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Abstract

In South Africa, buffalo are the maintenance hosts of Mycobacterium bovis (M. bovis), a
pathogen that causes bovine tuberculosis in wildlife and domesticated animals. To understand
the transmission dynamics of M. bovis, mathematical epidemiological models are developed.
The models address various questions about the transmission dynamics of bovine tuberculosis
in both buffalo and cattle populations. The key questions addressed by the models are: can
buffalo carriers fuel the re-occurance of bovine tuberculosis in buffalo population? Is the cross-
infection transmission route responsible for the persistence of bovine tuberculosis in cattle
population? Can the movement of buffalo from one patch to another be the reason for the
spread of bovine tuberculosis in Kruger National Park? These questions are addressed in
Chapters 2, 3 and 4 respectively. Both the mathematical and numerical analysis suggest that
the infection parameters associated with buffalo carriers and cross-infection and movement
parameters associated with the movement of susceptible and exposed buffalo from one patch
to another are among the key drivers of bovine tuberculosis in buffalo and cattle populations.
The findings have very vital implications for bovine tuberculosis control. If bovine tuberculosis
is to be eliminated, there is need to develop tests that can detect buffalo carriers from buffalo
population. This will accelerate the eradication of bovine tuberculosis (BTB) infection from
the buffalo population. Measures need to be taken to prevent the mixing of cattle and buffalo
populations at the interface and also restrict the movement of buffalo from one patch to another

in Kruger National Park.
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Chapter 1

Introduction

1.1 Background

Bovine tuberculosis (BTB) is a chronic and emaciating infectious disease, caused by Mycobac-
terium bovis, which affects domesticated and wild mammals [6]. Mycobacterium bovis forms
part of the Mycobaterium tuberculosis complex. The Mycobacterium tuberculosis complex
comprises tubercle bacilli of 8 distinct subgroups: M. tubrculosis, M. bovis, M. africanum, M.
canettii, M. caprae, M. pinnipedii, M. microti, and M. mungi. Two other different branches
of the M. tuberculosis complex phylogenetic tree exist, the dassie and oryz bacilli, which are
causative agents of tuberculosis in the animal species after which they are named [8]. The BTB
infection wrecks more havoc in the cattle industry in sub-Saharan countries, where diagnostic

tests are not commonly used [16].

1.2 Epidemiology of bovine tuberculosis in Africa and

other continents

Despite some success of control and eradication programs for BTB implemented in various

countries which resulted in the drastic reduction of the new cases of BTB infection in certain
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Figure 1.1: Bovine tuberculosis occurance, Africa [5].

regions, the infection is still prevalent in many parts of the world, particulary in Africa. One
of the reasons for the lack of success is the high cost of sustainable testing procedures as well
as logistic inputs and financial constraints [7, 17]. The prevalence data on bovine tuberculosis
in developing countries are generally scarce but information on BTB occurrence is available.
Of the 55 African countries, 25 reported sporadic occurrence of BTB infection; six reported
enzootic disease, two were reported to have high prevalence, four did not report the disease and
the remaining 18 countries did not have data. Only seven African countries used disease control
measures and classified BTB as a notifiable disease [5]. This was attributed to the inadequate
knowledge about BTB transmission dynamics and its impact in most African countries. Figure

1.1 shows the countries with reported occurrence of bovine tuberculosis.

In Asia, out of 36 nations, 16 reported sporadic occurrence of BTB, one classified the disease
as enzootic, ten did not report cases on BTB and the remaining did not have data. Only seven

countries used disease control measures and considered BTB as a notifiable disease.



Of the total Asian cattle and buffalo populations, 6% and less than 1%, respectively, are found
in countries where bovine tuberculosis is notifiable and a test-and-slaughter policy is used. Of
these populations 94% of the cattle and more than 99% of the buffalo are either only partly
controlled for bovine tuberculosis or not controlled at all [5]. This poses a huge threat of
the spill over of the BTB infection to human beings. Similar trends of the prevalence of the
BTB infection in Latin America were also observed. Erratic occurrence of BTB infection was
reported in 12 countries out of 34 countries. Enzootic was reported in seven countries and only
one country described occurrence as high. The other two remaining countries did not have
data for the disease [5]. (The data on the statistics of BTB in African and Asian countries was

collected in the years of 1990 and 1995.)

It has been estimated that M.bovis accounts globally for 3.1% of all human TB cases (2.1%
of all pulmonary and 9.4% of all extra-pulmonary TB cases). However the extent of M. bovis
involvement in the global TB burden in Africa is still largely unknown. This is explained by
the fact that in humans, TB due to M. bovis is indistinguishable from TB due to M.tuberculosis

in terms of clinical signs, radiological and pathological features [19].

BTB infection also poses an economic threat to trade in animals and their products [9]. In
South Africa, the average price for a disease-free buffalo in 2004 was almost ZAR150000, in
2008 was over ZAR160000, and in 2010 the price increased to over ZAR325000. In 2011 and
2012 the prices hit ZAR18 million and ZAR20 million per buffalo respectively. The advent of
BTB infection risks the economic benefits realized from buffalo sales [11]. Subsequently, a great
interest and commitment are devoted to studies that unravel the key drivers of the disease in

buffalo and cattle.

1.3 Epidemiology of bovine tuberculosis in Kruger Na-

tional Park

The area of Kruger National Park (KNP) in South Africa is 19488km?*. It is South Africa’s

largest wildlife refuge and a critical biodiversity resource. The Park holds up to 147 mammal
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Figure 1.2: The map showing the spread of bovine tuberculosi in Kruger National Park [18]

species, including approximately 2700 African buffalo and 1700 lions. The park is bordered by
Zimbabwe to the north and Mozambique to the east. The KNP stretches 320km from north to
south and 65km from east to west. Several private game reserves have recently been combined
to form Greater Kruger National Park Complex (GKNPC). The private game reserves are
located on the western border of the park [14].

Bovine tuberculosis infection is said to be introduced in the park via co-grazing between cattle

and buffalo in the far south of KNP near Crocodile Bridge prior to the 1960’s (see Figure 1.2).

By the late 1980’s, BTB infection was largely eliminated from the domestic animal populations
surrounding KNP, but inside KNP it persisted undetected. The survey conducted in 1991/92
showed the bushfire like spread of BTB infection towards the north of the park. The southern
part of the park was heavily infected with a prevalence of 27.1%. The central part of the park
was moderately infected with a prevalence of 4.4% while 0% prevalence of the BTB infection
was found in the northern part of the park. In the 1998 survey, the prevalence of the BTB
infection in south, central and north of the park went up to 38.2%, 16% and 1.5% respectively

[18]. The chronological events of the occurrence of BTB infection in all three regions of the
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Figure 1.3: The map showing the spread trends of BTB infection in KNP from 1970 to 2003
[18]

park are depicted in Figure 1.3

The spreading trend of the BTB infection and its spill over effects have made scientists con-
cerned. The ecotourism aspect of the park is also heavily affected due to a large of number
of lions being infected. This is one of the reasons that has fueled more research activities of
bovine tuberculosis in Kruger National Park to understand the transmission dynamics of the

disease.

The 1998 survey revealed that BTB infection spread at a speed of about 6km per year. The
survey also indicated that buffalo less than 2 years old are mostly infected with BTB, which
suggested a vertical transmission route as the main route of transmission in the young buf-
falo. The weakness of young buffalo immunity may enhance this transmission mode. Table 1.1

summarises the results of the survey.



Results from 1998 Survey

Zone Animals sampled Zonal prev. % buffalo> 9 yrs Buffalo < 2 yrs. % infected

South 206 38.5% 5.3% 30.3%
Central 206 19.7% 5.8% 17.2%
North 206 1.5% 15% 0.0%

Table 1.1: The table showing the age specific prevalence of BTB infection in buffalo [18]

1.4 Bovine tuberculosis in cattle population

Farmers are being denied of their only source of income when their herds of cattle are infected
with M. bovis. Cattle die in large numbers when they are infected with M. bovis. The BTB
infection is mainly a serious problem in countries where the control measures are inadequately
or not applied at all [5]. Industrialised countries like England managed to reduce the negative
effects of BTB infection in the cattle industry but their efforts are being thwarted by the
existence of maintenance hosts like badgers [52]. The high prevalence of BTB infection is
recorded at the wildlife-livestock interface. For instance, in Zambia a high prevalence of BTB
infection in cattle is recorded at the Kafue basin, which interfaces with the rural areas [84]. In
South Africa, more cases of BTB infection in cattle are recorded in areas that interface with
Kruger National Park [18]. Considering the economic potential the cattle industry has in any
country’s economy, the priorities of most countries are tailored to research activities that aim
to enhance the understanding of the transmission dynamics of BTB infection. This study will
also explore the factors that promote the spread of the disease at the wildlife-livestock interface

through mathematical models.

1.5 Biology of Mycobacterium bovis

The M. bouvis is a slow-growing, acid-fast, gram-positive, rod-filamentous-shaped bacterium.
It has a wide range of hosts and can infect all warm-blooded vertebrates, including humans.

The M. bovis is an intracellular microbe of macrophages and does not multiply outside the



host except in cultured media [10]. The enviromental conditions dictate the survivability of
M. bovis outside the host. In moist conditions, particularly those in which oxygen and organic
matter are present, the pathogen survival time increases. A harsh environment decreases the
survival time of the pathogen [15]. Some hosts of M. bovis have the ability to turn into a
maintenance host, a host that is not harmed by the pathogen, but acts as a source of infection
to other animals. Maintenance hosts include the possum in New Zealand, badgers in Ireland
and Britain, Kudu in Zambia, cervids in United States and African buffalo in South Africa
[3, 4]. Tt is the existence of maintenance hosts that has led to the failure of many intervention
programs to eradicate bovine tuberculosis in developed countries. Other species have been
identified as spill over hosts or dead end such as humans, coyotes and cats. In spill over hosts,
infection in the population can not persist indefinitely unless there is re-infection from another

species or a change in the population that enhances interspecies transmission [4].

Despite the long history of disease recognition, the disease dynamics of M. bovis are not well
understood. The incubation period is not known for BTB infection. It ranges from days to
several months or longer. Some animals appear in the course of infection to be asymptomatic,
but the disease may progress rapidly in others. Progressive emaciation and weakness appear

with stress or age. Respiratory signs include coughing, dyspnea, or exercise intolerance [17].

Transmission of M. bovis can occur via various transmission mechanisms. A single bacillus
in a droplet may be sufficient to establish infection [15]. Aerosolization is thought to be the
most infectious route of transmission, accounting for 80 to 90% of infections in cattle [13]. The
gregarious behaviour of buffalo promotes this type of transmission mode. In Kruger National
Park, lions become infected through eating infected buffalo (which is a maintenance host).
Eating poorly cooked meat and drinking contaminated milk is another route that transmits

infection to human [4].

1.6 Metapopulations

A metapopulation is a population of populations in which different subpopulations occupy

spatially disconnected patches of habitat [12]. Initially, the metapopulation theory was par-



ticularly useful to wildlife biologists because most wildlife are fragmented or maintain some
degree of patchiness. The idea of population persistence was achieved even in cases where local

populations undergo extinction [12].

The concept of metapopulation was coined by Richard Levins in 1969. His model was based
on a population in which individuals reproduce and die within local patches of the habitat,

and their offspring disperse into other patches. The variable of interest was p, the fraction of

dp

27> determines whether p will increase, decrease or

occupied patches. The rate of change of p,
stay the same. The rate of change Z—’t’ is given by the difference between colonization rate C' and
the extinction rate E. This is analogous to population growth rate as the difference between

birth and death rates [12]. The governing equation of the assumed system is

d;
d—?zC—Ech(l—p)—ep.

In this model, the colonization rate depends on the number of occupied and unoccupied patches.
This basic model was modified by various researchers as they tried to address problems in
ecology. The metapopulation concept was applied to the study of infectious diseases by Julien
Arino [2]. Tt was used in the field of mathematical epidemiology due: (i) The initial conditions of
disease are often heterogeneous, with disease spreading geographically with time. For example,
black death spread east to west and south to north along the trade routes of Europe between
1347 and 1350, and fox rabies spread west from Russian-Polish border in 1940 to reach France
by 1968; (ii) The environment itself is heterogeneous both in a geographical sense and in a
human sense with birth rates, death rates and health care facilities varying with location;
(iii) Different species have travel rates, a factor that plays a huge role for diseases involving
many species, for instance, the foot-and-mouth disease outbreak in the UK in 2001 and vector
transmitted diseases; and (iv) For human diseases, social groupings and mixing patterns vary
with geography and age. This is illustrated by comparing humans in a hospital setting with

those in isolated communities in Canada’s North and with children in schools [2].

To factor in the spatial variations in a model, two approaches may be used. The first approach
uses continuous spatial models with continuous time that yield partial differential equations

of reaction-diffusion type. The second approach uses discrete spatial models with continuous



time that yield systems of ordinary differential equations, which are metapopulation models
involving movement of individuals between discrete spatial models [2]. The approach to be
used in any modelling project depends on the questions to be addressed and the experience of

the modeller.

1.7 Motivation

Despite the success in eradicating BTB infection in industrialized countries, the disease still
remains a big challenge in Sub-Saharan countries. The reasons for the menace to continuously
cause havoc in Sub-Saharan region are due to lack of awareness of the local authorities about
the economic implications, the high cost of sustainable testing procedures as well as their
logistic inputs and financial constraints, and the existence of maintenance hosts that act as the
source of infections to other species [17]. In South Africa, BTB infection is endemic in Kruger
National Park where significant research activities are being carried out. The benefits being
yielded from the research activities are outweighed by the negative impact of the infection. The
disease continues to spread and spill over to cattle in the areas closer to the park and other
species in the park. The lion, one of the “Big Five” animals in the park is heavily infected;
almost 90% of the lions are infected with M. bovis [1]. Worse still, the disease continues to
spread northwards at a rapid rate, an observation, which is of great concern to policy makers
and the park management structure. Additionally, BTB infection has a serious impact on the
cattle industry which experiences massive death of cattle. This is expensive to both cattle
owners and government. Cattle owners lose the source of income and government lose billions
of money as it initiates programs that minimise the further spread of the disease. It is against
this background that this project seeks to understand the transmission dynamics of the BTB
infection via mathematical modelling. Mathematical models of different forms incorporating the
environmental factors and movement factors are developed and analysed to help us to extract
insights into the transmission dynamics of the disease. The knowledge gained will help policy

makers to apply the correct intervention strategies to minimise the effects of the infection.



1.8 Objectives of the study

The aim of this research project is to formulate mathematical epidemiological models that can
be used to study the dynamics of the bovine tuberculosis in both cattle and buffalo populations.

The specific objectives of this study are

(i) To analyse the transmission dynamics of bovine tuberculosis so as to find the necessary

conditions for the disease persistence.

(ii) To highlight the relative contribution of buffalo carriers and the environment in the disease

transmission dynamics.

(iii) To evaluate the impact of cross-infection transmission route in the persistence of the BTB

infection in cattle population.

(iv) To evaluate the role of movement of buffalo in the spread of bovine tuberculosis in buffalo

population in the Kruger National Park.

1.9 Outline of this work

This work consists of three publications, two of which are under review while one is under
revision. In Chapter 2, we provide a model for the transmission of bovine tuberculosis in

buffalo only. Mathematical analysis and simulations of the model are given.

In Chapter 3, we give a model for the role of multi-transmission routes in the epidemiological
of bovine tuberculosis in cattle and buffalo populations. Mathematical analysis in the presence

of the cross-infection route is given. A numerical analysis of the model is also given.

In Chapter 4, we consider a metapopulation model for the role of movement of buffalo in the
spread of bovine tuberculosis in Kruger National Park. Mathematical analysis and numerical

simulations are both given.

In Chapter 5, we give a comprehensive conclusion of our findings.

10
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of bovine tuberclosis in buffalo
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Abstract

Bovine TB infections has a significant impact on the growth of domestic and
wildlife animals such as buffalo. The effects have an extended impact on
the trade and products of these animals. As a result bovine tuberculosis
(BTB) poses a zoonotic threat to the veterinary public health. We propose
a mathematical model that studies the transmission dynamics of bovine TB
in a buffalo population that seeks to enhance the understanding of BTB in-
fection as a platform for the design of policies towards intervention. The
basic reproduction number Ry of the model was calculated to facilitate the
qualitative analysis of the model. It was observed that if Ry < 1, the so-
lution converges to the disease free equilibrium and if Ry > 1, the solution
trajectories approach the endemic equilibrium point. Our results suggest
that the evolution and the outcome of the disease is determined by horizon-
tal transmission rates and the indirect transmission rate I'. Higher values of
these transmission rates result in higher levels of infected buffalo and carrier
buffalo.
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1. Introduction

Bovine tuberculosis (BTB), an airborne, chronic bacterial disease, caused
by Mycobacterium bovis (M. bovis), is one of the most significant zoonotic
infections worldwide [1]. The significance of tuberculosis in wild animals
specifically has been acknowledged recently. Many wild animals, once in-
fected, demonstrated the potential to act as reservoirs of the disease for both
domestic cattle and other important wildlife species [2, 3]. The brushtail
Possum in New Zealand, European badger (meles meles) in United Kingdom
and Ireland, Bison (Bison bison) in North America, African buffalo (Syncerus
Caffer) in Africa, Kafue Lechwe (kobus leche) in Zambia and White-tailed
deer (Odocoileus Virginiarus) in Michigan can all act as maintenance hosts
for bovine tuberculosis, allowing the persistence of the infection in wildlife
and enabling the horizontal transmission of the pathogen between species
1, 4, 5, 6].

The modes of transmission that promote the spread of BTB infection to
wildlife, livestock and human beings are: aerosol transmission that occurs
through inhaling the air droplets that contain M. bowvis, vertical or pseu-
dovertical transmission which occurs when M. bovis is passed on to not yet
born offspring or through milk suckling from an infected mother and con-
suming inadequately cooked infected meat [7], or indirect transmission that
occurs through grazing the pastures contaminated with M. bovis. Most buf-
falo contract BTB infection through aerosol transmission. Vertical and psue-
dovertical transmission are rare modes of transmission of BTB infection in
buffalo. Some carnivores such as lions acquire BTB infection through the
ingestion of infected buffalo. BTB infection is also transmitted to human be-
ings through eating poorly cooked infected meat and drinking unpasteurised
milk, especially in rural areas [6, 8, 9, 10, 11]. Wildlife species may also
become infected through indirect transmission by grazing the contaminated
pasture. Irrespective of the type of the route of transmission, it takes either
months or years for clinical signs of BTB infection to appear [1, 4, 5, 6] .
The propagation of M. bovis within the animal is considered to be a rela-
tively slow process in ruminants and large carnivores, with the most infected
animals being asymptomatic until disseminated lesions develop during the
late stages of infection [3].

The BTB infection in buffalo progresses as follows: initial exposure of sus-
ceptible buffalo to M. bovis leads to the exposed stage, the stage in which



the infected animal is not infectious but has M. bovis. This is followed by the
infective stage where an infected animal sheds off the M. bovis and spreads
the infection to other animals. The infective stage is followed by the chronic
or carrier stage. In the chronic stage, an infected animal still harbours and
spreads the pathogen but at a reduced rate. Note that both the latter stages
are asymptomatic. A few studies on BTB infection have been carried out so
far worldwide (Africa included). The studies are inadequate due to lack of
awareness of the local authorities about the economic implications, the high
cost of sustainable testing procedures as well as logistic inputs and financial
constraints [3, 16]. BTB infection studies conducted in South Africa, par-
ticularly in Kruger National Park (KNP), showed that BTB infection was
introduced in KNP from domestic cattle between 1950 and 1960. The pres-
ence of the disease was detected in 1990 [17]. It was established that BTB
infection was increasing in prevalence in the southern parts of KNP while
spreading northwards. This put the whole park at risk of being completely
infected. The studies further showed that more than 90% of lions in KNP
were infected with BTB infection [18]. The scenario in KNP prompted
further studies to enhance the understanding of the epidemiology of BTB
infection in KNP. A number of clinical and statistical studies have been car-
ried out on both animal and human tuberculosis in Africa. Studies in South
Africa showed that social contact prompted the fast transmission of BTB
infection from one animal to another [3, 19]. Transmission of BTB infec-
tion from one animal to another was increased when animals from different
herds were put into one grazing area where some animals were infected [20].
The mixing of infectious animals with non-infectious animals was the most
prominent mode of transmission of BTB infection among buffalo herds in

KNP [19].

Mathematical models carried out to understand the BTB infection in buffalo
are rare. A model assessing vaccination as a control strategy in an ongoing
epidemic of bovine tuberculosis was developed in [6]. The results showed
that vaccination alone can not completely control bovine tuberculosis and
that it should be combined with other control measures in order to eradicate
BTB infection. Related models were developed to understand BTB infection
in other animal species [21, 22, 23]. The models developed so far do not con-
sider the carrier sub-class as a confounding factor influencing the dynamics of
BTB infection in buffalo. The models did not factor in the effects of indirect
transmission of BTB infection as one of the modes of transmission that links



the species under study and the environment as well as other species.

Our study seeks to develop a mathematical model that can be used to un-
derstand and analyse the transmission dynamics and control of bovine tu-
berculosis in buffaloes. We seek to answer the following question: Do the
buffalo carriers influence the persistence of BTB infection in buffalo popula-
tion? In section 2 we formulate the mathematical model incorporating the
carrier buffalo in the compartmental structure and indirect BTB transmission
as additional modes of infection. Section 3 deals with the model analysis.
In sections 4 and 5, we shall carry out simulations and present sensitivity
analysis results respectively. The discussion and conclusion of results are
presented in section 6.

2. Mathematical model

In this section, we present a continuous mathematical epidemiological model
for the transmission and evolution of bovine tuberculosis in the buffalo pop-
ulation. We are guided by the information on the natural history of BTB
infection to arrive at basic assumptions on the model formulation as it is
indicated in [24, 25, 26, 27]. The total population, N(t), is divided into four
sub-populations: susceptible buffalo population, B,(t), that is free from M.
bovis but at risk of infection, exposed buffalo population, B, (t), with M. bovis
but not yet infectious, infected buffalo population, B;(t), having M. bovis, do
not show show signs and are infectious and carrier buffalo population, B.(t),
having M. bovis do not show signs of infection but infect the susceptible buf-
falo at a reduced rate compared to the infectious buffalo. Susceptible buffalo
are recruited through a constant natural birthrate w. The susceptible buffalo
leaves the class either through a constant death rate d or through infection
from infectious buffalo, carrier buffalo and external environment with a force
of infection defined in equation via

A= P (1)

The effective contact rate of susceptible buffalo and infectious buffalo occurs
at constant rate 8 while that of carrier buffalo occur at a rate 73, 0 < v < 1.
When the susceptible buffalo contracts M. bovis, they progress as a source to
the exposed buffalo population. The natural death rate d is the same for all
classes. The exposed buffalo leave their class either through natural death



rate or when they develop clinical symptoms and begin to shed M. bovis
at a constant rate « into the infectious buffalo class B;(t). The infectious
buffalo leave their class through natural death, through death induced by
BTB infection at a rate € and through progression to the carrier buffalo class
at a constant rate 6. The progression to carrier buffalo occurs when the
infectious buffalo heal from the lesions so that their infectiousness is reduced
but they continue to shed M. bovis. The carrier buffalo can die naturally or
die due to BTB infection at a rate e.
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Figure 1: The flow diagram for bovine tuberculosis infection in buffalo population as
defined in system 3. The dashed lines represent the transmission routes.

N(t) = By(t) + B(t) + B(t) + B.(t). 2)

We illustrate the conceptual model in Figure 1. It is translated into a math-
ematical model consisting of the following non-linear ordinary differential



equations

dB;

= — AB, — dB,
dt m
dB.
— AB.— (a+d)B,,
y (v +d)
dB )
dti = aB.— (0 +d+e¢€)B;
dB,
= 0B, —(d B..
o (d+e€)

3. Model analysis

In this section, we prove the positivity and boundedness of the model (3) to
establish the well posedness of our model. We also determine the existence
of equilibrium points and their stability to gain insights into the prognosis
of the BTB infection in the buffalo population. We shall calculate the ba-
sic reproduction number R, an epidemiological quantity that gives insight
on the processes that are key drivers of BTB infection. The reproduction
number is defined as the average number of buffalo secondary infections gen-
erated by one infectious buffalo during its entire infectious period in a wholly
susceptible buffalo population.

3.1. Feasible region

Since model (3) tracks the buffalo population, we assume that all the state
variables and parameters of model (3) are positive for time ¢ > 0. The
bovine tuberculosis transmission model (3) will then be analysed in a suitable
feasible region given by

Q= {(357BeaBich) ERLOSN(t) < g}

We show that the region 2 is positively invariant. For model (3) to be
epidemiologically useful, it is important to show that all its state variables
are non-negative for all time. In other words, solutions of model (3) with
positive initial data remain positive for all time ¢ > 0.



Let B, >0,B.>0,B; > 0,B. > 0, Vt > 0. From the first equation of model
(3) we have

dB;
dt

=m — (d+ \)Bs,

which can be solved to obtain

By(t) = By(0)exp {— (dt+/0t)\(8)ds)} +exp {— (dt+/0t)\(s)ds)]
(/Ot reap [dt + /OS)\(w)dw} ds) > 0¥ > 0.

From the second equation of model (3) we have

dB,
dt

+ (d+ a)B. = A\(t)Bs,
with solution
t
Bu(t) = e+ / A(s)e )2 B, (s)ds + B, (0)e~(Hot > 0
0

Using the same techniques we also show that B;(t) > 0 and B.(t) > 0. Thus
all the solutions of model (3) are non-negative in €2.

We now show that all feasible solutions are bounded in a proper subset of €.
Adding all the equations in model (3) gives

N = 7 —dN(t) —e(B; + B,),
< 7w —dN(t).
Solving the inequality gives

0< N(t) < g+ (N(O) - E) e,

where N(0) represents the initial value of N(t). Thus, as t — oo, 0 <
N(t) < g Therefore, all solutions of model (3) enter the region from the

boundary of 2. This means that all possible solutions of model (3) will enter
the region €2 and stay inside 2. Hence the region (2, of biological interest, is
positively-invariant under the flow induced by model (3).
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3.2. Equilibrium points

In this section we investigate the existence of equilibria of model (3). Solving
the right hand side of the model by equating it to zero, we obtain the following
biologically relevant equilibria:

3.2.1. Disease-free equilibrium point and its stability
The disease-free equilibrium of model system (3) is given by

™
Ey = (d,o,o,()).
The stability of Ey is governed by the basic reproduction number. We shall
use the next generation operator [28, 30] to establish the stability of Ej.
Using the notation in [30] for model (3), the matrix of new infections F into
compartments and the matrix of transfer terms V in and out of compartments
are given

0 ﬁ—ﬂ ﬂ d+ « 0 0
F=|g & &1,  v=[-a 6+ctd 0 (4)
so that
1
d+ o 0 0
- a(d +€) 1 0
| (dH+a)(d+e)(d+e+0) 0+e+d
af 6(d+ ) 1

(d+a)(d+e)(d+e+0) (d+a)(d+e)(d+e+60) e+d
Following [28], the basic reproduction number of model (3) is
Ry = p(FV™)

where p represents the spectral radius of the matrix FV~!. R, is BTB
infection basic reproduction number given by
s

B ﬁa 05975
=73 (<d+a><d+e+e> ' <d+a><d+€><d+€+9>)




The first term of Ry represents the contribution of infected buffalo and the
second term represents the contribution of buffalo carriers. The stability of
Ey is stated in the following theorem:

Theorem 1. The disease-free equilibrium Eq of model (8) is locally asymp-
totically stable whenever Ry < 1 and unstable otherwise.

Proof. The approach used to find Ry guarantees the local stability of disease-
free equilibrium Fy. For stability of Ej, we need to show that all the eigen-
values of the Jacobian matrix of model (3) evaluated at E, are negative or
have negative real parts. It is sufficient to consider the stability of the matrix
F -V [28]:

Br B

“dte rE

F=V=1 o —@+ec+a) 0
0 7 —(e+4d)

The eigenvalues of F' — V' are solutions to the characteristic equation
A+ G + Gl + G5 =0,
where

Gi = (3d+ a+ 0+ 2e)

Go = ((d+ a)(d+€) + (d+ )0+ e +d) + 0+ e+ d)(e+d) — o)

Gs=(e+d)(d+ a)(@+e+d)(1— Ryp).

The Routh-Hurwitz Stability Criterion is used to establish that eigenvalues
are either negative or have negative real parts.

So GyG1 — G3 = By + By + Bs + By(Bs(1 — Ry) + ady3%) > 0,

where



By = (e +d)*(d+ a) + (e + d)(d + a)?,
By =2(e+d)(d+a)(d+0+¢€) + (d+ a)*(d + 0 + €)?,
Bs = (d+9+6)2(e+d)+a6270
(d+0+e+d+e)
(e+d) ’
Bs = (d+a)(d+0 + ).

By =

Since all the Routh-Hurwitz conditions are satisfied when Ry < 1, then all
the eigenvalues are negative. Thus the disease free equilibrium point is locally
asymptotically stable when Ry < 1. O]

To guarantee the global asymptotic stability of the disease-free state, we
rewrite the model (3) in the form

{% = F(X,2),

@ =(G(X,7), G(X,0)=0,

where X = B, and Y = (B,, B;, B.)T with X € ®, denoting the number of
susceptible buffalo and Y € R? denoting the number of infected buffalo.

The disease-free equilibrium is now denoted by Ey = (X, 0) where X, = g
and 0 is a zero vector. The following conditions H; and Hy should be
satisfied to guarantee global asymptotic stability:

e H;: For % = F(X,,0), Xy is globally asymptotically stable.
e Hy: G(X,Z) =AY — G(X,Y), G(X,Y) >0 for (X,Y) € Q, where

A = Dy (G(Xo,0)) is an M-matrix. If model (3) satisfies the conditions
H; and Hs, then the following result holds.

Theorem 2. The disease-free equilibrium point Ey = (Xo,0) is a globally
asymptotically stable equilibrium of the system (3) provided that Ry < 1 and
the assumptions Hy and Hy are satisfied.

Proof. Consider
F(X,0) =7 —dB,, G(X,Y)=AY —G(X,Y)

where

10



—(d+ «a) Br 4L

d d
A= a —(0+e+a) 0 :
0 0 —(e+d)
and
) AN(1 - B2)
GX,)Y) = 0
0

The first condition Hjy is satisfied when X is a globally asymptotically stable
equilibrium point of the equation

d B
i dBs. (5)
Solving (5) we obtain
B.(t) = = — B()e ™",

Taking limits as t — oo we obtain,

t—o0
This suggests that independent of the initial conditions the solution of the
equation (5) converges to Xy. Thus, Xy is a globally asymptotically equilib-
rium point of (5). To prove condition Hy, we observe that G(X, Y) >0, so
this completes the proof of both conditions. O

The significance of Theorem (2) is that BTB infection can be eradicated
completely from the buffalo population in the long run whenever Ry < 1.

3.2.2. Endemic equilibrium point

The coordinates of the endemic equilibrium point E} = (BZ, B}, B}, BY)
of model (3) are obtained in terms of the force of infection, using the approach
in [29] as follows

T —XNB*—dB* =0, (6)
N'B; —(a+d)B; =0, (7)
aB —(0+d+¢€)Bf =0, (8)
B —(d+¢)B; =0. 9)

11



From equation (5) we have
m

B: = . 1
= (10)
Substituting equation (9) into equation (6) we obtain
A*
B = T (11)

T derd’
Substituting equation (11) into equation (7) we find that
am\*
B! = . 12
@ Fdt+e) (M +d)(a+d) (12)

Substituting equation (12) into equation (8) we obtain

. am\*
Be=grdrov+dlatddro (13)

Our force of infection at the equilibrium point is

. _ BB +B;)
N=—7 (14)
where
N* — T@+d+e)(d+e)(a+d) +XNm((0+d+e)(d+e)+Q (15)
(0 +d+e)(a+d)(d+e) (I +d) '
where

Q =aXNm(d+¢€) +aX'T

If (12), (13) and (15) are substituted into (14), we obtain the equation in
terms of \*:

A (DN + Dq) =0, (16)
where
O+d+e)(d+e)+a((d+e) +1)
Dy=1-Ry, D=
2 0 (0 +d+e)(d+e)(a+d)
-1
The roots of equation (16) are A\; = 0 and A5 = Ho . Al = 0 corresponds

D,
to the disease free equilibrium point and A3 is therefore the root that corre-

sponds to the endemic equilibrium point provided Ry > 1. We summarize
the existence results as follows:

12



Theorem 3. The BTB endemic equilibrium point EY exists and is unique
whenever Ry > 1.

Theorem 4. The unique endemic equilibrium FE4 is locally asymptotically
stable for Ry > 1.

Proof. To determine the local stability of the equilibrium point F;, we use the
center manifold theory by making the following change of variables: By =
x1,B, = w9,B; = w3 and B, = x4. Let X = (x1,72,23,74)" where T

denotes the transpose of a matrix. Model (3) can be written in the form

Cfi_)t( =9= (91792,93,94)T, so that

& = =7 — (5333"‘76354) 1 — dr

dt ! 1+ To+ T3+ 24 ! b

dxo (B3 + yBx4)

e — - d

dt 72 € +$2+$3+$4x1 (a+ )1'2,

dis (17)
— = gg3=axy— (0+d+e)xs,

dt

dz

d_t4 = gy =0zx3— (d+€)zy.

Choosing [ as a bifurcation parameter and noting that Ry = 1 gives the
bifurcation point, we obtain

d(d—i—oz)(d%—e)(d—i—e%—@)'

p=F= ma(d + e+ 70)

Substituting 8 = §* into the Jacobian matrix of (17) we obtain the following
eigenvalues:

dy di\’
)\120, )\2:—(d+6¥), )\3742—?:|: ? —do

where
af*m

dg = klkg + /{?1/{33 + k2k3 — d

d1:k1+k2+k}2,

13



and
kiy=d+a, ky=0+e+d, ki=d+e.

Clearly zero is a simple eigenvalue and thus the center manifold theory can
be used to analyse the dynamics of the system of equations (17) near g = *

The Jacobian matrix of (17) evaluated at Ey using § = (3* has a right
eigenvector associated with the zero eigenvalue given by

w = [w17w27w37w4]T7
where
wl:_ﬁﬂ_a<1+v_9) Wy =1, wi— — =
d(0+d+e) d+e)’ ’ O+d+e d+e€

The left eigenvector of J(Fy) associated with the zero eigenvalue at § = *
is given by

v = [Ula V2, U3, U4]T7

where
0 e . YO
vV = Vg = ——— Va = Vy = .
TR T axd T T  dla+d)(d+e)
To calculate a we use the following non-vanishing partial derivatives of g
g _—mB g —Pm
6.1320173 d ’ 3x23x4 d ’
so that
! 0?g T v
k
a = vpww;————(0,0) = —2u(=wiws + —wiwy) < 0.
Z J 8:Uﬁx] d d

We proceed to compute the bifurcation coefficient a and b as follows: The ex-
pression for b is obtained from the following non-vanishing partial derivatives
of ¢

3292 . 3292 T

Or306* d 0x0p* d’

so that
- &g gl
b= i—_(0,0) = Zwy + Swy) > 0.
i%::lvkw 6xi86*( ,0) U2(dw3+ p wy)
Thus, a < 0 and b > 0. [
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Model (3) exhibits a transcritical bifurcation which is a supercritical bifurca-
tion. In a supercritical bifurcation scenario, the exchange of stability between
the uninfected and infected equilibrium points guarantees that the infected
equilibrium point is locally asymptotically stable whenever Ry > 1. This
means on one hand when Ry > 1, BTB infection persists in the buffalo pop-
ulation. On the other hand, if the condition on Ry is reversed to Ry < 1,
then the disease free equilibrium point is the only equilibrium point in ex-
istence [25]. Hence, according to the model prediction, it is possible to
eradicate BTB infection in buffalo population by introducing and maintain-
ing favourable conditions.

3.2.3. Analysis of Ry

As earlier stated, the basic reproduction number measures the average num-
ber of new infections generated by a single infected buffalo in a completely
susceptible buffalo population. We can re-write Ry as

Ry = Ro; + Ry (18)
where
R T
" T dd+a)(d+e+06)
R vBmal
“Tdd+a)d+e)(d+e+0)

Ry, defines the reproduction number due to infective buffalo and Ry, is the re-

production number due to carrier buffalo. The terms in (18) can be explained

1 1
as follows: , , are the average times an individual spends
Y dta 0+dre dte VoS vicHatsb
in exposed class B, infected class B; and the carrier class B, respectively.

The term a
a+d

is the probability that an individual progresses to an infective

0
dtect 0 is the probability that

an individual progresses to a carrier class from an infective class. The terms

B o 1 ndyﬁw e 1 1 0t
d\dta)\dtere) ™ "a \dxa)\dvera) \axe) P°

explained as the secondary infections caused by infective and carrier buffalo
respectively. The conditions Ry < 1 and Ry > 1 can be interpreted as in
Table (1) in relation with the status of the equilibrium point indicated in

class from the exposed class, while the term
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Table 1: Table of Ry scenarios
Case | Ry; | Ro. | Ry | Region
(i) >1|1>1|>1
i) |[>1]|<1|>1
i) | <1|>1|>1
iv) | <1l]<1|>1
V) <l|<l|<1

bl N e Rwilcs!

}?{J.-

» I

Endemic < =
Endemic

B o
seundo endemic

= Raoi + Roc Endemic

DFE

0 1 %’

Figure 2: The figure showing four possible scenarios for bovine tuberculosis stages.

Figure (2).

In region A, the BTB infection dies out without any intervention. The
pseudo endemic equilibrium point exists in region B where BTB infection is
sustained by the combined effort from both infected and carrier buffalo. Re-
gion C represents an endemic equilibrium region where BTB infection is being
driven by carrier buffalo only. Region D represents an endemic equilibrium
point where the infection is being driven by infected buffalo only. Region F
represents an endemic equilibrium point where the infection is driven by both
infected buffalo and carrier buffalo. The pseudoendemic equilibrium point is
in the interface of the rest of the equilibria. Thus to move from one equilib-

16



rium point to another, the system always passes through the pseudoendemic
equilibrium. The implication regarding the endemic equilibrium status is
that once the buffalo population is in equilibria C', D and FE, reversing the
system to disease free status will call for persistence efforts towards achieving
this goal. This means highly accurate control measures need to be imple-
mented to be completely sure that the system has achieved the disease-free
status.

4. Numerical simulations

We present a detailed account on how the parameters used in the model are
estimated. We then use the parameters to carry out numerical simulations
that will enhance further understanding of the model predictions. For some
parameters, we shall perform sensitivity analysis to assess their influence on
the outputs of the model.

4.1. Parameter estimation

All parameter values used in the numerical simulations are given in Table
4 together with their sources. Some parameters are taken as they appear
in the literature while other parameter values are determined based on the
explanation given in the literature. Those with no known values from lit-
erature are determined by the conditions subjected to them in the model
formulation. The values used in the simulations are indicated on the legends
of the graphs. The values of # and « are obtained from [6]. The reduction
factor for the infective rate of the carrier buffalo, v, is determined based on
the fact that it lies between 0 and 1. The parameter € is determined based
on the fact that it takes a long time for an infected buffalo to die from the
infection and research shows that bovine tuberculosis increases mortality by
approximately 10% [3, 4, 20]. The parameter 7 is estimated from the es-
timates given in the literature, for instance in [31] and ranges from 252 to
1200. The parameter d is estimated using the life expectancy of a buffalo
which ranges between 20 and 29 years and so the death rate ranges between

%9 and %0 [31]. The transfer rate, 6, is also assumed as there is no literature
that gives the estimate of the rate the infected buffalo class move to carrier

buffalo class. The estimated initial conditions we use are B,(0) = 24052,

B.(0) = 948, B;(0) = 100 and B.(0) =50 [20, 31].
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5. Sensitivity Analysis

The sensitivity analysis of parameters used in our simulation was done us-
ing the method of Latin Hypercube Sampling with partial rank correlation
coefficient index (PRCC). PRCC'’s falls between —1 and 1, with an absolute
value of PRCC close to 1 indicating the parameter has a strong impact on
the model output. Furthermore, PRCC provides a measure of the relative
influence of these parameters on the targeted model output [33]. We test
the effects of all the input parameters used in our model on the output vari-
ables. Of particular interest is the influence of the parameters on the infected
buffalo and carrier buffalo which are the problematic variables towards the
progression of BTB infection. The PRCC’s are calculated at one year as well
as at fifteen years. The choice of the first point is influenced by the fact that
within a year, BTB infection is in its incubation period. The second point is
selected to compare the long term impact of the parameters over time. The
results in Table 2 suggest that 3 and I' are some of the dominant parameters
that drive the BTB infection. The relative importance of some parameters
increases or decreases in the course of infection. For instance, the relative
importance towards the evolution of BTB infection of 7 increases to 1 from
0.998. The relative significance of «, the transition rate from exposed class
to infectious class increases to -0.7 from -0.5. This suggests that the effect
of parameters m and « increases in the course of infection. Table 2 gives
detailed account of the evolution of parameters from the initial stages of the
infection (1 year) up to the very late of the infection (15 years).

Sensitivity analysis done on carrier buffalo sub-population aimed to identify
the parameters that impact on the carrier buffalo. The parameters, 7, 3
and I' also emerged as some of the parameters that play crucial role in the
epidemiology of carrier buffalo. The relative importance of other parameters
towards the dynamics of carrier buffalo either increases or decreases. For
instance, the relative importance of 7 increases to 0.91 from 0.84. The pa-
rameter, 6, shifted its relative importance from negative to positive. Table
3 has the details of the relative importance of model parameters from the
initial stages (1 year) to the late stages of the infection (15 years).
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PRCC: 1 year PRCC: 15 years

Parameter PRCC Index Parameter PRCC Index

T 0.998 T 1

16} 0.6 15} 0.6

v 0.7 v 0.46
d 0.1 d 0.087
0 0.081 0 0.084
€ -0.7 € -0.7
o -0.5 « -0.7

Table 2: PRCC indices at two different time points on infected buffalo

PRCC: 1 year PRCC: 15 years
Parameter PRCC Index Parameter PRCC Index
T 0.84 T 0.91
I} 0.07 15} 0.07
v -0.087 ¥ -0.1
d -0.8 d -0.8
0 -0.012 0 0.01
€ -0.1 € -0.067
Q -0.089 Q -0.1

Table 3: PRCC indices at two different time points on carrier buffalo

5.1. Simulations

We present numerical simulations of model (3) to explore the overall impact
of various transmission mechanisms of bovine tuberculosis in the buffalo pop-
ulation. The transmission mechanisms due to contaminated environment and
those due to effective contacts between susceptible, infected and carrier buf-
falo are explored. This is necessary to determine the control strategies of BTB
infection since we need to know which processes cause the greatest damage
towards the progression of BTB in the buffalo population. Using parameter
values in Table 4, we firstly explore the role of environmental transmission
mode in the epidemiology of BTB infection which is achieved by increasing
parameter I' while keeping the horizontal and carrier transmission rates low.
Secondly, we investigate the effects of horizontal transmission represented by
[ in the evolution of BTB infection by varying parameter § when I'" and ~
are kept low. Thirdly, we explore the effect of carrier buffalo in the evolution
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Table 4: Table of parameter values used in the model

Name Range Units  Reference

T 252, 1200]  year™ [31]

a [0.03, 0.08]  year™! [6]

6} [0.01, 0.053] year™' [6]

€ 0.1, 053] year™' 3, 32]

R S

0 [0.01, 0.05]  year™! estimated

v [0, 1] year™"  see section (2)

of BTB infection in the cases of high and low # and I'. Lastly, we carry out
sensitivity analysis to determine the influential parameter values that drive
BTB infection in the buffalo population.

Figure 3 explores the scenario of varying the horizontal transmission rate
in the epidemiology of bovine tuberculosis in buffalo population. The re-
sults show that horizontal transmission does not only have a negative effect
on buffalo population, but it also promotes the persistence of the infection.
Thus the endemic levels of infected and carrier buffalo when Ry > 1 are
high compared to endemic levels when the environmental transmission rate
is considered. From the veterinary public health point of view, this scenario
is a threat to the survival of buffalo since BTB infection can easily spill over
to other species, a situation that puts the whole park at risk of being com-
pletely invaded.
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Figure 3: Graph showing the effects of increasing the horizontal transmission rate of BTB
infection. m = 1200,¢ = 0.2, = 0.07,d = 0.05,0 = 0.02,T" = 0.001,v = 0.01

6. Discussion

The mathematical model presented in this paper captures the effects of var-
ious transmission routes of bovine tuberculosis such as indirect transmission
mechanism and horizontal transmission mechanism initiated by infected and
carrier buffalo. We ensured that the model was both biologically and math-
ematically tractable. The basic reproduction number R, was calculated and
used to determine the global dynamics and the outcome of the disease and
if the threshold parameter Ry < 1, the solution trajectories converge to the
disease free equilibrium. On the other hand, if Ry > 1, the solution con-
verges to the endemic equilibrium point. The center manifold theory was
used to prove the local stability of endemic equilibrium point. We used nu-
merical simulations as baselines to illustrate the different scenarios from the
model analysis. Sensitivity analysis was also conducted using Latin Hyper-
cube Sampling method to determine the model parameters that drive the
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transmission dynamics of BTB infection. Most baseline values for our pa-
rameters were taken from indicated sources and for some which were not
available in literature we resorted to estimation guided by the underlying bi-
ological scenarios from literature. The simulations allowed us to observe the
effect of the parameters on the transmission dynamics of bovine tuberculosis
in buffalo population.

Using the parameter values used in the simulations, the estimated value of Ry
is 7.8, the value that shows the endemicity of BTB infection in buffalo pop-
ulation. To control the disease, the control measures that target at reducing
the horizantal transmission rate and at promoting the screening activities
should be adopted. For instance, a 50% decrease in horizontal transmission
rate, causes Ry to reduce to 3.9. A 50% decrease in the transition rate «,
results in a drop of only 0.79. A significant drop of 5.4 in Ry is observed
when the combined efforts are employed, thus control measures that reduce
the § and « simultaneously. The analysis shows that integrated efforts are
required from all stakeholders to reduce Ry < 1.

Numerical simulations also suggest the social behaviour of buffalo, a feature
captured in (3, promotes the persistence of BTB infection in buffalo popula-
tion. The result is illustrated by the trajectory solutions of By(t), Be(t), B;(t)
and B, in Figure 3. The observation further confirms the fact that BTB in-
fection can only be eliminated if the transmission routes are well understood
and can be accurately measured. The greatest challenge is that these differ-
ent transmission routes cannot be quantified exactly so that any intervention
strategy is most likely to depend on estimates especially in large parks. If
there are only buffalo carriers in the ecosystem, BTB infection is not sus-
tained in the ecosystem. This becomes possible if we assume that the envi-
ronment is not heavily contaminated and very little activities that promote
horizontal transmission, which practically is not feasible. Ecologically this
means that the transmission through carriers remains a serious problem that
requires considerable attention from all players involved in BTB infection.

Further, through sensitivity analysis, our results show that if all three modes
of transmission are promoted, BTB infection can spread rapidly in buffalo
population as evidenced by the significant effects of parameters 5 and v in
Table 2. This can cause direct economic loss plus secondary losses, for ex-
ample due to an accelerating death of lions, which attract many tourists in
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Kruger National Park. Sensitivity analysis also revealed that (§ is of the
parameters that drives the transmission dynamics of BTB infection. This
knowledge can be used by policy makers to come up with holistic control
measures to control the BTB infection. However, to effectively guide public
policy and public health decision making, the model and parameter values
would need to be tested against data from bovine tuberculosis field sites.
The current analysis, however, remains an important first step in comparing
the effectiveness of different control strategies.
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Abstract

A mathematical model that describes the transmission digsaai bovine tu-
berculosis (BTB) in both Wiialo and cattle populations is proposed. The model
incorporates cross-infection and contaminated envirgriitn@ansmission routes.
A full analysis of the model is undertaken. The reproduchamber of the en-
tire model is comprised of cross-infection and contamithgtarameters. This
underscores the importance of including both cross-iildeand contaminated
environment transmission routes. Crucially our simulaisuggest that the dis-
ease has a more devastatiripet on cattle populations than onftalo popula-
tions when all transmission routes are involved. This hgsomant implications
for agriculture and tourism.

Keywords: Cattle, Cross-infection, Btalo, Environment, Mathematical
modelling, Mycobacterium bovis

1. Introduction

Bovine tuberculosis (BTB) results from infection by mycoteium bovis ¢.
bovig, a Gram positive, acid-fast bacterium in the mycobacteriuberculosis
complex of the family mycobacteriaceae [2]. BTB is a chrdmacterial disease
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that dfects all species of mammals includingiialo, cattle and humans [1, 2]. It
is spread through inhaling contaminated aerosol dropletsking unpasteurised
milk, eating poorly cooked meat, scavenging infected atsprgrazing on con-
taminated pasture and also through vertical transmisgtom(an infected fe-
male animal to a newly born animal) [3, 4, 13, 14, 15, 16, 17].BBnfection
can be dormant for years and reactivate later in the lifegppam animal due to
stress or old age [2, 3, 14, 18].

It has been estimated thist. bovisaccounts globally for 3% of all human
tuberculosis cases .®6 of all pulmonary and 4% of all extra-pulmonary tu-
berculosis cases). However, the extenvbfbovisinvolvement in the global tu-
berculosis burden in Africa is still largely unknown. Thahe partly explained
by the fact that in humans, tuberculosis duétdovisis indistinguishable from
that due taM. tuberculosisn terms of clinical signs, radiological and pathologi-
cal features. In addition, various laboratories in subaBa Africa do not have
the capacity to dierentiateM. bovisfrom M. tuberculosid23]. The paucity of
information on BTB infection in Africa [5] with the exceptimoof South Africa
where a substantial research in BTB infection has beenechfi4], has led to
a poor understanding of its transmission dynamics in arsrmatl humans. This
work aims to enhance the understanding of the transmisginandics of BTB
infection through mathematical models.

Mathematical modelling has become an important tool inynad) the epidemi-
ological characteristics of infectious diseases and cavighe insight into useful
control measures [24]. Various models have been formulatedplore various
aspects of BTB infection. A non-linear transmission mod@sisting of sus-
ceptible and infected possum populations was developdd 2% model was
used to explain bovine tuberculosis dynamics in a hetergenpossum popu-
lation, taking into account the patchy distribution of théeiction. A determinis-
tic/stochastic model was developed to explore the factors thet the spread of
BTB infection in possum population and social contact wastbto promote the
spread of BTB infection [6]. A spatial stochastic model wasealoped in [26] to
assess fertility control as a means of controlling bovireetaulosis in badgers.
The results showed that fertility control alone cannot clatgby eradicate BTB
infection from badger populations.

Apart from using mathematical models to understand thesingssion dynamics
of BTB infection in wildlife, epidemiological models werésa used in livestock.
A model comprised of seven sub-populations was formulateshhance the un-
derstanding of the transmission dyneémics in cattle [4]. @fibe main results of



the model was that imported infected cattle were respom$iblthe persistence
of BTB infection in cattle population. A discrete mathensatimodel was devel-
oped in [14] to assess vaccination as a control strategy ongoing epidemic
of bovine tuberculosis in African ialo. The model established that BTB infec-
tion can be completely wiped out if various strategies aexlus combination.
The concept of cross-infection of BTB betweenfthio and cattle populations
was not considered in any of the models formulated so fars Ehin contrast
to other zoonotic diseases like brucellosis disease thegnsmitted from sheep
to people [27]. The inclusion of cross-infection transnaegoute in the model
was necessitated by the observation that BTB infectiongbeexe was higher in
cattle and bffalo populations, in areas at the interface with wildliferthibose
that are not at the interface [7]. This suggested that ardsstion route may
play a role in the epidemiology of BTB infections in both ptadions. It is at
the interface where catfleuffalo interactions are experienced [13].

We will build a model that will characterise the epidemiata] features of BTB
infection transmission mechanisms involvindtialo and cattle populations. The
model will address the following questions:

e Does the sheddingfoof M. bovis in the environment promote the persis-
tence of the infection in cattle and ff@io populations?

e Is cross- infection of BTB infection from ffalo responsible for higher
prevalence of the infection in cattle?

2. Mathematical model

In this section, we introduce a continuous mathematicalexpiological model
for the transmission and evolution of bovine tuberculoei®oth bdtalo and
cattle populations. Guided by the information on the nathistory of BTB
infection in both cattle and ifalo population to determine, the basic plausible
assumptions for the model formulation are determined [28,3D]. A popula-
tion size of cattleN.(t), which is time varying, is partitioned into three classes
consisting of cattle that are susceptible to the dise@gé), exposed cattle that
haveM. bovisbut are not infectiousCe(t), and infectious cattle that spread the
disease to both cattle andffalo, Ci(t). The bufalo population of sizeNy(t),
which is also time varying, is compartmentalised intéfalo that are susceptible
to diseaseB¢(t), exposed and non-infectiousfialo, Be(t), and infectious buf-
falo that spread the disease to botlffalo and cattleB;(t). Due to the nature of

BTB infection, a recovery class is not considered becauiseassumed that an
3



animal does not recover from infection [9]. A variab\g,is used to denote the
guantity of infectiougMl. bovisin the enviroment, which is shedfat a rateo

by the infected bfialo and cattle through the activities of urination and excre
tion of feces. We assume thislt bovisin the environment decays at the rate
The maximum carrying capacity ®f. bovisin the environment is represented
by K. We assume that a susceptible cow progresses to the exdaseg(t),
through either anféective contact with the infected cattle at a constant gate

an dfective contact with the infected fialo at a ratgs, or through contact with
the contaminated environment at a rgte The exposed cow progresses to the
infectious class at a rat®. The natural and disease induced death rates of the
cattle areu. ande; respectively. The recruitment rate of cattle to a susckptib
class isr;. We also assume that a susceptibl&do progresses to the exposed
buffalo classBg(t), through either anféective contact with the infected falo

at the rates,,, an dfective contact with the infected cattle at a raggor through
contact with the contaminated environment at gateThe exposed Kialo pop-
ulation progresses to the infected claBg}), at the ratep,. The recruitment
raterm, of susceptible bifialo is assumed to be constant. The natural and disease
induced death rates of fialo areu, and e, respectively. It is further assumed
that the infection rate from cattle to catjg is greater than the infection rate
from infected bifalo to susceptible cattle populatigg,. The same assumption
also holds in bffalo population, thug, > B [10]. Homogeneous mixing is
assumed, thus all susceptible cattle have the same likelitmbe infected and
also susceptible liftalo have the same chance of being infected. The force of
infection for cattle is given by

ﬁcCi " ,Bchi 4 ﬂ

A = 1
TN, Np K’ (1)

and the force of infection for lftalo is defined by

BB B OV
Np N¢ K

(2)

The possible interactions among and between cattle affidlbare illustrated in
Figure 1.
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Figure 1: The flowchart of the transmission dynamics of bevirberculosis in hiialo and cattle
population. The dashed lines represent the transmissigterso The dotted lines represent the
shedding & of M. bovisin the environment.

The compartmental model in Figure 1 is thus represented éyditowing of



non-linear system of ordinary fierential equations ,

dC

dts = m —ALCs - ,UcCs,

d

d_Cte = ACs - ¢cCe — ule,
d g

d_c,[:I = (,bcCe - (IJC + fc)Ci,
dv

E = O'CCi+O'bBi—9V, (3)
d
d_BtS = mp— ApBs _,Ust’

d
d_Bte = ApBs— ¢pBe — pBe,
d
d_? #uBe — (up + €)B;.

whereNg(t) = Cq(t) + Ce(t) + Ci(t) andNy(t) = Bs(t) + Be(t) + Bi(t) with

d

d—l\,:o 72 — upNp — € B;,
dN;

E = ﬂ']_ _/'lCNC - Ecci.

We introduce the following dimensionless parameters:

T:/Jct’ BC:%’TC:%’Tb:%’ Bb:ﬁ_:’ BCb:%a Bbc:%’zc:%azb:
D =L = & — % — & — Hb — &

ﬂc’®_ﬂc’(DC ﬂc’®b e’ EC e’ Mb ue’ Eb pe”

The dimensionless variables then are

_C _ C _ G _ VvV _ _ _ B _ m _
Xy = N_:axz - N_i’x‘?’ - N_(I;’X4 - R’XS - N_b’XG - N_b’x7 - N_:)’Hl - m,nz -
o
Nppe *

The forces of infection become

Ac = BeXg+ BepXz + PeXa, Ap = BpXz + BpeXs + PpXa.
6



Now our system (3) becomes

dx

2 = I3 — AcXq — Xq,

dr

d

_XZ = Acxl—(Dch—Xz,

dr

dx

dr

dxs

— = XXz + ZpX7 — OXy,
dT cX3 T 2pX7 X4 (4)

d

°% . IT; — ApXs — MpXs,
dr

dxs

9 - ApXs — DpXe — MpXs,
-

dx

d_7 = DpXs — ( Mp + Ep)x7.
-

We now proceed to analyse the transformed nonlinear sygteas the dynamics
of system (4) are qualitatively equivalent to the dynamiafie system (3).

3. Cattle sub-population model

By setting By, = By = Wp = Xy = 0, we obtain the following cattle sub-
population model:

dx = II1 — AcXy — Xq,
dr
d_X2 = Acxl - (DCXZ — Xo,
dr
©))
dr
d
_)<4 = Zcx?, - ®X4.
dr

7



This sub-model describes the transmission dynamics ofnleawiberculosis in
cattle only. The sub-model also takes into account the rodewtaminated pas-
ture in the evolution of bovine tuberculosis in the catti@plation.

3.1. Feasible region

Since sub-model (5) monitors the cattle population, weragsihat all state vari-
ables and parameters are positive for time 0. The bovine tuberculosis trans-
mission sub-model will then be analysed in a suitable féasdgion given by

by
Q]_:{(Xl,Xz,Xg,X4)€y\ﬂxlZO,XzZO,X3ZO,X420,NCSH1,X4§6(:}.

We show that the regiof, is positively invariant. For sub-model (5) to be
epidemiologically useful, it is important to show that 4 state variables are
non-negative for all time.

Letx; > 0,% > 0,%x3 > 0,%4 >0, Yr > 0. From the first equation of sub-model
(5) we have

dx
—2 =TI, - (1+ Ac)Xa,

dr
+ exp[— (r + j: Ac(9)d s)]

which can be solved to obtain
T+ f Ac(w)dw] ds) >0,Vr>0.
0

X(r) = xl(O)exp[— (‘r+ fo ' Ac(s)ds)

(f HleXp
0

XZ(T) — e—(1+®c)Tf AC(S)e(1+<Dc)SXl(S)ds+ Xz(o)e—(1+<bc)r > 0.
0

Similarly

Xa(7) = x3(0)e” " B,
Xa(7) = Xa(0)e™" > 0.

Thus all the solutions of sub-model (5) are non-negativ@;in

We now show that all feasible solutions are bounded in a prepleset ofQ;.
Adding all the equations in sub-model (5) gives

Ne = Tl — Ne(7) — EcX,
Hl - NC(T)a
8
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whereN.(7) = X3 + X + Xa.

Solving the inequality gives
0 < N¢(r) <TI;1 + (Nc(0) - ITy) €77,

whereN.(0) represents the initial value df.(t). Thus, asr — o0, 0 < N¢(7) <
I;. Note that alsob¢ = Z.x3 — Ox < X — Ox. We can thus easily obtain

z . .
0 < x4 < =. Therefore, all solutions of sub-model (5) enter the regiamf

the boundary of2;. This means that all possible solutions of sub-model (5)
will enter the regiorn2; and stay insid€2;. Hence the regioQ,, of biological
interest, is positively-invariant under the flow induceddofp-model (5).

3.2. Equilibrium points

In this section we investigate the existence of equilibfiaud-model (5). Solv-
ing the right hand side of the sub-model by equating it to zem obtain the
disease free equilibrium given by

Eoc = (111, 0,0,0).

The stability ofEq. is governed by the basic reproduction number which is ob-
tained by the next generation operator [31, 32].

The basic reproduction number of model (5) is hence given by

1_Il BC(DC \Pcnlch)c

R = B+ )1+ 00 T O(E. + )1+ D)’

Our Ry, captures parameters from the two transmission routes tivat tthe in-
fection in cattle population and it is defined as the expewctedber of secondary
infections generated due to the interactions between ptistEecattle and infec-
tive cattle and contaminated environment. The first terrRgfrepresents the
infection due to the interaction between susceptible eatid infected cattle.
The infection due to the interaction of susceptible cattié the environment is
represented by the second ternRgf.

To test the parameters that significantfieat the transmission dynamics of BTB
in cattle, sensitivity analysis oRy. was carried out through fllerentiatingRy.
9



with respect to parameters of the model. The following rtssuere obtained

aROC _ I 2D

0¥. O(E.+1)(1+ D)’
8ROC _ I, YD,

0. O(E.+1)(1+ D)’
ORu Y I, 2D

00 O E.+ 1)(1+ Do)

The sensitivity analysis oRy. shows that. andX, contributes towards the epi-
demiology of bovine tuberculosis in cattle community. Thius risk measure
of the outbreak of BTB is increased when the infective rate tducontaminated
environment and the shedding rate of infectious mycobactebovis into the
environment increase. However, any increase in the degagie of the infec-
tious unit in the environment leads to a decreasiyn From the policy maker
perspective, this implies that the controlling measurgdieg should focus on
reducing environment infective rate aMl bovisshedding & rate and increas-
ing the decaying rate d¥l. bovisin the environment in order to reduce bovine
tuberculosis in cattle population.

The stability ofEy is stated in the following theorem:

Theorem 1. If Ry < 1, the disease-free equilibriumgfof the sub-model (5) is
locally asymptotically stable, and is unstable B 1.

Proof. For stability ofEq., we need to show that all the eigenvalues of the Jaco-
bian matrix of model (5) evaluated Bg. are negative or have negative real parts.
It is sufficient to consider the stability of the matifix— V, whereF is a matrix
that contains transmission terms that describe the primauof new infections
andV is the matrix that contains the transition terms that desarhanges in the
state variables [31] whose eigenvalue$ofV are solutions to the characteristic
equation

LB+AP%+B1+C=0
where

C = swregmn(L ~ Reo)

The Routh-Hurwitz Stability Criterion is used to establtblat eigenvalues are
10



either negative or have negative real parts. It can be oedehatA > 0 and
C > 0whenRy. < 1. It can also be established that

where

1
Q=(1+0+ E.+®c)|(J+ O+ Eo)(D, + 1)(1_ Roc)

wherel = @?(2+ E.D¢) + D 11X P.. WhenRy. < 1, then all the eigenvalues are
negative or have negative real partsR§f > 1, itis easy to see thét > 0,C < 0,

and despite the sign @ we have, using Descarte’s rule of signs, there is only
one positive eigenvalue. This makEg a saddle point and therefore unstable.
Thus the disease free equilibrium polgy; is locally asymptotically stable when
Roc < 1 and unstable wheRy. > 1. O

3.2.1. The endemic equilibrium and its stability
Here, we study the existence and stability of the endemidibqum point. By
straightforward computation, Ry, > 1, then the cattle sub-model (5) has a
unique endemic equilibrium given ;. = (X;, X5, X3, X;) in Q; with
v - OI11(O B, + Y20
17 (Roe = 1)(O Be + WeZo) + O(O By + We2o)’

W = (1+ Eo)Zc(Roc — 1) = (Roc — 1)
27 D@ B+ YE) T 0 OB+ P

4T OB+ P

Theorem 2. If Ry > 1, the endemic equilibrium Eof the model (5) is locally
asymptotically stable i€;.

Proof. In order to explore the local stability of the endemic edprilim point

Ec, we evaluate the Jacobialfx], X5, X3, X;) at the endemic equilibrium point
and we get

c) =
® -(1+E) O
0 0 ZC _®

11



The eigenvalues af(E,) are calculated usinBet(J(E. — 1l4)) =0
-AT 0 A -Ag
Ar -As A As|_ 0

0 & -A) O
0 0 X A

Det

where

AL =BXg+ WX +1+4, As= Boxg+WeX,, Ac= BeX, As=YeX)

As=1+D.+1;, As=1+ E.+41;, A=0+41
The first two eigenvalues of the Jacobian matrix &re= — (chg +WeX; + 1)
and1, = —(1 + ®.) The other eigenvalues are obtained from

A2 +bdl+b, =0,
where
by =0 +n+ZCs by =ZDA3( Bexs + WeXy),

The eigenvaluess 4 are both negative due to the existencecpfx, andx; when
Roc > 1. This implies that all four eigenvalues of our Jacobianrmare nega-
tive, which proves the local stability of endemic equililom pointE.. O

4. Buffalo sub-population

By setting B,. = By, = X = ¥, = 0, we obtain the following bfialo sub-
population model:

d

% IT; — ApXs — MpXs,
dr

d

d—X6 = ApXs — PpXe — MpXe,
m

dX (6)
d_7 = DpXs — ( My + Ep)x7,
m

d

S5 sk - OX,

dr

which describes the transmission dynamics of bovine tubbests in bufalo
only. The sub-model also takes into account the role of eonimated pasture
in the spread of bovine tuberculosis in thethlo population.

12



4.1. Feasible region

Since the sub-model (6) tracks theflalio population we assume that all state
variables and parameters are positive forratk 0. The bovine tuberculosis
transmission sub-model will then be analysed in a suitaddsible region given

by

11 z
QZZ{(X59X6’X77X4)€%1|X5209X62O7X720ax4203NbSVZ’)ngb}-
b

whereNy(7) = X5 + X + X7

The techniques used to establish the invariance and booads®f(), are the
same as outlined in section (3).

4.2. Equilibrium points

In this section we investigate the existence of equilibfiaud-model (6). Solv-
ing the right hand side of the sub-model by equating it to zem® obtan the
disease free equilibrium given by

IT
Egp=|1—,0,0,0].
Ob (Mb’ b ’)

The stability ofEgqy, is governed by the basic reproduction number which is ob-
tained by the next generation operator [31, 32]. Followiij[the basic repro-
duction number of model (6) given by

I1; By®y N WpllZp Py
Mp( Ep + Mp)( Mp+ @) © Mp( Ep + Mp)( My + ®p)°

Rop =

Our Ry, is interpreted in the same way Bg. in section (3).

To test the parameters that significantffeat the transmission dynamics of BTB
infection in bufalo, sensitivity analysis oR,, was carried out through fierenti-
atingRy, with respect to parameters Bf,. The following results were obtained

6R0b _ 1_[Zzbq)b

= >0,
ale ® Mb( Eb + Mb)( Mb + (Db)
ORon _ LY,y 20
6Zb ® Mb( Eb + Mb)( Mb + (Db) ’
R Yl Dy

- _ 0.
00 ®? Mp( Ep + Mp)( My + D) )
13



The explanation of the sensitivity analysis follows the sgrath as done in sec-
tion (3)

The stability ofEgy, is stated in the following theorem:

Theorem 3. If Ry, < 1, the disease-free equilibriumggof the sub-model (6) is
locally asymptotically stable, and is unstable R 1.

Proof. The proof of theorem (3) follows the same procedure as adlin sec-
tion (3). O

4.2.1. The endemic equilibrium and its stability

Here, we study the existence and stability of the endemidibqum point. By
straightforward computation, iRy, > 1, then the bffalo sub-model (5) has a
unique endemic equilibrium point given iy = (X, X5, X5, X;) in Q; with

@Hz(@ By + lszb)
Mp(Rop — 1)(© By + PpZp) + © Mp(© By + PpZp)’

Xg =

X = (Mp + Ep)Zp Mp(Ros — 1)
B (Db(® Bb + leO'b) ’

Mp(Ron —1) . Zp Mp(Rop — 1)

7_®Bc+‘{’b2b’ 4 @Bb+‘Pbe )

The approach used in section (3) to establish the locallgyabi the endemic
equilibrium is also used in this section.

5. Analysisof a full model

This section covers the analysis of the full model (4). Ragitof the model will
be established and the reproduction number will be detexthifihe association
of the amplification or abating of the disease with the repobidn number in
buffalo and cattle population will also be detailed.

5.1. Boundedness of the model

In this section, we establish the boundedness of the sygteta énsure that all

solutions remain in the feasible regién
14



Proposition 1. Let (X1, X2, X3, X4, X5, Xs, X7), b€ a solution of the system (4) with
initial conditions (6 > 0,%, > 0,%3 > 0,X4 > 0,x5 > 0,%X > 0,X; > 0) and a
closed set

IT 2o+ X
Q = (X0, X2 Xa, Xa» X5, X6, X7) € BRI, N < T3, Ny < VZ X< =5 b
b
then Q is positively invariant and attracting under the flow debex by the
system (4).

),

Proof. Consider the Lyapunov function as used in [8]
H(7) = (N(7), Np(7), X4(7)) = X1 + X2 + X3, X5 + Xe + X7, X4. (7

The time derivative of this equation is given by

dH
p (1 = Ne = Ecxa, I, = MpNp — EpXz, ZcXs + ZpXz — OXq) . (8)
It is easy to prove that
dd_l\lCSHl_NcSO f0r chnl
-
d I1
—N"snz— MoNp, <0 for N> —=
dT Mb
d Yot X
—x4§ZC+Eb—®x450 for x@g
dr ®

Thus it follows that‘é—'j < 0 which implies thaf2 is a positively invariant set. A
standard comparison theorem [33] is used to show that

e+ X
O < (NC7 Nb7 X4) < (Nc(o)e_T + Hl(l - e_T)’ W Cg be—@T) (9)

whereW = Np(0)e™ ™7 + 2 (1 - e ™)
Thus, asr — 0, 0 < (Ng, Np, X4) < (I, “VZb 0) and s is an attracting set. [

5.2. Reproduction number
The disease-free equilibrium point of model system (4) vegiby

II
EOf = (Hla Oa O’ O’ _29 0,0 .
My

Following [11, 31], the basic reproduction number of modglwe obtain
15



0 0 0 0 0
F=|0 0 0 0 0o |,
0 BpXt PpXe 0 Bbx:"5
0 0 0 0
O, +1 0 0 0 0
V= 0 2. 0 0 —Xp
0 0 0 Oy + My 0
0 0 0 -0y ( My + Eb)
The inverse oV is given by
01+ E)
O(1+ EJ:)(1+CI>C) 0 0 0
B(1+dc)
N> o1+ E:)(1+tl>c) 0 0
-1 _ Zc(1+Dc) (L+@c)(1+ Ec)
vt= N3 o1+ E:)(1+q>c) @(L Ec)(+1+q>c) Nj
0 0 0 (Dbf Wi
0 0 0 Ns
where
Ye(1+ D)1+ Ef)
N

T (Ep+ MO+ E)L+ D)
®(I)C( Eb + Mb)

o= Er Moo+ BN+ 0y’

N = ZcD(Zp + Mp)

7 Ep+ M®(1+ EQ)(1+ D)

N, = z:bcDb(l"'(I)c)(]-"' Ec)

* 7 (Eo+ Mp)(Mp+ ©p)0(L + Eo)(1+ D)’
N (1 + Ec)(@)q)cq)b + @q)b)

" (Ep+ My)O@+ E)L+ Do)

Our next generation matrix of the system (4) is
1

(10)
(11)
(12)
(13)

(14)



M1 M2 Mz Mg Mhs
0 0 0 0 0
Fv1i=|0 0 0 0 0],
My My Myz Myg NMys
0 0 0 0 0

where
My = +

T (Ep+ Mp)O(L+ EQ(1+ Do)  (Ep+ Mp)(l+ EQ)(l+D)O
m X; BcO(1 + D) X ZPe(1 + D)

N2

T O+ E)1+ Dy 01+ E)(d+Dy)
Pl + E)(1+ D)

My3 =
01+ E)(1+ D)
X; Ben(1+ Ec)(@D D + ODy) X ZpDcWe(1+ Eo)(1+ D)
M4 = B, + My)(Mp+ Phi0®(1+ Eo)(L+®D0) « (Ep+ Mp)( My + p)0(L+ Eo)(L+ Dy
Mys = X"i B X;_Zb(l + EC)(]. + (DC)IPC
Ep+ My ( Ep + Mb)®(1 + EC)(l + CDC)
%5 Bo(© Ep®c + © Myp®c) XeWp( EpZc®c + MpZ D)
M1 = B, & My)®(1+ E)(L+ D)  (Ep+ MO+ Eo)(l+ dy)
B X Boc(® + OD) X Wp(Zc + Zc D)
2= 1+ E)1+ Dy O+ E)(L+ Do)
X Wp(1+ Eo)(1+ D)
M3 = ~9(1+ E)(L+ Dy
B XE Bb(l + EC)(@)(DC(DC + @q)b) X*SZbd)b‘I’b(l + EC)(]. + (DC)
Mus = (Ep+ Mp)(Mp+ Phi)®(1+ EJ)(1+ D) - (Ep + Mp)( Mp + @p)0(1 + EQ)(1+ D)
Mg = Xg By X;Zb(l + EC)(]. + (I)C)\Pb

Ep+ My  (Ep+ My)O(L+ E)(L+ Dy

So the basic reproduction number is given by

Ror = p(FV™) = My + Mag + /(Myg — Myg)? + 4myamyy, (15)

andp denotes the spectral radius.

The expression oRys contains two terms representing the direct transmission
routes and the other two representing the cross-infectemsmission routes.
The components in our reproduction number can be integheetdollows:my;

is the contribution of infected cattle and contaminatedre@mment in the evolu-

tion and epidemiology of bovine tuberculosis in the cattpyiation only;ny,4
17



is the contribution of infected fialo and contaminated environment in the evo-
lution and epidemiology of bovine tuberculosis in thefblo population only;
My4 is the contribution of infected Wialo and contaminated environment in the
evolution and epidemiology of bovine tuberculosis in thilegopulation; and
My, is the contribution of infected cattle and contaminatedirenvment in the
evolution and epidemiology of bovine tuberculosis in th&#lo population.

The inclusion of cross-infection and environment routethaRy; signifies the
role these routes play in amplifying the infection in botlttlesand bdifalo pop-
ulations. To lower the negative impacts of the infection imedtock industry,
control measures should target reducing the mixing ofeaitid bffalo at the
wildlife-livestock interface.

5.3. Stability of disease free equilibrium point

Let
—(P.+1) Bex; Yex; 0 BocX;
D, -+ E) O 0 0
M=F-V= 0 PN -0 0 PR
0 BocXe  WoXg —(Pp+ Mp) BoX;
0 0 0 (% —( My, + Eb)

Define (M) = max{Rel : 1 is an eigenvalue df1}, so (M) is a simple eigen-
value of M with positive eigenvector [11]. Byrheorem 2 of [31], these two
equivalences hold

R>1—= sM)>0, Ry<le sM)<O.

Theorem 4. The bovine tuberculosis free equilibrium pointg;Eis locally
asymptotically stable if i < 1 and unstable otherwise.

Proof. To prove the local stability of disease free equilibrium gstem (4),
we verify the hypothese#\( — A5) in [31]. HypothesesA 1l — A4) are easy to
verify if all eigenvalues of & 7 matrix

M O
J'EOf:(Js Jz)

are negative real parts, whelg= —J,.

The matrixJ; is given by
18



-1 0
Y2 = ( 0 - Mb)
The eigenvalues af, are given by
S(J2) = max{-1, - My}

If Rot < 1, thens(M) < 0 andJ | g, < O, the disease free equilibrium B¢ of
system (4) is locally asymptotically stable. O

Theorem 4 implies that BTB infection can be eliminated frdra tommunity
whenRy; < 1. Thus the initial sizes of the sub-populations of the m@dghre
in the basin of attraction of the disease free equilibriunmpo

To prove the global asymptotic stability of the disease &gailibrium point, we
rewrite the model (4) in the form

& =F(XY),
& =G(XY), G(X0) =0,
whereX = (X, Xs)" andY = (X2, Xa, X4, Xs, X7)" With X € R2 denoting the num-
ber of susceptible cattle andfialo andY € R> denoting the number of exposed
cattle, infected cattle, contaminated environment, eegdsffalo and infected
buffalo.

The disease-free equilibrium is now denoted By; = (Xo,0) where

I1 . . . .

Xo =114, VZ andOis a zero vector. The following conditions should be satis-
b

fied to guarantee global asymptotic stability:

e Hi: For‘c’i—f = F(Xo, 0), Xq is globally asymptotically stable.

e Hoi G(X,Y) = AY - G(X,Y), G(X, Y) > 0 for (X, Y) € Q, where
A = Dy(G(Xo, 0)) is anM-matrix.

If model (4) satisfies the conditiort$; andH, [12], then the following result
holds.

Theorem 5. The bovine tuberculosis free equilibrium pointy¢ Eis globally
asymptotically stable if R < 1.
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Proof. Consider

F(X,0) = (IT; — X, I, — MpXs), G(X,Y) = AY = G(X,Y)

where
A = 0 ZC _® 0 zb .
0 Stz T (D + My) Boll
0 0 0 @y, —( My + Ep)
and
BcXs + BepX7 + WYXy
N 0
G(X,Y) = 0
BbX7 + Bch3 + ‘PbX4
0

The first conditionH; is satisfied wherX is a globally asymptotically stable
equilibrium point of the equations

—_— = Hl — X, — = Hz - MbX5. (16)
T T
Solving (16) we obtain
_ —T _ H2 — Mpt
X1 () =11 = X (7)€", Xs5(7) = Vb — Xs(7)€ .
Taking limits asr — oo we obtain,

lim x,(7) = Iy, lim Xs(7) = E.
T—00 T—00 Mb
This suggests that, independent of the initial conditidhs, solutions of the
equations (16) converge . Thus, X, is a globally asymptotically equilib-
rium point of (16). To prove conditiohi,, we observe thaB(X, Y) > 0, so this
completes the proof of both conditions. O

The significance of Theorem (4) is that BTB infection can lslerated com-
pletely from cattle and ktalo population in the long run whenevigs; < 1. It

naturally follows that the endemic equilibrium point is taise.
20



5.4. Disease persistence

We now turn to the case wheRy; > 1. We only establish the uniform persis-
tence for system (4) whelRys > 1, by applying the following result established
in [34].

Lemma 6. Let K, : X — X be a semiflow andgXc X an open set. Define
0Xo = X\Xpand My = {x € 90X, : K. X € 90Xy, 7> 0}. Assume that

(C) K. Xpc Xgand K. has a global attractor A,

(C,) there exists a finite sequenbk = {My, ..., My} of disjoint, compact, and
isolated invariant sets if#X, such that

(a) Q(Mﬂ) = UXEMD(U(X) C U:(:]_Mi;
(b) no subset o1 forms a cycle odXy;
(c) M;isisolatedin X.

(d) WA(Mi) N Xo = 0 where W(M;) = {xe Xo: w(X) c M}, for each
1<i<k

Then K is uniformly persistent with respect (%o, 9Xo), i.€., there existg > 0,
such thatlim inf  d(K.x,0Xo) >n for xe Xo.

Theorem 7. If Ry > 1, then the system (4) is uniformly persistent, namely there
existy > 0 such thatllm INf {x(7), Xo(7), X3(7), X4(7), X5(7), X6(7), X7(7)}

for initial conditions >g(0) %2(0), X3(0), %4(0), x5(0), X5(0), x7(0) > O

Proof. ChooseX = R, Xo = {(X1, X2, X3, Xa, X5, X6, X7) € X, X2, Xa, Xa, Xg, X7 > O}
anddXo = X\Xo = {(X1, X2, X3, X4, X5, X6, X7) € X, X2 = X3 = X4 = X = X7 = 0}.
Let @, be the semiflow induced by the solutions of system (4).

Proposition 2. Let (X1, X2, X3, X4, Xs, Xs, X7), b€ @ solution of the system (4) with
initial conditions (6 > 0,%, > 0,3 > 0,X3 > 0,x5 > 0,% > 0,%; > 0) and a
closed set

I, Y+ 3y

Q = ((Xl’ X2’ X37 X47 X5’ X67 X7) € %Z’ NC < Hla Nb < Wb X4 @

),

then Q is positively invariant and attracting under the flow debed by the
system (4).
21



The proof of proposition 2 shows

H(7) = (Ne(7), Np(7), Xa(7)) = X1 + X2 + X3, X5 + X6 + X7, Xa. (17)

The time derivative of this equation is given by

dH
o = (ITy = N¢ = EcXs, ITo = MpNp — EpX7, ZcXz + ZpX7 — OXa) . (18)
It is easy to prove that
d
d—NC<H1—NC<O for N > 11,
-
d I1
N o, - MeNy <0 for Ny 22
dr Mb
dX4 X+ Xy

— <X +X-0x<0 for >
Thus it follows that‘(’j—'j < 0 which implies that is a positively invariant set. A
standard comparison theorem [33] is used to show that

2 + Zb _@T

0< (NC, Nb, X4) < ( (O)e_T + H]_(l e_T) W —— e} ,

(19)

whereW = Ny(0)e™ ™7 + 2 (1 — e M)
Thus, asr — o0, 0 < (Ng, Np, X3) < (Hl, O) and s is an attracting set.

that Kyx c Xg and K; is ultimately bounded iiXo; so there always exists a global
attractor forK;. Itis obvious thaEgy; is the unique boundary equilibrium @Xo,
which implies thaEys is globally stable o@X,. Moreover, &;, X4, Xs) cOnverges
to (T3, 0, §&) 0n 8Xo. Let My = {Eq¢} andM = {My}. ThenUsew,w(x) = My
and no subset d¥1 forms a cycle iMX,. If Rys > 1, thenEy; is unstable inX,.
Therefore conditions andd are satisfied and the proof is complete. 0

6. Numerical simulations

In this section, we present a detailed account on how thenpatgas used in
this project are estimated. We then use the parameter vaduesry out the
numerical simulations that will enhance further underdiag of the model’s

predictions.
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Table 1: Table of parameter values used in the model

Name Range Reference Name Range Reference
I1; [0.2,0.9] [4] PN [.10,.20] [27]
I1, [0.2,0.8] [36] C] [0.1,0.5] [27]

Y. [0.01,0.06] Assumed @ [0.3,0.8] [14]
Yy [0.1, 0.6] Assumed @y [0.3,0.8] [14]
B [1, 5] [4] E. [0.1,0.5] [4]
By [0.1,0.53] [14] My [0.1,0.5] [35]
Bson  [0.1,0.6] Assumed E, [0.1,0.8] [35]
Boc [0.01,0.06] Assumed X%, [.10,.20] [27]

6.1. Parameter estimation

All parameter values used in the numerical simulations asengn Table 1 with
their sources. Some parameter values are taken as they apptaature while
others are determined based on the given information iratitee. Those with
no known values from literature are determined by the camtitsubjected to
them in the model formulation. The values &., B,, M,, E., Ep, ®c, Py,

0, X, Xy, II; andIl, are obtained from [4, 14, 25, 27, 35, 36]. There is a
paucity of data onB,, B, Y. and¥,. However as the infection rate through
environment and other species is small [16, 21], we makenasbns in line
with this constraint. This suggests that data have to bec®id on the processes
to reasonably estimate the parameters. This in turn giasorable predictions
about the future scenarios of the system of interest.

6.2. Simulations

We present numerical simulations of the full model (3) tolerpthe impact of
various transmission mechanisms of bovine tuberculodmih cattle and buf-
falo populations. We first examine the role of the betweetiec&tansmission
rate 3. on the levels of the infectious unit in the environment anel threrall
epidemiology of BTB infection in the cattle population onlyhis is followed
by the exploration of the impact of the between cattle traasion rate on the
evolution of BTB infection in cattle and Ifialo populations and the level of in-
fectious unit in the environment. Thirdly, we investigate tole of the between
buffalo transmission ratg, on the levels of infectious unit and the time varying
behaviour of BTB infection in the lifalo population only. Lastly, we examine
the transmission dynamics of BTB infection in both cattlel éffalo popula-

tions when the between falo transmission rate is varied.
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Figure 2: Graph showing thefect of varying only the between cattle transmission rBteon
the evolution of BTB infection in cattle onlyx; = 0.7,% = 0.2,x3 = 0.1, x4 = 0.0L11; =
0.7,¥Y:=0.05 E.=0.1,0.=0,Z. =0.156 = 0.3.

Figure 2 displays thefiects of varying the between cattle transmission rgte
on the evolution of BTB infection in the cattle populatiordathe levels of the
infectious unit in the environment. IncreasinB., leads to a decrease of the
proportion of exposed and infected cattle in Figure 2 (b) @)dThis also cor-
responds to a decrease in the amount of infectious unit irethh@onment as
shown in Figure 2 (d). If it is only horizontal transmissiarute involved, the
disease eventually dies out from the community. This ingaliet one route of
disease transmission cannot sustain the infection irecattis agrees well with
the observation made in [1] that cattle are dead hosts, ingphhat the disease
cannot persist without the external infection sources.

Figure 3 shows thefiects of varying the between cattle transmission rBge
on the transmission dynamics of BTB infection in cattle dapan and also on
the levels of the infectious unit in the environment. Theuhssshow that the
intensity of BTB infection is aggraveétz,\d in cattle popubativhen all transmis-
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Figure 3: Graph showing thefect of varying only the between cattle transmission rBtgon
the evolution of BTB infection in cattle population and tleeéls of pathogen concentration in
the environmentx; = 0.7, % = 0.2,x3 = 0.1, x4 = 0.0L xs = 0.7, %X = 0.2, x; = 0.1, 1I; =
0.7,%; = 0.05 E; =0.1,0; = 052X =0.150 = 0.3, B, = 0.5, B, =0.25%, = 01511, =
0.43, By = 0.0, ¥, = 0.5,®, = 0.5 My =0.135 E; =0.2.

sion routes are incorporated in the model (4). The propostiaf the exposed
and the infected cattle rise to endemic levels as shown iar€ig (b) and (c).
Even the concentration of pathogens in the environment bas gp in Figure
3. The simulations suggests that the impact of cross-iofeand environment
transmission routes which is more severely felt in cattleydation as evidenced
in plots (a)-(d) in Figure 3. The reader is advised to compagere 3 to Figure
2 to appreciate the role of cross-infection on the epidengipbf BTB infection
in cattle population. The results further suggest that tivrenment is seriously
contaminated when the practices that promote the mixingtifecand bftalo
are encouraged.

To explore the role of the betweenftalo transmission ratd3, on the dynamics

of BTB infection in bufalo only and of the infectious unit in the environment,
25



o

>
Y
woonoonoouom
[N R R

Exposed buffalo

20 30 40 50
Time (years)

d

PR PR PP LT T P P e

o S ———

03

o
I
3]

o
Y

Infectious unit
o
>

Infected buffalo

o

00sp

10 2_0 30 40 50 0 10 2_0 30 40 50
Time (years) Time (years)

Figure 4: Graph showing thdfect of increasing the betweenftalo transmission rateB, on
the evolution of BTB infection in bfialo population only.x4, = 0.01, x5 = 0.7,%s = 0.2, X7 =
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By, was varied. The results show an increase in the proportitmecéxposed and
the infected bffalo in Figure 4 (b) and (c). The pathogen concentration in the
environment as shown in Figure 4 (d), has also gone up. Tlsisrgation agrees
well with the observations made in [1], which show thatthlo are reservior
hosts. This implies that Ifialo stay with the infection in absence of external
infection sources. Susceptibleftalo too decrease d3%, is being varied as it is
indicated in Figure 4 (a).

Figure 5 investigates thefects of varying the between cattle transmission rate
B. on the evolution of BTB infection on ltalo population and the levels of the
pathogens in the environment. The simulations show a vty éfect on the
epidemiology of BTB infection in bfialo population. An increase iB. results

in a very small increase in the proportion of the exposed hadrifected bffalo

as shown in Figure 5 (b) and (c). A sg16all increase in the levktise pathogen in
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Figure 5: Graph showing thefect of increasing the between cattle transmission Een the
evolution of BTB infection in bfalo population and the levels of pathogen in the environment
X1 =07,%=02,x3=01X% =00Lx5s=0.7,% =02x;,=011II; = 0.7,%. = 005, E. =
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0.5,®, =0.3, My, =0.135 E;=0.2.

the environment is also observed in Figure 5 (d). The sinaratfurther show
that all parameter values oB. have the samefkect on the dynamics of BTB
infection in all classes of talo population and on the levels of pathogen in the
environment. A significant impact of varying, is only observed when the birth
rate of the bffalo population increases.
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7. Discussion

A deterministic model for the transmission of bovine tuldosis in cattle and
buffalo populations was formulated and analysed. The reprmiucumbers
(Roc, Rop) for cattle only and bffalo only models were determined and used in
gualitative analyses. The disease free equilibrium fohlmobdels were proven
to be locally stable when their respective reproduction Iners were less than
one.

Sensitivity analysis was carried on both reproductive nemrstRy., Ry,). The
results indicated tha¥,, ¥y, £, and X, contribute positively towards the epi-
demiology of bovine tuberculosis in both fiaio and cattle populations, Thus
the risk measure of the outbreak of BTB is increased whemtiieetive rate due
to contaminated environment and the shedding rate of iofigztmycobacterium
bovis into the environment are increased. The results disaved that bothRy.
andRy, are reduced if the decaying rate of the infectious unit iases.

The endemic equilibrium points of both sub-models were tbtmbe locally
stable. This ecologically implies that the disease remairthke community if
there are no interventions.

The reproduction numbeRy; for the full model was then determined. It was
used to establish the global stability of the disease freglibgum point when

Ror < 1. WhenRys > 1, the disease persists in both populations of cattle and buf
falo. The reproduction number of the full model comprisedrofs-infection pa-
rameters and contaminated environment parameter. Thgestgythat the trans-
mission dynamics of bovine tuberculosis are enhanced byrtss-infection and
contaminated environment parameters.

The numerical simulations also showed that the infectiamig sustained in cat-
tle and bdfalo population when all transmission routes are involvdte disease
has a minimal negative impact in cattle offalio when there is no cross-infection
between the two populations. This suggests that the cndsstion route pro-
motes the persistence of BTB infection in cattle anéfddo populations. The
fact that bdfalo populations are maintenance hostfbovispathogen, more
devastating fect is observed on cattle population when all routes arevedo
This ecologically implies that the disease can only be eeddd if the practices
that promote the mixing of cattle andfi@lo are discouraged.

Finally, it is necessary to mention that our mathematicafleh@onsiders the
evolution of bovine tuberculosis in cattle andffalo populations. However, it
is of paramount importance to enhance our understandingt abe disease by

incorporating factors like treatment, seasonality, anticad transmission route.
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The role of temperature on the survival of microbes in tharenynent and age
classes of both cattle andfimlo populations should also be considered. These
are the subjects of future work.
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1. Introduction

African bufalo are the maintenance host for mycobacteriun bavisbvig in
the endemically infected Kruger National Park (KNP). Sasdcarried out on
bovine tuberculosis (BTB) incorporate both descriptivelemiology and math-
ematical modelling approaches. Descriptive epidemiologyses on issues of
transmission modes [13, 14, 15, 16, 17, 18, 19], susceiitdts to infection
[4, 12], economic impact of the infection [16, 17, 23, 24, ,2fhle diagnostic
tests used to detect the infection [14, 17, 20], global tia§ of the infection
[3, 22] and the risk factors that promote the spread of BTBatibn to wildlife,
livestock and human beings. Mathematical modelling apgres focus on con-
verting the biological system into a mathematical struetinat mimics the dy-
namics of the system of interest. Mathematical modellingnsmportant tool
in analysing the epidemiological characteristics of itifees diseases and can
provide useful control measures [23].

Various models have been formulated to explofeedent aspects of BTB infec-
tion. A non-linear transmission model consisting of susibégand infected pos-
sum populations was developed by Barlow[24]. The model vgasi tio explain
bovine tuberculosis dynamics in a heterogeneous possuaigiimm, taking into
account the patchy distribution of the infection. A detarisiic/stochastic model
was developed to explore the factors that drive the spre&I8f infection in
possum populations and social contact was found to prorhetsgread of BTB
infection. A spatial stochastic model was developed in f@5assess fertility
control as a means of controlling bovine tuberculosis ingeas. The results
showed that fertility control alone can not completely écate BTB infection
from badger population. The article [14] focussed on theaotf imported
cattle into the herd on the dynamics of bovine tuberculo3ise results indi-
cated the attainment of the unique endemic equilibrium leymiodel when the
infected cattle are imported into the herd.

Many mathematical models see for instance [23, 24, 25] asshat space is ho-
mogeneous and investigations are confined to a populatoreality infectious
diseases spread geographically over time. For exampld, Nilesvirus, SARS
and Swine Flu (PH1N1) spread from one country to anotheutfiranovement
of infected people [5, 6]. The same trend also occurs in BTBcition in buf-
falo populations in the Kruger National Park. The diseasgally started at
the Southern tip of the Kruger National park and has spresshdpgowards the
Northern part of the park. When spatial homogeneity doesadetuately ac-

commodate the observed behavior or disease transmispatiglgnodelling be-
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comes necessary to account the spatially distinct indalidiiaracteristics. Some
of these characteristics includdf@rences in mixing behaviour as well as migra-
tion which requires a heterogeneous model [7]. Spatiatsira and the spatial
scale roughly operates in three major classes of heterdgeEneamely: envi-
ronment, which covers geography and space including aiimad hydrological
factors; contact, which involves contact patterns betweeasts and pathogens
including movement of hosts; and hftithogen heterogeneity [8, 26]. Hence,
spatial modelling has been widely applied to study diseabawiour to account
for the degree of uniqueness in one patch relative to another

We use metapopulation models that capture homogeneitynéthpatch and
accounts for spatial heterogeneity through migration betwpatches. The ap-
proach uses ordinary fikierential equations [7, 8]. We seek to understand the
effects of migration between patches on the spread of bovirer¢ulosis, an
aspect that has not been considered by previous studies Bn B instance,
studies carried out in [23, 24, 25] based their investigetion one population.
We consider an SEI metapopulation model for bovine tubesisildescribing
disease spread between two patches connected by moveméiné. Bovine tu-
berculosis transmission dynamics, we assume that onlyxjhesed are capable
of moving from one patch to another. The patches considerdaei model are
assumed to dlier in the level of disease prevalence, the epidemiologézlies
existing in Kruger National park. The disease in the park @gemprevalent in
the southern part of the park where the infection initiakggbn. The transmis-
sion of M. bovisfrom the environment isféected by environmental factors such
as temperature and relative humidity. Thigeet is represented by a constant
parameter; for 1 < j < 2 in our model. We also assume that the movement
between populations depends on the density of the populatid the distance
separating the adjunct patches.

This manuscript is organised as follows: in section 2, weettgy the mathe-
matical model and give a comprehensive mathematical asalyssection 3 we

derive the equilibrium points and evaluate the patch spedifease threshold
values for the case of isolated and non-isolated patchesedtion 4, numerical
results are given and discussed, and in section 5 we preseoluding com-

ments.



2. The mathematical model

We shall use two spatial patches of Kruger National ParkctPhis the south-
ern part of the park and patch 2 is the center of the park. Theégions of the
park are separated by the river. The Figure 1 shows the mapugfek National
Park. The northern part of the park is ignored in our work bsedghe prevalence

2005 BTB approximately 6 km from
northern boundary

2002 BTB approximately 12km north
of Shingwedzi

1999 First infected cow found along
the Shingwedzi river

1998 Lethal Survey - Prevalence rates
Southern Zone - 38.2%

Central Zone - 16.0%

Northern Zone - 1.5% (estimated)

1996 First two infected herds found
north of the Olifants river

1991-1992 Lethal Surveys indicated
most herds south of the Sabie river
were infected. Prevalence 27.1 %

1990 First case of BTB diagnosed in
a sub-adult male buffalo

Figure 1: The map showing the spread trends of BTB infectiddNIP from 1970 to 2003

of the BTB infection in the region is almost zero. The sub+dapon in a sin-
gle patch denoted b; is compartmentalised into a susceptible populati®),
those exposed to mycobacterium bowk povig, Bje, and those bifialo which
are infectedB;;, for 1 < j < 2. Within a patch, the sub-populations are assumed
to be mixing homogeneously. Our metapopulation model feirmtuberculosis
accounts for two movement patterns. Firstly, the movemeéausceptible buf-
falo from one patch to the other at ratg. The ratem, is assumed to be greater
thanmy,. This is due to the availability of water sources in the calntiart of the
park. It is assumed that no infection occurs en route whestikeeptible indi-
viduals migrate. The recruitment of new susceptibles imttclpes occurs at rates
71 andr; for patch 1 and patch 2 respectively. This recruitment issdoa immi-
gration and new births. Secondly, there is movement of tpesad bffalo from
one patch to the other. These play a pivotal role in the m@taation transmis-

sion modelling of bovine tuberculosis dynamics through dkeeeration of the
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infectious bdfalo. The infectious biialo take part in the spread of the infection
through bdfalo to bufalo transmission as well as sheddinghdf bovisin the
environment. The overall transmission dynamics of the gdrgopulation are
accounted for by the contribution from both sub-populaiohthe two patches.
We assume that the infectedffalo population do not move from one patch to
the other due to weakness induced by the disease. The sbseEgppulation in
patch one is reduced in size following contact from envirentiVl. bovisat rate

Y, as well as through btalo-to bufalo contact at ratg,. The infection with
the contact withM. bovisin the environment occurs when the concentration of
M. bovisis very high in the environment. The raje represent the probability
of the survival time of théVl. bovisin the environment in patch one. The higher
the survival probability time, the more likely that enviraent transmission oc-
curs. The exposed population in patch one progress to tetialis class at rate
¢1. The infected population in patch 1f8ers both natural and disease induced
mortality at rateg; ande;. The susceptible and exposed populations in patch
one stifer only natural mortality at rate;. The infected bffalo in the first patch
shed pathogens into the environment at tafe This shedding rate in the patch
depends on the level of the disease prevalence. The stabledd, represents
the concentration oM. bovisin patch one. The parametey is the decay rate
of M. bovisin patch one. The susceptible population in patch two iscedun
size following contact from environmeM. bovisat rate¥, as well as through
buffalo-to- bufalo contact at ratg,. The infection with the contact withl. bo-

vis in the environment occurs when the concentratioMotovisis very high

in the environment. The ratg represents the probability of the survival time
of M. bovisin the environment in patch 1. The exposed population infpato
progresses to the infectious class at kgte The infectious population in patch
two suters both natural and disease induced mortality at rgfende,. The
susceptible and exposed populations in patch twteswnly natural mortality

at rateu,. The infected bffalo in the second patch shed pathogens into the en-
vironment at rater,. This shedding rate in the patch depends on the level of
the disease prevalence. The state varibleepresents the concentrationMf
bovisin patch two. The parametés is the decay rate d¥l. bovisin patch two.
The flow diagram of the model is given in Figure 2. The resgltaystem of



equations for the sub-population in patch 1 is given by

d
:tls = 1+ MpBys — B1B1sBai — 11'W1U1B1s — (11 + my) By,
dBe B..B
g - B1B1sB1i + m1'W1U1Bis + @2Bge — (U1 + ¢1 + @1)Bie,
a5, 1)
d_tl = ¢1Bie — (u1 + €1)Byj,
duU
d_tl O'lBli — 91U1.
and for patch 2 is given by
B _ B B,<B U,B B
. - 72 + My Bys — B2BasBoi — 172W2U2Bos — (u2 + M) B,
B _ B,<B B B B
a B2BasBai + 12'WoU2Bos + @1Bie — (12 + ¢2 + @2) Boe,
dB, (2)
d_tl = ¢$2Boe — (U2 + €)By,
dU
d—tz = O'ZBZi - 92U2.

The initial conditions of the model are such ti&t > 0, B > 0, By; > 0 and
U4.(0) > O for the first patch an@,s > 0, By, > 0, By > 0 andU,(0) > 0O for the
second patch. The total population in each sub-populatibiy + Bjs + Bjc + B;
and the total population in both patches is giverNoy N; + N,. In the absence
of movementi.e whem; = 0 = ¢; is given by

dt
The solution to equation (3) is given by < Z—j + (Noj — %)e‘“it, whereNy; are
initial populations. The solution of all equations from tkestems (1) and (2)
remain non negative for all> 0. The total populationis bounded Z In the

presence of animal movement the rate of change of the ovetallpopulation
is given by

=7j — paNj — €Bj < — Ny 3)

dN

rriak + o — (u1N1 + p2Ny).
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T) B].S > Bll
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2
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Figure 2: The flowchart of the transmission dynamics of bewimberculosis in two patched
buffalo population . The dashed lines represent the environtreergmission route. The dotted
lines represent the sheddinff of M. bovisin the environment.

If we let u* = min{uy, uo}, then it can be shown that

. T + 7o
limsup< .

t—oo 7 ,u




The phase space of the model is given by

*

T+
Q= {(Bls, Bie, Bii, U1, Bas, Boe, B2iu,)|Bis + Bie + Byi + Bas + Boe + Bai < - 2}

The solutions in2 are all non negative and bounded. Hence the domain of the
biological importance is positively invariant and attiagt Therefore all solu-
tions start and remain Q2. The guide to the proof of positivity and boundedness
of solutions can be found in [2, 9, 10, 11].

3. Equilibrium points

Our model has four equilibrium points given by

Eo, = (B}, 0,0,0,B,0,0,0), (4)
E1 = (B Bie, By, U1, B, 0,0,0), ()
Ez = (B15, 0,0,0, By, By, By, Uy), (6)
Es = (Bis, Bie, By, U1, Bog Boe, By, Uo) (7)

of which Eg is the disease free equilibrium point. The equilibrium peiB,;
andE; represent the first and second boundary endemic equilivhareasss
represents the interior endemic equilibrium point in thendm Q.

The disease free equilibrium poiBg in both patches is obtained from both sub-
models (1) and (2). At this equilibrium point we assume thate is ndVl. bovis

in both environments, and that there are no infectefabu in both patches.
Therefore, the sub-models (1) and (2) reduce to

d

(IZiBtls =7 + MpBys — (m1 + ,ul) Bis, (8)
d

dBtzs = 1y + M Bas — (M + 112) Bos. (9)

Equating the right hand of equations (8-9) to zero and sglfonthe equilibrium
points we obtain

ma(Me + p2) + Moz o 72 + ) + My

Mopty + oMy + gty 2> My + iy + Loty
8

Bis =

(10)



3.1. The Reproduction number

The basic reproduction number for the model is obtainedguia next gener-
ation matrix method described in [27]. If there is no movehwranimals, the
patch specific basic reproduction numbers are

Ros = m1¢1(B161 + mo1'¥1) and Ryp = T2¢2(B202 + 1202¥2)
b1 (er + pa)(ua + ¢1)° H202(€2 + p2) (2 + ¢2)

(11)

for the first and second patch respectively. The vaRgsandR,, apply to com-

pletely isolated patches. If the infection exists in a senghtch which is linked
to another patch through movement, the phenomenon relatée: tmovement
of buffalo should be factored into the disease threshold. Whenatahes are
connected by movement, the patch specific basic reproduatimbers are given

by

Rog = (m(ua + M) + m27T2)Ql’ and Ropy = (mo(uq + Mmy) + m17T2)Q2.

Mty + poMy + popts My + My + poptg

where

Q1 = $101(B161 + mo1¥1)(er + pa)(us + ¢1 + 1),
Q2 = ¢202(B202 + n202Y2) (€2 + po) (12 + ¢2 + o).

The overall model reproduction number is given by

1 1 1
Ro=zMus+ -1 + = \/mLZM — 2MyaMyg + My + 4Mu1Mhy (12)
2 2 2
9



where
_ (o2 + M) + moMp) (2 + P2 + @2)(0181 + m1'W101)

M 01(uzps + Moty + pomn)(ua + €2) (U2 + P2) (s + 1)
My = (m1(u2 + Mp) + moMp) (6181 + n1W101)
61 (1 + €1)(uops + Moty + oMy )
~ m¥Pa(ra(uz + mp) + momy)
e 01(uats + Mppy + pomy)
My = (1 (uz + M) + momp)pr2(0181 + m1'¥1071)
601(u1 + e1)(uz + 2) (11 + P1)(uaps + Moy + pomy)’
My = (m2(ug + M) + Mymy) o1 (6282 + n2¥2072)
Y7 Oz + ¢2)(ua + 1) (apts + Moty + pomy)”
Mo = (ma(ug + M) + Mymy)do(us + @1 + a1)(02B2 + 12'Y2072)
YT 0oz + @) (ua + o) (a + pr)(uas + Mot + poy)
Mus = (ma(ug + My) + Mym1) (0282 + n2Wo02)
O2(u2 + €2)(uopty + Moty + oMy )
Mue = (m2(uy + Mmy) + Mymg)n'¥s

O2(2pts + Moy + poMmy)
Note that the movement aspect ofiialo from one patch to another increases the

basic reproduction number. This may drive the establishwiethe infection in
both patches or extinction of the infection in one of the pat:

3.1.1. Global stability of the disease free equilibriugn E
To prove the global asymptotic stability of the disease &gailibrium point, we
use an approach used in [30] to rewrite the sub-models 1 amth2 iform

dX
é_kt( =F(XXY),
5 =GV, Gxo0=0

whereX = (Bys, Bas)T andY = (Bye, Byi, U1, Bge, Bai, Uo)T with X € R2 denoting
the number of susceptible fialo in both patches and € R® denoting the num-
ber of exposed Ktalo, infected bffalo and contaminated environment in both
patches.

The disease-free equilibrium is now denoted By = (Xo,0) where
(Xo = Z—l ;—ZL}Z andO is a zero vector. The following conditions should be sat-
1

isfied to guarantee global asymptotic stability:
10



e Hy: For‘é—’f = F(Xo, 0), Xo is globally asymptotically stable.

e Ho: G(X,Y) = AY - G(X,Y), G(X, Y) > 0 for (X, Y) € Q, where
A = Dy(G(Xo, 0)) is anM-matrix.

If sub-models (1) and (2) satisfy the conditiads andH,, then the following
result holds.

Theorem 1. The disease free equilibrium pointg,Hs globally asymptotically
stable if R < 1 and unstable otherwise.

Proof. Consider

F(X,0) = (1 — (1 + My)Bis, 2 — (2 + Mp)Bas),  G(X,Y) = AY - G(X, Y)

where
-R ﬁ#— S @z 0 0
$p1 —(ua+m) O 0 0 0
0 01 —91 0 0 0
A= Bam2 ’
a 0 0 —(uzx+my) yry 0
0 0 0 ¢2 —(,uz + 62) 0
0 0 0 0 o) —p2
where
R= (uy+ ¢y +m). S= Wi T= ‘I’27T2772.
M1 M2
and
BBy + n1¥1U;
0
~ 0
G(X)Y) = .
(*xY) B2Bai + m¥oUs
0
0

The conditiorH is satisfied wheiX is a globally asymptotically stable equilib-
rium point of the equations

dBys
dt

d
=y — (u1 + M), % = o — 2 + MyBos. (13)

11




Solving (13) we obtain
Bls(t) = ﬂ — Bls(t)e‘W*ml)t, BZs(t) — Q _ st(t)e—(uﬁmz)t.
M M2

Taking limits ast — oo we obtain,

T

lim Bus(t) = 22, lim Bas(t) = 22.
t—oo /_11 t—oo

H2

This suggests that, independent of the initial conditighs, solutions of the
equations (13) converge . Thus, X, is a globally asymptotically equilib-
rium point of (13). To prove conditiohl,, we observe thaB(X,Y) > 0, so this
completes the proof of both conditions. O

3.2. Patch 1 endemic equilibrium poing Bnd its stability

The sub-model (1) has a unique boundary patch one endemilibeqm point

E; in Q wheneverRy;, > 1. The statement implies that bovine tuberculosis
persists in the first sub-population but dies in the secomdpgypulation. The
components of the endemic equilibrium point are:

U:T_ _ O-lHBZ , Bie _ (/Jl +¢€1)B;i
1 1

B; = é (é (V—[\)/ + mzml) (M + 1) (Roam — 1))

where

W = (Mpua + pomy + pioptn)(ma(uz + M) + Mprrp),  C = (u2 + M), D = m(myp + ) + My
F =61(u1 + ¢1+ a1)(u1 + ).

Therefore, wherRy1, > 1 we have a unique disease persistent equilibrium lo-
calised in the first patch.

Theorem 2. If Ro1y, > 1, the endemic equilibrium fof the model (1) is locally
asymptotically stable if.

Proof. In order to explore the local stability of the endemic edurilim pointE;,
we evaluate the Jacobid(B], B, Bj;, U;) at the endemic equilibrium point and

we get
12



-Dq 0 -B1Bly  —m'¥1Big
Dy —(ui+¢1+a1) piBig n1¥1Bas
$1 —(u1 + &) 0

0

o1 —61

J(Ey) =

D1 =-1By —mW¥iU; —pa —my
D2 = B1Bis + m'¥1U;

After doing the row operation on the Jacobian matrix we abtai

-C; 0 -G, -C;
0 -CC; CC-CCq CiC3-C3Cy
0 0 P1 P2 ,
0 0 0 —91 P]_ + 0 1P2

where
Pl = ¢1(C1Cy — CoCy) — C1CsCs; P2 = ¢1(C1C3 — C3Cy).

The eigenvalues ai(E;) are calculated usinBet(J(E; — 1l4)) =0

-C1-21 0 -G, —-C3
Det 0 -CiCs-21 C,C,-C,Cy C.C3 - C3Cy o
0 0 Pp—2 P,
0 0 0 —91P1+O’1P2—/l

Ci=p1B + mYaUl + i +my; Gy =61By  Cs=mV¥1Bio
Cy=p1By + mPaUl, Cs=m+d1+a1;, Ce=pu+e.

The first two eigenvalues of the Jacobian matrix.&re= —C; and1, = —C,Cs.
The other two eigenvalues are

Az = $1C1Cy — 91CCy — C1CsCq;  As = 61P1 + 01P2.

The eigenvalued;, are both negative whep,C,C, < 6,C,C; + C,CsCs and

91¢1C2C3 + O'1¢1C1C3 < 61¢1C2C3 + 01C1C5C6 + 0'1¢1C3C4 hold. This ImplleS

that all four eigenvalues of our Jacobian matrix are negatihich proves the

local stability of endemic equilibrium poirt;. O
13



3.3. Endemic equilibrium pointEand its stability

The sub-model (2) has a unique boundary endemic equilibgamt E; in Q
wheneverRy,, > 1. The statement implies that bovine tuberculosis persists
in the second sub-population but dies in the first sub-pdjoumaThe process to
establish the existence Bf and its components is same as in (3.2). We conclude:

Theorem 3. If Ry > 1, the endemic equilibrium £of the model (2) is locally
asymptotically stable if.

Proof. The proof for Theorem (3) follows the same procedure as readliin
(3.2). O

3.4. Existence of interior endemic equilibrium point E

We consider two scenarios to establish the existence ofrtegior endemic
equilibrium point. We first assume tha = m, = 0. The interior endemic
equilibrium point can be expressed in closed form so we egoeir endemic
equilibrium point denoted b¥s; = (B’is, Bl B3, U, Bo., B, B, U;) in terms

of the forces of infectionA}, 43) using the approach in [29] as follows:

T YY)

Bl= = By e 14
1s A+ 2s A5+ 12
s 7T1/P]<_ + (YzB;e (15)
U )+ pr+ar) it g+ an
sk Savomo Al wst Ak WSomo
Bj=—— 1 4222 yr= ki 2272 (16)
rb(A] +u1)  rab(4; + po) rb(A; +ug)  rab(A; + uo)
W 7T2/1; + a1 Bie (17)
T (Bt dot+ @) patdrtar
dmoAs daqmri A edr, A’ edy At
By=—F 24— L. Uj=———2 4+ — L (1g)
adA; +pz)  abdAg + p1) adA; +pz)  abdAg + p1)
where
Q102 b2 02
a=p+dr+ay b=mpm+di1+a;, c=1-—=-; d= ; e=—.
M2+ d2+ a2 M+ é1+an b it 6 o

Substituting the equations (16) and (18) into the forcesf&fation we obtain
_ \*/11/11 N \*/21/12 - |;111/12 N le/q ’
A +w A+ L+pe A+
14
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where

. ﬁzdﬂz; _ ,Bzda’lﬂ'l; he nz‘Pzedﬂz; K= Uz‘Pzedalﬂl; = f+h:
ac abc ac abc
201 b1 o1 B1Smy Bisazm;
= k = 1 — ) = . = — = — = )
M2=0+K T ab ' ° Hi+e’ " 61’ ST rab
Yiwst Yiwsaor
3:—771 ;b 1; 4:—771 1rab2 2; Vii=Y1+tYs Var=Ya2+Ya
The equilibrium points of sub-model (1) and sub-model (2) ba obtained by
P1(A1, A
finding the fixed points of equatiorg;, 1,) = ( 1 2)] and are given by
(A1, A2)
V141, A2) = Virs + Valz (19)

Ay+pr A+ pup
NiiAd N1oA4

Fa(dy, A) = —— + —— (20)
Ao+ A+

Clearly, @17, 45) = (0, 0) is a fixed point of equations (19)-(20) which corresponds
to the disease free equilibrium point.

Theorem 4. There exists a unique fixed po(nq,/lg),/l“i > 0, 45 > 0 satisfying

A
HA, A2) = (/1*)

2

corresponding to the interior endemic equilibrium poing E

Proof. For eachl, > 0 we consider the following real valued function depending
onAy:

Viid Vo1
19112(/11) — 1111 + 2112
Ar+pur A+
Clearly,
2
92(0) = =22 >0,
Az + u2
and

lim 19/112(/11) = V11 < 00.
A1—o0

15



Thus 0< #(11) < oo, which implies that the real valued functid@f*(1,) is
bounded for every fixed, > 0.

The first derivative oﬁjz(/ll) with respect tol, is given by
O9P() vy

ez (A1 + 1)

and the second derivativﬁz(/ll) with respect tol; is given by

>0, (21)

9%92(A 2V
) 2 g (22)
041 (A1 + p1)
A2 2 gA2
Sinceaﬂgﬁ(lm > 0 and? 198112(11) < 0, the functionﬁjz(/ll) is an increasing concave
1

down function which has no change in convexity in the bourdieaain. This
implies that there exists a unique poitjt> 0 satisfyingﬁiz(/l*l‘) =1

For A; > 0 we consider the following real valued function dependinglp:

n;d NioA
19/211(/12) — 1112 + 1211
Ao+ A+
Now
NyoA
991(0) = =22 >0,
A1+

lim ﬂil(/lz) =Nyp < 0.
/lz—)OO

Thus 0< #4(1,) < oo, which implies that the functioit;*(1,) is bounded for
every fixed1; > 0. The first derivative oﬁfl(/lz) with respect tol, is given by

09 (1) nwy
01, (A2 + p2)?
and the second derivativﬁl(/lz) with respect tol, is given by

> 0, (23)

%91 (A 2n
129:_ w2 <o (24)
045 (A2 + p12)
A 2,911
Sinceaﬂgd(f) > 0 and’ ﬂaléh) < 0, the functionﬁil(xlz) IS an increasing concave

down function which has no change in convexity in the boundi@aain. This

implies that there exists a unique poitjt > 0 satisfyingd;*(1;) = A5. Hence,

we have a unique fixed pointy, 4;) corresponding to the endemic equilibrium

point. O
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3.5. Stability analysis of equilibrium points
The Jacobian matrix of the equations (19)-(20) evaluatéteagquilibrium point
(0,0) is given by

Vu Va

M1 M2
J(0,0) = ,

Nz Ny

M1 M2

whose characteristics equation is

2 (m + E)ﬂ N Viah — NiaVag

(25)
M2 M1 HMaf2 Hift2

The solutions for equation (25) are

2 2
Nip Vi1 1N vip N1oVo1 N1 Vip 1(ni1  vip N1oVo1
=—+—=]+/-|—-—]| + A=l —+ —=|-l-[—=-—] +
M2 M1 4\ H1p2 M2 M1 4\ Hapt2
where

_ prma(pz + g2 + @2) (0181 + mW101) _ Poma(p1 + P1 + a1)(62B2 + 12V2072)

e u101(us + €))(uz + ¢2) (1 + 1) He H262(uz + €)(u2 + ¢2)(,21216'; ¢1)

_ o 102(0262 + 12W202) _ @omap1 (6151 + n1¥1071)
oz + @)z + do)(ua + ¢1)’ o+ Or(us + e0)(uz + o) (us + 1)’

N2

(27)

For stability, we neethaX|14], |[15]} < 1. Thus the equilibrium point (@) is sta-
ble when the dominant eigenvalue< 1.

Remark 1.

(i) We observe that whea; = 0 = a, the dfect of n;, andv,; in equations
(30)-(31) disappears. This means that the disease dynambosh patches
are driven by the factors within the specific patches. Théyarsafurther
shows thaw;; andng; in equations (26)-(27) correspond to the patch 1 and

patch 2 specific reproduction numbers.
17



(i) The contribution of the movement is observed when thevemeent of the
exposed bfialo is allowed between patches. The equations (26)-(2%y sho
the role of movement in the transmission dynamics of BTBatiéa in both
patches.

The Jacobian oft(14, 1;) evaluated at the unique fixed po(r;iq, /1;) Is given as

o . e 001 . s
6_/11(/11’ )17, 43) a—/lz(/ll, )17, 45)
J(/l*, /l;) = ’
(9'192 * * 602 * *
o (A1, A2)|(A3, 43) o (A1, 2)|(A1, A5)
where
09 Vi1 2 a9 Vg2 ?
1 1141 1 1
—(Aq, | A5, A5) = D ——(Aq, |5, ) = : 28
6/11( 1, A2l(A7, A3) (/ﬁ"‘ﬂl) 8/12( 1, A2|(A3, 43) (/l§+,u2) (28)
0 Nyou1 2 0, Ny1t2 ?
—(Aq, | A5, %) = D —2(Ag, | A5, ) = | — . 29
(9/11( 1, A2l(A1, A3) (/Pi"',ul) 6/12( 1, A2l(A3, 43) T+ (29)

The characteristic equation a7, 13) is given as

09, 0, 09100, 091 00>
g2 Ly 00%2) (P2 OVaOV2), g (30
(8/11 * (9/12) |(/11’/12) * ((9/11 0> 01> 6/11) |(/11’/12) ( )

The solutions of the characteristic equation are given as

Gi=35 (%0 \PE-a); Go=3(%- \PE-ax). @D

where

oy 0%, ) 0t 00, 004 00,
%o = )i X2 =

on * o, R
The equilibrium point {;, A5) is therefore stable whemax(G4, G,) < 1.

The second scenario considers movement of both susceatillexposed buf-
falo populations between the patches. As before, the ertendemic equilib-

rium point is written in terms of the forces of infectiof;(13). The coordinates
18



of the equilibrium point are given as follows:

B ol + d . nl/lz/li + NoAoAq + ng/li + NgA1 + Ny )
25— Ao +ady + b/ll +c’ 2e ™ g/lz/l% + 2k1/11/12 + kz/l% + k3/12 + k4/11 + k51
Vlnl/lz/li + ViNp Ao A + V1n3/l% + V1Ngd1 + ViNs Ao )

*

B} = :
2 gﬂz/ljz_ + 2k1/11/12 + kz/li + kg/lz + k4/l]_ + k5
. Vznl/lz/li + Voo Ao A + V2n3/l% + VoNg A1 + Vons Ao ) T+ mZBZs
2 g/lz/li + 2k1/11/12 + kz/li + kg/lz + k4/l]_ + k5 ’ s~ Ai+a '
. _Su, Lo 6Sun . 014:Su |
Ble__’ Bli — 7 3\ ! Ul_—1
S12 (11 + €1)S12 O1(u1 + €1)S12

where the constants in the coordinates of our endemic bquiih are defined in
the appendix.
Our forces of infection become
RSi
A1 = , 32
1= 5 (32)
B lenl/llei + GvinodoAg + GVlng/li + GvingA, + GvinsA,

2= g/lz/li + 2k1/11/12 + kz/l% + kg/lz + k4/11 + k5

(33)

The equilibrium points of sub-model 1 and sub-model 2 canidtained by find-

. . . . T1(A1, A2) .
ing the fixed points of equation&(1,, 1) = and are given by
T2(A1, A2)
R
T, 1) = 2 (34)
12
lenl/lz/lz + GVlnz/lz/ll + GV1n3/12 + GV1n4/11 + GV1n5/12
T2(A1, A2) = : L (35)

g/lz/l% + 2k1/11/12 + kz/li + kg/lz + k4/ll + k5

Clearly, (13, 45) = (0, 0) is a fixed point of equations (34)-(35) which corresponds
to the disease free equilibrium point.

Theorem 5. There exists a unique fixed po(mi,/lg),/l’i > 0, 45 > 0 satisfying

A
T, 22) =|
/12

19



corresponding to the interior endemic equilibrium poing,Bvhenever the fol-
lowing conditions are satisfied

C]_dz C1d3 C2d3 2d1k3 d2k2 2d2k3

—>1, —>1, — >1; 1, 1.
Czdl z C3dl Z C3d2 Z o d3k1 * 2k1d3 > k2d3 ~
a]_bz a1b3 a2b3 2b1r3 bzrz 2b2r3
—>1 —>1, — ; 1; 1.
azbl ~ a3b1 ~ a3b2 bgr]_ - 2r1b3 ~ r2b3 >

Proof. For eachtl; > 0 we consider the following real valued function depending
on A,:

RSy,
TH(A2) =
1 ( 2) 812
Clearly,
R(U10A% + U143 + UppA2 + Ugad
Til(O) _ ( ‘]1.0 1 3Zl.l 1 212 1 13 l) >0,
Z]_O/ll + 211/11 + le/ll + 2131 + Z3
and

. 1 R(U]_/li + Uz/l? + U4/1% + Ugdq + U15)
lim T (12) = ; 3 5 < o0,
Ap—00 Zl/ll + 22/11 + Z4/11 + ZgA1 + Z14

Thus 0< ‘I‘jl(/lz) < oo, Which implies that the real valued functiai*ﬁl(/lz) IS
bounded for every fixed; > 0. If we fix 1; we obtain the following equation

C]_/l% + Codo + C3

TH(A,) = , 36
1 ( 2) dl/l% + dz/lz + d3 ( )
where
C = R(Ul/lj_1 + Uz/li + U4/l§ + Ugd + U15),
C = R(Ug/li + Ue/l% + U7/lzl1 + Ugdq + U5/l§ + U14),
C3 = R(Ulo/li + ull/l:i + Ulz/li + Ulg/ll),
th = 2047 + A3 + 2442 + 21y + 244,
d2 = Z3/li + Z5/l§ + 26/1% + Z7/l?|_1r + ZgA1 + 715,
ds = 20T + 20343 + 2043 + 21305 + 736
The first derivative of[‘il(/lz) with respect tol, is given by
YA 1y — Cp0;)A2 + (2¢,05 — 2¢30;) A5 + Cd3 — cd
1(2):(12 201)45 + (2¢1d3 301) A2 + Co03 % o (37)

0/12 (dl/lg + d2/12 + d3)2
20



provided the following holds

c1d, C1d3 Cod3

—>1, —>1;, —>1,
Cod; C3d; C3d>

and the second derivativql(/lz) with respect tol, is given by

82‘1‘11(12) —2k1d1/1§ - 3k2d1/l§ + (—4d1k3 - d2k2 + 2k1d3)ﬂz + k2d3 - 2d3k3 0
— <

45 (d143 + daA; + dg)® ’
(38)

where
k]_ = C]_dz - C2d1; k2 = 201d3 - 203d1; k3 = Czd3 - ngz.

The second derivative in (38) is negative if the followingndagions hold

2d:ks N doko .1 2d,ks o1
I R Y
A 20
Sinceang(ZAZ) > 0 and” T;;W) < 0, the function‘ril(/lz) IS an increasing concave
2

down function which has no change in convexity in the bourdi@aiain. This
implies that there exists a unique poirjt> 0 satisfyingle(/l*z) = ;.

For each, > 0 we consider the following real valued function depending g

lenl/llei + GV]_nz/lz/ll + GV1n3/1§ + GV]_n4ll + GV1n5/12

ng(/ll) = 2 2
9/12/11 + 2k1/11/12 + kz/ll + k3/12 + k4/11 + k5
Clearly,
GV1n5/12
T2(0)= —= >0,
2 ( ) k3/12 + k5
and
. Gvimd; + Gvin
A1—00 g/lz + k2

Thus 0< T52(A1) < oo, which implies that the real valued functiofi?(1,) is
bounded for every fixed, > 0. If we fix 1, we obtain the following equation

A3 + axdy + ag
bl/l% + bz/ll + bg,
21
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where

a1 = Gvinids + Gving,  ay = Gvinod, + Gving,  az = GvinsA,
b1 = gﬂz + k2, b2 = 2k1/12 + k4, b3 = k3/12 + k5.

The first derivative ofr'}?(1,) with respect tol, is given by

0T112 (/11) _ (albz — azbl)/li + (201b3 — 2a3b1)/11 + a.zb3 - agbz
(9/11 (b]_/l% + bz/ll + b3)2

>0 (40)

provided the following holds

a]_bz a]_b3 a2b3
—>1 —>1 —>1
azbl agb]_ a3b2

and the second derivatiqu(/ll) with respect tol; is given by

aZng(/ll) —2r1b1/l§ — 3r2b1/1§ + (_4b1r3 - b2r2 + 2rlb3)/ll + r2b3 - 2b2r3
= < b
a/l% (bl/li + bz/ll + b3)3
(41)

where
r = a]_bz - azb]_; r, = 2C1b3 - 2a3b1; I3 = azb3 — agbz.

The second derivative in (41) is negative if the followingnddions hold

2byr bor 2b,r
L3 22>1; 2351
b3r1 2r1b3 r2b3
A2 2042
Since(w; /1(111) > 0 and’ '1’6212(11) < 0, the function‘rgz(/ll) IS an increasing concave
1

down function which has no change in convexity in the boundi@aain. This
implies that there exists a unique poitjt> 0 satisfying‘rgz(/lj) = Aj. Hence,
we have a unique fixed pointy, 4;) corresponding to the endemic equilibrium
point. O

3.6. Stability analysis

The process for stability analysis is as carried out in eec3ib.
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4. Numerical smulations

In this section, we present a detailed account on how therpeas used in this
study are estimated. We then use the parameter values joagrnumerical
simulations that will provide more insights into dynamid¢$d B infection that
is modelled via our metapopulation model.

4.1. Parameter estimation

All parameter values used in the numerical simulations arengn Table 1 in-
cluding their sources. Some parameter values are takerepsfipear in liter-
ature while others are determined based on the given intayman literature.
Those with no known values from literature are determinedha&yconditions
subjected to them in the model formulation. The values, o, u1, us, € ande,
are obtained in [31] and parameter valuegof3,, ¢ and¢, are obtained from
[16]. The parameters values gf andn, are estimated based on survival data
of M. bovisin the environmentM. bovistakes the survival period of 88 days
[28]. The parameter value af;, for 1 < j < 2, is then estimated by dividing
the number of the survival days by the number of days in a yHae. decaying
rate of M. bovisin the environment is calculated by simply subtracting tiwe s
vival rate from 1. The spread trends of BTB infection in theuger National
Park and the observations made in [1, 21] about the rate athwhitalo con-
tract M. bovisfrom the environment guide us to assume appropriate vabares f
Y1, W), a1, @z, my andn.

Table 1: Table of parameter values used in the model

Name Range Reference Name Range Reference
1 [400, 1460] [31] o [400, 1460] [31]

B1 [0.01,0.053] [16] B [0.01,0.053] [16]

¥, [0.01, 0.06] Assumed 1, [0.11, 0.25] [28]

m [0.11, 0.25] [28] Y, [0.01, 0.06] [Assumed]
o [0.03, 0.05] [31] b2 [0.056, 1] [17]

a1 [0.01, 0.05] Assummed a; [0.01, 0.06] Assumed
€1 [0.657,0.803] [31] € [0.657,0.803] [31]

01 [0.7,0.8] calculated 6, [0.7,0.8] calculated
o1 [0.1, 0.6] Assumed u» [0.03, 0.05] [31]

my [0.01, 0.05] Assumed o [0.1, 0.6] Assumed
b1 [0.056, 1] [16] mp [0.01, 0.05] Assumed
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4.2. Simulations

We present numerical simulations of models (1) and (2) tdeegthe impact

of various scenarios of migration on the disease dynamibsih patches. The
first scenario to be explored is the patch specific diseasandyys when there

is no between them. The second scenario to be investigatibe isnpact of
movement of patch 1 susceptible and exposethluinto patch 2 on its disease
dynamics. The third scenario to be investigated is the itnpamovement of
patch 2 susceptible and exposedtalo into patch 1 on its disease dynamics.
Finally, we explore the impact of the two way movement of syible and
exposed bffalo on the patch specific disease dynamics and also the role of
environment on the dynamics of BTB infection in both patches

Figure 3 displays the patch specific disease dynamics whee th no move-
ment. As expected the disease dynamics are more explospatoh 1 with
higher disease prevalence than patch 2 with low diseasalpree. This is
indicated by a higher level of patch 1 infectedfialp and higher concentration
levels of M. bovisthan in patch 2. We used Figure 3 as a control in order to
compare to other figures to examine the impact of movementeroh the
dynamics of BTB infection in both patches.
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Figure 3: Comparison of infectious unit and infectedfalo in both patches when there is no
movement

Figure 4 illustrates the scenario of allowing one-way mogetrof patch 1
susceptible bffialo into patch 2. The scenaridtects the disease dynamics of
patch 2. The movement of patch 1 susceptiblédba into patch 2, increases the
number of susceptible lfialo in the patch 2. The observation is illustrated by
the higher levels of patch 2 infectedffalo and patch 21. bovisconcentration.
This is explained by the arrival of patch 1 susceptibl&ddo that act as raw
material for the infection. However, in patch 1 the infentiate decreases due
to the decline of susceptible fialo.
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Figure 4. Comparison of infectious unit and infectedfblo across patches assuming movement

of patch 1 susceptible Iffialo into patch 2 only.

Figure 5 illustrates the impact of the movement of patch losgd bifalo to
patch 2 only. This scenario results in an increase of expbsédlo in patch
2, which in turn increases the infection rate. The patch &adtén rate is not
greatly dfected. This is due to the number of susceptibl&dda in patch 1 is
not perturbed by the movement. Note that it is the movemepatih 1 suscep-
tible buffalo into patch 2 that significantly decreases the infecida in patch 1.
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Figure 5: Comparison of infectious unit and infectedfblo across patches assuming movement
of patch 1 exposed ffialo into patch 2 only. The parameters describing the movearen; > 0
andmy, My, az = 0.

Figure 6 shows theffect of movement of patch 2 exposedfiialo to a patch

1. The disease dynamics in patch 1 are greatly perturbedadte tincreased
number of exposed Ifialo in patch 1 that eventually generate more infected
buffalo in the patch. The propensity of disease dynamics in patishreduced
due to the decrease of the exposeffddo via movement. These are responsible
to generate the infected thalo that increase the force of infection.
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Figure 6: Comparison of infectious unit and infectedfblo across patches assuming movement
of patch 1 exposed ffialo into patch 2 only. The parameters describing the movearen; > 0
andmy, My, az = 0.

In Figure 7, the impact of the movement of patch 2 susceptioféalo into
patch 1 is shown. The simulations show the increase of theemsity of the
BTB infection in patch 1 which is as a result of an increaseumber of the
infected bdifalo and an increase in the concentratiorvbfbovispathogens in
the environment. This however, has decreased the gravibhedafisease in patch

2 due to a decrease of the susceptibl&dda in patch 1. This implies that the
concentration oM. bovispathogens in the environment and the number infected
buffalo in patch 1 are at low levels as illustrated in Figure 7 (i) &).
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Figure 8 shows the dynamic trends of all classes dfabo including the
pathogen concentration in the environment in both patcHenwnovement of
both susceptible and exposedialp into both patches is allowed. The simula-
tions show the synchronous changes in all classes of imtele$oth patches
the intensity of the BTB infection slightly increased, bugtimpact is more pro-
nounced in patch 1 where the disease prevalence is low. rAlllations involv-

ing the mixing of bdfalo agree well with the analytical results where the repro-
duction number is directly related to exposed movementpatar. This relation
increases the reproduction number when there an increéise @xposed ktalo
movement parameters.

29



0.15

0.05]

—————
-
-

/ Patch 2- infectious unit

) 5 10 15 20 25

6000p—

5000

4000]

3000

2000

1000]

Time (years)

[Patch 2- susceptible buffalo
/
‘atch 2- exposed buffalo

-

Patch 1 - exposed buffalo

atch 1 - susceptible buffalo

) 5 10 15 20 2%

Time (years)

350

300)

200

150

100

50

’ S pateh 1 nfected buflo

L

-

Patch 2- infected buffalo

10 15 20 25
Time (years)

Figure 8: Comparison of susceptible, exposed and infeatfdlb populations and pathogen
concentration in the environment across patches assumivgment of both susceptible and
exposed bfialo populations between patches. The parameter descrilbmgment are such that
my > My anday > as.

The dfect of environment was explored, the results showed nofgignt change
in the transmission dynamics of BTB infection in both paghEhe observation
agrees well with what was observed in [21]. Figure 9 puts tiemario in the
right context.
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5. Conclusion

A deterministic model for bovine tuberculosis dynamicsaesn linked patches
was presented. Very important mathematical charactesikkie the invariant re-
gion of biological importance, patch specific reproductimmbers for isolated,
non-isolated patches linked by migration as well as the ndidease reproduc-
tion number were presented. The disease free and the bquenidemic equi-
librium points are presented. The disease free equilibpomt was established
to be globally stable whenever the patch specific diseasedaption numbers
are less than one. This suggests that whenever the patdficspgezase repro-
duction numbers are less than one, the following generafidime infective will

be less than their predecessor, and thus the disease cagrsist.pl he boundary
endemic equilibria were determined, shown to be unique,lacaly asymp-

totically stable when the non-isolate(il patch specific répction numbers are



greater than one. The interior endemic equilibrium poing &kso determined
using the fixed point theorem.

The dfect of movement of both susceptible and exposethlmon bovine tu-
berculosis transmission dynamics has been explored vigncah simulations.
Our results show that when the patches are isolated theseiseauld be more
severe in a patch if it has high disease prevalence. Endeoniadtuberculo-
sis is manifested by high levels of infectedfiaio andM. bovisconcentration
in the environment. The disease may remain persistent im deges when the
patch specific disease reproduction numbers are greateotiea When patches
are linked by migration, main features observed in the l@rgtdynamics of
the BTB infection are: First, there is a probability of theekse wrecking more
damage in the patch with relatively low disease prevalerid@s case results
from an increase in the number of susceptibl&ddo as well as the exposed buf-
falo (due to migration) hence an increase in the probalolityuffalo to butalo
contact as well as contact wit. bovisin the environment. Secondly, migration
of both susceptible and infectedftalo results in synchronous fluctuation of sub-
populations in both patches. Therefore, free migratiorowire tuberculosis hit
areas may eventuate in introduction of the disease iffectad areas or even
worsening it in lessféected areas. Therefore, from the management perspective,
it may be reasonable to restrict movement to and from bovibertulosis en-
demic areas if disease is to be easily contained.

Finally, it is reasonable to state that our metapopulati@deh considers the
effect of migration on the evolution of bovine tuberculosis uftalo in two
patches. However, it is important to enhance our understgrabout the dis-
ease by carrying out sensitivity analysis of the withingpafransmission rates
and other parameters on disease dynamics. The future wiisa extend our
two patched model to three patched model or multi-patchedetaorT his will
give more insights into the spatial propagation of the diega the multi-patched
model. Age-structured metapopulation dynamics modelasteer fertile area to
be investigated in future.
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6. Appendix

a=p1+My; b=ygo+Mp;  C=ppun + poMy + Mippy;  d = pama + Mymp + My
f = +d1+a; g= fb+(lza; ng = f7r2+a17r1; N, = fd+af7r2+aa/17r1;

Nz = ba/17r1 + a1 Mo, Ny = Caymy + dalmz; Ns = afd, k]_ = ag, k2 = bg, k3 = azg;

g
ke=gah ke=gac vi= —22—: vu=22 G=p+mPs  Xur = aany;
Uz + € 0,

X12 = a2y + @aoNy; X1z = @2Ns + Aoy, X14 = @2Ng + Aoz, X5 = @2Ng; X1 = Aoy,
X17 = @aoNs; Y11 = QMprra; V1o = Mpma2Ky +dg,  Yiz = ke + 2ked;
Yia = koMpra + Kod; a5 = ks + 2kad;  Yie = KoM, yi7 = ksd;  yig = ksd
l1 = X2 +axiy; |2 =Xiz3+ X7 +axs |3 =X+ axXs+Cxg + Xz 1a = Xg5+ bXga;
Is = X16 + @X%ia + bXi3 + CX12;  lg = aXiz; |7 = axge + bXxi7 + Cxaz;  lg = axyy;
lg = bXa+Cxi5;  lio=bxs; |11 =bXe+Cxiay  lio=0CXe; l1z=Cxa7;  f1 =14+ Y12
fo=ls+yis, fa=lz+yi7; fa=lo+ys, fs=lio+yies foe=lun+yis; fr=lia+yis
hy =2k; +ag, hy,=ks+2kja+9c, hy=Kks+2kib+gc hy = ks + ksb + ksa + 2k;C
hs = kea+bg, he=aks+cks; hy=Dbks+cky; hg=cCks; Ur=mg+xu; himr+ly
Us = komry;  Ug =homy +lg;  Us = miha+ f1;  Us = mhy + f2; U7 = mihs + yay;
Ug = miks@ + I3;  Ug = mihe + f3;  Uio=miCke + f5;  Ups = miky + 4, Uz = mihy + fg;
Uz =mhg+ fiua=lis; z2=bg 2z =bh +bag 2z =bk;z =bh + bah;
Zs = bhs + bahs; zs = bhy + bahs;  z; = bhs + bak; 75 = bksa + bahy;  zg = bhg + bahy;
10 = bcke; 11 = bk + back;  zp = bhy + baky; 713 = bhg + bahy; 714 = baks; 715 = bak;
16 = bakg;
S11 = WATA5 + U523 + Uz A3 + Ugd3A2 + Us 34 + UgAddd + Uzdad] + Ugd3 + Ugdads + Ugpds;
+ Upg A3 + Upodd + Ugads + Uggdy + Ugsds;
Sip = ZA3A} + B3 + A5 + 24573 + 25425 + Z5A2 A5 + 27445 + 23450y + ZoAs A + ZipAT;
+ 21343 + Z1pA5 + 21301 + 21445 + 2155 + Zag,
_ 0B + m¥101¢1

R
O1(u1 + €1)
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Chapter 5

Conclusion and future work

This thesis focused on developing epidemiological mathematical models to enhance the un-
derstanding of the transmission dynamics of bovine tuberculosis (BTB) in buffalo and cattle
populations. Considering the biology and natural history of the BTB infection, various aspects

of the infection were incorporated into the models developed.

Chapter 1 gave a detailed account of the background of the BTB infection. Important aspects
of the disease highlighted are background information, epidemiology of bovine tuberculosis
in Africa and other continents, epidemiology of bovine tuberculosis in Kruger National Park,
bovine tuberculosis in cattle population, the biology of the causative agent of the infection,
the concept of metapopulation and the statistics for the BTB infection globally and in Kruger
National Park, motivation of the study, objectives of the study, outline of the study and pub-
lications that have built the thesis.

In Chapter 2, we considered the role of buffalo carriers in the transmission dynamics of BTB
infection in buffalo population. The results suggest that the infection of susceptible buffalo via
buffalo carriers increase the number of infected buffalo population, which subsequently increase
the prevalence of bovine tuberculosis in buffalo community. This can be the other reason for
BTB infection persistence in the buffalo population and unsuccessful efforts to eradicate the
disease so far. This implies that the control efforts should target mechanisms that can detect

the buffalo carriers to successfully improve efforts to control the infection. The work done in
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[32] attempted to study the dynamics of bovine tuberculosis via a mathematical model that
did not include the role of buffalo carriers. Their results showed the existence of BTB infection

in buffalo population, but their model could not explain the reason for disease existence.

Our study also investigated the aspect of cross-infection between cattle and buffalo populations
in Chapter 3. Its inclusion in the model has given new insights into the evolution of BTB
infection in cattle and buffalo populations. The results show that the prevalence of BTB
infection is high particularly in the cattle population when there is cross-infection of BTB
infection between cattle and buffalo populations. Our model results on cross-infection can be a
suitable explanation for the observed [82] high prevalence of BTB infection in cattle population
at the interface areas compared to areas that are far from the wildlife-livestock interface areas.
The same aspect was also considered in [53] to study the dynamics of brucellosis between
cattle and sheep on a public farm. Similar observations were also made that the cross-infection
transmission mechanism increased the disease prevalence in both populations, but the intensity
of the increase of the prevalence differs from our study which considered the movement of

buffalo on an uncontrolled site.

In Chapter 4, we investigated the role of movement of susceptible and exposed buffalo from
one patch to another in Kruger National Park. To the best of our knowledge this is the first
study that explores the effect of movement of susceptible and exposed buffalo from one patch to
another. The results show that the intensity of the disease in a low prevalence patch 2 increases
when the susceptible and exposed buffalo from patch 1 move into it. It is the movement of the
exposed buffalo from patch 1 to patch 2 that poses a serious threat regarding the spread of the
BTB infection northwards. This underpins the fact that the disease spread in Kruger National
Park is moving northwards from the southern part where the infection initially started. The
study [32] attempted to look at the transmission dynamics of bovine tuberculosis in buffalo
population but their work did not consider the aspect of movement of susceptible and exposed
buffalo from one patch to another. Their model results did not manage to explain why BTB
infection is increasing northwards in Kruger National Park, an observation our model has

managed to show.

These findings have very important implications for bovine tuberculosis control: We recommend
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that if bovine tuberculosis is to be eliminated, advanced test techniques should be developed to
be able to diagnose the buffalo carriers to reduce the transmission of the infection from carrier
buffalo. This will accelerate the eradication of BTB infection from the buffalo population. We
also recommend that strict control and monitoring measures should be used at the interface to
reduce or block the cross-infection of bovine tuberculosis to either cattle population or buffalo
population. We also recommend that control measures that prevent the movement of buffalo

from one patch to another should be implemented.

Our study has managed to provide significant improvement to the existing knowledge regarding
the spread mechanisms of the BTB infection in both cattle and buffalo populations. Our work

can be enhanced by considering the following aspects :

e The stochasticity of the BTB infection was not incorporated into our models. Generally,
the disease is stochastic in nature, outbreaks of the disease are commonly observed in
drought times where animals converge at water drinking sites. This situation increases
the chances of spreading the BTB infection. The model would be more realistic if a

stochastic component was factored in the model.

e Another important driving factor of the infection not included in the model is pseudo-
vertical transmission route. The age specific disease prevalence suggests that young ani-
mals get the infection via sucking milk from their mothers. This biological aspect of the
infection if incorporated in the model can improve the understanding of the transmission
dynamics of bovine tuberculosis. Bovine tuberculosis prevalence is high in buffalo aged
less than two years [18] and this explains why the pseudo-vertical transmission route

should be considered in our models.

e The further understanding of the BTB infection would be enhanced if in-host modelling is
carried out. This type of modelling gives very significant insights into the characteristics

of M. bovis; the knowledge can be used to develop the right medication for the infection.

e The model validation is a crucial step in the modelling process. This step is achieved

when the models are fitted to data; the process helps to estimate the appropriate values
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of the model parameters. Model validation provides more confidence in trusting the model

prediction. A current challenges is that data is scarce in the case of BTB.

e The zoonotic effect of the disease was not considered in the models developed in this
thesis. People in rural settings close to the interface between the park and the rural areas

reside closer to their livestock and they can easily become hosts for BTB.
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