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ABSTRACT 

  

 

One of the most significant treatments for HIV-1 infection has been the combination of drugs 

targeting the HIV life cycle with the aim of preventing further destruction of the host immune 

system. This study addresses the design, synthesis, in vitro evaluation, and in silico analysis of 

putative HIV-1 reverse transcriptase (RT) inhibitors. The inhibitors comprise two structurally 

diverse components which are intended to bind separately to the enzyme allosteric site and to 

a location at, or close to, the polymerase active site. Therefore, the hydrophobic N-tritylated p-

halo-DL-phenylalanine derivatives (fluoro, chloro, bromo, iodo) have been coupled to 8-(6-

aminohexyl) amino-adenosine-3',5'-cyclic monophosphate through N-hydroxysuccinimide-

carbodiimide chemistry.  

 

Compounds were characterized by thin layer chromatography, UV spectroscopy, MALDI-TOF 

mass spectrometry and proton NMR spectrometry. A reverse transcriptase colorimetric assay 

kit, which features a sandwich ELISA protocol, based on biotin-avidin and digoxygenin-anti 

DIG interactions, was used for quantitative determination of the inhibitory effect of synthesized 

compounds on recombinant HIV-1 reverse transcriptase activity in vitro. Molecular docking 

simulations of the chimeric inhibitors within the allosteric site of HIV-1 RT, were performed 

using AutoDock Vina. The predicted binding associations were compared with laboratory 

findings on HIV-1 RT inhibition. Two dimensional representations of protein-ligand 

interactions were generated using LigPlot.  

 

The non-halogenated N-trityl-L-phenylalanine-8-(6-aminohexyl)amino-adenosine-3',5'-cyclic 

monophosphate derivative (4a) inhibited RT activity down to 57 % at 10-4 M, while the N-

trityl-para-fluoro-DL-phenylalanine-8-(6-aminohexyl)aminoadenosine-3′,5′-cyclic 

monophosphate derivative (4b) was the strongest RT inhibitor reducing RT activity to 69 % at 

10-7 M (IC50 = 29.2 μM). In the same assay, Nevirapine, a first-line anti-retroviral drug, showed 

a decline in RT activity down to 43% at 10-5 M (IC50 = 3.03 μM).  

 

Ranking of inhibitors according to estimated docking energies obtained from in silico docking 

was in excellent agreement with potencies calculated from experimental studies.   The docking 
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score of N-trityl-para-fluoro-DL-phenylalaline-8-(6-aminohexyl)amino-adenosine-3',5'-cyclic 

monophosphate was -8.8 kcal/mol, while that of Nevirapine was -9.9 kcal/mol. The benzene 

rings of the N-trityl-fluoro-DL-phenylalanine-8-(6-aminohexyl) amino-adenosine-3',5'-cyclic 

monophosphate derivative formed hydrophobic interactions with hydrophobic, non-aromatic 

amino acid residues Pro176 and Val179 in the allosteric site. Nevirapine, on the other hand 

showed strong van der Waals interactions with Val106 ,Val179 and Tyr188 due to the aromatic 

properties of the pyridine ring. Possible π-π stacking between phenyl rings of Nevirapine and 

Tyr 181/Tyr188 aromatic side chains may also be present. Other HIV-1 RT large subunit 

residues in the allosteric site common to the binding of Nevirapine and the active para-fluoro 

derivative include Lys101, Tyr318, Leu 100, Trp229 and Phe227. Apparent binding to the 

allosteric site suggests that compounds may be acting primarily as non-nucleoside reverse 

transcriptase inhibitors (NNRTIs). 
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 CHAPTER ONE 

 

INTRODUCTION AND LITERATURE SURVEY 

 

1.1   Human immunodeficiency virus  

 

A family of malignant human retroviruses, among them the human immunodeficiency virus, 

also known as HIV (Killian et al., 2011), is responsible for Aquired Immune Deficiency 

Syndrome (AIDS), a worldwide epidemic. HIV is a single stranded RNA, blood-borne virus 

that is most often transmitted via shared intravenous drug paraphernalia (Gostin, 1991; Gaskin 

et al., 2000) sexual intercourse with an infected partner, or mother-to-child transmission 

(MTCT), during birth process or breastfeeding. HIV retroviruses function by attaching 

themselves to a healthy host cell, fusing with the host cell membranes, integrating into the host 

cell nucleus and incorporating its viral DNA into a normal host cell genome (Perilla et al., 

2016). 

 

AIDS was first discovered in 1981 (Gottlieb et al., 1981) and two years later, HIV and human-

lymphotropic virus type III were isolated as the causative agents of the disease (De Clercq, 

2009). The ability of HIV to replicate rapidly in healthy cells and the errors made during the 

replication process, cause the virus to infect and evolve much faster in patients, making it a 

global health care crisis (UNIAIDS, 2013). At the end of 2014, approximately 36.9 million 

people were infected with HIV and 1.2 million people had died from HIV-related diseases 

worldwide (World Health Organization, 2015). However, according to recent statistics, 

approximately 36.7 million people were living with HIV in 2015 (UNAIDS, 2016).  

 

HIV infections can’t be cured (Ensoli et al., 2014) and drug administration is a lifelong 

commitment to those suffering with the virus (Sarafinos et al., 2010). Therefore, various anti- 

viral drug therapies have been studied and designed over the past years to provide HIV positive 

patients with a good quality of life (Figure 1.1). This, however, is an ongoing process since 
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HIV-1 has the tendency to show resistance to administered drugs, as the major enzyme in RNA 

replication, reverse transcriptase, lacks the ability to proof read (Asahchop et al., 2012). Other 

issues such as toxicity and harmful side effects such as nausea, diarrhoea and muscle disease 

are also common factors that contribute to HIV resistance. Therefore, new anti-viral drugs with 

low toxicity and possibly fewer side effects are continuously being sought and studied. Other 

approaches, such as bone marrow transplantation, have led to limited success.   

 

With help from various funding organizations, HIV/AIDS victims have gained access to 

various anti-retroviral treatments as shown in Figure 1.1. According to World Health 

Organization (WHO), low income countries such as South Africa, Botswana and Guyana have 

gained access to drug therapy which have assisted 80% of HIV infected pregnant women 

(World Health Organization, 2012).      

  

 

Figure 1.1   People on antiretroviral treatment from 2010-2016 (UNIAIDS, 2016). 

 

According to statistics published in the UNICEF annual reports, (2013), mother to child 

transmission has decreased markedly in the period 2000 to 2013 in some African countries. 

Botswana was shown to have less than 5% mother to child transmission after breastfeeding, 

however more than 10 countries were shown to have more than 15% mother-to-child 

transmission (Figure 1.2). Highly Active Antiretroviral Therapy (HAART) has indeed caused 

a great decrease in HIV infections world-wide.   
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Figure 1.2 

   

1.1.1 Structure of HIV  

 

HIV-1 is a lentivirus belonging to a family of retroviruses. HIV is composed of an outer layer 

that contains the envelope glycoprotein gp160 (Figure 1.3). In its native form, the HIV trimeric 

envelope glycoprotein consists of gp120 and gp41 subunits (Lobritz et al., 2010). Both 

molecules work together through non-covalent interactions. The gp120 glycoproteins assist in 

viral replication by binding to the receptors on the target host cells while the gp41 proteins play 

a role in fusion of the host cell and viral membrane. Found below the outer shell of a mature 

virion, is a layer of matrix (p17) as well as a round-shaped core that is formed from the virus 

capsid (p24). This core serves as a protector as it shields the components found in the virion as 

well as the p6 protein that functions in late viral assembly. The components found within the 

virion are two copies of the positive sense genomic viral RNA and are shielded by the 

nucleocapsid (NC) from nuclease digestion. The core also contains three viral enzymes: 

integrase (IN), reverse transcriptase (RT) and protease (PR) (Sundquist and Kräusslich, 2012). 

PR, along with the viral proteins; negative regulatory factor (Nef), viral infectivity factor (Vif) 

and viral protein R (Vpr) are said to be located within the virion. Vpr plays a role in the 

replication and transcription of non-dividing cells (i) induces apoptosis of cells and (ii) causes 

death of cell cycle in proliferating cells (Bukrinsky and Adzhubei, 1999).  

Mother to child transmission rate (%) from 2000-2013 (UNICEF annual 

report, 2013). 
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The HIV genome contains three genes namely, 5'gag-pol-env-3' that encode the viral enzymes 

as well as structural proteins. Gag precursor protein (p55) is 55 kD in length and is formed by 

the gag gene. After the budding process the enzyme, protease cleaves p55 into the p17 matrix, 

p6, p24 capsid and nucleocapsid. This causes conformational changes in the viral structure 

such that the p24 capsid encloses, surrounding the viral RNA while the p17 matrix remains 

intact (maturation). 

 

Figure 1.3   .  

 

 

 

 

 

 

 

 

Diagram of HIV illustrating the viral RNA genome, nucleocapsid, 

lipid membrane, the gp120 docking glycoprotein, gp41 

transmembrane glycoprotein, the viral enzymes (reverse 

transcriptase, integrase, protease) and viral proteins (Vif, Vpr, Nef, 

p7). https://www.google.co.za/search. Diagram of human 

immunodeficiency virus (HIV). Adapted from U.S. National 

Institute of Health (U.S. Department of health and human 

services).  
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1.1.2 Life cycle and viral replication 

 

Most retroviruses, such as Rous sarcoma virus (RSV), tend to infect dividing cells during the 

process of mitosis. HIV, on the other hand, can infect non-dividing cells when certain 

endogenous or exogenous genotoxic agents damage DNA (Lyama and Wilson, 2013), leading 

to multiple human diseases. When a person is infected with HIV, the virus is said to remain 

latent for long periods of time. It then starts attacking specific CD4+ T cells that serve in cell-

mediated responses. Since HIV is a single-stranded ribonucleic acid (RNA) virus, it cannot 

replicate on its own and requires the formation of double-stranded DNA to replicate. The 

process and synthesis of viral DNA is shown in Figure 1.4. 

 

1.1.2.1   Attachment, un-coating and fusion 

 

T lymphocytes play a crucial role in protecting the body’s immune system. They contain 

specialized antibody-like receptors on their surface that are used to recognize and detect harmful 

antigens on the surface of other infected cells. T cells have two important functions: (i) attacking 

infected, and (ii) regulating and directing immune system responses. 

HIV is known to attack T helper cells, as they are essential in stimulating the activation of other 

important immune cells such as B cells. When HIV attacks these cells, the immune system cannot 

function properly and this causes the body to become prone to many other infections (Casiday 

and Frey, 2001). These cells are also called T helper cells because HIV uses the CD4 proteins 

found on the surface of the helper cells, to attach to and enter the cell. T helper cells also 

contribute to the activation of B cells and cytotoxic cells with chemical signals. Therefore, when 

HIV attacks T cells, it also prevents the activation of B cells and cytotoxic T cells, which leaves 

the immune system vulnerable to harmful foreign antigens.  
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The protein Nef (1.1.1), is expressed during the attachment step. Nef promotes the survival of 

infected cells by reducing the presence of essential complexes such as major histocompatibility 

complex (MHC I) and MHC II present on antigen-presenting cells (APCs) and target cells, and 

CD4 present on helper T cells (Das and Jameel, 2005, Das et al., 2005). 

The HIV-1 envelope (Env) contains spikes protruding from its binding site surface which 

comprise trimers of non-covalently-linked heterodimers consisting of glycoprotein gp120 and 

the transmembrane glycoprotein (Figure 1.3) (Engelman and Cherepanov, 2012). The process of 

replication occurs when glycoproteins (gp120) on the HIV-1 envelope bind to the CD4+ receptors 

protruding from the surface of T helper cells (Engelman and Cherepanov, 2012). This interaction 

causes the formation of a bridging sheet and brings about a conformational change in the structure 

of both molecules, therefore exposing a site known as the chemokine co- receptor binding site. 

This enables co-receptors such as CCR5 or CXCR4 to facilitate viral entry into the cell by 

membrane fusion (Mehellou and De Clercq, 2010) after exposure of the gp41 peptide, which is 

inserted into the host cell membrane (Wilen et al., 2012). This brings the host and viral 

membranes closer, permitting the fusion peptide of gp41 to fold at a hinge region, bringing a 

carboxy-terminal helical region (HR-C) and an amino-terminal helical region (HR-N) from the 

gp41 subunit together to form a six-helix bundle (6HB). Due to the proximity of HR-C to the 

viral membrane (caused by the glycoprotein, gp41) and the proximity of HR-N domain to the 

host membrane (caused by the gp41 peptide), the 6HB essentially links the two membranes 

causing a fused pore. The viral core is then released into the host cytoplasm (Wilen et al., 2012). 

Once in the cytoplasm, host cell enzymes help in the removal of the viral capsid, resulting in 

structural change and the release of the viral RNA into the host cell. This process is known as 

un-coating. 

 

1.1.2.2    Reverse transcription          

 

Reverse transcription is the process of synthesizing a double-stranded DNA molecule from a 

single-stranded RNA template. It is called reverse transcription as it acts in the opposite 

direction to transcription. The process of reverse transcription was unaccepted at first as it 

contradicted the central dogma of molecular biology which states that DNA is the code which 

is transcribed into RNA which then carries the message to be translated into proteins. However, 
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due to the independent discovery of the enzyme reverse transcriptase in 1970, by  Howard 

Temin and David Baltimore (Coffin and Fan, 2016) and its role in reverse transcription, the 

possibility that DNA could be copied from an RNA template in the reverse manner was 

accepted.    

The formation of a complementary single-stranded DNA is carried out by the enzyme reverse 

transcriptase. The process of reverse transcription is essential as it involves the conversion of 

a single-stranded plus-sense RNA genome to a double-stranded cDNA which can be inserted 

or integrated into the host cell (Klickstein et al., 2001; Hu and Hughes, 2012). There are two 

enzymatic activities that are essential to carry out the process of reverse transcription. These 

include a DNA polymerase (reverse transcriptase) that can copy a DNA or RNA template, and 

an RNase H activity which helps degrade RNA during the synthesis of a provirus (Hu and 

Hughes, 2012). HIV-1 reverse transcriptase uses viral single-stranded RNA as a template, to 

catalyse the formation of a proviral DNA.  

Viral genomic RNA is plus stranded and the synthesis of the first DNA strand, also known as 

(–) strand DNA, is synthesized by extending the 3′-end of a specific tRNAlys3 using the viral 

RNA as a 3′-5′ template (Betancor et al., 2015). Reverse transcriptase, like many other 

polymerases also requires a primer and template to initiate strand polymerization. The 3′ end 

of the cellular tRNAlys3 primer, is based paired to a complementary sequence of nucleotides at 

the 5′ end of the viral genome called the primer binding site (PBS). This site is approximately 

180 nucleotides from the 5′ end of the viral genome. 

 

1.1.2.2.1    First strand synthesis (Minus strand)  

 

The enzyme reverse transcriptase attaches to the growing DNA strand and copies the 5′ end of 

the viral RNA genome to form a RNA-DNA hybrid duplex and with the help of RNases H, the 

viral RNA is degraded nucleolytically, exposing the newly synthesized single-stranded minus 

DNA. This creates direct repeats (long term terminal repeats) at the 5′ and 3′ ends of the viral 

RNA, which act as a bridge to allow the newly synthesized single-stranded minus DNA at the 

5′ end to join with the complementary repeat sequence (R) at the 3′ of the viral RNA. 

Retroviruses contain two copies of their RNA genome; the minus strand (also called the first 
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jump) (Sarafianos et al., 2010) undergoes a transfer which involves the repeat sequence (R 

sequence) at the 3′ end of one of the two RNAs.  

Once the minus strand DNA joins to the R sequence, the synthesis of the DNA strand continues 

along the viral genome in the 5′ direction. As synthesis of minus strand DNA continues, RNase 

H continues to degrade the RNA strand. However, at the 3′ end of the viral genome, there is a 

sequence that is rich in purines. This sequence is called the polypurine tract or ppt and is found 

to show resistance to RNase H activity. This purine sequence allows for a short stretch of RNA 

to remain attached to the newly synthesizing cDNA and serves to start the synthesis of the 

second strand DNA (plus strand), by serving as the primer sequence.  

 

1.1.2.2.2   Second strand synthesis (Positive strand) 

 

HIV- 1 has two polypurine tracts (ppts), one at the 3′ end and one at the middle of the RNA 

genome (Hu and Hughes, 2012).  When RT creates the plus-strand DNA that is initiated from 

the 3′ ppt, it copies the minus-strand DNA, as well as the first 18 nucleotides of the tRNAlys3 

primer. This stops DNA synthesis. A study carried out by Swanstrom et al., (1981) with avian 

sarcoma-leukosis virus suggested that the ppt-primed plus strand DNA synthesis would stop 

when it comes across a modified Adenosine (A) that the enzyme reverse transcriptase cannot 

copy. The same applies to HIV. Once the 3′ terminal of the tRNA is copied into DNA, it 

becomes sensitive to RNase H.  RT in HIV-1 is the only RT that cleaves the tRNA from the 3′ 

end, therefore leaving a ribo-A nucleotide at the 5′ end of the viral minus strand DNA. 

 

1.1.2.3   Integration and re-infection 

 

The newly synthesized double-stranded viral DNA in the core is in the host cell cytoplasm and 

migrates into the host cell nucleus, where it is integrated into the host cell genome as a provirus 

with the help of the enzyme, integrase (Craigie and Bushman, 2012). The provirus acts as a 

template to form messenger RNA (mRNA) and viral RNA during the process of transcription. 

The mRNA then travels to the host cell cytoplasm, where it undergoes translation to form Gag 

and Gagpol poly-proteins (Sarafianos et al., 2010). With the help of host enzymes, the viral 
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RNA and Gag and Gagpol poly proteins migrate to the cell surface to form new virus particles, 

each containing two copies of the RNA genome and the essential proteins needed for re-

infection. 

 

 

Figure 1.4    

 

  

 

 

 

Illustrating the stages in the HIV life cycle. Virus adsorption, virus-cell 

fusion, uncoating, reverse transcription, integration, transcription, 

translation and budding (De Clercq, 2009).  
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1.2   The genesis, structure, and enzymatic functions of HIV-1 reverse transcriptase  

 

 

A unique characteristic of the RT enzyme is that it can utilize both DNA and RNA templates. 

HIV-1 RT has three main functions: It can act as an RNA-dependant DNA polymerase to 

produce cDNA from an RNA template, it’s Ribonuclease H activity degrades the RNA 

template during the formation of cDNA and it acts as a DNA-dependent DNA polymerase 

synthesizing double-stranded DNA using cDNA as the template (Sarafianos et al., 2010). Most 

of RT’s functions are found in the same protein subunit although they are considered to be 

monomeric enzymes. However, HIV-1 RT is a heterodimer, consisting of two subunits, termed 

p66 and p51. The p66 subunit contains two domains: the DNA polymerase domain and the 

RNase H domain, which are located at different regions in the p66 subunit (Thammaporn et 

al., 2015).  

The polymerase domain of the RT contains 4 subdomains: the connection, fingers, palm and 

thumb (Figure 1.5A). The connection domain connects the polymerase and RNase H domains 

as it acts as a bridge. These subdomains create a site for the binding of the primer, template, 

two divalent cations and dNTPs during the synthesis of DNA (Yokoyama et al., 2010).  Hence 

it is called the polymerization active site. This site is composed of three key aspartic residues; 

Asp185, Asp110 and Asp186, which are in the palm domain. The Asp186 and Asp185 

comprise part of the YMDD motif (Tyr-Met-Asp-Asp) corresponding to the more general 

YXDD motif (X = Met, Val, Leu or Ala) of HIV-1 RT. Tyr183 and Asp185 play a role in the 

formation of a hydrogen bond with the 3′-hydroxyl group at the primer end as well as act as a 

base to undergo a nucleophilic attack on the α-phosphate group of an incoming nucleoside-5′-

triphosphate (Figure 1.5 B). The overall structure of the RT is often described as a right hand, 

where the polymerization active site is found in the “palm sub-domain’’ between the ‘’fingers’’ 

and the ‘’thumb’’ and ‘’runs’’ through the connection and RNase H domains (Das and Arnold, 

2014). 

The second subunit, p51 is similar to the p66 subunit, however it lacks the C-terminal RNase 

H domain and is formed by HIV-1 protease mediated cleavage of the C-terminal RNase H 

domain of the p66 subunit. The amino acid sequence that forms the polymerase active site of 

p66 domain is the same as the polymerase active site in the p51 domain, which is however not 
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functional (Xia et al., 2007). Therefore, the function of the p51 domain is to basically provide 

structural support to the RT enzyme. 

The second site to which RT inhibitors bind is called the non-nucleoside binding pocket (Figure 

1.5 C). A non-nucleoside binding pocket is found in the palm subdomain of the p66 subunit 

and is approximately 10Å away from the aspartic acid catalytic triad in the polymerization 

active site (Santos et al., 2015). The binding pocket is located between β6-β10-β9 and β12-

β13-β14 sheets of the palm subdomain. The allosteric binding pocket is known to be 

hydrophobic in its natural form, consisting of aromatic residues (Tyr181, Tyr188, Phe227, 

Trp229, Tyr233), along with hydrophilic residues such as Ser105, Lys101, Lys103, Asp192, 

Glu22 and Glu138 of p51 subunit (Sarafianos et al., 2010). The hydrophobic binding pocket 

allows the template strand to bind to reverse transcriptase enzyme as it exposes the 3′-OH end 

of the primer to the catalytic site. The “thumb’’ subdomain contributes to this exposure as it 

functions in the mobilization of the template and the primer to the polymerization active site 

when the reverse transcriptase enzyme forms a closed circle around the sub domains (Hu and 

Hughes, 2012). This brings the thumb and fingers to move closer to the palm subdomain and 

allows for binding of nucleic acids. It is also known to be more flexible than the ‘palm and 

fingers’ thus allowing for proper binding of strands (Kohlstaedt et al., 1992).   
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                                                                         A 

 

                                          B                                                              C 

Figure 1.5    

 

 

 

 

  

(A) Structure of HIV-1 RT and the different subdomains (Pata et al., 2004); 

(B) Polymerase active site with the YMDD motif and divalent ions. (Chong 

and Chu, 2004); (C) NNRTI-binding pocket, showing the residues at which 

NNRTI-resistance mutations occur (Sarafianos et al., 2010). Amino acid 

codes: F227=Phe, G190=Glu, K101, K103=Lys, L100, L234=Leu, P236, 

P95=Pro, V106, V106= Val, W229=Trp, Y181, Y188, Y318= Tyr.  
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1.3    Early history of therapeutic interventions  

  

After the isolation of HIV-1 in 1983, extensive studies were carried out to control the spread 

of the chronic virus (Hoggs et al., 1999). The first anti-viral drug, Zidovudine (also known as 

AZT) was first synthesized in 1964 as an anti-cancer drug and thereafter became the first 

successful drug to be approved by the U.S. Food and Drug Administration (FDA) for extending 

the lives of those suffering with HIV infection up to 18 months in 1987 and later on became 

the preferred drug for the prevention of HIV infection (Corey et al., 2007).  AZT at the 

triphosphate level was used to restore the immune system as it could enter the reverse 

transcriptase active site and block its activity in the HIV replication cycle (Furman, et al. 1986). 

The discovery of AZT’s antiretroviral activity subsequently led to the development of other 

anti-retroviral drugs. However, one of the main limitations of AZT was that the HIV virus 

could easily show resistance to the drug within a short period of time as well as cause undesired 

side effects. For this reason, a second drug therapy, highly active antiretroviral therapy 

(HAART) was designed to overcome this problem (Asahchop et al., 2012). HAART was 

implemented after 1995 and has indeed improved the lives of HIV-infected patients, as this 

system brought about longer survival periods (Eswara Rao et al., 2015). The system of HAART 

consists of a mixture of 3 or more drugs usually from two different classes of anti-viral drugs, 

namely; nucleoside reverse transcriptase inhibitors (NRTI) and non-nucleoside reverse 

transcriptase inhibitors (NNRTI). Anti-retroviral treatment is very effective at preventing HIV 

from multiplying and spreading throughout the body.  This prevention protects the immune 

system and thus allows the body to fight off other HIV-related opportunistic infections which 

eventually lead to AIDS.  

 

1.3.1 Reverse transcriptase:  The target for anti-retroviral drug therapy 

  

Reverse transcriptase has long been a target for the development of anti-viral drug therapy, due 

to its major role in the replication process of HIV. HIV infections can’t be cured easily and 

therefore, the administration of drugs is a lifelong commitment for those infected with the virus 

(Sarafianos et al., 2010). Therefore, compounds should be easily administered and non-toxic. 

There are different classes of drugs that intervene at different stages of the life cycle of HIV. 

However, drugs that specifically target the DNA polymerization activity of the reverse 
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transcriptase enzyme are said to be the backbone of current HIV-1 strategies (Betancor et al., 

2015). These drugs can be split into two groups, namely, (i) nucleoside/nucleotide reverse 

transcriptase inhibitors (NRTIs) and (ii) non-nucleoside reverse transcriptase inhibitors 

(NNRTIs). NTRI and NNRTIs that target the DNA polymerization active site of the reverse 

transcriptase enzyme are said to be the backbone of current HIV-1 treatment strategies 

(Betancor et al., 2015). Several drugs have been successfully implemented to inhibit RT. These 

include Azidothymidine, Nevirapine, Tenofovir, Abacavir, Stavudine, Didanosine, Etravirine, 

Delavirdine, Efavirenz and Rilpivirine. However, due to their toxic side effects and the 

resistance caused by viral mutations, their therapeutic effects are sometimes limited (Padariya 

et al., 2016). 

 

1.4     

 

 

Nucleoside reverse transcriptase inhibitors (NRTIs) were the first successful retroviral agents 

used against HIV and are thus, the oldest group of antiretroviral agents. NRTIs are analogues 

of naturally occurring nucleosides and are therefore inactive in their normal forms. To display 

their anti-viral activity an NRTI requires host cell entry and must undergo phosphorylation 

twice by initial conversion to its 5′-monophosphate (NMP), followed by pyro-phosphorylation 

to its 5′-triphosphate (NTP) form by host cell kinases in order to compete with naturally 

occurring deoxynucleotide triphosphates (Michailidis et al., 2009). NRTIs lack a 3′-OH group 

on the deoxyribose sugar moiety thus preventing the formation of a 3′,5′-phosphodiester bond 

between the NRTI and a naturally occurring 5′-nucleoside triphosphates (Sarafianos et al., 

2010). When reverse transcription occurs in the presence of a NRTI, RT may bind a NRTI 

triphosphate instead of a naturally occurring nucleotide building block and this, in turn, 

prevents reverse transcription. NRTIs may compete with and block the addition of naturally 

occurring substrates as well as become incorporated into the growing DNA molecule. When 

the NRTI triphosphates are incorporated into the nascent DNA, they act as chain terminators 

(Goody et al., 1991) by preventing the process of elongation; hence a double-stranded DNA is 

not fully formed and cannot be incorporated into a new host cell.  

Along with the amino acid residues previously mentioned, there are two Mg2+ ions that are also 

present in the polymerase active site that are approximately 3.6 Å apart from each other (Figure 

Nucleoside/ nucleotide reverse transcriptase inhibitors and their inhibitory 

mechanism   

14 

http://nar.oxfordjournals.org/search?author1=Gilberto+Betancor&sortspec=date&submit=Submit
http://www.jbc.org/search?author1=Eleftherios+Michailidis&sortspec=date&submit=Submit
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745993/#R15


 
 

1.5 B) (Goldschmidt et al., 2006). One of the ions, binds to the three phosphate groups of the 

incoming inhibitor as well as the Asp110 and Asp185 residues. This causes the Mg2+ to enter 

the catalytic site preventing exchange of free deoxynucleoside triphosphate. The second Mg2+ 

ion binds the three aspartate residues: Asp110, Asp185 and Asp186 as well as the α phosphate 

group of the incoming deoxynucleoside triphosphate (Goldschmidt et al., 2006).  

 

 

Figure 1.6   Clinically used NRTIs (Sarafianos et al., 2010). 

 

Nucleotide reverse transcriptase inhibitors (NtRTIs) generally display the same inhibitory 

mechanism. The only difference is that NtRTIs are nucleotide analogues and require further 

phosphorylation to be converted to their active triphosphate form as they already possess a 

phosphate group (De Clercq, 2009). NtRTIs are polar in nature as they contain a triphosphate 

group, a 5-carbon sugar and a nitrogenous base. Therefore, their polar property prevents their 

movement across the plasma membrane to enter the cell.  

 

 

 

15 



 
 

1.4.1 Clinically approved NRTIs 

 

1.4.1.1    Azidothymidine (AZT)   

 

AZT, also known as Zidovudine (Figure 1.6) is a potent inhibitor of reverse transcriptase, when 

it is converted to its 5′ triphosphate form. When reverse transcriptase utilizes AZT-5′- 

triphosphates to incorporate an AZT residue into a growing DNA strand, this serves as a chain 

terminator, therefore inhibiting reverse transcription (Corey et al., 2007). AZT possesses an 

azido group at the 3′-position on its 2′-deoxyribose sugar moiety, which prevents DNA chain 

extension using 2′-deoxynucleoside-5′-triphosphate building blocks. To display its anti-viral 

activity, AZT is first converted into its 5′- triphosphate form inside the cell. The triphosphate 

form of the drug cannot penetrate the cell membrane (Michailidis et al., 2009). Therefore, AZT 

in its monophosphate form also lowers the formation of 2′-deoxythymidine 5′-triphosphate 

(dTTP) by competitive inhibition. The mechanism and inhibitory effect of AZT was described 

in a study by Furman et al., (1987). In this study, the effect of AZT in its 5′- mono, di and 

triphosphate form on uninfected human fibroblasts and lymphocytes was investigated. It was 

shown that the inhibition of the growth of uninfected cells occurred at concentrations over 

1mM and the conversion of AZT to its 5′-mono, di- and triphosphate forms was similar in HIV 

infected cells.  

AZT is known to cause many harmful side effects including headaches and nausea (Santos et 

al., 2015). However, drug resistance allows for other opportunistic diseases to occur and to 

affect the patient. For this reason, AZT is mainly used in combination with other antiviral 

drugs. The combination of two or more anti-viral drugs in a patient’s body not only reduces 

viral replication, but also minimizes the chances of the virus showing resistance to the drugs. 

Since AZT was the first successful anti-HIV drug, it was the most expensive medicine at the 

time, costing users $8,000-$10,000 per year. It was used exclusively until other anti-viral were 

developed. However, the quest for new more effective anti-viral with fewer side effects is an 

ongoing process.  
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1.4.1.2   Tenofovir (TFV) 

 

Tenofovir, a NRTI was discovered in 1997 as a potent inhibitor of reverse transcriptase. In the 

same year, TFV was modified to Tenofovir disoproxil (TDF), making it the first oral prodrug 

of TFV (Wang et al., 2016) and becoming one of the most commonly used drugs for the 

treatment of HIV-1 infection. TDF is used in many fixed-dose combinations such as with 

Efavirenz and Rilpivirine and one of its side effects is renal toxicity (Wang et al., 2016). TFV 

is hydrophilic making it difficult to move across a hydrophobic membrane (Van Rompay et 

al., 2012). After following a two-step phosphorylation process, TFV is converted into its active 

form, Tenofovir diphosphate (TFV-DP) which shows anti-HIV activity (Biswas et al., 2014; 

Wang et al., 2016). 

 

1.4.1.3   Abacavir (ABC)  

 

Abacavir (Figure 1.6) developed in 1998, is a carbocyclic 2′-deoxyguanosine nucleoside 

analogue (Adetokunboh et al., 2014) mainly used for the treatment of HIV positive children.  

Analysis of the drug on peripheral blood mononuclear cells (PBMCs) revealed that it is 

considerably more potent than Didanosine (DDI) but as effective as AZT. Its low toxicity level 

and less harmful side effects such as; reduced hypersensitivity, fewer rashes and lower fever 

have allowed the drug to remain well tolerated long-term (Volberding et al., 2008). The drug 

is metabolically converted to its triphosphate form, carbovir triphosphate and competes with 

the natural substrates dGTP for incorporation in the growing DNA strand.  

 

1.4.1.4   Stavudine (D4T)  

 

Stavudine (Figure 1.6) was first approved by the FDA in 1994 and is effective when used in 

combination with other anti-viral drugs. In a study carried out by Kline et al., (1996), 

combination treatment of D4T and Didanosine (DDI) showed strong inhibition against HIV-1 

infection in a small group of children. Three children with CD4 counts higher than 50 cells/mL 

showed a 20% increase in CD4 counts after being treated with the combination therapy for 12 
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weeks. One of the main side effects of D4T is peripheral neuropathy. This symptom can be 

tolerated for a short while, however, cannot be tolerated in the long term. Therefore, alternative 

antiviral drugs or combination of other antiviral drugs continues to expand (Volberding et al., 

2008).  

 

 1.4.1.5    Didanosine (DDI)  

 

Didanosine (Figure 1.6), a purine nucleoside became the second approved NRTI in 1991 

(Brittain, 1993). This inhibitor acts against both HIV-1 and HIV-2. It requires intracellular 

phosphorylation by cellular kinases to initiate its inhibitory mechanism. Earlier studies have 

shown DDI to be an effective antiviral drug. However, when used in drug combination with 

AZT, it has been shown to be more effective. Side effects of Didanosine include diarrhoea, 

abdominal pain, dose-related peripheral neuropathy, vomiting and nausea.  

 

1.5    Non-nucleoside reverse transcriptase inhibitors and their inhibitory mechanism  

 

Non-nucleoside RT inhibitors (NNRTIs) are an important component of antiretroviral therapy. 

NNRTIs and protease inhibitors are more potent inhibitors of viral replication than nucleoside 

RT inhibitors (NRTIs) and integrase inhibitors (Seckler et al., 2011). NNRTIs are structurally 

diverse antiviral drugs that are shown to be less effective to HIV-2.  HIV-2 is less readily 

transmitted and is generally less pathogenic than HIV-1. Given the slow development of 

immunodeficiency and limited clinical experience with HIV-2, it is unclear whether 

antiretroviral therapy significantly slows progression. NNRTIs do not inhibit HIV-2 due to the 

residues at codon 181 and 188 (Tyr181 and Tyr188 in HIV-1; Ile181 and Leu188 in HIV-2) 

which prevent the drugs from binding to HIV-2 RT (Sluis-Crèmer and Tachedjian, 2008). For 

this reason, NNRTIs are described as selective inhibitors of HIV-1 reverse transcriptase 

(Famiglini and Silvestri, 2016).  NNRTIs are a group of compounds that are known to act as 

allosteric inhibitors of RT, thus preventing DNA polymerization. There are 5 compounds that 

are commonly used against HIV-1 infection. These include: Nevirapine, Efavirenz, 

Delavirdine, Etravirine and Rilpivirine. NNRTIs differ from NRTIs as they do not mimic or 
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compete with naturally occurring substrates, instead they bind directly to the hydrophobic 

binding site/pocket in the palm subdomain of the p66 domain of the RT enzyme. This site is 

termed the non-nucleoside reverse transcriptase inhibitor binding pocket (NNRTI-BP) and is 

approximately 10Å from the polymerase active site (Arts and Hazuda, 2012). 

NNRTIs block the process of reverse transcription by binding to the NNRTI-BP and altering 

the mobility of the DNA polymerase allosteric site, more specifically, the thumb subdomain of 

the RT.  NNRTIs are also known to deform a region in the RT, known as the ‘primer grip 

region’. This region functions in correctly positioning the DNA primer in the polymerase active 

site located in the p66 subunit. Therefore, an alteration in the primer grip region tends to cause 

a change in template/primer conformation and position, thus blocking formation of a ternary 

complex. It is also known that the NNRTI binding pocket functions as a bridge between the 

thumb and palm subdomains. Therefore, any alteration to the binding pocket will affect the 

functions of the thumb and palm subdomains. 

During favourable conditions of DNA synthesis, the RT fits a “closed” conformation bringing 

the fingers and thumb subdomains closer to the palm subdomain and thus allow for the binding 

of nucleic acids. However, in the presence of an NNRTI, an open conformation is created that 

restricts the thumb to a hyperextension position, which prevents the polymerization of DNA 

(Das et al., 2012). It restricts the movement of the thumb subdomain, which prevents the 

template or primer strands from binding to the polymerization active site. Thus, preventing 

strand elongation and termination of reverse transcriptase. 

It was shown that in the absence of an inhibitor, the aromatic side chains of Tyr181 and Tyr188 

in the non-nucleoside RT binding pocket are positioned towards the hydrophobic core. 

However, in the presence of an inhibitor the two aromatic residues move away from the 

hydrophobic core thus accommodating space for the incoming inhibitor (Sluis-Cremer et al., 

2005). 

In a study by Das et al., (2012) the mechanism of binding interactions of the NNRTI, 

Nevirapine on RT-DNA was compared with binding interactions of AZTTP on RT-DNA. 

Upon binding of Nevirapine to the non-nucleoside binding pocket, the two amino acid residues 

Tyr181 and Tyr188 rotamer conformations are switched off, while β12-β13-β14 part ways 

from the β6-β10-β9 sheet. The β6-β10-β19 sheet contains the polymerase “catalytic triad” 

(Asp110, Asp185, and Asp186), while the β12-β13-β14 sheet contains the “primer grip” that 

keeps the primer strand in position for the incorporation of a nucleotide. With the aid of crystal 
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structures, the binding interaction of Nevirapine was shown to cause a shift in the primer gap 

of about 4Å. This caused the shifted primer grip to lift the primer away from the P-site leading 

to lost interactions with the Tyr183MDD motif (at the polymerase active site).   

In a recent study by Lu et al., (2011) an analogue of the RT inhibitor Calanolide A, 10-

chloromethyl-11-demethyl-12-oxo-calanolide A, also known as (F18) and the NNRTI, 

Nevirapine were bound by the HIV-1 wild type, Leu100 mutant and Tyr181 mutant RTs 

separately. Results indicated that Nevirapine showed better binding interactions with wild type 

RT compared to F18. This was probably due to the rigid structure of F18. The structure of 

Nevirapine, on the other hand, has aromatic rings that contribute to its hydrophobicity and this 

property is favourable in the NNRTI-BP and thus formed aromatic interactions with the 

aromatic side chains of Tyr188 and promoted RT inhibition. The structure of Leu100 mutant 

RT was altered when bound to F18. The NNRTI-BP is hydrophobic in nature and many 

hydrophobic compounds will be accommodated. However, in this study, the NNRTI-BP was 

shifted, indicating that the hydrophobic and aromatic side chains in this site must have shifted 

causing fewer interaction with the ligand and thus contributing to resistance. The Tyr181 

mutant structure showed better spatial flexibility with F18 and resulted in excellent antiviral 

activity. The change from Tyr181 to a cysteine amino acid residue was shown to contribute to 

this result.  
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1.5.1    Commonly used NNRTIs 

 

 

Figure 1.7 Structures of common NNRTIs (Usach et al., 2013).  

 

1.5.1.1   Nevirapine (NVP) 

 

Nevirapine (Figure 1.7) was approved by the FDA to be the 9th successful anti-viral drug 

against the enzyme reverse transcriptase in the year 1996.  In a study done by Sluis-Cremer et 

al., (2004), a single dose of Nevirapine was shown to have prevented HIV-1 transmission from 

mother to child. However, the virus was shown to develop resistance to the drug when 

administered as an immunotherapy. However, Nevirapine when given in combination with one 

or more other drugs was shown to be more efficient. This was first validated by Montaner et 

al., (1998) where the combinations of Nevirapine and Zidovudine and Didanosine with 

Zidovudine were compared with the combinations of Nevirapine, Zidovudine and Didanosine. 

The triple combination treatment brought about a 51% drop in HIV-1 RNA levels at week 52 

in patients, while the duel combinations: Zidovudine and Didanosine, Nevirapine and 
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Zidovudine showed a drop of 12% and 0% in HIV-1 levels respectively (Montaner et al., 1998). 

This showed that the outcome of combining three types of drugs was much more effective and 

superior to that of combing two types of drugs. Although Nevirapine is widely used in the 

treatment of HIV-1 RT, it is also noted that 5% of individuals treated with Nevirapine develop 

allergic reactions with symptoms of drug reactions that occur rarely (idiosyncratic drug 

toxicity) (Isogai and Hirayama, 2016).  

 

1.5.1.2    Etravirine (ETR) 

 

Etravirine (Figure 1.7) previously known as TMC125, is a diarylpyrimidine-based NNRTI that 

exhibits effective antiviral activity against wild type HIV-1 as well as some viruses that show 

resistance to some NNRTIs (Wainberg, 2012). 

 

1.5.1.3    Delavirdine (DLV) 

 

Delavirdine (Figure 1.7) belongs to the bis(heteroaryl) pyridinyl group of non-nucleoside 

reverse transcriptase inhibitors. This compound was first described in 1993, but due to its high 

toxicity levels and its inability to inhibit human DNA polymerases, it is rarely used in clinical 

treatment. The structure of delavirdine is extremely bulky and projects from the hydrophobic 

binding pocket in the reverse transcriptase enzyme (Esnouf et al.,1997).  

 

1.5.1.4    Efavirenz (EFV)  

 

Efavirenz (Figure 1.7) is an NNRTI and is a generally safe and highly effective antiretroviral 

drug. This drug is one of the most commonly prescribed antiviral drugs in the world (Kryst et 

al., 2015). However, it is also known to cause side effects such as anxiety, insomnia, dizziness 

and abnormal dreams (Highleyman, 2014). Efavirenz is known to possess a half-life of 40-55 

hours (Gaida et al., 2015) and is primarily metabolised in the liver by the CYP450 enzyme 
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system. The specific isoform within the system most important for the metabolism of Efavirenz 

is CYP2B6. According to a recent study, 50% of all patients administered with Efavirenz 

experience at least some of the above-mentioned side effects. This, however only occurs during 

the first few days of intake and subsides after a few weeks.  

In a study by Highleyman, (2014) (http://www.hivandhepatitis.com, Accessed 17/11/2017) the 

effect of Efavirenz given at different doses was investigated. In this study, two separate groups 

of participants were orally given 400 mg of Efavirenz and 600 mg of Efavirenz respectively 

(once daily), on a 48 week analysis. Results, showed equivalent effects between the two groups.  

After 96 weeks, 90% of participants on each treatment had a reduced HIV RNA <200 

copies/mL in an intent-to-treat analysis (ITT). Fewer side effects were also witnessed in 

participants administered with 400 mg Efavirenz.  

ITT involves all the randomized patients in each group that undergo treatment irrespective of 

the treatment they had initially received, irrespective of withdrawal and irrespective of 

protocol deviations (Gupta, 2011).  

 

1.5.1.5    Rilpivirine (RPV) 

 

 

Rilpivirine (also known as TMC278) is a diaryl pyrimidine NNRTI (Figure 1.7). It is one of 

the few NNRTIs that show strong inhibitory action against wild type and mutant HIV-1 RT at 

doses of 25-75 mg/day (Das et al., 2007).  

 

1.5.1.6    Azvudine 

 

Azvudine, is a cystidine analogue which has shown good inhibition on HIV-1 RT, hepatitis B 

virus as well as hepatitis C virus. In a study by Wang et al., (2014), Azvudine exercised 

effective inhibition on HIV-1 with EC50 (concentration of a drug that gives a half-maximal 

response) values ranging from 0.03 to 6.92 nM.  
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1.6   Combination of NNRTIs 

 

In a recent study by Getell, 2015 (https://www.aidsmap.com, Accessed 12/11/2017), 

Doravirine, belonging to the group NNRTIs, was shown to be as effective as the antiviral drug, 

Efavirenz, while displaying fewer side effects. In this study, two separate groups of participants 

were orally given Doravirine and Efavirenz respectively, once daily. Thereafter, 100 mg of 

Doravirine was administered along with Tenofovir to participants in group one and 600 mg of 

Efavirenz was given to participants in group two on a 24-week analysis daily. However, after 

24 weeks, the overall treatment response showed that 88.9% of patients treated with Doravirine 

and 87.0% of those who were administered Efavirenz were shown to have a viral load count 

below 200 copies/ml while the CD4 cell counts were 154 and 146 cells/mm3, respectively. The 

similarity of viral load and CD4 counts in the two groups indicated that the two regimens were 

equally effective.  However, Doravirine was shown to cause fewer side effects than Efavirenz. 

In a study by Borges et al., (2016) NNRTIs were compared with protease inhibitors such as 

Ritonavir. In this study, clinical investigation using both inhibitors were conducted and showed 

equal outcomes. This was substantiated by calculating risk ratios or mean differences. In 

previous studies, NNRTIs exhibited much faster suppression effect on the virus while protease 

inhibitor, Ritonavir was shown to recover damaged CD4 cells (Ridder et al., 2008). In another 

study by Pozniak, (2000) patients were switched from Indinavir, a protease inhibitor to 

Efavirenz, a NNRTI because of its short-term toxicity and virologic failure on viral loads.  

Other derivatives such as oxochromenyl xanthenone and indolyl xantheone were recently 

studied as anti-HIV reverse transcriptase inhibitors by Kasralikar et al., (2015). Chromene 

derivatives have been useful inhibitors as they possess anti-HIV pharmacological properties 

and have shown potent activity against wild type HIV-1 replication. Two DCP (3′ R,4′ R-di-

O-(-)-camphanoyl-2-ethyl-2′-2′-dimethyldihydro-pyranol[2,3-f] chromone) analogs, 2,5-

dimethyl DCP and 2-ethyl DCP have shown remarkable inhibitory effects on wild type HIV 

replication as well as on the drug-resistant strains, making chromene derivatives highly potent 

inhibitors. In this study, structure activity relationship (SAR) plays a major role in revealing 

the inhibitory mechanism (Kasralikar et al., 2015). A planar ring system on these inhibitory 

structures was shown to be a requirement for the anti-HIV activity against the wild type HIV 

strains as well as resistant HIV strains. Therefore, with the addition of an indole and coumarin 

ring onto the xanthenone core, a more planar structure was created. The use of xanthene 
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derivatives has been extensive due to their diverse properties which include anti-bacterial, anti-

viral as well as anti-inflammatory activities. In this study, a one-pot three component reaction 

of salicylaldehyde, 1,3-cyclohexadione component and a 4 hydroxy chromene (as nucleophile) 

were used to prepare 4H-chromenes in the presence of 1-hexyl-3-methylimidazolium hydrogen 

sulfate ([Hmim]HSO4) as a catalyst, which was required in relatively small amounts 

(Kasralikar et al., 2015). Molecular docking studies were also performed to rationalize the 

structural activity relationship of the compounds as well as to determine the possible binding 

conformation between the designed compounds and how well they interact with the HIV 

enzyme. According to the study the most active compounds were the indolyl xanthenone 

compounds with docking scores of -12.487, -12.457 and -12.256 (kcal/mol) while the native 

compound was found to be -13.413 (kcal/mol). It was observed that the xanthenone ring 

structures interacted better with the hydrophobic binding pocket in the presence of hydrogen 

bonds. The indolyl xanthenone derivatives not only formed hydrogen bond interactions with 

the Lys101, they also formed π-π interactions in the hydrophobic binding pocket with the 

aromatic side chain of Trp229. Some compounds showed reduced binding activities due to the 

lack of hydrogen bond interaction with Lys101. It was also observed that compounds with 

hydrogen bonding with the side chain backbone of Lys101 as well as π-π interactions with the 

aromatic side chain of Trp229 displayed improved inhibitory effects.  

In a similar study reported by Wang et al., (2014), novel substituted nitropyridine derivatives 

were synthesized and designed via a structure-based core method to evaluate their effects as 

anti- HIV agents. Results showed that most of the compounds were effective against wild-type 

HIV-1 with EC50 values ranging from 0.056 µM to 0.16 µM. Compounds showed better 

inhibitory activity than Nevirapine (EC50= 0.23).  

 

1.7   Mutations that cause HIV resistance  

 

The discovery of HAART, the combination of two or three drugs from different classes has 

indeed brought about a drastic decrease in HIV infection over the past few years. This has been 

a major discovery in the development of anti-HIV protocols. However, these antiretroviral 

agents tend to leave thousands even millions of dormant or latent T lymphocytes cells that are 

infected with HIV, which can become active at any time and re-infect healthy CD4 cells ( Shan 

and  Siliciano, 2013). For this reason, patients are advised to stay on long term treatment. 
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However, this serves as a major problem as drug-resistant mutants cause the virus to become 

less susceptible to the various inhibitors (Hsiou et al., 2001).  An amino acid substitution in the 

reverse transcriptase enzyme can often cause resistance to the reverse transcriptase inhibitors.  

HIV RT lacks the ability to proof read and it is error prone. It has been estimated that a single 

mutation occurs in every 1000-10000 incorporated nucleotides (Arts et al., 2012). When these 

substitutions occur at different stages of the life cycle, they are carried along during replication 

and allow the virus to evade the immune system and develop resistance to the various antiviral 

drugs (O’Brien, 2016).  

 

1.7.1 NRTI Mutations  

 

There are several mechanisms that HIV uses to evade inhibitory effects of NRTIs and NNRTIs. 

These are: (i) discrimination (ii) primer unblocking (iii) interference between the hydrophobic 

amino acids that assist in the binding between inhibitor and the hydrophobic binding pocket 

and (iv)  alteration in the size of the NNRTI-BP thus making it less specific for each inhibitor 

(Asahchop et al., 2012). 

The first mechanism involves mutations that would prevent the incorporation of NRTIs while 

allowing for binding of the naturally occurring nucleotide substrates (dNTPs). Thus, the virus 

continues to multiply and spread throughout the body.  The second mechanism involves the 

excision of NRTIs from the 3′ end of the viral DNA that elongates from the primer; this process 

is known as primer unblocking (Iyidogan et al., 2014). In this process, RT uses ATP or 

inorganic pyrophosphate (PPi) as a co-substrate to remove the incorporated NRTI that inhibits 

the process of DNA elongation.  (Iyidogan et al., 2014). Similarly, primer unblocking may 

block the binding of the inhibitor drug into the NNRTI-BP. 

In a study done by Yokoyama et al., (2010) NRTI-resistant RT was shown to catalyze the 

synthesis of dinucleoside polyphosphate in the presence of NTP. Thus, the ATP molecule 

served as a pyrophosphate donor to remove the nucleoside RT inhibitors, thereby allowing for 

DNA synthesis to resume.  

Nevirapine, being a NNRTI, has two major disadvantages as an inhibitor. Firstly, it causes side 

effects such as rashes, liver problems, nausea, loss of appetite, upper stomach pain, tiredness, 

fever, unexplained muscle pain or weakness, dark urine, clay-coloured stools, or jaundice 
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(yellowing of the skin or eyes) and secondly, Nevirapine is known to have a low genetic barrier 

(Wang et al., 2014), which means that a single substitution/mutation can lead to HIV resistance. 

Some of the major mutations associated with the resistance to Nevirapine have been 

Tyr181Cys, Lys103Asn and Gly180Ala. In a study reported by Wang et al., (2014) a 

population survey was conducted on patients with HIV infection. Patients were administered 

with Nevirapine and observed after specific periods. After 6-18 months of treatment 84.8% of 

patients had their CD4 cell counts over 200 cells/ml while after 72 months of treatment 78.7 % 

of patients registered CD4 cell counts >200 cells/ml. Viral load on the other hand did not 

increase for most patients after initial treatment. Single genome amplification sequencing was 

used to measure the decrease or increase of viral mutations. The first-line ART was proven to 

be an effective long-term treatment even in the presence of mutations. However, of the three 

mutations, Lys103Asn is one of the clinically imperative NNRTI mutations, as it causes a 20-

50-fold resistance to NNRTI. At the end of this study, it was shown that first-line ART provided 

effective treatment to patients over 72 months, however, over a long-term period, patients 

showed resistance towards the treatment due to Tyr181Cys and Gly190Ala mutations. 

Resistance to NNRTIs mainly occurs in the allosteric binding pocket situated 10Å away from 

the polymerization active site. In the case of 8-10 mutations at the binding pocket, reverse 

transcriptase will show resistance to NNRTIs by preventing the hyperextension of the thumb 

subunit and thus reducing the binding affinity of nucleic acids to the active site. However, past 

studies have shown Rilpivirine (TMC278) to adapt to the Lys103 mutation (Nizami et al., 

2016). It displayed an ability to act against both the wild type HIV-1 RT and mutant HIV-1 

RT.  Its flexibility and the hydrogen bond formed by the linker N atoms make Rilpivirine a 

powerful inhibitor.  

Studies by Das et al., (2007) have shown crystalized images of TMC278/ HIV-1 RT (ligand- 

receptor interaction), which revealed that the cyanovinyl group of TMC278 is in a hydrophobic 

tunnel connecting the NNRTI-binding pocket to the nucleic acid-binding cleft.  TMC278 

belongs to a family of diarylpyrimidine (DAPY) NNRTIs and is quite effective against mutant 

and wild type RTs administered at low dosage (25-75 mg/day). In this study, the chemical 

structure of TMC278 and its inhibitory action against wild type and mutant HIV-1 RTs was 

compared to other non-nucleoside RT inhibitors and their action against wild type and mutant 

HIV-1 RT (Table1.1). TMC278 showed a remarkably strong inhibitory effect against the wild 

type RT (EC50 = 0.0004 µM), and the Tyr181Cys (EC50 = 0.0001 µM), Lys103Asn (EC50 = 

0.0003 µM), Leu100Ile (EC50 = 0.0005 µM) mutant RTs as well as the double mutant RT, 
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Lys103Asn/Tyr181Cys (EC50 = 0.0008 µM) (Table 1.1). The TMC125 and TMC120 NNRTIs 

produced higher EC50 values (Table 1.1) and were less effective than TMC 278. The EC50 of 

TMC 278 against the double mutant Leu100Ile/Lys103Asn RT was however an order of 

magnitude higher (0.008 μM), indicating a marked negative effect on the potency of TMC 278 

against this mutant RT.  

Entry of TMC 278 into the Leu100Ile/Lys103Asn mutant RT NNRTI-BP is rendered possible 

by ‘’conformational wiggling” (torsional flexibility) and ‘’positional jiggling” (ability to 

reposition). In this study, the Tyr181Cys mutation causes a loss of aromatic interactions 

between the Lys103Asn/Tyr181Cys RT and TMC278. However, this is partially compensated 

by the cyanovinyal group on the TMC278 which forms strong hydrophobic interactions with 

aromatic side chain of Tyr183.   

 

 

 

Figure 1.8  

 

 

 

Illustrating the strategic flexibility of NNRTIs to handle resistance mutations by 

conformational wiggling and positional jiggling (Adapted from Das et al., 2004). 
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Table 1.1 

 

 

 

 

 

 

 

 

 

 

 

A unique characteristic of NNRTIs is that they can adopt many conformational modes in the 

binding pocket, such as ‘butterfly’ or ‘horseshoe’ (Nizami et al., 2016)(Figure 1.9). In a study 

by Nizami et al., (2016), TMC278 was shown to flexibly change its shape once inside the 

binding pocket. For this reason, conformational changes in HIV-1 RT resulting from mutations 

may not necessarily lead to resistance to TMC 278 as this molecule may adopt a shape which 

is accommodated by the mutant NNRTI-BP. During DNA synthesis, reverse transcriptase 

forms a closed conformation bringing the fingers and thumb subdomains closer to the active 

site (Section 1.2), however, in the presence of a NNRTI, the thumb domain is restricted to a 

hyperextension position, thus preventing the connection of nucleic acid and template DNA into 

the catalytic site. Therefore, the distance between the amino acids on the fingers and thumb 

sub domain were measured in the presence of TMC278. It was shown that the distance between 

the fingers and thumb sub domains of HIV-1 RT and mutated HIV-1 RT in the absence of 

TMC278 were low (43.9 Å and 37.5Å, respectively), while, HIV-1 RT and mutated HIV-1 RT 

in the presence of TMC278 were higher (52.2 Å and 44.6 Å, respectively) (Figure 1.8). 

 

 

Commonly used non-nucleoside reverse transcriptase inhibitors, chemical 

structures and their EC50 values (µM) against wild type and mutant HIV-1 RT. 

(Das et al., 2007). Amino acid codes: K= Lys, Y=Tyr, L=Leu, N=Asn, C=Cys. 
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                          A                                                                                      B 

Figure 1.9 

 

 

Figure 1.10  

 

Tivirapine  
RT- bound   

Extended linker 

Conformation of the subdomains of the HIV-1 RT subunit with NNRTI 

Riplivirine accommodated in the hydrophobic binding pocket. Trp24 on 

the finger subdomain and Lys287 on the subdomain are represented by 

green circles. Adapted from (Nizami et al., 2016). 

 

‘Butterfly-like’ model 

Extended π- system Benzene ring 

Lipophilic site 

                           ‘U’ or ‘horseshoe’ model 

Illustrating different conformational modes in the binding pocket (A) butterfly-

like model (B) Horseshoe model. (Adapted from Regina et al.,2010). 
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In another study undertaken by Zhang et al., (2016), two mutations, Leu228Ile and Tyr232His 

were found to have caused resistance to the drug Etravirine. However, Leu228Ile in 

combination with mutation Tyr188Cys revealed a high level of cross-resistance to both 

Efavirenz and Nevirapine. Moreover, other combinations, such as Tyr232His and Ala139Val 

also showed moderate resistance to Efavirenz and Nevirapine (Zhang et al., 2016). It was 

concluded that the combination of mutations caused higher levels of resistance compared to 

those observed with a single mutation. Therefore, combination (two or three drug) treatment is 

most reliable. 

 

1.8   Chiral Inhibitors 

 

 

One of the major causes of treatment failure in HIV infection is drug resistance, and the 

combination of selected drugs has emerged as a powerful means of combatting this problem 

(Bock and Lengauer, 2012). In a second approach, new drugs are being designed to bind to 

both the active site and NNRTI-BP simultaneously (Iyidogan, 2013). This class of ‘chiral’ 

drugs may therefore be less likely to lead to drug resistance. The approach of joining two types 

of HIV inhibitors targeting two different sites in the HIV-1 RT has received attention over the 

past 20 years (Muhanji et al., 2007). In a previous study by van Zyl et al., (2010) chimeric 

compounds comprising a nucleotide component separated from a hydrophobic amino acid 

derivative by a hydrophobic spacer element have shown promising activity against Moloney 

murine leukaemia reverse transcriptase (M-MuLV RT). The synthesis of various N-tritylated 

para substituted phenylalanine derivatives (fluoro, nitro and iodo) coupled to the 8-(6-

aminohexyl) amino-adenosine 3′,5′-cyclic monophosphate was designed to form a chiral 

compound, where the 8-(6-aminohexyl) amino-adenosine 3′,5′-cyclic monophosphate would 

bind to the polymerization active site, while the tritylated para substituted phenylalanine would 

serve as the non-nucleoside and bind to non-nucleoside hydrophobic binding pocket, 

simultaneously. It was reported that all three compounds displayed inhibitory effects on the 

reverse transcriptase with IC50 values ranging between 1 µM and 65 µM. The strongest 

inhibitor was the para-iodo compound (IC50 = 1 µM), while the weakest were the para-fluoro 

and para-nitro compound with IC50 values of 65 µM and 45 µM respectively. It was also 

noticed that as the atomic radius of each atom increased, so did its inhibitory activity. Thus, 
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iodine with an atomic radius of 1.33 Å had the strongest inhibitory effect on reverse 

transcriptase. It is interesting to note that the polymerase site of the monomeric M-MuLV RT 

has remarkable similarities to the polymerase site of the heterodimer HIV-1 RT (Cote and Roth, 

2008). 

However, it was reported by van Zyl et al., (2010) that the chimeric compounds N-tritylated 

meta-fluoro-DL-phenylalanine-8-(6-aminohexyl)amino-adenosine3′,5′-cyclic monophosphate 

acted as a non-competitive inhibitor. Thus, it was concluded that other sites on the M-MuLV 

RT may not be involved in the binding of this N-tritylated compound.  It was therefore of 

interest to examine the efficacy of related compounds in an HIV-1 RT system following the 

encouraging results obtained in the M-MuLV RT assay. In this study attention has been focused 

on the effect of para halo substituted phenylalanines (fluoro, chloro, bromo, iodo) linked to 8-

(6-aminohexyl)amino-adenosine 3′,5′-cyclic monophosphate on the DNA polymerase activity 

of the HIV-1 RT in vitro.  

The structures of RT on the p66 subunit of HIV-1 and the Moloney murine leukemia virus 

reverse transcriptase (M-MuLV RT) are similar (Cote and Roth, 2008). Therefore, to study 

inhibitory effects of certain compounds on HIV-1 RT, many studies have been carried out on 

the M-MuLV counterpart.  In a study undertaken by Hawtrey et al., (2008), three N-acyl 

derivatives of 8-(aminohexyl) amino-5′-AMP were prepared: (i) palmitoyl derivative, (ii) 

nicotinyl derivative, (iii) bis-nucleotide with glutaryl spacer. These non-nucleotide compounds 

were attached to the nucleotide component via a spacer, thus affording chimeras (Hawtrey et 

al., 2008). In a poly A template-oligo dT primer extension assay using [3H] dTTP and M-

MuLV RT, all three putative chimeras were inhibitory at 10-4 M, with 8-(6-aminohexyl) amino-

5′-AMP-nicotinamide displaying the highest activity 60 % inhibition at 10-4 M while dropping 

to 35% inhibition at 10-5 M. 

It was concluded that attachment of certain groups to the aminohexyl side chain of the 

nucleotide component led to inhibitory effects on DNA polymerase activity of the M-MuLV. 

Other larger, hydrophobic groups were also attached to a nucleotidyl component and their 

effects on reverse transcriptase enzyme of M-MuLV were examined. The attachment of N-

trityl amino acids; phenylalanine, glycine to the 8-(6-aminohexyl) amino-5′-AMP nucleotide 

was therefore carried out. Inhibition concentrations (IC50 values) were calculated for each 

compound to determine their effects on the incorporation of [3H dTTP] in a poly (rA) - d(pT)16 

template primer using M-MuLV RT. This study showed that attachment of a bulky 
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hydrophobic N-trityl aminoacyl moiety to the 8-(6-aminohexyl) amino-5′-AMP via a spacer, 

resulted in higher inhibitory activity than the starting N-trityl amino-acid alone. Possible 

reasons that contributed to this effect include (i) phenylalaline may bind to the hydrophobic 

binding pocket of the RT enzyme, (ii) the spacer between the purine ring and trityl group is 

approximately 10 Å, which is the same distance between the polymerase active site and the 

hydrophobic binding pocket. This study concluded that the more hydrophobic aromatic 

structures bound to the non-nucleoside binding pocket and were more effective in their 

inhibitory activity on the M-MuLV RT. 

 

1.9   Characterization methods 

 

1.9.1 Nuclear magnetic resonance spectrometry (NMR) 

 

 Nuclear magnetic resonance (NMR) has become a common method for studying HIV-1 RT 

and its ability to bind to specific anti-viral drugs (Thammaporn et al., 2015). The use of NMR 

spectroscopy in drug screening was first described by Shuker et al., (1996) and is currently one 

of the main techniques used in the development of anti-viral drugs. One of the main advantages 

of NMR, apart from providing information on structure, is its ability to provide information on 

the molecular interactions at the atomic level (Pellecchia et al., 2008). This is very 

advantageous, especially in the design of drugs to determine the binding abilities of a protein 

or ligand. NMR spectrometry affords detailed information for compound atoms of structures 

in the form of signature chemical shifts. The chemical shift is highly sensitive to the 

environment around the atom and this produces information on how well certain compounds 

bind and interact with other molecules. The use of NMR in the analysis of large proteins has 

been and is still a challenge. However, this method is increasingly popular in the identification 

of small molecules as well as the validation of molecule binding (Dias et al., 2014). 
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1.9.2 Ultra violet (UV) spectroscopy  

 

UV spectroscopy is one of the easiest, fastest and most accurate tools used in pharmaceutical 

analysis and drug discovery. (Behera et al., 2012). The absorbance of a solution depends on 

the concentration of the compound (c), Molar absorptivity (ε), and the path length of the sample 

(l). The above parameters form the Beer’s law, which states that the extinction co-

efficient/molar absorptivity is constant and the absorbance is directly proportional to the 

concentration of compound dissolved in a solution and measured at a given wavelength. As 

light passes through a solution, the amount absorbed at various wavelengths is measured. UV 

spectra in the range 210-320 nm are of particular importance in the characterization of aromatic 

compounds.   

 

1.9.3 Mass Spectrometry (MS) 

 

Mass spectrometry (MS) was developed in 1913 by J. Thompson, but only became 

commercially available in 1918 after A.J Dempster’s development of the modern mass 

spectrometer (Griffiths, 2008).  Over the past decade, MS has become an essential analytical 

and quantitative tool in drug design used to detect, identify and quantitate simple as well as 

complex chemical compounds as they are ionized into charged molecules based on their mass 

to charge (m/z) ratio (Singhal et al., 2015). MS may also determine a compounds molecular 

weight with a very high degree of accuracy. Laser desorption in combination with time of flight 

(TOF) was commonly used for molecule analysis. However, its limitation is that it can only 

measure the masses of small molecules (<1000 Da). Thereafter, the development of matrix-

assisted laser desorption ionization (MALDI) in association with TOF, commonly known as 

MALDI-TOF MS method and electron spay ionization (ESI) increased the applicability of MS 

to large biological molecules such as proteins (Singhal et al., 2015) and allowed better analysis 

of compounds over a broad size range. MALDI-TOF has many qualities that contribute to its 

wide use. For example, further purification of samples is not required as it has a high sensitivity 

rate. Furthermore, only an extremely small volume of sample solution (1µl) is needed and the 

process is not time consuming, requiring approximately 20 minutes (Smolira and 

Szponder,2015).  
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Figure 1.11    Mechanism of work-flow in a MALDI-TOF MS (Singhal et al., 2015). 

 

1.9.4    Computational Molecular Modelling 

 

Currently, computational methods are an important part of drug design and this kind of 

modeling is often referred to as computer-aided drug design (CADD). Computational methods 

can offer detailed information about the interaction between compounds and targets, increasing 

the efficiency and lowering the cost of research in several stages of drug discovery. Knowledge 

of the relationship between structural characteristics of compounds as well as their biological 

properties is extremely important as this determines the activity of future drugs against specific 

viruses and diseases. This specific process is called Quantitative Structure-Activity 

Relationship (QSAR), and is defined as the mathematical modeling of chemical structures of 

compounds and their relationship with biological properties (Nizami et al., 2015). Docking 

allows us to accurately predict the best interactions and conformations of a ligand within an 

enzyme binding site by using a score function to estimate the binding strength between the two 

(Ramírez, 2016). Programmes commonly used in such studies are listed in Figure 1.10. 
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Figure 1.12   Various docking programmes (%) commonly used (Yuriev et al., 2013). 

 

In a study carried by Santos et al., (2015), it was shown that the development of resistance of 

HIV-1 to NRTIs and NNRTIs can be rapid. Thus, rendering some of these antiviral drugs 

ineffective. In recent studies, computational methods are being adopted as they yield detailed 

information about the compounds and their target sites, as well as, the interactions between 

them. Despite their inhibitory effects on HIV-1, all antiviral drug activities are limited by 

factors such as mutational changes in the respective target sites (the polymerase active site and 

hydrophobic binding pocket) and toxicity to the patients leading to long term difficulties. 

Therefore, when combining in vitro work with computational programming and crystal 

structures of compounds, their complexity provides clear molecular understanding on the 

interactions between the target sites and the drug compounds. One of the commonly used 

computational methods in science research is molecular docking. In a study by Kasralikar et 

al., (2015), computational studies helped in the discovery of binding interaction between 

oxochromenyl xanthenone and indolyl xantheone derivatives to a common RT enzyme. In the 

design and synthesis of drug compounds, in vitro work alone is not sufficient for the 

identification of probable in vitro activity. For this reason, molecular docking in silico studies 

are being used increasingly to explain and complement experimental data and to provide virtual 

screening in drug design. 

In a study by Miceli et al., (2013) marine diterpenes were investigated as inhibitors of wild-

type and mutant HIV-1 reverse transcriptase using docking studies. Three isolates from 
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Dictyota species: diterpenes dolabelladienotriol (THD), (6R)-6-hydroxydichotoma-3,14-

diene-1,17-dial (HDD) and (6R)-6-acetoxydichotoma-3,14-diene-1,17-dial (ADD) were 

docked into wild type and mutant RT. Docking studies showed that there existed van der Waals 

interactions between ligand and specific amino acid residues such as Lys101, Lys103, Leu100, 

Gly190, Phe227, Val106, Val179, Tyr181, Val189, Leu234, His235, Pro236 and Tyr318. 

Moreover, compounds formed hydrogen bond interactions with the aromatic side chain of 

Tyr188 and the Glu138 residue. As previously reported by Nizami et al., (2016) most NNRTIs 

can adopt a ‘’butterfly’’ or ‘’horseshoe’’ shape to facilitate accommodation in the allosteric 

BP. However, in this study HDD showed a weak interaction with HIV-1 RT as it showed no 

signs of the butterfly-like characteristics, such as interaction with hydrogen bond donors and 

acceptor groups in the area surrounding K101 and hydrophobic residues Tyr188, Tyr181 and 

Trp229. ADD on the other hand showed van der Waals bonds with Tyr181, Tyr188, Leu100, 

Val106, Val179, Val189 and Gly190 as well as a hydrogen bond with Lys101. This is probably 

due to the acetoxy group in its structure. The last ligand, THD showed two hydrogen bonds 

with Tyr188, one hydrogen bond with Lys101 as well as van der Waals interactions with 

Leu100, Lys103, Val106, Val179, Ile180, Tyr181, Trp229, Leu234, His235, Pro236 and 

Tyr318 residues. The general orientation of an NNRTI is stabilized by hydrogen bonding with 

Lys101 as well as π-π stacking with the aromatic side chain residues such as those of Tyr181 

and Tyr188. (Miceli et al., 2013). The structure of THD is unrelated to those of ADD and HDD 

and ππ interactions with the aromatic ring of Tyr181 were absent (Figure 1.13). This is a unique 

conformation that allows the molecule to form van der Waals interactions with a larger number 

of residues including Trp229, a highly-conserved residue of the binding site. 

 

 

 

                           

 

Figure 1.13 

 

 

 

         A                                       B                                            C  

Chemical structures of (A) (6R)-6-acetoxydichotoma-3,14-diene-

1,17-dial (ADD), (B) (6R)-6-hydroxydichotoma-3,14-diene-1,17-

dial(HDD) and (C) diterpenes dolabelladienotriol (THD). Adapted 

from Miceli et al., (2013). 
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Figure 1.14   

 

 

 

In a study reported by Das et al., (2004), the NNRTIs Tivirapine, Loviride, and Nevirapine 

were separately docked with the HIV-1 RT enzyme. With the help of structure activity 

relationship/ molecular docking studies, key design features of bonding interactions and modes 

of bonding were observed.  Despite their structural diversity, all three inhibitors were bound to 

the NNRTI-BP through interactions between their aromatic rings and the aromatic side chain 

of  Tyr181. 

In a recent study, Seniya et al., (2015) described the inhibitory effects of herbal compounds  of 

4-thiazolidinone against HIV-1 reverse transcriptase activity. As seen below (Figure 1.15) the 

NNRTI 4-thiazolidinone was shown to locate and interact with the three key apartate residues 

( Asp110, Asp185, Asp186) of the polymerase active site.  

 

                A                                                     B                                               C 

Docking complexes of (A) ADD, (B) THD and (C) HDD (orange) bound to 

HIV-1 RT enzyme (grey) showing hydrogen bonding (blue) and van der 

Waals interactions (red) with specific NNRTI-BP residues.  Adapted from 

Miceli et al., (2013). 
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Figure 1.15  

 

 

In another study by Esposito et al., (2011) Alizarin derivatives and their effect on HIV-1 

reverse transcriptase-associated DNA polymerases were analysed using docking studies.  

Anthraquinones (AQs) are secondary metabolites occurring in bacteria, fungi, and lichens and 

Alizarin, a member of this class of natural products has shown an inhibitory effect against 

reverse transcriptase RNA-dependent DNA polymerase (RDDP) activity. Interactions between 

the derivative K-49 with wild-type RT is shown in (Figure 1.16). More particularly three of the 

four benzene rings, highlighted below, were shown to enter the binding pocket resulting in 

favourable interactions with the hydrophobic residues Tyr188, Leu100, Phe227, Val106, 

Tyr318 and Leu234. In addition, the central aromatic planer ring was shown to form π-π 

interactions with the aromatic side chain of Trp229.  

 

 

Figure 1.16   

 

A 4-thiazolidinone derivative (1656714) forms interactions 

with aspartate residues  (Seniya et al., 2015).  

 

2D Structure of (A) Alizarine derivative K-49 docked into wild type 

RT (E) Alizarine derivative K-49 showing possible binding 

interactions with Tyr188, Leu100, Val106, Phe227, Tyr318, 

Leu234. (Esposito et al., 2011). 
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In a study by Yang et al., (2008) 4-ethynyl Stavudine triphosphate (4′-Ed4T), a Stavudine 

analogue, showed better inhibitory action against HIV-1 RT than Stavudine (d4T). 4′-Ed4T 

showed five-fold higher potency against HIV-1 replication and lower cytotoxicity than d4T in 

the cell culture studies that were performed. Docking studies revealed that the analogue 

engaged in a better binding interaction with HIV-1 RT than the ‘parent’ inhibitor. This was 

attributed to the two hydrogen bond interactions formed between the 3′-OH group of (4'-

Ed4TTP) with the amide residue Tyr115 and the side chain of residue Gln115. It was also 

suggested that nucleotide analogues that lack a 3′-OH group have poor binding interactions at 

the catalytic active site through loss of hydrogen bonding.  

 

1.9.5 Principle of HIV-1 Reverse Transcriptase Assay 

 

Commercially available kits such as a colorimetric HIV-1 Reverse Transcriptase Assay kit are 

commonly used for quantitative determination of reverse transcriptase activity in vitro. In the 

past radiochemical assays were commonly used to assay for RT activity. However, since these 

probes contained radioactive isotopes (typically [32P]), this was deemed to be a disadvantage 

since labels were characterized as unstable, had a short shelf-life and were extremely costly to 

dispose of (Mansfield et al., 1995). For these reasons, alternative protocols, such as 

colorimetric assays were developed, as detection techniques.  

The assay adopted in this study used a poly (A)-oligo (dT)15 template-primer system.  The 

detection and quantification of the synthesized DNA as a parameter for RT activity was 

followed, using a sandwich ELISA protocol: (i) Biotin/digoxygenin labelled DNA bound to a 

microtitre plate already pre-coated with biotin-binding streptavidin; (ii) This was followed by 

incubation with an anti-digoxigenin antibody, conjugated to the enzyme peroxidase; (iii) In the 

final step, the peroxidase substrate, ABTS, was added to reaction mixtures and the green 

coloured oxidation product was measured using an ELISA plate reader to indicate the extent 

HIV-1 RT activity.  
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Figure 1.17   

 

 

Nucleotide tags such as biotin (300 Da) and digoxigenin (391Da), which is found in certain 

members of the Digitalis germs (foxgloves) (Chevalier et al., 1997), have increasingly replaced 

radioactive nucleotides in recent years. Many are the advantages of biotin and digoxigenin as 

labels for nucleic acids. These include their size (they are relatively small) and their stability 

and safety. Due to the rapid rate of reverse transcription by the RT enzyme and the small size 

of these tags, they may be easily incorporated into the growing DNA template strand in a 

DNA/RNA heterodimer. Thus, instead of utilizing thymidine triphosphate alone as a building 

block, 5'-biotinylayted deoxyuridine-5'-triphosphate and 5'-digoxigeninylated uridine-5'- 

triphosphate are also used as substrates.   

Biotin labelled RNA/ DNA duplexes are anchored to microtitre plates using streptavidin. 

Streptavidin forms one of the strongest non-covalent interactions with biotin. It can bind up to 

Structures of: (A) digoxigenin-dUTP (DIG-dUTP) indicated in the orange 

box and (B) D-(+)-biotin (only biologically active isomer of 8 possible 

isomers).  
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four biotin molecules at a time. There is a high shape complementarity between the binding 

pocket of streptavidin and biotin. Secondly, there is an extensive network of hydrogen bonds 

formed with biotin when in the binding site. On the other hand, digoxigenin labeled RNA/DNA 

is visualized by the attachment of anti-digoxigenin antibody conjugated to a horse radish 

peroxidase enzyme (HRP).   

        

 

Figure 1.18  Colorimetric HIV-1 reverse transcriptase assay  

 

Apart from reverse transcriptase colorimetric and radiochemical assays, other methods have 

been used for the detection of reverse transcriptase activity.  Sharma et al., (2015) developed a 

continuous, real-time reverse transcriptase assay in which RT-catalysed polymerization was 

monitored using Förster Resonance Energy Transfer (FRET). Although RT is a major target 

for anti-viral drug therapy, certain proteins in the HIV-1 transcription complex, which promote 

RT activity may also be considered in this regard.  For instance, HIV-1 nucleocapsid protein 

NCp7, a 55-amino acid protein (Sharma et al., 2016) is known to stimulate reverse transcription 

in the reverse transcription complex (RTC). For this reason, NCp7 can be targeted to decrease 

RT polymerization activity. The assay that was used in this study was shown to distinguish 
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between NRTIs and NNRTIs by monitoring changes in FRET signals. However, this does not 

permit the assay of wild-type and mutant HIV-1 RTs as a mutant with a single accessible Cys 

fluorophore is required in the assay. For this reason, a commercially available template/ primer 

in a novel one-pot, one-step assay was used. This assay was used to determine the potency of 

the NRTI, AZT and Nevirapine. IC50 values for AZTTP were found to be 7 (±1) µM and 6 (±1) 

µM for kobs1 and kobs2, respectively, while IC50 values for Nevirapine calculated from kobs1 and 

kobs2 (Observed kinetic rate constants) were found to be 71 (±8) nM and 74 (±9) nM 

respectively and in good agreement with published values (Sharma et al., 2016). This versatile 

assay has the design capacity to measure and distinguish the inhibitory effects of NRTIs and 

NNRTIs, and of those agents acting against the RNA- dependent DNA polymerization 

activator protein NCp7. 

 

1.10    Rationale framing the entire study  

 

One of the most significant treatments in HIV-1 infection has been the combination of drugs 

targeting the HIV life cycle with the aim of preventing further destruction of the host immune 

system (Gungarth et al., 2014). In a study by van Zyl et al., (2010), chimeric compounds 

comprising a nucleotide component separated from a hydrophobic amino acid derivative by a 

hydrophobic spacer element have shown promising activity against M-MuLV RT. One of the 

major causes of treatment failure of HIV infection is drug resistance, and the combination of 

selected drugs from different classes has emerged as a powerful means of combatting this 

problem (Bock and Lengauer, 2012). 

This research addresses the design, synthesis, in vitro evaluation and in silico analysis of 

putative HIV-1 reverse transcriptase (RT) inhibitors. Inhibitors included in this study comprise 

two structurally diverse elements viz: a nucleotide component and a hydrophobic 

tritylaminoacyl component. This class of bidentate drugs may therefore be less likely to lead 

to drug resistance.  
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1.11     Aims and objectives 

  

The purpose of this study is to design, synthesize and investigate the efficacy of certain novel 

chimeric inhibitors of HIV-1 reverse transcriptase.  

  

           Objectives: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i. To synthesize and characterize a series of putative HIV-1 reverse transcriptase inhibitors 

embodying structural elements directed to the enzyme polymerase active site and the 

NNRTI-binding pocket.  

 

ii. To assess the inhibitory capabilities of the novel compounds against recombinant HIV-

1 RT in a non-radioactive microtiter plate colorimetric assay, and to compare their in 

vitro inhibitory effects with those of Nevirapine, a front-line NNRTI in current use. 

 

iii. To carry out computer simulations regarding the association of the chimeric inhibitors 

with HIV-1 RT and to compare predicted associations with laboratory findings. 

 

iv. To assess findings and to recommend further structural development for potentiation of 

activity  
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CHAPTER TWO 

 

 MATERIALS AND METHODS 

 

2.1   Materials 

 

2.1.1 Chemicals and reagents  

 

N-hydroxysuccinimide (NHS, C4H5NO3), diethylamine (C4H5NO3), methanol (MeOH, 

CH3OH), absolute ethanol (EtOH, C2H6O), trityl chloride (TrCl, C19H15Cl), N, N′- 

dicyclohexylcarbodimide (DCCI, C13H22N2), deuterodimethylsulfoxide (deuterated DMSO, 

C2D6OS) (99.9%) containing 1% tetra methylsilane and Methanol-d4 (CD3OD) (99%) were 

obtained from Aldrich Chemical Company (Milwaukee, Wis, USA). Silica gel 60F254 

chromatography glass plates, dimethylsulfoxide (DMSO, C2H6OS), diethyl ether (C4H10O), 

pyridine (PY, C5H5N), sodium sulphate (Na2SO4), chloroform (CHCl3), petroleum ether (60-

80° C) and isopropanol (C3H8O) were supplied by Merck (Darmstadt, Germany). HIV-1 

Reverse transcriptase assay, colorimetric kit (Cat. No. 11468120910) was purchased from 

Roche (Basel, Switzerland). All glassware used was cleaned in chromic acid and rinsed 

thoroughly and excessively with distilled H2O and deionised 18 Mohm water (Milli-Q500) 

prior to use.  

 

All other reagents were of AnalaRgrade from BDH Chemicals Ltd (Poole, England). 

N-trityl-para-halo-DL-phenylalanines had been previously prepared in our laboratory by a 

method adapted from that of Zervas and Theodoropoulos (1965).  
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2.2 Methods  

 

2.2.1 
 

In designing the proposed HIV-1 RT inhibitors (Figure 2.1) two structurally diverse regions of 

widely diverging polarity and which are separated by a spacer element were envisioned. Thus, 

(4a-e) comprise of the strongly hydrophobic and bulky triphenyl methyl (trityl) group attached 

to the amino function of the hydrophobic para-halo-substituted-DL-phenylalanines (1b-e) and 

L-phenylalanine (1a). These components were intended for accommodation in the allosteric 

hydrophobic pocket of HIV-1 RT. In turn, the trityl amino acid derivatives are attached via their 

carboxyl groups to the terminal amino group on the spacer, 1,6 diaminohexane through an 

amide link. The second terminal amino group on the spacer is attached to the adenyl 8 position 

of adenosine 3′,5′-cylic-monophosphate to afford a family of N-trityl-phenylalanyl 8-(6-

aminohexyl) 3′,5′-cylic-monophosphate (4a-e). The nucleotidyl component was included for 

possible additional anchorage to a hydrophilic region at or near the HIV-1 RT polymerization 

site. 

 

2.2.2 Synthesis of N-trityl-L-phenylalanine (Figure 2.1, 2a)  

 

Synthesis of N-trityl-L-phenylalanine derivative was adopted from the method described by 

Zervas and Theodoropoulos (1956) and performed in the laboratory in the biochemistry 

department, UKZN. Briefly, L-phenylalanine (495.6 mg, 3 mmol) was dissolved in 1.8 ml 

diethylamine (18 mmol), water (1.8 ml) and isopropanol (6 ml). To this solution trityl chloride 

(1.1783 g, 4 mmol), was added in 10 equal portions with stirring and the reaction mixture was 

left overnight at room temperature on a magnetic stirrer.  To the turbid reaction mixture was 

added chloroform (CHCl3) until two clear layers were observed. With the use of a separating 

funnel the CHCl3 layer was separated from the aqueous layer and to it was added sodium 

sulphate to remove residual water leaving a clear yellow solution. Solvent was removed by 

rotatory evaporation (Büchi Rotavapor R, bath temperature 37 °C) and remaining traces of 

CHCl3 were removed by co evaporation with ethanol. Crude product was dissolved in 15 ml 

diethyl ether, followed by the addition of 5 drops of a moderately strong organic base 

diethylamine (pKb = 3.07) and the solution was kept at 4 °C overnight to afford the crystalline 

Drug design and synthesis  
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diethylammonium salt of N-trityl-L-phenylalanine. During N-tritylation, HCl was generated 

and reacted with diethylamine to yield dimethylammonium chloride.  The product was 

dissolved in an aqueous potassium hydroxide solution (34 ml, 0.05 M) and the solution was 

placed in vacuo at room temperature with swirling to remove the liberated diethylamine. The 

desired N-trityl-L-phenylalanine free acid was obtained after acidification with acetic acid at 

pH < 4 and isolated by filtration. The amorphous white product was rinsed in distilled water (3 

x 5 ml) and dried in a drying pistol (Büchi TO-50) in vacuo (2 mbar) at 37 °C. 

 

2.2.3 Synthesis of the N- hydroxysuccinimide ester of N-trityl-L-phenylalanine (Figure 

2.1, 3a). 

 

To a solution of N, N'-dicyclohexylcarbodiimide (DCCI) (20.63 mg, 0.1 mmol) in 0.2 ml of 

dimethylformamide (DMF) was added a mixture of N-hydroxysuccinimide (NHS) (11.51 mg, 

0.1 mmol) respective and N-trityl-L-phenylalanine (0.1 mmol) in DMF (0.3 ml) (3b). Electron 

withdrawal by the succinimide carbonyl functions renders the N-trityl amino acid carboxyl 

carbon susceptible to nucleophilic attack by unprotonated amino group to generate an acid 

amide link with racemization (Izumiya and Muraoka, 1969). These ‘active esters’ are generally 

crystalline and stable (Anderson et al., 1967). The reaction mixture was incubated for 3 hours 

at room temperature and the insoluble dicyclohexylurea (DCU) byproduct was removed by 

filtration and the filtrate was subjected to evaporation in vacuo (37 °C) to remove DMF. 

Residual DCU was removed from the concentrated reaction mixture by microcentrifugation. 

Remaining traces of the solvent DMF were removed by repeated co-evaporation with ethanol 

in vacuo. The crude product was extracted with petroleum ether (60-80 °C) to remove traces 

of unreacted DCCI and crystallization of product was brought about from isopropanol by gentle 

heating followed by cooling. Weighed product was stored overnight at 4 °C. 

 

 

 

 

47 



 
 

2.2.4  

 

Synthesis of N-trityl-phenylalanyl 8-(6-aminohexyl) aminoadenosine 3′,5′-cyclic 

monophosphate were carried out on a 0.01 mmol scale with respect to the 3′,5′-cyclic-

nucleotide component. In all cases reaction mixtures were incubated overnight at room 

temperature in the dark before isolation of desired products.  

 

2.2.4.1  

 

To a solution of 8-(6- aminohexyl) aminoadenosine-3′,5′-cyclic monophosphate (4.7 mg, 0.01 

mmol) in DMF: H2O: pyridine (300 µl, 2:1:3 v/v/v) was added the N- hydroxy-succinimide 

ester of N- trityl-L-phenylalanine (8.1 mg, 0.016 mmol) in DMF (100 µl).  

 

2.2.4.2   

 

To a solution of 8-(6-aminohexyl) aminoadenosine-3′,5′-cyclic monophosphate (4.7 mg, 0.01 

mmol) in 200 µl pyridine: water (7:3 v/v) was added the N-hydroxy-succinimide ester of N- 

trityl-para-fluoro-DL-phenylalanine (5.3 mg, 0.01 mmol) in 200 µl pyridine: H2O (7:3 v/v). 

 

2.2.4.3  

 

To a solution of 8-(6- aminohexyl) aminoadenosine-3′,5′-cyclic monophosphate (4.7 mg, 0.01 

mmol) in pyridine: H2O: DMF (300 µl, 3:1:2 v/v/v) was added the N-hydroxy-succinimide 

ester of N-trityl-para-Cl-DL-phenylalanine (5.3 mg, 0.01 mmol) in pyridine: H2O: DMF (150 

µl, 1:1:1 v/v). 

 

Synthesis of N-trityl-F-DL-phenylalanyl 8-(6-aminohexyl) aminoadenosine 

3′,5′-cylic monophosphate (4b). 

 

Synthesis of N-trityl-L-phenylalanyl 8-(6-aminohexyl) aminoadenosine 3′,5′-

cylic monophosphate (4a). 

 

Synthesis of N-trityl-Cl-DL-phenylalanyl 8-(6-aminohexyl) aminoadenosine 

3′,5′cylic monophosphate (4c). 

 

Synthesis of N-trityl-phenylalanyl 8-(6-aminohexyl) aminoadenosine 3′,5′-

cylic monophosphates. 
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2.2.4.4   

 

To a solution of 8-(6-aminohexyl) aminoadenosine-3′,5′-cyclic monophosphate (4.7 mg, 0.01 

mmol) in pyridine: H2O (300 µl, 2:1 v/v) was added N-hydroxy-succinimide ester of N-trityl-

para- Br-DL-phenylalanine (8.75 mg, 0.15 mmol) in pyridine: H2O: DMF (350 µl, 3:1:3 v/v/v).  

 

2.2.4.5   

 

To a solution of 8-(6- aminohexyl) aminoadenosine-3′,5′-cyclic monophosphate (4.7 mg, 0.01 

mmol) in pyridine: H2O: DMF (300 µl, 3:1:2 v/v/v) was added the N-hydroxy-succinimide 

ester of N-trityl-I-DL-phenylalanine (9.45 mg, 0.15 mmol) in pyridine: H2O: DMF (300 µl, 

3:1:2 v/v/v). 

 

 

 

 

 

 

 

 

 

 

 

 

Synthesis of N-trityl-Br-DL-phenylalanyl 8-(6-aminohexyl) aminoadenosine 

3′,5′-cylic monophosphate (4d). 

 

Synthesis of N-trityl-I-DL-phenylalanyl 8-(6-aminohexyl) aminoadenosine 

3′,5′-cylic monophosphate (4e). 
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Figure 2.1 
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Phenylalanine derivatives  

a  X = H 
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d  X = Br 

e  X = I   

N-trityl-phenylalanine derivatives  

4(a-e) 

1(a-e) 2(a-e) 3(a-e) 

N-hydroxsuccinimide ester of N-trityl 

phenylalanine derivatives 

Putative HIV-1 RT inhibitors 

 

 

 
  

TrCl/DEA NHS/DCC 

Reaction scheme for the synthesis of N-trityl-phenylalanyl -8-(6-aminohexyl) 

amino adenosine-3′,5′-cyclic monophosphates. TrCl = Trityl chloride, DEA = 

Diethylamine, Tr = Triphenylmethyl, NHS = N-hydroxysuccinimide, DCC = 

Dicyclohexylcarbodiimide, AAAM = 8-(6- aminohexyl) amino adenosine- 

3′,5′-cyclic monophosphate. 

HIV-1 RT active site  

Hydrophobic binding pocket  
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2.3  

 

 

Components: 

1.   Reaction mixture 

2.   N-hydroxysuccimide esters of N-trityl-phenylalanines 

3.   8-(6- aminohexyl) aminoadenosine-3′,5′-cyclic monophosphate 

4.   N-Hydroxysuccinimide (NHS) 

  

One to two milligrams of components 2 and 4 listed above were dissolved in chloroform (100 

µl). The stock 8-(6-aminohexyl) aminoadenosine-3′,5′-cyclic monophosphate (3) was 

dissolved in H2O (2 mg in 100 μl) Each component including the reaction mixture was spotted 

on the 2 cm origin of TLC silica gel 60 F254 aluminium sheets (2 cm x 7 cm). Traces of pyridine 

in reaction mixtures were removed from TLC plates in vacuo (Büchi TO-50 drying pistol) at 

37 °C for 5 minutes. A solvent system of CHCl3: CH3OH, (4:1 v/v, 4 ml) was prepared and 

used for analytical TLC in spice jars. Plates were left to develop for approximately 15 minutes, 

followed by visualization of aromatic compounds under ultraviolet (UV) light at 254 nm. Trityl 

group-containing compounds were visualized as yellow spots (trityl cation) upon spraying 

plates with 5% aqueous H2SO4 (v/v) and heating at 100 °C in the fume hood.  

 

2.4   

 

Reaction mixtures were evaporated by rotary evaporation (40 °C, 2 mbar). The dried product 

was dissolved in ethanol: DMF: H2O (320 µl, 1:1:1, v/v/v).  This was applied as a 19 cm streak 

to one glass-backed silica gel 60 F254 plate (20 x 20 cm). After air drying, the plate was 

developed in CHCl3: CH3OH (4:1, v/v). The glass plate was air dried in the fume hood and the 

product band marked under UV254 illumination. This was scraped off the glass (scalpel) and 

the product extracted into absolute ethanol (99.5%). The silica gel was removed by filtration 

in a Hirsch funnel. Filtrate was concentrated under rotary evaporation. Traces of ethanol were 

Isolation of N-trityl-phenylalanyl-8-(6-aminohexyl) aminoadenosine-3′,5′-cyclic 

monophosphates by preparative TLC. 

 

 
Thin layer chromatography (TLC)-Detection of the desired product using 

aluminium backed sheets of silica gel 60 F254. 
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removed by extraction with diethylether, followed by rotary evaporation (37 °C). Product was 

stored at -20 °C.  

 

Table 2.1  

 

 

a Confirmed by MALDI-TOF mass spectrometry  

b 3′,5′-cyclic nucleotide was 0.01 mmol in all syntheses  

 

 

 

 

 

 

Compound  Molecular 

Weight (Da) a 

Reaction scale 

with respect to 

N-trityl 

aminoacyl 

component b 

Reaction solvent  Product 

Yield 

(mg) 

% 

Yield 

4 a 878.33 0.016     DMF:H2O:Pyridine  

 

3.18 36 

4 b 886.41 0.01        Pyridine : H2O 

 

4.61 52 

4 c 913.30 0.01 

 

    DMF:H2O:Pyridine 

 

4.35 48 

4 d 956.24, 958.23 0.015 

 

    DMF:H2O:Pyridine 4.63 48 

4 e 959.38 0.015     DMF:H2O:Pyridine 

 

5.24 55 

Summary of synthesis of N-trityl subsituited-phenylalanyl-8-(6-aminoadenosine-3′,5′-

cyclic monophosphates. 

 

(600 μl, 4:1:1v/v/v) 

(400 μl, 4:1:3, v/v/v) 

(650 μl, 3:1:1, v/v/v) 

(200 μl, 7:3, v/v) 

(450 μl, 2:1:2, v/v/v) 
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2.5    Characterization method: 

 

2.5.1 1HNMR spectrometry  

 

Samples (3-5 mg) of the five N-trityl-phenylalanyl-8-(6-aminoadenosine)-3′,5′-cyclic 

monophosphates were dissolved in tetra deuteromethanol (CD3OD, 0.6 ml, 99 atom % D). 

Spectra were obtained on a Bruker Avance-III 400 MHz NMR spectrometer fitted with an 

ultrashield magnet and operating at 400.2200 MHz. Chemical shift values are relative to the 

methyl proton signal of undeuterated methanol in the solvent (3.32 ppm). The 1HNMR 

spectrum of 8-(6-aminoademosine)-3′,5′-cyclic monophosphates (circa 4 mg) was obtained in 

deuterodimethylsulphoxide [(CD3)2 SO, 0.6 ml, 99.9 % containing 1 % tetramethylsilane]. 

Chemical shift values are relative to tetramethylsilane (0.00 ppm). 

 

2.5.2  

 

Samples of compounds (approximately 130 μg) in (20 µl CD3OD) were added to absolute 

ethanol (3 ml). A Shimadzu double beam spectrophotometer (Model UV-1800, Shimadzu, 

Japan) was used to measure the absorbances of compounds in the range 210-320nm. Matched 

quartz cuvettes were used in the study.  

 

2.5.3   MALDI-TOF mass spectrometry   

 

Matrix Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS) analysis was 

conducted on Bruker Autoflex III Smartbeam system. Sample solutions were analysed using 

MALDI-TOF MS reflectron, linear and LIFT modes with the help of the Autoflex III MALDI 

TOF/TOF 1 KHz smartbeam laser (Bruker Daltonics, Germany). Data was produced in positive 

ion mode using FlexControl (version 3.4, build 119) software.  In the LIFT mode, the re-

acceleration of ions occurs in such a way that all fragment ions infiltrate distant enough into 

the reflector to provide a spectrum of fragment ions with enhanced spectral resolution. The 

Ultraviolet (UV) absorbance spectra of N-trityl-phenylalanyl-8-(6-

aminohexyl) aminoadenosine-3′,5′-cyclic monophosphates. 
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instrument was calibrated using standard peptides and standard concentrations of the sample 

spotted with HCCA matrix on a ground steel target (Bruker Daltonics, Bremen, Germany) for 

m/z 450-1200.  Each spectrum was attained from 200 laser shots with a laser frequency of 200 

Hz.  The spots were analysed in linear and reflectron mode by collecting 200 shots per spot. 

The MS/MS experiments were completed using the LIFT method optimized for the sample by 

exact tuning of the timing of the LIFT cell and of the precursor ion selector. The LIFT method 

has a major advantage of acquiring data for both parent and fragments of the analyte 

consecutively, providing adequate information on the analyte.  For the analysis of the deposited 

spots, spectra consisting of 1000 laser shots were in the range between m/z 450-1200 with a 

laser frequency of 200 Hz, and the digitalization rate was 2 GS/s with a laser power of 70%.  

An increase in the laser power led to production of other product ions but with lower sensitivity. 

 

2.6    Colorimetric HIV-1 reverse transcriptase assay 

 

The underlying principle of the commercial assay used in this study has been described in 

section 1.9.5 

 

2.6.1 Preparation of solutions required for the assay 

 

2.6.1.1   Reaction mixture containing poly (A). oligo (dT)15 and nucleotides 

 

Incubation buffer (50 mM Tris-HCl, 319 mM KCl, 33 mM MgCl2 and 11 mM DTT, pH 7.8 ,1 

ml) was added to a nucleotide mixture (100 μl) containing DIG-dUTP, biotin-dUTP and dTTP 

in 50 mM Tris-HCl, pH 7.8 (concentration of individual component not given). Separately, 430 

μl autoclaved, deionized 18 Mohm water (Milli-Q50) was added to lyophilized poly (A). oligo 

(dT)15 template/primer (3.8 A260 units). Final nucleotides and template/primer solutions were 

stored at -20 °C. The above solutions were thawed on the day of the assay and reconstituted 

template/primer solutions (100 μl) was added to the nucleotide working solution (1.1 ml). The 

reaction mixture without enzymes and inhibitors was prepared by adding 100 μl of the final 

template/primer solution to the nucleotide mixture (1.1 ml) and contained 266 mM KCl, 27.5 

mM MgCl2 9.2 mM DTT and 46 mM Tris-HCl at pH 7.8.  
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2.6.1.2    Washing buffer (solution 6) 

 

Ultrapure water (225 ml) was added to 10 × concentrated incubation buffer obtained from the 

assay kit. The solution was mixed by inversion and stored at +2 to +8 °C. 

 

2.6.1.3    Anti-DIG-peroxidase stock solution (Solution 5) 

 

Ultrapure water (500 µl) was added to the lyophilized anti-DIG-POD (vial 6) and the resulting 

solution was stored at +2 to +8 °C until use. 

 

2.6.1.4   Working solution of anti-DIG-peroxidase (Solution 5a)  

 

An aliquot (30 µl) of the above reconstituted anti-DIG-POD (solution 5) was added to 2.59 ml 

conjugation dilution buffer containing sodium phosphate (undisclosed concentration, pH 7.4) 

(solution 8). This afforded a final concentration of 200 mU/ ml. Solution 5a was prepared 

immediately before use (Section 2.6.3, step 5). Unused solution 5a was discarded. 

 

2.6.1.5    

 

A solution of (substrate buffer) containing sodium perborate was left to thaw at room 

temperature. Thereafter, two tablets of ABTS substrate solution (vial 10) was added to 10 ml 

of substrate buffer.  Solution was kept in the fridge at +2 to+8 °C.  

 

 

 

2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) substrate 

solution (Solution 7) 
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2.6.1.6    Stock recombinant HIV-1 reverse transcriptase solution (Solution 1) 

 

To a lyophilizate of 500 ng recombinant HIV-1 RT obtained from a potassium phosphate 

buffered solution containing 0.2 % bovine serum albumin (molecular biology grade) was added 

250 µl ultrapure water. The contents, in a 1.5 ml microcentrifuge tube, were gently mixed by 

inversion. Thereafter the tube was centrifuged for 2 minutes at 12500 rpm in a bench top 

microcentrifuge (Eppendorf model, 5810R, Hamburg, Germany).  This solution was divided 

into five equal aliquots (50 μl each) which were stored at -70 °C in a biofreezer. On the day of 

use one aliquot (50 μl) was thawed and added to lysis buffer (460 μl, 80 mM potassium 

chloride, 2.5 mM, DTT, 0.75 mM EDTA, 0.5 % Triton X-100 in 50 mM Tris-HCl, pH 7.8, 

(solution 4).  

 

 2.6.1.7   Ready to use solutions (as per Assay kit) 

• Lysis buffer (solution 4) 

• Conjugate dilution buffer (solution 8) 

• Incubation buffer (solution 2) 

 

2.6.2   Stock nucleotide solution and Nevirapine 

 

Stock solution of (10-3 M) of the five synthesized N-trityl-phenylalanyl nucleotide conjugates 

in DMSO (99%) were prepared from solutions in CD3OD. Briefly the appropriate volumes of 

the deuteromethanolic solutions were dispended into 500 μl microcentrifuge tubes. Solvent 

was removed in vacuo at room temperature in a savant speed vac concentrator (Thermo 

scientific at 37 °C and the residues dissolved in DMSO. Nevirapine (1.39 mg) was dissolved 

in DMSO (523 μl) to afford a stock 10-2 M solution while a 10-2 M stock solution of N-trityl-

phenylalanyl-8-(6-aminohexyl) aminoadenosine-3',5'-cyclic monophosphate was obtained by 

dissolving 1.12 mg in 523 μl DMSO. 

 

Stock solutions in DMSO (100 μl each) at lower concentrations of inhibition (10-4, 10-5, 10-6 

M) were prepared by serial dilution of initial 10-3 M N-trityl-phenylalanyl nucleotide and  
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10-2 M Nevirapine stock solutions. Solutions were briefly vortexed at each dilution step (vortex 

-1 Genie, Scientific Industries).  

 

 

2.6.3   HIV-1 reverse transcriptase colorimetric ELISA protocol  

 

Reaction mixtures (60 μl) contained lysis buffer (24 μl), incubation buffer (10 μl), recombinant 

HIV-1 RT solution (10 μl, 2 ng enzyme), solution 3a containing primer/template and 

deoxynucleotide triphosphates (10μl) and inhibitor solutions at various concentrations in 

DMSO (6 μl). Reactions were conducted in 500 μl microcentrifuge tubes at 37 C° for 1.5 hours. 

Positive control mixtures contained no inhibitors, while negative controls contained no 

enzyme. Experiments were conducted in triplicates.  

Thereafter, the following steps were followed:     

 

Step 1: Reaction mixtures (60 μl) were transferred directly into the wells of the microplate 

streptavidin precoated modules (MP), which had also been postcoated with a blocking agent 

by the manufacturers.  

 

Step 2: Modules were then covered with a cover foil and incubated for 1.5 hours at 37 °C. 

 

Step 3: Solutions were removed completely from microtitre plate wells and each well was 

again washed with washing buffer for 30 seconds (240 μl, 5 repeats). 

 

Step 4: Anti-DIG-POD working solution (200 μl) was added to each well. Modules were once 

again covered with foil and incubated for 1.5 hours at 37 °C.  

 

Step 5: Anti-DIG-POD solutions were removed completely and module wells were washed 

with washing buffer as described in step 3. 
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 Step 6: ABST substrate solution (200 μl) was added to each well and modules were incubated 

at 22° C until their colour (green) had developed to a point that was sufficient for clear 

colorimetric detection (15 minutes. Roche recommends 10-30 minutes). Modules were tapped 

gently to ensure even distribution of the green reaction product before reading absorbances.   

 

Step 7: Absorbances were measured at 405 nm (reference wavelength, 492 nm) in a Mindray 

-MR-96 A microplate reader. The activity of HIV-1 RT in the absence of inhibitor was set at 

100 %. Enzyme activates in the presence of Nevirapine and putative inhibitors at the 

concentrations selected for the assays were recorded relative to this value. Test results from 

experiments in triplicate are shown as means +/- standard deviations (SD).   

 

 

             Table 2.2   Components for colorimetric HIV-1 reverse transcriptase ELISA. 

      Reagents (μl)       Controls               Inhibitors a 

 Negative Positive   

Enzyme solution - - - 10 10 10 - - -    

Lysis buffer 34 34 34 24 24 24 - - -    

Incubation buffer 10 10 10 10 10 10 10 10 10    

DMSO (99 %) 6 6 6 6 6 6 - - -    

Nevirapine - - - - - - 6 6 6    

Compounds 

 

- - - - - - - - - 6 6 6 

                        

 

 

 

4 (a-e) 

a final concentration in assays ranged from 10-4 M to 10-7 M (4a-e) 
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2.7    Computational Methods  

 

Computational studies were performed at the Discipline of Pharmaceutical Chemistry, UKZN. 

Docking studies were performed using the AutoDock Vina programme. The crystal structure 

of the 3D HIV-1 RT was obtained and downloaded from Protein Data Bank (Code 1RT1, 2.55 

Å resolution). Structures of all the synthesized anti-HIV compounds were modelled with 

ChemDraw Ultra 8.0. Three dimensional structures of all the drugs were optimized with 

B3LYP level of theory using Gaussian 09 software. All structures were docked inside the 

NNRT-BP of the HIV-1 RT enzyme. AutoDock tools and AutoDock were used to predict the 

modes of binding of all the drug structures. Two dimensional representation of ligand-protein 

interactions were presented using LigPlot. This computer based programme provided detailed 

information of the hydrophobic and hydrogen bond interactions involved.    
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CHAPTER THREE 

 

RESULTS AND DISCUSSION 

 

 

3.1   Thin Layer Chromatography (TLC) 

 

In the work reported here, products 4a-e were synthesised (by Preantha Poonan) only at the 

0.01 μmole level, with respect to 8 (6-aminohexyl) adenosine due to the high cost of this 

nucleotide component. Isolation of purified products was achieved by preparative thin later 

chromatography (TLC). 

In this study analytical TLC was used extensively to monitor reaction mixtures and to confirm 

purity of products. This inexpensive technique, which is one of the most commonly used 

analytical methods (and is characterized by low cost), requires small quantities of analyte 

(usually < 0.5 mg) and results may be obtained within 10-30 minutes (Pyka, 2014). Moreover 

several samples maybe analysed simultaneously on one TLC plate. The TLC silica solid phase 

is polar and the solvent (liquid phase) polarity may be varied for each application. Thus CHCl3: 

MeOH mixed in varying ratios may be used to generate solvents with dielectric constants from 

4.8 (100% CHCl3, relatively non-polar) to 32.6 (100% MeOH, relatively polar) (Weast, 1956).  
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                A                                                                                                      B 

Figure 3.1  

 

 

 

Silica gel 60F254 TLC plates display a bright yellow-green fluorescence at 254 nm. This is 

quenched by compounds that absorb UV light at this wavelength thus appearing as dark spots 

on chromatograms. Moreover, analytical TLC plates may be sprayed with a range of reagents 

to reveal the presence of particular structural features. Thus, the N-trityl NHS esters (3a-e) 

which were examined for purity on silica gel 60F254 TLC plates developed in CHCl3: MeOH 

(4.9:1 v/v) were weakly visible under UV254 illumination. Plates were sprayed with H2SO4 (10 

mole %) and heated to 100 °C in the fume hood whereupon yellow spots, coincident with UV 

absorbing spots, confirmed the presence of the trityl cation. NHS esters were also visualized 

by spraying chromatograms with a mixture of aqueous 14% (w/v) hydroxylamine 

hydrochloride and 3.5 M NaOH (20:8.5, v/v). After drying on a hotplate TLC plates were 

sprayed with FeCl3 (5% w/v) in 1.2 M HCl. ‘Active esters’ appeared as brown-purple spots on 

a yellow background (Feigl ,1943).  

Reaction mixtures containing NHS esters (3a-e) and 8-(6-aminohexyl)3',5'-cylic-

monophophate were monitored by TLC on silica gel 60F254 plates deveoped in CHCl3:MeOH 

CHCl3: MeOH              

(4.9:0.1, V/V) 

 

 

 

  

 

 

 

H         F        Cl      Br        I 

Solvent 

front line 

Solvent Line   

CHCl3: MeOH   

(4:1, V/V) 

 

 

 

  

 

 

 

 NUC   AA      RM     NHS      P 

Product 

Thin layer chromatograms (A) N-hydroxysuccinimide esters of N-trityl 

phenylalanine derivatives, H, F, Cl, Br, I (3a-e respectively). (B) Synthesis of p-

fluoro conjugate 4b; 8-(6-aminohexyl) adenosine-3',5'-cyclic monophosphate 

(NUC), NHS ester of N-trityl-p-F-DL-phenylalanine (AA), reaction mixture (RM), 

N-hydroxysuccinimide (NHS) as well as the purified product. 
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(4:1, v/v). Adenine-containing compounds were strongly visible under UV254 illumination as 

was NHS, a byproduct of the coupling reaction. Products (4a-e) were well separated from the 

more polar 8-(6-aminohexyl)3,5-cylic-monophophate and the less polar NHS and N-trityl 

aminoacid NHS esters (Figure 3.1 B). Confirmation of product assignment on analytical plates 

was obtained by acid treatment (H2SO4, 10 μmole %) to reveal trityl group-containing 

compounds. Desired products were isolated from reaction mixtures by preparative TLC 

(Section 2.4) and shown to migrate as single spots by TLC in the polar solvent ethanol: H2O 

(2:1v/v) (Table 3.1) with relatively high Rf values.  

 

Table 3.1   Rf values of N-trityl-phenylalanyl derivatives in ethanol: H2O (2:1, v/v) solvent. 

Compounds Rf 

4a 0.81 

4b 0.88 

4c 0.94 

4d 0.83 

4e 0.93 

 

 

Table 3.2   Melting points of starting materials.    

N-hydroxysuccinimide esters of N-trityl-

phenylalanyl derivatives 

Melting Points °C a 

 

4a 85-89 

4b 173 

4c 167 

4d 165 

4e 159 

a melting points are uncorrected 
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3.2   Melting points of N-trityl-phenylalanyl NHS esters 

 

Melting points of pure organic compounds are usually sharp and occur at the given temperature 

or over a narrow range. Compounds 3(a-e) were shown to co-chromatograph with authentic 

samples and displayed sharp melting points (Table 3.1).  Of particular interest is the observed 

decrease in melting point of para-halo compounds 4(a-e) as the atomic radius increases (F        I, 

173       159 °C). However, the melting point of the unsubstituted N-trityl-L-phenylalanine 

NHS ester was considerably lower (85-89 °C) and is very likely indicative of the presence of a 

contaminant.   
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(A)  Numbering of 8-AHA-CAMP and (B) conjugate with hydrophobic 

trityl components via a 6-carbon spacer to form the N-trityl-

phenylalanyl derivatives (4a-e). 
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 Table 3.3 

  

Compounds  NMR  

4a  
1HNMR (400MHz, CD3OD) δ : 7.99 (1H, s, H-2), 7.37 (6H, d, J = 7.5 Hz, ortho 

in trityl), 7.27-7.07 (14H, m, H-Bz), 5.77 (1H, s, H-1'), 5.23-5.19 (1H, m, H-2'), 

5.12-5.10 (1H, m, H-3'), 4.32-4.10 (3H, q, m,  H-4', H-5'a, H-5'b), 1.69-1.60 (2H, 

m, spacer H-5''), 1.42-1.32 (2H, m, spacer H-2''), 1.23-1.13 (4H, m, spacer, spacer 

H-3'', H-4''). 

4b  
1HNMR (400MHz, CD3OD) δ : 8.00 (1H, s, H-2), 7.40 (6H, d, J = 7.4 Hz, ortho 

in trityl), 7.24-7.07 (11H, m, H-Bz), 6.98 (2H, d, J = 8.7 Hz, ortho in p-F-phenyl), 

5.79 (1H, s, H-1'), 5.25-5.21 (1H, m, H-2'), 5.13 (1H, d, J = 5.4 Hz, H-3'), 4.33-

4.31 (1H, q, J = 4.3 Hz, H-4'), 4.29-4.11 (2H, m, H-5'a, H-5'b), 3.40 (2H, t, J = 

7.0 Hz, spacer H-1''), 2.82-2.76 (2H, m, spacer H-6''), 1.69-1.63 (2H, dd, J = 15.0, 

7.2 Hz, spacer H-5''), 1.37-1.33 (2H, m, spacer H-2''), 1.15-1.11 (4H, m, spacer 

H-3'', H-4''). 

4c  1HNMR (400MHz, CD3OD) δ : 8.00 (1H, s, H-2), 7.40 (6H, d, J = 7.4 Hz, ortho 

in trityl), 7.30-7.14 (11H, m, H-Bz), 7.04 (2H, d, J = 8.4 Hz, ortho in p-Cl-

phenyl), 5.79 (1H, s, H-1'), 5.25-5.21 (1H, m, H-2'), 5.13 (1H, d, J = 5.4 Hz, H-

3'), 4.33-4.30 (1H, t, J = 4.7 Hz, H-4'), 4.24-4.17 (2H, m, H-5'a, H-5'b), 3.40 (2H, 

t, J = 7.1 Hz, spacer H-1''), 2.79 (2H, dd, J = 13.3, 6.3 Hz, spacer H-6''), 1.70-

1.63 (2H, m, spacer H-5''), 1.39-1.37 (2H, m, spacer H-2''), 1.21-1.12 (4H, m, 

spacer H-3'', H-4''). 

4d  
1HNMR (400MHz, CD3OD) δ : 8.00 (1H, s, H-2), 7.40 (2H, d, J = 8.2 Hz, meta 

in p-Br-phenyl), 7.24-7.07 (11H, m, H-Bz), 7.02 (2H, d, J = 8.3 Hz, ortho in p-

Br-phenyl), 5.78 (1H, s, H-1'), 5.25-5.21 (1H, m, H-2'), 5.13 (1H, d, J = 5.3 Hz, 

H-3'), 4.33-4.31 (1H, t, J = 4.3 Hz, H-4'), 4.28-4.11 (2H, m, H-5'a, H-5'b), 3.40 

(2H, t, J = 7.1 Hz, spacer H-1''), 2.80-2.73 (2H, td, J = 13.1, 6.3 Hz, spacer H-

6''), 1.69-1.63 (2H, dd, J = 14.7, 7.3 Hz, spacer H-5''), 1.39-1.32 (2H, m, spacer 

H-2''), 1.15-1.13 (4H, m, spacer H-3'', H-4'').  

 

1HNMR spectral analysis of N-trityl-phenylalanyl -8(-6-

aminoadenosine) 3',5'-cyclic monophosphate and of 8-AHA-cAMP. 
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4e 
1HNMR (400MHz, CD3OD) δ : 8.00 (1H, s, H-2), 7.57 (2H, d, J = 8.1 Hz, meta 

in p-I phenyl), 7.41-7.39 (6H, m, meta in trityl), 7.24-7.12 (9H, m, ortho and para 

in trityl), 6.88 (2H, d, J = 8.2 Hz, ortho in p-I-phenyl), 5.78 (1H, s, H-1'), 5.25-

5.21 (1H, m, H-2'), 5.13 (1H, d, J = 5.3 Hz, H-3'), 4.33-4.31 (1H, t, J = 4.8 Hz, 

H-4'), 4.19-4.11 (2H, m, H-5'a, H-5'b), 3.41 (2H, t, J = 7.0 Hz, spacer H-1''), 2.79 

(2H, dd, J =  13.2, 6.8 Hz, spacer H-6''), 1.66 (2H, dd, J = 7.6, 7.4 Hz, spacer H-

5''), 1.34 (2H, d, J = 7.5 Hz, spacer H-2''), 1.14 (4H, bs, spacer H-3'', H-4''). 

8-AHA-

cAMP 

1HNMR (400MHz, (CD3)2 SO) δ : 7.95 (1H, s, H-2), 5.76 (1H, s, H-1'), 4.82-4.65 

(2H, m, H-2', H-3'), 4.11-4.03 (1H, ddd, J = 4.2, 9.0, 13.3 Hz, H-4'), 3.98-3.81 

(2H, m, H-5'a, H-5'b), 3.31-3.38 (2H, m, spacer H-1''), 2.76 (2H, t, J =  13.2, 6.8 

Hz, spacer H-6''), 1.57 (bs, 4H, spacer H-2'', H-5''), 1.34 (4H, bs, spacer H-3'', H-

4'').  

 

         

 

3.3     

  

 

3.3.1   1HNMR spectrometry  

 

Nuclear magnetic resonance (NMR) spectrometry is an indispensable tool used in the structure 

elucidation of organic molecules. The nuclei of atoms having spin values of (½) behave as 

small magnets and therefore respond to the application of an external magnetic field. Nuclei 

exhibiting this property (1H, 19F,13C,31P) when placed in a magnetic field (Ho) therefore adopt 

either a low energy state in which the nuclei are aligned with magnetic field (+ ½) or a high 

energy orientation in which the nuclei are antiparallel (-½) to the field. Upon application of 

electromagnetic radiation in the radio frequency range to the sample being analysed in the field 

Ho, nuclei may be induced to flip to the high energy state by absorption of a quantum of 

electromagnetic radiation. However, the field experienced by the nuclei of each atom (typically 

1H and 13C) varies according to its unique electronic environment, which may shield or deshield 

Spectral analysis of N-trityl phenylalanyl amino adenosine- 3′,5′-cyclic 

monophosphate 
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the nuclei. Therefore, the true field (H) at each atom in a molecule under analysis may be 

expressed            

 as:                                               

                                                                H= H o (1-σ)  

 

where σ is a shielding parameter. This, in turn, will affect the frequency required to bring 

individual nuclei into ‘resonance’. The NMR signals or chemical shifts are recorded against a 

standard. Typically, in 1HNMR spectrometry carried out in a deuterated solvent (eg. CDCl3, 

CD3OD) tetramethylsilane (TMS) is introduced in trace amounts as a reference and the 

resonance of its very shielded equivalent protons is set at 0.00 ppm. 1HNMR signals of carbon-

linked protons in organic molecules occur downfield from the reference in the range 0.00-10.00 

ppm. In the absence of TMS, spectrometry may be tuned to lock on the signal from the small 

quantity of undeuterated solvent (< 0.1%) in the deuterated solvent being used for calibration 

(CH3OH: 3.34 ppm; CHCl3: 7.26 ppm)  (Gottlieb et al., 1997). 

In the study reported here 1HNMR was of particular importance in the assignment of structures 

to tritylated conjugate 4a-e. Thus, the aromatic protons are extensively deshielded and resonate 

downfield in the region 6.8-7.6 ppm, whereas the protons on the spacer methylene (C-2'' – C-

5'') are well shielded and give signals in the range 1.1-1.7 ppm. However, the H-1'' and H-6'' 

protons in the spacer element form part of the spacer methylenes directly coupled to the 

electron-withdrawing heteroatom N and resonate at higher frequencies (downfield) due to its 

inductive effect. In particular, protons on the methylene group in secondary amine (R-NH-

CH2) linked with the amino group at C-8 of the adenine ring (H-1'') resonate as triplets at around 

3.4 ppm, while signals for protons on C-6'', in amide link with the N-trityl phenylalanyl 

components (CO-NH-CH2---) present as a doublet of doublets (4c, 4e), a multiplet (4b) and a 

triplet of doublets (4d), centred at about 2.8 ppm.  

Protons associated with the sugar moiety ribose resonate as multiplets in the 3.8-5.2 ppm range 

due to extensive spin-spin coupling with neighbouring protons. The anomeric proton (H-1'), 

however, resonates further downfield (5.77-5.79 ppm) as the anomeric carbon to which it is 

attached is linked to the ribose ring oxygen resulting in strong deshielding. The H-2 proton of 

the 8- substituted adenosine moiety presents as a sharp singlet at 8.00 ppm in the 1HNMR 

spectra of 4b-e and at 7.99 ppm in that of 4a. Quantification of protons assigned to shifts was 
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achieved by integration of peak areas. Values were calculated relative to the area under the H-

2 signal, which was set at 1.0. Each tritylated derivative contained 15 trityl protons and 4 

phenylalanyl protons in the aromatic region. Therefore, the theoretical H-2/aromatic/ anomeric 

proton ratio in each case is 1:19:1. This also serves to confirm that compounds comprise of an 

adenine base, a carbohydrate moiety (ribose) and the N-trityl phenylalanyl component.  

Structures of conjugates 4a-e were drawn using ChemDraw Ultra 8.0 and assignment of peaks 

in experimental 1HNMR spectra of compounds in CD3OD was guided by the programme’s 

predictive software and the proton magnetic resonance spectrum of 8-(6-aminohexyl) 

aminoadenosine-3',5'-cyclic monophosphate (Evans et al., 1978). 

Anomeric protons, which usually present as a doublet in ribosyl nucleoside and the nucleotide 

however appeared as singlets indicating little or no spin-spin coupling with the neighbouring 

H-2' proton takes place (Appendix C, Figure 4.2, 4a-e). The ribose pucker of 8-AHA-cAMP 

has been reported to be C2' endo as space filling models show that this form more easily 

accommodates the adenine C8 substituents (Evan et al., 1978). Moreover, the preferred 

conformation about the glycosidic bond was shown to be anti. The N-trityl phenylalanyl 

derivative was isolated in 80% purity as determined by the integration of the anomeric proton 

region (Appendix C, Figure 4.3). The small amount of product recovered precluded further 

purification. 

The 1HNMR spectrum of the first preparation of the chloro derivative (4c) revealed two 

anomeric proton peaks of roughly equal abundance (Appendix C, Figure 4.4) corresponding to 

the desired product (5.80 ppm) and 8-AHA-cAMP (5.84 ppm). The pure product was obtained 

by further preparative TLC as described (Section 2.4), although the sample submitted for 

proton magnetic resonance revealed the presence of small amounts of water (4.86 ppm singlet), 

methanol (3.34 ppm singlet) and ethanol (3.65 ppm quartet, 1.19 ppm triplet). These solvents 

were also evident in small amounts in the 1HNMR spectra of fluoro (4b), chloro (4c), bromo 

(4d) and iodo (4e) derivative, which were submitted for analysis, while the presence of ethanol 

in the phenylalanine derivative 4a was barely discernible (Appendix C, Figure 4.2 B). The 

presence of water and methanol in spectra may be directly attributed to the CD3OD solvent 

used in this study, which was only 99% deuterated and had hydrated after prolonged storage 

(pierced vial), while ethanol was used to extract products from silica gel plates.  
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Figure 3.3    

 

 

 

Figure 3.4     
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UV absorbance spectrum of 8-(6-aminohexyl) aminoadenosine-3′,5′-

cyclic-monophosphate. 

 

UV absorbance spectra of N-trityl-phenylalanyl conjugates (4a-e). Base line(  

). (4e) ( ). (4d) (  ). (4c) ( ). (4b) ( ). (4a) (  ). 
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3.3.2     UV Spectrophotometry   

 

Organic compounds that are highly conjugated absorbs radiation in the ultraviolet region with 

peak absorbance (Amax) at characteristic wavelengths (λmax) as they undergo π-π* transition. 

Thus, the purine and pyrimidine bases of RNA and DNA display pH-dependent λmax values in 

the 250-275 nm range. The Beer-Lambert law (equation 3.2) states that absorbance (A) of a 

solute which is the log of incident over transmitted radiation, is equal to the product of the 

molar extinction co-efficient (ε) of the solute, its water concentration (c) and the length of the 

solution (l) through which the light passes (measured in centimetres). 

 

    A = ε × c × l                                                  (3.2) 

 

At very high solute concentrations the law breaks down, more especially if the solution is light 

scattering in nature. To avoid these inaccuracies concentrations of test solutions are adjusted 

to afford Amax values in the region 0.8-1.2. A and ε vary as the wavelength of incident light 

changes and it is customary in UV spectroscopy to report ε at λmax. Therefore 5′-AMP at pH 

7.0 exhibits λmax at 259nm with εmax = 1.5 × 104 L M-1 cm-1 (Cavaluzzi and Borer, 2004). 

However, substitution of the C-8 proton on the adenine ring with an amino group or 

diaminoalkane results in a λmax shift to a longer wavelength (279 nm) (Muneyama et al, 1971). 

In our hands, the λmax values for 8-AHA-cAMP and 4a-e occurred in a range (272-275 nm. 

Table 3.4). A graphical representation of Table 3.4 is illustrated in Figure 3.3 and 3.4.  Although 

the εmax values vary from 1.19 × 104 (4c) to 2.03 × 104
 L M-1 cm-1 (4a), the contributions of the 

trityl and phenylalanyl moieties to the εmax are modest, as the former reflects a molar extinction 

coefficient of 1 × 103 at 273 nm, while the phenylalanine ring system absorbs radiation at this 

wavelength extremely weakly (140 L M-1 cm-1). The λmin values of 4a-e are, however, shifted 

by 9-14 nm to longer wavelengths than that of 8-AHA-cAMP (236 nm at pH 5.5). This is 

attributed almost entirely to the trityl component with ε = 5010 at 236 nm (Appendix B, Figure 

4.1). This is confirmed by considering the λmax/ λmin ratios (Table 3.4). While for the 

untritylated compound 8-AHA-cAMP the ratio is 6.9, those for 4a-e lie in the range 1.8-2.6. 
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Compounds 

 

λmax 

(nm) 

 

λmin 

(nm) 

 

εmax 

(L M-1cm-1) 

 

Log10εmax 

 

λmax/λmin 

        4a 275 245 2.03×104 4.31 2.68 

4b 273 245 1.42×104 4.10 2.60 

4c 273 244 1.19×104 4.07 2.25 

4d 272 246 1.72×104 4.20 2.03 

4e 273 250 1.63×104 4.20 1.82 

8-AHA-

cAMPa 

275 236 1.60×104 4.19 6.95 

         a 8-(6-aminohexyl) aminoadenosine-3ʹ,5ʹ-cyclic monophosphate. 

 

Table 3.5 

 

Compound Molecular 

formula 
Molecular 

mass (Da) 
 MALDI-TOF 

Found Calculated 

4a C
44

H
49

O
7
N

8
P

1
  832.35 878.83 878.33 [M-H+2 Na]

+ 

4b C
44

H
48

O
7
N

10
F

1
P

1
 850.33 886.96        886.40 [M+2NH4]

+
 

4c C
44

H
48

O
7
N

8
Cl

1
P

1
 866.31 914.02 911.28 [M-H+2Na]

+ 

 4d a C
44

H
48

O
7
N

8
Br

1
P

1
 910.26;912.26 958.06 956.24;958.23 [M+2Na]

+ 

4e  C
44

H
48

O
7
N

8
I
1
P

1
 958.24 959.38 959.25 [M+H]

+ 

  

 

Calculated molecular weights (g/mol) and those obtained by MALDI-

TOF MS analysis. 

UV spectral data of 8-(6-aminohexyl) adenosine-3′,5′-cyclic-monophoshate 

and of N-trityl-phenylalanyl conjugates of 8-(6-aminohexyl) adenosine-3′,5′-

cyclic-monophoshate (4a-e). 

a Bromine comprises of two stable isotopes of almost equal abundance separated by 

approximately 2 mass units (78.9.9, 51% and 80.916,49%). Therefore, in mass spectrometry two 

molecular ion peaks separated by 2 Da are observed for mono bromo derivates.   

 

Table 3.4  
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3.3.3   MALDI-TOF MS  

 

MALDI-TOF MS normally used to analyse large molecules such as peptides and protons 

however has been useful in confirming structures of conjugates in this study with molecular 

masses < 1000 Da. 

The sodiated species [M-H+2Na]+ are often encountered in mass spectrometry (Lattova et al., 

2005). These ions gave prominent peaks with spectra (positive mode) of 4a and 4e while the 

[M+2Na]+ species (Shackleton et al., 2013) was reflected in the spectra of 4a and 4d. Of interest 

is the occurrence of two [M+2 Na]+ peaks for bromo derivative (4d) at m/z= 956.24 and 958.23 

reflecting the contribution of the two stable isomers of bromo in the structure (Table 3.5). The 

fluoro derivative 4b displayed the diammonium ion [M+2 NH4]+ while the [M+H]+ peak was 

seen in the spectrum of 4e. 

 

  

      A                      B     C 

         

Figure 3.5  

 

 

 

3.3.4    RT Colorimetric Assay  

 

Reverse transcriptase colorimetric assays were performed to determine the activity of the 

recombinant HIV-RT in the presence of the front-line NNRTI Nevirapine and the N-trityl-para-

Control Control Control 

 10-4 M 

     10-5 M 

 M  

  10-3 M 

 10-4 M 

     10-5 M 

 M    10-6 M  

 10-4 M 

     10-5 M 

 M    10-6 M 

  10-6 M 10-7 M 

Detection of inhibitory effect on HIV-1 reverse transcriptase using the reverse 

transcriptase colorimetric assay kit. (A) Nevirapine (B) fluoro derivative 4b (C) 

phenylalanyl derivative 4a.  
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halo-phenylalanyl-8-AHA-cAMP 4a-e. Assays were carried out using a template/primer hybrid 

poly(A). oligo (dT)15, lyophilizate to generate newly synthesized cDNA with the incorporation 

of addition of biotinylated and digoxygeninylated deoxyuridine monophosphates by RT onto 

the growing RNA-DNA. (Section 1.9.5).  

As seen in Figure 3.5 A, Nevirapine inhibited the RT enzyme at concentrations 10-3, 10-4 and 

10-5 M. The fluoro derivative (Figure 3.5 B) showed excellent inhibition at 10-7 M and 10-5 M, 

dropping RT activity down to 69 % and 57 %, while Nevirapine was shown to be active at 10-

5 M with a reduced RT activity to 43 %. The “parent” derivative, phenylalanine did not inhibit 

the RT enzyme at the lower concentrations (< 10-5 M). Also, the absorbances wavelength at 

10-5 M and 10-6 M (1.108, 1.216, respectively) were higher than that of the control (0.918). On 

the other hand, there was excellent inhibition activity at the highest concentration 10-4 M. 
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Figure 3.6  

 

 

 

 

Table 3.6  

 

Compounds IC50 (µM) 

Nevirapine 3.30 

4a >100 

4b 29.2 

4c >100 

4d >100 

4e >100 

8-AHA-cAMP >100 

 

The line graphs as seen in Figure 3.6 were constructed using GraphPad Prism 2010 and show 

a graphical representation of the mean reverse transcriptase activity values of the five 

compounds para-H (4a), para-F (4b), para-Cl (4c), para-Br (4d), para-I (4e) and 8-AHA-cAMP. 

Nevirapine showed good inhibitory activity being effective at 10-5 M (Figure 3.6 A). 8-AHA-

cAMP was inactive over the concentration range of 10-3-10-6 M (Figure 3.6 B). The N-trityl-

fluoro derivative showed excellent activity against reverse transcriptase acting at the 

concentrations 10-4, 10-5 and 10-7 respectively (Figure 3.6 D). At 10-7 M, the phenylalanine 

derivative showed no sign of inhibitory activity on the RT enzyme, instead showed an increase 

in RT activity. This could have been due to assay conditions and interference. However, at 

higher concentrations of 10-5 M and 10-4 M, a decrease in reverse transcriptase enzyme activity 

was shown (Figure 3.6 C). Para-halo derivatives 4c, 4d and 4e (Cl, Br, I) were inactive at all 

concentrations. The IC50 values shown in Table 3.6 indicate that Nevirapine and the para-fluoro 

derivative (4b) were the most active inhibiotors with IC50 values of 3.30 μM and 29.2 μM 

respectively. At low concentration under the described assay conditions, Nevirapine, fluoro 

(4b) and bromo (4d) HIV-1 RT activity exceeded that of the control in the absence of inhibitors 

indicating poor inhibition activity under the assay conditions.    

Relative reverse transcriptase activity (%) plotted against Molarity of inhibitor 

(A) Nevirapine, (B) 8-(6-aminohexyl) adenosine,3′,5′-cylic-monophosphate 

(C) 4a (D) 4b (E) 4c (F) 4d (G) 4e. RT mixed with lysis buffer and DMSO was 

used as the control (positive). Results were reported as mean +/- SD (n=3). 

Structures of Nevirapine, 8-(6-aminohexyl) adenosine,3′,5′-cylic-

monophosphate, (4a-e) were drawn with ChemDraw. 

 

 

 
The estimated IC50 values for Nevirapine and N-trityl-p-substituted-

phenylalanine-8-(6-aminohexyl)amino-adenosine-3′,5′-cyclic 

monophosphates against HIV-1 RT in vitro. 
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Nevirapine, a non-nucleoside reverse transcriptase inhibitor was one of the first successful 

agents used in the treatment of HIV-1. In this study, it was used as a standard to compare 

against all synthesised ‘chiral’ compounds. In the presence of Nevirapine, a decrease in RT 

activity (43 %) was shown at 10-5 M (Figure 3.6 A). Thereafter, at lower concentration (10-6 M 

and 10-7 M ) RT activity increased markedly. However, in a study conducted done by Grob et 

al., (1992), Nevirapine showed strong inhibitory activity against the RT at a lower 

concentration with an IC50 of 84 nM (approximately 1×10-7 M). Frezza et al.,(2013) also 

reported Nevirapine to be active at low concentration of 100 nM (1×10-7 M). Possible reason 

for this outcome could be the sensitivity of the assay kit and assay conditions  (i.e colour 

reactions can take up to one to 15 hours to develop).  In past studies, cell-based assays were 

shown to be sucessful in determining the activity of compounds against HIV-1 RT (Aldeson et 

al., 2003). However, at the department of Biochemistry, Westville Campus, the appropriate 

equipment and a set of biocontainment (Biosafety level 2/3) precautions required to isolate 

HIV-1 RT in an enclosed laboratory facility was not available.   

In another study Nevirapine  was shown to be active against HIV-1 RT with an IC50 value 

ranging from 0.01 μM to 0.1 μM  (Hermsen et al., 2010). However, according to our results 

the calculated IC50 value was 3.30 μM. In the same report (Hermsen et al., 2010), Delavirdine, 

another NNRTI was showed an IC50 value of 0.26 μM.  

The inhibitory mechanism of NRTIs is such that they compete with naturally occurring 

nucleosides usually at the triphosphate level to prevent their incorporation into the viral DNA 

(Section 1.4). The reverse transcriptase enzyme adds NRTIs onto the growing DNA molecule. 

Therefore, naturally occurring nucleosides can no longer be added to the growing viral DNA, 

which is thereby terminated. In this study, the use of biotin and digoxigenin labelled dUTP are 

used to tag cDNA for colorimetric dectection. Biotin is relatively small and due to the fast rate 

of reverse transcription; the RT enzyme can easily mistake the compounds for dTTP and add 

them onto the growing RNA/DNA strand of the heteroduplex along with naturally occurring 

nucleotides. Thus, to detect the presence of biotin labelled RNA/DNA, streptavadin is pre-

coated on microtitre plates. An antibody-peroxidase conjugate, antiDIG-peroxidase, was used 

to bind immoblised DIG-labelled cDNA and quantify it with an appropriate peroxidase 

substrate in a colorimetric assay.    
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The N-trityl-p-F-DL-phenylalanine-8-(6-aminohexyl)aminoadenosine-3′,5′-cyclic- 

monophosphate was the strongest RT inhibitor (69 %) acting at 10-7M, while the N-trityl-L-

phenylalanine-8-(6-aminohexyl) amino adenosine-3′,5′-cyclic monophosphate and N-trityl- p-

l-DL-phenylalanine-8-(6-aminohexyl) amino adenosine- 3′,5′-cyclic monophosphate were 

weak inhibitors or otherwise remained inactive. According to Figure 3.6 D RT enzyme activity 

in the presence of para-fluoro derivative at 10-4 M was extremely low (7.5 %). The L-

phenylalanyl derivative (4a), on the other hand, inhibited RT activity down to 57 % at the same 

concentration. And if we continue to compare results of fluoro and phenylalanine derivatives 

(Figure 3.6 D and C), we notice that the fluoro derivative at a higher concentration is a more 

effective inhibitor than the remaining para-halo derivatives (4c-e).  

Previous studies have shown that para substitution of the phenylalanine ring in N-trityl-

phenylalanyl-8-AHA-cAMP has a strong influence on M-MuLV RT activity (van Zyl et al., 

2010). The halide substituent at the para position of the phenyl ring in the phenylalanyl 

component may have influenced the inhibitory effect of each chimeric compound. It is shown 

that the atomic radius of each halogen increases as atomic number increases. Therefore, the 

fluorine atom has an atomic radius of 0.71Å, chlorine atom 0.99Å, bromine atom 1.14Å and 

iodine 1.33Å. It was suggested that the size of the substituent might also influence the entry of 

the inhibitor in the RT active site or NNRTI-BP (van Zyl et al., 2010).  

The low activity of the ‘parent’ derivative L-phenylalaninyl derivative (4a) could have resulted 

from the absence of an electron withdrawing halo substituent on the para position of the 

phenylalanine ring.  

The uniqueness of our derived compounds is that the 8-(6-aminohexyl) aminoadeosine-3′,5′-

cyclic monophosphate component is a nucleotide and not a preferred nucleoside. As mentioned 

earlier, NtRTIs are polar in nature as they contain a phosphate group, a 5-carbon sugar and a 

nitrogenous base thus, making it difficult to move across the hydrophobic membrane to enter 

the cell. 

The nature of the NNRTI-BP is hydrophobic, thus it would be only expected to ‘favour’ 

hydrophobic interactions/molecules rather than polar molecules/interactions. Therefore, the 

results obtained in this study may be explained, in part, by the smaller atomic radius of fluorine 

leading to a more favourable fit in the BP.  
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The NRTI, TFV was modified to Tenofovir disoproxil (TDF) and has become one of the most 

commonly used drugs for the treatment of HIV-1 infection. In vivo, TFV is not very effective 

and the reason is that at physiological pH, it is negatively charged making it hydrophilic. This 

quality possibly makes it difficult to move across a hydrophobic plasma membrane (Van 

Rompay et al., 2012). For this reason, Tenofovir was esterified with chloromethyl isopropyl 

carbonate to (TDF) thus making the drug hydrophobic and more active than TFV (Wang et al., 

2016). 

Similarly, compounds in this study have a cyclic phosphate group and future work on the most 

active compound N- trityl-p-F-DL-phenylalanine -8-(6-aminohexyl) amino adenosine-3′,5′-

cyclic monophosphate can be aimed at esterifying the hydroxyl group and making the 

compound even more hydrophobic. This could improve the compound’s activity in vitro.  

 

3.3.5   Effect of organic solvents on HIV- 1 RT activity 

 

The use of organic solvents in some enzyme assays is based on the hydrophobic nature of 

certain substrates and inhibitors, which are insoluble in aqueous media. In these cases, the 

substrate or inhibitor is first dissolved in the appropriate organic solvent and then introduced 

to reaction mixtures where the solvent is diluted to levels that do not inactivate or cause adverse 

effect to the enzyme activity and the substrate or inhibitor. In this study, DMSO, a dipolar 

aprotic solvent is used (Cevallos et al., 2017) and its ability to dissolve water insoluble polar 

and non-polar molecules and its low toxicity levels make it a popular choice. Although the 

DMSO final concentration in cell-based in vitro assays for HIV-1 RT assays is ≤ 1% (Wildum 

et al., 2013), enzyme-based assays tolerate higher DMSO concentrations up to 5% (Lingham 

et al., 1996; Tewtrakul et al., 2002) and 10% (Lai et al., 2009; Lai et al., 2014). In this present 

study, 10× stock solutions of the relatively hydrophobic tritylated compounds 4a-e, Nevirapine 

and 8(6-aminohexyl)aminoadenosine-3′,5′-cyclic monophoshate were made up in 99 % 

DMSO. Serial dilutions were carried out with DMSO. Stock solutions aliquots (6 μl) were 

diluted to 60 μl with aqueous assay components yielding reaction mixtures containing 10% 

DMSO. It was imperative to maintain the final concentration of DMSO at this level to avoid 

possible preciptation of test compounds, that incorporate the very hydrophobic and bulky trityl 

group at lower levels of the solvent.  Results presented in Figure 3.7 showed that 10% DMSO 
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in the reaction mixture had no significant effect on HIV-1 RT activity in the colorimetric assay.  

In other related studies on M-MuLV RT (van Zyl et al., 2010; Hawtrey et al., 2008) tritylated 

test compounds were dissolved in ethanol which was present in assay mixtures at 10 %. The 

inhibition of M-MuLV RT activity by DMSO has been shown to be dose dependent in the 

range 12-30 % although relative activity in the range 0-10% was ≥ 100% (Yasukawa et al., 

2002). 
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Figure 3.7   

 

3.3.6   Computational studies 

 

Molecular docking is a computational technique used to predict orientation of a ligand with its 

target protein based on their binding affinity. This technique is imperative as it serves to screen 

for drug-like molecules for improved drug development in various research laboratories and 

pharmaceutical companies (Trott and Olson, 2010). In this study AutoDock Vina was used to 

determine the binding energies and probable binding orientation of Nevirapine and the N-

tritylated-phenylalanyl compounds with HIV-1 RT allosteric site. AutoDock Vina is the newest 

docking programme commonly used due to its speed and improved accuracy qualities (Trott 

and Olson, 2010). Figure 3.8 (B-F) clearly shows that the N-tritylated derivatives (4a-e) are 

positioned in the same spatial environment of the HIV-1 RT allosteric site occupied by 

Nevirapine (Figure 3.8 A). However, Nevirapine and the fluoro derivative (4b) have shown to 

            10 % DMSO (-)       10 % DMSO (+) 

10 % DMSO on HIV-1 reverse transcriptase activity.    
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be satisfactorily accomodated by the enzyme (ribbons), whilst the other compounds don’t seem 

to fit correctly. Table 3.7 provides an indication of the most probable active and least active 

compounds according to their calculated binding energies. The para-fluoro derivative (4b) was 

shown to be most active (-8.4 kcal/mol), of the tritylated compounds and second to Nevirapine 

(-9.9 kcal/mol). The para-chloro derivative (4c) showed lower binding affinity (-7.8 kcal/mol) 

while, para-bromo (4d) and para-Iodo (4e) showed the lowest binding affinities (-7.1 and -6.5 

kcal/mol, respectively). Figure 3.9 shows the specific interactions between Nevirapine and 

compounds 4a-e with the RT amino acid residues in close proximity to the compounds in and 

about the allosteric binding pocket. The aromatic amino acid residues Tyr181, Tyr188, Phe227, 

Trp229 (Section 1.2) are seen lining the NNRTI-BP and showed excellent van de Waals and 

π-π interactions that contributed to the binding of NNRTIs to the allosteric site (Figure 3.9). 

The investigated chimeric compounds as well as Nevirapine were docked into the allosteric 

site. Honarparvar et al., (2013) explained the various parameters that influence docking studies. 

Thus it was shown that small rigid molecules are easier to dock than larger molecules. Also, a 

thorough understanding of inhibitor and enzyme interactions is required. It is also essential to 

confirm the flexibility of the enzyme and whether it has more than one possible conformation. 

According to results (Table 3.7) the control, Nevirapine performed better than the synthesized 

compounds (-9.9 kcal/mol). This was expected as Nevirapine and other non-nucleoside RT 

inhibitors for example Rilpivirine have shown excellent inhibitory properties in previous 

reports (Nizami et al., 2016). In a past study done by Nizami et al., (2016), Rilpivirine, a non-

nucleoside RT inhibitor was used against the RT enzyme and showed that this drug had the 

ability to take on multiple conformations upon entry into the allosteric binding pocket. Table 

3.7 indicates that the docking results seem to have supported the experimental findings.  The 

para-fluoro derivative (4b) had a docking score of -8.8 kcal/mol which is indicative of good 

binding interaction with the RT enzyme compared to the para-iodo derivative which showed 

poor binding affinity (-6.5 kcal/mol). Other compounds included in this study (4a,c,d) showed 

intermediate affinties (-7.1-7.8 kcal/mol). The lower performance of the synthesised 

compounds is probably due to the torsional penalty, i.e. there are several rotatable bonds and 

molecules are quite bulky. Therefore, considerable energetic barriers need to be overcome for 

these molecules to fit into the RT binding site. That NNRTI-BP is hydrophobic in nature is 

well established. It is assumed therefore that the three benzene rings of the trityl components 

in test compounds would contribute to the hydrophobicity and thus have a better chance of 

interacting with the hydrophobic residues lining the binding pocket. It is believed that the 
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benzene rings of the para-fluoro derivative probably formed hydrophobic interactions with 

non-aromatic amino acid residues Pro176 and Val179. The close proximately of the aromatic 

residues: Tyr188, Tyr318, His235, Phe227 and Trp229 suggests that these amino acid side 

chains may contibute to the interactions between ligand and RT allosteric site.  

Apart from hydrophobic residues, hydrophilic residues such as Ser105, Lys101, Lys103, 

Asp192, Glu224 and Glu138 form part of the binding pocket. Figure 3.9 reveals that both 

hydrophilic and hydrophobic amino acid residues contributed to the binding interactions. In a 

study by Miceli et al., (2013), (6R)-6-hydroxydichotoma-3,14-diene-1,17-dial (HDD) docked 

into the wild type and mutant HIV-1 RT formed hydrogen bond interactions with the side 

chains of aromatic residue Tyr188 and with Glu138 (Section 1.9.4, Figure 1.12). In this similar 

case para-fluoro derivative may have formed hydrogen bond interaction with Glu28 and 

Glu138. The fluoro substituent on the phenyl ring may have also contributed to the binding 

interactions. Hydrogen bond interactions between charged amino acid residue Lys101, Lys103 

and Pro236 mainly with the 3ʹ,5ʹ-cyclic phosphate moiety of chiral compounds are believed to 

have contributed significantly to the binding affinities (Figure 3.9 B-F). The para-fluoro 

derivative (4b) is predicted to have formed three hydrogen bonds with Lys101, Lys103 and 

Pro236, while the para-iodo derivative (4e) is calculated to have formed only one hydrogen 

bond with Pro236 in the allosteric site.  Hydrogen bonds are represented as green dashed lines 

as seen in Figure 3.9. 

             Table 3.7 

 

Compound Affinity (kcal/mol) 

Nevirapine -9.9 

4a -7.3 

4b -8.4 

4c -7.8 

4d -7.1 

4e -6.5 

 

Dock binding energy (kcal/mol) of Nevirapine and test 

compounds with HIV-1 RT allosteric pocket as predicted 

by AutoDock Vina.  
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Figure 3.8 

 

3D docking interaction of : (A) Nevirapine (B) 4a (C) 4b (D) 4c (E) 4d (F) 4e 

and HIV-1 reverse transcriptase allosteric site located between the palm (left) 

and thumb (right) subdomains. Compounds are in stick representation while the 

RT allosteric site is in ribbon representation.  

 

Figure 3.8 
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Figure 3.9   

 

 

 

In a study by Sluis-Crèmer et al., (2004) Delavidine, a NNRTI was compared against other 

NNRTIs. From the structure of Delavidine (Figure 1.7) it can be noted that it is much bulkier 

than most NNRTIs.  It has a volume of ~ 380Å3 while other NNRTIs are in the range 230–290 

Å3 (Sluis-Crèmer et al., 2005). This bulkiness is said to support another binding mode when 

compared to the smaller NNRTIs.  The size and shape of this inhibitor causes it to 

project/extend further than the binding pocket into the solvent. Another quality of this NNRTI 

is that it can interact with regions that most NNRTIs are restricted from. The piperazine ring 

component on delavirdine causes the inhibitor to position itself close to the hydrophobic 

residue Val106. Similarly, the benzene rings in the para fluoro derivative showed binding 

interactions with the hydrophobic side chain of Val179.  

Nevirapine, on the other hand showed strong van der Waals interactions with Val106 ,Val179 

and Tyr188 due to the aromatic properties of the pyridine ring (Figure 3.9 A). Possible π-π 

stacking between phenyl rings of Nevirapine and Tyr 181/Tyr188 aromatic side chains may 

also be present. Hydrogen bond interactions between Tyr318 and Nitrogen atom ( N3) from 

the diazepine ring of Nevirapine could have also formed. Additionally, Tyr318 amino acid 

residue in the NNRTI-BP probably formed π-π interaction with Nevirapine. This result is 

supported by a study carried out by Kroeger Smith et al., (1996). In another study by Raju et 

al., (2010) the interaction energies (IE) of amino acid residues surrounding Nevirapine were 

calculated and discussed. Trp229 was calculated to be 4.58 kcal/mol. The aromatic residues 

Tyr318 and Phe227 interact with Nevirapine through weak hydrogen bonds and thus had a 

smaller IE value than Trp229. Lys101, Leu100, Lys103, Val106, Leu234, Gly190, His235 and 

Pro236 were also shown to be imperative in the binding of Nevirapine to HIV-1 RT. Figure 

3.9A shows that all the above-mentioned amino acid residues are in close contact with 

Nevirapine confirming binding interactions with it.  

Nevirapine is a non nucleoside inhibitor. Therefore, it seems resonable to assume that it will 

bind to the NNRTI-BP only. Most of the residues surrounding the NNRTI-BP could 

comfortably help bind Nevirapine to RT via hydrophobic interactions. (Leu100, Trp229, 

Ligplot predicted docking binding interactions between: (A) Nevirapine (B) 4a (C) 

4b (D) 4c (E) 4d (F) 4e and HIV-1 RT allosteric site. Hydrogen bonds are indicated 

by green dashed lines between atoms involved, while hydrophobic contacts are shown 

as an arc with red spikes pointing towards the atoms they contact (Wallace et al., 

1995) Ligand atoms. 
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Tyr188, Tyr318, Pro95). The charged amino acid residue Lys101 could have formed hydrogen 

bond interaction between the carbonyl oxygen of Lys101 and H5 of Nevirapine. Similar results 

were presented and discussed by Raju et al., (2010). It was also evident that the four 

hydrophobic residues (Trp229, Phe227, Tyr318, Leu234) played a role in binding. This was 

supported by results from an earlier study (Smerdon et al., 1994) wherein an x-ray crystal 

structure of HIV-1 RT with Nevirapine itself was reported. With this information the overall 

binding site and interactions have been described. The x-ray structure revealed that residues 

(Trp229, Phe227, Tyr318, Leu234) played an important role in binding interactions. Results of 

docking studies presented here (Figure 3.9) correlated with co-crystallization data of HIV-1 

RT with Nevirapine indicating that molecular docking findings generated by the LigPlot 

platform are validated. 

The chloro derivative (4c) showed a lower binding affinity (-7.8 kcal/mol) than that of the 

fluoro derivative (-8.4 kcal/mol). This is in agreement with data from the in vitro assay, which 

displayed poor activity of the chloro compound (4c) against the HIV-1 RT. Nevertheless, 

docking studies were performed to establish a possible correlation with in vitro results. 

Chlorine perhaps contributed to the bulkiness of the hydrophobic component  making it less 

likely to fit in the NNRTI-BP. It is of much interest that the nature of the para halo substituent 

on the phenylalanine benzene ring in structures 4a-e determines their docking aspect in the 

NNRTI-BP.  

Murine leukemia virus reverse transcriptase virus (M-MuLV RT) and Human 

immunodeficnecy virus reverse transcriptase (HIV-1 RT) display similar structural  features  

that enable researchers to carry out initial screening to test for new anti-viral dugs. Coté and 

Roth, (2008) demonstrated the similarties by x-ray crystallography of the M-MuLV RT and 

HIV-1 RT.  More specifically M-MuLV RT was found to be a monomer consisting of 671 

amino acids, whilst HIV-1 RT is a heterodimer consisting of a 560 amino acid subunit 

designated p66 and a (small 440 amino acid) p51 subunit. Interestingly, both the HIV-1 RT 

P66 subunit and the M-MuLV RT contain the palm, fingers, connection, thumb subdomains 

and  the RNase H domain. In a study by van Zyl et al., 2010  a related investigation was 

conducted. However, N-tritylated phenylalanine derivatives of amino-adenosine -3′,5′-cyclic 

monophospahtes were evaluated against M-MuLV RT and not HIV-1 RT. It was concluded 

that the iodo derivative with a higher halogen covalent radius (1.33 Å) showed better inhibitory 

activity when compared to its fluoro and chloro counterparts. This was rather suprising since 

the para-iodo derivative in this current study proved to be inactive. Indeed p-iodo derivative 
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was predicted to have the lowest binding affinity (Table 3.7) (-6.5 kcal/mol). However, one H-

bond interaction is predicted for the iodo derivative. Here Pro236 and an unesterfied oxygen in 

the ribosyl 3′,5′-cyclic phosphate are involved.   

A comparison of sequences found in M-MuLV RT and the HIV-1 RT p66 subunit  was 

discussed by Coté and Roth, (2008) and it was shown that the respective subdomains have a 

specific sequence similarity. For example, the palm and fingers subdomain have approximately 

25 % similarity in the amino acid sequences. There is approximately 12% similarity in the 

thumb subdomain whilst the connection subdomain conisits of merely 6% similarity. It was 

also noted that there is a further 111 amino acid sequence in the M-MuLV RT that is not present 

in the HIV-1 RT p66 subunit (671 versus 560 amino acids). The reason that the inhibition data 

of 4e in the HIV-1 system did not correlate with data obtained by van Zyl et al., (2010) could 

be that the derivative had more space to bind with more amino acid residues in the M-MuLV 

RT.  In this regard it is important to note that the NNRTI-BP of HIV-1 is defined by both large 

and small subunit amino acid residues and is spatially well-defined. The M-MuLV RT NNRTI-

BP has  a more ‘open’ structure involving the monomeric RT and is theoretically able to 

accommodate molecules that extend beyond the allosteric site.  

This study was conducted to establish if the nature of the para halo substituent on the 

phenylalanine benzene ring of the of N-trityl-phenylalanyl 8(6-aminohexyl)aminoadenosine-

3′,5′-cyclic monophoshate (4a-e) has influence on the potency of chiral compounds as 

inhibitors of HIV-1 RT. Results suggest that the size of the para halo atom bears an inverse 

correlation with inhibitory potency. Therefore the para-fluoro derivative (4b) is most active 

and the para-iodo compound (4e) is the least active. 
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        CHAPTER FOUR   

 

      CONCLUSION  

 

HIV-1 reverse transcriptase inhibitors continue to play an imperative role in the treatment of 

HIV/AIDS, changing this fatal illness into a more controllable chronic infection. However, 

drug resistance is still a common cause of treatment failure. Over the years, extensive study 

has led to approved drugs  for the treatment of the HIV infection. Anti-viral compounds 

comprising a nucleotide component separated from a hydrophobic amino acid derivative by a 

hydrophobic spacer element have shown promising activity against murine leukaemia reverse 

transcriptase. The synthesis of various N-tritylated para substituted phenylalanine derivatives 

(fluoro, nitro and iodo) coupled to the 8-(6-aminohexyl)aminoadenosine 3′,5′-cyclic 

monophosphate had previously been carried out to form chiral compounds, where the 8-(6-

aminohexyl) amino-adenosine 3′,5′-cyclic monophosphate was directed toward the 

polymerization active site, while the tritylated para substituted phenylalanine components were 

designed to serve as the non-nucleoside and bind to non-nucleoside hydrophobic binding 

pocket, simultaneously. However, it was reported by van Zyl et al., (2010) that the chimeric 

compound N-tritylated meta fluoro-DL -phenylalanine-8-(6-aminohexyl) amino-adenosine 

3′,5′-cyclic monophosphate acted as a non -competitive inhibitor.   

The polymerase site of the monomeric M-MuLV RT has remarkable similarities to the 

polymerase site (p66) of the heterodimer HIV-1 RT. In this study, the L-phenylalanine 

derivative (4a) and the para-fluoro derivative (4b) showed RT inhibitory activity, while the 

para-chloro, para-bromo and para-iodo derivatives (4c-e) remained inactive. The atomic radius 

of the halide substituent has affected RT inhibition by the tritylated compounds. More 

especically, this parameter  may therefore have a determining effect on the accommodation of 

derivatives in the proposed binding sites. The fluoro derivative (4b) showed comparable 

activity to the frontline drug Nevirapine in both in vitro and computational experiments. 

Apparent binding and possible interaction with aromatic residues (Tyr181, Tyr188, Phe227, 

Trp229), along with hydrophilic residues (Lys101, Lys103, Glu28 and Glu138) and 
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hydrophobic amino acid residue (Val106, Val179) in the allosteric site suggests that 

compounds may be acting as NNRTIs. Nevirapine showed inhibitory effect agaisnt RT activity, 

however at very high concentrations with an IC50 of 3.30 µM as compared to past liertaure 

where IC50 was as low as 84 nM. Cell-based assays could have been performed to compare 

with the RT colorimetric assay kit however, at the department of Biochemistry, Westville 

Campus, the appropriate equipment and a set of biocontainment (Biosafety level 2/3) 

precautions required to isolate HIV-1 RT in an enclosed laboratory facility was not available.   

As previously mentioned the NRTI, Tenofovir (TVF) was modified to Tenofovir disoproxil 

(TDF) by esterification with chloromethyl isopropyl carbonate. This has made the drug more 

successful than the esterfied TFV. Similarly, future studies directed towards potentiation of N-

trityl-p-F-DL-phenylalanyl-8-(6-aminohexyl)aminoadenosine-3′,5′-cyclic-monophosphate,  

penetration of cellular plasma membrane must be considered if this system is to be assessed in 

cell culture and in in vivo studies.  

Therefore esterfication of the polar ribosyl 2′-OH group and the unesterfied OH group in the 

3′,5′-cyclic phosphodiester to achieve higher levels of hydrophobicity may prove to be fruitful. 

Other future work could include the investigation of the synthesized compounds in cell-based 

assays in an appropriate laboratory facility.   
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APPENDIX A 

CALCULATIONS 

 

1.  % YIELD of N-trityl-phenylalanyl conjugates (4a-e)  

 

% Yield                      

 

(4a):  

Molecular weight of product     = 878.33 g/mol         

Weight of final product             = 3.18 mg 

% yield      = 3.18 mg /8.7833 g/L ×100 

                 = 36.18 %    

 

(4b):  

Mw of product   = 886.41 g/mol                

Weight of final product  = 4.61 mg 

% yield    = 4.61mg/8.8641 g/L × 100                   

= 52.00 %            

 

(4c): 

Mw of product    = 913.30 g/mol     

Weight of final product   = 4.35 mg  

% yield     = 4.35 mg /9.1330 g/L× 100                 

= 48 %               

 

(4d): 

Mw of product               = 956.24 g/mol       

= [Weight of product (mg) / 0.01 mmole product (mg)] × 100 
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Weight of final product  = 4.63 mg 

% yield     = 4.63 mg/ 9.5624 g/L × 100                

= 48.41 %       

 

(4e): 

Mw of product    = 959.38 g/mol             

Weight of final product   = 5.24 mg 

% yield     = 5.24 mg/9.5938 g/L × 100               

= 54.62%  

 

2. UV analysis (concentration and εmax ) 

 

 

 (4a):  

 

Concentration:  20 μl taken from a deutero methanolic solution containing : 

3.18 mg / 600 μl CD3OD 

Therefore, 3.18 × 20 / 600   = 106 μg / 20 μl CD3OD 

 But 106 μg (20 μl) is added to 3ml EtOH 

Therefore, concentration is 106 / 878.33 µmoles in 3ml 

                                                      = 0.121 µmoles in 3ml  

Therefore in 1 litre 0.121 / 3 × 1000 µmoles 

               = 4.03 × 10-5 M 

  

ODmax= εmax х c х l    

Therefore, εmax = ODmax/c × 1   

 

  = 8.21 × 10-1/ 4.03 × 10-5 M 
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= 2.03 × 104 L M-1 cm-1 

Log εmax          = 4.30 

 

(4b):  

Concentration:  20 μl taken from a deutero methanolic solution containing : 

4.61 mg / 600 µl CD3OD  

Therefore, 4.61 × 20/ 600   = 154 μg / 20 μl CD3OD  

 But 154 μg (20 μl) is added to 3ml EtOH 

 Therefore, concentration is 154/ 886.41 μmoles in 3ml 

                                                = 0.173 μmoles in 3ml    

Therefore, in 1 litre 0.173 / 3 × 1000 μmoles 

               = 5.76 × 10-5 M 

 

 ODmax = εmax × c × l   = 8.2 × 10-1/ 5.76 × 10-5 M 

                                    = 1.42 × 104 L M-1 cm-1 

 Log εmax    = 4.1 

 

 (4c): 

 

Concentration:  20 μl taken from a deutero methanolic solution containing: 

4.35 mg / 600 μl CD3OD  

Therefore, 4.35× 20 / 600   = 145 μg / 20 μl CD3OD 

 But 145 μg (20 μl) is added to 3ml EtOH 

Therefore, concentration is 145/ 913.30 μmoles in 3ml 

                                                = 0.160 μmoles in 3ml  

Therefore, in 1 litre 0.160/ 3×1000 μmoles 

                  = 5.33×10-5  M 
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 ODmax = εmax × c × l      = 6.37×10-1/ 5.33×10-5  M 

                        = 1.19x104 L M-1 cm-1 

 Log εmax   = 4.07 

 

(4d): 

Product weight 4.63  

Concentration:  20 μl taken from a deutero methanolic solution containing: 

4.63 mg / 600 μl CD3OD  

Therefore, 4.63 × 20 / 600   = 154 μg / 20 μl CD3OD 

 But 154 μg (20 μl) is added to 3ml EtOH 

Therefore, concentration is 154/ 956.24 μmoles in 3ml 

                                                = 0.161 μmoles in 3ml  

Therefore in 1 litre 0.161 / 3 × 1000 μmoles 

               = 5.36 × 10-5  M     

 

 ODmax = εmax × c × l                = 9.27×10-1/ 5.36×10-5  M 

                                    = 1.72×104 L M-1 cm-1 

Log εmax               = 4.2 

 

 

(4e): 

 

Concentration:  20 μl taken from a deutero methanolic solution containing: 

5.24 mg / 600 μl CD3OD  

Therefore, 5.24 × 20 / 600   = 175 µg / 20 μl CD3OD 

 But 175 μg (20 μl) is added to 3ml EtOH 
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Therefore, concentration is 175/ 959.38 μmoles in 3ml 

                                                = 0.182 μmoles in 3ml  

Therefore in 1 litre 0.182 / 3 × 1000 μmoles 

               = 6.06 ×10-5  M 

 

ODmax = εmax × c × l   = 9.85 ×10-1/ 6.06 ×10-5  M 

                                    = 1.63 × 104 L M-1 cm-1 

Log εmax    = 4.2 

  

8AMP. cAMP: 

Concentration: 200 μl of stock (1.76 mg in 1 ml H2O) contains 0.352 mg of nucleotide.  This 

is diluted in H2O to 10 ml. 

Therefore, 0.352 mg in 10 ml (H2O) =35.2 mg/L 

     =35.2 / 443.39 mmol L-1 

     =0.079 mmol L-1 

     =0.79 × 10-4 mole L-1 

    

εmax = ODmax = × c × l   = 1.23 ×10-1/ 0.79 ×10-5 M 

                                    = 1.6 × 104 L M-1 cm-1 

Log εmax     = 4.2 

  

 

3. Reverse Transcriptase Assay  

 

 

(4a):    

A 10-4 M solution of N-Trityl-phenylalanine (in final 60 μl), requires the addition of 6 μl of a  

10-3 M stock solution in DMSO solution.  
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Therefore, 878.33 g/mol × 10-3 M      = 0.878g/L 

     = 878.95 mg/ L 

     = 878.95 μg/ml 

     = 878.95 μg/ 1000 µl 

 

For 6 µl, we require    = 878.95 /1000 × 6 μl 

     = 5.26 μg      

    

A stock solution of 87.833 µg / 100 µl in DMSO is made. But we have our stock in 

deuteromethanol (CD3OD) of 3.18 mg/ 600 μl. 

Therefore, 87.833 μg / 3180 μg × 600 μl  

            = 

 

 

 (4b): 

 

A 10-4 M solution of N- Trityl-Fl-phenylalanine (in final 60 μl), requires the addition of 6 μl 

of a 10-3 M stock solution in DMSO. 

Therefore, 886.41 

886.90 g/mol × 10-3 M      = 0.88641 g/L           

     = 886.90 mg/ L 

     = 886.90 μg/ml 

     = 886.90 μg/ 1000 µl 

 

For 6 μl, we require    = 886.41 /1000 × 6 μl 

     = 5.31 μg 

16.57 μl of the deutero methanolic solution is 

evaporated and the residue is dissolved in 100 μl 

DMSO (Stock solution) 
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A stock solution of 88.64 μg / 100 μl in DMSO is made. But we have our stock in 

deuteromethanol (CD3OD) of 4.61 mg/ 600 μl. 

Therefore, 88.69 μg / 4610 μg × 600 μl  

=  

 

 

 

(4c): 

 

A 10-4 M solution of N- Trityl-F-phenylalanine (in final 60 μl), requires the addition of 6 μl 

of a 10-3 M stock solution in DMSO. 

Therefore, 913.30 g/mol × 10-3 M     = 0.9133g/L 

     = 913.3 mg/ L 

     = 913.3 μg/ml   

     = 913.3 μg/ 1000 µl 

 

For 6 μl, we require    = 913.3 /1000 × 6 μl 

     = 5.47 μg 

 

A stock solution of 91.33 μg / 100 μl in DMSO is made. But we have our stock in 

deuteromethanol (CD3OD) of 4.35 mg/ 600 μl. 

Therefore, 91.33 μg / 4350 μg × 600 μl  

            =  

 

                      

 

 

11.53 μl of the deutero methanolic solution is 

evaporated and the residue is dissolved in 100 μl 

DMSO (Stock solution) 

 

12.59 μl of the deutero methanolic solution is 

evaporated and the residue is dissolved in 100 μl 

DMSO (Stock solution) 
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(4d):  

 

A 10-4 M solution of N- Trityl-Br-phenylalanine (in final 60 μl), requires the addition of 6 μl 

of a 10-3 M stock solution in DMSO. 

Therefore, 956. 24 g/mol × 10-3 M    = 0.95624 g/L 

     = 956.86 mg/ L 

     = 956.86 μg/ml 

     = 956.86 μg/ 1000 µl 

 

For 6 μl, we require    = 956.24 /1000 × 6 μl 

     = 5.73 μg 

 

A stock solution of 95.624 μg / 100 μl in DMSO is made. But we have our stock in 

deuteromethanol (CD3OD) of 4.63 mg/ 600 μl. 

Therefore, 95.624 μg / 4630 μg × 600 μl  

            = 

 

 

(4e): 

  

A 10-4 M solution of N-Trityl-I-phenylalanine (in final 60 μl), requires the addition of 6 μl of 

a 10-3 M stock solution in DMSO. 

  

Therefore, 959.38 g/mol × 10-3 M      = 0.95938 g/L 

     = 958.7 mg/ L 

     = 958.7 μg/ml 

     = 958.7 μg/ 1000 µl 

12.39 μl of the deutero methanolic solution is 

evaporated and the residue is dissolved in 100 μl 

DMSO (Stock solution) 
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For 6 μl, we require    =959.38 /1000 × 6 μl 

     = 5.75 μg 

 

A stock solution of 95.38 μg / 100 μl in DMSO is made. But we have our stock in 

deuteromethanol (CD3OH) of product 5.24 mg/ 600 μl. 

Therefore, 95.38 μg / 5240 μg × 600 μl  

            =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10.92 μl of the deutero methanolic solution is 

evaporated and the residue is dissolved in 100 μl 

DMSO (Stock solution) 
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APPENDIX B 

UV SPECTRUM OF TRITANOL 

 

 

 

 

 

Figure 4.1   

 

 

 

 

 

 

Lo
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0
 ε

 

Wavelength (nm) 

UV spectrum of tritanol showing the log10ε at specific wavelengths 

(http://webbook.nist.gov/cgi/cbook.cgi?ID=C76846&Mask=400. Accessed  

06/12/2017). 
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APPENDIX C 

 

 

 

A 

 

B 

PROTON NMR SPECTRA OF N-TRITYL-PHENYLALANYL 

CONJUGATES (4a-e) AND 8-AHA-cAMP 
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C 

   

 

 

D 
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      E 

 

 

F 

Figure 4.2 

 

1HNMR spectral analysis of 8(6-aminohexyl) aminoadenosine-3′,5′-cyclic-

monophosphate and N-trityl-phenylalanyl derivatives (A) 8-AHA-cAMP (B) 

4a (C) 4b (D) 4c (E) 4d (F) 4e.    
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Figure 4.3 Anomeric region of ribosyl moiety (C-1') in preparative sample of N-trityl-L-

phenylalanyl-8-(6-aminohexyl) aminoadenosine-cAMP (4a).  

 

 

 

 

 

 

 

C-1' proton of 8-AHA-cAMP C-1' proton of 4a 
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Figure 4.4   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1HNMR spectral analysis of the first preparative N-trityl-Cl-DL-phenylalanyl 

conjugate (4c1). 
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THE MATRIX ASSISTED LASER DESORPTION IONISATION-

TIME OF FLIGHT MASS SPECTROMETRY (MALDI-TOF) OF 

N-TRITYL PHENYLALANYL CONJUGATES 
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Figure 4.5    

 

 

 

 

 

 

 

                                                       

 

 

 

 

 

                                                                                                                      

 

 

 

 

 

MALDI-TOF mass spectra of N-trityl-phenylalanyl conjugates (4a-e) 

(A) 4a (B) 4b (C) 4c (D) 4d (E) 4e. 
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PLAGASRISM REPORT 
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