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Abstract

The HIV and AIDS epidemic has remained one of the leading causes of death in the world and

has been destructive in Africa with Sub-Saharan Africa remaining the epidemiological locus of

the epidemic. HIV and AIDS hinders development by erasing decades of health, economic and

social progress, reducing life expectancy by years and deepening poverty [57].The most urgent

public-health problem globally is to devise effective strategies to minimize the destruction caused

by the HIV and AIDS epidemic. Due to the problems caused by HIV and AIDS, well defined

endpoints to evaluate treatment benefits are needed. The surrogate and true endpoints for a

disease need to be specified. The purpose of a surrogate endpoint is to draw conclusions about

the effect of intervention on true endpoint without having to observe the true endpoint. It is

of great importance to understand the surrogate validation methods. At present the question

remains as to whether CD4 count and viral load are good surrogate markers for death in HIV or

there are some better surrogate markers. This dissertation was undertaken to obtain some clarity

on this question by adopting a mathematical model for HIV at immune system level and the

impact of treatment in the form of reverse transcriptase inhibitors (RTIs). For an understanding

of HIV, the dissertation begins with the description of the human immune system, HIV virion

structure, HIV disease progression and HIV drugs. Then a review of an existing mathematical

model follows, analyses and simulations of this model are done. These gave an insight into the

dynamics of the CD4 count, viral load and HIV therapy. Thereafter surrogate marker validation

methods followed. Finally generalized estimating equations (GEEs) approach was used to analyse

real data for HIV positive individuals, from the Centre for the AIDS Programme of Research

in South Africa (CAPRISA). Numerical simulations for the HIV dynamic model with treatment

suggest that the higher the treatment efficacy, the lower the infected cells are left in the body.
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The infected cells are suppressed to a lower threshold value but they do not completely disappear,

as long as the treatment is not 100% efficacious. Further numerical simulations suggest that it

is advantageous to have a low proportion of infectious virions (ω) at an individual level because

the individual would produce few infectious virions to infect healthy cells. Statistical analysis

model using GEEs suggest that CD4 count< 200 and viral load are highly associated with death,

meaning that they are good surrogate markers for death. An interesting finding from the analysis

of this particular data from CAPRISA was that low CD4 count and high viral loads as surrogates

for HIV survival act independently/additively. The interaction effect was found to be insignificant.

Individual characteristics or factors that were found to be significantly associated with HIV related

death are weight, CD4 count< 200 and viral load.
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Chapter 1

Introduction

The HIV and AIDS epidemic has remained one of the leading causes of death in the world and

has been destructive in Africa with Sub-Saharan Africa being the most affected. According to the

figures published by the Joint United Nations Programme on HIV and AIDS (UNAIDS) and the

World Health Organisation (WHO), 22 million [20.5 − 23.6 million] people living with HIV are

currently in Sub-Saharan Africa [57]. They account for two thirds of all people living with HIV,

also 60% of all women with HIV are in Sub-Saharan Africa. It was also stated that 1.9 million

[1.3− 1.7 million] people died of HIV-related illnesses in the region in 2007 and 2.7 million new

infections occurred worldwide during the same year [57]. The most urgent public-health problem

globally is to devise effective strategies to minimize the devastation caused by the HIV and AIDS

epidemic particularly in resource poor nations.

The most used and advocated for prevention efforts to; be faithful, abstain, and condom use

(male condom), have since spread in Sub-Saharan and beyond. While the idea of abstaining from

sex has had some success among young, unmarried people, but the lack of adherence to fidelity by

many married men or failure to remain faithful to their often-monogamous wives have made the

use of condoms the viable option. Since women are both biologically and socio-culturally more

vulnerable to HIV infection, efforts to identify HIV-prevention methods that women could control

emerged, hence the advent of the female condom [57]. Also it should be noted that evidence

exists that shows that women also engage in infidelity practices [34]. Despite the knowledge of

6
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successful HIV prevention by use of both male and female condoms, HIV continues to spread at

an alarming rate in developing countries.

Despite hopeful signs of abatement in Kenya, Uganda and Zimbabwe, the HIV epidemic continues

to spread. There was a decline in these countries because of the changes in sexual behaviour

through the use of condoms and reduction in the number of sexual partners. In some countries

such as Botswana and South Africa the HIV infections appear to be stabilizing at high levels

whilst infection rates continue to rise in Mozambique [57]. South Africa has 0.7% of the world’s

population but it has 17% of the world’s HIV and AIDS cases (5.5 million people) and the greatest

HIV and AIDS burden compared to any other country [10]. HIV and AIDS hinders development,

affects health, economic and social progress [57].

Due to the problems caused by HIV and AIDS, we need to develop both mathematical and

statistical models to give us some insights about the dynamics of the disease progression. We

also need well defined endpoints in clinical trials and observational studies so as to evaluate

treatment benefits. It would be cost effective if we are able to specify the surrogate and true

endpoints for a disease before the commencement of a study. The purpose of a surrogate endpoint

is to draw conclusions about the effect of intervention on true endpoint without having to observe

the true endpoint. In some cases the true endpoint is irreversible such as death therefore to save

lives a surrogate endpoint is much better. Therefore, it is of great importance to understand the

theory on surrogate validation methods.

The aim of this dissertation is to focus on the HIV and AIDS problem as a biological process

and analysis of data generated from it. The development of a mathematical model of HIV

and AIDS and simulating the treatment effect a prior could give us some insights about the

different treatment efficacies being used. The development of an appropriate statistical model

for the probability of death against some variables could give us insights about some well known

surrogate markers. Thus, the goal of this research is to review an existing mathematical model

and simulate the treatment of HIV and AIDS in the form of reverse transcriptase inhibitors with

different efficacies. By doing this, one could be able to give some qualitative comments and

suggestions about different treatment efficacies. The other goal of this research is to develop

a statistical model for the probability of death against some independent variables (including
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surrogate markers) and some suggestions can be made from the results as to whether the well

known surrogate markers are good surrogates or not.

1.1 Immune System

The body’s immune system comprises of a complex system of blood proteins and white blood cells,

which work together to repel attacks by invading organisms. White blood cells are formed in the

bone marrow and they form three different regimes, namely, phagocytes (including macrophages),

and two types of lymphocytes, namely T cells and B cells. Phagocytes constantly patrol the

whole body (the bloodstream, tissue and lymphatic system) so that they may detect an enemy

and immediately try to engulf and destroy it. While phagocytes cannot destroy organic invaders

such as viruses, bacteria, protozoa and fungi, they are usually effective in destroying chemical

poisons and environmental pollutants such as dust, smoke and asbestos particles.

The macrophages’ function is to mobilise the specific defence system, which consists of the

lymphocytes (i.e T cells and B cells). The macrophages surrounds the organic invader (e.g.

virus) and captures a specific particle, called an antigen, from the invading organic invader. The

macrophages then display this antigen on its own cell surface as a ‘flag of war’. This flag (the

antigen) plays an important role in the immune system’s response, because it alerts the T cells

to attack the invaders [54]. T cells are pre-programmed in the thymus to recognise the antigen

(the ‘flag’ carried by the macrophages) by its shape.

The CD4 cells are the type of T cells that recognise the antigen and they are also called T

helper cells, or CD4 lymphocytes. CD4 cells are the most crucial in the immune system defense

response because they protect the body from invasion by certain bacteria, viruses, fungi, and

parasites. However once or in event that the number of CD4 has become radically depleted,

opportunistic infections can set in and can subsequently overwhelm the body.

In the event of invasion by foreign organism e.g. a virus, the CD4 combines forces with the

macrophages, and they activate the remaining components of the defence system. The CD4

cells begin to multiply, and they activate more phagocytes and send chemical messages to the B
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cells and killer T cells, which are sensitive to the invading virus, to multiply. B cells are located in

the lymph nodes, and they then multiply and divide into two groups, plasma B cells and memory

B cells. The plasma B cells are responsible for manufacturing antibodies. These antibodies

render invading organisms harmless by neutralising them or by clinging on their surfaces thus

preventing them from performing their function [54].

While the immune system prepares its forces, the organic invader penetrates some of the body

cells and this is the only place where they can multiply. When they are ready, the killer T

cells with the aid of certain CD4 cells destroy these infected cells by chemically piercing their

membranes so that the contents spill out and this interrupts the multiplication of the organic

invader. Antibodies then neutralise the viruses by attaching themselves to the viruses’ surface,

thereby preventing them from attacking other cells. The progress of the invading organisms is

therefore slowed and this makes them easy victims for the phagocytes or macrophages, which

then come to ‘digest’ them. In addition chemical reactions are produced by antibodies, which

can kill infected cells.

When all the invaders have been destroyed, a member of the T cell family takes control, this

is the “suppressor T” or the peace maker. Suppressor T cells release a substance which stops

B cells from manufacturing antibodies. The killer T cells are also ordered to stop attacking

and the CD4 cells are ordered to stop their work. Memory T and B cells remain in the blood

and lymphatic system, they ‘remember’ the specific invader (antigen), and they are ready to act

defensively should the same virus once again invade the body. Thus in order for a modeler to be

able to develop a realistic mathematical or statistical model for the interaction of the immune

system and the HIV, understanding of the inherent biological processes described above are an

important pre-requisite.

For an understanding of HIV and AIDS and surrogate marker validation the thesis has two distinct

parts, but all equally important parts. The first part of the thesis deals with the construction

of a mathematical model for HIV and AIDS with treatment. The model is linked to real data

from published literature and its behaviour qualitatively investigated through simulations. The

second part of the thesis deals with the analysis of the statistical modelling of surrogate markers

for HIV related survival based on real data from a longitudinal study. Chapters 1 and 2 give an
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introduction about HIV AND AIDS. In Chapter 3 a review of an existing mathematical model

is given and Chapter 4 gives a statistical model which was used in the estimation of parameters

and subsequently these parameters are then used for simulations in Chapter 5. The second part,

Chapter 6 , deals with the statistical modelling of HIV related mortality with two key surrogate

markers namely CD4 T cell and viral load counts as part of the predictor variables.



Chapter 2

Immune System and HIV and AIDS

2.1 HIV and Immune System

Infection with HIV results in Acquired immune deficiency syndrome (AIDS). AIDS is characterised

by a failing immune system and susceptibility to opportunistic infections caused by fungi, bacteria,

parasites and other viruses. The infected individual develops an inability to fight off the constant

onslaught of opportunistic infections due to the collapsing state of the immune system, which

finally results in death if no treatment is initiated.

HIV belongs to a class of viruses known as retroviruses [20]. Retroviruses have their genome

in the form of RNA which is then translated into DNA during its lifecycle. This is the reverse

of what usually happens in most biological processes, hence the prefix ’retro’. Most biological

processes proceed from DNA to RNA. HIV is also a lentivirus [11]. Lentiviruses are characterized

by long incubation periods and long duration of illness. As a result, HIV positive individuals can

remain asymptomatic for many years and not know that they are infected, while spreading the

disease to many others. HIV infection is spread by the transfer of infected bodily fluids such

as blood, semen, vaginal fluid, or breast milk [5], which contain HIV present as free virus or as

infected immune cells.

Usually, the routes of transmission are unprotected sexual intercourse, sharing of unsterilised

hypodermic needles, usually amongst intravenous drug users, blood transfusions and from mother

11
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to child during breast feeding and child birth [59].

2.1.1 HIV Virion Structure

Figure 2.1: The Virus [USA.Fed.Gov.].

A pictorial representation of an HIV virion is shown on Figure 2.1. It is almost spherical and has

a diameter of about 120 nanometers [30].
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2.1.2 HIV Replication Cycle

Figure 2.2: The life cycle of virus in the CD4+T cells [University of Washington, 2004.]

The HIV replication cycle can be broken down into five steps: 1) Fusion; 2) Reverse Transcription;

3) Integration; 4) Cleaving; and 5) Budding. These steps are explained below:

When HIV invades the body, the macrophages attempt to do their usual job by capturing particles

(antigen) from HIV [54]. When the macrophages attempt to make contact with the CD4 cells

to warn them about the invasion, the viruses attack the CD4 cells directly. This is a unique

response that makes HIV so dangerous to its victims. The virus and the CD4 cell now join

membranes. The virus then sheds it’s outer layer and enters the CD4 cell with its own genetic

material (viral RNA).

The HIV’s viral RNA must be changed (or “reverse transcribed”) to DNA, in order to use the cell

to manufacture more viruses. The HIV itself carries with it an enzyme called reverse transcriptase
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which it then uses to transform its viral RNA into double-strand viral DNA.

The viral DNA then fuses with the host cell’s own DNA or genetic material in the nucleus of

the cell, and makes numerous copies or replicas of viral RNA and viral protein. The new viral

RNA and the viral protein are enabled by the protease enzyme to merge and bud from the cell

membrane as fully functional HI viruses, perfect replicas of the original HI virus that entered the

cell in the first place. The hijacked cells are killed, as the new HI viruses bud from the cell. They

then move out into the blood stream or surrounding tissue to infect more cells and repeat the

whole process.

Due to the fact that the HIV attacks the CD4 cells, these cells are unable to do what they

normally do if confronted by an alien virus i.e. coordinate the body’s defence against HIV.

Instead, they are captured and forcibly turned into small factories to manufacture the very agents

of destruction against which they are supposed to defend the body (HI viruses) from.

Antibodies formed are completely powerless against HIV because HI viruses hide inside the CD4

cells while they subvert the cell for their purpose. Therefore the body is left defenceless because

the antibodies can not attack and kill the CD4 cells.

2.1.3 HIV Disease Progression

An HIV-infected person is classified as having AIDS, when the CD4+T cell count, which is

normally around 1000mm−3, drops to 200mm−3 or below [46]. Just because the CD4+T cells

play a central role in immune regulation, their depletion has widespread deleterious effects on the

functioning of the immune system as a whole and leads to immunodefiency that characterizes

AIDS. T cells are normally replenished in the body, and the infection may affect the source of

new T cells or the homeostatic processes that control T cell production and numbers in the body

[46]. Although HIV can kill cells that it infects, only a small fraction of CD4+T cells (10−5 to

10−4) are productively infected at any one time. Thus in addition to direct killing of T cells,

HIV may have many indirect effects [2]. The disease (AIDS) takes 10 years to develop on

average. There are four typical stages during disease progression that an HIV -positive individual

experiences. These stages are classified as: Stage one-Primary infection, Stage two-Asymptomatic
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infection, Stage three-Symptomatic infection and Stage four-AIDS. These stages were classified

by the World Health Organization (WHO) in 1990 [61]. Acute infection (primary infection), is a

Figure 2.3: Progression of HIV in a typical patient [Wikimedia Commons]

period of rapid viral replication that immediately follows an individual’s exposure to HIV leading

to an abundance of virus in the peripheral blood with levels of HIV commonly approaching

seven million viruses per milliliter [47]. The numbers of circulating CD4+T cells drops and the

CD8+T cells are activated to kill HIV−infected cells. The CD8+T cell response is thought to

be important in controlling virus levels, which peak and then decline, as the CD4+T cell counts

rebound to around 800 cells per cubic millimeter [64]. Though a good CD8+T cell response

does not eliminate the virus, it has been linked to slower disease progression and better prognosis

[45]. During the acute infection period (usually 2 − 4 weeks post-exposure) most individuals

develop influenza or mononucleosis-like illness called HIV−infection [63]. The most common

symptoms during this stage include fever, lymphadenopathy, pharyngitis, rash, myalgia, malaise,
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mouth and esophagal sores. These symptoms usually last a week. The patient is much more

infectious during this period, therefore recognizing the syndrome at this stage through voluntary

testing say is very important to aid in implementing control and intervention strategies [13].

The number of viral particles in the blood stream are reduced by a strong immune defense

response. This marks the start of the infection’s clinical latency stage (chronic phase), and

this stage may vary between 2 weeks and 20 years. HIV is active within the lymphoid, where

large amounts of virus become trapped in the follicular dendritic cells (FDC) network [6]. Viral

particles accumulate both in infected cells, and as free virus, and the surrounding tissues that are

rich in CD4+T cells may also become infected. Patients are still infectious at this stage.

Cell-mediated immunity is lost when CD4+T cell count decline below a critical level of 200

cells per cubic millimeter, and infections with a variety of opportunistic microbes appear. The

first symptoms often include moderate and unexplained weight loss, recurring respiratory tract

infections (such as sinusitis, bronchitis, otitis media, pharyngitis), prostatitis, skin rashes, and

oral ulcerations.

It should nonetheless be pointed out that the stages described above are for the average disease

progression process but in reality there is evidence of individual to individual heterogeneity which

has to be accounted for in the delivery of individual patient care.

2.1.4 HIV and Drugs

The fact that HIV replicates rapidly producing on average 1010 viral particles per day, led to

the realization that HIV was evolving so rapidly that treatment with a single drug was bound to

fail. This realization helped in speeding the recommended form of treatment from monotherapy

to combination therapy employing three or more drugs, and has had a major impact in extending

people’s lives [46]. Even with the combination therapy virus eradication does not seem like an

easily attainable goal. In addition, mathematical modelling, has shown that patients who continue

taking antiretroviral drugs for a period of at least 2−3 years after the virus is no longer detectable

in the blood, are better than those who do not. This raises the issue of lower undetectable limits

in measuring viral loads which requires special statistical methods but not part of the current
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work.

Dynamical modelling of the disease has proved to be very important because it has uncovered

important features of HIV pathogenesis and impacted the way in which AIDS patients are

treated with potent antiretroviral drugs. Recent developments in the analysis of such models has

necessitated the use of dynamic models as well as statistical methods to aid in the estimation of

model parameters as inputs in simulation studies. The current thesis demonstrates exactly how

the two approaches complement each other in understanding the HIV and AIDS problem. An

important and re-emerging area of active research is that of combining both mathematical models

for infectious disease and statistical modelling of the processes. The advantage of this approach

is that the modeller is able to describe a process and also estimate parameters associated with

the process through observed data [25, 44].



Chapter 3

A Mathematical Model for HIV

Dynamics Including Treatment

3.1 Model formulation

In AIDS research, the cause of progressive depletion of CD4+T cells in HIV-infected people

is one of the most fundamental and controversial issues. HIV infects and kills CD4+T cells

[25]. An immediately intuitive assumption is that HIV-mediated destruction of CD4+T cells

directly reduces the number of these cells and that the high turnover rates of T cells and the

slow progression to AIDS reflect a long, but eventually lost struggle of the immune system to

replace killed cells in its effort to maintain T-cells homeostasis [41]. HIV mainly infects activated

CD4+T cells. Activated cells normally follow different dynamics than cells that belong to the

resting populations (or quiescent cells) whose number are controlled by homeostatic mechanisms

[24]. T cells undergo several rapid rounds of division, upon activation, and then they stop dividing

and most die. Some of the activated cells escape this activation-induced cell death (AICD) and

enter the population of resting memory cells [24].

Many models for HIV dynamics have involved target cells (mainly uninfected CD4), infected cells

producing viruses, and circulating viruses. The activated state is worth distinguishing, because

the activation of CD4 has been recognized to have a central role in HIV pathogenesis [25].

18
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Actually, activated cells make a better target than quiescent (inactive) cells and viral replication

is rapid and efficient in activated cells [54]. It is important to note that on average non-infectious

virions are predominant compared to infectious ones, therefore it is useful to distinguish between

infectious and non-infectious virions [11]. Antiretroviral therapy, in the ALBIANRS070 trial

[43], included reverse transcriptase inhibitors only. This type of antiretroviral drugs limits cell

infection by inhibiting reverse transcription of HIV RNA and thus can be modelled by limiting

the new production of activated infected T cells denoted by T ∗ through the parameter η [25].

We can represent the system of HIV dynamics adopted in the current thesis in graphical form as

shown in Figure 3.1:

λ

µ

µ

Q T

µ µ
TQ

VV

V

I

NIV

T*

µ
      α

        ρ

(1−ω)πµ

ωπµ

γ(1−η)

T*

T*

T*

Figure 3.1: Graphical representation of the system for HIV dynamics
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Thus this model can be written as a system of five ordinary differential equations(ODE) given by

dQ
dt

= λ + ρT − αQ− µQQ

dT
dt

= αQ− (1− η)γTVI − ρT − µT T

dT ∗

dt
= (1− η)γTVI − µT ∗T ∗

dVI

dt
= ωµT ∗πT ∗ − µvVI

dVNI

dt
= (1− ω)µT ∗πT ∗ − µvVNI


(3.1)

The state variables of the model are Q, T , T ∗, VI and VNI where Q represents quiescent non-

infected CD4 cells, T represents activated noninfected CD4 cells and T ∗ represents activated

infected CD4 cells. VI and VNI are infectious and non-infectious virions, respectively. This is the

HIV-model, that is studied in the current work. It is different from other models because it starts

with quiescent cells whilst other models commonly start with target CD4 cells. This feature

makes it more realistic and plausible as a caricature of reality. The meaning of each parameter is

given in the Table 3.1 below.

Table 3.1: Description of model parameters

Parameter Description

α Activation rate of Q cells (day−1) ,

λ Rate of Q cells production (µ−1
l day−1),

µT ∗ Death rate of T ∗ cells (day−1),

π Number of virions produced per T ∗ cell ,

µT Death rate of T cells (day−1),

η Efficacy of treatment (proportion),

γ Infection rate of T cells per virion,

µQ Death rate of Q cells ,

µv Clearance of free virions ,

ρ Rate of reversion to the quiescent state

ω Proportion of infectious virions
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3.1.1 Assumptions

• An assumption was made that before initiation of antiretroviral treatment the values of the

state variables are those of steady state of the ODE system with η = 0. The implication

by this assumption is that the treatment is initiated far from the initial infection,

• Populations of cell particles are homogeneously mixed,

• Interaction of infectious virions and uninfected CD4 cells is mass action type.

3.1.2 Equilibrium State

The initial condition (where t = 0 refers to treatment initiation) represented by the equilibrium

state of the system is the point (Q(0), T (0), T ∗(0), VI(0), VNI(0)) where,

Q(0) = 1
α+µQ

(λ + ρµv

ωγπ
)

T (0) = µv

ωγπ

T ∗(0) = 1
µT∗

( α
α+µQ

(λ + ρµv

ωγπ
)− (ρ+µT )µv

ωγπ
)

VI(0) = αωπ
µv(α+µQ)

(λ + ρµv

ωγπ
)− ρ+µT

γ

VNI(0) = (1−ω)π
µv

( α
α+µQ

(λ + ρµv

ωγπ
)− µv(ρ+µT )

ωγπ
)


The above expressions are found by setting the system of equations (3.1) to zero with η = 0 (no

treatment) and solving for Q, T , T ∗, VI and VNI simultaneously. Note that this is the disease

endemic equilibrium as opposed to the disease free equilibrium given by (Q(0), T (0), 0, 0, 0).

3.1.3 Reproduction Number

The basic reproduction number, R0, is defined as the average number of secondary infected cells

generated by a single infected cell placed in an uninfected cell population.

There are several methods that are used in the calculation of the basic reproduction number such

as using the determinant of the Jacobian matrix, the next generation matrix, the survival function

and many others. For our model we use the next generation matrix as presented in [16]. The
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system (3.1) can be written as

x
′
= F(x)− V(x)

where

F(x) =

 γTV1

0


and

V(x) =

 µT ∗T ∗

−ωπµT ∗T ∗ + µvV1


The matrices for new infection terms (F ) and the transfer terms (V ) at the disease free equilibrium

(DFE) are as follows;

F =

 0 γαλ
(α+µQ)(ρ+µT )−ρα

0 0

 ,

and

V =

 µT ∗ 0

−ωπµT ∗ µv

 .

Computing the inverse of V we have

V −1 =

 1
µT∗

0

ωπ
µv

1
µv


The product FV −1 given by

FV −1 =

 γαλ(ωπ)
µv [(α+µQ)(ρ+µT )−ρα]

γαλ
µv [(α+µQ)(ρ+µT )−ρα]

0 0


is the next generation matrix. The reproduction number (R0) is defined as the spectral radius

of the next generation matrix [16]. The spectral radius of the matrix represents the dominant

eigenvalue of that matrix. Hence the dominant eigenvalues of matrix FV −1 is R0 given by

R0 =
γαλ(ωπ)

µv[(α + µQ)(ρ + µT )− ρα]
.

When R0 < 1 the infected CD4 cells die out and when R0 > 1 the infection will spread hence

more CD4 cells become infected and the subsequent result is that higher numbers are more likely

to cause AIDS. It can immediately be inferred from the expression of R0 that an effective way
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to reduce infected CD4 cells is to reduce γ, α, ω. One can also think of reducing λ and π but

some strategies are more realistic and feasible than others thus practicability is also one factor to

consider when designing control strategies. For example λ is the rate of Q cell production which

may not be that easy to alter.

3.1.4 Effective Reproduction Number (Re)

The effective reproduction number (Re) is the actual average number of secondary infected cells

per primary case observed in the CD4 population with an infective CD4 cell in the presence

of treatment (η). The value of Re is typically smaller than the value of the basic reproductive

number R0, and it reflects the impact of treatment and depletion of activated CD4 cells by the

infection. Using the same method used to obtain (R0) we get

Re =
(1− η)γαλ(ωπ)

µv[(α + µQ)(ρ + µT )− ρα]

Note that if η = 1, Re = 0, showing that if we have a 100% effective treatment there are no new

infected secondary cells to be produced. Infact this would imply that the individual is cured. The

statistical estimation of Re is key in monitoring and surveillance of an epidemic in the presence

of an intervention. It is an indicator of whether or not the intervention is working or not.

In order to study the qualitative behaviour of the model system 3.1 through computer simulations

we need estimates of the model parameters. The problem of parameter estimation for a dynamical

system specifically system (3.1) is discussed in Chapter 4.



Chapter 4

Statistical Model

In this chapter we briefly describe a statistical estimation method based on MLE of estimate

parameters for a dynamical model for a disease process such as that presented in chapter 3

equation 3.1. This work is based on a relatively complex ODE model for HIV infection and a

model of observations including the issue of detection limits [25].

There are two sources of parameter values for this model. We will use the parameter values

that were estimated in [25] and some that are found from literature as shown in Table 5.2. The

advantage of using these estimated parameter values in [25] is that sound statistical methods

were used in their estimation. However it should be noted that strictly speaking the findings are

specific to the cohort of individuals in the study and the HIV type which in this case was HIV-1.

The parameters estimated in [25] are shown in Table 5.1. The parameter γ was at the limit of

non-identifiability, it was then determined in a plausible range of values by profile likelihood [25].

The natural parameters’ vector for subject i was then:

ξ(i) = (λ(i), α(i), η(i), µ
(i)
T , µ

(i)
T ∗ , π(i))′.

The link functions used in the estimation algorithm were the log transforms for all parameters to

ensure that the optimization yields positive estimates of parameters with the exception for η(i)

for which an inverse logistic function or logit link function was taken (because 0 < η(i) < 1) so

that ˜η(i) = log η(i)

1−η(i) where ˜η(i) is the associated linear predictor.

24
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4.1 Statistical model for the system of ODE equations

Consider an ordinary differential equations (ODE) model for a population of subjects. For subject

i for i = 1, ....., n , this can be written as:

dX(i)(t)
dt

= f(X(i)(t), ξ(i))

X(i)(0) = h(ξ(i)),

 (4.1)

where X(i)(t) = (X
(i)
1 (t), ......, X

(i)
K (t))′ is the vector of the K state variables (or components),

where we let X(t, ξ(i)) = X(i)(t) , to underline the fact that ξ(i) completely determines the

trajectories X(i)(t). We assume that f and h are twice differentiable with respect to ξ(i) where

ξ(i) = (ξ
(i)
1 , ...., ξ

(i)
p )′, (′ is transpose) is a vector of p individual parameters that appear naturally

in the ODE system and have a biological interpretation generally.

Ideally one can think of a parsimonious model for ξ(i) to allow for interindividual variability . This

variability may be explained through explanatory variables, or may represent underlying unobserved

effects. If the variability is unexplained, it is accounted for by random effects. Random effects

models are now well developed for Gaussian outcomes and to a good extent for non-Gaussian

models [15, 42, 58]. Infact generally one can assume that ξ(i) = ξ(0)+εj where ξ(0) is a population

average component and εj is the individual specific contribution to ξ(i) where ξ(ii) ∼ N(0, σ2)

say.

In general introduce a link function that relates ξ(i) to a linear model involving explanatory

variables and random effects, like in generalized linear mixed models [40]. To simplify the work,

one can restrict this component-wise transforms to

ξ̃
(i)
l = Ψl(ξ

(i)
l ),

ξ̃
(i)
l = φl + z(i)′

lβl + ω(i)′
lb

(i), l ≤ p,

 (4.2)

where φl is the intercept, z
(i)
l is a vector of explanatory variables associated with the fixed effects

of the lth biological parameter and ω
(i)
l is a vector of explanatory variables associated with the

random effects of the lth biological parameter. βl’s are vectors of regression coefficient associated

with the fixed effects. A common assumption used is that b(i) ∼ N(0,
∑

), where b(i) is the

individual vector of random effects of dimension q. Let A = (al′′l′)l′≤l′′≤q be the lower triangular
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matrix with positive diagonal elements such that AA′ =
∑

(Cholesky decomposition). Therefore

we can write b(i) = Au(i) with u(i) ∼ N(0, Iq). Substituting this reparameterization of b(i) into

(4.2) simplifies the problem to that of a standard linear model to enable the optimization to

converge faster.

4.2 Linking the model for the observations

Usually, not all the components of the system can be observed. Functions gm(.), m = 1, ....,M of

RK to R are introduced to link the potential observations to the original system. These functions

are assumed to be twice differentiable. These functions allow observation of only some of the

components of the original system, or observation of combinations of several components, for

instance, the model may distinguish between non-infected and infected CD4, but only the total

number of CD4 is observed.

Transformations such as the logarithm may also be included in these functions. The gm(·) are

thus assumed to be completely known and are called the observable components. To link the

theoretical model to data let Yijm denote the jth measurements of the mth observable component

for subject i at time tijm; we assume that:

Yijm = gm(X(tijm, ξ̃(i))) + εijm (4.3)

j = 1, ...., nim, m = 1, ....,M,

where εijm are independent Gaussian with zero mean and variance σ2
m. Here the εijm’s are

supposed to be independent because they represent measurement errors. We can roughly check

this assumption by looking at the correlations among residuals. We assume that the random

variables Yijm all follow a Gaussian distribution thus linear mixed models can readily be used to

deal with random effects.

Thus, both the observed dependencies for the within-patient observations of a given biomarker

and more generally the correlations among the biomarkers’ Y’s are completely determined by the

mechanistic relationships among the X’s produced by f(·) in the model 4.1. The model for the

observation may be complicated by the problem of detection limits of assays such as undetectable
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lower and upper assay limits leading to scenarios similar to left or right censored data . This is the

case for HIV RNA concentration here defined as the first observed component (m = 1) of gm(.)

without loss of generality. In this case we either observe Yij1 or the event {Yij1 < ζ}, where ζ is

the lower detection limit. The model can easily be generalized to upper detection limits or other

detection limits depending on time.

4.3 Inference

4.3.1 Log-likelihood

Denoting δij = IY{ij1>ζ}, the latent full individual likelihood Li(u) given the random effects Lu

is given by:

Li(u) = Πj≤ni1

 1

σ1

√
2π

exp

−1

2

(
Yij1 − g1(X(tij1, ξ̃

(i)))

σ1

)2


δij

×

{
Φ

(
ζ − g1(X(tij1, ξ̃

(i)))

σ1

)}1−δij

× Πm>1,j≤nim

 1

σm

√
2π

exp

−1

2

(
Yijm − gm(X(tijm, ξ̃(i)))

σm

)2


where Φ is the cumulative distribution function of the standard univariate normal distribution.

The observed individual (marginal) likelihood LOi
is obtained from Li(u) as:

LOi
=

∫
Rq

Li(u)φ(u)du, (4.4)

where φ is the multivariate normal density N(0, Iq). Denote li(u) = logLi(u) and lOi
= logLOi

the full (given random effects) and observed individual log likelihoods, respectively. The global

observed log likelihood is LO = Σi≤nLOi
. The integrand in (4.4) is centered and scaled as

suggested for the adaptive Gaussian quadrature in Pinheiro and Bates [48]. The integral is then

computed with an efficient algorithm developed by Genz and Keister [22].
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4.3.2 Algorithm for Likelihood Maximization

The Newton-Raphson like method that uses only the first derivatives of the log likelihood (the

score) was proposed for likelihood inference.

Computation of the score

There are two stages in computation of the score. The first stage is to compute the score of the

full likelihood given random effects. The second stage is to compute the score of the observed

likelihood by integration using the relationships given by Louis [33] and generalized by Commenges

and Rondeau [12]. We assume that there is no censored data, for simplicity.

For subject i at the current point θ = ((φl)l≤p, (βl)l=1,p , A = (all′)l′≤l≤q, σ = (σl)l≤M) , the

components of the full score can be written as follows:

U
(φl)

Fi|u(i)(θ) =
∂Li(u)

∂ξ̃
(i)
l

=
∑

m≤M,j≤nim

1

σ2
m

∂gm(X(tijm, ξ̃(i)))

∂ξ̃
(i)
l

×
[
Yijm − gm(X(tijm, ξ̃(i)))

]
,

U
(βl)

Fi|u(i)(θ) =
∂Li(u)

∂βl

= z
(i)
l U

(φl)

Fi|u(i)(θ),

U
(all′ )

Fi|u(i)(θ) =
∂Li(u)

∂all′

=
∑

m≤M,j≤nim

1

σ2
m

(Yijm − gm(X(tijm, ξ̃(i))))×

(
u

(i)
l′

∑
l′′≤p

w
(i)
l′′l

∂gm(X(tijm, ξ̃(i)))

∂ξ̃
(i)
l′′

)
,

U
(σl)

Fi|u(i)(θ) =
∂Li(u)

∂σl

=
∑
j≤nil

(Yijl − gl(X(tijl, ξ̃
(i))))2

σ3
l

− nil

σl

.

Using the fact that :

∂gm(X(t, ξ̃(i)))

∂ξ̃
(i)
l

=
∑
k≤K

∂gm(X(t, ξ̃(i)))

∂X(k)

∂X(k)(t, ξ̃(i))

∂ξ̃(i)
,
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the computation of the full score requires to solve numerically the p systems of sensitivity equations

∂X(k)(t,ξ̃(i))

∂ξ̃
(i)
l

. Then the observed scores can be deduced by Louis’ formula:

UOi
=

∂LOi

∂θ
= (LOi

)−1

∫
Rq

Li(u)(u)UFi
|u(i)(u)φ(u)du.

The adaptive Gaussian quadrature can be used to compute the integrals, using the same transfor-

mation as for the computation of LOi
. Then, the global observed score is U = UO =

∑
i≤n UOi

.

The Maximization Algorithm

The more robust Marquardt algorithm [36], or the Newton-Raphson method, is the most efficient

algorithm when the log likelihood is not too far from the quadratic function [25]. This approach

requires to compute the Hessian Matrix H and the score vector U at each current point θk

of the maximization procedure. A semi analytical expression for the Hessian could be obtained

with the same two-stages approach as for the score, though the computational burden would

become unbearable. Therefore an iterative method can be used in which H(θk) is replaced by

G(θk) =
∑

i≤n UOi
(θk)U

′
Oi

(θk) + ν
n
U(θk)U

′(θk), where ν is a weighting coefficient. We have

that n−1G(θ̂) converges toward n−1I(θ∗), where I(θ∗) is the information matrix under the true

probability, θ∗ being the true parameter value.

Thus G(θk) should be a good approximation of H(θk) near the maximum because n−1H(θ̂) itself

converges towards n−1I(θ∗).

Thus one can use C(θk) = U(θk)
′G−1(θk)U(θk), for convergence criterion. C(θ∗) has asymp-

totically a X2
p distribution; which gives an idea of which value should be considered as “small”.

One may use G(θ̂) as an estimator of I(θ̂∗) to build confidence intervals and Wald tests, once

the convergence is obtained.

We may expect that the variance of U computed at θ̂ to be a negatively biased estimate of its

variance at θ∗ (i.e., I(θ∗)), because θ̂ is the value for which U(θ̂) = 0. In general, this bias is

very difficult to estimate. In the linear model with known error variance, it can be shown that

E[U(B̂)U′(B̂)] = n−dim(β)
n

I(β∗), where β is the vector of regression coefficients. They proposed

to estimate I(θ∗) by n
n−dim(θ)

G(θ̂) as an unbiased estimator of I(θ∗).
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The whole algorithm (iteration and convergence criterion) has the property that it is invariant

under any affine transformation of the parameters .

4.3.3 Expectations and Predictions

The expected trajectory can be obtained by simulating a sample of subjects and averaging, for

each time and each marker, over their values.

Individual predicted trajectories can be computed as X̂(i)(t) = X(t,
˜̂
ξ(i)), where

˜̂
ξ

(i)
l = φ̂l +

z
(i)′

l β̂l + ω
(i)′

l Âû
(i)

and û(i) is the posterior mode (given the data) of u(i). From this, the

individual predicted trajectories of observed components can be deduced. The fit can then be

checked by comparing the predicted values of the components Ŷijm = gm(X̂(i)(tijm)) with the

observations Yijm.

4.3.4 Statistical Analysis of the HIV and AIDS model from the ALBI

ANRS 070 Data

The ALBI ANRS 070 trial is a longitudinal study which was carried out in France at Saint Louis

hospital. This was an unblinded, randomized controlled trial in which 3 treatment regimens were

compared [43].

The first measurement after therapy was performed four weeks later. The vector of natural

parameters for subject i was then: ξ(i) = (λ(i), α(i), η(i), µ
(i)
T , µ

(i)
T ∗ , π(i))′. The link functions were

the log transform for all parameters (because they must be positive), except for η(i) for which

the inverse logistic function was used (because 0 < η(i) < 1): ˜η(i) = log η(i)

1−η(i) .

Observable components g1 and g2 were transforms of HIV RNA concentration and total CD4

count, respectively, with g1 = log10(VI + VNI) and g2 = (Q + T + T ∗)0.25. To achieve normality

and homoscedasticity of measurement error distributions, these transformations of HIV marker’s

values are commonly used [56].



Chapter 5

Simulations

In this chapter a qualitative and quantitative study of the HIV dynamical model in system 3.1

through simulations is carried out. We do numerical simulations using the ode solver ode45

that solves initial value problems for ordinary differential equations coded in Matlab. We used

the parameters which were estimated in [25] and presented in Table 5.1 while the unestimable

parameters were found from literature as shown in Table 5.2, for numerical simulations. The

qualitative behaviour of the system was investigated by varying one parameter and holding others

fixed at a time.

In [25] the parameters of the statistical model were estimated using repeated measurements of

both the viral load and the total CD4 count from the ALBI ANRS 070 data on the transformed

scales.
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Table 5.1: Estimates of the model parameters and their standard deviation. ALBI ANRS 070

clinical trial

Parameters Estimated Value Standard deviation

α̃ −3.16 0.15

λ̃ 2.62 0.12

µT̃ ∗ −0.40 0.11

π̃ 4.64 0.12

µT̃ −2.14 0.087

η̃0 0.96 0.079

β 0.096 0.018

σα 0.31 0.025

σλ 0.043 0.0059

σµT∗ 0.25 0.028

σCV 0.42 0.012

σCD4 0.18 0.0050

Table 5.2: Description of model parameters which were fixed

Parameter Description Value Reference

µQ Death rate of Q cells 0.00014 [38]

µv Clearance of free virions 30.0 [52]

ρ Rate of reversion to the quiescent state 0.017 [53]

ω Proportion of infectious virions 0.20 [47]

5.1 Simulations when varying the treatment efficacy η
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Figure 5.1: Comparison of quiescent non-infected CD4 cells at different values of η.

Figure 5.1 shows a plot of quiescent CD4 cells with time. We used estimated parameter values

and the ones found in literature. For η = 1, CD4 count increases sharply up to around 50 days

then it continues increasing at a slower rate. This is due to the fact that when η = 1, the

treatment is 100% or perfectly efficient but in real life it is difficult to find such a treatment.

For η = 0.7, the CD4 count increases rapidly in the first 50 days, just the same as for η = 1,

but at around 75 days, we note a difference in the respective CD4 count levels. The CD4

count for η = 0.7 levels off at about 380 CD4cells/mm3 and for η = 1, it levels off at about

390 CD4cells/mm3. This shows that treatment with η = 1 is more efficient than the one for

η = 0.7. The same thing happens for η = 0.5 and η = 0, but the rapid increase in the CD4

count is up to 30 days then it increases at a lower rate and it finally levels off. For η = 0.5 the

CD4 count levels off at around 360 CD4cells/mm3 and η = 0 the CD4 count levels off at

around 350 CD4cells/mm3. This graph makes sense because when the treatment efficacy levels

(η levels) decrease, the level at which the CD4 cells levels off at lower levels. It should also be

noted that for quiescent CD4 cells the levels remain high > 200 cells/mm3 irrespective of the

treatment efficacy η.
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Figure 5.2: Comparison of activated non-infected CD4 cells at different values of η.

Figure 5.2 shows the change in activated non-infected CD4 cells over time at different levels of

η. The simulation results show that non-infected CD4 cells increase rapidly in the first 20 days

post treatment when η = 1 and then start increasing at a slow rate thereafter. For η = 0.7 the

activated non-infected CD4 cells ultimately settle at a level higher than when η = 0.5 but lower

than that for η = 1. The set point is lowest when η = 0 as expected.
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Figure 5.3: Comparison of activated infected CD4 cells at different values of η.

Figure 5.3 shows the change in activated infected CD4 cells over time at different levels of η. For

η = 1, the treatment is very efficient such that there is a rapid decline of infected CD4 cells. The

infected CD4 cells vanished in 10 days on average. Also for η = 0.7, there is a rapid decline of

infected CD4 cells but they do not reach zero. However in this case the infected CD4 cells start

increasing from 50 days and stay constant from 100 days onwards. This shows that the treatment

with η = 0.7 is not sufficient to suppress the infected CD4 cells to zero permanently because

after sometime the infected CD4 cells increase. As for a treatment, from this observation we

may infer that the infected individual needs a treatment boost at this point or prescription to a

new effective treatment at day 50. The reason for changing to another type of ARV could be

drug resistant related or due to side effects from the first treatment. For η = 0.5, the infected

CD4 cells decrease rapidly to 3/mm3 for the first 10 days but they increase rapidly up to around

30 days and they stay constant thereafter. This means that infected CD4 cells cannot die out if

the efficacy of treatment is 0.5. For η = 0, there is an increase in infected CD4 cells in the first

10 days and they stay constant thereafter at a higher level than for any other efficacy levels as
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expected (see 5.3).

Figure 5.4: Comparison of infectious virions at different values of η.

Figure 5.4 is a plot of total infectious virions (VI) over time for different levels of η. For η = 1,

the infectious virions decrease rapidly up to zero. This makes sense because if treatment efficacy

is one, all infectious virions are going to die off or be eliminated. This is due to the fact that

there won’t be any infected CD4 cells to produce new virions. If η = 0.7, the virions decrease

but they do not reach zero. They start increasing at 50 days. Note that this is the samepoint

where infected CD4 cells began to increase for η = 0.7. This may suggest the introduction of

a treatment boost or a new ARV to sustain infectious virions suppression. The same happens

for η = 0.5 but the infectious virions start increasing at an earlier time point (i.e 10 days), so

another type of ARV or a treatment boost maybe given to the patient at 10 days if possible, so

as to ensure the infectious virions remain suppressed.
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Figure 5.5: Comparison non-infectious virions at different values of η.

Figure 5.5 is a plot of total non-infectious virions (VNI) over time for different levels of η.

The same changes experienced by infectious virions are experienced by non-infectious virions.

Note that there are a lot more of non-infectious virions than infectious virions because they are

predominant in the body system.

5.2 Simulations when varying the CD4 cell production rate

λ

For η fixed at η = 0.3 we have the following graph Figure 5.6 for quiescent cells with different

values of λ.
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Figure 5.6: Comparison of quiescent non-infected CD4 cells at different values of λ.

The higher the rate of quiescent cells production (λ), the higher the quiescent cells (Q) as

expected.



39

Figure 5.7 is a plot of activated non-infected CD4 cells, infected CD4 cells, infected virions and

non-infected virions over time with η and λ fixed at η = 0.3 and λ = 5 (both low).

Figure 5.7: The plot showing the change in total virions or CD4 cells with time for λ = 5.

If λ = 5 and low efficacy of treatment η = 0.3, the infected CD4 cells (T ∗) get reduced

dramatically. This is because few cells are getting produced. Thus there are few susceptible cells

to be infected. Thus infected cells level off at a lower values.
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Figure 5.8 is similar to Figure 5.7 but now λ is raised to λ = 15.

Figure 5.8: The plot showing the change in total virions or CD4 cells with time for λ = 15.

For λ = 15 and low efficacy of treatment η = 0.3, a lot of cells get infected. This leads to higher

levels of infectious virions and infected CD4 cells in the body.
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In Figure 5.9, λ is raised to an even higher value λ = 50 but η is still low at η = 0.3.

Figure 5.9: The plot showing the change in total virions or CD4 cells with time for λ = 50.

For λ = 50 and low efficacy of treatment, infected CD4 cells increase to a higher level than

activated uninfected CD4 cells. This will lead to worse disease status than lower value of λ with

η = 0.3 (low treatment efficacy).
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In Figure 5.10 a simulation of quiescent CD4 cells is performed over time for high treatment

efficacy η = 0.8 and λ varied from λ = 5, 15, 50.

Figure 5.10: Comparison of quiescent non-infected CD4 cells at different values of λ.

If we compare the figures 5.6 and 5.10, for the change in quiescent cells with time, employing

different values of η (low and high treatment efficacies), the figures are qualitatively the same.

This means that η does not affect quiescent cells. This makes sense because quiescent cell

production is an individual specific characteristic not affected by treatment. Some individuals

may exhibit a low quiescent cell production rate and others a high rate. Thus in the treatment

of HIV AND AIDS generalisation of treatment regimes and strategies among individuals may not

yield same results on all patients. Thus there is a need to understand individual to individual

heterogeneity in designing treatment strategies.
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Figure 5.11 shows a plot of different types of population cells over time for a high treatment

efficacy (η = 0.8) and low λ (λ = 5).

Figure 5.11: The plot showing the change in total virions or CD4 cells with time for λ = 5.

For a low rate of quiescent cells production (λ = 5) and high treatment efficacy, the infected

CD4 cells, non-infectious virions and infectious virions are suppressed.
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Figure 5.12 is a plot of the different cell population over time and intermediate λ.

Figure 5.12: The plot showing the change in total virions or CD4 cells with time for λ = 15.

For an average rate of quiescent cells production (λ = 15), the infected CD4, the infected cells,

non-infectious virions and infectious virions are still suppressed. The activated non-infected cells

increase and level off at a higher level than for the graph for λ = 5.
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Figure 5.13 is a plot of the four cell population over time but now quiescent cell production is

higher (λ = 50).

Figure 5.13: The plot showing the change in total virions or CD4 cells with time for λ = 50.

For a high rate of quiescent cell production (λ = 50) and high treatment efficacy, the infected

CD4 cells increase and level off at around 50 CD4cells/mm3. The infected CD4 cells get

suppressed though they do not remain suppressed throughout time as was with the case for

λ = 5, 15. We also note that infectious virions stabilize at higher levels than when λ = 5, 15

for η fixed at η = 0.8. Thus one may infer that high treatment efficacy is advantageous for

individuals with a controlled production rate λ for quiescent CD4 cells production.
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5.3 Simulations when varying the infectious virion produc-

tion rate ω

For η at η = 0.3 and other parameters fixed as estimated in [25], we have the following graph

(Figure 5.14) for quiescent cells with time for different values of ω, where ω is the proportion of

infectious virions.

Figure 5.14: Comparison of quiescent non-infected CD4 cells at different values of ω.

The higher the proportion of infectious virions the lower the total CD4 cells (quiescent cells) in

the body system. This is probably due to the fact that a lot of quiescent cells get activated and

then infected by these infectious virions. In addition the treatment efficacy is very low, hence

allowing the infectious virions to be more effective in infecting CD4 cells, i.e allowing them to

infect a lot of cells.



47

Figure 5.15 below shows a plot of the other cell population when η is set at η = 0.3 and ω = 0.3

(both are low).

Figure 5.15: The plot showing the change in total virions or CD4 cells with time for ω = 0.3.

Even though the treatment efficacy is low, the proportion of infectious virions is very low (ω =

0.3), such that a minimum amount of CD4 cells get infected and they level off at a lower value.
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In Figure 5.16 the proportion of infectious virions is raised to ω = 0.5.

Figure 5.16: The plot showing the change in total virions or CD4 cells with time for ω = 0.5.

Now with ω = 0.5, a lot more CD4 cells get infected. Activated non-infected CD4 cells get

reduced to a lower value than infected CD4 cells compared to the scenario in Figure 5.15.
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In Figure 5.17 ω is raised further to ω = 0.8 but η is still maintained at η = 0.3.

Figure 5.17: The plot showing the change in total virions or CD4 cells with time for ω = 0.8.

If ω = 0.8, the proportion of infectious virions is high such that a lot of CD4 cells get infected,

thereby reducing the activated CD4 cells. Also, the treatment efficacy is very low, making the

situation even more destructive to the immune system.
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Figure 5.18 now plots the change in quiescent CD4 cells over time at different levels of ω when

η is set at η = 0.8.

Figure 5.18: Comparison of quiescent non-infected CD4 cells at different values of ω.

If η = 0.8, the treatment is more efficacious such that when it combines with a lower ω, like

ω = 0.3, the CD4 cells (quiescent cells) stay at a relatively high level. This is because of the

fact that if the proportion of infectious virions is low, a small amount of CD4 cells get infected.

But if the proportion of infectious virions is high, even if η is high, a lot of CD4 cells get infected

and the quiescent cells are reduced.
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Figure 5.19 is a plot of the other four cell production over time when η is set at η = 0.8 (high)

and ω = 0.3 (low).

Figure 5.19: The plot showing the change in total virions or CD4 cells with time for ω = 0.3.

The proportion of infectious virions is very low (ω = 0.3), and η is high, this promotes the

suppression of the infected CD4 cells and non-infectious virions, with activated non-infected

CD4 cells leveling off at a high level.
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In Figure 5.20 the level of infectious virions is increased to ω = 0.5 while η is maintained at

η = 0.8. Now the proportion of infectious and non-infectious virions is the same (ω = 0.5).

Figure 5.20: The plot showing the change in total virions or CD4 cells with time for ω = 0.5.

We see that the activated CD4 non-infectious cells get reduced as compared to the case where

ω = 0.3 because now there is a higher proportion of infectious virions, implying that more

activated CD4 cells would get infected. However now η is high therefore controlling the CD4

cells from getting infected.
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Figure 5.21 is a plot of activated non-infected cells, infected cells, infectious and non-infectious

virions. When both η and ω are high η = ω = 0.8, but working antagonistically.

Figure 5.21: The plot showing the change in total virions or CD4 cells with time for ω = 0.8.

The treatment efficacy is very high, thereby blocking the production of a lot of infected CD4 cells,

but at the same time the proportion of infectious virions is very high. Some of these infectious

virions get blocked from infecting the CD4 cells but the treatment efficacy is not one, therefore

this allows some cells to get infected but nonetheless their level remains suppressed.
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5.4 Discussion

In this section, we presented some simulations on an existing HIV and AIDS model. The inter-

action of the immune system and HIV consists of quiescent non-infected CD4 cells, activated

non-infected CD4 cells, infected CD4 cells, infectious virions and non-infectious virions. From

the simulations we found that the higher the treatment efficacy, the lower the infected cells present

in the body. But as long as the treatment is not 100% efficacious, the infected cells remain or

persist in the body. The higher the treatment efficacy, the more suppressed the infected cells are.

When we varied ω, the proportion of infectious virions, we discovered that infected cells tend

to increase substantially if the treatment efficacy is low (e.g. η = 0.3) and the proportion of

infectious virions is high (e.g. ω = 0.8). For the same proportion of infectious virions and higher

treatment efficacy (e.g. η = 0.8), the infected cells increase but are suppressed to a lower level

as compared to the simulations with lower treatment efficacy. This has an implication when

considering individuals specific dynamics. Certain individual can have a very high ω (proportion

of infectious virions) naturally and another individual can have a very low one. Thus we deduce

that due to individual heterogeneity the amount of CD4 count in the body can vary from patient

to patient despite being given the same form of treatment. It seems more advantageous to have

a low ω because it means one will produce few infectious virions to infect healthy cells. We

can also deduce that individuals react differently to treatments depending on individual makeup.

Even though this is the case, high treatment efficacy is good for any individual.

One of the limitations here, is that it was not possible to estimate all parameters from available

data in [25]. Also, our λ (the production rate of quiescent cells) was constant, resulting in graphs

not showing the AIDS stage. In future work, it would be better to show a varying λ so as to

have graphs which have the AIDS stage. One approach to achieve this is to make λ = λ(t) as

a declining function of time. This better represent reality because now as the disease progresses

production of quiescent non-infected cells decline. However one can also think of a scenario where

there is a decline and then a restoration to near its original level to signify a high treatment efficacy

and quality. The advantage of the model adopted from [25] is that we are able to model and

simulate the process where the sub-population of quiescent non-infected CD4 cells is included
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which basically represents reality.



Chapter 6

Causal Inference with Application to

Modelling HIV Related Mortality

Medical practitioners are often faced with the question of whether the CD4 count and viral load

are good biomarkers/surrogate endpoints for HIV AND AIDS. In the dynamical mathematical

model 3.1 in chapter 3, these two biomarkers were used as state variables. But if they are not

good surrogate markers, we would not get proper insights about the dynamics of the disease

(HIV AND AIDS). Only medical trials and immunological studies backed with sound statistical

methods can help identify good surrogate markers. In this chapter we will review methods for

surrogate marker validation for a single trial. However the application is constrained by the type

of data available. We also review the Generalized estimating equation approach because that is

the type of linear model used to assess causality. The data used in the current work CAPRISA

CAT study. The data consists of longitudinal measured disease markers for HIV namely viral loads

and CD4 counts. In the current analysis the disease markers are used as predictors of survival or

death, a binary outcome.

56



57

6.1 Surrogate Endpoints/Markers

Surrogate endpoints are measures that can be collected in a shorter time period and/or using

fewer subjects than those normally considered in a classical clinical trial (e.g survival).The purpose

of a surrogate endpoint is to draw conclusions about the effect of intervention on true endpoint

without having to observe the true endpoint. Because there is a need to evaluate treatment

benefits as fast as possible on easily measurable endpoints, this has always been a preoccupation

in clinical research. In general, surrogate endpoint is prespecified as being of primary interest

and serves to determine the significance of any observed treatment benefit. Surrogate endpoints

are typically proposed based on biological considerations with a certain progression model of

disease. They should be most clinically relevant, but consideration of time and cost may force

the investigators to use some other surrogate endpoints instead. Examples of surrogates are

CD4 counts in AIDS. The CD4 count in this case can potentially serve as a surrogate endpoint

for death. If we consider disease recurrence after surgical removal of early cancers; here disease

recurrence can serve as a surrogate endpoint to death. Tumor shrinkage can serve as a surrogate

endpoint for survival in advanced cancer studies. Progression to AIDS can serve as a surrogate

endpoint for death. Sometimes the surrogate endpoint is merely a biological marker of the

disease process leading to the final endpoint, however, in some cases, the surrogate endpoint

directly affects the patient’s condition and is therefore itself of clinical relevance.

The validity of using one endpoint as a surrogate for another has been raised and studied over

the last few years, while the practice of looking at multiple endpoints is not recent in clinical

research. The dramatic surge of the AIDS epidemic, the impressive therapeutic results obtained

early on with zidovudine drug, and the pressure for an accelerated evaluation of new therapies

have all played a major role in focusing attention to the need for a formal definition of surrogate

endpoints along with practical methods to validate them [35]. In the research of cardiovascular

disease, there was an unsettling discovery that the two major antiarrhythmic drugs encanaide and

flecanaide reduced arrhythmia but caused more than threefold increase in overall mortality. This

necessitated the need for caution in using non validated surrogate markers in the evaluation of

the possible clinical benefits of new drugs [8].
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While many would like to avoid surrogate endpoints, sometimes surrogates will be the only

reasonable alternative, especially when the true endpoint is rare and/or distant in time. It is then

best to use validated surrogates. An application trial is a trial in which the surrogate, but not the

true endpoint is observed and used to evaluate the effect of intervention on true endpoint. Before

a surrogate endpoint can be confidently used in an application trial, it must be validated using

a validation trial in which both the surrogate and true endpoints are observed [4]. In a general

sense, a surrogate endpoint is validated if the surrogate endpoint approach and an approach

using the true endpoint yield similar conclusions about the effect of intervention on the true

endpoint in a validation trial. The problem is that it may be difficult to decide what levels of

these measures (e.g proportion of treatment effect or PTE) indicate an appropriately validated

surrogate endpoint.

6.1.1 Justification

We need to know the best statistical methods of validating the accuracy of surrogate markers

to a disease outcome. This is because there is a need to evaluate treatment benefits as fast

as possible on easily measurable endpoints. Also if we can manage to get accurate markers for

a disease, this can help us in understanding the pathogenesis of the disease. This can help to

better design control and treatment strategies. Accurate markers can also save lives if the true

endpoint such as death can be detected in advance before the actual event occurs. Since death

is irreversible, once it occurs we can no longer help the patient.

6.2 Methods for Validating a Surrogate Marker

In this chapter the emphasis will be on surrogate marker validation. Methods to evaluate treat-

ment effects are many, so we chose to review methods of surrogate marker validation from

statistical point of view in a single trial. Single arm trial is used to assess treatment benefit in

the CAPRISA CAT study. We strongly believe that validation or understanding of key surrogate

markers for a disease can help understand disease progression and therefore making modelling
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better.

6.2.1 Prentice Criterion

Statistical methods for validation of surrogate markers can be dated back to Prentice [49]. The

statistical definition of a surrogate marker, by Prentice, requires that the conditional distribution

of the clinical outcome given the surrogate marker alone is the same as the conditional distribution

of the clinical outcome given the surrogate marker and treatment. The Prentice criterion ensures

the rejection of the null hypothesis as of no effect if intervention on the surrogate endpoint implies

rejection of the null hypothesis of no effect of intervention on the true endpoint. Let S denote

the putative surrogate marker, Z the (randomized) treatment, and Y the outcome of interest.

For simplicity, we assume that both S and Y are both measured once, at fixed times, with S

measured before Y , and the data on S or Y are never missing (e.g., due to dropout). Prentice

[49] proposed these operational criteria for validation of S as a “true surrogate”:

1. S must be affected by Z, i.e. treatment has an impact on the surrogate endpoint,

2. Y must be affected by Z, i.e. treatment has an impact on the true endpoint,

3. S must be correlated with the true outcome Y , i.e. the surrogate endpoint has an impact

on the true endpoint.

4. The outcome and treatment should be conditionally independent given S (the full effect of

treatment upon the true endpoint is captured by the surrogate); i.e,

Y ⊥ Z | S. (6.1)

We can model Y given Z directly:

g{E(Y | Z)} = β0 + βZZ; (6.2)

where g denotes the link function for a generalized linear model. For example, g(w) = logit(w)

for logistic regression and and g(w) = w for linear regression. βZ represents the overall effect of
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treatment on the clinical outcome. We can also model the ”effect” of Z conditional on S:

g{E(Y | Z, S)} = γ0 + γZZ + γSS. (6.3)

Here the expression γZ is viewed as the “effect” of Z controlling for the putative surrogate S.

Thus S is considered to be a true surrogate in the Prentice framework only if γZ = 0. Criteria 1

and 2 are Prentice’s original criteria. It is clear from (6.2) that generalized linear models and their

extension to correlated data play a major role in the assessment of the adequacy of surrogate

markers. This is the approach adopted in this thesis.

6.2.2 Proportion of Treatment Effect (PTE)

Freedman et al [19]., proposed focusing attention on the proportion of the treatment effect

explained by the surrogate. This method is for one surrogate marker. A good surrogate is one

that explains a large proportion of that effect. The PTE explained by a surrogate marker was

defined as

PTE = 1− γZ

βZ

. (6.4)

The PTE, compares the regression coefficient with and without adjusting for the surrogate

marker S. Its advantages are:

1. One might be prepared to use the biomarker as a surrogate endpoint in the next study of

a similar type of drug, if the PTE is close to 1.

2. The PTE may be useful to compare two potential surrogate endpoints [62].

Note that a true surrogate according to Prentice [49], implies PTE= 1.

Disadvantages of PTE

1. PTE is not bounded,

2. It is based on data from a single trial,
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3. The variability in the estimator of γZ is large when there is strong collinearity between Z

and S (to obtain a 95% confidence interval with a reasonable width may require as many

patients as a trial using the clinical endpoint [32]).

4. The PTE becomes ill-defined when, for example, an intervention in HIV reduces HIV-related

mortality but is responsible for additional death due to other causes [17].

Due to the fact that the treatment is generally effective in improving the surrogate marker, a

strong correlation between treatment and the surrogate marker might be expected. The PTE

that is near 1 is insufficient for inference that the surrogate is a valid one, although a value

close to 0 indicates an invalid surrogate [17]. PTE combines 3 quantities (adjusted association,

relative effect, and the ratio of the variances, conditional on treatment group, of the surrogate

and final endpoints) and hence it is difficult to interpret. Similar disadvantages were found even

in the case of a model which accounted for multiple surrogate markers and to allow cause-effect

relationships between surrogate markers [9, 50]. We need measures for validation of surrogate

endpoints which are based on multiple trials involving surrogate and true endpoints because these

measures (meta-analytic measures) better capture the uncertainty in relating surrogate and true

endpoints than measures derived from a single trial.

6.2.3 Relative Effect and Adjusted Association

The other two alternative measures of surrogacy are relative effect (RE) and the adjusted as-

sociation (AA)[35]. They base their argument on the premise that surrogates are meaningful

quantities to consider if the effect of treatment on the surrogate endpoint can be used to predict

treatment effects on the true endpoint. The RE is defined as

RE =
βZ

γZ

(6.5)

where γZ and βZ are estimated from (6.2) and (6.3) respectively. Therefore a new treatment

could then be tested through its effect on the surrogate endpoint and declared efficacious if its

predicted effect on the true endpoint were sufficiently large to be of clinical interest [18]. The

RE value of one corresponds to the surrogate being useful, whereas that of zero corresponds to
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the surrogate being useless [23]. The adjusted association (AA) is the correlation between the

true and surrogate endpoint, adjusting for the treatment effect. AA measures the correlation

between the two endpoints at individual level. We would expect a strong association to reflect

some biological pathway from the surrogate endpoint to the clinical endpoint.

Disadvantages of RE

1. Its confidence limits may be too wide to permit clinically useful predictions.

2. Its value may depend on γZ , (in other words, since RE is the slope of a regression line

between γZ and βZ , the linearity of this regression may be questioned).

RE is best estimated from meta-analysis of several trials. Single trial assessments of RE can

be misleading, but from meta-analysis we may check the underlying assumptions that treatment

effect magnitudes on the clinical endpoint are proportional to the effects on the surrogate [62].

We can then plot γZand βZ , for each trial and the estimated slope is the RE.

In meta-analysis, the AA is calculated by fitting the same models as in the single trial case

but stratifying by trial. Thus the applicability and use of the above measures is also strongly

dependent on the data available, the more general regression type models are worth considering.

Comparison of PTE and RE, AA

PTE can be easily defined regardless of the nature of the endpoints considered [32], but the

interpretations of RE and AA are model dependent.

This difficulty, however, reveals the complexity of the problem, since the notion of a perfect

surrogate is hard to define when the surrogate and the true endpoints are not of the same nature

[35]. If, for example, the true endpoint was continuos and the surrogate endpoint was binary, the

surrogate could never be a perfect surrogate for the true endpoint, except in degenerate cases,

because not all the variability in the true endpoint would be accounted for. The opposite case

may be more informative (i.e. true endpoint is binary and the surrogate is continuous). The

PTE is equivalent to AA/RE, in case of normally distributed errors. The PTE is therefore a
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composite measure. Further information on surrogate validity may be gleaned by considering the

AA and RE separately [62].

6.2.4 Coefficient of Determination (R2)

Consider a trial with multiple observations per subject or patient. R2
trial is the coefficient of

determination, it measures the strength of association. If R2
trial is close to one the surrogate is

trial-level valid [7].

R2
indiv is the coefficient of determination, it is the subject level association between endpoints. If

R2
indiv is sufficiently close to one, then a surrogate is individual-level valid.

A surrogate must be trial- and individual-level valid, for overall validity. This approach also yields

a prediction of the effect of treatment on the true endpoint. This method is therefore more

informative than a simple classification of a surrogate as valid or invalid.

6.2.5 Likelihood Reduction Factor (LRF )

Alonso et al. [1] proposed using the LRF to quantify the treatment effect via surrogate markers.

They noted the lack of a unified approach to applying R2
trial and R2

indiv when neither the surrogate

nor the clinical endpoint is normally distributed [62]. LRF is related to the generalized correlation

between two variables proposed by Kent [29] and the likelihood ratio test (LRT) statistic. LRF,

measures the general correlation between two variables [29], such as to quantify the association

between surrogate markers and clinical endpoint. It is a measure of individual-level association

which may be applied under any generalized linear model to a single trial or meta-analysis. The

LRF equals R2
indiv in the special case of normally distributed surrogate and clinical endpoint [62].

Alonso used models 6.2 and 6.3 to define the LRF as

LRF (Z, S : Z) = 1− exp{−LRT (Z, S : Z)/n}, (6.6)

where LRF (Z, S : Z) is the LRT statistic based on 6.2 and 6.3, and n is the total number of

observations [51].
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The advantage of this approach is that LRF (Z, S : Z) is bounded by [0,1]. Alonso argued that

as the correlation between S and the clinical outcome Y becomes stronger, the estimate of LRF

will get larger. But, the quantity LRF(Z,S:Z) reflects the correlation between S and Y after

adjusting for the treatment Z, but not the unconditioned correlation between S and Y . In cases

where there is a strong correlation between treatment Z and S, the correlation between S and

Y may not be strong after adjusting for Z. To observe this, we assume the true models are

g(E[Y | Z, S]) = g(E[Y | S]) = β0 + βSS, (6.7)

and

S = a0 + aZZ + ε (6.8)

where ε ∼ NI(0, σ2). Models defined by 6.7 and 6.8 indicate that the effect of treatment acts

solely through the surrogate marker S. Prentice definition for a valid surrogate marker is satisfied

by the surrogate marker S in models 6.7 and 6.8. As σ2 goes to 0, LRF(Z,S:Z) based on models

6.2 and 6.3 will approach 0 because the collinearity between Z and S is getting stronger, but the

relationship between S and Y is unchanged. This shows that the LRF statistic does not reflect

the correlation between the surrogate marker and the clinical outcome.

For some generalized linear models, the upper bound of LRF is less than 1 [29]. The adjusted

LRF defined by Alonso et al [1] is

LRFa(S, Z : Z) =
LRF (S, Z : Z)

LRFmax

, (6.9)

where LRFmax is the LRF value for the best-possible fitted model. LRFmax = 1, for linear

regression. For logistic regression, the quantity LRFmax can be estimated by the LRF value

based on the full model and the simplest model that only includes the intercept as the independent

variable. If we assume model 6.3 is the full model, the quantity LRFmax can be estimated by

̂LRFmax = 1− exp(−LRT (S, Z : 1)/n), (6.10)

where LRT (S, Z : 1) is the LRT statistic based on model 6.3 and the regression model only

including the intercept as an independent variable [51]. LRFa(S, Z : Z) is bounded by [0, 1] with

the possibility of reaching 0 and 1.



65

6.2.6 Adjusted LRF and Proportion of the Information Gain (PIG)

According to Prentice’s definition, a key condition for S to be a perfect surrogate marker is

f(Y | S, Z) = f(Y | S). We may compare models 6.3 and 6.7 by a LRT, to check this

condition. A generalized correlation between Y and Z after adjusting for S, according to Kent,

can be defined as

LRF (S, Z : S) = 1− exp(−LRT (S, Z : S)/n). (6.11)

The correlation in 6.11 is related to LRT (S, Z : S), which indicates how much information is

gained from model 6.7 by adding an additional variable Z. If LRT (S, Z : S) = 0, there is no

additional information gained after adding Z, therefore f(Y | S, Z) = f(Y | S) and S is a

perfect surrogate marker [51]. An adjusted LRF is defined by

LRFa(S, Z : Z) =
LRF (S, Z : Z)

LRFmax

, (6.12)

which is similar to 6.9 and is bounded by [0,1]. LRFmax is estimated by 6.10.

Kullback-Leibler information gain is another measure to quantify the relationship between the

surrogate marker and the clinical outcome. It is obtained by comparing models6.3 and 6.7.

The estimated Kullback-Leibler information gain when comparing model 6.7 and the model includ-

ing only the intercept is LRT (S : 1)/(2n), and the estimated estimated Kullback-Leibler informa-

tion gain comparing model 6.3 and the model including only the intercept is LRT (S, Z : 1)/(2n).

An estimator for the proportion of the information gain is

PIG =
LRT (S : 1)

LRT (S, Z : 1)
. (6.13)

LRF and PIG are closely related. Applying the approximation of exp(t) ≈ 1+ t when t is small,

it is easy to show that

1− LRFa(S, Z : S) ≈ PIG. (6.14)

LRF and PIG can be defined similarly for multiple surrogate markers S1, S2, ....., Sk. For

example, LRFa(Z, S1, S2, ....., Sk : S1, S2, ....., Sk) can be used to quantify the goodness of k

surrogate markers simultaneously.

The advantage of PIG is that it is robust to collinearity between treatment and surrogate markers

while PE is not.
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Limitations of PIG

Some of the limitations of other quantities used to evaluate surrogate markers (Bakers,[3]) are

also applicable to PIG.

1. PIG only applies to individual studies and does not recognize variation in the relationship

between the surrogate marker and the clinical outcome across studies,

2. PIG has no established cut-off point, above which the surrogate marker is said to be valid.

It is very unfortunate that there may not be a single answer to this question as each candidate

surrogate marker has a unique biological properties that will affect its relationship to the clinical

outcome of interest and consequently affect the magnitude of any estimator.

Therefore we need more research in statistical science and a better understanding of the mech-

anisms by which any given surrogate marker is affecting a clinical outcome so as to overcome

these two drawbacks.

6.3 Generalized Estimating Equations

In a longitudinal study design, data are characterized by repeated observations over time on the

same unit(s). Observations from the same unit are more likely to exhibit more correlation than

those from two different units. If we analyse such data and ignore such within unit correlation,

we would get invalid results. The analysis of correlated data arising from repeated measurements

when measurements are assumed to be multivariate normal has been studied extensively. But,

the normality assumption is not always reasonable, for example, a different methodology must

be used in the data analysis when the responses are discrete and correlated. The usual approach

used to analyse correlated outcome data is the Generalized Estimating Equations (GEE’s) and it

provides a practical method to analyze such data with reasonable statistical efficiency. The GEE

approach was introduced by Zeger and Liang (1986) [31, 65].

The GEE approach is a method which extends generalized linear models to handle longitudinal

or clustered correlated data. The GEE’s fall under marginal models, sometimes referred to as
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population-averaged models. The target of inference is the population, as opposed to cluster or

subject specific models. For example to answer the question whether a treatment is effective

or not in the general population, a marginal model is the most appropriate. The term marginal

, indicates that the model for the mean response does not depend on any random effects or

previous responses but depends only on covariates of interest [21]. The GEE’s have frequently

been applied in biomedical and health sciences since their invention [31, 15]. No distributional

assumptions are required for GEE models, only a regression model for the mean response and

a working correlation structure are required [15, 27, 31, 65]. Here, the “working correlation”

structure, accounts for the correlation within each unit and it is to be specified for each analysis.

The GEE approach is generally applicable to both continuous and discrete responses. It provides a

non-likelihood based or a quasi-likelihood approach for modelling responses which are correlated.

The models are an extension of generalized linear models (GLMs)[40].

It is important to consider the type of outcome or response variable (i.e continuous or discrete)

in modeling correlated data statistically.

The advantage of the GEE method is that it can be used with both discrete and continuous

explanatory variables, a large number of categorical variables, missing response values, and/or

time-dependent covariates, but the weighted least squares does not apply. In this context it is

more advanced than the general linear model.

6.3.1 Binary Longitudinal Data Model with GEE

A binary response is one that has two possible outcomes e.g. 1 or 0, depending on whether an

event of interest occurred or not. A GEE model for a binary response observed longitudinally is

an extension of the standard logistic regression model from the generalized linear model approach

for independent observations [39].

Let Yij be the response from participant i at time tij, for i = 1, 2, ...., N and j = 1, ..., ni. Also,

define Pr(Yij = 1) = µij as the marginal mean of Yij. This is the probability of observing the

event of interest (Yij = 1) for participants i at time tij.
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There are three steps to follow when using a GEE approach. The first step is to set up a

regression model (i.e a model to relate the dependent or response variable to a linear combination

of explanatory variables or independent variables). A regression model type of analysis is used to

check if any of the explanatory variables are associated with the response variable.

Since the mean of a binary outcome is a probability (i.e must be between 0 and 1), a transfor-

mation on the mean through a link function g(µij) is needed to ensure all possible values of the

linear predictor model map onto the real line [27].

The logit (the log of an odds) scale is commonly used link function for binomial data. In this

case the model is given by

log

(
µij

1− µij

)
= β0 + β1Xij1, ....., +βkXijk;

where Xij1, ....., Xijk are the explanatory variables for participant i at time tij, and β0, β1, ....., βk

are the intercept and the regression coefficient parameters of the explanatory variables that should

be estimated, respectively. Note that in the above model specification, covariates appear as time

dependent but in reality some covariates are only measured at baseline. It should be noted that

the coefficient βp, p = 1, 2, ....., k are interpreted on logit scale on the response.

The second step, is to define the variance of Yij in the GEE approach. The variance is completely

determined by the mean of Yij as

V ar(Yij) = µij(1− µij),

for a binary response variable. In the final step, you have to choose the working correla-

tion structure between observations on the same participant. The correlation structure γjp =

Corr(Yij, Yip), j 6= p may depend on a vector of unknown parameters α, which is assumed to be

equal for all participants [27]. However in practice, the true underlying correlation structure of

repeated measurements is usually unknown, so it is difficult to decide which constrained structure

is to be used in advance [26]. This may often lead to the correlation matrix structure being

misspecified and thereby distorting the results [14]. To solve this problem, the GEE method can

be used for valid parameter estimation.

Even when the working correlation is misspecified, the GEE approach generally produces consistent

estimators of the true variance of the estimated parameters [27]. This is called the robust or



69

empirical covariance estimator. For this reason the GEE method can still be used for valid

parameter estimation.

Working Correlation Matrix

A model that relates a marginal mean to the linear predictor x
′
β through a link function need

to be chosen. The generalized estimating equations for estimating β, as an extension of the

generalized linear model (GLM) equation, is given by

n∑
i=1

∂µ
′

∂β
V−1

i (Yi − µi(β)) = 0

where µi=(µni
), ......, µiti)

′
, Yi = (yi1, yi2, yi3, ...., yni

) and Vi is the assumed or model based

covariance matrix of Yi. GLM estimating equations are similar to these equations except that,

here with GEEs we have multiple outcomes. They include a vector of means instead of a single

mean and a covariance matrix instead of a scalar variance [37]. The covariance matrix of Yi is

modelled as follows:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a ni × ni diagonal matrix with v(µij) as the jth diagonal element. The quantity φ

is a dispersion parameter and Ri is the working correlation matrix. The (j, j
′
) element of Ri(α)

is the assumed or proposed working correlation between yij and yij′ which depends on α.

The widely used or assumed working correlation structures are exchangeable, auto-regressive(AR1),

independent and unstructured. A few of these are briefly discussed below to further add clarity.

• Exchangeable structure:- This structure allows for the assumption that the correlations

between any pair of observation from the same individual be the same, irrespective of the

length of the time interval. Thus for four repeated measurements Yij, j = 1, ..., ni we have:

Corr(Yij, Yi,j) =

1 j = j

ρ j 6= j
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R =


1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1


This structure requires only one estimated parameter. Although the specification of con-

stant correlation between any two repeated measurements may not be justified in a longi-

tudinal study (closeby observations are more correlated than far apart observations), it is

often reasonable in situations in which the repeated measures are not obtained over time

[15, 31, 65]. It is probably reasonable when there are a few repeated measurements not

taken over a wide time space [37]. This is a commonly used structure and it is relatively

easy to explain to investigators.

• Autoregressive structure: -The correlation between two observations or measurements

which are m time units apart is ρm, where 0 < ρ < 1. The greater the power m, the

smaller the correlation. Therefore the correlation diminishes for further apart observations.

With four repeated measurements equally spaced we have:

Corr(Yij, Yi,j+s) = ρs

R =


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1


Similarly this structure requires one estimated parameter.

• Independence structure:- It adopts the working assumption that repeated observations for

a subject are independent. In this case solving the GEE is the same as fitting the usual

regression models for independent data and the resulting parameter estimates are the same,

but the standard errors are different [15]. The GEE method still accounts for correlation

by operating at the cluster level.
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R =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


• Unstructured structure:- It assumes that all correlations are different. It is the least restric-

tive correlation structure but it requires ni(ni − 1)/2 parameters to be estimated where ni

is the number of observations for subject i. Here

Corr(Yij, Yi,k) =

1 j = j

ρjk j 6= j

R =


1 ρ21 ρ31 ρ41

ρ21 1 ρ32 ρ42

ρ31 ρ32 1 ρ43

ρ41 ρ42 ρ43 1


It is therefore very important to have a good idea of the most appropriate correlation structure

for an analysis. An analysis that uses an unstructured correlation matrix will be less efficient than

an analysis that uses the proper structure. The problem, though, is knowing which structure to

use, but minimizing the degree of misspecification helps to model the problem much easier.

6.3.2 Application to the CAPRISA AIDS Cohort Study

Between 28 June 2004 and 22 January 2009, CAPRISA (Centre for the AIDS Programme of

Research in South Africa) enrolled 1011 HIV positive patients from Vulindlela area in Pieter-

maritzburg. The data was collected as part of CAPRISA’s AIDS treatment project. For inclusion

HIV positive men and women ≥ 14 years with CD4+ count < 200 cells/µL or who were at

WHO stage IV disease were enrolled. There were 351 men and 660 women involved in the study,

thus females were overpresented. Weight, height, viral load, CD4 count, age and gender were

collected at baseline and the patients were put on ARV treatment. Thereafter six monthly visits
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were scheduled for all participants, where their CD4 count and viral load were measured. The

data used here is for baseline, 6 months, 12 months and 18 months. For analysis viral loads and

CD4 counts were treated first as continuous variables. The age variable (age at time of entry

into the study) is a continuous variable. Sex was by default a binary predictor.

Explanatory variables in the model are gender (xij2), age (xij3), CD4 count (xij4), viral load

(xij5), height (xij6) and weight (xij7). The model also included the intercept (xij1). In a further

analysis CD4 and viral load count variables were redefined as categorical variables as shown

below to provide an alternative analysis compared to when the two biomarkers the are treated as

continuous:

Xij4 =


1 CD4count < 200

2 200 < CD4count < 400

3 CD4count ≥ 400

and

Xij5 =

1 viralload < 400

2 viralload ≥ 400

The outcome of interest used in the current analysis is the patient’s survival status at visit j.

Suppose yij represents the survival status (response variable) of patient i at the jth visit, for

i = 1, ...., 1011 and j = 0 (baseline), 6, 12, 18 months. The response is recorded as 0 for the

patient who is alive at each visiting time and 1 if the person died. Now, µij = E(Yij) represents

the mean of the survival status, which is the probability that the patient died between the j − 1

and jth visits. Thus the exact time of death is not known therefore a time to event model is not

possible. The response variable is binary, therefore we use the logit link function for the binomial

distribution g(µij)=log{µij/(1− µij)}. The general mean model is

g(µij) = x
′

ijβ

where β is a vector of regression parameters to be estimated.

In total 109 patients died, representing 10, 8% mortality overall. The study is still ongoing since it

was designed as an open observational study to administer patient care. There was missing data

due to known and unknown various reasons. Some patients asked to be transferred to the nearest
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clinics so that they could collect their ARV’s early, thereby causing missing for those patients in

the original study. Others died before they could go for the next appointment and some patients

decided to stop treatment on their own, an action that could be due to possible side effects or

some other non-adherence reasons. Other patients would miss intermittently for example get

treatment after baseline and not return for medical examination after 6 months, but come back

after 12 months and this would happen for different patients. Thus the analysis is faced with

complex missing data problems requiring methods that are capable of using the available data

correctly. The core problem in the current chapter is to study the relationship between survival

and key disease biomarkers namely CD4 count and viral loads.

The GENMOD procedure in SAS was used to analyse the data, using the GEE method. The

assurance that the GEE method can handle missing data under the missing completely at random

(MCAR) assumption is an advantage. We first used the exchangeable working correlation struc-

ture in the analysis. Measures to assess the model goodness of fit similar to maximum likelihood

estimation (MLE) are not available in the current GENMOD procedure because the methodology

is based on quasi-likelihood estimation. The MCAR assumption in missing data methodology

means the probability of a missing observation depends on observed covariates and not on the

observed or unobserved outcomes [55].

The GENMOD procedure in SAS was used to analyse the data, using the GEE method. We

first used the exchangeable working correlation structure in the analysis. Measures to assess the

model goodness of fit similar to maximum likelihood estimation (MLE) are not available in the

current GENMOD procedure because the methodology is based on quasi-likelihood estimation.

Missing data is a common problem in the analysis of longitudinal data. Data can be said to

be missing at random (MAR) if the mechanism causing the missing data depends only on the

observed outcomes. Data is said to be missing not at random (MNAR) if the mechanism causing

the missing data depends on both observed and unobserved outcomes. Finally data is said to

be missing completely at random (MCAR) if the mechanism causing the missing data does not

depend on either observed or unobserved outcomes [58, 31]. Inorder to explore the missingness

assumption in the current analysis, first a dropout indicator Rij was created which took the value

1 if the outcome Yij was missing and 0 otherwise. A model relating the response and the dropout
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indicator including measured and observed covariates was fitted and the dependence between the

two was found not to be significant. Thus in the current analysis the MCAR assumption was

used. This was an assurance because the GEE method works under the MCAR assumption but

its strength lies in its capability to account for correlation in the data. In addition the fact that

it allows for empirical based standard errors is an added advantage.

Descriptive Statistics

Table 6.1 below gives descriptive statistics for the CAPRISA CAT data.

Table 6.1: Descriptive Statistics for CAPRISA data used in the GEE analysis

Variable N Mean Std Dev Min Max

AGE 3977 33.836 8.817 14.00 75.00

WEIGHT 3779 60.093 12.462 24.00 125.00

HEIGHT 3714 159.272 11.206 117.00 197.00

CD4count 3882 229.470 153.254 6.00 1820.00

Viral Load 3582 119627.920 504403.590 40.00 9348302.00

Table 6.2 shows that the mean CD4 count for males (203, 68) was less than the mean for females

(239, 76). The opposite is true for viral loads, the viral load mean for males (141143, 06) s greater

than that for females (111033, 30). Also the mean height for males (166, 54) is greater than that

for females (156, 46). The means for weight and age are almost equal for both sexes.
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Table 6.2: Descriptive Statistics for the Repeated measurements in CAPRISA data categorized

by Gender

Gender Total Observations Variable N Mean Std Dev

Male 1131 CD4count 1100 203.68 140.71

Viral load 1017 141143.06 601119.45

Height 1036 166.54 11.28

Weight 1066 59.64 9.64

Age 1126 35.36 8.54

Female 2853 CD4count 2774 239.76 156.77

Viral load 2559 111033.30 460668.43

Height 2678 156.46 9.83

Weight 2708 60.22 13.33

Age 2846 33.29 8.75

6.3.3 GEE analysis with viral load and CD4 count as continuous vari-

ables

The GENMOD procedure was used first treating all of the measurements as independent and fits

a generalized linear model, so as to generate a starting solution. These parameter estimates are

then used as starting values for the GEE solution [37], the exchangeable correlation structure was

used.

Score Statistics

Table 6.3 contains the Type 3 results for the model effects. The results show that height, weight

and gender are not significant factors in relation to the probability of death. But, age has a

nearly significant association (p = 0.0618). We note that CD4 count (p = 0.0004) and viral

load (p = 0.0001) have got a highly significant association with survival status.
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Table 6.3: Score Statistics for Type 3 GEE Analysis

Source DF Chi-Square Pr>ChiSq

Gender 1 0.15 0.6983

AGE 1 3.49 0.0618

WEIGHT 1 2.45 0.1173

HEIGHT 1 0.03 0.8732

CD4count 1 12.67 0.0004

Viral Load 1 14.53 0.0001

GEE Parameter Estimates

Table 6.4: Analysis of GEE Parameter Estimates: Empirical Standard Error Estimates (with

continuous CD4 count and viral load)

Parameter Estimate Standard Error 95% Confidence Limits Z Pr>| Z |

Intercept −2.9182 1.8928 −6.6280 0.7916 −1.54 0.1231

Gender Male 0.0907 0.2295 −0.3592 0.5406 0.40 0.6928

Age 0.0226 0.0110 0.0011 0.0441 2.06 0.0395

CD4 Count −0.7963 0.2476 −1.2816 − 0.3111 −3.22 0.0013

Viral Load 0.8715 0.2259 0.4287 1.3144 3.86 0.0001

Height −0.0018 0.0107 −0.0228 0.0192 −0.16 0.8695

Weight −0.0171 0.0119 −0.0403 0.0061 −1.44 0.1492

Since the effects reported in the Type 3 analysis are single degree of freedom effects, the score

statistics in that table are assessing the same hypotheses as the Z statistic in GEE parameter

estimates table. In Table 6.4, the p-value for Z for age is 0.0395, compared to the value 0.0618

using the score statistic in “Type 3” statistic. Also the p-value for Z for CD4 count is 0.0013,

compared to the value 0.0004 from the score statistic in “Type 3” statistic. We would assess the

null hypothesis with score statistic, in a strict testing situation [37]. The Z and Wald statistic
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generally produce more liberal p-values than score statistics.

The parameter estimate for CD4 count is −0.7963. The negative sign indicates that if CD4

count increases, the odds and hence probability of death decreases, holding other covariates fixed.

This makes sense because with an increase in CD4 count, the body is able to fight the diseases

more efficiently, thereby reducing the chance of death due to disease. The increase in CD4 count

can be attributed to the beneficial effect of the ARVs which helps the body immune system to

reconstitute itself.

The parameter estimate for viral load is 0.8715. This shows that viral load is positively associated

with the probability of death therefore an increase in viral load increases the chance or proba-

bility of death. This makes sense because when the viral load increases, the immune system is

compromised such that the body can no longer fight diseases, thereby increasing the chance of

death of an individual. The interaction between CD4 count and viral load was found not to be

a significant factor (p = 0.2399) for the probability of death.

To interpret the age effect at baseline, let x∗ denote age at baseline and let Px∗ denote the

probability of death holding other covariates fixed. Then

logit(Px∗) = β0 + constant + β∗x
∗

older HIV patients at baseline are at high risk of death than younger ones. The odds of death

for a patient one year older is e0.0226 = 1.023 times the odds of death for a patient aged x∗.

The same interpretation holds for any other continuous variable measured only at baseline. Thus

older patients tend to have a higher probability of death than younger ones in this cohort of HIV

infected individuals.

Covariance Matrix

Tables 6.5 and 6.6 are the model-based and empirical covariance matrices of the model parameter

estimates respectively. Between the two we give importance to the empirical estimate of the

covariance matrix determined empirically because it is data driven. At the same time, we note

that even if the correlation between observation structure is misspecified, both the parameter
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Table 6.5: Covariance matrix (Model-Based)

Constant Gender Age CD4

count

Viral load Height Weight

Constant 2.73981 0.11438 −0.004269 −0.10589 −0.12036 −0.01411 −0.000846

Gender 0.11438 0.05442 −0.000205 0.004246 0.002422 −0.000904 0.0001715

Age −0.004269 −0.000205 0.0001143 0.0000908 0.0000968 3.8379E − 6 −0.000010

CD4 count −0.10589 0.004246 0.0000908 0.04783 0.02081 0.0001036 −0.000148

Viral load −0.12036 0.002422 0.0000968 0.02081 0.04889 0.0001022 −0.000059

Height −0.01411 −0.000904 3.8379E − 6 0.0001036 0.0001022 0.0000956 −0.000021

Weight −0.000846 0.0001715 −0.000010 −0.000148 −0.000059 −0.000021 0.0000834

Table 6.6: Covariance matrix (Empirical)

Constant Gender Age CD4

count

Viral load Height Weight

Constant 3.58271 0.11700 −0.005099 −0.17496 −0.14575 −0.01804 −0.001959

Gender 0.11700 0.05269 7.8808E − 6 0.002857 0.003184 −0.000878 −0.000058

Age −0.005099 7.8808E − 6 0.0001202 0.0002385 0.0001448 1.1811E − 6 1.8555E − 6

CD4 count −0.17496 0.002857 0.0002385 0.06129 0.02617 0.0005298 −0.000654

Viral load −0.14575 0.003184 0.0001448 0.02617 0.05105 0.0005058 −0.000945

Height −0.01804 −0.000878 1.1811E − 6 0.0005298 0.0005058 0.0001147 −0.000024

Weight −0.001959 −0.000058 1.8555E − 6 −0.000654 −0.000945 −0.000024 0.0001406
Algorithm converged

estimates and their empirical standard errors are consistent, provided that the specification of the

mean model is the correct model.
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The working correlation structure was estimated as shown below. Thus from Table 6.7, we note

Table 6.7: Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1 0.0026 0.0026 0.0026

Row2 0.0026 1 0.0026 0.0026

Row3 0.0026 0.0026 1 0.0026

Row4 0.0026 0.0026 0.0026 1

that the correlation between any two response Yij, Yiµ was estimated as is 0.0026. However

as earlier discussed this is not necessarily an estimate of the true underlying correlation but the

assumed correlation.

6.3.4 GEE analysis with viral load and CD4 count as continuous vari-

ables fitted independently

When the viral load variable is removed from the model and we fit CD4 count and all the

covariates, we found out that CD4 count (p < 0.0001) is a highly significant factor in relation

to the probability of death, and weight (p = 0.0055) is now significantly associated with the

probability of death. Gender, height and age are not significant factors in relation to the probability

of death. Also, when CD4 count variable is removed from the model and we fit viral load alone

and all other covariates, we found out that viral load (p < 0.0001) is a highly significant factor

for the probability of death, while weight (p = 0.0548) is a less significant factor. Gender

(p = 0.0227) is also found to be a significant factor for the probability of death. Height and age

were found to be not significant factors for the probability of death.
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6.3.5 GEE analysis with viral load and CD4 count as categorical vari-

ables

Score Statistics

Table 6.8 contains the Type 3 results for the model effects. The results show that height, weight

Table 6.8: Score Statistics for Type 3 GEE Analysis

Source DF Chi-Square Pr>ChiSq

Gender 1 0.13 0.7174

AGE 1 3.60 0.0579

WEIGHT 1 2.37 0.1233

HEIGHT 1 0.03 0.8668

CD4count 2 17.74 0.0001

Viral Load 1 12.72 0.0004

and gender are not significant factors in relation to the probability of death. But, age has a nearly

significant association (p = 0.0579), CD4count (p = 0.0001) and viral load (p = 0.0004) have

got a highly significant association with survival status.

GEE Parameter Estimates

The logit link model parameters for categorical covariates are based on reference level interpre-

tation. We can exponentiate the parameter estimates to obtain estimates of odds ratios for

a category with respect to the reference level. The parameter estimate for CD4 count in the

category CD4 < 200 is 0.9375, this means that the odds of death for those in the category

CD4 < 200 of CD4 count are e0.9375 = 2.554, times the odds of death for those patients with

CD4 count≥ 400. Those in category 1 are 2.554 times more likely to die than those in category

3. The parameter estimate for viral load is −0.8139, the odds of death for those in a lower cate-

gory of viral load is e−0.8139 = 0.6420, times the odds of death for those patients with higher viral
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Table 6.9: Analysis of GEE Parameter Estimates: Empirical Standard Error Estimates with

categorical CD4 count and viral load)

Parameter Estimate Standard Error 95% Confidence Limits Z Pr>| Z |

Intercept −2.9138 1.7088 −6.2630 0.4354 −1.71 0.0882

Gender Male 0.0842 0.2285 −0.3637 0.5320 0.37 0.7127

Age 0.0230 0.0110 0.0015 0.0445 2.10 0.0360

CD4 Count 1 0.9375 0.4504 0.0546 1.8203 2.08 0.0374

CD4 Count 2 −0.2563 0.4809 −1.1989 0.6863 −0.53 0.5941

Viral Load 1 −0.8139 0.2263 −1.2574 − 0.3704 −3.60 0.0003

Height −0.0018 0.0105 −0.0224 0.0187 −0.17 0.8627

Weight −0.0167 0.0118 −0.0398 0.0064 −1.42 0.1560

load. This means that an increase in viral load increases the chance or probability of death and an

increase in CD4 count reduces the probability of death. It should be noted that an analysis with

categorical CD4 count and viral load is more informative than its counterpart where the variables

are treated as continuous each contributing 1 degree of freedom. The model better relates the

two biomarkers as surrogates for survival. The interaction effects of CD4 count and viral load

was assessed but found to be insignificant. However both the continuous and categorical analysis

show a strong additive independent effects due to the two markers on survival.

6.3.6 GEE analysis with viral load and CD4 count as categorical vari-

ables fitted independently

When the viral load variable is removed from the model and we fit CD4 count and all the

covariates, we found out that CD4 count (p < 0.0001) is a highly significant factor in relation to

the probability of death, and weight (p = 0.0011) is also significant factor. Gender and age are

not significant factors in relation to the probability of death. Also, when CD4 count variable is

removed from the model and we fit viral load and all the covariates, we found out that viral load
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(p < 0.0001) is a highly significant factor for the probability of death, while weight (p = 0.0542)

is a less significant factor. Height and gender were found to be not significant factors for the

probability of death.

6.3.7 GEE parameter estimates using various working correlation struc-

tures

For comparison and completeness we fitted the model 6.15 using several working correlations:

exchangeable, AR1, unstructured and independent correlation structures. CD4 count and viral

load are treated as continuous variables. The common mean model fitted is

logit(µij) = β0 + β1Gender + β2Age + β3CD4count + β5V iralload + β6Height + β7Weight

(6.15)

Table 6.10 shows the results of the analysis for model (6.15). We obtained consistent parameter

estimates from using different correlation structures. These results are consistent with [27, 31, 37],

which stated that GEE methods are robust to an assigned correlation structure; you can misspecify

that correlation structure and still obtain consistent parameter estimates and standard errors. This

is evident in 6.10 where parameter estimates and standard errors (empirical) for all predictors are

quite similar irrespective of the correlation structure. The p-values are also fairly consistent which

is an assurance for consistent interpretation.

6.3.8 Conclusion and Discussion

We used the GEE method because it is a standard method for analyzing non-normal longitudinal

data and also [27] recommended using the GEE method only if the number of participants is at

least 30, and if 3 to 5 data points per participant are assessed. This was the case with CAPRISA

data. From the GEE analysis, with both CD4 count and viral load treated as continuous and

categorical, we discovered that CD4 count and viral load can potentially serve as a surrogate

endpoint for death. Weight was also found to be a significant factor for the probability of death,

when viral load and CD4 count were fitted independently. This means that weight at baseline
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Table 6.10: Analysis of GEE parameter estimates based on empirical standard error estimates,

using various working correlation structures, with death status as outcome variable, and gender,

age, CD4 count, viral load, weight and height as explanatory variables .

Correlation Parameter Estimate Standard Error p-value

Exchangeable Intercept −2.9182 1.8928 0.1231

Gender Male 0.0907 0.2295 0.6928

Age 0.0226 0.0110 0.0395

CD4 count −0.7963 0.2476 0.0013

Viral load 0.8715 0.2259 0.0001

Height −0.0018 0.0107 0.8695

Weight −0.0171 0.0119 0.1492

AR1 Intercept −2.9248 1.8946 0.1226

Gender Male 0.0901 0.2296 0.6946

Age 0.0226 0.0110 0.0393

CD4 count −0.7983 0.2484 0.0013

Viral load 0.8734 0.2264 0.0001

Height −0.0017 0.0107 0.8704

Weight −0.0171 0.0118 0.1494

Unstructured Intercept −2.9013 1.8900 0.1248

Gender Male 0.0927 0.2295 0.6863

Age 0.0228 0.0110 0.0380

CD4 count −0.8006 0.2479 0.0012

Viral load 0.8708 0.2251 0.0001

Height −0.0020 0.0107 0.8549

Weight −0.0169 0.0118 0.1538

Independent Intercept −2.9289 1.8961 0.1224

Gender Male 0.0900 0.2296 0.6950

Age 0.0226 0.0110 0.0394

CD4 count −0.7986 0.2488 0.0013

Viral load 0.8762 0.2267 0.0001

Height −0.0018 0.0107 0.8691

Weight −0.0170 0.0118 0.1500

alone cannot be used as a surrogate for survival. However given the apparent association between

CD4 count and viral load, weight at baseline may predict poor or better performance on ARVs

for HIV infected patients.

The exact time of death is not known, this is due to the fact that the data collectors could

get the information that a certain person is dead if he does not turn up for the next visit and
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relatives are contacted and they confirm that the person is dead. For this reason a time to event

analysis is not feasible. Also it is hard to know whether death was caused by an HIV related

illness or not because most patients die at home and the data collectors are not able to determine

whether death was due to HIV illness or not. In the analysis the assumption is that patients died

due to HIV illnesses and if so possibly associated with HIV biomarkers. This was found to be

the case in the current analysis but still data quality can be an issue, for example, the issue of

incomplete information, here in this study time of death is not known and other causes of death

are not known. Though age and weight are time-dependent explanatory variables, they were

only measured at baseline in the CAPRISA data. There were more females than males enrolled

in the study, this could be due to the fact that many HIV positive women are at child-bearing

age. When females get pregnant they are encouraged to get tested for HIV and thereby getting

them to know their status. This compels them to start seeking treatment when they are tested

positive. As for men, it is up to them to go and get tested and most of them do not prefer to

get tested due to fear of stigma. Thus tools such as education campaign or voluntary counselling

and testing (VCTs) should continue to be applied to improve this situation.

The assay used to detect viral load could only go as low as 40/mm3 meaning that if the viral load

dipped below 40/mm3 it could not be detected. This leads to the problem of lower detection

limit in determining viral loads. A better modelling approach to deal with this uncertainty is a

possible future problem.

In the analysis weight was available only at baseline. We believe the association of weight and

survival (alive or dead) could have been understood better if the covariate weight was available

repeatedly over time (time dependent covariate).

In this work we first analyzed a dynamical HIV model including treatment. We investigated

three cases i.e varying the rate of quiescent cells production (λ), efficacy of treatment (η),

and proportion of infectious virions ω, on an existing HIV model. We determined the basic

reproduction number and the effective reproduction number. From the simulations, we discovered

that the higher the treatment efficacy, the lower the number of infected cells are left in the body.

It would be a great discovery, if treatment with treatment efficacy of one would be found, because

that would mean that all infected CD4 cells would be killed in the body, and that HIV would be
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curable. At the moment, this “magic bullet” is still a dream.

This study gives a basic insight to understand the impact of HIV treatments on the infected CD4

cells. The model had a constant λ (the production rate of quiescent cells), resulting in graphs

not showing the AIDS stage. Further work based on this dissertation would have to extend this

basic model to incorporate a non-constant λ. Nonetheless this dissertation is a good example to

show that mathematical analysis will continue to play a huge and major role in solving problems

in biology and epidemiology.

Further statistical analysis on the CAPRISA data was carried out using the GEE modelling method.

From the analysis we discovered that CD4 count< 200 and high viral load can potentially serve

as surrogate endpoints for survival in HIV studies. Categorizing variables seemed to be more

efficient than just using them as continuous variables because categorizing gives us cut off points

to signify where a variable starts being a significant factor.

Finally the important area of causal inference and surrogate marker validation for studies and

data generated in Africa still remains under-developed and efforts to enhance capacity in the area

are an important undertaking. We hope the current study has initiated this process.
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APPENDIX

SAS code used to fit the GEE models as described in the text. Code1 is for finding the data

means categorized by gender. Code 2 is for fitting the GEE model for death status with CD4

count and viral load as continuous variables. Code 3 is fitting the GEE model and the contrast

estimate results. Code 4 is fitting the GEE model for death status with CD4 count and viral

load as categorical variables.

/* Code 1*/

proc means data=oln N mean std maxdec=2;

Title “Output from proc means”;

class Gender;

var CD4count Viralload Height Weight Age;

run;

/* Code 2*/

proc genmod data=death descending;

class Pid Gender Visit;

model DeathStatus=Gender Age CD4count Viralload Height Weight / link=logit dist=bin type3;

repeated subject=Pid/ corr=exch covb corrw;

run;

/*Code 3*/

ods select Estimates;

proc genmod data=death descending;

class Pid Gender Visit;

model DeathStatus=Gender Age CD4count Viralload Height Weight / link=logit dist=bin type3;

repeated subject=Pid/ corr=exch covb corrw;

estimate ‘CD4 count’ CD4count 1/exp;

estimate ‘viral load’ Viralload 1/exp;
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run;

/* Code 4*/

proc genmod data=death descending;

class Pid Gender Visit CD4count Viralload;

model DeathStatus=Gender Age CD4count Viralload Height Weight / link=logit dist=bin type3;

repeated subject=Pid/ corr=exch covb corrw;

run;


