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Abstract

Most real world phenomena is modeled by ordinary and/or partial differential equations.
Most of these equations are highly nonlinear and exact solutions are not always possible.
Exact solutions always give a good account of the physical nature of the phenomena modeled.
However, existing analytical methods can only handle a limited range of these equations.
Semi-numerical and numerical methods give approximate solutions where exact solutions are
impossible to find. However, some common numerical methods give low accuracy and may lack
stability. In general, the character and qualitative behaviour of the solutions may not always
be fully revealed by numerical approximations, hence the need for improved semi-numerical
methods that are accurate, computational efficient and robust.

In this study we introduce innovative techniques for finding solutions of highly nonlinear
coupled boundary value problems. These techniques aim to combine the strengths of both
analytical and numerical methods to produce efficient hybrid algorithms. In this work, the
homotopy analysis method is blended with spectral methods to improve its accuracy. Spectral
methods are well known for their high levels of accuracy. The new spectral homotopy analysis
method is further improved by using a more accurate initial approximation to accelerate
convergence. Furthermore, a quasi-linearisation technique is introduced in which spectral

methods are used to solve the linearised equations. The new techniques were used to solve

v



mathematical models in fluid dynamics.

The thesis comprises of an introductory Chapter that gives an overview of common numerical
methods currently in use. In Chapter 2 we give an overview of the methods used in this
work. The methods are used in Chapter 3 to solve the nonlinear equation governing two-
dimensional squeezing flow of a viscous fluid between two approaching parallel plates and the
steady laminar flow of a third grade fluid with heat transfer through a flat channel. In Chapter
4 the methods were used to find solutions of the laminar heat transfer problem in a rotating
disk, the steady flow of a Reiner-Rivlin fluid with Joule heating and viscous dissipation and
the classical von Karman equations for boundary layer flow induced by a rotating disk. In
Chapter 5 solutions of steady two-dimensional flow of a viscous incompressible fluid in a
rectangular domain bounded by two permeable surfaces and the MHD viscous flow problem

due to a shrinking sheet with a chemical reaction, were solved using the new methods.
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Introduction

Most real world phenomena is modeled using partial and/or ordinary differential equations.
Solutions of differential equations are important in predicting the future states of the phe-
nomena under study (Hale and Moore, 2008). Such physical phenomena include the motion
of planets, nonlinear optics, oceanography, meteorology, projectiles, fluid dynamics and pop-
ulation dynamics to mention just a few (Hale and Moore, 2008). Most of these equations
are highly nonlinear and exact solutions are not always possible. For those cases where exact
solutions are not possible, numerical methods often provide approximate solutions (Nayfeh,
1973). Both numerical and analytical methods have their advantages and drawbacks. This
study sought to introduce new and improved semi-numerical techniques for solving nonlinear
equations. These techniques aim to combine the strengths of both numerical and analytical

methods.

1.1. Numerical methods for fluid flow problems

The process of modeling physical phenomena results in equations that may have variable

coefficients and nonlinear boundary conditions (Nayfeh, 1973). This makes it difficult or
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even impossible to find exact analytical solutions. Modelers often resort to various forms of
approximations such as using perturbation or numerical methods or a combination of both.
Since the invention of high speed digital computers in the late twentieth century, the study
of different phenomena in science and engineering has been made easier and more efficient by
the application of numerical simulation techniques (Toro, 1999). The basis of any numerical
technique is the discretization of the time and space variables in the governing equations
(Geiser, 2005). The discretization process approximates the differential equation by a system
of algebraic equations (Steinhauser, 2008). Hence approximate solutions are obtained at
distinct positions in space and time (Ferzinger and Peri¢, 2002). Numerical methods may be
used to solve problems defined in complex geometries and are thus applicable to a wider range
of problems compared to analytical methods (Fletcher, 1988; Tu et al., 2008). However, this
advantage often comes at the expense of accuracy (Kikani, 1989). The discretization process
differs from one numerical approach to the other. Each numerical scheme will be particular
in the way it approximates derivatives and the way it represents the solution (Moczo et al.,
2004). Brief descriptions of a few common numerical methods is given in the sections that

follow.

1.1.1 Discretization approaches

There are many different types of discretization schemes currently in use by researchers in
applied mathematics, engineering and other fields of science. In this section we discuss some
of the common approaches. These include finite differences, finite element, finite volume and
boundary element methods.

The finite difference method (FDM) is believed to have been first used in 1768 by Euler.
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At that time it was used to find numerical solutions of differential equations using pen and
paper (Tu et al., 2008). In the late 1950s a new version was proposed and applied to par-
tial differential equations (Ampadu, 2007). The FDM belongs to the so-called grid-point
methods where a computational domain is covered by a space-time grid (Moczo et al., 2004).
Taylor series expansions are then used to compute finite-difference approximations to the par-
tial derivatives of the governing equations at each nodal point of the grid (Tandjiria, 1999).
There are three different kinds of FDMs, namely the explicit FDM, the implicit FDM and the
Crank-Nicolson FDM (Geiser, 2005). The FDM has been applied to, inter alia, geothermal
engineering problems (Kikani, 1989; Tandjiria, 1999), financial mathematics (Duffy, 2004; Ek-
strom et al., 2009), HIV transmission dynamics (Ampadu, 2007), seismology and earthquake
ground motion modeling (Moczo et al., 2004; Rinehart, 2011) and fluid dynamics (Ferzinger
and Peri¢, 2002; Tu et al., 2008). The finite difference schemes have been improved extensively
in the works of Patidar and his co-works to to be applicable to singularly perturbed two-point
boundary value problems (Kadalbajoo and Patidar, 2001, 2002, 2006; Lubuma and Patidar,
2006; Bashier and Patidar, 2011). The FDM has great flexibility in handling problems that
are defined in complex geometries (Kikani, 1989). For example, the FDM has been applied to
automobile transmission development where the domain changes (Ampadu, 2007). Tandjiria
(1999) noted that finite difference schemes are relatively easy to implement and are computa-
tionally efficient. However they also suffer from inherent discretization errors which may lead
to poor accuracy (Ferzinger and Peri¢, 2002).

Unlike the FDM, in the finite element method (FEM) the computational domain is viewed
as a collection of simple geometric shapes called finite elements (Reddy and Gartling, 1994).
The FEM is a generalization of the classical variational and weighted residual methods. For

two- and three-dimensional domains, these elements are usually triangles or quadrilaterals
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and tetrahedra or hexahedra respectively (Ferzinger and Peri¢, 2002). On each local element
a piecewise polynomial approximating function to the governing equation is generated by any
of the variational and weighted residual methods. These polynomials are zero on all other
elements except on the element where they are defined (Kikani, 1989). This leads to a sparse
matrix which makes the computational work easy (Thomée, 1984).

The history of the FEM dates back to the beginning of the twentieth century. In the early
1940s, Hrennikov and Courant laid the mathematical foundations of the FEM (Elishakoff and
Ren, 2003). In the 1950s the FEM became prominent in the engineering literature as an
informal procedure for formulating matrix solutions to stress and displacement calculations
(Fletcher, 1988). The name finite element was first used by Clough in 1960 (Thomée, 1984).
Some of the pioneering work using the FEM is reported to have been done by Turner, Martin,
Zienkiewicz and Cheung in the mid 1960s (Thomée, 1984).

Like the FDM, the FEM is efficient in solving problems with complex geometries and boundary
conditions (Ferzinger and Peri¢, 2002; Steinhauser, 2008). This is because the meshes created
can easily be adapted to almost any type of domain. However, the FEM also suffers from
low accuracy (Schuberth, 2003). Mistakes by users including, for example the use of wrong or
distorted elements, may lead to very serious errors (de Weck and Kim, 2004). The FEM uses a
variational formulation that automatically accommodates the boundary conditions (Thomée,
1984).

The finite volume method (FVM) was introduced in the early 1970s by McDonald in 1971 and
MacCormark and Pillay in 1972 for the solution of the two-dimensional time dependent Euler
equations (Tu et al., 2008). The method was extended to three-dimensional flows in the 1973s.
In the FVM the computational domain is subdivided into a grid of a finite number of adjacent

control volumes (Steinhauser, 2008). In each control volume the conservation equations are
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applied (Ferzinger and Peri¢, 2002). The centroid of each control volume is a computational
node where values of the variable are to be computed (Ashgriz and Mostaghimi, 2001). In-
terpolation is then applied to express in terms of the nodal values, the variable values and
the resulting surface and volume integrals are approximated by suitable quadrature formulae
(Barth and Ohlberger, 2004). Evaluation of the integrals results in an algebraic equation at
each control volume (Ashgriz and Mostaghimi, 2001).

Since the FVM can use both structured and unstructured meshes, the method can handle
complex geometries. Boundary conditions are easily applied since the variables are known
at all the control volume boundaries (Karim et al., 2011). Also, unlike in the case of the
FDM, the transformation of the equations in terms of body-fitted coordinate systems is not
required (Tu et al., 2008). However, extending the FVM to three-dimensions for higher order
difference approximations becomes difficult (Ferzinger and Peri¢, 2002). This difficulty is as-
sociated with the structure of the FVM algorithm. It involves three levels of approximations,
interpolation, differentiation and integration (Barth and Ohlberger, 2004). In recent studies,
the FVM has been used for studies in rheology (Pinho, 2001), fluid mechanics (Steinhauser,
2008), biological sciences (Ludwig et al., 2008), and in water flow simulations (Abedini and
Ghiassi, 2010).

The mathematical foundation of the boundary element method (BEM) is the method of inte-
gral equations (Sato, 1992; Grecu et al., 2009). The solution of Fredholm integral equations
by Kellog in 1929 led to the development of the indirect BEM, while the application of the
Green’s theorem as an alternative to the derivation of the integral equation led to the devel-
opment of the direct BEM, (Katsikadelis, 2002; Watson, 2003).

Unlike the FDM and FEM, the BEM is a boundary-oriented method. The governing PDEs are

transformed into integral equations relating to the boundary values only (Eldho and Young,
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2001; El-Bashir, 2006). Values at interior points may be calculated from the boundary data
(El-Bashir, 2006). The numerical approximations in this method occur at the boundaries, as
a result reducing the problem dimension by one (Grecu et al., 2009). It has been used to
solve the heat diffusion equations, flows in porous media, biological flows, and environmental
problems such as the circulation in human bodies and in weather predictions (Sato, 1992; El-
Bashir, 2006; Muhammad et al., 2009). Kikani (1989) used the BEM to investigate the effects
of reservoir geometry and heterogeneity of the flow field in underground reservoirs. Lough
et al. (1998) solved boundary integral equations modeling the flow through a fractured porous
media using the BEM. Florez et al. (2003) used the BEM to find solutions of a non-Newtonian
flow problem.

The reduction in the dimensionality of a boundary value problem has made the BEM more
advantageous over the FEM and FDM (Muhammad et al., 2009), making the method eco-
nomical and time saving since there is less data analyzed. The method is also appropriate for
complicated and unbounded domain problems (Mushtaq et al., 2010). However the require-
ment of a suitable fundamental solution when using the BEM brings a major drawback to the
method. Such solutions are not readily available for all types of problems (Katsikadelis, 2002).
Eldho and Young (2001) proposed a dual reciprocity boundary element method (DRBEM) to
overcome the dependance on finding a fundamental solution. The DRBEM was used success-
fully to find solutions of the Laplace equation by Eldho and Young (2001).

The BEM however cannot be applied to non-homogeneous nonlinear flow problems (Muham-
mad et al., 2009). It becomes numerically unstable at high Renolds or Rayleigh numbers and
leads to non-symmetric and fully populated matrices which increase the computational work
(Dargush and Grigoriev, 2000). However the method is still useful for laminar flows, flows in

finite and infinite fields and incompressible flows (Kikani, 1989).
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1.1.2 Runge-Kutta schemes

Runge-Kutta methods comprise a class of so-called step-by-step methods (Ferracina, 2005).
The origins of the Runge-Kutta method (RKM) can be traced back to the late eighteenth and
early nineteenth centuries. In 1895, Kutta extended the Euler method so it can allow multiple
evaluations of the derivative at each time-step. Several contributions were made by Heun in
1900 and Kutta in 1901 that lead to the development of the fifth order Runge-Kutta method
(Butcher, 1987; Segawa, 2011). The sixth order Runge-Kutta methods were proposed in 1925
by Nystrom and by Huta in 1956 and further developments of methods were made by Gill in
1951, Merson in 1957 and Butcher in 1963 Segawa (2011).

Runge-Kutta methods are well known for their stability. However more computational effort
is required when using Runge-Kutta methods compared to other numerical schemes, for ex-
ample, the Euler’s method, (Prokopakls and Selder, 1981). However, discretization errors are
greatly reduced compared to the Euler method. The explicit Runge-Kutta methods are much
simpler than the implicit Runge-Kutta methods. Nonetheless, explicit Runge-Kutta meth-
ods have very small regions of stability compared to implicit Runge-Kutta methods (Collin
and Schett, 1983; Wolke and Knoth, 2000). In addition, implicit Runge-Kutta methods are
capable of handling stiff ODEs while the former can not. As a result, much attention has
been dedicated to the improvement and application of implicit Runge-Kutta methods to, for
example, stiff ODEs (Cash, 1996).

A compound form of the Runge-Kutta method for solving nonlinear stiff dynamical systems
was presented by Zhang and Li (2011). Prokopakls and Selder (1981) proposed an adap-
tative semi-implicit RKM to integrate linear and nonlinear stiff systems with and without

oscillations. An improved version of the approximate Newton method for implicit RKMs was
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presented by Xie (2011). Wolke and Knoth (2000) studied the relationship between explicit
Runge-Kutta methods and the implicit integrator and used these methods to integrate atmo-
spheric chemistry-transport-models. Alvarez and Rojo (2003) introduced an improved class
of generalized Runge-Kutta methods for stiff problems. However explicit methods have not
been completely abandoned. Alvarez and Rojo (2004) proposed and tested a new family of
explicit methods of order four with two evaluations per step on special second-order differen-
tial equations. The numerical solutions of age-structured population models were generated
by Abia and Lépez-Marcos (1995) using a difference scheme based on RKMs. Haelterman

et al. (2009) developed a new formulation of the RKM that handles large algebraic systems.

1.1.3 The Keller-box scheme

Proposed by Keller in the early 1970s, the Keller box scheme is an implicit finite difference
scheme for finding numerical approximate solutions of differential equations. Also named the
Preissman box scheme, the Keller box scheme is a deviation from the finite volume approach
in which the derivatives or unknowns are stored at control volume faces rather than at the
conventional cell centers. The unknowns, in space and time, are placed at the corners of the
space-time control volume, which is a box in one dimension on a stationary mesh (Perot and
Subramanian, 2007).

Originally devised to find solutions of diffusion equations, the Keller box method has been
used to solve a wide range of fluid flow problems. It has been used to find solutions of
wave equations (Perot and Subramanian, 2007), convection flows, jet flows and separating
flows (Shu and Wilks, 1995), turbulent flows (Cebeci and Shao, 2003) and free and forced

convection flows (Salleh et al., 2009).
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Meek and Norbury (1984) modified the Keller box method into a second-order, two-stage, two-
level finite difference scheme and used it to find solutions of a nonlinear diffusion equation. The
normal central difference approximation used in the Keller box method was found to sometimes
bring about large and bounded oscillations in the numerical solutions (Kafoussias et al., 1999).
They used a backward difference scheme to eliminate the oscillations in the solutions. However
the solutions obtained using this modification were only first-order accurate. Shu and Wilks
(1995) used a combination of merging and reduction processes to handle multi-layer and
integral operators in the governing equations. This approach was successfully used by Shu

and Wilks (2009) for solutions of the heat transfer problem from a draining sheet.

1.1.4 WENO schemes

Weighted essentially non-oscillatory (WENO) schemes are a modification of the original es-
sentially non-oscillatory (ENO) schemes. They are reconstruction finite volume schemes used
together with suitable time-step discretizations and applicable to hyperbolic conservation laws
(Aboiyar et al., 2006). The idea behind ENO schemes is to first select a set of stencils for each
cell of the finite volume discretization (Shu, 1997, 2001). Each set of stencils consists of a set
of neighboring cells (Aboiyar et al., 2006). A recovery polynomial is used to interpolate cell
averages in the stencil. A suitable oscillator indicator is used to ensure that only a smooth
(least oscillatory) polynomial is used (Balsara, 2009). The order of the ENO schemes depends
on the order of the polynomial used.

In the case of WENO schemes, the whole set of stencils and their equivalent polynomials are
used to estimate the solution over a control volume as opposed to using the least oscillatory

polynomial (Shu, 2001). The WENO schemes improved the robustness, smoothness of the

11
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numerical fluxes, convergence properties and computational efficiency of the ENO schemes.
However WENO schemes are usually not optimal for computing turbulent flows and other
flows with fluctuations (Capdeville, 2008). To this end, a number of improvements to WENO
schemes have been proposed. Shi et al. (2002) developed WENO schemes suitable for prob-
lems with negative weights. Qiu and Shu (2005) proposed a class of WENO schemes based
on Hermite polynomials (HWENO) which further improved the compactness of the WENO
schemes. The HWENO schemes were used to find solutions of the Hamilton-Jacobi equations
by Qiu and Shu (2005). To avoid numerical instabilities and reduce computational complexity,
Aboiyar et al. (2006), proposed WENO schemes that use polyharmonic splines rather than
polynomials. This scheme gave not only numerically stable results but also proved to be more
flexible. Qiu (2007) proposed Lax-Wendroff time discretization for WENO schemes (WENO-
LW) to find solutions of Hamilton-Jacobi equations. To improve the convergence order and
decrease dissipation near discontinuities, Zahran (2009) proposed a combination of the central
WENO schemes with smoothness indicators. A fourth order divergence-free WENO scheme
for MHD flow problems was proposed by Balsara (2009). This version was an improvement
form the second order accurate schemes.

WENO schemes have been applied to diffusion equations in thin film flows (Ha et al., 2008),
incompressible flows (Yang et al., 1998), underwater blast-wave focusing (Liang and Chen,
1999), wave propagation equations (Noelle, 2000), Navier-Stokes equations with high Reynolds
number (Zhang et al., 2003) and free shear layer equations (Cheng and Lee, 2005) amongst

many other problems.
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1.1.5 The bvp4c algorithm

Kierzenka and Shampine (2001) developed a finite difference code that implements the three-
stage Lobatto formula, the bvpdc, for boundary value problems (BVPs). The bvpdc is an
implicit Runge-Kutta method with a continuous extension and uses Simpson’s formula as its

basic discretization scheme (Kierzenka and Shampine, 2001; Shampine et al., 2003).

The error control approach used in the bvp4c tends to deal robustly with poor guesses to
the mesh and the procedure can handle problems with non-separated boundary conditions
(Shampine et al., 2005; Hale and Moore, 2008). The bvp4c can also be viewed as a residual
control based adaptive mesh solver with the advantage of low computational and storage
costs while allowing control of the grid resolution (Hale, 2006). Zhao (2011) compared the

performance of the bvp4c with two shooting methods in solving a cavity expansion problem.

The bvp4c was found to be robust and consistent, showing superiority over the other numerical
methods. Nonetheless, BVP solvers rely on a good initial guess for their performance and the
bvp4c is no exception. It may fail if a poor guess is used and it works better for systems
involving relatively few equations, (Shampine et al., 2005). Wang (2001) found that for

piecewise continuous optimal control problems, the bvp4c fails at the discontinuous points.

Shampine (2003) modified the original bvp4c so that it could be applied to a class of singular
ODEs. This extension was termed the sbvpdc. Hale (2006) developed the bvp6c as an ex-
tension to the bvpdc of Kierzenka and Shampine (2001). In this solver, for the interpolant,
a sixth-order solver is implemented instead of the fourth-order one that is used in the bvp4c
(Zhao, 2011). The bvp6e improves the accuracy and efficiency of the former whilst retaining

its generality (Hale, 2006). Hale and Moore (2008) showed that the new modification has the

13
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same level of robustness as the bvp4c but superior for most problems as it uses fewer internal

mesh points and takes less time to achieve the same level of accuracy.

Kierzenka and Shampine (2008) introduced the bvp5c which functions exactly like the bvp4dc
but differs in the way error tolerances are defined. The bvp4c indirectly controls the true error

whilst the bvp5c is able to directly control the true error of a solution (Hollborn, 2011).

The bvp4c has been used successfully to solve BVPs from different models in science and
engineering. For example, the bvpdc was used by Budd et al. (2006) to find self-similar
blow-up solutions of certain nonlinear partial differential equations. Harley and Momoniat
(2008) were able to estimate integrals and bifurcations of Lane-Emden equations of the second
kind using the bvp4c. Numerical solutions for a model of non-isothermal free surface flows
were found using the bvpdc by Zhmayev et al. (2008). Thomé et al. (2010) investigated a
model describing the dynamics of mosquito populations under certain conditions. The steady
axisymmetric mixed convection boundary layer flow past a thin vertical cylinder placed in a

water-based copper nanofluid was investigated by Grosan and Pop (2011).

1.1.6 The shooting method

The shooting method is a BVP solver that works by converting the BVP into an initial value
problem. The starting point is an assumed condition for the unknown initial condition. The
guess is improved through an iterative process until a solution that satisfies all the given

boundary conditions is achieved, (Ha, 2001; El-Gebeily and Attil, 2003).

Successful applications and extensions of the shooting method have been documented over the

years. The Falkner-Skan equation was solved by El-Hawary (2001) using a shooting method.
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El-Gebeily and Attil (2003) coupled the shooting method with an iterative method to find nu-
merical solutions of a certain class of singular two-point BVPs. Makinde (2009a) investigated
the hydromagnetic mixed convection flow of an incompressible viscous electrically conduct-
ing fluid and mass transfer over a vertical porous plate with constant heat flux embedded
in a porous medium using the Newton-Raphson shooting method along with fourth-order
RungeKutta integration algorithm. Ribeiro (2004) investigated the geometrically nonlinear
periodic vibrations of elastic and isotropic, beams and plates by the shooting method. A
shooting method for porous catalysts was developed by Lee and Kim (2005). Yang (2006)
used the shooting method to find numerical solutions of controllability problems constrained
by linear and semi-linear wave equations with locally distributed controls. Chih-Wen et al.
(2006) proposed a Lie-group shooting method to solve the Falkner-Skan and Blasius equa-
tions. Their approach involved integrating the IVPs using group preserving scheme (GPS)
developed earlier by Liu (2001). Multiple solutions of the Falkner-Skan and Blasius equations
under suction-injection conditions were studied by Liu and Chang (2008) using a new exten-
sion of the shooting method. In their approach the governing equation was transformed into a
nonlinear second-order boundary value problem and then solved using the Lie-group shooting
method. The numerical solution of a special class of fractional boundary value problems of
second order was investigated by Al-Mdallal et al. (2010) using a conjugating collocation and

spline analysis technique combined with the shooting method.

In summary, shooting methods are quite general and applicable to a wide variety of differential
equations (Ha, 2001; Lebedev and Lovtsov, 2002). They are quite robust as they can be
used to solve various types of BVPs (Asai, 2006). However, they may fail to converge for

problems sensitive to initial conditions and also lack stability in relation to the perturbation of
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parameters (Lebedev and Lovtsov, 2002). For some problems, shooting methods are sensitive
to modest changes in the initial conditions which may give rise to numerical difficulties in the

computations (Ha, 2001).

1.1.7 Spectral methods

The idea in spectral methods is to approximate functions using truncated series of orthogonal
polynomials or functions (Mantzaris et al., 2001; Gheorghiu, 2007; van de Vosse and Minev,
2002). These polynomials are global, meaning that they are defined over the whole domain of
a particular problem (Mantzaris et al., 2001). For this reason spectral methods are sometimes
referred to as global methods. Spectral methods can further be viewed as expansions of the
method of weighted residuals (MWR), a class of discretization schemes for differential equa-
tions (van de Vosse and Minev, 2002; Babolian et al., 2007). In the MWR, the approximating
functions are known as trial functions. These trial functions are used as basis functions of a
truncated series expansion of the solution, (Babolian et al., 2007). The orthogonal functions
used in spectral methods include Fourier series, Chebyshev and Legendre polynomials (Ghe-
orghiu, 2007). Fourier series are used for periodic problems while Chebyshev and Legendre
polynomials are used in non-periodic problems. In addition, Hermite polynomials are prefer-
able for approximations on the real line, and Laguerre polynomials for approximations on the
half line (Gheorghiu, 2007).

Depending on the choice of trial functions, there are three different types of spectral meth-
ods, namely Galerkin, Tau and collocation or psuedospectral methods. The major difference
between these methods is that Galerkin and Tau methods are applied in terms of expansion

coefficients while collocation methods are applied in terms of the physical space values of the
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unknown function and trial functions are used to evaluate spatial derivatives (Mantzaris et al.,
2001; Babolian et al., 2007). The major difference between the Tau and Galerkin methods
is that each of the trial functions used in the Galerkin methods must satisfy the boundary
conditions and yet in Tau methods this is not necessarily the case. The major drawback
of Galerkin and Tau methods is that they require substantial CPU time when dealing with
higher-dimensional approximate solutions (Mantzaris et al., 2001).

Spectral methods have been used successfully in many different fields in the sciences and en-
gineering because of their ability to give accurate solutions of differential equations. These
fields include fluid flows (Hussaini and Zang, 1987; Grandclément and Novak, 2009), geo-
physics, meteorology and climate modeling (Canuto et al., 2007; Grandclément and Novak,
2009), magnetohydrodynamics (MHD) (Shan et al., 1991; Shan, 1994), electrodynamics (Bel-
gacem and Grundmann, 1998) and in quantum mechanics (Canuto et al., 2007; Hesthaven
et al., 2007).

Besides giving highly accurate results, spectral methods have several other advantages over
other numerical methods. Spectral methods generally converge to the true solution faster than
any finite power of 1/N (N, the dimension of the reduced order model) (Juang and Kana-
mitsu, 1994; Mantzaris et al., 2001; Cueto-Felgueroso and Juanes, 2009). They produce more
accurate results than finite differences (Trefethen and Trummer, 1987; Juang and Kanamitsu,
1994). There is freedom to choose the appropriate basis functions for a particular problem
when using spectral methods (Juang and Kanamitsu, 1994).

Spectral methods work under specific domains called spectral domains. Occasionally, it may
be more difficult to solve a problem in its original domain than in the spectral domain. How-
ever, on the downside, spectral methods are not easy to implement and for problems with

singularities in a complex plane close to the spectral domain, convergence of spectral methods
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is decelerated (Cueto-Felgueroso and Juanes, 2009). Discretization of large systems of partial
differential equations using spectral methods gives rise to full matrices and problems with
complex computational domains and rigorous nonlinearities cannot be handled efficiently by
spectral methods (Juang and Kanamitsu, 1994; Mantzaris et al., 2001). The stability of spec-
tral methods for initial value problems is also not proven (Trefethen and Trummer, 1987).

Moves to overcome some of the limitations of spectral methods have been made. For instance,
the spectral element method (SEM) was developed by Patera (1984) to overcome the weakness
of spectral methods in handling problems in complex geometries. The SEM merges the accu-
racy of spectral methods with the flexibility of the finite element method (van de Vosse and
Minev, 2002). Raspo (2003) developed a direct domain decomposition method coupled with
the Chebyshev collocation method for the solutions of incompressible Navier-Stokes equations.
Based on Hermite-Fourier expansions Korostyshevskiy and Wanner (2007) proposed a spectral
method for the computation of homoclinic orbits in ordinary differential equations. The list
is not exhaustive, there are indeed many more applications and improvements that have been

made to spectral methods over the years.

1.2. Perturbation methods

Perturbation methods are an alternative to numerical methods and are useful for finding
approximate analytic solutions of differential equations. Nonetheless, literature reveals that
the use of perturbation techniques in fluid dynamics has somewhat declined since the advent

of high-speed digital computers.

A non-exhaustive list of perturbation methods include the method of averaging, the method of

strained coordinates, Struble’s technique, the method of variation of parameters, the method
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of multiple scales (Bellman, 1966; Nayfeh, 1973; von Dyke, 1975), the d-expansion method
(Bender et al., 1989) and Lyapunov’s artificial small parameter method (Lyapunov, 1992), to
mention but just a few. Perturbation techniques in general construct the solution for a problem
involving a small parameter €, the perturbation parameter (von Dyke, 1975; Bellman, 1966;
Holmes, 1995). The perturbation quantity may either be part of the differential equation,
the boundary conditions or both (Nayfeh, 1973; Liao, 2003a). In general, the solution of the
differential equation at € = 0 should be known (Bellman, 1966; Kevorkian and Cole, 1981). The
approximate solutions are then generated using asymptotic expansions of suitable sequences
of the perturbation parameter (Bellman, 1966). The accuracy of perturbation approximations
does not depend on the value of the independent variable but on the perturbation parameter
(Liao, 2003b,a). For smaller values of €, the accuracy of perturbation methods tends to improve
(Nayfeh, 1973).

The analytic solutions obtained through perturbation methods are often more useful than
numerical results as they provide a more qualitative and quantitative representation of the
solution compared to numerical solutions (Liao, 2003b). They often provide a clearer meaning
of the physical parameters contained in the solutions (Liao, 2003a). However, their reliance on
small perturbation quantities makes them subject to several constraints (Liao, 2003b). Not all
nonlinear equations have such parameters. Consequently, for some problems the perturbation
quantities have to be artificially introduced which may lead to erroneous or even incorrect
results (Holmes, 1995). Kevorkian and Cole (1981) show that perturbation techniques may
not work for the whole computational domain for some problems. Choosing suitable sequences
of the perturbation parameter requires previous knowledge of the general nature of the solution
(Nayfeh, 1973). This introduces a major drawback because such knowledge can be difficult

to have, especially for complicated problems.
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Perturbation methods can be trusted to work for problems with weak nonlinearity (Kevorkian
and Cole, 1981; Liao, 2003b). Some perturbation methods may fail for expansions near an
irregular point and so render complete analysis of the solution impossible (Kevorkian and Cole,
1981). Nayfeh (1973) further showed that if the perturbation parameter multiplies the highest
derivative term, incorrect results may be obtained. This is because the first approximation
will be governed by a lower order equation which may not satisfy all the given initial boundary

conditions (Nayfeh, 1973).

1.3. Non-perturbation methods

Non-perturbation techniques have been developed to avoid the dependence on perturbation
parameters. Existing techniques include the Adomian decomposition method (ADM), the
differential transform method (DTM), the variational iteration method (VIM), the homotopy

analysis method (HAM) and the homotopy perturbation method (HPM).

1.3.1 Adomian decomposition method

The Adomian decomposition method was developed by Adomian (Adomian, 1976, 1994, 1991).
The idea is to split the given equation into its linear and nonlinear parts. The highest derivative
of the linear part is then inverted on both sides of the equation (Adomian, 1976). The initial
approximate solution of the ADM comprises of the initial and/or boundary conditions together
with terms involving the independent variables only (Chen and Lu, 2004). The unknown
function is then decomposed into a series whose components are to be determined. Special
polynomials called Adomian polynomials are used to decompose the nonlinear function (Allan,

2007). Using a recurrent relation in terms of the Adomian polynomials, successive terms of
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the series solution are generated (Allan, 2007; Bratsos et al., 2008).

The ADM solutions are closed form making it a quantitative rather than a qualitative ap-
proach. It is analytic and requires neither linearization nor resort to discretization (Allan,
2007; Bratsos et al., 2008). Consequently, the ADM gives the true solution of the problem
and is not affected by discretization errors. The method has been shown to give reliable ana-
lytical approximations that converge rapidly for nonlinear equations (Chen and Lu, 2004). It
is valid for strongly nonlinear ordinary differential equations or partial differential equations

with or without small/large parameters (Pamuk, 2005; Basak et al., 2009).

The ADM has been used successfully to solve a wide range of linear and nonlinear equations
in science and engineering. These include fourth-order parabolic partial differential equations
(Wazwaz, 2001a), heat diffusion equations (Arslanturk, 2005; Hashim, 2006b), generalized
Burgers-Huxely equation (Hashim, 2006a), Lorenz system (Hashim et al., 2006), nonlinear
fractional boundary value problems (Jafari and Daftardar-Gejji, 2006), SIR epidemic model
(Makinde, 2007), Klein-Gordon equation (Basak et al., 2009), Falkner-Skan equation (Alizadeh

et al., 2009), and many other applications of the ADM cited in the literature.

The ADM suffers from a number of limitations. The approximate solutions given by the ADM
often contain polynomials with small convergence regions. It also does not provide the freedom
to choose efficient base functions other than the power series which is usually inefficient to
approximate some nonlinear problems (Liao, 2003b). This is because convergence of the
approximation series used is not always guaranteed. The ADM’s stability in other applications
can be lower than that of other numerical methods such as collocation methods (Aminataei
and Hosseini, 2007). To improve the applicability of the ADM, a number of modifications

to the standard ADM have been suggested. Wazwaz (1999b) proposed a modification of

21



Chapter 1 — Introduction

the Adomian decomposition method (MADM) that accelerates the convergence of the series
solution. This modified version has been widely used to solve boundary value problems and
higher-order integro-differential equations (Wazwaz, 2001d). It has been applied to sixth-
order boundary value problems (Wazwaz, 2001c), mixed Volterra-Fredholm integral equations

(Wazwaz, 2002b) and to third-order dispersive partial differential equations (Wazwaz, 2003).

Padé approximants were used in conjunction with the ADM for the solution of boundary layer
equations in unbounded domains (Wazwaz, 2006). The use of Padé approximants helped to
achieve better accuracy, increase the convergence region and rates of the truncated series
produced by the ADM. The ADM-Padé has been used to solve Burger’s equation (Abassy
et al., 2007; Dehghan et al., 2007; Alharbi and Fahmy, 2010), linear and nonlinear systems
of Volterra functional equations (Dehghan et al., 2009), MHD flow problem over a stretching
sheet (Hayat et al., 2009), and differential-difference equations (Wang et al., 2011) amongst

other applications.

Wazwaz (2002a) proposed yet another modification of the ADM. This version is particulary
useful for singular initial boundary value problems where the ADM would at times fail to
converge. Wazwaz and Khuri (1996) used the new modification to solve weakly singular
second-kind Volterra-type integral equations, the Thormas-Fermi equation (Wazwaz, 1999a)
and differential equations of Lane-Emden type (Wazwaz, 2001b), amongst other applications.
Hosseini (2006) introduced a modification of the ADM that uses Chebyshev polynomials.
Zhang et al. (2006) proposed a two-step Adomian decomposition method (TSADM), for sys-
tems of inhomogeneous differential equations, hyperbolic partial differential equations and for
singular initial value problems. Legendre polynomials in combination with the ADM were

used by Liu (2009). Abassy (2010a) proposed the improved Adomian decomposition method
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(IADM), which is based on a new formulation of the Adomian polynomials to accelerate the

convergence of the ADM. Further modifications of the ADM may be found in the literature.

1.3.2 The differential transform method

The differential transform method, was first introduced by Zhou in 1986. It is a semi-
analytical-numerical technique that has been successfully used in electrical circuit studies
to solve linear and nonlinear initial value problems (Ayaz, 2003). Taylor series expansions
are used to construct analytical solutions in polynomial form (Catal, 2008; Jang, 2010). The
traditional Taylor series method requires symbolic computation of the derivatives of the data
functions and requires more computation time for large orders while the DTM iteratively ob-
tains analytic Taylor series solutions of differential equations (Ayaz, 2003). Compared to the

Taylor series, the DTM can easily handle highly nonlinear problems (Ayaz, 2003).

The main advantage of the DTM, like the ADM, is that it can be used directly to solve nonlin-
ear ordinary and partial differential equations without the need for linearization, discretization
or perturbation (Ebaid, 2010). The DTM is thus also free of discretization errors and yields

closed form solutions.

Applications of the DTM to various problems in the sciences and engineering fields in-
clude solutions of the Blasius and difference equations (Arikoglu and Ozkol, 2005, 2006),
vibration equations (Catal, 2008), singular two-point boundary value problems (Kanth and
Aruna, 2008), convective straight fin problem with temperature-dependent thermal conduc-
tivity (Joneidi et al., 2009) and the fractional modified KdV equation by Kurulay and Bayram

(2010), amongst others.
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There are two major drawbacks of the DTM. Firstly, the truncated series solution obtained by
the DTM suffers from small convergence regions (Odibat and Momani, 2008; Rashidi, 2009;
Gokdogan et al., 2011). Secondly, the truncated series does not reveal any periodic behaviour
that maybe associated with oscillator systems (Gokdogan et al., 2011). Padé approximants
and Laplace transforms have been extensively used together with the DTM in attempts to
overcome the limitations of the DTM. Momani and Ertiirk (2008) proposed the modified
differential transform method (MDTM), that uses Laplace transforms and Padé approximants.
This version successfully extended the convergence regions of the DTM and also captured the
periodic behavior of solutions. Gokdogan et al. (2011) successfully used the MDTM to find

solutions of Genesio systems.

Another modification of the DTM based on Laplace transforms and Padé approximants is the
DTM-Padé. Rashidi (2009) proposed the DTM-Padé to solve MHD boundary-layer equations.
The DTM-Padé mainly extended the convergence region of the DTM. The DTM-Padé was
used by Rashidi et al. (2010) to solve the convection fin problem about an inclined flat plate
embedded in porous media. Solutions of the Camassa-Holm equation were obtained using the
DTM-Padé by Zou et al. (2009). However, the DTM-Padé has been reported by Ebaid (2011)
to significantly increase computational work and that difficulties associated with finding the
inverse Laplace transform may arise. Ebaid (2011) proposed an after-treatment technique for
obtaining periodic solutions that avoids the use of both the Laplace transforms and the Padé
approximants. Odibat et al. (2010) proposed and used yet another modification of the DTM,

the multi-step DTM, to extend convergence regions.
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1.3.3 The variational iteration method

Ji-Huan He (He, 1999a,c) proposed the variational iteration method. The basic idea is to
construct a correction functional by means of a general Lagrange multiplier. The Lagrange
multiplier is chosen such that its correction solution is superior to the initial approximate solu-
tion (He, 1999a). The initial approximate solution is chosen to satisfy the boundary conditions
of the problem. The VIM, like the ADM and DTM needs no discretization, linearization, or
transformation (Soltani and Shirzadi, 2010). It has been proven in many applications to be
an effective, easy to use and accurate method for finding solutions of many classes of linear

and nonlinear problems (Biazar and Aminikhah, 2009).

Moghimi and Hejazi (2007) used the VIM to find solutions of the generalized Burger-Fisher
and Burger equations. Wazwaz (2007) used the VIM to find rational solutions of the KdV,
K (2,2), Burgers and cubic Boussinesq equations. Wazwaz (2008) solved linear and nonlinear
Schrodinger equations and Inc (2008), the space- and time-fractional Burgers equations using
the VIM. Dehghan and Shakeri (2008b,a) used the VIM to solve the Lane-Emden equation
and the Cauchy reaction-diffusion problem. Ganji et al. (2009) and Yildirim and Ozisg (2009)
used the VIM to find solutions of the Jefferey-Hamel flow problem and singular initial value
problems of the Lane-Emden type respectively. Makinde and Charles (2010) used the VIM to
investigate the hydromagnetic stagnation flow of an incompressible viscous, electrically con-
ducting fluid, towards a stretching sheet. The delay logistic problem was solved by Dehghan
and Salehi (2010) using the VIM. Hassan and Alotaibi (2010) used the VIM to solve the

improved KdV equation.

However, users have reported some weaknesses of the VIM. Amongst these weaknesses, is the
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small convergence region of the VIM solutions (Abassy et al., 2007¢; Geng, 2010). It also has
been reported that the accuracy of the VIM is greatly compromised by unneeded noise terms
that usually crop up in the computations (Abassy et al., 2007d; Abassy, 2010b). These terms

tend to unnecessarily consume computational time further decelerating convergence rates.

Many researchers have worked on modifications of the VIM to overcome its inadequacies.
Abassy and his co-workers extensively worked on improving the VIM in 2007. They introduced
enhancements using Padé approximants (Abassy et al., 2007c) to extend the convergence
region of the VIM. They further enhanced the method using Laplace transforms (Abassy
et al., 2007a). An adjustment to get rid of the unneeded term was introduced by (Abassy
et al., 2007d) who further modified the VIM to be applicable to a certain class of partial

differential equations (Abassy et al., 2007b).

A version suitable for nonlinear integral-differential equations was introduced by Biazar and
Aminikhah (2009). Ghorbani and Saberi-Nadjafi (2009) proposed a modified VIM that was
based on using an improved initial approximation to accelerate the accuracy of the method. A
piecewise-truncated VIM algorithm to overcome the unneeded terms was initiated by (Ghor-
bani and Momani, 2010). Geng (2010) introduced a modification of the VIM whose aim was
to extend the convergence region of the solutions. This approach introduced a convergence
controlling parameter. These modifications amongst others, have made the VIM a useful tool

applicable to a wide variety of problems.

1.3.4 The homotopy analysis method

A homotopy analysis method was proposed by Liao (1992) in his PhD thesis. The HAM

is a non-perturbation method that is valid for strongly nonlinear problems with or without
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small/large parameters. The HAM contains an artificial parameter A used to adjust the
convergence rate and the region of convergence (Liao, 2003b). It offers great freedom to
express solutions of a given problem using a set of base functions (Liao, 2003b). The central
design of the HAM is to replace a nonlinear equation by a system of ordinary differential
equations (ODEs) that can easily be solved with the help of symbolic computation software
such as Mathematica and Maple. The solution of system of ODEs forms a convergent series
that approximates the solution of the nonlinear equation (Liao, 1992, 2003b). A detailed

description of the HAM can be found in Liao’s book (Liao, 2003b).

The HAM has been successfully used by several researchers in science and engineering to find
solutions of different types of nonlinear equations. In particular one may draw attention to the
works of Hayat and his collaborators on the solution of non-Newtonian fluid problems (Hayat
et al., 2007; Hayat and Sajid, 2007b,a; Hayat et al., 2007). Abbasbandy (2006a, 2007b) and
Sajid and Hayat (2008) used the HAM to solve nonlinear heat transfer problems. The KdV
type of equations were studied by Abbasbandy (2008, 2007a) and Song and Zhang (2007). A

more comprehensive list of the applications of the HAM can be found in Liao (2009).

However, like many other similar methods, the HAM suffers from a number of deficiencies.
In his book, Liao (Liao, 2003b, ch. 5), discusses some of these as well as its strengths.
One of the main limitations of the HAM is the requirement that the solution sought ought
to conform to some pre-set rules. The so-called rule of solution expression and the rule of
coefficient ergodicity provide a guide on how to choose the appropriate initial approximations,
the auxiliary linear operators and the auxiliary functions. These parameters are conveniently
chosen to ensure that the resulting higher order deformation equations that are used to obtain

the approximate series solutions can be easily integrated using symbolic computation software
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(van Gorder and Vajravelu, 2009). Complicated initial approximations and linear operators
could lead to difficult or even impossible to integrate higher order deformation equations. The
restriction on the choice of the initial guess might lead to the use of poor initial guesses which

may compromise convergence rates as well as the accuracy of the results.

The so-called A-curves used for finding suitable values of the convergence controlling parameter
do not give the optimal A value, but a range of values. This makes finding the optimal
convergence controlling parameter a trial and error process (van Gorder and Vajravelu, 2009).
This further compromises the accuracy of the results if any other value besides the optimal

value is used.

There has been improvements and adjustments made to the HAM. Yabushita et al. (2007)
made an attempt to correct the limitations of the HAM in obtaining the optimal value of
the convergence controlling parameter. They introduced an extra convergence controlling
parameter instead of using the so-called Ai-curves. Marinca et al. (2008), introduced the opti-
mal homotopy analysis method (OHAM) where more than two convergence parameters were
used in the algorithm. Ali et al. (2010) and Esmaeilpour and Ganji (2010) used the OHAM
to solve multi-point boundary value problems including the Jeffery-Hamel flow problem. In
their findings they note that the OHAM is a straight forward and reliable approach. Also, it
converges for larger physical domains compared to the HAM. Idrees et al. (2010) also success-
fully applied the OHAM to the squeezing flow problem, Igbal et al. (2010) to the linear and
nonlinear Klein-Gordon equations and Igbal and Javed (2011) to singular Lane-Emden type
equations. However, Liao (2010) suggests that the development by Marinca et al. (2008) is

time-consuming and has been occasionally reported to fail for complicated nonlinear problems.

Liao (2010) presented a new version of the OHAM in which three convergence controlling
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parameters are used at each iteration step. This accelerated the convergence and improved
the accuracy of the HAM. Niu and Wang (2010) proposed a one-step OHAM based on the
Taylor series expansion to improve the computational efficiency of the HAM. Bataineh et al.
(2009) presented yet a new modified homotopy analysis method, the MHAM, that was able
to avoid the uncontrollability problems of the non-zero endpoint conditions that are usually
encountered in using the original HAM. One further modification of special interest in this
work is by Motsa et al. (2010). Based on the use of spectral methods, this modification aims to
improve the choice of the initial guesses and basis functions used in the HAM algorithm, and
consequently increase the convergence rates and accuracy of the HAM. The HAM is discussed

in greater depth in Chapter 2.

1.3.5 The homotopy perturbation method

He (1999b, 2003) developed the homotopy perturbation method, which unlike traditional
perturbation methods, does not require the presence of a small parameter in an equation,
(He, 1999b). Instead it couples the traditional perturbation method and the homotopy in
topology to construct a homotopy with an embedding parameter p € [0, 1] (Ghorbani and
Saberi-Nadjafi, 2008; Yusufoglu, 2009). As p gradually increases from 0 to 1, the homotopy
deforms the nonlinear equation from its initial approximation to the required results (He,
1999b). The perturbation technique is then used to solve the equation with the series solution
expressed in terms of p (Abbasbandy, 2006b). The HPM is flexible in that it can be used
for both analytical and numerical purposes (Chowdhury et al., 2010). It has been shown also
that it avoids some of the problems encountered when applying the ADM (Ariel, 2009; Ariel

et al., 2006; Ariel, 2007a; Chowdhury et al., 2010).
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The HPM has been widely used by He to solve algebraic, nonlinear ODEs, bifurcation prob-
lems and PDEs amongst other applications (He, 1997, 1998b,a, 2004, 2005b,a, 2006). Other
applications include the solution of the quadratic Ricatti differential equation (Abbasbandy,
2006b), Fredholm integral equations (Javidi and Golbabai, 2007; Biazar et al., 2011), integro
differential equations (Golbabai and Javidi, 2007; Ghasemi et al., 2007), nonlinear heat trans-
fer equations (Ganji, 2006; Domairry and Nadim, 2008), wave equations (Chun et al., 2009),
Klein-Gordon and sine-Gordon equations Chowdhury and Hashim (2009a) and the reaction

diffusion Brusselator model (Chowdhury et al., 2010).

One inadequacy of the HPM reported in recent studies (Ariel et al., 2006; Ariel, 2007a,b,
2009), is that the solution is limited to only one correction term. The possibility of occurrence
of secular terms may also be unavoidable when using the HPM (Ariel, 2009). To avoid the
appearance of secular terms, Ariel (2009) extended the HPM by stretching the independent
variable in the problem by a scaling parameter that incorporated the homotopy parameter p.
To accelerate convergence, Sweilam and Khader (2009) combined the method with Laplace
transforms, Padé approximations and the Taylor series method. Their approach did not only
improve the convergence rate of the HPM, but also proved to be suitable for highly nonlinear
coupled systems of PDEs. Instead of the Padé approximation, Khan and Wu (2011) combined
the Laplace transform method and He’s polynomials with the HPM to accelerate convergence

rates of the HPM.

Another approach introduced to accelerate convergence, is the use of accelerating parameters.
This approach was used by Ghorbani and Saberi-Nadjafi (2008) and Yusufoglu (2009) among
others. Odibat (2007) introduced a new approach that aids convergence of the HPM. This

version was used by Siddiqui et al. (2009) to solve the equations associated with the flow of
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a third grade fluid. Hashim et al. (2008) implemented ideas from the ADM and formulated
a multistage homotopy perturbation method (MHPM) to improve on the global convergence
of the HPM. The MHPM was successfully used by Chowdhury and Hashim (2009b) to solve

nonlinear chaotic and non-chaotic systems of ordinary differential equations.

1.4. Objectives of this study

Analytical methods can be used to find solutions to a limited range of problems as seen above,
while numerical methods can be used to solve a wider range of problems in fluid dynamics.
However, the solutions obtained using numerical methods are only approximations. Most
physical characteristics of the flow cannot be revealed by these solutions. However, these
solutions are still important in cases where exact solutions cannot be generated hence the
need to develop improved semi-numerical or numerical methods. It is well known that the
convergence of an approximate solution greatly relies on the initial guess solution used. In

this study therefore we;

e introduce a new improvement of the homotopy analysis method using spectral methods

(Motsa et al., 2010),

e introduce a successive linearisation method which uses spectral methods to solve the

resulting higher order deformation equations,

e introduce an improvement to the spectral homotopy analysis method, which blends
ideas from both the spectral homotopy analysis method and the successive linearisation

method,

e use the three new methods to solve fluid flow problems (i) between parallel plates
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(Makukula et al., 2010d; Sibanda et al., 2012; Makukula et al., 2010a), (ii) rotating
disk flows (Makukula et al., 2010b, 2011a; Motsa et al., 2010) and, (iii) flows through

porous media (Makukula et al., 2010¢, 2011b).

1.5. Thesis outline

The organization of the thesis is as follows;

In Chapter 2 we review the homotopy analysis method and describe the new methods,

the algorithms and strengths and weaknesses.

In Chapter 3 we use the methods to solve viscous incompressible fluid flow problems

occurring between parallel plates.

In Chapter 4 we use the methods to solve rotating disk flow problems.

In Chapter 5 we use the methods to solve fluid flow problems in porous media.

A conclusion of the thesis is given in Chapter 6 with a list of references at the end.
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boundary value problems

In this Chapter we describe recent hybrid semi-numerical methods for solving boundary value
fluid flow problems. It is necessary in the first instance to give a brief overview of the homotopy
analysis method since the first hybrid method builds on this method and serves to improve
the accuracy of the HAM. The spectral-homotopy analysis method refines the HAM by using
a more accurate initial approximate solution and by solving the higher order deformation
equations using spectral methods, known for high accuracy. The algorithm formulation, its
strengths and weaknesses are discussed. In Section 2.3 we introduce a successive linearisation
method which reduces the nonlinear BVP into a series of linear equations that are then solved
using spectral methods. The formulation of the successive linearisation method for nonlinear
equations is given together with the strengths and weaknesses of the method. In Section
2.4 we introduce an improvement of the spectral-homotopy analysis method which blends
together ideas from the successive linearisation approach and the spectral-homotopy analysis

method. In this approach, a more convergent initial approximation is used, further improving
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the accuracy of the spectral-homotopy analysis method.

2.1. Review of the homotopy analysis method

The homotopy analysis method was first proposed by Liao in 1992 in his PhD thesis (Liao,
1992). The HAM constructs a sequence which continuously deforms from an initial guess of
the solution of a differential equation to the exact solution. To construct such a homotopy, one
needs an initial approximation, an auxiliary linear operator, £, a non zero auxiliary function,
H(x), and a non zero convergence controlling parameter 4. These parameters allow the user
of the HAM to effectively control the region and rate of convergence of the series solution.
There is also a great freedom in the choice of the initial guess, the auxiliary linear operator and
the auxiliary function with useful guidelines on how to chose these functions (van Gorder and
Vajravelu, 2009; Liao, 2003b). Following Liao (2003b), let us consider a nonlinear equation of
the form;

Nlf(z,t)] =0, t>0, (2.1)

where A is a nonlinear operator and f(x,t) is an unknown function of the independent
variables x and ¢t. The homotopy, also referred to as the zeroth order deformation equation is

constructed by setting;

(1= q)L[F(z,t;q) — fo(z,1)] = qhH (x,t)N'[F (2, t;q)], q€[0,1], (2.2)

where ¢ is an embedding parameter, f is an auxiliary parameter, H(x,t) is a nonzero auxiliary
function, £ is an auxiliary linear operator, fo(z,t) is an initial guess to the solution f(x,t)

and F'(z,t;q) is an unknown mapping function. When ¢ = 0 and ¢ = 1 we have that

F(z,t0) = fo(z,t),  F(z,t;1) = f(z,t). (2.3)
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Hence from equation (2.3), F(x,t;q) maps continuously from the initial guess fo(x,t) to the

exact solution f(x,t) as ¢ varies from 0 to 1.

Definition 2.1. Let ¢ be a function of the homotopy parameter q, then

1om
Dm¢ = —,3—3
m! Jq
q=0

is called the mth order homotopy derivative of ¢ where m > 0 is an integer (Liao, 2003b).

Liao (2003b) expanded F(z,t;q) using the Taylor series to get

Fa.tiq) = folat) + 3 fule. )™ (2.4)
with
1 O"F(x. t:
Flat) = ﬁ% . (2.5)
q=0

The convergence of the series in equation (2.4) is controlled by 7 in equation (2.2). When
suitable choices of h, £ and fy(z,t) are made such that the series (2.4) converges when ¢ = 1,

then, (2.4) yields the exact solution f(z,t) as simply

f(l‘,t) :fo(l’,t)—i-me(LL’,t). (26)

Differentiating the zeroth order deformation equation (2.2) m times with respect to the em-

bedding parameter ¢, setting ¢ = 0 and then dividing by m!, gives the mth order deformation

equation,
L{frm(,8) = X 1w = RH (2, ) Rp(frn 1 (0, 1)), (2.7)

where
Ron(frn1) = (mil)!am_lgq[i Ef’t%q)] K (2.8)
fr = {fol@,t), filw,t), fola,t), o, fula, b)), (2.9)
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and

0, m<1,
Xm =
1, m>1.

For any £ and N, solving the mth order deformation equation (2.7) yields solutions of the
form (2.6). Symbolic software like Maple and Mathematica may be used to solve equation
(2.7).

The fundamental rules to consider when using the HAM are the rule of solution expression,
the rule of coefficient egordicity and the rule of solution existence (Liao, 2003b). These rules
provide guidelines on how to choose the initial guess, the auxiliary linear operator and the
auxiliary function, all used in the formulation of the zeroth-order deformation equations. Each
fundamental rule is briefly discussed below. A full exposition can be found in, for example,
van Gorder and Vajravelu (2009) and Liao (2003b).

The rule of solution expression is important in the selection of the initial guess, auxiliary
linear operator and the auxiliary function. Liao (2003b) notes that this rule is formulated
from two main facts about an individual problem. Firstly, the solution of a nonlinear problem
can be expressed using a variety of base functions. Secondly, such base functions are possible
to determine from the physical properties of the problem and from its initial and/or boundary
conditions. Hence for any given nonlinear problem, one can establish the rule of solution
expression. For the initial guess to satisfy the requirements of the rule of solution expression,
it must be expressed by a sum of the base functions. The auxiliary function must be chosen
to guarantee that the higher order deformation equations are expressed by a sum of the base

functions. The linear operator has to be chosen to ensure that the solution of

L[f(x,1)] =0, (2.10)
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may be expressed as a sum of the basis functions.

Together with the rule of solution expression, the rule of coefficient egordicity helps to uniquely
define the auxiliary function (Liao, 2003b). The rule ensures that as the order of approximation
approaches infinity, each base function appears in the solution expression.

The rule of solution existence is derived from the fact that if the original problem has a solution,
then the subproblems that arise from the higher order deformation equation should have
solutions. This further restricts the choice of the initial guess, the auxiliary linear operator
and the auxiliary function. Together, the three rules provide a useful guideline that makes
the use of the HAM possible.

A key parameter in the HAM is the non-zero convergence controlling auxiliary parameter
h (van Gorder and Vajravelu, 2009; Liao, 2003b). This parameter controls the convergence
region and rate of the series solution. Such regions are determined using the so-called A-curves,
where a physical quantity (such as the velocity or skin friction) is plotted against values of &
(see for example Liao (2003b) and Sibanda et al. (2012)). The valid values of A are those that
correspond to the horizontal part of the graph. However, it has not been determined how to

select the best value of A, which is found by trial and error (van Gorder and Vajravelu, 2009).

2.1.1 Strengths and weaknesses of the HAM

The HAM is a powerful tool for solving nonlinear problems. Liao (2003b, chap. 5) discusses
the advantages of the HAM over other techniques. These include the freedom to choose
different base functions, the ability to control the rate of convergence of the series solution and
the ability to handle efficiently both weakly and strongly nonlinear problems with or without

embedded small or large quantities. Other methods such as Adomian’s decomposition method,
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Lyapunov’s artificial small parameter method and the d-expansion method are special cases

of the HAM (Liao, 2003b).

Nonetheless, Liao (2003b) shows that even with such great freedom to choose the base func-
tions, for a meaningful solution, it is important for the user to have some prior-knowledge of
the physics of the problem. This is a disadvantage since this is not always possible, especially
with completely new problems. Also, the rules offer general guidelines on how to choose the
initial guess, the auxiliary linear operator and the auxiliary function, there are however no
systematic theories to direct such choices (Liao, 2003b). Furthermore, the choice of the ini-
tial guess is restricted to convenient and useful functions (van Gorder and Vajravelu, 2009).
Such functions include polynomials, exponentials, trigonometric functions, rational functions
or products of such functions, functions that are generally easy to integrate. Complicated base
functions may make it difficult or even impossible to integrate the higher order deformation
equations. Such a restriction then impairs the choice of the initial guess and forces the user
to use just an adequate initial guess instead of the best possible initial guess (van Gorder and

Vajravelu, 2009).

It has been pointed out earlier that there is no fail safe guide to aid the choice of the optimal
h. The so-called h-curves only provide a range of possible A values. This is also a disadvantage
of the method as a user might end up not using the best possible value of 4. Despite its many
acknowledged successes, the HAM is not guaranteed to solve nonlinear problems with chaotic

solutions (Liao, 2003b).
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2.2. The spectral-homotopy analysis method

The speed of convergence of an approximate method is highly dependent on the initial guess.
If the initial approximation is a poor guess, the method might take too long or may even fail to
converge to the accurate result. As we have seen above, the homotopy analysis method suffers
from a number of limitations, principally the fact that the solution sought ought to satisfy the
rule of solution expression, the rule of coefficient egordicity and the rule of solution existence.
In this section we introduce an innovation aimed at improving the accuracy of the initial
guess used in the homotopy analysis method. Complicated base functions that are avoided
when using the standard HAM can be used here as long as they satisfy the initial conditions.
In addition, the higher order deformation equations are solved using the Chebyshev spectral

collocation method, known for its accuracy (Canuto et al., 2007; Hesthaven et al., 2007).

2.2.1 Construction of the SHAM algorithm

Consider a nonlinear equation of the form

Nf(@)] = g(x), (2.11)
subject to the boundary conditions
Blf(x), f'(z),...] =0, x € |a, b, (2.12)

where N[f(x)] stands for the nonlinear operator, g(z) a source term, f(z) is an unknown
function, = an independent variable and [a, b] is the domain of the problem. Equation (2.11)

is decomposed into its linear and nonlinear parts as

Li[f(z)] + Mi[f(z)] = g(z), (2.13)

39



Chapter 2 — On hybrid semi-analytical methods for boundary value problems

with £; and N representing the linear and nonlinear operators respectively. The initial guess

is the solution of the equation
Li[fo(x)] = g(x), (2.14)

with boundary conditions

Blfo(x), fiz),...]=0,  z¢€[a,b. (2.15)

We note that in using the HAM, the initial guess is chosen to satisfy the boundary conditions
and must be expressed as a sum of basis functions. The solution to equation (2.14) is generally
a “better” choice compared to the one chosen to satisfy the boundary conditions only. It is
only if the solution to equation (2.14) is zero or does not exist that the initial guess is chosen
arbitrarily to simply satisfy the boundary conditions. To ensure homogeneous boundary

conditions, the following transformation is introduced

u(z) = f(z) — folx). (2.16)

It is useful to note that originally, the transformation (2.16) was not made in the SHAM
algorithm. This was made at a later stage (see Sibanda et al. (2012) in Chapter 3) in the
modified spectral-homotopy analysis method (MSHAM). In recent studies the MSHAM has
been used but called the SHAM instead of the MSHAM.

Substituting equation (2.16) into equation (2.13) yields

Lofu(z)] + Nafu(z)] = ¥ (), (2.17)

subject to

Blu(z),u'(x),...] =0, x € |a,b], (2.18)

where £, and N, are the adapted linear and nonlinear operators respectively and

() = g(x) — Li[fo(x)] — M[fo(z)].
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At this stage, the solution procedure is similar to that of the HAM algorithm. We formulate

zeroth-order deformation equations as;

(1= q)L2U(x5q) — uo(2)] = gh{ Lo[U(x; ¢)] + No[U(z;9)] —¥(2)}, q€[0,1].  (2.19)

We note again that, unlike in the case of the HAM the auxiliary function H (z) is not necessary
as there is no need for the solution of the higher order deformation equation to conform to
some rule of solution expression. ¢ and h are the embedding and convergence controlling
parameters respectively, and U(z; ¢) is an unknown function. The initial approximation ug(x)

is the solution of the equation
Lylug(z)] = ¢(x), (2.20)

with boundary conditions
Bluo(z), ug(z),...] =0, x € |a,b]. (2.21)

From the zeroth-order deformation equation (2.19), it can be shown that at ¢ = 0 and at
q=1,

U(z;0) = up(x), and U(z;1) =u(x). (2.22)
Consequently, as ¢ increases from 0 to 1, the unknown function U(x; q) varies from the initial
approximation ug(x) to the solution u(x). Using the Taylor series to expand U(x;q) about ¢
gives

U@q) = (@) + 3 tm@)™, () = — 08| (2.23)

m! Qg™
q =0

where £ is chosen such that the series (2.23) converges at ¢ = 1. Hence from equation (2.22)

we obtain solutions of the form

u(x) = uo(r) + Y tm(x). (2.24)
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Following the HAM procedure, we formulate the higher order deformation equations by dif-

ferentiating the zeroth-order deformation equation m times with respect to ¢ then dividing

by m! to get
Lo[tm () = (Xm + B)um—1(2)] = AR, (2), (2.25)
with
1 om-t
Roe) = ooy ARl ()] = (@) | (226)
and
0, m<1,
Xm =
1, m>1.

Nonetheless comparing the higher order deformation equations, for the SHAM,
Lo[tm () = (Xm + B)um-1(2)] = AR, (2), (2.27)
and for the HAM (2.7)

LI fm(x) = Xm fm-1(2)] = RH () B (), (2.28)

it is clear that the difference between (2.27) and (2.28) is the extra term hu,,_; which is
assumed to be finite.

In solving the higher order deformation equations (2.25), the Chebyshev spectral collocation
method (Boyd, 2000; Canuto et al., 1988, 2007; Hesthaven et al., 2007; Trefethen, 2000) is
used. In the collocation method, the unknown functions w,,(§) are approximated as truncated

series of Chebyshev polynomials of the form
N
um() = Y @ Tk(&), j=0,1,2,...,N, (2.29)
k=0
where T}, denotes the kth Chebyshev polynomial defined by

T (&) = cos[k cos™ (&), (2.30)
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Uy, are coefficients and &g, &1, &s, . .., En are Gauss-Lobatto points defined by
gj:cos%, j=0,1,....N, (2.31)

where N +1 is the total number of collocation points. The physical domain [a, b] is mapped by
an appropriate change of variable to the spectral domain [—1, 1] where the Chebyshev spectral
method may be applied. The derivatives of the functions u,,(§) are expressed in terms of the
Chebyshev spectral differentiation matrix D (Canuto et al., 1988, 2007; Hesthaven et al., 2007;
Trefethen, 2000) as

d"uyy,

N
& = 2 Dhnl6s) (232)

where 7 denotes the order of differentiation. The entries of the matrix D are defined as
(

¢ (1)t ] 7& k’

e =&k’

g -
D, — 2(1_2’%)7 ]-S.]_kSN_]-a
kj —

where

1, 1,2,...,N—1.

Applying the Chebyshev approximations (2.29) - (2.32) to the higher order deformation equa-

tions (2.25) results in a matrix equation of the form

AU, = (Xm + DAU,1+1 Q,,_,. (2.33)

A and Q,,_, are matrices obtained after applying the Chebyshev transformations to £, and
R, respectively, U, = [t (o), Um (1), um(&2), - - - um(En)]T, where T stands for the transpose.

The boundary conditions are then imposed on the matrix equation (2.33), and making U,,
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the subject yields

U, = (xm + H)AT'AU,,_, + hA7IQ (2.34)

m—1>

where A and Qm_l are matrices obtained after applying the boundary conditions to the right
hand side of equation (2.33). Equation (2.34) gives a recursive formula that is used to find
solutions of the higher order approximations u,,(z), (m > 1). The recursive formula for the
HAM involves a series of ordinary differentiation equations, equation (2.34) gives a series of
algebraic equations, and as Boyd (2000) points out, it is easier to evaluate a function than to

integrate a differential equation.

2.2.2 Convergence theorem for the SHAM

Unless the series (2.24) converges, the results obtained by this method cannot be regarded as
useful. The functions w,,(z) are governed by the higher order deformation equation (2.25).
As suggested earlier, this approach serves to remove some limitations of the HAM. There is a
very slight difference between the higher order deformation equations found using the SHAM
and those found using the HAM. Liao (2003b, ch. 3) proved the convergence of the series
(2.24). Proof of convergence of the series (2.4) associated with equation (2.28) is given in Liao

(2003b, ch. 3);
Theorem 2.1. As long as the series
folz,t) + Y funlz,t) (2.35)
m=1

is convergent, where f,(x,t) is governed by the high-order deformation equation (2.7), it must

be a solution of equation (2.1).
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Proof. See Liao (2003b, ch. 3). |

This theorem also guarantees convergence of the SHAM series.

2.2.3 Strengths and weaknesses of the SHAM

The strengths and weaknesses of the SHAM will be discussed relative to the HAM since this
method is an improvement to the HAM. We start with the strengths of the method. In finding
the initial approximation more information about the governing equation is used as opposed
to the boundary conditions only. The initial guess obtained is therefore a better function than
in the case of the HAM. There is no restriction on the nature of the initial guess as long as
it exists and is nontrivial. In the case of the HAM, the initial guess has to be expressed as a
sum of basis functions which are conveniently chosen to be easy to integrate (van Gorder and

Vajravelu, 2009). This restriction is unnecessary in relation to the SHAM.

In using the HAM, an auxiliary function H(z) is chosen to force all coefficients of the higher
order deformation to be expressed by the basis functions (van Gorder and Vajravelu, 2009;
Liao, 2003b). This is done to ensure that the higher order deformation equations are possible
to integrate. The SHAM algorithm does not require an H(x) and gives a series of algebraic
equations as opposed to ordinary differential equations. This makes it possible for the SHAM

to handle problems with complicated initial guesses and linear operators.

The method gives fast converging solutions with high accuracy (Makukula et al., 2010b;
Motsa et al., 2010; Motsa and Shateyi, 2010; Motsa and Sibanda, 2011). The use of a spectral
method to solve the higher order deformation equations further accelerates the convergence of
the SHAM. The method uses the default value h = —1 to give good results except when the

equation is strongly nonlinear or has special functions that increase its complexity. Nonethe-
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less, finding the right number of collocation points to use for a particular problem is not
straightforward, although experience in application of the method makes it easier. The choice
becomes more crucial if the problem domain is unbounded at one or both ends. The do-
main truncation procedure (Boyd, 2000) allows the use of a scaling parameter L to invoke the
boundary conditions at the free end. It is also not obvious which combination of N and L

would give optimal performance of the SHAM for a particular problem.
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2.3. The successive linearisation method

In the successive linearisation method (SLM) one assumes that the error in an approximate
solution decreases with an increase in the number of iterations. In the sections that follow,
the theoretical foundation of the method is explained. The method is used to solve nonlinear

equations and nonlinear systems of ordinary differential equations (ODEs).

2.3.1 The SLM for nonlinear ODESs in one variable

Consider a general nth-order nonlinear ODE represented by a nonlinear boundary value prob-

lem of the form

Lly(x),y'(@),....y"(@)] + Ny(2),y'(2),...,y"(@)] =0, = € [a,b], (2.36)

subject to the boundary conditions

y(a) =va,  y(b) =, (2.37)

where y(z) is an unknown function, x is an independent variable and the primes denote ordi-
nary differentiation with respect to z, £ and N represent the linear and nonlinear components
of the governing equation and y, and v, are given constants. As an initial guess of the solution
of (2.36), we propose as a guide a function that satisfies the boundary conditions (2.37). Thus
a polynomial function (in this case a straight line) that satisfies the boundary conditions is
considered as a suitable initial guess solution, denoted by yo(z). We define a function Yi(x)
to represent the vertical difference between y(x) and the initial guess yo(x), shown in Figure

2.1, that is

Yi(z) = y(z) —wolz), or y(z) = yo(r) + Yi(2). (2.38)
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Y,

g 0@\

=

Figure 2.1: Geometric representation of Y1(x)
Substituting equation (2.38) in (2.36) gives
LYY T Nyo + Y06+, Y] = —Llyo o907 (239)

Since yo () is known, solving equation (2.39) would yield an exact solution for Y;(z). However,
since the equation is nonlinear, it may not be possible to find an exact solution. We therefore
seek an approximate solution which is obtained by solving the linear part of the equation and
assuming that Y;(z) and its derivatives are small. If Y7 (x) is the solution of equation (2.39) we
let y;(x) denote the solution of the linear part of (2.39) which takes the following composite

form
aooyy” + avoy" Y+ ano1oyh + oy = ro(w), (2.40)
subject to the boundary conditions

y1(a) =0, yi(b) =0. (2.41)

The coefficients aro, k=0,1,...,n are functions of the initial guess and its derivatives, that
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is ago0 = ar.o0(Yo, Yjs - - .y(()")) and
ro(e) = = (Ll v 8- 06”)+ Ny, v 6 6”)

Since the left hand side of equation (2.40) is linear and the right hand side is known, a solution
for y;(x) can be found. From this the first order approximation of the solution y(z) can be

written as
y(z) = yo(z) + y1(2). (2.42)

Since y1(x) is an approximate solution of Y;(z), we can improve the solution by defining a

new slack function Ys(z) and add it to y;(x) as shown in Figure 2.2, to have

Yi(z) = yi(z) + Ya(2). (2.43)
y = y(r)
Y,
n g rgg&rx}\
,\;) z
a b

Figure 2.2: Geometric representation of Yo

Equation (2.38) then takes the form

y(r) = yo(r) + y1(z) + Ya(x). (2.44)
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Substituting equation (2.43) into (2.39) yields

LIYa, VI YY)+ Nlyo+y+ Yo, v+ o + Ya vyl + 4! + Yy, (2.45)

e o YY)

= —Llyo+ v, Uy + Vel + o).

Equation (2.45) is nonlinear in Y5(z) and so an exact solution might not be possible. We solve
the linear part and denote its solution by yo(z) so that Ys(z) & yo(z). This will give rise to

the new form

(n)

n n—1
a0,1Y2 b

+ a11Y; 4t an_11Yy + apaye = ri(x), (2.46)
subject to the boundary conditions
ya(a) =0, ya(b) = 0. (2.47)

The coefficients a1 are now functions of yo(z) and y;(x) and their derivatives, a;1 = ag1(yo+

YL, Yo+ YL Y+ Y Ly 4 ™)y and the right hand side

ri(e) = - (E[yo oy vg+ w0 U+ Nyo + v vh + 00 +y§")]) ‘

After solving equation (2.46), the 2nd order estimate of the solution y(z) is given by
y(z) = yo(x) + y1(x) + yo(z). (2.48)

as suggested by equation (2.44). To again improve this solution, a new slack function Y3(x)

is defined, shown in Figure 2.3, such that

Ya(2) = ya() + Ya(). (2.49)

Equation (2.49) is substituted in the nonlinear equation (2.45) and the linear part of the

equation solved. This is repeated for m = 3,4, 5, ...7 to give the general form
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Figure 2.3: Geometric representation of Y3

The solution y(x) is obtained as

y(x) = wolw) +Yi(),
= Yo(@) +y1(2) + Ya(2),

= Yo(@) +y1(2) +y2(x) + V()

= yo(@) + 1 (2) + v2(2) + .. () + Vi (2)

= Zym _'_Y;—H )

We note that Y;,;(z) becomes increasingly small as i increases, that is

lim Y, = 0.

(2.50)

(2.51)
(2.52)

(2.53)

(2.54)

(2.55)

ol
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The ith order solution y(z) is then approximated by

i—1

(@)=Y ym(@) = D ym(e) +yile). (2.56)

m=0

Starting from the initial guess yo(x), the solutions y;(z) are obtained by successively linearising
equation (2.36) and solving the resulting linear equation. The general form of the linearised
equation that is successively solved for y;(z) is given by

aOJ—lyi(n) + al,i—lyi(n_l) - A1V A1y = o (), (2.57)
subject to the boundary conditions

yi(a) =0, w;(b) =0, (2.58)

where

i—1 i—1 i—1 i—1
Ak i—1 = Qki-1 (Z ym(x)a Z y;n(x>7 y;(x% LRI yn?)(x>> ) (259)

i—1 i—

ri_l(x) = L iym(xxzy%@)vzyﬂx%,iyg)(ﬂﬁ)] (260)
- N iym(l“%iyin(x),iy%(x),---,iyﬁ?(x)]. (2.61)

2.3.2 The SLM for systems of nonlinear ODEs

In this section we describe the SLM for nonlinear systems of ODEs. Consider a general
nth-order nonlinear system represented by a nonlinear boundary value problem of the form

LY (z),Y'(z),Y"(z),...,Y™] + N[Y(z),Y'(z),Y"(z),..., Y V] =0, (2.62)

where Y (z) represents a vector of unknown functions, x is the independent variable and

the primes denote ordinary differentiation with respect to x, L and N are vector functions
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representing the linear and nonlinear parts of the system of equations respectively. These are

defined as follows;

Ly (yl,yz,---,yk;yi,yé,--.,y;’g;---;yin),yém, y;ﬁ")>
L Ly (yl,yz,---,yk;yi,yé,--.,y;’g;---;%),yé"), y,ﬁ")>
Ly, (yl,ym---,yk;yi,yé,---,y;;;---;yin),yén),--.,y,i")>
N (yl,yz,---,yk;yi,yé,---,y;;;---;yin),yém,--.,y,ﬁ")>
N N2 (y1>?/2> sy Yk yi»?/é» cee ay]{gv ce e ?An)v yén)v s 7y](gn)>
Nj, (yl,ym---,yk;yi,yé,---,y;;;---;y§"),y§"),--.,y,§"))
yl(x)
Yo ()
Y(z) = 7
yk(x)
where y1, 9, . . .,y are the unknown functions. An initial guess Yy(x) is defined by
yl,o(l")
Yo(z) y2,0($)
o\x) =
yk,o(f)

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

For demonstration purposes, it is assumed that equation (2.62) is to be solved for x € [a, 0]

subject to the boundary conditions

(2.68)
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where Y, and Y, are given constants. An initial guess Yy(x) will consist of functions that
satisfy the boundary conditions. A function Z;(z) is defined to represent the vertical difference

between Y (x) and Yy(z), that is

Zi(x) =Y (x) = Yo(z), or Y(z)=Yo(zr)+ Zi(x). (2.69)

Consider for instance, the vertical displacement between the function ¥, (z) and its correspond-

ing initial guess y1 () to be z11 = y1(x) — y10(x). This is shown in Figure 2.4. Substituting

Y1 = y1(x)

Figure 2.4: Geometric representation of z11(x)

equation (2.69) in (2.62) gives
LZ, Z,,.. . 2"+ N[Yo+ 2, Y.+ Z,, ... .Y 4 2 = — £y, Y, ... ™). (2.70)

Since Yy(z) is a known function, solving equation (2.70) would in theory yield an exact solution
for Z;(z). An approximate solution is obtained by solving the linear part of the equation (2.70)
assuming that Z; and its derivatives are small. If Z;(x) is the solution of the full equation

(2.70), we let Y7 (x) denote the solution of the linear part of (2.70) thus assume Z;(z) ~ Y (z).
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The linear part gives the equation
Ag o™ + AoV o A0+ A Yy = (2.71)

_ (L[YO,YO’, LY N, Y .,Y0<">]> ,

with Ay o= Ay o(Yo, Yy, Yy, ... ,YO(")), k=0,1,2,...,n. Since the right hand side of equation
(2.71) is known and the left hand side is linear, the equation can be solved for Y;(z). The

first order estimate of the solution Y (z) is

Y(z) = Yo(x) + Yi(x). (2.72)
To improve this solution, we define a slack function, Z,(z) such that (Figure 2.5)

Figure 2.5: Geometric representation of z2 1

Since Yi(z) is now known (as a solution of equation (2.71)), we substitute equation (2.73) in

equation (2.70) to obtain
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L(Zs, Z,..., Z") + N[Yo+Yi+Zot, Y+ Y]+ Zy . Y + V" + 257

= LYo+ Y,V +Y] Yy (2.74)

Solving equation (2.74) would give in an exact solution for Z(x). We solve the linear part
of the equation and represent its solution by Ya(x). Setting Zy(x) = Ya(x), substituting in

equation (2.74) and assuming that Ys(z) and its derivatives are small, gives

A VW 4 ALY Y b A Y+ Ay = (2.75)

- (L[%+3€,YO’+Y{,---,YO(")+Y1(”)]+N[%+§G,YO’+§Q’,...,YO("’+Y1("’]),
where
A=A Yo+, Y+ Y Y+ Yy ™ +v™), k=0,1,2,...,n.

After solving (2.75), the second order estimate of the solution Y (z) is now

Y(2) & Yo() + Yi(2) + Ya(a). (2.76)
This process is repeated for m = 2,3,4,5,...,4. In general, it can be shown that
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Thus, Y (x) is obtained as

Y(zr) = Yo(z)+ Zu(2), (2.78)
= Yo(z) + Yi(x) + Za(x), (2.79)
= Yo(x) + Yi(z) + Ya(2) + Z3(), (2.80)
= Yo(a) + Yi(z) + Ya(z) + Ya(z) + ...+ Yi(x) + Ziga (2), (2.81)
= ) V(@) + Zina(@). (2.82)

m=0

The procedure for obtaining each Z;(z) is illustrated in Figures 2.4 and 2.5 respectively for
1 = 1,2. We note that when i is large, Z;, is small, hence for large i, we can approximate

the ith order solution of Y (x) by

Yo (x) + Yi(x). (2.83)

Starting from a known initial guess Yy(z), the solutions Y;(z) (i > 2) can be obtained by
successively solving the resulting linear part of the governing equation (2.62) for Y;(x). The

general form of the linear part of the equation to be solved for Y;(x) is given by

AO,i—ly;'(n) + Al,i—ly;'(n_l) + ...+ An—l,z'—lyil +A, 1Y =r4(), (2.84)
where for k =0,1,...,n;
i—1 i—1 i—1
Apioi(z) = Api(z) (Z Yo Y Y0y Yo Z Y, ) (2.85)
m=0 m=0 m=0
i—1 i—1 i—1 i—1
ri_(z) = —L ( Yo, Y Y3 Y Y Yn({‘)>
m=0 m=0 m=0 m=0
i—1 i—1 i—1 i—1
SN DY VY YD Yy Yn@) (2.86)
m=0 m=0 m=0 m=0

The recursive equations (2.57) and (2.84) are solved using the Chebyshev spectral collocation

method.
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2.3.3 Strengths and weaknesses of the SLM

The SLM inherits the fast convergence and accuracy of the Chebyshev spectral collocation
method. In Makukula et al. (2010c) (see Chapter 5) the SLM is shown to give converging
results after a few iterations. It has been used successfully to solve a limited range of nonlinear
ODEs of varying complexity. The SLM algorithm is not purely numerical, it can be modified
to generate analytical results. Choosing N is however still a trial an error exercise. Using the
SLM on irregular domains might cause loss of accuracy. The mathematical foundation for this
method is yet to be established. It is essential to develop general theorems and mathematical

guidelines for the SLM.
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2.4. Improved spectral homotopy analysis method

In the improved spectral homotopy analysis method (ISHAM) the main innovation is the
further improvement of the initial approximation used in the spectral homotopy analysis
method. A more convergent form of the initial solution is used in the higher order deformation
equations. This new approach merges ideas from both the SLM and the SHAM. The initial
approximate solution takes the form of a general SLM solution and is then used in the SHAM
algorithm.

For a nonlinear equation

Nf(z)] = g(x), (2.87)

the following transformation is made

i—1

f@) = filz) + > falw). (2.88)

n=0

We note that equation (2.88) takes the general form of an SLM solution. The series (2.88) is
substituted into (2.87) and starting with an initial guess fo(x), the resulting equation is solved

using the standard SHAM. The zeroth order deformation equations now takes the form
(1 —q)LIF(z;q) = fio(z)] = ¢i{N[fi(z; ¢)] = rima(2)}, g €10,1]. (2.89)
The higher order deformation equations take the form (see equation (2.25)

L fim(x) = (Xm + 1) fim—1(2)] = hR; (), (2.90)

where the solution f; is given by

fi=fio+ fin+ fia+ fis+-+ fim (2.91)

The solution for f(x) is then given by

F@) = i+ 3 ful) (2.92)
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Fluid flow between parallel plates

Fluid flow between two parallel surfaces has received much attention because of its impor-
tance in many fields of science and engineering. Such areas include electrostatic precipitation,
polymer technology, petroleum industry (Attia, 2005), food and pharmaceutical industries
(Igbal et al., 2011). Many experimental and theoretical studies have been documented in the
literature where means of optimizing the desired products were sought.

In this Chapter we investigated two fluid flow problems between parallel plates using the
successive linearisation method, the spectral homotopy analysis method and the improved
spectral homotopy analysis method. The successive linearisation method was used to solve
the fourth order nonlinear equation governing a two-dimensional constant speed squeezing
flow of a viscous fluid between two approaching parallel plates in Section 3.1. A comparison
between results obtained using the successive linearisation method and those in the literature,
and the numerical solution in terms of accuracy and efficiency of the method. The compar-
ison revealed the efficiency and accuracy of the method compared to the homotopy analysis
method. Its efficiency was not compromised by increasing parameter values in the equation.

The spectral homotopy analysis method, the successive linearisation method and the im-
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Chapter 3 — Fluid flow between parallel plates

proved spectral homotopy analysis method were used to study the steady laminar flow of a
pressure driven third-grade fluid with heat transfer in a horizontal channel in Sections 3.2 and
3.3. The computational efficiency and accuracy of the spectral-homotopy analysis method
was demonstrated by comparing the results with those obtained using the homotopy analysis
method. Results obtained using the improved spectral homotopy analysis method and the
successive linearisation method showed that both methods converged rapidly to the exact
solution. However, the ISHAM converged much more rapidly than the SLM. Convergence to
the exact solution was achieved by both methods for all parameter values, with the ISHAM
showing better convergence for larger parameter values. The results were also consistent with

results from earlier findings.
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3.1. On a new solution for the visco-elastic squeezing flow between two

parallel plates !

Corrigenda
The following corrections and further explanations have been made to the published work in

Section 3.1.

(i) Problem geometry

R

o
- 2

.

Figure 3.1: Coordinate system and basic dimensions used to describe axisymmetric squeeze

flows (Engmann et al., 2005).

(ii) On page 33, a different parameter M; should have been used to represent the SLM order.

17. G. Makukula, S. S. Motsa and P. Sibanda (2010). Journal of Advanced Research in Applied Mathe-

matics 2(4):31-38.

62



Chapter 3 — Fluid flow between parallel plates

(iii) On page 34 equation (3.14) is incorrect. The correct equation is

de f;
dzo

N

=D filw), =01, N
k=0

Further explanations:

(i) On page 35 the results were generated using N = 40. The tolerance used with the bvp4c
was 1 x 107 and eight decimal places were used with the SLM results while five decimal

places were used for the HAM solutions.

(ii) The HAM failed to converge even at the 50th order for M = 10 as noted in reference

[14]. In Table 3 the SLM gives convergent results at the sixth order for large values of

M.
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On a new solution for the viscoelastic squeezing flow
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Scottsville 8209, Pietermaritzburg, South Africa.
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Abstract. A newly developed successive linearization method for nonlinear problems in engi-
neering and science is used to solve the nonlinear equation governing two-dimensional constant
speed squeezing flow of a viscous fluid between two approaching parallel plates. The results
obtained using the SLM were compared with those in the literature and against the numerical
solution in terms of accuracy and efficiency of the method. The findings from the comparisons
prove that the SLM is powerful, more efficient yet simple to use than the HAM and is independent
of the size of parameter values used in the problem.

Keywords: Squeezing flow; Linearization method; Spectral method; Nonlinear equations.

Mathematics Subject Classification 2010: 34B15,65L.10,76 A10,76M25.

1 Introduction

Squeezing flow occurs when a fluid, particularly a viscoelastic fluid, is constrained in the gap between
two parallel plates or coaxial disks resulting in both shear and longitudinal deformation. Such
flows occur in many practical applications such as in polymer extrusion and compression moulding
processes in industry as well as in lubrication theory where a thin film of oil prevents contact
between metal surfaces. Due to the changing geometry, squeezing flows are inherently transient
and inhomogeneous [4,7,9,13,14]. Various aspects of squeeze flows have been studied theoretically
and experimentally by previous researchers [7,14]. In most of these studies perturbation techniques
have been used to solve the governing nonlinear equations. The homotopy analysis method (HAM)
has been used recently by Ran et al [14] to find analytical solutions of the equations for squeezing
flow between two infinite plates. However, as shown by Motsa et al [11,12], the HAM has a number
of limitations and in this paper. we solve the problem in [14] using a new method, hereinafter
referred to as the successive linearization method (SLM).

“Correspondence to: Motsa Sandile, Department of Mathematics, University of Swaziland, P/Bag 4, Kwaluseni,
Swaziland. Email: sandilemotsa@gmail.com
TReceived: 3 June 2010, accepted: 26 July 2010.
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2 Governing equations

The problem under consideration is that of a two-dimensional quasi-steady axisymmetric flow of
an incompressible viscous fluid between two infinite parallel plates as in [14]. The velocity is
u = [u,(r.2,t),0,u,(r, z,t)] and the governing equations can be expressed as

op  p O B 8_1/}E21/1_H8E21/J_

or Troo: Por 2 i on U (2.1)
o pd _ OWE  pOE*

- - — P - = 2.2
or  row: 8 2 + r Oz 0, (2:2)

where r and 2z are the radial and axial coordinates respectively, p is the fluid density, p is the
coefficient of kinematic viscosity, p is the pressure and ¥ (r, z) is the Stokes stream function given
by

109 9 18, B

1 2
UT(T,Z,t) = —7—‘(92’ UZ(T,Z,t) :_;—8—7“ and E“= W—;E ﬁ (23)
Upon eliminating the generalized pressure p in (2.1 - 2.2) we get
10E20  O(w, £5¥
|- O T By, (2.4)
r Ot o(r, z) r

For small values of the approach velocity v of the two plates, the gap 2H changes slowly with time
and can be assumed to constant, hence from (2.4) we write

E%y
-’ [*6(@(},_27)“)} = LB, (25)
with the boundary conditions
U = 0, u,=-V at z=H,
u, = 0, (?ZT =0 at z=0. (2.6)
Using the stream function
Y(r, z) = 72 F(2), (2.7)

and introducing the non-dimensional parameters

F Z pH
Fr=—— 77=2, M= 2.
V)2 H' w/vV’ (28)

equation (2.5) and boundary conditions (2.6) become
FO(2) + MF(z)F"(2) = 0, (2.9)
and
F(0)=0, F"(0)=0,
F(1)=1, F'(1)=0. (2.10)

The nonlinear equation (2.9) with boundary conditions (2.10) is solved in the section that follows
using the SLM.
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3 Successive linearization method (SLM)

The main assumption made with the SLM is that the unknown function F'(z) can be expanded as

i—1
F(2)=F(2)+ Y fml2), i=1,2,3,..., (3.1)
m=0

where F;, are unknown functions and f,,, (mn > 1) are approximations which are obtained by recur-
sively solving the linear part of the equation that results from substituting (3.1) in the governing
equation (2.9). Substituting (3.1) in the governing equation gives

F™ f a1, 1 F" 4 agy Fi + MBF" = 7, (32)

where the coefficient parameters aki-1, (k =1,2), 1 are defined as

i-1 i-1
a1 = MY fm azii=MY (3.3)
m=0 m=0
-1 i1 i—1
riol = — <Z S+ MY fm Y fm> . (3.4)
m=0 m=0 m=0
The SLM algorithm starts from the initial approximation
1 3
folz) = 5 (82 = 2%), (3.5)

which is chosen to satisfy the boundary conditions (2.10). The subsequent solutions for f,, , m > 1
are obtained by successively solving the linearized form of equation (3.2) and which is given as

fq-(iv) +ar i fl" +asiafi = Tien, (3.6)

subject to the boundary conditions

fi0)y =0, f(0)=0, fi(1)=1, fi(1)=0. (3.7)

Once each solution for f;, (i > 1) has been found from iteratively solving equations (3.6) for each
i, the approximate solution for F(z) is obtained as

M
F(z) ~ Z fm(Z)a (3.8)

m=0

where M is the order of SLM approximation. In coming up with (3.8), it is assumed that F%
become increasingly smaller when 4 becomes large, that is
lim F; = 0. (3.9)
1— 00
Since the coefficient parameters and the right hand side of equations (3.6), for i« = 1,2,3,...,

are known from previous iterations, equation (3.6) can easily be solved using analytical means
or any numerical methods such as finite differences, finite elements, Runge-Kutta based shooting
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methods or collocation methods. In this work, equations (3.6) is solved using the Chebyshev
spectral collocation method. This method is based on approximating the unknown function by
the Chebyshev interpolating polynomials in such a way that it is collocated at the Gauss-Lobatto
points defined as

zj=cosZL,  j=0,1,...,N, (3.10)

where N is the number of collocation points used (see for example [2,3,15]). In order to implement
the method, the physical region [0,1] is transformed into the region [—1,1] using the domain
truncation technique. This leads to the mapping

-1 <<l (3.11)
The unknown function f; is approximated at the collocation points by

N
vy~ Y filer)Ti(zs), 5=0,1,..., N, (3.12)
k=0

where T}, is the kth Chebyshev polynomial defined as
Ty (z) = cosl[k cos™!(x)]. (3.13)

The derivatives of f;(z) at the collocation points are represented as

d“fz .
ZD fi(zg), 7=0,1,...,N, (3.14)

where a is the order of differentiation and D = 2D with D being the Chebyshev spectral differen-
tiation matrix (see for example, [2,15]). Substituting equations (3.11 - 3.12) in (3.6) leads to the
matrix equation given by

AY, =R, (3.15)

in which A is an (N 4 1) x (N + 1) square matrix and Y and R are (N + 1) x 1 column vectors
defined by

A=D%+a;,.1D*+ay,, (3.16)
Y; = F;, (3.17)
Rio1=r (3.18)
with
F; = [fi(zo), filz1), .-, filzn—1), filzn)]", (3.19)
r_1 = [7“1‘_1(330), 7}'_1(.7}1), P A | (ZEN_l),Tiwl(IN)]T, (320)

In the above definitions, a1, (k = 1,2) are diagonal matrices of size (N + 1) x (N +1). After
modifying the matrix system (3.15) to incorporate boundary conditions, the solution is obtained
as

Y. =A"'Ri_,. (3.21)
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4 Results and Discussion

In Table 1 we compare the solution of F””(0) from the SLM and the HAM in {14] against the bvpdc
numerical solution when M = 2. Clearly, the SLM is computationally much more effective than
the HAM since convergence to the numerical solution is achieved at the 3rd order of approximation
while convergence of the HAM solution is achieved at the sixth order. The level of accuracy is also
significantly better using the SLM at seven decimal places compared to five for the HAM solution.

Table 1: Comparison of F"(0) obtained at different orders for the SLM, HAM solution of {14] and bvp4c
numerical solution when M — 2.
Present Results

Reference [14]

Order SLM Order HAM bvpéc
2 -3.8447033 5 -3.84525 -3.8452065
3 -3.8452065 6 -3.84521
4 -3.8452065 7 -3.84521
5 -3.8452065 8 -3.84521

Table 2 gives a comparison of the solutions of F(z) obtained by the SLM against the bvpdc
numerical solutions when M = 2. The SLM solutions converge to the numerical solutions with
eight decimal place accuracy at 3rd order, which is remarkably very efficient.

In Table 3, the flexibility and strength of the method is demonstrated by its ability to converge
for large parameter values used in the problem. The solution of ””(0) by the SLM is converging to
the numerical solution at the 5th order of approximation for values of M as large M = 50. Previous
studies have proved that the general weakness of most perturbation methods is their inability to
converge when dealing with problems where large parameter values are involved.

Figures 1 - 2 show that the SLM approximate solutions to F(z) and F'(z) converge uniformly
to the numerical solution at the 3rd order approximation for different values of M. This again
demonstrate the reliability and robustness of the SLM to give accurate solutions for all parameter
values.

Table 2: Comparison of F(z) obtained at different orders of the SLM and the bvp4c numerical solution when
M=2

7 2nd order 3rd order 4th order 5th order 6th order bvpéc
0.1 0.15562079 0.15558330 0.15558330 0.15558330 0.15558330 0.15558330
0.2 0.30742785 0.30735107 0.30735107 0.30735107 0.30735107 0.30735107
0.3 0.45171816 0.45160336 0.45160336 (.45160336 0.45160336 0.45160336
0.4 0.58500183 0.58485835 0.58485835 0.58485835 0.58485835 0.58485835
0.5 0.70408538 0.70393178 0.70393178 0.70393178 0.70393178 0.70393178
0.6 0.80612744 0.80598750 0.80598750 0.80598750 0.80598750 0.80598750
0.7 0.88866331 0.88855853 0.88855853 0.88855853 0.88855853 0.88855853
0.8 0.94960079 0.94954223 0.94954223 0.94954223 0.94954223 0.94954223
0.9 0.98719348 0.98717592 0.98717592 0.98717592 0.98717592 0.98717592
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Table 3: Comparison of the numerical results against the SLM approximate solutions for F"”(0) for different

values of M.

M 2nd order 3rd order 4th order 5th order 6th order bvpéc

0 -3.000000 -3.000000 -3.000000 -3.000000 -3.000000 -3.000000
5 -5.058677 -5.071647 -5.071652 -5.071652 -5.071652 -5.071652
10 -6.848982 -6.852014 -6.853093 -6.853093 -6.853093 -6.853093
15 -8.434877 -8.312561 -8.344057 -8.344075 -8.344075 -8.344075
20 -9.772070 -9.631868 -9.635779 -9.635779 -9.635779 -9.635779

30 -12.040575 -11.834878 -11.837532 -11.837533 -11.837533 -11.837533
40 -14.225703 -13.700807 -13.712302 -13.712307 -13.712307 -13.712307
50 -15.845775 -15.366708 -15.372253 -15.372254 -15.372254 -15.372254

0 I 1 | L ! I i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z

Figure 1: Comparison of F(z) obtained from the 3rd order SLM approximate solution (filled circles) with
the numerical solution (solid line) at different values of M.
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Figure 2: Comparison of F”(z) obtained from the 3rd order SLM approximate solution (filled circles) with
the numerical solution (solid line} at different values of M.
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5 Conclusion

The nonlinear differential equation governing the squeezing flow between two infinite plates has been
successfully solved in this work using a new algorithm for nonlinear problems. The SLM results
were compared against those previously obtained using the HAM from [14] and the numerical
results from the bvpdc solver. Both tabulated results (as shown in tables 1 - 2 and Figs 1 - 2) show
that the SLM converges faster and is computationally more efficient than the HAM. The efficiency
of the method is not compromised by the size of parameters inherent in the problem. It converges
at low orders of approximation even for large parameter values. Hence we conclude that the SLM
is a method that can be used to solve nonlinear systems occurring in science and engineering.
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Chapter 3 — Fluid flow between parallel plates

3.2. A spectral-homotopy analysis method for heat transfer flow of a

third grade fluid between parallel plates >

Corrigenda

The following corrections and further explanations were made to the published work in Section

3.2.

(i) Schematic diagram representing the flow (Makinde, 2009b)

M
u=0, |k =-hT-T,), y=a

¥ -
Third grade reactive Juid
-

*

u=0, k% =-hT-T,), ¥

1]

-l

Figure 3.2: Geometrical presentation of the problem.

(ii) On page 15, Section 5, the correct caption for Table 2 is “Comparison of the values of

the HAM and SHAM approximate solutions for ug(1) with the numerical solution for

various values of B when 3 =1".

2S. S. Motsa, Z. G. Makukula and P. Sibanda (2012). International Journal of Numerical Methods for

Heat & Fluid Flow 22(1):4-23 (Impact factor; 1.058).

72



Chapter 3 — Fluid flow between parallel plates

Further explanations:

(i) The MSHAM was not introduced in a formal section like the other methods but men-
tioned in passing on page 40. This is because it is only a minor modification of the
SHAM. The slight modification was made after the first published article, and it was

decided to retain the original name.

(ii) All results in the paper were generated using parameter values guided by the value of

the critical point of w/(1) on page 9 of the paper found to be

2

b=
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Abstract

Purpose — The purpose of this paper is to study the steady laminar flow of a pressure driven
third-grade fluid with heat transfer in a horizontal channel. The study serves two purposes: to correct
the inaccurate results presented in Siddiqui et al,, where the homotopy perturbation method was used,
and to demonstrate the computational efficiency and accuracy of the spectral-homotopy analysis
methods (SHAM and MSHAM) in solving problems that arise in fluid mechanics.
Design/methodology/approach — Exact and approximate analytical series solutions of the
non-linear equations that govern the flow of a steady laminar flow of a third grade fluid through a
horizontal channel are constructed using the homotopy analysis method and two new modifications of
this method. These solutions are compared to the full numerical results. A new method for calculating
the optimum value of the embedded auxiliary parameter ~ is proposed.

Findings — The “standard” HAM and the two modifications of the HAM (the SHAM and the MSHAM)
lead to faster convergence when compared to the homotopy perturbation method. The paper shows that
when the same initial approximation is used, the HAM and the SHAM give identical results. Nonetheless,
the advantage of the SHAM is that it eliminates the restriction of searching for solutions to the nonlinear
equations in terms of prescribed solution forms that conform to the rule of solution expression and the
rule of coefficient ergodicity. In addition, an alternative and more efficient implementation of the SHAM
(referred to as the MSHAM) converges much faster, and for all parameter values.

Research limitations/implications — The spectral modification of the homotopy analysis method
is a new procedure that has been shown to work efficiently for fluid flow problems in hounded
domains. It however remains to be generalized and verified for more complicated nonlinear problems.
Originality/value — The spectral- HAM has already been proposed and implemented by the authors
in a recent paper. This paper serves the purpose of verifying and demonstrating the utility of the new
spectral modification of the HAM in solving problems that arise in fluid mechanics. The MSHAM is a
further modification of the SHAM to speed up converge and to allow for convergence for a much wider
range of system parameter values. The utility of these methods has not been tested and verified for
systems of nonlinear equations. For this reason as much emphasis has been placed on proving the
reliability and validity of the solution techniques as on the physics of the problem.

Keywords Heat transfer, Laminar flow, Spectral homotopy analysis method, Analytical results,
Third grade fluid

Paper type Research paper
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Nomenclature

a = auxiliary parameter B = material moduli

® = flud temperature k= thermal conductivity,
®y = lower plate temperature ®, = upper plate temperature
A = Brinkman number © = dynamic viscosity

p = fluid density ¢ = variable parameter

B = pressure gradient term b = body force

¢, = specific heat Ec = Eckert number

h = half channel width f = auxiliary parameter

T = Cauchy stress tensor U = characteristic velocity

v = fluid velocity u = streamwise velocity component
x = streamwise coordinate y = normal coordinate

1. Introduction

Interest in the study of non-Newtonian fluids is driven as much by the many interesting
mathematical features presented by the equations governing the flow as by the
technological significance of such flows (Ariel, 2003; Asghar et al, 2004). One of the main
challenges in studying viscoelastic flows is that the viscoelasticity leads to an increase in
the order of the differential equations that characterize the flow. There is as yet no
satisfactory extra boundary condition to give unique solutions to such viscoelastic
flows. For this reason, and the fact that the governing equations are non-linear, there is a
paucity of exact solutions of equations that govern non-Newtonian fluid flows (Hayat
et al., 20082, b). There is currently a large body of literature on studies on non-Newtonian
fluids that include, among others, Benharbit and Siddiqui (1992), Dunn and Rajagopal
(1995), Hayat et al. (1998) and Ak¢ay and Yukselen (1999) and the survey article by
Rajagopal (1993). Third-grade non-Newtonian fluid flow between two heated horizontal
parallel plates in particular has been studied by Szeri and Rajagopal (1985), Siddiqui et al.
(2008) and Makinde (2009). Exact solutions of the thin-film flow problem for a
third-grade fluid on an inclined plane have been found by Hayat et al (2008a, b). The
recent study by Ellahi and Afzal (2009) deals with the flow of temperature-dependent
non-Newtonian fluids in a porous medium. Series solutions of the velocity and
temperature were obtained by the homotopy analysis method (HAM) for temperature-
dependent viscosity.

This investigation closely follows the studies by Siddiqui ef al. (2008) and Makinde
(2009) where the flow and heat transfer in a third-grade fluid in a channel was considered.
The governing non-linear differential equations were solved using the homotopy
perturbation method (HPM) and Hermite-Padé approximations, respectively. In
previous studies various perturbation techniques such as the Adomian decomposition
method (Adomian, 1991), the HPM (He, 1999, 2000) and the Hermite-Padé
approximations (Guttamann, 1989; Tourigny and Drazin, 2000) have been used to
study non-linear problems that arise in fluid flow and heat transfer problems. However,
as pointed out by Liao (2009), most of these perturbation techniques cannot guarantee
the convergence of the series solution and may, in fact, be only valid for weakly
non-linear problems. The HAM has been applied to a wide range of non-linear problems
in science and engineering, for example, to viscous flows of non-Newtonian fluids and to
heat transfer problems. Recent studies that employ the HAM include, among others,
Hayat et al. (2006, 2008b) and Dinarvand and Rashidi (2010). A more exhaustive list can
be found in Liao (2009). Fakhar et al. (2008) used the HAM to find approximate solutions

—
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for an unsteady flow of an incompressible third-grade fluid in an infinite porous channel.
However, as shown by Motsa et al (2010a), the HAM suffers from a number of
limitations, for example, the requirement that the solution sought ought to conform to
the so-called rule of solution expression and the rule of coefficient ergodicity that is
central to choosing the appropriate initial approximation, the auxiliary linear operators
and the auxiliary functions.

The key to the HAM is a generalized Taylor expansion and an embedded auxiliary
parameter % that allows for the control of both the convergence rate and the region of
convergence. It has been shown elsewhere (Liao, 2005), that the HPM is equivalent to
the HAM when the auxiliary parameter # = — 1. In this study we show that # = —1
18, in fact, outside the admissible values of £ that lead to the convergence of the series
solution. A consequence of this is that, by using # = — 1, the study by Roohi et al.
(2009) 1s effectively equivalent to the HPM study by Siddiqui et al (2008).

In this study we introduce novel modifications of the HAM and compare the results
with the exact solutions and with results generated numerically. We use methods
based on combining a Chebyshev pseudo-spectral method and the “standard” HAM to
study the flow of a third-grade fluid in a channel with heat transfer. The rationale for
this study is to correct the inaccurate results presented in Siddiqui et al. (2008) where
the HPM was used, and to bring to the fore innovative new semi-analytical techniques
for solving non-linear equations that give better accuracy and rapid convergence to the
exact solution. The higher order deformation equations and the auxiliary linear
operator are defined in terms of the Chebyshev spectral collocation differentiation
matrix described. The advantage of this modification is that it eliminates the
restriction associated with the HAM of searching for solutions that conform to a
prescribed rule of solution and the rule of coefficient ergodicity. Any form of initial
guess may be used as long as it satisfies the boundary conditions whereas with the
HAM one i1s restricted to choosing an initial approximation that would make the
integration of the higher order deformation equations possible. In addition, the spectral
HAM (SHAM) is more flexible than HAM as it allows for a wider range of linear
operators and the restriction to using the method of higher order differential mapping
falls away. However, it should be noted that, theoretically, if the same initial
approximation and linear operators are used, the solutions of the governing equations
obtained using the HAM and SHAM should be fairly similar, although the SHAM
should still converge much faster. This is so because, in this case, both the HAM and
SHAM would be integrating the same differential equations under the same conditions.

In this study we test the conclusions presented in Motsa et al. (2010a, b) by applying
two different versions of the spectral modification of the HAM along side the standard
HAM to the problem of a third-grade fluid flow between two horizontal parallel plates.
When using the same initial approximation and linear operators, we show that the two
methods give the same results. We show that both the HAM and the SHAM results
converge much faster than the HPM results presented in Siddiqui ef al (2008). The
salient difference between the SHAM and the modified SHAM (MSHAM) is that the
SHAM algorithm is applied to the original governing equation whereas the MSHAM is
applied to a transformed version of the governing equation. In addition, instead of
guessing the initial approximation to be used in implementing the higher order
deformation equations (as is the case with the HAM/SHAM), the initial approximation
1s generated in a much more systematic way in the MSHAM. This simple change in



approach produces a computationally efficient algorithm that is more accurate and Analysis method

converges faster than the original form of the SHAM.

2. Mathematical formulation

We consider the flow of an incompressible third-grade fluid placed between two
horizontal parallel impermeable plates with the x-axis parallel to the plate and the
y-axis normal to it. The constitutive equation for the Cauchy stress tensor T and the
associated Rivlin-Ericksen tensors for a third-grade fluid are given in Fosdick and
Rajagopal (1980) as:

T = —pl+ uA) + oAy + AT + B1A;z + BalA1As + AsA ] + BatrADHA,, (1)
with:

A, =Vv+ (W7, 2

d ,
A, = E(Awl) +A,1Vv+ (VV)YArhl- 3
where p is the pressure; u denotes the viscosity; oy, as, B1, B2 and B3 are the material
moduli; d/dt is the material derivative; v denotes the velocity field; while A;, Ay and A
are the first three Rivlin-Ericksen tensors. The equations of motion are given by
Siddiqui et al. (2008):

Vv =0, (4)

dv
s VT + pb, (5)
pC) % = kV2@ + T Vv, (6)

where p is the mass density, « the thermal conductivity, ¢, is the specific heat at
constant pressure, b is a body force, v is the fluid velocity and ® is the temperature.
For a fluid confined between two parallel plates located at y = —h and y = & we
assume that:

v=w),0,00 and © = 0(y),

where, following Siddiqui ef al (2008), we assume that the temperature of the upper
plate is maintained at 6, and that of lower plate at ®,. The fluid motion is driven by a
constant pressure gradient and, in the case of Couette flow, by the motion of the upper
plate with a constant velocity. With these assumptions in mind, it has been shown
(Makinde, 2009) that equations (4)-(6) reduce to:

d?u du\ *d2u

ot o8() =8 ®
d’e dun\ du\*
Wﬂ(@) +23A<@> —0, ®
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subject to the boundary conditions:

w(—1)=0, uw(l)y=0 9
O(-1)=0, O1) =1, (10)
where:
B+ BUE wUE K
B——VluhZ s A——.—K(("Dl _@O)——-P?’EC and B = M—Ua,

where U is a characteristic velocity, A is the Brinkman number, Pr is the Prandtl
number and Fc¢ 1s the Eckert number.

3. Solution methods

The main aims of this study are to test the functionality, robustness and computational
efficiency of a new quasi-linearisation technique, and two recent modifications of the
HAM for solving non-linear equations. We however begin by finding exact solutions
for the velocity and skin friction. In the case of Couette flow with zero pressure
gradient, B = 0, the exact solutions to equations (7) and (8) that satisfy the appropriate
boundary conditions are;

1
u(y) = é(l + ), 1D

_/\ 1 .2 1
O(y) =3 <1+§B)(1 ¥ +5A+). (12)

This linear velocity profile is independent of the non-Newtonian parameter and similar
to that of a Newtonian fluid. This anomaly has been attributed to the constant velocity
boundary conditions by Lipscombe (2010) and Roohi et al. (2009).

3.1 Exact solution for the skin friction
For non-zero pressure gradient, we begin by finding an explicit analytical solution for
u'(v). Equation (7) is written in the form:

d |du du\’®
T li@—}— 23 (@) } = —B. (13)

Integrating equation (13) with respect to y and making use of the symmetry boundary
condition #'(0) = 0 gives:

du\®  du
2B — —+By=20 14
which is a third-order equation in the deformation rate «/(y). The exact analytical
solution of the above result is:

du_ 1
= = =l -

1
_ 15
dy 6B [Y()]'/3 (1)
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where:

2
Wy = <~54By+6,/§—f§;fﬂ> B2 (16)

An alternative but equivalent solution was obtained in terms of hyperbolic functions in
Holmes (2002) and Lipscombe (2010) as:

d?/t _ 1 . 1 . -1 63/ZBy B
- \/—ETﬁsmh [gsmh (—4—J_)] a7

The analytical result (equation (15)) is important because, when evaluated at y = 1,
it gives an explicit analytical expression for the skin friction coefficient Cy. It is worth
noting, from equation (16) that /(1) has a critical point at:

2

P="5pe

This critical point was reported as a bifurcation point in Makinde (2007) who used a
Hermite Padé approach for the case when B = 1. This means that the shear stress term,
and hence the solution #(y), is only valid when:

2

P="mpr

We note that when equation (14) is combined with equation (8), the temperature
equation simplifies to:

d’e du

Thus, by making use of equation (15), we have:

a0
B d(y). 19
where;
H(y) = ABy (iwf(yn”?* S ) (20)
68 ()]

Since the right-hand side of equation (19) is a known function of y, the equation can
easily be solved using any numerical method such as finite differences,
Runge-Kutta-based shooting or spectral methods. Below we use the standard HAM,
the SHAM and the MSHAM to find approximate analytical solutions to equations (7)
and (8). The results are compared with the full numerical solution in order to show the
computational efficiency and to validate these new solution techniques.
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3.2 HAM solution of the problem

The solution of the governing equations (7)-(10) is obtained by applying the HAM to
the momentum equation (7) to find the velocity field #(y). The resulting solution u(y)
is then used to find the temperature distribution ®(y) by integrating the energy
equation (8) twice. For the HAM solution we look for base functions and an initial guess
that satisfies the boundary conditions in the form:

+00
Wy =Y ay", @1
n=0

where a,, are coefficients to be determined, and equation (21) is the so-called rule of
solution expression. We use the method of higher order differential mapping (van
Gorder and Vajravelu, 2009) to choose the linear operator £ and initial guess #(y) as:

(v,
LMyl = ——(g%q—), (22)
up(y) = a1 — y%), (23)

where « is an auxiliary parameter. The zero-order deformation equation for the problem
1s:

1 — LIGy;9) — uo(y)] = ghN[Hy; ], (24)
d(—1L9)=0, ¢1;9)=0, (25)

where g € [0, 1]is an embedding parameter, % is a non-zero auxiliary parameter and
&(y;9) is an unknown function. The non-linear operator N is defined by:

A3, 0)\ >N 3;9)
< . ) | T (26)

N(y;q) = + 68

Py q)
oy?

When g = 0 it is easy to show that:
&(3,0) = uo(y), 27

and when ¢ =1 the zero-order deformation equation (24) is equal to the original
governing equation (7), so that:

d(y; D) = u(y). (28)
Expanding ¢(y; g) in a Taylor series with respect to the embedding parameter ¢ yields:
+00
B 0) = w3+ Y tn(q”, (29)
m=1
where:
1 9™ ;
() = = LPED] (30)
m!  dq 4=0
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The convergence of the above series depends on the auxiliary parameter #. Ana]ysis method
The mathematical meaning of this parameter is explained in the recent paper by Liu for heat transfer

(2010).
Assuming that # is carefully selected so that the above series is convergent when
g = 1, then the series solution is:

+o0
u(y) = uo() + Y tm(), (31

m=1

where u,,(y) are unknown functions that are determined from higher order deformation
equations. The higher order deformation equations are obtained by first differentiating
the zero-order deformation equations (24) and (25) m times with respect to ¢ and then
dividing them by m! and finally setting ¢ = 0. This way, we obtain the following
higher order deformation equations:

£[um(y) = XmlUm-1(P)] = ﬁRm(y)a (32)

with the boundary conditions:

um(—1) = u,, (1) = 0, (33)
where:
m—1 n
Ron(3) = tty 1 (0) + (L= xo)B+6BY sy __,(0D (3, (3),  (34)
n=0 =0
and:
0, m=1
Xm:{l, m>1 (35)

The mth order deformation equations form a set of linear ordinary differential
equations and can be easily solved, especially by means of symbolic computation
software such as Maple, Mathematica, Matlab and others.

The analytical solution for the temperature distribution ®(y) is then obtained by
substituting the velocity #(y) in the energy equation (8) and integrating the resulting
equation twice with respect to y.

3.3 SHAM solution

In this section we present the SHAM for solving the non-linear equation (7) as
described in Motsa ef al (2010a). The basic idea is to integrate the higher order
deformation equations using spectral methods. This implicitly implies using
Chebyshev polynomials as basis functions leading to relatively faster convergence
of the method. We use the Chebyshev pseudo-spectral method to transform the higher
order deformation equations (32) into the following set of equations:
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N N
> Dilum(3) = Xmbm-1 (3] = A (Z Dittm-1(3) + (1 = xm)B
= =0 (36)

m—1

+68> _ Dittm-1-2(3) Y [ijuxyj)][ijunnxyj)]) ,

n=0 =0

where D is the Chebyshev differentiation matrix with N + 1 collocation points and
k=N/2+1,...,N, denotes the kth row of the differentiation matrix 2. The
boundary equations become:

Um(¥o) = um(yn) = 0. (37
We employ the Gauss-Lobatto collocation (Canuto et al,, 1988) to define the Chebyshev
nodes in [—1, 1], namely:
i
Yj = €0S <1_V_) (38)

Following Don and Solomonoff (1995), we express the entries of the differentiation
matrix D as:

1c (-1 :
ki — _E_ . - . T s 7 a ka
¢ sin(mr/2N)(j + k) sin(mw/2N)(j7 — k)
o 1 cos(mk/N)
Dy = 2sin2(mk/N)’ k70 (39)
2N? +1
Dy = —Dyy = :

6
and Dk]‘ = —DN—k,ij,
where ¢y =cy=2 and ¢;=1 with 1 =j = N — 1. Equation (36) can be written in

matrix form as:

m—1 n
Dz[um = (m + W11 =1 ((1 = Xm)B + 632 DZ“m«l—nZ [@uz][Dun—z]>
n=0 1=0

(40)

This simplifies to the following recurrence relation for u,,:

n=0 =0

m—1 n
tm = Qo + Wity + (D' ((1 — XmB+6BY_ Dlu1-n» [Dul-][Dun_i]> :

(4D

Thus, starting from the initial approximation uq(y), we can use the recurrence formula
(41) to successively obtain u,,(y) for m = 1. To implement the boundary conditions
(equation (37)), the derivative matrix D was evaluated when j=k=1,...,N — 1.
Once #(y) has been obtained, we apply the Chebyshev pseudo-spectral collocation
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method to the energy equation (8) to obtain the solution for the temperature Analysis method

distribution as;
0 = (D) = MDu)®* — 2BAMDu)']. (42)

The SHAM as given above was devised by Motsa ef al (2010a) and to give better
convergence than the standard HAM. However, as shown in Motsa et al (2010b),
an alternative but much more efficient implementation of the SHAM is possible.

3.4 MSHAM solution

In this section we present the MSHAM for solving the governing non-linear
equation (7). Implementation of the MSHAM involves simplifying the governing
equations by making use of the following transformation:

U(y) = u(y) — up(y) 43)

where uo(y) is the initial guess. Substituting equation (43) in the governing equation (7)
gives:

aU" + axU' + a3(U'Y + a,U'U" + 6BU)U" = () (44)
subject to the boundary conditions:
U(=1)=U@) =0, (45)
where:
ar=1+68(U))°, ay=12BULU", a3 = 68U, (46)
a =120, g =—{B+ |1+ 65(Uy)°| Ut} @7

The homotopy analysis theory, along the lines described in the last section, is then
applied to equation (44). The initial approximation is obtained by solving the linear
part of equation (44), given as:

a Uy + axUjy = (y) (48)
subject to the boundary conditions:
Uo(—1) = Ug(1) = 0. (49)

Applying the Chebyshev spectral collocation method on equation (48) gives the
solution of Uy(y) as:

Uy = A1, (50)

where:
A=a;D" +aD, (51)
v = [lp(y())v '»Z’(J’l), adj(yN—l)vw(yN)] (52)
Importing the ideas of the HAM, we construct the zero-order deformation equations as:
A = O LAU; @) — Uo(0)] = gh{N ol Ul 9)] — ()} (53)
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subject to:
U1 q) = U(—1;9) =0, (54)
where:
- 820 al
LUy, ) = @y ta (55)
Y ay
i o oINS 820 . 8207 folN\*
NoU(y; )] = LUy, @) + a3 (g) +ay FFT + 6[363)—2 <—a'yg> . (56)

The higher order deformation equation is given by:

£2[Um(y) = (xm + WU p-1(0)] = AR, (), (57

where:

Ba3) = 033 U1y 003 Uy 468 Uy, VLT
n=0 n=0 =0 =0
= (@ = xm)¥(y). (58)
Applying the Chebyshev spectral collocation method on equations (57) and (58) gives:
AU, = (xm + AU, -1 — Al — )W + AP, -1, (59)

subject to the boundary conditions:

Un(y0) = Un(yn) =0, (60)
when A and WV are as defined in equations (51) and (52) and:
Um = [Um(yo)a Um(yl), reey Um(yN—l)a Um(yN)]a (61)
m—1 m—1
mel = aSZ (@Un)(pUmfl—n) + 342 (:DUn)(DZUm—l—n)
n=0 n=0
m—1 n
+6B)  D’Up1-ny_ (DUNDU,-). (62)
n=0 =0

After incorporating the boundary conditions, equation (59) can be written as:

Um = (Xm + ﬁ)Um—l + A_lh[Pm—l -1- Xm)q)] (63)

Thus, starting from the initial approximation, which is obtained as a solution of
equation (48), higher order approximations U,,(y) for m = 1 are obtained through the
recursive formula (63).
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3.5 Numerical method of solution

To obtain the numerical solution of the governing system we apply the Chebyshev
pseudo-spectral collocation method to equations (7) and approximate the unknown
function #(y) by a sum of N + 1 basis functions, 7,,(y), that is:

N
u(y) = un(y) =Y _ anTu(y) (64)
n=0

where T,,(y) is the Chebyshev polynomial which is defined in the interval —1 =y <1
as: -

Tn(y) = cos(Ncos™ 1y). (65)

We use the Gauss-Lobatto collocation points to define the Chebyshev nodes in[—1, 1].
This approach yields a set of N algebraic equations that are solved using Newton’s
iteration method to find the unknown coefficients a,. For the SHAM and the full
numerical computations we used N = 60.

4. Convergence of the series solutions
In this study Maple was used to solve the system of linear higher order deformation
equations (32), subject to boundary conditions (equation (33)), to successively obtain:

ui(y) = ﬁ<a - %B> (1 — 9% +4ABa1 — yH), (66)
us(y) = (L + h) (a - %B) 1-yYH+ 2hBa2(8ﬁa + 2a — 3EB)1 — yh

+ 641%B8%a(1 — ¥5), (67)

Consequently, from equation (31), the series solution can be written as:

u(y) = uo(y) + ur(y) + uz(y) + - + wm(y), (68)

where m is the order of the series. We note that when a = B/2, solutions (66) and (67)
reduce to the results of Siddiqui ef al. (2008) who solved the same problem using the
HPM and Roohi et al. (2009) who used the HAM with # = — 1 to solve the problem. It is
also worth noting that the entire analysis in the latter study is restricted to the case
a=B2and s = ~1.

The solutions u1(v), u2(v), etc. contain the auxiliary parameter # that controls the
convergence of the HAM series solution (68). The standard way of choosing admissible
values of % is to select a value of £ on the horizontal segment of the #-curve.

Figure 1(a) shows the #-curve at different orders of the HAM and SHAM
approximations when o = B/3. We note that with the same initial approximation and
auxiliary functions, the HAM and SHAM #-curves match exactly. At the tenth order of
the approximations the admissible values of 2 lie in[— 0.3, —0.2]for B=1land 8= 1.
The #%-value corresponding to the maximum of the second-order approximations lies
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Figure 1.

The #Ai-curve at different
orders of (a) HAM
(squares) and SHAM
approximations,

and (b) the MSHAM

approximation
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inside the interval —0.3 < & < —0.2. We propose that, instead of choosing a “random”
fi-value from the horizontal segment of the A-curve, we select the critical value of £ at
which the maximum of the second-order approximation occurs as the value of # to use
in generating the approximate solutions. This approach leads to very rapid
convergence of the series solution.

Using the second-order HAM approximate solution:

u(y) = up(y) + ui(y) + u(y),

we found the critical value of A at which the maximum of the second-order #-curve
occurs to be:

-1

P
1+ 2428’

(69)
where o = B/3. The HAM and SHAM results presented in the next section were
obtained using this critical value of #.

Figure 1(b) shows the A-curve at different orders of the MSHAM approximation
series. Comparing the two, it is evident that the horizontal segments of the #-curves are
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much wider in the MSHAM than in the HAM/SHAM. For example, at the tenth order of Analysis method

the MSHAM approximation, the admissible values of # lie in [— 1.7, — 0.5] compared to
the much narrower range [—0.3, —0.2] in the case of the HAM/SHAM. This has
implications for the accuracy and the rate of convergence of the solution series, since,
as was noted in Motsa et al. (2010a, b), a larger range of admissible values of # is
associated with fast convergence and improved accuracy of the approximate method.
Thus, it can be expected that the MSHAM will give more accurate and fast converging
results compared to either the HAM or the SHAM.

Figure 2 shows the tenth-order %-curves for different values of B for the HAM and
MSHAM solution series, respectively. It is self-evident that the horizontal segment of
the HAM #-curve shrinks significantly when B is large. The implication is that when B
is large the convergence of the HAM becomes much slower and the results less
accurate. On the other hand, the horizontal segment of the MSHAM #-curve remains
very wide even at large values of B. Thus, the convergence of the MSHAM can be
expected to remain robust and the results accurate for large values of B.

Figure 3 shows the HAM and MSHAM tenth-order #-curves, respectively, for
different values of B when B = 1. Again the horizontal segment of the HAM #-curve
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Figure 2.

The #-curves at tenth
order (a) HAM, and (b)
MSHAM approximations
for different values of B
when g =1

Figure 3.

The A-curve at tenth order
(@) HAM and, (by MSHAM
approximations for
different values of 8 when
B=1
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Table 1.

Comparison of the values
of the HAM and SHAM
approximate solutions for
«'(1) with the numerical
solution for various
values of 8 when B =1

shrinks as B increases whereas that of the MSHAM remains fairly constant even
for large values of 8. Thus, the convergence of the HAM is expected to decrease with
an increase in B whilst the MSHAM can be expected to give results that are accurate
for large values of B.

5. Results and discussion

In this section we compare the semi-analytical HAM, SHAM and MSHAM results for
several values of the governing parameters 8, B and A. The results are further compared
against the full numerical results based on the Chebyshev pseudo-spectral method. All
the semi-analytical results presented in this work were obtained using « = B/3 and the
optimal value of # was deduced from equation (69). The MSHAM results were similarly
generated using an #-value corresponding to the maxima at the second order of the
MSHAM #-curve. The number of collocation points used is N = 100.

Table I gives a comparison of the HAM, SHAM and MSHAM results for the skin
friction coefficient #'(1) at different orders of approximation against the exact results
when the non-Newtonian parameter B is varied. The comparison of the results at
different orders of approximation against the exact results when B is varied is given in
Table II. The magnitude of the skin friction coefficient decreases with 8 but increases
with the pressure gradient term. However, more importantly, Tables I and II show that
the HAM and SHAM methods give identical results when the same initial
approximation is used. However, the MSHAM converges much more rapidly to the
exact solution compared to both the HAM and the SHAM. When both 8 and B are less
than 1, the MSHAM approximations match the exact solutions at the fourth order of
the solution series.

Figures 4-6 show the effect of the parameters 8, B and A on the velocity and
temperature profiles. In the absence of an exact solution, the velocity and temperature
profiles are determined numerically using the Chebyshev spectral collocation method.

B Second order Fourth order Eighth order Tenth order Exact
HAM solution for /(1) for B=1

0.2 —0.80676 —0.79581 —0.79722 —0.79729 —0.79728
0.4 —0.71326 —0.71154 —0.71166 -0.71166 —0.71166
0.6 —0.65812 —0.65805 - 0.65805 —0.65805 —0.65805
0.8 -0.62175 —0.61974 —0.61954 —0.61953 —0.61953
1.0 —0.59596 —0.59070 —0.58979 —0.58976 —-0.58975
SHAM solution for w'(1) for B=1

0.2 —0.80676 —0.79581 —0.79722 —0.79729 —0.79728
04 —0.71326 -0.71154 —0.71166 -0.71166 —0.71166
0.6 —0.65812 —0.65805 —0.65805 —0.65805 —0.65805
0.8 —0.62175 —0.61974 —0.61954 —0.61953 —0.61953
1.0 —0.59596 —0.59070 —0.58979 —0.58976 —0.68975
MSHAM solution for u'(1) for B=1

0.2 —0.79733 —0.79728 —0.79728 —0.79728 —0.79728
0.4 —0.71166 —0.71166 —0.71166 —0.71166 —0.71166
0.6 —0.65805 —0.65805 —0.65805 —0.65805 —0.65805
0.8 —0.61954 —0.61953 —0.61953 —0.61953 —0.61953
1.0 —0.58980 —0.58976 —0.68975 —-0.58975 —0.58975
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B Second order Fourth order Eighth order Tenth order Exact

HAM solution for u'(1) for =1

0.2 —0.18929 —0.18671 —0.18693 —0.18694 - 0.18694
04 —-0.33354 —0.32810 —0.32883 —0.32887 —0.32887
0.5 —0.38839 —0.38498 —0.38544 —0.38546 —-0.38546
0.8 —0.51976 —0.51955 -0.51954 - 051954 —-0.51954
1.0 —0.59596 —059070 —0.58979 —0.58976 —0.58975
SHAM solution for u'(1) for B =1

0.2 —0.18929 —0.18671 —0.18693 —0.18694 - 0.18694
04 © —0.3334 —0.32811 —0.32883 —0.32887 -0.32887
0.5 —0.38889 —0.38498 —0.38544 - 0.38546 —0.38546
0.8 —-0.51976 —0.51954 —0.51954 —0.51954 —0.51954
1.0 —0.59596 —0.59070 —0.58979 —0.58976 —0.58975
MSHAM solution for w'(1) for B=1

0.2 —0.18694 —0.18694 —0.18694 —0.18694 —-0.18694
0.4 —0.32889 —0.32887 —0.32887 —0.32887 —(.32887
0.5 —0.38547 —0.38546 —0.38546 —0.38546 —0.38546
0.8 - 051954 - 051954 —0.51954 ~-0.51954 —0.51954
10 —0.58980 —0.58976 —0.58975 —0.58975 —0.58975
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Table I1.

Comparison of the values
of the HAM and SHAM
approximate solutions for
#'(1) with the numerical
solution for various
values of Bwhen B=1
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The specific values of the parameters used are taken from Siddiqui ef al (2008) and
serve to illustrate the efficiency and utility of both the HAM and the SHAM. The
purpose of these figures is thus to give a comparison of the convergence rates of the
HAM and SHAM approximations to the numerical solutions. We note that the results
presented here are more accurate compared to those in Siddiqui ef al (2008) and
convergence of the HAM is achieved at the tenth order.

Figure 4 shows the effect of the non-Newtonian parameter 8 on the velocity and
temperature profiles for constant pressure gradient B. For fixed Brinkman numbers
both the velocity and temperature profiles decrease with increasing material moduli.
The HPM results presented in Siddiqui ef al. (2008) fail to converge to the numerical
results. The primary reason for the lack of convergence is that the HPM is equivalent to
assuming % = — 1. However, we have shown above that # = — 1 lies outside the range
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Figure 4.

Comparing the numerical
solution with the
tenth-order HAM (open
circles) and SHAM (filled

1 circles) solutions for (a) the

velocity profile u(y), and
(b) the temperature profile
O(y) when varying B for
B=1,A=20
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Figure 5.

Comparing the numerical
solution with the
tenth-order HAM (open
circles) and SHAM (filled
circles) solutions for (a) the
velocity profile u(y), and
(b) the temperature profile
O(y) when varying B for
B=1A=20

Figure 6.

Comparing the numerical
solution with the
tenth-order HAM (open
circles) and SHAM (filled
circles) solution for the
temperature profile &(y)
when varying A for B =1,
B=20

of admissible values of # that would lead to convergence of the HAM series solution.
In addition, only a few terms of the HPM solution series were used by Siddiqui et al.
(2008). It is worth noting also that the results presented in Siddiqui ef al. (2008) were not
validated against any numerical results.

Figure 5 shows the effect of increasing the pressure gradient term for fixed
Brinkman numbers A and material moduli. In this case increasing the pressure
gradient has the effect of heating and accelerating the fluid.

Figure 6 shows the effect of Brinkman numbers on the temperature profile. The
Brinkman number relates heat conduction from the channel wall to the non-Newtonian
viscous fluid and has a role to play in determining the flow regime boundaries from
laminar to transition and from transition to turbulent flow (T'so and Mahulikar, 1999).
The effect of increasing the Brinkman numbers is to increase the temperature within
the channel.
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In all cases convergence to the numerical results is achieved at the tenth order of both Analysis method

the HAM and SHAM approximations.

6. Conclusion

In this paper we have examined the steady laminar flow of a third-grade fluid with heat
transfer in a horizontal channel. Approximate analytic solutions were constructed
using three semi-analytical techniques: the HAM, the SHAM and the MSHAM. The
effect of the non-Newtonian parameter, the pressure gradient term and the Brinkman
number on the velocity and temperature profiles has been determined. The
semi-analytical results compared favourably with the exact solutions in the case of
the skin friction and with the full numerical solution of the governing non-linear
equations in the case of the velocity and temperature profiles.

An important aspect of this research has been the need to prove the computational
efficiency, accuracy and robustness of the SHAM and MSHAM in solving non-linear
equations. We have shown that these methods are, in general, more accurate than the
HAM. We have further:

 proposed a new approach for calculating the optimal value of % that gives
accurate results;

+ shown that the HAM and SHAM give identical results when the same initial
approximation, auxiliary parameter and linear operator are used;

* shown that both the HAM and the SHAM give more accurate results than the
HPM used in Siddiqui et af (2008); and

* shown that the MSHAM is computationally more efficient than both the HAM
and the SHAM whose convergence was shown to decrease with an increase in
the magnitude of the governing parameters of the problem.

An important feature of the HAM is the presence of the auxiliary parameter % (whose
mathematical meaning is explained in Liu (2010)) which gives us freedom to control the
convergence rate and region of the solution series. Both the SHAM and MSHAM retain
this unique feature of the HAM. However, the advantage of the SHAM/MSHAM over
the HAM is that the former do not depend on a conveniently chosen initial
approximation and linear operators in order to make the integration of higher order
deformation equations possible. The major difference between the SHAM and the
MSHAM is that the SHAM algorithm is applied to the original governing equation
whereas the MSHAM is applied to a transformed version of the governing equation.
In addition, instead of guessing the initial approximation to be used in implementing
the higher order deformation equations, the initial approximation is generated in a
much more systematic way in the MSHAM by solving the linearized form of the
governing equations.
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Abstract: The steady, laminar flow of a third grade fluid with heat transfer through a flat channel is studied. We
propose and apply a successive linearisation method (SLM) and an improved spectral-homotopy analysis method
(ISHAM). to obtain approximate analytical solutions for the velocity and temperature profiles. The methods are
primarily based on blending non-perturbation techniques with Chebyshev spectral methods to produce efficient
algorithms for solving highly nonlinear systems. The effects of the Brinkman number, pressure gradient and the
non-Newtonian parameter on the velocity. temperature. skin friction and heat transfer coefficients are discussed.
Exact solutions are also constructed and compared with the SLM and ISHAM solutions.

Key—Words: Viscoelastic flow. heat wansfer flow, linearisation method. improved spectral-homotopy analysis

method, nonlinear BVPs

1 Introduction

The study of non-Newtonian fluids offers many inter-
esting and exciting challenges due to their technical
relevance in modelling fluids with complex rheolog-
ical properties (such as polymer melts, synovial flu-
ids. paints. etc). Viscoelastic fluids also present some
highly peculiar characteristics and mathematical fea-
tures such as the non-unidirectional nature of the flow
of such fluids and the increase in the order of the dif-
ferential equations characterizing such flows, [1. 2].
A lot of work on the flow and heat transfer character-
istics of non-Newtonian fluids has also been done in
order to control the quality of the end product in many
manufacturing and processing industries, see for in-
stance, [1. 3] and the references therein.

Various constitutive models currently exist to de-
scribe the properties of non-Newtonian fluids. The
major problem however is that none of these mod-
els can adequately describe all non-Newtonian flu-
ids.  Among the several constitutive equations that
have been suggested in the literature is a Riviin-
Frikson model. the third grade fluid model that is
capable of describing the normal stress effects for
steady unidirectional flow and to predict shear thin-
ning/thickening. {4, 5]. This model has been analyzed
in great detail in previous studies by Dunn and Ra-
jagopal [6] and Fosdick and Rajagopal [7].

A large number of recent studies have investi-
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gated various aspects of the third-grade fluid model,
including some that have merely used this model to
test the effectiveness of a slew of new solution tech-
niques for nonlinear equations. Makinde [4] studied
the thermal stability of a reactive third-grade liquid
flowing steadily between two parallel plates with sym-
metrical convective cooling at the walls while slip ef-
fects on the on the peristaltic flow of a third grade fluid
have been studied by among others. Ali et al. [8, 9],
El-Shehawy et al. [10] and Motsa et al. [21]. Studies
by, among others, Aksoy and Pakdemirli [11], Hayat
and his co-workers [12, 13, 14, 15, 16, 17], have, to a
large extent, mainly been concerned with the develop-
ment and testing of new perturbation techniques.

The present study deals with the problem of flow
and heat transfer characteristics of a third grade fluid
flow between two paratlel plates. Exact analytical so-
lutions for the steady Poiseuille flow, the skin fric-
tion and the heat transfer coefficients are found. We
use innovation. the successive linearisation technique
(SLM) (see Makukula et al. [18] and Motsa and
Sibanda [20]) and the improved-spectral-homotopy
analysis method (ISHAM) to solve the governing non-
linear equations. The accuracy of each methods is de-
termined by comparing the solutions with the exact
results.
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2 Governing equations

The flow of an incompressible third grade fluid placed
between two horizontal parallel impermeable plates is
investigated.

The constitutive law for the Cauchy stress tensor
T associated with an incompressible homogeneous
fluid of third grade is given in [4, 7, 22]. This has
the form

T = —pl+ puA)+oaAs+ (,\'QA% J‘r‘ﬁlAg
T AL A - AgAyl + B3t AT)Ag. (D)

where
A Vv + (V)T
d | ‘ P T
A, o (A, ) FAL Vv (V) A

In the above equations, p is the pressure, ft denotes the
viscosity; aj, vo. 3y, o, 3y are the material moduli,
d/dt is the material derivative, v denotes the velocity
field, while A, A, and Ay are the first three Rivlin -
Ericksen tensors. The spherical stress pIis due to the
constraint of incompressibility. The flow is subject to
the restrictions

(20, ay 00 lag 4ol < 24p85 ()

Ao Gy = 0 and Fy > 0. (3)
If 35 = 0 the model collapses to that of a second grade
fluid. The equations of motion are given by |22, 231;
V.v = 0 (4)
v
/)-(» ——————————— - V-T+pb (5
dt
df ‘
P kW20 + T - Vv. 6)
{

where p is the mass density, » the thermal conductiv-
ity. ¢,, is the specific heat at constant pressure, b is
a body force, and # is the temperature. The z-axis
tangential to the plate surface. the y-axis normal to it.
The fluid is confined between paraliel plates located

so that

and 0 ==
The temperature of the upper plate is maintained at
@y and that of lower plate at fy to give a tempera-
ture difference AG = 6 — . The fluid motion is
driven either by a constant pressure gradient or by the
boundary conditions. Equations (4) - (6) reduce to
(see, [4.22. 21}

By).

v o u(y)i
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where
) 32 ulr®
7 p W3 NE
] K2 d ;
B _ /2625 3" = 3o + B3

The parameters are the characteristic velocity U and
the Brinkman number A which determines the relative
importance between the viscous dissipation and fluid
conduction.

The appropriate boundary conditions are
0, 9

(10

In a recent study Motsa et al. [21] showed that the
exact solution for the skin friction is

11/((}) prt FlP(U”]/J ....... ‘[4’(\1])] }/3" (1])
33 .
where
JR—
U : 16+ 813By?
Fly) = 64 [—S)By LSBT (g
| Vs
L
It is evident that this result is only valid when
a2
e 7B
The temperature equation now simplifies to
0" = AByu'(y). (13)

Equation (13) can easily be solved using any numeri-
cal method.

3 The linearisation method

In this section we apply the successive linearisation
method (SLM) to solve equations (7) - (10). Since
equation (7) is decoupled from the temperature equa-
tion (8) we only need apply the SLM to equation (7).
The SLM is based on the assumptions that

e the unknown function u(y) can be expanded as

i3

[,7,1(;1/)---2——2 wply), 1=1,2,3,

()

(b

where [J; are unknown functions and wu, are ap-
proximations which are obtained by recursively
solving the linear part of the equation that results
from substituting (14) in equation (7), and that
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e [/, becomes increasingly smaller as ¢ becomes
large, that is
lim 0 = 0. TR
P
Substituting ( 14) in equation (7) and neglecting non-
linear terms in {7, U/, U7 and using U ~= u; gives

27
|
|

r i1 NES
E 1464 (}__: 'u,:L) {!:"
i_ re==0 J}

£ [ il i1
S } i B

L () =0 n=0
F g} NS gt
] o o .
65 <Z u) Sl (16)
7=t} n==tl
which may be written in a more compact form as,
Q.1 1,17 4 by 1'1/,{,- ------ i1, (7

subject to the boundary conditions

wi{—1Y = w(1) =0, (18)
where
e 2
iy = 160 (Z uf,,) .
n=(} /
i1 i |
by = 124 N u,j;L Z u',i
=0 pre=i)
7ol i1 ciel —i
Py B>l 463 (B ) u”> Sl
ro==(d rlz_?) (E=18] J

iteratively solving equations ( 16). starting from an ini-
tial approximation up(y). the approximate solutions
for u(y) are obtained as

M
uly) = > unly) (19)

n=(}

where A7 is the order of the SLM approximation. The
initial approximation uy{y) is chosen in such a way
that it satisfies the boundary conditions (9). In this
study. a suitable initial approximation was chosen to
be

(20

We observe that, by making use of the symmetry con-
dition «f{0) = 0, equation (16) has an integrating fac-
tor (1F) given by

i1 2
ITF =15 67 (L uf,,) :

7t}

uply) = 0.
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Integrating (16) gives

1 i1 i—1 3
A ! Y 7
YT TR By + Z uy, + 23 ( u,,)
v 7220 =20

(22)
Thus starting from an initial guess vuo(y) 0, the
solutions for u; (i > 1) can be obtained iteratively
from equation (16). The first three solutions for ¢ =
1,2.3,..., are given as

23
(24)
: ~84° BTy (3 + 163B%%) .
a5 {7 = — 9 p 3 /7 23
uj(y) kl( 1 -+ 6]{?2;')),321/'2) (25)
where
ki = 14 63B%7

ko = 34 148B%7° + 1652 By

The explicit solutions for wy, uf, ug, ... can be ob-
tained in the same manner.
The analytic solution for the skin friction coeffi-

cient C'y is obtained as

W (1)~ (1) + (1) + uhy (1) 4+ ui(l) + ... (26)

Since the coefficient parameters and the right

known (from previous iterations), equation (16) can
easily be solved using analytical means or numeri-
cal methods. Solving equation (16) analytically for
u; was only possible for the first two iterations. For
higher order iterations (i > 3) numerical integra-
tion was employed. In this work, equations (16) was
integrated using the Chebyshev spectral collocation
method. This method is based on approximating the
unknown functions by the Chebyshev interpolating
polynomials in such a way that they are collocated at
the Gauss-Lobatto points defined as

(27

where N is the number of collocation points used.
The second derivative of w; at the collocation points
are represented as

where D is the Chebyshev spectral differentiation ma-
trix. Substituting equations (27) - (28) in (17) results
in the matrix equation

Af/"} IJ7 puosions

R, (29)
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with boundary conditions
wi(yo) = wilyn) = 0, (30)

in which A; 1 isa (N+1)x (/N +1) square matrix and
U; and R,y are (N + 1) = 1 column vectors defined
by

A = a 1D: + b;_D.

where b;.., is a diagonal matrix of size (N 4 1) x
(N + 1) After modifying the matrix system (29) to
incorporate boundary conditions (30). the solution is
obtained as

U =A"® (31

The solution for #{y) is obtained by applying the
Chebyshev spectral collocation method to (13).

4 The improved spectral homotopy
analysis method (ISHAM)

In this section we describe and apply the ISHAM to
solve the governing equation (7) with boundary con-
ditions (10). The ISHAM algorithm seeks to improve
the initial approximation that is then used in the origi-
nal SHAM [ 19] algorithm to solve the governing non-
linear equation. The basic assumption is that the solu-
tion uly) can be expanded as
i1
aly) = Udy) + > unly). i= 12,30, 32)
reem(d

where UU; are unknown Tunctions whose solutions are
obtained using the SHAM algorithm at the ith itera-
tion and w,{y), (n > 1) are known from previous
iterations. The algorithm begins with an mitial ap-
proximation

uoly) = a3l — ), (33)
which is chosen to satisfy the boundary conditions
(10} and o is & scaling parameter. Substituting equa-

ton (32) and using U; 2 u; in the governing equation
(7) gives

subject to the boundary conditions

wi(1) = (1) = 0, (35)
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i1 2
a1i-1 = 1»-}»6,6(211'”) :

n==0

i—1 i—1 24
Pieg = e B+ > up+63Y. u‘;’) >y
n=A) =0 n=0

Starting from the initial approximation (33) the subse-
quent solutions u;, (¢ > 1) are obtained by recursively
solving equation (34) using the SHAM approach. To
find the SHAM solutions of (34) we begin by defining
the following linear operator

. N 02U, O v
LUy q) = a zvlf--:: ot (1,241,1_1-{-::“--5, (36)
‘ T oy? T Oy

where ¢ € 0,1] is the embedding parameter, and
U;(y; q) are unknown functions. The zeroth order de-
formation equation is given by

(L= )Ly q) —uio(y)] = ¢hN Uy q)] — rie1,

37
where 1 is the non-zero convergence controlling aux-
iliary parameter and A is a nonlinear operator given
by

VUl — Pl Oy O <au1»>2

ANy gy = Ay -yt e T O Ty " .

Wil dq); L1 B 2,i~1 ay g \ By
(38)

Differentiating (37) m times with respect to ¢ and then

tions by ! yields the mith order deformation equa-
tions

C‘Lui.m{y) = Xm Ui 1 (\U)] = (39)
: / 17 . 7
h (\U‘]-’L"l Wy m—1 T Q2114 1

m—1 J
2 XN N I z
46 }_4 Ui —1—j }_4 Uy jnWin ™ (1 - X )Ti-1
=0 n=0

subject to the boundary conditions

/U,.Z'_"”',<““"'1) rovd Il//i,f}L( ]) puisony 0~ (4())
where
0, m<1
X = { L mal @n
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The initial approximation ;¢ that is used in the
higher order equation (39) is obtained by solving the
linear part of equation (34) given by

ALty b it = e, (42)
with the boundary conditions
’l,l,,'lt)( "1\} = 111_()(1) == {) (4%)

Applying the Chebyshev spectral method, described
in the SLM section, to solve equation (42) yields the
matrix form

AU = Q. (44)
subject to the boundary conditions
wialyn) = wiolyn) = 0. (45)
where
Ay =a, D% +as, D (46)
Ui o= [wiolun). violin ). wiolun)]!
. \ ’ N 7 T
Q1= riywoli i) Ti—iyN ) -

After modifying the matrix system (44) to incorporate
the boundary conditions (45). the solution is obtained
as

47)
Similarly, applying the Chebyshev spectral transfor-
mation on the higher order deformation equation (39)
gives

AUy = (48)

Ui = ‘U.i.mU](),‘/!- ui,m(!/l Jooo s Uim YN

-1 K
5 i
Dmet Z Dy ..nDuy .

J;U =i}

To implement the boundary conditions on the right
hand side of equation (48), we set the first and last
rows and columns of A;..; to be zero and similarly
the first and last columns of Q;_; and P,,..( to be
zero. This results in the following recursive formula

torm > 1

(49)

where A,;] is the modified matrix A,_; on the right
hand side of (48) after incorporating the boundary
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conditions. Thus starting from the initial approxima-
tion, which is obtained from (47), higher order ap-
proximations u; ,,(y) for m > 1, can be obtained
through the recursive formula (49). The solutions for
u; are then generated using the solutions for v ,, as
follows

i = Uig A+ Uiy w2 Fuga e Ume (50)
The [i,m] approximate solution for u(y) is then ob-
tained by substituting u; obtained from (50} into equa-
tion (32).

5 Results and Discussion

In this section we present a comparison of the succes-
sive linearisation method (SLM), improved spectral-
homotopy analysis method (ISHAM) and the exact
analytical results. All the SLM and ISHAM results

show the accuracy and effectiveness of the methods, a
limited parametric study is undertaken.

Table 1 shows a comparison of the convergence
rate of the SLM, ISHAM and the exact solution

Newtonian parameter 3. A match between the SLM
results and the exact results, accurate to 10 decimal
places is achieved at the sixth order of the SLM se-
ries selution for all the selected values of 3 while the
ISHAM converges to the exact solution at order [4,4].
The difference in convergence rates of the two meth-
ods is clearly shown in Table 2 where a comparison of
the absolute errors in the SLM and ISHAM approxi-
mate solutions for «/(1) is given for various values of

In Table 3 the non-Newtonian parameter is fixed
at 4 = 1 while the pressure gradient term increases
monotonically from 3 = 0.2. For B < 1, full conver-
gence of the SLM approximations to the exact solu-
tion is achieved at the fourth-order of the SL.M series
solution while the ISHAM converges at order {3,3].
The precision of the SLM however deteriorates faster
than that of the ISHAM with increasing B with more
terms needed in the SLM series to match the exact re-
sults. Full convergence to the exact results (to ten dec-
imal places) is achieved at the 4th order of the SLM
lutions. For B > 1 The SLM converges fully at the
sixth order of approximation while the ISHAM ap-
proximate solutions converge at order [4.4]. These is
clearly indicated in Table 4 where a comparison of the
absolute errors between the SLM and ISHAM approx-
imate solutions for /(1) are given for various values
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Table 1: Comparison of the approximate values of /(1) using the SLM and ISHAM with the exact solution for

SLM solution

3 3rd order 4th order 5th order 6th order Exact
02 -0.79728 10885 -0.7972810583 -0.79728 10583 -0.7972810583 -0.7972810583
0.5 -0.6823395826 -().6823278039 -(.6823278038 -(0.6823278038 -0.6823278038
1.0 -0.5900220423 -0.5897545943 -(0.5897545123 -0.5897545123 -0.5897545123
2.0 -0.5023901750 -0.5000085354 -0.5000000001 -().5000000000 -0.5000000000
ISHAM solution

{2.2] (3.3] (4,41 [5,51 Exact
0.2 -0.7972810449 -0.7972810583 -0.79728 10583 -0.7972810583 -0.7972810583
0.5 -0.6823218302 -0.6823278038 -0.6823278038 -0.6823278038 -0.6823278038
1.0 -{).5896283020 -(0.5897545122 -(.5897545123 -0.5897545123 -0.5897545123
2.0 -(.4991584068 -0.4999999475 -0.5000000000 -0.5000000000 -0.5000000000

Table 2: Comparison of the absolute errors between the SLM and ISHAM approximate solutions for (1) and the
exact solution for various values of 3 when B = 1.

SI.M solution

B 3rd order 4th order Sth order 6th order
0.2 (.0000000302 0.0000000000 0.0000000000 0.0000000000
0.5 0.00001 17788 0.0000000001 0.0000000000 0.0000000000
1.0 0.0002675300 0.0000000820 0.0000000000 0.0000000000
2.0 0.0023901750 0.0000085354 (.0000000001 0.0000000000

ISHAM solution
[2.2] [3.3] [4.4] [5,5]
0.2 (0.0000000134 0.0000000000 (.0000000000 0.0000000000
0.5 (.0000059736 0.0000000000 (.0000000000 0.0000000000

1.0 0.0001262103 (.0000000001 3,0000000000 0.0000000000

2.0 0.00084 15932 0.0000000525 0.0000000000 0.0000000000

Table 3: Comparison of the approximate values of (1) using the SLM and ISHAM with the exact solution for
various values of B when 7 = 1.

SLM solution

I 3rd order 4th order Sth order 6th order Exact
0.2 -0, 1869351878 -0.1869351878 -0.1869351878 -().1869351878 -0.1869351878
0.5 -(0.3854385785 -0.3854584985 -0.3854584985 -0.3854584985 -0.3854584985
1.0 -0.3900220423 -0.5897545943 -(1.5897545123 -(0.5897545123 -0.5897545123
2.0 -0.8564235361 -0.8355504792 -(.8351225255 -0.8351223485 -0.8351223485
ISHAM solution

2,2 [3.3] (4.4} [5.5] Exact
0.2 -(.1869351878 -0.1869351878 -0.1869351878 -0.1869351878 -0.1869351878
0.5 -().3854584608 -(.3854584985 -(0.3854584985 -0.3854584985 -0.3854584985
1.0 -0.3896283020 -(1.5897545122 -(.5897545123 -0.5897545123 -0.5897545123
2.0 -0.8318383437 -0.8351152280 -(0.8351223485 -0.8351223485 -0.8351223485
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Table 4: Comparison of the absolute errors between the SLM and ISHAM approximate solutions for «(1) and the

SIL.M solution

B 3rd order 4th order 5th order 6th order
0.2 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.5 0.0000000800 0.0000000000 (.0000000000 0.0000000000
1.0 0.0002675300 0.0000000820 (.0000000000 0.0000000000
2.0 0.0213011876 0.0004281307 0.0000001770 0.0000060000
ISHAM solution
[2.2] [3.3] (4,41 (5,51
0.2 (.0000000000 0.0000000000 0.0000000000 0.0000000000
0.5 0.0000000377 0.0000000000 0.0000000000 0.0000000000
1.0 0.0001262103 (.000000000 1 0.0000000000 0.0000000000
2.0 0.0032840048 0.0000071205 0.0000000000 0.0000000000
Figure 1 shows the velocity distribution for the ; B=1A=20
Poiseuille flow with 4 as calculated using the succes- NI~
sive linearisation method. The velocity profiles de- ogp | p=02 LN Tl
crease with . These results are accurate and qualita- 06l |- --B=075 : \ N
tively similar to those obtained by Roohi et al. {25] oap B /] ;
using the HAM, Motsa et al. {21] using the spectral ozl B J J
homotopy analysis method and Siddique et al. [22] g )/ ;
using the homotopy perturbation method. =0 )/ //'
0.2 ’ ,
1 B =1 X=20 oal // //,/
08l \\‘\:\\\ 08y /,’/’////
NN -08f e e
o6t SN ST
0.41 \\:\\ '10/’ 05 ] 15 2
02t N ~ N 0(y)
=00 ; //\ Figure 2: Temperature (y) profiles for different val-
-o2r R ues of B
0.4} PR g
o6y R ’ fect and the temperature rapidly increases with A, (see
08 XD also Saouli et al. [26)).
e - . . Figure 4 shows the variation of the skin-friction
0 o 02 ) 09 04 0% with B and g for fixed A. The skin friction increases

Figure 1: Velocity u(y) profiles for different values of
3

Figure 2 shows the effect of the pressure gradi-
ent on the temperature profiles tor fixed 5 = 1 and
X = 20, Figure 3 shows the effect of the Brinkman
number which determines the relative importance be-
tween viscous dissipation effects and fluid conduction
on the temperature profiles for fixed 5 and 3. Simu-
jations show that as the Brinkman number increases,
more heat is generated by the viscous dissipation ef-
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with /3 for increasing pressure gradient.

Figure 5 shows the growth of the wall heat trans-
fer rate for various values of the parameter B. Increas-
ing B increases the heat transfer rate.

6 Conclusion

In the present paper we considered the steady laminar
flow of a third grade fluid with heat transfer through
a flat channel. Two algorithms, namely the succes-
sive linearisation method (SLM) and the improved
spectral-homotopy analysis method (ISHAM) were
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Figure 3: Temperature 8(y) profiles for different val-
ues of A
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Figure 4: Skin friction /(1) for different values of 55
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presented to compute the analytical results for the skin
friction coefficient and rate of heat transfer. New ana-
lytical results for the skin friction at the channel walls
have been found. A comparison of the rate of con-
vergence of the SLM and ISHAM approximations to
the exact result shows that while both methods con-
verge rapidly, the ISHAM however converges much
more rapidly than the SLM. Both methods converge
for all parameter values with the ISHAM showing bet-
ter convergence for larger parameter values. The SLM
and ISHAM were both applied successfully to com-
pute the analytical results for the steady laminar flow
of a third grade fluid with heat transfer through a flat
channel. The success together with consistency of our
results with earlier findings shows that the two meth-
ods can be efficiently used to solve nonlinear prob-
lems in science and engineering.
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Chapter 3 — Fluid flow between parallel plates

3.4. Summary

This chapter comprises of three sections where the SLM, SHAM, and ISHAM are used to solve
problems involving flow between parallel plates. In Section 3.1 the successive linearisation
method was used to find solutions of a squeezing flow problem between two parallel plates.
The problem was solved successfully and the numerical results demonstrated the ability of
the method to generate convergent results at low orders of approximation. In Section 3.2,
the spectral homotopy analysis method was used to solve a heat transfer flow problem of a
third grade fluid between parallel plates, while in Section 3.3 the successive linearisation and
improved spectral homotopy analysis methods were used to solve the same problem. The
robustness and efficiency of the successive linearisation method, spectral homotopy analysis
method and the improved spectral homotopy analysis method has been demonstrated. These

methods are very useful tools for solving highly nonlinear problems in science and engineering.
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On heat transfer in rotating disks flows

The theoretical study of swirling flows due to a rotating body was pioneered by von Karman in
1929 when he gave a mathematical formulation of the problem of fluid flow due to an infinite
rotating disk. He introduced transformations that reduced the partial differential equations
governing the flow to ordinary differential equations. Cochran (1934) extended the analysis
and obtained asymptotic solutions for the von Karman equations. This solution was later
further improved by Benton (1966) who solved the unsteady state equations.

Disk flow problems are important in nature and in industry. They have applications in rotating
machinery, heat and mass exchangers, biomechanics and oceanography (Sahoo, 2009; Devi and
Devi, 2011), computer disk drives, film condensation (Maleque, 2009), viscometry and spin-
coating (Frusteri and Osalusi, 2007). Swirling flows are not only important in fluid dynamics,
but also occur frequently in nature. Large rotating flows are also found in the atmosphere
and in the oceans (Zandbergen and Dijkstra, 1987). They also enhance combustion and flame
propagation (Urzay et al., 2011). Many aspects of rotating disk flows have since been studied.
To this regard, we solved in this Chapter the von Karman equations with and without heat

transfer using the successive linearisation method, the spectral homotopy analysis method
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Chapter 4 — On heat transfer in rotating disks flows

and the improved homotopy analysis method.

The improved spectral homotopy analysis method was used to study solutions of the steady
flow problem of a Reiner-Rivlin fluid with Joule heating and viscous dissipation in Section
4.1. The solutions obtained by the method were compared with those obtained using the
spectral homotopy analysis method and results in the literature. Convergence to the numerical
solutions was achieved at the second orders while the SHAM converged at the eighth order
for some of the flow parameters.

The spectral homotopy analysis method together with the successive linearisation method was
used to find numerical solutions of the von Karmén nonlinear equations for swirling flow with
and without suction/injection across the disk walls and an applied magnetic field in Section
4.2. The results were compared with numerical results and against the homotopy analysis
method and homotopy-Padé results in the literature. In the study both the spectral homotopy
analysis method and the successive linearisation method gave accurate and convergent results
after a few iterations compared with the homotopy analysis and the homotopy-Padé methods.
However, the successive linearisation method proved to be efficient in that it rapidly converged
to the numerical results.

In Section 4.3, the laminar heat transfer problem in a rotating disk was solved using the
successive linearisation method. The study revealed that the SLM is accurate and converges

at very low orders of the iteration scheme.
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4.1. On a linearisation method for Reiner-Rivlin swirling flow !

Errata

In this article, we like to add the geometry of the problem below

Figure 4.1: Schematic representation of the flow domain (Sahoo, 2009).

LAccepted; S. S. Motsa, Z. G. Makukula and P. Sibanda. Journal of Computational and Applied Math-
ematics, http://www.journals.elsevier.com/journal-of-computational-and-applied-mathematics/ (Impact fac-

tor; 1.029).

108



ON A LINEARISATION METHOD FOR REINER-RIVLIN
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ABSTRACT. The steady flow of a Reiner-Rivlin fluid with Joule heating and
viscous dissipation is studied. We present a novel technique for accelerat-
ing the convergence of the spectral-homotopy analysis method. Solutions of
the nonlinear momentum and energy equations are obtained using the im-
proved spectral homotopy analysis method. Solutions were also generated
using the spectral-homotopy analysis method and benchmarked against

results in the literature.

Key words: Reiner-Rivlin fluid, Chebyshev spectral method, Spectral-homotopy analysis

method, Improved spectral-homotopy analysis method

1. INTRODUCTION

The boundary layer induced by a rotating disk arises in many engineering appli-
cations, for example, in computer storage devices, viscometry, turbo-machinery
and in crystal growth processes (Attia {4]). Since the pioneering study by von
Kérmén [39], research on swirling flows has been carried out by, among others,
Cochran [15] who proposed an improved solution to the von Karman formula-
tion based on a mixture of analytical and numerical techniques. Benton {12]
studied the impulsive rotation from rest of a disk in an infinite viscous fluid. He
improved Cochran’s solutions by first expanding the variables in a power series
and solving for the first two orders analytically, and then numerically computing
the next two orders.

The shooting method was used to solve the von Kdrman equations and to inves-
tigate heat transfer in porous medium in [19, 29, 30, 33, 35]. Numerical schemes
involving Runge-Kutta methods, finite element and finite difference approxima-
tions were used in [14, 18, 24] to study the effects of a rough disk surface on the
flow. The Crank-Nicholson implicit scheme was used in studies involving non-
Newtonian characteristic of the fluid [4, 5, 6, 8, 10, 33] and in Newtonian fluids
[7, 9, 11]. Perturbation techniques including the differential transform method
and Padé approximations (DTM-Padé), the variational iteration method (VIM)

and the homotopy perturbation method (HPM) were used in [1, 2, 31, 32, 34].
1
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Analytical methods such as the DTM and the homotopy analysis method (HAM)
were applied in, among other studies, [3, 17, 40, 37, 38]. These methods may
result in secular terms in the solutions, and may converge very slowly or may
even fail to converge for problems with strong non-linearity and/or with very
large parameter values. Some approaches may not be applicable at all for cer-
tain problems, for example, the DTM for unbounded domain problems. Motsa
et al. [22, 23, 25, 26, 27] proposed and applied a modification of the homotopy
analysis method that improves the performance of this method and removes
some restrictions associated with it. In general, the convergence of many nu-
merical methods depends on how good the initial approximation is to the true
solution. In this paper we present an algorithm that first seeks to improve the
initial “guess™ and then uses the spectral-homotopy analysis method to find so-
lutions to systems of nonlinear equations that govern the Reiner-Rivlin swirling
flow. This procedure considerably accelerates the convergence rate of the spec-
tral homotopy analysis method. Here we apply the improved spectral-homotopy
analysis method (ISHAM) to solve the nonlinear equations that govern the flow
of an electrically conducting Reiner-Rivlin fluid in the presence of Joule heating
and viscous dissipation. The governing equations were solved earlier by Sahoo
[33] using a numerical scheme that blends the finite difference scheme and the
shooting method. Solutions obtained are compared with those of Sahoo [33] and
against the ‘standard’ spectral homotopy analysis method.

2. EQUATIONS

We consider an mfinite rotating disk coinciding with the plane z = 0 with the
space z > 0 occupied by a viscous, incompressible Reiner-Rivlin fluid. The fluid
motion and heat transfer are governed by the equations (see [4, 5, 33]);

Z—?+%+%g:0’ (2.1)
P <u% +w0—1~j — Q;) +JB(2)u = %Tr: + a(;j + T:—;T; (2.2)
p <u% +w%+%) +oBjv = airzb +%§+2—:é, (2.3)

(Y 10 (T o
P \"ar "z ) T " \rar Uar 022

+u{<%>2+ (%)2} + o B2 (u® +v?), (2.5)
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with the following no-slip boundary conditions

wu=0, v=rQ, w=0, T=T, at 2=0

u—0, v—=0, p—=DPx, 1T —Th as z— 00, (2.7)

where the disk is rotating with a constant angular velocity €2 about the liner = 0
and an external uniform magnetic field is applied perpendicular to the plane of
the disk with a constant magnetic flux density By. The velocity components
in the directions of increasing r, ¢,z are u,v,w respectively. p is the density
of the fluid, o is the electrical conductivity of the fluid , u is the coefficient
of viscosity, & is the thermal conductivity, ¢, is the specific heat at constant
pressure of the fluid. The temperature of the fluid T, equals T, at the surface
of the disk. At large distances from the disk, T tends to To, where Ty, is the
temperature of the ambient fluid. The second term on the right hand side of
equation (2.5) represents the viscous dissipation while the last term represents
the Joule heating. The constitutive equation for the Reiner-Rivlin fluid is given
by

Tl = 2pe’. + 2/1466265 - péé, e§ =0, (2.8)
i.
J
tensor and u, is the coefficient of cross viscosity. The Reiner-Rivlin model is a

where p represents the pressure, 7% is the stress tensor, e;- is the rate of strain
simple model which can provide some insight into predicting the flow character-
istics and heat transfer performance for viscoelastic fluid above a rotating disk
[6]. The first term on the right hand side of (2.8) represents the viscous property
of the Aluid and the third term, the elastic property of the fluid. We introduce
the non-dimensional distance n = Z\/Q_/l/ measured along the axis of rotation

and the von Kdrman transformations [39];

T-Tw

u=1rQF v=rQGCG, w=VUQH, p—psx =—pvOP 6 =_——-—7—
Tw _Too

(2.9)

where F.G,H,P and © are non-dimensional functions of , v = p/p is the
kinematic viscosity. With these transformations equations (2.1) - (2.5) take the

form
H' +2F =0, (2.10)
F'~F?+G*~F'H-MF - %:(F’Q — 3G —2FF") =0, (2.11)
G' —G'H-2FG MG+ K(F'G'+ FG") =0, (2.12)
HH' + ;KH’H” ~-P —-H' =0, (2.13)
%e” ~ HO + Ec(F? +G"?) + MEc(F? + G*) =0, (2.14)
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with

F(0) = F(oc) =0, G0)=1, G(oo)=0, H(0)=0, (2.15)
P(oo) =0, ©(0)=1, O(c0) =0, (2.16)

where K = u./p is the parameter that describes the non-Newtonian charac-
teristic of the fluid, M = ¢ B2%/pQ is the magnetic interaction number, Pr is the
Prandt! number and Ec¢ is the Eckert number. The system (2.10) - (2.12) with
the prescribed boundary conditions (2.15) are sufficient to solve for the three
velocity components. Equation (2.13) can be used to find the pressure distribu-
tion at any point if required. Simplifying the equation system by substituting
equation (2.10) into (2.11), (2.12) and (2.14) yields

H"” - H'H + %H’H/ —2G?* - MH'
K 1

+3(§H”2 —-3G? -H'H") =0, (2.17)

K
G"—-HG'+H'G—- MG+ 5(H/G” ~-H'G") =0, (2.18)
1 1
Pie“ — HO' + EC(ZHN2 +G?) + MEC(ZH’Q +G* =0, (2.19)
-
stubject to the boundary conditions

H(0) = H'(0) = H'(00) =0, G(0) = ©(0) = 1, G(co) = O{c0) =0. (2.20)

In the following section we solve the nonlinear coupled system (2.17) - (2.19)
with boundary conditions (2.20) by the ISHAM.

3. METHOD OF SOLUTION

The main thrust of the method of solution [21, 28], is the improvement of the
initial approximation used in the higher order deformation equations of the spec-
tra! homotopy analysis method. A systematic approach is used to find optimal
initial “guesses” which are then used in the SHAM algorithm to accelerate con-
vergence. In the first instance we assume that solutions for H(n), G(n) and 6(n)
in equations (2.17) - (2.19) can be found in the form

i—1 i—1
H(n) = hi(n) + > h(n), G) =g:m)+ Y gm(m),  (3:21)
m=0

m=0
i—1
O(n) =6:(n) + bm(n), 1=1,2,3,...,
m=0
where h;, g; and 6; are unknown functions whose solutions are obtained using
the SHAM approach at the ith iteration and h,, , gm and O, (m > 1) are
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known from previous iterations. For m = 0, suitable initial guesses satisfying
the boundary conditions (2.20) are

ho(n) = =1 +e " +ne™". goln) =€, bo(n) =e™ " (3.22)

The initial guesses (3.22) are improved upon as follows. Substituting (3.21) into

the governing equations (2.17) - (2.19) gives

" 1" 7 ! "
api—1hy’ + a1 o1k + agi—1hy + azi—1hy +aqi19] + a5 i-19; — Ry Ry

1 1 1
+§h;h; — 297 + K(Zh;/Q — 39 — 5h;h,;”) =71, (3.23)
boi1g) +b1i-19; +bai16: + ba i1k + by iy +bs i 1hi — h.g;
K
+higi = =5 (hig! + hig}) = 21, (3.24)

1 / " ’ ’
c.i10] + c1io18; + coimihy Fesi1h +cairhi 519, + 6163

1 1
—Prh0; + EcPr(Zh;’z +gH+ MEcPr(th +97) = r3.i-1, (3.25)
subject to the boundary conditions
hi(0) = g;(0) = 0,(0) = 0, Ri(0) = hi(c0) =0, g;(o0) =8;(c0) =0. (3.26)

The coefficient parameters ag ;_1, bk -1, ckie1 (k=0,...,6), 71,1, r24—1 and

ryi—1 are defined as

K i—1 K i—1 i—1
an,i-1 = 1- 5 Z h;n'/ aji-1 = ? Z h;w/'z — Z h»m, (327)

m=0 m=0 m=0
i—1 K i—1 i—1
Gaam1= Y My~ M= 3BT azia=-) hn, (328)
m=0 m=0 m=0
i—1 i—1
agi—1 = —6K Z G @51 = —4 Z Gm (3.29)
m=0 m=0
K 1—1
boi-1=1— 5 Z R (3.30)
m=0

i—1 K i—1 i~1
brici == = S W b= b, —M, (3.31)
m=0

m=0 m=0
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K i—1 i—1 K i—1
b?i.zAI = _5 Z g:na b4.'if1 = Z 9m — ? g;:n (332)
m=0 m=0 m=0

1—1
bs.io1 = — Z g:n'/ (3~33)

m=0
_ 1 i—1
coi-1=1, cri_1=—FPr Z hin, C24-1 = §ECPT Z Ry, (3.34)
m=0 m=0
=1
- S — /
e §PrEcM ZO B, ciiy=—Pr nzoem, (3.35)
i—1 1—1
Crim) = 2B¢PT Y gl coio1 =2PrMECY g, (3.36)
m=0 m=0

i—1
Pl = — |:Z h/// Z h‘m Z Ry + = Z hm Z h (337)

m=0 m=0 m=0
-2 Z gm Z Gm
m=0
Z i—1 i—1 1 i—1 i—1
K<—zh:;zh;;—szg:nzg:n~-zh:nzh:;:)},
4 m=0 m=0 m=0 m=0 2 m=0 m=0
== |- z b St 55 16 S
m=0 m= 0 m=0 m=
K i—1
+—2- <Z By Z hy Z gm>j| , (3.38)
m=0 m=0 m=0
i1 1 2
ryacy = | > On—Pr Z - Z 0 + PrEc (Z h;;) (3.39)
m=0 m=0 m=0 m=0
i1 2 i1 2 i-1 2
+ <Z gin> + PrMEc <Z hin) + <Z gm)
m=0 m=0 m=0

Starting from the initial guesses (3.22), the subsequent solutions h;, g; and ;
(i > 1) are obtained by recursively solving equations (3.23) - (3.25). To solve
equations (3.23) - (3.25), we start by defining the following linear operators

OPH; O?H; OH,;
Ln[Hi(n:a),Gi(n: )] = a0,i—1— 5 e +a1i-14 5 o +az,i-1—7—- an +a3,i-1H;

114



ON A LINEARISATION METHOD FOR REINER-RIVLIN SWIRLING FLOW 7

0G;
+a4,1‘,~1£ + as,i-1Gi, (3.40)
on
82gL ag 827_‘1
115 q), YT, bo,i— b i i~1Y4 b3,
Ly[Hi(n:q). Gi(n: )] = bo, YaE + by, B +02,i-1Gi +b3i-1——5 e
OH;
+bai1—— an +bs 1M, (3.41)
9%0, 00 9*H,
LoH:(m:9),G:i(m:¢), Qi q)] = coi1—5—> o +C1 4 lan +C2,i~1‘5;2—
OH; o0
351 —=— + Cai Hi + C5.1ﬁ~1_g + c6,i-1Gs, (3.42)

on ’ T O

where g € [0, 1] is the embedding parameter, and H;(n;q) , Gi(7; ¢) and ©;(n; q)
are unknown functions. The zeroth order deformation equations are given by

(1 — @) La[Hi(n:q) — hiom)] = ah AN Hi(7;9). Gi(15:9)] — 71,1},
(1 —q)Ly[G:(m: ) — gio(m)] = qh AN Hi(m:9), Gi(n5 9)) — r2,i-1},
(1 —q)Lo[O:(m:q) — Bio(m)) = qh {Ns[Hi(n; @), Gi(n: @), ©:(m; )] — 734-1},

where h is the non-zero convergence controlling auxiliary parameter and Ny, Ny

and Np are nonlinear operators given by

OPH; 1 (oM
NalPs (07,60 = Ll )Gl — i 5+ 5 ()

M, 1/ 0°H,\° 8Gi\* 10M, 0°H,
~2G2 - M—=+ K - *) - e 4
oM {4<3n2> 3<0n> 2oy o | Y

9 6,9 _ yg,
on on

NoHi(m;9). Gi(n; )] = Lo[Hi(n; ), Gi(ms )] — Hi——
K {OH 092G, 93, ami}
on On? on On?

(3.44)

NI, 0r:0). G0 :0). €407 0)) = Lal (i), G ) €4 o )] — ProgH,

PHN\® [0G:\° oM, )
+PrEr{ <(),, ) +<87/> + PrMEc 4<Bn> +G2Y . (345)

Differentiating (3.43) - (3.45) m times with respect to ¢ and then setting g = 0

and finally dividing the resulting equations by m! yields the mth order deforma-
tion equations

Eh[hi,m (U) - thl m—1 (7])] = ﬁ‘R;LWU (346)
L:f)[gz,n (77) XmYim~1 7])] = hRfme (347)
Lol00an(n) = Xmbim—1(M)] = AR, (3.48)
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subject to the boundary conditions

him(0) = h;»,”(()) - h’ilm<oo) = gim(0) = gim(00) = 0, m(0) = 8i.m(00) =0,

(3.49)
where
Rl = aoicrhiimoy +ari-1h o +azicthim o +a3i-1him-1
+(l4,1719;,mf1 + a5,i-19im -1 = Mh;fmgl =71 (M = Xm)
m—1
1
+ Z (_h‘iynh;/,m—l—n + 5 ‘;;nh;',nn—lfn - 2,gi,ngi,m—lvn)
ne0
n m_l 1 1
+K Z (Z ;,n I’:.'/,m—lvn - 3gv/'ug;n—l—n - véhlnh‘m‘l—n)? (350)
n=0
RS, () = boic1Gmo1 tb1i1Gim—1 T b2i 1Gim—1 +b3ic1h 1
+b4,741h/,,.m_1 + bS,i—lhi,m~l ~Mgim-1 — 7'2,1'—1(77)(1 - Xm)
m—1
-+ Z (ll'/i.ngl.m——l—n - g;,n}lf'l,.m—l—n)
n=0
K m—1
5 ( l;<ng;:7vl—1-n + 3.0;1]7‘/7;-1—71)’ (351)
n=0
RO () = coimrb oy + iy +eainihl o + 4esimthi g
44 im1him—1 + €50 19} -1 + C6.i-1Gim—1
m—1
“Pr Y O hneion — a1 ()1 = Xon)
n=0
m—1
+MEcPr Y (47 Wy + GenGim-1-n) (3.52)
n=0
m—1
+ECPT Z (471hlrih‘;/nAl—n + g;7ng£,m41—n) 3
n=0
and
0, m<l1
= ’ - . 3.53
X777, { 17 m > 1 ( )

The initial approximations h; g , gi¢ and ;¢ that are used in the higher order
equations (3.46) - (3.48) are obtained by solving the linear part of equations
(3.23) - (3.25) given by

1t 17 ! '
ao.i—1hio +ariah g Fazioihi g +azio1hio+asi-1950
+asi-19:i0 = T1.i-1, (3.54)

boi1900 +b1ic1950 + b2ic19i0 + b3i—1hi o+ bai1hl g
+b5i-1hio = T24-1, (3.55)

" / H ’
co,i-107 ¢+ cri-10; 0 + c2,i-1h5g +cai-1hi o+ cai-1hio
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+C5i-1G00 + Co.im19i0 = T84—1 (3.56)

with the boundary conditions
hio(0) = 1 o(0) = hf o(00) = gi0(0) = gi,0(00) = 0i,0(0) = 0 0(c0) = 0. (3.57)

It is worthwhile to note at this stage that the initial approximate solutions are
no longer just hg, go and g but h; o, gi0 and 8, ¢ at the ith iteration. Essentially,
this procedure allows for the improvement of the initial guesses at each itera-
tion. Since the right hand side of equations (3.54) - (3.56) for ¢ = 1,2,3, ..., are
known from previous iterations, the equations may be solved using any numeri-
cal method. In this work, we apply the Chebyshev spectral collocation method
to integrate equations (3.54) - (3.56). The method is based on the Chebyshev
polynomials defined on the interval [—1,1] by

Tw(€) = cos[k cos 1 (£)]. (3.58)

We first transform the physical region [0,00) into the region [—1,1] using the
domain truncation technique. The problem is solved in the interval [0, L] instead
of [0,00). This leads to the following algebraic mapping
2
£ = #4, ¢el-1.1], (3.59)
where L is the scaling parameter used to invoke the boundary condition at infin-
ity. The Chebyshev nodes in [—1, 1] are defined by the Gauss-Lobatto collocation
points [13, 36] given by
) .
szcosﬁ, Eel-1,1] 5=0,1,...,N, (3.60)
where NV is the number of collocation points. The variables h;o(7) , gi,0(7) and
0, 0(n) are approximated as truncated series of Chebyshev polynomials of the

form

hiio(f)%hﬁ\,{o(fj) = hio(€)T1k(é;), §=0,1,...,N, (3.61)

gLD(E) ~ 91]\]0(6]) = gi,O(Ek)TZ,k(fj)’ .] = 07 1) R Nv (362)

Il

1= 1= 114

o
Il
=)

0i0(€) ~ 070(E) 0i0(€)T5k(8;), 5=0,1,....N, (3.63)
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where T , T and Ty are the kth Chebyshev polynomials. Derivatives of

the variables at the collocation points are represented as

dThz‘U d gi.0 d 07 0
e fZD hoal8;): =57 ZDWO ) ZD Bi0(€;),

k=0

(3.64)

where r is the order of differentiation, D = %’D and D is the Chebyshev spectral
differentiation matrix. Substituting equations (3.61) - (3.64) in (3.53) - (3.56)
yields

B 1Xi0=Qi-1. (3.65)
subject to the boundary conditions
N N
S Dokhio(€e) =0, > Dwrhio(€) =0, hio(€n) =0, (3.66)
k=0 k=0
giol€o) =0, giol€y) =0, 3.67)
0:.0(60) =0, Bio(€n) =0, (3.68)
where
By Bz Bis
B 1=| Ba Ba2 By |,
Bs1 Bs2 Bag

By =ag; 1D*+a;, 1D* +as,.1D+ay; 11,
By =as ;1D +as 11, (369)

Bis =0I, Bs =bs; 1D*+bs, 1D +bs,;1L
Bas =bgi_1D? + by ,_1D +bs,; 11, Bas = 0L

2
B3y =cp;1D” +¢3,.1D +cq 11, Bsy = ¢5,21D + ¢ 411,
Bas = co;1D? +¢1,,1D,

Xio = [hiol€g), hiol€r), - hio(€n)r 9i.0(60) 960061, -5 gi0(En)s
0:0(60),05.0(81), -, B0 (M),

Qi 0= [7‘1 iq("]o),ﬁ,ivl(?h)y s 77‘1.1'—1(771\1)7 7'2,i—1(770)7
251001 )5 21 (0N )

r3.6-1(00) rai—1(m), - 731 ()]

In the above definitions T stands for transpose, I is an (N +1) x (N +1) identity
matrix and ag i1, bgi—1 and ¢5;1 (k=0,...,5, s=0,...,6) are diagonal
matrices of size (N +1) x (N + 1). After modifying the matrix system (3.65) to
incorporate the boundary conditions, the solution is obtained as

Xio=B;1Q ;. (3.70)
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Similarly, applying the Chebyshev spectral transformation on the higher order
deformation equations (3.46) - (3.48) gives

B'i,—IXi.m = (Xm + h)BiAIXi,m—l - h(l - X'm,)Q'L—l + h‘Pi,m“lv (371)

subject to the boundary conditions

N N

> Dorhim(E) =0, > Dakhim(§) =0, him(Ey) =0, (3.72)
k=0 k=0
91.171(60) =0, Gim (gl\/) =0, (3'73)
()mn (E()) =0, 911.m(£[\/) =0, (374)

where B;_; and Q,_,, are as defined in (3.69) and
Xz,m = [hl.’"l(EO)a hmn,(€1)7 ce ,hi.m(f/\{)vgi.m(éo)a.‘]i,m(fﬂv cen »gi,m(éN),

Hz',m('g(])a ei,rn (El)v e -,97',,771(£N)]Ta (375)
Pinot = [P POl PO (3.76)
m—1
1
Pi(_i,)L,1 = Z |:'2_Dhi,nDhi,m—lfn - hi,nD2hi,m—1—n - 29i,ngi,m—1—n:|
n=0

m—1

1
+I( Z |:ZD2hi,nD2hi,7n—1—n - 3Dgi’ani'7n41_n:l
n=0

m—1

1 .
K Z {iDhignDl}hi,m—]—n )
n=0
m—1
Pf?y)l—l = Z [Dhi,ngi,m~1—n - Dgi,nhi‘m-&‘n]
n=0
m—1 K
B Z I:E (Dh’i-,nD2gi.m—l—n + Dghz,ani.m—l—-n):\ »
n=0
m—1 1
(3) 2 2
P = Prlc -D }an lzm—— -n D 7 D im—1—
iom—1 T (;0{4 Yin 4, 1 + ginIGi, ]n]

m—1

1
+Pr Z {]\]EC <ZDllijnDhi.m—l—n + gi,n.@i.m—l—n):l

n=0
m—1

—Pr Z [DGln hi.m.*l‘n} .

n=0
The boundary conditions (3.72) - (3.74) are implemented in matrix B;_; on
the left hand side of equation (3.71) in rows 1, N, N +1, N + 2, 2(N + 1)
2N + 3 and 3(N + 1) respectively as before with the initial solution above. The
corresponding rows, all columns, of B;_1 on the right hand side of (3.71), Q; 1
and P,,_; are all set to be zero. This results in the following recursive formula
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for m > 1.

Xim = Oom + BB Ximo1 + AB [Pimo1 — (1= x,,)Qi 1],
(3.77)

where B;_; is the modified matrix B;_; on the right hand side of (3.71) after
incorporating the boundary conditions (3.72) - (3.74). Thus starting from the
initial approximation, which is obtained from (3.70), higher order approxima-
tions X (&) for m > 1, can be obtained through the recursive formula (3.77).
The solutions for h; , g; and 6; are then generated using the solutions for h;, ,

Gi.m and 8, ., as follows

hi = hso+ hig +hig +hiz + -+ him, (3.78)
i =giotgi1+tgi2+gi3+ -+ Gims (3.79)
0, =0i0+0;1+0;2+g.3+ -+ 0im (3.80)

The [i.m] approximate solutions for h(n) , g(y) and 8(n) are then obtained by
substituting h; , g; and #; which are obtained from (3.78), (3.79) and (3.80) into
equation (3.21). where i represents the ith iteration of the initial approximation
and m represents the mth iteration of the spectral homotopy analysis method.

4. CONVERGENCE THEOREM

The approximate solutions of the nonlinear equations are generated using the
higher order deformation equations (3.46) - (3.48). The right hand sides of these
equations are governed by the unknown functions H;(n; ¢), G:(n; ¢) and ©(n; q).
As the embedding parameter q gradually increases from 0 to 1, the solutions

vary from the initial approximations to the exact solutions, i.e.

Hi(n:0) = hio(n), and H(m;1) = hi(n), (4.81)
Gi(m:0) = gio(n), and Gi(n;1) = gi(n), (4.82)
0i(m:0) = 0i0(n), and Oy(n; 1) =0i(n). (4.83)
Expanding H;{n;q), G:(n: ¢) and ©;(n; ¢) using the Taylor series expansion about
q yields
- m 1 amHl ;
Hiniq) = hiol) + D him (™, him, (n) = ;}—,ng—) (4.84)
m=1 a : q=0
S m 1 0™Gi(niq
Gmia) = giom)+ > GimMT™ i, (1) = m—aq(,r—) ,(4.85)
m=1 ” g=0
s m 1 8"“(-)1- 773
@1(77(]) = Hz',()(”/) + Z sz(n)q | 97’,.m, (7]) = g—aqi}i)' (486)
m=1 ) g=0
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We note that at ¢ = 1 the series becomes the exact solutions

Hi(m 1) = hi(n) = hion) + Z him (1), (4.87)

Gip1) = gi(n) =giolm) + D gim(n), (4.88)
m=1

0, 1) = 6u(n) =0iom) + Y Oim(m)g™ (4.89)
m=1

For validity of the solutions generated by these equations, it is important to show
that these series converge at ¢ = 1. As stated earlier, the SHAM is a hybrid
method founded on the HAM. We kindly refer readers to Liao’s proof [20, ch.3]

since the higher order deformation equations are similar in the two methods.

5. RESULTS AND DISCUSSION

In this section we present and discuss results computed using the improved spec-
tral homotopy analysis method, the original spectral homotopy analysis method
and the numerical bvpdc routine which is based on Runge-Kutta schemes. Com-
parison is also made between the current results and those in the literature. For
our simulations we used A = —1, L = 30 and N = 150. The CPU run times (RT)
in seconds are shown for the ISHAM and SHAM for comparison of computational
efficiency.

TaBLE 1. Benchmark results for the approximate radial shear

stress F/(0) at different orders [i,m] of the ISHAM with the

bvpde and Sahoo [33] for different values of M when Pr =
0.71, K =0.

M (1,1 RT (2,2] RT Numerical Ref (33]
0 0.51083620 0.1286 0.51023262 0.1143 0.51023262 0.510214
0.4 0.40501875 0.1149 0.40557564 0.1140 0.40557565 0.405575
0.8 0.33564882 0.1164 0.33508970 0.1155 0.33508970 0.335090
1.0 0.31004423 0.1153 0.30925799 0.1146 0.30925799 0.309259
10 0.10384518 0.1201 0.10531004 0.1126 0.10531004 0.105310
16 0.08235395 0.1172 0.08330263 0.1119 0.08330263 0.083303
18 0.07771253 0.1188 0.07854454 0.1117 0.07854454 0.078545
20 0.07378272 0.1170 0.07451802 0.1119 0.07451802 0.074518
50 0.01693143 0.1133 0.04713867 0.1108 0.04713867 0.047139
100 0.03326500 0.1135 0.03333302 0.1130 0.03333302 0.033334

Tables 1 and 2 present approximate solutions of the shear stresses in the radial
F’(0) and tangential —~G’(0) directions respectively. The results are computed
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for a Newtonian fluid (K = 0) and for different values of the magnetic parameter
M. We note that the ISHAM approximate solutions for both F'(0) and —G’(0)
converge to the numerical solutions at 2nd order approximations for up to 8
decimal places. Comparison with Sahoo [33] shows a good agreement. The effect
of the magnetic parameter on the Newtonian fluid shows that F”(0) decreases

while —G'(0) increases as M is increased.

TaBLE 2. Tangential shear stress —G’(0) at different orders
[i.7n] of the ISHAM, bvpdc and Sahoo [33] for different values
of M when Pr =0.71, K =0.

M [1,1] RT [2,2] RT Numerical Ref [33]
0 0.61499561 0.1209 0.61592201 0.1132 0.61592201 0.615909
0.4 0.80314224 0.1257 0.80237637 0.1136 0.80237636 0.802376
0.8 0.98432782 0.1151 0.98360710 0.1143 0.98360710 0.983607
1.0 1.06924679 0.1207 1.069056336 0.1158 1.06905336 1.069053
10 3.16526084 0.1225 3.16490669 0.1124 3.16490669 3.164907
16 4.00186131 0.1251 4.00130088 0.1126 4.00130088 4.001301
18 4.24429674 0.1235 4.24373111 0.1146 4.24373111 4.243731
20 4.47362668 0.1358 4.47306710 0.1119 4.47306710 4.473067
50 7.07163149 0.1199 7.07130349 0.1139 7.07130349 7.071303
100 10.00024893  0.1227  10.00008333  0.1111 10.00008333 10.000083

The radial shear stress when M = 2 and for different values of K is presented
in Table 3. For validation of the current method, and to determine the effect
of improving the initial guesses, we compare the results against the numerical
solution. For convergence of the method the results are compared with the
‘standard’ spectral homotopy analysis method for the same values of N, L and
fi. For 0 < K < 2 the ISHAM converges at 2nd order while the SHAM would
not have converged even at the 8th order for some values of K. Comparatively
therefore the ISHAM converges much faster than the SHAM. This is clearly seen
in Table 4 where the absolute errors in the solution are given.

In Table 5, the tangential stress results obtained using the ISHAM and the
SHAM are compared with the numerical results when M = 2 and for different
values of K. Convergence of the ISHAM to the numerical solutions was achieved
at the 2nd order of approximation. When using the SHAM convergence to the
numerical solution was achieved at the 8th order for values of K up to 2. It is
also clear that the ISHAM is computationally much more efficient compared to
the SHAM. A comparison of the absolute errors is made in Table 6 where the
fast convergence of the ISHAM when compared with the SHAM is confirmed. It
is worth noting that the SHAM converges faster for —G'(0) compared to F'(0).
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TABLE 3. Radial shear stress F’(0): A comparison of the con-
vergence rate of the ISHAM and SHAM to the numerical solu-
tions for different values of K when M =2, Pr =1, Ec=0.3.

ISHAM SHAM

K [1,1] (2,2] Numerical 2 8

0.0 0.23039754 0.23055912 0.230565912 0.23051941 0.23055926
0.4 0.51021898 0.51277769 0.51277769 0.51271021 0.561277764
0.8 0.77142224 0.77299784 0.77299784 0.77296707 0.77299784
1.2 0.99900210 0.99668062 0.99668062 0.99662531 0.99668062
1.6 1.18783561 1.18425675 1.18425675 1.18437955 1.18425667
2.0 1.33945767 1.34211178 1.34211178 1.34210513 1.34211213

TaBLE 4. Comparison of the absolute errors in the ISHAM and
SHAM solutions for different values of K when M = 2, Pr =

1, Fce=0.3.
ISHAM SHAM
K 1.1 2.2] 2 8
0.0 0.00016158 0.00000000 0.00003971 0.00000014
0.4 0.00255871 0.00000000 0.00006748 0.0000005
0.8 0.0015756 0.00000000 0.00003077 0.00000000
1.2 0.00232148 0.00000000 0.00005531 0.00000000
1.6 0.00357886 0.00000000 0.00012280 0.00000008
2.0 0.00265411 0.00000000 0.00000665 0.00000035

This is due to the differences in the level of nonlinearity of the equations of F(n)
and G(n). For the ISHAM however, convergence has not been affected by this
difference in the nonlinearity of functions. This there appears to be an added
advantage of the ISHAM over the SHAM.

Table 7 gives a comparison of the convergence rate of the ISHAM and the SHAM
versus the numerical solutions for F'(0) for different values M when K = 1.
Convergence to the numerical solution is achieved at 2nd order of the ISHAM
and at the 8th order of the SHAM. The absolute errors are shown in Table 8. In
Table 9 the ISHAM and the SHAM solutions are compared with the numerical
solutions for different values M when K = 1. An increase in the tangential shear
stress is observed with an increase in M. The absolute errors are shown in Table
10. The nonlinearity of the equations has no effect on the convergence of the
ISHAM.
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TABLE 5. Comparison of the approximate solutions of —G'(0)
at different ISHAM and SHAM orders against the numerical
solutions for different values of K when M =2, Pr = 1, FEc =

0.3.
ISHAM SHAM

K (1.7 [2,2] Numerical 2 8

0.0 1.44053856 1.44209401 1.44209401 1.44206605 1.44209401
RT 0.1225 0.1125 0.2423 0.6168
0.4 1.49006904 1.49157841 1.49157841 1.49155902 1.49157841
RT 0.1214 0.1231 0.2589 0.6843
0.8 1.565193969 1.55323222 1.55323222 1.55322026 1.55323222
RT 0.1233 0.1121 0.2378 0.6819
1.2 1.62016082 1.62071752 1.62071752 1.62069708 1.62071752
RT 0.1199 0.1129 0.2626 0.6563
1.6 1.68975142 1.68973507 1.68973507 1.68973529 1.68973507
RT 0.1249 0.1192 0.2415 0.6850
2.0 1.75748201 1.75808304 1.75808304 1.75808336 1.75808306
RT 0.1264 0.1150 0.2484 0.6638

TaBLE 6. Comparison of the absolute errors in the ISHAM and
SHAM solutions compared to the numerical solution for differ-
ent values of K when M =2, Pr=1, Ec=0.3.

ISHAM SHAM

K [11] 2.2] 2 3

0.0 0.00155545 0.00000000 0.00002796 0.00000000
0.4 0.00150937 0.00000000 0.00001939 0.00000000
0.8 0.00129253 0.00000000 0.00001196 0.00000000
1.2 0.00055670 0.00000000 0.00002044 0.00000000
1.6 0.00001635 0.00000000 0.00000022 0.00000000
2.0 0.00060103 0.00000000 0.00000032 0.00000002

Table 11 shows the heat transfer coeflicient —©’(0) at different orders of the
ISHAM compared against numerical results for different values of M, Pr, and
Ec¢ when K is fixed. For all cases convergence of the ISHAM approximate
solutions to the numerical solution is achieved at 2nd orders of approximations.
For a fixed value of K, increasing M, Pr, and Ec decreases —©'(0). For all
results with CPU run times, the ISHAM has shown great computer efficiency
as well. In all simulations the run times are significantly lower with the ISHAM
than with the SHAM.
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TABLE 7. Comparison of the approximate solutions of F’(0) at
different [i, m] orders of the ISHAM, SHAM orders and against
the numerical solutions for different values of M when K =

1, Pr=1, Ec=023.

17

ISHAM SHAM

M [1.1) (2,2] Numerical 2 4 8
0.0 0.74463163 0.74587441 0.74587441 0.74622472 0.74622472 0.74587397
0.5 0.76094065 0.75531485 0.75531485 0.75531092 0.75531501 0.75531485
1.0 0.79380816 0.79227536 0.79227536 0.79227047 0.79227489 0.79227536
1.5 0.83043422 0.83953516 0.83953516 0.83950410 0.83953434 0.83953516
2.0 0.86716576 0.88962012 0.88962012 0.88957427 0.88962074 0.88962012

TABLE 8. Comparison of the absolute errors for the approxi-

mate solutions of F’(0) at different [z, m] orders of the ISHAM,

SHAM orders and against the numerical solutions for different

values of M when K =1, Pr=1, Fc=0.3.

ISHAM SHAM

M [1,1] [2,2] 2 4 8
0.0 0.00124279 0.00000000 0.00035031 0.00003159 0.00000044
0.5 0.00562580 0.00000000 0.00000393 0.00000016 0.0000000
1.0 0.00153280 0.00000000 0.00000489 0.00000047 0.00000000
1.5 0.00910094 0.00000000 0.00003106 0.00000082 0.00000000
2.0 0.02245436 0.00000000 0.00004585 0.00000062 0.00000000

TABLE 9. Comparison of the approximate solutions of —G’(0)

at different ISHAM and SHAM orders and against the numerical

solutions for different values of M when K =1, Pr=1, Ec=

0.3.

ISHAM SHAM

M {1,1] (2,2] Numerical 2 4 8
0.0 0.77672002 0.77834765 0.77834765 0.77854199 0.77836167 0.77834730
0.5 1.01294536 1.01069483 1.01069483 1.01070160 1.01069527 1.01069483
1.0 1.22319102 1.22367051 1.22367051 1.22366267 1.22367003 1.22367051
1.5 1.40999393 1.41449208 1.41449208 1.41447134 1.41449166 1.41449208
2.0 1.57840020 1.58657262 1.58657262 1.58655736 1.58657305 1.58657262
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TaBLE 10. Comparison of the absolute errors for the approx-
imate solutions of —G’(0) at different ISHAM and SHAM or-
ders and against the numerical solution for different values of

M when K =1, Pr=1, Ec=0.3.

ISHAM SHAM
M [1,1] [2,2] 2 4 8
0.0 0.00162763 0.00000000 0.00019434 0.00001402 0.00000035
0.5 0.00225053 0.00000000 0.00000677 0.00000044 0.0000000
1.0 0.00047949 0.00000000 0.00000784 0.00000048 0.00000000
1.5 0.00449815 0.00000000 0.00002074 0.00000042 0.00000000
2.0 0.00817242 0.00000000 0.00001526 0.00000043 0.00000000
TABLE 11. Heat transfer coefficient —@’(0) at different [i,m]
orders of the ISHAM compared with the numerical solutions
for different values of M, Pr and Fc when K = 1.
M Pr Ec [1,1] [2,2] (3,3] [4,4] Numerical
0 0.33894036  0.33798332  0.33798332  0.33798332  0.33798332
0.5 1 0.3 018638822 0.18165630 0.18165630  0.18165630  0.18165630
1.0 0.07138752  0.05317238  0.05317238 0.05317238  0.05317238
1.5 -0.01803593 -0.05185078 -0.05185078 -0.05185078 -0.05185078
3 0.13954354  0.13959137  0.13959137  0.13959137  0.13959137
05 5 0.3 0.00576310 0.00730445 0.00730445  0.00730445  0.00730445
7 -0.15265228 -0.15060972 -0.15060972 -0.15060972 -0.15060972
10 -0.40767193  -0.40565482 -0.40565482 -0.40565482 -0.40565482
1 -0.32997005 -0.33670269 -0.33670269 -0.33670269 -0.33670269
05 1 3 -1.80527938 -1.81772838 -1.81772838 -1.81772838 -1.81772838
6 -4.01824339 -4.03926691 -4.03926691 -4.03926691 -4.03926691
9  -6.23120739 -6.26080545 -6.26080545 -6.26080545 -6.26080545

Figures 1 - 2 show the effect of M and K on the radial and axial velocity profiles

respectively. Increasing M reduces the radial component of the velocity while

increasing K enhances F. The axial velocity H(n) increases with the magnetic

parameter but decreases when K is increased. There is excellent agreement
hetween the second order ISHAM solutions for F(n) and H(n) and the numerical

result.

The tangential velocity component and the temperature profiles are show in
Figures 3 - 4 for different values of M and K respectively. An increase in M
reduces G(n) while enhancing the ©(n). When K values are increased both G(n)

and ©(7) decrease.
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FIGURE 1. On the comparison between the 2nd order ISHAM
solution and the numerical solution (solid line) for F'(n) at dif-
ferent valuesof M (K = 2)and K (M = 1) when Pr =1, Ec=
0.3.

Him

FIGURE 2. On the comparison between the 2nd order ISHAM
solution and the numerical solution (solid line) for —H(n) at
different. values of M (K = 2) and K (M = 1) when Pr =
1, Ee=0.3.

In Figure 5 temperature profiles are presented for varying values of Pr and Ec.
The temperature decreases with increasing Prandtl numbers while an increase

in the Eckert number enhances the temperature.

6. CONCLUSION

A novel approach for accelerating the convergence of the spectral homotopy anal-
ysis method that is used to solve nonlinear equations in science and engineering
has been proposed and applied successfully to the nonlinear system of equations
governing the Reiner-Rivlin fluid in with Joule heating and viscous dissipation.
The primary objective of the algorithm is to improve the initial approximate
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FIGURE 3. On the comparison between the 2nd order ISHAM
solution (figures) and the bvpdc numerical solution (solid line)
for G(ny) at different values of M (K = 2) and K (M = 1) when
Pr=1, Ec=0.3.
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FIGURE 4. On the comparison between the 2nd order ISHAM
solution (figures) and the bvp4c numerical solution (solid line)
for ©(n) at different values of M (K = 2) and K (M = 0.1)
when Pr =1, Ec=0.3.

solution. The imnproved approximations are then used in the algorithm of the
spectral-homotopy analysis method to reduce the number of iterations required
to achieve convergence and better accuracy. The shear stresses in the radial
and azimuthal directions were computed and the corresponding absolute errors
determined. Convergence to the numerical solutions of the ISHAM approximate
solutions was achieved at the 2nd orders for all flow parameters while the SHAM
converged at the 8th order for some of the flow parameters.

The effects of flow parameters was also investigated for the radial and tangential
shear stresses for both the Newtonian (K = 0) and non-Newtonian (K # 0)
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FIGURE 5. On the comparison between the 2nd order ISHAM
solution (figures) and the bvpdc numerical solution (solid line)
for ©(n) at different values of Pr (Ec = 0.3) and Ec (Pr =1)
when M =0.1, K =1, L=230, N =150.

cases. For the Newtonian case, increasing M reduces F’(0) and enhances —G’(0)
while in the non-Newtonian case increasing M enhances both F/(0) and —G'(0).
The effect of K and M was determined and it was observed that an increase in
K results in an increase in F(n), and a decrease in H(n), G(n) and ©(n) while
increasing M increases H(n) and ©(n) while both F(r) and G(n) decreases.
©(n) decreased with an increase in the Fc and decreased with an increase in Pr.
The success of the ISHAM in solving the non-linear equations governing the von
Karman flow of an electrically conducting non-Newtonian Reiner-Rivlin fluid in
the presence of viscous dissipation, Joule heating and heat transfer proves that
the ISHAM fits as a newly improved method of solution that can be used to
solve non-linear problems arising in science and engineering.
Acknowledgements. The authors wish to acknowledge financial support from the
University of KwaZulu-Natal and the National Research Foundation (NRF).
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Chapter 4 — On heat transfer in rotating disks flows

4.2. A note on the solution of the von Karman equations using series

and Chebyshev spectral methods >

Corrigenda

The following corrections and further explanations have been added in this section;

(i) Below we is the geometry of the problem;

Figure 4.2: Flow configuration of the von Kamarn swirling flow (Shanbghazani et al., 2009).

(ii) On page 11 a different dimensionless variable m; in equations (5.1) and (5.2) should

have been used.

27. G. Makukula, P. Sibanda and S. S. Motsa (2010). Boundary Value Problems Volume 2010, Article ID

471793, 17 pages doi:10.1155/2010/471793 (Impact factor; 1.047)
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Chapter 4 — On heat transfer in rotating disks flows

Further explanation
On pages 14 and 15, Tables 5 and 6, the collocation points used were N = 120 compared to
N = 60 in the previous Tables. This necessary since increasing the parameter values s and m

increased the nonlinearity of the equations.
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The classical von Karman equations governing the boundary layer flow induced by a rotating
disk are solved using the spectral homotopy analysis method and a novel successive linearisation
method. The methods combine nonperturbation techniques with the Chebyshev spectral
collocation method, and this study seeks to show the accuracy and reliability of the two methods
in finding solutions of nonlinear systems of equations. The rapid convergence of the methods is
determined by comparing the current results with numerical results and previous results in the
literature.

1. Introduction

Most natural phenomena can be described by nonlinear equations that, in general, are not
easy to solve in closed form. The search for computationally efficient, robust, and easy to
use numerical and analytical techniques for solving nonlinear equations is therefore of great
interest to researchers in engineering and science. The study of the steady, laminar, and axially
symmetric viscous flow induced by an infinite disk rotating steadily with constant angular
velocity was pioneered by von Karman [1]. He showed that the Navier-Stokes equations
could be reduced to a set of ordinary differential equations and solved using an approximate
integral method. His solution, however, contained errors that were later corrected by Cochran
{2] by patching together two series expansions.

Numerical and semianalytical methods including the cubic Hermite finite element,
pseudospectral, Galerkin-B-Spline, and Chebyshev-collocation methods have been used
previously to find solutions of the von Karman equations [3-6]. These methods have
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2 Boundary Value Problems

their shortcomings, including instability, and hence the last few decades have seen the
popularization of a number of new perturbation or nonperturbation techniques such as the
Adomian decomposition method [7], the Lyapunov artificial small parameter method [8],
the homotopy perturbation method [9, 10], and the homotopy analysis method [11].

The homotopy analysis method (HAM) was used recently by Yang and Liao [12] to
find explicit, purely analytic solutions of the swirling von Kdrmén equations. Turkyilmazoglu
[13] used the homotopy analysis method to solve the equations governing the flow of a
steady, laminar, incompressible, viscous, and electrically conducting fluid due to a rotating
disk subjected to a uniform suction and injection through the walls in the presence of a
urtiform transverse magnetic field. For this extended form of the von Kdarmam problem,
the homotopy analysis method, however, produced secular terms in the series solution.
Turkyilmazoglu [13] overcame this weakness by using initial guesses based on Ackroyd's
(see the work of Ackroyd [14]) exponentially decaying functions, and a new linear operator
which resulted in a method capable of tracking the shape of the exact solution. An alternative
approach that serves to address these and other limitations of the HAM is the spectral
homotopy analysis method; see the work of Motsa et al. {15, 16]. It is an efficient hybrid
method that blends the HAM algorithm with Chebyshev spectral methods. The method
retains the proven qualities of the HAM while effectively using Chebyshev polynomials as
basis functions to ensure rapid convergence of the solution series. A novel quasilinearisation
method—the successive linearisation method (see the work of Makukula et al. [17] and
Motsa and Sibanda [18])—promises further improvement in accuracy and convergence rates
compared to both the HAM and the SHAM.

In this study we apply the spectral homotopy analysis method (SHAM) and the
successive linearisation method (SLM) to solve the von Karman equations. The results
are compared with those in the literature [11, 12] and against numerical approximations.
Comparison of current results is further made with the recent results of Turkyilmazoglu
[13] that include suction/injection and an applied magnetic field. We show, inter alia, that
notwithstanding the fact that these two methods may involve more computations per step
than the HAM, both the SHAM and SLM are efficient, robust, and converge much more
rapidly compared to the standard homotopy analysis method.

2. Governing Equations

Our focus in this section is on the original von Karmén equation for the steady, laminar,
axially symmetric viscous flow induced by an infinite disk rotating steadily with angular
velocity Q about the z-axis with the fluid confined to the half-space z > 0 above the disk. In
cylindrical coordinates (7, 8, z) the equations of motion are given by

18(rV,) 18Ve OV _

r Or +r69 0z

0/

av, av,_V_ghv[azv, 13V, 8%V, v,] 18P

oz r o "ror oz 12 “por’

S T Vear T

o0Vp oVy V. Vg — Vg la_VQ FVe Vu
- ar: r or oz2 2 f
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v,

A oV, Vv, 13V, 0o*V,| 18P
— +V,— = + - - =,
or 0z or2 r or  0z2? p 0z

2.1)

subject to the nonslip boundary conditions on the disk and boundary conditions at infinity

(2.2)

where p is the fluid density, v is the kinematic viscosity coefficient, P is the pressure, V;, Vg,
and V, are the velocity components in the radial, azimuthal, and axial directions, respectively,
and Q is the constant angular velocity. Using von Karman’s similarity transformations [1]

V, =rQF(n), Vo = rQG(n),
) (2.3)
V, = \/@H(n), P =-pvQP(7n),

where 17 = z1/Q/v is a nondimensional distance measured along the axis of rotation, the
governing partial differential equations (2) reduce to a set of ordinary differential equations:

F'-FH-F*+G?=0, (2.4)
G'-G'H-2FG =0, (2.5)
H"-HH'+P =0, (2.6)
2F+H' =0, (2.7)

subject to the boundary conditions
F(0) = F(o0) =0, G0) =1, G(oo) =0, H(0)=0. (2.8)
Substituting (2.7) into (2.4) and (2.5) yields

H" - H'H + lH’H’ -2G*=0,
2 2.9)
G'-HG +HG =0,

subject to the boundary conditions

H()=H'(0)=H'(0) =0, G()=1,  G(e)=0. (2.10)
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4 Boundary Value Problems

Equations (2.9) with the prescribed boundary conditions (2.10) are sufficient to give the three
components of the flow velocity. The pressure distribution, if required, can be obtained from
(2.6). This fully coupled and highly nonlinear system was solved using the spectral homotopy
analysis method and the successive linearisation method. The results were validated using
the Matlab bvp4c numerical routine and against results in the literature.

3. The Spectral Homotopy Analysis Method

Following Boyd [19], we begin by transforming the domain of the problem from [0, o) to
[-1,1] using the domain truncation method. This approximates [0, o) by the computational
domain [0,L] where L is a fixed length that is taken to be larger than the thickness of
the boundary layer. The interval [0, L] is then transformed to the domain [-1,1] using the
algebraic mapping

g=t-1, re[-11] 3.1)

For convenience we make the boundary conditions homogeneous by applying the
transformations

H (1) = h(¢) + Ho(n),

G(n) = g@) + Go(n),

3.2)

where Hy(n) and Go(#) are chosen so as to satisfy boundary conditions (2.10). The chain rule
gives

2 4
H'(n) = W@+ Hy(n),  H"(n) = zh"() + Hy(n),

(3.3)
" 8 m "
H"(n) = 730" (@) + Hy'(n),
1 2 ! ! 1 4 " 1!
G'(n)=78@+Gy(m),  G'(n) = 78" (®) + Go(n). (34)
Substituting (3.2) and (3.3)-(3.4) in the governing equations gives
" n ! 4 " 2 11,/ 2
a()h + a]h +a2h tasg + a4h— ﬁh h+ Ez-hh ~2g = ¢!1(Tl),

(3.5)

" ' ' 2,0 2y
bog" + b1l + bag +b3h+b4g-zhg +Zhg=¢2(’1)'
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where prime denotes derivative with respect to § and

8 4 2

a0 = 73/ ay = —EHO/ ap = ZH‘I)' az = ~4Go, as = -Hy,
1
¢1(n) = -HY' + HoH{) - EH(’)H(’) +2G},
(3.6)
4 2 2
bo=13  bi=7Go  ba=-yHo o by= -Gy, ba=Hy,

$2(n) = -Gy + HoGy — HyGo.

As initial guesses we employ the exponentially decaying functions used by Yang and Liao
[12], namely,

Ho(n) =eT+ne -1,

(3.7)
Go (11) =,
The initial solution is obtained by solving the linear parts of (3.5), namely,
aghy + a1hy + azhy + asgo + asho = ¢1 (1), 38)
bogg + b]hé) + bzg(l) + b3h() + b4g0 = 4)2(7’[),
subject to
2, 2,
Bo(-1) = £Hy(-1) = SHy(1) =0, (-1 =0,  g(1)=0. (39)

The system (3.8)-(3.9) is solved using the Chebyshev pseudospectral method where the
unknown functions hy(¢) and go(¢) are approximated as truncated series of Chebyshev
polynomials of the form

N —~
ho@) = Y (3) = STux(g), j=01,...,N,
= (3.10)

N
@) =N () = S aTok(), j=01....N,
k=0

where Tyx and Ty are the kth Chebyshev polynomials with coefficients he and g,
respectively, &, &1, ..., &y are Gauss-Lobatto collocation points defined by

& = cos % i=01,...,N, (3.11)
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6 Boundary Value Problems

and N + 1 is the number of collocation points. Derivatives of the functions hy(§) and go(¢) at
the collocation points are represented as

dho

Z% 0@’] dér 29k180 (é] (3.12)

k=0

where r is the order of differentiation and D is the Chebyshev spectral differentiation matrix
(see, e.g., [20, 21]). Substituting (3.10)—(3.12) in (3.8)-(3.9) yields

AF, = @, (3.13)
subject to the boundary conditions
2 & 2 N
=3 Bokho(e) =0, 7> Dnkho(@) =0, ho(én) =0, (3.14)
o= L&
g0(%) =0,  g(én) =0, (3.15)
where
A D% + a1 D% + D + ayl asl
B byD + bsl bo®? + by + bul

Fo = [ho(&), ho(é1), .-, ho(én), 80 (&0), go(81), - - - ,go(‘;N)]T/

r (3.16)
® = [¢1 (o), g1 (m), ... o1 (), p2(10), p2 (1), 2 ()]

= diag([ai(mo), a:(m), -, ai(nn-1), ai(MN)]),

bi = dlag([bz(ﬂ0>/bz(7’ll), ~'/bi(rlN71)/bi(7lN)]>/ i= O/ 112/3/4'

The superscript T denotes the transpose, diag is a diagonal matrix, and 1 is an identity matrix
of size (N + 1) x (N + 1). We implement boundary conditions (3.14) inrows 1, N,and N +1
of A in columns 1 through to N +1 by setting all entries in the remaining columns to be zero.
The second set (3.15) is implemented in rows N + 2 and 2(N + 1), respectively, by setting
AN +2,N+2) =1, A2(N +1),2(N + 1)) = 1 and setting all other columns to be zero. We
further set entries of @ inrows 1, N, N +1, N + 2, and 2(N + 1) to zero.

The values of [Fo(&1), Fo(é2), ..., Fo(¢n-1)] are determined from the equation

Fo=A"0, (3.17)
which provides the initial approximation for the solution of (3.5).
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We now seek the approximate solutions of (3.5) by first defining the following linear
operators:

~ N ®h  ®h  doh . =

ﬁh[h(é;q),g(é;q)] = aoa—gﬁ +ala_§2 +a25§ +asg+ash,
(3.18)

= . ’z  dh 0% - . .

ﬂg[h(é;q),g(é;q)] = boa—g thigs +b25§- +bsh+by3,

where g € [0,1] is the embedding parameter and fz(g; gq) and g(¢; q) are unknown functions.
The zeroth-order deformation equations are given by

(1= )24 (& 9) ~ ho@)] = a{ M [(& 9), 25 9)] - 91},
(3.19)

(1-9)£[3(59) - 200)] = ai{ Mg [1(&9). §(&9)] - 92},

where # is the nonzero convergence controlling auxiliary parameter and A, and A, are
nonlinear operators given by

- . ®h  ®h  dh . ~ 4-0*h 20hdh .,
SNy [h(§/q>/g(§/q>] = aoa—§3_ + a]a—éz + azgé— +azg + a4h - E a_§2 + —I:.Z-(T)z_('g —-2g",
- - 7% doh 0% - .. 2(_0h -03%
,/Ug[h(g,q),g(é,q>:|—boa—§2+b]‘a—§+b25—§‘+b3h+b4g+z g-a—é__ha_g .
(3.20)
The mth-order deformation equations are given by
Ly [ (@) = Xmhm-1(§)] = ARy,
(3.21)
L [8m(8) = Xmgm-1(8)] = hR,
subject to the boundary conditions
hn(-1) = by, (-1) = B, (1) =0, gm(-1) = gm(1) =0, (3.22)
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8 Boundary Value Problems
where

h m " l
Rm(é) = aol’lmvl + a]]’lm_l + azhm71 + azgm-1+ ashm 1

2, 4
+ Z;) <_2hnhm414n - ?hnhm,l,n - zgngm—kn> - ¢1 (rl) (1 - Xm)’

L
(3.23)
Rgn(é) = bOgi/n—l + blh/m—l + bzg;n—l + b3hmA] + b4gm—1
2 m-1
+ 7 2 (g1 = 8uhm1-n) = $2(m) (1= xm),
n=0
0, m<1,
Xm = (3.24)
1, m>1.
Applying the Chebyshev pseudospectral transformation to (3.21)—(3.23) gives
AF,, = (ym + B)AF, 1 — B(1 = Xm)D + AQypey, (3.25)
subject to the boundary conditions
N N
> Dokhm(@x) =0, D Bwkhm(@) =0, hm(@n) =0,
k=0 k=0 (3.26)
gm(%0) =0, gm(én) =0,
where A and @ are as defined in (3.16) and
Fou = [1m(@0), Bon(@1), - Bon(@N), 8 (80, 8m(&1), -, @m(EN)]
m-1 2 4 5
Z ﬁ(ghn)(ghm—l—n) - ﬁhn (% hm~1—n> - 2gngm-1-n (3,27)
Q1 = n=0 2 m—1
ZZ [(ghn)gm—l—n - (ggn)hrrkkn]
n=0

Boundary conditions (3.26) are implemented in matrix A on the left-hand side of (3.25) in
rows 1, N, N+1, N +2,and 2(N + 1), respectively, as before with the initial solution above.
The corresponding rows, all columns, of A on the right-hand side of (3.25), @ and Q,,-; are
all set to be zero. This results in the following recursive formula for m > 1:

Fy = (X + B)A™ APy + FAT [Qnot = (1 = xm) @) (3.28)

The matrix A is the matrix A on the right-hand side of (3.25) but with the boundary conditions
incorporated by setting the first, N, N + 1, N + 2, and 2(N + 1), rows and columns to zero.
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Thus, starting from the initial approximation, which is obtained from (3.17), higher-order
approximations F,,(¢) for m > 1 can be obtained through recursive formula (3.28).

4. Successive Linearisation Method

The spectral homotopy analysis method, just like the original HAM, depends for its conver-
gence rate on the careful selection of an embedded arbitrary parameter fi. Turkyilmazoglu
[13] showed that the solution of the von Karméan problem by the homotopy analysis
method is prone to wild oscillations when suction/injection is present. In this section we
apply the successive linearisation method that requires no artificial parameters to control
convergence to solve the governing equations (2.9)-(2.10). The method assumes that the
unknown functions H (#) and G(n) can be expanded as

() = 1) + S5, G(n)=Gi(n)+2)gn(n), i—123,.., (@1

where H;, G; are unknown functions and h, and g, (n > 1) are approximations that are
obtained by recursively solving the linear part of the equation system that results from
substituting (4.1) in the governing equations (2.9)-(2.10). Substituting (4.1) in the governing
equations gives

1

2
H;” - all,‘,lH;' + 421 H: - a3,,-,1Hi - 4a4,,-_1Gi - H{’H,‘ + EH{H: - ZGI =Ti-1,
(4.2)
G/ - b1;1G} + b2,i1Gi + by H] = byj Hi - HiG) + HG; = si1,
where the coefficient parameters ai;_1, bxi-1 (k = 1,...,4), ri1, and s;_; are defined as
i-1 i-1 i-1 i-1
! "
a1 = D, a1 = DM, @i = My, aia= > gns
n=0 n=0 n=0 n=0
i1 i-1 i1 i-1
! !
biii=>hn, b=y h, b= Sigw  bain= 8w
n=0 n=0 n=0 n=0
(4.3)

i-1 " i-1 ) i-1 1 i-1 , i-1 , i-1 i-1
rig = —[z:(:)h,, = Hy > e+ EZhnZhn - ZZgné)gn:I,

n=0 n=0 n=0 n=0 n=0

i-1 i-1 i-1 i-1 i-1
=—[zg::—2hnzg;+>:h;zgn]~
n=0

n=0 n=0 n=0 n=0
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10 Boundary Value Problems

To facilitate direct comparison of the methods, we use the same initial approximations as in
the case of the spectral homotopy analysis method of Yang and Liao [12]:

ho(n) =—1+e+ne™  g(n) =e™ (4.4)

The solutions for h,, g,, i—1 > n > 1, are obtained by successively solving the linearized
form of (4.2), namely,

" 1 !
h{" —ayi1h] + az;1h; — as; 1 hi — 404,18 = Ti-1,

(4.5)
g —bii1g +byic1gi + b3k —baiahi = sio,
subject to the boundary conditions
hi(0) = h;(0) = hi(c0) = &i(0) = gi(oe) = 0. (4.6)

Once each h;, g (i > 1) has been found, the approximate solutions for H(7) and G(1) are
obtained as

HO) = Sha(), G~ ﬁognm), @)

where M is the order of the SLM approximation. In coming up with (4.7), we have assumed
that

lim H; = imG; = 0. (4.8)

11— 11— 0

Equations (4.5)-(4.6) can be solved using analytical techniques (whenever possible) or any
numerical method. In this work the equations were solved using the Chebyshev spectral
collocation method in the manner described in the previous section. This leads to the matrix
equation

AiqY; =Ry, (4.9)

where A;_; is a (2N +2) x (2N + 2) square matrix and Y; and R;; are (2N +2) x 1 column
vectors defined by

Ay Ap H; T
A'_ = Y' o= i = .
-1 [AZI Azz] ’ i [Gl ’ Rz 1 Si 1 ’ (4 10)
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with
H; = [hi(&0), k1), Bien-1) )T,
Gi = [%(0), 8i(&1), -, iEn-1), &i(&WT,
riy = [ri(o) rie1 (1), - rimt @na) 1 GN)1T
si-1 = [5i-1(80), 5i-1(8), - Sic1 (Gn), si- (61T,

3 2
An =D’ -a; D +ay; D —a3;,

(4.11)

Ap = —4ay; 1,
Az =b3;i 1D —byi,

Ap =D?-by, 1D + by

In the above definitions, ar;_1, bx;-1 (k = 1,...,4) are diagonal matrices of size (N +1) x (N +1)
and D = (2/L)® with @ being the Chebyshev spectral differentiation matrix. After modifying
the matrix system (4.9) to incorporate boundary conditions, the solution is obtained as

Y; = A Ri. (4.12)

5. MHD Swirling Boundary Layer Flow

The study of the magnetohydrodynamic swirling boundary layer flow over a rotating disk
with suction or injection through the porous surface of the disk has recently been undertaken
by Turkyilmazoglu [13]. In this case the Navier-Stokes equations reduce to a set of ordinary
differential equations

F'-FH-F*+G*-mF =0, (5.1)
G"-GH-2FG-mG =0, (5.2)
H'-HH'+P =0, (5.3)
2F+ H' =0, (5.4)

subject to the boundary conditions

F(0) = F(o0) =0, G(0) =1, G(oo) =0, H(0) = -s, (5.5)

where m is the magnetic interaction parameter due to the externally applied magnetic field
and s denotes uniform suction (s > 0) or blowing (s < 0) through the surface of the disk.

Turkyilmazoglu [13] utilized a twin strategy, using Ackroyd’s series expansion and
the homotopy analysis method to find purely analytic solutions to (5.1)~(5.5). In this study
we use the SLM to obtain solutions to this system of equations.
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12 Boundary Value Problems

Table 1: Comparison of H (o) at different orders of the HAM [12], Homotopy-Padé [11], SHAM, and the
SLM approximations when A = -1, L = 20, and N = 60.

Order HAM [12] [m,m] Hom-Padé [11] Order SHAM Order SLM Numerical

0 -1 [5,5] -0.885308 2 —-0.884944 1 -0.871912  -0.884474
5 -0.9173 {10,10]} ~-0.884475 4 —(.884449 2 -0.884521
10 -0.8747 [15,15] -0.884474 6 -0.884476 3 -0.884474
15 -0.8833 [20,20] ~(.884474 8 -0.884474 4 -0.884474
20 -0.8845 [25,25] -0.884474 10 -0.884474 5 -0.884474

Eliminating F in (5.1) and (5.2) using (5.4) gives the following system of equations:
H"-H"H + 2H/ -2G*-mH' =0, (5.6)
G'-HG +HG-mG=0, (5.7)
subject to the boundary conditions
H(0) = -s, H'(0) = H'(e0) =0, G(0) =1, G(o0) =0. (5.8)
The SLM is applied to (5.6) to (5.8) in the manner described in Section 4, and for brevity we

omit the finer details. The intrinsic parameters of the SLM are essentially the same as those
defined in Section 4 except for the following:

i1 i1
1 !
aziy = _S_ h, -m, by = E h, —m,
n=0 n=0

i-1
ri_1:—|:Zh','l' Zh"Zh + Zh’Zh’ —ZZg,,Zgn mZhn], (5.9)

n=0 n=0 n=0 nO n=0 n=0 n=0

n=0 n=0

i-1 i-1 i-1 i-1 i-1
Si-1 = —[Zg Zh Zgn + Zh/ Zgn mZgn]
n=0

An appropriate initial approximation for finding H(7) in this case is

ho(n) =-s-1+e T +ne™™ (5.10)

6. Results and Discussion

In this section we present the results for the velocity distributions H(r) and G(17). To check the
accuracy of the successive linearisation method and the spectral homotopy analysis method,
comparison is made with numerical solutions obtained using the Matlab bvp4c routine,
which is an adaptive Lobatto quadrature scheme (see [22]). The current results are compared
with previously published results by Liao [11], Yang and Liao [12], and Turkyilmazoglu [13].
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Table 2: Comparison of P(c0) — P(0) obtained at different orders for the HAM [12], SHAM, and SLM
approximations when /i = -1, L = 20, and N = 60.

HAM[12]  P(e)-P(0)  gyaMorder P(ew)-P(0) SLM  P(oo) - P(0)  Numerical
order order

0 0.3901 2 0.391563 1 0.380115 0391147
5 0.3910 4 0.391125 2 0.391189

10 0.3911 6 0.391149 3 0.391147

15 0.3911 8 0.391147 4 0.391147

20 0.3911 10 0.391147 5 0.391147

Table 3: Comparison of F'(0) at different orders for the SLM approximations when L = 20, N = 60 against
the results of [13] for different s values whenm = 1.

s 1st order 2nd order 3rd order 4th order Numerical Reference [13]
-2.0 0.28399669 0.29148466 0.29148082 0.29148082 0.29148082 0.29148086
-1.0 0.31835562 0.32165707 0.32166220 0.32166220 0.32166220 0.32166220
0.0 0.31619804 0.30929864 0.30925799 0.30925798 0.30925798 0.30925798
1.0 0.26848288 0.25115842 0.25104369 0.25104397 0.25104397 0.25104397
2.0 0.19789006 0.18779923 0.18871806 0.18871902 0.18871902 0.18871903

The results presented in this work were generated using mostly N = 60 collocation points and
L =20.

Table 1 gives a comparison of the values of H(co) obtained at different orders of
the SLM and the SHAM approximations against the homotopy analysis method results,
the homotopy-Padé results, and the numerical results. Our finding is that the SLM results
converge most rapidly to the numerical result of —0.884474. Full convergence is achieved at
the very low third order. Comparatively, convergence (to 6 decimal places) was achieved at
the twentieth order using the homotopy analysis method and at the fifteenth order in the case
of the homotopy-Padé method. When the same /i value is used, convergence of the spectral
homotopy analysis method is achieved at the eighth order compared to the twentieth order
for the homotopy analysis method approximations. This suggests that the SLM is a very
useful computational tool that converges much more rapidly than the homotopy analysis
method, the homotopy-Padé method, and the spectral homotopy analysis method, although,
the SLM may, in fact, require more computations per step than the other methods.

Table 2 gives a comparison of the pressure difference P(oo) — P(0) at different orders of
the homotopy analysis method, SHAM, and SLM against the numerical results. A similar
pattern as in Table 1 emerges where the SLM results converge rapidly to the numerical
result of 0.391147 with full convergence achieved at the third order. In the case of the HAM,
convergence up to four decimal places was achieved at the tenth order. For the same fi values,
the SHAM converges at the sixth order.

Tables 3-6 give a comparison between the SLM and the results reported by
Turkyilmazoglu [13] for several suction/injection velocities and magnetic parameter values.
Comparison of the results of Turkyilmazoglu [13] with the SLM seems most appropriate since
the former study also partly utilizes a linearizing technique, the Newton-Raphson method
to compute elements of the solutions. Turkyilmazoglu [13] showed that for large injection
velocities, the number of terms required to attain convergence of the series solution increases
dramatically, for instance, for injection velocities s = -3.2, up to 2000 terms are required
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14 Boundary Value Problems

Table 4: Comparison of G'(0) at different orders for the SLM approximations when L = 20, N = 60 against
the results of [13] for different s values when m = 1.

s 1st order 2nd order 3rd order 4th order Numerical Reference [13]
-2.0 -0.46621214 -0.46571639 -0.46571471 -0.46571471 -0.46571471 -0.46571471
-1.0 -0.69404148 -0.69065793 ~0.69066292 -0.69066292 —-0.69066292 -0.69066292
0.0 -1.06924152 -1.06907700 -1.06905336 -1.06905336 -1.06905336 -1.06905336
1.0 -1.61663439 ~1.65615591 -1.65707514 -1.65707580 ~1.65707580 -1.65707588

2.0 —2.31476548 ~2.42896548 —2.43136137 -2.43136154 -2.43136154 -2.43136154

Table 5: Flow parameters F'(0) and G'(0) at different orders for the SLM approximations when L = 20,
N =120 for different s values when m = 1.

s F'(0) G'(0)
2nd order 4th order Numerical 2nd order 4th order Numerical
-5 0.17788071 0.17788125 0.17788125 —-0.20387855 -0.20387920 -0.20387920
-4 0.20924002 0.20924073 0.20924073 ~0.25452255 —-0.25452370 —-0.25452370
-3 0.24839904 0.24839882 0.24839882 —0.33393576 —0.33393640 -0.33393640
0.14238972 0.14422157 0.14422157 -3.30816863 -3.31056638 -3.31056638
0.11266351 0.11466456 0.11466456 -4.23823915 -4.24002059 -4.24002059
0.09266580 0.09447344 0.09447344 -5.19357411 -5.19480492 -5.19480492

to achieve convergence of the series solution method, and hence the study resorts to the
Chebyshev collocation method to solve the governing equations. Nonetheless, our findings
indicate that with only a few terms of the SLM series good levels of accuracy are achieved
for all suction and injection velocities. For the suction and injection velocities in the range
-2 < s <2and m = 1in Tables 3-4 there is an excellent agreement between the fourth-order
SLM, the numerical, and the results reported by Turkyilmazoglu [13].

Table 5 gives a comparison between the numerical and the SLM results for larger
values of s, up to s = +5 when m = 1. Moderate increases in the suction/injection velocities
appear to have no effect on the precision of the method with convergence again achieved
at the fourth order of the SLM series. In Table 6, s = 1 is fixed and the magnetic parameter
varied. We compare the convergence rate of the SLM to the numerical computations and
show that increasing this parameter has no effect either on the convergence rate of the
successive linearisation method.

Figure 1 gives a comparison between the fourth-order SHAM, second-order SLM, and
numerical results for the dimensionless velocity distributions H(7) and G(17), respectively.
There is an excellent agreement among the three sets of results. For purposes of comparison, it
is worth noting that in case of the HAM in the work of Yang and Liao [12], agreement between
the numerical and the HAM results was only observed at the 30th order of approximation for
H(n) and at the 10th order for G(7). As with most iterative methods, it is worth noting that
the convergence rate may depend on the initial approximation used. However, since we have
used the same initial approximations as Yang and Liao [12], the graphical results suggest that
the SLM converges much more rapidly than both the HAM and SHAM. This may, however,
be offset by the fact that the SLM may require more computations per step than the other two
methods.
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Table 6: Fiow parameters F'(0) and G'(0) at different orders for the SLM approximations when L = 20,
N =120 for different m values when s = 1.

2nd order

F(0)
4th order

Numerical

2nd order

G'(0)
4th order

Numerical

0.39183500
0.19726747
0.14885275
0.12469326
(0.10953285
107 0.09887642

[o <o I S Bl =)

0.38956624
0.19756823
0.14901611
0.12476317
0.10956389
0.09889037

0.38956624
0.19756823
0.14901611
0.12476317
0.10956389
0.09889037

-1.17700614
-2.01809456
-2.56931412
-3.00455809
-3.37536371
-3.703823547

-1.17522084
-2.01847353
-2.56932504
-3.00452397
-3.37533046
-3.70379689

-1.17522083
-2.01847353
-2.56932504
-3.00452397
-3.37533046
-3.70379689
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Figure 1: Comparison between the SHAM, SLM, and numerical solution of —~H (77) and G(r) when /i = -1,
L = 20,and N = 60. The open circles represent the SHAM 4th-order solution, the filled circles represent
the 2nd-order SLM solution, and the solid line represent the numerical solution.
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7. Conclusions

In this work two relatively new methods, the spectral homotopy analysis method and
the successive linearisation method, have been successfully used to solve the von Karman
nonlinear equations for swirling flow with and without suction/injection across the disk
walls and an applied magnetic field. The velocity components were compared with numerical
results generated using the built-in Matlab bvp4c solver and against the homotopy analysis
method and homotopy-Padé results in the literature. The results indicate that both the
spectral homotopy analysis method and the successive linearisation method may give
accurate and convergent results using only few solution terms compared with the homotopy
analysis method and the Homotopy-Padé methods. Comparison has also been made with
the recent findings by Turkyilmazoglu [13]. The successive linearisation method gives better
accuracy at lower orders than the spectral homotopy analysis method. The tradeoff, however,
is that both the spectral homotopy analysis method and the successive linearisation method
may involve more computations per step compared to the methods in the literature.

Nonetheless, the sccessive linearisation method has been shown to be very efficient
in that it rapidly converges to the numerical results. The study by Turkyilmazoglu [13]
shows that whenever suction/blowing through the disk walls is present, the homotopy
analysis method is prone to give wildly oscillating solutions. These oscillations have to be
controlled by a careful choice of the embedded parameter 7. The advantage of the successive
linearisation method is that such a parameter does not exist and no such oscillations are
observed in the solution of the von Kérméan equations for swirling flow.
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Chapter 4 — On heat transfer in rotating disks flows

4.3. On a quasilinearisation method for the Von Karman flow problem

with heat transfer 3

Corrigendum

Please note the geometry of the flow studied in this Section;

Boundary
AZ
Layf_sr Tw % -
\ g T I'I":-' g l""'&l
el ==
Tw _ifﬂ wr L
i
| b

Figure 4.3: Flow configuration for the von Kamarn swirling flow with heat transfer.

3Accepted; Z. G. Makukula, P. Sibanda and S. S. Motsa. Latin American Applied Research,

http://www.laar.uns.edu.ar/ (Impact factor; 0.16).
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Abstract— A quasilinearisation method for
solving the nonlinear equations is presented.
The method works successively in linearizing
the nonlinear equations and solving the result-
ing higher order deformation equations using
spectral methods. We illustrate the applica-
tion of the method by solving the laminar heat
transfer problem in a rotating disk. Compari-
son between the linearisation method and nu-
merical results obtained using the MATLAB
in-built bvp4c solver reveals that the linearisa-
tion method is accurate and converges at very
low orders of the iteration scheme.

Keywords— Heat transfer; linearisation
method; rotating disk; spectral methods.

I. INTRODUCTION

Disk-shaped bodies are encountered in many engineer-
ing, geophysical and meteorological applications. The
study of fluid How due to a rotating disk was pioneered
by von Kdrméan (1921) who provided the basis for the
mathematical study of the rotating disk problem in an
incompressible viscous flow of infinite extent. He intro-
duced transformations that reduced the governing par-
tial differential equations to ordinary differential equa-
tions. Since then, solutions of the von Kdrmdn equa-
tions describing different aspects of the disk flow prob-
lemn such as the effect of combined viscous dissipation
and joule heating in the presence of Hall and ion-slip
currents, the effect of suction on the flow with or with-
out an applied magnetic field and thermal and mass
diffusive effects have been of interest to researchers in
diverse fields of science.

As with most problems in science and engineer-
ing, the equations that describe swirling flow are non-
linear and do not have closed form solutions. In
most instances the von Kdrmédn equations have been
solved numerically using either the shooting method
or the implicit finite difference scheme in combina-
tion with a linearisation technique. While numeri-
cal methods are effective and give accurate solutions,
they often give no insights into the structure of the
solution, particularly the effects of multi-parameters
embedded in the problem. Numerical methods also

often fail to give sufficient resolution to domains with
very sharp changes or to problems with multiple solu-
tions. These limitations necessitate the development
of computationally improved semi-analytical methods
for solving strongly nonlinear problems. Recent semi-
analytical methods include, among others, the varia-
tional iteration method and the homotopy perturba-
tion method (He, 2000, 2007), the Adomian decompo-
sition method (Adomian, 1976), the homotopy anal-
ysis method (Liao, 2003) and the spectral-homotopy
analysis methods (Motsa et al., 2010). These methods
may converge slowly or fail to converge for problems
that are strongly nonlinear or for problems with very
large parameters.

In this paper we present a method for solving non-
linear equations that is based on iteratively linearizing
the equations to obtain a system of higher order defor-
mation equations that are solved using spectral meth-
ods. The application of the method is demonstrated
by solving the laminar heat transfer problem in a ro-
tating disk. The problem was studied by Shevchuk and
Buschmann (2005) who solved the transformed ordi-
nary differential equations using a numerical method.
Other recent studies on various aspects of the rotat-
ing disk flow problem include the works of Takhar et
al. (2002) who considered electrically conducting flu-
ids in MHD flow and Arikoglu and Ozkol (2006) who
considered heat transfer characteristics on MHD flow.
The series of studies by Attia (2004, 2006, 2007) con-
sidered the effects of (i) ion slip, (ii) temperature de-
pendent viscosity and (iii) ohmic heating on rotating
disk flow. Sibanda and Makinde (2010) considered the
effects of ohmic and viscous heat dissipation, Hall cur-
rents, porosity and an applied magnetic field on a ro-
tating disk flow with constant properties.

II. GOVERNING EQUATIONS

We consider a disk rotating with angular velocity w
in a fluid which rotates in the same direction with a
different angular velocity €. In cylindrical polar coor-
dinates (r, ¢, z) the Navier-Stokes equations governing
the flow are (Schlichting, 1979);

Ju u  Odw

E#’;%“'é‘;—o. (1)
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2w 10w  dw
+U{W+;-@‘T‘+W}, (4)
o7 oT ul
u P + wa = -
Pr{0or2  ror 022f
The boundary conditions are
w=0, v=rw, w=0 T=T, at z=0/(6)
wu=0v=70.T—T, as z— 20, ()

where u, v, and w are the velocity components in the
radial, tangential and axial directions respectively, v is
the kinematic viscosity, p is the density, p is the static
pressure, 1" is the temperature and the subscripts w
and oo refer to the wall and the outer boundary layer
edge respectively, and Pr is the Prandt] number. We
introduce a dimensionless coordinate n = zv/w/v and
the von Karmén transformations;

u=rwF(m), v=rwGn) w=wrH(n),
. p 4 T-Ts
P(”) - puw’ () - Tw - Txv (8)

where F,G and H are the dimensionless velocity com-
ponents along the radial, tangential and axial direc-
tions respectively and © is the dimensionless temper-
ature. The radial pressure gradient can be computed
for the frictionless flow at a large distance from the
wall using the condition:

10p 2

;)E =r{°. 9)
Shevchuk and Buschmann (2005) showed that by using
the transformations (8), the Navier-Stokes equations
reduce to the following system of nonlinear ordinary
diflerential equations,

H' = =-2F, (10)
F’ = F?-G*+F'H+ @3, (11)
G’ = 2FG+G'H, (12)
H = (P +H"H™, (13)
Q" = Pr(HO + «F0), (14)
with boundary conditions
F(0)= H(0) =0, G(0) =1, (15)
0(0) =1, F/(cc) =0, O(cc) =0, (16)
Gloo) = 8. (17)

Using (10), equations (11), (12) and (14) can be ex-
pressed as

H" = H'"H +2G* — %H’Q —26%,  (18)
G"=G'H - HG, (19)
Q" = Pr(HO' — %aH'e), (20)
subject to
H(0) = H'(0)= H'(c0) = O(c0) =0, (21)
GO) = ©(0)=1,G(x0) =B, (22)

where « is a constant and § = Q/w is the flow swirl
parameter. Equation (13) can be used to find the pres-
sure.

III. METHOD OF SOLUTION

The quasilinearisation method (see Makukula et al.
2010a-e, Motsa and Shateyi, 2010, Shateyi and Motsa,
2010) is applied to solve equations (18) - (20). The
starting point is to assume that the independent vari-
ables H(n) , G(n) and B(n) may be expanded as

H=hin)+ 3 Huln), (23)
m=0

Gy =g+ S Gul), ()
m=0

O =il + 3 Onln),  (25)

where h;, g; and 6; (i =1,2,3,...) are unknown func-
tions and H,, , Gm, and ©,, (m > 1) are approxi-
mations that are obtained by recursively solving the
linear part of the equation that results from substitut-
ing (23) - (25) into equations (18) - (20). This gives
the equations

1 " ’
R +ari—1hf +as;1h; +as;—1hi +a4:-19:

1
—h{h; + Eh;h; —2¢7 =711, (26)
g +b1-19; + b2ic19i + b3 i1k
+baio1hi — hig; + higi = si_1, (27)

87 + 61,1‘419; +cgi-10i + C3,¢A1h2
1
+cqi-1h; — PT(/IZH: — 5&)1;61) =11, (28)

where the coefficient parameters ag;—1, bgi—1, Cri-1
(k=1,..,4), rie1, 8,1 and ¢;.1 are defined as

t—1 i—1
a4-1 = — Z Hy, G241 = Z H,, (29
m=0 m=0

i—1 1—1
azi-1 = — Z H), asi1=—4 Z Gm,(30)
=0

m=0

i—1 =1
by i1 =— Z Hp, by = Z H,,, (31)
m=0 m=0
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i—1 i—1
b.’}.ifl - Z Gm- b4«,i71 - - Z Gfm*

(32)
m=0 m=0
i—1
Cli—1 = —P’I‘ Z Hm, (33)
m=0
Coiy = —aPr Z H! (34)
m=0
1 i—1
€3i-1 = EGPT Z Om (35)
m=0
i—1
Cq4i-1 = —Pr Z @:”, (36)
m=0
ey = S H,
m=0
1
+ 5(H,/n)2 ~2G2% + 252> , (37)
i-1
sin = — > (Gh = HnGh + Hy, Ga) , (38)
m=0
i—1
ticy = = (On—PrH, 0,
m=0
1
- §aPrH,/n @m> . (39)
Starting from the initial approximations
Ho(m) = =1+Q+ne ", (40)
Go(n) = B+ -0, (41)
Ou(n) = e, (42)

which are chosen to satisfy the boundary conditions
(21) - (22), the subsequent solutions for H,,, G, O,
m > 1 are obtained by successively solving the lin-
earized form of equations (26), (27) and (28) subject
to the boundary conditions

hi(0) = hi(0) = hi(o0) =0, gi(0) = gi(o0) =0,
0,(0) = .

Once each solution h;, g; and 0; (i > 1) has been found,
the approximate solutions for H(n) , G(n) and ©{n)
are obtained as

M M

H(n) = Z hn(n), G(n) = Z gm(n)
m=0 m=0

o) =~ 3 0uly). (44)
m=0

where M is the order of the approximation.
Equations (26) - (28) are integrated using the
Chebyshev spectral collocation method. The unknown
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functions are defined by the Chebyshev interpolating
polynomials with the Gauss-Lobatto points defined as
mj

N )
where N is the number of collocation points used. The
physical region [0, 00} is transformed into the domain
[~1, 1] using the domain truncation technique in which
the problem is solved on the interval [0, L] instead of
[0.00). This leads to the mapping

n _&+1

L 2
where L is the scaling parameter used to invoke the
boundary condition at infinity. The unknown func-
tions h;, g; and 6, are approximated at the collocation
points by

1Y; = COS j=0,1,...,N, (45)

-1<¢€<1, (46)

N N
hi(€) = Y (&) Th(&5)s 9i(8) = D 9s(6) Tk (&),
k=0

0

=
I

Mz

0:(¢) = 0:(&x)Tx(&5), 7=0,1,...,N, (47)

b
i

0
where T}, is the kth Chebyshev polynomial defined as
Tx(€) = cos[k cos™ (€)]. (48)

The derivatives of the variables at the collocation
points are represented as

doh; o

W = ZDZJ]ZZ &k )s ZDk]gz

' k=0

deg;, L, :

i =Y Dg6i(&), 7=0,1,...,N, (49
k=0

where ¢ is the order of differentiation and D = —%’D
with D being the Chebyshev spectral differentiation
matrix (see Canuto et al., 1988 and Trefethen, 2000).
This leads to the matrix equation

A1 X; =B, (50)

in which A,_; is a (3N + 3) x (3N + 3) square matrix
and X; and B,;_; are (3N + 3) x 1 column vectors
defined by

A A Aig H;
A= | Ay Ap Ay |, Xi=| G |,
Az Aszp Ass O]
ri-1
B,y =] s-1 |, (51)
t, 1
with
H; = [hi(&o), hi(€1), - .., ha(€n—1), Ra(€n)]T,
P = [Qi(go),gi(fl)v-vaz(gN 1), g (€T,
61 = [91(60)701(61)7 (éN 1) ( )]T’
rio1 = [ri-1(&o)ymi 1(51) Lrie(En)E
sio1 = [5i-1(0), 8i-1(€1), -+ -, 8i-1(EN)]T,
tio1 = [tic1(&0).tim1(&1), - tia (€))7,



A =D3+a;;D*+az;1D+as,_1,
Ajg=ay,-1, A3 =0l

A1 = bz 1D + by,

Ap =D? +by; 1D +by;1, Az =01,
Az =c3;1D + g1, Az =01,

Az =D? +c1,1D + ez

In the definitions above, ax,; 1, bki-1, Cki-1 (K =
1,..,4) are diagonal matrices of size (N + 1) x (N +
1) and I is the (N + 1) x (N + 1) identity matrix.
After modifying the matrix system (50) to incorporate
boundary conditions, the solution is obtained as

X;=A B, (52)

IV. RESULTS AND DISCUSSION

A quasilinearisation method (the SLM) has been used
to solve the nonlinear equations for the rotating disk
problem. The accuracy of the method is determined
by benchmarking the results with numerical results ob-
tained using the bvp4c, an in-built MATLAB solver for
boundary value problems. This solver is based on the
fourth order Runge-Kutta schemes. The results were
generated using N = 150 and L = 30 which was found
to give good accuracy. Tables 1 - 4 show the results
of the laminar heat transfer problem for a rotating
disk in a forced vortex. Table 1 gives a sense of the
convergence rate of the linearisation method through a
comparison of the values of the axial velocity H(co) at
different orders of the SLM approximation and for dif-
ferent values of 3 against the numerical results. Simu-
lations show a decrease in the magnitude of the axial
velocities with the swirl parameter 8. Convergence up
to seven decimal places of the linearized results to the
numerical results is achieved at the third order of the
SLM approximation.

Table 1: Comparison of the values of the SLM solu-
tions for H(oc) with the bvp4c solutions when o =
0/.25 and Pr =0.71.

3 1st order 2nd order 3rd order numerical
0.0 -0.8719123 -0.8845211 -0.8844741 -0.8844741
0.2 -0.8747141 -0.8617650 -0.8616990 -0.8616990
0.4 -0.7014692 -0.6600254 -0.6599807 -0.6599807
0.6 -0.4301355 -0.4307716  -0.4307715 -0.4307715
0.8 -0.2063600 -0.2080067 -0.2080065 -0.2080065

Tables 2 - 4 serve two purposes, to show the effects
of the parameters Pr, a and [ respectively on the
surface heat transfer rate —©’(0), and to demonstrate
the rapid convergence of the linearisation method by
comparing the SLM approximations at different orders
with the numerical results.

Table 2 shows the effect of increasing Prandtl num-
bers on the heat transfer rate. The heat transfer rate
evidently increases with Prandtl numbers. A similar
patten is observed in Table 3 where —©'(0) increases
with a.
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Table 2: Comparison of the values of the SLM solu-
tions for —©'(0) with the bvp4c solutions when o = —1

and 8 =0.2.

Pr 1st order  2nd order 3rd order  numerical
0.50 0.1561211 0.1484358 0.1483821 0.1483821
0.71 0.1960747 0.1890687 0.1890219 0.1890219
1.00 0.2409260 0.2351828 0.2351495 0.2351495
5.00 0.5393097 0.5442660 0.5442912  0.5442912
7.00 0.6239296 0.6318794 0.6319128 0.6319128
10.0  0.7241602 0.7357068 0.7357498 0.7357498

Table 3: Comparison of the values of the SLM so-
lutions for —©'(0) with the bvpdc solutions when
Pr=0.71 and § =0.2.

« Ist order  2nd order  3rd order numerical
-0.6  0.2483688 0.2483120 0.2483119 0.2483119
0.0  0.3333432 0.3255588 0.3254945 0.3254945
1.0 0.4384019 0.4315601 0.4314959  0.4314959
2.0 05235998 0.5180981 0.5180416 0.5180416
3.0 05954972 0.5913154 0.5912690 0.5912690

Table 4: Comparison of the values of the SLM solu-
tions for —©’(0) with the bvpdc solutions when Pr =5

and o = 4.

8 1st order  2nd order 3rd order numerical
0.0 1.4975774 14971121 14971120 1.4971120
0.2 1.4872255 1.4927180 1.4927405 1.4927405
0.4 1.3771388 1.4152675 1.4157121 1.4157121
0.6 1.2577045 1.2601420 1.2601404 1.2601404
0.8 0.9700408 0.9738696 0.9738516 0.9738516




Increasing the swirl parameter 3 in Table 4 results
in the surface heat transfer rate being reduced. In
terms of the accuracy of the linearisation method, it
is evident that convergence of the SLM results up to
seven decimal place accuracy is achieved at the third
order of the SLM approximation. Figures 1 - 4 show
the results for the laminar heat transfer problem of a
rotating disk in a forced vortex. Figures 1 - 2 show the
effect of 3 on the radial and axial velocity profiles re-
spectively. Here the third order SLM approximations
are plotted alongside the numerical solution. We ob-
serve an excellent agreement between the SLM and the
numerical results and the results show that increasing
the swirl parameter 3 reduces the radial velocity while
increasing the axial velocity. It is worth noting here
that the radial velocity profiles given in Shevchuk and
Buschmann (2005) are not consistent with some pre-
vious results in the literature, for example, those of
Attia (2008) and Turkyilmazoglu (2010).

Fin

Figure 1: Comparison between the 3rd order (filled cir-
cles) and the numerical solutions (solid line) for F'(n)
when o« =1 and Pr = 0.25.

Hop

Figure 2: Comparison between the 3rd order (filled cir-
cles) and the numerical solutions (solid line) for H (5)
when a =1 and Pr = 0.25.
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Figures 3 - 4 show the effect of 5 on the tangen-
tial velocity profile G(n) and the temperature ©(n)
for fixed Prandtl numbers. The agreement between
the third order SLM approximations and the numer-
ical solutions excellent. An increase in the swirl pa-
rameter leads to an increase in both the temperature
and the tangential velocity profiles.

Figure 3: Comparison between the 3rd order solution
{filled circles) and the numerical solution (solid line)
for G(n) when oo =1 and Pr = 0.25.
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Figure 4: Comparison between the 3rd order solution
(filled circles) and the numerical solution (solid line)
for ©(n) when a =1 and Pr = 0.25.

V. CONCLUSION

A successive linearisation algorithm to compute the
numerical solution for the laminar heat transfer prob-
lem of a rotating disk in a forced vortex has been
presented. Values of the axial velocity far from the
surface of the disk were obtained for various swirl pa-
rameter values 3. An increase in H(oo) was observed
with increase in 3. The heat transfer rate was found



for different Prandt! numbers and #. The heat trans-
fer rate increases with increase in the Prandtl number
but decreases with 3. The axial and tangential veloc-
ity and the temperature profiles were found to increase
with 3 while the radial velocity profiles decreased with
3. The linearisation method was found to be accurate
and rapidly convergent to the numerical results.
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Chapter 4 — On heat transfer in rotating disks flows

4.4. Summary

In Section 4.1, the spectral homotopy analysis method together with the improved spectral
homotopy analysis methods were used to find solutions of a Reiner-Rivlin swirling flow prob-
lem. The ISHAM was shown to be an improvement of the SHAM as it generated converging
results at lower orders of approximation than the SHAM. Comparison with existing results in
the literature showed a good agreement. The von Karman equations were solved in Section
4.2 using the SLM and the SHAM. Compared with results obtained using the HAM and HAM
Pade techniques, the SHAM proved to give better convergence rates than the two methods.
The SLM also showed to be efficient in generating fast converging solutions. In Section 4.3,

the SLM was used to solve the von Karman problem with heat transfer.
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Fluid flow through porous medium

Darcy (1937) pioneered the mathematical study of fluid flows through porous media. For
steady state flow he assumed that the viscous forces are in equilibrium with external forces due
to the pressure difference and the body forces (Sharma et al., 2007). Modifications of Darcy’s
law have since been documented in the literature for example, by Brinkman (1947). Porous
media occur naturally while some are man-made and occur in various systems in industry.
Flows with heat transfer through porous media have received attention because of their wide
applications in different fields of science and engineering. Such fields include biomedical, civil,

chemical and mechanical engineering (Vafai, 2005; Sharma et al., 2007; Nield and Bejan, 2006).

In this Chapter we investigated two fluid flow problems in porous media. The steady two-
dimensional flow of a viscous incompressible fluid in a rectangular domain bounded by two
permeable surfaces was investigated using the spectral-homotopy analysis and the successive
linearisation methods in Section 5.1. The results were compared with those in the literature
obtained using the homotopy analysis method and the homotopy perturbation method. Both
the spectral-homotopy analysis method and the successive linearisation method proved to be

computationally efficient and accurate compared to the other methods.
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Chapter 5 — Fluid flow through porous medium

The SHAM, ISHAM and SLM were used to solve the problem of MHD viscous flow due to
a shrinking sheet with a chemical reaction in Section 5.2. A comparison was made of the
convergence rates, ease of use, and expensiveness of the three techniques. The results were
validated using the bvp4c algorithm and with results in the literature. The ISHAM converged
at second order for all simulations and the size of the parameter values used did not affect its
performance. However, the ISHAM is expensive in terms of the size of the code and computer
time. It took about three times as long as the SLM to compute the same result and about
double the time taken using the SHAM. The SLM is easy to implement and converged at
third order with good stability levels. The SHAM gave good convergence under the same
conditions but convergence rates were retarded for highly nonlinear problems. It is easier to
implement compared to the ISHAM but not as easy as the SLM. The results obtained were
in excellent agreement with results from the bvp4c. In this study it was indicated that the
ISHAM performs better than the SHAM and SLM in terms of the accuracy of the results and
speed of convergence. A parametric study of the effects of different parameters was done and

results were found to be in good agreement with those in the literature.
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Chapter 5 — Fluid flow through porous medium

5.1. A novel numerical technique for two-dimensional laminar flow

between two moving porous walls !

Corrigendum

Please note the addition of the geometry of the flow below;

ad L]

at)
\\. h‘\ 5\ I\ 1 ! ] N__\‘:
NN

Figure 5.1: Two-dimensional domain with expanding or contracting porous walls.

Further explanations

(i) On page 4 the initial solution Fy(y) in equation (3.1) was chosen to satisfy the boundary

conditions, (2.7) and (2.8) of the problem.

(ii) The bvpdc was used to generate the numerical results in Tables 1 — 4 on pages 10 — 11.

(iii) The SHAM results on Table 5, page 12 were generated using N = 60.

(iv) All SHAM results were generated using the default value h = —1, h-curves were not

used in this work.

17. G. Makukula, S. S. Motsa and P. Sibanda (2010). Mathematical Problems in Engineering Volume

2010, Article ID 528956, 15 pages doi:10.1155/2010/528956 (Impact factor; 0.689).
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We investigate the steady two-dimensional flow of a viscous incompressible fluid in a rectangular
domain that is bounded by two permeable surfaces. The governing fourth-order nonlinear
differential equation is solved by applying the spectral-homotopy analysis method and a novel
successive linearisation method. Semianalytical results are obtained and the convergence rate
of the solution series was compared with numerical approximations and with earlier results
where the homotopy analysis and homotopy perturbation methods were used. We show that both
the spectral-homotopy analysis method and successive linearisation method are computationally
efficient and accurate in finding solutions of nonlinear boundary value problems.

1. Introduction

Laminar viscous flow in tubes that allow seepage across contracting or expanding permeable
walls is encountered in the transport of biological fluids such as blood and filtration in
kidneys and lungs. Such flows have many other practical applications such as in binary gas
diffusion, chromatography, ion exchange, and ground water movement [1-6]. In addition,
flow in channels with permeable walls provides a good starting point for the study of flow in
multichannel filtration systems such as the wall flow monolith filter used to reduce emissions
from diesel engines introduced by Oxarango et al. in [7]. Consequently, in the past four
decades a considerable amount of research effort has been expended in the study of laminar
flows in rectangular domains that are bounded by permeable walls [8-15].

The equations governing such flows are generally nonlinear and in the past asymptotic
techniques, and numerical methods have been used to analyze such flows and to solve the
equations; for example, in the pioneering study by Berman [8] asymptotic methods were used
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2 Mathematical Problems in Engineering

to solve the steady flow problem for small suction. In the study by Uchida and Aoki [16],
numerical methods were used to solve the governing nonlinear equations and to explain
the flow characteristics. Majdalani and Roh [4] and Majdalani [3] studied the oscillatory
channel flow with wall injection, and the resulting governing equations were solved using
asymptotic formulations (WKB and multiple-scale techniques). The multiple-scale solution
was found to be advantageous over the others in that its leading-order term is simpler and
more accurate than other formulations, and it displayed clearly the relationship between
the physical parameters that control the final motion. It also provided means of quantifying
important flow features such as corresponding vortical wave amplitude, rotational depth of
" penetration, and near wall velocity overshoot to mention a few. Jankowski and Majdalani
[12] used the same approach and drew similar conclusions about the multiple-scale solution
for oscillatory channel flow with arbitrary suction. An analytical solution by means of the
Liouville-Green transformation was developed for laminar flow in a porous channel with
large wall suction and a weakly oscillatory pressure by Jankowski and Majdalani [13]. The
scope of the problem had many limitations, for example, the study did not consider variations
in thermostatic properties and the oscillatory pressure amplitude was taken to be small in
comparison with the stagnation pressure. Zhou and Majdalani {17] investigated the mean-
flow for slab rocket motors with regressing walls. The transformed governing equation was
solved numerically, using finite differences, and asymptotically, using variation of parameters
and small parameter perturbations in the blowing Reynolds number. The results from the two
methods were compared for different Reynolds numbers Re and the wall regression rate a,
and it was observed that accuracy of the analytical solution deteriorates for small Re and large
a. A good agreement between the solutions was observed for large values of Re. A similar
analysis was done by Majdalani and Zhou [6] for moderate-to-large injection and suction
driven channel flows with expanding or contracting walls.

In recent years, the use of nonperturbation techniques such as the Adomian
decomposition method [18, 19]. He’s homotopy perturbation method [20, 21], and the
homotopy analysis method [22, 23] has been increasingly preferred to solve nonlinear
differential equations that arise in science and engineering. Dinarvand et al. [2] solved
Berman’s model of two-dimensional viscous flow in porous channels with walil suction
or injection using both the HAM and the homotopy perturbation method (HPM). They
concluded that the HPM solution is not valid for large Reynolds numbers, a weakness earlier
observed in the case of other perturbation techniques. Using the homotopy analysis method,
Xu et al. [24] developed highly accurate series approximations for two-dimensional viscous
flow between two moving porous walls and obtained multiple solutions associated with
this problem. The multiple solutions associated with this problem were also reported by
Zarturska et al. [25]. Although the homotopy analysis method is a reliable and efficient semi-
analytical technique, it however suffers from a number of limiting assumptions such as the
requirements that the solution ought to conform to the so-called rule of solution expression
and the rule of coefficient ergodicity. A modification of the homotopy analysis method, see
Motsa et al. [26, 27], seeks to produce a more efficient method while also addressing the
limitations of the HAM. In this paper, we use the spectral homotopy analysis method to
solve the nonlinear differential equation that governs the flow of a viscous incompressible
fluid in a rectangular domain bounded by two permeable walls. The problem is also solved
using a new and highly efficient technique, the successive linearisation method (see [28, 29])
so as to independently corroborate and validate the SHAM results. The results are also
compared with numerical approximations and the recent results reported in Xu et al. [24]
and Dinarvand and Rashidi [30].
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2. Governing Equations

Consider two-dimensional laminar, isothermal, and incompressible viscous fluid flow in a
rectangular domain bounded by two permeable surfaces that enable the fluid to enter or exit
during successive expansions or contractions. The walls are placed at a separation 2a and
contract or expand uniformly at a time-dependent rate a(t). The governing Navier-Stokes
equations are given in Majdalani et al. {31] as

ou 0v

ﬁ‘f‘a—?—o, (21)
on  _ou _on 10  _,.
o= - - __F 2.2
at+”af+”ag Pa£+vVu, (2.2)
05 00 09 10p .,
a +ua?— +Uaj = ;‘a—y + vV, (23)

where # and © are the velocity components in the X and ¥ directions, respectively, p, p, v and
t are the dimensional pressure, density, kinematic viscosity, and time, respectively. Assuming
that inflow or outflow velocity is vy,, then the boundary conditions are

u(x,a) =0, v(a) = —v, = ~-a/c,

o R o (2.4)
—a—?(x, 0) =0, 5(0) =0, #(0,7) =0,

where ¢(= a/vy,) is the injection or suction coefficient. Introducing the stream function g =
vXF(y,t)/a and the transformations

¥ _F 25
’ y=a F-Re' @5)

Maijdalani et al. [31] and Dinarvand and Rashidi [30] showed that (2.1)-(2.3) reduce to the
normalized nonlinear differential equation

FYV + a(yF"” +3F") + Re(FF" - F'F") =0, (2.6)

subject to the boundary conditions

F=0, F'=0, aty=0, 2.7)
F=1, F =0 aty=1, (2.8)
where a(t) = aa/v is the nondimensional wall dilation rate defined to be positive for

expansion and negative for contraction, and Re = av,, /v is the filtration Reynolds number
defined positive for injection and negative for suction through the walls. Equation (2.6) is
strongly nonlinear and not easy to solve analytically, and most researchers have studied
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the classic Berman formula [8]; that is, when a = 0. In this paper, we seek to solve (2.6)
subject to the boundary conditions (2.7) and (2.8) using a novel spectral modification of the
homotopy analysis method and the successive linearisation method. By comparison with

the numerical approximations and previously obtained results, we show that these new
techniques are accurate and more efficient than the standard homotopy analysis method.

3. Spectral Homotopy Analysis Method Solution

In applying the spectral-homotopy analysis method, it is convenient to first transform the
domain of the problem from [0,1] to [-1,1] and make the governing boundary conditions
homogeneous by using the transformations

+1 3 1
y= ‘;—2— U@ =F(y)-Fly)., Foly)=5v-5v" .1
Substituting (3.1) in the governing equation and boundary conditions (2.6)-(2.8) gives
16U + 8a,U"” + 4a,U” + 2a3U’ - 3Re U + 8Re(UU" -U'U") = ¢(y), (32)

subject to

u=0 u"=0, &=-1,

(3.3)
u=o0, u=0 ¢=1,
where the primes denote differentiation with respect to § and
3.1 4 3 s
aI:ay+Re<—y——y>, ay=3a—-=-Re(l-y"),
2 2 2 ( > (3.4)

as = 3yRe, $(y) =12ay +3Re e

The initial approximation is taken to be the solution of the nonhomogeneous linear
part of the governing equations (3.2) given by

16U + 8a Uy + 4aUy + 2a3Uy - 3Re Uy = ¢(y), (3.5)

subject to

Up=0, Uj=0, &=-1,
(3.6)
Up=0, Uy=0, &=1.
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We use the Chebyshev pseudospectral method to solve (3.5)—(3.6). The unknown function
Uo(¢) is approximated as a truncated series of Chebyshev polynomials of the form

N
Ug(@) = UY (&) = DUkTe(é;), j=01,....N, (3.7)
k=0

where Ty is the kth Chebyshev polynomial, l:lk, are coefficients and &, &1, ..., én are Gauss-
Lobatto collocation points (see [32]) defined by

é]':COS]—IF—\;, j=0,1,...,N. (3.8)

Derivatives of the functions Up(Z) at the collocation points are represented as

AUy S,
?ro = ;J%ijO(éj)f (3.9)

where r is the order of differentiation and  is the Chebyshev spectral differentiation matrix
([32, 33]). Substituting (3.7)-(3.9) in (3.5)—(3.6) yields

AUp =D, (3.10)
subject to the boundary conditions
Uog(d) =0,  Uolén) =0, (3.11)
N N
SRR to(dx) =0, > BoxUo(ék) =0, (3.12)
k=0 k=0

where

A =169D% + 821D + 42,D? + 223D — 3Re],

Uy = [Uo(&), Uo(&1), - ., Uo(n)]", (3.13)
® = [p(0), ¢, - p(yn)]",
a, = diag([as(yo), as(v1), .-, as(yn-1),as(yn)]), s=1,23. (3.14)

In the above definitions, the superscript T denotes transpose, diag is a diagonal matrix and I
is an identity matrix of size (N + 1) x (N +1).

To implement the boundary conditions (3.11), we delete the first and the last rows
and columns of A and delete the first and last rows of Uy and ®. The boundary conditions
(3.12) are imposed on the resulting first and last rows of the modified matrix A and
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setting the resulting first and last rows of the modified matrix @ to be zero. The values of
[Uo(&1), Un(&), ..., Up(én-1)] are then determined from

Up=A"'D. (3.15)
To find the SHAM solutions of (3.2) we begin by defining the following linear operator:

o'l >u ru ol
= = 3.16
2[T ()] = 16557 s B gy ey 2 3Rell, (3.16)

where g € [0, 1] is the embedding parameter, and &(g; g) is an unknown function.
The zeroth order deformation equation is given by

(1- ) 2] (& 9) - Uo@)] = ar{A[UE )] - @}, (3.17)

where 7 is the nonzero convergence controlling auxiliary parameter and U is a nonlinear
operator given by

ot U ot ol U ol U
Al q)] 1655 +8a g +ia g +2a3—a—§——3ReU+8Re<ua—é3——aEa—§2>.
(3.18)

Differentiating (3.17) m times with respect to g and then setting g = 0 and finally
dividing the resulting equations by m! yields the mth order deformation equations

LUpn@) = xmUm-1(2)] = iRy, (3.19)
subject to the boundary conditions
Un(-1) = Um(1) = U5 (-1) = U, (1) =0, (3.20)

where

Ry (&) = 16U | +8a;Ul_ +4aoUl,_, +2a3U,, ; —3ReUm

m-1 (321)
+8REZ(U u:,r,lln_u,u:,nln) ¢(y)(1_Xm)r
0, m<1
Xm = (3.22)
1, m>1.
Applying the Chebyshev pseudospectral transformation on (3.19)-(3.21) gives
AU, = (xm + B)AUp 1 = A(1 = xpm)® + hPpy (3.23)

168



Mathematical Problems in Engineering 7

subject to the boundary conditions

um (éO) = O/ um(éN) =0, (324)
N N
S Un(d) =0, > Dokllm(&) =0, (3.25)
k=0 k=0

where A and O, are as defined in (3.13) and

Up = [Un (@), Um(&1), -, U@,

m-1 (326)
Pyt =8Re 3 [Un (2Up-1-n) = (BUn) (9*Unne1-n)|.

n=0

To implement the boundary conditions (3.24) we delete the first and last rows of P,_1 and
® and delete the first and last rows and first and last columns of A in (3.23). The boundary
conditions (3.25) are imposed on the first and last row of the modified A matrix on the left
side of the equal sign in (3.23). The first and last rows of the modified A matrix on the right of
the equal sign in (3.23) are the set to be zero. This results in the following recursive formula
form>1:

Un = (xm + B)A AU, 1 + AAT [Prg — (1 xm) @] (3.27)

Thus, starting from the initial approximation, which is obtained from (3.15), higher-order
approximations U, (¢) for m > 1 can be obtained through the recursive formula (3.27).

4. Successive Linearisation Method

In this section, we solve (2.6) using the successive linearisation method. The main
assumptions underpinning the use of the successive linearisation method are the following.

(i) The unknown function F(y) maybe expanded as

i-1
F(y)=Fi(y) + D Fu(y), i=123..., (4.1)
m=0

where F; are unknown functions and F,, (m > 1) are approximations which are
obtained by recursively solving the linear part of the equation that results from
substituting (4.1) in the governing equation (2.6).

(ii) F; becomes progressively smaller as i becomes large, that is,

lim F; = 0. (4.2)

1—0o0
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Substituting (4.1) in the governing equation gives
F™ +ay iy F)' + azi1F) + a3 F) + agia Fi + Re(FiF] — FiF}) =11, (4.3)

where the coefficient parameters ay -1, (k =1,2,3, 4), and r;.; are defined as

i-1 izl
a1 =Re ZF", +ay, dzi-1 = —Re ZF;n+3a’

m=0 m=0

i-1 i-1

asi1=-Re > Fn,  agiy =Re D Fp, (4.4)
m=0 m=0
i-1 . i-1 i-1 i-1 i-1 i-1 i-1
o :_<ZF§’,”)+ayZF;,’;+3aZF;;> —Re< F F,’;-ZF;,ZF;;>.
m=0 m=0 m=0 m=0 m=0 m=0 m=(0

The SLM algorithm starts from the initial approximation

Foly) = 53+ By - 5(1+38)° + Py @5)

which is chosen to satisfy the boundary conditions (2.7)-(2.8). The parameter f in (4.5) is an
arbitrary constant which when varied results in multiple solutions. The subsequent solutions
for F,,, m > 1 are obtained by successively solving the linearized form of (4.3) and which is
given as

(iv) i " '
F'7 taya b +agia b +asiaF+agiaFi=ri, (4.6)

subiject to the boundary conditions
Fi(0)=0, F/'(0)=0, Fi(1)=1, F/(1)=0. 4.7)

Once each solution for F;, (i > 1) has been found from iteratively solving (4.6) for each i, the
approximate solution for F(y) is obtained as

Fp) = S Fu(y), 48)

m=0

where M is the order of SLM approximation. Since the coefficient parameters and the right
hand side of (4.6), fori = 1,2,3,..., are known from previous iterations, (4.6) can easily
be solved using analytical means or any numerical methods such as finite differences, finite
elements, Runge-Kutta-based shooting methods, or collocation methods. In this paper, (4.6)
is integrated using the Chebyshev spectral collocation method [32, 33] as described in the
previous section.
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Applying the Chebyshev spectral method to (4.6) leads to the matrix equation

AiFi =R, 4.9)

in which A is an (N + 1) x (N +1) square matrix and Y and R are (N + 1) x 1 column vectors
defined by

A= ])4 +ayi I)3 + a1 ])2 + a3,l-_1D + a4,i-1,
(4.10)

Riq1 =11,
with

F; = [Fi(xo)/l:i(xl)r---/Fi(xN-l)/Fi(xN)]T/
(4.11)
i = [rio1(xo), rica(x1), ..o rici(XN-1), ria ()]’

In the above definitions, N is the number of collocation points, x = 2y -1, ax;-1, (k=1,2, 3,4)
are diagonal matrices of size (N +1) x (N +1), and D = 29. After modifying the matrix system
(4.9) to incorporate boundary conditions, the solution is obtained as

Y, = A R (4.12)

5. Results and Discussion

In this section, we compare the results obtained using the various methods: the SHAM, the
SIM, and the numerical approximations with those obtained using the HAM in Dinarvand
and Rashidi [30] and the homotopy-Pade method in Xu et al. [24]. The solution obtained
using most numerical solutions depends on the initial approximation. Using different initial
guesses can give rise to multiple solutions. Multiple solutions were obtained if the initial
guess in (4.5) is used in the SHAM method in place of Fo(y) in (3.1). In this paper, it
was observed that using different values of f results in multiple solutions. For the multiple
solutions comparison was made against the HAM results of [24].

An optimal h value can easily be sought that can considerably improve the
convergence rate of the results. However, for comparison purposes we used i = -1. It is
however worth noting, as pointed out in Dinarvand et al. [2], that when % = -1, the solution
series obtained by the HAM is the same solution series obtained by means of the homotopy
perturbation method.

In Table 1 we compare the values of F(y) when a = -1 and Re = -2,0 and 2 with the
numerical and the HAM results reported in Dinarvand and Rashidi [30]. In [30], convergence
up to six decimal places was achieved at the sixth order of the HAM approximation forRe =0
and 2. In this study, the same level of convergence and accuracy was achieved at the first
order approximation for the same values of Re. For Re = 2 the convergence of the homotopy
analysis method series solution was achieved at the eighth order of approximation while with
the spectral homotopy analysis method series solution gives the same level of convergence at
the second order.
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Table 1: Comparison of the numerical results against the SHAM approximate solutions for F(y) when
a=-TwithN=60and /i = -1.

Re y Oth order 1st order 2nd order 3rd order Numerical Ref. [30]
-2 0.2 0.273828 0.273831 0.273832 0.273832 0.273832 0.273832
04 0.532827 0.532839 0.532839 0.532839 0.532839 0.532839
0.6 0.759442 0.759467 0.759468 0.759468 0.759468 0.759468
0.8 0.928967 0.928990 0.928990 0.928990 0.928990 0.928990
0 0.2 0.279449 0.279449 0.279449 0.279449 0.279449 0.279449
0.4 0.542243 0.542243 0.542243 0.542243 0.542243 0.542243
0.6 0.768950 0.768950 0.768950 0.768950 0.768950 0.768950
0.8 0.933889 0.933889 0.933889 0.933889 0.933889 0.933889
2 0.2 0.283996 0.283983 0.283983 0.283983 0.283983 0.283983
0.4 0.549759 0.549738 0.549738 0.549738 0.549738 0.549738
0.6 0.776328 0.776306 0.776306 0.776306 0.776306 0.776306
0.8 0.937518 0.937507 0.937507 0.937507 0.937507 0.937507

Table 2: Comparison of the numerical results against the SHAM approximate solutions for F"(1) when
a = ~1 with N = 60 and /i = -1 for different values of Re.

Re Oth order 1st order 2nd order 3rd order 4th order Numerical
0 -3.8213722 -3.8213723 -3.8213723 -3.8213723 -3.8213723 -3.8213723
5 -3.1725373 -3.1731774 -3.1731800 -3.1731800 -3.1731800 -3.1731800
10 -2.9069253 -2.9069653 ~2.9069654 -2.9069654 -2.9069654 -2.9069654
15 —2.7783086 -2.7784366 —2.7784369 -2.7784369 ~2.7784369 —2.7784369
20 -2.7056150 -2.7060556 -2.7060557 -2.7060557 -2.7060557 -2.7060557
25 -2.6596223 -2.6603920 -2.6603907 -2.6603907 -2.6603907 -2.6603907
30 -2.6281102 -2.6291718 -2.6291682 -2.6291682 -2.6291682 -2.6291682
40 ~2.5879160 —2.5894333 -2.5894247 -2.5894247 -2.5894247 -2.5894247
50 —2.5634446 -2.5652868 -2.5652732 -2.5652733 -2.5652733 -2.5652733
100 -2.5139141 —-2.5165255 -2.5164964 -2.5164967 -2.5164967 -2.5164967
150 -2.4972813 -2.5001845 -2.5001479 -2.5001484 -2.5001484 -2.5001484

In Table 2, we demonstrate the computational efficiency of the SHAM solution for
large values of Re. As has been noted in the introduction, some semi-analytical methods
fail to converge at large values of Re, for example, Dinarvand et al. [2] have shown that for
|Re| > 9.5 the HPM fails to converge. However, in using the SHAM convergence up seven
decimal places is achieved at the third order of approximation for values of Re as large as
Re = 150. For 5 < Re < 100 convergence up six decimal places is achieved at the second order.
In Table 3, Re = 2 is fixed and F"(1) evaluated for -2.5 < a < 2.5. Convergence up to seven
digits is achieved at the first order for a = 0, at the second order for -2 < a < 0.5, and at the
third-order approximation for a = —2.5. Clearly the SHAM gives faster convergence than the
HAM under the same conditions.

Table 3 also gives a comparison of the SHAM approximate results with the numerical
results generated using different values of N. Itis evident however that for small values of N
(say less than N = 20) the SHAM results are not very accurate. Accuracy however improves
with an increase in N.

Table 4 gives a comparison of the numerical and the SHAM results of F"(1) when
-25 < a < 2.5. Convergence is generally achieved at either the third- or the fourth-order
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Table 3: Comparison of the numerical results against the SHAM approximate solutions for F”(1) when
a = -1 with Re = 10 and /i = -1 for different values of N.

N Oth order 1st order 2nd order 3rd order 4th order Numerical
10 -2.7059921 -2.7064302 —2.7064302 -2.7064302 -2.7064302 -2.7060557
15 -2.7056141 -2.7060549 —-2.7060550 —2.7060549 —2.7060549 -2.7060557
20 -2.7056150 -2.7060556 —2.7060557 -2.7060557 -2.7060557 -2.7060557
30 -2.7056150 —-2.7060556 —2.7060557 -2.7060557 -2.7060557 -2.7060557
40 -2.7056150 ~2.7060556 -2.7060557 -2.7060557 -2.7060557 -2.7060557

60 -2.7056150 -2.7060556 —2.7060557 -2.7060557 -2.7060557 -2.7060557

Table 4: Comparison of the numerical results against the SHAM approximate solutions for F”(1) when
Re = 2 with N = 60 and £ = -1 for different values of a.

a 1st order 2nd order 3rd order 4th order Numerical
=25 -4.5258487 —4.5258506 -4.5258505 -4.5258505 —4.5258505
-2.0 -4.1673848 -4.1673892 -4.1673892 -4.1673892 -4.1673892
-15 -3.8209704 -3.8209740 -3.8209740 -3.8209740 -3.8209740
-1.0 -3.4873966 -3.4873982 -3.4873982 ~3.4873982 -3.4873982
-0.5 -3.1674332 -3.1674334 -3.1674334 ~3.1674334 -3.1674334
0.0 -2.8618116 -2.8618116 -2.8618116 -2.8618116 -2.8618116
0.5 -2.5712067 -2.5712055 -2.5712055 -2.5712055 -2.5712056
1.0 -2.2962176 -2.2962075 -2.2962076 -2.2962076 -2.2962076
15 -2.0373492 -2.0373088 -2.0373092 -2.0373092 -2.0373092
2.0 -1.7949940 -1.7948795 -1.7948810 -1.7948810 —1.7948810
25 -1.5694172 -1.5691503 -1.5691557 -1.5691556 -1.5691556

of the SHAM approximation. Figures 1 and 2 give a comparison of the numerical and the
SHAM solutions for the characteristic mean-flow function F(y) = ~v/c and F'(y) = yc/x at
different Reynolds numbers and a. The mean-flow function F(y), increases with increasing
(positive) values of Re and a while F'(y) decreases, which makes sense since F(y) is
inversely proportional to the injection or suction coefficient ¢ = a/ Re while F'(y) is directly
proportional. Figure 1 further illustrates the efficiency of the solution method with excellent
agreement for Re as large as 200.

Using the initial approximation Fy(y) in (4.5) with different values of § in place of (3.1)
in the SHAM implementation leads to multiple solutions. When = 0 and -5, the SHAM
gives the multiple solutions observed in Xu et al. {24]. A comparison of the SHAM results
against the HAM results reported in [24] is presented in Table 5. It is evident that the SHAM
results converge much more rapidly than the HAM results of [24] for both branches of the
solution.

Tables 6 and 7 give, first, the analytical approximations of F'(0)/ Re and F"(0)/ Re
for the two solutions obtained using the successive linearisation method. Secondly, the tables
give a direct comparison of the convergence rates of the SLM and the [m, m] homotopy-Padé
method used by Xu et al. [24]. The fourth-order SLM approximation gives the same level
of accuracy as the twenty-fourth-order of the [m, m] homotopy-Pade approximation, which
suggests that the successive linearisation method is much more computationally efficient and
accurate compared to the [m, m] homotopy-Pade approximation (although it is not clear at
this stage whether this could be attributed to the use of a more efficient initial guess).
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Figure 1: Comparison between numerical and SHAM approximate solution of F(y) and F'(y) for different
values of Re when a = -1 when /& = -1.14 (for Re = -10) and / = -1 (for Re = 0, 200).
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Figure 2: Comparison between numerical and SHAM approximate solution of F(y) and F'(y) for different
values of @ when Re = 2 when /i = -1 (for a = -5,-2.5,0,2.5) and # = -0.94 (for a = 5).

Table 5: Comparison between the multiple solutions of HAM results (see [24]) and the present SHAM
results in the case of Re = -10 and a = 4.

HAM solution [24] SHAM solution
Order of approx. F'(0) F"(0) Order of approx. F'(0) F"(0)
First solution 10 0.624 161  8.267 56 5 0.625549 8.24662
20 0.624 967  8.256 03 10 0.625016 8.25532
30 0.625005  8.25548 15 0.625008 8.25544
40 0.625007 8.25545 20 0.625007 8.25545
50 0.625007 8.25545 25 0.625007 8.25545
Second solution 10 -1.18995  35.8984 5 -1.190529  35.85647
20 -1.19003  35.8474 10 -1.190322  35.85414
30 -1.190 41 35.8555 15 -1.190323  35.85416
40 -1.19031  35.8539 20 -1.190323  35.85416
50 -1.19033  35.8542 25 -1.190323  35.85416
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Table 6: Comparison of F'(0)/ Re and F"(0)/ Re obtained at different orders for the SLM, and the [m, m]
homotopy-Pade approximation when Re = =10 and a = 4. For the SLM first solution, § = -1, and N = 25,
and for the SLM second solution, § = -5, and N = 25.

[m, m] homotopy-Padé [24] SLM
order F'(0)/ Re F"(0)/ Re order F'(0) F"(0)
First solution 4 0.624478732 8.265444222 2 0.624485895 8.26283765
8 0.625005336 8.255477422 3 0.625007516 8.25544430
16 0.625007395 8.255446127 4 0.625007396 8.25544612
20 0.625007396 8.255446125 6 0.625007396 8.25544612
24 0.625007396 8.255446124 8 0.625007396 8.25544612
Second solution 4 -1.219891 36.01091 2 -1.190934 35.86042
8 -1.178465 35.17878 3 ~1.190323 35.85416
16 -1.190319 35.85409 4 -1.190323 35.85416
20 -1.190323 35.85415 6 -1.190323 35.85416
24 -1.190323 35.85416 8 -1.190323 35.85416

Table 7: Comparison of F'(0)/ Re and F"(0)/ Re obtained at different orders for the SLM, and the [m, m]
homotopy-Pade approximation when Re = -11 and a = 3/4. For the SLM first solution, § = -5, and
N =25,6=1,and N = 25 for the SLM second solution, and for the SLM third solution g = 3, and N = 25.

[m, m] homotopy-Pade [24] SLM
order F'(0)/ Re F"(0)/ Re order F'(0) F"(0)
First solution 4 -1.0231621 24.2925851 2 -1.3250168 27.8640486
8 -1.0237700 24.2863797 3 -1.0765777 24.9095006
16 -1.0237712 24.2863088 4 -1.0259527 24.3119987
20 -1.0237712 242863088 6 -1.0237712 24.2863088
24 -1.0237712 24.2863088 8 -1.0237712 24.2863088
Second solution 4 0.1668590 10.282860 2 0.2134950 9.682581
8 0.1679980 10.239451 3 0.1718420 10.216566
16 0.1693518 10.245026 4 0.1693573 10.245102
20 0.1693532 10.245150 6 0.1693531 10.245151
24 0.1693532 10.245151 8 0.1693531 10.245151
Third solution 4 ... . 2 2.76262 -15.5266
8 2.81591 -15.8950 3 2.76111 -15.5123
16 2.76154 -15.5157 4 2.76111 ~15.5122
20 2.76113 -15.5123 6 276111 -15.5122
24 2.76111 -15.5123 8 2.76111 -15.5122

6. Conclusion

In this paper, we have used the spectral homotopy analysis method (SHAM) and the
successive linearisation method (SLM) to solve a fourth-order nonlinear boundary value
problem that governs the two-dimensional Laminar flow between two moving porous walls.
Multiple solutions recently reported in Xu et al. [24] have been obtained, depending on the
initial approximation used. Comparison of the computational efficiency and accuracy of the
results between the current methods and the previous homotopy analysis method results
described in Dinarvand and Rashidi [30] and Xu et al. [24] has been made. Our simulations
show that the convergence of the SHAM solution series to the numerical solution (up to six
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decimal place accuracy) is achieved at the second order (for Re = -2) and first order for
R = 0,2. In contrast to the standard homotopy analysis method (c.f. Dinarvand and Rashidi
[30]) convergence was achieved at the eighth order (for Re = -2) and sixth order for Re = 0, 2.
The SHAM is apparently more efficient because it offers more flexibility in choosing linear
operators compared to the standard HAM. It is however important to note that if the same
initial guess and linear operators were to be used, the two methods would give the same
solution.

We have further shown that notwithstanding the acceleration of the convergence
ratio of the homotopy series by means of the homotopy-Padé technique, the successive
linearisation techniques is more computationally efficient (although this again could be due,
in part, to the use of a different initial guess) and gives accurate results.
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Chapter 5 — Fluid flow through porous medium

5.2. On new numerical techniques for the MHD flow past a shrinking
sheet with heat and mass transfer in the presence of a chemical

reaction 2

Corrigenda

(i) Problem geometry
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Figure 5.2: Flow analysis on a shrinking surface

(ii) In equation (2.3), the correct similarity transformation for 7 is

a

=Y
v

and the variable F' should be replaced by f.
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We use recent innovative solution techniques to investigate the problem of MHD viscous flow due
to a shrinking sheet with a chemical reaction. A comparison is made of the convergence rates,
ease of use, and expensiveness (the number of iterations required to give convergent results)
of three seminumerical techniques in solving systems of nonlinear boundary value problems.
The results were validated using a multistep, multimethod approach comprising the use of the
shooting method, the Matlab bvp4c numerical routine, and with results in the literature.

1. Introduction

Boundary layer flow over a stretching surface occurs in several engineering processes such
as hot rolling, wire drawing, and glass-fibre production. Materials that are manufactured by
extrusion processes and heat-treated substances proceeding between a feed roll and a wind-
up roll can be classified as a continuously stretching surface [1-3]. A shrinking film is useful
in the packaging of bulk products since it can be unwrapped easily with adequate heat [4-7].
Shrinking problems can also be applied to the study of capillary effects in small pores and
the hydraulic properties of agricultural clay soils [8]. Studies of flow due to a shrinking sheet
with heat transfer and /or mass transfer have been considered by, among others, [7, 9].

In recent years, several analytical or semianalytical methods have been proposed
and used to find solutions to most nonlinear equations. These methods include the
Adomian decomposition method (ADM) [10, 11], differential transform method (DTM) [12],
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2 Mathematical Problems in Engineering

variational iteration method (VIM) [13], homotopy analysis method (HAM) [14-17], and
Homotopy perturbation method (HPM) [18-23].

Motsa and Shateyi [24] obtained a numerical solution of magnetohydrodynamic
(MHD) and rotating flow over a porous shrinking sheet by the new approach known as
spectral homotopy analysis method (SHAM). Muhaimin et al. [5] studied magnetohydrody-
namic viscous flow due to a shrinking sheet in the presence of suction. The study found out
that the shrinking of the sheet has a substantial effect on the flow field and, thus, on the heat
and mass transfer rate from the sheet to the fluid.

In this paper we provide a qualitative assessment of key features of three recent

. seminumerical techniques, namely, the successive linearisation method (SLM), the spectral-
homotopy analysis method (SHAM), and the improved spectral-homotopy analysis method
(ISHAM). The two methods were introduced and used by Motsa and his coworkers (see
Motsa et al. [25, 26] and Makukula et al. [27-30]) to solve nonlinear boundary value
problems. In Motsa et al. [25, 26, 29] the SHAM approach was tested on simple one-
dimensional nonlinear boundary value problems. Later, Makukula et al. [28, 30, 31] extended
the application of the SHAM to a system of two coupled nonlinear equations that model
the von Karman fluid flow problem. The SLM method was applied on one-dimensional
nonlinear differential equations in Makukula et al. [27]. In this study we solve the nonlinear
equations that govern the shrinking sheet problem for purposes of evaluating the efficiency
of each method with regards to speed of convergence, ease of use, and expensiveness
(in terms of the number of iterations required to give convergent results). We introduce
the ISHAM as a method that is meant to improve the accuracy of the standard SHAM
approach. The governing equations for the problem are a rather formidable system of three
nonlinear differential equations in three unknowns. Parametric study of the effect of different
parameters is made and the results compared with previous findings in the literature (see
Noor et al. [6], Mohd and Hashim [7], and Muhaimin et al. {5]). The solutions are further
compared with results obtained using the shooting method and the bvp4c solver, which is
based on Runge-Kutta fourth-order schemes.

2. Mathematical Formulation

We investigate the effect of chemical reaction, heat and mass transfer on nonlinear MHD
boundary layer past a porous shrinking sheet with suction. The governing boundary layer
equations of momentum, energy, and mass diffusion in terms of the velocity components u,
v, and w are (see Muhaimin et al. [5])

a_u+.é)_v+a_w—0
ox "oy oz
W2 010 [P Ou ul 0By
ox 0y 9z pox ox2  oy?  0z? p K’

ax? oy " 522

U~ + UV — t W

ov. Oov duv 10p Pv v v oB} v
+ = -tV — -
ox Oy 0z poy

dow dw dw 10p {62w Pw 62w}

ua+v@—+w&——;az+v _(37+6?+_a?
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o oT_ar_ [T 9T 0T
“ox Ay o0z |ox2 oy oz |’

oC  oC oC a°C  9°C 9 C

i rw—=pl{ o 2
”ax+vay+waz {ax2+ay2+az2} fac

.1)

where a is the thermal conductivity of the fluid, By is the magnetic field, «x is the thermal

» viscosity, K is the permeability of the porous medium, k; is the rate of chemical reaction,

v = pu/p is the kinetic viscosity, u is the dynamic viscosity, and o is the electrical conductivity.
The applicable boundary conditions are

u=-ax, v=—-am-1)y, w=-W, T=T, C=C, at y=0,
(2.2)

u-—0 C—Cy T—T, as y-— oo,

where a > 0 is the shrinking constant and W is the suction velocity. The cases m = 1 and
m = 2 correspond to shrinking sheets in the x- and y-directions, respectively.
Using the similarity transformations (see Sajid and Hayat [32]):

u=axF(n), v=alm-DyF(n), w=-vavmF(n), n=\/§z,

(T -T,) (C-C) 23)
A e S T A Teheron

(2.1) are transformed to the system of nonlinear equations
- <M2 +APE)f = fP 4 m f =0, (2.4)
8" - Prf'0+mPrf6 =0, (2.5)
¢"—Scf'¢p+mScfd - Scyp =0, (2.6)

subject to
fO =s  fO)=-1, flo)=0, 60)=1  6(cc) =0,

(2.7)

$0)=1,  P(o) =0,

where Pr = v/k is the Prandtl number, S¢ = v/D is the Schmidt number, A = x/Ka is
the porosity, and y is the chemical reaction parameter. We remark that (2.4) can be solved
independently of equations of (2.5)-(2.6) for f, but the solutions for 8 and ¢ directly depend
on the solution for f. To demonstrate how robust the proposed methods of solution are,
the system of (2.4)-(2.5) is solved simultaneously in the next section. Solving the equations
simultaneously is also important when conducting the parametric study because some of the
governing parameters such as Pr and m affect all three unknown variables.
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3. Solution Methods

We solve (2.4)-(2.6) using three recent innovative semi-numerical methods. Validation of the
results is done by further solving the equations numerically using a shooting method and the
Matlab bvp4c solver. For the last two methods we used a tolerance of 1076

We begin by transforming the domain [0, c0) to [-1, 1], using the domain truncation
method, the domain {0, o0} is first approximated by the computational domain [0, L], where
L is a fixed length that is taken to be larger than the thickness of the boundary layer. The
domain [0, L] is then transformed to [—1, 1] using the algebraic mapping

e=1L1, re[-1,1] (3.1)

3.1. The Successive Linearisation Method (SLM)

The successive linearisation method (see Makukula et al. [27, 28]) is used to solve (2.4)~(2.7).
The starting point is to assume that the independent variables f(7), (1), and ¢(rn7) may be
expanded as

F) = fi) + SFa) O0n) =6(n) 5:0a(1),
b0) = bC) + S0u), 11,25,

where f;, 6; and ¢;, are unknown functions and F,, ©,,, and ®,,(m > 1) are approximations
that are obtained by recursively solving the linear part of the equation that results from
substituting (3.2) in the governing equations (2.4)-(2.7). Substituting (3.2) in the governing
equations (2.4)-(2.7) gives

f'+aviafi + aziafi +aziafi+mff" - f2=ria,

9;’ + b]y,;] 9: + bzl,‘,le,‘ + b3(,'_1fil + b4,i—lfi - PTf’Q + mPrfG' =12,i-1, (33)
¢!+ crigh + cricii + csiaa fi + cai1 fi— Scf'¢+mScf =135,

where the coefficient parameters ay;_1, bii-1, ki1 (k = 1,...,4), riiy, 1251, and 13,1 are
defined as

i-1

i~1 i-1
2
ayi-1=m E F,., azi-1 = —<2 E F:n + M*+ APT), asi-1 =m E F;;,
m=0 m=0

m=0

i-1 i1 i-1

bl,i—l = mPrZFm, bZ,i—l = *PTZF;W b3,iv1 = ‘Prze"”
m=0

m=0 m=0

i-1 i-1 i-1
b4,i_1 = mPrZ@’m, Cl,i-1 = mSCZFm, C2,i-1= —SCZF:,, - SC}’,

m=0 m=0 m=0
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i1 i1
!
€31 = “SCZ(Dm/ C4ji1 = mSCZ‘Dm,

m=0 m=0

i—1 i—1 i—1 i-1 i-1 i-1
7"1’1‘,]:—[21:‘;;:— d F;HIZF;I‘lez:F;InIZFm—<M2+APT>IZF;,‘],
0 =0 m=0 m=0 m=0

m=0 m=

i—1 i-1 -1 -1 i-1
tr2,i-1 = ~[IZ®’,',, - PrlZF;nZ@m + mPrlz:FmEG’m],
m=0 m=0 m=0 m=0 =0

i-1 i-1 i—1 i—1 i-1 i-1
r3i-1 = “[IZ(D’,I,, - SCIZ F:nlzcbm + mSCIZleZ(DIm - SCYLZ'(D]
m=0 m=0 =0 m=0 m=0 m=0

(3.4)
Starting from the initial approximations
F()(rl) =5+ e‘zrl - e"l' @0(71) = e“’l’ (DO (rl) = e"l’ (35)

which are chosen to satisfy the boundary conditions (2.7), the subsequent solutions for Fy,
0,,, and ®@,,, m > 1, are obtained by successively solving the linearized form of (3.3) which
are

e " 1
F'"+ay;1F +azi1Fj+az;i1Fi =1,
i r !
O +b1,;10; +b2;10; + b3y i 1 F; + by Fi =1, (3.6)

" ! 1
D! + 1D + e 1P + 31 F; + g Fi = 13501,
subject to the boundary conditions

F;(0) = F{(0) = Fi(0) =0,  ©;(0)=0,  @;(0)=0. 3.7)

Once each solution for F;, ©;, and @; (i > 1) has been found from iteratively solving (3.6)-(3.7)
for each i, the approximate solutions for f (1), 8(1), and ¢(1) are obtained as

£ = zf;fmm), o(n) ~ ﬁzoe,n(n), o) = f_ocbm(n). (38

In coming up with (3.8), we have assumed that

lim f; =0, lim6; =0, lim¢; = 0. (3.9)
1—ce

i— oo 10
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Equations (3.6)-(3.7) are integrated using the Chebyshev spectral collocation method
(Canuto et al. [33] and Trefethen [34]). The unknown functions are defined by the Chebyshev
interpolating polynomials with the Gauss-Lobatto points defined as

yj=cos=L, j=0,1,...,N, (3.10)

]
N/

where N is the number of collocation points used. The unknown functions F;, ©;, and @; are
approximated at the collocation points by

N N
Fi&) = D FREOT(E),  ©:@) = D 0i)Te (),
k=0

k=0
(3.11)
N
)= YD) Te(g),  j=01,...,N,
k=0
where Ty is the kth Chebyshev polynomial defined as
Te(2) = cos [k cos™ (g)] . (3.12)
The derivatives at the collocation points are represented as
d"F & d9; X
ZD FiGe), = > D§,0i(%0),
k=0
(3.13)

dw; N .
- = Y DE®i), j=01...,N,

where a is the order of differentiation and D = (2/L)® with D being the Chebyshev spectral
differentiation matrix. Substituting (3.13) in (3.6)-(3.7) leads to the matrix equation

A1 Xi =R, (3.14)

where B;_; is a 3(N + 1) x 3(N + 1) square matrix and X; and P;_; are 3(N + 1) x 1 column
vectors defined by

D3 +a;D? + a;D + a3l 01 01
A,‘,l = b3D + b4l ])2 + b]D + bzI 01 ,
3D+ ¢yl 01 D2+ D+ CzI

=
|

= [Fn(80), Em(é1), - Fun(@N), Om(&0), Om(é1), - .., Om{En),
@, (80), P(21), - P (EN)]T,
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R = [Tl,i—l (710>, ¥y,i-1 (711), Y A WA (711\1), r2,i-1 (710)/ 12,i-1 (711), s 12,441 (711\/),

T

r3,i-1 (110>/ 13,i-1 (711), o 1351 (TIN)]
(3.15)

In the above definitions, a1, and bx i1, ¢kio1 (k = 1,...,4) are diagonal matrices of size
(N + 1) x (N + 1). After modifying the matrix system (3.14) to incorporate the boundary
conditions, the solution is obtained as

X; = A7 Ri. (3.16)
3.2. Spectral-Homotopy Analysis Method (SHAM)
The spectral-homotopy analysis method (SHAM) has been used by Motsa et al. [25, 26]. Itis

also convenient to first ensure that the boundary conditions are made homogeneous by using
the transformations

f) =F@)+fo(m), 601 =0()+6(m),  ¢(n) = @) +¢o(n), (317)

where fo(7), and 6y(7), $o(r) are chosen to satisfy the boundary conditions (2.7) of the
governing equations (2.4)-(2.6). From (3.1) and the chain rule, we have that

2
FO) = TF@+filn), f100) = 5@+ fi),
1 8 U H
£"(n) = 15 F" @) + 13 ).
(3.18)

2
0(n) = 20 +0(m),  0(n) = 750"(@) + B4 (),

/ 2 ! ! 4 '
#(n) = TO@+9u(n) ¢ (1) = 39'Q) + ().
Substituting (3.1) and (3.17)-(3.18) in the governing equations and boundary conditions gives
m 1 ! 4 " 4 1B ali
aoF +a1F +a2F +a3F+-E2-mF F-—EFF :Tl(Tl),

bp@" + b1© + by© + b3 F' + byF - %Prl—"’@ + %mPrF@’ = (1), (3.19)

2 2
co®@" + 1@ + @ + o3F + ¢4 F - ZSCFICD + ZmScI—YD’ =r(1),
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8
where prime now denotes derivative with respect to ¢ and

a2:—<z(M2+APr>+%fé>, az =mf,,

8 4
apg = F/ a = ﬁmf(), 7
ri(n) = -(f + mfofy - fofs - (M2 +APr) fy),
4 2 / ) '
bo = 2’ by = ZmPrfO, by =-Prf, by = —ZPYGO, by = mPrO,,
TQ(TZ) = _(9” - Prfé@o + mPrfoeo),
4 2 , 2 ,
=13 € = stcfo' c2==Sc(fo+71), c3= _ZSC(],O, ¢y = mSc@),
rs(n) = —(¢" - Scfoo + mScfody — Scyd).
(3.20)

The initial guesses used are

fo(n) =s+e—ne,  B(n)=e",  ¢o(n)=e. (3.21)
Solving the linear part of the equation system (3.19), that is,
aoF(/)H + ang + leF(l) +azFy = 7’1(1’1),
bo©f + 19}, + b0y + by Fy + byFo = r2(1), (3.22)
CO(DS + CI(DZ) + P + C3F(/) +caFg =13 (T[),
subject to
2, 2,
Fo(-1) = ZFO(—I) = ZFO(l) =0, Op(-1) =0y(1) =0, Dp(-1) = Dy(1) =0,
(3.23)

will yield the initial SHAM approximate solution. Applying the Chebyshev pseudospectral

method on equations (3.22)-(3.23) yields the matrix form
BY; =R, (3.24)
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where
D’ + 219D% + @D + a3l 01 01
B= b39 + b4I b()%z + b}% + bzI 01 , (325)
D+ ol 01 D% + 1D + ¢yl

R= [rl(no),rl(m),...,rl(nN),rz(rzo),rz(m),...,rz(nN),m(no),rg(m),...,rs(nN)]T,

Yo = [FO(éo)/Fo(ﬁl)/---,Fo(éN)feo(éo)feo(él),-~-/eo(éN)lq’o(&))/q’o(él)/---/(DO(§N)]T/
a; = diag([ai(n0),- -, ai(nn-1), ai(nw)]), b; = diag([bi(ﬂo)r---/bi(ﬂN—1>/bi(ﬂN)])r

¢; = diag([ci(nm0), ... ci(nn-1),ci(nn)]),  i=0,1,2,3,4.
(3.26)

The superscript T denotes the transpose, diag is a diagonal matrix, and I is an identity matrix
of size (N + 1) x (N + 1). The boundary conditions (3.23) are implemented in matrix B and
vector R of equation (3.24). The values of [Yo(&1), Yo(&2), .-, Yo(én-1)] are then determined
from the following equation:

Y, = B'R, (3.27)

which provides us with the initial approximation for the solution of the governing equations
(3.19). With the initial approximate solution, we then find approximate solutions for the
nonlinear equations (3.19). We start by defining the following linear operators:

~ »PF *F -
‘EF[F(‘;Q)] = ao*gg + 01—5@—2 + a:za—é +asF,
= ~ PO O  ~ | OF | =
Lo [F(é; q),@(é;q)] = bo—a? +by at b,© + b3_aE + byF, (3.28)

= = @b od - OF =
—fa»[F(é;q)@(é;q)] =agg tag ralrag vl

where g € [0,1] is the embedding parameter and I?(g;q), é(g,- q), and &)(g,- q) are unknown
functions. The zeroth-order deformation equations are given by

(1-)2r[F(59) - Fo@)] = ar{ 2 [FGa)] -},
(1-9)L0[B(&) - @] = ah{ Mo [F(5:9). 6 )] - 2}, (3.29)

(1-9) Lo|®(&9) - Po(@)] = ah{ Mo [F(5:0). D@ )] -2},
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where #i is the nonzero convergence controlling auxiliary parameter and NVf, Ao, and N
are nonlinear operators given by

- PF OF OF =~ 4 -OF 409dF0F
./UF[F@/‘?)] = aogg+ala—§2+azgg+aaF+ﬁmFa—éz - Ea_ga_g’

- ~ PO 0O  ~  OF .
/v@[F(g;q),e(g,-q)] - boa—é2 +bla—§ + 5,0+ b3a—§ +b,F

+ Epr<—éa—F + mﬁa—®>, (3.30)

. - PO oD oF
Jvm[F(é;q),CD(é;q)] =g tagy o®+ 3o + o

The m-th order deformation equations are given by

L [Fr(@) = xmFm1(2)] = ARE,
L6[On(2) ~ xmOm1(2)] = AR, (3.31)

Lo [®(8) = XmPr-1(2)] = AR,

subject to the boundary conditions

Fu(-1) = F,,(-1) = F,,(1) =0, On(-1) = 0,(1) =0, D,(-1) = Dp(1) =0,
(3.32)

where

R,}n(g) = aOF;Z_l + alF::l_l + azF;n‘] + a3Fm_1
4 m-1
! ! "
+ sz (_FnFm—l-n + mF"Fm—l—n) -n (Tl) (1 - X”‘)'
n=0
RE(2) =@ | + 510 | + 5Oyt +bsFl | +bsFpy

m-1

2 )
T Prz (=F1,©m1-n + MO, Fr_1n) = 12 () (1 = Xm),
n=0
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O " ’ '
Ry (&) = co®,,_; + 1@, | + 2Pt + c3F,,_ + CaFm

2.5 p :
+ ESCZ (_an)m—l—n + md)nFm_l_n) - T‘3(1’l) (1 - xm>,
n=0

(3.33)

(3.34)

Applying the Chebyshev pseudospectral transformation to equations (3.31)-(3.33) gives rise
to the matrix equation

BY,, = (xm + 7)BY 1~ A(1 = xm) R+ FiQp-1, (3.35)

subject to the boundary conditions

N N
S D0Fn() =0, > DnkFm(@) =0, Fnln) =0,
k=0 k=0

(3.36)
Om(é) =0,  Omn) =0,  ®m(%) =0, Dul(én) =0,
where B and R are as defined in (3.25) and
Yo = [Fm(g())/ Fm(gl)/ BRI Fm(‘gN)lem(@)/@m(gl)r cee /@m(‘f:N)/
Dy (&), Pm(&1), - P (&N,
5 [—i(w Y(@Foron) + s MFn (D Frit_n)
o | T e T T e (3.37)

2 m-1
Qp1= ZPTZ [-(®F,)Om-1-n + m(DO,)Frn-1-n]
n=0

m-1

2
zscnzz(:) [~ (RF ) ®prton + m(DDy) Frp 1]
Applying the boundary conditions (3.32) on the right-hand side of (3.35) yields the following

recursive formula for higher-order approximations Yy, (§) for m > 1:

Y, = (xm + £) B BY et + B [Quy — (1- xm)R]. (3.38)
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3.3. Improved Spectral-Homotopy Analysis Method (ISHAM)

Details of the improved spectral-homotopy analysis method (ISHAM) can be found in
Makukula et al. [30]. The main objective is to improve the convergence rate of the spectral-
homotopy analysis method by using an optimal initial approximation. Hence, instead of
a random solution choice a systematic approach is employed to find the optimal initial
approximation. This is achieved by first assuming that the solutions f(17), 6(1), and ¢(1)
can be expanded into

SO = F) + S Faln) 80n) =©4(n) + S10u(n),
= =0 (3.39)

i-1
$(n) = () + > Pm(n), i=123,...,
m=0

where F;, ©;, and ®; are unknown functions whose solutions are obtained using the SHAM
approach at the ith iteration and Fp, ©,, and ®, (m > 1) are known from previous

iterations. We use the same initial guesses as with the SHAM solution in Sections 3.1 and
3.2. Substituting (3.39) into the governing equations gives

F;” + al,,;lF;/ +azi-1 FI/ + a3,i_1F,~ + mF:-’F,' - F;F: =T1,i-1 (1’1),
@i—’ + b1@; + b2®i + b3Fl/ + b4F,' - PT‘F;@, + mPrF,@i =12,i-1 (71), (340)
Q);.’ + C]CD;- + c®; + C3F1{ + oy F; - SCF;CD,' + mSCFi(DZ- = 13,i-1 (1’[),

subject to the boundary conditions

Fi(0) =0, Fi(0) = Fi(e0) =0, ©;(0) =0, ©i(e0) =0, ®;(0) =0, ®;(o0) = 0.
(3.41)

The coefficient parameters ag -1, bx,i-1, ki1 (k=0,...,4), 71141, T2,-1, and r;3;; are as defined
in equation (3.4). Starting from the initial guesses (3.5), the subsequent solutions F;, ©;, and
@, (i > 1) are obtained by recursively solving (3.40) using the SHAM approach. To find the
SHAM solutions of (3.40), we start by defining the following linear operators:

- OF; O, 3F; =
—EF[Fi(rl; Q)] =P +a X + D1y + a1 Fi,
~ ~ 020, 00, ~ oF; ~
Lo [Fz'(ﬂ; q),9i(1; q)] = Er + bl,iAla_nl +by, 109 + b3,i—1$ +byiaFi, (3.42)

~ ~ 0D oD; ~ OF; ~
Ly [Fi(fl; q), Di(n; q)] = _6717 + Cl,i—l—a‘rl— +c2,i-1®D; + C3,i41'a‘1; +cgiFi.
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The zeroth-order deformation equations are given by

(1- ) 2e[Fi(p0) - Fio(n)] = an{ e | FiCmi )] - i},
(1 - 9)£0[81(1:9) - ©io ()] = ah{ e Fi(m:9), ©i(n 9)] - raia ). (3.43)

(1 - 4)Lo [®:(1:9) - Dio(m)] = 4 { Mo [B:(1:9). @i (:9)] = a1 9

N, Mo, and N are nonlinear operators given by

~ 83f,- azﬁi aﬁl T
Nr [Fz‘(ﬂ;‘ﬂ] = —(3‘71_3 + al,i—l’a? + az,i—l'é‘r; +aziaF;

L L
"on?  on on’
>0, 00,

- ~ ~ oF; -
No [Fi(ﬂ/' Q)r@i<ﬂ;ﬁl>] = ‘11— + bl,i—la_rl +byi 105 + b3,i—15¥ + by Fi

+ Pr<—(:)i%—1; +mf,-(%(?l—i>,

(3.44)

~ ~ O’ D; ; ~ oF; ~
No [Fi(ﬂ} q),(Di(n;q)] = 6_112 + C1,f—1a + 02 ®; + C3,Ha +cyi1F

- OF;, -~ 0O
+SC<—q)i—‘a;+mFi3;l—>.

The mth order deformation equations are

Le[Fim(n) = XmFima ()] = AR},

L6[Oim (1) = XmOim-1(1)] = ARG, (3.45)

L [ @i (1) = XonPim1 ()] = AR,
subject to the boundary conditions

Fim(0) = F;,,(0) = F;  (00) =0, Oim(0) = O m(0) =0, D; 1 (0) = Oy m(0) =0,
(3.46)
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where

Riw (1) = Fi,

i !
im-1 T al,i-lF,»,m_l + az,i~1Fi,m~1 +azi1Fima

m-1
+ 3 (B Fhperon + MFinFl1) =71 (1) (1= X,
n=0

RO () =0, +b1i1©, 4 +b2is1Oime1 +b3iaFl, | +bgis1Fim
m ,m .

m-

- (3.47)
+Pry (_F;y,@i,mvl—n + m@;,an’,m—hn) —r2i1(n) (1 = Xm),
n=0

{ei} " ! 1
Ry, (n) =@, | +c1i1D; 1 +C2is1Pim1 + 3,-1F; 4 + Cai1Fima

m-1
+ SCZ (—F,{lncDi,m—]—n + m(D;',nFi,m—l—n> =731 () (1~ Xm)-
n=0

The initial approximations F;g, ©;po, and ®@;p that are used in the higher-order equations
(3.45)-(3.47) are obtained by solving the linear part of (3.40) given by
Flo+ariaFjy+azinFig+asinFio=r1-1,
Oy +b1i19;5 + b2 190 + b3 1 Fiy + by Fig = 121, (3.48)

11 7 !
Dy + c1,i-1Dj + €21 DPig + ¢35-1F; + €1 Fip = 13,61,

with the boundary conditions

Fip(0) = F((0) = Fiy(e0) =0, 9;0(0) =0, Ojp(c0) = 0, @;p(0) =0,
(3.49)
CD,‘/Q(OO) = O

In a similar manner, we apply the spectral methods to solve for the initial approximate
solutions Fjp, ©;p, and @;9, and the higher-order deformation equations (3.45)—(3.47) for
higher order approximate solutions Fj,,, ©;n, and ®;,, for m > 1. The solutions for F;, ©;,
and @; are then generated using the solutions for Fi, ©;m, and ®;,, as follows:

Fi=Fip+Fi1+Fi2+Fizg+-+Fim
O =00+ +O, +O;3+--- + O, (3.50)
(D,‘ = q)i,() + CD,',] + (Di,Z + CD,',3 + -+ (Di,m-

The [i, m] approximate solutions for (1), 8(n), and ¢(#) are then obtained by substituting F;,
©;, and ®; from (3.50) into (3.39), where i is the ith iteration of the higher-order deformation
equation and m is the mth iteration of the initial approximation.
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Table 1: Comparison of the approximate solutions of f”(0) at different orders of the SLM, SHAM, and
ISHAM against the numerical solutions at different values of A whens =3, M =1, m=1, Sc =0.62, y =3, Pr
=1,A=0, h=-1,L =30, and N = 150.

SLM SHAM ISHAM Shooting bvpic Ref. [9]
A order £"(0) order £7(0) order £7(0) £"(0) £'(0) £7(0)

11 3.32068 1 330709  [1,1]  3.33858 330278 330278 3302776
2 3.30283 2 330338 [2,2]  3.30278
3 330278 4 330279  [3,3]  3.30278
4 3.30278 6 330278 [4,4]  3.30278

21 357292 1 356643 [1,1] 359883 230278 230278  3.561553
2 3.56157 2 356225  [2,2]  2.30278
3 356155 4 356157  [3,3]  2.30278
4 356155 6 356155  [4,4] 230278

4 1 4.00770 1 400549  [1,1] 403789  4.00000  4.00000  4.000000
2 4.00000 2 400084  [2,2] 4.00000
3 4.00000 4 400002 [3,3]  4.00000
4 4.00000 6 400000  [4,4]  4.00000

Table 2: Comparison of the approximate solutions of -6'(0) at different orders of the SLM, SHAM, and
ISHAM against the numerical solutions at different values of A\ whens=3,M=1,m=1,5=062,y=3,
Pr=1,1=0,A=-1,L=30,and N = 150.

SLM SHAM ISHAM Shooting  bvp4c Ref. [9]
A order -0'(0) order -6'(0) order -0'(0) -9'(0) ~-0'(0) -6'(0)
1 1 2.56783 267511 {1,1] 2.80912 2.66554 2.66554 2.665537

_—

2 2.66485 2 266656  [2,2] 266554
3 2.66554 4 266556  [3,3]  2.66554
4 2.66554 6 266554  [4,4] 266554
21 259198 1 269041  [1,1] 284009 268032  2.68032  2.680315
2 2.67987 2 268132 [2,2]  2.68032
3 2.68032 4 268034 [3,3]  2.68032
4 2.68032 6 268032 [4,4] 268032
4 1 262914 1 271316 [1,1] 288452 270240 270240  2.702455
2 270215 2 270336 [2,2) 270240
3 2.70240 4 270241 [3,3]  2.70240
4 2.70240 6 270240 [4,4]  2.70240

4. Results and Discussion

Equations (2.4)-(2.6) subject to boundary conditions (2.7) have been solved using three recent
semi-numerical techniques as described above. To validate our results, we have compared the
skin friction coefficient, the Nusselt number, and the Sherwood number with the theoretical
results of Muhaimin et al. [9]. We have further compared our results with the full numerical
solutions obtained using the shooting method and the Matlab bvp4c routine. The comparison
is given in Tables 1-3.

Tables 1-3 give values of the skin friction, heat transfer rate, and the mass transfer rate,
respectively, for different porosity values. The convergence to the two numerical results of the
SLM is achieved at the third order of approximation, at the sixth order for the SHAM, and at
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Table 3: Comparison of the approximate solutions of —¢'(0) at different orders of the SLM, SHAM, and
ISHAM against the numerical solutions at different values of A whens =3, M=1,m=1,S5c=062,y=3,
Pr=1,1=0h=-1L=30and N = 150.

SLM SHAM ISHAM Shooting bvpdc Ref. [9]
A order ~¢'(0) order -¢'(0) order -¢'(0) -¢'(0) -¢'(0) -¢'(0)
1 1 2.39294 1 241413 [1,1] 2.43976 2.41029 2.41029 2.410283
2 2.41026 2 241085 [2,2] 2.41029
3 241029 4 2.41030 [3,3] 2.41029
4 2.41029 6 241029 [4,4] 2.41029
1 2.40181 1 242137 {1,1] 2.44981 2.41700 2.41700 2.417000
2 241698 2 241764 [2,2] 2.41700
3 2.41700 4 241702 [3,3] 241700
4 2.41700 6 241700 [4,4] 2.41700
4 1 2.41559 1 243236 [1,1] 2.46460 242722 2.42722 2.427225
2 2.42721 2 242797 [2,2] 2.42722
3 242722 4 242724 (3,3] 242722
4 2.42722 6 242722 (4,4] 242722

second order for the ISHAM. Comparison with results reported in Muhaimin et al. [9] shows
an excellent agreement.

Table 1 shows an increase in the surface shear stress f”(0) with an increase in the
porosity parameter A. The increase in the skin friction with the porosity may be accounted
for by the fact that the velocity gradient increases with porosity (Takhar et al. [35]). Tables
2 and 3 show an increase in the surface heat transfer rate —6'(0) and the mass transfer rate
~@'(0) with the porosity parameter for large suction values (s = 3), suggesting an increase in
temperature and concentration gradients with increasing porosity.

Figure 1 serves two purposes: (a) to give sense of the accuracy of the improved spectral
homotopy analysis (ISHAM) by means of a comparison between the numerical results and
the second-order improved spectral-homotopy analysis results and (b) to demonstrate the
effects of the suction parameter s and the Hartmann number M on the velocity profiles f'(7).

Firstly we observe an excellent agreement between the second-order ISHAM and the
numerical bvp4c results for all parameter values used. Secondly we note that these results are
qualitatively similar to those reported in Noor et al. [6] for the case of one-direction shrinking
(m = 1) and show that increasing the suction parameter s and the Hartmann number M leads
to an increase in the velocity. This in turn leads to a decrease in the boundary layer thickness
as fluid is sucked out of the flow region.

5. Conclusions

We have successfully solved the nonlinear system of equations governing MHD boundary
layer past a porous shrinking sheet with a chemical reaction and suction. We demonstrated
three recent innovative methods, namely, the successive linearisation method (SLM), the
spectral-homotopy analysis method (SHAM), and the improved spectral-homotopy analysis
method (ISHAM), and compared the performance of the three methods with regard to the
speed of convergence of the solution (the number of iterations required), computational
efficiency, and the ease of application of the method. The results were compared with those
obtained using the well-known shooting method and the Matlab bvp4c solver. We found that
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Figure 1: On the comparison between the 2nd-order ISHAM solution (figures) and the bvpdc numerical
solution (solid line) for f(n) and 6(y) at different values of A when M =1, m =1, Pr= 3, M =2s5=1L=
30, and N =150.

the ISHAM converged at second order. The magnitude of the parameter values used did not
affect its performance under the same conditions with the SLM and SHAM. Nevertheless,
the ISHAM does not come cheap in terms of the size of the code and computer time, taking
about three times as long as the SLM to compute the same result and about double the time
taken with the SHAM. The SLM converged at third order, is easy to implement, and has
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shown a good level of stability when solving highly nonlinear problems. The SHAM gives
good convergence under the same conditions but poor convergence with highly nonlinear
problems. It is easy to implement but not as easy as with the SLM.

Results from simulations revealed an excellent agreement between results from the
shooting method and the bvp4c. Our findings indicate that the ISHAM is the best approach
of the three methods in terms of the accuracy of the results and speed of convergence.
Parametric studies for effects of different parameter values in the problems agreed with
results present in the literature.
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Chapter 5 — Fluid flow through porous medium

5.3. Summary

In Section 5.1 the spectral homotopy analysis method together with the successive linearisa-
tion method were used to find solutions of a fourth-order nonlinear boundary value problem
for the two dimensional Laminar flow between two moving porous walls. The results were com-
pared with those available in the literature computed using the homotopy analysis method.
The SHAM proved to be more flexible while producing convergent results at low orders of
approximation. In Section 5.2, the performances of the SHAM, SLM and ISHAM were com-
pared for a shrinking sheet problem with heat and mass transfer. Comparison was made in
terms of computer run times and convergence rates. The ISHAM proved faster convergence
than the SLM and SHAM but was more expensive in terms of computer time. It took longer
to generate results than both the SLM and SHAM. The SLM has shown to be the easiest to
use with shorter CPU run times than the SHAM and also gave faster convergence than the
SHAM. However comparison with some existing numerical methods still proves that all three

methods are still viable and improved tools to be used in the science and engineering fields.
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Conclusions

In this thesis we have introduced new semi-numerical methods for solving nonlinear equations
in fluid dynamics. The methods have been used to solve different fluid flow problems. A

summary of the findings for each problem solved is given below.

In Chapter 3, we solved two parallel plate fluid flow problems. In Section 3.1, we considered
the steady laminar flow of a third grade fluid with heat transfer through a channel using the
successive linearisation method and the improved spectral homotopy analysis method. The
convergence rates of the methods were compared against the exact results. It was observed
that both methods converged rapidly with the improved spectral homotopy analysis method
performing better for large parameter values. The study showed the accuracy and efficiency of
the method for a third grade fluid problem. In this study, my contribution was to find solutions
of the equations using the improved spectral homotopy analysis method and to write a draft

version of this article.

In Section 3.2 the third grade fluid flow equations were solved using the standard homotopy
analysis method and the spectral homotopy analysis method. Comparing the solutions showed

that the spectral homotopy analysis method is computationally more efficient compared to
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the homotopy analysis method. In this paper both the SHAM and the MSHAM were used

and my contribution was to solve the equations using the both methods.

In Section 3.3, the nonlinear differential equation that describes squeezing flow between two
infinite plates was successfully solved using the successive linearisation method. A comparison
of the successive linearisation method results against those previously obtained using the HAM
(Ran et al., 2009) and the bvp4c solver was made. The comparison showed that the successive
linearisation method converges faster than the HAM and its efficiency is not affected by the

magnitude of the parameters innate to the problem.

In Chapter 4, solutions of rotating disk flows were sought using the new methods. In Section
4.1, a strongly nonlinear system of differential equations governing the Reiner-Rivlin fluid with
Joule heating and viscous dissipation was solved using the improved spectral homotopy anal-
ysis method. A comparison with the original spectral homotopy analysis method was made.
The improved spectral homotopy analysis method converged to the numerical solutions at the
second orders for all flow parameters while the spectral homotopy analysis method converged
at the eighth order for some of the flow parameters. This shows that the improved spectral
homotopy analysis method is more accurate than the spectral homotopy analysis method. In
this study, my input was to solve the problem using the improved spectral homotopy analysis

method, and to write a draft version of the paper.

In Section 4.2, we used the spectral homotopy analysis method and the successive linearisation
method to solve the von Kdarman nonlinear equations for swirling flow with suction/injection
across the disk walls and an applied magnetic field. The results were benchmarked against
those obtained using the bvp4c, the HAM and the homotopy Padé methods. The comparison

showed a better performance in terms of convergence rates and accuracy of the spectral ho-
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motopy analysis method and successive linearisation method compared to both the HAM and
HAM-Padé. Comparison with results in the literature (Turkyilmazoglu, 2010), showed that
the successive linearisation solutions had no oscillations compared to the HAM solutions. The
successive linearisation method also gave converging results at lower orders than the spectral
homotopy analysis method. In this article, my contribution was to use both the spectral ho-
motopy analysis method and successive linearisation method to find solutions of the classical

von Karman equations.

In Section 4.3, the successive linearisation method was used to find the solution of the laminar
heat transfer problem of a rotating disk in a forced vortex. The velocity components were
computed and the study showed the rapid convergence of the successive linearisation method

solutions to the numerical results.

In Chapter 5, we solved fluid flow problems in porous media. In Section 5.1, a fourth-order
nonlinear boundary value problem for two-dimensional laminar flow between two moving
porous walls was investigated using the spectral homotopy analysis method and the successive
linearisation method. The problem has been studied by Xu et al. (2010) and Dinarvand et al.
(2008). Again the successive linearisation method and spectral homotopy analysis method

were shown to be efficient and flexible in solving a fourth-order nonlinear equation.

In Section 5.2, a comparison of the performances of the successive linearisation method, spec-
tral homotopy analysis method and improved spectral homotopy analysis method in solving
the MHD flow problem past a shrinking sheet with heat and mass transfer in the presence
of a chemical reaction was made. The comparison made was with regard to the speed of
convergence of the solution (the number of iterations required), computational efficiency and

the ease of application of the method. The results were benchmarked against those obtained
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using the shooting method and the bvp4c.

The improved spectral homotopy analysis method solutions converged at second order and
its performance was not affected by the magnitude of the parameter values under the same
conditions as the successive linearisation method and spectral homotopy analysis method.
However, the improved spectral homotopy analysis method required more computational work
in terms of the size of the code. The successive linearisation method showed stability and
ease of application when solving highly nonlinear problems. The spectral homotopy analysis
method’s convergence was quite good also but shown to be less robust for highly nonlinear
problems. It is easier to implement than the improved spectral homotopy analysis method,
but not as easy as with the successive linearisation method. An excellent agreement was
observed with results from the shooting method and the bvp4c. From this investigation, the
improved spectral homotopy analysis method performed better than the spectral homotopy
analysis method and successive linearisation method in terms of the accuracy of the results

and speed of convergence.

From this study we may conclude that in comparison to some existing methods, the successive
linearisation method, spectral homotopy analysis method, and improved spectral homotopy
analysis method are efficient, accurate and robust. The equations solved ranged from linear
to strongly nonlinear and to systems of equations. The methods generated accurate results at
low orders, such as with two terms for the improved spectral homotopy analysis method and

with three terms for the successive linearisation method.

However, the methods need to be extended to other types of equations such as, time-dependent
evolution equations, partial differential equations and difference equations. Also, except in

the case of the spectral homotopy analysis method and improved spectral homotopy analysis
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method, a strong mathematical motivation for the successive linearisation method needs to

be further developed.
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