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Abstract

In this dissertation, we discuss the amenability properties of arbitrary Ba-
nach algebras. We pay special attention to the different ways one may char-
acterize the amenability of Banach algebras such as existence of a bounded
approximate diagonal, existence of a virtual diagonal and the splitting of
short exact sequence of Banach modules. Expanded proofs of some inter-
esting results found in literature are also given. We further discuss some
known notions of amenability of arbitrary Banach algebras such as weak
amenability, approximate amenability and pseudo-amenability. Let A be a
Banach algebra and X a compact Hausdorff space. We give the proof of
the amenability of C'(X) due to Seinberg and also discuss the construction
of bounded approximate diagonals for C'(X’) and C (X, .A), which are results
credited to Abtahi and Zhang, and Ghamarshoushtari and Zhang respec-
tively. We show that for a Banach algebra A with a bounded approximate
identity such that A®.A is norm irregular, if .4 has an approximate diagonal
which is bounded with respect to the multiplier norm on A®.A, then C(X, A)
has an approximate diagonal.
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Chapter 1

Introduction

The development of the theory of amenability in Banach algebras has its
origins in the now classical memoirs of American Mathematical Society pub-
lished by Barry Johnson in 1972 28], in which he showed that for a locally
compact group G, the Banach algbera L!(G) is amenable if and only if G is
amenable as a group.

The group, G is amenable if and only if it has a left invariant mean. A left
invariant mean on G is a positive linear functional p € L*°(G) such that:

1) (L =1,
(ii) (04 * &, p) = (¢, ), for every ¢ € E C L>®(G).

Using the above definition and some interesting cohomological properties of
Banach algebras, Johnson in the afore-stated memoir further showed that
an arbitrary Banach algebra, say A, is amenable if every continuous deriva-
tion D from A into X* is inner for every Banach A-bimodule X, where X*
denotes the dual space of X. It has been realized that the above definition
given by Johnson [28] is too restrictive and so does not allow for the devel-
opment of a rich general theory and also too weak to include a variety of
interesting examples. For this reason, by relaxing some of the constraints in
the definition of amenability via restricting the class of bimodules in question
or by relaxing the structure of the derivations themselves, various notions of
amenability have been introduced in recent years. Some of these notions
are weak amenability, approximate amenability, pseudo amenability, ideal
amenability, character amenability, approximately character amenability and
so on. These notions of amenability have been studied for different classes of
Banach algebras (e.g. semigroup algebras, Segal algebras, Beurling algebras,
group algebras, measure algebras, closed ideals of B(E)-algebras of bounded
linear operators on a Banach space E and so on). See [6], [12], [13], [14], [16],
[37], [38] and [39).



By using Johnson’s result above and Stone-Weierstrass theorem, M.V.
Seinberg [48] showed that the algebra C'(X') of complex-valued continuous
functions is amenable for any compact Hausdorff space X. A constructive
proof of this important result was later given by Abtahi and Zhang [2] in
2010. Recently in 2015, Ghamarshoushtari and Zhang |17 extended this re-
sult to the Banach algebra C'(X, .A) of all A valued continuous functions and
showed that C'(X, .A) is amenable if and only if the range Banach algebra A
is amenable. Zhang in [49], further showed that for a commutative Banach
algebra A, C'(X, A) is weakly amenable if and only if A is weakly amenable.
It should be noted that other known notions of amenability are yet to be
studied for C'(X,.A). Therefore, in this work, we aim to derive the relation-
ship between the pseudo-amenability of A and the Banach algebra C'(X, A).
Thus, providing a slight extension to the result of Ghamarshoushtari and
Zhang in [17].

Through out this dissertation, we denote by N, Z, R and C, the collection
of all natural, integer, real and complex numbers respectively. All Banach
spaces and algebras considered in this study are defined over C except where
it is stated otherwise.

Chapter 2 is concerned with the definition of terms and some basic
results on Banach spaces, algebras and modules made use of in this work. A
lot of the concepts covered can be found in [5], 8], [10], [13], [31], [36] and
[47].

Let A be an arbitrary Banach algebra. In Chapter 3, we discuss some
known important results on the amenability properties of A and also take a
look at some interesting results from some generalised notions of amenabil-
ity of A, while also considering some relationships between the notions of
amenability discussed.

Chapter 4 is concerned with the study of some algebraic and topological
properties of C'(X,C) = C(X), as well as its amenability properties. We
further give a motivation for studying the amenability properties of C'(X),
state the proof of the amenability of C'(X') due to Seinberg and also consider
the construction of a bounded approximate diagonal for C'(X), which is a
result that is credited to Abathi and Zhang.

In Chapter 5, the result by Gharmashoustari and Zhang which showed
that C'(X,.A) being amenable is equivalent to A being amenable is discussed,
an expanded version of the proof is given, while we also show an alternative
way of proving the assertion which follows from the fact that C(X,A) is
isometrically isomorphic to C(X)®.A.

A question of interest that naturally arises from the work of Gharmashous-
tari and Zhang is: Can the pseudo-amenability of C'(X, . A) be inferred from
the pseudo-amenability of A? In Chapter 6, we give a partial answer to

2



this question for a case where A has a bounded approximate identity and
A®A is norm irregular. We also give a proof of an interesting property of
the multiplier norm on the projective tensor product. The results in this
chapter serve as our contribution to knowledge.



Chapter 2

Preliminaries

This chapter is concerned with the definition of some terms used in other
areas of this work. We also state some elementary results on Banach spaces,
algebras and modules that are required for other parts of this dissertation.
It should be noted that the proofs of all results stated are omitted, and can
be found in the references therein.

2.1 Banach spaces

2.1.1 Definitions and basic results

A wector space over C is a non empty set E equipped with the operations
Ex E — E and C x ' — FE such that

(i) x+vy, ar € E,
i) e4+y=y+zx, (r4+y) +z=x+ (y + 2),

Ple = a(fr), alz +y) = ax +ay, (a+ flr = ax + bz,

)
)
(iii) O+z=2+0=2z, v+ (—2) =(—z)+2 =0,
(iv)
)

(a
lz=z1=rz,

(v

where a, 8 € C, z,y, z € E, 1 is the multiplicative identity in C and 0 is the
additive identity in E. A semi-norm on E is a function p : E — R satisfying
the following properties:

(i) p(z) =0,
(i) plax) = |alp(z),



(iii) p(x +y) < p(x) + p(y),

where z,y € E and a € C. If in addition to satisfying the above stated
properties, p(z) = 0 if and only if x = 0, then p is referred to as a norm
on E. In this case, we write p = |.||, p(x) = ||z|| and (E,||.|]) is called a
normed vector space, or for short a normed space. The natural topology on
E is induced by the metric

d(z,y) = llz =yl (z,y € E).

If (E,d) is complete, in the sense that every Cauchy sequence in F is con-
vergent, then (E, ||.||) is called a Banach space.

Let F and M be Banach spaces, we denote by B(E, M), the collection
of all bounded linear operators that maps E into M, we define the operator
norm on B(E, M) as

1Tl = sup {IT ()] : = € E}.

=<1

The linear space B(E, M) equipped with this norm is a Banach space. If
E = M, then we write B(E, E) = B(E).

Definition 2.1.1. Let M and N be closed linear subspaces of the Banach
space E. Let
M+N={zx+y:xe€ Myec N},

and
M.N ={zy:xe€ M,y € N}.

(i) The Banach space F is said to be a direct sum of M and N if E = M+ N
and M NN = 0. Here we write £ = M @ N.

(ii) The linear span of M.N is
lin M.N = {ijyj N EC, ;€ My, €N, j= 12n}
j=1
We write lin M.N = MN. If M = N, we write M? for lin M. M.

Definition 2.1.2. A linear subspace M of a Banach space F is said to be
complemented if it is a direct summand in F.

Proposition 2.1.3. [3]| Let M and N be linear subspaces of the vector space
E. If E =M@ N, then z € E has a unique representation z = x + vy, for
reM, ye N.



Definition 2.1.4. An operator P € B(E) is called a projection if P is linear
and P? = P. We recall that P is linear if for z,y € E and «a,3 € C,
Plax + By) = aP(x) + SP(y).

Proposition 2.1.5. [3] Let M and N be linear subspaces of a vector space
E such that E= M & N. Define P: E — E by P(z) =z, where z =z +y,
ze€ E,x e M andy € N. Then P is an algebraic projection of I onto M
along N. Moreover P(E) = M and ker P = N.

Definition 2.1.6. Let E be a Banach space and N a closed linear subspace
of F,
E/N={x+ N : z € E},

equipped with the norm

N|| = inf
lz+ N = inf flo -+l

is a Banach space. The linear space E/N is referred to as the quotient space.
The norm defined above is called the quotient norm. The codimension of N
is the dimension of the quotient space E/N.

Definition 2.1.7. A Banach space F is said to be separable if it has a dense
countable subset.

2.1.2 Dual spaces and weak topologies

Let E be a Banach space, the canonical embedding of E into its bidual E**
is
kp: E— E™ kg(x) =1.

For A € E*, (\,2) = (x,\),x € E. We recall that kg is an injective map,
hence E can be viewed as a subset of its bidual E**. If kg is onto, then E' is
said to be reflexive.

Definition 2.1.8. Let M be a closed linear subspace of the Banach space E

(i) The set
M*+={NeE*: {z,\)=0, v € M}

is the annihilator of M.

(ii) We define the annihilator of the dual M* of M as

M+ ={dc E™:(\,®)=0,\c M*}.



Clearly M+ = (M4)*.

Theorem 2.1.9 (Hahn-Banach). Suppose E is a vector space over C, and
p 1s a semi-norm on E. Suppose further that M is a subspace of E and ¢ a
linear functional on M such that

[y, )| < ply) (y € M).

Then there exists a linear functional ¥ on E such that |y = ¢ and

(2, )| < pla),
forallz € F.

Corollary 2.1.10. [3] Let E be a vector space over C, let p be a semi-norm
on E, and let xg be fived in E. Then there exists a linear functional ¢ on E
such that (xg, ®) = p(xg) and

(2, 9)| < plx),
forallz € E.
The following result is a direct consequence of Theorem (2.1.9)).

Theorem 2.1.11. [44] Let M be a closed linear subspace of the normed space
E.

(i) For each A € M*, let ¢ € E* be such that ||\|| = ||¢]| and |y = A.
Then the map
M* — E*/M*, X\ ¢+ M*+

18 an isometric isomorphism.
(ii) Let q: E — E/M be a quotient map. Then the map
¢ (B/M)" — M+
18 an isometric isomorphism.

Definition 2.1.12. A linear subspace M of F is said to be weakly comple-
mented if M+ is a direct summand in E*.

Remark 2.1.13. Suppose P € B(F) is a projection from F onto M, then
(Ig — P)" € B(E*) is a projection from E* onto M+, where I is the identity
operator in B(E). It follows that every complemented linear subspace of FE
is weakly complemented.



Definition 2.1.14. Let (X, <) be a partially ordered set, X is called a
directed set if for any «a, 5 € X, there exists v € X such that a, 3 < . Let
S be a non empty set, a net (z,) C S is a function from a directed set into

S.
Definition 2.1.15. Let £ be a Banach space.

(i) The weak topology o(E, E*) on E is the topology generated by the
family of semi-norms {p\, A\ € E*}, where

pa(z) = [{x, )|, z€E.

(ii) The weak™ topology o(E*, E) on E* is the topology generated by the
family of semi-norms {p;(,),z € E}.

The following important result shows the applicability and importance of
the topologies stated above.

Theorem 2.1.16. Let E be a Banach space.

(i) (Banach-Alaoglu) The unit ball E};) is weak™ compact. Every bounded
net in E* has a weak™ accumulation point and a weak™ convergent sub-
net.

(ii) (Goldstine) Let kg : E — E** be the canonical embedding of E into
L. Then for any ® € Efy, there exists a net (vo) C Ejyy such that
kp(rs) = @ in o(E*, EY).

(i1i) (Mazur) For each convex set S C E, the strong closure and the weak
closure of S are the same.

2.1.3 Tensor products of Banach spaces
Let £, M and N be vector spaces, a map A : £ x M — N is said to be
bilinear if for o, 8 € C, x1, 22,2 € E and y1,y2,y € M,
A(axl + 63727 y) = OéA(xby) + 6A(.§U27’y)
and
Az, ayr + Byz) = al(z,y1) + BA(z, y2).

We denote by B?(E x M, N), the collection of all bounded bilinear maps from
E x M into N. If N = C, then B*(E x M,C) = B*(E x M) is complete. We
may construct the tensor product F® M of the vector spaces E, M as a space

8



of linear functionals on B*(E x M), in the following way. For z € E, y € M,
we denote by x®y the functional given by evaluation at the point (x,y), that
is, for any A € B*(E x M), (z ® y)(A) = A(z,y). In other words, we may
consider the tensor product £ ® M as a subspace of B?(E x M)* spanned by
these elements, where B2(E x M)* is the dual of B*(E x M). Tt follows that
a typical tensor in £ ® M has the form v = Y oz, @ y;, z; € E,y; € M
and scalar «; for all 7. Since each «a;x; € E, then without loss of generality,
we may write u = ), z; ® y;. Note that the representation is not unique.
The following are some interesting properties of the tensor product £ ® M;

(i) (T1+22)@y=21Qy+12QY,

(i) 2@ (Y1 +v2) =2 @Y1 + 2 @ 1o,

(iif) a(z®@y) = (ar) @y =2 © (ay),

(iv) 0@y=2®0=0, x,29,2 € E,y1,y2,y € M and scalar «.
The projective norm on £ ® M, ||.||, is defined as

lull, = mf{z el w = Zmy@},
=1 =1

where the infimum is taken over all finite representations of u. The linear
space EE @ M equipped with this norm is denoted as £ ®, M. If £ and M
are Banach spaces, the completion of £ ®, M in the projective norm is called
the projective tensor product and is denoted as E®pM )

Let F and M be Banach spaces and E*, M* their respective duals. We denote
by Ejj, M, the respective closed unit balls of the duals . Let B?(E*x M*) be
the space of all complex valued bounded bilinear maps on E* x M* equipped
with the norm given by

1T = sup{|T (2, ¥)| : € By, ¥ € My }-

Then, B*(E* x M*) is complete. Let A, , denote the elements of B*(E* x M*)
defined by A, ,(p,¢) = p()Y(y), then there exists an injectve linear map
from £ ® M into B?(E* x M*). This shows that F ® M may be viewed as
a subspace of B?(E* @ M*). Hence, the injective norm on £ ® M is defined
as,

Jull. = sup {

D @)y u=> 1@y, g€ By, ¥ € Mﬁ}},

i=1 i=1

where the supremum is taken over all such representations of u. The comple-
tion of £ ® M with respect to this norm is called the injective tensor product
and is denoted by E®. M.



2.2 Banach algebras

An algebra is a vector space A equipped with a map Ax A — A, (a,b) — ab,
such that for a,b,c € A, a € C,

(i) a(bc) = (ab)c
(i) a(b+c) =ab+ac
(ili) (a4 b)c = ac+ be
(iv) (aa)b = alab) = a(ab).
The algebra A is commutative if for any a,b € A, ab = ba, and is said to

be unital if it has a multiplicative identity. A normed algebra is an algebra
A such that the vector space A is a normed space and

labl| < ||al|]|b]], for all a,b e A. (2.1)

The inequality in ensures that the multiplication in A is continuous. If
(A, |].]]) is a Banach space, then A is a Banach algebra. The multiplicative
identity in a unital normed algebra A, denoted by e4 satisfies, ||e4]] = 1. If
A is not unital, then we define A% = C @ A. Each element in A% is of the
form (o, a), where a € C,a € A. If we equip A* with the product

(@, a)(B,0) = (@b, fa + ab + ab),

then A% becomes an algebra referred to as the unitization of A. For any
(a,a) € A,
(1,0)(a,a) = (o, a) and (o, a)(1,0) = (o, a).
This shows that the multiplicative identity in A# is (1,0). We define the
norm
(e, a)l| = a] + [lal] 4

on A%, which turns it into a normed algebra. If A is a Banach algebra, then
A" is also a Banach algebra. We denote by AP, the opposite Banach algebra
of A. That is, the Banach algebra whose underlying linear space is A, but
whose multiplication is the multiplication in A reversed.

Definition 2.2.1. Let A be a normed algebra.

(i) A left (right) approximate identity for A is a net (e,) C A such that
given any a € A, |leqa —al| = 0 (Jlaeq — al| — 0), for all a.
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(ii) A weak left (right) approximate identity for A is a net (eg) C A such
that given any a € A and ¢ € A*, (aeg, ¢) — (a,d) ({esza, p) — (a, P)),
for all 5.

(iii) A left (or right) approximate identity (e, ) for A is said to be bounded
if there exists K > 0, such that |le,|| < K, for all a.

(iv) An approximate identity for A is a net (e,) such that ||ae, —al — 0
and |leqa —al| = 0, a € A, for all a.

(v) A weak approximate identity for A4 is a net (eg) such that for any a € A,
¢ € A*, (aeg, ) — (a,¢) and (ega, p) — (a, ¢), for all /.

Lemma 2.2.2. [13] Let A be a Banach algebra. If A has a weak left (right)
approzimate identity, then A has a left (right) approximate identity.

Lemma 2.2.3. [36] Let A be a normed algebra with a bounded left and right
approzimate identity (en), (f5) respectively, then (eq+ fz—eafs) is a bounded
approzimate identity for A.

Remark 2.2.4. Clearly, if ||e,|| < K; and || f3]] < Ka, then ||eq+fs—eafsll <
K+ Ky + K1 K.

Definition 2.2.5. Let A be a normed algebra,

(i) A has left (right) approximate units if for each a € A and € > 0, there
exists u € A such that ||a — ual| < €(]ja — aul| < €);

(ii) A has approximate units if for each a € A and € > 0, there exists u € A
such that ||a — ua|| < e and ||la — au| < ¢

(iii) A has (left, right) approximate unit bounded by K > 0 if the element
u can be chosen such that ||u| < K.

Lemma 2.2.6. [31] Let A be a normed algebra, F4 a finite subset of A and
K > 1. Then the following statements are equivalent

(i) A has left approzimate units bounded by K.

(ii) For every a € F and € > 0, there exists u € A such that ||u|| < K and
|la —ua| <e.

(iii) A has a left approzimate identity bounded by K.

Theorem 2.2.7 (Cohen-Hewitt Factorization). Let A be a Banach algebra
with a bounded approximate identity. Then, A = A.A.

11



Definition 2.2.8. Let A be a Banach algebra, an involution on A is a

mapping
x:a—a, A— A,

such that for any a,b € A, o, 5 € C,
(i.) a™ =a,

(ii.) (aa+ Bb)* = @a* + Bb*,

(iii.) (ab)* = b*a*.

Remark 2.2.9. If the involution on A is isometric; that is ||a*|| = ||a|| for
all a € A, then A is called a “Banach x-algebra”.

Definition 2.2.10. A Banach algebra, say A, with an involution * is called
a C*-algebra if its norm satisfy

la*all = [lall*, (a € A).

Remark 2.2.11. Let A be a C*-algebra. Notice that for any a € A,

lall* = lla*all < llalllla*[] = llall < [la"]-
Also,
la”[I* = lla™a|| < llalllla*] = lla*]| < llall.
Hence ||a|| = ||a*||. This shows that every C*-algebra is also a Banach -
algebra.

Definition 2.2.12. Let A be a unital Banach algebra, a € A is said to be
invertible if there exists b € A such that

ab=ba = ey.

The collection of all invertible elements in 4 is denoted by Inv(.A).

Theorem 2.2.13 (Gel’fand-Mazur). Let A be a unital Banach algebra. If
Inv A= A\ {0}, then A is isomorphic to C.

Definition 2.2.14. Let A be a unital Banach algebra

(i) The resolvent set of a € A is the set

pala) ={z€C: zeq—ac€InvA}

12



(ii) The spectrum of a € A is the set
oala) ={2€C, zeq—a¢InvA}
(iii) The spectral radius of a € A is
ra(a) =sup{|z| : z € o4(a)}.

(iv) The resolvent function of a € A is the function

pala) = Inv(A), z > (zeq —a)™".

Theorem 2.2.15. [31] For a unital Banach algebra A,
(i) {a € A:|leg —al <1} C Inv A.

(i) Inv A is an open subset of A.

(i11) pa(a) is an open subset of C for each a € A.

Remark 2.2.16. Clearly for each a € A and z € o4(a), ||z~ 'al| > 1. This
further shows that

— — -1
1< [lz"all = [z llall = [ llall = |2| < [lall.

Hence
oala) C{z€C: |2 < |all}.

This shows that o4(a) is bounded. Further more, o4(a) = C\ pa(a) is a
closed subset of C. Therefore o 4(a) is compact for every a € A.

For an algebra A:

(i) A linear subspace I of A is a left (right) ideal if AT C I (IAC ). Iis
an ideal if ATUIA C I.

(ii) A left ideal M of A is maximal if M # A and if M C I C A for some
left ideal I, then either M = I or I = A. The collection of all maximal
ideals of A is denoted by Max(A).

(iii) If A is a Banach algebra, and I a closed ideal of A. Then A/I is a
Banach algebra with respect to the quotient norm.

Definition 2.2.17. An element a € A is said to be quasi-nilpotent if r4(a) =
0. The collection of all quasi-nilpotent elements in A is D(A).
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2.2.1 Character space of a Banach algebra

A character on a Banach algebra A is a multiplicative non-zero linear func-
tional ¢ € A*. The collection of all characters on A denoted ® 4 is called
the character space of A. For a unital Banach algebra A with identity e4,
notice that if a € A, p € Oy,

pla) = placq) = p(a)ples) = plea) = 1.

Definition 2.2.18. Let A be a commutative Banach algebra. The radical
of A, rad(.A), is defined by,

rad(A) = N{M : M € Max(A)} = N{kerp: ¢ € D4}
If 4 =0, then rad(A) = A.

Remark 2.2.19. Clearly, rad(.A) is a closed ideal of A (this readily follows
from the fact that the intersection of ideals of a Banach algebra is also an
ideal of that Banach algebra).

Definition 2.2.20. A Banach algebra A is said to be semi-simple if rad(A) =
{0}, and radical if rad(A) = A.

Theorem 2.2.21. [36] For a commutative, unital Banach algebra A, ® 4 # ()
and the mapping ¢ — ker ¢ is a bijection from ®4 onto Max(.A).

Corollary 2.2.22. |31] Let A be a commutative, unital Banach algebra, and
let a € A,

(i) a € Inv(A) if and only if p(a) # 0 for each ¢ € ® 4,
(ii) oa(a) = {pla) : ¢ € Da},
(iir) ra = {lp(a)| : o € Pu},
(iv) a € D(A) if and only if p(a) =0 for each ¢ € P 4.

Proposition 2.2.23. [36] Let ¢ be a character on A. Then ¢ is continuous,
and ||l < 1. If A is unital, then p(eq) =1 and ||| = 1.

Remark 2.2.24. Proposition ([2.2.23]) shows that the character space of
A is contained in the unit ball, AE] of the dual A* of A.
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Let A be a commutative Banach algebra and ® 4 the character space of A,
® 4 is endowed with the weakest topology with respect to which all functions

b —C, op—pa), ae A

are continuous. As a result, let F4 be a finite subset of A, a basis for a
neighbourhood of ¢y € ® 4 is given by the collection

V(go, Fas€) = {p € Bu: [p(a) — wola)| < e, for alla € Fa, €> 0},

Remark 2.2.25. The topology described above is referred to as the Gel’fand
topology. The character space ® 4 equipped with the A topology is called
the Gel’fand space.

Proposition 2.2.26. [31] Let oo, be a zero linear functional. The character
space ® 4 is a locally compact Hausdorff space with one point compactification
Q% = P U . If A is unital, then ® 4 is compact.

Let F4 be a finite subset of A, the proof of Proposition ([2.2.26)) readily
follows from the fact that

{oc 0z :1000) 2 jlotal o e ral

is a compact neighborhood of ¢ € ® 4 that does not contain ¢.,. That is,
® 4 is locally compact. Also, if A has identity element e 4, then

Dy = {(,0 S @?40 : QO(GA) = 1}
This shows that ® 4 is closed and therefore compact.

Definition 2.2.27. Let a € A, we define a : &4 — C by a(p) = ¢(a). Then
a is a continuous functional called the Gel’fand transform of a. The linear

mapping
G:A—C(Dy), ara

is a homomorphism called the Gel’'fand representation of A. We denote G(A)
by A.

The following result is an important property of commutative Banach
algebras.

Theorem 2.2.28. [31] Let A be a commutative Banach algebra. For every
a€ A,

oa(a) \ {0} C a(Pa) ={pla) : ¢ € Pa Coula)}.
If A is unital, then a(P4) = o4.
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Corollary 2.2.29. [3]| Let a € A. a is trivial if and only if
ra(a) = lim [la"[|'/" = 0.
Theorem 2.2.30 (Gel'fand Representation Theorem). Let A be a commu-
tative Banach algebra and G the Gel’fand representation of A. Then,
(i) G maps A into Co(P4) and is norm decreasing,
(ii) G(A) strongly seperates points of @ 4,

(111) G is isometric if and only if ||a®|| = ||a||*.

2.2.2 Tensor products of Banach algebras

Let A and B be algebras, the vector space A ® B admits a unique product

with respect to which A ® B is an algebra, called the algebra tensor product

and which satisfies (a ® b)(c ® d) = ac ® bd for all a,c € A and b,d € B.
Recall that for Banach spaces A and B , the projective norm on A® B is

full = int { 3= el =3 s o1
=1 =1

Notice that for any w,v € A®@ B, u = 371, a; ®@b;, v = Y7 ¢; ® dj,
uv = Z” a;c; ® b;d;. Hence,

> llaeillbdill < D llaslloill Y lles sl
1,J 7 J

This shows that ||uv||, < |Jull,||v],- That is, ||.||, is indeed an algebra norm
on A® B. The tensor product on A ® B can be extended to A®B, so that
A®B is a Banach algebra.

The corresponding diagonal operator is defined by

74 ARDA = A, a®b— ab.

If there is no ambiguity with regards to the Banach algebra in question, then
we use 7.

Due to the nature of the norm on the injective tensor product, it is not
yet clear under which conditions A®B is a Banach algebra. An interesting
example of an injective tensor product that is a Banach algebra will be the
focus of our study in Chapter 5.
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2.2.3 Arens products

Let A be a Banach algebra and A** be the second dual of its underlying
Banach space, each a € A has a canonical embedding a € A** determined
by

(6,0} = {0, 8) (6 € A).

Let ® € A**, A € A*. Then &\ € A*, determined by
(a,®.\) = (\.a,®) (a€A).

For &, U € A, oIV, & o U, the first Arens product and the second Arens
product are respectively defined by

O, B0O) = (TN, 3), (A, dol)= (AT, (\e A

If o0V = ® o ¥, then A is said to be Arens reqular. The linear space
A** equipped with either of this products is indeed a Banach algebra. Since
a — a is an isometric momonorphism, it follows that A can be viewed as a
closed subalgebra of A**.

2.3 Examples of Banach algebras

Example 2.3.1. Let S be a non empty set, we define C* as the collection of
all complex valued functions on S . The product on C° is defined pointwise
in the sense that for any f,g € C% and s € S, fg(s) = f(s)g(s). Clearly
CS with the product defined above is an algebra. We define 1°°(S) as the
set of all bounded complex valued functions on S. Notice that I>°(S) c C¥.
Consider the norm

1flls = sup{[f(s)], s €5, fel=S)}

Clearly for any f,g € I°°(95),

1791l = sup[f(s)g(s)] < sup[f(s)[sup|g(s)] = [flIsllglls,

this shows that I°°(S) is a normed algebra. The norm described above is
referred to as the uniform norm. The algebra 1°°(S) with pointwise product
and uniform norm is a Banach algebra.

Example 2.3.2. Let X’ be a topological space, then C'(X) is defined as the
set of continuous complex valued functions on X. That C'(X) is a linear space
readily follows from the fact that for any f,g € C(X), «,5 € C, af + g is
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a continuous function. We denote by C*(X) the set of all bounded complex
valued continuous functions on X'. Notice that C*(X) C C(X)NI*(X). The
algebra C®(X) equipped with the uniform norm and pointwise product is a
Banach algebra. An interesting subalgebra of C?(X) is Cy(X), the collection
of all complex valued continuous functions that vanish at infinity.

Remark 2.3.3. We shall discuss the Banach algebra C°(X’) and some of its
subalgebras in detail in Chapter 4.. It should be noted that Cy(X) is a
closed subalgebra of C°(X) and is therefore a Banach algebra with respect
to the uniform norm.

Example 2.3.4. Let S be a non empty set. For f € C°, we set
D Alfs) s €8} = Slelgz{lf(SN s e}
Where the supremum is taken over all finite subsets F' of S. Then

N(S)={feC:) {|f(s)]: s €S} < oo}

For each s € S, let 05 be the characteristic function of {s}. Then a generic
element of I'(S) can be denoted by Y~ g f(s)ds. We set each f(s) = s, s €
S. Hence each f € ['(S) can be written in the form f = ) _oa,0,. We
define the following norm on [*(S):

1 =Y Jau. (2.2)

seSs

Since each f(s) = a, € Cfor all s € S, it follows that (I1(S),]|.]|1) is a Banach
space. In the case when S is countable, then (I*(S),]|.||1) is seperable.

If the non empty set S is a semigroup, that is, it is equipped with the
map S x S — S, (s,t) — st, such that (rs)t = r(st), r,s,t € S. We define
the product on ['(S) by convolution. That is for f, g € I*(9),

(fxg)(t) = Z{f(r)g(s) :r,s € S;rs=1 € S}.

rs=t

Clearly,
1 gl =1 f(r)gls)

= [/ llxllgll-

It follows that (I'S,||.||1,*) is a Banach algebra called the semigroup algebra.

<D D Wgs) =Y 1F 1Y la(s)]
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Example 2.3.5. A non empty space G is called a topological group if GG
satisfies the following properties:

(i) G is a group,

(ii) G is a topological Hausdorff space such that the maps (a,b) — ab and
a alforalla,b € G, are continuous.

The topological group G is locally compact if the topology on G is locally
compact. We denote by M(G) the collection of all bounded complex Borel
measures on G. Let F;,i = 1,2,...,n be a partition of GG, such that for any
we M(G), p(E;) < 0o,i=1,2,...,n. Then

il = sup { S u(E)| < p€ M(G), G = uml}
=1

is a norm on M (G), where the supremum is taken over all such partitions of
G. The linear space M (G) equipped with this norm is a Banach space.
We define the product in M(G) by convolution such that for u,v €

M(G), f € Co(G),
<faM*V>Z/G/Gf(ab)du(a)dy(b), a,beqG.

()] = ] [ f(ab)du(a)dV(b)‘
< / / | F(ab)ldla(a)ldl(v)
<\fab|/dlu r/dr

< [ f oo /(G
< ||f||oo||u||||VH-

This shows that M(G) equipped with the given norm is indeed a Banach
algebra referred to as the measure algebra.

Notice that

Example 2.3.6. Given a locally compact group G, a regular Borel measure
i on G is called a left Haar measure if it is left translation invariant. That
is for every B C G, u(aB) = u(B), for alla € G. We define L'(G) as the set
of all u integrable functions f on G such that

/ 1£()dus) < o0, s € G.
G
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(LY(G),.]l,) is a Banach space where,

11 = /G 1F)ldult), f e L'(G).s €.

We define the convolution product on L'(G) by

(f*g)(t /f du(s), f,g € LNG), s,t €.

Clearly,

sl = [ | [ et odus|ane < [ [ et 0lasn
< [ 1 dnts) [ lots 0ldu(o) = 171, ol

It therefore follows that (L*(G),|.]|,) is indeed a Banach algebra where the
product is defined by convolution. This Banach algebra is called the group
algebra.

Example 2.3.7. Let F be a normed linear space. A linear map T : F — E
is called a linear operator on E. The collection of all linear operators of
this form is denoted L(E). We denote the collection of all bounded linear
operators on F by B(E) C L(E). Recall that if F is a Banach space, then
B(E) equipped with the operator norm is a Banach space. We define the
product on B(E) by composition. That is, for any S, T € B(F), x € E,
(SoT)x = S(Tx). Notice that

[S(T2)|| < [IS|[1T= || < [[SIT |||z -
It therefore folows that

15T = sup {[[S(Tx)]: 2z E} < |[SIIT]-

lzlle<1

Hence, B(E) equipped with the operator norm and the product defined by
composition is a Banach algebra. Clearly, B(FE) is a unital Banach algebra
(the unit element here is the identity operator).

Example 2.3.8. Let {A; : i € I} be a collection of Banach algebras. We
denote by Il;c;A;, the product space of the collection. This space consists

of all mappings a : I — |J A; such that a(i) € A; for all i € I, the linear
i€l
operator given coordinate-wise.
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The [, direct sum of the collection is
EB’ZE[A {aEHzGIA ZH HP<OO p>1}

We equip EB?E 1 A; with the norm

fall, = (Z Ja H”)

It follows @?e 7A; is a Banach space. We define a coordinate-wise product
on @fe[«‘ti- Notice that for any a,b € EB?GIAZ-,

[Jabdlf}, = ZH IP<ZIIa )P I[BC)[”
<ZH@ HPZHb @1".
Hence,

Jabl, < (Z ||a<z'>||p>’l’(; ||b<z'>||”)’l’ = llall, 1ol

This shows that @fe 1A; is indeed a Banach algebra.
The ¢y direct sum of the collection is

0
@ie]'Ai = {a € et A; - max||a(i)]| < oo, lima(i) = 0}_

@?e 1A equipped with the norm;

lafl, = max [|a(z)]

is a Banach space. That @?e 7Ai equipped with this norm is a Banach
algebra readily follows from the fact that each A;, i € I is a Banach algebra.

2.4 Modules

Definition 2.4.1. Let A be a Banach algebra and X an additive group,
X is said to be a left A-module if it is also equipped with an operation,
A x X — X, defined by
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a,be A,z € X and a € C.
The additive group X is said to be a right A-module if it is also equipped
with an operation, X x A — X such that,

(i) z(a +b) = xa + zb,
(i) (x +y)a = za + ya,
(ili) (za)b = x(ab),
(iv) a(za) = z(aa).
X is an A-bimodule if it is both a left and right A-module.

Definition 2.4.2. Let X be a left A-module, X is called a normed left
A-module if it is a normed vector space and for a € A, x € X,

la-z]| < K|zl & >0.

A normed left A-module X is called a Banach left A-module if (X, ||.||) is
Banach space.

Let X be a right A-module. Then X is a normed right A-module if it is a
normed vector space and for a € A, x € X,

[z.all < Kllal[[[z]l, K > 0.

A normed right A-module is a Banach right .A-module if (X, ||.||) is a Banach
space. If X is both a left Banach A-module and a right Banach A-module,
then X is a Banach A-bimodule.

Definition 2.4.3. Let X and Y be Banach modules. A linear map f: X —
Y is a left A-module homomorphism if for any a € A,

flaa) = a.f(z), (z € X),

and a right A-module homomorphism if

f(z.a) = f(x).a.

In the case where X and Y are Banach A-bimodules, then f is an .A-bimodule
homomorphism if it is a left and right .A-module homomorphism.
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For a Banach algebra A:

(i) Aisa Banach A-bimodule with the product of A giving the two module
multiplication.

(ii) Each left (right) ideal of A is a normed left (right) .A-bimodule, the
product of A giving the module multiplication.

(iii) Let X be a normed left A- module with dual space X*. Then X* with
the module multiplication given by

(x,¢p.a) = (a.x,p), ac A xe€ X, ¢e X",
is a Banach right .4-module called the dual Banach left .A-module X*.

(iv) Let X be a normed right A-module with dual space X*. Then X* with
the module multiplication given by

(x,a.0) = (z.a,0), a€ A z€ X, ¢ X",
is a Banach left A-module called the dual Banach right A-module X*.

(v) Let X be a normed A-bimodule, with dual X*. The operations defined
in (i7) and (iv) turns X* into a Banach A-bimodule referred to as
the dual Banach A-bimodule. It should be noted that each Banach
A-bimodule X has a corresponding dual Banach A-bimodule.

(vi) Let L be a closed left ideal of A, X = A\ L, and a — a* denote the
canonical mapping of A onto X. Then the normed vector space X
becomes a normed left A-module.

(vii) The tensor product A®A equipped with the left and right action
a.b@c)=ab®ec, (b@c)a, a€ A, bRce ARA
is a Banach A-bimodule.

(viii) Let ¢,9 € ®4 U p. Then C is an A-bimodule when equipped with
the operation

a.z=yp(a)z, za=1(a)z (a € A,z € C).
We denote this module by C,, .

(ix) The product map 7 : A®A — A is an A-bimodule homomorphism
with respect to the module structure on A®A.
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(x) Let X and Y be left (right) A-module. A map T" € £(X,Y) is a left
(right) A-module homomorphism if

T(ax)=aTx (T(rx.a) =Tx.a), a€ A, x € X.
(xi) Let X and Y be A-bimodules. A map T" € L(X,Y) is an A-bimodule
homomorphism if it is a left and right .A-module homomorphism.

We denote by 4L(X,Y), L4(X,Y), and 4L4(X,Y), the linear spaces of left
and right A-modules and A-bimodule homomorphisms respectively. For a
commutative Banach algebra A, the following result holds.

Proposition 2.4.4. [§] Let A be a commutative algebra, and let X and Y
be A-modules. Then 4L(X,Y) is an A-module for the map

(a,T) = a.T.

Proposition 2.4.5. [8] Let A be a Banach algebra and let X and 'Y be left
and right Banach A-modules respectively. Then (X @ YV)* ~ L(X,Y™) as
A-bimodules.

Definition 2.4.6. Let A be a Banach algebra and X a Banach .A-bimodule.

(i) If A is unital with unit e, X is said to be unital if for any = € X,
exr = zre = x.

(ii) If the Banach algebra A is not unital, X is said to be neo-unital if
X =AX.A.

(iii) X is said to be essential if X = AXA.

Remark 2.4.7. Clearly, all neo-unital Banach algebra are essential. The
converse is not necessarily true, except for the case where the Banach algebra
A has a bounded approximate identity.
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Chapter 3

Amenability properties of
Banach algebras

Barry Johnson’s characterisation of the amenability of L'(G) was to show
that for amenable locally compact G, the first cohomology group with coef-
ficient in X™* is identically zero for every Banach L'(G)-bimodule X. Much
of what is referred to as amenability of Banach algebra is simply a generali-
sation of this characterisation to any arbitrary Banach algebra. Due to the
difficulty in applying this characterisation, several authors [6], [25], [27] etc,
came up with other less tedious ways of showing that a Banach algebra is
amenable. In the following section, we discuss some of these characterisations
and also point out some interesting results therein.

3.1 Amenable Banach algebras

Definition 3.1.1. Let A be a Banach algebra, and X a Banach A-bimodule.
A map D : A — X is called a derivation if:

D(ab) = a.D(b) + D(a).b (a,b e A).
Consider the map 6, : A — X determined by:
dz(a) = ax — za.
For any a,b € A, notice that

0. (ab) = abx — zab = abr — axb + axb — xab = a(bx — xb) + (ax — xa)b
= ad,(b) + 0.(a)b.

This shows that ¢, is indeed a derivation. Derivations of this kind are referred
to as inner derivations.
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We denote the collection of all continuous derivations from A to X as
ZY(A, X) and the collection of all continuous inner derivations from A to X
by BY (A, X). Let H'(A, X) = ZY(A, X)/B' (A, X), H'(A, X) is called the
first cohomology group with coefficients in X. Clearly, H'(A, X) = {0} if
and only if Z'(A, X) = B!(A, X). That is, every continuous derivation from
A to X is inner.

Definition 3.1.2. Let A be a Banach algebra, A is said to be amenable if
H'(A, X*) = {0} for every Banach A-bimodule X.

Proposition 3.1.3. [47] Let A be a Banach algebra with a bounded right
approzimate identity. Let X be a Banach A-bimodule such that A.X = {0},
then H'(A, X*) = {0}.

Proof. 1t suffices to show that every derivation from A into X* is inner.
Consider the following. Notice that for any ¢ € X*,

(z,9.0) = (a.z,¢) = (0,¢) =0,

for all a € A, € X. Therefore X*. A = {0}. Let D € Z'(A, X*), then
clearly,
D(ab) = a.D(b).

Let (e,) be a bounded right approximate identity for 4. Let ¢ € X* be
chosen such that ¢ = w* — lim, D(ae,). Hence:

D(a) = lim D(ae,) = lima.D(e,) = a.¢.

«

Therefore D = 0. O

Remark 3.1.4. The proposition above shows that if A has a bounded ap-
proximate identity and trivial left action on every Banach A-bimodule, then
A is amenable.

The following result shows the connection between the amenability of a
Banach algebra and its possession of a bounded approximate identity.

Proposition 3.1.5. 47| Every amenable Banach algebra has a bounded ap-
proximate tdentity.

Proof. Let A be an amenable Banach algebra and B the Banach A-bimodule
whoose underlying space is A such that B has trivial left action, and right
action determined by,

a.r = ax,
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foralla € A, z € B. Let D : A — B** be the canonical embedding of A
into its bidual. Clearly, D € Z'(A, B**). Since A is amenable, then there
exists £ € B* such that a = a.F for all a € A. Let (e,) be a bounded net
in A such that E' is the w* limit of (e, ), it then follows that

a=w — limae,,
(0%

for all a € A. Passing to convex combination, it follows that a = lim, ae,
by applying Theorem (iii)). That is, (e,) is a bounded right
approximate identity for A. In a similar manner, we obtain a bounded left
approximate identity, say (fz) for A. It follows that (¢, ) = (ea+ f5 —€afs)
is a bounded approximate identity for A. O

Remark 3.1.6. The result above shows that the possession of a bounded
approximate identity is a necessary condition for a Banach algebra to be
amenable.

The following result is stated without proof.

Proposition 3.1.7. |[47] Let A be a Banach algebra with a bounded approz-
imate identity and suppose that A is a closed ideal of a Banach algebra B.
Let X be a neo-unital Banach A-bimodule and D a continuous derivation on

A with D(A) C X*. Then X is a Banach B-bimodule in the canonical sense
and there ezists a unique derivation D on B with D(B) C X* such that

(i) D4 =D,

(1) D is continuous with respect to the strong topology on B and the weak
topology on X*.

For a unital Banach algebra, the following holds.

Proposition 3.1.8. [28] Let A be a unital Banach algebra. If H'(A, X*) =
{0} for every unital Banach A-bimodule X, then A is amenable.

Proof. Let e € A be the identity element in A. Let X be a Banach A-
bimodule and D € Z}(A, X*). Let X* =Y, &Y, ® Y3 & Yy, where:

Yi=eX% Yo=(1—¢)X", Ys=eX"(1—¢), Yi=(1—-e)X"(1—e).

Let A; : X* — Y, be the associated projection map. Set D; = A; o D.
Clearly:
D; € ZYAY), i=1,2,..,4.

Also, Y; is unital and is isometrically isomorphic to (e.X.e)*. Hence, D =
dpr» @1 € Y1. Notice further that Da = D(ea) = eDa + D(e)a and aDse =
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a(l —e)(De)e = aDe — aDe = 0. Hence for a € A, —Dse = ¢g, ¢o € Ys. It
follows that :

Dya = (1 —e)(De)ea = —(Dae)a = d4,(a).

Also, (Dse)a = eD(1 — e)ea = eDa — eDa = 0. We set Dse = dg4,, ¢3 € Ys.
Hence:
Dse =eD(a —e) = d4,.

In a similar manner, we obtain
Dye = 64,, ¢4 €Yy,
It follows that
D =0y = 0g, 499, + 05 + 06, = Op1+6+65+64-
[

Proposition 3.1.9. [47] Let A be a Banach algebra with a bounded aproxi-
mate identity, then the following statements are equivalent.

(i) HY(A, X*) = {0} for every Banach A-bimodule X .
(11) H'(A, X*) = {0} for every neo-unital Banach A-bimodule X .

Proof. (i) = (ii) Since X every neo-unital Banach A-bimodule is also an
A-bimodule. It follows that if (z) holds, so does (i)
(i) = (i) Suppose X is a Banach A-bimodule and D € Z'(A, X*). Let

Xo={axb:a,be A,z e X}.

Let A : X* — X be the associated restriction map. Clearly, A is a module
epimorphism so that Ao D € Z1(A, X). But H'(A, X)) = {0}, so that there
exists ¢p € X such tha Ao D = d,,. Choose ¢ € X* such that ¢|x; = do.
Set D=D — 4. Notice that for a,b € A,z € X,

(x, f)a) = (x,Da — dgya) = (x, D) — (x,a.¢0 — ¢p.a)
= (7, D|xsa) — (v,a.¢0 — ¢o.a) = (v, a.¢p — ¢g.a) = 0.

This shows that D = D—4, € Z'(A, X&). By applying Theorem (2.1.11)),
Xg ~ (X/Xp)*. Notice that for any y € A.(X/X)), there exists a € A,z €
X, such that y = ax + Xy C Xo, so that A.(X/X,) = {0}. Hence by
Proposition (3.1.3)),

HU (A XT) =H(A (X/Xo)") = {0}

It follows that there exists ¢ € X', such that D = &, and D = d,.4.. O
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For a non unital Banach algebra A, the following result is analogous to
Proposition (|3.1.8)).

Theorem 3.1.10. [28] Let A be a Banach algebra with a bounded approz-
imate identity. A is amenable if and only if H'(A, X;) = {0} for every
neo-unital Banach A-bimodule X,.

Proof. Suppose A is amenable. Then H!'(A, X*) = {0} for every Banach
A-bimodule X. This further implies that H'(A, X}) = {0} for every neo-
unital Banach A-bimodule X,. Conversely, suppose H'(A, X}) = {0} for
every neo-unital Banach A-bimodule X. Then by Proposition (3.1.9)), A
is amenable. O

It is often difficult to show that a Banach algebra is amenable by apply-
ing the afore-stated definition, hence several authors, for example see 28],
[25], have developed equivalent ways of showing the amenability of a given
Banach algebra. Some of these characterisations are discussed in the next
two subsections.

3.1.1 Existence of bounded approximate diagonal and
virtual diagonal

Definition 3.1.11. Let A be a Banach algebra.

(i) A bounded approximate diagonal for A is a norm bounded net (m,) C
A®A such that,

a.my — My.a — 0, m(my)a — a,
for every a € A.

(i) A virtual diagonal for A is an element M € (A®.A)** such that,

aM—Ma=0, 7(M)a=a,a € A

One of the ways to establish the amenability of a given Banach algebra,
say A is to show that A has a bounded approximate diagonal or a virtual
diagonal. The following result shows that the existence of a bounded ap-
proximate diagonal guarantees the existence of a virtual diagonal and vice
versa.

Lemma 3.1.12. [27] Let A be a Banach algebra. Then A has a bounded
approximate diagonal if and only if it has a virtual diagonal.
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Proof. Suppose A has a bounded approximate diagonal, say (m,). Let (m,)
be the canonical embedding of (m,) in (A®.4)** and M the w*-accumulation
point of (m,). Hence, for any a € A,

0 = lim{a.my — my.a} = w* — lim{a.m, — my.a} = a.M — M.a.
Also,
0 = lim{n(my)a — a} = w* — im{7™ (My)a — a} = 7 (M)a — a.

Hence M is a virtual diagonal.

Conversely, Suppose M is virtual diagonal for A. Then by applying The-
orem ([2.1.16| (ii)), we obtain a bounded net (z,) C A®A such that
w*—lim, #, = M, where () is the canonical embedding of (z,) in (A®.A)**.
Hence, for any a € A,

0=aM—Ma=w"—lim{a.2, — Ty.a} = w — lim{a.z, — 2.0}

Also, by applying convex combination and Theorem ([2.1.16((iii)), we have
that

0=n"(M)a—a=w"— lién{ﬂ**(ia)a —a} =w— h;n{ﬂ'(l'a)& —a}
= ligl{ﬂ(xa)a —a}.
O]

Theorem 3.1.13. [27] The following statements are equivalent for a Banach
algebra A.

(i) A is amenable.
(i) A has a bounded approzimate diagonal.
(i1i) A has a virtual diagonal.

Proof. (iii) = (i) Suppose A has a virtual diagonal, say M. Let (mg,)
be the associated bounded approximate diagonal, such that M is a w*-
accumulation point of (m,). Without loss of generality, we may further
assume that A is unital, and that X is a unital Banach A-bimodule. Let
D e ZY (A, X*). Given z € X, let p, be a continuous linear functional on
A®A determined by:

(a®b, ;) = (x,aDb) (a,b € A).
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Let (x, f) = (s, M), then f € X*. We want to show that D = d;.
Given a € A, x € X, we have for b,c € A,

xa — ax,bDc) = (xa,bDc) — (ax,bDc)
= (x,abDc) — (z, (bDc)a)
— (x,(bDc)a) — (x,bcDa) + (x,bcDa)
x,abDc) — (z, (bDc)a + bcDa) + (z, beDa)
— (x,bDca) + (x,bcDa)
ab ® ¢, fiz) — (b ® ¢, pg) + (x,beDa)
b® ¢, ppa) — (b c,au,) + (x, beDa)
b® ¢, pza — apiy) + (x,bcDa).

<b X c, Mma—az>

X

This implies that for any m € ARA,

<m> ,uoca—a:c> = <m> Mg @ — aﬂx) + <ZL‘, W(m)DCL)

Therefore,

<:U7 (lf - fa> = <$a —azx, f) = <,uxa7ax7 M>
= (pza — apiy, M) + lim(z, 7(my)Da)

=0+ (z,eDa) = (x, Day).

This shows that A is amenable.

(i) = (i) Since A is amenable, then by Proposition (3.1.5), A has a
bounded approximate identity, say(e,). Suppose (é, ® é,) is the canonical
embedding of (e, ® €,) in (AR.A)**, and suppose further that £ € (A®.A4)**
is a w*-accumulation point for (é, ® é,). Then for any a € A,

™ (a.F — F.a) = w" — lm 7™ (a.(é, ® €4) — (éa ® €4).a)

=w — lim7(ae, ® eq — €4 ® €4) = lim(ae2 — e2a) = 0.

Hence, 0g(A) C ker7**. That n** is a bimodule homomorphism readily
follows from the fact that 7 is a bimodule homomorphism. Hence ker 7**
is a Banach A-bimodule. Since A has a bounded approximate identity, by
applying Theorem , 7 is surjective and therefore an open map, so
that ker 7* ~ (ker 7)**. It readily follows that ker 7** is indeed a dual Banach
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A-bimodule. By the amenability of A, there exists N € ker 7** such that
0 =0n. Weset M = E — N, so that for any a € A,

7 (M)a=r"(E — N)=r"(F) — 0= lime,a = a.

Also,

a.M — M.a = 5M == 5E_N(CL) = (SE(CL) - (5]\[(@) = 0.
Thus M is a virtual diagonal for A.
(i) = (iz7) and (4ii) = (4i) This is Lemma (3.1.12)).
(i1) = (i) Let (m4) be a bounded approximate diagonal for A, with-
out loss of generality, we may suppose (mw(m,)) is a bounded approximate
identity in .A. We want to show that H'(A, X*) = {0} for every Banach
A-bimodule X. Without loss of generality, we may assume that X is neo-
unital. Let D € Z'(A, X*) and suppose m, = 320 a'®) Db such that
S ID]]as|[][b5 ] < oo. Notice that,

S al®) D)

n=1

<Y Dl B < oo,
n=1

which shows that (Z _,an (@) ppl ) is a bounded net in X*. Let ¢ €
X* be a w*-accumulation point of Y >, ' Db such that ¢ = w* —
lima(zn La Dba)). Then for any a € A,z € X,

(x,a.¢) = lim <x, Z aagf‘).Dbgf‘)>

n=1

1

n

= hm <x,Za£f“) bl > +11m <x,2a°‘ >
= (x, ¢.a) + lim <x, Z aﬁf‘)bgf‘).Da>

n=1

= (z,¢.a) + (x, Da).
This shows that D = d,4, so that A is amenable. H
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The following important result due to Barry Johnson is stated without
proof.

Theorem 3.1.14. 28] Let A and B be amenable Banach algebra. Then
A®B is an amenable Banach algebra.

The following is very useful.

Theorem 3.1.15. [37] Let A be a Banach algebra. Then there exists a
continuous linear mapping ¥ : A*QA™ — (ARA)™ such that for a,b,c € A
and m € A*QA**, the following holds.

(i) Y(a®b) =a®b,
(ii) W(m).c = ¥(m.c),
(iii) ¢.W(m) = V(c.m),
(v) WE(m) = U gex(m).
The following is a direct application of Lemma ((3.1.15]).

Theorem 3.1.16. [6] Let A be a Banach algebra such that A** is amenable.
Then A is also amenable.

Proof. Let (M,) C A*®A* be an approximate diagonal for A**. By
Lemma ([3.1.15)), there exists a ¥ : A*®A™ — (A®.A)** such that for
any a € A,

a¥(M,) — ¥ (My)a = V(aM,) — ¥(Mya)
= V(aM, — M,a)
— U(0) =0,

and,
T (U(My)a) = T (My)a — a.

Choose M € (A®A)** such that M = w* — lim, ¥(M,). Then for every
a€ A,
aM — Ma = w* — lim ¥ (aM, — M,a) — ¥(0) =0,

and
7 (My)a = w* — lIm 7y (V¥ (M, )a) = w — Hm 7 g (My)a = a.
It follows that M is a virtual diagonal for A. O
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3.1.2 Splitting of exact sequence of A-modules

The introduction of homological algebra as a tool for deriving interesting
outcomes on the amenability properties of Banach algebras is credited to
Helemskii [26]. Much of the results he obtained can be found in [25]. Cur-
tis and Loy in [6], without delving too deeply into the homological algebra
“machinery” used in the derivations by Helemskii, came up with interesting
proofs to the results stated in this section. It should be noted that the results
are mostly due to Helemskii and Seinberg.

Definition 3.1.17. Suppose X,Y,Z are Banach A-bimodules, such that
f: X =Y, ¢g:Y — Z are Banach A-bimodule homomorphisms. Let

SosxhySxoo
be a short sequence of Banach A-bimodules.
(i) > is said to be exact if f is injective, g is surjective and Im f = ker g.

(ii) The exact sequence Y is admissible if there exists a bounded linear
map F': Y — X, such that F'f = Ix.

(iii) The exact sequence Y splits if there exists a Banach .A-bimodule ho-
momorphism F': Y — X, such that F'f = Ix.

The following important result about a homological property of Banach
spaces/algebras is stated without proof.

Proposition 3.1.18. [6] Let > : 0 — X LY 4 7 = 0 be a short ad-
missible sequence of Banach spaces. If there exists a bounded linear operator
F Y — X which is a left inverse on f, then there exists a unique bounded
linear operator G : Z — Y which is a right inverse on g. The converse also
holds, and fF + Gg is an identity map on Y. If A is a Banach algebra,
and X,Y,Z are Banach A-modules, and f,g are Banach A-module homo-
morphisms, then F' is a Banach A-module homomorphism if and only if G
is.

In the characterisation of the amenability of a Banach algebra A in terms
of short exact sequences of A-modules, the following sequence plays an im-
portant role.

M:0— K5 ARA S A—0, (3.1)
I : 0 = A" 55 (ARA) S K — 0. (3.2)

where II* is the dual of II and K = ker m and ¢ is the injection of ker 7 into

AQA.
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Lemma 3.1.19. [6] Let A be a Banach algebra.
(i) If A is unital, then 11 is admissible.
(i) If A has a bounded approzimate identity, then I1* is admissible.

Proof. (i) Let e be the identity element in A, we define the map
0: A— ARA, a— a®e.
Clearly, for any a,b € A,
fla+b)=(a+b)@e=a®@e+b®e=>0(a)+6(b),

and
10]] = sup{[|¢(a)l,} < K, K > 0.

It follows that 6 is a bounded linear map. Also, notice that
m0(a) = w(0(a)) = m(a®e) = a.

This further implies that 6*n* = [4+. By Proposition , IT is ad-
missible.

(#7) Suppose A has a bounded approximate identity, say (e,). Let M €
(A®A)* be a w*-accumulation point of (e, ® e,). Suppose further that
limg (eq ® €q, M) = (X, M), for all X\ € (A®.A)*. Define the map:

o (ARA)* — A*
by:
{a,0(\)) = {a\, M), a€ A, N € (ARA)*
Let A = 7*¢, ¢ € A*, then:
<CL, 07T*¢> = <CL.(7T*¢), M> = W*(a-gb)v M>
= lim{e, ® eq, 7 (a.0)) = lim(7(eq ® €4), a.¢) = lim(e?, a.¢)
 lim{e%.0,6) = (a, 6.

Thus on* = I 4+ as required. O

Theorem 3.1.20. [6] Let A be a Banach algebra. A is amenable if and only
if

(i) A has a bounded approzimate identity,
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(ii) the admissible sequence T1* splits.

Proof. Suppose A is amenable, then by Proposition , A has a
bounded approximate identity, say (e,), and also the amenability of A im-
plies A has a virtual diagonal, say M. Hence by Lemma , 7 has
a left inverse, say 6, where

0: (ARA)* — A*,
is determined by
(a,\0) = (\.a, M), a € A\ € (ARA)*

is linear. We claim that # is a Banach A-bimodule homomorphism. Let
b e A, then:

(a,0(b.0)) = ((b.N).a, M) = (\.a, M.b)
= (\a,b.M) = (\.(ab), M)
= (ab,0\) = (a, b.ON).

Therefore, 6.(b.\) = bf(A). Similarly,

(a,0(0\).b) = ((\.b).a, M) = (\.(ba), M)
— (ba, 0\) = (a, O\.D).

Hence, 0(\.a) = 6()\).a. We thus conclude that IT* splits.

Conversely, suppose A has a bounded approximate identity, (e,) and 6 is
an A-bimodule homomorphism with 67* = I4+. Suppose further that u €
(A®.A)** is such that u = w* — lim(eq ® €,). Set M = §*7**u. We claim M
is a virtual diagonal for 4. Consider the following.

Let a € A, X\ € (A®A)*, then

(N, a.M) = (X, ad* 7™ u)
= (r"0(\.a),u) = li£n<ea ® eq, T 0(N.a))
= li;n(aei,@)\) = (a,0\)
= ligl(@ia, ON) = li;n(ea ® eq, T 0(a.N))
= (r"0(a.\),u) = (a.\, "1 u) = (A, M.a).
Also,

*Ma = 70" 1" ua = ™ ua = lime2a = a.
«
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The amenability property of a Banach algebra A can also be characterised
by the splitting of short exact sequence of arbitrary Banach A-modules. The
following results are quite helpful in that regard.

Proposition 3.1.21. [6] Let X, Z be left Banach A-modules. Then B(Z, X)

is a Banach A-bimodule, where the module operation is determined by,
(a.T)z=aT(2), (T.a)z=T(a.2), z€ Z,T € B(Z,X).

Proof. That the relevant right and left operations are indeed module opera-
tions is trivial. Notice that:

la. T < lalll[ T < lallI =] < {lallIT], =l < 1.

It follows that,
la. T < [lal[IT]-

In a similar manner,
[Tall < [all[|T]

]

Proposition 3.1.22. [6] Let Z be a left Banach A-module and X a right
Banach A-module, then W = Z®&X is a Banach A-bimodule with module

action determined by
a.(z®z)=(a2)Qx, (2®@x).a=2& (x.a), a€ A
Further more, the map T : W* — B(Z, X*), ¢ — T, given by
(0, Ty) = (2 02,0)
is an isometric Banach A-bimodule homomorphism.
Theorem 3.1.23. [6] Let A be an amenable Banach algebra, and
S o x by Sz

an admissible short exact sequence of left or right Banach A-modules with
X* a dual Banach A-module. Then ) splits.

Proof. Suppose that ) is a sequence of left Banach A-modules. Since )
is admissible, there exists G € B(Z,Y) such that ¢G = I;. Define D(a) =
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a.G — G.a. Then D is a derivation from A into the bimodule B(Z,Y). For
any z € 4,

9(Da)(z) = g(a.G — G.a)(2)
=aldz(z) — Iz(2) = Iz(az) — Iz(az) = az —az = 0.
That is, D(A) C B(Z,kerg) = B(Z,Im f), which shows that:
f'D:A— B(ZX*)~(Z® X)*

is a derivation into a dual Banach A-bimodule. Since A is amenable, f~1D
is inner, so that there exists @ € B(Z, X*) such that

Da=aG—-Ga=afQ- fQ.a.
Set G =G — fQ. Clearly a.G = G.a and
9G(2) = 9G(2) - 9fQ(2) = 9G(2) — g(fQ(2))
=9G(z) — 0= gG(z) = z.
That is G is a right inverse for g. Hence > splits. O]

3.1.3 Some hereditary properties

Below we discuss some of the hereditary properties of amenable Banach al-
gebras.

Theorem 3.1.24. [28] Let A be an amenable Banach algebra, and B a Ba-
nach algebra. Let 0 : A — B be a continuous homomorphism with dense
range, then B is also amenable.

Proof. Let X be a Banach A-bimodule, let D € Z'(B, X*). Then X is a

Banach B-bimodule, where the module operation is given by
ar = 0(a)x, ra=120(a), r € X.
Notice that
D o 6(ab) = D(0(a)f(b)) = 0(a)D(0(b)) + D(0(a))0(b)
.y =0(a)D o 0(b) + (D o 6(a))d(b) = a(D o 0)(b) + (D o (a))b,

Hence Do f € Z'(A, X*). Since A is amenable, there exists ¢ € X* such
that D o0 = d,. Therefore Db =bf — fb, b € §(A). Since 0(A) is dense in B
and by applying the continuity of #, it follows that this is true for any b € B,
so that D = ¢y. O
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Corollary 3.1.25. [47] Suppose A is an amenable Banach algebra and I is
a closed ideal of A, then A/I is amenable as well.

Proof. Notice that 0 : A — A/I is a continuous epimorphism. Hence the
rest of the proof follows from Theorem ([3.1.24)). m

The following theorem is quite useful.

Proposition 3.1.26. [47] For an amenable Banach algebra A with closed
ideal I, the following statements are equivalent.

(i) I is amenable.
(i) I has a bounded approximate identity.

Proof. Clearly (i) = (i) holds.

(11) = (i) Let X be a Banach I-bimodule. Without loss of generality we
may assume X is neo-unital. By Proposition , the module action of
I on X extends to A in a canonical sense. Let D € Z'(I, X*). Then again
by Proposition , D has an extension D € Z'(A, X*). Since A is

amenable, we have that D € H'(A, X*). Tt follows that D = D|;. O

Lemma 3.1.27. [47] Let A be an amenable Banach algebra and J a closed
left ideal of A. Then the following statements are equivalent.

(i) J has a bounded right approzimate identity.
(i) J is weakly complemented.

Proof. (i) = (ii) Let (es)aer be a bounded right approximate identity for
J, and U an ultra filter on I'. We define

PrA" = A, ¢ w’ —lim(d — ea.9).
Notice that for any a € J, ¢ € A,
(a, Po) = lim{a, & — €4.0)
= (,6) — lim(a, €0.0)
— (,6) — lim(acq, 0)

= <aa gb) - <aa gb)
=0.
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This shows that P(A*) C J*. Recall that since J is a left ideal of A, then
for any a € A, e,a € J for all a € I". Hence for any a € A and ¢ € A*,

(o, P9} = limn((0. ) — {a, ea0))
— (a,6) ~ lim{aca,6)
= (,9)

That is, P2 = P. We therefore conclude that J* is a direct summand in A*,
which further implies that J is weakly complemented.
(1) == (1) Since A is amenable, then it has a bounded approximate

diagonal, say (mg), were mg = .2 a\¥ @b\, with S22 [|a'” |16V ]| < oo.

n=1

Let P : A* — A* be a projection onto J+, let Q = 64+~ — P**. Then clearly
Q : A — A* is a projection onto J++ ~ J**. Define

Es =Y a.Qv.
n=1

Then for a € J, we have

limaFEs = lim aa®.QbP)
maki ﬁ; n -Qby,

Let E € J** be a w*-accumulation point of (E3). Then a.FE = a. By applying
Theorem (ii)), there exists a bounded net in (e,) C A such that
eo — E. Therefore (e,) is a bounded weak right approximate identity for J,
which further implies (7) holds. O

The folowing result is a direct application of Lemma (3.1.27]).

Theorem 3.1.28. [§8] For an amenable Banach algebra with a closed ideal
I, the following are equivalent.

(i) I is amenable.

(i) I has a bounded approrimate identity.
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(#ii) 1 is weakly complemented.

Proof. (i) = (ii) Follows from Proposition (3.1.26]).

(11) = (i17) Follows from Lemma ([3.1.27)).

(141) = (i) Suppose I is weakly complemented. By applying Lemma
(3.1.27)), I has a bounded right approximate identity. By passing to A°P
and applying Lemma ({3.1.9]) on A°", we obtain a bounded left approximate
identity for /. That is, I has a bounded approximate identity and is therefore
amenable. O]

Corollary 3.1.29. [47] Let A be an amenable Banach algebra, and I a closed
ideal of finite codimension. Then I is amenable.

Theorem 3.1.30. [47] Let A be a Banach algebra and I a closed two sided
ideal of A such that both I and A/l are amenable. Then A is amenable.

Proof. Let X be a Banach A-bimodule, and D € Z'(A, X*). Then D|; €
ZY (I, X*). Since I is amenable, then there exists ¢; € X* such that

Da = 6y,(a) (a€l).

Let D = D — 6,,. Then clearly l~?|~1 = 0 and thus induces a map from A/I
into X, which we also denote by D. Let

F={pe X 1a¢p=¢.a=0 forall a€l},

and
Xo=IX+XI.

Then F' ~ (X/Xy)* is a dual Banach A/I-bimodule. Since I is a two sided
ideal of A, then for any a € I, b € A, ab € I. Also since D vanishes on I, it
follows that

a.Db = D(ab) — D(a).b = 0.

In a similar manner, we show that Db.a = 0. This further shows that
D(A/I) C F. Since A/I is amenable, there exists ¢, € F such that D = dy,.
This implies that D = 6y, 44, - O

Corollary 3.1.31. [8] A Banach algebra A is amenable if and only if A% is
amenable.

Let A be a Banach algebra. The following section deals with some inter-
esting results involving the notion of amenability derived by restricting the
class of Banach A-bimodules to A itself.
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3.2 Weak amenability in Banach algebras

The introduction of the notion of weak amenability for commutative Ba-
nach algebras is credited to W. G. Bade, P. C. Curtis and H. G. Dales [7].
It was further expanded to include some interesting examples by Grgnbak
[20] and B.E. Johnson [29]. It is motivated by certain behaviours of some
known Banach algebras. For instance, given a locally compact group G,
HY(LY(G), L' (G)*) = {0}, but the same cannot be said for any arbitrary
Banach L!(G)-bimodule except for the case where G is amenable as a group.
In this section, we state some interesting results on weakly amenable Banach
algebras and also discuss some interesting hereditary properties therein.

Definition 3.2.1. Let A be a Banach algebra. A is said to be weakly
amenable if H'(A, A*) = {0}.

Definition 3.2.2. Let A be a Banach algebra, and ® 4 the character space
of A. d € A* is called a point derivation if for a,b € A,

d(ab) = ¢(a)d(b) + d(a)e(b), ¢ € Pa.
Below is a variant of weak amenability.

Definition 3.2.3. Let A be a Banach algebra, and n € N. Then A is n-
weakly amenable if H!(A, A™) = {0}, where A™ is the nth dual of A. The
Banach algebra A is said to be permanently weakly amenable if A is n-weakly
amenable for each n € N.

Proposition 3.2.4. [37| Let A be a weakly amenable Banach algebra. Then
(i) A% is dense in A.
(i1) A does not admit a zero point derivation.

(iii) If A is commutative, then every derivation from A into each Banach
A-bimodule is trivial.

Proof. (i) Suppose A? is not dense in A, that is, A2 # A, choose ¢, € A*
such that ¢o|42 = 0, and (ag, ¢o) = 1 for ag € A\ A2. Define D = ¢y @ ¢y :
a— (a,¢9), A — A*. Clearly, D is a continuous linear map. Notice that
since ¢p|42 = 0, then D(ab) = 0, for all a,b € A and,

(¢,a.Db+ Da.b) = (¢,a.Db) + (¢, Da.b)
= {(ca, Db) + (bc, Da)

<CCL, ¢0> <b7 ¢0> + <bC, ¢0> <a7 ¢0>
0, (ce A).
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This shows that D is indeed a derivaion from A into A*. Clearly (ag, Dag) =
1, but (ag,04(ap)) = 0, ¢ € A*. It therefore implies that D is not inner,
which contradicts our assumption that A is weakly amenable. Thus A? is
dense in A.

(77) Suppose that A admits a non zero point derivation, say d at ¢ € P 4.
Then clearly, D : a — d(a)p, A — A* is a continuous linear operator, and
also D is a derivation. Since A is weakly amenable, there exists a ¢ € A*
such that D(a) = a.¢ — ¢.a. Let 21 € A with ¢(z1) = 1, x5 € kerp with
d(z9) = 1. We set g = 1 + (1 — d(x1))zs. Then

p(ro) = p(z1 + (1 — d(21))2)

(z1) + (1 = d(z1))p(72)
(x1) = 1.

I
€ 6

It follows that,

= (z9, Do)

= (o, To® — Px0)

= (20, To®) — (w0, o)
= (w5, 9) — (x5, ¢)
=0,

which is a contradiction, therefore A does not admit a point derivation.
(431) Suppose there exists D € Z(A, X) with D # 0. By (i), A2 = A, and
so that there exists a, € A with D(a?) # 0. We then have that ag.D(ag) # 0,
so that there exists ¢ € X* such that (ag.Dag, ¢) = 1. Let Ry €4 B(A, X*).
Then Rgo D € ZY(A, X*) and (ag, (Rg o D)(ag)) = {(ag.Dag, ®) = 1, so that
R4 o D # 0, a contradiction of the fact that A is weakly amenable. O

Theorem 3.2.5. [37] Let A be a Banach algebra such that A™ is weakly
amenable and A the image of A under the canonical embedding, such that A
is a left ideal in A**. Then A is weakly amenable.

Proof. Let D : A — A* be a continuous derivation, and D** its second
adjoint. Let E, F € A™ and (a;), (b;) be bounded nets in A such that £ =
w*—lim; a;, F = w*—1lim; b;. Then clearly for any z € A, Fx = w*—lim; b;x.
If a;, l;j are the canonical images of a;, b; respectively for all 7, j, then

D*(EF) = w* — lim lim D**(a;b;)
1 J
= w* — lim lim(aiD(bj) + D(ai)bjj
? J
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Let R : A* — A* be the restriction determined by
(R(a,®)) = (a,®), & A™,
and I" be the subsequent extension
(@.T) = (R(®)).

From the above, we have

FoD™(EF) =T(w" — lilm a; D™ (F))+ T D" (E)F.
Hence for any x € A,

(L(D™(E)F), &) = (D™ (E)F, &) = (D™(E), Fz).

Since A is assumed to be a left ideal in A**, Fi € A. Then,

(D™(F), Fz) = (I'(D™(F)), Fz) = (I' o D" (E)F, %).

That is,
D(D™(E)F) = (I'o D™)(E)F.

It follows that for any x € A,
(D(w' —lm D" (F)), ) = (u" —lima; D" (F), 7)
lim{a; D™ (F), 7)
= lin(D™(F), i)
m(ia;, R(D"(F)))
= (zF, R(D**(F))>.

lim

This shows that I"o D** is a derivation from A** to A™**. Since A** is weakly
amenable, there exists A € A** such that

Do D™(W) = WA — AW,
for all U € A™. Set ¢ = R(V), then for any a € A,
D(a) = R(a.V —V.a) = a.R(V) — R(V).a = a.¢ — ¢.a.
This shows that D is inner. [
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The following are some interesting hereditary properties of weakly amenable
Banach algebras.

Proposition 3.2.6. [37] Let A and B be Banach algebras and 6 : A — B
a continuous homomorphism such that 0(A) = B. If A is commutative and
weakly amenable, then B is weakly amenable.

Proof. Let D € ZY(B, B*). Clearly for any a,b € A,
Dof(a) = D(0(a)(b)) = 0(a)D(O(b)) + D(0(a))f(b) = aDob(b)+ (D ob(a))b.

It follows that D o € Z'(A, B*). Since A is weakly amenable and commu-
tative, D o @ = 0. Since 0(A) = B, it follows that D = 0. O

Proposition 3.2.7. [§] Let A be a Banach algebra and I a closed ideal of
A. If I and A/I are weakly amenable. Then A is weakly amenable.

Proof. Let D € Z*(A, A*) and i : I — A the natural embedding with dual
i* . I* — A*. Clearly i* o Doi € Z(I,I*). Since I is weakly amenable,
there exists ¢ € I* such that ¢* o D = §,. We replace D with D — ,, and
suppose that (i* o D)|; = 0. For a,b € I and ¢ € A,
(¢, D(ab)) = (¢,aDb+ Da.b) = {ca, Db) + (bc, Da)
= (ca, (i* o D)b) + (bc, (i* o D)a) = 0.
This shows that D|;» = 0. But I is weakly amenable implies 12 = I, which

shows that D|; = 0. The rest of the proof readily follows from the proof of
Theorem ((3.1.30]), where we replace X with A. ]

The following lemma is quite useful.

Lemma 3.2.8. 8] Let A be a weakly amenable commutative Banach algebra,
let I be a closed ideal of A, and X a Banach I-module. Then D|j+ = 0 for
each D € ZY(I, X).

Theorem 3.2.9. [8] Let A be a weakly amenable Banach algebra and I a
closed ideal of A. Then:

i) I is weakly amenable if and only if I? is dense in I.
(i) y y

(i) If I has a finite codimesion in A, then I is weakly amenable.
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Proof. (i) Suppose I is weakly amenable, then clearly I? is dense in I.
Conversely, suppose 2 is dense in I. Then I* is also dense in I. Let D €
ZY(I,I*). By Lemma (3.2.8), D|;+ = 0, so that D = 0. Since A is
commutative and it follows that I is weakly amenable.

(77) Suppose that [ has codimension 1 in A. Since A is weakly amenable,
then A% is dense in A, it follows that A ¢ I, so that [ = M,, ¢ € 4. It
follows that I? is dense in . Hence by (i), I is weakly amenable. O

Corollary 3.2.10. [8] Let A be a commutative Banach algebra. Then A is
weakly amenable if and only if A* is weakly amenable.

3.3 Some generalised notions of amenability
in Banach algebras

Some interesting amenability like properties of Banach algebras can be ob-
tained by relaxing some of the conditions required for a Banach algebra to be
amenable. This has become quite necessary due to the fact that amenabil-
ity of Banach algebra as a concept, is a bit restrictive and does not allow
for a rich collection of examples. In this section, we shall discuss some of
these generalised notions of amenability in Banach algebras. Cases involving
specific Banach algebras are also considered.

3.3.1 Approximate amenability of Banach algebras

The notion of approximate amenability was introduced in 2004 by Ghahra-
mani and Loy [13], and was further expanded by Ghahramani, Loy, and
Zhang [38] in 2008. The concept is based entirely on a certain behaviour of
continuous derivations on a Banach algebra. In this section we state some
interesting results on the approximate amenability of Banach algebras.

Definition 3.3.1. Let A be a Banach algebra and X a Banach A-bimodule.
A derivation
D:A—X

is said to be approximately inner if there exists a net (7,) C X such that
D(a) =lim(a.n, — ny.a) (a € A).
That is, D = lim, d,, in the strong topology on B(A, X).

Definition 3.3.2. Let A be a Banach algebra.
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(i) A is said to be approximately amenable if every continuous derivation
D : A — X* is approximately inner for every Banach A-bimodule X.

(ii) A is approximately contractible if for every continuous derivation D :
A — X is approximately inner for every Banach A-bimodule X

The limits in the definitions above are taken in the norm. In (7), it should
be noted that if it is only required that the net be taken from A*, then we
say A is weakly approximately amenable.

It has long been established that a necessary condition for a Banach alge-
bra to be amenable is that it must possess a bounded approximate identity,
see Lemma . In the case of an approximately amenable Banach alge-
bra, it is still unknown if this condition holds. The following result provides
a partial answer.

Lemma 3.3.3. [13] Let A be an approzimately amenable Banach algebra.
Then A has left and right approzimate identities. In particular A? is dense
in A.

Proof. Let a — a be the canonical injection of A into A**. Notice that for
be A, ¢ € A*,

(¢, ab) = (ab, ) = (b, p.a) = (¢.a,b) = (p, ab).

This shows that a — a is a derivation with usual left action and trivial right
action. Since A is approximately amenable, there exists a net (E,) C A™
with a.E, — a for each a € A.

We take finite sets FF C A, ® C A*, and ¢ > 0. Let H ={¢.a:a € F,¢ €
O}, K = max{||[¢|, ||¢|| : ¥ € H,¢ € ®}. Then there is v = v(F, D, €) such
that

€
ﬁ?
for a € F. By Theorem (2.1.16| (ii)), there exists (b,) C A such that

€
Hence for any a € F, ¢ € P,

la —a.E,| <

[{aby, @) = (a, 9)| = [{aby, ¢) = (a, ) = ($,a.E) + (¢, a.E,)]
= [(aby, ¢) — (},a) — (¢, a.Ey) + (¢, a.E,)]|
— aby, 6) — {6.0.5,) + (6,0.5, — a)]
< |{aby, @) — {6, @ B + (6, 0.F, — o)
< |(bor 60 — {60, )| + |6 |y —
< % + K% =



This shows that (b,) is a weak right appproximate identity for A, so that A
has a right approximate identity. In a similar manner, we can show that A
has a left approximate identity. O

Consider the following lemma.

Lemma 3.3.4. [13] Let A be a unital Banach algebra with identity e, X a
Banach A-bimodule and D : A — X a continuous deriwation. Then there
exists a derivation D1 : A — X, and ¢ € X* | such that

(i) 19l < 201D

(11) D = Dy + 0.
Proof. Set Y1 = e X*.e,Yy = (1 —e).X"e, Y5 = e X" (1 —¢€),Y, = (1 —
e). X*.(1 —e), let A;: X* =Y, be the associated projections, j = 1,2, 3,4.
Clearly X* =Y, @Y, @ Ys @Yy Set Dj = Aj o D, then clearly, D; is a
derivation for j = 1,...,4, and D = Dy + Dy + D3 + Dy4. As is the case in
Proposition (3.1.8]), Y5 has trivial right action, Y3 has trivial left action
and Y, has left and right trivial actions. That is, D; is inner for j = 2, 3,4.

Hence, there exists ¢; € Y; ,j = 2,3,4, such that D; = ¢;. Hence Dy =
d—_Dyey, D3 = dpye, Dy = 0. Set ¢ = Dse — Dse. Also notice that

¢ = Dse — Dye = eDe(1 —e) — (1 — e)De — De.e.
It follows that
ol = || Dse — Dqe|| = |[eDe(1 —e) — (1 — e)De — De.e|| = ||eDe — De.e|

< [leDel| + || De.e|| < [lell[|De| + [ Dell[le]
= 2[le[l| De|| < 2Cx || DI

The following is an interesting application of Lemma (3.3.4]).

Lemma 3.3.5. [13| Let A be a unital approzimately amenable Banach alge-
bra, X a Banach A-bimodule, D : A — X* a continuous derivation. Then
there exists a net (n,) C e.X*.e and ¢ € X* such that

(i) ¢l <2Cx| D],
(i) D =6, + st —limd,,.

Proof. By applying Lemma (|3.3.4)), it suffices to show that D; is approx-
imately inner. Notice that e. X*.e ~ (e.X.e)* isometrically. Since A is ap-
proximately amenable, there exists a net of inner derivations (n,) C (e.X.e)*
such that Dy = st — lim, n,. O
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We apply Lemma (|3.3.5]) in proving the following important result.

Proposition 3.3.6. [13] The Banach algebra A is approzimately amenable
if and only if A% is approzimately amenable.

Proof. Suppose A is aproximately amenable. Let D : A* — X* be a deriva-
tion. By Lemma , D = Dy + 64, where Dy : A* — e.X*.e. Notice
that

Di(e) = e.De.e = e(De — eDe) = eDe — eDe = 0,

and also since A is approximately amenable, D|, is approximately inner.
Therefore D is approximately inner. This shows that A# is approximately
amenable.

Conversely, suppose A" is approximately amenable. Let D : A — X* be
a derivation. Since A is a closed ideal of A%, D has an extension D on A*.
By setting D(e) = 0, and identity module action by e, we have that A# is
approximately amenable, Dis approximately inner. It then follows that D
is approximately inner. O

Theorem 3.3.7. |13] A Banach algebra A is approzimately amenable if and
only if either of these conditions holds.

(i) There exists a net (M,) C (.A#®.A#) such that for each a € A%,
a.N, — M, — 0 and 7 (M,) —

(i) There eists a net (M,) C (A#®A#)** such that for each a € A%,
a.M, — M,.a — 0 and 7 (M,) = e. for every v.

Proof. Suppose A is approximately amenable, then by Proposition (|3 ,
A* is approximately amenable. By a similar argument to the proof of The-
orem 7 let w = e ® e. Since A is approximately amenable, there
exists a net (e,) C ker 7** such that for any a € A, 0,(a) = lim, d,,(a). Set
M, =u — e,. Then for any a € A,

a.M, — M, .a=a(u—e,) — (u—ey)a

= au — ua + (ae, — e,a)

— 0.
Also,
T (M,) =1 (u — e,) = 7 (ey)
=7m(u) —0=m(u)=e

That is (¢i) holds.
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Suppose (i) holds. Let D : A#* — X* be a derivation. Without loss of
generality, we may suppose X* is neo-unital. Let (f,) be a net in X*. By
applying the argument in Lemma (|3.1.8]), we set

<[E, fv> = <,uxa MU>7
where j1, € (A¥®A#)* is determined by (a ® b, i1} = (z,aDb). Let (m?) C
A#*QA# be such that m® = w* — lim, M,, for each v. Also recall that for
m € A*QA#,

(M, fla.a—a.z) = (M, -0 — @.p1e) + (x,7(m)Da).

Hence,
(x,a.f, — fo.a) = (v.a — a.x, f,)
- </~Lm.a—a.a37 Mv>
= hm<mff, /le.afa.x>
= </j’a:a — Q. Uy, Mv> + hm(x, ﬂ(mg)Da)
= (ftz, .M, — M,.a) + (x, 7" (M,).Da).
Therefore,

’<x7a-fv - fv-a> - (:c,DaH

|{pe, a. M, — My.a) + (x, 7 (M,)Da) — (x, Da)|
|{tey a. M, — My.a) + (x, (7" (M,) — e)Da)|

< (pa, a-My — My.a)| + [z, (7 (M,) — €) Da)

< lpalllla-My — My.al| + [|lz[[[|[7* (M) — el||| Dl|all
— 0.

This shows that Da = st —limd;,. Therefore A% is approximately amenable
and so is A. That (i1) = (i) is obvious. Hence the equivalence holds. [J

Remark 3.3.8. Notice that by applying Theorem (2.1.16/ii)), we may
choose a net (m®) C A®A such that M, = w* — lim, m? for all v, so that

amy —mo.a — 0,71(m)a — a, (a € A).
The implication of this outcome will be discussed in the next section.

Corollary 3.3.9. [13] A Banach algebra A is approximately amenable if and
only if there are nets (M") C (A®A)™, (F,),(G,) C A**, such that for each
a € A,
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(i) a.M, — M, .a+F,®a—a®G, — a,
(ii) a.F, = a,Gy.a — a, and
(i4i) (M, ).a — Fy.a — Gy.a — 0.

We state the following important result on approximately contractible
Banach algebras without proof.

Theorem 3.3.10. [13] The Banach algebra A is approzimately contractible
iof and only if any of the following equivalent conditions holds:

(i) there exists a net (M,) C A¥&QA* such that for each a € A%, a.M, —
M,.a — 0 and 7(M,) — ¢;

(i) there evists a net (M,) C A*&A such that for each a € A, a.M, —
M,.a — 0 and ©(M,) = e;

(iii) there exist nets (M, ) C A®A*, (F,),(G,) C A, such that for each
a € A,
(a) a.M, — M a+F,®a—a® G, —0
(b) a.F, = a,Gy.a — a; and
(¢c) m(M)).a — F,.a — Gy.a — 0.

Definition 3.3.11. Let
S0 X Ly% 740

be an admissible short exact sequence of left Banach A-modules. Then )
approximately splits if there exists a net G, : Z — Y of right inverse maps
to g such that lim,(a.G, — Gy.a) =0 for a € A and anet F, : Y — X of left
inverse maps to f such that lim,(a.F, — F,.a) = 0 for a € A.

The approximate amenability of a Banach algebra can also be charac-
terised in terms of short exact sequences of Banach modules. Below is an
interesting and insightful result of such a characterisation.

Theorem 3.3.12. [13] Let A be an approzimately amenable Banach algebra
and

Z:O—)X*Lyi)Z%O

be an admissible short exact sequence of left Banach A-modules. Then
approzimately splits.
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Proof. The proof of the theorem follows from the argument in the proof of
Theorem ((3.1.22]) for a right inverse G for g. Since A is approximately
amenable, then there exists a net (Q,) C B(Z, X*) such that

a.G—G.a= lim(a.fQ, — fQy.a), a € A.

Set G, = G — fQ,. Clearly (G,) is a net of right inverse maps for G and

lim(a.G — G.a) = 0.

By applying Proposition (3.1.18]), we have a net (F,) of left inverse for f
such that
lim(a.F, — F,.a) = 0.

Therefore, ) approximately splits. ]

Corollary 3.3.13. [13] Let A be an approzimately amenable Banach alge-
bra and let J a weakly complemented left ideal of A. Then J has a right
approzimate identity. In particular, J? is dense in J.

Theorem 3.3.14. [13] Let A be a Banach algebra. If A™ is approximately
amenable, so is A.

Proof. In order to simplify notation, we set B = A%. Let ¥ be the contin-

uous linear mapping in Lemma (3.1.15)). Since B** = (A*)#, and by the
approximate amenability of A%, there exists a net (M,) C (B*®B**)** such
that for all m € A**,

m.Ny, — Nyom — 0, 7. (N,)m = m.

Since A can be viewed as a subset of A** under the canonical embedding.
Then for any a € A,

a.N, — Ny.a — 0, 75 (Ny)a = a.

Let 0 : (B&B)* — (B&B)** be the canonical embedding of B* into its bidual.
Since 6 is an 6 is an A-bimodule homomorphism, so is 6*. It follows that,
for each a € A,

a.0* U (N,) — 0° U™ (N,).a = *V**(aN,) — 0" V**(N,a)
= 60"V (aNv — N,a)
— 00U (0) = 0.
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For fixed v, we choose net N# C B*®B** such that N, = w* —lim N*. Hence

(78)™* (0" U (N,))a = a.w* — ninw)**(e**\p**(m)).a

= w’ — lim(m)™ (0" (¥ (N#))).a
=w" — lim(75)™ (¥ (N")).a

= w" — lim(rg.. (N*)).0

= w* — 1il£n(ﬂgt*(N“)) a

= (n. (Ny).a = a

O

The following are some results on approximate amenability of some known
Banach algebras defined on a locally compact group G.

Theorem 3.3.15. [13] Let G be a locally compact group. Then,
(i) M(G) is approximately amenable if and only if G is discrete and amenable.
(1i) LY(G) is approzimately amenable if and only if G is amenable.

(iii) LY(G)** is approzimately amenable if and only if G is finite.

By slightly modifying some of the conditions for a Banach algebra to
be the approximately amenable, the following notions of amenability can be
derived.

Definition 3.3.16. Let A be a Banach algebra, X a Banach A-bimodule
and D : A — X* a continuous derivation,

(i) [13] A is sequentially approximately amenable if there exists a sequence
(¢n) € X* such that
D(a) = limd,,

(i) [38] A is uniformly approximately amenable if there exists a net (,) C
X* such that
D(a) = lim¢,,,

for every Banach A-bimodule X, where the limit is taken in the unit
ball .A[l] of .A,
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(iii) [38] A is boundedly approximately amenable if there exists a net (n,) C
X* such that

D(a) =1limé,,, |0, < Lllal|, a € A, L >0,

for every Banach A-bimodule X.

The following, stated without proof, are some insightful results on the
afore-stated notions of amenability.

Theorem 3.3.17. Let A be a Banach algebra.
(i) [38] A is uniformly approzimately amenable if and only if it is amenable.

(i) [38] A is boundedly approximately amenable if and only if there exists
a constant Ly, > 0 such that for any A-bimodule X, and any con-
tinuous derivation D : A — X*, sup, ||ad,,|| < Ly||D||, and D(a) =
lim; 9y, (a), (a € A).

(i11) |38] If A is boundedly approximately amenable, then there exists a net
(M,) C (A*@A#)*™ and a constant L > 0 such that for each a € A¥,
a.M,—M,.a — 0,7*(M,) — e and ||a.M,—M,.a|| < L||a||. Conversely,
if the later property holds and (7**(M,,)) is bounded, then A is boundedly
approximately amenable.

() [38] If A is a boundedly approzimately amenable such that A is seperable
as a Banach space, then it is sequentially approximately amenable.

(v) [38] A is boundedly approximately amenable if and only if A% is bound-
edly approximately amenable.

(vi) [38] A is boundedly approzimately amenable if and only if there exists
a net (o) C (kerm)™ and M > 0 such that

(i) k.a; — k for each k € kerm,
(11) ||k.cu|| < M|E|| for all k € kerm, for alli.

(vii) [12] If A is boundedly approximately amenable with a bounded approz-
imate identity, and suppose B is an amenable Banach algebra. Then
A®B is boundedly approzimately amenable.

(viit) [12] The tensor product of two boundedly approximately amenable Ba-
nach algebras need not be approrimately amenable.
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3.3.2 Pseudo-amenability of Banach algebras

Definition 3.3.18. A Banach algebra A is said to be pseudo-amenable if it
has an approximate diagonal.

Recall that an approximate diagonal for A is a net (m,) C A®A such
that
a.my —mea — 0 and 7w(my)a — a for all @ and a € A.

It should be noted that for pseudo-amenable Banach algebras, the approxi-
mate diagonal need not be bounded, as a result the class of pseudo-amenable
Banach algebras is larger than the class of amenable Banach algberas. Below,
we state some results on pseudo-amenable Banach algebras. These results
are due to Ghahramani and Zhang [14], who are credited with introducing
this notion of amenability and Choi, Ghahramani and Zhang [16].

Proposition 3.3.19. [14] Suppose each A;, i € I is pseudo-amenable. Then
EB?E[AZ-, p > 0 s also pseudo-amenable.

Proof. Let A = @’g}e]fli, p > 0 and Pj be the projection from @?GIA“ p>0

onto @f@]«‘li, p > 0, where J is a finite subset of I. Let € > 0 be given. We
choose finite set F' C A such that:

€
||PJ(CL) —a|| < 5, acF.

Since each A; is pseudo-amenable, there exists u; € A;®A;, i € J such that

> IP(a)u; — wP(a)|| <

icJ

and .

> lIm(ui) Pi(a) = Pi(a)|| < 3

icJ
where each P is the projection Pp;. Since each A; is complemented in A,
then A;®.A; can be viewed as an element of A®A. Clearly,

au = Pj(a)u = Z P(a)u; and ua = uPj(a) = ZuiPi(a).
iel ieJ
It follows that

< IP(a)u; — uiPi(a)| < e

e

> B(a)u; = Y uiPi(a)

ieJ ieJ

|auw — ual| =
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Also since 7 is an A-bimodule homomorphism,

[m(w)a — al| = [|7(ua) — o
- W(i;uia(a))—a - ;w(uia(a))—a
= ;w(uima)) — Pi(a) + Pi(a)) — a
= ;(ﬂ(uﬂ%(a) — Pi(a))) + ze; Pi(a) —a
< Z;(ﬂ(ui)ﬂ(a))—ﬂ(a) + Z;Pi(a)—a
< Zfl!ﬂ(ui)ﬂ(a) —all + [ Ps(a) ieaH
Zzlelﬂ(uz)Pi(a) — Pi(a)| + [|Ps(a) —all

]

Proposition 3.3.20. [14] Let A and B be Banach algebras. If A is pseudo-
amenable and

0: A— B

is a continuous epimorphism, then B is pseudo-amenable.

Proof. Since A is pseudo-amenable, then A has an apprimate diagonal and
so there exists a net (m,) C A®A, such that

a.mey — My.a — 0, T(My)a — a.

Also since 6 is an epimorphism, then for every b € A, there exists a € A such
that 6(a) = b. Define a map

0®6: ARA — BRB.

Clearly, # ®6 is a Banach bimodule homomorphism. Let m, = >, a,(ca) ® b,(f)
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for all . Then for any b € B,

lim b.(0 ® 0)(me) = lim6(a)(0 ® ) (Za“ >

i
_hm0 Z@ a,(f)®9 (a))

:hCIPZH aak ®9(bk )
K

Also,

lim ms((60 © 0) (ma))b = lim ms(0 © 6) (Za@ bl >)9(a)
= lim WB(;e(a; ) @ 0(b° )9(@)
= lim my ( ; 0(a\™) ® e(b’gam))
= lim¢ ( > a,ga>b,ga>a)

= lién O(mq(may)a) = 0(a) =b.

Hence ((0®0)(m,)) is an approximate diagonal for B. Therefore, B is pseudo-
amenable. O

The following is another interesting hereditary property of pseudo-amenable
Banach algebras.

Theorem 3.3.21. [14] Let A be a pseudo-amenable Banach algebra, and I
a two-sided closed ideal of A. If I has an approzimate identity, say (xs)
such that the associated left and right multiplication operators L, : a — x,a
and R, : a — ax, from A into I are uniformly bounded, then I is pseudo-
amenable.

Proof. By the uniform boundedness of the left and right multiplication op-
erators on (z,), there exists a constant K > 1 such that ||z,m| < K|m)||
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and ||zam| < K|m| for all a and m € A®A. Suppose (mg) C ADA is
an approximate diagonal for A. Then given ¢ > 0 and finite set F' C I, we
choose 3 such that

€
_ <
lams — mpal| < K2

and .
In(mg)a—al < 5.

for a € F. Then choose « such that

€ €
|laxe — zqa| < W, |zaa —al| < 7
and .
Ix(ms)(zaa — @) < . (a € F).
We then have that
laxampra — Tampal| = ||aTampTe — TaaMmpaTe + TaampTa — ToaMpTaall

< |lazampre — xaampx,|| + || Taampre, — xampzaall
= ||axampr, — Toampx,||

+ || Taampxs — TaMpaT + TaMpals — TaMaTaal|

< |laxampra — Taampa,||

+ [|[zaampra — Tampaz,|| + |[Tampaz, — rompzaall
= [[(azo — za)mpa|

+ |zalamg — mpa)za|| + [[zams(aza — zaa)|

< 2||axa — waa| K|Img|| + lzams||lams — mgall

< 2l|azq — zaal| K[mg| + [lams — mpal K

2e € € €
< X K e
g lmsl + gk =5+ 5 =€
Also,
T (zampza)a — al|| = ||7(zampza)a — w(zamp)a + m(xamp)a — xoa + o0 — a|

< |[[m(xampza)a — m(xamp)al| + ||T(zamp)a — zall
+ ||xaa — al|
< Kllm(mg)(ra — a)|| + K|lm(mg)a — al| + [[zaa — a

€ € €
<KE+Kﬁ+Z—€,

for all @ € F. It therefore follows that a subnet of (z,mpr,) C I®I is an
approximate diagonal for I. Therefore, I is pseudo-amenable. O
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Corollary 3.3.22. [14] Let A be a pseudo-amenable Banach algebra, and I
a two-sided closed ideal of A. If I has a bounded approximate identity, then
I is pseudo-amenable.

Proof. Let (z,) be a bounded approximate identity for I. Clearly, L, :
a — axr, and R, : a — x,a are uniformly bounded, therefore I is pseudo-
amenable. O

Proposition 3.3.23. [16] If A** is pseudo-amenable, so is A.

Proof. The proof follows from Theorem (3.3.14)). Since A is a subset of
A** under the canonical embedding, we may choose (N,) to be in A so that
for any a € A,

a.N, — Ny.a 255 0, m(Ny)a Y a.

By applying Theorem ([2.1.16|(iii)), we obtain another net ({,) C A such

that

a.C, — (.a Iy 6 and 7(¢y)a I g,

]

3.3.3 Some relationships between notions of amenabil-
ity of Banach algebras

The following results show some interesting relationships involving approxi-
mate amenability, pseudo-amenability and weak amenability.

Theorem 3.3.24. [38] For a Banach algebra A, the following statements are
equivalent.

(i) A is approzimately amenable.
(i1) A is w*-approxzimately amenable.
(i1i) A is approximately contractible.
(iv) A% is pseudo-amenable.

Proof. (i) = (ii) Obvious.

(i) == (iii) Suppose A is w*-approximately amenable. Then A% is also
w*-approximately amenable. That is there exists a net (M,) C (A¥®A%)**
such that for each a € A, a.M, — M,.a — 0 and 7**(M,) — e in the w*-
topology on (A#*®@A#)*™ and (A#)** respectively. Let € > 0 be given, we
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take finite subsets F' C A%, & C (A%)*, and N C (A#®A#)**. Then there
exists v such that

{a.f — f.a, M) = |{f,a.M, — M,.a)| < €

and
(o, 7 (M,) — €)| <,

forall @ € F, ¢ € ® and f € N. By Theorem (2.1.16/(ii)), and the
w*-continuity of 7**, there exists m € A#®.A# such that

|{(f,am —m.a)| = |{a.f — f.a,m)| < ¢

and
(@, m(m) —€)| <,

foralla € F, ¢ € ® and f € N. Thus we have a net (m,) C ARA#
such that for every a € A%, a.my, — mq.a — 0 and w(my) — e in the w-
topology on A*®.A# and A* respectively. Passing to convex combination
and applying Theorem (iii)), we obtain a net (mg) C A¥®A# such
that a.ms — mg.a — 0 and 7(mg) — e in the |.||-topology on A#®A#* and
A# respectively. It then follows that (iii) holds.

(i19) = (iv) This follows from Theorem (3.3.10]).

(iv) = (i) This follows from Theorem (|3.3.7)). O

Remark 3.3.25. Clearly, the result shows that approximate amenability as
a concept is stronger than pseudo-amenability. In the case when the Banach
algebra has a bounded approximate identity, then the Banach algebra being
pseudo-amenable is equivalent to it being approximately amenable [50].

The following result is a direct application of Theorem (|3.3.24]).

Proposition 3.3.26. |14] For a Banach algebra A, the following statements
are equivalent.

(i) A has an approzimate diagonal (my)ac; C ARA such that (7(my))aer
15 bounded.

(ii) A is pseudo-amenable and has a bounded approzimate identity.

(iii) A is approzimately amenable and has a bounded approximate identity.

Proof. (i) = (i) Obvious
(i) = (iii) From Theorem (3.3.24]), it suffices to show that A is
w*-approximately amenable. Let X be a Banach A-bimodule. Since A has
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a bounded approximate identity, we may assume without loss of generality
that X is neo-unital. Let D : A — X* be a continuous derivation. We show
that D is w*-approximately inner. Consider the following.

Let (mq) be an approximate diagonal for A and ® : A®A — X* a bounded
linear map determined by

®(a @ b) = aDb.

Clearly,
[B(a @ b)|| = llaDbl| < [lal[[o][[|DI],

which shows that
@] < || D]

Let mq = 3, al™ @ b for all . Then
a®(m,) = a® ( Z al” @ b,(ca)> =a Z o0\ @ bY)
K K
= Z aa,ia)Db,(ca) — Z a,(fa)D(béa)a) + Z a,(f)D(béa)a)
k k K
= (e’ Db — a? D)) + > al b Da+> " o Db )a
k k k
= Z(@(aa,&a) ® b,(f)) — @(a,(ca) ® bgf)a)) + Z a,ia)blia)Da
K

%
+ Z @(a,(f) ® b,(f))a
%
=& ( Z aa,(f) ® b,(ga) — Z a,(f) ® béa)a> + Z a,&a)b,ga)Da
% k 3
+ @ ( Z a,(f) ® b,(ca))a
%

= ®(amy, — maa) + w(may)D(a) + ®(my)a, (a € A).

That is,
w(mea)D(a) = (aly — (ua) — P(amy, — meya),

where ¢, = ®(m,). Since X is neo-unital, D(a) = w* —lim, 7(mq)D(a). Also
[®(ama — maa)l] < [|@][lama — maall < [[Dl[lama —maal = 0.

Therefore, D(a) = w* — lim,(al, — (na), (a € A).
(i1i9) == (i) Let (eg) be a bounded approximate approximate identity for
A. Since A is approximately amenable, then by Theorem (3.3.24)), A% is
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pseudo-amenable. Let (M,) be an approximate diagonal for A#. Without
loss of generality, let w(M,,) = e.
We set

My=us+F,Qe+e®G,+ce®@e,u, € AQA, F,,G, € A, ¢, €C,
for all . Notice that
e =7(My) = m(uy) + Foe + Goe + coe = Fy + Gy, + o

Since e ¢ A, 7(uy) + Fo + G4 # €, so that c,e = e, = ¢, =1 for all a. Tt
follows that 7(us) + Fo + G, = 0. Also,

Aty — Uga — Fy, ® a+a ® G, = aM, — M,a+ aF, @ e+ cpae ® e — e @ Gpa
—e®cue v alF,Re+coa®@e—e®RGua —eR cpa
— 0,

whenever aF, — —a, G,a — —a.
Set m = M p) = Uq + F, ®eg +e3 @ Gy + e3 @ eg. Then for any a € A,

am — ma = g — Uaa + aeg @ G, — F,, ® ega + aFy, ® eg + aeg @ eg
—e3 ® Gaa —eg @ Goa — eg®p
L g ® g+ a®Go— Fa®a—a®es+a®@es+es®@a—es®a

LN

Also,

m(m) = m(ua) + Faep + egGa + €
£> T(ua) + Fo + Go + €5
= 0 + 65 = 65.

Then clearly, for any a € A, 7(m)a — a. That (7(m,)) is bounded readily
follows from the fact that A has a bounded approximate identity. n

Proposition 3.3.27. [14] Let A be a Banach algebra with a central approz-
imate identity. If A is approximately amenable, then it is pseudo-amenable.

Proof. Let (e,) be a central approximate identity for A. Then given € > 0
and finite subset F' of A, there exists e,,, €4, € (€4) such that

€ €
|lea,a — al| < o1 l|€a; €ar@ — €q,all < Y a€F.
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Let D: A — X = kern be a bounded derivation defined by
D(a) = aey, ® €, — €0, ® €qya.

Since A is approximately amenable, then by Theorem (3.3.24)), it is ap-
proximately contractible, so that there exists a u = u(eqa1, €a,, 6, F) € X,
such that

|D(a) — (au — ua)|| <€, (a € F).

Set M = e,, ® €4, — u. Then clearly, M € ARA. It follows that,
laM — Mal| = |la(eq, ® €a, —u) = (€a; ® €a, — u)al

= ||aeq, ® €n, — au — €4, ® €qn,a + uall
= ||aen; @ €ny — €ay ® €aya — (au — ua)|
= ||D(a) — (au — ua)|| < e.

Also,

|m(M)a — al| = |[7(eq, ® €a, —u)a —al
= [|7(en, ® €ny)a — m(u)a — al|
= ||eq,Eaya — al|
< e, Cazr@ — €a,al| + ||€a,a — all
= ||€ay€ay @ — €a,all + |lea,a — al|
< €,

for a € F'. Hence M is an approximate diagonal for A. O

Corollary 3.3.28. [14] Any approximately amenable commutative Banach
algebra 1s pseudo-amenable.

Proof. Let b,c € A be fixed such that for any finite set F

€
2
Let D : A — X = kern be a bounded derivation determined by

HM—aH<,H@a—MH<§,MEF)
D(a) =ab®c—b® ca.
Then the rest of the proof follows. n

We state the following without proof.

Proposition 3.3.29. [13] Any pseudo-amenable Banach algebra is weakly
amenable. A pseudo-amenable Banach algebra with reflexive underlying space
15 permanently approximately weakly amenable.
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Chapter 4

Amenability property of C'(X)

In this chapter, we discuss some interesting algebraic and topological proper-
ties of C'(X). In the case where X is a compact Hausdorff space, we give the
proof of the amenability of C'(X) which is a result due to Seinberg. We fur-
ther discuss the construction of a bounded approximate diagonal for C(X),
a result credited to Abtahi and Zhang.

4.1 The Banach algebra C(X)

Recall that for a non empty set S, C° the collection of all complex valued
functions on S is a commutative unital algebra with respect to pointwise
product. Also recall that for a locally compact Hausdorff space X', C'(X) is
the algebra of all complex valued continuous functions over X'. We noted
that C(X) is a subalgebra of C* and is therefore commutative. We also
defined C*(A) C C(X) as the algebra of all bounded, continuous complex
valued functions over X and C°(X) equipped with the norm

6l = sup o] (6 € C*(X)),

is a Banach algebra, where ||.||» is the uniform norm. A function ¢ € C(X)
is said to vanish at infinity if given € > 0, there exists a compact set M, C X,
such that |¢(t)| < €, for every t € X'\ M.. We denote by Cy(X), the collection
of all ¢ € C(X) that vanish at infinity. Clearly each ¢ € Cy(X) is bounded,
which implies that Cy(X) is a subalgebra of C®(X). Notice further that
the limit of a sequence of continuous functions that vanish at infinity also
vanishes at infinity, it follows that Cj(X) is closed and is therefore a Banach
algebra when equipped with the uniform norm. Since the constant functions,
the zero function excluded, do not satisfy this property, Cy(X) is not unital.
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Let Z(¢) = {t € X : ¢(t) = 0}, the support of ¢, suppp = X \ Z(¢). The
collection of all ¢ € C(X) with compact support is denoted by C.(X). It
should be noted that C.(X) is not necessarily a Banach algebra and that
C.(X) is dense in Cy(X). It follows that, Cy(X) is referred to as the com-
pletion of C.(X). In [43], it is shown that a subalgebra H of C* seperates
the points of X if for every distinct points s, € X, there exists ¢ € H such
that ¢(s) # ¢(t). The subalgebra H seperates strongly the points of X if it
seperates the points of X, and for every t € X there exists ¢ € H such that

p(t) # 0.

Proposition 4.1.1. [43] Let X be a non empty locally compact space and let
A be a subalgebra of Co(X) which seperates strongly the points of X. Then
A is a function algebra on X .

For a completely regular topological space, say €2, the following is an
interesting property of C®(€Q).

Lemma 4.1.2. [9]

(i) Let U be an open neighboorhood of a compact set K, there exists a
¢ € C*(Q) such that 0 < ¢ < 1 and supp¢ C U, if p € C°(K), there
ezists a p € C°(Q) such that |x = ¢ and suppp C U.

(ii) If{U;,i = 1,2,...,n} is an open cover of K, then there exist h; € C®(Q),
i=1,2,...n, such that 0 < h; < 1, supph; C U;, and Y hi(t) =1
forallt € K.

Remark 4.1.3. Since a locally compact Hausdorff space is completely reg-
ular, we may choose X' = (2.

Remark 4.1.4. The collection {hy, hs, ..., h, } is referred to as the partition
of unity.

Another interesting subalgebra of C'(X) is Cr(X), the algebra of all con-
tinuous real valued functions on X. Notice that since R is a Banach space,
it then follows that Cr(X) is indeed a Banach algebra. It should be noted
that in the case when X is compact, C.(X) = Cy(X) = C*(X) = C(X).

4.2 Amenability of C(X)

The Gel’'fand representation theorem shows that any commutative C*-algebra
A is isometrically isomorphic to Cy(P 4), where @ 4 is the character space of
A. Recall that ® 4 is a locally compact Hausdorff space with respect to the

65



Gel’fand topology described earlier. Also recall that ® 4 has a one point
compactification ® 4 U ¢ where ., is the zero functional. In general, for a
locally compact Hausdorff space X, the unitization of Cy(&X') is C()), where
Y is the one point compactification of X. Furthermore, Corollary
shows that if the unitization of a Banach algebra is amenable, so is the
Banach algebra. It then follows that studying the amenability properties of
Co(X) gives a rich insight into the amenability properties of a rich collection
of Banach algebras.

The proof of the amenability of the Banach algebra C'(X’) by Seinberg
depends substantially on the version of Stone - Weierstass theorem given
below.

Theorem 4.2.1 (Stone - Weierstrass). Let X' be a locally compact Hausdorff
space and B a subalgebra of Co(X). B is dense if it is closed under complex

conjugation, seperates points of X and does not varnish identically at any
point of X.

We give the proof of the result due to Seinberg below.

Theorem 4.2.2. [48] Let X be a compact Hausdorff space, then C(X) is
amenable.

Proof. Let G = Cg(X). Clearly, G is an additive abelian group and is
therefore amenable as a group. This further shows that the group algebra
['(G) is amenable as a Banach algebra. Notice that each f € ['(G) is of the
form f =3, . andn, where §j is the characteristic function of (h), a, € R

and ), . lan| < oo.
Let

0:11G) — C(X)
be determined by

4 ( > ah5h> = ajexp(ih)

hed heG
Clearly,
190l = He(zah(sh) H I exp(z'mH < lanlllexp(it)]| < 3 Jan]
heG heqG heG he@
<(Sw)| =1l
hea G

66



Also,

9( Z ah15h1 * Z ah25h2> = 9( Z ahlah26h3)

h1€G ho€G hi1+ha=hs

= Z QAhy Gpy eXp(ihS)

h3eG

= Z ap, ap, €xp(ihy) exp(ihs)
h3€eG

= Z ap, exp(thy) Z ap, exp(ihsg)

h1€G ho€G
= 6( Z ah15h1)0( Z ah25h2> .
h1€G ho€G

This shows that 6 is a norm decreasing homomorphism and is therefore
continuous. Notice that 6(I'(G)) contains the identity element in C(X).
Furthermore, 0(I'(G)) seperates points of X. Notice that for any h €
Cr(X), exp(ih) = exp(ih) = exp(—ih) € C(X), so that for every f € [}(G),

90/) = 9( S ah5h> =3 anexplih) = 3 apexp(—ih),

hceG heG heG

It follows B
0(f) =0(f) € 0(1"(G)),
so that 0(I'(@)) is closed under complex conjugation. By applying Theorem

4.2.1)), 6(1*(@)) is dense in C(X). It therefore follows from Theorem
3.1.24)) that C'(X') is amenable. O

Although Seinberg already gave a concise proof of the amenability of
C(X) for a compact Hausdorff space X', the abstractness of the proof given
by Seinberg does not allow for a genaralisation of the amenability property of
C(X) to the Banach algebra C'(X, A) for a non commutative Banach algebra
A. Recall the famous result of Johnson, which showed that a Banach algebra
is amenable if and only if it has a bounded approximate diagonal. Abtahi
and Zhang [2] in 2010, constructed a bounded approximate diagonal for C'(X)
for a compact Hausdorff space A making use of the following result due to
Helemskii.

Lemma 4.2.3. |25 For Banach algebras A and B, if u = Y . u; @ v; €
A®B, then the projective tensor norm of u,

1 n
Jull, < 2>

k=1

n n

> il

J=1

)

w ¢t
1

=
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i
where = e .

The following lemma by Abtahi and Zhang is a direct consequence of
Lemma (4.2.3)).

Lemma 4.2.4. [2] Let n € N and z,,wy, € C,k € N,,. Let ¢ = ¢, where

0= 27” Then
LS| S| < (ke + ),
=y j=1 =1 j=1

S z¢CH and By, = —ki| If

=1

1 n
= ﬁ ; B,

Proof. Let 1 <k <mn,let o =

then clearly,

A< % Z(%Q + Bi%).

k=1
Notice that

ap = (izzﬁkl) (ﬂ) = ZZZCM ZZ (M= Z Ely

=1 =1

For 1 < j <1 <n, ("7 is clearly an nth root of unity and ¢!/ # 1, so

that .
Z Ck(lﬂ) _
=1

Therefore,

n n

Oé,% = (Zzlckl> (Z ZZCM) :ZZZCM Zglc_kl = Z ‘21’2
=1

=1 =1

+2ReZzz§k(l 2 _Z|Zl|

J<i
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In a similar manner, we obtain

n

2

= |,
j=1

Hence the proof follows. n

Corollary 4.2.5. [2] Let X be a compact space, let u = >} up @ vy €
C(X)®C(X). Then,
1)

1
Jul, < 5

Proof. Let u=">_, uy ®v; € C(X)® C(X). By combining Lemma ((4.2.3)
and Lemma (4.2.4]), we have that

n

D Juf”

=1

n

D

=1

_|_

o0

Ckl —kj

Jully <

< g(ziumzw)
1 n
<33

We now give the constructive proof of the amenability of C'(X) for com-
pact Hausdorff space X.

]

Theorem 4.2.6. 2| Let X be a compact Haursdorff space, then C(X) has a
bounded approximate diagonal and is therefore amenable.

Proof. Let F be a finite subset of C'(X') and € > 0. Givent € X, there exists a
neighbourhood V; of ¢ such that, if ¢, € V; and ¢ € F, then |¢(t,) —o(t)| < 5.
Since X is compact, it has a finite cover. Without loss of generality, we

choose open subsets Vi, V5, ..., V,, C X, such that X = U V;. Each V; for

© = 1,2,...,n is chosen such that V; = V,, for each 1. That is each Vj is a
neighbourhood of ¢; € X,i = 1,2, ...,n. Hence by Lemma (4.1.2|(ii)), there
exists a partition of unity {h1, ha, ..., b, } such that supp(hy) C Vi, 1 < k <n,
and > p_ hy = 1on X . Let u, = Vhg,u = > p_up @ui, kb = 1,2, ..., n.
Then

n

u)zw(Zuk@Juk):Z 7 (up @ uy) Zuk thzl,
k=1 k=1

k=1

for every t € X. It suffices to show that:
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(1) full, <1,
(i) [lpu —ugl|, < € for all ¢ € F.
By Corollary (4.2.5)),

1 n n 1 n n
i, < 5 (| 30wl | S ) < 5 (| ] + | o))
k=1 k=1 k=1 k=1
1

In addition, let ¢ € F', we choose each ¢y such that ¢ = ¢ — ¢(xy). Notice
that for any s € V,

|0k (s)| = [6(s) — o(te)| <

Also,
ou — up = Z(@% ® up, — U @ UgQ)
|
= (Pur @ up, — ug @ Pug)
)
= (du @ ur — Gtk @ wp + Gtk wp @ wp — wp @ ug,)

k=1

= (b ® u — G(tk)ux © g + up ® Gtk ux — ur @ dur,)
k=1

— ; <(¢ — O(te))up @ up — up @ (¢ — d)(tk)uk))

= Z Orur @ up — Zuk ® Prug.
1 1

Therefore,

lpu — ugl|, =

Z Pruy @ up— Z up @ Qruy
k=1 k=1

p

< +

p

Z ¢kuk X U Z U 0% gbkuk
k=1 k=1

p
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We set

N

It then follows that

n \/g n n 1
Z Pty @ up = —Z Prug @ up = Z — oy, @ Vouy,.

By applying Corollary (4.2.5)),
1 "1 5
< = E —

k=1 k=1
1
-3 25 Za|uk| )
k=1
1/ <=1 =
25( Zg|¢k|2hk + Ol )
k=1 o0 k=1 00
1/1 &
=35\3 Z|¢k|hk Z
(o] k o0
1 2§+£ Lie ¢
~2\e4 2 3

In a similar manner, we obtain

<€
2.

Hence,

€ €
lpu —ud|, < §+§:e.
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Chapter 5

Some notions of amenability of

C(X, A)

Let X be a compact Hausdorff space and A a Banach algebra. In this chapter,
we discuss some important properties of the Banach algebra C(X,.A). We
also give the construction of a bounded approximate diagonal for C(X,.A)
and show that C'(X,.A) is amenable if and only if A is amenable. This result
is credited to Ghamarshoushtari and Zhang, see [17]. We further discuss the
weak amenability of C'(X,.A) and show that if A is commutative and weakly
amenable, then C(X, A) is also weakly amenable. This result can be found
in [49] and is due to Zhang.

5.1 The Banach algebra C(X, A)

Let X be a compact Hausdorff space and A a Banach algebra. The collection
of all A-valued continuous functions on X' is denoted by C(X, A). If we define
a pointwise product and the uniform norm:

1 flloe = sup 1fDl4 (f € C(X,A)

on C(X, A), where ||.|| 4 is the norm on A, then C(X, A) is a Banach algebra.
It should be noted that C(X,A) is not in general a commutative Banach
algebra, and is commutative if A is also commutative. Let I be a closed two
sided ideal of A. Notice that for any f € C(X,A), g € C(X,I), fg(x) =
f(x)g(z) € I and gf(z) = g(z)f(z) € I, for all x € X. This shows that
C(X,1) is a closed two sided ideal of C(X,A). In particular, C(X,.A) is
a closed two sided ideal of C'(X, A#). As a matter of fact, the algebraic
structure of C'(X,.A) is determined by the Banach algebra A.
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The following is an important result by Hausner, which serves as a basis
for the proofs of some of the results in this chapter.

Lemma 5.1.1. [24] Let f € C(X,A) and € > 0. Then there exist a; € A,
and ¢; € C(X) such that:

< €.

[e.e]

Hf - Z oia;
i=1

Remark 5.1.2. The result above shows that C'(X)A = C(X,.A). That is,
lin{ga : ¢ € C(X),a € A} is dense in C(X, A).

The following result shows that the Banach algebra C(X,A) is identi-
fied with the injective tensor product C(X)®.A, where the relationship is
determined by the map;

(p®a)(z) =¢(x)a, z€X, ¢pcC(X), ac A

Theorem 5.1.3. [43] Let X be a locally compact Hausdorff space and A a
Banach algebra. Then the map defined above induces an isometric algebra

isomorphism of Co(X)RA onto Co(X, A).

Remark 5.1.4. The proof of Theorem shows that the image of
Co(X)®A is closed under complex conjugation and seperates points of X
and is therefore dense in Cy(X, A) by Theorem (4.2.1]). It should be noted
that since a compact space is also locally compact, the result also holds for
C(X,.A) when the Hausdorff space X is compact.

5.2 Amenability of C(X,A)

It is known that the algebraic properties of C(X,.A) derives from those of
the range Banach algebra 4. We are often interested in finding out if this
further implies that the amenability properties of C'(X,.A) can be inferred
directly from that of A. Ghamarshoushtari and Zhang [17] recently gave
an all important answer to this question. They showed that C'(&X', A) being
amenable is equivalent to A being amenable. It should be noted that the
result is a generalisation of the result due to Abtahi and Zhang [2], which
was the focus of our study in the previous chapter and that it relies heavily
on the important inequality due to Grothendieck which is given below.
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Theorem 5.2.1 (Grothendieck). Let Xy, Xy be compact Hausdorff spaces,
and let @ be a bounded scalar valued bilinear form on C(X;) ® C(X,). Then
there exists probability measures py, po on Xy, Xo respectively, such that

@(gol,soz)rsmu( [t [ !wz\zduz) (o1 € LX), 2 € C(2)).

Remark 5.2.2. The smallest of such K is referred to as the Grothendieck
constant denoted by K&. In [23], we see that 2 < K& < 1.405.

Corollary 5.2.3. [17] Let Xy, Xy be compact Hausdorff spaces, let u =
o1 @i @ @ € C(X1) @ C(Xs). Then,

n

2

lull, < ( S 1o
k=1

Proof. Let p®@¢ be an elemental tensor in C (X} )®C/(AX>). Then by Theorem
(5.2.1),

+

Z ‘%“2
k=1

o

_1yC
where ¢ = ;K¢

¢ ® ell, = sup |P(0, )|
deB2(C(X1),

(A1),0(X2))
3
S’CEC;(/WIQdm/\sOIQduz) SC(/|¢\2dul+/\g&\2du2).

It then follows that for any u =31 | ¢ ® ¢;,
ol < e[ loPaua+ [ 3 I
i=1 i=1

|

We now give the proof of the result due to Ghamarshoushtari and Zhang.

+

> 1ol
=1

Z il
i=1

J

]

o0

Theorem 5.2.4. [17] Let X be a compact Hausdorff space and A a Banach
algebra, C(X, A) has a bounded approximate diagonal if and only if A has a
bounded approximate diagonal.
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Proof. Let u = Y, u; ® v; € C(X)RC(X), a = >0 ® B € ARA. We
define a map,

T (C(X)@C(X),A@A) S C(X, B, A).
by
T(u,a) = Zuiaj ® v;f;.

,J

Clearly,

17 (u, @) =

> wia; @uiBs|| < llwias @ viBillp < Jlull,llall,-
i i

This shows that T is bounded if u and « are bounded. Suppose () C ARA
is a bounded approximate diagonal for A, then, there exists K > 0 such that
laxll, < K, for all A. Let F' C C(X,.A) be a finite set, our aim is to show
that given e > 0, there exists U = Up,) C C(X, A)@C(X, A) and a constant
K7 > 0 such that for any f € F,

) U], < K,
(i) £~ U.f], <«
(i) Ir(U)f — Il < e

Recall that for any ¢ € C(X) and a € A, ¢a € C(X, A). Also by Lemma
, V =lin{¢a : ¢ € C(X), a € A} is dense in C(X,.A). Hence natu-

rally we have two cases for the nature of the finite set F'.

Case 1: Suppose each f € F is of the form ), ¢rar, ¢p € C(X), a, € A
Clearly the collection of the azs in the finite set F' form a finite set F4 C A
and the collection of the ¢xs form a finite set Fo C C'(X). Let L > 0 be such
that [|b]| 4 < L,b € Fau, ||¢]| < L,¢ € Fo. By the compactness of X', there
exist a finite cover Vi, ..., V,, of X such that X = [J V; and

=1

[9(s) — peFq steVii=1,.,n.

€
)| < ———

By applying Lemma (4.1.2((ii)), we obtain continuous functions hy, ..., h, €
C(X) such that supp(h;) C V;, > h; =1 on X.
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Let u = Y u; ®@u; € C(X) ® C(X), where u; = v/h;. Clearly [|ull, < 2¢
and

€
< —
2LN||o|

P

o= wally < | S(o-otueu| +

Z u@(P—¢(t:) Ju

In addition, for any « € (),
€
b.oo — ab b—10 —.
b —abll, < e, (@b — bl < oz
We therefore have that,

1Ull, = 1T (w, &)ll,, < [[ull,[lofl, < 2Ke

for all @ € (ay). We set K; = 2Kc¢. Notice that

f.U = Z drarT (u, o) = Z Oray, Z w0 @ v; 35
k k i,
= Z Z Pruiaroy @ vif; = Z T (pru, apo).
ko iy k
Also,

Uf=T(u,a«) qu)kak—Zu ozj®v16]2¢kak
- ZZU Qj ®Uz¢k5]ak - ZT U¢k,aak

Notice that ,
T(pru, aroe — aay) = Z druiaroy @ vifiay — Z druioy @ v;Biay
i i

= T(¢ru, aag) — T(Pru, aay).

And,
T(ppu — udy, aay) = E PRy @ vifiag — E w0 @ vy Sjan
i,J ,J

= T(¢ru, aag) — T(upy, aay).
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We have that,

If.U=U.fll, = H > Tk, arar) = Y T(udy, aay)
B p

p

Z T(ppu, aga — aay,) — Z T(pru — udy, cay)
k A P
< ST (s, ara — aag)l, + 3 IT (6wt — udp, aan)l,

k %
< lull gl o llaxa — aag]l, + > s — ugll e, llax | 4

k %

€ €

1 L— 1

4cNL; * ledl, 2Ha|]pLN;

< NL(QC

< 2Lc¢

+ =

€ €
AcNL P2l LN

Further more,
[x(U)f = fIl = 7w (w)m () f = f]
= |Im(e)f = fll =

Q)Y orak — Y drax

s k o0
Z¢k aag —ag)| < Z||¢k a)ar — ag)|foo
—Z||¢k|| |7 (e ak—akHA < ZLHW a)ay, — ak| 4

<L—Zl NL—:e.

Case 2:

Let F' be any finite set in C(X,.A), notice that every f € C(X,A) is
approximately equal to f. = > ;_, ¢pay, where ¢ € C(X), ar € A. In
addition since X is a compact set, there exists X, ..., X,, C X, such that

X—UXkandHf() fWll4 <e fora,ye X Let ap = f(xy) for

each xk E Xj. From Lemma (4.1.2(ii)), there are ¢, € C(X), such that
supp(¢r) C X forall k=1,...,n, 0 < ¢p(x) < 1,z € X, and >, ¢, =1 on
X. Clearly, fo =), drai satisﬁes the requirement.

We may choose each f. =), ¢ra) such that for any f € F,

. € €
— fell, < — .
I = felloo mm{élK 8Kc}
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It follows that F. = {f., f € F} is a finite subset of C(X,.A) satisfy-

ing all the conditions in Case 1, so that there exists a U T(u,a) €
C(X, A)RC (X, A), such that,
€
WU, = 2Ke, [lfeU=Ufl, <5, In@)fe = flla< 5 fe€Fe

Hence for any f € F,

IfU=Ufl, = I(f = fe+ [)U=ULf = fe+ f)llp
=||fU—-fU+fU-Uf+Uf—-Uf],
=(f = f) U+ (fe = [)-U+ feU = USlp
< [(f = f).Ull, + 1 (fe = N)-UNl, + I/ U = UL,
= ||f — Sl MU, + e = Al MU, + 11U = U.fell,

€
Ke+ S — e
8Kc ctg=c«

<2
Also,

lm@)f = Il = lmO)(f = fe+ f) = (f = fe + [

= 7(U)f =7U)fe+7U)fe = f + fe = [

= 7U)(f = fo) + fe = f+7m(U)fe = fe

< |lw@)(f = Jll + [[fe = I + |7 (U) fe = [e]

< I = felloo + [[fe = Flloe + I (U) fe = [

= [[m()m(@f = fello + 1fe = flloo + lw(U) fe = [l
= lIm@)If = felloo + e = fllo + I (U) fe = [ell

< llall,llf = flloo+||fe—f|!oo+\lﬂ( Ve = fell 4

€
K-S +848 ¢
< e —l— 1 + 5 €
This shows that C'(X,.A) has a bounded approximate diagonal.
Conversely, Suppose C'(X,.A) has a bounded approximate diagonal, then it

is amenable. We define a linear map
0:C(X, A — A, f flty) (feC(X,A),

where tq is fixed in X. Clearly, 6 is an epimorphism so that by Theorem
(3.1.24)), A has a bounded approximate diagonal.
O

Remark 5.2.5. Notice that since A is asummed to be amenable then it
has a bounded approximate identity. Without loss of generality, we may
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suppose that (7(a,)) is a bounded approximate identity for A. Recall that a
bounded approximate identity for A is also a bounded approximate identity
for C'(X, A), it then follows that given € > 0, € (ay), f € F C C(X,A),

Im(O)f = fll = lIr(m(a)f = fll = Im(a)f = ] <€

This is an alternative proof of part (¢i7) of the requirements for (U,) to be a
bounded approximate diagonal for C'(X, .A).

Remark 5.2.6. By virtue of Theorem ([5.1.3)), an alternative way to show
that C(X, A) is amenable whenever A is amenable is to determine if C'(X)®.4
is amenable. It also serves as an abstract proof of the afore-stated theorem.

5.3 Weak amenability of C(X, A)

Let X be a compact Hausdorff space. In the section above, we showed
that we are often interested in determining if the amenability properties of
C(X,.A) can be derived from that of its range algebra A. The case of the
weak amenability of C'(X,.A) is no different. Recently, Zhang [49] showed
that for a commutative Banach algebra A, the implication actually holds.
This section will be entirely concerned with discussing the proof by Zhang.
Consider the following.

Theorem 5.3.1. [17] Let X be a compact Hausdorff space and A be a com-
mutative Banach algebra with a bounded approximate identity. If A is weakly
amenable, then so is C(X,A).

Proof. Since A is commutative, so is C'(&X, . A). Also, A is a closed subalgebra
of C(X,A). It follows that for any a € A, g € C(X,A), ag, ga € C(X,A),
and;

lagllee < llallllgllo, llgalles < llallllgllo,

which shows that C'(X,.A) is a Banach .A-bimodule. Also note that C(X,.A)
is a Banach C'(X')-bimodule. By virtue of Definition (3.2.1]), we are to show
that every continuous derivation from C'(X,.A) into C (X, A)* is trivial. Let

D:C(X A —CX,A)"
be a continuous derivation. Since A is a closed subalgebra of C'(X, A),

D‘AA%O(X,A)*
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is a continuous derivation. But A is commutative and weakly amenable, it
then follows that D|4 = 0. Let (e)) be a bounded approximate identity for
A. Then clearly for any g € C'(X, A),

lgex — gl [lexg — glloe — 0,

for all A. That is (ey) is indeed a bounded approximate identity for C' (X, .A).
Since D|4 = 0, it follows that w* — limy D(ey) = 0 for all A.

Claim: For each ¢ € C'(&X), w* — limy D(¢e,) exists.

To prove our claim, we show that all weak® subnets of (D(¢ey)) converge

to the same limit. Let (e;), (e;) be convergent subnets of (ey). Suppose
w* —lim; D(¢e;) and w* — lim; D(¢e;) exists. Then

D(¢e;) = w* — lim D(¢e;e;) = lim(de;) D(e;) +w* — D(ge;)e;
j j

It follows that
w* — lim D(¢e;) = lim ¢ D(e;) + w* — lim D(¢e; )e;
=0+ w" — lim D(¢e;) = w* — lim D(¢e;).
J J
That is, our claim holds. It then follows that the continuous linear map:

D : C(X) — C(X,A)*, given by D(¢) = w* — limy D(¢e,) is well defined.
Notice that for ¢q, ¢y € C(X),

D(¢1¢2) =w" — li]m D(<Z51¢2€j) =w" — li?l<li?lD(¢lei¢2ej))
=w* — li]m 1D () + w* — li;m D(¢1€;)ps = ¢1D(d2) + D(¢1) o

Hence, D is indeed a derivation. Since C'(X) is commutative and amenable,
D =0. For any ¢ € C(X), a € A,

D(¢a) = D(¢).a+ ¢.D(a) = 0.

So that D = 0 on lin{¢a : ¢ € C(X),a € A}. Butlin{pa : ¢ € C(X), a € A}
is dense in C'(X,.A), as is the case in Theorem (|5.2.4]). Therefore, D =0
on C(X,A). Hence, C(X, A) is weakly amenable. ]

The following is a more general form of the result stated above.

Theorem 5.3.2. [49] Let X' be a compact Hausdorff space and A a commau-
tative Banach algebra. Then C(X,A) is weakly amenable if and only if A is
weakly amenable.
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Proof. Suppose A is weakly amenable, then by Corollary , A7 is
weakly amenable. Since A* is unital, it must have a bounded approximate
identity. By Theorem , C(X, A%) is weakly amenable. Recall that
C(X,A) is a closed ideal of C'(X, A*) and that A being commutative implies
C(X,A) is commutative. Hence by Theorem (3.2.9)), it suffices to show
that C (X, A)? is dense in C'(X,.A). Consider the following.

Recall that lin{¢a : ¢ € C(X),a € A} is dense in C(X,.A). By Proposition
, the weak amenability of A implies A% is dense in A, so that lin{ha :
h € V,a € A} is dense in C(&X, A), where V = lin{¢a : ¢ € C(X),a € A}.
It therefore follows that C(X,.A)? is dense in C(X, A). O
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Chapter 6
Pseudo-amenability of C(X, A)

In this chapter, we give results obtained from our study. These results serve
as our contribution to knowledge. In particular, for a Banach algebra A
with a bounded approximate identity such that A®.A is norm irregular, we
show that if A has an aproximate diagonal which is bounded with respect
to the multiplier norm on A®A, then C(X,.A) has an aproximate diagonal.
This result provides a partial answer to the question of pseudo-amenability
of C(X,.A) which follows from the work of Ghamarshoushtari and Zhang in
[17].

6.1 Norm irregularity of C(X, A)

For a Banach algebra A4, the multiplier semi-norm on A is defined as;

lallar = sup  {llabl], [[ball}, (a € A).

beA, [|bll<1

Clearly, max{||abl|, ||ba||} < ||a||ls||b] for all a,b € A, so that ||a|lx < |al-
Recall that the annihilator ideal of A denoted by ann(.A) is defined as

ann(A) ={ac€ A:ab=ba=0, b € A}.

If ann(A) = {0}, then |.|[5 is indeed an algebra norm on A called the
multiplier norm. If the Banach algebra A is norm irregular, in the sense that
II-llas does not coincide with and is strictly weaker than ||.||, then ||.|[5s is not
necessarily a complete norm on A, that is, (A, ||.||ar) is not a Banach algebra.
The completion of A with respect to the multiplier norm is denoted by .A.
Notice that for a locally compact Hausdorff space, ann(Cy(X,.A)) = {0}. Tt
then follows that (||.]|oc)as is @ norm on Cy(X,.A). The following result shows

82



that the multiplier norm on Cy(X,.A) is determined by the multiplier norm
on A. Here, we make use of the notation;

110 = sup [l£()lar, (f € ol A)).

Proposition 6.1.1. [40] Let X be a locally compact Hausdorff space and A
a Banach algebra. Then, the multiplier norm on Co(X,.A) satisfies

(1 lso)ar = IFIST (F € Co(X, A)).

Remark 6.1.2. Since a compact space is also locally compact, the result
above holds for C(X, A), where X is a compact Hausdorff space.

6.2 Results

Let A be a Banach algebra and X a compact Hausdorff space. In the previous
chapter, we gave the construction of a bounded approximate diagonal for
C(X,A) and showed that C'(X,.A) has a bounded approximate diagonal if
and only if A has a bounded approximate diagonal. It should be noted that
the construction relies heavily on the norm boundedness condition on the
approximate diagonal for A. Recall that A is pseudo-amenable if it has an
approximate diagonal, which need not be bounded. Hence, the construction
of an approximate diagonal for C'(X’, A) given earlier fails if we remove the
condition that the approximate diagonal for A is bounded with respect to the
projective norm on A®.A. In other words, it is unknown if the possession
of an approximate diagonal by C(X,.A) follows from the possession from
an approximate diagonal by A. Our main result shows that under certain
restrictions, if A has an approximate diagonal, then so does C'(X, A).

Recall that for a norm irregular Banach algebra, say (A, ||.||), the mul-
tiplier norm on A denoted by ||.||as is strictly weaker than ||.||, so that the
normed algebra (A, ||.||as) is not necessarily complete. Let o € A®.A such
that a = >, a; ® b;, the multipler norm on A®.A assumes the form

(ledlp)r = sup {{laB]],, |5, }
I8ll,<1

— {inf2||aiaj||||b,ﬂj||, inf2||ajai||||@jbz—||},
1,J 4,J

inf 325 fle [ 551 <1

where the infimum is taken over all finite representations of o and =
> ;@ ® ;. Since the projective tensor norm on A®A depends on the norm

on A, it then follows that if A®.A is norm irregular, so is A.
The following lemma is an important component of our main result.
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Lemma 6.2.1. Let A be a Banach algebra with a bounded approximate iden-
tity and let (||.]|,)a be the multiplier semi-norm on AR.A. Then there exists
K > 0 such that

laBlly < K([Bllp)allall,
foralla € A, € ARA.
Proof. Let (e,) be a bounded approximate identity for A. Then there exists
a C' > 0 such that ||e,| < C for all a.

Case 1: Suppose 1 < |le,]| < C, for all @. Then for any a € A and
B e ARA,

laBll, < /(e ® ea)Blly
< (18llp)ar lalllleall
< K([|8llp)arlall-

Here, we chose K = C.
Case 2: Suppose C < 1, then |e,|| < 1 for all a. It then follows that there
exists L > 1 such that L|e,|| > 1 for all a. For any a € A and 8 € ARA,

laBll, < Li(a ® ea)Bllp
< L([|Bllp)allalllleall
< LC([|Blp) sl
= K(lIBllp)allall,

where K = LC. [
We now give our main result.

Theorem 6.2.2. Let X be a compact Hausdorff space and (A,|.]]) be a
Banach algebra with a bounded approxzimate identity such that AQA is norm
irreqular. If A has an approrimate diagonal which is bounded with respect to
the multiplier norm on ARA, then C(X,A) has an approzimate diagonal.

Proof. We define a linear map
T: (C(X)RC(X), ARA) — C(X, A)RC (X, A),

determined by
T(v,B) = Zui% ® v;;,
1,

where v =3, u; ® v; € C(X) @ C(X) and f =3 _;a; ® B; . Notice that

> e o8l <> Naalllloill > Nl H18511-
i,j i J
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It follows that ||T'(v, 8)||, < [Jv[l,[|B],, where [.|[, is the projective tensor
norm. By a similar argument in the proof of Proposition ((3.3.19)), we
show that for every ¢ > 0 and finite set F* C C(&X,.A) there exists U =
U € C(X, A)®C(X, A) such that

(i) llg-U - U.gllp < €, and
(il) [|7(U)g —gll <e, forall g € F.

Let (a\) be an approximate diagonal for A bounded with respect to (||.||,)as
on A®A. Then there exists K; > 0 such that (||ax]l,)s < K for all X. Let
e >0 and let FF C C(X,A) be a fixed finite subset. For fixed finite subsets
Fe,Fa in C(X) and A respectively, ¢;s € Fo and a;s € F4, we see that
> ®ja; € F, where the sum is finite. Let L be a positive real number such
that

lall < L, [loll < L,

for every a € F4 and ¢ € Fe. Since (a) is an approximate diagonal for A,
it then follows that for any b € F4,

€

b.oao — b
1b-a — bl < NI

I ()b — bl <

;, for some a € (),
8cNL

where NV is a positive integer chosen to be no less than the number of terms
in the finite sums ) ; ¥;a;, and c is the constant in Theorem . Since
X is compact, there exist finite open sets V; C X, i = 1,2,..,n such that
X = Lnj V; and

i=1

|p(z) — d(y)| ¢ € Fo, z,y €V,

€
< GRKNT |
By applying Lemma (4.1.2((ii)), we obtain continuous functions h; € C(X),
i =1,2,...,n such that supp(h;) C Vi, h; € [0,1] for all ¢ and >, h; =1 on
X. Let u; = vh; and u = > u; ® u;. Clearly, 7(u) = 1 on X, Hqu < 2c
and for every ¢ € I,

€

Z(¢—¢(tz‘))ui®ui ) < AKK,NL'

7

6 — wll, < '

p+H Zi:“i@’@—cb(ti))ui

where K is the constant in Lemma ((6.2.1]). Since lin{¢a : ¢ € C(X),a €
A} is dense in C'(X, .A), it then follows that for any g € F,

Hg - Z%aa‘
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Thus for any a € (a),

HZqﬁjaj u, ) — T(u, « Zgb]a]

;T (u, ) — Z T(u,a)p;a;
J

Z T(pju,ajo) —

Z T(ug;, aa;)

< Z ||T(§Z5]U, ajoz) - T(U¢j, Oé&j)”
< Z ||T(§Z5]U, ajoz) - T(U¢j, Cleé)H
T(udj, aay)||

+ > 1T(udj, a50) =
< lbju
+Z [ug;llllaja

= ugjll,[la;e],

— aaj||p.

Since A has a bounded approximate identity, we apply Lemma (| and

obtain

Z [¢ju

= K([l],)

+ull, Y ||¢j||oo||aja
J

— ugjl la;all, + Z [[ugds[f]ajer

< Z ju
+Z ull, 651l . llajer

— aaj],

— gyl K [a;l|([letl] ) ar
— aaqjl],
Z lg;u

— ugjl,lla;

— aaqjl],

€ €
KK L— S S 14921L 1
< A 4KK1NLZ e 8cNL2j:

< KK L

€
5

N +2cL N

€
AKK\NL SCNL
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Set fn = Zj ¢ja;, so that for any g € F,

19T (u, @) = T(u, a)gll = [[(g = fv + fn)T(u, @) = T, @) (g — fnv + fw)l
< [[(g = f3)T(u, )| + 8T (u, @) = T(u, @) fv
+ 1T (u, @) (g = fn)l
< 2T (u, )lllg = fvlloe + [INT (u, @) = T(u, @) fv ||
< 2full,[lellllg = fvlloe + IINT (u, @) = T'(u, ) f ]|
<dcllg - fNHooHOéHp +NT(u, a) = T(u, @) fu|

< 4c

lol, + =

- =€
8 Hp P
Also,

‘ j
< Z 95l T (a)a; — ajl]
€

4cNL 2’

Let fy be as defined earlier. Without loss of generality, we may suppose
|||, > 1. Then for any g € F,

|7 (T'(u, ))g — gl| = [[7(T(u, @) (g — fv + fn) = (9 — fv + f)]
= |7(T'(u, a))(g — fn) + 7(T(u, ) fx — fnv — (g = fw)l
< |lm(a)(g — fR)ll + |7 (T (u, ) fv — ol + llg — fnll
< |lm(a)llmllg = fnlloo + 7 (T(w, @) fr = fll + [lg = fvlloo
< lellpllg = fyllo + 17 (T (u, ) fv = fnll 4+ llg — Il
<2[lallpllg = fnllo + lI7(T(u, @) fv = fnll

<2laf,— + < <
[0 —_— — €
"8llall, 2

T(u,)) Z pja; — Z pja;

m(u)m () Z pja; — Z pja;

a)a; — aj)

< NL (2c = K& > 1).

We set T'(u, ) = U, the natural partial order (F,€;) < (Fy,€z) if and only
if Fi C Fy, € > €, ensures we obtain a net (Ugg,)), which is the desired
approximate diagonal for C'(X, A). ]

Remark 6.2.3. Since A has a bounded approximate identity, by applying
Proposition (3.3.26]), we may assume that (7(«,)) is a bounded approxi-
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mate identity for A. This further implies that (7w(a,)) is a bounded approxi-
mate identity for C'(X,.A), so that for any g € C(X, A), ||7(T(u, ®)g—g||lco =
|m(a)g — gllo — 0, which serves as another proof for condition (7).

Remark 6.2.4. Clearly, the map C(X, A) — A, f — f(ty), where t; is fixed
in X is a continuous epimorphism. This shows that the converse of Theorem
clearly holds, that is, if C'(X,.A) has an aproximate diagonal, then
A has an approximate diagonal.

We define ||a||;(,M) =inf ), [|a;||a]|bi||pr, where o = )", a; ® b; and

> laillallballar =

{ZHaz%HHbzﬂgH ZH%%HHWJII
> lasalligiill, ”Oéjaz'“HﬂjbiH},
1] ,J

2 II%HZ 6;l<1

each of the sums being finite.

Proposition 6.2.5. The multiplier norm on A®.A satisfies
(lall,)ar < lafl$, 0 € ADA.

Proof. Let {a;},{/3;} be finite collections of elements in A chosen such that
el 1181 < \/Lﬁ, where N > 1 is an integer chosen such that v/N is no less
than the number of terms in any finite representation of f = ) ;0 ® B

Clearly, Ej HajH7Zj HBJ” <1, and

1811, = nf >~ a8 < inf >~ flagll Y 11851 < 1.
J J J

This shows that 3 € (A®A)p). It then follows that for any o =, a; ® b; €
ARA,

lasll, = inf Y s |[6:5511 < inf Y lasllyglles 1601511551
,J 1,J

<inf > llaillyl10illay il 1851 < it >~ flasl g l[ill -
i j i
In a similar manner, we obtain

1Ball, < inf Y llasl o 1billor-

. M
Therefore, ([, )ar < inf 32, llasllofl[billa = Nl
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