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Abstract

Extensive drought- and elephant-related dieback of Colophospermum mopane and Acacia tortitis,
respectively, offered an opportunity for increasing understanding of the causes of drought-related
patch dieback, the factors influencing elephant utilization of woody plants, and the response of
woody plants to both aforementioned determinants of savanna structure and function. The
dendrochronological analysis of both species was undertaken to estimate potential rates of
replacement, following extensive mortality.

Areas ofdiscrete dieback were compared with adjacent paired areas of 'healthy' vegetation,
which revealed, on average, 87% and 13% loss ofbasal area by mortality, respectively. 'Live' and
'dead' plots did not differ in soil type, topography or mean slope, but differed in vegetation structure,
soil surface condition, and soil chemistry. Although there was evidence of self-thinning, neither
inter- nor intra-specific competition explained dieback. 'Dead', by comparison with 'live' plots, had
changed from functioning as sinks ofsediment and water to sources, were less likely to retain water
because ofa poor soil surface condition, and were predisposed to drought effects because ofa greater
proportion offines, and Na concentration. Dieback resulted from insufficient soil water for survival
during a drought owing to the development ofa dysfunctional landscape during 50 years oflivestock
ranching.Spatial heterogeneity within a landscape was suggested to enhance woodland resilience to
severe droughts by ensuring the survival ofplants in run-on sinks or 'drought refuge' sites.

Stem sections were removed from 40 multi-stemmed C. mopane trees and prepared for
examination under a dissecting microscope. It was impossible to age C. mopane, owing to a hollow
and/or dark heartwood. Nevertheless, the distribution of stem diameters suggested a single
recruitment event. Fire scars attributed to the last recorded fire in 1948 could explain the trees' multi­
stemmed growth form and indicate that most trees ofVLNR were> 50 years of age.

Growth rings were identified in 29 A. torti/is trees ofunknown age, but were not correlated
with annual rainfall records. Growth rates varied between trees; mean ring width ranged from 1.4
to 3.5 mm (overall mean 2.4 ± 0.1 mm). A technique was proposed for predicting growth rate from
annual rainfall, using selected data, and several factors potentially influencing ring width in semi­
arid environs were identified.

Permanent ground-based transects were located within riparian (n = 16) and Acacia (n = 5)
woodlands to monitor elephant utilization. Elephant had not changed the population structure ofthe
woodlands by 2000, but had reduced stem density from 215.6 stems ha- 1 (1996) to 84.4 stems ha-I
(2000). Acacia tortitis trees in the woodlands had branches removed, were debarked, uprooted and
broken. Acacia tortitis trees in the riverine had lower levels of utilization, whilst Acacia ni/otica
trees were mostly debarked. The method of elephant feeding varies within and between woody
species, provided it is within the mechanical constraints of a certain size or species. Elephant
behaviour is concluded to depend on spatiotemporal variation of forage abundance/quality,
abundance of a preferred species, and species response (coppice or mortality). Elephant can cause
a change of vegetation state, and increase spatial homogeneity of a plant population. The remnant
population of woodland trees should provide the potential for recolonization, in which case the
system would reflect the stable limit cycle. However, ifbrowsing inhibits seedling recruitment, the
system could reflect either a multiple stable state system or an artificial equilibrium imposed on a
stable limit cycle.
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Chapter 1

Introduction

Range management is a discipline of applied ecology necessarily arranged around a model

formulated by current perceptions ofhow particular ecological systems function (e.g. Westoby

et al. 1989). Considering our interpretation of a system influences the manner in which we

manipulate it, it is imperative that a thorough and objective accumulation of knowledge

concerning the dynamics ofthese systems be collected. The traditional range succession concept

(Clements 1916) failed to deal with African rangeland ecology on account of its shortcomings

regarding systems not at equilibrium (Westoby et al. 1989). Arid and semi-arid ecosystems do

not adhere to a monotonic gradient of states when subjected to variable conditions, but show

discontinuous and irreversible transitions between discrete quasi-stable states (Wiegand et al.

1995). Changes in semi-arid systems, typically event-driven and'episodic (e.g. Walker 1993), are

an adaptation to a fluctuating environment (Wiegand et al. 1995), affected more by abiotic than

biotic controls (Ellis & Swift 1988) which occur as rare or extreme events (Wiegand & Milton

1996). Climatic instability, manifested in low rainfall areas with high coefficients ofvariation,

produces highly dynamic ecosystems (Caughley et al. 1987).

African savannas are highly dynamic systems with the potential of alternating between

woodland and grassland states (Prins & Van Der Jeugd 1993). The dynamics of savannas and

their woody species are affected by biological and physical controls, commonly termed

determinants (Walker 1985). The inherent structure and function imposed on savannas by the

primary determinants, plant-available water and plant-available nutrients, may be modified by

the secondary determinants, fire and herbivory (Frost et al. 1986). Determinants of savanna

dynamics may be identified as either natural events or management actions. Perhaps the single

most important natural event affecting arid and semi-arid savannas is drought, whilst

management actions, especially burning and the inclusion of herbivores, particularly elephant,

are equally disruptive forces capable of halting, reversing and even trapping successional

processes (Norton-Griffiths 1979). Drought and elephant are capable of implementing change

at the community level because their effects range from local to regional or landscape scales and

are therefore shared by the component species which comprise those communities. However, a



2

few case studies on savanna woodland communities have revealed different population dynamics

among the component species, owing to their different tolerances of drought (O'Connor 1999)

and elephant impact (Barnes 1983).

The extent ofdrought-induced mortality, although influenced by soil type (Scholes 1985)

and density (Smit 1994), differs among woody species. Some species, such as Colophospermum

mopane, are more drought tolerant than others (0'Connor 1999). The intensity and spatial pattern

of drought-induced mortality ranges from usually about 5% of the trees and uniform (Scholes

1985) to 100% mortality and patchy (Fensham & Holman 1999). Elephant are notorious for the

changes they have caused in African savannas, specifically changes to vegetation structure

(Ruess & Halter 1990), species composition (Anderson & Walker 1974), and density (Croze

1974b), which often do not coincide with management obj ectives (e.g. Pellew 1983a). Elephant

utilize a wide range of species (Williamson 1975), although certain species are occasionally

preferred (Tchamba 1995), such as Acacia tortilis, and spatial density gradients do result in

different patterns of elephant-induced mortality (Barnes 1983). Spatial non-uniformities in

patterns and processes ofthe environment and herbivores, such as drought-related patch dieback

and density-dependent patterns of elephant-induced mortality, respectively, create spatial

heterogeneity, thereby potentially enhancing the stability and resilience of populations or

communities (Noy-Meir 1996) through the creation of drought- or herbivore-refuge sites.

The population dynamics ofa single species can constitute major ecological perturbations

at the community (savanna woodland) level, considering drought-related patch dieback is

commonly associated with the dominant woody component (Heatwole & Lowman 1986;

Fensham & Holman 1999) and preferred dominant species can be altered in their hierarchical

order ofabundance by elephant (Anderson & Walker 1974). The aforementioned is particularly

relevant when the species concerned are of considerable economic and ecological value,

maintaining community structure and functioning on account of their dominance. Elephant

impact may reduce biocliversity (Cumming et al. 1997) and droughts possess at least the potential

to reduce species-richness (O'Connor 1999). These agents of mortality may therefore modify

ecosystem functioning (Solbrig et al. 1996), particularly in communities which contain few

ecologically similar species capable of maintaining structure and function (Walker 1995).

Species-rich systems are buffered against change on account of their biological diversity and

redundancy (Walker 1995). Hence the reason for many conservation agencies adopting
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management policies that include the maintenance and in some instances increase of biotic

diversity. Consequently, the integrity and long-term sustainability of species-poor systems

warrant foremost conservation concern in the advent ofpossible species extinctions.

A monitoring approach was initiated in the Mopane Veld of the Northern Province in

1997 to allow assessment of the sustainability of woodland communities and provide warning

of potentially deleterious change in vegetation composition and structure. Extensive drought­

related dieback of C. mopane and utilization of A. tortilis woodlands by elephant offered an

opportunity for increasing understanding of the causes of drought-related patch dieback, the

factors influencing elephant utilization of, or response to, woody plants, and the response of

woody plants to the aforementioned determinants. Colophospermum mopane is an ecologically

and economically important plant species, considering it is a preferred firewood species (Tietema

et al. 1991), has a high frequency ofappearance in the woodcarving industry (Steenkamp 1999),

and provides good quality browse for livestock and game (Bonsma 1942). It has a narrow

distribution in South Africa (Mapaure 1994), a slow natural growth rate (Van Wyk 1972) and

woodlands in which it occurs generally have a low species diversity (Mapaure 1994). Acacia

torti/is is a drought-tolerant species (Coates Palgrave 1983) associated with encroachment

(Dangerfield et al. 1996), popular as a source of shade, fodder (Coe & Coe 1987), fencing,

housing (Coughenour et al. 1985), and fuelwood (Hayashi 1992), perhaps on account of its high

density (Venter & Venter 1996). Thought needs to be given to the conservation of C. mopane

and other species with which it occurs, such as A. tortilis, if the long temi integrity of these

species-poor systems are going to be sustained.

Models ofpopulation dynamics constitute an invaluable ancillary tool for the monitoring

effort, considering questions about sustainability can not be judged from monitoring data alone.

Dendrochronology enables one to estimate the age oflong-lived woody species, calculate growth

rates of trees, and forecast future populations. Although there has been scepticism concerning

the demarcation of growth rings in tropical trees (Kigomo 1994), growth rings have been

identified in C. mopane (Mushove et al. 1995) andA. tortilis (Gourlay & Grime 1994), and may

therefore a1110w for the estimation of potential rates of replacement in these two species,

following extensive drought- or elephant-related dieback.

The following aims were undertaken to increase our understanding of the causes and

effects of drought and elephant on the dynamics of two key woodland species, and so assist in
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the interpretation and management of semiarid African savannas.

(1) Estimate the growth rate of C. mopane and A. tortilis using dendrochronology.

(2) Describe quantitatively patch dieback of C. mopane and determine what factors were

responsible for patch dieback, thereby providing a suitable hypothesis.

(3) Describe quantitatively the reSponse of A. tortilis woodlands to elephant, the response of

elephant to A. tortilis woodlands and compare the aforementioned with elephant response

to A. tortilis within riverine vegetation and with Acacia nilotica woodlands.
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Chapter 2

Literature review:

Drought and elephant as determinants of savanna structure and function, and

Dendrochronology

Introduction

"Just as a mechanical engineer must learn the principles of physics to build a dam, a conservation

biologist must learn the principles of ecology to save a species" (Gotelli 1995). Before we can

forecast population trends, we need to gain an understanding of the relation between plant

populations and the physical or biological factors that interact to bring about changes in those

populations, specifically the fundamental demographic parameters which determine population

growth; germination, mortality and dispersal (immigration and emigration) (Begon & Mortimer

1981). The dynamics of savannas and their woody species are influenced by the secondary

determinants, fire and herbivory, which modify the inherent structure and function constrained by

the primary determinants, rainfall and soil type (Walker 1985). Extensive drought-related dieback

of C. mopane and utilization of A. tortilis woodlands by elephant offered an opportunity for

increasing our understanding of the aforementioned determinants on population dynamics.

Drought

Although rainfall variability has been recognized as the primary determinant ofshort-term (years to

decades) community dynamics (Wiegand & Milton 1996), controlling woodland structure and

composition (Coughenour & Ellis 1993; Patten & Ellis 1995), knowledge on the impact ofdrought

on the woody component of semi-arid savannas remains fragmentary. The herbaceous sward of

semi-arid savannas is inherently unstable under drought conditions (O'Connor 1985) resulting in

dramatic population crashes ofperennial grasses (O'Connor & Everson 1998; O'Connor 1999), but

display a high degree ofresilience in the long-term (Kennan 1969; Donaldson et al. 1984) in contrast
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to the apparently less resilient long-tenn response ofwoody species to drought, for which there are

only a few isolated accounts (e.g. O'Connor 1999). The extent of drought-induced mortality does,

however, differ between woody species (Fensham 1998; Fensham & Bolman 1999; O'Connor 1999)

and is more pronounced for Combretum apiculatum, Dichrostachys cinerea andXimenia americana

(Van Wyk et at. 1969; O'Connor 1999). Mortality ofthe dominant species ofthe Mopani Veld, C.

mopane, is adequately compensated for by recruitment, confonning with its regard as a drought­

tolerant species (Coates Palgrave 1983). The increase in stem density ofC. mopane on colluvial soils

at the expense ofother species showing no recruitment suggests a potential inclination for C. mopane

dominated vegetation types to decrease in species richness (O'Connor 1999) over multi-drought

years, contrary to the supposition that climatic variability promotes species diversity (Coughenour

& Ellis 1993) on account ofspecies differences across gradients in the physical environment (Patten

& Ellis 1995).

Drought-induced mortality is associated with a soil water deficit below that which is required

for the persistence of long-lived species (Tongway & Bindley 1995), usually visible as partial

dieback of the crown (e.g. O'Connor 1999). Consequently, drought acts as a height-reducing agent

in addition to a mortality agent. The intensity and spatial pattern ofdrought-induced dieback ranges

from background and unifonn, usually about 5% of trees in southern African savannas (Scholes

1985; O'Connor 1999), to catastrophic and patchy (up to 100% mortality - Fensham & Bolman

1999). Unifonn mortality is most pronounced for individuals < 3 m (Scholes 1985; O'Connor 1999),

although growth is largely restricted to the same height class during a sequence of dry years

(O'Connor 1999), whilst patch dieback appears to be independent of stem size (Fensham 1998;

Fensham & Bolman1999). Additional factors influencing drought dieback include: substrate type,

soils with a high clay content reduce infiltration (Scholes 1985); and possibly pre-drought basal area

(Fensham & Bolman 1999).

Competition plays an important role in the spatial patterning and dynamics of woody

vegetation in savannas (Smith & Goodman 1986). Woodlands influenced by competition may be

more susceptible to drought-related mortality, considering tree mortality is affected by density (Smit

1994). The extent of perennial sward dieback may certainly be related to variation in woody cover

(O'Connor 1999), especially in C. mopane dominated vegetation, given the species' ability to inhibit
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grass growth and its own (Smit 1994). Competition for resources is readily evident as self-thinning,

a relationship between log mean plant weight and log density which generally has a slope of -3/2,

for dense populations which show density-dependent mortality (Silvertown 1982), or a positive

correlation between distance to nearest neighbour and combined canopy cover of the pair for

comparisons (Smith & Goodman 1986). Death of individuals owing to competition or drought

presumably allows neighbouring trees to extend their zone of influence (root system), or allows

increased uptake due to decreased overlap of functional root zones, thereby increasing biomass

production of neighbouring plants (Smith & Goodman 1986).

Herbivory, mainly by elephant

Spatial dimensions of plant-herbivore interactions

The spatial structure ofrangeland vegetation is formed by non-uniformity in patterns and processes

of the environment and herbivores (Noy-Meir 1996). Animals face the problem of meeting energy

and nutritional requirements in an environment in which the quality and quantity of forage varies

in space and time (Frank et al. 1998). Large herbivores overcome this dietary problem by making

a series of hierarchical forage decisions at several levels of ecological resolution, spanning from

micropatches (or feeding stations or plants) to plant communities, landscapes and regional systems.

Herbivores may utilize momentary maximization to solve the quality-quantity problem at the patch

and community scale. Momentary maximization dictates sequential acceptance ofthe most palatable

items encountered at each feeding location until available palatability decreases to some threshold

level (Staddon 1983) whereupon the herbivore moves to anotherpatch or community. Consequently,

patch and community residence times are proportional to the relative availability ofpreferred forage

(Senft et al. 1987).Time and energy costs oftravel relative to gain are important considerations when

selecting for communities which have different nutrient contents (Senft et al. 1987). At the regional

scale migrating grazers track spatiotemporal patterns in forage quality, produced by broad

environmental (precipitation, soil type, altitude) gradients, to increase their diet quality and grazing

efficiency (Frank et al. 1998). Furthermore, ungulates in grazing ecosystems may modify vegetation

structure in a manner that increases their own foraging efficiency. Consequently, plant response to
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herbivory affects an animal's subsequent foraging decisions (Senft et al. 1987).

Key elements responsible for the sustainability of semi-arid grazing systems are the spatial

and temporal variation in forage quality (Scoones 1995), the migratory behaviour ofungulates which

track high quality forage, and the intercalary meristem ofgrasses which allows defoliated plants to

grow (Frank et al. 1998). Similarly, the sustainability ofwoodlands may depend on the potential for

its component species to replace lost biomass with regrowth. Spatial heterogeneity is further

expected to enhance the stability and resilience of vegetation by the creation of refuge sites (Noy­

Meir 1996). Topo-edaphic heterogeneity can create drought refuges in patches where infiltration is

increased by run-on, whilst spatial heterogeneity in grazing pressure can create grazing refuges.

These refuges may provide propagules for the recolonization of a landscape which has been

decimated by a series of drought and/or grazing events.

Different foraging response patterns, specifically matching, overmatching and undermatching

(Staddon 1983), are displayed at different scales. Matching occurs when an animal adjusts its

foraging behaviour in proportion to changing dietary rewards, overmatching results from a

disproportionately large foraging response to a change in reward, and undermatching from a

disproportionately small response. Overmatching is the pattern most prominent when a large

herbivore selects plants from a community because the generalist herbivore employs tactics in which

preferences are nonlinearly related to forage abundance and quality, to maximize nutrient uptake

(Senft et al. 1987). An animal's relative preference for plant communities is generally a linear

function ofthe relative abundance and/or nutritive quality ofthe preferred plants in the communities.

Consequently, matching is the prominent pattern when large herbivores select plant communities

for feeding (Senft et al. 1987). Selection of feeding areas can be modified from a pure matching

pattern by several factors, including topography, watering points and discomfort (Senft et al. 1987).

A stable limit cycle versus multiple stable states

Range management is a discipline of applied ecology necessarily arranged around. a model

formulated by current perceptions of how particular ecological systems function. The range

succession model assumed a single state system. In a single state system, the position of the state

will shift if an influencing factor is intensified, but will revert to its previous level when the factor
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does so. However, vegetation change in response to grazing has not always occurred as predicted

along a single continuum (Westoby et at. 1989). The range succession model has since been replaced

by the state-and-transition model in such systems (Westoby et at. 1989) which assumes a multiple

stable state system. A multiple stable state system does not return to its previous state once the

influencing factor has reverted to its previous level, the new state being held in place by a new factor

(Dublin et at. 1990). Different stable states may be identified by different combinations of stably

coexisting species in an ecosystem, or by different population levels of those species.

Caughley (1976) proposed a stable limit cycle which assumes a cyclical relationship between

elephants and trees. The trend ofelephants and oftrees are similar to sine waves, that oftrees being

about 1/4 of a wavelength behind that of elephants. The trees decrease at the highest absolute rate

when elephants are at peak density, whilst the absolute rate at which elephants decrease is greatest

when tree density is at its lowest. The stable limit cycle implies no attainable natural equilibrium

between elephants and forests, although an artificial equilibrium can be imposed. Both the single

state hypothesis and Caughley's (1976) stable limit cycle assume the trend in vegetation change will

reassert itself once external disturbances have been removed. However, Abel and Blaikie (1986)

showed that human influence, particularly hunting of elephant for ivory, accounted for the decline

in elephant numbers in the Luangwa valley, and not a food shortage (Caughley 1976). Although

Abel and Blaikie (1986) do not preclude the existence of a cyclical relationship between trees and

elephants, they provide evidence that human interference has long (since the 18th century) been

associated with ecological systems. Itwould therefore be incorrect to assume that biological changes

are intrinsic to biological processes alone. Consequently, forces of change, apart from elephant,

would have to be absent if a cyclical relationship is to exist between elephant and trees.

The debate appears to be whether the two vegetation conditions ofwoodland and grassland

are the extremes ofa stable limit cycle (or a single stable state) or represent discontinuous conditions

with two stable states. Considering a precondition for the stable limit cycle hypothesis ofwoodland

recovery is the safe refuge of seedlings from elephants (Dublin et at. 1990), or other browsers, the

system could be held in a new state ifthe recruitment or survival ofseedlings is prevented. It would

appear therefore that woodland dynamics following a reduced density of trees could follow either

hypothesis, depending on the presence or absence ofadditional factors capable ofholding the system
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in its new state. It is also arguable, however, whether a system held in a new state reflects the

multiple stable state hypothesis, or an artificial equilibrium when the stable limit cycle is arrested.

Factors influencing elephant response

Elephant (Loxodonta africana) are notorious for the spectacular changes they have caused in

southern and east African savannas. Elephant impact on woodland dynamics is multifarious,

influencing vegetation structure, species composition, stem density and plant vigour. Vegetation

changes can be related to their feeding ecology which takes many forms, including uprooting,

breaking stems, debarking and stripping leaves and branches (Croze 1974a), and is influenced by

vegetation structure, species composition, season and nutrition.

Vegetation structure

Population structure and species composition may be more powerful predictors ofstand damage than

either stand or species density (Ruess & Halter 1990), perhaps owing to the preference elephants

have for particular size classes and species. Consequently, elephant feeding is not always deleterious

to species abundance or diversity, affecting physiognomy more than density (Van De Vijver et al.

1999).

Size classes are generally utilized in proportion to their occurrence in the stand (Vesey­

FitzGerald 1972; Croze 1974b; Kabigumila 1993), although elephants also concentrate

disproportionately on the larger size classes (Pellew 1983a), often ignoring the youngest class « 1

m - Vesey-FitzGerald 1972; Croze 1974b; Pellew 1983a; Ruess & Halter 1990). Elephant browsing

has, however, been diverted to small trees < 1 m when available browse is less abundant (Dublin

1995) during the dry season (Kabigumila 1993). The preferred feeding height of elephants is such

that damaged trees within the 1 to 5 m height class (Croze 1974b) have greater base diameters than

undamaged trees (Van De Vijver et al. 1999), suggesting taller trees are either knocked down and

reduced to thick, stunted stumps (Nott & Stander 1991) and shrubs (Anderson & Walker 1974) or

trees are suppressed, prevented from growing into the next height class by repeated browsing (Pellew

1983a; Ruess & Halter 1990; Campbell et al. 1996), resulting in dense regeneration thickets in the

absence of fire (Ruess & Halter 1990).
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Damaged trees respond by coppicing (e.g. C. mopane - Anderson & Walker 1974; Boscia

albitrunca - Nott & Stander 1991; A. tortilis - Van De Vijver et al. 1999), providing new regrowth

which is preferred to adult plants (Anderson & Walker 1974; Lewis 1991) and hence promoted

(Caughley 1976). The ability of C. mopane woodlands to coppice in response to elephant browsing

is influenced by past levels of elephant browsing in association with soil characteristics, an

impervious B horizon and nutrient rich A horizon promoting coppice (Lewis 1991).

Plant species and abundance

Elephants utilize a wide range of woody species, up to 87 browse species have been identified in

Wankie National Park, Zimbabwe (Williamson 1975). Most woody species are fed upon at a rate

proportional to their occurrence (Ruess & Halter 1990), especially in low and high-density

woodlands (Kalemera 1989), with the exception ofspecies that are preferred or deliberately avoided

(Croze 1974b; Tchamba 1995). Often, the staple diet ofthe elephant corresponds with the dominant

woody species (e.g. C. mopane - Pienaar et al. 1966; Ben-Shahar 1996; Combretum spp. - Jarman

1971; Thrash et al. 1991; Acacia spp. - Kalemera 1989; Ruess & Halter 1990).

Preferential selection may not be the sole contributing factor to a change in species

abundance (Lewis 1991), but also the ability of the damaged tree to respond by coppicing (Van De

Vijver et al. 1999), increasing the number of woody plant stems per unit area (Stuart-Hill 1992a).

Species with a low tolerance to damage decrease in abundance (Anderson & Walker 1974).

Consequently, the order ofpreferred species changes over time as over utilized woody species less

tolerable to damage, such as A. tortilis, become less available and are replaced by the next favoured

species (Anderson & Walker 1974). Species are selectively eliminated according to the ease with

which they can be pushed over (Field 1971; Guy 1976). A. tortilis is uprooted more readily than

Balanites aegyptiaca which has a strong root system resulting in attempts to push it over either

failing or 30 cm stems being snapped (Croze 1974b). The physiognomic effects of elephant impact

will therefore differ among species.

Increased elephant numbers do not necessarily result in a great decline in tree density (Van

De Vijver et al. 1999), given their propensity to affect woodland physiognomy (Jachman & Bell

1985). Drought may be a key forcing function of transitions of the herbaceous component through
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dieback ofthe woody component (O'Connor 1999), and a reduced browsing pressure by ungulates

may inhibit woody encroachment, the reduced population of grazing ungulates allowing an

accumulation of fuel and hence fire (Norton-Griffiths 1979). Similarly, although a decline in

elephant populations has coincided with bush encroachment and conversion of grassland to

woodland (Leuthold 1996; Whateley & Wills 1996), encroachment of Acacia species may not

necessarily result from reduced elephant impact, but rather a release from high browsing pressure

by (epidemics amongst) small ungulates (Prins & Van Der Jeugd 1993).

Past concern surrounding the thinning of mature A. tortilis stands has had more to do with

the aesthetic (e.g. Croze 1974a; Pellew 1983a) than the ecological implications. Opening up of

woodland canopies allows regeneration and subsequent recruitment to replace senescing adults

(Mwalyosi 1990), especially in A. tortilis woodlands, given the species' shade intolerance and

inability to germinate under the parent canopy (Miller 1996). Woodland productivity is also

improved through the establishment of other species, enhancing landscape diversity (Mwalyosi

1990), a function of fractionization (Noss 1987). Elephant can, however, also reduce biodiversity

(Cumming et al. 1997).

Season and nutrition

The elephants' diet is seasonal (Croze 1974a), comprising mostly grass in the wet season (Thomson

1975) and browse in the dry season (Kabigumila 1993). Elephants show diversification in their diet

during the late dry season, reducing dietary overlap with other herbivores (Jarman 1971). Different

species are therefore favoured at different times ofthe year and for different food types (Williamson

1975). Season appears to influence which plant parts are eaten. Mostly leaves and shoots are taken

during the wet season with the amount ofwoody tissue increasing in the diet during the dry season

(Jarman 1971; Williamson 1975; Lewis 1991; Kabigumila 1993) corresponding to an increase in the

frequency ofdamage to trees (Ruggiero 1992), particularly large succulents like Adansonia digitata

and Sterculia spp. (Jarman 1971). Debarking has, however, been observed in the wet season (Lewis

1991; Kabigumila 1993).

The proportion of grass to browse consumed during each season depends on its nutritional

status and availability (Jarman 1971; Kalamera 1989), to the extent that elephants may be either
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primarily grass eaters (Field 1971; Croze 1974a,b) or browsers (Williamson 1975). Elephants may

switch to browse in the dry season on account of its higher crude protein content relative to grass

(Williamson 1975) which rapidly declines in palatability (Field 1971).

Salts are an important constituent ofelephants' diet, suggesting that calcium (Ca) content in

the bark could be an important factor influencing utilization of some species (Williamson 1975).

However, damage for different species has not always been successfully related to the chemical

constituents ofthe plant or the soil (Anderson & Walker 1974; Thomson 1975). Despite similar Ca

contents in the barks of C. mopane (4.12% - Anderson & Walker 1974), A. tortilis (4.15% ­

Anderson & Walker 1974) and Brachystegia boehmii, the latter two species have been more

frequently debarked by elephants (Anderson & Walker 1974; Thomson 1975), whilst Pterocarpus

angolensis is also frequently debarked, despite a relatively low Ca and high tannin content

(Williamson1974). Factors other than chemical (nutrient or deterrent) are therefore likely to play a

role in the selection ofwoody species by elephant.

Plant vigour

Tree vigour is determined to a large degree by the severity (Croze 1974b; Van De Vijver et al. 1999)

and history ofpast browse damage (Lewis 1986), and tree age (Mwalyosi 1987) with the chance of

survival and recovery decreasing with adolescence (Mwalyosi 1987).

Some tree species show a remarkable resilience to the removal of as much as 3/4 of their

canopy foliage with almost certain survival the following year and nearly a 50 : 50 chance of

surviving 3/4 to all oftheir canopy removed, whilst other trees, e.g. A. tortilis (Croze 1974b), do not.

Species resilience is, however, likely to depend not only on the extent of feeding but the nature of

the feeding, considering strip barking ofA. tortilis has no immediate ill-effect (Guy et al. 1979).

Browsing stimulates shoot production thereby increasing the rate of browse production

(Pellew 1983b), provided trees do not have a history of overexploitation, in which case browse

production does not differ from browse removal (Lewis 1986). Consequently, trees with a history

of past browse are less able to recover their losses by growth replacement. A past history of

overutilization resulted in nearly lOO % mortality of coppiced C. mopane stands following a year

of 14 % below average rainfall (Lewis 1991). Considering browse removal by elephants exerts a
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nutrient drain on individual trees and soil nutrients, the critical condition affecting the vigour and

therefore response of coppiced individuals may be related to soil quality in the A horizon (Lewis

1991).

Dendrochronology

In addition to understanding the response of key woodland species to critical determinants such as

drought or elephant, a knowledge of growth rates of trees offers the opportunity to estimate the

potential rate ofreplacement oftrees and therefore predict population trends in a system influenced

by either drought or elephant. Dendrochronology is a technique that enables one to estimate the age

oflong-lived woody species.

Anatomical features that denote annual growth rings in temperate trees, such as changes in

cell wall thickness and cell dimensions of earlywood and latewood in conifers, are uncommon in

tropical species (Gourlay 1995). Despite much difficulty (Lilly 1977; Mariaux 1981) and scepticism

(Kigomo 1994) concerning the demarcation ofgrowth rings in tropical trees, growth rings have been

identified in C. mopane (Mushove et at. 1995; Prior & Cutler 1996) and A. tortilis (Gourlay &

Grime 1994; Gourlay 1995). According to Wyant & Reid (1992), however, tropical trees have never

been cross-dated.

Marginal parenchyma bands, a form of axial parenchyma (Gourlay & Grime 1994), delimit

annual growth zones inA. karroo (Gourlay & Barnes 1994). They are distinguished from the intra­

seasonal banded parenchyma by their fineness (only a few cells wide) and evenness ofappearance

in contrast to the more irregular, wavy confluent bands (Gourlay 1995). The distinction of growth

rings, however, is hampered by a few factors: false and discontinuous rings were discerned in both

A. karroo andA. tortilis (Lilly 1977), whilst missing rings, approximating drought frequencies, were

also detected in A. tortilis (Wyant & Reid 1992).

Calcium oxalate crystals, found in long chains along the marginal parenchyma or its

periphery (Gourlay & Kanowski 1991), can be used to define growth rings in instances where

marginal parenchyma bands are unclear. The crystalliferous chains are produced at the onset of the

dry season when wood production ceases during the dry winter period from late March to early
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September (Gour1ay & Bames 1994;Gour1ay & Grime 1994; Gour1ay 1995). Prior and Cutler

(1996), however, could not relate crystalliferous chains to growth ring boundaries and found no

correlation between the number ofrings and the diameter ofA. karroo and A. tortilis trunks, when

they measured material of unknown age.

Robbertse et at. (1980) recorded 1 - 2 growth rings/mm in South AfricanA. tortilis trees. The

mean annual ring width across all African acacias and sites examined by Gourlay & Bames (1994)

and Gourlay (1995) was 6 - 7 mm. Mean ring widths for A. tortilis samples from Kenya and

Zimbabwe were 5 and 9 mm, respectively (Gourlay & Grime 1994), whilst a separate study of two

A. tortilis trees growing on sandy alluvium in Zimbabwe, measured 7 and 11 mm (Gourlay &

Kanowski 1991). Hayashi (1992) reported a diameter increment at breast height (dbh) ofA. tortilis

over one year in Kenya (1 088 mm an-I) equivalent to an annual radial increment of3.5 mm.

Although ring widths ofAcacia spp. have been related to precipitation (Gourlay & Bames

1994; Gourlay 1995), Mushove et at. (1995) found no significant relationship between rainfall and

the ring widths of C. mopane and C. apiculatum. Prior & Cutler (1996) also found no correlation

between rainfall and the ring widths of C. mopane and C. apiculatum, despite attempting to match

width with rainfall in the preceding year, and suggested the probability of a marked discrepancy

between measured rainfall and the water accessible to trees. Although rainfall is recognized as having

the greatest influence on tree growth, it is not necessarily an index to the amount of water available

for tree growth, of which radial growth is a function (Gourlay & Bames 1994). Rainfall interacts

with local topography and the geology of the sites to affect plant-available soil water (Gourlay &

Bames 1994). Growth ring widths vary from site to site and are influenced by soil nutrient and water

availability (Mushove et at. 1995).

Considerable variation in correlations between species at different sites and the various

meteorological parameters (rainfall, evaporation and temperature) have also been attributed to the

form ofthe rooting profile. Shallow rooting trees may be more sensitive to current rainfall (Gourlay

1995) and able to exploit rapidly small amounts ofprecipitation (Prior & Cutler 1996), whilst deeper

rooted trees are able to reach a more permanent water table, and are therefore more drought tolerant.

Site selection is an important consideration when sampling trees. Trees growing on sites

where growth limiting factors seldom limit growth, produce rings that are uniformly wide and do not
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reveal information on past climates (e.g. drought frequencies) (Fritts 1976). Acacia tortilis trees from

riparian zones with year-round access to underground water were observed to contain only half as

many rings as years in age (Wyant & Reid 1992). Only the ring widths oftrees in the most extreme

environments (or environments with distinct wet and dry seasons) are sufficiently limited by climatic

factors to allow dendroclimatic analysis (Fritts 1976). Gourlay & Bames (1994) noted that marginal

parenchyma bands on wood taken from trees in the Richard's Bay area were not clearly defined,

probably because its climate was less extreme than that from which the other samples were collected.

Gourlay & Kanowski (1991) have shown that the number ofrings in AfricanAcacia spp., originating

from climatic zones with a single wet season, approximate the age of the tree, whilst samples

originating from bimodal climatic zones, have approximately twice the number of rings as the age

of the tree.

The calculation of growth rates is confounded by poor correlations between stem diameter

and age. Although Wyant & Reid (1992) achieved a good correlation between the basal stem

diameter ofA. tortilis and its known age, it was only significant for young « 10 years) trees. Older

trees of similar age showed a dramatic difference in basal stem diameters. Seedlings may also

complicate correlations by being older than they appear, with factors such as animal impact and

limited soil water contributing to slow growth rates (Phillips et al. 1996). Trees ofvarying age may

be held at a similar size for an extended period by suppressing factors such as browsing, fire or

shade. When released these trees mature together, forming stands of even size but dissimilar age

(Young & Lindsay 1988). This inconsistency between diameter and age makes it difficult to date

those trees for which no stem sections are available and emphasizes the variability ofgrowth rates.
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Chapter 3

Study area

Ecosystem: definition

Living organisms and their abiotic environment interact upon each other to form a continuum of

cause-effect relationships. This entity ofbiological and physical processes is termed an ecosystem

(Humphrey 1962) and is identified by the structure and ftmction ofits component parts. The major

components of the study area, pertinent to the management and hence conservation of Venetia­

Limpopo Nature Reserve, are the physical environment, vegetation, and animal populations.

Physical Environment

Location

Venetia-Limpopo Nature Reserve (VLNR) (29°12' - 29°23' E; 22°15' - 22°30' S) is situated in the

Northen Province, South Africa, approximately 30 km south ofthe Limpopo River where Botswana,

Zimbabwe and South Africa converge (Figure 3.1). The reserve, 34 500 ha in extent, is an

amalgamation of 21 livestock farms acquired by De Beers Consolidated Mines Limited between

1981 and 1995.

Climate

The semi-arid environment is characterized by wet, hot summers, dry, mild winters (Figure 3.2).

Mean monthly minimum and maximum temperatures at Messina (80 km E) are, respectively, 20.3°C

and 32°C for summer (December) and 7.2°C and 24.7°C for winter (June). Frost does not generally

occur (O'Connor 1992).
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<600 m

600 - 900 m

Botswana

A1ld~Ys
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. Figure 3.1 Schematic topographical and drainage features ofVenetia-Limpopo Nature Reserve in

relation to the Limpopo River. Produced by tracing the mapof Chief Director ofSurveys and

. Mapping (1986).
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Figure 3.2 Mean monthly maximum and minimum temperatures for Messina in relation to mean

monthly rainfall (1966/67 - 1994/95) for Pontdrif.

The mean annual (July-June) rainfall for Pontdrif is 366 mm (1966/7-1996/7) but has been erratic

(38% coeffiCient ofvariation) over the past few decades with extended periods ofabove- and below­

average rainfall (Figure 3.3). The mean annual (July-June) rainfall for VLNR was 297.5 mm

between1995/6 and 1998/9 with the lowest recorded rainfall in 1997/98 (132.9 mm) (Figure 3.4).

Severe droughts have occurred as recently as 1988/89 and 1991/92 (Figure 3.5). The almost cyclic

pattern ofrainfall from 1966/7 until now consists roughly ofone extended period ofabove-average

rainfall (1966/7-1981/2) and one extended period ofbelow-average rainfall (1982/3-1996/7), with

some years invariably out ofphase (Figure 3.3). Rainfall, consisting mainly ofthundershowers, falls

primarily from October to March, peaking during December-February (Figure 3.2). Mean annual

evaporation (2 000 to 2 200 mm) is six fold greater than mean annual rainfall (Midgley et al. 1994).
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Geology

Geomorphologically, the study area falls within a dissected landscape resulting from cut back ofthe

Limpopo's tributaries into a post-African 1 surface (Partridge 1997) (Figure 3.1), originally

consisting mainly of marls, mudstones, siltstones and sandstones of the Karoo system (Truswell

1977). Although remnants ofKaroo sedirnents and volcanics exist as flat-topped sandstone hills, the

study area is mostly a large, relatively flat basin underlain by deep (>5 m) palaeo-alluvia derived

from erosion and deposition of Karoo sediments with more recent alluvia occurring adjacent to

currently active (non-perennial) water channels. The dominant soil forms and series encountered on

the reserve were Oakleaf Buchuberg, Dundee Visrivier, Swartland Arnandel and Valsrivier

Goedemoed (Botha 1994), all having a sandy clay loam texture with relatively high clay (average

20%) and silt (average 19%) contents. Although Dundee soils were sandier than the Valsrivier soils,

they were similar in that all were deep (> 900 mm) bottomland soils adjacent to drainage lines

(O'Connor 1996). Oakleafsoils, usually situated on the crestal area ofthe catena, were not areas of

significant runon, considering they served as sources of water for bottomlands, whilst Swartland,

associated with the mudstones and siltstones of the Karoo sequence, extended from the pediment

slope at the base ofthe sandstone hills to bottomlands (O'Connor 1996).

Hydrology

Venetia-Limpopo Nature Reserve is drained northwards by three ephemeral rivers, the Setonki, the

Matotwane and the Kolope, before their confluence in the north western corner ofthe reserve (Figure

3.1), forming a tributary ofthe Limpopo River. There has been pronounced sheet and rill erosion by

overland wate~ flow (personal observation). Badly degraded areas were interpreted to be a result of

their erosivity owing to a high clay and silt fraction, the almost complete elimination of a perennial

grass cover (O'Connor 1999), intense rainfall events, and slopes (> 0.5 %) conducive to runoff

(O'Connor 1996).

Vegetation

The study area falls within the Mopani Veld type (Acocks 1953), of which C. mopane is the

dominant plant species, occurring in the riparian vegetation and the adjacent dryland vegetation
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types ofVLNR (O'Connor 1991). O'Connor (1991) identified 71 woody species (nomenclature

follows Arnold & De Wet 1993) and described 15 vegetation types within the Venetia-Limpopo

Nature Reserve, ofwhich five were relevant to this study; Riverine woodland, Grassland, C. mopane

woodland, C. mopane shrub woodland and C. mopane-Salvadora angustifolia woodland. The main

pattern of variation in composition of the woody vegetation is from species-poor woodlands

dominated by C. mopane through to taller woodlands with a lower abundance of C. mopane and a

greater equitability of other species, adjacent to the larger rivers.

Riverine woodland. The Kolope and the Setonki supported a tall (up to 15 m), relatively

dense (median cover 51 -75%) fringe ofmostly hygrophilous species. Common canopy trees were

Combretum imberbe, Lonchocarpus capassa, Acacia nigrescens, Acacia tortilis, C. mopane and

Faidherbia albida, while Ziziphus mucronata and Croton megalobotrys were common sUb-canopy

individuals.

Grassland. Grasslands (0.3 - 12 ha in size; O'Connor 1996) were mostly associated with

areas occasionally flooded, adjacent to the Kolope before its confluence with the Setonki. Water

input is most likely provided by adjacent catchments (O'Connor1996) and by overflow from the

Kolope or Setonki. Woody species, mainly A. tortilis, and A. nilotica, were restricted to the

periphery of some grasslands, however mean woody cover on seven hydromorphic grassland sites

has increased from 8% in 1955 to 39% in 1987 (O'Connor, submitted) following pronounced bush

encroachment, particularly ofA. tortilis. It appeared that trees showed distinct successional patterns

in which patches ofA. tortilis spread from core areas and converted previously open grasslands to

densely vegetated woodlands (O'Connor, submitted). Herbaceous canopy cover was nearly

complete. Principal grass species were Urochloa brachyura (annual), U. mosambicensis and U.

oligotricha (perennials), with smaller amounts ofPanicum maximum and Cenchrus ciliaris.

Colophospermum mopane-S. angustifolia open woodland, C. mopane woodland and C.

mopane shrub woodland. Colophospermum mopane-S. angustifolia open woodland was found

immediately adjacent to the Kolope and the Setonki on colluvial soils, merging into the dense C.

mopane woodland further from the rivers, while C. mopane shrub woodland occurred on lithosols

associated with areas of subdued relief. Woodlands had a median cover of 51 - 75%, except C.

mopane-S. angustifolia open woodland which had a median cover of26 - 50%, and supported a 5

m tall canopy, except C. mopane shrub woodland (3 m). Common species, besides C. mopane,
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included consistently occurring individuals of Boscia foetida and S. angustifolia. The herbaceous

sward was sparse « 20% median cover), the bulk of the sward comprising annual grasses Tragus

berteronianus and U brachyura, and shorf·lived perennial grass Enneapogon cenchroides.

Woody cover of C. mopane woodland has increased by > 20% over the period 1955 - 1977,

resulting in woodland with high (> 70%) woody cover (O'Connor 1983).

Animal populations

Venetia-Limpopo Nature Reserve (345 km2
) compnses a reasonably diverse assemblage of

herbivores (Table 3.1), despite the predominance of C. mopane.

Approximately 48 elephant have been introduced into VLNR since 1991, including the birth

offive calves (one died at birth) in1999. A detailed report ofthe carrying capacity ofVLNR is not

possible, however, elephant density and mammalian biomass per unit area of VLNR can be

compared with figures from the Kruger National Park (KNP). In most larger mammal species there

is a considerable difference between the mass of adult bulls and females. It was not possible to

obtain sex ratios for the respective species, so a mean value was taken to represent the mass of each

species (Table 3.1). The elephant density ofVLNR (0.15 elephant/km2
) does not exceed the critical

density (0.5 elephantslkm2
) beyond which savanria woodlands are generally converted to shrublands

or grasslands (Cumming et at. 1997) and falls well below the theoretical carrying capacity (0.6 - 2.5

elephantlkm2
) for the majority of elephant habitats in Africa (Pienaar et at. 1966). The elephant

density in VLNRis lower than the elephant density (0.2 elephantlkm2
) in the KNP (400 - 600

mmlan-I), measured during the 1964 census (Pienaar et at. 1966), and three times less the number

of elephants (0.48 e1ephantlkm2
) in Tu1i (200 - 400 mm/an-I), Botswana (Viljoen 1988), although

numbers do fluctuate according to migration patterns (pers. comm., B. Page, University of Natal,

Durban). The KNP, predominantly C. mopane-, Acacia- and Combretum-wood1and and savanna,

was under no threat ofoverexploitation by elephant which had not yet (1964) reached their saturation

point (Pienaar et at. 1966). Total herbivore biomass per unit area, ofwhich elephants comprised 27%

and 22% in VLNR and the KNP, respectively (Table 3.1), was higher in the KNP (± 3 tlkm2 ­

Pienaar et at. 1966) than VLNR (± 2.4 tlkm2
). Although VLNR does appear to have a lower elephant

density and biomass per unit area than the KNP, during a time when densities were acceptable, the
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Limpopo basin is subjected to a high frequency of droughts, possibly one of the most important

natural factors controlling elephant populations in Africa (Hanks 1979). The supportable woody

biomass was exceeded during the two severe drought years (1988/89 and 1991/92) in VLNR, with

a subsequent escalation in complete and partial mortality of C. mopane (O'Connor 1999).

Table 3.1 Population size and biomass ofthe major herbivore species in Venetia-Limpopo Nature

Reserve between 1994 and 1999. Body masses were taken as the mean ofmale and female masses

using Skinner & Smithers (1990). Biomass was calculated by multiplying the body mass ofa species

by its population size

Species 1994 1995 1997 1999 Mean
Bodymass CountBiomass Count Biomass Count Biomass CountBiomass Count Biomass

(kg) (t) (t) (t) (t) (t)
blue wildebeest 215 430 92.5 300 64.5 523 112.4 460 98.9 428.3 92.1
eland 580 298 172.8 194 112.5 253 146.7 204 118.3 237.3 137.6
elephant 4750 42 199.5 45 213.8 42 199.5 48 228 44.3 210.2
gemsbok 225 158 35.6 171 38.5 198 44.6 211 47.5 184.5 41.5
giraffe 1010 10 10.1 21 21.2 30 30.3 28 28.3 22.3 22.5
hartebeest 135 18 2.4 12 1.6 39 5.3 38 5.1 26.8 3.6
impala 45 1421 63.9 1267 57 1356 61 1435 64.6 1370 61.6
kudu 225 989 222.5 705 158.6 526 118.4 707 159.1 731.8 164.6
white rhino 1800 3 5.4 3 5.4
warthog 85 150 12.8 109 9.3 220 18.7 128 10.9 151.8 12.9
waterbuck 250 67 16.8 50 12.5 101 25.3 19 4.8 59.3 14.8
zebra 320 47 15 42 13.4 87 27.8 121 38.7 74.3 23.8

Total 843.9 702.9 789.9 809.5 790.6

History

This area and its surrounding region is of national and international archaeological importance.

Approximately 1000 AD a large concentration ofIron Age people settled on a prominent hill called

Mapungubwe (Figure 3.1) and became immensely wealthy from trade, bartering in ivory and alluvial

gold for glass beads, cowries, etc. (Voigt 1983). Apart from gold, ivory was one of the strongest

motives for the development of Arab trade in the interior (Voigt 1983), and indicates the presence

and exploitation of elephants as early as the 10th century. The community depended largely on
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herding (cattle, sheep and goats) rather than hunting and gathering for sustenance (Voigt 1983),

indicating the additional presence of livestock since the 10th century. Mapungubwe and the entire

Shashe/Limpopo basin was abandoned around 1 200 AD and may be attributed to either disease

(Voigt 1983), or an end to their primary source of livelihood (herding) on account of drought or

. perhaps fluctuations in the tsetse fly belt.

In the mid-nineteenth century this area became the hunting ground ofVoortrekker settlers

and elephant herds, as large as one hundred animals (Cumming 1850), continued to be persecuted

for the ivory trade in the 1840's. However, by the 1870's elephant hunters were already forced to trek

as far north as the Zambezi valley (Selous 1881) to obtain ivory. The inhospitable Limpopo valley

was generally avoided on account of stock (horses and oxen) losses incurred by the tsetse fly

(Cumming 1850). Consequently, large tracts of crown land remained unoccupied well into the

twentieth century.

In 1918, after the first World War, a vigorous white rural settlement policy saw farms in the

valley being freely offered on extremely attractive terms. Drought, disease, competition from

wildlife and theft across the Rhodesian and Bechuana1and borders hampered farmers, who

subsequently campaigned to have their land values, and so too their loans, reduced. Persistent

droughts (Figure 3.3) and inappropriate farming methods resulted in the degradation of the natural

resources (O'Connor 1996) to the extent that the majority of the area was no longer able to support

viable domestic livestock. Mean woody cover ofA. tortilis (O'Connor, submitted) and C. mopane

(O'Connor 1983) woodland increased by > 20% between 1955 and 1987, and coincided with the

period of domestic livestock farming.

In 1980 kimberlite pipes were pinpointed on the farm Venetia. Construction work by De

Beers Consolidated Mines Limited (an open cast diamond mine) began in 1990. Production started

in 1991 and has a life expectancy of at least 20 years. Land adjacent to the mine was progressively

acquired and in 1990 land-use practices changed dramatically when the area was destocked of

livestock and established as Venetia-Limpopo Nature Reserve (VLNR). The population of

indigenous herbivores, consisting predominantly ofbrowsers and mixed feeders, has since increased.

Drought has had a significant effect on the recent « 20 yrs) ecology ofthe area (O'Connor 1999).
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PART A: Colophospermum mopane

Chapter 4

Colophospermum mopane: a brief review of facts both general and specific to the study

area

Distribution

Colophospermum mopane (Kirk ex Benth) Kirk ex J. Leonard occurs only in southern Africa,

reaching its southemmost limit just below the Olifants River in the Kruger National Park, South

Africa (Coates Palgrave 1983). Its distribution, principally influenced by moisture availability

expressed through altitude, rainfall and soil texture (Mapaure 1994), often coincides with hot,

arid conditions. The proportion of South Africa occupied by C. mopane vegetation is 2 % (4 %

of the total C. mopane area) and is confined to two large belts; occurring along the Limpopo

valley, which includes the study area, and in the Kruger National Park (Mapaure 1994).

Colophospermum mopane is the dominant species of the Mopani Veld (Acocks 1953) and

prominent in most of the plant communities described within its range south of the Limpopo

River (O'Connor 1991; Dekker & Van Rooyen 1995), contributing up to 81 % of the leaf dry

mass/ha'l (Dekker & Smit 1996). The Limpopo valley supports single or multi-stemmed shrub

or tree savanna on calcareous, alluvial soils (Mapaure 1994) with C. mopane trees attaining

heights of up to 10 m in dryland situations in VLNR (O'Connor 1983).

Physiology

Colophospermum mopane is slow-growing (0.66 mm radial increment an'l - O'Connor 1999) and

adapted to drought conditions (Sharma et al. 1989): with (1) seeds capable of germinating at

water potentials as strongly negative as -1.0 Mpa at 30 QC (Choinski & Tuohy 1991, Johnson et

al. 1996); (2) adults extracting moisture at potentials of-1.5 Mpa (Smit 1994); and (3) significant

stimulation ofhypocotyl (Choinski & Tuohy 1991) and root (Johnson et al. 1996) elongation in

response to water deficits. Temperature has little effect on percent germination unless seeds are

subjected to negative water potentials, in which case the optimum temperature for germination
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is 25 QC (Choinski & Tuohy 1991). Successful germination under stressed conditions when

previously imbibed in distilled water (Choinski & Tuohy 1991) correlates with the apparent lack

of seed dormancy (Smit & Rethman 1998b).

Colophospermum mopane 's high root biomass, shallow root system (66 % offine roots,

< 5 mm, occur within 400 mm ofthe soil surface) (Smit & Rethman 1998a) and ability to utilize

soil water at amatric potential lower than herbaceous plants (Smit 1994) suggest a physiological

adaptation to xeric conditions (Prior 1991) and heavier textured soils (Cole 1986; Fraser et al.

1987), and may explain the absence of herbaceous plants, the low species diversity (Mapaure

1994) and severe inter-tree competition for water and nutrients (Smit & Rethman 1998b) over

vast areas of densely wooded Mopani Veld.

The availability of browse within the Mopani Veld is at its lowest from September to

November, owing to the winter-deciduous nature of the dominant species, C. mopane (Dekker

& Smit 1996). Trees lose their leaves earlier and flush later in densely wooded plots relative to

low-density plots (Smit 1994).

Value

Colophospermum mopane is an ecologically and economically important plant species. Its timber

is durable, hard and heavy (1 216 kg/m3
) (Van Wyk 1972), extensively used for mine props,

railway sleepers (Coates Palgi-ave 1983), fencing posts (Mapaure 1994) and firewood (Prior &

Cutler 1992). The bark is used medicinally and for tanning (5.9 - 8.7 % tannin) (Van Wyk 1972).

Colophospermum mopane has a high phosphate and calcium content (crude protein = 13.6%,

crude fibre = 21.1 % and carbohydrate = 54.3% - Williamson 1975) and the ash can be used as

fertilizer (Van Wyk 1972).

The long leaf-carriage period of C. mopane relative to other species in the Limpopo

valley (Dekker & Smit 1996), underlies its importance as a fodder resource for livestock

(Bonsma 1942), and wildlife, especially elephant, making up the greater portion of their diet

where it is abundant (South Africa - Pienaar et al. 1966; Smallie & O'Connor 2000; Zambia­

Lewis 1991; Zimbabwe - Jarman 1971; Guy 1976). Elephant feeding behaviour depends on tree

size, influencing both the physiognomy and demography ofC. mopane woodlands (Lewis 1991).

A selection for pollarded or coppiced individuals rather than adult trees (Lewis 1991), perhaps
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owing to a larger portion of branches within the preferred browse size (Smallie & O'Connor

2000) and improved nutrient quality (Styles & Skinner 2000), prevents recruitment into the taller

size classes (Caughley 1976) thereby promoting C. mopane scrubland and increasing browse

availability for other herbivores. Although elephants encourage coppicing, the long-term

survivorship ofcoppiced trees may depend on the soil nutrient reserves in the A horizon (Lewis

1991).

Caterpillars ofImbrasia belina are capable ofdefoliating vast stands of C. mopane trees,

substantially reducing the dominant food source required by other browsers in the summer

months (Styles & Skinner 1996). Commonly known as 'mopane worms', they live exclusively

on the leaves and are a protein-rich delicacy, sought after by people (Styles & Skinner 1996) and

baboons (personal observation).
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Chapter 5

Patch dieback of Colophospermum mopane in a dysfunctional semi-arid African

savanna

Introduction

Savanna, an extensive biome ofAfrica, covers a third ofSouth Africa. Plant-available water and

nutrients are primary detenninants of savanna structure and function, whose influence may be

modified by fire and herbivory (Frost et al. 1986). Whilst the influence ofthese detenninants on

the dynamics of herbaceous vegetation has been well researched because of economic

considerations (e.g. O'Connor 1985), understanding of their effect on the dynamics of woody

vegetation is relatively fragmentary. The increasing demand for goods and services offered by

the woody component ofsavannas (Shackleton 1996) demands a detailed understanding of the

mechanisms driving change in savanna woodlands.

Mortality is one offour fundamental demographic parameters (others are reproduction,

immigration and emigration) driving community change (Watkinson 1997). Apart from affecting

population dynamics, mortality oflong-lived trees may modify biodiversity (Huston 1994) and

ecosystem functioning (Solbrig et al. 1996). Consequently, the phenomenon ofextensive dieback

may constitute a major ecological perturbation, incurring substantial ecological and economic

costs. Dieback of trees is a worldwide phenomenon, having increased in magnitude and extent

since the turn of the century with unprecedented losses occurring in Australia, North America

and industrialized Europe (Heatwale & Lawman 1986). Death of large stands is commonly

associated with the dominant woody component, such as Eucalypt and Acacia in Australia

(Fensham & Holman 1999). The causes vary in different geographic regions and are often

speculated as synergistic combinations ofmore than one factor (e.g. Bunyard 1986). Suggested

causes ofdieback are: insect outbreaks (Haugen & Underdown 1990); fungal diseases (Crombie

& Tippett 1990); climatic fluctuations (Watt 1987); shifts in geomorphologic or hydrologic

gradients (Jimenez et al. 1985); air pollutants (Woodman 1987); salinity (Jolly et al. 1993);

changes in land-use (Trenbath et al. 1990); and drought (Viljoen 1995; Fensham & Holman

1999). There are, however, few reports concerning dieback in African savannas: dieback of
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Acacia xanthophloea has been attributed to both a raised ground water table and increased soil

salinity following a period ofhigher rainfall (Western & van Praet 1973), and to senescence of

even-aged stands (Young & Lindsay 1988).

A diverse array of mortality agents of African savanna trees has been identified: fire

(Trollope 1982); debarking (e.g. porcupine, Thomson 1974) in conjunction with fire (Yeaton

1988); frost (Srnit 1990); intensive herbivore browsing (e.g. Pellew 1983b; Stuart-Hill 1992b)

in conjunction with fire (Trollope 1982); lightning (Spinage & Guiness 1971); and drought

(Scholes 1985; O'Connor 1999). The extent of drought-induced mortality, of usually smaller

individuals, depends on soil type (Scholes 1985; O'Connor 1999), density (Smit 1994), and

species identity (O'Connor 1999). Mortality has not been shown, however, to occur as discrete

patches admixed within healthy vegetation.

The continued availability of soil water is required for the persistence of long-lived

species (Tongway & Hindley 1995). The effectiveness of rainfall in supplying plant-available

water is influenced by soil texture (Brady & WeiI1996), evaporative demand, and topographic

effects on landscape water redistribution (Coughenour & Ellis 1993). Vegetation cover,

topography and slope determine the effectiveness ofrunoffat removing litter and eroding topsoil.

On bare soils, runoff occurs as sheet flow on smooth slopes < 0.5%, but as high energy

channelled flow when the gradient is steeper, which can cause rills and gullies (Ludwig &

Tongway 1997). Rills redistribute surface flow resulting in greater plant production on run-on

sinks compared with runoff-source zones (Hodgkinson & Freudenberget 1997). Landscapes

incapable ofefficiently capturing and retaining water and nutrients, often characterized by broad

expanses ofbare soil surfaces, a lack ofperennial plant cover and severe soil erosion, are termed

dysfunctional (Tongway & Ludwig 1997).

Colophospermum mopane is normally found in low altitude (400 - 700 m), low rainfall

(200 - 800 mm an· l
) areas of southern Africa (Mapaure 1994) occurring usually as an almost

monospecific woody component. Monitoring ofC. mopane woodland in the Northern Province,

South Africa, between 1982 and 1997 had revealed drought-induced mortality and extensive

dieback (O'Connor 1999). This example offered an opportunity for increasing understanding of

a poorly understood, infrequent and relatively recent biological phenomenon. The specific

objectives were the following: (1) describe quantitatively this case ofpatch dieback, (2) establish

ifdensity effects influenced dieback, (3) test the hypothesis that patch dieback is a consequence
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ofthe senescence ofa cohort (Young & Lindsay 1988), (4) assess whether soil type and drought

were strong abiotic controls of dieback and, if so, what landscape-level factors had influenced

that effect of drought such that patch dieback rather than another pattern of mortality had

occurred, (5) test whether soil salinity was implicated in patch dieback (Western & van Praet

1973), and (6) test whether dieback was a consequence of localized reductions in soil water

resulting from increased soil erosion, following the establishment oflivestock ranches 50 years

ago (O'Connor 1996). Erosion could influence soil water availability through ·its effect on

runoff/run-on processes and by decreased water retention because of impaired soil surface

condition (Tongway & Hindley 1995). In this study, patch dieback is differentiated from

mortality by its localized distribution pattern within healthy vegetation and described as the

synchronous mortality ofneighbouring trees.

Methods

Data collection

A comparative approach was employed in 1998 in which areas of discrete dieback (all < 1 ha)

were compared with adjacent paired plots of 'healthy' vegetation of apparently similar

topography and soils. Forty sites of discrete patch dieback distributed over the full range of

topographic units (crest to alluvial toeslope) (Figure 5.1) were selected. Plot size was 20 by 20

m. The distance between paired plots ranged from 23 m to 150 m with a median of 45 m. The

general approach was to measure the vegetation of paired plots, specifically population size

structure, stem and tree mortality, with associated measures of variables that may affect tree

mortality, namely soil water availability and soil chemistry. An inherent problem of a

retrospective study of an event such as dieback is to obtain measures of both vegetation and

potential causal agents of tree mortality that reflect circumstances as they were at the time of

dieback. It is possible that differences between paired plots for some variables could arise as a

response to mortality.

Dieback took place following the 1988/89 and 1991/92 droughts because it was not

evident following the 1982/3 drought, but was apparent by 1991 and was readily evident by 1996

(T. G. O'Connor, personal observation). The decay of standing dead trees (lack of bark shed,

amount of fine branches lost) was consistent with mortality circa 1991/92 using criteria for

ageing dead C. mopane trees (Appendix 1).
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moderate to steep slope moderate siope
slight slope

Mountain/Crest Transportational Upper colluvial
midslope footslope

moderate to slight
slope

Middle cOlluvial footslope

moderate
slope

Lower colluvial
footslope

moderate to slight
slope
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Figure 5.1 A generalized valley-side cross section (catena) showing most of the topographic

units (defined by slope and relative location) encountered on the Venetia-Limpopo Nature

Reserve. Terms relating to source, transfer and sink denote the functioning of a site in terms of

surface redistribution ofwater and materials that would have prevailed prior to historical erosion

(past ecological status). The numbers in parentheses indicate the number ofsites assigned to each

rank ofpast ecological status.

Measures of woody vegetation were species, height to the uppermost living and dead part of a

tree, stem circumference (20 cm above ground level) and growth state (dead or alive) of each

stem per tree. Dieback for each 'live' and 'dead' plot is the ratio of dead to total basal area, and

for all 'live' or 'dead' plots is the number of trees with dead stems or the number of dead stems

for each class of stem number per tree. Size, rather than age classes, are used to describe

population structure because age can not be substituted for size in semi-arid systems owing to

the effects offire and herbivory (e.g. Pellew 1983), and the variable growth rates ofsimilar-aged

trees associated with the spatial and temporal heterogeneity of resources.

Slope was estimated using an electronic level (Leica Wild 3000). Each ofthe following

abiotic variables were measured as the mean of four 10 by 10 m quadrants ofa 20 by 20 m plot.

Surface water retention capacity (SWRC) was assessed using a 12 point ordinal scale

adapted from Tongway and Hindley (1995) for this study (Table 5.1). Litter should affect SWRC

(e.g. Kelly & Walker 1976), and was therefore included in the ranking procedure. 'Live' plots

stood the risk ofbeing assigned higher SWRC ranks owing to the occurrence oflitter on those

plots. Consequently, the ranking procedure was adjusted to reduce the bias by increasing the



Table 5.1 Surface water retention capacity (SWRC) rallkings

Description Class Litter Cover (%) Extent of Litter/Soil Incorporation

smooth surface, capping, 0.5 0-5% litter cover loose litter, i.e. nil incorporation
very little sediment on soil surface 1.0 6-10% litter cover if site>10% litter cover, then if the litter is moderately incorporated

increase class mnking by 0.5 with the soil, increase ranking by 0.5
intermediate 1.5 if site>10% litter cover, then if the litter is moderately incorporated

increase class ranking by 0.5 with the soil, increase ranking by 0.5
flakey surface, cracks present, 2.0 11-25% litter cover if site >25% litter cover, then if the litter is moderately incorporated
hoof action, broken cap increase class ranking by 0.5 with the soil, increase ranking by 0.5
intermediate 2.5 if site >25% litter cover, then if the litter is moderately incorporated

increase class ranking by 0.5 with the soil, increase ranking by 0.5
uneven surface/relief, closed 3.0 26-50% litter cover if site >50% litter cover, then if the litter is moderately incorporated
depressions (0-2.5 cm) increase class ranking by 0.5 with the soil, increase ranking by 0.5
intermediate 3.5 if site >50% litter cover, then if the litter is moderately incorporated

increase class ranking by 0.5 with the soil, increase ranking by 0.5
partially or fully sedimented rills 4.0 51-75% litter cover if site >75% litter cover, then if the litter is moderately incorporated
(2.5-10 cm) increase class ranking by 0.5 with the soil, increase ranking by 0.5
intermediate 4.5 if site >75% litter cover, then if the litter is moderately incorporated

increase class ranking by 0.5 with the soil, increase ranking by 0.5
partially or fully sedimented rills 5.0 76-90% litter cover if the litter is moderately incorporated
(>10 cm) with the soil, increase ranking by 0.5

5.5 91-100% litter cover litter has a moderate contact with the soil
6.0 lOO% litter cover litter has an intimate contact with the soil

lJ,.l
+::0.
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original SWRC ranking only ifthe observed litter cover exceeded the value already assigned to

that class. It was assumed that rills, in which sand had subsequently been deposited, increased

SWRC thereby improving plant-available water for adjacent trees by gaining runoff from up

slope and promoting water transfer into the soil profile, unlike compacted surfaces which are

more conducive to shedding of water.

Erosion severity (ES) was ranked using a seven-point ordinal scale adapted from

Tongway and Hindley (1995) (Table 5.2).

Table 5.2 Erosion severity (ES) rankings

Class Severity Criteria

4.0 insignificant a substantial herbaceous cover and/or litter accumulation,
or no visible signs of surface flow

3.5 same characteristics as defined in class 4,
but with additional pedestalling and weak sheeting

3.0

2.5

slight sheeting, scalding and pedestalling is moderate

terracettes with rounded edges and shallow walls,
sheeting, scalding and pedestalling is severe

2.0 moderate same characteristics as defined in class 3,
and/or terracettes with substantial walls, shallow rills

1.5 sedimented rills and gullies, weathered walls,
sheeting half exposing gravel and revealing extensive pedestals

1.0 extensive rills and gullies exposing roots, bedrock and/or steep walls,
sheeting fully exposing a loose, stoney matrix

Ecological status (Est) describes whether a plot functions as a net source or sink ofsediment and

water taking into account the effect ofgeomorphic processes and topographic position. Each plot

was assessed for past and current ecological status, using a seven-point ordinal scale (Table 5.3).

The assessment of current status focussed on the 20 by 20 m plot and its immediate surrounds,

whereas past ecological status assessed the flow of sediment and water across the plot that was

likely to have occurred prior to the advent of extensive rill and gully erosion, depending on

landscape position. Change in ecological status from erosion was the difference between past and
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current rankings. Aerial photography (1955 - 1987) revealed that gully erosion associated with

the dieback sites preceded the death of trees but had occurred post 1955, that is, post the

establishment of trees.

Table 5.3 Ecological status (Est) rankings

Class

3

Status

sink

Description

rills leading into and ending in a particular site
signs of deposition only
net gain of sediment, no loss

2 sink tending to transfer slight loss of sediment, but overall a net gain

1 transfer tending to sink slight gain of sediment, i.e. runon
rills passing on the outskirts and/or through a site

o transfer signs of flow and deposition
net gain of sediment = net loss

-1 transfer tending to source slight loss of sediment, i.e. runoff

-2 source tending to transfer slight gain of sediment
rills originate from within a site and lead out of it

-3 source signs of flow only
net loss of sediment, no gain

The exposure of the surface of 'dead' plots since mortality may have resulted in exaggerated

ranks, but this bias was consistent for change in ecological status.

Soil physical and chemical characteristics ofboth topsoil (0 - 200 mm) and subsoil (400 -

. 600 mm) were evaluated for each plot. Soil texture was analysed using the hydrometer method

(Gee & Bauder 1986), pH (H 20) was measured using a glass electrode pH meter (Crison

micropH 2000), and the exchangeable cations (Na+, Ca++, Mg++, and K+) were determined by

extraction with strontium (using 0.1 M strontium chloride) (Hughes & Girdlestone 1994) and

expressed in meq/l. The sodium adsorption ratio (SAR) was calculated using the equation from

United States Salinity Laboratory Staff(1954) (Na/sqrt(Ca/2+Mg/2)) and gives an indication of

soil sodicity and thus the potential of a physiologically induced drought. Total exchangeable

cations (TEC) was calculated as the sum of the concentrations ofNa, Ca, Mg and K.
,
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Data analysis

Differences between 'live' and 'dead' plots for biotic and abiotic variables were tested using

paired t-tests; for tree height distribution using a Kolmogorov-Smirnov test; for independence

of categories using X2
• Classes containing fewer than five stems or trees were combined in the

analyses using X2
. Differences among soil types or topographic units were examined using

Kruskal-Wallis or parametric ANOVA, depending on data properties. 'Live' and 'dead' plots

were analyzed separately. A logistic regression was performed to test whether the probability of

mortality on 'dead' plots depended on stem circumference, soil type, and their interaction.

To assess whether dieback had changed the nature of self-thinning (log of mean plant

weight and the log ofplant density) the relationship between individual plant size (volume) and

stem density was examined. Density was expressed as the number ofstems per unit area, owing

to the multi-stemmed growth habit of C. mopane. Plant weight, because it is a cubic function of

length, was indexed as the volume of a sphere using stem radius. It was considered acceptable

to use the radius of trees that had died some years earlier because direct measures had shown

radial growth to have been minimal over this period (O'Connor 1999). A weight correction was

applied by multiplying by the wood density of C. mopane (1.25 g cm-3
) (Venter & Venter 1996).

The relationship between plot dieback, expressed as the percent loss ofbasal area (square­

root transformed as indicated by a Box-Cox analysis), and those independent variables found to

be significantly different between 'live' and 'dead' plots, was examined with multiple linear

regression. The standardized variables were mean tree height, change in ecological status,

SWRC, ES, pH (subsoil), texture (topsoil), SAR (subsoil), TEC (subsoil), number ofstems, basal

area of C. mopane and basal area ofSalvadora angustifolia. On account of 66% ofall fine « 5

mm) C. mopane roots being found within 400 mm ofthe soil surface (Smit & Rethman 1998a)

in this study area, cation concentrations implicated in dieback were likely to be encountered in

this layer, and was the reason for including subsoil values in the regression. The order of entry

of variables into the model was judged according to R2 (adjusted) accounted for and reduction

in S2. Only significant main effects (P < 0.05), as there was no evidence of interactions, were

included in the final regression. The only site located in riparian vegetation exerted undue

leverage on the model and was therefore excluded.
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Results

Patterns of dieback

The number of stems per tree ranged from 1 - 11 and 1 - 16 on 'live' and 'dead' plots,

respectively. One third ofthe trees had single stems, two- and three-stemmed trees collectively

accounted for half of the population of stems, and trees consisting of more than six stems

contributed < 2% to the total population oftrees. Across the classes ofstem number per tree, the

frequency of trees (Table 5.4) was independent of(X2 = 9.32, df= 7,0.25> P > 0.10), whilst the

frequency ofstems (Table 5.5) was dependent (X2 = 101.2, df= 10, P < 0.001) on 'live' or 'dead'

plots.

On 'live' plots, 27% of trees had dead stems, and 17% of stems were dead. In contrast

on 'dead' plots, 89% oftrees had dead stems and 86% ofstems had died. Mostly entire trees died

on 'dead' plots, whilst single-stem diebackprevailed on 'live' plots (Table 5.4). Dieback and tree

mortality was related to the number of stems per tree. The frequency of trees with dead stems

('live': X2 = 320.56, df=6, P < 0.001; 'dead': X2 = 19.81, df= 5, P < 0.005) and the frequency

ofdead stems ('live': X2 = 29.34, df= 8, P < 0.001; 'dead': X2 = 393.23, df= 8, P < 0.001) were

associated with stem number per tree. Although 69% of six-stemmed trees had dead stems on

"live' plots, tree mortality was only 1.6% compared with 12.5% for single stems. Similarly on

'dead' plots, 10% fewer five- and six-stemmed trees died than single- or two-stemmed trees

(Table 5.4). Consequently, dieback increased and tree mortality decreased with increasing stem

number per tree on both 'live' and 'dead' plots. The frequency of trees with dead stems (Table

5.4) and of dead stems (Table 5.5) on 'live' and 'dead' plots were also proportional to the

respective abundance (live plus dead) of trees and stems over the range in the number of stems

per tree ('dead': r = 0.99, df= 11, P <0.001; 'live': r = 0.83, df= 9, P < 0.001).

Dieback of stem basal area ranged from 1 to 49% and 55 to 100% on 'live' and 'dead'

plots, respectively. Overall mean canopy dieback was 88 ± 1.6% on 'dead' plots, whilst only 14

± 1.9% on 'live' plots. The three woody species other than C. mopane encountered on the plots

collectively accounted for, on average, 5%· of woody basal area, confirming the almost

monospecific nature of these woodlands.



Table 5.4 The frequency oflive plus dead Colophospermum mopane trees and stems and the percent of trees with dead stems for each class of stem

number per tree on 'live' and 'dead' plots. The combined area of 4020 m by 20 m plots is 1.6 ha

'Live' plots
Number of stems per tree

1 2 3 4 5 6 7 8 9 10 11 Total

Number of trees 1054 821 537 272 120 61 14 4 5 1 1 2890
Percent of trees 36.5 28.4 18.6 9.4 4.2 2.1 0.5 0.1 0.2 0.0 0.0 100
Number of stems 1054 1642 1611 1088 600 366 98 32 45 10 11 6557
Percent of stems 16.1 25.0 24.6 16.6 9.2 5.6 1.5 0.5 0.7 0.2 0.2 100

Number dead stems Percent of trees with dead stems
1 12.5 14.1 26.6 31.3 26.7 32.8 21.4 25.0 40.0 100.0 0.0
2 9.6 2.8 11.0 10 29.5 21.4 0 20.0 0.0 100.0
3 8 1.8 7.5 4.9 7.1 25.0 40.0 0.0 0.0
4 5.5 0.8 0.0 0.0 25.0 0.0 0.0 0.0
5 1.7 0.0 7.1 0.0 0.0 0.0 0.0
6 1.6 0.0 0.0 0.0 0.0 0.0

Total 12.5 23.8 37.4 49.6 46.7 68.9 57.1 75 100.0 100.0 100.0
Percent of all trees 4.6 6.7 7.0 4.7 1.9 1.5 0.3 0.1 0.2 0 0

'Dead' plots
Number of stems per tree

1 2 3 4 5 6 7 8 9 10 11 13 16 Total

Number of trees 558 479 319 162 74 25 12 6 2 1 2 1 1 1642
Percent of trees 34.0 29.2 19.4 9.9 4.5 1.5 0.7 0.4 0.1 0.1 0.1 0.1 0.1 100
Number of stems 558 958 957 648 370 150 84 48 18 10 22 13 16 3852
Percent of stems 14.5 24.9 24.8 16.8 9.6 3.9 2.2 1.2 0.5 0.3 0.6 0.3 0.4 100

Number dead stems Percent of trees with dead stems
1 85.7 3.5 1.3 3.7 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 85.8 2.8 4.9 4.1 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 88.7 1.2 5.4 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 85.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 74.3 4.0 0.0 16.7 0.0 0.0 0.0 0.0 0.0
6 76 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 83.3 16.7 0.0 0.0 0.0 0.0 0.0
8 66.7 0.0 0.0 0.0 0.0 0.0 VJ

\0
9 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 100 0.0
Total 85.7 89.4 92.8 95.1 89.2 96.0 83.3 100.0 0.0 0.0 0.0 100.0 0.0
Percent of all trees 29.1 26.1 18.0 9.4 4.0 1.5 0.6 0.4 0.0 0.0 0.0 0.1 0



Table 5.5 The number of Colophospermum mopane stems (live plus dead) for each class ofstem number per tree, compared with the number ofdead

stems on 'live' and 'dead' plots. Stem mortality was expressed as a percent of the stems within each class and a percent of the total number oflive

plus dead stems

'Live' plots
Number of stems per tree

1 2 3 4 5 6 7 8 9 10 11 Total
Number of stems 1054 1642 1611 1088 600 366 98 32 45 10 11 6557
Number of dead stems 132 274 302 220 97 71 17 8 10 1 2 1134
Percent of class 12.5 16.7 18.7 20.2 16.2 19.4 17.3 25.0 22.2 10.0 18.2
Percent of all stems 2.0 4.2 4.6 3.4 1.5 1.1 0.3 0.1 0.2 0.0 0.0 17.3

'Dead plots

Numb er of stems per tree

1 2 3 4 5 6 7 8 9 10 11 13 16 Total
Number of stems 558 958 957 648 370 150 84 48 18 10 22 13 16 3852
Number of dead stems 478 839 871 580 297 129 70 40 0 0 0 10 0 3314
Percent of class 85.7 87.6 91.0 89.5 80.3 86.0 83.3 83.3 0 0 0 76.9 0
Percent of all stems 12.4 21.8 22.6 15.1 7.7 3.3 1.8 1.0 0 0 0 0.3 0 86

.j::>.
o
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Abiotic variables influencing dieback

Topography, soil type and slope did not explain dieback. Variation in mean dieback on the upper,

mid and foot slopes was only 12 - 14% and 86 - 93% on 'live' and 'dead' plots, respectively.

Although less dieback occurred on crests (7% and 83% on 'live' and 'dead' plots, respectively),

dieback did not differ among topographic units on 'live' (F = 0.45, df= 39, P = 0.722), 'dead'

(F = 0.9, df= 39, P = 0.449) or all plots (F = 0.05, df= 79, P = 0.986). Nor did dieback differ

among soil types on 'live'(F = 0.93, df= 39, P = 0.438), 'dead' (F = 0.93, df= 39, P = 0.434)

or all plots (F = 0.01, df= 79, P = 0.998) with mean dieback among soil types (across all plots)

varying by-only 2.5%. Slope, which varied by only 3.03% « 3.07%), did not differ between

'live' and 'dead' plots (Table 5.6).

'Live' and' dead' plots did not differ in past Est, in support ofappropriate criteria having

been used for pairing of sites, but they differed markedly in current Est (Table 5.6). Plots were

originally functioning, on average, as transfer zones with a slight tendency to act as sinks of

water and sediment. The current average Est for 'live' plots was similar to that described for

average past Est, but that of 'dead' plots revealed they function as a transfer zone tending to a

source. The change in Est reveals that both 'live' and 'dead' plots have, on average, become

more dysfunctional, but the extent of change on the 'dead' plots is three fold that of the 'live'

plots (Table 5.6), having altered 'dead' plots from receiving water and sediment to sources of

these. If a greater than average change in Est had occurred on the 'dead' plots then the same

could be expected of the 'live' plots (r = 0.74, df = 38, P < 0.001). The major cause of this

change has been the interception of surface water by recently formed « 45 years) rills, gullies

and roads, located up slope and perpendicular to the flow ofwater. The transformation of a plot

from receiving to losing water and sediment would reduce the amount ofwater retained for the

persistence of long-lived trees.

Erosion severity and SWRC were, respectively, greater and lower on 'dead' than on 'live'

plots (Table 5.6), and SWRC was negatively correlated with dieback (Figure 5.2), all evidence

that a deficiency of soil water was an agent of dieback. The greater SWRC of 'live' plots,

correlated with current Est (Table 5.7), underscores their functioning as sinks. The greater

proportion ofclay plus silt particles on 'dead' plots (Table 5.6) would have further reduced water

availability during drought.



Table 5.6 Summary of the results from paired t-tests (n = 40) of variables describing vegetation structure and variables potentially responsible for

dieback. Estimates of basal area include live plus dead stems

Variable Live Plots Dead Plots t value P
Mean SE Mean SE

Vegetation Variables
Stem Basal Area Dieback (%) 13.0 1.6 87.0 1.7 36.72 0.000
Tree Height (m) 3.7 0.19 3.2 0.14 3.4 0.001

Range for tree height (m) 5.3 0.29 4.3 0.25 4.1 0.000

Stem Circumference (cm) 23.0 l.l 25.0 1.0 1.4 0.162

Range in stem circumference (cm) 65.0 3.9 58.0 3.9 1.4 0.080

Total Number of Stems (per plot) 164 12 96.0 6.0 6.2 0.001

Stem Basal Area of C. mopane (m2/ha) 19.0 0.7 13.0 0.7 8.4 0.001

Stem Basal Area of S. angustifolia (m2/ha) 0.3 0.1 0.8 0.17 2.3 0.050

Stem Basal Area of Boscia spp. (m2/ha) 0.5 0.15 0.4 0.1 0.7 0.520

Stem Basal Area of1. austrinum (m2/ha) 0.08 0.029 0.02 0.008 1.9 0.060

Stem Basal Area of all species except C. mopane (m2/ha) 1.2 0.21 1.3 0.21 0.4 0.678

Relief
Slope (%) 1.2 0.09 1.2 0.10 0.31 0.750

Soil Condition
Surface Water Retention 3.0 0.18 1.7 0.11 7.9 0.001

Erosion Feature/Severity 2.3 0.14 2.7 0.10 3.1 0.010
Past Ecological Status 1.3 0.28 1.3 0.28 0.0 1.000
Current Ecological Status 0.7 0.J6 -1.2 0.16 8.0 0.001

Change in Ecological Status -0.7 0.30 -2.5 0.32 8.0 0.001

Soil Chemisty
pH Topsoil 7.4 0.12 7.1 0.12 5.0 0.001

Subsoil 7.3 0.11 7.0 0.1 5.2 0.001

Texture (sand:fines) Topsoil 2.7 0.56 2.2 0.36 2.2 0.050

Subsoil 3.2 1.19 2.0 0.5 1.8 0.070

Na (me/I) Topsoil 0.05 0.005 0.09 0.018 2.8 0.010

Subsoil 0.2 0.03 0.4 0.09 2.3 0.050 .j:>..
N

SAR Topsoil 0.02 0.002 0.04 0.009 2.7 0.010

Subsoil 0.06 0.011 0.13 0.03 2.3 0.030
TEC (me/l) Topsoil II 0.7 It 0.5 0.0 0.980
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Figure 5.2 Percent dieback of Colophospermum mopane in relation to surface water retention

capacity, including an exponential regression (,-2 = 0.45, n = 78, P < 0.001). The only site located

within riparian vegetation was excluded from the analysis.

The differences in soil chemistry (pH, TEC, SAR) between 'live' and 'dead' plots (Table 5.6)

are not large, possibly resulting from a change in nutrient cycling following mortality of C.

mopane trees on 'dead' plots; they were not related to textural variation (Table 5.7). Individual

cations (Ca, Mg and K) were not implicated in dieback. Although soils were not sodic, the two­

fold difference ofNa concentration between 'dead' and 'live' plots (Table 5.6) suggests the

probability that Na exacerbated the reduced soil water availability on 'dead' plots by inducing

a physiological drought. Subsoil TEC was a justifiable surrogate for individual cations (for

inclusion in the regression model) considering it was correlated with all the subsoil cations

(Table 5.7). Similarly, the SAR was highly correlated with Na levels (Table 5.7).



Table 5.7 Selected significant (P < 0.001) and non-significant (bold values, P> 0.05) correlations (Pearson's r) between site variables meaningful to

dieback.. Column numbers represent site variables

Site Variable

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Dieback (%) 1 1.00
Mean stem circumference (cm) 2 1.00
Mean tree height (cm) 3 0.73 1.00
Basal area (c. mopane, m2/ha) 4 -0.51 0.68 1.00
Stem density (c. mopane, stems/plot) 5 -0.47 -0.72 1.00
Past Ecological Status 6 1.00
Current Ecological Status 7 -0.71 0.51 1.00
Change in Ecological Status 8 -0.44 -0.78 0.60 1.00
Surface Water Retention Capacity 9 -0.62 0.51 0.56 0.17 0.73 1.00
pH (Topsoil) 10 1.00
pH (Subsoil) 11 1.00
Texture (Topsoil) 12 0.49 0.45 -0.12 1.00
Texture (Subsoil) 13 0.58 0.45 -0.11 0.96 1.00
Total Exchangeable Cations (Subsoil) 14 -0.44 -0.46 -0.36 1.00
Sodium Adsorption Ratio (Subsoil) 15 -0.09 0.46 1.00
Sodium Adsorption Ratio (Topsoil) 16 0.90 -0.08 1.00
Na (Topsoil) 17 0.98 1.00
Na (Subsoil) 18 0.50 1.00 1.00
Ca (Subsoil)· 19 0.62 1.00
Mg (Subsoil) 20 0.79 1.00
K (Subsoil) 21 0.46 1.00

.j:::..

.j:::..
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Role of competition

Significant relationships between the log ofmean stem 'weight' and the log of stem density on

'live' (r = 75.9, F= 124.02, df= 39, P < 0.001) and 'dead' (r = 68.6, F= 86.15, df= 39, P <

0.001) plots prior to dieback (Figure 5.3a) provide evidence of self-thinning, whose slopes did

not differ (t = 0.239, df= 76, P> 0.5). Evidence, however, that intraspecific competition was not

responsible for patch dieback was a negative correlation ofpercent dieback with total basal area

and stem density of C. mopane (Table 5.7), and a greater stem density and total basal area on

'live' than on 'dead' plots (Table 5.6, Figure 5.4).
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Figure 5.4 Relationship between percent dieback and the total basal area (live plus dead stems)

of Colophospermum mopane stems on 'live' (squares) and 'dead' (circles) plots (n = 80).

The self-thinning relationship was still evident on live plots after dieback (r = 72.2, F = 102.14,

df= 39, P < 0.001) (Figure 5.3b) whose slope did not differ(t= 0.038, df= 76,P> 0.5) from that

before mortality. In contrast, no self-thinning relationship was apparent on 'dead' plots after

dieback (r = 5.9, F= 3.2, df= 35, P= 0.08) (Figure 5.3b). Change in log ofmean stem 'weight'

on 'live' plots ('weight' of [live plus dead stems]-[live stems]) was negligible (Figure 5.3c),
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Figure 5.3 Relationship between log of mean stem 'weight' and log of stem density (ha) for

Colophospermum mopane on 'live' (n =40) and 'dead' plots (n = 40), prior to dieback (a), after

dieback (b), and change in the log ofmean stem 'weight' relative to the log of stem density (c).
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and remained constant (b] = 0.015), irrespective of stem density (F= 0.19, df= 39, P = 0.665).

This negligible change is attributable to the low stem mortality. On 'dead' plots, however, a

significant negative (b] = - 0.868) linear relationship between change in the log of mean stem

'weight' and the log ofstem density (r = 11.0, F= 5.31, df= 35, P < 0.027) occurred, indicating

a greater mean individual size after dieback at lower stem densities.

There was no significant difference between' live' and 'dead' plots in the stem basal area

of other tree species combined (Table 5.6), refuting the possibility of inter-specific competition

accounting for mortality. Although stem basal area of S. angustifolia was almost three times

greater on 'dead' plots (Table 5.6), the species was absent on 38% ofthose plots, although there

was a correlation (r = 0.3, df= 78, P < 0.01) between its stem basal area and percent dieback of

C. mopane.

Population structure and dieback

'Live' and 'dead' plots had a similar mean stem circumference (live and dead trees) (Table 5.6).

Although 'live' plots had a greater range in stem circumferences than 'dead' plots, neither

consisted of even-sized stands, in contradiction of size-related senescence as a mortality factor.

Trees were generally taller with a greater range in height on 'live' plots than on 'dead' plots

(Table 5.6). The different (P < 0.001) tree height distributions of all trees (pre-drought) between

'live' and'dead' plots (Figure 5.5) does not necessarily suggest that certain population structures

were more predisposed to dieback than others considering there was only a 10% difference in the

upper quartile of tree height between 'live' (4.1 m) and 'dead' (3.7 m) plots. The tree height

distribution ofdead trees on 'dead' plots was not different (P > 0.10) from the distribution of all

trees on those plots prior to dieback (Figure 5.5).

Influence of soil type

Woodland structure and tree size depended on soil type. Differences among soil types on both

'live' (X2 = 143.0, df= 3, P < 0.001) and 'dead' (X2 = 129.4, df= 3, P < 0.001) plots and between

'live' and 'dead' plots on each (n = 4) soil type (P < 0.05, n = 137 to 1166) were evident for the

distribution of tree height. On 'live' and 'dead' plots, Valsrivier soils had the tallest trees (10 m

and 8.5 m, respectively) and greatest range in tree heights (9.8 m and 8.0 m, respectively), whilst

Dundee soils had the shortest trees (6.5 m and 5.0 m, respectively) and smallest range in tree
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heights (6.2 m and 4.5 m, respectively).

Basal area differed (F = 4.85, df= 39, P = 0.006) among soil types on 'live' plots only.

Basal area was highest (23.02 cm2 m-2
) on Dundee soils and lowest (15.51 cm2 m-2

) on Swartland

soils. No differences were evident for stem density, mean tree height, and mean stem

circumference.

Soil types differed in change in Est on 'live'(F = 4.92, df= 39, P = 0.006) and 'dead'(F

= 11.03, df= 39, P < 0.01) plots, ES (F = 5.46, df= 39, P = 0.003) on 'live' plots, and SWRC, '

on 'live'(F = 3.23, df= 39, P = 0.034) and 'dead'(F = 2.9, df=}9, P = 0.048) plots. Differences

among soil types in change in Est, ES and SWRC may be attributed to differences in texture on

'live' (F = 3.56, df = 39, P = 0.023) and on 'dead'(F = 4.13, df = 39, P = 0.013) plots. In

particular, Dundee and Oakleaf soils had a greater proportion of sand than Valsrivier and

Swartland soils. The coarse-textured soils had a lower ES, a greater SWRC and underwent less

change in Est, suggesting that fine-textured soils may be more susceptible to degradation and

patch dieback. The probability ofstem mortality on 'dead' plots (Table 5.8) was affected by soil

type (P < 0.001), but not stem basal area (P < 0.3) or their interaction (P < 0.5). Trees growing

on Oakleaf soils were less inclined to lose stems to dieback than trees growing on the other soil

types.

Table 5.8 A summary of the effect of soil type, basal area and their interaction on the logistic

regression of stem mortality

Residual df Residual Approximate
Deviance xP

null model 3819 3054
add soil type 3816 3026
change 3 29 < 0.001
add basal area 3815 3023
change 1 2 < 0.25
add soil*area 3812 3021
change 4 5 < 0.5

estimate SE t - critical P antilog of
estimate

constant -2.14 0.099 -21.74 < 0.001 0.12
Dundee -0.21 0.177 -1.17 0.243 0.81
Oakleaf 0.38 0.115 3.26 0.001 1.46
Swartland 0.01 0.141 -0.1 0.922 0.99



50

Regression model of dieback

The final regression model ofdieback explained 70% ofthe variation (Table 5.9). Dieback was

affected most by SWRC (48.5% ofthevariance), stern density accounted for an additional 8.23%,

whilst the remaining variables accounted each for 2-4% ofthe variance (Table 5.9). Dieback was

less with a greater stern density, with greater SWRC (Figure 5.2), and with least change in Est.

The poor correlation between stern density and SWRC (Table 5.7) was improved (r = 0.53, df

= 58, P < 0.001) when 'live' plots containing rills were excluded from the analysis, suggesting

that dieback may be related to an interaction between stern density and SWRC. Although dieback

was associated with decreased erosion, it should be noted that an increase in erosion severity was

associated with the occurrence of sedimented rills (Table 5.2) which were only found on 'live'

plots (mean rill size: 25 cm deep by 115 cm wide). Although rills constitute a more severe type

of erosion than sheeting, they may increase the availability of water to trees if sedimented,

thereby reducing percent dieback. An increase in pH reduced dieback, whilst plots with taller

trees experienced less dieback than plots with shorter trees (Table 5.9).

Table 5.9 Regression model ofpercent mortality (square-root transformed) ofColophospermum

mopane (,-2 = 70.4%, n = 78)

Discussion

Added variable

Water Retention Capacity
Stem Density
Erosion Severity
Change in Ecological Status
Average Height
pH (subsoil)

Coefficient

-0.9986
-0.0185
0.7278
-0.4246
-0.8881
-0.9549

AdjustedR2

48.47
56.70
61.08
63.10
66.85
70.43

2.243
2.056
1.949
1.898
1.799
1.699

Preconditions and causes of patch dieback

Patch dieback of C. mopane was a distinct phenomenon in this region (Figure 3.3, Table 5.5),

these patches having lost most of their woody biomass. Dieback has generally been associated

with the synergistic combination ofmore than one factor. A combination of anthropogenic and

natural factors were implicated in this study, which have in common a potential effect on the
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availability of soil water. The interpretation to be supported below is that patch dieback had

occurred where the availability ofsoil water had been impaired to a level incapable ofsustaining

the growth of C. mopane trees during the severe drought period of 1988 to 1992.

Dieback from the top ofthe tree canopy down on all plots indicated a soil water deficit,

exacerbated (up to 100% mortality) on 'dead' plots by local landscape-level factors identified

using multiple regression: a lesser ability of the soil surface to retain water; a change in

ecological status indicating areas receiving water and sediment changed to sources ofthese; and

the absence of rills indicated by less severe erosion (or large erosion severity rankings [Table

5.2]) compared with 'live' plots (Table 5.9). These variables all reflect a degraded soil surface

and subsequent shift in hydrologic gradients beyond C. mopane's threshold of stress (cf

Jimenez et al. J985). A consistent characteristic of 'dead' plots was the development of rills

adjacent to them that would have altered the previous pattern of surface water redistribution,

resulting in rapid drainage (runoff) rather than ponding and infiltration ofrun-on. Patch dieback

was therefore a symptom of a dysfunctional landscape (Tongway & Ludwig 1997) that became

manifested during a drought period.

The evidence of self-thinning prior to dieback (Figure 5.3a) indicates intra-specific

competition of C. mopane was operating. Although competition influences mortality through

self-thinning (e.g. Lugo & Scatena 1996, Fensham & Holman 1999) and inter-tree competition

was conspicuous during the drought in this study area (Smit 1994), it was judged not to be a

cause of patch dieback because 'live' plots had a greater stem density and a greater stem basal

area than 'dead' plots, and their self-thinning relationship was not different. The evidence ofself­

thinning suggests rather that inter-tree competition, most likely for soil water (Smit 1994), was

aprecondition for dieback. For 'dead' plots, the severe drought-induced dieback suggests intense

competition during the drought, heightened by the dysfunctional nature of these patches by

comparison with adjacent healthy patches. Inter-specific competition was not implicated in

dieback, perhaps owing to the almost monospecific nature of the C. mopane woodlands.

Monospecific or species-poor communities, such as C. mopane woodlands (Mapaure

1994), have a less variable threshold to stress (Jimenez et at. 1985; Walker 1995) than species­

rich communities, particularly if the dominant species has a narrow range of environmental

tolerances and is arranged along specific geomorphic and hydrologic gradients, which, when

altered, can trigger widespread dieback (Western & vanPraet 1973). Consequently, monospecific
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communities are more vulnerable to patch dieback than species-rich communities.

The inverse relationship of dieback with stern density (Tables 5.7 & 5.9) is not easily

explained. Tree sterns may have a similar effect to grass tussocks by intercepting rainfall,

impeding surface water flow, and channelling water into the soil (Freudenberger et al. 1997). The

high litter cover ofthese C. mopane woodlands (up to 42%)'(O'Connor 1999) is a critical control

ofinfiltration and runoff(Kelly & Walker 1976), that may depend on woodland density. A lower

woody density and therefore lesser litter cover (O'Connor 1999), would probably intercept less

rainfall and have more bare soil exposed to compaction by rainfall (Finlayson & Statharn 1980),

thereby reducing infiltration and increasing runoff (Greene et al. 1994).

The hypothesis that patch dieback may be a consequence of the senescence of a cohort

(Young & Lindsay 1988) was not supported as the distribution of dead trees on 'dead' plots

covered the range oflive tree heights prior to dieback (Figure 5.5). Tree survival on 'dead' plots

appears, however, to have favoured smaller individuals (Figure 5.5) whereas smaller individuals

had been the most likely to succumb to drought elsewhere in VLNR (O'Connor 1999).

Synchronous dieback of different-sized trees suggests the infringement of a species-specific

threshold, rather than a size-specific threshold.

The pattern of patch dieback of C. mopane illustrated that stands of heterogenous

structure are no less vulnerable to patch dieback than homogenous stands. Structural

homogeneity may render a woodland vulnerable to complete dieback by size-specific stressors

(Young & Lindsay 1988), whilst senescence or size-related death in a heterogenous stand would

be less noticeable. Mortality is often size-dependent (Huston 1994) because many ecological

responses of trees, including those with drought (O'Connor 1999), herbivores and fire (Pellew

1983b), are dependent on size. The proportion of individuals within a vulnerable range of tree

heights will therefore determine the extent or pattern of dieback. Plants of all sizes succumbed

in this example of dieback.

The hypothesis that soil salinity (Western & van Praet 1973) or soil sodicity may be

implicated in dieback was not upheld. The slightly higher sodium concentrations on some'dead'

plots may have predisposed them to dieback through physiological 'drought' compounding

natural drought, but dieback occurred on sites across a range ofNa concentrations.
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Landscape variation in dieback

Although dieback did not differ among topography, slope or soil type, Dundee and Oakleafsoils,

respectively, averaged the least dieback on 'live' and 'dead' plots. Similar fmdings were reported

by Fensham & Bolman (1999), viz. that least dieback occurred on alluvial soils and landscape

position had no significant effect on dieback. Apart from affecting population structure, soil type

had a greater effect on abiotic (change in Est, ES, and SWRC) than biotic variables (stem density,

mean tree height and mean stem circumference). The most likely explanation for its influence on

the abiotic variables, was the texture gradient that existed between the alluvial and palaeo-alluvial

soil types. The significant effect Oakleaf soils had on reducing stem mortality, combined with

the effect soil type had on the abiotic variables, suggests that percent dieback may be indirectly

related to soil type. Sampling of this study was restricted to where dieback had occurred, but C.

mopane was also the dominant species on sandy soils derived from gneisses or aeolian

sandstones (O'Connor 1992), on which no patch dieback was found. Sandy soils are not prone

to the formation of rills and maintain infiltration, even when cover is poor (Bames & Franklin

1970). At a broader landscape level, therefore, soil type was a key control on patch dieback.

Studies on rills have been concerned with water flow and have neglected to take into

account their potential influence on vegetation. The average slope of most sites exceeded 0.5%

and was therefore conducive to a channelled flow of runoff (Ludwig & Tongway 1997),

particularly as ground cover was sparse. Rills are usually considered to promote a loss ofwater,

but one form ofrill was observed to make water available to adjacent trees. Approximately 60%

ofthe 33 sites associated with rills had rills passing through the 'live' plots. Rills converge water

flow along concentrated routes and transport sediment from up slope (Finlayson & Statham

1980). Rills in 'live' plots were sedimented and characteristically had adjacent growing trees. It

is proposed that, if sedimented, rills increase plant-available soil water in areas immediately

adjacent to them, thereby influencing woodland dynamics in degraded systems. Roads placed

perpendicular to the surface flow ofwater functioned as rills by intercepting and removing water

to drainage lines. Consideration of the patterns ofredistribution ofoverland flow need therefore

to include (i) the placement of roads in drought prone areas and (ii) the influence of rills on

woodland dynamics in dysfunctional landscapes.
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Dieback: manifestation of a dysfunctional landscape

Concern regarding patch dieback lies not in the potential extinction ofC. mopane, as it is prolific,

but in that it signifies a dysfunctional system. Perhaps the single most important ecological

implication of a dysfunctional system is the irretrievable loss of topsoil. Dieback areas will

continue to be degraded unless erosion-control measures are implemented. Dead trees are

persistent and can remain standing for at least 24 years in dryland areas with a low and erratic

rainfall (Leuthold 1996) whereas they could be pushed over to obstruct overland flow and restrict

sediment loss. Arid areas with a history ofover-exploitation are potential candidates for dieback

and should constitute an obvious conservation focus.

The degradation of this system is coincident with the 50 year period of commercial

livestock ranching. Prior to ranching, the area formed part of a large, unfenced region occupied

by wildlife. Aerial photography (O'Connor, submitted) from the early time (1955) ofagricultural

occupation provides diverse evidence ofdegradation including the initiation and rapid expansion

of areas of bare soil, gullying, and desiccation ofhydromorphic grassland, indicated by a five­

fold increase in their woody cover. Much ofthe change was precipitated by the severe, extended

drought ofthe 1960's (Figure 3.3). There had also been a 20% increase in the cover ofC. mopane

woodland over this period (O'Connor 1983) leading to extremely dense woodland by the late

1980's in which inter-tree competition, as revealed by thinning experiments, was intense (Smit

1994). Botanical composition and condition of the soil surface (O'Connor 1983, 1999) are

consistent with a loss ofperennial grasses and an increase in bare soil. The fine-textured soils of

the study area are vulnerable to sealing and thereby shedding of water, as well as rill and gully

formation, rendering them drought prone. Drought proneness is exacerbated in some spots by Na

concentration.

The occurrence of patch dieback of C. mopane between 1988 and 1992 is therefore

interpreted as a consequence ofthe preconditioning ofthe system by an increase in C. mopane

and an increase in drought proneness through erosion on fine soils where texture and chemistry

predispose them to drought effects. Water received during non-drought years was apparently

sufficient for survival ofthese long-lived trees. Previous droughts (e.g. 1968, 1973 - Figure 3.3)

did not result in patch dieback ostensibly because the dieback areas were still functioning as sinks

of water and sediment (Table 5.6). Despite its drought tolerance (Prior 1991; Smit 1994) the

demand of C. mopane for water could not eventually be met by supply on degraded patches as
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they deteriorated, but could on immediately adjacent patches still functioning as run-on sinks.

A widespread model of the degradation of rangeland is an increase in the woody

component with an associated increase in soil erosion and decrease in water retained (Schlesinger

et al. 1990). This study indicates degradation can proceed another step in which the drought­

adapted woody species that had increased begin to decline.
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Chapter 6

Coppicing (stem recruitment) of drought-stressed Colophospermum mopane trees

Introduction

Colophospermum mopane is a key species where it occurs because people (Whitlow 1979;

Liengme 1983; Madzibane & Potgieter 1999) and browsers (Walker 1980) depend upon it for

their sustenance. However, despite its abundance (Mapaure 1994) and hardiness (Kelly et al.

1976), it has become an endangered species in some parts (Chikuni et al. 1996) owing to its

overexp10itation by people. Widespread mortality is often a combination of factors which act

synergistically to kill it (Lewis 1991; Chapter 5). Apart from removing the agents of mortality

which may not always be possible, an alternative approach to conserve the species would be to

gain an understanding ofits longevity and ability to tolerate the removal ofaboveground biomass

compared with other woody species.

Colophospermum mopane is a slow-growing tree on account of its hard wood density

(Enquist et al. 1999). O'Connor (1999) reported a mean annual radial increment of 0.67 mm for

the drought-stressed woody component of a C. mopane savanna. Although Prior and Cutler

(1996) recognised growth rings in drought-stressed C. mopane (average radial increments ranged

between 0.85 mm and 1.05 mm), they could not determine the age of trees because many stem

discs were hollow and ring width could not be correlated with rainfall. Mushove et al. (1995)

reported similar findings and identified inter-site differences (soil water and nutrient availability)

in growth rates.

A number of agents have been shown to cause mortality of individual C. mopane trees:

people (Chikuni et al. 1994), elephant (Ben-Shahar 1996) and drought (0'Connor 1999; Chapter

5). The ability of C. mopane to tolerate ringbarking (Kelly et al. 1976), stem breakage (Mapaure

& Mhlanga 1998) and burning (Walters 2000) may be explained by its ability to coppice

(Mapaure & Mhlanga 1998) and replace its former canopy with regrowth (Lewis 1986) following

the removal of its aboveground biomass. Although soil condition affects the trees ability to

coppice and therefore its tolerance to elephant feeding (Lewis 1991), elephant generally

encourage a multi-stemmed scrub morph (Styles & Skinner 2000). Fire also changes the structure
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ofwoodland communities (Stuart-Hill1992a). By killing the canopies ofsome woody plants fire

causes them to coppice from their stem bases which leads to an increase in the number ofwoody

plant stems per unit area (Pieterse & Boucher 1997; Walters 2000). Less is known, however,

about the response of C. mopane trees to drought, following the dieback of aboveground

biomass.

Colophospermum mopane exists as a single- and multi-stemmed tree in VLNR, with

some individual trees comprising up to 16 stems (Chapter 5). The objective ofthis study was to

determine the age ofeach stem ofmulti-stemmed trees using dendrochronological analysis and

examine whether stem recruitment ofC. mopane follows serious drought episodes or some other

disturbance event during which there is extensive dieback of the existing canopy.

Methods

Data collection

Stem circumference at ± 20 cm above the ground was recorded for each stem of forty multi­

stemmed trees on apparently similar topography (slope < 3.07%) and soils (alluvial and colluvial

deposits). Whole disc samples were taken approximately 20 cm from the base ofthe main stem

using a bowsaw. The number ofstems belonging to each tree was confirmed by exposing its root

system by excavation. Stem discs were polished on a belt sander with four grades of

progressively finer grit sizes (up to 1 200 grain size) to a high standard ofclarity. Two radii were

examined under a dissecting microscope with halogen bulb illumination at 15X magnification.

Data analysis

The stem size distributions of all trees were analyzed for approximate cohorts of stem

recruitment (similar-sized stems). Some stems were joined at the base, but measured separately.

Considering this particular growth form is likely to be the consequence of the original stem

forking, the period since its recruitment would be underestimated from the diameters ofthe two

separate stems. Consequently trees (n = 3) with the aforementioned growth form were excluded

from the analysis of stem size distributions.

Three additional 'multi-stemmed' trees were excluded from the analysis of stem size

distributions because the stems had been separated from one another on account of the fire in

1948, forming isolated individuals capable ofsustaining themselves. Evidence which indicated
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that stems were once part of a larger individual included the relative placement of burnt

appendages and the greater diameter of an individual stem's taproot relative to its own stem

diameter and the roots of adjacent stems.

Expected stem diameters were calculated for a period of 50 years (1948 to 1998) using

the estimated annual radial increments of C. mopane in drought prone areas from O'Connor

(1999) and Prior and Cutler (1996).

Results

Itwas impossible to determine the age ofC. mopane using dendrochronological analysis. Growth

rings were difficult to discern and many stems were hollow and/or had a dark heartwood. A tiny

creature (Family: Buprestidae) was observed in two of the stem sections sampled for

dendrochronological analysis and was suspected to be responsible for the hollowing of the

heartwood of C. mopane stems on which it feeds.

Although there was a large range in stem diameters and the number of stems per multi­

stemmed tree, variation (SE) about the mean was relatively small (Table 6.1). The maximum

distance between two stems of the same tree was 1 m. No single cohort of similar-sized stems

existed (Figure 6.1). However, stem diameter followed a normal distribution (Figure 6.2). Fifty

percent ofall stem diameters ranged between 5.4 cm and 8.6 cm, suggesting they were recruited

at approximately the same time following a speCific event. Fire scars attributed to the last

recorded fire in 1948 may account for the trees' multi-stemmed growth form and indicate that

most of the individual trees ofVLNR were greater than 50 years of age. Published figures of

stem increment (mm an-I) indicate that C. mopane stems can grow up to 8.5 - 10.5 cm in

diameter, and 6.7 cm in diameter during below-average rainfall years, over a 50 year period,

corresponding to the most abundant stem diameter classes (Figure 6.2).

Table 6.1 A summary of the stem diameters (n = 148) and the number of stems per multi­

stemmed Colophospermum mopane tree (n = 34)

Stem diameter (cm)
Number of stems per tree

Mean (SE) Median

7.2 ± 0.24 6.8
4.4 ± 0.43 4.0

Mode

6.4
5.0

Minimum Maximum

1.3 17.2
2.0 13.0
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Fire scars were observed below the soil surface in the 'bowl' of each multi-stemmed tree and

often extended into the roots, suggesting the last recorded fIre in 1948 was severe. Apart from

a high tolerance to fIre, the extent of the fIre scars suggests severe topkill.

The normal distribution of stem diameters suggests either a period of recruitment in

proportion to the longevity ofa disturbance or more likely different growth rates ofstems owing

to variable micro-site conditions and stem densities per tree, following a single disturbance event.

The frequency of stems with diameters> 16 cm (Figure 6.2) suggests topkill following the fIre

was not 100%. Although additional regrowth following the last recorded fIre might have been

attributed to dieback after drought episodes considering trees had not been browsed by elephant

or burned since 1948, drought episodes as recent as 1988/89 and 1991/92 did not induce the

simultaneous recruitment of regrowth (Figure 6.1).

A single-stemmed tree (diameter: 14.3 cm) had no fIre scars, whilst two adjacent multi­

stemmed trees did have fIre scars, suggesting the single-stemmed tree recruited after the fIre.

Consequently, stems with a diameter < 14.3 cm may have been recruited after the severe fIre of

1948. The diameters of those stems that were once joined ranged from 6.1 cm to 12.4 cm and

each had fIre scars.

Discussion

Although growth rates can be measured from the ring widths of C. mopane, (Mushove et al.

1995; Prior & Cutler 1996) the poor correlation between ring width and rainfall, and tendency

for stems to be hollow, make it impossible to accurately age this species. Nevertheless, published

fIgures of radial increment (Prior & Cutler 1996; Q'Connor 1999) for C. mopane suggest that

the majority of stems were recruited circa J948, that is following the last recorded fIre,

corresponding to the fIndings of Walters (2000), viz. that fIre increases stem density of C.

mopane.

It appears from this study that the clarity of growth rings and therefore ability to

determine mean radial increments varies between sites. The lack ofa relationship between ring

width and rainfall, and the ability to delineate clearly defIned growth zones may be attributed to

insuffIcient extremes in rainfall variation considering Scholes (1990) observed asignifIcant

increase in the annual stem increment ofC. mopane only when rainfall increased by twofold. The

effect of insuffIcient extremes in rainfall on tree growth may be more pertinent to hardwood
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species because they allocate more biomass to their stems than growth, compared with lighter

woods (Enquist et al. 1999). Consequently hard woods such as C. mopane may be less

responsive to rainfall variation than lighter woods.

Colophospermum mopane trees may be older than they appear, capable of persisting>

50 years by coppicing from the base of stems, thereby ensuring the longevity of an individual.

Although C. mopane produces seed, no dormancy appears to exist in mopane seeds (Smit &

Rethman 1998b) which seldom remain viable for more than one year (Jordaan & Wessels 1999).

Although only three of40 multi-stemmed trees split up to form independent individual stems as

a consequence offire in this study, coppicing from the base ofstems may be an additional means

whereby the species ensures its survival. Colophospermum mopane readily sprouts from

belowground stock on abandoned roads in Mopani Veld (personal observation). Consequently,

the longer longevity of viable belowground stock may serve to compensate for the absence of

seed dormancy, thereby ensuring the persistence ofthe species in areas abandoned for more than

one year.

Unlike fire, drought does not appear to induce the simultaneous coppicing of C. mopane

trees. This may be due to the physiological response of trees to drought compared with the

removal ofa tree canopy by agents which induce coppicing ofstems, such as elephant (Mapaure

& Mhlanga 1998) or fire (Walters 2000). Drought results in the dieback ofplant roots (Stasovski

& Peterson 1993) on account of insufficient soil water which decreases the amount ofwater and

nutrients transported upwards. Consequently, canopy dieback occurs because the existing root

system is insufficient to support the aboveground biomass of the tree. Available resources to

replace a canopy that was lost is therefore limited to a root system that is a fraction ofwhat it was

prior to the drought. In contrast, no restrictions are imposed on the resources available to replace

a canopy following its removal by either elephant or fire, because the entire root system is still

alive, although dieback of the root system is expected in the longer term on account ofa reduced

photosynthetic capacity. Drought is therefore a more severe agent ofdieback than either fire or

elephant, owing to a reduced root system and apparent inability to coppice and tolerate loss of

aboveground biomass.
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PART B: Acacia tortilis

Chapter 7

Acacia tortilis: life-history stages reviewed

Flowering

The timing and period ofA. torti/is flowering is related to rainfall (Haro & Oba 1993; Tybirk

1993) and occurs from November to January (Coates Palgrave 1983), peaking in the mid-wet

season (Du Toit 1990). Pod production follows in March until June (Coates Palgrave 1983).

Flowering is restricted to mature and over-mature trees (Pellew & Southgate 1984; Haro

& Oba 1993), thereby limiting seed production to trees taller than 1 m (Miller 1994a). Large (>

10 m diameter) canopies produce significantly more (64 times more) seed than small (4 - 6 m

diameter) canopies in Kenya (200 mm an-I) (Haro & Oba 1993). There is significant variation

in total pod production per tree and pod seed number between individual trees within local

populations of the same species (Tybirk 1993). The mean seed production for A. tortilis trees

(dbh: 6 - 20 cm, height: 3.4 - 8.0 m) in Senegal (400 - 600 mm an-I) was 14372 an-] (Tybirk

1993), considerably less than larger A. tortilis trees (150 000 seeds an-I) in Botswana (Tolsma

1989).

Acacia tortilis is largely selfincompatible, depending almost exclusively on outcrossing

(Tybirk 1993) rather than selfing. Pod set therefore dep'ends on how efficient pollen transfer is.

Acacia pollination is attributed mainly to insects, specifically wasps and bees, whilst butterflies,

flies and beetles are secondary pollen vectors, although they may dominate locally. Acacia

tortilis does not contain floral nectar, yet the diversity and frequency of insects visiting it does

not differ from species with floral nectar (Tybirk 1993). Despite conspicuous aggregates of

insects on the flowers ofsome species most African Acacia species have a remarkably low pod

: flower ratio (Ross 1979), only 5.5 % of A. tortilis inflorescences (0.13 % of the flowers)

develop fruit in Senegal (Tybirk 1993).

Browsers for which flowers constitute an important food resource during the dry winter

months have also been speculated as potential pollen vectors. The predominant browser of

flowers on Acacia trees appears to be giraffe and to a lesser extent kudu which feed on low-
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hanging branches, whilst smaller ungulates such as impala are unable to reach flowers on mature

trees (Du Toit 1990). Giraffe feeding onA. nigrescens in the Kruger National Park (590 mm an-I)

was attributed to characteristics pertaining to the inflorescence; palatable, undefended, pale

coloration, spicate structure and born in clusters on tenninal shoots, suggesting that one group

ofAfrican Acacias could be pollinated by ungulates (Du Toit 1990). Giraffe feeding onA. tortilis

was comparatively low, belonging to the second Acacia group adapted for pollination by insects;

bearing thorn-protected capitate inflorescences, many of which are a bright golden or orange­

yellow colour with short peduncles clustered close to the stem (Du Toit 1990).

Dispersal

Several facts confinn the co-evolution of indehiscent African Acacias (e.g. A. tortilis) with

ungulates, resulting in ungulate-adapted systems ofseed dispersal (Coe & Coe 1987) compared

with wind-dispersed species: pods contain more seeds (Tybirk 1993) with harder seed coats (Coe

& Coe 1987) than wind dispersed species and do not split,open on the tree, seeds remaining

'locked up' in nutritious and occasionally scented packages beneath the parent tree at a time

when other food sources are rare. Pods are browsed on the tree (giraffe) and on the ground (kudu

and impala) (Ben-Shahar 1991; Miller 1994a) potentially lowering soil seed banks under high

grazing pressures (Tybirk et al. 1992). Other factors influencing the seed bank of African

Acacias, apart from predation and dispersal, include annual seed production, germination, and

the affect of fire on breaking seed donnancy (Tybirk et al. 1992). Soil seed banks vary

significantly between and within species. Mean values reported for A. tortiZz's trees (0 - 81 seeds

m2
) are low relative to A. hockii in Kenya (mean = 2 439 seeds m2

) (Tybirk et al. 1992).

The main negative effect ofungulate dispersal is the destruction ofseeds during passage

through the buccal cavity and alimentary canal. The proportion of A. torti/is seeds destroyed

differs between species (Table 2.1). Despite substantial losses to mastication and digestion large

numbers ofseeds are dispersed per hectare per pod season (May to August): 1 636 ± 404,2952

± 644 and 18 900 ± 5160 for kudu, giraffe and impala, respectively (Miller 1996). Browsing

ungulates, specifically impala (Miller 1996), are the most important A. torti/is pod consumers,

others being bruchid infestation, rodents and tennites (Miller 1994a), however, anyone of the

aforementioned consumers may become locally dominant.
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Table 7.1 Proportion ofAcacia tortilis seeds destroyed following ingestion by different browse

speCIes

Proportion of seeds destroyed
(%)

100
19 - 95
72 - 90

46
92.3
92.1
90
59.7

Browser

duiker
goat
goat
sheep
impa1a
kudu
giraffe
elephant

Source

Miller (1995)
Tybirk et a1. (1992)
Miller (1995)
Tanner (1988)
Miller (1995)
Miller (1995)
Miller (1995)
Miller (1995)

In the absence of ungulate dispersal agents pods fall directly to the ground with fewer seeds

potentially germinating than ingested seeds on account of losses incurred through bruchid

infestation and rodent consumption (Miller 1994b). Approximately 3% of1000 seeds germinated

in the presence of ungulate dispersers (giraffe, kudu and impala) whilst only 0.3% germinated

in their absence, in the Northern Province, South Africa (620 mm an-I) (Miller 1994b). However,

germination and seedling survival were calculated in a laboratory, and therefore represent

optimal instead ofnatural conditions and only the fate ofmature pods were recorded. The mean

(±SD) daily population densities (no. ha-I) oflarge herbivores within the study site were: giraffe

1.01 ± 2.31; kudu 0.39 ± 1.53; and impala 1.18 ± 2.60 (Miller 1994b). Benefits related to

ungulate seed dispersal include: reduced bruchid infestation (Miller 1994b,c,1995); release of

seed from their pods, which can remain dormant for as long as 2 - 5 years (Miller 1994a);

scarification of the seed coat by digestive fluids (Miller 1995); dispersion of seeds into open

rather than shaded sites (Miller 1996); and deposition of seeds in dung (Miller 1996).

The effective dispersal mechanism ofA. tortilis coupled with its regular dispersion pattern (Ben­

Shahar 1991) from core zones on mostly catchment areas (e.g. Ruess & Halter 1990; Ben-Shahar

1991) induces an early colonization and dominance of this species that conforms with the

dispersion strategy of a pioneer species.
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Germination

Acacia seed coats are water impermeable and require pretreatment to obtain maximum

germination (Doran et al. 1983; Choinski & Tuohy 1991).Germination rates are positively

correlated with scarification caused by passage through herbivore digestive tracts (Choinski &

Tuohy 1991). Ingested and defecated seeds exhibit a greater potential germination than uneaten

seeds (Table 2.2).

Table 7.2 Potential germination of ingested and defecated seeds compared with uneaten seeds

Gennination potential (%)

Eaten seeds

7
13
11 - 28
54

3

Uneaten seeds

0.0
1.0
1.3

20.0
0.3

Source

Lamprey (1963)
Halevy (1974)
Lamprey et al. (1974)
Ahmed (1986)
Miller (1994b)

Germination is controlled by the water potential and temperature ofthe imbibition medium, e.g.

soil or dung, although optimum temperatures (25 - 30 QC) pertain only to water potentials more

negative than - 0.14 MPa (Choinski & Tuohy 1991). Critical waterpotentials are between -0.51

MPa (Choinski & Tuohy 1991) and - 0.6 MPa (Coughenour & Delting 1986), no germination

occurring at values more negative. Dung facilitates germination (Mwalyosi 1990) by retaining

moisture (Miller 1996) at potentials sufficient for germination thereby reducing dehydration of

imbibed seeds or seedlings (Coughenour & Delting 1986). However, A. tortilis seeds germinate

successfully once given a brief (15-24 hrs) exposure to distilled water despite the onset of

stressed (- 0.51 Mpa) conditions (Choinski & Tuohy 1991). This period ofpre-imbibition might

occur when the seed is circulated through the digestive tract of a herbivore (Ahmed 1986;

Coughenour & Delting 1986), which may take several days (Miller 1995). Elevated nutrient (N

and P) levels in dung are likely to be important during the early stages of growth rather than

germination (Coughenour & Delting 1986), enhancing the survival and growth of first year

seedlings to the extent that stands thin more rapidly due to overcrowding, relative to non-dung

sites (Reid & Ellis 1995).

Germination during the first rainy season after seeds have passed through the digestive
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system intact (Reid & Ellis 1995) and successful germination without an extended germination

lag, despite stressed conditions following a period of sufficient imbibition, may be an adaptive

mechanism that conforms with the dispersion strategy of pioneer species (Choinski & Tuohy

1991). Seedling establishment is a rare event under conditions ofhigh browsing pressure, bush

encroachment usually coinciding with a decline in elephant (Leuthold 1996) or small ungulate

(impala) populations (Prins & Van Der Jeugd 1993). Successful seedling establishment is further

hampered by the species intolerance of shade (Pellew 1983b; Miller 1996) and dependence on

e~treme or rare recruitment events associated with the variable rainfall of semi-arid systems

(Wiegand et al. 1995).

Growth and critical heights

Although generally slow growing (Coates Palgrave 1983), A. tortilis can reach ecological

maturity (10 m canopy) in 15 to 35 years depending on local conditions, accruing an age of up

to 100 years (Croze 1974b). Growth rates are, however, variable (height increment: 0.1 m an-I

Herlocker 1976 to 0.6 m an-I ± 0.2 Mwalyosi 1990) between and within populations (Mwalyosi

1990; Grice et al. 1994), attributed mostly to variations in available soil moisture (Prior & Cutler

1996) and growth-retarding agents such as browsers (Pellew 1983a). Browsing, particularly by

giraffe (Pellew1983a), retards vertical and lateral development ofA. tortilis shrubs (Dangerfield

et al. 1996), increasing time to reach reproductive maturity (Bryant et al. 1983). It can take an

A. tortilis seedling « 1 m) up to 21 years and 36 years to exceed the maximum height of fire

mortality (3 m) and browse reach of an adult bull giraffe (5.75 m) respectively, approximately

2.8 times longer than when not browsed by giraffe (Pellew 1983a). Browsing is therefore

simulated as a time delay when modeling its effect on the population dynamics of A. tortilis

(Pellew 1983a).

Characterization ofthe size and age class distributions ofwoody species is useful for the

interpretation of population dynamics and alerting managers to declining recruitment and

potential species compositional changes. However, previous studies have made the mistake of

referring to size classes as age structures (e.g. Croze 1974b; Mwalyosi 1990; Lewis 1991) when

dealing with semi-arid systems. Age and size can not be substituted for one another when

referring to semi-arid systems. Age class data are less reliable in semi-arid systems because: (1)

tropical trees are difficult to age, A. tortilis trees do produce growth rings, but rings are difficult
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to count (Lilly 1977; Prior & Cutler 1996) and are umeliable indicators of tree age beyond ten

years (Wyant & Reid 1992); and (2) age is poorly correlated with stem diameter (Prior & Cutler

1996) most likely on account of variable growth rates associated with the spatial and temporal

heterogeneity or disequilibrium nature ofarid and semi-arid systems (Wiegand et al. 1995). Size

would give a false estimate ofage in instances where trees or seedlings are held at a similar size

for an extended period, prevented from growing into larger size classes by suppressing factors

such as browsing or fire (Pellew 1983a, Phillips et al. 1996).

The height of a tree is a more important determinant of function than age (inferred by

stem diameter): reproduction of C. mopane trees in the Luangwa valley appear to be dependent

on height (trees begin fruiting at 5 m; Caughley 1976), whilst height classes critical to the

survival ofA. tortilis in a system influenced by fire and large browsers (giraffe) are 3 m (Norton­

Griffiths 1979) and 6 m (Pellew 1983a), respectively.

Browse value

Acacia tortilis is a hardy, drought-tolerant species (Coates Palgrave 1983) associated with

encroachment (Dangerfield et al. 1996), and provides shade, fodder, fencing, housing

(Coughenour et al. 1985) and fuelwood (Hayashi 1992). Valued mostly for their nutritious (26

% CP - Coppock & Reed 1992) pods, A. tortilis is used to supplement livestock diets (Coe &

Coe 1987; Reid & Ellis 1995) and browse for wild herbivores (Pellew 1983b; Mwalyosi 1990)

during the dry winter months when the quality of herbaceous forage drops dramatically

(Williamson 1975). Defoliation of A. tortilis decreases Nand P concentrations in the leaves,

whilst simultaneously increasing the total phenol and condensed tannin concentrations the

following year (Bryant et al. 1991). Highest phenolic concentrations occur at the onset of the

growing s~ason, thereafter decreasing with leaf senescence into the dry season, together with

nutrients N, P and K (Emst et al. 1991). Phenols may not be as much ofa deterrent to ungulates

as previously perceived (Cooper & Owen-Smith 1985), considering their preference for C.

mopane leaves and A. tortilis pods (Cloudsley-Thompson 1990) despite their high phenolic

concentrations (Lamprey et al. 1974). Elephants also feed on plant species and plant parts with

a high tannin content (Williamson 1975).
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Chapter 8

Determination of annual diameter and height increments for trees in a semi-arid

African savanna

Introduction

Knowledge of age and growth rates of trees is necessary for an ecological understanding

(Gourlay & Kanowski 1991) and modelling (Mushove et al. 1995) of woodland dynamics.

Growth rings have been identified in tropical trees (Mushove et al. 1995; Prior & Cutler 1996)

using anatomical features such as fine marginal parenchyma bands, a form ofaxial parenchyma

(Gourlay & Grime 1994, but the majority of successful attempts at ageing acacia trees and

relating rainfall to ring width have used material ofknown age (e.g. Gourlay & Kanowski 1991;

Gourlay 1995). False, discontinuous and missing rings (Lilly 1977; Wyant & Reid 1992) hamper

the distinction of growth rings and possible discrepancies between rainfa'll and plant-available

soil water obscure relationships between rainfall and ring width (Mushove et al. 1995; Prior &

Cutler 1996). Consequently, the dendrochronological study of tropical trees is not always

successful. Although stem diameter has been used in predicting growth for tropical trees

(Osmaston 1956; Kigomo 1994) it requires an extended time series. Growth rates of woody

species within VLNR can be slow (O'Connor 1999) and the variability in diameter

measurements obtained by repeated visits from different investigators would obscure growth

measurements. Exploratory work by Gourlay (1995) has indicated the possibility of age

determination for African acacias on the basis of fine marginal parenchyma bands and

crystalliferous chains. The first objective of this investigation was to test the approach adopted

by Gourlay (1995) usingA. tortilis trees ofunknown age and identifying annual ring boundaries

in A. tortilis by relating ring width to annual rainfall. The second objective was to suggest a

technique for predicting growth rates ofwoody plants from annual rainfall, using selected data.

Previous studies have neglected to incorporate the influence of the phloem (or bark) on growth

rates (e.g. Gourlay 1995), thereby producing figures of diameter increment that underestimate

the true growth rates. The proposed technique was to therefore include the influenc.e ofbark on

growth rates ofA. tortilis, and express growth rate as an annual diameter and height increment.
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Methods

Data collection

Thirty A. tortilis trees of unknown age were sampled from five 50 m transects situated in the A.

tortilis woodlands in VLNR. Only trees killed by elephants within the last year were sampled.

Although the samples were not in an advanced state of decay they were extracted from dead

stems and stood the risk ofbeing contaminated with the larvae ofwood borers. One stem section

was discarded on account ofdamage by wood boring beetles during storage, reducing the sample

size to 29. Whole disc samples were taken approximately 20 cm from the base ofthe main stem

using a bowsaw. The circumference (cm) of each sample was measured with and without the

bark. Sample discs were polished on a belt sander with four grades of progressively finer grit

sizes (up to 1 200 grain size) to a high standard of clarity. Two radii were examined under a

dissecting microscope with halogen bulb illumination at 15X magnification. Narrow marginal

parenchyma bands, identified by their fineness and evenness of appearance, were marked and

counted. Ring widths were measured using a micrometer fitted to the microscope. Stem

circumference and tree height measurements (to the nearest 1 and 10 cm, respectively) were

taken from a second sample ofA. tortilis trees located on 16 transects within riverine vegetation

and four transects situated in the A. tortilis woodlands. The nearest rainfall records considered

to represent accurately the pattern and annual variation in rainfall experienced at the site were

taken from Pontdrif.

Data analysis

Annual diameter increment

Identification ofmarginalparenchyma bands allowed comparison with annual rainfall records,

using Pearson's product-moment correlation coefficient. Annual deviations from the long-term

mean rainfall (366 mm) at Pontdrifwere compared with annual deviations from the mean ring

width.

Linear regression was used to derive a relationship between stem diameter and the

number of growth rings in order to estimate annual growth rates. The potential for two

statistically different populations within the sample ofstems warranted the inclusion ofa dummy

variable in a multiple regression of stem diameter and the number of growth rings.
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Proposed technique for predicting annual diameter increment

Although entire ring width sequences were not correlated with the annual rainfall record from

Pontdrif, parts ofthe sequence were in phase. Those parts ofthe ring width sequence that were

correlated with annual rainfall for a period longer than 10 years on each stem, with not more than

one year out ofphase, were used to construct a composite sequence ofring widths that correlated

with rainfall for the sole intention ofdemonstrating the technique. Three stem sections out ofthe

original 29 met the aforementioned criterion and were used to construct the composite sequence

ofring widths by placing the three separate sequences in chronological order and averaging ring

width when rings overlapped. The criterion (a ring width sequence corresponding to at least 10

years of annual rainfall) for including stem sections into the sample Wl}.S chosen arbitrarily to

ensure that reasonably accurate data were used in explaining the technique for predicting annual

diameter increment, using annual rainfall. Correlations between ring width and rainfall were

improved by combining two ring widths only if (1) the following ring width sequence was in

synchrony with rainfall, and (2) one ofthe rings were < 0.5 mm wide. Narrow rings that did not

coincide with a low rainfall year are more likely to be false than wide rings on account of the

climatic influences that produce false rings. Such climatic influences may include a mid growing

season drought (Stokes & Smiley 1968) or out-of-season rainfall and are likely to produce

narrow rings on account of their short duration.

An exponential relationship between annual ring width (mm) and annual rainfall (mm an­

I) was derived using regression analysis. The annual diameter increment (ADI, mm an-I)was then

estimated by predicting annual ring width from the long-term mean annual rainfall (31 year

record: 366 mm an-I). The ADI was assumed constant irrespective of the size of an individual.

Regression analysis was used to derive a function which explained the relationship

between bark width and stem diameter without bark, so that the annual bark increment associated

with an increase in stem diameter could be calculated from the AD!. Twice the annual bark

increment plus the ADI would then collectively represent the annual growth rate ofan A. tortilis

stem. The sample, however, contained a limited range in stem diameters (10 cm to 24 cm).

Annual height increment

The approach undertaken to express the mean annual growth rate (ADI) as a height increment

involved the derivation ofan empirical relationship between stem diameter, excluding bark, and
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stem height. It was necessary to convert the measures of stem diameter from the second sample

of A. torti/is trees to exclude the presence of bark because the estimated ADI excluded the

influence ofbark on growth. A linear regression between stem diameter with and without bark

was therefore used to estimate the diameters ofA. torti/is trees excluding bark. The sample size

for the regression of stem diameter with and without bark was limited to 21 trees ranging in

diameter from 10 cm to 24cm.

A regression ofstem diameter (with bark) and tree height was also calculated. The sample

of A. tortilis included trees measured on 20 transects placed within riparian and A. tortilis

woodland. A normal plot of height (cm) and diameter with bark (cm) showed an exponential

relationship. Nonlinear regression was performed to fit an exponential curve, but the residual plot

was not random. A square-root-of-y (height) transformation, indicated by a Box-Cox analysis,

improved the adequacy ofthe model. A second regression analysis ofstem diameter (with bark)

and tree height was performed using only the A. torti/is woodland transects. A. tortilis trees

growing in riverine vegetation were excluded from the sample because they were expected to

have higher growth rates on account ofa higher water table adjacent to the rivers, relative to the

drier conditions on the grasslands. The annual height increment ofA. tortilis was calculated from

the overall mean ring width.

Results

Annual diameter increment

Mean ring width across 29 stems ranged from 1.4 mm to 3.5 mm (overall mean ± SE: 2.4 ± 0.12

mm), whilst single ring widths ranged from 0.1 mm to 16.9 mm. Ifrings were formed annually,

the mean ring width should approximate the mean annual growth rate. However, successive ring

widths from the pith to the bark were poorly correlated with the annual rainfall records for each

of the 29 stems (Table 8.1). Furthermore, stems were unable to be cross-dated. Plots of annual

rainfall versus ring width for each stem were neither linear nor curvilinear. The poor correlation

between ring width and annual rainfall suggests that the approach used to identify growth rings

was unreliable, or alternatively, measured rainfall was an inaccurate estimate ofwater available

to trees in this environment.
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Table 8.1 Pearson's correlation coefficients (r) between annual rainfall (1967 - 1997) and ring

width for 29 Acacia tortilis stems. Ring widths were matched with the annual rainfall

corresponding to the same year

Sample r n P
number

1 -0.29 31 >0.1

2 0.12 31 >0.5

3 0.15 31 >0.2

4 0.12 31 >0.5

5 0.25 21 >0.2

6 -0.14 28 >0.2

7 -0.15 25 >0.2

8 0.31 31 >0.05

9 0.11 29 >0.5

10 0.10 31 >0.5

11 0.32 28 >0.05
12 0.16 31 >0.2

13 0.10 31 >0.5

14 0.32 24 >0.1

15 0.35 31 >0.05
16 0.25 26 >0.2

17 -0.02 31 >0.5
18 0.13 31 >0.2
19 0.07 31 >0.5
20 0.09 31 >0.5
21 0.08 31 >0.5
22 -0.19 31 >0.2
23 -0.04 31 >0.5
24 0.00 31 >0.5
25 -0.22 31 >0.2
26 -0.10 27 >0.5
27 -0.18 31 >0.2
28 0.04 31 >0.5
29 0.27 26 >0.2

There was a poor linear relationship between the number of growth rings and stem diameter

(Figure 8.1). The overall inconsistency in stem diameters for similar aged trees may be an

indication of the sensitivity ofA. tortilis to differences in site conditions, particularly soil water.

A linear regression of stem diameter and the number ofrings (n = 29) explained only 1% of the

variance. However, the residuals ofthe stems at the top (squares) ofthe graph (Figure 8.1) were

all positive, whilst most (72%) at the bottom (circles) of the graph were negative suggesting that

the ages of stems located at the top and bottom of the plot were underestimated and
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overestimated, respectively. This suggests the existence of two distinct statistical populations

owing possibly to different micro-site conditions.
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Figure 8.1 Relationship between the number ofgrowth rings and stem diameter (cm) ofAcacia

tortilis including the fitted lines (Dummy land Dummy 2) for two potentially different

populations represented by squares and circles.

The two statistical populations represented by dummy variables (Figure 8.1) had significantly

different intercepts (t = -8.16, df= 26, P < 0.001), but not slopes (t = -0.17, df= 25, P = 0.869),

suggesting a similar growth rate. The regression including the dummy variables was significant

(F = 37.89, df= 28, P < 0.001, R2 = 72.5 %). Unfortunately, the two distinct populations were

not identified in the field, highlighting the need for additional information regarding site

characteristics when sampling trees. The annual diameter increment (AD! = 12 mm) was six

times the growth rate estimated by calculating mean ring width (Table 8.2). Missing (or

indiscriminate) rings close to the pith of A. tortilis trees prevented accurate ring counts and

therefore age determination. Consequently mean ring width is the more accurate measure of

annual growth rate, assuming rings are formed annually, compared with estimating growth rate

from the relation between stem diameter and the number of growth rings.
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Table 8.2 Mean annual diameter increments (ADI) of Acacia tortilis using three different

procedures. n is the number of stems

ADI estimate (mm an-t)

2.4
12.0
2.9

n

29
11, 18

3

procedure

overall mean ring width
regression function of stem diameter and number of rings
regression function of ring width and annual rainfall

Proposed technique for predicting annual diameter increment

Despite the poor correlation between ring width and annual rainfall, a technique for predicting

the annual diameter increment oftrees was described using a composite sequence ofring widths

from three selected stems. Trees could not be dated accurately on account ofmissing rings at the

pith, but the remaining sequence ofring widths were related to rainfall by matching the last ring

with the year of the last growing season (1997) before trees were felled by elephant. Three stem

sections; 10 cm, 22 cm and 24 cm diameter, had a ring width sequence in phase with annual

rainfall for 22, 12 and 14 years, respectively. Collectively, they formed the composite sequence

of ring widths which ranged from 1969 to 1994 (Figure 8.2). The composite sequence of ring

widths was adequate for using as an example to demonstrate a technique for predicting growth

rate using annual rainfall, considering ring width was strongly correlated with annual rainfall (r

= 0.7, df= 24, P < 0.001).

The relationship between ring width and annual rainfall was exponential (R2= 69%, F =29.15,

df= 25, P < 0.001) (Figure 8.3). An influential point (Figure 8.3) may have caused the fitted line

to shift on account of its high leverage (0.92). There is no evidence, however, to suggest that it

. was an outlier. The rate of ring width increased slowly relative to increasing rainfall until

approximately 400 mm an- t whereupon radial growth showed a dramatic increase. Mean annual

radial growth (1.4 mm), corresponding to anADI of2.9 mm, was estimated by substituting mean

rainfall (366 mm an-I) into the regression equation.
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The regression ofbark width and stern diameter without bark (Table 8.3) was weakly significant

(F= 4.77, df= 20, P = 0.022) and accounted for 27.4% ofthe variation. The accuracy and hence

applicability of the model was restricted to trees with diameters between 10 cm and 24 cm, on

account of the limited range of stern diameters sampled. Annual diameter increments < 1 cm

could therefore not be used to establish the associated increment in bark width. The relationship

between bark width and stern diameter without bark (Figure 8.4) indicated a weak quadratic

tendency with small diameters supporting narrower bark widths than moderate and large

diameters.

Table 8.3 Summary of the regression functions

Variables Equation Parameter estimate SE P

y = number of growth rings y =D+bx b 0.85 0.146 < 0.001
x = stem diameter (cm) DO 25.6 2.31 < 0.001

D1 14.7 2.94 < 0.001

Y= bark width (cm) y = a + bx + rx? a -1.8 1.53 0.25
x = diameter without bark (cm) b 0.45 0.195 0.03

r -0.012 0.0059 0.06

y = ring width (mm) y = a + bI" a 1.0089 0.00223
x = annual rainfall (mm) b 0.034 0.0459

r 0.55 0.515

y = stem diameter with bark (cm) y = a + bx a 1.2 0.38 0.005
x = stem diameter without bark (cm) b 1.0598 0.02298 < 0.001

y = square root of stem height (cm) sqrt y = a + brx a 30.9 1.09
x = stem diameter with bark (cm) b -26.4 1.1

r 0.9296 0.00739

Y= tree height (cm) y = a+ bx a 16.4 46.5 0.7
x = stern diameter with bark (cm) b 21.2 2.24 < 0.001

Bark width reached a maximum corresponding to stern diameters between 18 cm and 21 cm

before tailing off to a relatively constant bark width between 2 cm and 2.5 cm for larger trees.

Once a tree matures, the bark begins to split and slough off thereby maintaining a relatively

constant width irrespective of stern diameter or tree age. Increase in radial growth beyond a
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particular stem diameter (± 20 cm) is therefore unlikely to be accompanied by further increases

in bark width, e.g. annual radial growth rate would approximate the true annual growth rate.
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Figure 8.4 Relationship between bark width (cm) and stem diameter without bark (cm) ofAcacia

torti/is.

Annual height increment

The linear relationship (Figure 8.5) between stem diameter with bark and stem diameter without

bark was significant (F = 2127.97, df= 20, P < 0.001, R2 = 99%) (Table 8.3). Stem diameter

without bark was significantly related to tree height (F= 16.25, df= 100, P < 0.001), but only

accounted for 13.2% ofthe variance and the gradient ofthe fitted line, expressingthe relationship

between diameter without bark and stem height, applied only to a limited range in tree sizes (9

cm - 24 cm). The estimated annual height increment would be inaccurate for more than three

quarters ofthe population ofA. tortilis trees, applying only to trees with stem diameters between

9 cm and 24 cm, and was therefore considered insufficient. Future samples should therefore

include the full range of stem diameters within a community. The regression of tree height and

stem diameter with bark was significant (F= 276.39, df= 202, P < 0.001, R2= 73.2%). However,

the square-root-of-height transformation reduced potential correlation between the residuals and
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fitted values, and improved the model (Table 8.3) (F= 454.78, df= 202, P < 0.001, R2= 81.8%).

Tree height increased linearly with stem diameter until stem diameter was approximately 25 cm,

thereafter the rate of increase in tree height declined until about 45 cm stem diameter, when

maximum height was attained (Figure 8.6). A conspicuous gradual change with accruing

maturity is the decline in growth rate, particularly height increment.
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Figure 8.5 Relationship between stem diameter with bark (cm) and stem diameter without bark

(cm) for Acacia tortilis.

The second regression (F = 89.22, df = 33, P < 0.001, R2 = 72.8%) of tree height and stem

diameter with bark excluded the riverine population ofA. tortilis trees (Figure 8.7). It was the

preferred model becauseA. tortilis trees growing within riverine areas are likely to have different

growth rates compared with trees growing in the A. tortilis woodlands.

The gradient of the linear plot (Table 8.3) showed a 21.2 cm increase in tree height for

every 1 cm increase in stem diameter. The mean annual height increment for A. tortilis was

therefore 10 cm.
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Discussion

Annual diameter increment

Although the approach adopted by Gourlay (1995) does not indicate that rings are fOITI1ed

annually when using material ofunknown age (Prior & Cutler 1996), the method is not entirely

unsuccessful considering mean ring width gave an estimate ofannual growth rate, assuming rings

are fOITI1ed annually. The predicted mean ADI for A. tortilis, given an average rainfall of366 mm

an-I was similar to the overall mean ring width calculated by averaging the mean ring widths

from al129 stems. The aforementioned method ofestimating mean growth rate was preferred to

the regression of stem diameter with the number of rings because it does not depend on an

accurate count ofthe number ofgrowth rings which was proved impossible in this study, and is

not affected by variable stem diameters.

The estimated growth rate (2.4 mm an-I) of A. tortilis was similar to growth rates

previously recorded in VLNR (O'Connor 1999), but lower than elsewhere on the continent.

Although the recorded diameter at breast height for an A. tortilis tree in Kenya was more than

two fold (7 mm) the estimated diameter increment in this study, the mean annual rainfall was

also considerably higher (1 088 mm an-I) (Hayashi 1992). The mean ADI ofAfrican Acacia spp.,

including A. tortilis, ranges from 12 mm to 14 mm (Gourlay & Barnes 1994; Gourlay 1995).

Prins & Van Der Jeugd (1993) calculated the mean rate ofdiameter increase for A. tortilis to be

5 mm an-I (irrespective oftree size) by taking the average offive similar estimates from sources

within Tanzania and included work of their own as well as work done by Mwalyosi (1977),

Herlocker (1976) and Weyerhaeuser (1982). Overall mean ADIs for C. mopane and Combretum

apiculatum from four sites in Zimbabwe ( average rainfall across all sites ± 663 - 730 mm an-I)

were 18 and 22 mm, respectively (Mushove et al. 1995; Prior & Cutler 1996). The higher growth

rates of C. mopane and C. apiculatum, relative to A. tortilis in the Northern Province, South

Africa, may be attributed to the two-fold difference in annual rainfall. Enquist et al. (1999) found

that differences in wood density resulted in substantial differences in growth rates as measured

as change in basal diameter. There is a trade-off in the growth rate of stem diameter with the

allocation of resources to wood density: species that allocate less biomass to their stems (light

woods) increase in basal diameter faster than species that allocate more to stems (dense woods).

However, considering C. mopane (air-dry 1 250 kg m3), C. apiculatum (air-dry 1230 kg m3) and
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A. tortilis (air-dry 990 kg m3) are hard and heavy woods (Venter & Venter 1996), the negligible

differences in wood densities are unlikely to explain any differences in growth rates. The mean

rate of diameter growth for Brachylaena huillensis, from the semi-deciduous dry forests of

Kenya (mean annual rainfall; ± 1000 mm), was 3.2 mm an- l (Kigomo 1994). Although density­

dependent processes such as competition may reduce growth rates, it appears the estimated rate

of growth for A. tortilis in the Northern Province, South Africa, may be reasonably high

considering the low annual rainfall (366 mm) and the fact that samples were ofacacias growing

under natural conditions. Tree samples sought from material ofknown age have been taken from

areas for which the management history is known and include areas seeded by man or previously

cultivated farmland (e.g. Gourlay & Barnes 1994), and may explain the high growth rates of

those samples.

Annual height increment

The estimated height increment (0.1 m an-I) ofA. tortilis in VLNR was either lower or equal to

growth rates from north of the equator. Although the mean annual growth rate of A. tortilis in

Lake Manyara National Park, Tanzania (n = 37) was 0.597 m, there was a large variation

between individual trees (Mwalyosi 1990). Croze (1974b) and Pellew (1983a) used a height

growth estimate of0.3 m an-I for A. tortilis trees in Tanzania, whilst Herlocker (1976) estimated

the annual height increment for mature A. tortilis trees to be 0.1 m. Growth rates are highly

variable both between and within the same species, particularly in semi-arid environments (e.g.

Grice et at. 1994) and may be the consequence of different environments, microhabitats,

browsing pressure and edaphic conditions (Pellew 1983a).

Senescence oftrees is evident as a decline in height and girth increments (Leopold 1980).

Gourlay & Barnes (1994) plotted the cumulative diameter increments of seven A. karroo trees

against age and showed a curvilinear relationship (exponential). It was apparent that there was

a fairly uniform increase in diameter increment in young trees, but growth started to decline

when individuals attained 20 years. Metabolism produces the energy and materials used for all

biological processes, thereby limiting production or growth (Enquist et at. 1999). It is known that

relative growth rate decreases with increasing plant size/maturity (Enquist et at. 1999) because

respiration costs are continually increasing on account of the increased biomass that has to be

supported. Consequently, growth rates are likely to depend on the physiognomy ofthe population
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sampled.

Proposed technique for predicting annual diameter increment

In order to predict growth rates for different rainfall seasons tpe technique proposed in this study

requires an accurate count ofrings and measure ofrjng widths. The technique is workable given

a good correlation between annual rainfall and ring width and may therefore be applied in less

arid environments or species that are more responsive to rainfall, e.g. species that allocate fewer

resources to stem density.

The advantage ofusing this technique for calculating mean ADIs is the ability to estimate

growth rates for successive years of below- and above-average rainfall. The regression model

uses rainfall as the explanatory variable and therefore assumes (1) growth rate is constant

irrespective of a tree's life-history stage and (2) rainfall has a greater influence on growth rate

than a tree's life-history stage. Most, if not all estimates of radial increments have been

calculated by taking the average ring width from pith to bark and are therefore also guilty of

assuming a constant growth rate, irrespective ofa tree's life-history stage. However, considering

a decreased rate of growth is largely associated with accruing maturity and senescence, the

assumption ofa constant diameter increment remains valid for the most part of a tree's life. The

assumption that rainfall was more important than life-history stage when influencing growth rate

was justified by the variable and erratic nature ofring width from pith to bark e.g. ring width did

not progressively decrease from the pith to the bark of a stem.

Growth rates are provided by a number ofauthors but they have neglected to include the

additional influence bark has on stem diameter. Although attempted in this study, restricted

sampling limited the applicability of the technique to a small range of stem diameters. The

procedure is simple and may improve the accuracy ofpredicted diameter increments for trees <

20 cm in diameter if the sample size for formulating a predictive function includes a sufficient

range in stem diameters.

Anomalies associated with ring identification

Fine bands of marginal parenchyma were obscured by broad bands of confluent aliform

parenchyma, often masking narrow rings and making them difficult to detect. The same problem

was experienced by Gourlay & Kanowski (1991) and Gourlay & Bames (1994). Obscured rings
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close to the pith ofA. tortilis for the first few years of growth (Schnabel 1994) were also noted

in this study, making it impossible to estimate age accurately. However, considering stem

sections were sampled at a height of 20 cm, it is probable that rings representing the first few

years of growth would be absent, despite any obscurity at the pith of the stem. Further

complications included merging rings, wood-borer beetles and a fungus. Merging rings are not

uncommon to acacias (e.g. Gourlay & Kanowski 1991), and may be explained by the unevermess

of stem growth under certain climatic and topographic conditions. Wood-borer beetles were

present because samples were taken from dead trees.

Potential factors influencing ring width

Although armual ring formation could not be verified in this study previous attempts have shown

marginal parenchyma bands to be armual, particularly in ecosystems with a seasonal unimodal

rainfall pattern (Wyant & Reid 1992). Growth in the arid tropics is closely related to a short rainy

season (Gourlay 1995) with the abrupt transition from wet to dry season producing the necessary

dormancy that is likely to result in a detectable anatomical change. The poor correlation between

ring width and rainfall and hence failure to verify that growth increments were formed armually

can be attributed to several factors: site location, and its influence on plant available soil water

through topographic (Coughenour & Ellis 1993) and edaphic (Scholes 1985) effects; rainfall data

taken from Pontdrif may not have been an adequate indicator of plant available soil water;

problems of imprecise ageing, associated with the aforementioned anomalies of ring

identification; and climatic influence may be masked by other growth factors such as browsing,

particularly since the arrival ofelephant. Although the time ofdeath of the A. tortilis trees could

be dated to the previous year with reasonable accuracy, trees can take up to three years to die

following elephant utilization (Chapter 9). Consequently, ring growth may have been abnormal

during the last few years of a tree's life, suggesting that trees which have died from elephant

utilization may not be an appropriate source for dendrochronological analysis. The poor

correlation between armual rainfall and ring width could also be attributed to insufficient

extremes in rainfall variation. Scholes (1990) only observed a significant increase in the armual

stem incre~entofC. mopane when armual rainfall increased by two fold to 800 mm, suggesting

that small variations in rainfall about the long-term mean do not necessarily produce equivalent

deviations about the mean ring width. Mean ring width may respond erratically and
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unpredictably to small variations in rainfall, but increase significantly in response to large rainfall

years.

Future sampling of trees in arid environments for dendrochronological studies need to

incorporate the site characteristics ofindividual trees that reflect plant-available soil water, e.g.

stem density, soil texture, soil depth, and runon versus runoff zones. The annual rainfall and

population structure should also be noted and accompany estimates of growth rates when they

are mentioned in scientific literature. These additional explanatory variables may assist in the

interpretation of(l) correlations between rainfall and ring width, and (2) variable sizes (or radial

growth rates) of similar aged trees (e.g. the relationship between number of rings and stem

diameter).
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Chapter 9

The functional response of elephant to Acacia tortilis in the Northern Province,

South Africa

Introduction

The evolution of the large body size of the African elephant (Loxodonta africana) has had two

important consequences for its feeding behaviour. Firstly, males eat about 170 kg (fresh weight)

per day (Guy 1975), and secondly, their size enables them to uproot entire trees. Elephant have

consequently caused spectacular changes in vegetation physiognomy, reverting woodlands to

grasslands (Laws 1970). They are an obvious concern when placed in closed ecological systems,

particularly when selecting for certain species of woody plants (Ruess & Halter 1990).

Considering the response of an individual tree or a population will depend on the manner in

which it is fed upon, it is imperative that a quantitative understanding of elephant response to

woody species be gained, specifically for woody species that are favoured by elephant. Elephant

response refers to either the method of feeding, e.g. removing branches, debarking, stem

breakage or uprooting, or the pattern ofutilization, e.g. the frequency distribution oftree heights

fed upon or the number oftrees utilized associated with different tree densities. Whilst woodland

response to elephant feeding has been well researched, critical studies of the complexity of the

manner in which elephant impact upon a specific species is relatively fragmentary.

Elephant response is determined most often by woodland structure; feeding occurs

predominantly on larger size-classes (Pellew 1983a; Mwalyosi 1987; Tchamba 1995) whilst trees

less than one metre tall are ignored (Vesey-Fitzgerald 1972;. Croze 1974b; Pellew 1983a; Ruess

& Halter 1990), although exceptions do occur (Mwalyosi 1990; Kabigumila 1993; Dublin 1995).

Previous studies have indicated a preferred feeding level of 1 - 2 m (Guy 1976; Jachman & Bell

1985) and in some instances pollarded trees are repeatedly cropped to maintain them at a

preferred browse height (Jachman & Bell 1985; Smallie & O'Connor 2000; Styles & Skinner

2000). Trees> 2 m are more frequently broken and reduced to a feeding level of 1 - 2 m

(Jachman & Bell 1985), trees> 4 m are more frequently debarked (Smallie & O'Connor 2000),

and trees which exceed the upper limit ofan adult bull (6 m) are more frequently uprooted (Croze
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1974a), indicating an association between the type of utilization and tree height.

Elephant response is also determined by species composition and tree density. The staple

diet of the elephant often corresponds with the dominant woody species (c. mopane -,Pienaar

et al. 1966; Ben-Shahar 1996; Smallie & O'Connor 2000; Combretum spp. - Jarman 1971;

Thrash et al. 1991; Acacia spp. - Kalemera 1989; Ruess & Halter 1990). Species are occasionally

fed upon at a rate proportional to their occurrence (Ruess & Halter 1990), and deliberately

avoided or selected (Croze 1974b; Tchamba 1995; Smallie & O'Connor 2000). Acacia tortilis

is a favourite woody browse species ofelephant (Douglas-Hamilton 1972; Anderson & Walker

1974; Mwalyosi 1987; Kalemera 1989; Ruess & Halter 1990), although not all matureA. tortilis

trees are able to be pushed over by elephant (Croze 1974a) and therefore utilized. Elephant

impact on, or response to, A. torti/is includes debarking (Anderson & Walker 1974), breaking

off large branches (Kalemera 1989) and uprooting (Croze 1974a). Utilization of A. torti/is

woodlands and riverine vegetation dominated by A. tortilis causes changes in woodland structure

(Ruess & Halter 1990) and relative species abundance (Anderson & Walker 1974), respectively.

Acacia tortilis is generally utilized in direct proportion to its occurrence (Croze 1974b; Ruess &

Halter 1990), forming a large proportion ofthe diet in high density woodlands and less at lower

densities where other woody species are available (Kalemera 1989). Barnes (1983) identified

four patterns of tree mortality in response to elephant browsing, specifically (1) density­

independent mortality (a fixed mortality rate), (2) density-dependent mortality, (3) inverse

density-dependent mortality and (4) a fixed number mortality.

The spatial variability of elephant herbivory associated with different densities of sub­

populations within a population of a certain species can affect the spatial structure of a

population already manipulated by the spatial non-uniformity in patterns and processes of the

environment and the plant populations themselves (Noy-Meir 1996). The outcome of spatial

herbivory upon a population is of some value, considering spatial heterogeneity generally

enhances the stability and resilience of rangeland vegetation to climatic variability in time,

principally because drought- or herbivore-refuge sites maintain sufficient genetic resources for

the restoration of a decimated population, following a severe drought or overutilization (Noy­

Meir 1996).

Forty-eight elephant have been re-introduced into Venetia-Limpopo Nature Reserve

(VLNR) since 1991, restricting themselves to the northern portion of the reserve, primarily in
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close proximity to rivers, thus existing at relatively high local densities (Macfarlane 1998). Their

distribution within the reserve has meant that certain habitats have received substantial impact,

including the riparian and A. tortilis woodlands (De Beer 1998; Macfarlane 1998). Anticipated

selection for these two woodland types (TG O'Connor, pers. comm.) and concern over losing

floristic and habitat diversity led to the annual assessment of individual plants from 1997 to

2000, offering estimates of important population processes within these two vegetation types.

At VLNR a poor grass cover prevents it from being a major component of the elephant's diet.

Consequently, a predominantly woody diet persists throughout the year. The A. tortilis

woodlands were largely ignored during the wet season (Smallie & O'Connor 2000), suggesting

they were most probably utilized towards the end ofthe dry season when C. mopane trees, which

form the bulk ofthe elephant's diet (O'Connor & Page 1997; Smallie & O'Connor 2000), lose

their leaves. Tree damage was therefore likely to be at its most intense in the late dry season

(Barnes 1982).

Considering our perception ofecological systems determines the approaches we advocate

in attempting to manage them, it is imperative that we gain a thorough knowledge and

understanding of the processes that define them. The general objective of this study was to

describe quantitatively the response ofA. tortilis woodlands to elephant, the functional response

of elephant to A. torti/is woodlands and compare the aforementioned with elephant response to

A. tortilis within riverine vegetation and with Acacia nilotica woodlands. Before one can

consider solving complex environmental problems concerning the population dynamics of

woody plants and generate predictions, we need to understand the basics by answering a few

fundamental questions. The following key questions were addressed:

(1) What has been the population structure and mortality rate ofA. tortilis each year since they

were first recorded in 19977

(2) What has been the pattern ofmortality and what does it infer about the woodlands' tolerance

to elephant browsing?

(3) Has the frequency ofeach method ofutilization differed annually and, ifso, was it related to

annual rainfall or stem density?

(4) Is there an association between tree height and the method of utilization?

(5) Does each method of utilization reduce tree height?

(6) What was the primary response of individual stems to each method of utilization?
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(7) Does each method of utilization induce mortality?

(8) Does canopy browsing influence the probability of stems being broken, debarked or

uprooted?

(9) Did the history ofpast canopy browse damage influence the ability ofA. tortilis to survive

being uprooted or broken?

(10) How did elephant feeding of A. tortilis within riverine vegetation compare with the A.

tortilis woodlands and what are the implications of the spatial variability of plant­

herbivore interactions?

(11) Was A. nilotica subjected to similar or different feeding methods than A. tortilis?

Methods

Data collection

A monitoring programme of elephant utilization of the woody vegetation was implemented in

February 1997. After stratification according to vegetation type, transects for each vegetation

type were randomly selected ensuring a comprehensive spatial coverage ofthe reserve. Twenty­

one permanent ground-based transects were located within riparian (n = 16) and Acacia (n = 5)

woodlands.

Four 50 by 20 m transects and one 50 by 10 m transect located within theA. tortilis woodlands

and 16 50 by 5 m to 85 by 35 m transects located in riverine vegetation were revisited each year

from 1997 to 2000 and 1997 to 1999, respectively. Transects were measured during the mid rainy

season (January to March) and reflect change incurred during the previous dry season. The 50

by 10 m transect located within the A. tortilis woodlands was not found in 1999, despite use of

a Global Positioning System (GPS), on account of a tall grass sward which concealed the rock

cairns that demarcate the boundaries of the transects. An additional transect (150 by 15 m) was

measured in the approximate region ofthe 'missing' transect which was relocated the following

year when all five Acacia woodland transects were revisited.

Transect size was increased for uncommon species until sufficient individuals were accounted

for. Elephant impact was measured for each stem ofsometimes multi-stemmed trees. Each tree

was measured for the following variables:
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(2) basaf 4\ameteI; (Q,rp.) 9f<:~a,chji¥d'and dead stem, approximately 20 cm above ground level;
.:r.~~.-._~ :. >:' '. ',:~ ~~."."_.~~~:. _~~~~"~<'.

(3) heigh~(cm) to the uppe~(~~f~yi:ngentity ofthe tree (only one height per multi-stemmed tree
. "~".'

was measured);

(4).g~rcent volume ofc~nopy removed according to an eight-point scale (Walker 1976) and the
.-:: -:. . .

agent of utilization. The percent volume ofcanopy lost was estimated from the original

canopy volunie for each incident of canopy removal and would confound the different

causal agents of loss;

(5) percent circumference .and percent height of bark removed from the main stem using an

eight-point scale (Appendix 1);

(6) age of canopy utilization and debarking according to an eight-point scale (Appendix 1);

(7) the biological (dead or alive) and physical state of the individual tree, dependent upon the

nature of the damage (e.g. uprooted or broken stems);

(8) growth response to stress and utilization. Apart from a reduction in height associated with

uprooted or broken stems, A. tortilis trees responded to elephant utilization in a number

ofdifferent ways: (1) unaffected, (2) coppice, (3) reduced vigour, or (4) death. Reduced

vigour was a subjective assessment ofwhether a tree appeared to be dying based on the

amount of new growth relative to adjacent, unaffected trees.

All A. nilotica woodland (0.5 ha) was sampled in 1999. The total amount of bark and canopy

removed by elephant since 1991 was recorded using the same criteria for the A. tortilis transects.

The volume of canopy removed by browsing was distinguished from dieback following

debarking. Canopy dieback associated with debarking was identified by the location ofdead (and

isolated) branches on the side of the stem that was debarked. The mean percent of stem

circumference and stem height that was debarked was calculated by averaging the midpoints of

each utilization class. Although utilization was recorded for each stem in the A. nilotica

woodland, only one height per multi-stemmed tree was measured.

Data analysis

Population structure ofAcacia tortilis

Size is preferred to age when describing population structure and dynamics because (1) spatial

and temporal heterogeneity of growth rates produces cohorts of dissimilar sized trees, and

/
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morphological changes occur during growth (Begon & Mortimer 1981) not necessarily ageing

(Smit 1990), and (2) survival depends on size (Young & Lindsay 1988) when disturbances, such

as fIre (Norton-GriffIths 1979) and browsers (Pellew 1983b), are height specifIc.

The A. tortilis population was divided into eight equal height-classes: < 1 m, 1 - 1.9 m, 2 - 2.9

m,3 - 3.9 m, 4 - 4.9 m, 5 - 5.9 m, 6 - 6.9 m, and> 7 m. The population structure ofthe A. tortilis

woodlands was described using all fIve woodland transects, whilst the population structure of

the A. tortilis trees within riverine vegetation was described using all 16 riverine transects

(combined area = 1.4 ha). The population structure prior to the height-reducing influences of

elephant in 1997 was reconstructed for 1996. The original heights of trees with broken or

uprooted stems in 1997 were calculated for the A. torti/is woodlands using the regression of tree

height on stem diameter for trees growing inA. tortilis woodlands (Table 8.3), and for A. tortilis

trees within riverine vegetation using the regression oftree height (square-root-transformed) on

stem diameter for A. tortilis trees growing in riverine vegetation (Table 8.3). One height was

recorded for multi-stemmed trees. The remaining heights ofstems ofa multi-stemmed tree were

predicted using the relevant regression equations (Table 8.3), despite potential differences in

height between the stem of a multi-stemmed tree and the stem of a similar-sized (diameter)

single-stemmed tree. The Ko1mogorov-Smimov two-sample analysis was used to test for annual

differences in the frequency distribution of tree height.

Stem density and frequency (%) per height class were estimated for each year from all five

woodland transects (0.45 ha in 1996, 1997, 1998 and 2000; 0.625 ha in 1999). Year-by-year

differences in stem density for each height class (ha) were tested using paired t-tests (n = 8).

Stem densities recorded one year represent the number of trees available for utilization by

elephant the following year. Mortality rate (% an-I) therefore expressed the number ofstems that

died each year relative to the total number oflive stems recorded at the end ofthe previous year,

and was calculated from the four 50 by 20 IIJ. transects that were monitored each year from 1997

to 2000.

Elephant response to Acacia tortilis

The following is a descriptive analysis ofelephant response, specifically canopy removal, stem

breakage or uprooting, and debarking, to A. tortilis woodlands, unless otherwise indicated. Only
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those four 50 by 20 m woodland transects measured each year between 1997 and 2000 (Table

9.2) were analyzed. The 50 by 10 m transect that was not located or measured in 1999, was

excluded from the analyses, except when otherwise indicated.

Canopy removal

Although browsing by elephant has previously referred to all methods offeeding, its usage in this

study has specific reference to the removal ofcanopy by breaking offbranches. The amount of

canopy removed by browsing was confounded by additional types of elephant utilization that

induce canopy dieback, specifically debarking, uprooting and breaking stems. Itwas not possible

to ascertain from the data sheets whether canopy removal, following the aforementioned methods

of utilization, was the result of browsing or the consequence of debarking, uprooting or broken

stems. Consequently, measures of canopy browsing by elephant include the frequency and

volume (%) ofcanopy removed prior to the other methods ofutilization. Canopy loss associated

with debarking incidents which removed> 50% of the stem circumference was assumed to be

the consequence of dieback due to debarking.

The percent volUme ofcanopy browsed by elephant was represented by the midpoint ofclasses

used to rank the percent volume ofcanopy browsed and was calculated from the original canopy

volume and from the available canopy volume. The mean percent volume of canopy removed

by elephant was calculated for 1st and subsequent (2nd
, 3rd and 4th

) browsing incidents by

averaging the midpoints of each canopy removal class. Differences in the percent volume of

canopy removed from the original canopy volume, and from the available canopy volume

between initial (n = 54) and subsequent (n = 30) browsing incidents were examined using t-tests.

Pearson's correlation coefficient (r) was used to test for a relation between initial and subsequent

browsing incidents in the percent volume ofcanopy removed from the original canopy volume,

and from the available canopy volume.

Tree height was compared with canopy volume browsed, and browse frequencies per tree

between 1996 and 1999.The frequency of browse incidents (n = 84) was calculated for each

height class and for each year between 1996 and 1999. Tree heights represented the heights of

trees when first browsed. Preference ratios (PR) were calculated for each height class per annum,
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using a fonnu1a adapted from Vi1joen (1989):

percent utilization
percent availability

Preference ratio =
-----=-----:-:-:-:-:-~--

where percent utilization = No. of trees browsed in a height

class X 100

total No. of trees browsed 1

across all height classes

and percent availability = No. of available trees in a

height class X 100
-t-ot-a-:-l-N-o-.o-'f=-tr-e-e-s-ac-r-o-ss-a""'n:-- 1

height classes

Preference ratios were calculated for tree height using the number oftrees that were browsed by

elephant in each height class for each year. Preference ratios calculated for 1996 (n = 43) and

1997 (n = 6) used the stem densities of the A. tortilis woodlands in 1996, whilst PR calculated

for 1998/99 (n = 5) were estimated using stem densities recorded in 1997. Preference ratios were

also calculated for the A. tortilis trees in the riverine vegetation, using the height distribution of

stems in 1997, and the total browse frequency of each height class between 1996 and 1999.

Differences in tree heights before and after A. tortilis trees were browsed were examined using

paired t-tests (1996 was excluded). Heights recorded for a particular year represent the heights

ofstems after their canopies were browsed that same year. Consequently, heights ofstems before

browsing took place in 1997 were estimated using the heights calculated for 1996. Canopies

browsed for the first, second, third or fourth time between 1997 and 1999 were included in the

analysis (n = 31).

The response (unaffected, coppice, reduced vigour or dead) ofA. tortilis canopies to browsing

by elephant was described by calculating the time (years) taken and volume (%) of canopy

removed for a tree to respond. The sample oftrees that were only browsed (n = 16) was expanded

(n = 48 trees) to include trees that were browsed before they were broken, uprooted or had> 50%

oftheir circumference debarked. Consequently, a response to browsing had to be at least one year
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before a stem was uprooted, broken or had> 50% ofits circumference debarked. The time taken

for trees to respond to browsing (and other methods ofutilization) was calculated by subtracting

the last recorded year a tree was browsed prior to the response, from the year of the particular

response. The time taken to respond was zero (years) iftrees were browsed and responded in the

same year. The percent volume of canopy removed which led to a response was calculated by

summing the midpoints of each canopy removal class. If a particular response occurred more

than once on the same tree, the time taken and volume browsed leading to the first response was

recorded. Trees not affected by browsing one year after the incident were assumed unaffected

during the same year as the browsing incident.

Broken and uprooted stems

It is likely that elephants, seeking to improve browse availability or display social dominance,

do not consciously decide on whether to break the stem of a tree or uproot it, unless perhaps

purposefully seeking out roots, a feeding habit not apparently associated withA. tortilis in VLNR

(personal observation). When an elephant pushes against a tree it is either uprooted or the stem

snaps. Irrespective of whether the tree is uprooted or whether the stem snaps, the role of the

elephant is equally two-fold, acting as either a mortality or a height reducing agent. The small

sample of uprooted stems (n = 6) and hence skeptical statistical inferences regarding uprooted

stems, was sufficient justification for combining the two samples (uprooted plus broken stems).

The combined sample of uprooted and broken stems is referred to as recumbent stems.

Potential differences in stem height and diameter between partially (n = 7) and completely (n =

30) broken stems, and uprooted (n = 6) and broken (partially plus completely broken, n = 37)

stems, were tested using t-tests. Tree-height distributions of partially and completely broken

stems was compared with a Kolmogorov-Smimov two-sample test. The samples ofpartially and

completely broken stems were increased to 15 and 37, respectively, by including those stems

utilized on the 50 by 10 m transect which was not recorded in 1999, but measured in 1997 and

1998.

Preference ratios were calculated for each height class per annum, using the aforementioned

formula (substitute 'recumbent stems' for 'trees browsed'). Preference ratios were calculated for
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height classes of uprooted, ofpartially broken, of completely broken, and ofrecumbent stems,

using the previous year's frequency distribution of stem density across height classes and were

not calculated for 2000 because no trees were uprooted or broken that year.

Pearson's correlation coefficient was used to test for a relation between stem height prior to

utilization and percent height lost, and between survival (years) and height lost.

The response ofA. tortilis trees to being either broken or uprooted was described by calculating
'\

the time taken for a tree to respond (refer to Canopy removal).

The dependence oftrees surviving one, two or three years on the methods ofutilization, and the

dependence of recumbent stems surviving one year on the year of utilization were examined

using X2 or G - tests, depending on data properties. Potential differences in stem diameter and

height between individuals that died one year after utilization and individuals that survived at

least one year after utilization, and between stems that survived one year after utilization and

stems that survived two or three years after utilization were examined using t-tests.

A logistic regression tested the probability of stems surviving at least one year after being

utilized (uprooted, broken and recumbent). Explanatory variables included the total canopy

removed before utilization, canopy removed during utilization, and total canopy removed after

utilization. Total canopy removed, either before or during utilization, was calculated by adding

the midpoints ofeach canopy removal class. Total canopy removed after utilization was the sum

of total canopy removed before utilization and canopy removed during utilization. Factors

included in the regression of recumbent stems were the presence of debarking, and the type of

utilization (uprooted and partially or completely broken stems).

Debarking

Preference ratios were calculated for each height class perannum, using the number ofnew trees

debarked each year. Preference ratios compared the frequency distribution of newly debarked

trees across all height classes with the previous year's frequency distribution of stem densities

(1996 and 2000 was excluded). The PRs for 1997 were estimated using the stem densities for
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each height class in 1996. Preference ratios were also calculated for each height class for the

period between 1991 and 1999 by comparing the frequency ofdebarked stems over this period

with the frequency distribution of stems in 1996.

The response ofA. tortilis to debarking was described by calculating the time taken to respond,

and the associated stem circumference (%) that was debarked (refer to Canopy removal). Canopy

loss owing to browsing could not be excluded from the analysis and may have confounded tree

response to debarking. A few debarked stems were uprooted and had their stems broken. Tree

response to debarking was analyzed up until the particular stems were uprooted or broken. One

ofthe debarked stems (n = 13) was excluded from the analysis (n = 12) because it was debarked

after it had been broken.

Potential differences between A. nilotica and A. tortilis trees in the percent volume of canopy

dieback associated with debarking during the period 1991 to 2000 and the percent height ofbark

removed from the stem during each debarking incident were examined using t-tests.

Factors influencing the different methods ofutilization

A logistic regression tested the effects that browse frequency, browse volume (%), and tree

height had on the probability of a stem being uprooted, debarked or broken. Browse frequency

was the number of browse incidents before a tree was uprooted (n = 6), debarked (n = 13) or

broken (n = 37), and tree height was the height ofa tree when first browsed. The percent volume

of canopy browsed was estimated from the original canopy volume for each browse incident.

Consequently, the percent volume of canopy browsed until a stem was broken, uprooted or

debarked was calculated by summing the midpoints of classes used to rank percent volume of

canopy browsed. The probability of trees being only browsed (n = 16) was also analyzed. Trees

that had> 50% oftheir stem circumference debarked before 1997 and completely broken stems

recorded dead in 1997 were excluded from the analysis (n = 5) because browse frequencies,

volumes and tree heights were unknown. An additional 14 trees were excluded from the analysis

because they were either dead in 1997 (n = 9) or were seedlings (n = 5) which recruited during

1997 and 1998. The probability ofbeing subjected to one type ofutilization was tested relative

to a combined sample of the remaining stems, irrespective of their method of utilization. An
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analysis of variance tested for differences in browse frequency, browse volume (%), and tree

height between trees that had been uprooted, debarked, broken, and browsed.

Results

Population structure of Acacia tortilis woodlands

Apart from an under-representation of trees below 2 m in height, each height class constituted

> 10% oftheA. tortilis population in 1996 (Table 9.1). The increase in the number oftrees below

2 m in 1997 coincided with the height-reducing influences ofelephant. Thereafter, the frequency

distribution within height classes was erratic, until 2000 when elephant activity was absent.

... The distribution of tree heights changed significantly from 1996 (n = 97) to 1997 (n = 89, P <

0.05) and 1998 (n = 80, P < 0.005) (Figure 9.1). In 1997 the frequency of trees < 2 m had

increased over two fold at the expense of the mid (2 - 6 m) size classes and continued to do so

in 1998, reducing mean (± SD) tree height from 4.6 m (± 1.97 m) in 1996 to 3.7 m (± 2.68 m)

in 1998, whilst the proportion of trees > 6 m remained relatively constant. In 1999 and 2000 the

population of trees < 1 m decreased to ± 10%, whilst trees between I and 2 m were eliminated,

indicating no recruitment from trees < 1 m. The proportion of trees> 5 m showed a steady

increase, accounting for about two thirds of the A. tortilis population, at the expense of the mid

(2 - 5 m) size classes which decreased. The increase in mean (±SD) height from 3.7 m (± 2.68

m) in 1998 to 4.4 m (± 2.44 m) and 5.0 m (± 2.28 m) in 1999 and 2000, respectively, resulted

from greater reduced stem densities below 6 m relative to the more prominent height classes>

6 m (Figure 9.1). Consequently, the frequency distribution of tree heights in 1996 was not

significantly different from 1999 (n = 70, P> 0.1) and 2000 (n = 38, P> 0.1).

Themean stem density per height class in 1996 was 27 stems ha-I (Figure 9.l). Although mean

stem density per height class decreased in 1997 and 1998 to 25 and 22 stems ha-I, respectively,

significant reductions only occurred in 1999 (mean: 14 stems height class- I ha-I, t = 4.14, df= 7,

P = 0.004) and 2000 (mean: 11 stems height class-I ha-I, t = 4.14, df= 7, P = 0.002). The overall

stem density (ha) of the Acacia woodlands decreased by 61 % between 1996 and 2000 (Table

9.1).
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Table 9.1 Height-class frequency (%) distributions of live Acacia torti/is stems for each year

between 1996 and 2000 in the Acacia tortilis woodlands. Stems (n) were sampled from 0.45 ha

in 1996, 1997, 1998 and 2000, and 0.625 ha in 1999

Height classes (m) Rei a t i v ey (%)

frequenc
1999 20001996 1997 1998

(n = 97) (n = 89) (n = 80) (n = 70) (n = 38)

< 1 4.1 13.5 25.0 11.4 10.5

1 - 2 6.2 13.5 7.5 5.7 0

2-3 14.4 11.2 13.8 11.4 10.5

3-4 19.6 10.1 11.3 18.6 7.9

4-5 12.4 10.1 5.0 10.0 7.9

5-6 11.3 10.1 2.5 5.7 13.2

6-7 18.6 18.0 18.8 14.3 21.1

>7 13.4 13.5 16.3 22.9 28.9

Total stem density (ha'I) 215.6 197.8 177.8 112.0 84.4

Elephant response to Acacia tortilis woodlands

Population structure

The increase in stem density below 1 m in 1997 (Table 9.2) was due to the height-reducing

influences of elephants (80%) and seedling recruitment (20%). Further increase in stem density

below 1 m in 1998 was attributed to a four-fold increase in seedling (mean height: 0.1 m, mean

diameter: 0.3 cm) recruitment (40%) compared with 1997, and stems broken (60%) by elephant.

The poor rainfall of the 1997/98 season (Table 9.2) may account for the absence ofseedlings in

2000. Annual mortality increased each year until 1999. The decreased annual mortality in 2000

coincided with no elephant utilization, confirining a 'lag' period between utilization and death,

and reduced elephant activity, perhaps associated with the decline in stem density. Although the

height-reducing influence ofelephant takes immediate effect upon woodland structure, elephant­

induced mortality does not.
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Table 9.2 Stem density (ha-') of Acacia torti/is for each year between 1997 and 2000 in the

Acacia torti/is woodlands, and annual rainfall (July to June inclusive). The population structure

for 1996 was reconstructed from the 1997 data sheets

Height class (m) Year

1996 1997 1998 1999 2000

< 1 0 13 35 20 8
1 - 2 15 18 8 5 0
2-3 20 23 23 13 10
3-4 38 23 18 18 8
4-5 15 15 8 10 8
5-6 23 18 5 3 8
6-7 40 35 28 10 13
>7 23 18 20 13 15

Total stem density 173 160 143 90 68
Mortality rate (% anol

) 8.7 17.2 36.8 25
Season 1994/95 1995/96 1996/97 1997/98 1998/99
Rainfall (mm an-I) 389.7 337.5 383.7 132.9 335.8

Canopy removal

Approximately two thirds oftheA. torti/is population was browsed in 1996 (Table 9.3). Browse

frequency decreased each year from 1996, coinciding with a decrease in stem density and an

increase in the number of recumbent stems (r = -0.98, df= 2, P < 0.05 ). No browse incidents

were recorded in 2000 when available stem density had decreased to 36 stems per 0.4 ha.

However, the significant decline in stem density occurred in 1999, whilst browse frequency

decreased most in 1997 when additional methods of utilization were recorded.

Elephant most frequently browsed 6%, 18% and 95% ofthe canopy volume (Table 9.3).

The mean percent volume of canopy removed from the original canopy volume and from the

available canopy volume were both less (t = 6.96, df= 74, P < 0.001) during repeated visits to

the same tree (Table 9.4). However, elephant tended to remove proportions ofthe existing canopy

that correlated (r = 0.56, df= 25, P < 0.001) with the percent volume that was first browsed.

Acacia tortilis trees may therefore have differed in palatability, assuming the percent volume

browsed by elephant corresponds to a tree's nutritional value.
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Table 9.3 The number ofbrowse incidents by elephant on Acacia tortilis woodlands (combined

transects = 0.4 ha) between 1996 and 2000 before trees were uprooted, broken or had> 50% bark

removed from their stem circumference. Canopy removal classes express the percent volume of

canopy removed and are represented by the midpoint of each class

Canopy 1996 1997 1998 1999 2000 Total

removal class (%)

6 9 6 3 8 0 27

18 7 6 5 1 0 19

38 7 1 2 0 0 10

63 5 1 2 0 0 8

83 1 1 0 0 0 2

95 13 2 2 0 0 17

100 1 0 0 1 0 2

Total browse frequency 43 17 14 10 0 84

Stem density (0.4 ha) 69 64 57 36 27

Number oftrees browsed 43 6 4 1 0 54

Table 9.4 The percent volume ofcanopy removed from the original canopy volume and from the

available canopy volume ofAcacia torti/is trees during initial (1 SI) and subsequent (2nd
, )Cd & 4th

)

browsing incidents in the Acacia torti/is woodlands

Statistics Original canopy Available opy

can
(%) }St 2nd 3rd & 4th 2nd 3rd & 4Ul

incident incident incident incident incident

mean± SE 53.9 ± 5.00 15.5 ± 2.51 16.2 ± 1.63 29.0 ± 5.03 26.0 ± 3.78
median 63 6 18 16 17
mode 95 6 18 6 8
range 0-100 6 - 63 6 - 38 6 - 100 8 - 68
n 54 19 9 19 8

Browse frequency per tree between 1996 and 1999 inclusive ranged from one to four and was

independent of tree height (Figure 9.2). An exponential regression of tree height and browse

frequency per tree (F = 5.31, df = 53, P = 0.008), indicated a tendency for larger trees to be

browsed more frequently, but only 14% of the variation was accounted for by the model and

browse frequency is not a continuous variable. The percent volume of canopy removed by

elephant during the first browsing incident also appears to be independent oftree height (Figure

9.3). Only first-browse incidents were analyzed because the volume of canopy removed during

subsequent visits, particularly following browse incidents which removed 91 - 99% ofthe canopy
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The number of trees browsed per height class in 1996 was positively correlated (r = 0.8, df= 6,

P < 0.05) with stem density per height class in 1996. Although trees were browsed in proportion

to their abundance in each height class, elephant preferred to browse trees taller than 4 m in 1996

(Table 9.5). It is difficult to generalize which specific height classes were browsed in preference

to others, given the fine scale (1 m intervals) of the height classes used and the tendency for

elephant to prefer different sized trees during different years (Table 9.5).
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Figure 9.2 The relationship between stem height (m) ofAcacia tortilis when first browsed, and

browse frequency between 1996 and 1999 (n = 54) in the Acacia tortilis woodlands.

Table 9.5 Preferred height classes for browsing in the Acacia tortilis woodlands. Sterns that were

absent are indicated by an asterix, whilst 0 indicates stems that were not browsed, 1 indicates

height classes which comprised the same percent ofthe elephants' diet as it comprised total stem

density, > lrepn~sents height classes which constituted a greater percent ofthe elephants' diet

than their relative abundance

Height class PR
(m) 1996 1997 1998/99
<1 * * 0.0
1-2 0.8 1.9 0.0
2-3 0.8 1.4 3.1
3-4 0.6 0.8 4.6
4-5 1.1 1.9 0.0
5-6 1.2 0.0 0.0
6-7 1.2 0.7 0.0
>7 1.2 1.3 0.0
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Figure 9.3 Relationship between the stem height (m) ofAcacia tortilis and the percent volume

of canopy browsed by elephant when first browsed (n = 43) in the Acacia torti/is woodlands.

Canopy removal is represented by the midpoint ofclasses used to rank percent volume ofcanopy

browsed.

The low preference for trees < 1 m in1998/99 (Table 9.5) was on account ofthe absence oftrees

growing in that particular height class. Sixty percent of the trees < 1 m in 1998 were there

because their stems had been broken, whilst the remaining 40% were seedlings.

The strong correlation (r= 0.98, df= 6, P < 0.001) between the number oftrees browsed

in each height class during 1996 and the frequency ofbrowse incidents within each height class

between 1996 and 1999 (Figure 9.4), and the fact that browse frequency per height class (> 2 m)

had doubled by 1999, meant that trees were consistently browsed in proportion to their

abundance in each height class (Table 9.3). The three years taken for browse frequency per height

class (> 2 m) to double is an indication of the reduced browsing activity.

Although A. tortilis trees did not differ (t = 0.46, df= 30, P = 0.323) in height after being

browsed, the results regarding potential differences in tree height before and after canopies were

browsed are questionable on account of the procedures (refer to Data analysis, Population

structure) used to estimate the heights ofstems in 1996 and ofstems not recorded in subsequent

years.
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Figure 9.4 Number oftrees browsed in each height class (1 - 2 = 1 - < 2, etc.) between 1996 and

1999 in Acacia tortilis woodlands. Eighty-four incidents ofbrowse were recorded on 54 stems.

Table 9.6 The response (unaffected, coppice, reduced vigour or dead) ofAcacia torti/is trees (n

= 48) to different percent volumes of canopy removed by elephant in the Acacia tortilis

woodlands, including the time taken (years) to respond and tree heights specific to each response.

Height represents the heights (m) oftrees when they were first browsed and n is the number of

stems

Response n Canopy volume Time Height (m)

removed (%) (years) mean range

COppIce 14 91 - 100 0-1 3.7 1.7 - 7.0
9 26 - 90 0-2 3.9 1.9-6.4
5 1 - 25 2-4 5.4 3.8 - 7.0

Total 28 4.1 1.7-7.0

Reduced 2 76 - 100 2 3.9 1.9 - 5.9

VIgOur
2 51 - 75 1 - 4 3.4 3.2 - 3.5
3 11 - 50 I 5.8 4.3 - 7.0

Total 7 3.9 1.9 - 7.0

dead I 100 1 2.7
3 91 - 99 2 3.4 2.5 - 4.5
1 76 - 90 3 1.9

Total 5 2.9 1.9-4.5

unaffected 24 1 - 90 0-1 5.9 2.5 - 9.5
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Stems which had 91 - 99% of their canopy volume removed had a mean (± SE) difference in

height of 1.5 m ± (0.84 m) (range: 0.0 - 3.1 m, n = 4), whilst trees which had 1 - 90% of their

canopy volume removed had a mean (± SE) difference in height of0.1 m (± 0 .08 m) (range: 1.5

m - 0.6 m, n = 27). The negative mean difference in the height of trees which had < 91 % of their

canopy volume removed is attributed to either growth following browsing or to estimation error.

Half the number ofbrowsed trees were unaffected the following year, whilst more than

halfcoppiced and approximately two thirds ofthe trees that were only browsed (n = 16) survived

between 1996 and 2000 (Table 9.6). Mortality was attributed to excessive (> 76% volume of

canopy removed) defoliation. The time taken for A. tortilis trees to coppice or die after being

browsed decreased with the severity ofthe defoliation (Table 9.6). Although canopy removal by

browsing has the potential to induce> 31.3% mortality over four years, given the amount oftrees

that had> 76% of their canopy removed (Table 9.3), most trees were uprooted or broken after

they were browsed and died as a result of the aforementioned methods of utilization rendering

browse-related mortality relatively small.

Broken and uprooted stems

Although elephants were re-introduced into the reserve in 1991, A. torti/is stems on these sites

were only broken or uprooted between 1997 and 1999.

Table 9.7 The number of uprooted, partially and completely broken Acacia tortilis stems

between 1997 and 1999 in the Acacia tortilis woodlands. Stems were not uprooted or broken in

2000

Height class Partially Completely Uprooted stems Total
(m) broken stems broken stems

Year Year Year Year
97 98 99 97 98 99 97 98 99 97 98 99

<1 0 0 0 0 0 0 0 0 0 0 0 0
1 - 2 1 1 0 1 2 0 0 0 0 2 3 0
2-3 0 1 0 0 1 1 0 0 0 0 2 1
3-4 0 0 0 1 4 3 0 0 0 1 4 3
4-5 0 0 0 1 1 0 0 1 0 1 2 0
5-6 0 0 0 2 2 1 1 0 0 3 2 1
6-7 1 0 1 0 1 5 2 1 0 3 2 6
>7 1 0 1 1 1 2 0 0 1 2 1 4

Total 3 2 2 6 12 12 3 2 1 12 16 15
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The total number of recumbent sterns after 1997 did not differ by more than 4 sterns despite a

two-fold increase in the number of completely broken sterns in 1998 and 1999 because fewer

sterns were partially broken or uprooted (Table 9.7). By 1999, elephant had pushed over

(uprooted or broken) sterns in proportion to their abundance within each height class during 1996

(r = 0.93, df= 6, P < 0.001). No additional sterns were pushed over in 2000 when the available

stern density had been reduced to 90 sterns ha-I. The number of recumbent sterns each year

between 1997 and 2000 did not correlate with annual rainfall (Figure 3.3) or stern density (Figure

9.2).

Although no sterns were broken or uprooted in 2000, previously broken or uprooted trees

continued to die (Table 9.8), indicating that the mortality rate for 2000 does not reflect elephant

utilization that year. The severity of the outcome of broken sterns appeared to have increased

considering 11 of the 14 trees that were either partially or completely broken in 1999 died that

year. The large immediate mortality in 1999 could possibly be related to the low rainfall season

of 1997/98 (Figure 3.3).

Table 9.8 The number of Acacia tortilis sterns that were uprooted, partially and completely

broken each year (combined woodland transects = 0.4 ha) compared with the number of trees

recorded dead from each method of utilization in that year. Recumbent sterns include uprooted

plus broken sterns

Year Total
1996 1997 1998 1999 2000

Partially broken stems 0 3 2 2 0 7
Dead 0 0 1 0 1 2
Completely broken stems 0 6 12 12 0 30
Dead 0 3 6 15 3 27
Uprooted stems 0 3 2 1 0 6
Dead 0 0 3 1 1 5
Recumbent stems 0 12 16 15 0 43
Dead 0 3 10 16 5 34

Only sterns> 1 m were either broken or uprooted, because there were no trees less than 1 m in

height (Table 9.7). Elephant preferred to push over (uproot, partially or completely break) sterns

ofall heights during one year or another (Table 9.9) between 1997 and 1999, with the exception
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ofthose < 1 m, and between 2 and 3 m in height. Mean preference ratios for the period between

1997 and 1999 suggested a tendency for elephants to push over stems between 5 and 6 m

proportionally more than their relative availability (Table 9.9). Preferred height classes varied

from year to year for each method ofutilization and between the methods ofutilization. Between

1997 and 1999 elephants preferred to partially break stems in the 1 - 3 m and > 6 m height

classes, to completely break stems across all height classes with the exception oftrees < 1 m and

between 2 to 3 m in height, and to uproot trees> 4 m.

Table 9.9 Preferred height classes in the Acacia tortilis woodlands, and a comparison of stem

density (0.4 ha) with the number of Acacia tortilis stems that were uprooted, or partially and

completely broken each year between 1997 and 1999. Stems were not broken or uprooted in 2000

Height class Year Mean
(m) 1996 1997 1997 1998 1998 1999 97 - 99

Density Utilized PR Density Utilized PR Density Utilized PR PR
< 1 0 0 5 0 0.0 13 0 0.0 0.0

1 - 2 6 2 1.9 7 3 1.7 3 0 0.0 1.2
2-3 8 0 0.0 9 2 0.9 9 1 0.4 0.4
3-4 15 1 0.4 9 4 1.8 8 3 1.4 1.2
4-5 6 1 1.0 6 2 1.3 3 0 0.0 0.8
5-6 9 3 1.9 7 2 1.1 2 1 1.9 1.7
6-7 16 3 1.1 14 2 0.6 11 6 2.1 1.2
>7 9 2 1.3 7 1 0.6 8 4 1.9 1.2

Total 69 12 64 16 57 15

Acacia tortilis stems were either partially (n = 7) or completely (n = 30) broken. Although there

was no significant difference in stem diameter (t = 0.12, df = 8, P = 0.906) or height (t = 0.15,

df= 7, P = 0.887) between partially and completely broken stems, a Kolmogorov-Smimov two

sample test revealed that partially (n = 15) and completely (n = 37) broken stems differed

significantly (P < 0.05) in their tree height distributions; partially broken stems contained a

greater portion of smaller trees (Table 9.10). Half the number ofpartially broken stems were <

3.0 m in height, whilst less than one quarter of completely broken stems were < 3.0 m.

Uprooted stems (mean height: 5.9 m, n = 6) were taller (t = 2.39, df= 14, P = 0.016) than broken

stems (mean height: 4.7 m, n = 37) because elephant broke ste~s across the full range ofheight

classes, with the exception of trees below 1 m, whilst only uprooting trees taller than 4 m. It



107

would be misleading, however, to conclude that elephants uproot taller trees considering they

broke more stems (n = 21) > 4 m than they uprooted (n = 6). The height of uprooted stems was

not different (t = 0.59, df= 9, P = 0.285) from the height of broken stems that were taller than

4 m (mean: 6.1 m, n = 21). There was no difference in stem diameter (t = 0.36, df= 6, P = 0.364)

between uprooted and broken stems. Nor was the diameter of uprooted stems (Table 9.10)

different (t = 0.55, df= 7, P = 0.299) from the diameter (20.1 cm) of broken stems> 4 m in

height.

Table 9.10 The diameters and heights ofuprooted (n = 6), partially (n = 7) and completely (n =

30) broken Acacia tortilis trees between 1997 and 1999 in the Acacia tortilis woodlands. Height

is the height of stems prior to utilization. Total broken stems includes partially and completely

broken stems

Diameter (cm) Height (m)
mean± SE median range mean± SE median range

Partially broken stems 17.3 ± 3.29 14.0 7.0 - 31.6 4.8 ± 1.00 6 1.8 - 8.0
Completely broken stems 16.9 ± 1.09 16.3 2.3-31.4 4.7±0.31 4.6 1.0-7.4
Total broken stems 16.7±1.11 16.2 2.3-31.6 4.7 ± 0.32 5.0 1.0 - 8.0

Uprooted stems 18.2 ± 3.09 19.7 7.3 - 28.7 5.9 ± 0.37 6.0 4.7 - 7.3

Acacia tortilis stems that survived being broken or uprooted were reduced in height (t = 4.40, df

= 14, P < 0.001), affecting woodland structure. Although the height to which A. tortilis trees were

reduced varied considerably, trees were generally reduced to approximately half their original

height (Table 9.11). Forty percent ofstems that survived being pushed over (broken or uprooted)

were reduced to 2 - 5 m in height, whilst the remaining 60% were reduced to < 2 m. This

accounted for the marked increase in the density ofstems < 2 m in 1997 and 1998, followed by

the high mortality rate ofrecumbent stems in 1999 which reduced the density of stems below 2

m.

Trees of all heights survived being pushed over by elephant (Table 9.12). There was a positive

correlation (r = 0.45, df = 13, P = 0.05) between the height of a tree before it was pushed over

and the percent height lost; taller trees lost a greater proportion of their height.
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Table 9.11 Percent height lost owing to partially broken, completely broken and uprooted stems

inthe Acacia tortilis woodlands. n is the number oftrees that survived more than one year after

being pushed over between 1997 and 1999

Statistics Partially Completely Uprooted Total
broken stem broken stem stem

(n == 5) (n == 8) (n ==2) (n == 15)

mean± SE 48 ± 15.4 48 ± 11.6 55 ± 5.0 49 ± 7.7

median 50 49 55 50
range 0-87 5 - 94 50 - 60 0-94

Table 9.12 Percent height lost of Acacia tortilis trees that survived the different methods of

utilization (uprooted: U, partially broken stems: P, or completely broken stems: C) for at least

one year, survival (years) of trees in their new height classes, and the number of stems utilized

(uprooted or broken) in the Acacia tortilis woodlands. Bold values indicate trees that were alive

in 2000

Height 1997 1998 1999

(m) Utilized Height lost Survival Utilized Height lost Survival Utilized Height lost Survival
(%) (years) (%) (years) (%) (years)

< 1 0 0 0
1 - 2 2 lO(C) 2 3 30 (C) 1 0

74 (P) 1 50 (P) 2
2-3 0 2 O(P) 2 1
3-4 1 67(C) 1 4 3
4-5 1 70 (C) 1 2 32 (C) 2 0
5-6 3 2 1 5 (C)
6-7 3 50 (U) 2 2 60 (U) 2 6 n(C)

32 (P) 3 94 (C) 1
>7 2 1 4 87 (P)

Total 12 6 16 6 15 3

Trees survived for one to three years (Table 9.12) in their new height classes. Survival (years)

following utilization decreased with the intensity of utilization (r = -0.5, df = 13, P = 0.05)

measured in terms of height lost (%). Trees that survived only one year (n = 8) lost a greater (t

= 2.07, df= 12, P = 0.03) percent oftree height (mean: 63%) than trees which survived two or

three years (n = 7), and lost, on average, 33% of their height.

The primary response of A. tortilis to completely broken and uprooted stems was

mortality (Table 9.13). Less than halfofthe completely broken and uprooted trees er 997 - 2000)
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coppiced, whilst even fewer (17%) individuals survived. In contrast more partially broken stems

coppiced than died (Table 9.13). Overall mortality (43%) ofpartially broken stems between 1997

and 2000 was less than completely broken (83%) and uprooted (83%) stems, inferring that

partially broken stems had a greater probability ofsurvival than completely broken and uprooted

stems (Table 9.13). It is unlikely that the single uprooted tree which survived (for two years), will

be an exception to the observation that uprooted trees eventually die, given (1) the 'survivor's'

reduced vigor (e.g. dying) and reduced canopy volume (to ± 1/4) in 2000, and (2) the time taken

for uprooted trees to die (up to three years). Consequently, it is concluded that uprooting

ultimately results in death. The probability of a tree surviving one (G = 4.81, df = 2, 0.1 < P >

0.05), two (G= 5.47, df= 2,0.1 <P> 0.05) or three (X2 = 3.27, df= 2,0.25 <P > 0.10) years

after being uprooted or partially and completely broken was independent of the method of

utilization.

Although the probability ofrecumbent stems surviving one year decreased with a corresponding

decrease in the previous season's rainfall (Table 9.14), suggesting that survival may depend on

the availability of soil water following the rainfall season that preceded utilization, the survival

of recumbent stems for one year after being uprooted or partially and completely broken was

independent of the year (1997, 1998 or 1999) of utilization (G = 2.80, df= 2, 0.25 < P >0.10).

Nevertheless, partially broken stems appeared to have a greater chance ofsurviving than uprooted

or completely broken stems (Table 9.14).

The range in heights that survived partially broken (Figure 9.5) and completely broken (Figure

9.6) stems relative to the heights of trees that died one and two years after they were broken

.suggests that the probability of survival (years) was independent of tree height.

Mortalities (stems that died during or one year following utilization, n = 28) did not differ (t =

1.63, df = 24, P = 0.117) from survivors (stems that survived at least one year following

utilization, n = 15) in tree height (Figure 9.7), although there was a significant (t = 2.23, df= 35,

P<0.016) difference in stem diameter (mortalities: 18.7 cm, survivors: 14.3 cm). Prolonged

SUrVival following utilization was independent of tree height (t = 0.44, df= 13, P = 0.66) and

stem diameter (t = 0.15, df= 13, P= 0.88). Mean height and diameter ofstems that survived one

year (n = 8) was 4.4 m and 14.1 cm, whilst the mean height and diameter of stems that survived
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two and three years (n = 7) was 3.9 m and 14.6 cm, respectively. Consequently, the ability ofA.

tortilis to recover from uprooting or a broken stem was independent of the size of a tree.

Table 9.13 The time (years) taken for Acacia tortitis to respond (unaffected, coppice, reduced

vigour or dead) to uprooting, completely and partially broken stems in the Acacia tortitis

woodlands, and tree heights specific to each response. Height represents the heights (m) oftrees

when they were pushed over, whilst n is the number of trees

Completelybroken stems (n = 30)

Response Time n Height (m)

(years) mean range

coppice 0 10 4.2 1.0 - 7.0
1 1 4.1

Total 11 4.2

reduced vigour 1 1 5.1

unaffected 0 1 4.1
1 1 1.0

Total 2 2.3

dead 0 19 4.8 1.7 - 7.0
1 3 4.8 3.5 - 7.0
2 2 4.0 3.9 - 4.0
3 1 1.0

Total 25 3.7

Partially broke n stems (n = 7)

coppice 0 4 3.6 1.8 - 8.0
1 1 6.0

Total 5 3.4

reduced vigour 0 2 7.8 6.5 - 7.0

unaffected 0 1 6.0

dead 1 2 7.3 6.5 - 8.0
2 1 1.9

Total 3 5.5

Uprooted stem s (n - 6)

coppIce 0 3 5.7 5.0 - 6.2
reduced vigour 2 2 6.0 6.0 - 6.0

unaffected 0 1 6.0

dead 0 2 6 4.7 - 7.3
1 2 5.9 5.0 - 6.7
3 1 6

Total 5 5.9



Table 9.14 The probability of Acacia torti/is surviving after being uprooted or partially and completely broken in the Acacia tortilis

woodlands for 1997, 1998 and 1999, in relation to (1) mean annual rainfall for 1995/1996, 1996/97, and 1997/98 and (2) mean stem density

(ha) per height class for those height classes utilized (1 - > 7 m). Mean stem density represents the density oftrees at the end ofthe previous

season (e.g. 1996, 1997 and 1998)

Partially Completely Uprooted Recumbent Rainfall Mean Stem
Broken Broken (mm/an) Density (ha)

Frequency (%) Frequency (%) Frequency (%) Frequency (%)
1997 337.5 29.2 (1996)
Probability of surviving 1 year 2 out of3 (67) 3 out of 6 (50) lout 00 (33) 6 out of 12 (50)
Probability of surviving 2 year lout 00 (33) lout of6 (17) lout of3 (33) 3 out of 12 (25)
Probability of surviving 3 year lout 00 (33) oout of 6 (0) oout of3 (0) lout of 12 (8)
1998 383.7 24.2 (1997)
Probability of surviving 1 year 2 out of2 (100) 3 out of 12 (25) 1 out of2 (50) 6 out of 16 (38)
Probability of surviving 2 year 2 out of2 (100) lout of 12 (8) lout of2 (50) 4 out of 16 (25)
1999 132.9 18.9(1998)
Probability of surviving 1 year lout of2 (50) 2 out of 12 (17) oout of 1 (0) 3 out of 15 (20)
Total
Probability of surviving 1 year 5 out of7 (71) 8 out of30 (27) 2 out of 6 (33) 15 out of 43 (35)
Probability of surviving 2 year 3 out of 5 (60) 2 out of 18 (11) 2 out of 5 (40) 70utof28 (25)
Probability of surviving 3 year 1 out of 3 (33) oout of 6 (0) oout of3 (0) lout of 12 (8)

...............
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Figure 9.5 Heights of the seven Acacia tortitis stems that were partially broken, and were either

alive in 2000 (0) or died one (1) and two (2) years after their stems were partially broken in the

Acacia tortilis woodlands.
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Figure 9.6 Heights ofAcacia tortilis stems that were completely broken (n = 30) in the Acacia

tortilis woodlands. 0 represents stems that were alive in 2000, whilst 1,2 and 3 represent stems

that died one, two and three years after they were completely broken, respectively.
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Figure 9.7 Heights ofuprooted and broken Acacia tortilis stems which either survived (0), died

the same or following year (1; mean: 5.2 ± 0.31 m, median: 5.5 m, range: 1.7 - 8.0 m), or died

two (2) and three (3) years after they were pushed over (mean: 4.2 ± 0.54 m, median: 4.1 m,

range: 1.0 - 7.0 m) in the Acacia tortilis woodlands.

The canopies oftrees were browsed (0 - 99% ofcanopy volume) before they were uprooted and

one individual had its entire circumference debarked. The total volume ofcanopy removed before

(F = 0.5, df= 5, P = 0.480) or volume lost during the same year a tree was uprooted (F = 1.19,

df = 5, P = 0.276) did not affect the probability of survival. Although total canopy loss

immediately after utilization did not affect the probability ofa tree surviving at least one year (F

= 2.39, df= 5, P = 0.122), the four trees that died the same or following year they were uprooted

lost 100% of their canopy after being uprooted and the trees that survived at least one year lost

only 6% and 63% oftheir canopy. It would appear, therefore, that survival (for one to two years)

may depend on a portion ofthe canopy remaining intact after utilization. The inevitable death of

uprooted trees (Table 9.13) irrespective ofpast canopy browse damage reflects the poor ability

ofA. tortilis to recover from uprooting. Canopy loss from those two trees that survived more than

one year progressively increased.
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Unfortunately it is unknown whether the increased loss was the result of dieback or elephant

browsing after being uprooted. Nevertheless, canopy loss owing to either dieback or browsing

did not exceed 25% after a tree had been uprooted.

Acacia tortilis stems that were broken were also subjected to debarking and canopy removal

before they were broken. Four stems were debarked (one tree had its entire circumference

debarked) prior to their death, whilst two trees were alive in 2000 despite being debarked and

having completely and partially broken stems in 1999. The incidence of debarking on stems,

either before or after they were broken, did not affect their probability of survival (F = OAl, df

= 36, P = 0.523). Only nine stems were not browsed prior to being broken (n = 37), but they were

broken in 1997 and 1998; trees broken in 1997 and 1998 had only one and two years,

respectively, during which they could be browsed, considering canopies were browsed since only

1996. Although trees were browsed (1 - 99% of canopy volume) up to three years before their

stems were broken, accumulated canopy removal (calculated by adding the midpoints of each

class) before breakage did not affect the probability of survival (F= 0.8, df= 36, P = 0.371).

Similarly, the volume ofthe canopy lost when the stem was broken did not affect the probability

of survival (F = 0.01, df = 36, P = 0.905). The total accumulated percent of canopy lost

subsequent to the stem being broken, however, did affect the probability of survival (F = 7.1, df

= 36, P = 0.008).

Trees that died either the same or following year their stems were broken (n = 24) had a mean

canopy removal of 100% (range: 95 - 100%), whilst trees that survived one or more years after

their stems were broken (n = 13) had a mean canopy loss of 84% (range: 56 - 99%). Survivors

consisted of both partially (n = 5) and completely (n = 8) broken stems (Table 9.13). The

probability of survival was not affected (F = 2.68, df = 36, P = 0.101) by the nature (partial or

complete) of the broken stem. Theoretically, completely broken stems should have no canopy

remaining because the canopy would be completely separated from the roots. Coppice is the

likely explanation for the presence of some canopy after stems were completely broken, whilst

partly broken stems were able to support a reduced canopy through that part ofthe stem that was

intact. A broken stem may therefore lose its entire canopy and survive (1 to 3 years) on coppice

growth alone.
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Debarking

Debarking frequency reached a maximum in 1998 and subsequently decreased (Table 9.15). The

high incidence of debarking recorded in 1998 followed an above average rainfall season

(1996/97) and coincided with a period of below average rainfall (Figure 3.5). Considering

changes in stem density per height class were only significant in 1999 and 2000, the decrease in

the frequency ofdebarking incidents after 1998 might be associated with the reduced availability

of trees in 1999, particularly in the 6 - 7 m height class.

Table 9.15 Annual debarking frequency distributions and the number ofnew trees debarked each

year in the Acacia tortilis woodlands. The debarking classes are defined as the percent

circumference of bark removed from the stem

Debarking class Year Total
(%)

< 1996, 1996 1997 1998 1999 2000

1 - 10 2 1 3 3 0 9
11 - 25 0 2 3 1 0 6
26 - 50 0 0 1 1 1 3
51 - 75 1 2 0 0 0 3
76 - 90 0 0 0 0 0 0
91 - 99 0 0 0 0 0 0

100 0 0 2 0 0 2
Total 3 5 9 5 1 23

New trees 3 5 3 2 0 13

Debarking never affected more than 7% ofthe total stem density (Table 9.15) during any given

year. ThirteenA. tortilis stems were subjected to 23 debarking incidents (Table 9.16) until 2000,

although most (n = 11) stems were debarked between 1996 and 1999. Elephant most frequently

debarked < 25% ofthe stem circumference. The first two debarking classes accounted for more

than two thirds of the debarking incidents until 2000 (Figure 9.8).

Approximately half (n = 7) of the 13 debarked A. tortilis trees were revisited, although never

more than three times. Three stems were revisited for a third time in 1999 when < 25% of their

circumference was removed.
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Table 6.16 Diameter and height statistics ofAcacia tortilis stems (n = 13) that were debarked by

elephant in the Acacia torti/is woodlands

40

Mean (± SD)
Median
Range

Diameter
(cm)

24.5 (± 9.4)
24.5

2.3 - 42.6

Height
(m)

6.3 (± 1.6)
6.7

1.0-7.4
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Figure 9.8 The utilization frequency (%) ofdebarking classes (n = 23) until 2000 in the Acacia

tortilis woodlands. Debarking classes were defined as the percent circumference ofbark removed

from the stem.

Time between revisits ranged from < 1 to 3 years (mean: 1.3 years). Only stems with diameters

> 20 cm and taller than 6 m were revisited. Although there was a weak correlation (r = - 0.2, df

= 5, P > 0.05) between the percent circumference of bark removed during the first and second

debarking incidents, the negative correlation confirmed that severe initial debarking incidents

were most likely to be followed by less severe debarking incidents and vice versa. Three trees

had almost 100% oftheir stem circumference debarked after the second time they were debarked
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in 1998 (1997: 51 - 75%, 1998: 11 - 25%), but this was not fatal; one tree was still alive in 2000,

whilst the remaining two died after their stems were broken the following year. The frequency

of utilization (Figure 9.9) was correlated with stem diameter (r = 0.6, df= 11, P > 0.05) and to

a lesser extent, tree height (r = 0.4, df= 11, P > 0.05).
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Figure 9.9 Scatter plot and linearregression (n = 13, R2 = 35.1, P= 0.02) ofstem diameter (cm)

and debarking frequency per tree in the Acacia tortilis woodlands.

The one-year lag between the frequency offirst and later (2nd and 3rd
) debarking incidents (Figure

9.10) suggests a close association between the frequency of 'follow-up' debarking incidents and

the number of new trees debarked the previous year. Only two of the seven trees that were

debarked more than one year ago were revisited.

Debarking incidents which removed < 50% of the stem circumference occurred over a

large range of stem diameters and tree heights, relative to severe debarking incidents (> 50% ­

100%) whi~h were restricted to trees either greater than 20 cm diameter or 6 m in height (Figure

9.11).

There was no correlation between stem diameter, tree height and the percent circumference of

stem that was debarked (measured as the midpoint of each debarking class). Considering that

85% of the debarked trees were> 6 m, it is concluded that trees < 6 m in height were generally

avoided.
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Figure 9.10 The number of Acacia tortilis trees debarked each year in the Acacia tortilis

woodlands compared with annual stern density per height class. Stern density is the number of

trees in the preferred height classes (> 6 m) at the end of the previous year and therefore the

number of trees available for the current year.

One tree < 1 m had up to 50% of its stern circumference removed, but was the consequence of

a canopy browsing incident rather than a deliberate debarking. It is therefore unlikely that this

height class was sought after for debarking. The second debarked tree less than 6 m had only 1 ­

10% of its stern circumference and stern height removed. It would appear that trees < 6 m in

. height were too small to be debarked. This does not, however, exclude the possibility ofsmaller

trees being debarked, considering branches removed from the canopy can strip bark from the

stern.
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Figure 9.11 Range in stem diameters (cm) and tree heights (m) utilized by elephant for the different
debarking classes in the Acacia tortilis woodlands. Debarking classes are defined as the percent
circumference of bark removed from the stem, and represented by the midpoint of each class.
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.Debarking was restricted mostly to trees in the 6 - 7 m (n = 6) and> 7 m (n = 5) height classes

(Table 9.17). Overall utilization since the re-introduction ofelephant (Table 9.17) indicated that

elephants preferred to debark trees greater than 6 m in height. Consequently, elephants did not

debark A. torti/is stems in proportion to their abundance, avoiding trees < 5 m.

Table 9.17 The number ofAcacia tortilis stems per height class with 1 -75% or 100% of their

stem circumference debarked in the Acacia tortilis woodlands and preferred height classes for

each year and the period 1991 to 1999. Trees that were absent are indicated by an asterix.

Preference ratios estimated for 1997 and the period 1991 - 1999 used the reconstructed

population structure of 1996, whilst 1998 and 1999 preference ratios were estimated using the

previous year's stem densities for each height class

Height class Debarking class (%) Preference ratios

(m) 1-75 100 1997 1998 1999 1991 - 1999
< 1 1 0 * 0 2.2 *

1 - 2 0 0 0 0 0 0
2-3 0 0 0 0 0 0
3-4 0 0 0 0 0 0
4-5 0 0 0 0 0 0
5-6 1 0 0 0 0 0.6
6-7 5 1 2.9 0 2.6 2.2
>7 4 1 2.6 9.1 0 3.2

Total 11 2

Debarking will only reduce tree height if it results in dieback at the top of the canopy from the

death of a prominent branch. The mean increase in tree height one year after the first debarking

(0.09 m) was not significant (t= 0.88, df= 10, P= 0.4), indicating that debarking, which ranged

from 1 - 75%, does not result in large (> 0.1 m) changes in tree height. However, errors

associated with estimating height by different field workers each year means that small changes

in tree height resulting from growth or canopy dieback can not be accounted for, with any degree

of precision or accuracy, particularly over a three year period (1997 - 2000) in a semi-arid

environment.

Half of the debarked stems coppiced and one quarter of them showed signs of reduced vigour

(dying), but there were no fatalities. The total percent volume of canopy removed until the last



121

debarking incident ranged from 6% - 63% and may have confounded individual tree response to

debarking. The three debarked trees with reduced vigour (dying) (Table 9.18) in 2000 had only

12 - 30% of their canopies removed.

Table 9.18 The response (unaffected, coppice, reduced vigour or dead) ofAcacia torti/is stems

(n = 12) to debarking by elephant in the Acacia tortilis woodlands, including the time taken

(years) to respond and tree heights specific to each response. Height represents the heights (m)

of trees when they were first debarked, whilst n is the number of trees

Response n Circumference Time Height

(m)

debarked (%) (years) mean range

coppIce 2 100 0 7.0 6.7 - 7.2
2 51 - 75 1 7.0 6.4 - 7.5
2 1 - 10 1 - 2 6.4 5.8 - 7.0

Total 6 6.7 5.8 - 7.5

reduced vigour 1 76 - 90 2 6.5
1 11 - 25 1 7.5
1 1 - 10 1 6.2

Total 3 6.7

unaffected 12 1 - 90 o- 1 6.7 5.8 - 7.5

Five debarked A. tortilis stems died. Death was not, however, the result ofdebarking, but rather

uprooting (n = 1) and broken stems (n = 4), which occurred one year after the last debarking. Two

trees had their entire circumference (100%) debarked in 1998 and died the following year; the

one tree was uprooted, whilst the other had its stem completely broken in 1999. Consequently,

the time taken to die after a stem has been 100% debarked is unknown.

Three stems had more than 50% of their stem circumference removed in 1996 (n = 1) and 1997

(n = 2). The one tree debarked (50 - 75%) in 1996 was still alive in 2000, despite additional

debarking in 1998 (11 - 25%) and canopy removal twice in 1999 (1 - 10% on each occasion).

Both trees debarked (50 - 75%) in 1997 had their stems partially broken in 1999; one was alive

in 2000. The tree that died in 2000 had 100% (1997: 51 - 75%; 1998: 11 - 25%; 1999:1 - 10%)

of its stem circumference removed from accumulated debarking incidents, apart from a broken

stem. Trees with more than 50% of their circumference debarked are therefore capable of
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surviving up to four years, despite additional debarking, canopy removal and broken sterns.
I

Debarking can not be established as a mortality agent, especially given the confounding

influences of uprooting and broken sterns.

All except three debarked trees were browsed 1 - 2 years before they were debarked. On average,

approximately 25% ofthe Acacia tortilis canopies were removed by browsing (range: 1 - 75%)

before trees were debarked. Mean canopy loss associated with debarking (due to either browsing

or dieback) was low, relative to the stern circumference that was debarked (Table 9.19).

Table 9.19 The amount of canopy lost (to either browsing or dieback) after debarking (n = 12)

in the Acacia tortilis woodlands. Debarking is the total percent ofstern circumference debarked

until 2000 or until the tree was uprooted or broken. The percent volume ofcanopy lost is the total

volume of canopy lost from the first debarking until 2000 or until the tree was uprooted or

broken. Accumulated amounts of canopy and bark removal were calculated by adding the

midpoints of each class used to rank canopy removal and debarking, respectively

Debarking Canopy
(%) lost (%)

6 6
36 6
63 0

100 0
63 6
18 24
44 38
81 24
81 56

6 44
100 0

6 6
mean 50.3 17.5
median 53.5 6
range 6 - 100 0-56

Sterns that had their entire stem circumference debarked did not experience canopy dieback that

same year (Table 9.19). Unfortunately their stems were broken the following year. Debarking

should not result in canopy dieback unless prominent branches are isolated from the main stem

by debarking which extends from the stem into the canopy (personal observation). The debarking
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ofA. torti/is trees rarely (43% ofbrowsing incidents) extended into the canopy. The mean (± SE)

percent height of bark stripped from the stern per debarking incident was 63.7% (± 8.77%)

(median: 95%, range: 6 - 100%, n = 23). Canopy removal either prior to or during debarking did

not affect the probability of mortality, considering six of the 13 debarked sterns, that were not

uprooted or broken, were alive in 2000.

There was a weak correlation (r= 0.45, df= 21, P < 0.05) between percent circumference ofstern

debarked and percent height of stern debarked. The percent height of stern that was debarked

when debarking incidents removed < 10% ofthe stern circumference (mean ± SE: 30.4 ± 13.60,

median: 6, n = 9) was significantly less (t = 3.56, df = 12, P = 0.004) than the percent height

removed from sterns which had > 10% oftheir circumference debarked (mean± SE: 85.1 ± 7.10,

median: 100, n = 14).

Factors influencing the different methods of feeding

Browse frequency, browse volume, tree height or their interactions did not influence the

probability ofA. tortilis sterns being broken. However, halfthe number ofbroken sterns had lost

almost 80% oftheir canopy volume on account of browsing prior to them being broken (Table.
9.20). Nor did browse frequency, browse volume, tree height or their interactions influence the

probability oftrees being browsed only (e.g. not uprooted, debarked or broken). The probability

of sterns being debarked was significantly dependent, however, on tree height (F = 10.55, df =

66, p= 0.001) and browse volume (F= 5.29, df= 66, P= 0.021); debarked trees were taller than

5 rn, with one exception, and never had more than two thirds oftheir canopy browsed before they

were debarked (Table 9.20). The probability of being uprooted was significantly dependent on

browse frequency (F= 6.98, df= 66, P = 0.008); uprooted trees (n = 6) were browsed only once

before they were uprooted.

Significant differences existed in browse frequency (F= 4.06, df= 66, P = 0.01), browse volume

(F= 4.78, df= 66, P = 0.005) and tree height (F= 5.62, df= 66, P = 0.002) among the different

types of utilization (Table 9.20), including trees that were only browsed. Debarked sterns were

taller than sterns that were broken or only browsed, whilst uprooted sterns were taller than sterns

that were only browsed (Table 9.20; LSD = 1.59, df=63,P< 0.05). Debarked and uprooted trees
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were, on average, taller than trees that were only browsed because the aforementioned trees were

taller than 4 m, whilst browsed trees occurred across the full range of height classes, with the

exception of trees < 1 m.

Table 9.20 The browse frequency, browse volume (%), and height (m) of trees that were

debarked (n = 11), uprooted (n = 6), broken (n = 34) or only browsed (n = 16) in the Acacia

tortilis woodlands. Browse frequency is the number of browsing incidents per tree before the

stem was debarked, uprooted or broken, browse volume is the sum ofthe midpoints ofeach class

used to rank percent volume ofcanopy browsed before a tree was debarked, uprooted or broken,

and tree height is the height of a tree when it was first browsed

Statistics Browse
frequency

Debarked Uprooted Broken Browsed

mean 1.7 0.5 1.2 1.8
median 2 0.5 1 1
range 1 - 3 0- 1 0-3 1 - 4

Browse
volume (%)

Debarked Uprooted Broken Browsed

mean± SE 27.5 ± 5.58 21.8 ± 15.07 62.4 ± 6.25 60.6±9.12
median 30 9 77.5 66
range 6 - 63 0-95 0-100 6 - 100

Height (m)

Debarked Uprooted Broken Browsed

mean± SE 6.7±0.17 5.9 ± 0.38 4.5 ± 0.35 4.3 ± 0.51
median 6.7 6 4.1 3.6
range 5.8 - 7.4 4.7 - 7.3 1 - 8 1.9 - 9.5

Broken (and recumbent stems: t = 0.80, df= 27, P = 0.216) were not taller than trees that were

only browsed and had the greatest mean percent volume ofcanopy removed by browsing (Table

9.20), indicating that trees were within the limit of the upper reach of an adult elephant before

they were pushed over. It is concluded that the feeding response of elephant to A. tortilis,

specifically the disti3ction between pushing trees over and browsing the canopies of trees, was

independent of tree size.
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Elephant utilization of riverine Acacia tortilis

Population structure

The recruitment ofA. tortilis seedlings in 1998 accounted for the large increase in stem density

that year (Table 9.21) and coincided with the increased seedling recruitment on A. tortilis

woodlands (Table 9.2). The high mortality rate in 1999 was attributed to the mortality of

seedlings, most likely on account of insufficient soil water during a season of below-average

rainfall (Table 9.21).

Table 9.21 Stem density (ha) of Acacia tortilis per height class in riverine vegetation between

1997 and 1999, and annual rainfall (July to June inclusive).

Height class (m) Year

1997 1998 1999
< 1 33 48 27

1 - 2 3 3 3
2-3 5 4 4
3-4 6 2 1
4-5 5 6 3
5-6 14 12 11
6-7 14 15 11
>7 31 33 38

Total stem density 111 123 99
Mortality rate (% an-I): 3 17
Season 1996/97 1997/98 1998/99
Rainfall (mm an-I): 383.7 132.9 335.8

Apart from fluctuations in stem density owing to episodic recruitment ofseedlings, stem density

remained below 112 stems ha- 1corresponding to the stem density ofA. tortilis woodlands in 1999

(Table 9.2), after which time elephant activity was absent. Although approximately 50% ofA.

tortilis stems were> 5 m (Figure 9.11) in both the woodlands (mean height ± SD: 4.8 m ± 1.90

m) and riverine vegetation (mean height ± SD: 4.7 m ± 3.61 m), the distribution of A. tortilis

stems in the riverine vegetation (n = 155) was significantly (P < 0.001) different from the

woodlands (n = 69). Apart from the greater proportion of trees < 1 m in the riverine vegetation,

approximately 25% of the trees were between 7 and 13 m compared with 6 and 10 m in the

woodlands. Twenty percent of the trees in the riverine vegetation were taller than 8 m, whilst

only 1% of the trees in the woodlands were taller than 8 m.
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Figure 9.11 The height frequency distribution (1 - 2 = 1 - < 2, etc.) of Acacia tortilis stems in

riverine vegetation (black) during 1997 compared with Acacia tortilis woodlands (grey) before

stem breakage or uprooting by elephant (1996).

Canopy removal

Elephant first browsed A. tortilis trees within riverine vegetation circa 1996 (Table 9.22), and

coincided with the onset of canopy browsing in the A. tortilis woodlands (Table 9.3). Browse

frequency decreased after 1996 and remained relatively constant each year, corresponding to the

browse frequency observed in theA. tortilis woodlands when stem density had decreased in 1999

(Table 9.2). Elephant rarely removed as much as 26 to 50% of the canopy during a browsing

incident (Table 9.22) and accumulated canopy volume removed between 1996 and 1999 never

exceeded 56%. Consequently, canopy removal by elephant within the riverine vegetation did not

induce mortality, compared with the A. tortilis woodlands (Table 9.6).

The number of trees browsed decreased each year between 1996 and 1999. First browse

incidents occurred in 1996 and 1997. Thereafter elephant browsed mostly trees which had been

previously browsed (Table 9.22), most likely on account ofthe reduced availability ofunbrowsed

trees in the larger (> 3 m) height classes which were favoured (pR: 3 - 4 m =2.5, 4 - 5 ill = 1.8,

5 - 6 m = 1.7, > 7 ill = 1.6) by elephant for browsing (Figure 9.12). Trees < 2 m were not
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browsed, despite an abundance of trees below 2 m relative to the A. torti/is woodlands (Table

9.2).

Table 9.22 The number ofAcacia tortilis trees browsed by elephant within riverine vegetation

(combined transects = 1.4 ha) for each year between 1996 and 1999. Browse frequencies are

recorded for each canopy removal class. Canopy removal classes express the percent volume of

canopy removed and are represented by the midpoint of each class

Canopy removal (%)Year Total
1996 1997 1998 1999

6 26 6 6 5 43
18 6 3 4 3 16
38 1 0 0 1 2
63 0 0 0 0 0
83 0 0 0 0 0
95 0 0 0 0 0
100 0 0 0 0 0
Total 33 9 10 9 61
Number of trees first browsed

33 9 1 3 46
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Figure 9.12 Browse frequency ofAcacia tortilis trees within riverine vegetation for each height

class (1 - 2 = 1 - < 2, etc.) between 1996 and 2000. Sixty-one incidents ofbrowse were recorded

on 46 trees.
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Broken and uprooted stems

No trees < 1 m or > 7 m were uprooted or broken. Two stems (2.6 and 3.5 m tall) were uprooted

between 1996 and 1999 and died the same year they were uprooted (1998), in accordance with

the low probability ofsurvival associated with uprooted stems in the A. tortilis woodlands (Table

9.14).

Five stems were either partially or completely broken in 1999. Two trees died that same year and

were 4.4 and 6.8 m tall, whilst those trees which survived ranged in height from 1.3 to 6 m before

they were broken. Only one tree that survived being broken was reduced in height and lost 54%

of its original (1.3 m) height. It was not possible to calculate the probability of survival for one

year considering transects were not revisited in 2000. Nevertheless, the seven stems which were

pushed over (uprooted or broken) between 1996 and 1999 represent only 4.5% ofthe population

of A. tortilis stems measured in the riverine vegetation in 1997. Although utilization was low

relative to the number ofuprooted and broken stems in the A. tortilis woodlands (Table 9.9), the

mortality ofmiddle-age (1 - 5 m) stems in the riverine vegetation potentially could affect the rate

of replacement of the larger trees in those plant communities considering there was a low

abundance of stems in those height classes (Figure 9.11).

Debarking

Four stems were debarked between 1996 and 1999. One debarking incident removed 100% of

the bark from the stem circumference in 1996 and the tree died three years later in 1999,

suggesting a high tolerance to debarking. Debarking does therefore function as a mortality factor,

albeit negligible. The remaining three debarking incidents which occurred in 1996 (n = 2) and

1998 (n = 1) removed < 50% ofthe bark from the stem circumference. Stems were not revisited

and were taller than 4 m, corresponding to the heights of debarked stems in the A. tortilis

woodlands (Table 9.18).

Elephant utilization ofAcacia nilotica woodlands

Elephant responded differently to the Acacia nilotica woodlands which consisted mostly of

mature trees (Table 9.23) compared with the A. tortilis woodlands. Acacia nilotica was primarily

debarked. Elephant had utilized 60 of the 69 stems (47 live and 22 dead stems) on 0.5 ha by
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1999; six stems died from moisture stress and unknown causes, whilst the remaining 16 stems

(23.2%) were killed from elephant-related influences. Six stems died from being severely (91 ­

100%) debarked. Eighty percent of those stems utilized by elephant were debarked, 30% of the

stems were browsed (mean volume± SE: 43.2 ± 9.22%, median: 28%, range: 6 - 100%, n = 18)

and 7% were pushed over. Half the number of debarked trees lost parts of their canopy on

account of dieback (mean volume lost ± SE: 32.4 ± 5.94%, median: 18%, range: 6 - 100%, n =

28). The volume ofcanopy lost to dieback on A. nilotica trees (n = 25) was significantly greater

(t = 1.83, df= 31, P = 0.038) than the volume ofcanopy lost due to either browse or dieback after

debarking on A. tortilis stems (n = 12). The mean (± SE) percent circumference and height ofA.

nilotica stems (n = 48) removed by debarking was 56.5 ± 4.77% and 95.3 ± 2.82%, respectively

(median: 63% and 100%, respectively). Debarking extended into the branches of 94% of

debarked A. nilotica stems. The percent height ofbark removed from the stem was significantly

greater (t = 3.43, df= 27, P = 0.001) on A. nilotica than on A. tortilis stems.

Table 9.23 Tree density (ha) of live and dead Acacia nilotica (multi-stemmed) trees per height

class in 1999

Height class (m) Tree density

Discussion

< 1
1 - 2
2-3
3-4
4-5
5 - 6
6-7
>7

Total

o
o
o
2
4

16
14
40
76

The functional response of elephant to Acacia tortilis

The favoured method offeeding differs between and within woody species. Elephant respond to

different species ofwoody plants by removing branches from the canopy, stripping bark from the

stem and/or uprooting (and breaking) entire trees. Acacia tortilis in the Northern Province, South
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Africa, had branches removed, was pushed over (uprooted orbroken) and occasionally debarked.

Elsewhere, A. tortilis has been debarked (Anderson & Walker 1974; Barnes 1982; Mwalyosi

1987, 1990) or had branches removed, uprooted and occasionally debarked (Croze 1974b;

Kalemera 1989; Ruess & Halter 1990). In contrast, Acacia ni/otica (woodlands) in the Northern

Province was debarked and occasionally pushed over or have branches removed, whilst

Colophospermum mopane has had branches removed (Lewis 1986) or stems broken and

occasionally uprooted (Anderson & Walker 1974). It would appear, given the variability of

feeding methods used by elephant both within and between species, that each ecosystem is

unique and will need to be managed accordingly.

Nevertheless, factors influencing elephant response are usually relate to the size ofa tree

and therefore the height distribution of the tree population. The method of feeding on A. tortilis

woodland trees in the Northern Province was independent oftree height, apart from trees < 4 m

not being uprooted or debarked, considering the canopies ofmost trees were browsed before they

were pushed over. However, fewer A. torti/is trees were pushed over or debarked in the riverine

vegetation and is attributed to the greater proportion of smaller « 1 m) and larger (> 8 m) trees

than in the woodlands. The population structure of riverine A. tortilis trees could have induced

less response from the elephant considering A. torti/is trees < 1 m are usually avoided (Vesey­

Fitzgerald 1972; Croze 1974b; Pellew 1983a; Ruess & Halter 1990), and many large A. torti/is

trees are unable to be uprooted by elephant (Croze 1974b). Elephant damage to Pterocarpus

angolensis in Zimbabwe was characterized by the uprooting of many small trees, whilst larger

trees were mainly debarked (Campbell et at. 1996). In East Africa, where the canopy of mature

A. tortilis trees exceeds 10 m, Croze (1974b) suggested a mechanical reason related to feeding

for which to push over trees. The greater frequency of uprooted trees above 6 m than trees with

broken branches above 6 m was attributed to the limit of the upper reach of an adult elephant (±

6 m). It is concluded that elephant respond to a tree in any manner befitting within the

mechanical constraints of a certain size or species.

The relatively low abundance ofA. tortilis trees in the riverine vegetation, compared with

the woodlands, is also expected to have influenced elephant response considering total stem area

ofA. tortilis in riverine vegetation has been reduced by > 80% (Anderson & Walker 1974) when

it was the dominant tree and the method of feeding was predominantly debarking.

Elephant first browsed the canopies of A. tortilis trees in the Northern Province before
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adopting additional methods offeeding when the availability ofunbrowsed trees decreased after

one to two years. Initial browse frequency may be determined by elephant density considering

a similar number oftrees were first browsed in the riverine vegetation and A. tortilis woodlands

(33 and 43 trees, respectively). Subsequent browse frequency under the same elephant population

may then depend on stem density. The annual browse frequency decreased each year in the A.

tortilis woodlands, corresponding to a decrease in stem density, until 10 and zero browse

incidents were recorded in 1999 and 2000 when stem density was reduced to 143 stems ha" and

90 stems ha'], respectively, compared with the nine to 10 browse incidents each year within the

riverine vegetation which contained 99 to 123 stems ha", depending on seedling recruitment.

Mwalyosi (1990) observed a decline in the frequency of trees killed by elephant to 11 % when

stem density was reduced to 75 trees ha'\, whilst Ruess & Halter (1990) recorded 8.4% dead trees

when the population of A. tortilis trees had been reduced to 53.2 trees ha· l
. Considering the

percent oftrees either utilized or killed decreases with the stem density or the relative abundance

of a species, the aforementioned factors together with woodland structure appear to be relevant

determinants of elephant response to this species.

Elephant may prefer to browse trees not previously browsed on account ofthe ability of

A. tortilis to increase total phenol and tannin contents upon being defoliated (Bryant et. at. 1991).

Although elephant uprooted or broke stems after they browsed their canopies, there was little

evidence (personal observation) to suggest they browsed the canopies of trees they had pushed

over. Canopy loss after trees had been pushed over was more often the result of dieback owing

to stress.

The elephant population in VLNR had no mature bulls. Elephant bulls, which congregate

in small groups of ever-changing composition, are usually responsible for the destruction of

woodlands (Croze 1974a) compared with family units comprising mostly adult and sub-adult

females. The population dynamics ofthe A. tortilis woodlands may therefore have differed, had

the elephant population in VLNR contained mature bulls.

The biological response ofAcacia tortilis to elephant feeding

Acacia tortilis responded differently to each method of elephant feeding in the Northern

Province. Tree response also varied considerably among individuals, suggesting additional

influences.



132

In the Northern Province and East Africa (Croze 1974b) A. torti/is has a low ability to

recover from being pushed over (uprooted or broken). Mwalyosi (1987) found that younger A.

tortilis trees had a greater chance of survival after being debarked than older trees. Although

uprooting or stem breakage may be a more severe form of feeding, the ability oftrees to survive

being uprooted or broken did not depend on their size (or age) in the Northern Province, although

the period ofsurvival did depend on the percent ofheight lost. The ability ofa species to recover

from elephant use is most likely dependent on its ability to coppice and replace lost canopy with

regrowth (Lewis 1986), considering relatively few uprooted or broken trees had coppiced. Multi­

stemmed coppicing ofBrachystegia (Jachman & Bell 1985) and C. mopane (Styles & Skinner

2000) woodlands results in a scrub morph with a large biomass at an accessible height to

elephant. Colophospermum mopane is capable of sustaining relatively low rates of mortality

(Lewis 1991) and continue to produce seeds and nutritious leaves (Styles & Skinner 2000)

despite high levels of herbivory.

It appears that trees in the woodlands had a greater chance of surviving canopy removal

than trees that were pushed over on account of the greater proportion of browsed trees which

coppiced. Survival may be related to the severity ofthe defoliation in which case canopy removal

had the potential to induce substantial mortality owing to the number ofwoodland trees with>

75% of their canopy removed. Similar findings were reported by Croze (1974b), viz. that A.

tortilis had a low probability (P = 0.2) of surviving one year if more than 3/4 of its canopy was

removed by elephant. The removal ofcanopy in the riverine vegetation was not a mortality agent

because elephant removed less from those canopies, suggesting that the severity of browse

incidents and hence survival was related to the size of a tree, and perhaps stem density. Canopy

removal did not induce substantial mortality in the woodlands because browsed trees were often

uprooted or broken and the aforementioned methods of feeding had a more sudden and severe

effect on tree survival.

Although debarking (and associated attack by wood-boring insects) has induced mortality

ofA. tortilis (Anderson & Walker 1974), it was not a mortality or height-reducing agent in the

A. tortilis woodlands on account of its low frequency relative to the other more severe methods

of elephant feeding and the extent of each debarking incident, compared with A. nilotica.

Debarking was a mortality agent in the riverine vegetation because fewer stems were pushed

over. The response of trees to debarking is therefore influenced by the frequency ofuprooted or
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broken stems. Whether debarking kills trees will also depend on the species concerned and its

ability to coppice. An A. tortilis stem that has been ringbarked and then broken above the area

that was debarked, is likely to die as a result of the broken stem considering death from broken

stems generally preceded death from debarking, whereas a C. mopane tree that has been debarked

and then broken might still survive, given its tolerance of ringbarking (Kelly et al. 1976). The

volume of canopy dieback associated with debarking is most likely related to the interaction

between the percent height and the percent circumference of stem that is debarked. Acacia

nilotica trees experienced greater canopy dieback and tree mortality on account of debarking,

than A. torti/is trees, because the former species was more severely debarked; debarking on

nearly all the A. nilotica trees extended into their canopies, thereby isolating branches in the

canopy from the roots.

The functional response of Acacia tortilis to elephant feeding

The mature A. tortilis woodlands reverted to a more open woodland/grassland, following the re­

introduction of48 elephant since 1991. Bush encroachment was effectively halted and reversed.

Population structure changed immediately in 1997 and 1998 after the first signs of elephant

utilization in 1996. However, by 1999 and 2000 the negatively skewed population structure was

not significantly different from the structure of the benchmark population in 1996, despite three

years ofpersistent utilization and a considerable reduction in stem density. These findings do not

coincide with the observed shifts in relative abundance of various size classes in Tanzania

(Mwalyosi 1990; Ruess & Halter 1990). This particular population trend is explained by the

utilization oftrees in proportion to their abundance by 1999 and the high mortality rate ofutilized

trees in 1999, compared with the utilization of specific height classes in Tanzania (Mwalyosi

1990; Ruess & Halter 1990). Acacia tortilis trees were collectively pushed over in proportion to

their abundance by 1999 in the Northem Province. AlthoughA. tortilis responded to each method

of feeding, population trend was almost exclusively determined by either uprooting or stem

breakage considering they resulted in the greatest mortality and reduced tree height. Secondly,

the greatest mortality of recumbent stems occurred in 1999. Population structure changed

significantly in 1997 and 1998 because elephants had reduced tree height but mortality remained

below half that which occurred in 1999. Temporary survival of uprooted and broken stems and

a below-average rainfall (1997/98, Figure 3.5) season resulted in a four-fold increase in the
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mortality rate in 1999 compared with1996, despite a relatively consistent number of sterns

pushed over each year. Despite the height reducing influence ofelephant upon trees, Jachrnan and

eroes (1991) suggested that long-term use by elephant might result in a decreasing woody-stern

density without significant changes in size class distribution. This study has shown that this

woodland response is possible, although not for all species given the ability of some woody

species to withstand heavy elephant browsing pressure. In such areas, the size distribution of a

tolerable species is affected more than tree density (Van De Vijver et at. 1999). Woodland

structure is therefore determined by two factors, namely species-specific response or tolerance

and elephant response e.g. whether or not elephant feed upon each height class in proportion or

disproportion to its occurrence.

Ba:nes (1983) identified four patterns oftree mortality based on the relationship between

percent mortality and tree density. These patterns were determined by a cross-sectional study of

each tree population, e.g. at one point in time, and applied longitudinally as tree density changed

with time. In contrast, this study related percent mortality to tree density as it changed with time.

Barnes's (1983) method of estimating the percent mortality associated with a particular tree

density over a period of five years (1971 - 1976) might be considered inaccurate because annual

elephant damage after 1971 would not have been representative of the initial tree density

considering density changes each year. Nevertheless, the procedure adopted for estimating the

pattern ofmortality in this study showed that mortality patterns do not accurately reflect elephant

activity on account of the lag period between utilization and death and the potential effect of

rainfall (and perhaps site conditions) on the period of survival following utilization. Elephant,

activity was relatively consistent from year to year irrespective ofstern density (excluding 2000),

particularly concerning the number of sterns pushed over and broken. Mortality rate, however,

increased until stern density was reduced to 90 sterns ha'! at the end ofthe 1999 season. Although

elephant feeding was absent in 2000, the mortality oftrees persisted albeit at a lower rate. Annual

mortality rate did not reflect current utilization, but rather previous years' damage in addition to

some current utilization.

If an annual mortality rate was to be calculated by averaging the difference in stem

density by the number of years between the initial and subsequent densities, the estimate of

mortality would depend on the period between initial and subsequent density counts because

annual mortality changes each year. The aforementioned method of calculating mean annual
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mortality is misleading because it gives the impression that annual mortality is constant from year

to year.

Spatial heterogeneity of herbivory and its implications

A1tho~gh the A. tortilis woodlands and the A. tortilis trees within the riverine vegetation belong to

the same A. tortilis population considering there were no topographic or other boundaries separating

the two vegetation types within VLNR, they are referred to as sub-populations because they were

influenced either more or less by similar processes of vegetation change. Spatial structure refers to

the variable patterning or distribution of individuals within a population of a certain species, e.g.

among its sub-populations.

The A. tortilis woodlands have been decimated by elephant to a relatively small remnant

population of trees, whereas fewer A. tortilis trees in the riverine vegetation were pushed-over or

debarked. Non-unifonnities in browsing pressure is one element (others are heterogeneities ofthe

environment and plant populations themselves) which usually creates spatial structure within a

population of a species (Noy-Meir 1996). However, this study has shown that spatial variability of

herbivory can reduce spatial structure within a population, owing to the dependance of elephant

herbivory upon tree density of A. torti/is in VLNR. Consequently, elephant reduced spatial

heterogeneity of the A. tortilis population, specifically differences in the distribution or density of

A. tortilis trees between the two sub-populations. It is unlikely, however, that this type of reduced

heterogeneity will affect the future resilience of the population to climatic variability, as mentioned

by Noy-Meir (1996).

The above finding contradicts drastic changes in species composition and soil condition

(Lange 1969) of rangelands in the vicinity of water, owing to the spatial variability of grazing

pressure associated with distance from watering points. Thrash et at. (1991) found that Combretum

apiculatum trees were disproportionately selected for by elephants when pushing over trees and that

the occurrence of this activity was inversely proportional Jo distance from water. The

aforementioned, compared with elephant utilization ofA. tortilis in VLNR, emphasizes that spatial

variability of elephant herbivory has different consequences for the spatial structure of different

species, owing perhaps to a number of factors, including patterns ofmortality which are dependent
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upon tree density (Barnes 1983) and the availability of permanent water.

Communities furthest away from a permanent supply of drinking water serve as refuges for

conserving biodiversity and genetic resources. They are consequently potentially valuable as foci for

the regeneration and restoration of vegetation closer to water (Noy-Meir 1996). In contrast, the

remnant population ofA. tortilis trees in the woodlands, owing to an absence ofelephant utilization

when tree density approached the density of trees within the riverine vegetation, is capable of

regenerating itself and therefore need not rely on the sub-population within the riverine vegetation

as a source of genetic material (or refuge). The proportion of the area reco10nized and overall rate

of recolonization is usually determined by the spatial pattern of refuges (Noy-Meir 1996): the size

of the refuge; the distance between refuges relative to the dispersal distance of the species; the

density of plants within refuges and; subsequent seed production of each refuge. However,

considering the greater portion of 68 stems ha-I for 2000 were reproductive1y mature and A. tortilis

is ungulate-dispersed, the reco10nization of the area is less likely to depend on the aforementioned

variables, which are most likely intended for areas in which there has been an almost complete

decimation of plants, resulting in isolated pockets of refuges and hence source material.

A speculative interpretation of the past and future population processes of the Acacia tortiUs

woodlands

Although the spatial structure of the remnant A. tortilis population in 2000 was determined largely

by non-uniformities in browsing pressure by elephant, the spatial structure of the A. tortilis

population prior to elephant impact was most likely determined by a combination ofheterogeneities

in the environment and non-uniformities in browsing pressure. Seedling establishment is a rare event

under conditions of high browsing pressure, with bush encroachment usually coinciding with a

decline in small ungulate (impala) popu1ations (Prins & Van Der Jeugd 1993). Successful seedling

establishment is further hampered by the species intolerance of shade (Pellew 1983b; Miller 1996)

and dependance on extreme or rare recruitment events (Wiegand et al. 1995) given germination is

controlled by both water potential (-0.14 to -0.6 MPa) and temperature (25 to 30°C) (Choinsky &

Tuohy 1991). Nevertheless, A. tortilis has the attributes ofa pioneer species, capable ofgerminating

without an extended germination 1ag, despite stressed conditions following a period of sufficient
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imbibition (Choinsky & Tuohy 1991), and an effective ungulate-dispersal mechanism (Coe &

Coe 1987), thereby ensuring early colonization and dominance ofa site (Ben-Shahar 1991). The

period (1955 - 1987, O'Connor, submitted) ofbush encroachment which led up to theA. tortilis

woodlands preceded the acquisition of VLNR (1990), after which time the population of

indigenous browsers increased (Table 3.1). Considering impala are important pod consumers and

therefore dispersal agents (Miller 1996), the density ofungulates (including livestock) at the time

of bush encroachment would have been sufficient for the dispersal of seed into areas with less

shade, but sufficiently low to ensure a low browsing pressure. The greater density ofA. tortilis

trees below 1 m in height in the riverine vegetation suggests better conditions for germination,

compared with the woodlands, but the greater density of trees in the 1 - 2 m height class in the

woodlands suggest better recruitment conditions.

The woodlands are tolerant ofelephant feeding because elephant appear to considerably

lessen their utilization ofA. torti/is trees once they have been reduced to a stem density below

100 stems ha-I. Considering seed production is limited to mature (> 1 m) trees (Miller 1994a),

the remaining source population ofwoodland trees should provide the potential for regeneration.

A frequency distribution strongly skewed towards larger trees in 1996 suggests that recruitment

was episodic, with subsequent conditions under a canopy of taller plants not conducive to the

establishment ofA. tortilis seedlings (Miller 1996). The gaps created by trees being pushed over

may therefore create conditions more conducive to the establishment of seedlings that do not

tolerate shade. However, recolonization does not occur continuously in time, but rather in discrete

events facilitated by favorable combinations ofweather and grazing conditions (Westoby et at.

1989). Poor seedling recruitment (n = 5 from 1997 to 2000) and survival (indicated by the

absence of seedlings in 2000), combined with the paucity of middle-aged (1 - 5 m) trees could

affect the future rate ofreplacement ofthe larger height classes. Poor seedling recruitment could

be attributed to the rarity of ideal recruitment conditions, considering the absence of trees < 1 m

in height in 1996 indicated the absence of ideal recruitment conditions since 1986, given a

growth rate of0.1 m an-I (Chapter 8), whereas poor seedling survival could be a result ofthe high

density of indigenous browsers compared with the period ofbush encroachment.
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Chapter 10

General Discussion

Is patch dieback and woodland destruction cause for immediate concern regarding loss of

biodiversity, with possible implications on the structure and functioning of the

Colophospermnm mopane and Acacia tortilis populations, respectively?

Changes in biological diversity have profound ecological and societal consequences on account of

the services that humans derive from ecosystems, particularly woodlands in Africa. Indigenous

woodland communities are of significant economic value owing to the dependance of rural

populations on their natural resources for an assortment ofcommodities, including: firewood (Loh

1999), kraalwood and fencing (Gandar 1990), woodcarvings (Steenkamp 1999) and traditional

medicine (Mander 1998). Consequently, wood resources in South Africa are under pressure. The

AIDS pandemic and anticipated increase in tourism are expected to increase the demand for

indigenous medicinal products (Mander 1998) and indigenous tree species for carving (Steenkamp

1999), respectively. The provision of tangible ecosystem goods and services by natural systems

depends not only on species presence or absence, but also on their abundance. Biodiversity is a

multidimensional concept (Purvis & Hector 2000) incapable of being fully explained by a single

number. Indices ofbiodiversity should quantify those facets that assist in the interpretation of the

effects reduced biodiversity have on system function. The most commonly considered facet of

biodiversity is species richness. However, the relative abundance of component species (species

evenness) influences the chance of two randomly chosen individuals being of the same species

(Purvis & Hector 2000). Species evenness is influenced more frequently by and respond more

rapidly to human activities than the presence or absence of a species (species richness) (Chapin et

al. 2000). Scientists subsequently adopted management policies based on the relative abundance of

indicator species, allowing managers to act before a species goes extinct. Consequently, sp~cies

evenness is as important as species richness as a measure ofbiodiversity.

Conserving biodiversity is essential because we rarely know a priori which species are

critical to current functioning or provide resilience and resistance to environmental changes (Chapin
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et al. 2000). However, considering C. mopane and A. tortilis dominated their respective vegetation

types in VLNR, they are likely to be key species, maintaining structure and function of C. mopane

and A. tortilis woodlands, respectively.

Drought-induced patch dieback did not change the height structure of C. mopane, because

mortality was not height-specific and 'live' and 'dead' plots did not differ in tree height structure.

Although dieback was severe (up to 100%) and reduced the abundance oftrees, it was localized and

did not occur throughout the entire population within VLNR. Colophospermum mopane is also

prolific in the area and is therefore unlikely to become locally extinct. Similarly, elephant did not

change the population structure of the A. tortilis woodlands, but significantly reduced the density

of trees by 2000. Although A. tortilis trees are not as prolific as C. mopane in VLNR and the

destruction of the woodlands represents the loss of a habitat type, it is erroneous to perceive and

manage semi-arid savannas as static systems, especially considering the effective dispersal

mechanisms ofpioneer species, such as A. tortilis. The remnant population ofmature A. tortilis trees

in the woodlands combined with the trees within the riverine vegetation should provide sufficient

material for recolonization. Consequently, although drought and elephant reduced local abundance,

and hence biodiversity, ofthe C. mopane andA. tortilis woodlands, respectively, there is sufficient

spatial heterogeneity of resources and temporal heterogeneity of processes within the VLNR

ecosystem to counteract the loss ofhabitat in time. Besides, the re-expansion ofthe grasslands may

benefit the system, particularly the carrying capacity for grazers, considering there is a poor cover

of perennial grasses (O'Connor 1983). Less severe drought episodes are likely to influence

population structure in addition to the density oftrees in VLNR owing to the height-specific « 3 m)

nature of mortality, and partial dieback of the tree canopy (O'Connor 1999), compared with the

mortality of entire trees of all sizes associated with patch dieback. Elsewhere, elephant have also

influenced both woodland structure and density (Ruess & Halter 1990). Change in woodland

structure by elephant may be influenced by the original population structure, and tree survival. Most

trees in theA. tortilis woodlands were available to elephant (1 - 7 m). Consequently, height classes

were utilized in proportion to their abundance. The preference ofcertain-sized trees may also result

in changes in woodland structure (Craze 1974b; Pellew 1983a).
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Patch dieback of Colophospermum mopane woodlands

The occurrence of patch dieback of C. mopane between 1988 and 1992 is the consequence of the

preconditioning ofthe system by an increase in density oftrees, and an increase in drought proneness

through erosion. Nevertheless, the monospecific nature ofC. mopane woodlands is suspected to have

made the system vulnerable to large-scale dieback on account of a single threshold to stress.

It is proposed that species diversity is capable of influencing the pattern of mortality,

considering patch dieback is commonly associated with monospecific communities (Fensham &

Holman 1999). Monospecific or species-poor communities characteristically have a less variable

threshold to stress (Jimenez et al. 1985) than species-rich communities, particularly ifthe dominant

species has a narrow range of resource tolerances and is arranged along specific geomorphic or

hydrologic gradients, which, when altered, trigger widespread mortality. Apart from species

richness, the size structure of a population has also been implicated in large-scale dieback (Young

& Lindsay 1988). Mortality is often size-dependent (Huston 1994), considering many ecological

interactions, including interactions with drought (O'Connor 1999), herbivores and fire (Pellew

1983), are influenced by size. The proportion of individuals in the vulnerable size range will

therefore determine the extent or pattern of dieback. Structural homogeneity therefore enhances a

woodland's vulnerability to widespread dieback by size-specific stressors (Young & Lindsay 1988),

whilst size-related death or senescence in a heterogenous stand would be less noticeable. Despite

these findings, this study showed that a heterogenous size structure is just as vulnerable to patch

dieback as a homogenous stand.

Species composition and Size structure are important community attributes affecting

population dynamics. Consequently, woodlands are described most often by their component species

and/or size structure. It is proposed that the interaction between a species- or size-specific mortality

agent and the characteristic of a community, defined by the nature (homogenous or heterogenous)

of its size structure and species composition, will influence the pattern of mortality, specifically

patch dieback (Table 7.1). The homogeneity ofspecies and heterogeneity oftree heights associated

with theC. mopane woodlands in VLNR, suggests patch dieback was the consequence ofa breached

threshold relating to species tolerances, rather than size.
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Table 10.1 A proposed model for predicting the pattern ofmortality (patch or other) given the nature

of the mortality agent (size- or species-specific) and different combinations of community

characteristics (homogenous: horn, or heterogenous: het) relating to size structure and species

composition

mortality agent: size-specific

size structure
species composition
outcome

horn het horn
horn het het
patch other patch

mortality agent: spe Cles-

specific

het
horn
other

size structure
species composition
outcome

horn
horn
patch

het
het

other

horn
het

other

het
horn
patch

Foraging behaviour of elephant

The methods offeeding, including removing branches from the canopy, stripping bark from the stem

and/or uprooting (and breaking) entire trees, differ between and within woody species. Elephant

respond to a tree in any manner befitting within the mechanical constraints of a certain size or

speCIes.

Elephants experience the least overlap upon their diet with the diets ofother large herbivores,

relative to other animals, most probably because they increase their number ofbrowse species into

the late dry season (Jarman 1971). Elephants also utilize a wide spectrum of browse species, 61

browse species were recorded in Wankie National Park (Williamson 1975). However, C. mopane

appears to be the predominant browse species where it occurs (Pienaar et al. 1966; Jarman 1971;

Williamson 1975) and is a preferred species in VLNR, despite its prolific abundance (Smallie &

O'Connor 2000), most probably owing to its high fat content (Williamson 1975). Ecological

separation of large mammalian herbivores in Africa is mainly a consequence of their differential

occupation ofhabitat types and the selection ofdistinct diets (Van Zy11965; Gwynne & Bell 1968).

Despite a restricted range ofhabitats, ecological separation between the diets ofherbivores including
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elephant, rhino, buffalo, impala and kudu, can be achieved through dependance on different staple

foods (Jarman 1971). Consequently, browsers which share a common staple food on account of its

prolific abundance (low diversification), such as C. mopane, could compete with one another. One

animal with which the elephant's diet was found to correlate most with (Jarman 1971) was the kudu,

however, mixed feeders, including eland and impala, could also compete with elephant for browse

in areas where C. mopane dominates and grass is sparse, considering a sparseness of grasslands in

plant communities encourages herbivores to browse (Jarman 1971). Despite its sparseness and

rankness, however, grass was observed in the impala's diet on VLNR, during the dry winter months

(personal observation). However, C. mopane was present in the stomach ofevery species examined,

including kudu, impala, and eland (personal observation). Dietary overlap and interspecific

comp~tition among browsers for C. mopane late into the dry season could explain the expansion of

the elephant's diet to include A. tortilis.

Utilization oftheA. tortilis woodlands appears to have occurred mainly in the late dry season

when C. mopane drops its leaves, suggesting utilization was in response to a spatiotemporal variation

in forage abundance (or quality). Elephant response to spatiotemporal variation in forage quality is

more pronounced in systems in which grass is replaced by more palatable browse in the dry season

(Kabigumila 1993). Elephant response is similar to the response oflarge grazers which migrate to

increase their diet quality and grazing efficiency (Frank et at. 1998).

Furthermore, ungulates in grazing ecosystems increase their own grazing efficiency by

modifying vegetation structure. When forage biomass concentration (per bih~) is below critical

levels, herbivores may be unable to acquire sufficient energy and nutrients to maintain themselves

(Chacon et at. 1978). Grazers make forage more concentrated by reducing canopy height more than

aboveground biomass (McNaughton 1984). Elephants may have the same foraging goals, to

manipulate vegetation structure and improve future foraging efficiency, although they may not

always get the desired response,. considering different species of woody plants respond differently

to elephant feeding. The elephant of VLNR select for pollarded C. mopane trees 1 - 2 m in height

which have, on average, more branches than similar-sized non-pollarded trees (Smallie & O'Connor

2000), owing to coppice growth from previous damage. The same growth response was not

attainable with A. torti/is on account of its poor ability to coppice. Species response to elephant
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utilization therefore detennines subsequent foraging behaviour. Colophospermum mopane can

withstand high browsing pressure by elephant (Lewis 1991) and predominates in the elephant's diet

in VLNR (Smallie & O'Connor 2000), whereas A. tortilis was unable to sustain the foraging

pressure imposed upon it by elephant. Consequently, the elephant are forced to seek alternative

forage species (Anderson & Walker 1974).

Herbivores must balance time invested in energy and nutrient intake with nonfeeding

activities, such as travel (McNaughton 1984). This may account for the absence of elephant

utilization in the A. tortilis woodlands when density of trees was reduced to below 100 stems ha-I.

It may no longer be worthwhile for elephants to feed in these woodlands.

It is concluded that the foraging behaviour of elephant is associated with plant species

response to herbivory, the abundance of preferred forage species, and possibly dietary overlap

among browsers and spatiotemporal variation of forage abundance and/or quality.

Spatial heterogeneity

Drought-induced dieback was localized and patchy on account of non-uniformities in the patterns

and processes of the environment. Landscape heterogeneity, although exacerbated by a history of

overexploitation, created runoff zones and run-on sinks. Although woodland resilience was not

measured directly, it is suggested that spatial heterogeneity within a landscape enhance's a

woodland's resilience to severe drought episodes by ensuring the survival of some plants in runon

sinks or 'drought refuge' sites.

Non-uniformities in the patterns and processes of the environment and herbivores, e.g.

suitable growth and browse conditions for A. tortilis recruitment in grasslands, compared with the

riverine vegetation, created spatial heterogeneity within the A. tortilis population of VLNR.

Furthermore, Acacia woodlands have the potential of being replaced by forest trees (Whateley &

Wills 1996), although perhaps not in this environment. The seedlings of deciduous broadleaf or

evergreen species are usually 'canopy tolerants' (Smith & Goodman 1986), which can grow to

maturity underAcacia canopies, resulting in a transition from a community ofmicrophyllus species,

such as A. tortilis, to a stand dominated by evergreen and broadleaf species (Smith & Goodman

1987), by means ofa nucleation process from under-canopy environments (Whateley & Wills 1996).
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Nevertheless, plant succession was effectively halted and reversed by elephant. The spatial variation

. ofherbivory by elephant resulted in a more homogenous distribution ofA. tortilis trees within the

reserve, considering the woodlands and riverine now have a similar density of trees. This study

provides evidence that herbivores can create spatial homogeneity through their spatial feeding

patterns, in addition to creating spatial structure (Noy-Meir 1996). Furthermore, it is unlikely that

this type of reduced heterogeneity will affect the future resilience of the population to climatic

variability, as mentioned by Noy-Meir (1996).

Future implications of current trends

Recolonization does not occur continuously in time, but rather in discrete events facilitated by

favorable combinations ofweather and grazing conditions (Westoby et al. 1989). Considering seed

production is limited to mature trees (Miller 1994a), the remaining source population of woodland

trees, and trees within the riverine vegetation, should provide the potential for regeneration. Despite

extreme or rare recruitment events (Wiegand et al. 1995) in semi-arid systems, A. tortilis has the

attributes ofa pioneer species: capable ofgerminating without an extended germination lag, despite

stressed conditions following a period of sufficient imbibition (Choinsky & Tuohy 1991);

intolerance ofshaded environments (Smith and Goodman 1986); and an effective ungulate-dispersal

mechanism (Coe & Coe 1987), thereby ensuring early colonization and dominance ofa site (Ben­

Shahar 1991). The gaps created by trees being pushed over may create conditions more conducive

to the establishment of seedlings, on account of their intolerance of shade, and allow the increased

growth ofneighbouring individuals (Smith & Goodman 1986). Furthermore, the diversifying effect

of disturbances (structural heterogeneity) (Huston 1994) created in gaps can alleviate widespread

mortality by reducing the impact on previously dominant species (e.g. Mwalyosi 1990).

However, seedling establishment is a rare event under conditions 9fhigh browsing pressure.

Consequently, the rec010nization of the woodlands will depend on the current levels of browsing

pressure by small ungulates, sllch as impala. If browsing pressure is too high, the current open

woodland condition will hold, in which case woodland dynamics reflects both the stable limit cycle

hypothesis and the multiple stable state hypothesis. Although the stable limit cycle has recently been

criticized (Duffy et al. 1999), this study shows that a similar pattern is possible. The stable limit
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cycle requires that the elephant are dependent primarily on one dominant vegetation type (Duffy et

al. 1999). Colophospermum mopane comprises the majority of the elephants' diet in VLNR.

Consequently, the destruction of the A. tortilis woodlands will not result in a population crash of

elephants. Nevertheless, A. tortilis woodlands may show a pattern similar to the stable limit cycle

hypothesis because the elephant population has removed itself from the woodlands, potentially

allowing them to recover. If they do not recover immediately owing to a high browsing pressure on

seedlings, the system could reflect a stable limit cycle that has been arrested at an artificial

equilibrium, with a subsequent reduction in browsing pressure leading to recolonization of the

woodlands (Prins & Van Der Jeugd 1993). Alternatively, population dynamics under conditions of

a high browsing pressure could be interpreted as the multiple stable state hypothesis, considering the

. evidence would be consistent with the two criteria required to demonstrate a boundary between

stable states: a factor capable of causing a change of state, which when reduced does not result in

regeneration of the woodlands, and a new factor, browsing by small ungulates, to hold the system

in a new state. The results, that elephant are responsible for causing a change of state, are contrary

to the findings ofDublin et al. (1990), viz. that elephant are not capable ofmoving a system from

one state to another.

Severe drought episodes are also capable of causing a change of state from woodland to

grassland. The complete drought-related mortality of C. mopane in discrete patches should provide

an opportunity for the recruitment ofannual and possibly perennial herbaceous plants, owing to the

absence of severe competition for soil water with C. mopane (Smit 1994). Recolonization of

perennial grasses will depend on the availability ofseed, post-drought rainfall, browsing pressure,

and woody recruitment on the bare areas (O'Connor 1999). Nevertheless, complete drought

mortality and elephant impact have created a window of opportunity for the recovery of perennial

grasses in C. mopane and A. tortilis woodlands, respectively, following a period of extensive

livestock ranching (O'Connor 1983) which led to the increased density of both woodland types.

The mopane veld within VLNR is susceptible to irreparable degradation in view ofthe patch

dieback phenomenon and potential threat of elephant. Venetia-Limpopo Nature Reserve is largely

a dysfunctional landscape. Soil and organic resources are being lost from the system along drainage

lines that feed the Limpopo River. Litter, comprising mostly C. mopane leaves, has failed to
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accumulate over a period of 15 years (0'Connor 1999) because of surface wash, despite substantial

annual inputs (Smit 1994), thereby reducing the system's nutrient capital. Lewis (1991) suggested

that years of below annual rainfall combined with a history of continuous browse removal by

elephant can exert patch dieback ofcoppiced C. mopane trees owing to a nutrient drain on individual

trees. The continued removal of nutrient (browse and litter) reserves and topsoil therefore poses a

threat to VLNR, especially given the mopane woodlands' current vulnerability to soil moisture

deficits. Current trends implicate the potential for an interaction between elephant, drought and a

dysfunctional landscape, resulting in more frequent incidents ofpatch dieback within the C. mopane

woodlands, particularly woodlands upon an eroded substrate, and subjected to high local elephant

densities (coppiced trees).

If large-scale die-offs of C. mopane and loss of vegetation types persists, it will have

implications on the carrying capacity of the reserve. Competition between herbivores is a function

of (1) overlap, (2) population density, and (3) resource abundance (French 1985):

(1) Overlap. Dekker (1997) calculated indices of overlap for diet composition between ungulate

species using estimates of the grass:browse ratio (impala: 50:50, kudu: 0:100, respectively) in the

mopane veld, Northern Province. A lack of grass cover induces the preponderance of browsers in

the spectrum ofherbivores (impala [grass:browse]: 4.6:95.4, kudu [grass:browse]: 1.5:98.5) (Jarman

1971). Despite a preponderance ofbrowsers, Jarman (1971) attributed the ecological separation of

herbivores to their dependance on different staple plants (elephant: C. mopane, impala: Disperma

spp., kudu: Croton spp., buffalo: grass). Nevertheless there was still an overlap in the diets of

elephant and impala (all year: 12%) and, elephant and kudu (all year: 22%). Consequently, there is

likely to be dietary overlap among the herbivores of VLNR given its lack of grass cover and

predominance of C. mopane. If C. mopane is a common staple diet among herbivores, dietary

overlap among herbivores in VLNR could increase on account ofpatch dieback of C. mopane and

loss of A. tortilis woodlands, even if temporarily, before the replacement of the aforementioned

woodlands by other species.

(2) Population density. Elephant are the one species most likely to have an impact on the abundance

of all other browsers or intermediate feeders, on account of the substantial contribution they make

to the total herbivore biomass (Table 3.1), the future implications of their successful breeding, and
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the absence of restrictions imposed on the population growth of other herbivores (hunting, culling

and natural predators, including lion). Ifthe reserve's carrying capacity is kept constant, an increase

in elephant biomass will lead to the displacement of other species.

(3) Resource abundance. Patch dieback of C. mopane and loss ofA. torti/is woodlands will reduce

the abundance ofbrowse and alternative vegetation types for foraging or other non-feeding activities,

such as rest associated with shade, assuming no immediate replacement of woodlands. Potential

consequences include animal population crashes or overexploitation of the existing vegetation.
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Appendix 1

A definition of the criteria used to quantitatively describe elephant utilization of woody

plants
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Table 1 Codes and their description for assessing the volume of canopy and the circumference of

stem removed

Utilisation Index (Ut. Ind.)

Code Description

Canopy

0 0%
I 1 % - la % of The Volume of The Canopy Removed

2 11 % - 25 %
3 26 % - 50 %
4 51 %-75%

5 76 % - 90 %
6 90 % - 99 %
7 100 %

Debarking

11 1 % - la % Of The Circumference OfThe Stem Removed
12 11 % - 25 %
13 26 % - 50 %
14 51 % - 75 %
15 76 % - 90 %
ICl <) I % - <)<) %

17 100%

.1 1%- 10 % of height of stem

.2 11 % - 25 % of height of stem

.3 26 % - 50 % ofheight of stem

.4 51 % - 75 % of height of stem

.5 76 % - 90 % of height of stem

.6 91 % - 100 % of height of stem

.7 Whole stem plus branches



Table 2 Codes and their description for assessing the agent of utilization

Agcnt (Agt.)

Codc Description

I Elephant
2 Giraffe
3 Black Rhinoceros
4 Other Browsers
5 Human
6 Moisture Stress
7 Flooding
8 Shading
9 High Light
10 Fire
11 Unknown

168
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Table 3 Codes and their description for the age of utilization

Age ofl"tiHzation (Age)

Code Description 1{t'llloycd POliions Break:; on Tr~e -Bark Around

Ed ges of' \VotiJHl

i Edg~s of attached
I ' '11I stnps st! v~ry

tibrous: ~xpos~d

wood bright yello\\
colour
Fibres on tips of
bark strips
remaining on tre~

b~ginl1ing to curl:
~xposed '''ood
tilding yellow:

------t----------
Fibres lost exposed
wood tuming light

Points of all
splinters grc\
fin~st splinters all
grey, exceptwhere.
break 111:lY be i(1\

deep shade. rest'
still t~l(kd \cllOV'J

----_._...._- ..__.- _.._..--- -'--~--" _... -".-._-'-"- _._... __.__._ .._-_.__.--_._--_._-_.._--_._--------_. ------------_._-
<1 month Leaves drying. still pres~nt: Splinters on

pdiol~s. spin~s and smallest Breaks still sharp:
t\·,~~s (l - 2 n1111 diam) colour of wood
drying: still pr~sent on all still wllow: '''ood

1 spec!~s: still wettish
1---- -------------+--'-------------,---+---------1----------1

1 mth - 2 mth Leaves all or n~arlv all lost Points offinest
(d~p~nding on tim~ of y~ar splinters begill11ing
and pr~vailing w~ath~r - to tum grey.
compound kaws last especially in direct
Jong~r than simpl~): spines sunlight: br~ak
and 1-2 n1111 dia11l. twigs dr:': splinters not
still present: I - 2 n1111 diam wt brittk:
t\\igs and spines becoming
brittle: t,,,igs 2 lllm
dnino

. b

Leaves all lost :1- 2 n1111
diam twigs brittle. larger
twigs still relativdy supple

I

1---3-12mill - 4 mIll

I

l L._.. . . ._

___ e---------------t-------------- _-+_t_O-"'g~I\~;'>~·:_._
4 4 mth - 6 mth 1 - 2 n1111 diam twigs lost in Splinters all gr.-:y

softer te:\1ured species. still on olltside, ye\\ew
present on hardwoods: 5 on interior of
n1111 diam twigs brittl~ br~ak

larger twigs all dry: bark at
breaks b.-:ginning to curl
back.

i .- .--- ------/
I Sharp edges of

attached bark
becoming rounded:
exposed wood
nearly all light gre:
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Table 3 (continued) Codes and their description for the age ofutilization

I

I

5 I6 mtll - 12 mtll
I

1 - 2 mm diam twigs lost: 1
cm diam twigs becoming
brittk: bark curling back

Sharp points on
splinters
\wath~ring. break
becoming
smoother: break
dark grey in
colour

B-:gilming of callus
grO\,\th b~neath

~dges of bark
around wOllnd.
dcpending on the
lime of war of
sampling and of th~
damage: cxposed
wood light grey

Break smooth:
dark grey: mottled

No sharp points:
break smooth:
-dark grey

6 1 \T - 2 \TS 1 cm twigs lost in softer
le:-..1ured species: some still
present on hard woods:
most bark Iitled

---.._---.... _. -_ .. ---- --_._---_._~.

7 >2 VI'S 1'-10st branches less than
5cm lost: most bark lost

Callus grov.1h on
edges of wound:
exposed wood
(uming darkel~grcYI

~dore than 1 season\
callus growth onl
edges of \YOll11d~

I Total /6 Leaves lost: 1- 2null diam Breaks not vet No callus gro\\lh I
L----- ~.~_th_s_. ..__ ~,""_gs_-_1__O_Sl . g~ey -----f------- .J

~
Total <6 1 - 2 Illm twigs still present Breaks all grey Callus gro\\lh 1
nU1ths (other than \\ollnds I

_=-~=c---===__==±. ___'_ ._..l_C_lo_S_e_h_)_SI_'x_·1_11_0_11._th_Sj



Table 4 Codes and their description for assessing the biological state, physical state, and
growth response of a tree, following branch removal, stem breaking and debarking

State (St.)

Code Description

0 No Utilisation
] Branches Removed - Tree Living

2 Main Stem Partially Broken - Tree Still Living

3 Main Stem Completely Broken (Pollarded) - Tree Still Living

4 Main Stem Pushed Over (Partially Uprooted) - Tree Still Living

5 Coppice Growth from Larger (Older) Dead Stem

6 Coppice Growth from Accumulated Browsing of Young Plant

7 Coppice Growth from Repeated Fire

8 Coppice Growth from Repeated Moisture Stress

9 Senescing

10 Main Stem Partially Broken - Tree Dead

11 Main Stem Completely Broken (Pollarded) - Tree Dead

12 Main Stem Pushed Over (Partially Uprooted) - Tree Dead

13 Tree Totally Uprooted

14 Main Stem Intact. Tree Killed From Accumulated Elephant
Damage

15 Main Stem Intact. Tree Killed By Moisture Stress

I Cl Main Stcm Intact. Trce Killed from Combination Of Moisture

Stress And Accumulated Elephant Damage

17 Dead From Shading
] 8 Dead From High Light

19 Dead From Unknown Causes (Not Elephant)
20 Multi-Stemmed Tree - ]+ Stems removed
30 Only Leaves Removed. No Branches Broken
31 Debarking Only (No Change in Vigour)
50 Die-Back From Moisture Stress
51 Top-Kill From Frost
60 Die-Back From Debarking

Growth Responses (G.R.) Branch ReI11oval, Stem Breaking and Debarking

Code Description

1 Coppice Growth

2 No Coppice Growth - Vigour Appears Unaffected
..,

No Coppice Growth - Vigour Appears Reduced (Tree Dying)-)

4 Tree Dead
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