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Abstract 

Theoretical descriptions of the effects of molecular pair interactions 

on the bulk optical properties of gases often lead to prohibitively 

large volumes of algebraic manipulation, even for molecules of high 

symmetry. For this reason, manual derivations of these molecular tensor 

theories have generally been subject to sweeping approximations, with 

only the simplest of the large series of molecular-interaction terms 

being treated. Under such circumstances it is impossible to know whether 

any discrepancies between experiment and theory should be attributed to 

deficiencies in the theoretical model, to uncertainties in the molecular 

parameters used in the calculations, or to perhaps substantial 

contributions arising from the neglected higher-order interaction terms. 

The advent of powerful new symbolic manipulation packages for personal 

computers means that complete molecular tensor theories of the effects 

of pair interactions on the various molecular-optic phenomena can now be 

undertaken. By systematically evaluating successively higher-order terms 

in the molecular interactions, convergence of the series of contributing 

terms can now be definitively established. The particular effects 

considered in this thesis are depolarized Rayleigh light scattering and 

electro-optic birefringence, and the order of investigation is as 

follows: 

The molecular theory of the second light-scattering virial coefficient 

B describing the effects of interacting pairs of molecules on the p 
depolarization ratio p of Rayleigh-scattered light is reviewed, and our 

extended theory, yielding tensor expressions for contributions to B 
p 

applicable to axially-symmetric molecules, is presented. These 

expressions include dipole-dipole interactions up to the fifth power in 

the molecular polarizability 0:, as well as additional contributions 

arising from field gradient effects and induced quadrupole moments in 

the molecular interactions. At these levels of approximation it is shown 

that convergence of the expressions is assured. The expressions for B 
p 

have been evaluated numerically by computer for ten gases: carbon 

dioxide (CO ), nitrogen (N), ethane (CH CH) ethene (CH CH) carbonyl 
2 2 33' 22' 

sulphide (OCS), carbon monoxide - (CO), fluoromethane (CH F), 
3 

trifluoromethane (CHF
3

) and hydrogen chloride (Hel). The results enabled 

judicious selection of those molecules for which experimental 

investigation would be most fruitful. A light scattering apparatus was 



developed, and measurements of Bp for the five linear molecules CO2 , N2 , 

CH CH CH CI and CO were undertaken at room temperature with incident 
3 3' 3 

light of A = 514.5 nm. These are presented together with tabulations of 

earlier measurements, and are compared with the calculated values. For 

CO, Nand CH CI the calculated val ues agree wi th our measured val ues 
2 2 3 

to within 10%; while for CO and CH
3

CH
3

, theory and experiment agree to 

within 20%. 

It is then shown how application of the above molecular tensor theory 

for axially-symmetric molecules to molecules of lower symmetry leads to 

calculated values of B which are grossly discrepant with measured 
p 

values. Subsequently, a complete molecular tensor theory of B for p 
non-l inear molecules is presented, and the result ing expressions are 

evaluated numerically for ethene (CH CH ), sulphur dioxide (SO) and 
2 2 2 

dimethyl ether ((CH ) 0). This theory is more complete in the sense that 
3 2 

it can be used for molecules of higher symmetry, and checks confirm that 

it yields the same values for the B of linear molecules as the simpler 
p 

theory to within seven significant figures. 

Our experimental investigations of linear and quasi-linear molecules 

were extended to include ethene and sulphur dioxide. The apparatus used 

in the investigations of the pressure-dependence of the depolarization 

rat io p is discussed. Substantial improvements to the apparatus since 

the measurements on I inear molecules now allow for experiments on 

corrosive gases and vapours at elevated temperatures. Measured values of 

B for ethene and sulphur dioxide are presented and critically compared 
p 

with the calculated values. It is shown that acceptable agreement 

between measured and calculated B values of about 10% to 20% is only 
p 

achieved after a molecule's symmetry has .been fully taken into 

considerat ion. 

The levels of success achieved for 8 of linear and non-linear molecules 
p 

prompted application of the new techniques to a different second virial 

coefficient, namely that of the Kerr effect. A full review of all 

theoretical and experimental work undertaken on the second Kerr-effect 

virial coefficient 8 is given. A theory of 8 for molecules with IC IC 
non-linear symmetry is then presented. Again, the theory is general, and 
includes molecules of higher symmetry as a special case. Calculated 

values for the polar axially-symmetric molecules fluoromethane (CH F) 
3 



and trifluoromethane (CHF) revealed good agreement with experiment, 
3 

al though the large uncertaint ies of ±50% in the measured data do not 

provide a stringent assessment of the success of the theory. Values of 

8 calculated for the non-l inear polar molecules sulphur dioxide and 
~ 

dimethyl ether are generally within the uncertainty limits of the rather 

precise experimental values quoted in the literature. 8 values for 
~ 

non-polar molecules are often two orders of magnitude smaller than those 

for polar species, making precise experimental measurements difficult to 

undertake . Calculations for the linear molecules carbon dioxide, 

nitrogen and ethane, and for ~he non-linear molecule ethene are 

presented, and comparisons made with available experimental data. 
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CHAPTER 1 

A REVIEW 

1.1 Introduction 

One of the primary tasks of the molecular physicist is the elucidation 

of the electromagnetic properties of individual molecules. This is often 

achieved by experimental investigation of the interaction of light with 

macro?copic samples of matter, coupled with theories which relate the 

macroscopic observables of such experiments to the molecular property 

tensors of the molecules in the specimen. A typical example of this 

technique is the measurement of the depolarization ratio p of light 
o 

scattered by linear and quasi-linear molecules at low gas pressures, 

which by suitable theoretical interpretation has long provided a means 

for the accurate determination of the magnitude of the difference in 

principal molecular polarizabilities, I all - aoll [1,2]. Often implicit in 

such theories is the assumption that each molecule in the gas sample can 

be treated as an independent system. This approximation is only 

appl icable to a perfect gas, the typical gas sample in the laboratory 

having bulk properties which differ from the ideal due to the presence 

of molecular interactions. 

Theoretical studies of the effects of these molecular interactions on 

the optical properties of gases have, up until now, been limited to the 

very restricted classes of spherical, quasi-spherical, linear and 

quasi-linear molecules. The reasons for this are twofold. Firstly, there 

is the almost prohibitively large volume of algebraic manipulation which 

is required for the derivation of complete molecular tensor theories 

describing the contributions even of pair interactions to the various 

molecular-opt ic phenomena such as electric birefringence, molar 

refraction and depolarized light-scattering. Secondly, the dipole

induced-dipole (DID) model of Silberstein [3], where the dipoles induced 

in molecules by an incident 1 ight wave g (t) interact with one another 
o 

leading to DID coupling, appears to break down in calculations of the 

various second virial coefficients of large quasi-spherical molecules 
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(see, for example, [4] and [5]). This may have led to a degree of 

scepticism in the appl ication of DID theory to molecules of lower 

symmetry. 

It has recent ly been shown how the problem of . lengthy and tedious 

hand-worked tensor manipulat ion can be managed by invoking t he use of 

the powerful algebraic manipulation packages now available for personal 

computers. In undertaking a molecular tensor theory of the second light

scattering virial coefficient B for linear and quasi-linear molecules, 
p 

Graham [6] made use of the Derive algebraic package. Later, Couling and 

Graham [7] used the more powerful Macsyma symbolic manipulation package, 

which unlike Derive has built-in tensor manipulation facilities, to 

extend the series of tensor expressions contributing to B to include p 
field-gradient effects and induced quadrupole moments in the molecular 

interactions. This allowed a definitive assessment of where the series 

of interact ion terms had converged to a meaningful numerical value 

for B . 
P 

Once such theories for the second virial coefficients have been 

developed for axially-symmetric molecules, there is a strong temptation 

to approximate non-linear molecules to be of axial symmetry, and hence 

calculate their virial coefficients. This thesis serves to show that 

such approximations are grossly unsatisfactory. It will be shown, · for 

example, that if the ethene molecule, which belongs to the D symmetry 
2h 

point group, is approximated to be of axial symmetry, the calculated B 
p 

value differs from the experimental value by 40%. A similar discrepancy 

has already been observed for sulphur dioxide, which is of C symmetry: 
2v 

when measured values of the second Kerr-effect virial coefficient, B, 
JC 

for sulphur dioxide [8] were compared with values calculated using a 

recent statistical-mechanical theory of B for axially-symmetric polar 
JC 

molecules [9], the predicted values were generally found to be more than 

twice as large as the experimental ones. 

In this work we illustrate how the Macsyma package, which we ran on a 

486 DX-2 66 MHz PC with 32 Mb of RAM, can be used to facil i tate the 

development of complete molecular 

light-scattering and Kerr-effect virial 

tensor theories 

coefficients for 

of second 

non-linear 

molecules. It will become apparent that only when full account of a 

non-linear molecule's symmetry is taken into consideration do we find 

acceptable agreement between measured and calculated second virial 



3 , 

coefficients. 

Treatment of the various other second virial coefficients is not 

considered here, although the same general methods are appl icable to 

them, opening up new experimental possibilities in many molecular-optic 

phenomena. 

1.2 A general expression for second virial coefficients 

In 1956, Buckingham and Pople demonstrated how the effects of molecular 

interactions can be systematically accounted for by means of a 

virial-type expansion [10). If Q represents a suitably chosen measurable 

molecular-opt ic property, then its observed value can be expanded in 

inverse powers of the molar volume Y . 
m 

B C 
o 0 

Q = Ao + V + + ... 
m y2 

(1. 1) 

m 

where the virial coefficients A, B, Co' ... , are functions of 
Q 0 

temperature alone. As expected, the ideal gas value for an assembly of 

non-interacting molecules is recovered in the limit of infinite dilution 

(y ~ (0), when Q becomes A. The higher-order virial coefficients B , 
m 0 Q 

C, ... represent the deviations due to pair, triplet, ... interactions 
Q . 

respectively. 

If we consider one mole of non-interacting gas molecules, the 

macroscopic property Q is simply the sum of N mean contributions q of 
A 

the individual molecules. We have 

Q = A = N q 
Q A (1. 2) 

At higher densities, however, the contribution of molecule 1 to Q is not 

always q since there are times when molecule 1 must be treated as half 

of an interacting pair. If molecule 1 has a neighbouring molecule 2, the 

relative configuration of which is given by the collective symbol T, 

then the contri but ion of molecule 1 to Q at that instant is given by 
1 
tI12(T), where ql/ T ) is the corresponding contribution of the pair. If 

we neglect triplet and higher-order interactions we obtain 
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(1. 3) 

where P(T)dT is the probability of molecule 1 having a neighbour in the 

range (T, T + dT). peT) is related to the intermolecular potential 

energy U (T) by 
12 

N 
peT) = Q~ eXP(-U

12
(T)/kT) (1. 4) 

m 

where Q = v:1 JdT is the integral over the orientational co-ordinates of 

the neighbouring molecule. Now we have from equation (1.1) 

B = Urn (1. 5) 
Q v ~ (XI 

m 

which coupled with equations (1.2), (1.3) and (1.4) yields a general 

expression for B : 
Q 

(1. 6) 

This basic formula can then be applied to the various molecular-opt ic 

properties Q. 

The main thrust of this thesis is the extension of our previous 

theoretical [6,7] and experimental [11 ] work on the second 

light-scattering virial coefficient B for axially-symmetric molecules p 
into the regime of non-linear molecules. Hence, we proceed by reviewing 

all previous work on B for molecules with spherical and linear 
p 

symmetry. Our theoretical work on the second Kerr-effect virial 

coefficient B for non-linear molecules grew out of the apparent success 
I 

of the dipole-induced-dipole model in describing B for molecules of low 
p 

symmetry (as will be seen in Chapters 2 and 3), and so is presented as a 

separate, self-contained piece of work in Chapter 4. 
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1.3 Light-scattering phenomena 

1.3.1 Historical background 

Historically, the study of light scattering began in 1869 when Tyndall 

conducted a series of experiments on aerosols [12]. A strong beam of 

white light was passed through a colloidal suspension of particles, and 

when viewed at right angles to the incident beam the scattered light was 

seen to be blue in colour and linearly polarized. This provided some 

justification for the already suggested idea that the blue colour of 

skylight and its observed polarization was due to the scattering of 

sunlight by small particles suspended in the atmosphere. Nevertheless, 

the mechanisms involved in the scattering process remained unexplained, 

with Tyndall saying (see Kerker [13]) "The blue colour of the sky, and 

the polarization of skylight ... constitute, in the opinion of our most 

eminent authorities, the two great standing enigmas of meteorology." 

This enigma was resolved in 1871 by the third Baron Rayleigh, J. W. 

Strutt, who in his theoretical discussion of the light-scattering 

phenomenon [14] treated the incident light as vibrations in the ether 

which, when encountering the suspended particles, set up forced 

vibrations in them. These particles then in turn acted as secondary 

sources of vibrations in all directions, hence scattering the incident 

light. Rayleigh went on to show that the intensity of the light 

scattered by a particle, assumed to be an isotropic sphere of diameter 

much smaller than the wavelength A of the incident light vibration, was 
4 proportional to 1/A, and that the component scattered at right angles 

was completely linearly polarized perpendicular to the scattering plane. 

This explained why blue light, which has a shorter wavelength than red 

light, is more strongly scattered than red, leading to the blue colour 

of the sky and of Tyndall's aerosols. 

Lord Rayleigh refined his theory in 1899 by suggesting, as originally 

postulated by Maxwell, that the blue skylight was not due to scattering 

of sunlight by parti'cles suspended in the air, but rather due to 

scattering by the individual air molecules themselves [15]. It was only 

some seventeen years later, in 1916, that this theoretical prediction 

was experimentally confirmed, with Cabannes [16] passing an incident 

beam of white light through a pure, dust-free gas sample and observing 
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the 90° scattered light to be blue in colour and linearly polarized, but 

much weaker in intensity than the light scattered by the relatively 

larger particles in Tyndall's colloidal suspensions. 

Imperfections in Lord Rayleigh's theory became apparent when his son R. 

J. Strut t, the fourth Baron Rayleigh, conducted his own experiments 

[17]. He found that the light scattered at right angles to the incident 

beam was in fact not completely linearly polarized, and that the exact 

extent to which depolarization occurred was a characteristic constant of 

a particular gas. R. J. Strutt then extended his father's theory, which 

assumed isotropic spherical scattering centres , by relating the 

depolarization ratio to departures from spherical symmetry of the 

optical properties of the gas molecules [18]. 

The following decade saw a prolific number of measurements being made on 

a variety of gases and vapours, despite the almost insurmountable 

experimental difficulties encountered. During this activity, the Raman 

effect was discovered, in which the scattered light has well defined 

frequency shifts . Most of the subsequent work was diverted into this new 

field, and the conventional Rayleigh scattering was only seriously 

revisited in 1961 when J. Powers [19] published new values for the 

depolarization ratio of several gases . Powers, like the earlier workers 

in this field, used a white light source; but rather than using the less 

than adequate visual or photographic detection techniques of the earlier 

workers, he employed a photomult iplier as the detector of scattered 

light . His results indicated that the depolarization ratios measured in 

the 1920-30 era were too high often by as much as 10%. The advent of the 

laser had a revolutionizing impact on work in . this field, its highly 

intense and parallel beam of monochromatic light first being exploited 

by Bridge and Buckingham [20] and then by various other workers 

[2,21-25] who made detailed and accurate measurements of the 

depolarization ratios of many gases and vapours. Their values were even 

lower than those of Powers, further confirming the inadequacy of the 

experimental techniques used by workers in the 1920-30 era. 
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1.3.2 Interacting spherical molecules 

Although isolated spherical molecules cannot depolarize the light which 

they scatter, in gases of spherical molecules at elevated pressures a 

small depolarization ratio is observed. This has been attributed to the 

modification of the effective molecular polarizability a of a molecule 

as a result of the molecular interactions which occur during collisions 

or close encounters between neighbouring molecules, and has been the 

subject of intensive theoretical and experimental investigation 

[4,26,27 ]. 

This pressure-dependent depolarization ratio is best interpreted by 

means of the virial expansion [28] 

(1. 7) 

where the second light-scattering virial coefficient B describes the 
p 

contribution to p arising from interactions between pairs of molecules, 

and where C describes contributions due to triplet interactions, etc. p 
Y is the molar volume of the gas. Using dipole-induced-dipole theory 

m 

[26], B can be written 
p 

B = 
p 

4nN 6a

s
2 IOO 

__ A _ R-4 exp (-U (R)/kT) dR , 
(4ncJ2 0 pq 

(1. 8) 

where N is Avogadro's number, 
A 

a is the molecular polarizabil i ty, and 
U (R) 

pq 
is the intermolecular potential energy between interacting 

molecules p and q which are separated by a distance R. Retaining only 

the leading term in equation (1.7), the depolarization ratio can now be 

written 

p = y- 1 x 
m 

4nNA 6a
s

2 Ioo 

R-
4 

exp (-U (R)/kT) dR . 
(4ncJ2 0 pq 

(1. 9) 

In early calculations, this integral 

functions of Buckingham and Pople [28]: 
was evaluated using the H 

k 

( 1. 10) 
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where tfJ(R) is the Lennard-Jones 6: 12 potential [29]. Values of H (y) 
~ k 

have been tabulated [28] for k ranging from 6 to 17 in integral steps. 

Watson and Rowell's calculated values of B [4] obtained from equation p 
(1. 8) are presented in table 1. 1, together with their experimentally 

measured values of B. Subsequent workers have further confirmed the 
p 

Bexpt/Btheory ratios given in table 1.1 for both argon [33,34,36] and 
p p 

methane [33,35,36]. An important feature of these results is the 

apparent breakdown of the DID theory of molecular interactions for the 

larger spherical and quasi-spherical molecules. Note, for example, the 

stark disagreement between the theoretically predicted and 

experimentally measured depolarization ratios of sulphur hexafluoride 

and neopentane as listed in table 1. 1. Watson and Rowell argued that 

this discrepancy between theory and experiment for the large molecules 

provides evidence of the inadequacy of the point-dipole approximation 

used in the DID theory, but this has not been establ ished and the 

problem remains unresolved. 

Table 1.1. Theoretical and experimental second light-scattering virial 
coefficients B for several isotropic gases at T = 298 K, as reported by 

p 
Watson and Rowell [4] and Thibeau and Oksengorn [30]. 

a 

b 

Molecule Theoretical Experimental 
[4 ] 

argon 1. 313a <2 

1. 206 b 

krypton 2.72a 2.3 ± 0.3 

2.205 b 

methane 2.41 a 2.9 ± 0.4 

2.39 b 

sulphur 2.43a 
6.1 ± 0.2 

hexafluoride 
1.93b 

neopentane 4.7 b 
32 ± 4 

Using Lennard-Jones constants reported in 

Using Lennard-Jones constants reported In 

Experimental 
[30] 

0.88 ± 0.04 

1. 80 ± 0.06 

[ 31] 

[32] 

Bexpt
[4] 

p 
Btheory 

p 

0.85 

1. 04 

1. 20 

1. 21 

2.51 

3.16 

6.8 
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1.3.3 Interacting linear and quasi-linear molecules 

Non-interacting anisotropic molecules (i.e. molecules which have a 

departure from spherical symmetry of their optical properties) 

inherently produce a scattered depolarized intensity which has been 

found to be proportional to the square of the polarizability anisotropy 

(to be defined in due course). At elevated pressures, molecular 

interactions modify this inherent depolarization ratio p of anisotropic 
o 

molecules. The density dependence of the depolarizat ion rat io p is 

described by means of the virial expansion 

(1.11) 

where the second light-scattering virial coefficient B describes the 
p 

deviations from p due to pair interactions, C the deviations from p 
o p 0 

due to triplet interactions, etc. The first detailed theories of 

pressure-dependent light scattering by anisotropic molecules [37,38] 

showed that the leading interaction term in equation (1.11), that in B , 
P 

has the general form 

B = (p - ~ p2) (2B + 1 ) 
p 0 3 0 P 

(1. 12) 

where B is the normal pressure virial coefficient, and where 1 arises 
p 

from angular correlation [37] and collision-induced polarizability 

anisotropy [38]. Dayan, Dunmur and Manterfield [39] have emphasized that 

the presence of B in equation (1.12) may lead to a serious degradation 

of the precision of ~ values deduced from experimental observations of 
p 

Bp' especially when accurate values of B are not available. These 

problems are further compounded by the fact that developing a complete 

molecular tensor theory of B for anisotropic p molecules involves 

extremely lengthy and tedious tensor manipulation coupled with very 

time-consuming numerical integration of the resulting averaging 

integrals even when using fast computers. A combination of these 

difficulties, coupled with the lack of success in explanations of the 

light-scat tering virial coefficients of spherical molecules, probably 

accounts for the dearth of experimental and theoretical work that has 

been undertaken in this field . 
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By 1980, Dayan, Dunmur and Manterfield [39] had measured Bp for carbon 

dioxide, carbonyl sulphide and nitrogen; while Berrue, Chave, Dumon and 

Thibeau [40] had measured B for nitrogen and ethane. By 1992, B had 
p p 

not been measured for any other non-spherical gases, whi Ie the only 

linear molecule to have been investigated theoretically [41,42] was 

nitrogen. This gas probably received theoretical treatment because of 

its particularly small B value at around room temperature, with a very 

favourable ~ value of nearly five times as large. The expressions for 
p 

the ~ 
p 

contribution to B for nitrogen presented by Berrue, Chave, Dumon 
p 

and Thibeau [41,42] included angular correlation and collision-induced 

polarizability, but neglected the polarizability anisotropy in the 

successive dipole-induced-dipole interactions which occur during 

collisions. Their result for nitrogen agreed remarkably well with 

experiment, although they argued that this may have been fortuitous in 

view of the cancellation of large terms of opposite sign. 

It is quite likely that expressions with the above approximations would 

prove inadequate in describing the ~ p 
contribution to B for linear 

p 
molecules in general. Fortunately, the advent of powerful computer 

algebraic manipulation packages such as Derive and Macsyma, coupled with 

high speed Fortran compilers, has made possible the development of a 

complete molecular tensor theory of B. Graham [6] has presented a 
p 

comprehensive set of calculations of B for molecules with threefold or 
p 

higher rotation axes performed using the Derive algebraic manipulation 

package coupled with the fast Salford FTN77/386 Fortran compiler. 

However, due to the limitation of computer memory when using the Derive 

package on an 80386 personal computer, the calculations were limited to 

scattered intensities proportional to 4 
IX at most. A new 

personal-computer version of the symbolic manipulation package Macsyma, 

which provides access to much larger amounts of computer memory, and 

also to powerful tensor manipulation facilities not available on the 

Derive package, was acquired by our research group in 1992. Couling and 

Graham [7] subsequently used the Macsyma package to extend the series of 

tensor expressions contributing to B to include dipole-dipole scattered 
p 

intensi ties of the fifth power in the molecular polarizabi I i ty IX, as 

well as a range of additional terms arising from field-gradient effects 

and induced quadrupole moments in the molecular interactions . This 

allowed a definitive assessment of where the series of interaction terms 

had converged to a meaningful numerical value for B . The higher-order 
p 

terms were found in some instances to make significant contributions to 
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B as shall be seen in due course, and these calculations served to 
p' 

establish orders of precision to which one has to work to ensure 

convergence. 

1.4 Calculations of second light-scattering virial coefficients of 

linear and quasi-linear molecules 

1.4.1 Expressions for molecules with threefold or higher rotation axes 

Buckingham and Stephen [38] have derived an expression for the 

depolarization ratio p of Rayleigh-scattered light which includes the 

effects of interacting pairs of molecules, obtaining 

p = ( 1. 13) 

N( (1) (1» N( (1) (2) ) 
1( 1( + 1( 1( cos X 

xx xx xx xx 12 

Here, 1(p) is the differential polarizability of molecule p in space
(xo" 

fixed axes (x,y,z) located in the gas sample, and the angular brackets 

indicate an average over pair encounters. The probability that molecule 

1 has a neighbour in dT at T has been related to the intermolecular 

potential energy U (T) by Buckingham and Pople [4], yielding the 
12 

expression already quoted in equation (1.4). 

We follow Buckingham [43] in writing the dipole moment ~ and quadrupole (X 
moment a~ induced in a non-magnetic molecule by an electrostatic field 

E(X and its gradient E~ as 

E ~ A E ~(X = (X~ ~ + 3 ~r ~r + ... , ( 1. 14) 

and 

( 1. 15) 

Using the above two equations, which allow inclusion of dipole-dipole 

terms as well as the leading terms arising from field gradient effects 

and induced quadrupole moments in the molecular interactions, the 
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differential polarizability may be written [6,7] 

1 (P)T(P)c(q) T(P) (p) 
+ - a a 

3 a$ ~ra ra£~ £~~ ~U 

1 A(P)T(P) (q) + - a 
3 a$r ~ra aU 

1 A(P)T(P) (q)T (p) + - a a 
3 a~r ~ra a£ £~ ~ 

+ .... (1. 16) 

Here, the superscripts p and q indicate molecule p and q respectively, 

whlle [43] 

and 

= _1_ 'iJ 'iJ R-1 

41(£ a ~ 
o 

1 ( 2) -5 
41(£ 3RaR~ - R a a$ R (1. 17) 

o 

T(l) = __ 1_ 'iJ 'iJ 'iJ R- 1 

a$r 41(£ a ~ r 

are the second 

field E( 1) and 
a 

o 

( 1. 18) 

and third rank T-tensors used to express the electric 

the electric field gradient E(l) at the origin of 
a$ 

molecule 1 arising from the point dipole and quadrupole moments of 

molecule 2, which is at a position R from the centre of molecule 1, in 
a 

the form 

E( 1) = T~~) Il~ 2) - !. T~~) a~2) + . . . 
a ""fJ'" 3 ""fJr,..r 

( 1. 19) 

and 

(1 . 20 ) 
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We have from [43] that 

(1.21) 

where n is the order of the I-tensor. It follows from equation (1.21) 

that the superscript may be omitted for I-tensors of second rank while 

it has to be retained for I-tensors of third rank. 

Use of equation (1 . 16) in (1.13) yields 

where 

a 
5 

p = 
a +a +a +a +aA +aA +aC + .. . 

2 3 4 5 21 31 31 

b + b 
2 3 

( 
(ll (ll) «1) (2» 

a=ex ex +ex ex • 
2 zx zx zx zx 

( 
(OI ( 2) (2» « 0I ( 2) (ll) ex ex ex +ex ex ex • 
z~ ~r rx zx z~ ~r rx zx 

(1. 22) 

(1. 23) 

(1. 24) 

(1. 25) 

(
ex(l)T ex(2)T ex(l)T ex(2)ex(2» 

zo or r~ ~v v~ ~c Cx zx • 

(1. 26) 
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(1. 27) 

(1. 28) 

Yex(ll
T

(ll
C

(2) T(ll
ex

(llex(2» 

3\ zo oP1' P1'f34> f34>c Cx zx ' 

(1. 29) 

= ex ex + ex ex COS b 
< 

(1) (1» < (ll (2) X) 
2 xx xx xx xx 12' 

(1. 30) 

(1. 31) 
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To proceed , the explicit forms of Taf3 , Taf3r , aaf3' · Aaf3r , and Caf3ro are 

required. The molecular property tensors a f3' A f3 ' and C f3 s simplify a a r a ru 
considerably for molecules of high symmetry, with far fewer tensor 

components being required to describe the molecular properties of, say, 

a linear molecule than a molecule of lower symmetry. 

The ensuing analysis is restricted to linear and quasi-linear molecules, 

. and if the rotation axis of such a molecule co-incides with the 3-axis 

of a molecule-fixed system 0 , 2,3) 

a 
11 

= a = a 
22 .l 

and a 
33 

then a 
IJ 

is diagonal with 

The t erm (
IV (1 ) ,) 1 ») l' n t . (1 23) f t f . d d ...... equa Ion . re ers 0 space- lxe axes, an 

zx zx 

may be referred to molecule-fixed axes by the normal tensor-projection 

procedure to yield 

( 

(1) (1») a a = 
zx zx ( 

(1) (1») ( z z x x) a a aaaa 
1 J kl 1 k J 1 

(1. 32) 

a 
where a is the direction cosine between the a space-fixed and i 

1 

molecule-fixed axes, and where the average is over all isotropic 

orientations of molecule 1 in the space-fixed axes. Use of the standard 

isotropic average [44] 

leads to the familiar expression 

(
a(1)a(1l) = _1_ C )2 

all - a.l . zx zx 1 5 

Similar arguments, together with the result [44,1] 

(
xxxx) aaaa = 
1 J k 1 

1 

1 5 
(0 0 + 0 0 + 0 0 ) 

1 J kl 1 k J 1 11 Jk ' 

allows (a:~)a:~») in equation (1.30) to be simplified to 

( 
(1) (1)) 2 4 a a = a + 
xx xx 45 

where 

(1. 33) 

(1. 34) 

0 . 35) 

(1. 36) 



(1) d (2) 
Now, in their own molecular axes, a

lJ 
an a l , J' 

remaining averages in equations (1.23) to (1.26), 

16 

( 1. 37) 

are diagonal, and the 

and (1 . 30) and (1 . 31), 

must be expressed in terms of these diagonal elements and a set of 

interaction parameters . Equations (1.27) to (1.29) with their added 

complications of third and fourth rank tensors, shall be dealt with in 

due course. Meanwhile, the more manageable averages shall be considered. 

Figure 1. 1 shows pictorially how the relative configuration "t of two 

axially-symmetric molecules may be specified by the four parameters 8
1

, 

8 , ~ and R [43]. Here, R is the distance between the centres; 8 and 8 
2 1 2 

are the angles between the line of centres and the dipole axes of 

molecules 1 and 2; and ~ is the angle between the planes formed by the 

molecular axes and the line of centres. The unit vectors ~(1) and l2) 
along the dipole axes, and ~ along ~, will be required later. 

Now, the molecular property tensors of a molecule are generally 

specified relat i ve to a co-ordinate system of mutually perpendicular 

axes that is fixed in the molecule such that one of the axes co-inc ides 

with a symmetry axis of the molecule. This is seen in figure 1.1 where 

the co-ordinate systems of molecules 1 and 2 are 0(1,2,3) (referred to 

by tensor indices i, J, k, .. . ) and 0'(1'2'3') (referred to by tensor 

indices i', j', k', . . . ) with axes 3 and 3' chosen as the symmetry-axes 

for molecules 1 and 2 respectively. The space-fixed system O(x, y, z) 

(referred to by tensor indices a, ~, r, .. . ) has its origin at molecule 

1, which does not shift with the changing orientation of either 

molecule. 

Initially, all tensors are referred to (1,2,3), including a(2) which is 
1 J 

in general not diagonal in (1,2,3). A projection from (1,2,3) into 

(1' ,2' ,3'), where a~~~, is diagonal, will be carried out later. The 

reason for initially referring all tensors to (1,2,3) lies in the fact 

that for a given relative configuration of the pair of molecules, the 

tensor product in (1 , 2,3) is fixed. If the pair of molecules is then 

allowed to rotate isotropically as a rigid whole in (x,y,z), then the 

projection into (x,y,z) of this pair property (referred to (1,2,3)) can 

be averaged over all orientations. Averaging over the interaction 

parameters may subsequently be carried out. Simplification during the 
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above procedure is facilitated by the following well-established 

relationships , which allow the expressions to be cast in terms of the 

four interaction parameters: 

(1. 38) 

t(1)t(2) = t(2) = cosS = -cosS cosS + sinS sinS cost/> , 
1 1 3 12 1 2 1 2 

(1. 39) 

l1) 1\ = 1\ = cosS (1 . 40 ) 
1 1 3 1 

(1. 41) 

Buckingham [43] has also shown that for axially-symmetric molecules, the 

molecular property tensors themselves may be expressed in terms of t(2). 
1 

For example 

a (2 ) = a 0 + rail - a ) l2) l2) . 
Ij .1 Ij \: .1 1 j 

(1. 42) 

Use of the anisotropy K. in the molecular polarizabi 1 i ty tensor a0:f3' 

defined by 

K. = (1. 43) 

together with equation (1.37) allows equation (1 . 42) to be recast as 

(1. 44) 

Benoit and Stockmayer [37] were the first to establish the now familiar 

results 

/ (1) (2» 1 ( )2 < 2 ) 
\azx azx = 30 Lan - a.l 3cos S12- 1 , (1. 45) 

which is a contribution known as the angular correlation term; and 

< 
(1) (2) ) 1 2 

a a cos X = 
xx xx 12 1 5 3 (1. 46) 

where B is the second pressure virial coefficient. 
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The new higher-order terms are evaluated using a procedure which will be 

ill ustrated by considering a specific example, i. e. the term 

la(1)a(ll T a(2)T a(ll T a(2», which is the first term in a given by 
'\ zx zc5 c5)')'fl flv v{3 (3e ex 5 

equation (1 . 26) . The first step is to project the term from space-fixed 

axes (x,y,z) into the molecule-fixed axes (1,2,3) of molecule 1: 

= a aa a aa aa a a:a a aa aaa aa 

< 
(1) z x (1) z 15 T 15)' (2»), fl T aflaV (1) v f3T f3 e (2) e x) 
i J i J k 1 k 1 mn m n p q p q r s r stu t u v w v w 9 h 9 h 

< 
(1) (1) T ( 2 ) T ( 1 ) T ( 2 » ( z z x x) = a a a a a aaaa . 
i J k m m n nr r s s v v w w h i k J h (1.47) 

If the interaction configuration is fixed, then the term 

la(1)a(1)T a(2)T a(1)T a(2» is a constant; and if the rigid pair of 
'\ i J km mn nr rs sv vw wh 

molecules is allowed to rotate isotropically, then equation (1.33) may 

be invoked to yield the average projection 

= 1 (4a ( 1 ) a ( 1 ) T a ( 2) T a ( 1 ) T a ( 2 ) _ a ( 1 ) a ( 1 ) T a ( 2 ) T a ( 1 ) T a ( 2 ) 
3 0 kh km mn nr rs sv vw wh i i km mn nr rs sv vw wk 

(1) (1)T (2)T (1)T (2» 
-a a a a a 

hk km mn nr rs sv vw wh 

(1. 48) 

in which the angular brackets now indicate an average over the pair 

interaction co-ordinates R, 9
1

, 9
2

, and rp according to the general 

relationship 

(X) = J X peT) dT 
T 

(1. 49) 

where P( T) is the probabi 11 ty that molecule 1 has a neighbour in 
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dT at T. This probability has been related to the intermolecular 

Potential energy U (T) in equation (1.4), which when substituted into 
12 

(1. 49) yields 

<X) = 
N 00 1l 

A J J 2V 
m R=O 8 =0 

1 

J
21l 2 

X exp (-U IkT) R dR sin8 sin8 d8 d8 d4>. 
12 1 2 1 2 

4>=0 
(1. 50) 

(1) (2) d T substituted When the appropriate values for a
1J

, a
1J

, an IJ are 

into (1. 48) there resul ts a lengthy expression containing redundapt 
(2) (2) 

interact ion parameters t , t , A, and A. Averaging according to 
1 2 1 2 

equation (1.50) can only be performed after these redundant interaction 

parameters have been el iminated from the right hand side of equation 

(1.48), and this is achieved by making use of equations (1.38) to 

(1.44). When performed manually, this manipulation is extremely tedious 

and time-consuming: one of the reasons why higher-order terms were 

neglected from earlier calculations of B for linear molecules. Graham 
p 

[6] ini t ially carried out all of the work up to a manually, and then 
4 

verified the results with the assistance of Derive, which is a computer 

algebraic manipulation package from Soft Warehouse Inc. However, the 

derivation of the a expression in equation (1.25) was found to be only 
4 

just within the 640 kb computer memory limitations of the Derive package 

even when evaluating each of the terms in a individually. Subsequently, 
4 

Couling and Graham [7] evaluated the a term, as well as the a A , 
521 

a A, and a C terms which required tensor manipulation techniques not 
3 1 3 1 

available in the Derive package, using the algebraic manipulation 

package Macsyma. A new version of Macsyma, compatible with the 80386 

series of personal computers, was obtained, providing access to much 

greater amounts of computer memory as well as to powerful tensor 

manipulation facilities. Adequate speed and capacity were only obtained 

after installation of 8 Mb of memory, the standard 4 Mb being totally 

inadequate. 

Eliminat ion of <2), l~2), A
1

, and A2 from the expanded expr~ssions may 

be achieved on computer by the piecemeal substitution of powers and 

multiples of the parameters 

(1. 51) 

e = (D
1
(2»)2 + [D

2
(2»)2 __ ( 2 {, (, 1 - cos 8

12
) , (1.52) 
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and 

f = l21;\ + l21;\ = - cose - cose COSe 
1 1 2 2 2 1 12 

(1. 53) 

into the expanded forms, until they contain d, e, and f only, and no 

terms in the redundant parameters. This elimination procedure is by no 

means automatic, wi th considerable human intervent ion being required. 

Such intervention carries with it the possibility of errors, but the 

back-substitution of the explicit forms of d, e, and f (in terms of e(21 
1 

and ;\ ) into the simplified expressions followed by comparison with the 
1 

original expanded expression provides a quick and absolute means of 

guaranteeing the correctness of the simplified expressions. This is 

followed by final substitution according to the second parts of 

equations (1.51) to (1.53), and compression of terms of similar order 

into a single term. It was found that 

( r 1 

a
3
= 4::

0 a? (R- 3 (-27K(K - 1) (2K + 3)cos2e
1 

a= 
4 

- 324K
2

(K + l)cose cose cose + 27K(K -1)(2K-l)cos2e 
12 2 1 2 

- 108K
2

(K + 1)cos
2
e 12+ 36K(K - 1))) , (1. 54) 

( 41(£ )-2 
o 4 < -6 ( 2 2 4 30 ex R 324K (K - 2K + 1 )cos e 1 

+ 1944K
3

(K - l)cose cose cos3e + ((5103K4cos 2e 
12 2 1 12 

+ (405K
3

(K - 1)cos
2
e - 27K(8K3

- 24K2+ 21K 5))cos2e 
12 2 

+ 567K
4
cos

4
e - 27K2(9K2- 10K - 14)cos2e 

12 12 

( 43 2 + 18 2K - 9K + 11K - 6K + 2))) , (1. 55) 



b= 
3 

a= 
5 

21 

(4::,r'a 3 (R-3 (-36K(K _ 1)(2K + 7)C05
29, 

_ 108K2 (2K + 7)cosS cosS COSS
1
- 36K2(2K +7)cos

2
S 2 12 12 

(1. 56) 

4 5 + 1458K (K - 1)cosS cosS COS S 2 12 1 

+ 9K2(27K2(9KCOS2S + 2K - 2)cos2S - 9K(7K
2

+ 25K - 23)cos
2
S 2 12 2 

3 2 4 3 2 2 - 23K + 75K - 81K + 29)cos S + 27K cose cosS (54K COS S 1 2 12 12 

2 2 344 
- (54K(2K + 5)cos S + 52K - 23k - 11»cos S + 3K(81K COS S 2 1 12 

2 2 432 2 + 81K (K - 7K + 6)cos S - 3K(K - 228K + 225K - 55)cos S 
2 2 

5 4 3 2 ) + 8(-2K + 7K - 13K + 14K - 7K + 1) (1. 57) 

The presence of the third and fourth rank tensors A , T and C 
iJk iJk' iJkl 

in the terms (1.27) to (1.29) necessitated the use of the tensor 

manipulation facilities of Macsyma. Buckingham [43] has shown that for 

axially-symmetric molecules, the molecular property tensors A and 
iJk 

C may be expressed in terms of the t(2) as follows: 
i Jkl i 

A (2) = ~ A (2) t(2) (3t(2) t(2) - 0 ) 
i Jk 2 II i J k i J 

+ A (2) (t(2) 0 + t(2) 0 _ 2l 2 ) t(2) l2») 
.1 J ik k i J i J k ' 

(1. 58) 



C(2) 
IJkl 

1 = 1 0 

1 
+ 

2 8 

rC + 8C
1313 

+ 8C ) [!. (0 0 + 0 0 ) - !. 0 0 ] 
L 3333 1111 2 1 k J 1 1 1 J k 3 1 J k 1 

(5C 
3333 

+ 4C 
1313 

BC ) [(3e ( 2) e ( 2) - 0 ) 0 
1111 1 k lk Jl 

+ (3e(2) e(2) - 0 )0 + (3e(2) e(2) - 0 )0 
1 1 11 lk 1 k lk 11 

+ (3e(2) e(2) - 0 )13 - ~(3e(2) e(2) - 13 )13 
J 1 Jl lk 3 1 J IJ kl 

- ~(3e(2) e(2) - 13 )13 ] 
3 k 1 kl IJ 

. + 1 (2C _ 4C + C ) [35 e< 2) e ( 2) e ( 2) e ( 2) 
3 5 3333 1313 1111 1 J k 1 

22 

+ e(2)e(2)13 + e(2)e(2)13 ) + 13 13 + 13 13 + 13 13 ] (1. 59) 
J 1 lk k 1 1 J 1 J kl 1 k J 1 11 J k 

These tensors, with their superscript (2) , refer to molecule 2 as seen 

the molecule-fixed axes of molecule 1. Now, 
(1) e(2) from since e and are 

unit vectors along the dipole axes of molecules 1 and 2 respectively, in 
(1) (1) (1) 

the axes ( 1,2,3) the vector t must have components t = t = 0 
~ 1 2 

(1) (1) 
and t = 1. Hence, to obtain an expression for A from (1. 58), 
(2) 3 (1) (2) (2) (2) IJk e must be replaced by t = 13 ; while t t t must be replaced 
1 1 13 1 J k 

by t(l)t(1)t(1) = 13 13 13 etc. Similarly, to obtain an expression for 
1 J k 13 P k3 

C(l) from (1.59), t(2 •• • l2) must be replaced by 13 ••• 13 etc. 
IJkl 1 J 13 13 

Finally the tensor expressions for each term in a
2
A

1
, a A, and a C are 

3 1 3 1 

1 · itl d i t f (1) (2) T T(l) A(l) A(2) ex.p IC y expresse n erms 0 (XIJ' (XIJ' , , , 
IJ IJk IJk IJk' 

C( 1) and C(2). after which Macsyma is used to eliminate redundant 
IJkl' IJkl' 

interaction parameters and to compress the results as before, yielding 

the final expressions 



aA= 
2 1 

a A = 
3 1 

23 

2 2 2 2 
+ cose ((-540K(K + l)cose + 540K )cos e + 216K cos e 

1 12 2 12 

2 + 108K cose + 216K)cose 
12 2 

2 3 1 + 540KCOS e (KCOSe - K - l)cose + 180K(K - l)cos e 
1 12 2 1 

+ All [-135K(K - 1)cos3e + cose (405K(K +l)cose cos
2
e 

2 1 12 2 

222 + (162K(K + l)cos e - 162K cose + 81K - 81K)cose 
12 12 2 

+ 810K2cos2e cose cose + 270K(K - 1)COS3 e
1
1)) , 

1 12 2 
(1. 60) 

+ 810K(K - l)cose cose cos4e + (27K(45Kcos 2e + 11K 
2 12 1 2 

. 2 2 2 3 
- 11)cos e - 45K(K + 8)cos e - 182K + 364K - 182)cos e 

12 2 1 

2 4 223 2 + 3(54K cos e + 27K (llcos e - 2)cos e - K(189Kcos e 
12 2 12 2 

(continued ... ) 



2 S 
+ 6K(10K - 1)cos9 cos9 + 135(K - 2K + 1)cos 9

2 2 12 

2 S 
+ A [-9K(135(K - 2K + 1)cos 9 

II 1 

4 2 
+ 810K(K - 1)cos9 cos9 COS 9 + (21K(45KCOS 9 

2 12 1 2 

2 2 - 2 
+ 11K(K - 1))cos 9 + 45K(5K - 2)cos 9 - 2(85K - 146K 

12 2 

32322 
+ 61))cos 9 + 3cos9 (291K cos 9 + 81K (5cos 9 

1 2 12 2 

2 3 2 2 - 81K cos 9 + 3(99K(K - 1)cos - (21K - 49K 
12 

24 

(1.61) 

( )
-2 

41(£ < o 3 -8 2 6 A C = 10 ex R (6C K[150(K - 2K + 1)cos 9 
3 1 l: 3333 1 

( 2242 
+ 12K K - 1)cos 9 - 35(K - 2K + 1))cos 9 + 30Kcos9 (36KCOS 9 

12 1 12 12 

(continued • •• ) 
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18K2cos2a )cosa - 10(K2
- 2K + 1)cos4a + 3«33K

2
+ 16K + 8)cos

2
a 

12 1 2 12 

2 2 27K2 COs 49 _ 3(7K2
- 1)cos29 - (4K2

+ 4K + 1)] + 2K + l)cos 92 + 12 12 

26 5 
_ 24C K[75(K - 2K + l)cos 9 + 450K(K - 1)cos9 cos9 cos a 

1313 1 12 2 1 

+ 5(15K(9KCOS29
12

- (K + 2))COS29
2

+ 2(18K(K - 1)COS
2
9

12
- 11(K

2 
- 2K 

+ 1)))cos4a + 30KCOSa (18Kcos 2a + 11 - 17K)cosa Cos
3
a + 3(25(3K

2 

1 12 12 2 1 

4222224 
+ 2K + l)cos a - 15(9K (cos a + 2K + l)cos a + 36K COS 9 - K(55K 

2 12 2 12 

(1.62) 

Upon gathering the results in equations (1.34), (1.36), (1.45), (1.46), 

(1.54) to (1.57), and (1.60) to (1.62), equation (1.22) for p takes the 

form 



P = 

1 
+-

3 0 
( )

-2 4 
4nc 0 a a' + 

4 

1 

3 0 

3 

9 0 
( )

-1 2 
4nc 0 a a A' 

2 1 

26 

(1. 63) 

in which a' represents that part of a in equation (1. 54) which is 
3 3 

contained within the angular brackets, with similar definitions for a', 
4 

a' a A' a A' and a C' which occur in equations (1.55), (1.57), 
5' 2 l' 3 l' 3 1 

(1.60), 0.61), and 0.62) respectively. 

Equation (1 . 63) must now be cast in the virial form of equation (1.11). 

We require the following expression for P for linear molecules, which 
o 

was first derived by Bridge and Buckingham [21]: 

where 

3(lla)2 

- a 
.J. 

(1. 64) 

(1. 65) 

This allows equation (1.63) to be written in the form 

Po [1 + ~ (3COS
2
9 - 1) + 

3 4 
P = 1 

( r1 a 1 
( r2 a - 4nc -- a' + - 4nc -- a' 2 12 2 o (lla)23 2 o (lla)24 

1 
5 2 

( r3 a 1 
( r1 a + - 4nc -- a' + - 4nc -- a A' 2 o (lla)25 2 o (lla) 2 2 1 

3 3 

+ o[ ~~J] / {1 
1 ( r2 a 3 

( r2 a + - 4nc -- a A' + - 4nc -- a C' 
2 0 (lla)2 3 1 2 o (lla)2 3 1 

+ ~ P [~( 3cos 
2 
9 - 1) + 

3 
3 

2B o( ~~]]} , - (4nc ) -1_a_ b' + - + 3 0 2 12 8 o (lla)23 Vm 

0.66 ) 
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which reduces to 

p = p + P (1 - ~ p ) [2B + ~ \3COS2e - 1) + _cx_ {1 + ~2}(41[C r 1a' 
o 0 3 0 Vm 2 12 18,,2 5 0 3 

+ ~ {1 4 2}( r2 a' + £ {1 + 4 2}C r 3 

18,,2 
+ ~ 4rrc

o 4 18,,2 
~ 4rrc o a~ 

+ _1 {1 + 4 2}C r 1 + _cx_ {1 + ~2 }C4rrc J-2 a A' -K 4rrc a A' 
18,,2 5 021 18,,2 3 1 

+ ~ {1 4 2}C r 2 a C' cx C r 1 b' 
+ o[~~J] . (1. 67) + ~ 4rrc

o 
- - 41[c 

6,,2 3 1 30 0 3 

It follows that 

(1. 68) 
where 

G = ~ (3cos
2e - 1) V 2 12 m • (1. 69) 

cx {1 4 2}C r 1 a = + -K 4rrc V a' 
3 18,,2 5 0 m 3 

(1. 70) 

2 { cx 1 4 2}C r 2 a = + -K 4rrc V a' 
4 18,,2 5 0 m 4 

(1.71) 

= L {1 4 2}C )-3 a + -K 4rrc V a' . 5 18,,2 5 0 m 5 
(1. 72) 

as4 1 {1 4 2}C )-1 = + -K 4rrc V a A' 2 1 18,,2 5 0 m 2 1 
(1. 73) 

as4 cx {1 4 2}C r 2 = + -K 41[C V a A' 
3 1 18,,2 5 0 m 3 1 

(1. 74) 

a~ = ~ {1 + 4 2}C )-2 -K 4rrc V a C' 3 1 6,,2 5 0 m 3 1 (1. 75) 

and 

& cx 
C4rrc r 1v b' = 

30 3 o m 3 (1. 76) 
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As with the normal second pressure virial coefficient 8, the above eight 

coefficients are independent of the molar volume but dependent on 

temperature. It is the parameter 8 which is directly accessible from a 
P 

plot of experimentally measured P versus v:1 
values, and knowledge of Po 

allows calculation of 

8' = (28 + G + a+ a+ a + aA+ aA+ a ~ + & + ... ) (1. 77) 
p 3 4 5 2 1 3 1 3 1 3 

The appearance of 28 in this expression for 8' can mask the more 
p 

interesting contributions from the. remaining terms, which are summed to 

allow comparison with 28, giving 

8' = (28 + 1 ) 
p p 

(1. 78) 

where the sum 1 arises purely from angular correlation and dipole
p 

dipole, field gradient, and induced quadrupole moment effects in the 

molecular interaction. Numerical evaluation of 1 would allow 
p 

calculation of the ratio (1 128) which would prove part icularly useful 
p 

for the theoretical selection of molecules which could be fruitfully 

studied experimentally. 

1.4.2 Classical expressions for the intermolecular potential U (L) 
12 

a; is that part of equation (1.54) contained within the angular 

brackets, indicating an average over the pair interaction co-ordinates 

according to equation (1.50); with a similar understanding for the terms 

a' to a C'. Now, evaluation of the average (X) of a quantity X over the 
4 3 1 

pair interaction co-ordinates according to equation (1.50) requires the 

classical intermolecular potential energy U . The general form of 
12 

U (L) used in our calculations is [1,45,46] 
12 

in which U is the familiar Lennard-Jones 6: 12 potential 
LJ 

(1. 80) 



U U and 
f..L,f..L f..L,S 

quadrupo 1 e and 

Us,s are the electrostatic dipole-dipole, 

quadrupole-quadrupole interaction energies 

29 

dipole

of the 

permanent moments of the two molecules; while U and U are 
S,lnd f..L f..L,lnd f..L 

dipole-induced-dipole and quadrupole-induced-dipole interaction 

energies. The anisotropy of repulsive forces is represented by U h 
s ape 

For interact ing linear molecules in the co-ordinate system shown in 

figure 1. 1 

(1.81) 

Uf..L,S = 4!Co{~ f..LSR-4[cOSS1(3cos2S2- 1) + COSS2 (3cos
2
S1- 1) 

+ 2sinS sinS cosS cos~ + 2sinS cosS sinS cos~]} , 1 2 2 1 1 2 
(1. 82) 

+ 2sin S sin S cos ~ + 16sinS cosS sinS cosS cos~ , 2 2 2 )} 
1 2 1 1 2 2 

(1. 83) 

U = f..L,lnd f..L (1. 84) 

and 

U = S,lnd f..L 

(1. 85) 

Here, Uf..L,lnd f..L has been written so that its unweighted orientational 

average is zero and the orientational-independent part is assumed to be 

incorporated in the R-
6 

term of U [28]. In the two induction terms, 
LJ 

the mean static polarizability a is used to describe the quasi-static 
s 

interaction. 

The shape potential is [28] 

(1. 86) 

where D is a dimensionless parameter called the shape factor, and which 



Figure 1.2 (a). Colliding spheres. 

3 
~~~ ....................... .. 

Figure 1.2 (b). Colliding plates where 61 and 62 are 0 or It. 

Figure 1.2 (c). Colliding plates where 61 and 62 are ± (It 12). 

3 3 

••••• , ................. ......... ........ .. ................... .. ........ t •••••••••••••••••••• • ••• •••••••••••••••• .. • .. •••• .. • • • ........... . 

Figure 1.2 (d) . Colliding infinitely thin rods where a, and 62 are ± (It 12). 
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-12 
lies in the range -0.25 to +0 . 50 to ensure that the R term is always 

repulsi ve at short range. D is zero for spherical molecules, posi ti ve 

for rod-like molecules (i . e. molecules which are elongated in the 

direction of the axis of the dipole moment [47], such as fluoromethane), 

and negative for plate-like molecules (i.e. molecules which are 

fore-shortened along the axis of the dipole moment [47], such as 

trifl uoromethane). This can be seen more clearly by the following 

analysis. 

For colliding spheres of diameter R , as depicted in figure 1. 2 (a), the 
o 

Lennard-Jones potential is zero at an approach distance R = R ; while 
o 

for approach distances R < R, the potential is positive and repulsive . 
o 

In the case of colliding plate-like molecules in the configuration 

depicted in figure 1. 2 (b), where e and e are 0 or 1£, the approach 
1 2 

distance can be less than R before the onset of contact forces. The 
o 

-12 repulsive R term of U must be reduced, and we require a negative 
LJ 

and hence a negative shape factor D. The very closest possible U 
shape 

approach of two infinitely thin planes in the configuration of figure 

1.2 (b) is for R = 0: there is no repulsive or contact potent ial, and 
D = _1 Of course, for plate-like molecules of finite thickness, D will 

4 

not reach this extreme value . When the colliding molecules approach as 
1£ in figure 1.2 (c), where e and e are ±-, a negative D yields a 

122 

positive U 
shape 

which enhances the repulsive potential, so that contact 

forces first occur for R > R 
o 

A simi lar analysis can be appl ied to 

rod-like molecules, where the closest possible approach of two 

infini tely thin rods in the configuration of figure 1. 2 (d), where e 
1 

1 1£ 
and e are ±-, occurs for R = O. For this extreme case, D 

2 2 = +- and anv 
2' or 

finite thickness in the molecules will reduce this number . 

The energy expressions in equations (1 . 80) to (1.86) are directly 

appl icable to pair interactions of linear dipolar molecules, but are 

easily adjusted to accommodate for interactions between non-polar linear 

molecules or between spherical molecules simply by setting the relevant 

multipole moments to zero . Earlier workers [45-48] have considered CH F 
3 ' 

CHF3 , CH3Cl, and CH
3

CH
3 

to be linear molecules with their dipoles lyin~ 

along their threefold rotation axes; and the calculations of B 

undertaken in [6,7] were based upon this treatment . 
P 



1.4.3 Evaluation of B by numerical integration 
p 
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The calculation of second virial coefficients of various molecular 

properties such as the second refractivity virial coefficient BR 

[49,28,46,50] and the second Kerr virial coefficient B( [80,52] requires 

integration of the relevant functions over the molecular interaction 

co-ordinates T . Early calculations were performed using the H( functions 

tabulated by Buckingham and Pople [28]; and subsequently, the advent of 

the computer either simplified, or in some cases made possible, the 

theoretical evaluation of virial coefficients . Initially the numerical 

integrations were computed using Simpson's rule for integration, 

primarily because of the ease with which this method is programmed into 

the computer [53] . Weller [53] undertook an extensive comparison of this 

integration method with that of Gaussian quadrature, showing that for a 

given precision only half the number of intervals per integration 

variable are required for the Gaussian method. This was found to yield a 

saving in computer time by a factor of at least sixteen for the 

integration of interaction effects for linear molecules over the four 

co-ordinates 9 , 9 , R,and ~. Consequently, all the calculations of B 
1 2 P 

in [6,7] (requiring the calculation of the averages (X) in equations 

( 1. 69) to (1. 76) by numerical integrat ion of the appropriate form of 

equation (1.50» were performed using Gaussian quadrature . A very useful 

feature of the Hacsyma symbolic manipulation package is its ability to 

translate the final expressions for a' to a C' directly into Fortran 
3 3 1 

code, thus preventing the introduction of errors into the integration 

arguments. 

In the integration procedure, the ranges of 9 , 9, and ~ were divided 
1 2 

into sixteen intervals while R was given a range of 0 . 1 to 3.0 nm 

di vided into sixty four intervals. Since ~ always enters through the 

cosine function, the ~ integral from 0 to 2n was replaced by twice the 

integral from 0 to n to further reduce the time taken for computer 

calculation. The Fortran programs were run in double precision on an AST 

25 MHz 80386 personal computer (with an Intel 80387 maths coprocessor) 

using the fast University of Salford FTN77/386 compiler. Typical running 

times of the programs ranged from 4 minutes to 15 minutes, depending on 

the complexity of the integrat ion argument. Doubling the number of 

intervals for 9
1

, 9
2

, and ~ to 32 led to numerical results which, on 



Table 1.2. Wavelength-independent molecular parameters used in the calculations . 

104 °« 10
3

°11 104 0S R 
c/k s 0 

Molecule Cm - K D 
C2 m2 J-t Cm2 nm 

1. 936 [60) 0 -4.72 [69) 0.368 [54) 91. 50 [54) • N 0.112 [ (76) ) 
2 

3 . 245 [51) 0 -15 . 0 [70) 0 . 400 [74) [74) • CO 190 . 0 0 . 250 [ (59,76) ] 
2 

4.940 [61) 0 -3 . 34 [71) 0.4418 [54) 230 [54] • CH CH 0 . 200 [ (59) ] 
3 3 

[62] 0 6 . 60 [58) 0.4232 [63] [54] • CH CH 4.69 205 0.240 [ (76,77) ] 
2 2 

OCS 6.353 [63) 2 . 365 [66] -2.635 [72) 0.413 [54) 335 [54] 0.200 t 

CO 2.17 [54) 0.3740 [67] -8.58 [69] 0.3765 • • • 92 0.050 [ (59, 77) ] 

• • • CH F 3.305 [48) 6.170 [45] 7.70 [45) 0.377 200 0.256 [ (59) ] 
3 

• • • CHF 3.970 [48) 5.50 [ 45] 15.0 [45) 0.440 178.5 -0.050 [(59») 
3 

[64) 6.32 [64] 4.00 [73) 0.395 [60] [64] • CH CI 5 . 25 350 0.210 [ (59) ] 
3 

HCI 2 . 867 [65) 3.646 [68] 12.4 [68) 0.3641 [75) 191. 4 [75] 0.010 t 

• Obtained by fitting to the pressure virial coefficients quoted in the references denoted [( »). 

t Assigned on the basis of shape . 
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comparison with those obtained when using 16 intervals, were found to 

agree to at least seven significant figures. Hence, the division into 16 

intervals was retained for all calculations in order to save on computer 

time . A useful double check on the calculations was the evaluation of, 

for example, the integral of each of the six components of a
4 

in 

equation (1. 25); the sum of these component parts then being compared 

wi th the integral of the compact form of a in equat ion (1.55). 
4 

Repeating this procedure for as' etc., the . values obtained from the two 

methods were always found to agree at least to within the sixth 

significant figure for all the gases investigated. 

1.4.4 Holecular properties used in the calculations 

The data used in the calculations of B are summarized in table 1. 2, 
P 

table 1. 3, and table 1. 4. Table 1. 2 lists the wavelength-independent 

molecular parameters, while table 1.3 gives values of p, a , and K at 
o v 

632.8 nm, 514 . 5 nm, and 488.0 nm respectively, with table 1.4 giving the 

only available A-tensor and C-tensor components for the molecules 

studied in [6,7], many of which are estimated trial values. Wherever 

possible, published experimental values were used. 

Few, if any, definitive values of the shape factor D are available in 

the literature, and those listed here were obtained by fitting 

calculated values of the second pressure vi rial coefficient B(T) to 

reported experimental values over a wide range of temperatures. B(T) was 

calculated according to the well-known expression for axially-symmetric 
molecules [54-56] 

BCT) = N~ Ie) 
R=O 

21f [ I 1-exp(-u IkTJ]R
2
dR sine sine de de d</>. 

</>=0 12 1 2 1 2 

0.87) 

The values thus obtained for D were all physically reasonable in terms 

of the criteria stated in section 1.4.2. 

It should be noted that calculations of the terms arising from field

gradient effects and induced quadrupole moments in the molecular 



~ble 1.3. Values .of Po' «v and K at 632.8 nm, 514.5 nm and 488.0 nm used in the calculati.ons. Unless .otherwise stated, all data 

re drawn fr.om B.ogaard, Buckingham, Pierens and White [2]. 

olecule 

N 
2 

CO 
2 

:H CH 
3 3 

:H CH 
2 2 

ocs 

CO 

CH F 
3 

CHF 
3 

CH CI 
3 

HCI 

• 

lOOp at A/nm 
o 

632.8 514.5 

1.042 1. 059 [11] 

4.049 4.085 

0.166 0.188 

1.207 1.247 

3.88 3.95 

0.480 0.519 

0.094 

0.0504 0.07 

0.755 0.779 

0.079 [211 

488.0 

1. 05 [39] 

4.12 

0.190 

1.266 

4.00 

0.521 

0.07 

0.787 

104
.0« /C2 m2 J- t at A/nm 

v 

632.8 514.5 

1. 961 [46, 1. 979 
78] 

2.907 [46, · 2.957 
78] 

5.01 

4.70 

5.79 

2.200 

2.916 [46, 
78] 

3.097 [46, 
78] 

5.04 

2.893 [46, 
78] 

5.06 

4.76 

5.85 

2.223 

3.139 

5.10 

Effective IKI treating CH CH as a quasi-linear m.olecule. 
2 2 

K at A/nm 

488.0 632.8 514.5 488.0 

1.984 0 . 1327 0.1338 [11] 0.1332 [39] 

2 . 965 0.2671 0.2683 0.2696 

5.07 0.0526 0.0560 0.0563 

4.78 • 0.1428 • 0.1454 • O. 1466 

5.86 0.261 0.264 0.2654 

2.231 0.0897 0.0933 0.0935 

0.0396 

3. 145 -0.029 -0.034 -0.034 

5.12 0.133 0.115 0.115 

0.0365 
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interactions are severely hampered by a dearth of numerical values for 

the A- and C-tensor components. It is, of course, highly desirable to 

know the relative magnitudes of these terms to gain insight into how 

significant their contributions to B are. Fortunately, the molecule HCl 
p 

has an almost comprehensive range of calculated and observed molecular 

parameters at the wavelength 632.8 nm. Even so, values for the C-tensor 

for HCl were not available, and so these were estimated by scaling the 

values quoted by Rivail and Cartier [57] for HF in proportion to the 

relative values of the a- and A-tensor components for HCl and HF at 

A = 632.8 nm. The scaled C-tensor components for HCl were in turn scaled 

in proportion to the a-tensor to obtain estimated trial values for the 

molecules CHF and CH F at A = 632.8 nm. A-tensor components at this 
3 3 

wavelength are available for CH3F and CO, but not for CHF3. 

Table 1.4. Estimated A-tensor and C-tensor components at A = 632.8 nm. 
(Unless otherwise indicated, all data are drawn from Burns, Graham and 
Weller [46].) 

HCl CO CHF(al * CH F 3 3 

1050AII/C2m3J-1 1. 16 -0.981 [58] 1. 72 [58] 

1050A IC 2m3J-l 0.133 -1. 181 [58] 
.1. 

2.77 [58] 

10
6OC IC2m4J-l 

1111 0.8144
t 

1. 10 0.90 0.85 

10
6Oc IC2m4J-l 

1313 0.658S
t 

0.75 0.75 0.67 

10
6Oc 3333 

IC2 m4J-t 1. 0504 t 0.90 1. 10 1. 06 

Estimated values by scaling of values quoted for HF by Rivail and 
·Cartier [57]. 

(a), (b), and * are trial values of the relevant C-tensor components 
estimated by scaling the corresponding components of HCI in 
proportion to the polarizability tensors a [46]. 

Published experimental pressure virial coefficients for HCl and OCS were 

not found in the literature, and so the fitting procedure to find D was 

not possible. A D value of 0.20 was assigned to OCS, while a value of 

0.01 was assigned to HCl; these values being considered physically 



Table 1.5. Summary of calculations for T = 298.2 K and A = 632.8 nm, with relative magnitudes of the 
dipole contribution to 8 . 

P 

a s 

Molecule 

N 
2 

CO 
2 

CH CH 
3 3 

• CH CH 
2 2 

OCS 

CH Cl 
3 

10BG 

3 -1 
m mole 

0.250 

4.151 

4.786 

4.709 

8.785 

24.647 

10B& 
3 

3 -1 
m mole 

0 . 174 

1.500 

0 . 846 

2.298 

8.797 

3.271 

B 
10 a

3 

3 -1 
m mole 

-4.701 

-11. 800 

-133.352 

-54.161 

-73.259 

-121. 445 

10Ba
4 

3 -1 
m mole 

27.571 

19.010 

768.633 

110.455 

88.947 

421. 765 

B 
10 as 

3 -1 
m mole 

0.733 

0.138 

41. 454 

3.970 

0.614 

25.671 

lOB 9" •• 
p 

3 -1 
m mole 

24.027 

12.999 

682.367 

62.562 

33.884 

353.909 

lO
B

8 

3 -1 
m mole 

-4.6 

-122 

-185 

-136 

-304 tt 

-406 

• This calculation is for positive K (A negative K is not physically reasonable [6]) . 

•• 9" includes the a contribution. 
p 5 

t 8 (a ) includes the a contribution. 
p 5 5 

* 8 (a ) does not include the a term. 
p 4 5 

tt Calculated. 

10B8t (a ) 
p s 

3 -1 m mole 

0.152 

-8.848 

0.517 

-2.487 

-21. 123 

-3.424 

lO
B8*(a ) 

P 4 
3 -1 m mole 

0.145 

-8.854 

0.449 

-2.534 

-21. 125 

-3.616 

dipole-

8 (a ) 
p s 

8((ll 
p 4 

1. 05 

1. 00 

1. 15 

0.98 

1. 00 

0.95 
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reasonable bearing in mind the constraints on D for rod-like molecules 

discussed in section 1.4.2. The B(T) values required in the evaluati~n 

of B for HCl and for OCS were calculated according to equation (1.87). 
p 

For all the other molecules studied, experimental values of B(T) were 

used in the evaluation of B , as given in equation (1.68). 
p 

1.4.5 Results and discussion 

The results of the calculations for T = 298.2 K are presented as 

follows: 

(i) Table 1.5 contains a summary of the calculations at 

A = 632.8 nm for those molecules which have no available A- and 

C-tensor components. A comparison is made of B containing terms 
4 p 

up to a in the scattered intensity (i.e. the series of terms in 

the scattered intensity is truncated after the a term) with B 
4 P 

containing terms up to S 
a (1. e. now including the a s 

contributions). It is apparent that the a term does make a s 
significant contribution of between -5% and 15% to B ; however, it 

p 
can be seen that the series is now rapidly converging so that the 

a and higher-order terms in the dipole-dipole interaction should 
6 

contribute negligibly to B . 
p 

(ii) Table 1.6 contains a summary of the calculations at A = 632.8 nm 

for those molecules which have known A-tensor . and/or C-tensor 

components. It is evident that while the a contribution is 
s 

significant (from about 5% to 10%), the field gradient and induced 

quadrupole terms for HCl and CO are much smaller and hence 

negligible. For CH F, 
3 

the a A term makes quite a significant 
2 1 

contribution to B of -9%, 
p 

negligible contributions. 

whilst the a A and a t;' terms make 
3 1 3 1 

(iii) Table 1.7 and table 1.8 contain a summary of the calculations at 

A = 514.5 nm and A = 488.0 nm respectively; once again a 

comparison being made of B correct to a with B correct to 
p 4 P as' 

Unfortunately, at both wavelengths there are no available A- and 

C-tensor components for any of the gases investigated here. 



Table 1.6. Relative magnitudes of the various contributions to 8p for T = 298.2 K and A = 632.8 nm where A- and C-tensors 
are available. 

Term 

G 

& 
3 

a 
3 

a 
t 

a 
5 

a s4 
2 1 

a s4 
3 1 

a ~ 
3 1 

28 

8' 
P 

8 
P 

10
6 

HCI 

numerical 
value 

3 -1 
m mole 

4.707 

-0.221 

60.023 

973.693 

63.926 

-8.410 

-0.661 

1.157 

-254.2 

840.7 

0.663 

% of 
8 

P 

0.56 

-0.03 

7.14 

115.81 

7.60 

-1.00 

-0.08 

0.14 

-30.23 

10
6 

co 

numer i cal OJ f 
value ,. 0 

3 -1 8 
m mole p 

0.474 0.87 

0.014 0.03 

-0.767 -1. 41 

69.156 127.45 

2.438 4.49 

-0.444 -0.82 

-0.009 -0.02 

-16.6 -30.57 

593.4 

0 . 557 

CHF(a) 
3 

10
6 numer i cal OJ f 

va I ue '0 0 
3 -1 8 

m mole p 

5.410 0.83 

0.196 0.03 

-95.601 -14.72 

1046.500 161. 15 

47.004 7.24 

0.126 0.02 

-354 -54.51 

649.4 

0.327 

10
6 

CHF(b) 
3 

numerical 
value 

3 -1 
m mole 

5.410 

0.196 

-95.601 

1046.500 

47.004 

0.025 

-354 

593.4 

0.557 

% of 
8 

P 

0.83 

0.03 

-14.72 

161. 12 

7.24 

0.00 
4 

-54.51 

10
6 

CH F 
3 

numerical 
value 

3 -1 
m mole 

19.302 

0.344 

-97.054 

1083.593 

66.920 

-58.704 

-3.296 

0.305 

-418 

649.4 

0.327 

% of 
8 

P 

2.93 

0.05 

-14.76 

164.83 

10.18 

-8.93 

-0.49 

-0.05 

-53.85 



Table 1.7. Summary of calculations for T = 298.2 K and A = 514.5 nm. showing relative magnitudes of 
contribution to B . 

the a dipole-dipole 
s 

Molecule 

N 
2 

CO 
2 

CH CH 
3 3 

• CH CH 
2 2 

OCS 

co 

CHF 
3 

CH Cl 
3 

• 

P 

10
6

G 

3 -1 m mole 

0.250 

4. 151 

4.786 

4.709 

8.785 

0.474 

5.410 

24.647 

106 & 106a 
3 3 ----

3 -1 3 -1 m mole m mole 

0.177 -4.646 

1. 533 -11. 321 

0.910 -126.652 

2.371 -53.164 

8.996 -69.673 

0.015 -0.745 

0.233 -82.595 

3.371 -119.902 

10
6

a
4 

3 -1 m mole 

27.276 

18.485 

690.688 

107.860 

84.739 

65.064 

781. 840 

413.607 

6 
10 as 

3 -1 m mole 

0.738 

0.140 

37.206 

3.918 

0.540 

2.301 

35.943 

25.431 

106 9" •• 
p 

3 -1 m mole 

23.795 

12.988 

606.938 

65.694 

33.387 

67.109 

740.831 

347.154 

10
6 B 

3 -1 m mole 

-4.6 

-122 

-185 

-136 

-304 tt 

-8.3 

-177 

-406 

This calculation is for positive K (A negative K is not physically reasonable [6]) . 

•• 
!I' includes the a contribution. p 5 

t B (a ) includes the a contribution. 
p 5 5 

* B (a ) does not include the a term. p 4 5 
tt 

Calculated. 

!I' 
P 

2B 

-2.59 

-0.05 

-1.64 

-0.24 

-0.05 

-4.04 

-2.09 

-0.43 

106Bt(a ) 
p s 

3 -1 m mole 

0.152 

-8.923 

0.444 

-2.530 

-21. 501 

0.260 

0.271 

-3.584 

106 B*(a ) 
P 4 

3 -1 
m mole 

0.145 

-8.928 

0.375 

-2.578 

-21. 522 

0.248 

0.245 

-3.780 

B (a ) 
p 5 

R----ra1 
p 4 

1. 05 

1.00 

1. 18 

0.98 

1. 00 

1. 05 

1.11 

0.95 

W 
In 



Table 1.8. Summary of calculations for T = 298.2 K and A = 488.0 nm, showing relative magnitudes of the a dipole-dipole 
contribution to B . 5 

Molecule 

N 
2 

CO 
2 

CH CH 
3 3 

• CH CH 
2 2 

OCS 

co 

CHF 
3 

CH Cl 
3 

P 

10
6

G 

3 -1 m mole 

0.250 

4. 151 

4.786 

4.709 

8.785 

0.474 

5.410 

24.647 

lOB&, 
3 

3 -1 m mole 

0.176 

1.545 

0.917 

2.401 

9.062 

0.015 

0 . 233 

3.384 

6 
10 a

3 

3 -1 m mole 

-4.742 

-11. 973 

- 126.584 

-53.934 

-73.461 

-0.752 

-82.830 

-121. 646 

10Ba
4 

3 - 1 m mole 

28.032 

19.527 

687.837 

108.994 

89. 146 

65.721 

785.558 

421. 268 

10Ba
5 

3 - 1 m mole 

0.752 

0.142 

36.987 

3.875 

0.512 

2.315 

36.149 

5 .731 

lOB 9" •• 
p 

3 -1 m mole 

24.468 

13.392 

603.942 

66.044 

34.045 

67.773 

744.520 

353.384 

10
6 B 

3 -1 m mole 

-4.6 

-122 

-185 

-136 

-304 tt 

-8.3 

-177 

-406 

• This calculation is for positive K (A negative K is not physically reasonable [6]) . 

•• 9" includes the a contribution. 
p 5 

t B (a ) includes the a contribution. 
p 5 5 

* B (a ) does not include the a term. 
p 4 5 

tt Calculated. 

9" 
P 

2B 

-2.66 

-0.05 

-1.63 

-0.24 

-0.06 

-4.08 

-2.10 

-0.44 

10
6

B
t 

(a ) 
p 5 

3 - 1 m mole 

0.158 

-8.979 

0.443 

-2.563 

-21. 734 

0.265 

0.273 

-3.571 

106 B*(a ) 
P 4 

3 - 1 m mole 

0.150 

-8.985 

0.373 

-2.612 

-21. 753 

0.253 

0 . 248 

-3.772 

B (a ) 
p 5 

B((l) 
p 4 

1. 05 

1. 00 

1. 19 

0.98 

1. 00 

1. 05 

1. 10 

0.95 
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In deciding on whether a term's percentage contribution to Bp was 

significant or not, considerat ion was made of the fact that typical 

uncertainties in careful experimental observations of Bp lie between 1% 

and 10%. Dymond and Smith [59] in their compilation of pressure virial 

coefficients classify the values as Class I if the precision is better 

than 2%, Class II if it lies between 2% and 10%, and Class III if worse 

than 10%. Class I or at least Class I I data are avai lable for most 

gases. Therefore, in theoretical investigations of the scattering 

contribution!f to B through equation (1.68) it is not realistic to 
p p 

attach significanqe to contributions less than 1%. On the other hand, 

contributions of the order of 10% are significant, and the work carried 

out in [7] serves to establish that the dipole-dipole terms up to the 

fifth order in the scattered intensities DlJst be retained, while the 

a sA term also needs attention. Disagreements between experiment and 
2 1 

theory are unl ikely to be due to convergence problems beyond these 

limits; and would then most probably be due to uncertainties in 

molecular data, the intermolecular potential expression, or other 

deficiencies in the model. It is worth noting that the numerical 

integration procedures used in [6,7] have a precision of much better 

than 1%, and are not a factor in comparisons between experiment and 

theory. 

Now, in selecting gases which could be profitably investigated 

experimentally, it is useful to combine equations (1 . 68) and (1.78); 

yielding 

(1. 88) 

As has already been mentioned, the appearance of 2B in the expressions 

for Bp can mask the more interesting !fp contributions; the ratio (!f
p

I2B) 

thus providing a means of selecting those gases where the!f terms 
p 

contribute more substantially to Bp' Table 1.7 and table 1.8 contain the 

ratio (!fpI2B) for several gases at A = 514.5 nm and A = 488.0 nm 

respectively, the ratio being most favourable for HCI, CO, N, CH F, 
2 3 

CHF , 
3 

and CH CH . 
3 3 

unfavourable. 

For CO 
2 

and OCS, the ratio is particularly 



Table 1. 9 Suppliers and mi nimum stated purity of the gases used. 

Stated 
minimum 

Gas Supplier Grade purity % 

N Fedgas High purity 99.98 
2 

CO Matheson Coleman instrument 99.99 
2 

CH Cl Matheson Standard 99.5 
3 

CH CH Matheson C.P. 99 . 0 
3 3 

CO Matheson C.P. 99.5 

1. 14 

1.12 

1.10 

0- 1.08 
~ 

8 1.06 - 'Q 

1.04 

1.02 

1.00 
0 500 1000 1500 2000 2500 

Figure 1.3 . Experimental depolar i zation ratio as a function of gas density 

for N . 
2 
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Measurements of the second light-scattering virial coefficient Bp for 

five different gases were undertaken by Couling and Graham [11], and the 

results are now presented and compared with the above calculated values. 

Where possible, comparisons are also made with experimental values in 

the literature. 

1.5 Comparison of measured and calculated second light-scattering 

virial coefficients of linear and quasi-linear molecules 

The light-scattering apparatus used in the measurements reported in [11] 

is described in detail in Chapter 3. Depolarization ratios p were 

measured at A = 514.5 nm over a range of gas densities for N
2

, CO
2

, 

CH CH, CH Cl and CO at room temperature; and a value of B for each gas 
3 3 3 P -1 

was obtained as the slope of the 1 inear region of a p versus V plot. 
m 

The molar volumes V were determined using the appropriate second and 
m 

third pressure virial coefficients deduced from tabulations by Dymond 

and Smith [59]. 

The resul ts for N, CO, CH CH, CH Cl and CO are plot ted in figures 
2 2 3 3 3 

1.3 to 1.7, each of which shows the depolarization as a function of 

inverse molar volume. Gas purities are specified in table 1. 9, while 

deduced values of Po are summarized in table 1.10 together with values 

measured by other workers. Deduced values of B and!f, together with 
p p 

any comparable 1 iterature values, are summarized in table 1. 11; which 

also includes a comparison with calculated theoretical values. 

For the five gases investigated experimentally in [111, the observed B 
p 

values are between 3% and 18% lower than the corresponding calculated 

val ues. As expected, the experimental !f for CO, which accounts for 
p 2 

only 5% of the observed second light-scattering virial coefficient, is 

considerably in error, and is not a fair test of the theory. Also shown 

in table 1.11 are calculated values of B at the conditions of reported 
p 

literature experimental values of other workers. The molecular data used 

in the calculat ions are as reported in tables 1.2 to 1.4. There is a 

large scatter of between 3% and 22% in the levels of agreement, but here 

the sources of error are unknown. 
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3.9 
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3.3 

Q. 
3.0 

~ 

8 2.7 -
2.4 
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0 400 800 1200 1600 2000 2400 2800 3200 
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Figure 1. 4 . Experimental depolari zation ratio as a function of gas density 

for CO . 
2 
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Figure 1. 5 . Experimental depolarization ratio as a function of gas density 

for CH Cl . 
3 
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Figure 1.S. Experimental depolarization ratio as a function of gas density 

for CH CH . 
3 3 
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co 

0.58 

Q. 0.56 
~ 

8 - 0.54 

0.52 
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Figure 1.7. Experimental depolarization ratio as a function of gas density 
for CO. 



Table 1.10. A collective summary 01 measured depolarization ratios p at a wavelength 01 
o 

514.5 nm lor the live gases investigated [11]. 

100 x P 
0 

Molecule 
Couling and Graham Bogaard et al . Baas et al. Alms et al. 

[11 ] [2] [25] [23] 

N 1. 0587 ± 0.0019 1.01 ± 0.03 1.06 ± 0.02 
2 

CO 4 . 072 ± 0.011 4.085 ± 0.02 4.0 ± 0.1 4.15 ± 0.05 
2 

CH CI 0.802 ± 0 . 004 0.779 ± 0.008 0 . 75 ± 0.02 0.78 ± 0.01 
3 

CH CH 0.1669 ± 0.006 0 . 188 ± 0.004 0.168 ± 0.006 
3 3 

CO 0.5251 ± 0.0014 0.519 ± 0.007 0.49 ± 0.02 



Table 1.11 . Summary of our measured B values for linear and quasi-linear molecules [11] , together with all literature 
p 

values. Comparison is made with values calculated at the experimental temperatures and wavelengths . ~ values deduced p 
from our measured B values are also compared with calculated ~ values. 

p p 

Molecule 

N 
2 

CO 
2 

CH CI 
3 

CH CH 
3 3 

CO 

CH CH t 
2 2 

OCS t 

Reference 

[39] 

[41] 

[11 ] 

[39] 

[ 11] 

[ 11] 

[ 11] 

[ 11] 

[40] 

[39] 

Alnm 

488.0 

514 . 5 

514 . 5 

488.0 

514 . 5 

514 . 5 

514.5 

514.5 

514 . 5 

488.0 

TIK 

290 

310 

295.5 

300 

298.2 

299 . 6 

295.9 

298 . 2 

328 

291 

10BB(ex p t) 
p 

3 -1 m mole 

0.14 

0.16 

0 . 138 ± 0 : 014 

-10 

- 8.29 ± 0.16 

-3.30 ± 0.26 

0 . 315 ± 0 . 018 

0.213 ± 0.016 

-1.78 

-21 

10BB(theor y ) 
p 

3 -1 m mole 

0.115 

0 . 199 

0.142 

-9 

-8 . 89 

-3 . 68 

0.381 

0.259 

-1 . 94 

-21. 7 

B(expt) 
p 

B(theor y ) 
p 

1. 22 

0 . 80 

0.97 

1.11 

0.93 

0.90 

0 . 83 

0.82 

0.92 

0.97 

t measurements of these gases were not undertaken in [11] because of unfavourable ~/2B ratios. 

10B~( expt) 
p 

3 - 1 m mole 

23 . 4 

28 . 7 

386 

565 

57.4 

~(expt) 

p 
~(theory) 

p 

0.98 

2.21 

1. 14 

0.93 

0 . 87 

Lv 
\0 
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1.6 The aim of this work 

Studies undertaken by several workers on the various virial 

coefficients, such as the second refract i vi ty virial coefficient BR 

[46,79], the second dielectric virial coefficient [48,51], and the 

second Kerr-effect virial coefficient [80,52,9], have revealed good 

agreement between theory and experiment for some spherical and linear 

molecules, and very poor agreement for others. 

The inclusion of the second light-scattering virial coefficient in the 

range of studied second virial coefficients makes possible a critical 

overview of the full range of coefficients. Certainly, for the five 

linear and quasi-linear gases investigated in [6,7,11]' the agreement 

between experiment and theory for B is much better than might have been 
p 

expected, especially in view of the apparent breakdown in the long-range 

dipole-induced-dipole theory in calculations of B p 
for the larger 

quasi-spherical molecules [4]. It is this success that has prompted us 

to extend the theory of second virial coefficients to describe the 

effects which interactions between pairs of non-linear molecules have on 

molecular-optic phenomena. 

This thesis is concerned in part with extending the molecular tensor 

theory of the second light-scattering virial coefficient B into the 
p 

regime of molecules with non-l inear symmetry. Chapter 2 contains this 

new theory, together with the results of calculations for ethene, 

sulphur dioxide and dimethyl ether. In Chapter 3, the development of the 

light-scattering apparatus is discussed. The apparatus has been 

substantially improved since the paper by Couling and Graham [11] ' to 

allow for experiments at elevated temperatures. This feature allows 

pressure-dependence measurements of vapours with low saturat ion vapour 

pressures to be undertaken. The experimental resul ts for ethene and 

sulphur dioxide are presented, together with a comprehensive comparison 

with the values predicted theoretically. The levels of success achieved 

prompted application of the new techniques to a different second vi rial 

coefficient, namely that of the Kerr effect. 
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In Chapter 4, all theoretical and experimental work undertaken on the 

second Kerr-effect virial coefficient BJC to date is reviewed. A theory 

of B for molecules with non-linear symmetry is then developed. Values 
JC 

of B for several linear and non-l inear molecules are calculated and 
JC 

compared with measured data in the literature. 
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CHAPTER 2 

CALCULATION OF THE SECOND LIGHT -SCATTERING VIRIAL 
COEFFICIENTS OF NON-LINEAR MOLECULES 

2.1 A general theory of light scattering 

45 

The scattering of light by a single molecule can be considered to arise 

when the incident light wave induces osci llating mul tipole moments in 

the molecule, which then give rise to retarded scalar and vector 

potentials and therefore to electric and magnetic fields at all points. 

Landau and Lifshitz [1] and Buckingham and Raab [2] have related these 

fields to the electric and magnetic multipole moments of the system. At 

a point a distance R from an origin 0 fixed within the molecule's system 

of oscillating charges, where R is very much larger than both the 

dimensions of the system of charges and the wavelength of the radiated 

light, the scattered electric field E(s) can be considered to be a plane 
a 

wave, and is then given by [2] 

(2. 1) 

Here, n is a unit vector in the direction in which the wave is a 

scattered, while ~ is the a-component of the electric dipole moment of a 
the system of charges, with each dot above it represent ing a partial 

derivative with respect to time taken at the retarded time t' = t - Ric. 

9~ is the traceless electric quadrupole moment, and rna is the magnetic 

dipole moment. These multipole moments are defined in Appendix 1. A 

cautionary comment which must be mentioned here is that several workers 

[3] have demonstrated the existence of electrodynamic situations where 

it is necessary to retain the primitive multipole moments (also defined 

in Appendix 1). However, this work is carried out with the use of the 
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Figure 2.1. The space-fixed system of axes used to describe the scattering 
of light by a macroscopic gas sample containing N molecules. 
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traditional traceless quadrupole moment, and future work wi 11 need to 

consider this subtlety. 

Now consider the arrangement in figure 2.1 where the origin of a space

fixed system of axes O(x,y,z) is placed within a macroscopic gas sample, 

the specimen containing a large number N of ident ical gas molecules. 

Consider that this system under the influence of a uniform, parallel 

beam of incident light which is linearly polarized in the vertical xz 

plane and travelling in the z direction. The wavelength of the incident 

light is assumed to be very large relative to the dimensions of the gas 

molecules, and its frequency is supposed to be well below that of any 

electronic absorption transition. The Rayleigh-scattered light is 

observed at a point on the y-axis, with the depolarization ratio being 

given by 

I 
z 

P = r 
x 

(2.2) 

where I 
z 

and I are the scattered light intensities with the electric 
x 

vector parallel to the z and x axes respectively. 

Since p in equation (2.2) requires scattered intensities with the 

electric vector parallel to the z and x axes, and since for light 

travelling along the y axis the unit vector n has components 
a: 

n = n = 0 and n = 1, the expression for the scattered electric field x z y 

in equation (2.1) summed for the contributions from each molecule 

in the system of N molecules simplifies to 

N 
1 1 ~"(p)(t') 

41[£ 2 L.. Ila: 
o Rc p=l 

(2.3) 

where ;;~p) is the dipole I t th ~~ acce era ion of the p molecule, and where the 

electric dipole radiation alone has been considered. The electric 

quadrupole and magnetic dipole contributions are much smaller and are 

neglected. 

= 
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with 

= + (2.4) 

Even when using intense laser beams, the term non-linear in the field in 

equation (2 . 4) can safely be neglected; and bearing in mind that 

E = E{ 0) e -1W{t-R/c) 

a. a. 

so that 

it follows from equations (2.3) and (2.4) for a monochromatic incident 

light beam of wavelength A that 

1 [~llJ 2 
41l£ 1\ 

o 

8 
(p) 

N Il 
1 E ~E{P) 
R p=l 8E{ p) 0 

o 
(2.5) 

(p) th 
Here, Eo implies the value of the E-field at the p molecule. It is 

useful to write 

= ( p) 
1l 

0(,(1' 

where 1l~:) is called the differential polarizability. 

(2.6) 

In general, the intensity I of a light wave with electric field vector E 
is given by 

I = _1_ E.E* 
21l c - -

o 
(2 . 7) 

where the asterisk denotes the complex conjugate. Equation (2.2) then 
yields 
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I \Ez<) ~i1 ; n(p)n(q)exp iX ) q=l zx zx pq z (2,"8) p = = = I 
(Ex<) (31 ~ n(p)n(q)exp x ix ) q=l xx xx pq 

where Xpq is the phase difference in the light scattered by molecules p 

and q as seen at the observation point, and where the angular brackets 

indicate an average over all configurations of the specimen , This 

equation, first obtained by Buckingham and Stephen [4], has been used as 

a basis for the discussion of the effects of pair interactions on the 

depolarization ratio p for l inear 'and quasi-linear molecules by Graham 

[5] and Couling and Graham [6], 

2.1.1 Non-interacting molecules 

For a dilute gas where molecular interactions are negligible, the 

oscillating dipole moment /J(p) of molecule p arises solely due to the 
a 

polarizing action of the applied field g, there being no neighbouring 
o 

molecules q which are close enough for their moments to set up 

significant fields and field gradients at molecule p. The differential 

polarizabi I i ty naf3 then becomes simply the molecular polarizabU i ty 

tensor aaf3' Furthermore, there is no average phase relationship between 

the fields from anyone pair of molecules, self-correlations alone 

contributing to the summation. The summations in equation (2 . 8) are thus 

replaced by N times the contribution of a representative molecule 1, 

yielding 

p = (2 . 9) 

where" the angular brackets now indicate an average over all unbiased 

orientations of a molecule. The molecular tensors in (2.9) are referred 

to the space-fixed axes (x, y, z) and must be projected into molecule

fixed axes (1,2,3) . The normal tensor-projection procedure yields 

a a = a a aaaa < 
(1) (1» (1) (1)( Z Z x x) 
zx zx 1 J k 11k J 1 

(2,10) 
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where aex. is the direction cosine between the ex. space-fixed and i 
1 

molecule-fixed axes, and where the average is over all isotropic 

orientations of molecule 1 in the space-fixed axes. For molecules with 

C and D symmetry the polarizabil ity tensor ex. , when expressed in 
2v 2h 1J 

molecule-fixed axes with the 3-axis as the principal axis, is diagonal 

and has three independent components: 

n' 
0 

a~ ]. 
(1) 

ex. = ex. 
1 J 22 

0 
33 

(2.11) 

The mean polarizability ex. is then 

ex.=~ex. =~(ex. +ex. +ex.) 
311 311 2233' 

(2. 12) 

while the anisotropy in the polarizabil ity tensor is often defined in 

the current literature (e.g. [7,8]) as 

flex. = - (ex. - ex. ) 2 + (ex. - ex. ) 2 + (ex. _ ) 1 { 2}1/2 
R 11 22 22 33 33 ex. 11 (2. 13) 

Use of the standard isotropic average [9] 

(
zzxx) a a a a = 
1 k J 1 

1 

3 0 

in equation (2.10) leads to 

< 
(1) (1» 

ex. ex. = 
zx zx 

(40 0 - 0 0 - 0 0 ) 
1 k J 1 1 J kl 11 kJ 

Simi larly the 

result [9,10] 

term 1ex.(1)ex.(1») in equation 
\' xx xx (2.9) , 

(
xxxx) aaaa = 
1 k J 1 

yields 

1 

1 5 (0 0 + 0 0 + 0 0 ) 
1 J kl 1k J 1 11 kJ ' 

(2.14) 

(2.15) 

together with the 

(2.16) 



Hence, equation (2.9) may now be expressed in the form 

_1_ (Aa) 2 
1 5 

2 4 
a + 

4 5 
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(2.17) 

(2.18 ) 

The anisotropy in the molecular polarizability tensor aa~ was originally 

defined as the dimensionless quantity K [11]: 

(3a a - a a ) 
2 iJ ij 11 Jj 

K = --~~~----~-
2a a 

11 J J 

(2. 19) 

where Aa is the alternative definition of the polarizability anisotropy 

given in equation (2.13). It is a simple matter to show from equation 
2 (2.18) that Po and K are related by the expression 

(2.20) 

This equation, first derived by Bridge and Buckingham [11], allows 

the use of measured values of Po to obtain values for K. 

For non-interacting spheres, the anisotropy K in equation (2.19) is 

zero, and it follows from equation (2.20) that p = O. This confirms the 
o 

well-known result that scattering from non-interacting spheres produces 

no depolarization. Scattering from interacting spherical, quasi

spherical, linear and quasi-linear molecules has been reviewed in the 

previous chapter. 
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2.1.2 Interacting non-linear molecules 

The depolarization ratio Po of the light scattered by a dilute gas 

sample of non-interacting anisotropic molecules is modified if the gas 

pressure is elevated to such an extent that molecular interactions 

occur. This density dependence of p is described by means of the virial 

expansion [4] 

B C 
P = Po + vP + P + ... 

m V2 

m 

(2.21) 

in which the leading term is the second light-scattering virial 

coefficient 

interactions. 

B , 
P 

which describes deviations from due to pair 

A complete molecular tensor theory of B for interacting non-l inear 
P 

molecules is now presented. In a gas, these molecules are moving 

randomly relative to one another, and so the scattered light waves 

emit ted by each of these molecules arrive at the distant observat ion 

point with different and randomly fluctuating phases. This allows the 

summation in equation (2.8) to be considerably simplified. Apart from 

self-correlation, there is significant correlation of phase only when 

pairs of molecules are in the process of a close encounter. Since the 

interaction mechanism for all terms (with one exception) is significant 

only at short ranges of about 0.5 nm to 2 nm which are a small fraction 

of typical wavelengths of around 500 nm, the phase differences X 
12 

between beams from interacting molecules p and q is effectively zero. 

The exception is the term (1l(1)1l(2)COS X ), as established by BenoH and 
xx xx 12 

Stockmayer [12]. This means that there is no need for the general 

retention of X , exp (1x ) being set to unity in all but the 
pq pq 

abovementioned term. Thus, allowing only for self-correlation and 

pairwise contributions to the coherent fields, the summations in 

equation (2.8) are replaced by N times the contribution of a 

representative molecule 1, averaged over all pair encounters, giving 

p = (2.22) 

N( (ll (1) N( (1) (2) ) 
1l 1l + 1l 1l cos X 

xx xx xx xx 12 
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where the angular brackets now indicate an average over pair encounters. 

Here, the probabil i ty that molecule 1 has a neighbour in d't' at 't' is 

related to the intermolecular potential energy U ('t') by [9] 
12 

N 
P('t') = o.~ exp(-U

12
('t')/kT) (2.23) 

m 

where 0. = v:1J d't' is the integral over the orientational co-ordinates 

of the neighbouring molecule 2. 

To obtain expressions for the differential polarizabilities in equation 

(2.22), as defined in (2.6), the treatment of Graham [13] is followed. 

The dipole moment IlIX and quadrupole moment 9 cx.(3 induced in a molecule 

by an electric field E~ and an electric field gradient E~r are 

(Buckingham [14]) 

/I = IX E + ~ A E + 
r-IX cx.(3 ~ 3 cx.(3r ~r • •• , (2 . 24) 

and 

(2.25) 

The T-tensors [14] are now introduced to simplify the discussion. If 
E(l) (1) 

IX and Ecx.(3 are the electric field and electric field gradient at the 

origin of molecule 1 arising from the point dipole and quadrupole 

moments of molecule 2, which is at a position R from the centre of 
IX 

molecule 1, then 

and 

where 

and 

= _1_ IJ IJ R- 1 

47(£ IX ~ 
o 

+ ... , (2.26) 

(2.27) 

(2.28) 



T( 1) = 
ex.(3r 

1 -1 
- fJ fJ fJ R 
41tC ex. (3 r 

o 

are the second and third rank I~tensors respectively. Here, 
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(2.29) 

(2.30) 

where n is the order of the I-tensor. It follows from equation (2.30) 

that the superscript may be omitted for I-tensors of second rank while 

it has to be retained for I-tensors of third rank. 

Graham [13] argued that the total oscillating dipole moment of molecule 
(1) 

1, #lex. ' arises in part from the direct polarizing action of the 

incident light wave field g, and in part from the fields and field 
o 

gradients at molecule 1 due to the oscillating moments of a neighbouring 

molecule 2, equation (2.24) becoming 

(2.31) 

Here, g f3 and g f3 are the field and field gradient of the incident 
o 0 r 

light wave experienced by molecule 1, while ~~ 1) and ~~~) are the 

addi t ional field and field gradient arising at molecule 1 due to the 

oscillating multipole moments of the neighbouring molecule 2. 

The molecular polarizability tensor of molecule 1, ex.~;/, in equation 

(2.31) is assumed independent of the field and field gradient at it . If, 

however, molecule 2 has permanent multipole moments which set up an 

intense electric field F(l) and electric field gradient F(1) at molecule 
r ro 

1, then non-linear terms should be included and equation (2 . 31) must be 

modified to become 

(2 . 32) 
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The field gradient of the applied light wave g (3 may be neglected since 
o r 

molecular dimensions are usually very small compared with the wavelength 

of the incident light wave. Furthermore, the non-linear effects 

resulting from the intermolecular fields of permanent multipole moments 

will be neglected. This should be borne in mind if numerical values of 

B for strongly polar molecules calculated using this approximation are 
p 

found to disagree with experimentally measured B values. In such 
p 

instances, the calculations might have to be re-worked with inclusion of 

the hyperpolarizability effects. It is possible, however, to proceed on 

the precedent of the - refractivity virial coefficient BR of axially

symmetric molecules for which Burns, Graham and Weller [15] showed that 

hyperpolarizability effects were negligible. Equation (2.32) is now 

written as 

(1)(g) = o:.(t) [g + ~(1)] + ~ A(1) ~(1) • 

~ 0 ~ 0(3 (3 3 ~r ~ (2.33) 

If the oscillating octopoles and higher-order multipoles on molecule 2 
(1) 

are neglected, the field ~ (3 at molecule 1 due to the osci 11 ati ng 

dipole and quadrupole moments on molecule 2 will, from equation (2.26), 

have the form 

(2.34) 

It must be emphasized that ~~2) itself is the oscillating dipole induced 

on molecule 2 by the fields and field gradients arising at 2 due not 

only to the direct influence of g, but also to the oscillating dipole 
o 

and quadrupole moments of molecule 1. The oscillating quadrupole induced 

1 1 2 9 (2) . "1 1 U' . ( ) on mo ecu e , ro' arIses SImI ar y. sIng equatIons 2.24 and (2.25) 

to provide expressions for ~~2) and 9~~), and substituting these 

expressions into (2.34), yields 

(2.35) 

(2) (2) 
The terms ~ 0 and ~ Of: refer to the field and field gradient at 

molecule 2 arising from the oscillating dipole and quadrupole moments of 

molecule 1, and have the form given by equations (2.26) and (2.27) 

respectively. Equation (2.35) becomes 



f (ll and e(1) Substi tution of the expressions or f.Lcx. cx.J3 

(2 . 24) and (2.25) respectively yields 

+ e(l) :J(l)}] 
e4>lIA lIA 

+ :J(l») + .!..A(ll:J(ll] 
11 3 4>lIA lIA 

_ .!..r(l)A(2)g _ .!..r(l)A(2)[r(2){cx.(1)(g 
3 ~ra era oe 3 ~ra era e4> 4>11 ~ 011 

_ .!..r(2){A(1) (g + :J(l») + e(l) :J(l)}] 
3 e4>l1 A4>lI~ oA A 4>lIAT AT 
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(2 . 36) 

gi ven in equations 

(2.37) 

(ll (1) (2) (2) 
Successive substitutions of:J~ and :J~r' and of:J~ and :J~r' leads 

to a lengthy series of terms. It is difficult to know a priori after how 

many terms the series is to be truncated since little is known about the 

rate of convergence of the contributing terms. For some insight into the 

problem, we turn to our work on B for linear and quasi-linear molecules 
p 

[5,6], where B was calculated to successively higher orders until the 
p 

higher order terms were seen to make a negligible contribution. Hence, 
(ll 

under the guidance of [5,6], the series for:J~ is truncated at a 

point which will lead to scattered intensities in cx.s , as well as all 

scattered intensities in cx.2A, cx.3A and cx.3e. Equation (2.37) then yields 
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+ . .. . (2.38) 

To understand the physical meaning of the terms in (2.38), consider as 
1 (1)(2) (2)(1) . tdas 

an example the term - 3 T~roCroc~Tc~nanA gOA which can be Interpre e 

follows: the incident light wave field gOA induces on molecule 1 an 

oscillating dipole moment a~~)goA' which in turn gives rise to an 

oscillating field gradient at molecule 2 through the third rank T-tensor 

T(2). This field gradient results in an oscillating quadrupole on 
c~n (2) 

molecule 2 as described by Croc~' this quadrupole moment now making an 

additional oscillating field contribution at molecule 1. 

The field gradient ~~~) at molecule 1 in equation (2.33), due to induced 

oscillating multipole moments on molecule 2, is in turn given by 

equation (2.27): 

(2.39) 

Here, oscillating quadrupoles and multipoles of higher order have been 

neglected, and substitution of yields only two terms whose 

contributions to B were found to be significant enough for retention: p 

(2.40) 

It is worth sounding a cautionary note that the above field gradients 

between interacting molecules at short r~ge are not to be confused with 

the field gradients of the light-wave fields which are negligible over 

the small dimensions of the molecules . 

SUbstitution of equations (2.38) and (2.40) into (2.33) yields a final 

expression for the oscillating dipole induced on molecule 1 by the light 

wave field g in the presence of molecule 2. To obtain the differential o . 

polarizability n as defined in (2.6), the dummy indices of the terms a(1' 

in (2.33) have to be rewritten to allow for differentiation with respect 

to g . For example, the term - ~ T(1)C(2) T(2)a(1)g in (2 36) must be 
0(1' 3 (3ro roc~ c~n nA OA . 
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_ ~ T(1)C(2) T(2)a(1)g . Expression (2.33) now appears as 
rewri t ten as 3 /3ro roc ¢ c¢lI 110' 00' 

(1)(6» (1) (1)T (2)6> (1)T (2)T (1)6> 
/I c> =a g +a a c> +a a a c> 
""'a 0 aO' 00' a/3 /3r rO' 00' af3 /3r ro oc cO' 00' 

1 A(1)T(1) (2)T (1)6> + - a a c> + 
3 af3r /3ro oc c¢ </XT 00' 

(2.41) 

Wh th t · a i f d thi . f (1) th en e opera Ion ~ s per orme on s expressIon or f..La' e 
00' 

resulting expression for the differential polarizability is 

+ ... , (2.42) 

where the superscripts p and q indicate molecule p and q respectively. 

Use of equation (2.42) in (2.22) yields 

p = 

where 

a +a +a +a +aA +aA +aC + .. . 
2 3 4 5 21 31 31 

b + b 
2 3 

(2.43) 

(2.44) 
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a Ta a +a a a , ( 
(1) (2) (2» «llT (2) (1» 

z~ ~~ ~x zx z~ ~~ ~x zx 
(2.45) 

(2.46) 

+ (a(l)r a(2)r a(ll r a(2)a(1l) + (a(llr a(2)r a(l)r a(2)a(2» , 
z~ ~~ ~~. ~v v~ ~C Cx zx z~ ~~ ~~ ~v v~ ~C Cx zx 

(2.47) 

• 

(2.48) 
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(2.49) 

Ya(1)r(ll c(2) r(ll
a

(l)a(2» , 

3\ zc3 c3Pl Pl(3t/> (3t/>£ £x zx 

(2.50) 

b ( (ll (ll) (ll (2) X) = a a + a a cos , 
2 xx xx xx xx 12 

(2.51) 

(2.52) 

There are no literature values of the A- and C-tensor components for 

non-linear molecules, and we therefore cannot calculate the 

contributions arising from the a A, a A or a C terms. Once again, we 
21 31 31 

turn to our work on linear and quasi-linear molecules [5,6] for some 

insight into the problem. The a C term is known to contribute less than 
3 1 

1% to B for all linear molecules studied thus far [6], and its omission 
P 

here does not arouse concern. However, the a A term, which exists only 
2 1 

for polar molecules (the A-tensor vanishes for non-polar species), can 

make significant contributions to B of as much as 9% [6]. The 
P 

higher-order a A term contributes less than 1% to B for the 1 inear 
3 1 P 

molecules investigated in [6] . The problem remains unresolved until ab 

initio calculated estimates of the A-tensor components of non-linear 

polar molecules are forthcoming . 
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3' 
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l' 
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1~... . :/ 
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..•......•.. , .... , ........ " 

2 x 
Figure 2.2. The molecule-fixed axes (1,2,3) and (1 ',2',31 of interacting molecules 

1 and 2 respectively. The space-fixed axes are (x,y,z). 
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2.2 Describing the relative configuration of two non-linear molecules 

To exploit the symmetry of a molecule, its physical property tensors 

must be referred to a system of molecule-fixed axes. However, the 

experimental measurement of the depolarization ratio p is performed in 

the space-fixed system of axes which is orientated with respect to the 

direct ion of propagat ion of the incident I ight beam. As a molecule in 

the gas sample tumbles in space, its set of molecule-fixed axes is 

continually changing with respect to the space-fixed axes. The average 

projection of the molecule's tensor properties in the space-fixed axes 

is obtained by (i) referring the molecular property tensors to 

molecule-fixed axes, (ii) projecting these tensors into the space-fixed 

axes, and (iii) averaging the projection over the orientational motion 

of the molecule. 

Let (x, y, z) be the space-fixed system of axes (referred to by tensor 

indices a,{3,r, ... ), and let (1,2,3) (referred to by i,j,k ... ) and 

(1' ,2' ,3') (referred to by i' ,j' ,k' ... ) be the axes fixed in molecules 

1 and 2 respectively as shown in figure 2.2. Seven parameters are used 

to describe the relative configuration of the two molecules, and these 

are as follows: 

(i) The displacement of the two molecular centres is described by the 

parameter R, which is initially fixed along the z-axis. 

(ii) The relative orientation of the molecule-fixed axes of molecule 1 

and the space-fixed system of axes is described by the nine direction 

cosines a7. However, it must be recognized that the complete 

specificat ion of an arbitrary rotat ion of a system of cartesian axes 

about its origin requires only three parameters. We shall describe such 

a rotat ion by the three Euler angles a, f3 and r. To rotate (1,2,3) 
1 1 1 

into (x,y,z), three successive rotations are required [16,17]: 

(a) rotation about the 3-axis through an angle a
1 

(0 ~ al~ 2n), 
(b) rotation about the new 2'-axis through an angle f3

1 
(0 ~ f31~ n), 

(c) rotation about the new 3"-axis (co-inciding with the z-axis) 

through an angle r 1 (0 ~ r 1 ~ 2n). 

The nine direction cosines aa can now in turn be expressed as functions 
1 

of the three Euler angles a , f3 and r . We have [16 17] 
1 1 1 ' 
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[ C05, sinr ~] [CO:~1 
0 -51 off ,] [ C05a I sina 

~l -51~': 
1 1 

a 1 a = cosr o -Slna cosa 
1 1 1 1 

0 1 sin{31 0 cos{3 0 0 1 

cosa cos{3 cosr -sina sinr 1 1 1 1 1 
sina cos{3 cosr +cosa sinr 1 1 1 1 1 

-sin{3 cosr 1 1 

= -cosa cos{3 sinr -sina cosr -sina cos{3 sinr +cosa cosr sin{3 sinr 111 11 111 11 11 

cosa sin{3 
1 1 

sina sin{3 
1 1 

cos{3 
1 

(2.53) 

(iii) Similarly, the relative orientation of the molecule-fixed axes of 

molecule 2 and the space-fixed system of axes is described by the nine 

direction cosines aa" which are in turn expressed as functions of the 
1 a 

three Euler angles a, {3 and r . The components of a , are as for equa-
. 2 2 2 1 

tion (2.53), except that the rotation angles now have the subscript 2: 

a 
a , = 

1 

cosa cos{3 cosr -sina sinr sina cos{3 cosr +cosa sinr -sin{3 cosr 
222 22 222 22 22 

-cosa cos{3 sinr -sina cosr -sina cos{3 sinr +cosa cosr sin{3 sinr 
222 22 222 22 22 

cosa sin{3 
2 2 

sina sin{3 
2 · 2 

cos{3 
2 

(2.54) 

Expressing the T-tensors in space-fixed axes (x,y,z) is a simple matter 

since R is initially fixed along the z-axis. This is illustrated with 

the second-rank T-tensor given in equation (2.28), which becomes 

-1 -3 

[

-1 

Ta.f3 = (41lcJ R ~ 

o 
-1 

o ~] (2 . 55) 

Extension to higher-order T-tensors is obvious. 

2.3 Expressions £or contributions to B £rom non-linear molecules 
p 

The averages in equations (2.44) to (2.47), (2.51) and (2.52) must now 
be expressed in terms of the elements of the diagonal tensors a( 1) and 

(2 ) 
a 

1 ' j' 
• (1) (2) 1j 

as given In (2.11) (a = a, ,), and the seven interaction 
1 j 1 j 

parameters R, a
l

, {3l' r, a, {3 and r. Initially, all tensors must be 
122 2 
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referred to (1,2,3): thi s ensures that for a gi ven re 1 at i ve 

configuration of the two molecules the tensor product in (1,2,3) is 

fixed. If the pair of molecules is then allowed to rotate isotropically 

as a rigid whole in (x,y,z), then the projection into (x,y,z) of this 

pair property (referred to ( 1, 2,3) ) can be averaged over all 

orientations : Averaging over the interaction parameters may subsequently 

be carried out, the average (X) of the pair property X over the 

interact ion co-ordinates following from the probabil i ty in equat ion 

(2.23): 

(X) = -16-:-~-V- J:=o 
m 

n 

J f3 =0 
1 

2 
x R sin(3 sin(3 dR da df3 dr da df3 dr . (2.56) 

1 2 1 1 1 222 

The term (a( 1) a(2» from equation (2.44) is now referred to molecule
zx zx 

fixed axes: 

( 

(1) (2» 
a a = 

zx zx ( 
(1) (2» ( z z x x) a a aaaa 
lJ kl 1 k J 1 

1 (3 (1) (2) 9 2) - a a-a 
3 0 lJ lJ ' 

(2.57) 

where ,)2) l'S th 1 i b'lit t .... lJ e po ar za 1 y ensor of molecule 2 expressed in the 
1 1 (2) mo ecu e-fixed axes of molecule 1. To express a

1
'J' in (1,2,3), we must 

first rotate (1' ,2' ,3') into (x,y,z) (bearing in mind that for the time 

being, R is fixed along the z-axis), and then rotate the resulting a~~) 

from (x,y,z) into (1,2,3). We have 

. (2) 
aa(3 

a f3 (2) a a a 
l' J' l'J' 

a 
where a

1
, is given in equation (2.54). Then, 

1 J a f3 (2) 
= a af3a ,a ,a , , a 1 J 1 J 

(2.58) 

(2.59) 

h 1 b' were aa may e vIewed as the transpose of equation (2.53), but this is 

taken care of by the summation over indices. 
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The tensor facilities of Macsyma were used to evaluate the term in 

angular brackets in equation (2.57), yielding 

(3 (ll (2) 
0: 0: -

1 j 1 j 
90:2) = (0: 0: [2A (A B B + A B B ) + 2A (A B B + A B B ) 

11 22 1 7 2 8 4 2 5 2 8 1 7 5 1 4 

+ 0: 0: [2A (A B B + A B B ) + 2A (A B B + A B B ) + A2B2 + A2B2 
11 33 1 7 3 9 4 3 6 3 9 1 7 6 1 4 1 3 3 1 

+ A2B2 + A2B2 + A2B2 + A2B2 + 2A A B B + 2A A B B ] + 0: 0: [2A 
4 6 6 4 7 9 9 7 4 7 6 9 6 9 4 7 22 33 2 

x (A B B + A B B ) + 2A (A B B + A B B ) + A2B2 + A2B2 + A2B2 
839 536 3 928 625 2 3 3 2 5 6 

+ A2B2 + A2B2 + A2B2 + 2A A B B + 2A A B B ] + 0:2 [2A (A B B 
6 5 8 9 9 8 5 969 695 8 11 1 7 1 7 

+ A B B ) + 2A A B B + A2B2 + A2B2 + A2B2] + 0:
2 

[2A (A B B 414 474 7 1 1 4 4 7 7 22 2 8 2 8 

+ A B B ) + 2A A B B + A2B2 + A2B2 + A2B2] + 0:
2 

[2A (A B B 525 5 8 5 8 2 2 5 5 8 8 33 3 9 3 9 

+ A B B ) + 2A A B B + A2B2 + A2B2 + A2B2) - 90:
2
) . (2.60) 636 6 9 6 9 3 3 6 6 9 9 

Here, A . . . A are the components of equation (2.53) while B B 
1 9 1 9 

are the components of (2.54) : 

A = coso: cos~ cosr -sino: sinr 
1 1 1 1 1 1 

(2.61) 
B = coso: cos~ cosr -sino: sinr 

1 22222 

A = sino: cos~ cosr +coso: sinr 2 1 1 1 1 1 
(2.62) 

B = sino: cos~ cosr +coso: sinr 2 22222 

A = -si~ cosr 3 1 1 
(2.63) 

B = -si~ cosr 3 2 2 

A = -coso: cos~ 5 i nr -5 i no: cosr 
4 1 1 1 1 1 

(2 . 64) 
B = -coso: cos~ sinr -sino: cosr 

4 22222 

A = -sino: cos~ sinr +coso: cosr 5 1 1 1 1 1 

B = -sino: cos~ sinr +coso: cosr 5 22222 
(2 . 65) 
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A = siIlj8 sin1' 
6 1 1 (2.66) 

B = sin/3 sin1' 
6 2 2 

A = cosO'. sin/3 
7 1 1 (2.67) 

B = sinO'. siIlj8 
7 2 2 

A = sinO'. siIlj8 
8 1 1 (2.68) 

B = sinO'. siIlj8 
8 2 2 

A = cos(3 
9 1 (2.69) 

B = cos(3 
9 2 

When we refer the a a cos X term from equation 2.51 to < 
(1) (2» ( ) 
xx xx 12 

molecule-fixed axes using an analogous procedure to that of Benoit and 

Stockmayer [12], and Graham [5]; we obtain 

< 
(1) (2) ) 1 2 \3 (1) (2) 9 2) 2 [-2B) a a cos X = - - a a - a + a --
xx xx 12 1 5 3 1 J 1 J V ' 

m 

(2.70) 

where B is the second pressure virial coefficient, and where the term in 

angular brackets has already been evaluated in equation (2.60). 

We now illustrate the procedure for evaluating the higher-order terms by 

considering a specific example, namely the (a(1)a(2)T 0'.( 1)T 0'.(2» term 
zx z(3 (31' 1'0 oe ex 

in equation (2.46). Projection from (x,y,z) into (1,2,3)· yields 

= a aaa aa aaa aa aaa aa < 
(1) Z x (2) Z (3T (3 l' (1) l' 0T 0 e (2) e x) 
1 J 1 J k 1 k 1 mn m n pq p q r s r stu t u 

= a a a a aaaa. ( 
(1) ( 2 ) T ( 1) T ( 2») ( z z x x) 
1J kl In nq qs su 1 k j u 

For a fixed 

constant, and 

interaction 

if the 

configuration, /a(1)a(2)T a(l)T 0'.(2» 
'\ 1J kl In nq qs su 

pair of molecules is allowed to 

(2.71) 

is a 

rotate 

isotropically as a rigid whole, then use of equation (2.14) leads to the 

average projection 



65 

(2.72) 

in which the angular brackets now indicate an average over the pair 

interaction co-ordinates according to equation (2.56) . We introduce the 

following notation to simplify the symbolic form of the expressions: 

(1) 1 J 
a is as in equation (2.11). T =aaf3TNa , where TNa is given in 

1 J 1 J a "'+' "'+' 

(2.55), and where a 1 is the transpose of (2.53), yielding 
a 

where 

Finally, 

[~11 
T 

~131 12 
T ( r 1

-
3 

T = 41(£ R 
1 J 0 12 22 23 

T T T 
13 23 33 

T = 2A2 - A2 A2 
11 7 4 1 

T = 2A2 - A2 _ A2 
22 8 5 2 

T = 2A2 - A2 A2 
33 9 6 3 

T = 2A A - A A AA 
12 7 8 4 5 1 2 

T = 2A A - A A AA 
13 7 9 4 6 1 3 

T = 2A A A A AA 
23 8 9 5 6 2 3 

(2) 1 J a f3 (2) 
a1 J = a af3a , a , a , " a 1 J 1 J 

yielding 

(2) 
a 

lJ = [~11 
12 

Z 13 

Z 
12 

Z 
22 

Z 
23 

~131 
23 

Z 33 

(2.73) 

(2 . 74) 

(2.75) 



where 

2 = 
11 

2 = 
22 

2 = 
33 

2 
12 

2 
13 

2 
23 

[a, [A2B2 + A2B2 + A2B2 + 2A A B B + 2B (A A B + A A B ) J + a [A2B2 + A'B' + A2B2 + 2A A B B + 2B (A A B + A A B ) J] 
1 1 1 4 4 7 7 1 4 1 4 7 4 7 4 1 7 1 22 1 2 4 5 7 8 1 4 2 5 8 4 7 5 1 7 2 

+ a (A2B2 + A2B2 + A2B2 + 2A A B B + 2B (A A B + A A B )] 
33 1 3 4 6 7 9 1 4 3 6 9 4 7 6 1 7 3 

[a [A2B2 + A2B2 + A2B2 + 2A A B B + 2B (A A B + A A B ) J + a [A2B2 + A2B2 + A2B2 + 2A A B B + 2B (A A B + A A B ) J] 
11 2 1 5 4 8 7 2 5 1 4 7 5 8 4 2 8 1 22 2 2 5 5 8 8 2 5 2 5 8 5 8 5 2 8 2 

+ a (A2B2 + A2B2 + A2B2 + 2A A B B + 2B (A A B + A A B )] 
33 2 3 5 6 8 9 2 5 3 6 9 5 8 6 2 8 3 

[a [A2B2 + A2B2 + A2B2 + 2A A B B + 2B (A A B + A A B ) J + a [A'B
2 

+ A2B2 + A2B2 + 2A A B B + 2B (A A B + A A B ) J] 
11 3 1 6 4 9 7 3 6 1 4 7 6 9 4 3 9 1 22 3 2 6 5 9 8 3 6 2 5 8 6 9 5 3 9 2 

+ a (A 2B2 + A 2B2 + A 2B2 + 2A A B B + 2B (A A B + A A B )) 
33 3 3 6 6 9 9 3 6 3 6 9 6 9 6 3 9 3 

a (A A B2 + A A B2 + A A B2 + B B (A A + A A) + 
11 1 2 1 4 5 4 7 8 7 1 4 1 5 2 4 

+BB (AA+AA) +B [B (AA+AA) +B (AA+ 2 5 1 5 2 4 8 5 4 8 5 7 218 

+ B [B (A A + A A ) + B (A A + A A)]) 9 6 4 8 5 7 318 2 7 

a (A A B2 + A A B2 + A A B2 + B B (A A + A A) + 
11 1 3 1 4 6 4 7 9 7 1 4 1 6 3 4 

+BB (AA+AA) +B [B (AA+AA) +B (AA+ 
2 5 1 6 3 4 8 5 4 9 6 7 219 

+ B [B (A A + A A ) + B (A A + A A)]) 9 649 6 7 319 3 7 

a (A A B2 + A A B2 + A A B2 + B B (A A + A A) + 
11 231 564 897 1426 35 

+BB (AA+AA) +B [B (AA+AA) +B (AA+ 2 5 2 6 3 5 8 5 5 9 6 8 229 

B [B (A A + A A ) + B (A A + A A)]) + 744857 11827 

A A)]) + a [A A B2 + A A B2 + A A B2 
2 7 33 1 2 3 4 5 6 7 8 9 

B [B (A A + A A ) + B (A A + A A)]) + 744967 11937 

A A)]) + a (A A B2 + A A B2 + A A B2 
3 7 33 1 3 3 4 6 6 7 9 9 

B [B (A A + A A ) + B (A A + A A)]) + 745968 12938 

A A)]] + a (A A B2 + A A B2 + A A B2 
3 8 33 2 3 3 5 6 6 8 9 9 

a (A A B2 + A A B2 + A A B2 
22 1 2 2 4 5 5 7 8 8 

+BB (AA+AA) 
3 6 1 5 2 4 

a (A A B2 + A A B2 + A A B2 
22 1 3 2 4 6 5 7 9 8 

+BB (AA+AA) 
3 6 1 6 3 4 

a (A A B2 + A A B2 + A A B2 
22 2 3 2 5 6 5 8 9 8 

+BB (AA+AA) 
3 6 2 6 3 5 

9 6 5 9 6 8 329 3 8 + B [B (A A + A A ) + B (A A + A A)]) 

(2.76) 

0\ 
0\ 
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Once the Macsyma tensor manipulation facilities are invoked to evaluate 

the expressions for averages such as in equation (2.72), we obtain for 

the key parameters in equation (2.43): 

(47[£ r 1 

( { ( b = 0 R - 3 Sa a (Z T + Z T + Z T ) + a (Z T + Z T 
3 15 11 11 11 " 12 12 13 13 22 12 12 22 22 

+ Z T ) + a (Z T + Z T + Z T )] + 4 (a2 
(Z T + Z T 

23 23 33 13 13 23 23 33 33 11 11 11 12 12 

+ Z T ) + a
2 

(Z T + Z T + 2 T ) + a
2 

(2 T + Z T 
13 13 22 12 12 22 22 23 23 33 13 13 23 23 

(2.77) 

(47[£ J -1 -3{ 
a3 = (R -4a (a (2 T + Z T + Z T ) + a (2 T + Z T 

30 11 11 11 12 12 13 13 22 12 12 22 22 

+ 2 T ) + a (2 T + 2 T + 2 T )] + 3 (a2 
(Z T + Z T 

23 23 33 13 13 23 23 33 33 11 11 11 12 12 

+ Z T ) + a
2 

(Z T + Z T + Z T ) + a2 
(Z T + Z T 

13 13 22 12 12 22 22 23 23 33 13 13 23 23 

+ 2 3}33)] + all [Tll (2211+ 2
2

12+ 22 ) + T (2 Z + Z Z + Z Z ) 
13 12 11 12 12 22 13 23 

+ T (z Z + Z Z + Z Z )] + IX (T (Z Z + Z Z + Z Z ) 
13 11 13 12 23 13 33 22 12 11 12 12 22 13 23 

+ T (22 + 22 + 22 ) + T (2 2 + 2 2 + )] [ 
22 12 22 23 23 12 13 22 23 2 23Z33 + a

33 
T

13 

X (22+22+2Z)+T (2Z+2Z+ZZ) (2 
11 13 12 23 13 33 23 12 13 22 23 23 33 + T33 Z13 

(2.78) 



(41tc ) -2 . 

o < -6{ [2 2 [ ) ] 2 2 a = R 3a a 2 T + 2T 2 2 T + T 2 2 + 2 2 + T 2 2 + 2 2 + 2 2 + 22 2 T + 2 T 
4 30 1122 13 23 23 12 13 22 13( 12 33 13 23) 12( 12 . 13 13 22 11 13 12 13 11 12 22 

+ 2T [22 2 T + T (22 2 + 2 2 ) + 222 T ] + 22 T2 + 
22 12 23 13 12 12 22 11 12 12 11 23 13 

+ T2 (22 + 22 2 + 222 + 22 ) + 2T T (2 2 + 22 2 )) + 
12 22 11 22 12 11 11 12 12 22 11 12 

2T [T (2 2 + 2 2 + 2 2 ) + 2 2 T ] + 22 T2 
13 12 22 23 11 23 12 13 12 23 11 12 11 

3a a (22 T2 + 2T [2 2 T + T (22 2 + 2 2 ) 
11 33 13 33 33 12 13 23 13 13 33 11 13 

+ 22 2 T + 222 T ] + T2 (22 + 22 2 + 222 + 22 ) + 22 T2 + 
13 23 12 13 11 13 33 11 33 13 11 12 23 2T2 [T (2 2 + 2 2 + 2 2 ) + T (2 2 + 2 2 ) 

23 13 12 33 13 23 11 12 12~ 12 23 13 22 

+ 22 2 T ] + 22 T2 + 22 2 T T + 22 T2 + 2T [T (2 2 + 
12 13 11 23 12 13 23 11 12 13 11 13 12 23 33 

2 2 + 2 2 + T 2 2 + 22 2 + 3a a 2 T ) ( )]) ( 
2 2 

11 23 12 13 11 13 33 11 13 22 33 23 33 

+ 2T [T (22 2 + 2 2 ) + 222 T + 2 2 T + 22 2 T ] + T2 (22 + 22 2 + 222 + 22 ) + 22 T2 + 2T [T (2 2 
33 23 23 33 22 23 23 22 12 23 13 13 23 12 23 33 22 33 23 22 23 22 23 22 23 33 

+ 22 2 ) + T (2 2 + 2 2 + 2 2 ) + T (2 2 + 2 2 + 2 2 )] + 22 T2 + 22 T2 + 2T (22 2 T + 2 2 T ) 
22 23 13 12 33 13 23 12 22 12 13 33 12 23 13 22 12 13 13 12 22 12 23 13 13 23 12 

+ T T (2 2 + 2 2 )) + 3a
2 

(T2 (22 + 2 2 + 22 + 32
2 

) + 2T [T (2 2 + 2 2 + 2 2 + 32 2 ) + T (2 2 
12 13 11 23 12 13 11 13 33 11 33 23 13 13 12~ 23 33 22 23 11 23 12 13 11 13 33 

+ 2 2 + 42 2 )] + T2 (22 + 22 + 2 2 + 32
2 

) + 2T T (2 2 + Z 2 + 42 2 ) + T2 (22 + 22 + 422 )) + 3a2 
[T2 (22 

12 23 11 13 12 23 22 11 22 12 11 12 13 23 12 22 11 12 11 13 12 11 22 23 33 

+ 2 2 + 32 + 2 + 2T T 2 2 + 42 2 + 2 2 + T 2 2 + 32 2 + 2 2 + 2 2 + T 2 + 42 + 2 2 2 [ . )] 2 (2 2 2 ) 
22 33 23 13) 23 22( 23 33 22 23 12 13) 12( 13 33 12 23 13 22 11 13 22 23 22 12 

+ 2T T (2 2 + 42 2 + 2 2 ) + T2 (2 2 + 22 + 32
2 + 22 )) + 3a2 

(T2 (422 + 22 + 22 ) + 2T [T (42 2 + 2 2 
12 22 13 23 12 22 11 12 12 11 22 13 13 11 33 33 33 23 13 33 23 23 33 22 23 

+ 2 2 ) + T (42 2 + 2 2 + 2 2 )] + T2 (2 2 + 32
2 + 22 + 22 ) + 2T T (2 2 + 32 2 + 2 2 + 2 2 ) 

12 13 13 13 33 12 23 11 13 23 22 33 23 22 12 13 23~ 12 33 13 23 12 22 11 12 

+ T2 (2 2 + 32
2 

+ 22 + 22 ))}) 
13 11 33 13 12 11 (2.79) 

0\ 
00 
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Even with our compact notation, the a term is extremely large, and so 
5 

we introduce a new tensor to further compress the final expression: 

E = o:(1)T 0:(2) where 
1 J 1 J Jk kl ' 

with 

E = 11 

E = 12 

E = 
13 

E = 21 

E = 
22 

E = 
23 

E = 31 

E = 32 

E = 33 

Then, 

E = [~11 1 J 21 

E 
31 

E 
12 

E 
22 

E 
32 

E 1 
13 

~23 ' 

33 

0: (2 T + 2 T + 2 T ) 
11 11 11 12 12 13 13 

0: (2 T + 2 T + 
11 12 11 22 12 

2 T ) 
23 13 

0: (2 T + . 2 T + 2 T ) 
11 13 11 23 12 33 13 

0: (2 T + 2 T + 
22 11 12 12 22 

2 T ) 
13 23 

0: (2 T + 2 T + 
22 12 12 22 22 

2 T ) 
23 23 

0: (2 T + 2 T + 2 T ) 
22 13 12 23 22 33 23 

0: (2 T + 
33 11 13 

2T+2T) 
12 23 13 33 

0: (2 T + 2 T + 2 T ) 
33 12 13 22 23 23 33 

0: (2 T + 2 T + 2 T ) 
33 13 13 23 23 33 33 

(2.80) 

(2.81) 



(4nc )-3 
a = R 9a T (E E + E E + 2E ) + T E 2E + E + E E + E E + E E T + T E (2E + E ) + E E o < -s{ [2 ( 

5 30 33 33 1 3 3 1 23 3 2 3 3 23 ( 33 ( 32 23 ) 22 32 1 2 3 1 ) 2 3 32 22 1 3 33 3 1 1 3 2 1 32 

+ E E + T (E E + E E ) + E E T . + 9a E E T + T (E E + E E + 2E E + E E + T (E E + 2E + E E ) 
) ( 

2 

11 31 12 13 32 23 31 13 31 11 22 23 32 33 23 23 33 22 32 22 23 13 21 22 23 32 22 12 21 

+ T (E E + E E ) + T (E E + E (2E + E ) + 9E E ) + E E T ) + 9a (E E T + T (E E + E E ) + E E T 
13 21 32 12 23 12 23 31 22 21 12 11 21 12 21 11 11 13 31 33 23 12 31 13 21 12 21 22 

+ T (E E + E E + E E + 2E E ) + T (E E + E E + E E + 2E E ) + T (E E + E E + 2E2 ») + 3T (2 (2E
2 

13 13 33 11 31 12 23 11 13 12 13 32 12 22 11 21 11 12 11 13 31 12 21 11 33 33 33 

+ E E + E E ) + 2 (E ( 2E + E ) + E E + E E ) + E E 2 + 2 (E ( 2E + E ) + E E + E E ) + 2 ( E E 
23 32 13 31 23 33 32 23 22 32 12 31 23 32 22 13 33 31 13 21 32 11 31 12 13 32 

+ E E ) + E E 2 ) + 3T [2 (E (E + 2E ) + E E + E E ) + 2 (E
2 + 2E E + E2 + 2E E + E E + E2 + E2 + E E ) 

23 31 13 31 11 23 33 33 32 23 22 23 13 21 23 33 22 33 32 23 32 13 31 23 22 12 21 

+ 2 ( E E + 2E E + E E + E E ) + 2 (E ( E + E ) + E E + E E + E E + E E + E E ) + 2 (E E + E ( E 
22 32 33 22 32 12 31 22 23 13 33 21 12 31 32 23 31 13 23 21 22 11 21 12 31 33 32 21 

+ E ) + E (E + E ) + E E + E E ) + 2 (E E + E E ») + 3T (E E 2 + 2 (E E + E E + 2E E + E E ) + 2 
12 31 22 11 21 23 13 22 11 12 31 13 21 22 23 32 33 23 23 33 22 32 22 23 13 21 22 

2 ) (( x (E E + 2E + E E ) + 2 (E E + E E ) + 2 E E + E 2E + E ) + E E + E E 2 + 3T Z E (E + 2E ) 
23 32 22 12 21 13 21 32 12 23 12( 23 31 22( 21 12 11 2J 12 21 11 13 33 33 31 13 

) ( 
2 

+ E E + E E + 2 E (E + E ) + E (E + E ) + E E + E E + E E + 2 (E E + E E ) + 2 (E + 2E E 
12 23 11 13 23 33 21 12 32 31 13 13 23 12 22 11 12) 22 21 32 12 23 13 33 11 33 

+ E E + E2 + 2E E + E E + E2 + E2 ) + 2 (E E + E (E + E ) + E (E + E ) + E E + E E ) + 2 (E E + E E 
23 32 31 13 31 12 21 13 11 12 32 33 32 22 11 31 21 12 11 23 12 13 11 31 33 21 32 

+ 2E E + E E ) ) + 3T [2 ( E E + E E ) + 2 (E E + E E + E E + E ( E + E ) + E E + E E ) + 2 (E E 
11 31 11 13 12 33 13 32 23 31 23 13 33 12 32 22 31 23 21 12 13 22 11 13 22 13 32 

2 
+ E ( E + 2E ) + E E ) + 2 (E E + E E + E E + E ( E + E ) + E E + E E ) + 2 ( E E + E E + E + 2E E 

22 21 12 11 12 13 23 33 11 32 21 31 23 22 11 13 21 12 13 12 23 32 13 31 22 11 22 

+ E2 + 2E E + E2 + E2 ) + 2 (E E + E E + 2E E + E E ») + 3T (E E 2 + 2 (E E + E E ) + E E 2 + 2 (E E 
21 12 21 12 11 11 23 31 21 22 11 21 11 12 11 13 31 33 23 12 31 13 21 12 21 22 13 13 33 

+ E E + E E + 2E E ) + 2 (E E + E E + E E + 2E E ) + 2 (E E + E E + 2E») 12a(T (E
2 

+ E E + E E ) 
11 31 12 23 11 13 12 13 32 12 22 11 21 11 12 11 13 31 12 21 11 33 33 23 32 13 31 

+ T (E (E + E ) + E E + E E + E E + E E ) + T (E E + E2 + E E ) + T (E (E + E ) + E E + E E + E E 
23 33 32 23 22 32 12 31 22 23 13 21 22 23 32 22 12 21 13 33 31 13 21 32 11 31 12 23 

+ E E ) + T (E E + E E · + E (E + E ) + E E + E E ) + T (E E + E E + E2 ») - (E + E + E ) (3a (E T 
11 13 12 13 32 23 31 22 21 12 11 21 11 12 11 13 31 12 21 11 11 22 33 33 33 33 

+ E T + E T ) + 3a (E T + E T + E T ) + 3a (E T + E T + E T ) + T (E 2 + E 2 + E 2 ) + T (E 2 
32 23 31 13 22 23 23 22 22 21 12 11 13 13 12 12 11 11 33 33 33 32 23 31 13 23 23 33 

+ Z (E + E ) + E 2 + E 2 + E Z ) + T (E 2 + E 2 + E 2 ) + T (E Z + E 2 + 
23 33 22 32 22 21 13 31 12 22 23 23 22 22 21 12 13 13 33 12 23 

+ T (E 2 + E 2 + E 2 + 2 (E + E ) + E 2 ) + T (E 2 + E 2 + E 2 »)}) 
12 13 23 12 22 23 13 12 22 11 21 11 11 13 13 12 12 11 11 

2 (E + E ) + E 2 + E 2 ) 
13 33 11 32 12 31 11 

-..J o 
(2 . 82) 
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Upon gathering the results in equations (2.15), (2.17), (2.57), (2.60), 

(2.70), (2 . 77), (2.78), (2 . 79) and (2.82) , equation (2 . 43) for p takes 

the form 

p = (_1_ (fl«) 2 + _1_ g' + 1 (41[£) -1 a' + _1_ (41[£ ) -2 a' 
15 30 30 0 330 0 4 

+ 3
1
0(41tE:J-3 a~ + .. . ]/(<<2 + /5 (fl«)2 + 1\ i g' + «2 [-e:J 

+ 1 \ (41[£ J -1 b;] (2.83) 

Here, g' 
( 

(1) (2) 2) is the expression for 3« « - 9« gi ven in equat ion 
1 J 1 J 

(2.60), while b' represents that part of b in equation (2.77) contained 
3 3 

within the angular brackets, with similar definitions for a', a' and a' 
345 

with reference to equations (2 . 78), (2.79) and (2 . 82) respectively. 

Equation (2.83) must now be cast into the virial form of equation 

(2 . 21). We have from equation (2.18) 

fl« having been defined in equation (2.13). Equation (2 . 83) can now be 

written as 

Po [I + 
1 g' + 

(41[£ J- 1 

a' + 
(41[£ J-2 

a' + P = 
2(fl«)2 2(fl«)2 3 2(fl«)2 4 

2B O[::]]/{I + i PO[2(~)2 
3 (41[£ J- 1 

+ - + g' + V 
2(fl«)2 m 

which reduces to 

where 

+ a 
4 

+ a 
5 

+ & 
3 

(41[£ J-3 

a' 
2(fl«)2 5 

+ e~]) b' 
3 

(2.84) 

+ ... ) (2 . 85) 
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g = 1 
--- V g' 
2 (t.o::) 2 m 

(2.86) 

a = {1 + _2 }(41lE: )-lV a' 
3 2 (t.0::)2 480::2 

0 m 3 

(2.87) 

(2.88) 

a = {1 + _2 }(41U: )-3V a' 
5 2 (t.0::)2 480::2 

0 m 5 

(2 . 89) 

(41[£ r 1 

& = _ 0 V b' 
3 150::2 m 3 

(2.90) 

It follows that 

B = P (1 - ~ P ) (2B + g + a + a + a + &3 + ... ) . 
po 30 345 

(2.91) 

As with the normal second pressure virial coefficient B, the 

coefficients in equations (2 . 86) to (2.90) are independent of the molar 

volume but dependent on temperature . It is the parameter B which is 
P -1 

directly accessible from a plot of experimentally measured p versus V 
m 

values, and if coupled with a measured value of p , one can extract from 
o 

equation (2.91) a value for 

(2.92) 

It is the sum of terms arising purely from angular correlation and 

collision-induced polarizability anisotropy, namely 

!f = p g+a +a +a +& + 
3 4 5 3 

. . . , (2 . 93) 

. (" . 

which is of interest; and to extract a precise value of this sum from 

the val ue for B' requires an (!f 12B) rat io of the order of uni ty or 
p p 

greater . 



2.4 Evaluation of B by numerical integration p 

73 

Evaluation of the average (X) of a quantity X over the pair interaction 

co-ordinates according to equation (2.56) requires the classical 

intermolecular potential V
12

("r>. General tensor expressions for V1/'r> 
have been derived by Buckingham [14], who then evaluated them for the 

special case of a pair of interacting linear molecules in the 

configuration of figure 1.1 (opposite page 16), obtaining the 

expressions listed in equations (1.80) to (1.86). We must now evaluate 

Buckingham's general expressions for V (-r) in the case of a pair of 
12 

interacting non-linear molecules in the configuration described in 

section 2.2. 

2.4.1 Classical expressions for the intermolecular 

potential energy V (or) 
. 12 

Buckingham [14] has shown that for intermolecular separations R which 

are large relative to molecular dimensions, the pair interaction energy 

V (T) may be considered to consist of three components: 
12 

(i) The electrostatic energy, V , which arises from the 
elec 

interactions of the zero-field electric moments (charge, dipole, 

quadrupole, etc.) of the two molecules, 

(11) The induction energy, V , which arises from the distortion of 
Ind 

the electronic structure of a molecule due to the permanent 

electric moments on the neighbouring molecule, and 

(1·i1) The London dispersion energy, V , 
dlsp 

which arises from 

interactions of the electric moments due to fluctuations in the 

charge distributions of the two molecules. 

These interaction energies are the result of long-range forces which are 

well understood [9,14,18,19], and which are evaluated on the assumption 

that the overlap of the molecular wave functions is small. Now, at small 

ranges of interact ion where the electron clouds of the molecules do 

overlap significantly, the ab initio quantum-mechanical calculations 
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[20] which would be required to take into account the intetmediate-range 

exchange forces are prohibit i vely complicated (especially for many

electron atoms); and so it has been customary [21-23] to assume that the 

interact ion energy components (i) , (i i) and (i i i) above are appl icable 

also to short-range interactions provided that an additional term, 

U ,is added to account for the repulsive short-range 
overlap 

interactions. It is now possible to write 

U (or) = U + U + U + U 
12 elec Ind dlsp overlap 

(2 . 94) 

In most of the work previously undertaken on the properties of gases 

[21-26] , the central-field Lennard-Jones 6: 12 potential U [27] has 
LJ 

been used to represent (u + U ): 
dlsp overlap 

Here, 

while 

andR 
o 

U 
LJ = 4<[[ :f- [:oJl 

the term [:0)" describes the attractive part of 

[ 
R ] 12 . 

R
O 

describes the short-range repulsive part. 

are the well-known Lennard-Jones parameters. 

(2 . 95) 

the potent ial, 

The symbols (: 

Since U is spherically symmetric, Buckingham and Pople [21] proposed LJ 

the addi t ion of a further term to U to account for the angular 
overlap 

dependence of short-range overlap repulsive forces for non-spherical 

molecules . For axially-symmetric molecules, 

given by 
they found U to be 

shape 

(2.96) 

where D is a dimensionless parameter called the shape factor, and which 

lies in the range -0.25 to +0.50 to ensure that the shape potential is 

always repulsive . D is zero for spherical molecules, positive for 

rod-like molecules (i.e. molecules which are elongated in the direction 

of the axis of the dipole moment [24], such as CH F), and negative for 
3 

plate-like molecules (i.e . molecules which are fore-shortened along the 

axis of the dipole moment [24], such as CHF ) . 
3 
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Figure 2 .3. The three extreme intermolecular approaches for two colliding ethene molecules. lOr sulphur dioxide, replace 

the ethene molecules with the sulphur dioxide equivalent shown above. 
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We have used equation (2.96) as a basis for constructing a new shape 

potent ial which describes the orientat ion effects arising from 

short-range overlap repulsive forces for non-linear molecules. Since our 

invest igations deal with molecules belonging to the D2h and C2V point 

groups, we only consider molecules with these specific symmetries . 

Ethene (of D2h symmetry) and sulphur dioxide (of C2V symmetry) are 

chosen as representative molecules, and we orientate the molecule-fixed 

axes (1,2,3) such that the 1-3 and molecular planes co-incide, with 3 

along the principal molecular axis. The thr.ee extreme intermolecular 

approaches for both species are depicted in figure 2.3. The shape 

Potential is seen to be independent of ex and ex, and the simplest 
. 1 2 

force-field which will reproduce the orientation effects of the shape of 

these molecules is 

U.h ... = 4£[ :or2{Dl[3COs2~1+ 3COS2~2- 2] + D 3sin ~ cos r [
22 

2 1 1 

2 2 
+ 3sin ~ cos r -

2 2 
(2.97) 

where D and D are dimensionless parameters called the shape factors. 
1 2 

For axially symmetric molecules, we set D = 0 and recover Buckingham's 
2 

shape potential. To understand the physical meaning of equation (2.97), 

imagine two planar ethene molecules approaching as in case (i i 1) of 

figure 2.3. The approach distance R can be less than R before the onset 
o 

of contact forces, and so in this orientation the repulsive part of the 

Lennard-Jones potential is 

(Dl+ D
2

) is required. The 

reduced: a negative U and positive 
shape 

closest possible approach of two ideal 

(infinitely thin) planes before contact is R = O. For this orientation 

there is no repulsive potential, and [ 
RoJ 12 

4£ If" from U 
LJ 

must be 

completely offset by U . Thus, (Dl+ D
2

) =~. Of course ethene has a 
s~~ 2' 

finite thickness with n-orbitals above and below the 1-3 plane; and it 

is reasonable to expect (D + D) < ~ for this molecule. A similar 
122 

analysis, based on simple molecular geometry, can be undertaken for 

sulphur dioxide. 

U ) in 
overlap 

Having found the two components U and U of the 
LJ shape 

equation (2.94), it is now necessary 

sum (U + 
disp 

find the to 

components of the sum (u + U ) . 
elec ind 

As in previous studies of this 
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kind [23,28-30], U is taken to include potential energies arising 
elec 

from the interactions of permanent dipole and quadrupole moments, while 

U comprises energies due to permanent dipole and quadrupole moments 
Ind 

on the one molecule interact ing with the induced dipole moment of the 

second molecule. 

components 

The sum (U + U ) is found to then have the five 
elec Ind 

U +U =U +U +U +U +U 
elec Ind J.L,J.L J.L,a a , a J.L,lnd J.L a,lnd J.L 

(2.98) 

where, U ,UII,a and Ua,a are the electrostatic dipole-dipole, dipole-
. J.L,J.L r-

quadrupole and quadrupole-quadrupole interaction energies of the 

permanent moments of the two molecules, while U and U are 
a,lnd J.L J.L,lnd J.L 

the dipole-induced-dipole and quadrupole-induced-dipole interaction 

energfes. 

We have from Buckingham [14] that the e lectrostat ic contri but ion to 

U (T) of two interacting molecules is 
12 

(2.99) 

+ .. . . 

For interacting non-linear polar molecules in the co-ordinate system 

shown in figure 2.2, we have 

(2.100) 

where for molecules of C
2v 

symmetry with the 3-axis as the principal 

molecular axis, the dipole moment has only one independent component 
[14] 

(2 . 101) 

Hence, 

(2.102) 
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Similarly. for C and D symmetry. the traceless quadrupole moment 
2v 2h 

has two independent components [14] 

o 
a 

2 
(2.103) 

o 

and we obtain for polar molecules 

u = (4nc )-1{/l R- 4 [a (A (_B2 
+ B2 - B2 + B2 + 2B2 - 2B2) + 2B (A A /l.a 0 3 1 9 1 3 4 S 1 9 3 1 1 

- A A ) + 2B (A A - A A ) - 2B (A B + A B ) + B (A2 - A2 + A2 3 9 S 4 1 S 9 131 S 4 9 1 3 4 

- A2 - 2A2 + 2A2 + 2A B + 2A B )] + a (A (_B2 + B2 - B2 + B2 
6 1 933 S S 292 3 5 6 

+ 2B2 - 2B2) + 2B (A A - A A ) + 2B (A A - A A ) - 2B (A B 8 9 328 3 9 S 5 8 S 9 832 

+ A B ) + B (A2 - A2 + A2 - A2 - 2A2 + 2A2 + 2A B + 2AsBs)]]} · 6 5 9 2 356 8 9 3 3 

(2.104) 

For both polar and non-polar molecules 



= ~ ( )-1{ -5[ 2 [B2(3A2 _ 3A2 + A2 _ A2 _ 4A2 + 4A2) + B2 (-3A2 
U8 8 3 47[£0 R 81 1 1 3 4 6 7 9 3 1 

• 

+ 4A2) + 4(A A - A A ) (B B - B B ) + B2(_A2 + A2 - 3A2 
+ 3A2 

9 3 6 1 4 3 6 1 4 613 4 6 

+ 4A 2 - 4A 2) + 4 (A 2 - A 2 
+ A 2 - A 2 - 2A 2 

+ 2A 2) (B - B ) (B + B ) 
7 9 1 346 7 9 9 7 9 7 

- 16 (A A - A A ) (B B - B B ) - 16 (A A - A A ) (B B - B B ) J 
3 9 1 7 3 9 1 7 6 9 4 7 6 9 4 7 

+ 4(A A - A A ) (B B - B B ) + B2(_A2 + A2 - 3A2 
+ 3A2 

+ 4A2 3 6 2 5 3 6 2 5 623 5 6 8 

- 4A:) + 4 (A~ - A~ + A: - A: - 2A: + 2A:) (Bg - B8) (Bg + B8) 

- 16 (A3A9 - A2A8) (B3B9 - B2B8) - 16 (A6A9 - A5A8) (B6B9 - B5B8) J 

+ 8 8 (B2 (3A 2 - 3A 2 
+ A 2 - A 2 - 4A 2 

+ 4A 2) + B2 (3A 2 _ 3A 2 + A 2 
121 2 356 8 9 2 1 3 4 

+ 4(A2 + A2) - 8A2] - 4B B (A A - A A ) + B2(A2 _ A2 + 3A2 
7 8 9 1 4 3 6 2 5 423 5 

- 3A2 - 4A2 + 4A2) - 4B B (A A - A A ) + B2(A2 - A2 + 3A2 - 3A2 
6 8 9 2 5 3 6 1 4 513 4 6 

- 4A72 + 4A2g) + 4B B (2A A - A A - A A ) + B2[_A2 - A2 + 2A2 
3 6 3 6 2 5 1 4 612 3 

- 3 (A 24 + A 25) + 6A62 + 4 (A 2 
+ A 2) - 8A 2] + 16B B (A A - A A ) 

7 8 9 1 7 3 9 2 8 

+ 16B B (A A - A A ) - 4B2(A2 - A2 + A2 - A2 - 2A2 + 2A2g) 
4 7 6 9 5 8 7 2 3 5 6 8 

+ 16B B (A A - A A ) + 16B B (A A - A A ) - 4B2 (A 2 _ A 2 + A 2 
2 8 3 9 1 7 5 8 6 9 4 7 8 1 3 4 

2 2 2) - A - 2A + 2A - 16B B (2A A - A A - A A ) - 16B B (2A A 679393928176969 

78 

(2.105) 
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Buckingham [14] also gives the contribution to U
12

(-[") arising from the 

induction energy: 

where a is the mean static dipole polarizability. This leads to 
s 

for polar molecules, and 

(2.106) 

(2.107) 

+ 2A 2 (-A 2 + A 2 - A 2) + A 4 
+ 4A 

2 
(A 

2 
+ A 2) + 4A 

4 
- SA A (A A s 1 3 4 S 7 3 S 779 1 3 

+ A A ) + 4A2(A2 + A2 - 2A2) + 4A4] + a2
[A4 -

4 S 914 7 922 

+ 2A2(A2 _ A2) + A4 + 2A2(-A2 + A2 _ A2) + A4 
523 5 S 2 3 5 S 

+ 4A 4 - SA A (A A + A A ) + itA 
2 

(A 
2 

+ A 
2 

88923 5 S 925 
- 2A:) + 4A:] 

_ A2) + A2 (A2 
351 

_ A2 + A2) + 4A A (A A + A A ) + 2A2(_A2 + A2 - A2 + A2 
5 S 7 8 1 2 4 5 8 1 3 4 S 

+ 2A 2) - 4A [A (A A + A A ) + A (A A + AsAs)] + 2A 
2 

(A 
2 

79713 4 S 823 9 1 

+ A~ + A: + A~ - 2A~ - 2A:) + 4A:)]} (2. lOS) 

for both polar and non-polar molecules . Here, as in the paper by 

Buckingham and Pople [21], U has been written so that its 
j..L, ind j..L 

unweighted orientational average is zero: the orientation-independent 

part is assumed to be incorporated in the R-
6 term of U . 

LJ 



Finally, U (~) in equation (2.94) is written 
12 
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with the explicit expressions of these components being given in 

equations (2.95), (2.97), (2.102), (2 . 104), (2.105), (2.107) and 

(2.108). These energy expressions are directly applicable to pair 

interactions of non-linear dipolar molecules, but are easily adjusted to 

accommodate for interactions between non-polar non-linear molecules, 

polar or non-polar axially-symmetric molecules, or even spherical 

molecules simply by setting the relevant multipole moments to zero. 

The expressions for contributions to B given in equations (2.86) to 
p 

(2.90) apply directly to non-linear molecules, and can be averaged over 

pair interaction co-ordinates according to equation (2.56), using the 

interaction energy expressions for non-linear molecules derived above. 

Now, these expressions for contributions to B , in conjunction with the 
p 

U (~), must fully describe linear molecules as a special case. Hence, 
12 

an acid test of these expressions was performed by using in the 

calculations the molecular properties of the linear molecules studied in 

[6,7]. The values thus obtained exactly matched those calculated using 

the expressions for B and U (~) derived specifically for 
p 12 

axially-symmetric molecules [6,7], which is most reassuring. 

2.4.2 The integration procedure 

The averages (X) in equations (2.86) to (2.90) were calculated by 

numerical integration of the appropriate form of equation (2.56) using 

Gaussian quadrature. A very useful feature of the Macsyma package is its 

ability to translate the final expressions directly into Fortran code, 

effectively eliminating the introduction of errors into the lengthy 

integration arguments. The ranges of ex ex {3 {3 'Y and 
l' 2' l' 2' °1 "12 were 

divided into sixteen intervals each, while R was given a range of 0.1 to 

3.0 nm divided into sixty four intervals. The possibil ity of closer 

approaches being allowed for by our shape potential was investigated by 

gi ving R a range of 0.01 to 3.0 nm, again divided into sixty four 

intervals. The calculated averages were found to remain constant to 
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at least seven significant figures, and the range t imi ts of 0.1 to 

3.0 nm were justifiably retained. 

The Fortran programs, examples of which are given in Appendix 2, were 

run in double precision on a 486 DX-2 66 MHz PC with 32 Mb of RAM using 

the fast University of Salford FTN77/486 compiler. A significant 

departure from the Fortran programs used in previous work on linear 

molecules [6,7], examples of which are given in [50], was the use of 

large arrays to store the numerical values of the intermolecular 

potential expressions for all required angular configurations. This 

effectively bypasses repeated calculation of these values within the 

Gaussian quadrature routine, yielding a speed enhancement of a 

staggering 50 times; but has the disadvantage of requiring large amounts 

of expensive memory for storing a few million double-precision numbers. 

When the generation of these arrays exhausted the 32 Mb of RAM, use was 

made of the facility to page data to hard disk, which effectively 

provided a further 200 Mb of memory. Running times of these programs 

were typically of the order of eight hours each, which is to be 

contrasted with around fifteen minutes for the equivalent programs for 

axially-symmetric molecules [6,7]. The arrival of the Physics 

Department's new IBM RISC system/6000 workstat ion in October 1994 was 

greeted with bated breath: the 60 MHz RISC processor yielded dedicated 

run-times a factor of 3.3 times faster than the DX-2 machine. 

2.5 Calculations of B for ethene 
p 

2.5.1 Molecular properties of ethene 

The molecular data required in the calculations of B for ethene are now 
p 

presented. The molecule is taken to lie in the 1-3 plane with the C=C 

bond on the 3-axis, the origin of the molecule-fixed axes incident with 

the midpoint of the bond. For a molecule of D2h symmetry, the traceless 

electric quadrupole moment tensor will have two independent components, 

while the polarizability tensor has three independent components [14]. 

The electric quadrupole moment of ethene has been the subject of 

extensive experimental and theoretical investigation. Unfortunately, the 
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experimental investigations are usually limited to partial 

determinations of the quadrupole moment , or combine various experimental 

data in order to determine estimates of the two independent components 

of the quadrupole moment tensor 9
iJ

. There are, however, the accurate 

theoretical estimates of Spackman [7] at the MP2 (second-order Meller

Plesset perturbation theory) level, and of Maroulis [31] at the MP4 

level, which are in excellent agreement with each other. Table 2.1 

summarizes the measured and calculated data. 

Table 2.1. Selected experimental and theoretical values of the 
quadrupole moment tensor components of ethene. 

104°9 104 °9 104 °9 
Method 11 22 33 

Cm2 Cm2 Cm2 

Measurements of 
COllision-inducyd 6.73 -13 . 33 6.60 absorptiyn ~CIA 
spectra 32 

Measurements[of 
CIA spectra 33] 5.16 -10.41 5.52 

Ma?netizabilit y 
4.67 -12 . 02 7.31 an sotropy 

measurements [34] 

Keasurements of 
induced 
birefrin?ence + 

4.35 -10.99 6.68 second d electric 
virial coefficients 
+ refractive index [35] 

MP2 theory [ 7] 5. 43 -11. 03 5.60 

KP4 theory [ 311 5.370 ± 0. 22 -10.92 ± 0.45 5.549 ± 0. 22 

We have used Maroulis' theoretical values in our calculations, noting 

their good agreement with the estimates of Dagg et ai. [33] obtained 

from collision-induced absorption spectra measurements in ethene rare

gas mixtures. 

Whereas the two principal components of the opt ical frequency 

polarizability tensor of a linear molecule can be deduced from 

experimental values of Po and (Xv [11,36]; in the case of a non-linear 

molecule, which we see from equation (2 . 12) has three principal 

polarizabi 11 ty tensor components, an add it lonal physical relat ionship 

between the components is required if the three components are to be 



Table 2.2. The components of the optical-frequency polarizability tensor of ethene at a wavelength of 
514.5 nm obtained from independently measured sets of values for p , a and R 

o v 20 

lO4 Oa 10
4o 

(Aav ) 10
40

a 
lOOp v 

R 
11 

0 C2 m2J- 1 C2 m2 J- 1 20 C2 m2J- 1 

10
40

a 10
40

a 
22 33 
-

C2 m2 J- 1 C2 m2 J- 1 

1.241 5 ± 0.005 (36) 4.16 (36) 2.011 0.22 ± 0.03 (37) 4.34 3.82 6.11 
1 6 2 

1.250 ± 0.002 [Thl, 4 . 1811 (38) 2 . 091 0.21 ± 0.01 (39) 4.35 
work 3 

3.85 6 . 15 
7 1 
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evaluated individually. It is not surprising, then, that experimentally 

deduced polarizability components of non-linear molecules are extremely 

rare. In 1975, Hills and Jones [37] measured the pure rotational Raman 

spectrum of ethene, and by comparing this spectrum with that calculated 

using an asymmetric rotor computer simulation, they were able to deduce 

a value for the quantity R defined as 
20 

R = 
20 

16 (all - ( 22 ) 

12 (a + a - 2a ) 
L 11 22 33 

(2.110) 

Knowledge of Po and a
v 

allows extraction of the polarizability 

anisotropy through equation (2.18), and the polarizability anisotropy is 

related to the polarizability tensor components through equation (2.13). 

Solving equations (2.12), (2.13) and (2.110) for a , a and a leads 
11 22 33 

to the values listed in table 2.2. In our calculations of !I we have 
p 

used the second set of values in table 2.2 which were obtained from our 

measured Po for ethene (see section 3.2.1 of Chapter 3), the a at 
v 

514.5 nm interpolated from Hohm's high-precision measurements of the 

frequency dependence of a for ethene [38], and the more precise value 
v 

for R recently obtained by Barbes [39]. Use of the first set of values 
20 

in table 2.2, however, results in a decrease of less than 0.5% in the 

calculated !I . 
p 

Unlike for the optical frequency polarizability, the literature contains 

many ab ini t io calculat ions of the components of the stat ic 

polarizability tensor, and table 2.3 contains a summary of selected 

calculations. By extrapolating Hohm's measured dynamic polarizabilities 

[38] to zero frequency, we have obtained an estimate for a of 
( 

-40 2 2 -1 s 
4.5717 ± 0.0008) x 10 C m J . This value, which compares favourably 

with the ab initio estimates, has been used in all our calculations of 

!I p' Calculations performed with the ab initio values yield answers 

different only in the sixth significant figure: this is because a first 
s 

appears in the intermolecular potential through U , which is very 
9,lnd Il 

--much smaller than U 
9,9 



Table 2.4. A comparison of the most precise experimental values for the second pressure virial coefficient of 
ethene, together with our calculated values (see text for force-constants and shape factors). 

T/K 106 S(T)/m3 mol- 1 

Douslin and McElroy and Leve 1 t Sengers Waxman and Achtermann et ai. Calculated in 
Harrison [42] Fang [44] and Hastings [45] Davis [46] [47] this work 

238.15 -220.9 -225.35 

243. 15 -212.0 -211. 6 -215 . 24 

248. 15 -203.5 -205.87 

253. 15 -195.5 -194.7 -197 . 15 

258. 15 -188.1 -189.01 

263.15 -180.9 -180.6 -181. 39 

268. 15 -174.1 - 174.24 

273.15 -167.6 -167.5 -167.7 -167.52 

278. 15 -161. 6 -161. 18 

283. 15 -155.7 -155.5 -155.8 -155. 18 

288.15 -150.3 -150.3 -149.51 

293. 15 -144.9 -144.6 -145.3 -144.13 

298.15 -139.8 -139.8 -140.2 -139.02 

303.15 -135.0 -134.7 -134.16 

323.15 -117.7 -117.9 -117.6 -118.0 -116.85 

348.15 -99.7 -99.6 -100.0 -99.04 

373.15 -84.8 -84.6 -85.1 -84.39 

398.15 -72.3 -72.1 -72.11 

423. 15 -61.6 -61.3 -61. 67 

448. 15 -52.4 -52.2 -52.67 
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Table 2 . 3 . Selected values of ab initio calculated static polarizability 
tensor components of ethene . 

10
40a 10

40a 10
40a 10

40
a 

11 22 33 s 
Authors 

C2m2J- 1 C2m2J- 1 C2m2J- 1 C2m2J- 1 

Amos and 3.99 3 . 66 6.00 4.55 Wi 11 iams [ 401 

Spackman [ 71 4.092 3 . 534 5 . 594 4 . 407 

Maroulis [ 81 4.157 ± 0 . 020 3.695 ± 0.028 5 . 645 ± 0 . 012 4.500 ± 0.020 

Sekino and 4.146 3 . 667 5.582 4.465 Bartlett [ 411 

Finally, we present our values for the shape factors 0
1 

and O
2

, These 

were determined by fitting values of the second pressure vi rial 

coefficient B(T) calculated according to the equation 

N 00 f21l 
B(T) = ~f 

321l R=O a =0 
1 

x R2Si~ si~ dR da d~ dr da d~ dr 
1 2 1 1 1 222 (2.111) 

to the experimental values listed in table 2 . 4 over the temperature 

range 238.15 K to 448.15 K. Force constants required for the 

Lennard-Jones 6:12 potential are given in the appendices of the classic 

text of Hirschfelder et ai . [48] . For ethene, the parameters obtained 

from viscosity data are £/k = 205 K and R = 0 . 4232 nm. The more recent 
o 

parameters of Oas Gupta et ai. obtained from a combination of viscosity 

data and second pressure virial coefficients are £/k = 193.5 K and 

R = 0.4236 nm [49]. We optimized the force constants for best agreement o 

between the calculated and experimental B(T) values over the full 

experimental temperature range, obtaining £/k = 190.0 K and 
R = 0 . 4232 nm. We note that these val ues compare very favourably wi th o 

those of Oas Gupta et al . 

In our choice of molecular shape we treat ethene as a planar molecule, 

the dimensions of which are taken from simple molecular geometry . This 

means that the approach distance R in case (iii) of figure 2.3 can be 
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less than R before the onset of contact forces, while the opposite is 
o 

true for cases 0) and (ii) . D and D must both be positive, and must 
1 2 

satisfy the requirement that (Dl+ D
2
) !>~. As an initial approximation, 

we choose that D should equal D (i. e. a square plane), and adjust 
1 2 

their numerical value until the calculated and experimental B(T) values 

agree to within 1% over the full experimental temperature range . This 

yields rough estimates of Dl and D
2

. The ratio of the true Dl and D2 

values for ethene is obtained from the molecular dimensions (see figure 

2 . 3) by taking the ratio of approaches for cases Oi) and (i) when 

contact forces first occur . We have 

-2D + 4D 
1 2 

4D - 2D 
0.249 

~ 

0.309 ' 
1 2 

which gives 

D 1 _ o - 1. 074 . 
2 

Using the rough D = D values obtained from the square plane treatment, 
1 2 

in conjunction with the known ratio of D and D, it is possible to home 
1 2 

in on the optimum values for the shape factors by adjusting them until 

agreement between calculated and experimental B(T) values is reached. 

This procedure was repeated for various values of the force-constants 

elk and R until they, too, are optimized. After setting R to 0.4232 nm 
o 0 

and elk to 190.0 K, and optimizing the shape factors CDl = 0.22965 and 

D2 = 0.21383), the calculated and experimental curves were found to lie 

within 1 . 0% of each other over almost the entire temperature range (see 

table 2.4). This excellent agreement between theory and experiment fixed 

our choice of force-constants and shape parameters. When the value for 

elk was adjusted a few per cent above or below 190 K, with D and D 
1 2 

being re-optimized, the calculated curve was found to tilt with respect 

to the experimental curve, matching it only for the specific 

elk = 190 K. Hence, matching calculated second pressure virial 

coefficients to experimental data remains an excellent route to the 

optimization of the Lennard-Jones force constants and shape parameters 

even in the case of non-linear molecules with low symmetry. 
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2.5.2 Results of calculations for ethene 

We note that calculat ions of B for ethene when treated as an axially 
p 

symmetric molecule have already been performed [5 , B]. Here, attempts to 

optimize R and elk such that the calculated B(T) values would closely 
o 

fit the experimental values I isted in table 2 . 4 were never entirely 

successful . Choosing the shape factor D such that agreement between 

theory and experiment at around 298 K was within 1% saw typical 

disagreements at the two extremes of the temperature range of as much as 

7%. This in itself indicates just how unsat isfactory it is to assume 

axial symmetry for . the ethene molecule. With R = 0.4232 nm, elk = 205 K 
o 

and D = 0.240; the calculated ~ at 298.2 K and a wavelength of 514.5 nm 
-6 3 -1 P 

is 66 . 04 x 10 m mol [50]. Allowing for the non-linear shape of 
-6 3 -1 ethene changes this value to 94.36 x 10 m mol (as shown below), the 

latter value being in much closer agreement with experiment (see 

Chapter 3). 

Table 2 . 5 summarizes our calculations allowing for the non-linearity of 

ethene. The relative magnitudes of the various contributions to Bare 
p 

calculated at T = 294 . 92 K, which is the mean temperature of our 

experimental determination of B for ethene as presented in Chapter 3. 
p 

Table 2.B presents the temperature dependence of the calculated ~ and 
p 

B values for ethene . The very small temperature dependence in ~ would 
P . P 

be obscured in the experimental uncertainty of measured values over this 

temperature range. 

We note that , as was found for most axially-symmetric molecules [5,61. 

the as term makes a significant contribution to ~ . It is obvious, 
p 

however, that the series of terms is now rapidly converging so that, as 

was argued earlier [B], the a and higher-order terms in the 
6 

dipole-dipole interaction should contribute negligibly. In section 3.2.1 

of Chapter 3 we report our measurement of the second light-scattering 

virial coefficient B for ethene , and make a detai led comparison with p 
the value calculated here . 



Table 2.5. The relative magnitudes of the various contributions to 
B of ethene calculated at 294.92 K and A = 514.5 nm. The Lennard

p 
Jones force-constants R = 0.4232 nm and elk = 190.0 K, and the 

o 

shape factors D = 0.22965 and D = 0.21383, have been used. B is 
1 2 P 

obtained from equation (2.91) using p = 0.01250. The full symmetry 
o 

of the ethene molecule had been allowed for. 

6 Contribution 
Contr i but ing 

10 x Value % 
3 -1 to B 

Term m mol P 

g 23.42 -12.21 

& 2.94 -1.53 
3 

a -68.11 35.52 
3 

a 128.97 -67.26 
4 

a 7.14 -3.72 
5 

~ 94.36 -49.21 
P 

2B -286. 12 149.21 

B' -191. 76 x 10-6 3 -1 = m mol 
p 

B = -2.357 x 10-6 m3 mol- 1 

p 

Table 2.6. Temperature dependence of the calculated ~ and B values 
ethene at A = 514.5 nm. 

p p 

T 106~ 6 10 B [42) ~ 106B 
K p p P 

87 

of 

3 -1 m mol 3 -1 m mol 2B 3 -1 m mol 

238. 15 103.22 -220.9 -0.23 -4.162 

273. 15 96.80 -167.6 -0.29 -2.930 

294.92 94.36 -143. 1 -0.33 -2.357 

328.00 91. 87 -113.9 -0.40 -1. 671 

373. 15 89.78 -84.8 -0.53 -0.981 

448. 15 87.97 -52.4 -0.84 -0 . 207 
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There are no other non-linear non-polar molecules for which the 

necessary molecular data required in a calculation of !I p have .been 

measured or calculated. However, there are two polar molecules belonging 

to the C point group for which such data are available, namely sulphur 
2v 

dioxide and dimethyl ether . We now focus our attention on these 

molecules. 

2.6 Calculations of B for sulphur dioxide 
p 

2.6.1 Molecular properties of sulphur dioxide 

The sulphur dioxide molecule is taken to lie in the 1-3 plane of the 

molecule-fixed axes (1,2,3), with 3 along the prinCipal molecular axis. 

The origin of the axes is at the centre of mass of the molecule. For a 

molecule of C symmetry, the electric dipole moment tensor will have 
2v 

one component, while the traceless electric quadrupole moment tensor 

wi 11 have two independent components, and the polarizabi 1 i ty tensor 

three independent components [14]. 

The equilibrium dipole moment of sulphur dioxide has been precisely 

determined by molecular beam electric resonance spectroscopy [51], and 

this value, which is compared with theoretical estimates in table 2.7, 

has been used in our calculations. 



Table 2.7. Selected experimental and theoretical values of the 
dipole moment of sulphur dioxide. 

Method 

Value selected by the U.S. 
National Bureau of Standards 
[52] 

Molecular beam electric 
resonance spectroscopy [51] 

Ab initio SCF calculations 
[53] 

Ab initio SCF calculations 
[54] t 

Ab initio CPF(ED) 
calculations [54] t 

Cm 

-5.44 

-5.4262 ± 0.0010 

-6.6783 

-6.553 

-5.347 

t The authors argue that the CPF(ED) values are the most accurate 
and reliable. Agreement between these values and experimental 
ones for the various molecular properties is, in general, good. 
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As for ethene, the electric quadrupole moment of sulphur dioxide has 

been the subject of extensive experimental and theoretical 

investigation. Table 2.8 summarizes the measured and calculated data. It 

is important to note that since only the leading moment of charge in the 

multipole expansion is origin independent [59], the quadrupole moment of 

a polar molecule depends on the origin to which it is referred. 

Buckingham and Longuet-Higgins [60] have investigated this matter in 

some depth, and we must specify that for the magnetizability anisotropy 

measurements and ab initio calculations in table 2.8, the origin is at 

the centre of mass of the molecule. We have used the values of 

Ellenbroek and Dymanus [57] obtained from magnetizability anisotropy 

measurements, this being the most accurate set of experimental values, 

and agreeing very well with the ab initio CPF(ED) calculations of 

Bacskay et al. [54]. 



Table 2.9. The components of the optical-frequency polarizability tensor of sulphur dioxide. 

Method 

Experimental derivation from: 

R = 0.212 ± 0.035 [61] } 20 

a = 4.389 [36] 

pv = 0.0185 ± 0.0001 [36] 
o 

Experimental derivation from: 
R = 0.212 ± 0.035 [61] } 20 

a = 4.389 [36] v 
[thl P = 0.0188 ± 0.0001 workj 

o 

Experimental derivation from: 
The Cotton-Mouton effect [62]} 

a = 4.326 [36] 
IJ 

R = 0.212 ± 0.035 [61] 
20 

Experimental derivation 
The Kerr effect [63] 

a = 4.326 [36] 
IJ 

from : 

p = 0.0179 ± 0 . 0001 [36] 
o 

} 
Ab initio calculation from } 
CPF(ED) theory [54] 

;\/nm 

514.5 

514.5 

632.8 

632.8 

514.5 

632.8 

40 
10 all 

C2 m2 J- 1 

5 . 92 ± 0.01 

5 . 928 ± 0.01 

6.03 ± 0.29 

5.80 ± 0.06 

5.789 

5.713 

40 
10 a

22 

C2 m2 J- 1 

3.35 ± 0.04 

3.336 ± 0.04 

3.16 ± 0.19 

3.30 ± 0.04 

3.281 

3.237 

40 
10 a

33 

C2 m2J-l 

3.91 ± 0.05 

3 . 902 ± 0.05 

3.79 ± 0 . 12 

3.88 ± 0.06 

3.779 

3.758 
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Table 2.8. Selected experimental and theoretical values of the 
d 1 t t r components of sulphur dioxide. The origin is qua rupo e momen enso 

at the centre of mass of the molecule . 

Method 

Kagnetlzablilty 
anIsotropy 
measurements [55] 

Kagnetlzablilty 
anIsotropy 
measurements [56] 

Kagnetlzablilty 
anlsotrOQY measure
ments 571. (Thls 
molecu ar beam 
spectrometer had 
50 tlmes better res
olutlon tha~ thQse]) 
used ln [551 & L56 

SCF theory [58] 

SCF theory [53] 

SCF theory [54] 

CPF(ED) theory [54] 

-17.7±1.3 

-22.0 ± 25.4 

-16.4 ± 0.3 

-22.9 

-19.64 ± 0.18 

-19.563 

-16.386 

13.3 ± 2.0 4.3 ± 1.0 

-7 . 7 ± 25.4 29.7 ± 27.7 

12.9 ± 0.2 3.5 ± 0 . 1 

17.2 5.7 

15.17 ± 0 . 40 4.48 ± 0.22 

15. 158 4 . 405 

13.036 3.350 

The optical-frequency polarizability tensor components of sulphur 

dioxide are particularly well-defined, having been measured by three 

independent experimental techniques [61-63], and having been calculated 

by CPF(ED) theory [54] . Table 2.9 contains a summary of these data. The 

values given by Murphy [61] have been deduced using the method of Hills 

and Jones [37] as described in section 2.5.1 . By measuring the pure 

rotational Raman spectrum of sulphur dioxide at 514 . 5 nm, and modelling 

the behaviour using an asymmetric rotor computer program, Murphy 

obtained the value of R as defined in equation (2.110). Combining this 
20 

with the values of p and a at 514 . 5 nm reported for sulphur dioxide in 
o v 

[36] allowed equations (2.12), (2.13) and (2.110) to be solved 

simul taneously for a ,a and a . Of course, this yields two sets of 
11 22 33 

polarizabilities, and in order to choose between them Murphy argued that 

the anisotropy ra -a) 
l: 33 V should be negative since the observed Kerr 

constant of sulphur dioxide is negative [64,65]. This is confirmed by 

CPF(ED) theory [54], so that no ambiguity in the choice remains . In our 

calculations, we have made use of the values obtained from Murphy's R , 
20 

the a quoted in [36], and our p . This sees a negligible increase in ~ 
v 0 P 

of less than 0.5% compared with results based on the p of Bogaard et 
o 
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al. [36]. The two other experimental determinations of the dynamic 

polarizabil ity tensor components yield values at 632.8 nm. In [62], 

measurements of the temperature dependence of the Cotton-Mouton effect 

of sulphur dioxide were combined with known values of the 

magnetizabilities, the mean dynamic polarizability a v 
and Murphy ' s R

20
; and in [63], measurements of 

at 632.8 nm [36], 

the temperature 

dependence of the electro-optical Kerr effect were combined with a and v 
Po [36] to yield very precise polarizabil i ty components. Not ice the 

favourable agreement between the experimentally deduced components and 

those calculated using CPF(ED) theory [54] . 

Bacskay et al. have also performed ab initio CPF(ED) calculations of the 

static polarizability of sulphur dioxide, obtaining a mean static 

polarizabil i ty a of 3.974 x 10-40 C2m2 J-1 [54]. Extrapolat ion of the 
s 

measured dynamic polarizabilities given in reference [36] to zero 

frequency yields an estimate for a of 
s 

(4.2072 ± 0.0013) x 10-40 

C2m2J-1
, and this value, which agrees well with CPF(ED) theory, has been 

used in all our calculations for this molecule. 

Once again, 

values of 

the shape · factors D 
1 

and D were determined by fitting 
2 

the second pressure virial coefficient B(T) calculated 

according to equation (2.111) to experimental values. The B(T) values 

obtained by Kang et al. [66] are the most precise in the literature 

[43], and span the largest temperature range (from 283.15 K to 

473.15 K) . The Lennard-Jones -force-constants given by Hirschfelder et 

al. [48], which were derived from viscosity data, are elk = 252 K and 

R = 0.4290 nm. Optimizing these values for best agreement between 
o 

calculated and experimental B(T) values over the full experimental 

temperature range yielded elk = 220.0 K and R = 0.3850 nm. As in the 
o 

case of ethene, we initially set D = D, adjusting their numerical 
2 1 

value for optimal agreement between the experimental and calculated B(T) 

values. Then, using simple molecular geometry (see figure 2.3) and the 

rat io of approaches for cases (i i) and (i) when contact forces first 

occur, we obtain 

-2D + 4D 
1 2 

-4-=-=D=-----2'"""D- ~ 
1 2 

and hence 

0.378 
0.244 



Table 2.10. A comparison of the most precise experimental values for the second pressure vi rial coefficient 
of sulphur dioxide. together with our calculated values (see text for force-constants and shape factors). 

• 

T/K 

Kang et al. 
[66] 

283.15 -500.0 ± 20 

293.15 -452.0 ± 18 

303.15 -404.0 ± 16 

313. 15 -367.5 ± 15 

323. 15 -332.8 ± 13 

348 . 15 -279.0 ± 11 

373. 15 -232.5 ± 9 

398 . 15 -201. 0 ± 8 

423. 15 -171. 1 ± 7 

448. 15 -144. 1 ± 7 

473. 15 -125 . 8 ± 7 

Cooper and 
Maass [67] 

• -482 
• -434 
• -394 
• -360 

-332 

1Q6S (T)/m3 mol- 1 

Cawood and Riedel h69] 
Followin~ valyes Patterson [68] given by aibuz 70] 

-501 

-433 

-411. 2 -395 

-360 

-350.5 

Calculated in 
this work 

-501.32 

-450.88 

-408.17 

-371.62 

-340.04 

-277.38 

-231. 04 

-195 . 53 

-167.55 

-144.98 

-126.43 

These values were interpolated from a least squares polynomial fit to the authors' measured values. 



D 
1 D - 0 . 866 . 
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Using this ratio in conjunction with the approximate D = D, the best 
1 2 

values for D and D were then obtained by performing trial and error 
1 2 

optimization as previously described. This yielded R = 0 . 3850 nm, 
o 

elk = 220 . 0 K, D = 0 . 0873 and D = 0.1008. A comparison of the 
1 2 

experimental and calculated B(T) values is given in table 2.10. Although 

the calculated values always fall well within the uncertainty limits of 

the experimental values of Kang et al. [66], there are spurious 

discrepancies of up to nearly 3% at some of the temperatures, almost 

certainly due to imprecision in the measured values. Contrast this with 

ethene, where the second pressure virial coefficient has been determined 

to an extraordinari ly high precision by several different workers in 

recent years [43-47]. The reason for this lies in economics : the growth 

of the petrochemical industry has seen worldwide product ion of ethene 

rise to megatons per year , and since large volume-flows of the gas have 

to be measured precisely, there is a demand for accurate knowledge of 

the compression factor . Whereas ethene's PVT properties have enjoyed 

experimental investigation on an almost annual basis, the PVT properties 

of sulphur dioxide were last measured by Kang et al. [66] in 1961. We 

know that extraction of ~ from a measured value of B requires accurate 
p p 

knowledge of the B(T) value at the temperature of the experimental 

determination, especially for a small (~/2B) ratio. Measurement of B(T) 
. P 

for sulphur dioxide ought to be revisited, especially in view of the 

relatively simple and yet extremely precise new method of measuring B(T) 

developed by Koschine and Lehmann [71 ]. 

2.6.2 Results of calculations for sulphur dioxide 

Table 2.11 gives the relative magnitudes of the various contributions to 

Bp calculated at the wavelength and mean temperature of our experimental 

determination of Bp (see Chapter 3), namely i\ = 514 . 5 nm and 

T = 338 . 35 K. Again we stress that contributions arising from the a A 
2 1 

term in equation (2.48) have been found to make, at least in the regime 

of linear polar molecules, a sometimes significant contribution to ~ of 
p 

as much as -9% [6], although contributions to some molecules were as 
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small as -0.8% . We currently have no way of estimating the A-tensor 

components of sul phur dioxide, although calculated estimates are 

probably within the reach of the later versions of the CADPAC (Cambridge 

Analytic Derivatives Package) program of R. D. Amos and J. E. Rice, and 

this avenue should certainly be explored further . In Chapter 3 we report 

our measurement of B for sulphur dioxide, and make a comparison with 
P 

the value calculated here at A = 514 . 5 nm. 

Table 2.11 . The relative magnitudes of the various contributions to 
B of sulphur dioxide calculated at 338.35 K and A = 514.5 nm . The 

P 
Lennard-Jones force-constants R = 0.3850 nm and elk = 220.0 K, and 

o 

the shape factors D = 0 . 0873 and D = 0.1008, have been used. B is 
1 2 P 

obtained from equation (2 . 91) using Po = 0 . 01879 . 

Contributing 
Term 

g 

& 
3 

a 
3 

a 
4 

a 
5 

!f 
p 

2B 

6 10 x Value % 
3 -1 m mol 

-16 . 89 

-3.35 

53 . 31 

194. 12 

22 . 20 

249.39 

-594.82 

B' = -345 . 43 X 10-6 m3 mol- 1 
p 

B = -6.328 x 10- 6 m3 mol- 1 

p 

Contribution 
to B p 

4.89 

0. 97 

-15 . 43 

-56.20 

-6.43 

-72 . 20 

172 . 20 

Table 2.12 lists the temperature dependence of the calculated!f and B 
p P 

values . The rather significant temperature dependence of!f for this 

molecule is surprising in as much as every other molecule i~vestigated 
thus far has been found to have a relatively tiny dependence on 

temperature . This may be an artefact of the omission of a large and 

negative a2 \ term which would diminish with increasing temperature, 
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perhaps stabilizing the calculated ~ (T). Once again, without estimates 
p 

of A-tensor components, we can do no more than speculate . It would be 

unrealistic to turn to experiment for an answer, since the large 

uncertainty of about 4% in the B(T) values of Kang et al. [66] coupled 

with the low (~ 12B) of around -0.4 means that ~ values extracted from 
p p 

a series of B (T) measurements would have such large uncertainties as to 
p 

obscure any temperature dependence. In any case, at T = 303 . 15 K the 

saturation vapour pressure of sulphur dioxide is only 462 kPa [66], so 

that the pressure range is insufficient to yield a precise experimental 

value for B . 
p 

Table 2 . 12. Temperature dependence of the calculated ~ and 
sulphur dioxide at A = 514.5 nm. 

p 

T 
K 

303.15 

338 . 35 

473. 15 

106~ 6 10 B [66] ~ 
P P 

3 -1 m mol 3 -1 m mol 2B 

322 . 99 -404.0 -0 . 40 

249.39 -297 . 4 -0 . 42 

146.27 -125.8 -0.58 

2.7 Calculations of B for dimethyl ether 
p 

2.7.1 Holecular properties of dimethyl ether 

B values of 
p 

106B 
P 

3 -1 m mol 

-8.885 

-6.328 

-1. 930 

Dimethyl ether also belongs to the C point group, and the molecule is 
2v 

taken to lie in the 1-3 plane of the molecule-fixed axes with 3 along 

the principal molecular axis. 

The equilibrium dipole moment of dimethyl ether has been determined from 

the Stark effect by 

~ = -(4 . 37 ± 0.03) x 10-30 Cm. 
3 

Blukis et al. [72] , who found 
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The electric quadrupole moment tensor components have been obtained by 

Benson and Flygare [73] from magnetizability anisotropy measurements. 

These values, which have been used in our calculations, are compared 

with ab initio calculated estimates at the MP2 level of theory in table 

2 . 13. Once again, it is cautioned that the quadrupole moments of polar 

molecules are origin dependent, and the origin is placed at the centre 

of mass of the molecule . 

Table 2.13. The experimental and theoretical values of the quadrupole 
moment tensor components of dimethyl ether . The origin is at the centre 
of mass of the molecule. 

Method 

Kagnetizability 
anIsotropy 
measurements [73] 

KP2 theory [74] 

11.0 ± 2.0 

11 . 59 

-4.3 ± 2.0 -6 . 7 ± 1.7 

-2.56 -9.04 

The optical-frequency polarizability tensor components of dimethyl ether 

have not been measured at ~ = 514.5 nm. However, ab initio values at the 

MP2 level of theory have been calculated for a range of common laser 

wavelengths [75], including ~ = 514 . 5 nm. We note the excellent 

agreement (within 3%) between the calculated [74,75] and measured 

[74,76] polarizabil ity components at ~ = 632.8 nm; and so we use the 

calculated values at ~ = 514 . 5 nm with confidence. These values are 

listed in table 2 . 14. 

Table 2.14 . The components of the optical-frequency polarizability 
tensor of dimethyl ether at ~ = 514 . 5 nm, as obtained from ab initio 
calculations [75] . 

1040 ex 1040ex 10
40

ex 11 22 33 

C2m2J- 1 C2m2J- 1 C2m2J- 1 

6.72 5 . 51 5.32 
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Spackman and co-workers have also performed ab ini tio MP2 calculat ions 

of the static polarizability of dimethyl ether, obtaining a mean stat~c 

polarizability ex of 5.420 x 10-
40 C2m2J-1 

[75]. Extrapolation of the 
s 

measured dynamic polarizabilities for this molecule [36] to zero 

of (5.726 ± 0.011) X 10-40 C2m2J-1 . frequency yields an est imate for ex 
s 

This value, which is in good agreement with the theory, has been used in 

all our calculations for dimethyl ether. 

The shape factors D and D were once again determined by fitting values 
1 2 

of the second pressure virial coefficient B(T) calculated according to 

equation (2.111) to the available experimental data. The only reliable 

set of experimental measurements of B(T) for dimethyl ether are those of 

Haworth and Sutton [77], which were taken at 298.2 K, 313.2 K and 

328 . 2 K, and which have a quoted precision of less than 3% . Using the 

molecular geometry of dimethyl ether given by Coonan et al. [74], we 

obtain from the ratio of approaches for cases (ii) and (i) in figure 2.3 

when contact forces first occur 

and hence 

-2D + 4D 
1 2 

4D - 2D 
0 . 22 :::: 
0.16 

1 2 

D1 _ 
o - 0.90 . 

2 

As before, approximate values of D and D are obtained by setting 
1 2 

D1 = D2 , and optimizing their numerical value for best agreement between 

the calculated and measured BCT) values . Then, the ratio of D and D is 
1 2 

invoked, and the process repeated . There are no Lennard-Jones force-

constants for dimethyl ether in the literature, and so the values for 

ethanol [48], namely R = 0 . 4455 nm and c/k = 391 K, were used as a 
o 

first approximation. Optimization of the force-constants and shape 

factors yielded 

D2 = 0.2137. Values 

R = 0 . 440 
o 

nm, c/k = 320.0 K, D1 = O. 1923 and 
of B(T) calculated using these parameters are 

compared with the experimental data in table 2 . 15. 
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Table 2.15. A comparison of the most precise experimental values for the 
second pressure virial coefficient of dimethyl ether, together with our 
calculated values (see text for force-constants and shape factors). 

TIK 106B(T)/m3mol -1 

Haworth and Sutton [77] Calculated in this work 

298 . 2 -456 ± 10 -455.7 

313 . 2 -405 ± 10 -406.4 

328.2 -368 ± 10 -366. 1 

2.7.2 Results of calculations for dimethyl ether 

Table 2.16 gives the relative magnitudes of the various contributions to 

B calculated at the particular temperature of 328.2 K and wavelength of p 
514.5 nm. Currently, there are no available values for the A-tensor 

components of dimethyl ether, and so the extent to which the a A term 

contributes to ~ 
p 

2 1 

cannot be estimated. Table 2.17 lists the temperature 

dependence of the calculated ~ and B values. Dimethyl ether has a 
p p 

relatively high calculated (~/2B) ratio of -2.7, and so is an ideal 
p 

candidate for experimental investigation. We are still awaiting the 

delivery of a cylinder of dimethyl ether, and so measurements are not 

rePorted in this work. 



Table 2.16 . The relative magnitudes of the various contributions 
8 of dimethyl ether calculated at 328 . 2 K and A = 514 . 5 nm . 

p 
Lennard-Jones force-constants R = 0 . 3850 nm and elk = 220 . 0 K, 

o 

the shape factors D = 0 . 0873 and D = 0 . 1008, have been used. 8 
1 2 P 

obtained from equation (2 . 91) using p = 0.00371 [36] . 
o 

Contri buting 
Term 

g 

& 
3 

a 
3 

a 
4 

a 
5 

!f 
P 

28 

106 x Value 
3 -1 

m mol 

19.78 

-2.50 

201. 32 

1495.76 

228.31 

1942.67 

-736.0 

% Contribution 
to 8 

P 

1. 64 

-0.21 

16.68 

123.95 

18.92 

160.99 

-60.99 

8" = 1206.7 X 10- 6 m3 mol- 1 

P 

8 = 4 . 455 x 10- 6 m3 mol- 1 

P 

to 
The 

and 

is 
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Table 2.17. Temperature dependence of the calculated !f and 8 values of 
dimethyl ether at A = 514.5 nm. P P 

T 10
6 

!f 
6 10 8 [771 !f 106 8 

K P P P 
3 -1 3 -1 28 3 -1 m mol m mol m mol 

298.2 2545. 10 -456 -2.79 6.029 

313 . 2 2197.73 -405 -2.71 5. 123 

328 . 2 1942 . 67 -368 -2.64 4.455 

Unfortunately, there are no other non-linear molecules for which we have 

all the necessary molecular data to 

Molecules which could be profitably 

perform calculations 

investigated include 

of !f. 
P 

hydrogen 

sulphide, dichloromethane and difluoromethane; but, to the best of our 

knowledge , their quadrupole moments have not yet been determined. 
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CHAPTER 3 

EXPERIMENTAL MEASUREMENTS OF SECOND 
COEFFICIENTS OF NON-LINEAR 

LIGHT -SCATTERING 
MOLECULES 

3.1 The light-scattering apparatus 
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VIRIAL 

Experimental determination of the second light-scattering virial 

coefficient B of a gas requires an apparatus which can measure the 
p 

depolarization ratio p of the light scattered at right angles to the 

direct ion of propagat ion of an incident beam in the gas sample for a 

wide range of pressures. The initial development of the light-scattering 

apparatus used in this work was carried out in the period 1991-1992, and 

was based upon a critical choice of optical components such as the light 

source and the type of detection system, bearing in mind the 

difficulties encountered by other workers in this field. In particular, 

the design of the scattering cell was crucial to the success of the 

experiment because an extremely low level of stray light within the cell 

is essential if the very small horizontally polarized component of the 

° 90 scattered light is to be accurately measured. This apparatus was 

limited to measurements at room temperature, and was substantially 

modified in the period 1993-1994 to allow vapour samples which have low 

saturation vapour pressures at room temperature to be heated to an upper 

limit of 100 °C. The substantial increase in saturation vapour pressure 

at these elevated temperatures enabled a pressure-dependence study of 

sulphur dioxide to be performed. To place the overall design of our 

apparat us in its proper context, it is best to briefly review the 

historical evolution of light-scattering experiments. 

As has already been mentioned in section 1.3, the scattering of light by 

gases was first experimentally observed by Cabannes in 1915 [1], hence 

bringing to fruition the predictions made by Lord Rayleigh in his 

theoretical discussion of the phenomenon in 1899 [2]. Before the advent 
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of the laser, several other workers besides Cabannes made attempts to 

measure p , and they were all confronted by the formidable experimental 
o 

difficulties of measuring an extremely low level of scattered light 

using photographic emulsion or visual detection techniques . Errors were 

compounded by the convergence of the incident light beams being used in 

the experiments, these being derived from the sun or from arc lamps and 

being converged by lenses to intensify the beams as much as possible; 

and it is not surprising that the results of the various workers were in 

poor agreement and appear to be unreliable up to about ±10%. 

Accurate measurements of p became possible in part by the use of photo-
o 

multipliers as scattered light detectors, but in the main due to the use 

of lasers as light sources. Their intense and highly parallel beams of 

monochromatic light are ideal for work in this field . The first workers 

in this field to exploit the laser were Bridge and Buckingham in 1964 

[3], and they placed their scattering cell containing the gas sample 

inside the resonant cavity of the laser to obtain a very high incident 

beam intensity of around 100 mW. Measurement of the 900 scattered 

intensities polarized parallel and perpendicular to the electric vector 

of the incident beam are necessary for the evaluation of p; and these 

components were selected using a Glan-Thompson analyzer, and measured 

using a red-sensitive photomultiplier. In 1978 Bogaard, Buckingham, 

Pierens and White [4] reported p values for 39 gases at three different 
o 

wavelengths. A 50 mW helium-neon laser was used for A = 632.8 nm, while 

an argon-ion laser was used for A = 514. 5 nm and A = 488.0 nm. The 

optical system was similar to that of Bridge and Buckingham's described 

above, but the gas sample cell was placed outside the laser cavity to 

enable easier alignment. The apparatus of other workers in this field is 

very similar in design, and so will not be discussed here. Instead, a 

detailed account of the apparatus used in this work is presented. 

The optical system used for our experiment is shown schematically in the 

adjacent figure 3 . 1. The output beam of the argon-ion laser is nominally 

polarized vertical to the optical bench and pure polarized light is 

obtained by using a polarizing prism. The polarized beam then passes 

through the scattering cell and strikes a light transducer which allows 

the stability of the incident beam's intensity to be continuously 
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moni tored. The 90° scattered beam passes through an analyzing prism, 

which allows selection of its vertically and horizontally polarized 

components. The neutral density filter is used to attenuate the more 

intense vertically polarized component, hence overcoming problems due to 

the slight non-linearity of the photomult iplier' s response at higher 

count rates. The output signal from the photomultiplier is amplified and 

fed into an electronic photon counting system housed in an IBM 

compatible personal computer. Supporting software allows the computer to 

count discrete photons reaching the photomultiplier's photocathode , and 

by measuring the respective count rates of the horizontally and 

vertically polarized components of the 

depolarization ratio p is easily calculated) 

3.1.1 The optical bench 

scattered beam, the 

The various optical components have to be aligned as precisely as 

possible to reduce the presence of geometrical errors in the measurement 

of p. Bridge [5] has shown that the error in p will be negligible (i.e. 

less than 11500) provided that the vertical of the main optical rail 

supporting the polarizer and scattering cell, and that of the 90° 

optical rail supporting the analyzer and photomultiplier, co-incide to 

within 1° . This necessitated a very stable, vibration free optical bench 

to support the optical rails, which themselves had to be easily 

adjustable for obtaining the vertical position. 

Use was made of a very heavy L-shaped steel C-bar 2.3 m long, 25 cm wide 

and 9 cm high; with the small 'L-piece' side arm being 0.5 m long . This 

opt ical bench had three adjustable feet wi th ant i -vi brat ion pads to 

allow it to rest upon a granite slab (supported by brick pillars). Each 

of the two steel optical rails was mounted on the optical bench by 

resting upon the tips of three bolts screwed into the bench, hence 

providing a tripod support . Screwing the bolts allowed adjustment of the 

vertical position of the rail. The 90° optical rail was positioned on 

the side arm of the bench, with the main optical rail being positioned 

on the 2.3 m length of the bench. The rails were set to be exactly 
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perpendicular to each other with a T-square; a precision engineering 

spiri t level then being used to ensure that the rails were exactly 

level. Finally , a plumb-bob was used to verify that the two rails were 

vertical. The extent to which the vertical posit ions of the two rails 

co-incided was accurately determined by aligning the transmission axis 

of a polarizing prism such that it was truly vertical on one rail (using 

the method described in section 3 . 1.2), and then placing it on the other 

rail and re-aligning it to be vertical . The difference between the two 

vertical positions was found to be 45' of arc, which satisfies the 

requirement that they should co-incide to within 1° to keep geometrical 

errors negligible. 

3.1.2 The laser 

The argon-ion (Ar+) laser is preferable to the helium-neon (He-Ne) laser 

as a source of incident radiation for light-scattering experiments for 

three reasons . Firstly, the output power of the green line of the Ar+ 

laser is often more than ten times as great as that of the He-Ne red 

line. Secondly, the intensity of Rayleigh-scattered light is inversely 

proportional to the fourth power of the wavelength of the incident beam, 

and green light has a shorter wavelength than red light. Finally, most 

photomult ipl iers operate more efficient ly in the blue-green spectral 

range than in the red . 

The Spectra Physics model 165 Ar + laser was used in this work, its 

adjustable prism allowing a selection of anyone of eight different 

wavelengths ranging from 514.5 nm in the green part of the visible 

spectrum to 451.9 nm in the violet . A useful feature of the laser is the 

abil tty to vary the plasma current and hence the output power of the 

beam: when measuring pressure dependent effects, high density gas 

samples are used, and these have high intens i ty scattered beams which 

can push the response of the photomultiplier into non-linear regions . In 

these instances, the abil tty to reduce the intensity of the incident 

beam from the half a watt or so required for scattering samples at 

around atmospheric pressure to a few milliwatts proves invaluable . 
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The 514.5 nm line, which has a maximum output power of about 0.8 W, was 

used throughout this work . At this wavelength the laser beam has a 

diameter of 1.5 mm at its l/e2 points, and a beam divergence of 0.5 

milliradians. Bridge and Buckingham [6] have quantified the geometrical 

error that arises in measurements of p due to the incident beam being 

not exactly parallel. For a slightly divergent linearly polarized 

incident beam, the observed p deviates from the true p by an amount 

P = p' + ~ B2 
observed true 4 

(3. 1 ) 

where B is the maximum angle of divergence of the beam in radians. 

Hence, for the Ar+ laser beam used in these experiments, the beam 

divergence of 0.5 milliradians leads to a ~ B2 of the order of 10-
7

, 
4 

which is a completely negligible error for a p value of down to about 

10-4 • The p values for the anisotropic molecules investigated in this 

study are of the order 10-2, and hence remain unaffected by this 

geometrical error. 

The laser was mounted on the optical bench by resting its four 

adjustable feet in holders welded onto the bench, which enabled minor 

adjustments of the beam's height and direction to be made with ease .. The 

beam was carefully aligned to be exactly parallel to the main opt ical 

rail, this being verified by mounting a metal disc with a small hole on 

one end of the optical rail such that the beam passed exactly through 

the hole, and then reposit ioning it on the other end of the rail a 

distance of 1.0 m away to see if this condition was still satisfied. 

The laser beam is almost completely linearly polarized in a plane 

approximately vertical to the optical bench. The incident beam passing 

through the gas sample needs to be a pure linearly polarized beam, the 

electric field vector of which is oscillating in an accurately defined 

vert ical plane. This is achieved by interposing a polarizing prism 

between the laser and the scattering cell, with its transmission axis 

set exactly parallel to the vertical of the optical rail. Use was made 

of an air-spaced Glan-Thompson prism, suitable for use in the high-power 

incident beam, which was mounted in a divided circle such that its end 
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faces were perpendicular to the axis of rotation . The divided circle's 

vernier scale allowed the transmission axis of the prism to be set with 

a resolution of 2' of arc, and in order to set this axis exactly 

vertical to the optical rail, use was made of a second reference 

polarizing prism in a similar mount. Both prisms were positioned on the 

main opt ical rai I, the laser beam passing centrally through each of 

them. The transmission axis of the polarizing prism was set 

approximately vertical by adjusting it for extinction of the incident 

beam and then rotating it through 90°. The reference prism was then 

rotated until the transmitted reference beam was completely 

extinguished, the setting on the divided circle a being noted. After 
1 

reversing the reference prism by rotating it through 180° about a 

vertical axis, it was again adjusted for extinction at a setting a. The 
. 2 

settings a and a will not be the same until the transmission axis of 
1 2 

the polarizing prism is exactly vertical, this condition being achieved 

by rotating the polarizing prism through an angle 1~(a2- a
l

) I and 

repeating 

reference 

the entire 

prism, the 

procedure until 

beam transmitted 

a = a . 
1 2 

by the 

After removing the 

polarizer was then 

completely linearly polarized in a plane vertical to the optical bench 

to within 2' of arc. 

The laser output beam was found to fluctuate in intensity from time to 

time, and this necessitated continuous monitoring of the intensity with 

adjustment of the plasma current to keep it at a fixed value. After 

passing through the scattering cell, the incident beam fell on the 

photodiode of a Photamp model A-1805 light transducer, the output 

voltage of which was monitored using a digital multimeter. The moment a 

drift in the voltage was observed, the plasma current was adjusted to 

maintain a constant beam intensity. Typically, the output could be kept 

constant to one part in a thousand throughout anyone experimental 

determination of p. 
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3.1.3 The scattering cell 

The essential features of the scattering cell are that it must contain 

the gas samples introduced into it in a pure and dust-free state , it 

must withstand a gas pressure of at least 4 MPa if the density 

dependence of p for a gas is to be a large enough effect so as not to be 

obscured by the experimental uncertainty in the p measurements, and it 

must be designed in such a manner as to keep the stray background light 

to a bare minimum. In addition, since non-linear polar molecules are 

generally vapours at room temperature, with typical saturation vapour 

pressures of only a few hundred kPa, provision has to be made for 

elevating the cell's temperature. 

The cell was constructed out of stainless steel, which is inert to the 

two gases investigated in this work, hence eliminating the possibility 

of chemical react ion and subsequent contaminat ion of the scattering 

medium. As can be seen from figure 3.2, the interior of the scattering 

cell is essentially a pair of crossed cyl indrical tubes; the incident 

laser beam travell ing along the axis of what wi 11 be called the main 

tube, and the 90° scattered light travelling along the axis of what will 

be called the perpendicular tube. The perpendicular tube was of 3.0 cm 

diameter, and was bored out of a solid rectangular block of stainless 

steel 4.9 cm by 4.9 cm by 12.4 cm, with circular end flanges 6.4 cm in 

diameter to allow the attachment of the exit window and the light trap. 

The tube was threaded throughout to allow precise positioning of light 

stops . The main tube, 2 . 0 cm in diameter and also threaded throughout, 

was bored out of two separate but identical cylinders of stainless steel 

3. 4 cm in diameter; one for the entrance of the incident beam into the 

cell and the other for its exit. Each cylinder had a circular flange of 

6 . 4 cm diameter at one end to enable the attachment of a window, while 

the other end was threaded to allow screw-in attachment to the cell body 

wall, teflon a-rings providing leak-t i ght seals . 

To ensure a dark background to the field of view of the scattered light 

detector, a Rayleigh horn [7] was positioned on the far end of the 

perpendicular tube as seen by the detector. In earlier work on 

axially-symmetric molecules [8] we cast a bronze horn, since stainless 
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steel has a much higher melting point and as a result is considerably 

more problematic for the foundryman to cast . Since bronze was inert to 

most of the gases studied in [8], th i s presented no serious 

complications. Similarly, the bronze horn sufficed for our current study 

of ethene . However, after attempting measurements of hot sulphur 

dioxide, the horn's highly pol ished interior surface was attacked and 

severely tarnished, result ing in a significant loss of performance in 

its ability to reflect stray light out of the detector's field of view. 

Attempts to flash-coat the interior of the bronze horn with both gold 

and hastelloy-C proved unsuccessful : the sulphur dioxide vapours 

penetrated the thin metallic films and attacked the bronze underneath, 

leaving the upper layer of inert metal in a crinkled mess . The Metals 

Reference Book [9] provides a thorough tabulation of the corrosion 

resistance of metals to chemical attack, and aluminium of at least 99 . 0% 

purity is quoted as being completely resistant to attack from sulphur 

dioxide. In fact, even moist sulphur dioxide, which forms highly 

corrosive sulphurous acid , is unable to tarnish aluminium of this 

purity. Aluminium has the additional advantage in that it can be 

polished to yield a highly reflective surface, which is an essential 

requirement of a Rayleigh horn. · The Huletts Aluminium Company kindly 

donated us 10 kg of the purest aluminium pellets which they manufacture, 

the aluminium content exceeding 99 . 7%, · and attempts were made to cast a 

new horn out of this metal . The casting of pure aluminium is 

troublesome, since shrinkage which occurs on cooling results in 

porosity. Indeed, when the first casting was pressure tested using water 

and a hydraul ic pump it fai led at 2 MPa, and a cross-sect ional cut 

through the region of failure revealed a substantially porous interior . 

A second horn was cast using a much larger gate feeding off a big 

reservoir of molten aluminium, and a great deal of the hot metal in the 

reservoir was sucked away to replenish the casting as it shrunk on 

cool ing. This horn was successfully pressure tested to 6 MPa, and was 

polished into an efficient light trap which is inert to sulphur dioxide 

as well as a host of other gases and vapours which might be investigated 

i n the future . The horn was bolted to the cell with eight Allen screws, 

a teflon a-ring providing a leak-tight seal. 
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The measurement of the depolarization of light scattered at right angles 

out of an incident beam of pure linearly polarized light by gas 

molecules obviously requires that the entrance window and 90° exit 

window of the cell do not introduce significant spurious depolarization 

of the incident and scattered beams. Windows of Pockels glass were 

chosen because of their inherent low strain, and their low stress 

coefficient which is essential for high pressure work where shear 

stresses can be induced in the windows resulting in additional strains 

to those already present as a result of the clamping of the windows to 

the cell. The windows, which were 5.2 mm thick and 25.0 mm in diameter, 

were sandwiched between teflon discs with holes of 5.0 mm diameter to 

allow the unhindered passage of light, these in turn being sandwiched 

between two stainless steel discs with recessed holes. The discs were 

bolted together with eight Allen screws which had to be tightened 

systematically to ensure that the windows were exactly perpendicular to 

the incident light beams. Care was taken not to overtighten the screws, 

since this could result in unwanted strains in the windows. These steel 

discs were then fastened onto the cell flanges with Allen screws and 

using teflon O-rings for leak-tight seals, hence providing entrance and 

exi t windows for the incident beam and an exit window for the 90° 

scattered beam. 

Once again, hot sulphur dioxide vapour exhibited destructive behaviour, 

this time in its interaction with the windows . Wherever it came into 

contact with the Pockels glass, it left behind opaque white stains which 

penetrated beneath the surface, affecting both the transmission and the 

state of polarization of incident light. These stains could not be 

removed with organic sol vents, and the windows were salvaged by a 

technician from the CSIR Optics Division who polished the deposits off. 

We investigated possibilities to overcome this problem, and decided to 

coat the windows with a protective film of quartz. We consulted the CSIR 

Optics Division, and established that they have thin-film coating 

facilities. They informed us that the ideal technique is to heat the 

Pockels glass to a high temperature so that adhesion of the coating can 

be guaranteed. However, since this could affect the low stress 

coefficient of the glass, which is achieved by cooling gradually over a 
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period of many months, we opted for the process to be carried out at 

room temperature . The windows were subsequently coated with a 0.5 /lm 

layer of quartz, and the film appeared to adhere very well despite 

having been deposited at room temperature. We were concerned that the 

quartz might have been deposited in crystalline form, hence having the 

potential to affect the state of polarization of a transmitted beam. 

However, upon invest igation, the protect i ve layer was found not to 

induce a discernible spurious depolarization of polarized light. The 

windows were now quite inert to hot sulphur dioxide vapour, and 

measurements were recommenced. 

The teflon a-rings used to seal the flanges of the cell were found to 

slowly absorb moisture from the atmosphere, this eventually leading to 

corruption of the seals. Tightening of the Allen screws would often be 

sufficient to re-seal these weak points, but from time to time the 

teflon would become completely degraded, new washers having to be made 

and fitted. The procedure for determining the precise location of a leak 

was greatly simplified with the use of an Edwards Spectron model 300E 

leak detection system. Whenever the presence of a new leak became 

apparent; either as a result of a steady drop in gas pressure (as 

measured by the pressure transducer attached to the cell) if the gas was 

compressed above atmospheric pressure , or a steady increase in pressure 

once the cell had been evacuated by a vacuum pump; the cell was filled 

to a pressure of 4 MPa with an 80 : 20 helium-oxygen mixture, the leak 

detector's sniffer probe then being used to detect where hel i um was 

emanating from the cell. This detection system proved to be highly 

efficient, the most minute leaks being readily located within minutes . 

The cell was held in an aluminium cradle which could be firmly secured 

to the optical rail, and which allowed fine adjustments to the height of 

the ce 11 as we 11 as to the tilt of both the main and 90° tubes to be 

made with ease, hence ensuring that they could be aligned to co-incide 

exactly with the incident and 90° scattered light beams respectively. 

This need for manoeuverability of the cell necessitated a link between 

the cell and the gas system that was both flexible and capable of 

withstanding a pressure of at least 6 MPa. The flexible stainless steel 

cable used in the hydraulic systems of aircraft satisfied both of these 
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requirements, and was used to good effect. After complete assembly of 

the cell, it was pressure tested by filling it with water, attaching ' a 

suitable liquid pressure gauge, and elevating its pressure with a 

hydraul ic pump. No leaks appeared for a pressure of up to 6 MPa, 

allowing a safe maximum working pressure of 5 MPa which is in any case 

the upper limit of the pressure transducer's measuring range. 

When working with sulphur dioxide vapour, attempts to raise the 

temperature of the cell by winding heating tape around the exterior 

proved unsat isfactory, the temperature varying by as much as 20°C at 

different points on the cell when aiming for a mean temperature of 

100°C. Uniform heating was achieved by encasing the body of the cell in 

a perspex bath filled with dimethicone oil. A Hewlett-Packard 3421A Data 

Acquisition/Control Unit was used to control a commercial 350 W 

immersion heater operating off mains: a simple BASIC program was written 

to instruct the 3421A unit to monitor the mean temperature of the oil as 

measured by two calibrated thermocouples, turning the heater on and off 

via a relay switch so as to maintain the desired temperature to within 

±0 . 2 DC. A mechanical stirrer with variable speed control ensured rapid 

distri but ion of heated oil wi thin the bath. The maximum temperature 

obtainable was l i mited to 100°C, this being the upper limit of the WIKA 

pressure transducer . The interior temperature of the cell was moni t.ored 

using a calibrated thermocouple positioned within the cell, and as close 

to the scattering volume as possible . The interior temperature was 

extremely stable (to within 0 . 1 DC) and hence well defined . 

With each new gas, the cell was completely dismantled and cleaned of all 

grease, dust and other contaminants using petroleum ether. The aluminium 

horn was pol ished with Brasso to give a highly reflect i ve interior 

surface, and the teflon washers were cleaned in ethanol and thoroughly 

dried. The coated Pockels windows were cleaned of dust using only 

freshly distilled ethanol and lens tissue . 

As has already been alluded to, an extremely low level of stray light is 

essential if the very small horizontally polarized component of the 

scattered light is to be accurately measured . This condition was 

achieved by using a series of light stops 2 mm and 3 mm in diameter , and 
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positioning them at various locations along the axis of the main tube by 

screwing them along its thread. After passing the incident beam along 

° the main axis of the cell, the light emanating from the 90 window was 

observed with the naked eye until the background radiation was seen to 

be at a bare minimum. It was found that if the incident beam so much as 

grazed a light stop, this acted as a powerful source of stray light. The 

optimum arrangement was found to be when a 3 mm stop was right against 

both the entrance and exit windows of the main tube, with a 2 mm stop 

very close to the entrance window. Stops were also placed in the 90° 

tube of the cell, not only to reduce the level of stray light, but also 

to limit the detector's field of view. This is necessary because the 

measurement of p for light scattered in exactly the 90° direction is not 

possible in practice, both the detector and the scattering volume being 

of finite size. Bridge and Buckingham [6] have investigated the effect 

of the divergence of the scattered light, showing that if the maximum 

divergence accepted by the detector is an angle C, in radians, then 

p = p (1 + ~ C2
) + _1_ c4 + ... . 

observed true 4 2 4 
(3.2) 

Thi s error is 

term gives an 

0.04% assuming 

very small: even if C is as large as 6°, the ~ C2p 
4 true 

error of only 0.25% whi Ie _1_ C4 produces an error of 
2 4 

~ ° p is of the order 10 . Three stops were used in the 90 

tube, a 3 mm one being positioned very close to the centre of the cell 

whi Ie a 2 mm one was placed half way between the centre and the exit 

window of the tube, another 2 mm one being placed right against the exit 

window. The narrow cone of scattered light reaching the detector had a 

divergence of less than 3°, hence rendering the geometrical error in p 

completely negligible. 

It was found that even a slight misalignment in the cell resulted in 

measured val ues of p which were sometimes as much as double the true 

value! Hence, the cell was painstakingly aligned, the photomultiplier 

and photon counting system (described in sections 3.1.6 and 3.1.8 

respectively) being used in preference to visual methods to obtain the 

minimum background count rate when the incident beam was passed through 

the evacuated cell. It came as no surprise that when this requirement 

had been rigorously sat isfied, the incident beam's reflect ion off the 
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entrance window was found to travel directly back into the output 

aperture of the laser. 

3.1.4 The gas line 

The gas line, shown in the adjacent figure 3.3, was designed to allow 

dust-free gas samples to be introduced into the scattering cell. Being 

constructed from standard Hoke high-pressure stainless steel tubing and 

val ves , the system was capable of withstanding pressures in excess of 

15 MPa. 

The requirement that the gas sample be completely free of dust and other 

large particles arises because the 1 ight scattered from a single dust 

particle passing through the incident beam is far more intense than the 

light scattered by the gas sample itself , the light detector then 

producing a large and strongly fluctuating signal. A dust-free sample 

resul ts in a steady signal being produced, hence providing a means of 

determining when this condition has been compl etely satisfied. 

It was found that passing gas samples through a 2 ~m sintered stainless 

steel fi Iter before introducing them into the cell was inadequate. A 

steady detector signal was achieved only after placing a Hi 11 ipore 

cellulose membrane with an average pore size of O. 2 ~ in series with 

the steel filter. Sulphur dioxide was found to dissolve the cellulose, 

and so the more resil ient Durapore polyvinyl idene fluoride membranes 

were obtained, and used to good effect. A useful visual means of 

ensuring that the gas sample was dust-free was to increase the output 

power of the incident beam to its full 0.8 W and to then observe the 90° 

scat tered beam with a travell ing microscope, any dust part icles being 

readily detected as bright specks of light drifting about randomly. 

The cell itself was dedusted by flushing it with a constant stream of 

dry air which had been sucked through a O. 2 ~m membrane fi 1 ter by the 

rotary oil pump. After a few minutes of flushing, no dust particles 

could be detected with the microscope; the flushing being continued for 
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about an hour for good measure. The cell was then evacuated by closing 

the Hoke Micromi te fine-metred valve whi Ie leaving the vacuum pump 

running. The entire gas line was then tested for leaks with the Edwards 

leak detection system, both when under vacuum and when filled with the 

helium-oxygen mixture to a pressure of about 4 MPa. 

Gas samples were introduced by connecting the required gas cylinder to 

the inlet, opening all valves, and evacuating the entire line with the 

vacuum pump. After isolating the pump by closing valve C, a little of 

the gas was introduced into the system by closing the fine-metred valve 

A, opening the gas cylinder and then slowly opening A. This gas was then 

evacuated by opening valve C, the process being repeated once more to 

remove any remaining traces of air or gases from previous samples. 

Finally, the gas sample was admitted to the required pressure as 

measured by the Wika model 4501 pressure transducer connected directly 

to the scattering cell. This transducer had been calibrated against a 

CSIR calibrated Budenburg Master Test Gauge, ensuring a pressure reading 

correct to within 1% for pressures of the order 100 kPa, and correct to 

within 0.1% for pressures in excess of 1 MPa, with a maximum measurable 

pressure range of 0 kPa to 5 . 2 MPa. 

Sulphur dioxide, which is a vapour at room temperature, was init ially 

transferred into a 300 ml stainless steel cylinder which was connected 

in between the Durapore filter and valve B. An additional valve D was 

fitted between the filter and the cylinder. The procedure used to fill 

the cylinder with sulphur dioxide was as follows. All valves were 

opened, the entire gas line being evacuated. Valves A and B were then 

closed, after which the commercial gas cyl inder was opened and the 

fine-metred valve A adjusted to allow a gentle flow-rate. The steel 

cyl inder was placed in an empty dewar which was slowly fi lled with 

1 iquid nitrogen, hence freezing de-dusted vapour into the cyl inder. 

After closing valves A and D, the dewar was removed, the cylinder and 

the tubing linking it to the scattering cell being wrapped in heating 

tape connected to a 48 V isolat ing transformer. The transformer was 

relay controlled by the same 3421A Control Unit used to maintain the 

temperature of the silicone oil bath, the temperature being measured by 

a thermocouple attached to the cylinder. Heated vapour was then admitted 
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to the cell by opening valve B as required. 

Once samples had been introduced into the cell, it was isolated from the 

rest of the system by closing valve B, and was allowed to equilibrate 

before measurements · of p were commenced. The flexible stainless steel 

hose connecting the gas line to the cell, and the rubber hose connecting 

tap C to the vacuum pump, ensured manoeuverabil ity of the cell for 

accurate alignment purposes . Ethene, which is a highly flammable gas, 

could not be exhausted to the atmosphere after measurements had been 

taken, since our extractor fan is not spark proof. After consultation 

with the Chemistry Department's safety officer, it was decided that the 

spent gas should be burnt off in a controlled environment. Hence, the 

ethene was exhausted from the cell via valve C into a lecture bottle, 

being frozen out using liquid nitrogen. The bottle was then transferred 

to a fume hood where the nozzle was directed above a Bunsen burner 

flame. The bottle was allowed to warm up very gradually as the emerging 

gas burnt off. Sulphur dioxide was also exhausted into a frozen 

cylinder, was transferred to the fume hood and bubbled through a strong 

sodium hydroxide solution. In the light-scattering laboratory itself, we 

employed a gas alarm which could detect concentrat ions of ethene as 

small as 50 ppm, although no gas leaks occurred during our experiments. 

3.1.5 The analyzer 

Bearing in mind that the depolarization ratio p of the 90° scattered 

light is the ratio of the scattered intensities polarized parallel and 

perpendicular to the direction of the electric vector of the incident 

light beam respectively, the precise selection of these two components 

is seen to be crucial for the accurate measurement of p , which is 

commonly of the order 10-
2

. A high quality prism polarizer is essential; 

and in this work, use was made of a Melles-Griot Glan-Thompson prism of 

square cross section and of dimensions 11 mm by 11 mm by 31 mm. The 

transmission axis was parallel to the end faces of the prism, which was 

bought already embedded in acyl indrical metal mount, the axis of 

rotation of which was perpendicular to the end faces of the prism. This 



Figure 3.4 (a) Shift in the field of view caused by tilting the analyzer 
prism. 

Figure 3 . 4 (b) Distance-dependent shift in the field of view due to non
parallel prism end faces. 
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cylinder enabled the prism to be mounted in a divided circle, with the 

transmission axis perpendicular to the axis of rotation. The vernier 

scale permitted angular settings with a precision of 2' of arc. 

The field of view of the scattered light detector should remain constant 

as the analyzer is rotated. Bridge [5] has shown that the shift in the 

field of view because of tilt in the prism, as shown in the adjacent 

figure 3 . 4 Cal , is 

d ~ I iCn-l) 
n 

(3.3) 

where n is the extraordinary refractive index of calcite, I is the 

length of the prism, and i is the angle of incidence of the laser beam 

at the prism surface. Since there was no visually discernible wobble in 

the Melles-Griot prism as the divided circle was rotated, it was assumed 

that i < 1°. Hence, putting i = 1° with n = 1.488 (for A = 514.5 nm) and 

I = 31 mm, a d of 0.18 mm is obtained, which is negligible. 

Of course, the transmitted beam with shift d is only parallel to the 

incident beam if the two end faces are exactly parallel to each other. 

In order to investigate this, the prism was mounted in a precision 

lathe, the axis of rotation of the cylindrical mount then co-inciding 

precisely with that of the lathe . A linearly polarized laser beam was 

passed through the prism, and was found to be deflected in opposite 

directions for the transmission axis being set parallel to the incident 

beam's plane of polarization, and then being rotated through 180° . The 

prism was removed from the lathe, the beam then fall ing exactly in 

between the two deflected points . A net deflection of 4 mm over a 

distance of 1. 5 m from the prism was observed, the deflection as the 

beam left the prism being too small to be measured. The divergence of 

the transmit ted beam away from the direction of the incident beam as 

found here indicates that the prism faces are in fact not parallel, as 

depicted in the exaggerated figure 3.4 (b). Fortunately, a divergence of 

2 mm over 1. 5 m means a negligible divergence of only 0.1 mm over a 

distance of about 10 cm, which is the distance of the detector from the 

analyzer. 
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The orientat ion of the transmission axis of the prism was determined 

using a second prism as described in 3.1.2 , with a helium-neon laser 

beam arranged to travel exact ly parallel to the 90° optical rai I and 

directly into the centre of the scattered light exit window. The laser 

was linearly polarized approximately vertically to the 90° optical rail . 

Once the transmission axis was exactly vert ical , the angle was noted 

from the divided circle's scale to the nearest 2' of arc, the other 

vert ical posit ion being 180° larger; and the two horizontal positions 

being 90° greater and 90° smaller than this vert ical position. A good 

check to verify the alignment of the apparatus is that the intensity of 

the scattered light reaching the detector should be a minimum when the 

transmission axis of the analyzer is exactly horizontal. 

Finally, the analyzer prism was linked to the 90° exit window 

of the scattering cell via a light-tight tube to prevent stray light 

from interfering with the scattered light signal . This tube was 

water-cooled during high-temperature work to prevent the analyzer from 

being heated up. 

3.1.6 The photomultiplier 

The intensity of the 90° scattered light is very small, and in 

particular that of the horizontal component which for a typical p of the 

order 10-
2 

is a hundred times smaller than the vertical component . The 

need for an extremely sensitive light detector can readily be 

appreciated. 

A photomult iplier tube provides the necessary detection capabil it ies, 

and can in fact be used to count individual photons if the incident 

intensi ty is not too high. When I ight reaches the photomul t ipl ier' s 

photocathode, electrons are emitted as a result of the photoelectric 

effect. Electrostatic acceleration and focusing of these photoelectrons 

onto a dynode results in the emission of a number of secondary 

electrons, which in turn are accelerated and focused onto yet another in 
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a chain of dynodes. Finally, the electrons emitted from the last dynode 

are collected at the anode . If the ratio of this signal output current 

to the photoelectric signal current from the photocathode - this ratio 

. h' h (. above about 106
), the being called the gain · - 1S very 19 1. e. 

ampl ified signal from a single photoelectron can be detected as a 

discrete pulse of current: hence the photomultiplier's ability to count 

discrete photons. 

The advantage of photon counting over analogue measurement of the anode 

current lies in the ability of the counting technique to distinguish 

between true photon events and the spurious pulses originating from the 

spontaneous release of electrons from the dynodes. Electrons released 

spontaneously result in current pulses of different amplitudes to those 

arising from photon events, and these pulses can be discriminated 

against and disregarded by an electronic circuit in the photon counting 

technique, but not in the analogue measurements where all charge 

contri but ions to the anode are integrated regardless of their origin. 

Hence, photon counting leads to much greater accuracy and a far better 

signal-to-noise ratio than the analogue method. Furthermore, the photon 

counting output is of a digital nature, facilitating direct interfacing 

to a computer for automatic collection and analysis of data. 

An EHI 9128B photomultiplier, recently developed explicitly for photon 

counting, was used throughout this work. It has a diameter of 29 mm, and 

has eleven I inearly focused dynodes. These dynodes replace the older 

venetian blind systems, resulting in a higher gain, excellent 

single-electron response and good pulse height resolution, all of which 

are essential to the photon counting technique. The photocathode is 

sensitive to light in the blue-green region of the spectrum, which is 

an obvious requirement when working wi th an Ar + laser. The tube was 

placed in an EHI model QL30/RFI light-tight housing which also provided 

screening from stray electric and magnetic fields. 

The photomultiplier housing was firmly mounted onto the 90° optical rail 

such that the incoming cone of 90° scattered light travelled 

perpendicular to the window of the photomultiplier tube, and fell 

symmetrically about its centre. The 9128B tube's window is plano-
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concave, photons falling near the edges of the window being focused onto 

the photocathode as readily as those falling near the centre. A 

consequence of this is that the detector, positioned some 35 cm from the 

centre of the scattering cell, and with a window diameter of 29 mm, has 

a maximum angle of acceptance of 4.5°. This should not lead to 

significant geometrical errors as seen by equation 3.2; nevertheless, 

I ight stops reduced the angle of divergence of the cone of scattered 

I ight reaching the detector to less than 3°. This ensured that the 

background to the field of view was restricted to the Rayleigh horn, 

helping to keep the level of stray light to a minimum. The 

photomultiplier housing was connected to the analyzing prism by a light

tight tube with a slot allowing the insertion of a neutral density 

filter between the photomultiplier and the prism. 

The optimum operating voltage of the photomultiplier tube which is used 

in conjunction with a pulse amplifier, pulse height discriminator and 

pulse counter has to be carefully ascertained. The 9128B photomultiplier 

used in this work was powered by a stabilized Fluke model 415B high 

voltage power supply, and the anode output pulses were fed into a Thorn 

EMI model C604-A amp I ifier/discriminator using a 10 cm length of 50 n 
BNC screened cable to minimize pulse distortion and spurious pick-up 

from stray fields. For each input pulse with ampl i tude wi thin the 

acceptable limits, the amplifier/discriminator produces a single output 

pulse of well defined width and amplitude which is then fed into the 

photon counter. Following the output of a pulse, the output of further 

pulses from the C604-A is disabled for a well defined dead time, hence 

necessitating statistical correction of the count rates. A useful 

feature of the computer program which controls the C660 photon counting 

board used in this work (see section 3.1.8) is the inclusion of a 

subroutine to calculate the statistical corrections for dead-time 

automatically. 

To determine the optimum voltage, a scattering medium of approximately 

100 kPa of CO
2 

was introduced into the cell. The Ar+ laser was tuned to 

deliver an incident beam of A = 514.5 nm, the incident intensity being 

kept constant throughout the measurements. The vertical component of the 

90° scattered light I was se ected by the analyzer, providing the 
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photomultiplier with a light source of constant intensity. Care had to 

be taken when selecting the intensity of the input beam such that the 

count rate of the photomultiplier did not exceed about 106 I pu ses per 

second, since the count rate can then become non-linear with respect to 

the input light signal due to "pulse pile-up" arising from the dead time 

of the electronic circuitry. The number of pulses arising per second 

from the C604-A output were counted for a series of tube operating 

voltages ranging from -900 V to -1800 V in steps of 20 V. The resulting 

curve is shown in figure 3.5 (labelled "signal"), and has a well-defined 

plateau. The dark count, obtained when the photomultiplier is in 

complete darkness and arising mainly from thermionic emission of 

electrons from the photocathode and dynodes, was then measured over the 

same voltage range, the resulting curve also being shown in figure 3.5 

(labelled "dark count"). The curve showing the ratio of the signal count 

rate to the dark count rate is given in figure 3.5 (labelled 

"signal/dark") . The optimum operating voltage maximizes this signal/dark 

ratio while minimizing the dark count rate. This is because the dark 

count rate limits the lower level of light detection, with a high dark 

count rate obscuring a relatively tiny signal. The operating voltage 

should preferably also lie on the plateau region of the signal curve so 

that the count rate is independent of small fluctuations in the applied 

voltage or photomultiplier gain. Since the company-recommended operating 

voltage of -1270 V for the 9128B tube used here was found to satisfy the 

above considerations, this voltage was used throughout our experiments. 

3.1.7 The neutral density filter 

The 9128B photomultiplier's response was found to be slightly non-linear 

for count rates above about 100 kHz. Since the dark count rate of the 

photomultipl ier when operated at -1270 V is about 200 Hz, it becomes 

necessary to adjust the incident laser beam intensity so that the small 

horizontal component of the scattered light has a count rate at least 

twenty times as large so as not to be degraded by the dark count 

'noise'. Now, typical values of p are of the order 10-2 , so that the 

vertical component of the scattered light would thus have a typical 



123 

count rate of about 400 kHz which is well into the non-l inear region. 

The solution to this problem is to attenuate the vert ically polarized 

scattered light signal by a precisely known factor of about ten. This 

was achieved by placing a high quality neutral density filter behind the 

analyzer so as not to introduce spurious depolarization into the 

scattered light signal. It was slotted into a light-tight holder in 

order to prevent light from the room reaching the photomultiplier . The 

attenuation factor of the filter was measured using two different 

methods: 

Firstly the method described by Bridge [5] was used, a scattered light 

signal of constant intensity being measured by the photomultiplier 

itself . The analyzer was set to transmit the vertically polarized 

component of the light scat tered out of a medi urn of 150 kPa carbon 

monoxide. The incident beam intensity was chosen such that a photon 

count rate of approximately 25 kHz was obtained, which is well before 

non-linearity in the photomultiplier response occurs . One hundred count 

rates were obtained of the signal without the filter in place, followed 

by a hundred with the fi 1 ter inserted in between the analyzer and 

detector, the mean count rates and standard deviations being calculated 

in each case. This was repeated with the cell evacuated, the means of 

these background readings being subtracted out so that the fi Iter's 

attenuation factor was calculated only for light scattered from the gas 

sample itself. A filter attenuation factor of 10.1 ± 0.2 was obtained. 

In the second method, a laser beam was diverged and allowed to fallon 

the photodiode of the Photamp model A-1a05 light transducer, the output 

being measured using a digital voltmeter. The suppl iers of the light 

transducer specified excellent linearity over a wide range of light 

intensities, even with the relative gain of the transducer being changed 

from 1x to lOx , 100x , or even 1000x . This was verified by measuring the 

intensity of a laser beam transmitted by crossed polarizers, a plot of 
2 

cos (crossed angle) versus measured intensity being linear to within 

0.2% over a relative intensity range of 100. The neutral density filter 

was then inserted into the diverged laser beam such that its faces were 

perpendicular to the direction of propagation of the beam, the 

attenuated signal being measured. The Photamp output voltages were 
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extremely stable, allowing precise measurements to be taken. The filter 

was removed and re-inserted several times for several different laser 

beam intensities, and the mean filter attenuation factor was calculated 

to be 10.27 ± 0.05, which lies within the uncertainty of the factor 

obtained above using Bridge's method. The uncertainty here is much 

smaller, providing a more reliable value for the attenuation factor, and 

this value has been used throughout the measurements of p undertaken in 

this work. 

3.1.8 The data acquisition system 

The Thorn EMI mode I C660 counter/t imer board was installed in an IBM 

compatible personal computer by insertion into one of the computer's 

8 bit expansion slots. This effectively converted the computer into a 

low cost but high performance pulse counting instrument for recording 

the output from the 9128B photomultiplier when operating in the photon 

counting mode. The enormous advantage of this photon-counting system 

over the conventional counters is that computer programs can be used to 

greatly simplify the collection, storage, and analysis of data. 

Some specifications of the C660 counter/timer are summarized below. 

The board has a 20 MHz 32 bit counter for ECL pulses, and is connected 

to the C604-A module via a 9-way 'D' plug allowing current to be 

transferred from the computer to power the amplifier/discriminator while 

enabling the pulses emanating from the C604-A to be transferred to the 

board for counting. A wide range of counting periods can be selected, 

from a very fast 52 ~s to 20 s; and the counting period is accurate to 

within ±1 ~s. The C660 board is controlled entirely by a set of computer 

programs written in Microsoft QuickBasic suppl ied by Thorn EMI. These 

programs are menu-driven, readily allowing selection of a range of 

features. For example, measured count rates can be collectively viewed 

on the computer screen, and can be printed out or stored in a data file 

which can later be accessed by other computer programs wri t ten for 

specific requirements. For example, the computer program "depoI2. bas", 

written in BASIC as part of this project, accesses data files of 
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measured count rates for the 900 scattered light, and directly 

calculates the depolarization ratio p and its statistical uncertainty. 

Other features are the inclusion of a subroutine to statistically 

correct measured count rates for the dead-time in the photon-counting 

system's electronic circuitry, and the easy selection of the length of 

time desired for each period of counting (in the allowable range of 

52 IlS to 20 s), the counts accumulated during each period then being 

averaged to allow the number of counts per second to be displayed. 

For the measurements taken in this work, use was made of the faci I i ty 

allowing the counter to cycle through a set of counts several times . A 

considerable reduction in the effects of noise can be achieved by 

accumulating large numbers of counts and taking an average. The count 

period was set to 1 second, and sets of 20 counts were measured and 

stored as elements in an array. Each count in every additional set was 

added to its corresponding array element, and this was continued until 

the desired number of cycles had been completed. A total of 10 cycles, 

for example, would require that each of the 20 elements in the final set 

of accumulated counts be divided by 10 to yield a set of 20 count rates 

representing the intensity of the observed light signal. These 20 values 

could then be averaged to yield a mean value X, and a measure of the 

uncertainty is the standard deviation s given by 
x 

s = 
x 

N - 1 

(3 . 4) 

where N is the total number of values (N = 20 here), with x being the 
1 th i value. 

The count rates were stored in data files which were later accessed and 

analyzed using the BASIC program written specifically to calculate the 

depolarization ratio p and its estimated uncertainty. 
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3.2 Experimental measurements and results 

The density dependence of the depolarization ratio p of a gas has been 

described by means of the virial expansion in section 2 . 1.2 where, from 

equation (2.21) , 

B C 
p = Po + yP + -E.. + ... 

m y2 
(3 . 5) 

m 

in which p is the extrapolated depolarization ratio at zero density. 
o 

Here, the second light-scattering virial coefficient B describes 
p 

contri butions to p from the molecular interact ions between pairs of 

molecules, with the third virial coefficient C describing contributions 
p 

to p from triplet interactions etc . If B is to be obtained from a plot p 
of experimentally observed values of p taken over a range of gas 

densities, care has to be taken that the gas is not compressed to such 

an extent that triplet or higher order interactions become significant . 
-1 A plot of p versus Y will be linear for intermediate pressures where 
m 

pair interactions predominate, deviations from 1 ineari ty occurring at 

higher pressures where the higher order interact ions begin to make 

relatively large contributions. The B value of a gas at a given 
p 

temperature can thus be obtained as the slope of the linear region of a 
-1 

P versus Y plot for the gas, the intercept yielding a value for p . 
m 0 

Since Graham [10] has emphasized the Significant temperature dependence 

of B , it becomes obvious why such care has to be taken in the p 
measurement and control of temperature during the determinations of p. 

The experimental procedure undertaken in this work for the determination 

of p at a gi ven pressure and temperature requi red the measurement of 

four distinct quantities, namely, (i) the intensity I of the 900 

v 

scattered light reaching the photomultiplier when the incident light 

beam was passed through the cell and the scattering medium contained 

therein, the transmission axis of the analyzer being set vertical (i.e. 

parallel to the electric vector of the incident beam) ; (ii) the 

scat tered light intensity Ih with the analyzer rotated through 900 to 

set its transmission axis horizontal; Ci i i) the background intensity 
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I (b) after the cell had been evacuated and the analyzer transmission 
v 

axis had again been set vertical; and finally (iv) the background 

intensity I (b) with the transmission axis set horizontal. 
h 

Of course, I was measured after attenuation of the full intensity by a 
v 

neutral density filter to avoid errors due to non-linearity in the 

photomultiplier's response at higher intensities, and the observed 

reading then multiplied by the filter's attenuation factor to yield the 

true I . 
v 

The depolarization ratio p was then given by 

I - I (b) 
h h 

p = I I (b) (3.6) 
v v 

A BASIC program was used to calculate p and its standard deviation from 

data files containing the count rates of the various Iv' I
h

, Iv(b), and 

I (b) signals as measured by the C660 counter/timer for a particular 
h 

gas sample. 

Another important consideration in taking measurements of p was the 

stabilization of both the laser output intensi ty and the 

photomultiplier's dark count rate. The laser generally stabilized after 

one hour's operation, while the photomultiplier dark count generally 

st.abil ized fifteen to twenty minutes after applying the high voltage, 

provided it had been stored in its light-tight housing since it was last 

used. If the photocathode was exposed to light, and in part icular to 

fluorescent light, when the tube was not in use then an extremely high 

dark count was observed after initial application of the high voltage, 

and stability was realized only after about an hour of operation. 

For the molecules investigated here, p is sufficiently large to mask 
o 

the contribution to the polarized light arising from vibrational Raman 

scattering, and no isolating filter was necessary. 
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3.2.1 Results for ethene 

As seen in table 2.6, the theory indicates a ratio magnitude (Yp/2B) for 

ethene of about 0.33 at room temperature, which is not very favourable . 

However, the second pressure virial coefficient B(T) of this molecule is 

precisely known, table 2.4 containing a comparison of selected 

experimental values which are seen to be in agreement at least to within 

0.5% over the temperature range 238.15 K to 448.15 K. Because of this, 

the value of Y extracted from a measured B using the relationship p p 

(3.7) 

is not rendered overly imprecise despite the dominant presence of 2B. 

Our measurement of the pressure dependence of the depolarization ratio p 

of ethene was carried out at room temperature with no direct temperature 

control on the cell. It took a month to gather a complete set of 

measurements, and bearing in mind the significant temperature dependence 

of B , the work was performed in a laboratory with no windows to ensure 
p 

a well insulated environment . Variations in the ambient temperature were 

less than 2 °c over the entire month, the mean being (294.9 ± 1.8) K. 

c. P. grade ethene of 99 . 5% purity, supplied by Air Products, was 

admitted to the scattering cell without further purification, being 

passed through a 0.2 ~m Millipore membrane to remove dust. p was 

measured over the pressure range 100 kPa to 3200 kPa in steps of about 

100 kPa. The molar volume V for each gas pressure P and temperature T 
m 

was determined first by finding Videal = RT/P as an initial 
m 

approximation, and then by substituting this value into the vi rial 

equation of state 

The 'corrected ' value 

substituting it for V 
m 

all other variables 

(3.8) 

for V m thus obtained was further refined by 

in the right hand side of equation (3.8) keeping 

the same, and the procedure reiterated until 
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consecutive values differed by an amount less than one part in a 

million . The second and third pressure virial coefficients B(T) and C(T) 

in equation (3.7) were estimated by fitting fifth-order polynomials to 

the B(T) and C(T) values of Douslin and Harrison [11 . 12] in the 

temperature range 283 . 15 K to 303.15 K and interpolating to the 

experimental temperatures. The results follow: 

Table 3.1. Measurement of the pressure-dependence of the depolarization 
ratio p of ethene at A = 514.5 nm 

reading 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

P/kPa 

113 

202 

301 

399 

504 

202 

301 

403 

503 

603 

703 

798 

901 

1000 

1101 

1200 

1306 

1406 

1502 

1598 

1700 

1801 

1905 

1999 

22.0 

20 . 5 

20.5 

19.8 

20.0 

22.7 

23 . 0 

22.4 

22 . 6 

22.9 

23.0 

21. 3 

21. 5 

21. 7 

21. 0 

21. 3 

21. 5 

22.4 

22.0 

22.1 

22.3 

22 . 5 

22 . 7 

22.0 

46 . 4 

83 . 7 

125.5 

167.9 

213 . 3 

83.1 

124.4 

168 . 0 

210.8 

254 . 0 

297.9 

342 . 5 

389.0 

434.3 

482.9 

529.3 

579 . 9 

626 . 2 

674 . 9 

722.8 

774 . 1 

825 . 6 

879.4 

933 . 0 

100 x (p ± s ) 
x 

1. 244 ± 0.016 

1. 229 ± 0.013 

1. 226 ± 0.013 

1. 203 ± 0.014 

1. 198 ± 0.014 

1. 239 ± 0.013 

1. 202 ± 0.016 

1. 225 ± 0.014 

1. 187 ± 0.012 

1.174 ± 0 . 015 

1. 191 ± 0 . 016 

1. 163 ± 0.012 

1. 155 ± 0.014 

1. 137 ± 0.012 

1. 148 ± 0 . 014 

1. 137 ± 0.016 

1. 117 ± 0 . 013 

1. 105 ± 0 . 014 

1. 097 ± 0 . 014 

1. 077 ± O. 017 

1. 068 ± 0.018 

1. 060 ± 0.020 

1. 042 ± 0.016 

1. 029 ± 0.012 

(continued .. . ) 



Table 3.2. Our measured B value for ethene, together with that of Berrue et al. Comparison is made with the 
p 

theoretical values calculated in Chapter 2. Also, ~ values deduced from the measured B values are compared 
p p 

with the calculated ~ values. 
p 

Reference T/K 100 x P 
0 

this work 294 . 92 1. 250 ± 0.002 

[13] 328.0 1. 357 ± 0.012 

10
6

B
exp 106Beale 
P P 

3 -1 
m mol 

3 -1 
m mol 

-2.384 ± 0.027 -2 . 357 

-1. 78 ± 0.07 - 1. 671 

B
exp 106~exp 106~eale ~exp 

...1!. p p -----.£ 
Beale 3 -1 3 -1 ~eale 

m mol m mol 
p p 

1.011 92.2 ± 4 . 8 94 . 36 0 . 977 

1.065 85.0 ± 8 . 0(a) 91.87 0 . 925 

(a)Deduced from the B of Berrue et al. using our value for p . Their value for p is some 8.6% higher than 
p 0 0 

ours, and yields an ~ of 98.3 x 10-6 m3 mol - 1 which is 7% higher than the theoretical value. The experimental 
p 

uncertainty in their ~ value is from a least squares analysis of the data, and is almost certainly a 
p 

conservative estimate. 
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Table 3.1. (Continued) 

T/oC -1/ -3 100 x (p ± sJ reading P/kPa V mol m 
m 

25 2203 21. 2 1050 1.007 ± 0 . 012 

26 2201 21. 4 1048 1.009 ± 0 . 013 

27 2304 21. 7 1105 0 . 986 .± 0 . 013 

28 2403 22.0 1160 0.982 ± 0.013 

29 2500 22.0 1217 0.967 ± 0.012 

30 2605 21. 3 1286 0.954 ± 0.010 

31 2702 21. 5 1344 0.940 ± 0 . 011 

32 2798 21. 7 1403 0 . 920 ± 0 . 010 

33 2902 21. 5 1472 0.918 ± 0.011 

34 3002 21. 7 1536 0.900 ± 0 . 011 

35 3100 22.0 1599 0.877 ± 0.010 

36 3199 22.0 1667 0.871 ± 0 . 008 

A plot of p versus V-
1 is given in figure 3 . 6. From equation (3 . 5) it 

m 

can be seen that B is obtained as the slope of the linear region of the 
p 

plot, while the intercept yields a value for p. There is no apparent 
° deviation from linearity in the plot, indicating that pair interactions 

are predominant over this range of densities. The statistical analysis 

of the data was performed using the Statgraphics package written by the 

Statistical Graphics Corporation. This package calculated the slope and 

intercept 'of the graph, and their estimated uncertainties, using a least 

squares analysis of the data. Deduced values of p and B are summarized 
° p 

in table 3.2, which also includes a comparison with the calculated 

theoretical value for B obtained in Chapter 2 . Substitution of the p 
p ° 

and B values into equation (3.7), p together wi th a second pressure 

virial coefficient at 294.92 K of (-143.1 ± -6 3 -1 
1. 0) x 10 m mol , yields 

the !I value given in table 3.2. This value is also compared with the p 
one calculated in Chapter 2 . Note how our value for 100 x P of 

1. 250 ± 0.002 agrees very favourably with 

measured at A = 514 . 5 nm by Bogaard et al. [4] . 

that of ° 1. 247 ± 0.005 
5 



Figure 3.7. Experimental depolarization ratio as a function of gas density for 

ethene using the data of Berrue et al. [13] 
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In 1977, Berrue et al. [13] made measurements of light-scattering 

density effects of ethene at 328 K, presenting their data in the form of 

a small graph of depolarization ratio versus pressure. The wavelength of 

the incident light was not stated, but was probably 514 . 5 nm as used in 

subsequent work on other gases [14]. For comparison with our B value 
p 

calculated for ethene when treated as a quasi-linear molecule [10,15] , 

the slope of this graph was estimated and multiplied by RT . This 

neglects the non-ideal behaviour of the gas as expressed by equat ion 

(3 . 8) , and we have now improved our estimate of this B value. The graph 
p 

was enlarged to allow extraction of the depolarization ratios and 

pressures of the -seven points lying on the I inear region up to about 

60 bar pressure, and the molar volumes were calculated from equation 
-1 (3.8) . Figure 3.7 contains a plot of the p versus V values, and the 
m 

deduced values of p , B and ~ are summarized alongside ours in table 
o p p 

3 . 2 . It must be emphasized that this est i mation of B is extremely 
p 

crude, and is included merely for completeness. 

When ethene is approximated to have axial symmetry, it has a calculated 

~ value of 66.04 x 10-6 m3mol-1 at 298 K and a wavelength of 514.5 nm p 
[16], which is some 40% lower than the experimentally deduced value of 

(92 . 2 ± 4 . 8) x 10-
6 

m
3
mol-

1
. Indeed, we are poised to draw a striking 

conclusion: it is only after full account is taken of the molecule ' s low 

symmetry, both in the optical properties and the physical molecular 

shape, that we find acceptable agreement between the theoretical and 

measured values of ~ . 
p 

3.2.2 Results for sulphur dioxide 

The relatively impreCise measured B(T) values of sulphur dioxide as 

presented in table 2.10, coupled with the low (~/2B) ratio magnitude of 
o p 

~ 0.4 at temperatures around 100 C, are a cause for concern. In the 

case of ethene , the ~p value extracted from equation (3.7) had a rather 

high precision of 5% despite the low (~p/2B) ratio magnitude of 0 . 33, 

the redeeming factor being the accurately known B(T) value . It is 

inevitable that the overriding presence of an imprecise B(T) in equation 
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(3.7) for sulphur dioxide will degrade the extracted 1p value no matter 

how precise the measured B for this molecule. However, should more 
p 

accurate determinations of B(T) be forthcoming in the future, the Bp 

measured here can lead immediately to a more precise value for 1 . p 

Commercial grade sulphur dioxide of 99.9% purity was suppl ied by the 

AECI in a 112 kg industrial cylinder, and samples were initially passed 

through a 0.2 ~m Durapore polyvinylidene fluoride membrane before being 

frozen into a 300 ml stainless steel cylinder immersed in liquid 

nitrogen. The saturation vapour pressure at room temperature is of the 

order of 350 kPa, which is totally unsatisfactory for pressure

dependence studies of p. Hence, The cylinder temperature was elevated to 

about 70°C using heat ing tape, raising the saturation vapour pressure 

to around 1.5 MPa. The scattering cell's oil bath was heated to give the 

cell an internal equilibrium vapour temperature of (65.2 ± 0.1) °c as 

measured by the calibrated thermocouple situated within the cell as 

close as possible to the scattering volume. The saturation vapour 

pressure at 65.2 °c is 1.298 MPa [17], allowing measurements of p to be 

taken from 100 kPa to 1000 kPa, higher pressures probably coming too 

close to the point of liquefaction where triplet and higher-order 

interact ions come into play. Higher temperatures were avoided in the 

fear that the Pockels windows might be weakened and shatter at the 

elevated pressures used. The highly corrosive nature of suplhur dioxide, 

and possible damage to expensive equipment, was always uppermost in our 

minds. 

The molar volume V for each vapour pressure P m at T = 65.2 °c could not 

be determined by solving equation (3.8) because no C(T) values have been 
measured for sulphur dioxide. Instead, we made use of the 
compressibility factors Z measured by Kang et al. [ 17] for the isotherms 
10°C, 20 °c, 30°C, 40 °c, 50°C , 75 °c, 100 °c and 125°C, 

interpolating the data to obtain Z for the isotherm 65.2 °c as presented 

in table 3.3. A polynomial was fitted to this isotherm, and was 

interpolated to find Z for each experimental pressure P, which through 

Z = PVm/RT yielded the molar volumes. The measured data for the pressure 

dependence of p is presented in table 3.4, where readings are presented 

in the order in which they were taken. 
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Table 3.3. The compressibility factor Z of 
sulphur dioxide for the isotherm T = 65 . 2 °c 

P/kPa 2 

101. 3 0.9891 

202 . 7 0.9782 

304.0 0 . 9673 

405.3 0.9562 

506.6 0 . 9452 

608.0 0 . 9341 

709.3 0.9215 

810 . 6 0.9091 
• 1298.3 0.8348 

• This is the saturation vapour pressure . 

Table 3.4. Measurement of the pressure-dependence of the 
depolarization ratio p of sulphur dioxide at A = 514.5 nm and 
T = 338.35 K 

reading 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

P/kPa 

98 

200 

300 

499 

98 

397 

501 

198 

401 

504 

599 

806 

908 

896 

290 

35.2 

72.7 

110.2 

187.5 

35.2 

147.5 

188.3 

71. 1 

149 . 0 

189 . 5 

227.7 

315.0 

355.3 

351 . 1 

106 . 4 

100 x (p ± sJ 
1. 867 ± 0.015 

1.817 ± 0.011 

1. 826 ± 0.012 

1. 739 ± 0.014 

1. 845 ± 0.010 

1. 788 ± O. 011 

1. 738 ± 0.010 

1.841 ± 0.015 

1. 767 ± 0.012 

1. 736 ± 0.018 

1. 703 ± 0.016 

1. 633 ± 0 . 016 

1.678 ± 0.016 

1. 632 ± 0 . 013 

1. 816 ± 0.013 
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Table 3.5. Our measured B value for sulphur dioxide, together with the deduced ~ value. Comparison is 
p p 

made with the theoretical values calculated in Chapter 2. 

10
6

B
exp 106Beale B

exp 106~exp 106~eale ~exp 

T/K 100 x P P P P P P P 
0 3 -1 3 -1 Beale 3 -1 3 -1 ~eale m mol m mol m mol m mol 

p p 

338.35 1. 880 ± 0.009 -6.96 ± 0.49 -6.328 1.100 215 ± 53 249 . 39 0.862 
7 
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A plot of p versus V-1 is given in figure 3 . 8. There is no discernible 
m 

deviation from linearity, indicating a predominance of pair interactions 

over this range of densities. Deduced values of p, Band Y together 
o p p 

wi th their estimated uncertainties are presented in table 3.5, which 

also contains the theoretical B 
p 

and Y values calculated in Chapter 2. 
p 

Notice how well our 100 x p 
o 

of 1.88 ± 0.01 agrees with that of 

1.85 ± 0.01 measured at A = 514 . 5 nm by Bogaard et ai . [ 4]. As was 

anticipated, the experimentally deduced Y has quite a large uncertainty 
p 

of some 25% . What is encouraging , though, is how the calculated Y lies 
p 

comfortably within the uncertainty limits of the measured value. We have 

discussed at length in Chapter 2 how 

significant negative contribution to Y , 
P 

polar molecules; and it is worth noting 

the a A term can 
2 1 

and hence B, in the 
p 

that if this term is 

make a 

case of 

in fact 

significant for sulphur dioxide, its effect will be to bring the 

calculated Y closer to the measured value. This matter can only be 
p 

resolved when estimates of A- tensor components become available . 

For comparative purposes, we have calculated Y for sulphur dioxide 
p 

after approximating its molecular shape and optical properties to be of 

axial symmetry. The Lennard-Jones force-constants obtained for this 

molecule in section 2.6.1 , namely R = 0.3850 nm and elk = 220 . 0 K, were 
o 

used in equation (1.87) to calculate the second pressure virial 

coefficient B(T). Choosing the shape factor D such that agreement 

between the calculated B(T) and the experimental data [17] was to within 

5% over the temperature range 283.15 to 473.15 K yielded D = 0.472 . This 

shape factor is not physically reasonable, be i ng very close to the limit 
1 

of +- for infinitely thin rod-like linear molecules, as discussed in 
2 

section 1.4. 2. The molecular properties of sulphur dioxide required in 

calculations of Y have been given is section 2 . 6.1, and it is obvious p 
that the quadrupole moment and polarizabi I i ty tensor of this molecule 

cannot reasonably be approximated to 

molecules with axial symmetry have 9 
11 

have 9 = -16 . 4 x 10-40 Cm2 

11 
we 

Furthermore, I inear molecules have 0: 
11 

0: = 5.93 X 10-40 C2m2J-1 and 
11 

axial symmetry. For example, 

= 9
22

, while for sulphur dioxide 

and 9 = +12.9 x 10-40 Cm2
. 

22 

= 0:
22

, whi Ie sulphur dioxide has 

0: = 3 . 34 X 10-40 C2m2J-1 
22 at 

A = 514.5 nm: a substantial difference of 78% . Using the dipole moment 
-30 

113 = -5 . 4262 x 10 Cm, the mean static polarizability tensor 



135 

a = 4.2072 x 10-40 C2m2J-1, the dynamic polarizability components at 
s 

A = 514.5 nm for an 'axially-symmetric' sulphur dioxide molecule of 

10-40 C2m2J-1 and a = 5. 176 X 10-40 C2m2J-1, a" = 2.816 x 1 
-40 2 

approximate quadrupole moment a = a = 3.5 x 10 Cm, 
33 

and the 

we obtain a 

calculated sulphur dioxide at T = 338.35 K of 

!f = 
P 

!f = 
P 

This value is 3.91 times larger than the 
-6 3 -1 249.39 x 10 m mol obtained after considering the full symmetry 

of the molecule. When the two values are compared with the experimental 
-6 3 -1 estimate of!f = (215 ± 53) x 10 m mol , there can be no doubt as to 

p 
the gross inadequacy of approximating non-linear molecules to be of 

axial symmetry in the theory of B . It is desirable to establish whether p 
the second virial coefficients of the various other molecular-optic 

phenomena will confirm this finding, and we turn to the Kerr effect for 

guidance . 

Calculations of the second Kerr-effect virial coefficients B of sulphur 
IC 

dioxide performed by Gentle et al. [18], using the statistical-

mechanical theory of BIC presented by Buckingham et al. [19] for axially

symmetric molecules, yielded results which were more than double the 

experimental values. In the following chapter , we present a theory of B 
It: 

for non-linear molecules, and apply it to various molecules, including 

sulphur dioxide, with pleasing success . 
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COEFFICIENTS 

AND 

CHAPTER 4 

THE SECOND KERR-EFFECT VIRIAL 
OF MOLECULES WITH LINEAR 

LOWER SYMMETRY 

4.1 Introduction 
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The second light-scat tering virial coefficient B has now been the 
p 

subject of comprehensive experimental and theoretical investigation for 

molecular symmetries ranging from spherical to non-linear. It has been 

established that the dipole-induced-dipole (DID) model of Silberstein 

[1] reliably accounts for the contribution made by interacting pairs of 

molecules to the depolarization ratio p of Rayleigh-scattered light for 

the full range of molecular symmetries, although reasons for the 

discrepancies between experiment and theory for the larger 

quasi-spherical molecules [2] still need to be sought and explained. A 

significant aspect of the theoretical investigation has been the 

realization that attempts to treat non-linear molecules by approximating 

them to be of axial symmetry lead to grossly inaccurate calculated 

estimates of B . Certainly, such approximations are tempting; especially 
p 

in view of the arduous task of developing a complete molecular tensor 

theory of B even for molecules with linear symmetry. However, it has 
p 

been successfully demonstrated how, after invoking the aid of the 

powerful algebraic manipulation packages now available for personal 

computers, the development of a complete molecular tensor theory of B 
p 

for non-linear molecules is feasible. This theory has yielded calculated 

estimates of B for ethene (Of 0 symmetry) and sulphur dioxide (Of C 
P 2h 2v 

symmetry) which are in good accord with our measured values. 

Approximating ethene to be of axial symmetry sees the calculated !f 
p 

value significantly underestimating experiment by 40%, while a similar 

approximation for sulphur dioxide yields a calculated!f which is four 
p 

times larger than the measured value. It has been concluded that after 

taking full account of the symmetry of a particular molecule, both in 

its molecular property tensors and physical shape, the DID model 
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Figure 4.1 . The Kerr cell, with space-fixed axes (x,y,z) where z is in the direction of propagation of the light beam, 

x is in the direction of the applied electric field, and y is perpendicular to the field. 
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accurately describes the effects of pair interactions on p. 

It is now desirable to turn to other molecular-opt ic phenomena for a 

general confirmation of this conclusion. Of particular interest will be 

the development of DID theories describing the effects of pair 

interactions on these phenomena, followed by calculations where the same 

Lennard-Jones force constants and shape factors obtained in work on B(T) 

and B are utilized. Will good agreement between experiment and theory 
p 

be maintained? Since substantial experimental invest igation into the 

pressure-dependence of the Kerr effect has been carried out by various 

independent research groups for molecules with spherical [3-5], linear 

[6-10] and non-linear [11-131 symmetry; it seems natural to turn our 

attention to this particular effect in seeking an answer to our 

question. 

4.2 A general theory of electro-optical birefringence in dense fluids 

Kerr, in 1815, was the first to observe that an isotropic medium placed 

in a strong uniform electric field generally becomes birefringent [14]. 

The scope of our investigation will be limited to fluids, where the 

application of a static field leads to anisotropy in the molecular 

distribution either as a result of intrinsic anisotropy in the 

individual molecules, or because anisotropy is induced in the molecules 

by the applied field itself. 

Consider the arrangement in figure 4.1 where the space-fixed system of 

axes O(x,y,z) is fixed in the Kerr cell such that z is in the direction 

of propagation of the light beam, x is in the direction of the applied 

electric field, and y is perpendicular to the field. When the cell is 

filled with a fluid and a uniform electric field is applied (by means of 

a pair of parallel-plate electrodes), a light beam propagating in the 

z-direction and vibrating in the xz plane will experience a refractive 

index n, which differs from the refract i ve index n experienced by a 
x y 

beam propagating in the z-direction and vibrating in the yz plane. The 

task in developing a theory of the Kerr effect lies in relating the 

macroscopic observable (n - n) to the molecular property tensors of 
x y 

the individual molecules in the fluid, and this has been achieved for 

gases at low pressures by Buckingham and Pople [15]. 
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4.2.1 Non-interacting molecules 

For a dilute gas where molecular interactions are negligible in number, 
(p) 

the osci 11 ati ng dipole moment /l of molecule p arises solely due to 
1 

the polarizing action of the oscillating electric field g associated 
o 

with the light wave, there being no neighbouring molecules q which are 

close enough for their oscillating moments to set up significant fields 

and field gradients at molecule p. However, it is important to realize 

that the optical-frequency polarizability tensor ex of molecule p may 
1 J 

be modified by the presence of the strong applied static electric field 

E , to a new effective polarizability tensor n , written 
1 1 J 

n 
IJ 

B/l 
1 = ag-- = 
oj 

+ .. . , (4.1) 

where all tensors refer to the molecule-fixed axes 0(1,2,3) of molecule 

p. Here, the polarizability tensor ex , and the first and second 
IJ 

hyperpolarizability tensors 13
1Jk 

and rlJkl respectively, are dependent 

on the optical frequency of the incident light wave. Any orientational 

bias arising from intrinsic molecular anisotropy wi 11 be accounted for 

later on when we average over the biased orientat ional mot ion of the 

molecule . 

To compare the refract! ve indices parallel and perpendicular to the 

applied static electric field E, we require the direction cosines aX 
1 1 

between the x space-fixed and i molecule-fixed axes, and aY between the 
1 

the y space-fixed and i molecule-fixed axes. Then, if the molecule is 

held in a fixed configuration~, the difference between the differential 

polarizabilities for this specific orientation is 

(4 . 2) 

Since the molecule is in fact tumbling in space, this quantity has to be 

averaged over all configurations in the presence of the biasing 

influence E
1

• Assuming the period of oscillation of the light waves to 

be much smaller than the time of rotation of the molecule, and assuming 

that the rotational energy levels are suffiCiently close for the 

orientation to be effectively continuous, it i s possible to average over 

configurations with a Boltzmann-type weighting factor. We write 



1l = 
Jll(~,E) exp(-U(~,E)/kT)dL 

Jexp(-U(~,E)/kT)dL 
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(4 . 3) 

where U(~,E) is the energy of the molecule in a particular configuration 

~ while in the presence of the applied field E . In molecule-fixed axes, 
1 

this energy is given by 

U{~, E) = dOl /l(OlE - ~ E E - ~b E E E -
1 1 2 1 j 1 j 6 1 jk 1 j k 

.. . , (4 . 4) 

where dOl is the energy of the molecule in the absence of the appl ied 

field, /l(Ol is the permanent dipole 
1 

moment of the molecule, a is the 
1 j 

static polarizabi 1 i ty, b
1jk 

is the static first-order hyper-

polarlzability, etc. The difference 

now be written as 

between the refractive indices may 

n - n = 
x y 

21lN 
It. 

----1l (4 . 5) 

We can write out the full expression for ll(~,E) in equation (4.2) by 

writing Eax for E and by making use of equation (4.1): 
1 1 

(4.6) 

We already know how to average over unbiased rotational motion (see the 

isotropic averages in Chapter 2), and so the procedure adopted is to 

convert the biased average in equation (4 . 3) into isotropic averages by 

Taylor expanding n in powers of E while bearing in mind that it depends 

on E both through ll(~,E) and through the energy U(~,E). It is fair to 

assume that the series converges rapidly since the distortion and 

orientational effects of E on gas molecules is extremely small. We have 
1 

1l = A + B E + C E2 + .. . (4.7) 

where 

A = (ii:)E=O ' (4.8) 
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B = [~~] • 
E=O 

(4.9) 

and 

c = ~[a2rrJ . 
2 aE2 

E=O 

(4 . 10) 

We will denote an isotropic average of a quantity X(~.E) with E = 0 as 

<X>. that is 

JX(~.O) exp(-U(OJkT)dT 

<X> = J (0) exp (-U ,lkT) dT 
(4.11) 

Explicit expressions for the various coefficients A. B. C .. . are then 

obtained by putting E = 0 after differentiating equation (4.3). We have 

[ali] laTC) -1( a~ 
B = aE E=O = \BE - (kT) TCaE/· (4 . 12) 

The quantities in angular brackets are easily obtained from equations 

(4.4) and (4.6). which yield 

and 

(0) x 
-1-1 a 

1 1 
(4.13) 

(4 . 14) 

It is clear that both terms in equation (4 . 12) average to zero over all 

directions of a;. and so the leading non-vanishing term in the expansion 

f - . . E2 o TC IS In : 

The second derivatives of equations (4.4) and (4.6) are 



and 

x x = -a a a 
1 j 1 j 
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(4. 16) 

(4.17) 

Considering each term in equation (4 . 15), and making use of the standard 

results for isotropic averages in equations (2 . 14) and (2.16) of Chapter 

2 , we obtain: 

(4. 18) 

(4.19) 

1 < (aU)2) 1 (0) (0)( x x x x y y x x) 
-- 1[- = 0: Il Il aaaa -aaaa 
2k2T2 aE 2k2T2 1 j k 1 1 j k 1 1 j k 1 

= 3 (0: (0) (0) _ 0: r (0») 2) 
2 2 1 Jill IlJ LIl , 

15k T 
(4.20) 

where 0: and a are the traces of 0: and a respectively. Hence, 
1 J 1 J 

equation (4.7) becomes 

- {2 2 (0) 1 
1[ = 30 1'l1JJ + 15kT,911JIlJ + 15kT(0:1Ja l J - 30:a) 

+ 3 [0: (0) (0) _ C (0»)2)} 2 
2 2 III IlJ 0: Il E 

15k T (4 . 21) 
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Using the definition of the molecular Kerr constant Km proposed by 

Otterbein [16] which, in the limit of low densities, reduces to 

K = ti..m 
m v 

m 

we obtain 

2rrN 
K 

A = m 
405 (4rre J 

This equation, 

{

2 (n - n )v } x y m 

27 (4rre JE
2 

E~ 
= 

2rrN 
A 

27 (4rre ) 
o 

[::~] , 
E=O 

(kT)-l [4/3 ~(O) + 3 (a a - 3aa)] 
ll J J lJlJ {2711JJ + 

+ _3_[« (0) (0) _ «( (0»)2]} 
2 2 lJ~l ~J ~ 

k T 

first derived by Buckingham and Pople [15], 

(4.22) 

(4.23) 

is a 

generalization of the well-known Langevin-Born equation to include the 

effects of high field strengths on the polarizability. 

For a gas of non-interacting spherical molecules, equation -(4 . 23) 

reduces to 

K = 
m 

4rrN 
A 

---- '1 
81 (4rreJ 

(4 . 24) 

1 where '1 = - '1 measurement of the Kerr constant at low pressures can 
5 1 J 1 J 

directly yield a value for the hyperpolarizability constant '1 of the 

gas . This value, although peculiar to the frequency of the light beam 

used in the measurement of the refractive index, is unlikely to be 

substantially different from the static value provided the optical 

frequency is well below the electronic absorption band of the gas 

molecules. 

4 . 2.2 Interacting spherical molecules 

The above Langevin-Born and Buckingham-Pople theory of electro-optical 

birefringence pertains specifically to assemblies of non-interact ing 

molecules . However, since the difference between refractive indices 
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parallel and perpendicular to the applied field is often very small at 

low gas pressures (especially for typical field strengths readily 

obtainable in the laboratory), experiments often have to be carried out 

on compressed gases. In such cases the molecular Kerr constant K 
m 

differs from that obtained in the I imit of infinite dilution. This 

density-dependence of K is conveniently described by means of the 
m 

virial expansion [17] 

B C 
IC Ie 

+ + ... , 
V 

V
2 

m 
m 

where the coefficients A, B, C, .. . , are the first, second, third, 
Ie K K 

.. . , Kerr-effect virial coefficients. AK' equal to 

V ~ 00 
m 

is given by equation (4.24) of section 4.2.1. B
K

, which describes 

deviations from A due to pair interactions, is 
K 

B = Urn. 
K 

V ~ 00 

(K - A)V . 
m K m 

(4.26) 

m 

In 1968, Buckingham and Dunmur [3] measured the pressure-dependence of 

the Kerr effect for the atomic species argon, krypton and xenon, and for 

the quasi-spherical molecule sulphur hexafluoride. The relationship 

between the induced birefringence and gas density was observed to be 

non-linear, indicating a significant presence of pair interactions. 

Invoking dipole-induced-dipole theory, B was written [3] 
K 

32 2N2 2 2 

B = 
K 

1l a a 00 

A J R-
4 

exp(-U (R)/kT) dR 
45 (41l£ J 3 kT 0 12 

(4.27) 

where N is Avogadro's number, 
A 

polarizabilities respectively, 
a and a ar e the dynamic and static 

and U (R) is the intermolecular 
12 

potential between interacting molecules 1 and 2 which are separated by a 

distance R. It is worth noting that for atoms and spherical molecules, 

the second Kerr-effect and light-scattering virial coefficients are 
closely related [18]: 



27c kT 
B = __ 0_ 

p B 
K 
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(4.28) 

Buckingham and Pople [19] have provided a means of evaluating the 

integral in equation (4 . 27) : 

() R-k exp(-~2(R)/kT) R2 dR = 1\ R~-k y-4 Hk(y) 
o 

(4.29) 

where If (R) is the Lennard-Jones 6: 12 potential [20] . Values of Hk(y) 
12 

have been tabulated for k ranging from 6 to 17 in integral steps [19]. 

Table 4.1 presents the ratio of all measured values of B for atoms and 
K 

spherical molecules with the values calcul ated according to equation 

(4.27). Also included are the ratio of measured second light-scattering 

virial coefficients B with the values calculated according to equations 
p 

(4.27) and (4.28). The ratio BexP/Bcalc displays the same trend observed 
K K exp calc 

earlier by Watson and Rowell [2] for the ratio B IB , namely that p p 
the ratio is less than one for the rare gases , and increases more and 

more above unity as the molecular size increases . This appears to 

confirm the assertion made by Watson and Rowell [2] that the point

dipole approximation of the DID model for molecular interactions is 

inadequate for the larger quasi-spherical molecules . And yet, the DID 

theory of B for the linear molecules nitrogen, ethane, methyl chloride 
p 

and carbon monoxide [24,25], and for the non-linear molecules ethene and 

sulphur dioxide (Chapter 2), is in good agreement with experiment (see 

[26-28] and Chapter 3). Discrepancies between experiment and theory for 

the large quasi-spherical molecules remain unresolved, and the problem 

warrants further attention. 
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Table 4.1. Comparison of measured and calculated second K~rr-effect and 
light-scattering virial coefficients for atoms and spherIcal molecules 
as reported by Dunmur et al . [5] . 

B
exp 

B
exp 

Atom/ Ie -p--
molecule Beale Beale 

Ie p 

argon 0.73 ± 0 . 11 [3] 0 . 62 ± 0 . 96 [ 21] 

0.65 ± 0.11 [5] 0.81 ± 0.12 [22] 

0.67 ± 0 . 03 [ 4] 

krypton 0 . 62 ± 0.54 [3 ] 0.85 ± 0.11 [2] 

0 . 63 ± 0.09 [5] 

xenon 0 . 46 ± 0 . 16 [3] 

0.67 ± 0.12 [5] 

methane 0 . 92 ± 0.09 [4] 0.75 ± 0.03 [4 ] 

1. 40 ± 0 . 2 [5] 0 . 86 [23] 

1. 20 ± 0.17 [2] 

1. 03 ± 0 . 15 [22] 

sulphur 1. 77 ± 0 . 24 [3] 2 . 51 ± 0.08 [2 ] 
hexafluoride 

2.5 ± 0.4 [5] 

tetrafluoromethane 1. 10 ± 0 . 1 [5] 

neopentane 3. 9 ± 0. 3 [5] 6.8 ± 0.9 [2] 

4 . 2 . 3 Interacting linear molecules 

The second Kerr-effect virial coefficient B has been deduced from 
Ie 

pressure-dependence measurements of electric field induced birefringenc~ 

for the linear molecules fluoromethane [6], tr i fluoromethane [6], carbon 

dioxide [7,10], nitrogen [7] , ethane [7] and cyclopropane [7]; and for 

the non-linear molecules ethene [7], difluoromethane [6], dimethyl ether 

[11], hydrogen sulphide [12] and sulphur dioxide [13]. B has also been 
iii: 

measured for cyclohexane and the n-alkanes from propane through to 

decane [9] . Some important features of these measurements are now 
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discussed. 

B 
JC 

values for polar molecules are generally a hundred times larger than 

those for non-polar species. Val ues of B deduced from Kerr-effect 
JC 

measurements on polar gases often have poor precisions of around ±50%, 

with additional systemat ic errors arising from uncertaint ies in the 

pressure virial coefficients B(T) and eCT) used to obtain the molar 

volumes V of gas samples. In the case of non-polar gases, the 
m 

experimental difficulties are further compounded by the much smaller 

densi ty-dependence of the molar Kerr constant K. This is evidenced by 
m 

the almost random fluctuation in the B values measured over a range of JC 
temperature for both nitrogen [7] and carbon dioxide [7,10] . 

In 1955, Buckingham [17] developed a statistical-mechanical theory of BJC 

for axially-symmetric molecules. Buckingham and Orr [6] extended this 

theory in 1969, including additional effects of polarizability and 

angle-dependent repulsive forces. They proceeded to calculate B for the 
JC 

fluoromethanes, and although approximate agreement with their 

experimental values [6] for fluoromethane was obtained, the calculated 

values for trifluoromethane were found to be much too small. This 

disagreement was attributed to effects of short-range interactions on. 

the polarizability and potential energy, and it was argued that 

measurements of B for polar gases would probably not yield useful 
JC 

information about the nature of intermolecular forces. 

It was only much later, in 1983, that Buckingham et ai. [29] published a 

paper in which the order-of-magnitude discrepancy between experiment and 

theory for the fluoromethanes was resolved. The earlier theory of the 

Kerr effect [17] was extended to include collision-induced 

polarizability, which was found to be the dominant contributor to B . 
JC 

Use was made of a simple Stockmayer-type potential [30], in which the 

dipole-dipole interaction is added to a 6: 12 Lennard-Jones potential; 

but the U contribution to the intermolecular potential. which has 
shape 

been used before [19] to account for the angular dependence of 

short-range overlap repulsive forces for non-spherical molecules. was 

not included. Although no attempt was made to optimize the Lennard-Jones 

force constants R and elk. the new theory of B was found to provide 
o JC 

what was said to be a reasonable fi t to the observed values for the 

fluoromethanes [6] over a range of temperature. However, as will be 

shown later. this must be viewed in relation to a large uncertainty of 
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about 50% in the observed values . 

It is noteworthy that although B has been measured for several 
K 

non-polar molecules of linear symmetry, no calculated values of this 

quantity have appeared in the literature . 

Recently, Gentle et al. [13] undertook measurements of the Kerr effect 

of sulphur dioxide over the temperature range 298.7 to 490.3 K, deducing 

rather precise B values over this temperature span. In view of the 
K 

relative success of Buckingham, Galwas and Fan-Chen's extended theory of 

B for axially-symmetric molecules 
K 

[29] when applied to the 

fluoromethanes, Gentle et al. thought it profitable to attempt an 

application of the theory to sulphur dioxide after approximating the 

molecule to be quasi-linear . The Lennard-Jones force constants R and 
o 

elk were opt imized, and when used in a simple Stockmayer potential to 

compute the second pressure virial coefficient BCT) of this gas, the 

calculated values were found to agree with experiment [31,32] to within 

±6% over the full range of temperature . However, the calculated B 
K 

val ues were generally more than double the experimental val ues, the 

model proving unsatisfactory. Perhaps this is not surprising, since for 

an axially symmetric molecule with the 3-axis as the principal axis, the 

polarizabi I i ty components perpendicular to the 3-axis, IX and IX , are 
11 22 

equal; whi Ie for sulphur dioxide we have IX 
11 

= 5.80 x 10-40 C2m2J-l and 

IX = 3.30 x 10-40 C2m2J-l at A = 632.8 nm 
22 

[ 13] : a substantial 

difference of 76%. To definitively assess the extent to which the 

assumption of axial symmetry is responsible for the discrepancy between 

theory and experiment for sulphur dioxide, it is essential to develop a 

complete molecular tensor theory of B for molecules with non-l inear 
K 

symmetry. This theory is now presented, followed by application to both 

polar and non-polar molecules with linear and lower symmetry. 

4 . 2.4 Interacting non-linear molecules 

Recall that in the I imit of infinite dil ut ion, the refract i ve index 

difference (n - n) of a gas in a strong stat ic electric field E 
x y x 

n - n = 
x y 

2nN 
A 

(4ne ) V 
o m 

n 

is 

C4.30) 
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where n is the average over all configurat ions (j of the quant i ty 

n (aXaX - aYaY) of a representative isolated molecule in the presence 
Ij 1 j 1 j 

of the biasing influence E. The biased average n was converted into 
x 

isotropic averages by Taylor expanding in powers of E. the leading 

contribution 

being expressed in terms of isotropic averages in equation (4 . 15). 

For higher gas densities . we follow the philosophy established by 

Buckingham and Pople [33]. and argue 

representative molecule 1 to (n - n ) 
x Y 

that the contribution of 
2nN 

a 

A 
is now not always ---- n. 

(4n£ JV
m 

there being times when molecule 1 must be treated as half of an 

interacting pair. If molecule 1 has a neighbouring molecule 2. the 

relative configuration of which is given by the collective symbol 't' . 

then the contribution of molecule 1 to 

given by ~ 2nNA n(12)('t'.E)}. Here. 

(n - n) at that instant is 
x Y 

1(4n£ )v 
o m 

(12)( E) (12) ( x x Y Y) n 't' =n aa -aa 
• Ij 1 j 1 j 

(4.31) 

where n
(2

) is the differential polarizability of the interacting pair. 
Ij 

and an expl icit expression for this quantity will be derived in due 

course. 

If the pair of molecules are held in a fixed relative configuration 't' 

and are allowed to rotate as a rigid whole in the presence of the 

biasing influence E
1

• the resulting biased orientational average 

.... (12) ( ..... E) •• ~ can then be converted into isotropic averages by Taylor 

expanding in powers of E. Analogous to the case of an isolated molecule. 

the leading term is 

(4 . 32) 

E=Q 
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where 

(4.33) 

Here, U<12) (T, E) is the potential energy of the interacting pair of 

molecules in the presence of E. 
1 

If the quantities within angular 

brackets are all initially referred to the molecule-fixed axes (1,2,3) 

of molecule 1, ' then for a given relative interaction configuration T, 

the tensor product in (1,2,3) is fixed. When the pair rotates as a rigid 

whole . in space-fixed axes (x,y,z), the average projection of pair 

properties (referred to (1,2,3)) is averaged into (x,y,z) over all 

orientat ions . Averaging over the pair int eract ion parameters T can 

subsequently be performed. 

Recall from equation (4.22) that the definition of the molecular Kerr 

constant proposed by Otterbein [16], in the limit of low densities, is 

[::;] . 
E=O 

We are now in a position to extrapolate this expression to higher 

densities, obtaining 

J 
21(N 

+ A 

27 (41(£ ) 
o 

- [::;] } P( T)dT 
E=O E=O 

(4.34) 

where P(T)dT is the probability of molecule 1 having a neighbour in the 

range (T, T + dT) . Buckingham and Pople [33] have related this 

probability to the intermolecular potential U (T): 
12 

N 
peT) = Q~ eXP(-U

12
(T)/kT) 

m 

Comparing equation (4.34) to equation (4.25) , we obtain for B 
Ie 

(4.35) 



B = 
K 

E=O 

[::;LJ exp(-U,2 (Y)/kT) 
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(4 . 36) 

which for two non-l inear molecules with interact ion co-ordinates as 

described in section 2.2 of Chapter 2 becomes 

N2 
00 

B. = 216n2~4ne.) JR=o 

- [a
2

rr] } exp(-U (T)/kT) 
aE2 12 

E=O E=O 

x R2si~ si~ dR d~ d~ dr d~ d~ dr . 12 111222 
(4.37) 

[
a

2rr] has already been evaluated in section 4.1.1, yielding 
aE2 

E=O 

[
a2rr] {4 4 _0 (0) + _2_(~ a - 3~) 
aE2 = 30 r11JJ + I5kT""11J J.L J 15kT\: 1J 1J 

E=O 

6 [ (0) (0) ( (0»)2]} + ~ J.L J.L - ~LJ.L , 
15k2T2 1J 1 J 

(4 . 38) 

. 1[a2n(12)(T,E) 
and we must now turn our attentlon to evaluating - ------~~-

2 aE2 
E=O 

As for a dilute gas, the refractive index of a dense gas is determined 

by the total oscillating dipole moment induced in a molecule. The 

difference now is that the dipole moment of a representative molecule 1 

is induced not only by the oscillating electric field 5 associated 

with the light wave, but also in part by the field ~(1~1 arising at 
1 

molecule 1 due to the oscillating moments of a neighbouring molecule 2. 

If we neglect the small quadrupole and field gradient effects, we have 

(1)(5) = [~(1l + ~(1)E +!. (1) E E + ... J[5 + ~(llJ 
J.L 1 0 1J 1jk k 2r 1jkl k 1 oj J 

(4.39) 
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where E is the strong applied static field. 
J 

Invoking the T-tensors (see equations (2 . 28) to (2.30)), we see that 

?J{ 1) has the form 
J 

?J{ 1) = 
J 

T(1) (2) 

Jk Ilk 
(4.40) 

It must be emphasized that 1l~2) itself is the oscillating dipole induced 

in molecule 2 by the field arising at 2 due not only to the direct 

influence of g, but also to the oscillating dipole moment of 
o 

molecule 1: 

Il
k
(2) (go) = (0:{2) + t3(2)E + ~r(2) E E + ... ] (g + ?J(1

2
)] , 

kl kIm m 2 klmn m n 01 

where ?J(2) has the form given by equation (4.40): 
1 

(2) T(2) 1I{ 1) 
?J = r-

1 1m m 

(4.41) 

(4.42) 

Substitution of equations (4.41) and (4.42) into equation (4.40), 
• (1) (2) 

followed by successive subst 1 tutions of?J and?J, leads to a 
I I 

lengthy series of terms contributing to the net field ?J(1) in equation 
J 

(4.40); and substitution of this series into equation (4.39) yields a 

final expression for the total oscillating dipole induced on molecule 1 

by the light wave field in the presence of molecule 2: 
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(1) ((5 ) 
~1 L 0 

(l)T (2)/? 
+0:. 0:. C> 

1j jk kw ow 

+ ~(l)T r(2) E E (5 + ~(l)T r(2) E E T 0:.(1)(5 
21J Jkkwmnmnow 21J Jkklmnmnlppw ow 

+ ~(l)T 0:.(2)T r(l) E E (5 
2 1 j J k k 11m mwnp n pow 

+ ~(llT r(2) E E T o:.(llT 0:.(2)(5 + .... 
2 1J Jk klmn m n Ip pq qr rw ow 

(4.43) 

When the operation :(5 is performed on this expression for ~~1l we 
ow 

find the resulting expression for the differential polarizability of a 

molecule p in the presence of both the applied static field E and a 
1 

neighbouring molecule q in a specific relative configuration L is 



(P)T (q)T (P)T (q) 
+a a a a 1J Jk kl 1m mn np pw 

+ .. . 

+ .,. 

+ ~ (p) E E 1 (p) E E T a(q) + ~(P)T r lq ) E E 
2 r 1 w k 1 k 1 + 2r 1 j k 1 k 1 j m m w 2 1 j j k k w mn m n 

+ ~ Ip) E E T alq)T alP) + ~lp)T r lq ) E E T alp) 
2r ljkl k 1 jm mn np pw 2 lj Jk klmn m n Ip pw 

+ ~(P)T alq)T rIp) E E 
2 1j Jk kl 1m mwnp n p 

+ ~IP)T alq)T rep) E E T a(q) 
2 lj jk kl 1m mnpq p q nr rw 

+ ~IP)T r lq ) E E T aIP)T a lq ) + .... 
2 lJ jk klmn m n Ip pq qr rw 
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(4.44) 

Then, the difference between the differential polarizabilities rrlp)axax 
1w 1 w 

and rrlp)aYaY for a specific relative interaction configuration L of 
lw 1 w 

molecules p and q in the presence of the applied field is 

Now, the differential polarizability of the interacting pair is 

(12) 
1( 

lw = 
8 (12) 

III 
88 ow 

(4 . 45) 

(4.46) 

where III 12) (£5) is the total induced ""1 ow oscillating dipole on the 

interacting pair by the light wave field. To proceed, we have to make 
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the assumption that the two interact i ng molecules each retain their 

separate identities. Certainly , in the long-range limit this assumption 

is perfectly valid. It is at very short range, when the charge 

distributions of the interacting molecules begin to overlap, that 

difficulties arise . The molecules can no longer be unambiguously 

defined, and for a definitive description of this arrangement, one has 

no alternative other than resorting to ab initio quantum-mechanical 

calculations. These are notoriously difficul t, and have to be repeated 

for each system under consideration. Instead (and in keeping with the 

philosophy of this thesis) we follow the lead of past workers i n the 

field [29,34-36] by treating the interacting molecules as if they retain 

their separate identities even in the overlap region. 

With this assumption, equation (4 . 46) become~ 

(12) 
1l 

lw 
ow ow 

(4.47) 

Th d · f (12) x x en, the 1 ference between the differential polarizabilities 1l a a 
(12) y y lw 1 w 

and 1l a a of an interacting pair in a specific relative interaction 
lw 1 w 

configuration ~ in the presence of the applied field may be written 

= (1)( E) (2)( E) 1l ~, + 1l ~, 

where 1l(p) is given by equation (4.44). 
lw 

(4.48) 

We follow Buckingham et al. [29] by writing the potential energy of the 

interacting pair in the presence of the static field E as 

where E has been written as EaX
, 

1 1 

moment of the pair in the presence 

1 

and where 1l<t2) is the total 
1 

of E . As before, we write 
1 

(4.49) 

dipole 

(4.50) 
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where ~(p) is the total dipole moment of molecule p in the presence of 
1 

E and molecule 2. We have 
1 

(p) = (p) + a (p) (E + F(P») 
~1 ~01 1j j j 

(4.51) 

where ~(p) is the permanent dipole moment of molecule p, and F(P) is the 
01 j 

static field arising at molecule p due to the permanent and induced 

multipole moments of the neighbouring molecule q. Considering only the 

total dipole moment of molecule q, we can write 

Of course, 

where, in turn, 

= T ',,(q) 

jk"'k 

= (q) + a (q) (E + F(q») 
~01 1j j j 

(4.52) 

(4.53) 

(4.54) 

Successive substitutions of F(P) and F(q) into equation (4.50) yield the 
J J 

series of terms contributing to the total static dipole moment on 

molecule p: 

+ a(P)T a(q)T a(P)T a(q)E ( 2) 
1j + . . . + 0 E + 

jk kl 1m mn np pv v (4.55) 

Hence, equation (4.49) becomes 

(4 . 56) 

where 



(P)T a(q)T a(P)T (q) )E x + a /J. + . .. a
1 1J Jk k1 1m mn nv ov 

- ~(a(p) + a(P)T a(q) + a(P)T a(q)T alp) 
2 1v 1J Jk kv 1J Jk k1 1m mv 

(p) (q) (P)T (q) ) 2 x x +a Ta Ta a + ... Eaa 
1J Jk k1 1m mn np pv 1 v 

1[821(12) (T,E) 
We are now in a position to evaluate the term - -----------

2 8E2 
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(4.57) 

in the 

E=O 
expression for B given by equation (4.37). Recall from equation (4.33) 

Ie 

that 

E=O 

(4.58) 

These isotropic averages are now systematically evaluated. 

Invoking equation (4.48), (

82 (12» 
the average ~ 1( may be written as 

2 8E2 
_1 (821(1» + _1 (8

2
1(2», and since molecules 1 and 2 are ident ical, 

2 8E2 2 8E2 
the 

isotropic averages of their polarizabilities must be the same. Hence, 

(4.59) 

Using similar arguments, together with equation (4.56), we have 

( 
(12) (12» {(1) (1) 

_(kT)-l 81( 8U = -2(kT)-1 (2~ ~) 
8E 8E 8E 8E + ( 

81( 1) 8U( 2»} 
2 8E 8E ' 

(4.60) 

(4.61) 
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and 

(4.62) 

Collecting these expressions, we obtain 

< 
an( 1) aut 2»} 

2 aE aE 

(4.63) 

(p) (p) 
Substituting in the explicit expressions for n C1:, E) and U Ct", E) 

(given in equations (4.45) and (4.57) respectively) with E = 0, as well 

as their first and second derivatives with respect to the applied field 

to !.[a2
n(12) (T,E) 

2 aE2 
where appropriate, we obtain the contributions 

E=O 
and hence, through equation (4.37), to B. We have 

Ie 

where 

0: +0: +0: +0: + 
234 5 

+ r 0: + r 0: + 
1 1 1 2 

+ ~20:1 + ~20:2 + ~20:3 + ... 

+ ~1(31 + ~1(310:1 + ... , 

N = (kT)-l{ (ll (2)} < x x x x y y x x) .... 2 0: a aaaa -aaaa , 
ab pq a b p q a b p q 

(4.64) 

(4.65) 
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a = kT a a a + a a a ( )-1{ (ll (llT (2) (1) (2)T (1) 

3 ad pq qr rs ad pq qr rs 

(llT (2) (ll (llT (2) (2)} 
+a a a +a a a 

ab be cd ps ab be cd ps 

(

XX x x Y Y x x) 
X a a a a - a a a a , 

a d p sad p s 
(4.66) 

(llT (2) (llT (2) (1)T (2) (2)T (1) 
+a a a a +a a a a 

ab be ef pq qr ru ab be ef pq qr ru 

(llT (2)T (ll (ll (1)T (2)T (1) (2)} +a a a a +a a a a 
ab be cd de ef pu ab be cd de ef pu 

(4.67) 

+ a( llT a(2)T (ll a( llT (2) 
a a 

ab be cd de eh pq qr rw 

+ a( llT a(2)T ( 1 ) a(2)T (1) 
a a 

ab be cd de eh pq qr rw 

(
XX x x Y Y x x) X a a a a - a a a a , 
a h p wah p w (4.68) 

={,)l)T (2) (l)T (2)}(XXXX YYXX) 
o a +a r aaaa -aaaa 

abed be ef ab be efed a fed a fed ' (4 . 69) 
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-2{ (1) (2) (2) 2 (1) (1) (2)} 
= (kT) aab ~01 ~op + aab ~01 ~op 

(
XX x x y y x X) 

X aaaa -aaaa • 
ab1p ab1p 

(4.70) 

2 
(1) (1) (2)T (1) 2 (1) (2) (1)T (2) 

+a ~ a ~ +a ~ a ~ 
ad 01 pq qr or ado 1 p q q r 0 r 

(OT (2) (1) (0 (1)T (2) (2) (2) 
+a a ~ ~ +a a ~ ~ 

a b be cd 0 1 0 P a b bee d 0 1 0 P 

(4.71) 

+ a ( 1 ) a ( 1 ) T ~ ( 2 ) a ( 2 ) T ~ ( 1) + 2a ( 1 ) T a ( 2 ) ~ ( 1 ) a ( 1 ) T ~ ( 2 ) 
af 1j jk ok pq qr or ab be ef 01 pq qr or 

+ 2a ( 1 ) T a ( 2 ) ~ ( 2 ) a ( 2 ) T ~ ( 1) + 2a ( 1 ) T a ( 2) ~ ( 1 ) a ( 2 ) T ~ ( 1 ) 
ab be ef 01 pq qr or ab be ef 01 pq qr or 

+ 2
') 1) T ( 2 ) (2 ) (1) T (2) 2 (1) (1) (1) T ( 2 ) T ( 1) 
.... a ~ a ~ +a ~ a a ~ 

ab be ef 01 pq qr or af 01 pq qr rs st ot 

2 
(1) (2) (2)T (1)T (2) 2 (1) (1) (2)T (1)T (2) 

+a ~ a a ~ +a ~ a a ~ 
af 01 pq qr rs st ot af 01 pq qr rs st ot 

2 
(1) (2) (1)T (2)T (1) (1)T (2)T (1) (1) (1) 

+a ~ a a ~ +a · a a ~ ~ 
af 01 pq qr rs st ot ab be cd de ef 01 op 

(1)T (2)T (1) (2) (2) 2 (1)T (2)T (1) (1) (2)} 
+a a a ~ ~ + a a a ~ ~ 

ab be cd de ef 01 op ab be cd de ef 01 op 

( XX x x y y x x) 
X a a a a - a a a a • 

a d 1 pad 1 p 
(4 . 72) 

2(kT) -1{(3(l) (2)} ( x x x x y y x x) = ~ aaaa -aaaa . 
ab1 op a b 1 P a b 1 P 

(4.73) 

The isotropic averages in equations (4.65) to (4.73) are carried out 

using the standard results in equations (2.14) and (2.16) of Chapter 2. 

We illustrate the procedure by considering the term for a in equation 
2 
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(4.65) : 

( )-1{ (ll (2)} (x x x x - aYaYaXax) a = kT a a a a a a 
2 ab pq a b p q a b p q 

(kT)-1{a(lla(2)} 1 
(-20 ° + 30 ° + 30 ° ) = ab pq 3 0 ab pq ap bq aq bp 

6 {( 1) (2) = -- a a -
30kT ap ap 

3aa} . (4.74) 

Here, a(l) is the dynamic polarizability tensor of molecule 1 expressed 
ap 

in the molecule-fixed axes of molecule 1, (1,2,3), while a is the mean 

dynamic polarizabi I i ty. Similarly, a (2) is the static polarizabil ity 
ap 

tensor of molecule 2 expressed in (1,2 , 3), while a is the mean static 

polarizabi I i ty. 

It is useful to check that the above terms reduce to expressions 

previously derived for linear molecules when the molecular tensors are 
(1) 

reduced to their simplified forms. For such molecules, a is diagonal 
(2) (IJ) (2) (2) 

with all = a 22 = aJ. and a 33 = an; while a.\.~ = aJ.0 IJ + all - aJ. tl t
J 

t(2) being a unit vector along the dipole axis of molecule 2 . a [37] , 

d th t f N(1) and a(1) t· I U· th t an a are e races 0 ~ respec lve y. sIng ese ensors 
IJ Ij 

in equation (4 . 74) yields 

(4.75) 

where e is the angle between the symmetry axes of molecules 1 and 2. 12 
This is exactly the polarizability contribution to B originally derived 

Ie . 

by Buckingham [17] . Similarly, the permanent dipole contribution to 8 
Ie 

in Buckingham's original theory [17] is exactly reproduced by the term 

~2al in equation (4 . 70) when applied to axially-symmetric polar 

molecules. The higher-order terms of Buckingham et al. [29] , which 

describe the collision-induced polarizability contributions to B , are 
K 

approximate, the polarizability tensors having been rewritten as 

isotropic polarizabilities; and so a direct comparison with our 

higher-order terms is not possible . 

(1) 
The exact forms of a and a for molecules with D and C symmetries 

ap 2h 2v 

have already been quoted in Chapter 2, but are repeated here for 

convenience: 
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n' 
0 

«~1 ' (ll (2) 
= (4.76) (l = (ll'j' 

(l 
1 j 22 

0 
33 

and 

(l=~(l =~(l +(l +(l) 
3 II 3 11 22 33 

(4.77) 

The form of the static polarizabil ity tensor is exactly analogous to 

equation (4.76), 

(1) 
a 

1 j 

o 
a 

22 
o 

while the mean static polarizability i s 

a~] , 
33 

a=~a =~(a +a +a). 
3 II 3 11 22 33 

(4 . 78) 

(4.79) 

a(2) in equation (4.74) is the static polarizability tensor of molecule 
ap 

2 when expressed in the molecule-fixed axes of molecule 1, and our 

procedure for expressing a(~), in (1,2,3) is identical to that given in 
1 j 

equations (2.58) and (2.59), yielding 

(2) 
a 

ap = [~11 12 

W 
13 

W 
12 

W 
22 

W 
23 

W
13

] W . 
23 

W 
33 

(4.80) 

Here, the coefficients W , W , . .. , Ware exactly analogous to the 
11 12 33 

coefficients for (l2) given in equation (2.76), the dynamic 
1 j 

Z 
1 j 

components (l ,(l and (l being replaced by the static components 
11 22 33 

a
22 

and a
33 

respectively. 

We are now poised to obtain an explicit expression for (l in equation 
2 

(4.74), and although the summation over indices is trivial for this 

example, Macsyma's tensor manipulation facilities are indispensable for 

the higher-order terms: 

(4 . 81) 
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Substitution of this term into equation (4.37) followed by numerical 

integration over the pair interaction co-ordinates R, ai' ~1' '1 1 ' a2 , ~2 

and '1
2

' 

coefficient B . 

yields the a contribution to the second Kerr-effect virial 
2 

K 

The procedure for eval uat ing the higher-order terms is much the same, 

and is illustrated by considering a specific example, namely the 

(kT)-I{a(1)a(1)T a(2)} (axaxaxax - aYaYaXax) term in equation (4.66). 
ad pq qr rs a d p sad p s 

For a fixed interact ion configuration, a a T a is a constant, { 
(1) (1) (2)} 

. ad pq qr rs 

and if the pair of molecules is allowed to rotate isotropically as a 

rigid whole, then use of equations (2.14) and (2.16) leads to the 

average projection 

=-- a a a -axa a 1 {(1) (1)T (2) (1)T (2)} 
5kT ad dq qr ra pq qr rp 

The form of the dynamic and stat ic polarizabi 11 ty tensors 

known, and the form of the second-rankT-tensor is 

T 
12 

T 
22 

T23 

~131 
23 

T 33 

(4.82) 

is already 

(4.83) 

where Til' T
12

, ... , T33 have already been expressed in terms of 

direction cosines in equation (2.74). The tensor manipulation facilities 

of Macsyma can now be invoked to evaluate an expression for equat ion 

(4.82) which, when averaged over pair interaction co-ordinates by 

equation (4.37), yields the term's contribution to B. Repeating the 
K 

process for the other three terms in equation (4.66) yields the net a 

contribution to B . 
3 

K 

The final Macsyma-generated expressions for the a, a, ... , terms in 
3 4 

equation (4.64) will not be quoted, since even after compression they 

are often immense, and too unwieldy to reproduce. It is felt that our 

comprehensive outline of the procedure used to obtain the final 

expressions, coupled with the ubiquitous availability of symbolic 
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manipulation packages such as Macsyma, would allow interested readers to 

reproduce the expressions if required. Attempts by future workers to 

manually produce faithful Fortran-code translat ions of these immense 

expressions from the text would almost certainly fail; and this is a 

further reason for interested readers to re-work the expressions in 

Macsyma, which has the ability to translate them directly into Fortran 

code without the introduction of errors. 

The evaluation of B by integrating (i.e. averaging) terms over the pair 
K 

interaction co-ordinates according to equation (4.37) requires the 

classical intermolecular potential u (-'f), 
12 

which has already been 

extended to molecules with non-linear symmetry in section 2.4.1 of 

Chapter 2 (see equation (2.109». The integrals were calculated, as for 

B , by numerical integration using Gaussian quadrature. The ranges of 
p 

<X (3 "'1' <x, (3 and '¥ were again divided into sixteen intervals l' l' a 2 2 2 

each, while R was given the range of 0.1 to 3.0 nm divided into sixty 

four intervals. Examples of the Fortran programs, which were run in 

double precision, are given in Appendix 2. 

We proceed by applying our theory of B to polar molecules, since 
K 

their molar Kerr constants K generally have a much greater pressure 
m 

dependence than those of non-polar molecules, and so are more amenable 

to precise experimental determination. In the first instance, we 

calculate BK for the quasi-linear fluoromethanes, comparing our 

values to both experimental data and the calculations of Buckingham et 

ai. [29]. Two molecules with C symmetry, namely sulphur dioxide and 
2v 

dimethyl ether, are then investigated. Finally, we turn our attention to 

non-polar molecules, and in particular the axially-symmetric species of 

nitrogen, carbon dioxide and ethane, and the non-linear candidate 

ethene. 



4.3 Calculations of B for fluoromethane 
~ 

4.3.1 Molecular properties of fluoromethane 
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Optimized values for the Lennard-Jones force constants Ro and £/k, and 

the shape parameter D, of fluoromethane (obtained by fitting the second 

pressure virial coefficient B(T) calculated according to equation (1.87) 

to experimental data over a range of temperature [31]) have been 

presented in table 1. 2. For convenience, we list the values again, 

together with the dipole and quadrupole moment tensor components and 

mean static polarizability required in the expressions for U
12

(r): 

Table 4.1 . A summary of the Lennard-Jones force constants, shape 
parameter, and wavelength-independent molecular properties required in 
the intermolecular potential U (r) of fluoromethane . 

12 

R = 0.380 nm D = D = 0 . 2540 
0 1 

elk = 190 . 0 K D = 0.0000 
2 

#J.3 = 6.170 x 10- 30 Cm [38] 

a = 11 
-3.85 x 10- 40 Cm2 

a 
22 = -3 . 85 x 10- 40 Cm2 [38] 

a = 33 
7.70 x 10- 40 Cm2 

a = 3 . 305 x 10- 40 C2m2J- 1 [39] 

Buckingham et al. [6] have measured B (T) for the fluoromethanes at 
~ 

A = 632.8 nm, and the dynamic polarizabil i ty tensor components all = a
33 

and a = a = a required for our calculations are obtained from .J. 11 22 

measured values of the mean polarizability a [35,36] and the 

polarizability anisotropy ~a [40] at this wavelength, as listed in table 

4.2. The mean static polarizability a [39] is combined with the static 

anisotropy ~a (obtained by ab initio calculation at the MP2 level of 

theory [41,42]) to obtain the components a" =a
33 

and a =a =a 
1 11 22' 

also listed in table 4 . 2 . We note that in 1981 , Miller et al. [43] refer 

to experimental measurements of ~a undertaken by Bogaard et al. [44] at 

i\ = 632.8 nm where the vibrational Raman contributions to the 

depolarization ratio p are excluded, leading to much smaller 
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anisotropies !::.a for the fluoromethanes. We have not considered these 

values in our calculations, the ab initio values [41,42] tending to 

support the earlier measurements of !::.a [40] . However, this uncertainty 

in the preferred !::.a should be borne in mind, since it does lead to 

ambigui ty in the calculated BK values for the fluoromethanes. Further 

experimental measurements of !::.a for these gases seem to be warranted. 

Table 4 . 2. The components of the optical-frequency and static polariza
bility tensors a and a of fluoromethane . 

1 j 1 j 

40 
10

40
a 

A/nm 10
40

a 10
40 

!::.a 10 all 
.1. 

C2m2J-l C2m2J-l C2m2J-l C2m2J-l 

632.8 2.916 [35,36] 0.345 [40] 3.141 2 . 800 

A -7 (Xl 3 . 305 [39] 0.29 [41,42] 3 . 498 3.208 

There are no available values for the components of the dynamic hyper-

polarizabil i ty tensor (3 , and so the Il (3 term's contri but ion to B 
1 jk 11K 

cannot be calculated. This contribution is, however, found to be 

negligible for sulphur dioxide (see section 4.5), and since the property 

(3 = 3 

1 0 
(4.84) 

for sulphur dioxide has the value (3 = -(0 . 05 ± 0 . 15) x 10-50 C3m3J-2 

[13], which is comparable in magnitude to that of (3 = -(0 . 19 ± 0 . 15) 

X 10-50 C3m3J-2 [6] f fl th or uorome ane , we proceed by omitting the 

hyperpolarizability contribution with with some reassurance . 

4 . 3 . 2 Results of calculations for fluoromethane 

Table 4.3 gives the relative magnitudes of the various contributions to 

BK calculated at the particular temperature T = 250.8 K. Here, the 

dominant contribution to B is seen to arise from the Il a term. This 
K 2 2 

predominance of a collision-induced contribution to B for polar 
K 

molecules is in keeping with the findings of Buckingham et al. [29]. 

Despi te the Il a term's 
2 2 dominant contribution to B of 105 . 61%, 

K 
we 
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Figure 4.2. Temperature dependence of the calculated and measured second 

Kerr-effect virial coefficients of f/uoromethane. 

.. .. .. .. 

KEY: 

Squares represent the measured values of Buckingham and Orr [6J 

Diamonds represent the measured values of Schaeffer et al. [8J 

The solid line is our calculated curve 

The broken line is the calculated curve of Buckingham et al. [29J 
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cannot definitively claim convergence of the series of terms in ~a, the 

~a term contributing as much as 31.44%. Although derivation of the 
2 3 

~ a term is not beyond our reach, especially in view of the substantial 
2 4 

capabil i ties of the Macsyma algebraic manipulation package, it would 

nevertheless be an enormous undertaking requiring a few months of human 

input . Time constraints have prevented derivation of the ~2a4 term for 

the purposes of this thesis, but it is possible to argue from past 

experience that it is usually one or two interaction terms that make the 

dominant contribution to the second virial coefficients of the various 

molecular-opt ic phenomena [24,25,2.9,34-361, with higher order contri

but ions dropping off rapidly as the series of terms converges . It seems 

reasonable to expect the ~ a contribution to be a few percent at most . 
2 4 

Table 4.3 . The relative magnitudes of the various contributions 
to B for fluoromethane calculated at T = 250.8 K. 

I 

30 % Contribution Contributing 10 x Value 
C2m8J-2mol-2 to B Term I 

~2al -2 . 905 -38.41 

~2a2 7 . 992 105.67 

~2a3 2 . 378 31 . 44 

a 
2 0.002 0.03 

a -0.009 -0 . 12 
3 

a 
4 

0 . 098 1. 30 

a 0 . 007 0.09 
5 

The temperature dependence of our calculated B values are compared 
I 

graphically with the experimental data [6,8] as well as the calculated 

values of Buckingham et ai. [29], in figure 4.2. The experimental values 

of Buckingham and Orr [6] have quite a high i mprecision of ±50%, while 

those of Schaeffer et ai . [8] are much more precise, perhaps providing a 

better standard against which to judge the theory. Our calculated values 

agree with the values of Schaeffer et ai. to within 25%. 



4.4 Calculations of B for trifluoromethane 
Ie 

4.4.1 Molecular properties of trifluoromethane 
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Table 4.4 contains the optimized Lennard-Jones force constants, shape 

factor and wavelength-independent molecular properties required for the 

calculat ions of B . 
Ie 

Table 4.4. A summary of the Lennard-Jones force constants, shape 
parameter , and wavelength-independent molecular properties required in 
the intermolecular potential U (T) of trifluoromethane. 

12 

R = 0.440 run 0 = 0 = -0.050 
0 1 

£/k = 178 . 5 K 0 = 0 . 0000 
2 

/l3 = 5.50 x 10- 30 Cm [38] 

a = -7 . 5 x 10- 40 
Cm2 

11 

a = -7.5 x 10- 40 Cm2 [38] 
22 

a = 15.0 x 10- 40 Cm2 
33 

a = 3.970 x 10- 40 C2m2J- 1 [39] 

The dynamic and static polarizability tensor components at A = 632 . 8 run 

are listed in table 4 . 5. The static 6« was obtained by extrapolating the 

measured dynamic values [40] to zero frequency . Once again, we have not 

considered the revised values of 6« reported in [43,44], noting that 

subsequent measurements of the depolarization ratio p by Monan et al. 
o 

[45], in which the vibrational Raman contribution was also explicitly 

excluded, reconfirmed the earlier measurements of Bogaard et al. [40]. 
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Table 4.5. The components of the optical-frequency and static polariza
bility tensors ~ and a of trifluoromethane. 

1 J 1 J 

40 1040~ 
1040~ 1040t.~ 10 ~II .1 A/nm 

C2m2J- 1 C2m2 J- 1 C2 m2J- 1 C2 m2 J- 1 

632 . 8 3.097 [35,36] -0 . 27 [40] 2 . 917 3.187 

A ~ (Xl 3 . 970 [39] -0 . 19 t 3.843 4.033 

t 
obtained by extrapolating measured dynamic polarizability anisotropies 

[40] to zero frequency . 

Once again, there are no available values for the components of the 

dynamic hyperpolarizability ' tensor l3
iJk

, 

be considered. 

and so the j.l 13 term cannot 
1 1 

4.4.2 Results of calculations for trifluoromethane 

Table 4.6 summarizes the relative magnitudes of the various 

contributions to B as calculated at T = 245.5 K. Once again, the 
~ 

dominant contribution to B arises from the j.l ~ term, with the j.l2~3 
~ 2 2 

term making a not insignificant contribution of 23.16%. 
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Figure 4.3. Temperature dependence of the calculated and measured second 

Kerr-effect virial coefficients of trifluoromethane. 

KEY: 

Squares represent the measured values of Buckingham and Orr [6J 

Diamonds represent the measured values of Schaeffer et al. [8J 

The solid line is our calculated curve 

The broken line is the calculated curve of Buckingham et al. [29J 



Table 4.6. The relative magnitudes of the various contributions 
to B

t 
for trifluoromethane calculated at T = 245.5 K. 

1030 x Value % Contribution 
Contributing 

C2m8J-2mol-2 to B 
Term K 

J..L
2

<X
1 

0.202 4 . 05 

J..L
2

<X
2 

3 . 561 71.39 

J..L 2 <X3 1.155 23.16 

<X 0.000 0.00 2 2 4 

<X 
3 

-0.006 -0. 12 

<X 0.072 1. 44 
4 

<X 0.004 0.08 
5 
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Figure 4.3 contains a comparison of the temperature-dependence of our 

calculated B values with both the experimental data [6,8] and the 
Ie 

calculated values of Buckingham et al. [29]. Again, the experimental 

values of Buckingham and Orr have a rather substantial imprecision of 

±50%. The more precise values of Schaeffer et al. [8] lie within 30% of 

our calculated curve. We now turn our attention to non-linear polar 

molecules. 

4.5 Calculations of B for sulphur dioxide 
Ie 

4.5.1 Molecular properties of sulphur dioxide 

Sulphur dioxide is a non-linear molecule belonging to the C symmetry 
2v 

point group. Optimized values for the Lennard-Jones force constants and 

shape factors of sulphur diOXide, obtained by fitting the second 

pressure virial coefficients calculated according to equation (2.111) to 

the experimental data over a range of temperature, have been presented 

in section 2.6 of Chapter 2. These values, together with the dipole and 

quadrupole moment tensor components and mean static polarizability 

required in the expressions for U (,:), are presented in table 4.7 
12 
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below. 

Table 4.7. A summary of the Lennard-Jones force constants, shape 
parameters, and wavelength-independent molecular properties required in 
the intermolecular potential U (~) of sulphur dioxide. 

12 

R = 0.3850 nm 
o 

elk = 220.0 K 

113 = 

e 
11 

e 
22 

e 
33 

a = 

t 
Obtained by extrapolating 

zero frequency 

-5.4262 x 10- 30 

= -16.4 x 10- 40 

= 12.9 x 10- 40 

= 3.5 x 10- 40 

em 

em2 

em
2 

em
2 

D = 0.0873 
1 

D = O. 1008 
2 

[46] 

[47] 

4.2072 x 10- 40 e 2 m2J- 1 t 

measured dynamic polarizabilities [40) to 

All measured and .calculated values for the dynamic polarizability tensor 

components of sulphur dioxide at A = 514.5 nm and A = 632.8 nm have 

already been summarized in table 2.9. Gentle et ai. [13] deduced values 

for B (T) from Kerr-effect experiments at A = 632.8 ·nm, and so our 
K 

calculations for B (T) were performed using the most precise values at 
IC 

this wavelength as listed in table 4.8. 

Table 4.8. The components of the optical-frequency polarizability tensor 
of sulphr dioxide deduced from Kerr-effect measurements at A = 632.8 nm 
by Gentle et ai. [13]. 

5.80 ± 0.06 3.30 ± 0.04 3.88 ± 0.06 

Since there are no experimental estimates of the individual static 

polarizability tensor components, we use ab initio calculated values as 



Table 4.9. The wavelength dependence of p , a and Aa for sulphur dioxide, together with 
o 

values extrapolated to infinite wavelength. All data is taken from reference [40]. 

10
40

a 
100 x p 10

4o
(Aa) 

A/nm C2 m2 J-t 0 

C2 m2 J-t 

488.0 4.411 1. 86 ± 0.01 2.359 

514.5 4.389 1.85 ± 0.01 2.341 

632.8 4.326 1.79 ± 0.01 2.269 

A ~ 00 4.207 ± 0.001 2.136 ± 0.010 
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a basis. These values can be refined by comparing their trace with the 

mean static polarizability extrapolated from reported optical-frequency 

values [40], and scaling accordingly. For this purpose, we list in table 

4.9 the wavelength dependences of Po and a together with their 

corresponding 6a values deduced via equation (2.18); and include values 

extrapolated to zero frequency. Table 4.10 contains the ab initio 

principal static polarizabilities calculated using CPF(ED) theory [48], 

together with the scaled values. The 'quality' of the scaled values can 

be cross-checked by comparing the scaled 6a with the value in table 4.9 

extrapolated from experimental data: the values agree to wi thin 4.5%, 

allowing confident use of the scaled all' 

calculat ions of B . 

a and a values in our 
22 33 

K 

Table 4.10. Ab initio calculated static polarizability tensor components 
of sulphur dioxide together with the mean polarizability a 
and anisotropy 6a. Included are the values scaled according to the 
extrapolated a given in table 4.9 . 

Polarizabi I i ty 
property 

1040 x CPF(ED) Calculations[481 

C2 m2J- 1 

1040 x Scaled values 

C2m2J- 1 

a 5.347 5.661 
11 

a 
22 

3.027 3.205 

a 3 . 548 
33 

3.756 

a 3 . 974 4 . 207 

6a 2.108 2.232 

Sulphur dioxide is a polar molecule, with contribut ions to B arising 
K 

from the Il and (3 tensors through equat i ons (4.70) to (4.73). 1/ is 
1 IJk ""1 

quoted in table 4 . 7, whi Ie table 4.11 contains a summary of the ab 

initio SCF calculations of the three i ndependent components of the 

static first-order hyperpolarizability tensor b 
IJk 

as performed by 

Maroulis [49]. Our means for verifying that the difference between the 

optical-frequency components and those in the static limit is 

sufficiently small is as follows: 

The property 



3 
(3 = 

1 0 
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(4 . 85) 

for sulphur dioxide has been deduced by Gentle et al. [13] from their 

Kerr-effect measurements at A = 632.8 nm to have the value 

(3 = -(0 . 05 ± 0.15) x 10-50 C3m3
J-2, while the static analogue obtained 

from Maroulis' calculated b 
Ijk 

components , namely b = 0 . 024 x 10-
50 

C3m3
J-2 [49], is well within the experimental uncertainty limits. Hence , 

Maroulis' values should yield at worst an order of magnitude estimate of 

the Il (3 contribution to B . 
1 1 ){ 

Table 4.11. Ab initio SCF calculations of the static 
first-order hyperpolarizability tensor components of 
sulphur dioxide [49]. 

b = 7.05 x 10- 52 C3m3J-2 
113 

b = 2 . 05 x 10- 52 C3 m3J-2 
223 

b = 8.50 x 10- 52 C3m3J-2 
333 

Maroulis has also calculated values for the static second-order 

hyperpolarizability tensor glJkl [49], but since the first-order 

hyperpolarizability will make a much more significant contribution to 

B , the r« term is not considered here . 
){ 1 1 

4.5.2 Results of calculations for sulphur dioxide 

Table 4.12 gives the relative magnitudes of the various contributions to 

B calculated at the particular temperature 298.7 K. Here, as for the 
){ 

quasi-linear fluoromethanes, the dominant contributor to B is the Il« 
){ 2 2 

term. Again, however, it is not possible to definitively claim 

convergence of the series of terms in Il« since the Il« term contributes 
2 3 

as much as 37.33% to B. Not ice how the Il (3 term makes a complete ly 
){ 1 1 

negligible contribution to B of 0.33%, hence lending justification to 
){ 

our omission of the r« term. 
1 1 
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Figure 4.4. Temperature dependence of the calculated and measured second 

Kerr-effect virial coefficients of sulphur dioxide as listed in table 4. 13. 
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KEY: 

Squares represent the measured values of Gentle et al. {13] 

The' solid line is our calculated curve 
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Table 4.12. The relative magnitudes of the various contributions 
to B for sulphur dioxide calculated at T = 298 . 7 K. 

~ 

30 
% Contribution 10 x Value 

Contributing 
C2m8J-2mol-2 to B 

Term ~ 

1l2<Xl 1. 542 12.11 

1l2<X2 5.730 45.02 

1l2<X3 4. 752 37 . 33 

<X -0 . 063 -0.49 2 

<X 
3 

0 . 166 1. 30 

<X 0 . 503 3.95 
4 

<X 0 . 057 0.45 
5 

III 13 1 
0.042 0.33 

Table 4 . 13 presents the temperature dependence of the calculated B 

174 

K 
values, and includes a comparison with the rather precise experimental 

values recently measured by Gentle et al. [13]. A graphical comparison 

of the calculated and measured data is given in figure 4.4 . 
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Table 4.13. Temperature dependence of the calculated B values of 
IC 

sulphur dioxide , together with the measured values at A = 632.8 nm [13]. 

1030Bexp 1030Beale B
exp 

T K K K 

K C2m8J-2mol-2 C2m8J-2mol-2 Beale 
IC 

298.7 13.8 ± 0 . 8 12 . 73 1.084 

307 . 3 11. 4 ± 0.5 11 . 08 1. 029 

315.4 10.1 ± 0 . 5 9.86 1. 024 

330.7 7.5 ± 0.4 8 . 02 0 . 935 

348 . 8 6.5 ± 0 . 6 6.42 1. 012 

370.9 6.5 ± 0 . 5 5.03 1. 292 

381.2 4 . 2 ± 0.9 4.52 0.929 

395.7 7.6 ± 1.5 3.93 1. 934 

423 . 7 4.7 ± 1.1 3. 07 1.531 

457.0 2 . 1 ± 1.3 2.36 0 . 890 

471. 5 3 . 4 ± 1.8 2. 13 1. 596 

490.3 1.5 ± 0.6 1. 87 0.802 

It is immediately apparent that the theory and experiment are in 

excellent agreement . But could thi s level of agreement have been 

obtained by approximating the molecular property tensors and physical 

shape of the sulphur dioxide molecule to be of axial symmetry? Gentle et 

al. [13] attempted such an analysis using the statistical-mechanical 

theory of BIC for axially-symmetric molecules developed by Buckingham et 

al. [29], and generally found the calculated B values to be more than IC 
twice as large as the experimental values . This finding substantiates 

our earlier claim (see Chapter 2) that the effects which interacting 

non-linear molecules have on molecular-optic phenomena can only be 

calculated after full consideration of molecular symmetry. 



4.6 Calculations of B for dimethyl ether 
JC 

4.6.1 Holecular properties of dimethyl ether 

176 

Like sulphur dioxide, dimethyl ether belongs to the C point group. 
2v 

Table 4.14 lists the optimized values for the Lennard-Jones force 

constants and shape factors of dimethyl ether obtained in section 2.7 of 

Chapter 2, together with the dipole and quadrupole moment tensor 

components and mean static polarizabi 1 ity required in the expressions 

for U (-r). 
12 

Table 4. 14. A summary of the Lennard-Jones force constants, shape 
parameters, and wavelength-independent molecular properties required in 
the intermolecular potential U (T) of dimethyl ether. 

12 

t 

R = 0.390 nm 
o 

elk = 370.0 K 

9 

9 

9 

~3 = -4.37 x 10- 30 Cm [50] 

= 11. 0 x 
11 

10-40 
Cm2 

= 22 
-4.3 X 10- 40 

Cm2 

= 
33 

-6.7 X 10- 40 
Cm2 

D = O. 1923 
1 

D = 0.2137 
2 

[51] 

Obtained by extrapolating measured dynamic polarizabilltles [40] to 
zero frequency 

Since values of B (T) for dimethyl ether have been deduced from Kerr-
JC 

effect measurements at A = 632.8 nm [11], the dynamic polarizabi li ty 

tensor components at this wavelength are required for our calculations. 

Table 4. 15 lists the relevant data, the more precise set of measured 

values obtained by Bogaard et al. [11] being used in our work . 



Table 4. 15. The components 
tensor of dimethyl ether at h 

of the optical-frequency 
= 632 . 8 nm. 

Method 
104 °0: 

11 

Experimental 
derivation from 6.69 ± 0 . 17 5.46 ± 0.14 
the Kerr effect [ 11] 

Experimental 
derivation from 

6 . 60 ± 0.22 5.64 ± 0.60 the Cotton-Mouton 
effect [52] 

Ab initio calculation 
from MP2 theory 6.68 4.47 
(scaled) [52] 
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polarizability 

5.28 ± 0.13 

5.19 ± 0.40 

5.28 

Once again, scaled ab initio values of the static polarizability tensor 

components are used in our calculations. Tabl e 4.16 lists the MP2 values 

obtained by Spackman et al. [53], together with the values scaled 

according to the mean static polarizability extrapolated from the 

measured dynamic polarizabilities [40]. The scaled da of 1. 299 x 10-40 

C
2
m

2
J-

1 
agrees with the value of (1.242 ± 0.005) x 10-40 C2m2J-1 

extrapolated from experimental data [40] to within 4 . 6%. 

Table 4.16. Ab initio calculated static polarizability tensor components 
of dimethyl ether together with the mean polarizability a 
and anisotropy da. Included are the values scaled according to the 
extrapolated a given in table 4.14. 

1040 x MP2 Calculated 1 [53] 1040 x Scaled values Polarizability va ue 

property C2m2J- 1 
C2m2J- 1 

a 6.232 6.584 11 

a 4.917 5.195 22 

a 5.110 5.399 33 

a 5.420 5.726 

da 1.230 1.299 
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There are no experimental or calculated estimates of the components of 

the first-order hyperpolarizability tensor ~ for dimethyl ether, and 
lJk 

we ignore this contribution to B bearing in mind that it was found to 
. K 

be completely negligible in the case of sulphur dioxide. 

4.6.2 Results of calculations for dimethyl ether 

Table 4.17 summarizes the relative magnitudes of the various 

contributions to B at T = 259.0 K. As was found for sulphur dioxide , 
K 

the dominant contributors to B are the interaction-induced terms in ~a. 
I 

Here, unl ike in the fluoromethanes and sulphur dioxide , the term ~2a3 

contributes a higher percentage (44 . 73%) to B than the lower-order term 
I 

~ a, and it is more difficult to be assured of convergence of this 
2 2 

series of terms. The ~ a term of this molecule definitely warrants 
2 4 

investigation in the near future . 

Table 4.17 . The relative magnitudes of the various contributions 
to B for dimethyl ether calculated at T = 259.0 K. 

I 

30 

Contributing 10 x Value % Contribution 
C2m8J-2mol-2 to B Term I 

~2al 5.587 22 . 87 

~2a2 4 . 302 17.61 

~2a3 10.925 44 . 73 

a 0.056 0.23 2 

a 0. 482 1. 97 
3 

a 2.677 10.96 4 

a 0 . 397 1. 63 5 
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Figure 4.5. Temperature dependence of the calculated and measured second 

Kerr-effect virial coefficients of dimethyl ether listed in table 4 .18 . 

KEY: 

Squares represent the measured values of Bogaard et al. [11] 

The solid line is our calculated curve 
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Table 4.18 presents the temperature dependence of the calculated BIe 

values , and includes a comparison with the experimental values of 

Bogaard et ai. [11] . The experimental uncertainties in BIe were quoted to 

be in the range ±10% to ±20%. A graphical comparison of the calculated 

and measured data is given in figure 4.5. 

Table 4 . 18 . Temperature dependence of the calculated B values of 
Ie 

dimethyl ether, together with the measured values at A = 632.8 nm [11] . 

1030Bexp 1030Bcalc B
exp 

T Ie II: Ie 
K C2m8J-2mol-2 C2m8J-2mol-2 B

calc 
Ie 

259.0 34 . 2 ± 6 . 8 24 . 4 1. 40 

269 . 0 18.8 ± 3 . 8 19.8 0.95 

278.4 16. 1 ± 3 . 2 16 . 4 0 . 98 

288.2 13 . 1 ± 2 . 6 13.7 0 . 96 

302.4 11. 1 ± 2.2 11. 0 1. 01 

318.9 10 . 2 ± 2.0 8 . 9 1. 15 

333 . 8 5.8 ± 1.2 7 . 2 0 . 81 

By following the lead of Buckingham et ai . [29] and including the 

collision-induced polarizability contribution into our theory of B for 
Ie 

non-linear polar molecules, we have obtained good fits to the observed 

values for the quasi-linear fluoromethanes as well as for the 

low-symmetry sulphur dioxide and dimethyl ether molecules. Measurements 

of B for hydrogen sulphide [12] and difluoromethane [6] , both of which Ie 
are of C symmetry, have been undertaken; but since the quadrupole 2v 

moments of these molecules have not yet been measured, calculations of 

B cannot be performed. 
II: 

The very small pressure dependence of the molar Kerr constant K for 
m 

non-polar gases, with resultant high uncertainties in deduced B values, 
Ie 

has already been discussed . Nevertheless, we think it profitable to 

obtain calculated values of B for those gases in which the 
II: 



Table 4.19. Wavelength-independent molecular parameters used in calculations of B for linear non-polar molecules. 
K 

t 

* • 

Molecule 

N 
2 

CO 
2 

CH CH 
3 3 

10
40

a
t 

C2m2J-t 

1. 936 [54) 

t 2.885 [55) 

t 
4 . 870 [56) 

104011a* 
40 

10
40

a 10 an 
J. 

C2m2J-t C2m2J-t C2m2J-t 

0.734*(57) 2.425 1.691 

2.252*(57) 4.387 2.134 

0 . 638*(58) 5 . 295 4.657 

104°0 R 
c/k • 33 0 

D 

Cm
2 nm -y-

-4.72 [59) 0.368 (62) 91. 50 (62) 0.112 

-15.0 [60] 0.400 (63) 190 . 0 (63) 0.250 

-3.34 [6t) 0.4418 [62) 230 [62] 0.200 

Obtained by extrapolating recent high-precision measurements of dynamic polarizabilities [55,56] to zero frequency. 

Obtained by extarpolatlng the measured dynamic l1a values In references [57) and [58) to zero frequency . 

Obtained by fitting to the pressure vlrlal coefficients quoted In [3t). 
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pressure-dependence of the Kerr effect has been measured, since this 

will help to establ ish whether any correlation between theory and 

experiment can be obtained. The linear molecules nitrogen, carbon 

dioxide and ethane, and the non-linear molecule ethene, will be 

investigated. 

4.7 Calculations of B for the linear non-polar molecules 
IC 

nitrogen, carbon dioxide and ethane 

4.7.1 Molecular properties of nitrogen, carbon dioxide 

and ethane 

Wavelength-independent parameters required in the calculations of B for 
IC 

the I inear non-polar molecules nitrogen, carbon dioxide and ethane are 

listed in table 4.19 . The static anisotropies ~a are the values obtained 

by extrapolating measured optical-frequency anisotropies ~a to zero 

frequency. Table 4 . 20 contains the principal polarizability components 

of the three molecules at the wavelength 632.8 nm. The leading 

hyperpolarizability tensor for non-polar molecules is the second-order 

~iJkl' and values for the individual components are generally not 

available . Contributions arising from this tensor are, however, expected 

to be negligibly small. 

4.7 . 2 Results of calculations for nitrogen, carbon dioxide 

and ethane 

Table 4.21 summarizes the relative magnitudes of the contributions to B 
. IC 

for nitrogen, carbon dioxide and ethane; each at a particular 

temperature chosen from the respective experimental measurements 

reported in [7]. For all three molecules, the a term is the dominant 
4 

contributor at over 100%, while the as term generally contributes 

of the order of 5% to B
IC

• Higher-order collision-induced polarizability 

contributions are expected to be negligibly small, the series having 

converged rapidly. 



Table 4.20. The components of the optical-frequency polarizability tensors of nitrogen, carbon dioxide and ethane 
at a wavelength of 632 . 8 nm, as obtained from measured values for p and a. 

Molecule 

N 
2 

CO 
2 

CH CH 
3 3 

lOOp 
0 

1.042 ± 0.006 [40] 

4.05 ± 0.02 [40] 

0.149 ± 0.006 [58] 

10
40

a 

C2 m2 J-t 

1.961 [40] 

2.9314 [55] 

4.9680 [56] 

o 

40 
10

40
a 

10
40

Aa 10 all .l 

C2 m2 J-t C2 m2 J-t C2 m2 J-t 

0.183 2.498 1.115 

2.349 4.491 2 . 149 

0.143 5.464 4.120 



Table 4.21. Relative magnitudes of the various contributions to 8 at A = 632 . 8 nm for the non-polar axially-symmetric 
molecules nitrogen, carbon dioxide and ethane. ~ 

Term 

ex. 
2 

ex. 
3 

ex. 
4 

ex. 
5 

nitrogen (T = 248 K) 

32 
10 x Value X Contribution 
C2m8J-2mol-2 to 8 

~ 

0.009 1. 03 

-0 . 149 -17.01 

0.984 112.33 

0 . 032 3 . 65 

8 = 0.876 x 1032 C2m8J-2mol-2 
~ 

carbon dioxide (T = 252 K) 

32 
10 x Value 
C2m8J-2mol-2 

1.531 

-3 . 353 

5 . 124 

0 . 174 

% Contribution 
to 8 

~ 

44 . 04 

-96.46 

147.41 

5.01 

8 = 3 . 476 X 1032 C2m8J-2mol-2 
~ 

ethane (T = 255 K) 

32 10 x Value 
C2m8J-2mol-2 

0.143 

-4.079 

23.049 

1 . 380 

% Contribution 
to 8 

~ 

0 . 70 

- 19 . 90 

112.47 

6.73 

8 = 20.493 X 1032 C2m8J-2mol-2 
K 

..... 
Cb ..... 
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The temperature dependence of the calculated B values for ni trogen, 
K 

carbon dioxide and ethane are presented in tables 4.22 to 4.24 

respect i vely, each table including a comparison with the available 

experimental values . Notice how the experimental values of B for 
K 

nitrogen and carbon dioxide are particularly poorly defined. This is not 

at all surprising in view of the extremely small calculated values, 

which indicate that measurement of the tiny pressure-dependence of the 

.molar Kerr constant 

experimental challenge . 

K for these two gases is a considerable 
m 

Ethane has B values which are an order of 
I 

magnitude larger than the corresponding calculated data for nitrogen and 

carbon dioxide, and it is not surprising that the measured values are 

more clearly defined . Here, agreement with the calculated values is to 

within 15% . 

Table 4.22. Temperature dependence of the calculated 
B K values of nitrogen, together with the measured values 

at A = 632.8 nm [1]. 

T 
1032Bexp 1032Bcalc 

I I 
K C2m8J-2mol-2 C2m8J-2mol-2 

248 -0.08 ± 0.28 0.815 

260 0.01 ± 0.39 0.834 

211 -0.21 ± 0.33 0 . 182 

286 -0.23 ± 0.45 0.151 

299 -0 . 30 ± 0.59 0 . 125 

315 0.04 ± 0 . 30 0.689 

334 -0 . 41 ± 0.18 0 . 650 
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Table 4.23. Temperature dependence of the calculated 
B values of carbon dioxide, together with the measured 

K 

values at A = 632 . 8 nm [7,10]. 

T 
1032Bexp 1032Bcalc 

K K 

K C2m8J-2mol-2 C2m8J-2mol-2 

252 23 ± 19 [7] ~ 3 . 47 

259 5 ± 27 3 . 29 

267 -6 ± 11 3 . 11 

279 -1 ± 13 2 . 86 

287 -3 ± 9 2.71 

301 -3 ± 7 2.48 

302 0 ± 10 2 . 47 

318 -11 ± 8 2.25 

337 -9 ± 9 2 . 06 

299.2 6 ± 1 [10]~ 2.51 

314.9 0 ± 1 2 . 29 

330.9 4 ± 2 2 . 11 

348.8 2 ± 1 1. 96 

370.9 -6 ± 2 1. 82 

394.5 2 ± 2 1. 71 

422.8 -3 ± 2 1. 60 

455 . 8 -3 ± 4 1. 47 

489.5 -5 ± 3 1. 27 
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Table 4.24 . Temperature dependence of the calculated 
B values of ethane, together with the measured values at 

Ie 

A = 632 . 8 nm [7]. 

1032Bexp 1032Bcalc 
T Ie Ie 

K C2m8J-2mol-2 2 8 -2 -2 C m J mol 

255 18.2 ± 3.7 20.49 

259 17.7 ± 3.6 20 . 04 

269 16.7 ± 3.3 19.00 

278 18.0 ± 3.6 18.15 

278 15 . 7 ± 3.1 18.15 

287 16.8 ± 3. 3 17.37 

299 17.7 ± 3.6 16.43 

304 14 . 9 ± 3. 0 16.07 

309 14 . 2 ± 2.9 15 . 73 

318 15.0 ± 3.0 15. 15 

We now turn our attention to the only non-polar non-linear molecule for 

which B data has been measured, namely ethene. 
Ie 

4.8 Calculations of B for ethene 
Ie 

4 . 8 . 1 Molecular properties of ethene 

Optimized values for the Lennard-Jones force constants R and elk, and 
o 

shape parameters 0 and 0, of ethene (obtained by fi t t ing the second 
1 2 

pressure virial coefficient calculated according to equation (2.111) to 

experimental data over a range of temperature) have been presented in 

section 2.5 of Chapter 2 . For .convenience, we list the values again, 

together with the quadrupole moment tensor components and mean stat ic 

polarizability required in the expressions for U (T): 
12 



Table 4.26. The components of the optical-frequency polarizability tensor of ethene at a wavelength of 
632.8 nm obtained from the measured values for p • a and R 

o 20 

10
40

a 10
4o

(Aa) 10
40

a 10
40

a 10
40

a 
lOOp R 

tt 22 33 

0 C2 m2J-t C2 m2J-t 20 C2 m2 J-t C2 m2 J-t C2 m2 J-t 

1.201 ± 0 . 002 [40) 4 . 1124 [S6) 2.021 0.21 ± 0.03 (65) 4.30 3.80 6 . 02 
5 5 4 9 

Table 4.21. The wavelength dependence of p • a and Aa; together with values extrapolated 
to infinite wavelength. 0 

1040
a [56] 

100 x p [40 104o (Aa) 
i\/run C2 m2 J-t 0 

C2 m2 J-t 

632.8 4.1124 ± 0.0005 1. 201 ± 0.002 2.0215 

514 . 5 4 . 1811 ± 0.0005 1. 241 ± 0.005 2 . 0882 

488 . 0 4.1918 ± 0.0005 1. 266 ± 0.005 2.1081 

i\ ~ 00 4.5111 ± 0 . 0008 1 . 893 ± 0 . 0024 
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Table 4.25 . A summary of the Lennard-Jones 
parameters, and wavelength-independent molecular 
the intermolecular potential U (.) of ethene . 

force constants, shape 
properties required in 

t 

12 

R = 0.4232 nm 
o 

elk = 190.0 K 

9 = 5 . 370 X 10- 40 Cm2 

11 

D = 0 . 22965 
1 

D = 0 . 21383 
2 

9 = -10.92 X 10- 40 Cm2 [64] 
22 

9 = 5. 549 x 10- 40 Cm2 

33 

Obtained by extrapolating measured dynamic polarizabilities [56] to 

zero frequency 

Whereas our measurement of B for ethene was performed using an incident 
p 

light beam with A = 514.5 nm, the measurements of B (T) undertaken by 
Ie 

Buckingham et ai. [1] were performed at A = 632.8 nm . The dynamic 

polarizability tensor components must be evaluated at the new 

wavelength, and table 4.26 contains the values of p, a and R which 
o 20 

allow equations (2.12), (2.13) and (2.110) to be solved simultaneously, 

hence yielding all' a and a at 632 . 8 nm. 
22 33 

There are no experimental est imates of the individual stat ic 

polarizability tensor components, and so the ab initio calculated values 

of Spackman [41] at the MP2 level of theory are used as a basis. As 

before, these values are refined by scaling according to the mean static 

polarizability extrapolated from measured dynamic values [56]. Listed in 

table 4.27 are the wavelength dependences of p , a and 6a, together with 
o 

the values extrapolated to zero frequency . Table 4.28 quotes Spackman's 

calculated a 
iJ 

components, mean static polarizabil i ty a and 

polarizability anisotropy 6a; together with the scaled values. The usual 

cross-check is performed, the scaled 6a and the one extrapolated from 

the experimental data in table 4. 27 agreeing to within 1.1%. The scaled 

a a and a values can be used with reasonable confidence in our 11' 22 33 

calculat ions of B . 
Ie 
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Table 4.28. Ab initio calculated static polarizability tensor components 
of ethene together with the mean polarizability a and anisotropy 6a. 
Also included are the values scaled according to the extrapolated a 
given in table 4.27. 

Polarizability 1040 

property 

a 
11 

a 
22 

a 
33 

a 

6a 

x MP2 Calculated values 

C2 m2 J- 1 

4.092 

3.534 

5.594 

4.407 

1.845 

[ 411 
1040 x Scaled values 

C2 m2 J- 1 

4 . 245 

3.666 

5.803 

4 . 571 

1. 914 

Both the dipole moment ~ and the first-order hyperpolarizability tensor 
1 

(3 vanish for molecules with D symmetry, and the only remaining 
IJk 2h 

terms are those in the second-order hyperpolarizability tensor r . Ab 
IJkl 

initio SCF calculations of the six independent components of the static 

hyperpolarizability tensor g of ethene have been undertaken by 
IJkl 

Maroulis [66], and these values, which are summarized in table 4 . 29, 

are unlikely to differ substantially from the corresponding optical

frequency ones. This assumption has been confirmed by Maroulis [66] who 

compared the experimental value for the property 

r = 1 

1 0 (4.86) 

of ethene; which has been deduced by Ward and Elliott [67] from 

measurements of dc electric-field induced optical second harmonic gene

ration (SHG) at A = 694 nm, yielding r = (0.563 ± 0.013) x 10-60 

C4 m4 J-3
., ith hi 1 f ( ) -60 4 4 -3 w s va ue 0 g = 0.421 ± 0.015 x 10 C m J obtained 

from the components in table 4.29. Since the two values are consistent , 

it can concluded that the use of these components allows at least order 

of magnitude estimates of the r a term's contribution to B to be made. 
1 1 IC 
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Table 4.29. The SCF ab initio calculated estimates of the 
static hyperpolarizability tensor components of ethene [66] 

gllll = (0 . 2429 ± 0.0049) x 10- 60 C4 m4J-3 

g2222 = (0.6367 ± 0.0263) x 10- 60 C4m4J-3 

g3333 = (0.1445 ± 0.0054) x 10- 60 C4m4J-3 

gl122 = (0.1407 ± 0.0063) x 10- 60 C4 m4J-3 

gl133 = (0.1185 ± 0.0039) x 10- 60 C4m4J-3 

g2233 = (0.1706 ± 0.0083) x 10- 60 C4 m4J-3 

4.8.2 Results of calculations for ethene 

Table 4.30 gives the relative magnitudes of the various contributions to 

B calculated at T = 333 K. Notice how the ex term is the dominant 
~ 4 

contributor to B, while the ex term makes a substantially smaller, yet 
~ 5 

still significant, contribution of 7.45%. The series is now rapidly 

converging so that the ex 
6 

and higher-order terms in the 

collision-induced polarizability should contribute negligibly to B. As 
~ 

would be expected, the leading hyperpolarizabil i ty term r ex makes a 
1 1 

completely negligible contribution to B (0 . 04%). 
~ 



Table 4.30. The relative magnitudes of the various contributions 
to B for ethene calculated at T = 333 K. 

K 

32 % Contribution 10 x Value 
Contributing 

C2m8J-2mol-2 to B 
Term K 

a 2.268 18.00 
2 

a -7 . 127 -56 . 58 
3 

a 16.513 131.09 
4 

a 0.938 7.45 
s 

r
l
a

l 
0.005 0.04 
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Table 4.31 presents the temperature dependence of the calculated B 
K 

values, and includes a comparison with the experimentally measured 

values of Buckingham et ai. [7]. We note that the quoted uncertainties 

in the measured values were obtained from a least squares analysis of 

the experimental data [7], and hence do not take into consideration any 

systemat ic errors arising from uncertainties in the pressure virial 

coefficients used to obtain the molar volume V. There are substantial 
m 

discrepancies between the experiment and theory, generally of about 20% 

to 50%; and the reasons for this are speculative. Certainly, the B 
K 

values are very small, and hence difficult to meausure accurately. An 

independent set of measurements of B for ethene seems desirable, since 
K 

this will allow a definitive assessment of whether or not the DID model 

is fai ling. 
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Table 4.31. Temperature dependence of the calculated B values of 
~ 

ethene , together with the measured values at A = 632 . 8 nm [7]. 

1032Bexp 1032Bcalc B
exp 

T Ie Ie Ie 

K C2mBJ-2mol-2 C2mBJ-2mol-2 B
calc 
Ie 

262 34 ± 7 17 . 06 2 . 034 

268 26 ± 6 16 . 54 1. 572 

273 23 ± 5 16.13 1. 426 

280 18 ± 3 15 . 60 1. 154 

286 22 ± 5 15.18 1.449 

294 24 ± 5 14 . 66 1. 637 

298 18 ± 3 14.42 1. 248 

302 18 ± 3 14.19 1.269 

313 16 ± 3 13 . 59 1.177 

314 18 ± 3 13.53 1.330 

333 17 ± 3 12.60 1.350 

334 17 ± 3 12.54 1. 356 

PS. While this thesis was being printed, we received our copy of the 

October edition of the Journal Molecular Physics. Therein is a paper by 

Tammer and HUttner [68] describing their investigation into the Kerr 

effect of gaseous ethene. First and second Kerr-effect virial 

coefficients are given over the temperature range 202.4 to 363.7 K. The 

A are generally 15% lower 
~ 

the B are within 7% to 45% 
Ie 

the theories of Buckingham 

than those of Buckingham et ai. [7], while 

of [7]. The authors have calculated Busing 
Ie 

and Dunmur [17,3], and obtain values which 

are 15% lower than ours quoted in table 4.31. 
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APPENDIX 1 

A1.1 Electric multipole moments 

A static distribution of electric charges q at positions r relative to 
1 -1 

an arbi trari ly chosen origin 0, positioned wi thin the arrangement of 

charges, gives rise to an electric potential ~ at all points in space. 

For any given point P, with a vecto: displacement ~ from 0 with R » r
1

, 

the electric potential is given by the multipole expansion (Buckingham 

[ 11 ) 

1 
(A1. 1) 

Here, Greek subscripts denote Cartesian tensor components x, y, or z; 

with a repeated subscript implying summation over these components. The 

second-rank tensor o~ is the Kronecker delta. 

The summations in equation (Al.l) are the electric multipole moments of 

the charge distribution: 

is the electric monopole, or the total charge of the distribution; 

is the electric dipole moment; and 

e =t"'qr r 
ex{3 L.. 1 lex 1{3 

1 

is the primitive electric quadrupole moment, etc . 

(A1. 2) 

(A1.3) 

(A1. 4) 

Different definit ions have been adopted for electric mult ipole moments 

of higher order than the dipole. For instance, an alternative form of 

the electric quadrupole moment is the traceless moment 
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aNa = ~ L q (3r r a - r20Na) . 
"'+' 2 1 10: 1,.... 1 ""f" 

1 

(Al. 5) 

This form of the quadrupole moment is often used by molecular physicists 

because it vanishes for a spherically-symmetric electric charge 

distribution, and so is intuitively appealing. Raab [2] has, however, 

caut ioned against the indiscriminate use of the traceless mul t ipole 

moments, pointing out the existence of electrodynamic situations · where 

it is necessary to retain the primitive definitions of multipole 

moments. 
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APPENDIX 2 

A2.1 An example of a Fortran program to calculate contributions to B p 

C 14 AUGUST 1994 
C PROGRAM TO CALCULATE TERM A3 FOR S02 USING GAUSSIAN INTEGRATION WITH 
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C 64 INTERVALS FOR THE RANGE, AND 16 INTERVALS FOR ALL ANGULAR VARIABLES 
C (I.E. ALPHA 1 , BETA1, GAMMA 1 , ALPHA2, BETA2 AND GAMMA2). 
C DOUBLE PRECISION IS USED THROUGHOUT. 
C 

C ----------------------
C SYSTEM INITIALIZATION: 
C ----------------------

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
COMMON COEF1,DCTC 
DIMENSION COEF2(64,2),COEF1(16,2),SEP(64),AL1(16),BE1(16),GA1(16) 

+ ,AL2(16),BE2(16),GA2(16),DCTC(9,16,16, 16),FI(16, 16, 16,16, 16),D1(6 
+ 4),E1(16,16, 16, 16, 16),F1(16,16,16,16,16),SE3(64),SE4(64),SE5(64), 
+ SE6(64),SE8(64),SE12(64),G1(16,16,16),DDP(16, 16,16,16, 16),DQP(16, 
+ 16,16,16, 16),DIDP(16,16,16, 16,16) 

INTEGER X1,X2,X3,X4,X5,X6,X7 
CHARACTER·30 FDATE@ 

C MOLECULAR DATA FOR S02: 

C 

SSl=O.O 
SS2=0.0 
SS3=0.0 
SS4=0.0 
SS5=0.0 
SS6=0.0 
SS7=0.0 
DIP=-5.42620 
ALSTAT=3.9740 
A11=5.941 
A22=3.328 
A33=3.898 
Q1=-16.38 
Q2=12.90 
AMIN1=0. 1 
AMAX1=3.0 
ALPHA=(A11+A22+A33)/3 
DELTA2=(A11··2+A22··2+A33··2-Al1·A22-A11·A33-A22·A33) 

C READ THE GAUSSIAN COEFFICIENTS FROM THE DATAFILE GAUSS64.DAT: 
C 

OPEN(UNIT=10,FILE='GAUSS64.DAT' ) 
DO 10 ICTR1=l,64 

DO 20 ICTR2=1,2 
READ(10, 1010,END=11)COEF2(~CTR1,ICTR2) 

1010 FORMAT(F18.15) 



20 CONTINUE 
10 CONTINUE 
11 CLOSE(UNIT=10) 

C 
C CALCULATE THE INTEGRATION POINTS FOR THE RANGE: 
C 

SEP1=(AMAXI-AMIN1)/2 
SEP2=(AMAX1+AMIN1)/2 
DO 30 INDX=1,64 

SEP(INDX)=SEP1*COEF2(INDX,1)+SEP2 
30 CONTINUE 

C 
C READ THE GAUSSIAN COEFFICIENTS FROM THE DATAFILE GAUSS16.DAT: 
C 

OPEN(UNIT=11,FILE='GAUSS16.DAT' ) 
DO 100 ICTR1=1,16 

6000 
110 
100 
12 

C 

DO 110 ICTR2=l, 2 
READ(11,6000,END=12)COEF1(ICTR1,ICTR2) 

FORMAT (F18. 15) 
CONTINUE 

CONTINUE 
CLOSE ( UNIT=ll) 

C CALCULATE THE INTEGRATION POINTS FOR ALPHA1: 
C 

AMIN=O.O 
AMAX=2.*3.14159265358919323846 

ALll=(AMAX-AMIN)/2. 
AL12=(AMAX+AMIN)/2. 
DO 120 INDX=1,16 

AL1(INDX)=ALll*COEF1(INDX,1)+AL12 
120 CONTI NUE 

C 
C CALCULATE THE INTEGRATION POINTS FOR BETA1: 
C 

AMIN=O.O 
AMAX=3.14159265358919323846 

BEll=(AMAX-AMIN) 12. 
BE12=(AMAX+AMIN) 12. 
DO 121 INDX=l, 16 

BE1(INDX)=BE11*COEF1(INDX,1)+BE12 
121 CONTINUE 

C 
C CALCULATE THE INTEGRATION POINTS FOR GAMMA1: 
C 

AMIN=O.O 
AMAX=2.*3.14159265358919323846 

GAll=(AMAX-AMIN)/2. 
GA12=(AMAX+AMIN)/2. 
DO 122 INDX=1,16 

GA1(INDX)=GA11*COEF1(INDX,1)+GA12 
122 CONTINUE 
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C 
C CALCULATE THE INTEGRATION POINTS FOR ALPHA2: 
C 

AMIN=O.O 
AMAX=2.*3 . 14159265358979323846 

AL21=(AMAX-AMIN)/2. 
AL22=(AMAX+AMIN) 12. 
DO 123 INDX=1,16 

AL2(INDX)=AL21*COEF1(INDX,1)+AL22 
123 CONTINUE 

C 
C CALCULATE THE INTEGRATION POINTS FOR BETA2: 
C 

AMIN=O.O 
AMAX=3. 14159265358979323846 

BE21=(AMAX-AMIN)/2. 
BE22=(AMAX:AMIN) 12. 
DO 124 INDX=1,16 

BE2(INDX)=BE21*COEF1(INDX,1)+BE22 
124 CONTINUE 

C 
C CALCULATE THE INTEGRATION POINTS FOR GAMMA2: 
C 

AMIN=O.O 
AMAX=2.*3.14159265358979323846 

GA21=(AMAX-AMIN) 12. 
GA22=(AMAX+AMIN)/2 . 
DO 125 INDX=1,16 

GA2(INDX)=GA21*COEF1(INDX,1)+GA22 
125 CONTI NUE 

C -------------
C MAIN PROGRAM: 
C -------------

C 

OPEN(UNIT=4, FILE=' LPT1' ) 
CALL BEEP@ 

C I NPUf MOLECULAR PARAMETERS FROM THE KEYBOARD: 
C 

c WRITE(6, 470) 
c470 FORMAT(1X, 'INPUf THE TEMPERATURE (IN KELVIN)') 
c READ(5,471)TEMP 
c471 FORMAT(F10.5) 

c 

TEMP=348 . 15 
TEMPK=TEMP*1.380622E-23 

c WRITE(6,472) 
c472 FORMAT(1X, 'INPUf R(O) (IN nm)') 
c READ(5,473)R 
c473 FORMAT(F10 . 5) 

r=0.3800 
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c WRITE(6,474) 
c474 FORMAT(lX, 'INPUT ElK (IN K)') 
c READ(5,475)PARAM2 
c475 FORMAT(FIO.5) 

param2=217.0 
c WRITE(6, 476) 
c476 FORMAT(lX, 'INPUT SHAPEl ') 
c READ(5,477)SHAPEl 
c477 FORMAT(FIO.5) 

shapel=O.0280 
c WRITE(6,478) 
c478 FORMAT(lX, 'INPUT SHAPE2 ') 

.c READ(5,479)SHAPE2 
c479 FORMAT(FIO.5) 

shape2=O.0560 . 
CALL SECONDS_SINCE_1980@(START) 

· C 
C CALCULATION OF THE LENNARD-JONES 6:12 POTENTIAL & STORAGE OF THE 
C VALUES IN AN ARRAY: 
C 

DO 61 Xl=1,64 

Dl(Xl)=4.*PARAM2*1.380622E-23*«RlSEP(Xl))**12-(RlSEP(Xl))**6) 
SE12(Xl)=SEP(Xl)**12 
SE5(Xl)=SEP(Xl)**5 
SE8(Xl)=SEP(Xl)**8 
SE3(Xl)=SEP(Xl)**3 
SE4(Xl)=SEP(Xl)**4 
SE6(Xl)=SEP(Xl)**6 

61 CONTINUE 

C 
C THE DIRECTION COSINE TENSOR COMPONENTS ARE STORED IN AN ARRAY: 
C 

C 

DO 66 X4=1,16 
DO 77 X3=1,16 

DO 88 X2=1,16 

C DIRECTION COSINE TENSOR COMPONENTS: 
C 

198 

Al=COS(AL1(X2))*COS(BE1(X3))*COS(GA1(X4))-1.*SIN(AL1(X2))*SIN(GAl 
+ (X4)) 

A2=SIN(AL1(X2))*COS(BE1(X3))*COS(GA1(X4))+COS(AL1(X2))*SIN(GA1(X4 
+ )) 

A3=-1.*SIN(BE1(X3))*COS(GA1(X4)) 
A4=-1.*COS(AL1(X2))*COS(BE1(X3))*SIN(GA1(X4))-1.*SIN(AL1(X2))*COS 

+ (GA1(X4)) 
A5=-1.*SIN(AL1(X2))*COS(BE1(X3))*SIN(GA1(X4))+COS(AL1(X2))*COS(GA 

+ 1(X4)) 
A6=SIN(BE1(X3))*SIN(GA1(X4)) 
A7=COS(AL1(X2))*SIN(BE1(X3)) 
A8=SIN(AL1(X2))*SIN(BE1(X3)) 
A9=COS(BE1(X3)) 



DCTC(1,X2,X3,X4)=Al 
DCTC(2,X2,X3,X4)=A2 
DCTC(3,X2,X3,X4)=A3 
DCTC(4,X2,X3,X4)=A4 
DCTC(5,X2,X3,X4)=A5 
DCTC(6,X2,X3,X4)=A6 
DCTC(7,X2,X3,X4)=A7 
DCTC(8,X2,X3,X4)=A8 
DCTC(9,X2,X3,X4)=A9 

88 CONTINUE 
77 CONTINUE 
66 CONTINUE 

C 
C THE MULTIPOLE INTERACTION ENERGIES ARE CALCULATED AND STORED 
C IN ARRAYS: 
C 

DO 939 X7=1,16 
WRITE(6,1000)X7 

1000 FORMAT (lX, 'INDEX (IN RANGE 1 TO 16) IS CURRENTLY' ,12 ) 
DO 40 X6=1,16 

C WRITE(6,1111)X6 
Cllll FORMAT (lX, 'sub-index (in range 1 to 16) is currently' ,12 ) 

DO 50 X5=1,16 

C 
C MOLECULE 2'S DIRECTION COSINE TENSOR COMPONENTS: 
C 

C 

81=DCTC(1,X5,X6,X7) 
82=DCTC(2,X5,X6,X7) 
83=DCTC(3,X5,X6,X7) 
84=DCTC(4,X5,X6,X7) 
85=DCTC(5,X5,X6,X7) 
86=DCTC(6,X5,X6,X7) 
87=DCTC(7,XS.X6,X7) 
88=DCTC(8,X5,X6.X7) 
89=DCTC(9,X5,X6,X7) 

DO 60 X4=1,16 
DO 70 X3=1, 16 
DO 80 X2=1,16 

C MOLECULE l'S DIRECTION COSINE TENSOR COMPONENTS: 
C 

Al=DCTC(1,X2,X3,X4) 
A2=DCTC(2,X2,X3,X4) 
A3=DCTC(3,X2,X3,X4) 
A4=DCTC(4,X2,X3,X4) 
A5=DCTC(5,X2,X3,X4) 
A6=DCTC(6,X2,X3,X4) 
A7=DCTC(7,X2,X3,X4) 
A8=DCTC(8,X2,X3,X4) 

199 
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A9=DCTce9,X2,X3,X4) 

C 
C CALCULATION OF THE DIPOLE-DIPOLE POTENTIAL: 
C 

DDPeX2,X3,X4,XS,XS)=8.987S8E-24*DIP**2*e-2*A9*B9+AS*BS+A3*B3) 

C 
C CALCULATION OF THE DIPOLE-QUADRUPOLE POTENTIAL: 
C 

C 

DQPCX2,X3,X4,XS,XS)=8.987S8E-2S*DIP*CQ2*C-2*A9*B9**2+C2*AS*BS+2*A 
+ 3*B3+2*A9**2-2*A8**2-AS**2+AS**2-A3**2+A2**2)*B9+2*A9*B8**2+C-2*A 
+ S*BS-2*A3*B2) *B8+A9*BS**2+ C2*AS*A8-2*AS*A9) *BS-A9*BS** 2+A9*B3**2+ 
+ C2*A2*A8-2*A3*A9)*B3-A9*B2**2)+Q1*C-2*A9*B9**2+C2*AS*BS+2*A3*B3+2 
+ *A9**2-2*A7**2-AS**2+A4**2-A3**2+A1**2)*B9+2*A9*B7**2+C-2*AS*B4-2 
+ *A3*B1)*B7+A9*BS**2+C2*A4*A7-2*AS*A9)*BS-A9*B4**2+A9*B3**2+C2*A1* 
+ A7-2*A3*A9)*B3-A9*B1**2» 

C CALCULATION OF THE DIPOLE-INDUCED DIPOLE POTENTIAL: 
C 

C 

DIDPCX2,X3,X4,XS,XS)=-O.SO*ALSTAT*8.077SSE-27*DIP**2*C3*B9**2 
+ +3*A9**2-2) 

C CALCULATION OF THE QUADRUPOLE-QUADRUPOLE POTENTIAL: 
C 

C 

quad1=-lS.*CaS*a9-aS*a8)*CbS*b9-bS*b8)-lS.*Ca3*a9-a2*a8)*Cb3*b9-b 
+ 2*b8)+4.*C2.*a9**2-2.*a8**2-aS**2+aS**2-a3**2+a2**2)*eb9-b8)*Cb9+ 
+ b8)+C-4.*a9**2+4.*a8**2+3.*aS**2-3.*aS**2+a3**2-a2**2)*CbS**2-bS* 
+ *2)+4.*Ca3*aS-a2*aS)*Cb3*b6-b2*bS)+e-4.*a9**2+4.*a8**2+aS**2-aS** 
+ 2+3.*a3**2-3.*a2**2)*Cb3**2-b2**2) 

quad2=-lS. * CaS*a9-a4*a7) * CbS*b9-b4*b7)-lS. *Ca3*a9-a1*a 7)*Cb3*b9-b 
+ 1*b7)+4.*(2.*a9**2-2.*a7**2-aS**2+a4**2-a3**2+a1**2)*(b9-b7)*eb9+ 
+ b7)+(-4.*a9**2+4.*a7**2+3.*aS**2-3.*a4**2+a3**2-a1**2)*CbS**2-b4* 
+ *2)+4.*(a3*aS-a1*a4)*(b3*bS-b1*b4)+(-4.*a9**2+4.*a7**2+as**2-a4** 
+ 2+3.*a3**2-3.*a1**2)*(b3**2-b1**2) 

quad3=4.*(4.*A9**2-2.*(A8**2+A7**2+AS**2+A3**2)+AS**2+A4**2+A2**2 
+ +A1**2)*B9**2-1S.*(2.*AS*A9-AS*A8-A4*A7)*B6*B9-1S*C2.*A3*A9-A2*A8 
+ -A1*A7)*B3*B9-4. *(2. *A9**2-2.*A7**2-AS**2+A4**2-A3**2+A 1**2)*B8** 
+ 2+1S.*CAS*A9-A4*A7)*BS*B8+1S.*CA3*A9-A1*A7)*B2*B8-4.*(2.*A9**2-2. 
+ *A8**2-AS**2+AS**2-A3**2+A2**2)*B7**2+1S.*(AS*A9-AS*A8)*B4*B7+1S. 
+ *(A3*A9-A2*A8)*B1*B7+(-8.*A9**2+4.*(A8**2+A7**2)+S.*AS**2-3.*CA5* 
+ *2+A4**2)+2*A3**2-A2**2-A1**2)*BS**2+4.*C2.*A3*AS-A2*A5-A1*A4)*B3 
+ *BS+C4.*A9**2-4.*A7**2-3.*AS**2+3.*A4**2-A3**2+A1**2)*BS**2-4.*(A 
+ 3*AS-A1*A4)*B2*BS+(4.*A9**2-4.*A8**2-3.*AS**2+3.*AS**2-A3**2+A2** 
+ 2)*~4**2-4.*CA3*AS-A2*AS)*B1*B4+C-8.*A9**2+4.*CA8**2+A7**2)+2.*AS 
+ **2-AS**2-A4**2+S.*A3**2-3.*CA2**2+A1**2»*B3**2+C4.*A9**2-4.*A7* 
+ *2-AS**2+A4**2-3.*A3**2+3.*A1**2)*B2**2+(4.*A9**2-4.*A8**2-AS**2+ 
+ AS**2-3.*A3**2+3.*A2**2)*B1**2 

E1CX2,X3,X4,XS,XS)=8.987S8E-2S*C1./3. )*CQ2**2*QUAD1+Q1**2*QUAD 
+ 2+Q1*Q2*QUAD3) 

C CALCULATION OF THE QUADRUPOLE-INDUCED DIPOLE POTENTIAL: 
C 



C 
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QID1=Q2**2*C4.*A9**4+C-S.*AS**2+4 . *A5**2+4.*A2**2)*A9**2+C-S.*A5* 
+ AS-S . *A2*A3)*AS*A9+4 . *AS**4+C4 . *AS**2+4 . *A3**2)*AS**2+AS**4+C-2.* 
+ A5**2+2 . *A3**2-2 . *A2**2)*AS**2+AS**4+(2.*A2**2-2 . *A3**2)*A5**2+A3 
+ **4-2.*A2**2*A3**2+A2**4)+Q1**2*C4.*A9**4+C-S.*A7**2+4.*A4**2+4.* 
+ A1**2)*A9**2+C-S.*A4*AS-S.*A1*A3)*A7*A9+4.*A7**4+C4.*AS**2+4.*A3* 
+ *2)*A7**2+AS**4+C-2 . *A4**2+2.*A3**2-2.*A1**2)*AS**2+A4**4+C2.*A1* 
+ *2-2.*A3**2)*A4**2+A3**4-2 . *A1**2*A3**2+A1**4)+Q1*Q2*(S.*A9**4+(
+ S. *AS**2-S.*A7**2+4.*A5**2+4 . *A4**2+4.*A2**2+4.*A1**2)*A9**2+«-S 
+ .*A5*AS-S . *A2*A3)*AS+(-S.*A4*AS-S.*A1*A3)*A7)*A9+(S.*A7**2+4 . *AS* 
+ *2-4.*A4**2+4.*A3**2-4.*A1**2)*AS**2+CS . *A4*A5+S.*A1*A2)*A7*AS+(4 
+ . *AS**2-4.*A5**2+4.*A3**2-4.*A2**2)*A7**2+2.*AS**4+(-2. *A5**2-2. * 
+ A4**2+4.*A3**2-2.*A2**2-2.*A1**2)*AS**2+(2 . *A4**2-2.*A3**2+2.*A1* 
+ *2)*A5**2+(2.*A2**2-2'.*A3**2)*A4**2+2.*A3**4+(-2 . *A2**2-2 . *A1**2) 
+ *A3**2+2.*A1**2*A2**2) 

QID2=Q2**2*(4.*B9**4+(-S.*BS**2+4.*B5**2+4.*B2**2)*B9**2+(-S . *B5* 
+ BS-S.*B2*B3)*BS*B9+4 . *BS**4+(4.*BS**2+4.*B3**2)*BS**2+BS**4+(-2.* 
+ B5**2+2.*B3**2-2.*B2**2)*BS**2+B5**4+(2.*B2**2-2 . *B3**2)*B5**2+B3 
+ **4-2.*B2**2*B3**2+B2**4)+Q1**2*(4.*B9**4+C-S.*B7**2+4.*B4**2+4.* 
+ B1**2)*B9**2+(-S.*B4*BS-S.*B1*B3)*B7*B9+4.*B7**4+(4.*BS**2+4 . *B3* 
+ *2)*B7**2+BS**4+(-2.*B4**2+2.*B3**2-2.*B1**2)*BS**2+B4**4+(2.*B1* 
+ *2-2. *B3**2)*B4**2+B3**4-2 . *B1**2*B3**2+B1**4)+Q1*Q2*( S. *B9**4+(
+ S.*BS**2-S.*B7**2+4 . *B5**2+4.*B4**2+4.*B2**2+4 . *B1**2)*B9**2+«-S 
+ . *B5*BS-S.*B2*B3)*BS+(-S . *B4*BS-S.*B1*B3)*B7)*B9+(S.*B7**2+4.*BS* 
+ *2-4. *B4**2+4.*B3**2-4.*B1**2)*BS**2+CS. *B4*B5+S. *B1*B 2)*B7*BS+(4 
+ . *BS**2-4.*B5**2+4.*B3**2-4.*B2**2)*B7**2+2.*BS**4+(-2.*B5**2-2.* 
+ B4**2+4 . *B3**2-2.*B2**2-2.*B1**2)*BS**2+(2.*B4**2-2 . *B3**2+2 . *B1* 
+ *2)*B5**2+C2.*B2**2-2.*B3**2)*B4**2+2.*B3**4+C-2.*B2**2-2.*B1**2) 
+ *B3**2+2.*B1**2*B2**2) 

F1CX2,X3,X4,X5 , XS)=-O . 5*S.077S5E-29*ALSTAT*CQID1+QID2) 

C CALCULATION OF THE INTEGRATION ARGUMENT: 
C 

T11=2.*A7**2-A4**2-A1**2 
T22=2.*AS**2-A5**2-A2**2 
T33=2.*A9**2-AS**2-A3**2 
T12=2 . *A7*AS-A4*A5-A1*A2 
T13=2.*A7*A9-A4*AS-A1*A3 
T23=2.*AS*A9-AS*AS-A2*A3 

211 = A33* CA7**2*B9**2+C2*A4*A7*BS+2*A1*A7*B3) *B9+A4**2*BS** 2+2*A 
+ 1*A4*B3*B6+A1**2*B3**2)+A22*(A7**2*BS**2+C2*A4*A7*B5+2*A1*A7*B2 
+ ) *BS+A4**2*B5**2+2*A1*A4*B2*B5+A1**2*B2**2)+A11*(A7**2*B7**2+(2 
+ *A4*A7*B4+2*A1*A7*B1)*B7+A4**2*B4**2+2*A1*A4*B1*B4+A1**2*B1**2) 

222 = A33*CAS**2*B9**2+C2*A5*AS*BS+2*A2*AS*B3)*B9+A5**2*BS**2+2*A 
+ 2*A5*B3*BS+A2**2*B3**2)+A22*CAS**2*BS**2+(2*A5*AS*B5+2*A2*AS*B2 
+ )*BS+A5**2*BS**2+2*A2*A5*B2*B5+A2**2*B2**2)+A11*CAS**2*B7**2+C2 
+ *A5*AS*B4+2*A2*AS*B1)*B7+A5**2*B4**2+2*A2*AS*B1*B4+A2**2*B1**2) 

233 = A33*(A9**2*B9**2+C2*AS*A9*BS+2*A3*A9*B3)*B9+AS**2*BS**2+2*A 
+ 3*AS*B3*BS+A3**2*B3**2)+A22*CA9**2*BS**2+C2*AS*A9*B5+2*A3*A9*B2 
+ )*BS+AS**2*BS**2+2*A3*AS*B2*B5+A3**2*B2**2)+A11*(A9**2*B7**2+(2 
+ *AS*A9*B4+2*A3*A9*B1)*B7+AS**2*B4**2+2*A3*AS*B1*B4+A3**2*B1**2) 

212 = A33*CA7*AS*B9**2+CCA4*AS+A5*A7)*BS+CA1*AS+A2*A7)*B3)*B9+A4* 



C 
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+ AS*BS**2+(A1*AS+A2*A4) *B3*BS+A1*A2*B3**2)+A22* (A7*AS*BS** 2+«A4 
+ *AS+AS*A7)*BS+(A1*AS+A2*A7)*B2)*BS+A4*AS*BS**2+(A1*AS+A2*A4)*B2 
+ *BS+A1*A2*B2**2)+A11*(A7*AS*B7**2+«A4*AS+AS*A7)*B4+(A1*AS+A2*A 
+ 7)*B1)*B7+A4*AS*B4**2+(A1*AS+A2*A4)*B1*B4+A1*A2*B1**2) 

Z13 = A33*(A7*A9*B9**2+«A4*A9+AS*A7)*BS+(A1*A9+A3*A7)*B3)*B9+A4* 
+ AS*BS**2+(A1*AS+A3*A4) *B3*BS+A1*A3*B3**2)+A22* (A7*A9*BS **2+«A4 
+ *A9+AS*A7)*BS+(A1*A9+A3*A7)*B2)*BS+A4*AS*BS**2+(A1*AS+A3*A4)*B2 
+ *BS+A1*A3*B2**2)+A11*(A7*A9*B7**2+«A4*A9+AS*A7)*B4+(A1*A9+A3*A 
+ 7)*B1)*B7+A4*AS*B4**2+(A1*AS+A3*A4)*B1*B4+A1*A3*B1**2) 

Z23 = A33*(AS*A9*B9**2+«AS*A9+AS*AS)*BS+(A2*A9+A3*AS)*B3)*B9+AS* 
+ AS*BS**2+ (A2*AS+A3*AS) *B3*BS+A2*A3*B3**2) +A22* (AS*A9*BS** 2+«AS 
+ *A9+AS*AS)*BS+(A2*A9+A3*AS) *B2) * BS+AS*AS*BS**2+(A2*AS+A3 *AS)*B2 
+ *BS+A2*A3*B2**2)+A11*(AS*A9*B7**2+«AS*A9+AS*AS)*B4+(A2*A9+A3*A 
+ S)*B1)*B7+AS*AS*B4**2+(A2*AS+A3*AS)*B1*B4+A2*A3*B1**2) 

TERM4=-4.*ALPHA*(A33*(Z33*T33+Z23*T23+Z13*T13)+A22*(Z23*T23+Z22*T2 
+ 2+Z12*T12)+A11*(Z13*T13+Z12*T12+Z11*T11»+3.*(A33**2*(Z33*T33+Z23 
+ *T23+Z13*T13)+A22**2*(Z23*T23+Z22*T22+Z12*T12)+A11**2*(Z13*T13+Z1 
+ 2*T12+Z11*T11»+A33*«Z33**2+Z23**2+Z13**2)*T33+(Z23*Z33+Z22*Z23+ 
+ Z12*Z13)*T23+(Z13*Z33+Z12*Z23+Z11*Z13)*T13)+A22*«Z23*Z33+Z22*Z23 
+ +Z12*Z13)*T23+(Z23**2+Z22**2+Z12**2)*T22+(Z13*Z23+Z12*Z22+Z11*Z12 
+ )*T12)+A11*«Z13*Z33+Z12*Z23+Z11*Z13)*T13+(Z13*Z23+Z12*Z22+Z11*Zl 
+ 2)*T12+(Z13**2+Z12**2+Z11**2)*T11) 

FI(X2,X3,X4,XS,XS)=(1/(lS.*3.141S92SS3SS979323S4S**3»*(51 
+ N(BE1(X3»*SIN(BE2(XS»)*TERM4 

C CALCULATION OF THE SHAPE POTENTIAL: 
C 

G1(X3,X4,XS)=4.*PARAM2*1.3S0S22E-23*R**12*(SHAPE1*(3.*COS(BE1(X3) 
+ )**2+3.*COS(BE2(XS»**2-2. )+SHAPE2*(3.*COS(GA1(X4»**2*SIN(BE1(X3 
+ »**2+3 . *COS(GA2(X7»**2*SIN(BE2(XS»**2-2.» 

SO CONTINUE 
70 CONTINUE 
60 CONTINUE 
50 CONTINUE 
40 CONTINUE 

C 
C THE INTEGRAL IS CALCULATED: 
C 

SSS=O.OO 
DO 940 XS=l, lS 

C WRITE(S,1911)XS 
C1911 FORMAT (lX, 'sub-index (in range 1 to lS) is currently' ,12 ) 

SSS=O.OO 
DO 9S0 XS=l,lS 

554=0.00 
DO 960 X4=1,16 

553=0.00 
DO 970 X3=1, 16 
552=0.00 



DO 980 X2=l,16 
SSl=O.OO 
DO 990 X1=l,64 

C 
C SUMMATION OF THE ENERGY TERMS WITH SUBSEQUENT DIVISION BY (-kT) : 
C 
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G3=-1.*(D1(X1)+E1(X2,X3,X4,X5,X6)/SE5(X1)+F1(X2,X3,X4,X5, X6) ISE8 ( 
+ X1)+G1(X3,X4,X6)/SE12(X1)+DDP(X2,X3,X4,X5,X6)/SE3(X1)+DIDP(X2,X3, 
+ X4,X5,X6)/SE6(X1)+DQP(X2,X3,X4,X5,X6)/SE4(X1»/TEMPK 

IF(G3.LT.-85) GO TO 5000 
G4=2.71828**G3 
GO TO 5010 

5000 G4=0 
5010 SSl=SSl+(FI(X2,X3,X4,X5,X6)/SEP(X1»*G4*COEF2(X1,2) 
990 CONTINUE 

C 
C 

SS2=SS2+SS1*COEF1(X2,2) 

980 CONTINUE 
SS3=SS3+SS2*COEF1(X3,2) 

C 
C 
970 CONTINUE 

C 
C 

SS4=SS4+SS3*COEF1(X4,2) 

960 CONTINUE 

C 
C 

SS5=SS5+SS4*COEF1(X5,2) 

950 CONTINUE 

C 
C 

SSS=SSS+SS5*COEF1(X6,2) 

940 CONTINUE 

C 
C 

SS7=SS7+SSS*COEF1(X7,2) 

939 CONTINUE 

C 

ANS=SS7*SEP1*AL11*BE11*GA11*AL21*BE21*GA21*1. E-9*6. 022169* 8.9875 
+ 8*30. *(1./(2 . *DELTA2) +2. 1(45. *alpha**2» 

CALL BEEP@ 

C THE INTEGRAL IS PRINTED TOGETHER WITH MOLECULAR DATA USED 
C 

WRITE(4,2266) 
2266 FORMAT(lX, 'THE A3 TERM CONTRIBUTION TO B(Rho) FOR S02 : ') 

WRITE(4,2267) 
2267 FORMAT(lX,' ') 

CALL SECONDS_SINCE_1980@(FINISH) 
WRITE(4,2250) (FINISH-START) 

2250 FORMAT(lX, 'CPU time used = ' ,F12.3) 
WRITE(4,2260)FDATE@() 



2260 FORMAT(lX,'Program run on ',A30) 
WRITE(4,2269) 

2269 FORMAT(lX,' ' ) 
WRITE(4,l140)ANS 

1140 FORMAT(lX, 'THE INTEGRAL IS ' ,E15 . 7) 
WRITE(4,2150) 

2150 FORMAT(lX, 'INPUT DATA:') 
WRITE(4 , 2155)TEMP 

2155 FORMAT(lX, 'TEMPERATURE: ' , F10 . 5) 
WRITE(4,9259)DIP 

9259 FORMAT(lX, 'DIPOLE MOMENT: ' , F10 . 5) 
WRITE(4,9260)ALPHA 

9260 FORMAT(lX, 'MEAN DYNAMIC ALPHA: ' ,F10.5) 
WRITE(4,9261)A11 

9261 FORMAT(lX, 'DYNAMIC ALPHA11: ' , F10.5) 
WRITE(4,9262)A22 

9262 FORMAT(lX, 'DYNAMIC ALPHA22: ' , F10 . 5) 
WRITE(4,9263)A33 

9263 FORMAT(lX, 'DYNAMIC ALPHA33: ',F10 . 5) 
WRITE(4,9265)DELTA2 

9265 FORMAT(lX,' (DELTA DYNAMIC ALPHA) **2: , ,F10.5) 
WRITE(4,9264)ALSTAT 

9264 FORMAT(lX,'MEAN STATIC ALPHA: ',F10.5) 
WRITE(4,2190)Q1 

2190 FORMAT(lX, 'THETA11: ',F10.5) 
WRITE(4,2241)Q2 

2241 FORMAT(lX, 'THETA22 : ',F10.5) 
WRITE(4,2210)R 

2210 FORMAT(lX, 'R(O): ',F6.5) 
WRITE(4,2220)SHAPE1 

2220 FORMAT(lX,'SHAPE FACTOR 1: ',F10.5) 
WRITE(4,2221)SHAPE2 

2221 FORMAT(lX,'SHAPE FACTOR 2: ',F10.5) 
WRITE(4,2230)PARAM2 

2230 FORMAT(lX,'E/K: ',F9 . 5) 
WRITE(4,2235)AMIN1,AMAX1 
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2235 FORMAT(lX, 'MIN AND MAX POINTS OF RANGE (64 INTERVALS) : ' ,2(F10.5 , 3 
+ X)) 

WRITE(4,2240) 
2240 FORMAT(lX, 'END B(Rho)') 

WRITE(4,2261) 
2261 FORMAT(lX,' ' ) 

WRITE(4,2262) 
2262 FORMAT(lX,' ') 

WRITE(4,2263) 
2263 FORMAT(lX,' ') 

WRITE(4,2264) 
2264 FORMAT(lX,' ') 

WRITE(4,2265) 
2265 FORMAT(lX,' ') 

END 



A2.2 An example of a Fortran program to calculate contributions to BK 

PROGRAM KS02D2A3 
C 
C 29 JULY 1994. 
C PROGRAM TO CALCULATE THE D2A3 TERM'S CONTRIBUTION TO B(Kerr) FOR S02 
C USING GAUSSIAN INTEGRATION WITH 64 INTERVALS FOR THE RANGE , AND 
C 16 INTERVALS FOR ALL ANGULAR VARIABLES 
C (I. E. ALPHA 1, BET A 1, GAMMA 1, ALPHA2 , BET A2 AND GAMMA2). 
C DOUBLE PRECISION IS USED THROUGHOUT. 
C 

C ----------------------
C SYSTEM INITIALIZATION: 
C ----------------------

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
COMMON COEF1,DCTC 
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DIMENSION COEF2(64,2),COEF1(16,2),SEP(64),AL1(16),BE1(16),GA1(16) 
+ ,AL2(16),BE2(16),GA2(16),DCTC(9,16,16, 16),FI(16, 16, 16, 16,16),Dl(6 
+ 4),El(16,16,16,16,16),Fl(16,16 , 16,16,16),SE3(64),SE4(64),SE5(64), 
+ SE6(64),SE8(64),SE12(64),Gl(16,16,16),DDP(16,16,16,16, 16),DQP(16, 
+ 16,16,16, 16),DIDP(16,16,16,16,16) 

INTEGER Xl,X2,X3,X4,X5,X6,X7 
CHARACTER·30 FDATE@ 

C MOLECULAR DATA FOR S02 (632 . 8 NM) : 

C 

SSl=O.OOOOOO 
SS2=0.000000 
SS3=0 . 000000 
SS4=0 . 000000 
SS5=0.000000 
SS6=0.000000 
SS7=0.000000 
DIP=-5 . 426200 
All=5 . 80 
A22=3.30 
A33=3 . 88 
ALDYN=(All+A22+A33)/3 
Vll=5 . 347 
V22=3.027 
V33=3.548 
ALSTAT=(Vll+V22+V33)/3 
Ql=-16.38000 
Q2=12 . 900000 
AMIN1=0 . 1000 
AMAX1=3.0000 

C READ THE GAUSSIAN COEFFICIENTS FROM THE DATAFILE GAUSS64.DAT : 
C 

OPEN(UNIT=10,FILE='GAUSS64 . DAT' ) 
DO 10 ICTR1=1,64 

DO 20 ICTR2=1,2 
READ(10,1010,END=11)COEF2(ICTR1,ICTR2) 



1010 FORMAT(F18 . 15) 
20 CONTINUE 
10 CONTINUE 
11 CLOSE(UNIT=10) 

C 
C CALCULATE THE INTEGRATION POINTS FOR THE RANGE : 
C 

SEP1=(AMAXI-AMIN1)/2 
SEP2=(AMAX1+AMIN1)/2 
DO 30 INDX=1 , 64 

SEP(INDX)=SEP1*COEF2(INDX,1)+SEP2 
30 CONTINUE 

C 
C READ THE GAUSSIAN COEFFICIENTS FROM THE DATAFILE GAUSS16.DAT : 
C 

OPEN(UNIT=11,FILE='GAUSS16 . DAT' ) 
DO 100 ICTR1=1,16 

6000 
110 
100 
12 

C 

DO 110 ICTR2=1,2 
READ(11,6000,END=12)COEF1(ICTR1 , ICTR2) 
FORMAT(F18 . 15) 

CONTINUE 
CONTINUE 
CLOSE ( UNIT=l1) 

C CALCULATE THE INTEGRATION POINTS FOR ALPHA1: 
C 

AMIN=O.O 
AMAX=2.*3.14159265358979323846 

ALll=(AMAX-AMIN)/2. 
AL12=(AMAX+AMIN)/2. 
DO 120 INDX=1,16 

ALl(INDX)=ALll*COEF1(INDX,1)+AL12 
120 CONTI NUE 

C 
C CALCULATE THE INTEGRATION POINTS FOR BETA1: 
C 

AMIN=O.O 
AMAX=3. 14159265358979323846 

BEll=(AMAX-AMIN)/2 . 
BE12=(AMAX+AMIN)/2 . 
DO 121 INDX=1,16 

BE1(INDX)=BEll*COEF1(INDX,1)+BE12 
121 CONTINUE 

C 
C CALCULATE THE INTEGRATION POINTS FOR GAMMA1: 
C 

AMIN=O.O 
AMAX=2.*3.14159265358979323846 

GAll=(AMAX-AMIN)/2 . 
GA12=(AMAX+AMIN)/2 . 
DO 122 INDX=1 , 16 

GA1(INDX)=GAll*COEF1(INDX,1)+GA12 
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122 CONTI NUE 

C 
C CALCULATE THE INTEGRATION POINTS FOR ALPHA2 : 
C 

AMIN=O.O 
AMAX=2.*3.14159265358979323846 

AL21=(AMAX-AMIN)/2. 
AL22=(AMAX+AMIN)/2. 
DO 123 INDX=1,16 

AL2(INDX)=AL21*COEF1(INDX, 1)+AL22 
123 CONTI NUE 

C 
C CALCULATE THE INTEGRATION POINTS FOR BETA2: 
C 

AMIN=O . O 
AMAX=3. 14159265358979323846 

BE21=(AMAX-AMIN)/2. 
BE22= (AMAX+AMIN) 12 . 
DO 124 INDX=1,16 

BE2(INDX)=BE21*COEF1(INDX, 1)+BE22 
124 CONTINUE 

C 
C CALCULATE THE INTEGRATION POINTS FOR GAMMA2: . 
C 

AMIN=O.O 
AMAX=2.*3.14159265358979323846 

GA21= (AMAX-AMIN) 12 . 
GA22= ( AMAX + AMI N) 12 . 
DO 125 INDX=1,16 

GA2(INDX)=GA21*COEF1(INDX,1)+GA22 
125 CONTINUE 

C -------------
C MAIN PROGRAM: 
C -------------

C 

OPEN(UNIT=4, FILE=' LPT1' ) 
CALL BEEP@ 

C INPUT MOLECULAR PARAMETERS FROM THE KEYBOARD: 
C 

C WRITE(6,470) 
C470 FORMAT(1X, 'INPUT THE TEMPERATURE (IN KELVIN)') 
C READ(5,471)TEMP 
C471 FORMAT(F10.5) 

TEMP=457.0 
TEMPK=TEMP*1.380622E-23 

C WRITE(6,472) 
C472 FORMAT(1X, 'INPUT R(O) (IN nm) ' ) 
C READ(5,473)R 
C473 FORMAT(F10 . 5) 
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C 
C474 
C 
C47S 

C 
C476 
C 
C477 

C 
. C478 

C 
C479 

C 

R=O.3800 
WRITE(6,474) 
FORMAT(1X, 'ElK (IN K)') 
READ(S,47S)PARAM2 
FORMAT (FlO. S) 

P ARAM2=221. 0 
WRITE(6,476) 
FORMAT(1X, 'SHAPE1 ') 
READ(S, 477)SHAPE1 
FORMAT (FlO . S) 

SHAPE1=O . OOOO 
WRITE(6,478) 
FORMAT(1X, 'SHAPE2 ' ) 
READ(S, 479)SHAPE2 
FORMAT (FlO. S) 

SHAPE2=O.OOOO 
CALL SECONDS_SINCE_1980@(START) 

208 

C CALCULATION OF THE LENNARD-JONES 6:12 POTENTIAL & STORAGE OF THE 
C VALUES IN AN ARRAY: 
C 

DO 61 X1=1,64 

D1(X1)=4.*PARAM2*1.380622E-23*«RlSEP(X1))**12-(RlSEP(X1))**6) 
SE3(X1)=SEP(X1)**3 
SE4(X1)=SEP(X1)**4 
SES(X1)=SEP(X1)**S 
SE6(X1)=SEP(X1)**6 
SE8(X1)=SEP(X1)**8 
SE12(X1)=SEP(X1)**12 

61 CONTINUE 

C 
C THE DIRECTION COSINE TENSOR COMPONENTS ARE STORED IN AN ARRAY: 
C 

C 

00 66 X4=1,16 
DO 77 X3=1,16 

DO 88 X2=1,16 

C DIRECTION COSINE TENSOR COMPONENTS: 
C 

A1=COS(AL1(X2))*COS(BE1(X3))*COS(GA1(X4))-1.*SIN(AL1(X2))*SIN(GA1 
+ (X4)) 

A2=SIN(AL1(X2))*COS(BE1(X3))*COS(GA1(X4))+COS(AL1(X2))*SIN(GA1(X4 
+ )) 

A3=-1.*SIN(BE1(X3))*COS(GA1(X4)) 
A4=-1.*COS(AL1(X2))*COS(BE1(X3))*SIN(GA1(X4))-1 . *SIN(AL1(X2))*COS 

+ (GA1(X4)) 
AS=-1 . *SIN(AL1(X2))*COS(BE1(X3))*SIN(GA1(X4))+COS(AL1(X2))*COS(GA 

+ 1(X4)) 
A6=SIN(BE1(X3))*SIN(GA1(X4)) 
A7=COS(AL1(X2))*SIN(BE1(X3)) 
A8=SIN(AL1(X2))*SIN(BE1(X3)) 



A9=COS(BE1(X3» 

DCTC(1,X2,X3,X4)=A1 
DCTC(2,X2,X3,X4)=A2 
DCTC(3,X2,X3,X4)=A3 
DCTC(4,X2 ,-X3,X4)=A4 
DCTC(5,X2 , X3,X4)=A5 
DCTC(6,X2,X3,X4)=A6 
DCTC(7,X2,X3,X4)=A7 
DCTC(S,X2,X3,X4)=AS 
DCTC(9,X2,X3,X4)=A9 

BB CONTINUE 
77 CONTINUE 
66 CONTINUE 

C 
C THE MULTIPOLE INTERACTION ENERGIES ARE CALCULATED AND STORED 
C IN ARRAYS: 
C 

DO 939 X7=1, 16 
WRITE(6,1000)X7 

1000 FORMAT (lX, 'INDEX (IN RANGE 1 TO 16) IS CURRENTLY' ,12 ) 
DO 40 X6=1, 16 

WRITE ( 6, 1111) X6 
1111 FORMAT (lX, 'sub-index (in range 1 to 16) is currently' ,12 ) 

DO 50 X5=1,16 

C 
C MOLECULE 2'S DIRECTION COSINE TENSOR COMPONENTS: 
C 

C 

B1=DCTC(1,X5,X6,X7) 
B2=DCTC(2,X5,X6,X7) 
B3=DCTC(3,X5,X6,X7) 
B4=DCTC(4,X5,X6,X7) 
B5=DCTC(5,X5,X6,X7) 
B6=DCTC(6,X5,X6,X7) 
B7=DCTC(7,X5,X6,X7) 
BB=DCTC(B,X5,X6,X7) 
B9=DCTC(9,X5,X6,X7) 

DO 60 X4=1,16 
DO 70 X3=1,16 

DO BO X2=1,16 

C MOLECULE l'S DIRECTION COSINE TENSOR COMPONENTS: 
C 

A1=DCTC(1,X2,X3,X4) 
A2=DCTC(2,X2,X3,X4) 
A3=DCTC(3,X2,X3,X4) 
A4=DCTC(4,X2,X3,X4) 
A5=DCTC(5,X2,X3,X4) 
A6=DCTC(6,X2,X3,X4) 
A7=DCTC(7,X2,X3,X4) 
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C 

AS=DCTC(S,X2,X3,X4) 
A9=DCTC(9,X2,X3,X4) 

210 

C CALCULATION OF THE DIPOLE-DIPOLE POTENTIAL: 
C 

DDP(X2,X3,X4,X5,XS)=S.9S75SE-24*DIP**2*(-2*A9*B9+AS*BS+A3*B3) 

C 
C CALCULATION OF THE DIPOLE-QUADRUPOLE POTENTIAL: 
C 

C 

DQP(X2,X3,X4,X5,XS)=S.9S75SE-25*DIP*(Q2*(-2*A9*B9**2+(2*AS*BS+2*A 
+ 3*B3+2*A9**2-2*AS**2-AS**2+A5**2-A3**2+A2**2)*B9+2*A9*BS**2+(-2*A 
+ S*B5-2*A3*B2) *BS+A9*BS**2+(2*A5*AS-2*AS*A9) *BS-A9*B5** 2+A9*B3**2+ 
+ (2*A2*AS-2*A3*A9)*B3-A9*B2**2)+Ql*(-2*A9*B9**2+(2*AS*BS+2*A3*B3+2 
+ *A9**2-2*A7**2-AS**2+A4**2-A3**2+Al**2)*B9+2*A9*B7**2+(-2*AS*B4-2 
+ *A3*Bl)*B7+A9*B6**2+(2*A4*A7-2*AS*A9)*BS-A9*B4**2+A9*B3**2+(2*Al* 
+ A7-2*A3*A9)*B3-A9*Bl**2» 

C CALCULATION OF THE DIPOLE-INDUCED DIPOLE POTENTIAL: 
C 

C 

DIDP(X2,X3,X4,X5,XS)=-O.50*ALSTAT*S.077S5E-27*DIP**2*C3*B9**2 
+ +3*A9**2-2) 

C CALCULATION OF THE QUADRUPOLE-QUADRUPOLE POTENTIAL: 
C 

C 

QUAD1=-lS. *(AS*A9-A5*AS)*(BS*B9-B5*BS)-lS. * (A3*A9-A2*AS )*(B3*B9-B 
+ 2*BS)+4.*(2.*A9**2-2.*AS**2-AS**2+A5**2-A3**2+A2**2)*(B9-BS)*(B9+ 
+ BS)+(-4.*A9**2+4.*AS**2+3.*AS**2-3.*A5**2+A3**2-A2**2)*(BS**2-B5* 
+ *2)+4.*(A3*AS-A2*A5)*(B3*BS-B2*B5)+(-4.*A9**2+4.*AS**2+AS**2-A5** 
+ 2+3. *A3**2-3. *A2**2)*(B3**2-B2*.2) 

QUAD2=-1S.*(AS*A9-A4*A7)*(BS*B9-B4*B7)-lS.*(A3*A9-A1*A7)*(B3*B9-B 
+ 1*B7)+4. *(2. *A9**2-2. *A7**2-AS**2+A4**2-A3**2+Al**2) * ( B9-B7)*(B9+ 
+ B7)+(-4.*A9**2+4.*A7**2+3.*AS**2-3.*A4**2+A3**2-A1**2)* (BS**2-B4* 
+ *2)+4.*(A3*AS-A1*A4)*(B3*B6-B1*B4)+(-4.*A9**2+4.*A7**2+AS**2-A4** 
+ 2+3. *A3**2-3. *A1**2)*(B3**2-B1**2) 

QUAD3=4. *(4. *A9**2-2.*(AS**2+A7**2+AS**2+A3**2)+A5**2+A 4**2+A2**2 
+ +A1**2)*B9**2-1S.*C2.*AS*A9-A5*AS-A4*A7)*BS*B9-1S*C2.*A3*A9-A2*AS 
+ -A1*A7)*B3*B9-4.*(2.*A9**2-2.*A7**2-AS**2+A4**2-A3**2+A1**2)*BS** 
+ 2+1S.*(AS*A9-A4*A7)*B5*BS+1S.*(A3*A9-A1*A7)*B2*BS-4.*(2.*A9**2-2. 
+ *AS**2-AS**2+A5**2-A3**2+A2**2)*B7**2+1S.*(AS*A9-A5*AS)*B4*B7+1S. 
+ *(A3*A9-A2*AS)*Bl*B7+(-S.*A9**2+4.*(AS**2+A7**2)+S.*AS**2-3.*(A5* 
+ *2+A4**2)+2*A3**2-A2**2-A1**2)*BS**2+4.*C2.*A3*AS-A2*A5-A1*A4)*B3 
+ *BS+C4.*A9**2-4.*A7**2-3.*AS**2+3.*A4**2-A3**2+A1**2)*B5**2-4.*CA 
+ 3*AS-A1*A4)*B2*B5+(4.*A9**2-4.*AS**2-3.*AS**2+3.*A5**2-A3**2+A2** 
+ 2)*B4**2-4.*(A3*AS-A2*A5)*B1*B4+(-S.*A9**2+4.*(AS**2+A7**2)+2.*AS 
+ **2-A5**2-A4**2+S.*A3**2-3.*(A2**2+A1**2»*B3**2+(4.*A9**2-4.*A7* 
+ *2-AS**2+A4**2-3.*A3**2+3.*A1**2)*B2**2+C4.*A9**2-4.*AS**2-AS**2+ 
+ A5**2-3.*A3**2+3.*A2**2)*B1**2 

E1(X2,X3,X4,X5,XS)=S.9S75SE-2S*(1./3. )*(Q2**2*QUAD1+Q1**2*QUAD 
+ 2+Q1*Q2*QUAD3) 

C CALCULATION OF THE QUADRUPOLE-INDUCED DIPOLE POTENTIAL: 



C 

C 

211 

QID1=Q2**2*(4 . *A9**4+(-S . *AS**2+4 . *AS**2+4.*A2**2)*A9**2+(-S.*AS* 
+ AS-S.*A2*A3)*AS*A9+4 . *AS**4+(4 . *AS**2+4.*A3**2)*AS**2+AS**4+(-2.* 
+ AS**2+2.*A3**2-2.*A2**2)*AS**2+AS**4+(2 . *A2**2-2.*A3**2)*AS**2+A3 
+ **4-2.*A2**2*A3**2+A2**4)+Q1**2*(4.*A9**4+(-S.*A7**2+4.*A4**2+4.* 
+ A1**2)*A9**2+(-S.*A4*AS-S . *A1*A3)*A7*A9+4.*A7**4+(4 . *AS**2+4.*A3* 
+ *2)*A7**2+AS**4+(-2.*A4**2+2 . *A3**2-2 . *A1**2)*AS**2+A4**4+(2.*A1* 
+ *2-2 . *A3**2)*A4**2+A3**4-2. *A1**2*A3**2+A1**4)+Q1*Q2*( S. *A9**4+(
+ S.*AS**2-S.*A1**2+4.*AS**2+4.*A4**2+4 . *A2**2+4.*A1**2)*A9**2+((-S 
+ .*AS*AS-S.*A2*A3)*AS+(-S . *A4*AS-S.*A1*A3)*A7)*A9+(S.*A7**2+4 . *AS* 
+ *2-4.*A4**2+4.*A3**2-4 . *A1**2)*AS**2+(S.*A4*AS+S.*A1*A2)*A7*AS+(4 
+ . *AS**2-4.*AS**2+4.*A3**2-4.*A2**2)*A1**2+2 . *AS**4+(-2.*AS**2-2 . * 
+ A4**2+4.*A3**2-2.*A2**2-2 . *A1**2)*AS**2+(2.*A4**2-2.*A3**2+2.*A1* 
+ *2)*AS**2+(2.*A2**2-2.*A3**2)*A4**2+2 . *A3**4+(-2 . *A2**2-2.*A1**2) 
+ *A3**2+2 . *A1**2*A2**2) 

QID2=Q2**2*(4.*B9**4+(-S . *BS**2+4.*BS**2+4.*B2**2)*B9**2+(-S . *BS* 
+ BS-S.*B2*B3)*BS*B9+4.*BS**4+(4.*BS**2+4.*B3**2)*BS**2+BS**4+(-2.* 
+ BS**2+2.*B3**2-2.*B2**2)*BS**2+BS**4+(2 . *B2**2-2.*B3**2)*BS**2+B3 
+ **4-2.*B2**2*B3**2+B2**4)+Q1**2*(4.*B9**4+(-S.*B7**2+4.*B4**2+4.* 
+ B1**2)*B9**2+(-S.*B4*BS-S.*B1*B3)*B7*B9+4.*B7**4+(4.*BS**2+4.*B3* 
+ *2)*B1**2+BS**4+(-2 . *B4**2+2.*B3**2-2 . *B1**2)*86**2+B4**4+(2.*B1* 
+ *2-2.*B3**2)*B4**2+B3**4-2. *B1**2*B3**2+B1**4)+Q1*Q2*(S.*B9**4+(
+ S. *BS**2-S . *B1**2+4.*BS**2+4 . *B4**2+4.*B2**2+4.*B1**2)*B9**2+((-S 
+ .*BS*BS-S . *B2*B3)*BS+(-S.*B4*86-S.*B1*B3)*B7)*B9+(S.*B1**2+4.*BS* 
+ *2-4.*B4**2+4.*B3**2-4.*B1**2)*BS**2+(S.*B4*BS+S.*B1*B2)*B1*BS+(4 
+ . *BS**2-4.*BS**2+4.*B3**2-4.*B2**2)*B7**2+2 . *BS**4+(-2. *BS**2-2. * 
+ B4**2+4.*B3**2-2.*B2**2-2.*B1**2)*BS**2+(2 . *B4**2-2.*B3**2+2.*B1* 
+ *2)*BS**2+(2.*B2**2-2.*B3**2)*B4**2+2. *B3**4+(-2.*B2**2-2 . *B1**2) 
+ *B3**2+2.*B1**2*B2**2) 

F1(X2,X3,X4,XS,XS)=- O.S*S.077SSE-29*ALSTAT*(QID1+QID2) 

C CALCULATION OF THE INTEGRATION ARGUMENT: 
C 

T11=2.*A7**2-A4**2-A1**2 
T22=2.*AS**2-AS**2-A2**2 
T33=2 . *A9**2-AS**2-A3**2 
T12=2 . *A7*AS-A4*AS-A1*A2 
T13=2.*A1*A9-A4*AS-A1*A3 
T23=2.*AS*A9-AS*AS-A2*A3 

211 = A33*(A1**2*B9**2+(2*A4*A1*BS+2*A1*A7*B3)*B9+A4**2*BS**2+2*A 
+ 1*A4*B3*B6+A1**2*B3**2)+A22*(A1**2*BS**2+(2*A4*A1*BS+2*A1*A7*B2 
+ )*BS+A4**2*BS**2+2*A1*A4*B2*BS+A1**2*B2**2)+A11*(A1**2*B1**2+(2 
+ *A4*A7*B4+2*A1*A7*B1)*B7+A4**2*B4**2+2*A1*A4*B1*B4+A1**2*B1**2) 

222 = A33*(AS**2*B9**2+(2*AS*AS*BS+2*A2*AS*B3)*B9+AS**2*BS**2+2*A 
+ 2*AS*B3*BS+A2**2*B3**2)+A22*(AS**2*BS**2+(2*AS*AS*BS+2*A2*AS*B2 
+ )*BS+AS**2*BS**2+2*A2*AS*B2*BS+A2**2*B2**2)+A11*(AS**2*B1**2+(2 
+ *AS*AS*B4+2*A2*AS*B1)*B7+AS**2*B4**2+2*A2*AS*B1*B4+A2**2*B1**2) 

233 = A33*(A9**2*B9**2+(2*AS*A9*BS+2*A3*A9*B3)*B9+AS**2*BS**2+2*A 
+ 3*AS*B3*BS+A3**2*B3**2)+A22*(A9**2*BS**2+(2*AS*A9*BS+2*A3*A9*B2 
+ ) *BS+AS**2*BS**2+2*A3*AS*B2*BS+A3**2*B2**2)+A11*(A9**2*B7**2+(2 
+ *AS*A9*B4+2*A3*A9*B1)*B7+AS**2*B4**2+2*A3*AS*B1*B4+A3**2*B1**2) 



212 

212 = A33.(A7.AS.B9··2+((A4·AS+AS·A7)·BS+(A1·AS+A2·A7)·B3)·B9+A4· 
+ AS.BS •• 2+(A1.AS+A2.A4).B3.B6+A1.A2.B3 •• 2)+A22·(A7·AS·BS··2+((A4 
+ .AS+AS.A7).8S+(A1.AS+A2.A7).82).8S+A4.AS.8S··2+(A1·AS+A2·A4)·82 
+ .BS+A1.A2.B2 •• 2)+A11.(A7.AS.87·.2+((A4·AS+AS·A7)·84+(Al·AS+A2·A 
+ 7)·81)·87+A4·AS·84··2+(A1·AS+A2·A4)·81·B4+A1*A2·81**2) 

213 = A33*(A7·A9·89**2+((A4·A9+AS*A7)·8S+(A1·A9+A3·A7)*83)*89+A4* 
+ AS.8S**2+(A1*AS+A3*A4)*83*8S+A1*A3*83**2)+A22*(A7*A9·8S*·2+((A4 
+ *A9+AS.A7).8S+(A1.A9+A3·A7)*82)*8S+A4*AS·BS··2+(A1·AS+A3*A4)*B2 
+ *8S+A1*A3·82··2)+A11·(A7·A9·87*·2+( (A4·A9+AS·A7)*84+(A1*A9+A3*A 
+ 7)*B1)·B7+A4·AS·B4**2+(A1*AS+A3·A4)*81*B4+A1*A3*B1··2) 

223 = A33·(AS·A9·89·*2+((AS·A9+AS·AS)·BS+(A2·A9+A3·AS)*83)*B9+AS· 
+ AS·BS**2+(A2*AS+A3*AS) *B3*8S+A2*A3*B3*·2)+A22* (AS*A9*BS* ·2+((AS 
+ *A9+AS*AS).BS+(A2*A9+A3*AS)*B2)*8S+AS·AS*BS**2+(A2·AS+A3·AS)*82 
+ .BS+A2·A3*82··2)+A11·(AS*A9*87**2+((AS*A9+AS·AS)*84+(A2*A9+A3*A 
+ S)*81)*87+AS·AS·84··2+(A2*AS+A3*AS) · 81*84+A2·A3·B1**2) 

W11 = V33·(A7*·2*89**2+(2·A4·A7*B6+2·A1·A7·B3)·B9+A4**2·8S··2+2·A 
+ 1·A4·83·B6+A1··2·83*·2)+V22·(A7··2*B8··2+(2*A4·A7*8S+2·A1·A7·B2 
+ ) *BS+A4··2·BS··2+2·A1*A4·82·BS+A1*·2·B2··2)+V11*(A7··2·B7··2+(2 
+ *A4·A7·84+2·A1*A7·81)*87+A4*·2*84**2+2·A1*A4*81·84+A1··2·81**2) 

W22 = V33·(AS··2·B9··2+(2·AS·AS·B6+2·A2·AS*B3)·B9+AS*·2·BS*·2+2·A 
+ 2*AS·B3·B6+A2··2·83··2)+V22·(AS··2·B8··2+(2·AS·AS·BS+2·A2·AS·82 
+ )·8S+AS··2·8S·*2+2·A2·AS*82*8S+A2**2·82··2)+V11·(AS*·2·87·*2+(2 
+ ·AS·AS·B4+2·A2*AS*B1)·B7+AS·*2·B4*·2+2·A2·AS·B1*B4+A2··2·B1*·2) 

W33 = V33·(A9*·2·89·*2+(2*AS·A9·BS+2*A3·A9·83)*89+AS··2·8S··2+2·A 
+ 3·AS·B3·B6+A3*·2*B3··2) +V22· (A9··2·B8··2+ (2·AS·A9·8S+2·A 3·A9·B2 
+ )·BS+AS··2·8S··2+2·A3·AS·82·BS+A3··2·82··2)+V11·(A9··2·87··2+(2 
+ ·AS·A9·84+2·A3·A9·81)·87+AS··2·84··2+2·A3·AS·81·84+A3··2·81··2) 

W12 = V33·(A7·AS·89··2+((A4·AS+AS·A7)·B6+(A1·AS+A2·A7)·B3)·89+A4· 
+ AS·B6··2+(A1·AS+A2·A4)·83·B6+A1·A2·B3··2)+V22·(A7·AS·8S··2+((A4 
+ ·AS+AS·A7)·BS+ (A1·AS+A2·A7)·B2)·8S+A4·AS·BS··2+ (A1·AS+A2 ·A4)·B2 
+ ·8S+A1·A2·82··2)+V11·(A7·AS·87··2+((A4·AS+AS·A7)·B4+(A1·AS+A2·A 
+ 7)·81)·B7+A4·AS·84··2+(A1·AS+A2·A4)·81·84+A1·A2·81··2) 

W13 = V33·(A7·A9·B9··2+((A4·A9+AS·A7)·B6+(A1·A9+A3·A7)·83)·89+A4. 
+ AS·B6··2+(A1·AS+A3·A4)·83·B6+A1·A3·83··2)+V22·(A7·A9·8S··2+((A4 
+ ·A9+AS·A7)·8S+(A1·A9+A3·A7)·82)·B8+A4·AS·8S··2+(A1·AS+A3.A4).82 
+ ·BS+A1·A3·82··2)+V11·(A7·A9·87··2+((A4·A9+AS·A7)·84+(A1.A9+A3.A 
+ 7)·B1)·87+A4·AS·84··2+(A1·AS+A3·A4)·81·84+A1·A3·81··2) 

W23 = V33·(AS·A9·B9··2+((AS·A9+AS·AS)·B6+(A2·A9+A3·AS)·83)·89+AS. 
+ AS·8S··2+(A2·AS+A3·AS)·B3·B6+A2·A3·83··2)+V22·(AS·A9·BS··2+((AS 
+ ·A9+AS·AS)·BS+(A2·A9+A3·AS)·82)·B8+AS·AS·8S··2+(A2·AS+A3·AS).82 
+ ·8S+A2·A3·82··2)+V11·(AS·A9·87··2+((AS·A9+AS·AS)·84+(A2·A9+A3.A 
+ S)·81)·B7+AS·AS·84*·2+(A2·AS+A3·AS)·81·84+A2·A3·81··2) 

01=A7·B9+A4·BS+A1·83 
02=AS·89+AS·B6+A2·83 
03=A9·89+AS·BS+A3·83 

C(cS93) FORTRAN(S·D42S); 
TERM1=-S·Dlp··2· 

+ (((ALDYN-A33)·03··2·T33··2+((2·ALDYN-2·A33)·02·03·T23+(2· 
1 ALDYN-2·A33)·Ol·03·T13)·T33+(ALDYN-A33)·02 •• 2.T23 •• 2+(2.ALDYN-2 
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2 *A33)*01*02*T13*T23+(ALDYN-A33)*01**2*T13**2)*V33**2+((ALDYN-A2 
3 2)*03**2*T23**2+«2*ALDYN-2*A22)*02*03*T22+(2*ALDYN-2*A22)*01*0 
4 3*T12) *T23+(ALDYN-A22) *02**2*T22**2+ (2*ALDYN-2*A22) *01*02*T 12*T 
5 22+(ALDYN-A22)*01**2*T12**2)*V22**2+«ALDYN-A11)*03**2*T13**2+( 
6 · (2*ALDYN-2*A11)*02*03*T12+(2*ALDYN-2*A11)*01*03*T11)*T13+(ALDYN 
7 -All)*02**2*T12**2+(2*ALDYN-2*A11)*01*02*T11*T12+(ALDYN-A11)*01 
8 **2*T11**2)*V11**2) 

C(c594) FORTRAN(2*D454); 
TERM2=2* 

+(3*DIP**2*(A33*«03*T33**2+(02*T23+01*T13)*T33)*V33*Z33+(03*T23*T 
1 33+02*T23**2+01*T13*T23)*V33*Z23+(03*T13*T33+02*T13*T23+01*T13* 
2 *2)*V33*Z13)+A22*«03*T23**2+(02*T22+01*T12)*T23)*V22*Z33+(03*T 
3 22*T23+02*T22**2+01*T12*T22) *V22*Z23+ (03*T12*T23+02*T1 2*T22+01* 
4 T12**2)*V22*Z13)+A11*«03*J13**2+(02*T12+01*T11)*T13)*V11*Z33+( 
5 03*T12*T13+02*T12**2+01*T11*T12)*V11*Z23+(03*T11*T13+02*T11*T12 
6 +01*T11**2)*V11*Z13))-2*DIP**2*(03*T33+02*T23+01*T13)*V33*(A33*( 
7 T33*Z33+T23*Z23+T13*Z13)+A22*(T23*Z23+T22*Z22+T12*Z12)+A11*(T13 
8 *Z13+T12*Z12+T11*Z11))+3*A33*DIP**2*«03*T33**2+(02*T23+01*T13)* 
9 T33)*V33*Z33+«03*T23*T33+02*T23**2+01*T13*T23)*V33+(03*T23+02* 

T22+01*T12)*T33*V22)*Z23+(03*T23**2+(02*T22+01*T12)*T23)*V22*Z2 
2+«03*T13*T33+02*T13*T23+01*T13**2)*V33+(03*T13+02*T12+01*T11) 

< *T33*V11)*Z13+«03*T13*T23+02*T13*T22+01*T12*T13)*V22+(03*T13+0 
= 2*T12+01*T11)*T23*V11)*Z12+(03*T13**2+(02*T12+01*T11)*T13)*V11* 
> Zll)) 

C(c595) FORTRAN(6*D469); 
TERM3=-6* 

+ (ALDYN-A33)*DIP**2*V33*(T33**2*W33+2*T23*T33*W23+T23**2*W22+2*T1 
1 3*T33*W13+2*T13*T23*W12+T13**2*W11) 

C(c596) FORTRAN(2*D477); 
TERM4=-2* 

+DIP**2*(A33**2*(-2*T33**2*Z33-4*T23*T33*Z23-2*T23**2*Z22-4*T13*T 
1 33*Z13-4*T13*T23*Z12-2*T13**2*Zll)+A22**2*(T23**2*Z33+2*T22*T23 
2 *Z23+T22**2*Z22+2*T12*T23*Z13+2*T12*T22*Z12+T12**2*Zll)+A11**2* 
3 (T13**2*Z33+2*T12*T13*Z23+T12**2*Z22+2*T11*T13*Z13+2*T11*T12*Z1 
4 2+T11**2*Zll)) 

C(c597) FORTRAN(6*D485); 

TERM5=-6* 
+DIP**2*«ALDYN-A33)*T33**2*W33**2+«2*ALDYN-2*A33)*T23*T33*W23+( 
1 2*ALDYN-2*A33)*T13*T33*W13)*W33+«ALDYN-A22)*T33**2+(ALDYN-A33) 
2 *T23**2)*W23**2+«2*ALDYN-2*A22)*T23*T33*W22+(2*ALDYN-2*A33)*T1 
3 3*T23*W13+(2*ALDYN-2*A22)*T13*T33*W12)*W23+(ALDYN-A22)*T23**2*W 
4 22**2+(2*ALDYN-2*A22)*T13*T23*W12*W22+«ALDYN-A11)*T33**2+(ALDY 
5 N-A33)*T13**2)*W13**2+«2*ALDYN-2*A11)*T23*T33*W12+(2*ALDYN-2*A 
6 11)*T13*T33*W11)*W13+«ALDYN-A11)*T23**2+(ALDYN-A22)*T13**2)*W1 
7 2**2+(2*ALDYN-2*A11)*T13*T23*W11*W12+(ALDYN-A11)*T13**2*W11**2) 

C(c598) FORTRAN(2*D504); 
TERM6A=-2* 

+(3*DIP**2*CA33*CC03*T33**2*W33+03*T23*T33*W23+03*T13*T33*W13)*Z33 
1 +(C02*T33**2+03*T23*T33)*W33+C02*T23*T33+03*T23**2)*W23+(02*T13 
2 *T33+03*T13*T23)*W13)*Z23+C02*T23*T33*W33+02*T23**2*W23+02*T13* 
3 . T23*W13)*Z22+«01*T33**2+03*T13*T33)*W33+(01*T23*T33+03*T13*T23 
4 )*W23+(Ol*T13*T33+03*T13**2)*W13)*Z13+«Ol*T23+02*T13)*T33*W33+ 
5 (Ol*T23**2+02*T13*T23)*W23+(01*T13*T23+02*T13**2)*W13)*Z12+(01* 
6 T13*T33*W33+01*T13*T23*W23+01*T13**2*W13)*Zll)+A22*«03*T23*T33 
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7 *W23+03*T23**2*W22+03*T13*T23*W12)*Z33+«02*T23+03*T22)*T33*W23 
8 +(02*T23**2+03*T22*T23)*W22+(02*T13*T23+03*T13*T22)*W12)*Z23+(0 
9 2*T22*T33*W23+02*T22*T23*W22+02*T13*T22*W12)*Z22+«01*T23+03*T1 

2)*T33*W23+(01*T23**2+03*T12*T23)*W22+(01*T13*T23+03*T12*T13)*W 
12)*Z13+«01*T22+02*T12)*T33*W23+(01*T22+02*T12)*T23*W22+(01*T1 

< 3*T22+02*T12*T13)*W12)*Z12+(01*T12*T33*W23+01*T12*T23*W22+01*T1 
= 2*T13*W12)*Z11)+A11*«03*T13*T33*W13+03*T13*T23*W12+03*T13**2*W 
> 11)*Z33+«02*T13+03*T12)*T33*W13+(02*T13+03*T12)*T23*W12+(02*T1 
? 3**2+03*T12*T13)*W11)*Z23+(02*T12*T33*W13+02*T12*T23*W12+02*T12 
@ *T13*W11)*Z22+«01*T13+03*T11)*T33*W13+(01*T13+03*T11)*T23*W12+ 
1 (01*T13**2+03*T11*T13)*W11)*Z13+«01*T12+02*T11)*T33*W13+(01*T1 
2 2+02*T11)*T23*W12+(01*T12+02*T11)*T13*W11)*Z12+(01*T11*T33*W13+ 
3 01*T11*T23*W12+01*T11*T13*W11)*Z11») 

TERMSB=-2*(3*DIP**2*(A33*«03*T33**2*W 
4 33+03*T23*T33*W23+03*T13*T33*W13) *Z33+ (03*T23*T33*W33+ (03*T33** 
5 2+03*T23**2)*W23+03*T23*T33*W22+03*T13*T23*W13+03*T13*T33*W12)* 
S Z23+(03*T23*T33*W23+03*T23**2*W22+03*T13*T23*W12)*Z22+(03*T13*T 
7 33*W33+03*T13*T23*W23+(03*T33**2+03*T13**2)*W13+03*T23*T33*W12+ 
8 03*T13*T33*W11)*Z13+(03*T13*T33*W23+03*T13*T23*W22+03*T23*T33*W 
9 13+(03*T23**2+03*T13**2)*W12+03*T13*T23*W11)*Z12+(03*T13*T33*W1 

3+03*T13*T23*W12+03*T13**2*W11)*Z11)+A22*«02*T23*T33*W33+02*T2 
3**2*W23+02*T13*T23*W13)*Z33+(02*T22*T33*W33+(02*T23*T33+02*T22 

< *T23)*W23+02*T23**2*W22+02*T13*T22*W13+02*T13*T23*W12)* Z23+(02* 
= T22*T33*W23+02*T22*T23*W22+02*T13*T22*W12)*Z22+(02*T12*T33*W33+ 
> 02*T12*T23*W23+(02*T23*T33+02*T12*T13)*W13+02*T23**2*W12+02*T13 
? *T23*W11)*Z13+(02*T12*T33*W23+02*T12*T23*W22+02*T22*T33*W13+(02 
@ *T22*T23+02*T12*T13)*W12+02*T13*T22*W11)*Z12+(02*T12*T33*W13+02 
1 *T12*T23*W12+02*T12*T13*W11)*Z11)+A11*«01*T13*T33*W33+01*T13*T 
2 23*W23+01*T13**2*W13)*Z33+(01*T12*T33*W33+(01*T13*T33+01*T12*T2 
3 3)*W23+01*T13*T23*W22+01*T12*T13*W13+01*T13**2*W12)*Z23+(01*T12 
4 *T33*W23+01*T12*T23*W22+01*T12*T13*W12)*Z22+(01*T11*T33*W33+01* 
5 T11*T23*W23+(01*T13*T33+01*T11*TI3)*W13+01*T13*T23*W12+01*T13** 
S 2*WI1)*Z13+(01*TI1*T33*W23+01*T11*T23*W22+01*T12*T33*W13+(01*T1 
7 2*T23+01*T11*T13)*W12+01*T12*T13*W11)*Z12+(01*T11*T33*W13+01*T1 
8 1*T23*W12+01*T11*T13*W11)*Z11») 

TERMSC=-2*(-2*DIP**2*(03*T33*W33+(02*T33+03* 
9 T23)*W23+02*T23*W22+(01*T33+03*T13)*W13+(01*T23+02*T13)* W12+01* 

T13*WI1)*(A33*(T33*Z33+T23*Z23+T13*ZI3)+A22*(T23*Z23+T22*Z22+T1 
2*Z12)+A11*(T13*Z13+T12*ZI2+T11*Z11») 

TERM6=TERMSA+TERMSB+TERMSC 

C(c599) FORTRAN(S*D519); 
TERM7A=-S*DIP**2* 

+««ALDYN-A33)*03**2*T33**2+«ALDYN-A33)*02*03*T23+(ALDYN 
1 
2 
3 
4 
5 
S 
7 
8 
9 

< 
= 
> 
? 

-A33)*01*03*TI3)*T33)*V33+«ALDYN-A33)*03**2*T23**2+«ALDYN-A33 
)*02*03*T22+(ALDYN-A33)*01*03*T12)*T23)*V22+«ALDYN-A33)*03**2* 
T13**2+«ALDYN-A33)*02*03*T12+(ALDYN-A33)*01*03*T11)*T13)*V11)* 
W33+«(ALDYN-A22)*02*03*T33**2+«(ALDYN-A33)*03**2+(ALDYN-A22)* 
02**2)*T23+(ALDYN-A22)*01*02*TI3)*T33+(ALDYN-A33)*02*03*T23**2+ 
(ALDYN-A33)*01*03*T13*T23)*V33+«ALDYN-A22)*02*03*T23**2+(«ALD 
YN-A33)*03**2+(ALDYN-A22)*02**2)*T22+(ALDYN-A22)*01*02*T12)*T23 
+(ALDYN-A33)*02*03*T22**2+(ALDYN-A33)*01*03*T12*T22)*V22+((ALDY 
N-A22)*02*03*T13**2+«(ALDYN-A33)*03**2+(ALDYN-A22)*02**2)*T12+ 
(ALDYN-A22)*01*02*T11)*TI3+(ALDYN-A33)*02*03*T12**2+(ALDYN-A33) 
*01*03*T11*TI2)*V11)*W23+«(ALDYN-A22)*02*03*T23*T33+(ALDYN-A22 
)*02**2*T23**2+(ALDYN-A22)*01*02*T13*T23)*V33+«ALDYN-A22)*02*0 
3*T22*T23+(ALDYN-A22)*02**2*T22**2+(ALDYN-A22)*01*02*T12*T22)*V 
22+«ALDYN-A22)*02*03*T12*TI3+(ALDYN-A22)*02**2*T12**2+(ALDYN-A 
22)*01*02*T11*T12)*V11)*W22+«(ALDYN-A11)*01*03*T33**2+((ALDYN-
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@ A11).01.02.T23+((ALDYN-A33).03 •• 2+(ALDYN-A11)·01··2)·T13)·T33+( 
1 ALDYN-A33).02.03·T13·T23+(ALDYN-A33)·01·03·T13··2)·V33+((ALDYN-
2 A11).01.03.T23··2+((ALDYN-A11)·01·02·T22+((ALDYN-A33)·03··2+(AL 
3 DYN-A11).01··2)·T12)·T23+(ALDYN-A33)·02·03·T12·T22+(ALDYN-A33)· 
4 01.03.T12··2)·V22+((ALDYN-A11)·01·03·T13··2+((ALDYN-A11)·01·02· 
5 T12+((ALDYN-A33)·03··2+(ALDYN-A11)·01··2)·T11)·T13+(ALDYN-A33)· 
6 02·03·T11·T12+(ALDYN-A33)·01·03·T11··2)·V11)·W13) 

TERM7B=-6·Dlp··2·(((((ALDYN-A11) 
7 .01.03·T23+(ALDYN-A22)·02·03·T13)·T33+(ALDYN-A11)·01·02·T23··2+ 
8 ((ALDYN-A22)·02··2+(ALDYN-A11)·01··2)·T13·T23+(ALDYN-A22)·01·02 
9 .T13 •• 2)·V33+(((ALDYN-A11)·01·03·T22+(ALDYN-A22)·02·03·T12)·T23 

+(ALDYN-A11).01.02.T22 •• 2+((ALDYN-A22)·02··2+(ALDYN-A11)·01·*2) 
.T12.T22+(ALDYN-A22).01.02.T12 •• 2)·V22+(((ALDYN-A11)*01·03·T12+ 

< (ALDYN-A22).02.03.T11).T13+(ALDYN-A11).01.02·T12··2+((ALDYN-A22 
= ).02 •• 2+(ALDYN-A11).01.*2).T11.T12+(ALDYN-A22)*01·02*T11··2)·V1 
> 1).W12+(('(ALDYN-A11)*01.03.T13.T33+(ALDYN-A11)·01·02·T13·T23+(A 
? LDYN-A11).01 •• 2.T13 •• 2).V33+((ALDYN-A11)·01·03·T12·T23+(ALDYN-A 
@ 11).01.02.T12.T22+(ALDYN-A11).01**2·T12··2)·V22+((ALDYN-A11)·01 
1 ·03·T11.T13+(ALDYN-A11)·01·02·T11*T12+(ALDYN-A11)*01**2·T11·*2) 
2 ·V11)·W11) 

TERM7=TERM7A+TERM7B 

C(c600) FORTRAN(2·D530); 
TERM8=-2· 

+Dlp •• 2.(A11.(A33·(-6.01·03·T13·T33·233+(-6·01·03·T12·T33-6·01·03 
1 *T13·T23)·223-6·01·03·T12·T23·222+(-6·01·03·T11·T33-6·01·03*T13 
2 ··2)·213+(-6·01·03·T11·T23-6·01·03·T12·T13)·212-6*01·03*T11·T13 
3 ·211)+A22·(-6·01·02·T13·T23·233+(-6·01·02·T12·T23-6·01·02·T13·T 
4 22)·223-6·01·02·T12·T22·222+(-6·01·02·T11·T23-6·01·02·T12·T13)· 
5 213+(-6·01*02·T11·T22-6·01·02·T12··2)·212-6·01·02·T11*T12·211» 
6 +A33··2·((-2·03··2+02··2+01··2)·T33··2·233+(-4·03··2+2·02··2+2· 
7 01··2)·T23·T33·223+(-2·03··2+02··2+01··2)·T23··2·222+(-4·03··2+ 
8 2·02··2+2·01··2)·T13·T33·213+(-4·03··2+2·02··2+2·01*·2)*T13*T23 
9 ·212+(-2·03··2+02··2+01··2)·T13··2·211)+A22·A33*(-6·02·03·T23·T 

33*233+(-6*02*03·T22·T33-6*02*03*T23*·2)*223-6*02*03*T22*T23*22 
2+(-6*02*03·T12·T33-6·02·03*T13·T23)·213+(-6*02·03*T12·T23-6·02 

< ·03·T13·T22)·212-6·02·03·T12·T13·211)+A22*·2·((03··2-2·02**2+01 
= ··2)·T23··2*233+(2·03··2-4·02··2+2·01··2)·T22·T23·223+(03··2-2· 
> 02··2+01··2)·T22··2·222+(2·03··2-4·02··2+2·01··2)·T12·T23·213+( 
? 2·03··2-4·02··2+2·01··2)·T12·T22·212+(03··2-2·02··2+01··2)·T12· 
@ ·2·211)+A11**2*((03**2+02**2-2*01**2)·T13*·2*233+(2*03**2+2*02* 
1 ·2-4·01··2)·T12·T13·223+(03*·2+02**2-2*01**2)*T12·*2*222+(2·03* 
2 ·2+2·02··2-4*01**2)*T11·T13·213+(2·03**2+2*02**2-4*01··2)*T11*T 
3 12·212+(03··2+02*·2-2*01*·2)·T11··2·211» 

C(c601) FORTRAN(12*D538); 
TERM9=-12· 

+Dlp··2*(((ALDYN-A33)·03·T33*·2+((ALDYN-A33)·02·T23+(ALDYN-A33)* 
1 01·T13)*T33)·V33·W33+(((ALDYN-A33)*03·T23·T33+(ALDYN-A33)*02*T2 
2 3**2+(ALDYN-A33)*01·T13*T23)·V33+((ALDYN-A22)·03·T23+(ALDYN-A22 
3 )*02·T22+(ALDYN-A22)·01·T12)·T33·V22)·W23+((ALDYN-A22)·03·T23 •• 
4 2+((ALDYN-A22)*02·T22+(ALDYN-A22)·01·T12)·T23)*V22·W22+(((ALDYN 
5 -A33)·03·T13·T33+(ALDYN-A33)·02·T13·T23+(ALDYN-A33).01·T13 •• 2). 
6 V33+((ALDYN-A11)·03·T13+(ALDYN-A11)·02·T12+(ALDYN-A11)·01.T11). 
7 T33·V11)·W13+(((ALDYN-A22)*03*T13·T23+(ALDYN-A22)·02·T13·T22+(A 
8 LDYN-A22)·01·T12·T13)·V22+((ALDYN-A11)*03·T13+(ALDYN-A11).02.T1 
9 2+(ALDYN-A11)·01·T11)·T23·V11)·W12+((ALDYN-A11j·03·T13··2+((ALD 

YN-A11)·02·T12+(ALDYN-A11)·01·T11)·T13)·V11·W11) 
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C(c602) FORTRAN(12*D545); 
TERMIO=-12* 

+(ALDYN-A33)*DIP**2*«(03*T33**2+(02*T23+01*T13)*T33)*V33+(03*T2 
1 3**2+(02*T22+01*T12)*T23)*V22+(03*T13**2+(02*T12+01*Tl1)*T13)*V 
2 11)*W33+«03*T23*T33+02*T23**2+01*T13*T23)*V33+(03*T22*T23+02*T 
3 22**2+01*T12*T22)*V22+(03*T12*T13+02*T12**2+01*Tll*T12)*V11)*W2 
4 3+«03*T13*T33+02*T13*T23+01*T13**2)*V33+(03*T12*T23+02*T12*T22 
5 +01*T12**2)*V22+(03*T11*T13+02*T11*T12+01*Tll**2)*V11)*W13) 

C(c603) FORTRAN(12*D552); 
TERM11=-12* 

+DIP**2*«(ALDYN-A33)*03*T33**2*V33+(ALDYN-A22)*02*T23*T33*V22+( 
1 ALDYN-A11)*01*T13*T33*V11)*W33+«2*ALDYN-2*A33)*03*T23*T33*V33+ 
2 «ALDYN-A22)*02*T22*T33+(ALDYN-A22)*02*T23**2)*V22+«ALDYN-A11) 
3 *01*T12*T33+(ALDYN-A11)*01*T13*T23)*V11)*W23+«ALDYN-A33)*03*T2 
4 3**2*V33+(ALDYN-A22)*02*T22*T23*V22+(ALDYN-A11)*01*T12*T23*V11) 
5 *W22+«2*ALDYN-2*A33)*03*T13*T33*V33+«ALDYN-A22)*02*T12*T33+(A 
6 LDYN-A22)*02*T13*T23)*V22+«ALDYN-All)*01*T11*T33+(ALDYN-A11)*0 
7 1*T13**2)*V11)*W13+«2*ALDYN-2*A33)*03*T13*T23*V33+«ALDYN-A22) 
8 *02*T12*T23+(ALDYN-A22)*02*T13*T22)*V22+«ALDYN-A11)*01*T11*T23 
9 +(ALDYN-A11)*01*T12*T13)*V11)*W12+«ALDYN-A33)*03*T13**2*V33+(A 

LDYN-A22)*02*T12*T13*V22+(ALDYN-A11)*01*T11*T13*V11)*W11) 

C(c605) FORTRAN(2*D569); 
TERM12=2* 

+(3*DIP**2*(A33*«T33**2*W33+T23*T33*W23+T13*T33*W13)*Z33+(T23*T33 
1 *W33+T23**2*W23+T13*T23*W13)*Z23+(T13*T33*W33+T13*T23*W23+T13** 
2 2*W13)*Z13)+A22*«T23*T33*W23+T23**2*W22+T13*T23*W12)*Z33+(T22* 
3 T33*W23+T22*T23*W22+T13*T22*W12) *Z23+ (T12*T33*W23+T12*T2 3*W22+T 
4 12*T13*W12)*Z13)+A11*«T13*T33*W13+T13*T23*W12+T13**2*W11)*Z33+ 
5 (T12*T33*W13+T.12*T23*W12+T12*T13*W11)*Z23+(T11*T33*W13+T11*T23* 
6 W12+T11*T13*W11)*Z13»-2*DIP**2*(T33*W33+T23*W23+T13*W13)*(A33*( 
7 T33*Z33+T23*Z23+T13*Z13)+A22*(T23*Z23+T22*Z22+T12*Z12)+A11*(T13 
8 *Z13+T12*Z12+T11*Z11»+3*A33*DIP**2*«T33**2*W33+T23*T33*W23+T13 
9 *T33*W13) *Z33+(T23*T33*W33+ (T33**2+T23·*2) *W23+T23*T33* W22+T13* 

T23*W13+T13*T33*W12)*Z23+(T23*T33*W23+T23**2*W22+T13*T23*W12)*Z 
22+ (T13*T33*W33+T13*T23*W23+(T33**2+T13**2) *W13+T23*T33* W12+T13 

< *T33*W11)*Z13+(T13*T33*W23+T13*T23*W22+T23*T33*W13+(T23**2+T13* 
= *2)*W12+T13*T23*W11)*Z12+(T13*T33*W13+T13*T23*W12+T13**2*W11)*Z 
> 11» 

C(c606) FORTRAN(2*D582); 
TERM13A=2* 

+(3*DIP**2*(A33*«03**2*T33**2+(02*03*T23+01*03*T13)*T33)*V33*Z33+ 
1 
2 
3 
4 
5 
6 
7 
8 
9 

< 
= 
> 
? 

«03**2*T23*T33+02*03*T23**2+01*03*T13*T23)*V33+(03**2*T23+02*0 
3*T22+01*03*T12)*T33*V22)*Z23+(03**2*T23**2+(02*03*T22+01*03*T1 
2)*T23)*V22*Z22+«03**2*T13*T33+02*03*T13*T23+01*03*T13**2)*V33 
+(03**2*T13+02*03*T12+01*03*T11)*T33*V11)*Z13+«03**2*T13*T23+0 
2*03*T13*T22+01*03*T12*T13)*V22+(03**2*T13+02*03*T12+01*03*T11) 
*T23*V11)*Z12+(03**2*T13**2+(02*03*T12+01*03*T11)*T13)*V11*Z11) 
+A22*«02*03*T23*T33+02**2*T23**2+01*02*T13*T23)*V33*Z33+«02*0 
3*T22*T33+02**2*T22*T23+01*02*T13*T22) *V33+ (02*03*T23* *2+(02**2 
*T22+01*02*T12)*T23)*V22)*Z23+(02*03*T22*T23+02**2*T22**2+01*02 
*T12*T22)*V22*Z22+«02*03*T12*T33+02**2*T12*T23+01*02*T12*T13)* 
V33+(02*03*T13+02**2*T12+01*02*T11)*T23*V11)*Z13+«02*03*T12*T2 
3+02**2*T12*T22+01*02*T12**2)*V22+(02*03*T13+02**2*T12+01*02*T1 
1)*T22*Vl1)*Z12+(02*03*T12*T13+02**2*T12**2+01*02*T11*T12)*V11* 
Zll)+A11*«01*03*T13*T33+01*02*T13*T23+01**2*T13**2)*V33*Z33+« 
01*03*T12*T33+01*02*T12*T23+01**2*T12*T13)*V33+(01*03*T13*T23+0 
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@ 1*02*T13*T22+0l**2*T12*T13)*V22)*Z23+(01*03*T12*T23+0l*02*T12*T 
1 22+0l**2*T12**2)*V22*Z22+«01*03*Tll*T33+0l*02*Tll*T23+01**2*Tl 
2 1*T13)*V33+(01*03*T13**2+(01*02*T12+0l**2*Tll)*T13)*Vl1)*Z13+« 
3 01*03*Tll*T23+0l*02*Tll*T22+0l**2*Tll*T12)*V22+(01*03*T12*T13+0 
4 1*02*T12**2+0l*·2·Tll*T12)*Vll)*Z12+(01·03*Tll·T13+0l·02*Tll·Tl 
5 2+0l·*2*Tll*·2)*Vll*Zll))) 

TERM13B=2*(3*DIP**2*(A33*«03*·2·T33*·2+(02*03*T2 
6 3+0l*03*T13)*T33)·V33*Z33+(02*03*T33**2+«03**2+02·*2)*T23+0l*0 
7 2·T13)*T33+02*03*T23**2+0l·03*T13·T23)·V33*Z23+(02·03·T23*T33+0 
8 2**2*T23**2+0l*02·T13*T23)·V33·Z22+(01*03*T33··2+(01*02*T23+(03 
9 **2+0l·*2)*T13)*T33+02*03*T13*T23+0l·03*T13··2)·V33*Zl3+«01·03 

*T23+02*03*T13)*T33+0l*02*T23·*2+(02**2+0l**2)*T13*T23+01*02*Tl 
3**2)*V33*Z12+(01*03*T13*T33+0l*02*T13*T23+0l**2*T13**2)*V33*Zl 

< 1)+A22*«03**2*T23**2+(02*03*T22+0l*03*T12)*T23)*V22*Z33+(02*03 
= ·T23**2+«03**2+02**2)*T22+0l*02*T12)*T23+02*03*T22**2+01*03*Tl 
> 2*T22) *V22*Z23+ (02*03*T22*T23+02**2*T22**2+0l*02*T12*T 22)*V22*Z 
? 22+(01*03*T23**2+(01*02*T22+(03**2+0l**2)*T12)*T23+02*03*T12*T2 
@ 2+0l*03*T12**2)*V22*Z13+«01*03*T22+02*03*T12)*T23+0l*02*T22**2 
1 +(02**2+0l**2)*T12*T22+0l*02*T12**2)*V22*Z12+(01*03*Tl2*T23+0l* 
2 02*T12*T22+0l**2*T12**2)*V22*Zll)+All*«03**2*T13**2+(02*03*T12 
3 +01*03*Tll)*T13)*Vll*Z33+(02*03*T13**2+«03**2+02**2)*T12+0l*02 
4 *Tll)*T13+02*03*T12**2+0l*03*Tll*T12)*Vll*Z23+(02*03*Tl2*T13+02 
5 **2*T12**2+0l*02*Tll*T12)*Vll*Z22+(01·03*T13**2+(01*02*T12+(03* 
6 *2+0l**2)*Tll)*T13+02*03*Tll*T12+0l*03*Tll**2)*Vll*Z13+«01*03* 
7 T12+02*03*Tll)*T13+0l*02*T12**2+(02**2+0l**2)*Tll*T12+01*02*Tll 
8 **2)*Vll*Z12+(01*03*Tll*T13+0l*02*Tll*T12+0l**2*Tll**2)*Vll*Zll 
9 ))-2*DIP**2*«03**2*T33+02*03*T23+0l*03*T13)*V33+(02*03*T23+02** 

2*T22+0l*02*T12)*V22+(01*03*T13+0l*02*T12+0l**2*Tll)·V11)*(A33* 
(T33*Z33+T23*Z23+T13*Z13)+A22*(T23*Z23+T22*Z22+T12*Z12)+All*(Tl 

< 3*Z13+T12*Z12+Tll*Zll))) 

TERM13=TERM13A+TERM13B 
C(c607) FORTRAN(4*D590)j 

C 

TERM14=-4* 
+DIP**2*(A33**2*(-2*03*T33**2*Z33-4*03*T23*T33*Z23-2*03*T23**2*Z2 
1 2-4*03*T13*T33*Z13-4*03*T13*T23*Z12-2*03*T13**2*Zll)+A22*A33*(-
2 3*02*T23*T33*Z33+ (-3*02*T22*T33-3*02·T23**2) *Z23-3*02*T2 2*T23*Z 
3 22+(-3*02*T12*T33-3*02*T13*T23)*Z13+(-3*02*T12*T23-3*02*T13*T22 
4 )*Z12-3*02*T12*T13*Zll)+All*A33*(-3*01*T13*T33*Z33+(-3*01*T12*T 
5 33-3*01*T13*T23)*Z23-3*01*T12*T23*Z22+(-3*01*Tll*T33-3*01*T13** 
6 2)*Z13+(-3*01*Tll*T23-3*01*T12*T13)*Z12-3*01*Tll*T13*Z11)+A22** 
7 2* (03*T23**2*Z33+2*03*T22*T23*Z23+03*T22**2*Z22+2*03*T12*T23*Z1 
8 3+2*03*T12*T22*Z12+03*T12**2*Zll)+A11**2*(03*T13**2*Z33+2*03*T1 
9 2*T13*Z23+03*T12**2*Z22+2*03*Tll*T13*Z13+2*03*Tll*T12*Zl2+03*Tl 

1**2*Zll)) 

TERM=TERM1+TERM2+TERM3+TERM4+TERM5+TERM6+TERM7+TERM8+TERM9+TERM10 
+ +TERM11+TERM12+TERM13+TERM14 

FI(X2,X3,X4,X5,X6)=(1/(6480.·3. 14159265358979323846**2))*(SI 
+ N(BE1(X3))*SIN(BE2(X6)))*TERM 

C CALCULATION OF THE SHAPE POTENTIAL: 
C 

C Gl(X3,X4,X6)=4.*PARAM2*1.380622E-23*R*.12*(SHAPEl 
C + *(3. *COS(BE1(X3))**2+3. *COS(BE2(X6))**2-2. )) 
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G1CX3,X4,X6)=4.*PARAM2*1 . 3S0622E-23*R**12*CSHAPE1*C3.*COSCBE1CX3) 
+ )**2+3.*COSCBE2CX6))**2-2 . )+SHAPE2*C3 . *COSCGA1CX4))**2*SINCBE1C~3 

. + ))**2+3 . *COSCGA2CX7))**2*SINCBE2CX6))**2-2.)) 

SO CONTINUE 
70 CONTINUE 
60 CONTINUE 
50 CONTINUE 
40 CONTINUE 

C 
C THE INTEGRAL IS CALCULATED: 
C 

556=0.00 
DO 940 X6=1, 16 

WRITE(6,1911)X6 
1911 FORMAT (lX, 'sub-index (in range 1 to 16) is currently' ,12 ) 

555=0 . 00 
DO 950 X5=1,16 

554=0.00 
DO 960 X4=1,16 

553=0.00 
DO 970 X3=1, 16 

552=0.00 
DO 9S0 X2=1, 16 

551=0 . 00 
DO 990 Xl=1,64 

C 
C SUMMATION OF THE ENERGY TERMS WITH SUBSEQUENT DIVISION BY (-kT): 
C 

G3=-1.*(Dl(Xl)+El(X2,X3,X4,X5,X6)/SE5(Xl)+Fl(X2,X3,X4,X5,X6)/SE8( 
+ Xl)+Gl(X3,X4,X6)/SE12(Xl)+DDP(X2,X3,X4,X5,X6)/SE3(Xl)+DIDP(X2,X3, 
+ X4,X5,X6)/SE6(Xl)+DQP(X2,X3,X4,X5,X6)/SE4(Xl))/TEMPK 

IF(G3.LT.-S5) GO TO 5000 
G4=2 . 7182S"G3 
GO TO 5010 

5000 G4=O 
5010 SSl=SSl+(FI(X2,X3,X4,X5,X6)/(SEP(Xl)**4))*G4*COEF2(Xl,2) 
990 CONTINUE 

C 
C 

SS2=SS2+SS1*COEF1(X2,2) 

980 CONTINUE 

C 
C 

SS3=SS3+SS2*COEF1(X3,2) 

970 CONTINUE 

C 
C 

SS4=SS4+SS3*COEF1(X4,2) 

960 CONTINUE 
SS5=SS5+SS4*COEF1(X5,2) 



C 
C 
950 CONTINUE 

C 
C 

SS6=SS6+SS5·COEF1(X6,2) 

940 CONTINUE 

C 
C 

SS7=SS7+SS6·COEF1(X7,2) 

939 CONTINUE 

C 

ANS=SS7·SEP1·AL11·BE11·GA11·AL21·BE21·GA21·1. E-34·6. 02216 9··2· 
+ 8.9875··3/(TEMP·1.380622)··2 

CALL BEEP@ 

C THE INTEGRAL IS PRINTED TOGETHER WITH MOLECULAR DATA USED 
C 

WRITE ( 4, 2266 ) 
2266 FORMAT(lX, 'THE D2A3 TERM CONTRIBUTION TO B(Kerr) FOR S02') 

WRITE(4,2268) 
2268 FORMAT(lX, 'AT THE WAVELENGTH 632.8 nm') 

WRITE(4,2267) 
2267 FORMAT(lX,' ') 

CALL SECONDS_SINCE_1980@(FINISH) 
WRITE(4,2250) (FINISH-START) 

2250 FORMAT(lX, 'CPU time used = ',F12.3) 
WRITE(4,2260)FDATE@() 

2260 FORMAT(lX, 'Program run on ' ,A30) 
WRITE(4,2269) 

2269 FORMAT(lX,' ') 
WRITE(4,1140)ANS 

1140 FORMAT(lX,'THE INTEGRAL IS' ,E15.7) 
WRITE(4,2150) 

2150 FORMAT(lX,'INPUT DATA: ') 
WRITE(4,2155)TEMP 

2155 FORMAT(lX,'TEMPERATURE: ' ,F10.5) 
WRITE(4,2156)DIP 

2156 FORMAT(lX, 'DIPOLE MOMENT: ',F10.5) 
WRITE(4,2911)ALDYN 

2911 FORMAT(lX,'MEAN DYNAMIC ALPHA: ',F10.5) 
WRITE(4,2912)A11 

2912 FORMAT(lX,'DYNAMIC ALPHA11: ',F10.5) 
WRITE(4,2913)A22 

2913 FORMAT(lX,'DYNAMIC ALPHA22: ',F10.5) 
WRITE(4,2914)A33 

2914 FORMAT(lX, 'DYNAMIC ALPHA33: ',F10.5) 
WRITE(4,2160)ALSTAT 

2160 FORMAT(lX, 'MEAN STATIC ALPHA: ',F10.5) 
WRITE(4,2161)V11 

2161 FORMAT(lX,'STATIC ALPHA11: ',F10.5) 
WRITE(4,2162)V22 

2162 FORMAT(lX, 'STATIC ALPHA22: ',F10.5) 
WRITE(4,2163)V33 

2163 FORMAT(lX, 'STATIC ALPHA33: ',F10.5) 
WRITE(4,2190)Q1 

2190 FORMAT(lX, 'THETAll: ',FlO.5) 
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WRITE(4,2241)Q2 
2241 FORMAT(1X, 'THETA22: ',F10.5) 

WRITE(4,2210)R 
2210 FORMAT(lX, 'R(O): ',F6.5) 

WRITE(4,2220)SHAPE1 
2220 FORMAT(1X, 'SHAPE FACTOR 1: ', FIO.5) 

WRITE(4,2221)SHAPE2 
2221 FORMAT(1X, 'SHAPE FACTOR 2: ', F10 . 5) 

WRITE(4,2230)PARAM2 
2230 FORMAT(1X, 'ElK: ' ,F9 . 5) 

WRITE(4,2235)AMIN1 , AMAXl 
2235 FORMAT(1X, 'MIN AND MAX POINTS OF RANGE: ' ,2(F10 . 5,3X» 

WRITE ( 4,2240) 
2240 FORMAT(1X, 'END Bk') 

WRITE(4,2261) 
2261 FORMAT(1X,' ') 

WRITE ( 4,226'2) 
2262 FORMAT(1X,' ') 

WRITE ( 4, 2263 ) 
2263 FORMAT(1X,' ' ) 

WRITE(4,2264) 
2264 FORMAT(lX,' ') 

WRITE(4,2265) 
2265 FORMAT(1X,' ') 

END 
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