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Abstract

In this dissertation, we discuss the amenability properties of arbitrary Ba-
nach algebras. We pay special attention to the different ways one may char-
acterize the amenability of Banach algebras such as existence of a bounded
approximate diagonal, existence of a virtual diagonal and the splitting of
short exact sequence of Banach modules. Expanded proofs of some inter-
esting results found in literature are also given. We further discuss some
known notions of amenability of arbitrary Banach algebras such as weak
amenability, approximate amenability and pseudo-amenability. Let A be a
Banach algebra and X a compact Hausdorff space. We give the proof of
the amenability of C(X ) due to Seinberg and also discuss the construction
of bounded approximate diagonals for C(X ) and C(X ,A), which are results
credited to Abtahi and Zhang, and Ghamarshoushtari and Zhang respec-
tively. We show that for a Banach algebra A with a bounded approximate
identity such that A⊗̂A is norm irregular, if A has an approximate diagonal
which is bounded with respect to the multiplier norm on A⊗̂A, then C(X ,A)
has an approximate diagonal.
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Chapter 1

Introduction

The development of the theory of amenability in Banach algebras has its
origins in the now classical memoirs of American Mathematical Society pub-
lished by Barry Johnson in 1972 [28], in which he showed that for a locally
compact group G, the Banach algbera L1(G) is amenable if and only if G is
amenable as a group.
The group, G is amenable if and only if it has a left invariant mean. A left
invariant mean on G is a positive linear functional µ ∈ L∞(G) such that:

(i) 〈1, µ〉 = 1,

(ii) 〈δg ? φ, µ〉 = 〈φ, µ〉, for every φ ∈ E ⊂ L∞(G).

Using the above definition and some interesting cohomological properties of
Banach algebras, Johnson in the afore-stated memoir further showed that
an arbitrary Banach algebra, say A, is amenable if every continuous deriva-
tion D from A into X∗ is inner for every Banach A-bimodule X, where X∗

denotes the dual space of X. It has been realized that the above definition
given by Johnson [28] is too restrictive and so does not allow for the devel-
opment of a rich general theory and also too weak to include a variety of
interesting examples. For this reason, by relaxing some of the constraints in
the definition of amenability via restricting the class of bimodules in question
or by relaxing the structure of the derivations themselves, various notions of
amenability have been introduced in recent years. Some of these notions
are weak amenability, approximate amenability, pseudo amenability, ideal
amenability, character amenability, approximately character amenability and
so on. These notions of amenability have been studied for different classes of
Banach algebras (e.g. semigroup algebras, Segal algebras, Beurling algebras,
group algebras, measure algebras, closed ideals of B(E)-algebras of bounded
linear operators on a Banach space E and so on). See [6], [12], [13], [14], [16],
[37], [38] and [39].
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By using Johnson’s result above and Stone-Weierstrass theorem, M.V.
Seinberg [48] showed that the algebra C(X ) of complex-valued continuous
functions is amenable for any compact Hausdorff space X . A constructive
proof of this important result was later given by Abtahi and Zhang [2] in
2010. Recently in 2015, Ghamarshoushtari and Zhang [17] extended this re-
sult to the Banach algebra C(X ,A) of all A valued continuous functions and
showed that C(X ,A) is amenable if and only if the range Banach algebra A
is amenable. Zhang in [49], further showed that for a commutative Banach
algebra A, C(X ,A) is weakly amenable if and only if A is weakly amenable.
It should be noted that other known notions of amenability are yet to be
studied for C(X ,A). Therefore, in this work, we aim to derive the relation-
ship between the pseudo-amenability of A and the Banach algebra C(X ,A).
Thus, providing a slight extension to the result of Ghamarshoushtari and
Zhang in [17].

Through out this dissertation, we denote by N, Z, R and C, the collection
of all natural, integer, real and complex numbers respectively. All Banach
spaces and algebras considered in this study are defined over C except where
it is stated otherwise.

Chapter 2 is concerned with the definition of terms and some basic
results on Banach spaces, algebras and modules made use of in this work. A
lot of the concepts covered can be found in [5], [8], [10], [13], [31], [36] and
[47].

Let A be an arbitrary Banach algebra. In Chapter 3, we discuss some
known important results on the amenability properties of A and also take a
look at some interesting results from some generalised notions of amenabil-
ity of A, while also considering some relationships between the notions of
amenability discussed.

Chapter 4 is concerned with the study of some algebraic and topological
properties of C(X ,C) = C(X ), as well as its amenability properties. We
further give a motivation for studying the amenability properties of C(X ),
state the proof of the amenability of C(X ) due to Seinberg and also consider
the construction of a bounded approximate diagonal for C(X ), which is a
result that is credited to Abathi and Zhang.

In Chapter 5, the result by Gharmashoustari and Zhang which showed
that C(X ,A) being amenable is equivalent to A being amenable is discussed,
an expanded version of the proof is given, while we also show an alternative
way of proving the assertion which follows from the fact that C(X ,A) is
isometrically isomorphic to C(X )⊗̆A.

A question of interest that naturally arises from the work of Gharmashous-
tari and Zhang is: Can the pseudo-amenability of C(X ,A) be inferred from
the pseudo-amenability of A? In Chapter 6, we give a partial answer to
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this question for a case where A has a bounded approximate identity and
A⊗̂A is norm irregular. We also give a proof of an interesting property of
the multiplier norm on the projective tensor product. The results in this
chapter serve as our contribution to knowledge.
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Chapter 2

Preliminaries

This chapter is concerned with the definition of some terms used in other
areas of this work. We also state some elementary results on Banach spaces,
algebras and modules that are required for other parts of this dissertation.
It should be noted that the proofs of all results stated are omitted, and can
be found in the references therein.

2.1 Banach spaces

2.1.1 Definitions and basic results

A vector space over C is a non empty set E equipped with the operations
E × E → E and C× E → E such that

(i) x+ y, αx ∈ E,

(ii) x+ y = y + x, (x+ y) + z = x+ (y + z),

(iii) 0 + x = x+ 0 = x, x+ (−x) = (−x) + x = 0,

(iv) (αβ)x = α(βx), α(x+ y) = αx+ αy, (α + β)x = αx+ βx,

(v) 1.x = x.1 = x,

where α, β ∈ C, x, y, z ∈ E, 1 is the multiplicative identity in C and 0 is the
additive identity in E. A semi-norm on E is a function ρ : E → R satisfying
the following properties:

(i) ρ(x) ≥ 0,

(ii) ρ(αx) = |α|ρ(x),
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(iii) ρ(x+ y) ≤ ρ(x) + ρ(y),

where x, y ∈ E and α ∈ C. If in addition to satisfying the above stated
properties, ρ(x) = 0 if and only if x = 0, then ρ is referred to as a norm
on E. In this case, we write ρ = ‖.‖, ρ(x) = ‖x‖ and (E, ‖.‖) is called a
normed vector space, or for short a normed space. The natural topology on
E is induced by the metric

d(x, y) = ‖x− y‖ (x, y ∈ E).

If (E, d) is complete, in the sense that every Cauchy sequence in E is con-
vergent, then (E, ‖.‖) is called a Banach space.

Let E and M be Banach spaces, we denote by B(E,M), the collection
of all bounded linear operators that maps E into M , we define the operator
norm on B(E,M) as

‖T‖ = sup
‖x‖≤1

{‖T (x)‖ : x ∈ E}.

The linear space B(E,M) equipped with this norm is a Banach space. If
E = M , then we write B(E,E) = B(E).

Definition 2.1.1. Let M and N be closed linear subspaces of the Banach
space E. Let

M +N = {x+ y : x ∈M, y ∈ N},

and
M.N = {xy : x ∈M, y ∈ N}.

(i) The Banach space E is said to be a direct sum of M andN if E = M+N
and M ∩N = 0. Here we write E = M ⊕N.

(ii) The linear span of M.N is

linM.N =

{ n∑
j=1

λjxjyj : λj ∈ C, xj ∈M, yj ∈ N, j = 1, 2, ..., n

}
.

We write linM.N = MN . If M = N , we write M2 for linM.M .

Definition 2.1.2. A linear subspace M of a Banach space E is said to be
complemented if it is a direct summand in E.

Proposition 2.1.3. [3] Let M and N be linear subspaces of the vector space
E. If E = M ⊕ N , then z ∈ E has a unique representation z = x + y, for
x ∈M, y ∈ N .
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Definition 2.1.4. An operator P ∈ B(E) is called a projection if P is linear
and P 2 = P . We recall that P is linear if for x, y ∈ E and α, β ∈ C,
P (αx+ βy) = αP (x) + βP (y).

Proposition 2.1.5. [3] Let M and N be linear subspaces of a vector space
E such that E = M ⊕N . Define P : E → E by P (z) = x, where z = x+ y,
z ∈ E, x ∈ M and y ∈ N . Then P is an algebraic projection of E onto M
along N . Moreover P (E) = M and kerP = N .

Definition 2.1.6. Let E be a Banach space and N a closed linear subspace
of E,

E/N = {x+N : x ∈ E},

equipped with the norm

‖x+N‖ = inf
y∈N
‖x+ y‖,

is a Banach space. The linear space E/N is referred to as the quotient space.
The norm defined above is called the quotient norm. The codimension of N
is the dimension of the quotient space E/N.

Definition 2.1.7. A Banach space E is said to be separable if it has a dense
countable subset.

2.1.2 Dual spaces and weak topologies

Let E be a Banach space, the canonical embedding of E into its bidual E∗∗

is
κE : E → E∗∗, κE(x) = x̂.

For λ ∈ E∗, 〈λ, x̂〉 = 〈x, λ〉, x ∈ E. We recall that κE is an injective map,
hence E can be viewed as a subset of its bidual E∗∗. If κE is onto, then E is
said to be reflexive.

Definition 2.1.8. Let M be a closed linear subspace of the Banach space E

(i) The set
M⊥ = {λ ∈ E∗ : 〈x, λ〉 = 0, x ∈M}

is the annihilator of M .

(ii) We define the annihilator of the dual M∗ of M as

M⊥⊥ = {Φ ∈ E∗∗ : 〈λ,Φ〉 = 0, λ ∈M∗}.
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Clearly M⊥⊥ = (M⊥)⊥.

Theorem 2.1.9 (Hahn-Banach). Suppose E is a vector space over C, and
ρ is a semi-norm on E. Suppose further that M is a subspace of E and φ a
linear functional on M such that

|〈y, φ〉| ≤ ρ(y) (y ∈M).

Then there exists a linear functional ψ on E such that ψ|M = φ and

|〈x, ψ〉| ≤ ρ(x),

for all x ∈ E.

Corollary 2.1.10. [3] Let E be a vector space over C, let ρ be a semi-norm
on E, and let x0 be fixed in E. Then there exists a linear functional φ on E
such that 〈x0, φ〉 = ρ(x0) and

|〈x, φ〉| ≤ ρ(x),

for all x ∈ E.

The following result is a direct consequence of Theorem (2.1.9).

Theorem 2.1.11. [44] Let M be a closed linear subspace of the normed space
E.

(i) For each λ ∈ M∗, let φ ∈ E∗ be such that ‖λ‖ = ‖φ‖ and φ|M = λ.
Then the map

M∗ → E∗/M⊥, λ 7→ φ+M⊥

is an isometric isomorphism.

(ii) Let q : E → E/M be a quotient map. Then the map

q∗ : (E/M)∗ →M⊥

is an isometric isomorphism.

Definition 2.1.12. A linear subspace M of E is said to be weakly comple-
mented if M⊥ is a direct summand in E∗.

Remark 2.1.13. Suppose P ∈ B(E) is a projection from E onto M , then
(IE − P )∗ ∈ B(E∗) is a projection from E∗ onto M⊥, where IE is the identity
operator in B(E). It follows that every complemented linear subspace of E
is weakly complemented.
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Definition 2.1.14. Let (X,≤) be a partially ordered set, X is called a
directed set if for any α, β ∈ X, there exists γ ∈ X such that α, β < γ. Let
S be a non empty set, a net (xα) ⊂ S is a function from a directed set into
S.

Definition 2.1.15. Let E be a Banach space.

(i) The weak topology σ(E,E∗) on E is the topology generated by the
family of semi-norms {ρλ, λ ∈ E∗}, where

ρλ(x) = |〈x, λ〉|, x ∈ E.

(ii) The weak* topology σ(E∗, E) on E∗ is the topology generated by the
family of semi-norms {ρi(x), x ∈ E}.

The following important result shows the applicability and importance of
the topologies stated above.

Theorem 2.1.16. Let E be a Banach space.

(i) (Banach-Alaoglu) The unit ball E∗[1] is weak* compact. Every bounded

net in E∗ has a weak* accumulation point and a weak* convergent sub-
net.

(ii) (Goldstine) Let κE : E → E∗∗ be the canonical embedding of E into
E∗∗. Then for any Φ ∈ E∗∗[1], there exists a net (xα) ⊂ E[1] such that

κE(xα)→ Φ in σ(E∗∗, E∗).

(iii) (Mazur) For each convex set S ⊂ E, the strong closure and the weak
closure of S are the same.

2.1.3 Tensor products of Banach spaces

Let E,M and N be vector spaces, a map Λ : E ×M → N is said to be
bilinear if for α, β ∈ C, x1, x2, x ∈ E and y1, y2, y ∈M ,

Λ(αx1 + βx2, y) = αΛ(x1, y) + βΛ(x2, y)

and
Λ(x, αy1 + βy2) = αΛ(x, y1) + βΛ(x, y2).

We denote by B2(E×M,N), the collection of all bounded bilinear maps from
E×M into N . If N = C, then B2(E×M,C) = B2(E×M) is complete. We
may construct the tensor product E⊗M of the vector spaces E,M as a space
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of linear functionals on B2(E×M), in the following way. For x ∈ E, y ∈M ,
we denote by x⊗y the functional given by evaluation at the point (x, y), that
is, for any Λ ∈ B2(E ×M), (x ⊗ y)(Λ) = Λ(x, y). In other words, we may
consider the tensor product E⊗M as a subspace of B2(E×M)∗ spanned by
these elements, where B2(E ×M)∗ is the dual of B2(E ×M). It follows that
a typical tensor in E ⊗M has the form u =

∑
i αixi ⊗ yi, xi ∈ E, yi ∈ M

and scalar αi for all i. Since each αixi ∈ E, then without loss of generality,
we may write u =

∑
i xi ⊗ yi. Note that the representation is not unique.

The following are some interesting properties of the tensor product E ⊗M ;

(i) (x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y,

(ii) x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2,

(iii) α(x⊗ y) = (αx)⊗ y = x⊗ (αy),

(iv) 0⊗ y = x⊗ 0 = 0, x1, x2, x ∈ E, y1, y2, y ∈M and scalar α.

The projective norm on E ⊗M , ‖.‖p is defined as

‖u‖p = inf

{ n∑
i=1

‖xi‖‖yi‖ : u =
n∑
i=1

xi ⊗ yi
}
,

where the infimum is taken over all finite representations of u. The linear
space E ⊗M equipped with this norm is denoted as E ⊗p M . If E and M
are Banach spaces, the completion of E⊗pM in the projective norm is called
the projective tensor product and is denoted as E⊗̂pM .
Let E and M be Banach spaces and E∗,M∗ their respective duals. We denote
by E∗[1], M

∗
[1], the respective closed unit balls of the duals . Let B2(E∗×M∗) be

the space of all complex valued bounded bilinear maps on E∗×M∗ equipped
with the norm given by

‖T‖ = sup{|T (ϕ, ψ)| : ϕ ∈ E∗[1], ψ ∈M∗
[1]}.

Then, B2(E∗×M∗) is complete. Let Λx,y denote the elements of B2(E∗×M∗)
defined by Λx,y(ϕ, ψ) = ϕ(x)ψ(y), then there exists an injectve linear map
from E ⊗M into B2(E∗ ×M∗). This shows that E ⊗M may be viewed as
a subspace of B2(E∗ ⊗M∗). Hence, the injective norm on E ⊗M is defined
as,

‖u‖ε = sup

{∣∣∣∣ n∑
i=1

ϕ(xi)ψ(yi)

∣∣∣∣ : u =
n∑
i=1

xi ⊗ yi, ϕ ∈ E∗[1], ψ ∈M∗
[1]

}
,

where the supremum is taken over all such representations of u. The comple-
tion of E⊗M with respect to this norm is called the injective tensor product
and is denoted by E⊗̆εM .
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2.2 Banach algebras

An algebra is a vector space A equipped with a map A×A → A, (a, b) 7→ ab,
such that for a, b, c ∈ A, α ∈ C,

(i) a(bc) = (ab)c

(ii) a(b+ c) = ab+ ac

(iii) (a+ b)c = ac+ bc

(iv) (αa)b = α(ab) = a(αb).

The algebra A is commutative if for any a, b ∈ A, ab = ba, and is said to
be unital if it has a multiplicative identity. A normed algebra is an algebra
A such that the vector space A is a normed space and

‖ab‖ ≤ ‖a‖‖b‖, for all a, b ∈ A. (2.1)

The inequality in (2.1) ensures that the multiplication in A is continuous. If
(A, ‖.‖) is a Banach space, then A is a Banach algebra. The multiplicative
identity in a unital normed algebra A, denoted by eA satisfies, ‖eA‖ = 1. If
A is not unital, then we define A# = C ⊕A. Each element in A# is of the
form (α, a), where α ∈ C, a ∈ A. If we equip A# with the product

(α, a)(β, b) = (αβ, βa+ αb+ ab),

then A# becomes an algebra referred to as the unitization of A. For any
(α, a) ∈ A,

(1, 0)(α, a) = (α, a) and (α, a)(1, 0) = (α, a).

This shows that the multiplicative identity in A# is (1, 0). We define the
norm

‖(α, a)‖ = |α|+ ‖a‖A
on A#, which turns it into a normed algebra. If A is a Banach algebra, then
A# is also a Banach algebra. We denote by Aop, the opposite Banach algebra
of A. That is, the Banach algebra whose underlying linear space is A, but
whose multiplication is the multiplication in A reversed.

Definition 2.2.1. Let A be a normed algebra.

(i) A left (right) approximate identity for A is a net (eα) ⊂ A such that
given any a ∈ A, ‖eαa− a‖ → 0 (‖aeα − a‖ → 0), for all α.
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(ii) A weak left (right) approximate identity for A is a net (eβ) ⊂ A such
that given any a ∈ A and φ ∈ A∗, 〈aeβ, φ〉 → 〈a, φ〉 (〈eβa, φ〉 → 〈a, φ〉),
for all β.

(iii) A left (or right) approximate identity (eα) for A is said to be bounded
if there exists K > 0, such that ‖eα‖ ≤ K, for all α.

(iv) An approximate identity for A is a net (eα) such that ‖aeα − a‖ → 0
and ‖eαa− a‖ → 0, a ∈ A, for all α.

(v) A weak approximate identity for A is a net (eβ) such that for any a ∈ A,
φ ∈ A∗, 〈aeβ, φ〉 → 〈a, φ〉 and 〈eβa, φ〉 → 〈a, φ〉, for all β.

Lemma 2.2.2. [13] Let A be a Banach algebra. If A has a weak left (right)
approximate identity, then A has a left (right) approximate identity.

Lemma 2.2.3. [36] Let A be a normed algebra with a bounded left and right
approximate identity (eα), (fβ) respectively, then (eα+fβ−eαfβ) is a bounded
approximate identity for A.

Remark 2.2.4. Clearly, if ‖eα‖ ≤ K1 and ‖fβ‖ ≤ K2, then ‖eα+fβ−eαfβ‖ ≤
K1 +K2 +K1K2.

Definition 2.2.5. Let A be a normed algebra,

(i) A has left (right) approximate units if for each a ∈ A and ε > 0, there
exists u ∈ A such that ‖a− ua‖ ≤ ε(‖a− au‖ ≤ ε);

(ii) A has approximate units if for each a ∈ A and ε > 0, there exists u ∈ A
such that ‖a− ua‖ ≤ ε and ‖a− au‖ ≤ ε;

(iii) A has (left, right) approximate unit bounded by K > 0 if the element
u can be chosen such that ‖u‖ ≤ K.

Lemma 2.2.6. [31] Let A be a normed algebra, FA a finite subset of A and
K ≥ 1. Then the following statements are equivalent

(i) A has left approximate units bounded by K.

(ii) For every a ∈ F and ε > 0, there exists u ∈ A such that ‖u‖ ≤ K and
‖a− ua‖ ≤ ε.

(iii) A has a left approximate identity bounded by K.

Theorem 2.2.7 (Cohen-Hewitt Factorization). Let A be a Banach algebra
with a bounded approximate identity. Then, A = A.A.
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Definition 2.2.8. Let A be a Banach algebra, an involution on A is a
mapping

∗ : a 7→ a, A → A,

such that for any a, b ∈ A, α, β ∈ C,

(i.) a∗∗ = a,

(ii.) (αa+ βb)∗ = αa∗ + βb∗,

(iii.) (ab)∗ = b∗a∗.

Remark 2.2.9. If the involution on A is isometric; that is ‖a∗‖ = ‖a‖ for
all a ∈ A, then A is called a “Banach ∗-algebra”.

Definition 2.2.10. A Banach algebra, say A, with an involution ∗ is called
a C∗-algebra if its norm satisfy

‖a∗a‖ = ‖a‖2, (a ∈ A).

Remark 2.2.11. Let A be a C∗-algebra. Notice that for any a ∈ A,

‖a‖2 = ‖a∗a‖ ≤ ‖a‖‖a∗‖ =⇒ ‖a‖ ≤ ‖a∗‖.

Also,
‖a∗‖2 = ‖a∗∗a∗‖ ≤ ‖a‖‖a∗‖ =⇒ ‖a∗‖ ≤ ‖a‖.

Hence ‖a‖ = ‖a∗‖. This shows that every C∗-algebra is also a Banach ∗-
algebra.

Definition 2.2.12. Let A be a unital Banach algebra, a ∈ A is said to be
invertible if there exists b ∈ A such that

ab = ba = eA.

The collection of all invertible elements in A is denoted by Inv(A).

Theorem 2.2.13 (Gel’fand-Mazur). Let A be a unital Banach algebra. If
InvA = A \ {0}, then A is isomorphic to C.

Definition 2.2.14. Let A be a unital Banach algebra

(i) The resolvent set of a ∈ A is the set

ρA(a) = {z ∈ C : zeA − a ∈ InvA}.
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(ii) The spectrum of a ∈ A is the set

σA(a) = {z ∈ C, zeA − a /∈ InvA}.

(iii) The spectral radius of a ∈ A is

rA(a) = sup{|z| : z ∈ σA(a)}.

(iv) The resolvent function of a ∈ A is the function

ρA(a)→ Inv(A), z 7→ (zeA − a)−1.

Theorem 2.2.15. [31] For a unital Banach algebra A,

(i) {a ∈ A : ‖eA − a‖ < 1} ⊂ InvA.

(ii) InvA is an open subset of A.

(iii) ρA(a) is an open subset of C for each a ∈ A.

Remark 2.2.16. Clearly for each a ∈ A and z ∈ σA(a), ‖z−1a‖ ≥ 1. This
further shows that

1 ≤ ‖z−1a‖ = |z−1|‖a‖ = |z|−1‖a‖ =⇒ |z| ≤ ‖a‖.

Hence
σA(a) ⊂ {z ∈ C : |z| ≤ ‖a‖}.

This shows that σA(a) is bounded. Further more, σA(a) = C \ ρA(a) is a
closed subset of C. Therefore σA(a) is compact for every a ∈ A.

For an algebra A:

(i) A linear subspace I of A is a left (right) ideal if AI ⊂ I (IA ⊂ I). I is
an ideal if AI ∪ IA ⊂ I.

(ii) A left ideal M of A is maximal if M 6= A and if M ⊂ I ⊂ A for some
left ideal I, then either M = I or I = A. The collection of all maximal
ideals of A is denoted by Max(A).

(iii) If A is a Banach algebra, and I a closed ideal of A. Then A/I is a
Banach algebra with respect to the quotient norm.

Definition 2.2.17. An element a ∈ A is said to be quasi-nilpotent if rA(a) =
0. The collection of all quasi-nilpotent elements in A is D(A).

13



2.2.1 Character space of a Banach algebra

A character on a Banach algebra A is a multiplicative non-zero linear func-
tional ϕ ∈ A∗. The collection of all characters on A denoted ΦA is called
the character space of A. For a unital Banach algebra A with identity eA,
notice that if a ∈ A, ϕ ∈ ΦA,

ϕ(a) = ϕ(aeA) = ϕ(a)ϕ(eA) =⇒ ϕ(eA) = 1.

Definition 2.2.18. Let A be a commutative Banach algebra. The radical
of A, rad(A), is defined by,

rad(A) = ∩{M : M ∈ Max(A)} = ∩{kerϕ : ϕ ∈ ΦA}.

If ΦA = ∅, then rad(A) = A.

Remark 2.2.19. Clearly, rad(A) is a closed ideal of A (this readily follows
from the fact that the intersection of ideals of a Banach algebra is also an
ideal of that Banach algebra).

Definition 2.2.20. A Banach algebraA is said to be semi-simple if rad(A) =
{0}, and radical if rad(A) = A.

Theorem 2.2.21. [36] For a commutative, unital Banach algebra A, ΦA 6= ∅
and the mapping ϕ 7→ kerϕ is a bijection from ΦA onto Max(A).

Corollary 2.2.22. [31] Let A be a commutative, unital Banach algebra, and
let a ∈ A,

(i) a ∈ Inv(A) if and only if ϕ(a) 6= 0 for each ϕ ∈ ΦA,

(ii) σA(a) = {ϕ(a) : ϕ ∈ ΦA},

(iii) rA = {|ϕ(a)| : ϕ ∈ ΦA},

(iv) a ∈ D(A) if and only if ϕ(a) = 0 for each ϕ ∈ ΦA.

Proposition 2.2.23. [36] Let ϕ be a character on A. Then ϕ is continuous,
and ‖ϕ‖ ≤ 1. If A is unital, then ϕ(eA) = 1 and ‖ϕ‖ = 1.

Remark 2.2.24. Proposition (2.2.23) shows that the character space of
A is contained in the unit ball, A∗[1] of the dual A∗ of A.
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Let A be a commutative Banach algebra and ΦA the character space of A,
ΦA is endowed with the weakest topology with respect to which all functions

ΦA → C, ϕ 7→ ϕ(a), a ∈ A

are continuous. As a result, let FA be a finite subset of A, a basis for a
neighbourhood of ϕ0 ∈ ΦA is given by the collection

V (ϕ0, FA, ε) = {ϕ ∈ ΦA : |ϕ(a)− ϕ0(a)| < ε, for all a ∈ FA, ε > 0}.

Remark 2.2.25. The topology described above is referred to as the Gel’fand
topology. The character space ΦA equipped with the A topology is called
the Gel’fand space.

Proposition 2.2.26. [31] Let ϕ∞ be a zero linear functional. The character
space ΦA is a locally compact Hausdorff space with one point compactification
Φ∞A = ΦA ∪ ϕ∞. If A is unital, then ΦA is compact.

Let FA be a finite subset of A, the proof of Proposition (2.2.26) readily
follows from the fact that{

φ ∈ Φ∞A : |φ(a)| ≥ 1

2
|ϕ(a)|, a ∈ FA

}
is a compact neighborhood of ϕ ∈ ΦA that does not contain ϕ∞. That is,
ΦA is locally compact. Also, if A has identity element eA, then

ΦA = {ϕ ∈ Φ∞A : ϕ(eA) = 1}.

This shows that ΦA is closed and therefore compact.

Definition 2.2.27. Let a ∈ A, we define â : ΦA → C by â(ϕ) = ϕ(a). Then
â is a continuous functional called the Gel’fand transform of a. The linear
mapping

G : A → C(ΦA), a 7→ â

is a homomorphism called the Gel’fand representation of A. We denote G(A)
by Â.

The following result is an important property of commutative Banach
algebras.

Theorem 2.2.28. [31] Let A be a commutative Banach algebra. For every
a ∈ A,

σA(a) \ {0} ⊂ â(ΦA) = {ϕ(a) : ϕ ∈ ΦA ⊂ σA(a)}.
If A is unital, then â(ΦA) = σA.
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Corollary 2.2.29. [3] Let a ∈ A. â is trivial if and only if

rA(a) = lim
n→0
‖an‖1/n = 0.

Theorem 2.2.30 (Gel’fand Representation Theorem). Let A be a commu-
tative Banach algebra and G the Gel’fand representation of A. Then,

(i) G maps A into C0(ΦA) and is norm decreasing,

(ii) G(A) strongly seperates points of ΦA,

(iii) G is isometric if and only if ‖a2‖ = ‖a‖2.

2.2.2 Tensor products of Banach algebras

Let A and B be algebras, the vector space A ⊗ B admits a unique product
with respect to which A⊗B is an algebra, called the algebra tensor product
and which satisfies (a⊗ b)(c⊗ d) = ac⊗ bd for all a, c ∈ A and b, d ∈ B.

Recall that for Banach spaces A and B , the projective norm on A⊗B is

‖u‖p = inf

{ n∑
i=1

‖ai‖‖bi‖ : u =
n∑
i=1

ai ⊗ bi
}
.

Notice that for any u, v ∈ A ⊗ B, u =
∑n

i=1 ai ⊗ bi, v =
∑m

j=1 cj ⊗ dj,
uv =

∑
i,j aicj ⊗ bidj. Hence,∑

i,j

‖aicj‖‖bidj‖ ≤
∑
i

‖ai‖‖bi‖
∑
j

‖cj‖‖dj‖.

This shows that ‖uv‖p ≤ ‖u‖p‖v‖p. That is, ‖.‖p is indeed an algebra norm
on A⊗ B. The tensor product on A⊗ B can be extended to A⊗̂B, so that
A⊗̂B is a Banach algebra.

The corresponding diagonal operator is defined by

πA : A⊗̂A → A, a⊗ b 7→ ab.

If there is no ambiguity with regards to the Banach algebra in question, then
we use π.

Due to the nature of the norm on the injective tensor product, it is not
yet clear under which conditions A⊗̆B is a Banach algebra. An interesting
example of an injective tensor product that is a Banach algebra will be the
focus of our study in Chapter 5.

16



2.2.3 Arens products

Let A be a Banach algebra and A∗∗ be the second dual of its underlying
Banach space, each a ∈ A has a canonical embedding â ∈ A∗∗ determined
by

〈φ, â〉 = 〈a, φ〉 (φ ∈ A∗).

Let Φ ∈ A∗∗, λ ∈ A∗. Then Φλ ∈ A∗, determined by

〈a,Φ.λ〉 = 〈λ.a,Φ〉 (a ∈ A).

For Φ,Ψ ∈ A∗∗, Φ�Ψ, Φ � Ψ, the first Arens product and the second Arens
product are respectively defined by

〈λ,Φ�Ψ〉 = 〈Ψ.λ,Φ〉, 〈λ,Φ �Ψ〉 = 〈λ.Ψ,Φ〉 (λ ∈ A∗).

If Φ�Ψ = Φ � Ψ, then A is said to be Arens regular. The linear space
A∗∗ equipped with either of this products is indeed a Banach algebra. Since
a 7→ â is an isometric momonorphism, it follows that A can be viewed as a
closed subalgebra of A∗∗.

2.3 Examples of Banach algebras

Example 2.3.1. Let S be a non empty set, we define CS as the collection of
all complex valued functions on S . The product on CS is defined pointwise
in the sense that for any f, g ∈ CS and s ∈ S, fg(s) = f(s)g(s). Clearly
CS with the product defined above is an algebra. We define I∞(S) as the
set of all bounded complex valued functions on S. Notice that I∞(S) ⊂ CS.
Consider the norm

‖f‖S = sup{|f(s)|, s ∈ S, f ∈ I∞(S)}.

Clearly for any f, g ∈ I∞(S),

‖fg‖S = sup |f(s)g(s)| ≤ sup |f(s)| sup |g(s)| = ‖f‖S‖g‖S,

this shows that I∞(S) is a normed algebra. The norm described above is
referred to as the uniform norm. The algebra I∞(S) with pointwise product
and uniform norm is a Banach algebra.

Example 2.3.2. Let X be a topological space, then C(X ) is defined as the
set of continuous complex valued functions on X . That C(X ) is a linear space
readily follows from the fact that for any f, g ∈ C(X ), α, β ∈ C, αf + βg is
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a continuous function. We denote by Cb(X ) the set of all bounded complex
valued continuous functions on X . Notice that Cb(X ) ⊂ C(X )∩I∞(X ). The
algebra Cb(X ) equipped with the uniform norm and pointwise product is a
Banach algebra. An interesting subalgebra of Cb(X ) is C0(X ), the collection
of all complex valued continuous functions that vanish at infinity.

Remark 2.3.3. We shall discuss the Banach algebra Cb(X ) and some of its
subalgebras in detail in Chapter 4.. It should be noted that C0(X ) is a
closed subalgebra of Cb(X ) and is therefore a Banach algebra with respect
to the uniform norm.

Example 2.3.4. Let S be a non empty set. For f ∈ CS, we set∑
{|f(s)| : s ∈ S} = sup

s∈S

∑
{|f(s)| : s ∈ F}.

Where the supremum is taken over all finite subsets F of S. Then

l1(S) = {f ∈ CS :
∑
{|f(s)| : s ∈ S} <∞}.

For each s ∈ S, let δs be the characteristic function of {s}. Then a generic
element of l1(S) can be denoted by

∑
s∈S f(s)δs. We set each f(s) = αs, s ∈

S. Hence each f ∈ l1(S) can be written in the form f =
∑

s∈S αsδs. We
define the following norm on l1(S):

‖f‖1 =
∑
s∈S

|αs|. (2.2)

Since each f(s) = αs ∈ C for all s ∈ S, it follows that (l1(S), ‖.‖1) is a Banach
space. In the case when S is countable, then (l1(S), ‖.‖1) is seperable.

If the non empty set S is a semigroup, that is, it is equipped with the
map S × S → S, (s, t) 7→ st, such that (rs)t = r(st), r, s, t ∈ S. We define
the product on l1(S) by convolution. That is for f, g ∈ l1(S),

(f ? g)(t) =
∑
rs=t

{f(r)g(s) : r, s ∈ S, rs = t ∈ S}.

Clearly,

‖f ? g‖1 =
∑∣∣∣∣∑

rs=t

f(r)g(s)

∣∣∣∣ ≤∑∑
|f(r)||g(s)| =

∑
|f(r)|

∑
|g(s)|

= ‖f‖1‖g‖1.

It follows that (l1S, ‖.‖1, ?) is a Banach algebra called the semigroup algebra.

18



Example 2.3.5. A non empty space G is called a topological group if G
satisfies the following properties:

(i) G is a group,

(ii) G is a topological Hausdorff space such that the maps (a, b) 7→ ab and
a 7→ a−1 for all a, b ∈ G, are continuous.

The topological group G is locally compact if the topology on G is locally
compact. We denote by M(G) the collection of all bounded complex Borel
measures on G. Let Ei, i = 1, 2, ..., n be a partition of G, such that for any
µ ∈M(G), µ(Ei) <∞, i = 1, 2, ..., n. Then

‖µ‖ = sup

{ n∑
i=1

|µ(Ei)| : µ ∈M(G), G = ∪ni=1Ei

}
is a norm on M(G), where the supremum is taken over all such partitions of
G. The linear space M(G) equipped with this norm is a Banach space.

We define the product in M(G) by convolution such that for µ, ν ∈
M(G), f ∈ C0(G),

〈f, µ ? ν〉 =

∫
G

∫
G

f(ab)dµ(a)dν(b), a, b ∈ G.

Notice that

|〈f, µ ? ν〉| =
∣∣∣∣ ∫

G

∫
G

f(ab)dµ(a)dν(b)

∣∣∣∣
≤
∫
G

∫
G

|f(ab)|d|µ(a)|d|ν(b)|

≤ |f(ab)|
∫
G

d|µ(a)|
∫
G

d|ν(b)|

≤ ‖f‖∞|µ|(G)|ν|(G)

≤ ‖f‖∞‖µ‖‖ν‖.

This shows that M(G) equipped with the given norm is indeed a Banach
algebra referred to as the measure algebra.

Example 2.3.6. Given a locally compact group G, a regular Borel measure
µ on G is called a left Haar measure if it is left translation invariant. That
is for every B ⊂ G, µ(aB) = µ(B), for all a ∈ G. We define L1(G) as the set
of all µ integrable functions f on G such that∫

G

‖f(s)‖dµ(s) <∞, s ∈ G.
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(L1(G), ‖.‖1) is a Banach space where,

‖f‖1 =

∫
G

‖f(s)‖dµ(t), f ∈ L1(G), s ∈ G.

We define the convolution product on L1(G) by

(f ? g)(t) =

∫
G

f(s)g(s−1t)dµ(s), f, g ∈ L1(G), s, t ∈ G.

Clearly,

‖f ? g‖1 =

∫
G

∥∥∥∥∫
G

f(s)g(s−1t)dµ(s)

∥∥∥∥dµ(t) ≤
∫
G

∫
G

‖f(s)g(s−1t)‖dµ(s)dµ(t)

≤
∫
G

‖f(s)‖dµ(s)

∫
G

‖g(s−1t)‖dµ(t) = ‖f‖1‖g‖1.

It therefore follows that (L1(G), ‖.‖1) is indeed a Banach algebra where the
product is defined by convolution. This Banach algebra is called the group
algebra.

Example 2.3.7. Let E be a normed linear space. A linear map T : E → E
is called a linear operator on E. The collection of all linear operators of
this form is denoted L(E). We denote the collection of all bounded linear
operators on E by B(E) ⊂ L(E). Recall that if E is a Banach space, then
B(E) equipped with the operator norm is a Banach space. We define the
product on B(E) by composition. That is, for any S, T ∈ B(E), x ∈ E,
(S ◦ T )x = S(Tx). Notice that

‖S(Tx)‖ ≤ ‖S‖‖Tx‖ ≤ ‖S‖‖T‖‖x‖E.

It therefore folows that

‖ST‖ = sup
‖x‖E≤1

{‖S(Tx)‖ : x ∈ E} ≤ ‖S‖‖T‖.

Hence, B(E) equipped with the operator norm and the product defined by
composition is a Banach algebra. Clearly, B(E) is a unital Banach algebra
(the unit element here is the identity operator).

Example 2.3.8. Let {Ai : i ∈ I} be a collection of Banach algebras. We
denote by Πi∈IAi, the product space of the collection. This space consists
of all mappings a : I →

⋃
i∈I
Ai such that a(i) ∈ Ai for all i ∈ I, the linear

operator given coordinate-wise.

20



The lp direct sum of the collection is

⊕p
i∈IAi =

{
a ∈ Πi∈IAi :

∑
i

‖a(i)‖p <∞, p ≥ 1

}
.

We equip⊕p
i∈IAi with the norm

‖a‖p =

(∑
i

‖a(i)‖p
) 1

p

.

It follows ⊕p
i∈IAi is a Banach space. We define a coordinate-wise product

on⊕p
i∈IAi. Notice that for any a, b ∈⊕p

i∈IAi,

‖ab‖pp =
∑
i

‖a(i)b(i)‖p ≤
∑
i

‖a(i)‖p‖b(i)‖p

≤
∑
i

‖a(i)‖p
∑
i

‖b(i)‖p.

Hence,

‖ab‖p ≤
(∑

i

‖a(i)‖
p
) 1

p
(∑

i

‖b(i)‖
p
) 1

p

= ‖a‖p‖b‖p.

This shows that⊕p
i∈IAi is indeed a Banach algebra.

The c0 direct sum of the collection is

⊕0
i∈IAi =

{
a ∈ Πi∈IAi : max

i
‖a(i)‖ <∞, lim

i
a(i) = 0

}
.

⊕0
i∈IAi equipped with the norm;

‖a‖∞ = max
i
‖a(i)‖

is a Banach space. That ⊕0
i∈IAi equipped with this norm is a Banach

algebra readily follows from the fact that each Ai, i ∈ I is a Banach algebra.

2.4 Modules

Definition 2.4.1. Let A be a Banach algebra and X an additive group,
X is said to be a left A-module if it is also equipped with an operation,
A×X → X, defined by
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(i) (a+ b)x = ax+ bx,

(ii) a(x+ y) = ax+ ay,

(iii) a(bx) = (ab)x,

(iv) α(ax) = (αa)x,

a, b ∈ A, x ∈ X and α ∈ C.
The additive group X is said to be a right A-module if it is also equipped
with an operation, X ×A → X such that,

(i) x(a+ b) = xa+ xb,

(ii) (x+ y)a = xa+ ya,

(iii) (xa)b = x(ab),

(iv) α(xa) = x(αa).

X is an A-bimodule if it is both a left and right A-module.

Definition 2.4.2. Let X be a left A-module, X is called a normed left
A-module if it is a normed vector space and for a ∈ A, x ∈ X,

‖a.x‖ ≤ K‖a‖‖x‖, K > 0.

A normed left A-module X is called a Banach left A-module if (X, ‖.‖) is
Banach space.
Let X be a right A-module. Then X is a normed right A-module if it is a
normed vector space and for a ∈ A, x ∈ X,

‖x.a‖ ≤ K‖a‖‖x‖, K > 0.

A normed right A-module is a Banach right A-module if (X, ‖.‖) is a Banach
space. If X is both a left Banach A-module and a right Banach A-module,
then X is a Banach A-bimodule.

Definition 2.4.3. Let X and Y be Banach modules. A linear map f : X →
Y is a left A-module homomorphism if for any a ∈ A,

f(a.x) = a.f(x), (x ∈ X),

and a right A-module homomorphism if

f(x.a) = f(x).a.

In the case where X and Y are BanachA-bimodules, then f is anA-bimodule
homomorphism if it is a left and right A-module homomorphism.
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For a Banach algebra A:

(i) A is a Banach A-bimodule with the product of A giving the two module
multiplication.

(ii) Each left (right) ideal of A is a normed left (right) A-bimodule, the
product of A giving the module multiplication.

(iii) Let X be a normed left A- module with dual space X∗. Then X∗ with
the module multiplication given by

〈x, φ.a〉 = 〈a.x, φ〉, a ∈ A, x ∈ X,φ ∈ X∗,

is a Banach right A-module called the dual Banach left A-module X∗.

(iv) Let X be a normed right A-module with dual space X∗. Then X∗ with
the module multiplication given by

〈x, a.φ〉 = 〈x.a, φ〉, a ∈ A, x ∈ X,φ ∈ X∗,

is a Banach left A-module called the dual Banach right A-module X∗.

(v) Let X be a normed A-bimodule, with dual X∗. The operations defined
in (iii) and (iv) turns X∗ into a Banach A-bimodule referred to as
the dual Banach A-bimodule. It should be noted that each Banach
A-bimodule X has a corresponding dual Banach A-bimodule.

(vi) Let L be a closed left ideal of A, X = A \ L, and a 7→ a∗ denote the
canonical mapping of A onto X. Then the normed vector space X
becomes a normed left A-module.

(vii) The tensor product A⊗̂A equipped with the left and right action

a.(b⊗ c) = ab⊗ c, (b⊗ c).a, a ∈ A, b⊗ c ∈ A⊗̂A

is a Banach A-bimodule.

(viii) Let ϕ, ψ ∈ ΦA ∪ ϕ∞. Then C is an A-bimodule when equipped with
the operation

a.z = ϕ(a)z, z.a = ψ(a)z (a ∈ A, z ∈ C).

We denote this module by Cϕ,ψ.

(ix) The product map π : A⊗̂A → A is an A-bimodule homomorphism
with respect to the module structure on A⊗̂A.
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(x) Let X and Y be left (right) A-module. A map T ∈ L(X, Y ) is a left
(right) A-module homomorphism if

T (a.x) = a.Tx (T (x.a) = Tx.a), a ∈ A, x ∈ X.

(xi) Let X and Y be A-bimodules. A map T ∈ L(X, Y ) is an A-bimodule
homomorphism if it is a left and right A-module homomorphism.

We denote by AL(X, Y ), LA(X, Y ) , and ALA(X, Y ), the linear spaces of left
and right A-modules and A-bimodule homomorphisms respectively. For a
commutative Banach algebra A, the following result holds.

Proposition 2.4.4. [8] Let A be a commutative algebra, and let X and Y
be A-modules. Then AL(X, Y ) is an A-module for the map

(a, T )→ a.T.

Proposition 2.4.5. [8] Let A be a Banach algebra and let X and Y be left
and right Banach A-modules respectively. Then (X ⊗ Y )∗ ' L(X, Y ∗) as
A-bimodules.

Definition 2.4.6. Let A be a Banach algebra and X a Banach A-bimodule.

(i) If A is unital with unit e, X is said to be unital if for any x ∈ X,
ex = xe = x.

(ii) If the Banach algebra A is not unital, X is said to be neo-unital if
X = A.X.A.

(iii) X is said to be essential if X = AXA.

Remark 2.4.7. Clearly, all neo-unital Banach algebra are essential. The
converse is not necessarily true, except for the case where the Banach algebra
A has a bounded approximate identity.
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Chapter 3

Amenability properties of
Banach algebras

Barry Johnson’s characterisation of the amenability of L1(G) was to show
that for amenable locally compact G, the first cohomology group with coef-
ficient in X∗ is identically zero for every Banach L1(G)-bimodule X. Much
of what is referred to as amenability of Banach algebra is simply a generali-
sation of this characterisation to any arbitrary Banach algebra. Due to the
difficulty in applying this characterisation, several authors [6], [25], [27] etc,
came up with other less tedious ways of showing that a Banach algebra is
amenable. In the following section, we discuss some of these characterisations
and also point out some interesting results therein.

3.1 Amenable Banach algebras

Definition 3.1.1. Let A be a Banach algebra, and X a Banach A-bimodule.
A map D : A → X is called a derivation if:

D(ab) = a.D(b) +D(a).b (a, b ∈ A).

Consider the map δx : A → X determined by:

δx(a) = ax− xa.

For any a, b ∈ A, notice that

δx(ab) = abx− xab = abx− axb+ axb− xab = a(bx− xb) + (ax− xa)b

= aδx(b) + δx(a)b.

This shows that δx is indeed a derivation. Derivations of this kind are referred
to as inner derivations.

25



We denote the collection of all continuous derivations from A to X as
Z1(A, X) and the collection of all continuous inner derivations from A to X
by B1(A, X). Let H1(A, X) = Z1(A, X)/B1(A, X), H1(A, X) is called the
first cohomology group with coefficients in X. Clearly, H1(A, X) = {0} if
and only if Z1(A, X) = B1(A, X). That is, every continuous derivation from
A to X is inner.

Definition 3.1.2. Let A be a Banach algebra, A is said to be amenable if
H1(A, X∗) = {0} for every Banach A-bimodule X.

Proposition 3.1.3. [47] Let A be a Banach algebra with a bounded right
approximate identity. Let X be a Banach A-bimodule such that A.X = {0},
then H1(A, X∗) = {0}.

Proof. It suffices to show that every derivation from A into X∗ is inner.
Consider the following. Notice that for any φ ∈ X∗,

〈x, φ.a〉 = 〈a.x, φ〉 = 〈0, φ〉 = 0,

for all a ∈ A, x ∈ X. Therefore X∗.A = {0}. Let D ∈ Z1(A, X∗), then
clearly,

D(ab) = a.D(b).

Let (eα) be a bounded right approximate identity for A. Let φ ∈ X∗ be
chosen such that φ = w∗ − limαD(aeα). Hence:

D(a) = lim
α
D(aeα) = lim

α
a.D(eα) = a.φ.

Therefore D = δφ.

Remark 3.1.4. The proposition above shows that if A has a bounded ap-
proximate identity and trivial left action on every Banach A-bimodule, then
A is amenable.

The following result shows the connection between the amenability of a
Banach algebra and its possession of a bounded approximate identity.

Proposition 3.1.5. [47] Every amenable Banach algebra has a bounded ap-
proximate identity.

Proof. Let A be an amenable Banach algebra and B the Banach A-bimodule
whoose underlying space is A such that B has trivial left action, and right
action determined by,

a.x = ax,
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for all a ∈ A, x ∈ B. Let D : A → B∗∗ be the canonical embedding of A
into its bidual. Clearly, D ∈ Z1(A, B∗∗). Since A is amenable, then there
exists E ∈ B∗∗ such that a = a.E for all a ∈ A. Let (eα) be a bounded net
in A such that E is the w∗ limit of (eα), it then follows that

a = w − lim
α
aeα,

for all a ∈ A. Passing to convex combination, it follows that a = limα aeα
by applying Theorem (2.1.16 (iii)). That is, (eα) is a bounded right
approximate identity for A. In a similar manner, we obtain a bounded left
approximate identity, say (fβ) for A. It follows that (gα,β) = (eα+fβ−eαfβ)
is a bounded approximate identity for A.

Remark 3.1.6. The result above shows that the possession of a bounded
approximate identity is a necessary condition for a Banach algebra to be
amenable.

The following result is stated without proof.

Proposition 3.1.7. [47] Let A be a Banach algebra with a bounded approx-
imate identity and suppose that A is a closed ideal of a Banach algebra B.
Let X be a neo-unital Banach A-bimodule and D a continuous derivation on
A with D(A) ⊂ X∗. Then X is a Banach B-bimodule in the canonical sense
and there exists a unique derivation D̃ on B with D̃(B) ⊂ X∗ such that

(i) D̃|A = D,

(ii) D̃ is continuous with respect to the strong topology on B and the weak
topology on X∗.

For a unital Banach algebra, the following holds.

Proposition 3.1.8. [28] Let A be a unital Banach algebra. If H1(A, X∗) =
{0} for every unital Banach A-bimodule X, then A is amenable.

Proof. Let e ∈ A be the identity element in A. Let X be a Banach A-
bimodule and D ∈ Z1(A, X∗). Let X∗ = Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4, where:

Y1 = eX∗e, Y2 = (1− e)X∗e, Y3 = eX∗(1− e), Y4 = (1− e)X∗(1− e).

Let ∆i : X∗ → Yi be the associated projection map. Set Di = ∆i ◦ D.
Clearly:

Di ∈ Z1(A, Yi), i = 1, 2, ..., 4.

Also, Y1 is unital and is isometrically isomorphic to (e.X.e)∗. Hence, D1 =
δφ1 , φ1 ∈ Y1. Notice further that Da = D(ea) = eDa + D(e)a and aD2e =
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a(1− e)(De)e = aDe− aDe = 0. Hence for a ∈ A, −D2e = φ2, φ2 ∈ Y2. It
follows that :

D2a = (1− e)(De)ea = −(D2e)a = δφ2(a).

Also, (D3e)a = eD(1 − e)ea = eDa − eDa = 0. We set D3e = δφ3 , φ3 ∈ Y3.
Hence:

D3e = eD(a− e) = δφ3 .

In a similar manner, we obtain

D4e = δφ4 , φ4 ∈ Y4.

It follows that

D = δφ = δφ1 + δφ2 + δφ3 + δφ4 = δφ1+φ2+φ3+φ4 .

Proposition 3.1.9. [47] Let A be a Banach algebra with a bounded aproxi-
mate identity, then the following statements are equivalent.

(i) H1(A, X∗) = {0} for every Banach A-bimodule X.

(ii) H1(A, X∗) = {0} for every neo-unital Banach A-bimodule X.

Proof. (i) =⇒ (ii) Since X every neo-unital Banach A-bimodule is also an
A-bimodule. It follows that if (i) holds, so does (ii)
(ii) =⇒ (i) Suppose X is a Banach A-bimodule and D ∈ Z1(A, X∗). Let

X0 = {axb : a, b ∈ A, x ∈ X}.

Let ∆ : X∗ → X∗0 be the associated restriction map. Clearly, ∆ is a module
epimorphism so that ∆◦D ∈ Z1(A, X∗0 ). ButH1(A, X∗0 ) = {0}, so that there
exists φ0 ∈ X∗0 such tha ∆ ◦D = δφ0 . Choose φ ∈ X∗ such that φ|X∗0 = φ0.

Set D̃ = D − δφ. Notice that for a, b ∈ A, x ∈ X0,

〈x, D̃a〉 = 〈x,Da− δφ0a〉 = 〈x,D〉 − 〈x, a.φ0 − φ0.a〉
= 〈x,D|X∗0a〉 − 〈x, a.φ0 − φ0.a〉 = 〈x, a.φ0 − φ0.a〉 = 0.

This shows that D̃ = D−δφ ∈ Z1(A, X⊥0 ). By applying Theorem (2.1.11),
X⊥0 ' (X/X0)∗. Notice that for any y ∈ A.(X/X0), there exists a ∈ A, x ∈
X, such that y = ax + X0 ⊂ X0, so that A.(X/X0) = {0}. Hence by
Proposition (3.1.3),

H1(A, X⊥) = H1(A, (X/X0)∗) = {0}.

It follows that there exists ψ ∈ X⊥, such that D̃ = δψ and D = δφ+ψ.
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For a non unital Banach algebra A, the following result is analogous to
Proposition (3.1.8).

Theorem 3.1.10. [28] Let A be a Banach algebra with a bounded approx-
imate identity. A is amenable if and only if H1(A, X∗0 ) = {0} for every
neo-unital Banach A-bimodule X0.

Proof. Suppose A is amenable. Then H1(A, X∗) = {0} for every Banach
A-bimodule X. This further implies that H1(A, X∗0 ) = {0} for every neo-
unital Banach A-bimodule X0. Conversely, suppose H1(A, X∗0 ) = {0} for
every neo-unital Banach A-bimodule X. Then by Proposition (3.1.9), A
is amenable.

It is often difficult to show that a Banach algebra is amenable by apply-
ing the afore-stated definition, hence several authors, for example see [28],
[25], have developed equivalent ways of showing the amenability of a given
Banach algebra. Some of these characterisations are discussed in the next
two subsections.

3.1.1 Existence of bounded approximate diagonal and
virtual diagonal

Definition 3.1.11. Let A be a Banach algebra.

(i) A bounded approximate diagonal for A is a norm bounded net (mα) ⊂
A⊗̂A such that,

a.mα −mα.a→ 0, π(mα)a→ a,

for every a ∈ A.

(ii) A virtual diagonal for A is an element M ∈ (A⊗̂A)∗∗ such that,

a.M −M.a = 0, π∗∗(M)a = a, a ∈ A.

One of the ways to establish the amenability of a given Banach algebra,
say A is to show that A has a bounded approximate diagonal or a virtual
diagonal. The following result shows that the existence of a bounded ap-
proximate diagonal guarantees the existence of a virtual diagonal and vice
versa.

Lemma 3.1.12. [27] Let A be a Banach algebra. Then A has a bounded
approximate diagonal if and only if it has a virtual diagonal.
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Proof. Suppose A has a bounded approximate diagonal, say (mα). Let (m̂α)
be the canonical embedding of (mα) in (A⊗̂A)∗∗ and M the w∗-accumulation
point of (m̂α). Hence, for any a ∈ A,

0 = lim
α
{a.mα −mα.a} = w∗ − lim

α
{a.m̂α − m̂α.a} = a.M −M.a.

Also,

0 = lim
α
{π(mα)a− a} = w∗ − lim

α
{π∗∗(m̂α)a− a} = π∗∗(M)a− a.

Hence M is a virtual diagonal.
Conversely, Suppose M is virtual diagonal for A. Then by applying The-
orem (2.1.16 (ii)), we obtain a bounded net (xα) ⊂ A⊗̂A such that
w∗−limα x̂α = M , where (x̂α) is the canonical embedding of (xα) in (A⊗̂A)∗∗.
Hence, for any a ∈ A,

0 = a.M −M.a = w∗ − lim
α
{a.x̂α − x̂α.a} = w − lim

α
{a.xα − xα.a}.

Also, by applying convex combination and Theorem (2.1.16(iii)), we have
that

0 = π∗∗(M)a− a = w∗ − lim
α
{π∗∗(x̂α)a− a} = w − lim

α
{π(xα)a− a}

= lim
α
{π(xα)a− a}.

Theorem 3.1.13. [27] The following statements are equivalent for a Banach
algebra A.

(i) A is amenable.

(ii) A has a bounded approximate diagonal.

(iii) A has a virtual diagonal.

Proof. (iii) =⇒ (i) Suppose A has a virtual diagonal, say M . Let (mα)
be the associated bounded approximate diagonal, such that M is a w∗-
accumulation point of (mα). Without loss of generality, we may further
assume that A is unital, and that X is a unital Banach A-bimodule. Let
D ∈ Z1(A, X∗). Given x ∈ X, let µx be a continuous linear functional on
A⊗̂A determined by:

〈a⊗ b, µx〉 = 〈x, aDb〉 (a, b ∈ A).

30



Let 〈x, f〉 = 〈µx,M〉, then f ∈ X∗. We want to show that D = δf .
Given a ∈ A, x ∈ X, we have for b, c ∈ A,

〈b⊗ c, µxa−ax〉 = 〈xa− ax, bDc〉 = 〈xa, bDc〉 − 〈ax, bDc〉
= 〈x, abDc〉 − 〈x, (bDc)a〉
= 〈x, abDc〉 − 〈x, (bDc)a〉 − 〈x, bcDa〉+ 〈x, bcDa〉
= 〈x, abDc〉 − 〈x, (bDc)a+ bcDa〉+ 〈x, bcDa〉
= 〈x, abDc〉 − 〈x, bDca〉+ 〈x, bcDa〉
= 〈ab⊗ c, µx〉 − 〈b⊗ c, µx〉+ 〈x, bcDa〉
= 〈b⊗ c, µxa〉 − 〈b⊗ c, aµx〉+ 〈x, bcDa〉
= 〈b⊗ c, µxa− aµx〉+ 〈x, bcDa〉.

This implies that for any m ∈ A⊗̂A,

〈m,µxa−ax〉 = 〈m,µxa− aµx〉+ 〈x, π(m)Da〉.

Therefore,

〈x, af − fa〉 = 〈xa− ax, f〉 = 〈µxa−ax,M〉
= 〈µxa− aµx,M〉+ lim

α
〈x, π(mα)Da〉

= 0 + 〈x, eDa〉 = 〈x,Da〉.

This shows that A is amenable.
(i) =⇒ (ii) Since A is amenable, then by Proposition (3.1.5), A has a
bounded approximate identity, say(eα). Suppose (êα ⊗ êα) is the canonical
embedding of (eα⊗ eα) in (A⊗̂A)∗∗, and suppose further that E ∈ (A⊗̂A)∗∗

is a w∗-accumulation point for (êα ⊗ êα). Then for any a ∈ A,

π∗∗(a.E − E.a) = w∗ − lim
α
π∗∗(a.(êα ⊗ êα)− (êα ⊗ êα).a)

= w − lim
α
π(aeα ⊗ eα − eα ⊗ eα) = lim

α
(ae2

α − e2
αa) = 0.

Hence, δE(A) ⊂ kerπ∗∗. That π∗∗ is a bimodule homomorphism readily
follows from the fact that π is a bimodule homomorphism. Hence ker π∗∗

is a Banach A-bimodule. Since A has a bounded approximate identity, by
applying Theorem (2.2.7), π is surjective and therefore an open map, so
that kerπ∗∗ ' (kerπ)∗∗. It readily follows that ker π∗∗ is indeed a dual Banach

31



A-bimodule. By the amenability of A, there exists N ∈ kerπ∗∗ such that
δE = δN . We set M = E −N , so that for any a ∈ A,

π∗∗(M)a = π∗∗(E −N) = π∗∗(E)− 0 = lim
α
eαa = a.

Also,
a.M −M.a = δM = δE−N(a) = δE(a)− δN(a) = 0.

Thus M is a virtual diagonal for A.
(ii) =⇒ (iii) and (iii) =⇒ (ii) This is Lemma (3.1.12).
(ii) =⇒ (i) Let (mα) be a bounded approximate diagonal for A, with-
out loss of generality, we may suppose (π(mα)) is a bounded approximate
identity in A. We want to show that H1(A, X∗) = {0} for every Banach
A-bimodule X. Without loss of generality, we may assume that X is neo-
unital. Let D ∈ Z1(A, X∗) and suppose mα =

∑∞
n=1 a

(α)
n .Db

(α)
n such that∑∞

n=1 ‖D‖‖a
(α)
n ‖‖b(α)

n ‖ <∞. Notice that,∥∥∥∥ ∞∑
n=1

a(α)
n .Db(α)

n

∥∥∥∥ ≤ ∞∑
n=1

‖D‖‖a(α)
n ‖‖b(α)

n ‖ <∞,

which shows that

(∑∞
n=1 a

(α)
n .Db

(α)
n

)
is a bounded net in X∗. Let φ ∈

X∗ be a w∗-accumulation point of
∑∞

n=1 a
(α)
n .Db

(α)
n such that φ = w∗ −

limα

(∑∞
n=1 a

(α)
n .Db

(α)
n

)
. Then for any a ∈ A, x ∈ X,

〈x, a.φ〉 = lim
α

〈
x,
∞∑
n=1

aa(α)
n .Db(α)

n

〉
= lim

α

〈
x,

∞∑
n=1

a(α)
n .D(b(α)

n a)

〉
= lim

α

〈
x,

∞∑
n=1

(a(α)
n b(α)

n .Da+ a(α)
n (Db(α)

n ).a)

〉
= lim

α

〈
x,

∞∑
n=1

a(α)
n .(Db(α)

n ).a

〉
+ lim

α

〈
x,
∞∑
n=1

a(α)
n b(α)

n .Da

〉
= 〈x, φ.a〉+ lim

α

〈
x,

∞∑
n=1

a(α)
n b(α)

n .Da

〉
= 〈x, φ.a〉+ 〈x,Da〉.

This shows that D = δφ, so that A is amenable.
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The following important result due to Barry Johnson is stated without
proof.

Theorem 3.1.14. [28] Let A and B be amenable Banach algebra. Then
A⊗̂B is an amenable Banach algebra.

The following is very useful.

Theorem 3.1.15. [37] Let A be a Banach algebra. Then there exists a
continuous linear mapping Ψ : A∗∗⊗̂A∗∗ → (A⊗̂A)∗∗ such that for a, b, c ∈ A
and m ∈ A∗∗⊗̂A∗∗, the following holds.

(i) Ψ(a⊗ b) = a⊗ b,

(ii) Ψ(m).c = Ψ(m.c),

(iii) c.Ψ(m) = Ψ(c.m),

(iv) Ψ∗∗A (m) = ΨA∗∗(m).

The following is a direct application of Lemma (3.1.15).

Theorem 3.1.16. [6] Let A be a Banach algebra such that A∗∗ is amenable.
Then A is also amenable.

Proof. Let (Mα) ⊂ A∗∗⊗̂A∗∗ be an approximate diagonal for A∗∗. By
Lemma (3.1.15), there exists a Ψ : A∗∗⊗̂A∗∗ → (A⊗̂A)∗∗ such that for
any a ∈ A,

aΨ(Mα)−Ψ(Mα)a = Ψ(aMα)−Ψ(Mαa)

= Ψ(aMα −Mαa)

→ Ψ(0) = 0,

and,
π∗∗A (Ψ(Mα)a) = πA∗∗(Mα)a→ a.

Choose M ∈ (A⊗̂A)∗∗ such that M = w∗ − limα Ψ(Mα). Then for every
a ∈ A,

aM −Ma = w∗ − lim
α

Ψ(aMα −Mαa)→ Ψ(0) = 0,

and

π∗∗(Mα)a = w∗ − lim
α
π∗∗A (Ψ(Mα)a) = w − lim

α
πA∗∗(Mα)a = a.

It follows that M is a virtual diagonal for A.
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3.1.2 Splitting of exact sequence of A-modules

The introduction of homological algebra as a tool for deriving interesting
outcomes on the amenability properties of Banach algebras is credited to
Helemskii [26]. Much of the results he obtained can be found in [25]. Cur-
tis and Loy in [6], without delving too deeply into the homological algebra
“machinery” used in the derivations by Helemskii, came up with interesting
proofs to the results stated in this section. It should be noted that the results
are mostly due to Helemskii and Seinberg.

Definition 3.1.17. Suppose X, Y, Z are Banach A-bimodules, such that
f : X → Y , g : Y → Z are Banach A-bimodule homomorphisms. Let∑

: 0→ X
f−→ Y

g−→ X → 0

be a short sequence of Banach A-bimodules.

(i)
∑

is said to be exact if f is injective, g is surjective and Im f = ker g.

(ii) The exact sequence
∑

is admissible if there exists a bounded linear
map F : Y → X, such that Ff = IX .

(iii) The exact sequence
∑

splits if there exists a Banach A-bimodule ho-
momorphism F : Y → X, such that Ff = IX .

The following important result about a homological property of Banach
spaces/algebras is stated without proof.

Proposition 3.1.18. [6] Let
∑

: 0 → X
f−→ Y

g−→ Z → 0 be a short ad-
missible sequence of Banach spaces. If there exists a bounded linear operator
F : Y → X which is a left inverse on f , then there exists a unique bounded
linear operator G : Z → Y which is a right inverse on g. The converse also
holds, and fF + Gg is an identity map on Y . If A is a Banach algebra,
and X, Y, Z are Banach A-modules, and f, g are Banach A-module homo-
morphisms, then F is a Banach A-module homomorphism if and only if G
is.

In the characterisation of the amenability of a Banach algebra A in terms
of short exact sequences of A-modules, the following sequence plays an im-
portant role.

Π : 0→ K
i−→ A⊗̂A π−→ A → 0, (3.1)

Π∗ : 0→ A∗ π∗−→ (A⊗̂A)∗
i∗−→ K∗ → 0. (3.2)

where Π∗ is the dual of Π and K = ker π and i is the injection of kerπ into
A⊗̂A.
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Lemma 3.1.19. [6] Let A be a Banach algebra.

(i) If A is unital, then Π is admissible.

(ii) If A has a bounded approximate identity, then Π∗ is admissible.

Proof. (i) Let e be the identity element in A, we define the map

θ : A → A⊗̂A, a 7→ a⊗ e.

Clearly, for any a, b ∈ A,

θ(a+ b) = (a+ b)⊗ e = a⊗ e+ b⊗ e = θ(a) + θ(b),

and
‖θ‖ = sup{‖θ(a)‖p} ≤ K, K > 0.

It follows that θ is a bounded linear map. Also, notice that

πθ(a) = π(θ(a)) = π(a⊗ e) = a.

This further implies that θ∗π∗ = IA∗ . By Proposition (3.1.18), Π is ad-
missible.
(ii) Suppose A has a bounded approximate identity, say (eα). Let M ∈
(A⊗̂A)∗∗ be a w∗-accumulation point of (eα ⊗ eα). Suppose further that
limα〈eα ⊗ eα,M〉 = 〈λ,M〉, for all λ ∈ (A⊗̂A)∗. Define the map:

σ : (A⊗̂A)∗ → A∗

by:
〈a, σ(λ)〉 = 〈a.λ,M〉, a ∈ A, λ ∈ (A⊗̂A)∗.

Let λ = π∗φ, φ ∈ A∗, then:

〈a, σπ∗φ〉 = 〈a.(π∗φ),M〉 = 〈π∗(a.φ),M〉
= lim

α
〈eα ⊗ eα, π∗(a.φ)〉 = lim

α
〈π(eα ⊗ eα), a.φ〉 = lim

α
〈e2
α, a.φ〉

= lim
α
〈e2
α.a, φ〉 = 〈a, φ〉.

Thus σπ∗ = IA∗ as required.

Theorem 3.1.20. [6] Let A be a Banach algebra. A is amenable if and only
if

(i) A has a bounded approximate identity,
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(ii) the admissible sequence Π∗ splits.

Proof. Suppose A is amenable, then by Proposition (3.1.5), A has a
bounded approximate identity, say (eα), and also the amenability of A im-
plies A has a virtual diagonal, say M . Hence by Lemma (3.1.18), π∗ has
a left inverse, say θ, where

θ : (A⊗̂A)∗ → A∗,

is determined by

〈a, λθ〉 = 〈λ.a,M〉, a ∈ A, λ ∈ (A⊗̂A)∗

is linear. We claim that θ is a Banach A-bimodule homomorphism. Let
b ∈ A, then:

〈a, θ(b.λ)〉 = 〈(b.λ).a,M〉 = 〈λ.a,M.b〉
= 〈λ.a, b.M〉 = 〈λ.(ab),M〉
= 〈ab, θλ〉 = 〈a, b.θλ〉.

Therefore, θ.(b.λ) = bθ(λ). Similarly,

〈a, θ(λ).b〉 = 〈(λ.b).a,M〉 = 〈λ.(ba),M〉
= 〈ba, θλ〉 = 〈a, θλ.b〉.

Hence, θ(λ.a) = θ(λ).a. We thus conclude that Π∗ splits.
Conversely, suppose A has a bounded approximate identity, (eα) and θ is
an A-bimodule homomorphism with θπ∗ = IA∗ . Suppose further that u ∈
(A⊗̂A)∗∗ is such that u = w∗ − lim(eα ⊗ eα). Set M = θ∗π∗∗u. We claim M
is a virtual diagonal for A. Consider the following.
Let a ∈ A, λ ∈ (A⊗̂A)∗, then

〈λ, a.M〉 = 〈λ, aθ∗π∗∗u〉
= 〈π∗θ(λ.a), u〉 = lim

α
〈eα ⊗ eα, π∗θ(λ.a)〉

= lim
α
〈ae2

α, θλ〉 = 〈a, θλ〉

= lim
α
〈e2
αa, θλ〉 = lim

α
〈eα ⊗ eα, π∗θ(a.λ)〉

= 〈π∗θ(a.λ), u〉 = 〈a.λ, θ∗π∗∗u〉 = 〈λ,M.a〉.

Also,
π∗∗Ma = π∗∗θ∗π∗∗ua = π∗∗ua = lim

α
e2
αa = a.
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The amenability property of a Banach algebraA can also be characterised
by the splitting of short exact sequence of arbitrary Banach A-modules. The
following results are quite helpful in that regard.

Proposition 3.1.21. [6] Let X,Z be left Banach A-modules. Then B(Z,X)
is a Banach A-bimodule, where the module operation is determined by,

(a.T )z = a.T (z), (T.a)z = T (a.z), z ∈ Z, T ∈ B(Z,X).

Proof. That the relevant right and left operations are indeed module opera-
tions is trivial. Notice that:

‖a.T (z)‖ ≤ ‖a‖‖T (z)‖ ≤ ‖a‖‖T‖‖z‖ ≤ ‖a‖‖T‖, ‖z‖ ≤ 1.

It follows that,
‖a.T‖ ≤ ‖a‖‖T‖.

In a similar manner,
‖T.a‖ ≤ ‖a‖‖T‖.

Proposition 3.1.22. [6] Let Z be a left Banach A-module and X a right
Banach A-module, then W = Z⊗̂X is a Banach A-bimodule with module
action determined by

a.(z ⊗ x) = (a.z)⊗ x, (z ⊗ x).a = z ⊗ (x.a), a ∈ A.

Further more, the map T : W ∗ → B(Z,X∗), φ 7→ Tφ given by

〈x, Tφ〉 = 〈z ⊗ x, φ〉

is an isometric Banach A-bimodule homomorphism.

Theorem 3.1.23. [6] Let A be an amenable Banach algebra, and∑
: 0→ X∗

f−→ Y
g−→ Z → 0

an admissible short exact sequence of left or right Banach A-modules with
X∗ a dual Banach A-module. Then

∑
splits.

Proof. Suppose that
∑

is a sequence of left Banach A-modules. Since
∑

is admissible, there exists G̃ ∈ B(Z, Y ) such that gG̃ = IZ . Define D(a) =
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a.G̃ − G̃.a. Then D is a derivation from A into the bimodule B(Z, Y ). For
any z ∈ Z,

g(Da)(z) = g(a.G̃− G̃.a)(z)

= a.IZ(z)− IZ(z) = IZ(az)− IZ(az) = az − az = 0.

That is, D(A) ⊂ B(Z, ker g) = B(Z, Im f), which shows that:

f−1D : A → B(Z,X∗) ' (Z ⊗X)∗

is a derivation into a dual Banach A-bimodule. Since A is amenable, f−1D
is inner, so that there exists Q ∈ B(Z,X∗) such that

Da = a.G̃− G̃.a = a.fQ− fQ.a.

Set G = G̃− fQ. Clearly a.G = G.a and

gG(z) = gG̃(z)− gfQ(z) = gG̃(z)− g(fQ(z))

= gG̃(z)− 0 = gG̃(z) = z.

That is G is a right inverse for g. Hence
∑

splits.

3.1.3 Some hereditary properties

Below we discuss some of the hereditary properties of amenable Banach al-
gebras.

Theorem 3.1.24. [28] Let A be an amenable Banach algebra, and B a Ba-
nach algebra. Let θ : A → B be a continuous homomorphism with dense
range, then B is also amenable.

Proof. Let X be a Banach A-bimodule, let D ∈ Z1(B, X∗). Then X is a
Banach B-bimodule, where the module operation is given by

ax = θ(a)x, xa = xθ(a), x ∈ X.

Notice that

D ◦ θ(ab) = D(θ(a)θ(b)) = θ(a)D(θ(b)) +D(θ(a))θ(b)

= θ(a)D ◦ θ(b) + (D ◦ θ(a))θ(b) = a(D ◦ θ)(b) + (D ◦ θ(a))b,

a, b ∈ A.

Hence D ◦ θ ∈ Z1(A, X∗). Since A is amenable, there exists φ ∈ X∗ such
that D ◦ θ = δφ. Therefore Db = bf − fb, b ∈ θ(A). Since θ(A) is dense in B
and by applying the continuity of θ, it follows that this is true for any b ∈ B,
so that D = δf .
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Corollary 3.1.25. [47] Suppose A is an amenable Banach algebra and I is
a closed ideal of A, then A/I is amenable as well.

Proof. Notice that θ : A → A/I is a continuous epimorphism. Hence the
rest of the proof follows from Theorem (3.1.24).

The following theorem is quite useful.

Proposition 3.1.26. [47] For an amenable Banach algebra A with closed
ideal I, the following statements are equivalent.

(i) I is amenable.

(ii) I has a bounded approximate identity.

Proof. Clearly (i) =⇒ (ii) holds.
(ii) =⇒ (i) Let X be a Banach I-bimodule. Without loss of generality we
may assume X is neo-unital. By Proposition (3.1.7), the module action of
I on X extends to A in a canonical sense. Let D ∈ Z1(I,X∗). Then again
by Proposition (3.1.7), D has an extension D̃ ∈ Z1(A, X∗). Since A is
amenable, we have that D̃ ∈ H1(A, X∗). It follows that D = D̃|I .

Lemma 3.1.27. [47] Let A be an amenable Banach algebra and J a closed
left ideal of A. Then the following statements are equivalent.

(i) J has a bounded right approximate identity.

(ii) J is weakly complemented.

Proof. (i) =⇒ (ii) Let (eα)α∈Γ be a bounded right approximate identity for
J , and U an ultra filter on Γ. We define

P : A∗ → A∗, φ 7→ w∗ − lim
U

(φ− eα.φ).

Notice that for any a ∈ J , φ ∈ A∗,

〈a, Pφ〉 = lim
U
〈a, φ− eα.φ〉

= 〈a, φ〉 − lim
U
〈a, eα.φ〉

= 〈a, φ〉 − lim
U
〈aeα, φ〉

= 〈a, φ〉 − 〈a, φ〉
= 0.
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This shows that P (A∗) ⊂ J⊥. Recall that since J is a left ideal of A, then
for any a ∈ A, eαa ∈ J for all α ∈ Γ. Hence for any a ∈ A and φ ∈ A∗,

〈a, Pφ〉 = lim
U

(〈a, φ〉 − 〈a, eαφ〉)

= 〈a, φ〉 − lim
U
〈aeα, φ〉

= 〈a, φ〉.

That is, P 2 = P . We therefore conclude that J⊥ is a direct summand in A∗,
which further implies that J is weakly complemented.
(ii) =⇒ (i) Since A is amenable, then it has a bounded approximate

diagonal, say (mβ), were mβ =
∑∞

n=1 a
(β)
n ⊗b(β)

n , with
∑∞

n=1 ‖a
(β)
n ‖‖b(β)

n ‖ <∞.
Let P : A∗ → A∗ be a projection onto J⊥, let Q = δA∗∗ − P ∗∗. Then clearly
Q : A∗∗ → A∗∗ is a projection onto J⊥⊥ ' J∗∗. Define

Eβ =
∞∑
n=1

a(β)
n .Qb(β)

n .

Then for a ∈ J , we have

lim
β
aEβ = lim

β

∞∑
n=1

aa(β)
n .Qb(β)

n

= lim
β

∞∑
n=1

a(β)
n .Q(b(β)

n a) (b(β)
n a ∈ J)

= lim
β

∞∑
n=1

a(β)
n b(β)

n a

= lim
β
π(mβ)a = a.

Let E ∈ J∗∗ be a w∗-accumulation point of (Eβ). Then a.E = a. By applying
Theorem (2.1.16 (ii)), there exists a bounded net in (eα) ⊂ A such that
eα → E. Therefore (eα) is a bounded weak right approximate identity for J ,
which further implies (i) holds.

The folowing result is a direct application of Lemma (3.1.27).

Theorem 3.1.28. [8] For an amenable Banach algebra with a closed ideal
I, the following are equivalent.

(i) I is amenable.

(ii) I has a bounded approximate identity.
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(iii) I is weakly complemented.

Proof. (i) =⇒ (ii) Follows from Proposition (3.1.26).
(ii) =⇒ (iii) Follows from Lemma (3.1.27).
(iii) =⇒ (i) Suppose I is weakly complemented. By applying Lemma
(3.1.27), I has a bounded right approximate identity. By passing to Aop

and applying Lemma (3.1.9) on Aop, we obtain a bounded left approximate
identity for I. That is, I has a bounded approximate identity and is therefore
amenable.

Corollary 3.1.29. [47] Let A be an amenable Banach algebra, and I a closed
ideal of finite codimension. Then I is amenable.

Theorem 3.1.30. [47] Let A be a Banach algebra and I a closed two sided
ideal of A such that both I and A/I are amenable. Then A is amenable.

Proof. Let X be a Banach A-bimodule, and D ∈ Z1(A, X∗). Then D|I ∈
Z1(I,X∗). Since I is amenable, then there exists ψ1 ∈ X∗ such that

Da = δψ1(a) (a ∈ I).

Let D̃ = D − δψ1 . Then clearly D̃|I = 0 and thus induces a map from A/I
into X∗, which we also denote by D̃. Let

F = {φ ∈ X∗ : a.φ = φ.a = 0 for all a ∈ I},

and
X0 = IX +XI.

Then F ' (X/X0)∗ is a dual Banach A/I-bimodule. Since I is a two sided
ideal of A, then for any a ∈ I, b ∈ A, ab ∈ I. Also since D̃ vanishes on I, it
follows that

a.D̃b = D̃(ab)− D̃(a).b = 0.

In a similar manner, we show that D̃b.a = 0. This further shows that
D̃(A/I) ⊂ F . Since A/I is amenable, there exists ψ2 ∈ F such that D̃ = δψ2 .
This implies that D = δψ1+ψ2 .

Corollary 3.1.31. [8] A Banach algebra A is amenable if and only if A# is
amenable.

Let A be a Banach algebra. The following section deals with some inter-
esting results involving the notion of amenability derived by restricting the
class of Banach A-bimodules to A itself.
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3.2 Weak amenability in Banach algebras

The introduction of the notion of weak amenability for commutative Ba-
nach algebras is credited to W. G. Bade, P. C. Curtis and H. G. Dales [7].
It was further expanded to include some interesting examples by Grønbæk
[20] and B.E. Johnson [29]. It is motivated by certain behaviours of some
known Banach algebras. For instance, given a locally compact group G,
H1(L1(G), L1(G)∗) = {0}, but the same cannot be said for any arbitrary
Banach L1(G)-bimodule except for the case where G is amenable as a group.
In this section, we state some interesting results on weakly amenable Banach
algebras and also discuss some interesting hereditary properties therein.

Definition 3.2.1. Let A be a Banach algebra. A is said to be weakly
amenable if H1(A,A∗) = {0}.

Definition 3.2.2. Let A be a Banach algebra, and ΦA the character space
of A. d ∈ A∗ is called a point derivation if for a, b ∈ A,

d(ab) = ϕ(a)d(b) + d(a)ϕ(b), ϕ ∈ ΦA.

Below is a variant of weak amenability.

Definition 3.2.3. Let A be a Banach algebra, and n ∈ N. Then A is n-
weakly amenable if H1(A,A(n)) = {0}, where A(n) is the nth dual of A. The
Banach algebra A is said to be permanently weakly amenable if A is n-weakly
amenable for each n ∈ N.

Proposition 3.2.4. [37] Let A be a weakly amenable Banach algebra. Then

(i) A2 is dense in A.

(ii) A does not admit a zero point derivation.

(iii) If A is commutative, then every derivation from A into each Banach
A-bimodule is trivial.

Proof. (i) Suppose A2 is not dense in A, that is, A2 6= A, choose φ0 ∈ A∗
such that φ0|A2 = 0, and 〈a0, φ0〉 = 1 for a0 ∈ A \ A2. Define D = φ0 ⊗ φ0 :
a 7→ 〈a, φ0〉, A → A∗. Clearly, D is a continuous linear map. Notice that
since φ0|A2 = 0, then D(ab) = 0, for all a, b ∈ A and,

〈c, a.Db+Da.b〉 = 〈c, a.Db〉+ 〈c,Da.b〉
= 〈ca,Db〉+ 〈bc,Da〉
= 〈ca, φ0〉〈b, φ0〉+ 〈bc, φ0〉〈a, φ0〉
= 0, (c ∈ A).
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This shows that D is indeed a derivaion from A into A∗. Clearly 〈a0, Da0〉 =
1, but 〈a0, δφ(a0)〉 = 0, φ ∈ A∗. It therefore implies that D is not inner,
which contradicts our assumption that A is weakly amenable. Thus A2 is
dense in A.

(ii) Suppose that A admits a non zero point derivation, say d at ϕ ∈ ΦA.
Then clearly, D : a 7→ d(a)ϕ, A → A∗ is a continuous linear operator, and
also D is a derivation. Since A is weakly amenable, there exists a ψ ∈ A∗
such that D(a) = a.ψ − ψ.a. Let x1 ∈ A with ψ(x1) = 1, x2 ∈ kerϕ with
d(x2) = 1. We set x0 = x1 + (1− d(x1))x2. Then

ϕ(x0) = ϕ(x1 + (1− d(x1))x2)

= ϕ(x1) + (1− d(x1))ϕ(x2)

= ϕ(x1) = 1.

It follows that,

1 = 〈x0, Dx0〉
= 〈x0, x0φ− φx0〉
= 〈x0, x0φ〉 − 〈x0, φx0〉
= 〈x2

0, φ〉 − 〈x2
0, φ〉

= 0,

which is a contradiction, therefore A does not admit a point derivation.
(iii) Suppose there exists D ∈ Z1(A, X) with D 6= 0. By (i), A2 = A, and

so that there exists ao ∈ A with D(a2
0) 6= 0. We then have that a0.D(a0) 6= 0,

so that there exists φ ∈ X∗ such that 〈a0.Da0, φ〉 = 1. Let Rφ ∈A B(A, X∗).
Then Rφ ◦D ∈ Z1(A, X∗) and 〈a0, (Rφ ◦D)(a0)〉 = 〈a0.Da0, φ〉 = 1, so that
Rφ ◦D 6= 0, a contradiction of the fact that A is weakly amenable.

Theorem 3.2.5. [37] Let A be a Banach algebra such that A∗∗ is weakly
amenable and Â the image of A under the canonical embedding, such that Â
is a left ideal in A∗∗. Then A is weakly amenable.

Proof. Let D : A → A∗ be a continuous derivation, and D∗∗ its second
adjoint. Let E,F ∈ A∗∗ and (ai), (bj) be bounded nets in A such that E =
w∗−limi ai, F = w∗−limj bj. Then clearly for any x ∈ A, Fx = w∗−limj bjx.

If âi, b̂j are the canonical images of ai, bj respectively for all i, j, then

D∗∗(EF ) = w∗ − lim
i

lim
j
D∗∗(âib̂j)

= w∗ − lim
i

lim
j

(aiD(bj) +D(ai)bj )̂

= w∗ − lim
i
âiD

∗∗(G) +D∗∗(E)F.
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Let R : A∗∗ → A∗ be the restriction determined by

〈R(a,Φ)〉 = 〈â,Φ〉, Φ ∈ A∗∗∗,

and Γ be the subsequent extension

〈Φ,Γ〉 = (R(Φ))̂.

From the above, we have

Γ ◦D∗∗(EF ) = Γ(w∗ − lim
i
aiD

∗∗(F )) + ΓD∗∗(E)F.

Hence for any x ∈ A,

〈Γ(D∗∗(E)F ), x̂〉 = 〈D∗∗(E)F, x̂〉 = 〈D∗∗(E), F x̂〉.

Since Â is assumed to be a left ideal in A∗∗, F x̂ ∈ Â. Then,

〈D∗∗(E), F x̂〉 = 〈Γ(D∗∗(E)), F x̂〉 = 〈Γ ◦D∗∗(E)F, x̂〉.

That is,
Γ(D∗∗(E)F ) = (Γ ◦D∗∗)(E)F.

It follows that for any x ∈ A,

〈Γ(w∗ − lim
i
âiD

∗∗(F )), x̂〉 = 〈w∗ − lim
i
âiD

∗∗(F ), x̂〉

= lim
i
〈âiD∗∗(F ), x̂〉

= lim
i
〈D∗∗(F ), x̂âi〉

= lim
i
〈x̂âi, R(D∗∗(F ))〉

= 〈x̂E,R(D∗∗(F ))〉.

This shows that Γ◦D∗∗ is a derivation from A∗∗ to A∗∗∗. Since A∗∗ is weakly
amenable, there exists Λ ∈ A∗∗∗ such that

Γ ◦D∗∗(Ψ) = Ψ.Λ− Λ.Ψ,

for all Ψ ∈ A∗∗. Set φ = R(Ψ), then for any a ∈ A,

D(a) = R(a.Ψ−Ψ.a) = a.R(Ψ)−R(Ψ).a = a.φ− φ.a.

This shows that D is inner.
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The following are some interesting hereditary properties of weakly amenable
Banach algebras.

Proposition 3.2.6. [37] Let A and B be Banach algebras and θ : A → B
a continuous homomorphism such that θ(A) = B. If A is commutative and
weakly amenable, then B is weakly amenable.

Proof. Let D ∈ Z1(B,B∗). Clearly for any a, b ∈ A,

D ◦θ(a) = D(θ(a)(b)) = θ(a)D(θ(b))+D(θ(a))θ(b) = aD ◦θ(b)+(D ◦θ(a))b.

It follows that D ◦ θ ∈ Z1(A,B∗). Since A is weakly amenable and commu-
tative, D ◦ θ = 0. Since θ(A) = B, it follows that D = 0.

Proposition 3.2.7. [8] Let A be a Banach algebra and I a closed ideal of
A. If I and A/I are weakly amenable. Then A is weakly amenable.

Proof. Let D ∈ Z1(A,A∗) and i : I → A the natural embedding with dual
i∗ : I∗ → A∗. Clearly i∗ ◦ D ◦ i ∈ Z1(I, I∗). Since I is weakly amenable,
there exists φ ∈ I∗ such that i∗ ◦ D = δφ. We replace D with D − δφ, and
suppose that (i∗ ◦D)|I = 0. For a, b ∈ I and c ∈ A,

〈c,D(ab)〉 = 〈c, aDb+Da.b〉 = 〈ca,Db〉+ 〈bc,Da〉
= 〈ca, (i∗ ◦D)b〉+ 〈bc, (i∗ ◦D)a〉 = 0.

This shows that D|I2 = 0. But I is weakly amenable implies I2 = I, which
shows that D|I = 0. The rest of the proof readily follows from the proof of
Theorem (3.1.30), where we replace X with A.

The following lemma is quite useful.

Lemma 3.2.8. [8] Let A be a weakly amenable commutative Banach algebra,
let I be a closed ideal of A, and X a Banach I-module. Then D|I4 = 0 for
each D ∈ Z1(I,X).

Theorem 3.2.9. [8] Let A be a weakly amenable Banach algebra and I a
closed ideal of A. Then:

(i) I is weakly amenable if and only if I2 is dense in I.

(ii) If I has a finite codimesion in A, then I is weakly amenable.
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Proof. (i) Suppose I is weakly amenable, then clearly I2 is dense in I.
Conversely, suppose I2 is dense in I. Then I4 is also dense in I. Let D ∈
Z1(I, I∗). By Lemma (3.2.8), D|I4 = 0, so that D = 0. Since A is
commutative and it follows that I is weakly amenable.

(ii) Suppose that I has codimension 1 in A. Since A is weakly amenable,
then A2 is dense in A, it follows that A 6⊂ I, so that I = Mϕ, ϕ ∈ ΦA. It
follows that I2 is dense in I. Hence by (i), I is weakly amenable.

Corollary 3.2.10. [8] Let A be a commutative Banach algebra. Then A is
weakly amenable if and only if A# is weakly amenable.

3.3 Some generalised notions of amenability

in Banach algebras

Some interesting amenability like properties of Banach algebras can be ob-
tained by relaxing some of the conditions required for a Banach algebra to be
amenable. This has become quite necessary due to the fact that amenabil-
ity of Banach algebra as a concept, is a bit restrictive and does not allow
for a rich collection of examples. In this section, we shall discuss some of
these generalised notions of amenability in Banach algebras. Cases involving
specific Banach algebras are also considered.

3.3.1 Approximate amenability of Banach algebras

The notion of approximate amenability was introduced in 2004 by Ghahra-
mani and Loy [13], and was further expanded by Ghahramani, Loy, and
Zhang [38] in 2008. The concept is based entirely on a certain behaviour of
continuous derivations on a Banach algebra. In this section we state some
interesting results on the approximate amenability of Banach algebras.

Definition 3.3.1. Let A be a Banach algebra and X a Banach A-bimodule.
A derivation

D : A → X

is said to be approximately inner if there exists a net (ηv) ⊂ X such that

D(a) = lim
v

(a.ηv − ηv.a) (a ∈ A).

That is, D = limv δηv in the strong topology on B(A, X).

Definition 3.3.2. Let A be a Banach algebra.
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(i) A is said to be approximately amenable if every continuous derivation
D : A → X∗ is approximately inner for every Banach A-bimodule X.

(ii) A is approximately contractible if for every continuous derivation D :
A → X is approximately inner for every Banach A-bimodule X

The limits in the definitions above are taken in the norm. In (i), it should
be noted that if it is only required that the net be taken from A∗, then we
say A is weakly approximately amenable.

It has long been established that a necessary condition for a Banach alge-
bra to be amenable is that it must possess a bounded approximate identity,
see Lemma (3.1.5). In the case of an approximately amenable Banach alge-
bra, it is still unknown if this condition holds. The following result provides
a partial answer.

Lemma 3.3.3. [13] Let A be an approximately amenable Banach algebra.
Then A has left and right approximate identities. In particular A2 is dense
in A.

Proof. Let a 7→ â be the canonical injection of A into A∗∗. Notice that for
b ∈ A, φ ∈ A∗,

〈φ, âb〉 = 〈ab, φ〉 = 〈b, φ.a〉 = 〈φ.a, b̂〉 = 〈φ, ab̂〉.

This shows that a 7→ â is a derivation with usual left action and trivial right
action. Since A is approximately amenable, there exists a net (Ev) ⊂ A∗∗
with a.Ev → â for each a ∈ A.

We take finite sets F ⊂ A,Φ ⊂ A∗, and ε > 0. Let H = {φ.a : a ∈ F, φ ∈
Φ}, K = max{‖ψ‖, ‖φ‖ : ψ ∈ H,φ ∈ Φ}. Then there is v = v(F,Φ, ε) such
that

‖â− a.Ev‖ <
ε

2K
,

for a ∈ F . By Theorem (2.1.16 (ii)), there exists (bv) ⊂ A such that

|〈ψ, bv〉 − 〈Ev, ψ〉| <
ε

2
, (ψ ∈ H).

Hence for any a ∈ F, φ ∈ Φ,

|〈abv, φ〉 − 〈a, φ〉| = |〈abv, φ〉 − 〈a, φ〉 − 〈φ, a.Ev〉+ 〈φ, a.Ev〉|
= |〈abv, φ〉 − 〈φ, â〉 − 〈φ, a.Ev〉+ 〈φ, a.Ev〉|
= |〈abv, φ〉 − 〈φ, a.Ev〉+ 〈φ, a.Ev − â〉|
≤ |〈abv, φ〉 − 〈φ, a.Ev〉|+ |〈φ, a.Ev − â〉|
≤ |〈bv, φ.a〉 − 〈φ.a, Ev〉|+ ‖φ‖‖a.Ev − â‖

<
ε

2
+K

ε

2K
= ε.
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This shows that (bv) is a weak right appproximate identity for A, so that A
has a right approximate identity. In a similar manner, we can show that A
has a left approximate identity.

Consider the following lemma.

Lemma 3.3.4. [13] Let A be a unital Banach algebra with identity e, X a
Banach A-bimodule and D : A → X a continuous derivation. Then there
exists a derivation D1 : A → X, and φ ∈ X∗ , such that

(i) ‖φ‖ ≤ 2CX‖D‖,

(ii) D = D1 + δφ.

Proof. Set Y1 = e.X∗.e, Y2 = (1 − e).X∗.e, Y3 = e.X∗.(1 − e), Y4 = (1 −
e).X∗.(1 − e), let ∆j : X∗ → Yj be the associated projections, j = 1, 2, 3, 4.
Clearly X∗ = Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4. Set Dj = ∆j ◦ D, then clearly, Dj is a
derivation for j = 1, ..., 4, and D = D1 + D2 + D3 + D4. As is the case in
Proposition (3.1.8), Y2 has trivial right action, Y3 has trivial left action
and Y4 has left and right trivial actions. That is, Dj is inner for j = 2, 3, 4.
Hence, there exists φj ∈ Yj ,j = 2, 3, 4, such that Dj = φj. Hence D2 =
δ−D2e, D3 = δD3e, D4 = 0. Set φ = D3e−D2e. Also notice that

φ = D3e−D2e = eDe(1− e)− (1− e)De−De.e.

It follows that

‖φ‖ = ‖D3e−D2e‖ = ‖eDe(1− e)− (1− e)De−De.e‖ = ‖eDe−De.e‖
≤ ‖eDe‖+ ‖De.e‖ ≤ ‖e‖‖De‖+ ‖De‖‖e‖
= 2‖e‖‖De‖ ≤ 2CX‖D‖.

The following is an interesting application of Lemma (3.3.4).

Lemma 3.3.5. [13] Let A be a unital approximately amenable Banach alge-
bra, X a Banach A-bimodule, D : A → X∗ a continuous derivation. Then
there exists a net (ηv) ⊂ e.X∗.e and φ ∈ X∗ such that

(i) ‖φ‖ ≤ 2CX‖D‖,

(ii) D = δφ + st− lim δηv .

Proof. By applying Lemma (3.3.4), it suffices to show that D1 is approx-
imately inner. Notice that e.X∗.e ' (e.X.e)∗ isometrically. Since A is ap-
proximately amenable, there exists a net of inner derivations (ηv) ⊂ (e.X.e)∗

such that D1 = st− limv ηv.
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We apply Lemma (3.3.5) in proving the following important result.

Proposition 3.3.6. [13] The Banach algebra A is approximately amenable
if and only if A# is approximately amenable.

Proof. Suppose A is aproximately amenable. Let D : A# → X∗ be a deriva-
tion. By Lemma (3.3.4), D = D1 + δφ, where D1 : A# → e.X∗.e. Notice
that

D1(e) = e.De.e = e(De− eDe) = eDe− eDe = 0,

and also since A is approximately amenable, D|A is approximately inner.
Therefore D is approximately inner. This shows that A# is approximately
amenable.

Conversely, suppose A# is approximately amenable. Let D : A → X∗ be
a derivation. Since A is a closed ideal of A#, D has an extension D̃ on A#.
By setting D(e) = 0, and identity module action by e, we have that A# is
approximately amenable, D̃ is approximately inner. It then follows that D
is approximately inner.

Theorem 3.3.7. [13] A Banach algebra A is approximately amenable if and
only if either of these conditions holds.

(i) There exists a net (Mv) ⊂ (A#⊗̂A#)∗∗ such that for each a ∈ A#,
a.Nv −Mv → 0 and π∗∗(Mv)→ e.

(ii) There exists a net (M
′
v) ⊂ (A#⊗̂A#)∗∗ such that for each a ∈ A#,

a.M
′
v −M

′
v.a→ 0 and π∗∗(M

′
v) = e. for every v.

Proof. SupposeA is approximately amenable, then by Proposition (3.3.5),
A# is approximately amenable. By a similar argument to the proof of The-
orem (3.1.13), let u = e ⊗ e. Since A is approximately amenable, there
exists a net (ev) ⊂ kerπ∗∗ such that for any a ∈ A, δu(a) = limv δev(a). Set
M
′
v = u− ev. Then for any a ∈ A,

a.M
′

v −M
′

v.a = a(u− ev)− (u− ev)a
= au− ua+ (aev − eva)

→ 0.

Also,

π∗∗(M
′

v) = π∗∗(u− ev) = π∗∗(ev)

= π(u)− 0 = π(u) = e.

That is (ii) holds.
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Suppose (i) holds. Let D : A# → X∗ be a derivation. Without loss of
generality, we may suppose X∗ is neo-unital. Let (fv) be a net in X∗. By
applying the argument in Lemma (3.1.8), we set

〈x, fv〉 = 〈µx,Mv〉,

where µx ∈ (A#⊗̂A#)∗ is determined by 〈a⊗ b, µx〉 = 〈x, aDb〉. Let (mα
v ) ⊂

A#⊗̂A# be such that mα
v = w∗ − limαMv, for each v. Also recall that for

m ∈ A#⊗̂A#,

〈m,µx.a−a.x〉 = 〈m,µx.a− a.µx〉+ 〈x, π(m)Da〉.

Hence,

〈x, a.fv − fv.a〉 = 〈x.a− a.x, fv〉
= 〈µx.a−a.x,Mv〉
= lim

α
〈mα

v , µx.a−a.x〉

= 〈µx.a− a.µx,Mv〉+ lim
α
〈x, π(mα

v )Da〉

= 〈µx, a.Mv −Mv.a〉+ 〈x, π∗∗(Mv).Da〉.

Therefore,

|〈x, a.fv − fv.a〉 − 〈x,Da〉| = |〈µx, a.Mv −Mv.a〉+ 〈x, π∗∗(Mv)Da〉 − 〈x,Da〉|
= |〈µx, a.Mv −Mv.a〉+ 〈x, (π∗∗(Mv)− e)Da〉|
≤ |〈µx, a.Mv −Mv.a〉|+ |〈x, (π∗∗(Mv)− e)Da〉|
≤ ‖µx‖‖a.Mv −Mv.a‖+ ‖x‖‖π∗∗(Mv)− e‖‖D‖a‖
→ 0.

This shows that Da = st− lim δfv . Therefore A# is approximately amenable
and so is A. That (ii) =⇒ (i) is obvious. Hence the equivalence holds.

Remark 3.3.8. Notice that by applying Theorem (2.1.16(ii)), we may
choose a net (mα

v ) ⊂ A⊗̂A such that Mv = w∗ − limαm
α
v for all v, so that

a.mα
v −mα

v .a→ 0, π(mα
v )a→ a, (a ∈ A).

The implication of this outcome will be discussed in the next section.

Corollary 3.3.9. [13] A Banach algebra A is approximately amenable if and
only if there are nets (M

′′
) ⊂ (A⊗̂A)∗∗, (Fv), (Gv) ⊂ A∗∗, such that for each

a ∈ A,
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(i) a.M
′′
v −M

′′
v .a+ Fv ⊗ a− a⊗Gv → a,

(ii) a.Fv → a,Gv.a→ a, and

(iii) π∗∗(M
′′
v ).a− Fv.a−Gv.a→ 0.

We state the following important result on approximately contractible
Banach algebras without proof.

Theorem 3.3.10. [13] The Banach algebra A is approximately contractible
if and only if any of the following equivalent conditions holds:

(i) there exists a net (Mv) ⊂ A#⊗̂A# such that for each a ∈ A#, a.Mv −
Mv.a→ 0 and π(Mv)→ e;

(ii) there exists a net (M
′
v) ⊂ A#⊗̂A such that for each a ∈ A, a.M

′
v −

M
′
v.a→ 0 and π(M

′
v) = e;

(iii) there exist nets (M
′′
v ) ⊂ A⊗̂A#, (Fv), (Gv) ⊂ A, such that for each

a ∈ A,

(a) a.M
′′
v −M

′′
v .a+ Fv ⊗ a− a⊗Gv → 0

(b) a.Fv → a,Gv.a→ a; and

(c) π(M
′′
v ).a− Fv.a−Gv.a→ 0.

Definition 3.3.11. Let∑
: 0→ X

f−→ Y
g−→ Z → 0

be an admissible short exact sequence of left Banach A-modules. Then
∑

approximately splits if there exists a net Gv : Z → Y of right inverse maps
to g such that limv(a.Gv −Gv.a) = 0 for a ∈ A and a net Fv : Y → X of left
inverse maps to f such that limv(a.Fv − Fv.a) = 0 for a ∈ A.

The approximate amenability of a Banach algebra can also be charac-
terised in terms of short exact sequences of Banach modules. Below is an
interesting and insightful result of such a characterisation.

Theorem 3.3.12. [13] Let A be an approximately amenable Banach algebra
and ∑

: 0→ X∗
f−→ Y

g−→ Z → 0

be an admissible short exact sequence of left Banach A-modules. Then
∑

approximately splits.
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Proof. The proof of the theorem follows from the argument in the proof of
Theorem (3.1.22) for a right inverse G̃ for g. Since A is approximately
amenable, then there exists a net (Qv) ⊂ B(Z,X∗) such that

a.G̃− G̃.a = lim
v

(a.fQv − fQv.a), a ∈ A.

Set Gv = G̃− fQv. Clearly (Gv) is a net of right inverse maps for G and

lim
v

(a.G−G.a) = 0.

By applying Proposition (3.1.18), we have a net (Fv) of left inverse for f
such that

lim
v

(a.Fv − Fv.a) = 0.

Therefore,
∑

approximately splits.

Corollary 3.3.13. [13] Let A be an approximately amenable Banach alge-
bra and let J a weakly complemented left ideal of A. Then J has a right
approximate identity. In particular, J2 is dense in J .

Theorem 3.3.14. [13] Let A be a Banach algebra. If A∗∗ is approximately
amenable, so is A.

Proof. In order to simplify notation, we set B = A#. Let Ψ be the contin-
uous linear mapping in Lemma (3.1.15). Since B∗∗ = (A∗∗)#, and by the
approximate amenability of A#, there exists a net (Mv) ⊂ (B∗∗⊗̂B∗∗)∗∗ such
that for all m ∈ A∗∗,

m.Nv −Nv.m→ 0, π∗∗B∗∗(Nv)m = m.

Since A can be viewed as a subset of A∗∗ under the canonical embedding.
Then for any a ∈ A,

a.Nv −Nv.a→ 0, π∗∗B∗∗(Nv)a = a.

Let θ : (B⊗̂B)∗ → (B⊗̂B)∗∗∗ be the canonical embedding of B∗ into its bidual.
Since θ is an θ is an A-bimodule homomorphism, so is θ∗. It follows that,
for each a ∈ A,

a.θ∗Ψ∗∗(Nv)− θ∗Ψ∗∗(Nv).a = θ∗Ψ∗∗(aNv)− θ∗Ψ∗∗(Nva)

= θ∗Ψ∗∗(aNv −Nva)

→ θ∗Ψ∗∗(0) = 0.
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For fixed v, we choose net Nµ ⊂ B∗∗⊗̂B∗∗ such that Nv = w∗−lim N̂µ. Hence

(πB)∗∗(θ∗Ψ(Nv))a = a.w∗ − lim
µ

(πB)∗∗(θ∗∗Ψ∗∗(N̂µ)).a

= w∗ − lim
µ

(πB)∗∗(θ∗(Ψ(N̂µ))).a

= w∗ − lim
µ

(πB)∗∗(Ψ(Nµ)).a

= w∗ − lim
µ

(πB∗∗(N
µ)).a

= w∗ − lim
µ

(π∗∗B∗∗(N̂
µ)).a

= (π∗∗B∗∗(Nv)).a = a.

The following are some results on approximate amenability of some known
Banach algebras defined on a locally compact group G.

Theorem 3.3.15. [13] Let G be a locally compact group. Then,

(i) M(G) is approximately amenable if and only if G is discrete and amenable.

(ii) L1(G) is approximately amenable if and only if G is amenable.

(iii) L1(G)∗∗ is approximately amenable if and only if G is finite.

By slightly modifying some of the conditions for a Banach algebra to
be the approximately amenable, the following notions of amenability can be
derived.

Definition 3.3.16. Let A be a Banach algebra, X a Banach A-bimodule
and D : A → X∗ a continuous derivation,

(i) [13] A is sequentially approximately amenable if there exists a sequence
(ζn) ⊂ X∗ such that

D(a) = lim
n
δζn ,

(ii) [38] A is uniformly approximately amenable if there exists a net (ηv) ⊂
X∗ such that

D(a) = lim
v
δηv ,

for every Banach A-bimodule X, where the limit is taken in the unit
ball A[1] of A,
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(iii) [38] A is boundedly approximately amenable if there exists a net (ηv) ⊂
X∗ such that

D(a) = lim
v
δηv , ‖δηv‖ ≤ L‖a‖, a ∈ A, L > 0,

for every Banach A-bimodule X.

The following, stated without proof, are some insightful results on the
afore-stated notions of amenability.

Theorem 3.3.17. Let A be a Banach algebra.

(i) [38] A is uniformly approximately amenable if and only if it is amenable.

(ii) [38] A is boundedly approximately amenable if and only if there exists
a constant Lb > 0 such that for any A-bimodule X, and any con-
tinuous derivation D : A → X∗, supi ‖aδηi‖ ≤ Lb‖D‖, and D(a) =
limi δηi(a), (a ∈ A).

(iii) [38] If A is boundedly approximately amenable, then there exists a net
(Mv) ⊂ (A#⊗̂A#)∗∗ and a constant L > 0 such that for each a ∈ A#,
a.Mv−Mv.a→ 0, π∗∗(Mv)→ e and ‖a.Mv−Mv.a‖ ≤ L‖a‖. Conversely,
if the later property holds and (π∗∗(Mv)) is bounded, then A is boundedly
approximately amenable.

(iv) [38] If A is a boundedly approximately amenable such that A is seperable
as a Banach space, then it is sequentially approximately amenable.

(v) [38] A is boundedly approximately amenable if and only if A# is bound-
edly approximately amenable.

(vi) [38] A is boundedly approximately amenable if and only if there exists
a net (αi) ⊂ (kerπ)∗∗ and M > 0 such that

(i) k.αi → k for each k ∈ kerπ,

(ii) ‖k.αi‖ ≤M‖k‖ for all k ∈ kerπ, for all i.

(vii) [12] If A is boundedly approximately amenable with a bounded approx-
imate identity, and suppose B is an amenable Banach algebra. Then
A⊗̂B is boundedly approximately amenable.

(viii) [12] The tensor product of two boundedly approximately amenable Ba-
nach algebras need not be approximately amenable.
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3.3.2 Pseudo-amenability of Banach algebras

Definition 3.3.18. A Banach algebra A is said to be pseudo-amenable if it
has an approximate diagonal.

Recall that an approximate diagonal for A is a net (mα) ⊂ A⊗̂A such
that

a.mα −mαa→ 0 and π(mα)a→ a for all α and a ∈ A.

It should be noted that for pseudo-amenable Banach algebras, the approxi-
mate diagonal need not be bounded, as a result the class of pseudo-amenable
Banach algebras is larger than the class of amenable Banach algberas. Below,
we state some results on pseudo-amenable Banach algebras. These results
are due to Ghahramani and Zhang [14], who are credited with introducing
this notion of amenability and Choi, Ghahramani and Zhang [16].

Proposition 3.3.19. [14] Suppose each Ai, i ∈ I is pseudo-amenable. Then

⊕p
i∈IAi, p ≥ 0 is also pseudo-amenable.

Proof. LetA =⊕p
i∈IAi, p ≥ 0 and PJ be the projection from⊕p

i∈IAi, p ≥ 0

onto⊕p
i∈JAi, p ≥ 0, where J is a finite subset of I. Let ε > 0 be given. We

choose finite set F ⊂ A such that:

‖PJ(a)− a‖ < ε

2
, a ∈ F.

Since each Ai is pseudo-amenable, there exists ui ∈ Ai⊗̂Ai, i ∈ J such that∑
i∈J

‖Pi(a)ui − uiPi(a)‖ < ε

and ∑
i∈J

‖π(ui)Pi(a)− Pi(a)‖ < ε

2
,

where each Pi is the projection P{i}. Since each Ai is complemented in A,
then Ai⊗̂Ai can be viewed as an element of A⊗̂A. Clearly,

au = PJ(a)u =
∑
i∈I

Pi(a)ui and ua = uPJ(a) =
∑
i∈J

uiPi(a).

It follows that

‖au− ua‖ =

∥∥∥∥∑
i∈J

Pi(a)ui −
∑
i∈J

uiPi(a)

∥∥∥∥ ≤∑
i∈J

‖Pi(a)ui − uiPi(a)‖ < ε.
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Also since π is an A-bimodule homomorphism,

‖π(u)a− a‖ = ‖π(ua)− a‖

=

∥∥∥∥π(∑
i∈J

uiPi(a)

)
− a
∥∥∥∥ =

∥∥∥∥∑
i∈J

π(uiPi(a))− a
∥∥∥∥

=

∥∥∥∥∑
i∈J

(π(uiPi(a))− Pi(a) + Pi(a))− a
∥∥∥∥

=

∥∥∥∥∑
i∈J

(π(uiPi(a)− Pi(a))) +
∑
i∈J

Pi(a)− a
∥∥∥∥

≤
∥∥∥∥∑
i∈J

(π(ui)Pi(a))− Pi(a)

∥∥∥∥+

∥∥∥∥∑
i∈J

Pi(a)− a
∥∥∥∥

≤
∑
i∈J

‖π(ui)Pi(a)− a‖+ ‖PJ(a)− a‖∑
i∈J

‖π(ui)Pi(a)− Pi(a)‖+ ‖PJ(a)− a‖

<
ε

2
+
ε

2
= ε.

Proposition 3.3.20. [14] Let A and B be Banach algebras. If A is pseudo-
amenable and

θ : A → B

is a continuous epimorphism, then B is pseudo-amenable.

Proof. Since A is pseudo-amenable, then A has an apprimate diagonal and
so there exists a net (mα) ⊂ A⊗̂A, such that

a.mα −mα.a→ 0, π(mα)a→ a.

Also since θ is an epimorphism, then for every b ∈ A, there exists a ∈ A such
that θ(a) = b. Define a map

θ ⊗ θ : A⊗̂A → B⊗̂B.

Clearly, θ⊗θ is a Banach bimodule homomorphism. Let mα =
∑

k a
(α)
k ⊗b

(α)
k
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for all α. Then for any b ∈ B,

lim
α
b.(θ ⊗ θ)(mα) = lim

α
θ(a)(θ ⊗ θ)

(∑
k

a
(α)
k ⊗ b

(α)
k

)
= lim

α
θ(a)

∑
k

θ(a
(α)
k )⊗ θ(b(α)

k )

= lim
α

∑
k

θ(aa
(α)
k )⊗ θ(b(α)

k )

= lim
α

(θ ⊗ θ)
(∑

k

a
(α)
k ⊗ b

(α)
k θ(a)

)
= lim

α
(θ ⊗ θ)(mα)θ(a)

= lim
α

(θ ⊗ θ)(mα).b.

Also,

lim
α
πB((θ ⊗ θ)(mα))b = lim

α
πB(θ ⊗ θ)

(∑
k

a
(α)
k ⊗ b

(α)
k

)
θ(a)

= lim
α
πB

(∑
k

θ(a
(α)
k )⊗ θ(b(α)

k )θ(a)

)
= lim

α
πB

(∑
k

θ(a
(α)
k )⊗ θ(b(α)

k a)

)
= lim

α
θ

(∑
k

a
(α)
k b

(α)
k a

)
= lim

α
θ(πA(mα)a) = θ(a) = b.

Hence ((θ⊗θ)(mα)) is an approximate diagonal for B. Therefore, B is pseudo-
amenable.

The following is another interesting hereditary property of pseudo-amenable
Banach algebras.

Theorem 3.3.21. [14] Let A be a pseudo-amenable Banach algebra, and I
a two-sided closed ideal of A. If I has an approximate identity, say (xα)
such that the associated left and right multiplication operators Lα : a 7→ xαa
and Rα : a 7→ axα from A into I are uniformly bounded, then I is pseudo-
amenable.

Proof. By the uniform boundedness of the left and right multiplication op-
erators on (xα), there exists a constant K ≥ 1 such that ‖xαm‖ ≤ K‖m‖
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and ‖xαm‖ ≤ K‖m‖ for all α and m ∈ A⊗̂A. Suppose (mβ) ⊂ A⊗̂A is
an approximate diagonal for A. Then given ε > 0 and finite set F ⊂ I, we
choose β such that

‖amβ −mβa‖ ≤
ε

2K2

and
‖π(mβ)a− a‖ ≤ ε

2K
,

for a ∈ F . Then choose α such that

‖axα − xαa‖ <
ε

4‖mβ‖K
, ‖xαa− a‖ <

ε

4
,

and
‖π(mβ)(xαa− a)‖ < ε

4K
, (a ∈ F ).

We then have that

‖axαmβxα − xαmβa‖ = ‖axαmβxα − xαamβxα + xαamβxα − xαmβxαa‖
≤ ‖axαmβxα − xαamβxα‖+ ‖xαamβxα − xαmβxαa‖
= ‖axαmβxα − xαamβxα‖
+ ‖xαamβxα − xαmβaxα + xαmβaxα − xαmβxαa‖
≤ ‖axαmβxα − xαamβaxα‖
+ ‖xαamβxα − xαmβaxα‖+ ‖xαmβaxα − xαmβxαa‖
= ‖(axα − xα)mβxα‖
+ ‖xα(amβ −mβa)xα‖+ ‖xαmβ(axα − xαa)‖
≤ 2‖axα − xαa‖K‖mβ‖+ ‖xαmβ‖‖amβ −mβa‖
≤ 2‖axα − xαa‖K‖mβ‖+ ‖amβ −mβa‖K2

<
2ε

4‖mβ‖K
K‖mβ‖+

ε

2K2
K2 =

ε

2
+
ε

2
= ε.

Also,

‖π(xαmβxα)a− a‖ = ‖π(xαmβxα)a− π(xαmβ)a+ π(xαmβ)a− xαa+ xαa− a‖
≤ ‖π(xαmβxα)a− π(xαmβ)a‖+ ‖π(xαmβ)a− xαa‖
+ ‖xαa− a‖
≤ K‖π(mβ)(xα − a)‖+K‖π(mβ)a− a‖+ ‖xαa− a‖

< K
ε

4K
+K

ε

2K
+
ε

4
= ε,

for all a ∈ F . It therefore follows that a subnet of (xαmβxα) ⊂ I⊗̂I is an
approximate diagonal for I. Therefore, I is pseudo-amenable.
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Corollary 3.3.22. [14] Let A be a pseudo-amenable Banach algebra, and I
a two-sided closed ideal of A. If I has a bounded approximate identity, then
I is pseudo-amenable.

Proof. Let (xα) be a bounded approximate identity for I. Clearly, Lα :
a 7→ axα and Rα : a 7→ xαa are uniformly bounded, therefore I is pseudo-
amenable.

Proposition 3.3.23. [16] If A∗∗ is pseudo-amenable, so is A.

Proof. The proof follows from Theorem (3.3.14). Since A is a subset of
A∗∗ under the canonical embedding, we may choose (Nv) to be in A so that
for any a ∈ A,

a.Nv −Nv.a
w∗−→ 0, π(Nv)a

w∗−→ a.

By applying Theorem (2.1.16(iii)), we obtain another net (ζv) ⊂ A such
that

a.ζv − ζv.a
‖.‖−→ 0 and π(ζv)a

‖.‖−→ a.

3.3.3 Some relationships between notions of amenabil-
ity of Banach algebras

The following results show some interesting relationships involving approxi-
mate amenability, pseudo-amenability and weak amenability.

Theorem 3.3.24. [38] For a Banach algebra A, the following statements are
equivalent.

(i) A is approximately amenable.

(ii) A is w∗-approximately amenable.

(iii) A is approximately contractible.

(iv) A# is pseudo-amenable.

Proof. (i) =⇒ (ii) Obvious.
(ii) =⇒ (iii) Suppose A is w∗-approximately amenable. Then A# is also
w∗-approximately amenable. That is there exists a net (Mv) ⊂ (A#⊗̂A#)∗∗

such that for each a ∈ A, a.Mv −Mv.a → 0 and π∗∗(Mv) → e in the w∗-
topology on (A#⊗̂A#)∗∗ and (A#)∗∗ respectively. Let ε > 0 be given, we

59



take finite subsets F ⊂ A#, Φ ⊂ (A#)∗, and N ⊂ (A#⊗̂A#)∗∗. Then there
exists v such that

|〈a.f − f.a,Mv〉| = |〈f, a.Mv −Mv.a〉| < ε

and
|〈φ, π∗∗(Mv)− e〉| < ε,

for all a ∈ F, φ ∈ Φ and f ∈ N . By Theorem (2.1.16(ii)), and the
w∗-continuity of π∗∗, there exists m ∈ A#⊗̂A# such that

|〈f, a.m−m.a〉| = |〈a.f − f.a,m〉| < ε

and
|〈φ, π(m)− e〉| < ε,

for all a ∈ F, φ ∈ Φ and f ∈ N . Thus we have a net (mα) ⊂ A⊗̂A#

such that for every a ∈ A#, a.mα − mα.a → 0 and π(mα) → e in the w-
topology on A#⊗̂A# and A# respectively. Passing to convex combination
and applying Theorem (2.1.16(iii)), we obtain a net (mβ) ⊂ A#⊗̂A# such
that a.mβ −mβ.a → 0 and π(mβ) → e in the ‖.‖-topology on A#⊗̂A# and
A# respectively. It then follows that (iii) holds.
(iii) =⇒ (iv) This follows from Theorem (3.3.10).
(iv) =⇒ (i) This follows from Theorem (3.3.7).

Remark 3.3.25. Clearly, the result shows that approximate amenability as
a concept is stronger than pseudo-amenability. In the case when the Banach
algebra has a bounded approximate identity, then the Banach algebra being
pseudo-amenable is equivalent to it being approximately amenable [50].

The following result is a direct application of Theorem (3.3.24).

Proposition 3.3.26. [14] For a Banach algebra A, the following statements
are equivalent.

(i) A has an approximate diagonal (mα)α∈I ⊂ A⊗̂A such that (π(mα))α∈I
is bounded.

(ii) A is pseudo-amenable and has a bounded approximate identity.

(iii) A is approximately amenable and has a bounded approximate identity.

Proof. (i) =⇒ (ii) Obvious
(ii) =⇒ (iii) From Theorem (3.3.24), it suffices to show that A is

w∗-approximately amenable. Let X be a Banach A-bimodule. Since A has
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a bounded approximate identity, we may assume without loss of generality
that X is neo-unital. Let D : A → X∗ be a continuous derivation. We show
that D is w∗-approximately inner. Consider the following.
Let (mα) be an approximate diagonal for A and Φ : A⊗̂A → X∗ a bounded
linear map determined by

Φ(a⊗ b) = aDb.

Clearly,
‖Φ(a⊗ b)‖ = ‖aDb‖ ≤ ‖a‖‖b‖‖D‖,

which shows that
‖Φ‖ ≤ ‖D‖.

Let mα =
∑

k a
(α)
k ⊗ b

(α)
k for all α. Then

aΦ(mα) = aΦ

(∑
k

a
(α)
k ⊗ b

(α)
k

)
= a

∑
k

Φ(a
(α)
k ⊗ b

(α)
k )

=
∑
k

aa
(α)
k Db

(α)
k −

∑
k

a
(α)
k D(b

(α)
k a) +

∑
k

a
(α)
k D(b

(α)
k a)

=
∑
k

(aa
(α)
k Db

(α)
k − a

α)
k D(b

(α)
k a)) +

∑
k

a
(α)
k b

(α)
k Da+

∑
k

a
(α)
k D(b

(α)
k )a

=
∑
k

(Φ(aa
(α)
k ⊗ b

(α)
k )− Φ(a

(α)
k ⊗ b

(α)
k a)) +

∑
k

a
(α)
k b

(α)
k Da

+
∑
k

Φ(a
(α)
k ⊗ b

(α)
k )a

= Φ

(∑
k

aa
(α)
k ⊗ b

(α)
k −

∑
k

a
(α)
k ⊗ b

(α)
k a

)
+
∑
k

a
(α)
k b

(α)
k Da

+ Φ

(∑
k

a
(α)
k ⊗ b

(α)
k

)
a

= Φ(amα −mαa) + π(maα)D(a) + Φ(mα)a, (a ∈ A).

That is,
π(mα)D(a) = (aζα − ζαa)− Φ(amα −mαa),

where ζα = Φ(mα). Since X is neo-unital, D(a) = w∗− limα π(mα)D(a). Also

‖Φ(amα −mαa)‖ ≤ ‖Φ‖‖amα −mαa‖ ≤ ‖D‖‖amα −mαa‖ → 0.

Therefore, D(a) = w∗ − limα(aζα − ζαa), (a ∈ A).
(iii) =⇒ (i) Let (eβ) be a bounded approximate approximate identity for
A. Since A is approximately amenable, then by Theorem (3.3.24), A# is

61



pseudo-amenable. Let (Mα) be an approximate diagonal for A#. Without
loss of generality, let π(Mα) = e.
We set

Mα = uα + Fα ⊗ e+ e⊗Gα + cαe⊗ e, uα ∈ A⊗A, Fα, Gα ∈ A, cα ∈ C,

for all α. Notice that

e = π(Mα) = π(uα) + Fαe+Gαe+ cαe = Fα +Gα + cα.

Since e /∈ A, π(uα) + Fα +Gα 6= e, so that cαe = e, =⇒ cα = 1 for all α. It
follows that π(uα) + Fα +Gα = 0. Also,

auα − uαa− Fα ⊗ a+a⊗Gα = aMα −Mαa+ aFα ⊗ e+ cαae⊗ e− e⊗Gαa

− e⊗ cαe→ aFα ⊗ e+ cαa⊗ e− e⊗Gαa− e⊗ cαa
→ 0,

whenever aFα → −a, Gαa→ −a.
Set m = m(α,β) = uα + Fα ⊗ eβ + eβ ⊗Gα + eβ ⊗ eβ. Then for any a ∈ A,

am−ma = auα − uαa+ aeβ ⊗Gα − Fα ⊗ eβa+ aFα ⊗ eβ + aeβ ⊗ eβ
− eβ ⊗Gαa− eβ ⊗Gαa− eβ⊗β
β−→ auα ⊗ uαa+ a⊗Gα − Fα ⊗ a− a⊗ eβ + a⊗ eβ + eβ ⊗ a− eβ ⊗ a
α,β−−→ 0.

Also,

π(m) = π(uα) + Fαeβ + eβGα + e2
β

β−→ π(uα) + Fα +Gα + eβ

= 0 + eβ = eβ.

Then clearly, for any a ∈ A, π(m)a → a. That (π(mα)) is bounded readily
follows from the fact that A has a bounded approximate identity.

Proposition 3.3.27. [14] Let A be a Banach algebra with a central approx-
imate identity. If A is approximately amenable, then it is pseudo-amenable.

Proof. Let (eα) be a central approximate identity for A. Then given ε > 0
and finite subset F of A, there exists eα1 , eα2 ∈ (eα) such that

‖eα1a− a‖ <
ε

2
, ‖eα1eα2a− eα1a‖ <

ε

2
, a ∈ F.
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Let D : A → X = ker π be a bounded derivation defined by

D(a) = aeα1 ⊗ eα2 − eα1 ⊗ eα2a.

Since A is approximately amenable, then by Theorem (3.3.24), it is ap-
proximately contractible, so that there exists a u = u(eα1, eα2 , ε, F ) ∈ X,
such that

‖D(a)− (au− ua)‖ < ε, (a ∈ F ).

Set M = eα1 ⊗ eα2 − u. Then clearly, M ∈ A⊗̂A. It follows that,

‖aM −Ma‖ = ‖a(eα1 ⊗ eα2 − u)− (eα1 ⊗ eα2 − u)a‖
= ‖aeα1 ⊗ eα2 − au− eα1 ⊗ eα2a+ ua‖
= ‖aeα1 ⊗ eα2 − eα1 ⊗ eα2a− (au− ua)‖
= ‖D(a)− (au− ua)‖ < ε.

Also,

‖π(M)a− a‖ = ‖π(eα1 ⊗ eα2 − u)a− a‖
= ‖π(eα1 ⊗ eα2)a− π(u)a− a‖
= ‖eα1eα2a− a‖
≤ ‖eα1eα2a− eα1a‖+ ‖eαaa− a‖
= ‖eα2eα1a− eα1a‖+ ‖eαaa− a‖
< ε,

for a ∈ F . Hence M is an approximate diagonal for A.

Corollary 3.3.28. [14] Any approximately amenable commutative Banach
algebra is pseudo-amenable.

Proof. Let b, c ∈ A be fixed such that for any finite set F ,

‖ba− a‖ < ε

2
, ‖cba− ba‖ < ε

2
, (a ∈ F ).

Let D : A → X = ker π be a bounded derivation determined by

D(a) = ab⊗ c− b⊗ ca.

Then the rest of the proof follows.

We state the following without proof.

Proposition 3.3.29. [13] Any pseudo-amenable Banach algebra is weakly
amenable. A pseudo-amenable Banach algebra with reflexive underlying space
is permanently approximately weakly amenable.
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Chapter 4

Amenability property of C(X )

In this chapter, we discuss some interesting algebraic and topological proper-
ties of C(X ). In the case where X is a compact Hausdorff space, we give the
proof of the amenability of C(X ) which is a result due to Seinberg. We fur-
ther discuss the construction of a bounded approximate diagonal for C(X ),
a result credited to Abtahi and Zhang.

4.1 The Banach algebra C(X )
Recall that for a non empty set S, CS the collection of all complex valued
functions on S is a commutative unital algebra with respect to pointwise
product. Also recall that for a locally compact Hausdorff space X , C(X ) is
the algebra of all complex valued continuous functions over X . We noted
that C(X ) is a subalgebra of CX and is therefore commutative. We also
defined Cb(A) ⊂ C(X ) as the algebra of all bounded, continuous complex
valued functions over X and Cb(X ) equipped with the norm

‖φ‖∞ = sup
t∈X
|φ(t)| (φ ∈ Cb(X )),

is a Banach algebra, where ‖.‖∞ is the uniform norm. A function φ ∈ C(X )
is said to vanish at infinity if given ε > 0, there exists a compact set Mε ⊂ X ,
such that |φ(t)| < ε, for every t ∈ X \Mε. We denote by C0(X ), the collection
of all φ ∈ C(X ) that vanish at infinity. Clearly each φ ∈ C0(X ) is bounded,
which implies that C0(X ) is a subalgebra of Cb(X ). Notice further that
the limit of a sequence of continuous functions that vanish at infinity also
vanishes at infinity, it follows that C0(X ) is closed and is therefore a Banach
algebra when equipped with the uniform norm. Since the constant functions,
the zero function excluded, do not satisfy this property, C0(X ) is not unital.
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Let Z̃(φ) = {t ∈ X : φ(t) = 0}, the support of φ, suppφ = X \ Z̃(φ). The
collection of all φ ∈ C(X ) with compact support is denoted by Cc(X ). It
should be noted that Cc(X ) is not necessarily a Banach algebra and that
Cc(X ) is dense in C0(X ). It follows that, C0(X ) is referred to as the com-
pletion of Cc(X ). In [43], it is shown that a subalgebra H of CX seperates
the points of X if for every distinct points s, t ∈ X , there exists φ ∈ H such
that φ(s) 6= φ(t). The subalgebra H seperates strongly the points of X if it
seperates the points of X , and for every t ∈ X there exists ϕ ∈ H such that
ϕ(t) 6= 0.

Proposition 4.1.1. [43] Let X be a non empty locally compact space and let
A be a subalgebra of C0(X ) which seperates strongly the points of X . Then
A is a function algebra on X .

For a completely regular topological space, say Ω, the following is an
interesting property of Cb(Ω).

Lemma 4.1.2. [9]

(i) Let U be an open neighboorhood of a compact set K, there exists a
φ ∈ Cb(Ω) such that 0 ≤ φ ≤ 1 and suppφ ⊂ U , if ϕ ∈ Cb(K), there
exists a ϕ̃ ∈ Cb(Ω) such that ϕ̃|K = ϕ and supp ϕ̃ ⊂ U .

(ii) If {Ui, i = 1, 2, ..., n} is an open cover of K, then there exist hi ∈ Cb(Ω),
i = 1, 2, ..., n, such that 0 ≤ hi ≤ 1, supphi ⊂ Ui, and

∑n
i=1 hi(t) = 1

for all t ∈ K.

Remark 4.1.3. Since a locally compact Hausdorff space is completely reg-
ular, we may choose X = Ω.

Remark 4.1.4. The collection {h1, h2, ..., hn} is referred to as the partition
of unity.

Another interesting subalgebra of C(X ) is CR(X ), the algebra of all con-
tinuous real valued functions on X . Notice that since R is a Banach space,
it then follows that CR(X ) is indeed a Banach algebra. It should be noted
that in the case when X is compact, Cc(X ) = C0(X ) = Cb(X ) = C(X ).

4.2 Amenability of C(X )
The Gel’fand representation theorem shows that any commutative C∗-algebra
A is isometrically isomorphic to C0(ΦA), where ΦA is the character space of
A. Recall that ΦA is a locally compact Hausdorff space with respect to the
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Gel’fand topology described earlier. Also recall that ΦA has a one point
compactification ΦA ∪ ϕ∞ where ϕ∞ is the zero functional. In general, for a
locally compact Hausdorff space X , the unitization of C0(X ) is C(Y), where
Y is the one point compactification of X . Furthermore, Corollary (3.1.31)
shows that if the unitization of a Banach algebra is amenable, so is the
Banach algebra. It then follows that studying the amenability properties of
C0(X ) gives a rich insight into the amenability properties of a rich collection
of Banach algebras.

The proof of the amenability of the Banach algebra C(X ) by Seinberg
depends substantially on the version of Stone - Weierstass theorem given
below.

Theorem 4.2.1 (Stone - Weierstrass). Let X be a locally compact Hausdorff
space and B a subalgebra of C0(X ). B is dense if it is closed under complex
conjugation, seperates points of X and does not varnish identically at any
point of X .

We give the proof of the result due to Seinberg below.

Theorem 4.2.2. [48] Let X be a compact Hausdorff space, then C(X ) is
amenable.

Proof. Let G = CR(X ). Clearly, G is an additive abelian group and is
therefore amenable as a group. This further shows that the group algebra
l1(G) is amenable as a Banach algebra. Notice that each f ∈ l1(G) is of the
form f =

∑
h∈G ahδh, where δh is the characteristic function of (h), ah ∈ R

and
∑

h∈G |ah| <∞.
Let

θ : l1(G) 7→ C(X )

be determined by

θ

(∑
h∈G

ahδh

)
=
∑
h∈G

ah exp(ih)

Clearly,

‖θ(f)‖G =

∥∥∥∥θ(∑
h∈G

ahδh

)∥∥∥∥ =

∥∥∥∥∑
h∈G

ah exp(ih)

∥∥∥∥ ≤∑
h∈G

|ah|‖ exp(ih)‖ ≤
∑
h∈G

|ah|

≤ ‖
(∑
h∈G

ahδh

)∥∥∥∥
G

= ‖f‖G
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Also,

θ

( ∑
h1∈G

ah1δh1 ?
∑
h2∈G

ah2δh2

)
= θ

( ∑
h1+h2=h3

ah1ah2δh3

)
=
∑
h3∈G

ah1ah2 exp(ih3)

=
∑
h3∈G

ah1ah2 exp(ih1) exp(ih2)

=
∑
h1∈G

ah1 exp(ih1)
∑
h2∈G

ah2 exp(ih2)

= θ

( ∑
h1∈G

ah1δh1

)
θ

( ∑
h2∈G

ah2δh2

)
.

This shows that θ is a norm decreasing homomorphism and is therefore
continuous. Notice that θ(l1(G)) contains the identity element in C(X ).
Furthermore, θ(l1(G)) seperates points of X . Notice that for any h ∈
CR(X ), exp(ih) = exp(ih) = exp(−ih) ∈ C(X ), so that for every f ∈ l1(G),

θ(f) = θ

(∑
hc∈G

ahδh

)
=
∑
h∈G

ah exp(ih) =
∑
h∈G

ah exp(−ih).

It follows
θ(f) = θ(f) ∈ θ(l1(G)),

so that θ(l1(G)) is closed under complex conjugation. By applying Theorem
(4.2.1), θ(l1(G)) is dense in C(X ). It therefore follows from Theorem
(3.1.24) that C(X ) is amenable.

Although Seinberg already gave a concise proof of the amenability of
C(X ) for a compact Hausdorff space X , the abstractness of the proof given
by Seinberg does not allow for a genaralisation of the amenability property of
C(X ) to the Banach algebra C(X ,A) for a non commutative Banach algebra
A. Recall the famous result of Johnson, which showed that a Banach algebra
is amenable if and only if it has a bounded approximate diagonal. Abtahi
and Zhang [2] in 2010, constructed a bounded approximate diagonal for C(X )
for a compact Hausdorff space X making use of the following result due to
Helemskii.

Lemma 4.2.3. [25] For Banach algebras A and B, if u =
∑n

i=1 ui ⊗ vi ∈
A⊗̂B, then the projective tensor norm of u,

‖u‖p ≤
1

n

n∑
k=1

∥∥∥∥ n∑
l=1

ulζ
kl

∥∥∥∥∥∥∥∥ n∑
j=1

vjζ
−kj
∥∥∥∥,
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where ζ = e2πi
n .

The following lemma by Abtahi and Zhang is a direct consequence of
Lemma (4.2.3).

Lemma 4.2.4. [2] Let n ∈ N and zk, wk ∈ C, k ∈ Nn. Let ζ = eiθ, where
θ = 2π

n
. Then

1

n

n∑
k=1

∣∣∣∣ n∑
l=1

zlζ
kl

∣∣∣∣∣∣∣∣ n∑
j=1

wjζ
−kj
∣∣∣∣ ≤ 1

2

( n∑
l=1

|zi|2 +
n∑
j=1

|wj|2
)
.

Proof. Let 1 ≤ k ≤ n, let αk =

∣∣∣∣ n∑
l=1

zlζ
kl

∣∣∣∣ and βk =

∣∣∣∣ n∑
j=1

wjζ
−kj
∣∣∣∣. If

A =
1

n

n∑
k=1

αkβk,

then clearly,

A ≤ 1

2n

n∑
k=1

(αk
2 + βk

2).

Notice that

α2
k =

( n∑
l=1

zlζ
kl

)( n∑
l=1

zlζkl
)

=
n∑
l=1

zlζ
kl

n∑
l

z̄lζ
−kl =

n∑
l=1

|zl|2

+ 2 Re
∑
j<l

zj z̄jζ
k(l−j).

For 1 ≤ j < l ≤ n, ζ l−j is clearly an nth root of unity and ζ l−j 6= 1, so
that

n∑
l=1

ζk(l−j) = 0.

Therefore,

α2
k =

( n∑
l=1

zlζ
kl

)( n∑
l=1

zlζkl
)

=
n∑
l=1

zlζ
kl

n∑
l=1

z̄lζ
−kl =

n∑
l=1

|zl|2

+ 2 Re
∑
j<l

zj z̄jζ
k(l−j) =

n∑
l=1

|zl|2.
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In a similar manner, we obtain

β2
k =

n∑
j=1

|wj|2.

Hence the proof follows.

Corollary 4.2.5. [2] Let X be a compact space, let u =
∑n

k=1 uk ⊗ vk ∈
C(X )⊗̂C(X ). Then,

‖u‖p ≤
1

2

(∥∥∥∥ n∑
i=1

|ui|2
∥∥∥∥
∞

+

∥∥∥∥ n∑
j=1

|vj|2
∥∥∥∥
∞

)
.

Proof. Let u =
∑

k uk⊗ vk ∈ C(X )⊗C(X ). By combining Lemma (4.2.3)
and Lemma (4.2.4), we have that

‖u‖p ≤
1

n

n∑
k

∥∥∥∥ n∑
i=1

uiζ
ki

∥∥∥∥∥∥∥∥ n∑
j=1

vjζ
−kj
∥∥∥∥ ≤ 1

2

( n∑
i=1

|ui|2 +
n∑
j=1

|vj|2
)

≤ 1

2

(∥∥∥∥ n∑
i=1

|ui|2
∥∥∥∥+

∥∥∥∥ n∑
j=1

|vj|2
∥∥∥∥).

We now give the constructive proof of the amenability of C(X ) for com-
pact Hausdorff space X .

Theorem 4.2.6. [2] Let X be a compact Haursdorff space, then C(X ) has a
bounded approximate diagonal and is therefore amenable.

Proof. Let F be a finite subset of C(X ) and ε > 0. Given t ∈ X , there exists a
neighbourhood Vt of t such that, if t∗ ∈ Vt and φ ∈ F , then |φ(t∗)−φ(t)| < ε

2
.

Since X is compact, it has a finite cover. Without loss of generality, we

choose open subsets V1, V2, ..., Vn ⊂ X , such that X =
n⋃
i=1

Vi. Each Vi for

i = 1, 2, ..., n is chosen such that Vi = Vti for each i. That is each Vi is a
neighbourhood of ti ∈ X , i = 1, 2, ..., n. Hence by Lemma (4.1.2(ii)), there
exists a partition of unity {h1, h2, ..., hn} such that supp(hk) ⊂ Vk, 1 ≤ k ≤ n,
and

∑n
k=1 hk = 1 on X . Let uk =

√
hk, u =

∑n
k=1 uk ⊗ uk, k = 1, 2, ..., n.

Then

π(u) = π

( n∑
k=1

uk ⊗ uk
)

=
n∑
k=1

π(uk ⊗ uk) =
n∑
k=1

u2
k =

n∑
k=1

hk = 1,

for every t ∈ X . It suffices to show that:
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(i) ‖u‖p ≤ 1,

(ii) ‖φu− uφ‖p < ε for all φ ∈ F .

By Corollary (4.2.5),

‖u‖p ≤
1

2

(∥∥∥∥ n∑
k=1

|uk|2
∥∥∥∥+

∥∥∥∥ n∑
k=1

|uk|2
∥∥∥∥) ≤ 1

2

(∥∥∥∥ n∑
k=1

hk

∥∥∥∥+

∥∥∥∥ n∑
k=1

hk

∥∥∥∥)
=

1

2
(1 + 1) = 1.

In addition, let φ ∈ F , we choose each φk such that φk = φ− φ(xk). Notice
that for any s ∈ Vk,

|φk(s)| = |φ(s)− φ(tk)| ≤
ε

2
.

Also,

φu− uφ =
n∑
k=1

(φuk ⊗ uk − uk ⊗ ukφ)

=
n∑
k=1

(φuk ⊗ uk − uk ⊗ φuk)

=
n∑
k=1

(φuk ⊗ uk − φ(tk)uk ⊗ uk + φ(tk)uk ⊗ uk − uk ⊗ uk)

=
n∑
k=1

(φuk ⊗ uk − φ(tk)uk ⊗ uk + uk ⊗ φ(tk)uk − uk ⊗ φuk)

=
n∑
k=1

(
(φ− φ(tk))uk ⊗ uk − uk ⊗ (φ− φ(tk)uk)

)
=

n∑
k=1

φkuk ⊗ uk −
n∑
k=1

uk ⊗ φkuk.

Therefore,

‖φu− uφ‖p =

∥∥∥∥ n∑
k=1

φkuk ⊗ uk−
n∑
k=1

uk ⊗ φkuk
∥∥∥∥
p

≤
∥∥∥∥ n∑
k=1

φkuk ⊗ uk
∥∥∥∥
p

+

∥∥∥∥ n∑
k=1

uk ⊗ φkuk
∥∥∥∥
p

.
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We set
δ =

ε

2
.

It then follows that

n∑
k=1

φkuk ⊗ uk =

√
δ√
δ

n∑
k=1

φkuk ⊗ uk =
n∑
k=1

1√
δ
φkuk ⊗

√
δuk.

By applying Corollary (4.2.5),∥∥∥∥ n∑
k=1

φkuk ⊗ uk
∥∥∥∥
p

≤ 1

2

(∥∥∥∥ n∑
k=1

1

δ
|φkuk|2

∥∥∥∥
∞

+

∥∥∥∥ n∑
k=1

δ|uk|2
∥∥∥∥
∞

)
=

1

2

(∥∥∥∥ n∑
k=1

1

δ
|φk|2|uk|2

∥∥∥∥
∞

+

∥∥∥∥ n∑
k=1

δ|uk|2
∥∥∥∥
∞

)
=

1

2

(∥∥∥∥ n∑
k=1

1

δ
|φk|2hk

∥∥∥∥
∞

+

∥∥∥∥ n∑
k=1

δhk

∥∥∥∥
∞

)
=

1

2

(
1

δ

∥∥∥∥ n∑
k=1

|φk|2hk
∥∥∥∥
∞

+ δ

∥∥∥∥ n∑
k=1

hk

∥∥∥∥
∞

)
≤ 1

2

(
2

ε

ε2

4
+
ε

2

)
=

1

2

(
ε

2
+
ε

2

)
=
ε

2
.

In a similar manner, we obtain∥∥∥∥ n∑
k=1

uk ⊗ φkuk
∥∥∥∥
p

<
ε

2
.

Hence,

‖φu− uφ‖p <
ε

2
+
ε

2
= ε.
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Chapter 5

Some notions of amenability of
C(X ,A)

Let X be a compact Hausdorff space andA a Banach algebra. In this chapter,
we discuss some important properties of the Banach algebra C(X ,A). We
also give the construction of a bounded approximate diagonal for C(X ,A)
and show that C(X ,A) is amenable if and only if A is amenable. This result
is credited to Ghamarshoushtari and Zhang, see [17]. We further discuss the
weak amenability of C(X ,A) and show that if A is commutative and weakly
amenable, then C(X ,A) is also weakly amenable. This result can be found
in [49] and is due to Zhang.

5.1 The Banach algebra C(X ,A)
Let X be a compact Hausdorff space and A a Banach algebra. The collection
of allA-valued continuous functions on X is denoted by C(X ,A). If we define
a pointwise product and the uniform norm:

‖f‖∞ = sup
t∈X
‖f(t)‖A (f ∈ C(X ,A))

on C(X ,A), where ‖.‖A is the norm on A, then C(X ,A) is a Banach algebra.
It should be noted that C(X ,A) is not in general a commutative Banach
algebra, and is commutative if A is also commutative. Let I be a closed two
sided ideal of A. Notice that for any f ∈ C(X ,A), g ∈ C(X , I), fg(x) =
f(x)g(x) ∈ I and gf(x) = g(x)f(x) ∈ I, for all x ∈ X . This shows that
C(X , I) is a closed two sided ideal of C(X ,A). In particular, C(X ,A) is
a closed two sided ideal of C(X ,A#). As a matter of fact, the algebraic
structure of C(X ,A) is determined by the Banach algebra A.
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The following is an important result by Hausner, which serves as a basis
for the proofs of some of the results in this chapter.

Lemma 5.1.1. [24] Let f ∈ C(X ,A) and ε > 0. Then there exist ai ∈ A,
and φi ∈ C(X ) such that: ∥∥∥∥f − n∑

i=1

φiai

∥∥∥∥
∞
< ε.

Remark 5.1.2. The result above shows that C(X )A = C(X ,A). That is,
lin{φa : φ ∈ C(X ), a ∈ A} is dense in C(X ,A).

The following result shows that the Banach algebra C(X ,A) is identi-
fied with the injective tensor product C(X )⊗̆A, where the relationship is
determined by the map;

(φ⊗ a)(x) = φ(x)a, x ∈ X , φ ∈ C(X ), a ∈ A.

Theorem 5.1.3. [43] Let X be a locally compact Hausdorff space and A a
Banach algebra. Then the map defined above induces an isometric algebra
isomorphism of C0(X )⊗̆A onto C0(X ,A).

Remark 5.1.4. The proof of Theorem (5.1.3) shows that the image of
C0(X )⊗̆A is closed under complex conjugation and seperates points of X
and is therefore dense in C0(X ,A) by Theorem (4.2.1). It should be noted
that since a compact space is also locally compact, the result also holds for
C(X ,A) when the Hausdorff space X is compact.

5.2 Amenability of C(X ,A)
It is known that the algebraic properties of C(X ,A) derives from those of
the range Banach algebra A. We are often interested in finding out if this
further implies that the amenability properties of C(X ,A) can be inferred
directly from that of A. Ghamarshoushtari and Zhang [17] recently gave
an all important answer to this question. They showed that C(X ,A) being
amenable is equivalent to A being amenable. It should be noted that the
result is a generalisation of the result due to Abtahi and Zhang [2], which
was the focus of our study in the previous chapter and that it relies heavily
on the important inequality due to Grothendieck which is given below.
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Theorem 5.2.1 (Grothendieck). Let X1,X2 be compact Hausdorff spaces,
and let Φ be a bounded scalar valued bilinear form on C(X1)⊗C(X2). Then
there exists probability measures µ1, µ2 on X1,X2 respectively, such that

|Φ(ϕ1, ϕ2)| ≤ K‖Φ‖
(∫

X1

|ϕ1|2dµ1

∫
X2

|ϕ2|2dµ2

) 1
2

, (ϕ1 ∈ C(X1), ϕ2 ∈ C(X2)).

Remark 5.2.2. The smallest of such K is referred to as the Grothendieck
constant denoted by KC

G. In [23], we see that 4
π
≤ KC

G < 1.405.

Corollary 5.2.3. [17] Let X1,X2 be compact Hausdorff spaces, let u =∑
k=1 φi ⊗ ϕi ∈ C(X1)⊗ C(X2). Then,

‖u‖p ≤ c

(∥∥∥∥ n∑
k=1

|φi|2
∥∥∥∥
∞

+

∥∥∥∥ n∑
k=1

|ϕi|2
∥∥∥∥
∞

)
,

where c = 1
2
KC
G

Proof. Let φ⊗ϕ be an elemental tensor in C(X1)⊗C(X2). Then by Theorem
(5.2.1),

‖φ⊗ ϕ‖p = sup
Φ∈B2(C(X1),C(X2))

|Φ(φ, ϕ)|

≤ KC
G

(∫
|φ|2dµ1

∫
|ϕ|2dµ2

) 1
2

≤ c

(∫
|φ|2dµ1 +

∫
|ϕ|2dµ2

)
.

It then follows that for any u =
∑n

i=1 φi ⊗ ϕi,

‖u‖p ≤ c

(∫ n∑
i=1

|φi|2dµ1 +

∫ n∑
i=1

|ϕi|2dµ2

)
≤ c

(∥∥∥∥ n∑
i=1

|φi|2
∥∥∥∥
∞

+

∥∥∥∥ n∑
i=1

|ϕi|2
∥∥∥∥
∞

)
.

We now give the proof of the result due to Ghamarshoushtari and Zhang.

Theorem 5.2.4. [17] Let X be a compact Hausdorff space and A a Banach
algebra, C(X ,A) has a bounded approximate diagonal if and only if A has a
bounded approximate diagonal.
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Proof. Let u =
∑

i ui ⊗ vi ∈ C(X )⊗̂C(X ), α =
∑

j αj ⊗ βj ∈ A⊗̂A. We
define a map,

T :

(
C(X )⊗̂C(X ),A⊗̂A

)
→ C(X ,A)⊗̂C(X ,A),

by

T (u, α) =
∑
i,j

uiαj ⊗ viβj.

Clearly,

‖T (u, α)‖ =

∥∥∥∥∑
i,j

uiαj ⊗ viβj
∥∥∥∥ ≤∑

i,j

‖uiαj ⊗ viβj‖p ≤ ‖u‖p‖α‖p.

This shows that T is bounded if u and α are bounded. Suppose (αλ) ⊂ A⊗̂A
is a bounded approximate diagonal for A, then, there exists K > 0 such that
‖αλ‖p ≤ K, for all λ. Let F ⊂ C(X ,A) be a finite set, our aim is to show
that given ε > 0, there exists U = U(F,ε) ⊂ C(X ,A)⊗C(X ,A) and a constant
K1 > 0 such that for any f ∈ F ,

(i) ‖U‖p ≤ K1,

(ii) ‖f.U − U.f‖p < ε,

(iii) ‖π(U)f − f‖ < ε.

Recall that for any φ ∈ C(X ) and a ∈ A, φa ∈ C(X ,A). Also by Lemma
(5.1.1), V = lin{φa : φ ∈ C(X ), a ∈ A} is dense in C(X ,A). Hence natu-
rally we have two cases for the nature of the finite set F .

Case 1: Suppose each f ∈ F is of the form
∑

k φkak, φk ∈ C(X ), ak ∈ A.
Clearly the collection of the aks in the finite set F form a finite set FA ⊂ A
and the collection of the φks form a finite set FC ⊂ C(X ). Let L > 0 be such
that ‖b‖A ≤ L, b ∈ FA, ‖φ‖∞ ≤ L, φ ∈ FC . By the compactness of X , there

exist a finite cover V1, ..., Vn of X such that X =
n⋃
i=1

Vi and

|φ(s)− φ(t)| < ε

8cNL‖α‖p
, φ ∈ FC , s, t ∈ Vi, i = 1, ..., n.

By applying Lemma (4.1.2(ii)), we obtain continuous functions h1, ..., hn ∈
C(X ) such that supp(hi) ⊂ Vi,

∑n
i=1 hi = 1 on X .
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Let u =
∑n

i=1 ui ⊗ ui ∈ C(X )⊗ C(X ), where ui =
√
hi. Clearly ‖u‖p ≤ 2c

and

‖φ.u− u.φ‖P ≤
∥∥∥∥∑

i

(φ−φ(ti))ui⊗ui
∥∥∥∥
p

+

∥∥∥∥∑
i

ui⊗(φ−φ(ti))ui

∥∥∥∥
p

<
ε

2LN‖α‖p
.

In addition, for any α ∈ (αλ),

‖b.α− α.b‖p <
ε

4cNL
, ‖π(α)b− b‖A <

ε

4NL
.

We therefore have that,

‖U‖p = ‖T (u, α)‖p ≤ ‖u‖p‖α‖p ≤ 2Kc

for all α ∈ (αλ). We set K1 = 2Kc. Notice that

f.U =
∑
k

φkakT (u, α) =
∑
k

φkak
∑
i,j

uiαj ⊗ viβj

=
∑
k

∑
i,j

φkuiakαj ⊗ viβj =
∑
k

T (φku, akα).

Also,

U.f = T (u, α)
∑
k

φkak =
∑
i,j

uiαj ⊗ viβj
∑
k

φkak

=
∑
k

∑
i,j

uiαj ⊗ viφkβjak =
∑
k

T (uφk, αak).

Notice that ,

T (φku, akα− αak) =
∑
i,j

φkuiakαj ⊗ viβjak −
∑
i,j

φkuiαj ⊗ viβjak

= T (φku, αak)− T (φku, αak).

And,

T (φku− uφk, αak) =
∑
i,j

φkuiαj ⊗ viβjak −
∑
i,j

uiαj ⊗ viφkβjak

= T (φku, αak)− T (uφk, αak).
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We have that,

‖f.U − U.f‖p =

∥∥∥∥∑
k

T (φku, akα)−
∑
k

T (uφk, αak)

∥∥∥∥
p

≤
∥∥∥∥∑

k

T (φku, akα− αak)−
∑
k

T (φku− uφk, αak)
∥∥∥∥
p

≤
∑
k

‖T (φku, akα− αak)‖p +
∑
k

‖T (φku− uφk, αak)‖p

≤
∑
k

‖u‖p‖φk‖∞‖akα− αak‖p +
∑
k

‖φku− uφk‖p‖α‖p‖ak‖A

≤ 2Lc
ε

4cNL

∑
k

1 + ‖α‖pL
ε

2‖α‖pLN
∑
k

1

≤ NL

(
2c

ε

4cNL
+ ‖α‖p

ε

2‖α‖pLN

)
= ε.

Further more,

‖π(U)f − f‖ = ‖π(u)π(α)f − f‖

= ‖π(α)f − f‖ =

∥∥∥∥π(α)
∑
k

φkak −
∑
k

φkak

∥∥∥∥
∞

=

∥∥∥∥∑
k

φk(π(α)ak − ak)
∥∥∥∥
∞
≤
∑
k

‖φk(π(α)ak − ak)‖∞

=
∑
k

‖φk‖∞‖π(α)ak − ak‖A ≤
∑
k

L‖π(α)ak − ak‖A

< L
ε

NL

∑
k

1 ≤ NL
ε

NL
= ε.

Case 2:
Let F be any finite set in C(X ,A), notice that every f ∈ C(X ,A) is

approximately equal to fε =
∑n

k=1 φkak, where φk ∈ C(X ), ak ∈ A. In
addition, since X is a compact set, there exists X1, ..., Xn ⊂ X , such that

X =
n⋃
k=1

Xk and ‖f(x)− f(y)‖A < ε, for x, y ∈ Xk. Let ak = f(xk) for

each xk ∈ Xk. From Lemma (4.1.2(ii)), there are φk ∈ C(X ), such that
supp(φk) ⊂ Xk for all k = 1, ..., n, 0 ≤ φk(x) ≤ 1, x ∈ X , and

∑
k φk = 1 on

X . Clearly, fε =
∑

k φkak satisfies the requirement.
We may choose each fε =

∑
k φkak such that for any f ∈ F,

‖f − fε‖∞ < min

{
ε

4K
,
ε

8Kc

}
.
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It follows that Fε = {fε, f ∈ F} is a finite subset of C(X ,A) satisfy-
ing all the conditions in Case 1, so that there exists a U = T (u, α) ∈
C(X ,A)⊗̂C(X ,A), such that,

‖U‖p ≤ 2Kc, ‖fε.U − U.fε‖p <
ε

2
, ‖π(U)fε − fε‖A <

ε

2
, fε ∈ Fε.

Hence for any f ∈ F ,

‖f.U − U.f‖p = ‖(f − fε + fε).U − U.(f − fε + fε)‖p
= ‖f.U − fε.U + fε.U − U.f + U.fε − U.fε‖p
= ‖(f − fε).U + (fε − f).U + fε.U − U.fε‖p
≤ ‖(f − fε).U‖p + ‖(fε − f).U‖p + ‖fε.U − U.fε‖p
≤ ‖f − fε‖∞‖U‖p + ‖fε − f‖∞‖U‖p + ‖fε.U − U.fε‖p
< 2

ε

8Kc
2Kc+

ε

2
= ε.

Also,

‖π(U)f − f‖ = ‖π(U)(f − fε + fε)− (f − fε + fε)‖
= ‖π(U)f − π(U)fε + π(U)fε − f + fε − fε‖
= ‖π(U)(f − fε) + fε − f + π(U)fε − fε‖
≤ ‖π(U)(f − fε)‖+ ‖fε − f‖+ ‖π(U)fε − fε‖
≤ ‖π(U)‖‖f − fε‖∞ + ‖fε − f‖∞ + ‖π(U)fε − fε‖
= ‖π(u)π(α)‖‖f − fε‖∞ + ‖fε − f‖∞ + ‖π(U)fε − fε‖
= ‖π(α)‖‖f − fε‖∞ + ‖fε − f‖∞ + ‖π(U)fε − fε‖
≤ ‖α‖p‖f − fε‖∞ + ‖fε − f‖∞ + ‖π(U)fε − fε‖A
< K

ε

4K
+
ε

4
+
ε

2
= ε.

This shows that C(X ,A) has a bounded approximate diagonal.
Conversely, Suppose C(X ,A) has a bounded approximate diagonal, then it
is amenable. We define a linear map

θ : C(X ,A)→ A, f 7→ f(t0) (f ∈ C(X ,A)),

where t0 is fixed in X . Clearly, θ is an epimorphism so that by Theorem
(3.1.24), A has a bounded approximate diagonal.

Remark 5.2.5. Notice that since A is asummed to be amenable then it
has a bounded approximate identity. Without loss of generality, we may
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suppose that (π(αλ)) is a bounded approximate identity for A. Recall that a
bounded approximate identity for A is also a bounded approximate identity
for C(X ,A), it then follows that given ε > 0, α ∈ (αλ), f ∈ F ⊂ C(X ,A),

‖π(U)f − f‖ = ‖π(u)π(α)f − f‖ = ‖π(α)f − f‖ < ε.

This is an alternative proof of part (iii) of the requirements for (Uλ) to be a
bounded approximate diagonal for C(X ,A).

Remark 5.2.6. By virtue of Theorem (5.1.3), an alternative way to show
that C(X ,A) is amenable wheneverA is amenable is to determine if C(X )⊗̆A
is amenable. It also serves as an abstract proof of the afore-stated theorem.

5.3 Weak amenability of C(X ,A)
Let X be a compact Hausdorff space. In the section above, we showed
that we are often interested in determining if the amenability properties of
C(X ,A) can be derived from that of its range algebra A. The case of the
weak amenability of C(X ,A) is no different. Recently, Zhang [49] showed
that for a commutative Banach algebra A, the implication actually holds.
This section will be entirely concerned with discussing the proof by Zhang.
Consider the following.

Theorem 5.3.1. [17] Let X be a compact Hausdorff space and A be a com-
mutative Banach algebra with a bounded approximate identity. If A is weakly
amenable, then so is C(X ,A).

Proof. Since A is commutative, so is C(X ,A). Also, A is a closed subalgebra
of C(X ,A). It follows that for any a ∈ A, g ∈ C(X ,A), ag, ga ∈ C(X ,A),
and;

‖ag‖∞ ≤ ‖a‖‖g‖∞, ‖ga‖∞ ≤ ‖a‖‖g‖∞,

which shows that C(X ,A) is a Banach A-bimodule. Also note that C(X ,A)
is a Banach C(X )-bimodule. By virtue of Definition (3.2.1), we are to show
that every continuous derivation from C(X ,A) into C(X ,A)∗ is trivial. Let

D : C(X ,A)→ C(X ,A)∗

be a continuous derivation. Since A is a closed subalgebra of C(X ,A),

D|A : A → C(X ,A)∗

79



is a continuous derivation. But A is commutative and weakly amenable, it
then follows that D|A ≡ 0. Let (eλ) be a bounded approximate identity for
A. Then clearly for any g ∈ C(X ,A),

‖geλ − g‖∞, ‖eλg − g‖∞ → 0,

for all λ. That is (eλ) is indeed a bounded approximate identity for C(X ,A).
Since D|A ≡ 0, it follows that w∗ − limλD(eλ) = 0 for all λ.
Claim: For each φ ∈ C(X ), w∗ − limλD(φeλ) exists.
To prove our claim, we show that all weak* subnets of (D(φeλ)) converge
to the same limit. Let (ei), (ej) be convergent subnets of (eλ). Suppose
w∗ − limiD(φei) and w∗ − limj D(φej) exists. Then

D(φei) = w∗ − lim
j
D(φejei) = lim

j
(φej)D(ei) + w∗ −D(φej)ei

= φD(ei) + w∗ − lim
j
D(φej)ei.

It follows that

w∗ − lim
i
D(φei) = lim

i
φD(ei) + w∗ − lim

i
D(φej)ei

= 0 + w∗ − lim
j
D(φej) = w∗ − lim

j
D(φej).

That is, our claim holds. It then follows that the continuous linear map:
D̃ : C(X ) → C(X ,A)∗, given by D̃(φ) = w∗ − limλD(φeλ) is well defined.
Notice that for φ1, φ2 ∈ C(X ),

D̃(φ1φ2) = w∗ − lim
j
D(φ1φ2ej) = w∗ − lim

j
(lim

i
D(φ1eiφ2ej))

= w∗ − lim
j
φ1D(φ2ej) + w∗ − lim

i
D(φ1ei)φ2 = φ1D̃(φ2) + D̃(φ1)φ2.

Hence, D̃ is indeed a derivation. Since C(X ) is commutative and amenable,
D̃ ≡ 0. For any φ ∈ C(X ), a ∈ A,

D(φa) = D̃(φ).a+ φ.DA(a) = 0.

So that D = 0 on lin{φa : φ ∈ C(X ), a ∈ A}. But lin{φa : φ ∈ C(X ), a ∈ A}
is dense in C(X ,A), as is the case in Theorem (5.2.4). Therefore, D ≡ 0
on C(X ,A). Hence, C(X ,A) is weakly amenable.

The following is a more general form of the result stated above.

Theorem 5.3.2. [49] Let X be a compact Hausdorff space and A a commu-
tative Banach algebra. Then C(X ,A) is weakly amenable if and only if A is
weakly amenable.
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Proof. Suppose A is weakly amenable, then by Corollary (3.2.10), A# is
weakly amenable. Since A# is unital, it must have a bounded approximate
identity. By Theorem (5.3.1), C(X ,A#) is weakly amenable. Recall that
C(X ,A) is a closed ideal of C(X ,A#) and that A being commutative implies
C(X ,A) is commutative. Hence by Theorem (3.2.9), it suffices to show
that C(X ,A)2 is dense in C(X ,A). Consider the following.
Recall that lin{φa : φ ∈ C(X ), a ∈ A} is dense in C(X ,A). By Proposition
(3.2.4), the weak amenability of A implies A2 is dense in A, so that lin{ha :
h ∈ V, a ∈ A} is dense in C(X ,A), where V = lin{φa : φ ∈ C(X ), a ∈ A}.
It therefore follows that C(X ,A)2 is dense in C(X ,A).
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Chapter 6

Pseudo-amenability of C(X ,A)

In this chapter, we give results obtained from our study. These results serve
as our contribution to knowledge. In particular, for a Banach algebra A
with a bounded approximate identity such that A⊗̂A is norm irregular, we
show that if A has an aproximate diagonal which is bounded with respect
to the multiplier norm on A⊗̂A, then C(X ,A) has an aproximate diagonal.
This result provides a partial answer to the question of pseudo-amenability
of C(X ,A) which follows from the work of Ghamarshoushtari and Zhang in
[17].

6.1 Norm irregularity of C(X ,A)
For a Banach algebra A, the multiplier semi-norm on A is defined as;

‖a‖M = sup
b∈A, ‖b‖≤1

{‖ab‖, ‖ba‖}, (a ∈ A).

Clearly, max{‖ab‖, ‖ba‖} ≤ ‖a‖M‖b‖ for all a, b ∈ A, so that ‖a‖M ≤ ‖a‖.
Recall that the annihilator ideal of A denoted by ann(A) is defined as

ann(A) = {a ∈ A : ab = ba = 0, b ∈ A}.

If ann(A) = {0}, then ‖.‖M is indeed an algebra norm on A called the
multiplier norm. If the Banach algebra A is norm irregular, in the sense that
‖.‖M does not coincide with and is strictly weaker than ‖.‖, then ‖.‖M is not
necessarily a complete norm on A, that is, (A, ‖.‖M) is not a Banach algebra.
The completion of A with respect to the multiplier norm is denoted by Ã.
Notice that for a locally compact Hausdorff space, ann(C0(X ,A)) = {0}. It
then follows that (‖.‖∞)M is a norm on C0(X ,A). The following result shows
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that the multiplier norm on C0(X ,A) is determined by the multiplier norm
on A. Here, we make use of the notation;

‖f‖(M)
∞ = sup

t∈X
‖f(t)‖M , (f ∈ C0(X ,A)).

Proposition 6.1.1. [40] Let X be a locally compact Hausdorff space and A
a Banach algebra. Then, the multiplier norm on C0(X ,A) satisfies

(‖f‖∞)M = ‖f‖(M)
∞ (f ∈ C0(X ,A)).

Remark 6.1.2. Since a compact space is also locally compact, the result
above holds for C(X ,A), where X is a compact Hausdorff space.

6.2 Results

LetA be a Banach algebra and X a compact Hausdorff space. In the previous
chapter, we gave the construction of a bounded approximate diagonal for
C(X ,A) and showed that C(X ,A) has a bounded approximate diagonal if
and only if A has a bounded approximate diagonal. It should be noted that
the construction relies heavily on the norm boundedness condition on the
approximate diagonal for A. Recall that A is pseudo-amenable if it has an
approximate diagonal, which need not be bounded. Hence, the construction
of an approximate diagonal for C(X ,A) given earlier fails if we remove the
condition that the approximate diagonal for A is bounded with respect to the
projective norm on A⊗̂A. In other words, it is unknown if the possession
of an approximate diagonal by C(X ,A) follows from the possession from
an approximate diagonal by A. Our main result shows that under certain
restrictions, if A has an approximate diagonal, then so does C(X ,A).

Recall that for a norm irregular Banach algebra, say (A, ‖.‖), the mul-
tiplier norm on A denoted by ‖.‖M is strictly weaker than ‖.‖, so that the
normed algebra (A, ‖.‖M) is not necessarily complete. Let α ∈ A⊗̂A such
that α =

∑
i ai ⊗ bi, the multipler norm on A⊗̂A assumes the form

(‖α‖p)M = sup
‖β‖p≤1

{‖αβ‖p, ‖βα‖p}

= sup
inf

∑
j ‖αj‖‖βj‖≤1

{
inf
∑
i,j

‖aiαj‖‖biβj‖, inf
∑
i,j

‖αjai‖‖βjbi‖
}
,

where the infimum is taken over all finite representations of α and β =∑
j αj ⊗ βj. Since the projective tensor norm on A⊗̂A depends on the norm

on A, it then follows that if A⊗̂A is norm irregular, so is A.
The following lemma is an important component of our main result.
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Lemma 6.2.1. Let A be a Banach algebra with a bounded approximate iden-
tity and let (‖.‖p)M be the multiplier semi-norm on A⊗̂A. Then there exists
K > 0 such that

‖aβ‖p ≤ K(‖β‖p)M‖a‖,
for all a ∈ A, β ∈ A⊗̂A.

Proof. Let (eα) be a bounded approximate identity for A. Then there exists
a C > 0 such that ‖eα‖ ≤ C for all α.
Case 1: Suppose 1 ≤ ‖eα‖ ≤ C, for all α. Then for any a ∈ A and
β ∈ A⊗̂A,

‖aβ‖p ≤ ‖(a⊗ eα)β‖p
≤ (‖β‖p)M‖a‖‖eα‖
≤ K(‖β‖p)M‖a‖.

Here, we chose K = C.
Case 2: Suppose C < 1, then ‖eα‖ < 1 for all α. It then follows that there
exists L > 1 such that L‖eα‖ ≥ 1 for all α. For any a ∈ A and β ∈ A⊗̂A,

‖aβ‖p ≤ L‖(a⊗ eα)β‖p
≤ L(‖β‖p)M‖a‖‖eα‖
≤ LC(‖β‖p)M‖a‖
= K(‖β‖p)M‖a‖,

where K = LC.

We now give our main result.

Theorem 6.2.2. Let X be a compact Hausdorff space and (A, ‖.‖) be a
Banach algebra with a bounded approximate identity such that A⊗̂A is norm
irregular. If A has an approximate diagonal which is bounded with respect to
the multiplier norm on A⊗̂A, then C(X ,A) has an approximate diagonal.

Proof. We define a linear map

T : (C(X )⊗̂C(X ),A⊗̂A)→ C(X ,A)⊗̂C(X ,A),

determined by

T (v, β) =
∑
i,j

uiαj ⊗ viβj,

where v =
∑

i ui ⊗ vi ∈ C(X )⊗ C(X ) and β =
∑

j αj ⊗ βj . Notice that∑
i,j

‖uiαj‖‖vjβj‖ ≤
∑
i

‖ui‖‖vi‖
∑
j

‖αj‖‖βj‖.
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It follows that ‖T (v, β)‖p ≤ ‖v‖p‖β‖p, where ‖.‖p is the projective tensor
norm. By a similar argument in the proof of Proposition (3.3.19), we
show that for every ε > 0 and finite set F ⊂ C(X ,A) there exists U =
U(F,ε) ∈ C(X ,A)⊗̂C(X ,A) such that

(i) ‖g.U − U.g‖p < ε, and

(ii) ‖π(U)g − g‖ < ε, for all g ∈ F.

Let (αλ) be an approximate diagonal for A bounded with respect to (‖.‖p)M
on A⊗̂A. Then there exists K1 > 0 such that (‖αλ‖p)M ≤ K1 for all λ. Let
ε > 0 and let F ⊂ C(X ,A) be a fixed finite subset. For fixed finite subsets
FC , FA in C(X ) and A respectively, φjs ∈ FC and ajs ∈ FA, we see that∑

j φjaj ∈ F , where the sum is finite. Let L be a positive real number such
that

‖a‖ < L, ‖φ‖ < L,

for every a ∈ FA and φ ∈ FC . Since (αλ) is an approximate diagonal for A,
it then follows that for any b ∈ FA,

‖b.α− α.b‖ < ε

8cNL
, ‖π(α)b− b‖ < ε

4cNL
for some α ∈ (αλ),

where N is a positive integer chosen to be no less than the number of terms
in the finite sums

∑
j φjaj, and c is the constant in Theorem (5.2.3). Since

X is compact, there exist finite open sets Vi ⊂ X , i = 1, 2, .., n such that

X =
n⋃
i=1

Vi and

|φ(x)− φ(y)| < ε

16KK1NL
(φ ∈ FC , x, y ∈ Vi).

By applying Lemma (4.1.2(ii)), we obtain continuous functions hi ∈ C(X ),
i = 1, 2, ..., n such that supp(hi) ⊂ Vi, hi ∈ [0, 1] for all i and

∑
i hi = 1 on

X . Let ui =
√
hi and u =

∑n
i ui ⊗ ui. Clearly, π(u) = 1 on X , ‖u‖p ≤ 2c

and for every φ ∈ FC ,

‖φ.u− u.φ‖p ≤
∥∥∥∥∑

i

(φ−φ(ti))ui⊗ui
∥∥∥∥
p

+

∥∥∥∥∑
i

ui⊗(φ−φ(ti))ui

∥∥∥∥
p

<
ε

4KK1NL
,

where K is the constant in Lemma (6.2.1). Since lin{φa : φ ∈ C(X ), a ∈
A} is dense in C(X ,A), it then follows that for any g ∈ F ,∥∥∥∥g −∑

j

φjaj

∥∥∥∥
∞
<

ε

8‖α‖pc
.

85



Thus for any α ∈ (αλ),∥∥∥∥∑
i

φjajT (u, α)− T (u, α)
∑
j

φjaj

∥∥∥∥ =

∥∥∥∥∑
j

φjajT (u, α)−
∑
j

T (u, α)φjaj

∥∥∥∥
=

∥∥∥∥∑
j

T (φju, ajα)−
∑
j

T (uφj, αaj)

∥∥∥∥
≤
∑
j

‖T (φju, ajα)− T (uφj, αaj)‖

≤
∑
j

‖T (φju, ajα)− T (uφj, ajα)‖

+
∑
j

‖T (uφj, ajα)− T (uφj, αaj)‖

≤
∑
j

‖φju− uφj‖p‖ajα‖p

+
∑
j

‖uφj‖‖ajα− αaj‖p.

Since A has a bounded approximate identity, we apply Lemma (6.2.1) and
obtain∑

j

‖φju− uφj‖p‖ajα‖p +
∑
j

‖uφj‖‖ajα− αaj‖p

≤
∑
j

‖φju− uφj‖pK‖aj‖(‖α‖p)M

+
∑
j

‖u‖p‖φj‖∞‖ajα− αaj‖p

= K(‖α‖p)M
∑
j

‖φju− uφj‖p‖aj‖

+ ‖u‖p
∑
j

‖φj‖∞‖ajα− αaj‖p

< KK1L
ε

4KK1NL

∑
j

1 + 2cL
ε

8cNL

∑
j

1

≤ KK1L
ε

4KK1NL
N + 2cL

ε

8cNL
N

=
ε

2
.
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Set fN =
∑

j φjaj, so that for any g ∈ F ,

‖gT (u, α)− T (u, α)g‖ = ‖(g − fN + fN)T (u, α)− T (u, α)(g − fN + fN)‖
≤ ‖(g − fN)T (u, α)‖+ ‖fNT (u, α)− T (u, α)fN‖
+ ‖T (u, α)(g − fN)‖
≤ 2‖T (u, α)‖‖g − fN‖∞ + ‖fNT (u, α)− T (u, α)fN‖
≤ 2‖u‖p‖α‖p‖g − fN‖∞ + ‖fNT (u, α)− T (u, α)fN‖
≤ 4c‖g − fN‖∞‖α‖p + ‖fNT (u, α)− T (u, α)fN‖

< 4c
ε

8‖α‖pc
‖α‖p +

ε

2
= ε.

Also,∥∥∥∥π(T (u, α))
∑
j

φjaj −
∑
j

φjaj

∥∥∥∥ =

∥∥∥∥π(u)π(α)
∑
j

φjaj −
∑
j

φjaj

∥∥∥∥
=

∥∥∥∥∑
j

φj(π(α)aj − aj)
∥∥∥∥

≤
∑
j

‖φj‖∞‖π(α)aj − aj‖

< NL
ε

4cNL
<
ε

2
, (2c = KC

G > 1).

Let fN be as defined earlier. Without loss of generality, we may suppose
‖α‖p ≥ 1. Then for any g ∈ F ,

‖π(T (u, α))g − g‖ = ‖π(T (u, α))(g − fN + fN)− (g − fN + fN)‖
= ‖π(T (u, α))(g − fN) + π(T (u, α))fN − fN − (g − fN)‖
≤ ‖π(α)(g − fN)‖+ ‖π(T (u, α))fN − fN‖+ ‖g − fN‖
≤ ‖π(α)‖M‖g − fN‖∞ + ‖π(T (u, α))fN − fN‖+ ‖g − fN‖∞
≤ ‖α‖p‖g − fN‖∞ + ‖π(T (u, α))fN − fN‖+ ‖g − fN‖∞
≤ 2‖α‖p‖g − fN‖∞ + ‖π(T (u, α))fN − fN‖

< 2‖α‖p
ε

8‖α‖p
+
ε

2
< ε.

We set T (u, α) = U , the natural partial order (F1, ε1) ≺ (F2, ε2) if and only
if F1 ⊂ F2, ε1 ≥ ε2, ensures we obtain a net (U(F,ε)), which is the desired
approximate diagonal for C(X ,A).

Remark 6.2.3. Since A has a bounded approximate identity, by applying
Proposition (3.3.26), we may assume that (π(αλ)) is a bounded approxi-
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mate identity for A. This further implies that (π(αλ)) is a bounded approxi-
mate identity for C(X ,A), so that for any g ∈ C(X ,A), ‖π(T (u, α)g−g‖∞ =
‖π(α)g − g‖∞ → 0, which serves as another proof for condition (ii).

Remark 6.2.4. Clearly, the map C(X ,A)→ A, f 7→ f(t0), where t0 is fixed
in X is a continuous epimorphism. This shows that the converse of Theorem
(6.2.2) clearly holds, that is, if C(X ,A) has an aproximate diagonal, then
A has an approximate diagonal.

We define ‖α‖(M)
p = inf

∑
i ‖ai‖M‖bi‖M , where α =

∑
i ai ⊗ bi and∑

i

‖ai‖M‖bi‖M =

sup∑
j ‖αj‖,

∑
j ‖βj‖≤1

{∑
i,j

‖aiαj‖‖biβj‖,
∑
i,j

‖αjai‖‖biβj‖,

∑
i,j

‖aiαj‖‖βjbi‖,
∑
i,j

‖αjai‖‖βjbi‖
}
,

each of the sums being finite.

Proposition 6.2.5. The multiplier norm on A⊗̂A satisfies

(‖α‖p)M ≤ ‖α‖
(M)
p , α ∈ A⊗̂A.

Proof. Let {αj}, {βj} be finite collections of elements in A[1] chosen such that

‖αj‖, ‖βj‖ ≤ 1√
N

, where N > 1 is an integer chosen such that
√
N is no less

than the number of terms in any finite representation of β =
∑

j αj ⊗ βj.
Clearly,

∑
j ‖αj‖,

∑
j ‖βj‖ ≤ 1, and

‖β‖p = inf
∑
j

‖αj‖‖βj‖ ≤ inf
∑
j

‖αj‖
∑
j

‖βj‖ ≤ 1.

This shows that β ∈ (A⊗̂A)[1]. It then follows that for any α =
∑

i ai ⊗ bi ∈
A⊗̂A,

‖αβ‖p = inf
∑
i,j

‖aiαj‖‖biβj‖ ≤ inf
∑
i,j

‖ai‖M‖αj‖‖bi‖M‖βj‖

≤ inf
∑
i

‖ai‖M‖bi‖M inf
∑
j

‖αj‖‖βj‖ ≤ inf
∑
i

‖ai‖M‖bi‖M .

In a similar manner, we obtain

‖βα‖p ≤ inf
∑
i

‖ai‖M‖bi‖M .

Therefore, (‖α‖p)M ≤ inf
∑

i ‖ai‖M‖bi‖M = ‖α‖(M)
p .
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