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ABSTRACT 

This study investigated the effects of temperature and relative humidity (both controlled 

and natural) on the lifecyle and morphology of adults of members of the Anopheles 

gambiae complex in northern KwaZulu-Natal, South Africa. 

Laboratory investigations into the effects of simulated temperature and relative humidity 

regimes concentrated on seasonal differences in longevity, egg hatchability, 

reproductive potential and adult survivorship of An. arabiensis. Differences were found 

in the life table parameters when these mosquitoes were reared under conditions of 

seasonal temperature and relative humidity. During the cool season the lifespan and 

adult survivorship of mosquitoes were greater than those reared during the warm 

season. In summer, the egg hatchability and reproductive potential were greatest 

whereas in winter An. arabiensis underwent gonotrophic dissociation although these 

females were found to take blood meals readily. 

The influence of seasonal temperature and relative humidity on the body size of An. 

arabiensis was investigated, both in the laboratory and under field conditions. In both 

environments, these factors were found to significantly influence body size. In winter, 

there was a 13% increase in wing size compared to summer bred mosquitoes. A 

comparison of body size of An. arabiensis, An. merus and An. gambiae reared under 

laboratory conditions of seasonal temperature and relative humidity showed that the 

wing size of An. arabiensis was greater than that of An. merus and An. gambiae. 
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The effect of temperature and relative humidity on morphological criteria used in 

species separation was also investigated. Seasonal differences in wing spot size were 

. compared for An. arabiensis, An. merus and An. gambiae. From this investigation it 

was concluded that the pale and dark spots on the wing of Anopheles mosquitoes could 

not be used in species identification due to the large degree of inter-species overlap in 

the wing spot measurements. The measurement of the pale band at the junction of the 

3rd and 4h tarsomere on the hind leg was also investigated for its use in species 

separation and were found to be useful within the An. gambiae complex. 

The implications of this study on the transmission and control of malaria are discussed 

with reference to the late season transmission during March to May that is characteristic 

of the region. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Malaria is the disease caused by protozoan parasites of the genus Plasmodium 

that are transmitted to humans by certain anopheline mosquitoes. Despite major 

campaigns to eradicate malaria, the disease remains one of the most serious and 

widely spread tropical diseases in the world. According to the World Health 

Organisation, 110 million clinical cases of malaria occur each year, mostly in Sub-

Saharan Africa (WHO 1992). The majority of these are infections with 

Plasmodium falciparum which causes the most virulent form of the disease. 

1.1. WORLD MALARIA SITUATION 

Malaria is a major public health problem in many tropical and subtropical countries, 

mainly in Africa, Asia and Latin America (Bruce-Chwatt 1987). According to World 

Health Organisation estimates, 90% of the annual clinical cases of malaria occur 

in Africa, and 1.5-3 million deaths, one million of them African children less than 

five years of age. Of the 10% of clinical cases outside Africa, India accounts for 

38% of cases, and Brazil accounts for 11 % (mainly from Amazonia). Some 70% 

of cases outside Africa come from just seven countries: in decreasing order of 
» 

incidence these are India, Brazil, Sri Lanka, Afghanistan, Thailand, Viet Nam, and 

Colombia (WHO 1992). 



2 

1.2. MALARIA IN THE SOUTH AFRICAN CONTEXT 

South Africa is at the southern extremity of malaria distribution in Africa. Malaria 

occurs in limited areas in South Africa (Figure 1.1). Limited focal transmission of 

malaria may develop in the Northern Cape, along the Orange River, during 

conditions of favourable temperature and rainfall. The focal malaria areas are the 

lower altitude areas (below 1000 metres) of Northern Province, Mpumalanga and 

the north-eastern part of KwaZulu-Natal. Malaria in the former KwaZulu area of 

the KwaZulu-Natal province is largely endemic and restricted to the two northerly 

magisterial districts of Ingwavuma and Ubombo. It may however be considered 

to be endemic to the Ndumu and Makanisdrift areas of the Ingwavuma district 

(Figure 1.2). 

The earliest recorded malaria epidemic in KwaZulu-Natal was in 1905 in Durban 

(Hill & Haydon 1905). In 1929 a severe epidemic occurred in the coastal districts 

of northern KwaZulu-Natal. The 1932 season has proved to be the worst 

experienced in the documented history of the province - the Department of Health 

estimated that the total number of deaths was 10 000 (Nethercott 1974). This 

figure was in striking contrast to those produced by the magistrates for the various 

districts, and which gave a total of 22 132 (Ie Sueur et al.1993). There was 

enormous controversy over the actual number of deaths and the different aspects 
, 

of the argument were discussed by Ie Sueur (1991) and Ie Sueur et al. (1993). 
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Figure 1.1. The distribution of malaria in South Africa. 
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Judging from the thorough investigation conducted by Park Ross (Ie Sueur 1991), 

it is blatantly apparent that the official figure of 10 000 deaths is indeed incorrect. 

Anti-larval measures using oil and Paris Green were introduced in 1932 and 

continued to be the main means of control until 1946 (Ie Sueur et al. 1993). In 

1934, intradomiciliary spraying using pyrethrum was introduced; spraying was 

repeated weekly during the main transmission season - from October to May (De 

Meillon 1936). In 1946 the use of pyrethrum was discontinued and replaced by 

DDT for house spraying and larviciding (Sharp et al. 1988). After 1970 the malaria 

control programme became more structured and more efficient. Surveillance 

methods for malaria parasite detection were enhanced through the introduction of 

active surveillance, laboratory diagnosis was improved through the training of staff 

and equipment and facilities were upgraded. More than 85% of the notified cases 

of malaria in South Africa are attributed to infection by Plasmodium falciparum 

(Medicines Information Centre 1994). 

1 .2.1. Seasonal Malaria Transmission 

As has been determined by Sharp et al. (1988), peak transmission occurs 

in autumn, whereas one would expect it to occur in mid-summer when 

mosquito population numbers are at their maximum. Transmission 

efficiency by the vector is a combination of population size and longevity 
• 

(Ie Sueur 1991). Ie Sueur (1991) hypothesised that although population 

turnover may peak in mid-summer, longevity may be reduced due to the 
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production of smaller, weaker individuals at high temperatures. Bates 

(1941) recorded a decrease in the An. maculipennis adult population in 

Albania, during summer and suggested that this might be related to 

temperature and saturation deficit. This reduced longevity in summer may 

result in the peak in the adult population occurring in late summer. It could 

thus be theorised that the late season transmission of malaria is a result of 

an optimal balance between population size and longevity, at cooler 

temperatures. 

1.3. MALARIA CONTROL 

The control of malaria is two pronged, through the control of the mosquito vector 

and through the elimination of the blood stage of the parasite within infected 

human hosts. 

1.3.1. Vector Control 

The efficient control of vector species of mosquitoes is central to the 

containment of malaria. Vector control aims to reduce transmission to the 

lowest possible level or even to interrupt it (Ravaonjanahary 1992). Vector 

control can be achieved through two processes: 

I. adult mosquito control through residual spraying 

ii. larval control through larviciding . 
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1.3. 1.1. Adult Mosquito Control 

Spraying of residual insecticides under eaves and on the inside walls 

of houses has proved to be one of the most effective methods of 

controlling malaria vectors that feed indoors. The mosquitoes rest 

on the treated surface either before or after feeding and pick up a 

lethal dose of insecticide. DDT remains the insecticide of choice due 

to its long residual effect, low toxicity, relatively low cost (Table 1. 1) 

and its effectiveness against the target vector (Capel-Williams 

1991; Mellanby 1992). Table 1. 2 gives the approximate number of 

structures annually sprayed with insecticides in South Africa. 

Table 1.1. The cost of insecticides used for adult mosquito control·. 

INSECTICIDE CONCENTRATION APPLICATION COST/KG COST/m2 

(Wettable (g/active ingredient RATE (Rands) (Cents) 

powders) [a. i.]) ( a.i./m2) 

DDT 750 2 20.07 5.35 

Bendiocarb BOO 0.4 394.40 19.70 

Cyfluthrin 100 0.02 577.20 11.50 

Deltamethrin 50 0.02 17B.12 7.12 

Lambda-

cyhalothrin 100 0.031 324.00 10.04 

Fenitrothion 400 1 42.52 10.60 

·Department of Health, Pretoria 
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Table 1.2. Number of structures sprayed with DDT during the 1994/95 season. 

DISTRICT DDT SPRAYED DDT USED 

STRUCTURES 
(kg) 

Mpumalanga 208587 21 793 

Northern Province 841 260 94506 

KwaZulu-Natal 216235 27309 

Northern Cape 1 180 18 

TOTAL 1 267262 143624 

·Source: Provincial Departments of Health. 

The structures are sprayed before the main transmission season, 

usually starting in September for high risk areas in KwaZulu-Natal. 

DDT is applied to mud-plastered wall surfaces once annually. 

However, some respraying may be necessary where re-plastering, 

re-thatching or new construction has taken place. Pyrethroids or 

carbamates are applied on cement-plastered and painted surfaces. 

However, in some areas where DDT is sprayed, bed bugs present 

a problem because the DDT irritates the bed bugs and increases 

their activity (Rafatjah 1971; Newberry et al. 1984). Fenitrothion is 

also applied in these dwellings to control the bed bugs (Newberry 

1991 ). 
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The use of DDT in early control programmes successfully eliminated 

Anopheles funestus from South Africa (De Meillon 1986). However, 

controlling Anopheles arabiensis effectively is difficult because it 

feeds indoors and rests outdoors (Sharp et al. 1990; Sharp & Ie 

Sueur 1991). 

1.3.1.2. Larviciding 

The breeding sites of the main malaria vectors are numerous, 

widely distributed, difficult to locate, often temporary and exposed to 

sunlight (Ie Sueur & Sharp 1988). They include rice fields, cattle 

hoof-prints and borrow-pits. Due to the temporary nature of some 

breeding sites, the application of either chemical or bacterial 

(Bacillus thuringiensis) larvicides (Rishikesh et al. 1983) are not 

used except in particular situations where breeding sites are well 

localised. For larval control surface water is treated using temephos 

at 200 ml 50% emulsifiable concentrate per hectare of water 

(Department of National Health and Population Development 1988). 

Environmental control such as drainage or biological control using 

fish (Alio et al. 1985; Roberts & Sampson 1987) is not used in South 

Africa. 

1.3.2. Parasite Control 

The main efforts of malaria prophylaxis are aimed at P. falciparum. Infection 

with P. vivax, P. ovale and P. malariae may cause severe morbidity but 

rarely death (Breckenridge 1989). No antimalarial drug can guarantee 
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protection against malaria. Nevertheless, the only way to suppress the 

blood stage parasites is through the use of drugs. 

Prophylaxis has little influence on the control of malaria transmission but is 

important for individual protection. For prophylactic purposes, a combination 

of chloroquine and proguanil is recommended during the months of October 

to May (press release by the Department of Health, 28 November 1994). 

The therapeutic treatment of malaria consists of sulfadoxine/pyrimethamine 

compound (Fansidar) or halfan (Halofantrine) (Department of Health 1994). 

1.4. SHORTCOMINGS OF MALARIA CONTROL 

The control of malaria is becoming more difficult because the malaria parasites are 

becoming increasingly resistant to antimalarial drugs (Sharp & Freese 1990). 

Furthermore, the behavioural patterns of mosquito vectors are such that they are 

able to avoid the residual insecticides (Sharp & Ie Sueur 1991). There is increasing 

migration of infected people between malarious regions and non-malarious areas 

(Ngxongo 1994). Lack of appropriate research and modifications of the 

environment have also contributed to the declining effectiveness of malaria control 

programmes throughout Africa. 

1.4.1. Drug Resistance 

Chloroquine resistant parasites were first reported in East Africa in 1979 

(Fogh et al. 1979) and have since spread to other countries. In 1985 

chloroquine resistance was confirmed in KwaZulu-Natal (Freese et al. 

1988). In the Mpumalanga malarious areas, 1.2% resistance to 



11 

chloroquine has been established (Hansford 1989). In KwaZulu-Natal 

resistance has increased from 0% in 1983 to 20% in 1987 (Hansford 1989). 

In Mpumalanga, Deacon et al. (1994) found seven out of a total of twelve 

isolates to be resistant or partially resistant to chloroquine. The level of 

resistance is considered to be influenced by the dosage and duration of use 

of the drug. Continued use of chloroquine in areas where resistance occurs 

may lead to a higher degree of stable resistance (Sharp & Freese 1990). 

1.4.2. Population Movement 

Since the late 1950s considerable agricultural and industrial development 

has taken place in malarious areas. This has attracted local and foreign 

workers some of whom are asymptomatic and carry parasites with them. 

Infected mosquitoes are also transported in their vehicles. The highest 

number of cases reported in KwaZulu-Natal is from Ingwavuma. This 

district is bordered by Mozambique in the north and ongoing cross-border 

population migration is a major contributing factor to the deterioration of 

malaria control in this region (Ngxongo 1993). Civil war in Mozambique, 

strong family ties between people living on either side of the border, job 

seekers from Mozambique and the availability of health and commercial 

services in Ingwavuma are considered to be responsible for this population 

circulation (Ngxongo 1994). The adverse effects of population migration on 

malaria transmission, epidemics and the spread of the drug resistant strains 

has been well documented by several authors (Prothero 1961; Gascon et 

al. 1984; Macques 1986). 
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1.4.3. Ecological Changes 

Agriculture practices, such as rice cultivation, have provided more 

favourable breeding conditions for the mosquito vectors of malaria. In 

KwaZulu-Natal the Makhathini Irrigation Scheme was the direct cause of 

the increase in the incidence of malaria in Ubombo district in 1987 

(Ngxongo 1994). Sharp et a/. (1992) found that excess water spilled from 

this irrigation scheme into the Balamhlanga pan created and maintained 

mosquito breeding sites throughout the year. Irrigation schemes such as 

this offer a suitable environment for Anopheles (Rwamakuba 1991; Service 

1991) and extend the availability of vector breeding sites (Bradley 1991), 

resulting in an increased incidence of malaria and other vector-borne 

diseases (Thitai 1991). 

1.4.4. Behaviour of the Vector 

The diverse behavioural attributes of An. arabiensis throughout its 

geographical distribution suggests that this species should be investigated 

at each relevant locality in order to assess the efficacy of regional control 

measures (Sharp & Ie Sueur 1991; Sharp et a/. 1993). Sharp et a/. (1993) 

found that the human biting component of An. arabiensis exits the huts after 

feeding. This has serious implications regarding the efficacy of control 

measures using residual insecticides since the vector does not come into 

contact with the sprayed surface. 

1.4.5. Controversy over the use of DDT 

The use of DDT in the malaria control programme in South Africa has 
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created considerable controversy since it was found that DDT can 

accumulate in biological systems because of its stable, lipophilic properties 

(Bouwman et al. 1994). Bouwman et al. (1990a,b) found that the mean 

intake of DDT from breast milk by infants in KwaZulu-Natal exceeded the 

acceptable daily intake of 0.02 mg/Kg. However Bouwman et al. (1991) 

concluded that the levels of. DDT in the blood did not present a health risk 

to the people in KwaZulu-Natal. 

Although DDT has been the insecticide of choice for the malaria control 

programme, alternative insecticides are being tested to find a suitable 

alternative to DDT (minutes of the inaugural meeting of the Malaria 

Advisory Group's subcommittee for Vector Control, April 1995). Laboratory 

trials conducted by the National Malaria Research Programme of the South 

African Medical Research Council have shown that Deltamethrin wettable 

powder has the potential to replace DDT (Ie Sueur et al. 1995) but tests 

have to be conducted to test its effectiveness under field conditions. 

1.5. THE PRESENT STUDY 

1 .5.1. Motivation for Study 

In South Africa, Anopheles arabiensis transmits Plasmodium falciparum. 

An investigation of the population dynamics and overwintering by Ie Sueur 

(1991) has shown that water temperature influences adult morphology and 

some biological characteristics of the An. arabiensis and An. merus larval 

cycles. This study is aimed at continuing this work and will examine the 

effects of temperature and relative humidity (both controlled and natural) on 
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adult An. arabiensis, An. merus and An. gambiae so as to obtain an overall 

view of the roles of these abiotic variables on the mosquitoes' entire life­

cycles and, as a consequence malaria transmission. 

Ie Sueur (1991) found that temperature influences larval instar duration and 

consequently mosquito population numbers. This author found that in 

winter larval densities in breeding pools were low and the pre-imaginal 

growth rate was reduced with the resulting adults being large (body size 

was measured in terms of wing length). In summer, larval densities 

increased, larval instar duration decreased and the adults produced were 

smaller than those produced in winter. A study by Ie Sueur and Sharp 

(1991) confirmed that there were significant differences in the body size of 

An. merus produced in winter and summer. The present study was 

initi-ated to determine the effect of seasonal and monthly temperature on 

An. arabiensis, the principal vector of malaria in South Africa. 

The literature (Haramis 1983, Nasci 1986, Kitthawee et al. 1990) indicates 

that body size may influence vector competence. Since it was established 

that temperature influences body size (Ie Sueur 1991), it was hypothesised 

that differences in the body size of the vector may explain the late season 

peak in malaria transmission in South Africa. There was thus a need to 

determine the effect of temperature on body size and subsequently the 

influence of body size on longevity and malaria transmission. To transmit 

malaria, a mosquito needs to survive the necessary incubation period of the 

parasite to become infectious. Therefore, mosquitoes capable of longer 
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survival after they become infectious have the potential for greater malaria 

transmission. 

The temperature of its aquatic and aerial environments not only affects the 

mosquito directly, but also determines the part it plays in malaria 

transmission by its influence on the development of Plasmodium 

sporozoites in the body of the female anopheline. There is a direct 

relationship between the environmental temperature and the speed with 

which sporogony proceeds in the mosquito (Detinova 1962). This implies 

that the development of the parasite within the mosquito will differ from one 

season to the next and malaria transmission will occur at different rates 

across seasons. Therefore, the influence of temperature on the size, 

longevity and fitness of all stages of the mosquito is of interest from the 

point of view of designing control strategies tailored to particular sets of 

ecological conditions. 

1.5.2. Objectives 

The main objectives of this study are therefore to ascertain whether or not 

(I) adult size is influenced by temperature, (ii) longevity is dependent on 

adult body size, indirectly through temperature, (iii) adult fitness is affected 

by breeding-pool temperatures, (iv) to test the hypothesis that the late 

season peak in malaria transmission which is so characteristic of the north­

eastern KwaZulu-Natal endemic area, can be explained in terms of the 

vector's bionomics. Ultimately it is hoped that this information will contribute 
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to the designing of a specific larvicide/adulticide mosquito-control 

component of an integrated control program aimed at limiting the 

transmission of malaria. This could possibly be achieved by tailoring 

chemical applications to periods of the mosquito's population cycle that can 

be identified as particularly vulnerable. These could include periods of 

optimal temperature and/or relative humidity which could be conducive to 

increased adult longevity and sporozoite development. Such a control 

measure would cause maximum mortality of both mosquito and parasite 

coupled with minimum use of pesticide and expense. 

1.5.3. Choice of mosquito species used 

The An. gambiae complex consists of six species: An. gambiae s.s. Giles, 

An. arabiensis Patton, An. quadriannulatus Theobald, An. bwambae White, 

An. merus D6nitz and An. melas Theobald. Anopheles gambiae s.s., An. 

arabiensis and An. quadriannulatus are freshwater species, An. bwambae 

breeds in mineralised water, whilst An. merus and An. melas breeds in 

saltwater (Muirhead-Thompson 1951; Gillies & Coetzee 1987). Anopheles 

merus is essentially a coastal species (Mosha & Subra 1982) but thriving 

populations can be found at considerable distances from the coast usually 

in salt pans (Cross & Theron 1983). 

Anopheles gambiae s.l. is the most important vector of malaria in Africa. 

Three members of the An. gambiae complex commonly occur in the 

endemic malaria area of KwaZulu-Natal, namely An. arabiensis, An. merus 

and An. quadriannulatus. A single record exists for An. gambiae s.s. in 
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South Africa (Miles 1978). Of the three commonly occurring members of 

the An. gambiae complex only An. arabiensis and An. merus have been 

implicated in the transmission of malaria whereas An. quadriannulatus is of 

no medical interest because of its zoophilic tendencies (White et a/. 1980). 

Although An. gambiae s.s. does not occur in KwaZulu-Natal (Miles 1978), 

it was used in this study because it is an efficient vector of malaria in the 

rest of sub-Saharan Africa and many studies on the An. gambiae complex 

focus on An. gambiae s.s. 

1.6. THE STUDY AREA 

KwaZulu-Natal, situated entirely within the sub-tropics (27°-31 oS; 29°-32°E), is 

bordered by the Indian Ocean in the east, Mozambique and Swaziland in the north 

and by other provinces of the Republic of South Africa in the south and west. The 

province of KwaZulu-Natal, covers an area of 90 327 km2
• The endemic malarious 

region of the province encompasses the districts of Ingwavuma, Ubombo and 

Hlabisa. These districts are in the north-eastern part of the province, a coastal 

plain, bordered by the sea in the east, Mozambique in the north and Lake St Lucia 

in the south. Due to its low lying topography as well as the southward-flowing 

warm Mozambique and Agulhas currents, this region has a tropical biota (Bruton 

1980). Marine deposits laid down during the Cretaceous period are responsible 

for the saline nature of certain water bodies within the area. 

This area experiences seasonal malaria transmission and Freese et a/. (1988) 

have found that the malaria case rate in this region has increased over the years, 

due in part to chloroquine resistance in Plasmodium falciparum. 
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CHAPTER 2 

OVERVIEW OF MALARIA AND MALARIA CONTROL IN SOUTH AFRICA 

2.1. INTRODUCTION 

Anopheles arabiensis, a member of the An. gambiae Giles complex, is the major vector 

of malaria (mainly Plasmodium falciparum) in southern Africa (White 1974); its congener 

An. merus may be a minor one (Gillies & Coetzee 1987). Work done by Ie Sueur and 

Sharp (1991, 1992) has shown that temperature influences various morphological and 

biological characteristics of the An. arabiensis and An. merus larvae and has 

contributed greatly to a quantitative understanding of the bionomics of these species 

in South Africa. 

2.2. MEDICAL IMPORTANCE OF MOSQUITOES 

Mosquitoes create a public health hazard by transmitting causative agents of various 

diseases such as malaria, filariasis, yellow fever, dengue and many other viral diseases 

(Begum et al. 1986). Anopheles mosquitoes have long been known as the primary 

vectors of Plasmodia throughout the tropical and temperate world. According to Briegel 

(1990), mosquitoes in the genus Anopheles have been neglected in laboratory studies, 

despite their tremendous importance as vectors of malaria. 

Anopheles gambiae s.s. and An. arabiensis are more important vectors of malaria than 

is An._ merus (Coetzee et al. 1982). Anopheles quadriannulatus, a patchily distributed 
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species, is not a vector as it feeds on animals other than man. Anopheles bwambae 

is known from one locality on the Ugandan/Zaire border and is both anthrophilic and 

endophilic and can therefore contribute to malaria transmission (Mahon et al. 1976; 

White 1985). According to Gilles and Coetzee (1987), house-spraying campaigns have 

failed to eradicate malaria in many parts of Africa and it appears that the presence of 

An. arabiensis as a vector exacerbates the problem. A major factor contributing to this 

failure is that a significant proportion of populations of both An. gambiae s.s. and An. 

arabiensis rest outdoors after feeding and such behaviour reduces contact with the 

insecticide and therefore its longevity is normal (Gillies & Coetzee 1987). According to 

Sharp et al. (1990) An. arabiensis is capable of feeding indoors in DDT sprayed huts, 

exiting and still surviving. During their investigation on An. arabiensis Sharp and Ie 

Sueur (1991) found that exit trap catches showed a significantly higher human blood 

index (HBI) than indoor resting catches. This trend was unaffected by whether or not 

the hut had been sprayed with DDT (Sharp et al. 1990). The high degree of 

behavioural diversity in An. arabiensis throughout its geographical distribution suggests 

that, as noted in the previous chapter, this species should be investigated at each 

locality to assess the effectiveness of regional control measures (White 1974; Sharp & 

Ie Sueur 1991). 

Begum et al. (1986) found that the wet and/or dry seasons and/or the availability of 

different types of breeding habitats i~fluenced the seasonal fluctuations of mosquito 

population density in Bangladesh. In KwaZulu-Natal, Sharp et al. (1988) found the 

incide_nce of malaria to be distinctly seasonal, consistently showing a peak during the 



months of April, May and June. 

2.3. THE EFFECTS OF TEMPERATURE AND HUMIDITY 

2.3.1. Adult Behaviour 

30 

Mosquitoes are very susceptible to desiccation and are thus affected more by the 

evaporative power of their surroundings than by the wetness of the air. 

Consequently, saturation deficit is likely to playa more important role in dictating 

the mosquitoes' behaviour than relative humidity (B.L. Sharp 1992, pers. comm1
.). 

According to Sharp (1983) temperature and humidity influence the biting cycle of 

An. merus in that biting was recorded within a temperature range of 16 - 25°C and 

a RH range of 80 - 100%. The rate at which blood digests and the ovaries develop 

is also influenced by temperature (Day et a/. 1990). Towards the lower end of the 

temperature scale in the cool season or in high altitudes, these processes may be 

so prolonged that breeding comes to a standstill (Bar-Zeev 1958). 

2.3.2. Longevity of Adults 

Temperature and humidity are also thought to play important roles in determining 

the longevity of adult mosquitoes (Clark & Rockstein 1964; Nayar 1972). 

McCombs (1980, in Haramis 1983) found that in the laboratory the longevity of 

adult female Aedes triseriatus . increased with size. However in this study 

McCombs (1980, in Haramis 1983) obtained the different size categories through 

1 Dr. B.L. Sharp, Medical Research Council, Durban, South Africa. 
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manipulating nutritional factors and not as a result of temperature. Nayar (1972) 

found that the mean lifespan of adult Aedes taeniorhynchus maintained at constant 

temperatures was temperature dependent, i.e. the mean life span of males was 12 

days at 32°C and 21.9 days at 22°C while that of females was 22 days at 32°C 

and 41.2 days at 22°C. This author also concluded that the rate of mortality was 

greater at high temperatures than at low temperatures, thus indicating a distinct 

temperature dependence for longevity. 

2.3.3. Body Size 

Temperature is also known to influence the size of various morphological 

characters of the larvae and is suspected of affecting adult size and "robustness" 

too (Ie Sueur & Sharp 1991). These authors found that the mean head capsule 

width of first to fourth instar An. merus larvae collected during summer and winter 

differed significantly. The mean head capsule width of all instars was greater in 

winter than in summer. Ie Sueur and Sharp (1991) also found that the mean wing 

lengths for An. merus females decreased as summer approached. The increase 

in mean wing length between the months of January (summer) and July (winter) 

was 19.6%. 

2.3.4. Distribution 

The availability of suitable breeding places influences the distribution of 
• 

mosquitoes. Larvae of An. quadriannulatus are found in small, exposed, 

tE?mporary pools (Gillies & Coetzee 1987). Anopheles merus is essentially a 
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coastal species (Mosha & Subra 1982) but it can be found at considerable 

distances from the coast usually in salt pans (Cross & Theron 1983). Anopheles 

arabiensis breeds in open, sunlit pools and may be found in both temporary and 

permanent habitats (Service 1977; Gillies & Coetzee 1987). The distributions of 

An. -arabiensis, An. merus and An. quadriannulatus in South Africa have been 

compiled by Coetzee et al. (1993) from all published records and provide the most 

up to date distribution of these mosquito species (Figures 2.1). 

Since mosquitoes are very prone to desiccation, Muirhead-Thompson (1951) 

suggested that humidity also influences the distribution of mosquitoes since they 

occur only within certain saturation deficit limits. The fact that many species of 

Anopheles do not extend beyond the cooler and more temperate parts of the world, 

while the distribution of others is confined to warmer regions, suggest that 

temperature differences play an important part in determining their distribution 

(Muirhead-Thompson 1951). 

2.3.5. Larval Development 

Insects, like most other poikilotherms, respond to changes in environmental 

temperature by passively conforming to the environment. Bar-Zeev (1958), Milby 

and Meyer (1986) and Ie Sueur (1991) have found that temperature 

influences the development of the immature stages of anopheline mosquitoes and , 

Nayar (1972) found that the longevity of adult Aedes taeniorhynchus was 

tE?mperature dependent. Bar-Zeev (1958) investigated the effects of temperature 
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on the growth rate and survival of the immature stages of Aedes aegypti at 

constant temperatures from 14-38°C. She found that the later the instar, the lower 

the temperature at which growth is the most rapid. During this study on Ae. aegypti 

the highest temperature allowing development of newly hatched larvae to adult 

was 36°C. Milby and Meyer (1986) conducted field investigations to determine the 

effects of constant and fluctuating temperatures on the preimaginal development 

of Culex tarsalis. The average developmental time of immature stages ranged 

from eight days at 31°C to 16 days at 17°C. These authors concluded that there 

was no difference in the larval duration of Cx. tarsalis under constant or fluctuating 

temperatures, if the mean of the fluctuating temperatures was equivalent to that of 

the constant temperature. According to the model presented by Ie Sueur (1991), 

the growth of An. merus larvae ceases below 12.2°C and above 35°C. The 

duration of the larval instar also increases as temperature decreases. 

2.3.6. Sporozoite Development 

The temperature of the environment not only affects the mosquito directly, but may 

determine the part it plays in malaria transmission by its influence on the 

development of Plasmodium in the body of the female anopheline (Meyer et al. 

1990). These authors found that exposure to a cooler thermal regimen lengthens 

the period of extrinsic incubation of the parasites within the 'infected mosquito. 

According to these authors, the, duration of the extrinsic incubation period of a 

parasite in a mosquito vector is directly dependent upon the thermal environment 

e_xperienced by the adult female. Chege and Beier (1990) suggested that the 
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effect of malaria parasites on the survival of their Anopheles host is potentially a 

limiting factor in malaria transmission. Decreased longevity of infected vectors 

would reduce the proportion of Anopheles that becomes infective and therefore 

their capacity to transmit malaria diminishes. Klein et al. (1982) found that the 

percentage mortality of Anopheles dirus was much greater when infected with 

Plasmodium cynomolgi. The percentage mortality of uninfected mosquitoes ranged 

from 1.71-33.01 % while that of infected mosquitoes varied between 1.49-41.3%, 

over a period of 40 days. Here, mortality was found to occur as a result of 

deterioration of the mid-gut and salivary gland. Day et al. (1990) have suggested 

that body size may affect both the vector capacity and the vector potential of 

mosquitoes by influencing their ability to become infected and once infective, their 

survivorship and their potential to transmit malaria. 

Day et al. (1990) found that large mosquitoes were more successful in obtaining 

blood than were small individuals. Larger, blood fed mosquitoes survived longer 

and were therefore more likely to become infective. Grimstad and Haramis (1984) 

reported that small adult Aedes triseriatus females transmitted the La Crosse virus 

at higher rates than medium- and large-sized adults. They proposed that small 

adults ingested a proportionally larger infectious blood meal than the medium and 

large-sized mosquitoes. 

If temperature reduces the longevity of the female mosquito to such an extent that 

it_ dies before becoming infective, then the transmission of the Plasmodium parasite 
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is curtailed. The influence of temperature on the size, longevity and fitness of the 

mosquito may be of interest from a control point of view. Rueda et al. (1990) have 

stated that information on the effects of temperature on the rates of development 

and survival of the various stages of the mosquito vector are necessary in 

designing control strategies. According to Meyer et al. (1990), at high 

temperatures the survival of the mosquito may not exceed the minimum duration 

of the extrinsic incubation of the malaria parasite. Under these conditions it would 

not be economically feasible to implement control measures as malaria 

transmission cannot occur. 

2.4. Notification of Malaria Cases 

Malaria is a notifiable medical condition in terms of section 45 of the Health Act (Act No. 

63 of 1977). The procedure for notification is described in regulation 19 of the 

Regulations relating to communicable diseases and the notification of notifiable 

medical conditions (Government Notice No. R. 2438 of 30 October 1987). This 

regulation requires all medical practitioners or any other person legally competent to 

diagnose and treat a person with regard to a notifiable condition to report notifiable 

medical conditions. The report must include the name, age, sex, population group, 

identity number (if not available, the date of birth) , address, place of work or school, as 

well as the date of commencement of the notifiable medical condition and any available 

information concerning the probable: place and source of infection (Department of 

National Health 1995). 
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The method of notification is shown in Figure 2.2. When malaria is diagnosed in a 

patient the diagnosis should be reported, as for other communicable diseases, without 

delay orally, and confirmed in writing on form within 24 hours to the specific local 

authority for the area. The local authority makes weekly notifications to its provincial 

Department of Health. The malaria cases diagnosed through the active detection 

method of the provincial malaria control programmes are also reported to the provincial 

information system. The reports are sent weekly and monthly. The provincial 

Department of Health collates all the notifications and compute rises the notifications. 

The provincial Department of Health then makes weekly notifications to the 

Epidemiology section at the national Department of Health in Pretoria. These 

notifications are made via computer networks or on computer disks. 

2.5. HISTORY OF MALARIA IN SOUTH AFRICA 

Malaria has been a serious problem in South Africa until very recently. Louis Trichardt, 

one of the early pioneers, wrote of the trials and tribulations of his party on their journey 

from Pietersburg to Lourengo Marques (Maputo). Half of his party died after being 

stricken by malaria (Gear 1989). Ever since then the lowveld of the Northern Province, 

Mpumalanga, KwaZulu-Natal and Mozambique has been infamous for the threat posed 

by malaria (De Meillon 1986). 

Malaria has been brought under control through a determined and sustained control 

programme. The history of malaria in South Africa and the endemicity of the disease 

befor~ 1905 is unknown and records of the disease prior to 1920 is very scanty and 
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uncertain. The existing records for malaria are as follows: 

1905 - A malaria epidemic was experienced in Durban during the summer of 

1904/1905 (Hill & Haydon 1905). This epidemic was severe with 4177 cases 

. and 42 deaths being reported in Durban. Pyretophalis costa/is (An. gambiae 

s.l.) was incriminated as the vector. 

1910- Dr Park Ross (District surgeon at Nqutu) investigated an outbreak in northern 

KwaZulu-Natal and advised the use of quinine, screening of dwellings, bed 

nets and protective clothing. 

1920 - There was a malaria epidemic in KwaZulu-Natal which radiated from the St. 

Lucia area (Department of Health Annual Report 1920). 

1921 - The State Department of Health issued instructions regarding treatment and 

prophylaxis of the disease. This involved the use of quinine. Dr Park Ross 

carried out the first malaria survey of South Africa (Department of Health 

Annual Report 1921). 

1923 - The Department of Health Annual Report (1923) stated that malaria retarded 

agricultural development in the Northern Province and Mpumalanga. 

1924 - Irrigation areas near Pretoria were severely affected by malaria epidemics 

until 1924 when antilarval measures were enforced (Department of Health 

Annual Report 1924). 

1925 - Antimalarial committees formed by farmers in KwaZulu-Natal to coordinate 

preventive measures (Department of Health Annual Report 1925). 

1926 - Umfolosi Co-operative sugar mill began employing labourers tolerant of 
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malaria. During the construction of the Mtubatuba-Gollel railway, a heavy 

outbreak of malaria followed the importation of labourers (Swellengrebel 

1931 ). 

1927 - A mosquito survey of South Africa was started by Ingram and De Meillon and 

. provided information on larval sites of anopheline mosquitoes (Ingram & De 

Meillon 1927). 

1928 - A large number of employees in the sugar mills and plantations of KwaZulu-

Natal were afflicted during a severe epidemic of malaria. Of an estimated 

population of 6 000 whites at risk, 7 died, of 20 000 Asians 151 died and of 

215000 Blacks 2 600 died (Nethercott 1974). The 1928 Department of Health 

Annual Report (1928) referred to a malaria epidemic extending from Zeerust 

to Nylstroom - 62% Europeans and 74% of Natives in Rustenburg and 

Nylstroom were found to be suffering from malaria. 

1929 - From 1929-1933 extensive epidemics of malaria severely affected the 

population of KwaZulu-Natal. The first efforts at control of the disease were 

instituted. Ingram and De Meillon (1929) completed the mosquito survey of 

South Africa. Anopheles gambiae and An. funestus were implicated as the 

main malaria vectors. 

1930 - The South African Government invited Sir Malcom Watson to report on the 

situation and he advised the application of antilarval measures (Watson 

1930). Malaria outbreaks were reported as far south as Umzinto. Professor . 
N.H. Swellengrebel of the University of Amsterdam visited KwaZulu-Natal to 

take part in an investigation of the malaria situation in South Africa as a whole 
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(Ie Sueur 1991). A study by De Meillon (1931, 1934) confirmed that the main 

vectors of malaria were An. gambiae, a pool breeder, and An. fun es tus, a 

stream breeder, and that both species were house-frequenting and 

anthropophilic. Female mosquitoes were found to rest indoors thus making 

. them vulnerable to insecticidal sprays. 

1931 - Professor Swellengrebel submitted his report to the State Secretary of Health. 

He recommended that the bionomics and ecology of the vectors should be 

thoroughly studied with a view to implementing 'species sanitation' and that 

a malarial research station be established at Tzaneen for this purpose 

(Swellengrebel, Annecke and De Meillon 1931). He also recommended that 

no malaria control work be done in Ingwavuma, Ubombo and Hlabisa. The 

disease was extremely prevalent in these districts throughout the year and the 

indigenous population had consequently developed some immunity to the 

disease. 

1932 - A malaria epidemic severely affected KwaZulu-Natal. The official estimate of 

the number of deaths was 10000 (Department of Health Annual Report 1932) 

but calculations based on the deaths per magisterial district showed that there 

were actually 22 132 deaths as a result of malaria during this year (Ie Sueur 

et al. 1993). During the 1931/32 malaria season, Park Ross attempted to 

control malaria by fumigating huts using sulphur but this was unsuccessful as 

the fumigant rapidly diffused through the thatched roofs (Ie Sueur et al. 1993). 

Antilarval measures using oil and Paris Green were introduced and continued 

to be the best means of control until 1946 (Sharp et al. 1988). 
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1933 - A full scale trial was conducted by Dr Park Ross on the effect of indoor 

spraying with a kerosene-pyrethrum mixture on malaria incidence. This was 

started at Eshowe in KwaZulu-Natal, endemic An. gambiae country with a 

high rate of infestation. A field and research station was established at 

, Tzaneen (Department of Health Annual Report 1933). 

1934 - Pyrethrum was introduced as a knock-down insecticide in the houses. 

Spraying was repeated weekly during the main transmission season (Sharp 

et al. 1988). 

1936 - Dr. Fred Soper, an American Epidemiologist, visited Eshowe and expressed 

scepticism at the great reduction in indoor resting An. gambiae. He was 

critical of the methods and suggested that for every mosquito that came 

indoors, there were hundreds outside that would be out of reach of insecticidal 

sprays. Nevertheless, the findings of the study in Eshowe were presented to 

the League of Nations (Park Ross 1936). The interruption of transmission was 

clearly demonstrated. 

1937 - An extensive epidemic occurred from the Limpopo River south to Pongola 

with excessive mortality and morbidity among the Blacks (Department of 

Health Annual Report 1937). 

1938 - Dr De Meillon remained doubtful of the efficacy of indoor residual spraying as 

he could find An. gambiae s.1. resting outdoors. The observation by Dr De 

Meillon is important as this was probably the first evidence indicating that An . . 
gambiae was a complex of species (Ie Sueur et al. 1993). The mosquitoes 

that Dr De Meillon observed were probably An. quadriannulatus, a zoophilic 
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and largely exophilic member of the species complex. 

1939 - An extensive outbreak developed as far south as Pretoria and west to 

Rustenburg. Among an estimated population of 1 018 800 a total of 9311 

deaths was reported with mortality being highest in Potgietersrus - 2.7% of the 

. residents (Department of Health Annual Report). 

1946 - The use of pyrethrum was discontinued and was replaced by DDT, both for 

house spraying and larviciding (Sharp et a/. 1988). The DDT campaign lead 

by Dr Siegfried Annecke was extremely successful and malaria was virtually . 
eliminated from South Africa (De Meillon 1986). 

1953 - DDT spraying was gradually extended to include Ingwavuma, Ubombo and 

Hlabisa, beginning with the spraying of all habitations within a 3 kilometre 

radius of all mission stations and police camps (Sharp et a/. 1988). 

1956 - Antilarval measures were abandoned. Malaria became a notifiable disease in 

South Africa (Government Notice no. 2081 of 1956). 

1958 - DDT spraying south of the Tugela River was discontinued. Total coverage 

with a residual insecticide was achieved in the north for the first time in 

October 1958. In areas where they had discontinued antilarval measures, a 

system of vector surveillance was instituted. 

1959 - Geographical reconnaissance of the entire malarious area of KwaZulu-Natal 

was undertaken. The various areas were classified into phases of control, in 

accordance with WHO specifications . . 
1961 - An expert committee of the WHO visited the Northern Province and 

recommended the use of DDT instead of benzene hexachloride (BHe). It 
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could not be determined when the use of BHC was initiated in the Northern 

Province, but BHC was used in the malaria control programme in this area 

probably because it was cheaper than DDT, as an agricultural formulation of 

BHC was used (C.F. Hansford 1995, pers. comm.2
) 

1962 - . Dr Paterson (Paterson & Paterson 1963) suggested that the An. gambiae was 

a complex of species. 

1967 - Following six years of drought, there were heavy rainfalls followed by periods 

of bright sunshine thus creating favourable conditions for mosquito breeding. 

Mosquitoes flourished and a severe, though limited malaria epidemic resulted 

(De Meillon 1986). 

1974 - Entomological investigations in KwaZulu-Natal, during or after malaria 

transmission in the area showed An. arabiensis to be the predominant species 

in the area (White 1974). 

1975 - The existing malaria control programme was modernised through the training 

of field teams and the upgrading of laboratories and clinics (Kustner 1990). 

Active surveillance was introduced (Dept. of Health and Population 

Development 1988). 

1976 - Heavy rains resulted in a vector build up and an increase in the overall 

parasite incidence. A laboratory was established at Jozini. Malaria control was 

delegated to homeland authorities, i.e. Venda, Lebowa, Gazankulu and 

Kangwane, over the district~. for which they were responsible (Department of 

Health 1995). 

2Dr c.P. Hansford, Department of Health, Tzaneen, South Africa. 
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1977 - The KwaZulu Department of Health was established, separate from the 

Department of Health and Population Development of South Africa. There 

was an increase in the number of malaria cases, especially in the Hlabisa 

District of KwaZulu-Natal (Department of Health 1988). This increase in 

. malaria cases may have been due to increased case detection as a result of 

active surveillance. 

1978 - Favourable climatic conditions were responsible for an upsurge of malaria. Dr 

J.H. Pull of the WHO visited South Africa to review the problems relating to 

the malaria programme and to propose practical solutions. He found the 

existing structures to be adequate (Pull 1978). Intradomicilary spraying of 

DDT was reduced from two sprays per annum to one application of DDT every 

12 months (Department of Health 1988). 

1979 - Dr De Meillon visited Richards Bay to investigate the mosquito problem. 

1984 - From 1984 - 1988, field surveys showed An. arabiensis to be widely 

distributed in Natal (Ie Sueur & Sharp 1988). Cyclone Demoina caused 

widespread heavy rains and this created favourable conditions for malaria 

transmission. Confirmed infections for 1984 and 1985 were the highest since 

the introduction of the malaria control programme (Uyirwoth 1994). 

1985 - Chloroquine resistance was detected in KwaZulu (Herbst et al. 1985). 

1987 - Heavy rains during the flood created ideal breeding places for malaria vectors 

and once again there was _ heavy transmission of malaria (Department of 

Health 1984). In KwaZulu-Natal, the increase in malaria cases was as a result 

of the influx of Mozambican refugees as well as the continued use of 
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chloroquine, resulting in the inadequate control of the parasite reservoir (D. 

Ie Sueur 1995, pers. comm.3
). 

1988 - The first policy on malaria was drawn up by the Department of Health (1988). 

1993 - Contained epidemic of malaria occurred in northern KwaZulu-Natal (Uyirwoth 

'1994, 1995). 

1994 - The Malaria Advisory Group was formed to advise on the drawing up of 

malaria policy, control measures and administering of prophylactics (Minutes 

of the first Malaria Advisory Group meeting) 

1995 - The malaria control policy was revised (Department of Health 1995) and 

based on the recommendations made by the World Health Organisation 

(WHO 1992, 1994). The malaria control programmes of the former self 

governing states were incorporated into the malaria control programmes of 

the newly formed provinces. 

2.6. EPIDEMIOLOGY OF MALARIA IN SOUTH AFRICA 

All malaria cases notified to the Directorate of Epidemiology, Department of Health 

during the period January 1980 to December 1994, were analysed. 

2.6.1. MALARIA IN SOUTH AFRICA (1980 - 1994) 

In South Africa major gains have been made in containing malaria and . 
efficient malaria control strategies are in operation. However, despite a 

3Dr. D. Ie Sueur, Medical Research Council, Durban, South Africa. 
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spraying programme in the endemic areas, many cases of malaria still occur 

in these areas. Figure 2.3 indicates the long-term (15 years) trend of malaria 

transmission in South Africa . 

. After the outbreak of malaria in 1972, active surveillance was introduced on 

a large scale, in 1975 and hospitals, clinics and laboratories were upgraded 

with respect to diagnosis (Department of Health and Population Development 

1988). This improved detection may have contributed to the remarkable 

increase (from hundreds to thousands of cases) in the annual total malaria 

cases reported. From Figure 2.3, it can be seen that outbreaks were reported 

in 1985-1986, 1987, 1988 and 1993. 
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2.6.1.1. Annual Incidence 

The annual numbers of cases reported for 1980 to 1994 are given in Table 

2.1. From 1980 to 1983 there was a steady decline in the annual incidence 

rate (Table 2.1). 

Table 2.1. Annual malaria notifications in South Africa (1980 - 1994). 

Year 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

1987 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

Number of Population Incidence rate 

Notifications (x 1000) (per 100 000) 

3109 28062 11.1 

2343 29003 8.1 

2184 29975 7.3 

2130 30983 6.9 

4642 32285 14.4 

11358 33105 34.3 

7491 33928 22.1 

10374 34749 29.9 

9317 35566 26.2 

7055 36384 19.4 

6822 37213 18.3 

4693 38049 12.3 

2872 38892 7.4 

13285 39739 33.4 

10286 40715 25.3 

There was a peak in the annual incidence rate in 1985 and a decline to a 

trough of 7.4 per 100000 in 1992. In 1993 there was a sharp increase in the 

incidence of malaria. In the past 15 years the total number of malaria 

notifications exceeded 10 000 cases in 1985, 1987 and 1993. These were all 
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years in which epidemics occurred. The least number of cases was in 1992, 

a year of severe drought throughout southern Africa, when only 2 872 cases 

were reported. 

'2.6.1.2. Monthly Incidence 

Table 2.2 shows the seasonality of malaria that is typical of malaria in South 

Africa. There is a peak in the number of cases from March to May. In 1987, 

1988, 1993 and 1994 more than 1 000 cases were reported for each of these 

months. Usually the peak in the number of malaria cases occurs in April, but 

in 1987 it occurred in June with more than 1 000 cases being reported each 

month for the period March to June. In 1993 the peak occurred in May. It is 

one of the objectives of the present study to determine the cause of this 

seasonal pattern of transmission. 

2.6.2. DISTRIBUTION OF MALARIA NOTIFICATIONS 

2.6.2.1. By Province 

The number of cases reported from each of the nine provinces in South Africa 

are given in Table 2.3. The number of notifications ranges from zero to 5 268 

with the largest number of cases being reported from Mpumalanga, Northern 

Province and KwaZulu-Natal - the endemic malaria areas in south Africa. 

Parts of the Northern Cape and North-West provinces experience sporadic 
• 

malaria transmission during conditions favourable for transmission. Malaria 

cases reported from the other provinces are most probably due to imported 



Table 2.2. The monthly incidence of malaria in South Africa (1980 - 1994). 

Year Jan Feb Mar Apr May Jun Jul 

1980 245 194 630 1007 433 146 142 

1981 175 169 303 589 368 154 71 

1982 218 342 243 407 273 168 77 

1983 131 111 272 305 338 198 86 

1984 960 565 472 683 484 255 168 

1985 718 603 974 1875 929 766 1113 

1986 991 968 942 869 893 538 544 

1987 594 884 1103 1304 1223 1331 547 

1988 1395 1234 1159 1728 1258 604 393 

1989 657 638 1151 1656 851 322 362 

1990 793 798 1278 875 711 601 341 

1991 647 436 589 648 544 305 260 

1992 396 310 326 235 283 258 230 

1993 1602 1010 1963 2062 2769 1359 361 

1994 1122 1204 1441 1776 1306 1076 444 

Aug Sep 

81 35 

67 49 

74 84 

64 52 

130 179 

856 630 

373 337 

504 483 

347 437 

265 207 

414 393 

252 271 

230 176 

417 242 

388 256 

Oct 

65 

104 

102 

151 

273 

814 

292 
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273 

262 
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340 

157 

402 
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76 

170 
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115 

222 

1262 

281 

425 
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209 
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128 
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382 

Dec 

55 

124 

67 

307 

251 

818 

463 

1652 

244 

484 
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144 

543 

588 
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Table 2.3. The distribution of malaria in the different provinces for the period 1980 - 1994. 

Year Eastern Mpumalanga KwaZulu- Northern Northern North- Free Gauteng Western Unknown 

Cape Natal Cape Province West State Cape 

1980 2 1609 981 2 437 6 3 62 3 4 

1981 4 852 216 14 1167 6 2 63 6 13 

1982 9 1060 144 0 838 2 4 57 8 62 

1983 9 1164 309 3 407 4 9 213 11 5 

1984 9 2320 1189 4 604 3 50 424 10 29 

1985 ' 7 3867 1619 4 5243 4 90 500 15 9 

1986 14 2340 2225 2 2244 4 49 605 6 2 

1987 13 1994 6757 5 1051 5 63 474 7 5 

1988 16 2403 3937 17 2465 23 42 364 13 37 

1989 9 1655 3021 67 1946 11 32 193 9 173 

1990 7 1804 2769 8 1686 32 26 264 5 221 

1991 4 1555 1855 2 809 41 42 204 5 176 

1992 9 1850 318 4 385 41 14 179 11 61 

1993 7 4179 3834 22 2200 148 60 616 17 258 

1994 7 3086 4544 0 1940 140 35 260 36 238 

0'1 
-L 
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malaria. Gauteng, a non-malarious area, reports more malaria cases than 

any of the other non-malarious area. This can be attributed to the higher 

percentage of labourers that work in this region but have their family homes 

in the malarious areas. Gauteng province has become the fastest developing 

. region in the country and therefore attracts more people from the rural areas. 

The malaria case rate can be examined in terms of the population density. 

KwaZulu-Natal has a population density of 93,5 people per square kilometre 

(km2) whereas Mpumalanga has a density of 34,7 people per km2 and 

Northern Province has a density of 42,8 people per km2 (Department of 

Health 1994). Therefore, in a given area in the endemic malaria regions, more 

people in KwaZulu-Natal are exposed to the malarial parasite than in either 

of the other two provinces. In addition, an increase in density is likely to favour 

an increase in transmission. 

2.6.2.2. By Population Group 

The malaria case distribution by race group of the resident population in South 

Africa is given in Table 2.4. The occurrence of malaria among Blacks for this 

period is much higher than among any of the other population groups. This is 

due to the fact that Blacks make up the greatest proportion of the population 

in malaria endemic areas. Whites have the next highest number of malaria 

notifications, and whites make up the next largest percentage of the resident 

population. Malaria notifications among Asians and Coloureds were low with 
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Table 2.4. Malaria in the different population groups in South Africa. 

Year Asian Black Coloured White Unknown 

1980 10 2963 3 131 2 

1981 7 2145 11 177 3 

1982 4 2034 5 136 5 

.1983 7 1951 12 156 4 

1984 15 4383 7 222 15 

1985 7 10990 3 353 5 

1986 8 7290 3 188 2 

1987 12 10145 9 207 1 

1988 6 8976 24 307 4 

1989 5 6822 19 206 3 

1990 2 6574 7 236 3 

1991 0 4488 8 159 38 

1992 2 2638 6 184 42 

1993 11 12188 13 850 223 

1994 4 9793 12 437 40 

less than 30 cases being reported for either population group in any given 

year. 

Blacks are most affected by malaria because of their low socio-economic 

status. Most Blacks in the endemic malaria areas do not have access to 

water on tap, they cannot afford chemoprophylaxis and their low cost housing 

is of poor quality and allows. easy entry to mosquitoes. Whites are exposed 

to malaria because of their agricultural and recreational activities. Most 

Asians and Coloureds live in non-malarious areas thus accounting for the low 
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malaria notifications among these population groups. 

2.6.2.3. By Sex 

Table 2.5 gives the distribution of malaria cases by sex. More males were 

. affected by malaria than females. This is significant as there are fewer males 

(18 748 323) than females (19 195 654) in South Africa. 

Table 2.5. The distribution of malaria by sex. 

Year Female Male Unknown 

1980 1433 1663 13 

1981 981 1359 3 

1982 888 1295 1 

1983 801 1326 3 

1984 1896 2719 27 

1985 5387 5950 21 

1986 3188 4290 13 

1987 4982 5383 9 

1988 4381 4930 6 

1989 3239 3795 21 

1990 3047 3769 6 

1991 2089 2590 14 

1992 1058 1812 2 

1993 5665 7591 29 

1994 4251 6020 15 

The highest male to female ratio was 1 :0.93 in 1987 and the lowest was 
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1 :0.43 in 1994. This discordance may be due to the high mobility of males into 

and out of malaria areas since they represent the country's main labour force. 

This mobility into and out of malaria areas would not result in any significant 

immunity being developed by these males, whereas the females spend more 

. time in the malaria areas and will build up some immunity to malaria. 

2.6.2.4. By Age 

Data on the age demographic profile of the population in South Africa were 

obtained from the 1991 population census. The age distribution of malaria 

cases closely follows the age distribution of the total population of South 

Africa (Figure 2.4) for the period 1980 - 1994. The majority of the reported 

16r---------------------------------------

14 - - - - - - - - -

12 

iii 10 
.... .s 
.... 8 
o 

'if'. 
6 

4 

2 

Age groups 

• Total p0p'ulation rzI Malaria cases 

Figure 2.4. Percent of malaria cases for age-specific categories in terms of the population 
structure. 



56 

malaria cases were accounted for by those under 25 years of age. The 

highest number of cases is reported from the 15 - 19 year age group. The 

trend for South Africa obtained in this study is similar to that obtained by 

Sharp et al. (1988) who looked at 10 years of data for KwaZulu-Natal, one of 

, the endemic provinces. 

2.6.3. Mortality 

Between 1980 and 1994, there were 318 deaths out of 91 117 malaria cases, 

representing an average of 21 deaths per annum (Table 2.6). This gives a 

case fatality ratio of 0.35%. The annual case fatality ratio varied between 

0.1 % and 0.61 %. 

The highest number of deaths occurred in 1988 when 48 deaths were 

reported. During this year, 29 of the deaths occurred in KwaZulu-Natal. This 

was probably related to the continued use of chloroquine for treatment, 

resulting in complicated malaria and death. Due to the existence of 

chloroquine resistance in the malarial areas of South Africa, namely northern 

KwaZulu-Natal and Mpumalanga (Freese et al. 1994, Deacon et al. 1994), 

chloroquine was replaced with sulphadoxine/ pyrimethamine, in 1988, for the 

treatment of P. falciparum in the Ingwavuma and Ubombo districts of 

KwaZulu-Natal (Hansford 1989). 
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Table 2.6. The annual case fatality ratio (CFR) for South Africa. 

Year 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

1987 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

Dead Live Total CFR 

10 3109 3119 0.32 

9 2343 2352 0.38 

13 2184 2197 0.59 

13 2130 2143 0.60 

19 4642 4661 0.41 

32 11358 11390 0.28 

20 7941 7511 0.27 

10 10374 10384 0.10 

48 9317 9365 0.51 

30 7055 7085 0.42 

35 6822 6857 0.51 

19 4693 4712 0.40 

14 2872 2886 0.48 

45 13285 13330 0.34 

12 10286 10298 0.12 

Figure 2.5 shows the malaria mortality expressed as a percentage of the total 

mortality for the period 1980 - 1994. 

Infant mortality is very low, constituting less than 1 % of the total mortality. 

The highest mortality (11 %) occurs in the 30-34 year age group, whereas this 

age group contributes only 9% to the total number of malaria cases reported. 

Individuals in this age grou~ are a highly mobile segment of the population, 

due to employment obligations and are prone to developing severe and 

complicated malaria since they may go to areas where there are resistant 
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strains of P. fa/ciparum, or where malaria is misdiagnosed. 

2.7. Conclusions 
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South Africa has a long history of malaria control and the current objective of the 

malaria control programme is to limit the ill effects of malaria through the reduction of 

malaria transmission. The malaria control programme has been successful in making 

large parts of the country malaria free and endemic malaria areas occur only in the 

northern and eastern borders regions of South Africa. 

Although DDT has proven to be very effective in controlling adult vectors of malaria, 
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antipathy to DDT has developed because of pollution, danger to the environment, 

ineffectiveness against household pests and staining of walls. It is therefore necessary 

to find suitable alternatives to DDT that are cost-effective and have a similar long lasting 

insecticidal effect. However in our quest to replace DDT, the gains that have been 

made in malaria control over the past 50 years should not be jeopardised. 

Although the notification system in place in the malaria control programme is very 

efficient, there is a need for improvement. The forms that are being used to gather 

information need to be standardised throughout the country to ensure that comparable 

data is collected from all areas. Due to the incorporation of the former self-governing 

states into the new provincial structures, different health administrations have to be 

amalgamated. The various health administrations had different forms for gathering 

information and this has caused numerous problems since the data gathered was not 

comparable. As soon as the amalgamation process is completed, the forms used must 

be standardised to collect uniform epidemiological data. 
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CHAPTER 3 

LIFE TABLE INFORMATION OF ANOPHELES ARABIENSIS UNDER 

SIMULATED CONDITIONS OF SEASONAL TEMPERATURE AND RELATIVE 

HUMIDITY 

3.1. INTRODUCTION 

The impact of temperature on insects was emphasised by Andrewartha (1971) who 

stated, "Temperature influences the speed of development, the duration of life, the 

fecundity, and behaviour of animals, especially poikilotherms". Life tables provide 

information on maximum expression of a species' genetic potential under existing 

conditions. Survivorship and reproductive strategies have been extensively studied in 

culicine mosquitoes (Crovello & Hacker 1972; Walter & Hacker 1974; Reisen et al. 

1979), but complete adult life tables have been constructed for relatively few 

anophelines (Reisen & Mahmood 1980). 

Age-specific horizontal life tables present a succinct tabular summary of mortality and 

reproductive schedules (Reisen & Mahmood 1980). When constructed under insectary 

conditions, with the requisites of life continually available, the values obtained may 

approach the maximum expression of,the species' genetic potential and may be used 

to study inherent differences in the survivorship and reproductive strategies of 

popul~tions evolving under different ecological regimes. 
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Since insects respond readily to changes in environmental temperature, numerous 

studies have been done on the effects of temperature on physiological systems in 

insects (Bailey & Gieke 1968; Reisen et al. 1984; Morsy et al. 1995). However, few 

studies have been carried out on the effects of temperature on life table parameters of 

mosquitoes (Beier 1990; Milby & Meyer 1986; Nayar 1972). The comparison of life 

table phenomena among natural populations within one species can help explain why 

certain strains survive only in particular environments. Anopheles arabiensis is 

generally considered to be the most important vector of human malaria in South Africa 

and indeed over much of southern Africa. Because of the interest in the ability of this 

species to survive long enough to become both infected and infective with Plasmodium 

falciparum, studies on longevity were conducted in the laboratory under conditions of 

fluctuating seasonal temperature and relative humidity. 

The purpose of this study is therefore to describe the life table characteristics of South 

African Anopheles arabiensis under a range of simulated seasonal temperature and 

relative humidity conditions. 

3.2. MATERIALS AND METHODS 

The An. arabiensis used in these experiments were the F2 progeny of wild-caught 

females collected from Dondotha in (28°34'S 31 °56'E) northern KwaZulu-Natal (Figure 

3.1). Fresh breeding stock was caug.~t at the start of each set of experiments. Field 

collected females readily laid eggs under insectary conditions of temperature 
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Figure 3.1. Map showing the location of Dondotha in KwaZulu-Natal. 
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(27 ± 2°C), relative humidity (70 ± 10%) and photoperiod (12L:12D with 1 hour 

simulated crepuscular period). Identification was obtained by using the Polymerase 

Chain Reaction (PCR) method on samples of the first larval instars of each female 

(Paskewitz & Collins 1990; Bredenkamp & Sharp 1993). 

All experiments were conducted in a Specht Scientific programmable growth cabinet 

(model SFPGR066) fitted with a Dumo Dicon P temperature and humidity control unit. 

The development and survivorship of immature An. arabiensis was observed at four 

fluctuating temperatures with means of 17.9,23.2,26.1 and 21.4 °C representing winter, 

spring, summer and autumn temperature profiles respectively. The temperature and 

humidity profiles were those obtained from field recordings by a MCS 200 data-logger 

fitted with a MCS 174-02 temperature and humidity probe. In South Africa, An. 

arabiensis has been found to feed indoors and rest outdoors (Sharp et al. 1993). 

Outdoor resting sites of An. arabiensis are not known, although restinig sites would 

theoretically be in a moist, shaded area probably near a water body. Therefore, 

temperature and relative humidity measurements were made under a tree at the edge 

of a large pool where Anopheles larvae were found. 

Mean hourly temperature and humidity values were calculated for each season and 

programmed into the growth cabinet. For each temperature and humidity profile, 4 

replicates of 100 first instar larvae we,re reared in plastic containers (35 x 25 x 10 cm) 

filled to a depth of 4 cm with deionised water. Larvae were fed on finely ground Epol® 

cat food. Pupae were separated daily and placed in 2Q buckets with screened tops. 
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Estimates of the duration of each larval stage were obtained by following ten replicates 

of 12 first instar larvae, placed individually in the wells of a microtitre plate. 

Gonotrophic cycles: All adults that emerged were pooled together. The length of 

successive gonotrophic cycles was determined as the time from blood feeding to 

oviposition. Blood fed females that had spent the first three days of their lives with 

males were placed individually in breeding tubes. Breeding containers consisted of a 

mesh covered specimen bottle containing moist cotton wool and filter paper. Eggs were 

collected and counted daily. Females were allowed to re-feed on human blood at two 

day intervals. 

Egg hatchability rates: Eggs from individual females were collected, counted and placed 

in individual containers containing distilled water. Hatched first instar larvae were 

removed and counted daily, up to four days after the first eggs hatched. 

Life table characteristics: The adults that survived from the egg stage were counted and 

sexed, providing the egg to adult survival rate and sex ratio. 

Once all the adults had died, life tables were drawn up. Four parameters were 

estimated for each season - mean male lifespan, mean female lifespan, net 

reproductive rate and the intrinsic rate of increase. The mean lifespans were those 
> 

recorded during the experiments. The net reproductive rate (Ro) was calculated from 

the formula: 



w 
Ro = a L lxfT7x 

x=o 

75 

where w is the last interval to which any female survived, a is the proportion of females 

that survive from egg to adult emergence, Ix is the proportion of adult females surviving 
.. 

to age x and mx is the mean number of female progeny produced per female of age x. 

The value mx was calculated using the formula: 

where Ex is the mean number of eggs produced per female of age x and s is the 

proportion of these eggs that are female. 

The intrinsic rate of increase (r m) was calculated using the following equation: 

where a, Ix and mx are as above, e is the base of the natural log, rm is the intrinsic rate 

of increase, x is the time interval, and 0 is the length of time for larval development from 

egg to the age of egg production. The mean generation time (G) was also calculated: 

G = In RJrm 

G is an estimate of the time from mean oviposition in the present generation to 

oviposition in the offspring generation. Age-specific survivorship was also determined 

under seasonal temperature and humidity regimes. 
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For the purposes of this study, these parameters were considered sufficient to give an 

indication of the mosquitoes' potential to transmit malaria. 

3.3. RESULTS 

The results for the development of the immature stages are discussed separately from 

the life table parameters of the adult mosquitoes. 

3.3.1. Immature Development 

Seven developmental attributes were examined for the ten replicates of An. 

arabiensis reared under conditions of fluctuating seasonal temperature (Table 

3.1). Survivorship from first instar to adult emergence was over 75% for all 

seasons. Development to pupation (Pi() was fastest in summer (10.9 days). 

Survivorship from pupal stage was over 86% for all seasons. Adult emergence 

times ranged from 11 days in summer to 32 days in winter. Similar emergence 

times were observed for both males and females. Sex ratios were similar for all 

temperatures. 

3.3.2. Gonotrophic Cycle 

The length of time from blood-feeding to oviposition was determined for 

individual females maintained.at the four fluctuating temperatures (Table 3.2). 

Only a few females laid eggs and the number of females ovipositing decreased 

_ over time. The duration of the first gonotrophic cycle ranged from 4 days at 26°C 



Table 3.1. Developmental attributes of immature An. arabiensis reared under simulated seasonal conditions1 

(x ± SO) 

ATTRIBUTE 

Survivorship, L 1 to p* (%) 

p-x 

Survivorship, P to Ad (%) 

E-x 

~~ 

d'd' 

Survivorship, L 1 to Ad (%) 

WINTER 

85.8 ± 4.3 A ** 

28.8 ± 2 A 

88.5 ± 5.0 A 

32.3 ± 2.01 A 

32.02 ± 1.99 A 

75.8 ± 4.3 A 

SPRING 

86.67 ± 4.2 A 

17.6±1.98 B 

86.2 ± 3.8 A 

19.72 ± 1.81 B 

19.2 ± 1.58 B 

76.5 ± 3.7 A 

SUMMER 

84.2 ± 4.8 A 

10.9 ± 0.77 C 

92.1 ± 3.5 B 

12.46 ± 0.69 C 

11.76 ± 0.72 C 

77.5 ± 2.6 A 

AUTUMN 

90.0 ± 4.2 B 

16.43 ± 1.29 B 

95.4 ± 2.6 B 

18.82 ± 1.24 B 

17.96±1.1 B 

85.8 ± 1.9 B 

Sex ratio (d':~) 0.82:1 0.79:1 0.82:1 0.85:1 
1Experiments for each season were started using 400 newly emerged first instar larvae. 
* L 1 = first instar larvae, P = pupae, Ad = adult, Px = mean time (days) to pupation, Ex = mean time (days) to adult emergence. 
Analysis was performed using ANOVA with Duncan's Multiple Range Test and significance was determined at the 5% level of 
significance. . 
** Means with the same letter horizontally are not significantly different. 

---.J 
---.J 



Table 3.2. Gonotrophic cycle for An. arabiensis during the different seasonal conditions 

GONOTROPHIC CYCLE (days) (x ± SO) 

SEASON 1 2 3 4 5 

SPRING 5.2 ± 0.76 3.5 ± 0.5 3.3 ± 1.15 4.0 ± 1.15 3.75 ± 0.95 

n 87 67 59 36 20 

SUMMER 4.0 ± 0.91 3.1 ± 0.88 3.0 ± 0.82 3.0 ± 0.04 3.7 ± 0.52 

n 79 59 54 40 30 

AUTUMN 6.1 ± 1.11 5.1 ± 3.09 4.5 ± 1.91 5.0 ± 2.8 

n 54 25 14 7 

6 

4.0 ± 0.1 

7 

4.0 ± 0.01 

5 

-....J 
co 
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(summer) to 6 days at 21°C (autumn). Second and third gonotrophic cycles 

were shorter at each temperature but the duration of the gonotrophic cycles 

increased beyond the third cycle as the females aged. Females maintained 

under spring and summer conditions laid up to six batches of eggs. The number 

of egg batches ranged from 2 - 5 in spring (n = 87) and 3 - 6 in summer (n = 79). 

The number of egg batches laid in autumn ranged from 1 - 4 (n = 54). The last 

gonotrophic cycle was based on a maximum of two specimens, therefore 

accounting for the lack of variation in the values obtained. 

During this experiment about % of all females oviposited and difficulties were 

encountered re-feeding some females. During the winter experiments, the 

females readily took a blood meal, became gravid but did not lay any eggs (see 

Appendix 3.1). 

3.3.3. Egg Hatch Rates 

Egg hatch rates were over 75% in summer and autumn but only 66% in spring 

(Table 3.3). Mean eclosion times were 3.7 days in spring, 2 days in summer and 

3 days in autumn. Egg hatch rates for winter could not be ascertained as 

females became gravid but did not lay eggs under winter conditions. 

3.3.4. Adult Survivorship an~ Life Tables 

Life table parameters were determined at each temperature. The mean lifetimes 

_ for females were greater than for males at all temperatures (Table 3.4). 



80 

Table 3.3. Egg hatchability under conditions of seasonal temperature and humidity. 

n Mean no. of Eggs Mean % Hatch 

produced 

WINTER 

SPRING 87 288.4 66.25 

SUMMER 79 263 74.74 

AUTUMN 54 159.3 82.5 

Table 3.4. Life table characteristics for An. arabiensis under simulated seasonal 

conditions ( n values are given in brackets). 

SEX WINTER SPRING SUMMER AUTUMN 

Ro 50.6 (76) 79.55 (112) 25.1 (64) 

rm 0.09 (76) 0.17 (112) 0.08 (64) 

G 43.6 (76) 25.7 (112) 40.3 (64) 

Lifespan d' 

Lifespan 5f 

28.3 (136) 

43.2 (167) 

25.1 (134) 

32.0 (171) 

16.9 (139) 24.1 (157) 

21.4 (171) 34.3 (185) 

The lower the mean temperature and humidity, the longer the life span. The net 

reproductive rate was greater in summer (Ro = 79.55 females per female per 

generation). This Ro was three·times that obtained in autumn and 1.5 times that 

obtained in spring. Due to the greater net reproductive rate and shorter 

- generation time in summer, the intrinsic rate of increase (rm) was greatest in 
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summer and lowest in autumn as a result of the low Ro and long generation time 

(43 days). The generation time (G) is also given in Table 3.4. Due to the fast 

rate of development at higher temperatures, the generation time during summer 

was the shortest. Age-specific survivorship was compared for the four seasonal 

profiles (Figure 3.2). In winter mortality was initially low and gradually increased 

over time, especially amongst the adults. In summer mortality was pronounced 

and the maximum life span was just over half that of winter reared adults. The 

mortality during spring and autumn followed almost similar curves and the 

maximum lifespan during the two seasons was not significantly different. 

For all seasons, the mean female lifespan was significantly different from the 

mean male lifespan (t-test, p « 0.01). Both male and female lifespans were 

compared with those of the preceding season and highly significant differences 

were found (t-test, p « 0.01). The lifespans of both the male and female 

mosquitoes were found to increase as winter approach, but the increase in 

female lifespan was more marked than that of the males. 

4. DISCUSSION 

In these laboratory experiments An. arabiensis females did not lay eggs under winter 

conditions. Similarly, in a study in Sudan, Omer and Cloudsley-Thompson (1970) 

collected gravid females of An. gambiae during the dry season that continued to feed 

but ovarian development was retarded. Anopheles gambiae populations in tropical 

Africa increase rapidly in the early rainy season. In the laboratory, the females reared 

under winter conditions became gravid but did not lay eggs until the temperature 

increased. However Ie Sueur (1991) did find first instar larvae in winter. This implies 
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that limited oviposition occurs in the field. In the laboratory, the females are continually 

exposed to the same cycle of temperatures whereas in the field, temperature fluctuates 

within a wide range of temperatures. In the field, mosquitoes may oviposit during winter 

when favourable temperatures are experienced. This may account for the sudden 

increase in mosquito abundance in early spring . This is remarkable as in some areas 

in Africa the dry season extends for six to nine months and under such conditions 

populations persist at low levels in a few, size limited larval habitats and in the adult 

stages (Omer & Cloudsley-Thompson 1968, 1970). 

The interaction between longevity and the number of gonotrophic cycles for each 

season (Figure 3.3) shows that as longevity decreases as summer approaches, the 

number of gonotrophic cycles increase. It is also evident from Figure 3.3. that the 

greater the number of gonotrophic cycles the shorter the duration of each cycle. There 

are more egg batches laid in summer since the duration between each oviposition is 

shorter at higher temperatures (Figure 3.4). Field observations of longevity and 

gonotrophic activity, especially in winter, are necessary to confirm the results obtained 

in the laboratory. The mean number of eggs produced per season was greatest in 

spring and smallest in autumn. In terms of basic physiology, one would expect the 

number of eggs produced in autumn and spring to be similar. However, the low egg 

production in autumn may be due to the relatively small number of individual females 

(n = 54) used in these observations ~ay have created a bias in the results. Although, 

on average, more eggs were produced during spring than in summer, the number of 

resul~ing adults was lower than in summer since there was greater egg mortality in 
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spring. From the n values in Table 2.2., it is apparent that fewer females are involved 

in egg production in successive gonotrophic cycles. This could be the result of a 

decrease in the reproductive ability with an increase in age. The times required for 

oogenesis and blood meal digestion are interrelated in most gonoactive blood-feeding 

insects (Roberts et al. 1983). Furthermore, the duration of oogenesis will determine the 

minimum time between blood meals for female mosquitoes. From the present 

experiments it can be seen that as temperature decreases the duration of each 

gonotrophic cycle becomes longer (Figure 3.4). This affects vector efficiency since the 

more often a blood meal is taken, the greater the potential for obtaining an infectious 

blood meal and transmitting disease. However, An. arabiensis has the capacity to 

undergo gonotrophic dissociation in winter, resulting in females feeding without laying 

eggs. This would not inhibit the transmission of malaria since the mosquitoes continue 

feeding. Reisen, Mahmood and Parveen (1982) found that the incidence of malaria 

reflects temporal variations in transmission rates directly attributable to vector feeding 

habits, abundance and survivorship. 

It is well established that malaria is not transmitted uniformly throughout the year. 

Fluctuations in climatic conditions have a significant effect not only on the life 

expectancy of the mosquito but also on the development of sporogonic stages of 

malarial parasite within the mosquito's body (Rastogi, Pal & Sen 1987). To transmit 

Plasmodium falciparum the anophelin? host must survive for about 12 days after taking 

an infective blood meal (with incubation at 2rC) (Macdonald 1957). ConSidering that 

initial _ host-feeding by An. arabiensis occurs on the second or third night after 
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emergence, the potentially infective portion of the population would consist of females 

not less than 14 - 15 days old. Based on the gonotrophic cycle length determined at 

27°C, and a mean life span of 21 days, An. arabiensis could imbibe at least 2 blood 

meals after completing sporogony, if a Plasmodium infection was acquired during the 

first blood meal. Mosquitoes are ectotherms and during winter their energy 

requirements are limited. In this study it was found that mosquitoes reared under winter 

conditions in the laboratory did not oviposit. However, in the field female An. arabiensis 

were caught feeding on humans. This suggests that An. arabiensis does not develop 

large fat bodies through feeding on plant juices in autumn, but takes occasional blood 

meals in winter, developing their fat to some extent but not sufficiently to withstand long 

periods of fasting. The same feeding pattern was observed in An. atroparvus and An. 

sacharovi (Clements 1992). 

The time required to become infective after consuming an infectious blood meal is 

directly dependent upon the thermal environment experienced by the adult female 

(Meyer et a/. 1990). Stratman-Thomas (1940) found that as temperature increased, the 

development rate of Plasmodium vivax within Anopheles quadrimaculatus increased. 

This author found that P. vivax sporogonic cycle was shortest at 28-30°C (8 days) and 

longest at 22-23°C (14 days). Thus, one would expect the development of malaria 

within female An. arabiensis to be faster in summer than in winter. Sporogonic 

development during spring and autum~ would probably be intermediate. These findings 

represent the result of laboratory experiments. In nature the extrinsic incubation period 

of an ?rbovirus is a function of the thermal conditions experienced by female mosquito 
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as a consequence of daily resting and movement patterns (Meyer et al. 1986) and 

seldom occurs within the realm described by laboratory experiments. This implies that 

field conditions are constantly changing and that the results obtained in the laboratory 

under controlled conditions may not reflect the situation in the field. 

The mean life span of uninfected, laboratory reared mosquitoes does not provide a 

realistic duration for infected, free flying females. Klein et al. (1982) found that the 

longevity of An. dirus decreased when infected with P. cynomolgi and Hogg & Hurd 

(1995) found that the fecundity of An. stephensi decreased when infected with P. yoelii. 

The slow development time of mosquitoes during winter may influence the survival of 

the adults. The life table parameters show that as temperature decreases, the larval 

, developmental time increases and subsequently the adult lifespan increases. This may 

be an indication of the fitness of the adults since larvae developing slowly consume 

lessf nutrients per unit time (day) but more over the total larval duration, thus producing 

more robust adults. Adult fitness may be reflected in body size. Since mosquitoes are 

ectotherms, there is not much intra-specific competition in winter as there are relatively 

few over-wintering larvae and females do not readily lay eggs in winter. However, 

during conditions of high temperature there is increased intra-specific competition for 

food and space in the larval habitats (Lakhani & Service 1974). This results from 

females laying large numbers of egg~ in a short space of time. 

Altho~gh there are more breeding sites available during spring and summer, larval 
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densities in these sites would be high as a result of the larger number of eggs produced 

and the higher number of larvae produced as a result of the greater number of 

gonotrophic cycles (Tables 3.2.). Each larva does not obtain as much nutrient as 

winter-bred ones would (Ie Sueur 1991), and these larvae develop over a short time 

interval. . Therefore summer and spring individuals are not as robust as winter-reared 

mosquitoes. 

The microclimate is known to vary from habitat to habitat (Clements 1963), therefore 

the results obtained in the growth cabinet are analogous to that of a single population 

at a single breeding site. Based on the mean hatch rates per season, this study 

suggests that there would be higher larval densities during the cooler months than 

during the warm summer months. This concurs with the results obtained by Ie Sueur 

(1991) for An. merus under field conditions. However, due to its dependence on saline 

breeding sites, the distribution of An. merus is limited whereas that of An. arabiensis is 

not. Although, in the present study summer reared mosquitoes have a lower egg 

hatchability than autumn reared mosquitoes (difference of 7.76%), on average they 

produce more eggs than autumn reared mosquitoes (difference of 103.7 eggs» 

Therefore the number of larvae produced in summer is almost twice the number 

produced in autumn. 

From the age-specific survivorship cu;ve and the gonotrophic cycles, it is evident that 

females lay a large number of eggs in several batches, especially during spring and 

summer. During these seasonal conditions, the females lay large numbers of eggs in 
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a short period since the females have a shorter lifespan compared to those reared 

under autumn and winter conditions. Spring- and summer-reared females take at least 

six blood meals over 6 (summer) to 20 (spring) days. Females reared under spring and 

summer temperature and humidity are capable of surviving the sporogonic period of 

development of P. fa/ciparum (12 days under optimal conditions) (Vaughan et al. 1992). 

The autumn-bred females take fewer blood meals (determined by their gonotrophic 

cycles) over the same period as spring-reared females. 

In the field, transmission of malaria is low during the spring months (September to 

November), gradually picking up during summer (December to February) and is 

greatest during autumn (March to May) (refer to Table 2.2.). Slow larval development 

in winter results in low population numbers in spring and therefore lower transmission. 

As the adult population increases, transmission increases. However, in autumn, 

transmission increases (as evidenced by the higher number of cases reported (Table 

2.2.)) while population numbers are declining. This may be due to the fact that in 

autumn there is a longer period between blood meals, since the digestion of blood is 

slower because of lower temperatures (Day et al. 1990). Therefore, if we assume that 

each female has an infectious blood meal on the second night after emergence and if 

we take into account the mean lifespan of an individual, the sporogonic period of 

development of P. falciparum and the mean duration of each gonotrophic cycle, 

summer mosquitoes are, on averag~., capable of giving one infected bite during their 

lifetime whilst autumn mosquitoes can give at least two infected bites. 
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Although winter-bred females did not oviposit, the females did take a blood meal, on 

average every three days. From the survivorship curve it can be seen that winter 

reared mosquitoes survive the longest, with an adult lifespan of 27 days. Due to the 

decreased metabolic requirements of these ectotherms, the females only take an 

occasional blood meal. Due to the small overwintering female population and the low 

number of infected people found in the malaria areas in winter, the probability of these 

mosquitoes becoming infected and transmitting malaria is very low. Although winter­

reared females do not lay eggs as a result of gonotrophic dissociation (Omer & 

Cloudsley-Thompson 1968, 1970), their long lifespan and their potential to oviposit 

during favourable conditions (Spring or the early rains) make them inportant targets 

from a control point of view. However, the low numbers of these overwintering females 

does not make control strategies against them economically feasible. This study 

therefore supports the conclusion by Ie Sueur (1991) that winter larviciding would be 

very effective in reducing malaria transmission during the succeeding seasons since 

larvae take 32 days to develop into adults in winter. 
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APPENDIX 3.11 

EGG RETENTION BY ANOPHELES ARABIENSIS DURING THE DRY WINTER 

SEASON IN SOUTH AFRICA 

R. Maharaj, D. Ie Sueur and C.C. Appleton 

ABSTRACT: Anopheline mosquitoes are able to survive the cold, dry season as adults. 

Temperature plays an important role in egg retention by An. arabiensis since these 

females do not oviposit during the cold, dry winter months. During winter, egg are 

retained in the ovaries and when temperature increases, these eggs are then 

oviposited. 

In some regions, particular species of Anopheles are capable of surviving the dry 

season as adult females (Clements 1963). During the dry season, Mnzava (1991) 

collected Anopheles gambiae s.l. in Tanzania, and Ie Sueur and Sharp (1991) collected 

An. arabiensis Patton and An. merus Donitz in South Africa. In southern Africa, Leeson 

(1931) found gravid An. gambiae females taking blood meals. The sudden appearance 

of mosquito larvae with the first rains may be due to the survival of gravid females 

during the dry season. Anopheline females are capable of taking a blood meal without . 

- 1A peer reviewed manuscript submitted to the Journal of the 
American Mosquito Control Association. 
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developing their ovaries (Clements 1992). Egg development appears to be under 

nervous control, since this process does not occur under adverse conditions. 

Mosquitoes oviposit shortly after the eggs have matured, unless oviposition is delayed 

or prevented by cold or the absence of appropriate larval habitats (Clements 1963). 

Little is known of the physiology of aestivating mosquitoes, but Omer and Cloudsley-

Thompson (1970) suggest that aestivation involves gonotrophic dissociation. 

This study reports on egg retention by An. arabiensis during the dry, winter season in 

South Africa. Anopheles arabiensis females were caught feeding in man-baited and 

window traps in the Dondotha district (28 °34'8 31 °56'E) of KwaZulu-Natal during June 

and July 1992. Of the 2300 anopheline females collected in this area, 8 were An. 

quadriannulatus and the rest were An. arabiensis. All identifications were made by the 

polymerase chain reaction method. 

Field studies revealed that An. arabiensis was still actively searching for and feeding 

on humans. This is evident from the fact that mosquitoes were collected in man-baited 

and window traps. Of the 329 mosquitoes caught in exit traps, 44.2% of them had had 

a blood meal at some time after emerging. Only 17 (5.1 %) of these were fully blood-fed. 

The remaining blood-fed females were either gravid or half-gravid. 

In the field females were placed individually in breeding tubes (consisting of a gauze . 
covered specimen bottle containing moist filter paper) and maintained in the field under 

preva~ling environmental conditions. These individuals were offered a blood meal every 
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three days. Females that died after feeding were dissected and examined for ovarian 

development. Of the 65 females that were maintained under existing field conditions, 

seven females laid a single batch of eggs and subsequently died. At the end of six 

weeks, females that were still alive were killed and their ovaries were dissected out and 

examined. Of the 58 females that were examined 49 contained fully developed eggs 

and 9 were half gravid. 

Other females collected in this area were taken back to the laboratory, 300 km away. 

In the insectary the wild-caught females were maintained at a constant temperature of 

27°C and 75% RH with a photoperiod of 12L:12D. These females produced an 

average of 231 ± 103 eggs/female (n = 62). Eggs from these females were reared in 

a growth cabinet with fluctuating temperature ex = 17°C, range 12 - 25°C) and humidity 

ex = 68%, range 36 - 79%) and a fixed photoperiod (11 L:13D with one hour simulated 

crepuscular period) to simulate winter environmental conditions. Fifty F1 females were 

allowed to mate, were blood-fed and kept individually in breeding tubes. These females 

were also offered a blood meal every three days by placing a human arm over the 

breeding tube. Over a two month period, none of these females laid any eggs. A 

subsample of five females was removed from the growth cabinet and placed in the 

insectary. One of the females died, but the remaining four females laid an average of 

123 ± 94 eggs/female over seven days starting on the third day after being plac~d in 

the insectary. The females in the growth cabinet that were still alive after two months 

were killed and their ovaries examined. Eleven of the remaining 17 females had well 

developed eggs (122 ± 12). Using the techniques outlined by the WHO (1975), it was 
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found that both the wild-caught females and the laboratory reared females had sperm 

in their spermathecae. 

Thus, from the field and laboratory studies it appears that temperature plays a 

significant role in initiating egg retention. Although a few females did lay eggs under 
. ,' 

field conditions, this study has shown that mosquitoes maintained at simulated winter 

temperatures produce eggs but do not oviposit unless the temperature increases. 

Although oviposition sites (moist filter paper) was available to these mosquitoes, eggs 

were retained at low temperatures. These overwintering females are of great 

importance since they are potential vectors of malaria. They are readily attracted to 

man and they are capable of surviving the necessary incubation period (of Plasmodium 

falciparum) in order to become infective. From a control point of view, these females 

are important potential transmitters of malaria and they are responsible for the 

reintroduction of large numbers of mosquitoes during the rainy season. 

We thank Rould Cibane and David Mtembu for their assistance with field work. This 

study formed part of a broader study funded by the Medical Research Council of South 

Africa. 
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CHAPTER 4 

THE EFFECT OF TEMPERATURE ON THE MORPHOLOGY 

OF ANOPHELES ARABIENSIS 

4.1. INTRODUCTION 
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Variation in body size is a regular feature of natural mosquito populations and may 

reflect their vectorial capacity (Nasci 1986a). There is some evidence that small 

mosquitoes may be more susceptible to infection than larger individuals. However, field 

studies suggest that small mosquitoes may not survive long enough to serve as vectors 

of malaria (Day et al. 1990). 

Although it is known that temperature influences mosquito body size, Walker et al. 

(1987) found no relationship between adult size and survivorship in either male or 

female Ae. triseriatus. It has been suggested (Haramis 1983) that large bodied 

mosquitoes are more successful in obtaining a blood meal in the field. This was 

corroborated by Kitthawee et al. (1990) who found that there were significant 

relationships between female body size and blood meal size. These authors found that 

larger females were capable of taking larger blood meals because their midguts were 

correspondingly larger. This suggests that blood meals may contain a correspondingly 

larger number of ingested pathogens. Longer survivorship of the female mosquito 

should then increase the probability of pathogen transmission since the female would 

be capable of surviving the necessary incubation period of the parasite and have more 
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time to transmit malaria. Temperature and photoperiod can have similar effects on 

insects (Hoffman 1985), perhaps because they are normally associated in particular 

ways in nature: low temperature is usually coupled with short photoperiod and high 

temperature with long photoperiod. Another insect characteristic influenced by 

temperature is longevity. Typically, mosquitoes survive better when reared under 

conditions of low temperature (Beier et al. 1987). 

Anopheles arabiensis, a member of the An. gambiae Giles complex, is the main vector 

of Plasmodium falciparum in southern Africa. Work done by Ie Sueur (1991) has shown 

that temperature influences some morphological and biological characteristics of the 

larval cycle of both An. arabiensis and An. merus and has contributed greatly to the 

understanding of the bionomics of these species in South Africa. The influence of 

temperature on the size, longevity and fitness of the mosquito is of interest from a 

control point of view because information on the effects of temperature on the rates of 

development and survival of the various stages of the vectors are necessary in 

designing control strategies. 

From her study on members of the An. gambiae complex, Coetzee (1986) concluded 

that the hind leg pale band at the junction of tarsomeres 3 and 4 is a very good 

character for grouping An. gambiaelAn. arabiensis and An. quadriannulatuslAn. merus. 

However, Coetzee (1986) cautioned that the reported measurements might only be 

applicable to the localities sampled and not to other areas of Africa. Ie Sueur & Sharp 

(1991) found that temperature influenced the size of morphological characteristics and 

they suggested that for morphological measurements to be used in species separation, 
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samples should be collected from different geographic areas and over different 

seasons. 

Although Ie Sueur (1991) found that there is a linear relationship between wing length 

and tarsal length, his study also showed that there is no relationship between tarsal 

length and the pale band width. The pale band width was investigated in the current 

study to determine whether or not there is a seasonal change in the width of the hind 

leg pale band at the junction of tarsomere 3 and 4. Also, Ie Sueur (1991) concluded 

that there was a need to ascertain how "fixed" a particular character is under varying 

environmental conditions. 

This chapter examines the effect of temperature (both controlled and natural) on the 

wing size and the hind leg pale band at the junction of tarsomeres 3 and 4 of adult An. 

arabiensis. These measurements will give an indication of the size of adults obtained 

at the various temperatures since body size is proportional to wing length (van den 

Heuvel 1963). These morphological measurements will therefore enable an 

investigation into the change in the average body size and pale band width of adult 

mosquitoes over a 12 month period in the field; as well as the changes occurring under 

simulated conditions of seasonal temperature. 

4.2. MATERIALS AND METHODS 

All the mosquito specimens used for this part of the study consisted of material 

collected from the field. 
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4.2.1. Description of the Study Site 

The study site was situated at Dondotha (28°34'S 31 °56'E) in northern KwaZulu­

Natal. This is in the heart of the province's rural area where the main activities 

include stock farming and to a limited extent vegetables are grown for private 

use. The main sources of water in this area are three large, interconnected 

ponds fed by an underground spring. Water outlets from these ponds form a 

stream that flows into the agriculturally developed areas. Because of the 

presence of cattle, there are abundant breeding sites for anopheline mosquitoes 

produced by the trampling of cattle through the stream. The dwellings in this 

area consisted of simple mud and wood structures with thatched roofs. These 

structures had modern wooden framed, glass windows. There are 15 such 

structures within a distance of ±500 m of the water source. Of these structures, 

only five were selected for use during this study because the other dwellings 

were not occupied or were often smoke-filled and thus unsuitable. 

4.2.2. Collection of Climatic Data 

To investigate the effects of environmental temperature and relative humidity on 

adult body size, seasonal temperatures and relative humidity profiles were 

obtained from the field using a MCS 200 data logger fitted with a MCS 174-02 

relative humidity and temperature probe. In South Africa, An. arabiensis has 

been found to feed indoors and rest outdoors (Sharp et al. 1993). Outdoor 

resting sites of An. arabiensis are not known, although resting sites would 

theoretically be in a moist, shaded area probably near a water body. Therefore, 

temperature and relative humidity measurements were made under a tree at the 
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edge of a large pool where Anopheles larvae were found. 

Seasonal profiles were obtained by collecting representative data for each 

season over a two month period as follows: winter (June - July), spring 

(September - October), summer (December - January) and autumn (March -

April). The profiles obtained were then programmed into a growth cabinet (see 

chapter 3) to simulate the field conditions. Figure 4.1 (a-d) represents the profiles 

for winter, spring, summer and autumn respectively. The photoperiod used was 

determined from the field as follows: winter (11 L:13D), spring (12L:12D), summer 

(13L:11 D) and autumn (12L:12D) , each with a one hour simulated crepuscular 

period. 

The mean monthly temperature and relative humidity profiles for the study area, 

for the duration of the study were obtained from the Weather Bureau and are 

illustrated in Figure 4.2. 

4.2.3. Field collection of specimens 

Monthly collections of mosquitoes were made at Dondotha from May 1992 to 

April 1993. The duration of each collecting trip lasted three to four days, 

depending on the abundance of mosquitoes. Mosquitoes were collected by 

employing window traps, human baited traps and landing catches. 
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4.2.3.1. Window Traps 

Window traps were fitted in five different houses within a distance of 

500m from the water source. The traps were made of a metal frame 

covered with mosquito netting. On the inner side of the trap, a "funnel" 

was made which helped to guide mosquitos into the trap. The window 

was left open overnight and mosquitoes were caught as they attempted 

to leave the dwelling. All mosquitoes from these traps were collected at 

dawn the next day. 

4.2.3.2. Human Baited Traps 

Two collectors sat in a tent approximately 50m away from the water 

source. They were confined to the tent from 19hOO to 05hOO and captured 

all female mosquitoes that attempted to feed on them. Mosquitoes were 

captured using an aspirator and placed in a gauze covered cup. 

4.2.3.3 Surface catches 

Two collectors sat in a tent situated approximately 50m away from the 

breeding sites. Collections of resting female mosquitoes were made every 

30 minutes between 19hOO and 05hOO. Using battery powered flashlights, 

the collectors examined the fabric of the tent for resting mosquitoes. 

These were collected using an aspirator and these females were placed 
• 

into a container until they were processed in the morning. 
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4.2.4. Processing of Mosquitoes 

Each morning, the mosquitoes captured the previous night were processed after 

being fed on a volunteer's arm. Mosquitoes other than Anophe/es gambiae s./. 

were removed from the container and destroyed. All remaining mosquitoes were 

placed individually into breeding containers. Breeding containers consisted of a 

mesh-covered specimen bottle containing moist cottonwool. These mosquitoes 

were then transported to the insectary in Durban. 

The field collected specimens were placed in the insectary and maintained at a 

constant temperature and relative humidity (27°C, 80% RH). Eggs laid by 

females in the breeding jars were removed and placed in separate plastic 

containers containing distilled water to a depth of 3cm. Once these eggs had 

hatched, it was possible to obtain correct identification by using the Polymerase 

Chain Reaction (PCR) method to identify the larvae (Bredenkamp & Sharp 1993) 

and hence the wild caught females. 

Once the females had been identified, they were killed and the wings carefully 

removed and mounted, in preparation for being measured. Those females that 

did not lay eggs (i.e. the nulliparous females) were identified through performing 

PCR on the thorax and abdomen, once the wings and legs had been removed. 

4.2.5. Morphological Mounting and Measurements 

_ For microscopical examination, slide preparations of adults were made according 
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to the method of Hunt and Coetzee (1986). 

Wing length measurements were taken between the axillary incision (Harbach 

and Knight 1980) and the wing tip in the region of vein 3 (Figure 4.3) (Gillies and 

Coetzee 1987). Measurements were carried out with a Wild M7 A stereo 

microscope using a 10X eyepiece and 31 X objective and an eyepiece 

micrometer with 120 divisions, each equal to 31 ~m on the focal plane. 

Measurements were taken of the pale band at the junction of tarsomeres 3 and 

4 using a compound microscope (magnification X100) fitted with an eyepiece 

micrometer. The maximum and minimum length of the pale scaling were 

measured and the mean calculated. 

4.2.6. Sample size and statistical analysis 

The sample size is dependent upon the degree of precision required (Southwood 

1978). For the purposes of this study, a standard error of 5% of the mean was 

considered to be satisfactory. Biologically significant differences in mean body 

size and body size range were determined from Ie Sueur (1991) and Ie Sueur 

(pers. commY. According to calculations by Eleanor Gouws (Dept. of 

Biostatistics, Medical Research Council, Durban), to obtain a biologically 

significant difference between samples, a minimum sample size of 50 individuals 
• 

would be sufficient. Accordingly, if n = 53, a precision similar to the data 

'Dr D. le Sueur, Medical Research Council, Durban. 



Figure 4.3. Anophe/s wing showing wing spots and area used for morphometric 

measurements (From Gill ies & Coetzee 1987). 
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presented by Ie Sueur (1991) could be anticipated. During this study, the sample 

size was always greater than 50 individuals. 

Statistical analysis of the data was carried out using Duncan's Multiple Range 

Test (Walker & Duncan 1969), Pearsons Correlation and Stepwise Multiple 

Regression Analysis (SAS Institute Inc. 1985). The simple statistics for the data 

used in this chapter are given in Appendix 4.1. 

4.3. RESULTS 

4.3.1. The Influence of Climatic Factors on Wing Length of An. arabiensis 

4.3.1.1. Monthly in the Field 

Pearson's Correlation Coeffients were calculated to test for association between 

the mean wing-length, temperature and relative humidity. There was a negative 

correlation between the mean wing length and temperature (r=-0.395) as well as 

between mean wing length and relative humidity (r=-0.331, p«0.01). Therefore, 

as temperature increased the mean body size decreased. Analysis of variance 

was used to compare the mean wing length for each of the 12 months. 

Significant differences were found between the temperature (df = 11, p«0.01), 

relative humidity (df = 11, p«0.01) and mean wing length (F=42.82, df=11, 

p«0.01) for the different months. In order to compare all the months with each 

other, Duncan's Multiple Rang~ test was used and the results are presented in 

Table 4.1. 
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Table 4.1. Comparisons of mean wing length for each month1. 

MONTH n MEAN ± S.D. DUNCAN GROUPING 

July 64 3.50 ± 0.229 a 

June 104 3.48 ± 0.227 ab 

August 69 3.46 ± 0.250 ab 

September 66 3.45 ± 0.283 ab 

October 58 3.41 ± 0.180 abc 

November 74 3.39 ± 0.199 bc 

May 76 3.34 ± 0.430 c 

December 77 3.24 ± 0.331 d 

April 64 3.23 ± 0.183 de 

March 67 3.22 ± 0.415 ef 

January 59 3.11 ± 0.139 f 

February 80 3.10 ± 0.139 f 

1Means with the same letters are not significantly different. 

The mean wing lengths for the winter and spring months were significantly 

different for the summer and autumn months of the year. There was a trend for 

the larger wing size to occur during the cooler months of the year and the 

smaller wing size to occur in the warmer months of the year (Figure 4.4). The 

only disruption in this trend was presented by the data collected during April. 

There was a 13% increase in the mean wing size from February to July. 

4.3.1.2. Seasonally in the Laboratory 

An analysis of variance, performed in order to determine the effect of season on 

- wing length, showed that there were significant differences (F=4.27, df=3, 



3.9 

3.7 

....-
E3.5 
E 
----
.c -rn3 .3 
c 
Q) 
-1 

0)3.1 
c 

~ 
2.9 

2.7 

2.5-+-----r-----r-----r-----r-----r----~----~----~-----r-----r----~ 

Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May 

Month 

gure 4.4. Wing length measurements for field collected An. arabiensis. 

~ 

~ 

en 



117 

p«0.01) between seasons. From Table 4.2 it can be seen that the mean wing 

length obtained in winter was significantly different from that in the other 

seasons. There were no differences between wing lengths obtained in spring, 

autumn and summer. This trend also fits well with the trend obtained for the 

. monthly data. There was a 5% difference in wing size between winter and 

summer and also autumn. A 3.5% decrease in wing size occurred when moving 

from spring to summer. Therefore winter-reared An. arabiensis have the largest 

body size and summer-reared mosquitoes are small compared to winter-reared 

mosquitoes. 

Table 4.2. Comparisons of mean wing length for each season 1. 

SEASON n MEAN ± S.D. DUNCAN GROUPING 

Winter 110 3.13 ± 0.470 a 

Spring 124 3.02 ± 0.176 b 

Summer 216 2.99 ± 0.343 b 

Autumn 176 2.99 ± 0.349 b 

1 Means with the same letters are not significantly different. 

To determine whether or not temperature and relative humidity played an 

exclusive role in influencing body size, wing lengths from the laboratory reared 

mosquitoes were compared with the wing lengths of the field caught specimens 

(Figure 4.5). There was a sig'nificant difference (p < 0.01) between the field 

caught mosquitoes and the laboratory reared mosquitoes. The laboratory reared 

mosquitoes were all smaller than their field caught counterparts. The decrease 
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in wing size between winter and summer is very apparent in field collected 

specimens. 

4.3.2. The Association between Temperature, Wing Length and Wing Spot Size 

4.3.2.1. In the Field 

As has already been shown, mean wing length is negatively correlated to 

temperature and relative humidity. Pearson's correlation shows that costa B has 

a positive correlation with mean wing length (r = 0.512, p« 0.01). All other wing 

spots were weakly correlated with mean wing length. Temperature and relative 

humidity were tested against all the wing spots to determine if there was any 

association between these variables. Both had very weak correlations with all 

wing spots except costa B (r = -0.581, p« 0.01), costa C (r = -0.372, p« 0.01) 

and costa D (r = -0.534, P « 0.01). An analysis of these wing spots over the 12 

month period showed that there were significant differences between these 

variables from month to month (ANOVA, df = 11, P « 0.01). A pair-wise 

comparison of the values for costa B, C and D was performed (i.e. all the months 

were compared with each other) and the results are presented in Tables 4.3 -

4.5. 

Stepwise multiple regression analysis was performed on the data for each of the 

wing spots to determine which of the variables ( wing length, temperature and , 

month) affect it (Table 4.6). From the total R2 values given in Table 4.6 it can be 

_ seen that costa B produces a highly significant value. Therefore 43.27% of the 
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Table 4.3. Duncan's grouping for costa B 

MONTH n MEAN ± S.D. DUNCAN'S GROUPING 

August 69 0.867 ± 0.076 a 

July 64 0.830 ± 0.084 b 

Jurie 104 0.827 ± 0.071 b 

September 66 0.823 ± 0.074 b 

May 76 0.796 ± 0.061 c 

November 58 0.775 ± 0.092 cd 

October 74 0.757 ± 0.066 de 

April 64 0.740 ± 0.085 ef 

March 67 0.725 ± 0.062 fg 

December 77 0.721 ± 0.064 fg 

January 59 0.704 ± 0.059 gh 

February 80 0.686 ± 0.062 h 

variation in costa B can be explained by variation in wing length, temperature 

and month. From the partial R2 values for costa B (Table 4.6), it can be 

determined that 33.7% of this variation can be attributed to variations in wing 

length. Costa 0 is influenced by temperature and month and 29.49% of the 

variation can be explained in terms of variation in these variables, of which 

28.7% is due to variations in temperature. 
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Table 4.4. Duncan's grouping for costa C 

MONTH n MEAN ± S.D. DUNCAN GROUPING 

July 64 0.608 ± 0.227 a 

June 104 0.581 ± 0.082 ab 

August 69 0.556 ± 0.085 b 

September 66 0.545 ± 0.069 bc 

May 76 0.511 ± 0.069 cd 

April 64 0.502 ± 0.061 d 

October 74 0.498 ± 0.062 de 

November 58 0.491 ± 0.075 de f 

December 77 0.485 ± 0.190 de f 

March 67 0.474 ± 0.064 de f 

January 59 0.461 ± 0.065 ef 

February 80 0.453 ± 0.063 f 

Table 4.5. Duncan's grouping for costa 0 

MONTH n MEAN ± S.D. DUNCAN GROUPING 

August 69 0.316 ± 0.031 a 

June 104 0.302 ± 0.049 ab 

July 64 0.301 ± 0.046 ab 

September 66 0.294 ± 0.049 b 

May 76 0.292 ± 0.037 b 

November 58 0.267 ± 0.051 c 

January 59 0.251 ± 0.043 d 

April 64 0.248 ± 0.048 d 

December 77 0.247 ± 0.039 d 
, 

October 74 0.243 ± 0.040 d 

March 67 0.229 ± 0.038 e 

February 80 0.219 ± 0.032 e 
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4.3.2.2. Under Simulated Conditions In The Laboratory 

Since significant differences were found in mean wing length when comparing 

seasons, the individual wing spots were investigated to determine whether or not 

season played a role in influencing their size. 

" 

Table 4.6. Stepwise Multiple Regression analysis to determine the combined effect of 

the variables on wing spot size. 

WING SPOT SIGNIFICANT P - VALUE PARTIAL TOTAL 

VARIABLES R2 R2 

Costa A wing length 0.0001 0.031 0.1213 

temperature 0.0001 0.078 

month 0.0006 0.012 

Costa b wing length 0.0251 0.016 0.0234 

month 0.0367 0.005 

Costa B wing length 0.0001 0.337 0.4327 

temperature 0.0001 0.095 

month 0.0041 0.006 

Costa c wing length 0.0001 0.045 0.0612 

month 0.0002 0.016 

Costa C wing length 0.0001 0.016 0.1539 

temperature 0.0001 0.138 

Costa d wing length 0.0001 0.024 0.0418 

temperature 0.0034 0.009 

month 0.0490 0.009 

Costa D temperature 0.0001 0.287 0.2949 

month 0.0018 0.008 
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There were significant differences between seasons for all wing spots (ANOVA, 

df = 3, P < 0.01) including costa d (ANOVA, df = 3, P = 0.05). For each wing spot 

Duncan's Multiple Range test was used to compare the four seasons. Generally, 

winter and/or autumn were significantly different from spring and summer 

(Figure 4.6). From Figure 4.6 it is evident that the size of the wing spots was 

noticeably larger during winter than in summer. This may be attributed to the 

larger wing lengths obtained during the cooler seasons. 

Correlation coefficients were calculated to test for association between mean 

wing lengths for each season and the mean wing spot size for that season 

(Table 4.7). For mean winter wing length there was a strong correlation with 

costae A and B and a moderate correlation with costae band C. In autumn wing 

length was strongly correlated with costae A, C and D and there was little 

correlation with the remaining wing spots. Spring wing lengths were moderately 

correlated with costae A, Band C. Mean wing lengths for summer were strongly 

correlated with costa B, and moderately correlated with all remaining wing spots 

except costa b. Thus, it can be seen that temperature influences wing length 

which in turn influences the size of the wing spot. The only non-significant 

correlations were those for the pale wing spots in spring. 

4.3.3. Comparison Of Wing Spots For Field And Laboratory Reared 

Mosquitoes 

A comparison of each wing spot was performed for laboratory reared and field 

- collected mosquitoes for both winter and summer specimens. In summer, the 
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field collected mosquitoes had longer wings and the wing spots were 

consequently larger in field specimens (Figure 4.7(a» than laboratory reared 

mosquitoes (t-test, p<0.01). 

Table 4.7. Univariate Correlation analysis of wing length with the wing spots during the 

different seasons. Values reported are correlation coefficients (r) and p-values. 

correlation coefficients 

WING SPOT WINTER SPRING SUMMER AUTUMN 

Costa A r 0.793 0.563 0.686 0.669 

P 0.0001 0.0001 0.0001 0.0001 

Costa b r 0.549 0.102 0.397 0.387 

P 0.0001 0.2605 0.0001 0.0001 

Costa B r 0.895 0.553 0.837 0.843 

P 0.0001 0.0001 0.0001 0.0001 

Costa c r 0.368 0.050 0.546 0.447 

p 0.0001 0.5848 0.0001 0.0001 

Costa C r 0.674 0.561 0.547 0.658 

P 0.0001 0.0001 0.0001 0.0001 

Costa d r 0.370 0.073 0.543 0.292 

p 0.0001 0.4224 0.0001 0.0001 

Costa D r 0.273 0.390 0.519 0.618 

P 0.0040 0.0001 0.0001 0.0001 

The wing length of field specimens collected in winter was greater and the 

resulting wing spots were larger (Figure 4.7(b)) than those on the wings of 

mosquitoes reared in the laboratory under simulated winter conditions (t-test, 

p<0.01). Therefore, wing length and wing spots of free flying mosquitoes were 

larger than those of laboratory reared mosquitoes. 
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4.3.4. The Width of the Pale Bands on the Hind Tarsomeres 

4.3.4.1. Field Collected Mosquitoes 
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An analysis of variance shows that there are significant differences (f = 15.25, 

P «0.001) between the widths of the pale bands for the 12 months during 

which specimens were collected from the field. To examine the differences 

b~tween the length of the pale bands for each month, Duncan's Multiple Range 

test was performed on the data. The results of this test are shown in Table 4.8 

and the mean length for each month is illustrated in Figure 4.8. The width of the 

pale band at the junction of tarsomeres 3 and 4 is influenced by temperature 

since these widths are larger during the cooler months and smaller during the 

warmer months of the year. 

Table 4.8. Duncan's grouping for the monthly pale band widths. 

MONTH n MEAN ± S.D. DUNCAN GROUPING 

June 72 0.088333 ± 0.00766 a 

July 72 0.084167 ± 0.00317 ab 

May 79 0.083734 ± 0.00843 ab 

April 67 0.083507 ± 0.00747 bc 

February 52 0.079423 ± 0.00618 bcd 

March 64 0.078984 ± 0.00728 cd 

August 63 0.077222 ± 0.00972 de 

September 62 0.073065 ± 0.00669 ef 

October 62 0.072742 ± 0.00629 ef 

December 69 0.072681 ± 0.00342 ef 

November 65 0.071769 ± 0.00611 f 

January 70 0.070000 ± 0.00599 f 

4.3.4.2. Under Simulated Conditions in the Laboratory 

Significant differences (F = 22.47, p«0.001) were found between the 
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length of the pale band markings in mosquitoes reared under seasonal 

conditions. Duncan's Multiple Range test yielded a comparison of the 

seasons (Table 4.9). Under conditions of simulated seasonal change, 

the widths of the pale band at the junction of tarsomeres 3 and 4 were 

greater for mosquitoes reared under winter conditions than for those 

mosquitoes reared under summer conditions (Figure 4.9). 

The pale band measurements obtained for specimens reared under 

simulated seasonal conditions were compared to the corresponding 

monthly field specimens. 

The results of this comparison are illustrated in Figure 4.10. The width 

of the pale band was found to be significantly larger in field specimens 

for all seasons (t-test, p < 0.05) except spring. 

Table 4.9. Duncan's grouping for the pale band widths under simulated conditions. 

SEASON n MEAN ± S.D. DUNCAN GROUPING 

Winter 80 0.078500 ± 0.00381 a 

Autumn 80 0.077500 ± 0.00472 a 

Spring 80 0.071250 ± 0.00624 b 

Summer 80 0.066000 ±.0.00229 c 
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DISCUSSION 

In mosquitoes, wing length remains constant throughout life (Christophers 1960). 

Since adult body size is proportional to wing length (van den Heuvel 1963), this study 

has shown that there is a variation in body size from month to month, as well as from 

one season to the next. It was found that there is an inverse relationship between 

temperature and body size since it was determined that wing length decreased as 

temperature increased. Although relative humidity is negatively correlated with body 

size, it is unlikely that it would playa role in determining the wing length in adult 

mosquitoes since the immature stages are restricted to an aquatic environment. As 

indicated by the field recorded temperature and humidity profiles (Figures 4.1 [a-d]), it 

is largely an indirect correlation as a result of the association between these two 

parameters. Generally the body size (as indicated by the wing length) was larger during 

the cooler season than during the warmer season. Thus winter reared mosquitoes have 

the largest body size and summer reared An. arabiensis are small compared to winter 

reared specimens. Although the body sizes of both field-collected and laboratory-reared 

were influenced by temperature, field-caught specimens were larger than laboratory­

reared mosquitoes. This may be due to the wide range of temperatures that the larvae 

developing in the field are exposed to, whereas in the laboratory the larvae are exposed 

to the same cycle of temperatures over their entire developmental period. This may 

also be due to improved nutrition in the field since larvae in the laboratory are fed on 

an artificial diet that may not resemble the normal diet of larvae in the field. 

The work by Ie Sueur (1991) is the only other study investigating the effects of 

temperature on the morphology of members of the An. gambiae complex in South 
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Africa. However, Ie Sueur (1991) studied these effects on An. merus. Based on the 

assumption that temperature would influence the morphology of both sibling species, 

the results of this study on An. arabiensis were compared with that of Ie Sueur's (1991) 

study on An. merus (Figure 4.11). Although the specimens were collected from 

different,geographic areas, with different mean monthly temperatures, the general trend 

in wing length remains the same. The wing lengths are smaller during the warmer 

months of the year and longer during the cooler months. In the comparison ( Figure 

4.11), An. merus has a greater wing length than An. arabiensis. This may however be 

due to the differences in mean monthly temperatures of the locality where the An. 

merus specimens were collected. 

This study showed that the width of the pale band at the junction of hind tarsomeres 3 

and 4 is highly variable. The width of this pale band was found to have an inverse 

relationship with temperature - as temperature increased, the width of the pale band 

decreased. The measurements of the pale band were larger during periods of lower 

temperature such as autumn and winter under both field and laboratory conditions. The 

mosquitoes reared under the simulated seasonal conditions were all reared under the 

same conditions except for the change in the seasonal temperature and humidity 

profiles. The changes in the seasonal temperature and humidity profiles resulted in a 

change in the pale band measurement. This suggests that temperature influences the 

pale band measurements. Although the seasonal profile of pale band measurements 

for both field collected and laboratory reared mosquitoes followed the same trend 

(Figure 4.10) the pale band measurements were found to be larger in field collected 

specimens than in laboratory reared specimens. The larger pale band measurement 
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in field collected mosquitoes may be attributed to the fact that mosquitoes in the field 

are subjected to a range of temperatures that may influence development whereas 

laboratory reared mosquitoes are subject to the same 24 hour cycle of temperature and 

humidity throughout their development. 

The width of the pale band at the junction of the hind tarsomeres 3 and 4 for An. 

arabiensis specimens collected from the field was compared to the values obtained for 

An. arabiensis in studies by Ie Sueur (1991) and Coetzee (1986). All three studies 

showed that there is a peak in the pale band width within the range 0.06 - 0.08 mm 

(Figure 4.12). The present study and Ie Sueur's (1991) study shows a peak at 0.07 

mm. The specimens for both these studies were collected from the same locality, 

Dondotha in KwaZulu-Natal. The specimens used in Coetzee's (1986) study were 

collected from various localities in southern Africa and shows a peak at 0.06 mm. This 

might be due to (j) the measuring intervals that she used, i.e. 0.02 whereas Ie Sueur 

(1991) and the present study used 0.01 and (ij) her specimens being collected at a 

different time of the year. This supports the conclusion by Ie Sueur and Sharp (1991) 

that morphometric characteristics vary over geographic localities. From these studies 

it is apparent that the width of the pale band on the hind tarsomeres of An. arabiensis 

ranges from 0.02 - 0.14 mm, and that the actual width measured is influenced by the 

climatic variations of the geographic locality from which the specimens are collected. 

Figure 4.13 shows that season has a marked influence on the width of the pale band 

at the junction of hind tarsomeres 3 and 4 of An. arabiensis in summer and winter. The 

peak width in winter was 0.01 mm greater than the peak width in summer. The hindleg 

pale band at the unction of tarsomere 3 and 4 is thought to be a good character for 
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grouping An. gambiaelAn. arabiensis and An. quadriannulatuslAn. merus (Coetzee et 

al. 1982) although An. arabiensis is known to be variable in this respect (Sharp et al. 

1989). The method of Coetzee (1986) has shown that the pale bands in the major 

malaria vectors An. gambiae and An. arabiensis were generally narrower than those of 

the sibling species An. merus and An. quadriannulatus. 

Since temperature influences the width of the pale band on the hindleg tarsomeres, the 

validity of Coetzee's (1986) species separation graph was tested by comparing it to the 

winter and summer distribution of the pale bands of An. arabiensis (Figure 4.14). The 

distribution of the pale bands given by Coetzee (1986) encompasses the distribution 

of the pale bands for both winter and summer. Although the peak in the pale band of 

An. arabiensis increases by 0,01 mm in winter, seasonality does not decrease the 

sensitivity of the technique since the peak in the distribution of the width of the pale 

band is still less than the 0.09 mm that Coetzee (1986) recommended as the cut-off 

point between the two species groups. Therefore the species separation graph 

appears to take into account seasonal differences. Coetzee (1986) collected 

specimens from numerous localities in KwaZulu-Natal, Northern Province and 

Mpumalanga, at various times during the year. This comparison reinforces Ie Sueur's 

(1991) conclusion that morphological variation should be assessed seasonally 

throughout the species distribution, if mosquito taxonomic keys are to include absolute 

size criteria. Figure 4.13 illustrates the difference in morphological measurement that 

can be obtained at different times of the year. Studies of a morphological nature should 

be broad-based to give a holistic overview of occurrences in nature. 
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The sizes of the wing spots on the costae of the wings of An. arabiensis are also 

influenced by temperature. Therefore, since temperature influences wing length, wing 

length in turn influences the size of the wing spots. It was found that there was a strong 

association between the length of the wing and the length of some of the wing spots. 

Measurements of the wing spots of mosquitoes reared under the different seasonal 

temperatures and humidities showed that there was an inverse relationship between 

temperature and the dark wing spots especially costae S, C and D. In accordance with 

the variation in wing length found from month to month and between seasons, there is 

a corresponding variation in the sizes of costae S, C and D. The sizes of the wing spots 

are generally larger during the cooler seasons. Since the sizes of the wing spots are 

temperature dependent, the use of wing spots in taxonomic identification should be 

avoided. 

Under field conditions, the size of the dark wing spots increased proportionally as wing 

lengths increased and there was a small, non-proportional increase in the size of the 

pale spots as well. Under simulated seasonal conditions in the laboratory, there was a 

moderate to strong correlation between the size of the dark wing spot and wing length 

and a weak to moderate correlation between the size of the pale wing spot and wing 

length. The non-significant correlations obtained for the pale wing spots in spring are 

a reflection of the wide range of temperatures (20 - 32°C) experienced during this 

season. The year in which this seasonal profile was recorded experienced an unusually 

warm spring (b = 24°C) compared with a ten year average of 22°C. The spring 

temperature was high enough to produce wing lengths that were not significantly 

different from those produced during summer. The mean temperature in spring was 
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lower than that of summer and promoted greater melanin deposits since melanin 

production was found to be inversely related to temperature (Ford 1945). Therefore, 

unlike the other seasons, in spring all the increase in wing length occurred in the dark 

wing spots since the dark spots in the wing pattern are a reflection of melanin deposits. 

Once again, the discreeancies observed in the relationship between wing spot size and 

wing length for laboratory reared and field collected mosquitoes may be attributed to 

the fact that mosquitoes in the field are subjected to a range of temperatures that may 

influence development whereas laboratory reared mosquitoes are subject to the same 

24 hour cycle of temperature and humidity throughout their development. 

The reason(s) for the inverse relationship between temperature and body size are not 

clear but Laudien (1973) suggested that it may be the result of rapid development at 

higher temperatures. Although the growth rate may increase with temperature, this 

increase is out-weighed by a decrease in the time available for growth, and the resulting 

mosquitoes are smaller. The decrease in wing size may be partially explained by the 

possibility that at high summer temperatures the metabolic requirements may exceed 

the rate at which food can be gathered by the larvae (Ie Sueur 1991). Therefore at high 

temperatures, the developing larvae have a shorter time to take up nutrients thus 

producing smaller adults with shorter wings. This was corroborated by Shelton (1973) 

who found that as temperature increased, the average body weight of adults 

decreased. 

In the field, females have a higher reproductive rate during periods of high temperature 

(summer) than during periods of low temperature such as the winter months (refer to 

Chapter 3). A high egg production and hatchability would result in high larval densities 
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and according to Kitthawee et al. (1992), larvae in crowded conditions appear to feed 

less efficiently and the resulting adults are likely to have a reduced body size, 

survivorship and reproductive potential. During these experiments, both wild-caught 

mosquitoes and the laboratory-reared mosquitoes showed the same trend in wing 

length and wing spot size even though the field- caught and laboratory mosquitoes 

were reared under different densities and nutritional conditions. Laboratory-reared 

mosquitoes were reared under conditions of uniform density and were provided with 

abundant nutrients, yet variations in body size were obtained at different temperatures. 

Although size variation can be genetically influenced (Greenough et al. 1971), all 

specimens used in this study were collected from a single site, representing a single 

gene pool, thus indicating that size variation was environmentally influenced. Day et al. 

(1990) found that the body size of field collected Culex nigripa/pus showed a consistent 

pattern of seasonal variation; mosquitoes were largest during the cool winter and spring 

and smallest during summer and autumn. The results presented in this study followed 

a similar trend. 

Larger bodied adults, produced mainly during the cooler season, survive much longer 

than the smaller adults produced during the warmer seasons (see Chapter 3). 

Therefore the longevity of mosquitoes is influenced by temperature and hence body 

size. Kitthawee et al. (1990) have suggested that the longer survival among larger 

adults may be related to protein accumulation during the immature stages. Van Handel 

and Day (1989) also determined that protein content generally increased with wing 

length. Body size is thus an indication of fitness. Investigations into the capabilities of 

adult -mosquitoes in the field have shown that large bodied females (as indicated by 
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wing lengths) exhibit higher fitness qualities than do small-bodied females. Larger 

Aedes triseriatus (Say) females are more frequently parous (Haramis 1983); larger 

Culex tarsalis Coquillett have higher fecundity (Bock & Milby 1981) and larger 

Anopheles have higher survivorship rates (Hu et al . 1993). Studies on An. arabiensis 

(Chapter 3) have shown that larger mosquitoes (those reared under winter conditions 

and those having longer wings) have the longest survival period, are capable of having 

numerous blood meals and can become gravid. However, these large bodied females 

undergo gonotrophic dissociation with the onset of winter and overwinter as adults. 

Temperature has a significant effect on the development of parasites in the mosquito. 

Plasmodium falciparum cannot complete its development in the mosquito below a mean 

temperature of 16°C, although the parasite survives to continue its development when 

the temperature rises above this critical point (Gear et al. 1988). At a temperature of 

17.5°C, P. falciparum takes more than 23 days to develop (Gear et al. 1988). From 

Chapter 3 it can be seen that winter-reared An. arabiensis are capable of surviving the 

necessary incubation period of the main malaria parasite P. falciparum. In South Africa 

the winters are generally warm with an average temperature of 18°C ( range of 10 -

27°C). Therefore, under winter conditions in the field, the development of P. falciparum 

will be retarded but not to the extent suggested by Gear et al. (1988). van den Heuvel 

(1963) noted that body size can influence the size of the blood meal that is consumed 

and Briegel (1990) found that the feeding capacity on vertebrate hosts was more than 

doubled between small and large females. Therefore large bodied females may 

contribute more to the maintenance and amplification of malaria transmission than small 

bodiea individuals. In the field Nasci (1986a) established that larger individuals were 
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more successful at obtaining blood meals. The reason for this is not known but Nasci 

(1986b) suggested that small individuals may fly for a shorter time or distance, or are 

not as persistent or may become exhausted more quickly when compared with large 

individuals. 

There has been a lot of interest in variation in mosquito body size and its possible 

influence on disease transmission. Many authors (e.g. Day et al. 1990; Kitthawee et al. 

1990, 1992) have suggested that size may affect both the vector capacity and the 

vector potential of mosquitoes by influencing their ability to become infected and once 

infected, their survivorship and potential to transmit the parasite to other susceptible 

hosts. Thus, large An. arabiensis that develop during winter are capable of taking larger 

blood meals since they have a larger mid-gut. They can therefore take up a larger 

parasite load if fed on an infected individual. Since these mosquitoes are ectothermic, 

they do not travel long distances in search of a blood meal. They usually rest in close 

proximity to their hosts (Ramsdale & Wilkes 1985). Resting sites serve as refuges from 

adverse environmental conditions. Voluntary flights will be performed only if 

environmental factors permit (Bidlingmayer 1985). 

In South Africa, the number of reported cases of malaria is very low and it is thought 

that these cases are mainly asymptomatic cases detected through active surveillance 

by the malaria control personnel. The large adults produced during the cooler seasons 

do not play an important role in the transmission of malaria. It is hypothesised that these 

large-bodied mosquitoes become infected and serve as reservoirs of the parasite that 

contribute towards the transmission of malaria in spring. These mosquitoes probably 
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become infected late in autumn or early in winter and due to the decrease in 

temperatures, the parasite development is slowed. When these mosquitoes take a 

blood meal they are unlikely to transmit malaria due to the slowed development of the 

parasite. Since the numbers of blood meals required in winter are very few, infectious 

mosquitoes may account for a very small proportion of the malaria cases reported. The 

large body size enables the mosquitoes to survive the adverse environmental 

conditions. When conditions improve in spring, these mosquitoes oviposit thereby 

contributing to the increase in population density. With an increase in temperature the 

parasites within the mosquitoes complete their development and contribute towards the 

amplification of malaria transmission. 

This study has therefore shown that temperature does influence the body size of An. 

arabiensis as well as the longevity and overall fitness of these mosquitoes. The results 

reported in this chapter corroborate the findings of Ie Sueur (1991) in that morphological 

characteristics used in taxonomic identification are affected by temperature. The width 

of the pale band at the junction of tarsomeres 3 and 4 as well as wing length and the 

resulting wing spots are much larger in field collected specimens than in laboratory 

reared mosquitoes. The results in this chapter therefore demonstrate a limitation to the 

use of insectary reared mosquitoes in taxonomic studies. Material to be used in 

morphological studies, or in studies involving temperature differences, should be 

collected from various geographic localities as well as at different times of the year so 

that a truly representative sample of the wild population is obtained. 
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APPENDIX 4.1 

Simple statistics for the data used in Chapter 4. 



151 

Month: JANUARY 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 59 0.3981 0.0519 0.29 0.55 

Costa b 59 0.1495 0.0257 0.08 0.18 , 

Costa B 59 0.7044 0.0595 0.57 0.84 

Costa c 59 0.3085 0.0504 0.18 0.41 

Costa C 59 0.4612 0.0647 0.29 0.58 

Costa d 59 0.3000 0.0504 0.12 0.41 

Costa 0 59 0.2505 0.0426 0.18 0.34 

Length 59 3.1133 0.1391 0.26 3.54 

Month: FEBRUARY 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 80 0.4088 0.0482 0.31 0.54 

Costa b 80 0.1392 0.0236 0.07 0.18 

Costa B 80 0.6861 0.06277 0.54 0.83 

Costa c 80 0.2991 0.0443 0.20 0.44 

Costa C 80 0.4533 0.0635 0.25 0.55 

Costa d 80 0.2986 0.0435 0.15 0.39 

Costa 0 80 0.2191 0.0327 0.15 0.31 

Length 80 3.1042 0.1391 2.73 3.54 
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Month: MARCH 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 67 0.4177 0.0424 0.33 0.50 

Costa b 67 0.1465 0.0216 0.10 0.20 

Costa B 67 0.7252 0.0626 0.58 0.83 

Costa c 67 0.3002 0.0581 0.15 0.46 

Costa C 67 0.4744 0.0646 0.23 0.60 

Costa d 67 0.3188 0.0949 0.15 0.96 

Costa D 67 0.2285 0.0383 0.15 0.31 

Length 67 3.2219 0.4151 2.87 3.63 

Month: APRIL 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 64 0.4267 0.0501 0.34 0.60 

Costa b 64 0.1150 0.0365 0.03 0.18 

Costa B 64 0.7395 0.0848 0.60 0.97 

Costa c 64 0.2512 0.0783 0.12 0.42 

Costa C 64 0.5017 0.0618 0.37 0.63 

Costa d 64 0.2287 0.0658 0.15 0.37 

Costa D 64 0.2482 ,0.0483 0.15 0.36 

Length 64 3.2318 0.1833 2.73 3.86 
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Month: MAY 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 76 0.4430 0.0483 0.31 0.54 

Costa Q 76 0.1501 0.0246 0.08 0.18 

Costa B 76 0.7956 0.0618 0.65 0.96 

Costa c 76 0.3082 0.0545 0.21 0.50 

Costa C 76 0.5109 0.0695 0.34 0.65 

Costa d 76 0.3007 0.0442 0.15 0.44 

Costa D 76 0.2919 0.0374 0.18 0.37 

Length 76 3.3438 0.4300 2.95 3.73 

Month: JUNE 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 104 0.4820 0.1693 0.31 2.07 

Costa b 104 0.1491 0.0384 0.06 0.29 

Costa B 104 0.8267 0.0717 0.63 1.04 

Costa c 104 0.3104 0.0783 0.08 0.67 

Costa C 104 0.5808 0.0833 0.36 0.81 

Costa d 104 0.2975 0.1969 0.12 1.94 

Costa D 104 0.3023 0.0497 0.18 0.47 

Length 104 3.4808 0.2265 2.76 3.99 
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Month: JULY 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 64 0.4706 0.0649 0.34 0.65 

Costa b 64 0.1548 0.0385 0.06 0.25 ,. 

Costa B 64 0.8304 0.0843 0.67 1.05 

Costa c 64 0.2978 0.0686 0.05 0.47 

Costa C 64 0.6087 0.2279 0.37 2.28 

Costa d 64 0.2760 0.0546 0.13 0.39 

Costa 0 64 0.3018 0.0460 0.17 0.41 

Length 64 3.5028 0.2297 2.89 3.86 

Month: AUGUST 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 69 0.4895 0.0529 0.34 0.63 

Costa b 69 0.1500 0.0369 0.08 0.21 

Costa B 69 0.8672 0.0766 0.70 1.10 

Costa c 69 0.3311 0.0685 0.12 0.48 

Costa C 69 0.5563 0.0854 0.41 0.76 

Costa d 69 0.3028 0.0409 0.18 0.39 

Costa 0 69 0.3156 0.0317 0.25 0.42 

Length 69 3.4594 0.2500 2.92 3.84 
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Month: SEPTEMBER 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 66 0.4896 0.0394 0.41 0.57 

Costa b 66 0.1616 0.0710 0.10 0.54 

Costa B 66 0.8231 0.0747 0.67 1.00 

Costa c 66 0.3283 0.0577 0.25 0.52 

Costa C 66 0.5446 0.0695 0.42 0.65 

Costa d 66 0.3283 0.0557 0.23 0.47 

Costa 0 66 0.2942 0.0493 0.20 0.41 

Length 66 3.4466 0.2833 2.41 3.81 

Month: OCTOBER 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 74 0.4550 0.1262 0.31 1.45 

Costa b 74 0.1471 0.0278 0.08 0.21 

Costa B 74 0.7568 0.0669 0.57 0.89 

Costa c 74 0.3405 0.0593 0.25 0.50 

Costa C 74 0.4982 0.0629 0.37 0.68 

Costa d 74 0.3571 0.1925 0.17 0.92 

Costa 0 74 0.2431 0.0400 0.18 0.34 

Length 74 3.4072 0.1803 2.92 3.76 
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Month: NOVEMBER 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 58 0.4603 0.0781 0.34 0.77 

Costa ~ 58 0.1525 0.0310 0.08 0.21 

Costa B 58 0.7750 0.0927 0.60 0.99 

Costa c 58 0.3381 0.0528 0.25 0.47 

Costa C 58 0.4910 0.0753 0.34 0.65 

Costa d 58 0.3410 0.0487 0.25 0.41 

Costa 0 58 0.2672 0.0517 0.18 0.37 

Length 58 3.3914 0.1998 2.76 3.70 

Month: DECEMBER 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 77 0.4314 0.0853 0.31 0.99 

Costa b 77 0.1463 0.0326 0.08 0.21 

Costa B 77 0.7214 0.0642 0.60 0.92 

Costa c 77 0.3037 0.0586 0.15 0.47 

Costa C 77 0.4849 0.1901 0.28 2.02 

Costa d 77 0.3042 0.0545 0.10 0.46 

Costa D 77 0.2466 0.0391 0.18 0.31 

Length 77 3.2350 0.3308 2.76 5.76 
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Season: SPRING 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 124 0.3883 0.0471 0.31 0.50 

Costa b 124 0.1350 0.0290 0.08 0.21 , 

Costa B 124 0.6529 0.0672 0.50 0.83 

Costa c 124 0.2787 0.0553 0.15 0.54 

Costa C 124 0.4725 0.0749 0 .. 25 0.63 

Costa d 124 0.2738 0.1262 0.18 1.58 

Costa 0 124 0.2256 0.0396 0.15 0.31 

Length 124 3.0193 0.1756 2.57 3.37 

Season: SUMMER 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 176 0.3837 0.0594 0.19 0.54 

Costa b 176 0.1434 0.0316 0.06 0.25 

Costa B 176 0.6616 0.0971 0.33 0.96 

Costa c 176 0.2803 0.0714 0.36 0.50 

Costa C 176 0.4378 0.0934 0.25 0.67 

Costa d 176 0.2828 0.0622 0.25 0.44 

Costa 0 176 0.2213 0.0519 0.16 0.37 

Length 176 2.99 0.3429 2.37 3.60 
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Season: AUTUMN 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 216 0.4217 0.0714 0.11 0.63 

Costa b 216 0.1196 0.0321 0.03 0.18 

Costa B 216 0.6988 0.0956 0.43 0.92 

Costa c 216 0.2355 0.0693 0.14 0.41 

Costa C 216 0.4662 0.0774 0.26 0.63 

Costa d 216 0.2707 0.1250 0.19 1.92 

Costa 0 216 0.2159 0.0467 0.13 0.31 

Length 216 2.9949 0.3485 2.31 3.67 

Season: WINTER 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 110 0.4100 0.0822 0.26 0.63 

Costa b 110 0.1357 0.0334 0.07 0.21 

Costa B 110 0.7061 0.1205 0.45 0.96 

Costa c 110 0.2945 0.0943 0.15 0.47 

Costa C 110 0.4487 0.1065 0.28 0.73 

Costa d 110 0.2473 0.0807 0.18 0.47 

Costa 0 110 0.2763 0.1559 0.19 1.76 

Length 110 3.1269 0.4704 2.45 3.67 
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CHAPTER 5 

THE EFFECTS OF SIMULATED SEASONAL CONDITIONS ON THE BODY SIZE 

OF THREE ANOPHELES SPECIES 

5.1. INTRODUCTION 

Adult mosquito size may be influenced by several factors during larval development. 

Density dependent conditions include the accumulation of metabolites, food depletion 

and growth retardant factors associated with overcrowding (Moore & Fisher 1969, 

Ikeshoji & Mulla 1970). Temperature is a density independent factor that irfluences the 

rate of larval development (Bock & Milby 1981). Vectorial capacity is partially reflected 

by body size which is obtained from measurements of wing lengths (van den Heuvel 

1963). Numerous authors have studied the effects of temperature on the body size of 

anopheline mosquitoes, viz., An. merus (Ie Sueur 1991; Ie Sueur & Sharp 1991) 

Variations in adult body size are known to occur in field populations of several mosquito 

species (Feinsod & Spielman 1980; Bock & Milby 1981; Haramis 1983). Investigations 

into the capabilities of adult mosquitoes have shown that relatively large bodied females 

(as indicated by longer wing lengths) exhibit higher fitness qualities than do small­

bodied females (Nasci 1986a,b). Ie Sueur ef al. (1992) found that during cooler months 

of the year adult mosquitoes were d~rker and they had longer wings. The amount of 

pale and dark scales in the wing patterns is a reflection of melanin deposition (Ford 

1945)_. In insects it is well known that melanin production is inversely related to 
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temperature since high temperatures limit the deposition of tyrosine, the precursor of 

melanin (Ford 1945). 

Among mosquitoes belonging to the Anopheles gambiae complex, two of the sibling 

species An. gambiae and An. arabiensis are widespread vectors of human malaria in 

Africa. A third member, An. merus is also a malaria vector but is not as notorious as the 

afore-mentioned species. Anopheles arabiensis is the major vector of malaria in South 

Africa and An. merus may be a minor vector of Plasmodium (White 1974; Braack et al. 

1994). Due to a highly effective malaria eradication campaign in the early 1950s, An. 

gambiae has been eliminated from this country although it is still an efficient vector in 

the rest of Africa (Gillies & De Meillon 1968). 

It is known that body size influences the vectorial potential of mosquitoes. Longevity is 

also influenced by body size (Kitthawee et al. 1990). The present study constitutes an 

attempt to measure the potential vectorial capability of An. arabiensis under conditions 

found typically in the malaria endemic areas of KwaZulu-Natal. Since body size reflects 

the fitness of mosquitoes, the body size of An. arabiensis, An. gambiae and An. merus 

was obtained by measuring wing length. The potential vectorial capacity of each 

species was evaluated and subsequently compared to determine which of these 

mosquito species were competent vectors of malaria. 

5.2. MATERIALS AND METHODS 

All experiments were carried out on An. arabiensis, An. gambiae and An. merus and 
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were done in the laboratory at the Medical Research Council in Durban. 

5.2.1. Specimens Used 

The three species of the An. gambiae complex used were obtained from different 

sources. The An. arabiensis used were progeny of wild caught females from 

Dondotha in KwaZulu-Natal, the An. merus were obtained from a colony 

maintained at the South African Institute of Medical Research in Johannesburg 

and the An. gambiae were obtained from a colony maintained at the School of 

Hygiene and Public Health, Johns Hopkins University, Baltimore, USA. The 

polymerase chain reaction method was used to obtain correct identifications of 

the mosquito species used and to determine whether or not they were 

contaminated. 

The different generations of An. arabiensis used in determining the effect of 

temperature on insectary reared specimens were as follows: 

1. F200 progeny of An. arabiensis KGB which had been maintained in the 

insectary for more than 16 years. 

2. F 45 progeny of An. arabiensis collected from Dondotha that had been reared 

in the insectary for three years. 

3. F2 progeny of wild An. arabiensis collected from Dondotha in late summer. 

5.2.2. Seasonal Climatic Profiles 

All experiments were conducted under simulated conditions of winter and 
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summer. Experiments were conducted under controlled conditions of 

temperature and humidity in a programmable growth cabinet (see Chapter 3). 

The winter and summer temperature and humidity profiles used were those 

obtained from the field as described in Chapter 4. Figures 4.1. (a) and 4.1.(c) 

in Chapter 4 showed the profiles for winter and summer respectively. The 

photoperiod used was determined from the field as follows: winter (11 L:13D) and 

summer (13L:11 D) each with one hour simulated crepuscular period. 

5.2.3. The Experimental Methods 

For each species of mosquito and for each season, 4 replicates of 100 first instar 

larvae were reared in plastic containers (35 x 25 x 10 cm) filled to a depth of 4 

cm with deionised water. Larvae were fed on finely ground Epol® cat food. 

Pupae were separated daily and placed in 2e buckets with screened tops. 

5.2.4. Mounting and Measurement 

Once the adults had emerged, they were killed and their wings were carefully 

removed and mounted on glass slides according to the method of Hunt and 

Coetzee (1986). The wing length measurements were taken between the axillary 

incision (Harbach and Knight 1980) and the wing tip, excluding the fringe, in the 

region of vein 3 (Gillies and Coetzee 1987). Measurements were carried out with 

a Wild M7 A Stereo microscope using a 10X eyepiece and 31 X objective and an 

eyepiece micrometer with 120 divisions, each equal to 31 11m on the focal plane. 
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5.2.5. Statistical Analysis 

Duncan's Multiple Range Test was used to analyse the data. The simple 

statistics for the data used are given in Appendix 5.1. 

5.3. RESULTS 

It was found that wing length and the resulting wing spots were influenced by the 

simulated seasonal temperature and humidity regimens. 

5.3.1. Effect of Temperature on Insectary Reared Mosquitoes 

A comparison between the mean wing lengths obtained in winter and summer 

for the three generations of insectary reared mosquitoes showed that wing 

length was consistently larger in winter than in summer (Table 5.1). 

Table 5.1. Mean wing lengths (mm) obtained in winter and summer for the three 

generations of An. arabiensis 

GENERATIO WINTER n SUMMER n 

N (x ± S.D.) (x ± S.D.) 

F 200 (approx.) 3.32 ± 0.158 98 3.09± 0.165 100 

F45 3.18 ± 0.389 99 3.08 ± 0.321 98 

F2 3.12 ± 0.470 110 2.99 ± 0.343 176 

The size difference in wing length between winter and summer bred mosquitoes 

- is most marked in the KGB (F200) population where a difference of 0.23 mm was 
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found. Analysis of the data showed that as the number of generations spent in 

the insectary increased, the wing length obtained under simulated seasonal 

conditions also increased. The difference in mean wing lengthsbetween the F2 

and the F 45 generations was smaller in winter. In summer the difference between 

the F200 and F.ts generations was only 0.01 mm. The2F progeny of the field 

collected mosquitoes was least affected by the winter temperatures and most 

affected by the summer temperatures. 

5.3.2. Interaction between Season, Wing Length and Species 

A 2-way analysis of variance was used to compare the wing lengths of adult 

mosquitoes across seasons and species and to look at the season-species 

interaction. There was a distinct difference between the wing lengths obtained 

during the two seasons (F = 159.0, p«0.01). The wing lengths obtained under 

winter conditions were always greater than those obtained under simulated 

summer conditions (Figure 5.1). In winter the wing lengths obtained for An. 

merus were largest and those for An. gambiae were smallest. Under summer 

conditions, the wing lengths of An. gambiae were smallest and those of An. 

arabiensis the largest. 

Since the An. merus and the An. gambiae used in these experiments were all 

colony material, the size diffe~ences could have been an artifact of prolonged 

rearing in the insectary at constant temperature and relative humidity. Therefore 

_ the percentage change in wing length was calculated between winter and 
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summer reared individuals. All three species showed an increase in wing size 

when moving from summer conditions to winter conditions. The percent change 

for An. arabiensis was 4.5%, for An. merus 21.3% and for An. gambiae 6%. It 

is apparent that An. merus was most affected by changes in environmental 

temperature and An. arabiensis was least affected. Once again the percent 

change in wing length may be influenced by the number of generations for which 

An. merus and An. gambiae had been reared in the insectary. 

A comparison of wing length between the three species showed that there was 

a highly significant difference (p«O.01, Duncan's Multiple Range Test). Overall, 

An. arabiensis had the greatest wing length followed by An. merus. Once again, 

An. gambiae had the shortest wing length. 

An analysis of the species-season interaction on the wing length of adult 

mosquitoes reared under similar conditions showed that both season and the 

species of mosquito had a significant effect on wing length (p«O.01). From 

Figure 5.1 it can be seen that the species-season interaction has the greatest 

influence on An. merus. Anopheles arabiensis was the least affected by the 

changing seasonal conditions. 

5.3.3. Influence of Season aryd Species on the Wing Spot Size 

Since the size of the wing spots of An. arabiensis are influenced by wing length 

_ (see Chapter 4), wing spot size was compared for all three species across the 
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two seasonal conditions, summer and winter, using a 2-way analysis of variance. 

From Table 5.2 it can be seen that there was always a significant difference 

between the size of the wing spots in winter and summer for all except costa d. 

There was a highly significant difference in the mean wing spot size between all 

three anopheline species (p«0.01). The season-species interaction has a highly 

significant influence (p«0.01) on the size of all wing spots except costae b, c 

and D. 

Table 5.2. A summary of the ANOVA used to compare the seasons and species. 

p - values 

WING SPOT F-VALUE SEASON SPECIES SEASON-SPECIES 

INTERACTION 

Costa A 32.8 0.0001 0.0001 0.0001 

Costa b 64.0 0.0424 0.0001 0.0904 

Costa 8 106.9 0.0001 0.0001 0.0001 

Costa c 49.7 0.0068 0.0001 0.5608 

Costa C 37.9 0.0001 0.0001 0.0001 

Costa d 53.28 0.1778 0.0001 0.0001 

Costa D 32.02 0.0001 0.0001 0.0868 

Duncan's Multiple Range test was used to determine which of the inter-species 

differences were significant. The results are presented in Tables 5.3 and 5.4. 

During winter, the sizes of the wing spots were different for all species but some 
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of the wing spots were not significantly different in two of the three species 

(Table 5.3). For costa A, An. gambiae differed from the measurements obtained 

for An. arabiensis and An. merus. In adults of An. merus the mean size of costa 

C was significantly different from the other two species. With regards to the size 

of costa d, in An. arabiensis it was significantly larger than that of its two sibling 

species. 

Similarly in summer (Table 5.4), costa A was significantly larger in An. arabiensis 

and costa C was significantly smaller in An. gambiae. Anopheles arabiensis was 

significantly different from the other two species when comparing costa D. 

Overall, the size of the wing spots produced by the three anopheline species 

tended to follow the same trend as that obtained when rearing the mosquitoes 

under the simulated winter conditions. 

5.3.4. Influence of Wing length on Wing Spot Size 

Temperature is known to influence wing length as well as wing spot size. 

Pearson's correlation coefficients were calculated to examine the association 

between wing length and wing spot size. This has already been done for wild 

caught An. arabiensis (Chapter 4). For An. gambiae, wing length was moderately 

correlated with costae S, C and D (r = 0.64, 0.51 and 0.4 respectively) and there 

was a weak correlation betwe~n wing length and the rest of the wing spots. 
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Table 5.3. Duncan's grouping for winter wing spots 

WING SEASON SPECIES n MEAN ± S.D. DUNCANS 

SPOT GROUPING 

Costa A Winter An. arabiensis 108 0.418 ± 0.061 a 

An. merus 65 0.441 ± 0.032 a 

An. gambiae 82 0.370 ± 0.041 b 

Costa b Winter An. arabiensis 108 0.138 ± 0.028 a 

An. merus 65 0.115 ± 0.027 b 

An. gambiae 82 0.090 ± 0.031 c ' 

Costa B Winter An. arabiensis 108 0.719 ± 0.072 a 

An. merus 65 0.824 ± 0.035 b 

An. gambiae 82 0.633 ± 0.061 c 

Costa c Winter An. arabiensis 108 0.300 ± 0.086 a 

An. merus 65 0.257 ± 0.039 b 

An. gambiae 82 0.195 ± 0.053 c 

Costa C Winter An. arabiensis 108 0.457 ± 0.087 a 

An. merus 65 0.568 ± 0.082 b 

An. gambiae 82 0.481 ± 0.050 a 

Costa d Winter An. arabiensis 108 0.252 ± 0.073 a 

An. merus 65 0.223 ± 0.043 b 

An. gambiae 82 0.203 + 0.034 b 

Costa D Winter An. arabiensis 108 0.281 ± 0.152 a 

An. merus 65 0.257 ± 0.039 b 

An. gambiae 82 0.209 + 0.034 c 



170 

Table 5.4. Duncan's grouping for wing spots in summer. 

WING SEASON SPECIES n MEAN ± S.D. DUNCANS 

SPOT GROUPING 

Costa A Summer An. arabiensis 175 0.386 ± 0.051 a 

An. merus 57 0.357 ± 0.039 b 

An. gambiae 85 0.367 ± 0.047 b 

Costa b Summer An. arabiensis 175 0.144 ± 0.029 a 

An. merus 57 0.128 ± 0.027 b 

An. gambiae 85 0.087 ± 0.040 c 

Costa B Summer An. arabiensis 175 0.665 ± 0.083 a 

An. merus 57 0.625 ± 0.054 b 

An. gambiae 85 0.593 ± 0.063 c 

Costa c Summer An. arabiensis 175 0.282 ± 0.068 a 

An. merus 57 0.235 ± 0.043 b 

An. gambiae 85 0.188 ± 0.048 c 

Costa C Summer An. arabiensis 175 0.443 ± 0.081 a 

An. merus 57 0.435 ± 0.079 a 

An. gambiae 85 0.410 ± 0.060 b 

Costa d Summer An. arabiensis 175 0.286 ± 0.054 a 

An. merus 57 0.184 ± 0.035 b 

An. gambiae 85 0.227 + 0.039 c 

Costa 0 Summer An. arabiensis 175 0.224 ± 0.046 a 

An. merus 57 0.173 ± 0.023 b 

An. gambiae 85 0.165 + 0.025 b 
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Pearson's correlation coefficients show that the wing lengths for An. merus was 

strongly correlated with costae A, B, C and D (r = 0.82, 0.89, 0.82 and 0.82 

respectively). This species has a moderate association with costae c and d (r = 

0.55 and 0.64 respectively). 

The ratio of wing spot to wing length was calculated for An. arabiensis, An. 

merus and An. gambiae for both winter and summer reared mosquitoes. From 

Table 5.2 it can be seen that, except for costa d, there was always a significant 

difference between the wing spots in winter and summer reared mosquitoes. 

Duncan's Multiple Range test was used to determine whether there was inter-

specific variation in the ratio of wing spot to wing length. For the winter ratios, 

there were significant differences between all three sppecies for costae Band 

c (Table 5.5). For summer reared mosquitoes, there were significant differences 

in the ratios of costae A and d (Table 5.6). All other ratios were not significantly 

different. 

5.4. DISCUSSION 

Body size as determined by wing length, was always greater when the mosquitoes were 

reared under winter conditions. During the experiments to determine the effects of 

temperature on insectary reared mosquitoes, it was found that the longer mosquitoes 

were maintained in insectary colonies, the greater was their response to low . 
temperatures. The An. arabiensis KGB strain, which had been maintained at 27°C and 

70% ~H for over 16 years, was most affected by exposure to winter temperatures. This 
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Table 5.5. Duncan's grouping for the ratio of winter wing spots to wing length. 

WING SEASON SPECIES n MEAN ± S.D. DUNCANS 

SPOT GROUPING 

Costa A Winter An. arabiensis 108 0.1313 ± 0.0144 a 

An. merus 65 0.1354 ± 0.0001 b 

An. gambiae 82 0.1336 ± 0.0002 ab 

Costa b Winter An. arabiensis 108 0.0445 ± 0.0001 a 

An. merus 65 0.0345 ± 0.0001 b 

An. gambiae 82 0.0319 ± 0.0001 b 

Costa B Winter An. arabiensis 108 0.2256 ± 0.0003 a 

An. merus 65 0.2502 ± 0.0002 b 

An. gambiae 82 0.2325 ± 0.0003 c 

Costa c Winter An. arabiensis 108 0.0945 ± 0.0008 a 

An. merus 65 0.0794 ± 0.0002 b 

An. gambiae 82 0.0713 ± 0.0004 c 

Costa C Winter An. arabiensis 108 0.1428 ± 0.0006 a 

An. merus 65 0.1794 ± 0.0003 b 

An. gambiae 82 0.1757 ± 0.0004 b 

Costa d Winter An. arabiensis 108 0.0795 ± 0.0006 a 

An. merus 65 0.0689 ± 0.0001 b 

An. gambiae 82 0.0835 + 0.0049 a 

Costa D Winter An. arabiensis 108 0.0842 ± 0.0003 a 

An. merus 65 . 0.0765 ± 0.0001 b 

An. gambiae 82 0.0869 + 0.0084 ab 
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Table 5.6. Duncan's grouping for the ratio of summer wing spots to wing length. 

WING SEASON SPECIES n MEAN ± S.D. DUNCANS 

SPOT GROUPING 

Costa A Summer An. arabiensis 175 0.1286 ± 0.0002 a 

An. merus 57 0.1325 ± 0.0002 b 

An. gambiae 85 0.1419 ± 0.0003 c 

Costa b Summer An. arabiensis 175 0.0481 ± 0.0001 a 

An. merus 57 0.0470 ± 0.0001 a 

An. gambiae 85 0.0335 ± 0.0001 b 

Costa B Summer An. arabiensis 175 0.2209 ± 0.0003 a 

An. merus 57 0.2332 ± 0.0002 b 

An. gambiae 85 0.2297 ± 0.0004 b 

Costa c Summer An. arabiensis 175 0.0912 ± 0.0006 a 

An. merus 57 0.0877 ± 0.0002 a 

An. gambiae 85 0.0728 ± 0.0003 b 

Costa C Summer An. arabiensis 175 0.1469 ± 0.0006 a 

An. merus 57 0.1617 ± 0.0006 b 

An. gambiae 85 0.1587 ± 0.0005 b 

Costa d Summer An. arabiensis 175 0.0938 ± 0.0004 a 

An. merus 57 0.0691 ± 0.0002 b 

An. gambiae 85 0.0880 + 0.0002 c 

Costa D Summer An. arabiensis 175 0.0746 ± 0.0002 a 

An. merus 57 0.0642 ± 0.0001 b 

An. gambiae 85 0.0642 + 0.0001 b 
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is illustrated by the longer wings produced by the KGB strain under these conditions. 

The F 45 generation of An. arabiensis from Dondotha had been maintained in the 

insectary for three years and produced intermediate results. The F2 progeny of An. 

arabiensis that had spent a month in the insectary were least affected by exposure to 

low temperatures. This suggests that mosquitoes become acclimatised to living at a 

constant temperature in the insectary but retain their capacity to respond to changes 

in environmental temperature. The longer a mosquito population is maintained at a high 

constant temperature, the greater is the response of the next generation to a decrease 

in temperature. 

Low temperatures are known to decrease the rate of development in mosquitoes 

thereby producing larger bodied individuals (refer to Chapter 3). Although insectary­

reared mosquitoes retain their ability to respond to changes in temperature, a fast 

development rate may be selected for under constant high temperatures in the 

insectary. Thus when these mosquitoes are exposed to a lower temperature, the 

developmental time increases and development is further hindered by the selection to 

development at high temperatures. This would ensure that the larval duration was 

further protracted and may explain why mosquitoes such as An. arabiensis KGB strain 

that have spent many generations in the insectary have a slower developmental rate 

than the F45 and F2 generation An. arabiensis under conditions of low temperature. 

When exposed to simulated summer conditions, the An. arabiensis KGB strain has the 

longe.st wings and the F2 progeny of females collected from Dondotha the shortest 
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wings. Once again, the insectary colonised mosquitoes were being exposed to a lower 

temperature (25°C) than that of the insectary (27°C) to which they have become 

acclimatised. 

When the mosquitoes were reared under such conditions, An. merus was the most 

robust followed by An. arabiensis. Due to the higher mean temperature during 

simulated summer conditions, larval development was fastest and the mosquitoes 

produced were smaller in size than those produced under simulated winter conditions. 

When reared under summer conditions, An. arabiensis had the greatest wing length 

and hence the largest body size. Irrespective of the seasonal conditions under which 

the larvae were reared, An. gambiae always had the smallest body size. A comparison 

between the wing lengths of the three mosquito species showed that An. arabiensis 

was the most robust species. However, it cannot be concluded that wing size can be 

used in the taxonomic separation of species since only insectary reared specimens of 

An. merus and An. gambiae were used in this study. 

Ie Sueur et al. (1992) found that the dark scaled areas on the wings of Anopheles 

mosquitoes were selectively affected by temperature related size variation. As a result 

of the decrease in wing length when moving from winter to summer, there was a 

corresponding decrease in the size of the wing spots. For all three mosquito species the 

increase in wing length occurred in the dark scaled areas, namely costae A, B, C and . 
D. This was consistent with the results obtained by Ie Sueur et al. (1992) for An. 

arabiensis and An. merus. 
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Zahar et al. (1970) reported on the use of wing spot ratios in species separation. In view 

of the fact that dark wing spots increase in size during winter, while pale spots remain 

constant, the validity of the use of this ratio is questionable. Since the ratio varies from 

winter to summer, this characteristic is not "fixed" under varying environmental 

conditions. Therefore, it cannot be used to separate out species from a specific locality 

at a given time of the year since variation should be assessed seasonally. 

For An. merus, the results of the present study were compared with those of Ie Sueur 

(1991). For mosquitoes exposed to winter temperatures, it was found that the results 

obtained were very similar (Figure 5.2). Anopheles merus exposed to summer 

conditions in the present study and in that of Ie Sueur (1991), followed the same trend 

(Figure 5.3) except that the sizes of the pale wing spots in the present study were 

smaller than that obtained by Ie Sueur (1991). For both seasons, the sizes of costae 

A and B obtained in the present study were larger than those obtained in Ie Sueur's 

(1991) study. 

Coetzee (1986) examined the size of the wing spots in An. arabiensis, An. gambiae, 

An. merus and An. quadriannulatus and these were compared to those obtained for An. 

arabiensis, An. gambiae and An. merus in the present study. The comparison for An. 

arabiensis showed that results of both studies were very similar (Figure 5.4). The 

same was true for An. gambiae, except that the size of costa c was markedly smaller . 
in the present study (Figure 5.5). Although the results of both studies on An. merus 

followed a similar pattern (Figure 5.6), the results were highly variable. The dark bands 
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on the wings of An. merus were larger in the present study than in Coetzee's (1986) 

study. The difference in results in these studies may be due to the fact that Coetzee 

(1986) collected material throughout the year and in different geographical localities 

throughout southern Africa, whereas the results of the present study were based on 

measurements obtained from laboratory reared material. 

This study serves to reinforce the conclusions reached by Coetzee (1986) and Ie Sueur 

et al. (1992) regarding the use of wing spot measurements in taxonomic identification 

of members of the An. gambiae complex. Although the mean size of several wing spots 

showed significant differences when compared between species (Tables 5.3 and 5.4), 

these were not sufficiently large to be of any use for easy identification purposes. The 

degree of overlap in the distribution of the wing spot measurements for all three species 

was large for all wing spots (see Appendix 5.2). 

Nutrient carry-over from the larval stage is important during the first few days of adult 

life (Day et al. 1980). Larger mosquitoes contain more energy reserves at emergence 

(Nayar & Pierce 1977) and thus have more flight energy to expend searching for a 

suitable host. Body size would influence the flight range of adults since larger adults 

would have more strongly developed flight muscles and adults emerging during winter 

would have greater protein accumulation. In a study conducted in the Kruger National 

Park, South Africa, Braack et al. (1994) found that the greater numbers of An. 

arabiensis were collected feeding away from the breeding site than at the site of larval 

development. These authors also found that An. arabiensis abundance did not show 
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a linear decline at increasing distances from the breeding site. Anopheles arabiensis 

is thus capable of hunting for blood meals at considerable distances from breeding 

sites. 

According to Clements (1992), blood meals are converted to glycogen and 

triacylglycerol. The energy for flight comes from glycogen. Since larger females have 

a larger midgut and can take a correspondingly larger blood meal (Kitthawee et al. 

(1990), it is reasonable to expect these mosquitoes to produce more glycogen. Since 

Nayar and Sauerman (1973) found that there is a linear relationship between flight 

speed and metabolic rate as measured by glycogen consumption, larger females would 

have the potential for increased flight speed or duration. Therefore a large body size 

would allow mosquitoes to migrate further in search of hosts. 

It has already been established that the body size of An. arabiensis, An. gambiae and 

An. merus showed regular seasonal variation - mosquitoes were largest during the cool 

winter and smallest during the hot summer months. Although the material used in this 

study was colony material that had been maintained in the insectary for various lengths 

of time, An. gambiae (25 years), An. merus (17 years) and An. arabiensis (1 month), 

significant differences were found between mean wing lengths obtained under summer 

and winter conditions. Temperature therefore has a direct effect on the rate of larval 

development. The size of emerging adult mosquitoes also depends on the amount and . 
quality of larval food (Carpenter 1983). The length of time required for a mosquito to 

comp!ete larval development is temperature-dependent with development being rapid 
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at higher temperatures (Nayar 1968a,b). The duration of the larval stages affects the 

size of the emerging adults (Ie Sueur 1991). During winter An. merus has a slower 

developmental rate than An. arabiensis but during summer An. arabiensis develops 

more slowly than An. merus. The duration of the pre-imaginal stages of An. merus was 

38 days in winter and nine days in summer at temperatures of 17.5°C and 25°C 

respectively (Ie Sueur 1991). The duration of the immature stages of An. arabiensis was 

32 days in winter, temperature of 17°C, and 11 days in summer, temperature 25°C 

(Chapter 3). Therefore, when reared at a fluctuating temperature with a mean of 17°C, 

An. merus would have a slower larval developmental rate than An. arabiensis which 

would account for An. merus having a larger body size when reared under simulated 

winter conditions. The difference between the summer and winter wing lengths for An. 

merus was 20%. In summer the developmental time of An. arabiensis was slower than 

that of An. merus by two days and the adult An. arabiensis subsequently produced 

were larger. The larger size of the An. merus produced in winter by Ie Sueur (1991) was 

due to the fact that the winter temperatures were lower than those used in the present 

study. 

Of the three species used in these experiments, An gambiae has the smallest body size 

(as determined by wing length). Although An. gambiae has been maintained under 

insectary conditions for 25 years, the small body size obtained, relative to the other two 

species, was not unexpected. An examination of the distribution of An. gambiae 
, 

showed that this species occurs in the warmer areas of Africa and not in the cooler 

regions. Therefore one would expect An. gambiae to have a relatively small body size. 

Although this implies that An. gambiae should have a poor vectorial capacity due to its 
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small size; we know that this is not true. lit is well known that in the rest of Africa An. 

gambiae is a very efficient vector of malaria. This may be due to the fact that An. 

gambiae is more susceptible to infection than its sibling species. 

It has long been known that P. falciparum can only be transmitted by mosquitoes of the 

genus Anopheles. However not all species of Anopheles are equally susceptible to 

infection. In theory, vector susceptibility can range from total susceptibility, where all 

individuals support sporogonic development, to total refractoriness where no individuals 

support development. In reality, vector susceptibility is usually somewhere inbetween. 

Thus susceptibility is a relative attribute ascribed to a species based upon comparisons 

with other species (Vaughan et al. 1994). From unpublished laboratory studies by Dr 

Charles Pumpuni (1993, School of Hygiene and Public Health, Johns Hopkins 

University, Baltimore, USA) and myself, it was determined that An. gambiae was more 

susceptible to infection by in vitro cultured P. falciparum than was An. arabiensis. Also, 

Beier et al. (1992) found that An. gambiae transmitted, on average, more than twice as 

many sporozoites as An. freeborni thereby showing that it is not realistic to generalise 

that all vectors have an equal potential for sporozoite transmission. 

Since An. gambiae is anthrophilic and endophilic, it is very vulnerable to control 

measures utilizing residual insecticides. It is this particular trait that has lead to the 

elimination of An. gambiae in South Africa by the use of intradomiciliary spraying of 

DDT. It is more difficult to control An. arabiensis effectively since Sharp et al. (1993) 

found_ that this species of mosquito rests outdoors after feeding. 
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Changes in climatic conditions across seasons also result in changes in the morphology 

of the adult mosquito since there is temperature induced variation in the wing length 

and banding pattern of the wing scales. Once again, this study serves to reinforce the 

observations made by Ie Sueur & Sharp (1991) that it is not feasible to use 

morphometric measurements in species identification without taking into account 

seasonality, geographic location and climatic conditions at the locality where the 

specimens were collected. 

The results of this study have shown that An. merus is the larger species in winter and 

An. arabiensis is the larger species in summer. However according to the study by 

Sharp (1987), An. merus feeds predominantly on cattle. This suggests that An. merus, 

although capable of transmitting malaria, is not a major vector of malaria in South 

Africa. Furthermore, if one looks at the distribution of An. merus and An. arabiensis in 

South Africa, it becomes apparent that An. arabiensis is more widely distributed in the 

endemic malarious areas and An. merus is restricted to the coastal plains and salt pans 

(Cross & Theron 1983). Anopheles arabiensis, due to its adaptability to temperature 

variations, its size and distribution is the main vector of Plasmodium during both winter 

and summer. It is therefore apparent that size is not the only criterion that determines 

the vector status of mosquito species, as size merely determines the ability of the 

mosquito to transmit malaria once it has been infected. 
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APPENDIX 5.1 

The simple statistics used in the analysis of the data for chapter 5. 
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Season: SUMMER Species: An. arabiensis 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 176 0.3837 0.0594 0.19 0.54 

Costa b 176 0.1434 0.0316 0.06 0.25 
.. 

Costa B 176 0.6616 0.0971 0.33 0.96 

Costa c 176 0.2803 0.0714 0.36 0.50 

Costa C 176 0.4378 0.0934 0.25 0.67 

Costa d 176 0.2828 0.0622 0.25 0.44 

Costa 0 176 0.2213 0.0519 0.16 0.37 

Length 176 2.99 0.3429 2.37 3.60 

Season: SUMMER Species: An. gambiae 

Wing Spot n Mean S.E. Minimum Maximum 

Costa A 85 0.3672 0.0478 0.28 0.50 

Costa b 85 0.0872 0.0402 0.02 0.21 

Costa B 85 0.5934 0.0635 0.44 0.73 

Costa c 85 0.1882 0.0484 0.12 0.34 

Costa C 85 0.4097 0.0601 0.21 0.57 

Costa d 85 0.2267 0.0391 0.15 0.31 

Costa 0 85 0.1645 0.0259 0.12 0.25 

Length 85 2.5852 0.1245 2.28 2.83 
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Season: SUMMER Species: An. merus 

Wing Spot n Mean S.E. Minimum Maximum 

Costa A 57 0.3577 0.0398 0.25 0.47 

Costa b 57 0.1280 0.0274 0.05 0.18 

Costa B 57 0.6249 0.0545 0.50 0.79 

Costa c 57 0.2349 0.0432 0.15 0.34 

Costa C 57 0.4350 0.0796 0.21 0.60 

Costa d 57 0.1836 0.0355 0.12 0.25 

Costa 0 57 0.1728 0.0234 0.12 0.25 

Length 57 2.6863 0.1742 2.34 3.37 

Season: WINTER Species: An. arabiensis 

Wing Spot n Mean S.D. Minimum Maximum 

Costa A 110 0.4100 0.0822 0.26 0.63 

Costa b 110 0.1357 0.0334 0.07 0.21 

Costa B 110 0.7061 0.1205 0.45 0.96 

Costa c 110 0.2945 0.0943 0.15 0.47 

Costa C 110 0.4487 0.1065 0.28 0.73 

Costa d 110 0.2473 0.0807 0.18 0.47 

Costa 0 110 0.2763 0.1559 0.19 1.76 

Length 110 3.1269 0.4704 2.45 3.67 
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Season: WINTER Species: An. gambiae 

Wing Spot n Mean S.E. Minimum Maximum 

Costa A 82 0.3697 0.0410 0.31 0.47 

Costa b 82 0.0898 0.0315 0.02 0.15 , 

Costa 8 82 0.6334 0.0611 0.50 0.79 

Costa c 82 0.1951 0.0530 0.08 0.31 

Costa C 82 0.4809 0.0508 0.37 0.57 

Costa d 82 0.2028 0.0337 0.12 0.28 

Costa D 82 0.2092 0.0339 0.15 0.34 

Length 82 2.7393 0.1202 2.57 3.05 

Season: WINTER Species: An. merus 

Wing Spot n Mean S.E. Minimum Maximum 

Costa A 65 0.4410 0.0321 0.37 0.54 

Costa b 65 0.1146 0.0271 0.05 0.18 

Costa 8 65 0.8240 0.0352 0.76 0.89 

Costa c 65 0.2569 0.0584 0.15 0.37 

Costa C 65 0.5680 0.0820 0.44 0.70 

Costa d 65 0.2230 0.0427 0.15 0.31 

Costa D 65 0.2566 0.0395 0.18 0.34 

Length 65 3.2595 0.1983 2.99 3.63 
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APPENDIX 5.2 

The distribution of the measurements obtained for the wing spots of An. arabiensis, An. 

merus and An. gambiae. 
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Figure 5. Distribution of the size of costa C for An. arabiensis, An. gambiae and An. 
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CHAPTER 6 

IMPLICATIONS FOR TRANSMISSION AND CONTROL 

6.1. THE EFFECTS OF SEASONALITY ON THE MORPHOLOGY AND BIONOMICS 

OF ANOPHELES ARAB/ENS/S 

This study has demonstrated that during its life cycle, An. arabiensis is affected by the 

seasonality of the environment, in terms of temperature and humidity. Temperature 

influences aspects of the mosquitoes physiology such as the longevity of the adults, the 

duration of the gonotrophic cycle, egg production and the generation time. 

Temperature also influences the larval developmental time. It was established that the 

lower the temperature, the slower the developmental rate of the larvae and hence the 

larger the resulting adults. Consequently, the larger the adults the more robust they are 

since they have the capacity for greater protein accumulation and glycogen production, 

thereby increasing their longevity and flight range. However, low temperatures also 

result in longer gonotrophic cycles, lower egg production (gonotrophic disassociation 

in the laboratory and limited oviposition in the field), longer generation times and also 

increases the duration of the sporogonic developm"ent of the malaria parasite. 

Together these factors influence the density of mosquito populations and so influence 

their potential for malaria transmission. The longevity of female mosquitoes determines 

their capacity to become infected and "hence their potential to become infectious. Long­

lived females have a greater potential to transmit malaria since they can take more 

blood_ meals after they become infectious. However, a major factor influencing the 
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transmission of malaria is the susceptibility of the Anopheles mosquito to infection by 

P. falciparum. Although An. arabiensis, was found to be susceptible to infection in the 

laboratory, field tests need to be conducted to determine the proportion of the wild 

population that is infected with the malaria parasite, in order to determine its true 

susceptibility under field conditions. 

An inverse relationship was found between temperature and body size for An. 

arabiensis, An. merus and An. gambiae. Anopheles mosquitoes reared under 

conditions of low temperature resulted in large bodied adults. In An. arabiensis, body 

size was found to influence the longevity of the adult mosquito. Due to the influence 

of temperature on the morphology of adult mosquitoes, the use of absolute size criteria 

for the purpose of species separation is not recommended unless specimens used are 

collected throughout the year. Where morphological measurements are used in 

taxonomic separation, specimens should be collected from as many localities as 

possible to negate differences arising from a narrow range of temperatures in individual 

habitats. However, if possible, alternative methods of identification should be used for 

Anopheles species since there is some degree of overlap in morphological 

measurements between species. 

6.2. VECTOR POTENTIAL AND MALARIA TRANSMISSION 

In Chapter 3 it was concluded that temperature influences wing length and that wing 

length (as a measure of body size) in turn influences the longevity of adult mosquitoes. 

The r~lationship between wing length and longevity is described by the linear function 
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Y = -111 + 43.77X which has a correlation coefficient of 0.7. From this equation, the 

longevity of mosquitoes in the field can be ascertained by using the wing length data 

from field collected specimens. 

The number of mosquitoes caught biting man, their wing length and longevity were 

used to calculate parameters of malaria transmission such as vector potential, the 

number of infectious mosquitoes biting an individual, and the number of infective bites 

that an individual might receive during an entire season. 

The vector potential (v) was calculated from the formula 

v = IxPx 

where Ix is the mean longevity of female mosquitoes and p is the mean number of 

mosquitoes caught feeding on an individual per night per season. 

Assuming that all mosquitoes have an infectious blood meal on the second night after 

emergence, the estimated number of infected mosquitoes feeding on an individual (J), 

per day for each season was calculated as follows: 

(v- 2p) - PXS 
i= ___ _ 

where v, Ix and p are as above and s is the average duration of sporogonic 
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development. 

Taking into account the time available for mosquitoes to transmit malaria, the mean 

number of infective bites (b) that an individual can receive each season was calculated 

using the following equation: 

where i is as above and 9 is the average duration of the gonotrophic cycle. 

The results of these calculations are presented in Table 6.1. 

Table 6.1. Parameters of malaria transmission . 

Ix • i b Px s 9 v 

winter 41 11 451 

spring 37 13 12 4 481 8 74 

summer 27 22 10 3 594 12 108 

autumn 31 20 23 5 620 4 25 
·Source of data: Gear et a/. (1988) 

These calculations provide information on the transmission potential of the mosquito 

vector based on information obtaine? from both the field and laboratory. The data 

presented in this table take into account the feeding potential of mosquitoes on a single 

indiviqual. i represents the total number number of infectious mosquitoes that have the 
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potential to feed on an individual each day for an entire season. b represents the total 

number of infectious bites that a person can receive for the duration of a season. 

Vector potential is influenced by longevity and population numbers per season. A 

greater longevity and a small population size result in a low vector potential. The 

number of infected mosquitoes biting an individual per season is largely determined by 

the duration of the sporogonic cycle. A low vector potential coupled with a long 

sporogonic cycle results in few infected mosquitoes biting an individual each day during 

the entire season. The maximum number of infectious bites that an individual is likely 

to receive during each season is determined by the length of the gonotrophic cycle of 

the infectious mosquitoes. A low number of infectious mosquitoes, each with a long 

gonotrophic cycle, results in a low number of infectious bites per individual. 

Although the calculated vector potential reflects the expected number of mosquitoes 

that can feed on an individual over an entire season, this information can be 

extrapolated to determine the number of mosquitoes that are feeding on a community 

of a specific size. This can be achieved by multiplying the vector potential by the host 

population. Vector potential can therefore be used to estimate malaria transmission 

since the greater the vector potential, the greater is the potential for transmission. 

In winter the metabolic requirement,s of the female mosquito are very low, since 

mosquitoes are ectothermic. Also the development of the parasite within the 

mosq~itoes is severely retarded during conditions of low temperature. As indicated by 
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the mean number of mosquitoes caught feeding on man, the population density of 

mosquitoes, during winter, is very low. Judging by the low level of transmission during 

winter (Figure 6.1), there are not many infectious mosquitoes feeding on man. 

The vector potential during spring is only slightly greater than that in winter (Table 6.1). 

This may be due to the low population numbers caught feeding on man during the 

collection period. The rise in temperatures during spring also increases the sporogonic 

development of the malaria parasite within mosquitoes and these mosquitoes become 

capable of giving a high number of infectious bites per person during the entire season. 

Although the longevity of mosquitoes is shortest during summer, the mosquito 

population numbers are highest and therefore the vector potential is also high. The 

duration of sporogonic development and the gonotrophic cycle are therefore short 

resulting in a high number of infectious mosquitoes giving a high number of infectious 

bites to an individual over an entire season (Table 6.1). 

The vector potential is greatest in autumn since both the population numbers and the 

longevity are high at this time (Table 6.1). However, the duration of sporogonic 

development and the gonotrophic cycle are longer resulting in a small number of 

infectious mosquitoes and a small number of infectious bites per person. 

These conclusions are limited by the assumption that all mosquitoes have an infected 

blood _meal on the second night after emergence. Discrepancies in the vector potential 
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may arise as a result of discrepancies in the field collection of specimens. 

Environmental factors such as wind and rain affected the collection of mosquitoes in the 

field. The greatest weakness in the above calculations is the lack of information on the 

duration of sporogonic development. It is therefore necessary to determine the 

proportion of infectious or infected mosquitoes in wild mosquito populations. 

Figure 6.2. shows the absolute number of mosquitoes biting an individual each month, 

as well as the vector potential associated with these months. This figure shows clearly 

the association between high population numbers and vector potential. The index of 

transmission for these months was calculated as the product of the vector potential and 

the absolute number of mosquitoes biting an individual. From Figure 6.3. it can be seen 

that the trend for the transmission index closely follows that of the number of notified 

malaria cases. The greater the transmission index, the greater the number of malaria 

cases. Therefore vector potential is a reliable indicator for determining the rate of 

malaria transmission. 

6.3. THE LATE SEASON PEAK IN MALARIA TRANSMISSION 

The peak in malaria transmission that occurs in autumn (March to May) in KwaZulu­

Natal (Figure 6.1) may be due to environmental factors such as temperature. From 

Table 6.1 it can be seen that the highest vector potential occurs during autumn. This 

indicates that the mosquito populartion is sufficiently large and the longevity of 

mosquitoes during this period would be conducive to malaria transmission. 
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The transmission of malaria is dependent on the sporogonic development of 

Plasmodium within female mosquitoes and the survival of the mosquito until it becomes 

infectious. Plasmodial sporogony involves a complex continuum of events, and 

disruptions at any point in the sequence may affect the sporozoite transmission 

potential (Vaughan et al. 1992). Therefore, unfavourable climatic conditions such as 

very high or very low temperatures could inhibit sporogony. Vanderberg and Yoeli 

(1966) found that P. falciparum could only complete its development in the mosquito 

within a temperature range of 18°C to 30°C. In summer the daytime temperature in 

KwaZulu-Natal fluctuates between 22°C and 38°C and the night temperature between 

18°C and 22°C. Although these conditions are ideal for mosquito propagation, such 

high temperatures may adversely affect plasmodial sporogony. Large numbers of 

mosquitoes may imbibe infected blood but sporogony may not be completed in all of 

them. During autumn temperatures are lower (day 20°C - 30°C, night 15°C - 20°C) and 

may not inhibit sporogony as much as summer temperatures since Vanderberg and 

Yoeli (1966) found that malaria parasites were more readily damaged by unfavourably 

high temperatures than unfavourably low ones. 

Under ideal conditions (27°C and 70% RH) P. falciparum completes sporogony in 12 _ 

14 days (Boudin et al. 1991, Vaughan et al. 1992). Thus to transmit malaria, 

mosquitoes need to be at least 12 - 14 days old, assuming a blood meal is taken on the 

first night after emerging. Thus mosquito longevity would also influence malaria 

transmission. The longevity of autumn reared mosquitoes is greater than that of 

summ.er reared ones and therefore has greater potential to become infected and hence 
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infectious. This is reinforced by the greater vector potential during autumn. 

The peak in the number of cases in autumn may therefore be entirely due to 

environmental factors that affect mosquito physiology but further investigations have 

to be carried out to ascertain the effects of temperature on the sporogonic development 

of P. falciparum within An. arabiensis in the field. 

6.4. MALARIA CONTROL 

The malaria control programme in South Africa has been successful in decreasing the 

size of the malaria areas and malaria occurs only in a limited area of the country. 

Although the control programme which makes use of intradomiciliary spraying of DDT 

and larviciding using temephos has been very successful, further success in controlling 

malaria will only be possible through the refinement of the procedures currently in use. 

The introduction of winter larviciding has helped to reduce the population density of 

adult mosquitoes in spring. However, the value of this winter larviciding can be 

increased by: 

i) Locating and mapping all permanent water bodies by geographical survey as well 

as surveying malaria cases (Ie Sueur et al . 1995). Child cases are more indicative 

of focal areas of transmission than adult cases, since children are confined spatially 

to a particular locality. Mapping th~ permanent water bodies would facilitate easier 

larviciding of these habitats since the spraying teams will know precisely where 

th~se water bodies are situated and will not have to spend time locating them during 
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their spraying programme. This would decrease the spraying time and increase the 

coverage of larval control. 

ii) Treating permanent water bodies with larvicide at least every four weeks, since 

larval development is slow during winter. Treatment of water bodies associated with 

high human densities should be carried out regularly, especially during winter when 

the number of breeding sites is restricted. 

iii) Involving the local community with larval control measures such as environmental 

control through proper agricultural practices as well as the destruction of suitable 

breeding sites. This would also increase the cost effectiveness of larval control and 

it would draw malaria control closer towards the primary health care approach. 

Since An. arabiensis was found to feed indoors and rest outdoors, the value of 

intradomiciliary spraying with DDT or pyrethroids is greatly reduced. Alternative 

methods of controlling the adult stages is required. Therefore, a concerted effort should 

be made to determine the outdoor resting sites of An. arabiensis. If the outdoor resting 

sites can be determined, the spraying of these sites in winter with a synthetic pyrethroid 

would reduce the number of over-wintering females, further decreasing winter 

oviposition and it may also serve to destroy infectious females that may serve as 

reservoirs of the malaria parasite. Winter larviciding coupled with the spraying of 

potential resting sites in winter would serve to decrease both the vector population and 

the reservoir of infection. This would c~ntribute to reducing malaria transmission during 

the rainy season. 
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