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ABSTRACT 

 

Globally, water turbidity remains a crucial parameter in determining water quality. South 

Africa is largely regarded as arid and is often characterised by limited but high intensity 

rainfall. This characteristic renders most of the country’s water bodies turbid. Consequently, 

the use of turbidity as a measure of water quality is of great relevance in a South African 

context. Generally, turbidity alters biological and ecological characteristics of water bodies 

by inducing changes in among others temperature, oxygen levels and light penetration. These 

changes may affect aquatic life, ecosystem functioning and available water for industrial and 

domestic use. Siltation, a direct function of turbidity also impacts on the physical storage of 

dams and shortens their useful life. To date, determination of water turbidity relies on the 

tradition laboratory based methods that are often time consuming, expensive and labour 

intensive. This has increased the need for more cost effective means of determining water 

turbidity.   

In the recent past, the use of remote sensing techniques has emerged as a viable option in 

water quality assessment. Hyperspectral remote sensing characterizes numerous contiguous 

narrow bands that have great potential in water turbidity measurement. This study explored 

the applicability of hyperspectral data in water turbidity detection. It explored the visible and 

near-infrared region to select the optimal bands and indices for turbidity measurement. Using 

the Analytical Spectral Device (ASD) field spectroradiometer and a 2100Q portable 

turbidimeter, spectral reflectance and laboratory based turbidity measurements were taken 

from prepared turbid solutions of predetermined concentrations (i.e. 10g/l to 150g/l), 

respectively. The Pearson’s coefficient of correlation and R
2
 values were employed to select 

optimal spectral bands and indices. The findings showed a positive linear relationship 

between reflectance, the amount of soil in water and turbidity values. The strongest 

relationships came from bands 528, 489, 657, 1000 and 983, reporting adjusted R
2
 values of 

0.7062, 0.7004, 0.6864, 0.7120 and 0.6961, respectively. The highest coefficient came from 

band 1000nm. The strongest indices were 625/440 and (770-1000)/(770+1000), with adjusted 

R
2 

values of 0.6822 and 0.6973 respectively. The use of hyperspectral data in turbidity 

detection is ideal for optimal band interrogation. Although good results were generated from 

this study, further investigations are needed in the near-infrared region. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction 

Water constitutes three quarters of the Earth’s surface (Plaza et al., 2004). Of that amount 

only 2.5% is fresh-water and exists as permanent snow cover and glaciers, groundwater, soil, 

swamps, lakes and rivers (Shiklomanov, 1998). Due to a rise in population, industrial 

development and expansion of irrigation agriculture, water use has increased six-fold over a 

period of 70 years (Bernstein, Undated). The quality of available water has also declined. 

According to Bernstein (Undated), about 1.1 billion people are deprived of clean water. Poor 

water quality is reported as one of the leading causes of death in poor communities (Venter, 

2002, WRC, 1998).  

 

Over 65% of the African continent is classified as arid or semi-arid (Clark, 2010). Clark 

(2010) further notes that the continent accounts for only 9% of global renewable freshwater 

resources. Environmental related threats like forest and biodiversity loss, land degradation 

and urbanization caused by ever increasing population have further led to a decline in water 

quality and quantity (Clark, 2010, Eva et al., 2006). Like other African countries, South 

Africa is characterised by perennial water stress and scarcity (Eva et al., 2006).  

 

With an average total annual rainfall of 450mm compared to the world’s 860mm, South 

Africa is regarded as a semi-arid country (CSIR, 2010). Over 90% of her mean annual 

rainfall is lost to the atmosphere through evaporation (Whitmore, 1971 as cited by Schulze, 

1995) and only about 8.5% of the available water translates to runoff (Backeberg et al., 

1996). A large portion of the available water is often allocated for use, leaving virtually no 

surplus water. Furthermore, the country’s fast growing population, changing standard of 

living and recent government drive to establish “decent” human settlements has further 

increased pressure on the existing water resources (Ashton, 2007, CSIR, 2010, Fatoki et al., 

2001). Increased volumes for domestic, industrial and agricultural, mining and power 

generation have combined with land use associated problems like soil erosion to degrade the 

quality of the country’s water resources (CSIR, 2010, Du Plessis, 2006).  
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1.1.1 Turbidity and water quality 

Turbidity is an important water quality indicator that measures the relative clarity of water 

(Lambrou et al., 2010). It basically amounts from suspended silt and clay particles, algae, 

organic matter and microscopic organisms in water bodies affect their color and brightness 

(Kwoh et al., Undated, Ramollo, 2008). Generally, turbidity interferes with a water body’s 

light transmission which affects submerged aquatic plant’s primary productivity (Hart, 1999, 

Norsaliza and Hasmadi, 2010a, Norsaliza and Hasmadi, 2010b, Ramollo, 2008). 

Furthermore, turbidity reduces the amount of oxygen in water which may cause plant death, 

organic matter decay and induce production of carbonic acid (Hart, 1999). The subsequent 

suppressed production in aquatic plants reduces food availability, which in turn affects biota 

distribution and habitat selection (Dörgeloh, 1995, Hart, 1999). Because suspended particles 

absorb more sunlight they increase water temperature, leading to further depletion of 

dissolved oxygen as warm water holds less oxygen than cool water (Ramollo, 2008). These 

conditions lead to aesthetically undesirable and un-inhabitable water bodies devoid of life.  

 

South Africa’s water resources are particularly affected by turbidity. Almost all of the 

country’s reservoirs are turbid (Dörgeloh, 1995, Dörgeloh et al., 1993). The country’s 

reserviors turbidity levels are largely attributed to arid conditions associated with high 

intensity rainfalls on areas with limited vegetation and consequent soil erosion (Hart, 1999). 

Other turbidity causative factors include domestic and industrial effluents and agrochemicals 

from agriculture (Ashton, 2007). Ultimately most of the water from these sources is drained 

into rivers.  

 

Turbidity does not only have environmental and ecological consequences in river systems but 

also pose an economic threat, through facilitating reservoir siltation. Such makes its 

measurement and monitoring a valuable exercise. Traditional methods used to determine 

turbidity like in situ measurements and laboratory analyses play a significant role in 

monitoring water quality. However, these techniques are time-consuming, expensive and 

labour intensive (He et al., 2008, Liu et al., 2003, Shafique et al., 2003, Su et al., 2008b, Yang 

et al., 2000, Yang and Jin, 2010). Generally, the use of these techniques is often required for 

wider temporal and spatial scale, which remains a challenge (Bierman et al., 2011).  

 

Turbidity analysis using remote sensing techniques offers a great opportunity in water quality 

management. These techniques permit for more efficient data collection and analyses, which 
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offer opportunities to identify other implicit relationships (Koponen, 2006, Senay et al., 

2001). Recent improvement in sensor spatial and spectral resolutions and point based 

spectroscopy has facilitated the investigation of various aspects of water quality. A number of 

studies have successfully explored remote sensing application techniques in water quality. 

These studies have investigated the water quality parameters that include among others pH, 

salinity, chlorophyll a, total phosphorus and temperature, total suspended sediments and 

turbidity (Akbar et al., Undated, He et al., 2008, Norsaliza and Hasmadi, 2010a, Norsaliza 

and Hasmadi, 2010b, Pavelsky and Smith, 2009, Su et al., 2008a, Wu et al., 2007, Zhengjun 

et al., 2008). What is limiting about most of these studies is that they used broad band 

spectral categorization of reflected and emitted energy, covering the visible to near-infrared 

regions (Govender et al., 2007). The use of hyperspectral remote sensing using a 

spectrometer permits several hundreds of spectral bands to be collected at one time. This 

characteristic offers the opportunity to explore and discover algorithms appropriate for the 

accurate estimation of water quality parameters such as turbidity (Govender et al., 2008). 

 

1.2 Aim of the study 

This study aims at exploring the potential utility of spectral reflectance in characterizing 

turbidity. The study combines conventional laboratory soil turbidity measurements with 

spectral reflectance measurements from turbid solutions to identify correlations and select the 

optimal bands for turbidity estimations.  

 

1.3 Research objectives 

This study is based on the following objectives:  

1. Investigating the relationship between turbidity levels and spectral reflectance. 

2. Identifying and select optimal spectral bands that can potentially be used to estimate 

turbidity levels. 

 

The objectives of this study will be achieved by collecting soil samples which will be 

analysed for mineralogy and other physio-chemical measures. This will be trailed by an 

experimental design where a series of water samples with varying amounts of soil in a known 
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volume of water will be determined for turbidity levels in the laboratory. Concurrently, the 

spectral reflectance of each sample will be measured. 

 

1.4 Structure of thesis 

Chapter 1 

The first chapter gives a general introduction, background, problem statement, the study’s 

objectives and structure of the thesis. 

 

Chapter 2 

This chapter will deal with a review of literature and previous developments in water quality 

monitoring. A comprehensive review of the world’s water resources and water quality 

challenges will be presented. Thereafter, the severity and impact of poor quality in the 

context of South Africa will be dealt with, highlighting the sources and nature of pollution in 

question. The scope on turbidity, its causes and holistic effects on the water resources will 

then be presented. The chapter will conclude by discussing the use of remote sensing in the 

estimation of water quality parameters, particularly turbidity.  

 

Chapter 3 

In the methodology chapter, the data, apparatus and techniques employed are discussed. The 

chapter focuses on data collection methods, assumptions, norms and accuracy.  

 

Chapter 4 

This chapter presents and describes the results obtained from the soil analysis, spectral and 

laboratory measured turbidity. It presents and describes the spectral variables (i.e. bands and 

indices) that display a strong relationship with turbidity. 

 

Chapter 5 

This chapter is dedicated to a thorough discussion of the implications of the results. Each 

spectral band is examined according to its relevance in turbidity detection. This is followed 

by conclusions on the applicability of hyperspectral data in turbidity detection, the optimal 

spectral bands and recommendations on the direction for further research.  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Water resources 

2.1.1 Water resources: a general outlook 

Water is a critical source of life. Water covers three quarters of the Earth’s surface and is held 

in oceans and freshwater bodies (Norsaliza and Hasmadi, 2010b, Plaza et al., 2004). Both 

water bodies play vital roles in biotic and abiotic systems. Of all the global water, freshwater 

constitutes only 2.5%, of which 68.9% is trapped in glaciers and permanent snow, 29.9% is 

stored underground, and 0.9% exists as soil moisture, swamp water and permafrost. Of the 

total amount of water on the Earth’s surface, only 0.3% is found in rivers and lakes 

(Shiklomanov, 1998). It is this meagre 0.3% that is available for domestic, agricultural, 

industrial and recreational use (Razmkhah et al., 2010).  

 

With over 65% of the surface area classified as arid or semi-arid, Africa faces the greatest 

water related challenges as she accounts for only 9% of global renewable freshwater 

resources (Clark, 2010).  Moreover, Africa’s growing population, with the highest birth–rate, 

is reported to have exceeded the capacity of natural resources to meet her population’s needs 

in many areas. This has led to among others loss of forests and biodiversity, land degradation, 

and declining quality and quantity of water (Clark, 2010, Eva et al., 2006). According to Eva 

et al., (2006), water stress and scarcity are now attributed as endemic in almost a quarter of 

all African countries including South Africa.  

 

2.1.2 Water resources in South Africa 

With an average annual rainfall of 450mm compared to the global 860mm per annum, South 

Africa is regarded as a dry country (CSIR, 2010). Furthermore, the existing rainfall is highly 

variable and poorly distributed across the country (CSIR, 2010, Earle et al., 2005). According 

to Whitmore, 1971 (as cited by Schulze, 1995), it is estimated that of the mean annual rainfall 

received in the country, over 90% is lost to the atmosphere through evaporation and only 

about 8.5% of the rainfall is translated to runoff and therefore available for use as lakes and 

rivers (Backeberg et al., 1996). With very limited permanent standing waters in the country, 

rivers are the source of almost all exploitable surface water (Day et al., 1986).  
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In addition to the high demand for ecosystem functioning, the country’s fast growing 

population, changing standard of living and the recent government drive to provide 

settlements has further put a strain on the existing fresh water resources (Ashton, 2007, CSIR, 

2010, Fatoki et al., 2001).  Whereas a number of efforts like building of 500 dams and inter 

catchment water transfers have been initiated, such efforts have been seriously impaired by 

the deterioration of existing water quality (CSIR, 2010, Earle et al., 2005, NWRS, 2004). 

 

2.2  Water quality 

Poor water quality is regarded as one of the leading causes of death, particularly in poor 

communities (Venter, 2002). Poor quality water not only limits the water’s utilization value 

but also increases among others treatment costs, waterborne disease outbreaks and decline in 

agro-based trade due to health concerns (Cairns et al., 1997, CSIR, 2010). Poor quality also 

reduces the resource’s availability because the poorer the quality of water, the less likely will 

it be able to support various uses (Ngwenya, 2006).  

 

The Department of Water Affairs (DWA), summarizes water quality as a function of its 

physical, chemical, biological and ecological attributes (Du Plessis, 2006, NWRS, 2004) 

while others like Du Plessis (2006) describe it as a synergy of the water’s physical and 

chemical attributes that render it useful for a specific purpose. According to Venter (2002), 

dissolved and suspended substances affect the suitability of water for the variety of uses.  

 

2.2.1 Physical attributes 

The physical attributes of water encompass all features that can be measured using physical 

methods (Du Plessis, 2006, Venter, 2002). Examples to these attributes are pH, electrical 

conductivity, total dissolved solids, turbidity and temperature. Their effect is predominantly 

on the aesthetic as well as the chemical composition of the water.  

 

2.2.2 Chemical attributes 

These serve to describe the nature and concentrations of substances dissolved in water (Du 

Plessis, 2006). Such substances can be organic or inorganic compounds, metals, and other 

kinds of minerals. Although some of the substances dissolved in water can have a nutritional 

benefit to the biotic system, some are harmful particularly if they exist in higher levels and 
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concentrations (Du Plessis, 2006). Chloride, sulphate, nitrate, nitrite, calcium, magnesium, 

manganese, aluminium and ammonium are some of the chemical constituents indicative of 

water quality.  

 

2.2.3 Biological attributes 

Biological attribute are the biological organisms found in a water body. Organisms are often 

indicative of the conditions in which they live (Day, 2000). Biological attributes have become 

a routine tool in the management of South Africa’s inland water resources and plays a crucial 

role in the overall monitoring and assessment of water resources (de la Rey et al., 2004, 

Ramollo, 2008). Popular indicators include fish, algae and invertebrates (de la Rey et al., 

2004). 

 

2.3 Water quality in South Africa 

2.3.1 A general overview  

The threat and impact of declining water quality have not gone un-noticed in South Africa. 

Serious water quality concerns have been raised by both scientists and the public (Van der 

Merwe-Botha, 2009). Furthermore, decision makers, investors and researchers have 

highlighted possible negative impacts of poor water quality on the country’s economy in both 

short and long term (Van der Merwe-Botha, 2009). Consequently, the DWA has recognised 

deteriorating water quality as “one of the major threats to South Africa’s capability to provide 

sufficient water of appropriate quality to meet its needs and to ensure environmental 

sustainability” (NWRS, 2004: 22). However, relevant national water bodies have been 

monitoring water resources for planning, management and pollution control quality since late 

1960s (Ngwenya, 2006, Van Vliet and Nell, 1986). According to the National Water 

Resource Strategy report of 2004, the DWA monitors the physio-chemical, microbial and 

biological water quality parameters of surface water together with eutrophication, toxicity 

and radioactivity (NWRS, 2004).  

 

2.3.2 Causes of water pollution 

Causes of the deteriorating water quality include among others domestic, industrial and 

agricultural wastes, irrigation return flows, fertilizers, pesticides, surface run-off, urban 

development, de-forestation, mining and power generation (CSIR, 2010, Du Plessis, 2006, 
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NWRS, 2004). Because rivers act as natural drains on the surface, studies show that almost 

all South African rivers receive treated domestic and industrial effluent from urban areas, and 

return flows loaded with agrochemicals from agriculture (Ashton, 2007). Consequently, 

downstream dams are often polluted (CSIR, 2010). Other contributing factors include the 

country’s outdated and inadequate water and sewage treatment infrastructure (CSIR, 2010). 

According to CSIR (2010), most of the country’s urban sewage does not undergo proper 

treatment prior to discharge because of inadequacies in the sewer systems.  Eroded soil and 

other material dislodged and transported by runoff into waterways cause salinity, 

eutrophication, disease-causing micro-organisms, turbidity, acidity and other forms of 

deteriorations (CSIR, 2010, Ngwenya, 2006).  

 

2.4 Water turbidity 

To monitor water quality specific parameters are quantified. Koponen (2006) lists parameters 

that are important in water quality monitoring as chlorophyll-a, suspended inorganic matter, 

coloured dissolved organic matter, turbidity, secchi depth and temperature among others. 

Turbidity is particularly important in South Africa because most of the reservoirs are 

regarded as turbid (Dörgeloh, 1995, Dörgeloh et al., 1993). The characteristic turbid 

conditions of the country’s water bodies can be attributed to arid conditions associated with 

high intensity rainfalls favoring soil erosion (Hart, 1999). Contributions from domestic and 

industrial effluent discharged from urban areas, return flows from agricultural lands loaded 

with agrochemicals, logging, mining, road building as well as commercial construction are 

noted as the most common sources of water turbidity.  

 

Commonly, turbidity is derived from suspended silt and clay particles, algae, air bubbles, 

organic matter together with microscopic organism in water bodies. These factors affect 

water color and brightness, giving it the typical murky colour (Han and Rundquist, 1998, 

Kwoh et al., Undated, Omar and MatJafri, 2009, Ramollo, 2008). Generally, turbidity is a 

measure of optical properties of water responsible for scattering and absorbing radiation 

(Norsaliza and Hasmadi, 2010a, Koponen, 2006, Kwoh et al., Undated, Han and Rundquist, 

1998). It describes the reduction of transparency of a liquid following the presence of un-

dissolved matter (Lambrou et al., 2010). Some authors refer to it as the measure of relative 

clarity of water (Lambrou et al., 2010, Norsaliza and Hasmadi, 2010b, Sadar, Undated). 

Turbidity measurement is critical in determining the impacts of agricultural, landscape and 
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urban nutrient and sediment discharges and processes, predicting pollution loads and 

formulation of environmental and restoration management plans (Aghighi et al., 2008, 

Moreno-Madrinan et al., 2010)). Turbidity measurement is also a key indicator to the 

suitability of water for human consumption.  

 

The impacts of turbidity are beyond the mere impediment to light transmission. It directly 

hampers photosynthesis thereby suppressing primary production and reducing oxygen levels 

(Norsaliza and Hasmadi, 2010a, Ramollo, 2008, Hart, 1999). Turbidity also suppresses 

production of food availability in aquatic ecosystems, which in turn affects biota distribution 

and habitat selection (Dörgeloh, 1995, Hart, 1999). Because suspended particles absorb more 

sunlight, water temperature is increased leading to further depletion of dissolved oxygen as 

warm water holds less oxygen than cool water (Ramollo, 2008). Turbidity also acts as an 

indicator to the presence of pathogens, providing them with food and shelter (Lambrou et al., 

2010, Rizzo et al., 2005). This can promote pathogen re-growth consequently facilitating 

waterborne disease outbreaks (Rizzo et al., 2005, Lambrou et al., 2010). Turbidity can also 

lead to the loss of storage capacity of dams due to sedimentation, shortening their useful life 

(Bhatti et al., 2007). Consequently determination of water turbidity is critical for the 

management of water quality.  

 

2.5 Turbidity measurement 

One of the traditional techniques in turbidity measurement is the secchi disk. This is a 

circular plate painted black and white which is lowered into the water until it cannot be seen 

(Han and Rundquist, 1998, Jensen, 2000). The more turbid the water is the quicker it 

disappears from view. The drawback of this technique is its strong subjectivity to human 

visual perception (Jensen, 2000). The other technique of turbidity measurement involves a 

candle and flat-bottomed glass. This technique dates back to the 1900s, and is referred to as 

the Jackson Candle Turbidimeter (Sadar, Undated). The major limitation of this technique is 

its inability to measure very low turbid solutions caused by the use of longer wavelength light 

source (candle) and inferior detectors and optical geometry (Sadar, 2002, Sadar, Undated).  

 

Two main categories of instruments are currently recognized in turbidity instruments; 

turbidimeters (or absorptiometers) and nephelometers (Lambrou et al., 2010, Minella et al., 

2008, Omar and MatJafri, 2009). Turbidimeters measure the absorption of light intensity 
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passing through a sample in relation to the initial beam (Omar and MatJafri, 2009, Lambrou 

et al., 2010, Minella et al., 2008). They are regarded to be the most appropriate for samples 

with particles larger than the wavelength of the light being used (Lambrou et al., 2010). 

Nephelometers, on the other hand, quantify the portion of light scattered from the incident 

beam within a wide angle centered at 90
o
, reported in nephelometric units (NTUs) (Hongve 

and Åkesson, 1998, Lambrou et al., 2010, Omar and MatJafri, 2009, Peng et al., 2009, Sadar, 

Undated, Sadar and Engelhardt, Undated, Ziegler, 2002). Nephelometers are the most modern 

and internationally recognized instruments (Sadar, Undated, Ziegler, 2002, Sadar and 

Engelhardt, Undated, Omar and MatJafri, 2009), and are regarded as more precise and 

sensitive than turbidimeters, particularly when dealing with samples of low turbidity 

(Lambrou et al., 2010, Sadar, Undated).  

 

Whereas the above mentioned methods have been critical in monitoring turbidity, they 

require intense calibration, elaborate sampling and subsequent laboratory analyses (Koponen, 

2006, Akbar et al., Undated). They are also slow, time-consuming, expensive and labour 

intensive (Akbar et al., Undated, El-Masri and Rahman, Undated, He et al., 2008, Koponen, 

2006, Sheela et al., 2010). Furthermore, these techniques do not provide near real-time results 

(Ramollo, 2008). However, recent remote sensing advancements offer a great opportunity for 

turbidity measurement and a basis for water quality management. 

 

2.6 The application of remote sensing in water quality  

Remote sensing is a process by which information about features on the Earth’s surface is 

collected without the necessity of a physical contact between the instrument and the target 

(Koponen, 2006, Lillesand et al., 2004). Remote sensing instruments use sensors to record 

information about features. These sensors can be airborne (e.g aircrafts), spaceborne 

(satellites) or field-based. The instruments can also be either passive; that record solar 

radiation reflected by surface features to discern their properties, or active, that generate their 

own electromagnetic radiation (Koponen, 2006). In a remote sensing process, reflected, 

emitted or scattered electromagnetic radiation of a target is measured as a function of 

wavelength (Clark, 2010, Hellweger et al., 2004, Koponen, 2006).  

 

Recording sensors are available as either panchromatic, multispectral or hyperspectral. Most 

multispectral sensors are characterized by three to six spectral bands, falling between the 
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visible to near-infrared region of the electromagnetic spectrum (Govender et al., 2008). 

Hyperspectral sensors have a wider spectrum that extends from the visible, near-infrared, 

mid-infrared to shortwave infrared (Liu et al., 2009). Typically, hyperspectral remotely 

sensed data are characterized by huge amounts of data at a near-laboratory (high accuracy 

with little errors) quality in the contiguous narrow bands (Liu et al., 2009). This characteristic 

significantly extends the range to which remote sensing techniques can be applied (Liu et al., 

2009). Field spectrometers, a type of hyperspectral instruments, have become popular means 

of collecting spectral data. They are very useful in establishing relationships between the 

spectral characteristics and biological, physical and chemical attributes of features (Novo et 

al., 2004). Generally, the successful application of remote sensing techniques lies in 

understanding how features interact with radiation energy (see Figure 1).  

 

 

Figure 1: Spectral responses of common materials (Source: Clark, 2010) 

 

Vegetation reflects at its minimum in the visible region, increasing sharply around 700nm 

(red edge) and highly in the near-infrared region. Soil and other bare surfaces comprise a 

steady increase across the visible and near-infrared spectrum (Clark, 2010). Clear water has a 

general spectral signature that peaks at around 400-500nm and exhibits total absorption in the 

near-infrared region. According to Jensen (2000) one of the distinct spectral responses of 

clear water is its absorption characteristic of almost all incident energy in the near-and 

middle-infrared (740-2500nm) portion of the spectrum. Most of the scattering occurs in the 

violet, dark blue and light blue categories (400-500nm) (Jensen, 2000). However, the 
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presence of organic and inorganic constituents complicates the normal spectral response of 

water. In-water constituents favor near-infrared surface reflection and sub-surface volumetric 

scattering thereby causing significant scattering and reflection (Jensen, 2000). They also shift 

the reflectance peaks towards longer wavelengths (Chen et al., 1992, Doxaran et al., 2002). 

Such a characteristic is illustrated in Figure 2 below.   

 

 

Figure 2: Change in reflectance against turbidity (After Chen et al., 1992) 

 

The application of remote sensing in water resource management is not entirely new. In fact, 

aerial photographs, a form of remote sensing, have for decades been used to identify and 

examine water bodies (Krijgsman, 1994, Secor, 2006). Many studies have indicated that use 

of remote sensing techniques is more advantageous than traditional methods (He et al., 2008, 

Norsaliza and Hasmadi, 2010b). According to Zhengjun et al. (2008), remotely sensed 

datasets facilitate easier, rapid and seasonal water quality data collection at minimum costs. 

Other studies note that remote sensing methods permit for more focused and efficient field 

sampling, potentially reducing the number of samples required for a particular water body 

(Adam et al., 2010, Hellweger et al., 2004, Secor, 2006).  

 

The above mentioned advantages, together with the availability of established techniques and 

improved precision in atmospheric and geometric corrections, makes it possible to employ 

remote sensing to accurately assess and monitor water quality constituencies (Turdukulov, 

2003). Many algorithms for data interpretations and modeling have been developed (Santini 

et al., 2010). Numerous studies have used remote sensing to estimate a range of parameters 

such as pH, salinity, chlorophyll-a, total phosphorus, temperature and total suspended 
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sediments (Chen, 2003, He et al., 2008, Norsaliza and Hasmadi, 2010a, Norsaliza and 

Hasmadi, 2010b, Pavelsky and Smith, 2009, Senay et al., 2001, Su et al., 2008b, Thiemann 

and Kaufmann, 2000, Volpe et al., 2011, Akbar et al., Undated, Wu et al., 2007). Whereas 

satisfactory relationships have been established for most marine water quality indicators, 

progress in inland freshwaters has been slow largely due to optical heterogeneity and turbid 

nature (Gons, 1999, Moore, 1980).  

 

2.6.1 Estimating turbidity 

Moore (1980) notes the possibility of quantifying turbidity from remotely sensed 

measurements and highlights the importance of considering the principles of light and water 

interaction. Such an interaction is described by four sources of electromagnetic energy 

(Figure 3). 

 

Figure 3: Sources of electromagnetic radiation (Source: Jensen, 2000) 

 

As energy moves from the sun through the atmosphere, a portion of it is scattered and never 

reaches the water surface (Lp), while another portion manages to reach the air-water interface 

but barely penetrates the surface and is reflected away (Ls) (Jensen, 2000).  This reflected 

energy may carry with it spurious surface reflectance due to wind-induced reflectivity and the 

presence of bubbles (Han and Rundquist, 1998). The portion that penetrates the water 

surface, reaches the bottom of the water body and then rises up to exit the water column, this 
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constitutes the bottom radiance (Lb) (Jensen, 2000). According to Jensen (2000) and Liu et al. 

(2003) the later portion is useful for bathymetric or coral reef mapping. The portion that is 

crucial in water turbidity analyses is termed the subsurface volumetric radiance (Lv) 

(Koponen, 2006, Jensen, 2000). This portion manages to penetrate through the air-water 

interface, interacts with the water molecules and its constituents and then re-emerges from the 

water column without bouncing off from the bottom (Jensen, 2000). It is this portion that has 

valuable information about the characteristics of the water and its constituents and therefore 

useful in turbidity analysis (Jensen, 2000, Olet, 2010).  

 

As aforementioned, water turbidity constituents include among others inorganic suspended 

minerals, organic chlorophyll-a and dissolved organic material (Jensen, 2000). Inorganic 

suspended minerals are a direct consequence of eroded material originating from among 

others upslope agricultural lands and weathered material (Jensen, 2000). These sediments 

commonly characterize inland waters and significantly influence spectral reflectance (Jensen, 

2000, Miller and McKee, 2004). The presence of these materials affects the absorption and 

scattering coefficients differently at the various wavelengths. Re-radiated energy is 

propagated omni-directionally as a function of the size, refractive index and composition of 

the particles in the solution as well as the wavelength of the incident light (Omar and 

MatJafri, 2009, Sadar and Engelhardt, Undated). Smaller particles have a greater scattering 

effect on shorter wavelengths than on longer ones (Sadar, Undated). The reverse holds for 

larger particles.  

 

2.6.2 Visible and Near-infrared regions 

The visible region is reported as most useful in turbidity estimation (Lathrop and Lillesand, 

1986, Norsaliza and Hasmadi, 2010b, Wang et al., 2006). Chen and Muller-Karger (2007) 

note a strong correlation at 645nm using MODIS Terra 250m data. Potes et al. (2012) found 

the best fit between water turbidity and the green/blue MERIS spectral band index. 

Interesting features have also been noted in the near-infrared region. This region had 

previously received little attention due to pure water’s high absorption coefficient particularly 

in longer wavelengths (Doron et al., 2011). However, recent studies have noted that turbid 

waters, particularly those characterized by inorganic material, display a noticeable degree of 

reflectance following the presence of minerals (Doxaran et al., 2002, Ruddick et al., 2006, 

Shibayama et al., 2007). Good results have also been reported in turbidity estimation (Senay 

et al., 2001; Doxaran et al., 2002).  
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2.7 Methods of estimating water quality constituents 

Existing literature distinguishes between analytical and empirical approaches for estimation 

of water quality constituents. 

 

2.7.1 Analytical 

The analytical approach makes use of bio-optical models, which basically capture the 

interactions between water and radiation (Koponen, 2006, Wong et al., 2008). This approach 

makes use of the inherent optical properties (absorption and backscattering) of water bodies 

to develop models. Once developed and verified, the models can be applied to any dataset 

regardless of its time of acquisition (Sugihara et al., 1985, Turdukulov, 2003). The main 

challenges with this approach are the assumption of an even distribution of water quality 

parameters within the water column, which may not hold in dynamic systems like rivers 

(Turdukulov, 2003). It also originates from a complicated computational procedure, which 

hampers its use and understanding. 

 

2.7.2 Empirical 

The empirical approach establishes a statistical relationship between the water constituent 

concentration and reflectance (Turdukulov, 2003). It forges a relationship between recorded 

spectral data and water quality parameter’s in situ data using a statistical method that seeks to 

minimize the error between the variables (Koponen, 2006). It can also be described as a 

method that utilizes experimental datasets and statistical regression techniques to develop 

algorithms that relate water-leaving reflectance to in situ measurements (Matthews et al., 

2010). It is important to note that the development of algorithms requires concurrent 

acquisition of both in situ water quality samples and remote sensing data (Liu et al., 2003). 

Such synchronization is important in capturing the temporal dynamics of water quality. 

Resulting statistical relationships can take a simple linear, multiple linear or even non-linear 

character (Han and Rundquist, 1997, Koponen, 2006, Liu et al., 2003, Turdukulov, 2003). 

The approach comes with its own pros and cons. The main drawbacks are that it is mostly 

limited to cases where in situ data is available and the resulting algorithms remain sufficient 

only for that particular dataset from which they were developed (Dekker et al., 1996, 

Koponen, 2006). This makes them not easily transferable to other areas or across seasons. 

However, the method is accurate and easy to use (Koponen, 2006, Matthews et al., 2010).  
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2.8 Algorithm development  

The development of algorithms essential for the prediction and estimation of water quality 

parameters requires statistical applications. There exist a variety of algorithms that are in use 

today. Some employ simple linear regressions between reflectance and water quality 

parameters (Koponen, 2006, Turdukulov, 2003, Liu et al., 2003). Others make use of multiple 

regressions (Ekercin, 2007).  

 

The use of spectral indices in remote sensing studies has become popular since it was first 

initiated by Kauth and Thomas (1976) (Yamaguchi and Naito, 2003). Indices are very 

instrumental in converting spectral reflectance at specific wavelengths into biophysical 

information that can be easily interpreted (Shafique et al., 2003; Koponen, 2006). They 

essentially enhance the detectability of a particular parameter amongst others (Shafique et al., 

2003). They are developed to improve parameter estimates. Several indices have been 

developed thus far, some for vegetation, soil and water detection. Generally bands, preferably 

adjacent, carrying the most information about the particular parameter of interest (usually the 

peaks and troughs of spectral reflectance graphs), are selected (Shafique et al., 2003). This 

involves analysis of the actual spectral plot for the peaks and troughs. Once the bands of 

interest have been identified, a series of indices can be derived using arithmetic computations 

such as band ratios, band differences, first derivatives of bands and/or a combination of ratios 

and band differences. Examples of these have been reported (Abd-Elrahman et al., 2011, 

Cairns et al., 1997, Duan et al., 2007, Koponen, 2006, Senay et al., 2001, Turdukulov, 2003, 

Turdukulov and Vekerdy, 2003, Arenz Jr et al., 1996, Han and Rundquist, 1997, Huang et al., 

2010, Kutser et al., 2005, Östlund et al., 2001, Sudheer et al., 2006).  

 

A common example to this is the normalized difference vegetation index (NDVI) first 

applied by Rouse et al. (1974). Since then many indices, new and modifications of existing 

ones, have been developed (Haboudane et al., 2004). Literature reports successful spectral 

indices in turbidity detection. Doxaran et al. (2002) obtained a convincing relationship with 

turbidity results when the ratio of near-infrared and visible bands was considered. This 

current investigation made use of these previous findings to guide the current exploration 

(Chen et al., 2009, Senay et al., 2001, Turdukulov, 2003). A recent addition is the use of 

derivatives of measured spectra in developing algorithms, which together with band ratios 

have been considered key in separating spectral effects of different water constituents 

(Giardino et al., 2007, Han and Rundquist, 1997, Turdukulov, 2003).  
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Most of these applications have been applied mostly over ocean water where the major 

optically active constituent is chlorophyll. However, radiation in inland freshwater bodies 

comprises of complex energy interactions due to the presence of other constituents. This 

results in considerable scattering and can complicate the relationship between measured 

spectra and measured constituent’s concentrations (Sudheer et al., 2006).  

 

2.9 Summary 

Deteriorating water quality is a global problem. Generally, turbidity limits water’s utilization 

value, adds on water treatment costs and induces disease outbreaks. Consequently, turbidity 

measurement helps monitor water quality which play an important role in detecting the 

impacts of agricultural and urban sediment loads on water resources. With notable 

advancements in remote sensing such as spectral improvements, it is now possible to use 

remote sensing to detect turbidity. Empirical methods that establish a relationship between 

recorded radiation energy and measured turbidity play an important role in water turbidity 

detection. However, most of the work done is over ocean waters. Little has been reported on 

inland freshwater bodies largely due to the complex energy interactions caused by suspended 

materials. It is therefore important to explore and select optimal spectral bands suitable for 

turbidity detection. 
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CHAPTER 3: RESEARCH METHODOLOGY 

 

3.1 Introduction  

This chapter details the methods employed in this study to realize the objectives outlined in 

Chapter 1. It summarizes how spectral reflectance and corresponding turbidity readings were 

measured at different levels of soil in an amount of water. It also explains the methods of 

analysis adopted to ascertain answers to the question of optimal spectral bands for turbidity 

determination.   

 

3.2 Data acquisition and methods 

To achieve the set objectives as outlined in Section 1.3, the study selected a suitable area 

from which soil samples were collected. These were used to create different levels of 

turbidity through mixing a known amount of soil material in a known volume of water. It was 

from these mixtures that the respective spectral reflectance together with the corresponding 

laboratory based turbidity data, were collected. The data collected was analyzed to explore 

the connection between turbidity and spectral reflectance and also identify optimal spectral 

bands in turbidity estimation. The methods adopted in data collection and analyses are 

elaborated upon. 

 

3.2.1 Study area 

The soil samples used in this study were localized along the bank of the Msunduzi River in 

the Pelham area, Pietermaritzburg. The site is gently sloped with minimal topographic 

variations that are attributed to the river’s history of dredging and associated silt deposition 

(Singh, 2010). The site falls within an area that is currently being used as a recreational park 

area. There’s moderate vegetation cover with a distinct avenue of trees along the river. The 

river has a turbid character following upstream and surrounding erosion of soil and other 

contaminants. It flows in a west east direction. To mimic the turbidity characteristics of the 

river, it was deemed necessary to collect soil sample material close to the river. A locality 

map, showing the sample points with the latest aerial photograph underlay, was prepared and 

is presented in Figure 4.  
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Figure 4: The distribution of sample sites in the study area  

 

3.2.2 Soil samples 

Samples were sited using a systematic random sampling approach separated by an 

approximate distance interval of 40 meters (Figure 4). Since the focus of the study was not on 

the impact of different soil types in turbidity but rather on the amount, the siting of the 

sample sites at specified distances was meant for data separability not soil type differences.  

An approximate mass of 3 kilograms of soil was collected at each of the 15 sampling sites 

and then oven dried over night at 105
o
C. This temperature is recommended as it does not 

alter the chemical and physical attributes of the soil (Carter and Gregorich, 2008). After 

drying, the collected samples were gently crushed and passed through a 2mm diameter mesh 

sieve. The sieved soil samples served as input for the turbid solutions from which both the 

laboratory and spectral reflectance measurements were performed. Using an electronic scale, 

15 different mass levels incremented by 10 grams (g) (i.e 10g, 20g, 30g…150g) were 

weighed out from each sieved soil sample. Weighing these samples was important in creating 

solutions of different turbidity levels. The resulting masses were secured in sealable plastic 

bags. This exercise generated a total of 225 soil replicates, 15 for each mass level. An 
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approximate mass of 460g from each sample was taken to the Department of Agriculture and 

Environmental Affairs in Cedara, KwaZulu-Natal for determination of chemical and physical 

characteristics (Table 2). 

 

3.2.3 Spectral measurements of turbid solutions  

The 255 weighed sieved soil masses were used to prepare turbid solutions upon which the 

spectral measurements were to be conducted. Spectral reflectance data was collected using a 

350 to 2500nm Analytical Spectral Device (ASD) field spectroradiometer (FieldSpec®, 

Analytical Spectral Devices, Inc., US) in the field. The ASD device records radiation at 1.4-

nm intervals and 2-nm intervals for the spectral regions 350 to 1000 nm and 1000 to 2500 

nm, respectively. Data were interpolated to 1-nm spectral resolution across the spectrum. To 

minimize bi-directional influence as per changing sun angle, measurements were taken under 

clear sunlight between 10 am and 14 pm. Prior to data collection, the spectrometer was 

calibrated to respective spectral measurement lighting conditions using a Spectralon white 

reference panel. The validity of the calibration was tested using the panel’s reflectance.  

During spectral measurement, calibration was repeated after an average of 30 spectral scans 

were collected or when the instrument reached saturation. Care was taken not to handle or 

expose the panel to dirt, water or any other damaging substance during and after calibration.  

 

Two 1000 milliliters glass beakers of 10.5 cm diameter and 14.5 cm depth were used to hold 

samples for spectral measurements. The first beaker was wrapped with a black plastic liner so 

as to limit light interference from the surroundings (Lodhi et al., 1997, Karabulut and Ceylan, 

2005). The second beaker was unlined and used to mix the different turbid concentrations. 

Each sieved soil mass increments (i.e 10 to 150g) was transferred into the unlined 1000ml 

glass beaker, one at a time, together with a litre of deionized water and stirred to make a 

turbid solution. Deionized water was preferred so as to minimize the possible influence of 

any dissolved salts in water on the reflectance. The solution was then transferred into the 

lined beaker, filling it up to the 1000ml mark with the solution, for spectral measurements. 

The sediment was kept in suspension by manually stirring so as to ensure the homogeneous 

distribution in the water. The solution was given a brief delay prior to scanning to avoid wave 

effects. Once ready the 1 degree field of view (FOV) head attached to a fibre optic pistol was 

positioned at about 10cm directly above the water surface and the spectral reflectance 

measurement taken. To avoid spectral contamination, care was taken to ensure that only the 
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spectral reflectance of the water solution covered by the FOV was recorded. An average of 15 

scans ranging from 350-2500nm wavelength range within the electromagnetic spectrum was 

taken. The spectral reflectance of deionized water (0 g/l) was also collected so as to quantify 

the signature of pure water. The same procedure was followed to record the spectral 

reflectance of the rest of the prepared turbid solutions at the different concentration levels 

(10g/l, 20g/l, 30g/l, 40g/l, 50g/l, 60g/l, 70g/l, 80g/l, 90g/l, 100g/l, 110g/l, 120g/l, 130g/l, 

140g/l and 150g/l).  

 

3.2.4 Laboratory turbidity measurements 

The laboratory based turbidity measurements were carried out using a 2100Q portable 

turbidimeter (Hach Company. Loveland, Colorado). This instrument makes use of a tungsten 

filament lamp source and a silicon photodiode detector to determine the amount of particles 

in the solution. After an initial calibration, the turbidity measurement is achieved by 

turbidimetric ratio determination using a primary nephelometric light scatter signal positioned 

at 90
o
 to the transmitted light scatter signal. Typically, the device is battery powered with a 

measurement range of 0 to 1000 Nephelometric Turbidity Units (NTU). It has a resolution of 

0.01 NTU and an accuracy of ±2% of reading plus stray light (≤ 0.02). Due to instrument 

unavailability, the turbidity measurements were sourced out to a nearby water testing agency, 

Talbot & Talbot (Pty) Ltd. As part of the agency’s regulation, a volume of 500ml of the 

turbid solution is required for turbidity measurements. This ensures that analyses can be 

repeated if and when errors are encountered.  

 

Laboratory based turbidity measurements were carried out from the same type of turbid 

solutions created from mixing each of the weighed sieved masses with deionized water, thus 

creating turbid solutions of different concentrations as in Section 3.2.3. These were 

thoroughly mixed and then half the solution (500ml), as required by the water testing agency, 

transferred into 500ml sealable plastic bottles to be sent for laboratory analysis. It is noted 

though that due to the project’s limited funds only 149 out of the 255 prepared turbid 

solutions was analyzed for laboratory turbidity (see Table 2). This number covers 

approximately 11 of the primarily 15 initially collected soil samples.  

 

Prior to analyses, the agency subjected each of the 500ml solutions to gentle shaking to 

facilitate homogeneity. From these solutions, 15ml aliquots were extracted using a sample 
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cell from which the turbidity values were to be measured. A thin film of silicon oil was 

applied over the entire surface of the sample cell to mask the sample cell’s minor 

imperfections and scratches that may contribute to light scattering. Thereafter the turbidity 

values were measured from the extracted 15ml aliquots within 24 hours of mixing to 

minimize the influence of any possible organic or chemical reactions, and then measured data 

transferred into an MS excel spreadsheet and basic statistics computed. In cases where the 

turbidity value exceeded the instrument’s high limit (i.e 1000 NTU), the extracted aliquots 

would be diluted with Type 1 Milli-Q water (ultrapure grade water) to acceptable ratios, then 

the turbidity would be measured from the resulting solution and the resulting value multiplied 

by the factor of dilution to get the turbidity value of the original solution. 

 

3.3 Processing 

3.3.1 Initial spectra processing 

Using the ViewSpec Pro
TM

 spectra viewing software, the collected spectra were explored and 

mean spectra at each wavelength computed. The computed files were converted into ASCII 

text files readable in MS Excel. The spectral range was limited between 400 to 1000 nm 

firstly because noise became a problem at wavelengths beyond this spectral range. Secondly, 

literature reports this range as the most appropriate for turbidity detection (Norsaliza and 

Hasmadi, 2010a, Senay et al., 2001, Wang et al., 2006). It was also noted that water displays 

interesting spectral responses in the said range, particularly the near-infrared region and 

therefore the study sought to investigate its relevance to turbidity detection. Reflectance was 

computed as the ratio between reflected energy from the water surface and the Spectralon 

white reference panel. 

 

3.3.2 Estimating turbidity 

The relationships between the raw spectral reflectance in the 400 to 1000nm range and 

laboratory based turbidity measurements were tested using the Pearson’s coefficient of 

correlation (r) with a significance of p<0.05. The test yielded poor results with its highest 

coefficient being 0.4. The study therefore opted to compute the mean spectral reflectance 

(denoted by X10 to X150) at each of the turbid solution’ concentration level (i.e. 10g/l up to 

150g/l). This helped compensate against noise and also enhanced variability between the 

different turbidity levels.  
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The resulting spectra were explored for the strongest and most appropriate band/s per spectral 

portion (i.e. blue, green, red and near-infrared) in turbidity detection using Pearson’s 

coefficient and simple regressions. It was important to partition the bands according to their 

“natural” regions because of their unique characteristics and behavior in water. Jensen (2000) 

explains the roles of the different regions, pointing out the usefulness of the visible and near-

infrared regions in providing information about the type of soil and amount in suspension, 

respectively. This partitioning helped reduce the probability of selecting bands containing the 

same information (i.e. data redundancy) as a result of inter-band correlation. The study also 

explored for optimal spectral indices using the same criteria as single bands above. As 

mentioned in Section 2.8, spectral indices enhance the detectability of a particular parameter 

and also improve parameter estimates (Shafique et al., 2003). The exploration involved first 

derivatives of reflectance, band differences, band ratios and combination indices. Their 

associated formulae are presented in Table 1. Most of the indices explored were traced from 

previous turbidity studies.  

 

Table 1: Formulae for spectral indices 

Index type Computation References 

Simple ratio Ri / Rj 
Koponen (2006), Shafique et al. 

(2003), Potes et al. (2012) 

First derivative (Ri - Rj) / (λi - λj) Senay et al. (2001) 

Band differences Ri - Rj Shafique et al. (2003) 

Normalized indices (Ri - Rj) / ( Ri + Rj) Shafique et al. (2003) 

where Rj and Ri represent the spectral reflectance at band i and j, and λi and λi are the band 

wavelengths at band i and j. 

 

Using regression analysis, the best bands, per spectral portion (blue, green, red and near-

infrared), were selected noting their respective Pearson’s coefficient of correlation and the 

resulting coefficient of determination (R
2
) with measured water turbidity. Bands that yielded 

the highest R
2
 values against turbidity constituted the best bands. The study selected the best 

3 bands, as informed by Mutanga and Rugege’s (2006) method, from each spectral category 

(i.e. blue, green, red and near-infrared), and using the highest R
2
 criteria after cross validation 

as explained below, the best band, in each spectral category, was noted. These are also treated 

as representative bands for each of the spectral categories. There was a slight variation in the 

near-infrared region. An additional band was included in this category, thereby making a total 
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of 4 bands. The reason behind the additional band is informed by the wideness of the near-

infrared region. It was observed that one end of the region is dominated by high reflectance 

while the other by low reflectance (see Figure 7). It was therefore interesting to see how these 

differences would impact the strength of the relationship with turbidity. Furthermore, 2 

spectral indices, one from each region (i.e. visible and near-infrared), were selected. In the 

end a total of 13 best single bands plus 2 spectral indices were extracted, thereby making a 

total of 15 variables.  

 

3.3.3 Model validation 

The usefulness of values estimated with remote sensing is very limited without proper 

indications of their accuracy. The study computed regression models between the observed 

and predicted values of turbidity and then subjected resulting models to a validation process 

using the leave-one-out cross-validation (LOOCV) procedure. The LOOCV technique 

isolates a single observation for validation purposes and then uses the rest of the observations 

as training data. This was done for all of the observations. The resulting model was then used 

to predict the previously isolated observation. In each iteration, adjusted R
2
 and root mean 

square error (RMSE) values were recorded and later the mean values of each computed. The 

RMSE value and the adjusted R
2 

were calculated by relating the predicted value generated 

during the LOOCV procedure to the observed value so that the accuracy of turbidity 

estimation can be ascertained. The technique is widely used in remote sensing and well suited 

for small sample sizes (Wang et al., 2013, Sterckx et al., 2007). Models with the highest R
2
 

and the lowest RMSE were considered as optimal. 

 

3.4 Summary 

A total of 15 soil samples were collected in the study site, oven dried, sieved and replicates 

extracted. The replicates, with masses ranging from 10 to 150g, were each mixed with 

deionized water to create turbid solutions over which spectral reflectance together with 

laboratory based turbidity values were measured. The basic soil chemical and physical 

characteristics were also determined. Thereafter, the spectral data was explored for the 

strongest relationships with measured turbidity and then R
2
 value reported. Models were 

cross validated using the LOOCV procedure, reporting both the RMSE and adjusted R
2
.Such 

exploration was limited to the visible-near infrared region of the spectrum. A few spectral 

bands displayed strong relationships with turbidity.  
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CHAPTER 4:  RESULTS  

 

4.1  Introduction 

As set out in Chapter 1, this study sought to investigate the relationship between turbidity 

levels and spectral reflectance and then move on to identify the optimal bands that can be 

used to estimate turbidity. Consequently, this chapter presents results from the soil analysis, 

laboratory based turbidity measurements, spectral reflectance measurements and the 

investigation to identify optimal bands that correlated best with turbidity measurement. 

 

4.2 Soil properties and reflectance 

Soil attributes play a significant role in the amount of electromagnetic energy reflected or 

absorbed (Rossel et al., 2006). Demattê et al. (2010) note a close relationship of soil attributes 

such as organic matter with reflected energy. Other studies have explored this connection by 

using visible near-infrared spectroscopy to predict organic carbon, nitrogen, clay content, 

exchangeable calcium, micronutrients and others (Bilgili et al., 2010). Jensen (2000) notes a 

distinction in reflectance between silty and clayey soil, reporting higher reflectance values in 

the visible region for silty soils in comparison to all other wavelength regions.  

 

The soils used in this study were predominantly clay loam, darker in colour with a significant 

amount of organic matter and clay (Table 2). There was little variation in soil attributes as 

sampling was localized around the same area.  
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Table 2: Physical and chemical properties of soil samples used 

 Mean Median Min Max Variance Std.dev 

Clay % 34.667 35.000 29.0000 38.000 6.2 2.4976 

Fine Silt %  25.467 26.000 20.0000 28.000 4.1 2.0307 

Coarse Silt & Sand %  40.267 39.000 34.0000 51.000 19.6 4.4315 

Total % Nitrogen 0.216 0.220 0.1300 0.330 0.0 0.0497 

Total % Carbon 2.537 2.590 1.9100 3.600 0.2 0.4420 

Sample density (g/ml) 1.085 1.100 0.9800 1.160 0.0 0.0427 

P (g/ml) 6.467 6.000 2.0000 17.000 16.3 4.0332 

K (g/ml) 191.133 184.000 101.0000 435.000 6945.6 83.3400 

Ca (g/ml) 1658.200 1915.000 172.0000 1968.000 369170.9 607.5943 

Mg (g/ml) 729.400 730.000 665.0000 813.000 1443.5 37.9940 

Ex acidity (cmol/L) 0.080 0.080 0.0400 0.130 0.0 0.0251 

Total cations (cmol/L) 14.845 15.970 7.5400 16.700 7.8 2.7927 

Acid sat % 0.600 1.000 0.0000 1.000 0.3 0.5071 

Ph (KCl) 5.094 5.090 4.9600 5.370 0.0 0.1175 

Zn (g/ml) 10.287 7.200 4.4000 60.800 197.6 14.0567 

Mn (g/ml) 135.600 120.000 44.0000 250.000 2573.3 50.7273 

Cu (g/ml) 6.927 6.900 5.8000 7.800 0.4 0.6262 

Organic C % 2.013 1.900 1.6000 2.900 0.1 0.3441 

N % 0.203 0.210 0.1600 0.280 0.0 0.0315 

 

4.3 Turbidity 

The study used the average values of laboratory based turbidity measurements in each 

concentration level (i.e. X10 to X150). Computed statistical attributes of turbidity data are 

presented in Table 3. The data depicted a predominantly normal distribution as shown in 

Figure 5 below. It is noted that Table 3 contains values that exceed the 1000 NTU 

instrument’s high limit. Such values were possible through the use of the dilution method 

explained in Section 3.2.4 above. Turbidity measurements at X140 and X150 are lower than 

expected. This is possibly a result of outliers or human error during data transfer at the testing 

agency.  
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Figure 5: Laboratory based turbidity data distribution 

 

Table 3: Descriptive statistics of measured turbidity (in NTU) 

Sample 

No. of 

sample 

Mean Median Minimum Maximum Variance Std.Dev. 

X10 11 302.545 288.000 106.0000 590.000 21044 145.066 

X20 10 471.900 486.000 153.0000 676.000 31287 176.883 

X30 11 837.909 722.000 229.0000 1546.000 178824 422.876 

X40 10 899.700 759.500 272.0000 1582.000 228842 478.374 

X50 10 1037.100 896.500 524.0000 1924.000 232300 481.975 

X60 10 1146.600 770.000 486.0000 2912.000 678914 823.962 

X70 10 1107.200 932.500 442.0000 2850.000 492790 701.990 

X80 10 1442.200 1341.000 389.0000 2984.000 629302 793.286 

X90 10 1178.200 1053.000 403.0000 2684.000 495174 703.686 

X100 10 1005.900 862.500 277.0000 2420.000 447225 668.749 

X110 10 1121.500 934.000 108.0000 2310.000 624012 789.944 

X120 10 1510.900 1027.000 442.0000 3900.000 1277542 1130.284 

X130 9 1660.333 934.000 530.0000 7180.000 4401378 2097.946 

X140 9 981.000 990.000 542.0000 1506.000 95724 309.393 

X150 9 1125.556 1322.000 461.0000 1922.000 308704 555.611 
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As shown in Figure 6, there was a positive relationship between measured turbidity and the 

amount of soil in water.  
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 Sample:Turbidity:  r2 = 0.6014;  y = 562.1311 + 65.8274*x

 

Figure 6: Average laboratory based turbidity measurements against amount of soil in 

solution. 

 

4.4 Spectral characteristics of different turbidity levels 

Figure 7 depicts the different general spectral responses of clear and turbid waters. As shown 

in the figure clear water displayed a “normal” spectral reflectance dome shape. Clear water 

reflected high around the visible region and also displayed an almost total absorption in the 

longer near-infrared wavelengths. Turbid water, across all levels (i.e. X10 to X150), 

displayed low reflectance below 420 and above 930nm. Four significant reflectance peaks 

were noted, two in the visible region at around 450 and 580nm, and the other two in the near-

infrared region at 751 and 771nm. A series of troughs caused by atmospheric and water 

absorption were noted at bands 655, 687, 718 and 761nm. The most pronounced absorption 

occurs in the 761nm band which falls in the near-infrared region. These areas are encircled 

red in Figure 7 below. It is noted that these areas were excluded from the optimal band 

exploration. 

 



29 

 

 

Figure 7: A general spectral reflectance characteristic of turbid and clear water with 

absorption bands (highlighted in red) 

 

The impact of the amount of suspended material in solution is captured in Figure 8. A general 

increase in reflectance as one move from clear water to slightly turbid and to strongly turbid 

solutions, depicted by X10 to X150, is evident. Differences in reflectance are more 

pronounced at low levels than at high levels. These results are consistent with Moore (1980) 

who notes that turbid systems reflect more energy than clear ones as a result of suspended 

material.  
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Figure 8: Spectral reflectance of solutions with varied amounts of soil 

 

4.5 Optimal bands 

4.5.1 Visible region 

Using the Pearson’s coefficient of correlation and simple regressions, the relationships 

between the 301 spectral bands in the visible region and increasing turbidity were tested. As 

described in Chapter 3.3.2, the best 3 bands in each spectral category were extracted and are 

presented in Table 4.  

 

Table 4: Visible region bands 

Spectral category Band (nm) r-value R² 

GREEN 

520 0.840753 0.7069 

521 0.840626 0.7067 

528 0.841583 0.7083 

BLUE 

489 0.838033 0.7023 

490 0.837457 0.7013 

491 0.837411 0.7013 

RED 

657 0.829897 0.6887 

659 0.829474 0.6880 

658 0.829203 0.6876 
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These bands went through the process of cross validation so as to assess their accuracy. 

Results from the process are presented in Table 5 below. Of the 9 bands selected in the 

visible region, bands 528, 489 and 657 yielded the lowest RMSE values and highest adjusted 

R
2
 values in their respective spectral categories. These were treated as representatives of each 

of the band categories considered in the visible region and have been presented in Figures 9 

to 11 below. It is noted that they all characterize a positive trend with increasing reflectance  

  

Table 5: LOOCV results of visible bands 

Band Mean adjusted R
2
 Mean RMSE (in NTU) RMSE %  

528 0.7062 182.4267 17.3 

520 0.7049 182.8043 17.3 

521 0.7047 182.8711 17.3 

489 0.7004 184.1968 17.5 

490 0.6995 184.4922 17.5 

491 0.6994 184.5103 17.5 

657 0.6864 188.9770 17.9 

659 0.6857 189.1897 17.9 

658 0.6853 189.3202 17.9 

 

 

Figure 9: Regression model of observed and predicted turbidity at 528nm 
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Figure 10: Regression model of observed and predicted turbidity at 489nm 

 

 

Figure 11: Regression model of observed and predicted turbidity at 657nm 

 

4.4.2 Near-infrared region 

The definition and selection of the best band in this region used the same criteria outlined in 

Section 3.3.2 above except that the best 4 instead of 3 were selected. As explained earlier, 

this was because of the near-infrared unique high and low reflectance ends. The selected 

bands are presented in Table 6. 
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Table 6: Near-infrared region optimal bands 

Spectral category Band (nm) r-value R² 

Near-infrared 

1000 0.845278 0.7145 

983 0.835728 0.6984 

868 0.834331 0.6961 

766 0.819656 0.6718 

 

The near-infrared region displayed strong agreement between predicted and observed 

turbidity values at bands 1000 and 983nm yielding 0.7145 and 0.6984 respectively (Figures 

12 and 13).  

 

Figure 12: Regression model of observed and predicted turbidity at 1000nm 

 

 

Figure 13: Regression model of observed and predicted turbidity at 983nm 
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The results above are surprising because near-infrared wavebands have always been 

associated with zero water-leaving reflectance (Dogliotti et al., 2011). However, reports have 

previously been made about some usefully measureable energy found in the longer 

wavelengths of the incident light scattered by suspended particles in the very thin layer at the 

water surface (Shibayama et al., 2007). This investigation was able to detect some of this 

energy.  

 

The validation process yielded an error of less than 20% of the mean observed turbidity 

values in all selected bands. Table 7 summarizes the validation process results reporting the 

mean adjusted R
2
 and RMSE values. 

 

Table 7: LOOCV results of near-infrared bands 

Band Mean adjusted R
2
 Mean RMSE (in NTU) RMSE % 

1000 0.7120 180.8223 17.1 

983 0.6961 185.7827 17.6 

868 0.6944 186.6680 17.7 

766 0.6700 194.0762 18.4 

 

4.4.3 Spectral indices 

As aforementioned, the use of spectral indices is largely motivated by the need to improve 

turbidity estimation. The study tested over 30 indices as reported in literature for turbidity 

detection. These included spectral ratios, differences, first derivatives and combination of 

ratios and differences based on formulae in Table 1. The spectral indices are presented in 

Table 8 below. 
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Table 8: Tested spectral indices ranked according to R
2
 (significant at p<0.05) 

Rank Band ratio/index r R² p 

1 (770-1000)/(770+1000) -0.837 0.700 0.000100 

2 625/440 -0.828 0.685 0.000140 

3 (560-520)/(560+520) -0.827 0.684 0.000143 

4 774-905 0.826 0.682 0.000148 

5 894-905 0.823 0.677 0.000166 

6 460/540 0.820 0.672 0.000184 

7 450/600 0.818 0.670 0.000192 

8 770-975 0.816 0.666 0.000209 

9 770/1000 -0.815 0.664 0.000217 

10 441.4 / 640.8 0.809 0.655 0.000257 

11 748-870 0.809 0.655 0.000259 

12 677/488 -0.808 0.653 0.000267 

13 540-460 0.807 0.651 0.000280 

14 710-740 -0.805 0.648 0.000294 

15 (760-905)/(760+905) -0.799 0.639 0.000350 

16 490/670 0.794 0.630 0.000409 

17 800/900 -0.788 0.621 0.000484 

18 450/520 0.784 0.614 0.000547 

19 (800-900)/(800+900) -0.778 0.606 0.000632 

20 900-970 0.778 0.605 0.000639 

21 (774-905)/(774+905) -0.771 0.594 0.000765 

22 765/865 -0.762 0.581 0.000960 

23 625 - 440 0.759 0.575 0.001045 

24 748/870 -0.748 0.559 0.001348 

25 710/740 -0.718 0.516 0.002559 

26 (710-740)/30 -0.718 0.516 0.002559 

27 710/720 -0.658 0.433 0.007643 

28 702/740 -0.630 0.397 0.011863 

29 710-720 0.600 0.360 0.018041 

30 (765-865)/100 0.551 0.304 0.033255 

31 (675-700)/25 -0.431 0.186 0.108324 

32 (700-675)/25 0.431 0.186 0.108324 

33 760-905 0.395 0.156 0.145504 

34 802/798 -0.387 0.150 0.154252 

 

Of all the tested indices only the best two (2) were selected. These were ratios 625/440 and 

(770-1000)/(770+1000), with R
2
values of 0.685 and 0.70 respectively. Figures 14 and 15 

depict the resulting regression models for turbidity estimation.  
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Figure 14: Regression model of observed and predicted turbidity at 625/440 

 

 

Figure 15: Regression model of observed and predicted turbidity at (770-1000) /  

      (770+1000) 

 

The 625/440 ratio combines spectral attributes of the red and blue categories which are 

deemed useful to turbidity studies. A similar combination yielded good results in Ouillon et 

al. (2008), producing the highest R
2
 value with turbidity. The 700-1000/770+1000 index 

produced the highest R
2
 value of all tested indices. This index normalizes the reflectance 

between 770 and 1000nm. It combines bands of highest and lowest reflectance from the 

actual data. A R
2
 value of 0.70 shows a significant connection with turbidity. These models 
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were also subjected to a validation procedure as in the previous occasion in Section 4.4.1. 

Both models returned an error that is less than 20% of the mean turbidity observations, which 

indicates good model performance (Table 9). 

 

Table 9: LOOCV results of selected spectral indices 

Band Mean adjusted R
2
 Mean RMSE (in NTU) RMSE % 

625/440 0.6822 190.2477 18.0 

770-1000/770+1000 0.6973 185.6616 17.6 
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CHAPTER 5:  DISCUSSION AND CONCLUSION 

 

5.1 Introduction 

The use of hyperspectral data in water quality studies comes with great benefits and 

opportunities like minimizing costs, time and resources needed on one hand and revealing 

important implicit relationships and characteristics about features on the other. Water 

turbidity is characteristic of South African rivers due to the coincidence of an arid climate 

and high intensity rainfalls (Dörgeloh, 1995; Dörgeloh et al., 1993). It remains an important 

measure of river health and landscape-transforming processes, presenting a great opportunity 

into which hyperspectral data can be applied. Challenges associated with using hyperspectral 

data encompass the problem of high dimensionality and related multicollinearity. Despite 

these challenges, spectral data have been successfully applied in turbidity studies (Doxaran et 

al., 2002; Potes et al., 2012; Chen and Muller-Karger, 2007). The visible and near-infrared 

regions are particularly useful for turbidity discrimination and estimations, due to the unique 

interaction of water and inorganic materials with radiation energy. 

 

The current investigation demonstrated the significance of the visible and near-infrared 

regions of hyperspectral data in turbidity detection. It illustrated the variability of reflectance 

over water with different levels of sediment concentration. It further highlighted the positive 

relationship between sediment load and turbidity, forging a clear connection between 

reflectance and turbidity. Although previous studies established valuable empirical 

algorithms, most of them employed broad spectral bands that conceal important implicit 

spectral features (Alcântara et al., 2009, Chen et al., 2007a, Hellweger et al., 2007, Petus et 

al., 2010, Koponen et al., 2002). It was therefore the object of the investigation to select the 

optimal bands within the visible near-infrared region in turbidity detection using 

hyperspectral data.  

 

A total of 13 single bands (520, 521, 528, 490, 489, 491, 658, 657, 659, 1000, 766, 868 and 

983nm) plus 2 indices, 625/440 and (770-1000)/(770+1000), were extracted from the 601 

bands in the 400-1000nm spectral range as having the strongest relationships with turbidity. 

The accuracies of the selected bands were tested through the use of the leave-one-out cross 

validation procedure using the RMSE. Bands 520, 489 and 657 in the visible region yielded 

the highest adjusted R
2
 values and lowest RMSE values in their respective categories and 
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therefore served as categories’ representatives. It was interesting to note that the highest 

coefficient came from band 528, which borders the blue and green categories of the spectrum, 

with the latter largely associated with chlorophyll-a, a parameter with distinct absorption in 

the blue and red bands (Senay et al., 2001). However, some studies have acknowledged the 

usefulness of the green band in turbidity quantification (Akbar et al., Undated, Khorram et 

al., 1991). The 489 and 657 bands are not surprising as they fall within band categories that 

have already been reported as sensitive to turbidity variation (Lathrop and Lillesand, 1986, 

Norsaliza and Hasmadi, 2010a). Some report the red band as best correlated with turbidity 

(Hellweger et al., 2007). A strong linear association between the red and blue (625/440) ratio 

is consistent with findings from a previous study (Lodhi, 2002).  

 

The strongest relationship was located in the near-infrared region. This region, as previously 

alluded, makes little contribution in reflectance over clear water as almost all radiation is 

absorbed. However, the presence of suspended materials alters the water’s spectral signature 

through scattering causing significant reflectance (Doron et al., 2011). Shibayama et al 

(2007) reported the existence of some usefully measureable energy found in the longer 

wavelengths that may be scattered by suspended particles in the very thin layer at the water 

surface. Although not as prominent as the in the visible region, the reflected energy from this 

region may carry unique additional information. Such attributes have led to it being strongly 

suggested in turbidity detection (Matthews, 2011). Senay et al. (2001) reports this range, 800-

1000nm, as part of the good estimators of turbidity. Also the fact that radiation from this 

region is able to penetrate the water and interact with the constituents of the water before 

being recorded by the sensor makes it a reliable measure of water turbidity. It is not too 

surprising therefore that the strongest relationship with turbidity is located in the region. This 

is an interesting finding as it amplifies the importance of the subsurface volumetric radiance 

(Lv) portion of electromagnetic radiation in turbidity detection. It also emphasizes Jensen’s 

(2000) observation about near-infrared region’s usefulness in determining the amount of 

suspended material in water. This observation would consequently prompt further 

investigation of both theoretical and experimental approaches in the use of near-infrared band 

in parameter estimations. However, caution should be taken against multiple backscattering 

in highly turbid systems, particularly in this region, as it may exaggerate the reflectance, 

yielding misleading results.  
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Band 983 showed much higher reflectance compared to the 1000nm but yielded slightly 

lower R
2
 value. What is evident from the results is that the near-infrared region remains an 

important portion of the spectrum in turbidity studies. It is believed that bands from this 

region contain valuable in-water constituents’ information due to their elaborate interaction 

with in-water constituents. 

 

The cross validation process yielded RMSE values that are less than 20% of the mean 

turbidity observations. This clearly indicates good performance in the constructed models.   

 

5.2 Conclusion 

What can be drawn from this study is firstly that water turbidity is spectrally active and can 

therefore be interrogated through remote sensing. Secondly, there is a strong connection 

between the amount of suspended materials, particularly inorganic constituents, and resulting 

turbidity measure. The presence of such materials induces a reflective character on water 

through light scattering and backscattering. This phenomenon is very pronounced in the 

visible and near-infrared regions of the spectrum.  

 

The use of hyperspectral data in turbidity detection is ideal for optimal band interrogation. It 

offers us the opportunity to fine-tune our understanding of the processes, behaviors and 

characteristics of spectrally active features, particularly those that play significant role in 

human livelihood such as water. The bands 528, 489, 657, 1000 and 983 and the two spectral 

ratio indices 625/440 and (770-1000)/(770+1000), present a strong case in turbidity detection. 

They boast RMSE values that are less than 20% of the mean measured value in turbidity 

which means that the models will be accurate 80% of the time. This is an acceptable 

compromise and therefore the models are highly recommended as starting points for further 

investigations. Of all the results that this study generated, the ones from the near-infrared 

region of the spectrum raise much interest. This is largely because this region has often 

received little attention in turbidity detection because of its pronounced absorption in water. 

The study therefore recommends further exploration on the role of the near-infrared region in 

turbidity detection particularly using hyperspectral data.  
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APPENDIX A: SPECTRAL DATA 

Sample 

Clear 

water X10 X20 X30 X40 X50 X60 X70 X80 X90 X100 X110 X120 X130 X140 X150 

400 0.0353 0.0228 0.0412 0.0389 0.0613 0.0645 0.0809 0.0624 0.0895 0.0627 0.0745 0.0688 0.0795 0.0834 0.0888 0.0663 

401 0.0392 0.0232 0.0435 0.0417 0.0638 0.0677 0.0845 0.0652 0.0945 0.0656 0.0788 0.0713 0.0827 0.0870 0.0930 0.0699 

402 0.0392 0.0250 0.0447 0.0428 0.0663 0.0702 0.0881 0.0677 0.0970 0.0684 0.0806 0.0749 0.0863 0.0906 0.0966 0.0720 

403 0.0392 0.0257 0.0459 0.0442 0.0684 0.0727 0.0902 0.0695 0.1002 0.0702 0.0841 0.0774 0.0891 0.0945 0.1002 0.0752 

404 0.0392 0.0267 0.0471 0.0456 0.0706 0.0749 0.0927 0.0717 0.1030 0.0724 0.0870 0.0795 0.0920 0.0970 0.1037 0.0766 

405 0.0431 0.0267 0.0490 0.0471 0.0717 0.0766 0.0952 0.0738 0.1055 0.0738 0.0888 0.0816 0.0938 0.0995 0.1055 0.0795 

406 0.0431 0.0271 0.0498 0.0474 0.0731 0.0781 0.0959 0.0756 0.1084 0.0756 0.0906 0.0834 0.0955 0.1020 0.1084 0.0809 

407 0.0431 0.0285 0.0502 0.0481 0.0745 0.0795 0.0980 0.0759 0.1094 0.0770 0.0920 0.0856 0.0980 0.1037 0.1102 0.0827 

408 0.0431 0.0289 0.0506 0.0499 0.0763 0.0809 0.0998 0.0788 0.1112 0.0784 0.0941 0.0870 0.0995 0.1062 0.1123 0.0845 

409 0.0431 0.0296 0.0529 0.0510 0.0777 0.0824 0.1020 0.0795 0.1137 0.0795 0.0963 0.0891 0.1016 0.1073 0.1148 0.0859 

410 0.0431 0.0307 0.0533 0.0513 0.0781 0.0841 0.1037 0.0806 0.1152 0.0813 0.0977 0.0909 0.1037 0.1112 0.1169 0.0873 

411 0.0431 0.0310 0.0541 0.0528 0.0813 0.0856 0.1052 0.0827 0.1187 0.0831 0.1002 0.0930 0.1066 0.1130 0.1194 0.0898 

412 0.0471 0.0321 0.0561 0.0545 0.0824 0.0884 0.1080 0.0841 0.1209 0.0848 0.1023 0.0948 0.1091 0.1148 0.1226 0.0920 

413 0.0471 0.0328 0.0569 0.0553 0.0848 0.0895 0.1098 0.0873 0.1241 0.0873 0.1052 0.0966 0.1112 0.1184 0.1248 0.0945 

414 0.0471 0.0335 0.0588 0.0567 0.0863 0.0920 0.1119 0.0888 0.1258 0.0891 0.1062 0.1002 0.1144 0.1205 0.1291 0.0963 

415 0.0471 0.0346 0.0596 0.0588 0.0877 0.0941 0.1144 0.0909 0.1287 0.0906 0.1102 0.1016 0.1159 0.1241 0.1305 0.0995 

416 0.0471 0.0353 0.0604 0.0595 0.0902 0.0963 0.1176 0.0923 0.1312 0.0923 0.1127 0.1041 0.1191 0.1266 0.1340 0.1009 

417 0.0510 0.0364 0.0624 0.0606 0.0916 0.0984 0.1191 0.0948 0.1340 0.0948 0.1148 0.1070 0.1219 0.1287 0.1365 0.1034 

418 0.0510 0.0374 0.0631 0.0620 0.0938 0.1002 0.1216 0.0970 0.1362 0.0959 0.1173 0.1087 0.1234 0.1316 0.1394 0.1052 

419 0.0510 0.0378 0.0643 0.0635 0.0952 0.1016 0.1241 0.0988 0.1387 0.0984 0.1198 0.1116 0.1262 0.1348 0.1419 0.1080 

420 0.0510 0.0389 0.0659 0.0645 0.0970 0.1041 0.1262 0.1002 0.1405 0.1002 0.1219 0.1134 0.1294 0.1365 0.1447 0.1102 

421 0.0510 0.0396 0.0667 0.0656 0.0988 0.1055 0.1280 0.1023 0.1433 0.1016 0.1234 0.1152 0.1305 0.1405 0.1476 0.1127 

422 0.0510 0.0403 0.0690 0.0670 0.1002 0.1073 0.1301 0.1041 0.1455 0.1037 0.1266 0.1176 0.1330 0.1412 0.1497 0.1144 

423 0.0510 0.0414 0.0698 0.0684 0.1012 0.1091 0.1319 0.1048 0.1476 0.1052 0.1280 0.1191 0.1351 0.1440 0.1522 0.1155 

424 0.0510 0.0421 0.0698 0.0684 0.1030 0.1102 0.1333 0.1080 0.1490 0.1062 0.1298 0.1212 0.1373 0.1462 0.1540 0.1173 

425 0.0510 0.0424 0.0706 0.0699 0.1045 0.1127 0.1355 0.1080 0.1526 0.1087 0.1312 0.1226 0.1387 0.1479 0.1569 0.1198 

426 0.0510 0.0439 0.0737 0.0717 0.1059 0.1141 0.1376 0.1116 0.1540 0.1105 0.1344 0.1251 0.1412 0.1504 0.1597 0.1219 

427 0.0549 0.0446 0.0737 0.0727 0.1084 0.1166 0.1405 0.1123 0.1572 0.1116 0.1362 0.1269 0.1447 0.1544 0.1622 0.1244 

428 0.0549 0.0456 0.0761 0.0749 0.1116 0.1194 0.1437 0.1155 0.1608 0.1152 0.1398 0.1305 0.1472 0.1576 0.1658 0.1280 

429 0.0549 0.0478 0.0776 0.0777 0.1137 0.1219 0.1483 0.1191 0.1643 0.1184 0.1433 0.1344 0.1515 0.1615 0.1704 0.1312 

430 0.0549 0.0488 0.0816 0.0806 0.1176 0.1266 0.1522 0.1226 0.1697 0.1219 0.1479 0.1380 0.1565 0.1668 0.1761 0.1351 

431 0.0588 0.0513 0.0835 0.0831 0.1219 0.1319 0.1572 0.1269 0.1761 0.1262 0.1529 0.1430 0.1622 0.1725 0.1829 0.1405 

432 0.0588 0.0531 0.0875 0.0863 0.1269 0.1373 0.1636 0.1319 0.1832 0.1316 0.1590 0.1494 0.1683 0.1790 0.1900 0.1462 

433 0.0627 0.0563 0.0914 0.0906 0.1316 0.1422 0.1708 0.1380 0.1897 0.1365 0.1654 0.1558 0.1758 0.1872 0.1975 0.1519 

434 0.0627 0.0585 0.0961 0.0941 0.1376 0.1487 0.1779 0.1430 0.1982 0.1437 0.1725 0.1619 0.1825 0.1947 0.2053 0.1597 

435 0.0667 0.0610 0.0996 0.0988 0.1437 0.1551 0.1854 0.1494 0.2068 0.1497 0.1811 0.1690 0.1907 0.2029 0.2150 0.1658 

436 0.0667 0.0645 0.1031 0.1027 0.1490 0.1619 0.1925 0.1561 0.2157 0.1554 0.1886 0.1758 0.1989 0.2121 0.2239 0.1743 

437 0.0706 0.0667 0.1075 0.1073 0.1561 0.1683 0.1996 0.1633 0.2235 0.1615 0.1957 0.1836 0.2071 0.2207 0.2332 0.1797 

438 0.0706 0.0692 0.1125 0.1112 0.1615 0.1747 0.2068 0.1686 0.2317 0.1683 0.2032 0.1904 0.2146 0.2292 0.2410 0.1872 

439 0.0745 0.0713 0.1165 0.1155 0.1661 0.1804 0.2139 0.1754 0.2392 0.1740 0.2107 0.1968 0.2214 0.2367 0.2499 0.1936 

440 0.0745 0.0745 0.1204 0.1191 0.1733 0.1857 0.2207 0.1804 0.2467 0.1793 0.2168 0.2036 0.2285 0.2456 0.2578 0.2007 

441 0.0784 0.0777 0.1239 0.1230 0.1772 0.1918 0.2282 0.1868 0.2556 0.1854 0.2246 0.2111 0.2371 0.2528 0.2663 0.2068 

442 0.0784 0.0806 0.1286 0.1276 0.1836 0.1986 0.2353 0.1932 0.2624 0.1918 0.2314 0.2189 0.2442 0.2610 0.2759 0.2135 

443 0.0824 0.0831 0.1329 0.1316 0.1904 0.2053 0.2428 0.1993 0.2713 0.1975 0.2392 0.2250 0.2524 0.2699 0.2841 0.2210 

444 0.0824 0.0856 0.1369 0.1362 0.1954 0.2118 0.2506 0.2061 0.2795 0.2039 0.2463 0.2328 0.2595 0.2781 0.2934 0.2282 
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445 0.0863 0.0884 0.1408 0.1405 0.2004 0.2178 0.2567 0.2121 0.2877 0.2096 0.2542 0.2396 0.2677 0.2863 0.3016 0.2346 

446 0.0863 0.0909 0.1443 0.1440 0.2068 0.2232 0.2635 0.2178 0.2955 0.2146 0.2606 0.2460 0.2749 0.2941 0.3098 0.2414 

447 0.0863 0.0934 0.1475 0.1469 0.2114 0.2285 0.2692 0.2235 0.3016 0.2207 0.2670 0.2520 0.2816 0.3009 0.3176 0.2471 

448 0.0902 0.0952 0.1510 0.1501 0.2150 0.2332 0.2745 0.2278 0.3077 0.2250 0.2734 0.2567 0.2877 0.3073 0.3241 0.2524 

449 0.0902 0.0966 0.1537 0.1533 0.2193 0.2374 0.2791 0.2324 0.3130 0.2292 0.2781 0.2627 0.2934 0.3137 0.3298 0.2567 

450 0.0902 0.0991 0.1565 0.1554 0.2221 0.2410 0.2831 0.2364 0.3180 0.2328 0.2827 0.2674 0.2977 0.3180 0.3358 0.2606 

451 0.0902 0.0998 0.1588 0.1576 0.2253 0.2439 0.2859 0.2385 0.3216 0.2353 0.2870 0.2709 0.3020 0.3223 0.3401 0.2649 

452 0.0941 0.1020 0.1604 0.1594 0.2278 0.2471 0.2895 0.2417 0.3251 0.2385 0.2898 0.2738 0.3055 0.3262 0.3437 0.2674 

453 0.0941 0.1027 0.1608 0.1615 0.2292 0.2481 0.2913 0.2428 0.3276 0.2403 0.2923 0.2759 0.3077 0.3291 0.3469 0.2706 

454 0.0941 0.1034 0.1635 0.1626 0.2307 0.2503 0.2927 0.2453 0.3298 0.2421 0.2945 0.2781 0.3102 0.3316 0.3487 0.2724 

455 0.0941 0.1041 0.1639 0.1633 0.2324 0.2513 0.2941 0.2463 0.3308 0.2435 0.2966 0.2802 0.3119 0.3340 0.3519 0.2742 

456 0.0941 0.1045 0.1643 0.1651 0.2335 0.2531 0.2966 0.2485 0.3333 0.2453 0.2980 0.2820 0.3144 0.3358 0.3537 0.2766 

457 0.0941 0.1059 0.1647 0.1658 0.2346 0.2549 0.2977 0.2499 0.3348 0.2463 0.3009 0.2838 0.3159 0.3390 0.3561 0.2781 

458 0.0941 0.1066 0.1671 0.1661 0.2367 0.2556 0.2991 0.2517 0.3369 0.2488 0.3016 0.2863 0.3184 0.3408 0.3576 0.2802 

459 0.0941 0.1066 0.1678 0.1672 0.2374 0.2567 0.3005 0.2524 0.3387 0.2492 0.3034 0.2870 0.3198 0.3422 0.3594 0.2806 

460 0.0902 0.1073 0.1682 0.1676 0.2374 0.2574 0.3005 0.2535 0.3390 0.2499 0.3045 0.2877 0.3205 0.3430 0.3611 0.2813 

461 0.0902 0.1073 0.1682 0.1676 0.2378 0.2570 0.3005 0.2535 0.3390 0.2496 0.3045 0.2881 0.3205 0.3430 0.3611 0.2824 

462 0.0902 0.1073 0.1678 0.1676 0.2378 0.2567 0.2998 0.2531 0.3387 0.2492 0.3045 0.2884 0.3201 0.3430 0.3611 0.2820 

463 0.0902 0.1066 0.1678 0.1676 0.2364 0.2563 0.2980 0.2524 0.3365 0.2492 0.3037 0.2881 0.3201 0.3426 0.3601 0.2809 

464 0.0902 0.1066 0.1651 0.1668 0.2349 0.2549 0.2966 0.2517 0.3355 0.2478 0.3020 0.2870 0.3191 0.3412 0.3590 0.2806 

465 0.0902 0.1062 0.1651 0.1658 0.2346 0.2531 0.2952 0.2503 0.3333 0.2471 0.3009 0.2852 0.3176 0.3394 0.3558 0.2795 

466 0.0863 0.1059 0.1647 0.1651 0.2328 0.2521 0.2934 0.2488 0.3319 0.2456 0.2991 0.2845 0.3159 0.3376 0.3551 0.2781 

467 0.0863 0.1048 0.1631 0.1640 0.2314 0.2513 0.2920 0.2478 0.3301 0.2439 0.2984 0.2838 0.3152 0.3369 0.3537 0.2766 

468 0.0863 0.1045 0.1627 0.1640 0.2310 0.2506 0.2913 0.2471 0.3287 0.2439 0.2970 0.2824 0.3137 0.3351 0.3529 0.2759 

469 0.0863 0.1045 0.1627 0.1640 0.2310 0.2503 0.2906 0.2471 0.3280 0.2439 0.2966 0.2816 0.3134 0.3348 0.3522 0.2759 

470 0.0863 0.1048 0.1631 0.1640 0.2310 0.2506 0.2906 0.2471 0.3280 0.2442 0.2966 0.2820 0.3134 0.3355 0.3522 0.2759 

471 0.0863 0.1052 0.1631 0.1647 0.2310 0.2510 0.2906 0.2474 0.3283 0.2442 0.2966 0.2831 0.3141 0.3362 0.3522 0.2766 

472 0.0824 0.1055 0.1631 0.1654 0.2310 0.2513 0.2909 0.2478 0.3283 0.2446 0.2977 0.2841 0.3144 0.3365 0.3529 0.2774 

473 0.0824 0.1059 0.1639 0.1658 0.2321 0.2517 0.2913 0.2485 0.3291 0.2449 0.2984 0.2848 0.3152 0.3376 0.3537 0.2781 

474 0.0824 0.1066 0.1647 0.1665 0.2321 0.2524 0.2923 0.2492 0.3298 0.2456 0.2984 0.2852 0.3162 0.3380 0.3547 0.2784 

475 0.0824 0.1066 0.1651 0.1668 0.2328 0.2524 0.2930 0.2503 0.3308 0.2460 0.2998 0.2859 0.3166 0.3387 0.3551 0.2791 

476 0.0824 0.1073 0.1651 0.1668 0.2335 0.2528 0.2934 0.2503 0.3308 0.2467 0.3002 0.2866 0.3176 0.3398 0.3558 0.2799 

477 0.0824 0.1077 0.1651 0.1672 0.2339 0.2531 0.2930 0.2506 0.3316 0.2471 0.3002 0.2870 0.3176 0.3401 0.3561 0.2809 

478 0.0824 0.1077 0.1663 0.1672 0.2339 0.2531 0.2930 0.2513 0.3316 0.2478 0.3002 0.2873 0.3176 0.3401 0.3561 0.2809 

479 0.0824 0.1073 0.1659 0.1672 0.2332 0.2528 0.2920 0.2513 0.3301 0.2471 0.3002 0.2866 0.3169 0.3394 0.3558 0.2809 

480 0.0784 0.1070 0.1643 0.1668 0.2324 0.2520 0.2902 0.2499 0.3291 0.2463 0.2998 0.2859 0.3162 0.3380 0.3544 0.2795 

481 0.0784 0.1066 0.1631 0.1658 0.2296 0.2492 0.2877 0.2478 0.3258 0.2435 0.2970 0.2834 0.3134 0.3351 0.3515 0.2766 

482 0.0784 0.1052 0.1616 0.1629 0.2267 0.2456 0.2834 0.2446 0.3212 0.2406 0.2930 0.2802 0.3098 0.3312 0.3472 0.2734 

483 0.0745 0.1034 0.1580 0.1608 0.2228 0.2417 0.2791 0.2403 0.3152 0.2364 0.2881 0.2756 0.3045 0.3258 0.3412 0.2692 

484 0.0745 0.1020 0.1561 0.1583 0.2196 0.2381 0.2738 0.2371 0.3098 0.2332 0.2834 0.2713 0.2995 0.3209 0.3358 0.2652 

485 0.0745 0.1009 0.1545 0.1565 0.2164 0.2357 0.2706 0.2342 0.3062 0.2303 0.2791 0.2681 0.2955 0.3159 0.3312 0.2617 

486 0.0706 0.1005 0.1529 0.1558 0.2153 0.2335 0.2684 0.2317 0.3027 0.2282 0.2770 0.2652 0.2934 0.3141 0.3276 0.2592 

487 0.0706 0.1005 0.1529 0.1558 0.2153 0.2335 0.2684 0.2317 0.3023 0.2278 0.2763 0.2649 0.2920 0.3127 0.3266 0.2592 

488 0.0706 0.1012 0.1549 0.1565 0.2164 0.2353 0.2699 0.2332 0.3034 0.2292 0.2766 0.2652 0.2938 0.3141 0.3280 0.2602 

489 0.0706 0.1027 0.1565 0.1590 0.2182 0.2371 0.2717 0.2353 0.3066 0.2310 0.2791 0.2684 0.2963 0.3162 0.3308 0.2620 

490 0.0706 0.1037 0.1584 0.1608 0.2203 0.2399 0.2749 0.2381 0.3098 0.2339 0.2824 0.2713 0.2991 0.3198 0.3348 0.2652 

491 0.0706 0.1052 0.1600 0.1622 0.2232 0.2424 0.2774 0.2399 0.3119 0.2364 0.2845 0.2734 0.3016 0.3226 0.3376 0.2677 
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492 0.0706 0.1066 0.1608 0.1640 0.2239 0.2439 0.2784 0.2424 0.3141 0.2374 0.2873 0.2759 0.3030 0.3248 0.3394 0.2699 

493 0.0706 0.1070 0.1620 0.1647 0.2253 0.2449 0.2795 0.2435 0.3152 0.2396 0.2884 0.2774 0.3052 0.3258 0.3408 0.2702 

494 0.0706 0.1073 0.1624 0.1654 0.2260 0.2463 0.2806 0.2453 0.3166 0.2399 0.2891 0.2781 0.3066 0.3266 0.3419 0.2713 

495 0.0706 0.1080 0.1643 0.1661 0.2278 0.2471 0.2820 0.2463 0.3176 0.2406 0.2906 0.2795 0.3070 0.3280 0.3426 0.2724 

496 0.0706 0.1080 0.1643 0.1672 0.2282 0.2474 0.2820 0.2471 0.3176 0.2410 0.2913 0.2795 0.3070 0.3283 0.3437 0.2738 

497 0.0706 0.1080 0.1651 0.1672 0.2282 0.2467 0.2813 0.2471 0.3173 0.2410 0.2906 0.2791 0.3070 0.3280 0.3430 0.2731 

498 0.0667 0.1080 0.1647 0.1668 0.2264 0.2463 0.2791 0.2463 0.3155 0.2399 0.2895 0.2784 0.3055 0.3262 0.3412 0.2720 

499 0.0667 0.1080 0.1635 0.1665 0.2260 0.2460 0.2784 0.2456 0.3152 0.2399 0.2884 0.2784 0.3048 0.3255 0.3405 0.2713 

500 0.0667 0.1084 0.1639 0.1665 0.2260 0.2460 0.2784 0.2460 0.3148 0.2396 0.2888 0.2781 0.3048 0.3248 0.3398 0.2706 

501 0.0667 0.1102 0.1647 0.1679 0.2271 0.2467 0.2791 0.2471 0.3155 0.2406 0.2895 0.2784 0.3048 0.3255 0.3408 0.2717 

502 0.0667 0.1112 0.1659 0.1686 0.2289 0.2496 0.2824 0.2485 0.3173 0.2421 0.2898 0.2799 0.3070 0.3280 0.3426 0.2738 

503 0.0667 0.1119 0.1686 0.1704 0.2310 0.2513 0.2848 0.2517 0.3198 0.2453 0.2930 0.2827 0.3091 0.3298 0.3455 0.2759 

504 0.0667 0.1130 0.1694 0.1725 0.2342 0.2545 0.2873 0.2542 0.3237 0.2478 0.2966 0.2863 0.3130 0.3333 0.3494 0.2791 

505 0.0667 0.1159 0.1725 0.1758 0.2371 0.2578 0.2906 0.2574 0.3273 0.2506 0.2998 0.2898 0.3169 0.3369 0.3533 0.2827 

506 0.0667 0.1169 0.1749 0.1768 0.2396 0.2602 0.2938 0.2606 0.3308 0.2538 0.3030 0.2916 0.3194 0.3401 0.3565 0.2852 

507 0.0667 0.1184 0.1765 0.1797 0.2421 0.2635 0.2973 0.2645 0.3340 0.2556 0.3059 0.2948 0.3226 0.3437 0.3604 0.2884 

508 0.0667 0.1198 0.1784 0.1811 0.2446 0.2660 0.2984 0.2667 0.3355 0.2578 0.3080 0.2980 0.3255 0.3465 0.3626 0.2906 

509 0.0667 0.1212 0.1804 0.1836 0.2456 0.2674 0.3009 0.2684 0.3387 0.2599 0.3102 0.2995 0.3280 0.3494 0.3651 0.2930 

510 0.0667 0.1223 0.1816 0.1843 0.2478 0.2699 0.3023 0.2706 0.3405 0.2617 0.3130 0.3023 0.3294 0.3508 0.3676 0.2945 

511 0.0667 0.1237 0.1835 0.1854 0.2492 0.2709 0.3037 0.2717 0.3419 0.2627 0.3134 0.3030 0.3301 0.3522 0.3683 0.2952 

512 0.0667 0.1241 0.1839 0.1865 0.2492 0.2713 0.3037 0.2724 0.3422 0.2635 0.3141 0.3034 0.3312 0.3526 0.3690 0.2959 

513 0.0667 0.1244 0.1835 0.1861 0.2488 0.2709 0.3023 0.2724 0.3408 0.2624 0.3137 0.3030 0.3301 0.3519 0.3683 0.2952 

514 0.0667 0.1234 0.1827 0.1854 0.2478 0.2699 0.3005 0.2709 0.3387 0.2617 0.3123 0.3020 0.3283 0.3497 0.3651 0.2934 

515 0.0667 0.1234 0.1820 0.1854 0.2471 0.2684 0.3002 0.2706 0.3369 0.2613 0.3105 0.2991 0.3266 0.3480 0.3636 0.2916 

516 0.0627 0.1241 0.1831 0.1861 0.2474 0.2695 0.3005 0.2709 0.3373 0.2613 0.3102 0.2995 0.3266 0.3480 0.3633 0.2923 

517 0.0627 0.1255 0.1859 0.1889 0.2499 0.2727 0.3041 0.2738 0.3401 0.2631 0.3127 0.3023 0.3291 0.3501 0.3661 0.2952 

518 0.0667 0.1280 0.1898 0.1925 0.2549 0.2784 0.3098 0.2788 0.3465 0.2688 0.3173 0.3070 0.3348 0.3554 0.3722 0.2998 

519 0.0667 0.1319 0.1945 0.1979 0.2617 0.2863 0.3184 0.2852 0.3554 0.2756 0.3241 0.3144 0.3422 0.3643 0.3804 0.3073 

520 0.0667 0.1358 0.2016 0.2046 0.2692 0.2945 0.3266 0.2941 0.3651 0.2834 0.3330 0.3234 0.3522 0.3736 0.3914 0.3159 

521 0.0667 0.1405 0.2067 0.2100 0.2766 0.3023 0.3348 0.3030 0.3743 0.2916 0.3430 0.3316 0.3608 0.3843 0.4018 0.3244 

522 0.0706 0.1440 0.2114 0.2139 0.2827 0.3087 0.3415 0.3098 0.3825 0.2970 0.3508 0.3398 0.3686 0.3918 0.4096 0.3316 

523 0.0706 0.1469 0.2149 0.2182 0.2877 0.3137 0.3465 0.3155 0.3882 0.3020 0.3569 0.3451 0.3750 0.3979 0.4160 0.3365 

524 0.0706 0.1490 0.2188 0.2217 0.2916 0.3176 0.3504 0.3194 0.3932 0.3059 0.3611 0.3490 0.3793 0.4029 0.4207 0.3405 

525 0.0706 0.1519 0.2220 0.2242 0.2955 0.3216 0.3554 0.3241 0.3971 0.3094 0.3654 0.3533 0.3840 0.4075 0.4257 0.3447 

526 0.0706 0.1533 0.2267 0.2282 0.2995 0.3273 0.3608 0.3287 0.4039 0.3144 0.3704 0.3583 0.3889 0.4128 0.4314 0.3494 

527 0.0706 0.1569 0.2306 0.2335 0.3059 0.3333 0.3679 0.3358 0.4114 0.3212 0.3768 0.3654 0.3954 0.4200 0.4396 0.3554 

528 0.0745 0.1615 0.2373 0.2389 0.3137 0.3415 0.3768 0.3440 0.4207 0.3283 0.3847 0.3725 0.4043 0.4292 0.4478 0.3629 

529 0.0745 0.1658 0.2427 0.2456 0.3212 0.3501 0.3857 0.3522 0.4307 0.3365 0.3936 0.3818 0.4132 0.4392 0.4588 0.3722 

530 0.0745 0.1697 0.2490 0.2503 0.3276 0.3576 0.3929 0.3594 0.4381 0.3440 0.4018 0.3889 0.4225 0.4471 0.4677 0.3786 

531 0.0745 0.1729 0.2529 0.2549 0.3323 0.3622 0.3979 0.3658 0.4446 0.3487 0.4082 0.3957 0.4271 0.4535 0.4745 0.3843 

532 0.0745 0.1761 0.2565 0.2578 0.3369 0.3672 0.4025 0.3708 0.4496 0.3529 0.4128 0.4004 0.4324 0.4578 0.4791 0.3889 

533 0.0745 0.1779 0.2604 0.2620 0.3412 0.3725 0.4082 0.3761 0.4553 0.3576 0.4175 0.4050 0.4374 0.4635 0.4848 0.3936 

534 0.0784 0.1811 0.2643 0.2663 0.3462 0.3779 0.4139 0.3815 0.4613 0.3626 0.4228 0.4096 0.4435 0.4688 0.4913 0.3996 

535 0.0784 0.1847 0.2694 0.2709 0.3515 0.3843 0.4196 0.3875 0.4677 0.3679 0.4296 0.4164 0.4496 0.4752 0.4973 0.4053 

536 0.0784 0.1882 0.2733 0.2749 0.3558 0.3886 0.4246 0.3925 0.4738 0.3725 0.4346 0.4214 0.4545 0.4809 0.5041 0.4096 

537 0.0784 0.1893 0.2765 0.2777 0.3594 0.3925 0.4275 0.3971 0.4777 0.3765 0.4389 0.4246 0.4578 0.4845 0.5073 0.4132 

538 0.0784 0.1918 0.2780 0.2791 0.3626 0.3950 0.4303 0.3996 0.4799 0.3786 0.4410 0.4267 0.4602 0.4873 0.5098 0.4153 
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539 0.0784 0.1932 0.2812 0.2820 0.3651 0.3982 0.4335 0.4032 0.4831 0.3811 0.4431 0.4296 0.4631 0.4898 0.5130 0.4171 

540 0.0784 0.1961 0.2843 0.2859 0.3690 0.4029 0.4381 0.4075 0.4881 0.3857 0.4474 0.4339 0.4674 0.4948 0.5176 0.4214 

541 0.0784 0.1996 0.2890 0.2909 0.3747 0.4089 0.4449 0.4143 0.4952 0.3914 0.4531 0.4399 0.4724 0.4998 0.5244 0.4278 

542 0.0784 0.2036 0.2953 0.2963 0.3822 0.4171 0.4531 0.4217 0.5037 0.3986 0.4610 0.4463 0.4809 0.5084 0.5323 0.4346 

543 0.0784 0.2082 0.3024 0.3030 0.3897 0.4250 0.4613 0.4310 0.5130 0.4064 0.4692 0.4545 0.4895 0.5173 0.5415 0.4417 

544 0.0784 0.2125 0.3067 0.3084 0.3964 0.4324 0.4684 0.4385 0.5216 0.4128 0.4770 0.4624 0.4980 0.5248 0.5494 0.4492 

545 0.0784 0.2164 0.3125 0.3130 0.4018 0.4385 0.4756 0.4456 0.5291 0.4196 0.4834 0.4688 0.5045 0.5316 0.5576 0.4556 

546 0.0824 0.2193 0.3176 0.3187 0.4075 0.4453 0.4806 0.4510 0.5351 0.4242 0.4891 0.4745 0.5098 0.5376 0.5636 0.4610 

547 0.0824 0.2228 0.3224 0.3230 0.4139 0.4510 0.4870 0.4585 0.5419 0.4307 0.4959 0.4809 0.5166 0.5447 0.5697 0.4667 

548 0.0824 0.2278 0.3286 0.3287 0.4196 0.4588 0.4945 0.4645 0.5490 0.4371 0.5023 0.4870 0.5230 0.5515 0.5775 0.4727 

549 0.0824 0.2321 0.3349 0.3355 0.4271 0.4660 0.5020 0.4731 0.5576 0.4439 0.5091 0.4941 0.5312 0.5590 0.5861 0.4795 

550 0.0824 0.2364 0.3416 0.3415 0.4342 0.4749 0.5112 0.4813 0.5676 0.4520 0.5176 0.5020 0.5390 0.5683 0.5947 0.4870 

551 0.0824 0.2414 0.3478 0.3476 0.4417 0.4827 0.5187 0.4898 0.5754 0.4585 0.5251 0.5098 0.5469 0.5758 0.6032 0.4948 

552 0.0824 0.2460 0.3537 0.3537 0.4485 0.4906 0.5262 0.4980 0.5847 0.4649 0.5330 0.5169 0.5544 0.5836 0.6107 0.5016 

553 0.0824 0.2496 0.3608 0.3597 0.4553 0.4977 0.5340 0.5055 0.5918 0.4724 0.5408 0.5237 0.5619 0.5911 0.6189 0.5087 

554 0.0863 0.2535 0.3647 0.3640 0.4613 0.5037 0.5394 0.5127 0.5989 0.4781 0.5469 0.5305 0.5672 0.5968 0.6257 0.5137 

555 0.0824 0.2567 0.3686 0.3679 0.4656 0.5084 0.5440 0.5176 0.6036 0.4824 0.5519 0.5344 0.5711 0.6014 0.6299 0.5176 

556 0.0824 0.2585 0.3722 0.3704 0.4677 0.5116 0.5462 0.5205 0.6061 0.4845 0.5544 0.5369 0.5743 0.6036 0.6332 0.5205 

557 0.0824 0.2599 0.3745 0.3729 0.4706 0.5134 0.5487 0.5234 0.6082 0.4873 0.5561 0.5380 0.5758 0.6053 0.6342 0.5216 

558 0.0824 0.2631 0.3780 0.3765 0.4738 0.5180 0.5529 0.5273 0.6121 0.4913 0.5586 0.5419 0.5786 0.6082 0.6374 0.5248 

559 0.0824 0.2667 0.3831 0.3811 0.4799 0.5248 0.5594 0.5340 0.6185 0.4955 0.5643 0.5465 0.5847 0.6139 0.6428 0.5298 

560 0.0824 0.2706 0.3902 0.3882 0.4873 0.5323 0.5672 0.5419 0.6267 0.5027 0.5704 0.5533 0.5914 0.6207 0.6510 0.5365 

561 0.0824 0.2756 0.3957 0.3929 0.4941 0.5405 0.5754 0.5494 0.6353 0.5102 0.5772 0.5604 0.5989 0.6285 0.6588 0.5437 

562 0.0824 0.2795 0.4016 0.3982 0.4991 0.5465 0.5811 0.5561 0.6421 0.5155 0.5840 0.5672 0.6050 0.6335 0.6656 0.5490 

563 0.0824 0.2816 0.4055 0.4021 0.5045 0.5508 0.5854 0.5622 0.6474 0.5198 0.5889 0.5711 0.6096 0.6392 0.6702 0.5533 

564 0.0824 0.2841 0.4094 0.4050 0.5084 0.5547 0.5889 0.5665 0.6510 0.5237 0.5929 0.5740 0.6121 0.6414 0.6738 0.5561 

565 0.0824 0.2856 0.4114 0.4082 0.5109 0.5583 0.5918 0.5701 0.6535 0.5262 0.5943 0.5775 0.6157 0.6442 0.6770 0.5583 

566 0.0824 0.2891 0.4133 0.4100 0.5134 0.5622 0.5947 0.5733 0.6574 0.5298 0.5979 0.5807 0.6189 0.6471 0.6799 0.5611 

567 0.0824 0.2891 0.4169 0.4128 0.5169 0.5651 0.5975 0.5772 0.6613 0.5319 0.6004 0.5832 0.6200 0.6488 0.6820 0.5633 

568 0.0824 0.2920 0.4180 0.4143 0.5194 0.5672 0.5986 0.5800 0.6631 0.5337 0.6032 0.5847 0.6232 0.6503 0.6845 0.5654 

569 0.0824 0.2927 0.4200 0.4157 0.5205 0.5697 0.6007 0.5818 0.6652 0.5351 0.6036 0.5857 0.6235 0.6510 0.6852 0.5658 

570 0.0824 0.2948 0.4235 0.4185 0.5241 0.5725 0.6039 0.5857 0.6681 0.5383 0.6061 0.5886 0.6253 0.6531 0.6884 0.5683 

571 0.0824 0.2977 0.4278 0.4228 0.5291 0.5775 0.6082 0.5904 0.6724 0.5426 0.6093 0.5922 0.6292 0.6574 0.6923 0.5715 

572 0.0824 0.3005 0.4322 0.4271 0.5337 0.5836 0.6139 0.5961 0.6784 0.5469 0.6153 0.5971 0.6349 0.6620 0.6973 0.5768 

573 0.0824 0.3030 0.4353 0.4299 0.5365 0.5868 0.6160 0.6007 0.6824 0.5508 0.6189 0.6011 0.6374 0.6649 0.7002 0.5790 

574 0.0824 0.3030 0.4357 0.4303 0.5376 0.5868 0.6150 0.6011 0.6824 0.5508 0.6196 0.6011 0.6371 0.6649 0.7002 0.5790 

575 0.0784 0.3030 0.4357 0.4299 0.5355 0.5850 0.6135 0.6004 0.6802 0.5494 0.6171 0.5996 0.6357 0.6624 0.6980 0.5768 

576 0.0784 0.3034 0.4357 0.4299 0.5351 0.5847 0.6125 0.6004 0.6788 0.5483 0.6160 0.5975 0.6342 0.6606 0.6955 0.5768 

577 0.0784 0.3034 0.4361 0.4303 0.5351 0.5847 0.6125 0.6004 0.6781 0.5480 0.6157 0.5968 0.6335 0.6588 0.6952 0.5758 

578 0.0784 0.3052 0.4369 0.4314 0.5358 0.5865 0.6139 0.6004 0.6784 0.5490 0.6157 0.5982 0.6335 0.6595 0.6955 0.5765 

579 0.0784 0.3062 0.4404 0.4346 0.5394 0.5897 0.6164 0.6043 0.6816 0.5522 0.6189 0.6000 0.6357 0.6624 0.6970 0.5775 

580 0.0784 0.3091 0.4443 0.4385 0.5433 0.5939 0.6207 0.6086 0.6856 0.5561 0.6225 0.6043 0.6403 0.6670 0.7023 0.5822 

581 0.0784 0.3119 0.4475 0.4421 0.5476 0.5982 0.6250 0.6135 0.6909 0.5608 0.6275 0.6093 0.6456 0.6720 0.7066 0.5865 

582 0.0784 0.3127 0.4506 0.4442 0.5504 0.6011 0.6282 0.6175 0.6941 0.5643 0.6307 0.6128 0.6488 0.6752 0.7102 0.5900 

583 0.0784 0.3130 0.4506 0.4449 0.5508 0.6011 0.6278 0.6182 0.6941 0.5640 0.6317 0.6128 0.6488 0.6745 0.7102 0.5900 

584 0.0745 0.3119 0.4482 0.4424 0.5480 0.5982 0.6235 0.6153 0.6916 0.5611 0.6296 0.6114 0.6460 0.6720 0.7073 0.5879 

585 0.0745 0.3087 0.4447 0.4381 0.5437 0.5922 0.6175 0.6114 0.6856 0.5569 0.6253 0.6064 0.6410 0.6660 0.7020 0.5818 
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586 0.0745 0.3045 0.4376 0.4303 0.5358 0.5843 0.6089 0.6043 0.6777 0.5497 0.6182 0.5993 0.6328 0.6574 0.6941 0.5758 

587 0.0706 0.2973 0.4259 0.4189 0.5255 0.5704 0.5947 0.5936 0.6645 0.5398 0.6071 0.5889 0.6203 0.6435 0.6820 0.5654 

588 0.0667 0.2884 0.4149 0.4075 0.5134 0.5579 0.5804 0.5800 0.6503 0.5280 0.5936 0.5761 0.6068 0.6289 0.6681 0.5526 

589 0.0667 0.2841 0.4094 0.4018 0.5066 0.5522 0.5733 0.5733 0.6424 0.5219 0.5847 0.5676 0.5975 0.6193 0.6581 0.5455 

590 0.0667 0.2873 0.4125 0.4057 0.5102 0.5565 0.5790 0.5758 0.6460 0.5255 0.5847 0.5690 0.5993 0.6210 0.6610 0.5490 

591 0.0667 0.2913 0.4184 0.4111 0.5166 0.5636 0.5868 0.5832 0.6531 0.5308 0.5914 0.5758 0.6061 0.6282 0.6670 0.5551 

592 0.0667 0.2934 0.4220 0.4150 0.5201 0.5676 0.5907 0.5875 0.6578 0.5348 0.5968 0.5800 0.6111 0.6324 0.6724 0.5594 

593 0.0667 0.2941 0.4235 0.4160 0.5212 0.5679 0.5904 0.5886 0.6578 0.5351 0.5971 0.5811 0.6114 0.6332 0.6724 0.5597 

594 0.0667 0.2948 0.4239 0.4175 0.5216 0.5686 0.5914 0.5897 0.6574 0.5355 0.5971 0.5818 0.6118 0.6328 0.6724 0.5601 

595 0.0667 0.2966 0.4271 0.4196 0.5241 0.5715 0.5925 0.5914 0.6592 0.5376 0.5993 0.5832 0.6139 0.6357 0.6738 0.5615 

596 0.0667 0.2980 0.4302 0.4228 0.5262 0.5743 0.5954 0.5936 0.6617 0.5398 0.6007 0.5847 0.6157 0.6367 0.6752 0.5626 

597 0.0667 0.3002 0.4314 0.4264 0.5283 0.5761 0.5982 0.5950 0.6624 0.5412 0.6032 0.5868 0.6178 0.6399 0.6763 0.5643 

598 0.0667 0.3009 0.4345 0.4275 0.5291 0.5768 0.5989 0.5971 0.6627 0.5412 0.6043 0.5872 0.6182 0.6399 0.6766 0.5636 

599 0.0627 0.3012 0.4353 0.4292 0.5298 0.5772 0.5986 0.5971 0.6624 0.5415 0.6032 0.5875 0.6178 0.6399 0.6759 0.5633 

600 0.0627 0.3020 0.4357 0.4303 0.5298 0.5775 0.5989 0.5979 0.6617 0.5415 0.6025 0.5868 0.6168 0.6396 0.6745 0.5633 

601 0.0627 0.3027 0.4369 0.4317 0.5301 0.5793 0.6000 0.5979 0.6617 0.5430 0.6025 0.5868 0.6178 0.6396 0.6745 0.5633 

602 0.0627 0.3048 0.4400 0.4342 0.5340 0.5829 0.6039 0.6011 0.6649 0.5447 0.6050 0.5893 0.6200 0.6428 0.6766 0.5651 

603 0.0627 0.3073 0.4435 0.4381 0.5380 0.5868 0.6086 0.6043 0.6692 0.5487 0.6086 0.5936 0.6239 0.6463 0.6802 0.5693 

604 0.0627 0.3084 0.4459 0.4410 0.5394 0.5893 0.6096 0.6078 0.6720 0.5512 0.6121 0.5968 0.6267 0.6492 0.6834 0.5715 

605 0.0627 0.3084 0.4459 0.4410 0.5390 0.5886 0.6089 0.6075 0.6713 0.5508 0.6111 0.5968 0.6267 0.6485 0.6831 0.5715 

606 0.0627 0.3077 0.4443 0.4396 0.5383 0.5872 0.6068 0.6061 0.6688 0.5494 0.6100 0.5950 0.6246 0.6467 0.6816 0.5697 

607 0.0627 0.3070 0.4435 0.4381 0.5362 0.5857 0.6057 0.6046 0.6663 0.5476 0.6071 0.5936 0.6232 0.6456 0.6788 0.5679 

608 0.0627 0.3059 0.4424 0.4378 0.5351 0.5840 0.6036 0.6025 0.6638 0.5465 0.6064 0.5914 0.6221 0.6424 0.6770 0.5668 

609 0.0588 0.3059 0.4424 0.4374 0.5351 0.5832 0.6025 0.6021 0.6635 0.5458 0.6050 0.5904 0.6203 0.6424 0.6749 0.5661 

610 0.0588 0.3059 0.4424 0.4381 0.5351 0.5843 0.6032 0.6021 0.6635 0.5462 0.6050 0.5904 0.6210 0.6424 0.6756 0.5661 

611 0.0588 0.3062 0.4435 0.4396 0.5355 0.5850 0.6032 0.6025 0.6635 0.5465 0.6057 0.5914 0.6214 0.6424 0.6763 0.5661 

612 0.0588 0.3055 0.4424 0.4392 0.5351 0.5836 0.6018 0.6025 0.6624 0.5462 0.6043 0.5914 0.6203 0.6421 0.6749 0.5654 

613 0.0588 0.3045 0.4424 0.4378 0.5330 0.5825 0.6011 0.6018 0.6602 0.5444 0.6036 0.5900 0.6189 0.6399 0.6731 0.5647 

614 0.0588 0.3041 0.4408 0.4367 0.5319 0.5815 0.5986 0.5996 0.6581 0.5430 0.6014 0.5882 0.6168 0.6385 0.6717 0.5622 

615 0.0588 0.3037 0.4400 0.4360 0.5305 0.5790 0.5968 0.5982 0.6560 0.5426 0.5996 0.5868 0.6160 0.6360 0.6699 0.5615 

616 0.0588 0.3037 0.4408 0.4374 0.5308 0.5818 0.5982 0.5982 0.6563 0.5426 0.5993 0.5868 0.6150 0.6360 0.6692 0.5611 

617 0.0588 0.3055 0.4447 0.4414 0.5355 0.5861 0.6032 0.6021 0.6617 0.5472 0.6029 0.5911 0.6200 0.6403 0.6742 0.5654 

618 0.0588 0.3087 0.4502 0.4467 0.5408 0.5922 0.6093 0.6089 0.6688 0.5526 0.6082 0.5971 0.6264 0.6471 0.6806 0.5715 

619 0.0588 0.3109 0.4514 0.4481 0.5433 0.5947 0.6118 0.6128 0.6717 0.5554 0.6125 0.6011 0.6303 0.6510 0.6845 0.5743 

620 0.0588 0.3105 0.4510 0.4481 0.5437 0.5939 0.6111 0.6135 0.6706 0.5554 0.6139 0.6025 0.6303 0.6510 0.6845 0.5750 

621 0.0588 0.3087 0.4490 0.4456 0.5408 0.5907 0.6064 0.6111 0.6670 0.5519 0.6114 0.5993 0.6275 0.6471 0.6820 0.5715 

622 0.0549 0.3062 0.4447 0.4421 0.5365 0.5854 0.6014 0.6061 0.6610 0.5476 0.6064 0.5947 0.6217 0.6424 0.6756 0.5672 

623 0.0549 0.3034 0.4416 0.4385 0.5319 0.5807 0.5968 0.6011 0.6556 0.5437 0.6007 0.5897 0.6171 0.6367 0.6695 0.5629 

624 0.0549 0.3012 0.4384 0.4357 0.5283 0.5779 0.5925 0.5968 0.6510 0.5401 0.5954 0.5850 0.6121 0.6324 0.6652 0.5590 

625 0.0549 0.2998 0.4369 0.4342 0.5266 0.5754 0.5904 0.5954 0.6481 0.5383 0.5936 0.5825 0.6096 0.6296 0.6620 0.5561 

626 0.0549 0.2991 0.4357 0.4321 0.5262 0.5750 0.5889 0.5943 0.6478 0.5365 0.5914 0.5822 0.6075 0.6267 0.6606 0.5547 

627 0.0549 0.2970 0.4325 0.4299 0.5226 0.5715 0.5850 0.5914 0.6428 0.5337 0.5882 0.5779 0.6039 0.6221 0.6563 0.5508 

628 0.0510 0.2955 0.4302 0.4271 0.5201 0.5679 0.5815 0.5879 0.6396 0.5308 0.5847 0.5750 0.6004 0.6178 0.6524 0.5480 

629 0.0510 0.2941 0.4290 0.4267 0.5180 0.5665 0.5800 0.5847 0.6360 0.5291 0.5818 0.5722 0.5979 0.6157 0.6499 0.5455 

630 0.0510 0.2930 0.4278 0.4260 0.5166 0.5647 0.5783 0.5836 0.6349 0.5276 0.5797 0.5704 0.5961 0.6143 0.6485 0.5447 

631 0.0510 0.2927 0.4278 0.4260 0.5162 0.5647 0.5783 0.5832 0.6332 0.5276 0.5800 0.5708 0.5957 0.6143 0.6478 0.5444 

632 0.0510 0.2927 0.4278 0.4267 0.5169 0.5651 0.5783 0.5836 0.6335 0.5276 0.5804 0.5715 0.5975 0.6150 0.6481 0.5458 
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633 0.0510 0.2934 0.4290 0.4267 0.5173 0.5654 0.5786 0.5840 0.6346 0.5283 0.5811 0.5725 0.5982 0.6164 0.6485 0.5465 

634 0.0510 0.2923 0.4290 0.4267 0.5166 0.5654 0.5779 0.5840 0.6328 0.5283 0.5804 0.5722 0.5975 0.6153 0.6481 0.5458 

635 0.0510 0.2923 0.4278 0.4264 0.5152 0.5651 0.5779 0.5832 0.6321 0.5280 0.5797 0.5711 0.5968 0.6153 0.6467 0.5455 

636 0.0510 0.2923 0.4282 0.4271 0.5162 0.5654 0.5779 0.5836 0.6321 0.5287 0.5800 0.5718 0.5968 0.6153 0.6467 0.5455 

637 0.0510 0.2923 0.4290 0.4275 0.5166 0.5654 0.5779 0.5840 0.6328 0.5291 0.5811 0.5733 0.5979 0.6164 0.6478 0.5465 

638 0.0471 0.2913 0.4267 0.4260 0.5141 0.5626 0.5740 0.5818 0.6296 0.5262 0.5790 0.5708 0.5961 0.6143 0.6449 0.5444 

639 0.0471 0.2884 0.4227 0.4217 0.5084 0.5561 0.5679 0.5761 0.6232 0.5212 0.5740 0.5668 0.5907 0.6082 0.6396 0.5394 

640 0.0471 0.2852 0.4192 0.4182 0.5041 0.5519 0.5633 0.5711 0.6182 0.5173 0.5683 0.5611 0.5847 0.6021 0.6335 0.5344 

641 0.0471 0.2852 0.4184 0.4178 0.5037 0.5515 0.5629 0.5697 0.6153 0.5162 0.5668 0.5594 0.5832 0.6004 0.6310 0.5330 

642 0.0471 0.2848 0.4176 0.4178 0.5037 0.5512 0.5626 0.5701 0.6153 0.5162 0.5668 0.5597 0.5829 0.6004 0.6310 0.5333 

643 0.0471 0.2838 0.4165 0.4160 0.5020 0.5490 0.5597 0.5686 0.6139 0.5148 0.5658 0.5590 0.5822 0.5986 0.6307 0.5323 

644 0.0471 0.2816 0.4125 0.4121 0.4984 0.5447 0.5544 0.5654 0.6100 0.5116 0.5626 0.5558 0.5786 0.5950 0.6271 0.5294 

645 0.0431 0.2770 0.4055 0.4050 0.4923 0.5373 0.5476 0.5594 0.6036 0.5066 0.5576 0.5515 0.5715 0.5886 0.6210 0.5241 

646 0.0431 0.2717 0.3988 0.3971 0.4863 0.5308 0.5401 0.5544 0.5979 0.5012 0.5519 0.5451 0.5661 0.5815 0.6153 0.5187 

647 0.0431 0.2677 0.3941 0.3925 0.4820 0.5251 0.5351 0.5490 0.5914 0.4966 0.5469 0.5405 0.5608 0.5761 0.6111 0.5144 

648 0.0431 0.2667 0.3922 0.3911 0.4795 0.5230 0.5326 0.5451 0.5879 0.4941 0.5433 0.5369 0.5569 0.5722 0.6075 0.5109 

649 0.0431 0.2677 0.3949 0.3939 0.4802 0.5244 0.5337 0.5447 0.5879 0.4945 0.5419 0.5362 0.5569 0.5725 0.6057 0.5105 

650 0.0431 0.2695 0.3973 0.3968 0.4827 0.5280 0.5369 0.5483 0.5914 0.4970 0.5444 0.5390 0.5601 0.5754 0.6082 0.5141 

651 0.0431 0.2709 0.3988 0.3989 0.4848 0.5301 0.5401 0.5522 0.5939 0.4995 0.5480 0.5422 0.5626 0.5783 0.6111 0.5169 

652 0.0431 0.2709 0.3996 0.3989 0.4848 0.5301 0.5398 0.5522 0.5932 0.4995 0.5487 0.5426 0.5626 0.5779 0.6111 0.5166 

653 0.0431 0.2688 0.3953 0.3950 0.4809 0.5237 0.5326 0.5476 0.5872 0.4945 0.5455 0.5390 0.5583 0.5736 0.6068 0.5116 

654 0.0392 0.2599 0.3820 0.3825 0.4649 0.5066 0.5141 0.5319 0.5690 0.4791 0.5305 0.5244 0.5437 0.5572 0.5893 0.4959 

655 0.0392 0.2481 0.3659 0.3647 0.4439 0.4841 0.4906 0.5077 0.5437 0.4585 0.5084 0.5023 0.5187 0.5326 0.5636 0.4745 

656 0.0392 0.2471 0.3667 0.3679 0.4435 0.4863 0.4945 0.5030 0.5408 0.4556 0.4977 0.4938 0.5130 0.5266 0.5558 0.4709 

657 0.0392 0.2570 0.3816 0.3832 0.4613 0.5062 0.5144 0.5201 0.5608 0.4734 0.5130 0.5098 0.5312 0.5462 0.5743 0.4873 

658 0.0392 0.2688 0.3984 0.3996 0.4809 0.5266 0.5351 0.5426 0.5840 0.4941 0.5358 0.5330 0.5547 0.5690 0.5993 0.5080 

659 0.0392 0.2731 0.4035 0.4061 0.4870 0.5333 0.5412 0.5519 0.5911 0.5002 0.5462 0.5422 0.5629 0.5790 0.6082 0.5155 

660 0.0392 0.2749 0.4078 0.4107 0.4913 0.5387 0.5462 0.5569 0.5975 0.5048 0.5515 0.5480 0.5693 0.5843 0.6143 0.5201 

661 0.0392 0.2770 0.4106 0.4118 0.4938 0.5405 0.5483 0.5601 0.5986 0.5070 0.5540 0.5504 0.5711 0.5875 0.6171 0.5226 

662 0.0392 0.2774 0.4106 0.4118 0.4941 0.5401 0.5483 0.5604 0.5986 0.5070 0.5547 0.5515 0.5715 0.5879 0.6178 0.5230 

663 0.0392 0.2766 0.4102 0.4114 0.4934 0.5398 0.5476 0.5597 0.5975 0.5066 0.5544 0.5497 0.5711 0.5868 0.6160 0.5226 

664 0.0392 0.2777 0.4114 0.4139 0.4945 0.5412 0.5487 0.5604 0.5986 0.5080 0.5547 0.5519 0.5711 0.5875 0.6168 0.5226 

665 0.0392 0.2777 0.4122 0.4146 0.4955 0.5426 0.5497 0.5626 0.6000 0.5098 0.5558 0.5537 0.5736 0.5900 0.6193 0.5244 

666 0.0392 0.2777 0.4118 0.4146 0.4959 0.5426 0.5497 0.5626 0.6000 0.5094 0.5565 0.5537 0.5740 0.5900 0.6193 0.5244 

667 0.0392 0.2781 0.4137 0.4157 0.4963 0.5433 0.5504 0.5633 0.6000 0.5098 0.5569 0.5544 0.5747 0.5907 0.6200 0.5255 

668 0.0392 0.2784 0.4141 0.4168 0.4966 0.5447 0.5512 0.5647 0.6014 0.5109 0.5583 0.5558 0.5750 0.5911 0.6200 0.5258 

669 0.0392 0.2784 0.4141 0.4168 0.4970 0.5444 0.5508 0.5647 0.6007 0.5109 0.5586 0.5558 0.5761 0.5914 0.6207 0.5258 

670 0.0392 0.2774 0.4125 0.4150 0.4959 0.5426 0.5487 0.5633 0.5996 0.5098 0.5572 0.5551 0.5740 0.5893 0.6182 0.5244 

671 0.0392 0.2770 0.4118 0.4160 0.4955 0.5426 0.5487 0.5619 0.5982 0.5094 0.5554 0.5533 0.5725 0.5882 0.6178 0.5234 

672 0.0392 0.2774 0.4137 0.4171 0.4963 0.5440 0.5504 0.5643 0.6004 0.5102 0.5565 0.5551 0.5754 0.5897 0.6193 0.5251 

673 0.0392 0.2781 0.4153 0.4182 0.4991 0.5465 0.5519 0.5658 0.6014 0.5130 0.5590 0.5572 0.5765 0.5918 0.6214 0.5273 

674 0.0392 0.2784 0.4153 0.4189 0.4995 0.5469 0.5519 0.5668 0.6018 0.5134 0.5594 0.5579 0.5772 0.5922 0.6221 0.5276 

675 0.0392 0.2795 0.4153 0.4200 0.4995 0.5480 0.5540 0.5683 0.6032 0.5141 0.5597 0.5594 0.5786 0.5936 0.6225 0.5283 

676 0.0392 0.2799 0.4176 0.4210 0.5005 0.5487 0.5547 0.5690 0.6043 0.5155 0.5622 0.5604 0.5797 0.5954 0.6242 0.5301 

677 0.0392 0.2799 0.4184 0.4221 0.5023 0.5497 0.5551 0.5708 0.6057 0.5176 0.5629 0.5622 0.5815 0.5961 0.6264 0.5312 

678 0.0392 0.2802 0.4188 0.4228 0.5037 0.5519 0.5569 0.5722 0.6068 0.5176 0.5636 0.5633 0.5829 0.5975 0.6271 0.5326 

679 0.0392 0.2802 0.4188 0.4235 0.5041 0.5522 0.5583 0.5736 0.6075 0.5187 0.5661 0.5647 0.5832 0.5986 0.6282 0.5340 
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680 0.0392 0.2802 0.4192 0.4250 0.5041 0.5529 0.5583 0.5736 0.6082 0.5201 0.5661 0.5658 0.5840 0.6000 0.6289 0.5340 

681 0.0392 0.2802 0.4216 0.4253 0.5055 0.5540 0.5586 0.5758 0.6093 0.5209 0.5668 0.5665 0.5854 0.6004 0.6296 0.5344 

682 0.0353 0.2802 0.4192 0.4250 0.5048 0.5526 0.5579 0.5754 0.6082 0.5209 0.5661 0.5665 0.5850 0.6004 0.6292 0.5344 

683 0.0353 0.2795 0.4188 0.4225 0.5034 0.5508 0.5544 0.5733 0.6057 0.5187 0.5651 0.5654 0.5832 0.5975 0.6278 0.5333 

684 0.0353 0.2759 0.4110 0.4157 0.4963 0.5415 0.5451 0.5676 0.5975 0.5119 0.5594 0.5579 0.5750 0.5904 0.6210 0.5248 

685 0.0353 0.2645 0.3933 0.3964 0.4759 0.5180 0.5198 0.5469 0.5736 0.4898 0.5415 0.5398 0.5544 0.5665 0.5979 0.5045 

686 0.0314 0.2474 0.3690 0.3708 0.4463 0.4863 0.4873 0.5112 0.5362 0.4570 0.5037 0.5023 0.5148 0.5248 0.5565 0.4692 

687 0.0314 0.2389 0.3576 0.3608 0.4321 0.4731 0.4752 0.4906 0.5169 0.4410 0.4774 0.4788 0.4916 0.5005 0.5308 0.4492 

688 0.0314 0.2456 0.3686 0.3725 0.4446 0.4891 0.4913 0.5023 0.5312 0.4531 0.4845 0.4873 0.5037 0.5127 0.5426 0.4606 

689 0.0314 0.2521 0.3792 0.3832 0.4578 0.5023 0.5048 0.5187 0.5469 0.4688 0.5009 0.5045 0.5209 0.5301 0.5608 0.4763 

690 0.0314 0.2578 0.3875 0.3914 0.4699 0.5148 0.5173 0.5337 0.5636 0.4827 0.5191 0.5212 0.5376 0.5483 0.5804 0.4920 

691 0.0314 0.2606 0.3910 0.3954 0.4774 0.5212 0.5237 0.5444 0.5743 0.4923 0.5312 0.5337 0.5494 0.5608 0.5932 0.5034 

692 0.0314 0.2585 0.3882 0.3911 0.4781 0.5209 0.5223 0.5494 0.5793 0.4963 0.5390 0.5398 0.5540 0.5654 0.6025 0.5098 

693 0.0314 0.2563 0.3847 0.3875 0.4770 0.5198 0.5212 0.5494 0.5800 0.4966 0.5398 0.5415 0.5544 0.5654 0.6050 0.5112 

694 0.0314 0.2585 0.3886 0.3918 0.4809 0.5251 0.5273 0.5533 0.5840 0.5009 0.5430 0.5451 0.5583 0.5693 0.6103 0.5159 

695 0.0314 0.2645 0.3996 0.4036 0.4909 0.5373 0.5390 0.5622 0.5939 0.5102 0.5519 0.5544 0.5686 0.5793 0.6189 0.5241 

696 0.0314 0.2724 0.4106 0.4150 0.5012 0.5483 0.5504 0.5747 0.6053 0.5209 0.5633 0.5658 0.5807 0.5936 0.6307 0.5344 

697 0.0314 0.2724 0.4110 0.4160 0.5027 0.5497 0.5512 0.5786 0.6086 0.5230 0.5679 0.5701 0.5843 0.5971 0.6342 0.5373 

698 0.0314 0.2688 0.4063 0.4096 0.4991 0.5447 0.5455 0.5750 0.6043 0.5201 0.5654 0.5668 0.5811 0.5932 0.6317 0.5344 

699 0.0314 0.2652 0.4000 0.4039 0.4941 0.5390 0.5408 0.5704 0.6000 0.5159 0.5604 0.5629 0.5761 0.5868 0.6271 0.5301 

700 0.0314 0.2645 0.3984 0.4021 0.4920 0.5373 0.5387 0.5686 0.5975 0.5144 0.5583 0.5597 0.5736 0.5847 0.6246 0.5287 
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APPENDIX B: SOIL ATTRIBUTES 

 

Soil samples 

 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

Total % Nitrogen 0.13 0.16 0.15 0.33 0.27 0.22 0.22 0.23 0.24 0.22 0.24 

Total % Carbon 1.91 2.06 2.04 3.6 3.2 2.67 2.62 2.68 2.67 2.44 2.65 

Density (g/ml) 1.16 1.11 1.11 1.03 0.98 1.06 1.07 1.1 1.12 1.1 1.06 

P (g/ml) 5 2 4 17 13 8 5 8 6 7 7 

K (g/ml) 117 134 160 435 268 184 159 224 206 210 234 

Ca (g/ml) 1851 1938 172 178 1784 1856 1952 1925 1915 1957 1968 

Mg (g/ml) 665 730 757 813 731 678 705 694 757 749 756 

Ex acidity (cmol/L) 0.05 0.05 0.04 0.08 0.13 0.08 0.1 0.08 0.11 0.08 0.06 

Total cations (cmol/L) 15.05 16.06 7.54 8.77 15.73 15.39 16.05 15.97 16.42 16.55 16.7 

Acid sat % 0 0 1 1 1 1 1 1 1 0 0 

Ph (KCl) 5.06 5.09 5.12 4.99 4.98 5.09 5.11 5.37 4.98 5.1 5.14 

Zn (g/ml) 4.4 4.7 5.2 9.3 7.7 9.1 7.2 7.5 6.1 7.5 7.9 

Mn (g/ml) 120 120 44 100 220 120 120 120 130 180 170 

Cu (g/ml) 6.7 6.5 7 7.8 7.5 7.3 7.8 6.5 6.9 7.3 6.6 

Organic C % 1.7 1.6 1.8 2.6 2.9 2.1 2 1.9 2.2 1.9 1.9 

N % 0.21 0.16 0.21 0.25 0.28 0.21 0.18 0.16 0.21 0.19 0.19 

Clay % 38 40 44 42 43 40 38 39 40 39 42 

Clay % 29 36 37 37 36 31 35 31 36 35 38 

Fine Silt %  20 26 26 27 27 24 27 24 26 26 28 

Coarse Silt & Sand %  51 39 38 36 37 45 38 46 39 39 34 

APPENDIX C: PLOT OF R2 AND P VALUES FOR ALL BANDS 
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