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Abstract

African Horse Sickness (AHS) is a viral disease of equids. It is transmitted between ani-

mals by insect vectors, predominantly by the midge Culicoides imicola Kieffer (Diptera:

Ceratopogodinae) although other potential vectors have been identified. It is a World

Organization for Animal Health (OIE) listed disease, and as such cases are reportable to

the State Veterinarian. The disease is endemic to southern Africa and each year causes

large numbers of mortalities - especially in the summer months when conditions are

favourable for the propagation of C. imicola. Outbreaks of the disease are affected by

many factors, including rainfall, temperature and vaccination coverage of the national

herd. The outbreaks have many direct and indirect effects on the equine and human

population. Subsistence farmers and those in previously disadvantaged communities

depend on their horses for work and transport. In these communities there is little edu-

cation on AHS and vaccination, and these deaths are rarely reported. The competition

and horse-racing fraternities are also hugely affected, as there are strict export regu-

lations in place to avoid potential spread to AHS-free countries, and these industries

create huge revenue based on the movement and performance of animals.

Outbreaks of AHS have, however, been known to occur in non-endemic regions such

as Europe and the Middle East. Due to the severity of the disease, particularly in

serologically näıve populations, it is important to form and understand models of the

disease so that future severe outbreaks can be predicted and controlled. It will also be

useful to understand the factors affecting disease on individual animal and population

levels, so that disease and mortality can potentially be reduced.

Data from the African Horse Sickness Trust and South African Weather Service were

used to develop a Generalized Linear Model (GLM) with a Poisson distribution relating

incidence of the disease in South Africa to rainfall and temperature variables. A GLM

utilizing the Binomial distribution was used to model the individual probability of mor-

tality for individuals in KZN, given various explanatory variables. Further, Generalized

Estimating Equations (GEEs) and Generalized Linear Mixed Models (GLLMs) were

used to control for heterogeneity by place in the model for mortality. These models are

a useful introduction to epidemiological models for early warning systems for African

horse sickness in this country. This investigation platforms further work on interac-

tions between factors in the models, and necessitates improvements in data quality and

integrity from the equine owners to improve predictive capacity of the models.
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Chapter 1

Introduction

1.1 African Horse Sickness

African horse sickness (AHS) is an infectious, non-contagious virus which affects mem-

bers of the Equidae family. It affects horses primarily, with donkeys and mules having

a lower mortality rate, and zebra are thought to be a reservoir host although not being

affected themselves. It is enzootic to sub-Saharan Africa, but has had recorded out-

breaks in various countries in North Africa, Europe and the Middle East (Mellor, 2004).

It is classified as an Office International des Epizooties (OIE: the World Organization

for Animal Health) listed disease, and as such is notifiable to the OIE.

African Horse Sickness is caused by the African Horse Sickness virus (AHSV). It is from

the genus Orbivirus and family Reoviridae. There are nine known serotypes of the dis-

ease. Serotypes 1 to 8 are known to be highly pathogenic in horses, causing mortality of

around 95%, while serotype 9 is slightly less fatal with mortality at approximately 70%

(Coetzer and Erasmus, 1994). There is cross-relatedness between some AHSV serotypes

of the virus, namely 1 and 2; 3 and 7; 5 and 8; and 6 and 9 (Mellor and Hamblin, 2004).

There exist different presentations of the disease. The cardiac, or sub-acute, form is

characterized with oedema of the head and neck. It has a mortality rate of around 50%

(Mellor and Hamblin, 2004). The pulmonary, or peracute, form has a higher mortality

which can exceed 95%. It presents with a high fever (39-41◦C) and depression, followed

by severe respiratory distress (Mellor and Hamblin, 2004). Often the animal will die be-

fore showing any clinical signs of the disease. The third form of the disease is the mixed

form, so called because it presents as a mixture between the cardiac and pulmonary

forms of the disease. Its mortality rate is approximately 70%. The most mild form of

the disease is the AHS fever, which can occur in horses partially immune to the serotype

with which they are challenged, or in donkeys and zebra. It presents with a temperature

of between 39-40◦C which lasts for up to six days (Coetzer and Erasmus, 1994). Horses

will almost always recover from this presentation of the disease, and it is very often not
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diagnosed. This form of the disease is usually the only form which will affect donkeys

and zebras, which have a higher resistance to the clinical disease (Coetzer and Erasmus,

1994). It is unknown at this stage whether there is a relationship between serotype and

presentation of the disease (Young, 2011 Personal Communication).

1.2 History

AHS was first recorded in an outbreak in Yemen in 1327, although it is believed to

have originated in Africa (Mellor and Hamblin, 2004). The first observation of the

disease in Africa was made by a monk by the name of Father Monclaro in 1569. It was

recognized in South Africa only after the import of horses to the region in 1657, and

the first outbreak of major proportions was seen in 1719 (Mellor and Hamblin, 2004).

Since then, many major and minor outbreaks have occurred. However, as a result of

the declining horse and zebra populations over the past 100 years, and the invention of

vaccinations for the disease, the severity of the outbreaks has declined.

1.3 Culicoides midges and African Horse Sickness

Culicoides are a genus of biting midges. They belong to the diptera Ceratopogodinae.

They are small in size, ranging from 1-3mm in length. They are crepuscular - meaning

that their activity is mainly around sunset and sunrise (Mellor, 2000). While both

females and males of the genus drink nectar, the females require blood-meals in order

for their eggs to develop, making them vectors for several diseases including Oropouche

virus, African horse sickness virus, bluetongue virus, equine encephalosis virus (EEV),

Akabane virus (AKAV), and epizootic hemorrhagic disease virus among many others.

African horse sickness and Bluetongue viruses are OIE Listed Diseases (previously List

A). (Mellor et al., 2000).

Species of Culicoides have been discovered in almost all parts of the world, excluding

only “the extreme polar regions, New Zealand, Patagonia, and the Hawaiian islands”

(Mellor et al., 2000). Several Culicoides species have been found to be competent vectors

for AHSV. Wild-caught Culicoides species were first found to be infected with the virus

by Du Toit in 1934. Wetzel (1970) then showed that Culicoides species were capable

of transmitting the virus between infected and susceptible horses. Since then research

by many contributors has shown Culicoides imicola to be the major vector of AHSV

(Mellor and Hamblin, 2004), although evidence has been found of other species including

C. bolitinos (Meiswinkel and Paweska, 2002; Venter et al., 2000) being competent vectors

of the disease. In particular in the study performed by Meiswinkel and Paweska in 2002,

in regions in the eastern Free State where there were fatalities from AHSV, the virus

was isolated only from C. bolitinos and not from any of the other Culicoides species

captured. C. bolitinos was also the most abundant of the species in these regions.
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The North American C. variipennis sonorensis has also been shown to be efficient at

transmitting the virus in laboratory tests (Boorman et al., 1975 ; Wellby et al., 1996).

The widespread worldwide distribution of Culicoides spp., along with the uncertainty of

which subspecies may be successful vectors for the disease, indicates why AHS should

be treated as a global concern.

1.4 Disease Dynamics - as illustrated by determinis-

tic models

The disease dynamics of AHS can be illustrated simply by the deterministic models of

Lord et al., (1996a, 1996b, 1997). The basic model from these authors is set up as shown

in Figure 1.1 and explained below.

The hosts are equids, and the disease follows a simple SIR model. The animal moves,

once bitten and infected by an infective midge, from the Susceptible (x) to the Infected

(y) class. From there, the animal will either die or move to the Immune (z) class. How-

ever this is a very simplistic model, which would work for a single serotype of AHS but

not for the full nine strains, as a horse recovering from a certain strain gains immunity

to that serotype only, but is susceptible to all other strains. Thus a more elaborate

model would be one that allows possible re-infection by a different strain. If the model

is run for only a short time it is not necessary to investigate natural birth and death

rates of the host as its lifetime is sufficiently long. Mortality is only considered for the

Infected class.

The vector’s lifespan is sufficiently short that natural birth and death rates must be

included into the model. Transovarian infection is presumed not to occur in Culicoides

species (Jones and Foster, 1971 as cited in Lord et al., 1996), therefore the recruitment

rate enters the Susceptible (S) vector class. The vector, after biting and acquiring the

virus from an Infected horse, moves then onto the Latent (L) class, where it stays for a

brief period after they have bitten an infected horse but the virus has not yet replicated

up to a sufficient titre for infecting further horses. The latent period was predicted by

Du Toit (1994) to be 10 days, and by E.M. Nevill (as cited from personal correspon-

dence in Braverman, 1985) to be between 7 and 11 days. After this they move into the

Infective (V) class. The vectors are presumed, once infected, to stay infective for the

length of their lifetime (in other words they do not move back to the susceptible class).

The disease does not affect the midge, therefore natural mortality, µ, does not change

between the 3 classes. There is no justification to add excess mortality due to infection.

The differential equations are then set up logically. Explanations of the parameters

used are given in Table 1.1.

The rate at which hosts move from susceptible class to infective is given by the biting

rate of vectors on the hosts, a, the proportion of hosts which become infected after being
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Figure 1.1: Compartmental model as given in papers by Lord et al., ([27] [28] [29]).

Dynamics for the vectors (Culicoides midges) and hosts (equids) are given. This is a

simplistic model that considers only one serotype of the disease.

bitten by an infective vector, b, the ratio of vectors to hosts, (N/H), the proportion of

susceptible hosts x and the proportion of infective vectors v. Thus the equation that

governs the proportion of susceptible hosts is

dx/dt = −ab
(
N

H

)
xv. (1.1)

The rate at which the infected class changes is given by the rate at which susceptibles

enter, minus the mortality rate of infectives, cy, minus the recovery rate, ry. Thus

dy/dt = ab

(
N

H

)
xv − ry − cy. (1.2)

The rate at which hosts enter the immune class is given by the recovery rate of

infectives, ry. Thus

dz/dt = ry. (1.3)

Overall, since there is no natural birth or death considered in the model, the total

number of horses decreases by the mortality rate of infecteds. Thus, overall

dH/dt = −cY. (1.4)

The susceptible class of vectors is increased by recruitment from all three classes, as

transovarian infection does not occur. The recruitment rate is the rate of new female

midges entering the adult population, as males do not play a role in transmission of the

diseaseas they do not feed on blood (Mellor, Boorman and Baylis, 2000). This is because

bloodmeals are required for the females to produce eggs. The decrease is given by the

rate at which susceptible vectors move to the latent class, and the natural mortality
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Table 1.1: Description of symbols used in deterministic model equations 1.1 to 1.7 as

used in the compartmental models of Lord et al. 1996a, 1996b, 1997.

Symbol Description

H Total number of AHS hosts

x Proportion of hosts susceptible

y Proportion of hosts infected

z Proportion of hosts immune due to recovery

Y Number of hosts infected = y ×H

S Number of susceptible vectors

L Number of latent vectors

V Number of infective vectors (proportion= v = V/N)

N Total number of vectors (S + L+ V )

ρ Daily rate of female midges entering the adult population (not considering larval stages)

α Interval between bloodmeals on an AHS host

a Biting rate of vectors on AHS hosts (1/α)

β Proportion of vectors which become infected after biting an infective host

b Proportion of hosts which become infected after a bite by an infective vector

µ Daily mortality rate of vectors

γ Virus development rate

r Recovery rate for hosts

c Mortality rate for infected hosts

rate. The rate at which they are infected is given by the interval between bloodmeals on

an AHS host, α, the proportion of vectors which become infected after a bloodmeal on

an infected host, β, multiplied by the number of susceptible vectors times the proportion

of infected hosts. Thus

dS/dt = ρ(S + L+ V )− αβSy − µS. (1.5)

The rate at which the Latent vector class moves onto the infective class is then

governed by the virus development rate, γ. Mortality also depletes this class. Thus

dL/dt = aβSy − γL− µL. (1.6)

Once a vector is infected, it is presumed to stay infected for the remainder of its life.

The only depletion of this class is therefore by natural mortality.

dV/dt = γL− µV (1.7)

It is important to note that ρ, α, µ and γ are all temperature dependant and also

dependant on the subtype of Culicoides.
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An important parameter of such a deterministic disease model is called R0, the basic

reproduction number, which is defined as the average number of secondary cases which

will be caused by a single primary case of the disease in a wholly susceptible population.

In their 1996 paper, Lord et al. found R0 for the above AHS disease model. This was

derived by a heuristic method as follows. The duration of a host’s infectivity is expected

to be 1/(r+c). During this time, they will get an average of a(N/H) bites by susceptible

midges per day. A proportion β of these bites will result in an infected midge. Thus

there will be a(N/H)β/(r+ c) midges moving into the Latent class per infected host. A

proportion γ/(γ + µ) of these latently infected midges are expected to move on to the

Infectious class. These will survive for on average 1/µ days, and bite at a rate a. Finally,

b of these bites will result in an infected host. This leads to the following equation for

R0.

R0 =
a2bβ

(r + c)µ

(
N

H

)(
γ

γ + µ

)
(1.8)

Control measures can target some key parameters in this equation which R0 is sen-

sitive to. These are:

a: The biting rate of vectors on AHS hosts,

(N/H): The ratio of vectors to AHS hosts.

Reducing either or both of these parameters will directly reduce R0. Some of the ways

in which these can be controlled are shown in Section 1.5.

1.4.1 Vector Seasonality

The daily female midge emergence rate exhibits a strong seasonal dependence or forc-

ing as is the case for many disease vectors. A method used to describe the seasonal

fluctuation in ρ was to equate it to a sinusoidal function. In their work, Lord et al.

(1997) used the equation ρ = µ(1 + δ cos(θt)) to capture seasonal dependence where δ

described the amplitude of the function, and θ the scaling factor for seasonal length.

The seasonal length is considered to be 1 year, and therefore θ = 2π/365 = 0.0172. The

vector population varying with time is found to be given by N(t) = N0 exp
µδ cos(θt). The

graph for N(t) is shown in Figure 1.2. Under these conditions, R0 cannot be directly

estimated. In the current work seasonal dependence will also be integrated into the

statistical disease incidence model by means of a term carefully defined to capture this

effect.

1.4.2 Vaccination

The effect of vaccination in the Lord et al. 1997 model was studied by moving a varying

fraction of susceptible hosts into the Immune class. This strategy was used to investigate

whether protecting horses only, or both horses and donkeys would have an effect on the

number of outbreaks which occurred. The same approach was used to find out whether

vaccination after virus introduction would be able to prevent epidemics. Because the

8



Figure 1.2: Vector population over time as given by the equation N(t) = N0 exp
µδ cos(θt)

in Lord et al. (1997) where µ = 0.25, θ = 0.0172, δ = 9 and N0 = 500.

model was for the outbreak in Spain, a serologically näıve population was considered

(meaning that no previous immunity or vaccination exists in the population) and also

no reservoir hosts such as zebra. It was found that vaccinating donkeys as well as horses

was most effective, and that vaccination after the introduction of the virus into the

population was not.

1.5 Methods for Prevention and Control

There are various methods employed to prevent AHS in individual animals, and also to

control the disease in the country. As discussed previously, the two disease parameters

which can be controlled are the biting rate of vectors on AHS hosts, and the proportion

of vectors to hosts. Another more practical strategy if available is to protect suscep-

tible hosts from acquiring the infection. This can be achieved through vaccination to

immunize the host from the disease.

1.5.1 Vaccination as a Control Strategy

In South Africa, the only immunization is in the form of two polyvalent, attenuated

vaccines, the first of which contains serotypes 1, 3, and 4 and the other serotypes 2, 6, 7

and 8. Vaccination is required by law, although by Onderstepoort Biological Products

estimates only around 50% of the national herd is currently vaccinated annually (W.

Botha, Personal Communication, 2010). There are two serotypes not included in the
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vaccines; serotype 5 and serotype 9. AHSV5 was withdrawn from the vaccines in 1993

due to reports of it causing fatal side-effects in some animals (Mellor and Hamblin, 2004).

AHSV 9 is not included since there is considered to be adequate cross-immunisation be-

tween strains 6 and 9, and because strain 9 is not often found in South Africa (Coetzer

and Erasmus, 1994; Mellor and Hamblin, 2004). Attenuating a virus is done in order to

decrease the virulence of the virus. The most common method is by passing the virus

through a host. In the past the AHS virus has been attenuated by passing it through

suckling mouse brain (Mellor and Hamblin, 2004).

In South Africa, immunization is performed annually in Spring, during August - Septem-

ber (Onderstepoort Biological Products, 2010), which is some time before peak AHS

season in order to allow for the animals’ immunity to build up to a maximum during the

high risk months of February-March and before vector populations increase in Novem-

ber and December. The two injections of the vaccines are administered in three week

intervals, and the immunity of the animal will start to develop only three to four weeks

thereafter (Onderstepoort Biological Products, 2010). However, vaccinating with several

serologically different strains simultaneously can lead to insufficient immune response to

all strains. Thus it is considered that it will take at least 2 to 3 vaccinations before an

animal is immune to all strains of the disease, and a horse may never be entirely im-

mune despite annual vaccination (Onderstepoort Biological Products, [41]; Mellor and

Hamblin, 2004).

In countries outside of endemic regions where outbreaks have occurred, usually the out-

breaks are attributable to one strain only. In the 1966 epizootic in Spain, it was found

that the cause was AHSV serotype 9, while the 1987 outbreak in Spain which spread to

Portugal was attributed to AHSV serotype 4 (Mellor et al., 1990; Portas et al., 1999).

In these cases, monovalent vaccines were employed to guard against the specific serotype

of the outbreak. A rigorous campaign of eradication in Portugal included banning of

import of horses from Spain, vaccination, and slaughter of infected horses (Portas et

al., 1999). In West Africa, where serotype 9 is the only strain known to be active,

monovalent attenuated vaccines are used (Mellor and Hamblin, 2004).

1.5.2 Stabling

Since Culicoides species are mostly crepuscular, stabling between sunset and sunrise has

been believed to offer protection against AHS. In a study by Meiswinkel et al. (2000), it

was found that C. imicola were far more abundant outside than inside stables, regardless

of the interventions used inside the stable (doors open/closed, fans on/off, windows

open/gauzed). Approximately 82% of the catch of C. imicola was outside, with only

18% inside the stables. By contrast, C. bolitinos, also implicated as a vector of AHS,

was found to be more abundant inside of the ‘open’ stables (ungauzed windows) than

outside. Closing the doors and gauzing the windows of a stable, however, led to a 14-fold

reduction in the abundance of C. bolitinos. It was concluded that the stabling of horses
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would protect them from encounters with Culicoides species, but only if the stables were

closed and even more so if the remaining openings were gauzed. However it was found

to be virtually impossible to exclude the midges from an area entirely. Jenkins (2008),

in a study on the abundance of Culicoides midges around stables in KwaZulu Natal,

found that 37% of Culicoides midges of all species were caught inside of stables or under

the eves. By species, however, 50.3% of the catch of C. bolitinos was from within the

stables, verifying the work of Meiswinkel et al. (2000), and C. imicola had 39.5% of

the catch indoors. C. imicola was the most prevalent species, comprising 32.6% of the

catch, with C. bolitinos making up 20.7%. It cannot be concluded that stabling on its

own is an effective protective measure against AHS.

1.5.3 Vector Control

There are various methods of controlling the vector population. These methods aim

to reduce the abundance of the vector, or reducing the bite-load and possible infection

with AHS that the animals are exposed to. The underlying aim in all methods of vector

control is to minimize the host-vector contact rate.

Pesticides and Repellents

Insecticides have been used either to kill the adult Culicoides vectors of the disease

or, through application of the chemicals to breeding sites, to kill the midges in their

larval stages. Ivermectin is a broad-spectrum antiparasitic medication commonly used

as a dewormer in horses which may kill biting Culicoides midges. Additionally, when

excreted in the faeces, it is known to act as a larvicide (Mellor and Hamblin, 2004).

Insect repellents may also be used topically, although there are few repellents proven to

be effective on Culicoides midges. The most effective of these repellents is a substance

called pyrethroid-T which is able to repel midges throughout the night (Braverman and

Chizov-Ginzburg, 1997). Simpkin (2009) found that cypermethrin, another pyrethroid

containing substance, was the best performing repellent specifically for Culicoides imi-

cola. It acts as a neurotoxin on insects. Some mosquito repellents, for example citronella

based repellents, have been found to attract rather than repel Culicoides imicola (Braver-

man et al., 1999), although conflicting results have been found claiming that although

not efficient repellents, they do not attract midges (Simpkin, 2009). These repellents

are widely used to repel flies from horses.

Habitat Control

Another method of reducing Culicoides populations is by habitat control. This is done

by removing possible breeding sites for the midges. Culicoides imicola breed in moist
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areas, and prefer clay soils. Water and animal dung provide perfect breeding habitats

for these midges. Ensuring that animal dung is removed, and wet areas drained, will

interrupt the breeding cycle of the midge.

Wind Speed

It is known that Culicoides midges are very weak fliers, and midge activity is decreased

for wind speeds greater than 3ms−1 (Mellor et al., 2000). Therefore the use of fans

inside stables has been tested to reduce the numbers of Culicoides inside the stables

(Simpkin, 2008). It is also theorized that fans will assist in dispersing the odour of the

horses, which may attract the vectors (AHS Trust, 2005). This coupled with stabling

between dusk and dawn was proposed to be effective in reducing exposure to midges by

Braverman in 1989. However, Meiswinkel et al.(2000) found that fans had no effect on

the number of Culicoides midges inside stables.

Alternate Hosts

A method of decreasing the bite load on horses is by introducing alternate sources of

blood-meal which the midges may bite. The Culicoides midges are known to transmit

a wide range of viruses including Bluetongue virus (BTV) which affects all species of

ruminant. Specifically, C. imicola, the major vector of AHSV, is known to be a vector

of BTV and to feed on species of ruminant including sheep, cattle and antelope (Mellor

et al., 2004). Introducing these species to the area surrounding horses may prove to be

beneficial in reducing the bite-load on the horses. Simpkin (2009) found that both C.

imicola and C. bolitinos showed no host preference between horses, sheep and cattle.

Thus alternate hosts, in the form of either cattle or sheep, may reduce the bite load on

horses and help to prevent AHS. More female midges were caught near the cattle than

the sheep, and therefore cattle may be the superior alternate host. However, since Culi-

coides are known to breed in dung, and in particular C. bolitinos breeds in cattle dung

(Meiswinkel and Paweska, 2003), it is necessary to be vigilant in removing potential

breeding sites if this method is used. This method of control may also have implica-

tions for the epidemiology of Bluetongue Virus, which affects all species of ruminant

and shares the vector C. imicola (Mellor, 2000).

However such a strategy may be counterproductive by helping maintain the midge pop-

ulation, unless the alternate host cannot harbour the virus. Other equids, for example,

should not be used as an alternate host, as donkeys can act as a reservoir host by re-

maining subclinical for the disease. This has been speculated to act as an overwintering

mechanism of the virus.
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Figure 1.3: Map showing the surveillance, protection, and free zones for African Horse

Sickness. (African Horse Sickness Trust Pamphlet)

Movement Control Policy and the AHS Free Zone

There are strict movement policies regarding horses in sub-saharan Africa into non-

endemic regions. However, areas of the Western Cape have been shown to be AHS

free, and vigilant monitoring of these regions has made it possible for export to occur.

The AHS-free zone is surrounded by the AHS-surveillance zone and AHS-protection

zone, shown in Figure 1.5.3. In March 2011, however, an outbreak occurred in Mamre

in the AHS surveillance zone, approximately forty kilometers from the AHS free zone.

In this outbreak, as of 28th March 2011, 46 horses were confirmed as infected, and

26 more suspected (http://www.africanhorsesickness.co.za/Documents/doc 45.pdf, ac-

cessed 14/05/2011). The total deaths stood at 52 as of the above date.

Horses are required to be fully vaccinated, and be certified healthy by a veterinarian

before they may enter any of these zones from the rest of South Africa. Before a horse

may be exported from the country, it must reside in the AHS-free zone for 20 days and be

quarantined for a further 40 before departure at the Kenilworth quarantine station. The

station is protected from vectors, and was designed so that the export of the racehorse

London News was possible (Racing South Africa, http://www.racingsouthafrica.co.za/

view page.aspx?ID=134, accessed 18/10/2010). Subsequently, many horses enter and

exit the country from its quarantine station.
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1.6 Temperature and African Horse Sickness

Both the life cycle of the Culicoides vector and the development of the AHS virus are

highly temperature dependent. At lower temperatures, the midge experiences a longer

lifetime, but virogenesis is slower. At higher temperatures, although the lifetime of the

vector decreases, virogenesis is faster and therefore transmission occurs more rapidly

(Mellor and Hamblin, 2004).

The duration of the life cycle of the Culicoides midge depends on both the species of

midge and climate variables from as short as 7 days to as long as 7 months (Wittman,

2000). Their adult life is usually in the region of 10 - 20 days, but may last as long

as 3 months (Mellor et al., 2000). Veronesi et al.(2009) showed that both the lifespan

and reproductive capabilities of C. imicola Kieffer were affected by temperature in lab-

reared colonies. The time from blood-feeding to adult offspring was longest at lower

temperatures. At 20◦C this cycle took 34-56 days, at 25◦C 15-21 days, and at 28◦C 11-

16 days. Coupled with this was the temperature dependence of the number of eggs laid

per female (fecundity), and the survival rate of the offspring to adult form. The number

of surviving adult offspring per female was found to be highly variable at 28◦C (between

0.1 and 3 adult offspring per female), but more concordant for 25◦C (0.7-1.0) and 20◦C

(0.7-1.7). Since the females feed on blood which is required for egg development, and

one bloodmeal is usually required for each batch of eggs (Wittman and Baylis, 2000), it

follows that the more rapidly the life cycle progresses, the higher the bite-load on hosts,

and therefore the higher the possible transmission rate of AHS where the virus is present.

Braverman et al.(1985) showed this seasonality in the period between bloodmeals for

C. imicola in Israel, ranging between 3 days and almost 5 days. They also showed

the seasonality in the abundance of the midges, which began in summer (July) peaked

mid-summer (August - September), and declined into winter (November).

Wellby et al.(1996) found that in C. variipennis sonorensis and C. nubeculosus

(Meigen) that an infected vector could not transmit the virus at temperatures below

15◦C, and that virogenesis could not be detected at 10◦C. However, midges that survived

and were then reintroduced to warmer temperatures were able to transmit the disease

once more. Mellor et al.(1998) similarly found that Culicoides kept at 10◦C were almost

free of infection at 13 days post infection (dpi). However when these midges were kept

at 10◦C for 35 days and brought back to a warmer temperature for 3 days they were

once again infective. This indicates that the virus is able to survive at low titres in

midges at lower temperatures, and that although the midge will not be able to transmit

the virus, when temperatures increase, it will then be able to replicate within the midge

to a level where it can be transmitted. This ability for the virus to survive within the

midge at colder temperatures, as well as the ability for the midge to live far longer at

these colder temperatures, indicates a possible overwintering mechanism for the virus

(Mellor and Hamblin, 2004).
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1.7 AHS and Rainfall

The breeding sites of Culicoides species require moisture for the larval stages to develop

(Mellor et al., 2000). Sites which they may choose to breed include moist soil, swamps

and bogs, animal dung and rotting vegetation. Rainfall is therefore advantageous to

the midge, as it increases the potential breeding sites. Jenkins (2008) found that, in

KwaZulu Natal, the duration of wetness of the ground was highly correlated with in-

creased Culicoides midge catches, for example with overflow from a reservoir moistening

the surrounding ground. He also found that modifying the surroundings so that this

overflow did not occur was very effective in reducing the midge numbers.

1.8 Epidemiological Modeling

Much work has been done, predominantly by Lord and Woolhouse, on the mathemati-

cal modeling of AHS as discussed in Section 1.4. However, much of this modeling was

specific to the outbreak in Spain between 1987 and 1990. This outbreak proved to be

ideal for modeling purposes, as it began in a näıve population with no vaccination or

immunity to the disease. Papers have been published to model AHS using a deter-

ministic compartmental model (Lord et al., 1996b), to simulate vaccination strategies

(Lord et al., 1997), and to calculate the basic reproduction number (Lord et al., 1996a).

Although in these outbreaks the protection of horses was considered paramount, the

authors considered donkeys’ ability to transmit the disease an important factor in the

invasion and persistence of the virus.

Modeling has also been done to better understand the distribution of Culicoides imicola.

In 2001, Wittman, Mellor and Baylis published a paper that used logistic modeling to

predict the presence or absence of C. imicola in Europe based on the climate of an area.

The climate variables considered were temperature, saturation deficit, rainfall and alti-

tude. The model used was a logistic regression model, aiming to predict the probability

of presence in an area in Iberia, and these results were extrapolated to the whole of

Europe. Their model found useful climatic variables to be: minimum of the monthly

minimum temperatures, maximum of the monthly maximum temperatures, and number

of months per year with a mean temperature ≥ 12.5◦C (Wittman et al., 2001). Their

model had a high degree of accuracy in correctly predicting the presence of C. imicola

in Iberia.

Baylis, Meiswinkel and Venter (1999) used a similar technique to relate climate data and

satellite imagery to the distribution of C. imicola in southern Africa. Here 34 sites in

South Africa were sampled for Culicoides. The satellite imagery variables investigated

were the normalised difference vegetation index (NDVI), the land surface temperature

(LST), cold cloud duration (CCD). The NDVI is a measure of photosynthetic activ-

ity of vegetation, and is correlated with functions of moisture. LST is correlated with
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temperature, and CCD with rainfall. Climate variables used were annual mean daily

maximum and minimum temperature, annual minimum temperature, number of days

with temperatures below 0◦C, October-March rainfall, April-September rainfall, and

total annual rainfall. The sampled estimates of C. imicola abundance were normalised

using the transformation log(n + 1), and then regressed on the climate and satellite

imagery variables. The best model used the variables minimum LST and minimum

NDVI.

1.9 Implications for AHS in South Africa

It is the opinion of the author that insufficient work has been done to understand

the disease in South Africa. The modelling work by Lord and others, regarding the

outbreak in Spain, Portugal and other epizootic areas, has helped to understand the

disease process, but has not increased understanding of the disease in this country

specifically. The outbreak in Spain affected horses with no previous exposure to the

disease or vaccination, and thus no acquired immunity. In South Africa there is a certain

amount of immunity within the national herd, which varies for vaccinated / unvaccinated

horses. Because it is such a severe disease, having broad-reaching implications for the

community, there is need to better understand the factors and processes which affect

outbreak severity within South Africa, as well as those measures which might be taken

on an individual horse level to decrease the probability of mortality.

The African Horse Sickness Trust (AHST) was formed in 2005 in order to bring together

major stakeholders of the horse community in order to reduce the threat of the disease

to South African equines. Their aims are to:

• Improve reporting of the disease,

• Increase vaccination coverage of the national herd,

• Improve vaccines available to South Africa, and to

• Increase the body of scientific research into the disease.

They also aim to introduce an “early warning system” which will indicate which areas

are likely to come under threat from the disease. The AHST also serves as a repository

of information and data collected from 2005 to the present, from which it is possible to

improve our epidemiological understanding of AHS and its transmission.
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1.10 Objectives of the Study

Specific objectives of this study are

• To explore and develop the techniques for modelling incidence and mortality of

African Horse Sickness,

• To gather and use data with which these modelling techniques can be utilized,

• To investigate and discern factors and processes affecting both the incidence and

mortality of the disease from the results of these models,

• To further understand what processes may affect the outbreaks of the disease, in

the case of models which are not perfect.

Statistical modelling of the African Horse Sickness Trust data will help to further the

knowledge on AHS in South Africa, and to assist in providing early warning systems.

To this end, data is statistically modelled to better understand these factors correlated

with the disease, and to give direction for future study.
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Chapter 2

Exploratory Data Analysis

2.1 African Horse Sickness Trust

There are two sources of data used in this project. The first, kindly provided by the

African Horse Sickness Trust (AHST), records cases of African Horse Sickness in South

Africa from the end of 2005 until May 2010. Each case in the database was reported by

the attending veterinarian or the owner of the animal, and for each case certain variables

were recorded. However, after the primary case, if additional cases occurred in the same

area they were simply listed as the number of additional cases which survived (Addi-

tionalAlive), and the number of additional mortalities (AdditionalDead). Therefore the

information on the case was given for the primary case only. A Case Identity number

is assigned to each primary case for ease of reference. For each case several variables were

recorded. The variables considered in this research are outlined and briefly described

below.

Horse Status

It was recorded in a variable named “HorseStatus” whether the horse was still alive or

had died due to the disease. A few cases also listed “Euthanised” as an option - but

since interest was in modeling this as a binomial variable, these few cases were changed

to being listed as having died. This is a realistic measure to take, since firstly there

were very few (28) “Euthanised” observations, and secondly that only cases which were

severe (and therefore likely to result in death) would be euthanised. There were 461

primary cases listed as “Alive”, and 486 listed as “Dead”.

Province

The province of the occurrence of the case was recorded. The list of provinces and their

abbreviations are given in Table 2.1. The third column gives the total number of cases

recorded from each province.

Place

The place within the province in which the case occurred was also recorded. There were
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Table 2.1: List of provinces and their abbreviations used in the data, and the total

number of cases reported for each province.

Province Abbreviation Cases

Eastern Cape ECP 101

Free State FS 21

Gauteng GAU 370

Kwa-Zulu Natal KZN 191

Limpopo LIM 48

Mpumalanga MPU 78

Northern Cape NCP 23

North West Province NWP 62

Western Cape WCP 53

239 places recorded.

Case Classification

A case classification variable was included. It recorded whether the case was Suspected

(SUS), Confirmed by a veterinarian (VETC) or Confirmed by a sample sent to the lab

(LABC) or if it was suspected but the lab testing proved negative (SUSN).

Other Cases

It was recorded whether there were other cases in the surrounding area in the same

outbreak. It was recorded as a binary variable with 1 for “other cases occurred” and 0

for “there were no other cases”.

Vaccination

A further two variables recorded whether the horse had been vaccinated or not (Vacci-

nated = 1, Not Vaccinated = 0), and whether or not the vaccination had been performed

late (Vaccinated Late = 1, Not Vaccinated Late = 0). Routine vaccination for AHS is

performed between August and October, as it takes time to build up efficacy in terms

of immunity and it is optimal that the animal’s immunity is at its peak over the AHS

outbreak months (February to April). If a horse was vaccinated late (after October)

this may have an effect on its susceptibility to the disease.

These two variables were for the purpose of the current analysis combined into one

variable with three levels; 0 = Not Vaccinated, 1 = Vaccinated Late, 2 = Vaccinated

Timeously.

Further Preventative Measures

Further preventative measures were also recorded. The person entering the data had

the opportunity to state whether the horse was stabled, whether pesticides were applied,

and any further preventative measures used. The data does not indicate whether the

pesticides were applied to the horse or the surroundings.

Binary variables were created from this information as Stabled (1 = stabled, 0 = not
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stabled) and Pesticides (1 = pesticides used, 0 = no pesticides used).

Treatment

Four types of intervention strategies were recorded. The possible types of treatment

are Conventional (CONV), Homeopathic (HOM), Alternative (ALT) or None (NONE).

Conventional treatment is that usually administered by a veterinarian, including anti-

inflammatory drugs, antibiotics, and vitamins. Homeopathic treatments are those sug-

gested by a homeopath. Alternative covers those treatments not considered conventional

or homeopathic, but often include use of marijuana or “dagga”, which was specifically

stated for some of the cases under additional information.

Presentation

The variable Presentation records which presentation of AHS occurred in the animal. It

is either Cardiac (CARD), Pulmonary (PULM), Mixed (MIX), or Mild (MILD). There

is also an option“Don’t know” (DK) for those entering data who were unsure of how

the disease presented.

Isolation

A binary variable recorded whether a horse was isolated / quarantined once symptoms

were noticed.

The complete list of variables with associated categories is given in Table 2.2.

2.1.1 Chi-Square tests of Association

To test which variables were associated, Chi-Square tests were employed using SAS

FREQ procedure. Firstly we compared HorseStatus with all other categorical variables.

The Chi-Square probabilities are shown in Table 2.3.

The variables which do not have significant association with HorseStatus are Sta-

bled and Pesticides. This makes biological sense, as these are prevention strategies

which may have an effect on whether the horse contracts AHS or not, but would be

unlikely to have an effect on the outcome of the disease once the horse has contracted

it. Both Presentation and Treatment had very strong relationships with HorseStatus

(p < 0.0001). Province and OtherCases have marginal associations (p ≈ 0.05). It is

also to be noted that the test for association between HorseStatus and Classification

variables was based on expected values of less than 5, and therefore may not be reliable.

Contingency tables showing the frequencies and percentage mortalities for each of the

significant interactions with HorseStatus are shown in Tables 2.4, 2.5, 2.7, 2.8 and 2.9.

95% confidence intervals are given, and negative values are censored to zero. Bar graphs

showing the relationships are shown in Figures 2.1, 2.2, 2.3, 2.4 and 2.5.

In Figure 2.1, we can see clearly that Eastern Cape, Gauteng, and Mpumalanga,

have mortality rates slightly below 50%. The rest of the provinces have rates above 50%

(more deaths than survivals). However from Table 2.4 we see that the only provinces

whose 95% confidence intervals for mortality are entirely above 50% are Northern Cape
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Table 2.2: List of categorical variables, their levels and abbreviations used for the AHST

data
Variable Number of levels Levels

Province 9 ECP Eastern Cape

FS Free State

GAU Gauteng

KZN KwaZulu Natal

LIM Limpopo

MPU Mpumalanga

NCP Northern Cape

NWP North West Province

WCP Western Cape

Place 239 Not listed due to large numbers of levels

Classification 4 SUS Suspected

VETC Confirmed by Veterinarian

LABC Confirmed by Lab Sample

SUSN Suspected but Lab Negative

OtherCases 2 1 Other Cases

0 No Other Cases

Vaccination 3 2 Vaccinated Timeously

1 Vaccinated Late

0 Not Vaccinated

Stabled 2 1 Stabled

0 Not Stabled

Pesticides 2 1 Pesticides Used

0 No Pesticides Used

Treatment 4 CONV Conventional

HOM Homeopathic

ALT Alternative

NONE None

Presentation 5 CARD Cardiac

PULM Pulmonary

MIX Mixed

MILD Mild

DK Don’t Know

Isolation 2 1 Isolated

0 Not Isolated
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Table 2.3: Chi-Square Probabilities for Interactions between HorseStatus and other

variables
Variable df χ2 value p-value

Province 8 16.9409 0.0307

Classification 3 14.5175 0.0023

OtherCases 1 3.9813 0.0460

Vaccinated 2 8.5732 0.0138

Presentation 4 86.9568 <.0001

Treatment 3 65.1324 <.0001

Stabled 1 1.1569 0.2821

Pesticides 1 1.7390 0.1873

Isolation 1 6.6722 0.0098

and North West Province. The other confidence intervals all include 50. In Figure

2.2, we see that more unvaccinated horses died than survived. Horses vaccinated late or

timeously both had a greater proportion surviving, however the “Vaccinated Late” group

was based on a very small number of observations (11). The 95% confidence interval for

mortality for “Vaccinated Late” was entirely below 50, while the interval for “Vaccinated

Timeously” included 50. Table 2.6 shows the contingency table if vaccination status is

pooled into classes “Vaccinated” and “Unvaccinated”, in other words timing not taken

into account. If a simple chi squared test of independence is done on this it is found that

the probability is 0.0325 - in other words mortality is not independent of vaccination

status even if the timing is not taken into account. Figure 2.3 indicates that a larger

proportion are expected to survive with Mild and Cardiac presentations, while over 50%

died in Mixed and Pulmonary presentations. In Figure 2.4, it shows all treatments do

reduce mortality. No treatment gave 85% mortality, while Homeopathic, Alternative

and Conventional treatments had 40, 24 and 49% mortality respectively. Figure 2.5

shows us that a horse that was isolated seems more likely to die than one which was not

isolated - which may be due to the stress of being separated from other horses.

Although these comparisons give us crude results on the effects that these treatments

and preventative measures have on mortality, the strength and nature of these associa-

tions can be further investigated in models such as GLMs, where the effect of multiple

variables can simultaneously be assessed within the same model.

2.1.2 Condensed Data

In order to have the ability to model the number of cases, the AHST data was condensed

into a form that would be able to show the number of cases in a given month. For this
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Table 2.4: Contingency Table for Province by HorseStatus

ECP FS GAU KZN LIM MPU NCP NWP WCP Total

Alive 59 7 187 94 24 40 7 20 23 461

Dead 42 14 183 97 24 38 16 42 30 486

Total 101 21 370 191 48 78 23 62 53 947

% mortality 41.58 66.67 49.46 50.79 50.00 48.72 69.57 67.74 56.60 51.32

Lower Limit 95% CI 31.97 46.50 44.36 43.70 35.85 37.63 50.76 56.11 43.26 48.14

Upper Limit 95% CI 51.20 86.83 54.55 57.88 64.15 59.81 88.37 79.38 69.95 54.50

Table 2.5: Contingency Table for Vaccination Status by HorseStatus

Unvaccinated Vaccinated Vaccinated Total

Late Timeously

Alive 208 9 235 452

Dead 254 2 223 479

Total 462 11 458 931

% mortality 54.98 18.18 48.69 51.45

Lower Limit 95% CI 50.44 0.00 44.11 48.24

Upper Limit 95% CI 59.52 40.97 53.27 54.66

Table 2.6: Contingency Table for Pooled Vaccination Status by HorseStatus

Unvaccinated Vaccinated Total

Alive 208 244 452

Dead 254 225 479

Total 462 469 931

% mortality 54.98 47.97 51.45

Lower Limit 95% CI 59.52 52.50 54.66

Upper Limit 95% CI 50.44 43.45 48.24

Table 2.7: Contingency Table for Presentation by HorseStatus

Mild Cardiac Mixed Pulmonary Unknown Total

Alive 35 174 25 22 196 452

Dead 3 135 65 86 190 479

Total 38 309 90 108 386 931

% mortality 7.89 43.69 72.22 79.63 49.22 51.45

Lower Limit 95% CI 0.00 30.22 72.03 62.97 44.24 48.24

Upper Limit 95% CI 2.06 39.73 87.23 81.48 54.21 54.66
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Table 2.8: Contingency Table for Treatment by HorseStatus

None Homeopathic Alternative Conventional Total

Alive 15 50 29 358 452

Dead 88 33 9 349 479

Total 103 83 38 707 931

% mortality 85.44 39.76 23.68 49.36 51.45

Lower Limit 95% CI 10.17 45.68 29.23 78.62 48.24

Upper Limit 95% CI 37.20 53.05 50.29 92.25 54.66

Table 2.9: Contingency Table for Isolation by HorseStatus

Not Isolated Isolated Total

Alive 321 131 452

Dead 302 177 479

Total 623 308 931

% mortality 48.48 57.47 51.45

Lower Limit 95% CI 44.55 51.95 48.24

Upper Limit 95% CI 52.40 62.99 54.66

Figure 2.1: Bargraph showing interaction between Province and HorseStatus. Mortality

rates are greater than 50% for FS, NCP, NWP and WCP
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Figure 2.2: Bargraph showing interaction between Vaccination and HorseStatus. There

are very few observations for Vaccinated Late. Mortality is greater than 50% only for

Unvaccinated class.

Figure 2.3: Bargraph showing interaction between Presentation and HorseStatus. Mor-

tality is greater than 50% for Mixed and Pulmonary forms. Unknown presentation

makes up a large proportion of observations.
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Figure 2.4: Bargraph showing interaction between Treatment and HorseStatus. Conven-

tional treatment makes up the majority of the observations, and Conventional, Homeo-

pathic and Alternative treatments are all found to be protective. Mortality is far greater

than 50% where no treatment was administered.

Figure 2.5: Bargraph showing interaction between Isolation and HorseStatus. Most

animals were not isolated, and mortality was lower amongst these animals. Isolated

horses had a mortality greater than 50%.
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Figure 2.6: Cases and Mortality for KwaZulu Natal.

modelling purpose, we chose to focus on Kwa-Zulu Natal, and therefore only the cases

whose Province code was listed as KZN were included in this data set. Note that the

primary and additional cases were aggregated to form this dataset.

For each month, the number of cases, number of confirmed cases (where ‘confirmed’

was taken to have “ Classification” listed either as Confirmed by Vet or Confirmed by

Lab), number of mortalities and number of confirmed mortalities were included in the

data. Several time variables were included - including Year (2005 to 2010), Month (1 to

12), Date (2005/11 to 2010/05). Time in fractions of a year was also calculated (1/12,

2/12,...,12/12,13/12,...) in order to have a continuous time variable for use in modeling.

Plots of Cases and Mortality are included for both KwaZulu Natal and South Africa

in Figure 2.6 and Figure 2.8 respectively. Figure 2.7 is a simple bar graph showing

average numbers of cases per month over the entire dataset.

In Figure 2.6 it is clear that there exists a highly seasonal pattern in the occurrence

of cases. Most of the cases occur between October and May each year, reaching a peak

intensity of outbreak between December and March. The peak occurrence differs slightly

in timing between the years with peaks occurring in March 2006, March 2007, March
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Figure 2.7: Simple bar graph showing the average number of cases per month for the

five outbreaks in the AHS Trust data for KwaZulu Natal. This exhibits the seasonal

pattern, with cases starting in October and increasing in number until March, and then

decreasing until the off season between June and September.
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Table 2.10: Table displaying summarized values of outbreaks of AHS for KwaZulu Natal

between 2005 and 2010
Outbreak Cases Mortalities Percentage [95% CI] Duration

Mortalities (months)

2005-2006 96 23 23.96 [15.42, 32.50] 5

2006-2007 38 27 71.05 [56.63, 85.47] 8

2007-2008 65 36 55.38 [43.30, 67.47] 9

2008-2009 50 29 58.00 [44.32, 71.68] 6

2009-2010 20 8 40.00 [18.53, 61.47] 4

2008, April 2009 and April 2010. The number of cases in each peak differs greatly too -

with a maximum total in 2006 of 58, 2007 of 32, 2008 of 25, 2009 of 18 and 2010 of 13.

The mortality follows the same trend but with only a proportion of the animals dying.

Summarized values from the outbreaks are displayed in Table 2.10. The most severe

outbreak for KwaZulu Natal occurred in the 2005-2006 season with a total case count

of 96, and the minimum occurred in the 2009 - 2010 season with 20. The observed

probability of mortality per outbreak ranges from 0.2396 to 0.7105. The duration of the

outbreaks was between 4 and 9 months.

The line graphs in Figure 2.8 have much the same pattern as that in Figure 2.6, with

highly seasonal trends and all cases occurring within a narrow band of months. However

whereas in the KwaZulu Natal instance all cases occurred between October and May,

in the South African 2007-2008 outbreak a single case occurred as early as September.

This was also the outbreak with the longest duration of 10 months (as outlined in table

2.11). The latest cases were observed in June. The most severe outbreak appears to

have occurred in the 2005-2006 season.

In these plots it is even more clear how the intensity of the outbreaks differs in dif-

ferent years. Possible causes of this disparity are differences in temperature, rainfall,

midge population and many more.

Summarized values of the South African outbreaks are shown in Table 2.11. The

maximum cases observed over the course of an outbreak is 849 (in 2005-2006), and the

minimum is 83 (in 2009-2010). Once again it is of interest to note that the outbreaks

differ so greatly, with the largest outbreak following the smallest. The mortality ranges

from 17.31% to 58.72%. The length of outbreak ranges between 7 and 10 months.
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Figure 2.8: Cases and Mortality for South Africa

Table 2.11: Table displaying summarized values of outbreaks of AHS for South Africa

between 2005 and 2010
Outbreak Cases Mortalities Percentage [95% CI] Duration

Mortalities (months)

2005-2006 849 147 17.31 [14.77, 19.86] 7

2006-2007 212 108 50.94 [44.21, 57.67] 8

2007-2008 709 410 57.83 [54.19, 61.46] 10

2008-2009 235 138 58.72 [52.43, 65.02] 9

2009-2010 83 38 45.78 [35.06, 56.50] 8
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Data Limitations

There are some limitations to the data from this source. Firstly, although the disease is

notifiable by law, there is poor reporting of the disease and it is difficult to know what

percentage of the cases are actually recorded. Specifically in the rural areas, where

vaccination is not routinely practised and education about the disease is low, disease

and deaths are likely to go unreported. Not having access to a veterinarian is another

factor which may reduce the likelihood of reporting the disease. It is also uncertain what

percentage of the cases recorded are truly AHS, as there can be some confusion with

Equine Encephalitis (particularly in the Pulmonary form), and only a small percentage

of the cases are confirmed by laboratory testing. There are also certain horse owners who

are more likely to report cases. Those who are competing have an interest in reporting

and control of the disease being improved as this facilitates the ability to move horses

around the country.

Secondly, some of this data were poorly reported, as shown in Figure 2.9. Here the

percentage of cases where Vaccination Status, Age, Presentation, Confirmation of Case,

and GPS coordinates have been reported are given. By Presentation filled in, we mean

where Presentation was not filled in as “Don’t Know”, and by Confirmation of Case we

mean where Classification was not “Suspected”. The reporting of these fields can be

seen to be relatively poor. In Figure 2.10 the same information is shown grouped into

the different outbreaks. None of these fields were reported for the 2005-2006 outbreak, as

this was the first year that the African Horse Sickness Trust had begun reporting cases.

From the 2006-2007 outbreak reporting was much improved in most fields, however

the low reporting of Age in the first two outbreaks makes us sceptical of its use for

modelling purposes. The reporting of GPS coordinates is too scarce in use in spatial

models. Improved reporting is an important consideration for future studies, and the

data’s limitations are an important consideration in any conclusions drawn from models

developed.

This data set does, however, represent the only one of its kind and is therefore

extremely important to platform further research and improved reporting.

2.2 South African Weather Service Data

Meteorological data were obtained from the South African Weather Service (SAWS).

Data were only available for five locations, and so the locations were selected based on

how widespread they were (whether they could be said to be representative of the entire

province) and how many cases were reported for each area. The locations chosen were

Ixopo, Ladysmith, Pietermaritzburg, Newcastle and Vryheid. Their locations are shown

in Figure 2.11.

The variables available from each of these locations were Average Daily Maximum
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Figure 2.9: Bargraph displaying percentage of cases where the fields Vaccination Status,

Age, Presentation, Confirmation of Case, and GPS co-ordinates were recorded. By

Confirmation of case, we mean where the Classification was not “Suspected”.

Temperature, Average Daily Minimum Temperature, and Monthly Rainfall. The Av-

erage Daily Maximum Temperature and Average Daily Minimum Temperatures were

the monthly averages of the maximum and minimum daily temperatures respectively.

Monthly Rainfall was the cumulative rainfall in millimeters over the month.

In order to get average measures across the province, the three variables were av-

eraged over the five locations. Since the locations are fairly well spread out over the

province this was taken as an indicator of what the weather variables were over the en-

tire province. This was used in Chapter 3 for the analysis. The plots of Average Daily

Maximum Temperature, Average Daily Minimum Temperature and Average Monthly

Rainfall are shown in Figures 2.12 and 2.13. Plots for individual location temperatures

and rainfalls are given in Appendix A.
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Figure 2.10: Bargraph showing percentage of cases by outbreak where the fields Vacci-

nation Status, Age, Presentation,and GPS co-ordinates were recorded, and where Clas-

sification was not “Suspected” (Confirmation of Case). None were completed in the

first outbreak shown. Vaccination status is thereafter quite well completed at over 90%.

Age has been fully completed for the last three outbreaks. Presentation has fluctuated

between 80 and 90 %, and Confirmation of case has not been well completed at between

60 and 70 %. GPS coordinates are consistently low.

Table 2.12: Basic descriptive statistics for Average Maximum Daily Temperatures for

the five locations
IXO LDS PMB NWC VRY

Number of observations 112 120 126 126 126

Missing 5 10 0 0 0

Minimum Observation 18.2 17.8 20.8 18.6 16.6

Maximum Observation 28.4 31.60 31.2 31.6 28.1

Range 10.2 13.8 10.4 13 11.5

Mean 23.5268 25.2733 26.0468 25.3222 23.5632

Median 23.75 25.65 26.25 25.60 23.90

Mode 24.80 21.90 26.60 24.40 23.5

Variance 5.6113 10.5763 5.2118 9.3443 7.2088

Standard Deviation 2.3688 3.2521 2.2829 3.0568 2.6849
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Figure 2.11: Map showing approximate locations from which weather data was avail-

able in KwaZulu Natal ( c⃝2010 Google - Map Data c⃝2010 AfriGIS (Pty) Ltd, Tele

Atlas, Tracks4Africa). The weather stations’ locations (Ixopo, Ladysmith, Newcastle,

Pietermaritzburg, Vryheid) are marked with a sun symbol as shown in the Key.
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Figure 2.12: Average of the temperature variables of Ixopo, Ladysmith, Newcastle,

Pietermaritzburg and Vryheid.

Figure 2.13: Average of the rainfall in millimeters of Ixopo, Ladysmith, Newcastle,

Pietermaritzburg and Vryheid.
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Table 2.13: Basic descriptive statistics for Average Minimum Daily Temperatures for

the five locations
IXO LDS PMB NWC VRY

Number of Observations 112 126 126 126 126

Missing 5 6 0 0 0

Minimum Observation 2.0 0.8 4.8 1.7 2.0

Maximum Observation 17.3 27.2 20.0 17.4 17.3

Range 15.3 26.4 15.2 15.7 15.3

Mean 10.3861 10.5817 13.3754 11.0206 10.5810

Median 11.20 12.05 14.40 12.30 11.35

Mode 11.10 14.20 18.50 15.50 14.70

Variance 22.2523 26.6602 19.5495 4.5668 16.9044

Standard Deviation 4.7172 5.1633 4.4215 20.8561 4.1115

Table 2.14: Basic descriptive statistics for Monthly Rainfall for the five locations

IXO LDS PMB NWC VRY

Number of Observations 112 126 126 126 126

Missing 18 6 0 0 0

Minimum Observation 0.0 0.0 0.0 0.0 0.0

Maximum Observation 254.0 293.6 192.8 221.8 199.8

Range 254.0 293.6 192.8 221.8 199.8

Mean 60.8500 54.7159 67.5603 43.5760 34.9952

Median 53.50 35.60 58.90 26.60 16.80

Mode 0.00 0.00 0.00 0.00 0.00

Variance 2458.0413 3318.1321 3240.3359 2315.2991 1895.4486

Standard Deviation 49.5786 57.6032 56.9240 48.1176 43.5368
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Chapter 3

Generalized Linear Models

3.1 Introduction

Consider the classical linear model for a continuous Gaussian or Normal response Y .

Let y1, y2, ..., yn be a random sample from Y with corresponding predictor variables

x1, x2, ..., xp.

A linear model for such data is

yi = β0 + β1x1i + β2x2i + ...+ βpxpi + ϵi = x′
iβ, (3.1)

where x′
i = (1, xi1, ..., xip) and β0, β1, ..., βp are the regression coefficients. The general

linear model allows the inclusion of both continuous and categorical predictor variables.

In matrix form the model for all the data is compactly written as

Y = Xβ + ϵ (3.2)

where Y is an n × 1 vector of response variables, X is the n × p design matrix and ϵ

is a vector of measurement errors. Let I be the n× n identity matrix. It is commonly

assumed that ϵ ∼ MVN(0, σ2I) which implies that the yi’s are mutually independent.

If the independence assumption is not necessarily true then we let ϵ ∼ MVN(0,V )

where V is the variance-covariance matrix. An alternative form of the model above is

E(yi) = x′
iβ. (3.3)

Here the mean is directly related to a linear predictor x′
iβ. This version of the model

specification easily extends to the case of non-Normal data, leading to Generalized Linear

Models. (Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989).

As an example, consider the case where data represents disease incidence and we

wish to model this as a response. In this case, the response can take on discrete values

above zero. Therefore the use of Normal distribution to describe it would be inaccurate,
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as the Normal distribution is continuous while the distribution for counts is discrete. In

the case where the response is binary it too could not be related to a Normal variable.

Therefore Generalized Linear Models (GLM’s) due to Nelder and Wedderburn (1972)

are used, where other assumptions can be made about the data’s distribution. A more

extensive account of GLMs is given by McCullagh and Nelder (1989). GLMs have three

components associated with them. The random component specifies the distribution of

the response variable. The systematic component encompasses the explanatory variables

in the predictor function. The link function specifies the function which equates the

mean of the response to the systematic component.

Suppose we wish to model a set of response variables Yi with means µi i = 1, 2, ..., N

which are known to follow a certain distribution (not necessarily Normal) as a function

of several variables X1i, X2i, ..., Xpi. GLMs are models of the form

g(µi) = ηi = β0 +

p∑
j=1

βjxij (3.4)

g(µi) is a monotonic, differentiable function known as the link function, which is

chosen dependent on the distribution of Y . βj , j = 0, 1, 2, ..., p are the set of p + 1

regression parameters for the model, and the sum β0 +
∑p

j=1 βjxij is the systematic

component of the model.

In matrix form, this can be written as η = Xβ where

η =



η1

η2

η3

.

.

.

ηN


, β =



β0

β1

β2

.

.

.

βp


, and X is the N × (p+1) matrix of explanatory variables.

The ith component of the vector η relates g(µi) to the linear predictor with covariates

from the ith unit or observation.

3.2 Exponential Family of Distributions

For the classical GLM (Nelder and Wedderburn, 1972) it is necessary that the response

variable be from a distribution that belongs to the exponential family. In other words,

the probability mass function can be written in the form:

f(yi, θ) = exp[(yiθi − b(θi))/a(ϕ) + c(yi, ϕ)], (3.5)

where θ is referred to as the natural parameter, and for the canonical link function

g(µi) = θi and therefore θi = β0 +
∑

j βjxij . It is usually sufficient to assume a(ϕ) =

ϕ. ϕ is called the dispersion parameter, and affects the variance of the response Y
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(see section 3.4). If ϕ ̸= 1, the model is said to be either overdispersed (ϕ > 1) or

underdispersed (ϕ < 1). However, for standard distributions such as the Binomial

and Poisson it is usually assumed that ϕ = 1. Many distributions including Normal,

Exponential, Gamma, Chi-Square, Poisson, and Binomial belong to the Exponential

family of distributions.

In the case of counts data for Poisson or Binomial models we normally assume ϕ = 1.

If ϕ ̸= 1 it means we cannot fully specify the probability models and hence the likelihood

of the data except perhaps to make assumptions about the first two moments. This is

precisely the reason that led Wedderburn (1974) to develop the idea of quasi-likelihood.

Jorgensen (1986) showed that there is no GLM family on the positive integers that

satisfies the mean-variance relationship V (µ) = ϕµ with ϕ > 1.

3.3 Log-Likelihood Equation and Deviance

In what follows, we assume the likelihood of interest exists. The log-likelihood equation

is denoted as ℓ =
∑

i li, where ℓi = log f(yi; θi, ϕi). If the distribution is from the

exponential family, this can be simplified using Equation (3.5) to

ℓi =
[yiθi − b(θi)]

a(ϕ)
+ c(yi, ϕ) (3.6)

We denote the log likelihood for means µ = (µ1, µ2, ..., µN )′ by l(µ,y).

The Deviance is then defined as shown in Equation (3.7), where ℓ(µ̂,y) is the max-

imum possible log-likelihood for the model in question, and ℓ(y;y) is the log-likelihood

for the saturated model. Because the saturated model has a parameter for every point

it will have perfect fit, and hence the estimated mean for each observation will be the

point itself, that is µ̂ = y.

Since the deviance shows the difference between the log-likelihoods of the saturated

model and the model to be tested, it is said to be a measure of ‘lack of fit’ of the model.

It is therefore important in checking the fit of the model as a smaller deviance indicates

a model with better fit. Deviance is given by

D(y, µ̂) = −2 log{ maximum.likelihood.for.the.model

maximum.likelihood.for.saturated.model
} = −2[ℓ(µ̂;y)− ℓ(y;y)].

(3.7)

From Equation (3.6) we can see that if the maximum likelihood estimates of θ and µ

from the model of interest are denoted θ̂ and µ̂i, and the estimate of θ from the saturated

model as θ̃, then from Equation (3.7) we can write the deviance in the form:

D(y, µ̂) = −2{ℓ(µ̂;y)− ℓ(y;y)}, (3.8)

= 2
∑
i

{
[yiθ̃i − b(θ̃i)]

a(ϕ)

}
− 2

∑
i

{
[yiθ̂i − b(θ̂i)]

a(ϕ)

}
,
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=
2

a(ϕ)

∑
i

{yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)}.

If we assume that a(ϕ) = ϕ/ωi, which is usually a reasonable assumption, then from

Equation (3.8) we can write:

D(y, µ̂) = 2
∑
i

ωi

ϕ
[yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)]. (3.9)

The statisticD(y, µ̂)/ϕ is called the scaled deviance. This is a more general approach

and holds when the dispersion parameter is not equal to 1. As with the deviance in

Equation (3.7), a smaller scaled deviance will indicate a model with a better fit. To

compare nested models therefore we can use change in scaled deviance.

3.4 Mean and Variance of the GLM

From the definition of the log-likelihood given in Equation (3.6), we can get the first

and second order partial derivatives with respect to θi:

∂ℓi
∂θi

=
[yi − b′(θi)]

ϕ
and

∂2ℓi
∂2θi

=
−b′′(θi)

ϕ
, (3.10)

assuming a(ϕ) = ϕ.

The general likelihood results state that

E

(
∂ℓ

∂θ

)
= 0, and − E

(
∂2ℓ

∂θ2

)
= E

(
∂ℓ

∂θ

)2

. (3.11)

For observation i having log-likelihood equation ℓi =
[yiθi−b(θi)]

a(ϕ) + c(yi, ϕ), we have

E[(Yi − b′(θi))/a(ϕ)] = 0 and so:

E(Yi) = µi = b′(θi) (3.12)

and from the second equation:

b′′(θi)/ϕ = E[(Yi − b′(θi))/ϕ]
2 = var(Yi)/[ϕ]

2 and therefore:

var(Yi) = b′′(θi)ϕ (3.13)

If ϕ > 1, in other words overdispersion exists, then var(Yi) > b′′(θi). This is how

overdispersion affects the variance function. For example under a Poisson model b(θi) =

eθi which means that

µi = b′(θi) = eθi . (3.14)

It follows therefore that

V ar(Yi) = ϕb′′(θi) = ϕeθi = ϕµi. (3.15)
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Therefore when ϕ = 1, V ar(Yi) = v(µi) = µi and the variance is equal to the mean.

But under an overdispersed model var(Y ) > µ if ϕ > 1. Thus standard errors assuming

ϕ = 1 when in reality ϕ > 1 will be underestimated.

3.5 Asymptotic Covariance Matrix for β

To derive the asymptotic covariance matrix for β, first we must define the score equations

for the GLM formulation. The score equations are of the form

∂ℓ(β)/∂βj =
∑
i

∂ℓi/∂βj = 0. (3.16)

Using the chain rule of differentiation, and Equation (3.6), we find the likelihood

equations to be

∂ℓ(β)

∂βj
=

N∑
i=1

(yi − µi)xij
var(Yi)

∂µi

∂ηi
= 0, j = 1, 2, ..., p (3.17)

A useful result from Cox and Hinkley (1974) states that for distributions from the

exponential family:

E

(
∂2ℓi

∂βj∂βk

)
= −E

(
∂ℓi
∂βj

)(
∂ℓi
∂βk

)
. (3.18)

Using this, and the result in Equation (3.17), we find that

E

(
− ∂2ℓ(β)

∂βj∂βk

)
=

N∑
i=1

xijxik
var(Yi)

(
∂µi

∂ηi

)2

. (3.19)

In a compact matrix form, the information matrix J has the form

J = X ′WX (3.20)

where W is a diagonal matrix with elements wi = (∂µi/∂ηi)
2/var(Yi). Thus it can be

seen that the elements of W depend on the link function. The asymptotic covariance

matrix for β is the inverse of this matrix, estimated by

ĉov(β̂) = Ĵ−1 = (X ′ŴX)−1. (3.21)

3.6 Fitting the GLM

For Normal data, Ordinary Least Squares (OLS) method estimates are equivalent to

finding Maximum Likelihood Estimates (MLE’s) for the parameters βi. This method

serves to minimize the sum of squared deviances of the fitted line. The MLE for β is

found to be

β̂ = (X ′X)−1X ′Y. (3.22)
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However, when Normality of the response data does not hold, the score equations

are usually non-linear in β and therefore iterative methods are necessary. This requires

the use of Iterative Weighted Least Squares methods (IWLS).

The model can be fitted using the Newton-Raphson method, amongst other possible

methods. This is an iterative method shown in Equation (3.23).

β(t+1) = β(t) − (H(t))−1u(t), (3.23)

where β(t) is the estimate for β at the tth iteration, Ht is called the Hessian matrix

(which is assumed to be non-singular), having components

hab =
∂2ℓ(β)

∂βa∂βb
, (3.24)

and

u(t) =



∂ℓ(β)/∂β1

∂ℓ(β)/∂β2

.

.

.

∂ℓ(β)/∂βp


. (3.25)

The Newton-Raphson method comes about by taking the Taylor expansion of L(β)

and taking the first order derivative, and then equating to zero. That is,

ℓ(β) ≈ ℓ(β(t)) + u(t)(β − β(t)) + (
1

2
((β − β(t))′H(t)(β − β(t)) (3.26)

∂ℓ(β)/∂β ≈ u(t) +H(t)(β − β(t)) = 0 (3.27)

which, when solved for β, gives us the equation shown in (3.23), provided H(t) is in-

vertible.

An alternative method is the Fisher Scoring equation which is given in Equation

(3.28). Let J denote the information matrix with elements −E(∂2ℓ(β)/∂βi∂βj), in

other words −J = E(H). The algorithm in Equation (3.23) can now be written as:

β(t+1) = β(t) + (J (t))−1u(t), (3.28)

where the information matrix J is defined as in Equation (3.20) and W is a diagonal

matrix with elements wi = (∂µi/∂ηi)
2/var(Yi). Then

J (t) = X ′W (t)X, (3.29)

where W (t) is evaluated at β(t).
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An initial estimate for β must be substituted into the equation for β(0). The iterative

cycle is computed until changes in ℓ(β(t)) are small. The local maximum of ℓ(β) will

then have been reached, and the derivative will be approximately zero. At this stage,

since u(t) ≈ 0, β(t+1) ≈ β(t), the iterative process may halt. The number of iterations

required to calculate the maximum likelihood estimate of β depends on the accuracy of

the initial estimate.

SAS proc GENMOD utilizes the Fisher scoring method up to a certain iteration (by

default 1) which can be specified by the SCORING option in the MODEL statement,

after which it uses the Newton-Raphson method until convergence.

When the canonical link is used, however, it can be shown that the two methods are

identical since H = −J . To show this, note that the log-likelihood contribution from

observation i is given by

ℓi =
1

a(ϕ)
[yiθi − b(θi)] + c, (3.30)

and

θi =
∑

βjxij , (3.31)

then

∂ℓi
∂βj

=
yixij − b′(θi)xij

a(ϕ)
=

(yi − µi)xij
a(ϕ)

(3.32)

and
∂2ℓi

∂βj∂βk
= −

(
∂µi

∂βk

)
xij
a(ϕ)

. (3.33)

It can be seen that since this does not depend on the observation yi, the value of

∂ℓ(β)/∂βj∂βk will be equal to its expectation, and H = −J , therefore making the

Fisher scoring and Newton-Raphson methods equivalent.

3.7 Testing Goodness of Fit

For the special case where ϕ = 1 (ie. there is no overdispersion), nested models can

be tested against each other. Consider two models, where model 2 is nested in model

1. In other words, Model 1 has p explanatory variables X1, X2, ..., Xp and Model 2 has

q explanatory variables X1, X2, ..., Xq where q < p and the X1, X2, ..., Xq are a subset

of X1, X2, ..., Xp. Model 1 has fitted values µ̂1, deviance D(y, µ̂1), and log-likelihood

ℓ(µ̂1). Model 2 has fitted values µ̂2, deviance D(y, µ̂2), and log-likelihood ℓ(µ̂2). Since

Model 2 has fewer explanatory variables, it cannot have a greater log-likelihood. Thus

ℓ(µ̂2) ≤ ℓ(µ̂1). It will then follow that D(y, µ̂2) ≥ D(y, µ̂1).

To test the models against each other we use:

−2[ℓ(µ̂2;y)− ℓ(µ̂1;y)] = −2[ℓ(µ̂2;y)− ℓ(y;y)]− 2[ℓ(µ̂1;y) + ℓ(y;y)] (3.34)

= D(y; µ̂2)−D(y; µ̂1).
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When this difference is large, Model 2 fits poorly when compared to Model 1. If

one finds this difference close to zero, it implies that Model 2 fits very nearly as well

as Model 1. This test statistic is approximately χ2 distributed with degrees of freedom

equal to q− p (Agresti, 2002). Thus if χ2
calculated > χ2

α;p−q, we will conclude that Model

2 is significantly worse in fit than Model 1.

3.8 Binomial GLM

Suppose we are interested in n identical trials which have a binary outcome - denoted

as either success or failure. Define a response variable yi where yi = 1 if success, and

yi = 0 if failure for i = 1, 2, ..., n. The probability of success P (Yi = 1) = π and the

probability of failure P (Yi = 0) = 1− π.

The Binomial distribution has random variable which is the total number of successes

in n trials, that is Y =
∑n

i=1 yi, and has a probability mass function given as

p(y;π, n) =

(
n

y

)
πy(1− π)n−y, y = 1, 2, ..., n, (3.35)

where y is the number of successes,
(
n
y

)
= n!

y!(n−y!) , and n is the number of trials.

Equation (3.35) can be written in the form of (3.5) as:

p(y;π, n) = exp{y log( π

1− π
) + n log(1− π) + log

(
n

y

)
}, (3.36)

with θi = log( π
1−π ), b(θi) = −n log(1 − π). Hence we find that µi = b′(θi) = nπ, and

var(Yi) = b′′(θi)a(ϕ) = nπ(1−π) as expected for a Binomial distribution, with a(ϕ) = 1.

Relating the probability directly to a normal regression model would incur major

problems. Take, for example, a simple linear regression model. If the equation was

structured as π(x) = β0 + β1x, then we cannot rule out values of x for which π(x) < 0

or π(x) > 1. This has no statistical meaning, as the range of probabilities is expected

to lie between 0 and 1. The GLM formulation of this problem, with the logit link, has

the distinct advantage that the probability is restricted to its natural range.

The GLM can be written as

logit(πi) = β0 +

p∑
j=1

βjxij , (3.37)

or in matrix form as:

logit(π) = Xβ, (3.38)

44



where

β =



β0

β1

.

.

.

βp


, (3.39)

are regression coefficients, and X is the n× (p+1) matrix of explanatory variables, with

the first column consisting of ones corresponding to the intercept coefficient β0.

The probability π̂(xi) can be found using the following equation:

π̂(xi) =
exp(

∑p
j=1 βjxij)

1 + exp(
∑
βjxij)

, (3.40)

where xi = (1, xi1, xi2, ..., xip). Note that the regression coefficients βj j = 0, 1, 2, ..., p

are interpreted in terms of the logit scale.

3.9 Poisson GLM for Counts Data

Very often the distribution used for counts data is the Poisson distribution, characterized

by the probability mass function given in Equation (3.41) where the mean is given by

µ. This is because counts may take on non-negative integer values, and therefore the

Poisson distribution is the more realistic distribution given by

p(yi;µi) =
e−µiµyi

i

yi!
, yi = 1, 2, . . . (3.41)

Equation (3.41) can be re-written in the form of Equation (3.42), which has natural

exponential form with θi = log(µ), and b(θi) = µ. That is,

f(yi, µi) = exp{yi log(µi)− µi − log(yi!)}. (3.42)

The mean can therefore be found to be µi, and the variance µi which is the expected

outcome for the Poisson distribution. The canonical link function θ is the log link.

Poisson distributed data can therefore be modeled using a log-link GLM. Therefore, the

GLM equation for Poisson data is given by

logµi =

p∑
j=1

βjxij , i = 1, 2, . . . , N. (3.43)

or in matrix form given by

log(µ) = Xβ, (3.44)

where β = (β0, β1, ..., βp)
′, are regression coefficients, and X is the n×(p+1) matrix

of explanatory variables. One advantage of the GLM formulation is that the predictor
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variables can include both continuous and categorical variables.

3.10 Poisson Generalized Linear Model for African

Horse Sickness disease incidence over time

3.10.1 African Horse Sickness Trust Data

We intend to model the number of cases using a Generalized Linear Model for counts

data. Assuming a Poisson distribution for the counts data - we define the response as

the number of cases in a particular month - we model the response as a function of the

year and month of occurrence as categorical variables.

First we attempt to model the total cases for KZN as a function of year and month.

Since month runs from 1 to 12 for each year, and we expect the monthly effects to

be relatively equal for each year, we treat it as a nested variable in year. However,

in modeling this scenario, it is found that the model is saturated, meaning there are

as many estimated parameters as data points. The fact that there are zero degrees of

freedom for the deviance indicates the fact that the model is saturated.

Since this model is found to be saturated, we try to model the cases as a function

of additive effects of year and month. Both year and month are treated as categorical

variables, but unlike the above model we do not treat Month as though it is nested in

Year. The results are shown in Table 3.1.

This model is unsaturated, however we do have the problem that the negative of the

Hessian is not positive definite. Therefore the fit of this model will be questionable.

In the previous two models both month and year were treated as categorical variables.

However this does not take into account that predicting a categorical effect for a year in

the future is impossible, and therefore these models have no value as predictive models.

It is therefore important to treat year as a continuous variable, as prediction is an

important aspect of this model.

We try to model instead treating month as categorical and year as continuous. How-

ever it is clear that year cannot be taken as a linear term, as the number of cases

fluctuates greatly within each year. We therefore wish to introduce a trigonometric

term for year which will take into account these seasonal fluctuations.

In a similar manner to that used in Lord (1996), we use the term sin(2πt) in the GLM.

In the paper by Lord, the abundance of the vector was modeled using the functionN(t) =

N(0)eµδ sin(θt) or log(N(t)) = log(N(0))+µδ sin(θt) where µ and δ were constants, N(0)

the initial population of the vector, and θ the scaling parameter (to ensure the period

of one year). In this case t is a continuous variable in years (1/12, 2/12, 3/12...), and

θ = 2π = 6.28319. Since we use the log link, we can fit the term sin(2πt) to the same

effect. The results of fitting this as a single term are shown in Table 3.2. The term
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Table 3.1: SAS results for the model expressing cases of AHS in KZN as a function of

year and month.

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 38 152.8661 4.0228

Scaled Deviance 38 152.8661 4.0228

Pearson Chi-Square 38 161.5248 4.2507

Scaled Pearson X2 38 161.5248 4.2507

Log Likelihood 423.9170

WARNING: Negative of Hessian not positive definite.

sin(2πt) when fitted alone is found to be significant (p<0.0001), with a coefficient of

3.0250. A plot of the observed and predicted cases over time is shown in Figure 3.10.1.

Table 3.2: SAS output for GLM expressing AHS cases in KZN as a funtion of Sin(2πt)

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 53 263.7222 4.9759

Scaled Deviance 53 263.7222 4.9759

Pearson Chi-Square 53 318.6727 6.0127

Scaled Pearson X2 53 318.6727 6.0127

Log Likelihood 368.4890

Analysis Of Parameter Estimates

Parameter DF Estimate Std Error Wald 95% CI χ2 Pr > χ2

Intercept 1 -0.1004 0.2011 -0.4946 0.2937 0.25 0.6175

sinyr 1 3.0250 0.2347 2.5650 3.4849 166.16 <.0001

Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.
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Figure 3.1: Plot of predicted and observed cases against time for the model

log{E(Cases)} = β0 + β1sin(2πt)

Next we fit the categorical month term along with sin(2πt). The results are shown in

Table 3.3. Again we are warned that the negative of the Hessian is not positive definite,

and we should therefore not use this model.

A model with categorical month as the only explanatory variable is then fitted. The

results are shown in Table 3.4. Month 12 is held as the reference category, and the

months that are found to be significantly different from the reference category are months

1, 2, 3, 4 and 9. This correlates well with what we see in the plot of cases against time

- as these are the months which have the highest number of cases.

Although the model with month as the explanatory variable appears to fit better

than that with sin(2πt), as it has a lower deviance (222.1145 against 263.7222) and a

higher log-likelihood (389.2928 as opposed to 368.4890), the fit is questionable since the

negative of the Hessian is not positive definite. We also find that the model with month

as explanatory variable does not fit significantly better than that with sin(2πt) only, as

the difference in log likelihood is 182.5461−171.9037 = 10.6424 < χ2
(0.05,11df) = 19.6752.

For these reasons we prefer to use the term sin(2πt), as it takes account of the

seasonal trend. Since it is a continuous variable it uses fewer degrees of freedom and

so is also a more parsimonious model than the model with categorical variable month

(which has 11 degrees of freedom). It also acts as a smoothing variable. It is expected

that once the weather variables are added to the model, it will explain more of the

variation.
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Table 3.3: SAS output for GLM expressing cases of AHS in KZN as a function of Month

+ Sin(2πt)

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 43 222.1145 5.1655

Scaled Deviance 43 222.1145 5.1655

Pearson Chi-Square 43 208.1408 4.8405

Scaled Pearson X2 43 208.1408 4.8405

Log Likelihood 389.2928

WARNING: Negative of Hessian not positive definite.

Table 3.4: SAS output for GLM expressing cases of AHS in KZN as a function of month

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 43 222.1138 5.1654

Scaled Deviance 43 222.1138 5.1654

Pearson Chi-Square 43 208.1400 4.8405

Scaled Pearson X2 43 208.1400 4.8405

Log Likelihood 389.2932

WARNING: Negative of Hessian not positive definite.

Analysis Of Parameter Estimates

Parameter DF Estimate Std Error Wald 95% CI χ2 Pr > χ2

Intercept 1 0.6931 0.3162 0.0734 1.3129 4.80 0.0284

Month 1 1 0.8755 0.3764 0.1378 1.6132 5.41 0.0200

Month 2 1 1.6094 0.3464 0.9305 2.2884 21.59 <.0001

Month 3 1 2.5257 0.3286 1.8816 3.1698 59.07 <.0001

Month 4 1 1.4351 0.3519 0.7454 2.1247 16.63 <.0001

Month 5 1 0.1823 0.4282 -0.6569 1.0215 0.18 0.6702

Month 6 1 -2.0794 1.0488 -4.1351 -0.0238 3.93 0.0474

Month 7 1 -24.3863 69802.59 -136835 136786.2 0.00 0.9997

Month 8 1 -24.3863 69802.59 -136835 136786.2 0.00 0.9997

Month 9 1 -2.0794 1.0488 -4.1351 -0.0238 3.93 0.0474

Month 10 1 -24.3863 69802.59 -136835 136786.2 0.00 0.9997

Month 11 1 -0.9163 0.5916 -2.0758 0.2432 2.40 0.1214

Month 12 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.
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3.10.2 South African Weather Service Data

The South African Weather Service data from Newcastle, Ixopo, Pietermaritzburg, La-

dysmith and Vryheid weather stations formed the basis for the weather variables used.

We were limited in the number of cities or towns from which data could be gained.

These locations were chosen due to their relative abundance of cases of AHS, as well

as their spread over Kwa-Zulu Natal. This ensured that the averages used would be as

close to representative of the entire province as was achievable.

For each of the locations, monthly average maxima and average minima of temper-

atures were supplied, as well as the total monthly rainfall in millimeters. The monthly

average temperature was then calculated by taking the mean of the maximum and min-

imum temperatures for that month. The temperature variables were averaged in order

to get the variables TMax and TMin. The rainfall variable was also averaged to get the

variable Rain.

As explained in the previous section, the variable sin(2πt) was chosen as the best

variable to account for the seasonal variation, and therefore was fitted along with the

defined weather variables in a Poisson GLM. Results are shown in Table 3.5. It can be

seen that all variables are significant at a confidence level of α = 0.05.

The overall model can be expressed as:

log(µ) = 9.3447+2.5690 sin(2πt)−0.5674.TMax+0.4399.TMin−0.0060.Rain (3.45)

A plot of the observed as well as predicted values according to this model are shown in

Figure 3.2. It can be seen that the variation in the number of cases is explained fairly

well, with some small differences in the predicted peaks. These differences are difficult

to accurately account for and capture in the model.

There may also, however, be dependencies that cannot be accurately measured. For ex-

ample, it is unknown if the herd immunity was for some reason increased in years which

had small outbreaks despite the climatic variables being favourable for propagation of

the disease. There are also, as described in Baylis, Mellor and Meiswinkel (1999), corre-

lations between large outbreaks and the warm phase of the El Niño Southern Oscillation

(ENSO).

3.10.3 Model Checking

McCullagh and Nelder (1983) discuss ways of checking that the model assumptions have

not been violated. Figures 3.3 and 3.4 show the model checking plots for the above GLM

in Equation (3.45). Figure 3.3 is the Q-Q Plot for the standardized residual deviance for

the model. This shows slight deviation from a straight line in the center, but elsewhere it

seems to adhere well to a line with slope approximately equal to 1. This fit validates our

choice of distribution, as well as showing that the GLM assumptions were not seriously

violated.
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Table 3.5: SAS output for Poisson GLM for cases of AHS in KZN as a function of time

and weather variables
Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 50 207.8348 4.1567

Scaled Deviance 50 207.8348 4.1567

Pearson Chi-Square 50 252.8398 5.0568

Scaled Pearson X2 50 252.8398 5.0568

Log Likelihood 396.4327

Algorithm converged.

Analysis Of Parameter Estimates

Parameter DF Estimate Std Error Wald 95% CI χ2 Pr > χ2

Intercept 1 9.3447 1.4826 6.4388 12.2505 39.73 <.0001

sinyr 1 2.5690 0.2380 2.1025 3.0355 116.52 <.0001

Tmax 1 -0.5674 0.0846 -0.7331 -0.4017 45.03 <.0001

Tmin 1 0.4399 0.0694 0.3038 0.5759 40.15 <.0001

Rain 1 -0.0060 0.0025 -0.0110 -0.0010 5.58 0.0182

Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

Figure 3.4 is a plot of the Standardized Residual Deviance for the model. We require

the scatter of the points to be completely random and centered around zero. Although

there does appear to be some clustering towards the bottom, a systematic component

was not identified, showing that the variance function used was adequate.

3.10.4 Interaction and Quadratic Effects

Although the model given in Equation 3.45 appears to behave reasonably well, we have

not investigated interaction effects or quadratic terms. We have not considered the

possibility that the effect of the variables may not be strictly linear on the incidence.

We therefore investigate certain other terms for their significance. The terms in-

cluded in the initial model are sinyr, Tmax, Tmin,Rain, quadratic terms Tmax2, Tmin2, Rain2,

and interaction terms Tmax × Rain, Tmin × Rain. We proceed in the same manner

as before, iteratively dropping the least significant term. The iterative fit statistics are

shown in Table 3.6. The final model results are shown in Table 3.7.
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Table 3.6: Table showing model information for ’Stepwise’ process removing insignificant

terms from Poisson GLM for disease incidence with constant Scale parameter

Model Information Model Checking Variable to be dropped

Log- Deviance DF Change in P > χ2
(df) Variable Type III df

Likelihood Deviance p-value

1 412.8146 175.071 45 Tmax*Rain 0.9347 1

2 412.8112 175.0777 46 0.0067 0.9348 Tmax 0.4482 1

3 412.5266 175.6469 47 0.5692 0.4506 . .

Table 3.7: SAS proc GENMOD results for the Poisson model for disease incidence with

constant Scale parameter

Analysis Of Parameter Estimates

Parameter DF Estimate Std Error Wald 95% CI χ2 Pr > χ2

Intercept 1 -0.8226 1.4862 -3.7355 2.0904 0.31 0.5799

sinyr 1 2.1965 0.2142 1.7767 2.6163 105.15 <.0001

Tmin 1 1.0603 0.2500 0.5703 1.5503 17.99 <.0001

Rain 1 -0.0434 0.0196 -0.0819 -0.0049 4.88 0.0272

Tmax2 1 -0.0099 0.0017 -0.0133 -0.0066 33.66 <.0001

Tmin2 1 -0.0403 0.0112 -0.0622 -0.0185 13.07 0.0003

Rain2 1 -0.0004 0.0001 -0.0006 -0.0002 11.75 0.0006

Tmin×Rain 1 0.0065 0.0021 0.0024 0.0106 9.69 0.0018

Scale 0 1.0000 0.0000 1.0000 1.0000
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Figure 3.2: Plot of predicted and observed cases against time for the model log(µ) =

9.3447 + 2.5690 sin(2πt)− 0.5674.TMax+ 0.4399.TMin− 0.0060.Rain

The final model equation is therefore

log(µ) = −0.8226 + 2.1965.sinyr + 1.0603Tmin− 0.0434.Rain (3.46)

−0.0099Tmax2 − 0.0403.Tmin2 − 0.0004.Rain2 + 0.0065.Tmin×Rain

A plot of the predicted incidence against that which was observed is shown in Figure

3.5.

Model Checking

The same model checking procedure is followed as before. Similar results are obtained.

Figures 3.6 and 3.7 show the QQ-plot and Residual plot respectively for the model in

Equation (3.46). The QQ-plot in Figure 3.6 shows slight deviation from a straight line

in the center, but the rest appears to adhere well to a straight line with slope 1. Figure

3.7, the plot of standardized deviance residuals, appears to show good random scatter.

There is slight clustering in one section of the graph but it is not so severe that we

believe the model assumptions are severely violated.
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Figure 3.3: Q-Q Plot for Poisson Generalized Linear Model

Figure 3.4: Residual Plot for Poisson Generalized Linear Model
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Figure 3.5: Plot of observed and predicted incidence for the model log(µ) =

−0.8226+2.1965.sinyr+1.0603Tmin− 0.0434.Rain− 0.0099Tmax2− 0.0403.Tmin2−
0.0004.Rain2 + 0.0065.Tmin×Rain

Figure 3.6: Q-Q Plot for Poisson Generalized Linear Model with interaction effects
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Figure 3.7: Residual Plot for Poisson Generalized Linear Model with interaction effects

Dependence of Incidence on the Explanatory Variables

Figure 3.8 shows the relation of incidence to Tmin and Rain, holding sinyr and Tmax

constant. A range of 0 to 20◦C was chosen for Tmin, and 0 to 200mm for Rain. These

ranges were chosen from their apparent natural ranges from the data. It can be seen that

for extreme low minimum temperatures, incidence is minimal regardless of the rainfall.

Incidence is also minimal for extremely high rainfall. As Tmin increases one begins to

see the dependence of incidence on both Tmin and Rain. Favourable conditions for

increased incidence appear to be with increased minimum temperatures and moderate

rainfall. Incidence is maximised for maximum Tmin within our range, and for Rain of

just over 100mm. Using Mathematica to find the exact maximum, it is found to be at

Tmin = 20◦C and Rain = 108.25mm. However, if we allow Tmin to vary in a wider

range, the maximum is found at Tmin = 25.4674 and Rain = 152.6730, although we

do not expect Tmin to exceed 20◦C based on our data. The maximum observed Tmin

was 16.96◦C.

The dependence on Tmax is more straightforward. Since the only dependence on this

variable is −0.0099Tmax2, we know that above zero this is a monotonically decreasing

function. Thus minimised maximum temperatures will maximise the incidence and vice

versa. Realistically, however, in our data Tmax only inhabited the range from 19.88 to

29.68◦C.
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Figure 3.8: Incidence µ plotted against Tmin and Rain, with sinyr = 0 and Tmax =

25 (constant) according to the model log(µ) = −0.8226+ 2.1965.sinyr+1.0603Tmin−
0.0434.Rain− 0.0099Tmax2 − 0.0403.Tmin2 − 0.0004.Rain2 +0.0065.Tmin×Rain. It

can be seen that incidence is maximised at relatively high minimum temperatures, and

with moderate rainfall.

3.10.5 Estimating the Scale Parameter

In the previous model, however, we did not account for the fact that overdispersion

may have occurred. We therefore re-fit the model with this in mind, starting with the

same set of explanatory variables. We choose to allow the Pearson scale parameter to

be estimated. The iterative process is shown in Table 3.8.

Table 3.8: Table showing model information for ’Stepwise’ process removing insignificant

terms from Poisson GLM for disease incidence, with Pearson Scale parameter

Model Information Model Checking Variable to be dropped

Log- Deviance Scale DF Change in P > χ2
(df) Variable Type III df

Likelihood Deviance p-value

1 106.1093 175.0710 1.9724 45 Tmax×Rain 0.9669 1

2 108.4622 175.0777 1.9509 46 0.0067 0.9348 Tmax 0.6975 1

3 110.3848 175.6469 1.9332 47 0.5692 0.4506 Rain 0.2533 1

4 108.6669 181.0309 1.9420 48 5.3840 0.0203 Tmin×Rain 0.2010 1

5 106.1967 187.5882 1.9566 49 6.5573 0.0104 Rain2 0.1833 1

6 103.5693 194.5838 1.9727 50 6.9956 0.0082 Tmin2 0.0822 1

7 96.3699 209.3860 2.0262 51 14.8022 0.0001

If a significance level of 0.05 were used, we would halt iterations at the 4th model.

After Rain is dropped, we see the change in deviance is 5.3840 with a probability of

0.0203, which is significant. Hence we would halt iterations and use model 3, where the

value of the scale parameter is 1.9332. This model minimises the scale parameter (and
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hence the variance), and maximises the log-likelihood - indicating that it is indeed the

best model. The results for model 3 are shown in Table 3.9. Model 3 is given as

log(µ) = −0.8226 + 2.1965.sinyr + 1.0603Tmin− 0.0434.Rain (3.47)

−0.0099Tmax2 − 0.0403.Tmin2 − 0.0004.Rain2 + 0.0065.Tmin×Rain

which is the same as the model without estimating the scale parameter, and the plot is

the same as in Figure 3.5.

Table 3.9: SAS proc GENMOD results for the Poisson model for disease incidence with

Pearson Scale parameter being estimated

Analysis Of Parameter Estimates

Parameter Estimate Std Error Wald 95% CI χ2 p-value

Intercept -0.8226 2.8731 -6.4538 4.8086 0.08 0.7746

sinyr 2.1965 0.4141 1.3849 3.0081 28.14 <.0001

Tmin 1.0603 0.4833 0.1130 2.0076 4.81 0.0283

Rain -0.0434 0.0380 -0.1178 0.0310 1.30 0.2533

Tmax2 -0.0099 0.0033 -0.0164 -0.0034 9.01 0.0027

Tmin2 -0.0403 0.0216 -0.0826 0.0019 3.50 0.0614

Rain2 -0.0004 0.0002 -0.0007 0.0000 3.14 0.0763

Tmin×Rain 0.0065 0.0040 -0.0014 0.0144 2.59 0.1073

Scale 1.9332 0.0000 1.9332 1.9332

3.10.6 Summary

In this section the incidence of AHS in KwaZulu-Natal has been modelled using a GLM

with Poisson distribution. After examining different combinations of explanatory vari-

ables, it is ascertained that the best model for our data is:

log(µ) = −0.8226 + 2.1965.sinyr + 1.0603Tmin− 0.0434.Rain (3.48)

−0.0099Tmax2 − 0.0403.Tmin2 − 0.0004.Rain2 + 0.0065.Tmin×Rain.

Although there is some evidence of overdispersion, estimation of the scale parameter

does not change the optimal model.
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3.11 Binomial Generalized Linear Model for African

Horse Sickness Mortality

In this section we model the probability of death as a binary variable or outcome for

each case. Therefore the Binomial distribution is used, with a logit link. We use all

possible explanatory variables at first, and drop them in a stepwise fashion according

to their Type III p-values in SAS. In Table 3.10, the general information about model

variables and variable levels is given. Table 3.11 shows the stepwise procedure for

dropping model terms. For each iteration, the log-likelihood and deviance are shown,

along with the variable with the highest Type III p-value. Then for each step where

a variable has been dropped, the difference in the deviances is shown and compared

to the relevant χ2 value. The variables “Pesticides” and then “Stabled” are dropped

successfully, but when “OtherCases” is dropped the model is significantly worse in fit

(p = 0.0499). Hence we use model 3, with significant variables Province, Classification,

OtherCases, Vaccination, Presentation, Treatment and Isolation. Results for parameter

estimates are shown in Table 3.12.

Table 3.10: Model Information for Binomial Generalized Linear model
Class Level Information

Class Levels Values Reference Category

Province 9 ECP; FS; GAU; KZN; LIM; WCP

MPU; NCP; NWP; WCP

Classification 4 LABC; SUS; SUSN; VETC VETC

OtherCases 2 0; 1 1

Vaccinated 3 0; 1; 2 0

Presentation 5 CARD; DK; PULM; MILD; MIX MILD

Treatment 4 ALT; CONV; HOM; NONE NONE

Stabled 2 0; 1 1

Pesticides 2 0; 1 1

Isolation 2 0; 1 1

Response Profile

Value Horse Status Total

1 Dead 474

2 Alive 449

3.11.1 Results

In Table 3.13 the estimates βi along with the adjusted odds ratio (OR) eβi and the expo-

nential of the Wald Confidence Interval are shown for the each of the levels. Significant
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Table 3.11: Stepwise Regression for Binomial Generalized Linear Model for Probability

of Mortality

Model Information Model Checking Variable to be dropped

Log- Deviance DF Change in p-value Variable Type III df

Likelihood Deviance p-value

1 -534.4895 1068.9791 898 Pesticides 0.4424 1

2 -534.7844 1069.5689 899 0.5898 0.4425 Stabled 0.2025 1

3 -535.5987 1071.1974 900 1.6285 0.2019 OtherCases 0.0504 1

4 -537.5207 1075.0414 901 3.844 0.0499

levels are indicated with an asterisk (*). eβi will be the odds ratio of mortality between

level i and the base category for each of the categorical variables. An explanation of

these figures along with potential reasons for the differences is given below. In each case

the 95% confidence interval is quoted in square brackets following the odds ratio.

A horse in Eastern Cape, Gauteng and KwaZulu Natal had odds of mortality of

0.3252 [0.1521; 0.6952], 0.5239 [0.2769; 0.9912] and 0.4902 [0.2496, 0.9627] respectively

times that of one in the Western Cape. It is possible that different serotypes are prevalent

in these provinces which have a lower probability of mortality than in other provinces.

A horse where the case was confirmed by a sample sent to the laboratory (LABC) had

odds around twice the odds (CI [1.2789; 5.0249]) of one where the case was confirmed

by a veterinarian (VETC). This is unsurprising, since an owner is far more likely to send

a sample to the laboratory if their horse has died. Both Suspected and Suspected but

lab negative were not significantly different in likelihood of mortality from VETC.

If there were no other cases recorded in the surrounding area (OtherCases = 0), then

the horse had odds of mortality 1.3682 [0.9994, 7.8729] times that if there were other

cases recorded. However the odds of mortality was not significantly different between

these two levels, as the confidence interval includes one.

Vaccinating a horse timeously halved the odds of the case ending up in mortality

compared with one which was not vaccinated (Vaccinated = 0) (CI [0.3154, 0.7698].

This indicates that vaccination protects the horse from mortality even in the case of it

contracting the disease. This is a biologically sound finding, as the horse would have

circulating antibodies which may help the immune system to fight off the disease.

A horse that was vaccinated late (Vaccinated = 1) had odds of 0.0685 [0.0103, 0.4559]

times that of an unvaccinated horse. This means that the odds ratio for a horse that

was vaccinated late was 0.0685/0.4927 = 0.1390 times that for one which was vaccinated

on time. This is a very interesting finding, since one would assume that vaccinating

timeously would give the horse greater protection from the disease and therefore also

from mortality. Although we cannot test (with this data) whether the horse will have

greater protection from contracting the disease when vaccinated timeously, one might
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Table 3.12: Model Information for Binomial GLM
Analysis Of Parameter Estimates

Parameter Estimate Std Error Wald 95% CI χ2 p-value

Intercept 3.6240 0.5435 2.5587 4.6893 44.46 <.0001

Province WCP Ref - - - - -

ECP -1.1232 0.3876 -1.8829 -0.3635 8.40 0.0038

FS -0.0210 0.5716 -1.1414 1.0994 0.00 0.9707

GAU -0.6464 0.3253 -1.2840 -0.0088 3.95 0.0469

KZN -0.7129 0.3444 -1.3879 -0.0380 4.29 0.0384

LIM -0.6134 0.4522 -1.4997 0.2728 1.84 0.1749

MPU -0.5368 0.3991 -1.3190 0.2454 1.81 0.1786

NCP 0.0345 0.6052 -1.1516 1.2207 0.00 0.9545

NWP 0.1887 0.4256 -0.6454 1.0228 0.20 0.6575

Classification VETC Ref - - - - -

LABC 0.9302 0.3491 0.2460 1.6144 7.10 0.0077

SUS -0.1623 0.2155 -0.5846 0.2601 0.57 0.4515

SUSN -0.8467 1.0812 -2.9658 1.2724 0.61 0.4336

OtherCases 1 Ref - - - - -

0 0.3135 0.1602 -0.0006 0.6275 3.83 0.0504

Vaccinated 0 Ref - - - - -

1 -2.6810 0.9671 -4.5766 -0.7855 7.68 0.0056

2 -0.7078 0.2277 -1.1540 -0.2616 9.67 0.0019

Presentation MILD Ref - - - - -

CARD 2.1453 0.6475 0.8762 3.4143 10.98 0.0009

DK 2.1441 0.6601 0.8504 3.4378 10.55 0.0012

PULM 3.5882 0.6909 2.2341 4.9424 26.97 <.0001

MIX 3.6606 0.6847 2.3187 5.0025 28.59 <.0001

Treatment NONE Ref - - - - -

ALT -2.8911 0.5282 -3.9264 -1.8559 29.96 <.0001

CONV -1.9780 0.3282 -2.6212 -1.3348 36.33 <.0001

HOM -2.1601 0.4122 -2.9680 -1.3521 27.46 <.0001

Isolation 1 Ref - - - - -

0 -0.4443 0.2056 -0.8472 -0.0415 4.67 0.0306

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.
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assume from these results that when vaccinated late a horse has greater chance of fighting

off the disease if it is contracted. However, since vaccinated late had such a small sample

size, and vaccinated late and timeously have overlapping confidence intervals, we can

presume that this finding is not significant.

However another possible explanation for this lies in the sport-horse industry. Those

owners that compete their horses often compete over the summer months, and will only

vaccinate once the competition season is over. This is because the vaccination requires

that the horse is only minimally worked for six weeks during the vaccinations. Often this

is done only in December, over the Christmas period. These owners are also very likely

to vaccinate late every year. This is because competing horses can be very expensive,

and therefore the owner is likely to take every possible precaution against disease. Since

these owners do vaccinate every year their horses will build up immunity to AHS. Thus

they will be less likely to die than an animal that was vaccinated timeously, but is not

vaccinated routinely every year. These owners will also be the ones very likely to report

a case or death due to AHS, which biases the data slightly.

An animal that had the Cardiac presentation of the disease had odds of 8.5446

[2.4018, 30.3957] times that of one that had the Mild or AHS fever presentation. A

horse with the Pulmonary form of the disease had an odds ratio of 36.1689 [9.3381,

140.1061]. A horse with a Mixed (Cardio-Pulmonary) presentation of the disease had

odds 38.8847 [10.1625, 148.7847] times higher than one which presented with the Mild

presentation. A horse with an unknown presentation (Presentation = DK), had 8.5344

[2.3406, 31.1184] times the odds of death when compared to an animal with the Mild

form. Coetzer and Erasmus (1994) considered that the Cardiac form had mortality of

around 50%, the Mixed around 70%, and the Pulmonary around 95%. However, our

findings are that a horse presenting the Mixed form had higher odds of death than the

Pulmonary form: 38.8847/36.1689 = 1.0751. This is in contradiction with Coetzer and

Erasmus’s estimates. The odds ratio for their estimates comparing Mixed to Pulmonary

would be
(0.7/0.3)

(0.95/0.05)
= 0.1228. (3.49)

From our data a Pulmonary case had odds 36.1689/8.5446 = 4.2330 times higher

than a Cardiac case. The odds ratio according to Coetzer and Erasmus would have been

(0.95/0.05)

(0.5/0.5)
= 19. (3.50)

However, Coetzer and Erasmus (1994) do not mention whether these estimates come

from studies in näıve populations or populations where vaccination strategies are in

place. It is known (and verified by this data) that vaccination will protect the horse

from mortality and will therefore affect these estimates. The number of unknown pre-

sentations in our data may also have affected our estimates.

All of the treatment possibilities had lower probabilities of mortality than no treat-

ment at all (Treatment = NONE). An animal treated with Alternative remedies, Conven-
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tional treatment and Homeopathic treatments were respectively 0.0555 [0.0197, 0.1563],

0.1383 [0.0727, 0.2632] and 0.1153 [0.0514, 0.2587] times as likely to die when compared

with one which received no treatment at all. The surprising fact is that Conventional

treatments, ie. those prescribed by a trained veterinarian, did not perform better than

Alternative and Homeopathic remedies. A horse on Alternative treatment had odds
0.0556
0.1383 = 0.4020 times that of one on Conventional treatments, and one on Homeopathic

treatment had odds 0.1153
0.1383 = 0.8337 times Conventional treatments. However, since

Homeopathic, Alternative and Conventional treatments have overlapping confidence in-

tervals, we cannot find that their is a significant difference between them.

An interesting fact is that one known “Alternative” treatment is to treat the horse with

marijuana. The possible benefit of such an alternative treatment is that it may reduce

stress in the animal to allow it to recuperate. It is unknown, though, whether marijuana

was used in all cases where treatment was given as Alternative, although in a few cases

it was given in extra information. It is also unknown whether marijuana was given in

conjunction with other alternative treatments.

A horse which was not isolated had lower odds of mortality than those isolated (OR

= 0.6413 [0.4286, 0.9593]). This may be due to the fact that a horse with more severe

case of the disease would be more likely to be isolated than one without, and therefore

would be more likely to die due to the severity of the disease. Isolating a horse may also

increase stress in the animal, which is naturally herd-bound, and thereby increase the

heart-rate of the animal. Since AHS often affects the heart, this may have an adverse

affect on the horse.

3.11.2 Summary

This analysis has provided a good base from which to continue the analysis of this data.

However, we have not addressed the possible problem of overdispersion. When we use

proc GENMOD to estimate the deviance dispersion parameter, it gives the estimate as

ϕ = 1.0910. This is only very slight overdispersion, however it could be accounted for

by taking into account the differences by location. There are various methods which

can be utilized to take into account this heterogeneity, some of which will be explained

in the next chapter.
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Table 3.13: Parameters for binomial model for probability of mortality

Parameter Level Estimate Adjusted OR 95% CI (OR)

Province WCP Ref

ECP * -1.1232 0.3252 0.1521 0.6952

FS -0.0210 0.9792 0.3194 3.0024

GAU * -0.6464 0.5239 0.2769 0.9912

KZN * -0.7129 0.4902 0.2496 0.9627

LIM -0.6134 0.5415 0.2232 1.3136

MPU -0.5368 0.5846 0.2674 1.2781

NCP 0.0345 1.0351 0.3161 3.3896

NWP 0.1887 1.2077 0.5245 2.7810

Classification VETC Ref

LABC * 0.9302 2.5350 1.2789 5.0249

SUS -0.1623 0.8502 0.5573 1.2971

SUSN -0.8467 0.4288 0.0515 3.5694

OtherCases 1 Ref

0 * 0.3135 1.3682 0.9994 1.8729

Vaccinated 0 Ref

1 * -2.6810 0.0685 0.0103 0.4559

2 * -0.7078 0.4927 0.3154 0.7698

Presentation MILD Ref

CARD * 2.1453 8.5446 2.4018 30.3957

DK * 2.1441 8.5344 2.3406 31.1184

PULM * 3.5882 36.1689 9.3381 140.1061

MIX * 3.6606 38.8847 10.1625 148.7847

Treatment NONE Ref

ALT * -2.8911 0.0555 0.0197 0.1563

CONV * -1.9780 0.1383 0.0727 0.2632

HOM * -2.1601 0.1153 0.0514 0.2587

Isolation 1 Ref

0 * -0.4443 0.6413 0.4286 0.9593
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Chapter 4

Accounting for Cluster to

Cluster Heterogeneity and

Within Cluster Correlation

4.1 Introduction

Clearly our problem involves modeling data where observations occur in clusters. The

premise of modeling clustered data is that observations within clusters will be alike;

in our case the probability of mortality may be similar within each place (as they are

probably affected with the same serotype of the disease and environmental conditions).

We start by accounting for within cluster correlation. Then we address the question of

cluster to cluster heterogeneity by means of models allowing for subject specific effects.

4.2 Generalized Estimating Equations

Under Generalized Linear Models theory, it is assumed that the observations are all

independent. Generalized Estimating Equations, developed by Liang and Zeger (1986),

extend the theory of GLM to be able to deal with data where a correlation structure

exists. This method is most useful in cases such as the current problem, where observa-

tions from the same place are likely to be more similar than those occurring in different

places; known as clustered data. These GEE models can also be referred to as marginal

models, since the population average fixed effects are the effects of interest. In other

words, GEE models ensure that the correlation between observations from the same

cluster is accounted for in the estimation of parameters β. In Liang and Zeger’s GEEs,

assumptions are made about the correlation structure - called ‘working’ assumptions

- in order to account for within cluster correlation. A distinct advantage of the GEE
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formulation is that, even if the correlation structure has not been correctly specified,

the estimates are still consistent. The advantage comes in the estimation of standard

errors.

If missingness occurs, it is assumed that the data is missing completely at random

(MCAR) (Agresti, 2002 and Hedeker et al., 2006). This is necessary as GEE is not a

likelihood-based procedure, and therefore the missingness can only be ignored if it is

MCAR.

Let yi1, yi2, ..., yini
be the observations from cluster i for i = 1, 2, ...,m. Assuming

that the response yij follows an exponential family distribution given in Equation (3.5),

the equation for µij = E(Yij) is given, as in the GLM, as:

g(µij) = x′
ijβ. (4.1)

It is also assumed as before that var(yij) = ϕψ′′(θij) = ϕv(µij).

We define a working covariance matrix for the cluster of observations yi = (yi1, yi2, ..., yini)
′

as

Vi = A
1/2
i R(α)A

1/2
i , (4.2)

whereR(α) is the “working” correlation matrix, andAi = diag(var(Yij)) = diag(ϕψ′′(θij)).

In other words, we assume that the within cluster correlation is dependent on some ad-

ditional parameters α. The working correlation matrix is chosen based on the assumed

realistic correlation structure of the data. Vi is called the “working” covariance matrix,

as it is understood that it is an approximation and in all likelihood not equal to the true

covariance. The generalized estimating equations are then:

m∑
i=1

D′
iV

−1
i (yi − µi) = 0, (4.3)

where Di = ∂µi/∂β is an ni×p matrix. For non-identity link, this requires iterative

algorithms to solve as there exists no closed form solution. The “sandwich” method is

most often used, iteratively solving Equations (4.2) and (4.3) with estimates for α and

ϕ given by Liang and Zeger to be:

ϕ̂ =

∑m
i=1

∑ni

j=1 e
2
ij

N
∑m

i=1 ni
, (4.4)

α̂jk =
1

ϕ̂m

m∑
i=1

eijeik,

where residuals are defined as eij =
yij−µij√

v(µij)
.

The estimator from this method β̂ is consistent, regardless of whether the covariance

structure of the cluster was correctly modeled. This is an advantage of the GEE method,

and the reason that the “working” covariance structure is adequate for estimation.
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SAS proc GENMOD can be utilized to model GEE’s. In this case, the REPEATED

statement is used to specify the cluster variable together with the assumed correlation

structure.

4.2.1 Specification of Working Correlation Structure

There are several choices for correlation structure, which can usually be chosen based

on some realistic assumption about the structure. In our instance, where “Place” is the

cluster variable, we expect that the observations within each place will be alike, and have

the same correlation with every other observation within the same place. In other words

the correlations between all observations within a place are considered homogeneous.

Thus the compound symmetry structure will be used, which has the following structure

for a single cluster with four observations (ni = 4)

R(α) = σ2


1 α α α

α 1 α α

α α 1 ρ

α α α 1

 = σ2R, (4.5)

where R gives the correlation structure.

Therefore the covariance between any two observations within a place would be σ2α,

where σ2 is the variance for each observation.

A GEE with this correlation structure will use the estimated Pearson residuals r̂ij to

estimate α as follows:

r̂ij = (yij − µ̂ij)/
√
V (µ̂ij), (4.6)

α̂ =
m∑
i=1

{∑ni

u=1

∑ni

v=1 r̂iur̂iv −
∑ni

u=1 r̂
2
iu

ni(ni − 1)

}
. (4.7)

(4.8)

Another consideration when choosing the correlation structure is that, in the case

of GEEs, incorrect choice will not affect the consistency of the estimates it gives. Thus

it is advisable to choose the structure with the smallest number of parameters to avoid

having too many parameters to estimate. Therefore our choice of compound symmetry,

with only two parameters, seems the best choice for our case.

4.2.2 Model Selection

Since the GEE is not likelihood based in its formulation methods of model selection

based on likelihoods, such as likelihood ratio tests, cannot be utilized. Pan (2001)

describes an information criterion based on the Quasi-likelihood that can be used to

compare GEE models.
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The log quasi-likelihood is defined by McCullagh and Nelder (1989) to be:

Q(µ, ϕ; y) =

∫ µ

y

y − t

ϕV (t)
dt, (4.9)

where var(y) = ϕV (µ) is the relationship between the variance and mean for the distri-

bution of y. The quasi-likelihood was first suggested by Wedderburn (1974).

The QIC is then defined as

QIC(R) = −2Q(β̂(R), ϕ) + 2trace(Ω̂V̂R), (4.10)

where R is the working correlation matrix, Ω̂ is the inverse of the model-based covari-

ance estimate under assumption of independent working correlation (R = I), and V̂R is

the robust covariance estimate.

An approximation to QIC(R) which can be used in variable selection can be defined

as follows:

QICu(R) = −2Q(β̂(R), ϕ) + 2p. (4.11)

The term 2p serves as a penalty for increasing the number of parameters. A small

value of QICu indicates a model which has an adequate fit while not having needless

parameters, and thus the model with smallest QICu is chosen as the optimal model.

4.2.3 Applications of Generalized Estimating Equations in Mod-

eling AHS Mortality

We model the Binomial data using Generalized Estimating Equations, with “Place”

serving as a clustering variable. The full model is fitted initially, with all variables

shown in Table 3.10, and including “Place” with 239 levels in the REPEATED statement

to model it as a cluster effect. The variables are then dropped in a stepwise fashion

according to their Type III p-values as given in the SAS output. The steps are shown

in Table 4.1. As can be seen in Table 4.1, whether we select the best model based on

QIC or QICu makes no difference, as both are minimized for model 4. Final GEE model

estimates are shown Table 4.2. Empirical standard errors were used.

In this Table, we see that the working correlation is estimated to be 0.1109. This

shows us that there exists a slight positive correlation between observations which occur

in the same location, as was expected. This could be due to different serotypes being

prevalent in different locations, which may have different mortality rates.

Table 4.3 shows the odds ratios as well as the 95% confidence intervals for the odds

ratios for the GEE model. Significant levels are indicated with an asterisk. The odds

of death for a horse whose disease status is confirmed by a laboratory (Classification

= LABC) was more than twice that of one which was confirmed by a veterinarian. A

horse vaccinated timeously had odds of mortality of about 0.5 that of an unvaccinated

horse, while the odds for a horse which was vaccinated late was approximately 0.07
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Table 4.1: Stepwise Procedure for Binomial GEE for Probability of Mortality

QIC QICu Correlation Variable to Drop p-value df

1 1152.0096 1125.1855 0.0914 Province 0.4932 8

2 1141.8379 1126.9904 0.1150 Stabled 0.4555 1

3 1139.9052 1125.2851 0.1133 Pesticides 0.2265 1

4 1138.9316 1124.6464 0.1109 OtherCases 0.0978 1

5 1141.7889 1127.7383 0.1159 Isolation 0.1098 1

6 1144.0096 1130.5156 0.1215 . . .

times that of one which was unvaccinated. As explained before, this is probably due

to the vaccination habits of competitive horse owners vaccinating late when out of the

competition season, but vaccinating every year.

A horse with Cardiac symptoms had odds of mortality of 9 times that of one with

a Mild case. Mixed and Pulmonary cases had odds respectively 39.12 and 36.98 times

that of a Mild case.

Once again, Alternative treatments were observed to perform the best, reducing odds

of mortality by 0.045 times that of an untreated horse. The next best treatment was

Homeopathic, reducing odds of mortality by 0.09 times, and then Conventional, with

odds of mortality 0.11 times that of an untreated horse. However their overlapping

confidence intervals cause us to conclude that their is no significant difference between

the treatments.

4.3 Generalized Linear Mixed Models

Another way in which the heterogeneity between observations in different places can be

accounted for is by specifying “Place” as a random effect. The usual categorical variables

in GLMs are termed fixed effects, and apply to all the levels of interest. By contrast, a

random effect applies to a sample of all of the categories of interest. Since we know that

not all of the cases of AHS have been reported, the places listed are almost certainly

only a random sample of all of the places in which AHS cases occurred. We therefore

wish to model the data using a random effect for each cluster/place. Because the data

we are interested in is Binomial in nature, we choose to use extensions of Generalized

Linear Models that can account for random effects, and thus use Generalized Linear

Mixed Models (GLMMs).

Let yi1, yi2, ..., yini be the observations from cluster i for i = 1, 2, ...,m. Then the

Generalized Linear Mixed Model introduces a q× 1 vector of random effects bi for each

cluster i to the usual GLM equation for yij as follows:

g(µij) = x′
ijβ + z′

ijbi, (4.12)
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Table 4.2: Analysis of GEE parameter estimates for mortality data

Parameter Estimate SE 95% CI Z p-value

Intercept 0.3004 1.18 -2.0125 2.6132 0.25 0.7991

Classification VETC Ref - - - - -

LABC 0.8236 0.3605 0.1170 1.5302 2.28 0.0223

SUS -0.1855 0.2045 -0.5863 0.2153 -0.91 0.3643

SUSN -0.7135 0.7688 -2.2204 0.7933 -0.93 0.3534

OtherCases 1 Ref - - - - -

0 0.2656 0.1668 -0.0613 0.5926 1.59 0.1112

Vaccinated 0 Ref - - - - -

2 -0.6523 0.1972 -1.0388 -0.2659 -3.31 0.0009

1 -2.7183 0.8841 -4.4511 -0.9854 -3.07 0.0021

Presentation MILD Ref - - - - -

CARD 2.2045 0.8476 0.5432 3.8658 2.6 0.0093

DK 2.1206 0.8709 0.4137 3.8275 2.43 0.0149

MIX 3.6666 0.8719 1.9577 5.3755 4.21 <.0001

PULM 3.6103 0.9120 1.8227 5.3978 3.96 <.0001

Treatment NONE Ref - - - - -

ALT -3.0997 0.9900 -5.0401 -1.1593 -3.13 0.0017

CONV -2.2075 0.8031 -3.7816 -0.6334 -2.75 0.0060

HOM -2.4233 0.8846 -4.1570 -0.6895 -2.74 0.0062

Isolation 1 Ref - - - - -

0 -0.3968 0.2197 -0.8274 0.0338 -1.81 0.0709

Exchangable working correlation = 0.11087
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Table 4.3: Odds Ratios and confidence intervals for final GEE model. Significant levels

are marked with an asterisk (*).

Parameter Level Adjusted OR 95% CI (OR)

Classification VETC Ref - -

LABC * 2.2787 1.1241 4.6191

SUS 0.8307 0.5564 1.2402

SUSN 0.4899 0.1086 2.2107

OtherCases 1 Ref - -

0 1.3042 0.9405 1.8087

Vaccinated 0 Ref - -

1 * 0.0660 0.0117 0.3733

2 * 0.5208 0.3539 0.7665

Presentation MILD Ref - -

CARD * 9.0657 1.7215 47.7415

DK * 8.3361 1.5124 45.9475

MIX * 39.1187 7.0830 216.0479

PULM * 36.9771 6.1885 220.9199

Treatment NONE Ref - -

ALT * 0.0451 0.0065 0.3137

CONV * 0.1100 0.0228 0.5308

HOM * 0.0886 0.0157 0.5018

Isolation 1 Ref - -

0 0.6725 0.4372 1.0344
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where µij = E[yij |bi] is now a conditional mean specific to cluster i, xij is a (p+1)×1

vector of fixed covariates, β is the (p+1)× 1 vector of fixed effects, zij is a q× 1 vector

of covariates for random effects, and bi is a q × 1 vector of random effects. In our case,

since each cluster has only one random effect, q = 1, zij = 1 and the vector bi becomes

the scalar bi, and the model can be re-written as g(µij) = x′
ijβ + bi, i = 1, 2, ...,m.

The matrix form of Equation (4.12) (for each cluster i) is given as:

g(E(Yi|bi)) = Xiβ +Zibi, (4.13)

where Xi is the ni × p matrix for the regressors with the jth row equal to x′
ij . Zi is

an ni×q design matrix for the ith cluster, where the jth row is z′
ij . In our case, however,

there is only one random effect and therefore q = 1 and Zi = 1(ni×1) is a vector of 1’s

of length ni. Therefore the model can be re-written as

g(E(Yi|bi)) = X ′
iβ + bi, (4.14)

where bi is a ni × 1 vector where each element is bi: bi = (bi, bi, ..., bi)
′

We assume that the conditional distribution of Yij given bi has a pdf following the

exponential family of distributions, with probability density function (pdf) given by

f(yij |bi) = exp{(yijθij − ψ(θij))/ϕ+ c(yij)}. (4.15)

Note that the term previously referred to as b(θij) in the exponential family in

Chapter 3 is now re-named ψ(θij) in Equation (4.15) to avoid confusion with the random

effect bi.

We also assume that the bi are Normally distributed with constant variance. That

is, bi ∼ N(0, σ2
s). Other types of distribution for bi can be assumed, but that is not the

focus of the current analysis.

4.3.1 Estimation in GLMM’s

There are various methods for estimation of GLMM’s, which will be briefly outlined

below. Some methods are computationally very intense and others are more achievable.

However they mostly require the use of specialized statistical software, especially where

the matrices are large.

4.3.2 Conditional Likelihood Method

Since we know that the conditional pdf follows an exponential family distribution (see

Equation (4.15)), we have that the conditional likelihood is given by

L =

m∏
i=1

ni∏
j=1

f(yij |β, bi) ∝
m∏
i=1

ni∏
j=1

exp{θijyij − ψ(θij)}. (4.16)
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Assuming the canonical link, g(µij) = θij = x′
ijβ + bi, and substituting θij in the

above equation gives

L ∝ exp{β′
∑
ij

xijyij +
∑
i

bi
∑
j

yij −
∑
ij

ψ(θij)}. (4.17)

Thus we have that sufficient statistics for β and bi are
∑

ij xijyij and
∑

j yij respec-

tively. The expression for L above assumes ϕ = 1.

Let us call the target parameters δ = (σ2
s ,β) = (α,β) for simplicity. In order to

find the marginal likelihood estimate δ we have to integrate bi out from the conditional

likelihood function. To do this we should solve

L(δ,y) =

m∏
i=1

∫ ni∏
j=1

f(yij |bi;β)f(bi)dbi. (4.18)

This requires numerical integration methods, as there is no closed form solution for non-

Normal response. The SAS NLMIXED procedure uses a dual Quasi-Newton Algorithm

to solve it iteratively.

4.3.3 Maximum Likelihood Estimation

We wish to find the score equation S(δ) for β given bi, that is
dl
dδ = 0 = S(δ). Differ-

entiating (4.18) with respect to β we get:

Sβ(δ|y, b) =
m∑
i=1

ni∑
j=1

xij{yij − µij(bi)} = 0, (4.19)

where µij(bi) = E(yij |bi) = g−1(x′
ijβ + bi). Differentiating with respect to σ2

s = α

gives:

Sα(δ|y) =
1

2
{

m∑
i=1

E[bib
′
i|yi]}α−1 − m

2
α−1 = 0. (4.20)

Solving Equations (4.19) and (4.20) for the Maximum Likelihood Estimates requires

the use of expectation maximization (EM) algorithm of Dempster et al. (1977). However

this method is not the focus of this thesis.

4.3.4 Penalized Quasi-Likelihood

Approximating the score equations can avoid having to integrate the conditional likeli-

hood. The conditional model is used rather than conditional means to yield an approxi-

mation of the conditional distribution of b given y that resembles a Normal distribution,

which is preferable to work with. The method was introduced by Breslow and Clayton

(1993).

This method is given as described in Diggle et al. (1994) as follows:

Let vij = var(yij |bi), and Qi = diag[vijg
′(µij)

2]. Then we define a “working” response
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wij as wij = g(µij) + (yij − µij)g
′(µij). This is a linearization process. We then define

the vector wi = (wi1, wi2, ..., wini
)′ for i = 1, 2, ..,m.

The ni×ni variance-covariance matrix for cluster i is given by Vi = Qi+ZiGZ ′
i for

fixedG = α, in our case becomes Vi = Qi+αJ with J being a matrix of 1’s of dimension

ni × ni. Given that the matrix form of the GLMM equation is g(E(Yi|bi)) = Xiβ+ bi,

the updated values of β and bi are given iteratively as given in the following equations.

β̂ = (
m∑
i=1

X ′
iV

−1
i Xi)

−1
m∑
i=1

(X ′
iV

−1
i wi) (4.21)

b̂i = ĜZiV
−1
i (wi −Xiβ) (4.22)

= α̂V −1
i (wi −Xiβ) (4.23)

α̂ = m−1
m∑
i=1

E(b̂ib̂′i|yi) (4.24)

g(µij) = x′
ijβ̂ + b̂i (4.25)

(4.26)

There are two main methods of this iterative process. Marginal Quasi-Likelihood

(MQL) assumes that since bi ∼ N(0, G) that we can update g(µij) = x′ijβ̂. Penalized

Quasi-Likelihood (PQL) does not assume mean 0 for bi, and thus updates using g(µij) =

x′ijβ̂ + Z ′
ij b̂i. PQL is slower to converge and less accurate.

The SAS GLIMMIX procedure uses this method of estimation as default. The MQL

or PQL methods can be specified. However, it should be noted that PQL can yield

biased estimates for variance components (Breslow, 2003), and so should be used with

caution.

4.3.5 Adaptive Gauss-Hermite Quadrature

A method which is preferable and which can be specified in the GLIMMIX procedure is

the method of adaptive Gauss-Hermite quadrature.

Ordinary Gauss-Hermite quadrature is a method used to approximate any integral

of the form: ∫ +∞

−∞
e−x2

f(x)dx ≈
R∑

r=1

wrf(tr), (4.27)

where q denotes the order of the approximation, wr are the weights defined by a R-order

Hermite polynomial, and tr are the quadrature points. The weights and quadrature

points can be found in tables such as Abramowitz and Stegun (1972).
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If it is assumed that the random effects are normally distributed with mean zero,

the marginalized likelihood can be written as:

Li =

∫ ni∏
j=1

f(yij |bi,β)ϕ(bi;µb, σ
2
b )dbi, (4.28)

=

∫
Lc
i (b)

1√
2πσ2

exp{− (bi − µb)
2

2σ2
}dbi,

where ϕ(bi;µb, σb) is the normal probability function, Lc
i (b) =

∏ni

j=1 f(yij |bi,β) is

the conditional likelihood of the response, and σ2
b is the variance of b. Using the param-

eterization δi = (bi − µb)/
√
2σ2

b , the above equation can be re-written:

Li =
1√
π

∫
Lc
i (b).exp(δ

2
i )dδi, (4.29)

which is in the required form in 4.27, and therefore can be estimated under ordinary

Gauss-Hermite quadrature as:

Li ≈
1√
π

R∑
r=1

wrL
c
i (µb +

√
2σ2

b tr). (4.30)

However, using this ordinary Gauss-Hermite quadrature, the function which is to be

integrated is sampled at fixed points, irrespective of the range of the actual function.

Therefore Adaptive Gauss-Hermite quadrature was proposed by Liu and Pierce (1994)

to rectify this.

Suppose that we wish to find the integral of the form:∫
g(b)db =

∫
Lc
i (b)ϕ(b;µ, σ)db. (4.31)

The adaptive Gauss-Hermite quadrature method approximates µ and σ as follows:

µ̂ = mode(g(b)), (4.32)

σ̂ =
1√
ĵ
, (4.33)

ĵ = − ∂2

∂b2
log(g(µ̂)). (4.34)

(4.35)

Then defining

h(b) =
g(b)

ϕ(b; µ̂, σ̂)
, (4.36)
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the integral can be approximated as follows:∫
g(b)db =

∫
h(b)ϕ(b; µ̂, σ̂)db, (4.37)

≈ 1√
π

R∑
r=1

wrh(µ̂+
√
2σ̂2

b tr),

=

R∑
r=1

wr√
π

g(µ̂+
√
2σ̂2tr)

ϕ(b; µ̂, σ̂)
,

=
√
2σ̂

R∑
r=1

wr exp(t
2
r)g(µ̂+

√
2σ̂2tr).

This yields better estimates than ordinary Gauss-Hermite quadrature.

4.3.6 Applications of Generalized Linear Mixed Models to Mod-

eling of Probability of Mortality

We wish to model the binomial data, with the variable “Place” added as a random

cluster effect. We employ SAS proc GLIMMIX in order to fit GLMMs to the data,

using the Gauss-Hermite method of fitting. Table 4.4 shows the categorical variables,

the levels and reference categories for all the binomial models. Beginning by including all

possible variables, variables were dropped in a stepwise fashion according to their Type

III p-values, until all effects were found to be significant. The best model was chosen as

the one with minimal AIC, which is shown in Table 4.5 to be the model in step 4. The

final model solutions are shown in Table 4.6, where it can be seen that the significant

variables are Classification, Vaccinated, Presentation, Treatment and Isolation.

Table 4.7 shows the estimates of βi as well as the odds ratio eβi for each level of the

categorical variables. Significant levels are indicated with an asterisk.

In a given place, a horse that was vaccinated timeously had odds of mortality 0.4750

[0.2887, 0.7815] times that of one that was un-vaccinated, and a horse that was vacci-

nated late had odds ratio 0.0531 [0.0071, 0.3954]. A horse with Cardiac presentation

had odds of mortality 11.5479 [3.0374, 43.9038] times higher than one with a Mild or

fever presentation. An unknown presentation caused a horse to have 10.2379 [2.6253,

39.9289] times the odds of mortality compared to Mild. Horses with mixed presentation

and Pulmonary presentation had respectively 59.9014 [14.4010, 249.1861] and 55.1855

[13.0241, 233.8313] times the odds of mortality of one with Mild presentation.

A horse treated with Alternative remedies had odds of 0.0306 [0.0092, 0.1023] times

that of an untreated horse. Conventional and Homeopathic treatments respectively

caused horses to have odds 0.0818 [0.0363, 0.1841] and 0.0644 [0.0241, 0.1720] times

that of untreated.
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Table 4.4: Class Level Information for Binomial Models
Class Levels Values Reference Category

Province 9 ECP; FS; GAU; KZN; LIM; WCP

MPU; NCP; NWP; WCP

Classification 4 LABC; SUS; SUSN; VETC VETC

OtherCases 2 0; 1 1

Vaccinated 3 0; 1; 2 0

Presentation 5 CARD; DK; PULM; MILD; MIX MILD

Treatment 4 ALT; CONV; HOM; NONE NONE

Stabled 2 0; 1 1

Pesticides 2 0; 1 1

Isolation 2 0; 1 1

Place 235 not printed -

Table 4.5: Stepwise Regression Steps for Binomial GLMM for Probability of Mortality

AIC Covariance Standard Variable p-value

Estimate Error to drop

1 1093.58 0.7421 0.2596 Stabled 0.4346

2 1092.19 0.7525 0.2622 Province 0.3624

3 1085.01 0.8503 0.2737 Pesticides 0.2356

4 1084.42 0.8521 0.2735 OtherCases 0.0764

5 1085.57 0.8720 0.2768 Isolation 0.0745

6 1086.78 0.8898 0.2796

A horse which was not isolated reduced odds of mortality 0.6375 [0.4078, 0.9967]

times that for one which was, although this was only marginally significant with a p-

value of 0.0484.

However, although the variable “Place” is accounting for some of the heterogeneity

between cases, we speculate that a further random variable could be the outbreak. Note

that the variance component for Place is estimated as 0.8524 with standard error of

0.2735 under model 4 with minimum AIC. It could be the case that a specific place

may have different serotypes of the disease in different outbreaks, and as a consequence

mortality rates may be different. A categorical variable was created which assigns a

number to each outbreak (1 = 2005/2006, 2 = 2006/2007, 3=2007/2008, 4=2008/2009,

5 = 2009/2010). Outbreak nested in place is added as a further random factor to the

model, and the stepwise procedure repeated using proc GLIMMIX to fit the models.

The stepwise procedure is shown in Table 4.8. Choosing the model with lowest AIC,

we use the model indicated by step 4 in the table. The final results for this model are

shown in Table 4.9, and the odds ratios in Table 4.10.

If we compare the results between the two GLMMs with only Place as a random
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Table 4.6: Solutions for Fixed Effects for Binomial GLMM for the Probability of Mor-

tality

Effect Level Estimate CI Std Error DF t Value p-value

Intercept 0.4196 0.8171 -1.1903 2.0294 234 0.51 0.6081

Classification VETC Ref - - - - - -

LABC 0.8871 0.3864 0.1284 1.6458 674 2.30 0.0220

SUS -0.2166 0.2406 -0.6890 0.2559 674 -0.90 0.3684

SUSN -0.7763 1.1815 -3.0961 1.5435 674 -0.66 0.5113

OtherCases 1 Ref - - - - - -

0 0.3141 0.1770 -0.0335 0.6616 674 1.77 0.0764

Vaccinated 0 Ref - - - - - -

1 -2.9349 1.0222 -4.9420 -0.9279 674 -2.87 0.0042

2 -0.7445 0.2536 -1.2424 -0.2466 674 -2.94 0.0034

Presentation MILD Ref - - - - - -

CARD 2.4465 0.6802 1.1110 3.7820 674 3.60 0.0003

DK 2.3261 0.6931 0.9652 3.6871 674 3.36 0.0008

MIX 4.0927 0.7260 2.6673 5.5182 674 5.64 <.0001

PULM 4.0107 0.7354 2.5668 5.4546 674 5.45 <.0001

Treatment NONE Ref - - - - - -

ALT -3.4862 0.6144 -4.6926 -2.2799 674 -5.67 <.0001

CONV -2.5036 0.4133 -3.3151 -1.6921 674 -6.06 <.0001

HOM -2.7423 0.5003 -3.7246 -1.7601 674 -5.48 <.0001

Isolation 1 Ref - - - - - -

0 -0.4502 0.2276 -0.8970 -0.0033 674 -1.98 0.0484
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Table 4.7: Odds ratios and confidence intervals from binomial GLMM. Significant levels

are indicated with an asterisk.
Parameter Level Estimate Adjusted OR 95% CI (OR)

Classification VETC Ref - - -

LABC * 0.8871 2.4281 1.1370 5.1852

SUS -0.2166 0.8053 0.5021 1.2916

SUSN -0.7763 0.4601 0.0452 4.6809

OtherCases 1 Ref - - -

0 0.3141 1.3690 0.9671 1.9379

Vaccinated 0 Ref - - -

1 * -2.9349 0.0531 0.0071 0.3954

2 * -0.7445 0.4750 0.2887 0.7815

Presentation MILD Ref - - -

CARD * 2.4465 11.5479 3.0374 43.9038

DK * 2.3261 10.2379 2.6253 39.9289

MIX * 4.0927 59.9014 14.4010 249.1861

PULM * 4.0107 55.1855 13.0241 233.8313

Treatment NONE Ref - - -

ALT * -3.4862 0.0306 0.0092 0.1023

CONV * -2.5036 0.0818 0.0363 0.1841

HOM * -2.7423 0.0644 0.0241 0.1720

Isolation 1 Ref - - -

0 * -0.4502 0.6375 0.4078 0.9967
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Table 4.8: Stepwise Regression Steps for Binomial GLMM for Probability of Mortality,

with “Place” and “Outbreak” nested in place as random effects.

Place Outbreak(Place)

AIC Covariance Standard Covariance Standard Variable p-value

Estimate Error Estimate Error to drop

1 1088.84 0.0343 0.3486 1.0824 0.5242 Stabled 0.4747

2 1087.35 0.0301 0.3529 1.1043 0.5308 Province 0.1969

3 1082.37 0.3333 0.3132 0.8724 0.4597 Pesticides 0.1648

4 1082.32 0.3679 0.3075 0.8151 0.4432 OtherCases 0.0571

5 1083.99 0.3923 0.3092 0.7992 0.4433 Isolation 0.0576

6 1085.67 0.4170 0.3113 0.7644 0.4358

effect, and with Place and Outbreak(Place), we see that the AIC for the latter model

is marginally smaller (1082.32 compared to 1084.42). We also see that Outbreak(Place)

has a covariance estimate which is not close to zero (0.8151). Accounting for outbreak as

a random effect seems to be useful in the model. The standard errors in the latter model

are marginally larger than for the first, which is to be expected since it is accounting

for an extra source of variation.

4.4 Comparison of Techniques

Table 4.11 shows the odds ratios (eβi), standard errors (for original estimate) and 95%

confidence intervals for the odds ratios for each of the three models formulated; GLM,

GEE and GLMM. Two GLMMs are shown: GLMM1 refers to the model with only

“Place” as random effect, and GLMM2 refers to the model with “Place” and “Out-

break(Place)” as random effects. Only the levels which were found to be significant

are shown. The three estimates all agree to within a relatively small range of values.

Neither the GEE nor the GLMMs found “Province” to be significant. This could be due

to the fact that they accounted for “Place”, as either a random or a clustering effect,

and this made the “Province” variable unnecessary.

Although the estimates themselves may differ slightly between the three models,

they all predict the same relationship between the levels in each case. 95% confidence

intervals are shown in square brackets for clarity. For example all three models predict

that Alternative treatment performs best (odds ratios 0.0555 [0.0197, 0.1563], 0.0451

[0.0065, 0.3137], 0.0306 [0.0092, 0.1023] and 0.0248 [0.0068, 0.0902] for the GLM, GEE

and GLMM1 and 2 respectively), then Homeopathic (0.1153 [0.0514,0.2587], 0.0886

[0.0157, 0.5018], 0.0644 [0.0241, 0.1720] and 0.0531 [0.0188, 0.1505]), and then Con-

ventional (0.1383 [0.0727, 0.2632], 0.1100 [0.0228, 0.5308], 0.0818 [0.0363, 0.1841] and

0.0721 [0.0309, 0.1682]), with all three treatment strategies performing significantly bet-
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Table 4.9: Solutions for Fixed Effects for Binomial GLMM for the Probability of Mor-

tality with Place and Outbreak(Place) as random effects.

Effect Level Estimate CI Std Error DF t Value p-value

Intercept 0.2946 -1.4023 1.9915 0.8597 171 0.34 0.7323

Classification VETC Ref - - - - - -

LABC 1.0822 0.2541 1.9103 0.4215 503 2.57 0.0105

SUS -0.1946 -0.7039 0.3148 0.2592 503 -0.75 0.4533

SUSN -0.6431 -3.2067 1.9205 1.3048 503 -0.49 0.6223

OtherCases 1 Ref - - - - - -

0 0.3635 -0.01099 0.7380 0.1906 503 1.91 0.0571

Vaccinated 0 Ref - - - - - -

1 -3.2313 -5.2890 -1.1736 1.0473 503 -3.09 0.0021

2 -0.7953 -1.3278 -0.2628 0.2711 503 -2.93 0.0035

Presentation MILD Ref - - - - - -

CARD 2.6025 1.1475 4.0575 0.7406 503 3.51 0.0005

DK 2.5725 1.0745 4.0706 0.7625 503 3.37 0.0008

MIX 4.4794 2.8845 6.0743 0.8118 503 5.52 <.0001

PULM 4.3025 2.7100 5.8950 0.8106 503 5.31 <.0001

Treatment NONE Ref - - - - - -

ALT -3.6985 -4.9913 -2.4056 0.6581 503 -5.62 <.0001

CONV -2.6296 -3.4767 -1.7825 0.4312 503 -6.10 <.0001

HOM -2.9350 -3.9762 -1.8937 0.5300 503 -5.54 <.0001

Isolation 1 Ref - - - - - -

0 -0.5167 -0.9951 -0.0384 0.2435 503 -2.12 0.0343
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Table 4.10: Odds ratios and confidence intervals from binomial GLMM with Place and

Outbreak(Place) as random effects. Significant levels are indicated with an asterisk.

Parameter Level Estimate Adj. OR 95% CI (OR)

Classification VETC Ref - - -

LABC * 1.0822 2.9512 1.2893 6.7551

SUS -0.1946 0.8232 0.4947 1.3700

SUSN -0.6431 0.5257 0.0405 6.8244

OtherCases 1 Ref - - -

0 0.3635 1.4384 0.9891 2.0917

Vaccinated 0 Ref - - -

2 * -0.7953 0.4514 0.2651 0.7689

1 * -3.2313 0.0395 0.0050 0.3093

Presentation MILD Ref - - -

CARD * 2.6025 13.4974 3.1503 57.8296

DK * 2.5725 13.0985 2.9285 58.5921

MIX * 4.4794 88.1817 17.8946 434.5452

PULM * 4.3025 73.8843 15.0293 363.2168

Treatment NONE Ref - - -

ALT * -3.6985 0.0248 0.0068 0.0902

CONV * -2.6296 0.0721 0.0309 0.1682

HOM * -2.9350 0.0531 0.0188 0.1505

Isolation 1 Ref - - -

0 * -0.5167 0.5965 0.3697 0.9624
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ter than no treatment at all. All models also predicted that vaccinating late had odds

of mortality between ± 0.04 and 0.07 times the odds of not vaccinating at all, while vac-

cinating timeously only halved the odds of mortality. Each model also predicted Mixed

presentation as being the most severe (odds ratios 38.8847 [10.1625, 148.7847], 39.1197

[7.0830, 216.0479], 59.9014 [14.4010, 249.1861] and 88.1817 [17.8946, 434.5452] for the

GLM, GEE and GLMMs respectively), with next being Pulmonary (36.1689 [9.3381,

140.1061], 36.9771 [6.1885, 220.9199], 55.1855 [13.0241, 233.8313] and 73.8843 [15.0293,

363.2168]), then Cardiac (8.5446 [2.4018, 30.3957], 9.0657 [1.7215, 47.7415], 11.5479

[3.0374, 43.9038] and 13.4974 [3.1503, 57.8296]) compared to Mild as the presentation

reference.

In terms of the standard errors, the GLM standard errors were consistently smaller

than the GLMM1, but only very slightly with the greatest difference being 0.0862. The

reason for this is that the GLMM model accounts for an extra source of variability

compared to the GLM. The GEE possessed standard errors both smaller and larger

than those from the GLMMs and GLM. However, these standard errors were in all cases

not largely different, and probably only due to the different methods. We therefore have

confidence in the accuracy of all models, but probably most in the GLMMs and GEE

since they are accounting for more of the variability by location. The choice of whether

to use either GLMM or the GEE lies only in the particular interest of the model - the

GEE should be used if one is interested in population averaged or marginal effects. The

GLMM should be used if one wishes to use a random intercept model, and may be

interested in the particular effect of a certain place. That is, if the focus is on cluster

specific effects.
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Chapter 5

Climate Change and

Predictions

5.1 Climate Change

The Intergovernmental Panel on Climate Change (IPCC) is the leading organization

driving research into climate change. They are developing models on how climatic vari-

ables are likely to be affected by certain future emissions scenarios; namely A1B, A2,

B1, B2, A1FI and A1T. The scenario we will be interested in is the A1 scenario, which

is described as follows:

“The A1 storyline and scenario family describes a future world of very rapid economic

growth, global population that peaks in mid-century and declines thereafter, and the

rapid introduction of new and more efficient technologies. Major underlying themes are

convergence among regions, capacity building and increased cultural and social inter-

actions, with a substantial reduction in regional differences in per capita income. The

A1 scenario family develops into three groups that describe alternative directions of

technological change in the energy system. The three A1 groups are distinguished by

their technological emphasis: fossil intensive (A1FI), non-fossil energy sources (A1T),

or a balance across all sources (A1B) (where balanced is defined as not relying too heav-

ily on one particular energy source, on the assumption that similar improvement rates

apply to all energy supply and end-use technologies).” (IPCC, 2007)

Climate change predictions are available from the IPCC Regional Climate Pro-

jections utilizing MMD (multi-model dataset)-A1B. The MMD consists of 21 climate

change prediction models. The predictions are given in the form of increase in degrees

Celsius for Temperature, and percentage increase for Precipitation between 1980 to 1999

period and those predictions for 2080-2099. Minimum and Maximum predictions are

given, along with 25th, 50th and 75th percentiles for the 21 models, each for the sea-

sons DJF (December, January ,February), MAM (March, April, May), JJA (June, July,
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Table 5.1: Minimum and Maximum, 25th, 50th, and 75th percentiles for IPCC MMD-

A1B predictions, grouped into predictions from December - February (DJF), March -

May (MAM), June - August (JJA), and September - November (SON).

Temperature Precipitation

(increase ◦C) (increase %)

Min 25 50 75 Max Min 25 50 75 Max

DJF 1.8 2.7 3.1 3.4 4.7 -6 -3 0 5 10

MAM 1.7 2.9 3.1 3.8 4.7 -25 -8 0 4 12

JJA 1.9 3.0 3.4 3.6 4.8 -43 -27 -23 -7 -3

SON 2.1 3.0 3.7 4.0 5.0 -43 -20 -13 -8 -3

August) and SON (September, October, November). The predictions for South Africa

(co-ordinates 35S,10E - 12S,52E) are given in Table 5.1.

The two models given in equations 5.1 and 5.1 were tested with the 25 different

combinations of scenarios. The letters a, b, c, d, and e were assigned to the Minimum, 25,

50, 75th percentiles and Maximum respectively, so that for example pred1ad represents

the prediction from model 1, with the Minimum of temperature, and the 75th percentile

for precipitation. This was done by taking the average monthly climatic variables from

our data, and altering them according to the different scenarios and using our models

in Equations 3.45 and 3.46 to predict the incidence.

log(µ) = 9.3447 + 2.5690 sin(2πt)− 0.5674.TMax+ 0.4399.TMin− 0.0060.Rain

log(µ) = −0.8226 + 2.1965.sinyr + 1.0603Tmin− 0.0434.Rain

−0.0099Tmax2 − 0.0403.Tmin2 − 0.0004.Rain2 + 0.0065.Tmin×Rain

The model which predicted the worst outbreak was model 1 with minimum tem-

perature and precipitation predictions - although the predictions were no worse than

the observed average from the data. The plots of all model 1 and model 2 predictions

are shown in Figures 5.1 and 5.2. The highest 5 predictions for each are then shown

in Figures 5.3 and 5.4. For ease of reference, the axes are maintained constant with

maximum of 18. For comparison the plot of the observed average incidence is shown

in Figure 5.5. The model 2 predictions all had a strange pattern, with a decrease in

the number of cases in February, followed by a sharp increase in March, and the usual

declining pattern thereafter. One notable difference is that the observed average for
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Figure 5.1: Predictions for incidence from model 1 with climate change following MMD-

A1B predictions. The letters a, b, c, d, e refer to the minimum, 25th percentile, 50th

percentile, 75th percentile and maximum respectively from the MMD-A1B predictions

for climate change.

both models in month 6 is above zero, when there had been only one observed case for

this month in the data. This shows that with climate change, the disease may have a

longer season. In fact, the predictions show only 3 ‘zero’ months, in July to September.

However, it is important to take these predictions with caution. Our models predict

the incidence based on the climatic variables. However, the relationship between the two

is indirect, as the climate variables drive the vector population and virogenesis, which

directly drive the disease incidence. This relationship is shown schematically in Figure

5.6. While these models may predict best conditions for the current major vector,

C. imicola, it is possible as discussed by Wittman and Baylis (2000), that changing

climatic conditions may make it possible for other potential vector species to flourish.

Thus, unless all potential vector species are taken into account, these models can serve

as a guideline only. In particular, Mellor (2000) discusses the possible vector capacity

of C.obsoletus and C.pulicaris which are two of the most abundant Culicoides species

around the world.
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Figure 5.2: Predictions for incidence from model 2 with climate change following MMD-

A1B predictions. The letters a, b, c, d, e refer to the minimum, 25th percentile, 50th

percentile, 75th percentile and maximum respectively from the MMD-A1B predictions

for climate change.

Figure 5.3: The highest five predictions for incidence from model 1 with climate change

following MMD-A1B predictions.
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Figure 5.4: The highest five predictions for incidence from model 2 with climate change

following MMD-A1B predictions

Figure 5.5: Observed average incidence shown over a year, exhibiting the seasonal pat-

tern, along with the predicted averages from Model 1 and Model 2 for the observed

weather data.
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Figure 5.6: Schematic diagram representing the disease dynamics. Our model describes

the disease incidence based on climatic variables. However, in reality, these climatic

variables drive other factors (which are un-quantified) on which the incidence depends.

This illustrates why the predictions for climate change from these models should be

taken with caution.

5.2 Refractory Periods

Koelle et al. (2005) discuss a “refractory period” in cholera epidemiology, which is

described as the period “when population susceptibility levels are low as the result of

immunity and the size of cholera outbreaks only weakly reflects climate forcing”. They

discovered that there existed this refractory period within the cholera epidemics, where

an outbreak of cholera following a particularly severe outbreak may be much smaller,

despite the climatic conditions being favourable for the disease. There is a possibility

that this refractoriness may explain some of the difference between our existing model

for disease incidence and the true observed values (Young, 2010, Personal Communica-

tion), and we wish to investigate this further.

John and Samuel (2000) suggested the definition of ‘herd immunity’ to be “the propor-

tion of subjects with immunity in a given population”. They propose that the effect

of the immune segment of the population protecting the susceptible portion should be

described as “herd effect”. The herd effect is therefore dependent on the herd immunity

and the force of infection of the disease. Since we cannot quantify these two effects in

our case we presume both to have an effect on the refractory period if it is found to

exist.

We therefore wish to attempt to model the incidence of AHS in Johannesburg introduc-

ing variables which may explain this refractory period. Johannesburg is chosen for two

reasons. Firstly, it is a much more localized area and therefore the equine population of

the Johannesburg area could be said to constitute a “herd”, where we better understand

the effects of herd immunity and herd effect. The locations where cases had occurred

are shown in Figure 5.7, which clearly shows the highly localized pattern of the cases.

Secondly, we have a more accurate measure of the population size. This is due to the

fact that most equines in the area are registered with the Gauteng Horse Society (GHS).

The GHS registration number is around 2600 (www.thsinfo.co.za/THSOverview.html).
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Figure 5.7: Locations of cases of AHS in the Johannesburg and surrounds area for the

AHST data. Each star shows an incidence of cases, not the number observed or date.

Map approximately -25.4 to -26.9 latitude 27.3 to 28.9 longitude. ( c⃝2010 Google - Map

Data c⃝2010 AfriGIS (Pty) Ltd, Tele Atlas, Tracks4Africa)

Since the cost of keeping a horse in Johannesburg is very high at often over 3000 South

African Rand per month, most horse owners in the area keep horses in order to com-

pete. To compete they must be registered with the Gauteng Horse Society - and thus the

population size is likely to be close to the number of registrations with GHS. Climatic

information was acquired once again from the South African Weather Service, and the

locations from which the data came are shown in Figure 5.8.

We wish to add to the models a term which reflects the severity of the previous

outbreaks. To this end we created a ‘severity index’. This was calculated by taking

the total number of cases in an outbreak (usually between October and May of the

following year) and dividing by the estimate of the population size. Even if the estimate

of population size is not accurate, it still serves to give a fraction indicating the severity

of an outbreak, and is kept constant over all outbreaks. This severity index was assumed
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Figure 5.8: Locations of the weather stations for which data was acquired from the

South African Weather Service. Map approximately -25.4 to -26.9 latitude 27.3 to

28.9 longitude. ( c⃝2010 Google - Map Data c⃝2010 AfriGIS (Pty) Ltd, Tele Atlas,

Tracks4Africa)
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to apply to the year between September of one year and August of the next. It was

then added at lags of one year and two years to the model - SI1 was the severity

index from the previous year’s outbreak, and SI2 the severity index from the outbreak

two years prior. Estimates for the total number of cases for 2003/2004 and 2004/2005

seasons outbreaks in JHB were given as 112 and 49 respectively from the Department of

Agriculture website (http://www.daff.gov.za/), since they were not available from the

AHST data. The impact of seasons prior to this are not possible to explore with the

current data.

Four models were then fitted. The first was fitted with only time and climate variables.

In the second model the variable SI1 was added, in the third SI2, and in the fourth

both SI1 and SI2 were used. In each case the climatic and time variables used were

sinyr, Tmax, Tmin,Rain, Tmax2, Tmin2, Rain2, Tmax×Rain, Tmin×Rain. In each

case the stepwise procedure followed in the previous chapters was used. The tables of

the stepwise procedures and final model fit are shown in Table 5.2 and Table 5.3, and

the plots in Figures 5.9, 5.10 and 5.11.

Figure 5.9 shows the best model for Johannesburg incidence with only climatic vari-

ables included (Model 1). Although it certainly explains some of the variation, it has

similar lack of fit features as those found in the model for KZN. Figure 5.10 shows the

plot of the model when SI1 is included (Model 2). The plot shows a better fit than the

previous model. There are still some differences in the observed and predicted peaks,

but they are substantially decreased. When SI2 is fitted it shows an increased accuracy

(Model 3) (See Figure 5.11). However, when both SI1 and SI2 are fitted along with the

other variables, SI1 becomes insignificant and is dropped from the model. Thus Model

4 is the same as Model 3, and SI2 is a superior explanatory variable to SI1. This shows

that the outbreak severity from two years prior explains much of the variability in the

current outbreak, and thus that the refractory period has a lag of at least two years.

It has been shown by these models that some sort of refractory period exists, within

which the herd immunity protects the population from severe outbreak despite climatic

conditions being favourable for the disease. We cannot reliably explore the length of

this refractory period with only five years of data, but we postulate that it may be

further than the two years discovered here since Model 3 still did not have perfect fit.

The length of the immunity should be further investigated for predictive purposes. For

the purposes of early warning systems knowledge of the refractory periods is vital. For

example, the African Horse Sickness Trust may be advised, after a severe outbreak in

a particular area, that blanket vaccination efforts may not be entirely necessary. On

the contrary, when an area has not experienced severe outbreaks for some time they

may know that blanket vaccinations in that area will be vital. If the length of the

refractory period is determined to be, for example, three years, they may also know that

blanket vaccinations should be practiced every three years or less in order to prevent

large numbers of mortalities.
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Figure 5.9: Model 1 : log(µi) = 31.7656 + 3.4912sinyr− 2.9563.Tmax+ 1.4629Tmin−
0.0199.Rain+ 0.0511Tmax2 − 0.0468Tmin2 + 0.0001Rain2

Figure 5.10: Model 2: log(µi) = 5.7338 + 3.2434sinyr − 0.3308.Tmax+ 0.0501.Rain+

0.0413.Tmin2 + 0.0003Rain2 − 0.0091.Rain× Tmin− 25.3877.SI1
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Table 5.2: Model selection process for the three models for Johannesburg incidence.

Model 1 has no severity index included, Model 2 has severity index at lag 1, Model 3 at

lag 2, and Model 4 includes severity index at lags 1 and 2.

Model Information Model Checking Variable to be dropped

Log- Deviance DF Change in P > χ2
(df) Variable Type III df

Likelihood Deviance p-value

Model 1

1 1274.7575 220.1564 45 - - Tmin×Rain 0.3473 1

2 1274.3212 221.0290 46 0.8726 0.3502 Tmax×Rain 0.2554 1

3 1273.6851 222.3012 47 1.2722 0.2594 none

Model 2

1 1297.8157 174.0399 44 - - Tmax2 0.7500 1

2 1297.7651 174.1411 45 0.1012 0.7504 Tmax×Rain 0.3720 1

3 1297.3636 174.9440 46 0.8029 0.3702 Tmin 0.2113 1

4 1296.5391 176.5930 47 1.6490 0.1991 none

Model 3

1 1307.7342 154.2028 44 - - Tmin2 0.6781 1

2 1307.6476 154.3760 45 0.1732 0.6773 Tmax×Rain 0.3713 1

3 1307.2506 155.1700 46 0.7940 0.3729 Rain 0.2314 1

4 1306.5272 156.6169 47 1.4469 0.2290 none

Model 4

1 1307.9046 153.862 43 - - SI1 0.5590 1

2 1307.7342 154.2028 44 0.3408 0.5594 Tmin2 0.6781 1

3 1307.6476 154.3760 45 0.1732 0.6773 Tmax×Rain 0.3713 1

4 1307.2506 155.1700 46 0.7940 0.3729 Rain 0.2314 1

5 1306.5272 156.6169 47 1.4469 0.2290 none
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Table 5.3: Parameter estimates for the three models showing severity index

Analysis Of Parameter Estimates

Parameter DF Estimate Std Error Wald 95% CI χ2 Pr > χ2

Model 1

Intercept 1 31.7656 5.7221 20.5504 42.9807 30.82 <.0001

sinyr 1 3.4912 0.3508 2.8037 4.1788 99.06 <.0001

Tmax 1 -2.9563 0.5086 -3.9532 -1.9594 33.78 <.0001

Tmin 1 1.4629 0.1896 1.0914 1.8345 59.55 <.0001

Rain 1 -0.0199 0.0041 -0.0280 -0.0118 23.39 <.0001

Tmax2 1 0.0511 0.0103 0.0309 0.0713 24.54 <.0001

Tmin2 1 -0.0468 0.0085 -0.0635 -0.0302 30.30 <.0001

Rain2 1 0.0001 0.0000 0.0000 0.0001 18.01 <.0001

Model 2

Intercept 1 5.7338 0.8369 4.0936 7.3741 46.94 <.0001

sinyr 1 3.2434 0.2858 2.6832 3.8037 128.75 <.0001

Tmax 1 -0.3308 0.0434 -0.4159 -0.2458 58.12 <.0001

Rain 1 0.0501 0.0092 0.0321 0.0680 29.83 <.0001

Tmin2 1 0.0413 0.0036 0.0343 0.0483 133.93 <.0001

Rain2 1 0.0003 0.0000 0.0002 0.0004 83.55 <.0001

Rain ∗ Tmin 1 -0.0091 0.0010 -0.0112 -0.0071 78.73 <.0001

SI1 1 -25.3877 3.4043 -32.0600 -18.7155 55.62 <.0001

Model 3 & 4

Intercept 1 18.4110 6.1355 6.3857 30.4363 9.00 0.0027

sinyr 1 3.2204 0.3208 2.5917 3.8492 100.79 <.0001

Tmax 1 -1.6940 0.5127 -2.6988 -0.6891 10.92 0.0010

Tmin 1 0.9094 0.0697 0.7729 1.0460 170.35 <.0001

Tmax2 1 0.0230 0.0103 0.0028 0.0432 4.97 0.0258

Rain2 1 0.0002 0.0000 0.0002 0.0003 65.12 <.0001

Tmin ∗Rain 1 -0.0046 0.0005 -0.0056 -0.0037 92.60 <.0001

SI2 1 19.0685 2.2627 14.6338 23.5032 71.02 <.0001
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Figure 5.11: Model 3: log(µi) = 18.4110+3.2204.sinyr−1.6940.Tmax+0.9094.Tmin+

0.0230.Tmax2 + 0.0002.Rain2 − 0.0046.Tmin×Rain+ 19.0685.SI2
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Chapter 6

Conclusions and Discussion

African Horse Sickness is still a major problem in South Africa, and as such requires

much further work in order to understand the mechanisms which can be used to predict

and ultimately to control the disease. This work has attempted to use the data available

to explore some of these mechanisms. To this end both the incidence and mortality of

the disease have been modelled in various ways.

Before proceeding with the modelling, however, it is important to understand the

reliability of the data which is to be utilised. In the current study we know the data

may be deficient by its very nature. We are well aware that not all cases are reported,

particularly due to the lack of education amongst the owners of horses in the rural areas.

Even when reported, the majority of cases were not sent for laboratory testing due to

the cost and difficulties of administration associated with laboratory tests. The format

in which the cases were reported was also not optimal as only the “primary” case in an

area was recorded with accuracy, after which the additional horses presenting symptoms

similar to AHS were simply recorded as the number alive and number dead. This meant

that these additional cases could not be used for modelling the probability of mortality,

as the explanatory variables on an individual basis (such as vaccination, presentation

etc.) had not been recorded. Although it is important to keep these considerations in

mind when fitting and analysing the models, however, we use this data in the knowledge

that it is a measure of what is really happening in an AHS outbreak even if it is not the

entire picture.

Because of the non-normality of counts data it was realised that standard general

linear regression would not be adequate to model the incidence. Therefore a Generalized

Linear Model with a log link was utilised. The variables chosen to explain the incidence

were time and meteorological variables. Quadratic and interaction terms were also

investigated in case the relationships were not strictly linear. The final model found to

fit the data best included the terms Tmin, Rain, Tmin2, Tmax2, Rain2 and Tmin ×
Rain to be significant, as well as a sine function of time. It was therefore evident
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that the incidence relied most heavily on minimum temperature and rainfall. From

Figure 3.8 it is evident that incidence is highest at high minimum temperatures and

with moderate rainfall. At minimum temperatures approaching freezing the predicted

incidence tends towards zero, and the same with extreme high or low rainfall. We know

this to be the case as Culicoides imicola requires temperate weather, with moistness,

to reproduce. Over the range of maximum temperatures the incidence decreases since

the relationship with all other variables remaining constant is logµ ∝ −0.0099Tmax2.

Thus very high maximum temperatures will not favour the propagation of the disease.

Although relationships of Culicoides abundance to the weather have been investigated

in previous publications (Baylis, Meiswinkel and Venter, 1999), and the fact that there

exists a relationship between AHS and weather is well established, it has not, to our

knowledge, been quantified in this manner previously.

However, in plots of this model (Figure 3.2) it appeared as though there could be

other explanatory variables which might explain more of the variation in the data. In

Section 5.2 we explored refractory periods as a possible explanation for this. The fitted

models showed strong evidence of AHS having a refractory period of at least two years

during which the population is protected to an extent by the immunity acquired after a

large outbreak. This is an entirely novel finding for AHS, although it has been discovered

for other diseases such as cholera (Koelle et.al., 2005). The final length of the refractory

period could not be ascertained with the short five years of data which we had available

to us. With further and more accurate data, however, it will be possible to repeat this

method and determine the exact length of this period. In particular this has important

implications for the planning of vaccination drives and other protective measures, as it

will enable us to use historical and current data to predict future outbreaks.

We also investigated as reported in Section 5.1 what role climate change may have in

the incidence of the disease within South Africa. Climate change predictions were used

from the IPCC MMD-A1B. These predictions were used to alter the observed weather

variables from our dataset, and then the models were re-run. Although it was found

that with climate change the disease may have a longer season, our predictions did not

find an increase in incidence. This may be due to the fact that the predictions from

the IPCC involve an overall decrease in precipitation, which may make the climate less

hospitable to the vector C. imicola. However it is important to note that C. imicola is

not the only capable vector species of the disease, and that climate change may bring

about conditions which are favourable to other potential midge vectors.

In Chapter 3.11 the Generalized Linear Model theory was applied to the probability

of mortality of the cases on an individual level. The aim of this modelling was to discover

which explanatory variables had an impact on the probability that a horse would die.

Type III p-values were used to determine the significance of an effect. The findings were
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discussed in detail in Section 3.11.1. However, it was considered important to further

investigate whether the structure of the data, in particular the fact that the cases could

be considered to be clustered by place, might affect the model. For these ends two

further modelling techniques were used.

Both Generalised Estimating Equations in Section 4.2.3 and Generalised Linear

Mixed Models in Section 4.3.6 were utilised to account for the clustering effect of “Place”.

They yielded similar results to the GLM, although neither found “Province” to be a sig-

nificant variable. This indicates that clustering according to place was strong and useful

in providing a more parsimonious model. Generalized Linear Mixed Models were also

fitted using “Place” and “Outbreak” nested in place as random effects. The differences

between and relative merits of the four models were discussed in Section 4.4. All four

models, however, are useful; depending on what the requirements of the model are.

The models presented in this thesis form an initial attempt to model African Horse

Sickness in the South African context, although much further work is necessary if the

country is truly to get this disease under control. However, it should be recognized

that this constitutes a body of work from which other continents, such as Europe,

can gain information and form plans of action should epizootics occur there. This is

especially important since climate change guarantees that vectors of the disease will

move to areas previously inhospitable to them, thereby having the ability to carry the

virus to areas where it is not endemic. Together with recent advances in serotyping via a

rapid diagnostic assay (Groenink, 2009), modeling work such as this would enable policy

makers to form early warning systems and plan vaccination campaigns using monovalent

vaccines in order to both reduce mortality from, and ultimately bring an end to, an

epizootic. Furthermore it should be evident that this work has applicability not only to

African Horse Sickness, but also to other vector-borne viruses of the family reoviridae,

such as Bluetongue Virus and Epizootic Hemorrhagic Disease Virus in ruminants, and

Equine Encephalosis Virus in horses, as they all have similar mechanisms of transfer.

Other vector-borne diseases such as malaria research and control in humans can also

benefit from the modelling approach suggested in the current thesis.

In conclusion, it is hoped that this work will see the beginning of much more such

research into this problem, which could kickstart major advances for early warning

systems, planning processes and prophylaxis that will contribute towards the control of

African Horse Sickness in South Africa in the future.
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Appendix A

Plots

Figure A.1: Ixopo Temperature
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Figure A.2: Ixopo Rainfall

Figure A.3: Ladysmith Temperature
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Figure A.4: Ladysmith Rainfall

Figure A.5: Pietermaritzburg Temperature
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Figure A.6: Pietermaritzburg Rainfall

Figure A.7: Newcastle Temperature
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Figure A.8: Newcastle Rainfall

Figure A.9: Vryheid Temperature
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Figure A.10: Vryheid Rainfall
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Appendix B

SAS Code

/****************** Exploratory Data Analysis *****************/

proc freq data=kzn;

tables horsestatus*province HorseStatus*classification HorseStatus*othercases

HorseStatus*vaccinated HorseStatus*presentation HorseStatus*treatment HorseStatus*stabled

HorseStatus*pesticides HorseStatus*isolation / chisq;

run;

/****************** POISSON GLM ************************/

**Calculation for sinyr term;

data kzntrig;

set kzn;

sinyr = SIN(6.28319*t);

run;

**Model without interaction effects;

proc genmod data=kzntrig;

model cases = sinyr tmax tmin rain / dist=poi link=log type3 wald;

output out=model0 p=predicted stdresdev=stdresdev ;

run;

**Model with interaction effects;

proc genmod data=kzntrig;

model cases = sinyr tmax tmin rain tmin*tmin tmax*rain / dist=poi link=log

type3 wald;

output out=model1 p=predicted stdresdev=stdresdev ;

run;
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symbol1 value=dot color=red interpol=join;

symbol2 value=dot color=blue interpol=join;

title ’Predicted and Observed Cases over time’;

proc gplot data=model1;

plot cases*date predicted*date / overlay legend;

run;

**model checking;

title ’Residual Plot’;

symbol value=circle interpol=none;

proc gplot data=model1;

plot predicted*stdresdev;

run;

title ’QQ-Plot’;

symbol value=dot color=black;

proc univariate data=model1;

qqplot stdresdev;

run;

**Model with estimating scale parameter;

proc genmod data=kzntrig;

model cases = sinyr tmax tmin rain / dscale dist=poi link=log type3 wald;

output out=model2 p=predicted stdresdev=stdresdev ;

run;

symbol1 value=dot color=red interpol=join;

symbol2 value=dot color=blue interpol=join;

title ’Predicted and Observed Cases over time’;

proc gplot data=model2;

plot cases*date predicted*date / overlay legend;

run;

**model checking;

symbol value=circle interpol=none;

proc gplot data=model2;

plot predicted*stdresdev;

run;

ods html close;

symbol value=dot color=black;

proc univariate data=model2;

qqplot stdresdev;

run;
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/*************** BINOMIAL GLM *******************/

proc genmod data=binom descending;

class province classification othercases vaccinated presentation treatment

stabled pesticides isolation / param=ref;

model HorseStatus = province classification othercases vaccinated presentation

treatment isolation / dist=binomial link=logit type3 wald scale=deviance aggregate=caseid;

run;

/**************** BINOMIAL GEE *********************/

proc genmod data=binom descending;

class province classification othercases vaccinated presentation treatment

stabled pesticides isolation placeID;

model HorseStatus = classification vaccinated presentation treatment / dist=bin

link = logit type3;

repeated subject = placeID / corr=exch;

output out=GEE pred=predicted;

run;

/**************** BINOMIAL GLMM *********************/

proc glimmix data=binom IC=Q noclprint=10 method=quad;

class province classification othercases vaccinated presentation treatment

stabled pesticides isolation place;

model HorseStatus (descending) = classification vaccinated presentation treatment

/ distribution=binary link=logit cl;

random place / r;

run;

proc glimmix data=binom IC=Q noclprint=10 method=quad;

class province classification othercases vaccinated presentation treatment

stabled pesticides isolation place outbreakID;

model HorseStatus (descending) = classification othercases vaccinated presentation

treatment isolation

/ distribution=binary link=logit cl;

random intercept / subject= place ;

random int / subject = outbreakID(place);

run;

/*************** POISSON GLM for JHB **********************/

data jhb;
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set jhb;

sinyr = SIN(6.28319*t);

run;

Initial dataset - no severity index;

proc genmod data=jhb;

model cases = sinyr tmax*tmax tmin*tmin rain*rain tmax*rain tmin*rain / dist=poi

link=log type3 wald; output out=model2 p=predicted stdresdev=stdresdev ;

run;

symbol1 value=dot color=red interpol=join;

symbol2 value=dot color=blue interpol=join;

proc gplot data=model2;

plot cases*month predicted*month / overlay legend;

run;

One year lag for severity index (SI1);

proc genmod data=jhb;

model cases = sinyr tmax tmax*tmax tmin*tmin rain*rain tmax*rain tmin*rain

SI1 / dist=poi link=log type3 wald;

output out=model5 p=predicted stdresdev=stdresdev ;

run;

proc gplot data=model5;

plot cases*month predicted*month / overlay legend;

run;

Two years lag (SI1 and SI2);

proc genmod data=jhb;

model cases = sinyr tmax tmin*tmin rain*rain tmax*rain tmin*rain SI1 SI2 /

dist=poi link=log type3 wald;

output out=model6 p=predicted stdresdev=stdresdev ;

run;

proc gplot data=model6;

plot cases*month predicted*month / overlay legend;

run;
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