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ABSTRACT 

 

The human immunodeficiency virus (HIV) is the most powerful risk factor predisposing patients to active 

tuberculosis (TB) infection, the number one HIV-related cause of death. In South Africa (SA), 62% of TB 

patients are HIV+. The pathogenesis of both of these diseases is predominantly orchestrated by a pathogen 

driven cluster differentiation (CD) 4+ T-cell response, the nature of which is largely uncharacterised in co-

infection. This knowledge gap is especially notable in TB pleurisy, the most common form of 

extrapulmonary HIV-related TB.  

 

T-helper (Th) 17 and T-regulatory (Treg) lymphocytes are CD4+ T-cell subsets with opposing functions. 

Th17 cells are characterised by the production of pro-inflammatory interleukin (IL)-17A/F, IL-21 and IL-22, 

critical in mucosal immunity. Tregs and the lineage specific transcription factor forkhead box p3 (Foxp3) 

suppress effector lymphocyte function preventing immunopathology. Monocytes play a pivotal role in CD4+ 

T-cell polarisation by contributing to the cytokine microenvironment. Pathogen-driven alterations in 

Th17/Treg stability and function, as well as monocyte cytokine production, have been indicated in both TB 

and HIV mono-infections but have not been assessed in co-infection.  

 

We investigated Treg stability and Th17 proportion, functional characteristics and the associated cytokine 

milieu in TB/HIV pleurisy in vitro and ex vivo. We also determined the effect of a TB+HIV+ 

microenvironment on monocyte (THP-1) cytokine production and downstream Th17/Treg polarisation in 

vitro using a supernatant transfer model. Th17, Treg proportion was measured by flow cytometry. Micro 

(miR) and messenger (m) ribonucleic acid (RNA) expression was assessed by quantitative polymerase chain 

reaction. Protein levels were determined by western blotting and flow cytometry. The cytokine 

microenvironment was quantified using enzyme-linked immunosorbent assay and Bio-Plex. 

 

TB+HIV+ pleural effusion mononuclear cells (PEMCs) showed increased Foxp3 transcript expression 

(p=0.0022) but decreased protein levels (p=0.0008). MiR-155 is a direct target of Foxp3 and positively 

regulates Treg stability by repressing translation of suppressor of cytokine signalling 1 (SOCS1), conferring 

Treg IL-2 competitive fitness. TB+HIV+ pleurisy demonstrated reduced miR-155 levels (p=0.0022) and 

increased SOCS1 expression (p<0.0001). This was associated with a lower proportion of Tregs ex vivo 

(p=0.0084) and confirmed in vitro (p=0.0467). Furthermore, diminished levels of Treg characteristic 

cytokine IL-35 were observed in co-infected pleural effusion fluid (PEF) (p=0.0258), suggesting a Treg 

functional deficit. This indicates that the TB/HIV microenvironment decreases the stability and functional 

capacity of Tregs due to altered miR-155/SOCS1 dynamics. 

 

TB+HIV+ PEMCs showed a reduced frequency of Th17 cells ex vivo (p=0.0054) and in vitro (p=0.0001). 

This was not associated with alterations in polarising cytokines IL-6, IL-21 and IL-23 or signature cytokines 

IL-17A and F in PEF. Notably; however, there was upregulation of Th17 signaling molecules; IL-6 



xxvi 
 

(p=0.0022), IL-6 receptor (p=0.0247), signal transducer and activator of transcription (STAT) 3 (p=0.0022) 

mRNA, and IL-1β mRNA (p=0.0022) and protein (p=0.0008). In this study the TB/HIV microenvironment 

reduced Th17 proportion by mechanisms independent of Th17 polarising cytokines and signaling molecules 

and without alteration in the levels of IL-17A/F. 

 

TB/HIV co-infection significantly increased monocyte production of IL-1β (p=0.0217), a Th17 generating 

cytokine. Following supernatant transfer, the TB+HIV+ treated monocyte milieu stimulated significant 

polarisation of healthy CD4+ conventional T-cells into Th17 lymphocytes and Tregs (p<0.0001). However, a 

significantly greater proportion of Th17 cells (p=0.0001) was observed associated with elevated IL-17A 

intracellular protein expression (p<0.0001) and 2.278 and 8.191 fold increases in the production of IL-17A 

and IL-21 respectively. This indicates that the TB/HIV microenvironment modifies monocyte T-cell 

polarisation towards a pro-inflammatory Th17 phenotype, possibly due to increased IL-1β production. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

INTRODUCTION 

 

Tuberculosis ranks as the second leading killer globally from a single infectious agent, the first being HIV. 

South Africa has the second highest rate of new TB cases [1] and the greatest number of people living with 

human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) globally [2]. 

Consequently, 62% of TB patients are HIV positive [3, 4]. Both HIV and TB result in immune dysfunction 

and synergise to accelerate individual disease pathology [5]. The immunological consequences of 

simultaneous co-exposure to TB and HIV are largely uncharacterised. 

 

Mycobacterium tuberculosis (MTB) is the causative pathogen of TB, with an estimated 7.3-14.0% annual 

risk of infection in SA [6]. Tuberculosis is classified as a granulomatous inflammatory condition where 

effector cells accumulate at the site of mycobacterial infection to form a characteristic tubercle. This 

physically contains the infection suppressing bacterial replication and preventing dissemination resulting in 

subclinical disease. However, the granuloma also shields the bacteria from the immune system providing a 

niche of bacterial survival. Latency is considered the hallmark of protective immunity, classically attributed 

to the co-ordinated activity of the host CD4+ T-cell responses and successful in approximately 90% of 

infected individuals [7]. 

 

Primary active disease or reactivation is generally considered a failure of CD4+ T-cell immunity. However, 

rather than the absence of immune activity to explain the re-emergence of a pathogen, active TB infection 

displays areas of intense immune infiltrate [8, 9]. A contrasting school of thought ascribes active disease 

progression to MTB mediated dysregulation of the protective CD4+ T-cell response into a pathological 

productive infection. This results in necrotic liquidation of granulomas and facilitates the extracellular 

dissemination of bacilli which are expelled out of the lungs on coughing [8]. 

 

Typically, HIV causes gradual immunosuppression culminating in AIDS at a CD4+ T-cell count below 

200cells/μl. The virus primarily targets and replicates within C-C motif receptor (CCR) 5+/C-X-C motif 

receptor (CXCR) 4+CD4+ T-cells. Infection is characterised by progressive depletion of CD4+ T-cells and 

chronic immune activation resulting in exhaustion and failure of the immune system and onset of 

opportunistic infections, predominantly TB, and AIDS-related malignancies [10]. Both the innate and 

adaptive immune branches contribute to anti-HIV defence but are insufficient to eradicate the pathogen or 

maintain long term control of viral replication. Evidence indicates that T-cell responses are significant 

determinants in elite control of HIV replication, the mechanisms of which are poorly understood [11]. 

 

CD4+ T-lymphocytes form the basis of protective immunity and immunopathology in both diseases. The 

immunological implications of TB/HIV co-infection compared to mono-infections are beginning to be 

elucidated. Observations include rapid depletion and preferential HIV targeting of MTB specific CD4+ T-

cells [12], loss of HIV-specific T-cell functionality [13], increased CD4+CCR5+ expression and consequently 
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increased HIV susceptibility and enhanced viral replication [14, 15]. Taken together these findings indicate a 

conjoined MTB-HIV pathogenic manipulation of CD4+ T-cells which has not been explored in individual 

subsets.  

The CD4+ T-lymphocytes are a heterogonous population that can be broadly classified according to their 

distinct cytokine and transcription factor profiles. Th17 cells, characterised by the production of IL-17A/F, 

IL-21 and IL-22 together with the expression of CCR6 and RAR-related orphan receptor C, are a pro-

inflammatory subset of effector cells critical in mucosal immunity to bacterial and fungal infections [16]. 

Regulatory T-cells, categorised by the transcription factor Foxp3, are a suppressive subset of immune cells 

which maintain peripheral tolerance and limit pro-inflammatory responses preventing immunopathology 

[17]. An imbalance in Th17 and Treg frequency has been implicated in the pathogenesis of several diseases. 

Evidence shows pathogen driven alterations in Th17 and Treg proportion and function in both TB and HIV 

mono-infections that have not been investigated in co-infection.  
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STUDY RATIONALE AND AIMS 

 

In order to reduce the incidence and mortality of TB/HIV, improvements are mandatory in diagnostics, 

disease monitoring and treatment [1]. This requires greater understanding of pathogen driven immune 

dysfunction characteristic of both infections. The CD4+ T-cell response is a convergent point in the host 

immune response to MTB and HIV. An investigation into the MTB/HIV manipulation of CD4+ T-cells 

provides clues into the underlying mechanisms mediating pathogenesis of dual infection and gradually lays 

the foundation for novel therapeutic and prophylactic interventions, ultimately benefiting clinical disease 

management. With this aim it is imperative to measure the biological responses in TB/HIV endemic areas 

such as SA.  

 

Although TB most commonly presents as pulmonary disease, with concurrent HIV infection 40-80% of 

active TB cases are extrapulmonary [18, 19], the most common form of which is TB pleurisy [20]. Clinical 

and experimental evidence indicates that TB pleurisy provides an optimum model to elucidate 

immunological mechanisms involved in the defence against MTB in vivo. Immunity is compartmentalised in 

the pleural space [21] and is generally self-limiting, indicating effective anti-MTB activity [21-23]. 

Furthermore, it has been established that TB infection outcome is determined by localised immune responses 

which are not accurately reflected systemically [24].  

 

This study was designed to investigate the implications of TB/HIV co-infection on Th17 and Treg 

lymphocyte responses in PEMCs of a South African population. 

 

Our research objectives were: 

1. To determine the effect of TB/HIV pleurisy on Treg stability and functional characteristics in vitro and 

ex vivo. 

2. To determine the effect of TB/HIV pleurisy on Th17 lymphocyte proportion, functional characteristics 

and the associated cytokine microenvironment in vitro and ex vivo. 

3. To determine the effect of a TB/HIV co-infected micro-environment on monocyte mediated Th17 and 

Treg polarisation and the associated cytokine profile in vitro. 

 

Pleural effusion fluid samples were obtained by diagnostic pleural tap from TB pleurisy patients with 

concurrent HIV infection and compared to that from confirmed HIV seronegative patients with non-

infectious pleural effusions. The results of ex vivo assays were confirmed in vitro by treating healthy CD4+ 

conventional T-cells with PEF and assessment of the equivalent biological parameters.  
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CHAPTER 1 

 

LITERATURE REVIEW 

 

1.1   Tuberculosis 

 

1.1.1  Overview of tuberculosis 

Tuberculosis (TB) was declared a global health emergency in 1994 by the World Health Organisation 

(WHO) and has remained a major public health challenge since [25].  

 

Tuberculosis is spread by the airborne Mycobacterium tuberculosis (MTB) and acquired by inhalation of 

infected droplets. MTB passes to the lungs where the co-ordinated activity of macrophages, dendritic cells 

(DC) and cluster differentiation (CD) 4+ T-cells results in the formation of the granuloma and clinically silent 

infection. Due to host and/or MTB factors, excessive bacterial replication within the granuloma results in its 

break down with dissemination and transmission of the bacilli via the respiratory route, characteristic of 

active infection [7]. Although MTB is capable of causing primary disease, the most common manifestation 

in adults is reactivation of a pre-existing latent infection, termed post primary TB [26], with a life time risk 

of 10% [27].  

 

Most organs can be infected with MTB; however, the predominant clinical manifestation is pulmonary TB. 

When MTB has disseminated to other areas of the body, via the blood or lymphatic system, it is referred to 

as extrapulmonary TB [7].  

 

1.1.2 Epidemiology of tuberculosis 

According to WHO, in 2013 there were approximately 9 million new cases of active TB infection and 1.5 

million deaths globally. Over 95% of these deaths occurred in low- and middle- income developing countries 

such as South Africa (SA) [1]. South Africa is considered a high burden TB country with an incidence of 

450,000 in 2013, the third highest incidence rate globally and the highest rate of drug susceptible and 

resistant TB in Africa [1, 3] (Figure 1.1). It is estimated that in SA 1 person out every 100 develops active 

TB each year [1]. 
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Figure 1.1: Estimated tuberculosis incidence rates (2013) depicting the high burden in South Africa [1]. 

 

1.1.3 Morphology of Mycobacterium tuberculosis 

Mycobacterium tuberculosis is a large, non-motile rod shaped bacterium (Figure 1.2). It is a facultative, 

obligate aerobe with a slow replication rate of 16-20 hours. The bacterium ranges in length from 2-4 microns 

and 0.2 - 0.5 microns in width [28]. 

 

 

 

Figure 1.2: Scanning electron micrograph of Mycobacterium tuberculosis (15549×) [28]. 
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The cell envelope; the cell wall together with the mycobacterial inner cell membrane, is the major 

determinant of MTB virulence. The cell wall is made up of two layers - the lower layer adjacent to the cell 

membrane is composed of peptidoglycan covalently attached to arabinogalactan which in turn is esterified to 

mycolic acids, forming the mycolylarabinogalactan-peptidoglycan (mAGP) complex. The insoluble mAGP 

complex is essential for structural integrity and forms a hydrophobic barrier responsible for the viability of 

MTB and resistance to chemotherapy [29, 30] (Figure 1.3). 

 

In the upper layer, also termed the mycobacterial outer membrane, and intercalated within the mycolic acids 

of the mAGP complex are interspersed cell wall proteins and the major pathogenic free lipids. Most 

significantly these include; phthiocerol dimycocerosates (PDIM), cord factor/trehalose dimycolates or 

monomycolates (TDM/TMM), sulfolipids, phthiocerol-containing lipids, phosphatidylinositol mannosides 

(PIM), lipomannan (LM) and lipoarabinomannan (LAM). A defining feature of mycobacterium species is 

this presence of a wide diversity of these complex lipids constructing approximately 60% of the cell 

envelope [31]. Simplistically, the lipids are the signalling and effector molecules of the bacterium-host 

interaction and contribute significantly to the success of the pathogen [29, 30] (Figure 1.3).  

 

 

Figure 1.3: Two-dimensional representation of the Mycobacterium tuberculosis cell wall. Mycobacterial 

inner membrane (MIM), mycobacterial outer membrane (MOM) [30]. 
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1.1.4 The pathogenesis of tuberculosis 

Mycobacterium tuberculosis infection follows a well described set of events. Briefly, bacilli are inhaled as 

droplets from the atmosphere with the infectious dose estimated at a single bacterium. The innate immune 

response is initiated when MTB in the alveolar space is recognised by pattern recognition receptors (PRRs), 

predominantly Toll-like receptors (TLRs) on alveolar and interstitial monocytes/macrophages as well as 

local DCs, and subsequently engulfed. These antigen presenting cells (APCs) present antigen in association 

with major histocompatibility complex (MHC) class II molecules to CD4+ T-helper (Th) lymphocytes, and to 

a lesser extent in association with MHC-I and CD1 to CD8+ T-cells [7, 32].  

Up to the initiation of acquired immunity, macrophages remain relatively permissive to intracellular MTB. 

Experimental host studies identify this as a period of exponential bacterial replication [33]. Primed T-cells 

then recognise and activate macrophages to institute anti-mycobacterial killing mechanisms through the 

secretion of interferon (IFN)-γ and tumor necrosis factor (TNF)-α bringing bacterial replication under 

control, but not eradication. These pro-inflammatory cascades culminate in the remodelling of the infection 

site into the characteristic tissue nodule, the granuloma. The result is a chronic infection associated with slow 

or non-replicating bacilli and potentially progressive pathology [7, 34].  

 

1.1.4.1 Macrophages 

Macrophages play a dual role in TB infection. Mycobacterium tuberculosis targets and replicates within 

modified phagosomes of macrophages, employing a multitude of strategies to evade clearance by both the 

innate and adaptive immune systems, yet macrophages are the predominant cell responsible for MTB killing.  

 

Infected macrophages initially respond with a vigorous pro-inflammatory and anti-microbial response 

mediated by TLR signalling [35]. TLRs are key recognition molecules in the host’s innate immune system, 

TLR-2 being one of the major PRRs for detecting MTB [36, 37]. MTB has a diverse range of TLR-2 ligands 

including MTB heat shock protein 65 and 70, several types of lipoproteins (LpqH, LprA, LprG, PhoS1), 

LAM, LM, PIMs and TDM [38-40].  

 

Following MTB engulfment, alveolar macrophages enter the lung interstitium establishing a site of infection 

[41, 42]. This consequently leads to a localised pro-inflammatory cascade with production of TNF-α, 

interleukin (IL)-1, IL-6, and IL-12, together with inflammatory chemokines C-C motif ligand (CCL) 2 and 

C-X-C motif ligand (CXCL) 10 by the infected macrophage. The chemokine gradient recruits waves of 

neutrophils, natural killer (NK) cells, CD4+, CD8+ and γö T- and B-lymphocytes each producing their own 

complement of chemokines and cytokines which amplify cellular recruitment and remodelling of the 

infection site into the granuloma [26, 41-44]. Tumor necrosis factor-α, produced by macrophages and 

lymphocytes, acts in a positive feedback manner to accentuate macrophage chemokine production thereby 

emphasising immune cell accumulation and granuloma formation. Persistent TNF-α production is required to 
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sustain the chemokine gradient and therefore maintain the structure of the granuloma. Once the bacilli have 

been successfully contained and latency established, the chemokine cascade is down regulated by IFN-γ, 

produced by lymphocytes at the site of infection, through a negative feedback loop [26].  

 

1.1.4.2 Dendritic cells 

Dendritic cells play a central role in the switch from an innate immune response to acquired specific 

immunity. Bacilli are phagocytosed by DCs surveying the airways resulting in DC production of IL-12, 

upregulation of MHC class I, II and CD1 associated antigens as well as co-stimulatory molecules 

CD40/54/80/86. In conjunction, the acquisition of a motile phenotype results in the migration of DCs to the 

proximal lymph nodes where they prime naïve T-cells [45].   

 

Antigen specific T-cell responses are noted in the mediastinal lymph nodes approximately 10 days following 

aerogenic murine infection at the earliest [46, 47]. This is the rate limiting step of T-cell priming, the reasons 

for which are still unclear [48, 49]. This lag permits exponential bacterial replication producing a high 

pulmonary bacterial load at the onslaught of T-cell immunity [50]. Recent evidence shows that MTB 

infection of DCs inhibits their migration through the CCL19- C-C motif receptor (CCR) 7 gradient [51]. 

Furthermore, MTB proteins, Hip1 [52] and mannose capped LAM (ManLAM) [53, 54], have been shown to 

inhibit DC maturation, cytokine secretion and antigen presentation resulting in impaired T-cell priming and 

sub optimal inflammatory responses.  

 

1.1.4.3 CD4+ T-lymphocytes 

The specialisation of T-lymphocyte responses to produce characteristic cytokine profiles plays a central role 

in co-ordinating host immunity against MTB infection. CD4+ T-cells are essential for the control of primary 

infection and the ongoing immune surveillance of the reservoir of persistent bacilli within the granuloma 

from which reactivation originates [40]. This is illustrated by the fact that selective depletion of CD4+ T-cells 

by the human immunodeficiency virus (HIV) significantly increases TB reactivation rates to 5-10% per life 

year [27] and incidence to 25.7 per 100 persons per year, in patients with CD4+ T-cell counts below 50 

cells/μl [55]. 

 

Classically, innate immunity to MTB is superseded by an antigen specific Th1/IFN-γ response, the nature of 

which is well described. IFN-γ is a critical mediator of macrophage activation and bactericidal mechanisms. 

The induction of inducible nitric oxide synthase (iNOS) in macrophages and downstream production of 

reactive nitrogen intermediates, together with reactive oxygen species, are toxic to MTB [56-58]. 

Additionally, IFN-γ stimulates autophagic pathways in infected macrophages resulting in maturation of the 

MTB phagosome to a phagolysome and mycobacterial killing [59]. 
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More recently studies have shown that the newly identified CD4+ T-cell subtypes; pro-inflammatory Th17 

and anti-inflammatory T-regulatory lymphocytes (Tregs) are associated with immunity against MTB in 

addition to Th1. These subsets will be discussed in detail below. 

 

1.1.4.4 CD8+ T-lymphocytes 

The role of cytotoxic T-cells has been overshadowed by that of Th cells. It has been demonstrated that CD8+ 

T-cells partake in MTB infection in several ways [60, 61]: (1) Cytokine production; CD8+ T-lymphocytes 

have been identified as a source of IFN-γ and therefore mediate macrophage activation and bactericidal 

mechanisms [58, 62-64]. (2) Granule dependent cytotoxicity; both granulysin and perforin mediated 

cytotoxic activities have been implicated in the lysis of infected cells and extracellular MTB [62, 65-67]. The 

bacteria are released into the extracellular environment to be taken up by activated macrophages capable of 

killing the bacilli. However, CD8+ T-cell dysfunction has been frequently associated with active TB disease 

[68, 69].  

 

1.1.4.5 B-lymphocytes 

Classically, B lymphocytes and associated antibodies are considered to be insignificant role players in TB. 

However, humoral immunity is involved in shaping the cellular immune response to MTB including direct 

antigen presentation to T-cells, direct effects of antibody on mycobacteria, cytokine production and 

granuloma organisation [70-73], binding of antibody complex to APC Fcγ receptors influencing subsequent 

Th1/IFN-γ responses [8], macrophage activation and bactericidal mechanisms [8, 73] in an organ specific 

manner [73]. 

 

Follicle like B-cell aggregates have been demonstrated in the lungs of human and murine pulmonary TB 

infections associated with granulomatous inflammation [74-76]. The role of these B-cell centres have not 

been fully elucidated but are hypothesised to perpetuate local immune responses through cellular 

proliferation [77] as well as involvement in both B-cell maturation and antigen presentation to T-cells, 

augmenting the immune response [8, 75].  

 

1.1.5 The granuloma 

The granuloma serves to physically contain the bacilli preventing dissemination and provide a 

microenvironment of optimum and localised immune communication. This leads to inhibition of bacterial 

growth by activating macrophage bactericidal mechanisms and creating an oxygen and nutrient deprived 

environment [44].  

 

According to the central dogma, the initial granuloma consists of a core of infected macrophages surrounded 



10 
 

by additional macrophages displaying distinct morphology; multi-nucleated giant cells, epitheloid cells and 

foamy macrophages [78, 79] as well as granulocytes and other mononuclear phagocytes [9, 26, 33, 42]. In 

the early stages of granuloma development, the nodule undergoes marked neovascularisation due to the 

production of pro-angiogenic vascular epithelial growth factor by activated macrophages [80]. The blood 

vessels denote extensive lymphocyte cuffing indicating a recruitment of lymphocytes as well as dendritic 

cells and macrophages to the site of infection [80]. As the structure matures it develops a significant fibrous 

sheath of collagen and other extracellular matrix components around the macrophage rich centre. The 

lymphocytic infiltrate is excluded and aggregates around the fibrous cuff defining the periphery of the nodule 

[9, 26, 33, 42] (Figure 1.4). 

 

The granuloma has several morphologically distinct forms: solid (composed of dense aggregates of infected 

and uninfected macrophages and lymphocytes without central necrosis), neutrophilic (extensive granulocytic 

infiltrates and/or central core of suppuration) and caseous (enlarged necrosis and liquefaction of dead cells in 

the core of the granuloma which can progress to cavities, surrounded by a cuff of macrophages and 

lymphocytes) with or without fibrosis or calcification [26, 33, 81].  

 

This solid granuloma characterises the containment or clinically silent stage of infection; a period of 

stalemate when bacillary load remains constant and the infection enters latency [26, 33, 81]. As the 

granuloma progresses from solid non-progressive to active cavitary lesions, there is a decrease in the number 

of blood vessels penetrating the nodule, facilitating caseation in the hypoxic environment [26, 75, 82]. In 

addition, the killing of MTB within macrophages is suggested to be severely limited as superoxide and nitric 

oxide production by macrophages is inhibited by hypoxia resulting in uncontrolled bacterial replication 

anticipating granuloma break down and dissemination [83]. 
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Figure 1.4: The life cycle of Mycobacterium tuberculosis [84].  

 

Retrospective histological studies of patients with active disease show marked heterogeneity in granuloma 

progression seen in a single host. This indicates differential immunological processes occurring separately at 

each site [26, 85-87] and suggesting that TB progression from latent to active infection is a dynamic 

evolution determined locally at the granuloma [33].  

 

An alternate school of thought suggests that MTB drives the development of the granuloma in order to 

physically separate its self within the infected macrophages at the centre from the activated lymphocytes on 
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the outskirts of the fibrous capsule. In this way the isolated central core serves as a site of bacterial expansion 

[76, 88-92]. The core of the granuloma is not considered to be the dominant site of immune action but the 

peripheral cellular infiltrates composed of APCs and lymphocytes, resembling secondary lymphoid organs, 

potentially orchestrate the immune response [33, 77] (Figure 1.4).  

 

The mycobacterial proteins and lipids have an established granulomatous effect; MTB 6-kDa early secretory 

antigenic target (ESAT-6) [88] and PIM2 [93], induce matrix metalloproteinase (MMP)-9 expression in 

pulmonary epithelial cells neighbouring infected macrophages promoting recruitment of macrophages [94]. 

In addition LM, LAM, TDM/TMM and PIMs are known to induce chemokine and pro-inflammatory 

cytokine production from mononuclear cells through pattern recognition receptors such as TLR-2 [90, 95-

100]. These granulomatous effects provide an accumulation of uninfected host macrophages with suboptimal 

activation, allowing for continued mycobacterial persistence in the core while physically separated from the 

bactericidal activity of lymphocytes [89, 90]. 

 

1.1.6 Immune evasion strategies 

Mycobacterium tuberculosis survives and replicates within macrophages establishing chronic persistent 

infection. This is achieved by arresting phagolysosome biogenesis thereby restricting the unfavourable 

intracellular environment, preventing host effector mechanisms and shielding MTB from antigen processing 

pathways.  

 

A feature of phagosome maturation is acidification (pH5.0 and lower) of the phagosome lumen. The acidic 

environment inhibits bacterial activity, optimises the activity of hydrolytic proteases, ensures correct 

vesicular trafficking and phagosome-lysosome fusion events and degradation of the pathogen into 

components for antigen processing and presentation, ultimately resulting in activation of the cell mediated 

immune response. Acidification is achieved by the recruitment of V-ATPases to the phagosome which 

actively pump hydrogen ions across the phagosome membrane. In vitro and in vivo studies observed that 

MTB containing phagosomes acidify to a minimum of pH6.4 and subsequently fail to fuse with lysosomes 

[101-104]; MTB has been shown to exclude V-ATPases from the phagosome membrane preventing 

acidification [105]. This is mediated by a MTB protein tyrosine phosphatase, PtpA, which binds to subunit H 

of the macrophage V-ATPase inhibiting the trafficking of vesicles containing the V-ATPase complex to the 

phagosome [106].   

 

Arrest of phagosome-lysosome fusion has been shown to occur due to a failure in early endosomal Rab5 to 

late endosomal Rab7 conversion, preventing completion of endosomal sorting and membrane trafficking. 

Rab conversion occurs through a calcium/calmodulin/calmodulin kinase II dependent phosphatidylinositol-3-

kinase (PI3K)/phosphatidylinositol-3-phosphate (PI3P) pathway. This cascade mediates the recruitment of 

the Rab5 effector early endosomal antigen 1 (EEA1) to the phagosome triggering the fusion of phagosomes 
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with late endosomes. Several bacterial products are observed to be involved; LAM has been shown to 

interfere in the calcium fluxes required for this pathway consequently inhibiting it [107]. ManLAM has been 

shown to block the calcium/calmodulin recruitment of PI3K to the phagosome preventing PIP3 generation 

and EEA1 acquisition [102, 108-110]. A bacterial PI3P phosphatase, SapM, degrades any PI3P which evades 

the ManLAM block [102, 111, 112]. The combined effect is inhibition of phagolysosome biogenesis.  

 

Macrophage lysosomes are the convergent step between phagocytic and biosynthetic pathways where 

antigens are processed and complexed with MHC molecules for presentation to T-cells [113]. Accumulation 

of MTB components in acidic late endosomal compartments optimises processing. The MTB phagosome has 

limited acidification and hydrolytic activity and therefore a suboptimal capacity to process antigens [114]. 

The inhibition of phagolysosome biogenesis not only avoids MTB destruction by hydrolytic proteases but 

also presentation and recognition by primed T-cells [115, 116]. Despite this, cytokine mediated activation of 

the macrophage is sufficient to overcome MTB mediated phagosome modulation; the phagosome acidifies to 

pH5.2 with subsequent bactericidal actions and fusion with the lysosome mediated by members of the IFN-

inducible p47 GTPase family [117, 118]. 

 

1.1.7 Transmission 

Several factors affecting T-cell and/or macrophage function have been associated with an increased risk of 

developing active TB [25] including HIV co-infection [119], diabetes mellitus [120], renal impairment [121], 

TNF-α antagonist therapy [122], cancer [123], alcohol abuse [124] and tobacco use [125].  

 

1.1.7.1 Breakdown of the granuloma 

Preceding research dictates that active infection advances from failure to contain infection within the 

granuloma due to impairment of the host immune response, specifically CD4+ T-cell responses. In 

accordance, HIV co-infection is the strongest known risk factor for immediate (primary) and delayed (post 

primary) progression from latent to active disease [119]. By this model, excessive bacterial replication 

results in progressive necrosis followed by caseation, liquidation of the granuloma and cavitation into the 

bronchi releasing bacilli. This necessitates development of a productive cough resulting in aerosol 

transmission of infectious MTB [7, 26].  

 

Mycobacterium tuberculosis evades the immune response to allow persistent infection but simultaneously 

promotes sufficient immunopathology to ensure its transmission [126]. A more recent school of thought 

suggests that MTB dysregulation of host lipid synthesis and lipid accumulation is pivotal in transition from 

latent to active infection, magnified by dysregulation of CD4+ T-cell responses. Histological analysis of 

biopsies from patients with untreated TB demonstrated that reactivation originated from areas of lipoid 

pneumonia. Within these areas there was sequestration of abundant lipid rich macrophages, termed foamy 
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macrophages (FMs) [79, 127, 128]. Furthermore, infection was restricted to the FM and bacilli were 

predominantly found within the lipid droplets. Cavities originated from tuberculosis pneumonia in 

individuals who had no histological evidence of caseating granulomas [79, 127, 128]. Whereas previously, 

tuberculosis pneumonia was regarded as a consequence of cavitation, it is now considered as the origin 

[127]. 

 

Mycolic acids form a significant and characteristic component of MTB, constituting 40-60% of its dry 

weight [129]. Recently it has been demonstrated that FM generation is specifically induced by oxygenated 

mycolic acids (oxygenated ketomycolic) and hydroxyl mycolic acids, of virulent mycobacterial strains [79].  

 

The FM is in its self a pro-inflammatory cell [130]. It is indicated as a key player in sustaining persistent 

bacterial infection and dysregulating T-cell responses driving pathology leading to necrotic cavitation and 

transmission [33]. FMs show reduced ability to mediate phagocytosis, accompanied by diminished anti-

mycobacterial mechanisms [79], lowered antigen processing capacity through down regulation of CD40 and 

MHC II expression [131], increased Fas/Fas ligand mediated Th1 apoptosis [132], as well as production of 

high levels of iNOS resulting in T-cell hypo-responsiveness [133].  

  

Mycobacterium tuberculosis induced FMs displayed an elevated continual secretion of TNF-α, a strong 

inducer of necrosis [79]. In a series of human biopsy samples FMs were only observed in necrotic lesions 

and their presence correlated to the onset of necrosis, systematically located at the interface between the 

histiocytes and the necrotic core [33, 79, 127, 128]. The spatial and temporal relationship between FMs and 

the necrotic centre of the granuloma suggests a causal association.  

 

Together these findings indicate a bacterial driven role of FMs preventing macrophage intracellular killing 

with simultaneous suppression of T-cell responses resulting in sheltering of MTB and facilitating 

persistence. This MTB mediated suppression of cell mediated immunity accentuates necrotic loss of 

granuloma structure leading to excessive bacterial replication and transmission [79, 128]. 

 

1.1.7.2 Host cell death 

Virulent MTB survive within macrophages by preventing apoptosis, phagosome maturation and antigen 

processing creating a niche where bacteria remain metabolically active and capable of replication [134]. 

However, MTB would benefit from cell death once a high intracellular bacterial load has been reached 

allowing for dissemination of the bacilli. Necrosis is the preferred MTB exit strategy, promoting 

inflammation and disease progression [135-137].  

 

MTB has been shown to cause plasma membrane microdisruptions in the infected macrophage. Repair of 

these lesions by exocytosis of endomembranes is required for preventing necrosis and promoting apoptosis. 

This is achieved by the fusion of golgi and lysosome derived vesicles with the plasma membrane, the process 
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being dependent on prostaglandin E2 (PGE2) [138]. In the late stages of infection, macrophages infected 

with virulent MTB strains preferentially synthesise lipoxin A4 (LXA4) which inhibits apoptosis and 

promotes necrosis shielding the MTB from the innate immune system. The production of LXA4, which 

blocks PGE2 biosynthesis by down regulation of cyclooxygenase 2, is a natural anti-inflammatory immune 

mechanism. This is exploited by pathogenic MTB at the infection site, inhibiting plasma membrane repair, 

driving inflammation and necrosis [138, 139]. Necrotic death of FMs within the granuloma leads to the 

accumulation of lipid debris at the core of the liquefying granuloma forming the caseum [33]. 

 

1.1.8 Tuberculosis pleurisy 

Although TB most commonly presents as pulmonary disease, with concurrent HIV infection, 40-80% of TB 

is extrapulmonary [18, 19]. TB pleurisy is considered an early manifestation of TB [18], the initial presenting 

factor in approximately 25% of cases [140] and the most common form of HIV-related extrapulmonary TB 

[20]. Furthermore, TB pleurisy is the most common cause of pleural effusions in TB endemic areas [20, 141, 

142] such as SA. 

 

A TB pleural effusion (TPE) is a consequence of MTB infection of the pleura characterised by a chronic 

accumulation of inflammatory cells in the pleural cavity [143]. This can be the result of either primary 

infection or reactivation and is thought to be due to the breakdown of small subpleural caseous granulomas 

that release their contents into the pleural space. This is followed by acute inflammation resulting from a 

delayed hypersensitivity reaction to MTB antigens mediated by CD4+ T-lymphocytes. This 

compartmentalised inflammatory reaction increases the permeability of pleural capillaries which, together 

with reduced lymphatic drainage, results in the formation and accumulation of pleural fluid in the pleural 

cavity. In the initial stages of this process neutrophils dominate the pleural space; however, soon after T-

lymphocytes become the chief cell type [143, 144]. TB pleurisy may cause the localised deposition of 

inelastic fibrotic tissue on the visceral pleura hindering lung expansion and resulting in a negative pleural 

space pressure permitting the development of a chronic pleural effusion [143].  

 

The TPE most commonly manifests as an acute or sub-acute condition with pyrexia, cough (productive or 

non-productive potentially with the expectoration of blood), shortness of breath and pleuritic chest pain in 

over 70% of patients [145]. Other constitutional symptoms include night sweats, weight loss, generalised 

weakness, malaise and dyspnoea varying in grade according to the magnitude of the effusion [143]. Upon 

examination of chest radiographs, TPEs are typically unilateral, small to moderate in size, loculated and 

serous in appearance with or without pulmonary parenchymal changes [18, 146]. This may be associated 

with tracheal and mediastinal shift away from the TPE, decreased chest movement and dullness on 

percussion on the side of the TPE [20]. 
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Definitive diagnosis of TPE is based on the demonstration of bacilli in the sputum, pleural fluid or pleural 

biopsy specimens [147, 148] by acid fast staining (Ziehl-Neelsen, Auramine) and mycobacterial culture 

regardless of parenchymal or pulmonary involvement [143, 148]. Within the appropriate clinical context a 

reasonably certain diagnosis can also be based on the demonstration of granulomas in the parietal pleura 

[143] and a raised pleural fluid adenosine deaminase level above 30-40U/L [20, 143, 149], even among HIV 

positive individuals with low CD4+ T-cell counts [150]. Frequently pleural fluid analysis allows for the 

presumptive diagnosis of TPE, this invariably demonstrates a straw coloured exudative effusion with a 

lymphocytic predominance [148, 151], a protein concentration greater than 3-5g/dl (more than 70% of cases) 

[20, 140], glucose level below 60mg/dl (greater than 25% of cases) and a pH of less than 7.2 (greater than 

10% of cases) [140]. 

 

TB/HIV co-infected patients may present with typical TB symptoms; however, more often these patients are 

minimally symptomatic, with less specific symptoms or asymptomatic [152].  

 

1.1.9 Treatment of tuberculosis 

According to the South African National Tuberculosis Treatment Guidelines 2014 and the WHO guidelines 

2010, uncomplicated extrapulmonary TB is generally treated in the same manner as pulmonary TB: For 

newly and previously treated adults and children older than 8 years of age and above 30kg in weight, TB 

treatment is started with four first line drugs – isoniazid, rifampicin, pyrazinamide and ethambutol for a two 

month intensive phase. This reduces the number of viable bacilli and renders the patient non-infectious 

within 10-14 days. Approximately 90% of mycobacteria are killed within the first week of treatment. With 

fewer bacilli the risk of acquired drug resistance decreases and so a 4 month continuation phase is instituted 

with two drugs – isoniazid and rifampicin. The sterilising activities of these drugs eliminate remaining bacilli 

preventing relapse (Figure 1.5). This regime is also instituted in TB/HIV co-infection in antiretroviral (ARV) 

naïve patients [20, 153]. 
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Figure 1.5: First line drugs in the treatment of drug susceptible tuberculosis [154]. 

 

1.1.10 Drug Resistance  

Mycobacterium tuberculosis acquires drug resistant mutations in a sequential manner due to cellular 

mechanisms and external factors. Most significantly, suboptimal therapy predominantly due to monotherapy, 

inadequate dosage, treatment interruptions and drug interactions [25].  

 

Multi-drug resistant TB (MDR-TB) is defined as resistance to two of the four first line drugs, isoniazid and 

rifampicin. Extensively drug resistant TB (XDR-TB) is defined as resistance to any fluoroquinolone and at 

least one of the 3 of the second line drugs (capreomycin, kanamycin and amikacin) in addition to isoniazid 

and rifampicin [155, 156]. Totally drug resistant TB (T/XX DR-TB) is a strain of MTB showing resistance to 

all first and second line TB drugs used, although the terminology is still to be fully defined [25, 157, 158]. 

Treatment and clinical management is complicated by lengthier, prohibitively expensive, more toxic and less 

effective treatment regimens with inadequate success rates [159]. 

 

According to WHO, drug resistant TB is rising with approximately 210,000 deaths and 480,000 new MDR-
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TB cases in 2013. An estimated 9.6% of these are XDR-TB with a mortality rate of 44-49% [1]. However, 

these figures are thought to be significantly underestimated across sub-Saharan Africa, Asia and Eastern 

Europe due to the lack of capacity and availability of drug resistance testing facilities, inconsistent testing 

methods and inadequate treatment [25, 159-161]. During 2013, in SA 1.8% of new cases and 6.7% of 

retreatment cases were reported to have MDR-TB, with the second highest number of reported XDR-TB 

cases globally [1]. Furthermore, in 2013 SA became one of four countries reporting cases of T/XXDR-TB 

[162].  

 

Drug resistant TB is exacerbated by convergence with HIV infection. In a South African study by Gandhi et 

al, of 53 patients diagnosed with XDR-TB 44 were tested for HIV and all were co-infected, 52 of which died 

with a median survival of 16 days from diagnosis [155]. Further studies have shown a 70-90% HIV co-

infection in MDR-TB patients [163-165] and 98-100% in XDR-TB [165] with 80% [166] and 98% [155] 

mortality in XDR-TB reported.  

 

1.2 Human immunodeficiency virus infection 

 

1.2.1 Overview of  human immunodeficiency virus infection 

HIV is a retrovirus of the lentivirus genus and Retroviridae family, transmitted in certain bodily fluids. The 

virion was identified in 1983 as the causative agent of acquired immunodeficiency syndrome (AIDS) [167, 

168]. Infection is characterised by progressive CD4+ T-cell depletion and chronic immune activation 

resulting in immunodeficiency, immune exhaustion and the onset of opportunistic infections and 

malignancies [10].  

 

1.2.2 Epidemiology of human immunodeficiency virus/acquired immunodeficiency syndrome 

As of 2014 an estimated 36.9 million individuals were living with HIV infection worldwide, with 

approximately 2 million new infections (5,480 daily) and a mortality of 1.2 million during this period. Sub-

Saharan Africa is the most affected accounting for 70% of infections globally [169]. In 2013, SA had the 

highest number of individuals living with HIV infection (6.8 million), new infections (340,000), and the 

second highest number of AIDS-related deaths (140,000) [2] (Figure 1.6). 
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Figure 1.6: Prevalence of human immunodeficiency virus infection (2014) depicting the high burden in 

South Africa [169]. 

 

1.2.3 Human immunodeficiency virus strains and subtypes  

HIV is a zoonotic virus originating in West and Central Africa from multiple transmissions of the simian 

immunodeficiency virus from non-human primates [170]. HIV-1 and HIV-2 are two distinct viruses; HIV-1 

predominates globally while HIV-2 is relatively uncommon, mainly restricted to West Africa, is less 

infectious and presents with slower disease progression [10, 171]. In this thesis, HIV refers to HIV-1. 

 

There are four strains of HIV-1 originating from three individual transmission events from chimpanzees (M, 

N and O) and one event from gorillas (P). Strains N, O and P are restricted to West Africa. Strain M is 

responsible for the global HIV pandemic and is composed of nine genetically distinct subtypes: A-D, F-H, J 

and K. In addition, the subtypes can combine genetic material to form a hybrid virus termed a circulating 

recombinant form, the frequency of which is increasing worldwide. Subtype C is prevalent in Africa and 

India accounting for approximately 48% of infections globally during 2004-2007. Subtype B is 

predominately found in Western Europe, North and South America and Australia accounting for 11% of 

infections in the same period [10, 171].  
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HIV-1 displays marked genetic diversity and rapid evolution, contributing in a large part to the success of the 

virus. This is a result of a high rate of replication and mutations caused by the error prone viral reverse 

transcriptase [172], transcriptional inaccuracy by host ribonucleic acid (RNA) polymerase II and 

ABOBEC3G/F mediated G-to-A hyper mutation [173]. An infected and untreated individual has a plasma 

viral load of approximately 104-105copies/ml with a turnover rate of ~1010/day [174]. This results in 10 

mutations with every replication cycle of the viral genome repeated in thousands of generations over the 

course of infection in a large quasi-species population. Consequently, the virus can evolve rapidly in 

response to selective pressures with the rise of a genetically distinct HIV-1 population every few years [173, 

175, 176].  

 

1.2.4 Morphology, morphogenesis and replication of human immunodeficiency virus-1 

Mature HIV-1 is spherical virion with a diameter of approximately 120nm. It consists of a lipid bilayer 

membrane, with envelope (Env) glycoprotein (gp) spikes and an inner layer of matrix proteins (MA). This 

surrounds a characteristic conical fullerene core housing the rinonucleoprotein (RNP) complex of 

nucleocapsid (NC), viral RNA and viral enzymes (protease (PR), reverse transcriptase (RT), integrase (IN), 

Vpu, Vif, Vpr, Nef, Tat and Rev ) [175, 177]. The viral genome consists of two identical single-stranded 

RNA molecules (9.2kb) within the viral particle and a pro-viral double stranded deoxyribonucleic acid 

(DNA) within the infected host cell [177] (Figure 1.7). 

 

 

Figure 1.7: The structure of the mature human immunodeficiency virus-1 virion [178]. 
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The initial step in the HIV-1 replication cycle (Figure 1.8) is host cell attachment and viral entry, for which 

HIV-1 uses a two-receptor model. The Env glycoprotein is a heterodimer of external gp120 covalently linked 

to the transmembrane domain, gp41, organised in triangular symmetry [179]. Env has an affinity for CD4 

receptors and traffics HIV-1 to CD4+ T-cells. The binding of the extracellular domain of gp120 to CD4 

initiates a conformational change in gp120 allowing subsequent binding to a chemokine co-receptor; CCR5 

or C-X-C motif receptor (CXCR) 4 [180]. The expression of these receptors on the surface of lymphocytes, 

monocytes, macrophages and DCs are the major determinants of tropism and target cell populations. 

CD4/co-receptor ligation triggers additional conformational changes in Env permitting gp41 to fuse with the 

host cell membrane Following fusion, the viral core is released into the cytoplasm of the newly infected cell 

to initiate replication [176, 177]. 

 

Uncoating of the viral capsid is facilitated by MA, Nef and Vif together with host-derived cellular factors. 

The single stranded viral RNA is then reverse transcribed by HIV-1 RT, a RNA-dependent DNA 

polymerase, into full length double stranded pro-viral DNA. The pro-viral DNA is transported in the pre-

integration complex to the nuclear envelope and is actively transported through the nuclear pore under the 

guidance of Vpr [181]. Before integration, the pro-viral DNA is present in the host cell nucleus in three 

forms – linear, 1-long terminal repeat (LTR) or 2-LTR circles. Nef, Tat and Rev are produced in basal 

amounts by the activation of the LTR promoter region by host cellular factors, including nuclear factor –κB 

(NF-κB) [182]. In the host cell nucleus HIV-1 IN catalyses the integration of the viral genome into the host 

chromosomes [176].  

 

Following integration, cellular RNA polymerase II transcribes pro-viral DNA. However, elongation of the 

viral transcript requires binding of HIV-1 Tat to the HIV-1 trans-activation response element (TAR) [183]. 

In the early stages of replication only multiply-spliced messenger ribonucleic acids (mRNAs) are generated 

together with the expression of Tat, Nef and Rev. Once sufficient levels of Rev are achieved, non- or singly-

spliced mRNAs are produced. HIV-1 mRNAs are then transported to and translated by cytoplasmic 

polysomes to produce viral proteins and RNA [184].  

 

Genomic env is translated into the precursor protein gp160, glycosylated within the endoplasmic reticulum, 

transported to and inserted into the host cell membrane. Gag-pol is translated to produce Gag polyprotein, 

and a ribosomal -1 frameshift during translation produces the Gag-Pol polyprotein. Gag is the source of 

structural proteins for the assembly of the mature virion while Gag-Pol contains the viral enzymes PR, RT 

and IN. At this point Gag and Gag-Pol polyproteins traffic to the plasma membrane for assembly and 

budding of new virions [177]. 
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Figure 1.8: The life cycle of human immunodeficiency virus-1 [185]. 

 

In the process of replication HIV-1 assembles into two morphologically distinct immature and mature forms 

(Figure 1.9). HIV-1 is initially budded and released from the infected host cell as a non-infectious donut 

shaped immature virion. The immature virion is composed of a cellular derived bilayer lipid envelope, and 

an inner layer of radially extended Gag poly-proteins. Gag is the construction machine of HIV-1 which 

performs and integrates all of the activities required for HIV-1 assembly [173]. Following translation, the N-

terminal MA domain targets Gag to the host cell plasma membrane and binds directly to the inner leaflet by 

insertion of myristoyl group into the lipid bilayer and by the basic patch which binds acidic phospholipids, 

notably phosphatidylinositol-(4,5)-biphosphate [186]. During viral assembly and budding Nef, Env and Vpu 

are involved in the downregulation of CD4 on the host cell membrane preventing interaction with newly 

formed gp120 [177]. 
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During budding or immediately after release, HIV-1 reorganises the inner morphology of the immature 

virion through a process of maturation, RNA dimer stabilisation and acquisition of infectivity [173, 175, 

187]. Mature HIV-1 structural proteins are derived from the Gag poly-protein which is composed of four 

domains (MA (matrix protein or p17), CA (capsid protein or p24), NC (nucleocapsid or p7) and p6) and two 

spacer peptides (SP1, SP2)) thus containing 5 proteolytic cleavage sites (Figure 1.9). Budding results in 

activation of viral PR which cleaves Gag at these sites to produce a new set of viral proteins. These proteins 

then reassemble to form the characteristic morphology a mature HIV-1 virion. The MA remains associated 

with the inner viral membrane to form the matrix layer, NC coats the stabilises the dimeric viral RNA and 

condenses at the centre of the core to form the nucleocapsid, and approximately 1500 copies of CA assemble 

by their N-terminals into hexameric rings to form the core that surrounds the RNP complex [175, 177]. 

 

 

 

Figure 1.9: The immature and mature human immunodeficiency virus-1 virions and domains of the Gag 

polyprotein [188]. 

 

1.2.5 Transmission 

HIV-1 is transmitted in certain bodily fluids (blood, pre-seminal fluid and semen, rectal fluids, vaginal fluids 

and breast milk) when the source comes into contact with a mucous membrane, damaged tissue or direct 

contact with the blood stream. The routes of exposure include first and foremost sexual, vertical mother-to-

child (during pregnancy, delivery and breastfeeding) and intravenous transmission (shared needles such as in 

intravenous drug use, needle stick injuries, infected blood transfusion). Generally HIV-1 transmission rates 

are low ranging from 0.001 to 10% per exposure [189, 190]. Viral load is the most significant factor 

increasing the risk of transmission, with a 2.4 fold greater risk for every log10 increase [191].  
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1.2.6 The course of human immunodeficiency virus-1 infection 

The pathogenesis of HIV-1 can be divided into four stages; an eclipse phase, acute infection, asymptomatic 

chronic infection and AIDS (Figure 1.10).  

Infection begins with the transmission of a single founder virus. During the eclipse phase (~1-2 weeks), HIV-

1 initiates focal replication in proximal CD4+ T-cells moving to proximal lymphoid organs and then 

establishing systemic infection through extracellular diffusion, DC transport or T-cell migration. Viremia is 

undetectable without presentation of an immune response or clinical symptoms [190, 192].  

 

This is followed by acute infection (~2-4 weeks) during which there is a spike in viral replication with 

plasma viral loads reaching up to 108 copies/ml, and consequently the highest risk of transmission during the 

course of infection [193]. This period is characterised by high numbers of infected cells in the blood and 

lymph nodes, a transient decrease in peripheral CD4+ T-cells, a significant increase in markers of immune 

activation as well as marked induction of inflammatory cytokines and chemokines. Killing of productively 

infected cells is mediated by HIV-specific CD8+ T-cells (cytolysis and Fas mediated apoptosis) in response 

to HIV-1 antigens expressed on infected cells in association with MHC-I [10, 192]. The advantage of the two 

step replication model employed by Tat and Rev is the postponement of viral protein synthesis to minimize 

exposure to CD8+ T-cells and maximise viral production per cell [192]. At approximately three months there 

is production of HIV neutralising antibodies mediating phagocytosis of infected cells. The innate immune 

response is also essential for viral control during this time and is largely meditated by NK cells. Both the 

adaptive and innate immune responses select for the emergence of mutations in key viral epitopes leading to 

immune escape [10, 192]. 

 

The control of replication and exhaustion of activated target cells results in a temporal sharp decrease in 

plasma viral load by 100-fold or more to a set-point [10, 11, 192]. This value varies from below detectable 

limits of <40 copies/ml in elite controllers (patients who naturally control viral replication similar to the 

levels of patients on ARVs) to >10,0000 copies/ml [11, 194]. Clinically, in approximately half of infected 

individuals, this period can be characterised by flu-like symptoms termed acute retroviral syndrome [10, 

192]. 

 

This is followed by asymptomatic chronic infection or clinical latency (~1-20 years) where HIV-1 exists in a 

quasi-steady state with the host. This period is represented by a constant or gradually rising level of viremia 

with concurrent progressive exhaustion of HIV-specific T-cells; characterised by increased expression of 

programmed death 1 (PD-1) and loss of effector function [192]. Without treatment, HIV generally progresses 

to AIDS within 7-10 years. As the final stage, AIDS is diagnosed when a patient has a CD4+ T-cell count 

below 200 cells/μl and is characterised by opportunistic infections (predominately TB) and viral-related 

malignancies (non-Hodgkin’s lymphoma and Kaposi’s sarcoma). There is loss of control over viral 

replication and viremia increases with a mortality of over 95% if untreated [10, 11, 192]. 
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Figure 1.10 The natural history of untreated human immunodeficiency virus-1 infection [10]. 

 

1.2.7 CD4+ T-cell depletion and immune dysfunction 

The initiating HIV-1 founder virus has distinct phenotypic characteristics including CCR5 tropism and the 

requirement of high surface expression levels of CD4. This lends CD4+CCR5+ central and effector memory 

T-cells as the preferred target population. As the infection progresses the HIV-1 Env protein undergoes 

mutational and conformational evolution allowing HIV-1 to enter cells using CXCR4 and lower expression 

levels of CD4 representing the extension of infection into new cell types [195].  

 

A characteristic hallmark of HIV infection is the progressive reduction in circulating CD4+ T-cells by a 

combinatorial effect of reduced capacity to generate and support T-cell function and increased destruction 

[11, 190]. 

 

CD4+ T-cells are eradicated by direct cytopathic infection, HIV-specific CD8+ T-cell and antibody mediated 

killing of infected cells as well as bystander effects including syncytia formation, chronic immune activation 

and subsequent senescence [10, 190, 192]. Several viral proteins have been attributed apoptotic effects; host 

cell surface expression of Env mediates syncytium formation [190] and a proteolytic fragment of caspase 8, 

Casp8p41 produced by viral proteases induces apoptosis through the Bcl-2 associated X protein (Bax)/Bcl-2 

homologous antagonist/killer (Bak) and caspase 9 mitochondrial pathway [196]. 

 

Concurrently, HIV-1 replication causes the activation of APCs through ligation of innate immune receptors 

and the consequent production of pro-inflammatory cytokines and the recruitment and accumulation of HIV-

specific effector cells. This pro-inflammatory environment promotes central memory T-cell proliferation 

increasing the HIV target cell population [11]. Finally, chronic inflammation results in collagen deposition 
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and progressive fibrotic damage to the fibroblastic reticular cell network, the predominant source of T-cell 

survival factor IL-7 further accentuating CD4+ T-cell destruction [197]. 

 

In contrast to the progressive loss of circulating CD4+ T-cells, the most notable effect on T-cell homeostasis 

occurs in the gut associated lymphoid tissue, the largest lymphoid organ in the body containing 

approximately 40% of all lymphocytes. Here, HIV results in the rapid and massive elimination of resting and 

activated CCR5+CD4+ T-cells early after infection that is not restored following ARV therapy [11, 198] 

(Figure 1.10). Further to the loss of total CD4+ T-cells, there is preferential depletion of Th17 cells essential 

in the immune defence to bacteria and critical in maintenance of the mucosal barrier [199-201]. In the 

gastrointestinal tract (GIT), T-cell depletion is accompanied by enterocyte apoptosis, breakdown of the 

intestinal epithelial barrier and enhanced barrier permeability resulting in the increased translocation of 

microbial products from the GIT into the systemic circulation contributing to systemic immune activation 

[202].  

 

1.2.8 Chronic immune activation 

A key correlate of HIV-1 progression is the chronic activation of the innate and adaptive immune systems 

with the expression of activation (CD38/HLA-DR) [203], senescence (CD57) [204] and exhaustion (PD-1) 

markers [205], hyperglobulinemia, increased circulating pro-inflammatory cytokines and activation of IFN 

responsive genes [206]. Several mechanisms have been suggested to drive this biological phenomenon 

including: (1) Direct actions of HIV as a ligand for TLR-7 and TLR-8 on plasmacytoid DCs and consequent 

IFN-α production [207]. (2) Activation of other innate receptors through capsid protein [208] or viral DNA 

[209]. (3) Microbial translocation across the GIT into the systemic circulation – lipopolysaccharide is a 

potent TLR-4 stimulator resulting in the production of pro-inflammatory cytokines IL-6 and TNF-α [202]. 

(4) Co-infection with viruses that expand activated T-cells [210]. (5) A reduced ratio of pro-inflammatory 

Th17 to anti-inflammatory Tregs [200], as well as (6) homeostatic mechanisms driving proliferation to 

restore depleted lymphocyte populations [11].  

 

1.2.9 Antiretroviral therapy 

Antiretroviral treatment suppresses viral replication and facilitates reconstitution of the immune system. 

Expanding access to ARVs has significantly changed the epidemiology of HIV/AIDS; raising prevalence due 

to the increase in life span but simultaneously decreasing incidence due to the reduced risk of transmission 

[169]. These drugs are grouped into 6 classes based on the mechanism of action and resistance profiles – 

nucleoside-analog reverse transcriptase inhibitors (NRTI), non-nucleoside reverse transcriptase inhibitors 

(NNRTI), protease inhibitors, fusion inhibitors, integrase inhibitors and chemokine co-receptor agonists 

(Figure 1.11). Triple drug therapy, termed highly active antiretroviral treatment (HAART) is the most 

effective treatment approach [10, 176].  
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Figure 1.11: The human immunodeficiency virus-1 life cycle illustrating the mechanisms of action of 

different classes of antiretroviral drugs [10]. 

 

The South African National Consolidated Guidelines recommend HAART initiation when the patient’s 

CD4+ T-cell count is below 500cells/μl, WHO clinical stage 3 or 4, pregnant, breastfeeding, or the co-

presence of Hepatitis B or active TB. A standard first line combined ARV regimen for adults is composed of 

two NRTIs (TDF/Tenofovir and 3TC/Lamivudine or FTC/Emtricitabine), as well as a NNRTI 

(EFV/Efavirenz) provided in a fixed dose combination. This regime is also recommended in HIV/TB co-

infection [211]. Following the initiation of ARVs, plasma viral load typically decreases to concentrations 

below the minimum detection limit of many commercial assays within three months, with a variable 

restoration of CD4+ T-cell counts [10]. 

 

The ability of HIV to mutate and replicate in the presence of ARVs is termed HIV drug resistance (HIVDR). 

The there is a steady increase in the prevalence of HIVDR in low- and middle-income countries such as SA. 

The consumption of ARVs despite continued viral replication results in the selection of HIV sub-populations 

with HIVDR mutations. This is largely a consequence of sub-optimal treatment regimens, poor adherence 
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and the ability of the drug to select for resistant mutations. This results in the transmission of HIVDR strains, 

treatment failure and requirement of more expensive second and third line HAART regimes [10, 212].  

 

Despite their success in controlling HIV replication, HAART is unable to eradicate HIV pre-empting lifelong 

treatment. HIV can survive HAART due to latent infection of long lived memory T-cells, integration of HIV 

DNA into the host genome without viral replication [192, 213], and anatomical reservoirs poorly accessible 

to HAART such as the GIT, lymphoid tissue and central nervous system [214, 215]. 

 

1.3 Tuberculosis and human immunodeficiency virus co-infection 

 

1.3.1 Overview of tuberculosis and human immunodeficiency virus co-infection 

Infection with HIV is the most significant risk factor in the progression of TB disease; an HIV positive 

individual has a 26-31 times greater risk of developing active TB infection. In turn, TB expedites the 

pathogenesis of HIV, with TB being the most common presenting illness and the leading cause of mortality 

in this group [1, 169].  

 

1.3.2 Epidemiology of tuberculosis and human immunodeficiency virus co-infection 

According to WHO, in 2013 at least one third of HIV infected individuals were co-infected with MTB 

globally. During this time, 1.1 million new TB cases were reported in HIV positive individuals and 1 in 4 

HIV-related deaths were attributed to TB. In this same period, 62% of South African TB patients were noted 

to be HIV positive [1]. Furthermore, SA had the second highest number of TB-related deaths among HIV 

individuals worldwide; approximately 175 deaths per day [2] (Figure 1.12). 
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Figure 1.12: Estimated tuberculosis and human immunodeficiency virus co-infection prevalence (2013) 

depicting the high burden of co-infection in South Africa [1]. 

 

1.3.3 CD4+ T-cell responses in tuberculosis and human immunodeficiency virus co-infection 

Recent studies have begun to elucidate the effect of TB/HIV co-infection on T-cell responses. MTB specific 

CD4+ T-cells are rapidly depleted from the periphery following HIV infection, partly due to preferential HIV 

targeting of these cells [12]. In addition, HIV infected patients with latent TB infection show a loss of 

peripheral and broncho-alveolar lavage (BAL) fluid mono-, bi- [216, 217] and polyfunctional MTB specific 

CD4+ T-cell responses [216-219]. IL-2 producing MTB-specific CD4+ T-cells correlate inversely to viral 

load [218], and this is not corrected with ARV treatment [220]. In a macaque model, the peripheral depletion 

of CD4+ T-cells has been linked to TB reactivation [221].  

 

Both active and latent TB have been associated with lower HIV-specific T-cell functionality in co-infected 

compared to mono-infected patients. A stronger effect is noted in active infection indicating that MTB load 

may amplify HIV mediated T-cell dysregulation accounting for expedited HIV progression [13, 222]. 

Several studies have observed that active TB enhances CCR5 expression and/or the frequency of 

CCR5+CD4+ T-cells during HIV co-infection [14, 15], this suggests that TB mediated chronic immune 

activation leads to a greater pool of CCR5+CD4+ T-cells that are highly susceptible to HIV infection [223].  
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Furthermore, it has been shown that a strong CD4+ T-cell response to MTB may simultaneously result in 

enhanced HIV replication [224], dependent on the MTB strain: Less virulent strains drive potent pro-

inflammatory cytokine production and heightened viral replication. More virulent strains, which produce a 

less immunogenic response, promote lower levels of HIV replication [225]. These findings indicate that 

MTB antigen specific responses enhance HIV viral replication in line with the higher viral loads observed in 

co-infected patients compared to HIV non-infected patients who express similar levels of 

immunosuppression [14, 226]. 

 

1.4 T-regulatory lymphocytes 

 

1.4.1 Overview of T-regulatory lymphocytes 

T-regulatory lymphocytes are a suppressive subset of CD4+ T-lymphocytes (5-10%) characterised by the 

expression of lineage specific transcription factor forkhead box P3 (Foxp3) [17]. Tregs regulate effector 

lymphocyte function to maintain immunological tolerance and suppress pro-inflammatory pathways [227, 

228]. In the context of TB/HIV co-infection, an imbalance in Treg proportion can either lead to uncontrolled 

inflammation and consequent immunopathology or down regulation of antigen specific CD4+ T-cells, 

ultimately resulting in pathogen persistence and establishment of chronic infection [229].  

 

1.4.2 T-regulatory lymphocyte polarisation 

Under physiological conditions the vast majority of Tregs are generated in the thymus (tTregs), responsible 

for the maintenance of immune homeostasis and peripheral tolerance. Upon pathological challenge the tTreg 

T-cell receptor (TCR) repertoire is complemented by peripheral (p)Tregs derived from naïve CD4+ 

conventional T-cells (Tconv) [229-231]. Together with epigenetic changes, Tregs are polarised by the 

combination of several transcriptional signals including TCR/CD28 co-stimulation, transforming growth 

factor-β (TGF-β)/IL-2 cytokine signaling and an autocrine Foxp3 dependent feedback loop. These signals 

culminate in the activation of a host of transcription factors binding to the Foxp3 promoter as well as three 

highly conserved non-coding sequence regions (CNS1-3) in the genomic Foxp3 region [230] (Figure 1.13). 

 

With regard to cytokine signalling, Treg polarisation is mediated by exposure to low-dose antigen in the 

presence of TGF-β and IL-2 [230, 232]. TGF-β receptor ligation results in SMAD3 binding to CNS1, a 

prerequisite for Foxp3 induction in CD4+ Tconvs [233]. This is reinforced by IL-2; Tregs constitutively 

express CD25 (IL-2 receptor (R) α) [228], ligation of which results in activation of Janus activated kinase 

(Jak)1/3 and subsequent phosphorylation and activation of signal transducer and activator of transcription 

(STAT) 5 [234]. In turn, STAT5 binds to the promoter region and CNS2 in the Foxp3 gene inducing Foxp3 

expression and Treg lineage commitment [230, 235] (Figure 1.13).  
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Figure 1.13: Transcriptional regulation of forkhead box P3 expression [230].  

 

Forkhead box P3, a transcription factor of the winged helix family, is indispensable for Treg lineage 

specification and suppressive function by acting at transcriptional, epigenetic and post transcriptional levels 

[17, 236]. It maintains the expression of CD25 at the cell surface by binding the CD25 promoter both 

directly [237] and indirectly [238, 239]. In this way, IL-2 creates a positive feedback loop for CD25 

expression through STAT5 and Foxp3 [240]. Regulatory T-cells do not produce IL-2 [241] but are reliant on 

IL-2 produced by CD4+ Tconvs [242]. This dependence sets up a negative feedback loop whereby the 

proliferation of Tregs is directly controlled by the degree of Tconv activation [243]. 

 

1.4.3 Mechanisms of T-regulatory lymphocyte function 

T-regulatory lymphocytes can be divided into subpopulations with disparate suppressive functions and 

heterogeneous chemokine receptors that promote their differential tissue homing and localisation [244, 245]. 

Through a broad array of contact dependent and independent mechanisms, Tregs can inhibit the generation 

and function of effector cells at any point in the inflammatory process [243] including initial activation 

[246], migration [247] or at the target site [248]. 

 

These mechanisms include: (1) The production of inhibitory cytokines (TGF-β, IL-10, IL-35) which suppress 

T-cell activation and proliferation. (2) The deprivation of cytokines of the common receptor γ-chain family 

from effector T-cells (particularly IL-2 via expression of CD25) which induces pro-apoptotic protein 

expression and cell death. (3) The direct killing of DCs and effector cells by granzyme A/B and perforin 

cytolysis or the TNF-related apoptosis inducing ligand death receptor 5 (TRAIL-DR5) pathway. (4) 



32 
 

Suppression of DC maturation via lymphocyte activation gene 3 (LAG3) and MHC II interactions. (5) 

Blocking of co-stimulatory molecule expression (CD80/CD86) on DCs via cytotoxic T-lymphocyte antigen 

4 (CTLA4), thereby weakening the APC-T-cell interaction. (6) The expression of ectonucleosidases 

CD39/CD73 which mediate enzymatic hydrolysis of extracellular adenosine triphosphate to inhibitory 

adenosine thereby disrupting the metabolic state of effector cells via 3’, 5’- cyclic adenosine monophosphate. 

(7) The deprivation of tryptophan from effector T-cells through indoleamine 2,3-dioxygenase induction in 

DCs, inhibiting T-cell proliferation [243, 249-251] (Figure 1.14). The mechanism of action employed is most 

likely linked to the cellular target which includes DCs, NK cells, T- and B-lymphocytes [243]. 

 

 

 

Figure 1.14: Immunosuppressive mechanisms used by T-regulatory lymphocytes [252]. 

 

1.4.4 T-regulatory lymphocytes in tuberculosis 

The reported proportion of Tregs in active TB infection is conflicting. Previous studies have noted a reduced 

[253] or unchanged [254, 255] frequency of Tregs in the peripheral blood of untreated active TB patients 

compared to healthy controls. Others have identified Treg expansion at both the disease site and in the 

peripheral blood in an MTB antigen-specific manner, with a correlation to disease severity and an inverse 
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correlation to MTB specific immune responses [256-261]. Notably, there is no evidence on the frequency of 

Tregs in TB/HIV co-infection. 

 

T-regulatory lymphocytes have been shown to down regulate the immune response to MTB preventing tissue 

injury by resolving granulomatous inflammation. However, impairment of antigen specific T-cell responses 

simultaneously prevents bacterial clearance and reduces inflammation at the infection site paving the way for 

chronic infection. More specifically, Treg mediated suppression results in impaired macrophage activation 

and killing of intracellular bacteria, reduced antigen presenting capacity and pro-inflammatory cytokine 

production, including MTB specific IFN-γ production by Th1 cells, as well as reduced MTB specific CD8+ 

and CD4+ T-cell activation, expansion and recruitment to the infection site [223, 255, 258-260, 262-264].  

 

In addition to limiting inflammation, Tregs have also been implicated in the reactivation of latent infection 

and dissemination of bacilli. During active TB infection Tregs have a higher capacity to inhibit Th1 than 

Th17 responses. It has been suggested that this differential inhibition of Th1/IFN-γ mediated suppression of 

bacterial replication while permitting Th17/IL-17 mediated recruitment of pro-inflammatory cells to the site 

of infection results in chronic inflammatory caseating tubercles and the transmission of bacilli. This indicates 

that Tregs exert a selective suppression on specific components of the adaptive immune response to MTB 

[258]. 

 

1.4.5 T-regulatory lymphocytes in human immunodeficiency virus infection 

The majority of HIV studies have reported lower absolute cell counts but increased relative frequency of 

lymph node [265], mucosa [266] and peripheral [267-271] Tregs compared to healthy controls, resulting in a 

greater suppressor to effector ratio [272]. Interestingly, HIV controllers and long term non-progressors 

display tissue and peripheral Treg frequencies similar to or lower than healthy controls [266, 270, 271], 

indicating that the selective expansion of Tregs is non-protective [273].  

 

Regulatory T-cell functionality is maintained during untreated chronic HIV infection with anti-proliferative 

capacity similar to that of HIV controllers [274] and significant down regulation of HIV specific CD4+ T-cell 

immune responses, particularly the inhibition of cytokine production [229, 275-277]. Furthermore, HIV-1 

binding to the Treg CD4 enhances Treg survival and suppressive activity particularly the ability to inhibit 

CD4+ T-cell proliferation and IL-2 production [277]. This is potentially beneficial; suppressing chronic T-

cell activation reducing the pool of susceptible CD4+ T-cells [278]. However, this would also inhibit HIV-

specific T-cell responses contributing to immune deficiency, heightened virulence and an overall poor 

prognosis [273, 279].  
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1.5 T-helper 17 lymphocytes 

 

1.5.1 Overview of T-helper 17 lymphocytes  

T-helper 17 cells are a pro-inflammatory subset of CD4+` effector T-cells [280] characterised by the 

production of IL-17A/F, IL-21 and IL-22, surface expression of CCR6 and lineage specific transcription 

factor RAR-related orphan receptor C (RORC) [16]. Under immune homeostasis, Th17 cells predominantly 

reside at the mucosal surfaces where they play a pivotal role in inflammatory reactions and protective 

immunity against intra-[281, 282] and extracellular [283, 284] bacterial and fungal infections. 

 

1.5.2 T-helper 17 lymphocyte polarisation 

Classically, Th17 cells are generated from naïve CD4+ Tconvs under TGF-β/IL-21 [285] or TGF-β/IL-6 and 

IL-21 or IL-23 [286] conditions (Figure 1.15). This leads to Th17 lineage commitment via the activation of 

STAT3 and downstream transcription factor RORC, which in turn binds to the promoter region of IL17A/F 

[287-290].  

 

Further to this, IL-1β and IL-6 are essential in the expansion and amplification of differentiated and memory 

Th17 cells and IL-23 is essential for the stabilisation and maintenance of the Th17 phenotype and effector 

functions [291]. Naive CD4+ Tconvs do not express IL-1R and IL-23R; these receptors are induced after 

exposure to TGF-β and IL-6/IL-21 [285, 292, 293]. Subsequently, IL-1β acts synergistically with IL-6 and 

IL-23 towards Th17 polarisation by regulating the expression of interferon regulatory factor 4 which then 

promotes the expression of RORC [289, 294, 295] (Figure 1.15). 

 

 

 

 

Figure 1.15: Representation of T-helper 17 lymphocyte differentiation [296].  

 

In addition to the key regulators discussed above, other transcription factors such as Baft [297], IκBζ [298] 

and Runx1 [299] are essential for enhancing Th17 differentiation and production of effector molecules [300]. 
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1.5.3 Functions of T-helper 17 effector cytokines 

T-helper 17 cells characteristically produce IL-17A/F, IL21 and IL-22. Th17 cells also produce CCL20, 

granulocyte-macrophage-colony stimulating factor (GM-CSF), IL-8, IL-26 and IL-10, although these are not 

Th17 specific [300].  

 

1.5.3.1 Interleukin-17A and F 

IL-17A is the prototypic member of the IL-17 family consisting of 6 cytokines; IL-17A-F. IL-17A and IL-

17F share 44% homology and can form homodimers or heterodimers. They are presumably expressed by 

induction of the same gene locus and are commonly co-expressed at the level of the single cell [301]. Both 

IL-17A and F bind to the receptor heterodimer; IL-17RA/IL-17RC [302, 303]. Ligation of this receptor 

recruits adaptor protein ACT1 which in turn stimulates TNF receptor-associated factor 6 (TRAF6) to activate 

the canonical NF-κB, and to a lesser extent the mitogen activated protein kinase (MAPK) pathways in target 

cells [301, 304, 305]. This results in pro-inflammatory gene expression by transcriptional activation [306] 

and target mRNA stabilisation [307].  

 

IL-17A and F are pivotal in the recruitment, activation and migration of neutrophils and CCR5+ lymphocytes 

to the site of inflammation [308]. In addition, these cytokines target non-immune cells including epithelial 

and endothelial cells, fibroblasts and airway smooth muscle cells to produce pro-inflammatory mediators 

such as antimicrobial molecules (CCL20 and defensin-β4), adhesion molecules, cytokines (IL-6, IL-8, IL-26, 

TNF-α, IL-1β, granulocyte-CSF, GM-CSF, chemokines (CXCL1, CXCL2, CXCL8, CCL2, CCL7, CCL20, 

CCL28) as well as PGE2, nitric oxide and MMPs [280, 300, 301, 309, 310] (Figure 1.16).  

 

CCL20 mediates Th17 tissue homing to the site of inflammation via its cognate receptor CCR6, highly 

expressed on Th17 cells. The autocrine production of CCL20 allows Th17 cells to autonomously regulate 

their recruitment to inflamed tissues and sustain the Th7 mediated inflammatory cascade [295, 311].  

 

1.5.3.2 Interleukin-21 

IL-21, of the IL-2 cytokine family, mediates its actions through a heterodimer of IL-21R and the common 

cytokine receptor γ chain found on B- and T-lymphocytes as well as other cells of the myeloid lineage. 

Ligation of the IL-21R complex activates the Jak3/STAT3 pathway resulting in Th17 differentiation [301]. 

In addition, IL-21 causes proliferation and differentiation of CD8+ T-cells [312] and B-lymphocytes [313], 

immunoglobulin class switching [314], differentiation and cytotoxic activities of NK cells [315] and IL-8 

production by DCs and macrophages [300] (Figure 1.16).  

 

 



36 
 

1.5.3.3 Interleukin-22 

IL-22, of the IL-10 cytokine family, is produced in response to IL-23/STAT3 signalling [316]. The IL-22R is 

composed of IL-22R1 and IL-10R2 chains expressed on epithelial cells, keratinocytes and fibroblasts, but 

not immune cells. Ligation of this receptor activates STAT3 and MAPK pathways resulting in the expression 

of genes and proteins involved in tissue remodelling and wound healing, epidermal hyperplasia and epithelial 

barrier function, inflammation, chemotaxis, acute phase reactants and antimicrobial substances, which in turn 

enhance the inflammatory properties of TNF-α, IL-1β and IL-17A/F [301, 316, 317]. In chronic 

inflammation, IL-22 exerts either cytoprotective or pro-inflammatory effects depending on the tissue location 

and cytokine microenvironment [318, 319] (Figure 1.16). 

 

 

 

Figure 1.16: The functions of T-helper 17 effector cytokines. Adapted from Maddur et al [300]. 

 

1.5.4 T-helper 17 lymphocytes in tuberculosis 

A distinct subset of MTB specific pro-inflammatory Th17 memory T-cells have been identified [320]; 

however, their frequency and contribution to the immune response is conflicting. Several studies have noted 

an expansion of Th17 cells and elevated levels of IL-17A in the peripheral blood [253, 321, 322] and pleural 

fluid [253, 322, 323] during MTB infection with correlation to disease severity [322]. Others have noted a 

higher frequency of Th17 cells in peripheral blood [320, 324-329] and BAL fluid [320, 328] of latently 

infected or healthy donors. This suggests that the Th17/IL-17A axis may be associated with either pathology 
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and/or protection [308]. Furthermore, other studies have found no significant difference in the systemic Th17 

count between active, latent and non-infected patients [330, 331]. Notably, there is no evidence on the 

frequency and function of Th17 cells in TB/HIV co-infection. 

 

Th17/IL-17 axis is suggested to provide protective immunity against MTB by contributing to granuloma 

formation and maintenance [332-335]. Early expression of pulmonary IL-17 in TB infection is pivotal in 

granulomatous cellular recruitment by inducing chemokine secretion from non-haematopoietic cells. This 

predominantly results in neutrophil and CCR5+ lymphocyte recruitment, through the induction of IL-8 and 

CXCL13 respectively, to form lung lymphoid follicles for optimal macrophage activation and bacterial 

clearance [308, 336-340]. However, there is a disadvantage to this protective granulomatous strategy. During 

the chronic stages of infection, Th17 hyperactivity can lead to immunopathology via IL-17-CXCL mediated 

influx of immune cells and extensive tissue destruction [332, 339, 341-343]. 

 

In this way, Th17 cells can take part in both protective and pathological mechanisms in TB infection, not 

only contributing to the development and organisation of the granuloma but also its breakdown and 

progression to cavitation and eventual transmission [333, 344]. Th17 immunity has also been shown to 

contribute to mucosal TB vaccine immunity where CXCL13 induction by IL-17A was critical in protection 

[308]. 

 

1.5.5 T-helper 17 lymphocytes in human immunodeficiency virus infection  

During HIV infection there is preferential loss of Th17 cells from the mucosa and peripheral blood with 

reduced levels of IL-17A that is not completely restored by ARV therapy [345-350]. This suggests that HIV 

infection interferes with the generation of Th17 cells [349, 351]. Interestingly, this phenomenon is absent in 

HIV-1 infected long-term non-progressors [346] and elite controllers [352]. The loss of Th17 cells has been 

noted to contribute to HIV pathogenesis [353], correlate highly with immune hyper-activation [354] and 

negatively correlate with raised viral loads.  

 

Th17 cells show greater HIV susceptibility than other T-cell subsets [354-356]. In addition, this subset is a 

highly permissive environment for HIV replication in vitro and in vivo, in both CCR5 and CXCR4 tropic 

HIV [354, 356, 357]. This has been associated with a significant impairment of Th17 generation from CD4+ 

Tconvs in the peripheral blood [349]. Th17 targeting correlates with a higher expression of HIV envelope 

receptors CD4, CXCR4, CCR5 and α4β7 and low levels of autocrine production of CCR5 ligands CCL3 and 

CCL4, potent mediators of HIV self-protection, resulting in higher gp120 binding [356] and providing a 

potential reason for their preferential depletion [349, 354, 356]. Furthermore, the over expression of Th17 

negative regulators (phosphatase SHP2, suppressor of cytokine signalling 3, and protein inhibitor of 

activated STAT3) have been observed during HIV infection [358]. 
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1.5.6 T-regulatory and T-helper 17 lymphocyte antagonism 

There is a cell intrinsic reciprocal relationship between Th17 and Treg developmental pathways. This 

influences the nature of the immune response with a significant effect on the development and outcome of 

inflammatory diseases [359].  

Th17 cells and Tregs arise from common precursors and carry out opposing functions driven by the cytokine 

milieu and its effect on specific transcription factors. TGF-β is a common element in Treg and Th17 

development by inducing the expression of Foxp3 and RORC in naïve CD4+ Tconv through SMAD2 and 3 

respectively. TGF-β alone advances Foxp3 expression and Treg differentiation to maintain peripheral 

tolerance; the N-terminal domain of Foxp3 interacts with RORC inhibiting IL-17A promoter activation 

preventing Th17 differentiation [359]. However, TGF-β in combination with IL-21, IL-6/IL-21 or IL-6/IL-23 

reduces TGF-β induced Foxp3 expression through the activation of STAT3, this in turn overcomes Foxp3 

mediated RORC inhibition [296, 360]. In addition, IL-1 inhibits TGF-β induced Foxp3 expression resulting 

in the enhancement of Th17 differentiation under Th17 polarising conditions [361]. 

 

In counterpart to IL-1, IL-6, IL-21 and IL-23; IL-2, secreted by CD4+ Tconv cells, further enforces this 

reciprocal relationship. IL-2 mediated STAT5 activation opposes Th17 differentiation by STAT5 binding of 

the IL17 gene thereby acting as a repressor [362]. IL-2 can also inhibit Th17 polarisation through the 

transcription factor E26-transformation specific 1 [363] and down regulating IL-6R expression in CD4+ T-

cells [364].  
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Abstract 

T-regulatory cells (Tregs), characterised by forkhead box P3 (Foxp3), suppress effector lymphocyte function 

through the production of interleukin (IL)-35. MicroRNA (miR)-155 is a direct target of Foxp3 and 

positively regulates Treg stability by repressing translation of suppressor of cytokine signalling 1 (SOCS1), 

conferring Treg IL-2 competitive fitness. There is conflicting data on the frequency of Tregs in both 

tuberculosis (TB) and human immunodeficiency virus (HIV) infection indicating a pathogen-driven effect on 

Treg stability which has not been assessed in co-infection. 

 

Objectives: We investigated Foxp3, miR-155 and SOCS1 expression, Treg stability and IL-35 production in 

TB/HIV pleurisy in vitro and ex vivo. 

 

Methods: Foxp3 mRNA and miR-155 expression by qPCR, SOCS1 protein by western blotting, Foxp3 

protein and Treg frequency by flow cytometry, and IL-35 concentration by ELISA.  

 

Results: TB+HIV+ pleural effusion mononuclear cells showed increased Foxp3 mRNA (p=0.0022 but 

decreased Foxp3 protein expression (p=0.0008), together with reduced miR-155 (p=0.0022) and increased 

SOCS1 expression (p<0.0001). This was associated with a diminished proportion of 

CD4+CD25+Foxp3+STAT5+ Tregs ex vivo (p=0.0084) and confirmed in vitro (p=0.0467). Furthermore, a 

reduced pleural fluid IL-35 concentration (p=0.0258) was observed suggesting a Treg functional deficit.   

 

Conclusions: The TB/HIV microenvironment decreases the stability and functional capacity of Tregs due to 

altered miRNA-155/SOCS1 dynamics. 

 

Keywords 

TB/HIV co-infection, Tregs, Foxp3, miR-155, IL-35, SOCS1  
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2.1 Introduction 

TB and HIV are the leading causes of death due to infectious disease globally. HIV infected individuals have 

a 26-31 times greater risk of developing active TB infection with TB being the leading cause of HIV-related 

mortality (1). South Africa has the second highest TB incidence and the largest number of individuals living 

with HIV/AIDS worldwide (1-3), consequently 62% of TB patients are HIV positive (2). This highlights the 

importance of co-infection research where the immunological consequences of Mycobacterium tuberculosis-

HIV interactions are largely uncharacterised. 

 

Regulatory T-cells, specified by the transcription factor Foxp3, are a suppressive subset of CD4+CD25+ T-

cells (5-10%). Tregs regulate effector lymphocyte function through contact dependent and independent 

mechanisms, such as the production of anti-inflammatory IL-35 (4). Under physiological conditions thymus 

derived (t)Tregs are responsible for the maintenance of immune homeostasis and peripheral tolerance. Upon 

pathological challenge tTregs are predominately replaced by periphery derived (p)Tregs from naïve CD4+ T-

cells to limit immunopathology during inflammation (5-7). Studies have shown that Treg homeostasis is 

regulated by miRNAs (8-10), a class of single stranded non-coding RNAs that post transcriptionally regulate 

gene expression (11, 12). MiR-155 is a direct target of Foxp3 which stabilises Tregs and confers IL-2 

competitive fitness by targeting and repressing SOCS1 (8-10, 13, 14). 

 

An imbalance in Treg stability has been associated with various pathologies. In TB/HIV co-infection Treg 

hyperactivity and down regulation of antigen specific CD4+ T-cells may ultimately result in pathogen 

persistence and establishment of chronic infection. In contrast, loss of a stable Treg pool results in an 

excessive pro-inflammatory response which amplifies chronic immune activation and heightened virulence 

in HIV and drives granulomatous immunopathology in TB (6). There is conflicting data on the frequency 

and function of Tregs in both TB (15-20) and HIV (21-29) indicating a pathogen-driven effect on Treg 

stability which has not been assessed in co-infection. 

 

Studies show that 40-80% of HIV-related TB is extrapulmonary (30, 31), the most common form of which is 

TB pleurisy (32). This is a consequence of M. tuberculosis infection of the pleura characterised by a chronic 

accumulation of inflammatory cells in the pleural space and resultant pleural effusion (PE) (33). TB infection 

outcome is determined by localised immune responses which are not accurately reflected systemically (34). 

Moreover, Tregs are noted to expand and accumulate at the pleural infection site exerting potent localised 

immune suppression (19, 35). Therefore we investigated Foxp3, miR-155 and SOCS1 expression, Treg 

stability and IL-35 production in TB/HIV pleurisy in vitro and ex vivo. 
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2.2 Methods 

 

2.2.1 Study population 

This study protocol was approved by the institutional Biomedical Research Ethics Committee (BF170/11). 

Participants were recruited at the Department of Pulmonary and Critical Care, Inkosi Albert Luthuli Central 

Hospital and the Department of Internal Medicine, Prince Mshiyeni Memorial Hospital (Durban, South 

Africa). Newly diagnosed TB patients presenting with a TB pleural effusion and concurrent HIV-infection 

(n=9) were enrolled. Active TB infection was confirmed by clinical diagnosis with bacterial or radiographic 

evidence; AFB culture positive sputum or pleural fluid microscopy (Gram, Zhiel-Neelsen, Auramine), M. 

tuberculosis DNA (Gene Xpert), pleural histology and pleural fluid cytology. The matched control group 

was composed of patients presenting with a non-infectious pleural effusion (malignancy, cardiac failure, end 

stage renal disease) and HIV seronegative (n=9). Exclusion criteria included anti-tuberculosis or anti-

retroviral therapy, immunomodulatory treatment and conditions. Blood and pleural fluid was sampled by 

routine venesection and diagnostic pleural tap respectively, after informed consent was obtained from each 

participant. A summary of the demographics and clinical parameters of the study population are presented in 

Table 2.1. 
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Table 2.1: Summary of demographic and clinical parameters in the study population 

Parameter TB-HIV- 

n=9 
TB+HIV+ 

n=9 

Age, years, median (range) 58 (32-76) 37 (18-64) 

Gender   

Male 5 (56) 4 (44) 

Female 4 (44) 5 (56) 

Race   

African 5 (56) 9 (100) 

Indian 4 (44) 0 

TB diagnostic criteria   

Culture positive  8 (89) 

Smear positive  2 (22) 

PCR-MTBDR  9 (100) 

Resistance to any one first line TB drug  1 (11) 

MDR-TB  1 (11) 

XDR-TB  0 

CD4 count, mm3, mean (range)  59 (9-153) 

Past history of TB infection 0 1 (11) 

Current smoker 2 (22) 1 (11) 

Ex-smoker 2 (22) 0 

Alcohol use 2 (22) 3 (33) 

Definitive cause of PE   

Tuberculosis 0 9 (100) 

Malignancy 4 (44) 0 

End stage renal disease 2 (22) 0 

Nephrotic syndrome 1 (11) 0 

Heart failure 2 (22) 0 

Co-Morbidities   

Diabetes mellitus 3 (33) 0 

Hypertension 5 (56) 1 (11) 

Hepatitis B 0 1 (11) 

Values expressed as n (%) unless otherwise stated 
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2.2.2 Pleural effusion fluid and mononuclear cell isolation 

Cell free pleural effusion fluid (PEF), pleural effusion mononuclear cells (PEMCs) and peripheral blood 

mononuclear cells (PBMCs) were extracted from heparinised pleural effusion fluid and blood by differential 

gradient centrifugation within 2 hours (h) of pleural tap/venipuncture. Briefly, 5 ml of sample was layered 

onto equivolume Histopaque-1077 (catalogue number 10771-500, Sigma, USA) and centrifuged (1,491rpm, 

30 minutes (min), room temperature (RT)). PEF, represented as the uppermost layer, was aspirated and 

centrifuged (10,000rpm, 10min, 4°C) to remove any cellular constituents. Harvested PEF was pooled from 5 

patients in each group equally and stored at -80°C until further use. Buffy coats containing mononuclear 

cells were aspirated and rinsed in 0.1M phosphate buffered saline (PBS; 1,491rpm, 20min, RT) 

  

2.2.3 CD4+ T-cell isolation 

For the in vitro component of the study, CD4+ conventional T-lymphocytes (Tconvs) were purified by 

negative magnetic selection from PBMCs of a healthy BCG vaccinated volunteer (10ml, EDTA, one blood 

draw), using the Human CD4 T-Lymphocyte Enrichment Set-DM (catalogue number 557939, BD 

Biosciences, USA). PBMCs were labelled with biotinylated monoclonal antibodies (5μl/10×106 cells, 15min, 

RT) against antigens on erythrocytes, platelets and non-CD4+ peripheral leukocytes. The cells were washed 

(iMag Buffer, 1,491rpm, 20min) and incubated with streptavidin conjugated magnetic nanoparticles 

(5μl/10×106 cells, 30min, RT). The cell suspension was placed in a magnetic field (8min, iMagnet; BD 

Biosciences, USA) and the enriched CD4+ T-cell supernatant aspirated. Negative selection of the positive 

fraction was performed three times to increase the yield of the enriched fraction. The purity of the enriched 

fraction was increased by further negative selection and assessed by flow cytometry. 

 

2.2.4 Cell culture and treatment 

Healthy CD4+ Tconvs were seeded in triplicate (8×104cells/well, U-bottomed microplate) in PEF 

conditioned complete culture medium (CCM; RPMI 1640, 10% foetal calf serum (FCS), 1% Penstrep-

Fungizone, 1% L-glutamine, final concentrations) in a 1:1 ratio (24h, 37°C, 5% CO2). Treatments included 

TB-HIV- PEF and TB+HIV+ PEF. Concurrently, cells were activated with Dynabeads Human T-activator 

CD3/CD28 bead solution (catalogue number 11131D, Gibco by Life Technologies, Norway) (2μl/well). 

Following incubation, cells were harvested, washed once (0.1M PBS; 1,491rpm, 20min, RT) and the 

activation beads removed by magnetic selection (1min, iMagnet). The cells were immediately prepared for 

flow cytometric staining 
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2.2.5 Flow cytometric analysis 

For surface staining, 2.5x105 cells were re-suspended in staining buffer (25μl, PBS containing 1% heat 

inactivated FCS, 0.09% w/v sodium azide) and labelled with the respective antibodies; fluorescein 

isothiocyanate (FitC) anti-CD4 (1:5, catalogue number 555346)  peridin-chlorophyll-cyanin 5.5 (PerCP-

Cy5.5) anti-CD25 (1:20, catalogue number 560503) (20min, 4°c, in the dark). For intracellular staining, cells 

were fixed in 4% paraformaldehyde (500μl, 30min, RT), washed (staining buffer; 1,491rpm, 20min, RT), 

permeabilised in 75% cold methanol (500μl, 10min, -20°C) and washed again. Cells were stained with the 

appropriate intracellular antibody; phycoerythrin (PE) anti-Foxp3 (1:5, catalogue number 560046), Alex 

Flour® 647 anti-STAT5 (1:5, catalogue number 612599) (60min, RT, in the dark). Antibodies were 

purchased from BD Biosciences, USA. Analysis was performed using the Accuri C6 flow cytometer (BD 

Biosciences, USA) and data analysed using FlowJo vX (10.0.7r2). Samples were run in triplicate and 30,000 

events acquired per sample.  

 

2.2.6 Molecular profiling 

Total RNA was extracted from PEMCs using Qiazol Lysis Reagent (Qiagen, USA) following an in-house 

protocol. Briefly, cells were added to Qiazol Lysis Reagent (1:1) and incubated at RT (5min) and 

subsequently frozen (-80°C, overnight). Chloroform (200μl) was added, incubated at RT (3min) and 

centrifuged (8,200rpm, 15min, 4°C). Isopropanol (500μl) was added to the aqueous phase and frozen (-80°C, 

overnight). The samples were centrifuged (8,200rpm, 20min, 4°C) and the RNA pellet washed in cold 

ethanol (75%, 1ml). The samples were then centrifuged (6,400rpm, 15min, 4°C), the ethanol aspirated and 

the RNA pellet re-suspended in 15μl of nuclease free water. Total RNA was quantified on a Nanodrop™ 

2000 UV-Vis Spectrophotometer (Thermoscientific, USA) and purity assessed with the A260/A280 ratio. 

 

Copy DNA (cDNA) was synthesised using the RT2 First Strand Kit (catalogue number 330401, Qiagen, 

USA) according to the manufacturer’s instructions. Briefly, 1μg of RNA pooled equally from 5 patients per 

group was added to a genomic DNA elimination mix (5 × gDNA elimination buffer, H20) to a total volume 

of 10μl and incubated at 42°C (5min) followed by 4°C (1min). Subsequently, reverse transcription mix 

(10μl, 5 × RT buffer 3, primer and external control mix, RT enzyme mix, H20) was added and incubated at 

42°C (15min) followed by 95°C (5min), on the GeneAmp® PCR System 9700 (Applied Biosystems, USA), 

to produce cDNA. 

 

Real time PCR was used to quantify Foxp3 mRNA expression.  A 25μl reaction consisted of 12.5μl RT2 

SYBR Green Mastermix (catalogue number 330500, Qiagen, United States), 8.5μl nuclease free water, 2μl 

cDNA and 1μl sense and anti-sense primers. Foxp3 primer sequence: sense 5’-

ACACGGACAGGATTGACAGA-3’ anti-sense 5’-CAAATCGCTCCACCAACTAA-3’ (450nM). The 

mRNA expression was compared and normalised to a housekeeping gene, 18S sense 5’-
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ACACGGACAGGATTGACAGA-3’ antisense 5’-CAAATCGCTCCACCAACTAA-3’. Cycling conditions 

were as follows: initial denaturation (95°C, 10min) followed by 40 cycles of denaturation (95°C, 30 seconds 

(s)), annealing (64°C, 30s) and extension (72°C, 1min) on a CFX Real-Time PCR Detector (Bio-Rad, USA). 

The quantification and melt curves were analysed using CFX Manager™ Software v3.0 (Bio-Rad, USA). 

The mRNA levels were calculated using the method described by Livak and Schmittgen (2001) (36) and 

represented as fold changes and relative expression to the control. Samples were run in triplicate and the 

experiments were repeated twice. 

 

2.2.7 miRNA expression 

cDNA was synthesised using the miScript II RT Kit (catalogue number 218160, Qiagen, USA) according to 

the manufacturer’s guidelines. Briefly, 1μg of RNA pooled equally from 5 patients per group was added to a 

reverse transcription mastermix (5x miScript HiSpec Buffer, 10x miScript Nucleics Mix, miScript Reverse 

Transcriptase Mix, H20) to a total volume of 20μl and incubated at 37°C (60min) followed by 95°C (5min) 

on the T100™ Thermocycler (Bio-Rad, USA), to produce cDNA. 

 

Quantification of mature miR-155 was performed using miScript Primer Assays (catalogue number 218300, 

Qiagen, USA) in combination with miScript SYBR Green PCR kit (Qiagen, USA) according to the product 

instructions. A 25μl reaction consisted of 12.5μl 2 x QuantiTect SYBR Green PCR Master Mix, 8.5μl 

nuclease free water, 2μl cDNA, 2.5μl 10x miScript Universal Primer and 2.5μl 10 x miScript Primer Assay. 

Human RNU6B (catalogue number 331001, Qiagen, USA) was run as an internal control. The reaction 

underwent an initial activation step at 95°C (15min) followed by 40 cycles of denaturation (94°C, 15s), 

annealing (55°C, 30s) and extension (70°C, 30s) on the CFX96 Touch Real-Time PCR Detection System. 

The quantification and melt curves were analysed using CFX Manager™ Software v3.0. MiR-155 levels 

were calculated using the method described by Livak and Schmittgen (2001) (36) and represented as fold 

changes and relative expression to the control. Samples were run in triplicate and the experiments were 

repeated twice. 

 

2.2.8 Western blotting 

Protein was isolated from fresh PEMCs using Cytobuster Protein Extraction Reagent (catalogue number 

71009, Novagen Merck Millipore, Germany), supplemented with protease and phosphatase inhibitors 

(catalogue numbers 05892791001 and 04906837001 respectively, Roche, USA). Cytobuster (500ul) was 

added to approximately 1x105 cells, vortexed (1min), incubated on ice (10min) and centrifuged (1,491rpm, 

10min, 4°C). The supernatant containing the crude protein extract was aspirated, pooled equally from 5 

patients in each group, and stored at -80°C until further use. Protein concentration was quantified using the 

bicinchoninic acid (BCA) assay (Sigma, Germany) and samples standardised to 0.4mg/ml. Protein extracts 
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were denatured by boiling (5mins) in a 1:1 Laemli buffer (0.5M Tris-HCl (pH 6.8), 3% glycerol, 10% 

sodium dodecyl sulphate (SDS), 1% bromophenol blue, 12% β-mercaptoethanol in dH20).  

 

Protein samples (25μl) were electrophoresed on a 7.5% SDS-polyacrylamide gel (1.5h, 150 volts) and 

transferred to a nitrocellulose membrane using the Trans-Blot® Turbo™ Transfer System (1h, 350mA, Bio-

Rad, USA). Membranes were blocked (1h) with 5% bovine serum albumin (BSA) in Tris-buffered saline and 

Tween 20 (TTBS; 137mM NaCl, 2.7mM KCl, 24mM Tris, 0.5% Tween 20, dH20, pH 7.6).  

 

The membrane was probed overnight (4°C) with rabbit anti-SOCS1 (catalogue number sc-9021, Santa Cruz 

Biotechnology, USA) diluted 1:1,000 in 5% BSA/TTBS. The membrane was then washed (TTBS, 4 x 

10mins) and probed (1h, RT) with horse radish peroxidase (HRP)-conjugated anti-rabbit IgG (catalogue 

number sc-2004, Santa Cruz Biotechnology) diluted 1:5,000 in 5% BSA/TTBS. The membrane was washed 

again (TTBS, 4 x 10mins). A HRP-conjugated goat polyclonal antibody specific for β-actin diluted 1:5,000 

in 5% BSA/TTBS was used as a loading control and for normalisation of protein expression. The membrane 

was developed using LumiGLO® Chemiluminescent Substrate System (catalogue number 51-61-00, KPL, 

USA) and images were captured on an Alliance 2.7 Gel Documentation System (Uvitec, UK). The density of 

the protein bands was quantified using UviBand Advanced Image Analysis Software v12.14 (Uvitec, UK). 

The experiment was performed in triplicate. Results are presented as relative band intensity (RBI) 

normalised against β-actin. 

 

2.2.9 IL-35 ELISA 

Quantification of PEF IL-35 was measured by enzyme-linked immunosorbent assay (ELISA) using the 

Legend Max™ Human IL-35 Heterodimer Kit (catalogue number 439507, Biolegend, USA) according to the 

manufacturer’s protocol. Briefly, cell free PEF (50μl, diluted 1:10 in assay buffer) was added to wells of the 

pre-coated plate and incubated (2h, 350rpm, RT). The plate was washed 4 times (300μl wash buffer), 

detection antibody (100μl/well) added and incubated (1h, 350rpm, RT). The plate was washed 4 times after 

which Avidin-HRP solution (100μl/well) was added and incubated (30min, 350rpm, RT). The plate was 

washed 5 times, substrate solution F (100μl/well) added and the plate incubated (10min, RT, in the dark). 

The reaction was stopped by the addition of stop solution (100μl/well) and the absorbance read at 450nm 

with a reference at 570nm. Standards and samples were run in duplicate. The minimum detection limit was 

0.13 ± 0.01ng/ml. Results were analysed using an 8-point standard curve constructed from recombinant 

protein standards. 

 

2.2.10 Statistical analysis 

Statistical analysis was performed using GraphPad Prism software (v5.0). The unpaired t-test with Welch 

correction was used in in vitro analyses and the non-parametric Mann-Whitney test in ex vivo analyses to 
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avoid the influence of potential outlier values in the small sample size. Outlier values were calculated and 

excluded using the interquartile range. Data is expressed as mean ± standard error of the mean (SEM), p 

values of less than 0.05 were considered statistically significant. 
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2.3 Results 

 

2.3.1 TB/HIV mediated increase in Foxp3 mRNA but decrease in Foxp3 protein expression 

Foxp3 is indispensable for Treg lineage specification and immunosuppressive activities. We performed 

qPCR to evaluate the expression of Foxp3 mRNA. TB+HIV+ co-infection caused a significant 2.345 fold 

increase in the Foxp3 mRNA expression in PEMCs compared to a TB-HIV- conditions (19.140 ± 0.161 vs. 

17.952 ± 0.164 relative expression (relative cycle threshold, ∆Ct), p=0.0022) (Figure 2.1). In contrast 

TB+HIV+ PEMCs showed a significant 1.661 fold decrease in Foxp3 protein (1594.222 ± 86.189 vs. 959.556 

± 127.654 PE-MFI, p=0.0008) (Figure 2.2) compared to TB-HIV- PEMCs. 

 

 

 

Figure 2.1: Relative expression of forkhead box P3 mRNA. Pooled TB+HIV+ pleural effusion mononuclear 

cells (PEMCs) showed a significant increase in forkhead box P3 (Foxp3) relative mRNA expression 

represented as a lower relative cycle threshold (∆Ct) (n=6 replicates in each group, p=0.0022, Mann-Whiney 

test). Data represents the mean.  
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Figure 2.2: Change in forkhead box P3 relative protein expression. (A) TB+HIV+ pleural effusion 

mononuclear cells (PEMCs) showed a significant decrease in forkhead box P3 (Foxp3)-phycoerythrin (PE) 

mean fluorescence intensity (MFI) (TB-HIV- n=5, TB+HIV+ n=5, p=0.0008, Mann Whitney test). Data 

represents the mean. (B) Histogram showing the shift in Foxp3-PE fluorescence in PEMCs. 
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2.3.2 Reduced miR-155 expression in TB+HIV+ pleurisy 

MiR-155 is a direct target of Foxp3, because we observed reduced Foxp3 protein levels in co-infection we 

questioned whether miR-155 expression (using qPCR) was also decreased. Pooled TB+HIV+ PEMCs showed 

a 2.143 fold decrease in miR-155 expression (3.855 ± 0.073 vs. 4.843 ± 0.044 relative expression (∆Ct), 

p=0.0022) compared to TB-HIV- PEMCs (Figure 2.3). 

 

 

 

Figure 2.3: Relative expression of microRNA-155. Pooled TB+HIV+ pleural effusion mononuclear cells 

(PEMCs) showed a significant decrease in relative microRNA (miR)-155 expression represented as a higher 

relative cycle threshold (∆Ct) (n=6 replicates in each group, p=0.0022, Mann-Whiney test). Data represents 

the mean. 
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2.3.3 Increased SOCS1 expression in TB+HIV+ pleurisy 

MiR-155 suppresses the translation of SOCS1, a negative regulator of IL-2 receptor signalling and inhibitor 

of Foxp3 expression. As we found reduced expression of Foxp3 protein and miR-155 mRNA we 

interrogated if this was linked by increased SOCS1 expression using western blotting. TB+HIV+ PEMCs 

showed a significant 3.751 fold increase in SOCS1 relative protein expression (1.481 ± 0.231 RBI vs. 5.555 

± 0.440 RBI, p<0.0001) compared to TB-HIV- PEMCs (Figure 2.4). 

 

 

 

Figure 2.4: Relative protein expression of suppressor of cytokine signalling 1. Pooled TB+HIV+ pleural 

effusion mononuclear cells (PEMCs) showed a significantly greater relative protein expression of the 24kDa 

suppressor of cytokine signalling 1 (SOCS1), represented as western blot relative band density (RBI) (n=9 

replicates in each group, p<0.0001, Mann-Whiney test). Data represents the mean. 
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2.3.4 Reduced Treg proportion in TB+HIV+ pleurisy 

MiR-155 positively regulates Treg stability by suppressing SOCS1 translation and conferring IL-2 

competitive fitness. We questioned whether a decreased expression of miR-155 and increased expression of 

SOCS1 resulted in loss of Treg stability. The number of Tregs in PEF was quantified by flow cytometry. The 

proportion of CD4+CD25+Foxp3+STAT5+ Tregs in TB+HIV+ pleurisy was significantly 21.049% (1.664 fold) 

lower than TB-HIV- controls (52.769 ± 5.413% vs. 31.720 ± 3.821%, p=0.0084) (Figure 2.5). 

 

 

 

Figure 2.5: Frequency of T-regulatory lymphocytes ex vivo. The proportion of CD4+CD25+Foxp3+STAT5+ 

T-regulatory cells (Tregs) was significantly lower in TB+HIV+ pleural effusion mononuclear cells (PEMCs) 

(TB-HIV- n=7, TB+HIV+ n=5, p=0.0084 Mann Whitney test). Data represents the mean.  
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2.3.5 Lower IL-35 concentration in TB+HIV+ pleurisy 

IL-35 is a suppressive Treg characteristic cytokine. We investigated whether a loss of Treg stability was 

associated with a loss of suppressive activity by quantifying IL-35 in PEF by ELISA. There was a significant 

3.442 fold decrease in IL-35 concentration in the TB+HIV+ cohort compared to the control group (18.784 ± 

4.911ng/ml vs. 5.457 ± 0.905ng/ml, p=0.0258) (Figure 2.6). 

 

 

 

Figure 2.6: Concentration (ng/ml) of interleukin-35 in pleural effusion fluid. The TB+HIV+ cohort showed 

significantly lower pleural effusion fluid interleukin (IL)-35 levels than the controls (TB-HIV- n=8, TB+HIV+ 

n=8, p=0.0258, Mann Whitney test). Data represents the mean. 
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2.3.6 Loss of Treg stability confirmed in vitro 

To confirm our ex vivo results, we mimicked in vivo conditions by treating CD4+ Tconvs with PEF 

conditioned CCM. In line with the ex vivo results, TB+HIV+ PEF treatment resulted in a significant 5.756% 

(1.206 fold) lower count of CD4+CD25+Foxp3+STAT5+ Tregs compared to TB-HIV- PEF (33.656 ± 1.719% 

vs. 27.900 ± 2.024%, p=0.0467) (Figure 2.7). 

 

 

 

Figure 2.7: Frequency of T-regulatory lymphocytes in vitro. The proportion of CD4+CD25+Foxp3+STAT5+ 

T-regulatory cells (Tregs) was significantly lower in CD4+ T-cells treated with TB+HIV+ pleural effusion 

fluid (PEF) conditioned CCM in vitro (n=9 replicates in each group, p=0.0467, unpaired t-test with Welch 

correction). Data represents the mean. 
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2.4 Discussion 

Regulatory T-cells suppress the activation and function of effector T-cells to maintain immune homeostasis 

and limit immunopathology. Previous studies have shown a loss of Treg stability in TB and HIV 

independently; however, the maintenance of a stable and functional Treg pool has not been assessed in co-

infection. Failure to maintain lineage identity can result in a compromised immune response; this is 

significant given the role of Tregs in mitigating dysregulated inflammation characteristic in TB and HIV. 

 

MiRNAs are predominantly negative post transcriptional regulators which destabilise and degrade target 

mRNA or repress translation, fine tuning gene expression in pleiotropic biological pathways, including 

immune cell lineage commitment and homeostasis (12, 37).  Computational analysis indicates that miRNAs 

may regulate up to 60% of all human protein coding genes (38). Altered miRNA patterns have been 

identified in latent and active TB (39-51) as well as HIV infection (52-57). However, a literature search 

shows that there has been no adequate assessment of miRNA expression in TB/HIV co-infection.  

 

Foxp3, a transcription factor of the winged helix family, is indispensable for Treg lineage specification and 

immunosuppressive activities by acting at transcriptional, epigenetic and post transcriptional levels (58, 59). 

Our study shows a 1.661 fold decrease in Foxp3 protein expression in TB/HIV pleurisy. This is in keeping 

with previous studies that observed reduced Foxp3 protein in an inflammatory and infectious micro-

environment (60, 61). 

 

Foxp3 target genes that are critical in Treg homeostasis have been identified, particularly the MIR155 host 

gene (MIR155HG) (62, 63). miR-155 has been implicated in the pathogenesis of several bacterial and viral 

infections (11). MIR155HG has a Foxp3 binding site in intron 2, approximately 500 base pairs upstream of 

the pre-mir-155 sequence (62, 63). Foxp3-driven miR-155 expression drives the size and stability of the Treg 

subset through modulation of the IL-2 receptor (IL-2R) pathway (8, 10, 13). MiR-155 knockout mice exhibit 

a reduced frequency of Tregs in both the thymus and peripheral lymphoid tissues (8). 

 

IL-2 is critical in Treg stabilisation, survival and maintenance in the periphery (7, 58, 64). Signalling is 

mediated by CD25 (IL-2Rα), constitutively expressed on Tregs, activation of Janus activated kinase (Jak)1/3 

and subsequent phosphorylation of signal transducer and activator of transcription (STAT) 5 (65). In turn 

pSTAT5 binds to the promoter region and conserved non-coding sequence 2 (CNS2) element in the Foxp3 

locus (66), directly controlling Foxp3 heritable expression and transcriptional initiation (7). MiR-155 

stabilises Tregs by binding to the 3’UTR of SOCS1, a negative regulator of IL-2R signalling, and 

suppressing its translation. This in turn confers competitive fitness to the Treg population allowing 

heightened sensitivity to IL-2 (8, 10, 13). 
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In support of previous TB (67) and HIV (55, 57) studies, our work showed a significant 2.143 fold reduction 

in miR-155 expression and 3.751 fold increase in SOCS1 protein expression during TB+HIV+ pleurisy, a 

novel observation in TB/HIV co-infection. Continuous Foxp3 expression has been shown to be indispensable 

for miR-155 expression (10) therefore reduced miR-155 levels are likely a result of diminished Foxp3 

protein and MIR155HG targeting. Based on this, we propose that decreased miR-155 expression facilitates 

SOCS1 mediated loss of Treg stability by increasing the threshold of IL-2 signalling resulting in a reduced 

proportion of Tregs. A significant 21.049% lower proportion of Tregs was observed in TB+HIV+ pleurisy ex 

vivo indicating that the TB+HIV+ microenvironment is not conducive to Treg stability. This was validated by 

mimicking in vivo conditions resulting in a significant 5.756% lower frequency of Tregs in vitro confirming 

that the TB+HIV+ micro-environment does not maintain a stable Treg pool. These observations provide 

mechanistic insight into the loss of Treg stability during co-infection. 

 

We next questioned whether a loss of Treg stability was associated with diminished suppressive activity as 

Tregs from miR-155 knock out models retained suppressive capacity in vivo and in vitro (8, 13, 37, 68, 69); 

however, the amount of Foxp3 protein has been shown to directly correlate to Treg suppressive function (70, 

71). IL-35, a heterodimer of Epstein-Barr-virus-induced-gene-3 (EBI3) and IL-12p35/α, is a suppressive 

cytokine of the IL-12 family that is primarily produced by Tregs (4). It is not constitutively expressed (72-

74) but its production is potentiated during Treg mediated active suppression of effector T-cells and is 

required for maximal Treg suppressive activity in mice in vivo and in vitro (4). The IL-35 receptor shares the 

gp130 subunit with IL-27 receptor and the IL-12Rβ2 with the IL-12 receptor (75, 76), ligation of which 

results in auto-phosphorylation of Jak1/2 with subsequent phosphorylation of STAT1 and 4 (75). IL-35 

potently inhibits effector T- and B-cells, particularly Th1 and Th17 lineages, by the expansion of Tregs and 

production of IL-10 (77). Furthermore, IL-35 has the ability to convert naïve CD4+ T-cells into suppressive 

IL-35 producing T-cells termed iTreg35, that lack expression of Foxp3, TGF-β and IL-10, by the process of 

infectious tolerance (73). 

 

To the best of our knowledge this is the first study to assess IL-35 in TB, HIV or co-infection. We showed a 

3.442 fold decrease in IL-35 concentration in TB+HIV+ pleurisy thus implying a Treg functional deficit. 

EBI3 is a downstream target of Foxp3 explaining the preferential IL-35 production by Tregs (4) and 

therefore reduced Foxp3 protein would likely result in reduced EBI3 transcription and subsequently IL-35 

concentrations. 

 

A loss of Treg stability is of benefit to both pathogens. Tregs have been shown to down regulate antigen 

specific MTB responses preventing tissue injury by resolving granulomatous inflammation; however, 

hyperactive inflammation results in caseous necrosis, cavitation and transmission of bacilli, hallmarks of 

active infection and the ultimate goal of the bacterial life cycle. In terms of HIV, loss of Treg immune 

suppression inhibits HIV-specific T-cell responses contributing to immune deficiency, heightened chronic 

immune activation and viral replication (78, 79).  
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Notably, despite a significant decrease in Foxp3 protein expression, a 2.345 fold increase in Foxp3 mRNA 

was observed in TB/HIV pleurisy. These disparate transcript and protein results indicate a potent pro-Treg 

signal at the molecular level which is circumvented by post transcriptional and/or translational modifications 

(80). Research into the post translational negative regulation of Foxp3 protein expression has identified 

inflammatory signals (IL-6, TNF-α, CCL3) that mediate Foxp3 polyubiquitination and subsequent 

proteasome-mediated degradation (61, 81-84). Our previous work showed a significantly increased 

concentration of TNF-α in TB+HIV+ pleural fluid compared to a TB-HIV- cohort prompting further 

investigation (manuscript in preparation). In this way the extracellular environment may regulate cellular 

intrinsic transcriptional programs and modulate Treg stability and functionality through modulation of Foxp3 

polyubiquitination (80). Furthermore, in pathological settings Foxp3 mRNA is negatively regulated by miR-

31 (8), miR-15a (85), miR-16 (85), miR-24 (86) and miR-210 (86, 87). The role of poly ubiquitination and 

miRNA regulation in Foxp3 expression needs to be further investigated in TB/HIV co-infection. 

 

2.5 Concluding Remarks 

TB+HIV+ pleurisy induces reduced Foxp3 protein expression and loss of Treg stability in vitro and ex vivo 

due to altered miR-155/SOCS1 dynamics. This was associated with diminished IL-35 levels implying a Treg 

functional deficit. A decreased functional Treg pool may contribute to the pathogenesis of TB and HIV by an 

excessive and dysregulated immune response. 
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Abstract 

T-helper (Th) 17 cells are a pro-inflammatory subset of CD4+ effector T-cells critical in mucosal immunity. 

Imbalances in Th17 cell proportion have been implicated in the pathogenesis of several diseases; however, 

this has not been adequately explored in tuberculosis (TB) and human immunodeficiency virus (HIV) co-

infection. Since Th17 cells are predominantly mucosally associated, we assessed Th17 proportion and 

associated microenvironment in pleural effusions from patients co-infected with TB/HIV. Our results show 

that TB+HIV+ pleurisy results in significantly reduced frequency of CD4+IL-17+RORC+STAT3+ Th17 cells 

compared to TB-HIV- ex vivo (p=0.0054) and was confirmed in conditioned media studies in vitro 

(p=0.0001). This was not associated with alterations in Th17 polarising cytokines interleukin (IL)-6, IL-21 

and IL-23 or changes in Th17 signature cytokines IL-17A and F. However, the mRNA expression of Th17 

signaling molecules, IL-6 (p=0.0022), IL-6R (p=0.0247), IL-1β (p=0.0022) and signal transducer and 

activator (STAT) 3 (p=0.0022) were significantly upregulated. Notably, TB+HIV+ pleural fluid contained 

significantly higher concentrations of IL-1β (p=0.0008), IL-22 (p=0.0115), IL-31 (p=0.0210), TNF-α 

(p=0.0251) and IFN-γ (p=0.0026) than TB-HIV- pleural fluid ex vivo. Taken together, this suggests a reduced 

portion of Th17 lymphocytes in TB/HIV pleurisy is independent of locally mediated cytokine polarisation. 
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3.1 Introduction 

Th17 cells are a pro-inflammatory subset of CD4+effector T-cells [1] characterised by the production of IL-

17A/F, surface expression of C-C chemokine receptor (CCR)6 and lineage specific transcription factor RAR-

related orphan rector (ROR)C [2]. Th17 cells predominantly reside at mucosal surfaces where they play a 

pivotal role in inflammatory reactions and protective immunity against intra-[3, 4] and extracellular [5, 6] 

bacterial and fungal infections. An imbalance in Th17 proportion has been implicated in the pathogenesis of 

TB. 

 

Approximately one third of the global population suffers from TB; a granulomatous disease spread by the 

airborne pathogen Mycobacterium tuberculosis (MTB). MTB cell wall component, trehalose-6-6’-

dimycolate (TDM/cord factor) has been shown to induce the production of Th17 differentiating cytokines 

from antigen presenting cells through the C-type lectin Mincle pathway [7]. Conflicting studies have noted 

an expansion of the Th17/IL-17 axis in the peripheral blood [8-10] and pleural fluid [9, 10], and a reduced 

frequency of Th17 cells in peripheral blood [11-15] and broncho-alveolar lavage (BAL) fluid [11] during 

active MTB infection, with correlation to disease severity [9].  

 

HIV is the most powerful risk factor predisposing for active TB infection which remains the number one 

communicable HIV-related cause of death [16]. In South Africa, approximately 62% of TB patients are HIV 

positive [17]. HIV infection is characterised by chronic immune activation and systemic depletion of CD4+ 

T-cells. The preferential loss of Th17 cells from the mucosa and peripheral blood with reduced levels of IL-

17 during HIV infection is well documented. This loss is not completely restored by antiretroviral therapy 

[18-23] suggesting that HIV infection interferes in the generation of Th17 cells [24]. 

 

Th17 lymphocytes are significant in the pathogenesis of TB and a potential predictor of disease severity; 

however, data on the proportion and role of Th17 cells in TB are conflicting. Furthermore, the confounding 

effect of HIV co-infection on Th17 frequency has not been investigated. Notably, 40-80% of HIV-related TB 

is extrapulmonary [25, 26] the most common form being TB pleurisy [27] and the immunological 

mechanisms of which are not accurately reflected systemically [28]. Taken together with the mucosal 

predominance of Th17 cells, this study characterised the proportion of Th17 lymphocytes and the cytokine 

microenvironment in TB/HIV pleurisy in vitro and ex vivo. 
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3.2 Methods 

 

3.2.1 Study population 

This study protocol was approved by the institutional Biomedical Research Ethics Committee (BF170/11). 

Participants were recruited at the Department of Pulmonary and Critical Care, Inkosi Albert Luthuli Central 

Hospital and the Department of Internal Medicine, Prince Mshiyeni Memorial Hospital (Durban, South 

Africa). Newly diagnosed TB patients presenting with a TB pleural effusion and concurrent HIV-infection 

(n=13) were enrolled. Active TB infection was confirmed by clinical diagnosis with bacterial or radiographic 

evidence; AFB culture positive sputum or pleural fluid microscopy (Gram, Zhiel-Neelsen, Auramine), MTB 

DNA (Gene Xpert), pleural histology and pleural fluid cytology. The matched control group was composed 

of patients presenting with a non-infectious pleural effusion (malignancy, cardiac failure, end stage renal 

disease) and confirmed HIV seronegative (n=8). Exclusion criteria included anti-tuberculosis or anti-

retroviral therapy, immunomodulatory treatment and conditions. Blood and pleural fluid were sampled by 

routine venesection and diagnostic pleural tap respectively, after informed consent was obtained from each 

participant. A summary of the demographics and clinical parameters of the study population are represented 

in Table 3.1. 
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Table 3.1: Summary of demographic and clinical parameters of the study population 

Parameter TB-HIV- 

n=8 
TB+HIV+ 

n=13 

Age, years, median (range) 58 (46-78) 36 (18-64) 

Gender   

Male 6 (75) 6 (46) 

Female 2 (25) 7 (54) 

Race   

African 5 (63) 13 (100) 

Indian 3 (37) 0 

TB diagnostic criteria   

Histopathology  1 (8) 

Culture positive  8 (62) 

Smear positive  3 (23) 

PCR-MTBDR  8 (62) 

Clinical with radiography  3 (23) 

Resistance to any one first line TB drug  1 (8) 

MDR-TB  1 (8) 

XDR-TB  0 

CD4 count, mm3, mean (range)  169 (9-463) 

Past history of TB infection 0 1 (8) 

Current smoker 3 (37) 2 (15) 

Ex-smoker 1 (13) 0 

Alcohol use 2 (25) 3 (23) 

Definitive cause of PE   

Tuberculosis 0 13 (100) 

Malignancy 5 (63) 0 

End stage renal disease 2 (25) 0 

Heart failure 1 (13) 0 

Co-Morbidities   

Diabetes mellitus 3 (37) 0 

Hypertension 5 (63) 1 (8) 

Hepatitis B 0 2 (15) 

Values expressed as n (%) unless otherwise stated 
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3.2.2 Pleural effusion fluid and mononuclear cell isolation 

Cell free pleural effusion fluid (PEF), pleural effusion mononuclear cells (PEMCs) and peripheral blood 

mononuclear cells (PBMCs) were extracted from heparinised pleural effusion fluid and blood by differential 

gradient centrifugation within 2 hours (h) of pleural tap/venipuncture. Briefly, 5 ml of sample was layered 

onto equivolume Histopaque-1077 (catalogue number 10771-500, Sigma, USA) and centrifuged (1,491rpm, 

30 minutes (min), room temperature (RT)). PEF, represented as the uppermost layer, was aspirated and 

centrifuged (10,000rpm, 10min, 4°C) to remove any cellular constituents. Harvested PEF was pooled from 5 

patients in each group equally and stored at -80°C until further use. Buffy coats containing mononuclear 

cells were aspirated and rinsed in 0.1M phosphate buffered saline (PBS; 1,491rpm, 20min, RT).  

 

3.2.3 CD4+ T-cell isolation 

For the in vitro component of the study, CD4+ conventional T-lymphocytes (Tconvs) were purified by 

negative magnetic selection from PBMCs of a healthy BCG vaccinated volunteer (10ml, EDTA, one blood 

draw), using the Human CD4 T-Lymphocyte Enrichment Set-DM (catalogue number 557939, BD 

Biosciences, USA), according to the manufacturer’s instructions. PBMCs were labelled with biotinylated 

monoclonal antibodies (5μl/10×106 cells, 15min, RT) against antigens on erythrocytes, platelets and non-

CD4+ peripheral leukocytes. The cells were washed (iMag Buffer, 1,491rpm, 20min) and incubated with 

streptavidin conjugated magnetic nanoparticles (5μl/10×106 cells, 30min, RT). The cell suspension was 

placed in a magnetic field (8min, iMagnet; BD Biosciences, USA) and the enriched CD4+ T-cell supernatant 

aspirated. Negative selection of the positive fraction was performed three times to increase the yield of the 

enriched fraction. The purity of the enriched fraction was increased by further negative selection and 

assessed by flow cytometry. 

 

3.2.4 Cell culture and treatment 

Healthy CD4+ T-cells were seeded in triplicate (8×104cells/well, U-bottomed microplate) in PEF conditioned 

complete culture medium (CCM; RPMI 1640, 10% foetal calf serum (FCS), 1% Penstrep-Fungizone, 1% L-

glutamine, final concentrations) in a 1:1 ratio (24h, 37°C, 5% CO2). Treatments included TB-HIV- PEF and 

TB+HIV+ PEF. Concurrently, cells were activated with Dynabeads Human T-activator CD3/CD28 bead 

solution (catalogue number 11131D, Gibco, Norway) (2μl/well). Following incubation, cells were harvested, 

washed once (0.1M PBS, 1,491rpm, 20min, RT) and the activation beads removed by magnetic selection 

(1min, iMagnet). The supernatants were stored at -80°C for downstream cytokine profiling and the cells 

immediately prepared for flow cytometric staining.  
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3.2.5 Flow cytometric analysis 

For surface staining, 2.5x105 cells were re-suspended in staining buffer (25μl, 0.1M PBS containing 1% heat 

inactivated FCS, 0.09% w/v sodium azide) and labelled with fluorescein isothiocyanate (FitC) anti-CD4 (1:5, 

catalogue number 555346) (20mins, 4°c, in the dark). For intracellular staining, cells were fixed in 4% 

paraformaldehyde (500μl, 30min, RT), washed (staining buffer; 1,491rpm, 20min, RT), permeabilized in 

75% cold methanol (500μl, 10min, -20°C) and washed again. Cells were stained with the appropriate 

intracellular antibodies; peridin-chlorophyll-cyanin 5.5 (PerCP-Cy5.5) anti-IL17A (1:20, catalogue number 

560799), phycoerythrin (PE) anti-RORC2 (1:40 catalogue number IC6006P) and Alex Fluor® 647 anti-

pSTAT3 (1:5 catalogue number 557815) (60min, RT, in the dark). Analysis was performed using the Accuri 

C6 flow cytometer (BD Biosciences, USA) and data analysed using FlowJo vX (10.0.7r2). Samples were run 

in triplicate and 30,000 events acquired. Antibodies were purchased from BD Biosciences, USA, with the 

exception of anti-RORC2 which was purchased from R&D Systems. 

 

3.2.6 Molecular profiling 

Total RNA was extracted from PEMCs using Qiazol Lysis Reagent (Qiagen, USA) following an in-house 

protocol. Briefly, cells were added to Qiazol Lysis Reagent (1:1) and incubated at RT (5min) and 

subsequently frozen (-80°C, overnight). Chloroform (200μl) was added, incubated at RT (3min) and 

centrifuged (8,200rpm, 15min, 4°C). Isopropanol (500μl) was added to the aqueous phase and frozen (-80°C, 

overnight). The samples were centrifuged (8,200rpm, 20min, 4°C) and the RNA pellet washed in cold 

ethanol (75%, 1ml). The samples were then centrifuged (6,400rpm, 15min, 4°C), the ethanol aspirated and 

the RNA pellet re-suspended in 15μl of nuclease free water. Total RNA was quantified on a Nanodrop™ 

2000 UV-Vis Spectrophotometer (Thermoscientific, USA) and purity assessed using the A260/A280 ratio. 

 

Copy DNA (cDNA) was synthesised using the RT2 First Strand Kit (catalogue number 330401, Qiagen, 

USA) according to the manufacturer’s instructions. Briefly, 1μg of RNA pooled equally from 5 patients per 

group was added to a genomic DNA elimination mix (5 × gDNA elimination buffer, H20) to a total volume 

of 10μl and incubated at 42°C (5min) followed by 4°C (1min). Subsequently, reverse transcription mix 

(10μl, 5 × RT buffer 3, primer and external control mix, RT enzyme mix, H20) was added and incubated at 

42°C (15min) followed by 95°C (5min), on the GeneAmp® PCR System 9700 (Applied Biosystems, USA), 

to produce cDNA.  

 

Real-time PCR was used to quantify STAT3, IL-6, IL-6 receptor (R) and IL-1β mRNA levels. A 25μl 

reaction consisted of 12.5μl RT2 SYBRGreen Masterrmix (catalogue number 330500, Qiagen, United 

States), 8.5μl nuclease free water, 2μl cDNA and 1μl sense and anti-sense primers.  Primer sequences: 

STAT3 sense 5’- TCTCAACTTCAGACCCGTCAACA-3’ anti-sense 5’-

ACAGCTCCACGATTCTCTCCTCC-3’ (450nM), IL-6 sense 5′-AAATTCGGTACATCCTCGACGG-3′ 

antisense 5′- GGAAGGTTCAGGTTGTTTTCTGC-3’ (500nM), IL-6R sense 5′-



107 

TGAGCTCAGATATCGGGCTGAAC-3′ antisense 5′-CGTCGTGGATGACACAGTGATG-3’ (450nM), 

IL-1β sense 5′-CAGCTACGAATCTCCGACCAC-3′ antisense 5′-GGCAGGGAACCAGCATCTTC-3’ 

(600nM). The mRNA expression was compared and normalised to a housekeeping gene, 18S sense 5’-

ACACGGACAGGATTGACAGA-3’ antisense 5’-CAAATCGCTCCACCAACTAA-3’. Cycling conditions 

were as follows: initial denaturation (95°C, 10min) followed by 40 cycles of denaturation (95°C, 30 seconds 

(s)), annealing (STAT3: 64°C, IL-6: 60°C, IL-6R: 60°C, IL-1β: 60°C for 30s) and extension (72°C, 1min) on 

a CFX Real-Time PCR Detector (Bio-Rad, USA).The quantification and melt curves  were analysed using 

CFX Manager™ Software v3.0 (Bio-Rad, USA). The mRNA levels were calculated using the method 

described by Livak and Schmittgen (2001) [29] and represented as fold changes and relative expression to 

the control. Samples were run in triplicate and the experiments were repeated twice. 

 

3.2.7 Cytokine profiling 

Cytokine profiling was performed using the Bio-Plex Pro Human Th17 Cytokine Panel (IL-1β, IL-4, IL-6, 

IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40L, TNF-α) (catalogue 

number 171AA001M, Bio-Rad, USA) according to the manufacturer’s instructions. Briefly, standards and 

samples (PEF; 1:6 and supernatant; 1:3), were diluted in standard and sample diluent HB respectively. The 

beads (50μl) were added to the assay plate and washed twice (100μl wash buffer, Bio-Plex Pro™ Wash 

Station). Standards, samples and controls were added and incubated (50μl, 1h in the dark, RT, 350rpm). The 

plate was washed three times and incubated with detection antibody (25μl, 30min in the dark, RT, 350rpm). 

The plate was washed three times and incubated with streptavidin-PE (50μl, 10min in the dark, RT, 350rpm). 

The plate was washed three times and the beads re-suspended in assay buffer (125μl, 30s, in the dark, RT, 

350rpm). Data acquisition was performed on a Bio-Plex 200 and analysis was performed using Bio-Plex 

Manager™ software v6.0. Standards and samples were run in duplicate. Results were analysed using a 5-

paramter logistic regression constructed from recombinant protein standards. The results were normalised to 

the treatment and then compared between groups.  

 

3.2.8 Statistical analysis 

Statistical analysis was performed using GraphPad Prism software (v5.0). The unpaired t-test with Welch 

correction was used in in vitro analyses and the non-parametric Mann-Whitney test in ex vivo analyses to 

avoid the influence of potential outlier values in the small study size. Outlier values were calculated and 

excluded using the interquartile range. Data is expressed as mean ± standard error of the mean (SEM), p 

values of less than 0.05 were considered statistically significant. 
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3.3 Results 

 

3.3.1 Reduced proportion of Th17 lymphocytes in TB+HIV+ pleurisy  

To investigate the propensity of TB/HIV co-infected pleural effusion microenvironment to promote Th17 

generation we treated healthy CD4+ Tconvs with PEF conditioned CCM. Interestingly, we observed that the 

proportion of CD4+IL-17+RORC+STAT3+cells was significantly 1.168 fold lower in CD4+ Tconvs treated 

with TB+HIV+ PEF compared to TB-HIV- PEF in vitro (64.400 ± 1.256% vs. 55.156 ± 1.299%, p=0.0001). 

This trend was corroborated when Th17 proportion was directly investigated in patients. PEMC samples 

from TB+HIV+ patients showed a significant 1.769 fold lower number of CD4+IL-17+RORC+STAT3+cells 

compared to TB-HIV- controls (64.100 ± 5.045% vs. 36.233 ± 6.968% p=0.0054), this was associated with a 

significant 1.575 fold decrease in IL-17A protein expression (1454.000 ± 117.167 vs. 923.445 ± 64.418 

PerCP-Cy5.5 mean fluorescence intensity (MFI), p=0.0040) (Figure 3.1). 
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Figure 3.1: T-helper 17 lymphocyte frequency and interleukin-17A protein expression. (A1) Relative fold 

change in the proportion of CD4+IL-17+RORC+STAT3+ T-helper (Th) 17 lymphocytes in pleural effusion 

fluid (PEF) treated CD4+ conventional T-cells in vitro (n=9 replicates in each group, p=0.0001, unpaired t-

test with Welch correction). (A2) Reduced percentage of CD4+IL-17+RORC+STAT3+ Th17 lymphocytes in 

pleural effusion mononuclear cells (PEMCs) ex vivo (TB-HIV-n=5, TB+HIV+ n=5, p=0.0054, Mann Whitney 

test). (B) Interleukin (IL)-17A protein expression was reduced in TB+HIV+ PEMCs represented by peridin-

chlorophyll-cyanin5.5 (PerCP-Cy5.5) mean fluorescence intensity (MFI) (TB-HIV- n=5, TB+HIV+ n=5, 

p=0.0040, Mann Whitney test). (C) Histogram showing the shift in IL-7A-PerCP-Cy5.5 fluorescence in 

PEMCs. Data represents the mean. 

B C 
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3.3.2 TB+HIV+ mediated in mRNA levels 

We then assessed the molecular response of PEMCs with respect to Th17 polarisation. PEMCs from 

TB+HIV+ patients showed a significant upregulation in the transcript expression of molecules which promote 

Th17 differentiation; a notable 30.647 fold increase in STAT3 (17.037 ± 0.089 vs 12.140 ± 0.103 relative 

expression (∆Ct), p=0.0022), 11.662 fold increase in IL-1β (14.638 ± 0.043 vs. 11.102 ± 0.035 relative 

expression (∆Ct), p=0.0022), 3.076 fold increase in IL-6 (19.727 ± 0.143 vs. 18.380 ± 0.284 relative 

expression (∆Ct), p=0.0022) and a 1.657 fold increase in IL-6R (18.752 ± 0.099 vs. 18.092 ± 0.230 relative 

expression (∆Ct), p=0.0247) (Figure 3.2). 

 

 

 

Figure 3.2: Relative messenger RNA expression represented as relative cycle threshold (∆Ct) in pooled 

pleural effusion mononuclear cells (PEMCs) (n=6 replicates in each group, Mann-Whiney test). Signal 

transducer and activator of transcription 3 (STAT3) (p=0.0022), interleukin (IL)-1β (p=0.0022), IL-6 

(p=0.0022) and IL-6 receptor (IL-6R) (p=0.0247). Data represents the mean. 
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3.3.3 The TB+HIV+ cytokine microenvironment 

Since we found increased expression of mRNA transcripts related to Th17 polarisation in TB+HIV+ PEMCs, 

we questioned whether in fact these were translated into secreted cytokine using a Bioplex multi-analyte 

cytokine screen.   

 

Despite the reduced frequency of Th17 cells in TB+HIV+ PEF treatments and pleurisy, there was no 

significant change in the Th17 effector cytokines IL-17A and IL-17F concentrations in both the in vitro and 

ex vivo assays (Figure 3.3 and 3.4). Interestingly, in the TB+HIV+ and TB-HIV- patient cohorts, IL-17F was 

elevated by 6.460 fold (18.281 ± 2.383pg/ml vs. 118.090 ± 8.077pg/ml, p<0.0001) and 7.844 fold (11.938 ± 

2.449pg/ml vs. 93.637 ± 15.357pg/ml, p=0.0009) compared to IL-17A respectively (Figure 3.4). 

 

With respect to Th17 generating cytokines, there were no significant alteration between the TB+HIV+ and 

TB-HIV- PEF treatments in vitro indicating that the reduced proportion of Th17 lymphocytes observed in 

CD4+ Tconvs treated with TB+HIV+ PEF was not a result of the cytokine milieu  (Figure 3.3). In the patient 

samples, we observed a 3.708 fold increase in IL-1β (4.918 ± 1.421pg/ml vs. 18.238 ± 3.064pg/ml, 

p=0.0008) but without a significant change in the levels of IL-6, IL-21 or IL-23. This substantiates the in 

vitro result and infers that a reduced proportion of Th17 lymphocytes found in TB+HIV+ pleurisy is 

independent of the cytokine microenvironment ex vivo (Figure 3.4).  

 

Th1 cytokines have established roles in TB and HIV pathogenesis, accordingly a 3.626 fold increase in TNF-

α (18.233 ± 2.615pg/ml vs. 66.112 ± 13.264pg/ml, p=0.0251) and a 13.559 fold increase in IFN-γ (87.792 ± 

27.282pg/ml vs. 1190.386 ± 361.906pg/ml, p=0.0026) concentration was found in TB+HIV+ PEF (Figure 

3.4). 

 

Notably, a 2.643 fold increase in IL-22 (26.379 ± 8.903pg/ml vs. 69.729 ± 10.318pg/ml, p=0.0115) and a 

3.055 fold increase in IL-31 (158.430 ± 35.615pg/ml vs. 483.957 ± 115.651pg/ml, p=0.0210) was observed 

in TB/HIV pleurisy, both of which are largely uncharacterised in TB and HIV infection (Figure 3.4). 
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Figure 3.3: Cytokine profiling of supernatants from CD4+ T-cells treated with pleural effusion fluid conditioned media. Results were normalised to the treating 

pleural effusion fluid (PEF) (n=2 replicates in each group, Unpaired t-test with Welch correction). IL; interleukin, IFN; interferon, sCD40L; soluble CD40 ligand, 

TNF; tumor necrosis factor. Data represents the mean ± SEM. 

 

 

‐100.000

‐80.000

‐60.000

‐40.000

‐20.000

0.000

20.000

40.000

60.000

80.000
IL‐1β  IL‐4

IL‐6
(x1000) IL‐10 IL‐17A IL‐17F IL‐21 IL‐22 IL‐23 IL‐25 IL‐31

IL‐33
(x10) IFN‐γ  sCD40L TNF‐α 

N
or
m
al
is
ed

 C
on

ce
nt
ra
tio

n 
(p
g/
m
l)

PEF Treated CD4+ T‐cell Supernatant
TB‐HIV‐

TB+HIV+



113 

 

 

 

Figure 3.4: Cytokine profiling of pleural effusion fluid. TB+HIV+ pleural effusion fluid (PEF) showed increased concentrations of interleukin (IL)-1β (p=0.0008), 

IL-22 (p=0.0115), IL-31 (p=0.0210), interferon (IFN)-γ (p=0.0026) and tumor necrosis factor (TNF)-α (p=0.0251). (IL-1β, IL-4, IL-6, IL-10, IFN-γ, TNF-α; TB-

HIV- n=8, TB+HIV+ n=12. IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, sCD40L; TB-HIV- n=5, TB+HIV+ n=5, Mann-Whitney test). Data represents 

the mean ± SEM. sCD40L; soluble CD40 ligand. 
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3.4 Discussion 

The Th17/IL17 axis is suggested to provide protective immunity against MTB by contributing to 

development and organisation of the granuloma [30-33]. Early expression of pulmonary IL-17 is pivotal in 

granulomatous cellular recruitment by inducing chemokine secretion from non-haematopoietic cells. This 

predominantly results in neutrophil and CCR5+ lymphocyte recruitment, through the induction of IL-8 and 

chemokine C-X-C motif ligand (CXCL) 13 respectively, to form lung lymphoid follicles for optimal 

macrophage activation and bacterial clearance [34-37]. However, during the chronic stages of infection, 

Th17 hyperactivity can lead to immunopathology via IL-17-CXCL mediated influx of immune cells [30, 38-

40], breakdown of the granuloma, cavitation and transmission [31, 41]. Th17 immunity has also been shown 

to contribute to mucosal TB vaccine immunity by IL-17A induction of CXCL13 [34]. However, there is no 

consensus on the proportion of Th17 cells in TB infection and the significance of this contribution to disease 

pathogenesis.  

 

This is further confounded by HIV co-infection. Th17 cells show greater HIV susceptibility than other T-cell 

subsets [42-44]. Th17 lymphocyte  targeting has been correlated with a higher expression of HIV envelope 

receptors CD4, CXCR4, CCR5 and α4β7 and low levels of autocrine production of CCR5 ligands CCL3 and 

CCL4, resulting in higher gp120 binding [43]. This is associated with a significant impairment in the 

generation of Th17 cells from peripheral naïve CD4+ T-cells [22]. In addition, the over expression of 

negative regulators in Th17 differentiation (phosphatase SHP2, suppressor of cytokine signalling (SOCS) 3 

and protein inhibitor of activated STAT (PIAS) 3) have been to linked to Th17 deficiency in a simian 

immunodeficiency virus model [45]. Notably, HIV-1 infected long-term non-progressors [19] and elite 

controllers [46] preserve the Th17 subset in peripheral blood and mucosa. 

 

In our study, a significantly lower proportion of CD4+IL-17+RORC+STAT3+ lymphocytes was found in 

TB+HIV+ pleurisy compared to TB-HIV- pleurisy both in vitro and ex vivo. Classically, Th17 cells 

differentiate under TGF-β/IL-21 [47] or TGF-β/IL-6 and IL-21/IL-23 [48] conditions. This leads to Th17 

lineage commitment via the activation of STAT3 and downstream transcription factor RORC, as well as 

interferon regulating factor 4 (IRF4), which in turn bind to the promoter region of IL17A/F [49-52]. Further 

to this IL-1β and IL-6 are significant in the expansion of differentiated and memory Th17 cells and IL-23 for 

the stabilisation and maintenance of the Th17 phenotype and effector functions [53]. Despite the reduction in 

Th17 frequency, there was no significant difference in the concentrations of IL-6, IL-21, and IL-23 between 

the two groups both in vitro and ex vivo indicating that the reduced proportion of Th17 cells is not a result of 

decreased polarising cytokines. In support of this, previous studies have shown that HIV infection is 

characterised by high levels of TGF-β [54], IL-6 [55] and IL-1 suggesting that failure to generate Th17 cells 

is not due to a lack of promoting cytokines [24]  

 

Notably, TB+HIV+ pleurisy was associated with a significant 3.708 fold increase in IL-1β pleural fluid 

concentration and a 11.662 fold increase in IL-1β mRNA levels in PEMCs. Th17 cells express higher IL-1 



115 

receptor levels than other CD4 subsets [56, 57], in turn IL-1β upregulates the expression of transcription 

factors IRF4 and RORC and acts synergistically with IL-6, IL-23 and TGF-β to stimulate Th17 

differentiation and maintain IL-17A, IL-17F, IL-21 and IL-22 cytokine production in effector cells [51, 56-

60]. Very recently, a clinical isolate of the hypervirulent W-Beijing strain of MTB has been shown to induce 

a potent IL-17 protective response in a murine model through the induction of dendritic cell IL-1β and the 

subsequent formation of lung lymphoid follicles [34]. Furthermore, it was shown that blocking of IL-1/IL-

1R signalling led to almost complete inhibition of IL-17A production during MTB stimulation in PBMCs 

[61]. Our results indicate that Th17 lymphocytes in TB/HIV pleurisy may be defective in their ability to 

respond to IL-1β 

 

In the current study we found a 1.657 and 3.076 fold increase in IL-6R and IL-6 mRNA levels in co-

infection, respectively but no increase in IL-6 cytokine levels in pleural fluid. This was interesting as 

recently the upregulation of IL-6 has been identified as a potential biomarker of mycobacterial infection in 

vitro [62]. During active TB infection IL-6 levels are increased in plasma [63, 64] and broncho-alveolar 

lavage (BAL) fluid [64, 65] with positive correlation to disease severity [63]. Furthermore, IL-6 is noted to 

be elevated in all phases of HIV chronic infection [66] and a clinical trial has shown that increased IL-6 

levels are associated with increased all-cause mortality in HIV [67]. Our findings suggest that post 

transcriptional regulation of key Th17 polarising cytokines may influence the cytokine microenvironment. 

 

Despite a significant decrease in the frequency of Th17 cells in TB+HIV+ pleurisy, there was no significant 

difference in the concentration of effector cytokines IL-17A and IL-17F between the two groups in vitro and 

ex vivo. In line with our findings, it has been observed that IL-17 mRNA levels in BAL cells of active TB 

patients and healthy controls do not differ significantly [68]. This may be a result of IL-17A production by 

CD8+ T-cells [69], γöT-cells [70], natural killer cells [71], neutrophils [72] innate lymphoid cells [73] and 

mast cells [74]. The contribution of these different cell types to IL-17 associated diseases is still unknown 

[37]. γöT-cells, enriched at mucosal surfaces, such as the lung, have been indicated as a major source of 

early IL-17A production in response to MTB [75, 76] and found to be at significantly higher frequency in 

the peripheral blood of active TB patients compared to healthy donors [76]. γöT-cells can respond to IL-23 

and IL-1β amplifying Th17 responses [75, 77] and therefore it is possible that the IL-17 observed in 

TB+HIV+ pleurisy may be a result of a IL-1β - γöT-cell pathway. 

 

Notably, IL-17F was present at a significantly higher concentration than IL-17A in both TB+HIV+ and TB-

HIV- groups, 6.460 and 7.844 fold respectively. IL-17F alone is generally less inflammatory than IL-17A; 

however, its effects are augmented when combined with TNF-α [78], also significantly increased in 

TB+HIV+ PEF. In support of our results, a previous study noted a decreased frequency of IL-17A producing 

CD4+ T-cells but increased frequency of IL-17F producing CD4+ T-cells in the peripheral blood of HIV 

infected patients [79], implying a HIV mediated selective defect in IL-17A production. 
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TNF-α and IFN-γ have established roles in the pathogenesis of TB [80, 81] and HIV [82-84], their 

significantly increased expression observed in TB+HIV+ pleurisy is not unexpected. IFN-γ is the preeminent 

cytokine in MTB immune defence, its primary function is the activation of macrophages instituting 

mycobacterial killing mechanisms [85-87] which is enhanced by TNF-α [88-90]. HIV-1 Tat protein induces 

production of TNF-α and IFN-γ in human monocytes/macrophages [83], in turn these cytokines 

synergistically stimulate HIV replication in vitro [91]. This suggests that in co-infection TNF-α and IFN-γ 

provide protective immunity against MTB but promote replication of HIV [92], indicating that defence 

against one pathogen allows injury by another. Furthermore, IFN-γ has been shown to limit the size of the 

Th17 population during MTB infection [93]. In our TB+HIV+ cohort we observed significantly a higher 

concentration of IFN-γ over IL-17A (65.116 fold increase, p=0.0006) or IL-17F (10.080 fold increase, 

p=0.0092) possibly contributing to the reduction in Th17 lymphocytes in co-infection.  

 

Our investigations showed a 2.643 fold increase in IL-22 levels in TB+HIV+ pleurisy. IL-22 has been 

implicated in pathogenesis of TB [11, 94, 95] and HIV [96-98]. However, it remains to be determined if IL-

22 is involved in protective or pathogenic immunity in co-infection or the reparative process following the 

immuno-pathological consequences of these diseases. IL-22 significantly exceeded the concentration of IL-

17A (3.814 fold, p<0.0001) but not IL-17F in TB+HIV+ pleurisy. This is in line with previous work where 

IL-22 was found to surpass IL-17A in TB+ pleural fluid [95]. The raised level of IL-22 in the face of 

decreased frequency in Th17 cells could represent contribution by other cell types. In this regard, during 

experimental MTB infection, IL-22 was found to be predominantly produced by Th1 and Th22 cells rather 

than Th17 cells [99]. IFN-γ suppresses PBMC IL-17A production and Th17 activity [1, 11, 99-102] but not 

IL-22 production [11, 99] allowing for effective IL-22 production in the absence of Th17 cells, in line with 

our results. 

 

The 3.055 fold increase in IL-31 concentration in TB+HIV+ pleurisy is novel. IL-31 is generally associated 

with Th2 mediated skin inflammation or allergic responses in the airways and GIT and has not been 

characterised in TB/HIV co-infection or mono-infection. IL-31 mRNA is upregulated in the lungs after 

antigen challenge [103], the targets of which are primarily bronchial epithelial cells, pulmonary fibroblasts 

and macrophages [104] where it upregulates pro-inflammatory cytokine and chemokine gene expression 

involved in cellular recruitment [103, 105-107], in the context of TB this may contribute to granuloma 

organisation. IL-31 can also directly inhibit IL-17A/F mRNA synthesis in Th17 cells through the regulation 

of PIAS molecules [108] possibly augmenting the observed decrease in Th17 frequency.  

 

In HIV infection, the depletion of Th17 cells at the mucosal surface is associated with increased 

translocation of microbial into the systemic circulation rendering a patient more prone to opportunistic 

infections and suggested to be a predominant cause of chronic immune activation and HIV progression [24, 

109-112]. At the respiratory mucosa, a loss of Th17 cells decreases mucosal defence to inhaled MTB and 
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together with reduced IL-17-mediated cellular recruitment and granuloma organisation may result in the 

progression of active TB infection. 

 

3.5 Concluding remarks 

A reduced proportion of Th17 cells were observed in TB+HIV+ pleurisy independent of alteration in the 

levels of Th17 polarising cytokines and IL-17A/F effector cytokines in the localised microenvironment. 
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Abstract 

Monocytes produce cytokines that direct T-cell polarisation. Tuberculosis (TB) and human 

immunodeficiency virus (HIV) infection alter monocyte function and the pathogenesis of both of these 

diseases is largely orchestrated by sub-optimal T-cell responses.  

 

Objectives: We constructed an in vitro supernatant transfer model to investigate the effect of TB/HIV pleural 

exudate on monocyte (THP-1) cytokine production and subsequent cytokine expression and polarisation of 

CD4+ conventional T-cells (Tconvs) into T-helper (Th) 17 and T-regulatory (Treg) lymphocyte subsets, 

compared to a non-infectious pleural effusion. 

 

Design: HIV-related TB most commonly presents as TB pleurisy and monocyte dysfunction is induced by 

secreted factors from MTB, HIV or infected cells. The effect of TB/HIV co-infection on monocyte behavior 

is largely uncharacterised therefore a unicellular model needs to firstly be investigated to elucidate more 

complex findings in multicellular systems. 

 

Methods: Th17 and Treg frequency was assessed by flow cytometry, monocyte and CD4+ T-cell cytokine 

production was measured with ELISA and Bio-Plex platforms respectively.  

 

Results: TB+HIV+ pleurisy altered monocyte cytokine production resulting in increased production of 

interleukin (IL)-1β (p=0.0217), a Th17 generating cytokine. Following supernatant transfer, the TB+HIV+ 

treated monocyte milieu caused significant polarisation of CD4+ Tconvs into Th17 cells and Tregs 

(p<0.0001). However, a significantly greater proportion of Th17 lymphocytes (p=0.0001) was observed, 

associated with elevated intracellular IL-17A protein expression (p<0.0001) and 2.278 and 8.191 fold 

increases in the production of Th17 characteristic cytokines, IL-17A and IL-21 respectively.  

 

Conclusion: The TB/HIV microenvironment modifies monocyte mediated T-cell polarisation towards a pro-

inflammatory Th17 phenotype, possibly due to increased IL-1β production.  

 

Keywords 
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4.1 Introduction 

Monocytes are innate effectors mediating the inflammatory response to pathogens as a source of macrophage 

and dendritic cell precursors, as well as antigen presentation, phagocytosis, and the production of 

antimicrobial substances [1, 2]. In addition, monocytes produce cytokines mediating T-cell polarisation at 

the site of inflammation [2-4].  

 

Tuberculosis, is the second leading killer from a single infectious agent, Mycobacterium tuberculosis (MTB), 

globally, the first being the HIV [5]. Following inhalation of MTB, infected macrophages produce 

chemokines recruiting monocytes to the infection site [6]. These monocytes show increased peripheral and 

localised activation and frequency [7-9], killing MTB by Toll-like receptor (TLR) [10] and inducible nitric 

oxide synthase (iNOS) [11] mediated mechanisms. However, during MTB infection studies have observed 

differentiation of phenotypically and functionally immature monocyte derived macrophages [8], attenuated 

IFN-γ mediated antimycobacterial mechanisms [12], aberrant cytokine production [7, 8, 12] and increased 

monocyte apoptosis and necrosis [13, 14] which has been associated with tissue destruction and cavitation 

[9]. This indicates that MTB causes significant monocyte dysfunction contributing to disease pathogenesis. 

This is further complicated by HIV co-infection. 

 

In South Africa 62% of TB patients are HIV co-infected. HIV increases the risk of active TB by 26-31 times 

with TB being the leading cause of HIV-related mortality [5]. Monocytes are less permissive to HIV-

infection than other cell types. However, monocytes from HIV infected patients show impaired maturation 

and response to TLR ligands [15], alterations in gene expression related to TLR signalling and cytokine 

responses, cytokine-cytokine receptor interaction, activation, apoptosis and proteasome function [16-18], 

associated with disease pathogenesis [16].  

 

The pathogenesis of TB and HIV is primarily mediated by dysregulated CD4+ T-cell responses. During 

pathogen defence, monocytes mediate T-cell polarisation. Both TB and HIV cause monocyte dysfunction, 

but the effect of co-infection on monocyte mediated CD4+ T-cell polarisation has not been explored.  

 

The majority of HIV-related TB is extrapulmonary [19, 20], most commonly TB pleurisy [21]. Classically, 

direct MTB/HIV infection is thought to cause monocyte dysfunction; however, more recently secreted 

factors from MTB, HIV or infected cells are considered to have a greater effect [12, 16]. The consequences 

of TB/HIV co-infection on monocyte behavior is largely uncharacterised therefore a unicellular model needs 

to be initially probed to lay the foundation for observations in a multicellular system. We investigated an in 

vitro supernatant transfer model to question whether a TB/HIV pleural exudate altered monocyte (THP-1) 

cytokine production sufficiently to affect subsequent cytokine expression and polarisation of CD4+ Tconvs 

into Th17/Treg subsets, differentially from a non-infectious inflammatory microenvironment. 
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4.2 Methods 

 

4.2.1 Study population 

This study protocol was approved by the institutional Biomedical Research Ethics Committee (BF170/11). 

Participants were recruited at Inkosi Albert Luthuli Central Hospital and Prince Mshiyeni Memorial Hospital 

(Durban, South Africa). Newly diagnosed TB patients presenting with a TB pleural effusion and concurrent 

HIV-infection (n=5) were enrolled. Active TB was confirmed by clinical diagnosis with bacterial or 

radiographic evidence; AFB culture positive sputum or pleural fluid, microscopy (Gram, Zhiel-Neelsen, 

Auramine), MTB DNA (Gene Xpert), pleural histology and pleural fluid cytology. The matched control 

group presented with a non-infectious pleural effusion (malignancy, cardiac failure, renal disease) and 

confirmed HIV seronegative (n=5) (Table 4.1). Exclusion criteria included anti-tuberculosis or anti-retroviral 

therapy, immunomodulatory treatment and conditions. Blood and pleural fluid were sampled by routine 

venesection and diagnostic pleural tap respectively, after informed consent was obtained.  
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Table 4.1: Summary of the demographic and clinical parameters of the study population 

Parameter TB-HIV- 

n=5 
TB+HIV+ 

n=5 

Age, years, median (range) 55 (46-61) 36 (18-64) 

Gender   

Male 5 (100) 2 (40) 

Female 0 3 (60) 

Race   

African 3 (60) 5 (100) 

Indian 2 (40) 0 

TB diagnostic criteria   

Culture positive  4 (80) 

Smear positive  1 (20) 

PCR-MTBDR  5 (100) 

Resistance to any one first line TB drug  1 (20) 

MDR-TB  1 (20) 

XDR-TB  0 

CD4 count, mm3, mean (range)  51 (12-123) 

Past history of TB infection 0 1 (20) 

Current smoker 2 (40) 1 (20) 

Ex-smoker 1 (20) 0 

Alcohol use 1 (20) 2 (40) 

Definitive cause of PE   

Tuberculosis 0 5 (100) 

Malignancy 2 (40) 0 

End stage renal disease 2 (40) 0 

Heart failure 1 (20) 0 

Co-Morbidities   

Diabetes mellitus 2 (40) 0 

Hypertension 3 (60) 1 (20) 

Hepatitis B 0 1 (20) 

Values expressed as n (%) unless otherwise stated 
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4.2.2 Pleural effusion fluid isolation  

Cell free pleural effusion fluid (PEF) was extracted from heparinised pleural effusion samples by differential 

gradient centrifugation within 2 hours (h) of pleural tap. Briefly, 5 ml of sample was layered onto 

equivolume Histopaque-1077 (catalogue number (CN) 10771-500, Sigma, USA) and centrifuged (1,491rpm, 

30 minutes (min), room temperature (RT)). PEF was aspirated and centrifuged (10,000rpm, 10min, 4°C) to 

remove any cellular constituents. Harvested PEF was pooled from 5 patients in each group equally and 

stored at -80°C. 

 

4.2.3 THP-1 cell culture and treatment 

Human acute monocytic leukaemic (THP-1) cells were obtained from ATCC. Cells were maintained in 

complete culture medium (CCM; RMPI 1640, 10% foetal calf serum (FCS), 1% L-glutamine, 1% Penstrep-

Fungizone, 0.05mM 2-mercaptoethanol, 1mM sodium pyruvate) at 37°C, 5% CO2. Prior to treatment, 7×106 

cells were stimulated with 10μg/ml lipopolysaccharide in CCM (4h, 37°C, 5% CO2). Stimulated THP-1 cells 

were harvested, washed (0.1M phosphate buffered saline (PBS), 1,000rpm, 10min, RT) and seeded in 

triplicate (3×105 cells/ml) in PEF conditioned CCM in a 1:1 ratio for 24h (37°C, 5% CO2). Treatments 

included TB-HIV- and TB+HIV+ PEF. Supernatants were harvested by centrifugation (1,000rpm, 10min, RT) 

and stored at -80°C for cytokine profiling and downstream supernatant transfer.   

 

4.2.4 ELISA 

Quantitation of IL-1β, IL-6, IL-10, IL-12p70, TNF-α and IFN-γ in TB+HIV+ PEF, TB-HIV-PEF and PEF 

treated THP-1 supernatants was measured by enzyme-linked immunosorbent assay (ELISA) using OptEIA™ 

Sets (CN IL-1β 557953, IL-6 555220, IL-10 555157, IL-12p70 555183, TNF-α 555212, IFN-γ 555142, BD 

Biosciences, Canada). Microwells were coated with capture antibody (100μl/well, 4°C, overnight). The 

plates were washed three times (wash buffer; 300μl/well) and blocked with assay diluent (10% FCS in 0.1M 

PBS, 200μl/well, 1h, RT, 350rpm). The plates were washed 3 times; standards and samples (100μl) added 

and incubated (2h, RT, 350rpm). The plates were washed five times. IL-1β: detection antibody was added 

(100μl/well, 1h, RT, 350rpm), the plate washed five times and streptavidin-horseradish peroxidase (HRP) 

added (100μl/well, 30min, RT, 350rpm). IL-6, IL-10, IL-12p70, TNF-α, IFN-γ: working detector was added 

(detection antibody and Streptavidin-HRP reagent; 100μl/well, 1h, RT, 350rpm). All plates were washed 7 

times and substrate solution added (100μl/well, 30min, RT). Stop solution (50μl/well) was added and the 

absorbance immediately read at 450nm with a reference of 570nm using a µQuant (Bio-Tek, USA) 

spectrophotometer. Standards and samples were run in triplicate. The results were normalised to the PEF and 

then compared between groups. 
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4.2.5 Peripheral blood mononuclear cell isolation 

For use in CD4+ T-cell isolation peripheral blood mononuclear cells (PBMCs) were extracted from whole 

blood (10ml, EDTA, one blood draw) of a healthy BCG vaccinated volunteer by differential gradient 

centrifugation within 2h of venipuncture. Briefly, 5 ml of sample was layered onto equivolume Histopaque-

1077 and centrifuged (1,491rpm, 30min, RT). Buffy coats were aspirated and rinsed (0.1M PBS; 1,491rpm, 

20min, RT). 

 

4.2.6 CD4+ T-cell isolation 

CD4+ T-lymphocytes were purified by negative magnetic selection using the Human CD4 T-Lymphocyte 

Enrichment Set-DM (CN 557939, BD Biosciences, USA). PBMCs were labelled with biotinylated 

monoclonal antibodies (5μl/10×106 cells, 15min, RT) against antigens on erythrocytes, platelets and non-

CD4+ leukocytes. The cells were washed (iMag Buffer, 1,491rpm, 20min) and incubated with streptavidin 

conjugated magnetic nanoparticles (5μl/10×106 cells, 30min, RT). The cell suspension was placed in a 

magnetic field (8min, iMagnet; BD Biosciences, USA) and the enriched CD4+ T-cell supernatant aspirated. 

Negative selection of the positive fraction was performed three times to increase the yield.  

 

4.2.7 CD4+ T-cell culture and treatment 

CD4+ T-cells were seeded in triplicate (8×104cells/well, U-bottomed microplate) in THP-1 supernatant 

conditioned CCM (RPMI 1640, 10% FCS, 1% Penstrep-Fungizone, 1% L-glutamine, final concentrations) in 

a 1:1 ratio (24h, 37°C, 5% CO2).  Treatments included THP-1 supernatant: TB-HIV- PEF and THP-1 

supernatant: TB+HIV+ PEF. Concurrently, cells were activated with Dynabeads Human T-activator 

CD3/CD28 bead solution (CN 11131D, Gibco, Norway) (2μl/well). Cells were harvested, washed (0.1M 

PBS, 1,491rpm, 20min, RT) and the activation beads removed by magnetic selection (1min, iMagnet). The 

supernatants were stored at -80°C for cytokine profiling and the cells immediately prepared for flow 

cytometric staining. This experiment was repeated three times. 

 

4.2.8 Flow cytometric analysis 

For surface staining, 2.5x105 cells were re-suspended in staining buffer (25μl, 0.1M PBS, 1% FCS, 0.09% 

sodium azide) and labelled with surface antibodies (20min, 4°C); fluorescein isothiocyanate (FitC) anti-CD4 

(1:5, CN 555346), peridin-chlorophyll-cyanin 5.5 (PerCP-Cy5.5) anti-CD25 (1:20, CN 560503). For 

intracellular staining, cells were fixed in 4% paraformaldehyde (500μl, 30min, RT), washed (staining buffer; 

1,491rpm, 20min, RT), permeabilized (75% methanol, 500μl, 10min, -20°C) and washed again. Cells were 

stained with intracellular antibodies (60min, RT); phycoerythrin (PE) anti-Foxp3 (1:5, CN 560046), PerCP-

Cy5.5 anti-IL17A (1:20, CN 560799), PE anti-RORC2 (1:40, CN IC6006P). Analysis was performed on an 
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Accuri C6 flow cytometer (BD Biosciences, USA) and data analysed using FlowJo vX (10.0.7r2). Samples 

were run in triplicate and 30,000 events acquired. Antibodies were purchased from BD Biosciences, USA, 

with the exception of anti-RORC2 which was purchased from R&D Systems, USA. 

 

4.2.9 Cytokine profiling 

Cytokines were measured using the Bio-Plex Pro Human Th17 Cytokine Panel (IL-1β, IL-4, IL-6, IL-10, IL-

17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40L, TNF-α) (CN 171AA001M, Bio-Rad, 

USA). Standards and samples (THP-1 supernatants and CD4 T-cell supernatants, 1:3) were diluted in 

standard and sample diluent HB respectively. The beads (50μl) were added to the assay plate and washed 

twice (100μl wash buffer, Bio-Plex Pro™ Wash Station). Standards, samples and controls were added (50μl, 

1h, RT, 350rpm). The plate was washed three times and incubated with detection antibody (25μl, 30min, RT, 

350rpm). The plate was washed three times and incubated with streptavidin-PE (50μl, 10min, RT, 350rpm). 

The plate was washed three times and the beads re-suspended in assay buffer (125μl, 30 seconds, RT, 

350rpm). Data acquisition was performed on a Bio-Plex 200 (Bio-Rad, USA) and analysed using Bio-Plex 

Manager™ software v6.0. Samples, standards and controls were run in triplicate. Results were analysed 

using a 5-paramter logistic regression constructed from recombinant protein standards. The results were 

normalised to the treatment and then compared between groups. 

 

4.2.10 Statistical analysis 

The unpaired t-test with Welch correction was performed using GraphPad Prism software (v5.0). Outlier 

values were calculated using the interquartile range. Data is expressed as mean ± standard error of the mean 

(SEM), p<0.05 was considered statistically significant. 
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4.3 Results 

 

4.3.1 TB/HIV pleurisy increases monocyte production of IL-1β  

We first investigated whether TB-HIV- and TB+HIV+ pleural exudates differentially affected monocyte 

cytokine production by measuring IL-1β, IL-6, IL-10, IL-12p70, TNF-α and IFN-γ levels in supernatants of 

THP-1 cells cultured in PEF conditioned media. A significantly 219.737 fold increase in THP-1 production 

of IL-1β, a Th17 generating cytokine was observed (0.076 ± 0.201pg/ml vs. 16.700 ± 2.335pg/ml, p=0.0217) 

following TB+HIV+ PEF treatment (Figure 4.1). 

 

Interestingly, both monocyte activating cytokines IL-6 (-0.769 ± 1.731pg/ml vs. -20.577 ± 1.855pg/ml, 

p=0.0160) and TNF-α (2.500 ± 0.120pg/ml vs -2.847 ± 0.139pg/ml, p=0.0002), were reduced to a 

significantly greater extent in the supernatants of THP-1 cells cultured in TB+HIV+ media compared to TB-

HIV- conditions. No significant change in IL-10, IL-12p70 and IFN-γ production was observed (Figure 4.1).  
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Figure 4.1: Normalised cytokine concentrations (pg/ml) of supernatants of THP-1 monocytes cultured in TB-HIV- and TB+HIV+ PEF conditioned media. The 

TB+HIV+ pleural exudate resulted in significantly increased monocyte production of interleukin (IL)-1β (p=0.0217) but significantly decreased IL-6 (p=0.0160) and 

tumour necrosis factor (TNF)-α (p=0.0002) (TB-HIV-n=3, TB+HIV+ n=3, Unpaired t-test with Welch correction). IFN; interferon. 
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4.3.2 TB/HIV co-infection increases monocyte mediated Th17 polarisation 

We then assessed whether differentially conditioned monocytes and their resulting cytokine milieu were 

sufficient to effect downstream polarisation of CD4+ Tconvs into Treg and Th17 subsets. Supernatants of 

THP-1 cells cultured in TB+HIV+ PEF caused a 1.671 fold increase in the frequency of CD4+CD25+Foxp3+ 

Tregs (33.329 ± 2.470% vs. 55.700 ± 2.249%, p<0.0001), this was associated with a 1.429 fold increase in 

the lineage specific transcription factor, forkhead box P3 (Foxp3) protein expression (1759.000 ± 135.100 

vs. 2514.333 ± 67.804 PE mean fluorescence intensity (MFI), p=0.0004) (Figure 4.2).  

 

More notably, TB+HIV+ THP-1 supernatants resulted in a 2.174 fold increase in the proportion of CD4+IL-

17A+RORC+ Th17 lymphocytes (32.211 ± 1.036% vs. 70.022 ± 1.235%, p<0.0001) with a corresponding 

1.287 fold increase in Th17 characteristic cytokine, IL-17A intracellular protein expression (1387.444 ± 

19.194 vs 1785.111 ± 23.668 PerCP-Cy5.5 MFI, p<0.0001) (Figure 4.3).  

 

Furthermore, while TB-HIV- THP-1 supernatant conditions resulted in similar proportions of Tregs and Th17 

cells (33.329 ± 2.470% vs. 32.211 ± 1.036%, p=0.6875), the TB+HIV+ monocyte milieu resulted in a 

significant 14.322% (1.257 fold) greater proportion of Th17 lymphocytes than Tregs (55.700 ± 2.249% vs. 

70.022 ± 1.235%, p=0.0001). This strongly indicates that TB+HIV+ PEF treatment resulted in a monocyte 

cytokine milieu that predominantly promotes Th17 differentiation, and further suggests that co-infection is 

associated with a pro-inflammatory microenvironment (Figure 4.4).  
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        2A                                                                             2B                                                                          2C 

 

 

 

Figure 4.2: Change in T-regulatory lymphocyte frequency and forkhead box P3 protein expression. Supernatants of THP-1 cells treated with TB+HIV+ conditioned 

media resulted in a significantly elevated (A) proportion of CD4+CD25+Foxp3+ T-regulatory lymphocytes (p<0.0001) and (B) Forkhead box P3 (Foxp3)-

phycoerythrin (PE) mean florescence intensity (MFI) (p=0.0004) (TB-HIV-n=9, TB+HIV+ n=9, Unpaired t-test with Welch correction). Data represents the mean. 

(C) Histogram showing the shift in Foxp3-PE fluorescence in CD4+ T-cells. 
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3A               3B                          3C 

 

 

 

Figure 4.3: Change in T-helper 17 lymphocyte frequency and interleukin-17A protein expression. Supernatants of THP-1 cells treated with TB+HIV+ conditioned 

media resulted in a significantly elevated (A) proportion of CD4+IL-17A+RORC+ T-helper (Th) 17 lymphocytes (p<0.0001) and (B) interleukin (IL)-17A-peridin-

chlorophyll-cyanin 5.5 (PerCP-Cy5.5) mean fluorescence intensity (MFI) (p<0.0001) (TB-HIV- n=9, TB+HIV+ n=9, Unpaired t-test with Welch correction). Data 

represents the mean. (C) Histogram showing the shift in IL-17A- PerCP-Cy5.5 fluorescence in CD4+ T-cells 
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Figure 4.4: Comparison of T-regulatory and T-helper 17 lymphocyte proportion in CD4+ conventional T-

cells treated with supernatants of THP-1 monocytes cultured in PEF conditioned media. TB+HIV+ pleurisy 

resulted in a significantly increased proportion of T-helper (Th) 17 cells in comparison to T-regulatory 

(Treg) lymphocytes (p=0.0001) (TB-HIV- n=9, TB+HIV+ n=9, Unpaired t-test with Welch correction). 

 

4.3.3 Increased CD4+ T-cell production of IL-17A and IL-21 

Next we questioned if there was a differential cytokine microenvironment associated with CD4+ T-cell 

polarisation by performing a Bio-Plex cytokine screen of the extracellular milieu of CD4+ Tconvs treated 

with supernatants of THP-1 monocytes cultured in PEF conditioned media.  

 

TB+HIV+ supernatant transfer resulted in increased CD4+ Tconv production of Th17 characteristic cytokines 

IL-17A (2.278 fold; 6.340 ± 0.855pg/ml vs. 14.440 ± 1.738pg/ml, p=0.0527) and IL-21 (8.191 fold; 3.850 ± 

0.012pg/ml vs. 31.535 ± 12.710pg/ml, p=0.0527) compared to TB-HIV- conditions. Although not significant 

these were the only two cytokines produced by CD4+ Tconvs (Figure 4.5). 

 

Notably, CD4+ Tconvs treated with supernatants of monocytes cultured in TB+HIV+ conditioned media were 

associated with a significantly greater 148.360 fold decrease in the concentration of IL-1β compared to TB-

HIV- pleural exudate (-0.805 ± 0.078pg/ml vs. -119.430 ± 5.646pg/ml, p=0.0023). Furthermore, IFN-γ, a 

cytokine produced by and acting on effector CD4+ T-cells in TB and HIV infection, showed a significantly 

larger 6.133 fold decrease in levels following TB+HIV+ treatment compared to TB-HIV- conditions (-82.290 

± 19.312  vs. -504.700 ± 21.171, p=0.0007) (Figure 4.5).     

  

The extracellular milieu of CD4+ Tconvs following TB+HIV+ supernatant transfer also showed significantly 

greater decreases in Th2 related cytokines IL-4 (-3.185 ± 0.240pg/ml vs. -14.325 ± 2.070pg/ml, p=0.0332), 
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IL-22 (-6.515 ± 0.707pg/ml vs. -35.405 ± 1.671pg/ml, p=0.0039), IL-25 (-1.120 ± 0.554pg/ml vs. -4.105 ± 

0.488pg/ml, p=0.0272) and IL-31 (-32.555 ± 5.395pg/ml vs. -109.120 ± 1.882pg/ml, p=0.0055) compared to 

TB-HIV- treatment (Figure 4.5). 
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Figure 4.5: Normalised cytokine concentrations (pg/ml) of CD4+ conventional T-cell supernatants treated with supernatants of monocytes cultured in PEF 

conditioned media. The TB+HIV+ conditions resulted in significantly reduced concentrations of interleukin (IL)-1β (p=0.0023), IL-4, (p=0.0332), IL-22 (p=0.0039), 

IL-25 (p=0.0272), IL-31 (p=0.0055) and interferon (IFN)-γ (p=0.0007) (TB-HIV-n=3, TB+HIV+ n=3, Unpaired t-test with Welch correction). sCD40L; soluble CD40 

ligand, TNF; tumour necrosis factor. 

‐140

‐120

‐100

‐80

‐60

‐40

‐20

0

20

40

60
IL‐1β IL‐4

IL‐6
(x1000) IL‐10 IL‐17A IL‐17F IL‐21 IL‐22 IL‐23 IL‐25 IL‐31

IL‐33
(x10)

IFN‐γ
(x10) sCD40L TNF‐α

N
or
m
al
is
ed

 C
on

ce
nt
ra
tio

n 
(p
g/
m
l)

CD4+ T‐cell Supernatant 

TB‐HIV‐

TB+HIV+

**  *  **  *  **  *** 



 

144 
 

4.4 Discussion 

Through differential cytokine production, monocytes play an essential role in directing T-cell responses by 

influencing their polarisation and expansion [22]. Previous studies have shown conflicting alterations in 

monocyte cytokine production during MTB (TNF-α, IL-1β, IL-6, IL-10, IL-12p40 and IL-12p70 [8, 12, 13]), 

and HIV (IL-1β, IL-6, IL8, IL-10 and TNF-α [18, 23]) infection suggesting a modification in the nature of 

the CD4+ T-cell response induced and maintained by monocytes. This has not been assessed in co-infection.  

 

In this study a TB+HIV+ microenvironment resulted in a 219.737 fold greater increase in monocyte IL-1β 

production compared to a non-infectious pleural exudate, this is in line with previous research in both MTB 

[12, 24] and HIV infection [25]. In contrast, a significantly lower level of monocyte stimulating cytokines 

IL-6 and TNF-α was observed in the extracellular milieu, possibly representing cytokine levels following 

THP-1 receptor ligation.  

 

IL-1β/IL-1 receptor (R) signalling has been highlighted as critically required for the early differentiation of 

Th17 cells at the site of inflammation and production of IL-17A during MTB infection [26-30]. Th17 cells 

are a pro-inflammatory subset of CD4+ effector T-cells [31] that contribute to pathogen clearance by the 

production of pro-inflammatory IL-17A/F, IL-21 and IL-22 [32]. During homeostasis, Th17 cells play a 

pivotal role in mucosal immunity against intra-[33, 34] and extracellular [35, 36] bacterial and fungal 

infections and have been implicated in the pathogenesis of TB and HIV. 

 

Th17 cells express higher IL-1R levels than other CD4 subsets [37, 38]. IL-1β ligation upregulates the 

expression of transcription factor interferon regulatory factor 4 (IRF4) and in turn, RAR-related orphan 

receptor C (RORC) which bind to the promoter region of IL17A/F stimulating Th17 differentiation and 

maintaining IL-17A, IL-17F, IL-21 and IL-22 cytokine production [37-42]. IL-21, in combination with TGF-

β promotes Th17 lineage commitment via the activation of STAT3 and RORC [43]. The autocrine 

production of IL-21 by Th17 cells creates a feed forward cycle of Th17 polarisation [44].  

 

CD4+ Tconvs treated with supernatants of monocytes cultured in TB+HIV+ conditioned media were 

associated with a 2.174 and 1.287 fold increase in Th17 lymphocyte proportions and intracellular IL-17A 

protein expression respectively. Furthermore, following TB+HIV+ supernatant transfer, CD4+ Tconvs 

produced 2.278 and 8.191 fold greater amounts of IL-17A and IL-21 respectively with significantly less IL-

1β in the extracellular milieu, likely representing the use of IL-1β in monocyte IL-1R binding. 

 

This suggest that under TB+HIV+ conditions increased monocyte production of IL-1β drives Th17 

polarisation resulting in the predominant Th17 phenotype. In support of this, CD14+ monocytes have been 

observed to spontaneously and specifically promote Th17 responses in blood derived CD4+ T-cells in an IL-

1β dependent manner [3]. Moreover, a clinical isolate of the hypervirulent W-Beijing strain of MTB has 

been shown to induce a potent IL-17 response through the induction of IL-1β [45].  
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Tregs, specified by the transcription factor Foxp3, are a suppressive subset of CD4+CD25+ T-cells which 

regulate effector lymphocyte function through contact dependent and independent mechanisms [46]. The 

cytokine milieu of TB+HIV+ PEF treated monocytes also resulted in a 1.671 fold increase in Tregs with a 

corresponding 1.429 fold increase in Foxp3 protein expression compared to TB-HIV- conditions. This; 

however, was not associated with an increased production of Treg cytokine IL-10 implying that Tregs do not 

contribute significantly to the inflammatory microenvironment in TB/HIV pleurisy. Moreover, CD4+ Tconvs 

treated with supernatants of monocytes cultured in TB+HIV+ conditioned media showed a significant 

14.322% greater proportion of Th17 cells compared to Tregs indicting a skewing towards a Th17 

polarisation and a predominant pro-inflammatory environment during TB/HIV pleurisy. 

 

There is a reciprocal relationship between Th17 and Treg developmental pathways exhibiting antagonism as 

well as plasticity [47-49]. Th17 cells and Tregs arise from common precursors and carry out opposing 

functions driven by the cytokine milieu and its effect on specific transcription factors. Foxp3 inhibits Th17 

differentiation by antagonising the effects of RORC, inhibiting IL-17A promoter activation. IL-1β inhibits 

TGF-β induced Foxp3 expression enhancing Th17 differentiation under Th17 polarising conditions [55]. 

Taken together, IL-1β actively promotes Th17 differentiation and survival by upregulating lineage specific 

transcription factors while suppressing Foxp3 expression and Treg polarisation. We suggest that IL-1β 

mediated Foxp3 down regulation may be a potential mechanism facilitating a predominant Th17 lymphocyte 

generation in a TB+HIV+ microenvironment. 

 

The balance of Th17 and Tregs at the infection site influences the outcome of the immune response. The 

Th17/IL-17 axis is suggested to provide protective immunity against MTB by contributing to granuloma 

formation and maintenance [50-53]. Early expression of pulmonary IL-17 is pivotal in cellular recruitment 

by inducing chemokine secretion from non-haematopoietic cells. This results in neutrophil and CCR5+ 

lymphocyte recruitment, through the induction of IL-8 and chemokine C-X-C motif ligand (CXCL) 13 

respectively, to form lung lymphoid follicles for optimal macrophage activation and bacterial clearance [45, 

54-56]. However, during the chronic stages of infection, IL-17-CXCL mediated influx of immune cells 

results in extensive tissue destruction and cavitation [50, 51, 57-60]. Th17 responses also contribute to 

mucosal TB vaccine immunity by IL-17A induction of CXCL13 [45]. In co-infection, the TB+HIV+ 

monocyte mediated promotion of a Th17 pro-inflammatory phenotype may aid in granuloma organisation 

providing a niche of MTB survival and at later stages facilitating transmission, as well as accentuating 

hyper-immune activation contributing to viral replication. 

 

We observed a significantly reduced concentration of IFN-γ, IL-22 and Th2 related cytokines; IL-4, IL-25 

and IL-31 in the extracellular milieu of CD4+ Tconvs treated with supernatants of monocytes cultured in 

TB+HIV+ PEF conditioned media. IFN-γ is the preeminent cytokine in MTB immune defence and acts on 

CD4+ T-cells stimulating apoptosis to limit the T-cell immune response [61, 62]. This suggests that a decline 

in IFN-γ levels is possibly due to ligation of IFN-γ receptors on CD4+ Tconvs. T-cells do not express the IL-
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22 receptor complex and IL-22 has no effect on resting or activated immune cells in vitro or in vivo [63]. 

Together with a short in vivo half-life of IL-22 in animal models (1.3-2 hours) [64] this indicates that a 

reduced concentration of IL-22 is likely due to cytokine breakdown in the extracellular environment. 

Likewise, MTB has been shown to drive Th2 polarisation by altering the balance of polarising cytokines in 

an IL-1β dependent manner [65]; however, the fact that CD4+ Tconvs did not produce Th2 cytokines under 

TB+HIV+ conditions leads us to conclude that the decreased amounts of IL-4, IL-25 and IL-31 in the 

microenvironment is likely the result of cytokine degradation.  

 

4.5 Concluding Remarks 

The microenvironment in TB/HIV pleurisy alters monocyte cytokine production sufficiently to skew CD4+ 

Tconv polarisation towards a pro-inflammatory Th17 phenotype, potentially due to increased monocyte IL-

1β production. In this way TB/HIV co-infection modifies the adaptive immune response from the initial 

interactions with the innate immune system. 
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CHAPTER 5 

 

CONCLUSION 

 

TB/HIV co-infection is a global pandemic, of which SA is one of the worst affected countries. The 

pathogenesis of the individual diseases is largely driven by pathogenic dysregulation of CD4+ T-cell 

responses, the subset specific alterations of which have not been assessed in co-infection. TB pleurisy is the 

most common form of extrapulmonary HIV-related TB and provides an optimal localised immune model to 

study host responses to co-infection, which is often neglected. 

 

This study characterised the nature of the Th17 and Treg lymphocyte responses in TB/HIV pleurisy. The 

comparison of biological parameters in a TB+HIV+ and non-infectious pleural effusion indicates that the 

reduced Treg stability (p=0.0084), Th17 proportion (p=0.0054) and monocyte mediated skewing towards 

Th17 polarisation (p<0.0001) is specific to co-infection and precludes the interpretation of a generalised 

pleuritic response. This pilot study is based on a small sample size and this may have limited the extent of 

our findings, these results should be validated in a larger cohort.  

 

The TB/HIV microenvironment was not conducive to Treg stability (52.769 ± 5.413% vs. 31.720 ± 3.821%, 

p=0.0084) or Th17 polarisation (64.100 ± 5.045% vs. 36.233 ± 6.968% p=0.0054) ex vivo and confirmed in 

vitro (p=0.0467 and p=0.0001 respectively), as evidenced by a significantly reduced frequency of these 

subsets. Furthermore an impairment of both pro- and anti-inflammatory CD4+ T-cell immune responses 

indicates a suppression of localised immunity as a whole. In contrast, the TB+HIV+ microenvironment 

altered monocyte cytokine production to promote both Treg (33.329 ± 2.470% vs. 55.700 ± 2.249%, 

p<0.0001) and Th17 (32.211 ± 1.036% vs. 70.022 ± 1.235%, p<0.0001) polarisation in vitro. This suggests 

that the loss of Th17 and Treg localised responses at the infection site is not initiated by a monocytic innate 

immune response or may reflect the differences in a multicellular compared to unicellular model.  

 

A loss of Treg stability ex vivo was associated with an IL-35 functional deficit (p=0.0258) and is likely due 

to altered miR-155/SOCS1 dynamics and loss of IL-2 competitive fitness. We were unable to identify a 

potential mechanism of diminished Th17 proportion but determined that it was not a result of alterations in 

the measured polarising signals at the molecular or cytokine level. This prompts further investigation into 

other inhibitory cytokines and epigenetic modifications involved in Th17 lymphocyte generation. 

Interestingly, there was no impairment in the levels of Th17 effector cytokines (IL-17A/F) observed. 

 

Notably, despite Th17/Treg suppression, a higher proportion of Th17 cells than Tregs was found in PEMCs 

ex vivo (31.720 ± 3.821% vs. 36.233 ± 6.968%, p=0.5490) and in vitro (27.900 ± 2.024% vs. 55.156 ± 
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1.299%, p=0.0004) indicating a predominantly pro-inflammatory microenvironment. This trend was 

mirrored in the THP-1 monocyte model where the supernatants of monocytes cultured in TB+HIV+ 

conditioned media resulted in CD4+ Tconv polarisation towards a chiefly pro-inflammatory Th17/IL-17A 

phenotype (55.700 ± 2.249% vs. 70.022 ± 1.235%, p=0.0001). This was potentially the result of MTB/HIV 

mediated increase in monocyte IL-1β production (219.737 fold, p=0.0217). IL-1 β was also significantly 

upregulated at the transcript and protein level (p=0.0022 and p=0.0008 respectively) in TB+HIV+ pleurisy, 

likely providing a mechanism of Th17 preponderance. Simplistically, despite a suppressed immunity as a 

whole, a prevailing pro-inflammatory environment advances both TB and HIV pathogenesis potentially by 

promoting granulomatous pathology and bacterial transmission, as well as immune hyperactivation and 

increased viral replication respectively. 
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Appendix 2: Corresponding peripheral blood results for Chapter 2 as well as healthy control and 

human immunodeficiency virus mono-infected cohorts 

 

2.1 Foxp3 gene expression 

Foxp3 is indispensable for Treg lineage specification and immunosuppressive activities. We performed 

qPCR to evaluate the expression of Foxp3 transcript. Compared to the healthy control (HC) cohort, the TB-

HIV- PBMCs showed as significant 1.552 ± 0.240 fold increase (p=0.0077) and the TB+HIV+ PBMCs 

showed a significant -4.118  ± 0.240 fold decrease (p=0.0077) in Foxp3 mRNA expression suggesting 

increased and deceased immunosuppressive capacity respectively, at the molecular level (Table A2.1). 

 

Relative to TB-HIV- PBMCs, TB+HIV+ PBMCs showed a remarkable -6.085 ± 0.707 (p=0.0048) fold 

decrease in Foxp3 mRNA expression, this is a reversal of the trend observed in PEMCs indicating a 

disparate localised and systemic Treg immune response between cohorts (Table A2.1).  

 

Furthermore, in both the TB-HIV- and TB+HIV+ cohorts, Foxp3 mRNA was expressed at significantly higher 

levels at the localised pleural effusion site than the peripheral blood (2.457 ± 0.167, p=0.0028 and 33.935 ± 

4.298, p=0.0050 fold increases respectively) implying a greater immunosuppressive capacity at the site of 

infection (Table A2.1). Foxp3 mRNA was undetectable in PBMCs from the HIV mono-infected cohort.  
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Table A2.1: Forkhead box P3 mRNA expression in pooled peripheral blood and pleural effusion 

mononuclear cells 

Population Relative Fold Change p-value 

HC PBMC* : TB-HIV- PBMC 1.552 ± 0.240 0.0077 

HC PBMC* : TB+HIV+ PBMC -4.118  ± 0.886 0.0077 

   

TB-HIV- PBMC* : TB+HIV+ PBMC -6.085 ± 0.707 0.0048 

   

TB-HIV- PBMC* : TB-HIV- PEMC 2.457 ± 0.167 0.0028 

   

TB+HIV+ PBMC* : TB+HIV+ PEMC 33.935 ± 4.298 0.0050 

Results expressed as mean ± SEM, n=6 replicates in each group, Mann-Whitney test. * Indicates control 

group used in analyses. Healthy control (HC). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



159 
 

2.2 Foxp3 protein expression 

The change in relative Foxp3 protein expression, represented as mean fluorescence intensity (MFI), was 

measured by flow cytometry. PBMC Foxp3 protein expression did not significantly differ between HC 

PBMCs and TB-HIV- or TB+HIV+ PBMCs. However, HIV mono-infection showed a significant -1.726 fold 

decrease in PBMC Foxp3 protein (1107.333 ± 143.329 vs. 641.533 ± 7.613 phycoerythrin (PE)-MFI, 

p=0.0002) indicating a loss of immunoregulatory capability (Table A2.2). 

 

In comparison to the HIV mono-infected population, the co-infected PBMCs showed a significant 1.269 fold 

increase in Foxp3 protein (641.533 ± 7.613 vs. 814.333 ± 36.032 PE-MFI, p=0008) suggesting increased 

immunosuppressive activity in co-infection (Table A2.2). 

 

In line with the PEMC results, there was significant -1.193 fold decrease in TB+HIV+ PBMC Foxp3 protein 

expression compared to the TB-HIV- population (971. 222 ± 45.938 vs. 814.333 ± 36.032 PE-MFI, 

p=0.0360), highlighting a similar trend in Foxp3 protein levels across the localised and systemic 

compartments (Table A2.2).  

 

Furthermore there was no significant difference in Foxp3 protein expression between TB+HIV+ PBMCs and 

PEMCs implying an even distribution of immunosuppressive function. However, there was a notable 1.641 

fold increase in the level of Foxp3 protein in the TB-HIV- PEMCs compared to PBMCs (971. 222 ± 45.938 

vs. 1594.222 ± 86.189 PE-MFI, p<0.0001) implying an expansion of immunosuppressive activity at the 

infection site in non-infectious pleural effusions (Table A2.2). 
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Table A2.2: Forkhead box P3 relative protein expression in peripheral blood and pleural effusion 

mononuclear cells 

Population Foxp3-PE (MFI) p-value 

HC PBMC 1107.333 ± 143.329   

TB-HIV- PBMC 971. 222 ± 45.938  

TB+HIV+ PBMC 814.333 ± 36.032  

HIV+ PBMC 641.533 ± 7.613  

TB-HIV- PEMC 1594.222 ± 86.189  

TB+HIV+ PEMC 959.556 ± 127.654  

   

HC PBMC : TB-HIV- PBMC  0.6958 

HC PBMC : TB+HIV+ PBMC  0.3485 

HC PBMC : HIV+ PBMC  0.0002 

   

HIV+ PBMC : TB+HIV+ PBMC  0.0008 

   

TB-HIV- PBMC : TB+HIV+ PBMC  0.0360 

   

TB-HIV- PBMC : TB-HIV- PEMC  <0.0001 

TB+HIV+ PBMC : TB+HIV+ PEMC  0.2238 

Results expressed as mean ± SEM, HC PBMC n=4, TB-HIV- PBMC n=3, TB+HIV+ PBMC n=3, HIV+ 

PBMC n=5, TB-HIV- PEMC n=5, TB+HIV+ PEMC n=5, Mann-Whitney test. Healthy control (HC), HIV 

mono-infected (HIV+), forkhead box P3 (Foxp3), phycoerythrin (PE), mean fluorescence intensity (MFI) 
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2.3 MicroRNA-155 expression  

We measured miR-155 expression, a direct target of Foxp3, by qPCR. Relative to healthy controls, both TB-

HIV- and TB+HIV+ PBMCs showed a significant reduction in the expression of miR-155 (-2.336 ± 0.212, 

p=0.0004 and -5.747 ± 0.635, p=0.0004 fold change respectively). In contrast, PBMCs from HIV mono-

infected patients showed a 2.371 ± 0.258 (p=0.0004) fold increase. Taken together, this implies miR-155 

dysregulation in all patient groups (Table A2.3). 

 

In comparison to the HIV mono-infected population, the co-infected PBMCs showed a remarkable -12.607 ± 

0.955 fold decline in the expression of miR-155 (p=0.0004) (Table A2.3).  

 

In line with the PEMC results, TB+HIV+ PBMCs showed a -2.458 ± 0.160 fold reduced expression 

(p=0.0004) of miR-155 compared to TB-HIV- PBMCs indicating a similar immunological trend across 

compartments (Table A2.3).  

 

In both the TB-HIV- and TB+HIV+ cohorts, miR-155 expression was significantly raised in PEMCs as 

compared to PBMCs (1.468 ± 0.090, p=0.0004 and 2.102 ± 0.207, p=0.0004 respectively) (Table A2.3). 
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Table A2.3: MicroRNA-155 expression in pooled peripheral blood and pleural effusion mononuclear cells 

Population Relative Fold Change p-value 

HC PBMC* : TB-HIV- PBMC -2.336 ± 0.212  0.0004 

HC PBMC* : TB+HIV+ PBMC -5.747 ± 0.635 0.0004 

HC PBMC* : HIV+ PBMC 2.371 ± 0.258 0.0004 

   

HIV+ PBMC* : TB+HIV+ PBMC -12.607 ± 0.955 0.0004 

   

TB-HIV- PBMC* : TB+HIV+ PBMC -2.458 ± 0.160 0.0004 

   

TB-HIV- PBMC* : TB-HIV- PEMC 1.468 ± 0.090 0.0004 

TB+HIV+ PBMC* : TB+HIV+ PEMC 2.102 ± 0.207 0.0004 

Results expressed as mean ± SEM, n=6 replicates in each group, Mann-Whitney test. * Indicates control 

group used in analyses. Healthy control (HC), HIV mono-infected (HIV+). 
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2.4 T-regulatory lymphocyte frequency  

MicroRNA-155 positively regulates Treg stability by suppressing SOCS1 translation and conferring IL-2 

competitive fitness. We measured Treg frequency using flow cytometry. The proportion of 

CD4+CD25+Foxp3+STAT5+ Tregs did not significantly differ between the HC PBMCs and TB-HIV- or 

TB+HIV+ PBMCs. However, HIV mono-infection showed a significant -3.269 fold decrease in PBMC Tregs 

compared to HC (39.592 ± 4.757% vs. 12.111 ± 1.115%, p<0.0001) highlighting a loss of Treg stability 

(Table A2.4). 

 

In comparison to the HIV mono-infected population, the co-infected PBMCs showed a significant 3.004 fold 

increase in Treg number (12.111 ± 1.115% vs. 36.384 ± 6.820%, p=0.0280) indicating a more stable Treg 

population (Table A2.4). 

 

In contrast to the PEMC trend, there was no significant difference in the number of Tregs between TB-HIV- 

and TB+HIV+ PBMC populations, highlighting a differential Treg response across the localised and systemic 

compartments (Table A2.4).  

 

Furthermore there was no significant difference in Treg frequency between TB+HIV+ PBMCs and PEMCs 

suggesting both compartments are equally conducive to Treg stability and submitting that Tregs do not 

accumulate at the infection site. However, there was a notable 1.975 fold increase in the number of Tregs in 

the TB-HIV- PEMCs compared to PBMCs (26.723 ± 2.799% vs. 52.769 ± 5.413%, p=0.0010) suggesting a 

microenvironment more favourable towards Treg stability and expansion at the infection site in non-

infectious pleural effusions (Table A2.4). 
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Table A2.4: T-regulatory lymphocyte frequency in peripheral blood and pleural effusion mononuclear cells  

Population 
CD4+CD25+Foxp3+STAT5+

(%) 
p-value 

HC PBMC 39.592 ± 4.757   

TB-HIV- PBMC 26.723 ± 2.799  

TB+HIV+ PBMC 36.384 ± 6.820  

HIV+ PBMC 12.111 ± 1.115  

TB-HIV- PEMC 52.769 ± 5.413  

TB+HIV+ PEMC 31.720 ± 3.821  

   

HC PBMC : TB-HIV- PBMC  0.0644 

HC PBMC : TB+HIV+ PBMC  0.9326 

HC PBMC : HIV+ PBMC  <0.0001 

   

HIV+ PBMC : TB+HIV+ PBMC  0.0280 

   

TB-HIV- PBMC : TB+HIV+ PBMC  0.1425 

   

TB-HIV- PBMC : TB-HIV- PEMC  0.0010 

TB+HIV+ PBMC : TB+HIV+ PEMC  0.5579 

Results expressed as mean ± SEM, HC PBMC n=6, TB-HIV- PBMC n=7, TB+HIV+ PBMC n=6, HIV+ 

PBMC n=5, TB-HIV- PEMC n=7, TB+HIV+ PEMC n=5, Mann-Whitney test. Healthy control (HC), HIV 

mono-infected (HIV+).  

 

 

 



165 
 

2.5 IL-35 concentration 

We quantified IL-35, a suppressive Treg characteristic cytokine, by ELISA. There was no significant 

difference between IL-35 in HC plasma and that of the TB-HIV- cohort. However, compared to HC plasma 

there was a notable -5.122 fold decrease in co-infected plasma (25.106 ± 7.101 vs. 4.902 ± 0.656, p=0.0015) 

and -12.178 fold decrease HIV mono-infected plasma (25.106 ± 7.101 vs. 2.062 ± 0.142, p<0.0001) 

implying a Treg functional deficit (Table A2.5). 

 

In comparison to the HIV mono-infected plasma, the co-infected plasma showed a significant 2.377 fold 

increase in IL-35 levels (2.062 ± 0.142 vs. 4.902 ± 0.656, p=0.0154) indicating greater Treg 

immunosuppressive activity (Table A2.5). 

 

In line with the PEF results, there was a remarkable -6.599 fold decrease in IL-35 concentration in TB+HIV+ 

plasma relative to TB-HIV- (32.348 ± 9.431 vs. 4.902 ± 0.656, p= 0.0579), suggesting a Treg functional 

insufficiency in the TB+HIV+ cohort and a similar IL-35 trend across the localised and systemic 

compartments between cohorts (Table A2.5).  

 

Furthermore there was no significant difference in IL-35 levels between TB-HIV- or TB+HIV+ plasma and 

PEF compartments suggesting even distribution of Treg functional responses (Table A2.5). 
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Table A2.5: Interleukin-35 concentration in plasma and pleural effusion fluid 

Population IL-35 (ng/ml) p-value 

HC Plasma  25.106 ± 7.101   

TB-HIV- Plasma 32.348 ± 9.431  

TB+HIV+ Plasma 4.902 ± 0.656  

HIV+ Plasma 2.062 ± 0.142  

TB-HIV- PEF 18.784 ± 4.911  

TB+HIV+ PEF 5.457 ± 0.905  

   

HC Plasma : TB-HIV- Plasma  0.5431 

HC Plasma : TB+HIV+ Plasma  0.0015 

HC Plasma : HIV+ Plasma  <0.0001 

   

HIV+ Plasma : TB+HIV+ Plasma  0.0154 

   

TB-HIV- Plasma : TB+HIV+ Plasma  0.0579 

   

TB-HIV- Plasma : TB-HIV- PEF  0.9075 

TB+HIV+ Plasma : TB+HIV+ PEF  0.6427 

Results expressed as mean ± SEM, HC plasma n=9, TB-HIV- plasma n=9, TB+HIV+ plasma n=11, HIV+ 

plasma n=8, TB-HIV- PEF n=8, TB+HIV+ PEF n=8, Mann-Whitney test. Healthy control (HC), HIV mono-

infected (HIV+), interleukin (IL). 
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Appendix 3: MicroRNA-21 expression 

 

MicroRNA-21 has been shown to positively regulate peripheral Treg development by indirectly regulating 

the expression of Foxp3. Relative to HC, both TB-HIV- and TB+HIV+ PBMCs showed a significant reduction 

in the expression of miR-21 (-1.522 ± 0.054, p=0.0004 and -1.565 ± 0.047, p=0.0004 fold change 

respectively). In contrast, PBMCs from HIV mono-infected patients showed a 2.258 ± 0.298 (p<0.0001) fold 

increase. Taken together, this implies miR-21 dysregulation in all patient groups (Table A3.1). 

 

In comparison to the HIV mono-infected population, the co-infected PBMCs showed a significant -3.254 ± 

0.029 fold decline in the expression of miR-21 (p=0.0004) (Table A3.1).  

 

Both TB+HIV+ PBMCs (-1.008 ± 0.061, p=0.7304) and PEMCs (-1.120 ± 0.041, p=0.0062) showed a 

decrease in miR-21 expression compared to TB-HIV- counterparts indicating a similar immunological trend 

across compartments, although this was only significant in the pleural fluid compartment (Table A3.1). 

These results were not included in Chapter 2 as despite the significance the fold change was not considered 

strong enough. 

 

In both the TB-HIV- and TB+HIV+ cohorts, miR-21 expression was significantly raised in PEMCs as 

compared to PBMCs (1.387 ± 0.091, p=0.0014 and 1.271 ± 0.101, p=0.0062 fold change respectively) 

(Table A3.1). 

 

 

 

 

 

 

 

 

 

 

 



168 
 

Table A3.1: MicroRNA-21 expression in pooled peripheral blood and pleural effusion mononuclear cells 

Population Relative Fold Change p-value 

HC PBMC* : TB-HIV- PBMC -1.522 ± 0.054 0.0004 

HC PBMC* : TB+HIV+ PBMC -1.565 ± 0.047 0.0004 

HC PBMC* : HIV+ PBMC 2.258 ± 0.298 <0.0001 

   

HIV+ PBMC* : TB+HIV+ PBMC -3.254 ± 0.029 0.0004 

   

TB-HIV- PBMC* : TB+HIV+ PBMC -1.008 ± 0.061 0.7304 

TB-HIV- PEMC* : TB+HIV+ PEMC -1.120 ± 0.041 0.0062 

   

TB-HIV- PBMC* : TB-HIV- PEMC 1.387 ± 0.091 0.0014 

TB+HIV+ PBMC* : TB+HIV+ PEMC 1.271 ± 0.101 0.0062 

Results expressed as mean ± SEM, n=6 replicates in each group, Mann-Whitney test. * Indicates control 

group used in analyses. Healthy control (HC), HIV mono-infected (HIV+). 
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Appendix 4: The 2-ΔΔCt method for the analysis of quantitative PCR 

 

The 2-ΔΔCt method refers to the method of analysis used to obtain a relative fold change of a treated sample 

compared to an appropriate control group as described by Livak and Schmittgen (2001) [1]. The table below 

extracted directly from the original article highlights an example of relative quantification. 

 

Table A4.1: An example of relative mRNA quantification using the 2-ΔΔCt method [1]. 

 

 

References 

1. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative 

PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25(4):402-408. 
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Appendix 5: Corresponding peripheral blood results for Chapter 3 as well as healthy control and 

human immunodeficiency virus mono-infected cohorts  

 
5.1 Th17 lymphocyte frequency 

The frequency of Th17 lymphocytes was measured by flow cytometry. Compared to the HC cohort (52.925 

± 5.113%), TB-HIV- (-1.983 fold, 26.692 ± 2.135%, p=0.0006), TB+HIV+ (-1.969 fold, 26.877 ± 7.907%, 

p=0.0179) and HIV mono-infected (-4.137 fold, 12.792 ± 1.543%, p<0.0001) groups all showed a 

significantly lower proportion of peripheral CD4+IL-17+RORC+STAT3+ Th17 cells indicating a suppression 

of the Th17 pro-inflammatory immune response (Table A5.1). 

 

There was no significant difference in Th17 frequency between HIV mono-infected and TB/HIV co-infected 

groups (Table A5.1).  

 

In contrast to PEMC results, there was no significant difference in Th17 proportion between TB-HIV- and 

TB+HIV+ PBMCs indicating a similar peripheral Th17 pro-inflammatory response between cohorts (Table 

A5.1). 

 

There was also no significant difference in Th17 frequency between TB+HIV+ PBMCs and PEMCs 

suggesting an even distribution of this subset between localised and systemic compartments, with the 

microenvironment in both compartments being equally conducive to Th17 generation. In contrast, TB-HIV- 

PEMCs showed a 2.327 fold increase (26.692 ± 2.135% vs 62.100 ± 5.045%, p=0.0001) in the proportion of 

Th17 lymphocytes compared to PBMCs implying a potent localised Th17 response in non-infectious pleural 

effusions (Table A5.1). 
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Table A5.1: T-helper 17 lymphocyte frequency in peripheral blood and pleural effusion mononuclear cells 

Population 
CD4+IL-17+RORC+STAT3+ 

(%) 
p-value 

HC PBMC 52.925 ± 5.113  

TB-HIV- PBMC 26.692 ± 2.135  

TB+HIV+ PBMC 26.877 ± 7.907  

HIV+ PBMC 12.792 ± 1.543  

TB-HIV- PEMC 62.100 ± 5.045  

TB+HIV+ PEMC 36.233 ± 6.968  

   

HC PBMC : TB-HIV- PBMC  0.0006 

HC PBMC : TB+HIV+ PBMC  0.0179 

HC PBMC : HIV+ PBMC  <0.0001 

   

HIV+ PBMC : TB+HIV+ PBMC  0.2904 

   

TB-HIV- PBMC : TB+HIV+ PBMC  0.9663 

   

TB-HIV- PBMC : TB-HIV- PEMC  0.0001 

TB+HIV+ PBMC : TB+HIV+ PEMC  0.5362 

Results expressed as mean ± SEM, HC PBMC n=6, TB-HIV- PBMC n=7, TB+HIV+ PBMC n=6, HIV+ 

PBMC n=5, TB-HIV- PEMC n=5, TB+HIV+ PEMC n=5, Mann-Whitney test. Healthy control (HC), HIV 

mono-infected (HIV+). 
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5.2 IL-17A protein expression 

Relative protein expression of the Th17 characteristic cytokine, IL-17A, was measured by intracellular flow 

cytometry and represented as peridin-chlorophyll-cyanin 5.5 (PerCP-Cy5.5) MFI. Compared to the HC 

cohort (1097. 667 ± 70.949 PerCP-Cy5.5 MFI), TB+HIV+ PBMCs did not show a significant change in IL-

17A protein expression, however both TB-HIV- (-1.253 fold, 876.333 ± 35.230 PerCP-Cy5.5 MFI, 

p=0.0491), and HIV mono-infected (-1.347 fold, 815.067 ± 25.429 PerCP-Cy5.5 MFI, p=0.0012) groups 

showed a significantly lower expression of IL-17A indicating a reduced pro-inflammatory immune response 

in these groups (Table A5.2). 

 

There was no significant difference in PBMC IL-17A protein expression between HIV mono-infected and 

TB/HIV co-infected groups (Table A5.2).  

 

In contrast to PEMC results, there was no significant difference in IL-17A protein expression between TB-

HIV- and TB+HIV+ PBMCs indicating a similar peripheral Th17 pro-inflammatory response between cohorts 

(Table A5.2). 

 

There was also no significant difference in IL-17A protein expression between TB+HIV+ PBMCs and 

PEMCs implying a similar IL-17A mediated pro-inflammatory response between localised and systemic 

compartments. In contrast, TB-HIV- PEMCs showed a 1.659 fold increase in IL-17A protein expression 

compared to PBMCs (876.333 ± 35.230 vs. 1454.000 ± 117.167 PerCP-Cy5.5 MFI, p=0.0026) implying a 

potent and differential localised IL-17A pro-inflammatory response in non-infectious pleural effusions 

(Table A5.2). 
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Table A5.2: Interleukin-17A relative protein expression in peripheral blood and pleural effusion 

mononuclear cells 

Population 
IL-17A-PerCP-Cy5.5  

(MFI) 
p-value 

HC PBMC 1097. 667 ± 70.949  

TB-HIV- PBMC 876.333 ± 35.230  

TB+HIV+ PBMC 895.500 ± 16.280  

HIV+ PBMC 815.067 ± 25.429  

TB-HIV- PEMC 1454.000 ± 117.167  

TB+HIV+ PEMC 923.445 ± 64.418  

   

HC PBMC : TB-HIV- PBMC  0.0491 

HC PBMC : TB+HIV+ PBMC  0.1012 

HC PBMC : HIV+ PBMC  0.0012 

   

HIV+ PBMC : TB+HIV+ PBMC  0.1498 

   

TB-HIV- PBMC : TB+HIV+ PBMC  0.8099 

   

TB-HIV- PBMC : TB-HIV- PEMC  0.0026 

TB+HIV+ PBMC : TB+HIV+ PEMC  0.5287 

Results expressed as mean ± SEM, HC PBMC n=4, TB-HIV- PBMC n=3, TB+HIV+ PBMC n=3, HIV+ 

PBMC n=5, TB-HIV- PEMC n=5, TB+HIV+ PEMC n=5, Mann-Whitney test. Healthy control (HC), HIV 

mono-infected (HIV+),interleukin (IL), peridin-chlorophyll-cyanin5.5 (PerCP-CY5.5), mean fluorescence 

intensity (MFI). 
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5.3 Cytokine profiling 
 

Compared to HC plasma: 

TB-HIV- plasma showed significantly increased concentrations of IL-1β (105.133 fold, 0.015 ± 0.001pg/ml 

vs. 1.577 ± 0.663pg/ml, p=0.0050), IL-6 (32.263 fold, 1.786 ± 1.087pg/ml vs. 57.622 ± 11.328pg/ml, 

p=0.0050), IL-10 (27.521 fold, 0.530 ± 0.001pg/ml vs. 14.586 ± 4.123pg/ml, p=0.0134), IL-31 (47.475 fold, 

0.668 ± 0.158pg/ml vs. 31.713 ± 3.296pg/ml, p=0.0080), IL-33 (7.670 fold, 121.568 ± 29.205pg/ml vs. 

932.409 ± 253.009pg/ml, p=0.0283), IFN-γ (12.695 fold, 0.210 ± 0.001pg/ml vs. 2.666 ± 2.278pg/ml, 

p=0.0106), sCD40L (10.374 fold, 24.493 ± 9.868pg/ml vs. 254.083 ± 53.920pg/ml, p=0.0040) and TNF-α 

(8.578 fold, 0.683 ± 0.514pg/ml vs. 5.859 ± 0.751pg/ml, p=0.0050). There was no significant change in the 

levels of IL-4, IL-17A, IL-17F, IL-21, IL-22, IL-23 and IL-25 (Figure A5.1).  

 

TB+HIV+ plasma showed significantly elevated levels of IL-1β (284.00 fold, 0.015 ± 0.001pg/ml vs. 4.272 ± 

0.401pg/ml, p=0.0039), IL-4 (4.757 fold, 5.749 ± 3.179pg/ml vs. 27.335 ±7.571pg/ml, p=0.0356), IL-6 

(647.542 fold, 1.786 ± 1.087pg/ml vs. 2108.583 ± 1156.510pg/ml, p=0.0032), IL-10 (30.219 fold, 0.530 ± 

0.001pg/ml vs. 16.016 ± 3.870pg/ml, p=0.0035), IL-25 (23.825 fold, 0.080 ± 0.001pg/ml vs. 1.906 ± 

0.465pg/ml, p=0.0084), IL-31 (121.708 fold, 0.668 ± 0.158pg/ml vs. 81.301 ± 13.738pg/ml, p=0.0080), IFN-

γ (357.610 fold, 0.210 ± 0.001pg/ml vs. 75.098 ± 21.629pg/ml, p=0.0032), sCD40L (10.229 fold, 24.493 ± 

9.868pg/ml vs. 240.541 ± 78.887pg/ml, p=0.0081), TNF-α (26.432 fold, 0.683 ± 0.514pg/ml vs. 18.053 ± 

4.089pg/ml, p=0.0044) and no significant alterations in IL-17A, IL-17F, IL-21, IL-22, IL-23 and IL-33 

(Figure A5.1) 

 

Plasma from HIV mono-infected individuals showed significantly raised levels of IL-1β (29.867 fold, 0.015 

± 0.001pg/ml vs. 0.448 ± 0.030pg/ml, p=0.0286), IL-31 (60.012 fold, 0.668 ± 0.158pg/ml vs. 40.088 ± 

18.623pg/ml, p=0.0265), sCD40L (11.745 fold, 24.493 ± 9.868pg/ml vs. 287.665 ± 68.737pg/ml, p=0.0286) 

and TNF-α (12.750 fold, 0.683 ± 0.514pg/ml vs. 8.708 ± 1.315pg/ml, p=0.0286). Concentrations of IL-4, IL-

6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-33 and IFN-γ were not significantly changed 

(Figure A5.1). 

 
HIV mono-infected compared to TB+HIV+ co-infected plasma: 

Relative to plasma from HIV mono-infected patients, there was a significant 9.536 fold increase in IL-1β 

(0.448 ± 0.300pg/ml vs. 4.272 ± 0.401pg/ml, p=0.0036) in TB/HIV co-infected patients. No significant 

difference in the levels of IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-

γ, sCD40L, TNF-α was observed (Figure A5.2). 
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TB-HIV- compared to TB+HIV+ plasma: 

Compared to TB-HIV-, the plasma of patients with TB+HIV+ co-infection showed significantly elevated 

concentrations of IL-1β (2.709 fold, 1.577 ± 0.663pg/ml vs. 4.272 ± 0.401pg/ml, p=0.0058), IL-17F (84.750 

fold, 0.120 ± 0.001pg/ml vs. 10.170 ± 3.529pg/ml, p=0.0376), IL-31 (2.564 fold, 31.713 ± 3.296pg/ml vs 

81.301 ± 13.738pg/ml, p=0.0180), IFN-γ (11.266 fold, 6.666 ± 2.278pg/ml vs. 75.098 ± 21.629pg/ml, 

p=0.0169) and a significant reduction in IL-33 (-3.154 fold, 932.409 ± 253.009pg/ml vs. 295.644 ± 

105.002pg/ml, p=0.0379). There was no significant alteration in IL-4, IL-6, IL-10, IL-17A, IL-21, IL-22, IL-

23, IL-25, sCD40L and TNF-α levels (Figure A5.3). 

 

When comparing results between TB-HIV-/TB+HIV+ PEF and plasma we observed a similar trend for IL-1β, 

IL-31 and IFN-γ, all significantly raised in plasma and PEF of TB+HIV+ patients. In contrast, IL-22 showed 

an inverse trend; significantly increased in TB+HIV+ PEF compared to TB-HIV- PEF but decreased in 

TB+HIV+ plasma, however this was not significant in plasma. TNF-α was increased in TB+HIV+ plasma and 

PEF but it was only a significant result in PEF. IL-17F was increased in TB+HIV+ plasma and PEF but it was 

only a significant result in plasma. IL-33 was decreased in TB+HIV+ plasma and PEF but it was only 

significant in plasma (Figure A5.3 and Figure 2B). 

 

TB-HIV- PEF compared to plasma: 

TB-HIV- PEF relative to TB-HIV- plasma showed significantly elevated concentrations of IL-4 (2.278 fold, 

18.895 ± 7.147pg/ml vs. 43.042 ± 9.590pg/ml, p=0.0200), IL-6 (1745.528 fold, 57.622 ± 11.328pg/ml vs. 

100580.806 ± 30145.472pg/ml, p<0.0001), IL-10 (5.404 fold, 14.586 ± 4.123pg/ml vs. 78.820 ± 

14.729pg/ml, p=0.0033), IL-17F (780.308 fold, 0.120 ± 0.001pg/ml vs. 93.637 ± 15.357pg/ml, p=0.0006), 

IL-21 (4.656 fold, 13.737 ± 8.650pg/ml vs. 63.959 ± 12.567pg/ml, p=0.0047), IL-25 (7.502 fold, 1.170 ± 

0.650pg/ml vs. 8.777 ± 1.872pg/ml, p=0.0021), IL-31 (4.996 fold, 31.713 ± 3.296pg/ml vs. 158.430 ± 

35.615pg/ml, p=0.0367), IFN-γ (13.170 fold, 6.666 ± 2.278pg/ml vs. 87.793 ± 27.282pg/ml, p=0.0064) and 

TNF-α (3.112 fold, 5.859 ± 0.753pg/ml vs. 18.233 ± 2.615pg/ml, p=0.0004). No change in IL-1β, IL-17A, 

IL-22, IL-23, IL-33, sCD40L levels were observed (Figure A5.4) indicating a differential systemic and 

localised cytokine response. 

 

TB+HIV+ PEF compared to plasma: 

In comparison to TB+HIV+ plasma, TB+HIV+ PEF showed significantly raised levels of IL-1β (4.272 ± 

0.401pg/ml vs. 18.239 ± 3.064pg/ml, p=0.0004), IL-6 (2108.583 ± 1156.513pg/ml vs. 78778.906 ± 

21300.368pg/ml, p<0.0001), IL-10 (16.016 ± 3.870pg/ml vs. 85.835 ± 15.680pg/ml, p=0.0005), IL-17A 

(0.035 ± 0.001pg/ml vs 18.281 ± 2.383pg/ml, p=0.0003), IL-17F (10.170 ± 3.529pg/ml vs. 118.090 ± 

8.077pg/ml, p=0.0004), IL-21 (1.866 ± 0.673pg/ml vs. 61.792 ± 2.995pg/ml, p=0.0004), IL-22 (1.230 ± 
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0.001pg/ml vs. 69.729 ± 10.318pg/ml, p=0.0003), IL-25 (1.906 ± 0.465pg/ml vs. 12.945 ± 1.240pg/ml, 

p=0.0004), IL-31 (81.301 ± 13.738pg/ml vs 483.957 ± 115.651pg/ml, p=0.0002), IL-33 (295.644 ± 

105.002pg/ml vs. 600.367 ± 63.523pg/ml, p=0.0205), IFN-γ (75.098 ± 21.629pg/ml vs. 1190.386 ± 

361.906pg/ml, p=0.0003), TNF-α (18.053 ± 4.089pg/ml vs. 66.112 ± 13.264pg/ml, p=0.0058). There was no 

significant difference in IL-4, IL-23 or sCD40L concentrations (Figure A5.5) indicating a differential 

systemic and localised cytokine response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



177 
 

 

 

 

Figure A5.1: Cytokine profiling of plasma. Significance determined relative to the healthy control (HC) cohort. Interleukin (IL)-1β, IL-4, IL-6, IL-10, interferon 

(IFN)-γ, tumour necrosis factor (TNF)-α; HC n=4, TB-HIV- n=8, TB+HIV+ n=12, HIV+ n=4. IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, 

soluble CD40 ligand (sCD40L); HC n=4, TB-HIV- n=5, TB+HIV+ n=5, HIV+ n=4, Mann-Whitney test. Data represents the mean ± SEM. 

‐10

0

10

20

30

40

50

60

IL‐1b IL‐4 IL‐6
(x 100)

IL‐10 IL‐17A IL‐17F IL‐21 IL‐22 IL‐23 IL‐25 IL‐31
(x2)

IL‐33
(x100)

IFN‐g
(x2)

sCD40L
(x10)

TNF‐a

Co
nc
en

tr
at
io
n 
(p
g/
m
l)

Plasma

HC

TB‐HIV‐

TB+HIV+

HIV+

**
**

* **

*

*

**

****

*
**

**

**

** **

**

**

*

*

*

*



178 
 

 

 

 

Figure A5.2: Cytokine profiling HIV mono-infected and TB+HIV+ co-infected plasma. Interleukin (IL)-1β, IL-4, IL-6, IL-10, interferon (IFN)-γ, tumour 

necrosis factor (TNF)-α; TB+HIV+ n=12, HIV+ n=4. IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, soluble CD40 ligand (sCD40L); 

TB+HIV+ n=5, HIV+ n=4, Mann-Whitney test. Data represents the mean ± SEM. 
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Figure A5.3: Cytokine profiling of TB-HIV- and TB+HIV+ plasma. Interleukin (IL)-1β, IL-4, IL-6, IL-10, interferon (IFN)-γ, tumor necrosis factor (TNF)-α; 

TB-HIV- n=8, TB+HIV+ n=12. IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, soluble CD40 ligand (sCD40L); TB-HIV- n=5, TB+HIV+ 

n=5, Mann-Whitney test. Data represents the mean ± SEM. 
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Figure A5.4: Cytokine profiling of TB-HIV- plasma and pleural effusion fluid (PEF). Interleukin (IL)-1β, IL-4, IL-6, IL-10, interferon (IFN)-γ, tumour 

necrosis factor (TNF)-α; TB-HIV- plasma and PEF n=8. IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, soluble CD40 ligand (sCD40L); 

TB-HIV- plasma and PEF n=5, Mann-Whitney test. Data represents the mean ± SEM. 
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Figure A5.5: Cytokine profiling of TB+HIV+ plasma and pleural effusion fluid (PEF). Interleukin (IL)-1β, IL-4, IL-6, IL-10, interferon (IFN)-γ, tumour 

necrosis factor (TNF)-α; TB+HIV+ plasma and PEF n=12. IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, soluble CD40 ligand (sCD40L); 

TB+HIV+ plasma and PEF n=5, Mann-Whitney test. Data represents the mean ± SEM. 
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5.4 mRNA expression of Th17 signalling molecules 

Messenger RNA expression of Th17 signalling molecules, STAT3, IL-1β, IL-6 and IL-6R, was measured by 

qPCR. Relative to the HC PBMCs, TB-HIV- PBMCs showed significantly increased fold expression of 

STAT3 (2.347 ± 0.247, p=0.0048) and decreased fold expression of IL-6R (-1.178 ± 0.082, p=0.0048) 

without significant changes in IL-1β (1.068 ± 0.047) and IL-6 (1.017 ± 0.099) (Table A5.3).  

 

TB+HIV+ PBMCs showed significantly elevated expression of STAT3 (6.303 ± 0.670, p=0.0048), IL-6 

(3.603 ± 0.583, p=0.0048) and IL-6R (1.695 ± 0.119, p=0.0048) and significant reduction on IL-1β (-2.657 ± 

0.140, p=0.0048) fold expression compared to HC PBMCs (Table A5.3). 

 

Taken together, this suggests that infectious and non-infectious microenvironments have a differential and 

selective effect on peripheral mechanisms of the pro-inflammatory response.   

 

HIV mono-infected PBMCs showed a remarkable fold rise in STAT3 (161.827 ± 15.714, p=0.0048), IL-1β 

(20.233 ± 1.040, p=0.0048), IL-6 (231.298 ± 61.258, p=0.0131) and IL-6R (19.496 ± 1.476, p=0.0075) 

indicating up-regulation at all stages of Th17 signalling measured (Table A5.3). 

 

Compared to HIV mono-infected PBMCs, TB/HIV co-infected PBMCs showed a notable decline in the 

expression of STAT3 (-26.127 ± 2.098, p=0.0048), IL-1β (-53.462 ± 3.249, p=0.0048), IL-6 (-51.420 ± 

5.166, p=0.0048) and IL-6R (-11.193 ± 0.130, p=0.0048) implying a suppression of Th17 signalling 

networks peripherally (Table A5.3).  

 

In line with the trends seen in the PEMCs, TB+HIV+ PBMCs showed significant fold elevations in the 

mRNA expression of STAT3 (2.693 ± 0.154, p=0.0048), IL-6 (3.473 ± 0.338, p=0.0048) and IL-6R (1.953 ± 

0.056, p=0.0048) relative to TB-HIV- PBMCs indicating a more active peripheral Th17 signalling during co-

infection. However, in contrast to the PEMCs, TB+HIV+ PBMCs showed marked fold decrease in IL-1β (-

2.807 ± 0.075, p=0.0048) mRNA highlighting a differential peripheral IL-1β response between groups 

(Table A5.3). 

 

In non-infectious pleural effusions, there was a significant down regulation of STAT3 (-1.262 ± 0.071, 

p=0.0048), IL-1β (-5.742 ± 0.282, p=0.0048) and IL-6R (-1.117 ± 0.076, p=0.0048) mRNA expression 

together with a significant up-regulation of IL-6R (2.257 ± 0.227, p=0.0048) mRNA between systemic and 

localised compartments (PBMC vs. PEMC) (Table A5.3). 

 

In co-infected individuals, STAT3 (9.018 ± 0.701, p=0.0048), IL-1β (5.705 ± 0.095, p=0.0048) and IL-6 

(1.906 ± 0.592, p=0.0075) mRNA was significantly elevated and IL-6R (-1.447 ± 0.209, p=0.0048) 

significantly down regulated in the localised PEMCs compared to the systemic samples (Table A5.3).  
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Taken together this suggests that in both infectious and non-infectious pleural effusions there is a differential 

Th17 signalling network between localised and systemic compartments.   
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Table A5.3: Signal transducer and activator of transcription 3, interleukin -1β, -6, and 6 receptor messenger RNA expression 

Population 
Relative Fold Change (p-value) 

STAT3 IL-1β IL-6 IL-6R 

HC PBMC* : TB-HIV- PBMC 2.347 ± 0.247 
(0.0048) 

1.068 ± 0.047 
(0.0637) 

1.017 ± 0.099 
(0.9357) 

-1.178 ± 0.082 
(0.048) 

HC PBMC* : TB+HIV+ PBMC 6.303 ± 0.670 
(0.0048) 

-2.657 ± 0.140 
(0.0048) 

3.603 ± 0.583 
(0.0048) 

1.695 ± 0.119 
(0.0048) 

HC PBMC* : HIV+ PBMC 161.827 ± 15.714 
(0.0048) 

20.233 ± 1.040 
(0.0048) 

231.298 ± 61.258 
(0.0131) 

19.496 ± 1.476 
(0.0075) 

     

HIV+ PBMC* : TB+HIV+ PBMC -26.127 ± 2.098 
(0.0048) 

-53.462 ± 3.249 
(0.0048) 

-51.420 ± 5.166 
(0.0048) 

-11.193 ± 0.130 
(0.0048) 

     

TB-HIV- PBMC* : TB+HIV+ PBMC 2.693 ± 0.154 
(0.0048) 

-2.807 ± 0.075 
(0.0048) 

3.473 ± 0.338 
(0.0048) 

1.953 ± 0.056 
(0.0048) 

     

TB-HIV- PBMC* : TB-HIV- PEMC -1.262 ± 0.071 
(0.0048) 

-5.742 ± 0.282 
(0.0048) 

2.257 ± 0.227 
(0.0048) 

-1.117 ± 0.076 
(0.0048) 

     

TB+HIV+ PBMC* : TB+HIV+ PEMC 9.018 ± 0.701 
(0.0048) 

5.705 ± 0.095 
(0.0048) 

1.906 ± 0.592 
(0.0075) 

-1.447 ± 0.209 
(0.0048) 

Results expressed as mean ± SEM, n=6 replicates in each group, Mann-Whitney test. * Indicates control group used in analyses. Healthy control (HC), HIV mono-

infected (HIV+), signal transducer and activator of transcription 3 (STAT3), interleukin (IL); receptor (R). 
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