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Abstract

Most real world phenomena is modeled by ordinary and/or partial differential equations.

Most of these equations are highly nonlinear and exact solutions are not always possible.

Exact solutions always give a good account of the physical nature of the phenomena modeled.

However, existing analytical methods can only handle a limited range of these equations.

Semi-numerical and numerical methods give approximate solutions where exact solutions are

impossible to find. However, some common numerical methods give low accuracy and may lack

stability. In general, the character and qualitative behaviour of the solutions may not always

be fully revealed by numerical approximations, hence the need for improved semi-numerical

methods that are accurate, computational efficient and robust.

In this study we introduce innovative techniques for finding solutions of highly nonlinear

coupled boundary value problems. These techniques aim to combine the strengths of both

analytical and numerical methods to produce efficient hybrid algorithms. In this work, the

homotopy analysis method is blended with spectral methods to improve its accuracy. Spectral

methods are well known for their high levels of accuracy. The new spectral homotopy analysis

method is further improved by using a more accurate initial approximation to accelerate

convergence. Furthermore, a quasi-linearisation technique is introduced in which spectral

methods are used to solve the linearised equations. The new techniques were used to solve
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mathematical models in fluid dynamics.

The thesis comprises of an introductory Chapter that gives an overview of common numerical

methods currently in use. In Chapter 2 we give an overview of the methods used in this

work. The methods are used in Chapter 3 to solve the nonlinear equation governing two-

dimensional squeezing flow of a viscous fluid between two approaching parallel plates and the

steady laminar flow of a third grade fluid with heat transfer through a flat channel. In Chapter

4 the methods were used to find solutions of the laminar heat transfer problem in a rotating

disk, the steady flow of a Reiner-Rivlin fluid with Joule heating and viscous dissipation and

the classical von Kármán equations for boundary layer flow induced by a rotating disk. In

Chapter 5 solutions of steady two-dimensional flow of a viscous incompressible fluid in a

rectangular domain bounded by two permeable surfaces and the MHD viscous flow problem

due to a shrinking sheet with a chemical reaction, were solved using the new methods.
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1

Introduction

Most real world phenomena is modeled using partial and/or ordinary differential equations.

Solutions of differential equations are important in predicting the future states of the phe-

nomena under study (Hale and Moore, 2008). Such physical phenomena include the motion

of planets, nonlinear optics, oceanography, meteorology, projectiles, fluid dynamics and pop-

ulation dynamics to mention just a few (Hale and Moore, 2008). Most of these equations

are highly nonlinear and exact solutions are not always possible. For those cases where exact

solutions are not possible, numerical methods often provide approximate solutions (Nayfeh,

1973). Both numerical and analytical methods have their advantages and drawbacks. This

study sought to introduce new and improved semi-numerical techniques for solving nonlinear

equations. These techniques aim to combine the strengths of both numerical and analytical

methods.

1.1. Numerical methods for fluid flow problems

The process of modeling physical phenomena results in equations that may have variable

coefficients and nonlinear boundary conditions (Nayfeh, 1973). This makes it difficult or
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Chapter 1 – Introduction

even impossible to find exact analytical solutions. Modelers often resort to various forms of

approximations such as using perturbation or numerical methods or a combination of both.

Since the invention of high speed digital computers in the late twentieth century, the study

of different phenomena in science and engineering has been made easier and more efficient by

the application of numerical simulation techniques (Toro, 1999). The basis of any numerical

technique is the discretization of the time and space variables in the governing equations

(Geiser, 2005). The discretization process approximates the differential equation by a system

of algebraic equations (Steinhauser, 2008). Hence approximate solutions are obtained at

distinct positions in space and time (Ferzinger and Perić, 2002). Numerical methods may be

used to solve problems defined in complex geometries and are thus applicable to a wider range

of problems compared to analytical methods (Fletcher, 1988; Tu et al., 2008). However, this

advantage often comes at the expense of accuracy (Kikani, 1989). The discretization process

differs from one numerical approach to the other. Each numerical scheme will be particular

in the way it approximates derivatives and the way it represents the solution (Moczo et al.,

2004). Brief descriptions of a few common numerical methods is given in the sections that

follow.

1.1.1 Discretization approaches

There are many different types of discretization schemes currently in use by researchers in

applied mathematics, engineering and other fields of science. In this section we discuss some

of the common approaches. These include finite differences, finite element, finite volume and

boundary element methods.

The finite difference method (FDM) is believed to have been first used in 1768 by Euler.

4



Chapter 1 – Introduction

At that time it was used to find numerical solutions of differential equations using pen and

paper (Tu et al., 2008). In the late 1950s a new version was proposed and applied to par-

tial differential equations (Ampadu, 2007). The FDM belongs to the so-called grid-point

methods where a computational domain is covered by a space-time grid (Moczo et al., 2004).

Taylor series expansions are then used to compute finite-difference approximations to the par-

tial derivatives of the governing equations at each nodal point of the grid (Tandjiria, 1999).

There are three different kinds of FDMs, namely the explicit FDM, the implicit FDM and the

Crank-Nicolson FDM (Geiser, 2005). The FDM has been applied to, inter alia, geothermal

engineering problems (Kikani, 1989; Tandjiria, 1999), financial mathematics (Duffy, 2004; Ek-

ström et al., 2009), HIV transmission dynamics (Ampadu, 2007), seismology and earthquake

ground motion modeling (Moczo et al., 2004; Rinehart, 2011) and fluid dynamics (Ferzinger

and Perić, 2002; Tu et al., 2008). The finite difference schemes have been improved extensively

in the works of Patidar and his co-works to to be applicable to singularly perturbed two-point

boundary value problems (Kadalbajoo and Patidar, 2001, 2002, 2006; Lubuma and Patidar,

2006; Bashier and Patidar, 2011). The FDM has great flexibility in handling problems that

are defined in complex geometries (Kikani, 1989). For example, the FDM has been applied to

automobile transmission development where the domain changes (Ampadu, 2007). Tandjiria

(1999) noted that finite difference schemes are relatively easy to implement and are computa-

tionally efficient. However they also suffer from inherent discretization errors which may lead

to poor accuracy (Ferzinger and Perić, 2002).

Unlike the FDM, in the finite element method (FEM) the computational domain is viewed

as a collection of simple geometric shapes called finite elements (Reddy and Gartling, 1994).

The FEM is a generalization of the classical variational and weighted residual methods. For

two- and three-dimensional domains, these elements are usually triangles or quadrilaterals

5



Chapter 1 – Introduction

and tetrahedra or hexahedra respectively (Ferzinger and Perić, 2002). On each local element

a piecewise polynomial approximating function to the governing equation is generated by any

of the variational and weighted residual methods. These polynomials are zero on all other

elements except on the element where they are defined (Kikani, 1989). This leads to a sparse

matrix which makes the computational work easy (Thomée, 1984).

The history of the FEM dates back to the beginning of the twentieth century. In the early

1940s, Hrennikov and Courant laid the mathematical foundations of the FEM (Elishakoff and

Ren, 2003). In the 1950s the FEM became prominent in the engineering literature as an

informal procedure for formulating matrix solutions to stress and displacement calculations

(Fletcher, 1988). The name finite element was first used by Clough in 1960 (Thomée, 1984).

Some of the pioneering work using the FEM is reported to have been done by Turner, Martin,

Zienkiewicz and Cheung in the mid 1960s (Thomée, 1984).

Like the FDM, the FEM is efficient in solving problems with complex geometries and boundary

conditions (Ferzinger and Perić, 2002; Steinhauser, 2008). This is because the meshes created

can easily be adapted to almost any type of domain. However, the FEM also suffers from

low accuracy (Schuberth, 2003). Mistakes by users including, for example the use of wrong or

distorted elements, may lead to very serious errors (de Weck and Kim, 2004). The FEM uses a

variational formulation that automatically accommodates the boundary conditions (Thomée,

1984).

The finite volume method (FVM) was introduced in the early 1970s by McDonald in 1971 and

MacCormark and Pillay in 1972 for the solution of the two-dimensional time dependent Euler

equations (Tu et al., 2008). The method was extended to three-dimensional flows in the 1973s.

In the FVM the computational domain is subdivided into a grid of a finite number of adjacent

control volumes (Steinhauser, 2008). In each control volume the conservation equations are

6



Chapter 1 – Introduction

applied (Ferzinger and Perić, 2002). The centroid of each control volume is a computational

node where values of the variable are to be computed (Ashgriz and Mostaghimi, 2001). In-

terpolation is then applied to express in terms of the nodal values, the variable values and

the resulting surface and volume integrals are approximated by suitable quadrature formulae

(Barth and Ohlberger, 2004). Evaluation of the integrals results in an algebraic equation at

each control volume (Ashgriz and Mostaghimi, 2001).

Since the FVM can use both structured and unstructured meshes, the method can handle

complex geometries. Boundary conditions are easily applied since the variables are known

at all the control volume boundaries (Karim et al., 2011). Also, unlike in the case of the

FDM, the transformation of the equations in terms of body-fitted coordinate systems is not

required (Tu et al., 2008). However, extending the FVM to three-dimensions for higher order

difference approximations becomes difficult (Ferzinger and Perić, 2002). This difficulty is as-

sociated with the structure of the FVM algorithm. It involves three levels of approximations,

interpolation, differentiation and integration (Barth and Ohlberger, 2004). In recent studies,

the FVM has been used for studies in rheology (Pinho, 2001), fluid mechanics (Steinhauser,

2008), biological sciences (Ludwig et al., 2008), and in water flow simulations (Abedini and

Ghiassi, 2010).

The mathematical foundation of the boundary element method (BEM) is the method of inte-

gral equations (Sato, 1992; Grecu et al., 2009). The solution of Fredholm integral equations

by Kellog in 1929 led to the development of the indirect BEM, while the application of the

Green’s theorem as an alternative to the derivation of the integral equation led to the devel-

opment of the direct BEM, (Katsikadelis, 2002; Watson, 2003).

Unlike the FDM and FEM, the BEM is a boundary-oriented method. The governing PDEs are

transformed into integral equations relating to the boundary values only (Eldho and Young,

7



Chapter 1 – Introduction

2001; El-Bashir, 2006). Values at interior points may be calculated from the boundary data

(El-Bashir, 2006). The numerical approximations in this method occur at the boundaries, as

a result reducing the problem dimension by one (Grecu et al., 2009). It has been used to

solve the heat diffusion equations, flows in porous media, biological flows, and environmental

problems such as the circulation in human bodies and in weather predictions (Sato, 1992; El-

Bashir, 2006; Muhammad et al., 2009). Kikani (1989) used the BEM to investigate the effects

of reservoir geometry and heterogeneity of the flow field in underground reservoirs. Lough

et al. (1998) solved boundary integral equations modeling the flow through a fractured porous

media using the BEM. Florez et al. (2003) used the BEM to find solutions of a non-Newtonian

flow problem.

The reduction in the dimensionality of a boundary value problem has made the BEM more

advantageous over the FEM and FDM (Muhammad et al., 2009), making the method eco-

nomical and time saving since there is less data analyzed. The method is also appropriate for

complicated and unbounded domain problems (Mushtaq et al., 2010). However the require-

ment of a suitable fundamental solution when using the BEM brings a major drawback to the

method. Such solutions are not readily available for all types of problems (Katsikadelis, 2002).

Eldho and Young (2001) proposed a dual reciprocity boundary element method (DRBEM) to

overcome the dependance on finding a fundamental solution. The DRBEM was used success-

fully to find solutions of the Laplace equation by Eldho and Young (2001).

The BEM however cannot be applied to non-homogeneous nonlinear flow problems (Muham-

mad et al., 2009). It becomes numerically unstable at high Renolds or Rayleigh numbers and

leads to non-symmetric and fully populated matrices which increase the computational work

(Dargush and Grigoriev, 2000). However the method is still useful for laminar flows, flows in

finite and infinite fields and incompressible flows (Kikani, 1989).
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Chapter 1 – Introduction

1.1.2 Runge-Kutta schemes

Runge-Kutta methods comprise a class of so-called step-by-step methods (Ferracina, 2005).

The origins of the Runge-Kutta method (RKM) can be traced back to the late eighteenth and

early nineteenth centuries. In 1895, Kutta extended the Euler method so it can allow multiple

evaluations of the derivative at each time-step. Several contributions were made by Heun in

1900 and Kutta in 1901 that lead to the development of the fifth order Runge-Kutta method

(Butcher, 1987; Segawa, 2011). The sixth order Runge-Kutta methods were proposed in 1925

by Nyström and by Huta in 1956 and further developments of methods were made by Gill in

1951, Merson in 1957 and Butcher in 1963 Segawa (2011).

Runge-Kutta methods are well known for their stability. However more computational effort

is required when using Runge-Kutta methods compared to other numerical schemes, for ex-

ample, the Euler’s method, (Prokopakls and Selder, 1981). However, discretization errors are

greatly reduced compared to the Euler method. The explicit Runge-Kutta methods are much

simpler than the implicit Runge-Kutta methods. Nonetheless, explicit Runge-Kutta meth-

ods have very small regions of stability compared to implicit Runge-Kutta methods (Collin

and Schett, 1983; Wolke and Knoth, 2000). In addition, implicit Runge-Kutta methods are

capable of handling stiff ODEs while the former can not. As a result, much attention has

been dedicated to the improvement and application of implicit Runge-Kutta methods to, for

example, stiff ODEs (Cash, 1996).

A compound form of the Runge-Kutta method for solving nonlinear stiff dynamical systems

was presented by Zhang and Li (2011). Prokopakls and Selder (1981) proposed an adap-

tative semi-implicit RKM to integrate linear and nonlinear stiff systems with and without

oscillations. An improved version of the approximate Newton method for implicit RKMs was

9



Chapter 1 – Introduction

presented by Xie (2011). Wolke and Knoth (2000) studied the relationship between explicit

Runge-Kutta methods and the implicit integrator and used these methods to integrate atmo-

spheric chemistry-transport-models. Alvarez and Rojo (2003) introduced an improved class

of generalized Runge-Kutta methods for stiff problems. However explicit methods have not

been completely abandoned. Alvarez and Rojo (2004) proposed and tested a new family of

explicit methods of order four with two evaluations per step on special second-order differen-

tial equations. The numerical solutions of age-structured population models were generated

by Abia and López-Marcos (1995) using a difference scheme based on RKMs. Haelterman

et al. (2009) developed a new formulation of the RKM that handles large algebraic systems.

1.1.3 The Keller-box scheme

Proposed by Keller in the early 1970s, the Keller box scheme is an implicit finite difference

scheme for finding numerical approximate solutions of differential equations. Also named the

Preissman box scheme, the Keller box scheme is a deviation from the finite volume approach

in which the derivatives or unknowns are stored at control volume faces rather than at the

conventional cell centers. The unknowns, in space and time, are placed at the corners of the

space-time control volume, which is a box in one dimension on a stationary mesh (Perot and

Subramanian, 2007).

Originally devised to find solutions of diffusion equations, the Keller box method has been

used to solve a wide range of fluid flow problems. It has been used to find solutions of

wave equations (Perot and Subramanian, 2007), convection flows, jet flows and separating

flows (Shu and Wilks, 1995), turbulent flows (Cebeci and Shao, 2003) and free and forced

convection flows (Salleh et al., 2009).

10
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Meek and Norbury (1984) modified the Keller box method into a second-order, two-stage, two-

level finite difference scheme and used it to find solutions of a nonlinear diffusion equation. The

normal central difference approximation used in the Keller box method was found to sometimes

bring about large and bounded oscillations in the numerical solutions (Kafoussias et al., 1999).

They used a backward difference scheme to eliminate the oscillations in the solutions. However

the solutions obtained using this modification were only first-order accurate. Shu and Wilks

(1995) used a combination of merging and reduction processes to handle multi-layer and

integral operators in the governing equations. This approach was successfully used by Shu

and Wilks (2009) for solutions of the heat transfer problem from a draining sheet.

1.1.4 WENO schemes

Weighted essentially non-oscillatory (WENO) schemes are a modification of the original es-

sentially non-oscillatory (ENO) schemes. They are reconstruction finite volume schemes used

together with suitable time-step discretizations and applicable to hyperbolic conservation laws

(Aboiyar et al., 2006). The idea behind ENO schemes is to first select a set of stencils for each

cell of the finite volume discretization (Shu, 1997, 2001). Each set of stencils consists of a set

of neighboring cells (Aboiyar et al., 2006). A recovery polynomial is used to interpolate cell

averages in the stencil. A suitable oscillator indicator is used to ensure that only a smooth

(least oscillatory) polynomial is used (Balsara, 2009). The order of the ENO schemes depends

on the order of the polynomial used.

In the case of WENO schemes, the whole set of stencils and their equivalent polynomials are

used to estimate the solution over a control volume as opposed to using the least oscillatory

polynomial (Shu, 2001). The WENO schemes improved the robustness, smoothness of the
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numerical fluxes, convergence properties and computational efficiency of the ENO schemes.

However WENO schemes are usually not optimal for computing turbulent flows and other

flows with fluctuations (Capdeville, 2008). To this end, a number of improvements to WENO

schemes have been proposed. Shi et al. (2002) developed WENO schemes suitable for prob-

lems with negative weights. Qiu and Shu (2005) proposed a class of WENO schemes based

on Hermite polynomials (HWENO) which further improved the compactness of the WENO

schemes. The HWENO schemes were used to find solutions of the Hamilton-Jacobi equations

by Qiu and Shu (2005). To avoid numerical instabilities and reduce computational complexity,

Aboiyar et al. (2006), proposed WENO schemes that use polyharmonic splines rather than

polynomials. This scheme gave not only numerically stable results but also proved to be more

flexible. Qiu (2007) proposed Lax-Wendroff time discretization for WENO schemes (WENO-

LW) to find solutions of Hamilton-Jacobi equations. To improve the convergence order and

decrease dissipation near discontinuities, Zahran (2009) proposed a combination of the central

WENO schemes with smoothness indicators. A fourth order divergence-free WENO scheme

for MHD flow problems was proposed by Balsara (2009). This version was an improvement

form the second order accurate schemes.

WENO schemes have been applied to diffusion equations in thin film flows (Ha et al., 2008),

incompressible flows (Yang et al., 1998), underwater blast-wave focusing (Liang and Chen,

1999), wave propagation equations (Noelle, 2000), Navier-Stokes equations with high Reynolds

number (Zhang et al., 2003) and free shear layer equations (Cheng and Lee, 2005) amongst

many other problems.
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1.1.5 The bvp4c algorithm

Kierzenka and Shampine (2001) developed a finite difference code that implements the three-

stage Lobatto formula, the bvp4c, for boundary value problems (BVPs). The bvp4c is an

implicit Runge-Kutta method with a continuous extension and uses Simpson’s formula as its

basic discretization scheme (Kierzenka and Shampine, 2001; Shampine et al., 2003).

The error control approach used in the bvp4c tends to deal robustly with poor guesses to

the mesh and the procedure can handle problems with non-separated boundary conditions

(Shampine et al., 2005; Hale and Moore, 2008). The bvp4c can also be viewed as a residual

control based adaptive mesh solver with the advantage of low computational and storage

costs while allowing control of the grid resolution (Hale, 2006). Zhao (2011) compared the

performance of the bvp4c with two shooting methods in solving a cavity expansion problem.

The bvp4c was found to be robust and consistent, showing superiority over the other numerical

methods. Nonetheless, BVP solvers rely on a good initial guess for their performance and the

bvp4c is no exception. It may fail if a poor guess is used and it works better for systems

involving relatively few equations, (Shampine et al., 2005). Wang (2001) found that for

piecewise continuous optimal control problems, the bvp4c fails at the discontinuous points.

Shampine (2003) modified the original bvp4c so that it could be applied to a class of singular

ODEs. This extension was termed the sbvp4c. Hale (2006) developed the bvp6c as an ex-

tension to the bvp4c of Kierzenka and Shampine (2001). In this solver, for the interpolant,

a sixth-order solver is implemented instead of the fourth-order one that is used in the bvp4c

(Zhao, 2011). The bvp6c improves the accuracy and efficiency of the former whilst retaining

its generality (Hale, 2006). Hale and Moore (2008) showed that the new modification has the
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same level of robustness as the bvp4c but superior for most problems as it uses fewer internal

mesh points and takes less time to achieve the same level of accuracy.

Kierzenka and Shampine (2008) introduced the bvp5c which functions exactly like the bvp4c

but differs in the way error tolerances are defined. The bvp4c indirectly controls the true error

whilst the bvp5c is able to directly control the true error of a solution (Hollborn, 2011).

The bvp4c has been used successfully to solve BVPs from different models in science and

engineering. For example, the bvp4c was used by Budd et al. (2006) to find self-similar

blow-up solutions of certain nonlinear partial differential equations. Harley and Momoniat

(2008) were able to estimate integrals and bifurcations of Lane-Emden equations of the second

kind using the bvp4c. Numerical solutions for a model of non-isothermal free surface flows

were found using the bvp4c by Zhmayev et al. (2008). Thomé et al. (2010) investigated a

model describing the dynamics of mosquito populations under certain conditions. The steady

axisymmetric mixed convection boundary layer flow past a thin vertical cylinder placed in a

water-based copper nanofluid was investigated by Grosan and Pop (2011).

1.1.6 The shooting method

The shooting method is a BVP solver that works by converting the BVP into an initial value

problem. The starting point is an assumed condition for the unknown initial condition. The

guess is improved through an iterative process until a solution that satisfies all the given

boundary conditions is achieved, (Ha, 2001; El-Gebeily and Attil, 2003).

Successful applications and extensions of the shooting method have been documented over the

years. The Falkner-Skan equation was solved by El-Hawary (2001) using a shooting method.
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El-Gebeily and Attil (2003) coupled the shooting method with an iterative method to find nu-

merical solutions of a certain class of singular two-point BVPs. Makinde (2009a) investigated

the hydromagnetic mixed convection flow of an incompressible viscous electrically conduct-

ing fluid and mass transfer over a vertical porous plate with constant heat flux embedded

in a porous medium using the Newton-Raphson shooting method along with fourth-order

RungeKutta integration algorithm. Ribeiro (2004) investigated the geometrically nonlinear

periodic vibrations of elastic and isotropic, beams and plates by the shooting method. A

shooting method for porous catalysts was developed by Lee and Kim (2005). Yang (2006)

used the shooting method to find numerical solutions of controllability problems constrained

by linear and semi-linear wave equations with locally distributed controls. Chih-Wen et al.

(2006) proposed a Lie-group shooting method to solve the Falkner-Skan and Blasius equa-

tions. Their approach involved integrating the IVPs using group preserving scheme (GPS)

developed earlier by Liu (2001). Multiple solutions of the Falkner-Skan and Blasius equations

under suction-injection conditions were studied by Liu and Chang (2008) using a new exten-

sion of the shooting method. In their approach the governing equation was transformed into a

nonlinear second-order boundary value problem and then solved using the Lie-group shooting

method. The numerical solution of a special class of fractional boundary value problems of

second order was investigated by Al-Mdallal et al. (2010) using a conjugating collocation and

spline analysis technique combined with the shooting method.

In summary, shooting methods are quite general and applicable to a wide variety of differential

equations (Ha, 2001; Lebedev and Lovtsov, 2002). They are quite robust as they can be

used to solve various types of BVPs (Asai, 2006). However, they may fail to converge for

problems sensitive to initial conditions and also lack stability in relation to the perturbation of
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parameters (Lebedev and Lovtsov, 2002). For some problems, shooting methods are sensitive

to modest changes in the initial conditions which may give rise to numerical difficulties in the

computations (Ha, 2001).

1.1.7 Spectral methods

The idea in spectral methods is to approximate functions using truncated series of orthogonal

polynomials or functions (Mantzaris et al., 2001; Gheorghiu, 2007; van de Vosse and Minev,

2002). These polynomials are global, meaning that they are defined over the whole domain of

a particular problem (Mantzaris et al., 2001). For this reason spectral methods are sometimes

referred to as global methods. Spectral methods can further be viewed as expansions of the

method of weighted residuals (MWR), a class of discretization schemes for differential equa-

tions (van de Vosse and Minev, 2002; Babolian et al., 2007). In the MWR, the approximating

functions are known as trial functions. These trial functions are used as basis functions of a

truncated series expansion of the solution, (Babolian et al., 2007). The orthogonal functions

used in spectral methods include Fourier series, Chebyshev and Legendre polynomials (Ghe-

orghiu, 2007). Fourier series are used for periodic problems while Chebyshev and Legendre

polynomials are used in non-periodic problems. In addition, Hermite polynomials are prefer-

able for approximations on the real line, and Laguerre polynomials for approximations on the

half line (Gheorghiu, 2007).

Depending on the choice of trial functions, there are three different types of spectral meth-

ods, namely Galerkin, Tau and collocation or psuedospectral methods. The major difference

between these methods is that Galerkin and Tau methods are applied in terms of expansion

coefficients while collocation methods are applied in terms of the physical space values of the
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unknown function and trial functions are used to evaluate spatial derivatives (Mantzaris et al.,

2001; Babolian et al., 2007). The major difference between the Tau and Galerkin methods

is that each of the trial functions used in the Galerkin methods must satisfy the boundary

conditions and yet in Tau methods this is not necessarily the case. The major drawback

of Galerkin and Tau methods is that they require substantial CPU time when dealing with

higher-dimensional approximate solutions (Mantzaris et al., 2001).

Spectral methods have been used successfully in many different fields in the sciences and en-

gineering because of their ability to give accurate solutions of differential equations. These

fields include fluid flows (Hussaini and Zang, 1987; Grandclément and Novak, 2009), geo-

physics, meteorology and climate modeling (Canuto et al., 2007; Grandclément and Novak,

2009), magnetohydrodynamics (MHD) (Shan et al., 1991; Shan, 1994), electrodynamics (Bel-

gacem and Grundmann, 1998) and in quantum mechanics (Canuto et al., 2007; Hesthaven

et al., 2007).

Besides giving highly accurate results, spectral methods have several other advantages over

other numerical methods. Spectral methods generally converge to the true solution faster than

any finite power of 1/N (N , the dimension of the reduced order model) (Juang and Kana-

mitsu, 1994; Mantzaris et al., 2001; Cueto-Felgueroso and Juanes, 2009). They produce more

accurate results than finite differences (Trefethen and Trummer, 1987; Juang and Kanamitsu,

1994). There is freedom to choose the appropriate basis functions for a particular problem

when using spectral methods (Juang and Kanamitsu, 1994).

Spectral methods work under specific domains called spectral domains. Occasionally, it may

be more difficult to solve a problem in its original domain than in the spectral domain. How-

ever, on the downside, spectral methods are not easy to implement and for problems with

singularities in a complex plane close to the spectral domain, convergence of spectral methods
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is decelerated (Cueto-Felgueroso and Juanes, 2009). Discretization of large systems of partial

differential equations using spectral methods gives rise to full matrices and problems with

complex computational domains and rigorous nonlinearities cannot be handled efficiently by

spectral methods (Juang and Kanamitsu, 1994; Mantzaris et al., 2001). The stability of spec-

tral methods for initial value problems is also not proven (Trefethen and Trummer, 1987).

Moves to overcome some of the limitations of spectral methods have been made. For instance,

the spectral element method (SEM) was developed by Patera (1984) to overcome the weakness

of spectral methods in handling problems in complex geometries. The SEM merges the accu-

racy of spectral methods with the flexibility of the finite element method (van de Vosse and

Minev, 2002). Raspo (2003) developed a direct domain decomposition method coupled with

the Chebyshev collocation method for the solutions of incompressible Navier-Stokes equations.

Based on Hermite-Fourier expansions Korostyshevskiy and Wanner (2007) proposed a spectral

method for the computation of homoclinic orbits in ordinary differential equations. The list

is not exhaustive, there are indeed many more applications and improvements that have been

made to spectral methods over the years.

1.2. Perturbation methods

Perturbation methods are an alternative to numerical methods and are useful for finding

approximate analytic solutions of differential equations. Nonetheless, literature reveals that

the use of perturbation techniques in fluid dynamics has somewhat declined since the advent

of high-speed digital computers.

A non-exhaustive list of perturbation methods include the method of averaging, the method of

strained coordinates, Struble’s technique, the method of variation of parameters, the method
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of multiple scales (Bellman, 1966; Nayfeh, 1973; von Dyke, 1975), the δ-expansion method

(Bender et al., 1989) and Lyapunov’s artificial small parameter method (Lyapunov, 1992), to

mention but just a few. Perturbation techniques in general construct the solution for a problem

involving a small parameter ǫ, the perturbation parameter (von Dyke, 1975; Bellman, 1966;

Holmes, 1995). The perturbation quantity may either be part of the differential equation,

the boundary conditions or both (Nayfeh, 1973; Liao, 2003a). In general, the solution of the

differential equation at ǫ = 0 should be known (Bellman, 1966; Kevorkian and Cole, 1981). The

approximate solutions are then generated using asymptotic expansions of suitable sequences

of the perturbation parameter (Bellman, 1966). The accuracy of perturbation approximations

does not depend on the value of the independent variable but on the perturbation parameter

(Liao, 2003b,a). For smaller values of ǫ, the accuracy of perturbation methods tends to improve

(Nayfeh, 1973).

The analytic solutions obtained through perturbation methods are often more useful than

numerical results as they provide a more qualitative and quantitative representation of the

solution compared to numerical solutions (Liao, 2003b). They often provide a clearer meaning

of the physical parameters contained in the solutions (Liao, 2003a). However, their reliance on

small perturbation quantities makes them subject to several constraints (Liao, 2003b). Not all

nonlinear equations have such parameters. Consequently, for some problems the perturbation

quantities have to be artificially introduced which may lead to erroneous or even incorrect

results (Holmes, 1995). Kevorkian and Cole (1981) show that perturbation techniques may

not work for the whole computational domain for some problems. Choosing suitable sequences

of the perturbation parameter requires previous knowledge of the general nature of the solution

(Nayfeh, 1973). This introduces a major drawback because such knowledge can be difficult

to have, especially for complicated problems.
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Perturbation methods can be trusted to work for problems with weak nonlinearity (Kevorkian

and Cole, 1981; Liao, 2003b). Some perturbation methods may fail for expansions near an

irregular point and so render complete analysis of the solution impossible (Kevorkian and Cole,

1981). Nayfeh (1973) further showed that if the perturbation parameter multiplies the highest

derivative term, incorrect results may be obtained. This is because the first approximation

will be governed by a lower order equation which may not satisfy all the given initial boundary

conditions (Nayfeh, 1973).

1.3. Non-perturbation methods

Non-perturbation techniques have been developed to avoid the dependence on perturbation

parameters. Existing techniques include the Adomian decomposition method (ADM), the

differential transform method (DTM), the variational iteration method (VIM), the homotopy

analysis method (HAM) and the homotopy perturbation method (HPM).

1.3.1 Adomian decomposition method

The Adomian decomposition method was developed by Adomian (Adomian, 1976, 1994, 1991).

The idea is to split the given equation into its linear and nonlinear parts. The highest derivative

of the linear part is then inverted on both sides of the equation (Adomian, 1976). The initial

approximate solution of the ADM comprises of the initial and/or boundary conditions together

with terms involving the independent variables only (Chen and Lu, 2004). The unknown

function is then decomposed into a series whose components are to be determined. Special

polynomials called Adomian polynomials are used to decompose the nonlinear function (Allan,

2007). Using a recurrent relation in terms of the Adomian polynomials, successive terms of
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the series solution are generated (Allan, 2007; Bratsos et al., 2008).

The ADM solutions are closed form making it a quantitative rather than a qualitative ap-

proach. It is analytic and requires neither linearization nor resort to discretization (Allan,

2007; Bratsos et al., 2008). Consequently, the ADM gives the true solution of the problem

and is not affected by discretization errors. The method has been shown to give reliable ana-

lytical approximations that converge rapidly for nonlinear equations (Chen and Lu, 2004). It

is valid for strongly nonlinear ordinary differential equations or partial differential equations

with or without small/large parameters (Pamuk, 2005; Basak et al., 2009).

The ADM has been used successfully to solve a wide range of linear and nonlinear equations

in science and engineering. These include fourth-order parabolic partial differential equations

(Wazwaz, 2001a), heat diffusion equations (Arslanturk, 2005; Hashim, 2006b), generalized

Burgers-Huxely equation (Hashim, 2006a), Lorenz system (Hashim et al., 2006), nonlinear

fractional boundary value problems (Jafari and Daftardar-Gejji, 2006), SIR epidemic model

(Makinde, 2007), Klein-Gordon equation (Basak et al., 2009), Falkner-Skan equation (Alizadeh

et al., 2009), and many other applications of the ADM cited in the literature.

The ADM suffers from a number of limitations. The approximate solutions given by the ADM

often contain polynomials with small convergence regions. It also does not provide the freedom

to choose efficient base functions other than the power series which is usually inefficient to

approximate some nonlinear problems (Liao, 2003b). This is because convergence of the

approximation series used is not always guaranteed. The ADM’s stability in other applications

can be lower than that of other numerical methods such as collocation methods (Aminataei

and Hosseini, 2007). To improve the applicability of the ADM, a number of modifications

to the standard ADM have been suggested. Wazwaz (1999b) proposed a modification of
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the Adomian decomposition method (MADM) that accelerates the convergence of the series

solution. This modified version has been widely used to solve boundary value problems and

higher-order integro-differential equations (Wazwaz, 2001d). It has been applied to sixth-

order boundary value problems (Wazwaz, 2001c), mixed Volterra-Fredholm integral equations

(Wazwaz, 2002b) and to third-order dispersive partial differential equations (Wazwaz, 2003).

Padé approximants were used in conjunction with the ADM for the solution of boundary layer

equations in unbounded domains (Wazwaz, 2006). The use of Padé approximants helped to

achieve better accuracy, increase the convergence region and rates of the truncated series

produced by the ADM. The ADM-Padé has been used to solve Burger’s equation (Abassy

et al., 2007; Dehghan et al., 2007; Alharbi and Fahmy, 2010), linear and nonlinear systems

of Volterra functional equations (Dehghan et al., 2009), MHD flow problem over a stretching

sheet (Hayat et al., 2009), and differential-difference equations (Wang et al., 2011) amongst

other applications.

Wazwaz (2002a) proposed yet another modification of the ADM. This version is particulary

useful for singular initial boundary value problems where the ADM would at times fail to

converge. Wazwaz and Khuri (1996) used the new modification to solve weakly singular

second-kind Volterra-type integral equations, the Thormas-Fermi equation (Wazwaz, 1999a)

and differential equations of Lane-Emden type (Wazwaz, 2001b), amongst other applications.

Hosseini (2006) introduced a modification of the ADM that uses Chebyshev polynomials.

Zhang et al. (2006) proposed a two-step Adomian decomposition method (TSADM), for sys-

tems of inhomogeneous differential equations, hyperbolic partial differential equations and for

singular initial value problems. Legendre polynomials in combination with the ADM were

used by Liu (2009). Abassy (2010a) proposed the improved Adomian decomposition method
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(IADM), which is based on a new formulation of the Adomian polynomials to accelerate the

convergence of the ADM. Further modifications of the ADM may be found in the literature.

1.3.2 The differential transform method

The differential transform method, was first introduced by Zhou in 1986. It is a semi-

analytical-numerical technique that has been successfully used in electrical circuit studies

to solve linear and nonlinear initial value problems (Ayaz, 2003). Taylor series expansions

are used to construct analytical solutions in polynomial form (Catal, 2008; Jang, 2010). The

traditional Taylor series method requires symbolic computation of the derivatives of the data

functions and requires more computation time for large orders while the DTM iteratively ob-

tains analytic Taylor series solutions of differential equations (Ayaz, 2003). Compared to the

Taylor series, the DTM can easily handle highly nonlinear problems (Ayaz, 2003).

The main advantage of the DTM, like the ADM, is that it can be used directly to solve nonlin-

ear ordinary and partial differential equations without the need for linearization, discretization

or perturbation (Ebaid, 2010). The DTM is thus also free of discretization errors and yields

closed form solutions.

Applications of the DTM to various problems in the sciences and engineering fields in-

clude solutions of the Blasius and difference equations (Arikoglu and Ozkol, 2005, 2006),

vibration equations (Catal, 2008), singular two-point boundary value problems (Kanth and

Aruna, 2008), convective straight fin problem with temperature-dependent thermal conduc-

tivity (Joneidi et al., 2009) and the fractional modified KdV equation by Kurulay and Bayram

(2010), amongst others.
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There are two major drawbacks of the DTM. Firstly, the truncated series solution obtained by

the DTM suffers from small convergence regions (Odibat and Momani, 2008; Rashidi, 2009;

Gökdoǧan et al., 2011). Secondly, the truncated series does not reveal any periodic behaviour

that maybe associated with oscillator systems (Gökdoǧan et al., 2011). Padé approximants

and Laplace transforms have been extensively used together with the DTM in attempts to

overcome the limitations of the DTM. Momani and Ertürk (2008) proposed the modified

differential transform method (MDTM), that uses Laplace transforms and Padé approximants.

This version successfully extended the convergence regions of the DTM and also captured the

periodic behavior of solutions. Gökdoǧan et al. (2011) successfully used the MDTM to find

solutions of Genesio systems.

Another modification of the DTM based on Laplace transforms and Padé approximants is the

DTM-Padé. Rashidi (2009) proposed the DTM-Padé to solve MHD boundary-layer equations.

The DTM-Padé mainly extended the convergence region of the DTM. The DTM-Padé was

used by Rashidi et al. (2010) to solve the convection fin problem about an inclined flat plate

embedded in porous media. Solutions of the Camassa-Holm equation were obtained using the

DTM-Padé by Zou et al. (2009). However, the DTM-Padé has been reported by Ebaid (2011)

to significantly increase computational work and that difficulties associated with finding the

inverse Laplace transform may arise. Ebaid (2011) proposed an after-treatment technique for

obtaining periodic solutions that avoids the use of both the Laplace transforms and the Padé

approximants. Odibat et al. (2010) proposed and used yet another modification of the DTM,

the multi-step DTM, to extend convergence regions.
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1.3.3 The variational iteration method

Ji-Huan He (He, 1999a,c) proposed the variational iteration method. The basic idea is to

construct a correction functional by means of a general Lagrange multiplier. The Lagrange

multiplier is chosen such that its correction solution is superior to the initial approximate solu-

tion (He, 1999a). The initial approximate solution is chosen to satisfy the boundary conditions

of the problem. The VIM, like the ADM and DTM needs no discretization, linearization, or

transformation (Soltani and Shirzadi, 2010). It has been proven in many applications to be

an effective, easy to use and accurate method for finding solutions of many classes of linear

and nonlinear problems (Biazar and Aminikhah, 2009).

Moghimi and Hejazi (2007) used the VIM to find solutions of the generalized Burger-Fisher

and Burger equations. Wazwaz (2007) used the VIM to find rational solutions of the KdV,

K(2, 2), Burgers and cubic Boussinesq equations. Wazwaz (2008) solved linear and nonlinear

Schrödinger equations and Inc (2008), the space- and time-fractional Burgers equations using

the VIM. Dehghan and Shakeri (2008b,a) used the VIM to solve the Lane-Emden equation

and the Cauchy reaction-diffusion problem. Ganji et al. (2009) and Yıldırım and Öziş (2009)

used the VIM to find solutions of the Jefferey-Hamel flow problem and singular initial value

problems of the Lane-Emden type respectively. Makinde and Charles (2010) used the VIM to

investigate the hydromagnetic stagnation flow of an incompressible viscous, electrically con-

ducting fluid, towards a stretching sheet. The delay logistic problem was solved by Dehghan

and Salehi (2010) using the VIM. Hassan and Alotaibi (2010) used the VIM to solve the

improved KdV equation.

However, users have reported some weaknesses of the VIM. Amongst these weaknesses, is the
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small convergence region of the VIM solutions (Abassy et al., 2007c; Geng, 2010). It also has

been reported that the accuracy of the VIM is greatly compromised by unneeded noise terms

that usually crop up in the computations (Abassy et al., 2007d; Abassy, 2010b). These terms

tend to unnecessarily consume computational time further decelerating convergence rates.

Many researchers have worked on modifications of the VIM to overcome its inadequacies.

Abassy and his co-workers extensively worked on improving the VIM in 2007. They introduced

enhancements using Padé approximants (Abassy et al., 2007c) to extend the convergence

region of the VIM. They further enhanced the method using Laplace transforms (Abassy

et al., 2007a). An adjustment to get rid of the unneeded term was introduced by (Abassy

et al., 2007d) who further modified the VIM to be applicable to a certain class of partial

differential equations (Abassy et al., 2007b).

A version suitable for nonlinear integral-differential equations was introduced by Biazar and

Aminikhah (2009). Ghorbani and Saberi-Nadjafi (2009) proposed a modified VIM that was

based on using an improved initial approximation to accelerate the accuracy of the method. A

piecewise-truncated VIM algorithm to overcome the unneeded terms was initiated by (Ghor-

bani and Momani, 2010). Geng (2010) introduced a modification of the VIM whose aim was

to extend the convergence region of the solutions. This approach introduced a convergence

controlling parameter. These modifications amongst others, have made the VIM a useful tool

applicable to a wide variety of problems.

1.3.4 The homotopy analysis method

A homotopy analysis method was proposed by Liao (1992) in his PhD thesis. The HAM

is a non-perturbation method that is valid for strongly nonlinear problems with or without
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small/large parameters. The HAM contains an artificial parameter ~ used to adjust the

convergence rate and the region of convergence (Liao, 2003b). It offers great freedom to

express solutions of a given problem using a set of base functions (Liao, 2003b). The central

design of the HAM is to replace a nonlinear equation by a system of ordinary differential

equations (ODEs) that can easily be solved with the help of symbolic computation software

such as Mathematica and Maple. The solution of system of ODEs forms a convergent series

that approximates the solution of the nonlinear equation (Liao, 1992, 2003b). A detailed

description of the HAM can be found in Liao’s book (Liao, 2003b).

The HAM has been successfully used by several researchers in science and engineering to find

solutions of different types of nonlinear equations. In particular one may draw attention to the

works of Hayat and his collaborators on the solution of non-Newtonian fluid problems (Hayat

et al., 2007; Hayat and Sajid, 2007b,a; Hayat et al., 2007). Abbasbandy (2006a, 2007b) and

Sajid and Hayat (2008) used the HAM to solve nonlinear heat transfer problems. The KdV

type of equations were studied by Abbasbandy (2008, 2007a) and Song and Zhang (2007). A

more comprehensive list of the applications of the HAM can be found in Liao (2009).

However, like many other similar methods, the HAM suffers from a number of deficiencies.

In his book, Liao (Liao, 2003b, ch. 5), discusses some of these as well as its strengths.

One of the main limitations of the HAM is the requirement that the solution sought ought

to conform to some pre-set rules. The so-called rule of solution expression and the rule of

coefficient ergodicity provide a guide on how to choose the appropriate initial approximations,

the auxiliary linear operators and the auxiliary functions. These parameters are conveniently

chosen to ensure that the resulting higher order deformation equations that are used to obtain

the approximate series solutions can be easily integrated using symbolic computation software
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(van Gorder and Vajravelu, 2009). Complicated initial approximations and linear operators

could lead to difficult or even impossible to integrate higher order deformation equations. The

restriction on the choice of the initial guess might lead to the use of poor initial guesses which

may compromise convergence rates as well as the accuracy of the results.

The so-called ~-curves used for finding suitable values of the convergence controlling parameter

do not give the optimal ~ value, but a range of values. This makes finding the optimal

convergence controlling parameter a trial and error process (van Gorder and Vajravelu, 2009).

This further compromises the accuracy of the results if any other value besides the optimal

value is used.

There has been improvements and adjustments made to the HAM. Yabushita et al. (2007)

made an attempt to correct the limitations of the HAM in obtaining the optimal value of

the convergence controlling parameter. They introduced an extra convergence controlling

parameter instead of using the so-called ~-curves. Marinca et al. (2008), introduced the opti-

mal homotopy analysis method (OHAM) where more than two convergence parameters were

used in the algorithm. Ali et al. (2010) and Esmaeilpour and Ganji (2010) used the OHAM

to solve multi-point boundary value problems including the Jeffery-Hamel flow problem. In

their findings they note that the OHAM is a straight forward and reliable approach. Also, it

converges for larger physical domains compared to the HAM. Idrees et al. (2010) also success-

fully applied the OHAM to the squeezing flow problem, Iqbal et al. (2010) to the linear and

nonlinear Klein-Gordon equations and Iqbal and Javed (2011) to singular Lane-Emden type

equations. However, Liao (2010) suggests that the development by Marinca et al. (2008) is

time-consuming and has been occasionally reported to fail for complicated nonlinear problems.

Liao (2010) presented a new version of the OHAM in which three convergence controlling
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parameters are used at each iteration step. This accelerated the convergence and improved

the accuracy of the HAM. Niu and Wang (2010) proposed a one-step OHAM based on the

Taylor series expansion to improve the computational efficiency of the HAM. Bataineh et al.

(2009) presented yet a new modified homotopy analysis method, the MHAM, that was able

to avoid the uncontrollability problems of the non-zero endpoint conditions that are usually

encountered in using the original HAM. One further modification of special interest in this

work is by Motsa et al. (2010). Based on the use of spectral methods, this modification aims to

improve the choice of the initial guesses and basis functions used in the HAM algorithm, and

consequently increase the convergence rates and accuracy of the HAM. The HAM is discussed

in greater depth in Chapter 2.

1.3.5 The homotopy perturbation method

He (1999b, 2003) developed the homotopy perturbation method, which unlike traditional

perturbation methods, does not require the presence of a small parameter in an equation,

(He, 1999b). Instead it couples the traditional perturbation method and the homotopy in

topology to construct a homotopy with an embedding parameter p ∈ [0, 1] (Ghorbani and

Saberi-Nadjafi, 2008; Yusufog̃lu, 2009). As p gradually increases from 0 to 1, the homotopy

deforms the nonlinear equation from its initial approximation to the required results (He,

1999b). The perturbation technique is then used to solve the equation with the series solution

expressed in terms of p (Abbasbandy, 2006b). The HPM is flexible in that it can be used

for both analytical and numerical purposes (Chowdhury et al., 2010). It has been shown also

that it avoids some of the problems encountered when applying the ADM (Ariel, 2009; Ariel

et al., 2006; Ariel, 2007a; Chowdhury et al., 2010).
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The HPM has been widely used by He to solve algebraic, nonlinear ODEs, bifurcation prob-

lems and PDEs amongst other applications (He, 1997, 1998b,a, 2004, 2005b,a, 2006). Other

applications include the solution of the quadratic Ricatti differential equation (Abbasbandy,

2006b), Fredholm integral equations (Javidi and Golbabai, 2007; Biazar et al., 2011), integro

differential equations (Golbabai and Javidi, 2007; Ghasemi et al., 2007), nonlinear heat trans-

fer equations (Ganji, 2006; Domairry and Nadim, 2008), wave equations (Chun et al., 2009),

Klein-Gordon and sine-Gordon equations Chowdhury and Hashim (2009a) and the reaction

diffusion Brusselator model (Chowdhury et al., 2010).

One inadequacy of the HPM reported in recent studies (Ariel et al., 2006; Ariel, 2007a,b,

2009), is that the solution is limited to only one correction term. The possibility of occurrence

of secular terms may also be unavoidable when using the HPM (Ariel, 2009). To avoid the

appearance of secular terms, Ariel (2009) extended the HPM by stretching the independent

variable in the problem by a scaling parameter that incorporated the homotopy parameter p.

To accelerate convergence, Sweilam and Khader (2009) combined the method with Laplace

transforms, Padé approximations and the Taylor series method. Their approach did not only

improve the convergence rate of the HPM, but also proved to be suitable for highly nonlinear

coupled systems of PDEs. Instead of the Padé approximation, Khan and Wu (2011) combined

the Laplace transform method and He’s polynomials with the HPM to accelerate convergence

rates of the HPM.

Another approach introduced to accelerate convergence, is the use of accelerating parameters.

This approach was used by Ghorbani and Saberi-Nadjafi (2008) and Yusufog̃lu (2009) among

others. Odibat (2007) introduced a new approach that aids convergence of the HPM. This

version was used by Siddiqui et al. (2009) to solve the equations associated with the flow of
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a third grade fluid. Hashim et al. (2008) implemented ideas from the ADM and formulated

a multistage homotopy perturbation method (MHPM) to improve on the global convergence

of the HPM. The MHPM was successfully used by Chowdhury and Hashim (2009b) to solve

nonlinear chaotic and non-chaotic systems of ordinary differential equations.

1.4. Objectives of this study

Analytical methods can be used to find solutions to a limited range of problems as seen above,

while numerical methods can be used to solve a wider range of problems in fluid dynamics.

However, the solutions obtained using numerical methods are only approximations. Most

physical characteristics of the flow cannot be revealed by these solutions. However, these

solutions are still important in cases where exact solutions cannot be generated hence the

need to develop improved semi-numerical or numerical methods. It is well known that the

convergence of an approximate solution greatly relies on the initial guess solution used. In

this study therefore we;

• introduce a new improvement of the homotopy analysis method using spectral methods

(Motsa et al., 2010),

• introduce a successive linearisation method which uses spectral methods to solve the

resulting higher order deformation equations,

• introduce an improvement to the spectral homotopy analysis method, which blends

ideas from both the spectral homotopy analysis method and the successive linearisation

method,

• use the three new methods to solve fluid flow problems (i) between parallel plates
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(Makukula et al., 2010d; Sibanda et al., 2012; Makukula et al., 2010a), (ii) rotating

disk flows (Makukula et al., 2010b, 2011a; Motsa et al., 2010) and, (iii) flows through

porous media (Makukula et al., 2010c, 2011b).

1.5. Thesis outline

The organization of the thesis is as follows;

• In Chapter 2 we review the homotopy analysis method and describe the new methods,

the algorithms and strengths and weaknesses.

• In Chapter 3 we use the methods to solve viscous incompressible fluid flow problems

occurring between parallel plates.

• In Chapter 4 we use the methods to solve rotating disk flow problems.

• In Chapter 5 we use the methods to solve fluid flow problems in porous media.

• A conclusion of the thesis is given in Chapter 6 with a list of references at the end.
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On hybrid semi-analytical methods for

boundary value problems

In this Chapter we describe recent hybrid semi-numerical methods for solving boundary value

fluid flow problems. It is necessary in the first instance to give a brief overview of the homotopy

analysis method since the first hybrid method builds on this method and serves to improve

the accuracy of the HAM. The spectral-homotopy analysis method refines the HAM by using

a more accurate initial approximate solution and by solving the higher order deformation

equations using spectral methods, known for high accuracy. The algorithm formulation, its

strengths and weaknesses are discussed. In Section 2.3 we introduce a successive linearisation

method which reduces the nonlinear BVP into a series of linear equations that are then solved

using spectral methods. The formulation of the successive linearisation method for nonlinear

equations is given together with the strengths and weaknesses of the method. In Section

2.4 we introduce an improvement of the spectral-homotopy analysis method which blends

together ideas from the successive linearisation approach and the spectral-homotopy analysis

method. In this approach, a more convergent initial approximation is used, further improving
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the accuracy of the spectral-homotopy analysis method.

2.1. Review of the homotopy analysis method

The homotopy analysis method was first proposed by Liao in 1992 in his PhD thesis (Liao,

1992). The HAM constructs a sequence which continuously deforms from an initial guess of

the solution of a differential equation to the exact solution. To construct such a homotopy, one

needs an initial approximation, an auxiliary linear operator, L, a non zero auxiliary function,

H(x), and a non zero convergence controlling parameter ~. These parameters allow the user

of the HAM to effectively control the region and rate of convergence of the series solution.

There is also a great freedom in the choice of the initial guess, the auxiliary linear operator and

the auxiliary function with useful guidelines on how to chose these functions (van Gorder and

Vajravelu, 2009; Liao, 2003b). Following Liao (2003b), let us consider a nonlinear equation of

the form;

N [f(x, t)] = 0, t > 0, (2.1)

where N is a nonlinear operator and f(x, t) is an unknown function of the independent

variables x and t. The homotopy, also referred to as the zeroth order deformation equation is

constructed by setting;

(1 − q)L[F (x, t; q) − f0(x, t)] = q~H(x, t)N [F (x, t; q)], q ∈ [0, 1], (2.2)

where q is an embedding parameter, ~ is an auxiliary parameter, H(x, t) is a nonzero auxiliary

function, L is an auxiliary linear operator, f0(x, t) is an initial guess to the solution f(x, t)

and F (x, t; q) is an unknown mapping function. When q = 0 and q = 1 we have that

F (x, t; 0) = f0(x, t), F (x, t; 1) = f(x, t). (2.3)
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Hence from equation (2.3), F (x, t; q) maps continuously from the initial guess f0(x, t) to the

exact solution f(x, t) as q varies from 0 to 1.

Definition 2.1. Let φ be a function of the homotopy parameter q, then

Dmφ =
1

m!

∂mφ

∂qm

∣

∣

∣

∣

∣

q=0

is called the mth order homotopy derivative of φ where m ≥ 0 is an integer (Liao, 2003b).

Liao (2003b) expanded F (x, t; q) using the Taylor series to get

F (x, t; q) = f0(x, t) +
∞
∑

m=1

fm(x, t)qm, (2.4)

with

fm(x, t) =
1

m!

∂mF (x, t; q)

∂qm

∣

∣

∣

∣

∣

q=0

. (2.5)

The convergence of the series in equation (2.4) is controlled by ~ in equation (2.2). When

suitable choices of ~, L and f0(x, t) are made such that the series (2.4) converges when q = 1,

then, (2.4) yields the exact solution f(x, t) as simply

f(x, t) = f0(x, t) +
∞
∑

m=1

fm(x, t). (2.6)

Differentiating the zeroth order deformation equation (2.2) m times with respect to the em-

bedding parameter q, setting q = 0 and then dividing by m!, gives the mth order deformation

equation,

L[fm(x, t) − χmfm−1(x,t)] = ~H(x, t)Rm(~fm−1(x, t)), (2.7)

where

Rm(~fm−1) =
1

(m− 1)!

∂m−1N [F (x, t; q)]

∂qm−1

∣

∣

∣

∣

∣

q=0

, (2.8)

~fm = {f0(x, t), f1(x, t), f2(x, t), . . . , fm(x, t)}, (2.9)
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and

χm =















0, m ≤ 1,

1, m > 1.

For any L and N , solving the mth order deformation equation (2.7) yields solutions of the

form (2.6). Symbolic software like Maple and Mathematica may be used to solve equation

(2.7).

The fundamental rules to consider when using the HAM are the rule of solution expression,

the rule of coefficient egordicity and the rule of solution existence (Liao, 2003b). These rules

provide guidelines on how to choose the initial guess, the auxiliary linear operator and the

auxiliary function, all used in the formulation of the zeroth-order deformation equations. Each

fundamental rule is briefly discussed below. A full exposition can be found in, for example,

van Gorder and Vajravelu (2009) and Liao (2003b).

The rule of solution expression is important in the selection of the initial guess, auxiliary

linear operator and the auxiliary function. Liao (2003b) notes that this rule is formulated

from two main facts about an individual problem. Firstly, the solution of a nonlinear problem

can be expressed using a variety of base functions. Secondly, such base functions are possible

to determine from the physical properties of the problem and from its initial and/or boundary

conditions. Hence for any given nonlinear problem, one can establish the rule of solution

expression. For the initial guess to satisfy the requirements of the rule of solution expression,

it must be expressed by a sum of the base functions. The auxiliary function must be chosen

to guarantee that the higher order deformation equations are expressed by a sum of the base

functions. The linear operator has to be chosen to ensure that the solution of

L[f(x, t)] = 0, (2.10)
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may be expressed as a sum of the basis functions.

Together with the rule of solution expression, the rule of coefficient egordicity helps to uniquely

define the auxiliary function (Liao, 2003b). The rule ensures that as the order of approximation

approaches infinity, each base function appears in the solution expression.

The rule of solution existence is derived from the fact that if the original problem has a solution,

then the subproblems that arise from the higher order deformation equation should have

solutions. This further restricts the choice of the initial guess, the auxiliary linear operator

and the auxiliary function. Together, the three rules provide a useful guideline that makes

the use of the HAM possible.

A key parameter in the HAM is the non-zero convergence controlling auxiliary parameter

~ (van Gorder and Vajravelu, 2009; Liao, 2003b). This parameter controls the convergence

region and rate of the series solution. Such regions are determined using the so-called ~-curves,

where a physical quantity (such as the velocity or skin friction) is plotted against values of ~

(see for example Liao (2003b) and Sibanda et al. (2012)). The valid values of ~ are those that

correspond to the horizontal part of the graph. However, it has not been determined how to

select the best value of ~, which is found by trial and error (van Gorder and Vajravelu, 2009).

2.1.1 Strengths and weaknesses of the HAM

The HAM is a powerful tool for solving nonlinear problems. Liao (2003b, chap. 5) discusses

the advantages of the HAM over other techniques. These include the freedom to choose

different base functions, the ability to control the rate of convergence of the series solution and

the ability to handle efficiently both weakly and strongly nonlinear problems with or without

embedded small or large quantities. Other methods such as Adomian’s decomposition method,
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Lyapunov’s artificial small parameter method and the δ-expansion method are special cases

of the HAM (Liao, 2003b).

Nonetheless, Liao (2003b) shows that even with such great freedom to choose the base func-

tions, for a meaningful solution, it is important for the user to have some prior-knowledge of

the physics of the problem. This is a disadvantage since this is not always possible, especially

with completely new problems. Also, the rules offer general guidelines on how to choose the

initial guess, the auxiliary linear operator and the auxiliary function, there are however no

systematic theories to direct such choices (Liao, 2003b). Furthermore, the choice of the ini-

tial guess is restricted to convenient and useful functions (van Gorder and Vajravelu, 2009).

Such functions include polynomials, exponentials, trigonometric functions, rational functions

or products of such functions, functions that are generally easy to integrate. Complicated base

functions may make it difficult or even impossible to integrate the higher order deformation

equations. Such a restriction then impairs the choice of the initial guess and forces the user

to use just an adequate initial guess instead of the best possible initial guess (van Gorder and

Vajravelu, 2009).

It has been pointed out earlier that there is no fail safe guide to aid the choice of the optimal

~. The so-called ~-curves only provide a range of possible ~ values. This is also a disadvantage

of the method as a user might end up not using the best possible value of ~. Despite its many

acknowledged successes, the HAM is not guaranteed to solve nonlinear problems with chaotic

solutions (Liao, 2003b).
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2.2. The spectral-homotopy analysis method

The speed of convergence of an approximate method is highly dependent on the initial guess.

If the initial approximation is a poor guess, the method might take too long or may even fail to

converge to the accurate result. As we have seen above, the homotopy analysis method suffers

from a number of limitations, principally the fact that the solution sought ought to satisfy the

rule of solution expression, the rule of coefficient egordicity and the rule of solution existence.

In this section we introduce an innovation aimed at improving the accuracy of the initial

guess used in the homotopy analysis method. Complicated base functions that are avoided

when using the standard HAM can be used here as long as they satisfy the initial conditions.

In addition, the higher order deformation equations are solved using the Chebyshev spectral

collocation method, known for its accuracy (Canuto et al., 2007; Hesthaven et al., 2007).

2.2.1 Construction of the SHAM algorithm

Consider a nonlinear equation of the form

N [f(x)] = g(x), (2.11)

subject to the boundary conditions

B[f(x), f ′(x), . . . ] = 0, x ∈ [a, b], (2.12)

where N [f(x)] stands for the nonlinear operator, g(x) a source term, f(x) is an unknown

function, x an independent variable and [a, b] is the domain of the problem. Equation (2.11)

is decomposed into its linear and nonlinear parts as

L1[f(x)] + N1[f(x)] = g(x), (2.13)
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with L1 and N1 representing the linear and nonlinear operators respectively. The initial guess

is the solution of the equation

L1[f0(x)] = g(x), (2.14)

with boundary conditions

B[f0(x), f
′

0(x), . . . ] = 0, x ∈ [a, b]. (2.15)

We note that in using the HAM, the initial guess is chosen to satisfy the boundary conditions

and must be expressed as a sum of basis functions. The solution to equation (2.14) is generally

a “better” choice compared to the one chosen to satisfy the boundary conditions only. It is

only if the solution to equation (2.14) is zero or does not exist that the initial guess is chosen

arbitrarily to simply satisfy the boundary conditions. To ensure homogeneous boundary

conditions, the following transformation is introduced

u(x) = f(x) − f0(x). (2.16)

It is useful to note that originally, the transformation (2.16) was not made in the SHAM

algorithm. This was made at a later stage (see Sibanda et al. (2012) in Chapter 3) in the

modified spectral-homotopy analysis method (MSHAM). In recent studies the MSHAM has

been used but called the SHAM instead of the MSHAM.

Substituting equation (2.16) into equation (2.13) yields

L2[u(x)] + N2[u(x)] = ψ(x), (2.17)

subject to

B[u(x), u′(x), . . . ] = 0, x ∈ [a, b], (2.18)

where L2 and N2 are the adapted linear and nonlinear operators respectively and

ψ(x) = g(x) −L1[f0(x)] −N1[f0(x)].
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At this stage, the solution procedure is similar to that of the HAM algorithm. We formulate

zeroth-order deformation equations as;

(1 − q)L2[U(x; q) − u0(x)] = q~{L2[U(x; q)] + N2[U(x; q)] − ψ(x)}, q ∈ [0, 1]. (2.19)

We note again that, unlike in the case of the HAM the auxiliary function H(x) is not necessary

as there is no need for the solution of the higher order deformation equation to conform to

some rule of solution expression. q and ~ are the embedding and convergence controlling

parameters respectively, and U(x; q) is an unknown function. The initial approximation u0(x)

is the solution of the equation

L2[u0(x)] = ψ(x), (2.20)

with boundary conditions

B[u0(x), u
′

0(x), . . . ] = 0, x ∈ [a, b]. (2.21)

From the zeroth-order deformation equation (2.19), it can be shown that at q = 0 and at

q = 1,

U(x; 0) = u0(x), and U(x; 1) = u(x). (2.22)

Consequently, as q increases from 0 to 1, the unknown function U(x; q) varies from the initial

approximation u0(x) to the solution u(x). Using the Taylor series to expand U(x; q) about q

gives

U(x; q) = u0(x) +
∞
∑

m=1

um(x)qm, um(x) =
1

m!

∂mU(x; q)

∂qm

∣

∣

∣

∣

∣

q=0

, (2.23)

where ~ is chosen such that the series (2.23) converges at q = 1. Hence from equation (2.22)

we obtain solutions of the form

u(x) = u0(x) +

∞
∑

m=1

um(x). (2.24)
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Following the HAM procedure, we formulate the higher order deformation equations by dif-

ferentiating the zeroth-order deformation equation m times with respect to q then dividing

by m! to get

L2[um(x) − (χm + ~)um−1(x)] = ~Rm(x), (2.25)

with

Rm(x) =
1

(m− 1)!

∂m−1

∂qm−1
{N2[U(x; q)] − ψ(x)}

∣

∣

∣

∣

∣

q=0

, (2.26)

and

χm =















0, m ≤ 1,

1, m > 1.

Nonetheless comparing the higher order deformation equations, for the SHAM,

L2[um(x) − (χm + ~)um−1(x)] = ~Rm(x), (2.27)

and for the HAM (2.7)

L[fm(x) − χmfm−1(x)] = ~H(t)Rm(x), (2.28)

it is clear that the difference between (2.27) and (2.28) is the extra term ~um−1 which is

assumed to be finite.

In solving the higher order deformation equations (2.25), the Chebyshev spectral collocation

method (Boyd, 2000; Canuto et al., 1988, 2007; Hesthaven et al., 2007; Trefethen, 2000) is

used. In the collocation method, the unknown functions um(ξ) are approximated as truncated

series of Chebyshev polynomials of the form

um(ξ) ≈
N
∑

k=0

ûkTk(ξj), j = 0, 1, 2, . . . , N, (2.29)

where Tk denotes the kth Chebyshev polynomial defined by

Tk(ξj) = cos[k cos−1(ξj)], (2.30)
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ûk are coefficients and ξ0, ξ1, ξ2, . . . , ξN are Gauss-Lobatto points defined by

ξj = cos
πj

N
, j = 0, 1, . . . , N, (2.31)

where N+1 is the total number of collocation points. The physical domain [a, b] is mapped by

an appropriate change of variable to the spectral domain [−1, 1] where the Chebyshev spectral

method may be applied. The derivatives of the functions um(ξ) are expressed in terms of the

Chebyshev spectral differentiation matrix D (Canuto et al., 1988, 2007; Hesthaven et al., 2007;

Trefethen, 2000) as

drum

dξr
=

N
∑

k=0

Dr
kjum(ξj), (2.32)

where r denotes the order of differentiation. The entries of the matrix D are defined as

Dkj =















































cj

ck

(−1)j+k

ξj−ξk
, j 6= k,

− ξk

2(1−ξ2
k
)
, 1 ≤ j = k ≤ N − 1,

2N2+1
6

, j = k = 0,

−2N2+1
6

, j = k = N,

where

cj =















2, j = 0, N,

1, 1, 2, . . . , N − 1.

Applying the Chebyshev approximations (2.29) - (2.32) to the higher order deformation equa-

tions (2.25) results in a matrix equation of the form

AUm = (χm + ~)AUm−1 + ~ Qm−1. (2.33)

A and Qm−1 are matrices obtained after applying the Chebyshev transformations to L2 and

Rm respectively, Um = [um(ξ0), um(ξ1), um(ξ2), . . . um(ξN)]T , where T stands for the transpose.

The boundary conditions are then imposed on the matrix equation (2.33), and making Um
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the subject yields

Um = (χm + ~)A−1ÃUm−1 + ~A−1Q̃m−1, (2.34)

where Ã and Q̃m−1 are matrices obtained after applying the boundary conditions to the right

hand side of equation (2.33). Equation (2.34) gives a recursive formula that is used to find

solutions of the higher order approximations um(x), (m ≥ 1). The recursive formula for the

HAM involves a series of ordinary differentiation equations, equation (2.34) gives a series of

algebraic equations, and as Boyd (2000) points out, it is easier to evaluate a function than to

integrate a differential equation.

2.2.2 Convergence theorem for the SHAM

Unless the series (2.24) converges, the results obtained by this method cannot be regarded as

useful. The functions um(x) are governed by the higher order deformation equation (2.25).

As suggested earlier, this approach serves to remove some limitations of the HAM. There is a

very slight difference between the higher order deformation equations found using the SHAM

and those found using the HAM. Liao (2003b, ch. 3) proved the convergence of the series

(2.24). Proof of convergence of the series (2.4) associated with equation (2.28) is given in Liao

(2003b, ch. 3);

Theorem 2.1. As long as the series

f0(x, t) +

∞
∑

m=1

fm(x, t) (2.35)

is convergent, where fm(x, t) is governed by the high-order deformation equation (2.7), it must

be a solution of equation (2.1).
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Proof. See Liao (2003b, ch. 3).

This theorem also guarantees convergence of the SHAM series.

2.2.3 Strengths and weaknesses of the SHAM

The strengths and weaknesses of the SHAM will be discussed relative to the HAM since this

method is an improvement to the HAM. We start with the strengths of the method. In finding

the initial approximation more information about the governing equation is used as opposed

to the boundary conditions only. The initial guess obtained is therefore a better function than

in the case of the HAM. There is no restriction on the nature of the initial guess as long as

it exists and is nontrivial. In the case of the HAM, the initial guess has to be expressed as a

sum of basis functions which are conveniently chosen to be easy to integrate (van Gorder and

Vajravelu, 2009). This restriction is unnecessary in relation to the SHAM.

In using the HAM, an auxiliary function H(x) is chosen to force all coefficients of the higher

order deformation to be expressed by the basis functions (van Gorder and Vajravelu, 2009;

Liao, 2003b). This is done to ensure that the higher order deformation equations are possible

to integrate. The SHAM algorithm does not require an H(x) and gives a series of algebraic

equations as opposed to ordinary differential equations. This makes it possible for the SHAM

to handle problems with complicated initial guesses and linear operators.

The method gives fast converging solutions with high accuracy (Makukula et al., 2010b;

Motsa et al., 2010; Motsa and Shateyi, 2010; Motsa and Sibanda, 2011). The use of a spectral

method to solve the higher order deformation equations further accelerates the convergence of

the SHAM. The method uses the default value ~ = −1 to give good results except when the

equation is strongly nonlinear or has special functions that increase its complexity. Nonethe-
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less, finding the right number of collocation points to use for a particular problem is not

straightforward, although experience in application of the method makes it easier. The choice

becomes more crucial if the problem domain is unbounded at one or both ends. The do-

main truncation procedure (Boyd, 2000) allows the use of a scaling parameter L to invoke the

boundary conditions at the free end. It is also not obvious which combination of N and L

would give optimal performance of the SHAM for a particular problem.
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2.3. The successive linearisation method

In the successive linearisation method (SLM) one assumes that the error in an approximate

solution decreases with an increase in the number of iterations. In the sections that follow,

the theoretical foundation of the method is explained. The method is used to solve nonlinear

equations and nonlinear systems of ordinary differential equations (ODEs).

2.3.1 The SLM for nonlinear ODEs in one variable

Consider a general nth-order nonlinear ODE represented by a nonlinear boundary value prob-

lem of the form

L[y(x), y′(x), . . . , y(n)(x)] + N [y(x), y′(x), . . . , y(n)(x)] = 0, x ∈ [a, b], (2.36)

subject to the boundary conditions

y(a) = ya, y(b) = yb, (2.37)

where y(x) is an unknown function, x is an independent variable and the primes denote ordi-

nary differentiation with respect to x, L and N represent the linear and nonlinear components

of the governing equation and ya and yb are given constants. As an initial guess of the solution

of (2.36), we propose as a guide a function that satisfies the boundary conditions (2.37). Thus

a polynomial function (in this case a straight line) that satisfies the boundary conditions is

considered as a suitable initial guess solution, denoted by y0(x). We define a function Y1(x)

to represent the vertical difference between y(x) and the initial guess y0(x), shown in Figure

2.1, that is

Y1(x) = y(x) − y0(x), or y(x) = y0(x) + Y1(x). (2.38)
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Y1

y = y0(x
)

y = y(x)

a b

Figure 2.1: Geometric representation of Y1(x)

Substituting equation (2.38) in (2.36) gives

L[Y1, Y
′

1 , . . . , Y
(n)
1 ] + N [y0 + Y1, y

′

0 + Y ′

1 , . . . , y
(n)
0 + Y

(n)
1 ] = −L[y0, y

′

0, . . . , y
(n)
0 ]. (2.39)

Since y0(x) is known, solving equation (2.39) would yield an exact solution for Y1(x). However,

since the equation is nonlinear, it may not be possible to find an exact solution. We therefore

seek an approximate solution which is obtained by solving the linear part of the equation and

assuming that Y1(x) and its derivatives are small. If Y1(x) is the solution of equation (2.39) we

let y1(x) denote the solution of the linear part of (2.39) which takes the following composite

form

a0,0y
(n)
1 + a1,0y

(n−1)
1 + · · ·+ an−1,0y

′

1 + an,0y1 = r0(x), (2.40)

subject to the boundary conditions

y1(a) = 0, y1(b) = 0. (2.41)

The coefficients ak,0, k = 0, 1, . . . , n are functions of the initial guess and its derivatives, that
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is ak,0 = ak,0(y0, y
′

0, . . . y
(n)
0 ) and

r0(x) = −
(

L[y0, y
′

0, y
′′

0 , . . . , y
(n)
0 ] + N [y0, y

′

0, y
′′

0 , . . . , y
(n)
0 ]
)

.

Since the left hand side of equation (2.40) is linear and the right hand side is known, a solution

for y1(x) can be found. From this the first order approximation of the solution y(x) can be

written as

y(x) ≈ y0(x) + y1(x). (2.42)

Since y1(x) is an approximate solution of Y1(x), we can improve the solution by defining a

new slack function Y2(x) and add it to y1(x) as shown in Figure 2.2, to have

Y1(x) = y1(x) + Y2(x). (2.43)

Y2

y1

y = y0(x
)

y = y(x)

a b

Figure 2.2: Geometric representation of Y2

Equation (2.38) then takes the form

y(x) = y0(x) + y1(x) + Y2(x). (2.44)
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Substituting equation (2.43) into (2.39) yields

L[Y2, Y
′

2 , Y
′′

2 , . . . , Y
(n)
2 ] + N [y0 + y1 + Y2, y

′

0 + y′1 + Y ′

2 , y
′′

0 + y′′1 + Y ′′

2 , (2.45)

. . . , y
(n)
0 + y

(n)
1 + Y

(n)
2 ]

= −L[y0 + y1, y
′

0 + y′1, y
′′

0 + y′′1 , . . . , y
(n)
0 + y

(n)
1 ].

Equation (2.45) is nonlinear in Y2(x) and so an exact solution might not be possible. We solve

the linear part and denote its solution by y2(x) so that Y2(x) ≈ y2(x). This will give rise to

the new form

a0,1y
(n)
2 + a1,1y

(n−1)
2 + · · ·+ an−1,1y

′

2 + an,1y2 = r1(x), (2.46)

subject to the boundary conditions

y2(a) = 0, y2(b) = 0. (2.47)

The coefficients ak,1 are now functions of y0(x) and y1(x) and their derivatives, ak,1 = ak,1(y0+

y1, y
′

0 + y′1, y
′′

0 + y′′1 , . . . , y
(n)
0 + y

(n)
1 ) and the right hand side

r1(x) = −
(

L[y0 + y1, y
′

0 + y′1, . . . , y
(n)
0 + y

(n)
1 ] + N [y0 + y1, y

′

0 + y′1, . . . , y
(n)
0 + y

(n)
1 ]
)

.

After solving equation (2.46), the 2nd order estimate of the solution y(x) is given by

y(x) ≈ y0(x) + y1(x) + y2(x). (2.48)

as suggested by equation (2.44). To again improve this solution, a new slack function Y3(x)

is defined, shown in Figure 2.3, such that

Y2(x) = y2(x) + Y3(x). (2.49)

Equation (2.49) is substituted in the nonlinear equation (2.45) and the linear part of the

equation solved. This is repeated for m = 3, 4, 5, ...i to give the general form
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Y3

y1

y2

y = y0(x
)

y = y(x)

a b

Figure 2.3: Geometric representation of Y3

Yi(x) = yi(x) + Yi+1(x). (2.50)

The solution y(x) is obtained as

y(x) = y0(x) + Y1(x), (2.51)

= y0(x) + y1(x) + Y2(x), (2.52)

= y0(x) + y1(x) + y2(x) + Y3(x), (2.53)

...

= y0(x) + y1(x) + y2(x) + . . . yi(x) + Yi+1(x) (2.54)

=
i
∑

m=0

ym(x) + Yi+1(x).. (2.55)

We note that Yi+1(x) becomes increasingly small as i increases, that is

lim
i→∞

Yi+1 = 0.
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The ith order solution y(x) is then approximated by

y(x) =

i
∑

m=0

ym(x) =

i−1
∑

m=0

ym(x) + yi(x). (2.56)

Starting from the initial guess y0(x), the solutions yi(x) are obtained by successively linearising

equation (2.36) and solving the resulting linear equation. The general form of the linearised

equation that is successively solved for yi(x) is given by

a0,i−1y
(n)
i + a1,i−1y

(n−1)
i + · · ·+ an−1,i−1y

′

i + an,i−1yi = ri−1(x), (2.57)

subject to the boundary conditions

yi(a) = 0, yi(b) = 0, (2.58)

where

ak,i−1 = ak,i−1

(

i−1
∑

m=0

ym(x),

i−1
∑

m=0

y′m(x),

i−1
∑

m=0

y′′m(x), . . . ,

i−1
∑

m=0

y(n)
m (x)

)

, (2.59)

k = 0, 1, 2, . . . n,

ri−1(x) = −L

[

i−1
∑

m=0

ym(x),
i−1
∑

m=0

y′m(x),
i−1
∑

m=0

y′′m(x), . . . ,
i−1
∑

m=0

y(n)
m (x)

]

(2.60)

− N

[

i−1
∑

m=0

ym(x),
i−1
∑

m=0

y′m(x),
i−1
∑

m=0

y′′m(x), . . . ,
i−1
∑

m=0

y(n)
m (x)

]

. (2.61)

2.3.2 The SLM for systems of nonlinear ODEs

In this section we describe the SLM for nonlinear systems of ODEs. Consider a general

nth-order nonlinear system represented by a nonlinear boundary value problem of the form

L[Y (x), Y ′(x), Y ′′(x), . . . , Y (n)] + N[Y (x), Y ′(x), Y ′′(x), . . . , Y (n)] = 0, (2.62)

where Y (x) represents a vector of unknown functions, x is the independent variable and

the primes denote ordinary differentiation with respect to x, L and N are vector functions
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representing the linear and nonlinear parts of the system of equations respectively. These are

defined as follows;

L =

























L1

(

y1, y2, . . . , yk; y
′

1, y
′

2, . . . , y
′

k; . . . ; y
(n)
1 , y

(n)
2 , . . . , y

(n)
k

)

L2

(

y1, y2, . . . , yk; y
′

1, y
′

2, . . . , y
′

k; . . . ; y
(n)
1 , y

(n)
2 , . . . , y

(n)
k

)

...

Lk

(

y1, y2, . . . , yk; y
′

1, y
′

2, . . . , y
′

k; . . . ; y
(n)
1 , y

(n)
2 , . . . , y

(n)
k

)

























, (2.63)

N =

























N1

(

y1, y2, . . . , yk; y
′

1, y
′

2, . . . , y
′

k; . . . ; y
(n)
1 , y

(n)
2 , . . . , y

(n)
k

)

N2

(

y1, y2, . . . , yk; y
′

1, y
′

2, . . . , y
′

k; . . . ; y
(n)
1 , y

(n)
2 , . . . , y

(n)
k

)

...

Nk

(

y1, y2, . . . , yk; y
′

1, y
′

2, . . . , y
′

k; . . . ; y
(n)
1 , y

(n)
2 , . . . , y

(n)
k

)

























, (2.64)

Y (x) =

























y1(x)

y2(x)

...

yk(x)

























, (2.65)

(2.66)

where y1, y2, . . . , yk are the unknown functions. An initial guess Y0(x) is defined by

Y0(x) =

























y1,0(x)

y2,0(x)

...

yk,0(x)

























. (2.67)

For demonstration purposes, it is assumed that equation (2.62) is to be solved for x ∈ [a, b]

subject to the boundary conditions

Y (a) = Ya, Y (b) = Yb, (2.68)
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where Ya and Yb are given constants. An initial guess Y0(x) will consist of functions that

satisfy the boundary conditions. A function Z1(x) is defined to represent the vertical difference

between Y (x) and Y0(x), that is

Z1(x) = Y (x) − Y0(x), or Y (x) = Y0(x) + Z1(x). (2.69)

Consider for instance, the vertical displacement between the function y1(x) and its correspond-

ing initial guess y1,0(x) to be z1,1 = y1(x) − y1,0(x). This is shown in Figure 2.4. Substituting

z1,1

y1
= y1,0

(x)

y1 = y1(x)

a b

Figure 2.4: Geometric representation of z1,1(x)

equation (2.69) in (2.62) gives

L[Z1, Z
′

1, . . . , Z
(n)
1 ] + N[Y0 + Z1, Y

′

0 + Z ′

1, . . . , Y
(n)
0 + Z

(n)
1 ] = −L[Y0, Y

′

0 , . . . , Y
(n)
0 ]. (2.70)

Since Y0(x) is a known function, solving equation (2.70) would in theory yield an exact solution

for Z1(x). An approximate solution is obtained by solving the linear part of the equation (2.70)

assuming that Z1 and its derivatives are small. If Z1(x) is the solution of the full equation

(2.70), we let Y1(x) denote the solution of the linear part of (2.70) thus assume Z1(x) ≈ Y1(x).

54



Chapter 2 – On hybrid semi-analytical methods for boundary value problems

The linear part gives the equation

A0,0Y
(n)
1 + A1,0Y

(n−1)
1 + · · ·+ An−1,0Y

′

1 + An,0Y1 = (2.71)

−
(

L[Y0, Y
′

0 , . . . , Y
(n)
0 ] + N[Y0, Y

′

0 , . . . , Y
(n)
0 ]
)

,

with Ak,0 = Ak,0(Y0, Y
′

0 , Y
′′

0 , . . . , Y
(n)
0 ), k = 0, 1, 2, . . . , n. Since the right hand side of equation

(2.71) is known and the left hand side is linear, the equation can be solved for Y1(x). The

first order estimate of the solution Y (x) is

Y (x) ≈ Y0(x) + Y1(x). (2.72)

To improve this solution, we define a slack function, Z2(x) such that (Figure 2.5)

Z1(x) = Y1(x) + Z2(x). (2.73)

z2,1

y1,1

y1
= y1,0

(x)

y1 = y1(x)

a b

Figure 2.5: Geometric representation of z2,1

Since Y1(x) is now known (as a solution of equation (2.71)), we substitute equation (2.73) in

equation (2.70) to obtain

55



Chapter 2 – On hybrid semi-analytical methods for boundary value problems

L[Z2, Z
′

2, . . . , Z
(n)
2 ] + N[Y0 + Y1 + Z2+, Y

′

0 + Y ′

1 + Z ′

2, . . . , Y
(n)
0 + Y

(n)
1 + Z

(n)
2 ]

= −L[Y0 + Y1, Y
′

0 + Y ′

1 , . . . , Y
(n)
0 + Y

(n)
1 ]. (2.74)

Solving equation (2.74) would give in an exact solution for Z2(x). We solve the linear part

of the equation and represent its solution by Y2(x). Setting Z2(x) = Y2(x), substituting in

equation (2.74) and assuming that Y2(x) and its derivatives are small, gives

A0,1Y
(n)
2 + A1,1Y

(n−1)
2 + · · · + An−1,1Y

′

2 + An,0Y1 = (2.75)

−
(

L[Y0 + Y1, Y
′

0 + Y ′

1 , . . . , Y
(n)
0 + Y

(n)
1 ] + N[Y0 + Y1, Y

′

0 + Y ′

1 , . . . , Y
(n)
0 + Y

(n)
1 ]
)

,

where

Ak,1 = Ak,1(Y0 + Y1, Y
′

0 + Y ′

1 , Y
′′

0 + Y ′′

1 , . . . , Y
(n)
0 + Y

(n)
1 ), k = 0, 1, 2, . . . , n.

After solving (2.75), the second order estimate of the solution Y (x) is now

Y (x) ≈ Y0(x) + Y1(x) + Y2(x). (2.76)

This process is repeated for m = 2, 3, 4, 5, . . . , i. In general, it can be shown that

Zi(x) = Zi+1(x) + Yi(x). (2.77)
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Thus, Y (x) is obtained as

Y (x) = Y0(x) + Z1(x), (2.78)

= Y0(x) + Y1(x) + Z2(x), (2.79)

= Y0(x) + Y1(x) + Y2(x) + Z3(x), (2.80)

...

= Y0(x) + Y1(x) + Y2(x) + Y3(x) + . . .+ Yi(x) + Zi+1(x), (2.81)

=
i
∑

m=0

Ym(x) + Zi+1(x). (2.82)

The procedure for obtaining each Zi(x) is illustrated in Figures 2.4 and 2.5 respectively for

i = 1, 2. We note that when i is large, Zi+1 is small, hence for large i, we can approximate

the ith order solution of Y (x) by

Y (x) =

i
∑

m=0

Ym(x) =

i−1
∑

m=0

Ym(x) + Yi(x). (2.83)

Starting from a known initial guess Y0(x), the solutions Yi(x) (i ≥ 2) can be obtained by

successively solving the resulting linear part of the governing equation (2.62) for Yi(x). The

general form of the linear part of the equation to be solved for Yi(x) is given by

A0,i−1Y
(n)
i + A1,i−1Y

(n−1)
i + . . .+ An−1,i−1Y

′

i + An,i−1Yi = ri−1(x), (2.84)

where for k = 0, 1, . . . , n;

Ak,i−1(x) = Ak,i−1(x)

(

i−1
∑

m=0

Ym,

i−1
∑

m=0

Y ′

m,

i−1
∑

m=0

Y ′′

m, . . . ,

i−1
∑

m=0

Y (n)
m

)

, (2.85)

ri−1(x) = −L

(

i−1
∑

m=0

Ym,

i−1
∑

m=0

Y ′

m,

i−1
∑

m=0

Y ′′

m, . . . ,

i−1
∑

m=0

Y (n)
m

)

−N

(

i−1
∑

m=0

Ym,
i−1
∑

m=0

Y ′

m,
i−1
∑

m=0

Y ′′

m, . . . ,
i−1
∑

m=0

Y (n)
m

)

. (2.86)

The recursive equations (2.57) and (2.84) are solved using the Chebyshev spectral collocation

method.

57



Chapter 2 – On hybrid semi-analytical methods for boundary value problems

2.3.3 Strengths and weaknesses of the SLM

The SLM inherits the fast convergence and accuracy of the Chebyshev spectral collocation

method. In Makukula et al. (2010c) (see Chapter 5) the SLM is shown to give converging

results after a few iterations. It has been used successfully to solve a limited range of nonlinear

ODEs of varying complexity. The SLM algorithm is not purely numerical, it can be modified

to generate analytical results. Choosing N is however still a trial an error exercise. Using the

SLM on irregular domains might cause loss of accuracy. The mathematical foundation for this

method is yet to be established. It is essential to develop general theorems and mathematical

guidelines for the SLM.
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2.4. Improved spectral homotopy analysis method

In the improved spectral homotopy analysis method (ISHAM) the main innovation is the

further improvement of the initial approximation used in the spectral homotopy analysis

method. A more convergent form of the initial solution is used in the higher order deformation

equations. This new approach merges ideas from both the SLM and the SHAM. The initial

approximate solution takes the form of a general SLM solution and is then used in the SHAM

algorithm.

For a nonlinear equation

N [f(x)] = g(x), (2.87)

the following transformation is made

f(x) = fi(x) +

i−1
∑

n=0

fn(x). (2.88)

We note that equation (2.88) takes the general form of an SLM solution. The series (2.88) is

substituted into (2.87) and starting with an initial guess f0(x), the resulting equation is solved

using the standard SHAM. The zeroth order deformation equations now takes the form

(1 − q)L[Fi(x; q) − fi,0(x)] = q~{N [fi(x; q)] − ri−1(x)}, q ∈ [0, 1]. (2.89)

The higher order deformation equations take the form (see equation (2.25)

L[fi,m(x) − (χm + ~)fi,m−1(x)] = ~Ri,m(x), (2.90)

where the solution fi is given by

fi = fi,0 + fi,1 + fi,2 + fi,3 + · · · + fi,m. (2.91)

The solution for f(x) is then given by

f(x) = fi +
i−1
∑

n=0

fn(x). (2.92)
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3

Fluid flow between parallel plates

Fluid flow between two parallel surfaces has received much attention because of its impor-

tance in many fields of science and engineering. Such areas include electrostatic precipitation,

polymer technology, petroleum industry (Attia, 2005), food and pharmaceutical industries

(Iqbal et al., 2011). Many experimental and theoretical studies have been documented in the

literature where means of optimizing the desired products were sought.

In this Chapter we investigated two fluid flow problems between parallel plates using the

successive linearisation method, the spectral homotopy analysis method and the improved

spectral homotopy analysis method. The successive linearisation method was used to solve

the fourth order nonlinear equation governing a two-dimensional constant speed squeezing

flow of a viscous fluid between two approaching parallel plates in Section 3.1. A comparison

between results obtained using the successive linearisation method and those in the literature,

and the numerical solution in terms of accuracy and efficiency of the method. The compar-

ison revealed the efficiency and accuracy of the method compared to the homotopy analysis

method. Its efficiency was not compromised by increasing parameter values in the equation.

The spectral homotopy analysis method, the successive linearisation method and the im-
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proved spectral homotopy analysis method were used to study the steady laminar flow of a

pressure driven third-grade fluid with heat transfer in a horizontal channel in Sections 3.2 and

3.3. The computational efficiency and accuracy of the spectral-homotopy analysis method

was demonstrated by comparing the results with those obtained using the homotopy analysis

method. Results obtained using the improved spectral homotopy analysis method and the

successive linearisation method showed that both methods converged rapidly to the exact

solution. However, the ISHAM converged much more rapidly than the SLM. Convergence to

the exact solution was achieved by both methods for all parameter values, with the ISHAM

showing better convergence for larger parameter values. The results were also consistent with

results from earlier findings.
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3.1. On a new solution for the visco-elastic squeezing flow between two

parallel plates 1

Corrigenda

The following corrections and further explanations have been made to the published work in

Section 3.1.

(i) Problem geometry

Figure 3.1: Coordinate system and basic dimensions used to describe axisymmetric squeeze

flows (Engmann et al., 2005).

(ii) On page 33, a different parameter M1 should have been used to represent the SLM order.

1Z. G. Makukula, S. S. Motsa and P. Sibanda (2010). Journal of Advanced Research in Applied Mathe-

matics 2(4):31–38.
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(iii) On page 34 equation (3.14) is incorrect. The correct equation is

dafi

dza
=

N
∑

k=0

Da
kjfi(xk), j = 0, 1, ..., N.

Further explanations:

(i) On page 35 the results were generated using N = 40. The tolerance used with the bvp4c

was 1×10−9 and eight decimal places were used with the SLM results while five decimal

places were used for the HAM solutions.

(ii) The HAM failed to converge even at the 50th order for M = 10 as noted in reference

[14]. In Table 3 the SLM gives convergent results at the sixth order for large values of

M .
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3.2. A spectral-homotopy analysis method for heat transfer flow of a

third grade fluid between parallel plates 2

Corrigenda

The following corrections and further explanations were made to the published work in Section

3.2.

(i) Schematic diagram representing the flow (Makinde, 2009b)

Figure 3.2: Geometrical presentation of the problem.

(ii) On page 15, Section 5, the correct caption for Table 2 is “Comparison of the values of

the HAM and SHAM approximate solutions for u0(1) with the numerical solution for

various values of B when β = 1”.

2S. S. Motsa, Z. G. Makukula and P. Sibanda (2012). International Journal of Numerical Methods for

Heat & Fluid Flow 22(1):4–23 (Impact factor; 1.058).
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Further explanations:

(i) The MSHAM was not introduced in a formal section like the other methods but men-

tioned in passing on page 40. This is because it is only a minor modification of the

SHAM. The slight modification was made after the first published article, and it was

decided to retain the original name.

(ii) All results in the paper were generated using parameter values guided by the value of

the critical point of u′(1) on page 9 of the paper found to be

β = −
2

27B2
.
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Chapter 3 – Fluid flow between parallel plates

3.3. On new solutions for heat transfer in a visco-elastic fluid between

parallel plates 3

3Z. G. Makukula, P. Sibanda and S. S. Motsa (2010). International Journal of Mathematical Models and

Methods in Applied Sciences 4(4):221–230.
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Chapter 3 – Fluid flow between parallel plates

3.4. Summary

This chapter comprises of three sections where the SLM, SHAM, and ISHAM are used to solve

problems involving flow between parallel plates. In Section 3.1 the successive linearisation

method was used to find solutions of a squeezing flow problem between two parallel plates.

The problem was solved successfully and the numerical results demonstrated the ability of

the method to generate convergent results at low orders of approximation. In Section 3.2,

the spectral homotopy analysis method was used to solve a heat transfer flow problem of a

third grade fluid between parallel plates, while in Section 3.3 the successive linearisation and

improved spectral homotopy analysis methods were used to solve the same problem. The

robustness and efficiency of the successive linearisation method, spectral homotopy analysis

method and the improved spectral homotopy analysis method has been demonstrated. These

methods are very useful tools for solving highly nonlinear problems in science and engineering.
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On heat transfer in rotating disks flows

The theoretical study of swirling flows due to a rotating body was pioneered by von Kármán in

1929 when he gave a mathematical formulation of the problem of fluid flow due to an infinite

rotating disk. He introduced transformations that reduced the partial differential equations

governing the flow to ordinary differential equations. Cochran (1934) extended the analysis

and obtained asymptotic solutions for the von Kármán equations. This solution was later

further improved by Benton (1966) who solved the unsteady state equations.

Disk flow problems are important in nature and in industry. They have applications in rotating

machinery, heat and mass exchangers, biomechanics and oceanography (Sahoo, 2009; Devi and

Devi, 2011), computer disk drives, film condensation (Maleque, 2009), viscometry and spin-

coating (Frusteri and Osalusi, 2007). Swirling flows are not only important in fluid dynamics,

but also occur frequently in nature. Large rotating flows are also found in the atmosphere

and in the oceans (Zandbergen and Dijkstra, 1987). They also enhance combustion and flame

propagation (Urzay et al., 2011). Many aspects of rotating disk flows have since been studied.

To this regard, we solved in this Chapter the von Kármán equations with and without heat

transfer using the successive linearisation method, the spectral homotopy analysis method

106



Chapter 4 – On heat transfer in rotating disks flows

and the improved homotopy analysis method.

The improved spectral homotopy analysis method was used to study solutions of the steady

flow problem of a Reiner-Rivlin fluid with Joule heating and viscous dissipation in Section

4.1. The solutions obtained by the method were compared with those obtained using the

spectral homotopy analysis method and results in the literature. Convergence to the numerical

solutions was achieved at the second orders while the SHAM converged at the eighth order

for some of the flow parameters.

The spectral homotopy analysis method together with the successive linearisation method was

used to find numerical solutions of the von Kármán nonlinear equations for swirling flow with

and without suction/injection across the disk walls and an applied magnetic field in Section

4.2. The results were compared with numerical results and against the homotopy analysis

method and homotopy-Padé results in the literature. In the study both the spectral homotopy

analysis method and the successive linearisation method gave accurate and convergent results

after a few iterations compared with the homotopy analysis and the homotopy-Padé methods.

However, the successive linearisation method proved to be efficient in that it rapidly converged

to the numerical results.

In Section 4.3, the laminar heat transfer problem in a rotating disk was solved using the

successive linearisation method. The study revealed that the SLM is accurate and converges

at very low orders of the iteration scheme.
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4.1. On a linearisation method for Reiner-Rivlin swirling flow 1

Errata

In this article, we like to add the geometry of the problem below

Figure 4.1: Schematic representation of the flow domain (Sahoo, 2009).

1Accepted; S. S. Motsa, Z. G. Makukula and P. Sibanda. Journal of Computational and Applied Math-

ematics, http://www.journals.elsevier.com/journal-of-computational-and-applied-mathematics/ (Impact fac-

tor; 1.029).

108

















































Chapter 4 – On heat transfer in rotating disks flows

4.2. A note on the solution of the von Kármán equations using series

and Chebyshev spectral methods 2

Corrigenda

The following corrections and further explanations have been added in this section;

(i) Below we is the geometry of the problem;

Figure 4.2: Flow configuration of the von Kàmàrn swirling flow (Shanbghazani et al., 2009).

(ii) On page 11 a different dimensionless variable m1 in equations (5.1) and (5.2) should

have been used.

2Z. G. Makukula, P. Sibanda and S. S. Motsa (2010). Boundary Value Problems Volume 2010, Article ID

471793, 17 pages doi:10.1155/2010/471793 (Impact factor; 1.047)
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Further explanation

On pages 14 and 15, Tables 5 and 6, the collocation points used were N = 120 compared to

N = 60 in the previous Tables. This necessary since increasing the parameter values s and m

increased the nonlinearity of the equations.
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Chapter 4 – On heat transfer in rotating disks flows

4.3. On a quasilinearisation method for the Von Kármán flow problem

with heat transfer 3

Corrigendum

Please note the geometry of the flow studied in this Section;

Figure 4.3: Flow configuration for the von Kàmàrn swirling flow with heat transfer.

3Accepted; Z. G. Makukula, P. Sibanda and S. S. Motsa. Latin American Applied Research,

http://www.laar.uns.edu.ar/ (Impact factor; 0.16).
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4.4. Summary

In Section 4.1, the spectral homotopy analysis method together with the improved spectral

homotopy analysis methods were used to find solutions of a Reiner-Rivlin swirling flow prob-

lem. The ISHAM was shown to be an improvement of the SHAM as it generated converging

results at lower orders of approximation than the SHAM. Comparison with existing results in

the literature showed a good agreement. The von Kàrmàn equations were solved in Section

4.2 using the SLM and the SHAM. Compared with results obtained using the HAM and HAM

Padè techniques, the SHAM proved to give better convergence rates than the two methods.

The SLM also showed to be efficient in generating fast converging solutions. In Section 4.3,

the SLM was used to solve the von Kàrmàn problem with heat transfer.
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Fluid flow through porous medium

Darcy (1937) pioneered the mathematical study of fluid flows through porous media. For

steady state flow he assumed that the viscous forces are in equilibrium with external forces due

to the pressure difference and the body forces (Sharma et al., 2007). Modifications of Darcy’s

law have since been documented in the literature for example, by Brinkman (1947). Porous

media occur naturally while some are man-made and occur in various systems in industry.

Flows with heat transfer through porous media have received attention because of their wide

applications in different fields of science and engineering. Such fields include biomedical, civil,

chemical and mechanical engineering (Vafai, 2005; Sharma et al., 2007; Nield and Bejan, 2006).

In this Chapter we investigated two fluid flow problems in porous media. The steady two-

dimensional flow of a viscous incompressible fluid in a rectangular domain bounded by two

permeable surfaces was investigated using the spectral-homotopy analysis and the successive

linearisation methods in Section 5.1. The results were compared with those in the literature

obtained using the homotopy analysis method and the homotopy perturbation method. Both

the spectral-homotopy analysis method and the successive linearisation method proved to be

computationally efficient and accurate compared to the other methods.
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The SHAM, ISHAM and SLM were used to solve the problem of MHD viscous flow due to

a shrinking sheet with a chemical reaction in Section 5.2. A comparison was made of the

convergence rates, ease of use, and expensiveness of the three techniques. The results were

validated using the bvp4c algorithm and with results in the literature. The ISHAM converged

at second order for all simulations and the size of the parameter values used did not affect its

performance. However, the ISHAM is expensive in terms of the size of the code and computer

time. It took about three times as long as the SLM to compute the same result and about

double the time taken using the SHAM. The SLM is easy to implement and converged at

third order with good stability levels. The SHAM gave good convergence under the same

conditions but convergence rates were retarded for highly nonlinear problems. It is easier to

implement compared to the ISHAM but not as easy as the SLM. The results obtained were

in excellent agreement with results from the bvp4c. In this study it was indicated that the

ISHAM performs better than the SHAM and SLM in terms of the accuracy of the results and

speed of convergence. A parametric study of the effects of different parameters was done and

results were found to be in good agreement with those in the literature.
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5.1. A novel numerical technique for two-dimensional laminar flow

between two moving porous walls 1

Corrigendum

Please note the addition of the geometry of the flow below;

Figure 5.1: Two-dimensional domain with expanding or contracting porous walls.

Further explanations

(i) On page 4 the initial solution F0(y) in equation (3.1) was chosen to satisfy the boundary

conditions, (2.7) and (2.8) of the problem.

(ii) The bvp4c was used to generate the numerical results in Tables 1− 4 on pages 10− 11.

(iii) The SHAM results on Table 5, page 12 were generated using N = 60.

(iv) All SHAM results were generated using the default value ~ = −1, ~-curves were not

used in this work.

1Z. G. Makukula, S. S. Motsa and P. Sibanda (2010). Mathematical Problems in Engineering Volume

2010, Article ID 528956, 15 pages doi:10.1155/2010/528956 (Impact factor; 0.689).
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Chapter 5 – Fluid flow through porous medium

5.2. On new numerical techniques for the MHD flow past a shrinking

sheet with heat and mass transfer in the presence of a chemical

reaction 2

Corrigenda

(i) Problem geometry

Figure 5.2: Flow analysis on a shrinking surface

(ii) In equation (2.3), the correct similarity transformation for η is

η =

√

a

ν
y

and the variable F should be replaced by f .

2Z. G. Makukula, P. Sibanda, S. S. Motsa and S. Shateyi (2011). Mathematical Problems in Engineering

Volume 2011, Article ID 489217, 19 pages doi:10.1155/2011/489217 (Impact factor; 0.689).
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Chapter 5 – Fluid flow through porous medium

5.3. Summary

In Section 5.1 the spectral homotopy analysis method together with the successive linearisa-

tion method were used to find solutions of a fourth-order nonlinear boundary value problem

for the two dimensional Laminar flow between two moving porous walls. The results were com-

pared with those available in the literature computed using the homotopy analysis method.

The SHAM proved to be more flexible while producing convergent results at low orders of

approximation. In Section 5.2, the performances of the SHAM, SLM and ISHAM were com-

pared for a shrinking sheet problem with heat and mass transfer. Comparison was made in

terms of computer run times and convergence rates. The ISHAM proved faster convergence

than the SLM and SHAM but was more expensive in terms of computer time. It took longer

to generate results than both the SLM and SHAM. The SLM has shown to be the easiest to

use with shorter CPU run times than the SHAM and also gave faster convergence than the

SHAM. However comparison with some existing numerical methods still proves that all three

methods are still viable and improved tools to be used in the science and engineering fields.
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6

Conclusions

In this thesis we have introduced new semi-numerical methods for solving nonlinear equations

in fluid dynamics. The methods have been used to solve different fluid flow problems. A

summary of the findings for each problem solved is given below.

In Chapter 3, we solved two parallel plate fluid flow problems. In Section 3.1, we considered

the steady laminar flow of a third grade fluid with heat transfer through a channel using the

successive linearisation method and the improved spectral homotopy analysis method. The

convergence rates of the methods were compared against the exact results. It was observed

that both methods converged rapidly with the improved spectral homotopy analysis method

performing better for large parameter values. The study showed the accuracy and efficiency of

the method for a third grade fluid problem. In this study, my contribution was to find solutions

of the equations using the improved spectral homotopy analysis method and to write a draft

version of this article.

In Section 3.2 the third grade fluid flow equations were solved using the standard homotopy

analysis method and the spectral homotopy analysis method. Comparing the solutions showed

that the spectral homotopy analysis method is computationally more efficient compared to
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the homotopy analysis method. In this paper both the SHAM and the MSHAM were used

and my contribution was to solve the equations using the both methods.

In Section 3.3, the nonlinear differential equation that describes squeezing flow between two

infinite plates was successfully solved using the successive linearisation method. A comparison

of the successive linearisation method results against those previously obtained using the HAM

(Ran et al., 2009) and the bvp4c solver was made. The comparison showed that the successive

linearisation method converges faster than the HAM and its efficiency is not affected by the

magnitude of the parameters innate to the problem.

In Chapter 4, solutions of rotating disk flows were sought using the new methods. In Section

4.1, a strongly nonlinear system of differential equations governing the Reiner-Rivlin fluid with

Joule heating and viscous dissipation was solved using the improved spectral homotopy anal-

ysis method. A comparison with the original spectral homotopy analysis method was made.

The improved spectral homotopy analysis method converged to the numerical solutions at the

second orders for all flow parameters while the spectral homotopy analysis method converged

at the eighth order for some of the flow parameters. This shows that the improved spectral

homotopy analysis method is more accurate than the spectral homotopy analysis method. In

this study, my input was to solve the problem using the improved spectral homotopy analysis

method, and to write a draft version of the paper.

In Section 4.2, we used the spectral homotopy analysis method and the successive linearisation

method to solve the von Kármán nonlinear equations for swirling flow with suction/injection

across the disk walls and an applied magnetic field. The results were benchmarked against

those obtained using the bvp4c, the HAM and the homotopy Padé methods. The comparison

showed a better performance in terms of convergence rates and accuracy of the spectral ho-
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motopy analysis method and successive linearisation method compared to both the HAM and

HAM-Padé. Comparison with results in the literature (Turkyilmazoglu, 2010), showed that

the successive linearisation solutions had no oscillations compared to the HAM solutions. The

successive linearisation method also gave converging results at lower orders than the spectral

homotopy analysis method. In this article, my contribution was to use both the spectral ho-

motopy analysis method and successive linearisation method to find solutions of the classical

von Kármán equations.

In Section 4.3, the successive linearisation method was used to find the solution of the laminar

heat transfer problem of a rotating disk in a forced vortex. The velocity components were

computed and the study showed the rapid convergence of the successive linearisation method

solutions to the numerical results.

In Chapter 5, we solved fluid flow problems in porous media. In Section 5.1, a fourth-order

nonlinear boundary value problem for two-dimensional laminar flow between two moving

porous walls was investigated using the spectral homotopy analysis method and the successive

linearisation method. The problem has been studied by Xu et al. (2010) and Dinarvand et al.

(2008). Again the successive linearisation method and spectral homotopy analysis method

were shown to be efficient and flexible in solving a fourth-order nonlinear equation.

In Section 5.2, a comparison of the performances of the successive linearisation method, spec-

tral homotopy analysis method and improved spectral homotopy analysis method in solving

the MHD flow problem past a shrinking sheet with heat and mass transfer in the presence

of a chemical reaction was made. The comparison made was with regard to the speed of

convergence of the solution (the number of iterations required), computational efficiency and

the ease of application of the method. The results were benchmarked against those obtained
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using the shooting method and the bvp4c.

The improved spectral homotopy analysis method solutions converged at second order and

its performance was not affected by the magnitude of the parameter values under the same

conditions as the successive linearisation method and spectral homotopy analysis method.

However, the improved spectral homotopy analysis method required more computational work

in terms of the size of the code. The successive linearisation method showed stability and

ease of application when solving highly nonlinear problems. The spectral homotopy analysis

method’s convergence was quite good also but shown to be less robust for highly nonlinear

problems. It is easier to implement than the improved spectral homotopy analysis method,

but not as easy as with the successive linearisation method. An excellent agreement was

observed with results from the shooting method and the bvp4c. From this investigation, the

improved spectral homotopy analysis method performed better than the spectral homotopy

analysis method and successive linearisation method in terms of the accuracy of the results

and speed of convergence.

From this study we may conclude that in comparison to some existing methods, the successive

linearisation method, spectral homotopy analysis method, and improved spectral homotopy

analysis method are efficient, accurate and robust. The equations solved ranged from linear

to strongly nonlinear and to systems of equations. The methods generated accurate results at

low orders, such as with two terms for the improved spectral homotopy analysis method and

with three terms for the successive linearisation method.

However, the methods need to be extended to other types of equations such as, time-dependent

evolution equations, partial differential equations and difference equations. Also, except in

the case of the spectral homotopy analysis method and improved spectral homotopy analysis
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method, a strong mathematical motivation for the successive linearisation method needs to

be further developed.
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