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Abstract 

The objective of the present study is the computational and analytical modelling of 

a stress and strain state of the composite laminated structures. 

The exact three dimensional solution is derived for laminated anisotropic thick cylin­

ders with both constant and variable material properties through the thickness of a 

layer. The governing differential equations are derived in a such form that to satisfy 

the stress functions and are given for layered cylindrical shell with open ends. The 

solution then extended to the laminated cylindrical shells with closed ends, that is 

to pressure vessels. 

Based on the accurate three-dimensional stress analysis an approach for the optimal 

design of the thick pressure vessels is formulated. Cylindrical pressure vessels are 

optimised taking the fibre angle as a design variable to maximise the burst pressure. 

The effect of the axial force on the optimal design is investigated. Numerical results 

are given for both single and laminated (up to five layers) cylindrical shells. The 

maximum burst pressure is computed using the three-dimensional interactive Tsai-: 

Wu failure criterion, which takes into account the influence of all stress components 

to the failure. Design optimisation of multilayered composite pressure vessels are 

based on the use of robust multidimensional methods which give fast convergence. 

Transverse shear and normal deformation higher-order theory for the solution of dy­

namic problems of laminated plates and shells is studied. The theory developed is 

based on the kinematic hypotheses which are derived using iterative technique. Dy­

namic effects, such as forces of inertia and the direct influence of external loading on 

the stress and strain components are included at the initial stage of derivation where 

kinematic hypotheses are formulated. The proposed theory and solution methods 

provide a basis for theoretical and applied studies in the field of dynamics and stat­

ics of the laminated shells, plates and their systems, particularly for investigation of 

dynamic processes related to the highest vibration forms and wave propagation, for 

optimal design etc. 

Geometrically nonlinear higher-order theory of laminated plates and shells with 

shear and normal deformation is derived. The theory takes into account both trans­

verse shear and normal deformations. The number of numerical results are obtained 

based on the nonlinear theory developed. The results illustrate importance of the 

influence of geometrical nonlinearity, especially, at high levels of loading and in case 

when the laminae exhibit significant differences in their elastic properties. 
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Nomenclature 

1. Anisotropic Thick Cylinders 

r,O, z 

Er , Eo, Ez 

Vij, (i,j = r, 0, z) 

GrO , Grz , GOz 

U r , un, W 

R,8, Z 

aij, (i,j = 1,2, ... ,6) 

c.p 

f3ij, (i,j = 1,2,4,5,6) 

cI>m,wm 
nl 

m = 1,2, ... ,nl 

Pi, (i = 1,2, ... ,nl) 

F 

C 

Cylindrical coordinates 

Moduli of elasticity 

Poisson's ratios 

Shear moduli 

Normal stresses 

Shear stresses 

Strain components 

Displacements 

Components of body forces per unit of volume 

Elastic constants 

Angle of the fibre orientation 

Coefficients of the deformation 

Stress functions 

N umber of layers 

Layer number 

Uniformly distributed load (pressure) 

Axial force 

Constant of integration 

Material strengths · 

Stress components in the material coordinate system 

Critical load 
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Xl, X2, Z 

k11, k22, k12 

k = 1, ... ,n 

Ek, Vk, Gk 

0"13,0"23 

0"33 

E Ok , VOk, 

1111k,1112k,1113k,1133k 

eij, ei3, e33 

p-,p+ 

p 

Jk(Z), lk(z), Jpk(Z) 

<,011, <,012, <,013, <,014, 

B6 , B, C6 , C, Ci, Dei, D 

Eei, E, Ei, Kei' Ki, K, R;, 
I, II, 12 , 13 

Nomenclature 

2. Higher-order theory 

Curvilinear orthogonal coordinates 

Curvatures of a shell 

Layer number 

Modulus of elasticity, Poisson's ratio and shear modulus 

in the k-th layer in the plane of isotropy 

Modulus of elasticity, Poisson's ratio and shear modulus 

in the k-th layer in the transverse direction 

Displacements and deflection of the reference surface 

In-plane stresses 

Transverse shear stresses 

Transverse normal stress 

Stiffness parameters of the k- th layer 

Components of the strain tensor 

External load 

Material density 

Distribution functions 

Distribution functions 

Integrated stiffnesses of the shell 

Integrated density characteristics 
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Chapter 1 

Introduction 

1.1 Overview 

It has been obvious through history that the evolution of technology has been con­

trolled by the materials available. It is increasingly so today when progress in avi­

ation, space- and shipbuilding, and in many other mechanical and civil engineering 

applications crucially depends on the reasonable compromise between high strength, 

stiffness, corrosion resistance and other material properties on the one hand and re­

duced weight and cost on the other. The use of composite materials is therefore 

receiving ever wider attention in these and other areas of technology due to the 

inherent tailoring of the properties of these materials. 

In modern times, it was the advent of composite materials such as concrete and 

then reinforced concrete that was a major breakthrough in construction. The de­

velopment of new building materials is one of the most identifiable trends in today's 

technology. In a growing number of applications, composite materials have taken 

over the work that was previously done by metals and metal alloys. 

It is a well-known fact that, given the same external conditions the response of 

composite material differs from that of a homogeneous isotropic material. Hence 

the large-scale introduction of composite materials and the wide diversity of them 

have created a need for further progress in such classical areas of mechanics as the 

theory of anisotropic and non-homogeneous deformable solids and the theory of 

optimisation. 

The composite laminated plates and shells are widely used in modern engineering. 
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Their virtues related to environmental requirements may include structural integrity, 

weather-tightness, dimensional stability, sound or microwave absorbtions. From 

the point of view of structural performance, composite plates and shells offer an 

efficient structural design du to the great stiffness. This is achieved by different 

geometrical arrangements of the most highly stressed elements. Other advantages of 

composite structures may include high strength-to-weight ratios, increased fatigue 

life, endurance, low moisture permeability, electrical insulation, etc. 

The investigation of anisotropic shells started in the 1920s and the first recorded 

paper on this subject was written by Shtayerman [82]. Most of the early literature 

on the subject was based on the classical laminated shell theory, incorporating the 

Kirchhoff-Love hypotheses for the entire shell Refs [2,3,6,7,17,18,50,81]. It is well 

known that accurate prediction of the response and failure characteristics of shells 

made from modern advanced composites requires the use of refined higher-order 

theories which take into account transverse shear and normal deformations. 

Several approaches have been proposed for the accurate stress-strain analysis of lam­

inated plates and shells. All these approaches are based on principals which are sim­

ilar to those used for homogeneous isotropic structures, namely, three-dimensional 

elasticity models, quasi-three-dimensional models, and various two-dimensional 

shear-deformable models. Exact and analytical solutions for cylindrical and spheri­

cal shells may be found in [16, 20,25,32,57, 77,84,90,91]. The possibility of using 

a three-dimensional theory is of limited use due to mathematical difficulties and the 

complexity of laminated systems. As a result, numerous higher-order theories of 

plates and shells have been formulated in recent years which approximate the three­

dimensional solutions with reasonable accuracy. Nonclassical theories which include 

both transverse shear and normal deformations have been developed by Piskunov 

and Verijenko [62, 63, 64, 94, 95]. Several monographs have been written on different 

aspects of the higher-order theories [65,66, 97, 9, 85, 11, 26, 46, 68, 79, 98]. 

There are many other topics in the field of composite materials, of much practical 

importance and in a very active state of development, that are not covered here 

but may be found discussed in detail in many other sources. Survey of different 

theoretical and computational models may be found in reviews [38, 19, 8, 59, 72]. 
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1.2 Design of thick composite cylinders 

A circular cylindrical shell is one of the most widespread models of thin and thick 

walled load bearing structures made of conventional or composite materials. Such 

shells are used as reservoirs, pressure vessels, chemical containers, pipes, aircraft 

and ship elements etc. The increased use of laminated cylindrical shells has led to a 

need for more accurate stress- strain analysis. The result is the creation of efficient 

applied theories and special methods for their analysis. 

Along with stress-strain analysis the design optimisation of filament-wound pres­

sure vessels is of considerable industrial interest. The most efficient configuration 

is the unidirectional composite. Obviously, the number of angles must be balanced 

between considerations of manufacturing and cost, and the requirement for stiffness 

and strength. In practice, many automated manufacturing processes lead to sym­

metric angle-ply composite laminates consisting of an even number of equivalent 

plies with material symmetry axes being alternately oriented at angles +c.p and -c.p 

to the cylindrical axis. It is this class of the structures is considered in the present 

study. 

Because of the anisotropy in composites and the presence of curvature in shell struc­

tures, obtaining exact three-dimensional elasticity solutions for laminated cylinders 

is connected with the mathematical complexity. However, certain problems in which 

a three-dimensional approach can be used still exist. For example, load conditions 

specified as uniformly distributed load (pressure) considerably simplify the obtain­

ing of the equations of exact three-dimensional theory. In the present study exact 

three-dimensional solution is obtained for these loading conditions. The governing 

differential equations are derived in a such form that to satisfy the stress functions 

and are given for layered cylindrical shell with open ends. This theory is extended 

to the laminated cylindrical shells with closed ends, that is to pressure vessels. It is 
evident that the stress analysis based on three-dimensional elasticity solution allow 

the burst pressure for both open ended (pipes) and closed ended (pressure vessels) 

cylinders to be predicted accurately. A reliable design method for thick cylinders 

should be also carried out with the use of an appropriate failure criterion which 

should include the contribution of all stress components to the failure. 

In the present study the failure of the cylinders is predicted by using the quadratic 

three-dimensional interactive Tsai-Wu criterion. The use of maximum stress or 

strain criterion in three-dimensional stress or strain of anisotropic materials, in 

particular, gives rise to many vector equations. Moreover, neither of these two 
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criterion includes the interactions among the stress or strain components, whereas 

the Tsai-Wu failure criterion yields only one scalar equation, and it also includes 

the interactions among the stress components. 

1.3 High-order theory 

Along with creating new types of laminated structures a demand arose for a rational 

use of traditional laminated systems. In evaluating the strength of these systems 

only the main carrying layer is taken into consideration while technological layers 

of monolithing, insulation are considered to be constructive. Taking into account 

their mutual work with carrying layers allows to reveal reserves of the strength of 

the entire system. 

Improving theory and solution methods of laminated structures is a significant prob­

lem, the key feature of it lies in the fact that the hypotheses of straight inexten­

sional normal or plane sections (for beams)' and the classical theory based on these 

hypotheses is inapplicable. For solution of considered structures along with three­

dimensional solutions, the use of approximate two-dimensional theories, which refine 

the classical theory by means of taking into account of deformations in the transverse 

direction, have received wide acceptance. 

The refined theories are given the title refined or nonclassical. A number of different 

classifications can be made for these theories based on the nature of the approx­

Imations made in reducing the three-dimensional problem into-dimensional one. 

Global approximation approach is used in the present study where global through­

the-thickness displacement approximation is introduced and laminated shell is re­

placed by an equivalent single layered anisotropic shell. Consequently, the order of 

the governing equations is independent of the number of layers. The theory is based 

on a nonlinear distribution of the displacements in the thickness direction. Such 

theories have come to be known as the higher-order theories. 

Transverse shear and normal deformation higher-order theory for the solution of 

dynamic problems of laminated plates and shells is studied in Chapter 3. The theory 

developed is based on the kinematic hypotheses which are derived using iterative 

technique. Dynamic effects, such as forces of inertia and the direct influence of 

external loading on the components of stress and strain are included at the initial 

stage of derivation where kinematic hypotheses are formulated. The proposed theory 

and solution methods provide a basis for theoretical and applied studies in the field of 
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dynamics and statics of the laminated shells, plates and their systems, particularly 

for investigation of dynamic processes related to the highest vibration forms and 

wave propagation, for optimal design etc. 

Geometrically nonlinear higher-order theory of laminated plates and shells with 

shear and normal deformation is derived in Chapter 4. The theory takes into ac­

count both transverse shear and normal deformations. Modelling of the geometrical 

nonlinearity is especially important at high levels of loading, in case when the lam­

inae exhibit significant differences in their elastic properties etc. 

Both the above-mentioned theories are capable of treating plates and shells with an ' 

arbitrary number and sequence of layers which can differ significantly in their phys­

ical and mechanical properties including various loading and boundary conditions. 
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Chapter 2 

Derivation of Three Dimensional 

Theory of Anisotropic Thick 

Composite Cylinders 

2.1 Introduction 

The objective of the present chapter is to derive a three-dimensional theory for 

anisotropic thick composite cylinders subjected to axisyrnrnetricalload conditions. 

The analysis is based on the stress function approach. In order to illustrate the 

approach the brief overview of the general theory of elasticity of the cylindrical 

anisotropic body is given. The equations of equilibrium and the generalised Hooke's 

law are presented. It is shown how the transformation of the cylindrical coordinate 

system influences the value of the elastic constants. The governing differential equa­

tions of a body bounded by a cylindrical surface and possessing cylindrical anisotropy 

in which the stresses do not vary along the generator are presented. These equations 

are derived in a such form that to satisfy the stress functions and are given for a 

single layered cylindrical shell with open ends. This theory is extended to laminated 

pressure vessels, that is to cylindrical shells with closed ends. 

First, the laminated cylindrical shell subjected to internal and external pressure 

as well as to axial forces is considered. The cylinder is constructed of filament­

wound layers with a fibre orientation of ±cpo. The layers are treated as anisotropic 

for winding angle cp #- 0,90 deg., otherwise they are orthotropic. Solution of the 

differential equations for this problem is given. The constants of integration and 

6 



unknown interface normal forces are determined. 

Second, using the same stress function approach the problem of continuously het­

erogeneous laminated cylinders, i.e. shells in which elastic constants are variable 

through the thickness of a layer, is investigated. Cylinder can be constructed of 

isotropic and/or orthotropic layers. This problem is also of interest because besides 

the internal and external applied pressure the pressure on the interfaces, as a result 

of shrink-fit, residual stresses, etc., can be taken into account. The problem is solved 

for an open-ended cylinder and then extended to the case of a closed-ended shell. 

Finally, an optimum design approach is presented for laminated composite pres­

sure vessels. The fibre orientations are taken as the design variables. The three­

dimensional interactive Tsai- Wu criterion is employed. The multi-dimensional 

problem of maximisation of function is solved, where the function is the critical 

load for a given point within a thickness. With this aim in mind a search for the 

weakest point within the thickness is undertaken. In order to maximise the function 

three independent methods are employed, namely, the golden section method, iter­

ative and gradient methods. Depending on particular problem the advantages and 

disadvantages of these methods are discussed. 

2.2 Literature review 

The increased use of laminated composite structures in many engineering appli­

cations has led to a need for more accurate stress-strain analysis. Thick-walled 

cylindrical shells with different layer properties are widely used in many branches of 

engineering. Along with stress-strain analysis the design optimisation of pressure 

vessels is of considerable industrial interest. 

The problem of the stress distribution in anisotropic cylinders has been studied by 

several authors. The first comprehensive problem investigation of the stress distri­

bution in a body with cylindrical anisotropy and study of the elastic equilibrium 

of a homogeneous cylinder with arbitrary anisotropy was made by Lekhnitskii in 

1930's [42, 43]. Later on, the stress distribution in a thick-walled anisotropic tube 

under the influence of internal and external pressure was investigated by Mitin­

sky [53]. Chentsov [15] investigated certain aspects of the transformation of elastic 

constants of an orthotropic plate by rotation about an axis. This study has been 

serving as a basis for analysis of filament- wound composite structures till now. The 

most comprehensive study of a body possessing cylindrical anisotropy was done 
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by Lekhnitskii in his book [44] . Solutions for the laminated composite curvilinear 

anisotropic ring, and for other specific problems can be found in another book writ­

ten by Lekhnitskii [45]. More recently some analytical solutions were also offered 

for laminated composite cylinders. Elastoplastic analysis of cylindrically orthotropic 

composite thick-walled tube under uniform pressure is given by Zhou Ci-qing and 

Qiu Yi-yuan [99]. Investigation of the effects of a uniform temperature change on 

the stresses and deformations of reinforced composite tubes was done by Hyer et 

al [34, 35]. He also discussed the results of layer-by- Iayer analysis for cross-ply 

cylinders under external hydrostatic pressure [36]. The problem of thick- walled 

cylindrical shells buried underground was studied by Kuo-Yao and Bert [41]. Inves­

tigation of stress state in composite cylinders in which stresses and strains vary in the 

axial and radial directions due to imposed hygrothermal and mechanical loads was 

made by Kollar [40]. Chandrashekhara and Kumar [14] obtained exact solutions for 

a thick, transversely isotropic, simply supported circular cylindrical shell subjected 

to axisymmetricalload by using a displacement function approach. However, this 

solution in general is not applicable to the cross-ply laminated structures. Exact 

solutions for cross-ply laminated shells were obtained by Ren [76, 77]. Hung-Sying 

Jing and Kuan-Goang Tzeng [33] investigated the static response of the axisymmet­

rical problem of arbitrary laminated anisotropic cylindrical shells of finite length 

using three-dimensional elasticity equations. They used the differential equations 

with variable coefficients by choosing the solution composed of trigonometric func­

tions along the axial direction. Calius and Springer [12] developed a comprehensive 

model of filament- wound thin cylinders made of a thermoset matrix composite. The 

model is applicable to cylinders for which the diameter is large compared to the wall 

thickness. 

Optimisation problems of cylindrical shells were considered by several authors. Op­

timisation of the stress-strain state of a thick-walled pipe on the basis of Young's 

modulus of the material was made by Kalinnikov and Korlyakov [37]. Belingardi 

et al [5] studied optimisation of orthotropic multilayer cylinders and rotating disks 

using the maximum stress failure criterion. An analytical approach for predicting 

the probabilistic ultimate strength after initial failure of the carbon fiber helical­

wound cylinders under internal pressure was made by Uemura and Fukunaga [89]. 

Fukunaga and Tsu-Wei Chou considered the use of simultaneous failure [21] and 

also optimum design of graphite/epoxy laminated composite pressure vessels un­

der stiffness and strength constraints based upon the membrane theory [22]. The 

analysis based on the membrane theory of shells for laminated cylindrical pressure 

vessels under strength criterion was also done by Adali et al [1]. An efficient design 

method for thick composite cylinders was presented by Roy and Tsai [80]. The 
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three-dimensional interactive Tsai-Wu failure criterion [87] forms the foundation of 

failure prediction in the most above mentioned works. 

2.3 Basic equations 

2.3.1 Stress-strain state of anisotropic cylindrical body 

To provide some grounding in theory for an anisotropic body we should make some 

assumptions. The most important of them are 

1. An elastic body is considered as a solid continuous medium. The state of stress 

at any given point is determined entirely by the components of stress in three 

mutually perpendicular planes which pass through the chosen point. In the 

following study the cylindrical coordinates will be used. 

2. Relation between the strain components and projections of the displacements 

and their first derivatives with respect to the coordinates is a linear, that is 

we consider only small displacements and neglect the squares and products of 

the derivatives of the displacements. 

3. There are linear relations between the stress and strain components, that is 

the generalised Hooke's law is valid for such a material. In addition, the 

coefficients of these relations can be constants (the case of uniform body) as 

well as variable functions of the coordinates, continuous or discontinuous (in 

case of nonuniform body). 

4. We do not take into account initial stresses, i.e. the stresses which exist without 

the application of an external load. 

We shall use a cylindrical coordinate system r, f), z. The components of stress acting 

on planes normal to the coordinate directions r, f), z are denoted respectively by 

O"r, TOr, Tzr; 0"0, Trll, TzO; O"z, Trzl Tliz (see Figure 2.1). Here O"i are normal stresses 

and Ti j = Tji are shear stresses. The corresponding strains are denoted as fi and lij. 

We denote the projections of the displacements at a given point on the coordinate 

axes r , f), z as Ur, Uo and w, respectively. The relations between the projections of 

displacements and strain components have the following form [44] 

OUr 1 OUli Ur ow 
fr = or; fO = ;:- of) + -;-; fz = oz 
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IBz 

1 BUr BUB UB 
IrB= --+---

r Be Br r 
(2.1) 

The components of stresses in a continuous body in equilibrium under the action of 

surface and body forces must satisfy three differential equations of equilibrium: 

BUr 1 BTrB BTrz Ur - UB + R 0 
Br +; Be + Bz + r = 

BTrB 1 BUB BTBz 2TrB e 0 
Br +; Be + Bz + -r- + - = (2.2) 

BTrz 1 BTBz Buz Trz + Z 0 
Br +; Be + Bz + -:; = 

where R, e and Z are the components of body forces per unit of volume in the 

coordinate directions r, e, z. 

2.3.2 The generalised Hooke's law 

Taking the axis of anisotropy as the z-axis of the cylindrical coordinate system 

r, e, z and arbitrarily directing the polar axis from which the angles e are mea­

sured we obtain the equations of the generalised Hooke's law for the general case of 

cylindrical anisotropy as follows 

(2.3) 

,rB = lY61Ur + lY62UB + ... ... ............... + lY66TrB 

where lYij are elastic constants which are symmetrical with respect to their indices, 

In this study we deal with cylindrical anisotropy. Let us assume that ~ is the axis of 

anisotropy which is associated with the body. It can pass either inside or outside the 

body. When in a homogeneous body the axis of anisotropy passes through the body, 

there must be some relations between coefficients lYij. In fact, if the axis ~ coincides 

with the longitudinal axis z, there is not any difference on the axis z between radial 

r and tangential e directions. Thus the following equalities take place 
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If a plane of elastic symmetry normal to ~ (or z) at each point, then 

a14 = a24 = a34 = a46 = 0 

a15 = a25 ~ a35 = a56 = 0 

In case of an orthotropic body wit~ cylindrical anisotropy when there two planes of 

elastic symmetry, radial and tangential, then in addition to above relations we have 

and non-zero coefficients are related with three equalities 

The elastic coefficients aij form the so-called compliance matrix. Introducing tech­

nical constants (elastic characteristics), namely, the Young's moduli E r , Eo, Ez 

(for tension-compression); the Poisson's coefficients Vij (i,j = r, (J, z) (where ego VrO 

characterises the compression in the direction (J for tension in the direction r) and 

the shear moduli GrO , Grz and Goz which characterise the variations of the angles 

in the directions rand (J, rand z and (J and z, the components of the compliance 

matrix (the case of an orthotropic body) may be defined as 

1 VOr v zr 
a12 = - Eo ; a13 = - Ez all - - , 

Er 

VrO 1 VzO 
a21 -_. 

Er 
, a22 = Eo; a23 =--

Ez 

Vrz 
a31 -_. 

Er 
, VOz 1 

(2.4) a32 = - Eo; a33= -
Ez 

1 1 1 
a44 - , 

Goz 
a55 = 0; a66=-

rz GrO 

2.3.3 The transformation of elastic constants under a trans­
formation of the coordinate system 

In case of an anisotropic body elastic constants depend on the direction of the axes of 

the coordinate system. If the direction of the axes varies, then the elastic constants 

vary. This is a very important feature of reinforced composite materials. 

In an orthotropic cylindrical shell the new elastic constants a~ . are defined by the 
'J 

formulas [44] 

I 1 
all = -

Er 
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I 

0'22 

0'33 

I 

0'44 

I 

0'55 

0'66 

I 

0'12 

I 

0'13 

I 

0'16 -

I 

0'26 

I 

0'32 

I 

0'36 

I 

0'45 

sin4 <p (1 2Vzo) 2 . 2 + cos
4

<p --+ ---- COS <psm <p --
Ez Gzo Ez Eo 

• 4 
cos4 

<p (1 2Vzo) 2 . 2 + sm <p --+ - - -- COS <p sm <p ---e-
Ez Gzo Ez 0 

2 • 2 
COS <p + sm <p 

GOr Gzr 
sin2 <p cos2 <p 
--+---'-
GOr Gzr 

( 
1 1 2vzo 1) 2 • 2 1 

4 -+-+---- cos <psm <p+-
Ez Eo Ez Gzo Gzo 

( 
VOr 2 Vzr . 2 ) 

- - COS <p + - sm <p 
Eo Ez 

( 
VOr . 2 V zr 2) - - sm <p + - COS <p 
Eo Ez 

2 (Vzr _ Vor) sin <pcos<p 
Ez Eo 

(2.5) 

[2 (cos2<p _ sin
2

<p) _ (_1 __ 2VzO) (cos2<p _ sin2<p)] sin<pcos<p 
Eo Ez Gzo Ez 

( 
1 1 2vzo 1) 2 • 2 VzO -+-+---- COS <psm <p-­

Ez Eo Ez Gzo Ez 

[( .2 2) 12) ] sm <p cos <p V zO 2 . 2 . 
2 -- - -- + (- - -- (cos <p - sm <p) sm<pcos<p 

Eo Ez Gzo Ez 

( 
1 1 ) . - - -- sm<pcos<p 

GOr Gzr 

We shall indicate the most important invariants of this transformation, that is, the 

quantities which remain unchanged under rotation of the axes. 

I I 1 4vzo 
12 - 0'66 - 40'12 = -G +-E 

zO z 

I I 1 1 
13 0'44 + 0'55 = -G +-G 

zr Or 
(2.6) 

When studying the stress-strain state of an anisotropic body bounded by a cylin­

drical surface, it is convenient to use the coefficients of deformation in the following 

form 

(i,j = 1,2,4,5,6) (2.7) 
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Expressions for transformation of the coefficients {3ij may be obtained from the 

general expression (2.5) if we cancel all constants which contain the index 3, and 

instead of the remaining coefficients of deformation, we substitute the corresponding 

{3ij. The invariants of this transformation are given by the following expressions 

II {3~I + {3;2 + 2{3~2 = {3u + {322 + 2{3I2 

{3~6 - 4{3~2 = {366 - 4{312 

{3~4 + {3~5 = {344 + (355 

2.4 Method of solution 

(2.8) 

Before proceeding to particular problems let us examine our task in a general way. 

The structure under consideration is a cylindrical shell of finite length made from 

an anisotropic material. 

Let us assume that the axis of anisotropy coincides with the axis of symmetry Oz 
of the cylinder and the stresses act on the planes normal to the generator and do 

not vary along the generator. 

Let U, V and W be the functions which represent the displacement accompanied 

by elastic deformations, then 

Ur - U(r, f)) + Uo cos f) + Vo sin f) 

W 

V(r, f)) - Uo sin f) + Vo cos f) + wIr 

W(r, f)) + Wo 

(2.9) 

where Uo, Vo and WI are the rigid displacements (without elastic deformations) in 

the plane of a given section, Wo is the rigid shift in longitudinal direction. 

The function U, V and W can be written in the following form 

aU 
or 

loV U 
;: of) +-:;: 

laW 
r of) 

oW 
Or 

loU oV V 
;: of) + or - -:;: -

13 
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The stresses can be expressed in terms of stress functions CP and W as [44] 

1 acp 1 a2cp - a2cp _ 
err ;: ar + r2 a()2 + U, ero = ar2 + U 

a
2 (cp) 1 aw aw 

(2.11) TrO - ara() -:;: , Trz = ;: a() , Toz =--
ar 

where U is the potential of the body forces. The normal longitudinal stress can be 

expressed in terms of the other stresses as 

Hereafter for simplicity we shall not use notation "prime" for the coefficients of 

the compliance matrix a:j or elastic constants f3;j. It should be also noted that 

equation (2.12) is correct only for open- ended cylinders. Otherwise the additional 

constant must be added to it. For the special cases the evaluation of the unknown 

constant will be given below. 

By eliminating U, V and W from equation (2.10) by means of differentiation, we 

obtain a system of two equations satisfied by the stress functions cp and w: 

where L~, L;, L; and L; are differential operators which are defined as follows 

L' 
2 

L' 
3 

L" 3 

a2 1 a2 1 a2 1 a 
f344 ar2 - 2f34S;: ara() + f3ss r2 a()2 + f344;: ar 

a3 1a3 1 a3 
-f324 ar3 + (f32S + f346);: or2o() - (f314 + f3s6) r2 oro()2 

1 a3 1 a2 

+f31S r3 a()3 + (f314 - 2f324);: ar2 

1 a2 1 a 
+(f346 - f31S) r2 ora() + f3IS r3 a() 

a3 1Q3 1 Q3 
-f324 ar3 + (f32s + f346);: ar2a() - (f314 + f3S6) r2 ara()2 (2.14) 

1 Q3 1 a2 1 a2 

+f31S r3 a()3 - (f314 + f324);: ar2 + (f31S - f346) r2 ara() 

1 a2 1 a 
+(f314 + f3S6) r3 a()2 + f346 r3 a() 
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{}4 1{}4 1 {}4 1{}4 
L~ {322 {}r4 - 2{326-;: (}r3{}() + (2{312 + (366) r2 {}r2{}()2 - 2{316 r3 {}r{}()3 

1{}4 1{}3 1 {}3 1{}3 
+{311 r 4 {}()4 + 2{322-:;' {}r3 - (2{312 + (366) r3 {}r{}()2 + 2{316 r4 {}()3 

1 {}2 1 {}2 1 {}2 
- {311 r2 (}r2 - 2({316 + (326) r3 (}r{}() + (2{311 + 2{312 + (366) r4 {}()2 

1 {} 1 {} 
+{311 r3 (}r + 2({316 + (326) r4 {}() 

2.5 Analysis of laminated thick composite cylin­

der under axisymmetrical loading 

2.5.1 Problem formulation 

The st ructure under consideration is laminated close-ended cylinder of finite length 

made from an anisotropic material (see Figure 2.2). The cylinder is constructed of 

filament-wound layers with a fibre orientation of (±cpO). There are no restrictions 

on the number of layers or their sequences. The layers can be made from different 

materials and have different thicknesses. The cylinder is subjected to axisymmetrical 

internal and external pressure as well as axial force. Let as assume that the axis of 

anisotropy coincides with the geometric axis of the shell. We also assume that the 

stresses which act on the end surfaces reduce to forces which are directed along the 

axis and to twisting moments. The equations of the generalised Hooke's law may 

be written as 

(2.15) 

where components of compliance matrix are given by (2.4). 

It is obvious that the distribution of the external stresses will be identical in all 

cross sections and will depend only on the distance r from the axis. Therefore the 

stresses can be expressed in terms of stress functions cl>m = cl>m(r), \lim = \lIm(r) as 

,..{m) ___ 1 dcl>m. d2c1>m (m) d\llm 
Vr r dr ' (T8 = dr2 ; T8z =--a;:- (2.16) 
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and longitudinal stress 

(m) _ C _ _ 1_(0(m)u(m) + o(m)u(m) + O(m)T(m») 
Uz - (m) 13 r 23 6 34 6z 

°33 

(2.17) 

Moreover, due to symmetry 
T(m) = T(m) = 0 

rz r6 
(2.18) 

where index m denotes the m-th layer and m = 1,2, ... , nl with nl denoting the 

total number of layers. 

The system (2.13) takes the following form 

(m) (d4~m ~ ~~m) a(m) (_~ J2~m + ~ d~m) 
f322 dr4 + r dr 3 + fJ11 r2 dr2 r3 dr 

_a(m)~Wm + (a(m) _ 2a(m»)~ J2wm = 0 
fJ24 d r 3 fJ14 fJ24 r dr2 

a(m)d3~m _ (a(m) _ a(m»)~ J2~m 
- fJ24 d r 3 fJ14 fJ24 r dr2 (2.19) 

a(m) (J2\11 m 1 d\llm) 1 C (m) - 0 +fJ -- + --- - - a34 -
44 dr2 r dr r 

wherein f3iS
m

) are aforementioned elastic constants given by 

(m) (m) 
a(m) _ (m) 0i3 °j3 
fJij - °ij - (m)' 

°33 

i,j=1,2,4 (2.20) 

2.5.2 Computation of stresses 

The boundary conditions on the internal (r = ao) and external (r = ani) surfaces 

specified as 

(2.21 ) 

At the contact surfaces of adjacent layers we have the following conditions 

(2.22) 

The equilibrium of forces on the end surfaces gives 

(2.23) 

where F is the applied axial force. 
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With regards to condition (2.23) and taking into account the assumptions about 

physical and geometrical properties assumed above, the general solution of the sys­

tem (2.19) has the following form 

r2 C C <Pm cdm ) _ + 1 r1+km + 2 r 1- km 

2 1 + km 1 - km 

Wm = Cr (af3t!: + dm)9~m») + C 1 f-9i
m

)r
km 

- C2f-9~7.)r-km (2.24) 
44 m m 

where dm
), km' 9~m), 9im

) and 9~7.) are f3-dependent coefficients given by 

( 
(m) (m»)f3(m) (m)(f3(m) f3(m») 

(m) _ a13 - a23 44 - a34 14 - 24 

1 - f3(m)f3(m) f3(m)2 (f3(m)f3(m) f3(m)2) 
22 44 - 24 - 11 44 - 14 

f3
(m)f3(m) f3(m)2 

k 
11 44 - 14 

m = f3(m)f3(m) f3(m)2' 
22 44 - 24 

f3
(m) f3(m) 

(m) _ 14 + 24 
91 - f3(m) 

44 

(m) _ f3~:) + kf3~:) 
9k - f3(m) , 

44 

f3 (m) - k f3(m) 

9 
14 m 24 

-k = (m) 
1344 

The stresses U~m), u~m) and rJr;) can be calculated from equations (2.16), viz. 

c(Jm) + C 1r km - 1 + C 2r-km - 1 

C(Jm) + C 1kmrkm-1 - C2kmr-km-1 

C (a~,:) ;-(m) (m») C (m) km-1 C (m) -km-1 
- f3(m) - ">1 91 - 19k r - 29-k r 

44 

(2.25) 

By satisfying the boundary conditions (2.21) and (2.22) the constants C1 and C2 

can be expressed in terms of the constant C. Introducing notations 

r 
Pm=­

am 
(em < 1, em ~ Pm ~ 1) 

the final expressions for the stresses can be written as 

(m) 
u() 
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(m) 
T(Jz 

where 

Ckm+1 P pm-l m - m (m) km-l 

1 2k gk Pm - cm
m 

[ ( 
1 km+1 1 c

km
-

1 
)] 

+c _,r(m) + ,r(m) 1 _ - C;m g(m)pkm-1 + - m g(m)Ckm+1p-km-l 
1,2 1,1 1 _ c2km k m 1 _ c2km -k m m 

m m 

( a(m) a(m))({3(m) + (3(m)) _ a(m) ({3(m) - (3(m)) 
,r(m) _ 13 - 23 14 24 34 11 22 

1,2 - (3(m){3(m) {3(m)2 _ ((3(m){3(m) _ (3(m)2) 
22 44 - 24 11 44 14 

In equation (2.26) we denoted Pm-l and Pm the normal forces acting on the internal 

and external surfaces of the m-th layer. The remaining unknown forces and constant 

C are determined from the boundary conditions (2.22) and (2.23) and are derived 

in the next section. 

2.5.3 Evaluation of interface forces and constant of integra­

tion 

First we derive the system of equations which will later allow calculation of unknown 

interface forces PI, P2, ..• ,Pn/-l' This system of equations is to be derived by 

satisfying the contact conditions of the interfaces. The equality of radial stresses on 

the layer interfaces ( a~m) = a~m+l)) is seems to be simplest for this purpose. But, 

unfortunately, the use of this condition does not lead to the wanted result, since the 

left side of the equation a~m) - a~m+1) = 0 becomes already to be equal to zero at 

the stage of obtaining of the symbolic expression. The best plan is to use condition 

(m) (m+1) 
f(J =f(J (2.27) 

In effect, it is necessary to solve the following system of nl - 1 equations for Pm 

(m) (m+1) 0 
f(J - f(J = m=I,2, ... ,nl-l (2.28) 

where 
f(m) = a(m) a(m) + a(m) a(m) + a(m) a(m) + ",,(m)r(m) 

(J 12 r 22 (J 23 z '-<24 (Jz (2.29) 

. Let us introduce the following notations 

11m) = c~m+1 

f (m) _ km -l 
3 - Pm 

j (m) _ k km -1 
5 - mPm 

j (m) _ (m) km -1 
7 - gk Pm 
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wJm) 

Then the expressions for stresses (2.26) can be rewritten as 

j
(m) j(m) . 

Pm-1 1 - Pm j(m) _ Pm 2 - Pm-1 fJm) + cdm)wJm) (2.30) 
1 - C2km 5 1 _ c 2km 

m m 

f
(m) j(m) 

r(m) _ _ Pm-1 1 - Pm j(m) _ Pm 2 - Pm-1 f~m) + CWJm) 
(}z - 1 _ C2km 7 1 _ C2km 

m m 

Substituting expressions (2.30) in equation (2.29) and then expression for the strains 

€(} in (2.28) the set of equations for unknown forces can be obtained as 

where 

",(m) + r(m)(W(m) (.l(m) + w:(m) (.l(m)) + w:(m) (.l(m) 
..... 23 ~1 1 1-"12 2 1-"22 3 1-"24 

j (m)f(m) _ f(m) j(m)j(m) +' .r(m) 
1 3 4 (3(m) + 1 5 J6 (3(m) 

1 - c 2km 12 1 _ c2km 22 
m m 

j
(m) + j(m) _ .r(m) 
1 7 J8 (3(m) 

1 - c2km 24 
m 

(2.32) 

j
(m)f(m) _ f(m) j(m) .r(m) + .r(m) 
2 4 3 (3(m) 2 J6 J5 (3(m) 

1 - C2km 12 - 1 _ C2km 22 
m m 

j
(m) .r(m) _ j(m) 
2 J8 7 (3(m) 

1 - c2km 24 
m 

The total number of unknown terms in the system of equations (2.31) is equal to 

the number of the layers nl. Therefore, in order to solve this system we need to add 

another equation, namely the equation (2.23). Having nl equations we nevertheless 

cannot solve this system as the system of linear algebraic equations because of the 

last equation which contains the piecewise integral. Therefore we shall consider 

both parts separately. First we evaluate the expressions for the unknown forces, 
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wherein the constant of integration remains unknown, and then we substitute this 

expressions in equation (2.23). 

Let us solve the system (2.31) for unknown interface forces in the following form 

m=1,2, ... ,nl-1 (2.33) 

where N(m), NJm) are real numbers. To calculate them we shall rewrite the equa­

tions (2.31) in the matrix form 

{B}{P}+{S}=O (2.34) 

or in expanded form 

bn b12 0 0 0 0 

b21 b22 b23 0 0 0 

{B} = 0 b32 b33 b34 0 0 

0 0 b43 b44 b45 0 
(2.35) 

bnl- 1,nl-2 bnl- 1,nl-1 

PI 81 

P2 82 

{P} = P3 
{S} = 

83 

P4 84 
(2.36) 

Pnl-1 8 n l-l 

where bij and 8 m are defined from equation (2.31). It should be noted that in 

general bij =f bji and to distinguish other terms in the system of equations we shall 
use additional indices 1 and r. 

[1, r] --. [m, m + 1] (2.37) 

then coefficients bij and 8 m can be defined as 

b11 ~ (1) _ ~ (2) b - A (2) b _ A (2) b _ A (nl-1) A (nl) 
31 2 T' 12 - ll3 T' 21 - ll2 I, ... , nl-1 nl-1 - ll31 - ll2 

" t , , t ,r 

81 - C(~~~l- ~~~~) + po~~~l, 82 = C(~~~l- ~e~), ... , (2.38) 

8 nl-l = C(~ (nl-l) _ ~ (nl)) + P ~ (nl) 
1,1 I,T nl 3,T 

Solution for coefficients N(m) and NJm) may be given in the following form 

D(m) D(m) 
N(m) = _n_. N(m) = _c_ 

D' C D (2.39) 
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To illustrate, solution for a five layered cylinder gives 

D = b12b21b34b43 - bllb22b34b43 - bllb23b32b44 

-b12b21 b33b44 + bn b22b33b44 

. (5) 
po~~~I(b22b34b43 + b23b32b44 - b22b33b44) + P5~3,rb12b23b34 
po~~~I(b21b33b44 - b21b34b43) - P5~~~~bnb23b34 

-po~~~lb21b32b44 + P5~~~~(bnb22b34 - b12b21b34) 

po~~~lb21b32b43 + P5~~~~(bnb23b32 + b12b21b33 - bnb22b33) (2.40) 

(~~~l- ~~~~)(b22b34b43 + b23b32b44 - b22b33b44) 

-(~~~l- ~~~~)(b12b34b43 - b12b33b44) 

-(~~~l- ~~~~)b12b23b44 + (~~~l- ~~~~)b12b23b34 

-(~~~l- ~~~~)(b21b34b43 - b21b33b44) + (~~~l- ~~~~)(bnb34b43 - bnb33b44) 

+(~~~l- ~~~~)bllb23b44 - (~~~l- ~~~~)bllb23b34 

-(~~~l- ~~~~)b21b32b44 + (~~~l- ~~~~)bnb32b44 
+(~~~l- ~~~~)(b12b21b44 - bnb22b44) + (~~~l- ~~~~)(bnb22~4 - b12b21b34) 

(~~~l- ~~~~)b21b32b43 - (~~~l- ~~~~)bnb32b43 
-(~~~l- ~~~~)(b12b21b43 - bnb22b43) 

+(~~~l- ~~~~)(bnb23b32 + b12b21b33 - bnb22b33) 

Substituting aim) from equation (2.17) and the expressions for a~m), a~m) and TJ:) 
from equations (2.26) into equation (2.23) using (2.33), and performing the integra­

tion, the expression for constant C for a close-ended cylinder is given by 

where 

z(m) 
2 

C=-

nl-l 

Z~l)pO + ZJnl)Pnl + L N(m)(Z~m+l) + ZJm)) - L 
m=l 

nl nl-l 
(2.41 ) 

L ZJm) + L Nim)(Z~m+l) + ZJm)) 
m=l m=l 
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L 1 2 / -(PO - Pnl)aO + F 27r 
2 

(2.42) 

(m) (m) (m) (m)k 
a13 - a34 g-k - a23 m 

\ (m) _ ",(m) ",(m)g(m) + a(m) k 
"'4 - '-<13 - .... 34 k 23 m 

(m) (m) (m) (m)k 
-a13 + a34 g-k + a23 m 

In case of a single layered cylinder the coefficients N(m), NJm) equal zero and ex­

pression for constant of the integration takes the form 

C = Z2PO + Z3P1 - L 
Zl 

(2.43) 

Finally, it should be noted that when winding angle <pm = 0° or 90° then we deal 

with an orthotropic layer with cylindrical anisotropy, which means that there are 

two planes of elastic symmetry, radial and tangential. Then a~7) = .B~:) = .B~:) = 
gim) = g~":.) = 0 and tangential stresses rJ,;) vanish. In the case when <Pm = 0° 

(2.44) 

and some denominators in expressions (2.42) become equal zero that leads to sin­

gularity. In actual computation, this difficulty can be overcome by assigning a very 

small number of <pm (eg. = 0.001°) when <P = 0°. 

2.6 Stress distribution in continuously heteroge­

neous laminated cylinders 

2.6.1 Problem formulation 

The problem of elastic equilibrium for a continuously heterogeneous hollow lam­

inated cylinder is a more complicated than one considered in a previous section. 

Cylinder is made from a material with cylindrical anisotropy and can be subjected 
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to internal, external and interlaminar pressure. We consider only the special case 

when the axis of anisotropy coincides with the axis of symmetry Oz of the cylinder. 

In this case at any point of the cylinder there exists a plane of elastic symmetry 

normal to this axis so that each layer may be considered orthotropic. However, 

elastic properties can vary through the thickness of a layer. Thus, cylinder is an 

orthotropic, the coefficients of deformation depend only on radial coordinate rand 

there are no body forces applied. Length of a cylinder is finite or infinite but with 

fixed ends (the case of an open-ended cylinder). The equations of the generalised 

Hooke's law for an orthotropic laminated cylinder may be written as 

. (2.45) 

The components of the compliance matrix a~i) are determined in (2.5). 

Here and in the following expressions indices 1, 2 and 3 correspond to r, () and 

z directions, respectively. It is noted that the compliance coefficients a~;) may be 

functions of the radial coordinate r. 

Since the stress distribution in the cylinder is symmetrical with respect to the Oz 

axis, the stresses depend on the radial coordinate r only. The stresses a~m) and a~m) 

can be expressed in terms of a stress function 4>m = 4>m(r) as 

a(m) = ~ d4>m . 
r r dr ' 

(m) _ cP4>m 
a8 ---

Moreover, due to symmetry 

By introducing the notation 

dr2 

r(m) = r(m) = r(m) = O. 
r8 8z r z , 

d4>m(r) = wm(r) 
dr 

the normal and circumferential stresses can be expressed as 

(m) dWm 
a8 =-­

dr 

(2.46) 

(2.47) 

(2.48) 

Next , a differential equation governing the equilibrium of open-ended cylinders is 

derived. Using equations (2.45) and noting that for an open-ended cylinder the 

longitudinal strain Eim ) = 0, stress-strain relations can be expressed as 

E(m) = (J(m) a(m) + (J(m) ~(m), 
r 11 r 12 v 8 , E(m) - (J(m) ~(m) + (J(m) ~(m) 

8 - 21 vr 22 V8 (2.49) 
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Let u( r) denote the displacement in the r direction. Using strain-displacement 

relations 
(m) _ dUm. fo(m) = Um 

fr - dr ' r 

and the equations (2.48) and (2.49), the following expressions are obtained 

dUm _ a(m) -1 + a(m) dr:;;:;m. dr -,ull r:;;:;m r ,u12 dr' 

(2.50) 

(2.51) 

Eliminating the displacement from expressions in (2.51), a differential equation in 

terms of r:;;:;m(r) is derived, viz. 

d (a(m) dr:;;:;m + a(m) ) a(m) -1 _ a(m) dr:;;:;m - 0 
dr ,u22 r dr ,u12 r:;;:;m -,ull r:;;:;m r ,u12 dr- (2.52) 

where the coefficients (3ij are functions of the coordinate r only. 

The differential equation (2.52) applies to the m-th layer and is to be solved subject 

to specified boundary and interface conditions. The boundary conditions on the 

internal (r = ao) and external (r == ani) surfaces are given by 

(2.53) 

where po and Pnl denote the internal and external pressure, respectively. At a given 

layer interface (r = am-d, the normal stress and the circumferential strain satisfy 

the continuity conditions 
u(m-1) _ u(m) = P 

r r m-1 

(m-1) _ (m) 
fO - fO 

(2.54) 

(2.55) 

where Pm-1 is the pressure between the layers m - 1 and m, and may arise as a 

result of shrink-fit, residual stresses, etc. 

The solution of equation (2.52) will contain two constants of integration Am and 

Bm with the total number of unknown constants being 2nl for a cylinder with nl 

layers. The total number of equations available to compute 2nl constants follows 

from equations (2.53), (2.54) and (2.55) as 

2 + 2(nl- 1) = 2nl. 

Thus, the values of Am, Bm, m = 1,2, ... , nl can be determined uniquely from the 

solution of the system of linear algebraic equations obtained using (2.53)-(2.55). 
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2.6.2 Method of solution 

Let the general solution of equation (.2.52) for the m-th layer be denoted by tVm(r) 

which is of the form 
(2.56) 

where Im(r) and gm(r) are known functions which depend on the coefficients .8&m) (r). 

The constants of integration Am and Bm in equation (2.56) are determined from the 

boundary and interface conditions (2.53), (2.54) and (2.55). From equations (2.48) 

and (2.56), the stresses in m-th layer are computed as 

(2.57) 

The circumferential deformation follows from equations (2.49) and (2.57) as 

(m) (m)( () B ()) -1 a(m) (A dIm B dgm) to = .821 Am 1m r + m gm r r + fJ22 m dr + m dr (2.58) 

The implementation of the conditions (2.53)-(2.55) using equations (2.57) and (2.58) 

gIVes 

(2.59) 

For the open-ended cylinder the longitudinal stress U z is given by 

(2.61 ) 

The above solution is now extended to the case of a closed-ended cylinder under 

an axial load F. The cylinder is assumed to be long enough for the longitudinal 

bending deformation due to end closures to be limited to only small end portions 

of the cylinder compared to the overall length. Due to cylindrical orthotropy and 

axisymmetric loading and neglecting the longitudinal bending deformation due to 

end closures, the problem can be treated as a generalized plane strain problem. 
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Using Hooke's law, the expression for the longitudinal stress may be written as 

(m) __ l_(E(m) _ a(m) u(m) _ a(m) u(m») (2.62) 
u z - (m) z 13 r 23 () 

a33 

where E~m) = Ez is an unknown constant and is computed next. 

The equilibrium of forces in the z direction gives 

(2.63) 

Substituting equations (2.62) for u~m) into equation (2.63) we obtain the expression 

for Ez as 

nl lam 1 L: (m) rdr 
m-1 am-l a 33 

(2.64) 

2.6.3 Example 

The method of solution is illustrated by solving a specific example, namely, mul­

tilayered open-ended orthotropic cylinder with variable material properties. The 

simplest way to solve this problem when the coefficients a~.i)(r) are proportional 

to some degree of the distance r. Let coefficients of deformation be assumed to be 

inversely proportional to the radial distance r such that 

(3
(m)( ) _ (m) -nm 
ij r - lij r (2.65) 

where 17~m) are given coefficients for the m-th layer, nm are given real numbers which 

characterize the rate of changes in elastic properties through the thickness and I~m) 
are constants given by 

(m) (m) 
17i3 17 j3 

(m) 
1733 

Substituting (3i~m) from equation (2.65) in (2.52), the following differential equation 

is derived 
~rom ( ) 1 drom (m) 2 --+ 1 - n r- -- - "V r- ro = 0 dr2 m dr In m (2.66) 

where 
(m) (m) 

(m) _ III + nml12 
In - (m) 

122 
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The corresponding equations for single-layered cylinders are given in [45]. 

Using the through-the-thickness material distribution assumed above for the coeffi­

cients a~j)(r), the expressions for functions fm(r) and 9m(r) are obtained as 

(2.67) 

where Sm and tm are real numbers which are computed from equation (2.66) as 

(2.68) 

The stresses and circumferential strain t~m) follow from equations (2.57) and (2.58) 

as 

a(m) = (A rSm + B rtm). r- l . r m m , 

a~m) = (Am Sm rSm + Bm tm rtm). r- l
; (2.69) 

t~m) = ,B~;n)(Amrsm + Bmrtm) . r- l + ,B~;)(Amsmrsm + Bmtmrtm) . r- l 

The implementation of the boundary and interface conditions (2.53)-(2.55) gives 

the system of equations 

(2.70) 

(2.71 ) 

As an example, the system of equations for the case nl = 4 is given in Table 2.1. 

Table 2.1. The system of equations to determine Ak and Bk with n = 4. 

N/N Al Bl A2 B2 A3 B3 A4 B4 R.H.S 

1 Cll C12 0 0 0 0 0 0 -poao 

2 C2l C22 C23 C24 0 0 0 0 -PIal 

3 C3l C32 C33 C34 0 0 0 0 -(,Bg) - ,Bg»)Plal 

4 0 0 C43 C44 C45 C46 0 0 -P2a2 

5 0 0 C53 C54 C55 C56 0 0 -(,B~~ - ,Bg))p2a2 

6 0 0 0 0 C65 C66 C67 C68 -P3a3 

7 0 0 0 0 C75 C76 C77 C78 -(,Bg) - ,Bg»)p3a3 

8 0 0 0 0 0 0 C87 C88 -P4a4 
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These results are now extended to closed-ended cylinders for which Ez =I O. With 

funct ions fm(r) and 9m(r) given by (2.67), we can determine the expression for 

the longitudinal strain Ez from equation (2.64). This calculation is performed using 

symbolic computation and gives 

(2.72) 

where 

2A (a{1+Sm) - a(1+sm»)(TJ(m) + TJ(m) s )/TJ(m)(1 + s ) 
m m m-1 13 23 m 33 m , 

2Bm(a~+tm) - a~~im»)(TJ1;) + TJ~;)tm)/TJ~)(1 + tm) 

nl 1 
L (m)(a~ - a~_l)· 
m=l a 33 

Let us now consider some particular cases of the above problem. If the coefficients 

of deformation for the layers are constant within each layer m, then the exponents 

in equation (2.65) are zero, i.e., nm = o. In this case 

(m) 
III 

In = (m); 
122 

{ :: } = ±Hn 

The system of equations (2.59), (2.60) and (2.70), (2.71) remain the same. 
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For a single-ply cylinder (nl = 1), we have to take into account only conditions on the 

external and internal surfaces (2.59). In this case, a system of two equations needs 

to be solved which is given by equation (2.59 ) where Al = Ani = A, BI = Bnl = B. 

Final expressions for the stresses may be obtained in a form which is similar to that 

given in [45], namely, 

where 

pc pS _ pt q et pS _ eS pt 

U r = --;; cs - ct + p cs + ct j 

pesps - tpt q setp - tespt 
Uo = - - + - -~-----'--

p cs-ct p cs-ct 

ao 
e=-j 

ani 

r 
p=­

ani 

and p and q are internal and external pressure, respectively. 

(2.74) 

For a homogeneous single-ply isotropic cylinder (n = OJ s = t = 1 j III = 122 j In = 

1), formulae (2.74) reduce to the solution of Lame's problem, given in [45] 

(2.75) 

The solutions presented in this study are the exact elasticity solutions for a het­

erogeneous laminated cylinder subject to internal and external pressures as well as 

to pressures between the layers. This approach is capable of taking into account 

variable material properties as well as stresses at layer interfaces and allows the 

stress-strain state to be determined exactly. 

2.6.4 Filament-wound cylinders 

The problem set-up described above does not allow to calculate the shear stresses 

Toz which inevitably appear in filament-wound layers. But considering an angle-ply 

laminate ±c.p we could treat such a layer as an orthotropic unit. Indeed, the change 

of the fibre angle sign remains the absolute value of shear stress Toz while the sign 

of the stress is changing that gives Toz = 0 for the ply. In practice, many auto­

mated manufacturing processes lead to symmetric angle-ply composite laminates 

consisting of an even number of equivalent plies with material symmetry axes being 

alternately oriented at angles +c.p and -c.p to the element axis (namely, the z-axis). 
In calculations, such a system of plies is considered as one symmetrically reinforced 

layer. Such an approximation is a good description of real composite structure and 
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is a substantial simplification of the stress-strain relationships: if each of symmetric 

plies is anisotropic then, working together, they form an orthotropic layer. Elastic 

constants are determined for such a layer in a different way than for a single ply, 

and may be computed in the following form 

(2.76) 

where 

An El cos4 cp + E2 sin4 cp + 2 (EIV12 + 2G12) sin2 cp cos
2 

cp 

A22 El sin4 cp + E2 cos4 i.p + 2 (EIV12 + 2G12) sin
2 cp cos

2 cp 

(2.77) 

Here subscripts 1 and 2 correspond to the fibre and transversal directions of a 

material, respectively, and 

i = 1,2 (2.78) 

Components of the compliance matrix (}:ij now can be obtained using relations of 

the Hooke's law (2.4). 

It should be also noted that we assume that the material properties are the same in 

both plies and that the plies are perfectly bonded to one another, i.e. fi = fe. 

Comparison study of equations (2.77) and (2.5) shows that, in the general case, a 

±cp angle-ply laminate has a higher stiffness than the +cp or -cp laminate of the 

same thickness. The behaviour of the elastic constants of some composite materials 

as a function of angle cp is shown in Figure 2.3. 

2.7 Optimisation of laminated composite cylin­

ders under strength criterion 

The strength of unidirectional layer is determined by the tensile and compressive 

strength along and across the fibers, and the in-plane shear strength. The carrying 
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capacity of the material under longitudinal tensile stress is exhausted as a result of 

fiber breakage. Under compressive stresses material failure occurs because of fiber 

buckling or splitting parallel to the fibers. Material failure under transverse tension 

and shear is associated, as a rule, with failure of the matrix or with the separation 

of the matrix from the fibers. Failure of composite materials is a rather complicated 

process even under simple loading, and its theoretical description presents severe 

difficulties. The values of strengths are usually determined experimentally. 

Therefore, engineers seek out an observational level of failure to which they can read­

ily relate and feel comfortable with in description the appropriate failure mechanism. 

In this regard we generally attempt to specify lamina failure for anisotropic unidi­

rectional composites or alternatively lamina as existing in composite orthotropic 

laminates. One of the earliest interactive failure criterion for anisotropic materials 

was initiated by Hill (1948). The plane stress results by Hill were simplified for 

the case of fiber reinforced composites by Azzi and Tsai (1965) [4] considering the 

composite to be transversely isotropic. A generalisation of this failure criterion to 

incorporate the effects of brittle materials was considered by Hoffman (1967) [31]. A 

generalisation of the Hoffman result to incorporate a more comprehensive definition 

for failure was later proposed by Tsai and Wu (1971) [87]. This criterion is best 

suited to the present study. 

The basic assumption of the Tsai-Wu 3-dimensional failure criterion is that there 

exists a failure surface in the stress space in the following scalar form 

(2.79) 

where k, i, j = 1,2, ... ,6; Fi and Fij are strength tensors of the second and 

forth rank, respectively. In case of laminated pressure vessel possessing cylindrical 

anisotropy equation (2.79) in expanded form can be written as 

p(m)0"(m)2 + p(m)(0"(m)2 + (m)2) + F(m) (m)2 
11 1 33 3 0"2 44 T12 

+2FJ~)(0"~m) + O"~m))O"~m) + 2FJ;)0"~m)0"~m) (2.80) 

+FJm)(O"~m) + O"~m)) + Fl(m)O"~m) - 1 = 0 

where 
p(m) _ 1 F(m) _ 1 F(m) _ 1 

11 - Xt(m) xJm) , 33 - r;(m)Yc(m) 44 - S(m)2 

F(m) _ 1 1 p(m) _ 1 1 
3 - r;(m) - ~' 1 - x1m ) - xJm) (2.81 ) 

F(m) = _! /F(m)p(m) F(m) _ !F(m) 
31 2 V 33 11, 32 - - 2 33 
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and X t , Xc are longitudinal tensile and compressive strengths, respectively, 1";, Yc 
are those for transverse direction and S is the shear strength. It should be noted 

that the normal stresses (1i, i = 1,2, ,3 and shear stress 712 are stresses in material 

coordinates and can be computed as 

(11 (1z cos2 c.p + (18 sin2 c.p - 78z sin 2c.p 

(12 - (1 z sin 2 c.p + (18 cos2 c.p + 78z sin 2c.p 

712 ((18 - (1 z) sin c.p cos c.p - 78z cos 2c.p 

2.7.1 Method of solution 

(2.82) 

The design objective is the maximisation of the burst pressure Per subject to the 

failure criterion (2.80). The design problem for a multilayered pressure vessel of a 

given thickness ratio bl a, number of layers and axial force F can be stated as 

Pmax ~f max Per(c.p, r) = max min Per 
8 8 r 

(2.83) 

where Pcr ( c.p, r) can be easily calculated from the quadratic equation 

(2.84) 

wherein the stresses are calculated for an applied unit pressure. Solution of the 

equation (2.84) gives 

(2.85) 

where 

The negative root for Per does not have any physical meaning and the positive value 

only must be taken into consideration. 

The optimisation procedure involves the stages of iteratively improving c.p~;) in order 

to maximise Per for a given radius, thickness ratio and axial force. 

The simplest case of the optimisation is a single layered cylinder where there is only 

one variable c.p and so the one-dimensional problem is solved. For this purpose the 
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golden section method in determine 'Popt is employed and it gives the fast convergence 

for this problem. 

With increasing in number of layers the problem becomes more complicated and 

requires the use of reliable multi-dimensional optimisation methods. Depending on 

particular problem two methods are used, namely, iterative and gradient methods. 

Let us consider the function f(XI, X2, ... , Xn) which is to be optimised, i.e. it is nec­

essary to find extremum of the function. Here Xl, X2, ... , Xn are functional variables, 

in our case they are angles. We begin from random values of x~O] (i = 1,2, ... , n) 

and build successively the approximations. In the case of the iterative technique 

they can be given as 

(i = 1,2, ... ,n; j = 1,2, ... ) (2.86) 

which converge to some solution Xi when j ~ 00. In equation (2.86) vy] charac­

terises "direction" of a step and parameter .x[j] is a step which maximises the value 

f(x~+1], x~+1], . .. , xW+1]) as a function of .x[j]. On each step the only one argument 

Xi is consecutively changed in such a way as to decrease the biggest absolute value 

of the discrepancy. This approach is not too fast but quite reliable, especially when 

the extremum occurs within a region where slope of the functional surface changes 

rapidly. 

On the other hand the gradient method is faster. In this method the functional 

variables Xi are changed simultaneously and "directions" are calculated as 

[j] af 
Vi =--vr 

ax-, 
(2.87) 

In our case it is impossible to perform differentiation and all derivatives must be 

evaluated numerically in the following form 

af f(xY] + .x[j],x[j]) - f(xY]) 
8x[j] = Ali] , 

(2.88) 

where xLi] are all arguments excluding xy] and xY] is the vector which includes all 

arguments Xi. Then new coordinates of the point in the multi-dimensional space 
can be obtained by 

(2.89) 

where Se is a real number which characterises the rate of change of Xi. 

This method can be very sensitive to the step .x. Usually .x[j] is decreased while j 

increases. The gradient method works very good when the functional surface is a 
rather smooth. 
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2.8 Numerical results 

2.8.1 Stress-strain analysis 

Let us consider some numerical results which are obtained on the basis of analytical 

solutions derived above. The results presented here are for both open-ended and 

closed cylinders. 

Problem 2.1 

The example involves an open-ended cylinder with a wall ratio b/ a = 1.25 and 

internal radius of a = 1m. The cylinder consists of two orthotropic and three 

isotropic layers, the properties and thicknesses of which are given in Table 2.2. 

Table 2.2. Material properties and thicknesses of layers. 

Material Thickness Ez Eo VOz Vzo 

(m) (MPa) (MPa) 

Molybdenum 0.02 3.4 . 105 3.4 .105 0.33 0.33 

B( 4)/5505 0.06 2.04.105 1.85 . 104 0.02086 0.23 

(Boron/Epoxy) 

Lead 0.095 1.4 . 104 1.4 . 104 0.45 0.45 

Kevlar 49 0.04 7.6· 104 5.5· 103 0.0246134 0.34 

(Aramid/Epoxy) 

Steel 1008/1018 0.035 2.07.105 2.07.105 0.285 0.285 

The exponent for the anisotropic layers is taken as n = 1 and Er = Eo. The values 

of 7]ij in equation (2.65) are obtained from equations (2.4) and (2.65) by setting 

n = 0 in equation (2.65). Three different types of loading conditions are considered, 

VIZ. 

1. Cylinder under internal pressure (Po = 1 MPa). 

2. Cylinder under the internal and external pressures (Po = 5 MPa, P5 = 2 MPa). 

Moreover the residual stresses on the interfaces of the layers are taken into account 

by specifying PI = 1.2 MPa and P4 = -0.5 MPa. 

3. Cylinder under residual stresses on the layer interfaces with PI = 1.2 MPa and 

P4 = -0.5 MPa. 

Figure 2.4 shows the stress distribution through the thickness for the first case. 

Figures 2.5 and 2.6 show the corresponding results for the second and third loading 
cases. 
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Numerical results show that hoop and longitudinal stresses are considerably higher 

than the radial stresses. The highest stresses occur in the layers with higher moduli 

of elasticity. The distribution of the radial stresses U r is more uniform through the 

thickness of the cylinder. The discontinuities in radial stresses happen when the 

residual stresses on the layer interfaces are taken into account. 

Let us now consider a closed-ended cylinder subjected to internal pressure po = 1 

MPa i.e., load case 1. Due to the ends being closed the longitudinal stresses U z are 

higher (see Fig. 2.7) than those of an open-ended cylinder (see Fig. 2.4). 

Problem 2.2 

In order to illustrate the behaviour of the normal stresses through the thickness of 

a cylindrical shell, depending on the material characteristics through the thickness, 

we consider a thick ring (bla = 2) made of oak wood and subjected to only internal 

pressure p. Material properties are Er = 2 . 106 pn M Pa, E8 = 0.95 . 106 pn M Pa 

and IIr 8 = O. Figure 2.8 shows the stress distribution of U8 and U r through the 

thickness for the different values of the exponent n. As is seen the circumferential 

stresses U8 remain almost unchanged on the mid-plane of the ring, while approaching 

the external surfaces the change in the stresses is more pronounced. The insert in 

Figure 2.8 shows the corresponding U r values. 

2.8.2 Optimisation of the pressure vessels 

Problem 2.3 Let us consider the optimisation of the composite single layered pres­

sure vessels of different thickness ratio. If not mentioned otherwise, the composite 

material T300/Epoxy is used for the present study. All material data were taken 

from Ref [88] and are given in Table 2.3. 

Figure 2.9 shows the failure surface with respect to radial directi~n and fibre orien­

tation for bl a = 1.25 and F = o. It is observed that the failure pressure reaches its 

maximum value at about the same angle for all a ~ r ~ b. Figure 2.10 indicates 

that the failure at a given angle (<p = 45°) may occur at r = a or b depending the 

thickness ratio bl a. For lower values of bl a the location of failure is at r = b while 

for higher values it is at r = a. For a given thickness ratio the location of the failure 

depends on the fibre orientation as shown in Figure 2.11 which shows the curves of 

P cr plotted against the radial direction for bl a = 1.25. It is observed that the failure 

location is r = a for low values of <p and r = b for high values of <po 
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Next the behaviour of the failure pressure with respect to fibre orientation is investi­

gated. Figure 2.12 shows the curves of Per plotted against c.p for various values of b j a 

with F = 0 and Figure 2.13 for various values of F with bja = 1.25. In both figures 

Per is given at r = a. Figure 2.12 indicates that thickness has a marginal effect on 

the optimal c.p and c.popt is in the range 54°-57° for 1.025 :::; bja :::; 1.5. However, the 

axial load has a major effect on c.popt and as F increases c.popt decreases as the fibres 

align themselves with the axial load. 

Optimisation results are given in Figure 2.14 which shows the curves of Pmax ver­

sus bja with F = 0 for various materials. The insert in Figure 2.14 shows the 

corresponding c.popt values. 

Problem 2.4 Next we consider pressure vessels of different thickness ratios and num­

ber of layers. For a multilayer CFRP T300j5208 cylinder, results in Table 2.4 were 

obtained for layers of equal thickness and a layer thickness ratio of (bja - l)jnl; nl 

is the number of layers. The last columns of the table shows that for bja = 1.1 and 

1.2 an increase in the number of layers increases the burst pressure by a significant 

amount. It is worth mentioning that the equal thickness consideration sometimes 

may not necessarily give the best burst pressure. In this case, for a given num­

ber of layers, along with the angle optimisation we should also optimise the layer 

thicknesses, instead of taking equal thickness, to obtain the best burst pressure. 

All values of the burst pressure were calculated at the weakest points within the 

cylinder thickness. In the case of T300j5208 the failure point shifts from outside 

surface to the inside as the wall thickness increases. At about bj a = 1.15 this 

transition occurs. 

Figure 2.15 and 2.16 show graphical representation (functional surface) of the two­

dimensional optimising problem for the thin (bja=1.1) and thick (bja=1.5) two 

layered cylinders, respectively. As with the single layered cylinder the change in 

burst pressure is smoother for the case of the thick cylinder. 
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Table 2.3. Engineering constants and strength of the composite materials 

Material 
Er, Eo Ez Voz Coz X X' Y 

MPa MPa MPa MPa MPa MPa 

T300/5208 1.03· 104 1.81 . 105 0.28 7170 1500 1500 40 

Kev49/Epoxy 5500 7.6.104 0.34 2300 1400 235 12 

H-IM6/Epoxy 1.12· 104 2.03.105 0.32 8400 3500 1540 56 

E-glass /Epoxy 8270 3.86 . 104 0.26 4140 1062 610 31 

Table 2.4. Prediction of burst pressure of several multilayer vessels; 

material: T300/N5208 

No of Optimum Angle Burst Percent 

b/a Layers Combination Pressure Change 
nl (inside to outside) (MPa) in Burst 

Pressure 

1 54.2 4.49 -

2 49.8/57.5 4.51 0.45 
1.01 3 47.2/62.7/48.6 4.68 3.77 

4 45.5/69.0/46.6/46.5 4.76 1.71 
5 44.0/77.8/44.8/44.7/44.7 4.92 3.36 
1 54.5 47.90 -

2 50.1/57.9 48.14 0.50 
1.1 3 45.9/45.5/66.7 56.38 17.12 

4 71.0/70.3/69.6/0.0 82.17 45.74 
5 70.8/70.2/69.7/69.2/0.0 91.99 11.95 
1 54.7 104.27 -

2 49.7/58.7 105.07 0.77 
1.2 3 46.0/46.5/67.9 126.46 20.36 

4 46.5/46.0/45.8/74.3 138.48 9.50 
5 0.0/70.0/68.6/67.7/67.1 183.97 32.85 
1 56.3 150.10 -
2 59.5/51.9 150.45 0.23 

1.3 3 58.2/58.6/50.9 150.47 0.013 
4 59.6/60.6/52.6/49.0 157.86 4.91 
5 68.0/56.8/51.4/48.4/46.6 162.48 2.93 
1 57.3 181.00 -

2 64.4/45.5 183.61 1.44 
1.5 3 68.9/50.2/43.7 184.08 0.26 

4 71.6/55.0/46.4/43.1 184.15 0.038 
5 72.3/60.3/49.3/45.0/42.9 184.14 -0.005 
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2.9 Conclusions 

A three-dimensional theory for anisotropic thick composite cylinders subjected to 

axisymmetricalload conditions is derived. The exact analytical solution is obtained 

for multilayered anisotropic pressure vessels. There are no restrictions on the number 

of layers and their sequences since the thicknesses and elastic properties of the layers 

can differ considerably. The theory presented is capable of treating thick as well as 

thin cylindrical shells, and is in turn applicable to pressure vessels and open-ended 

cylinders, isotropic, orthotropic and anisotropic layers. The distinctive feature of 

this theory is that expressions for the radial, circumferential and shear stresses 

have been modified to include the effect of the closed ends. This is an advantageous 

feature not found in many available approaches. The proposed stress analysis allows 

an accurate prediction of the burst pressure. 

In addition, the exact analytical solution for multilayered orthotropic cylinders with 

variable material properties is obtained. This theory also takes interlaminar stresses 

into account. The solution does not require the computation of the interface nor­

mal tractions since the system of equations a priori takes into account boundary 

and interface conditions. However, the radial and hoop stresses do not depend on 

whether the cylinder has closed or open ends. It should be noted that the influence 

of closed ends on the normal stresses does not have significant effect, but does cause 

a considerable in the shear stresses. The solutions are given for both open-ended 

and closed-ended cylinders. 

The three-dimensional interactive Tsai-Wu failure criterion is employed in order to 

predict the maximum burst pressure. The optimisation of the pressure vessels shows 

that the stacking sequence can be employed effectively to maximize burst pressure. 

This problem involves certain mathematical difficulties including high sensitivity of 

the solution with respect to its parameters, and non-unimodality of the functional 

space. In this connection it should be noted that only very accurate stress analysis, 

namely three-dimensional elasticity solution, allows to predict the most efficient 

layer sequence. This is especially true for thick pressure vessels. 

Mathematical background for maximisation of the function is presented. Three 

methods were used for this purpose, namely, golden section method as a one­

dimensional method and iterative and gradient as multidimensional methods. 
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Figure 2.1 Stress components for the cylindrical coordinate system. 
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Figure 2.2 Configuration of thick anisotropic cylinder. 
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Chapter 3 

Derivation of Higher-Order 

Theory for the Solution of 

Dynamic Problems of Laminated 

Plates and Shells 

3.1 Introduction 

The main objective of this chapter is to derive a comprehensive higher-order theory 

of laminated plates and shells which can accurately predict the dynamic behaviour 

of these structures under various loading conditions. 

An improved transverse shear and normal deformation higher-order theory is devel­

oped for the solution of dynamic problems involving multilayered plates and shells 

with arbitrary number and sequence of transversely isotropic layers. The layers may 

differ significantly in their physical and mechanical properties. The theory developed 

is based on the kinematic hypotheses which are derived using iterative technique. 

Dynamic effects, such as forces of inertia, and the direct influence of external loading 

on the components of stress and strain are included in the initial stage of derivation 

where kinematic hypotheses are formulated. New variables which have clear phys­

ical meanings are introduced. The system of governing differential equations and 

the complete set of boundary conditions are derived. The closed form solutions are 

given for problems involving forced and natural vibrations. 
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Ren [77], and Verijenko et al [96]. In recent years, numerous refined approaches for 

the analysis of composite plates and shells have been formulated. Contributions 

by Ambartsumyan [3], Reddy [69, 71], Reddy and Phan [70], Librescu [47], Vasi­

lyev [92] and Noor and Peters [57] should be mentioned. Survey of different theoret­

ical and computational models may be found in reviews by Kant and Junghare [38], 

Dutchenko et al [19], Bert [8], Noor and Burton [58, 59] and Reddy [72]. Several 

monographs have also been written on the subject [9, 11, 26, 46, 63, 64, 68, 79, 98]. 

It is noted that the list of references is not intended to be a comprehensive one and 

the specific publications were referred to because of their relevance to the present 

chapter. 

A study of the literature indicates that, in the case of dynamic analysis of laminated 

structures in which the layers may have significantly different physical characteris­

tics, it is also necessary to consider the phenomenon of normal deformation. More­

over, most of the known dynamic higher-order theories are based on the hypotheses 

which are derived from a consideration of the quasi-static problem. In this case 

the kinematic hypotheses do not fully reflect the physical essence of the problem. 

Therefore, the study of the dynamic behaviour of laminated structures on the basis 

of improved higher-order theories will fill a gap in the analysis of thick composites 

under dynamic loads. 

3.3 Basic assumptions and derivation of kinematic 

hypotheses 

We consider shells with transversely isotropic layers which are weak in their resis­

tance to transverse shear and normal deformation. No limitations are placed on the 

thickness, rigidity, density, number and/or sequence of the layers. The physical and 

mechanical characteristics of the layers may vary through the thickness. The as­

sumption that the layers are perfectly bonded ensures their deformation as a single 

unit without delamination. Thus, the structure of the shell through the thickness 

is arbitrarily irregular and heterogeneous. The shell is represented by a curvilin­

ear orthogonal coordinate system X l OX2 which is parallel to the bounding surfaces 

and surfaces of contact between the layers (Fig. 3.1). The axes of the curvilinear 

coordinates Xi = constant (i = 1,2) coincide with the principal lines of curva­

ture and the coordinate z = X3 is defined along the normal to · the reference surface 

X I OX2. It is assumed that the coefficients of the first quadratic form of a surface 

are close to unity, i.e. , Al :::::: A2 :::::: 1, and the main curvatures are constant, i.e., 
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kij = constant, i,j = 1, 2. The total thickness of the shell is small in comparison 

to radii of the curvatures (1 + kij ~ 1). Dynamical loads are applied on the outer 

and inner surfaces of the laminate so that 

(3.1) 

where p+ and p- are loads applied on the outer and inner surfaces, respectively, and 

the subscript s denotes the corresponding coordinate axes. The reference surface 

X l OX2 may be positioned arbitrarily through the thickness of the shell. It may 

be chosen within any lay:er, coincide with the interlaminar or external surfaces as 

dictated by the nature of the problem under consideration. The stress conditions· 

on the external surfaces may be written as 

(1) 
0'83 for z = ao (k = 1) 

for z = an (k = n) 

s=I,2, 3 

where k denotes the layer number and n is the total number of layers. 

(3.2) 

(3.3) 

Since the layers are assumed to be perfectly bonded, the continuity conditions for 

an arbitrary surface z = ak-l are given by 

(k-l) 
0'83 (static) 

(kinematic) 

(3.4) 

(3.5) 

In the following derivations, summation is assumed over subscripts i,j = 1,2; s, r, = 
1,2,3, and p, q, j, g. However no summation is implied over k = 1,2, ... , m, ... ,n. A 

subscript after a comma denotes differentiation with respect to the variable following 

the comma and a superscript is expressed in brackets to distinguish it from an 
exponent. 

Considering "small" bending [60] the strain components of the k-th layer may be 
expressed as 

2e(k) = u(k) + u(k) 
,3 , ,3 3,' 

e(k) - u(k) 
33 - 3,3 

(3.6) 

where u~k)(Xi' z, t) and u~k)(Xi' z, t) are displacements of the k-th layer in the tangen­

tial Xi (i = 1,2) and normal z = X3 directions, respectively, and ki/s are curvatures 
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of the shell. The displacements of the reference surface (z 0, k - m) may be 

expressed as 

and the strains and the curvatures due to deformation as 

which satisfy the well known relations [60] 

21:12,12 - 1:11,22 - 1:22,11 = k11 "22 + k22 "11 - 2k12"12 

"11,2 - "12,1 = OJ "22,1 - "12,2 = 0 

(3.7) 

(3.8) 

(3.9) 

The generalized Hooke's law for a transversely isotropic layer k of the shell, where 

the surface of isotropy at any point (Xi, z) is orthogonal to the normal, may be 

expressed as [3] 

e~~) = a~~) u~~) + a~~) u~~) + a~~) u~;) 
e~~) = a~~) u~~) + a~~) u~~) + a~~) u~;) 
e~~) = a~~) u~~) + a~~) uW + a~;) u~;) 
2e

(k) - a(k) ,..(k). 2e(k) _ a(k) ,..(k). 2e(k) - a (k) u(k) 
23 - 44 v23 , 13 - 55 v13 , 12 - 66 12 

(3.10) 

where a~7) denotes the elastic compliance coefficients of the k-th layer. In equa­

tion (3.10) the compliance characteristics are given by 

a(k) - a(k) - 2-. a(k) - 2-. a(k) - a(k) - _~ 
11 - 22 - Ek' 33 - E,,' 12 - 21 - Ek 

a
(k) _ a(k) _ a(k) _ a(k) __ V". a(k) _ a(k) - 2-. a(k) _ ~ 
13 - 31 - 23 - 32 - , , 44 - 55 - " 66-

Ek G k G k 

where Ek = Ek(z), Vk = Vk(Z), G k = Gk(Z) are modulus of elasticity, Poisson's ratio 

and shear modulus in the plane of isotropy, respectivelYj E~ = EHz), G~ = G~(z) 
are moduli of elasticity and shear in the transversal directionj v" = vk(z) is Poisson's 

ratio, which characterizes reduction in the plane of isotropy when tension is applied 

in the transversal direction. All elastic properties of the k-th layer are assumed to be 

functions of the coordinate z (ak-1 ~ z ~ ak). The Hooke's law for specific cases of 

material can be obtained by specifying the material properties. For example if it is 

assumed that v" = 0, then a~;) = a~~) = a~;) = a~~) = 0 and we have a layer for which 

the influence of the normal stresses u~;) on the tangential components eW, e~~) of the 

strain tensor is excluded and, similarly, the influence of the tangential components 

u~~), uW of the stress tensor on the strain e~;) in the transversal direction is also 

excluded. Thus the normal deformation due to the Poisson's effect is excluded. If 
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, (k) (k) (k) (k) (k) 0 d h . ·bl 
Ek = 00, then a 13 = a 31 = a 23 = a 32 = a33 = an we ave an mcompreSSl e 

layer ( e~~) = 0) in which the strains e~~), e~~) are independent of the normal stress 

O"~;). This effect may be obtained by assuming O"~;) = o. Furthermore, if we assume 

Gk = 00, then the layer also becomes perfectly rigid under the transversal shear, 

i.e., e~~ = e~~) ~ o. The above set of assumptions is equivalent to that used in the 

derivation of the classical theory which is a special case of the theory presented in 

this study. 

3.3.1 Classical model 

We first obtain the expressions of the classical model based on the Kirchhoff-Love 

hypotheses. We will subsequently make use of the~ for the derivation of kinematic 

hypotheses of the higher-order theory. In the classical' model the following relations 

can be written for the k-th layer: 

e(k) - o· e(k) - o· ~(k) - o· ,; - 1 2 i3 - , 33 - ,v 33 - ,. - , (3.11) 

Substituting equations (3.6) into the first two hypotheses (3.11), and integrating the 

resulting expressions, the kinematic model of the shell may be obtained as 

(3.12) 

In these calculations, the continuity conditions (3.5) and relations (3.7) have been 

taken into account. The strains of the k-th layer in tangential directions can be 

obtained from equations (3.6) and (3.12) as 

(k) .. 1 2 
eij = Eij + KijZ; 1,,) = , (3.13) 

The normal stresses in the k-th layer may be determined from equations (3.10) 

in conjunction with the static hypothesis O"~;) = 0, or from assumption Ek = 00 

together with equation (3.13). These calculations give 

where 

O"~~) = E ok [( Ell + lIkE22) + (Kll + lIkK22)Z] 

O"W ~ O"~~); O"~~) = E ok (1 - lIk)(E12 + K12Z) 

Ek Ek 
EOk = 1 2; 2Gk = 1 = E ok(1- lIk) 

- lIk + lIk 

(3.14) 

In equation (3.14) the symbol ~ indicates that the expression for O"~~) is of the same 

form as that for O"~~) with the provision that the subscript 11 is replaced with 22 
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and vice versa. The transverse shear and normal stresses cannot be found from the 

Hooke's law because of the hypotheses (3.11). In order to determine these stresses, 

we use the equations of motion of the shell, and for the k-th layer they may be 

written as [60] 
U~~)" + U~3k)3 = Pk ii~k) 

'3,3 ' , , 

U1;~3 + U};!i - kijug) = Pk ii~k); i, j = 1,2 
(3.15) 

where Pk ii~k)= Pku~;L Pk ii~k)= Pku~7;t are the forces of inertia in the tangential and 

normal directions and Pk = Pk(Z) is the material density of the k-th layer. From the 

first expression in equation (3.15), we obtain the transverse shear stresses as 

(k) i z 
( (k) .. (k) Ui3 = - Uij,j - Pk ui )dz + 4>ik 

ak_l 
(3.16) 

and using the second expression in (3.15) we derive the transverse normal stress as 

(3.17) 

where 4>ik are the functions of integration for the k-th layer. The functions of 

integrations 4>ik are determined using the condition (3.2) by setting s = i so that 

- i ak
-

1 (k) .. (k) 4>ik = -Pi - (Uij,j - Pk ui )dz 
ao 

(3.18) 

Here the following rules of integration for piecewise functions and for integration 

with variable upper limits have been used: 

i
z 

k -iz 
k k-l iar 

r 
ao ( ••. ) dz - ak_l ( ••• ) dz +?; ar-l ( ••• ) dz 

Substituting equation (3.18) into equation (3.16) we obtain the transverse shear 
stresses 

(k) - iz( (k) .. (k»)d Ui3 = -Pi - Uij,j - Pk ui Z 
ao 

(3.19) 

The expression for the external loading may be found using the condition (3.3) in 
equation (3.19) with s = i: 

- + + i an ( (k) .. (k»)d Pi Pi = - Uij,j - Pk Ui Z 
ao 

(3.20) 

The tangential forces and forces of inertia may now be determined as 

N;3" = ian "'}3~)dz" " 1 2 • v. Z,) = , 
ao 

(3.21 ) 
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i an .. (k) d .. - 1 2 
Ti = Pk U i z, Z - , 

ao 

(3.22) 

From equation (3.20) we may obtain the well known equations of motion for the 

classical theory of shells as 

Nij,j - Ti + P; + pi = 0; i,j = 1,2 (3.23) 

The transverse normal stresses may be found from equation (3.17) in conjunction 

with condition (3.2) and are given -by 

(k) - l z 
[(k) k (k) .. (k)]d 

0'33 = -P3 - O'i3,i - ijO'ij - Pk U3 Z 
ao 

(3.24) 

Moreover, 
- + ian [(k) k (k) .. (k)]d 

P3 + P3 = - O'i3,i - ijO'ij - Pk U3 Z 
ao 

.(3.25) 

The third equation of motion for the classical theory of shells may now be written 

as 

where 
Mij = ian O'~)Z dz; i,j = 1,2 (3.27) 

ao 

are the moments of the internal forces. The moments Tij due to the forces of inertia 

which are acting in the tangential directions are given by 

T. i an .. (k) d . 1 2 . . 
ij = Pk Ui,j Z Z; Z = , ; J = Z 

ao 

and the force of inertia in the normal direction is given as 

i an .. (k) 
T3 = Pk U 3 dz 

ao 

(3.28) 

(3.29) 

The equations (3.23) and (3.26) represent the system of equations of motion for the 

classical theory of laminated shells. Using (3.21), (3.27) and expressions (3.12)­

(3.14) we can rewrite this system in terms of displacements Ui and w. Next we use 

the above expressions in the derivation of the kinematic hypotheses of the higher­

order theory. 

3.3.2 Transverse shear stresses 

Using equations (3.13), (3.14) in conjunction with equations (3.19), (3.20) we can 

obtain the following relations for the case i = 1: 

(k) - lz( (k) (k) .. (k))d 
0'13 = -PI - 0'11,1 + 0'12,2 - Pk U1 Z = 

ao 
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-il- [(t:n,l + t:}2,2) l z 

EOkdz + (t:22,1 - t:}2,2) l z 

EOkVkdz] 
tlo tlo 

-[(Kn,l + K12,2) lz 

EOk Zdz + (K22,1 - K12,2) l z 

EOkVkZdz] (3.30) 
tlo tlo 

+(U1 l z 

Pkdz- W,l l z 

Pkzdz ) 
tlo tlo 

+ + -PI PI 

We introduce through-the-thickness distribution functions given by 

l
z 

EOkdz ; Jvk = rz EOkVkdz ; 
tlo ./tlO 

rz EOkzdz; lvk(z) = rz EOkVkZdz; 
./ tlo ./ tlo 

l
z 

Pkdz ; l pk(z) = l z 

Pk zdz 
tlo tlo 

Similarly we introduce the constants 

We note the following relations in equations (3.30) and (3.31): 

Kn ,l + K12,2 = -(w,n + W,22),1 = -~W,l; 
K22,1 - K}2,2 = -(W,22 - W,22),1 = 0 

Then, substituting (3.32)-(3.34) into (3.30) and (3.31) gives 

aW = -PI - [( t:n,l + t:12,2)Jk + (t:22,1 - t:12,2)Jvk] 

+~w,11k+ U1 Jpk- w,11pk 

pi + PI = -[(f11,l + t:}2,2)B + (t:22,1 - t:}2,2)Bv] 

+~w,lB1 + U1 Bp- W,l B1p 
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Now we eliminate from equation (3.35) those terms which contain the tangential 

strains Ell, E22 and E12. In order to do this we rewrite equation (3.36) as 

[( Ell,1 + EI2,2) + (E22,1 - EI2,2)1I] = 

PI + pi A Bl .. Bp .. B 1p 
;....:::...-~+UWl-+ Ul --Wl-

B ' B B ' B 
(3.37) 

where II is a generalized Poisson's ratio for the entire shell thickness which is taken 

to be equal for each layer, that is, 

Bv 
II = Ilk = -j 

B 
(3.38) 

Here II represents an average Poisson's ratio for the reference surface. For individual 

layers the exact values of the Poisson's ratios are used as shown in equation (3.33). 

By doing this the error introduced by taking an average II for the reference surface 

has minimal effect on the overall results. Then, taking into account that Jvk = II Jk 

we can write 

(3.39) 

Substituting equation (3.39) into equation (3.35) and taking into account equa­

tion (3.37) we obtain the transverse shear stresses as 

..... (k) _ 
V13 - (

- Bl) (Jk ) + Jk ~W,1 J k - B Jk + PI B- 1 + PI B 

.. (f Bp f ) .. (-J B 1p f) + Ul pk - B J k - W,1 pk - 13 J k (3.40) 

The expression for O'~;) can be obtained in a similar manner. The general expression 

for the transverse shear stresses (i = 1,2) may be written as 

(k) A f -j +f .. f .. f 
O'i3 = UW,i lk + Pi 2k + Pi 3k+ Ui 4k- W,i J5k (3.41 ) 

where the distribution functions are given by 

(3.42) 

The expression (3.41) differs from those given in Refs [64, 65] as it contains terms 

which take into account the influence of the tangential forces of inertia and rotary 
inertia. 
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3.3.3 Transverse normal stresses 

Substituting equation (3.12) in (3.24) and using expression (3.41) we obtain the 

transverse normal stresses in the following form 

O"~;) = -P3 - ~W,ii l
z 

flk dz - P~i l
z 
hkdz - pti l

z 
hkdz 

~ ~ ~ 

.. l
z 
f d .. l

z 
f d .. f k l

z 
(k)d - ui,i 4k z+ w,ii Sk z+ W pk + ij O"ij Z; 

aD aD aD 

i,j = 1,2 

Using equation (3.14) we may rewrite the last term in equation (3.43) as 

l
z 

(k) - -kij O"ij dz - kdk + k~f k 
aD 

where 
k( = kijEij + V(knE22 - 2k12E12 + k22 En) 

k~ = kijKij + V(knK22 - 2kI2K12 + k22 Kn) 

Let us also rewrite equation (3.25) as 

P3 + P; = -~W,iiDI - p~iD2 - ptiD3 

- Ui,i D4 - W,ii Ds+ W D6 + k(D7 + k~Ds 

where the following integral stiffnesses were introduced: 

Dr = ian frkdz; r = 1, ... ,5; D6 = Bp; D7 = B; Ds = BI 
aD 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

The equation (3.46) may be solved for the operator ~w,ii = ~2w, and using the 

result thus obtained we can eliminate this operator from equation (3.43). Then the 

transverse normal stress may be written in the final form as 

(3.48) 

where 

(3.49) 

Dr l z 

F(r+I)k = -D Fk - frk dz ; r = 2, ... ,5; 
1 aD 

D6 D7 l z 
F7k = -D Fk - fpk; FSk = -D Fk - fk dz ; 

1 1 aD 
(3.50) 

F9k = DDS Fk -lz1kdz 
1 aD 

The expression for the transverse normal stresses includes terms which take into 

account the influence of the inertia forces. 
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3.3.4 Transverse deformations 

Using equation (3.41) the transverse shear strains can be obtained from the Hooke's 

law as 
(k) 

2e~;) = ~~ = b.w,JIk + pi72k + pt73k+ iii 74k- W,i 75k 
k 

(3.51 ) 

where the through-the-thickness distribution functions of the transverse shear are 

defined as 
- frk(Z) 
frk(Z)=ar- j r=1, ... ,5 (3.52) 

Using equations (3.10) and (3.48) we can find the normal strains as 

(3.53) 

where the generalized Poisson's ratio of the material of the k-th layer is defined as 

I EkV~ 
VOk = E'(1 Vi) k - k 

(3.54) 

and we also define 

(3.55) 

The above expressions for transverse shear and normal strains as well as expressions 

for corresponding stresses are not relevant in the classical theory since they only 

demonstrate the contradictions in this theory. However, they are important for the 

derivation of the higher-order theory which follows. 

3.4 Derivation of the higher-order theory 

3.4.1 Hypotheses 

In deriving a higher-order theory we assume that the transverse shear and normal 

strains as well as the transverse normal stresses are not equal to zero, that is 

e~;) =I OJ e~;) =I OJ (1~) =I 0 (3.56) 

These quantities can be expressed using equations (3.48), (3.51) and (3.53). Using 

the expressions for the strains and the strain-displacement relations (3.6), we can 

find the more accurate components of the displacement vector which constitutes the 

next stage of the derivation. 
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3.4.2 Normal displacements 

Integrating the third equation in (3.6) we obtain 

u~k) = W + 1z 

e~~)dz (3.57) 

where w = U1m )(Xi' 0, t) is the normal displacement of the reference surface po­

sitioned arbitrarily through the thickness of layers (k = m). Substituting expres­

sion (3.53) for et) into (3.57) and satisfying conditions (3.5) with s = 3, we introduce 

the following distribution functions of the normal component of the displacement 

vector: 

(k) (k) r, d (k) r, d . 
CPu = Ij CP21 = Jo /lOk Z Zj CP31 = - Jo /10k z, 

(k) r- (k) r- (k) r-
CP12 = - Jo F 7kdZ j 'P22 = - Jo F 6kdZ j CP32 = Jo F 5kdZ j 

(k) _ r - . (k) _ {Z - . (k) _ r - . 
CP13 - Jo Flkdz, CP23 - Jo F 3kdz, CP33 - - Jo FSkdz, 

(k) _ (Z - . (k) _ 7z 
- • (k) _ r -

CP14 - Jo F 2kdz , CP24 - 10 F4kdz , CP34 - - 10 F9kdz 

The equation for the normal displacements may now be written as 

U~k) = wcp~;) + ~wcpW + Ui,i'P~;) + W 'PW + ~w 'P~~) + Ui,i 'P~~) 

+P3" cp~~) + P~iCP~~) + k£CP1~) + pj 'P~~) + ptiCP~~) + k~cp~~) 
i = 1,2 

(3.58) 

(3.59) 

The distribution functions of the normal displacement in equation (3.59) allow to 

satisfy the continuity conditions on the layer interfaces for the normal displacement 

when the reference surface is positioned arbitrarily through the thickness of layers. 

3.4~3 Tangential displacements 

From the second expression in equation (3.6) we obtain 

(3.60) 

and integrating this relation we have 

(3.61 ) 

67 



where Ui = U~m)(Xi' 0, t) are the tangential displacements of the reference surface. 

We introduce the distribution functions given by 

.dk) _ 1 . . dk) -lz l,,(k)dz· 
'fIl - ,'fI11 - rl1 , 

o 

(k) r ((k) -I)d •• /,(k) - r (k) d • 1/;21 = Jo C{)21 - lk z, 'fI31 - Jo C{)31 z, 

(k) rz - (k) r( (k) -I )d . 
1/;2 = Jo 14kdz ; 1/;12 = Jo C{)12 + 5k z, 

.I.(k) -lz l,,(k)dz· .I.(k) -lz l,,(k) dz· 
'fI22 - r22 , 'fI32 - r32 , 

o 0 

(k) r - . (k) - r -I d· 1/;3 = - Jo 12kdz , 1/;4 - - Jo 3k Z, 

P = 1,2,3; 9 = 3,4 

.I.(k) = r l,,(k) dz. 
'fI1'9 Jo r1'9 ' 

(3.62) 

Substituting equation (3.51) in (3.61) and satisfying conditions (3.5) (s = i = 1,2), 

and using the functions defined in equation (3.62), the expression for tangential 

displacements may be written as 

U~k) = ui1/;~k) - w,i1/;~~) - ~w,i1/;~~) - Ui,ij1/;~~) 

+ Ui 1/;~k) - in ,i 1/;~;) - ~ in ,i 1/;W - Ui,ij 1/;~;) 

+pi 1/;~k) - P3,i1/;~;) - P~ij1/;~;) - kf 1/;~~) 
+.dk) + .I.(k) + ./,(k) k .1.(kL .. - 1 2 

+Pi 'fI4 - P3,i'fl14 - Pi,ij'fl24 - ~'fI34' t,) - , 

(3.63) 

As was the case for normal displacements, the distribution functions defined in 

equation (3.62) allow to satisfy the continuity conditions in between the layers for 

the tangential displacements when the reference surface is positioned arbitrarily 

through the thickness of the shell. 

3.4.4 Relations for the higher-order theory 

Expressions (3.59) and (3.63) for the displacements are written in terms of the 

unknown functions Ui and w of the classical theory. In order to derive a nonclassical 

higher-order theory, we introduce new unknown functions of the reference surface 

using the following irreversible relations: 

(3.64a) 

(3.64b) 

The physical meanings of the new unknown functions defined in equation (3.64) may 

be deduced from equations (3.59) and (3.63) and were explained in detail in [65]. 
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Briefly, these functions describe behaviour of the normal which is distorted due 

to the influence of the transverse shear and the normal deformation. We call them 

shear and compression functions. Complementary to the functions in equation (3.64) 

which were introduced in [65], in the case of a dynamic problem we also have dynamic 

shear and dynamic compression functions which are given by expression (3.64). 

Let us introduce the following relations for the functions of the given external loading 

conditions, their derivatives and also components which depend on the curvature of 

the shell. These relations are defined as 

(p+'P+'p+ . k ] i, 3' i,j' K .(3.65) 

These functions are known and they are determined from the solution obtained 

using the classical theory and from the given loadings P- and p+ on the external 

surfaces and, therefore, take into account directly the effects of the transverse shear 

and normal deformation due to the loading conditions. 

Replacing the functions in equations (3.59) and (3.63) in accordance with the rela­

tionships defined by equations (3.64) and (3.65), the expressions for the components 
of the displacement vector may be written as 

(k) 
u· , ol.(k) ol.(k) 

Vig 'POg - Xpg,i'Ppg 

Xpg<t'~;); i=I,2; p=I,2,3; 9=1,2,3,4 

(3.66) 

(3.67) 

The expressions (3.66) and (3.67) will be used as kinematic hypotheses for the 
derivation of the higher-order theory. 

Let us now obtain the components of the strain tensor for the k-th layer. Taking 

into account the kinematic hypotheses (3.66) and (3.67), the tangential components 
may be written as 

(k) 
e· · t) 

~(U(k) + u(k)) + k . ' u(k) = 2 ',) ),' ') 3 

~[(V ' . + V ' .)ol.(k) (X .. + X )ol.(k)] + k (k) 2 'g,) )g,' 'P 9 - pg", pg,ji 'Ppg ij Xpg<t'pg ; 

i,j = 1,2; p = 1,2,3; 9 = 1,2,3,4 

and the transverse shear strains as 

i = 1,2; p = 1,2,3; 9 = 1,2,3,4 
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where the following notations are employed: 

a(k) = .dk). a(k) = l",(k) _ .dk) 
9 'f'g,3' pg rpg 'f'pg,3 

The strains due to normal compression are given by 

where 

e(k) - u(k) - X(k) ,q(k). P - 1 2 3' 9 - 1 2 3 4 
33 - 3,3 - pg fJpg , -", -",. 

,q(k) _ (k) 
fJpg - <Ppg,3 

(3.70) 

(3.71) 

(3.72) 

The components of the stress tensor can be determined using the Hooke's law for a 

transversely isotropic material which are 

(k) _ A(k) (k) + A(k) (k) + A(k) (k) 
0"11 - 11 ell 12 e22 13 e33 

(k) _ A(k) (k) + A(k) (k) + A(k) (k) 
0"22 - 21 ell 22 e22 23 e23 

(k) _ A(k) (k) + A(k) (k) + A(k) (k) 
0"33 - 31 en 32 e22 33 e33 

(3.73) 

(k) _ 2A(k) (k). (k) _ 2A (k). (k) _ 2A (k) 
0"23 - 44 e23, 0"13 - 55 e 13, 0"12 - 66 e 12 

where the elastic constants of the k-th layer are 

A(~ A(~ 
A (k) - A (k) - .:=!!... A(k) - A(k) - ~. 

11 - 22 - ~k' 12 - 21 - ~k ' 

~(k) (k) 
A (k) _ A (k) _ A(k) _ A(k) _ ~. A(k) _ ~33 • 

13 - 31 - 23 - 32 - ~k' 33 - ~k ' 

~ _ (1 + IIk)[l - Ilk ~ 2(1I~? Ek / E:J ~ (k) _ 1 - (1Ik)2 Ek / EL 
k - E2 E' , 11 - E E' , 

k k k k 
(3.74) 

~ (k) = Ilk + (1I~)2 Ek / E~. ~ (k) = 1I~(1 + Ilk). ~ (k) _ 1 - Ill. 
12 E E' '13 E E' , 33 - E2 ' 

k k k k k 

A(k) - G(k) - G'· A(k) - G(k) - G'· A(k) - G(k) - G 
44 - 23 - k, 55 - 13 - k, 66 - 12 - k 

Substituting the strains (3.68), (3.69) and (3.71) into (3.73) we obtain the tangential 

stresses 

A~7) e~;) + A~;) e~~) = 
A (k) ( . .J.(k) .J.(k) k (k») A(k) ,q(k) 

Ii Vtg,r 'f' 9 - Xpg,ir 'f'pg + ir Xpg<Ppg + 13 XpgfJpg ; 

A (k) (k) (k) _ 
2i eir + Ai3 e33 -

A (k) (V. .J,(k) .J.(k) + k (k») A ,q(k) 
2i tg,r'f'g - Xpg,ir'f'pg irXpg<Ppg + 23XpgfJpg; 

i = 1,2; r = i; p = 1,2,3; 9 = 1,2,3,4 

2A
(k) (k)_ 
66 e12 -

G~~) [( Vlg,2 + V29,1).,p~k) - 2XP9,12"p~:) + 2k12Xpg<P~;)]j 
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p = 1,2,3; 9 = 1,2,3,4 

and the stresses in the transverse direction 

(k) (k) (k) 2G(k) ( (k) + (k»). 
0"13 2Ass e13 = 13 VlglXg Xpg,1 lXpg' 

O"W - 2A~~)e~~) = 2G~~(V29lX~k) + XP9,2lX~»); (3.77) 

(k) A(k)e(k) + A(k)e(k) -
0"33 3i ir 33 33 -

A~7) (Vig,r1jJ~k) - Xpg,ir1jJ~:) + kir Xpg<p~;») + A~~)Xpg,B~:); (3.78) 

i = 1,2; r = i; p = 1,2,3; 9 = 1,2,3,4 

The transverse normal stresses O"~;) given in equation (3.78) does not satisfy the con­

ditions (3.2)-(3.4). In order to satisfy these conditions we have to use the transverse 

normal stresses in the form of equation (3.48) as 

.... (k) - X F(k). p - 1 2 3' 9 - 3 4 
v 33 - pg pg' - , " - , (3.79) 

where 
F(k) = E' ,B(k) 

pg k pg 

In this case equations (3.15) will be satisfied exactly when 1/' = 0, otherwise they 

will be satisfied integrally for the whole thickness of the laminate. 

The equations which are given above define all the components of the displacement 

vector and the stress-strain tensor at an arbitrary point in the k-th layer and they 

form the nonclassical higher-order model of the stress and strain state of a dynam­

ically loaded laminated shell which takes into account transverse shear and normal 

deformation. The refined model includes the independent unknown functions of the 

reference surface Vig, Xpg (i = 1,2; p = 1,2,3; 9 = 1,2), the known functions 

Vig, Xpg (i = 1,2; p = 1,2,3; 9 = 3,4) which depend on the deformations of the 

reference surface obtained using the classical theory and on the loading conditions 

on the external surfaces, and the known functions of the normal z which involve 

through-the-thickness distribution functions. The distribution functions are de­

fined in a form which facilitates the satisfaction of the conditions on the external 

surfaces and the continuity conditions in between the layers when the reference 

surface is positioned arbitrarily through the thickness of the shell. Clearly, the gov­

erning equations are independent of the thicknesses, stiffnesses and other properties 

of the layers. Moreover, using this model we can consider layers with elastic char­

acteristics that are constant or variable through the thickness and thus the model 

is comprehensive with respect to the properties of the layers. 
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The important feature of the present model is the inclusion of the dynamic factors 

such as forces of inertia and rotary inertia at the initial stage of derivatiop. when the 

kinematic hypotheses are formulated. 

3.5 Variational equation, equations of motion and 

boundary conditions 

3.5.1 Variational equation 

The equations of motion and the boundary conditions may be determined using the 

Reissner variational principle 

l
t2 

[(SR - Sf{) - SH]dt = 0 
t} 

(3.80) 

where SR is the variation of the Reissner functional, Sf{ the variation of the kinetic 

energy, and SH the variation of the work done by the external forces. 

For a laminated shell the variation of the Reissner functional has the following 

form [74] 

SR 

(3.81 ) 

r,s=1,2,3j t=s 

Firstly, let us consider the implications of the variation of this functional being 

zero, i.e., SR = o. From the basic lemma of calculus of variations it follows that in 

this case each term in the variational equation (3.81) is equal to zero. Substituting 

expressions for the components of the stress and strain tensors into the multipliers 

of the variations, we are able to ascertain that the stresses ui;), u~) (i, j = 1,2) are 

zero. This implies that the equations of the Hooke's law for the strains e~;), e~;) 
(i,j = 1,2) are satisfied exactly. 

The constitutive equations can be derived from the variational equation (3.80) in 

the form given by equation (3.10). For the strains e~~), the constitutive equations are 

satisfied "integrally" (in the sense that the integral corresponding to this equation 

equals zero over the domain of the shell) since Su~;) = o. 
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As long as all the terms in (3.81), excluding the first, are identically equal to zero, 

the variation of the Reissner functional is equivalent to the variation of the potential 

energy of the deformation, viz. 

(3.82) 

3.5.2 Variation of the potential energy 

We now consider the tangential and normal components of the stress and strain 

tensors in equation (3.82) given by 

SU = J J Jv [O"~;)Se~;) + 20"g)Se~;) + 0"33Se~;)] dVj i,j = 1,2 (3.83) 

Substituting the strains from equations (3.68), (3.69) and (3.71) into equation (3.83), 

we can express the variation of the potential energy in terms of the displacements 

given by equations (3.66) and (3.67). Through-the-thickness integral of the shell 

can be expressed as 

su = J. f {lan[~(k)(.I.(k)£v . . - .1.(k)SX .. + k··cn(k)SX ) Js ao Vij 'f/g U '9,3 'f/pg P9,'3 '3rpg pg 

(k)( (k) ( (k) £ ) (k)((3(k) £ )]d }dS' +O"i3 O:g UVig + O:pg UXpg,i + 0"33 pg UXpg Z , (3.84) 

i,j = 1,2 j p = 1,2,3 j 9 = 1,2,3,4 

where S is the two-dimensional domain of the shell surface. It is noted that the 

variations of the functions with subscripts 9 = 3,4 are equal to zero. Using a 

notation similar to that of the classical theory, we may now consider the integral 

characteristics of the stresses due to internal forces and moments, viz. generalized 

forces and moments which are defined as 

[N~~). M~!q). N~!q)] = ian O"~~) [.I.(k) .• d k). cn(k)] dz 
'3' '3 ' '3 '3 'f/ q , 'f/ f q , T f q 

ao 

[Q (q). QVq)] = ian O"~k) [o:(k). o:(k)] dz ' Q(Jq) = ian 0" (3(k)dz' , , , ,3 q, fq , 3 33 fq , 
~ ~ . (3.85) 

i,j = 1,2 j f = 1,2,3 j q = 1,2 

Substituting equation (3.85) into equation (3.84), and using Ostrogradsky-Gauss 

theorem, we obtain the following expression for the variation of the potential energy: 

SU = - J' f [(N~q). - Q(q»)Sv · + (MV~) - k· ·NVq) + Q(!q) - Q(Jq»)SX ]dS J s '3,3 , 'q '3M '3 '3 ',I 3 fq 

+ f [(N(q)SVh + N(q)Svl ) + (M(Jq) + 2M(Jq) + Q(Jq»)SX (3.86) J
L 

hh q hI q hh,h hl,1 h fq 

M (Jqh ]dL [M(Jq) £ ]L2 - hh UXfq,h + hI UXfq Ll 
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where hand 1 are normal and tangent to the boundary L of the shell, respectively. 

For the forces on the boundary of the shell it was assumed that hand 1 are equivalent 

to i and j in equation (3.85). 

3.5.3 Variation of the kinetic energy 

The expression for the variation of the kinetic energy may be written as 

8]( = J]' [ .. (k) ~ (k)dV - J]' [ [ .. (k) ~ (k)+ .. (k) ~ (k)] dV -- lv Pk u6 UU s - - lv Pk ui UUi u3 uU3 -

-J J!v Pk [u~k) (1jJ~k)8viq -1jJJ~)8Xfq,i)+ u~k) (<p~~8Xfq)] dV; 

i = 1, 2; f = 1,2, 3; q = 1, 2 

(3.87) 

Let us introduce the integral characteristics of the inertia forces in the shell, i.e., the 

generalized inertia forces which are defined as 

[Ti(q); TFq)] = [an Pk u~k) [1jJ~k); 1jJJ~)] dz; 
lao 

r(Jq) = ian Pk u(k) (tJ(k) dz' i = 1 2 
3 3 T fq' , 

ao 
(3.88) 

Substituting equations (3.88) into equation (3.87), we can rewrite the expression for 

the kinetic energy in the following form 

8]( 

(3.89) 

i - 1 2' h - i ' f - 1 2 3' q - 1 2 - " -, -", -, 

3.5.4 Variation of the work of the external loading 

The variation of the work of the external loading is 

(3.90) 

which consists of the work done by forces HI on the inner and outer surfaces and 

by the boundary forces H2 • Therefore, using the relations (3.66) and (3.67) and 

introducing the notation 

P~q) = pi1jJ~I)(ao) + pt1jJ~n)(an) ; PPq) = Ph<p}~(ao) + pt<p}~)(an); 
p~fq) = [P~i1jJJ~)(ao) + P3<P}~(ao) + pti1jJJ~)(an) + pt<p}~)(an)] 
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for the generalized loading, we obtain the variation of the work of the load HI as 

hHl J is (p:; hU~l) + P;' hu~n»)dS = 

J is[Pihu~l) + pthu~n) + P3hu~l) + pthu~n)]dS = 

J is {pn1jJ~I)(ao)hviq -1jJ}~)(ao)hXfq,i] + P3[Cf'}lj(ao)hXfq] (3.92) 

+pt[1jJ~n)(an)hViq -1jJ}~)(an)hXfq,i] + pt[Cf'}~)(an)hXfq]}dS = 

J is(p~q)hviq + p~fq)Xfq)dS - i (p~q)hXfq)dLj 
i=1,2j j=1,2,3j q=1,2 

3.5.5 Variation of the work of the boundary forces 

The corresponding expression for the boundary forces has the form 

hH2 = i {l:n 
[ui~hu~k) + ui~)hu~k) + ui7)hu~k)] dZ} dL (3.93) 

where ui~, ui~) , ui7) are components of the stress tensor and uLk), u~k) , ufk) are com­

ponents of the displacement vector at an arbitrary point of the k-th layer on the 

boundary L of the shell. Taking into account that i = h or 1 in the expressions (3.66) 

and (3.67) for the tangential and normal displacements and substituting (3.66) 

and (3.67) into equation (3.93) we obtain 

hH2 = r {lan[ui~(Cf'~k)hVhq -1jJ}~)hXfq,h) + (17)(1jJ~k)hvlq -1jJJ~)hXfq,l) JL ao 

+ul~) (Cf'}~ hXfq)]dz }dL = 
r * (q) * (q) * (Jq) * (Jq) * (Jq) 

JL [N hh hVhq+ N hi hVlq- M hh hXfq,h + (M hl,l + Qh3 )hXfq]d~3.94) 

[ 
* (Jq) 1 L2 . 

- Mhl hXfq L1; f = 1,2,3; q = 1,2 

where an asterisk denotes the forces acting on the boundary of the shell which may 

be expressed by equations (3.85). Also in equation (3.94) we have 

* (Jq) ian (k) (k) 
Qh3 = Uh3Cf'fq dz 

ao 
(3.95) 
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3.5.6 Equation of motion and boundary conditions 

Substituting the variations (3.81), (3.86), (3.89), (3.92), (3.94) into (3.80), we derive 

the following variational equation: 

i,j = 1,2; f = 1,2,3; q = 1,2 

where tl and t2 denote the initial and final time, respectively. The variations of 

the independent functions Viq and XJq, which determine the displacements in the 

shell, have arbitrary values everywhere over the domain of the shell, excluding the 

boundary, and, consequently they cannot be equal to zero. Equating the multipliers 

of the variations in the first integral of equation (3.96) to zero, we obtain the system 

of equations of motion of the shell as 

N~q)· - Q(q) - T·(q) + p(q) = o· 
'),) , , I , 

MV~) - k· ·NVq) + QVq) - Q(Jq) - (T.(fq) + r(Jq)) + p(Jq) = O· (3.97) 
I),') I) I) 1,1 3 1,1 3 3 , 

i,j = 1,2; f = 1,2,3; q = 1,2 

The boundary conditions follow from the boundary integral in equation (3.96) and 

they may be written as 

(q) "' (q) (q) "' (q) 
{Nhh - Nhh)hvhq = 0; (Nhl - Nhl )hVlq = 0; 

[M(Jq) + 2M(Jq) + Q(Jq) + T(Jq) + pUq) - (M"' (Jq) + Q"' (Jq))]OX - o· (3 98) 
hh,h hl,1 h h h hl,1 h3 Jq - , • 

(Jq) "' (Jq) 
{Mhh - Mhh )hXJq,h = 0; f = 1,2,3; q = 1,2 

There are 16 boundary conditions, which is the same as the order of the system 

of equations (3.97). Detailed interpretation of the boundary conditions is given 

in [64, 65]. 
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3.6 Generalized forces and moments and the sys­

tem of governing equations 

Let us rewrite the generalized forces introduced earlier in equations (3.85) and use 

the expressions for the stresses given by equations (3.75), (3.77) and (3.78). Then 

we have for the tangential forces 

N (q) - B(~q)v · - B(1?gq)X . + (C(1?gq) k · + C(pgq»)X • 
11 - h 'g ,T h pg,'T h ,r 1 pg, 

N (q) - B(~q)v · - B(1?gq)X . + (C(1?gq) k · + C(pgq»)X • 
22 - 2, 'g,r 2, pg"r 2, ,r 2 pg, 

NW = B(gq)(VIg,2 + V2g,l) - 2B(pgq)Xpg,12 + 2C(pgq)kI2 XP9; 

i = 1,2, r = i 

for the moments 

M(Jq) - B(~Jq)v · - D(~gJq)X . + (E('I!gJq) k · + E(pgJq»)X . 
11 - h 'g,r h pg"r I, ,r 1 pg, 

M(Jq) - B(~Jq)v · - D(~gJq)X . + (E('I!gJq) k · + E(pgJq»)X . 
22 - 2, 'g,r 2, pg"r 2, ,r 2 pg, 

M 1(2
Jq ) = B(gJq)(VI 2 + V2 I) - 2D(pgJq)X 12 + 2E(pgJq)kI2 X . g, g, pg, pg, 

i = 1,2, r = i 

for the higher-order tangential forces 

N(Jq) = C<~Jq) V · -1t~gJq)X . + (]{(1!gJq) k · + ]{(pgJq»)X • 
11 h 'g,r h pg" r I, ,r 1 pg, 

NJ£q) = ~~Jq)Vig,r - m.~gJq)Xpg,ir + (I<JrgJq)kir + ]{JpgJq»)Xpg; 

N(Jq) = C(gJq)(v + v ) - 2r.;(E pgJq)X + 2}'/(pgJq)k X . 
12 Ig,2 2g,I pg,12 \. 12 pg, 

i = 1,2, r = i 

and for the shear forces 

Q (q) - 2R(gq)v + 2R(pgq)X • Q(q) - 2R(gq)v + 2R(pgq)X • 
1 - 1 Ig 1 pg,l, 2 - 2 2g 2 pg,2, 

Q (Jq) = 2R(gJq)v + 2R(pgJq)X • Q(Jq) - 2R(gJq) + 2R(pgJq) . 
1 1 Ig 1 pg,l, 2 - 2 V2g 2 Xpg,2, 

Q (Jq) = c~gJq)V· - C(1!gJq)X . + (~C.pgJq)k . + C(pgJq») • 
3 ,'g,r 3, pg"r , 'r 3 Xpg, 

i = 1,2, r = i 

(3.99) 

(3.100) 

(3.101) 

(3.102) 

In equations (3.99)-(3.102) we have q = 1,2; j,p = 1,2,3; 9 = 1,2,3,4 and we also 

assume summation over i,p and 9. The equations for the generalized forces and 

moments include the integrated stiffnesses of laminated shell given by 

B(!!q) = ian A (~).I.(k)./.(k)dz· B(1!gq) = ian A (~).I.(k).I.(k)dz' 
6 e, 'Pg 'Pq , e, e, 'Ppg 'Pq , 

ao ao 

B(gq) = ian a(k).I.(k).I.(k)dz' 
12 'Pg 'Pq , 

ao 

EI~Jq) = l an 
A (~).I.(k).I.(k) d . e, e, 'Pg 'PJq Z, 

ao 

B(pgq) = l an 
a(k).I.(k).I.(k)dz· 

12 'Ppg 'Pq , 
ao . 
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B(gJq) = l an 
a(k).I.(k).I.(k)d . 

12 'Pg 'PJq Z, 
ao 



C
(pqq) _ian a(k)CI'J(k).I.(k)dz· 

- 12 rpg 'f/q , ao 
C

(gfq) _ian a(k) .1.(k)CI'J(k) dz' 
- 12 'f/g r fq , ao 

C~pgq) _ian A(k){3(k).I.(k)dz· cfgfq) _ian A(~)./.(k){3(k)dz· 
t - t3 pg 'f/ q , t - 3t 'f/ 9 f q , ao , ao 

D(pgfq) _ian a(k)./.(k).I.(k)dz· 
- 12 'f/pg 'f/fq , 

ao 

E
(pgfq) _ian A(~)CI'J(k).I.(k)dz· E(pgfq) = ian a(k)CI'J(k)1/Jf(k)dz' 
{i - {t rpg 'f/fq , 12 rpg q , ao ao 

r.;{E pgfq) _ian a(k) .1.(k)CI'J(k) dz' E-~gfq) = ian A (~>'I.(k)cl'J(k) dz' 
- 12 'f/pg r fq , {I {I 'f/pg r fq , ao ao 

E~pgfq) = ian A(k){3(k).dk)dz· J((~gfq) = ian A(~)CI'J(k)CI'J(k)dz' 
t t3 pg 'f/ fq , {t {t rpg r fq , 

~ ~ 

J(~pgfq) = ian A(k){3(k)CI'J(k)dz' 
t t3 pg r fq , ao 

R(pgfq) = ian a(k) a(k) a(k) dz' 
t t3 pg fq , ao 

c(r:gfq ) = ian A (~).I.(k){3(k) dz' 
3t 3t 'f/pg fq , ao 

C(pgfq) = ian A (k){3(k){3(k) dz' 
3 33 pg fq , ao 

i,q = 1,2; p,! = 1,2,3; 9 = 1,2,3,4; e = 1,2 

The generalized forces of inertia (3.88) may be rewritten in the form 

T(q) - /(gq) ij , -/(pgq) X" .' 
i - tg 1 pg,t, 

TJfq) - -rgfq ) ij . _I(pgfq) X" " 
t - 1 Ig 2 pg,l, 

i = j = 1,2; 
r(Jq) - /(pgfq) X" • 

3 - 3 pg, 

(3.103) 

(3.104) 

The equations for generalized forces of inertia include integrated density character­

istics of the shell given by 

I(pgfq) = ian P .1.(k).I.(k)dz· /(pgfq) = ian P CI'J(k).dk)dz· 
2 k'f/pg 'f/fq , 3 krpg 'f/fq , 

ao ao (3.105) 

-rgfq) _ian .I.(k).dk)d' 
1 - Pk'f/g 'f/fq Z, ao 

q = 1,2; p,! = 1,2,3; 9 = 1,2,3,4 
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The equations of the higher-order theory given above are in the form of a system 

of differential equations. This system may be written in the following matrix form: 

[D]{V} + [J]{V} = [F]{p} (3.106) 

where [D] is the matrix of differential operators over the vector of unknown functions 

of the reference surface and time given by 

{V} = {Vig;Xpg}T; i = 1,2; p = 1,2,3; 9 = 1,2,3,4 (3.107) 

[J] is the matrix of the differential operators over the acceleration vector of these 

functions defined as 

{v} = {Vig; Vpg}T; i = 1,2; p = 1,2,3; 9 = 1,2,3,4 (3.108) 

and [F) is the matrix of differential operators over the vector of given loads which is 

(3.109) 

Finally the matrices and the corresponding vectors may be written in the form 

where 

[An] 

Vlg V2g Xpg 

[D]{V} = All A12 Al3 

A21 A22 A23 

A31 A32 A33 

B~iq)( ... ),n + B(gq)( ... ),22 - 2R~gq)( ... ) 

(B~~q) + B(gq»)( ... ),21 

{1fglq )( ) + (B(glq) + 2B(glq»)() [(2R(glq) n<C glq») n ... ,11 21 ... ,22 - 1 - 1 

_(~~/q) k11 + c;~/q) k22)](".)} ,1 - 2C(glq) k21 ( ... ),2 

(B~~q) + B(gq»)( ... ),12 

(B~~q)( ... ),22 + B(gq)( ... ),ll - 2R~gq)( ... ) 

{m~jq)( ... ),22 + (B~~Jq) + 2B(gjq»)( ... ),1l + [(2R~gjq) - c;gjq») 

-(C<gjq) k + C<gjq) k )]( )} + C(gjq)k ( ) 
22 22 12 11 .. ,2 21 ... ,1 
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[Ad -{B~igq)( ... ),ll + (B~~gq) + 2B(pgq»)( ... ),22 + [(2R~pgq) - c~pgq») 

-(C~igq)kll + c~~gq)k22)]( ... )},1 + 2C(pgq)k12( ... ),2 

[A23] -{B~~gq)( ... ),22 + (B~igq) + 2B(pgq»)( ... ),ll + [(2R~gq) - c~pgq») 

-( c~~gq) k22 + c~igq) kll )]( ... )} ,2 + 2C(pgq) k21 ( ... ),1 

[A33] -([Di'igjq)( ... ),ll + (Di~gjq) + 2D(pgjq»)( ... ),221.11 

Moreover 

[I]{V} = 

+[D~,;gjq)( ... ),22 + (D~'igjq) + 2D(pgjq»)( ... ),U1.22 

-[2Ripgjq) + (E~igjq) + ~~gjq»)kll + (E~~gjq) + ~~gjq»)k22 
+(CJigjq ) + E~pgjq»)]( ... ),ll + [2R~pgjq) + (E~~gjq) + E;.~gjq»)k22 
+(E~igjq) + E;.~gjq»)kll + (CJ~gjq) + E~pgjq»)]( ... ),22 

+4(E(pgjq) + gpgjq»)kI2 ( ... ),12 - [CJpgjq) + 4J«(pgjq)k12 

+kll (C~pgjq) + J(~igjq) kll + J(~~gjq) k22 + J(~pgjq») 

+k22(C~pgjq) + J(~~gjq)k22 + J(~igjq)kll + J(~pgjq»)]( ... ) 

Vlg V2g Xlg 
-Igq - I~pgq) ( ... ),1 

- - I(gq)( ... ) I~pgq) ( ... ),2 
(3.111) 

- ~pgq) ( ... ),1 -rpgq) ( ) 1 ... ,2 (I~pgjq) V - IJpgjq») ( ... ) 

where V is the Laplace operator. 

PI P"i pi 
tfJl1 ) ( ao)( ... ) - -

- tfJ~I)(ao)( ... ) -
(3.112) 

,p}~)( ao)( ... ),1 ,p~1)( ao)( ... ),2 'P}i( ao)( •.. ) 

pi pj pt 
,p~n)(an)( ... ) - -

- 1jJ~n)( an)( ... ) -
(3.113) 

1jJ}~)(an)( ... ),l 1jJ}~)( an)( ... ),2 'P}~) (an)( ... ) 

The total number of equations in the system (3.106) is equal to 10. All particular 

cases of the general system of equations (3.106) can be obtained by making assump­

tions about the properties of the layers and these cases are shown in Table 3.1. 
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Considering some features of the present higher-order theory, one must note that 

the normal deformations depend on two factors which involve the influence of the 

Poisson's effect in the transverse direction, which can be ignored by assuming v~ = 0, 

and the influence of the external loading and forces of inertia which can be excluded 

by assuming E~ = 00. 

The higher-order theory developed in the present study is considerably different 

from those in which the equations of motion are obtained on the basis of the quasi­

static approach when the influence of the forces of inertia is not taken into account 

in the hypotheses. 

Table 3.1. Some particular cases of the system of equations of motion for the 

laminated shell. 

Present setting of problem Quasi-static setting of problem 

(including inertia forces) (excluding inertia forces) 

Material Number Order Number Number Order Number 

of of of boundary of of of boundary 

assumptions equations equations conditions equations equations conditions 

None 10 32 16 . 5 16 8 

Excluding 

Poisson effect 9 28 14 4 12 6 
1I~ = 0 

Excluding 

transverse shear 8 28 14 5 16 8 
G~ = 00 

Excluding 

normal compression 7 20 10 4 12 6 
E~ = 00 

Excluding shear 

and compression 3 8 4 3 8 4 
G~ = 00, EA, = 00 

3.7 The generalized symmetric eigenvalue prob­

lem 

Solving the system of equations (3.106) in order to find the vibration frequencies 

we come up against the generalized eigenvalue problem. As this problem presents a 

real challenge to many engineers, next the efficient algorithm is given. 
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In the generalized eigenvalue problem 

(A - )..B)x = 0 (3.114) 

The matrices A and B are symmetric, and B is also positive definite. Under 

these conditions the problem can be reduced to a special eigenvalue problem with 

symmetric matrix C 
(C - )"I)y = 0 (3.115) 

For this purpose let us introduce the matrices D and U, where D is a diagonal 

matrix defined as 

D= 

and matrix U is given by 

I/V)..P) 
o 

o 

o 
II V )..~2) 

o 

o 
o 

I/V)..~n) 

(3.116) 

(3.117) 

In equations (3.116) and (3.117) the following notations are used: index n denotes 

the order of the matrix, )..~i) are the eigenvalues of the matrix B, and Sb are eigen­

vectors of B. 

Then, matrix C can be determined as 

. C=UAU (3.118) 

The eigenvalues).. of C agree with those of the generalized eigenvalue problem, and 

the interrelationship of the eigenvectors of y and x are given by 

x =Uy (3.119) 

The special eigenvalue problem is solved by Jacobi's method. Since we need to deter­

mine all eigenvalues, this method is the most efficient and the safest, it always yields 

a system of orthonormal vectors which approximate the eigenvectors in columns of 

the orthogonal matrix. 

3.8 Some analytical solutions and results 

The analytical solution of the system of differential equations (3.106) is possible 

only for some particular cases. Let us consider the case of a simply supported shell 

82 



wi th a rectangular plan view. The boundary conditions are specified as (e.g. for 

Xl = const) 

O N (q) o· X - o· M(jq) - o· V2g =; 11 =, 19 -, 11 - , (3.120) 

q = 1,2; f = 1,2,3; 9 = 1,2,3,4. 

The solution may be obtained in a manner similar to the procedure used in the 

classical theory due to the"fact that the equations of the higher-order theory have a 

mathematical structure which is similar to that of the classical shallow shell theory. 

Let the loading be expressed by the trigonometric series 

m n 

p~ = L L c~n sin .AmXI sin "YnX2e-iOmnt 
m n 

where 
.Am = m7r ; .An = n 7r 

al a2 

Now the unknown functions can be expanded as 

VI g = LLA~~ COS.AmXI sin "YnX2e-iwmnt 
m n 

v ="" B(g) sin.A X cos 'V X e-iwmnt 2g LJ LJ mn m I In 2 
m n 

X ="" C(pg) sin.A Xl sin 'V X e-iwmnt pg LJ LJ mn m In 2 

(3.121) 

(3.122) 

where al and a2 are the dimensions of the shell in the Xl and X2 directions, re­

spectively; a~n, b~n' c~n are Fourier coefficients for the entries of the load vector; 

A~~, Bif~, C!:~) are amplitudes of the unknown functions; nmn and Wmn are the 

frequencies of the excitation load and free vibrations of the shell, respectively. 

The solution of the forced vibration problem reduces to the solution of the system 
of linear algebraic equations 

(3.123) 

where the vector of the amplitudes of the unknown functions is given by 

(3.124) 

and the vector of the given load amplitudes by 

(3.125) 
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The solution for the natural frequencies reduces to the solution of the generalized 

eigenvalue problem which may be expressed by the following characteristic determi­

nant equation for the spectrum of the frequencies Wmn: 

where 

[All] 

[Ad 

All A12 A 13 

A21 A22 A 23 =0 

A31 A32 A33 

- (B~iq) + B(gq)) '\mln 

{~~jq),\~ + (B~~jq) + 2B(gjq)/~ _ [(2~gjq) _ ~gjq)) 

_(n<C gjq)k + n<C gjq)k )] \ } + -/(gjq) \ 2 
11 11 21 22 /\m 1 /\mWmn 

-(Bgq) + B(gq))'\m,n 

-[(B~~q),\~ + B(gq)/~) - 2R~gq)]- /(gq)W!n 

{~~jq)/~ + (B~~jq) + 2B(gjq)),\~ _ [(2R~gjq) _ ~gjq)) 

-(~~jq)k22 + ~~jq)kll)hn} + l~gjq)/nW!n 

[Ad {B~igq),\~ + (B~~gq) + 2B(pgq)h~ - [(2R~pgq) - c~pgq)) 

-(c(pgq) k + c(pgq) k )] \ } + /(pgqh 2 
11 11 12 22 /\m 1 /\mWmn 

[A23] {B~~gq)/~ + (B~igq) + 2B(pgq»),\~ ~ [(2R~pgq) - c~pgq)) 

-(C(pgq)k + C(pgq)k )].-y } + /(pgq) 2 
22 22 21 11 tn 1 InWmn 

- -{[D(pgjq).x2 + (D(P9jq) + 2D(P9jq») 2] \2 
11 m 12 In /\m 

+[D(P9jq).-y2 + (D(pgjq) + 2D(pgjq»),\2] 2} 
22 In 21 m In 

-2[R(pgjq) + (E(pgjq) + £<Pgjq))k + (E(pgjq) + r.;(E pgjq))k 
1 11 11 11 12 12 22 

+(CJi
gjq

) + E~pgjq»)],\~ - [2R~pgjq) + (E~~gjq) + ~~gjq»)k22 
+(E(pgjq) + £<Pgjq))k + (C(pgjq) + E(pgjq))] 2 

21 21 11 32 2 In 

-[CJpgjq) + kll(C}pgjq) + I<}igjq)k
ll 

+ I<}~gjq)k22 + I<}pgjq)) 

+k22 ( c~pgjq) + I<~~gjq) k22 + I<~igjq) k11 + I<~pgjq))] 
-[/~pgjq)(,\~ + I~) + /Jpgjq)]W!n 
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Special cases of the general problem may be obtained by specifying the material 

properties. In these cases the order of the determinant is reduced and the corre­

sponding number of equations for each case is given in Table 3.1. Next we consider 

some specific problems. 

Problem 3.1 

Let us consider the free vibrations of a homogeneous square plate (al = a2 = a) with 

boundary conditions given by equations (3.120). Results presented in Table 3.2 are 

obtained for frequencies which are equal to the half-wavelength I of the vibration 

mode in the orthogonal directions (I = aim). Results are presented for various ra­

tios of half-wavelength I and thickness of the plate h where the side length is taken 

as a = 40h. The results agree very closely with the exact three-dimensional solu­

tion in the interval 40 ~ I I h ~ 1. Thus the higher-order theory offered allows the 

determination of frequencies for which the half-wavelength is equal to the thickness 

of the homogeneous plate (llh = 1). The classical theory is acceptable only when 

Ilh > 8. 

Table 3.2 Free vibration frequencies of the homogeneous plate. 

Problem data: 

() = 102 ~l\ p/2G; I = aim; a = 40h; v = 0.3 

Theory Ilh = 40 8 4 2 1 

3-D 5.408 25.74 45.62 68.25 84.22 

Present HOT 5.408 25.74 45.62 68.29 84.41 

Classical 5.419 27.10 54.19 - -

Problem 3.2 

Let us consider the problem of free vibrations of a square sandwich plate made of 

isotropic layers with al = a2 = a. The following characteristics are used: 

2hI + h2 = h; h2 = 18hI ; a = 40h; 

GI = 103 G2; PI = 10p2; vI = 0.3; V2 = 0 

where hI and h2 are the thicknesses of the surface and core layers, respectively. 

Figure 3.2 shows the curves of the normalized parameter 

212 
()2 = 104~. ~ 

7r2 2G2 
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plotted against h21 hI where w is the fundamental vibration frequency. Solutions are 

given for the following theories: 

1. Reissner-Timoshenko theory 

2. present higher-order theory 

3. three-dimensional theory for the core and classical theory for the external 

layers 

4. exact three-dimensional theory 

The results of the higher-order theory coincide very closely with those of the three­

dimensional theory on the interval 40 ~ I I h ~ 1. When I I h = 1 the discrepancy 

is 5% for the parameter (). The solution based on the Reissner-Timoshenko theory 

cannot be used for the investigation of large frequencies when I I h > 4. 

The limitations on the use of the higher-order theory for sandwich plates depend on 

three parameters: llh ratio between the half-wavelength and the thickness; h21hI 

ratio between the thicknesses of the core and external layers and GI / G2 ratio be­

tween the shear moduli of the external and core layers. The regions of these ratios 

for which the higher-order theory coincides with the three-dimensional theory are 

shown in Fig. 3.3. Domain where the higher-order theory is applicable lies under 

the corresponding curve. It is observed that when 1/ h = 40 the results obtained 

on the basis of the higher-order theory occupy almost the entire region within the 

following bounds 

If 1/ h ~ 4 the bounds are 

and for llh = 1 

o ~ log(GI /G2) ~ 3; 10 ~ h21hI ~ 50. 

Within 0 ~ hdhI ~ 10 the domain of the values log(GI/G2 ) is reduced on the 

average by one order. The highest reduction is reached when the thickness ratio is 

h21 hI = 0.6. For this ratio we observe the highest influence of the transverse shear 
deformations for the sandwich plate. 
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Problem 3.3 

In this problem the results obtained for the fundamental frequency of a sandwich 

beam are compared with the experimental data obtained by Khatua and Cheng [39] 

and Osternik [61]. The results obtained using the higher-order theory are in good 

agreement with the experimental results as shown in Table 3.3. The classical theory 

is inapplicable when we either decrease the relative length of the span l/h or the 

shear modulus of the core. 

Table 3.3 Comparison with experimental results for sandwich plates. 

Experim. HOT Classical 

h2/hl l/h log(G1/G2 ) w S-1 , w, sec-1 ~,% w, sec-1 ~,% 

7.8 42.4 1.43 70.2 70.7 0.7 72.6 3.4 

5.3 54.9 2.65 80.1 78.3 -2.2 86.6 8.1 

17.0 14.7 2.82 123 120 -2.3 214 74 

7.9 11.8 2.82 161 151 -6.0 390 143 

Problem 3.4 

Figure 3.4 shows the results of the comparison of natural frequencies for simply 

supported sandwich plates using different theories. In the figure w denotes the 

fundamental frequencies obtained using the general solution (3.126) and ware the 

frequencies obtained using particular cases given in Table 3.1. Results are given for 

parameters 

l/h = 4, pt/ P2 = 102 and h2/hl = 18. 

In the case when major influence on the frequencies is due to the effect of the 

transverse shear deformations (log(Gt/G2 ) ~ 3), all results agree very closely. The 

influence of the normal deformations increases as the shear modulus of the core 

material becomes larger (log(Gt/G2 ) < 3). The solutions become inaccurate for 

the case when dynamic factors in the hypotheses are excluded by setting Ui= 0 

(quasi- static problem) and for the case when the normal deformation is not taken 

into account (E~ = 00). 

Problem 3.5 

Let us consider various plates and shallow shells with different sequences of the 
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strong and weak layers through the thickness. The total thickness and mass of the 

shell for each case is kept constant. The fundamental frequencies Wo and their ratio 

to the frequencies w, which are obtained using the classical theory, are given in Ta­

ble 3.4. It is observed that the influence of the transverse shear becomes significant 

in structures where the strong layers are separated by weak layers. The influence 

of transverse shear and normal deformation increases as the strong material is re­

distributed more closely to the external surfaces, and also as the half-wavelength of 

the vibration is reduced. For single-layer plates, the results are very close to those 

given by the classical theory. 

Problem 3.6 

Next we consider sandwich plates and spherical shells with different boundary con­

ditions and different shapes in plan. A number of analytical and numerical methods 

of solution is used to obtain the numerical results. Table 3.5 shows the fundamental 

vibration frequencies w /27r, 8-
1 in the sandwich structures which are circumscribed 

by circles of equal radii in plan. The influence of the transverse shear deforma­

tion (ratio wo/w) becomes more pronounced as the area enclosed by the structure 

becomes smaller. This influence is also more pronounced for plates with clamped 

boundaries as compared to plates with simply supported or free boundaries. It is 

also observed that this influence decreases as the curvature of the shell gets larger 

and increases as the acute angle of the oblique-angled plate decreases. 

Tables 3.4 and 3.5 indicate that as the influence of the transverse shear and normal 

deformation increases, the difference in the vibration frequencies of plates and shells 

with different geometrical and mechanical properties of layers and different boundary 

conditions decreases and the frequency spectrum broadens. 
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Table 3.4 Free vibration frequencies of plates of equal mass. 

Problem data: 
a - 40h; G1 = 1Q3G:z; PI = 10p:z; "1 = 0.3; "2 = 0.4 

Frequencies: w 127r, sec- J
• Shear influence: wolw 

Simply supported square plates of equal mass 

ms 

0.025 0.025 I I 0.45 
I 0.45 t - t , 

i 0.05 0.1 • J-----r : 0.9 J;fhHf~~~ I . 
0.45 : ~ 

e 0.025 : 0.025 
, 

\ 0.45 
40 260 1.36 216 1.20 31.1 1.0 

Ilh 20 677 2.10 627 1.65 124 1.0 
10 1481 3.84 1421 2.81 488 1.02 

0.075 0.075 0.1 
I .. 1 .. I. 1 .. I ( . 0.45 I I 

. ~ , - I 

A A • ---_ . 0.9 . 0.025 1-----
~ 0.45 0.9 

0.025 \ \ 
40 241 1.19 145 1.15 46.4 1.01 

llh 20 657 1.96 444 1.51 183 1.02 
10 ]461 3.38 1069 2.48 692 1.08 

Table 3.5 The fundamental frequencies of sandwich plates and spherical shells . 

rIa 

rIa 

00 

4 
2 

00 

4 
2 

452 
684 
] ]20 

1.17 
1.01 
1.00 

Clamped 

1.44 
1.21 
1.08 
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. ~ , 

. . 

398 
649 
1100 

154 
525 
]037 

1.59 
1.25 
1.08 

1.26 
1.03 
1.00 

552 
753 
1164 

1.87 
1.52 
1.25 

60 310 1.44 
0°, 45 396 1.59 

30 595 1.95 



3.9 Summary and conclusions 

A higher-order theory of laminated plates and shells which takes into account trans­

verse shear and normal deformation is developed for the solution of dynamic prob­

lems. The proposed theory is capable of treating plates and shells with an arbi­

trary number and sequences of layers which may differ significantly in their physical 

and mechanical properties. The elastic characteristics may be constant or variable 

through the thickness of each layer. The kinematic hypotheses are derived using 

an iterative technique where the classical theory is used as a first approximation. 

The important feature of the model is that the dynamic factors such as forces of 

inertia and rotary inertia are included in the model at the initial stage when the 

kinematic hypotheses are formulated. This procedure leads to a number of new un­

known functions and subsequently to a number of additional higher-order equations 

of motion. The new variables which are introduced have clear physical meanings. 

The direct influence of the loading conditions on the transverse shear and normal 

deformation of the shell is also incorporated into the model. It is shown that the 

results obtained using a quasi-static theory in which the forces of inertia and rotary 

inertia are neglected in the kinematic hypotheses are not as accurate as the results 

obtained on the basis of the present approach. The level of accuracy of a given 

theory depends on several factors which are discussed and elucidated in the context 
of example problems. 

The equations of motion and the complete set of boundary conditions are derived 

using a variational formulation. Different particular cases are also studied as special 
cases of the general theory. 
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Figure 3.2 Comparison of the solutions for the sandwich plates: (1) Reissner­

Timoshenko theory; (2) present theory; (3) first-order theory; (4) exact three­

dimensional solution. 
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Chapter 4 

Geometrically Nonlinear Higher 

Order Theory of Multilayered 

Orthotropic Shells 

4.1 Introduction 

The main objective of this chapter is to derive a comprehensive geometrically non­

linear theory of laminated plates and shells which can accurately determine the 

behaviour of such structures under various loading and boundary conditions. 

A geometrically nonlinear higher order theory of laminated composite plates and 

shells which takes into account both transverse shear and normal deformation is 

presented. The theory is based on the kinematic hypotheses which are not assumed 

a priori but are derived on the basis of an iterative technique. The closed form solu­

tions for some laminated plates and shells are given to illustrate, first, the importance 

of modelling the geometrical nonlinearity especially at high levels of loading, and 

second, the importance of including both transverse shear and normal deformation 

in the stress/strain analysis of composite structures. 

4.2 Basic equations and assumptions 

A study of the reviews mentioned earlier reveals that although numerous approaches 

have been formulated for refined classical theories of laminated anisotropic plates 
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and shells, the geometrical nonlinear analysis of such structural elements based 

on a higher order theory has not been developed sufficiently enough. Moreover, 

most of available geometrically nonlinear higher order theories are based on the 

kinematic hypotheses which are derived from a consideration of linear or quasi-linear 

problems and therefore, these hypotheses do not fully reflect the physical essence of 

the problem. For the plates and shells in which the layers have significantly different 

physical characteristics, it is necessary to consider not only transverse shear but also 

normal deformation [65]. 

Let us consider shells with orthotropic layers of varying thickness and stiffness which 

are weak in their resistance against transverse shear and normal deformation. The 

physical and mechanical characteristics of the layers (which are assumed to be per­

fectly bonded) may vary through the thickness. It is also assumed that although 

the deformations of the shell are small, the Von Karman geometrical nonlinearity 

must be taken into account. 

4.2.1 Deformations in the shell 

Let us represent the shell in a curvilinear coordinate system X l OX2 which is parallel 

to the bounding surfaces and the surfaces of contact between the layers (Fig. 3.1). 

The axes of the curvilinear coordinates Xi = constant (i = 1,2) coincide with the 

principle lines of curvature and the coordinate z = X3 is defined along the normal to 

the reference surface X l OX2. It is assumed that the coefficients of the first quadratic 

form of a surface are close to unity, i.e. Al ~ A2 ~ 1 and the main curvatures kij 

are constant, i.e. kij = constant (i , j = 1,2). The shell is taken as a structure with 

small curvatures relative to its thickness. 

The loads are applied on the outer (q+) and inner (q-) surfaces, respectively, so that 

( 4.1) 

In the following derivations a subscript after a comma denotes differentiation with 

respect to the variable following the comma and the superscript k refers to the k-th 
layer (k = 1,2, .... . ,n). 

The conditions on the external surfaces may be written as 

,..(1) _ _ q_ 
V,,3 - s 

u(n) = q-
s3 " 

for z = Co; k = 1 

for z = en; k = n 

96 

(4.2) 



Continuity conditions for the perfectly bonded layers at an arbitrary surface z = Ck-l 

are given by 

_ U~;-l) (static) 

_ u~;-l) (kinematic) (4.3) 

Taking into account geometrical nonlinearity the deformations in the k-th layer 

may be expressed in terms of the components of the displacement vector {u} k = 

{u~k) ,u~k)}T as [55] 

(k) (k) k .. (k) (k) (k) 
Ui,j + Uj,i + 2 '3 U3 + U3,i U3,j 

(k) + (k) + (k) (k) 
Ui,3 U 3,i U3,i U3,3 (4.4) 

2 (k) + (k) (k) 
U 3,3 U 3,3 U3,3 

4.2.2 Constitutive equations 

We assume that each of n layers of the shell (k = 1, ... , n) is an orthotropic. 

Then the constitutive equations for the orthotropic k-th layer may be written as 

(k) _ (k) (k) 
eij - Jijtl UtI 

where [J(k)] is a tensor of elastic characteristics given by 

1/ E~k) (k) / E(k) 
- lI21 2 

(k) / E(k) 
-lI31 3 0 

-lI~~) / E~k~ 1/ E~k) (k) / E(k) 
lI32 3 0 

(k) / E(k) (k) / E(k) 1/ E~k) 0 
[J(k)] = lI13 2 lI23 2 

0 0 0 1/2G~~) 

0 0 0 0 

0 0 0 

(4.5) 

0 0 

0 0 

0 0 

0 0 

1/2G~;) 0 

0 1/2G~;) 
(4.6) 

In equation (4.6), E!k), G~;) are the moduli of elasticity and shear moduli, respec­

tively, and lI1:) , lI!7) (i =I s) are Poisson's ratios. It should be also noted that the 

all elastic properties are variable through the thickness of a layer hk' i.e. they are 

functions of the coordinate Zk. 

In order to formulate the kinematic hypothesis for the derivation of a higher-order 

theory, let us implement an iterative technique proposed by Ambartsurnian [3] in 
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which the theory based on the classical hypothesis of Kirchoff-Love is considered 

as a first iteration. Firstly, we assume that vg) = 0, E~k) = 00 and Gi3 = 00 in 

equation (4.5) which then becomes 

(k) 
(k) 1 (k) V2l (k) 

en - E(k) (1n - E(k) (122 
1 2 

(k) 
(k) 1 (k) v12 (k) 

e22 - E(k) (122 - E(k) (1n 
2 1 
(k) 

(k) (112 
e 12 -

2G~~) 

The tangential components of the stress tensor in this case may be written as 

where 

Then 

E(k) (k) + E(k) (k) 
01 ell Ov e22 

E
(k) (k) + E(k) (k) 
Ov ell 02 e22 

(k) _ E(k) (k) + E(k) (k) 
(1n - 01 en Ov e22 

(k) _ E(k) (k) + E(k) (k) 
(122 - Oven 02 e22 

(k) _ 2G(k) (k) 
(112 - 12 e12 

4.2.3 Classical model 

(4.7) 

( 4.8) 

(4.9) 

The assumptions which have been made are equivalent to the Kirchoff-Love hy­

potheses, viz. 

e(k) - O· e(k) - O· ,..(k) - 0 
.3 - , 33 - , v 33 - (4.10) 

Substituting equations (4.4) into the first two of these hypotheses and integrating, 

the following kinematic model can be obtained 

(k) 
u · • 

(k) 
U3 

Ui - (z - hO)W,i 

w (4.11) 
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where Ui(Xt, X2) , w = w(xt, X2) are the displacements of the reference surface and 

ho is the distance from the reference surface to the surface on which tangential dis­

placements are equal to zero. We note that the reference surface may be positioned 

arbitrarily through the thickness of the shell. In fact, it may be chosen within any 

layer, coincide wi th the interlaminar or external surfaces as dictated by the character 

of the problem under consideration. 

Substituting equations (4.11) into (4.4) we obtain the deformations of the k-th layer 

in the tangential directions as 

e(~) - t · · + z/(, · · IJ - IJ IJ (4.12) 

where the strains and curvatures due to deformations of the reference surface are 

given by 

-w " ,IJ 

Equations (4.13) satisfy the well-known relations [60] 

/('11,2 - /('12 ,1 o 
o 

(4.13) 

( 4.14) 

Substituting equation (4.13) in (4.9) the tangential components of the stress tensor 
may now be obtained as 

(k) 
0"11 

(k) -..>. 
0"22 ~ 

(k) 
0"12 

( 4.15) 

The symbol ;: indicates that the expression for 0"22 is of the same form as that for 

0"11 with the provision that the subscript 11 is replaced with 22 and vice versa. 

Hence, the physical and geometrical relations of the classical model of laminated 

orthotropic shells have been obtained, and they are taken as basic relations for the 
further derivations of the theory. 
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4.3 Transverse stresses and strains 

4.3.1 Equations of equilibrium 

Other components of the stress tensor cannot be found using Hooke's law because of 

the hypothesis (4.10). For their derivation we employ the equations of equilibrium 

for a shell [3], which for the k-th layer may be expressed as 

(k) (k) _. (k) _ (k. . ..) (k) (k)_ 
(7ij,j + (7i3,3 - 0, (7i3,i '3 + ""3 (7ij + (733,3 - 0 (4.16) 

Using the first equation in (4.15) we derive the transverse shear stresses as 

(k) _ lZ (k)d . 
(7i3 - - (7ij,j Z + <Ptk 

ck-l 

( 4.17) 

where <Pik is a function of integration which may be obtained satisfying condi­

tions (4.2) and (4.3) and can be written in the following form 

- l ck
-

1 
(k) <P~k = -q. - (7 .. ·dz 

., '33 ' 
co 

i = 1,2 ( 4.18) 

Hereafter the following rule of integration for piecewise function is used 

k-l '" lcr (r) lCk
-

1 
(k) L.J ( ... ) dz = ( ... ) dz 

r=l Cr-l co 
( 4.19) 

Taking into account (4.18) into (4.17) the transverse shear stresses can be obtained 

(7~3k) = -q:- -lz (7~~).dz , , YJ 
co 

( 4.20) 

Henceforward, according to (4.19), the following rule for integration with variable 
upper limits is used 

(4.21 ) 

Taking conditions (4.2) on the surface z = en into account in (4.20) the following 
relations can be found 

+ - lcn 
(k) q. + q. = - (7 .. ·dz 

" '3,3 co 
(4.22) 

Introducing the tangential forces 

Nij = J~n (7~)dz, i,j = 1,2 ( 4.23) 

we obtain from (4.22) the well-known equilibrium equations of the shell 

( 4.24) 
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U sing equations (4.16), we can also derive the transverse normal stresses as 

£1~;) = -lz [£1!;!i - (kij + Kij) £1!j)] dz + ~3k 
Ck-l 

(4.25) 

Satisfying .conditions (4.2) and (4.3) (for s = 3) the following two expressions can 

be obtained from (4.25) 

(k) _ - r [ (k) _ (k.. ..) (k)] d 
£133 - q3 - leo £1i3,i I) + KI) £1ij Z ( 4.26) 

_ l cn 
[ (k) (k)] 

qt + q3 = - eo £1i3,i - (kij + Kij )£1ij dz (4.27) 

Equation (4.27) corresponds to the equilibrium equation of the classical theory of 

shells 
(4.28) 

where _ r" (k) 
Mij - leo £1ij zdz, i,j = 1,2 ( 4.29) 

The equilibrium equations (4.24) and (4.28) are well-known equations of the clas­

sical theory of shallow shells. Using expressions for internal forces (4.23) and mo­

ments (4.29), it is possible to obtain the system of nonlinear equations of the classical 

theory of multilayered shells in terms of the displacements Ui, w. 

4.3.2 Transverse shear stresses 

Using relations (4.15) in (4.20) and (4.22) we can derive the following expressions 

(k) _ - _ . r (k) . r (k) . r (k) 
£1i3 qi (fpp,I leo Eop dz + fgg,I leo Eov dz + 2fI2,) leo G12 dz 

1
z 

(k) d 1z 
(k) 1z 

(k) + Kpp,i eo Eop z z + Kgg,i eo Eov zdz + 2K12,j eo G12 zdz) (4.30) 

-( f pp,iApl + f gg ,iA2 + f12,iA3 + Kpp,iBpl + Kgg ,iB 2 + K12,jB3 ) 

i#j=1,2j p=ij g=j (4.31) 

It should be noted that there is no summation over the indices p and g. From (4.31) 
we have 

(4.32) 
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where the following stiffness characteristics have been used 

rn (k) rn rn (k) 
Ail = ApI = leo EOi dz, A2 = leo Eovdz , A3 = leo 2G12 dz 

l
cn 

(k) l cn 
(k) l cn 

(k) Bil = BpI = EOi zdz, B2 = Eov zdz, B3 = 2G12 zdz 
eo eo eo 

(4.33) 

Let us introduce the following relations 

1% (k) '1% (k) '1% G(k)d 
fpp,i eo EOi dz + fgg" eo Eov dz + f12,) eo 2 12 Z 

A2 A3 r (k) 
::::::: (fpp,i + fgg,i-

A 
+ fI2,j-A ) lc Eop dz 

pI pI eo 
(4.34) 

(k) _ Ea:) ,..., A2 _ A2 _ . 
IIi - (k)"'" A . ~ A - 11,2 

EOi ,1 pI 

1 - 11121122 ::::::: A3 = A3, lIi3::::::: 111;) 
1 + lIi3 Ail ApI 

(4.35) 

G(k) _ E?) _. E!k) 
.- i = p = 1,2 

12 - 2(1 + IIg)) ,..., 2(1 + lIi3)' 

Substituting relation (4.34) in (4.30) we obtain transverse shear stresses as 

++ -1% (k) _ :- + qi qi E(k)d O'i3 - q, A Op Z 
pI eo 

I BpI 1% (k) 1% (k) + /\'pp,i( A Eop dz - Eop zdz) 
pI eo eo 

+ B2 1% (k) 1% (k) (4.36) /\'gg,i( A Eop dz - Eov zdz) 
pI eo eo 

+ /\'I2,i( :3 1% Ea;) dz - 1% 2Gi~) zdz) 
pI eo eo 

Taking into account relations (4.14), equation (4.36) can be expressed as follows 

(k) f(k) f(k) - j<k) + j<k) 
O'i3 - /\'pp,i pp + /\'gg,i pg - qi p3 - qi p4 

i = 1,2j p = Zj 9 =1= i (4.37) 

where 

f(k) BpI f(k) _ 1% E(k) d . f(k) = 1% E(k) dz pp A p Op z z, p op 
pI eo eo 

f(k) B +B 1% 
pg 2A 3 f~k) - (Ea:) + 2G~~))zdz (4.38) 

pI eo 

f(k) 
f(k) (k) _ fJk) 1- -p_. 

p3 
ApI' 

f p4 ---
ApI 
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are the distribution functions which enable the given conditions on the external 

surfaces of the shell to be satisfied once the reference surface is positioned arbitrarily 

through the thickness of the layers. These functions also take into account the 

influence of the elastic properties of each layer on the distribution of the transverse 

shear stresses through the thickness of the laminated shell. 

With allowance made for (4.35) it is possible to write 

A2 + A3 
f (k) ~ v f(k) pg p pp , ( 4.39) 

Then equation (4.37) can be expressed in the following form 

O'f3k) = (+ ) . f(k) -f(k) +f(k) • /\'pp vp/\'gg " pp - qi p3 - qi p4 

i = p # 9 = 1,2 ( 4.40) 

4.3.3 Transverse normal stresses 

The transverse normal stresses can be obtained using (4.26) and taking into account 
equation (4.37) as follows 

O'~;) = -q; + J~(q;f;;) +q;f;!)),idz 

1z( f(k) f(k)) d (k ) 1z 
(k) /\'pp pp + /\'gg pg ,ii Z + ii + /\'ii O'ii dz 

~ ~ 

q; + q~JJk) + qtJt) - (/\'pp + /\'gg),idJk) + B~k) 
i,j=1,2; i=p#g 

In addition, the following distribution functions are introduced 

t = 3,4 

and also the generalised function of the tangential forces 

From (4.27) we obtain 
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(4.42) 

( 4.43) 

( 4.44) 

( 4.45) 



where 

t = 3,4 

Using (4.45) in (4.41) the transverse normal stresses can be obtained. This compu­

tation gives 

a (k) _ q- F(k) + q+ p,(k) + q-:-.p,(k) + q7.F(k) + F(k) 
33 - 3 1 3 2 t ,t 3 t,t 4 q ( 4.46) 

wherein 

FJk) 
f~k) 

F}k) = FJk) - 1 
f~k) (en) , 

Ft(k) j(k) _ ft{ en) fk) 

t f2(en) 2 , 
t = 3,4 (4.4 7) 

F(k) 
q 

B(k) + Bq(en) f(k) 

q f2(en) 2 

4.3.4 Normal deformations and displacements 

Now using the constitutional equations (4.5) we can obtain transverse shear and 

normal deformations which were assumed equal to zero during the first iteration 

when the model based on the classical hypothesis was derived. Transverse shear 

deformations may be expressed as 

(k) . 
(k) _ ai3 _ . (k) . (k) - (k) + (k) 

2ei3 - C(k) - Kpp,t Cf'pp + Kgg,t Cf'pg - qi Cf'p3 - qi Cf'p4 
p3 

(4.48) 

where distribution functions are given by 

Cf'(k) 
j(k) j(k) 

...,EL. (k) _ 2L 
pp C(k) , Cf'pg - C(k) 

p3 p3 

/k) (k) 
(k) p3 (k) f p4 

Cf'p3 - -_. 
Cf'p4 = C(k) C(k) , 

p3 p3 

( 4.49) 

For the derivation of the normal deformations we can use constitutional equations 

in the following form 
(k) _ (k) (k) 

aii - Ciit1 etl ( 4.50) 
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A~k) Aik) A~k) 0 0 0 

0 A~k) A (k) 
5 0 0 0 

0 0 A~k) 0 0 0 
(4.51) [Akl = 

0 0 0 2A~k) 0 0 

0 0 0 0 2A~k) 0 

0 0 0 0 0 2A~k) 

(4.52) 

(4.53) 

U sing stresses O"~;) in a form of (4.46) the normal deformations can be now written 

as 

where 

(k) ('(k) '(k») '(k) '(k) 
e33 = .- /'\,llF1 + /'\,22 F 2 + fllF3 + f22F4 

+q- F,'(k) + q+ F.'(k) + q~.F.'(k) + q7.F,'(k) + F'(k) 
3 5 . 3 6 '.' 7 '.' S u 

A~;~t) 
7k>Z; 

3 

F(k) 
_r_. 1 4 
A(k)' r= , .... , 

3 

F(k) 
u 

A~k) 

( 4.54) 

(4.55) 

U sing equation (4.54) we can obtain the refined expression for the normal displace­
ment given by 

u;k) = W + r e~) dz = w - /'\,11 cp~k) - /'\,22cp~k) + fll cp;k) 
.tho . 

+ (k) - (k) + (k) - (k) + (k) (k) 
f22CP4 + q3 CP5 + q3 CP6 + qi.iCP7 + qi.iCPS + CPu (4.56) 
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where 
(4.57) 

The above refined expressions for e~;), e~~) and for ug), u~;) are not relevant to the 

model based on the classical Kirchoff-Love hypotheses since they only demonstrate 

the contradictions in this model, but are important for the derivation of a higher­

order theory. 

4.4 Derivation of a higher-order theory 

4.4.1 Hypotheses 

The derivation of the higher-order theory will be based on the assumption that 

transverse shear deformations, transverse normal deformations and transverse nor­

mal stresses are not equal to zero e~;) =/: 0, e~~) =/: 0, u~;) =/: o. The transverse shear 

deformations are expressed as 

_ . (k) _ . (k) _ - (k) _ + (k)_ 
X1',,"P1'1' Xg ,,"P1'g qi "P1'3 qi "P1'4 -

_ . (k) (Ok) _ e. (k) (Ok) 
XII,,"P1'1I + 2e,3 - 1I,"P1'1I + 2e,3 (4.58) 

i = p =/: 9 = 1,2j S = p,g 

where the following notations have been introduced 

(4.59) 

In the equation (4.58), e~~k) is the part of the deformations which may be determined 

directly from the given external loading as 

2e(Ok) = _q:-lll(k) _ q711l(k) ,3 , """1'3 , ..,...,,4 (4.60) 

The transverse normal deformation is taken in the following form 

(4.61 ) 

S = p, gj p =/: 9 = 1,2 

where the part of deformation which may be determined directly from the given 
external loading is presented as 

e(Ok) = (0) p.'(k) + (0) F'(k) + q- F,'(k) + q+ F,'(k) + - v'(k) + + F,'(k) + F'(k) (4.62) 
33 11 3 22 4 3 5 3 6 qi,i r 7 qi,i 8 q 
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In equation (4.62), fi~) and f~~) are tangential deformations of the reference surface 

defined by equation (4.13) and they include nonlinear terms. The transverse normal 

stresses may be assigned as given stresses determined directly from the external 

loading as a result of the first iteration when the problem was considered on the 

basis of the classical model. The 0"33 stresses are given in the form of equation (4.46) 

which must satisfy both the conditions on the external surfaces and the interlaminar 

conditions. 

4.4.2 Displacement vector 

Now the components of the displacement vector of the higher-order theory can be 

obtained. Let us firstly present the equation for the transverse normal deformation 

in the following form 

( 4.63) 

where the first term is a linear part of deformation which is unknown, viz. 

( 4.64) 

and the second nonlinear term is taken as a given deformation defined by equa­
tion (4.56), viz. 

where 

(Ok) 
U3,3 

2=(k) _ ( (Ok)) 2 
e33 - U3,3 

(0) (k) (0) (k) + (0) (k) + (0) (k) 
-~ll 'Pl,3 - ~22 'P2 ,3 fn 'P3,3 f22 'P4,3 

- (k) + (k) _ (k) + (k) (k) 
+q3 'PS ,3 + q3 'P6,3 + qi,i'P7,3 + qi ,i'Ps,3 + 'Pu,3 

( 4.65) 

(4.66) 

The superscript 0 in the above expressions identify terms which are considered as 

known terms defined as a result of the solution of the problem on the basis of the 

classical model. Such an iterative approach was offered by Ambartsumian [3] and in 

the case of a geometrically nonlinear problem considered in this chapter we apply 

this approach only for the refined definition of the nonlinear part of the deformations. 

Substituting equation (4.64) into equation (4.63) and integrating we obtain 

u~k) = w + l z 

(e~~) - e~)) dz + C3k 
Ck_! 

(4.67) 

The constants of integration C3k may be calculated satisfying kinematic condi­

tions (4.3) and the conditions on the reference surface given as 

u~m)(XI, X2, ho) = w for z = ho (k = m) ( 4.68) 
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Then we can write 
U~k) = w + rz e~~)dz + UJOk) (4.69) 

1ho 
where the known nonlinear part of the displacement defined as a result of first 

iteration is. given by 

UJOk) = -1: ~)dz = -~ J~ (u~~;))2 dz (4.70) 

Taking into account hypothesis (4.61) finally we obtain the following expression for 

the normal displacement: 

where 

U~k) = W + Xl <p~k) + X2<P~k) + uJk) = X",<p~k) + UJk) 

S = 0, p, g: p =I 9 = 1,2 ( 4.71) 

U
(k) _ (0) (k) + (0) (k) + - (k) + + (k) + - (k) + + (k) + (k) + U(Ok) (4 72) 
3 - Ell <P3 E22 <P 4 q3 <Ps q3 <P6 qi,i<P7 qi,i<Ps <P u 3 • 

In equations (4.71) and (4.72) we have Xo = wand also distribution functions which 

are given by equation (4.57). Moreover the following notations are introduced 

In order to obtain tangential components of the displacement vector let us present 

transverse shear deformations as 

2 (k) - 2 - (k) + 2=(k) 
ei3 - ei3 ei3 

where the unknown part of the deformations is given by 

2
-(k) _ (k) + (k) 

. ei3 - ui,3 u 3,i 

and the known part of the deformations is expressed as 

2=(k) _ (Ok) (Ok) 
ei3 - U3,i U3 ,3 

In equation (4.75) u~~;) is defined by equation (4.66) and, moreover, we have 

(Ok) (0) (k) (0) (k) (0) (k) (k) 
U3,i = WO,i - Kll,i<PI - K22,i<P2 + Ell ,i<P3 + E22,i<P4 + 

+ - (k) + (k) - (k) + (k) (k) 
q3,i<PS + q3,i<P6 + Qi,ii<P7 + qi,ii<PS + <Pu,i 

i = 1,2, j = i 

(4.73) 

(4.74) 

(4.75) 

(4.76) 

Substituting equations (4.74) and (4.75) into equation (4.73) and integrating we 
obtain 

'U(k) = U · + r (2e(k) _ u(k)) dz + U~Ok) 
· · 1 ho .3 3" , (4.77) 
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where the known nonlinear part of the displacements is defined as 

U
(Ok) _ 1z 

2=(k)dz - -lz U(Ok)U(Ok)dz , - - e '3 - 3 1 3 3 
1 ho 1 ho ' , 

(4.78) 

Taking into account hypothesis (4.58), the equation for the normal displacement (4.71) 

and expression (4.75) we obtain the tangential components of the displacement vec-

tor as 

U~k) _ Ui - w,i1/J~k) - Xp,i (1/J~k) + 1/J~;») - Xg,i (1/J~k) + 1/J~:») + Ui(k) 

u ' - X ,~(k) + U~k) 
1 3,1 p8 , 

i=p#g=1,2j S=O,p,gj i~j-+p~g 

( 4.79) 

where the distribution functions of the displacements through the thickness of the 

laminated shell are defined as follows 

.I.(k) 
'f'pg 

~(k) 
pO 

~(k) 
pg 

cp~k) 

1
z 

dz' .I.(k) = 1Z 

l,,(k)dz' .I.(k) = rZ l,,(k)dz 
, 'f'2 h rr , 'f'pp ih

h 
rpp 

ho 0 0 

1
z 

l,,(k) dz' .I.(k) = 1Z 

l,,(k) dz' .JJ~) = 1Z 

l,,(k) dz 
rpg , 'f'pt h rpt , 'f'CTt h ru,' 

ho 0 0 

r = 1,2, .... ,8; t = 3,4 

~(k) _ .1.(kL 
gO - 'f'0 , 

.I.(k) = .I.(k). 
'f'g 'f'pg , 

~(k) = .I.(k) = .I.(k) 
pp 'f' p 'f' pp 

cp~k) = 1 

l,,(k). l,,(k) _ l,,(k) 
rl , rg - r2 

The given part of the displacements in equation (4.79) can be expressed as 

U~k-) = , -.JJk) +.JJk) (0) .I.(k) 
-qi 'f'p3 - qi 'f'1'4 - fU,i - 'f'3 

(0) .I.(k) - .I.(k) + .I.(k) 
-f22,i'f'4 - q3,i'f'5 - Q3,i'f'6 

_q-:- , ,.1.
7
(k) _ qT ... I's(k) _ .JJ~) + U~Ok) 

3,3''f' 3,31'f' 'f'UI 1 

4.4.3 Stress and strain tensors 

( 4.80) 

(4.81 ) 

Since the components of the displacement vector have been obtained we can now 

define the tangential components of the strain tensor. Taking into account the 

expressions for the displacements (4.71) and (4.79) we present these deformations 

as a sum of the unknown linear and nonlinear parts and also the given part, which 

must be defined from the results obtained on the basis of the classical model. Then 

we can write 

( 4.82) 

109 



where these parts are given respectively as 

-(k) e pp - <p(k) k (k) 
Up,p - Xs,pp ps + ppX"<P,, 

-(k) 
epg ~[(Up,g + Ug,p) - (X",pg<P~~) + X",gp<P~~») + 2kpgXS'P~k)] 
-(k) 
e· · 
') 

1 . (k) . (k) ( . (k) .u(k») (k)] 
2"[(Xs,,<ps Xt,)'Pt + XS"U3,j + XS,) 3,i 'Ps (4.83) 

=(k) 
e·· 

') 

1 (k) (k) (k)] 
2"[(Ui,j + Uj,i) + 2kij U3 + U3,i U3,j 

s,t=O,p,g; p"#g=1,2 

The components of the stress tensor may be expressed similar to those of the com­

ponents of the strain tensor as 

where 

-(k) upp 

- (k) upp 

=(k) u pp 

( 4.84) 

,\ (k)e(k) + ,\ (k)e<k) + ,\ (k)X p(k) = 
p ~ 4 gg q s s 

,\ (k) ,\ (k) (,\ (k) <p(k),\ (k) .l'.(k») 
p Up,p + 4 Ug,g - p Xs,pp ps + 4 Xs,gg'¥ gs 

+k ,\(k) + k ,\(k»)X (,,(k) + ,\(k)X p(k) 
pp 9 gg 4 ST s q s s (4.85) 

,\ (k) e(k) + ,\ (k) e(k) = 
p pp 4 gg 

1 [,\(k) ( (k»)( (k») ,\(k)( (k»)( (k») 2" p Xs,p'Ps Xt,P<Pt + 4 Xs,g<ps Xt,g<Pt (4.86) 

2('\ U(k) \ U(k») (k)] 
+ pXs,p 3,p + "4Xs,g 3,g 'P s 

,\ (k) ~k) + ,\ (k) =(k) + ,\ (k) (Ok)_ 
.p epp . 4 egg q e33 -

,\(k)U(k) + ,\(k)U(k) + (k ,\(k) + k ,\ ,\(k»)U(k) 
p p,p 4 g,g pp p gg gg 4 3 ( 4.87) 

+~[,\(k)(u(k»)2 + ,\(k)U(k)] + ,\(k) (Ok) 2 p 3,p 4 3,g q e33 

s, t = O,p,g; p = i "# g; q = 7 - P 

T~e u~~) stress can be obtained from the expression for uf~) by making the following 
substitutions: 

,\ (k) --+ ,\ (k) ,\ (k) --+ \ (k) \ (k) \ (k) 
1 4, 4 "2' "6 --+ "5 

Moreover, we can obtain 

U(k) = U<k) + u(k) + u(k) 
pg pg pg pg ( 4.88) 

where 

(4.89) 
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(k) -(k) _ G(k) ( (k) U(k) + U(k») (k) 
2G pg epg - pg Xs,pX t,gCPt + X",p 3 ,g Xs,g 3,p CPs ( 4.90) 

G (k) [(U(k) + U(k») + 2k U(k) + U(k) U(k)] . s t = 0 p 9 
pg p,g g ,p pg 3 3,p 3,g" " 

(4.91 ) 

The transverse shear stresses can be obtained from the constitutive equations (4.50) 

in which hypothesis (4.58) for the transverse shear deformations must be taken into 

account. Then we can write 

(k) G(k) 
O"i3 = 2 ei3 p3 

_ of(k) + ~Ok) _ () of(k) + ~Ok) 
Xs" ps 0",3 - s, P" 0",3 ( 4.92) 

i = p = 1,2; S = p,g; 9 =f P 

where 
~Ok) __ ( :-f(k) + :+"f(k») 

0",3 - q, p3 q, p4 ( 4.93) 

Thus all components of the stress and strain tensors as well as components of the 

displacement vector have been defined for an arbitrary point in the k-th layer. 

4.5 Analysis of the nonlinear higher order theory 

For better visualization of the special features of the nonlinear higher order theory, 

its distinction from classical and other refined theories, let us consider some special 

cases and carry out the analysis of the kinematic model (4.71), (4.79). 

4.5.1 Special cases 

Special cases of the presented model may be classified under a few types: 

b) character of the layer rigidity (absolutely rigid under normal compreSSIOn: 

E~k) = 00 and lIi3 = 0; under transverse shear: Gis = 00); 

c) geometrically linear models (these do not contain quadratic terms in expres­

sions for the deformations and in other relations); 

d) models of shell or/and plate which are continuously heterogeneous through 

the thickness, or homogeneous; 
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e) total number of the unknown functions which determine the kinematics of the 

refined model (degrees of freedom which are related to physical properties of 

a material). 

Some of these special cases are related to each other. Let us consider items a) and 

e). The first one is a "natural" special case, and second is an artificial way for 

decreasing the number of degrees of freedom. This statement can be explained by 

means of the following example. 

Example 1. Let us consider simplification of the distribution function in case of 

transverse isotropy. 

For a transverse-isotropic (or isotropic) material, according to item a), we have from 

( 4.57) 

l
z lZ ).(k) 

rp~k) = rp~k) = FJk) zdz = ~k) zdz = rp(k) 
ho ho ).3 

Taking into account that Et) = E~k) = Ek, 1I~;) = 1I~;) = 11k, G~;) = G~;) = G~, 
constant (4.33) may be obtained as follows 

In a similar manner, the sum of the constants 

and the function 

rz(Eg~) +2G~~»)zdz = rz Ek\dz 
leo leo 1 - 11k 

can be obtained. Thus, it follows from (4.38) that f~;) = f~;) and further, from (4.49), 
(4.80) we have (,,(k) = (,,(k) .• I.(k) = .I.(k). cI>(k) = cI>(k) = cI>(k) 

T~ TH'o/~ o/H' ~ H . 

As it can be seen from the example, the distribution functions for the orthog­

onal directions are equal in case of transformation from the orthotropic model 

to transverse-isotropic one. The corresponded independent unknown functions 

Xp, Xg, (p =I- g) have been united into their sum. Thus, instead of (4.71) and (4.79) 
we have the following model 

(k) 
U , , 

(k) 
U3 

Ui - W,itPak
) - (Xp + XgLcI>(k) + ulk) 

W + (Xp + Xg )rp(k) + UJk) , i = 1,2; p = i =I- 9 ( 4.94) 
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Here the following replacement is obvious 

By this means the number of "shear" kinematic degrees of freedom for the transverse­

isotropic (isotropic) model decreases from four in (4.79) to two in (4.94). The reason 

is that the model of orthotropic shell has been derived in such a way that the degrees 

of freedom Xp,i and Xg,i, (i = p -# 9 = 1,2) correspond not only to the orthogonal 

directions Xl and X2, but are in complete conformity with physical and mechanical 

properties of the material. In the orthotropic material these properties are rep­

resented by given four generalised distribution functions of the normal fJ;> , fJ;> , 
p -# 9 = 1,2. 

Reasoning from item e), in order to artificially decrease the number of the degrees 

of freedom in the model, such intimacy is abandoned. For this purpose we introduce 

relation (4.39) fJ;> ~ vpfJ;> that leads to the two generalised normal functions. It 

allows the use of the transverse shear stresses in a form (4.40) in order to derive the 

refined model. Then, assuming in (4.40) that 

we also reduce to one function X. By this means we again obtain an expression 

of the model (4.94). However, using this artificial method, the conformity of the 

unknown functions with the properties of orthotropy is lost. The model becomes 

"quasi-isotropic". In fact, for the case of transverse isotropy (isotropy), from (4.39) 
we obtain 

and in (4.40) 

(Kpp + Kgg),i = X,i 

we have again only one function X, i.e. the model (4.94) which is equivalent to case 
a). 

It should be noted that most of known refined models of the orthotropic shells are 

developed using an artificial way described in d), which requires averaging either 

strains [67] or material properties [3]. The sought functions, which characterise 

the shear in orthogonal directions are chosen in such a way that only one func­

tion a (xI, X2) corresponds to each orthotropic direction Xi [67, 3], or the shear de­

formations are characterised by partial derivatives X,i with respect to one sought 
function [62, 78]. 
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Let us consider the special type of higher order theory described in item b). Making 

assumption that E~k) = 00, ,,1;) = 0 as a result we have ,\~k) = 00. Then according 

to (4.55), (4.57) and (4.80) <.p~k) = <.p~k) = 0, (r = 1. .. 8), <.p~k) = <.p~~) = O. From 

(4.71) and (4.79) we obtain the following kinematic model 

(k) u , 
s 

(k) 
U3 

. ..I.(k) _ .• I.(k) _ .• I.(k) _ :-.dk) _ :+-.I.(k) 
- Us - w,s'l-'O Xp,s'l-'pp Xg,s'l-'pg q, 'l-'p3 q, 'l-'p4 

W P = i =I 9 = 1,2 

where z = ho is a surface on which the tangential displacements equal Ui· 

( 4.95) 

The linear models of type c) follow from the general model and its variants when 

the quadratic terms are neglected in all the relations. As this takes place, firstly, the 

strains f~~), f~~ are simplified (they are known functions in (4.62)) and the hypothesis 

(4.61) therewith looses the influence of the geometrical nonlinearity. Secondly, the 

nonlinear strain e~kJ and stress u~~ (a = f3 = 1,2,3) terms are excluded. 

The cases of type d) are obvious since the functions of the continuous (nonlinear or 

linear) and constant characteristics through the thickness of the shell follow from the 

continuously piecewise normal functions which, for a given model, are the elasticity 

properties of the layers. It also should be noted that no limitation are placed on 

the number of the layers. Thus there is always a possibility of approximating the 

continuous function "layer-by-Iayer", i.e. using the continuously piecewise function 

when the shell is constructed from sufficiently large number of layers. By this means 

the model allows both constant and variable physical and mechanical characteristics 

through the layer and whole layer package to be taken into account. Moreover, a 

layer package can be constructed from both orthotropic and isotropic layers, and 

there is no limitation on sequences and thicknesses of the layers. Thus the versatility 

of the model with respect to the' structure through the thickness is provided. 

4.5.2 Reference surface 

Let us note one more feature of the higher order theory developed. The hypotheses 

which form the basis of the model and, also, components of the displacement vector 

exactly satisfy the interface conditions and conditions on the external surfaces. It 

arises from natural (on a basis of the relations of the classical theory) rather than 

a priori choice of the distribution functions of all components of the stress-strain 

state. In relation to this, it should be noted that the reference surface can be chosen 

arbitrarily, it can be any surface (Co $ z $ en) which is equidistant to external ones. 

The choice can be made from the different considerations. For example, if a plate 
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is on an elastic foundation, then for the uniqueness of the unknown displacements 

of the foundation surface and plate surface which contacts with it, it is convenient 

to chose a later one as a reference surface. To illustrate a freedom in choosing the 

reference surface let us consider the following example. 

Example 2. The structure under consideration is a homogeneous shell (plate) sub­

ject to the normal load (qf = 0) and has the thickness h. Let us show that in 

the correspondent points the value of the functions which define the change in the 

transverse shear stresses uW is the same when the reference surface coincides with 

the external bottom and mean surfaces. At given conditions, according to (4.92) 

and taking for clarity i = 1, we obtain 

where the normal functions (4.38) can be written as 

Bn l z l z 
B2 + B3 l z 

In = -A 11 - EOIZdz; 11 = EOldz; 112 = A 11 - (Eoll + ~GI2)zdz 
n Co Co n Co 

With the reference and bottom surfaces coincident, the coordinates of the external 

surfaces are Co = 0 and en = h. Then 

Bn 

Bn 
An 

In 

112 = 

lh EOlh2 lh 
EOIZdz = --; An = EOldz = EOlh 
020 
h [h EOllh2 
'2; B2 = 10 EOllzdz = -2-

[h 2G zdz = G h2. B2 + B3 = (Eoll + 2G12 )h 
10 12 . 12, At! 2Eol 

h r r EOI '210 EOldz - 10 EOl~dz = T(hz - Z2) 

(Eoll + 2G12 )h l z l z EOIl + 2G12 
2E EOldz - (Eoll + 2Gl2 )zdz = (hz - z2) 

01 0 0 2 

Value of the functions on the external and mean surfaces are 

In(O, h) = 112(0, h) = 0; In(~) = EOlh2; 112(~) = (Eoll + 2G12 )h
2 

8 8 

When the reference and mean surfaces coincide we have Co 

respectively, Bn = B2 = B3 = o. Then 

112 - _jZ (Eoll + 2G12 )zdz = 
-h/2 
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We now have the desired result for the functions: 
h h EOlh2 (Eoll + 2G12 )h2 

IU(-2'2) =0; lu(0)=-8-; 112(0)= 8 

Hence the result is the same for these surfaces. 

All relations of the model developed are invariant, irrespective of the position of 

the reference surface within the thickness. It is not typical for some theories of the 

laminated structures and introduces the additional limitations to them. 

4.5.3 Tangential loads 

In the higher order theory developed the law of the change of the transverse shear 

stresses through the thickness of the shell is related directly to the given tangential 

forces on the external surfaces. In many known references, for example in [3, 68], the 

linear law of the change through the thickness is a priori assumed for these stresses 

and is given as 
(Ok) __ Co - z + +Co + z 

O'j3 - qj -h- qj -h- ( 4.96) 

In the proposed model, according to (4.92) and (4.38), we have 

(f
(k) ) f(k) 

(Ok) _ (-j(k) + + ((k») - - p 1 + + p 
O'j3 - - qj p3 qj Jp4 - qj -A - qj -A 

Ip Ip 
(4.97) 

where 

f (k)/Al = jZ E(k) dz/ fen E(k) dz. 
p p Op Op' 

CO CO 
i = p = 1,2 

By this means distribution of the transverse shear stresses depends on material 

properties of the layers'. Let us demonstrate this effect using the following example. 

Example 3. Let us build the law 'of change for the stresses O'~k) under the influence 

of load qi = q for the three-layered package with the following characteristics 

0.2h; 

102
• q; 

h2 = 0.5h; 

E (2) - q. 
01 - , 

h3 = 0.3h; h = 1 

E~~) = 10· q 

The reference surface coincides with the bottom surface of the package (Co = 0). 
Using (4.97) we obtain 

k-l 

11
k

) = E~~)(z - Ck-l) + L Eorhr 
r=l 

3 

Au L E~~) hk = (0.2· 102 + 0.5·1 + 0.3· 10)q = 23'.5 . q 

(Ok) 
0'13 -

k=l 

11k
) 

23.5 
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and from (4.96) 
(Ok) Z 

0"13 = h 
Diagrams of the stresses for this example are given in Figure 4.1. 

4.5.4 Normal compression 

The analysis of the higher order theory developed shows that this theory takes into 

account the change in length of the normal element during the process of the shell 

deformation, that is taking the normal compression into account. To illustrate this 

let us consider the following case. 

Example 4. For homogeneous orthotropic plate we shall express the linear part of 

the displacements (4.71), (4.79) in polynomial form. 

u~k) = bo + bIZ + b2z 2 + ... = bn _ 1z n - 1 

(k) _ + + 2 + _ n-l Ui - ao al z a2Z ... - an-lz 
( 4.98) 

The summation is assumed over index n. After transformation of the normal func­

tions, which are included in the linear terms of the displacements, we obtain the 

following coefficients of polynomials: 

W' , 

1 [( (0) (0) 1 + h 1 - A3 fll A6 + f22 As) - 2"(q3 - q;) - g(qti + q;:J 

-W,; -2~p3 {~2 [x";E.,, + Xg,;(Eov + 2Gpg )] - (q; - qi)} 

2~3 [(X pA6 + Xg'\s) + (qt + q;)2
3
h + ~(qti - q;:i)] 

1 + _ 
2hG (qi + qi ) 

p3 

+ 2~ [(f~~)iA6 + f~~)iAs) - ~(q3+1· - q3- ·) - !!'(q:+-.. + q~·· )l 1\3' , 2' ,I 8 1,13 1,13 

1 (+ _ 
- 6hA3 qi,i + qi,i) 

~ [x,,; (~: - ~:) + Xg ,; (Eov ;;Gpg 
- ~:) 1 

1 [1(+ _ 1 + _] 
4A3 h q3,i + q3,i) - 6 (qi,ij - qi,ij) 

- 2h!A3 [~(qti - q;:i) + *(qt + q;)] 
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1 (+ - ). b 
24hA3 qi,ij + qi,ij , S = 0 

as = 1 [+ _ 1 1 ( + _ )] 
1 Oh 2 A3 (q3,i + q3,i) h + 2 qi,ij - qi,ij 

Thus, taking the normal compression into account, the normal and tangential dis­

placements are expanded into a fourth and fifth order polynomials, respectively. Let 

us note that for the orthotropic layers made from composite materials, the stiffness 

in the normal direction to the layer is determined by the matrix properties and usu­

ally is considerably lower than in transverse directions, i.e. the stiffness moduli of 

type A3 are comparatively small values. In this connection, as is seen from expres­

sions for the coefficients, the influence of terms containing the stiffness A3 is quite 

important. It should be noted that these terms account for the direct influence of 

the external load on the change of the displacements through the thickness. 

Attention is drawn to the fact that in many refined theories of the laminated struc­

tures the change in displacements through the thickness due to effect of the normal 

compression is ignored. For instance, consideration of this effect in [68, 78] is re­

lated only with the Poisson's effect. It is equivalent to the following values of the 

coefficients for U3: 

bo = W j 

or in special case of transverse isotropic material from (4.94) 

b _ Ev' 
2 - X2E'(1 - v) 

Remaining coefficients . of the polynomial are equal to zero. In this case the dis­

tribution character of the normal displacements through the thickness does not 

correspond to the real behaviour. If one of the external surfaces is loaded, then the 

displacements U3 turn out to be symmetrical about the mean surface. 

Setting E3 = 00 , Vi3 = V3i = 0 and, respectively, A3 = As = 00, then in expressions 

for expansion we obtain only coefficients which correspond to the shear model (4.95). 
They are 
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For transverse isotropic material these coefficients take the form: 

u ·· 
" 

bo = W 

Eh2 1 
a1 -W,i - X,i

2G
'(1 _ v 2) - 2G~ (qi - qt) 

1 E 
a2 = 2G'h (qi + qt)j a3 = X,i

6G
'(1 _ v2) 

In this case the tangential displacements are expressed by a third order polynomial. 

Let us note that the sought function X (functions Xl" Xg in general model) is associ­

ated in expansion coefficients both with shear G1'3 and compression E3(.\3) moduli. 

Thus, this function describes both indicated effects, namely, transverse shear and 

normal compression. According to notations set up in [62, 78], we shall call functions 

X or Xl" Xg the shear functions. 

4.6 Variational equation, equations of equilibrium 

and boundary conditions 

4.6.1 Variational equation 

The equations of equilibrium and the boundary conditions may be determined using 

Reissner's variational principal 

b(R- A) = 0 (4.99) 

where R is Reissner's functional and A is the work of the external forces. 

Variational of the functional R has the following form 

bR = r r r [u(k) be(k) + bu(k) (e(k) _ u~~) + v~~) u(k) + v~~) (k)) J J Jv af3 af3 11 11 E(k) (k) 22 (k) U33 
1 E2 E3 

( 

(k) (k) (k)) + bu(k) e(k) _ U22 + V12 (k) + V32 (k) 
22 22 E(k) E(k) u 11 (k) u 33 

2 1 E3 

( 

(k) (k) (k)) + bu(k) e(k) _ U33 + V13 (k) + V23 (k) 
33 33 E(k) (k) U11 (k) U22 

3 E1 E2 
(4.100) 

+ bu(k) (2e(k) _ u~;)) + bu(k) (2e(k) _ u~;)) 
12 12 G(k) 13 13 (k) 

12 G13 
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(k) (k) 0"23 . 
( 

(k)) 1 
+ b0"23 2e23 - G~;) dV, a, ,8=1,2,3 

Variational of the work of the external loading is 

a=1,2,3 (4.101) 

where S is domain of the external surfaces of the shell, L is boundary of the domain, 

q; are external loads z = en and z = Co, Pa is load on the end surfaces (domain 

boundary) and U a are displacements which complying with the considered surfaces. 

Substituting (4.100), (4.101) in (4.99) and considering the variational equation using 

the components of the stress-strain tensor derived in section 4.3 let us ensure that 

variational coefficients of the stresses O"~), O"!;), (i,j = 1,2) are identically equal to 

zero. This implies that the equations of the Hooke's law for the strains e~;), e~;) 
are satisfied exactly. For the strains e~;) , the constitutive equations are satisfied 

"integrally" (in the sense that the integral corresponding to this equation equals 

zero over the domain of the shell) since the stress 0"1;) assumed in the form given by 

equation (4.46) contains only the given functions and bO"t) = O. On this basis the 

variational equation (4.99) can be written in the following form 

bIT - bA = 0 ( 4.102) 

where 

a,,8 = 1,2,3 ( 4.103) 

4.6.2 Variation of the potential energy 

Let us represent bIT as the sum of the linear, nonlinear and "zero" parts. 

bIT = bIT + bIT + bIT (4.104) 

where 

bIT llfv 0"~4be~kJdV 
bIT llfv 0"~4be~~dV ( 4.105) 

bIT 11 fv 0"~4 be~o;) dV = 0 
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Last relation is obvious since Se~O;) = 0 as variation of the given strains. Substituting 

expressions for the strains from section 4.3 into (4.105) we obtain 

SIT lis {l~n [a~)Se~;) + 2ag)Se~;) + a~;)S~~)] dZ} dS 

Jrr {len [a(k)Se(k) + 2a(k)sik) + 2a~3k)si3k) + a~;)S~~)] dZ} dS is CO pp pp pg pg , , 

- lis {l~n [a~;)(Sup ,p - ~~:)SX."pp + kpp'P~k)SX.,) (4.106) 

+ a~;)(Sup,g + SUg,p - ~P.,SX."pg - ~~:)SX."gp + 2kpg'P~k)SX.,) 
a~;)'P~:)SX."i + a~;) F~(k)SX.,] dZ} dS; i,j = 1,2; p = i; 9 f- i; s = O,p,g 

SIT lis (l~n a~)Se~;)dz) dS 

lr r {len (k) 1 [ (k) (k) ( ) (k) (k) S ]d} dS is eo aij 2" '1'., 'Pt S X."tXt,j + 'Ps U3,i Xs,j Z ( 4.107) 

i,j = 1,2; s,t = O,p,g 

Integral characteristics of the stresses in the shell (generalised forces) are given by 

T.(~t). H~~s)] = 
'3' '3 

l~n a~k) ['P~k) ; ~~:); ('P~k) 'P~k») ; ('P~k) uJ~) )]dz 

l
en a~k)(,,(k)dz. Q(") = len a(k) F'(k)dz. ,3 T ps ,3 33 s , 

CO CO 

(4.108) 

i,j = 1,2; s, t = O,p,g 

wherein 'P~~) = 0, as it follows from (4.58). 

Taking into account the generalised forces given above, linear and nonlinear part of 

the variation of the potential en~rgy of the strains may be defined as "-

SIT lr r(N(O) S .. - M(ps) S .. k .. S + Q(P") S . + Q(s)r )dS is ij U',3 ij XS"3 '3 X., 1 X.", 3 vX., 

- lis[Ni~~ljSUi + (Mi~:J - Ni~)kij + Q~~s) - Q~8»)SXS] dS (4.109) 

+ r [(N(O)SUh + N(O)SuI) + (M(hs) + M(hs) + M(ls) + Q(hs»)SX i L hh hi hh,h hl,l hl,l h ., 

M~tSX."h] dL + [M~tSX.,]~: 

lis[~Ti~st)S(XS'iXt,j) + HW)SXs,j] dS 

lis [(Ti~st)Xt,j),i + Hg,1] SXsdS 

+ [[(T~~t)Xt'h + T~;t)Xt,I)Sx" + Hi7
S
)sx.,] dL 
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4.6.3 Variation of the external load 

By taking into account relations for the strains the work of the external load on the 

surfaces z = Co, Cn takes the following form 

SAl lis {[qtcp~n)(Cn) + q3CP~1)(Co)]Sxs 

+ q;[SUi - ~~~)(Cn)SXs,i] + q;[SUi - ~~~)(Co)SXs,i1} dS 

lis {[qtcp~n) + q3CP~1)(Co)]Sxs + (q; + qi) SUi 

+ [qtp~~;)(Cn) + q~p~~!)(Co)]SXs} dS 

i[qt~~:)(Cn) + qh~~~)(Co)]SXsdL; p = i; s = O,p,g 

Introducing the generalised loads 

+ + -qi qi 
+ (n) + - (1)( ) + + ~(n)( ) + - ~(1)( ) q3 CPs q3 CPs Co qi,p is Cn qi,p is Co 
+",(n) -",(1)() . ° qh'¥hs +qh'¥hs Co; p=2; S= ,p,g 

we obtain from (4.111) 

SAl = ffs(q!O)SUi + q~s)SXs)dS - i qt')SXsdL; S = O,p,g 

The corresponding expression for the boundary forces has the form 

SA2 = l{l~n[ui~Su~k) + ui7)Su~k) + ui;)Su~k)]dz} dL 

(4.111) 

( 4.112) 

( 4.113) 

(4.114) 

where ui~, (a = h, 1,3) are components of the stress tensor and u~k) are components 

of the displacement vector at an arbitrary point of the k-th layer on the boundary 

L of the shell. Using expressions for the tangential deflection (4.79), where i = h, 1, 

and for the normal deflections (4.71) in (4.114) we derive 

bA2 = fJf~n[ui~(bUh - ~~:)bXs,h) + ui~)(Sul - ~~~)SXs,/) + ui;)cp~k)SXs]dz} dL 

f * (0) * (0) * (hs) 
- JL[Nhh SUh+ Nhl SUI- Mhh SXs,h ( 4.115) 

* (hs) * (s) [ * (h.!) 1 L2 
+ (M h/,1 + Qh )SXs]dL - M hi SXs L

1

; S = O,p,g 

where the asterisk (*) denotes the forces acting on the boundary of the shell which 

may be expressed by equation (4.108), when h,1 = i,j, and in addition 

* (s) len (k) (k) 
Qh = U h3 CPs dz 

Co 
(4.116) 
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4.6.4 Equations of equilibrium and boundary conditions 

Substituting the variations (4.109), (4.110), (4.113), (4.115) into (4.99) we derive 

the following variational equation 

[ 

(hs) * (hS)] L2 _ . 
Mhl - Mhl L1 - 0, i,j = 1,2j p = ij s,t = O,p,g 

Using the above variational principle the equations of equilibrium can be obtained 

as 

(4.118) 

i,j = 1,2j s,t = O,p,gj p = i # 9 

and the boundary conditions as 

(4.119) 

s,t = O,p,gj r = s 

where the asterisk (*) denotes the forces on the boundary of the shell, hand 1 are 

the normal and tangential directions to the boundary of the shell. 

In the following, the equilibrium equations will form the basis of the governing 

differential equations and corresponding boundary conditions of the geometrically 

nonlinear theory of the laminated shells. 
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4.7 Elasticity relations 

The generalised forces of the shell are given in the form of integrals (4.108). They 

are statical equivalent of the stresses acting through the thickness in directions 

orthogonal to the coordinate axes Xi. Substituting the components of the stress 

tensor (see Section 4.3) in equations (4.108) allows to obtain the elasticity relations, 

which, as in case of the stresses, we shall express as the sum of the linear, nonlinear 

and given parts. Such presentation is a formal since the forces Ti~6t), HW) belong 

only to the nonlinear part of the variation of the potential energy. 

The tangential forces can be obtained as the follows sum 

Ni~) = m;) + N~;)j s = O,p,gj P = i =I gj i,j = 1,2 (4.120) 

where the linear parts are defined by 

c(s) 7Js) -(st) -(st) -,;;iat) 
pp Up,p + g4 Ug,g - Dpp Xt,pp - Dg4 Xt,gg + ](pp Xt 

C(s)( ) -(st) n(at) -,;;iat) 
pg Up,g + Ug,p - Dpg Xt,pg - Dgp Xt,gp + ](pg Xt (4.121) 

Here the following stiffness characteristics have been introduced (index k is omitted) 

-(s) Cpg 

l
en 

Co ).p'PadZj 

l en -(at) len 
Co )'P'Ps4>ptdz j Dg4 = Co )'4'Ps4>gtdz 

J:n [(kpp).p + k 99 ).4)'Pt + ).qFtl 'Padz 

The nonlinear parts of the forces (4.120) are given by 

N(S) 
pp 

6(str) 6(str) - (at) - (at) 
pp Xr,pXt,p + g4 Xr,gXt,g + Dpp Xt,p + Dg4 Xt,g 

N(S) _ 
pg 

6(str) b(at) - (at) 
pg Xr,pXt,g + pg Xt,pXt,g + Dgp Xt,g 

where the stiffness characteristics are (index k is omitted) 
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b(st) 
pg 

c(str) 
pg 

( 4.124) 

s, t, r = O,p,g 

The given part of the tangential forces are determined by the general expression 

( 4.125) 

where (T~~) are known stresses obtained from (4.87), (4.91) on the base of the classical 

theory. Then, according to (4.108) we have forces which comply with the nonlinear 

part of the strains. 

TJ~t) = m<T.~t) + T-.(~t) + ~T.~t). to' -I.. .. 1 2 
'J 'J 'J 'J ' S, = ,p,gj p = t .., gj Z,) = , 

For the linear parts we obtain 

;rst) ;rst) ,,-(str) ,,-(str) -(str) 
pp Up,p + g4 Ug,g - Lpp Xr,pp - Lg4 Xr,gg + Spp Xr 

;rst) ( ) -(str) ,,-(str) r.;(str) 
pg Up,g + Ug,p - Lpg Xr,pg - Lgp Xr,gp + Epg Xr 

and the stiffness characteristics are 

y}str) 
pp l en ,,-(str) len 

CO >'p'Ps'Pt~prdz; Lg4 = CO >'4'Ps'Pt~grdz 

J~n [( kpp>'p + k gg >'4)'Pr + >.qF;] 'Ps'Ptdz 

y}str) len G r.;(str) len 
gp CO gp'Ps'Pt~grdZ; Epg = 2kpg CO Gpg'Ps'Pt'Prdz 

The nonlinear parts are defined as follows 

t(st) 
pp 

t.(st) 
pg 

A (strm) A (strm) L-(str) - (str) 
pp Xr,pXm,p + g4 Xr,gXm,g + pp Xr,p + Lg4 Xr,g 

JS(str)x + JS(str)x + A(strm) 
pg r,p gp r,g pg Xr,pXm,g 

The corresponded stiffness characteristics are 

A(strm) 
pp 

Dstr) 
pp 

Dstr) 
pg 
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And the given parts of the forces can be written as 

~T s) _len :;;(k) (k) (k)d 
.. - a· · 'P 'Pt z ') eo '} a 

The moments may be expressed in the following form 

S ° P g. P = i ~ g', i,)' = 1,2 = , , , I 

The linear parts of the moments are given by 

ArPs ) 
pp 

r;{pa) -(p.s) -(p.st) rJp.st ) 7«p.st) 
Cpp Up,p + Cg4 Ug,g - Dpp Xt,pp - g4 Xt,gg + pp Xt 

Arpa) 
pg 

r;{p.s) n(pat) rJp.st ) 7«p.st) 
Cpg (Up,g + Ug,p) - Dpg Xt,pg - gp Xt,gp + pg Xt 

and the stiffness characteristics are defined as 

C<Ps) 
pp 

D(pst) 
pp 

D(P.st) 
gp 

J~n -Xp<I>p.sdz; 
r;{ps) rn \ if,. d 
C g4 = leo "4 'i'pa Z 

l
en -(pst) len \ if,. if,. d 

- eo -Xp<I>ps<I>Ptdz ; Dg4 = eo "4'i'ps'i'gt Z 

J~n [( kpp-Xp + k gg -X4)'Pt + -XqF'] <I>psdz 

J~n Ggp<I>p.s<I>gt dZ ; 

S, t = O,p,g; 

The nonlinear parts of the moments are given as follows 

M(ps) 
pp 

M(ps) 
pg 

6{p.str) + 6(p.str) + jj(p.st) + jj(p.st) 
pp Xr,pXt,p g4 Xr,gXt,g pp Xt,p g4 Xt,g 

jj(pat)X + .jj(pat)X + 6(p.str)X 
pg t,p gp t,g pg r,p 

and for the stiffness characteristics we obtain 

c(patr) 
pp 

1 fen 
2" eo >"p'Pt'Pr<I>p.sdz; 

- (patr) 1 fen 
Cg4 = 2" eo -X4'Pt'Pr<I>p.sdz 

jj(pst) 
pp 

fen 
eo -Xp'PtU3,p<I>p.sdz; 

jj(p.st) fen-x 
g4 = eo 4'PtU3,g<I>p.sdz 

jj(pst) 
pg 

fen 
eo G pg 'PtU3,g <I>p.sdz; jj(p.st) len G U 4) d 

gp = eo gp'Pt 3,p p.s Z 

6(pstr) 
pg 

len 
eo G pg 'Pr'Pt <I>p.sdz; s, t = O,p,g 

The given parts of the moments are determined with the following integrals 

~M. ~.s) = len =(~)if,.(k)d 
') a,} 'i' p.s Z 

eo 
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Let us write the forces which can be considered as the moments related to the 

nonlinear part of the strains, 

H~~s) = H~i.s) + H- ~~s) + ~H.~s). .. 1 2 0 . .../.. 
'J 'J 'J 'J' Z, J = , j S = , p, gj p = z,g ( 4.138) 

Each of the forces (4.138) is in fact the combined characteristics since there is an 

agreement about summation over the index i = 1,2. For instance 

The separate items are determined by the following expressions 

B(ps) B(ps) r.;{pst) -(pst) -(pst) 
pp up,p + g4 Ug,g - F pp Xt,pp - F g4 Xt,gg + Rpp Xt 

B(ps)( ) r.;{pst) -(pst) -(pst) 
pg Up,g + ug,p - Fpg Xt,pg - Fgp Xt,gp + Rpg Xt 

where the stiffness characteristics are given by 

rPst ) 
pp 

lc
n G U d ""J')(pst) lcn 

co pg'Ps 3,p<Jlgt Zj Rpg = 2kpg co Gpg'Pt'PsU3,pdz 

.s,t=O,p,gj q=7-p 

The nonlinear parts of the force~ are 

and the related stiffness characteristics are 

B(pstr) 
pp 

P(pst) 
pp 

P(pst) 
pg 

B(pstr) 
pg 
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The given parts of the considered moments may be defined as 

~H ps) len (7<k) c,,(k) U(k) dz 
pp pp T s 3,p 

, co 

l en (7<k) c,,(k) U(k) dz 
pg Ta 3,p 

CO 

The transverse forces can be obtained from (4.108) and (4.92) as 

Here the sought part is 

where 

i = 1,2; p = i =I g; s = O,p,g 

Q
(ps) __ D(pat) , 

- p Xt,I 

D(pst) = len c,,(k)j(k) dz' 
p Tpa pt , 

CO 

s, t = O,p,g 

and the given part is 

Q(pa) _len (Ok) (Ok)d 
i - O"i3 'Pps z 

CO 

( 4.144) 

( 4.145) 

(4.146) 

(4.147) 

(4.148) 

Moreover, there are also the normal forces, which are connected with the normal 

stresses 0"1;). Using equations (4.108) and expressions for the stresses and strains 

we can express the considered forces as the sum of the linear, nonlinear and given 

parts. 

where the linear part is defined as 

Q(s) O(s) n<0 a) -(at) -(at) mat) 
3 = 3p Up,p + 3g Ug,g - D 3p Xt,pp - D 3g Xt,gg + ]{ 3p Xt 

Here the following stiffness characteristics have been introduced 

-(5) len I -(a) len I 

03p CO >'6Fsdz ; , ' 03g = CO >'sFsdz 

l en I -(at) len I 

CO >'64.>pt Fadz ; D3g = CO >'s4.>gt Fadz 

]«at) 
3p J~n [(kpP>'6 + kgg >'4)'Pt + >'3F:] F;dz; s, t = O,p,g 

The nonlinear part of the force is given by 

Q~s) = 6J;tr)Xr,pXt,p + 6J;tr)Xr,gXt,g + b1;t)Xt,p + b~;t)Xt,g 
where we have 

6(str) 
3p 

b(st) 
3p J~n >'6'PtU3,pF;dz; 

s, t, r = O,p,g 
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And the given part of the force 

(4.154) 

where strains are given in the Section 4.3. 

Thus the all elasticity relations (constitutive equations) forming the system of the 

forces in the shell have been obtained. The forces and their parts, which are un­

known, are given in the expanded form by the sought functions and generalised 

characteristics of the stiffnesses. The given forces or parts of the forces are pre­

sented in the form of integrals with respect to the given functions over the thickness · 

of the shell. 

4.8 The system of governing differential equations. 

On the basis of the system of equations for the forces (4.118) and expressions for the 

forces obtained in the previous section, the general system of governing differential 

equations of the geometrically nonlinear theory of the laminated orthotropic shallow 

shells can be formulated. 

4.8.1 General structure of the system of differential equa­

tions 

The system of governing differential equations may be given in matrix form as 

(D + D){V} = {Q} + D{N} (4.155) 

where D, D and D are the matrices of differential operators which correspond to 

the linear, nonlinear and given parts of the constitutional equations, respectively. 

The vector of the unknown functions is given by 

(4.156) 

and the vector of given part of the stress and moment resultants by 

(4.157) 

i,j=1,2j p=i=l=gj s,t=O,p,g 
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The system of differential equations (4.155) also incorporates the vector of external 

loads 

{Q} - {q(O) q(O) q(s)}T. s = 0 1 2 - 1, 2 ,3, , , (4.158) 

The structure of the matrices of the differential operators is quite complicated and 

does not allow the system (4.155) to be represented in the visible expanded form. 

For convenience we shall present the matrices D and iJ as the sums C?f sub-matrices, 

namely - - - -D=A+B+C; D=A+B+C (4.159) 

and in turn the sub-matrices (4.159) have the following structure 

[j,) 0 

o 1 [ 0 o 0 1 A 0 o . B= 0 o 0 
-(s) A (st) , B(s) B(s) B(st) 

31 A32 33 31 32 33 

[ GIl 
C12 -It) 1 

A= [~ 
0 

A~) 1 
C13 

C C22 
-(t) . C21 C23 , 0 ( 4.160) 

C31 C32 c~~t) 0 

[ ~ 
0 

o 1 c = [~ 
0 cj~ 1 B 0 o . 0 - (t) 

jJ(st) , 
C23 

0 0 61;t) 33 

4.8.2 Structure of the linear part 

Let us consider the symmetrical matrix C. It corresponds to the linear problem, 
where we have 

D-C' - , A-B' - , (4.161) 

Matrix C may be thought of as forms the fundamental base of the system of equa­
tions (4.155). Its operators have the following structure: 

C (10)() n(C O)() C (n(0) -(0) 
11 11 ••• ,11 + 12'" ,22; 12 = C12 + C24 )( ••• ),12 

C~~ [m~t)( .. . ),11 + (D~~t) + m~t) + D~~t))( .. '),22] 
,1 

m}'/ Ot)( ) -(Ot) + \.11 ... ,1 + f{ 12 ( .•. ),2 

C n(C 0)( ) -(0) 
22 22 •.. ,2 + C21 ( ... ),11 

C~~ - [~~t)( .. . ),22 + (D~~t) + m~t) + D~~t))( .. '),11] 
,2 

130 



n(c st) 
33 

-(Ot) ) -(Ot)( ) + ]{ 22 (... ,2 + ]( 21 ···,1 

[D
(lst)() (D(lst) + D(2st) + D(2st))( ) ] 
11 ... ,11 + 12 12 14' .• ,22 

,11 

[
n<D 2st)( ) + (D(2st) + D(lst) + D(lst))( ) ] + 22' .. 22 21 21 24' .. ,11 

, ,22 

(
r;r{}( 1st) _ D(lst) + D(st)k + D(lt) k + D(st))( ) 

11 1 11 11 14 22 31' .. ,11 

(r;r{}( 2st) _ D(2st) + D(st)k + D(st)k + D(st))( ) 
22 2 22 22 24 11 32' •• ,22 

[K1~st) + m~st) + 2(D~~t) + D~;t))k12] ( ••• ),12 

(4.162) 

r;r{st) -(st)k r;r{8t)k r;r{st))() + (]{11 kll + 2K12 12 + K22 22 + K31 .•. ; s, t = 0,1,2 

Matrices A and B follow from the linear parts of the elasticity relations, which, how­

ever, correspond to the nonlinear part of the variation of the potential energy (4.110). 

Therefore these sub-matrices are unique to the nonlinear problem. The nonzero el­

ements of the matrix B have the following structure 

-(s) [-(lS)() (n(2S))() -(18)() 
B31 - Bll ···,11 + B14 .•. ,12 + B12 •.. ,22 

+ (B~~:~ + ~::~)( ... ),1 + (~~:~ + B~~:~)( .. . b] 
-(s) [-(2S) ( ) (-(IS) -(18))() n(28) ( 
B32 - B22 .•. ,22 + B24 + B12 ••. ,12 + B21 ... ),11 

+ (B~~:~ + S;~:~)( .. . ),2 + (~~:~ + B~~:~)( .. . ),r] 

B (s) F(lst)() r.;(F 2st) () (r.;(28t) -(2st) r.;(2st) 
33 11'" ,111 + 22 •.. ,222 + F14 + F21 + F12 )( ••. ),112 

+ (F(lst) + r.;(F 1st) + r.;(F lst))( ) 
24 12 21' .. ,221 (4.163) 

[(~~st) + ~~st))(, • . ),1 + (R~~st) + R~~8t))( .. . b)] 

(F
(lst) r.;(2st)) () (r.;(2st) r.;(lst) + 11,1 + F 14 ,2 "',11 + F 22 ,2 + F 24 ,1 )( ... ),22 

+ (F(lst) + p<lst) + p<2st) + F(lst))( ) 
12,2 21,2 21,1 12,1' •• ,12 

[(nCR 1st) + nCR 2st)) + (R(28t) + nCR lst))]( ). 
11 21,1 22 12 ,2· •• , s,t=0,1,2 

The stiffness characteristics from (4.163) are variable values since according to 

(4.141) they contain the given functions of the normal displacements UJ~. Let 
us write also the nonzero elements of the matrix A 

jf<s) 
31 -{ (~;t)Xt,11 + A~~t)Xt,22) ( ••• ),1 + 2A~~t)Xt,12(" .),2 

+ [jf<st) ( ) + A(st)( )] (A(8t) AlA st)) } 
11 ···,11 12'" ,22 Xt,l + 12 + 14 Xt,2 

{(~~t)Xt,22 + ~~t)Xt'I1)(" .),2 + 2A~;t)Xt,21 
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+ 
A (st) 

33 

+ 
+ 
+ 
+ 
+ 
+ 

-.nst) -(st) (-(st) }fst)) ( ) } 
[A22 ( .•• ),22 + A21 ( .. . ),11]Xt,2 + A21 + 24 Xt,I'" ,21 

Jistr) Jistr) n(R str) )( ) 
(L11 Xr,11 + L24 Xr,22 - 11 Xr "',11 

Ji8tr) Ji8tr) n(R 8tr) )( ) 
(L22 Xr,22 + L14 Xr,11 - 22 Xr ... ,22 

[2(~~tr) + ~~tr))Xr,12 _ (Ei~tr) + ~~tr))Xr]( . .• ),12 

Ji8tr) Jiatr) n(R .dr) ) ( ) 
(L11 Xr,11 + L24 Xr,22 - 11 Xr,I···,1 

Ji8tr) Jistr) R<8tr)) ( ) 
(L22 Xr,22 + L14 Xr,l1 - ""22 Xr,2···,2 

[(~~tr) + ~~tr))Xr,12 - Ei~tr)XrLl(" .),2 

[ 
Jistr) Jistr)) r.;(E 8tr) ] ( ). 

(L21 + L12 Xr,21 - 21 Xr,2"',I, s,t,r=0,1,2 

(4.164) 

4.8.3 Structure of the nonlinear part 

Let us consider the sub-matrices which form the matrix D. The matrix C is formed 

by the nonlinear parts of the forces connected with the variation of the linear part 

of the potential energy (4.109). Elements of this matrix are given by 

- (t) C13 C- (Otr) [ ( )] C- (Otr)[ ( )] C- (Otr)[ ( )] 
11 X3,1' •. ,1 ,1 + 24 Xr,2' .. ,2 ,1 + 12 Xr,I' .. ,2 ,2 

+ [ - (Ot) () - (Ot) ( ) - (Ot) ( )] [D- (Ot) ( )] 
D11 "',1 + D24 ... ,2 D 21 .•• ,2 ,1 + 12 "',1,2 

- (t) C23 C- (Otr) [ ( )] C- (Otr) [ ( )] C- (Otr) [ ( )] 
22 Xr,2' .. ,2 ,2 + 14 Xr,I' .. ,1 ,2 + 21 Xr,2' .. ,1 ,1 

+ [ - (Ot) () D-(Ot) ( ) D-(Ot) ( )] [ - (Ot) ( )] 
D22 "',2 + 14 "',1 + 12 "',1,2 + D21 "',2,1 

C(st) 
33 {[C-(18tr) ' () C-(lstr) () D-(lst)() -(lst)()] 

- 11 Xr,I' .• ,1 + 24 Xr,2' •• ,2 + 11 ••• ,1 + D24 ",,2,11 

+ [C- (28tr) () C- (28tr) () D-(2at) ( ) - (2st) ( )] 
22 Xr,2· .. ,2 + 14 Xr,I' •• ,1 + 22 .•• ,2 D 14 •.. ,1 ,22 

+ [C- (18tr) () C- (28tr) () D-(1st) ( ) 
12 Xr,I' .• ,2 + 21 Xr,2···,1 + 12 ... ,1 ( 4.165) 

+ D-(lst)( ) D-(2st)() -(2st)()]} 
21 ... ,2 + 21 ... ,2 + D12 ... ,1 ,12 

+ [k11(c1~tr)Xr,1 + bl~t)) + k 22 (C1:
tr

)Xr,1 + bl~t)) + kI2(cJ~tr)Xr,2 + 2bl~t)) 
+ (Cg

tr
)Xr,1 + bl;t))]( •. . ),1 + [k11 (cJ:tr)Xr,2 + D~~t)) + k22(cJ~tr)Xr,2 + D~~t)) 

s,t,r = 0,1,2 

The sub-matrix B follows from the nonlinear parts of the elasticity relations and 

corresponds to the nonlinear part of the variation of the potential energy (4.110). 
The nonzero element of it is 

B 3(3
st

) = _{[(B(lstr)X + F-(ht))( ) + (B-(lstr) + F-(ht))( ) 
11 r,1 11 ••• ,1 24 Xr,2 24 ••• ,2 
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+ (B~istr)Xr,2 + P}ist))( .. . ),1 + PJist )( .. . bl,l (4.166) 

+ [(B- (2str) + F-(2"t))( ) + (B(2"tr)X + P(2"t))( . .. ) 1 22 Xr,2 22 ... ,2 14 r,l 14 , 

+ (Bg"tr)Xr,l + PJlst))( .. . ),2 + Pi~"t)( .. . hl,2}i S, t, r = 0,1,2 

The matrix A has also strictly nonlinear character, the nonzero part of it has the 

following form 

A~~) _{A~;trm)[Xr,lXm,l(" .hb + A~~trm)[Xr,2Xm,2(" .),1],1 

+ A~~trm)[Xr,lXm,2(" .bb + +A~;trm)[Xr,2Xm,l(" .),1],2 

+ A~~trm)[Xr,2Xm,2(" .bb + +A~~trm)[Xr,lXm,l(" ·bb (4.167) 

+ [(L~;tr)Xr,l + L~~tr)Xr,2)(" .),1 + (L~~tr)Xr,l + L~;tr)Xr,2)(" .),21.1 . 

+ [(L~~tr)Xr,2 + L~~tr)Xr,l)(" .),2 + (L~;tr)Xr,2 + L~~tr)Xr,d(·· .),11,2} 

s,t,r,m = 0,1,2 

4.8.4 Structure of the given part 

It is also necessary to write the matrix D, which is the operator matrix over the 
vector of the given forces {N}. This matrix can be written as follows 

:;:;(0) :;:;(0) ~p.) :;:;(p, ) ::;;:(p.) ::;;:(. ) :;:;( i.) g.t) 
N 1j N 2j Mij N ij Qi Q3 R ·· Tii I) 

D= -( .. . ),j (4.168) 
-(00 '),i 

( ... ) ,ij -( .. . )kii (00 .),i -( 00 .) (00 '),i [( .. ·)Xt,i],i 

Hence the system of governing differential equations of the geometrically nonlinear 

nonclassical theory of the laminated orthotropic shallow shells has been formulated. 

The order of the general system of differential equations is equal to 16 and therefore 

8 boundary conditions have to be satisfied on each edge of the shell. 

4.9 Some analytical solutions 

Let us consider the derivation of the closed form solutions for some particular cases 

of the system of governing equations of .geometrically nonlinear higher order the­

ory. Firstly, we consider cylindrical bending of a laminated plate under uniformly 

distributed load qj = q. We assume that the plate is symmetrical. Initially we 
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consider a solution based on the classical theory of the plates which can be obtained 

from (4.155) assuming G~;) = 00 and k1 = 0 as 

-(0) - (0)( 2) C n U1,n + Cn W ,l ,I = 0 
---(100) ~O) , ) 
Dn W,nn - Cn (W,n U 1,1 + W,l U1,n ( 4.169) 

A- (O) [ 2 (2)] n W,l W,n + W,l ,I W,l = q 

where 

~O) rn ~ ric (k) 
Cn = C = l~ A1dz = L..J lc Al dz 

co k=l Clc-l 

---(100) rn 2 ~ ric (k) 2 
Dn = D = lc A1 Z dz = L..J lc Al Z dz, 

co k=l Ck-l 

(4.170) 

and also U1 = u. In equation (4.169) , the quantities C and D define the rigidity of 

the laminated plate in which moduli A~k) might be variable through the thickness. 

Let us consider now simply supported plates for which the boundary conditions are 

W = OJ Ml~) = W,n = OJ n = 0 when x = ±a (4.171) 

We also assume that the boundaries of the plate do not approach each other as a 

result of deformation of the plate, e.g. 

~ = [aa U,ldx = u(a) - u( -a) = 0 

and we can rewrite the first equation of the system (4.169) as 

( 
1 2 

C U,I + 2W,1) ,l = Nn ,l = 0 

Integrating we obtain 

N11 = C(U,l + ~W~l) = A 

Let us introduce the notation 

A2 = Nlli D for Nll > 0 

and rewrite the second equation of the system (4.169) as 

\2 q 
W 1111 - 1\ W 11 = ---, ' D 

The general solution of this equation may now be obtained and is given by 

. qw2 

W = C1 + C2x + C3 smh AX + C4 cosh AX - --
2DA2 
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(4.173) 

(4.174) 

(4.175) 

( 4.176) 



where the constants of integration can be found from boundary conditions (4.171) 

as 

( 4.177) 

Substituting (4.177) into (4.176) we can rewrite expression for the deflection in the 

following form 

= [2 (COSh AX _ 1) \2( 2 - 2)]_q 
W cosh Aa + /\ a x 2D A 4 

(4.178) 

The unknown parameter A can be defined from the condition (4.172) which is given 

by 

fa fa (D 2 1 2 ) D 2 U,ldx = -A - -W,l dx = -2aA 
-a -a C 2 C 

-- - tanh Aa - - Aa + - tanh 2 Aa + -- = 0 q2 (5 5 Aa A3a3) 
D2A7 2 2 2 3 

(4.179) 

Introducing the following dimensionless parameters 

a w x qa4 

P = Aa; f3 = h; I = h; 17 = ~; p = Dh 

we can rewrite equation (4.179) as 

(4.180) 

from which the dimensionless deflection may be found as 

(4.181) 

Let us now introduce a dimensionless stress in k-th layer 

(4.182) 

Then we can write 

<7~k) = _1_ [p4 _ PhC z (COSh P17 - 1)] 
3p2 D cosh p (4.183) 

The extremum stresses in laminated plate now may be obtained, viz. 

(4.184) 
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where Urn and Ub are membrane and bending components of the stresses, respectively. 

For the case of the . clamped plates (w = OJ W,l = OJ Ul = 0 when x = ±a) 

dimensionless deflection can be obtained as 

P [ 2 2( cosh p'1] - cosh p, ) 1 
I = - 1 - 1] + --'---'--'--:----'-

2p,2 p, sinh p, 
(4.185) 

and st resses as 

( 4.186) 

(4.187) 

Following the procedure described above we can extend the solution obtained for the 

case of cylindrical bending of laminated plates which includes influence of transverse 

shear. Then for the case of simply supported plates the dimensionless deflection is 

gIven as 

(4.188) 

where 

(4.189) 

For the determination of the parameter p, we can use equation (4.180). 

Introducing dimensionless stress in the k-th layer as 

( 4.190) 

we can obtain stress in the following form 

(k) _ 1 (*4 P* he *) 0'1 - -- P, - --z 
3p,*2 D* (4.191) 

where z* is the dimensionless coordinate through the thickness coordinate given by 

z* Z~(k). , 

[(
1 + p,2 tPl1(k» (COSh p,*1] _ 1) + (1 + p,2 Dl) tP~~) p,2] 

a2 z cosh p,* a2 D z a2 
~(k) 

(4.192) 
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h 0 . Extremum stresses z = ±2' '" = are gIven as 

_ /1"'2 P'" h2C <I>(±) 
Urn ± Ubs - 3 ± 6D"'/1",2 1 

<I>± = 
[(

1 ± 2/1
2 tfJii)) (1 _ 1 ) ± 2 (1 + /1

2 
Dl) tfJii) /1"'2] (4.193) 

a2 h cosh /1'" a2 D h a2 

where Ubs is a component of the stresses which takes into account bending and 

shear. It must be emphasised that in both components of the stresses ( Urn and Ubs) 

the influence of the transverse shear is taken into account. 

In the case of the cylindrical bending of the clamped plates we have the following 

solution 

(4.194) 

6 2 (1 1 4 5) /1 - 12P - + - + - = 0 
/1 tanh /1 tanh2/1 /12 3 

( 4.195) 

z'" = z [(1 + /1
2 tfJi~)) (/1'" c~sh /1"'''' _ 1) + (1 + /1

2 
Dl) tfJ~~) /1"'2] = z<I>~k) 

a2 z smh /1'" a2 D z a2 

( 4.196) 

<I>~±) = [(1 ±2/12tfJ~i)) (1-/1'" . 1 ) ±2 (1 + /1
2 

Dl) tfJ~i) /1"'2] (4.197) 
a2 h smh /1'" a2 D h a2 

Let us now consider deformation of the cylindrical panel with the curvature kll under 

a uniformly distributed loading qt = q. Then the system of differential equations 

(4.155) for the case of transverse shear model may be written as 

where 

C [U,I + ku w + ~(W'l?J.l = 0 

DW,llll + Dl X,1111 = C [U,I + kllw + ~(W'I)2] (W,ll - kll ) + q (4.198) 

Dl W,l111 + D2X,1111 = DIX,ll 

(4.199) 

For the simply supported cylindrical panel the dimensionless deflection can be ob­

tained in the following form 

( 4.200) 

where 
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Equation for the computation of the parameter J-L* is given as 

(
P*+J-L*2 k )2( 2 * 5tanJ-L* 1 *2 5) tan J-L - + -J-L +-

J-L*2 k 4J-L* 6 4 

(
p * + J-L*2k) (tan J-L* 1 *2 ) fL*4 D _ 

- - -J-L - 1 + - 0 
J-L*2k fL* 3 cosh2 k2 

(4.201 ) 

Let us consider now an application of the model for which transverse shear and 

normal deformation are taken into account. For the case of the cylindrical bending 

of the laminated plates the system of differential equations (4.155) may be written 

as 

DW,llll 

=(0) 
-(CW,lW,ll + Nll ,l) 

1 2 ~O) =(0) 
C(U,l + 2"W,l) + Nll,l + W,ll - Mll,ll ( 4.202) 

Following the procedure described above we can rewrite the second equation of this 
system as 

\2 q 
W,llll - A W,ll = D ( 4.203) 

where q is a quasi load given as 

_ ~O) 
q=q-Mllll , (4.204) 

In equation (4.204), the bending moment ~~) may be considered as a given part 
of the bending moment, viz. 

(4.205) 

where 

Q = J~n A~k)cp~k) zdz 

Due to the iterative nature of the theory developed, the solution of the equa­

tion (4.203) can be found in two steps. For the first step problem must be solved 
with the load q. Then we obtain 

q cosh Aox q cosh J-L07J 
Wo 11 = - = - ----'-----'-

, D cosh Aoa D cosh J-Lo ( 4.206) 

where Wo, Ao, J-Lo are the parameters of the first iteration. For the second step we 
have to define quasi-load q which is given as 

= (1 qQ cosh J-L07J) q = q + 
D cosh J-Lo 

and then a new value of the load P 

qa4 

P=­
Dh 
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for which the problem must be solved once more. Finally dimensionless deflection 

and stress can be found using equations (4.181) and (4.184), respectively. In the case 

of the clamped laminated plate the expression for the quasi-load may be written as 

=q _ q (1 + qQ J-Lo cosh J-LOh) (4.209) 
- D sinh J-Lo 

and the final solution can be found using equations (4.185) and (4.187). 

4.10 Numerical results 

Let us consider some numerical results which are obtained on the basis of closed 

form solutions derived in the previous section. 

Problem 4.1 

We consider the problem of cylindrical bending of the laminated plates under uni­

formly distributed load qt = q using shear model. The stiffness parameters are 

taken as Dd D = 0, 1, 10, where ratio Dd D = 0 corresponds to the case of the 

classical theory. Plates are assumed to be symmetrically laminated. 

The influence of transverse shear and geometrical nonlinearity is shown in Fig. 4.2a, 

4.2b for simply supported plates and in Fig. 4.3a, 4.3b for clamped plates, respec­

tively. 

It is observed that for ' a fixed value of dimensionless deflection membrane compo­

nents of the stresses are much higher than those of bending components due to the 

geometrical nonlinearity. The influence of the transverse shear is quite substantial 

and it is even more pronounce for the case of clamped plates. 

Problem 4.2 

Using transverse shear model let us consider the deformation of the cylindrical panel 

with the curvature kll under an uniformly distributed load qt = q. The panel has 

curvature parameter k = kll a2 
/ h = 0.75 and stiffness parameters Dd D = 0, 5, 10, 

where Dd D = 0 corresponds to the classical theory. 

The effect of the transverse shear on the load/ displacement curve is shown in Fig. 4.4 

where dimensionless displacement, plotted against load P. 

It is observed that the presence of transverse shear in the geometrically nonlinear 
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analysis of laminated cylindrical panels contributes towards the increase of the global 

stiffness of the structure. 

Problem 4.3 

We consider cylindrical bending of the clamped laminated plate for which we will 

take into account normal deformation. Let us now estimate the influence of the 

normal deformation due to direct loading qt = q. For this purpose we assume that 

v~~) = v~~) = 0, A~k) = A~k) = 0 and also that the influence of transverse shear is 

negligible (G~;) = 00). The influence of the elastic moduli on Ub8 is shown in Fig. 4.5 

where EdE3 = Al(l- V
2)jA3. 

It is observed that dimensionless deflections, and the bending component 'of the 

stresses Ub8 increase as the ratio El j E3 increases. 

4.11 Conclusions 

A new geometrically non-linear higher order theory of laminated plates and shells 

which takes into account transverse shear and normal deformation is formulated. 

This theory is based on kinematic hypotheses which are not assumed a priori but are 

derived on the basis of an iterative technique. Geometrical nonlinearity is included 

at the initial stage of the derivation of the theory when the kinematic hypotheses 

are formulated. 

The proposed theory is capable of treating plates and shells with an arbitrary number 

and sequence of layers which can differ significantly in their physical and mechanical 

properties. Various loading and boundary conditions are considered with transverse 

shear and normal deformation fully taken into account. 

The closed form solutions for some particular cases of the system of governing differ­

ential equations are obtained. Numerical results illustrate that if the laminae exhibit 

significant differences in their elastic properties, it is essential to take into account 

geometrically nonlinear behaviour together with the effect of transverse shear and 
normal deformation. 

140 



10 10 

I . 

Figure 4.1 Diagram uf;> /q. 

141 



4 

3 

* CI 
o 
~ 

01 2 o 

~--------~--------T7~ 
I 

I 

I 

I 
/ 

l 

I 
I 

/ 

/ 

I 

/ 

I 

/ 

1 

/ 
I 

I 

I 

I 

2 

/ 

/ 

I 

I 

I 

142 

0,/0=0 - e lassie 01 theory 
0,/D=1 
0,/D=10 

(0) 

am 

120 

100 

80 

60 

40 

20 



If) 

.0 

b 

12 ~----------------------------------------~ 

10 

8 

01/0=0 6 --- 01/0=1 
._._._.- 0, /0=10 

4 

· 2 

--------------------------

, , o ~----~~-~-~. -~.~-.=-~. ~. -~. ~-.=-=. -~. -~. ~.~-.=--. --~------~----~------~ 

o 1 2 3 4 5 6 7 

(b) 

Figure 4.2 Results for simply supported plates with different D1 / D ratios: (a) 

curves of load and membrane stress components versus deflection; (b) curves of 

bending-shear stress component versus deflection. 
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Figure 4.3 Results for clamped plates with different Dd D ratios: (a) curves of 

load and membrane stress components versus deflection; (b) curves of bending­
shear stress component versus, deflection. 
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Chapter 5 

Conclusions 

5.1 Overview 

In the present study exact three-dimensional elasticity theory and higher-order 

theory for multilayered composite structures are derived. In the first instance, 

thick laminated cylindrical pressure vessels are considered. For this purpose three­

dimensional elasticity solution is derived using stress function approach, where the 

radial, circumferential and shear stresses are refined with respect to the close ends 

of the cylindrical shell. In addition, continuously heterogeneous thick laminated 

cylinders are studied. This theory also takes interlaminar stresses into account. 

Based on an accurate three-dimensional stress analysis an approach for the optimal 

design of the thick pressure vessels is given. Cylindrical pressure vessels are opti­

mised taking the fibre angles as design variables to maximise the burst pressure. The 

effect of the axial force on the optimal designs is investigated. Numerical results are 

given for both single and laminated (up to five layers) cylindrical shells. The max­

imum burst pressure is computed using the three-dimensional interactive Tsai-Wu 

failure criterion. Design optimisation of multilayered composite pressure vessels are 

based on the use of robust multidimensional methods which give fast convergence. 

Three methods are used to determine the optimum ply angles, namely, golden section 

method, iterative and gradient methods. A brief mathematical analysis is provided 

for better understanding of the optimisation problem in the multidimensional space. 

It must be emphasized that the solutions derived above allow the stress-strain state 

of the cylindrical shell to be obtained with a high degree of accuracy. Therewith, 

the generation of an algorithm for the problem is comparatively easy and the com-
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putation time required does not exceed a few seconds even for cumbersome tasks. 

Accurate stress analysis allows the optimal value of the critical load to be obtained. 

Mathematical setting up of the problem allows other variables of the P cr-function to 

be easily implemented, for example, layer thicknesses, material properties, number 

of layers, etc. in various combinations. 

Two transverse shear and normal deformation higher order theories for the solu­

tion of dynamic and geometrically nonlinear problems are developed. The theories 

developed are capable of treating multilayered plates and shells with an arbitrary 

number and sequences of transversely isotropic layers where the layers may differ 

significantly in their physical and mechanical properties. The higher order theo­

ries are based on the kinematic hypotheses which are not assumed a priori but are 

derived on the basis of an iterative technique. 

The higher order theory for the solution of dynamic problems differs significantly 

from other known theories of laminated shells. The direct influence of external 

loading on the components of stress-strain state are included in the initial stage of 

the derivation where kinematic hypotheses are formulated. These components are 

polynomials of higher degree than those in theories where the normal compression is 

not taken into account or only associated with the Poisson's effect. For transversely 

isotropic shells the given factors, which account for the three-dimensional character 

of stress-strain state, assume a significance in connection with the weakness of the 

layers in the transverse direction. A distinguishing feature of all relations of the 

model is also mathematical analogy of the terms which are related to the defor­

mation of pure bending, transverse shear and normal compression. Based on the 

derived system of governing differential equations the model allows to study a broad 

spectrum of both static and dyn~mic problems including high-frequency transverse 

vibrations and stress-strain state of thick laminated plates and shells. 

A geometrically nonlinear high-order model of the stress-strain state of laminated 

orthotropic structures is developed. The distinctive feature of the model is that the 

finite normal displacements, which are characterised by a kinematic nonlinearity, 

are taken into consideration not only when the main relations of stress-strain state 

are derived but also on the stage when hypotheses of the model are formulated. 

Based on the model developed the geometrically nonlinear theory of multilayered 

orthotropic shallow shells is derived. The theory includes the elasticity re~ations 

for generalised internal forces which account for geometrically character of the shell 

deformation. The system of governing equations is represented in a matrix form 

having linear and nonlinear vector operators of the sought generalised displacements. 
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The equations derived are suitable for special cases of the theory: transverse-shear 

laminated shells, thin orthotropic laminated shells (shear and "quasi-orthotropic" 

models), orthotropic laminated elongated plates (cylindrical bending). 

Analytical. solutions obtained for some equations of the theory developed offer a 

clearer view of the qualitative character of the influence of geometrical and kine­

matical nonlinearity on the stress-strain state of the laminated systems. The new 

quantitative assessments of the taking into account transverse shear deformation 

and normal compression depending on physical and mechanical characteristics of 

layers and load intensity have been obtained. It shows that if the laminae exhibit . 

significant differences in their elastic properties it is essential to take into account 

geometrically nonlinear behaviour together with the effect of transverse shear and 

normal deformation. 

5.2 Future directions for research 

A new generalized nonlinear higher-order theory of laminated composite structures 

is to be developed. This research is aimed at formulating new mathematical models 

for the nonlinear stress and strain state of heterogeneous laminated plates and shells 

which are subject to shear and normal deformation. The main objective of this 

research is to improve the accuracy of linear and nonlinear modelling of composite 

materials." As a step toward achieving this goal, the following studies and extensions 

are proposed: 

- accurate estimation 'of the range of applicability of nonlinear models; 

- accurate modelling of interlaminar stresses in order to predict delamination; 

- suitability for accurate numerical analysis; 

- suitability for thermo-elastic, thermo-plastic and nonlinear dynamic problems. 

Development of reliable optimisation methods is essential due to the expanded use 

of composite shells in high-tech industries. Therefore, there is a need to improve the 

current optimisation methods and approaches. Development of practical numerical 

techniques for predicting, in measurable and controllable parameters, the failure 

initiation and crack propagation in composite shells subjected to different loading 

conditions is a logical sequel of the design optimization and of paramount importance 

in studies of the structures. 

Implementation of symbolic computation for the derivation of analytical solutions 

on the basis of higher-order theories is highly recommended. This research could be 
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directed towards obtaining analytical results for the analysis of composite structures 

and estimating the range of applicability of the generalized higher order theory to be 

developed. The use of symbolic computation facilitates the implementation of the 

theory which in turn makes the treatment of a number of related problems (includ­

ing optimization) possible. Several problems which are cumbersome or exceedingly 

difficult to solve using conventional techniques could be treated using symbolic com­

putation. 
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Appendix 

Routines for Multidimensional Optimisation 

* * * * * * * * * * * * * * * * * * * * * * * * * * * 
* Exact 3-D solution of laminated pressure vessels * 

* made of anisotropic material, stress - strain * 

* analysis and design optimisation using 3-D * 

* failure criterion. * 

* * 
* P. Tabakov, University of Natal, Durban * 

* June, 1994 * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * 
PROGRAM OPTIM 

IMPLICIT none 
COMMON /DT/El(5),E2(5),E3(5),G12(5),V12(5),Rad(O:5), 

• P(O:5),X(5),Xpr(5), 

• Y(5),Ypr(5),SS(5),F,KR(5),NL 

COMMON/ANL/THETA(5),NA 

C COMMON/OPT/Xmin 

COMMON/RHML/RHO,ML 

REAL*8 THETA,AX,BX,CX,TOL,XMIN,RATIO,Pmax1,Pmax2,PI,RES, 
, DELT,GOLDEN,H,DH(5),RADIUS(5,25),RHO,Pcr(5,26),PMAX 

REAL*8 El,E2,E3,G12,V12,Rad,P,X,Xpr,Y,Ypr,SS,F,ANGLE_opt(5) 

INTEGER*2 NA,KR,NL,J,ML,layer,point,m 
CHARACTER*! Z 

EXTERNAL ratio 

PARAMETER (PI=3.1415926535897932385) 

* 1 - Z; 2 - THETA; 3 - RAD . 
$DEBUG 

Z = CHAR(7) 

OPEN(6,FILE='CON') 
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CALL DATA 

***************************************************************** 

*** R A D I I *** 
***************************************************************** 

do m=l,nl 
H=RAD(m)-RAD(m-1) 

dh(m)=H/kr(m) 

end do 

do m=l,nl 
do j=l,kr(m)+l 
radius(m,j)=RAD(m-1)+dh(m)*(j-1) 

end do 
end do 

********************************************************************* 
ax=O.OOOOl 
bx=0.872664626 

cx=pi/2. 
TOL=O.OOOOl 

********************************************************************* 

IF (NL.EQ.1) THEN 
Pmax=1.e09 

do mL=l, nl 
do j=l, kr(ml)+l 

rho = radius (mL,j)/RAD(mL) , 
THETA(1)=PI/4. 

NA=l 
RES=GOLDEN(AX,BX,CX,RATIO,TOL,XMIN) 
Pcr(ml,j)=RATIO(XMIN)*(-l.) 

if(Pcr(ml,j).lt.Pmax) then 
Pmax=Pcr(ml,j) 
layer=ml 
point=j 
angle_opt (l)=xmin 
end if 

PRINT 12, radius(ml,j), Pcr(ml,j),THETA(1)*180./PI 
END DO 
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print*, ' 
END DO 
print 11, Pmax,layer, point 
print 13, angle_opt(1)*180./pi 

11 format(lx,'Critical load is ',g14.6,', layer: ',il,'(',i2,')') 

13 format(lx,'optimum angle:',g14.6/) 

WRITE(6,*) Z,Z,Z 

STOP 

END IF 

*************** TWO LAY E R S ***************************** 
IF (NL.EQ.2) THEN 

Pmax=1.e09 

do mL=l, nl 

do j=l, kr(ml)+l 
rho = radius(mL,j)/RAD(mL) 

THETA(1)=PI/4. 

THETA(2)=PI!4. 

222 NA=l 

RES=GoLDEN(AX ,BX, CX ,RATIO ,"ToL ,!MIN) 

Pmaxl=RATIo(XMIN)*(-l.) 

NA=2 

RES=GoLDEN(AX,BX,CX,RATIo,ToL,XMIN) 

Pmax2=RATIo(XMIN)*(-1.) 

DELT=ABS(PMAX2-PMAX1) 

IF(DELT.LE.O.00000001) then 
Pcr(ml,j)=Pmax2 

goto 123 
else 
GoTo 222 
end if 

123 continue 

PRINT 12, radius(ml,j), Pcr(ml,j),THETA(1)*180./PI, 
# THETA(2)*180./PI 

if(Pcr(ml,j).lt.Pmax) then 
Pmax=Pcr(ml,j) 

angle_opt(1)=theta(1)*180./pi 
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angle_opt(2)=theta(2)*180.!pi 

layer=ml 
point=j 
end if 

end do 

print*, 
end do 

, , 

print 11, Pmax,layer, point 
print 15, angle_opt(1),angle_opt(2) 

15 format(lx,'Optimum angles:',2g14.6!) 
WRITE(6,*) Z,Z,Z 

STOP 

END IF 

***************** T H R EEL AYE R S*************************** 
IF (NL.EQ.3) THEN 

Pmax=1.e09 

do mL=l, nl 
do j=l, kr(ml)+l 

rho = radius(mL,j)!RAD(mL) 

THETA(1)=PI!4. 

THETA(2)=PI!4. 
THETA(3)=PI!4. 

333 NA=l 

RES=GOLDEN(AX,BX,CX,RATIO,TOL,XMIN) 
Pmaxl=RATIO(XMIN)*(-l.) 

NA=2 

RES=GOLDEN(AX,BX,CX,RATIO,TOL,XMIN) 

NA=3 

RES=GOLDEN(AX,BX,CX,RATIO,TOL,XMIN) 
Pmax2=RATIO(XMIN)*(-1.) 

DELT=ABS(PMAX2-PMAX1) 
IF(DELT.LE.O.00000001) then 
Pcr(ml,j)=Pmax2 
goto 124 
else 

GOTO 333 
end if 

124 continue 
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PRINT 12, radius(ml,j), Pcr(ml,j),THETA(1)*180./PI, 

# THETA(2)*180./PI,THETA(3)*180./PI 

if(Pcr(ml,j).lt.Pmax) then 

Pmax=Pcr(ml,j) 
angle_opt(1)=theta(1)*180./pi 

angle_opt(2)=theta(2)*180./pi 
angle_opt(3)=theta(3)*180./pi 

layer=ml 

point=j 
end if 

end do 
print*, ' , 

end do 

print 11, Pmax,layer, point 
print 16, angle_opt(1),angle_opt(2),angle_opt(3) 

16 format(lx,'Optimum angles:',3g14.6/) 
WRITE(6,*) Z,Z,Z 

STOP 

END IF 

****************** F 0 U R LAY E R S ************************ 
IF (NL.EQ.4) THEN 
Pmax=1.e09 

do mL=l, nl 

do j=l, kr(ml)+l 
rho = radius(mL,j)/RAD(mL) 

THETA(1)=PI/4. 

THETA(2)=PI/4. 

THETA(3)=PI/4. 
THETA(4)=PI/4. 

444 NA=l 

RES=GOLDEN(AX,BX,CX,RATIO,TOL,XMIN) 
Pmaxl=RATIO(XHIN)*(-l.) 

NA=2 

RES=GOLDEN(AX ,BX.CX,RATIO,TOL,XHIN) 

NA=3 

RES=GOLDEN(AX,BX,CX.RATIO,TOL,XMIN) 

NA=4 

RES=GOLDEN(AX,BX.CX.RATIO,TOL.XMIN) 
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Pmax2=RATIO(XMIN)*(-1.) 

DELT=ABS(PMAX2-PMAX1) 

IF(DELT.LE.O.00000001) then 

Pcr(ml,j)=Pmax2 

goto 125 
else 

GOTO 444 

end if 

125 continue 
PRINT 12, radius(ml,j), Pcr(ml,j),THETA(1)*180./PI, 

I THETA(2)*180./PI,THETA(3)*180./PI,THETA(4)*180./PI 

if(Pcr(ml,j).lt.Pmax) then 

Pmax=Pcr(ml,j) 
angle_opt(1)=theta(1)*180./pi 

angle_opt(2)=theta(2)*180./pi 
angle_opt(3)=theta(3)*180./pi 
angle_opt(4)=theta(4)*180./pi 

l ayer=ml 

point=j 

end if 
end do 

print*, 
end do 

, , 

print 11, Pmax,layer, point 

print 17, angle_opt(1),angle_opt(2),angle_opt(3),angle_opt(4) 

17 format(lx,'Optimum angles:',4g14.6/) 

WRITE(6,*) Z,Z,Z 
STOP 
END IF 

**************** F I VEL AYE R S ************************* 
I F (NL.EQ.S) THEN 
Pmax=1.e09 

do mL=l, nl 
do j=l, kr(ml)+l 

rho = radius(mL,j)/RAD(mL) 
THETA(1)=P!/4. 
THETA(2)=P!/4. 

THETA(3)=PI/4. 

THETA(4)=PI/4. 

THETA(S)=P!/4. 
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555 NA=l 
RES=GOLDEN(AX,BX,CX,RATIO,TOL,XHIN) 

Pmax1=RATIO(XHIN)*(-1.) 

NA=2 
RES=GOLDEN(AX,BX,CX,RATIO,TOL,XHIN) 

NA=3 
RES=GOLDEN(AX,BX,CX,RATIO,TOL,XHIN) 

NA=4 
RES=GOLDEN(AX,BX,CX,RATIO,TOL,XHIN) 

NA=5 
RES=GOLDEN(AX,BX,CX,RATIO,TOL,XHIN) 

Pmax2=RATIO(XHIN)*(-1.) 

DELT=ABS(PHAX2-PHAX1) 

IF(DELT.LE.O.00000001) then 

Pcr(ml,j)=Pmax2 

goto 127 
else 

GOTO 555 

end if 
127 continue 

PRINT 12, radius(ml,j), Pcr(ml,j),THETA(1)*180./PI, 

# THETA(2)*180./PI,THETA(3)*180./PI,THETA(4)*180./PI, 

# THETA(5)*180./PI 
if(Pcr(ml,j).lt.Pmax) then 

Pmax=Pcr(ml,j) 

angle_opt(1)=theta(1)*180./pi 
angle_opt(2)=theta(2)*180./pi 
angle_opt(3)=theta(3)*180./pi 
angle_opt(4)=theta(4)*180./pi 
angle_opt(5)=theta(5)*180./pi 
layer=ml 
point=j 

end if 

end do 

print*, 
end do 

, , 
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print 11, Pmax,layer, point 
print 18,angle_opt(1),angle_opt(2),angle_opt(3),angle_opt(4), 

# angle_opt (5) 
18 format(lx,'Optimum angles:',5g14.6/) 

WRITE(6,*) Z,Z,Z 

STOP 
END IF 

12 FORMAT(lX,10G14.6) 

stop 
end 

******************************************************************* 

Function ratio(ANGLE) 

IMPLICIT NONE 
COMMON/RT/CRITICAL 

COMMON /DT/El(5),E2(5),E3(5),G12(5),V12(5),Rad(O:5), 

# P(O:5),X(5),Xpr(5), 
# Y(5),Ypr(5),SS(5),F,KR(5),NL 

COMMON/COMPLEX/A(5,4,4),BETAll(5),BETA22(5),BETA14(5), 
# BETA44(5),BETA24(5),BETA12(5),K(5),Gl(5), 
# GK(5),G_K(5),C(5),KAPPA1(5),KAPPA2(5) 

COMMON/COMPL_SYST_CF/CM(5),Ul(5),U2(5),Fl(5),F2(5) 

COMMON/SY/DELTAlm.DELTA2m.LAMBDAm.LAMBDAml. 
# DELTAlml.DELTA2ml 

COMMON/Z_CF/Zl(5).Z2(5).Z3(5),L 
COMMON/INT_CN/ CONST 

COMMON/N_COEF/Nl(4).Nc(4) 

COMMON/ANL/THETA(5).NA 

C COMMON/OPT/Xmin 
REAL*8 El.E2,E3.G12,V12.RAD,P.THETA,X,Xpr,Y.Ypr. 

# SS.F.A.BETA11.BETA22.BETA44. 
# BETA14.BETA24,K,Gl,GK.G_K,C,KAPPA1.KAPPA2,beta12 

REAL*8 CM,Ul.U2,Fl,F2,Zl.Z2,Z3,L,DELTAlm(4).DELTA2m(4), 
# LAMBDAm(4),DELTAlml(4),DELTA2ml(4).LAMBDAml(4). 
# CONST,Nl.Nc.ANGLE.RATIO.CRITICAL.STEP.XTOL.FTOL 

INTEGER*2 KR,NL.NA.I.NLIM 
EXTERNAL FAILURE 

$DEBUG 

************************************************************************ 
theta(NA)=angle 
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************************************************************************ 
CALL COMPL_CF 

**************************************************************** 
*** I terative procedure, Muller ' s method. 
*** External function is failure criterion . 

p(O) = 500 .0 
STEP = 490 .0 
XTOL = 0.000001 
FTOL = 0.000001 

NLIM = 100 

1=0 

CALL HULLR(Failure,p(O),STEP,XTOL,FTOL,NLIM,I) 

**************************************************************** 
RATIO=p(O) * (-1.) 

return 

END 

**************************************************************** 

SUBROUTINE COMPL_CF 

IMPLICIT NONE 

COMMON/ANL/THETA(5),FLAG 
COMMON /DT/El(5),E2(5),E3(5) ,G12(5),V12(5),Rad(0:5), 

• P(0:5),X(5),Xpr(5), 
• Y(5),Ypr(5),SS(5),F,KR(5),NL 

COMMON/COMPLEX/A(5,4,4),BETAll(5),BETA22(5),BETA14(5), 

• BETA44(5),BETA24(5),BETA12(5),K(5),Gl(5), 
• GK(5) ,G_K(5) ,C(5) ,KAPPA1(5),KAPPA2(5) 

COMMON/COMPL_SYST_CF/CM(5),Ul(5),U2(5),Fl(5),F2(5) 
REAL*8 El,E2,E3,G12,V12,RAD,P,THETA,X,Xpr,Y,Ypr, 

• SS,F,CN,S,C2,C3,C4,S2,S3,S4,A,BETAll,BETA22,BETA44, 
• BETA14,BETA24,K,Gl , GK , G_K,C,KA~PA1,KAPPA2,pi,beta12 

REAL*8 CM,Ul,U2,Fl,F2 

INTEGER*2 KR,NL,M,flag 

PARAMETER (PI=3.1415926535897932385) 
$ DEBUG 

* 1 - Z; 2 - THETA; 3 - RAD. 
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$DEBUG 

DO M =1, NL 
*** COMPONENTS OF COMPLIANCE MATRIX *** 

# 

cn=cos(THETA(M)) 
s=sin(THETA(M)) 

c2=cn*cn 

c3=c2*cn 

c4=c2*c2 

s2=s*s 

s3=s2*s 

s4=s2*s2 
a(m,3,3)=c4/E3(M)+(1./G12(M)-2.*v12(m)/E3(M))*s2*c2+s4/E2(M) 
a(m,2,2)=s4/E3(M)+(1./G12(M)-2 .• v12(m)/E3(M))*s2*c2+c4/E2(M) 

a(m,2,3)=(1./E3(M) +1./E2(M)+2.*v12(m)/E3(M)-

1./G12(M))*s2*c2-v12(m)/E3(M) 
a(m,4,4)=4.*(1./E3(M)+1./E2(M)+2.*v12(m)/E3(M)-

1./G12(M))*s2*c2+1./G12(M) 

a(m,3,4)=(2.*(s2/E2(M)-c2/E3(M))+(1./G12(M)-

# 2.*v12(m)/E3(M))*(c2-s2))*s*cn 
a(m,2,4)=(2.*(c2/E2(M)-s2/E3(M))-(1./G12(M)-

# 2.*v12(m)/E3(M))*(c2-s2))*s*cn 

a(m,l,3)=-(v12(m)*s2/E2(M)+v12(m)*c2/E3(M)) 

a(m,l,2)=-(v12(m)*c2/E2(M)+v12(m)*s2/E3(M)) 
a(m,l,l)=l./El(M) 
a(m,l,4)=2.*(v12(m)/E3(M)-v12(m)/E2(M))*s*cn 

a(m,3,l)=a(m,l,3) 

a(m,2,l)=a(m,l,2) 

a(m,4,l)=a(m,l,4) 

a(m,4,2)=a(m,2,4) 
a(m,4,3)=a(m,3,4) 
a(m,3,2)=a(m,2,3) 

*********************************************************** 
beta11(m)=a(m,l,l)-(a(m,l,3)*a(m,l,3))/a(m,3,3) 
beta44(m)=a(m,4,4)-(a(m,3,4)*a(m,3,4))/a(m,3,3) 
beta14(m)=a(m,l,4)-(a(m,l,3)*a(m,3,4))/a(m,3,3) 
beta22(m)=a(m,2,2)-(a(m,2,3)*a(m,2,3))/a(m,3,3) 

beta24(m)=a(m,2,4)-(a(m,2,3)*a(m,3,4))/a(m,3,3) 

beta12(m)=a(m,l,2)-(a(m,l,3)*a(m,2,3))/a(m,3,3) 

k(m)=SQRT«betall (m)*beta44(m)-beta14(m)*beta14(m))/ 
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• (beta22(m)*beta44(m)-beta24(m)*beta24(m») 

gl(m)=(beta14(m)+beta24(m»/beta44(m) 
gk(m)=(beta14(m)+k(m)*beta24(m»/beta44(m) 

g_k(m)=(beta14(m)-k(m)*beta24(m»/beta44(m) 

c(m)=Rad(m-l)/Rad(m) 

*********************************************************** 
kappal(m)=«a(m.l.3)-a(m.2.3»*beta44(m)-a(m.3.4)*(beta14(m)­

I beta24(m»)/(beta22(m)*beta44(m)-beta24(m)**2-(betall(m)* 

I beta44(m)-beta14(m) **2» 

kappa2(m)=«a(m.l.3)-a(m.2.3»*(beta14(m)+beta24(m»-a(m.3.4)* 
I (betall(m)-beta22(m»)/(beta22(m)*beta44(m)-

I beta24(m)**2-(betall(m)*beta44(m)-beta14(m)**2» 

******************************************************************** 
CM(m) = 1.-c(m)**(2.*k(m» 

Ul(m)=(l.-c(m)**(k(m)+l.»/CM(m) 

U2(m)=(1.-c(m)**(k(m)-1.»/CM(m) 
fl(m) = c(m)**(k(m)+l.) 

f2(m) = c(m)**(k(m)-l.) 
END DO 

RETURN 
END 

********************************************************************* 

SUBROUTINE CONSTl 
IMPLICIT NONE 

COMMON/INT_CN/ CONST 

COMMON/Z_CF/Zl(5).Z2(5).Z3(5).L 

COMMON /DT/El(5).E2(5).E3(5).G12(5).V12(5).Rad(O:5). 
I P(O:5).X(5).Xpr(5). 

I Y(5).Ypr(5).SS(5).F.KR(5).NL 

REAL*8 El.E2.E3.G12.V12.Rad.P.THETA.X.Xpr. 
• Y.Ypr.SS.F.Zl.Z2.Z3.L 

REAL*8 CONST 

INTEGER*2 NL.KR 

CONST= -«-L+Z2(1)*P(O)+Z3(1)*P(1»/Zl(1» 

RETURN 

END 

************************************************************************ 
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SUBROUTINE CONST_CF 
IMPLICIT NONE 
COMMON/COMPLEX/A(5,4,4),BETAll(5),BETA22(5),BETA14(5), 

# BETA44(5),BETA24(5),BETA12(5),K(5),Gl(5), 
# GK(5),G_K(5),C(5),KAPPA1(5),KAPPA2(5) 

COMMON/COMPL_SYST_CF/CM(5),Ul(5),U2(5),Fl(5),F2(5) 
COMMON /DT/El(5),E2(5),E3(5),G12(5),V12(5),Rad(O:5), 

# P(O:5),X(5),Xpr(5), 
# Y(5),Ypr(5),SS(5),F,KR(5),NL 

COMMON/Z_CF/Zl(5),Z2(5),Z3(5),L 

REAL*8 A,BETAll,BETA22,BETA14,BETA44,BETA24,BETA12,K,Gl, 
# GK,G_K,C,KAPPA1,KAPPA2,X,Xpr 

REAL*8 Al,A2,Bl,B2,B3,Zl,Z2,Z3,L,PI,RAD,P,El,E2,E3,G12, 
# V12,Y,Ypr,SS,F,Ul,U2,Fl,F2,CM 

INTEGER*2 KR,NL,M 
PARAMETER (PI=3.1415926535897932385) 

DO m=l,NL 

Al=rad(m)**2-rad(m)**(k(m)+1.)*rad(m-l)**(1.-k(m» 

A2=rad(m)**2-rad(m)**(1.-k(m»*rad(m-l)**(k(m)+1.) 

Bl=a(m,1,3)-a(m,3,4)*g_k(m)-a(m,2,3)*k(m) 
B2=a(m,1,3)-a(m,3,4)*gk(m)+a(m,2,3)*k(m) 
B3=-a(m,1,3)+a(m,3,4)*g_k(m)+a(m,2,3)*k(m) 

Zl(m)=O.5*(rad(m)**2-rad(m-l)**2)*(1-(1./a(m,3,3»* 

# (kappal(m)*(a(m,1,3)+a(m,2,3»-kappa2(m)*a(m,3,4»)+ 

$ «U2(m)*c(m)**(k(m)+1.)*kappal(m»/(a(m,3,3)*(1.-k(m»»* 
$ Al*Bl+«Ul(m)*kappal(m»/(a(m,3,3)*(1.+k(m»»* 
$ A2*B2 

Z2(m)=«c(m)**(1.+k(m»)/(CM(m)*a(m,3,3)*(1.-k(m»»* 
$ Al*Bl-«c(m)**(1.+k(m»)/(CM(m)*a(m,3,3)*(1.+k(m»»* 
$ A2*B2 

Z3(m)=«c(m)**(2.*k(m»)/(CM(m)*a(m,3,3)*(1.-k(m»»* 
$ Al*B3+(1/(CM(m)*a(m,3,3)*(1.+k(m»»*A2*B2 

end do 
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RETURN 
END 

********************************************************************* 

c 

c 

c 

SUBROUTINE CONST_ML 
IMPLICIT NONE 
COMMON/N_COEF/N1(4),Nc(4) 
COMMON/INT_CN/ CONST 
COMMON/Z_CF/Z1(5),Z2(5),Z3(5),L 
COMMON /DT/E1(5),E2(5),E3(5),G12(5),V12(5),Rad(0:5), 

I P(0:5),X(5),Xpr(5), 
I Y(5),Ypr(5),SS(5),F,KR(5),NL 

REAL*8 E1,E2,E3,G12,V12,Rad,P,X,Xpr, 
I y,Ypr,SS,F,Zl,Z2,Z3,L 

REAL*8 CONST,N1,Nc,S2,SZl,Sl 

INTEGER*2 NL,INX,KR,M 

S2=0. 
SZl=O. 
Sl=O. 

print* ,n1(1) 
print* ,ncO) 
pause 

DO M=l,NL-1 
Sl=Sl+N1(m)*(Z2(M+1)+Z3(M» 
S2=S2+NC(M)*(Z2(M+1)+Z3(M» 

END DO 

DO M=l,NL 
SZl=SZl+Zl(m) 
END DO 

************************************************************* 
CONST=-((-L+Z2(1)*p(0)+Z3(NL)*p(NL)+Sl)/ 

/ (SZl+S2» 

************************************************************* 
RETURN 
END 

************************************************************* 

INTERFACE TO FUNCTION SYSTEM[C] (STRING) 
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INTEGER*2 SYSTEM 
CHARACTER*l STRING[REFERENCE] 

END 
SUBROUTINE DATA 

********************************************************************* 

* NL - NUMBER OF LAYERS * 

* El - MODULUS OF ELASTICITY IN R-DIRECTION * 

* E2 - MODULUS OF ELASTICITY IN THETA-DIRECTION * 

* E3 - MODULUS OF ELASTICITY IN Z-DIRECTION * 

* V12 - POISSON'S RATIO * 

* A - RADII OF A CYLINDER * 

* P - PRESURE * 

* F -AXIAL FORCE * 

* THETA - INITIAL ANGLE * 
* D_THETA - DELTA_THETA * 
********************************************************************* 

• 
• 

$debug 

IMPLICIT NONE 
COMMON /DT/El(5),E2(5),E3(5),G12(5),V12(5),A(0:5), 

P(0 :5),X(5),Xpr(5), 

Y(5),Ypr(5),S(5),F,KR(5),NL 

REAL*8 El,E2,E3,G12,v12,A,P,F,X,Xpr,Y,Ypr,S 
INTEGER*2 SYSTEM,CLEAR,NL,I,KR 
CHARACTER*62 fname 

CLEAR = SYSTEM('CLS'C) 
WRITE(*,900) 

900 FORMAT(/////10X,' INPUT FILE : '\) 
READ (*,910) fname 

CLEAR = SYSTEM('CLS'C) 
910 FORMAT(A) 

OPEN(unit = 6,FILE= FNAME, status='OLD') 
READ(6,'(/I4)')NL 

if(nl.lt.l.or.nl.gt.5) then 

print*,' You"re vrong about number of layers !' 

stop 
end if 

READ(6,'(/3G15.6)') (El(I),E2(I),E3(I),I=l,NL) 
READ(6,'(/10G15.6)') (G12(I),I=l,NL) 

READ(6,'(/10G15.6)') (v12(I),I=l,NL) 
READ(6,'(/11G12.5)') (A(I),I=O,NL) 
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READ(6.'(/11G12 .5)') (P(I).I=O.NL) 

READ(6.'(/G12.5)') F 
READ(6.'(/10I4)') (KR(I).I=l.NL) 
READ(6.'(/10G12 .5)') (X(I).I=l.NL) 

READ(6.'(/10G12.5)') (Xpr(I).I=l.NL) 

READ(6.'(/10G12.5)') (Y(I).I=l.NL) 
READ(6.'(/10G12.5)') (Ypr(I).I=l.NL) 

READ(6.'(/10G12.5)') (S(I).I=l.NL) 

CLOSE(unit=6.status='KEEP') 

RETURN 
END 

******************************************************************* 

# 

# 

REAL*8 FUNCTION FAILURE(xP) 
IMPLICIT NONE 

COMMON/RHML/RHO.M 
COMMON /DT/El(5).E2(5).E3(5).G12(5).V12(5).A(O:5). 

P(O:5).X(5).Xpr(5). 

Y(5).Ypr(5).S(5).F.KR(5).NL 

********************************************************************** 
COMMON/FCNST/Frr(5).Fzz(5).Fss(5).Fr(5).Fz(5).Frz(5).Frt(5) 

COMMON/STRTR/Sgr.Sgl.Sg2.Tau12 

********************************************************************** 

$DEBUG 

REAL*8 Frr.Fzz.Fss.Fr.Fz.Frz.Frt.SGR.SG1.SG2.TAU12.RHO 

real*8 p.el.e2.e3.g12.v12.a,x.xpr,y,ypr,s,f.kr,xp 
INTEGER*2 M,nl 
p(O)=xp 

CALL CONST_CF 

IF (NL .EQ.l) THEN 
CALL CONST1 
ELSE 
CALL SYST_CF 
CALL N_CF 

CALL CONST_ML 

END IF 
CALL STRESS 

************************************************************************** 
FAILURE=(Fzz(M) *SG1*SG1+Frr(M)* (SGR*SGR+SG2*SG2) + 

2 Fss(M)*TAU12*TAU12+2.*Frz(M)*(SGR+SG2)*SG1+ 
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************************************************************************** 
RETURN 

END 

********************************************************************* 

FUNCTION GOLDEN(AX.BX.CX.F.TOL.XMIN) 
IMPLICIT NONE 
REAL*8 AX.BX.CX.F.TOL.XHIN.X1.X2.R.C.XO.X3.F1.F2.FO.F3 

PARAMETER (R=.61803399.C=.38196602) 
XO=AX 
X3=CX 
IF(ABS(CX-BX).GT.ABS(BX-AX))THEN 

Xl=BX 
X2=BX+C*(CX-BX) 

ELSE 
X2=BX 
X1=BX-C*(BX-AX) 

ENDIF 
Fl=F(Xl) 
F2=F(X2) 

1 IF(ABS(X3-XO).GT.TOL*(ABS(X1)+ABS(X2)))THEN 
IF(F2.LT.F1)THEN 

XO=X1 
Xl=X2 
X2=R*Xl+C*X3 
FO=F1 
F1=F2 
F2=F(X2) 

ELSE 
X3=X2 
X2=Xl 
Xl=R*X2+C*XO 
F3=F2 
F2=Fl 
Fl=F(Xl) 

ENDIF 
GOTO 1 , 
ENDIF 
IF(Fl.LT.F2)THEN 

GOLDEN=F1 
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XMIN=X1 

ELSE 
GOLDEN=F2 

XMIN=X2 

ENDIF 

RETURN 
END 

********************************************************************* 

C -------------------------------------------------------------
C 

SUBROUTINE MULLR(FCN,XR,H,XTOL,FTOL,NLIM,I) 

IMPLICIT NONE 

C--------------------------------------------------------------
C 

C SUBROUTINE KULLR: 

C This subroutine finds the root of F(X) = 0 by 

C quadratic interpolation on three points -

C Muller's method. 

C------------------------------------------------------------------
C PARAMETERS ARE : 

C 

C 

c 

c 

C 

C 

C 

C 

FCN -

XR 

H 

Function that computes values for f(x), must be 

declared external in calling program . it has one 

argument, X. 

Initial approximation to the root. Used to begin 

iterations . also returns the value of the root. 

Displacement from x used to begin calculations. 

The first quadratic is fitted at F(X),F(X+H),F(X-H). 

C XTOL,FTOL -Tolerance values for X, F(X) to terminate iterations. 
C 

C 

C 

C 

C 

I 
I 

I 
I 

= 

= 
= 

1 

2 
-1 

A signal for how routine terminated. 
Meets tolerance for x values. 
Meets tolerance for F(X) . 
NLIM exceeded. 

C When subroutine is called, the value of I indicates whether to 

C print each value or not. 1=0 means print them, I . NE.O means don't. 
C 

C--------------------------------------------------------_________ _ 
C 

REAL*8 FCN,XR,H,XTOL,FTOL 
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C 

INTEGER*2 NLIM,I,J 
REAL*8 XO,Xl,X2,FO,Fl,F2,Hl,H2,G,A,B,C,DISC,FR,DELX 

CHARACTER*l Z 

Z = CHAR(7) 

open(6,file='con') 

C-------------------------------------------------------------------
C 

C Set initial values 

C 

$ DEBUG 

XO = XR 
Xl = XR + H 

X2 = XR - H 
c print*,'xO=',xO 

c print*,'xl=',xl,' x2=',x2 
Fl = FCN(Xl) 

F2 = FCN(X2) 

C print*,'fl ~ f2',fl,f2 
C pause 

C 

IF«F2 .LT . 0.0) .AND. (Fl .GT. 0 .0» THEN 
CONTINUE 

ELSE 

WRITE(6,*) Z,Z,Z 

STOP , Function has the same sign at Xl t X2! ' 
END IF 

C Begin iterations 
C 

DO 20 J=l,NLIM 
FO = FCN(XO) 
Fl = FCN(Xl) 
F2 = FCN(X2) 

Hl = Xl - XO 
H2 = XO - X2 

G = H2/Hl 

A = (Fl*G - FO*(1.0+G) + F2)/(G*Hl*Hl*(1.0 + G» 
B = (Fl - FO - A*Hl*Hl)/Hl 
C = FO 

DISC = SQRT(B*B - 4.0*A*C) 
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IF (B .LT. 0.0) DISC = -DISC 

C 

C Find root of quadratic: A * V-2 + B*V + C = 0 

C 

DELX = (2.0*C)/(B + DISC) 

C 

C UPDATE XR 

C 

XR= XO - DELX 

FR = FCN(XR) 
c IF (I .EQ. 0) PRINT 199. J.XR.FR 

C 

C------------------------------------------------------------------
C 

C Check stopping criteria 

C 

IF (ABS(DELX) .LE. XTOL) THEN 

1=1 
c PRINT 202. J.XR.FR 

C 

RETURN 

END IF 

IF (ABS(FR) .LE. FTOL) THEN 

1=2 

c PRINT 203. J.XR.FR 
RETURN 
END IF 

C 

C-----------------------------------------------------------------------
C 

C Select the three points for the next iteration. When XR .GT. XO. choose 
C XO. Xl t XR. BUT WHEN XR .LT. 0 CHOOSE XO. X2. t XR. 
C 

IF (XR .LT. XO) THEN 
Xl = XO 
XO = XR 

ELSE IF (XR .GT. XO) THEN 
X2 = XO 

XO = XR 
END IF 

20 CONTINUE 
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C 

C-----------------------------------------------------------------------
C 

C When loop is normally terminated, NLIM is exceeded 

C 

C 

I = -1 

PRINT 200, NLIM,XR,FR 

RETURN 

C-------------------------------------------------------------------------
C 

199 FORMAT(' At iteration ',I3,3X,' X =',E12.S,4X,'F(X) =',E12.S) 

200 FORMAT(/' Tolerance not met after ',14,' iterations X = ' 
+ E12 .S,' F(X) =',E12.S) 

202 FORMAT(/' Tolerance met in ',12, , iterations X = ',E12.S, 

+ F(X) =' E12.S) 

203 FORMAT(/' F tolerance met in ',14,' iterations X =',E12.S, 
+ ' F(X) =' E12.S) 

END 

********************************************************************** 

SUBROUTINE N_CF 

IMPLICIT NONE 
COMMON/N_COEF/Nl(4),Nc(4) 

COMMON /DT/El(S),E2(S),E3(S),G12(S),V12(S),Rad(0:S), 
, P(O:S),X(S),Xpr(S), 

, Y(S),Ypr(S),SS(S),F,KR(S),NL 

COMMON/SY/DELTAlm(4),DELTA2m(4),LAHBDAm(4),LAMBDAml(4), 
, DELTAlml(4),DELTA2ml(4) 

REAL*8 Nl,Nc,El,E2,E3,G12,V12,Rad,P,X,Xpr, 
, Y,YPR,SS,F,DELTAlm,DELTA2m,LAHBDAm, 
$ DELTAlml,DELTA2ml,LAMBDAml,b(4,4),Det 

INTEGER*2 KR,NL 

**************** 2 LAY E R S ************************************* 
IF (NL.EQ .2) THEN 

Nl(l)= -«LAMBDAm(1)*p(0)+LAHBDAml(2)*p(2))/ 
/ (DELTA2m(1)+DELTA2ml(2))) 

Nc(1)=-«DELTAlm(1)-DELTAlml(2))/(DELTA2m(1)+DELTA2ml(2))) 
END IF 

**************** 3 LAY E R S ************************************* 
IF (NL.EQ.3) THEN 
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b(1,1)=delta2m(1)+delta2m1(2) 

b(1,2)=lambdam1(2) 

b(2,1)=lambdam(2) 

b(2,2)=delta2m(2)+delta2m1(3) 

Det=b(1,1)*b(2,2)-b(1,2)*b(2,1) 

N1(1)=(-p(O)*lambdam(1)*b(2,2)+p(3)*lambdam1(3)*b(1,2»/Det 
Nc(1)=(b(1,2)*(delta1m(2)-delta1m1(3»-b(2,2)*(delta1m(1)-

# delta1m1(2»)/Det 

N1(2)=(-p(3)*lambdaml(3)*b(1.1)+p(O)*lambdam(1)*b(2.1»/Det 

Nc(2)=(b(2,1)*(deltalm(1)-deltalml(2»-b(1.1)*(deltalm(2)-

# deltalml(3»)/Det 

END IF 

**************** 4 LAY E R S ************************************* 
IF (NL.EQ.4) THEN 

b(1.1)=delta2m(1)+delta2ml(2) 

b(1.2)=lambdaml(2) 

b(2.1)=lambdam(2) 

b(2.2)=delta2m(2)+delta2ml (3) 

b(2,3)=lambdaml(3) 

b(3,2)=lambdam(3) 

b(3,3)= delta2m(3)+delta2ml(4) 

Det=b(1.1)*b(2.2)*b(3.3)-b(3.2)*b(2.3)*b(1.1)-

* b(2.1)*b(1.2)*b(3.3) 

Nl(1)=(p(O)*lambdam(1)*(b(2.3)*b(3.2)-b(2.2)*b(3,3»-

* p(4)*lambdaml(4)*b(1.2)*b(2.3»/Det 

Nc(1)=(-(deltalm(3)-delta1ml(4»*b(1.2)*b(2.3)+ 

* (delta1m(1)-delta1ml(2»*(b(2.3)*b(3.2)-b(2.2)*b(3.3»+ 

* (delta1m(2)-delta1ml(3»*b(1.2)*b(3.3»/Det 

N1(2)=(p(4)*lambdam1(4)*b(1,1)*b(2.3)+ 

* p(O)*lambdam(1)*b(2.1)*b(3.3»/Det 

Nc(2)=«deltalm(3)-deltalml(4»*b(1.1)*b(2.3)-

* (deltalm(2)-deltalml(3»*b(1.1)*b(3.3)+ 

* (delta1m(1)-delta1ml(2»*b(2.1)*b(3,3»/Det 

Nl(3)=(-p(O)*lambdam(1)*b(2.1)*b(3.2)+ 

* p(4)*lambdaml(4)*(b(1.2)*b(2.1)-b(1.1)*b(2.2»)/Det 
Nc(3)=(-(deltalm(1)-deltalml(2»*b(2.1)*b(3.2)+ 

* (deltalm(3)-deltalml(4»*(b(1.2)*b(2,1)-b(1,1)*b(2.2»+ 

* (deltalm(2)-deltalml(3»*b(1.1)*b(3,2»/Det 
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END IF 
**************** 5 LAY E R S ************************************* 

IF (NL.EQ.5) THEN 
b(l,l)=delta2m(1)+delta2ml(2) 

b(l,2)=lambdaml(2) 

b(2,l)=lambdam(2) 

b(2,2)=delta2m(2)+delta2ml(3) 

b(2,3)=lambdaml(3) 

b(3,2)=lambdam(3) 

b(3,3)=delta2m(3)+delta2ml(4) 

b(3,4)=lambdaml(4) 

b(4,3)=lambdam(4) 

b(4,4)=delta2m(4)+delta2ml (5) 

Det=b(l,2)*b(2,l)*b(3,4)*b(4,3)-b(l,l)*b(2,2)*b(3,4)*b(4,3)-

* b(l,l)*b(2,3)*b(3,2)*b(4,4)-b(l,2)*b(2,l)*b(3,3)*b(4,4)+ 

* b(l,l)*b(2,2)*b(3,3)*b(4,4) 

* 
* 

Nl(1)=(p(5)*lambdaml(5)*b(l,2)*b(2,3)*b(3,4)+ 

p(O)*lambdam(1)*(b(2,2)*b(3,4)*b(4,3)+ 

b(2,3)*b(3,2)*b(4,4)-b(2,2)*b(3,3)*b(4,4»)/Det 

Nc(1)=«deltalm(4)-deltalml(5»*b(l,2)*b(2,3)*b(3,4)-

* (deltalm(2)-deltalml(3»*(b(l,2)*b(3,4)*b(4,3)-

* b(l,2)*b(3,3)*b(4,4»+(deltalm(1)-deltalml(2»* 

* (b(2,2)*b(3,4)*b(4,3)+b(2,3)*b(3,2)*b(4,4)-

* b(2,2)*b(3,3)*b(4,4»-(deltalm(3)-deltalml(4»* 

* b(l,2)*b(2,3)*b(4,4»/Det 

Nl(2)=(-p(5)*lambdaml(5)*b(l,l)*b(2,3)*b(3,4)+ 

* p(O)*lambdam(1)*(b(2,l)*b(3,3)*b(4,4)-

* b(2,l)*b(3,4)*b(4,3»)/Det 

Nc(2)=(-(deltalm(4)-deltalml(5))*b(l,l)*b(2,3)*b(3,4)+ 
* (deltalm(2)-deltalml(3))*(b(l,l)*b(3,4)*b(4,3)-

* b(l,l)*b(3,3)*b(4,4»+(deltalm(3)-deltalml(4»* 
* b(l,l)*b(2,3)*b(4,4)-(deltalm(1)-deltalml(2»* 

* (b(2,l)*b(3,4)*b(4,3)-b(2,l)*b(3,3)*b(4,4»)/Det 

Nl(3)=(p(5)*lambdaml(5)* 

* (b(l,l)*b(2,2)*b(3,4)-b(l,2)*b(2,l)*b(3,4»-

* p(O)*lambdam(1)*b(2,l)*b(3,2)*b(4,4»/Det 

Nc(3)=«deltalm(4)-deltalml(5»*(b(l,l)*b(2,2)*b(3,4)-

* b(l,2)*b(2,l)*b(3,4»+ 
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* (deltalm(2)-deltalml(3))*b(1,1)*b(3,2)*b(4,4)-

* (deltalm(1)-deltalml(2))*b(2,1)*b(3,2)*b(4,4)+ 

* (deltalm(3)-deltalml(4))* 
* (b(1,2)*b(2,1)*b(4,4)-b(1,1)*b(2,2)*b(4,4)))/Det 

Nl(4)=(p(5)*lambdaml(5)*(b(1,1)*b(2,3)*b(3,2)+ 
* b(1,2)*b(2,1)*b(3,3)-b(1,1)*b(2,2)*b(3,3))+ 

* p(O)*lambdam(1)*b(2,1)*b(3,2)*b(4,3))/Det 

Nc(4)=«deltalm(4)-deltalml(5))*(b(1,1)*b(2,3)*b(3,2)+ 

* b(1,2)*b(2,1)*b(3,3)-b(1,1)*b(2,2)*b(3,3))-

* (deltalm(2)-deltalml(3))*b(1,1)*b(3,2)*b(4,3)+ 

* (deltalm(1)-deltalml(2))* 
* b(2,1)*b(3,2)*b(4,3)-(deltalm(3)-deltalml(4))* 
* (b(1 ,2)*b(2,1)*b(4,3)-b(1,1)*b(2,2)*b(4,3)))/Det 

END IF 

RETURN 

END 

******************************************************************** 

SUBROUTINE STRESS 

IMPLICIT NONE 
COMMON/RT/CRITICAL 

COMMON/ANL/THETA(5),FLAG 

COMMON/RHML/RHO,ML 
COMMON /DT/El(5),E2(5),E3(5),G12(5),V12(5),Rad(O:5), 

• P(O:5),X(5),Xpr(5), 
• Y(5),Ypr(5),SS(5),F,KR(5),HL 

COMMON/N_COEF/Nl(4),Nc(4) 
COMMON/rNT_CN/ CONST 
COMHON/COHPL_SYST_CF/CH(5),Ul(5),U2(5),Fl(5),F2(5) 

COMHON/COMPLEX/A(5,4,4),BETAll(5),BETA22(5),BETA14(5), 

• BETA44(5),BETA24(5),BETA12(5),K(5),Gl(5), 
• GK(5),G_K(5),C(5),KAPPA1(5),KAPPA2(5) 

********************************************************************** 
COMHON/FCHST/Frr(5),Fzz(5),Fss(5),Fr(5),Fz(5),Frz(5),Frt(5) 

COMHON/STRTR/Sgr,Sgl,Sg2,Tau12 

********************************************************************** 
El,E2,E3,G12,V12,Rad,P,THETA,X,Xpr,CRITICAL, 

Y,Ypr,SS,F,H,DH(5),RADIUS(5,22),Nl,NC,CONST,Frr, 
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# 

# 

# 

Fzz,Fss,Fr,Fz,Frz,Frt,rho,DISPL 
REAL*8 A,BETAll ,BETA22 ,BETA14,BETA44,BETA24,BETA12,K ,Gl , 

GK,G_K,C,KAPPA1,KAPPA2,CM,Ul,U2,Fl,F2,SGR,SGT,SGZ, 

TAUTZ,SG1,SG2,TAU12,RH,ETA,Yl(5) ,Y2(5) ,RESULT 
REAL*8 XR,STEP,XTOL,FTOL,FAILURE 
INTEGER*2 ,KR,NL,M,J,flag,MMM,ML,I,NLIM 
EXTERNAL FAILURE 

***************************************************************** 
*** FOR C E S *** 
***************************************************************** 

DO M=l,NL-l 
p(M)=Nl(M)+Nc(M)*Const 
END DO 

***************************************************************** 
*** S T RES S E S *** 
***************************************************************** 

do m=l, nl 
Frr(m) = 1./(Y(m)*Ypr(m» 
Fzz(m) = 1./(X(m)*Xpr(m» 
Fss(m) = 1./(SS(m)*SS(m» 
Fr(m) = 1./Y(m) - 1./Ypr(m) 
Fz(m) = 1./X(m) - 1./Xpr(m) 
Frz(m) = -O.5*Sqrt(Frr(m)*Fzz(m» 
Frt(m) = -O .5*Frr(m) 

Yl(m) = (p(m-l)*c(m)**(k(m)+1.)-p(m»/(1.-c(m)**(2.*k(m») 

Y2(m) = (p(m)*c(m)**(k(m)-1 . )-p(m-l»/(1.-c(m)**(2.*k(m») 
end do 

Sgr=Yl(mL)*rho**(k(mL)-1.)+Y2(mL)*c(mL)**(k(mL)+1.)* 
# rho**(-k(mL)-l.)+Const*kappal(mL)* 
# (l.-Ul(mL)*rho**(k(mL)-l . )-
# U2(mL)*c(mL)**(k(mL)+1.)*rho**(-k(mL)-1.» 

Sgt = Yl(mL)*k(mL)*rho**(k(mL)-1.)-Y2(mL)*k(mL)* 
# c(mL)**(k(mL)+l.)*rho**(-k(mL)-l.)+ 

# Const*kappal(mL)*(l.-Ul(mL)*k(mL)*rho**(k(mL)_l.)+ 

# U2(mL)*k(mL)*c(mL)**(k(mL)+1.)*rho**(-k(mL)-1.» 
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# c(mL)**(k(mL)+l.)*rho**(-k(mL)-l.)+ 

# Const*(-kappa2(mL)+kappal(mL)*(Ul(mL)* 
# gk(mL)*rho**(k~mL)-l.)+ 

# U2(mL)*g_k(mL)*c(mL)**(k(mL)+1.)*rho**(-k(mL)-1.») 

Sgz= Const-(1./a(ML,3,3»*(a(ML,l,3)*Sgr+a(ML,2,3)*Sgt+ 

# a(ML,3,4)*Tautz) 

C displ=A(ML,4,l)*SGR+A(ML,4,2)*SGT+A(ML,4,3)*SGZ+A(ML,4,4)*TAUTZ 

C PRINT*,'DISPL=',DISPL 

Sgl = Sgz*Cos(theta(mL»**2+Sgt*Sin(theta(mL»**2-

# Tautz*Sin(2.*theta(mL» 

Sg2 = Sgz*Sin(theta(mL»**2+Sgt*Cos(theta(mL»**2+ 

# Tautz*Sin(2.*theta(mL» 

Tau12= (Sgt-Sgz)*Sin(theta(mL})*Cos(theta(mL»-

# Tautz*Cos(2.*theta(mL» 

RETURN 
END 

********************************************************************* 

# 

# 

# 

# 

SUBROUTINE SYST_CF 

IMPLICIT NONE 
COMMON /DT/El(5),E2(5),E3(5),G12(5),V12(5),Rad(O:5), 

P(O:5),X(5),Xpr(5), 

Y(5),Ypr(5),SS(5),F,KR(5),NL 

COMMON/COMPLEX/A(5,4,4),BETAll(5),BETA22(5),BETA14(5), 
BETA44(5),BETA24(5),BETA12(5),K(5),Gl(5), 
GK(5),G_K(5),C(5),KAPPA1(5),KAPPA2(5) 

COMMON/COMPL_SYST_CF/CM(5),Ul(5),U2(5),Fl(5),F2(5) 
COMMON/SY/DELTAlm(4),DELTA2m(4),LAMBDAm(4),LAMBDAml(4), 

DELTAlml(4),DELTA2ml(4) 

REAL*8 A,BETAll,BETA22,BETA14,BETA44,BETA24,K,Gl,GK,G_K,C, 
# KAPPA1,KAPPA2,CM,Ul,U2,DELTAlm,DELTA2m, 
$ DELTAlml, 

# DELTA2ml,fl,f2,f3m(4),f4m(4),f5m(4), 

• f6m(4),f7m(4),f8m(4),f3ml(4),f4ml(4),LAMBDAml, 
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# fSml(4).f6ml(4).f7ml(4).f8ml(4).LAMBDAm 

REAL*8 Wlm(4).W2m(4).W3m(4). Wlml(4).W2ml(4).W3ml(4). 

# GAMMA24m(4).GAMMA24ml(4).El.E2.E3.G12.V12.RAD.P. 

# X.XPR.Y.YPR.SS.F.rho(S).beta12 

# 

INTEGER*2 M.NL.KR 

DO M=l.NL-l 

rho(m)=l. 
f3m(m) = rho(m)**(k(m)-l . ) 
f4m(m) = c(m)**(k(m)+l.)*rho(m)**(-k(m)-l.) 

fSm(m) = k(m)*rho(m)**(k(m)-l.) 
f6m(m) = k(m)*c(m)**(k(m)+l . )*rho(m)**(-k(m)-l.) 

f7m(m) = gk(m)*rho(m)**(k(m)-l.) 
f8m(m) = g_k(m)*c(m)**(k(m)+l.)*rho(m)**(-k(m)-l . ) 

Wlm(m) = 1.-Ul(m)*rho(m)**(k(m)-1.)­

U2(m)*c(m)**(k(m)+1 . )*rho(m)**(-k(m)-1.) 

W2m(m) = 1.-Ul(m)*k(m)*rho(m)**(k(m)-1.)+ 

# U2(m)*k(m)*c(m)**(k(m)+1 . )*rho(m)**(-k(m)-1.) 

W3m(m) = -kappa2(m)+kappal(m)*(Ul(m)*gk(m)* 

# rho(m)**(k(m)-1.)+U2(m)*g_k(m)*c(m)**(k(m)+1.)* 

# rho(m)**(-k(m)-l . ») 

gamma24m(m) = a(m.2.4)-(a(m.2.3)*a(m.3.4»/a(m.3.3) 

deltalm(m)=a(m.2.3)+W3m(m)*gamma24m(m)+kappal(m)* 
# (Wlm(m)*beta12(m)+W2m(m)*beta22(m)) 

delta2m(m)=beta12(m)*«f2(m)*f4m(m)-f3m(m»)/CM(m»-
# beta22(m)*«f2(m)*f6m(m)+fSm(m»/CM(m»+ 
# gamma24m(m)*«f7m(m)-f2(m)*f8m(m»/CM(m» 

$ 

$ 

lambdam(m)=beta12(m)*«fl(m)*f3m(m)-f4m(m»/CM(m»+ 
beta22(m)*«fl(m)*fSm(m)+f6m(m»/CM(m»­

gamma24m(m)*«fl(m)*f7m(m)-f8m(m»/CM(m» 
END DO 

DO M=2.NL 
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rho(m)=rad(m-l)/rad(m) 

f3ml(m) = rho(m)**(k(m)-l.) 
f4ml(m) = c(m)**(k(m)+l.)*rho(m)**(-k(m)-l.) 

f5ml(m) = k(m)*rho(m)**(k(m)-l . ) 

f6ml(m) = k(m)*c(m)**(k(m)+l.)*rho(m)**(-k(m)-l.) 

f7ml(m) = gk(m)*rho(m)**(k(m)-l.) 
f8ml(m) = g_k(m)*c(m)**(k(m)+l.)*rho(m)**(-k(m)-l.) 

Wlml(m) = 1.-Ul(m)*rho(m)**(k(m)-1 . )-

• U2(m)*c(m)**(k(m)+1.)*rho(m)**(-k(m)-1.) 

W2ml(m) = 1.-Ul(m)*k(m)*rho(m)**(k(m)-1.)+ 

• U2(m)*k(m)*c(m)**(k(m)+1.)*rho(m)**(-k(m)-1.) 

W3ml(m) = -kappa2(m)+kappal(m)*(Ul(m)*gk(m)* 

• rho(m)**(k(m)-1 . )+U2(m)*g_k(m)*c(m)**(k(m)+1.)* 

• rho(m)**(-k(m)-l.» 

gamma24ml(m) = a(m,2,4)-(a(m,2,3)* 

• a(m,3,4»/a(m,3,3) 

deltalml (m)=a(m,2,3)+W3ml(m)*gamma24ml(m)+kappal (m)* 

• (Wlml (m)*beta12(m)+W2ml (m)*beta22(m» 

$ 

$ 

delta2ml(m)=beta12(m)*«f4ml(m)-fl(m)*f3ml(m»/CM(m»­

beta22(m)*«fl(m)*f5ml(m)+f6ml(m»/CM(m»+ 

gamma24ml(m)*«fl(m)*f7ml(m)-f8ml(m»/CM(m» 

1 ambdam 1 (m)=beta12(m)*«f3ml (m)-f2(m)*f4ml(m»/CM(m»+ 

beta22(m)*«f5ml(m)+f2(m)*f6ml(m»/CM(m»­

gamma24ml(m)*«f7ml(m)-f2(m)*f8ml(m»/CM(m» 
END DO 

RETURN 
END 
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Routines for Continuosly Heterogeneous Cylinder 

PRO GRAMM SHELL 
COMMON /DT/E(3,10),NU(6,10),M(10),A(O:10),P(O:10),er,N,KR(10) 

COMMON /mat/mater,NAME 

REAL*8 C(20,20) ,alf(3,3,10),gam(2,2,10) ,gam_k(10),s(10), 

# t(10) ,bet22(10) ,bet12(10) ,Cl(420),H(10) , 

# R(10,O:12),SGr(10,O:12),SGt(10,O:12),SGz(10,O:12),DH(10), 

# A,NU,M,P,E,RK(10),btk12(10),btk22(10),arl,ar2,ar3,er,D, 

# Ul,U2,Delta,epsilon_z 

character*62 fname 

CHARACTER*32 mater(10) 

$debug 

1 

CALL INPUT 

DO 1000 K=l,N 

DO 1 1=1,3 

alf(i,i,k)=l/e(i,k) 

CONTINUE 

alf(1,2,k)= -nu(1,k)/e(2,k) 

alf(l,3,k)= -nu(2,k)/e(3,k) 

alf(2,l,k)= -nu(3,k)/e(l,k) 

alf(2,3,k)= -nu(4,k)/e(3,k) 

alf(3,l,k)= -nu(S,k)/e(l,k) 

alf(3,2,k)= -nu(6,k)/e(2,k) 

arl = abs(alf(l,2,k)-alf(2,l,k» 

ar2 = abs(alf(l,3,k)-alf(3,l,k» 

ar3 = abs(alf(3,2,k)-alf(2,3,k» 

if(abs(arl).gt.er) GOTO 963 

if(abs(ar2).gt . er) GOTO 963 
if(abs(ar3).gt.er) GOTO 963 
GOTO 964 

963 PRINT*,'LAYER- ',K 

prinu, ' HEnPABHJIbHO BBElIEHLI 4»H3HtmCKHE XAPAKTEPHCTHKH !!!' 

964 CONTINUE 

DO 2 i=1,2 

DO 2 j=l,2 

gam(i , j,k)= alf(i,j,k) - alf(i,3,k)*alf(j,3,k)/alf(3,3,k) 
2 CONTINUE 

gam_k(k) = (gam(l,l,k)+m(k)*gam(l,2,k»/gam(2,2,k) 

s(k) = .5*(m(k)+dsqrt(ABS(m(k)*m(k)+4*gam_k(k»» 
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t(k) = .5*(m(k)-dsqrt(ABS(m(k)*m(k)+4*gam_k(k»» 

bet22(k)=gam(2,2,k)*a(k-l)**(-m(k» 

bet12(k)=gam(1,2,k)*a(k-l)**(-m(k» 

1000 CONTINUE 

do 161 k=2,n 

btk12(k-l)=gam(1,2,k-l)*a(k-l)**(-m(k-l» 

btk22(k-l)=gam(2,2,k-l)*a(k-l)**(-m(k-l» 

161 continue 

************************************************************* 

*** ~OPHHPOBAHHE CHCTEHhl YPABHEHHH *** 
do 162 i=1,2*n 

do 162 j=1,2*n 

162 c(i,j)=O.O 

do 163 i=l,j*j+j 
163 cl(i) = 0.0 

c(l,l)=a(O)**s(l) 

c(1,2)=a(0)**t(1) 

c(2*n,2*n-l)=a(n)**s(n) 

c(2*n,2*n)=a(n)**t(n) 

k=2 

i=2 

j=l 

do 2000 jk=l,n-l 

c(i,j)=a(k-l)**s(k-l) 

c(i,j+l)=a(k-l)**t(k-l) 

c(i,j+2)= -a(k-l)**s(k) 

c(i,j+3)= -a(k-l)**t(k) 

c(i+l,j)=a(k-l)**s(k-l)*btk22(k-l)*s(k-l) 

c(i+l,j+l)=a(k-l)**t(k-l)*btk22(k-l)*t(k-l) 

c(i+1,j+2)=a(k-1)**s(k)*(btk12(k-1)-bet12(k)-bet22(k)*s(k» 
c(i+1,j+3)=a(k-l)**t(k)*(btk12(k-l)-bet12(k)-bet22(k)*t(k» 
k=k+l 
i=i+2 

j=j+2 

2000 CONTINUE 

*** nPEOEPA30BAHHE B OnHOHEPHLIH HACCHB *** 
kl=l 

do 165 j=1,2*n 

do 166 i=1.2*n 

c1(kl) =c(i. j) 
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166 
165 

*** 

kl=kl+1 

continue 
continue 

nPABASI tUCTb *** 

nl=4*n*n 
c1(nl+1) = -p(O)*a(O) 

c1(nl+2*n) = -p(n)*a(n) 

run=nl+2 

do 167 k=2,n 
c1(run) = -p(k-1)*a(k-1) 

c1(nm+1) = -(bet12(k)-btk12(k-1»*p(k-1)*a(k-1) 

nm=run+2 

167 continue 

*** PEWEHHE CHCTEMM YPABHEHHH *** 

n1=2*n 
call rsudm(c1,n1,l,ner,d,ied) 

do 168 jk=l,2*n 
c1(jk)=c1(4*n*n+jk) 

168 continue 

*** ~OPMHPOBAHHE MACCHBA TonWHH H PAnHYCOB *** 
do 169 k=l,n 
R(k,O)=A(k-1) 

RK(k)=DREAL(KR(k» 
169 continue 

DO 170 K=l ,N 

H(K) = A(K) - A(K-1) 

DH(K) = H(K)/RK(k) 
170 continue 

DO 22 K=l,N 
DO 22 J =l,KR(k) 

22 R(k,J)=A(k-1)+dh(k)*j 
jn=l 
U1=0. 
U2=0. 
Delta=O. 
do k=l,n 

U1=U1+2 .*c1(jn)*(a(k)**(1.+s(k»-a(k-1)**(1.+s(k»)* 

• (alf(l,3,k)+alf(2,3,k)*s(k»/(alf(3,3,k)*(1 .+s(k») 

U2=U2+2.*cl(jn+l)*(a(k)**(1.+t(k»-a(k-l)**(1.+t(k»)* 
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**** 

# (alf(1,3,k)+alf(2,3,k)*t(k»/(alf(3,3,k)*(1.+t(k») 

Delta=Delta+(a(k)**2-a(k-1)**2)/alf(3,3,k) 

jn=jn+2 

end do 

epsilon_z= ((p(0)-p(n»*a(0)**2+U1+U2)/Delta 

print*,epsilon_z 

pause 12 

*** BLNHCREHHE HAnp~IEHHH *** 

ju=l 

do 800 k=l,n 

do 700 i=O,kr(k) 

SGr(k,i)=cl(ju)*r(k,i)**(s(k)-l)+cl(ju+l)*r(k,i)**(t(k)-1) 

SGt(k,i)=cl(ju)*s(k)*r(k,i)**(s(k)-l)+cl(ju+l)*t(k)*r(k,i)** 

# (t(k)-l) -

SGz(k,i)=(1/alf(3,3,k»*(epsilon_z-alf(1,3,k)*SGr(k,i)-

# alf(2,3,k)*SGt(k,i» 

700 continue 

ju=ju+2 

800 continue 

*** nEtUTb nonYl.IEHHLIX HAnp~IEHHH *** 

WRITE(*,900) 

900 FORMAT(//////10X,' OUTPUT FILE: '\) 

READ (*,910) fname 

910 FORHAT(A) 

OPEN(unit = 6,FILE=fname) 

WRITE(6,109) NER 

109 FORHAT(lX,'Error index =',12) 

vrite(6,'(//15x,16h S T RES S E Sf)') 
do 171 k=l,n 

vrite(6,100) k 

if (name.eq.1)then 
vrite(6,130) mater(k) 

endif 

vrite(6,140) H(k) 
vrite(6,101) 

do 172 i=O,kr(k) 

vrite(6,102) r(k,i),SGr(k,i),SGt(k,i),SGz(k,i) 
172 continue 

171 continue 
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100 format(/15x.'L AYE R -'.i2/) 
130 format(5x.'Material - '.A) 
140 format(5x.'Thickriess -'.G12.4/) 

101 format(5x.'Rad'.9x.'SGr'.9x.'SGt'.9x.'SGz'/) 
102 format(lx.4g12.4) 

stop 
end 

********************************************************************** 

SUBROUTINE RSUDM(A,Nl.N2.NER.DET.IED) 
DIMENSION IND(75) 

REAL*8 A(l).PT.SW.DET 
$debug 

DETER=1.0 
IED=O 
N=Nl 
MAT=N+N2 
IM=Nl 
NM=N-l 
IVC=l-IM 

DO 11 MA=l.N 
PT=O.OD+O 
IVC=IVC+IM 

IV1=IVC+MA-l 
IV2=IVC+NM 
DO 2 I=IV1.IV2 

IF(DABS(A(I))-DABS(PT))2.2.1 
1 PT=A(I) 

LP=I 
2 CONTINUE 

IF(PT)3.15,3 
3 IC=LP-IVC+l 

IND(MA)=IC 
IF(IC-MA)6.6.4 

4 DETER=-DETER 
IC=IC-IM 
I3=MA-IM 
DO 5 I=l.MAT 
IC=IC+IM 
I3=I3+IM 
SW=A(I3) 
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A(I3)=A(IC) 

5 A(IC)=SW 
6 DETER=DETER*PT 

IE=INT(ALOG10(ABS(DETER)+1 .E-20)+20)-20 

DETER=DETER/10.**IE 
IED=IED+IE 
PT=l . /PT 
I3=IVC+NM 
DO 7 I=IVC,I3 

7 A(I)=-A(I)*PT 
A(IV1)=PT 

I1=MA-IM 
IC=l-IM 
DO 10 I=l,MAT 
IC=IC+IM 

I1=I1+IM 
IF(I-MA)8,10 ,8 

8 JC=IC+NM 
SW=A(I1) 
I3=IVC-l 
DO 9 I2=IC,JC 
13=13+1 

9 A(I2)=A(I2)+SW*A(I3) 

A(I1)=SW*PT 
10 CONTINUE 
11 CONTINUE 

DO 14 I1=l,N 
MA=N+l-I1 
LP=IND(MA) 
IF(LP-MA)12,14,12 

12 IC=(LP-l)*IM+l 
JC=IC+NM 

IVC=(MA-l)*IM+l-IC 
DO 13 I2=IC,JC 
I3=I2+IVC 
SW=A(I2) 
A(I2)=A(I3) 

. 13 A(I3)=SW 

14 CONTINUE 

DET=DETER 
NER=O 
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RETURN 

15 NER=-l 
DET=DETER 
WRITE(5,17)MA 

17 FORMAT(' 

RETURN 

END 

ZERO COLUMN ',14) 

************************************************************** 
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