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Abstract - In this work, we present logistic-based mineral 

prospectivity mapping (MPM) methods concerning with 
assigning weights of exploration indicators, without contribution 
of training sites as in supervised MPM and without using user-
judged weights as in unsupervised MPM, to modulate the 
problems of stochastic and systemic errors. In addition, we 
discuss the ability of prediction-area plot as a tool to assess and 
compare evidential layers and prospectivity models.  
 

I. INTRODUCTION 
N modeling of prospectivity for a certain type of mineral 

deposit, evidence maps are created from relevant 

exploration datasets, are weighted and then combined to 

delimit exploration targets. Weights of evidence classes are 

allocated based on either analyst’s knowledge or known 

deposit locations, or a combination of both, or using user-

defined functions, or using logistic sigmoid functions [1, 2].  

Conventionally, continuous spatial values (e.g., distance to 

indicator features) are firstly discretized into a number of 

classes using haphazard intervals, and then every spatial value 

in each class are weighted through one of the above-mentioned 

methods for prospectivity analysis. The practice of discretizing 

spatial evidence values results in evidence layers that are 

affected by class interval. Thus, the comparative significance 

of spatial values in an exploration data set is not evaluated 

precisely that is due to the approximation convoluted in 

categorization of continuous spatial data, determining the 

intervals, and assigning their weights as indicator of mineral 

deposits. More importantly, there is no reliable proven weight 

indicating the comparative significance of exploration 

indicators that could be ascertained directly. Thus, two 

common problems affect integration of evidence maps [3, 4]: 

(1) stochastic error associated with sufficiency in number of 

known deposit locations used to estimate evidential weights; 

(2) systemic error associated with subjectivity of expert 

judgment applied to process, analyze, and assign weights to 

evidential data.  

This paper aims to (a) demonstrate logistic-based 

assignment of spatial evidence values to avoids the above-

mentioned errors, and (b) illustrate prediction-area (P-A) plot 

[2] for efficient evaluation of spatial evidence layers and 

prospectivity models. These are applied to exploration data for 

modeling prospectivity for porphyry-Cu mineralization in an 

area in southeast Iran. 

II. METHODOLOGY 
Mineral prospectivity modeling (MPM) is a decision 

making problem concerning the classification and 

prioritization of greenfields or brownfields into some 

 
 

delimited parts explicitly with (a) upper most priority as 

exploration targets, (b) lower most priority (in fact with no 

priority), and (c) some priorities between them. Accordingly, 

prospectivity models are presented as categorized maps [2, 3]. 

The transformation of continuous exploration evidence values 

resulting from multiple exploration data sets, using a logistic 

sigmoid function facilitates interpretation of exploration 

indicator patterns [2]. This is because the function transforms 

individual evidence data into the same space and has a more 

discretionary power to distinguish classification boundary. 

There are different types of logistic functions concerning with 

transformation of a collection of spatial values into [0,1] range 

respecting the lowest and highest spatial values and variations 

therein such as [3]: 
( )1/ (1 )s Sv ieSvF    (1) 

where FSv is a fuzzy weight ranging from 0 to 1, i and s are 

parameters of the logistic function, and Sv is spatial evidence 

value for which FSv is estimated. The parameters i and s 

determine the output fuzzy weights. For a spatial evidence data 

set with lowest, Esmin, and highest, Esmax, values, i and s are 

calculated as [3]: 

max min9.2 / ( )s Es Es   (2) 

max min( ) / 2i Es Es   (3) 
In MPM, exploration evidence data are elicited from 

various exploration methods, so their lowest and highest 

values do not lie in the same range and their units are also 

diverse. Transformation of a spatial exploration data set using 

(1) results in scores in [0, 1] range, i.e., fuzzy weights. 

Therefore, multiple exploration evidence data sets obtained by 

different exploration methods can be transformed to the same 

space using logistic functions. Thus, the ensuing values could 

be modeled as fuzzified evidence layers and their relative 

importance for MPM can be estimated more realistically. 

Evaluation of exploration indicator layers and consequently 

generated prospectivity models are important in MPM to 

delimit target areas precisely. If a prospectivity model (or an 

evidence layer) predicts a smaller target comprising larger 

number of deposits, then it would be “easier” to discover 

deposits in the delimited target. Therefore, in the evaluation of 

evidence layers and prospectivity models the area occupied 

area by exploration targets and the prediction rate of mineral 

deposits should be contributed. For this, known deposit 

locations could be utilized in a P-A plot to asses both evidence 

layers and prospectivity models. In a P-A plot, the proportion 

of predicted deposits and the proportion of occupied areas 

corresponding to the prospectivity classes (or evidence values) 

are simultaneously used for the purpose of evaluation. In a P-

I 
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A plot, the intersection of the two curves, the curve of 

proportion of predicted deposits, and the curve of proportion 

of occupied areas, is a criterion to evaluate prospectivity 

models [2]. This is because if the intersection appears in a 

higher place in the plot, it means a smaller target comprises 

larger number of deposits.  

 

III. RESULTS & DISCUSSION 
In this paper, we used a layer of proximity to intrusive rocks 

and a layer of faults density (FD) representing heat-source and 

pathway proxies of porphyry copper mineralization, 

respectively. Then, for fuzzification of the proxies, we applied 

(1) to obtain weighted evidence maps. Then, the two fuzzified 

evidence layers were combined using fuzzy gamma (=0.9) 

operator to generate porphyry-Cu prospectivity model (Fig. 1). 

 

Fig. 1. Prospectivity model of porphyry-Cu deposit 

 

Logistic-based fuzzification of exploration evidence data 

avoids the disadvantages of existing knowledge- and data-

driven MPM methods in terms of (a) defining various 

empirical and generic functions to assign evidential weights, 

(b) carrying uncertainty due to simplification of data into 

classes, and (c) exploration bias resulting from using known 

deposit locations as training sites in the modeling [4]. Thus, 

the method is more objective rather than existing knowledge- 

and data-driven MPM methods. 

To evaluate the prospectivity model generated we used P-A 

plot (Fig. 2). The P-A plot quantifies relationship of mineral 

deposits and exploration evidence values. Thus, it can be 

utilized to evaluate and compare different spatial proxies to 

recognize efficient indicator layers of mineral deposits. In 

addition, the P-A plot can evaluate the amount of efficiency of 

prospectivity models in recognition of mineralization 

footprints. As shown in Fig. 2, the prediction rate is ~90% 

indicating that the prospectivity model generated is reliable. 

Fig. 2 - Prediction-area plot 

IV. CONCLUSION 
Mineral prospectivity modeling using logistic-based 

weighting approach alleviates the problem of stochastic and 

systemic errors in estimation of evidential weights. 

Consequently, the efficiency of prospectivity models, which 

created using logistic-based approach, is increased in 

comparison with prospectivity models generated using 

traditional weighting techniques used in knowledge- or data-

driven MPM. Using logistic-based MPM is pertinent in either 

greenfields or brownfields. 

Prediction-area plot could be used as a worthy tool not only 

to evaluate exploration evidence layers but also to appraise 

diverse prospectivity models regarding their capability to 

predict mineral exploration targets. 
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