) with respect toλ1 is given by

∂2Υ
λ2
2 (λ1)

∂λ2
1

=
−2r1b1λ

3
1 − 3r2b1λ

2
1 + (−4b1r3 − b2r2 + 2r1b3)λ1 + r2b3 − 2b2r3

(b1λ
2
1 + b2λ1 + b3)3

< 0,

(41)

where

r1 = a1b2 − a2b1; r2 = 2c1b3 − 2a3b1; r3 = a2b3 − a3b2.

The second derivative in (41) is negative if the following conditions hold

2b1r3

b3r1
+

b2r2

2r1b3
> 1;

2b2r3

r2b3
> 1.

Since
∂Υ
λ2
2 (λ1)

∂λ1
> 0 and

∂2Υ
λ2
2 (λ1)

∂λ2
1
< 0, the functionΥλ2

2 (λ1) is an increasing concave

down function which has no change in convexity in the boundeddomain. This
implies that there exists a unique pointλ∗1 > 0 satisfyingΥλ2

2 (λ∗1) = λ
∗
1. Hence,

we have a unique fixed point (λ∗1, λ
∗
2) corresponding to the endemic equilibrium

point.

3.6. Stability analysis

The process for stability analysis is as carried out in section 3.5.
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4. Numerical simulations

In this section, we present a detailed account on how the parameters used in this
study are estimated. We then use the parameter values to carry out numerical
simulations that will provide more insights into dynamics of BTB infection that
is modelled via our metapopulation model.

4.1. Parameter estimation

All parameter values used in the numerical simulations are given in Table 1 in-
cluding their sources. Some parameter values are taken as they appear in liter-
ature while others are determined based on the given information in literature.
Those with no known values from literature are determined bythe conditions
subjected to them in the model formulation. The values ofπ1, π2, µ1, µ2, ǫ1 andǫ2
are obtained in [31] and parameter values ofβ1, β2, φ1 andφ2 are obtained from
[16]. The parameters values ofη1 andη2 are estimated based on survival data
of M. bovis in the environment.M. bovistakes the survival period of 88 days
[28]. The parameter value ofη j, for 1 ≤ j ≤ 2, is then estimated by dividing
the number of the survival days by the number of days in a year.The decaying
rate ofM. bovisin the environment is calculated by simply subtracting the sur-
vival rate from 1. The spread trends of BTB infection in the Kruger National
Park and the observations made in [1, 21] about the rate at which buffalo con-
tract M. bovisfrom the environment guide us to assume appropriate values for
Ψ1,Ψ2, α1, α2,m1 andm2.

Table 1: Table of parameter values used in the model
Name Range Reference Name Range Reference

π1 [400, 1460] [31] π2 [400, 1460] [31]
β1 [0.01, 0.053] [16] β2 [0.01, 0.053] [16]
Ψ1 [0.01, 0.06] Assumed η2 [0.11, 0.25] [28]
η1 [0.11, 0.25] [28] Ψ2 [0.01, 0.06] [Assumed]
µ1 [0.03, 0.05] [31] φ2 [0.056, 1] [17]
α1 [0.01, 0.05] Assummedα2 [0.01, 0.06] Assumed
ǫ1 [0.657, 0.803] [31] ǫ2 [0.657, 0.803] [31]
θ1 [0.7, 0.8] calculated θ2 [0.7, 0.8] calculated
σ1 [0.1, 0.6] Assumed µ2 [0.03, 0.05] [31]
m1 [0.01, 0.05] Assumed σ2 [0.1, 0.6] Assumed
φ1 [0.056, 1] [16] m2 [0.01, 0.05] Assumed
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4.2. Simulations

We present numerical simulations of models (1) and (2) to explore the impact
of various scenarios of migration on the disease dynamics inboth patches. The
first scenario to be explored is the patch specific disease dynamics when there
is no between them. The second scenario to be investigated isthe impact of
movement of patch 1 susceptible and exposed buffalo into patch 2 on its disease
dynamics. The third scenario to be investigated is the impact of movement of
patch 2 susceptible and exposed buffalo into patch 1 on its disease dynamics.
Finally, we explore the impact of the two way movement of susceptible and
exposed buffalo on the patch specific disease dynamics and also the role of
environment on the dynamics of BTB infection in both patches.

Figure 3 displays the patch specific disease dynamics when there is no move-
ment. As expected the disease dynamics are more explosive inpatch 1 with
higher disease prevalence than patch 2 with low disease prevalence. This is
indicated by a higher level of patch 1 infected buffalo and higher concentration
levels ofM. bovis than in patch 2. We used Figure 3 as a control in order to
compare to other figures to examine the impact of movement on the on the
dynamics of BTB infection in both patches.
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Figure 3: Comparison of infectious unit and infected buffalo in both patches when there is no
movement

Figure 4 illustrates the scenario of allowing one-way movement of patch 1
susceptible buffalo into patch 2. The scenario affects the disease dynamics of
patch 2. The movement of patch 1 susceptible buffalo into patch 2, increases the
number of susceptible buffalo in the patch 2. The observation is illustrated by
the higher levels of patch 2 infected buffalo and patch 2M. bovisconcentration.
This is explained by the arrival of patch 1 susceptible buffalo that act as raw
material for the infection. However, in patch 1 the infection rate decreases due
to the decline of susceptible buffalo.
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Figure 4: Comparison of infectious unit and infected buffalo across patches assuming movement
of patch 1 susceptible buffalo into patch 2 only.

Figure 5 illustrates the impact of the movement of patch 1 exposed buffalo to
patch 2 only. This scenario results in an increase of exposedbuffalo in patch
2, which in turn increases the infection rate. The patch 1 infection rate is not
greatly affected. This is due to the number of susceptible buffalo in patch 1 is
not perturbed by the movement. Note that it is the movement ofpatch 1 suscep-
tible buffalo into patch 2 that significantly decreases the infection rate in patch 1.
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Figure 5: Comparison of infectious unit and infected buffalo across patches assuming movement
of patch 1 exposed buffalo into patch 2 only. The parameters describing the movement areα1 > 0
andm1,m2, α2 = 0.

Figure 6 shows the effect of movement of patch 2 exposed buffalo to a patch
1. The disease dynamics in patch 1 are greatly perturbed due to the increased
number of exposed buffalo in patch 1 that eventually generate more infected
buffalo in the patch. The propensity of disease dynamics in patch2 is reduced
due to the decrease of the exposed buffalo via movement. These are responsible
to generate the infected buffalo that increase the force of infection.
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Figure 6: Comparison of infectious unit and infected buffalo across patches assuming movement
of patch 1 exposed buffalo into patch 2 only. The parameters describing the movement areα1 > 0
andm1,m2, α2 = 0.

In Figure 7, the impact of the movement of patch 2 susceptiblebuffalo into
patch 1 is shown. The simulations show the increase of the propensity of the
BTB infection in patch 1 which is as a result of an increase in number of the
infected buffalo and an increase in the concentration ofM. bovispathogens in
the environment. This however, has decreased the gravity ofthe disease in patch
2 due to a decrease of the susceptible buffalo in patch 1. This implies that the
concentration ofM. bovispathogens in the environment and the number infected
buffalo in patch 1 are at low levels as illustrated in Figure 7 (b) and (d).
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Figure 7: Comparison of infectious unit and infected buffalo across patches assuming movement
of patch 2 susceptible buffalo into patch 1 only. The parameters describing the movement are
m2 > 0 andm1, α1, α2 = 0.

Figure 8 shows the dynamic trends of all classes of buffalo including the
pathogen concentration in the environment in both patches when movement of
both susceptible and exposed buffalo into both patches is allowed. The simula-
tions show the synchronous changes in all classes of interest. In both patches
the intensity of the BTB infection slightly increased, but the impact is more pro-
nounced in patch 1 where the disease prevalence is low. All simulations involv-
ing the mixing of buffalo agree well with the analytical results where the repro-
duction number is directly related to exposed movement parameter. This relation
increases the reproduction number when there an increase inthe exposed buffalo
movement parameters.
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Figure 8: Comparison of susceptible, exposed and infected buffalo populations and pathogen
concentration in the environment across patches assuming movement of both susceptible and
exposed buffalo populations between patches. The parameter describingmovement are such that
m1 > m2 andα1 > α2.

The effect of environment was explored, the results showed no significant change
in the transmission dynamics of BTB infection in both patches. The observation
agrees well with what was observed in [21]. Figure 9 puts the scenario in the
right context.
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Figure 9: Comparison of infectious unit and the infected buffalo across patches assuming move-
ment of both susceptible and exposed buffalo between patches when the environment transmis-
sion rateΨJ, for 1 ≤ j ≤ 2 is varied. The parameter describing movement are such thatm1 > m2

andα1 > α2.

5. Conclusion

A deterministic model for bovine tuberculosis dynamics between linked patches
was presented. Very important mathematical characteristics like the invariant re-
gion of biological importance, patch specific reproductionnumbers for isolated,
non-isolated patches linked by migration as well as the model disease reproduc-
tion number were presented. The disease free and the boundary endemic equi-
librium points are presented. The disease free equilibriumpoint was established
to be globally stable whenever the patch specific disease reproduction numbers
are less than one. This suggests that whenever the patch specific disease repro-
duction numbers are less than one, the following generationof the infective will
be less than their predecessor, and thus the disease can not persist. The boundary
endemic equilibria were determined, shown to be unique, andlocally asymp-
totically stable when the non-isolated patch specific reproduction numbers are
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greater than one. The interior endemic equilibrium point was also determined
using the fixed point theorem.

The effect of movement of both susceptible and exposed buffalo on bovine tu-
berculosis transmission dynamics has been explored via numerical simulations.
Our results show that when the patches are isolated the disease would be more
severe in a patch if it has high disease prevalence. Endemic bovine tuberculo-
sis is manifested by high levels of infected buffalo andM. bovisconcentration
in the environment. The disease may remain persistent in both cases when the
patch specific disease reproduction numbers are greater than one. When patches
are linked by migration, main features observed in the long term dynamics of
the BTB infection are: First, there is a probability of the disease wrecking more
damage in the patch with relatively low disease prevalence.This case results
from an increase in the number of susceptible buffalo as well as the exposed buf-
falo (due to migration) hence an increase in the probabilityof buffalo to buffalo
contact as well as contact withM. bovisin the environment. Secondly, migration
of both susceptible and infected buffalo results in synchronous fluctuation of sub-
populations in both patches. Therefore, free migration in bovine tuberculosis hit
areas may eventuate in introduction of the disease in unaffected areas or even
worsening it in less affected areas. Therefore, from the management perspective,
it may be reasonable to restrict movement to and from bovine tuberculosis en-
demic areas if disease is to be easily contained.

Finally, it is reasonable to state that our metapopulation model considers the
effect of migration on the evolution of bovine tuberculosis in buffalo in two
patches. However, it is important to enhance our understanding about the dis-
ease by carrying out sensitivity analysis of the within-patch transmission rates
and other parameters on disease dynamics. The future work will also extend our
two patched model to three patched model or multi-patched model. This will
give more insights into the spatial propagation of the disease in the multi-patched
model. Age-structured metapopulation dynamics model is another fertile area to
be investigated in future.
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6. Appendix

a = µ1 +m1; b = µ2 +mu2; c = µ2µ1 + µ2m1 +mu2µ1; d = µ1π2 +m1π2 +m1π1;

f = µ1 + φ1 + α1; g = f b+ α2a; n1 = fπ2 + α1π1; n2 = f d+ a fπ2 + aα1π1;

n3 = bα1π1 + α1m2π2; n4 = cα1π1 + dα1m2; n5 = a f d; k1 = ag; k2 = bg; k3 = a2g;

k4 = gab; k5 = gac; v1 =
φ2

µ2 + ǫ2
; v2 =

σ2

θ2
; G = β2 + η2Ψ2v2; x11 = α2n1;

x12 = α2n2 + aα2n1; x13 = α2n5 + aα2n2; x14 = α2n4 + aα2n3; x15 = α2n3; x16 = aα2n4;

x17 = aα2n5; y11 = gm2π2; y12 = m2π22k1 + dg; y13 = k3m2π2 + 2k1d;

y14 = k2m2π2 + k2d; y15 = k5m2π2 + 2k1d; y16 = k2m2π2; y17 = k3d; y18 = k5d

l1 = x12 + ax11; l2 = x13 + x17 + ax13; l3 = x14 + ax15+ cx11 + bx12; l4 = x15 + bx11;

l5 = x16 + ax14+ bx13 + cx12; l6 = ax12; l7 = ax16 + bx17 + cx13; l8 = ax17;

l9 = bx14 + cx15; l10 = bx15; l11 = bx16 + cx14; l12 = cx16; l13 = cx17; f1 = l4 + y12

f2 = l5 + y13; f3 = l7 + y17; f4 = l9 + y14; f5 = l10+ y16; f6 = l11+ y15; f7 = l12 + y15

h1 = 2k1 + ag; h2 = k3 + 2k1a+ gc; h3 = k4 + 2k1b+ gc; h4 = k5 + k3b+ k4a+ 2k1c

h5 = k2a+ bg; h6 = ak5 + ck3; h7 = bk5 + ck4; h8 = ck5; u1 = π1g+ x11; h1π1 + l1;

u3 = k2π1; u4 = h2π1 + l6; u5 = π1h3 + f1; u6 = π1h4 + f2; u7 = π1h3 + y11;

u8 = π1k3a+ l3; u9 = π1h6 + f3; u10 = π1ck2 + f5; u11 = π1k4 + f4; u12 = π1h7 + f6;

u13 = π1h8 + f7; u14 = l13; z1 = bg; z2 = bh1 + bag; z3 = bk2; z4 = bh2 + bah1;

z5 = bh3 + bah5; z6 = bh4 + bah3; z7 = bh5 + bak2; z8 = bk3a+ bah2; z9 = bh6 + bah4;

z10 = bck2; z11 = bk4 + back2; z12 = bh7 + bak4; z13 = bh8 + bah8; z14 = bak3; z15 = bah6;

z16 = bah8;

S11 = u1λ
4
1λ

2
2 + u2λ

2
2λ

3
1 + u3λ2λ

5
1 + u4λ

2
2λ

2
1 + u5λ

3
1λ2 + u6λ2λ

2
1 + u7λ2λ

4
1 + u8λ

2
2 + u9λ2λ1 + u10λ

4
1;

+ u11λ
3
1 + u12λ

2
1 + u13λ1 + u14λ2 + u15λ

2
2;

S12 = z1λ
2
2λ

4
1 + z2λ

2
2λ

3
1 + z3λ2λ

5
1 + z4λ

2
2λ

2
1 + z5λ2λ

3
1 + z6λ

2
1λ2 + z7λ2λ

4
1 + z8λ

2
2λ1 + z9λ1λ2 + z10λ

4
1;

+ z11λ
3
1 + z12λ

2
1 + z13λ1 + z14λ

2
2 + z15λ2 + z16;

R=
θ1β1φ1 + η1Ψ1σ1φ1

θ1(µ1 + ǫ1)
.

33



References

[1] D. F. Keet, N. P. Kriek, M. L. Penrith, A. Michael and H. F. A. K. Huchzermeyer. Tuber-
culosis in buffaloes (Syncerus caffer) in the Kruger National Park: spread of the disease to
ther species.The Onderstepoort journal of veterinary research,63(3),239–244, 1996.

[2] P. B. Phepa, F. Chirove and K. S. Govinder. Modelling the transmission of bovine tubercu-
losis in buffalo. Unpublished manuscript, 2015.

[3] P. B. Phepa, F. Chirove and K. S. Govinder. Modelling the role of multi-transmission routes
in the epidemiology of bovine tuberculosis in cattle and buffalo populations. Unpublished
manuscript, 2015.

[4] H. V. S. Chauhan, P. D. Dwivedi, S. S. Chauhan, and D. S. Kalra. Tuberculosis in animals
in india- a review.Indian Journal of Tuberculosis, 21(1):22–35, 1980.

[5] K. Khan, J. Arino, W. Hu, P. Raposo, J. Sears, F. Calderon,C. Heidebrecht, M. Macdonald,
J. Liauw, A. Chan, and M. Gardam. Spread of a novel influenza A (H1N1) virus via global
airline transportation.New England journal of medicine, 361(2), 212–214, 2009.

[6] A. L. Lloyd, and M. R. May. Spatial heterogeneity in epidemic models.Journal of theoret-
ical biology, 179(1), 1–11, 1996.

[7] G. R. Fulford, M. G. Roberts, and J. A. P. Heesterbeek. Themetapopulation dynamics
of an infectious disease: tuberculosis in possums.Theoretical population biology, 61(1),
15–29, 2002.

[8] J. Arino, and P. Van den Driessche. Disease spread in metapopulations.Nonlinear dynamics
and evolution equations, 48, 1–13, 2006.

[9] J. B. Njagarah,and F. Nyabadza. Modelling the role of drug barons on the prevalence of
drug epidemics.Mathematical biosciences and engineering, 10(3), 843–860, 2013.

[10] F. Nyabadza, and J. B. Njagarah, and R. J. Smith. Modelling the dynamics of crystal meth
(tik) abuse in the presence of drug-supply chains in South Africa.Bulletin of mathematical
biology, 75(1), 24–48, 2013.

[11] J. B. Njagarah, and F. Nyabadza. Modeling the impact of rehabilitation, amelioration and
relapse on the prevalence of drug epidemics.Journal of Biological Systems, 21(01), 2013.

[12] Bovine tuberculosis.http://www.cfsph.iastate.edu/Factsheets/pdfs/
bovine-tuberculosis.pdf. 2013. [Online; accessed 24-September-2013].

[13] O. Cosivi, F. X. Meslin, and J. M. Grange. Epidemiology of mycobacterium bovis infection
in animals and humans with particular reference to Africa.Reve Scientifique Et Technique
De L’Office International Des Epizooties, 14(3):733–746, 1995.

[14] B. A. Folashade, L. Suzanne, B. G. Abba, and O. Agricola.Mathematical analysis of a
model for the transmission dynamics of bovine tuberculosis. Mathematical Methods in the
Applied Sciences, 34(15):1873–1887, 2011.

[15] A. L. Michel, R. B. Bengis, D. F. Keet, M. Hofmeyr, L. M. deKlerk, P. C. Cross,
A. E. Jolles, D. Cooper, I. J. White, P. Buss, and J. Godfroid.Wildlife tuberculosis in
South African conservation areas: Implications and challenges.Veterinary Microbiology,
112(3):91–100, 2006.

[16] P. C. Cross and Getz W. M. Getz. Assessing vaccination asa control strategy in an ongoing
epidemic: Bovine tuberculosis in African buffalo.Ecological modelling, 196(3):494–504,
2006.

[17] G. Laval and G. Ameni. Prevalence of bovine tuberculosis in zebu cattle under tradi-
tional animal husbandry in Boji district western Ethiopia.Revuede Medecine veterinaire,
155(10):494–499, 2004.

34



[18] P. D. O. Davies. Tuberculosis in humans and animals: arewe a threat to each other.Journal
of the Royal Society of Medicine, 99(10):539–540, 2006.

[19] N. D. Barlow. A model for the spread of bovine Tb in New Zealand possum population.
Journal Applied Ecology, 30:156–164, 1991.

[20] M. Arshad, M. Ifrahim, M. Ashraf, S. U. Rehman, and H. A. Khan. Epidemiological studies
on tuberculosis in buffalo population in villages around Faisalabad.The Journal of Animal
and plant sciences, 22(3):246–249, 2012.

[21] A. L. Michel, de Klerk Lin-Mari, N. C. Gey van Pittius, R.M. Warren, and P. D. van
Helden. Bovine tuberculosis in African buffaloes: observations regarding mycobacterium
bovis into water and exposure to environmental mycobacteria.BMC Veterinary Research,
3(23):1–7, 2007.

[22] R. Tschopp, E. Schelling, J. Hattendorf, A. Asefa, and J. Zinsstag. Risk factors of bovine
tuberculosis in cattle in rural livestock production systems of Ethiopia.Preventive veteri-
nary Medicine, 89(3):205–211, 2009.

[23] J. Zhang, Z. Jin, G. Q. Sun, T. Thou, and S. Ruan. Analysisof rabies in China: Transmission
dynamics and control.PLos One, 6(7):1–9, 2011.

[24] N. D. Barlow. Non-linear transmission and sample models for bovine tuberculosis.Journal
of animal ecology, 69(4):703–713, 2000.

[25] P. C. White, A. J. Lewis, and S. Harris. Fertility control as a means of controlling bovine
tuberculosis in badger (Meles meles) populations in south-west England: predictions from
a spatial stochastic simulation model.Proceedings of the Royal Society B: Biological Sci-
ences, 264(1389):1737–47, 1997.

[26] B. T. Grenfell, and A. P. Dobson.Ecology of infectious diseases in natural populations.
Cambridge University Press, Cambridge, Uk, 1995.

[27] P. Van de Driessche and J. Watmough. Reproduction numbers and sub-treshold endemic
equibria for compartmental models of disease transmission. Mathematical Biosciences,
180(1):28–29, 2002.

[28] F. E. Amanda, C. A. Bolin, J. C. Gardiner, and J. B. Kaneene. A study of the persistence
of Mycobacterium bovis in the environment under natural weather conditions in Michigan,
USA. Veterinary medicine international, 2011, 1–13, 2011.

[29] A. B. Gumel, S. M. Moghadas, and R. E. Mickens. Effect of a preventive vaccine on
the dynamics of HIV transmission.Communications in Nonlinear science and numerical
simulation, 9(6), 649–659, 2004.

[30] C. Castillo-Chavez, Z. Feng, and W. Huang. On the computation of R0 and its role on
global stability. math. la. asu. edu/chavez/2002.JB276. pdf, 2002.

[31] A. S. Hassan, S. M. Garba, A. B. Gumel, and J. M. S. Lubuma.Dynamics of Mycobac-
terium and bovine tuberculosis in a Human-Buffalo Population.Computational and math-
ematical methods in medicine, 2014, 1–20, 2014.

35



Chapter 5

Conclusion and future work

This thesis focused on developing epidemiological mathematical models to enhance the un-

derstanding of the transmission dynamics of bovine tuberculosis (BTB) in buffalo and cattle

populations. Considering the biology and natural history of the BTB infection, various aspects

of the infection were incorporated into the models developed.

Chapter 1 gave a detailed account of the background of the BTB infection. Important aspects

of the disease highlighted are background information, epidemiology of bovine tuberculosis

in Africa and other continents, epidemiology of bovine tuberculosis in Kruger National Park,

bovine tuberculosis in cattle population, the biology of the causative agent of the infection,

the concept of metapopulation and the statistics for the BTB infection globally and in Kruger

National Park, motivation of the study, objectives of the study, outline of the study and pub-

lications that have built the thesis.

In Chapter 2, we considered the role of buffalo carriers in the transmission dynamics of BTB

infection in buffalo population. The results suggest that the infection of susceptible buffalo via

buffalo carriers increase the number of infected buffalo population, which subsequently increase

the prevalence of bovine tuberculosis in buffalo community. This can be the other reason for

BTB infection persistence in the buffalo population and unsuccessful efforts to eradicate the

disease so far. This implies that the control efforts should target mechanisms that can detect

the buffalo carriers to successfully improve efforts to control the infection. The work done in
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[32] attempted to study the dynamics of bovine tuberculosis via a mathematical model that

did not include the role of buffalo carriers. Their results showed the existence of BTB infection

in buffalo population, but their model could not explain the reason for disease existence.

Our study also investigated the aspect of cross-infection between cattle and buffalo populations

in Chapter 3. Its inclusion in the model has given new insights into the evolution of BTB

infection in cattle and buffalo populations. The results show that the prevalence of BTB

infection is high particularly in the cattle population when there is cross-infection of BTB

infection between cattle and buffalo populations. Our model results on cross-infection can be a

suitable explanation for the observed [82] high prevalence of BTB infection in cattle population

at the interface areas compared to areas that are far from the wildlife-livestock interface areas.

The same aspect was also considered in [53] to study the dynamics of brucellosis between

cattle and sheep on a public farm. Similar observations were also made that the cross-infection

transmission mechanism increased the disease prevalence in both populations, but the intensity

of the increase of the prevalence differs from our study which considered the movement of

buffalo on an uncontrolled site.

In Chapter 4, we investigated the role of movement of susceptible and exposed buffalo from

one patch to another in Kruger National Park. To the best of our knowledge this is the first

study that explores the effect of movement of susceptible and exposed buffalo from one patch to

another. The results show that the intensity of the disease in a low prevalence patch 2 increases

when the susceptible and exposed buffalo from patch 1 move into it. It is the movement of the

exposed buffalo from patch 1 to patch 2 that poses a serious threat regarding the spread of the

BTB infection northwards. This underpins the fact that the disease spread in Kruger National

Park is moving northwards from the southern part where the infection initially started. The

study [32] attempted to look at the transmission dynamics of bovine tuberculosis in buffalo

population but their work did not consider the aspect of movement of susceptible and exposed

buffalo from one patch to another. Their model results did not manage to explain why BTB

infection is increasing northwards in Kruger National Park, an observation our model has

managed to show.

These findings have very important implications for bovine tuberculosis control: We recommend
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that if bovine tuberculosis is to be eliminated, advanced test techniques should be developed to

be able to diagnose the buffalo carriers to reduce the transmission of the infection from carrier

buffalo. This will accelerate the eradication of BTB infection from the buffalo population. We

also recommend that strict control and monitoring measures should be used at the interface to

reduce or block the cross-infection of bovine tuberculosis to either cattle population or buffalo

population. We also recommend that control measures that prevent the movement of buffalo

from one patch to another should be implemented.

Our study has managed to provide significant improvement to the existing knowledge regarding

the spread mechanisms of the BTB infection in both cattle and buffalo populations. Our work

can be enhanced by considering the following aspects :

• The stochasticity of the BTB infection was not incorporated into our models. Generally,

the disease is stochastic in nature, outbreaks of the disease are commonly observed in

drought times where animals converge at water drinking sites. This situation increases

the chances of spreading the BTB infection. The model would be more realistic if a

stochastic component was factored in the model.

• Another important driving factor of the infection not included in the model is pseudo-

vertical transmission route. The age specific disease prevalence suggests that young ani-

mals get the infection via sucking milk from their mothers. This biological aspect of the

infection if incorporated in the model can improve the understanding of the transmission

dynamics of bovine tuberculosis. Bovine tuberculosis prevalence is high in buffalo aged

less than two years [18] and this explains why the pseudo-vertical transmission route

should be considered in our models.

• The further understanding of the BTB infection would be enhanced if in-host modelling is

carried out. This type of modelling gives very significant insights into the characteristics

of M. bovis ; the knowledge can be used to develop the right medication for the infection.

• The model validation is a crucial step in the modelling process. This step is achieved

when the models are fitted to data; the process helps to estimate the appropriate values
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of the model parameters. Model validation provides more confidence in trusting the model

prediction. A current challenges is that data is scarce in the case of BTB.

• The zoonotic effect of the disease was not considered in the models developed in this

thesis. People in rural settings close to the interface between the park and the rural areas

reside closer to their livestock and they can easily become hosts for BTB.
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