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ABSTRACT 

 

Climate change and variability cause direct yield losses as a result of adverse environmental 

conditions and indirectly through losses resulting from insect pests attack. The impacts of a 

changing and variable climate are more likely acute in the developing countries as a result of 

poverty and economic challenges which limit the farmers’ capacity to adapt to risks 

associated with a changing and variable climate. Smallholder farmers in Zimbabwe are likely 

to face huge yield losses as a result of the changes in the abundance and distribution of insect 

pests.   

  

The aim of this study was to evaluate the responses of insect pests to a changing and variable 

climate in Zimbabwe. The study was conducted in the five agro ecological regions of 

Zimbabwe also known as natural regions to determine the perceptions of the farmers to 

climate change and its impact on insect pests, farmer knowledge and practices to manage 

insect pests of vegetable crops in a changing climate, map emerging insect pest distribution in 

Zimbabwe using climatic data as well as to model future distribution of emerging insect 

vectors. A participatory research approach using the survey questionnaires, interviews and 

focus group discussions was employed in the study. The Random Forest (RF) modelling 

algorithm was used to map the current and the projected distribution of the emerging insect 

vectors. 

 

Twenty two percent of the farmers across natural regions perceived changes in climate to be 

increases in temperatures throughout the year and an increase in the frequency of droughts. 

Late rainfall was cited by 16.4% of the farmers while long dry spells was cited by 16% of the 

respondents and 7.2% cited shorter cold season as the major indicator of a changing climate.  

Increasing incidence of heat waves, flash floods and the disappearance of wetlands and green 

spaces were cited as other indicators of a changing climate. Increased abundance of insect 

pests, decreased natural resource base and reduction in social safety nets were perceived to be 

the major climate change risks that were experienced by the smallholder farmers.  The 

majority of the farmers (89%) have also expressed experiencing an increase in the incidence 

of insect pests such as aphids, stem borers, termites, diamond back moths, bollworms and 

whiteflies throughout the agro ecological regions of the country. Four percent perceived a 

decrease in insect pest incidence while 1% was not sure whether insect pests were increasing 

or decreasing. Farmers also perceived a change in behaviour of insects such as an increase in 
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mobility as cited by 50.8%, and colour variations within insect species as highlighted by 

73.6% and emergence of new insect pests which was highlighted by 59%.  The perceived 

crop production risks as a result of the changes in climate included an increase in the 

abundance of insect pests such as aphids, stem borers, termites, diamond back moths, 

bollworms and whiteflies.  

 

The majority of the farmers (53%) cited high vegetable losses from insect pests and diseases. 

Farmer’s insect management strategies that were implemented to manage the increasing 

insect pest population on vegetable crops included planting insect resistant vegetable 

cultivars, use of certified seed. All the respondents (100%) cited the use of chemical 

insecticides at some point during the production cycle of vegetables. A higher proportion 

(60%) perceived effective control of insects by chemical insecticides while 34% perceived 

reduced efficacy of the chemical insecticides and 6% were not very sure of effectiveness of 

chemical insecticides. Increased rates of application, increased frequency of chemical 

insecticide use and the use of hazardous insecticides has been cited by the majority of the 

smallholder farmers. There is need for facilitation of development and adoption of Integrated 

Insect Pest Management (IIPM) and raise awareness to avoid overdependence on chemical 

insecticides. Insect pest models that support adaptation planning also need to be developed to 

forecast climate change events, the distribution of insects in space and time and the 

corresponding pathogens that are transmitted by these insect pests.   

 

 A study was also conducted to map the current aphid, Myzus persicae and whitefly, Bemisia 

tabaci distribution in Zimbabwe using the summer and the winter data set from field surveys 

and the RF model. Precipitation and temperature related variables were found to be important 

in affecting the spatial distribution of aphids and whitefly. In addition the summer dataset 

was considered to be more reliable in mapping the distribution of both the aphids and the 

whiteflies. Using the RF model, the conducive environmental conditions for aphid and 

whitefly infestation are more pronounced in the northern part of Zimbabwe while the 

southern part of the country is less suitable for both the aphid and whitefly infestation. Based 

on the level of infestation, the results for aphid distribution produced an overall classification 

accuracy of 70% and a kappa value of 0.64. An overall accuracy of 75% and a kappa value of 

0.67 was produced for whitefly distribution, whereby a kappa value represented the extent to 

which the data collected in the study are correct representations of the variables measured. In 
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this study a kappa value 0.64 and 0.67 indicated that the data was reliable in determining the 

current distribution of the aphid and whitefly.  

 

Higher rainfall areas which include Nyanga, Chipinge, Goromonzi, Rusape and Murewa, are 

currently more suitable for aphid infestation than the low rainfall areas such as Masvingo, 

Chiredzi and Hwange. Spatial and temporal projection of the suitability of various agro 

ecological regions to insect vectors of significance in Zimbabwe is critical in enabling timely 

planning of management and preventative measures in the areas where the insect vectors are 

expected to occur under future climate conditions. 

 

For whitefly distribution in 2050, the overall accuracy was 70% with a kappa value of 0.62. 

For the year 2080, the overall accuracy was 65% with a kappa value of 0.55. The 

susceptibility of Zimbabwe to whitefly was persistent throughout the years modelled. 

Whiteflies have potential habitats in the northern areas of Zimbabwe while the central part 

will be less conducive to the development of whitefly infestations by 2050. By the year 2080 

the levels of whitefly infestations will decrease in the lowveld, the central and the western 

parts of Zimbabwe. However, the habitat suitability range will increase in areas south of 

Gutu, west of Chipinge and south west of Magandani. The findings of this study highlight the 

potential for using the vulnerability maps to inform whitefly surveillance at spatial and 

temporal ranges. 

 

Overall, the study showed that increasing temperature and altered precipitation patterns in 

Zimbabwe have the potential to increase the distribution and the abundance of insect pests. 

This is likely to increase the use of chemical insecticides thereby exposing the farmers and 

the consumers to the hazards associated with overuse of chemical insecticides. The sub 

humid and the sub-tropical regions of the country are currently and potentially suitable 

habitats of a wide range of insect pests including the virus vectors. The more arid regions are 

currently less suitable and will become unsuitable for the virus vectors in future. Government 

intervention through insect surveillance at both spatial and temporal scales is of importance 

in reducing yield loss as a result of insect pest hazards. Early warning systems to increase 

farmer awareness on the impending insect pests’ hazard and policies to reduce overuse of 

insecticides is of importance under changing climate conditions. Promoting the use of 

alternative insect pest control strategies in these regions which are likely to be suitable for 
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insect pests is also vital for a more efficient management of insect pests thereby reducing 

crop losses to due to insect pest attack.  
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CHAPTER 1 

INTRODUCTION TO THESIS 

1.1 Rationale of the study 

 

The changing and variable climate is projected to alter the environmental conditions beyond 

the usual farmers’ experiences in many regions of the world (Gornall et al., 2010). These 

conditions are most likely to continue despite the various efforts that are being put in place to 

mitigate the emission of greenhouse gases into the atmosphere (IPCC, 2013; Ramirez-

Villegas et al., 2013). This implies that climate induced risk management and adaptation is of 

importance in reducing vulnerability and food insecurity particularly among the smallholder 

farmers who are characterised by a low adaptive capacity (Stringer et al., 2012; Rufino et al., 

2013). Although climate change and variability is a global phenomenon, its impacts are 

diverse in various localities. Both positive and negative results depending on latitude, 

altitude, type of the crop and the economic situation of the nations are obtained as a result of 

a changing climate (IPCC, 2013).  There are, however, more negative than positive impacts 

in developing countries such as Zimbabwe because of its geographical location, higher levels 

of poverty among the smallholder farmers and over reliance on rain fed agriculture 

(Gurukume, 2013).  

 

Climate change and variability affects crop yields through direct yield losses attributable to 

adverse environmental conditions (Mapfumo et al., 2013) as well as through the changes in 

population dynamics and geographic distribution of crop pests (Khan et al., 2014). Many 

assessments of climate change effects on crops have focused on the potential yields, but 

factors such as insect pests and pathogens which have major effects in determining actual 

crop yields have not been taken into consideration (Gregory et al., 2009). Climate change is 

likely to increase the spread of plant pathogens by insect vectors in a number of crops. Due to 

the ectothermic nature of insects, they are very likely to respond quickly to warming 

temperatures (Robinet & Roques, 2010). The warming temperatures therefore have the 

potential to affect most life history parameters of insect pests (Chidawanyika et al., 2012). 

 

In the African continent various researches have been conducted linking climate change with 

farmer vulnerability (Mano & Nhemachena, 2007).  In Zimbabwe, research has been carried 

out to determine the vulnerability of the agricultural system to weather variables (Mapfumo 
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et al., 2013). However, very few studies have focused on the vulnerability of smallholder 

farmers to yield losses as influenced by insect pests and diseases in an environment of a 

changing and variable climate. There is, thus, a gap in assessing smallholder farmer’s 

knowledge and perceptions to insect pests and diseases as influenced by a changing and 

variable climate (Adam et al., 2015).  In addition, the majority of the studies on insect pest 

distribution under a changing climate have mainly been conducted in developed countries 

(Barredo et al., 2015). The use of insect pest models in predicting and quantifying the present 

occurrence and projected distributions of established insect species in distribution studies is 

an important step in establishing surveillance monitoring when the potential distribution of 

the insect pest is established (Gormley, 2011). The projected distribution of insect pest will, 

therefore, increase better preparedness to reduce outbreaks of serious insect pests as a result 

of climate change and variability (Fand et al., 2014). 

 

Despite the significant contribution of smallholder agriculture to agricultural output and to 

global food production (Hazell et al., 2007), these farmers are susceptible to the adverse 

environmental conditions as well as the associated risks (Gurukume, 2013). From the year 

1980-2010, fifteen dry seasons coupled with temperature extremes in the moderate to 

extreme drought range have been recorded in Zimbabwe, whilst the hottest period was 2000-

2010 with 8 droughts resulting in direct yield loss (Meteorological Services Department, 

2013). These weather conditions are likely to cause changes in population dynamics of insect 

pests in Zimbabwe. 

 

Zimbabwe is divided into five distinct agro ecological regions based on rainfall quality, 

temperature regimes and soil quality (Anderson et al., 1993; Vincent and Thomas, 1960). 

This implies that the various regions have various susceptibilities to insect pests as a result of 

the variations in the agro ecosystems. A variety of insect pests have emerged and caused 

devastating losses to the production of both horticulture and field crops in the various agro 

ecological regions in the recent agricultural seasons in Zimbabwe. The incidence of insect 

pests which destroy crops such as sugarcane like black maize beetle, Heteroncychus licas, 

Klug (Coleoptera: Scarabeidae) and pearly scale, Margarodes spp, Morales 1991 (Hemiptera: 

Margarodidae) will be severely affected by temperature increases. Besides other biophysical 

factors, the emergence of black maize beetle is stimulated by high temperatures which are 

associated with a warming climate (Chandiposha, 2013). In addition to the black maize beetle 
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and the pearly scale in sugarcane production in Zimbabwe, the termite (Isoptera: Termitidae) 

and nematode, Pratylenchus zeae, Graham 1951 (Tylenchida: Pratylenchidae) populations is 

expected to increase due to warm and dry conditions that are associated with climate change 

(Clowes & Breakwell, 1998).  

 

In the production of the golden leaf, tobacco in Zimbabwe, there has been an occurrence and 

subsequent domination of the red morph of tobacco aphid, Myzus persiace nicotianae, Sulzer 

(Hemiptera: Aphididae) compared to the green morph of the aphid. The red morph was 

reported to be tolerant to higher temperatures as well as resistant to a variety of insecticides 

(Masukwedza et al., 2013). In the Southern lowveld of Zimbabwe, spotted stem borer, Chilo 

partellus Swinhoe (Lepidoptera: Noctuidae) exhibits a facultative diapause and causes 

extensive damage to both rain fed and off-season irrigated cereal crops (Chinwada et al., 

2001). 

 

In Zimbabwe, invasive insect species have been reported during the 2016 agricultural season 

mainly in agro ecological regions 2 and 3 which are characterised by intensive agricultural 

production. There has been a sudden outbreak of tomato leaf miner, Tuta absoluta Meyrick 

(Lepidoptera: Gelechidae) a new invasive and highly destructive pest, to the majority of crops 

in the solanaceous family towards the end of the year 2016. Its ravaging effect on the tomato 

plants resulted in the loss of up to 80% of the tomato yield. Other affected crops include 

tobacco, potato, pepper, eggplant and even weeds that belong to the solanaceous family. In 

severe cases, the leaf miner has been reported on vegetables that belong to the brassica family 

such as cabbage and kale. In tomatoes the pest caused heavy economic losses resulting in 

increase in the prices of tomatoes.  

 

In addition to the tomato leaf miner, in the 2016/2017 agricultural season, there has been a 

sudden emergence of an armyworm in Zimbabwe, fall armyworm, JE Smith Spodoptera 

frugiperda (Lepidoptera: Noctuidae). The fall armyworm is widely distributed in eastern and 

central North America and in South America (Murua et al., 2009) and suddenly, it invaded 

Zimbabwe. This implies that the country is and will be at risk from numerous insect pests that 

are not common in Zimbabwe and also there is likely to be sudden outbreaks of insect pests 

that affect agricultural crops in Zimbabwe. 
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1.2 Conceptual framework 

 

This research study was guided by the conceptual framework shown on Fig1.1. It shows that 

the underlying factors that determine farmer’s adaptation to a changing and variable climate 

are the knowledge and the perceptions of risks posed by climate change and variability. The 

framework highlights the need for smallholder farmer adaptation to the insect pest problem 

which is of critical importance in ensuring sustainable crop production in the face of climate 

change and variability. Farmer knowledge and perceptions are of importance if they are 

augmented with climate change projections as well as the projected insect pest distribution 

models.  

 

Climate change adaptation is defined as the adjustments in processes and practices, to reduce 

the potential damages or to benefit from opportunities associated with climatic stimuli as well 

as their impacts (Smit & Pilifosova, 2001). In agriculture, the climatic variables with the 

greatest impact are variability and extremes rather than the average conditions (IPCC, 2013). 

Smit & Wandel (2006) defined adaptation as the adjustments made by humans which they 

can utilise in order for them to better manage or adjust to changing conditions, stress, 

hazards, risk or opportunities. They also included cultural adaptation, which refers to the 

process in which groups of people develop or adopt new and improved methods and 

technologies to their cultural values in order to cope with the environment (Smit & Wandel, 

2006; Tompkins & Eakin, 2012).  

 

An understanding of the perceptions and adaptation strategies of individual households or 

communities in an area provide better insights into management practices. This helps to 

generate additional information which are relevant to policy interventions to address the 

challenge of sustainable crop production and development in the context of a changing and 

variable climate. Adaptation is a feature that has made it possible for the survival of biotic 

species alongside the harsh climatic conditions (Depledge & Lamb, 2005). However, climate 

change and variability brings with it new challenges that require new interventions to support 

adaptation. It is because of those impacts and vulnerabilities that need for adaptation is 

strongly justified (Paavola & Adger, 2006). 

 



5 

 

Climate change and variability generally affects temperature, rainfall and wind speed and 

wind duration in areas or regions that are exposed to the harsh environmental conditions. 

These weather variables are the most important factors influencing insect pest population 

dynamics (Parvatha, 2015). The increases in insect pests’ problems can be reduced by the 

adoption of a variety of strategies. Development of gene pools for crop varieties that resist 

insect pest attack can also be developed in the future. Monitoring of existing insect pests and 

development of insect pest models will be of importance in reducing smallholder farmers 

vulnerability to yield loss as a result of insect pest attack, thereby ensuring sustained crop 

production and hence food security.
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Fig 1.1: The conceptual framework for the study  

(Author’s own construction) 
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1.3 Justification of the study 

 

Zimbabwe lies in the tropical to sub-tropical regions with a high degree of variable rainfall 

patterns as well as temperature fluctuations (Brown et al., 2012). Zimbabwe’s daily minimum 

temperatures have risen by approximately 2.6˚C while daily maximum temperatures have 

risen by 2˚C during the 20th century (Brown et al., 2012). The period stretching from 1980 to 

the first decade of the 21st century has been the warmest since first temperature records were 

done in Zimbabwe. Future scenarios predict further increases of between 1.3˚C and 4.6˚C by 

the year 2100, representing warming rates of between 0.1˚C and 0.4˚C per decade 

(Government of Zimbabwe, 2013). Being landlocked, Zimbabwe is most likely to warm more 

rapidly in the future than the global average. By the year 2080, annual rainfall averages are 

projected to range between 5% and 18% less than the 1961-90 average (Unganai, 1996).  

 

Considering the climate change projections, there is need for evaluation of farmer perceptions 

to a changing and variable climate and the corresponding insect pests which are a major 

threat to crop production in a warming climate.  The adaptation measures which farmers take 

to reduce the impact of increased pest problems and the development of predictive models 

will complement and augment current adaptation strategies in the face of changes in insect 

pest dynamics under a warming climate.  

 

Climate change and variability will exacerbate the already available serious challenges to 

crop production and food security in most dry lands of the developing world (Knox et al., 

2011). The elevated temperatures which is one of the major characteristics of a changing 

climate may lead to proliferation of insect pests and plant diseases (Luedeling et al., 2011) 

resulting in 30-50% of the yield losses in agricultural crops (Kroschel et al., 2010). Insect 

pests cause crop damage and loss in various ways and are mostly associated with the direct 

impact of their feeding resulting in yield loss, a reduction in the quality of harvested produce 

due to cosmetic damage as well as through the transmission of plant viruses (Fagelfors, 

2009). More than half of Zimbabwe’s land area is made up of arid and semi-arid lands 

therefore adaptation to the crop production risks caused by climate change and variability is a 

priority since the majority of the population in these areas are dependent on agriculture for 

their livelihoods (Gurukume, 2013). Farmer adaptation is of importance in reducing 

vulnerability to yield losses resulting from climate change hazards (Sarr et al., 2015). 
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Adaptation strategies are also of importance because the weather patterns have already 

changed and the changes are expected to continue even if mitigation measures are instantly 

put into place (Cobon et al., 2009). 

 

 Although there are many factors involved in climate change, the study will help to predict 

the impact of climate change on insect pest and resultant plant diseases that are transmitted 

by the insects. This will thereby assist the nation in the development of more efficient food 

security policies (Chidawanyika et al., 2012; Kihupi et al., 2015; Ramirez-Villegas & 

Thornton, 2015). A more accurate forecasting of pest incidence before they actually take 

place is desired in pest control programmes, so that control measures can be planned well in 

advance and also with maximum efficiency to increase food security (Prabhakar, 2012; 

Okonya et al., 2013). Plant pathogens such as viruses cannot be cured once a plant is infected 

by the viruses, the majority of which are transmitted by the insect vectors. Disease 

management and prevention of yield losses as a result of plant viruses must therefore aim to 

prevent the infection of plants and minimise economic losses through monitoring and taking 

necessary measures to get rid of the insect vectors (Vuorinen et al., 2004). 

 

1.4 Hypotheses 

 

1. Smallholder farmers in the five agro ecological regions perceive climate change as a major 

factor underlying increased insect pest abundance  

2. Adaptation options for insect pest management in a changing climate are based on farmer 

knowledge of climate variability and change and the indigenous knowledge practices 

3. Insect pests will become more abundant in higher rainfall and relatively lower temperature 

areas of Zimbabwe under future climate conditions 

 

1.5 Objectives 

 

The main objective of this study was to determine the responses of insect pests to a changing 

and variable climate in Zimbabwe based on farmers’ perceptions and the various adaptation 

strategies to reduce vulnerability to insect pests’ problems and hence yield losses. This study 

mapped the current distribution of an emerging insect vector (aphid) under climate change in 

Zimbabwe to determine the level of farmer vulnerability to this insect pest in the various agro 
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ecological regions of the country. This research also projected the potential distribution of the 

key virus vector, whitefly (B. tabaci) under future climates.  

The specific objectives of the study were: 

1. To determine farmer perceptions on insect pests responses in relation to climate 

change in Zimbabwe. 

2. To assess farmer knowledge and adaptation practices that are implemented to manage 

insect pest population on vegetable crops in a changing climate. 

3. To map the emerging insect pest, M. persicae distribution in Zimbabwe. 

4. To project the potential distribution of the whitefly, B. tabaci in vegetable production 

in Zimbabwe under future climate conditions (2050 and 2080).  

 

1.6 General methodology and study approach 

 

A participatory research method was used in the five agro ecological regions alternatively 

known as Natural Regions (NR). In this study, the 5NRs were represented by 5 districts of the 

Zimbabwe. The study used questionnaires using both structured and semi-structured 

questions, key informant interviews and focus group discussions. Data was subjected to 

Analysis of variance (ANOVA) using the Statistical Package for Social Sciences (SPSS 

version 16) to compare the responses of farmers across the natural regions. A Random Forest 

(RF) modelling approach was used to obtain information on the current and the potential 

distribution of the emerging insect pests which are of significance in the transmission of 

major plant viruses.  

 

1.7 Organization of the Thesis  

 

The different chapters of this thesis were compiled in a research paper format where each 

chapter was an independent research paper. The first chapter briefly describes the purpose 

and significance of this research. It outlines the research gap in climate change studies which 

has necessitated this research. The second chapter explores current knowledge, findings, as 

well as theoretical and methodological contributions of researches on the influence of abiotic 

factors on the biology (growth, reproduction, dispersal) of insect pests, the role of abiotic 

factors on the incidence of entomopathogens and plant-insect interactions under a changing 

climate. Chapter three determines the perceptions of farmers to climate change and variability 
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and the corresponding insect pests of agricultural crops across Zimbabwe’s agro ecological 

regions. Chapter four investigated farmer knowledge to a changing and variable climate in 

relation to key pests of vegetable crops and the adaptation strategies to cope with increasing 

insect pest populations under a climate change. The majority of the strategies were based on 

cultural means of managing insect pests as well as the use of chemical insecticides. In chapter 

5, the present potential distribution of M. persica was mapped in Zimbabwe using the 

Random Forest modelling approach. The current and the projected distribution of whiteflies 

in Zimbabwe was mapped in chapter six. The whitefly distribution was projected for the year 

2050 and the year 2080. Chapter seven consolidates the findings of the entire research, 

outlines the implications and highlights the issues of interests which can guide future 

research. 
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CHAPTER 2 

THE RESPONSES OF INSECT PESTS TO A CHANGING AND VARIABLE 

CLIMATE: A REVIEW 

Abstract 

Global climate change resulting from natural and anthropogenic factors has resulted in altered 

environmental conditions that are conducive for changes in abundance and diversity of insect 

pests. Insect pests, by being ectothermic in nature are most likely to respond to the changes in 

climate variables. The majority of climate change projections focus on crop yields and 

adaptation strategies to declining yields and ignore the likely impact of a changing climate on 

insect pests and plant diseases, yet the problem of insects and plant diseases is likely to be 

influenced by a changing climate. In this research paper, we present a review on the effects of 

climate variables namely temperature, carbon dioxide (CO2), precipitation and extreme 

weather events on insect pests and plant diseases. Elevated temperatures, CO2 and extreme 

weather events have been shown to increase the distribution, reproductive potential, the 

incidence and abundance of plant insects and diseases in temperate regions because of the 

dependence of insects and diseases on environmental conditions. There is limited information 

on the influence of temperature and carbon dioxide as well as their interaction on the 

incidence and severity of insect pests, bacteria and viruses in the tropical regions. Information 

on the influence of altered precipitation patterns is also limited but could be of importance in 

insect distribution studies in a changing climate. Tropical insects pests are likely to suffer 

from extreme heat resulting in death and hence pest extinction. Incidence and efficiency of 

entomopathogens are likely to be negatively affected by changes in the climatic conditions. 

Future research should focus on the interaction of elevated temperature and CO2, determine 

the influence of supra optimal summer temperatures, temperature variability, precipitation 

variability and the responses of the various entomopathogens under tropical conditions. 

Modelling insect pest, climate change envelopes along with climate change in tropical areas 

such as the Southern African region will be of importance in determining insect pest 

distributions. 

 

Keywords: elevated temperature, pests, changing climate 
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2.1 Introduction 

 

Human activities and natural factors have led to rapid and extreme increases in atmospheric 

gases such as carbon dioxide and other greenhouse gases (IPCC, 2013). The increases in 

greenhouse gases have resulted in a number of observable climatic changes such as elevated 

temperatures (Jamieson et al., 2012), increased occurrence and severity of extreme weather 

events such as droughts, floods (Mearns et al., 2013) and intense tropical cyclones (Nissen et 

al., 2014). According to the Intergovernmental Panel on Climate Change (IPCC, 2007), the 

world’s average temperature has increased by 0.07˚C for every decade in the 20th  century 

with the first decade of the 21st century being the warmest period on record (AMCEN, 2011). 

There is also evidence that the rate of climate warming is increasing (IPCC, 2013) and the 

global climate change models predict a continued increase in atmospheric temperatures 

beyond the 21st  century, despite a reduction in the amount of gaseous emissions (Burrows et 

al., 2014; IPCC, 2013). On the other hand, CO2 levels have increased from 280 ppm in 1750 

to 368 ppm in the year 2000 (Watson, 2001). The levels are expected to increase to 1000 ppm 

by the end of the 21st century (Sanderson et al., 2011). 

 

The increase in frequency and intensity of extreme weather events, changes in moisture 

conditions, temperature rises and elevated carbon dioxide concentrations are expected to 

magnify pest pressure on agricultural systems through range expansion of the existing pests 

and invasion by new pests (Parvatha, 2015). Accelerated pest development leads to increased 

number of pest cycles per season, disruption of temporal and geographical synchronization of 

insect pests, diseases, beneficial and predatory insects which will increase the risks of pest 

outbreaks (Jaworski & Hilszczanski, 2013). The extreme weather events is associated with 

the emergence of minor pests to major pests due to a reduction in host tolerance and changes 

in land use practices and landscape characteristics (Johnson et al., 2013) .  

 

Due to the complex and highly variable responses of pests and their hosts to multiple and 

interactive shifts in environmental conditions, it is difficult to accurately quantify the 

potential impacts of climate change on pest damage. The changes in environmental 

conditions include elevated CO2, changes in temperature and relative humidity, cloudiness, 

and shifts in rainfall patterns, wind patterns, land cover and land use changes. Extreme 

weather events (dry and wet conditions) are key factors in triggering endemic and emerging 
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insect pest outbreaks (Anderson et al., 2004). The increased frequency of extreme weather 

events which is expected to occur as a result of climate change and variability is set to 

increase the agricultural pest burden. Dry periods tend to increase insect and viral outbreaks, 

while wet period encourage fungal and bacterial diseases and indirectly affect population 

dynamics of insect pests. Areas of concern for managing pests under climate change include 

pest range expansions, increased weed competitiveness, effects of root system pests on crop 

moisture stress and reduced effectiveness of integrated pest management (War et al., 2016). 

 

In a changing climate, insect pests and plant diseases present a major threat to global crop 

production and food security (Chakraborty & Newton, 2011).  However, many assessments 

of the effect of climate change on agriculture have focused on adaptation measures (Parvatha, 

2015) and the potential impacts of climate change on crop yields (Moyo et al., 2012). Other 

yield limiting factors such as insect pests and crop diseases have been neglected in most of 

these assessments (Selvaraj & Pandiara, 2013). Therefore, there is a risk that future crop 

yields might be overestimated if the impacts of insect pests and plant disease epidemics are 

not taken into consideration (West et al., 2015). In the tropical areas, there have been few 

studies on the effect of global warming on insect pests of agricultural crops (Perkins et al., 

2011) with the exception of hematophagous insects such as mosquito, Anopheles spp Say 

(Diptera: Culicidae) (Patz & Olson, 2006) and tsetseflies, Glossina pallidipes, Austen 1903, 

(Diptera: Glossinidae) (Terblanche et al., 2008). In addition temperate insect pests such as the 

coffee berry borer, Hypothenemus hampei Ferrari, (Coleoptera: Scolytidae) (Jaramillo et al., 

2009) and the potato tuber moth, Phthorimaea operculella Zeller (Kroschel et al., 2013) have 

been researched upon yet tropical insects are at a greater risk from climate change as they 

inhabit the already warm environments (Zeh et al., 2012).  The focus of this review is to 

collate information on the likely effects of climate variables such as elevated temperature, 

CO2 and extreme weather events on insect pests and diseases in a changing climate. Detailed 

examination of the impact of respective climatic variables is discussed in this chapter. 

 

2.2 The impact of elevated temperature on the biology of insect pests  

 

Elevated temperature is one of the most important drivers of climate change that directly 

affect the  timing of seasonal biological events of the majority of the arthropods, particularly 

insects (Altermatti, 2012; Miller-Rushing et al., 2010; Savopoulou-Soultani, 2012; William et 
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al., 2015). The majority of insect pests are cold-blooded invertebrates and, therefore, 

do not use their metabolism to maintain their body temperature (Petzolet & Seaman, 2010), 

but depend on surrounding temperatures for all their biological activities such 

as development, distribution, reproduction and survival (Jaworski & Hilszczanski, 2013). 

Increases in the ambient temperatures may result in various changes such as a shift in 

geographical distribution, increased overwintering, changes in population growth rates, 

increase in the number of insect generations, extension of the insect development season and 

increased risk of invasion by migrant pests (Ahanger et al., 2013). 

 

Elevated temperatures result in accelerated rates of development and increase in number of 

insect pest generations (Fand et al., 2012). This is achieved through a reduction in the length 

of the life cycle of insects (Newton et al., 2011; Seiter & Kingslover, 2013). Effect of 

elevated temperature on the length of larval development has been observed under laboratory 

conditions for two species of native foliophages, the nun moth, Lymantria monacha, 

Linnaeus 1758 (Lepidoptera: Lymantriidae) and the gypsy moth, Lymantria dispar Linnaeus 

1758 (Lepidoptera: Erebidae) (Karolewski et al., 2007). For both insect species, increase in 

temperature had an influence on reducing the length of the life cycle, from egg phase to the 

pupal phase (Jaworski & Hilszezenski, 2013). It has been estimated that with a 2˚C 

temperature increase, insects might experience one to five additional life cycles per season 

and also produce more eggs (Yamamura & Kiritani, 1998). In a study that evaluated the 

biology of leaf hopper, Nilavarpatha lugens, Stal (Hemiptera: Cicadellidae)  under elevated 

temperature in Asia, the short winged females deposited 48.1% more eggs in elevated 

temperature treatments than in ambient temperature treatments (Shi et al., 2014). In the same 

study, adults that were exposed to elevated temperature treatments emerged on average 1.3 

days earlier than those that were exposed to ambient temperatures (Shi et al., 2014). In East 

Africa, in a study with the coffee berry borer using the CLIMEX model, a 2˚C increase in 

temperature was predicted to increase the number of generations as well as the damage by the 

coffee berry borer (Jaramillo et al., 2011). As a result of increased warming under changing 

climate conditions, earlier emergence and development of these insects is therefore 

anticipated (Jamieson et al., 2012) with the possibility of causing intense insect pest problems 

in the future.  This suggests that insects will be able to produce more eggs in a given time 

period, complete their life cycles faster, which in turn may lead to population increases 

(Flower et al., 2014; Jamieson et al., 2012).  
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Warmer winter temperatures increase survival of insect pests during the season (Fand et al., 

2012). The warm winter temperatures generally promote insect development at times of year 

when insect development would normally be suspended (Sharma et al., 2010; Sharma et al., 

2013), leading to earlier insect activity in spring and late appearance of insects  in autumn, for 

the majority of insect species (Fand et al., 2012; Jeong et al., 2011). A 1-5˚C increase in mean 

temperatures in a climate change  scenario would increase insect survival due to low winter 

mortality and increased population growth (Sharma et al., 2010), thereby increasing the rates 

of crop damage. In frost sensitive areas, increased warming results in a reduction in mortality 

events caused by chilling or freezing injury (Khaliq, 2014).This means that there will be an 

increase in insect survival and pest establishment in the areas that were previously unsuitable 

for the build-up of insect pest population as a result of extremely low temperatures. 

 

Warmer environmental conditions will also allow insect pests to disperse to new regions from 

which they were previously excluded because of low winter temperatures (Parvatha, 2015). 

The insects shift their geographical location to higher-latitudes or higher elevation areas 

(Sharma et al., 2013). The migration of insects such as the cotton bollworm, Helicoverpa 

armigera Hubner (Lepidoptera: Noctuidae) a major pest of cotton, pulses and vegetables in 

North India is predicted to increase with increased warming from the southern parts of India 

(Sharma et al., 2010). This movement cause insects to adapt to new host plants thereby 

altering the structure, diversity and functioning of ecosystems (IPCC, 2007) and increasing 

the host range of insect pests (Jaworski & Hilszezenski, 2013). In a study that was conducted 

in Zimbabwe on coffee white stem borer, Monochamus leuconotus Pascoe (Coleoptera: 

Cerambycidae) it was predicted that the area suitable for the insect will increase in 

Chimanimani district by up to 200% by the year 2080 (Kutywayo et al., 2013). This suggests 

that some geographical areas that are too cold for certain insect species under the current 

climate scenario may become conducive under future climates. However, a contraction on 

population of vertebrate pests (Bellard et al., 2002) can also occur on insect pests that require 

colder conditions such as the armyworm, Spodoptera spp Hubner (Lepidoptera: Noctuidae) 

and tsetseflies (Mitrovski et al., 2008; Terblanche et al., 2008). This implies that in the 

temperate areas, the population of heat intolerant pests will shrink when temperatures in these 

regions increase from the present level.  
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Accelerated rate of metabolism of insects at elevated temperatures leads to increased size of 

insect and hence higher rates of crop consumption (Fand et al., 2012). The increased body 

size will be translated into improved insect fitness (Culliney, 2013). Increased insect fitness 

helps the insect pests to avoid natural enemies (Bell et al., 2015) therefore increasing insect 

pest population growth, reducing mortality under unfavourable environmental conditions and 

hence the likelihood of insect pest outbreaks. 

  

The frequency and intensity of insect-pest outbreaks increase under elevated temperature 

conditions (Fand et al., 2012; Jaworski & Hilszczanski, 2013). Outbreak of Papaya mealy 

bug, Paracoccus marginatus, Heymans 1915 (Hemiptera: Pseudococcidae) resulting from 

elevated temperatures in Indian states (Karnataka and Maharashtra) resulted in significant 

yield loss to the papaya growers (Tanwar et al., 2010). Indirectly, high temperature 

conditions, increases crop susceptibility to attack by insect-pests because of the weakened 

plant defence system under climate warming therefore resulting in pest outbreaks and severe 

crop damages (Sharma et al., 2010). With the current global temperature rise and increased 

water stress, tropical countries like India may face the problem of severe yield loss in 

sorghum due to breakdown of resistance against midge, Stenodiplosis sorghicola, Coquilett 

1899 (Diptera: Cecidomyiidae) and spotted stem borer, Chilo partellus, Swinhoe 

(Lepidoptera: Pyralidae) which lead to the outbreak of the insect pest in India (Sharma et al., 

2010). 

  

Extreme temperatures on the other hand can lead to heat induced coma and insect death in the 

tropical countries (Ma & Ma, 2012a). In an experiment where temperature was simulated in 

the study of brown plant hopper, Nilaparvatha lugens Stal (Hemiptera: Delphacidae) (a 

tropical rice pest) in India, the results of the effect of temperature on the insect indicated that 

the first instar nymphs became immobilized by heat stress at around 30˚C and among the 

more heat tolerant adult stage, no insects were capable of a coordinated movement when the 

temperature was increased to 38˚C. The insect did not recover after entry into heat coma, at 

temperatures around 38˚C for the nymphal stages and 42–43˚C for the adult stages 

(Piyaphongkul et al., 2012). The results of this study suggest that the brown plant hopper can 

become extinct in the future in the tropical regions when temperatures continue to rise as 

projected.   
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Insects can change their behaviour as a result of a change in temperature conditions (Ma &  

Ma, 2012a). Movement of insect pests from one part of the plant to the other is also a 

response to warmer leaf temperatures (Ma & Ma, 2012b). In a study in India, heat stress 

forced movement of insect pests rose-grass aphid, Metopolophium dirhodum Walker 

(Hemiptera; Aphididae) and cotton aphid, Aphis gossypii Linnaeus 1758 (Hemiptera: 

Aphididae) from the tender upper leaves to the bottom older leaves (Liu et al.,  2000) where 

the cooler microhabitats in the lower leaves prevent heated injury to the aphids (Ma & Ma, 

2012b). This implies that there is a possibility of insect pests to be constantly moving down 

the lower plant profile in response to high temperatures as a way of escaping heat stress in the 

upper storey of the plant.  

 

Crop diseases are strongly influenced by climatic conditions (Legrève & Duveiller, 2010). 

The incidence of plant viral disease is also expected to increase with increasing atmospheric 

temperatures (Robinet et al., 2011; Malmstrom et al., 2011). The rates of vector transmitted 

diseases are increased by increased insect vector expansion, increased feeding activity, 

increased transmission rates and the potential for new insect vectors that are caused by 

elevated temperatures and the extended growing seasons (West et al., 2015). An increase in 

the incidence of viral diseases is predicted to occur due to either increased winter survival of 

insect vectors with increasing temperatures or early spring migration of the insect vectors 

(Mirski et al., 2012). In some experiments, warmer winters have been associated with an 

increase in viruses of many crops while warmer soils affect soil-borne viruses as the insect 

vectors will be able to infect crops at an earlier stage of crop growth (West et al., 2015).  

 

2.3 Effect of elevated carbon dioxide on insect pests  

 

Rising CO2 levels in a changing climate may affect the distribution, abundance and 

performance of insect pests and plant diseases (Chakraborty et al., 2008). There is an increase 

in crop consumption by insect pests by at least 10% under elevated CO2 levels (Gonzales-

Vigil et al., 2011). However, the responses of insect pests to feeding activity at elevated 

levels of CO2 levels vary with the type of insect species as well as its feeding habit (Hilstrom 

et al., 2010). Chewing insects such as the Lepidopterans, which chew and digest the whole 

leaf increase the rates of feeding upon the crops as a result of reduced nitrogen to carbon 
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content and high amounts of defensive compounds under elevated carbon dioxide levels 

(Hughes & Bazzaz, 2001) resulting in compensatory feeding. Phloem and xylem feeding 

insects may be less affected by elevated CO2  levels  because they feed on plant sap, which is 

low in defensive compounds (Furstenberg-Hagg et al., 2013). Insect pests that feed on seeds 

also may be less affected by increased CO2 levels because they maintain high levels of 

nitrogen in their reproductive system and hence have no need to acquire more nitrogen from 

the crops (Karowe & Migliaccio, 2011). 

 

From the review, there is limited information on the direct effects of CO2 on insect pests and 

diseases. There is need for more researches on the effect of CO2 on insect vectors of tropical 

areas. More fungal pathogens were investigated under elevated CO2 levels compared to plant 

viruses and bacteria. There is also need for factorial experiments to determine the combined 

influence of carbon dioxide and temperature in a tropical setting such as the Southern African 

region so as to come up with a more realistic assessment of the influence of changing climate 

variables.  

2.4 Effect of extreme weather events on insect pests  

 

There is a projection that climate change will increase the frequency of extreme weather 

events such as floods, storms and heavy winds (Easterling et al., 2000).  These extreme 

weather events may eliminate vulnerable pest stages such as the eggs, larval and pupal stages, 

leading to breakdown of natural control, as many parasites and parasitoids will fail to find a 

host that is of a suitable developmental stage (Cork et al., 2014). 

 

 

Increases in occurrence and severity of windy periods also occur as a result of a changing 

climate and results in increased insect pest incidence. For example, New Zealand has been 

exposed to airborne insect pests from Australia for millions of years (Cork et al., 2014). 

Higher wind conditions accompanied by high rainfall amounts, are therefore likely to result 

in distant spread of insect pests that are dispersed by wind and water currents. Wet vegetation 

resulting from heavy rainfall promotes the germination of spores and the proliferation of 

bacterial and fungal diseases within the crop canopies. Since most work was carried out in 
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Europe and Australia, the influence of altered precipitation regimes (rainfall) on insect pests 

and diseases need to be investigated from a tropical area perspective. 

 

2.5 Effect of climate change on the activity of entomopathogens 

  

Insect pests are indirectly affected by climate change as a result of the reduction in the 

efficacy of biological control by microbial entomopathogens. Microbial entomopathogens are 

microscopic, biotic organisms that are used for the control of insect pests. They include 

bacteria, viruses, fungi and nematodes (Veena et al., 2005). These are used to control insect 

pests by invading through the cuticle or the alimentary canal of an insect. This is followed by 

rapid multiplication of the pathogen within the host insect haemolymph thereby producing 

toxins which are dangerous to the insect pest. They reproduce within the insect pest by using 

nutrients present in the haemocoel to avoid insect immune responses (Burges, 1981; 

Meadows, 1993) resulting in mortality of the insects.  

 

Bacteria such as Bacillus thuringienis (Bt) is mainly used for classical bio control and it 

constitutes almost 80% of the classical biocontrol. Approximately 20% of the classical 

biocontrol is caused by viruses mainly baculoviruses (Veena et al., 2005). Baculovirus has 

been used to control the velvet been caterpillar in soybean while Bacillus 

thuringiensis var. kurstaki (Bt) was found to be effective against foliage-feeding caterpillars 

(Meadows, 1993). Entomopathogenic fungi can also be useful and may be applied in the form 

of conidia or mycelium which sporulates after application.  Beauveria bassiana fungus has 

been used against and have been found to be effective against several types of insect pests 

(Hajeck & Leger, 1994).    

 

Since fungi, bacteria and viruses cannot control their internal temperature, their activity is 

influenced by the environmental conditions, heat, desiccation, or exposure to ultraviolet 

radiation reduces the effectiveness of several types of microbial insecticides (Regis et al., 

2000). Temperature increases will extend the period of time that is available for reproduction, 

dissemination and evolution of fungi because of their ability to tolerate a wide range of 

temperature (Nurhyati, 2013). The strongest effects of temperature increase are believed to 

take place in tropical countries because tropical species have a narrow temperature growth 
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range (Ghini et al., 2011) thereby rendering the entomopathogens vulnerable to very high 

temperatures. Optimum temperatures may increase the metabolic rates of fungal pathogens as 

well as the rate of infection (Thompson et al., 2010). This implies that fungus 

entomopathogens are more likely to survive under higher temperatures in temperate climates. 

However, bacteria entomopathogens are likely to be negatively affected by higher 

temperatures in the tropics thereby making them ineffective biological agents under a 

changing climate because of their lower temperature optima. In addition, since viruses rely on 

the availability of the hosts to survive, the increased incidence of insect pests under elevated 

temperature conditions also increase the activity of the viral entomopathogens. On the other 

hand, the availability of moisture affects prevalence of entomopathogens (bacteria, viruses 

and fungi). Higher moisture availability is likely to increase the rate of multiplication of 

fungi, viruses and bacteria while lower moisture availability is likely to render 

entomopathogens ineffective under dry environmental condition which are induced by 

droughts.  

 

 

2.6 Impact of climate change on insect-plant interactions 

 

Global climatic change affect insect pests through alterations in host plants morphology 

(Lake & Wade, 2009), biochemistry (Yuan et al., 2009), physiology (Yadugiri, 2010) species 

richness, diversity and abundance (Kazakis et al., 2007). These alterations have important 

implications for food security and the natural ecosystems (DeLucia et al., 2011).  

 

Elevated atmospheric CO2 affects plant-insect interactions through its direct effects on plants 

(Goyret et al., 2008). Elevated CO2 typically increases the concentration of leaf 

carbohydrates and in combination with elevated temperature decreases nitrogen (N) content 

(Cornelissen, 2011). This dilutes the nitrogen in the plant leaves resulting in lower nutritional 

value of the plants. This in turn causes certain herbivores to consume more foliage to meet 

their nutritional needs (De Lucia et al., 2011). This leads to low growth rates of insect pest as 

a result of low nitrogen, longer developmental time and hence an increase in the window 

period of insect pest vulnerability to natural enemies resulting in higher insect mortality due 

to natural enemy attack (Petermann et al., 2010).   

 



 

 

25 

 

In a study in a meadow steppe, a three year field experiment was conducted to determine 

the potential responses of plant and insect communities, and plant-insect interactions, to 

elevated temperature. Warming increased the biomass of plant community of broad leaved 

plants, and decreased grass biomass.  This resulted in lower abundance of insects 

community under warming, particularly the herbivorous insects as a result of lower 

abundance of Euchorthippus unicolor and a Cicadellidae species resulting from lower food 

availability and higher defensive herbivory (Zhu et al., 2015).  

 

Drought indirectly affects the metabolic changes in the plant, such as increased levels of 

available sugars and essential amino acids, which according to the “Plant stress hypothesis” 

causes the plant to have a higher nutritional value for herbivores (White, 2009; Yuan, 2009). 

This can induce herbivore outbreaks (Guo et al., 2013; Johnson et al., 2014). On the other 

hand, drought is associated with a decrease in growth and an increase in plant defensive 

compounds making the plant less suitable for herbivores according to the “Plant Vigor 

Hypothesis” (Cornelissen, 2008). Excess precipitation such as hurricanes may influence the 

availability of light and nutrients for surviving trees thereby reducing the allocation of 

compounds to plant nutrition and defence. This, in turn negatively affect insect feeding and 

performance. Drought, thus have twofold influence on plant physiology through either 

concentrating nutrients within the plants or through the production of the defensive 

compounds that inhibit insect pest feeding. Research need to be conducted in various climatic 

conditions as well as on plants with differing physiology to determine the influence of 

drought conditions on the plants of differing physiology and environmental conditions.  

 

2.7 Conclusion 

 

From the review, we conclude that elevated temperatures, CO2 and extreme weather events 

such as floods and storms have an effect on the rates of fecundity, development, survival, 

distribution as well as incidence of insect pests and diseases in a changing climate. Despite an 

expected increase in insects and diseases, some temperate insect pests as well as some 

diseases such as wheat stripe rust are expected to become less prevalent under a future 

climate in the temperate regions. Most of the researches on climate change were mainly 

conducted in the Asian, European and the temperate settings and limited information is 

available on the influence of climate change on polyphagous insects that are dominant in the 
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tropical regions of Africa. Future researches should focus on the interaction between 

temperature and CO2 on neglected pests and viral disease in the warmer tropical areas such as 

Southern Africa. Precipitation should also be considered in climate change studies because it 

is likely to directly and indirectly affect the distribution of tropical insect pest species. 

Location specific long term surveillance and monitoring of insect pests is also of importance 

in climate change studies as this will provide a more realistic assessment of climate change 

on insect pests and pathogen interaction.   

 

Various models have been used to predict how global warming will affect insect ecosystems. 

Some of these models have been used to predict the response of individual insect pests to 

climate change. Future research should concentrate on models which are used to explore the 

response to climate change of various insects and pathogens in specific areas. Focus should 

be on modelling insects-climate change envelopes along with climate change. This would 

increase the capacity to forecast insect population and outcomes. Much research is needed on 

how modification in development of insects, host resistance phenology and physiology of 

host insect will occur from global warming.  

 

Risk and hazard rating systems are essential components of crop health management strategy 

and should be in place and applied in advance of insect epidemics and outbreaks. These 

systems should be a priority for crop health research and development efforts. In addition 

climate mapping which predicts the potential distribution on insects in new areas under future 

climates should be part of the research to support the modelling exercises. 

 

National and regional early warning and surveillance systems should be part of national 

policy to deal with increased pests and diseases under climate change. Most of the work on 

pests and diseases under climate change has been done in temperate regions. There is need 

for urgent research in the tropics of sub-Saharan Africa which have a low adaptive capacity 

to deal with the changing climate. These studies should be conducted on pests and diseases 

on a crop-forestry-livestock-human continuum.  
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Abstract 

 

Climate change is likely to alter the abundance, behaviour and emergence of new insect 

species in Zimbabwe. This study was conducted in Zimbabwe to determine the perceptions of 

farmers to climate change and the resultant insect pest abundance, behavioural attributes, 

emergence of new insect species and the perceived causes of the changes in insect 

populations. Qualitative and quantitative research methods were used to solicit the data from 

the respondents in five districts representing the agro ecological regions also known as the 

natural regions (NR). Surveys, focus groups and key informant interviews were used for data 

collection. Twenty two percent of the farmers across natural regions perceived changes in 

climate to be increase in temperature throughout the year and increases in frequency of 

droughts. Late rainfall was cited by 16.4% of the farmers while long dry spells was cited by 

16% of the respondents and 7.2% cited shorter cold season as the major indicator of a 

changing climate.  Increasing incidence of heat waves, flash floods and the disappearance of 

wetlands and green spaces were cited as other indicators of a changing climate. Increased 

abundance of insect pests, decreased natural resource base and reduction in social safety nets 

were perceived to be the major climate change risks that were experienced by the smallholder 

farmers.  The majority of the farmers (89%) have also expressed experiencing an increase in 

the incidence of insect pests such as aphids, stem borers, termites, diamond back moths, 

bollworms and whiteflies throughout the agro ecological regions of the country. Four percent 

perceived a decrease in insect pest incidence while 1% was not sure whether insect pests 

were increasing or decreasing. Farmers also perceived a change in behaviour of insects such 

as an increase in mobility as cited by 50.8%1and colour variations within insect species as 

highlighted by 73.6% while 59% perceived an emergence of new insect pests. The increase in 

pest problem was perceived by the farmers to be caused by changes in weather patterns such 

as elevated temperatures throughout the year and increased dry spells. Research on 

management strategies to cope with an increasing insect pest population in a changing 

climate is of importance in future studies. 

 

Keywords:  climate variables, insect abundance, perceptions. 

                                                           
1 Chapter 2 was submitted to Climatic Change journal  
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3.1 Introduction 

 

Climate variability and change are resulting in changes in global weather patterns (Selvaraj & 

Pandiara, 2013). The weather variables that are altered as a result of a changing climate 

include rainfall, temperature, atmospheric gas composition, wind and cloud cover. However, 

temperature is one variable that is known to cause significant observable effects to the 

farmers (Bale & Hayward, 2010). The atmospheric warming resulting from elevated 

temperatures is threatening to influence various human economic activities mainly agriculture 

in both developed and developing countries (Jiri et al., 2015; Sahu, 2013). The effects of 

shifting weather patterns are more acute in the developing countries including the Sub-

Saharan region than the developed world (Rurinda et al., 2014). However, the southern 

African region is particularly most affected by a changing climate because of widespread 

poverty (Mapfumo et al., 2013), recurrent droughts, unfair land distribution, over-reliance on 

rain-fed agriculture (Comoe & Siergist, 2015) and low capacity to adapt to the changes in the 

weather patterns (IPCC, 2014). 

 

Current estimates of global changes in climate indicate an increase in mean annual 

temperatures of 3°C by the end of the 21st century (IPCC, 2013). In Zimbabwe, by 2050, 

mean annual temperatures are projected to increase by 2-4°C, while rainfall is expected to 

decrease by 10-20%, which is significantly lower compared to the 1961-1990 baselines 

(Unganai, 2006; Lobell, 2008). By the year 2080, annual rainfall averages are projected to be 

lower than the 1961-1990 averages by 5-18% (Lobell, 2008). 

 

The changing and variable climate is likely to increase susceptibility of farmers in the 

developing countries to yield loss and hence food insecurity as a result of insect pests surges 

(Fand et al., 2012, Selvaraj, 2013). Climate change has an effect on crop insect pests and 

diseases beyond the effect of the weather variables themselves (Ma & Ma, 2012a). In 

Zimbabwe, the agriculture sector is the backbone of the economy. It plays a significant role 

in the economic, social and political lives of the majority of Zimbabweans (Maiyaki, 2010). 

Smallholder farmers are vulnerable to the adverse impacts of the changing climate because of 

various factors such as poor soil fertility (Mapfumo and Giller, 2001), high population 
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pressure (Frost et al., 2007), higher levels of poverty (Mapfumo et al., 2013) and over 

reliance on rain fed agriculture (Maiyaki, 2010). 

  

In Zimbabwe, research has been carried out to determine the vulnerability of the agricultural 

system to weather variables (Mapfumo et al., 2013). Very few studies have focused on the 

vulnerability of agricultural system as influenced by insect pests and diseases in a changing 

climate. There is thus a gap in assessing smallholder farmer’s perceptions on insect pests and 

diseases (Adam et al., 2015). The perceptions will affect how farmers will adapt and mitigate 

against climate driven insect pest risks. This study therefore aimed to determine the 

perceptions of farmers with respect to climate change in Zimbabwe, indicators of climate 

change and variability, climate change risks to crop production, changes in behaviour and 

physical traits of insects as well as farmers’ perceptions on the causes of changes in insect 

pests’ dynamics. 

 

3.2 Materials and methods 

 

3.2.1 Description of the study area 

 

Zimbabwe is divided into five agro-ecological regions also known as Natural regions (NR) 

based on the rainfall regimes, soil quality and temperatures (Vincent & Thomas, 1960). The 

study was carried out in the different agro ecological regions of the country (Fig 3.1). These 

agro ecological regions are also known natural Regions (NR) based on mean annual rainfall, 

soil quality and mean annual temperature regimes (Vincent & Thomas, 1960). The five 

regions were considered in this study based on their contribution to agricultural production 

mainly at smallholder production level. The country has a wide spatial and temporal variation 

in rainfall and temperature. Mean annual rainfall and the quality of land resources declines 

from NR1 to NR5 whereby rainfall amounts range from as high as over 1000mm in NR1, 

750-1000mm in NR2, 650-750mm in NR3, 450-650mm in NR4, and  less than 450mm in 

NR5. The mean maximum and minimum temperature ranges decline from NR1 to NR5.  

Mean maximum temperature ranges from 23˚C in NR1 to 32˚C in NR5. During the winter 

season mean minimum temperature ranges from 10-12˚C in NR1, 10-13˚C in NR2, and 14-

15˚C in NR3, 11-18˚C in NR4 and 14-20˚C in NR5. The quality of the soils decline from 

NR1 to NR5 (Anderson et al., 1993; Vincent & Thomas, 1960).  
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Fig 3.1: The five agro ecological regions of Zimbabwe. 

Adapted from FAO (2009).  

3.2.2 Data collection and analysis 

This research used the concepts of perceptions on evaluating farmers' perceptions on the 

responses of insect pests to a changing climate (Adam et al., 2015; Khan et al., 2014, 2015; 

Lagerkvist et al., 2012). Farmer perceptions helps us to know what farmers think and feel 

about a changing climate, the corresponding insect pests problem, behavioural and 

morphological attributes or changes in the physical appearance of the insect pests in the 

various agro ecological regions of the country.  

 

The study employed both the quantitative and the qualitative research approaches (Bryman, 

2004). Quantitative information was collected through a detailed survey using semi structured 

questionnaire. Primary data collection was a three stage process. At both the first stage and 

second stages farmers were systematically sampled from each district representing an agro 
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ecological region. That is, in each district, two wards composed of smallholder farmers (with 

landholding of less than 6ha) were sampled based on farmers who had stayed in the area for 

at least 30 years as well as from the lists of farmers who have been perceived by the district 

agriculture extension officer as productive. From each ward, 25 farmers who were active in 

the production of agricultural crops were randomly selected. The different NR were used in 

this study in order to obtain a wide range of farmer perceptions.  

3.2.3 Qualitative data collection 

Qualitative data was collected through in-depth discussions with focus group participants at 

meetings that were organised at each of the site representing an agro ecological region. Key 

informant interviews with the agriculture extension officers, traditional leaders and 

Environmental Management Authority (EMA) were conducted to augment and compare 

farmer responses from the questionnaire survey.  

3.2.4 Statistical tests for data reliability 

Primary data analysis was done by firstly coding household survey data in Excel. The data 

was then transferred to Statistical Package for Social Sciences (SPSS) package version 16 for 

statistical data analysis. Data was subjected to analysis of variance at p<0.05. In instances 

were a significant difference was noted, a post hoc analysis was conducted to determine the 

agro ecological region showing significant differences. In addition, problem ranking matrices 

were also used in the study.  

  

3.3 Results 

  

3.3.1 Farmer perceptions and understanding of climate change 

Across all the agro ecological regions, the majority of the farmers (84%) perceived a change 

in climate, 6% were not aware of a changing climate while 10% were not sure whether the 

climate was really changing or not in the past 30 years. There was no significant difference in 

farmers perceptions about climate change by the respondents in NR1, NR2, NR3 and NR4 at 

P<0.01, where the majority of the farmers in these 4 regions perceived a change in climate. 

However, a higher proportion of farmers in NR5 were either not aware or not sure of a 

changing climate and their perceptions on climate change was highly significantly different 

(p<0.01) from the farmers in the other 4 NR (Table 3.1).  
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Table 3.1: Farmer perceptions to climate change and variability (% responses; N=250). 

Climate change awareness NR1 NR2 NR3 NR4 NR5 Mean  P-value 

Aware    100 100 100 88 32 84   0.00* 

Not aware    0 0 0 0 28 6  0.00* 

Not sure   0 0 0 12 40 10  0.00* 

Total    100 100 100 100 100 100  0.00* 

NB: P≤05, there is a significant difference, * significant at p<0.01 

 

The majority (22%) of the total respondents across the five agro ecological regions perceived 

an increase in the temperature and increased frequencies of droughts to be the major 

indicators of a changing and variable climate. Respondents also perceived changes in climate 

to be change in duration of rainfall season duration, distribution, amounts, onset of the rainy 

season as well as shorter cold seasons. From these results, there were no significant 

differences (P=0.983) on the perceived indicators of climate change across the 5 agro 

ecological regions (Table 3.2). 

 

Farmers’ perceptions of changing climate conditions such as increasing temperatures and 

increased frequencies of droughts were however in line with the scientific observation of 

climate data. The time series for Zimbabwe indicates numerous years that received below 

normal rainfall (Figure 3.2), variable rainfall (Figure 3.3) and a positive trend in the 

minimum and maximum temperatures (Fig 3.4). This implies that the country is becoming 

more prone to droughts, variable rainfall and increased temperatures respectively.   
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Table 3.2: Farmer perceptions of major indicators of climate change and variability in 

Zimbabwe (% responses; N=250). 

Indicators of climate change NR1 NR2 NR3 NR4 NR5  Mean   P-value 

Late rainfall   16 16 18 16 16 16.4  NS 

Long dry spells  14 16 18 16 16 16  NS 

Higher frequency of droughts20 22 26 20 22 22  NS 

Shorter cold season  10 12 2 6 6 7.2  NS 

Increased frequency of floods 20 10 12 22 18 16.4  NS 

Increased temperatures 20 24 24 20 22 22  NS 

Total    100 100 100 100 100 100 

NB: P>0.05, there is no significant difference, NS-Not significant at p<0.05, figures in the 

text refer to percentage of farmers 

 

 

 

Fig 3.2: Time series showing the extreme rainfall years (flood) and below normal rainfall 

(drought periods) in Zimbabwe. 
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Fig 3.3: Trend analysis showing rainfall variability in Zimbabwe. 

Source: Zimbabwe Meteorological Services Department (2016) 
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Fig 3.4: Trends in minimum and maximum temperatures. 

Source: Zimbabwe Meteorological Services Department (2016) 
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The recall of weather and climatic conditions through in depth interviews with extension 

officers, traditional leaders as well as the focus group discussions also showed a close 

relationship with the climatic records. The respondents in all the agro ecological regions 

highlighted that they have experienced uneven rainfall distribution which manifests itself 

sometimes as excessive rainfall, although there may not be any flooding. The excessive rains 

were said to be accompanied by violent winds and heavy storms then prolonged dry periods 

would follow immediately after the heavy rains. During the year 2000 and 2003, the focus 

group discussants in most parts of the country especially NR1, NR2, NR3 as well as the key 

informants recalled the occurrence of the tropical cyclones “Eline” and “Japhet” respectively,  

which destroyed most of their crops, vegetation and property due to the vicious winds and 

hailstorms that were associated with the weather events. In the 2008/9 agricultural season, 

farmers also experienced excessive rains leading to flooding in all the natural regions and the 

excessive rainy periods were in most cases followed by a drought season. This corroborated 

the time series analysis for Zimbabwe which indicates that the last two decades 1990-2010 

had more years in the drought category than other decades (Figure 3.1). The farmers also 

cited the heavy rainfall that was experienced in all the agro ecological regions in the 

2014/2015 rainy season which led to flash floods in all the agro ecological regions. The rains 

were said to be confined to the first week of January 2015 and they cited that a dry spell was 

experienced soon after the heavy rains. The EMA officers and the local leaders were also 

worried by the disappearance of green spaces as well as the wetlands in all the agro 

ecological regions of the country which they attributed to the changes in the climate 

conditions.   

3.3.2 Farmer perceptions of climate change and variability induced risks in Zimbabwe 

The perceived climate change risks to crop production were mainly as a result of changes in 

temperature and rainfall (patterns, amounts and intensity) as well as increased frequency of 

droughts. These changes in weather events were perceived to affect crop production directly 

through a reduction in crop productivity and indirectly through changes in the quality and 

quantity of natural resources. Changes in temperature and rainfall patterns were perceived to 

alter the distribution of natural resources such as trees, desirable vegetation (trees and 

grasses) as well as water resources leading to a corresponding  increase in the incidence of 
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crop pests (weeds, insects, diseases). Pest outbreaks resulted in crop failure leading to farmers 

competing for natural resources (such as wild fruits) with wild animals (Table 3.3).   

 

Table 3.3:  Farmer perceptions of climate change risks and impacts that are caused by 

changes and variability in climate. 

 

Climate risk Affected subsystem Main subsystem   Positive    Negative  

     Affected   impacts   Impacts 

Increased  1.Crop production Crop yield  Increase in crop  Loss of soil  

Rainfall         yields on elevated due to water   

Variability       ground and   logging and 

        wetlands   leaching 

  

            

    

  2. Natural resources Fruits   _   Reduced  

  (trees, land, water) Trees for botanicals    availability 

     Decline in mulching     of fruits 

     materials 

         

  3. Labour availability Loss of hired labour for pest_   Increase   

      management due to     abundance of 

     emigration      Insects 

           Crop disease 

           Outbreak 

 

            

           

Temperature 1. Natural resources Reduction of fruits _   Reduced 

Extremes (trees, land, water) and mushroom     off farm food  

     Reduced mulching   

 

  2. Labour availability Reduced labour  _   Increased 

     for pest management    insects pests 

Crop 

Diseases  

Outbreak 

 

  3. Crop production Crop yield  _   Crop failure 

 

Droughts 1.Crop production Crop yield     Crop failure 

  2. Natural resources Reduction of fruits _   Reduced  

  (trees, land water) mushroom, trees for    fruits 

     shade and poles 

     Reduction in   

     mulching material 

 

                        3. Labour availability Labour for pest   _   Increase  

     Management     incidence of  

           insects pests  

and crop 

Diseases  

Outbreak 

_________________________________________________________________________________________ 

Source (Focus Group Discussions, 2015). 
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Table 3.4: Ranking of major insect pests of agricultural crops as perceived by the smallholder farmers in order of importance where (1 is the 

most important) (% responses; N=250). 

   Ranking   NR1  % NR2  % NR3  % NR4  %  NR5  % 

1  Aphids  26 Aphids  32 Bollworms 40 Termites 34  Termites 36 

2  Stem borer 22 DBM  24 Aphids  26 Aphids  22  Stem borer 20 

3   Cutworms 20 Stem borer 18 DBM  14 Whiteflies 16  DBM  18 

4   Whiteflies 18 Cutworms 14 Cutworms 12 Stem borer 16  Aphids  14 

5  Leaf miners 14 Bollworms 12 Stem borer 8 Cutworms 12  Bollworms 12 

Total  Total  100   100   100   100    100  

Notes: DBM-Diamond Back Moth 

Source (Survey data, 2015) 
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Insects such as aphids, stem borers, bollworms, diamond back moth (DBM), cutworms, 

termites, whiteflies and leaf miners were found to be key pests in the various NR of the 

country. Aphids and the stem borers were perceived as the dominant insect pests in all the 

agro ecological regions. Bollworms were identified as the key pest in NR3 and termites were 

more dominant in NR4 and NR5 (Table 3.4). In depth interviews with extension officers 

highlighted that aphids and the diamond back moths are more prevalent in winter in NR4 and 

NR5, and an increase in the population of these pests throughout the year in NR1, NR2 and 

NR3. 

Table 3.5: Ranking of major crops produced in the various agro ecological regions (where 1 

is the most widely grown and 5 is the least widely grown). 

Ranking NR1  NR2  NR3  NR4  NR5 

1  Fruits  Maize  Cotton  Maize  Sugarcane 

2  Maize  Tobacco Maize  Millet  Millet 

3  Cabbages Tomatoes Tomatoes Cabbages Maize 

4  Tomatoes Cabbages Tobacco Cotton  Vegetables 

5  Yams  Rape  Cabbages Roundnuts Rapoko 

Source: (Data from the FGDs, 2015) 

 

3.3.3 Major crops produced in the various agro ecological regions 

The most widely produced crop is maize across all the agro ecological regions. Fruits were 

highlighted to be major crops in NR1 while in the other NR they are not of major importance. 

Small grains were also identified as major crops produced in the lowveld areas of the country 

which cover NR4 and NR5. These small grains were not common in NR1, NR2 and NR3 

(Table 3.5). 

 

3.3.4 Perceived changes in insect pest incidence and emergence of new insect pest 

The study revealed that across the  five NRs, the majority (89%) had the perception that 

insect pest incidence was increasing in the last 30 years while 4% perceived a decrease in 

insect incidence and 1% was not sure of the status of insects over the past 30 years. There 

was however no significant difference in farmer responses between the 5NR at p<0.05 where 

the majority of the respondents had the perceptions that the incidence of insect pests has been 

increasing. On the perceived emergence of new insect pests, there was a significant 
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difference in the response of farmers at p<0.01. The results indicated that there were no 

significant differences in farmers’ responses between NR1, NR2 and NR3. However, there 

was a significant difference in farmers’ perceptions to emergence of new insect pests between 

farmers in NR2 and those in (NR4 and NR5) where the majority of farmers in NR2 strongly 

agreed that there is an emergence of new insect pests while fewer farmers in NR4 and NR5 

strongly agreed (Table 3.6). The key informants also highlighted an increase in insect pest 

incidence as well as the emergence of new insect pests in all the agro ecological regions. 

 

3.3.5 Perceived behavioural and physical attributes of insect pests in a changing climate 

Increased insect pest movements and a rapid reproduction rate were the main insect 

behavioural attributes that were noted by the respondents. Of the total respondents, 50.8% 

cited an increase in insect pest movement on infested plants while 49.2% cited an increase in 

the reproductive rates of insect pests. However, there was no significance difference (P>0.05) 

between the respondents in the five NRs regarding the behaviour of the insect pests (Table 

3.7). Across the 5NRs, 73.6% perceived that insects are developing different colour 

variations while 26.4% have observed an increase in the population of winged insect types 

compared to the same types of insect pests in the past 20 years. However the responses of the 

farmers on the physical appearance were not significantly different from each other at P<0.05 

(Table 3.7).  In all the agro ecological regions, the key informants noted changes to the 

behaviour and the physical appearance of insect pests over the past years. 
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Table 3.6: Farmer perceptions of changes in pest incidence and emergence of new insect 

pests (% responses; N=250). 

Variable   NR1 NR2 NR3 NR4 NR5 Mean   P-value

        

Perceived changes in population 

Increased   98 96 90 84 76 89  NS 

Decreased   0 0 0 8 12 4  NS 

Not changed   2 4 8 6 10 6  NS 

Not sure   0 0 2 2 2 1  NS 

Total    100 100 100 100 100 100 

Perceived emergence of new insects 

Strongly agree   40 52 42 24 26 37  0.006* 

Agree    58 48 54 70 66 59  0.006* 

Disagree   2 0 4 6 8 4  0.006* 

Total    100 100 100 100 100 100 

NB: P≤0.05, there is a significant difference, * significant at p<0.01, NS-Not significant at 

p<0.05 

 

Table 3.7: Perceived changes to behaviour and physical appearance of insect pests (% 

responses; N=250). 

Variable   NR1 NR2 NR3 NR4 NR5 Mean    P-value 

Behavioural attributes 

Increased insects movement  56 56 48 44 50 50.8  NS 

Fast reproduction rates 44 44 52 56 50 49.2  NS 

Total    100 100 100 100 100 100  NS 

 

Physical appearance  

Colour variations  78 66 70 74 80 73.6  NS  

Increase in winged insects 22 34 30 26 20 26.4  NS 

Total    100 100 100 100 100 100 

NB: P>0.05, there is no significant difference, NS-Not significant at p<0.05 
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The respondents perceived shorter winters, high temperatures and increased length of the dry 

spell as the major factors underlying increased insect pest prevalence in the various regions of 

the country. There was a highly significant difference (P=0.00) across the agro ecological 

regions on the perceived causes of the insect pest risk in a changing climate. There was no 

significant difference in farmer perceptions in NR2, NR3 and NR4, but significant 

differences were noted between farmer responses in NR 1 and those in NR5 where the 

majority (46%) of the respondents in NR1 cited shorter winters as the major causes of 

increased insect pest prevalence while farmers in NR5 did not perceive any change in the 

length of the winter season (Table 3.8).  

 

Table 3.8: Perceived major causes of the increased prevalence of insect species in the various 

agro-ecological regions of Zimbabwe (% responses; N=250). 

Variable    NR1 NR2  NR3 NR4 NR5 Mean P-value 

Perceived cause of insect pest risk 

Shorter winters   46 28 44 26 0 28.8 0.00* 

High temperatures   26 44 22 42 20 30.8 0.00* 

Increased dry spell   28 28 34 32 80 40.4 0.00* 

Total     100 100 100 100 100 100 

NB: P<0.05, there is a significant difference, * significant at p<0.01 

 

3.4 Discussion 

 

The increase in awareness to climate change by the majority of the respondents were related 

to the studies that were conducted in Ethiopia (Legesse et al., 2013), Nigeria (Tambo & 

Abdoulaye, 2013) and Chile (Roco et al., 2014). The results also concur with meteorological 

data which showed that the frequency of drought events have increased with most of the 

drought events taking place between the year 2000 (Meteorological Services Department 

(MSD, 2013). It is during the 1991-1992 season when the most devastating drought occurred 

in Zimbabwe (Manatsa et al., 2008). The majority of farmers in the arid regions (NR4 and 

NR5) however did not notice a clear distinction in the change in climate over the past years 

probably as a result of being accustomed to the already harsh weather variables that were 

experienced in these areas (Mubaya, 2010).  
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Perceived crop production risks associated with a changing climate such as increased insect 

abundance were in line with the work of Arbuckle et al. (2013); Safi et al. (2012); Le Dang et 

al. (2014) who indicated that the farmers who are aware of climate change are also aware of 

the risks that are associated with a changing climate such as the increase in the abundance of 

crop pests and the corresponding yield reduction.  

 

A perceived increase in the prevalence of insect pests, such as aphids and bollworms across 

the NRs could have been as a result of the polyphagous feeding habit of these insects and 

high reproductive rates in a changing climate (Hazell et al., 2010; Sharma et al., 2011). In a 

study that was carried out in Botswana where climate was simulated, it was shown that aphid 

populations increased quickly on infested cabbage plants because of rapid multiplication rates 

which prevailed at elevated temperature conditions (Munthali & Tshegofatso, 2014). There 

are also indications that as a result of the polyphagous nature of aphids, they may become key 

pests of a number of crops in the future as a result of climate warming (Selvaraj, 2013).  

 

The presence of cereal crops which include the staple (maize) crop in Zimbabwe and the 

ability of stem borer to inhabit wild grassy hosts could also have led to its increased incidence 

across the country’s natural regions (Calatayud et al., 2014). In NR4 and NR5 the higher 

prevalence of stem borers could have resulted from the cultivation of a variety of drought 

tolerant cereals such as sorghum, rapoko and millet. In addition, sugarcane production in the 

Save and Runde river catchment area which is part of NR4 and NR5 could also have led to 

the incidence of this insect pest in the drier and hotter agro ecological regions of the country. 

In an insect pest distribution survey conducted in Togo, stem borers were found in all the 

agro ecological zones where cereals are grown (Tounou et al., 2013). Stem borers have thus 

been classified as the major pest behind reduced cereal yields in East Africa as a result of the 

outbreak resulting from rainfall variability in the region (Midega et al., 2015). This therefore 

implies that with increased climate and hence rainfall variability, stem borers will become 

major insect pest in the future wherever cereal crops are cultivated.  

 

In some surveys, an increase in termites was reported during mid-season drought periods on 

agricultural lands (Kladivko, 2008). In an experiment conducted in some agricultural lands, 

the activities of termites were found to be influenced by soil moisture where low densities of 
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the termites were observed in high rainfall areas as well as wetlands while higher densities 

were observed in more arid areas (Nhamo, 2007).  

 

Brassica crops, the specific hosts of DBM are widely distributed throughout the country 

because of their contribution to income and food security among the smallholder farmers 

(Dosdal et al., 2011).  This was likely to cause a high prevalence of DBM in all the NR of the 

country. In addition, diamond back moth has a huge reproductive potential, ability to cope 

with environmental changes thereby enabling it to rapidly increase its population in a 

changing climate in all the agro ecological regions (Furlong et al., 2013). Diamond back 

moth is also highly mobile such that it can also travel large distances to new cruciferous crops 

thereby increasing their spatial distribution in all the places where cruciferous plants are 

grown (Selvaraj & Pandiara, 2013).  

 

This study showed evidence that insects could become mobile as a result of elevated 

temperature conditions. This is because the insects avoid heat injury by moving from the top 

leaves to the understorey leaves which protect them from temperatures extremes in the upper 

storey of the crops (Ma & Ma, 2012a). Some laboratory studies that were conducted indicated 

that some aphid species were more mobile under heat stress as they attempted to escape from 

potential heat injuries compared to those that were exposed to optimum or lower temperature 

conditions (Ma & Ma, 2012b).  

 

Increased appearance of winged morphs in pests such as aphids in response to changes in 

environmental factors is also of importance in aiding migration and colonisation of new host 

plants or habitats after predicting potential heat injury and also as a result of overpopulation 

(Brisson, 2010; Ma & Ma, 2012a).  The colour changes on some insect species could have 

been as a result of polymorphism under changing weather conditions (Tsuchida et al., 2010). 

In an experiment that was conducted on tobacco aphid in Zimbabwe, the red morph took a 

significantly shorter time to produce its first offspring and also produced a significantly 

higher number of total nymphs and number of nymphs per day than its green counterpart 

(Masukwedza et al., 2013). This enable the adaptive insect morphs to maintain a high 

reproductive rate and a corresponding high population under high temperature conditions. 
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The emergence of new insect pests as perceived by the respondents could have been due to 

the introduction of new crop varieties as a way of adapting to extreme temperatures and 

rainfall variability by the farmers (Gregory et al., 2009). Studies carried out by Fahim et al. 

(2013), Comoe & Siergist, (2015) and Menapace et al. (2015) showed that climate change 

will alter the distribution, incidence and intensity of plant pests and diseases and cause new 

crop pests and diseases to emerge.  

 

In a changing climate, increased dry spells or drought conditions have been found to cause 

surges in disease, insects and weed pressure on crops (Niang et al., 2014). In a study where 

physical control of aphids was practised, it was found that aphid populations on sturdy plants 

were dislodged with a strong spray of water (Barbercheck, 2014). This implies that more 

frequent and extreme rainfall may expose the insect pests to dislodging from the plants, 

therefore reducing insect population under heavy precipitation unlike in dry weather 

conditions, light rainfall or moderate rainfall conditions where the insects’ pests will remain 

attached to the host plants.  

 

3.5 Conclusion 

 

The study revealed that smallholder farmers have perceived a changing climate to be 

increasing temperatures, increased frequencies of drought events resulting in an increase in 

insect pest populations. The farmer’s perceptions were in accordance with the recorded 

meteorological data where a variable trend in rainfall and a positive trend in annual minimum 

and maximum temperatures over the past years have been observed. According to farmers, an 

increase in the abundance of various insect pests such as stem borers, aphids, termites and 

diamond back moths has been observed across the NR although in NR4 and NR5 these 

insects were perceived to be more abundant during the winter season. The farmers perceived 

an increased occurrence of new and unknown insect species. The increased prevalence of the 

insects was perceived to be caused by changing weather variables as a result of changing 

climate. Baseline field surveys need to be conducted to verify farmers’ perceptions. There is 

also need to carry out further research on adaptive strategies by the smallholder farmers so as 

to cope with changes in insect pest populations in an environment of changing climate. The 

strategies need to focus on vegetable crops because of their widespread production across the 

country, contribution to income, household food security and nutrition.  
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Abstract 

Farmer knowledge of insect pests’ risks is of importance in the management of increasing 

insect pests’ abundance in a changing and variable climate. A total of 250 vegetable farmers 

sampled from the five districts of Zimbabwe were interviewed using a survey questionnaire 

to assess their knowledge on changing climate variables, its impact on vegetable insect pests 

and the adaptation strategies to manage the challenges of increased abundance of insect pests.  

Focus group discussions, key informant interviews and field observations were also used in 

this study. The survey results revealed that droughts and elevated temperatures had the 

greatest impact on vegetable insect pests resulting in increased abundance of vegetable insect 

pests. Aphids, cutworms and whiteflies were identified among the major pests that have 

increased in abundance during the past 20 years across the agro ecological regions of the 

country. The majority (53%) of the farmers cited high vegetable losses from insect pests and 

diseases. All the respondents (100%) cited the use of chemical insecticides at some point 

during the production cycle of vegetables. A higher proportion (60%) perceived effective 

control of insects by chemical insecticides while 34% perceived reduced efficacy of the 

chemical insecticides and 6% were not sure of effectiveness of chemical insecticides. 

Management strategies to cope with the increasing insect pests and diseases on vegetable 

production included planting insect and disease resistant vegetable 2cultivars, use of certified 

seeds, increased frequency of application of synthetic insecticides, using insecticide mixtures, 

use of more hazardous chemical insecticides as well as increasing the rates of application 

resulting in insecticide overuse. There is need for the government to facilitate the 

development and adoption of Integrated Insect Pest Management (IIPM) and raise awareness 

on avoiding overdependence on chemical insecticides. Insect pest modelling tools that 

support adaptation planning also need to be developed to forecast climate change events and 

the resultant abundance of insect pests and diseases.   

Keywords: farmers’ knowledge, insecticide overuse, elevated temperatures 

 
                                                           
2 Chapter 4 is currently under review in  International Journal of Pest management  
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4.1 Introduction 

 

Climate change and variability has caused devastating effects in both developing and 

developed countries of the world (IPCC, 2014). Zimbabwe is one of the countries in the Sub 

Saharan region that is prone to the adverse effects of climate change, with predicted increases 

in mean temperatures and rainfall variability, and an expected increase in extreme weather 

events such as droughts and flash floods (Rurinda et al., 2014). According to the Zimbabwe 

Meteorological Services Department, daily minimum and maximum temperatures have risen 

by more than 2°C over the last century (Brown et al., 2012). Climate records show that 

temperatures have been increasing by around 0.1°C a decade and future scenarios predict 

increasing temperatures of around 2.5°C by the year 2050 (Government of Zimbabwe, 2013). 

Smallholder farmers in Zimbabwe are vulnerable to the impacts of a changing climate 

because of multiple factors, such as soil degradation (Rufino et al., 2013) extreme poverty 

and deterioration of societal ‘safety nets’ (Antwi-Agyei et al., 2012; Mapfumo et al., 2013). 

A dwindling natural resource base (Mapfumo et al., 2013; Rufino et al., 2013) and over 

dependence on rain fed agriculture (IFAD, 2010) have also increased farmers’ vulnerability 

to the impacts of a changing climate.  

 

Climate change affects crop yields and hence food security both directly and indirectly 

(Lobell, 2012). Food security is affected directly through yield losses due to adverse 

environmental conditions (Mapfumo et al., 2013) and indirectly through the changes to the 

population dynamics and geographic distributions of crop pests (Khan et al., 2014). Insect 

pest attack results in crop losses of about 13.6% of global agricultural production (Dhaliwal 

et al., 2010).  In Zimbabwe, several studies have been conducted linking climate change with 

farmer vulnerability (Moyo et al., 2012; Mtambanengwe et al., 2012; Mucharia, 2012) but 

have not incorporated farmer knowledge on vegetable yield and farmer adaptation to insect 

pest problems considering the importance of vegetable crops nutritionally and economically.  

Most of the vegetable crops are grown in agro-ecological zones which are different from their 

regions of origin, therefore they are more susceptible to adverse bioclimatic factors and the 

associated losses (Singh & Singh, 2013). There is thus a gap in assessing smallholder 

farmer’s knowledge and adaptive strategies in the management of insect pests under a 

changing climate (Adam et al., 2015). 
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An understanding of the farmer’s knowledge of climate risk is important because it is a 

prerequisite for adaptation strategies that can be employed to reduce vulnerability to climate 

change (Sarr et al., 2015). Adaptation measures are of critical importance because the 

weather patterns have already changed and the changes are expected to continue even if 

mitigation measures are immediately put into place (Cobon et al., 2009). Without adaptation 

strategies, effects of climate can be devastating to the agricultural sector, but with adaptation, 

vulnerability can be greatly reduced (Jiri et al., 2015). Farmers’ knowledge and management 

practices may therefore provide essential information for successful development of future 

insect pest management strategies (Kihupi et al., 2015).  

 

This study focused on the concepts of knowledge and practices, which have been previously 

used in some studies in developing countries (Adam et al., 2015; Khan et al., 2015). Since 

adaptation is key for improving food security in the face of a changing and variable climate 

(Kihupi et al., 2015; Ramirez-Villegas & Thornton, 2015), there is need to identify adaptation 

strategies in the management of insect pests by the smallholder farmers which helps them to 

maintain higher levels of food security despite a changing climate and the associated insect 

pest risks. The research will be of importance in identifying sustainable solutions to 

agricultural production constraints by incorporating farmer views into research for 

development of food security programmes (Okonya et al., 2013). It is against this background 

that the aim of this study was to examine smallholder farmers’ knowledge with regard to 

insect pests of vegetables in a changing climate and the adjustments made by farmers to 

manage the increasing insect pest problem. 

 

4.2 Materials and Methods 

 

4.2.1 Study area and the survey design 

The study was conducted in five areas which represent five different agro ecological regions 

(Vincent and Thomas, 1960). The ward which was perceived to produce most vegetables in 

each NR was then selected for the purpose of this research. The wards were Gwayagwaya 

ward in Chipinge district (1118 metres above sea level, masl), Munyawiri ward in Goromonzi 

district (1515 masl), Mawanga ward in Mutoko district (1168 masl), Zimuto ward in 

Masvingo district (1166 masl) and lastly Chilonga ward in Chiredzi district (485 masl).  
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Multi stage systematic sampling procedure was used to come up with the respondents of the 

study. Three stages were used during selection. In the first stage, a list of wards participating 

in vegetable production in each agro ecological region were considered in the selection of the 

study sample. In the second stage, one ward and 5 villages within the ward that were easily 

accessible but found within a defined agro ecological region were randomly selected. In the 

final stage, 10 households were randomly selected from each of the 5 villages for the purpose 

of this study. 

 

Pretesting of the questionnaire was done to perfect techniques of data collection. Appropriate 

adjustments were carried out to the questionnaire to perfect techniques of data collection. 

Appropriate adjustments were carried out to the questionnaire after the pretesting exercise.  

 

This research study thus employed a mixed methods approach where individual farmers in 

selected households were the principal units of observation. Mixed methods integrate both 

quantitative and qualitative research techniques, into a single study therefore enabling a 

deeper understanding of the subject (Johnson & Onwuegbuzie, 2004). Data collection was 

also accomplished using focus group discussions and field observations. A survey data set 

containing detailed quantitative data from 250 households from the five agro-ecological 

regions of Zimbabwe was used. The respondents were purposely selected based on merit of 

vegetable production as perceived by the district agriculture extension officers. In addition, to 

high productivity, also those farmers who have stayed in the area for more than twenty years 

were used in the selection criteria. 

 

Agriculture extension enumerators that were conversant with the study areas were hired to 

conduct the household interviews during the field research. Before the interviews were 

carried out, enumerators received field training on the survey instruments and ethical 

considerations of this research. Interviews were conducted using structured questionnaires. 

To minimize bias, questions were interactive and farmers were allowed to indicate other 

answers in case the stated options did not meet their responses. This technique was useful in 

exploring the responses of the farmers to gather more and deeper information on the subject 

and the interviewing technique ensured a 100% return rate of the questionnaire.  
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In addition to the interview survey, three focus groups meetings were held in each district 

whereby each group was composed of 15 farmers. The focus group discussions were carried 

out with the anticipation of a wider range of responses from group responses thereby 

allowing participants to build on each other’s ideas and comments. Knowledge, in this 

context, refers to what farmers know about the problem of vegetable pests and their response 

to a changing climate while management practices refer to the actual actions that farmers take 

to control insect pests. Information was collected on climate induced risks affecting vegetable 

production, the corresponding vegetables affected, the status of natural enemies, an estimate 

of crop losses as a result of insect pest attack and the various practices to reduce insect pest 

hazard in a changing climate. On natural enemies, photographs were also used for the correct 

identification of natural enemies that prey upon some common insects in the country.  

 

A one-way analysis of variance ANOVA at P<0.05 was conducted to assess any differences 

in farmers responses between the agro-ecological zones using SPSS version 16. At P<0.05, a 

mean comparison was used to determine the agro ecological regions that exhibited significant 

differences. Descriptive statistics such as means and problem ranking matrices were also used 

in the study to generate summaries and tables.   

 

4.3 Results 

 

4.3.1 Major climate induced challenges to vegetable production 

The survey results revealed that across all the agro ecological regions surveyed, there was no 

significant difference (P>0.05) on the challenges that are encountered by farmers in vegetable 

production. The majority (44.8%) of the respondents across the agro ecological regions cited 

droughts and the inadequate irrigation water as the major challenge to vegetable production. 

Insect pests, plant diseases and weeds were cited by 24%, 24% and 11.2% of the respondents 

respectively (Table 4.1).  
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Table 4.1: Major climate induced challenges to vegetable production (% responses; N=250).  

Variable  NR1 NR2 NR3 NR4 NR5 mean   P-value 

     

Challenges         

Droughts  38 40 34 48 44 44.8  NS 

Vegetable insect pests 22 26 22 26 24 24  NS 

Plant diseases   34 22 28 14 22 24  NS 

Weeds   6 12 16 12 10 11.2  NS 

Total   100 100 100 100 100 100    

NB: There are no significant differences at p>0.05, NS-not statistically significant 

4.3.2 Extent of crop losses from insect pests and disease attack 

Across the agro ecological regions, 53% reported high vegetable losses, 27% indicated that 

the losses from insects and diseases were moderate and 20% stated that the losses due to 

insects and diseases were low. However there were highly significant differences (p<0.05) on 

the extent of crop losses between the agro ecological regions. The extent of vegetable losses 

in NR 1, 2 and 3 were significantly higher compared to the extent of vegetable losses 

encountered in NR 4 and N5 (Table 4.2).    

 

Table 4.2: Extent of crop losses from insect pests and disease attack (% responses; N=250). 

Variable  NR1 NR2 NR3 NR4 NR5 mean   P-value 

High   52 72 76 34 32 53  0.00* 

Moderate  38 10 10 42 34 27  0.00* 

Low   10 18 14 24 34 20  0.00* 

Total   100 100 100 100 100 100 

NB: There are significant differences at p<0.05, * significant differences at p<0.01 

 

The participants of the focus group discussions concurred that the increase in vegetable attack 

due to insect pests as well as insect pest outbreaks in the past decade is mainly attributed to 

long dry spells and high temperatures during the production seasons. The views of the 

farmers in terms of drought conditions were also in agreement with recorded meteorological 

data analysis which indicates that the first decade of the 21st century, had the highest 

frequencies of droughts (8 droughts) compared to the previous decades in the late 20th 

century (Table 4.3).  
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Table 4.3: Frequency of drought events in Zimbabwe from 1950-2010. 

Weather events Extreme droughts Severe droughts Moderate droughts 

Drought years 1982, 1983  1968, 1973, 1982, 1951, 1960, 1964, 1965 

    2004   1970, 1984, 1987, 1991 

       1995, 2002, 2003, 2005 

       2007, 2008, 2009, 2010 

Total 2   4   16 

Source: Meteorological Services Department (2013) 

 

4.3.3 Farmer ranking of major vegetable insect pests 

Using the problem ranking matrix, the top three insect pests that were key in vegetable 

production across all the agro ecological regions were aphids which were cited by 100% of 

the respondents, cutworms cited by 98% and whiteflies which was cited by 86%. However 

beetles were the least cited insect pests with a fewer respondents (34%) compared to the other 

insect pests (Table 4.4). 

 

Table 4.4: Farmer ranking of major vegetable insect pests on a scale from 1(most serious) to 

10 (least serious) (% responses; N=250). 

Insect    NR1 NR2 NR3 NR4 NR5 mean   Ranking  

Aphids   100 100 100 100 100 100  1 

Cutworms  100 100 100 86 84 98  2 

Whiteflies  92 96 84 82 76 86  3 

Diamond Back Moth 82 100 100 60 76 84  4 

Leaf miners  84 92 98 40 44 72  5 

Cabbage Loopers 66 80 60 40 24 54  6 

Thrips   74 80 60 26 20 52  7 

Fruit flies  64 42 60 26 18 42  8 

Beetles   48 38 26 42 14 34  9 

Army worm  33 40 38 23 20 31  10 

NB: Percentages exceed 100% due to multiple responses 

Source: Survey data (2015) 
 

In the focus group discussions, aphids were also cited by the majority of the farmers who 

highlighted that the insect pest feed on a wide range of field crops, vegetables, ranging from 

the brassicas (rape, cabbages, mustard), solanaceous (tomatoes, potatoes), cucurbits 

(squashes, pumpkin) and other vegetable families. In addition, the farmers indicated that the 
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aphids can also be found on some weed species. Of late they have indicated that they have 

found some aphid species on maize. The diamond back moth was cited as a common insect 

pest amongst the leafy vegetables such as rape, kale, cabbages and cauliflower. Farmers cited 

that most of the damage caused by the insect pests resulted in the destruction of the vegetable 

foliage, reduction in the quality of leafy vegetables, stunted growth and sometimes death of 

the plants. However the majority of the farmers were not aware of the ability of the insect 

pests to transmit plant diseases although from our field observations, there were disease 

symptoms which were shown by the mosaic patterns on vegetables like the tomatoes that 

were infested with aphids. 

4.3.4 Farmer choice of synthetic insecticides used in insect pest management 

Management of increasing abundance of insect pests included the use of various chemical 

insecticides which included the synthetic carbamates (carbaryl and aldicarb) and 

organophosphates (acetamiprid, malathion, diazinon, tamaron, monocrotophos and 

chlopyriphos). Organochlorines that were used by the farmers include dicofol as well as the 

pyrethroids such as fenvalerate. However some farmers use insecticides that are intended for 

use on non-food crops such as tobacco and cotton (monocrotophos, tamaron) citing that the 

green labelled chemicals that are intended for use on vegetables such as dimethoate (locally 

known as rogor) are no longer effective and have resorted to use of red labelled chemicals 

which are highly toxic. The chemicals that were cited as being effective by the farmers are 

mainly the chemicals in the high to extreme toxicity group (Table 4.5).  
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Table 4.5: Farmers choice of the synthetic pesticides used to control vegetable pests in a 

changing climate and the period of high insect pest incidence.  

Insect pest Period of high pest  Insecticides   Colour      

 Incidence     of label 

Aphids  All year round  Dimethoate  Green   

     Malathion  Green   

     Diazinon  Green   

     Fenvalerate*  Red    

     Chlopyriphos*  Red    

     Lambda*  Red    

     Tamaron*  Red    

     Dithane M45  Green    

     Monocrotophos* Red    

  

Whiteflies Hot season  Fenvelerate  Red    

     Malathion  Green    

Diazinon  Green    

         

RSM  Hot season  Dicofol  Amber    

Leaf miners Hot season  Monocrotophos* Red    

     Carbaryl  Amber    

DBM  All year round  Diazinon*  Green    

     Carbaryl*  Amber    

     Malathion  Green    

 

Thrips  Hot season  Malathion  Green    

Cutworms All year round  Chlopyriphos  Red    

        

     Lambda  Red    

Leaf hopper Hot season  Carbaryl  Amber    

Grasshopper Hot season  Carbaryl  Amber    

CL  Warm weather  Carbaryl  Amber    

NB: Source (Focus group discussions, 2015). CL-Cabbage Looper, DBM-Diamond Back 

Moth. *Indicates an insecticide that is not registered for use on a particular pest in vegetables 
 

4.3.5 The frequency of spraying effectiveness of synthetic insecticides  

 

Across the five agro-ecological regions, all the respondents (100%) interviewed indicated that 

they use chemical insecticides to manage insect pests at some point during the production 

cycle of the vegetables. There was no significant difference in the frequency of chemical 

insecticide spraying across the 5 NRs (P>0.05). Forty four percent of the respondents stated 

that they spray vegetables at an average frequency of once per month, while 29% sprayed 
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twice per month and 27% spray vegetables more than two times per month, indicating high 

rates of insecticide use (Table 4.6).  

 

There was a significant difference on the perceived effectiveness of the chemical insecticides 

within the 5 agro ecological regions of the country. A higher number of respondents in NR1, 

NR2 and NR3 stated that the chemical insecticides were effective. The responses of farmers 

in NR 1 and NR2 were significantly different from those of NR4 and NR5 at p<0.05 while 

the responses of farmers in NR3 were significantly different from those of NR5. The farmers 

in NR4 and NR5 felt that the chemical insecticides were ineffective. Across the natural 

regions, the majority (60%) of the farmers highlighted that the chemical insecticides were 

effective while 34% felt that some insecticides were ineffective and 6% had mixed feelings 

on the effectiveness of the chemical insecticides (Table 4.6).  

 

Table 4.6: Farmers perceptions of the frequency of spraying effectiveness of synthetic 

insecticides and their effectiveness (% responses; N=250). 

Variable   NR1 NR2 NR3 NR4 NR5 Mean   P-value       

Frequency of spraying   

Usage of synthetic chemicals 100 100 100 100 100 100 NS 

Once per month  44 44 38 42 52 44 NS  

Twice per month  28 30 32 30 24 29 NS 

More than twice per month 28 26 30 28 24 27 NS 

 

Effectiveness of insecticides 

They are very effective 76 74 60 50 40 60 0.001* 

They are not effective  22 20 34 42 50 34 0.001*  

They are somewhat effective 2 6 6 8 10 6 0.001* 

Total    100 100 100 100 100 100 

NB: There is a significant difference at P<0.05, *significant at P<0.01 

Source (Survey data, 2015).  

 

In the focus group discussions, the majority of the discussants did not know the role that is 

played by natural enemies in the control of insect pests. However, the natural enemy that 

some farmers knew was the lady bird beetle and it was indicated that its population had 
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declined. However from our observations, the fields that were frequently sprayed (sprayed for 

at least twice per month) with chemical insecticides had no signs of any natural enemy 

compared to fields that were sprayed less frequently (once per month) which hosted some 

ladybird beetles.  

 

4.3.6 Insect pest management strategies used by the farmers 

There were no significant differences (P>0.05) on the major insect pest management 

strategies that was implemented by the farmers across the 5NRs. Across all the agro 

ecological regions the majority (28.8%) of the farmers intercrop vegetables with other plants 

(e.g. kale intercropped with garlic, Allium sativum and onion, Allium cepa. This was followed 

by the use of chemical mixtures which was practised by 25.2% of the respondents. Trap 

cropping was practised by 20.4% while 5.6% removed plants that were severely infested with 

insect pests from the fields and 20% rotated vegetables for insect pest control (Table 4.7). In 

the focus group discussions, the farmers highlighted that they have adopted the cultural 

measures from the use of plant extracts such as using the apple of Peru 

(Nicandra physalodes), chilli (Capsicum annum) extracts, garlic extracts, increasing diversity 

of vegetable crops within the field, reduction in the size of land areas that are under vegetable 

production, location of vegetable gardens near homesteads where they can constantly monitor 

insect pests and take appropriate control measures. Regular weeding in and around vegetable 

gardens was also highlighted by the farmers as an important measure used to control insect 

pests as the weeds were found to harbour some insect pests which would spread easily to the 

adjacent vegetable crops if the weeds are not controlled. Farmers have also highlighted the 

production of a vegetable variety of kale which was reported to be less affected by a number 

of insect pests including the aphids. 

 

There was no significant difference between the farmers’ responses in the five agro 

ecological regions on the source of insect pest management information. The majority 

(57.2%) indicated that they obtain insect pest management information from the agriculture 

extension officers while 31.2% obtain the information from fellow farmers and the lowest 

(11.6%) number of respondents obtain information from various Non-Governmental 

Organisations (NGOs). However, it was noted that the extension officers in the various wards 

are not specialised in crop protection and crop protection services are obtained at district and 
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provincial offices of the Ministry of Agriculture. Results from the FGDs indicate that farmers 

also get information on insect pest management from agronomists of the various agro 

chemical companies such as agricura and ZFC during field days. 

 

Table 4.7: Major adaptive strategies for insect pest management in a changing climate and 

the source of insect pest management information (% responses; N=250). 

Variable   NR1 NR2 NR3 NR4 NR5  mean P-value  

Insect pest management strategy      

Mixing  insecticides   28 28 24 24 22 25.2 NS 

Use of trap crops  22 22 20 22 16 20.4 NS 

Removal of affected crops 6 6 8 2 6 5.6 NS 

Intercropping   28 28 26 30 32 28.8 NS 

Crop rotation   16 16 22 22 24 20 NS 

Total    100 100 100 100 100 100 

Source of pest management information  

AREX    68 62 56 48 52 57.2 NS 

NGOs    8 2 2 24 22 11.6 NS 

Fellow farmers  24 36 42 28 26 31.2 NS 

Total    100 100 100 100 100 100 

NB: There is no significant differences at p>0.05, NS-Not significant 

Source (Survey data, 2015).  

 

4.4 Discussion 

The majority of the farmers across the natural regions were aware of climate induced 

challenges to vegetable production similar to studies that were carried out in Uganda 

(Okonya et al., 2013). In this study, climatic factors affected vegetable production leading to 

low yield because vegetables crops are very sensitive to environmental extremes, and 

therefore high temperatures and limited soil moisture exacerbated by climate change directly 

though yield losses and indirectly through increases in insect pest population, reduce 

productivity in the tropical regions (Singh & Singh, 2013; Singh & Bainsia, 2015). 
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Insects and diseases have been cited as some of the major biological challenges to vegetable 

production under a changing climate. These findings correspond with the majority of the 

studies that were conducted in several African countries which showed that insect pests and 

crop diseases are some of the greatest challenges to vegetable production in an environment 

of a changing climate (Emana et al., 2015; Midega et al., 2013). In other studies, Munthali & 

Tshegofatso (2013) and Norman et al. (2014) in Botswana and Sierra Leone respectively 

showed that the majority of the farmers surveyed associated vegetable yield loss to insect 

pests attack under warming climate conditions. In a related research that was carried out in 

Tamil Nadu in India, farmers perceived insect pests as the most critical bioclimatic challenge 

resulting in 65-70% of vegetable loss as a result of the destructive activities of insects such as 

fruit borers, Leucinodes orbonalis, Guenée 1854 (Lepidoptera: Crambidae) whiteflies and 

thrips, Thrips tabaci, Lindeman 1889 (Thysanoptera: Thripidae) (Schreinemachers et al., 

2015). This suggests that much of the damage on vegetables and related losses were 

attributed to insect pests attack whose destructive activities are aggravated by a warming 

climate.  

 

The farmers reported an increase in insect pest abundance with the top three vegetable insect 

pests being the aphids, cutworms and the whiteflies. Aphids being more abundant under 

warm conditions, are also found on the growing points of vegetables therefore making them 

more visible to the farmer. Cutworm was ranked as another important insect pest of 

vegetables. The arrival of cutworms early in the life cycle of vegetables where they cut down 

the seedlings make them noticeable by the farmers (Okonya & Kroschel, 2015). 

 

The use of chemical insecticides by all the respondents as well as their perceived 

effectiveness across the agro-ecological regions was in line with studies that were carried out 

in Thailand, Vietnam, India and Pakistan which showed that all the smallholder farmers in 

these Asian countries relied heavily on synthetic insecticides to control insects’ pests (Khan 

& Damalas, 2015; Schreinemachers et al., 2015). In Pakistan, Punjab district, all the farmers 

surveyed reported using insecticides extensively as the only effective method of controlling 

insect pests (Khan  & Damalas, 2015; Khan et al., 2015).  The perceived reduced efficacy of 

some insecticides such as dimethoate in the hotter agro ecological regions could also have 

been due to some extreme weather events which degrades most organophosphates at elevated 

temperatures thereby rendering many of the chemical insecticide products to be less effective 
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(Musser & Shelton, 2005). The increase in insect pests abundance could also have led to 

increased use of chemical insecticides among the farmers (FAO, 2006) which in turn led to 

insect resistance due to continuous use of the insecticides (Fand et al., 2012; Cothran et al., 

2013). This therefore calls for further increases in the rates of insecticide application and the 

use of more hazardous chemical insecticides. The use of the hazardous chemical insecticides 

were in line with the study of Khan et al. (2015) in Pakistan who noticed that 55% of the 

smallholder farmers used moderately hazardous while 23% used highly hazardous chemical 

insecticides because of their perceived effectiveness compared to the mild insecticides.  

 

Farmers cited reduced effectiveness of natural enemies while others were not sure of the 

status and role that is played by natural enemies in insect pest control. This could have been 

as a result of poor knowledge of natural enemies among the smallholder farmers, as was also 

observed in other African countries such as Benin (Loko et al., 2013) and Uganda (Okonya & 

Kroschel, 2016). In addition, excessive use of synthetic insecticides could have also 

eliminated both target and non-target species thereby increasing the susceptibility of natural 

enemies to insecticides and a corresponding reduction in their populations (Chidawanyika et 

al., 2012; Selvaraj & Pandiara, 2013). In addition to excessive use of chemical insecticide, 

the small and delicate nature of most of the natural enemies also makes them susceptible to 

weather extremes (extreme temperature, strong winds and heavy rainfall) which are 

characteristic of a changing climate thereby resulting in a decline in their populations (Fand 

et al., 2012; Gerard et al., 2012).  In an experimental study that was carried out in Southern 

California, a 3°C increase in average summer temperatures resulted in a reduction in 

offspring production by about 90% for an important beneficial wasp, Cotesia marginiventris 

Cresson  (Hymenoptera: Braconidae) (Trumble & Butler, 2009). This therefore means that 

with a warming climate, there is most likely a reduction in the abundance of natural enemies.   

 

The use of chemical mixtures in this study was similar to the practice of the majority of 

smallholder farmers in Asian countries who mix various synthetic insecticides into single 

sprays in order to effectively control crop pests (Khan & Damalas, 2015; Okonya & 

Kroschel, 2015; Schreinemachers et al., 2015). Insecticide mixtures have a synergistic effect 

in insect pest control thereby enhancing the effectiveness of insect pest control under 

warming conditions (Abd El Mageed & Shalaby, 2011). 
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Cultural insect pest management practices such as intercropping, removal of heavily infested 

plants and switching to insect and resistant cultivars have also been manipulated by 

smallholder farmers to manage insect pests. Specialist insects such as the diamond back moth 

(Plutella xylostella), which only attacks cruciferous crops, are an example of insect pest with 

a narrow host range thus can be managed by intercropping with a crop that belongs to a 

different family (Smith & Liburd, 2015). Intercropping a susceptible and a non-susceptible 

crop controls insect pests by interfering with the ability of an insect to detect host plants by 

the production of a  volatile chemical compound by a component crop that confuse the insect 

(Smith & Liburd, 2015). 

 

Removal of heavily affected plants and the use of  disease resistant plant varieties was 

practiced by sweet potato farmers in Tanzania where 72% of the farmers in the Mara region 

removed affected plant from the field while (55%) stopped growing a variety in their field or 

got a resistant plant material (Adam et al., 2015).  This management strategy reduces the 

chances of migration of insect pests to adjacent healthy crops or fields (Okonya & Kroschel, 

2016). 

 

 Trap cropping in results in fewer pests on the main crop than if the trap crop were not 

present especially in specialist insects such as the diamond back moths (Zhou et al., 2011). In 

Florida, a plant of the Brassica family, collard greens (Brassica oleracea var. acephala L.) 

has been used as a trap crop to suppress infestations of diamond back moth larvae in 

cabbages, resulting in lower population of insect pests in the collard greens (Mitchell et al., 

2000). In an experiment where tobacco was produced, Colocasia esculenta hosted large 

numbers of the adults of second generation S. litura and provided adult females with an 

optimal oviposition site, hence the number of egg masses on tobacco was lower in trap 

cropping than in treatments where the tobacco pest was chemically controlled (Zhou et al., 

2011). 

 

Farmer support services such as agricultural extension services increases farmer knowledge 

on the risks associated with climate change as well as the management options (ATPS, 2013). 

Other sources of insect pest management information such as the NGOs had fewer 

respondents but were important in the dissemination of pest management information. This 

was in line with a study that was carried out in Tanzania which showed that apart from 
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farmer extension services as the main source of information, farmers can also acquire 

information on various production practices through other means such as farming experience 

and various informal networks (Adam et al., 2015). In a related study that was carried out in 

Italy, it was shown that farmers’ field days were an effective way of communicating risks and 

adaptation options to a changing climate (Menapace et al., 2015).  

4.5 Conclusion and recommendations  

 

Increasing temperatures, increased abundance of insect pests, plant diseases and weeds have 

been identified by the farmers as the major challenges to vegetable production under a with 

increasing incidence of major insect pests such as the aphids, cutworms and whiteflies across 

all the natural regions. Chemical insect pest management through application of increased 

insecticide rates, increased frequency of application and mixing chemical insecticides have 

been found to be the major strategies that the farmers were using for the management of 

insect pests resulting in overuse of chemical insecticides. Cultural pest management strategies 

such as intercropping, crop rotation, removal of affected crops and use of trap crops have also 

been used by farmers to control insect pests. This study revealed that smallholder farmers 

have little knowledge of natural enemies of insect pests and the role that they play in insect 

pest management, therefore there is a need to train smallholder farmers or improve their 

understanding on the identification as well as the role that can be played by natural enemies 

in insect pest management. Farmer training on adoption of more environmentally friendly 

strategies such as Integrated Insect Pest Management (IIPM) to reduce over reliance on 

chemical insecticides and therefore adapt to increasing insect pest challenges under a 

changing climate is also of importance. There is also need for improvement in the extension 

services by the government where specialists in crop protection need to be in close proximity 

to the farmers, than being stationed at the district or provincial offices. Forewarning models 

for predicting insect arrival, presence, absence or abundance based on earlier climate profiles 

will be of importance in order to provide a more precise spatial distribution of insect pests in 

the various agro ecological regions of Zimbabwe which assists in estimating the potential 

vulnerability of the farmers to insect pest risk. 
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CHAPTER 5 

MAPPING THE CURRENT DISTRIBUTION OF THE APHID, MYZUS PERSICAE 

IN AGRICULTURAL PRODUCTION REGIONS IN ZIMBABWE. 

Abstract 

The increase in global trade and changes in climate have resulted in the spread and 

establishment of aphids in different parts of the world including Zimbabwe. The objective of 

the research study was to map out the distribution of aphids, Myzus persicae Sulzer 

(Hemiptera: Aphididae) in all the 5 agro ecological regions of Zimbabwe that could guide 

assessment of agricultural risk to the insect pest as well as highlighting the potential for 

future research. The areas that were surveyed and represented the five agro ecological regions 

from natural region 1 to 5 respectively are Chipinge, Goromonzi, Mutoko, Masvingo and 

Chiredzi districts. An insect distribution modelling approach, the Random Forest (RF) 

algorithm, was applied using bioclimatic data. The results from the RF model indicates that 

precipitation related variables were of more significance in determining the potential current 

distribution of M. persicae compared to the temperature related variables with an overall 

accuracy of 70% and a kappa value of 0.64 implying that the model was reliable. Chipinge, 

Goromonzi and Mutoko had been shown to have the largest area that is suitable for M. 

persicae under the bioclimatic datasets compared to Masvingo and Chiredzi under current 

climatic conditions. The study concludes that vegetable farmers in Chipinge, Goromonzi and 

Mutoko are currently vulnerable to the effects of M. persicae attack on vegetable crops as 

well as the corresponding plant diseases. There is need for insect pest management measures 

to be put in place mainly targeting Chipinge, Goromonzi and Mutoko districts to reduce 

farmer vulnerability to yield loss as a result of the presence of M. persicae and the 

corresponding pathogens that are transmitted by the insect pest. Projection of future risks of 

the various agro ecological regions to virus vectors is of importance to enable timely planning 

of management measures in the areas where insects are anticipated in the future.  

 

Keywords: current distribution, Myzus persicae, Random Forest 
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5.1 Introduction 

 

Aphids, M. persicae originated from Asia (Blackman & Eastop, 2000). The increase in global 

trade and current changes in climate have resulted in the introduction and establishment of 

the aphid species into the different regions of the world where they are currently found 

(Akyıldırım et al., 2013; Beddow et al., 2010). Aphids are considered an important insect pest 

species group due to their minute size, high reductive potential (Munthali & Tshegofatso, 

2014), short life cycles, cyclical parthenogenetic reproduction, host preferences, and a close 

relationship with the host plants (Mondor & Addicott, 2007). The life cycle of M. persicae 

may have a holocyclic (sexual) or anholocyclic (asexual or incomplete life cycle). 

Parthenogenetic (asexual types) females hatch in spring and they disperse to secondary host 

plants where they produce many parthenogenetic generations (Blackman and Eastop, 2000).  

When aphids are continuously reproduced in a parthenogenetic manner they can achieve up 

to 18 generations a year (Harrington, 2007).  

 

Due to the ectothermic nature of the majority of  insects including the aphids, are very likely 

to respond quickly to increased temperatures (Robinet & Roques, 2010), and rising 

temperatures have the potential to affect most life history parameters of terrestrial insects, 

altering their ecological roles, as well as intra- and inter-specific interactions (Chidawanyika 

et al., 2012). Yamamura and Kiritani (1998) suggested that aphids are amongst the insects 

that are best adapted to take advantage of a warming climate, and could go through an extra 

five generations a year following a warming of 2°C.  It is also suggested that besides 

increases in CO2 concentration as a result of climate change, differences in soil nitrogen 

content and population density also play a part for aphid abundance (Newman et al., 2003). 

  

Aphids are commonly known for their ability to rapidly colonize high value crops and other 

economically important plant species such as the solanaceous crops, brassicas as well as 

ornamentals (Chemura et al., 2013; Marava, 2012). The large numbers of M. persicae weaken 

juvenile plants (Mhazo et al., 2011; Saljoqi, 2009), cause leaf stunting, yellowing and curling 

on mature plants (Opfer & McGroth, 2013). During feeding on older plants, they 

simultaneously ingest sap contents, weakening the plants (Mhazo et al., 2011) while at the 

same time injecting saliva, which can contain viruses if M. persicae has previously fed on an 
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infected plant (DEEDI, 2009). This results in gall formations on stems and leaves which are 

unsightly to the crops. In addition, they also excrete huge quantities of sticky honeydew, 

which promotes the growth of sooty mould which attract ants, thereby reducing 

photosynthesis (Masuka et al., 2010). The high reproductive rates and mobility of aphids 

contribute to their efficiency to act as virus vectors (Warren et al., 2005; Webster, 2012). All 

potyviruses (the largest group of plant viruses) cause serious damage to the field as the 

population size of M. persicae increase (Obopile et al., 2008). The viral infections on the 

plants alter the biochemistry of the plants to make them smell and taste different to the insect 

pest vector which results in the insects spreading the virus further (Ladanyi & Horvath, 2010) 

thereby leading to food insecurity as a result of yield loss.  

 

In Zimbabwe, the response of M. persicae to climate was monitored over a long period of 

time. Monitoring studies indicated a change in the morphs of M. persicae to the emergence of 

new morphs that are more adaptable to a warming climate. The new M. persicae morphs have 

been reported to be insecticide resistant and also have a more prolific reproductive cycle 

compared to the earlier morphs (Masukwedza et al., 2013). The emergence of the new 

morphs are therefore responsible for the transmission of several types of viral diseases in 

tobacco in Zimbabwe (Dimbi, 2014)  

 

Determining the current distribution of insect species have received little attention in most 

countries (Gormley et al., 2011). However, insect pest distribution models have been 

developed on a global scale (Kumar et al., 2015; Tannong et al., 2015). Some models have 

been developed for several insects in Asia (Solhjouy-Fard et al., 2013), North America 

(Kumar et al., 2014) and Europe (Barredo et al., 2015). Very few modelling approaches have 

been carried out in Africa (DeMeyer et al., 2010) and more specifically Zimbabwe. Research 

that was conducted in East Africa focused on the distribution of the coffee insect pests such 

as, white stem borers (Jaramillo et al., 2011), coffee leaf miner and the antestia bug (Brown, 

2008). In South Africa, the majority of the modelling studies concentrated on forest insects 

and diseases (Adam et al., 2013; Ismail et al., 2010) while in Zimbabwe a modelling study 

that was conducted, focused on the coffee white stem borer (Kutywayo et al., 2013). A 

greater proportion of the studies that were carried out with respect to climate change 

modelling in Zimbabwe mainly dealt with cereal crop growth and yield modelling 

(Masanganise et al., 2012; Matarira et al., 2011). Considering the significance of insect pests 
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to yield losses, assessing the spatial distribution of insect pest is of importance (Biber-

Freudenberger, 2016). The development of a distribution model of insect pests is of 

importance since insect pests are ectothermic and therefore their biology is governed by 

environmental conditions (Seidl, 2011). 

 

M. persicae are herbivorous insect species that has received little attention in distribution 

studies (Mondor & Addicott, 2007). Determining the current spatial occurrence of the 

established aphid is of significance in enabling a better understanding of the distribution of 

insect pest (Whatt et al., 2011). It is also a significant step in evaluating eradication efforts by 

the farmers (Phillips et al., 2006). In addition, it also provides a better understanding of the 

basic factors that affect pathogen dispersal (Liu et al., 2006). The objective of this study was 

therefore to map the current distribution of M. persicae in the various agro ecological regions 

of Zimbabwe thereby estimating the potential vulnerability of the farmers to the risk of M. 

persicae and the corresponding plant diseases. 

  

5.2 Materials and Methods 

 

5.2.1 The study area 

The study area was described in section 3.2.1. 

 

5.2.2 Field data collection  

Field surveys were conducted in the 5 agro ecological zones in both the winter and summer 

seasons for 2015 and 2016 to monitor and capture information related to the presence and 

level of infestation of M. persicae. These were carried out in each agro-ecological zone and 

where 10 tomato producing farms were randomly surveyed. Ten farmers that were perceived 

by the extension farmers to be active in production of horticultural crops including the 

tomatoes in the respective regions were randomly chosen from a list of active farmers.  At 

each of the sampling farms, sample plots (30 m x 30 m) were recorded using a Global 

Positioning System (GPS) (Garmin e Trex Vista). M. persicae abundance was measured from 

10 randomly selected plants using a 0-4 scale of M. persicae intensity, where 0 referred to no 

M. persicae infestation, 1 referred to low infestation where 1 or 2 M. persicae were found on 

plant leaves, 2 referred to mild infestation where  large numbers of M. persicae were found 

but on a few leaves  3 referred to high infestation where M. persicae were found on numerous 
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plant leaves and 4 referred to very high infestation where M. persicae families were 

numerous on most plant leaves resulting in curling and twisting of the leaves.  In addition, the 

level of infestation of M. persicae was determined by checking the signs of M. persicae 

damage which included wrinkled leaves, the presence of sooty moulds accompanied by ants, 

yellowing of the leaves as well as mosaic symptoms on the vegetable leaves. The points from 

which field surveys were conducted are shown in Fig 5.1. 

 5.2.3 Input Climatic Variables 

Nineteen bioclimatic variables (BIOCLIM) (Nix, 1986) representing current climate 

conditions across Zimbabwe were utilized and sourced from the WorldClim database 

(Hijmans et al., 2005). The bioclimatic variables are obtained from monthly temperature and 

rainfall values that are drawn from the years 1960–1990 (Table 5.1). Each bioclimatic 

variable was used in conjunction with the observed field data as potential predictor of M. 

persicae distribution.  

Table 5.1: Bioclimatic layers used in the random forests model 

 

BIO1-Annual mean temperature 

BIO2-Mean diurnal range (mean of monthly temperature (max-min temperature) 

BIO3-Isothermality BIO2/BIO7×100 

BIO4-Temperature seasonality (standard deviation ×100) 

BIO5-Max temperature of wettest month 

BIO6-Min temperature of coldest month 

BIO7-Temperature annual range (BIO5-BIO6) 

BIO8-Mean temperature of wettest quarter 

BIO9-Mean temperature of driest quarter 

BIO10-Mean temperature of wettest quarter 

BIO11-Mean temperature of warmest quarter 

BIO12-Annual precipitation 

BIO13-Precipitation of wettest month 

BIO14-Precipitation of driest month 

BIO15-Precipitation seasonality (coefficient of variation) 

BIO16-Precipitation of wettest quarter 

BIO17-Precipitation of driest quarter 

BIO18-Precipitation of warmest quarter 

BIO19-Precipitation of coldest quarter 
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Fig 5.1: A national map showing the sample locations. 

It indicates the data points from which samples were taken 

 



 

 

82 

 

5.2.4 The Random Forest modelling approach  

Random forest is a competent classification model that is designed to produce accurate 

results that do not over fit the data (Breiman, 2001).  It was designed to extract the maximum 

amount of information from field observations and experimental data when there are 

insufficient data to build a detailed simulation model of the species. In a Random Forest, the 

features are randomly selected in each decision split. The correlation between trees is reduced 

by randomly selecting the features which improves the prediction power and results in higher 

efficiency (Brieman, 2001; Lin, 2011). 

 

Random Forest builds numerous binary classification trees (ntree) using several bootstrap 

samples with replacement which are drawn from the initial observations in the first stage. The 

ntree contributes a unit vote and the correct classification and the actual classification is 

determined by the majority vote from all the trees in the forest. The samples that are not 

included in the bootstrap sample are known as out of the bag (OOB) samples. These are used 

to estimate the misclassification error as well as the importance of the variable under 

consideration. In the second stage, at each node, a given number of input variables (mtry) are 

randomly chosen from a random subset of the features and the best split is calculated using 

this subset of features. As a way of ensuring low similarity and hence low bias, all the trees of 

the forest are not pruned (Breiman, 2001; Lin et al., 2011). The mtry and the ntree parameters 

are recommended to be optimised to improve the classification accuracy (Adam et al., 2011; 

Ismail et al., 2010; Genuer et al., 2010).  

 

5.2.5 Random forest model validation  

Accuracy assessment entails the comparison of a classification with ground truth data to 

evaluate how well the classification represents the situation on the ground. It was calculated 

using the confusion error matrix (Congalton & Green, 1999). The dataset collected from the 

field 100% (n = 50 farms) were split into training data, (60%; n = 30) and test data (40%; n = 

20). The whole process was repeated a 100 times to take into consideration the variation that 

could arise as a result of training and validation samples (Peerbhay et al., 2014; Fassnacht et 

al., 2014). Class accuracy was obtained by examining the user’s and the producer’s 

accuracies. The producers accuracy (omission error) refers to how well a certain area can be 

classified while the users accuracy (commission error) is a measure of reliability, probability 

a pixel class on the map represents the category on the ground. The producer’s accuracy was 
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calculated by dividing the number of correctly classified species in each class by the size of 

the training sample used for that class also known as the column total. On the other hand, the 

user’s accuracy was calculated by dividing the number of correctly classified species by the 

number of species that were classified in the particular class also known as the row total in 

the confusion matrix. The overall accuracy is therefore obtained by dividing the total number 

of correct pixels by the total number of pixels in the error matrix.  A discrete multivariate 

technique known as Kappa analysis was also conducted to determine the significant 

difference between one error matrix and another. It is a measure of agreement between 

classification map and reference data. Kappa analysis uses the k (KHAT) statistic, where 

coefficients that are closer to or equal to one assume perfect agreement. (Congalton & Green, 

1999). In this study, field data scores were split into training and test datasets, whereby a 

portion was used to train the model based on the observations in field. The test dataset was 

then used for validation of the model once complete it was used to assess the accuracy of the 

overall model performance. 

 

5.3 Results 

5.3.1 Mapping the distribution of M. persicae using bioclimatic variables 

Utilising the random forest approach, the final classification results using the test dataset are 

shown in Table 5.2. An overall classification accuracy of 85% was produced for determining 

the presence and absence of the M. persicae during summer (ntree = 3500 and mtry = 2) with 

a kappa value of 0.63 and producer and user accuracies between 67 and 93. For winter, 

results indicate a reduced classification accuracy of 80% with a kappa value of 0.50 and user 

and producer accuracies ranging between 58 and 89.  

 Table 5.2: Accuracies from the RF model based on the presence/absence data 

    Summer     Winter  

   Presence Absence   Presence Absence 

Producers accuracy 80  67    70  58 

Users accuracy 67  93    83  89 

Kappa    0.63      0.5  

Overall Accuracy  85%      80% 
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Fig 5.2:  A national map showing the spatial distribution of M. persicae using the RF model based on presence/absence data. 

 The map indicates that M. persicae is most likely to be abundant in the northern part of the country compared to the southern part of Zimbabwe.
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5.3.2 Mapping M. persicae infestation levels 

While the presence and absence analysis provided baseline information regarding the spatial 

distribution of the M. persicae, it does not provide further detailed information on the level 

of infestation (Fig 5.2). Therefore, we utilized the information collected in field, from each 

NR and from each farm based on the infestation levels of the M. persicae. Using the RF 

approach the final classification accuracies are indicated (Table 5.3). The results from the 

RF indicates that an overall classification accuracy of 70% was obtained for determining the 

various levels of M. persicae infestation during the summer (ntree = 4500 and mtry = 4) 

with a kappa value of 0.64 and producer and user accuracies ranging between 50 and 100%. 

For the winter season, the results indicate a lower classification accuracy of 60% with a 

kappa value of 0.52 with producer and user accuracies ranging between 40 and 75% (Table 

5.3).  

Table 5.3: Final classification accuracies based on the level of infestation using the RF model 

    Summer     Winter 

  Users accuracy Producers accuracy Users accuracy   Producers Accuracy 

None  60  75   66   70 

Low  100  75   60   70 

Moderate 67  50   65   60 

High  60  75   40   50 

Very high 75  75   50   50 

Kappa   0.64      0.52 

OA   75%      60% 

__________________________________________________________________________ 

 

Figure 5.4 shows the spatial distribution of the M. persicae. Noticeable is the high level of M. 

persicae infestation in the districts in NR 1 (Chipinge and Nyanga). Very high levels of 

infestation are also noticed in areas in NR2 (Harare, Karoi, Chegutu, Rusape, Chinhoyi, 

Goromonzi) and NR3 (Mutoko, Gokwe, Chivhu) implying that these areas have the highest 

risk of M. persicae infestation. The districts in NR2 and NR3 have the largest crop producing 

areas due to climatic and terrain suitability therefore are conducive and prone to aphid 

presence at very high intensity. The model shows that the districts in NR4 (Masvingo) and 

NR5 (Chiredzi, Gwanda, Hwange) have low to no level of M. persicae infestation 
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respectively indicating a potentially lower risk of M. persicae infestation in these areas. These 

results indicate that regions in the southern lowveld have the largest areas that are not suitable 

for vegetable (i.e. tomato) production and hence are not favoured by M. persicae under the 

current climatic conditions.  

5.3.3 Variable importance 

The results of the study indicate the importance of the climatic variables in modelling the presence and 

absence of M. persicae. The most important variables are those with the highest mean decrease in 

accuracy (Fig 5.3). According to the RF model, the distribution of M. persicae was shown to respond 

to precipitation and temperature related factors although precipitation related factors were more 

significant compared to temperature related factors. Average annual precipitation (BIO12) was the best 

predictor of the distribution of M. persicae followed by precipitation of the wettest month (BIO13) 

then precipitation of the wettest quarter (BIO16). Temperature related variables that were of 

importance in determining M. persicae distribution was the temperature annual range (BIO7) and 

temperature seasonality (BIO4) (Fig 5.3).  
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Fig 5.3: Importance of the environmental variables in the RF model. 

Precipitation related variables influence the distribution of aphids more than temperature related 

variables. 
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Fig 5.4: A national map showing the current levels of M. persicae distribution using the RF model.  
There are variations in the levels of M.persicae infestation depending with the agro ecological region
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5.4 Discussion 

This study combines field information collected from various agro ecological zones in 

Zimbabwe with bioclimatic data to model the distribution and level of infestation of M. 

persicae. Using a RF modelling approach, successful mapping accuracies were obtained 

during winter and summer over a two-year period. The outcome of this study would 

contribute towards the development of a national monitoring framework for the distribution 

of M. persicae as well as identifying target areas for insect pest management strategies.  

 

Adam et al. (2011) found that the random forest was successful in mapping the distribution of 

insect pests similar to some studies that were conducted by Ismail et al. (2010) and Peerbhay 

et al. (2014). Adam et al. (2011) produced overall accuracies of between 76.92 and 81.54 and 

kappa values ranging from 0.53 and 0.63. Peerbhay et al. (2014), produced user’s and 

producer’s accuracies ranging between 60 and 100% and overall classification accuracy of 

68.75%.  

 

The RF model indicated that bioclimatic factors related to precipitation and temperature were 

the most critical factors influencing the distribution of M. persicae in Zimbabwe. Annual 

precipitation (BIO12), Precipitation of the wettest month (BIO13) and precipitation of the 

wettest quarter (BIO16) were found to be most important precipitation related factors while 

temperature annual range (BIO7) and temperature seasonality (BIO4) were the most 

important temperature related factors although precipitation factors were more important in 

influencing M. persicae distribution in Zimbabwe. This could have been as a result of the 

indirect effects of precipitation on the soil and water supply for the host plants (Moyo, 2000). 

The annual precipitation amounts are higher in the eastern highlands (Chipinge) and the 

Highveld (Goromonzi, Nyazura, Harare, Chegutu, Chinhoyi, Murewa) which is located 

roughly at the centre of the country and they decrease in mid altitude areas (Gweru, Kwekwe, 

Karoi). The lowveld (Chiredzi, Gwanda, Masvingo, Gutu), receives low amounts of rainfall 

while the low lying areas along the Zambezi valley to the north of the country receives a 

considerable amount of rainfall to encourage vegetation growth, however the topography and 

soil quality of the area are not suitable for crop production (Moyo, 2000). This supports the 

results of the presence and absence dataset which highlights the likely presence of the insect 

pest in the northern part of Zimbabwe compared to the southern part of Zimbabwe, where 
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provided the topography was even, the area along the Zambezi valley would be suitable for 

M. persicae presence on cultivated vegetables.  

In this study, the differences in annual precipitation amount suggests that the areas which 

receive higher annual rainfall amounts and optimum temperatures for M. persicae survival 

and reproduction during the summer such as (Harare, Nyazura, Chegutu, Chinhoyi, Chipinge, 

Murewa) are more likely to be affected by M. persicae resulting in increased M. persicae 

infestation compared to lower rainfall areas (Plumtree, Mberengwa, Masvingo, Chiredzi, 

Hwange, Gwanda).  

 

The wettest quarter in Zimbabwe is in most cases experienced in Zimbabwe between the 

month of January and the month of March while the wettest month is in most cases 

experienced in January. This suggest that there is increased breeding of M. persicae between 

the months of January and March as a result of increased crop production during this period 

and high rates of vegetation growth resulting from the Inter Tropical Convergence Zone 

(ITCZ) induced rainfall (Department of Meteorological services, 1981). These rains give rise 

to numerous alternative hosts during this period and a corresponding high M. persicae 

population. The levels of aphid infestation also decrease from the eastern part to the western 

part of Zimbabwe. This is as a result of precipitation quantities which decreases from the 

eastern part of Zimbabwe to the western part of Zimbabwe as a result of altitudinal 

differences (Department of Meteorological Services, 1981). 

 

In the same study, the correlation studies revealed a significant negative association between 

increase in temperature and insect pest infestation which also correspond with the findings of 

this study where the hotter regions are potentially low M. persicae risk areas compared to the 

mild regions (Rahmathulls et al., 2012). In a study where temperature was simulated, 

Gillespie et al. (2012) found that the population of Myzus persicae was lower at temperature 

ranges between 32 and 40˚C while the optimum temperatures for the longevity of M. persicae 

were 21-27˚C and 30˚C was found to be the optimum temperature for reproduction of M. 

persicae. This therefore results in higher levels of aphids in the sub humid agro ecological 

regions compared to the semi-arid agro ecological region which experience temperatures in 

excess of 30˚C during the summer (Chikodzi & Mutowo, 2012).  
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The high levels of M. persicae infestation in areas such as Nyazura, Harare, Chipinge, 

Chinhoyi, Karoi, Mutoko compared with other areas might have been influenced by the 

climate and vegetation types and abundance these regions. In Chipinge, a variety of 

plantation crops, field crops, horticultural crops, flowers and forestry are produced in this 

agro ecological region. In areas such as Harare, Nyazura and Chinhoyi, there is intensive 

cropping of a wide variety of field crops as well as irrigated crops (Moyo, 2000). This could 

have encouraged the rapid multiplication of the M. persicae due to the availability of 

numerous alternative hosts for M. persicae. Bebber et al (2014) noted that as a result of a 

changing climate, the majority of areas that are active in crop production will be saturated by 

insect pests in the future (Bebber et al., 2014) including M. persicae.  

5.5 Conclusions and recommendations 

This study successfully mapped the distribution of the M. persicae across the different agro 

ecological zones using bioclimatic variables. The RF model was successful in determining 

and quantifying the distribution of M. persicae across Zimbabwe’s Natural Region. 

Precipitation related variables, more specifically, the annual precipitation, precipitation of the 

wettest month and precipitation of the wettest quarter were found to be the most important 

predictors of M. persicae distribution. Temperature related factors such as annual range and 

temperature seasonality were also important in determining the distribution of M. persicae 

although they were less significant compared to precipitation related factors. According to the 

RF model, higher populations of M. persicae are most likely to be found in Chipinge, 

Goromonzi, Harare, Rusape, Mutoko and they decreased in areas that are characterised by 

low rainfall accompanied by extreme temperature conditions during the summer such as 

Masvingo, Mberengwa and Chiredzi districts. Current monitoring and management strategies 

by the government, extension and stakeholders involved in insect pest management should be 

focused mainly in areas such as Chipinge, Harare, Goromonzi, Karoi, Mutoko and Gokwe 

districts because of higher precipitation which is coupled with increased crop production, 

vegetation growth, good quality hosts and a corresponding high level of M. persicae 

abundance. Projection of future risks of the various agro ecological regions to some virus 

vectors is of importance to enable timely planning of management measures in the areas 

where the insects are expected to occur under future climatic conditions.  
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CHAPTER 6 

MODELLING THE CURRENT AND POTENTIAL FUTURE RISK OF WHITEFLY 

IN ZIMBABWE: BEMISIA TABACI IN A CHANGING CLIMATE 

Abstract 

 

The whitefly, Bemisia tabaci, Gennadius (Hemiptera: Aleyrodidae) is one of the most 

important insect pest of field, vegetable and ornamental crops in the warmer regions of the 

world. In Zimbabwe, Bemisia tabaci is likely to benefit from temperature increases resulting 

in changes in its distribution range thereby reducing crop productivity in some areas. An 

understanding of the role of climatic factors in the current and potential distribution of 

Bemisia tabaci and the corresponding disease transmission over time and space is of 

importance in targeting surveillance of the insect pest and the diseases that are transmitted by 

the pest. In this study, information related to the level of infestation was collected through 

field surveys in the five agro ecological regions of Zimbabwe. A statistical modelling 

approach using the Random Forest (RF) ensemble was applied on the current as well as the 

projected climate data obtained from the WorldClim database. Using this modelling 

approach, we relate present-day Bemisia tabaci infestation to current climate and then project 

the fitted climatic envelopes under future climate conditions. Results from the RF model 

indicate that precipitation and temperature related variables are more important in 

determining the current and the future risks of Bemisia tabaci. The conducive environment to 

Bemisia tabaci infestations seem to be persistent throughout the years modelled in 

Zimbabwe. It has the potential habitats in the northern areas of Zimbabwe with Kotwa, 

Gokwe, Kwekwe and Chegutu districts having the largest area more conducive under the 

current as well as the future (2050 and 2080) climatic conditions. The habitat range of 

Bemisia tabaci will decrease under future climatic conditions (2080) in the south eastern 

lowveld, the western parts of Zimbabwe as well as some areas in the Zambezi valley. The 

habitat range will increase in the areas south of Gutu district, south of Chiredzi and south of 

Magandani. Overally, the findings highlight the potential of current and future vulnerability 

of Bemisia tabaci infestation in Zimbabwe. These findings contribute towards a framework 

for informing whitefly surveillance at spatial and temporal ranges, development of early 

warning systems, and disease prevention in areas that will be more susceptible to Bemisia 

tabaci. 

 

 

Keywords: present distribution, projected distribution, Random Forest, Bemisia tabaci 

 

 

 

 



 

 

97 

 

 

6.1 Introduction 

Bemisia tabaci was found in China in 1949 and was not considered an important pest (Cho, 

1949). It became important, when it was found in most provinces of China and become a 

severe pest of numerous field and ornamental crops (Luo et al., 2002). B. tabaci is one of the 

serious threats to field and horticultural crops that are cultivated in the tropical and 

subtropical climates around the world both in the green houses and the open fields 

(Alemangri et al., 2012). It is currently spread throughout the world as a result of the 

transportation of infested plant material, globalisation and modern agricultural practises 

(EFSA, 2013). B. tabaci impose serious damage to a range of important crops worldwide 

including cash crops, major food staple crops, grain legumes, fiber crops, vegetables and 

ornamental plants (DeBarro et al., 2011). Besides being polyphagous, also B tabaci became 

successful because they can also be carried along with plants on which they are only visiting 

(non-host plants) (EFSA, 2013). As a result, B. tabaci is therefore now considered as one of 

the 100 worst invasive alien species in the world (Global Invasive Species Database, 2016). 

 

The negative effect of the B. tabaci on crop plants is as a result of both direct and indirect 

attack on crops (Thompson et al., 2011). Direct damage to the crops is caused through its 

feeding, which removes plant sap, resulting in stunted plant growth, especially in young 

plants.  The sap sucking feeding habit results in several plant disorders, such as the silver leaf 

of squash, stem blanching, whitening of cruciferous vegetables, as well as irregular ripening 

of tomatoes. Indirectly, B. tabaci damage plants by causing the production of large amounts 

of sticky honeydew which is secreted during feeding. The honeydew may cover plants and 

stimulate the growth of sooty mold, thereby reducing the plant’s ability to photosynthesise 

efficiently. In addition to the direct and indirect damage, B. tabaci also act as carriers of viral 

pathogens that can severely damage susceptible plants (Cathrin & Ghanim, 2014). B. tabaci 

have been found to be responsible for the transmission of over 200 plant viruses including 

Begomoviruses, Carlaviruses, Criniviruses, Ipomoviruses and Toradoviruses (DeBarro et al., 

2011; Martelli et al., 2011; Navas-Castillo et al., 2011) which have resulted in serious 

economic losses in many parts of the world (Thompson, 2011). However, begomoviruses are 

the most important plant viruses that are transmitted, causing crop yield losses of between 20 

and 100% (Cathrin & Ghanim, 2014). The losses resulting from virus transmission by the B 
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tabaci, however far surpass the direct losses resulting from their direct feeding on the crops 

(Shi et al., 2014).  

 

Environmental conditions have been reported to be the major abiotic factor affecting the 

population dynamics of insect pest species (Khaliq et al., 2014) including the B tabaci. In 

many parts of the world, B. tabaci populations are more prevalent, displacing the local insect 

pests (Jiao et al., 2013; Hu et al., 2011; Navas-Castillo et al., 2011). Previous distributions of 

the B. tabaci were confined to temperate climate zones but in the past two decades it has 

spread to every continent in the world except some areas in Europe and the Antarctica 

(Cuthbertson & Vanninen, 2015; EFSA, 2013). 

 

Whiteflies by being ectothermic in nature, temperature plays a vital role in their survival and 

reproductive success (Cui et al., 2008).  High populations of B. tabaci reach their peak during 

the summer season when temperatures are above 30˚C (Luo et al., 2002).  However, in an 

experiment that was conducted in China, adult survival was significantly when temperatures 

exceeded 41°C (Cui et al., 2008). Food supplies was also found to play significant roles in the 

development and survival of B. tabaci. Salvucci (2000) found that with the availability of 

food, the sorbitol levels that protect proteins from heat stress are likely to increase. This 

implies that as long as the area invaded or occupied by whiteflies has hosts plants for the 

insect, they are able to survive and resist heat stress even if the temperatures are high. 

 

 Research on B. tabaci distribution has been conducted in developed countries such as 

Australia (Sutherst et al., 2011) and Europe (EFSA, 2013). In Europe, a lattice Permission-

based Delegation Model (PBDM) was used to describe the population dynamics of B. tabaci. 

This model was used as a result of its ability to explain the phenomena in its pure form. Thus, 

the demographic processes of invasion can be explained from life history strategies described 

at the individual level (Gutierrez, 1996; Metz & Diekman, 1981). The model indicated that 

the range expansion by B. tabaci is predicted, particularly in Spain, France, Italy, Greece and 

along the Adriatic coast of the Balkans. However, even under the scenario of a 2˚C increase 

in temperature, northern European countries are not likely to be at risk of B. tabaci 

establishment because of limitations in climatic conditions (Gilioli et al., 2013).  In most 

developing countries, little attention has been paid to the distribution of B. tabaci insect 

species (Gormley et al., 2011). In African countries such as Tanzania, B. tabaci was modelled 
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using the “Climate envelope model”. This model was found to be useful in predicting the 

potential distribution of whiteflies in Tanzania. Using this model, it was found that the most 

suitable zones for B tabaci presence were located mainly in the north western side of the 

country, including part of the western side. The central and the southern regions, on the other 

hand, were not potentially suitable. Overall, it was found that the suitable ranges could 

increase in the future (Guastella, 2013). Considering the direct and indirect influence of 

insect pests to crop productivity, there is a need for studies to forecast the distribution of 

economically important insect pests under future climatic changes (Biber-Freudenberger, 

2016).  

 

Predicting and quantifying the current occurrence and potential distributions of established 

insect species is an important step in establishing surveillance monitoring and efficient 

management when the projected distribution of the pest is established (Gormley, 2011; Lodge 

et al., 2006). Projections of insect pests therefore facilitate better preparedness to reduce 

outbreaks of serious insect pests and hence yield losses by enabling the development of 

effective pest management strategies before the occurrence of the insect pest outbreak (Fand 

et al., 2014). It is within this context that the study was conducted to map the risk to B. tabaci 

infestation under current and future climatic scenarios across the various agro ecological 

regions in Zimbabwe.  

6.2 Materials and Methods 

6.2.1 Description of the study area 

The study area is described in section 3.2.1.  

6.2.2 Data on occurrence of the B. tabaci 

Smallholder farmers that grow crops throughout the year and produce primarily tomato and 

brassicas were sampled for the purpose of this study. Data on the level of whitefly 

distribution was collected from the 5 agro ecological zones in the winter and summer seasons 

for 2015 and 2016 through sampling for B. tabaci on tomatoes and cabbages which are the 

preferred hosts of whiteflies. Ten tomato or cabbage producing sites in each agro ecological 

region were sampled in this study. At each site, ten sampling plots measuring 100m×100m 

were randomly used. At each of the sampling points, latitude and longitude coordinates as 

well as altitude was recorded using a Global Positioning System (GPS) model (Garmin e 

Trex Vista). More specifically, a hand lens was used for the sampling of B. tabaci at each 
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sampling point. It was used to distinguish between empty pupal cases and live insect pests. 

Inspections of the undersides of lower leaves was used to detect the presence of some 

immature stages of the whiteflies but the adult whiteflies were used in this study because they 

were easy to see. B. tabaci were checked on the undersides of the leaf and on new growth on 

ten randomly sampled plants at each sampling point in the agro ecological region. Each 

location within an agro ecological region was separated by a distance of at least a kilometre. 

If the undersides of the lower leaves were covered with the whiteflies, adults would soon be 

seen near the top of the plants. There were five levels of whitefly distribution that were 

considered and these were measured mainly during the early morning when the whiteflies 

were inactive. In instances where no whiteflies were found on leaves it was recorded as none, 

1-20 B. tabaci was recorded at low, 21-50 B. tabaci was recorded as moderate, 51-100 was 

recorded as high while >100 was recorded as very high. 

6.2.3 Climatic variables 

For the present and the projected climatic conditions, nineteen Bioclimatic (BIOCLIM) 

variables were contained from the WorldClim database (Hijmans et al., 2005). These were 

used as potential predictors of the whitefly distribution. The bioclimatic variables represent 

annual trends, seasonality and extreme or limiting environmental factors (Nix, 1986). These 

variables include, annual mean precipitation and annual mean temperature for Zimbabwe as 

well as information related to maximum temperature of the wettest month, minimum 

temperature of the coldest month, and precipitation of the driest and wettest quarters. The 

various climatic variables that were used in the RF are shown in Fig 6.1 which highlights the 

importance of each variable in the RF model. 

6.2.4 Modelling approach  

The random forest modelling approach was used in this study. The approach is explained in 

section 5.2.4. A map indicating the various points where the field survey was conducted is 

shown in Fig 5.1. 

6.3 Results 

6.3.1 Mapping the current distribution of B. tabaci using the bioclimatic variables 

Using the test data set, the results of the current distribution of whitefly using the RF model 

are shown in Table 6.1. During the summer season, successful producer’s and user’s 

accuracies ranged between 50 and 100%. An overall accuracy of 75% was produced by the 
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RF model (ntree = 3500 and mtry = 2) for mapping the various levels of whitefly infestation 

during the summer season with a resultant kappa value of 0.67. In the winter season, the 

producer’s and user’s accuracies ranged lower from 33 to 100%. However, an overall 

classification accuracy of 65% was obtained with a kappa value of 0.57 (Table 6.1). These 

results indicate a higher reliability of the summer data compared to winter data in modelling 

the distribution of B. tabaci.  

Table 6.1: Classification accuracies based on the level of infestation using the RF model for 

modelling the current distribution of B. tabaci. 

   Summer     Winter 

  U  A  PA    UA  PA 

None  88  70    71  50 

Low  50  100    33  100 

Moderate 67  100    50  100 

High  100  50    100  50 

Very high 80  80    80  80 

Kappa   0.67      0.57 

OA   75%      65% 

__________________________________________________________________________ 

NB: UA refers to User’s Accuracy, PA refers to Producer’s Accuracy and OA refers to 

Overall Accuracy 

 

A distribution map highlighting the risk of the B. tabaci is shown in Fig 6.1. The RF map 

showed that, districts such as Kotwa, Chinhoyi, and some areas along the central part of 

Zimbabwe such as Gokwe district have the largest crop producing areas that is suitable for 

the high occurrence of B. tabaci making the areas very high risk zones for B. tabaci 

infestation. High risk areas for the B. tabaci are mainly found in areas around Chipinge, 

Nyazura, Gweru and Harare districts.  Areas around Gutu district have a moderate risk of 

whitefly infestation. However, areas to the south of Zimbabwe have a lower area that is 

suitable for crop production and shows a low risk of B. tabaci infestation. Chiredzi and the 

surrounding areas have been found to have the lowest area that is suitable for crop production 

and hence is unsuitable for whitefly distribution under the current environmental conditions.  
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6.3.2 Importance of bioclimatic variables in B. tabaci distribution 

The most important bioclimatic variables that determined the distribution of B. tabaci was 

measured using the mean decrease in accuracy (Fig 6.2). B.tabaci distribution was shown to 

respond to both precipitation and temperature related variables. However, annual 

precipitation was of greatest importance in determining the potential spatial distribution of 

the whiteflies using the RF model compared to all the other bioclimatic variables. Annual 

mean temperatures were also shown to have a higher impact on the distribution of B. tabaci. 

The relative importance of the environmental variables are shown in Fig 6.2.  

 

6.3.3 Mapping the future (2050 and 2080) distribution of B. tabaci using rainfall and 

temperature  

Rainfall and temperature were shown to be the most significant variables in determining the 

current level of B. tabaci risk. Therefore, using these two variables, data for 2050 and 2080 

were acquired from the WorldClim database and applied to the RF model for prediction. The 

results of the RF model on mapping the projected future (2050 and 2080) distribution of 

whitefly is shown in Table 6.2. The producer’s and user’s accuracies of the 2050 data ranged 

between 50 and 100% and produced an overall accuracy of 70 % with a kappa value of 0.62. 

For the year 2080, the producer’s and user’s accuracies ranged between 33 and 100% and a 

lower overall classification accuracy value of 65% was obtained with a kappa value of 0.55 

(Table 6.2). 
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Fig 6.1: A map showing the current spatial distribution of B. tabaci in Zimbabwe. 

There is high risk of B. tabaci to the north and central part of Zimbabwe compare to the Southern part
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Fig 6.2 Importance of bioclimatic variables using the RF model. 

Annual precipitation influences B. tabaci distribution compared to any other environmental 

variable. 

Table 6.2: Final classification accuracies based on the level of infestation using the RF model 

for the year 2050 and 2080 

  Summer (2050)    Summer (2080) 

  UA  PA    UA  PA 

None  86  60    86  60 

Low  33  100    33  50 

Moderate 67  100    67  100 

High  100  50    50  50 

Very high 67  80    60  75 

Kappa   0.62      0.55 

OA   70%      65% 

__________________________________________________________________________ 

NB: UA refers to User’s Accuracy, PA refers to Producer’s Accuracy and OA refers to 

Overall Accuracy 
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The spatial distribution of whitefly under the projected climatic conditions in Zimbabwe 

indicated a general decline in the area that will be under very high risk in the northern parts of 

the country. Areas that will remain highly conducive for whitefly infestations between the 

present distribution and 2050 are areas around Gokwe, Kwekwe, Siabuwa, Chegutu and 

Kotwa. However, areas that are currently under very high risk such as Chinhoyi, Hwange and 

Murewa will shift from a higher risk to a lower risk by the year 2050.  On the other hand, the 

areas that will be more at a higher risk to whitefly compared to the current distribution are the 

areas around Gutu, Umguza districts, south of Chiredzi and south of Magandani. The areas 

that will be at a lesser risk to whitefly by 2050 will therefore shift northwards from the 

southern part of Zimbabwe (Fig 6.3).  

 

The distribution of whiteflies in Zimbabwe generally show a decline in areas that will be 

under very high whitefly infestation in the future when the RF model was used. By 2080, 

there is a projected expansion in the areas under low risk from whitefly infestation in the 

southern part of the country compared to the present distribution as well as 2050 distribution. 

In addition, there is also a likely decline of whitefly risk in some areas in the Zambezi valley 

to the north of Zimbabwe.  In contrast, areas to the south of Gutu will at a higher risk to 

whitefly infestation by 2080 and also Hwange will be at a higher risk of whitefly infestation 

compared to the year 2050. Using the RF model, areas around Kotwa, Makuti, Siabuwa, 

Gokwe and Chegutu will remain highly susceptible to whitefly infestation by the year 2080 

(Fig 6.5).  
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Fig 6.3: Projected B. tabaci distribution in Zimbabwe by the year 2050.  

Some areas in the southern Lowveld will become susceptible to B. tabaci by 2050.  
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a) Current whitefly distribution      b) Whitefly distribution by 2050 

Fig 6.4: National maps comparing B. tabaci distribution between the current distribution and the year 2050.    

The maps show an expansion of area under risk from B. tabaci between the current distribution and the year 2050.
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Fig 6.5: A national map showing the projected B. tabaci distribution by 2080. 

Some places north of the country will be at less risk of B. tabaci by the year 2080. 
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a) Whitefly distribution by 2050      b) Whitefly distribution by 2080 

Fig 6.6: National maps comparing B. tabaci distribution between the year 2050 and 2080. 

The maps show that some places in the south eastern lowveld and the Zambezi valley will become less susceptible to B. tabaci risk between 2050 

and 2080. 
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6.4 Discussion 

This study used field data collected from various agro ecological regions of Zimbabwe to 

map current and future risk of whitefly infestations. Using the RF model, successful mapping 

accuracies were obtained for the present distribution of whitefly using the summer data set. 

The results of this study showed that the summer data set was more effective in mapping the 

distribution of the whitefly compared to the winter data set and hence the summer data set 

was used for the projected distributions. The efficiency of the summer data set could have 

been as a result of increased suitability of climatic conditions and host availability that are 

required for oviposition, reproduction, growth and longevity of whitefly during the summer 

season. 

 

The random forest model was successful in mapping the distribution of the whitefly in this 

study and produced similar accuracies to that of other insect pest distribution studies that 

were conducted in South Africa (Adam et al., 2011; Ismail et al., 2010). In the studies that 

were conducted on forest insect pest species, overall accuracies ranging 68-82% were 

obtained while in this study overall accuracies ranged from 65% to 75% across all the periods 

modelled were obtained. However, there was a reduction in the overall accuracy with time 

from the current distribution to the year 2080.  

 

From the findings of this study, the annual precipitation and the annual temperatures were 

found to be key determinants of whitefly distribution in the country. In addition, precipitation 

of the wettest quarter and precipitation of the coldest quarter were also found to be important 

predictors of whitefly distribution. In Zimbabwe, the wettest quarter is usually experienced 

between January and March (Kutywayo et al., 2013). This makes this period the most 

important time that is required for the emergence and the initiation of development of the 

whitefly. Higher annual precipitation is also indirectly important in increasing soil moisture 

thereby stimulating the growth of the host plants as well as the alternative hosts resulting in 

an increase in feeding, size, growth as well as the reproductive potential of the whiteflies 

(Simpson et al., 2012). The low rainfall that characterises the southern part of the country is 

therefore a likely contributing factor to low whitefly risk because of fewer susceptible host 

plants as well as poor quality host plants which indirectly affect the biology of the whiteflies 

and hence is abundance. The findings are in line with the study of Kutywayo et al., (2006); 

Kutywayo, et al., (2013); Chapoto et al., (unpublished) in their previous studies on coffee 
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white stem borer and aphids respectively who observed that the distribution of these insect 

pests were more influenced by precipitation related factors as than the temperature related 

factors. The insect pests modelled were more likely to occur in areas which receive higher 

rainfall compared to lower rainfall areas.  In a related study where B tabacci was modelled in 

cassava production regions in Tanzania, B tabacci was shown to have a higher probability of 

occurrence in those areas which were characterised by relatively high altitudes (1000–

1300m) and annual mean temperatures of 24-26°C. Its distribution was concentrated in areas 

with a range of precipitation values of > 150 mm in March or April and characterised by 

yearly average annual precipitation between 750-1000 mm (Guastella, 2013) which is the 

case with Zimbabwe’s areas in agro ecological region 2. The findings of Guastella (2013) 

highlights the importance of the precipitation of the wettest quarter in determining whitefly 

distribution.  

 

The importance of the temperature as another major determinant of whitefly distribution was 

also observed by Jaramillo et al., (2011) and Jaramillo et al., (2009) who noted that 

temperatures were important variables that determined the distribution of the coffee berry 

borer. In this study, the districts that experience low precipitation and higher temperatures 

such as the south eastern lowveld were at a lower risk of whitefly infestation compared to the 

districts that receive higher rainfall and relatively lower temperatures. In a study that was 

conducted by Baoli et al., (2003), he showed that lower (<17˚C) and higher (>35˚C) 

temperature had a negative effect on the survival of .B tabaci. In the same study, he noted 

that B. tabaci had a longevity of 44 days at 20˚C and 10 days at 30˚C. This implies that the 

decrease in suitability of whitefly infestation in southern lowveld which experience 

temperatures in excess of 35˚C in the summer could have been as a result of climate change 

which exceed the temperature thresholds or the temperature windows that are required for the 

survival of the whiteflies resulting in the unsuitability of the area to the whitefly.  

 

The decrease in whitefly risk in some areas of the country such as the south eastern lowveld 

as well areas such as Harare, Murewa, Chinhoyi, Karoi is also in line with a study that was 

conducted by Kutywayo et al., (2013), using the BRT and the GLM models which projected 

that the risk of the coffee white stem borer in Mutasa district would decrease by 2080.  This 

could have been as a result of the changes in optimum conditions that are able to support the 

biology of the whitefly such as the changes in annual precipitation and the changes in the 
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annual temperatures which could exceed the optimum or be reduced under future climate as a 

result of climate change and variability thereby reducing the level of whitefly risk.  

 

The increase in the suitability of the area to the south of Gutu and west of Chipinge could 

also be due to some favourable environmental conditions which encourage productivity 

caused by a changing climate by the year 2050 and 2080 which have a possibility to 

encourage the reproduction, growth and survival of the whiteflies in this areas. These 

environmental conditions could be increased rainfall and more conducive temperatures that 

can be brought about by a changing and variable climate which supports vegetation growth 

(whitefly hosts) and hence increased whitefly populations (Ladanyi & Horvath, 2010).   

 

6.5 Conclusions 

 

The RF model that was used in this study was a useful tool in determining the current and 

projected infestation risk of whitefly by the year 2050 and 2080. The model indicated that 

precipitation related variables such as annual precipitation, precipitation of the wettest quarter 

and precipitation of the coldest quarter as well as the annual mean temperature were the 

important predictors of whitefly distribution. The model predicts that very high whitefly risk 

will persist in high vegetable production regions under the present climate as well as the 

future climates (2050 and 2080). Some areas that are currently not suitable for whitefly 

infestations will become suitable under future changes in climate such as the areas to the 

south of Gutu district, west of Chipinge, south of Chiredzi and south of Magandani. Areas 

that are at less risk to whitefly infestation are projected to shift from the southern part of 

Zimbabwe towards the central and the western part of Zimbabwe. From these results, there is 

need for development and application of environmentally friendly adaptation strategies to 

reduce the negative effects of whitefly especially in the regions where the whitefly is 

projected to increase. Preventative measures need to be put in place in the areas where 

whitefly is expected to occur in the future. Irrigation infrastructure and development need to 

be prioritised by the government in order to utilise the opportunity to increase vegetable and 

crop production in the southern areas of the country which are likely to be unsuitable for 

whitefly incidence under current and future climates. This creates an opportunity for 

vegetable production in the lowveld once irrigation and soil fertility options are improved 

because of the environmental conditions that are not conducive to whiteflies. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Major findings 

 

The changes in the climate as a result of increasing atmospheric gas composition have the 

potential to alter insect pest dynamics in tropical countries such as Zimbabwe. Most of the 

climate change studies that have been conducted in Zimbabwe focused on the impact of 

climate change on the yields of mainly cereals crops and the adaptation strategies to cope 

with decreasing yields in a changing climate. These studies have disregarded the likely 

impact of the changing climate on insect pests, which are an important determinant of crop 

yield under changing and variable climate conditions. This study was conducted to determine 

the response of insect pests to a changing climate in Zimbabwe from the farmer’s 

perspectives across the five agro-ecological regions of Zimbabwe, determine the measures 

that are currently being adopted to manage insect pests in vegetable crops, to map the likely 

distribution of emerging insect vectors as well as to project the potential distribution of these 

insects under future climate scenarios. Questionnaires, key informant interviews, focus group 

discussions and the Random Forest modelling approach were used in this study.  

 

The findings of this study revealed that farmers had the perception that increased warming, 

shorter winter seasons and changes in precipitation patterns are influencing the abundance, 

behaviour, physical appearance, distribution as well as the emergence of new insect pests in 

Zimbabwe. As a result of the milder winters that are currently being experienced in 

Zimbabwe, farmers in agro ecological regions 1, 2 and 3 (humid and sub humid climates) and 

regions 4 and 5 (semi-arid climates) have noticed a surge in insect pest population during the 

present winter seasons compared to the past winter seasons which were characterized by 

lower temperatures and lower insect pest incidences. Some respondents in agro ecological 

regions 4 and 5 (semi-arid climates) could not differentiate the changes in climate patterns 

compared to the farmers in agro ecological regions 1, 2 and 3.  The farmers’ perceptions to 

climate change were in line with the observations of the key informants such as the local 

leaders, the environmental management officers and extension officers who have observed an 

increase in the prevalence of insect pests and attributed their prevalence to changes in climate 
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variables. The perception of the farmers were also in line with the meteorological data which 

highlighted variable precipitation trend and a positive trend in the annual mean minimum and 

maximum temperatures over the past years.  

 

Insect pests such as the aphids, stem borers, cutworms, diamond back moths, leaf miners, 

bollworms and the whiteflies have been cited to be responding to the changes in the climate 

variables across the five agro ecological regions. Of the emerging virus vectors, aphids and 

whitefly were found to be the major insect vectors throughout the country, whose abundance 

was found to be significant throughout the year in agro ecological regions 1, 2 and 3 while in 

agro ecological regions 4 and 5, the prevalence of these insects was highlighted to be more 

pronounced in the winter seasons compared to the summer seasons. 

 

In response to the increasing insect populations on vegetables, farmers adopted various 

measures of control. Indigenous measures which included intercropping of susceptible and 

non-susceptible crops, intercropping with crops which repel insect pests, use of trap crops, 

crop rotation to eliminate the specialist insect of a particular plant family as well as the 

removal of severely infested plants were used by the farmers. Besides cultural measures, 

there was an increased use of chemical insecticides by all the respondents. There were also 

increases in the insecticide doses, increases in the frequency of chemical insecticide 

application and the use of insecticide mixtures. Application of some insecticides that are not 

intended for food crops (highly hazardous) was also part of insect pest management strategies 

that were used by the farmers to control the high levels of insect pests in vegetable crops.  

 

Using the RF modelling approach, it was shown that the distribution of the insect vectors, the 

aphid and the whitefly were mainly influenced by precipitation and temperature related 

variables.  This resulted in the high levels of infestation in the northern half of the country 

and the eastern highlands where higher precipitation is received and relatively lower 

temperatures are experienced, compared to the southern half of the country which is 

characterized by extremely high temperatures and lower rainfall amounts. These extreme 

weather variables result in the areas becoming unsuitable for aphid and whitefly development 

as a result of limited vegetation growth which most likely affect host availability and the 

extreme temperatures which are unfavorable to the biology of aphids.  
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The susceptibility of Zimbabwe to whitefly occurrence was persistent in 2050 and 2080. 

Whitefly has the potential habitats in the northern areas of Zimbabwe while the central part 

will be less conducive to the development of whitefly infestations by the year 2050. By the 

year 2080 the levels of whitefly will further decrease in the lowveld, the central and the 

western parts of Zimbabwe. The habitat suitability will increase in areas such as south of 

Gutu district and west of Chipinge. The results of the study highlight the potential use of the 

vulnerability maps to inform whitefly surveillance at both the spatial and temporal ranges. 

 

7.2 Implications 

 

The results of this study results imply that the changes and variability in climate are likely to 

alter the abundance, the distribution and the status of insect pests in Zimbabwe. Some insects 

that were formerly minor pests such as the aphids on maize crops will become key pests of 

maize in the future. The breakdown of natural control measures such as the natural enemies 

resulting from chemical insecticide overuse as well as the changes in climate will further 

aggravate the insect pest problem in the country leading to severe insect pest outbreaks, crop 

losses and food insecurity.  

 

The increase in the insect pest populations in the country will expose the farmers and 

consumers to insecticide hazards as a result of the overuse of chemical insecticides in trying 

to control the increasing insect populations. There is therefore urgent need to address the 

problem of insecticide overuse by utilizing other non-chemical insect pest control strategies. 

The response of the insect pests to changes in precipitation and temperature variables and the 

resultant changes in dynamics in the various agro ecological regions of the country require 

the government to implement control strategies in the areas where the insect pests are 

currently occurring. Public awareness, preventative strategies in the areas or regions where 

the insect pests are projected to occur in the future will reduce crop losses as a result of insect 

pest and disease attack. 
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7.3 Recommendations 

 

 Integrated insect pest management (IIPM) which involves a combination of control 

measures such as biological, physical, mechanical, minimal use of chemical 

insecticides and the use of bio pesticides should be promoted and advocated for by the 

various agents such as the extension officers, NGOs and farmer organizations. IIPM is 

of importance in reducing over reliance on chemical insecticides thereby minimizing 

environmental and health hazards whilst at the same time reducing the chances for the 

development of insecticide resistance and further surges in insect pest population.  

 Breeding for crop genotypes that resist insect pest attack can also be done especially 

for crops whose leaves are not the consumable parts. Leaves that have trichomes,   

leaves that contain defensive compounds and pubescent leaves need to be included in 

breeding programs to reduce insect pest attack on the crops. Research on yield 

attributes of these resistant crop varieties need to be done so that the farmers are 

aware of the challenges and opportunities of using these improved genotypes 

compared to the measures that are being currently used to control insect pests.  

 Determining the current distribution of some major insect pests of crops should also 

be done to enable the development of a national monitoring and surveillance 

framework for insect pest distribution. Modelling will be of importance in reducing 

the magnitude of insect attack if preventative control measures are to be put in place 

well before an insect pest outbreak occurs. 

 Government intervention through insect surveillance at a spatial and temporal scale, 

throughout the agricultural production regions and development of early warning 

systems to increase farmer awareness and relevant stakeholders of crop insect pest 

outbreaks is of importance. Supporting farmers to control insect pests through 

prevention will help to reduce crop losses as a result of insect pest attack. Policies to 

reduce overuse of insecticides and promoting the use of alternative insect pest control 

strategies especially in the regions which are likely to be suitable for insect pests in a 

changing climate is of significance. 
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7.4 Future research 

 

 Research on the influence of various precipitation levels on the biology of insect pests 

need to be conducted to determine the direct and the indirect influence of precipitation 

levels on insect abundance and distribution since most of the research that was 

conducted focused on the influence of temperature. Little research was done on the 

effect of precipitation levels on the biology of insect pest. Most of the work on 

precipitation concentrated on plant pathogens. However, from this study, precipitation 

was also found to be a key driver of insect pest distribution in the country, therefore 

further analysis is required.  

 Studies to evaluate the effect of temperature on the biology of the insect vectors under 

tropical conditions need to be conducted to determine how the insect vectors will 

respond to the increasing temperature conditions in terms of the number of 

generations per season. 

 A national monitoring framework for the distribution of important insect species to 

target the behavior, life cycle and distribution of the major insect pests need to be 

conducted so that intervention strategies can be developed to target the most 

susceptible growth stages of the insect pests.  
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APPENDIX 1 

QUESTIONNAIRE: RESPONSES OF INSECT PESTS TO A CHANGING AND 

VARIABLE CLIMATE IN ZIMBABWE:  FARMER PERSPECTIVES. 

 

My name is Rumbidzai Debra Chapoto and I am a PhD student working on a research topic 

entitled “Responses of insect pests to a changing and variable climate in Zimbabwe:  Farmer 

perspectives”. I am kindly asking for perceptions on how insect pests are influenced by the 

changes in climate. May you kindly assist freely with your views and comments. All the 

information collected here will be treated with strict confidentiality and it is only for the 

purpose of academic research. 

 Instructions: Please tick √ where applicable and fill in where there are spaces 

1. Gender of the respondent:  1. Male    2.Female  

2. In which natural region are you?  NR 1        NR 2        NR3        NR4        NR5  

 

3. Are you aware of a changing climate in Zimbabwe? 1. Yes  2. No 

 

4. What are the indicators of a changing climate in your region?  

1. Late rainfall  

2. Long dry spells 

3. Erratic rainfall 

4. Shortened rainy season 

5. Increased frequency of droughts 

6. Shortened cold season 

7. Increased frequency of floods 

8. Other.............................Specify................................................................................ 

 

5. Which insects is a major crop insect pest in your agro ecological region? 

1. Bollworms 

2. whiteflies 

3. Aphids 

4. Cutworms 

5. Armyworms 

6. Red spider mite 

7. Beetles 

8. Termites 

9. Other.............................Specify................................................................................ 

 

6. Which crop do you produce mainly in this agro ecological region? 

1. Maize 
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2. Tobacco 

3. Cotton 

4. Tomatoes 

5. Sorghum 

6. Vegetables 

7. Other.........................................Specify.................................................................... 

 

7. In which season are these weeds most dominant? 1. Summer           2.Autumn          

 

3. Winter                 4. Spring                     5.All year round  

 

8. Is there a change in the population of the insect pests over the last 30 years? 1. There 

is an increase           2. There is a decrease                     3.There is no change 

 

9. If there is an increase in number of insect pests, what factors do you think have led to 

increased incidence of these insect pests? 

1. Shortened  winters 

2. Warmer winters 

3. Increased dry spells 

4.  Insect pests  resistance 

5. Poor insect pest management 

6. Low rainfall 

7. Other  .....................................Specify.................................................................. 

 

10. Which season of the year are these insect pests most prevalent? 

1. Summer            2.Autumn  3. Winter   4.Spring 

5. All Year round  

 

Insect pests’ biology, physiology 

 

11. How do you perceive the problem of insect pests  with respect to the following 

attributes in the past 30 years: 

 

Behaviour: 1.They have increased mobility 

2. They are generating young ones very fast 

3. Many pests are now flying 

4. They are becoming too crowded even on older leaves 

 

Physical appearance: 1. They have developed different colour variations 

2. They have generally become lighter in colour 

3. They have generally become darker in colour 

4. Many of the pests have developed wings 
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Symptoms they cause: 1.Yellowing of the whole leaves 

2. Mottling-green mixed with yellow and white colour 

3. Stunted growth-slow growth 

4. Blackening of leaf veins 

5. Asymmetry of leaf lamina 

6. Brown spots 

7. Leaf roll 

8. Line pattern on the leaves 

 

12. How many different types/forms of the most problematic insects pests highlighted on 

question 5 have you noticed in your fields during the past 10 years?  

Problem insect Different types/forms of the same insect 

a) Bollworms  

b) Aphids  

c) Armyworms  

d) Cutworms  

e) Red spider mite  

f) Beetles  

g) Other  

 

Can you comment on the responses of aphids to a changing climate in 

Zimbabwe.........................................................................................................................

..........................................................................................................................................

..........................................................................................................................................

..........................................................................................................................................

.......................................................................................................................................... 

 

 

Thank You!! 
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APPENDIX 2 

QUESTIONNAIRE: FARMER KNOWLEDGE OF CLIMATE CHANGE IMPACTS AND 

ADAPTATION STRATEGIES IN THE MANAGEMENT OF VEGETABLE INSECT 

PESTS IN ZIMBABWE. 

My name is Rumbidzai Debra Katsaruware-Chapoto and I am a PhD student working on a 

research study entitled “Farmer knowledge of climate change impacts and adaptation 

strategies in the management of vegetable insect pests in Zimbabwe”. I am kindly asking for 

your knowledge, opinions and information pertaining to the various strategies that are used 

by the smallholder farmers to manage the increasing abundance of insect pests of vegetables 

in a changing climate in Zimbabwe. Feel free to answer to the questions. The information 

gathered here will be treated with utmost confidentiality. 

 Instructions: Please tick √ where applicable and fill in where there are spaces 

13. Gender of the respondent:  1. Male    2.Female    

14. In which natural region are you?  NR 1        NR 2        NR3        NR4        NR5  

 

15. Are you aware of a changing climate in Zimbabwe? 1. Yes  2. No 

 

16. What are the major climate induced challenges to vegetable production in a changing 

climate?  

9. Droughts  

10. Vegetable insect pests 

11. Plant diseases 

12. Weeds 

13. Other.............................Specify................................................................................ 

 

17. Which insect is a major vegetable pest in your agro ecological region? 

10. Bollworms 

11. Aphids 

12. Cutworms 

13. Armyworms 

14. Red spider mite 

15. Beetles 

16. Diamond Back Moth 

17. Other.............................Specify................................................................................ 

 

18. How do you view the extent of crop losses from insect pest and disease attack on your 

vegetables? 

1. It is high 

2. It is moderate 

3. It is low 
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19. Which crops are mostly attacked by these insect pests? 

1. Rape 

2. Cabbages 

3. Kale 

4. Tomatoes 

5. Butternuts 

6. Spinach 

7. Other.........................................Specify.................................................................... 

 

20. Which major strategy do you use to control insect pests of vegetables? 

1. Insecticides 

2. Biological 

3. Cultural 

4. Integrated Insect Pest management 

 

21. Are the chemical insecticides effective in the control of the insect pests?  

1. Yes           2.               2. No 

22. If No, give reasons to your answer on question  

...........................................................................................................................................

..................................................................................... 

23. How frequent do you spray these chemical insecticides? 

1. Once/month            2. Twice /month           3.Once /week            4.Twice /week  

5. Other, please specify..........................................................................   

        

24. Is there a difference in spraying frequency from what you used to do in the past years? 

1. Yes     2.  No 

 

25. Do you mix these chemical insecticides? 1. Yes                                 2. No 

 

26. Besides the chemicals which other measure do you use to control insect pests? 

 

Strategy Please tick 

Rotation  

Intercropping  

Removal of heavily infested plants  

Use of trap crops  

Sorghum  
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vegetables  

Onions  

 

 

27. Giving names, explain the role played by named natural enemies in the control of the 

insect pests  

1. Ladybirds 

2. Lacewings 

3. Spiders 

4. Big eyed bugs 

5. Parasitic flies 

28. Are these natural enemies effective or their efficiency has been reduced over the past 

years? 

1. They are effective               2. They are less efficient 3.         3. There’s no change 

 

29. What do you think could be the reason for a reduction in efficiency of the natural 

enemies?  

1. They are becoming fewer 

2. They can’t feed on the big insects 

3. They have developed many hosts 

4. Natural enemies are overwhelmed by aphid population 

30. Aphids have become a problem in all vegetable growing areas of the country. What do  

you think? 

 1. Strongly agree        2. Agree              3.neutral           4. Disagree                   

5. Strongly disagree 

19.  If aphids are an important insect pest, in which crops are the aphids most prevalent?  

………………………………………… 

………………………………………… 

20. What corresponding diseases or symptoms are caused by these aphids? 

1. Yellowing 

2. Mottling/mosaic symptoms 

3. Brown spots 

4. Stunted growth 

5. Curling of crops 

6. Death of plants 

21. Who provides you most information of managing insect pest population in your agro 

ecological region 

1. AGRITEX 

2. NGOs 

3. Fellow farmers 

THANK YOU!!! 


