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These studies represent original work by the author and have not otherwise been submitted in 

any form, for any degree or diploma to another tertiary institution.  Where use has been made 

of the work of others, it is duly acknowledged in the text. 
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Thesis overview 

This thesis is written as a series of four chapters.   

Foremost an overall abstract is provided for this dissertation. 

- Chapter 1 provides an overall introduction to the heterogeneous oxidation of alkanes, 

outlining the fundamental principles and reasoning for alkane oxidation.  Also, the influence 

of molybdates and molybdenum trioxide in selective oxidation is discussed.  Concluding, a 

brief motivation for the use of monoliths is provided, as well as an outline for Chapter 2 and 

Chapter 3. 

- Chapter 2 contains the first paper, which is a review of monoliths, from the basics to 

preparation methods and finally focusing on applications in the oxidation of alkanes.  A 

perspective leading into Chapter 3 is also provided. 

- Chapter 3 contains the second paper, which discusses the contribution of homogeneous gas 

phase reactions in the oxidation of n-octane.  This chapter consists of the main experimental 

and research work for this thesis. 

- Chapter 4 provides an overall summary and conclusion for the research work conducted for 

this thesis. 

Appendices 1, 2 and 3 follow Chapter 4. 
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Abstract 

Over the years, monolithic catalysts have proven useful since their initial incorporation in 

environmental catalytic applications.  Apart from the success of the use of monoliths in 

exhaust gas treatment and the automobile catalytic converter, research has also expanded into 

the use of these catalysts in the oxidation of alkanes. 

The use of monolithic catalysts is therefore an attempt at improving the yield of value-added 

products.   As an example, synthesis gas can be produced in high selectivity, using platinum 

group metals coated on monoliths, in the oxidation of alkanes.  The conversion of alkanes 

into alkenes and oxygenates in high selectivities over monoliths, however, is suggested to 

occur via homogeneous gas phase reactions.  Although catalysis results employing monoliths 

in the oxidation of alkanes may at first glance appear promising, they need to be better 

understood, especially the contribution of homogeneous gas phase reactions to the overall 

process.  The aim of this study therefore involves preliminary testing of monoliths in the 

oxidation of n-octane.  Bare cordierite and coated monoliths were tested in this respect, in an 

attempt to better understand the role of monoliths in the oxidation of n-octane, under 

continuous flow fixed-bed reactor conditions.  Experimental reaction conditions were kept 

constant, maintaining a GHSV of 1000 h
-1

 (71.7 ml/min air, 45 ml/min nitrogen, 0.10 ml/min 

C8H18), isothermally at 400 °C and a C:O ratio of 8:2, with a reactant to total feed ratio of 

11.43 %.  Characterization techniques included XRD, ICP-OES, BET, TEM, FTIR, Raman 

spectroscopy and SEM. 

The oxidation of n-octane over the bare cordierite monolith produced cracked products, 

octenes, octadienes, C8 oxygenates and carbon oxides.  In particular, a high selectivity to 

cyclic ethers was observed.  Coating the bare monolith with an iron-molybdenum active layer 

retarded the suggested free radical mechanism, however, not as effectively as coating the 

monolith with gamma-alumina.  A drastic change in the mechanism was observed when the 

iron-molybdenum active layer was supported over the gamma-alumina coated monolith.  

Carbon oxides dominated the product profile, whilst octadienes and C8 oxygenates were 

suppressed, over the iron-molybdenum supported on gamma-alumina coated monolith.  
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Chapter 1 

Principles and applications in the heterogeneous oxidation of alkanes: 

Comprehending the mechanisms involved and the role of molybdates 

Overview 

Heterogeneous catalysis is a prominent and the industrially dominant form of applied 

catalysis.  Various reactions are performed heterogeneously, with a significant contribution 

from oxidation catalysis.  Industrially, there is a growing interest in selective heterogeneous 

oxidation.  Research has been focused on selective oxidation chemistry due to continually 

changing environmental legislations as well as economic imperatives.  Significant research 

has therefore been directed at converting alkanes to value-added functionalized products.  

Molybdates and molybdenum trioxide have played an important role in the selective 

oxidation of alkanes.  In order to completely understand the role of molybdates, an overview 

of the fundamental principles is required.  The background of heterogeneous oxidation 

catalysis will be introduced, differentiating between dehydrogenation and oxidative 

dehydrogenation processes.  Activation of the hydrocarbon and the oxygen species formed 

will be discussed. Special attention will also be given to the influence of molybdates and 

molybdenum trioxide in selective alkane oxidation.  In this manuscript relevant applications 

will be reviewed, whilst emphasis will be placed on the oxidation of alkanes.  Silica and 

alumina supported molybdenum catalysts will also be discussed. Lastly a conclusion and 

perspective as an entirety is provided.  

1.1 Introduction 

Catalysis is a branch of chemistry whereby a catalyst is used to increase the rate of a 

chemical reaction to reach equilibrium.  The majority of applications in catalysis are found in 

the petrochemical, fine chemical and environmental sectors of industries, with approximately 

80 % of industries using catalytic processes [1, 2].  This lucrative branch of chemistry is 

therefore extremely influential in science and to a greater extent, petrochemical science.  

Catalysis has played an important role in the refining and petrochemical industries in the past, 

and is predicted to contribute even more significantly into the twenty-first century [3].  

Industrially, heterogenized catalysts are favoured over homogeneous and enzymatic catalysts. 
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Heterogeneous catalysis, in simple terms, is usually described as the form of catalysis when 

the catalyst is in a different phase to the reactants, for example, a solid catalyst and gaseous 

or liquid reactant.  Some of the most successful industrial processes, such as the contact 

process, catalytic cracking and catalytic converters involve the use of heterogeneous 

catalysts.  The industrial revolution and growth of technology brought about the demand for 

petrochemical products, which reinforced the use of heterogeneous catalysts.  These catalysts 

have thus become crucial in the production of fine and bulk chemicals, especially with 

respect to minimization of waste as compared to non-catalytic processes [4, 5].  

Economically and environmentally, heterogeneous catalysis is a far more viable form of 

industrial chemistry as opposed to homogeneous catalysis, in the twenty-first century [6].  

Heterogeneous catalysis has also been highlighted as an important technology for society [7]. 

Oxidation catalysis was one of the first applications of heterogeneous catalysis, discovered 

when Faraday experimented with using platinum in oxidation reactions [8].  The initial 

successes lead to further developments, such as the oxidation of hydrocarbons using noble 

metals and the realization of the importance of metal oxides in heterogeneous oxidation [9].  

A further emphasis of the importance of these catalysts is the value of oxidation catalysts in 

1993, which was estimated to be $ 200 – 250 million [10].  Also, selective oxidation 

significantly contributes to the production of bulk and fine chemicals [11], with 

approximately 50 % of bulk chemicals produced from hydrocarbons [12] and 25 % of 

important organic chemicals [13].  Efforts into selective heterogeneous oxidation have, over 

the years, been reflected in the quantity and quality of research in this area.  Oxidation 

catalysts represent approximately 41 % of the catalysts used and sold in industry [14].  The 

motivation for further research is due to possible improvements in processes, the increasing 

demand for olefins and oxygenated products, enhancing the economic value of industrial 

processes and reducing environmental impact on society [11, 15].  

Alkanes are commonly found in fossil fuel feedstocks, such as natural gas and crude oil [16, 

17] or produced in chemical processes such as the Fischer-Tropsch process  [18, 19] and 

catalytic cracking [20].  In 2003, the reported global energy production from fossil fuels was 

88 % [21].  Petroleum and fine chemical products are in high demand, increasing annually, 

and the quantity of alkanes produced has increased proportionally.  These saturated 

hydrocarbons are relatively stable and are thought to be inefficiently used by industry [22], as 

they are most often combusted at high temperatures for the generation of energy [23].  A 
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more lucrative approach, however, may be to convert alkanes to olefins, aromatics or 

oxygenates via oxidation reactions [24].  There is a need for the conversion of alkanes to 

more valuable products, such as olefins and oxygenates, in order to lower the carbon footprint 

and promote industrial growth [25, 26].  The problem associated with heterogeneous 

oxidation catalysis is the lack of control over selectivity [27], which has created an 

opportunity and motivation for further research. 

This chapter, therefore, discusses the theoretical aspects of heterogeneous catalysis as a 

foundation for application in selective oxidation reactions.  The focus is on the theory and 

understanding of the chemistry involved in oxidation catalysis, in particular that associated 

with the selective oxidation of alkanes.  An attempt has been made to highlight the 

significance of molybdates and molybdenum trioxide in the heterogeneous oxidation of 

alkanes.  Supported molybdenum oxidation catalysts will also be discussed briefly. 

1.2 The theoretical aspects and chemistry of heterogeneous oxidation of alkanes 

In most heterogeneous catalysis applications, particularly the oxidation of alkanes, a solid 

catalyst is used and the surface reactions are commonly gas-solid or liquid-solid interactions.  

The interaction whereby the substrate attaches to the surface, adsorption, and when the 

substrate detaches, desorption, are both key factors when designing heterogeneous catalysts.  

Physisorption and chemisorption onto the catalytic surface also play important roles in the 

catalytic process.  The attractive and repulsive forces of physisorption are usually weak, with 

the formation of a physical bond due to van der Waals or intermolecular forces.  This results 

in a decrease in adsorption with an increase in temperature and an increase in adsorption as 

pressure increases.  Physisorption is therefore not significantly influential in oxidation 

catalysis, since typical reaction conditions involve atmospheric pressure and high 

temperatures.  The formation of a chemical bond on the surface of the catalyst is termed 

chemisorption.  In order to relate the catalysis to the surface chemistry, chemisorption studies 

may prove valuable.  Activation energy barriers are thus conceptually important when 

designing heterogeneous catalysts, due to bond formation and bond breaking.  The forces of 

adsorption and desorption are therefore also critically important in catalysis, since the ideal 

catalyst allows for a molecule to adsorb, react and hence form the desired product and desorb 

with ease to prevent side reactions.  The effect on the catalyst surface, when unable to desorb 

molecules, is a subsequent agglomeration of adsorbed molecules on the surface. The 
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agglomeration results in poisoning of the catalyst, which in the case of an oxidation catalyst, 

is typically coking from carbonaceous products.  

The surface characteristics and nature of the materials used play distinct roles in 

heterogeneous catalysis.  Properties such as defects, pores, surface area, morphology and the 

type of transition metal used, as well as catalyst preparation method, will impact the catalysis.  

In heterogeneous catalysis, transition metals are seen as being superior to other metals.  

Transition metals offer amongst others, favourable properties, such as various oxidation 

states and the ability to form metal oxide species which can be used in a numerous reactions 

[28], for example, oxidation reactions [29-31].  The advantages of having s, p and d orbitals 

allow for transition metals to lose or gain electrons easily, which can result in good reducing 

or oxidizing properties [28, 32].  The various oxidation states, in particular of transition metal 

oxides, relate to different electronic and structural properties [33].  These properties may be 

used manipulate the type of chemical reaction that can be performed.  Transition metal oxides 

are generally favoured in oxidation catalysis, particularly the oxidation of alkanes.  Transition 

metal oxides can play functional roles in oxidation, reduction and dehydrogenation [34], 

which can be advantageous in studying the oxidation of alkanes. 

1.2.1. Differentiating between dehydrogenation and oxidative dehydrogenation 

Alkanes are known to be relatively unreactive due their electronic structure and strong C-H 

bonds [35, 36].  The C-H bond decreases in strength from a primary carbon to a secondary 

carbon [35].  Longer chain linear alkanes are more reactive than shorter chain alkanes.  A 

longer chain corresponds to an increase in the number of secondary carbon sites available, 

which results in an increase in the number of C-H bonds of weaker strength.  Considering the 

need for the conversion of these unreactive alkanes to valuable products, such as olefins and 

oxygenates, productive research typically revolves around dehydrogenation and oxidative 

dehydrogenation, in heterogeneous catalytic applications. 

Oxidative dehydrogenation is an attempt at overcoming the limitations of dehydrogenation.  

Where dehydrogenation reactions proceed without the presence of an oxidant, they require 

substantially higher temperatures due to the reaction being endothermic.  Higher temperatures 

may result in an increase in the formation of cracked products, from thermal cracking.  Lower 

pressures could also drive the reaction forward [37].  Reactor design is thus more capital 

intensive when attempting to achieve high conversion.  Another limitation of the 
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dehydrogenation of alkanes is the formation of coke from the products of cracking and the 

reversibility of the reaction.  Despite the limitations, patents [38, 39] and published literature 

[40-42] do exist and dehydrogenation reactions are used industrially.  Oxidative 

dehydrogenation of alkanes is thus superior in terms of the limitations of dehydrogenation 

reactions.  Introducing an oxidant, such as molecular oxygen, results in an exothermic 

reaction, driving the reaction forward.  The reaction becomes exothermic by introducing an 

electronegative species [43], which in this case is oxygen. This ideally forms olefins or 

olefins and water from the oxidative dehydrogenation of alkanes.   

The oxidative dehydrogenation reaction, however, does not proceed ideally and a range of 

products, such as olefins, oxygenates, aromatics and carbon oxides can be expected, 

depending on the catalyst used as well as the reaction conditions employed.  Products formed 

from oxidative dehydrogenation can be more reactive than the original alkane introduced into 

the system [44].  These products can thus react further with the oxidant and/or catalyst, 

producing undesired products.  The selectivity of oxidative dehydrogenation, as compared to 

dehydrogenation, is therefore questionable.  This, however, has provided for an opportunity 

to conduct innovative research.  In particular, our research group has made contributions to 

the oxidative dehydrogenation of n-butane [29], n-hexane [30, 45] and n-octane [31, 46-48], 

respectively.  

Research in oxidative dehydrogenation on the laboratory scale is typically done in a 

continuous flow fixed-bed reactor [44], as it is a cheaper design compared to other reactor 

options.  In a common lab scale fixed-bed reactor, the catalyst is suspended between glass or 

quartz wool at the hottest point in a reactor tube.  The reactor tube is also packed with inert 

particles, such as carborundum, to fill void space and quench radical reactions.  The paraffin 

mixes with the oxidant and diluent gas, which are heated prior to passing through the 

catalytic bed.  Conditions such as gas hourly space velocity, carbon to oxygen ratio, upper or 

lower flammability limit and total feed to hydrocarbon ratio may thus be easily controlled. 

1.2.2 Selective oxidation of alkanes 

Selective oxidation catalysis is a large branch of heterogeneous catalysis, in which 

researchers attempt to produce highly active and selective catalysts for the activation of 

alkanes to products, such as olefins and oxygenates.  Factors which need to be considered in 

selective oxidation include activation of the hydrocarbon, the nature of the oxidant and the 
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influence of competing mechanisms.  These factors can impact considerably on the 

selectivity and activity of a catalytic system.  It is thus imperative that one collates and 

understands the knowledge already available, as this may assist in improving approaches to 

selective oxidation processes.   

In most applications, the commonly used oxidant is molecular oxygen, in the form of air.  

There has also been interest in using carbon dioxide as an alternative oxidant to oxygen, 

which has been covered in a review by Wang and Zhu [49].  The use of carbon dioxide as an 

oxidant generates interest for reasons such as the abundance of carbon dioxide and the need 

to utilize this potentially valuable chemical.  Carbon dioxide replacing molecular oxygen is 

advantageous in that flammability limits would not need to be considered in reactions, 

however, it is limited, as it is not as reactive as oxygen and it also the forms carbon monoxide 

when used [50].  A lab scale reactor operating carbon dioxide as the oxidant may therefore 

require an appropriate venting system or a scrubbing approach for the carbon monoxide 

formed.   

Changing the oxidant may have a combination of advantages and disadvantages, however, 

this may be an aspect of improving target selectivity.  The use of nitrous oxide has gained 

interest since applications such as the oxidation of methane over silica supported MoO3, in 

which high selectivity to methanol and formaldehyde was observed [51, 52].  Considering 

factors such as the abundance of air, affordability and since it is the most widely used 

oxidant, the focus shall remain on air as an oxidant in most of the applications discussed.   

Molecular oxygen, in the form of air, is also used in heterogeneous oxidation due to ease of 

use and low environmental impact.  The success of molecular oxygen as an oxidant stems 

from the formation of the required oxygen species on the surface of the transition metal oxide 

catalyst.  Several reactions, such as activation of the hydrocarbon, formation of surface 

oxygen species, homogeneous gas phase reactions and other competing reactions may impact 

on the products formed during heterogeneous oxidation of hydrocarbons. 

1.2.2.1 Activating the hydrocarbon and the role of the surface oxygen species 

In heterogeneous oxidation catalysis, saturated hydrocarbons may be activated on the surface 

of the catalyst and by the oxygen species produced from the interaction of molecular oxygen 

with the metal oxide.  The ability of the catalytic surface to adsorb and desorb the saturated 

hydrocarbon is therefore important and can be directly related to the acidic and basic strength 
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of the active site.  Adsorption and hence activation of the hydrocarbon is thus crucial, since it 

is rate determining [53].  The mechanisms involved in activation of the hydrocarbon are not 

entirely known and continue to cause controversy.  Understanding how the activation may 

possibly proceed is important, as the overall oxidation reaction mechanism still requires 

further elucidation.  These mechanisms may also assist in the clarification of the selectivity to 

the various complex products observed in most oxidation reactions.  The alkane molecule, 

when adsorbed, may undergo homolytic cleavage or heterolytic cleavage [54].  Thermal 

cracking may be associated with homolytic cleavage, whilst highly acidic catalytic sites may 

perhaps be responsible for heterolytic cleavage.  There are two mechanisms that can occur in 

heterolytic cleavage, forming either a carboanion or carbocation species, as shown in Scheme 

1.1 and Scheme 1.2, respectively. 

     R3C
σ-

          H
σ+

    R= hydrogen or carbon 

       M
+n

            O
-2

    M= transition metal, n= oxidation state 

        

Scheme 1.1: Heterolytic cleavage forming a carboanion species 

Scheme 1.1 shows the heterolytic cleavage of the C-H bond that occurs when there is 

interaction of the carbon with the transition metal cation, whilst the hydrogen interacts with 

the basic oxygen from the lattice of the transition metal oxide, resulting in the formation of a 

carboanion [55, 56]. 

R3C
σ+

         H
σ-

       

        

   O
-2

         M
+n

       

 

Scheme 1.2: Heterolytic cleavage forming a carbocation species 

Scheme 1.2 depicts the heterolytic cleavage of the C-H bond which may occur when there is 

interaction of the carbon with the lattice oxygen and interaction of the hydrogen with the 

transition metal cation, resulting in the formation of a carbocation and hydride species [55, 

56]. 
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Three mechanisms may occur in homolytic cleavage resulting in the formation of a centred 

bond between C-H and the transition metal, as shown in Scheme 1.3, or formation of alkyl 

radicals via two mechanisms, shown in Schemes 1.4 and 1.5, respectively. 

                    R3C        H            R3C         H        

                          M
+n

           M
(n+2)+

         

Scheme 1.3: Homolytic cleavage forming a transition metal centre bond with C-H 

An electron deficient transition metal cation having a vacant coordination site may form a 

centre bond with carbon and hydrogen [53, 57, 58], as depicted in Scheme 1.3.  The 

contribution of an electron each from carbon and hydrogen results in a higher oxidation state 

of the transition metal cation. 

           R3C       H            R3C•       H
+ 

     M
+n

           M
(n-x)+

  

x= number of electrons gained 

Scheme 1.4: Homolytic cleavage forming an alkyl radical and proton 

In Scheme 1.4, a basic and reducible transition metal cation can facilitate C-H bond cleavage, 

producing an akyl radical and proton, whilst itself gaining electrons and, hence, undergoing 

reduction [53, 57, 58]. 

             R3C         H      O
•
    R3C•    OH• 

Scheme 1.5: Homolytic cleavage forming an alkyl radical and hydroxyl radical 

Oxygen radicals present on the surface of the catalyst abstract a hydrogen from the 

hydrocarbon, producing an alkyl radical and a hydroxyl radical [53, 57, 58], as shown in 

Scheme 1.5. 

Oxidation of hydrocarbons via the generated oxygen species can be performed by 

electrophilic or nucleophilic oxidation [54].  The oxygen species adsorbed and formed, either 

molecular or atomic and neutral or charged [59], are dependent on the reducibility of the 

surface, as well as the structure or phase of the catalyst [60].  The availability of the active 

sites through the basal planes, the redox properties of the transition metal, the defects on the 
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surface or in the lattice and also the transition metal oxygen bond strength, contribute to the 

relative ease of formation of the oxygen species.  In terms of the transition metal oxygen 

bond strength, a strong bond may result in fewer reactions, a very weak bond may correlate to 

complete oxidation or non-selective reactions, whilst an intermediate bond strength may 

result in more selective reactions [13, 61]. Conditions such as carbon to oxygen ratio, upper 

and lower flammability limits and hydrocarbon to total feed ratio may also play a role in the 

nature of the species formed. 

  O2ads       O2
-
       O2

-2
        O

-
          O

-2
lattice 

Scheme 1.6: Transformation of absorbed molecular oxygen [62]. 

Scheme 1.6 shows the change in oxygen species as molecular oxygen adsorbs onto the 

surface of a catalyst.  Molecular oxygen when adsorbed onto the catalyst surface, gains 

electrons from the transition metal oxide surface, becoming more electron rich and hence 

nucleophilic.  The final transformation ideally results in lattice oxygen, which may replenish 

the M-O-M oxide vacancy in the transition metal oxide structure. 

The oxygen species involved in electrophilic oxidation are the super oxide O2
-
, peroxide O2

-2
 

and oxide O
-
 anions, whilst O

-2
 is associated with nucleophilic oxidation [54, 63, 64].    

Adsorbed oxygen on the surface can be completely reduced to the O
-2

 form [59].  Non-

selective oxidation reactions are generally accepted to proceed via the electrophilic route, 

whereas lattice oxygen is widely accepted by many researchers to be the key oxygen specie 

involved in the selective oxidation of alkanes.  Super oxide O2
-
  and oxide O

-
 species are 

paramagnetic, therefore, can be examined by electron paramagnetic resonance [61], whilst 

peroxide O2
-2

 and lattice oxygen O
-2

 are non paramagnetic [65].  Successful identification of 

the super oxide and oxide species, by electron paramagnetic resonance, enabled researchers 

to elucidate the mechanisms involved when these species react with the hydrocarbon.   

Aika and Lunsford suggested, from studying the activation of C1 to C4 alkanes, that O
-
 ions

 

are actively involved in the oxidative dehydrogenation of alkanes on MgO, even in the 

absence of an oxidant [66].  The authors attributed hydrogen abstraction to be the initial step 

resulting in the formation of alkenes and alkyl radicals, which rapidly react with O
-2

 ions, 

yielding alkoxide species [66].  Driscoll and Lunsford also proved gas phase radical 

formation from the oxidation of methane and ethane, using EPR matrix spectroscopy [67].  
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Driscoll et al. further assigned O
-
 ions as being responsible for methyl radical formation over 

MgO [68].  Cavani and Trifiro attribute homogeneous gas phase reactions as being with O2
-
 

ions in respect to the oxidation of alkanes [69].   

The mechanism of homogeneous radical reactions are thought to proceed via initial formation 

of alkyl radicals by hydrogen abstraction at the surface of the transitional metal oxide, 

followed by β-elimination of the hydrogen, yielding the corresponding alkene, which further 

reacts to produce oxygenated products [70, 71].  In the case of homogeneous gas phase 

reactions, olefins are usually formed as the minor product [69].  In the oxidative 

dehydrogenation of propane, Nguyen and Kung have highlighted that propagation of the n-

propyl radical may result in the formation of ethylene and a methyl radical or peroxy species 

[72].  Radical reactions may produce numerous products, which may include hydrogen, 

methane, olefins, oxygenates, carbon oxides and water. 

A more interesting group of products formed from gas phase reactions is that of cyclic ethers.  

The formation of cyclic ethers is usually associated with the autoignition of alkanes [73-75].  

Mechanistically, hydrogen abstraction occurs on the surface of the catalyst, yielding an alkyl 

radical, followed by oxygen insertion to produce a peroxy radical [73].  The peroxy radical 

then reacts by isomerization to give a hydroperoxy alkyl radical, which may further react to 

finally produce stable cyclic ether rings [76].  Mechanisms involved in gas phase reactions 

are undoubtedly complex and non-selective, producing a wide range of products and, 

therefore, may be difficult to control in selective oxidation chemistry.   

 

    Alkane       O
-2

             ½ O2 

         M= transition metal 

        M
+x

            M
+y

   x= oxidized charge 

         y= reduced charge 

Oxygenate/Olefin                 2e
-
 

+ H2O 

 

Scheme 1.7: Mars and van Krevelen mechanism for alkane oxidation [77, 78]. 

The idealistic redox mechanism accepted in alkane oxidation is the Mars and van Krevelen 

mechanism, shown in Scheme 1.7.  Mechanistically, initial reduction of the transition metal 
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oxide catalyst by the hydrocarbon occurs, removing the lattice oxygen, resulting in the 

formation of selective products and a reduced transition metal ion and water [62].  Loss of 

lattice oxygen correlates to reduction of the transition metal ion by two electrons.  Molecular 

oxygen adsorbed and transformed to lattice oxygen is taken up by the transition metal.  The 

transition metal oxide is then re-oxidized by lattice oxygen, returning to the original oxidized 

state.  Continuation of this cycle is termed a selective oxidation process via the Mars and van 

Krevelen mechanism. 

1.2.2.2 Competing mechanisms 

Competing mechanisms in the oxidation of alkanes can be problematic.  Reporting on the 

oxidative dehydrogenation of propane, Kondratenko and Sinev attribute formation of carbon 

oxides predominantly from the oxidation of propene [79].  Alkenes undergo C-H bond 

dissociation when there is interaction between the Lewis acid metal cation and the pi bonding 

system of the alkene.    Propene undergoes C-H bond dissociation, forming a π-allyl species 

on the transition metal cation [80].  The allylic species may then react with the generated 

oxygen species and result in non-selective products.  A further example is the oxidation of n-

octane, in which octenes are suggested as the precursors to carbon oxides [81].  Alkenes are 

far more reactive than alkanes due to the π bonding system and may, hence, be exposed to 

complete oxidation to carbon oxides and other non-valued products.  Another possibility of 

olefin reactivity is the suggested diene formation from further hydrogen abstraction [82, 83].  

Isomerization of the alkenes, once formed, should also be considered, since the target 

selectivity may be compromised.  Heterocyclics may be associated with homogeneous gas 

phase reactions from the formation of alkoxide species, followed by cyclization to a stable 

furan or pyran structure.   

Blank reactor studies [31] prior to catalytic testing may provide an indication of the impact of 

void space [30] and homogeneous gas phase reactions.  This may further be used to 

determine operating reaction conditions in which radical reactions are minimal.  Bruckman et 

al. associate heterocycle formation with a concerted two hydrogen abstraction [84], whereas 

Stoylkova et al. suggest formation of heterocycles from dehydration of diols [85].  Strong 

adsorption in selective oxidation processes are non-ideal, since it can result combustion of the 

alkane [86].  The Langmuir-Hinshelwood mechanism usually applies to the complete 
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oxidation of saturated hydrocarbons to carbon oxides, in particular to the formation of carbon 

dioxide [87].   

The transition metal oxide species used, therefore, plays a critical role in the formation of 

products, such as olefins, oxygenated products, cracked products and carbon oxides.  The 

ability of a catalyst to be selective is important, as a non-selective catalyst may produce 

undesired products.  The design and structure of a catalyst material is thus important.  

Oxygen activity, the acid and basic surface characteristics, as well as the ability of the 

reactant to diffuse through the lattice is crucial [60].  Carbon oxides, resulting from total 

oxidation, are undesired products in most selective oxidation applications.  A selective 

catalyst should possess the optimum characteristics of oxygen capacity and acid-basic sites to 

perform selective reactions.  An ideal selective oxidation catalyst should, therefore, be able to 

convert the paraffin to the desired product, such as an olefin, and desorb the product rapidly, 

ensuring fewer side reactions.   

Frequently studied oxide catalysts in hydrocarbon oxidation include oxides of vanadium and 

molybdenum [63].  Molybdates and molybdenum trioxide have provided researchers with 

ample ideas and indications of mechanistic details that may be summarized and prove 

informative to the scientific community.  This discussion of selective oxidation will 

consequently include applications of molybdates and molybdenum trioxide, whilst including 

aspects of the catalytic results. 

1.2.2.3 Molybdates and molybdenum trioxide 

Molybdates are transition metal oxide species of the form AMoO4 or A2(MoO4)3, where A 

can be another transition metal such as iron.  The interest in the use of molybdates for 

paraffin oxidation has stemmed from their successes in the oxidation of propane [88, 89], as 

dehydrogenation catalysts [90, 91] and in selective olefin ammoxidation [92, 93].  Another 

particularly successful oxidation application, was that of methanol to formaldehyde using 

iron molybdate [94].  Numerous molybdates and modifications thereof have been introduced, 

since the realization that metal compositions can be tailored to improve selectivity and yield 

in desired applications [95].  An example of such is the doping of iron, stabilized as Fe
+2

, 

serving as a redox couple and allowing for lattice oxygen to replenish the Bi-O-Mo site, in 

propylene activation to acrylonitrile [95].  Metal ratios can, therefore, be very important in 

the catalysis based on molybdates and molybdenum trioxide.  Characterization, the role of 
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structure, phase segregation, the catalytic oxidation of alkanes and supported catalysts will 

also be discussed.  An attempt will be made at summarizing relevant applications and 

highlighting the implications of such.  

1.2.2.3.1 Synthetic methodology 

Molybdates can be prepared by methods such as co-precipitation [45], hydrothermal 

synthesis [96] and the citric acid method [97], amongst others.  Co-precipitation is by far the 

most common approach of synthesis.  A typical co-precipitation procedure involves the 

precipitation of two mixed aqueous nitrate solutions, maintaining the required pH for the 

synthesis, aging the mixture, separating the precipitate, followed by drying and calcinations 

[98].  Synthesis methods can also influence the catalytic activity of molybdates.  Beale et al. 

were able to improve the activity of an iron molybdate catalyst for the oxidation of methanol 

to formaldehyde by hydrothermal synthesis [99].  Sodium molybdate and chloride salts can 

also be used to synthesize molybdates, however, most researchers prefer to avoid possible 

contamination from the chloride and sodium ions.  Contamination of the molybdate surface 

may result in changes to the surface acidity, rendering the active sites non-selective or even 

decrease activity.   

A study of the addition of sodium to iron molybdenum catalysts for methanol oxidation 

showed an immediate decrease in activity and a decrease in selectivity of the supported iron 

molybdenum catalyst [100].  Molybdate synthesis can be quite sensitive toward several 

factors, such as the polymeric species of molybdenum, temperature, concentration of 

molybdenum and pH [101].  An example requiring considerable pH stability is the synthesis 

of nickel molybdate, in which the co-precipitation procedure was maintained at pH 5.7, 

monitored by a pH controller and adjusted with ammonium hydroxide and nitric acid [102].  

Co-precipitation, however, remains the most reproducible approach since pH, polymeric 

species, temperature and the required metal ratio can effectively be controlled. 

1.2.2.3.2 Influence of excess molybdenum trioxide and effect of alkali metal promotion on 

molybdates 

Synthetic factors involved in molybdate catalyst design, such as molybdenum content, may 

also influence the catalysis.  In particular, cobalt molybdate with excess molybdenum was 

reported as more active than the pure molybdate phase in the oxidation of propane to olefins 
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[103].  Researchers claim this to be a synergistic cooperation between the molybdate and 

molybdenum trioxide in the oxidation of propane [104, 105].  The importance of 

molybdenum trioxide can be further emphasized with applications, such as the selective 

oxidation of 1-butene with nickel molybdate, in which MoO3 was attributed as the most 

selective component [106].   This was confirmed in a report of a pure cobalt molybdate 

system, in which the oxidation of 1-butene to maleic anhydride was reported as non-selective, 

however, in the presence of excess molybdenum trioxide, enhanced selectivity to maleic 

anhydride was observed [107].  Trifiro et al. attribute the mechanical strength of the iron 

molybdate catalyst and the ease re-oxidation of β-FeMoO4 to Fe2(MoO4)3, to excess MoO3, in 

the oxidation of methanol and olefins [108].  A molybdate catalyst incorporated with 

molybdenum trioxide may, therefore, be imperative in enhancing activity, selectivity, 

mechanical strength and phase stability when used in the oxidation of alkanes.   

In an attempt to improve previously designed catalytic systems, researchers continue to target 

the effect of promotion on these systems.  In the oxidative coupling of methane, manganese 

molybdate promoted by alkali metals, such as Na, K and Li showed an increase in activity 

and selectivity [109].  Further characterization revealed no change to the molybdate catalyst, 

whilst isotopic labeling studies, TPR and TPD indicated a different interaction of the methane 

molecule with the promoted surface [109, 110].  In a study of the effect of alkali metal 

promoters on nickel molybdate towards the oxidation of n-butane, Martin-Aranda et al. 

confirmed no structural change to the bulk molybdate, however, addition of alkali metals 

decreased the activity of the catalyst and improved selectivity in the direction of butenes and 

butadiene [111].  The authors claimed the greater basicity was responsible for the higher 

selectivity to butenes and butadiene, but also acknowledged that the optimum loading to 

enhance yields required small amounts of homogeneously spread alkali metals on the surface 

of the catalyst.  In contrast to these authors, Portela et al. noted an improvement in the 

activity of nickel molybdate doped with potassium and calcium, respectively [112].  Both 

studies attribute the surface basicity as a significant trait in the improved selectivity to 

butenes and butadiene, along with a decrease in carbon oxides.  Kaddouri et al. corroborated 

the improved selectivity to alkenes with promoted nickel molybdate catalysts in the oxidative 

dehydrogenation of propane and isobutane [113].  The authors also associated prevention of 

the decomposition of propene and isobutene with the use of promoters.  Thus, the use of 

barium as a promoter was reported to increase the selectivity to propene from the oxidation of 
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propane, using a nickel molybdate catalyst, due to an increase in the number of basic sites 

and the synergistic interaction between barium oxide and molybdenum trioxide [114].   

The role of excess molybdenum in molybdate catalysts may be difficult to comprehend, 

however, it is apparent that surface acidity and basicity may be more influential in molybdate 

catalytic systems than anticipated.  Attempting to understand the structure, redox and surface 

properties involved with these catalytic systems may enlighten our perceptions of the 

mechanisms in hydrocarbon oxidation. 

1.2.2.3.3 Structure-catalytic properties 

Molybdates with the metal cation in the +3 oxidation state exists as A2(MoO4)3 and in the +2 

oxidation state as AMoO4, where A is the metal cation.  Iron molybdate for example, 

Fe2(MoO4)3, is monoclinic with tetrahedrally situated MoO4 and octahedral FeO6 [115], 

whereas in a system such as MnMoO4, both the manganese cation and molybdenum are 

octahedrally co-ordinated [116].  The monoclinic structure has eight Fe2(MoO4)3 molecules 

per unit cell, with sixteen FeO6 octahedra and twenty four MoO4 tetrahedra [117].  In the case 

of the structure-catalytic relationship of molybdates amongst other selective oxidation 

catalysts, the intrigue involves lattice oxygen.   

The role of terminal M=O and bridging M-O-M bonds in the generation of lattice oxygen 

remains unclear.  Experimental work conducted by Callahan and Grasselli revealed the lattice 

oxygen bond should be of intermediate strength in order to give good selectivity to desired 

products [118].  Grasselli, much later, went on to conclude that a strong metal oxygen bond 

may result in no reaction occurring, whilst a weak metal oxygen bond may result in non-

desired products [13]. 

A very different postulation with regard to structure-catalytic relationship was that by 

Fagherazzi and Pernicone, who suggested that a small excess of molybdenum in iron 

molybdate enlarges the monoclinic structure, whereby Mo
+6

 substitutes Fe
+3

 in the octahedral 

sites and the charge is balanced by O
-2

 ions in the lattice [119].  This distorted unit cell with 

defect sites, due to the substitution of molybdenum, was recognized as the active component 

in the oxidation of methanol by the authors [119].  Lattice insertion, however, may be 

sensitive and for this postulation to hold, other metal molybdates with a slight excess of 

molybdenum should ideally show the same behavior.  
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Orthorhombic crystal structured MoO3 exists in an octahedral co-ordination, as established by 

characterization using techniques such as infrared and Raman spectroscopy [120] and 

electron spin resonance spectroscopy [121, 122].  In terms of structure-catalytic relationships, 

one may need to consider the effects of metal oxygen-bonds and facets of crystal structure.  

The initial study of the correlation of the crystalline structure of MoO3 to specificity was 

conducted by Volta and Moraweck, in the oxidation of propene [123].  Results from this 

study revealed that acrolein formation was favoured by the 020 plane of molybdenum 

trioxide.  Research involving structure-function relationships and oxidation reactions 

subsequent to this study grew considerably and was summarized by Volta and Portefaix in a 

review [124].  In the mild oxidation of propene, Volta and Tatibouet attributed the side (100) 

plane with allylic oxidation and the basal (010) plane with deep oxidation [125].  

Contradictory to this work, Haber and Serwicka suggested the basal (010) plane responsible 

for selection oxidation by lattice oxygen [126].  In support, Bruckman et al. found a 

proportional dependence of surface area of the basal plane to the acrolein yield from propene, 

which further suggested selective oxidation via the basal plane [127].   

Since initial studies mainly focused on propene activation, researchers sought understanding 

of structure relationships through other hydrocarbon molecules.  In studies of the partial 

oxidation of methane to formaldehyde, Smith and Ozkan suggested that the formation of 

formaldehyde was dependent on lattice oxygen via the M=O side plane, whilst oxygen from 

the M-O-M basal planes appeared to direct reactions toward complete oxidation [128, 129].  

In the oxidation of 1-butene, Haber and Lalik claimed the side (100) and apical (101) planes 

of MoO3 may be associated with C-H bond activation, whilst the basal (110) plane containing 

O
-2

 ions may be responsible for nucleophilic attack, forming an oxygenated product [130].    

The authors were able to perform these studies using relative exposed amounts of the planes 

of MoO3 and isotopic labeling, under steady state reactions.   

Summarizing the information provided thus far, it is clear that complete oxidation may occur 

on all facets.  This may be correlated with the fact that over oxidation mechanistically applies 

to alkanes, alkenes and intermediate products.  Analogous to this, is the evidence provided by 

Hernandez and Ozkan, suggesting the possibility of complete and selective oxidation on all 

facets of molybdenum trioxide [131]. 
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1.2.2.3.4 Redox and surface properties 

Molybdates are known to perform as redox catalysts, existing in multiple oxidation states.  

Molybdates, when reduced, may form MoO3 and suboxides such as Mo4O11 and MoO2.  Due 

to the capability of molybdenum to exist in several oxidation states, there may be co-

existence of several suboxides in small quantities.  Research [132, 133] suggests Mo4O11 is 

an intermediate to the formation of MoO2.  An XPS study showed the simultaneous existence 

of Mo
+5

 and Mo
+3

 species, upon the reduction of molybdenum trioxide with hydrogen [134].  

A possible explanation for this may be the greater stability of the suboxides of Mo
+4

 and 

Mo
+2

 as opposed to other suboxides, hence these species may be detectable in small 

quantities.  The mechanism by which suboxide formation occurs continues to be 

controversial.  In view of this, in situ XAS and XRD studies confirmed the formation of 

MoO2 in a one step process from MoO3, with Mo4O11 not identified as an intermediate 

product and instead suggested to form simultaneously from the reduction of MoO3 and MoO2 

[135].  Among the suggested mechanisms and confirmed suboxide phases, one may also need 

to consider the environment in which the reduction takes place.  Lalik et al. suggest the 

formation of Mo4O11 may be dependent on the catalytic material and conditions used [136].  

In heterogeneous gas phase oxidation catalysis, for example, the hydrocarbon, oxidant and 

molybdate used may impact on the molybdenum species formed via the reduction oxidation 

cycle.  There may be competing reduction oxidation capabilities, thus limiting perhaps the 

formation of Mo4O11 and therefore leading to the reduction of Mo
+4

 to Mo
+2

. 

High oxidation state metals such as Mo
+6

 are Lewis acids and may perform as acidic oxides, 

following the mechanism of carbocation formation or an alkoxide intermediate in olefin 

oxidation [92, 137].  Reduction and hence gain of electrons by the oxide of Mo
+6

 may result 

in an ionic character [53].  The reduced form or phase may therefore act as a basic oxide, 

forming a carboanion, followed by attack of lattice oxygen [92, 137].  Ueda et al. report the 

highest rate of propene formation from the oxidation of propane due to a very acidic 

magnesium molybdate catalyst [138].  Graselli et al. explained the higher rate of oxidation of 

propene by Bi2O3•2MoO3 compared to Bi2O3•3MoO3, as a optimum balance of Mo
+6

 sites 

and bismuth cation sites for hydrogen abstraction [92].  Considering the acidic nature of 

MoO3 [139], a slight excess of molybdenum may balance the acidic and basic sites on the 

surface of the molybdate [95], resulting in a fairly active and selective oxidation catalyst.  

Excessive molybdenum may lead to a highly acidic surface, which may influence the activity 
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and selectivity of the molybdate catalyst.  The strength of acidity on the surface is therefore 

fundamental, as it may impact the rate of hydrogen abstraction from a saturated hydrocarbon.  

Successful oxidative dehydrogenation catalysts, such as molybdates, typically exhibit good 

redox capability and can facilitate bond breaking and desorption due to acid and basic 

character.   

1.2.2.3.5 The effect of supporting molybdenum 

In an attempt to improve the properties mentioned above, catalysts are often supported, since 

this may enhance the catalytic behavior and facilitate a different mechanism for the catalysis.  

It is important to note that the type of support strongly influences the catalytic properties 

exhibited by molybdenum oxide species, especially in the oxidative dehydrogenation of 

alkanes [140, 141].  It may therefore be concluded that the interaction between the surface of 

the support and the respective molybdenum species is dissimilar for different supports.  For 

example, oxygen chemisorption of silica supported molybdenum trioxide revealed weak 

interaction between MoO3 and SiO2 and hence poor dispersion [142].  In the case of Mo
+6

 

supported on silica, the metal cation is believed to replace hydrogen from the Si-OH bond 

thus forming a bridging bond through oxygen with the support [35, 143].  If one were to 

consider the acidity of Mo
+6

 and MoO3 as mentioned in Section 1.2.2.3.4 and the acidic 

nature of silica, we may conclude that the weak interaction is a consequence of these species.   

Silica, itself as a support, has been shown to be active in oxidation catalysis [144].  Silica has 

also been attributed with the formation of oxygen species responsible gas phase reactions in 

heterogeneous oxidation catalysis [145].  In the partial oxidation of ethane, Mendelovici and 

Lunsford proposed hydrogen abstraction by O
-
 ions responsible for the formation of ethyl 

radicals, which further react to produce ethylene and acetaldehyde over silica supported 

molybdenum [146].  Song et al. suggested gas phase radicals were formed over MoO3/SiO2 

as opposed to lattice oxygen insertion, in the epoxidation of propylene to propylene oxide 

[147].  In contrast to the activity of silica and silica supported molybdenum, Stern and 

Graselli, concluded from their results of the oxidative dehydrogenation of propane via silica 

supported divalent molybdates, that propylene yield was catalytically dependent and not 

initiated by gas phase reactions [88].  Also, Maione and Devillers, have shown that active 

cobalt, nickel and mixed cobalt-nickel molybdates supported on silica resulted in a greater 

intrinsic propene activity, in the oxidative dehydrogenation of propane [148].  Dias et al. 
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showed that supporting nickel molybdate on silica proves beneficial, since the oxidative 

dehydrogenation of isobutane over the unsupported catalyst results in higher amounts of 

carbon oxides and coke, compared to the molybdate supported on silica [149].  Similarly in 

the oxidative dehydrogenation of isotubane over silica supported nickel molybdate catalysts, 

the catalyst supported on silica with a higher surface area shows a higher conversion of 

isobutane, highest isobutene selectivity and lowest selectivity to carbon oxides [150].  The 

authors attribute the stabilization of the beta-phase of nickel molybdate, responsible for the 

improvement in the catalytic results.  This stabilization is suggested to occur due to the 

interaction of the molybdenum species and the silanol groups on silica, ultimately resulting in 

a higher level of the beta-phase of nickel molybdate and an improvement in the acidic-basic 

character of the supported catalyst [148-150]. 

Gamma-alumina, compared to silica, is an amphoteric support.  The dissimilarity in the 

surface acidic-basic properties of gamma-alumina compared to silica, result in different 

metal-support interactions, leading to mechanistic differences during reactions.  In particular, 

characterization and catalytic testing of an iron-molybdenum catalyst supported on gamma-

alumina revealed insertion of iron and molybdenum into the lattice, resulting in the formation 

of an Fe-Al-Mo bond [151].  Upon methanol oxidation with this catalyst, formaldehyde was 

not produced, instead dimethyl ether was the major product due to acidic-basic properties, as 

concluded by the authors [151].  A stronger interaction between the surface of alumina and 

molybdenum was suggested to have occurred.  This has been corroborated in the study of 

propylene oxidation via supported molybdenum, undertaken by Desikan and coworkers, in 

which a good correlation of the interaction between support acidic-basic properties and 

molybdenum oxide is provided [152].  The authors showed that catalytic activity decreased in 

the order TiO2 > Al2O3 > SiO2 via Arrhenius plots of propylene oxidation using catalysts with 

low and high loadings of MoO3.  A better dispersion of molybdenum trioxide was observed 

on TiO2 and Al2O3 as confirmed by oxygen uptake through chemisorption studies [152].  

Considering that titania and alumina are both amphoteric, whilst silica is more acidic in 

nature, the superior interaction of supported acidic molybdenum trioxide on TiO2 and Al2O3 

may be related to the ideal combination of acid and base properties.  Gamma-alumina may be 

advantageous as a support for molybdenum trioxide, as an increase in molybdenum loading 

increases the Brønsted acidity [153].  This may favour the production of olefins over alkanes, 

however, basic sites may be required to desorb the olefin molecules, to prevent over-
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oxidation.  A study by Heracleous et al., in the oxidative dehydrogenation of ethane, showed 

that gamma-alumina supported molybdenum oxide produced mainly carbon oxides [154].  

The authors suggested that the ethene formed probably adheres strongly to the surface of the 

catalyst, due to the acidity and therefore undergoing further oxidation to carbon oxides. 

1.3 Conclusion and perspective 

Heterogeneous gas phase oxidation catalysis continually inspires researchers to develop new 

research methodologies and target the formation of value-added products from feeds such as 

alkanes.  A clear understanding of catalytic oxidation may therefore be required for new 

researchers in the field and a reiteration for the experienced scientific community.  A 

fundamental approach may, hence, be constructive prior to catalytic design and experimental 

work.  It is undoubtedly clear that several mechanisms may be involved in the oxidation of 

hydrocarbons and consequently alkane activation.   

In summary, the properties of an oxidation catalyst may vary, however, a good selective 

oxidation catalyst should possess optimum redox properties to facilitate the transfer of lattice 

oxygen and acidic/basic surface properties to encourage the ideal adsorption of the reactant 

and desorption of valued products, such as olefins or oxygenates.   

Molybdates in particular can be functional selective oxidation catalysts.  An excess of 

molybdenum trioxide in a molybdate catalyst plays a vital role, which may be a synergistic 

interaction, as well a combination of surface acidity and basicity.  A supported molybdenum 

catalyst may perform better on alumina as opposed to silica due to the amphoteric nature of 

the former surface, encouraging stronger interaction of the molybdenum species with the 

support.  Further research should, for example, be conducted on a support containing both 

alumina and silica, such as cordierite monoliths, allowing for a superior combination of 

acidic and basic sites.   

1.4 Aim and motivation for this research 

The aim of this work is to therefore support a molybdenum based catalyst such as iron 

molybdate on cordierite monoliths, to determine if monoliths may be used as a suitable 

support for iron molybdate in the oxidation of n-octane.   

Bare and coated monoliths will be studied in the oxidation of n-octane.  The cordierite 

monoliths can be coated with a secondary support such as gamma-alumina to improve the 
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interaction of the active catalyst and support.  The iron-molybdenum catalyst is of higher 

molybdenum content, since excess molybdenum has proven to be beneficial to molybdate 

catalysts, as discussed in this chapter.  In order to understand the role of monoliths as 

supports a review of monoliths is therefore provided in Chapter 2, covering the basics, 

preparation methods and applications of monolithic catalysts.  Chapter 2 also leads on to the 

main study in Chapter 3, which involves the oxidation of n-octane over bare and coated 

monoliths.   

The overall study will therefore provide insight into the efficacy of monoliths as supports in 

the conversion of alkanes to value-added products.  Ultimately, this research study will 

contribute to the collaborative research effort toward the heterogeneous oxidation of alkanes, 

within the Catalysis Research Group.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 

 

1.5 References 

[1] A.M. Thayer, Chemical & Engineering News Archive 70 (1992) 27-49. 

[2] F. Zaera, Surface Science 500 (2002) 947-965. 

[3] C. Marcilly, Journal of Catalysis (2003) 47-62. 

[4] H.-U. Blaser, M. Studer, Applied Catalysis A: General 189 (1999) 191-204. 

[5] H.-U. Blaser, Catalysis Today 60 (2000) 161-165. 

[6] G. Somorjai, C. Kliewer, Reaction Kinetics and Catalysis Letters 96 (2009) 191-208. 

[7] M. Bowker, The Basis and Applications of Heterogeneous Catalysis, Oxford 

University Press Incorporated, New York, 1998. 

[8] S.M. George, Chemical Reviews 95 (1995) 475-476. 

[9] L. Hiam, H. Wise, S. Chaikin, Journal of Catalysis 10 (1968) 272-276. 

[10] G. Centi, Catalysis Letters 22 (1993) 53-66. 

[11] F. Cavani, Journal of Chemical Technology & Biotechnology 85 (2010) 1175-1183. 

[12] E. Bordes, Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry 3 

(2000) 725-733. 

[13] R.K. Grasselli, Topics in Catalysis 21 (2002) 79-88. 

[14] B. Delmon, The future of industrial oxidation catalysis spurred by fundamental 

advances, in: R.K. Grasselli, S.T. Oyama , A.M. Gaffney, J.E. Lyons, (Eds.), Studies 

in Surface Science and Catalysis, Elsevier, 1997, 43-59. 

[15] F. Cavani, Catalysis Today 157 (2010) 8-15. 

[16] A.E. Shilov, G.B. Shul'pin, Chemical Reviews 97 (1997) 2879-2932. 

[17] R.A. Periana, D.J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii, Science 280 

(1998) 560-564. 

[18] M.E. Dry, Applied Catalysis A: General 189 (1999) 185-190. 

[19] M.E. Dry, Catalysis Today 71 (2002) 227-241. 

[20] J.S. Jung, J.W. Park, G. Seo, Applied Catalysis A: General 288 (2005) 149-157. 

[21] J.R. Rostrup-Nielsen, Catalysis Reviews 46 (2004) 247-270. 

[22] R.G. Bergman, Nature 446 (2007) 391-393. 

[23] T.V. Choudhary, S. Banerjee, V.R. Choudhary, Applied Catalysis A: General 234 

(2002) 1-23. 

[24] J. Brazdil, Topics in Catalysis 38 (2006) 289-294. 



23 

 

[25] F. Cavani, F. Trifirò, Catalysis Today 24 (1995) 307-313. 

[26] H.J. Curran, P. Gaffuri, W.J. Pitz, C.K. Westbrook, Combustion and Flame 114 

(1998) 149-177. 

[27] J.A. Labinger, J.E. Bercaw, Nature 417 (2002) 507-514. 

[28] E.M. Larsen, Transitional Elements, W.A. Benjamin Incorporated, New York, 1965. 

[29] N. Govender, H.B. Friedrich, M.J. van Vuuren, Catalysis Today 97 (2004) 315-324. 

[30] H.B. Friedrich, N. Govender, M.R. Mathebula, Applied Catalysis A: General 297 

(2006) 81-89. 

[31] H.B. Friedrich, A.S. Mahomed, Applied Catalysis A: General 347 (2008) 11-22. 

[32] C. Masters, Homogeneous Transitional-Metal Catalysis-A Gentle Art, Chapman and 

Hall Limited, London, 1981. 

[33] P.A. Cox, Transition Metal Oxides - An Introduction to their Electronic Structure and 

Properties, Clarendon Press, Oxford, 1992. 

[34] G.C. Bond, Catalysis by Metals, Academic Press Incorporated, London, 1962. 

[35] M.A. Bañares, Catalysis Today 51 (1999) 319-348. 

[36] R.H. Crabtree, Chemical Reviews 85 (1985) 245-269. 

[37] M.M. Bhasin, J.H. McCain, B.V. Vora, T. Imai, P.R. Pujadó, Applied Catalysis A: 

General 221 (2001) 397-419. 

[38] P.A. Agaskar, R.K. Grasselli, J.N. Michaels, P.T. Reischman, D.L. Stern, J.G. 

Tsikoyiannis, U.S. Patent 5530171 (1996). 

[39] G. Mul, M.F. Asaro, A.S. Hirschon, R.B. Wilson Jr., U.S. Patent 6509485 (2003). 

[40] T.F. Narbeshuber, A. Brait, K. Seshan, J.A. Lercher, Journal of Catalysis 172 (1997) 

127-136. 

[41] S. Taubmann, H.G. Alt, Journal of Molecular Catalysis A: Chemical 287 (2008) 102-

109. 

[42] D. Sanfilippo, I. Miracca, Catalysis Today 111 (2006) 133-139. 

[43] R.H. Crabtree, Journal of the Chemical Society, Dalton Transactions (2001) 2437-

2450. 

[44] F. Cavani, F. Trifirò, Catalysis Today 36 (1997) 431-439. 

[45] B. Pillay, M.R. Mathebula, H.B. Friedrich, Applied Catalysis A: General 361 (2009) 

57-64. 

[46] E.A. Elkhalifa, H.B. Friedrich, Applied Catalysis A: General 373 (2010) 122-131. 



24 

 

[47] E.A. Elkhalifa, H.B. Friedrich, Catalysis Letters 141 (2011) 554-564. 

[48] M. Narayanappa, V.D.B.C. Dasireddy, H.B. Friedrich, Applied Catalysis A: General 

447–448 (2012) 135-143. 

[49] S. Wang, Z.H. Zhu, Energy & Fuels 18 (2004) 1126-1139. 

[50] V.C. Corberán, Catalysis Today 99 (2005) 33-41. 

[51] R.S. Liu, M. Iwamoto, J.H. Lunsford, Journal of the Chemical Society, Chemical 

Communications (1982) 78-79. 

[52] M.M. Khan, G.A. Somorjai, Journal of Catalysis 91 (1985) 263-271. 

[53] J.C. Védrine, Topics in Catalysis 21 (2002) 97-106. 

[54] J. Haber, M. Witko, Journal of Catalysis 216 (2003) 416-424. 

[55] R. Burch, M.J. Hayes, Journal of Molecular Catalysis A: Chemical 100 (1995) 13-33. 

[56] E. Brocławik, J. Haber, W. Piskorz, Chemical Physics Letters 333 (2001) 332-336. 

[57] J. Haber, Molecular mechanism of heterogeneous oxidation — organic and solid state 

chemists' views, in: R.K. Grasselli, S.T. Oyama, A.M. Gaffney, J.E. Lyons, (Eds.), 

Studies in Surface Science and Catalysis, Elsevier, 1997, 1-17. 

[58] J. Haber, M. Witko, Accounts of Chemical Research 14 (1981) 1-7. 

[59] G.I. Panov, A.K. Uriarte, M.A. Rodkin, V.I. Sobolev, Catalysis Today 41 (1998) 365-

385. 

[60] U.S. Ozkan, R.B. Watson, Catalysis Today 100 (2005) 101-114. 

[61] R. Schlögl, Concepts in Selective Oxidation of Small Alkane Molecules, Modern 

Heterogeneous Oxidation Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2009, 

1-42. 

[62] B. Grzybowska-Świerkosz, Topics in Catalysis 11-12 (2000) 23-42. 

[63] G.I. Panov, K.A. Dubkov, E.V. Starokon, Catalysis Today 117 (2006) 148-155. 

[64] J. Haber, W. Turek, Journal of Catalysis 190 (2000) 320-326. 

[65] G.K. Boreskov, Catalytic Activation of Dioxygen, in: J.R. Anderson, M. Boudart, 

(Eds.), Catalysis - Science and Technology, Springer-Verlag, Berlin, 1982, 40-137. 

[66] K. Aika, J.H. Lunsford, The Journal of Physical Chemistry 81 (1977) 1393-1398. 

[67] D.J. Driscoll, J.H. Lunsford, The Journal of Physical Chemistry 89 (1985) 4415-4418. 

[68] D.J. Driscoll, W. Martir, J.X. Wang, J.H. Lunsford, Journal of the American 

Chemical Society 107 (1985) 58-63. 



25 

 

[69] F. Cavani, F. Trifirò, Catalysis Today 51 (1999) 561-580. 

[70] I.R. Slagle, D. Sarzynski, D. Gutman, J.A. Miller, C.F. Melius, Journal of the 

Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 84 

(1988) 491-503. 

[71] M.Y. Sinev, Catalysis Today 24 (1995) 389-393. 

[72] K.T. Nguyen, H.H. Kung, Industrial & Engineering Chemistry Research 30 (1991) 

352-361. 

[73] R. Minetti, M. Carlier, M. Ribaucour, E. Therssen, L.R. Sochet, Combustion and 

Flame 102 (1995) 298-309. 

[74] F. Buda, R. Bounaceur, V. Warth, P.A. Glaude, R. Fournet, F. Battin-Leclerc, 

Combustion and Flame 142 (2005) 170-186. 

[75] O. Herbinet, W.J. Pitz, C.K. Westbrook, Combustion and Flame 154 (2008) 507-528. 

[76] O. Herbinet, S. Bax, P.-A. Glaude, V. Carré, F. Battin-Leclerc, Fuel 90 (2011) 528-

535. 

[77] J.C. Vedrine, G. Coudurier, J.-M.M. Millet, Catalysis Today 33 (1997) 3-13. 

[78] M. Misono, Topics in Catalysis 21 (2002) 89-96. 

[79] E.V. Kondratenko, M.Y. Sinev, Applied Catalysis A: General 325 (2007) 353-361. 

[80] H.H. Kung, Industrial & Engineering Chemistry Product Research and Development 

25 (1986) 171-178. 

[81] V.D.B.C. Dasireddy, H.B. Friedrich, S. Singh, Applied Catalysis A: General 467 

(2013) 142-153. 

[82] G. Centi, F. Trifiro, Catalysis Today 3 (1988) 151-162. 

[83] G. Centi, F. Trifiro, J.R. Ebner, V.M. Franchetti, Chemical Reviews 88 (1988) 55-80. 

[84] K. Bruckman, J. Haber, E.M. Serwicka, Faraday Discussions of the Chemical Society 

87 (1989) 173-187. 

[85] T.Y. Stoylkova, C.D. Chanev, H.T. Lechert, C.P. Bezouhanova, Applied Catalysis A: 

General 203 (2000) 121-126. 

[86] R. Burch, D.J. Crittle, M.J. Hayes, Catalysis Today 47 (1999) 229-234. 

[87] F. Cavani, F. Trifiró, Catalysis Today 34 (1997) 269-279. 

[88] D.L. Stern, R.K. Grasselli, Journal of Catalysis 167 (1997) 550-559. 

[89] C. Mazzocchia, E. Tempesti, C. Aboumrad, U.S. Patent 5086032 (1992). 

[90] H.F. Hardman, U.S. Patent 4131631 (1978). 



26 

 

[91] H.F. Hardman, U.S. Patent 4255284 (1981). 

[92] R.K. Grasselli, J.D. Burrington, J.F. Brazdil, Faraday Discussions of the Chemical 

Society 72 (1981) 203-223. 

[93] R.K. Grasselli, Journal of Chemical Education 63 (1986) 216-221. 

[94] H. Adkins, W.R. Peterson, Journal of American Chemical Society 53 (1931) 1512-

1520. 

[95] R.K. Grasselli, Catalysis Today 49 (1999) 141-153. 

[96] J. Guo, P. Zavalij, M.S. Whittingham, Journal of Solid State Chemistry 117 (1995) 

323-332. 

[97] W. Kuang, Y. Fan, K. Chen, Y. Chen, Journal of Chemical Research, Synopses 

(1997) 366-367. 

[98] S. Pradhan, J.K. Bartley, D. Bethell, A.F. Carley, M. Conte, S. Golunski, M.P. House, 

R.L. Jenkins, R. Lloyd, G.J. Hutchings, Nature Chemistry 4 (2012) 134-139. 

[99] A.M. Beale, S.D.M. Jacques, E. Sacaliuc-Parvalescu, M.G. O’Brien, P. Barnes, B.M. 

Weckhuysen, Applied Catalysis A: General 363 (2009) 143-152. 

[100] B.I. Popov, L.N. Shkuratova, N.G. Skorokhova, Reaction Kinetics and Catalysis 

Letters 3 (1975) 463-469. 

[101] F. Trifirò, Catalysis Today 41 (1998) 21-35. 

[102] B. Pillay, University of KwaZulu-Natal, 2009. 

[103] Y.S. Yoon, N. Fujikawa, W. Ueda, Y. Moro-oka, K.W. Lee, Catalysis Today 24 

(1995) 327-333. 

[104] L.E. Cadus, M.C. Abello, M.F. Gomez, J.B. Rivarola, Industrial & Engineering 

Chemistry Research 35 (1996) 14-18. 

[105] L.E. Cadus, M.F. Gomez, M.C. Abello, Catalysis Letters 43 (1997) 229-233. 

[106] U. Ozkan, G.L. Schrader, Journal of Catalysis 95 (1985) 137-146. 

[107] U. Ozkan, G.L. Schrader, Applied Catalysis 23 (1986) 327-338. 

[108] F. Trifirò, M. Carbucicchio, P.L. Villa, Hyperfine Interactions 111 (1998) 17-22. 

[109] S.A. Driscoll, U.S. Ozkan, Isotopic Labeling Studies on Oxidative Coupling of 

Methane over Alkali Promoted Molybdate Catalysts, in: V.C. Corberán, S.V. Bellón, 

(Eds.), Studies in Surface Science and Catalysis, Elsevier, 1994, 367-375. 

[110] S.A. Driscoll, D.K. Gardner, U.S. Ozkan, Journal of Catalysis 147 (1994) 379-392. 



27 

 

[111] R.M. Martin-Aranda, M.F. Portela, L.M. Madeira, F. Freire, M. Oliveira, Applied 

Catalysis A: General 127 (1995) 201-217. 

[112] M.F. Portela, R.M. Aranda, M. Madeira, M. Oliveira, F. Freire, R. Anouchinsky, A. 

Kaddouri, C. Mazzocchia, Chemical Communications (1996) 501-502. 

[113] A. Kaddouri, C. Mazzocchia, E. Tempesti, Applied Catalysis A: General 169 (1998) 

L3-L7. 

[114] Y. Liu, J. Wang, G. Zhou, M. Xian, Y. Bi, K. Zhen, Reaction Kinetics and Catalysis 

Letters 73 (2001) 199-208. 

[115] W.T.A. Harrison, Materials Research Bulletin 30 (1995) 1325-1331. 

[116] A. Clearfield, A. Moini, P.R. Rudolf, Inorganic Chemistry 24 (1985) 4606-4609. 

[117] H.-y. Chen, Materials Research Bulletin 14 (1979) 1583-1590. 

[118] J.L. Callahan, R.K. Grasselli, AIChE Journal 9 (1963) 755-760. 

[119] G. Fagherazzi, N. Pernicone, Journal of Catalysis 16 (1970) 321-325. 

[120] G.A. Nazri, C. Julien, Solid State Ionics 53–56, Part 1 (1992) 376-382. 

[121] G. Mestl, N.F.D. Verbruggen, H. Knoezinger, Langmuir 11 (1995) 3035-3041. 

[122] M. Labanowska, Physical Chemistry Chemical Physics 1 (1999) 5385-5392. 

[123] J.-C. Volta, B. Moraweck, Journal of the Chemical Society, Chemical 

Communications (1980) 338-339. 

[124] J.C. Volta, J.L. Portefaix, Applied Catalysis 18 (1985) 1-32. 

[125] J.C. Volta, J.M. Tatibouet, Journal of Catalysis 93 (1985) 467-470. 

[126] J. Haber, E. Serwicka, Polyhedron 5 (1986) 107-109. 

[127] K. Brückman, R. Grabowski, J. Haber, A. Mazurkiewicz, J. Słoczyński, T. Wiltowski, 

Journal of Catalysis 104 (1987) 71-79. 

[128] M.R. Smith, U.S. Ozkan, Journal of Catalysis 141 (1993) 124-139. 

[129] M.R. Smith, U.S. Ozkan, Journal of Catalysis 142 (1993) 226-236. 

[130] J. Haber, E. Lalik, Catalysis Today 33 (1997) 119-137. 

[131] R.A. Hernandez, U.S. Ozkan, Industrial & Engineering Chemistry Research 29 (1990) 

1454-1459. 

[132] J. Słoczyński, Journal of Solid State Chemistry 118 (1995) 84-92. 

[133] W.V. Schulmeyer, H.M. Ortner, International Journal of Refractory Metals and Hard 

Materials 20 (2002) 261-269. 



28 

 

[134] J.G. Choi, L.T. Thompson, Applied Surface Science 93 (1996) 143-149. 

[135] T. Ressler, R.E. Jentoft, J. Wienold, M.M. Günter, O. Timpe, The Journal of Physical 

Chemistry B 104 (2000) 6360-6370. 

[136] E. Lalik, W.I.F. David, P. Barnes, J.F.C. Turner, The Journal of Physical Chemistry B 

105 (2001) 9153-9156. 

[137] G. Busca, E. Finocchio, G. Ramis, G. Ricchiardi, Catalysis Today 32 (1996) 133-143. 

[138] W. Ueda, Y.-S. Yoon, K.-H. Lee, Y. Moro-oka, Korean Journal of Chemical 

Engineering 14 (1997) 474-478. 

[139] Y. Moro-oka, Applied Catalysis A: General 181 (1999) 323-329. 

[140] F.C. Meunier, A. Yasmeen, J.R.H. Ross, Catalysis Today 37 (1997) 33-42. 

[141] G. Tsilomelekis, A. Christodoulakis, S. Boghosian, Catalysis Today 127 (2007) 139-

147. 

[142] A.N. Desikan, L. Huang, S.T. Oyama, The Journal of Physical Chemistry 95 (1991) 

10050-10056. 

[143] R.D. Roark, S.D. Kohler, J.G. Ekerdt, Catalysis Letters 16 (1992) 71-76. 

[144] J.N. Armor, P.M. Zambri, Journal of Catalysis 73 (1982) 57-65. 

[145] Y. Barbaux, D. Bouqueniaux, G. Fornasari, F. Trifirò, Applied Catalysis A: General 

125 (1995) 303-312. 

[146] L. Mendelovici, J.H. Lunsford, Journal of Catalysis 94 (1985) 37-50. 

[147] Z. Song, N. Mimura, J.J. Bravo-Suárez, T. Akita, S. Tsubota, S.T. Oyama, Applied 

Catalysis A: General 316 (2007) 142-151. 

[148] A. Maione, M. Devillers, Journal of Solid State Chemistry 177 (2004) 2339-2349. 

[149] C.R. Dias, R. Zavoianu, M.F. Portela, Catalysis Communications 3 (2002) 85-90. 

[150] R. Zǎvoianu, C.R. Dias, A.P.V. Soares, M.F. Portela, Applied Catalysis A: General 

298 (2006) 40-49. 

[151] M. Carbucicchio, F. Trifirò, A. Vaccari, Journal of Catalysis 75 (1982) 207-218. 

[152] A.N. Desikan, W.M. Zhang, S.T. Oyama, Journal of Catalysis 157 (1995) 740-748. 

[153] M.C. Abello, M.F. Gomez, O. Ferretti, Applied Catalysis A: General 207 (2001) 421-

431. 

[154] E. Heracleous, A.F. Lee, I.A. Vasalos, A.A. Lemonidou, Catalysis Letters 88 (2003) 

47-53. 



29 

 

Chapter 2 

Monoliths: A review of the basics, preparation methods and applications 

Abstract 

The use of monolithic catalysts has extended from initial environmental applications to 

various other catalytic applications through the years.  Here the preparation, from monoliths 

to monolithic catalysts is summarised. Also, a concise description of the manufacturing of 

ceramic and metallic monoliths is provided.  Coating of gamma-alumina as a secondary 

support, coating active catalysts, high surface area monoliths and extruded monolithic 

catalysts are discussed herein, as are the coating of carbon and zeolites.  The main foci are on 

understanding the methodology to produce monolithic systems and to relate these to 

appropriate applications.  Ideas and concerns are also addressed herein to encourage better 

approaches to designing monolithic catalysts.  A historical background, brief insight into 

hydrogenation and detailed development in oxidation are reviewed. 

2.1 Introduction 

Catalysis is one of the most important developments of the industrial age [1], with research 

growing rapidly as an ever demanding economy prospers.  Heterogeneous catalysis is the 

most applied approach to catalysis, industrially, as compared to homogeneous catalysis and 

has seen major developments since large scale implication [1].  Heterogeneous catalysis 

covers several processes, such as catalytic combustion, hydrogenation, partial oxidation and 

oxidative dehydrogenation amongst many others.  In addition, developments have involved 

the supporting of catalysts on appropriate supports, allowing for better dispersion of the 

catalytically active phase, improving mechanical strength and allowing for efficient use of the 

catalyst species.  Examples of such catalyst supports are monoliths.  Monolithic catalysts 

have had large commercial success in environmental applications since their incorporation in 

catalytic converters for automobiles [2].  Research has thus expanded to investigate the 

possible benefits of monoliths in various other catalytic applications.  Monolithic catalysts 

offer several benefits over catalysts commonly in the pellet form, for use in fixed-bed 

reactors.  Preparative methods, engineering aspects and uses of monolithic catalysts have 

been discussed previously in the literature [3, 4].  Published reviews include methods of 

depositing the active catalyst on the monolith surface [5], monolith reactors in heterogeneous 
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catalysis [6], the use of monoliths in multiphase reactors [7] and a brief introduction to 

monoliths in general [8].  An overall view of monoliths and the advancement in economically 

relevant applications have not yet been presented.  The basic properties, the understanding of 

the preparation of monoliths and monolithic catalysts, uses and developments in applications 

have, hence, been summarised and are discussed herein. 

2.2 Monoliths 

2.2.1 Monolith basics 

Monoliths are uniform blocks available in different shapes and sizes, sold primarily in 

ceramic or metallic forms [9].  The major manufacturers of ceramic and metallic monoliths 

include Corning and Johnson Matthey, amongst others mentioned by Tomasic and Jovic [9].   

Monoliths are most commonly used in heterogeneous catalysis as catalytic support materials, 

whereby the active catalyst is coated onto the monolith surface and the reactant particles 

interact with the active phase within the channels, that are parallel throughout the body of the 

monolith [10].  The type of flow through the channels of the monolith is referred to as Taylor 

flow or bubble train flow, which involves the reactants moving through the channels in a 

circular type pattern or slugs, resulting in the formation of a thin film over the catalytic layer 

[11, 12].  The thin layer on the catalyst surface and the circular pattern results in an increase 

in the mass transfer and radial mass transfer, respectively, hence, a large rate of mass transfer 

and better selectivity toward a desired product [11, 12].  

 

 

 

 

 

 

Figure 2.1: Monoliths with different cell densities/sizes, (a) side view (b) top view 

a b 
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Figure 2.1 shows different sizes of ceramic monoliths from a side and top view.  As shown in 

both images, the lengths, diameters and channel widths may be different.  The physical 

dimensions of a monolith are usually expressed by cell density, equation (1), in cells per 

square inch (cpsi), which is determined by the width of the channels [10, 13].  The geometric 

model of a monolith structure is discussed with a schematic representation and relevant 

equations (1) to (4) by Roy et al. [14] and Williams [4].   

Cell density =  1/(l)
2
              (1)

  

     
 

Open Frontal Area =  (l – tw)/(l)
2
        (2) 

    
   

 

Geometric Surface Area =  4 (l – tw)/(l)
2
       (3) 

                  
 

 

 

Hydraulic diameter =   4 (Open Frontal Area)/(Geometric surface area)          (4) 

      
 

 

 

Where l = width/length of channel in inches and tw = thickness of the wall in inches 

 

Geometric surface area, Equation (3), is an important concept, such that a higher conversion 

of exhaust gases in catalytic converters can be achieved with a higher geometric surface area 

[10].  The hydraulic diameter, Equation (4), can be used to determine the effect on the 

hydrodynamics from the size of channels [14].  Monolithic catalysts have a large open frontal 

area, determined by Equation (4), as compared to catalyst pellets.  They, hence, have a low 

pressure drop compared to geometric surface area, due to little resistance of flow through the 

channels [10, 13].  The lower resistance to flow allows for significantly higher gas hourly 

space velocities, as compared to conventional catalyst pellets.  Higher gas hourly space 

velocities result in shorter contact times, which may result in greater yield of product, in a 

shorter time. 

A secondary support, commonly gamma-alumina [10], is usually coated onto the monolith 

surface prior to the coating of the active catalyst due to the monolith having a low BET 

surface area.  The adherence of the active phase to the monolith and the interaction between 

the active phase and secondary support may play an important role in the reaction occurring 

within the channels.  Catalysts in the form of pellets and coated onto monoliths show 

different diffusion profiles of reactants through the catalyst bed, due to the variation in the 

size of channels exposed to the reactants.  This may consequently result in a different product 
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profile to that of catalyst pellets.  Kolaczkowski discusses in detail diffusivity of gases on a 

catalytic washcoat over a monolith [15].  In summary, the author provides evidence for 

researchers to improve monolith catalytic systems, by emphasising the importance of intra-

phase diffusion and representative material size in diffusivity measurements.                               

      Monolith channel 

       

Reactant         Products 

 

Where monolith wall = black, for example cordierite, secondary support = grey, for example 

gamma-alumina and catalyst layer = green, for example platinum 

Figure 2.2: Reactant passing through a single monolith channel converting to products  

A simple representation of a reactant, passing through a single monolith channel coated with 

a secondary support and active layer, interacting with the coated catalyst and, hence, forming 

products which exit through the end of the channel, is shown in Figure 2.2. 

The chemical engineering principles of a monolith reactor are the same as those of a fixed 

bed/plug flow reactor, as discussed with kinetic expressions by Heck et al. [10]  The 

significantly lower pressure drop offered by monolith reactors are explained by Boger and 

Sorensen [13] and Heck et al. [10], relating the pressure drop to surface area, respectively.  

Vergunst et al. have summarized equations for the monolithic reactor with respect to mass 

balances, mass transfer, gas phase reactions and catalytic effectiveness of the thickness of the 

active layer, in the application to hydrogenation [16].  These equations were used to aid the 

authors in indentifying the impact of cell density and coating thickness in the selective 

hydrogenation of phenylacetylene.  Apparent from the study, was the definite effect of cell 

density and coating thickness, which concluded in the authors recommending a high cell 

density and thinner coating.  It may thus be helpful to note that a higher cell density, hence, 

smaller channel width, would be the best approach for a lab scale reactor.  A thinner coating, 

however, may result in a larger void space volume, thus creating volume for gas phase 

reactions.  Further insight on mass transfer characteristics of monoliths with experimental 

data correlating to this has been provided by West et al. [17]. These principles and equations 



33 

 

with their relevant applications may assist in the understanding of the monolith reactor 

model.   

2.2.2 Preparation of monoliths 

Monoliths are commonly produced in ceramic or metallic forms.  Ceramic and metallic 

monoliths differ greatly in physical and chemical properties, each having their respective 

advantages and disadvantages, which can prove important in a specific application.  Ceramic 

monoliths have been used in many applications, such as automotive emission control, ozone 

abatement, water filtration and combustion processes amongst others [4].  Cordierite 

monoliths are used primarily in combustion processes due to their thermal stability over large 

temperature intervals [6].  It is important to consider the type of application and the catalyst 

when using ceramic and metallic monoliths, respectively.  Adherence of the catalyst to the 

monolith surface will differ when using ceramic or metallic monoliths, since the material 

make up of these monoliths is completely different.  Ceramic monoliths are advantageous 

over metallic monoliths due to superior properties, such as better porosity, hence good 

coating adherence, and thermal stability, whilst metallic monoliths offer advantages with 

respect to heat transfer, pressure drop, mechanical stability, wall thickness and overall 

volume [9].  Ceramic monoliths have good thermal stability due to a low thermal expansion 

coefficient, however, they can still crack under significant changes in temperature [3, 10, 12].  

Also, metallic monoliths are becoming popular, despite the difficulty of catalyst adherence to 

the surface of the monolith.  An example of this is the use of metallic monoliths in catalytic 

combustion, due to a lower pressure drop over the metallic monolith, than in ceramic 

monoliths, as well as a higher cell density that can be obtained with a thinner wall thickness 

[18].  However, despite the increase in the use of metallic monoliths, ceramic monoliths 

currently still dominate. 

2.2.2.1 Ceramic monoliths 

Ceramic monoliths are obtained by extrusion or corrugation with a variety of starting 

materials dependant on the application, with cordierite (2MgO∙2Al2O3∙5SiO2), which can be 

confirmed by X-ray diffraction [19], being used extensively [9, 12].  Due to the cordierite 

structure of monoliths, a low surface area of less than 1 m
2
/g is usually obtained [20].  

Ceramic monoliths, as mentioned, are usually extruded with specially designed extruders, 

using the required starting materials and additives for the type of application, which are 



34 

 

commonly used for environmental applications [3, 9, 12, 21].  The process of extruding 

ceramic monoliths generally involves five basic steps.  These are mixing of the dry solid 

oxides, adding the required plasticizers or other organic/inorganic additives, using the 

appropriate dies to extrude a particular shape needed, drying to obtain a uniform structure 

without cracking and finally firing the structure, thus forming ceramic cordierite and 

removing binders [21-23].   

Corrugation involves adding inorganic oxides or salts to a mixture of starting materials, then 

the required additives, binders and plasticizers, using fibres for reinforcement, rolling and 

stacking and lastly calcining at the relevant temperature [6].  A more detailed account of the 

processes involved in extrudation and corrugation of ceramic monoliths has been provided by 

Avila et al. [22].   

Another form of ceramic monoliths is that of ceramic foams.  Ceramic foam monoliths are 

prepared by impregnating a polymeric foam with the required inorganic additives [24].  The 

foam monolith offers advantages such as improved radial transport and availability of 

different shapes made possible by the preparation method of the ceramic foam [24].  Reviews 

by De Luca and Campbell [25], followed by Lachman et al. [26-29] provide further 

summarized literature of preparative methods for ceramic monoliths.   

Preparative methods for ceramic monoliths are also available in the patent literature [30, 31].  

Forzatti et al. discuss in detail the rheological characterization of the paste when extruding, 

mixing and plasticizing, paste composition and drying and calcining in preparation of 

cordierite monoliths [21].  The importance and difference in the steps involved with the 

preparation methods for ceramic monoliths is highlighted extensively in the literature [4, 9, 

21, 22] and patent work [32-35].   

2.2.2.2 Metallic monoliths 

Metallic monoliths are obtained through corrugation, and usually contain iron, chromium, 

aluminium and rare earth metals [9, 10, 36].  The corrugated sheets can be prepared in several 

ways and are then cut to obtain the required shapes, for example parallel or spiral type 

structures [6, 22].  The iron and aluminium are used to facilitate the monoliths reaching 

relatively high operating temperatures, whilst other metals are included to help with the 

adherence of the active catalyst layer onto the metallic monolith [6, 18].  Avila et al. discuss 
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the innovation involving the different alloys used for metallic monoliths, as well as the 

history of the design types [22].  There were several types of layered metallic monoliths 

developed between 1968 and 1991, with the major innovator being EMITEC [22, 37-39].  

Figure 2.3 is an example of a metallic monolith designed by EMITEC. 

 

 

 

 

 

 

Figure 2.3: EMITEC metallic monolith (reproduced with permission from Elsevier [9]). 

Preparation of ceramic and metallic monolith structures may thus be an intensive process and 

a skilled art, requiring specialised equipment.  Most researchers therefore resort to purchasing 

these monolith structures, as opposed to designing them from the starting materials.  The 

unavoidable task, however, may be that of the preparation of the actual monolithic catalyst. 

2.2.3 Preparation of monolithic catalysts 

Monolithic catalysts may be prepared by coating an inert monolith support with the required 

secondary support followed by coating the active phase, impregnating the active phase onto 

an extruded high surface area monolith structure or incorporating the active phase into the 

monolith structure [9, 21, 22].  Ceramic and metallic monoliths as primary supports have low 

BET surface areas, as mentioned in Section 2.2.1, therefore a secondary support is usually 

applied.  The technique involved in the application of the secondary support onto the 

monolith is referred to as washcoating [15].  The secondary support layer is usually an 

inorganic oxide, which has a high surface area, is porous and can allow for efficient 

dispersion of the catalytically active phase.  Ceramic monoliths have a macroporous 

structure, allowing for a porous secondary support to adhere to the monolith surface [3, 12].  

Coating of metallic monoliths can be problematic due to a weaker adherence of the coat layer 

than on ceramic monoliths, however, a method such as anodisation of aluminium has been 

developed to attain a good secondary support and active phase coating [40].  The most 
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common secondary support applied to a monolith structure is gamma-alumina.  Gamma-

alumina allows for good dispersion of metal oxide species with differences in physical and 

chemical properties as opposed to the bulk oxide species [41].  Apart from the use of gamma-

alumina as a secondary support for monoliths in the oxidation of alkanes, secondary support 

coating of gamma-alumina on monoliths has also been used in the wet oxidation of acetic 

acid [42] and for three way catalysts [43].  The coating methods and advantages of gamma-

alumina on monoliths are outlined in the literature [44-47] and in several patents [48-51]. 

2.2.3.1 Gamma-alumina 

Gamma-alumina is one of the most widely used catalytic supports, predominantly employed 

in the petrochemical and automobile industries, due to properties such as Lewis acidic and 

basic sites, good porosity and high surface area [52-54].  Gamma-alumina is generally 

formed from the heat treatment of boehmite above 450°C [54, 55].  The formation of the 

gamma-alumina phase from aluminium hydroxides or oxohydroxides is strongly dependant 

on temperature, and temperatures used, range between 450°C to 700°C [54, 55].  Paglia et al. 

have shown a gamma-prime-alumina phase at temperatures above 750°C from boehmite, 

which forms a triple cell structure of gamma-alumina [55].  Characterization of gamma-

alumina can be done firstly by confirming the gamma phase using X-Ray diffraction, 

confirming high surface area by BET, comparison of micro images to literature by SEM and 

TEM, and infrared spectroscopy confirming the appropriate vibrational modes.  Gamma-

alumina has a spinel structure similar to that of the AB2X4 (MgAl2O4) structure [56], where in 

gamma-alumina magnesium is replaced by aluminium in the ideal MgAl2O4 structure [54, 

57].  The defect in the structure due to the lack of a divalent cation and the presence of 

trivalent aluminium cations results in the formation of a cubic close packing of the oxygen 

lattice, as well as octahedrally and tetrahedrally situated aluminium atoms in the spinel 

structure [54, 57].  The macrostructure and acid/base properties of the surface of gamma-

alumina were reported in detail by Trueba and Trasatti [54].  These properties exhibited by 

gamma-alumina may, therefore, be particularly useful as a secondary support coated over 

monoliths. 

2.2.3.2 Coating methods for the gamma-alumina secondary support 

In general, the coating procedure involves the repeated dipping of the monolith in a solution 

or slurry mixture, allowing it to soak for a few minutes, removing excess liquid from the 
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channels with compressed air, followed by calcination. This finally allows for the formation 

of the required secondary support layer, upon each repetitive coating cycle.  Adaptations to 

the coating method can be easily made according to preference, such as continued dipping 

then drying and finally calcining, or constant rotation of the monolith upon repeated 

calcination.  Repeated dipping, rotating, drying and final calcination may result in a more 

uniform coating across the channels [3].  The amount of coat layer on the monolith is usually 

expressed in weight percent.  The weight percent coated may vary according to application 

and how active the catalyst may be.  Successful coating of monoliths with gamma-alumina of 

up to 15 weight % has been reported [44], as well as coating up to 20 weight % using the sol-

gel approach [58].  The thickness of the coating is thus an important factor when considering 

the application of the catalytic system, since open frontal area, geometric surface area and 

hydraulic diameter will be affected.  A thicker coating may result in a decreased open frontal 

area, which could prove limiting to higher gas hourly space velocities or even diffusion of 

larger reactant molecules through the monolith channels.  There are several important factors 

that need to be taken into consideration when applying a washcoat to a monolith structure.  

These factors may include pH, slurry concentration, appropriate calcination, drying or 

specific techniques for a required application.   

The techniques for coating result in pore filling or deposition of a coated layer on the support 

[3].   Pore filling occurs when using sol-gel or colloidal suspensions which allows for the 

pores within the monolith structure to be mostly filled with the washcoat, whereas deposition 

of a layer can be achieved with slurry coating, allowing for the coat layer to adhere to the 

pores [3].  An advantage of the pore filling technique would be a smaller decrease in the open 

frontal area of the monolith, as opposed to slurry coating, and strong adherence of the coat 

layer with the monolith structure.  The disadvantage, however, would be the limitation of 

macropore volume of the structure [3].  The disadvantage of slurry coating would be a larger 

decrease in open frontal area of the monolith.  An advantage of a higher loading of washcoat 

[3, 59] is that a higher loading of active catalyst may be achieved with slurry coating.  The 

pore filling technique may be best suited for a highly active catalyst, since a low loading of 

catalyst will be sufficient, whereas for a less active catalyst more catalyst may be coated onto 

a slurry coated monolith. 

 



38 

 

2.2.3.2.1 Colloidal coating 

Colloidal coating is a pore filling technique, using particles of the nano scale size to allow for 

strong adherence to the monolith surface.  Colloidal particles may be produced via different 

methods.  Beauseigneur et al. report an average particle size between 1 to 100 nm in the 

colloidal coating of monoliths for exhaust gas treatment [60].  Larsson et al. used boehmite 

powder with hydrochloric acid to produce the required colloidal solution, followed by 

calcination producing the gamma-alumina coating onto the monolith [61].  Colloidal alumina 

can also be prepared successfully from commercial boehmite peptized in acidic solution [62].  

The gamma-alumina phase is produced by calcination between 500 °C to 700 °C of the 

peptized boehmite [63].  Colloidal alumina is now easily available and water can be used in 

the dispersion technique, thus, Özdemir et al. use colloidal alumina dispersed in water to coat 

monoliths for carbon monoxide oxidation [64], while Barbero et al. reported successful 

coating of their metallic monoliths with the use of colloidal alumina as a primer and a 

suitable stabiliser [65].  Perhaps for the ease of convenience purchasing colloidal alumina 

may be the better option, unless researchers intend on approaching new methods of colloidal 

coating. 

2.2.3.2.2 Sol-gel 

A sol refers to the dispersed form of a colloidal solution and in which gelation occurs when 

an interlinked network is formed between the particles, therefore sol-gel is a dispersed form 

of the interlinked particles [66].  The sol-gel method for coating monoliths involves the 

secondary support being in the dissolved form, therefore, forming gamma-alumina upon 

calcination after dipping of the monolith in the solution.  This results in better pore filling of 

the monolith as compared to colloidal coating [3].  A sol can be prepared via a hydrolytic 

route or non-hydrolytic route as shown in Equations (5) and (6) [36].   

M(OR)n + nH2O     M(OH)n  +  nROH       (5) 

-M-OH    + HO-M'-             -M-O-M'-   +   H2O      (6) 

Where M = metal, for example aluminium 

Equation (5) shows the hydrolysis reaction of the metal alkoxide using a suitable acid or base 

and water [36].  During the sol preparation with heat treatment and time, condensation 
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occurs, as shown in Equation (6) [67].  A more detailed description of the sol-gel process is 

presented by Schmidt [67].  Xiaoding et al. reported a study of sol-gel coating of monoliths 

via three types of aluminium sols, namely pseudoboehemite with urea and nitric acid, 

hydrolysis of aluminium chloride and aluminium powder, and hydrolysis of tri-sec-butoxide 

aluminium [68].  It was concluded that sols prepared via pseudoboehimite with urea and 

nitric acid and hydrolysis of tri-sec-butoxide are most suitable for sol-gel alumina coating of 

monoliths [68].  A typical sol-gel method of coating involves dipping the monolith in a sol 

from pseudoboehimite, urea and 0.3M nitric acid in a weight ratio of 2:1:5, followed by 

emptying the channels, drying and finally calcination [69].  The sol-gel method for coating 

may thus be advantageous over colloidal coating, however, the maximum capacity for sol-gel 

coating on the monolith structure has not been reported. 

2.2.3.2.3 Slurry coating 

Slurry coating involves using a gamma-alumina suspension, usually with a larger particle size 

as compared to colloidal coating, preferably between 2 µm and 5 µm for strong adherence to 

the monolith surface [59].  The general procedure uses an acid to disperse the alumina, the 

monolith is then dipped in the slurry, after which excess liquid is removed by blowing 

compressed air through the channels, followed by drying and calcination or direct calcination 

[45, 70].  Wet milling of the gamma-alumina to attain a required particle size is very 

important, as factors such as pH and viscosity play a key role in adhesion to the monolith 

surface [70].  The particles inside a typical stirred mill are highly influenced by stress energy, 

number of stress events and specific energy [71].  Milling can be a tedious process to attain a 

required particle size, however, gamma-alumina is available commercially with an average 

particle size less than 5 µm.   

The most effective acid in slurry coating is nitric acid which helps to stabilise the slurry and 

allows for a better washcoat uptake [72].  The percentage solids in the slurry also plays an 

important role in the efficacy and homogeneity of the coating [45].  Important to note is that 

with the technique of slurry coating, monoliths need to be coated in batches, since continued 

coating may result in an increase in the viscosity of the slurry mixture.  This increase in 

viscosity may seriously impact on the homogeneity of the coating.  Capillary forces allow for 

water to be drawn into the pores of the monolith structure which creates competition for 

adherence of the slurry [73].  An intermediate prewetting step discussed by Mogalicherla and 
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Kunzru allowed for a high washcoat loading to be achieved [73].  Agrafiotis and Tsetsekou 

have reported an optimum slurry concentration of 45 weight % solids and viscosity between 

50 and 150 mPa∙s [45].  Villegas et al. reported homogeneous gamma-alumina coating with 

25 weight % solids [44], revealing that a high weight percent coating may be achieved via 

slurry coating.   

Dispersible powders of boehmite or aluminium hydroxide can be used to produce gamma-

alumina on the monolith surface after calcination [44, 59].  It was reported, however, that an 

average particle size of alumina of 3 µm allowed for a higher loading of alumina to be 

achieved, as well as good adhesion properties as compared to boehmite type powders [44].  

Slurry coating may, therefore, be ideal for a high weight percent coating and the particle size 

of the alumina being coated may be controlled.  The method of slurry coating may, therefore, 

offer less coating repetitions and good adherence of gamma-alumina.  Considering 

advantages such as these, slurry coating may be more practical and less time consuming than 

the other coating approaches mentioned.  

Characterization of the secondary support coating is usually performed by SEM, which may 

be used to show the coating inside the channels of the monolith as compared to a bare 

monolith.  This characterization technique can further be used to assess the homogeneity of 

the coating and also aid in measuring the coating thickness.  Figures 2.4 (a) and (b) show 

sectioned ceramic monoliths prior and after coating with 10 weight % gamma-alumina, by 

method of slurry coating.  After coating of the secondary support, a layer is obtained within 

the monolith channels, which may provide for better interaction with the active layer as 

compared to the bare monolith. 
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Figure 2.4 SEM images of channels of monolith: (a) uncoated (b) coated with 10 weight % 

gamma-alumina 

2.2.3.3 Coating of the active catalyst 

The active component can be incorporated onto the monolith surface with the washcoat layer 

of the high surface area oxide or it can be coated onto the washcoat layer by impregnation, 

deposition precipitation, ion-exchange, sol-gel and growth of the active components in situ 

[74].  Impregnation and deposition precipitation are the most common methods used to coat 

the active layer.  Coating of the active phase on the monolith is just as important as the 

washcoat layer of the high surface area oxide.  The metals should be distributed uniformly on 

the washcoat layer or on the bare monolith.  A general procedure for coating of the active 

phase involves dipping of the monolith in the solution or mixture, blowing out excess liquid 

from the channels, drying and calcination at the required temperature.  Factors that should be 

considered include, type of application, active species required, amount of catalyst species 

required and method of coating of active phase.  Coating of the active phase similarly may 

impact the geometric properties, as in washcoating of the secondary support.  Considering a 

highly active catalyst, less catalyst should be used and vice versa, since a high selectivity to 

desirable products may be achievable from fine tuning the appropriate gas hourly space 

velocities.  An appropriate example would be coating noble metal catalysts, which are 

expensive, however, highly active when coated on monoliths [75, 76]. 

2.2.3.3.1 Impregnation 

Impregnation usually involves preparing a solution of the active metals or components which 

can be easily drawn up the monolith surface by capillary forces.  Klinghoffer et al. describe 

the coating of platinum onto alumina coated monoliths by dissolving the platinum catalyst, 

originally prepared via incipient wetness, in double distilled water followed by dipping of the 

a b 
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monoliths, drying and lastly calcining [42].  The impregnation procedure can be applied 

across monoliths with different material make up, such as silica monoliths as reported by 

Xiaodong et al., who describe coating  an iron/copper catalyst using mixed solutions of iron 

nitrate and copper nitrate [77], and ceramic monoliths as reported by Thimmaraju et al., 

describing coating of molybdenum(VI) onto ceramic monoliths with suitable characterization 

[78].  Impregnation may prove useful dependent on the application.  An example of this, is 

the use of impregnation in enhancing the performance of noble metal coated three way 

catalysts [79].  The technique of impregnating the active catalyst can also be applied to 

coating metallic monoliths [18].  The successful coating of monoliths by impregnation has 

also been reported in several patents [80-83].  Impregnation usually results in non-uniform 

distribution of metals and is not a reproducible method [84].  Methods of microwave heating 

or freeze drying can be used to solve this problem [84] or, alternatively, deposition 

precipitation may be used upon preference. 

2.2.3.3.2 Deposition precipitation 

Deposition precipitation involves the precipitation of a metal salt with a base [85], however, 

applying this to a monolithic support may be more difficult and an inhomogeneous coating 

may often be obtained.  Barrio et al., conversely, reported a homogeneous coating achieved 

by redox deposition precipitation, in which acetone is used as a solvent to coat the monoliths 

with manganese oxide [86].  The most common approach to deposition precipitation coating 

of monoliths involves the use of urea as the precipitating agent, where for example Carnö et 

al. supported manganese and platinum onto monoliths [87].  The metal salt and precipitating 

agent are in the liquid phase, therefore, the monolith can be dipped into this solution and 

calcined.  During calcination, the urea decomposes, allowing for an increase in pH and hence 

precipitation of the required active phase [3, 87].  Deposition precipitation can also be used to 

coat metallic monoliths.  Frias et al. use the basis of deposition precipitation for coating of 

monoliths as being more energetically favourable when the active phase is formed over the 

monolith surface [88].  Monolithic catalyst preparation by deposition precipitation has been 

used in diverse applications such as biomass gasification [89], methane combustion [90], 

oxidation [86, 87] and selective catalytic reduction [91]. 

Concerning active phase coating, it may be important to note that not all catalysts may be 

coated via impregnation or deposition precipitation.  Adapting the original preparation 



43 

 

method of a powder catalyst for coating on monoliths may impact on the surface properties.  

Thus variations of coating procedures may be required and approaches such as sol-gel 

coating [92] or solution-combustion [93] may, hence, be of interest.  The preparation of 

monolithic catalysts by these techniques require the preparation of a precursor sol or solution, 

followed by repeated dip coating and calcination to form the active layer.  These methods 

may be used to obtain smaller particle sizes and, therefore, better interaction between the 

active layer and monolith or secondary support. 

2.2.3.4 Coating of metallic monoliths 

Metallic monoliths, similarly to ceramic monoliths, have a low surface area, hence, a 

washcoat of a secondary support is required. The main problem associated with coating 

metallic monoliths is the adhesion of the secondary support layer, however, using higher 

aluminium content in the preparation of the metallic structure may allow for better adhesion 

[18, 94].  The coating method may also influence the adhesion properties of the high surface 

area oxide on the metallic surface, therefore, coating methods such as oxidation of bulk 

aluminium [95], slurry coating [2], chemical vapour deposition [96] and anodisation of 

aluminium [40, 97] have been developed and used.  The preparation procedure for coating 

can significantly influence the activity of the catalysts, as shown by Zwinkels et al., when 

preparing metallic monoliths for combustion catalysis [98].  Coating of the active phase after 

coating with a secondary support may be achieved similarly as for ceramic monoliths.  An 

example of such is the impregnation of palladium after sol-gel coating of gamma-alumina 

[99], whilst a further example is the washcoating of Pt-ZSM5 [100].  Coated metallic 

monoliths are, hence, being used as catalysts in several fields, such as combustion [65, 101], 

Fischer-Tropsch [102, 103] and oxidation [104], due to a better understanding of coating and 

the benefits thereof. 

2.2.3.5 Coating zeolites and carbon onto monoliths 

Zeolites are known to be highly selective and can produce high yields in numerous reactions, 

hence, coating different zeolites onto monoliths, as reported [105], can prove useful.  The use 

of zeolites on monoliths is advantageous due to the possibility of coating smaller zeolite 

particles, which would not cause problems with pressure drop [106].  Selectivity can also be 

tuned with the high gas space velocities attainable with monoliths.  Zeolites can be coated 

directly onto monoliths via two methods, namely hydrothermal synthesis or slurry coating 
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[107].  Coating of zeolites onto the ceramic monolith surface is possible due the macroporous 

structure of the monoliths allowing for adherence of the zeolite layer [107].  Hydrothermal 

synthesis results in a stronger interaction between the zeolite coating and the surface of the 

monolith, when compared to slurry coating [107, 108].  A more detailed understanding has 

been provided by Ulla et al., discussing direct hydrothermal synthesis and secondary 

hydrothermal synthesis of ZSM-5 zeolites on cordierite monoliths, highlighting the properties 

of zeolites on the monoliths [108].  Li et al. report a different approach via an in situ 

hydrothermal method for the coating of zeolites on cordierite monoliths [106]. The authors 

focus on how preparative factors influence the growth of zeolites on monoliths.  In contrast to 

common methods of coating zeolites,  dip coating may also be used via a mixture containing 

BEA zeolite crystals, a suitable solvent, binder and surfactant [109]. 

Carbon coated monoliths are typically used in environmental applications, for example in 

selective catalytic reduction systems [110].  The main advantage of using carbon as a support 

is the stability in acidic or basic media [111], which may possibly prove useful in the 

presence of corrosive gases.  Another advantage is the ability to recover the active phase, 

such as precious metals used in environmental applications [111, 112].  Carbon coating may 

usually be achieved by dip coating a monolith into a liquid polymer that has been crosslinked 

and carbonised, followed by curing to the required temperature [113].  A review of the 

preparation of carbon coated monoliths and applications in catalytic and adsorptions 

processes thereof has been presented by Vergunst et al. [114].  In particular, they also 

describe in detail the preparation of carbon coated monoliths via furfuryl alcohol based 

polymers [115].  The authors underlined the problem associated with carbon coating, which 

is shrinkage of the polymer coating resulting in incomplete coverage of the monolith with the 

coating.  In comparison, Garcia-Bordeje and co-workers were able to optimize carbon coating 

of monoliths via Novolac and furan resins [112].  These authors raised fundamental factors 

that impact on the coating, which are the viscosity of the dip coating mixture and the 

individual properties of the resins.  An example of such an impact is that the yield of each 

resin was established as being different [112].  The potential of carbon monoliths are being 

realised, especially with regard to lowering the environmental impact of catalytic processes 

and it may be fitting to suggest that we may see numerous research efforts dedicated to this 

aspect in the future. 
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Coating monoliths with carbon nanotubes is also being studied.  Carbon nanotubes are used 

predominantly as supports in catalysis and have proven effective, as such, in hydrogenation 

[116], ammonia synthesis [117] and Fischer-Tropsch synthesis [118] amongst other 

applications.  Monoliths offer a favourable characteristic of high geometric surface area for 

growth of carbon nanotubes as compared to the powder form of carbon nanotubes [117].  

Carbon nanofibres have also been successfully grown onto gamma-alumina coated cordierite 

monoliths [69, 119]. 

2.2.3.6 High surface area monoliths 

High surface area monoliths are extruded similarly to ceramic monoliths using the relevant 

materials required as indicated by Avila et al. [22] and Forzatti et al. [21]  Materials used are 

generally alumina powder, organic binders and precursors required to hold the monolith 

structure together [4].  Lower firing temperatures are also required to allow for good porosity 

and to maintain high surface area [4, 120].  Significantly higher surface areas are attainable, 

compared to ceramic cordierite monolith extrusion, with the compromise of added 

agglomerants which remain in the monolith structure [22].  Pillared clays have been used to 

produce monoliths with a surface area above 220 m
2
/g [23].  Xiaodong et al. reported the 

preparation of a silica monolith via a sol-gel reaction of tetramethoxysilane, producing a 

monolith with surface area 648 m
2
/g, having mesopores and macropores [121].   

High surface area monoliths are used predominantly in environmental applications, such as in 

selective catalytic reduction [122] and mineralization of volatile organic compounds [123].  

The properties of these monoliths differ significantly compared to ceramic and metallic 

monoliths, since they are more porous and contain acidic and basic sites.  The thermal 

stability of the structure, however, may be questionable.  Considering the improved porosity 

and more acidic and basic sites, high surface area monoliths may be seen as advantageous in 

some environmental applications as opposed to ceramic or carbon coated monoliths.   

The disadvantages of high surface monoliths may include lower mechanical strength of the 

structure and a more complex understanding of catalyst interaction with the high surface area 

material used to produce the monolith.  Another disadvantage may include the use of these 

structures in applications other than environmental, since the monolith itself may be highly 

active due to the properties mentioned herein.  Despite this, however, diversity of the use of 

high surface monoliths is currently under investigation with applications in selective carbon 
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dioxide adsorption [124], separation of molecules [125], gas storage [126] and biocatalysis 

[127].  

2.2.3.7 Extruded/Integral monolithic catalysts 

Extruded monoliths or integral monoliths, as they are termed, contain the catalytically active 

component within the monolith structure.  The entire monolith is, therefore, made of the 

catalyst, by extruding it through specialised equipment.  Disadvantages of the preparation 

methods for integral monolithic catalysts generally outweigh the advantages.  The main 

advantages, however, may include fewer steps required in the preparation, as well as a non 

questionable active coating homogeneity, due to the monolith being extruded.  Extrudation of 

these monolith structures on the contrary are quite complex.   Intensive thought into the 

design may be needed, as maintaining the active species will be imperative.  A matter of 

concern, with regard to the entirety of the structure, may be the mechanical strength of the 

monolith.  The extruded monolith may also not offer the most efficient use of the catalyst 

species, especially when using noble metal catalysts.  The general steps involved in 

extrudation of the monolith would need to be adjusted according to preference, so as not to 

destroy the catalytic species during preparation.   

Forzatti et al. highlight that the high surface area support becomes the predominant 

component and the active phase the minor component, in an extruded monolithic catalyst 

system [21].  The preparation methods for extruded monolithic catalysts are thus more 

expensive and specialised than the coated monolithic catalysts.  Extruded monolithic catalysts 

are mainly used in environmental applications, such as selective catalytic reduction, as 

discussed by Lachman and Williams [29].  The advantage of using extruded monolithic 

catalysts in these environmental applications is the resistance to deactivation, as compared to 

applying an active layer over a secondary support [22]. 

2.2.4 Historical applications and new developments 

Industrial application of monolithic catalysts began in 1966 with the clean up of nitric acid 

tail gases, using a ceramic catalyst coated with palladium, which removed oxides of nitrogen 

[6, 128].  The initial success intrigued many researchers and industries, which allowed for 

large platform onto which ideas could be built.  Monolithic catalysts were later used in car 

exhausts as three way catalysts for emission control [6]. 
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The era of research into catalytic converters containing monolithic catalysts developed due 

the benefit of a lower pressure drop, which lead to automobiles being equipped with catalytic 

converters in 1975 [129].  These catalytic converters contained a cordierite ceramic monolith 

structure, developed by Corning Incorporated, washcoated with an alumina support and a 

mixture of a low loading of platinum group metals, such as platinum, rhodium and palladium, 

as the catalytically active layer [9, 129].  Research into the use platinum group metals was 

primarily due to factors such as higher activity, high throughput with high concentration of 

sulphur in the reactant gas, thermal stability and durability [130].  Catalytic converters gained 

significant attention due to the increase in the production of automobiles and stringent 

regulations with respect to emissions.  Farrauto and Heck have published their perspective of 

catalytic converters in combustion engines, which describes the understanding and design of 

catalytic converters through to the possible challenges [131].  Several other informative 

publications are available on automotive catalysis, discussing the successes and future 

challenges [132-135].  Numerous valuable innovations using monoliths in catalytic 

converters over the past years have been patented [136-140]. 

The large scale implication and success of monoliths in exhaust gas clean up also lead to 

further interest and development, resulting in environmental industrial applications such as 

flue gas treatment [9, 10].  Research expanded from this initial application to catalytic 

combustion, oxidation catalysis and hydrogenation, amongst other possible applications.  

These areas of research possibly show the most promise for the use of monolithic catalysts, 

due to industrial growth and the need for development.  Applications such as these could 

prove useful in the global concern of environmental issues and offer more sustainable 

economic expansion. 

2.2.4.1 Environmental applications and catalytic combustion 

A main development in the use of monolithic catalysts is that of combustion of volatile 

organic compounds.  Catalytic combustion processes are usually operated at high 

temperatures and have a high gas throughput, therefore temperature control and pressure drop 

are important factors when designing reactor systems [141].  The advantages of using 

monoliths in catalytic combustion are thus understandable.  Volatile organic compounds are 

known to contribute significantly to air pollution and hence global warming, therefore the 

designs of efficient combustion systems for eliminating these compounds are continually 
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being improved.  The use of monoliths in the destruction of these volatile organic compounds 

has resulted in lower costs and better efficiency over the conventional catalysts used initially 

[142].   

Tomasic provides a detailed insight into using monoliths in DeNOx catalysis, including 

exhaust gas clean up and modelling of monolith reactors for NOx environmental treatment 

[143]. In environmental applications, typically noble metals are used due to a high activity 

and improved efficiency when coated on monoliths [144].  The most successful example of 

this would be the catalytic converter used in automobiles as a three way catalyst system.  The 

problems encountered in these systems are emissions during cold start, thermal stability and 

deactivation [72].  A more informative view of the role and attempts to improve monoliths as 

three way catalytic converters is provided by Gokalp, where new developments are also 

discussed [145].  Combustion and three way catalytic systems are undoubtedly central 

applications of monoliths, but monoliths may prove valuable in other catalytic processes. 

2.2.4.2 Hydrogenation 

Hydrogenation is typically performed in the pharmaceutical and fine chemical industries, 

although large scale applications are also common [141].  The former hydrogenation 

reactions were previously performed in batch reactors, however, this posed several hazards 

and therefore continuous flow conditions are now a common trend [146].  Continuous flow 

reactors are commonly operated at high pressures to attain better selectivity to desired 

products [146].  Hydrogenation reactions have problems with mass transfer characteristics 

[147], where monoliths may prove advantageous.  

Hatziantoniou et al. performed a study of mass transfer effects and selectivity for 

hydrogenation of nitro compounds using a monolithic catalyst, attributing the high activity to 

the mass transfer steps being rate determining [148].  Xiaoding et al. reported nickel coated 

monoliths for the hydrogenation of benzaldehyde in an attempt to achieve improved 

selectivity, and showed better selectivity and conversion than conventionally used catalysts 

[149].  In comparison to a stirred tank and trickle bed reactor in hydrogenation, a monolith 

reactor showed greater selectivity to the desired product [143].  The diverse applications of 

monoliths can be seen in the investigation of monolithic catalysts for the hydrogenation of 

edible oil, where comparing this system to the conventional slurry reactor showed a reduction 

in cost for monolithic system [147].   
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Although hydrogenation is a prominent field in industrial catalysis, an area of greater interest 

may be that oxidation catalysis.  The economic and environmental implications of 

implementing monoliths in the heterogeneous gas phase oxidation of alkanes may certainly 

outweigh other applications.  It is for these reasons that we see significant research conducted 

in the form of oxidation catalysis using monolithic catalysts. 

2.2.4.3 Oxidative dehydrogenation and partial oxidation 

Alkanes can be oxidatively dehydrogenated to produce more valuable products such as 

olefins and oxygenates.  Industrially, conversion and selectivity to valuable products should 

be high, in order to operate efficient reactors and maximise profit.  A study performed by 

Huff and Schmidt on the oxidative dehydrogenation of ethane using monoliths revealed 

interesting information on the role of coating platinum group metals on monoliths [150].  The 

platinum coated monolith showed the greatest activity (> 80 %) and selectivity (70 %) 

towards ethylene formation, whilst rhodium facilitated the production of mainly synthesis gas 

and the use of palladium encouraged carbon formation.  The authors attributed production of 

ethylene via an initial oxidative dehydrogenation mechanism on platinum followed by β-

hydrogen elimination and finally desorption of ethane.  Huff and Schmidt claimed this 

mechanism holds true for longer chain alkanes and isobutane [151-153].  In the partial 

oxidation of medium length alkanes, Dietz et al. observed the formation of oxygenates as 

well as olefins, which they concluded was a similar product profile to that of thermal 

pyrolysis [154].  Converse to the mechanism claimed by Huff and Schmidt [150], Beretta and 

co-workers were able to prove, in a comprehensive study of the oxidative dehydrogenation of 

propane via a annular reactor, homogeneous gas phase reactions were responsible for the high 

yield of olefins [155, 156].  The authors performed a series of homogeneous gas phase 

reaction experiments, which showed high selectivity (> 55 %) toward olefins at a high 

conversion, similar to that of catalytic testing with the platinum/gamma-alumina coated 

ceramic support.  The increase in olefin selectivity was attributed to short contact times, 

whilst carbon oxides were confirmed as the terminal products from these radical reactions.   

Beretta et al. further went on to provide evidence of homogeneous gas phase reactions in the 

oxidation of propane under autothermal conditions [157].  The platinum catalyst coated on 

metallic support was suggested as the initiator of the radical reaction process.  Radical 

reactions are initiated by hydrogen abstraction, consequently yielding an akyl radical and 
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peroxy specie, which can further react to generate numerous non-selective products.  The 

product profile observed in the oxidative dehydrogenation of propane [157] and when 

extended toward ethane oxidation [158], therefore supported the conclusion of a radical type 

mechanism.   

Promoting the platinum coated monolith system with tin or copper, in autothermal oxidation 

of ethane, was shown to enhance the yield of ethylene [159].  Hakonsen and co-workers were 

able to corroborate these results with a platinum-tin impregnated monolith, however, were 

unable to rule out gas phase reactions [160].  In the cases presented herein, the addition of a 

promoter may perhaps contribute to an increase in the rate of propagation of the radical 

mechanism as opposed to a catalytic involvement.  Considering that void space may impact 

significantly on the gas phase reactions, utilizing monoliths with a higher cell density may aid 

in decreasing void space, hence retarding radical reactions.  This concept was applied by 

Sadykov and co-workers, whereby micromonoliths were used in the oxidative 

dehydrogenation of propane [76].  The authors were able to fine-tune reaction conditions, 

implementing aspects such as an excess of hydrocarbon to consume almost all oxygen and 

the use of promoters, as well as a reactor design enabling rapid quenching of products.  A 

propylene selectivity of up to approximately 30 % at a 63 % conversion was achieved from 

implementing these aspects. 

In contrast to the claim of the formation of carbon oxides via terminal gas phase reactions 

[155], Silberova and researchers ascribed the contribution of heterogeneous reactions on 

platinum coated monoliths toward the formation of carbon oxides and hydrogen gas, in the 

oxidation of ethane and propane [161].  Hickman and Schmidt were the first to report the 

activity (~ 80 % conversion) of platinum and platinum-rhodium coated monoliths in the 

oxidation of methane toward syngas [162].  The suggested mechanism was that of methane 

pyrolysis, forming hydrogen gas and carbon which may be oxidized to carbon monoxide.  A 

continued study in the partial oxidation of methane revealed rhodium coated monoliths as the 

better catalyst in the formation of CO and H2 [163].  These co-workers attributed a superior 

catalytic system by rhodium, with a higher activation energy barrier for the formation of 

water as compared to that of platinum.  The reaction using rhodium may therefore be driven 

toward the formation of hydrogen and carbon monoxide, as opposed to facing a competing 

mechanism of hydrolysis.  In accordance with these results, Hickman and Schmidt further 
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published a detailed explanation, involving the mechanistic chemistry and kinetics of syngas 

formation via platinum and rhodium coated monoliths [164].   

The role and impact of the use of monoliths in oxidation catalysis has been not been ignored 

and has even been suggested [165, 166] and modelled [167] for industrial application of 

commonly used processes.  Numerical and theoretical studies have also been performed in an 

attempt at improving established monolithic systems [168-170].  For the development of 

viable catalytic applications of monoliths, it may be of importance to consider factors such as 

the washcoat, support material and amount of loading, since these factors do influence 

catalytic results [171, 172].  The trends amongst the latest oxidation applications of 

monolithic catalysts include using carbon dioxide as an oxidant [173], steering selectivity 

towards desired products such as ethene from ethane [174], partial oxidation of methane rich 

mixtures [170] and preferential oxidation of carbon monoxide [175, 176] and the oxidation of 

longer chain alkanes [172, 177].  

2.3 Conclusion and perspective  

The inception and success of monoliths in oxidation catalysis may have encouraged the 

interest in diversifying monolith catalytic systems.  Even so, heterogeneous oxidation 

catalysis remains highly important and further research is needed.  A significant number of 

contributions in literature and patent work have been provided for the novice or experienced 

scientist concerning the coating of monoliths.  In particular, gamma-alumina is shown as the 

most common high surface area support used and it is applied to several catalytic systems. 

Although secondary support coating of monoliths via gamma-alumina may increase surface 

area and improve interaction of the catalyst species, this may not be the best option for the 

optimum interaction between the support and various active species.  Zirconia and titania 

may also be other secondary supports to consider.  Supplementary research is subsequently 

being done on high surface area monoliths and extruded monoliths to exploit any advantages 

possible.   

Coating the active phase by commonly used methods, such as impregnation and deposition 

precipitation, have their respective advantages and disadvantages and are dependent on the 

application.  Relatively new coating methods, however, have been developed such as sol-gel 

and solution-combustion.  Important to consider, may be the catalyst species required, which 
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will prompt the researcher to approach a combination of coating techniques to produce the 

desired active layer.  The greater speciality an application may require, consequently, may 

demand a larger investment toward the design technology of the monolithic system.  It is our 

opinion nevertheless, monolithic catalysts may be used more extensively in the future, 

especially in the oxidation alkanes.  Therefore, the work in Chapter 3 will report the 

oxidation of n-octane over a monolithic catalyst.  Understanding that homogeneous gas phase 

reactions may play a role in the oxidation of n-octane over monoliths, Chapter 3 will report 

testing uncoated monoliths and coated monoliths, as preliminary work, which perhaps will 

provide informative for future rigorous research. 
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Chapter 3 

Homogeneous gas phase reactions in the oxidation of n-octane over a 

monolith reactor system 

Abstract 

The oxidation of n-octane over the bare cordierite monolith produced cyclic ethers in 31.6 % 

selectivity, under continuous flow fixed bed reactor conditions.  Other products formed over 

the bare monolith included cracked products, octenes, octadienes, C8 oxygenates and carbon 

oxides.  Coating the monolith with an iron-molybdenum active layer reduced the yields to 

cracked products and C8 oxygenates, whilst increasing the yields to octadienes and carbon 

oxides.  The monolith coated with gamma-alumina, compared to the bare monolith, 

substantially retarded the conversion of n-octane, from 27 % to 5 %.  An iron-molybdenum 

active layer supported on the gamma-alumina coated monolith rendered a drastic change to 

the mechanism, favouring deep oxidation with a selectivity of 64.2 % to carbon dioxide.  The 

iron-molybdenum powder was characterized by XRD, ICP-OES, BET, TEM, FTIR and 

Raman spectroscopy.  The bare and coated monoliths were examined by SEM.  Experimental 

reaction conditions were kept constant, maintaining a GHSV of 1000 h
-1

 (71.7 ml/min air, 45 

ml/min nitrogen, 0.10 ml/min C8H18), isothermally at 400 °C and a C:O ratio of 8:2, for the 

bare and coated monoliths tested.  A homogeneous gas phase mechanism is proposed for the 

formation of the cyclic ethers over the bare monolith.  The results from coating cordierite 

monoliths suggest that secondary support coating is a better approach, over coating the active 

layer directly onto the monolith in this work.   

3.1 Introduction 

Monoliths, since initial use in environmental applications [1], have been successfully 

incorporated in catalytic oxidation [2, 3].  In particular, monoliths have been well 

incorporated in the oxidation of alkanes to olefins and synthesis gas, respectively.  These 

applications usually involve coating the ceramic structures with platinum group metals and 

performing oxidation reactions at high temperatures and high gas flow rates [4, 5].  Initial 

testing of these monoliths showed excellent selectivity to olefins, however, further 

investigation pointed to the formation of olefins from monolithic catalysts to occur via 

homogeneous gas phase reactions [6, 7].  Monoliths, coated with platinum and rhodium, on 
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the other hand, showed good conversion and selectivity toward the catalytic formation of 

synthesis gas [2, 4]. 

Apart from the formation of olefins via homogeneous gas phase reactions, dienes and 

oxygenated products were also reported from the partial oxidation of C5 and C6 alkanes, over 

platinum coated foam monoliths in short contact time reactors [8].  The production of olefins 

and oxygenated compounds was also observed in the partial oxidation of C1 to C5 alkanes, in 

single gauze reactors, where the product profile was attributed to homogeneous gas phase 

reactions [9, 10].  In a single gauze reactor, using n-hexane as the feed and a platinum-

rhodium gauze, O’Connor and Schmidt reported a high selectivity to oxygenated 

hydrocarbons [11].  These oxygenated products were mainly C6 cyclic ethers.  

Characteristically, cyclic ethers form as a result of free radical reactions [12-14]. 

Recent applications in oxidative dehydrogenation using monolithic catalysts include the 

conversion of propane to propylene [15] and a molybdenum-vanadium-niobium coated 

monolith in the oxidation of ethane to ethylene [16].  Monolithic catalysts may therefore 

prove valuable in the oxidation of alkanes, however, the contribution of homogeneous gas 

phase reactions from these catalysts needs to be better understood.  The monolithic structure, 

prior and after active layer coating, should therefore be examined in oxidation reactions.  

Herein cheaper active components, namely iron-molybdenum, in comparison to platinum 

group metals, were used.  Iron-molybdenum catalysts have been extensively studied in 

methanol oxidation [17-22] and have been reported in the oxidation of n-decane [23].   

In this research effort the oxidation of n-octane over bare and coated cordierite monoliths was 

examined.  Also, gamma-alumina was used as a secondary support and compared to direct 

coating of the active layer on the monolith.  This preliminary alkane testing over the bare and 

coated monoliths, in a continuous flow fixed bed reactor system, may provide for a better 

understanding of the influence of an uncoated monolith compared to when coated with an 

secondary support and active layer. 

3.2 Experimental 

3.2.1 Pre-treatment of ceramic monoliths 

All monoliths used in the experimental work were sonicated in deionised water for thirty 

minutes, followed by drying at 110 °C, to ensure removal of any contaminants. 
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3.2.2. Iron-molybdenum coated on monoliths 

An iron-molybdenum precursor solution was prepared by initial co-precipitation [23], 

followed by addition of oxalyldihydrazide [24].  Ammonium heptamolybdate of 8.76 g (99 

%, Merck) was added to 100 ml deionised water with stirring.  Concentrated nitric acid (≥ 69 

%, Sigma Aldrich) was used to acidify the solution to approximately pH 2, monitored with 

universal indicator paper.  Iron nitrate nonahydrate of 9.11 g (97 %, Merck) was dissolved in 

deionised water and added dropwise with stirring to the acidified ammonium heptamolybdate 

solution .  The greenish/yellow slurry was aged with stirring at approximately 80 °C for one 

hour, after which oxalyldihydrazide of 5.82 g (98 %, Sigma Aldrich) was added, forming a 

solution.  Aging was continued for a further four hours to reduce the water content.  The dark 

green liquor was allowed to cool to room temperature with stirring.  Cordierite monoliths (20 

mm diameter, 25 mm length, 1 mm channel width) were dipped into this liquor, allowed to 

soak for 15 minutes, after which excess liquid in the channels was removed with compressed 

air.  The coated monoliths were then heated at 600 °C for 15 minutes, in a muffle furnace, 

under static air.  Upon cooling of the monoliths to room temperature, the procedure was 

repeated to obtain the desired weight percent loading. 

3.2.3. Gamma-alumina supported iron-molybdenum coated monoliths 

A gamma-alumina washcoat slurry was prepared by adding 20 g (3 µm average particle size 

gamma-alumina, Alpha-Aesar) and 41 mmol concentrated nitric acid (≥ 69 %, Sigma 

Aldrich) to 80 g deionised water, with stirring [25].  The slurry was allowed to stir at room 

temperature for 24 hours.  Cordierite monoliths (20 mm diameter, 25 mm length, 1 mm 

channel width) were dipped in the slurry and allowed to soak for approximately 15 minutes. 

The excess liquid was removed using compressed air, followed by heating of the monoliths at 

600 °C for 15 minutes, in a muffle furnace, under static air.  The procedure was repeated until 

the desired weight percent coating was achieved.  The iron-molybdenum active layer was 

coated over the gamma-alumina coated monoliths similarly as described in Section 3.2.2. 

3.2.4 Characterization techniques 

XRD, ICP-OES, Raman spectroscopy, BET, TEM and SEM were used to characterize the 

coated layer in powder form.  SEM was used to characterize the surface of the bare and 

coated monoliths. 
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The X-ray diffraction pattern of the iron-molybdenum powder was obtained using a Bruker 

D8 Advance diffractometer fitted with a graphite monochromator and operated at 40 mA and 

40 kV.  The radiation source was Cu Kα with a wavelength of 1.5406 Å.  The 2θ range was 

employed from 10 ° to 90 °, at a speed of 1 ° per minute and a step size of 0.02 °.  

ICP-OES was used to confirm the metal ratio of Mo:Fe of the iron-molybdenum catalyst 

formed.  Standards were prepared according to the metal ratios present in Fe2(MoO4)3•MoO3.  

Active layer powder (~ 0.02 g) was dissolved in 5 ml concentrated hydrochloric acid (32 %, 

SMM Instruments) and diluted to 100 ml with double distilled water. ICP-OES analysis was 

completed on a Perkin Elmer Optical Emission Spectrometer Optima 5300DV (radial 

plasma).  Multi-element standards were prepared from 1000 ppm working solutions. 

The surface area of the iron-molybdenum catalyst powder was determined by BET surface 

area measurements.  Measurements were completed in duplicate.  Samples (~ 0.3 g) were 

degassed under nitrogen flow at 90 °C for 1 hour, then 200 °C overnight, using a 

Micrometrics Flow Prep 060 sample degas system.  Samples were analyzed using nitrogen 

adsorption at -196 °C, with a Micrometrics Tristar II Surface Area and Porosity Analyzer.  

The BET surface area of the gamma-alumina used to coat the monoliths was also determined 

similarly. 

A DeltaNu Advantage 532 instrument equipped with a 532 nm laser source was used to 

obtain the Raman spectrum of the iron-molybdenum catalyst powder.  The best quality 

spectrum was obtained at an intensity of medium-high and an integration time of five 

seconds.  Peak intensities were observed between 200 cm
-1

 and 1000 cm
-1

, therefore the 

spectrum was plotted in this range. 

Infrared analyses were performed on a Perkin Elmer Spectrum 100 FTIR Spectrometer 

equipped with a Universal Attenuated Total Reflectance accessory.  A small amount of 

powder sample was placed over the ATR crystal and a force of 110 gauge was applied to 

obtain an infrared spectrum.  Vibration bands for the sample were observed between 500 cm
-1

 

and 1000 cm
-1

, therefore the spectrum was plotted to show these bands. 

Electron microscopy images were acquired using a Jeol JEM 1010 Transmission Electron 

Microscope at 100 kV.  The iron-molybdenum catalyst powder was dispersed in ethanol and 

sonicated for five minutes, after which a small quantity was suspended on carbon resin and 
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allowed to dry.  Images were then taken to assess the morphology of iron-molybdenum 

catalyst throughout the surface of the sample. 

In comparison to TEM, SEM images were acquired to evaluate the surface morphology.  A 

Carl Zeiss ULTRA PLUS FEG-SEM was used to obtain images of the uncoated and coated 

monoliths.  The bare cordierite monolith and coated monoliths were sectioned in half.  

Images of the monoliths obtained were focused on the coating within the channels. 

3.2.5 Catalytic testing and product analysis 

Catalytic testing was performed in a continuous flow fixed bed monolith reactor, specially 

designed to accommodate the monolith structure as the catalyst bed.   A Lab Alliance Series 

II HPLC pump was used to deliver the n-octane to the reactor.  The outlet from the pump was 

1/16 inch stainless steel tubing which was further connected, via a reducing union, to the 

main reactor line.  The main reactor line consisted of 1/4 inch 316 stainless steel tubing, 

wrapped with heating tape (400W, 240V).  Nitrogen and air were fed to the main reactor line 

via Bronkhurst mass flow controllers and mixed with the n-octane at a 1/4 inch stainless steel 

―T‖ piece.  One way valves were placed at the beginning of the reactor lines that supplied the 

gases and n-octane in order to prevent back flow of the gases.  Nitrogen and air, together with 

n-octane were thus mixed and preheated at 200 °C before reaching the reactor tube.  A 

tubular 316 stainless steel reactor tube (25 mm O.D., 2 mm thickness) was used to load the 

monolithic catalyst.  The monolithic catalyst (7.85 ml) was suspended at the hottest region of 

the reactor tube, between glass wool, with the remainder reactor space filled with 24 grit 

carborundum.  Glass wool was also placed at the ends of the reactor tube to ensure the 

carborundum remains firmly packed.  Reducing unions were used to reduce the ends of the 

reactor tube to 1/4 inch.  The temperature of the hottest region was measured using a K-type 

thermocouple, connected to a temperature control unit and placed in a 1/8 inch 316 stainless 

steel tube in the middle of the reactor tube.  Once packed, the reactor tube was placed in the 

center of a stainless steel block, equipped with six cartridge heaters (12.5 mm diameter, 150 

mm length, 230 V/400 W) with fiber-glass nickel stranded leads, connected to a 

thermocouple and temperature control unit.  The exit gas from the reactor tube entered a 

catch pot which was cooled using a water chiller to approximately 2 °C.  Liquid samples 

were collected from the catch pot via a one way needle valve, while gas samples were 

collected through a glass bomb fitted with a septum.  The quantity of gas which exited the 
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reactor after the catch pot was measured with a Ritter Drum-Type (TGI-model 5) wet gas 

flow meter.  The reactor setup is shown in Figure 1, in Appendix 2. 

The oxidation of n-octane was investigated isothermally (400 °C) in the gas phase at a space 

velocity of 1000 h
-1

, with a carbon to oxygen ratio of 8:2.  Air and nitrogen (diluent) were 

passed through the reactor using Bronkhurst mass flow controllers.   The gas hourly space 

velocity was maintained by flowing 71.7 ml/min air (Peak Scientific, Zero Air Generator), 45 

ml/min nitrogen (Afrox, Instrument Grade) and 0.10 ml/min n-octane (99 %, Merck), over a 

catalyst volume of 7.85 ml (monolith volume, πr
2
h).  A constant n-octane to total feed ratio of 

approximately 11.43 % was used for the reactor work.  All reactions in this study were 

performed in duplicate. 

The products from catalytic testing were analyzed off line by GC-FID and GC-TCD, whilst 

GC-MS was used for product identification.  A Shimadzu GC-2025 Gas Chromatograph, 

equipped with a Restek Rtx-1 PONA column (48 m length, 0.25 mm I.D., 0.5 μm thickness), 

was used for liquid and gaseous hydrocarbon analysis.  Carbon oxides were analyzed using a 

Perkin Elmer Clarus 400 Gas Chromatograph, fitted with a SUPELCO Carboxen 1010 PLOT 

column (30 m length, 0.53 mm I.D., 30 μm thickness).  Hydrocarbon products were identified 

using a Perkin Elmer Precisely Clarus 500 Gas Chromatograph, with a SGE forte BP1 PONA 

GC capillary column (50 m length, 0.15 mm I.D., 0.5 μm thickness) and Perkin Elmer 

precisely Clarus 560S Mass Spectrometer.  The detailed method parameters are shown in 

Appendix 3. 

The percentage water in both organic and aqueous samples was analyzed via a Mettler 

Toledo Easy KFV titrator. 

3.3 Results and discussion 

3.3.1 Characterization of iron-molybdenum powder and coated monoliths 

Monolithic catalysts are difficult to characterize, however, the coating within the channels 

can be assessed by SEM and the active layer in powder form can also be characterized.  The 

active layer in powder form was therefore also characterized as mentioned in Section 3.2.4.  

The iron-molybdenum powder was prepared by heating a small amount of liquid, used to coat 

the monolith, in the same heat treatment procedure as in Section 3.2.2.  Slurry coating was 

chosen for coating the gamma-alumina secondary support over the monolith, to allow for 



69 

 

strong adherence of the coating to the monolith surface.  The repeated dipping and calcining 

procedure was chosen to reduce the number of coating cycles required, as compared to 

repeated dipping and drying and final calcination.  The active layer was coated similarly. 

3.3.1.1 Powder X-Ray diffraction 

Figure 3.1: XRD diffractogram of the iron-molybdenum powder 

Figure 3.1 shows the diffraction pattern of a characteristic crystalline iron-molybdenum 

catalyst with excess molybdenum, resulting in diffraction lines corresponding to Fe2(MoO4)3 

and MoO3.  The major peaks corresponding to iron molybdate and molybdenum trioxide have 

been assigned, whilst the smaller unassigned peaks are due to iron molybdate. The iron 
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molybdate phase can be indexed to ICDD card number 01-083-1701, corresponding to 

monoclinic Fe2(MoO4)3 and molybdenum trioxide present can be indexed to ICDD card 

number 01-085-2405.  This light green powder is consistent with the monoclinic iron 

molybdate structure, typically formed at approximately pH 2 [26] and Mo:Fe ratio of 2.2:1 

[27].  The active iron-molybdenum layer cannot be seen clearly, in XRD, whilst coated over 

the monolith.  Major peaks due to cordierite, shown in Appendix 1, are in the theta range 15 

to 60 °, which coincide with the major peaks for iron molybdate and molybdenum trioxide.    

3.3.1.2 ICP-OES and BET surface area  

Table 3.1: BET surface area measurement results 

 BET surface area (m
2
/g) 

Bare monolith < 1 

Fe2(MoO4)3•MoO3 2 

Gamma-alumina 85 

 

The iron-molybdenum active layer was prepared in a 2.2:1 Mo:Fe ratio, confirmed by ICP-

OES.  Detailed calculations of ratio of metals are shown in Appendix 1.  The BET surface 

area of the iron-molybdenum powder obtained was 2 m
2
/g, shown in Table 3.1, which is the 

expected for the ratio of molybdenum:iron synthesized [28].  Molybdates usually exhibit 

BET surface areas less than 10 m
2
/g, however, these are dependent on the preparation 

method, the counter ion to the molybdate and the ratio of molybdenum to the metal [22, 29, 

30]. 

The cordierite monolith has a BET surface area of less than 1 m
2
/g, which may not 

necessarily allow for good adherence of an active layer to this support, therefore gamma-

alumina with a surface area of 85 m
2
/g was coated onto the monolith and investigated, prior 

and after active layer coating.   
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3.3.1.3 Raman spectroscopy and Fourier transform-infrared spectroscopy 

 

Figure 3.2: Raman spectrum of the iron-molybdenum powder 

The Raman spectrum of the iron-molybdenum powder, shown in Figure 3.2, depicts the 

expected peaks, due to the molybdenum to iron ratio of 2.2:1, corresponding to iron 

molybdate and molybdenum trioxide.  The Raman bands at 351, 792, 942 and 974 cm
-1

, in 

Figure 3.2, correspond to Fe2(MoO4)3 [20, 31].  The bands at 300, 675, 826 and 1001 cm
-1

 are 

due to vibrations of MoO3 [31].  The weak band exhibited at 351 cm
-1

 is probably due to the 

wagging of Mo=O in MoO4 of Fe2(MoO4)3 [20, 32].  This weak band contains a low 

intensity, wide shoulder, extending toward 400 cm
-1

, possibly due to stretching modes of 

MoO3 [27].  Pure iron molybdate usually exhibits asymmetric stretching modes of Mo-O-Mo 

in Fe2(MoO4)3, represented by an intense band at 792 cm
-1

 and a shoulder peak at 

approximately 820 cm
-1

 [32], as well as symmetric stretches of Mo=O in MoO4 at 942, 974 

and approximately 990 cm
-1

 [20, 33].  In this spectrum obtained, however, the shoulder peak 

at 820 cm
-1

 and the symmetric stretch at 990 cm
-1

 may be masked by the MoO3 bands.  The 

vibrational modes of MoO3 present were those of Mo=O bending, symmetric stretching of 

Mo-O-Mo, asymmetric stretching of Mo-O-Mo and stretching of Mo=O at 300, 675, 826 and 

1001 cm
-1

, respectively. 
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Figure 3.3: FT-IR spectrum of the iron-molybdenum powder 

The infrared spectrum, shown in Figure 3.3, is characteristic of an Fe2(MoO4)3-MoO3 

catalyst.  Four absorption bands were observed between 500 and 1000 cm
-1

.  The absorption 

band at approximately 587 cm
-1

 is due to the vibration of Mo-O in MoO3 [34], whilst the 

weak band at 994 cm
-1

 is ascribed to the terminal vibration of Mo=O in MoO3 [35].  

Vibrations from the Mo-O bonds, in the MoO4 units of Fe2(MoO4)3, are responsible for the 

intense and broad band at 800 cm
-1

 [20, 34, 35].  A weak band due to the Fe-O-Mo vibration 

was observed at 962 cm
-1

 [34, 35]. 

3.3.1.4 Transmission electron microscopy 

Figure 3.4: TEM images of the iron-molybdenum powder, (a) bulk iron molybdate (b) 

molybdenum trioxide plates 

a b MoO3 

Fe2(MoO4)3 MoO3 

Pores 
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TEM micrographs of the iron-molybdenum powder are represented in Figures 3. 4 (a) and 3.4 

(b).  The images show the presence of the two distinct morphologies, that is, bulk spherical 

iron molybdate and rod/plate-like molybdenum trioxide.  Bulk iron molybdate particles were 

in the 10 - 80 nm range, whilst molybdenum trioxide plates varied in size from 50 - 150 nm.  

The small, almost circular, lighter regions in Figure 3.4 (b) may be pores or voids in the bulk 

iron molybdate clusters [31]. 

3.3.1.5 Scanning electron microscopy  

 

Figure 3.5: SEM images of the bare monolith, (a) within channels (b) 20 000 times 

magnification 

 

 

 

 

 

 

Figure 3.6: SEM images of the 5 weight % iron-molybdenum coated monolith, (a) coating 

within channels (b) 20 000 times magnification 

a 

a b 

b 
Channel 

Coating 
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Figure 3.7: SEM images of the 10 weight % gamma-alumina coated monolith, (a) coating 

within channels (b) 20 000 times magnification 

 

Figure 3.8: SEM images of the 10 weight % iron-molybdenum supported on gamma-alumina 

coated monolith, (a) coating within channels (b) 20 000 times magnification 

Figure 3.5 shows the bare cordierite monolith after sectioning within the channels and also 

with a higher magnification within the channel.  The random particle observed and circled in 

this image is due to a piece of cordierite from sectioning the monolith.  The 5 weight % iron-

molybdenum coated monolith is shown in Figure 3.6.  The coating within the channels is 

highlighted in Figure 3.6 (a), however, also noted are areas which have not been coated.  

Figure 3.6 (b) depicts the molybdenum trioxide plate-like structures and the spherical-like 

morphology of iron molybdate, at a higher magnification.  Instead of monolayer coverage 

over the bare monolith, agglomeration of the iron-molybdenum active layer was observed, 

suggesting that the coating probably does not adhere well to the cordierite structure.  In 

a 

a b 

b Active coating 

Alumina 



75 

 

Figure 3.7, the monolith coated with 10 weight % gamma-alumina shows complete coverage 

of the channels within the monolith.  However, this does not account for the entire monolith, 

as there could be a possibility of exposed bare cordierite sites.  Figure 3.8 depicts the 10 

weight % iron-molybdenum active layer supported on the gamma-alumina coated monolith.  

Figure 3.8 (a) shows that the iron-molybdenum active layer adheres to the gamma-alumina 

within the channels and attains better monolayer coverage, than direct coating of the iron-

molybdenum catalyst shown in Figure 3.6 (a).   Also, successful supporting of the iron-

molybdenum active layer on the gamma-alumina is shown by the difference in morphology at 

higher magnifications in Figures 3.7 (b) and 3.8 (b).  Figure 3.8 (b) shows that the active 

layer is predominantly iron molybdate due to the spherical-like morphology, whilst 

molybdenum trioxide plate-like structures were not observed.  The excess molybdenum may 

be forming bonds with alumina [36, 37], which could explain the dominating iron molybdate 

morphology on the surface. 

3.3.2 Reaction studies 

In the catalytic testing work for this project, studies on the carborundum packed reactor tube 

(blank), bare monolith and coated monoliths were performed.  The blank reactor (non-

catalytic) study was completed to assess the efficacy of 24 grit carborundum in quenching the 

radical reactions in this reactor setup.  The blank reactor study in this work refers to a 

carborundum packed reactor tube, plugged with glass wool at both ends. 

3.3.2.1 Blank reactor study 

The contribution from the carborundum packed reactor tube was investigated at a temperature 

range from 350 °C to 500 °C, in increments of 50 °C, using the gas flow rates mentioned in 

Section 3.2.5.  Previous work in the research group has shown an empty reactor tube and void 

space may impact significantly on conversion, in the oxidative dehydrogenation of n-hexane 

[38] and n-octane [14].  The authors suggested silicon carbide (carborundum) as an effective 

packing material to quench free radical reactions in a 316 stainless steel reactor tube.  

Considering, the reactor tube used for this work was 316 stainless steel and larger in 

dimensions to the reported reactor tube, a non-catalytic study of this carborundum packed 

reactor tube was completed prior to catalytic testing. 
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Figure 3.9: Conversion of n-octane in the carborundum packed reactor tube as a function of 

temperature at a GHSV of 1000 h
-1

 and carbon to oxygen ratio of 8:2 
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Figure 3.10: Product selectivity profile from the carborundum packed reactor tube at a GHSV 

of 1000 h
-1

 and carbon to oxygen ratio of 8:2 

The effect of the conversion of n-octane as a function of temperature is shown in Figure 3.9.  

No conversion was observed at 350 °C and 400 °C, however, conversion increased beyond 

400 °C.  The conversion increased gradually from zero to 2 % at 450 °C and finally 3 % at 

500 °C.   
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Figure 3.10 shows the selectivity to the major products formed namely cracked products, 

octenes and carbon dioxide.  Products grouped as cracked were C1 to C3 alkanes and C2 to C6 

alkenes.  The octenes formed were 1-octene, trans-2-octene and cis-2-octene, trans-3-octene 

and trans-4-octene.  The products observed may possibly be formed from the thermal energy 

provided by the reactor system to break C-H and C-C bonds of n-octane.  Carbon dioxide 

could be formed as a result of the combustion of these products or even the direct combustion 

of the alkane feed.  The reactor can also initiate free radicals which could be responsible for 

the product profile shown in Figure 3.10.  Increasing the temperature from 450 °C to 500 °C 

resulted in a 4 % increase in the selectivity towards the formation of cracked products, whilst 

carbon dioxide selectivity decreased by 4 %.  This would suggest that at 500 °C, as the 

conversion of n-octane increased, cracked products increased accordingly, however, they 

were not combusted to carbon dioxide.   

It was clear from this study that carborundum was effective in filling the void spaces of the 

reactor tube and quenching free radical reactions at these flow rates, since a low conversion 

and the formation cyclic oxygenates were not observed.  Also noted was the thermal 

conversion of n-octane above 400 °C at these conditions.  A reaction temperature of 400 °C 

was therefore chosen for further catalytic experiments, to prevent any contribution from the 

thermal activation of n-octane.  

3.3.2.2 Bare monolith and 5 weight % iron-molybdenum coated monolith 

The bare and 5 weight % iron-molybdenum coated monoliths were tested under the 

experimental conditions mentioned in Section 3.2.5.  Initial testing was performed on the bare 

cordierite monolith, to assess the contribution from this non-coated ceramic support, in the 

oxidation of n-octane.  The iron-molybdenum active layer was then applied directly to the 

monolith, without a secondary support such as gamma-alumina.  The effect of this direct 5 

weight % iron-molybdenum coating over the cordierite monolith was investigated. 

In comparison to the blank reactor studies, higher conversions and diverse selectivity profiles 

were noted for the monolithic reactions.  A 27 % conversion of n-octane was observed over 

the bare monolith, whilst a conversion of 22 % was observed for the 5 weight % coated 

monolith.  A direct correlation between the high activitiy and surface area of the support 

cannot be made, since monoliths offer a low BET surface area  (< 1 m
2
/g) [39].  The reactor 

tube packed with carborundum showed no conversion under these conditions, therefore, the 
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reactor tube in this setup does not contribute to this activity.  Instead, it may be more 

plausible to ascribe this high activity to the material make-up of the support.  The monolith 

may also provide significant void spaces for further reactions, due to the 1 mm width and 25 

mm length of the channels. 

  

Figure 3.11: Product yield profile for bare monolith and coated monolith reactions at a GHSV 

of 1000 h
-1

 and carbon to oxygen ratio of 8:2 

The products from the bare monolith reaction, as shown in Figure 3.11, were grouped as 

cracked, octenes, octadienes, C8 oxygenates and carbon oxides.  Cracked products, grouped 

from Figure 3.11 and shown in more detail in Table 3.2, consisted of C1-C7 alkanes, C1-C3 

oxygenates and C2-C7 alkenes.  C8 oxygenates were separated into octadienones, cyclic 

ethers, octanones and octanols.  Also, carbon oxides were divided into carbon monoxide and 

carbon dioxide.   

Cracked products and C8 oxygenates, with yields 11.4 % and 10.3 %, respectively, dominated 

the product profile for the bare monolith reaction.  A high yield of oxygenated compounds, 

relative to the products formed, is usually an indication of homogeneous gas phase reactions, 

as shown in single gauze reactors at short contact times [9-11].  The highest yield belonging 

to C8 oxygenated products, over the bare monolith, therefore strongly suggests the 

participation of free radicals.  In support of this theory, cyclic ethers, usually formed by a free 

radical mechanism [40], were detected and grouped in the C8 oxygenated products. 
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Amid the decrease in conversion of the reactant over the iron-molybdenum coated monolith 

reaction, the yield to cracked products, C8 oxygenates and carbon oxides differed 

significantly, compared to octenes and octadienes, as shown in Figure 3.11.  Particularly, the 

yield to cracked products decreased from 11.5 % to 8.3 %, C8 oxygenates decreased from 

10.3 % to 3.7 % and carbon oxides increased from 1.9 % to 5.0 %, from the bare monolith to 

coated monolith, respectively.  However, no noteworthy change in yield was observed for 

octenes, whilst the yield of octadienes increased from 0.3 % to 1.8 %.  The product yield 

profile for the iron-molybdenum coated monolith therefore suggests that the free radical 

mechanism is being retarded due to the coating.  A more detailed breakdown of the products 

formed, as shown in Table 3.2, may provide for a better comparison and mechanistic 

interpretation. 

Table 3.2: Selectivities and yields of products for bare and coated monolith reactions 

 Bare monolith 5 weight % coated monolith 

Products Selectivity (%) Yield (%) Selectivity (%) Yield (%) 

C1-C7 Alkanes 13.9 3.8 9.5 2.1 

C2-C7 Alkenes 23.6 6.4 24.8 5.5 

C1-C3 Oxygenates 4.8 1.3 3.1 0.7 

Octenes 11.6 3.1 14.4 3.2 

Octadienes 1.0 0.3 8.2 1.8 

Octadienones 1.5 0.4 1.0 0.2 

Cyclic ethers 31.6 8.5 15.2 3.3 

Octanones 4.3 1.2 0.5 0.1 

Octanols 0.8 0.2 0.6 0.1 

Carbon monoxide 2.8 0.8 4.8 1.1 

Carbon dioxide 4.1 1.1 17.9 3.9 
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The saturated hydrocarbons from the bare monolith reaction consisted largely of, methane, 

ethane, propane as the major components while C4-C7 hydrocarbons were the minor 

components and together contributed to the 13.9 % selectivity, as shown in Table 3.2.  The 

unsaturated cracked hydrocarbons, formed over the bare monolith, consisted of mainly 

ethylene, 1-pentene and 1-hexene, totaling a selectivity of 19.5 % from the 23.6 % selectivity 

to C2-C7 alkenes.  Propylene, isomers of butene and 1-heptene were produced in small 

quantities, contributing to the remainder 4.1 % selectivity to cracked alkenes.  The high 

selectivity, as shown in Table 3.2 for the bare monolith, towards cracked alkanes and alkenes 

may be due to the acidity of the surface of the monolith.  It is well known that silica and 

silica-alumina surfaces facilitate the cracking of alkanes [41, 42].  The higher ratio of silica in 

the cordierite structure (5SiO2•2Al2O3•2MgO) compared to alumina and magnesium oxide, 

could therefore be responsible for the high selectivity toward cracked alkanes and alkenes.  

Initially, n-octane may undergo hydrogen abstraction via the acidic site, thus forming a 

carbenium ion, which after beta-scission, may directly result in an olefin or undergo a further 

hydride transfer step to form a saturated hydrocarbon [43].  Although, acidic cracking may 

explain the high selectivity to cracked products, silica [44] and magnesium oxide [45] can 

also activate oxygen, producing O2
-
, which usually is associated with free radical reactions.  

The trend of the high selectivity toward C1-C3 alkanes and ethylene, as well as the alpha-

olefins 1-pentene and 1-hexene herein correlates with the typical reported non-catalytic 

mechanism of alkane cracking [43, 46], thus also suggesting that the cracking mechanism 

may occur through free radicals.  Cracked C1-C3 oxygenates, such as methanol, acetone and 

1-propanol could possibly be formed from the oxygen activation of the cracked alkanes, 

forming an alkoxy [44] and/or peroxy species [9], which are further rearranged or cleaved.  

The C8 oxygenates, formed from the bare monolith, were dominated by cyclic ethers with a 

31.6 % selectivity and 8.5 % yield, as shown in Table 3.2.  Cyclic ethers are usually formed 

in the oxidation of alkanes through a radical type mechanism [11, 13, 47].  In this reaction, 

five (furan) and six (pyran) membered cyclic rings were formed and identified by their 

characteristic mass spectra.  The furans consisted of 2-butyl-tetrahydrofuran, 2,5-methyl-

propyl-tetrahydrofuran, 2,5-diethyl-tetrahydrofuran and the pyrans, included 2-propyl-

tetrahydropyran and 2,6-methyl-ethyl-tetrahydropyran.  Isomers of 2,5-methyl-propyl-

tetrahydrofuran, 2,5-diethyl-tetrahydrofuran and 2,6-methyl-ethyl-tetrahydropyran were also 

present in the product stream.  A dioxygen cyclic ether was detected in small quantities, as 
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2H-pyran-2-one-tetrahydro-6-propyl.  The mass spectra of the cyclic ethers formed are shown 

in Appendix 3. 
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Scheme 3.1: Proposed mechanism for cyclic ether formation from the oxidation of n-octane 

The proposed mechanistic routes for the formation of the dominant cyclic ethers are shown in 

Scheme 3.1.  Four possible pathways may exist from the initial hydrogen abstraction, which 

can occur on the surface of the bare monolith.  Abstraction of hydrogen from the first, 

second, third or fourth carbon of n-octane results in an alkyl radical.  The alkyl radical then 

reacts with oxygen, possibly a non-selective oxygen species, yielding a peroxy species.  This 

peroxy radical isomerizes, forming either, if not both, intermediates of hydroperoxy alkyl 

radicals.  Removal of an OH produces the unstable di-radical specie which cyclizes to give 

the stable five and or six membered cyclic ether.   

The cyclic ethers formed were dominated by 2-propyl-tetrahydropyran and 2,5-methyl-

propyl-tetrahydrofuran.  This indicates that perhaps route four is more favoured for cyclic 

ether formation, over routes one, two and three.  The other C8 oxygenated compounds formed 

in considerably lower selectivies and yields, included octanones, in the form of 2-octanone, 

3-octanone and 4-octanone, and octanols, in the form of 3-octanol and 4-octanol.  The major 

octanones were 3-octanone and 2-octanone, whilst 4-octanone was produced in trace quantity 

resulting in a total of 4.3 % selectivity.  Octanone formation may be a result of decomposition 
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of the hydroperoxy species [48], which in the reaction over the bare monolith could occur via 

routes 2, 3 and 4.  A low selectivity of 0.8 % to octanols was found in the product stream, 

possibly due to hydrolysis of the di-radical species.  The hydroperoxy species can also 

undergo a second addition of oxygen [12], which may be the intermediate species for the 

formation of octadienones and the 2H-pyran-2-one-tetrahydro-6-propyl cyclic ether.  

The octenes formed over the bare monolith were 1-octene, isomers of 2-octene, trans-3-

octene and trans-4-octene, accumulating to the 11.6 % selectivity.  The alkyl radicals, shown 

in Figure 12, after hydrogen abstraction, may undergo oxidative dehydrogenation to form 

these olefins [11].  Apart from the formation of octenes, dienes were also observed, in the 

form of isomers of 3,5-octadiene.  The 1.0 % selectivity to diene formation may be a result of 

the decomposition of the hydroperoxy species [13].  This possibly occurs via the hydroperoxy 

species from route 3 and route 4, thus producing 3,5-octadiene and water.   

Octenes, octadienes, octadienones, octanones and octanols were formed in lower selectivities 

and yields compared to cracked products and cyclic ethers, respectively, over the bare 

monolith.  This could be supporting evidence that a radical mechanism occurred over the bare 

monolith, yielding predominantly cracked products and cyclic ethers, whilst octenes, 

octadienes, octadienones, octanones and octanols were products of side reactions via the 

proposed mechanistic routes.  Also, cyclic ethers dominated the selectivity profile for C8 

oxygenates, thus suggesting that the rate of cyclic ether formation was greater than the rate of 

side product formation.  The mechanism for carbon oxide formation is not entirely clear, 

however, this low selectivity and yield may be due to partial oxidation, sequential oxidation 

to combustion products or direct combustion at any point during the mechanism. 

The product yield profile over the iron-molybdenum coated monolith, shown in Figure 3.11, 

differed from that of the reaction over the bare monolith.  Notable differences in selectivities 

were also observed, as shown in Table 3.2.  Overall, the selectivities to cracked products and 

C8 oxygenates decreased, whilst the selectivities to octenes, octadienes and carbon oxides 

increased.  The iron-molybdenum coating possibly stabilizes the alkyl radicals formed, 

allowing for the octenes to desorb from the surface faster, as opposed to further reacting with 

active oxygen, ultimately resulting in a greater selectivity of 14.4 % to octenes.  Also, the 

basic nature of the iron-molybdenum active layer probably favours the decomposition of the 

hydroperoxy species as an alternative to removal of a hydroxide.  This theory is supported by 
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the decrease in the selectivities to octadienones, cyclic ethers, octanones and octanols, and the 

increase in the selectivity to octadienes.  Carbon oxides, particularly carbon dioxide, 

increased in selectivity and yield after active layer coating, perhaps due to molybdenum 

trioxide which facilitates complete combustion [49-51]. 

The product yield and selectivity profile for the iron-molybdenum coated monolith reaction 

shows that a 5 weight % percent coating does not strongly suppress the radical mechanism, 

since the surface of the monolith is not entirely covered with coating, as shown in Figure 3.6 

(a).  A higher weight % coating may prove better, however, the iron-molybdenum active 

layer adheres weakly to the bare monolith.  Instead, coating the bare monolith with a 

secondary support prior to active layer coating could provide for better adherence and a 

higher attainable weight loading. 

3.3.2.3 Gamma-alumina coated monolith and iron-molybdenum supported on gamma-

alumina coated monolith 

The importance of understanding the contribution made by the monolith prior to active layer 

coating cannot be over emphasized, as shown from the results of the reaction with the bare 

monolith in Section 3.3.2.2.  The monolith with a 10 weight % gamma-alumina coating was 

therefore tested under the reaction conditions described in Section 3.2.5.  The 10 weight % 

coating was chosen so as to coat as much of the monolith channels as possible, without 

blocking the channels, since the active layer would be coated over this.  In order to 

understand the effect of coating the bare monolith with gamma-alumina, in the oxidation of 

n-octane, the product yield profile over the gamma-alumina coated monolith was compared 

to the product yield profile over the bare monolith,  
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Figure 3.12: Product yield profile of bare monolith and 10 weight % gamma-alumina coated 

monolith at a GHSV of 1000 h
-1

 and carbon to oxygen ratio of 8:2 

Coating the ceramic monolith with 10 weight % gamma-alumina resulted in a substantial 

decrease in the conversion of n-octane, from 27 % for the bare monolith to 5 % for the 

alumina coated monolith.  The product yield profile for the alumina coated monolith, as 

shown in Figure 3.12, was therefore significantly different to the bare monolith.  Cracked and 

C8 oxygenated products decreased in yield from 11.4 % to 1.1 % and 10.3 % to 2.2 %, 

respectively.  In comparison to cracked and C8 oxygenated products, moderate decreases in 

yields were observed for octenes, octadienes and carbon oxides.  Ultimately, comparing the 

gamma-alumina coated monolith reaction and the bare monolith reaction, similar products 

were observed in lesser quantity over the gamma-alumina coated monolith, whilst products 

such as octadienones and 2H-pyran-2-one-tetrahydro-6-propyl were not detected in the 

product stream. 

The decrease in conversion and, hence, decrease in yields to cracked and C8 oxygenated 

products may perhaps be due to the alumina covering the reactive sites of silica and 

magnesium oxide on the monolith.  The gamma-alumina may have also neutralized the high 

acidic nature of the monolith surface, in turn reducing the rate of hydrogen abstraction.  

Although SEM imaging of the sectioned gamma-alumina coated monolith shows that the 

channels were coated, there could be the possibility of some small exposed sites remaining, 

which may be responsible for the low conversion.  Alternatively, gamma-alumina may also 
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promote the radical mechanism, however, being less active in comparison to silica or 

magnesium oxide, due to its amphoteric nature.  A future study of the effect of gamma-

alumina washcoat loading in the oxidation of n-octane may thus aid in better understanding 

the role of gamma-alumina in homogeneous gas phase reactions over monoliths.  The effect 

of the amount of washcoat loading on the monolith was not the primary focus of this research 

effort, however, it may prove useful in future work. 

 

Figure 3.13: Product yield profile of the gamma-alumina coated monolith and 10 weight % 

iron-molybdenum supported on a gamma-alumina coated monolith at a GHSV of 1000 h
-1

 

and carbon to oxygen ratio of 8:2 

The product yield profile, in Figure 3.13, for the 10 weight % iron-molybdenum active layer 

coated onto the gamma-alumina coated monolith, was compared to the yield profile for the 

gamma-alumina coated monolith with no active layer coating.  A higher conversion of 10 % 

was found for the iron-molybdenum active layer coated gamma-alumina monolith.  Apart 

from the increase in conversion of the reactant, the product yield profile for the active layer 

supported on the gamma-alumina coated monolith was very different.  After coating the 

active layer, carbon oxides dominated the product yield profile, giving a 7.9 % yield.  Also, 

the formation of octadienes and C8 oxygenates was suppressed.  A mild decrease in cracked 

products was observed in the product yield profile, after active layer coating, as well as an 

increase in the yield to octenes. 
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Table 3.3: Selectivities of products from the gamma-alumina coated monolith reaction and 

iron-molybdenum supported on the gamma-alumina coated monolith 

 Gamma-alumina coated monolith 
Iron-molybdenum/gamma-alumina 

coated monolith 

Products Selectivity (%) 

C1-C7 Alkanes 8.6 2.9 

C2-C7 Alkenes 8.9 1.3 

C1-C3 Oxygenates 3.0 - 

Octenes 21.2 17.0 

Octadienes 1.6 - 

Cyclic ethers 39.0 - 

Octanones 4.6 - 

Carbon monoxide 2.9 14.6 

Carbon dioxide 10.2 64.2 

 

Apart from the active layer supported on the gamma-alumina coated monolith not yielding 

cracked oxygenates, octadienes or C8 oxygenate, as shown in Table 3.3 and Figure 3.13, the 

selectivities to specific products also differed.  Cracked alkanes for the gamma-alumina 

supported active layer monolith reaction consisted of methane, ethane and propane 

contributing to a selectivity of 2.9 %.  At the same time, 1-hexene was the only cracked 

alkene formed, with a selectivity of 1.3 %.  Carbon oxides, collectively as carbon monoxide 

and carbon dioxide were produced in the highest yield.   Carbon dioxide, however, dominated 

with a selectivity of 64.2 %, whilst carbon monoxide was produced with a selectivity of 14.6 

%.  Carbon monoxide and carbon dioxide are usually associated as being secondary products 

from the consecutive oxidation of alkenes, though, carbon dioxide is also suggested to be a 

combustion product from the direct oxidation of the alkane reactant [52].  Moreover, in the 

case of the selective oxidation of butane, Martin-Aranda et al. showed a greater selectivity to 

carbon oxides over nickel molybdate, than over alkali metal promoted nickel molybdate [53].  

The interaction of butenes with the nickel molybdate was suggested, by these authors, to 
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occur more strongly than the promoted molybdate, thus leading to consecutive oxidation and 

hence a higher selectivity to carbon oxides.  The high yield and selectivity to carbon oxides, 

in the oxidation of n-octane herein, could therefore be a result of the strong interaction of the 

octenes and iron molybdate, which seems to be the dominant morphology, as seen in Figure 

3.8(b).  Also, the interaction between the iron molybdate and gamma-alumina needs to be 

taken into consideration, since molybdenum supported on gamma-alumina has high Brønsted 

acidity, which may drive the products towards consecutive or deep oxidation [36].   

3.4 Conclusion and perspective 

The oxidation of n-octane over the bare cordierite monolith produced mainly cracked 

products and C8 oxygenates.  Cyclic ethers were produced in 31.6 % selectivity over the bare 

cordierite monolith at a total gas flow rate of 131.7 ml/min, with a C:O ratio of 8:2 and 11.43 

% n-octane in the total feed.  These results suggest a free radical mechanism may be 

dominating in this reaction.  A mechanism was therefore postulated, via four possible routes 

of hydrogen abstraction, resulting in the respective cyclic ethers formed.  Coating the active 

iron-molybdenum layer directly on the monolith does not allow for good adherence, however, 

it does reduce the production of cyclic ethers.  The 10 weight % coating of gamma-alumina 

over the cordierite monolith has a more pronounced effect on the homogeneous gas phase 

mechanism, reducing the conversion from 27 % to 5 %.  An iron-molybdenum active layer of 

10 weight % supported over a gamma-alumina coated monolith favours deep oxidation.  

Overall, coating the bare cordierite monolith with gamma-alumina proves effective in 

retarding the free radical mechanism, however, a higher weight % coating may be required to 

suppress the formation of cyclic ethers.  Future work on this system should involve 

investigating a lower weight % coating of the iron-molybdenum active layer on the gamma-

alumina coated monolith.  Also, higher flow rates could be explored as an attempt at reducing 

consecutive oxidation. 
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Chapter 4 

Summary and conclusion 

Summarising, coated monoliths prepared included a 5 weight % iron-molybdenum active 

layer directly on the bare monolith, a 10 weight % gamma-alumina coated monolith and a 10 

weight % iron-molybdenum active layer coating supported over a gamma-alumina coated 

cordierite monolith.  Characterization of the iron-molybdenum powder showed the presence 

of iron molybdate and molybdenum trioxide, in a ratio of 2.2:1 Mo:Fe.  The SEM images of 

sectioned pieces of the monoliths used in the catalytic testing showed that coating was 

achieved within the channels.  The method of dip coating and growing the active phase over 

the monolith was therefore effective, as also was the slurry coating of gamma-alumina. 

Prior to the catalytic investigation of the bare and coated monoliths, a blank reactor study was 

done.  No conversion was observed at 350 °C and 400 °C, for the carborundum packed 

reactor tube, at 1000 h
-1

.  Since thermal activation of n-octane was observed beyond 400 °C, 

further reactions were performed isothermally at 400 °C to avoid any activation of the 

reactant due to the reactor set up.   

The oxidation of n-octane over the bare cordierite monolith produced mainly cyclic ethers 

with a selectivity of 31.6 %.  The formation of cyclic ethers in the oxidation of alkanes 

usually occurs via a radical mechanism.  A proposed mechanistic route, via four possible 

routes of hydrogen abstraction, showed how these cyclic ethers may have formed during the 

reaction.  Coating the bare monolith with an iron-molybdenum layer retarded the formation 

of cyclic ethers, however, not as effectively as gamma-alumina, which reduced conversion 

from 27 % to 5 %, with a 10 weight % coating of gamma-alumina.  Supporting the iron-

molybdenum active layer onto the gamma-alumina coated monolith did not yield any cyclic 

ethers, though, instead it favoured mainly deep oxidation.  The high selectivity to carbon 

oxides may, therefore, be due to consecutive oxidation or direct oxidation of n-octane, or 

perhaps the interaction of iron molybdate and gamma-alumina, leading to a high Brønsted 

acidity and, hence, favouring carbon oxide formation.  Overall, the bare cordierite monolith 

seems to be responsible for the radical mechanism and also the high selectivity to cyclic 

ethers.  It may also be important to consider using gamma-alumina as a secondary support, 
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prior to active layer coating, and not coat the active layer directly onto the bare cordierite 

monolith. 

Future work for this study could include further understanding the contribution of the 

gamma-alumina coating to the monolith, by performing the oxidation of n-octane using 

varying weight % coatings of gamma-alumina on the monolith.  Investigating a lower weight 

% coating of the iron-molybdenum active layer on the gamma-alumina coated monolith may 

also be an option, together with exploring higher flow rates as an attempt at reducing 

consecutive or deep oxidation.  Effort could also be directed towards testing of the powder 

form of the catalysts, without the presence of the monolith, however, a suitable method for 

fair comparison may need to be established first. 
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Appendix 1 

XRD and ICP-OES  

 

 

Appendix 1 Figure 1: XRD diffractogram of cordierite monolith 
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Preparation of standards and sample for iron molybdate: 

Fe2(MoO4)3•MoO3 

Total molar mass = 2 x 55.85 + 3 x (95.94 + 4 x 16) + 95.94 + 3 x 16 

       = 735.46 g.mol
-1

 

Fe: 2(55.85)/735.46 = 0.15 

Mo: 4(95.94)/735.46 = 0.52 

 

Dissolving approximately 0.020g in 100ml   0.20 g.L
-1

 catalyst 

Fe: 0.15 x 0.20 = 0.03 g.L
-1

 

Mo: 0.52 x 0.20 = 0.104g.L
-1

 

1g.L
-1

 = 1000 ppm 

0.03g.L
-1

 = x 

Therefore x = 30 ppm, similarly Mo = 104 ppm 

1000 ppm solutions of molybdenum and iron were prepared from ammonium 

heptamolybdate (1.8396 g, Merck) and iron nitrate nonahydrate (7.2402 g, Merck), 

respectively.  A working solution of 400 ppm molybdenum and 100 ppm iron was prepared 

by transferring 40.00 ml of molybdenum solution and 10.00 ml iron solution, respectively, 

into a 100 ml volumetric flask, adding 5 ml concentrated hydrochloric acid (32 %, SMM 

Instruments) and diluting to 100 ml with double distilled water. 

Fe: C1V1 = C2V2    Mo: C1V1 = C2V2 

100 x V1 = 10 x 100    100 x V1 = 40 x 100 

 V1 = 10 ml     V1 = 40 ml 

Standard solutions were prepared in 25 ml volumetric flasks, with 1 ml concentrated 

hydrochloric acid and diluted with double distilled water.  Volumes used from the working 

solution are represented in table 1. 

Fe: C1V1 = C2V2    Mo: C1V1 = C2V2 
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100 x V1 = 10 x 25    100 x V1 = 40 x 25 

 V1 = 2.5 ml     V1 = 2.5 ml 

Appendix 1 Table 1: Concentration of standards and volumes transferred from standards 

Standards 1 2 3 4 5 

Fe/ppm 10 20 30 40 50 

Mo/ppm 40 80 120 160 200 

Volume from 

working solution/ml 

2.5 5 7.5 10 12.5 

 

Catalyst (0.0216 g) was dissolved in concentrated hydrochloric acid and diluted to 100 ml 

with double distilled water. 

Calculation of ratio: 

Three emission lines were chosen during ICP-OES analysis.  The concentration was 

determined using the most preferred emission line. 

Mo: 111.0 mg.L
-1

 

Mols = (111.0 x 0.100)/95.94 = 0.1157 mmol 

Fe:  28.84 mg.L
-1

 

Mols = (28.84 x 0.100)/55.85 = 0.05164 mmol 

Mo:Fe therefore = 2.2:1 
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Appendix 2 

Reactor setup 

 

 

 

Figure 1: Reactor setup for reactions in this research project 
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Figure 2: Closer view of reactor setup, (a) Temperature control units and reactor block (b) 

HPLC pump and mass flow controllers (c) catch pot, wet gas flow meter and n-octane (d) 

reactor tube 

d c 

b a 
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Appendix 3 

Product identification and quantification 

GC-FID details: 

Injector temperature: 250 °C 

Detector: 250 °C 

Carrier gas: Hydrogen 

Make up gas: Nitrogen 

Ratio: 150:1 

Column flow: 1.13 ml/min 

Table 1: GC temperature programme 

Rate/° C.minute
-1

 Temperature/° C Time/ minutes 

 35 1 

1 40 5 

2 120 1 

10 150 1 

 

Total run time: 56 minutes 

GC-TCD details: 

Injector temperature: 250 °C 

Detector: 250 °C 

Carrier gas: Argon 

Pressure: 120 kPa 
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Table 2: GC-TCD temperature programme 

Rate/° C.minute
-1

 Temperature/° C Time/ minutes 

 35 1 

1 40 5 

2 120 1 

10 150 1 

 

Total run time: 7 minutes 

GC-MS details: 

Injector temperature: 250 °C 

Detector: 250 °C 

Carrier gas: Helium 

Column flow rate: 0.60 ml/min 

Split ratio: 25 

Table 3: GC-MS temperature programme 

Rate/° C.minute
-1

 Temperature/° C Time/ minutes 

 35 2 

1 40 5 

2 80 2 

2 160 10 
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Appendix 3 Figure 1: Mass spectra of cyclic ethers, (a) 2,5-methyl-propyl-tetrahydrofuran (b) 

2,6-methyl-ethyl-tetrahydropyran (c) 2,5-diethyl-tetrahydrofuran (d) 2-propyl-

tetrahydropyran (e) 2-butyl-tetrahydrofuran (f) 2H-pyran-2-one-tetrahydro-6-propyl 

a b 

c d 

e f 

O

O O

O

O
OO
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GSHV calculation: 

Flow rate of octane (ml/min) 0.10 

Density of octane (g/ml) 0.703 

Mass flowrate of n-Octane (g/min) 0.0703 

  Molar mass of octane (g/mol) 114.23 

Mol flow rate of  n-Octane (mol/min) 0.0006154 

  pV = nRT 

 Universal gas Constant (J/K.mol) 8.314 

Temperature (K) 298.15 

Pressure (Pa) 101325 

Volumetric flow of n-Octane (m3/min) 1.5056E-05 

Volumetric flow of n-Octane (ml/min) 15.06 

  Octane : Oxygen Ratio 1 

Carbon : Oxygen Ratio (8 : Oxygen) 2 

Mol flow rate of oxygen (mol/min) 0.0006154 

  pV = nRT 

 Volumetric flow of oxygen (ml/min) 15.056 

  pV=nRT 

 Mol flow rate of air (O2 is 21% of air) 0.002931 

Volumetric flow of nitrogen in air 

(ml/min) 56.6 

Volumetric flow of air (mls/min) 71.7 

  Volume of Catalyst/Bed (ml) 7.85 

Volumetric flow of nitrogen (ml/min) 45 

Total Volumetric Flow of Gases (ml/min) 131.7 

GHSV (1/hr) 1007 

  n-Octane : Total feed (percentage) 11.43 
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Example of spreadsheet: 

Mass of Octane sent in to the reactor     

Mass of octane(inital)/g 
 

1012.46 

Mass of octane (final)/g 
 

1008.36 

Mass of Octane in/g   3.93 

   

   Moles in from balance     

Moles of Octane in  
 

0.034404272 

Moles of carbon in   0.275234177 

   

   Gas flowing out of reactor     

Out gas (initial) 
 

63140.37 

Out gas (final) 
 

63147.68 

Out gas flow(L) 
 

7.31 

Out gas flow(ml)   7310 

   

   Mass of liquid     

Total mass of liquid (weighed)/g 
 

3.88 

Mass of Organic layer/g 
 

3.39 

Mass of Aqueous layer/g 
 

0.49 

% of water in Organic 
 

0.00 

% of water in Aqeous  
 

76.52 

Actual mass of organic/g   3.39 

Actual mass of aqeous/g   0.12 

Mass of water 
 

0.37 

         

Moles of Octane in/mol 
 

0.2752342 

Moles of Octane out in gas/mol 
 

0.0088683 

Moles of Octane out in liquid/mol 
 

0.1923251 

Moles of Octane out/mol 
 

0.2011934 

Moles converted/mol 
 

0.074040789 

Conversion/%   26.90 

   

   Carbon Mole Balance     

Moles of Octane in/mol 
 

0.2752342 

Moles of Octane out/mol 
 

0.2011934 

Moles of gaseous product formed/mol 
 

0.0199130 

Moles of carbon oxides formed/mol 
 

0.0049581 



103 

 

Moles of liquid product formed/mol 
 

0.0464293 

Total moles of Carbon out/mol 
 

0.2724937 

Carbon balance/%   99 

   

   Carbon Product Balance     

Moles of Converted/mol 
 

0.0740408 

Moles of Product Formed/mol 
 

0.0713003 

Carbon Balance/%   96 

 

CO and CO2: 

Products Peak Area from GC 

Carbon Monoxide 811 

Carbon Dioxide 993 

  Total 1804 

  

  Volume fraction Peak area/calibration factor 

Carbon Monoxide 6.74E-03 

Carbon Dioxide 9.86E-03 

  Total 1.66E-02 

  

  

Volume/ml 
Volume fraction * Flow per 

minute 

Carbon Monoxide 4.92E+01 

Carbon Dioxide 7.20E+01 

  Total 1.21E+02 

  

  Mol carbon/mol pV=nRT 

Carbon Monoxide 2.01E-03 

Carbon Dioxide 2.94E-03 

  Total 4.96E-03 
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Gaseous product: 

Products   Peak area from GC 

Methane 
 

133192 

Ethylene 
 

152592 

Ethane 
  Acetaldehyde 
  Propylene 
 

63175 

Propane 
 

118693 

Propionaldehyde 
  1-Butene 
 

19359 

Methanol 
  Butanal 
  Butane 
 

45069 

Ethanol 
  Acetone 
  1-Pentene 
 

117385 

1-Propanol 
  Pentanal 
  Pentane 
 

34246 

1-Hexene 
 

79777 

Hexane 
 

13556 

Benzene 
  Methyl-cyclopentane 
  1-Heptene 
  Heptane 
  Toluene 
  1,7-Octadiene 
  Hexanal 
  1-Octene 
  Trans-4-octene 
  Cis-4-octene 
  Trans-3-octene 
  n-octane 
 

331078 

Trans-2-octene 
  Cis-2-octene 
  Ethylbenzene 
  Styrene 
  o-xylene 
  2,5-methyl-ethyl 

tetrahydropyran 
  2,5-methyl-propyl 

tetrahydrofuran 
  2,5-diethyl 

tetrahydrofuran 
  2-propyl tetrahydropyran 
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Furan and pyran isomers 
  2-butyl tetrahydrofuran 
  Cyclooctane 
  4-octanone 
  3-octanone 
  2-octanone 
  1-Octanone 
  1-Octanal 
  4-octanol 
  3-octanol 
  2-octanol 
  1-Octanol 
  1-Octene oxide 
  Benzyl Alcohol 
  2 oxygen pyran 
  Octadienes 
  Octadienones 
  Total   1108122 

   

   Corrected Area RF Peak area/Response Factor 

Methane 0.97 1.37E+05 

Ethylene 1.02 1.50E+05 

Ethane 0.97 0.00E+00 

Acetaldehyde 0.35 0.00E+00 

Propylene 1.00 6.32E+04 

Propane 0.98 1.21E+05 

Propionaldehyde 0.58 0.00E+00 

1-Butene 1.00 1.94E+04 

Methanol 0.23 0.00E+00 

Butanal 0.62 0.00E+00 

Butane 1.03 4.38E+04 

Ethanol 0.46 0.00E+00 

Acetone 0.49 0.00E+00 

1-Pentene 1.00 1.17E+05 

1-Propanol 0.60 0.00E+00 

Pentanal 0.66 0.00E+00 

Pentane 1.04 3.29E+04 

1-Hexene 0.99 8.06E+04 

Hexane 1.03 1.32E+04 

Benzene 1.12 0.00E+00 

Methyl-cyclopentane 0.93 0.00E+00 

1-Heptene 1.00 0.00E+00 

Heptane 1.00 0.00E+00 

Toluene 1.20 0.00E+00 
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1,7-Octadiene 1.03 0.00E+00 

Hexanal 1.16 0.00E+00 

1-Octene 1.03 0.00E+00 

Trans-4-octene 1.03 0.00E+00 

Cis-4-octene 1.03 0.00E+00 

Trans-3-octene 1.03 0.00E+00 

n-octane 0.97 3.41E+05 

Trans-2-octene 1.02 0.00E+00 

Cis-2-octene 1.02 0.00E+00 

Ethylbenzene 1.03 0.00E+00 

Styrene 1.29 0.00E+00 

o-xylene 1.02 0.00E+00 
2,5-methyl-ethyl 
tetrahydropyran 0.70 0.00E+00 

2,5-methyl-propyl 
tetrahydrofuran 0.70 0.00E+00 

2,5-diethyl 
tetrahydrofuran 0.70 0.00E+00 

2-propyl tetrahydropyran 0.70 0.00E+00 

Furan and pyran isomers 0.70 0.00E+00 

2-butyl tetrahydrofuran 0.70 0.00E+00 

Cyclooctane 0.90 0.00E+00 

4-octanone 0.80 0.00E+00 

3-octanone 0.80 0.00E+00 

2-octanone 0.80 0.00E+00 

1-Octanone 0.80 0.00E+00 

1-Octanal 0.78 0.00E+00 

4-octanol 0.85 0.00E+00 

3-octanol 0.85 0.00E+00 

2-octanol 0.85 0.00E+00 

1-Octanol 0.85 0.00E+00 

1-Octene oxide 0.70 0.00E+00 

Benzyl Alcohol 1.16 0.00E+00 

2 oxygen pyran 0.65 0.00E+00 

Octadienes   
 Octadienones   
 Total   1.12E+06 

   

   

Volume fraction 
Molar 
Mass 

Corrected Area * Constant * (Molar mass of 
methane/Molar mass of component) 

Methane 16.04 1.06E-02 

Ethylene 28.05 6.62E-03 

Ethane 28.05 0.00E+00 

Acetaldehyde 44.05 0.00E+00 

Propylene 42.08 1.86E-03 
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Propane 44.10 3.41E-03 

Propionaldehyde 58.08 0.00E+00 

1-Butene 56.11 4.28E-04 

Methanol 32.04 0.00E+00 

Butanal 72.11 0.00E+00 

Butane 58.12 9.35E-04 

Ethanol 46.07 0.00E+00 

Acetone 58.08 0.00E+00 

1-Pentene 70.13 2.08E-03 

1-Propanol 60.10 0.00E+00 

Pentanal 86.13 0.00E+00 

Pentane 72.15 5.67E-04 

1-Hexene 84.16 1.19E-03 

Hexane 86.18 1.90E-04 

Benzene 78.11 0.00E+00 

Methyl-cyclopentane 84.16 0.00E+00 

1-Heptene 98.19 0.00E+00 

Heptane 100.21 0.00E+00 

Toluene 92.14 0.00E+00 

1,7-Octadiene 110.20 0.00E+00 

Hexanal 100.16 0.00E+00 

1-Octene 112.24 0.00E+00 

Trans-4-octene 112.24 0.00E+00 

Cis-4-octene 112.24 0.00E+00 

Trans-3-octene 112.24 0.00E+00 

n-octane 114.23 3.71E-03 

Trans-2-octene 112.24 0.00E+00 

Cis-2-octene 112.24 0.00E+00 

Ethylbenzene 106.17 0.00E+00 

Styrene 104.15 0.00E+00 

o-xylene 106.16 0.00E+00 
2,5-methyl-ethyl 
tetrahydropyran 128.21 0.00E+00 

2,5-methyl-propyl 
tetrahydrofuran 128.21 0.00E+00 

2,5-diethyl 
tetrahydrofuran 128.21 0.00E+00 

2-propyl tetrahydropyran 128.21 0.00E+00 

Furan and pyran isomers 128.21 0.00E+00 

2-butyl tetrahydrofuran 128.21 0.00E+00 

Cyclooctane 112.21 0.00E+00 

4-octanone 128.21 0.00E+00 

3-octanone 128.21 0.00E+00 

2-octanone 128.21 0.00E+00 

1-Octanone 128.21 0.00E+00 

1-Octanal 128.21 0.00E+00 
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4-octanol 130.23 0.00E+00 

3-octanol 130.23 0.00E+00 

2-octanol 130.23 0.00E+00 

1-Octanol 130.23 0.00E+00 

1-Octene oxide 128.21 0.00E+00 

Benzyl Alcohol 108.14 0.00E+00 

2 oxygen pyran 144.21 0.00E+00 

Octadienes   
 Octadienones   
 Total   3.16E-02 

   

   Volume/ml   Volume fraction * Volume flowing out 

Methane 
 

7.77E+01 

Ethylene 
 

4.84E+01 

Ethane 
 

0.00E+00 

Acetaldehyde 
 

0.00E+00 

Propylene 
 

1.36E+01 

Propane 
 

2.49E+01 

Propionaldehyde 
 

0.00E+00 

1-Butene 
 

3.13E+00 

Methanol 
 

0.00E+00 

Butanal 
 

0.00E+00 

Butane 
 

6.83E+00 

Ethanol 
 

0.00E+00 

Acetone 
 

0.00E+00 

1-Pentene 
 

1.52E+01 

1-Propanol 
 

0.00E+00 

Pentanal 
 

0.00E+00 

Pentane 
 

4.14E+00 

1-Hexene 
 

8.69E+00 

Hexane 
 

1.39E+00 

Benzene 
 

0.00E+00 

Methyl-cyclopentane 
 

0.00E+00 

1-Heptene 
 

0.00E+00 

Heptane 
 

0.00E+00 

Toluene 
 

0.00E+00 

1,7-Octadiene 
 

0.00E+00 

Hexanal 
 

0.00E+00 

1-Octene 
 

0.00E+00 

Trans-4-octene 
 

0.00E+00 

Cis-4-octene 
 

0.00E+00 

Trans-3-octene 
 

0.00E+00 

n-octane 
 

2.71E+01 

Trans-2-octene 
 

0.00E+00 
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Cis-2-octene 
 

0.00E+00 

Ethylbenzene 
 

0.00E+00 

Styrene 
 

0.00E+00 

o-xylene 
 

0.00E+00 
2,5-methyl-ethyl 
tetrahydropyran 

 
0.00E+00 

2,5-methyl-propyl 
tetrahydrofuran 

 
0.00E+00 

2,5-diethyl 
tetrahydrofuran 

 
0.00E+00 

2-propyl tetrahydropyran 
 

0.00E+00 

Furan and pyran isomers 
 

0.00E+00 

2-butyl tetrahydrofuran 
 

0.00E+00 

Cyclooctane 
 

0.00E+00 

4-octanone 
 

0.00E+00 

3-octanone 
 

0.00E+00 

2-octanone 
 

0.00E+00 

1-Octanone 
 

0.00E+00 

1-Octanal 
 

0.00E+00 

4-octanol 
 

0.00E+00 

3-octanol 
 

0.00E+00 

2-octanol 
 

0.00E+00 

1-Octanol 
 

0.00E+00 

1-Octene oxide 
 

0.00E+00 

Benzyl Alcohol 
 

0.00E+00 

2 oxygen pyran 
 

0.00E+00 

Octadienes 
  Octadienones 
  Total   2.31E+02 

   

   Mols   pV=nRT 

Methane 
 

3.18E-03 

Ethylene 
 

1.98E-03 

Ethane 
 

0.00E+00 

Acetaldehyde 
 

0.00E+00 

Propylene 
 

5.57E-04 

Propane 
 

1.02E-03 

Propionaldehyde 
 

0.00E+00 

1-Butene 
 

1.28E-04 

Methanol 
 

0.00E+00 

Butanal 
 

0.00E+00 

Butane 
 

2.79E-04 

Ethanol 
 

0.00E+00 

Acetone 
 

0.00E+00 

1-Pentene 
 

6.21E-04 
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1-Propanol 
 

0.00E+00 

Pentanal 
 

0.00E+00 

Pentane 
 

1.69E-04 

1-Hexene 
 

3.55E-04 

Hexane 
 

5.67E-05 

Benzene 
 

0.00E+00 

Methyl-cyclopentane 
 

0.00E+00 

1-Heptene 
 

0.00E+00 

Heptane 
 

0.00E+00 

Toluene 
 

0.00E+00 

1,7-Octadiene 
 

0.00E+00 

Hexanal 
 

0.00E+00 

1-Octene 
 

0.00E+00 

Trans-4-octene 
 

0.00E+00 

Cis-4-octene 
 

0.00E+00 

Trans-3-octene 
 

0.00E+00 

n-octane 
 

1.11E-03 

Trans-2-octene 
 

0.00E+00 

Cis-2-octene 
 

0.00E+00 

Ethylbenzene 
 

0.00E+00 

Styrene 
 

0.00E+00 

o-xylene 
 

0.00E+00 
2,5-methyl-ethyl 
tetrahydropyran 

 
0.00E+00 

2,5-methyl-propyl 
tetrahydrofuran 

 
0.00E+00 

2,5-diethyl 
tetrahydrofuran 

 
0.00E+00 

2-propyl tetrahydropyran 
 

0.00E+00 

Furan and pyran isomers 
 

0.00E+00 

2-butyl tetrahydrofuran 
 

0.00E+00 

Cyclooctane 
 

0.00E+00 

4-octanone 
 

0.00E+00 

3-octanone 
 

0.00E+00 

2-octanone 
 

0.00E+00 

1-Octanone 
 

0.00E+00 

1-Octanal 
 

0.00E+00 

4-octanol 
 

0.00E+00 

3-octanol 
 

0.00E+00 

2-octanol 
 

0.00E+00 

1-Octanol 
 

0.00E+00 

1-Octene oxide 
 

0.00E+00 

Benzyl Alcohol 
 

0.00E+00 

2 oxygen pyran 
 

0.00E+00 

Octadienes 
  Octadienones 
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Total   9.45E-03 

   

   

Mols of carbon 
Carbon 
Number Carbon number * mols 

Methane 1 3.18E-03 

Ethylene 2 3.96E-03 

Ethane 2 0.00E+00 

Acetaldehyde 2 0.00E+00 

Propylene 3 1.67E-03 

Propane 3 3.06E-03 

Propionaldehyde 3 0.00E+00 

1-Butene 4 5.12E-04 

Methanol 1 0.00E+00 

Butanal 4 0.00E+00 

Butane 4 1.12E-03 

Ethanol 2 0.00E+00 

Acetone 3 0.00E+00 

1-Pentene 5 3.10E-03 

1-Propanol 3 0.00E+00 

Pentanal 5 0.00E+00 

Pentane 5 8.47E-04 

1-Hexene 6 2.13E-03 

Hexane 6 3.40E-04 

Benzene 6 0.00E+00 

Methyl-cyclopentane 6 0.00E+00 

1-Heptene 7 0.00E+00 

Heptane 7 0.00E+00 

Toluene 8 0.00E+00 

1,7-Octadiene 8 0.00E+00 

Hexanal 8 0.00E+00 

1-Octene 8 0.00E+00 

Trans-4-octene 8 0.00E+00 

Cis-4-octene 8 0.00E+00 

Trans-3-octene 8 0.00E+00 

n-octane 8 8.87E-03 

Trans-2-octene 8 0.00E+00 

Cis-2-octene 8 0.00E+00 

Ethylbenzene 8 0.00E+00 

Styrene 8 0.00E+00 

o-xylene 8 0.00E+00 
2,5-methyl-ethyl 
tetrahydropyran 8 0.00E+00 

2,5-methyl-propyl 
tetrahydrofuran 8 0.00E+00 

2,5-diethyl 8 0.00E+00 
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tetrahydrofuran 

2-propyl tetrahydropyran 8 0.00E+00 

Furan and pyran isomers 8 0.00E+00 

2-butyl tetrahydrofuran 8 0.00E+00 

Cyclooctane 8 0.00E+00 

4-octanone 8 0.00E+00 

3-octanone 8 0.00E+00 

2-octanone 8 0.00E+00 

1-Octanone 8 0.00E+00 

1-Octanal 8 0.00E+00 

4-octanol 8 0.00E+00 

3-octanol 8 0.00E+00 

2-octanol 8 0.00E+00 

1-Octanol 8 0.00E+00 

1-Octene oxide 8 0.00E+00 

Benzyl Alcohol 8 0.00E+00 

2 oxygen pyran 8 0.00E+00 

Octadienes   
 Octadienones   
 Total   2.88E-02 

 

Organic liquid: 

Products in Organic Layer   Peak Area 

Methane 
  Ethylene 
  Ethane 
  Acetaldehyde 
  Propylene 
  Propane 
  Propionaldehyde 
  1-Butene 
  Methanol 

 
8517 

Butanal 
  Butane 
  Ethanol 
  Acetone 
  1-Pentene 
 

93521 

1-Propanol 
  Pentanal 
  Pentane 
 

18633 

1-Hexene 
 

65408 

Hexane 
 

10878 

Benzene 
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Methyl-cyclopentane 
  1-Heptene 
 

33567 

Heptane 
 

20350 

Toluene 
  1,7-Octadiene 
  Hexanal 
  1-Octene 
 

66685 

Trans-4-octene 
 

51151 

Cis-4-octene 
  Trans-3-octene 
 

112850 

n-octane 
 

7528111 

Trans-2-octene 
 

74199 

Cis-2-octene 
 

34194 

Ethylbenzene 
  Styrene 
  o-xylene 
  2,5-methyl-ethyl 

tetrahydropyran 
 

65908 
2,5-methyl-propyl 
tetrahydrofuran 

 
187311 

2,5-diethyl tetrahydrofuran 
 

105157 

2-propyl tetrahydropyran 
 

243269 

Furan and pyran isomers 
 

41629 

2-butyl tetrahydrofuran 
 

63337 

Cyclooctane 
  4-octanone 
 

12130 

3-octanone 
 

52255 

2-octanone 
 

48497 

1-Octanone 
  1-Octanal 
  4-octanol 
  3-octanol 
 

9349 

2-octanol 
 

12934 

1-Octanol 
  1-Octene oxide 
  Benzyl Alcohol 
  2 oxygen pyran 
 

11557 

Octadienes 
 

27195 

Octadienones 
 

33555 

   Total   9032147.00 
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Corrected Area RF Peak area/Response Factor 

Methane 0.97 0 

Ethylene 1.02 0 

Ethane 0.97 0 

Acetaldehyde 0.35 0 

Propylene 1.00 0 

Propane 0.98 0 

Propionaldehyde 0.58 0 

1-Butene 1.00 0 

Methanol 0.23 37030 

Butanal 0.62 0 

Butane 1.03 0 

Ethanol 0.46 0 

Acetone 0.49 0 

1-Pentene 1.00 93521 

1-Propanol 0.60 0 

Pentanal 0.66 0 

Pentane 1.04 17916 

1-Hexene 0.99 66069 

Hexane 1.03 10561 

Benzene 1.12 0 

Methyl-cyclopentane 0.93 0 

1-Heptene 1.00 33567 

Heptane 1.00 20350 

Toluene 1.20 0 

1,7-Octadiene 1.03 0 

Hexanal 1.16 0 

1-Octene 1.03 64743 

Trans-4-octene 1.03 49661 

Cis-4-octene 1.03 0 

Trans-3-octene 1.03 109563 

n-octane 0.97 7760939 

Trans-2-octene 1.02 72744 

Cis-2-octene 1.02 33524 

Ethylbenzene 1.03 0 

Styrene 1.29 0 

o-xylene 1.02 0 
2,5-methyl-ethyl 
tetrahydropyran 0.70 94154 

2,5-methyl-propyl 
tetrahydrofuran 0.70 267587 

2,5-diethyl tetrahydrofuran 0.70 150224 

2-propyl tetrahydropyran 0.70 347527 

Furan and pyran isomers 0.70 59470 

2-butyl tetrahydrofuran 0.70 90481 
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Cyclooctane 0.90 0 

4-octanone 0.80 15163 

3-octanone 0.80 65319 

2-octanone 0.80 60621 

1-Octanone 0.80 0 

1-Octanal 0.78 0 

4-octanol 0.85 0 

3-octanol 0.85 10999 

2-octanol 0.85 15216 

1-Octanol 0.85 0 

1-Octene oxide 0.70 0 

Benzyl Alcohol 1.16 0 

2 oxygen pyran 0.60 19262 

Octadienes 1.03 26403 

Octadienones 0.70 47936 

 
  

 Total   9640551 

   

   Normalised Area %   (Corrected Area/Total Corrected Area)*100 

Methane 
 

0.00 

Ethylene 
 

0.00 

Ethane 
 

0.00 

Acetaldehyde 
 

0.00 

Propylene 
 

0.00 

Propane 
 

0.00 

Propionaldehyde 
 

0.00 

1-Butene 
 

0.00 

Methanol 
 

0.38 

Butanal 
 

0.00 

Butane 
 

0.00 

Ethanol 
 

0.00 

Acetone 
 

0.00 

1-Pentene 
 

0.97 

1-Propanol 
 

0.00 

Pentanal 
 

0.00 

Pentane 
 

0.19 

1-Hexene 
 

0.69 

Hexane 
 

0.11 

Benzene 
 

0.00 

Methyl-cyclopentane 
 

0.00 

1-Heptene 
 

0.35 

Heptane 
 

0.21 

Toluene 
 

0.00 

1,7-Octadiene 
 

0.00 
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Hexanal 
 

0.00 

1-Octene 
 

0.67 

Trans-4-octene 
 

0.52 

Cis-4-octene 
 

0.00 

Trans-3-octene 
 

1.14 

n-octane 
 

80.50 

Trans-2-octene 
 

0.75 

Cis-2-octene 
 

0.35 

Ethylbenzene 
 

0.00 

Styrene 
 

0.00 

o-xylene 
 

0.00 
2,5-methyl-ethyl 
tetrahydropyran 

 
0.98 

2,5-methyl-propyl 
tetrahydrofuran 

 
2.78 

2,5-diethyl tetrahydrofuran 
 

1.56 

2-propyl tetrahydropyran 
 

3.60 

Furan and pyran isomers 
 

0.62 

2-butyl tetrahydrofuran 
 

0.94 

Cyclooctane 
 

0.00 

4-octanone 
 

0.16 

3-octanone 
 

0.68 

2-octanone 
 

0.63 

1-Octanone 
 

0.00 

1-Octanal 
 

0.00 

4-octanol 
 

0.00 

3-octanol 
 

0.11 

2-octanol 
 

0.16 

1-Octanol 
 

0.00 

1-Octene oxide 
 

0.00 

Benzyl Alcohol 
 

0.00 

2 oxygen pyran 
 

0.20 

Octadienes 
 

0.27 

Octadienones 
 

0.50 

   Total   100.00 

   

   

Mass out/g   
(Normalised Area %/100)*Actual Mass of Organic 

Layer 

Methane 
 

0 

Ethylene 
 

0 

Ethane 
 

0 

Acetaldehyde 
 

0 

Propylene 
 

0 

Propane 
 

0 
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Propionaldehyde 
 

0 

1-Butene 
 

0 

Methanol 
 

0.013021369 

Butanal 
 

0 

Butane 
 

0 

Ethanol 
 

0 

Acetone 
 

0 

1-Pentene 
 

0.032885693 

1-Propanol 
 

0 

Pentanal 
 

0 

Pentane 
 

0.006300098 

1-Hexene 
 

0.023232371 

Hexane 
 

0.003713724 

Benzene 
 

0 

Methyl-cyclopentane 
 

0 

1-Heptene 
 

0.011803488 

Heptane 
 

0.007155867 

Toluene 
 

0 

1,7-Octadiene 
 

0 

Hexanal 
 

0 

1-Octene 
 

0.022766107 

Trans-4-octene 
 

0.017462835 

Cis-4-octene 
 

0 

Trans-3-octene 
 

0.038526733 

n-octane 
 

2.729054003 

Trans-2-octene 
 

0.025579717 

Cis-2-octene 
 

0.011788202 

Ethylbenzene 
 

0 

Styrene 
 

0 

o-xylene 
 

0 
2,5-methyl-ethyl 
tetrahydropyran 

 
0.033108381 

2,5-methyl-propyl 
tetrahydrofuran 

 
0.094094252 

2,5-diethyl tetrahydrofuran 
 

0.052824817 

2-propyl tetrahydropyran 
 

0.122204326 

Furan and pyran isomers 
 

0.020912011 

2-butyl tetrahydrofuran 
 

0.031816859 

Cyclooctane 
 

0 

4-octanone 
 

0.005331736 

3-octanone 
 

0.022968663 

2-octanone 
 

0.021316836 

1-Octanone 
 

0 

1-Octanal 
 

0 

4-octanol 
 

0 
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3-octanol 
 

0.003867623 

2-octanol 
 

0.005350715 

1-Octanol 
 

0 

1-Octene oxide 
 

0 

Benzyl Alcohol 
 

0 

2 oxygen pyran 
 

0.006773166 

Octadienes 
 

0.009284311 

Octadienones 
 

0.016856098 

   Total   3.39 

   

   

Moles out/mol 
Molar 
mass Mass/Molar mass 

Methane 16.04 0 

Ethylene 28.05 0 

Ethane 28.05 0 

Acetaldehyde 44.05 0 

Propylene 42.08 0 

Propane 44.10 0 

Propionaldehyde 58.08 0 

1-Butene 56.11 0 

Methanol 32.04 0.00040641 

Butanal 72.11 0 

Butane 58.12 0 

Ethanol 46.07 0 

Acetone 58.08 0 

1-Pentene 70.13 0.000468925 

1-Propanol 60.10 0 

Pentanal 86.13 0 

Pentane 72.15 8.73194E-05 

1-Hexene 84.16 0.00027605 

Hexane 86.18 4.30926E-05 

Benzene 78.11 0 

Methyl-cyclopentane 84.16 0 

1-Heptene 98.19 0.000120211 

Heptane 100.21 7.14087E-05 

Toluene 92.14 0 

1,7-Octadiene 110.20 0 

Hexanal 100.16 0 

1-Octene 112.24 0.000202834 

Trans-4-octene 112.24 0.000155585 

Cis-4-octene 112.24 0 

Trans-3-octene 112.24 0.000343253 

n-octane 114.23 0.023890869 
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Trans-2-octene 112.24 0.000227902 

Cis-2-octene 112.24 0.000105027 

Ethylbenzene 106.17 0 

Styrene 104.15 0 

o-xylene 106.16 0 
2,5-methyl-ethyl 
tetrahydropyran 128.21 0.000258236 

2,5-methyl-propyl 
tetrahydrofuran 128.21 0.000733907 

2,5-diethyl tetrahydrofuran 128.21 0.000412018 

2-propyl tetrahydropyran 128.21 0.000953158 

Furan and pyran isomers 128.21 0.000163107 

2-butyl tetrahydrofuran 128.21 0.000248162 

Cyclooctane 112.21 0 

4-octanone 128.21 4.1586E-05 

3-octanone 128.21 0.000179149 

2-octanone 128.21 0.000166265 

1-Octanone 128.21 0 

1-Octanal 128.21 0 

4-octanol 130.23 0 

3-octanol 130.23 2.96984E-05 

2-octanol 130.23 4.10867E-05 

1-Octanol 130.23 0 

1-Octene oxide 128.21 0 

Benzyl Alcohol 108.14 0 

2 oxygen pyran 144.21 4.69674E-05 

Octadienes 110.2 8.42496E-05 

Octadienones 128 0.000131688 

 
  

 Total   0.029888164 

   

   Moles of carbon out/mol   Moles*Number of carbons 

Methane 1 0 

Ethylene 2 0 

Ethane 2 0 

Acetaldehyde 2 0 

Propylene 3 0 

Propane 3 0 

Propionaldehyde 3 0 

1-Butene 4 0 

Methanol 1 0.00040641 

Butanal 4 0 

Butane 4 0 

Ethanol 2 0 
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Acetone 3 0 

1-Pentene 5 0.002344624 

1-Propanol 3 0 

Pentanal 5 0 

Pentane 5 0.000436597 

1-Hexene 6 0.0016563 

Hexane 6 0.000258556 

Benzene 6 0 

Methyl-cyclopentane 6 0 

1-Heptene 7 0.000841475 

Heptane 7 0.000499861 

Toluene 8 0 

1,7-Octadiene 8 0 

Hexanal 8 0 

1-Octene 8 0.001622673 

Trans-4-octene 8 0.001244678 

Cis-4-octene 8 0 

Trans-3-octene 8 0.002746025 

n-octane 8 0.191126955 

Trans-2-octene 8 0.001823216 

Cis-2-octene 8 0.000840214 

Ethylbenzene 8 0 

Styrene 8 0 

o-xylene 8 0 
2,5-methyl-ethyl 
tetrahydropyran 8 0.002065884 

2,5-methyl-propyl 
tetrahydrofuran 8 0.005871258 

2,5-diethyl tetrahydrofuran 8 0.003296143 

2-propyl tetrahydropyran 8 0.00762526 

Furan and pyran isomers 8 0.00130486 

2-butyl tetrahydrofuran 8 0.001985297 

Cyclooctane 8 0 

4-octanone 8 0.000332688 

3-octanone 8 0.00143319 

2-octanone 8 0.00133012 

1-Octanone 8 0 

1-Octanal 8 0 

4-octanol 8 0 

3-octanol 8 0.000237587 

2-octanol 8 0.000328693 

1-Octanol 8 0 

1-Octene oxide 8 0 

Benzyl Alcohol 8 0 

2 oxygen pyran 8 0.000375739 
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Octadienes 8 0.000673997 

Octadienones 8 0.001053506 

 
  

 Total   0.233761807 

 

Aqueous liquid: 

Products in aqueous layer Peak Area  

Methane 
 Ethylene 
 Ethane 
 Acetaldehyde 
 Propylene 
 Propane 
 Propionaldehyde 
 1-Butene 
 Methanol 92759 

Butanal 
 Butane 
 Ethanol 
 Acetone 5383 

1-Pentene 31362 

1-Propanol 44312 

Pentanal 
 Pentane 14658 

1-Hexene 18787 

Hexane 
 Benzene 
 Methyl-cyclopentane 
 1-Heptene 
 Heptane 
 Toluene 
 1,7-Octadiene 
 Hexanal 
 1-Octene 
 Trans-4-octene 
 Cis-4-octene 
 Trans-3-octene 
 n-octane 93624 

Trans-2-octene 
 Cis-2-octene 
 Ethylbenzene 
 Styrene 
 o-xylene 
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2,5-methyl-ethyl 
tetrahydropyran 

 2,5-methyl-propyl 
tetrahydrofuran 

 2,5-diethyl tetrahydrofuran 
 2-propyl tetrahydropyran 
 Furan and pyran isomers 
 2-butyl tetrahydrofuran 
 Cyclooctane 
 4-octanone 
 3-octanone 
 2-octanone 
 1-Octanone 
 1-Octanal 
 4-octanol 
 3-octanol 
 2-octanol 
 1-Octanol 
 1-Octene oxide 
 Benzyl Alcohol 
 2 oxygen pyran 
 Octadienes 
 Octadienones 
 

  Total 300885.00 

  

  

  

  Corrected Area Peak area/Response Factor 

Methane 0 

Ethylene 0 

Ethane 0 

Acetaldehyde 0 

Propylene 0 

Propane 0 

Propionaldehyde 0 

1-Butene 0 

Methanol 403300 

Butanal 0 

Butane 0 

Ethanol 0 

Acetone 10985.71429 

1-Pentene 31362 

1-Propanol 73853.33333 
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Pentanal 0 

Pentane 14094.23077 

1-Hexene 18976.76768 

Hexane 0 

Benzene 0 

Methyl-cyclopentane 0 

1-Heptene 0 

Heptane 0 

Toluene 0 

1,7-Octadiene 0 

Hexanal 0 

1-Octene 0 

Trans-4-octene 0 

Cis-4-octene 0 

Trans-3-octene 0 

n-octane 96519.58763 

Trans-2-octene 0 

Cis-2-octene 0 

Ethylbenzene 0 

Styrene 0 

o-xylene 0 
2,5-methyl-ethyl 
tetrahydropyran 0 

2,5-methyl-propyl 
tetrahydrofuran 0 

2,5-diethyl tetrahydrofuran 0 

2-propyl tetrahydropyran 0 

Furan and pyran isomers 0 

2-butyl tetrahydrofuran 0 

Cyclooctane 0 

4-octanone 0 

3-octanone 0 

2-octanone 0 

1-Octanone 0 

1-Octanal 0 

4-octanol 0 

3-octanol 0 

2-octanol 0 

1-Octanol 0 

1-Octene oxide 0 

Benzyl Alcohol 0 

2 oxygen pyran 0 

Octadienes 0 

Octadienones 0 
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Total 649091.6337 

  

  Normalised Area (Corrected Area/Total Corrected Area)*100 

Methane 0 

Ethylene 0 

Ethane 0 

Acetaldehyde 0 

Propylene 0 

Propane 0 

Propionaldehyde 0 

1-Butene 0 

Methanol 62.13298386 

Butanal 0 

Butane 0 

Ethanol 0 

Acetone 1.692475101 

1-Pentene 4.831675278 

1-Propanol 11.37795182 

Pentanal 0 

Pentane 2.171377667 

1-Hexene 2.923588395 

Hexane 0 

Benzene 0 

Methyl-cyclopentane 0 

1-Heptene 0 

Heptane 0 

Toluene 0 

1,7-Octadiene 0 

Hexanal 0 

1-Octene 0 

Trans-4-octene 0 

Cis-4-octene 0 

Trans-3-octene 0 

n-octane 14.86994788 

Trans-2-octene 0 

Cis-2-octene 0 

Ethylbenzene 0 

Styrene 0 

o-xylene 0 
2,5-methyl-ethyl 
tetrahydropyran 0 

2,5-methyl-propyl 
tetrahydrofuran 0 

2,5-diethyl tetrahydrofuran 0 
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2-propyl tetrahydropyran 0 

Furan and pyran isomers 0 

2-butyl tetrahydrofuran 0 

Cyclooctane 0 

4-octanone 0 

3-octanone 0 

2-octanone 0 

1-Octanone 0 

1-Octanal 0 

4-octanol 0 

3-octanol 0 

2-octanol 0 

1-Octanol 0 

1-Octene oxide 0 

Benzyl Alcohol 0 

Octanoic acid 0 

Octadienes 0 

Octadienones 0 

  Total 100 

  

  

Mass out/g 
(Normalised Area/100)*Actual Mass of Liquid 

Layer 

Methane 0 

Ethylene 0 

Ethane 0 

Acetaldehyde 0 

Propylene 0 

Propane 0 

Propionaldehyde 0 

1-Butene 0 

Methanol 0.071485241 

Butanal 0 

Butane 0 

Ethanol 0 

Acetone 0.001947226 

1-Pentene 0.005558939 

1-Propanol 0.013090561 

Pentanal 0 

Pentane 0.002498213 

1-Hexene 0.003363647 

Hexane 0 

Benzene 0 

Methyl-cyclopentane 0 
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1-Heptene 0 

Heptane 0 

Toluene 0 

1,7-Octadiene 0 

Hexanal 0 

1-Octene 0 

Trans-4-octene 0 

Cis-4-octene 0 

Trans-3-octene 0 

n-octane 0.017108172 

Trans-2-octene 0 

Cis-2-octene 0 

Ethylbenzene 0 

Styrene 0 

o-xylene 0 
2,5-methyl-ethyl 
tetrahydropyran 0 

2,5-methyl-propyl 
tetrahydrofuran 0 

2,5-diethyl tetrahydrofuran 0 

2-propyl tetrahydropyran 0 

Furan and pyran isomers 0 

2-butyl tetrahydrofuran 0 

Cyclooctane 0 

4-octanone 0 

3-octanone 0 

2-octanone 0 

1-Octanone 0 

1-Octanal 0 

4-octanol 0 

3-octanol 0 

2-octanol 0 

1-Octanol 0 

1-Octene oxide 0 

Benzyl Alcohol 0 

2 oxygen pyran 0 

Octadienes 0 

Octadienones 0 

  Total 0.115052 

  

  Moles out/mol Mass/Molar mass 

Methane 0 

Ethylene 0 
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Ethane 0 

Acetaldehyde 0 

Propylene 0 

Propane 0 

Propionaldehyde 0 

1-Butene 0 

Methanol 0.002231125 

Butanal 0 

Butane 0 

Ethanol 0 

Acetone 3.35266E-05 

1-Pentene 7.92662E-05 

1-Propanol 0.000217813 

Pentanal 0 

Pentane 3.46253E-05 

1-Hexene 3.99673E-05 

Hexane 0 

Benzene 0 

Methyl-cyclopentane 0 

1-Heptene 0 

Heptane 0 

Toluene 0 

1,7-Octadiene 0 

Hexanal 0 

1-Octene 0 

Trans-4-octene 0 

Cis-4-octene 0 

Trans-3-octene 0 

n-octane 0.00014977 

Trans-2-octene 0 

Cis-2-octene 0 

Ethylbenzene 0 

Styrene 0 

o-xylene 0 
2,5-methyl-ethyl 
tetrahydropyran 0 

2,5-methyl-propyl 
tetrahydrofuran 0 

2,5-diethyl tetrahydrofuran 0 

2-propyl tetrahydropyran 0 

Furan and pyran isomers 0 

2-butyl tetrahydrofuran 0 

Cyclooctane 0 

4-octanone 0 

3-octanone 0 
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2-octanone 0 

1-Octanone 0 

1-Octanal 0 

4-octanol 0 

3-octanol 0 

2-octanol 0 

1-Octanol 0 

1-Octene oxide 0 

Benzyl Alcohol 0 

2 oxygen pyran 0 

Octadienes 0 

Octadienones 0 

  Total 0.002786093 

  

  Moles of carbon out/mol Moles*Number of carbons 

Methane 0 

Ethylene 0 

Ethane 0 

Acetaldehyde 0 

Propylene 0 

Propane 0 

Propionaldehyde 0 

1-Butene 0 

Methanol 0.002231125 

Butanal 0 

Butane 0 

Ethanol 0 

Acetone 0.00010058 

1-Pentene 0.000396331 

1-Propanol 0.000653439 

Pentanal 0 

Pentane 0.000173126 

1-Hexene 0.000239804 

Hexane 0 

Benzene 0 

Methyl-cyclopentane 0 

1-Heptene 0 

Heptane 0 

Toluene 0 

1,7-Octadiene 0 

Hexanal 0 

1-Octene 0 

Trans-4-octene 0 
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Cis-4-octene 0 

Trans-3-octene 0 

n-octane 0.001198156 

Trans-2-octene 0 

Cis-2-octene 0 

Ethylbenzene 0 

Styrene 0 

o-xylene 0 
2,5-methyl-ethyl 
tetrahydropyran 0 

2,5-methyl-propyl 
tetrahydrofuran 0 

2,5-diethyl tetrahydrofuran 0 

2-propyl tetrahydropyran 0 

Furan and pyran isomers 0 

2-butyl tetrahydrofuran 0 

Cyclooctane 0 

4-octanone 0 

3-octanone 0 

2-octanone 0 

1-Octanone 0 

1-Octanal 0 

4-octanol 0 

3-octanol 0 

2-octanol 0 

1-Octanol 0 

1-Octene oxide 0 

Benzyl Alcohol 0 

2 oxygen pyran 0 

Octadienes 0 

Octadienones 0 

  Total 0.004992561 

 


