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ABSTRACT 

The major challenge in gene therapy is the development of safe and efficient gene carriers. The 

merging of gene therapy with nanotechnology provides a new powerful platform which promises 

to address the safety-efficacy issues. Metal gold nanoparticles (AuNPs) have attracted immense 

interest over the past few years as gene and drug delivery vehicles, due to their tunable stability, 

low inherent cytotoxicity and ability to be functionalised. The grafting/stabilizing of metal 

nanoparticles with starburst dendritic polymers over the conventional polymers has proven to be a 

promising advancement in the design of highly efficient non-viral gene delivery nano-scaffolds. 

The objective of the study was to synthesise, characterise and evaluate the cytotoxicity profiles 

and capacity of unmodified and folic acid (FA) modified poly-amidoamine generation 5 (PAMAM 

G5D) grafted gold nanoparticles to deliver pDNA, mRNA, and siRNA in mammalian cell lines. 

The same parameters were also evaluated using unmodified and folic acid modified PAMAM G5D 

control nanoparticles (G5D/G5D:FA NPs) for comparative studies. Nanoparticles and their 

nanocomplexes were characterized by transmission electron microscopy (TEM), nanoparticle 

tracking analysis (NTA), Ultra-violet (UV) spectroscopy, nuclear magnetic resonance (NMR), 

band shift, ethidium bromide dye displacement and nuclease protection assays. Nanoparticles 

appeared as spherical, unilamellar vesicles, while their nanocomplexes appeared as globular 

clusters. Cytotoxicity profiles, gene expression, and silencing were evaluated in the HEK293, 

HepG2, Caco-2, MCF-7, KB, and HeLa-Tat-Luc cell lines using the MTT and luciferase reporter 

gene assays respectively. Nanocomplexes prepared at optimum weight/weight ratios protected the 

pDNA/mRNA/siRNA against nucleases, and were well tolerated by all cell lines. Transgene 

expression (pDNA and mRNA) and gene silencing (siRNA) was highest with FA targeted 

dendrimer grafted AuNPs (Au:G5D:FA), in FA-receptor overexpressing cells (MCF-7, KB), and 

HeLa-Tat-Luc cells respectively, and decreased significantly (p < 0.05) in the presence of excess 

competing FA ligand, confirming nanocomplex uptake via receptor mediation. Overall, transgene 

expression and silencing of the Au:G5D and Au:G5D:FA nanocomplexes were significantly better 

than that of the G5D/G5D:FA nanocomplexes confirming the key roles played by dendrimer 

modification and the AuNPs in the design of these delivery systems.    
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CHAPTER 1 

1. INTRODUCTION 

 

1.1 Rationale/Background of Research  

 

Over the years, a variety of gene delivery treatment modalities have been advanced to treat diseases 

at the genetic level. However, their clinical application has been limited by two factors viz. high 

toxicity and low transfection efficiency (Guo and Lee, 1999, Lungwitz et al., 2005). While viral 

approaches have been very promising due to their high transfection efficiency, the inherent risks 

of carcinogenicity, insertional inactivation, severe immune responses, limitations in targeting 

specific cell types, and lack of ability to infect non-dividing cells have motivated for the 

development of safer non-viral approaches (Kay et al., 2001, Thomas et al., 2003, Ghosh et al., 

2008a). Even though non-viral vectors provide some benefits and are low in toxicity, their 

transfection efficiency is questionable and as a result, basic research in this area is ongoing.  

Non-viral vector design based on organic materials, such as micelles, liposomes, and polymers, 

and have been intensively investigated for gene delivery and have been found to be associated with 

low to modest transfection efficiency (Xu et al., 2007, Morille et al., 2008). On the contrary, non-

viral vectors derived from inorganic materials such as gold nanoparticles, quantum dots, selenium 

nanoparticles, silver nanoparticles, magnetic iron oxide nanoparticles, platinum nanoparticles and 

carbon nanotubes promise high transfection efficiency due to the numerous properties that they 

possess over organic-based non-viral vectors, and hence have recently emerged as favorable 

scaffolds for gene delivery (Pissuwan et al., 2011, Rana et al., 2012).  

The interest in gold nanoparticles, for instance, has been stimulated by their capacity to bind a 

wide range of organic molecules, due to their rich surface chemistry, low level of cytotoxicity, 

unique tunable stability, robustness, ease of synthesis, biodegradability, biocompatibility and 

amenability to synthetic modification (Ghosh et al., 2008a). Numerous studies have demonstrated 

the effectiveness of gold nanoparticles as plasmid DNA (pDNA) delivery vectors. In the early 

2000s, Mclntosh and co-workers demonstrated that gold nanoparticles functionalised with 

quaternary ammonium and uncharged surface groups could effectively bind plasmid DNA and 

deliver it to 293T cells (McIntosh et al., 2001).   
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In 2007, Bhattacharya and co-workers reported that gold nanoparticles functionalised with folic 

acid and polyethylene glycol-amines complexed with pDNA can be readily targeted to the folate 

receptors of cancer cells, with high efficiency (Bhattacharya et al., 2007). Moreover, in 2008, 

Ghosh and co-worker conducted a study using gold nanoparticles functionalized with amino acids 

to delivery pDNA, which showed compact complexes that provided highly efficient gene delivery 

without any observed cytotoxicity (Ghosh et al., 2008b). Since then, many studies have been 

conducted and reported by many research groups to confirm the versatility of gold nanoparticles 

as efficient gene delivery vectors in vitro (Sendroiu et al., 2009, Giljohann et al., 2009, Giljohann 

et al., 2010, Kim et al., 2011, Rana et al., 2012). More recently, it was shown that gold 

nanoparticles conjugated to polymers polyethyleneimine, poly-L-lysine, chitosan and the amino 

acid cysteine were able to efficiently bind and deliver the pCMV-Luc DNA to mammalian cancer 

cells in vitro (Lazarus and Singh, 2016). Although the interaction of gold nanoparticles with pDNA 

has been a focus recently, the delivery of messenger RNA (mRNA) and small interfering RNA 

(siRNA) is still in its infancy and is yet to be fully exploited. 

 

1.2 Significance/Justification and Novelty of Study 

The field of ‘nanomedicine’ has the potential to dramatically improve the therapeutic outcomes in 

gene and drug-related therapies. Gold nanoparticles have been more frequently mentioned in 

nanomedical research than any other inorganic material. Furthermore, the conjugation of gold 

nanoparticles (AuNPs) to various macromolecules has gained popularity. Despite, the progress in 

research using AuNPs as delivery systems, they have yet to reach their full potential in the clinic. 

 
The focus of this study was to optimize and enhance gold nanoparticles for efficient in vitro 

transgene expression using pDNA and mRNA, and gene silencing using small interfering RNA 

(siRNA). Furthermore, this study will compare and contrast the delivery efficiencies of the 

aforementioned nucleic acids using the same nanoparticle delivery systems in hope of shedding 

light on the design and formulation of novel non-viral delivery strategies with low cytotoxicity, 

efficient cellular uptake, and gene delivery.  
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1.3 Aim 

 

The aim of this study was to evaluate and optimize the delivery efficiencies of functionalised gold 

nanoparticles for different nucleic acids in vitro to effect the required gene expression or silencing.  

 

1.4 Objectives 

 To synthesise and functionalise AuNPs with the appropriate polymer and targeting ligand. 

 To determine the ultrastructural morphology, colloidal stability, size range, polydispersity, 

and zeta potential of all nanoparticles and nanocomplexes.  

 To determine the nucleic acid binding and protection of all nanoparticles. 

 To evaluate the cytotoxicity and apoptotic activity of the nanoparticles and their respective 

nanocomplexes in selected cancer cell lines. 

 To determine the efficiency of the prepared functionalised AuNPs in gene delivery, 

expression, and silencing.  

 

1.5 Outline of Thesis 

The thesis is compiled in paper format, with chapters 3-5 presented as research papers. 

 Chapter 1 describes the background, novelty, aims, and objectives of the current study. 

 Chapter 2 provides an in-depth literature review on the research topic, including past and 

present utilization of AuNPs in gene delivery. 

 Chapter 3 describes the synthesis, formulation, characterisation and in vitro assessment of 

the nanoparticles and their nanocomplexes with plasmid DNA (pCMV-Luc DNA).  

 Chapter 4 investigates the formulated nanoparticles as nanocomplexes with Fluc mRNA. 

All nanocomplexes and nanocomplexes were fully characterized and assessed in vitro for 

transgene expression. 

 Chapter 5 describes the complexation of siRNA with the nanoparticles. All 

nanocomplexes are characterised, with the cytotoxicity and luciferase gene silencing 

potential of the siRNA nanocomplexes in the HeLa-Tat-Luc cell line discussed. 
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 Chapter 6 provides a conclusion and covers the significant results obtained from the study. 

Included are future studies that could be undertaken. 
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CHAPTER 2 

2 LITERATURE REVIEW 

2.1 Introduction 

“Golden therapy” has indeed revolutionized gene therapy over the years. The role that gold 

nanoparticles have played as delivery systems of therapeutic genes and drugs is commendable 

and has advanced cancer therapy tremendously over the years. This can be attributed to their 

unique optical and physicochemical properties such as inertness, low cytotoxicity and a rich 

surface platform that is amenable to synthetic modification. This review will provide the 

background of cancer, gene therapy, previously used gene and drug delivery systems, insight 

into the synthesis and functionalisation of gold nanoparticles for tailored biomedical 

applications, particularly, gene and drug delivery. 

 

2.2 Cancer  

Cancer is a global problem and one of the leading cause of deaths in developing countries. 

Annually, there are approximately 14 million new cancer cases that are reported worldwide with 

half of them resulting in death (Ferlay et al., 2013).   

Cancer is a disease characterised by uncontrolled growth and spread of abnormal cells. During 

normal cell growth and division, the genetic material (DNA) of the cells may be damaged or 

changed resulting in mutations, that lead to uncontrolled proliferation of abnormal cells, which 

ultimately form masses of tissues called tumours (benign or malignant) (Figure 2.1). Benign 

tumours do not invade nearby tissues or spread throughout the body (metastasize). They are 

uncommon and not harmful unless they grow in vital parts of the body such as nerves, blood 

vessels, or in confined areas such as the brain. Malignant tumours on the other hand, are invasive 

and metastasize causing havoc to the body (Martin et al., 2013). There are many different types of 

cancers, each characterized by the type of cell that is primarily affected. Cancer is caused by both 

internal (e.g. genetic mutations) and external factors (e.g. infectious organisms, tobacco, and an 

unhealthy diet). Traditional cancer treatments including surgery, radiation therapy, hormone 

therapy and chemotherapy have proven to be inadequate in treating cancer as they either prolong 

the patient’s life or result in severe side effects (Liu et al., 2008).   
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Figure 2.1: Illustration of benign and malignant tumours (a), and the process of metastasis (b). Adapted 

from https://www.cancer.gov/publications/dictionaries/cancer-terms?cdrid=46283, accessed on the 12th 

September 2016. 

 

2.3 Gene Therapy: Alternative Approach  

Gene therapy has emerged as a useful therapeutic approach for the treatment of cancer (Cho-

Chung, 2005), and many other genetic and infectious disorders including haemophilia, cystic 

fibrosis (Davies et al., 2001), acquired immune deficiency syndrome (AIDS) (Guo and Huang, 

2012), muscular dystrophy, and familial hypercholesteremia (Ropert, 1999). Since Rosenberg and 

colleagues successfully conducted the first clinical application of human gene therapy in the early 

1990s, more than 1500 gene therapy clinical trials have been conducted up to 2010 (Rosenberg et 

al., 1990, Herzog et al., 2010). Over 66% were for cancer treatment, 9.1% were for treatment of 

cardiovascular disorders, and 8.3% were for treating monogenic genetic diseases (Edelstein et al., 

2007). These statistics are indeed a testament of the ability of gene therapy to treat a broad range 

of inherited and acquired disorders. Gene therapy (Figure: 2.2) is based on the principle of 

correcting the basis of a disease at its origin by integrating new genes, replacing non-functional 

genes, or modulating gene expression in the cells (Müller-Reible, 1993).  

(a) Metastasi
 

Maligant tumour cells 

Expansion + Infiltration 
Normal cells 

Expansion 

Explosion 

Connective tissue 
capsule 

Benign tumour cells 

(b) 

https://www.cancer.gov/publications/dictionaries/cancer-terms?cdrid=46283
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Figure 2.2: Illustration of the principle of gene therapy (Kendirci et al., 2006). 

 

Based on the nature of targeted diseased cells, this approach can be classified into two categories 

namely germline gene therapy and somatic gene therapy. Germline gene therapy involves 

correcting inherited genetic disorders by directly inserting the functional gene into the germ cells 

(reproductive cells). Due to moral, ethical and legal reasons, this method has been prohibited in 

humans and only allowed in lower level species such as mice (Katragadda et al., 2010, Ibraheem 

et al., 2014).   

Somatic gene therapy, on the other hand, involves the introduction of functional genes into somatic 

cells (non-reproductive cells). The resulting genetic modifications are not hereditary and restricted 

to one generation. This approach is further grouped into ex vivo, in situ, in vitro and in vivo (Figure 

2.3). Ex vivo (conducted outside the animal model) delivery involves the extraction of genes from 

specific tissues or cells, followed by their modification in vitro, and then transferred back into the 

original tissue or cells. This approach is limited by the small number of cells extracted from a 

specific living tissue. In situ involves direct delivery of delivery genes into the target tissue. This 

approach has been employed in treating cystic fibrosis but does suffer from poor transfection 

efficiency. In vitro (conducted in a tissue culture plate/system) and in vivo (conducted inside the 

animal model) involve the use of a vector that transports the gene to specific cells (Katragadda et 

al., 2010). These methods are considered very useful in gene therapy, but, are limited by 

inadequate targeting of vectors to the correct tissue.  
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Figure 2.3: Illustration of in vivo and ex vivo gene transfer. Adapted from 

http://jasn.asnjournals.org/content/13/suppl_1/S117/F3.expansion, accessed on the 10/26/17. 

 

2.4 Genes and Physiological Barriers   

2.4.1 Genes 

Several genes/genetic materials/nucleic acids have been used in gene therapy depending on the 

intended therapeutic effect. These include single-stranded DNA, double-stranded DNA, plasmid 

DNA (pDNA), messenger RNA (mRNA), antisense oligonucleotides, small interfering RNA 

(siRNA), micro RNA (miRNA), and small hairpin RNA (shRNA) (Knipe et al., 2013). Based on 

the scope of this study, we will provide a brief background on pDNA, mRNA, and siRNA. 

 
2.4.1.1 Plasmid DNA 

Plasmid DNA (pDNA) (Figure 2.4) is a circular double-stranded deoxyribonucleotide (dsDNA), 

ranging from 100-1000 base pairs in length and is derived from plasmids of eukaryotic cells (Yin 

et al., 2005). It produces usable proteins by transcription into messenger RNA, which is, in turn, 

translated into desired proteins. pDNA contains four main domains e.g. a promoter, enhancer, 

polyadenylation, and splicing sites which regulate gene expression as well as the transgene that 

encodes for a specific protein. Promoters initiate transcription by recognizing RNA polymerase 

and are normally derived from viruses e.g. roux sarcoma virus and cytomegalovirus (CMV), to 

guarantee high transcription. Enhancers are situated upstream or downstream from the promoter 

and they improve transcription efficacy by enhancing the binding of proteins that initiate gene 

transcription.   
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Polyadenylation and splicing sites ensure correct processing of the mRNA transcript (Elsabahy et 

al., 2011). Additionally, pDNA has transcription termination sites as well as antibiotic resistance 

genes. Due to it structural stability, pDNA is extensively used in gene expression studies, 

especially in vitro. However, difficulty in production, inability to transfect non-dividing cells, 

possible insertional mutagenesis due to integration into the host genome, possible immune 

responses owing to the unmethylated CpG motifs, and restricted nuclear entry due to its relative 

large size have limited its in vivo application. 

 

 

Figure 2.4: Structure of pDNA containing a Green Renilla Luciferase (Luc) gene under the control of CMV 

promoter. Lac operator (Lac 01) and Transcription termination site (Ter) reduce background by minimizing 

transcriptional read-through.  Ampicillin (Amp) and puromycin (Pur) are markers for drug selection in 

bacterial and mammalian cells respectively. Adapted from http://www.biofeng.com/zaiti/buru/pCMV-

Green-Renilla-Luc.html, accessed on the 10/26/17.  

 

 

 

 

  

http://www.biofeng.com/zaiti/buru/pCMV-Green-Renilla-Luc.html
http://www.biofeng.com/zaiti/buru/pCMV-Green-Renilla-Luc.html
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2.4.1.2 Messenger RNA (mRNA) 

Mature mRNA is a single-stranded RNA (ssRNA) that transfers genetic material from DNA to 

ribosomes found in the cytosol of eukaryotic cells, where it acts as a template for protein synthesis. 

It undergoes extensive processing (Figure 2.5) before it is transported into the cytosol. It comprises 

five main domains, including a 5' cap  (e.g. m7Gp3G), a 5' untranslated region (UTR), an open 

reading frame (ORF)/protein coding sequence (PCS), a 3' untranslated region (UTR), and a poly 

(A) tail of adenosine residues (100–250), which ensures proper protein synthesis (Yamamoto et 

al., 2009). The cap aids in the attachment of mRNA to the ribosome. The 5' UTR is a region before 

the start codon that is responsible for the stability, localization and translation efficiency of mRNA. 

The ORF/PCS comprise of start and stop codons that regulates mRNA translation into protein by 

the ribosomes. The 3' UTR is a region after the stop codon that is responsible for the stability, 

localization and translation efficiency of mRNA. The poly (A) tail stimulates mRNA transfer from 

the nucleus to the cytosol (where translation occurs) and stabilizes mRNA by shielding it from 

enzymatic degradation (Sioud, 2010).  

 

 

Figure 2.5: Illustration of eukaryotic mRNA structure and processing process from DNA (Russel, 2010). 

Exons are coding/expresses DNA sequences. Introns are non-coding/suppressed DNA sequences. 

  

https://en.wikipedia.org/wiki/5%27_end
https://en.wikipedia.org/wiki/5%27_end
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Synthetic/functional mRNA, therefore, can be derived from pDNA with a bacteriophage promoter 

e.g. T7, SP6, or T3 through in vitro transcription and is produced without a cap and a poly A tail 

(Tavernier et al., 2011). It has seldom been used in gene expression studies due to its instability 

caused by the lack of a cap and a poly A tail. However, its ease of production, ability of transfecting 

both dividing and non-dividing cells, non- toxicity (does not integrate into the genome), and 

delivery into cytoplasm (nuclear membrane not a barrier) makes it ideal over pDNA.   

 

2.4.1.3 Small Interfering RNA  

Small (or short) interference RNA (siRNA) (Figure 2.6) is commonly used to mediate gene 

silencing/knockdown via a gene regulatory mechanism that takes place in the cytoplasm of various 

eukaryotic cells, known as RNA interference (RNAi). SiRNA is a double-stranded/duplex RNA 

that is synthetically formulated using solid-phase synthesis approaches, to target a specific mRNA 

for degradation. This duplex consists of a guide/antisense strand and a passenger/sense strand 

which ranges from 19-22 bp in size, with distinctive 3' dinucleotide overhangs that permits 

recognition by the RNAi (Elsabahy et al., 2011). Moreover, siRNA transfection into a specific cell 

usually involves the loading of the guide strand into RNA-induced silencing complexes (RISC). 

This complex then stimulates gene silencing by binding, cleaving and degrading the 

complementary strand of the target mRNA. Like mRNA, siRNA is easy to produce, relatively 

small, non-toxic, and is delivered into the cytoplasm avoiding the nuclear membrane barrier. 

However, its application is limited by transient gene silencing which leads to time-restricted 

experiments (Banan and Puri, 2004).  

 

 

 

 

 

 
Figure 2.6: General structure of siRNA duplexes. 
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2.4.2 Physiological Barriers 

The direct introduction of naked genes, into diseased cells is associated with unsatisfactory gene 

expression/silencing due to a number of extra-and intracellular physiological barriers that the gene 

encounters on its way to the target site, which ultimately affects its cellular biodistribution and 

bioavailability.  

 

2.4.2.1 Low Intracellular Bioavailability 

Subsequent to introduction, the naked DNA/RNA is quickly degraded by extra and intracellular 

enzymes before it even reaches the target site, resulting in a compromised therapeutic outcome 

due to low bioavailability. Also, due to the hydrophilicity and enormous size of genes, their cellular 

uptake is usually limited. However, the little that can be absorbed by cells are done so via a process 

known as endocytosis. During this process, genes are internalized into vesicles known as 

endosomes, which are later converted into lysosomes, where they are subsequently degraded by 

lysozymes. This degradation prevents the genes from reaching the target sites e.g. cytoplasm 

(RNA) or nucleus (pDNA). 

 

2.4.2.2 Limited Nuclear Uptake 

In order for gene expression to take place, some genes e.g. pDNA must be translocated to the 

nucleus. The nuclear translocation of genes is a procedure that involves both nuclear trafficking 

and nuclear membrane penetration. The nuclear membrane is impermeable and comprises of a 

nuclear pore complexes (NPC), of approximately 25 nm in size, which regulates the transport of 

biomolecules entering and exiting the nucleus (Liu et al., 2003). Generally, biomolecules less than 

40 kDa diffuse passively through the membranes, while larger biomolecules are impeded (Roth 

and Sundaram, 2004). Hence, the nuclear uptake of pDNA is limited by its enormous size and 

charge diminishing its therapeutic effect.     
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2.4.2.3 Induction of Cytokines 

Foreign/exogenous genes (e.g. DNA/RNA) usually stimulate and activate the immune system, 

which in turn triggers the release of cytokines which are capable of inducing inflammatory 

responses. The mechanism that is responsible of inducing inflammatory cytokine release is known 

as the Toll-like receptor (TLR), and possess four main receptors including TLR3, TLR7, TLR8 

and TLR9, which recognizes nucleic acids or structures that resemble nucleic acids (Yoshida et 

al., 2009). TLR3, recognizes dsRNA e.g. siRNA, whereas TLR7 and TLR8 recognizes single-

stranded RNA e.g. mRNA. TLR9 on the other hand only recognizes the sequences in the pDNA 

that stimulate immune response (e.g. unmethylated CpG motifs) (Sioud, 2010). Such motifs are 

frequently found in bacterial DNA rather than in mammalian DNA, which explains the strong 

immune responses that are associated with the application of bacterial DNA in vivo.  

 

2.4.3 Overcoming the Barriers 

The successful application of gene therapy greatly relies on the delivery of the therapeutic gene 

into the targeted cell with little to no degradation. Consequently, several methods have been 

explored to improve the bioavailability of genes, including the chemical modification of the 

structure of genes, and encapsulation of genes into delivery modalities/vectors/systems. Chemical 

modification is a very effective approach in reducing cytotoxicity while increasing the stability of 

nucleic acids. It involves the removal of toxic motifs, in the case of pDNA (Krieg et al., 1995), 

and addition of stable compounds e.g. pseudouridine (Ψ-mRNA), 2-thiouridine, and 

5-methylcytidine in the case of mRNA (Tavernier et al., 2011). However, this approach is difficult, 

expensive and time-consuming and hence its application is limited. Chemical encapsulation, on 

the other hand, is a simple, cheap, and very effective approach of protecting therapeutic genes from 

enzymatic degradation, by encapsulating them into delivery modalities.  
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2.5 Delivery Modalities  

An ideal gene delivery modality must fulfill a number of standards (Somia and Verma, 2000): 

- It must be easy to prepare, and inexpensive.  

- It must be non-toxic (should not trigger any strong immune response).  

- It should be biocompatible and biodegradable. 

- It must have a large carrying capacity (able to carry genes of all size). 

- It must be able to shield and protect the exogenous gene from degrading extracellular 

and intracellular enzymes.  

- It must ensure stable gene expression or silencing. 

- It must infect both non-dividing and dividing cells. 

- It must be small and specific enough to be transfected into the into the target site for specific 

uptake of the exogenous gene. 

 

2.5.1 Viral Modalities  

In the last decade, viral modalities have advanced greatly at delivering genes, due to their ability 

to protect and deliver the genes to specific cells, while evading immunologic detection by an 

infected host. These modalities are well-known biological products derived from modified viruses 

(Merten and Gaillet, 2016). Viral modification involves the removal of pathogenic genes, with the 

most widely studied modified viruses being retroviruses, lentiviruses, adenoviruses, herpes 

simplex viruses (HSV), adeno-associated viruses (AVV) and poxviruses. The retroviruses were 

the first to enter clinical trials in the early 1990s and were commercialized because of their 

remarkable high gene efficacy. These viruses possess unique advantages and limiting properties 

(Figure 2.7), which need to be considered before their application in gene delivery. In general, 

viral vectors are excellent gene transfection agents, as evidenced by their associated high 

transfection efficiency. However, due to limited scale-up techniques (production is expensive) and 

severe biosafety issues such as insertional mutagenesis, immunogenicity, and carcinogenesis, 

other safe alternatives such as non-viral modalities have been developed (Jin et al., 2014a).  
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Figure 2.7: Summary of different advantages and limitations of viral vectors which are currently studied 

and employed in gene therapy (Katragadda et al., 2010).  

 

2.5.2 Non-Viral Modalities  

Non-viral modalities present attractive advantages over inherently toxic viral modalities, although 

not as highly efficient in gene delivery. These synthetic vectors can be produced on a large-scale, 

are cheap, less toxic, non-immunogenic, biodegradable, biocompatible, possess an unlimited DNA 

carrying capacity, and can be modified synthetically to enhance gene transfection efficiency (Yin 

et al., 2014). They can be divided into physical and chemical approaches.  

Physical approaches applies physical force to aid in the transfer of the exogenous gene through 

the cell membrane. Though this approach is easy to perform, its application is limited by potential 

cell membrane damage and the number of cells that can be treated. Examples of physical 

approaches include; electroporation, microinjection, gene gun, ultrasound, magnetofection, photo-

chemical internalization, occlusion, hydrodynamic injection, laser irradiation, hyperthermia 

(Balazs and Godbey, 2010). The chemical approach conversely, uses inorganic or organic 

chemicals to complex the gene via electrostatic interaction, forming nanocomplexes that protect 

the gene against degrading enzymes but are small enough to extravasate the cell membrane without 

causing any physical damage (Chuang and Chang, 2015).  
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2.5.2.1 Inorganic Non-viral Modalities 

2.5.2.1.1 Cationic Lipids (CLs)  

CLs represent the largest group of non-viral vectors that have been extensively studied and used 

in gene therapy for the last three decades.  In the early 1980s, Felgner and co-workers discovered 

that when the cationic lipid, N[1-(2,3 dioleyloxy) propyl]-N,N,N-trimethylammonium chloride 

(DOTMA) was mixed with a neutral fusogenic phospholipid such as dioleoyl-

phosphatidylethanolamine (DOPE), it spontaneously formed uniform, small liposomes that were 

able to complex, protect and deliver DNA to a variety of mammalian cells with high efficiency. 

Later studies produced the formulation, evaluation and commercialization of various other cationic 

lipids including; 1,2-dioleyl- 3 trimethylammonium propane (DOTAP), N-(2-hydroxyethyl)-N,N-

dimethyl 2,3-bis(tetradecycloxy-1-propanaminium bromide (DMRIE), N,N,N-

trimethylammonium chloride (DOSPA); dioctadecylamido- glycylspermine (DOGS), 1,2-

Distearoyl-sn-glycero-3-phosphorylcholine (DSPC), DC-Cholesterol (DC-Chol), DOTIM (Figure 

2.8). 

 

Figure 2.8: Chemical structures of commonly used cationic lipids (Yin et al., 2014). 
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CLs are amphiphilic systems that are structurally characterized by three functional components 

namely; a hydrophilic cationic head group, a linking group, and a hydrophobic tail (Junquera and 

Aicart, 2014). The hydrophilic cationic head group generally contains either a polyamine or 

tertiary amine ligand or an ammonium group, which binds with the phosphate groups of nucleic 

acids. The linking groups or arms in lipids are of various lengths and have specific bonds, such as 

ester, ether, phosphate, amine, carbamate or disulfide bonds, which bridge the cationic head and 

the tail, controls stability, flexibility, biodegradability and most importantly, transfection efficacy. 

The hydrophobic tail group contains either sterol rings such as cholesterol or lipid chains such as 

multivalent or monovalent aliphatic hydrocarbons which facilitates bilayer vesicle (micelles or 

liposomes) formation in aqueous solutions. CLs mixed with a helper/neutral/fusogenic 

phospholipid such as DOPE, dioleoylphosphatidyl choline (DOPC) or the membrane component 

cholesterol, form spherical unilamellar or multilamellar vesicles (20 nm to > 0.5 µm), called 

liposomes which bind and compact nucleic acids via electrostatic interactions (Figure 2.9), 

forming lipoplexes, capable of interacting with the cell membrane and delivering the nucleic acid 

without any immune response (Mintzer and Simanek, 2008, Junquera and Aicart, 2014). 

        

Figure 2.9: Liposome formation via phospholipid assembling and lipoplex formation via electrostatic 

interaction. Adapter from (Parker et al., 2003) with modifications. 
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Liposomes are distinctly biodegradable, biocompatible, soluble, reproducible, non-immunogenic, 

and are amenable to synthetic modification. They possess a large gene/drug carrying capacity, are 

easy to handle and prepare. However, due to their poor stability, liposomes may experience non-

specific binding with negatively charged extra- or intracellular constituents (e.g. serum degrading 

enzymes and proteins), which may lead to rapid clearance, hence resulting in low transfection 

efficacy. Additionally, the harmful organic material (e.g. chloroform) that is used to prepare 

liposomes may potentially cause some cytotoxicity or inflammatory/anti-inflammatory responses, 

limiting their clinical application. Recently, a phase III clinical trial study conducted to treat 

metastatic melanoma using allovectin-7-DMRIE-DOPE and pDNA failed due to low efficacy. 

Nevertheless, several liposomal formulations such as GL67A-DOPE-DMPE-polyethylene glycol, 

GAP-DMORIE–DPyPE, and DOTAP–cholesterol are still being clinically developed (Junquera 

and Aicart, 2014). 

 

2.5.2.1.2 Cationic Polymers (CPs)  

CPs are also non-viral vectors that have been evaluated in gene delivery studies due to their 

chemical diversity, which allows for various synthetic modifications. They bind nucleic acids via 

electrostatic interaction, through their ammonium ions and/ or amines forming polyplexes. The 

size and morphology of the complex is usually dictated by the number of phosphates in the nucleic 

acid and the number of amine groups in the vector, known as the N/P ratio. Polyplexes have shown 

low cytotoxicity, good biodegradability, excellent buffering capacity, structural diversity and 

reasonably high transfection efficacy compared to lipoplexes (Jin et al., 2014a). Various polymers 

that have been used in gene therapy, and can be categorized into two groups, namely natural 

polymers e.g. peptides, proteins, polysaccharides (chitosan), and synthetic polymers e.g. poly 

(ethyleneimine) (PEI), poly (L-lysine) (PLL), poly (d,l-lactide-co-glycolide) (PLG), and 

dendrimers (Xun et al., 2014) (Figure 2.10). Among them, poly (L-lysine) (PLL), 

polyethyleneimine (PEI), polyamidoamine dendrimer (PAMAM), and chitosan are currently the 

most commonly used with PEI and PAMAM being more frequently applied.  
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Figure 2.10: Chemical structures of cationic polymers (Yin et al., 2014). 

 

2.5.2.1.2.1 Chitosan  

Chitosan has been one of the most widely used natural cationic polymers in both drug and gene 

delivery applications. This is mainly due to its outstanding biodegradability, excellent 

biocompatibility, non-toxicity (even at high concentrations and at all molecular weights), low 

immunogenicity, antimicrobial activity, ease of synthetic modification and abundance in nature 

(Yin et al., 2014). However, due to their low charge, insolubility under physiological conditions, 

and low transfection efficiency, its application in gene therapy has been limited. Chitosan-DNA 

nanocomplexes, are easy to formulate, but have been associated with poor transfection efficiency 

in some cell lines. It has been suggested that this could have been due to factors such as the chitosan 

molecular weight (MW), degree of deacetylation, polyplex physicochemical properties, and the 

N/P ratio. Consequently, various chitosan derivatives have been employed to formulate 

nanocomplexes to improve transfection efficiency (Katragadda et al., 2010). These include 

chitosan methoxy polyethylene glycol-cholesterol 20 (LCP-Ch), thiolated-chitosan, low molecular 

weight alkylated chitosan, and aminoethyl- chitin (ABC).  
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Chitosan has also been conjugated to folic acid (FA) for targeted delivery and to improve 

transfection efficiency (Mansouri et al., 2006). The greatest successful application of 

chitosan/DNA nanocomplexes has been seen in oral and nasal therapy, due to chitosan’s 

mucoadhesive nature. Currently, the development of chitosan-based gene delivery modalities 

involves the use of chitosan derivatives or chitosan in combination with other nanoparticles (Unsoy 

et al., 2012).  

 

2.5.2.1.2.2 Poly (ethylenimine) (PEI)  

PEI (linear and branch form), is another interesting polycation that has been extensively studied in 

gene delivery over the years. Its capacity to aid gene transfection both in vitro and in vivo was 

initially demonstrated in 1995 (Boussif et al., 1995). PEI has a high charge density and a high 

buffering capacity that enables it to bind with nucleic acids and facilitate endosomal escape 

through a process known as the “proton sponge effect” (Figure 2. 11). Due to its compacting and 

buffering capacities, transfection efficiency is satisfactory and is comparable to that of viral vectors 

(Katragadda et al., 2010). Studies have suggested a strong dependency of the polyplex structural 

and physicochemical properties (e.g. MW, N/P ratio and morphology), on the transfection 

efficiency and cytotoxicity. 

For instance, PEI-DNA polyplexes designed with high MW PEI (e.g. 25 kDa), at high N/P ratios 

are associated with high in vitro transfection, while, PEI-DNA polyplexes designed with low MW 

PEI are associated with low cytotoxicity and poor transfection efficiency. Furthermore, the clinical 

application of PEI polyplexes is limited due to their non-biodegradability and associated high 

cytotoxicity as a result of their high positively charged density.  
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Figure 2.11: Illustration of the “proton sponge effect” (Meng Lin et al., 2010). 

 

Over the years, various PEI/PEI polyplex structural modifications or physicochemical properties 

including pegylation, alkylation, methylation, and acetylation have been studied to improve their 

stability, biocompatibility, reduce toxicity and improve transfection efficacy (Petersen et al., 2002, 

Thomas and Klibanov, 2002, Neu et al., 2005, Lv et al., 2006, Fortune et al., 2011). Currently, 

lipopolymer, PEG-PEI–cholesterol is being clinically investigated for immunotherapy (cytokine 

interleukin-12 (IL-12) expression) of colorectal and ovarian cancers (Yin et al., 2014).  

 

2.5.2.1.2.3 Dendrimers  

Dendrimers are among the polymers that have been widely studied for numerous biomedical 

applications, specifically, as delivery vectors of anticancer drugs due to their unique properties. 

The name dendrimer can be broken down into Din =Greek, Dendron= tree and meros = branch. 

Hence by definition, dendrimers are globular-tree like, branched, nano-sized (1–100 nm), three-

dimensional macromolecules with a well-defined size, structure, and multiple surface functional 

groups that are either neutral, negative, or positively charged (Xu et al., 2013, Kompella et al., 

2013).  
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They can be easily synthesized by the polymerization method (Luten et al., 2008, Yamano et al., 

2010), which originates from an inner core and then grows in layers or generation number (Gn), 

with the systematic addition of amine groups producing a branch-like structural architecture 

comprising three main domains namely; an inner or central core; a hyperbranched layer; and 

surface multivalent functionalities. These components collectively facilitate unique interactions 

with tissues, maintain structural integrity, encapsulate or entrap various biomolecules such as 

drugs, genes, antibodies, and targeting moieties for biomedical applications (Honda et al., 2013, 

Chaplot and Rupenthal, 2014). The tunability of the structural architecture of dendrimers makes 

them virtually perfect gene and drug delivery vectors with predictable features (Kannan et al., 

2014). 

To date, more than 100 architecturally different dendrimers have been formulated and exploited 

in gene and drug delivery (Bravo-Osuna et al., 2016). Amongst these, polyamidoamine (PAMAM) 

has been the most widely studied, characterized and commercialized since its early discovery by 

Haensler and Szoka Jr, (1993). This can be attributed to their unique features including excellent 

solubility, high loading ability, non-immunogenicity, tunable size, defined structure, mono-

dispersity, and rich surface functionalities (amine groups, NH2), which are amenable to synthetic 

modification (Kompella et al., 2013, Chaplot and Rupenthal, 2014). PAMAM dendrimers possess 

surface cationic primary (1o), and tertiary (3o) NH2 groups which are protonated at physiological 

conditions, an intrinsic feature that enables them to bind with and condense nucleic acids to form 

highly soluble and stable nanocomplexes. These nanocomplexes enhance the cellular uptake of the 

nucleic acid, and aid in its release from the endosome by destabilizing the endosomal membrane 

through the “proton sponge effect” (Kesharwani et al., 2015).  

However, there are still challenges that need to be addressed regarding the use of these polymers 

as drug and gene delivery vectors. Firstly, in spite of the fact that some PAMAM dendrimers such 

as Priofect and Superfect are commercially available, their high-cost and laborious production are 

still issues (Killops et al., 2008). Secondly, the cytotoxicity and transfection efficiency of these 

polymers is generation-dependent, and hence said to be influenced by the surface amines of these 

polymers. For instance, low-generation (LG) PAMAM, e.g. G0-G3 display low gene transfection 

efficacy with low cytotoxicity, while high-generation (HG) PAMAM, e.g. G4-G8 display high 

gene transfection efficacy with high cytotoxicity (Shah et al., 2011, Liu et al., 2012, Pan et al., 
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2013). Hence, an ideal gene delivery vector must exhibit both high transfection efficacy and low 

cytotoxicity (Kim et al., 2006, Nakhlband et al., 2010). 

Many studies have shown that modifying the surface amines of dendrimers by pegylation, 

methylation, acetylation, etc., greatly increases their biocompatibility and decreases their toxicity 

(Villanueva et al., 2016). Liu et al. formulated a disulfide cross-linked LG PAMAM dendrimer 

for gene delivery, that exhibited low cytotoxicity and increased transfection efficiency, comparable 

to that of the PEI (25 kDa), but greater than that of the G2 and G5 PAMAM dendrimers (Liu et 

al., 2012). Arima et al. synthesized a cyclodextrin-modified LG PAMAM dendrimer for gene 

delivery which exhibited low cytotoxicity and reasonably high gene transfection efficacy (Wada 

et al., 2005, Arima et al., 2010). Nam et al. formulated an arginine-modified PAMAM dendrimer 

for gene delivery which displayed significant transfection efficiency and low cytotoxicity from 

G2-G4 (Nam et al., 2008). Patil et al. synthesized a surface-acetylated internally quaternized G4 

PAMAM dendrimer for siRNA delivery, which showed reasonable gene silencing and low 

cytotoxicity in A2780 ovarian cancer cells (Patil et al., 2008). Likewise, in another study 

conducted by Patil et al. a tri-block complex (PAMAM-PEG-PLL) G4-PAMAM-dendrimer 

efficiently delivered siRNA with low cytotoxicity in human plasma (Patil et al., 2011). 

Alternatively, other studies have reported on the modification of the dendrimer core instead, which 

increases the flexibility of the dendrimer, which in turn increases its nucleic acid binding 

capability. For example, Aydin et al. synthesized a partially degraded Jeffamine-cored PAMAM 

dendrimer (JCPD) for gene delivery, which displayed low cytotoxicity and significantly higher 

transfection efficiency (Aydin et al., 2012). Lastly, the transfection efficiency of some dendrimers 

is cell type dependent, which may be attributed to the many architecturally different dendrimers 

that exist and various structures of cell types (Bhakta et al., 2009, Jin et al., 2014b).  

Issues regarding cost, production and transfection efficiency associated with these vectors, has led 

to the use of non-viral vectors formulated with inorganic materials to try and resolve these issues 

(Edinger and Wagner, 2011, Ibraheem et al., 2014). 
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2.5.2.2 Organic Non-Viral Vectors  

Organic non-viral vectors provide an alternative over inorganic non-viral vectors. They are low 

in toxicity and are capable of enhancing gene transfection due to the properties that they 

possess, including small or “nano” size, robustness, large drug and gene carrying capacity, 

enhanced cell binding affinity, and robustness. The most frequently researched metal 

nanoparticles include magnetic nanoparticles, quantum dots, silver, and gold (Tiwari et al., 2011).  

 

2.5.2.2.1 Magnetic Nanoparticles (MNPs)  

MNPs show great promise as suitable drug and gene delivery vectors, and much effort is now 

being dedicated in their advancement (Katragadda et al., 2010).  These are metal clusters that 

operate under an external magnetic field which can be directed to target a specific tissue and be 

removed upon completion of therapy. This is vital in gene therapy and can significantly improve 

the gene transfection efficiency and deliver the nucleic acid in a rapid manner. Moreover, these 

NPs possess size dimensions of < 100 nm, comparable to those of a protein, a virus, and a gene. 

MNPs are superparamagnetic, meaning that they do not retain magnetization once the electric field 

has been removed, hence presenting an advantage of reducing particle aggregation (Zhu et al., 

2010). The commonly used MNPs include cobalt and their oxides such as magnetite (Fe3O4), 

cobalt ferrite (FeCoO4), maghemite )۷–Fe2O3), chromium dioxide (CrO2), and iron-nickel 

(Katragadda et al., 2010).  Among these, iron oxide NPs (Fe3O4) are commonly used in biological 

applications due to their stability and biocompatibility (Indira and Lakshmi, 2010). The use of 

these NPs is still at its infancy but holds great potential.  

2.5.2.2.2 Quantum Dots (QDs) 

QDs are nanoparticles with tunable optical, mechanical and electrical physicochemical properties. 

Their semiconductor crystalline with high luminescence, broad UV excitation and unique size-

dependent characteristics make them appealing vectors for applications including light emitting 

diodes (LEDs), catalysis, photovoltaic, phosphors, and biological labeling. These properties 

together with their small size and amenability for synthetic modification presents great potential 

for medical and biological applications, particularly in imaging (Katragadda et al., 2010). QDs 

have been used in several gene (pDNA, RNA) delivery studies, particularly in gene silencing both 
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in vivo and in vitro (Chen et al., 2005, Tan et al., 2007, Klein et al., 2009). Recently, Li and co-

workers used QD-siRNA nanocomplexes to silence the HPV18 E6 oncogene which resulted in the 

growth inhibition of HeLa cells. It was postulated that these complexes served as dual-vectors; 

providing a luminescence tool to analyze gene silencing, and intracellular imaging (Li et al., 2011).   

 

2.5.2.2.3 Silver Nanoparticles (AgNPs)  

AgNPs are composed of silver or silver oxide, ranging in size from 1 to 100 nm. For centuries, 

AgNPs have been known for their antimicrobial action, and hence have been commonly used in 

medical devices (Ahamed et al., 2010). They are also used in biomedicine due to their unique 

chemical and physical properties which increases their efficiency, however, their size-dependent 

toxicity remains a concern (Singh et al., 2008). Previous studies have shown that AgNPs can be 

toxic to a number of mammalian cells. However, some reports have shown that these NPs are also 

capable of inducing genes that are involved in cell growth, and apoptosis in mammalian cells at 

low concentrations (Xia et al., 2006). Recently, Bouwmeester and co-workers conducted an in 

vitro study which demonstrated the ability of AgNPs to efficiently deliver mRNA to colon cancer 

(Caco-2) and epithelial cells of mucosa-associated lymphoid (M-cells) (Bouwmeester et al., 2011). 

 

2.5.2.2.4 Gold Nanoparticles (AuNPs)  

AuNPs are the most studied metal nanoparticles in biomedicine, since their discovery centuries 

ago. Colloidal suspensions of AuNPs with nanometer sizes exhibit various shapes such as spheres, 

rod, cubes, triangles, cages, shells depending on the synthesis method (Liu et al., 2016). They have 

a broad range of colors that depends on their shape, size, refractive index as well as aggregation 

(Figure 2.12) (Dreaden et al., 2012).  

  

http://pubs.acs.org/author/Bouwmeester%2C+Hans
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Figure 2.12: Gold nanoparticles frequently used in biomedical applications. Adapted from (Dreaden et al., 

2012) with modifications. 

 

Historically, gold has been used by artists to stain glasses due to the vibrant colors produced when 

they interact with visible light (Duncan et al., 2010). The colors are said to be as a result of 

localized surface plasmon resonance (LSPR) (Figure 2.13), where the free electrons on the metal 

NP surface, oscillate in resonance with absorbed light (Sun et al., 2016). The general consensus is 

that the size of the NP is directly proportional to the wavelength of absorbed light, therefore, 

AuNPs with sizes between 10 and 30 nm have an absorption peak at ~530 nm. 

 

Figure 2.13: (1) Illustration of LSPR process (Sun et al., 2016) and (2) spectrum of AuNPs with an 

absorption peak at ~530 nm (Atar et al., 2013). 

 

 

  
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Recently, AuNPs have made their way into high impact biomedical applications due to their unique 

optoelectronic and physicochemical properties (Figure 2.14). These NPs possess intense optical 

properties which have allowed them to be used in diagnostic and imaging applications. Their ability 

to effectively absorb and scatter light has allowed for specific thermal removal of tumors.  

In addition, AuNPs possess tunable physicochemical properties which are key for their use in 

cancer therapy. They have an inert core that is essentially non-toxic, and are biocompatible, 

providing a platform for construction of suitable gene or drug delivery carriers (Connor et al., 

2005). AuNPs are generally highly dispersed with sizes that can be tuned based on the desired 

therapeutic application (Daniel and Astruc, 2004). Their nanometer sizes (1-200 nm), allow them 

to accumulate in tumor sites and transfect cells rapidly using various mechanisms. They have a 

high surface area-to-volume ratio which allows loading of vast biomolecules including therapeutic 

drugs, genes, and proteins, which in turn facilities their integration into biological systems (Tiwari 

et al., 2011). Their surface chemistry, allows them to behave as synthetic antibodies with tunable 

binding affinities. Their multivalent surface enables them to host multiple therapeutic drugs (unstable) 

or bio-macromolecules by covalent or non-covalent conjugation, and aiding in their delivery to 

remote or target sites (Ghosh et al., 2008a, Kim et al., 2013). Hence, all these properties of AuNPs 

can be combined to form a non-viral vector which is multi-functional, and which can be tailored for a 

specific disease.   
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Figure 2.14: Illustration of the properties of gold nanoparticles (Liu et al., 2016). 

 

2.6 Synthesis of Gold Nanoparticles 

Various methods have been developed to synthesise gold nanoparticles with surfaces that confer 

unique physicochemical properties required for enhanced delivery of drugs and biomolecules. 

These can be categorized as “top-down” and “bottom-up” methods. The “top-down” method 

involves the mechanical grinding of large quantities of metals, followed by the stabilization of the 

resultant nano-sized metals with a protecting agent (Bradley, 1994). This method is very versatile 

as it can produce a variety of nanoparticles in small-scale laboratories; however, the demanding 

apparatus operation and the difficulties in generating small sized particles limits it use. The 

“bottom-up” method, on the other hand, involves chemical reduction of metal salts in aqueous 

solutions by stabilizing agents such as solvents (THF, THF/MeOH), polymers, donor ligands 

(amines, phosphanes, thioethers), and surfactants (sodium citrate/borohydride), which control the 

size of the nanoparticles, and prevent them from aggregating (Zhou et al., 2009). This strategy is 

considered the most powerful and hence is commonly used in many laboratories.  
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2.6.1 Citrate Reduction/Turkevich Method 

This method was first derived by Turkevich et al. in 1951 and later modified by Frens et al. in 

1973. It is the simplest and most frequently used approach for the synthesis of monodisperse 

spherical AuNPs in the 10-20 nm size range. This approach involves the reduction of gold ions 

(chloroauric acid, HAuCl4) by trisodium citrate in water at 100 °C to form AuNPs (Rana et al., 

2012) (Figure 2.15). In this reaction, the citrate ions act as both a reducer and a stabilizer. 

Stabilizers are essential during NP synthesis, as they prevent the aggregation of NPs. The size of 

these AuNPs depends on the temperature, salt concentration and the ratio of the added reactants 

(citrate: gold ions ratio). Larger particles (>20 nm) can be synthesized by adjusting these factors. 

The shape and monodispersity of AuNPs can be disrupted when the size is greater than 50 nm. 

Furthermore, the modification of this basic method using other forms of stabilizing agents 

including glucose (Zhang et al., 2006), methanol extract of medicinal plants (Ramezani et al., 

2008), L-tryptophane and polyethylene glycol (Akbarzadeh et al., 2009), and derivative of 

serrapeptase (Ravindra, 2009), and hydroquinone (Perrault and Chan, 2009) have also been 

reported. 

 

Figure 2.15: Illustration of the synthesis of AuNPs via the citrate reduction method. Adapted from (Ghosh 

and Chattopadhyay, 2013), (Liu et al., 2016) with modifications.   
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2.6.2 Brush-Schiffrin Method 

This is the second popular biphasic toluene-water method of synthesising AuNPs anchored with 

monolayer protected clusters (MPCs), with diameters ranging from 5-6 nm under ambient 

conditions. This approach was derived by Brust-Schiffrin and co-workers in 1994 (Brust et al., 

1994), and involves the chemical replacement of the native surfactant ligand with a hydrophilic 

ligand. During synthesis, AuCl4 ions are reduced with sodium borohydride (NaBH4) in the 

presence of the chosen thiol stabilizing ligand e.g. tetraoctylammonium bromide (TOAB) (Ghosh 

et al., 2008a, Rana et al., 2012). NaBH4 acts as a reducing agent, while TOAB acts as both a phase 

transfer catalyst and as a stabilizing agent. Moreover, direct or post-functionalisation of these 

AuNPs anchored with MPCs using various ligands in a place-exchange reaction derived by Murray 

and co-workers, resulted in the formation of functionally diverse MPCs known as mixed 

monolayer protected clusters (MMPCs) (Figure 2.16) (Rana et al., 2012). 

 

Figure 2.16: Formation of MPCs and MMPCs using the Brust-Schiffrin and Murray’s place-exchange 

reactions (Rana et al., 2012).  

 

Over the years, an array of other approaches to synthesise AuNPs with various shapes e.g. 

hexagons, rods, cubes, and cages based on the specific research application have been proposed 

e.g. seeding growth, microemulsion, sonochemistry, photochemistry, reversed micelles, and 

radiolysis (Hu et al., 2008, Huang et al., 2010).  

 

2.7 Functionalisation of Gold Nanoparticles   

The surface of AuNPs, particularly citrate coated AuNPs presents a platform that is filled with vast 

biological possibilities due to its ease of modification (e.g. carboxyl groups are readily reactive 

due to weak bonding). Functionalisation of AuNPs occur subsequent to the initial synthesis and 

can be achieved via a ligand exchange reaction (e.g. Brush-Schiffrin method) or by addition of 

https://en.wikipedia.org/wiki/Sodium_borohydride
https://en.wikipedia.org/wiki/Tetraoctylammonium_bromide
https://en.wikipedia.org/wiki/Phase_transfer_catalyst
https://en.wikipedia.org/wiki/Phase_transfer_catalyst
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polymers and biomolecules on the surface of AuNPs for tailored therapeutic applications (Fratoddi 

et al., 2014). Functionalisation can be broken down into primary coating, and biomolecule coating 

(Figure 2.17). 

 

Figure 2.17: Functionalisation process from synthesis. Adapted from (Fratila et al., 2014) with 

modifications. 

 

 

2.7.1 Primary Coating of Gold Nanoparticles 

 

Colloidal stability is an important property that determines the successful biological application of 

NPs. Colloidal stability is affected by high content of salt, carbohydrates, amino acids, lipids, 

proteins, and enzymes normally found in physiological media, which consequently cause NP 

aggregation via van der Waals interactions (Fratila et al., 2014).  

An ideal NP must be capable of overcoming biological barriers, avoid being recognized by the 

immune system, and prevent accumulation in unspecific sites e.g. the spleen and liver, which 

compromise their desired effect. Generally, when NPs enter the body, the immune system 

recognizes them as foreign molecules and responds by releasing serum proteins called opsonins 
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which bind onto the surface of the NPs, resulting in their recognition by phagocytes/macrophages 

which degrades and eliminates them from the bloodstream. 

The primary coating of AuNPs is important for the following reasons (Mout et al., 2012, Llevot 

and Astruc, 2012, Fratila et al., 2014, Liu et al., 2016):  

- It increases NP stability and solubility.  

- It preserves the NPs’ physicochemical properties. 

- It defines the NPs’ interaction with the surrounding environment. 

- It helps NPs to escape uptake by phagocytes/macrophages, increasing circulation time. 

- It reduces non-specific uptake of NPs.  

- It decreases cytotoxicity. 

- It protects NPs from enzymatic degradation in vivo.  

- Finally, it provides a flexible and rich surface chemistry that can be further functionalized 

with biomolecules for specific biological applications.  

Typical primary coating strategies of AuNPs include ligand exchange (as previously mentioned), 

polymer coating, silica coating, and layer-by-layer coating, with polymer coating being more 

commonly used. 

 

2.7.1.1 Polymer Coating  

 

Since it discovery in 1718, polymer coating has by far been the most effective and widely used 

approach to increase NP stability in aqueous solutions, as well as its circulation in the blood 

(Daniel and Astruc, 2004). This approach involves the modification of the surface of NPs with 

polymers such as poly (ethylene glycol) (PEG), which results in a stealth shield around the NP, 

preventing NP self-aggregation and non-specific binding to extra-/intracellular degrading proteins  

(Kumar et al., 2014). Several other polymers such as heparin, dextran, PEI, PLL and chitosan 

derivatives have been used to stabilize AuNPs, due to their high biocompatibility, extreme 

buffering capacity and rich surface functionalities that can be used for further bioconjugations 

(Fratila et al., 2014). Polymer coated AuNPs are capable of passively targeting tumour sites via 

the leaky tumor vasculatures, because of their small size as well as due to the “enhanced 

permeability and retention” (EPR) effect. This ability is crucial in the delivery of therapeutic 

molecules for cancer treatments (Nichols and Bae, 2014).   
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2.7.2 Biomolecule Coating 

Coating gold nanoparticles with biomolecules allows for efficient delivery of the biomolecules to 

the specific cells with less damage, a feature that synthetic materials fail to achieve. Various 

biomolecules have been covalently/non-covalently conjugated onto the surface of AuNPs viz., 

antibodies, genes (e.g. DNA/RNA/oligonucleotides), peptides, Herceptin, carcinoembryonic 

antigen (CEA), epidermal growth factor (e.g. EGF58), vitamins (e.g. folic acid), and sugars (e.g. 

galactose) (Figure 2.18) (Rana et al., 2012). Biomolecule coated AuNPs are capable of actively 

targeting specific cell surface receptors or proteins on tumours, and direct their therapeutic effect, 

which destroys the tumors with little injury to normal cells (Choi et al., 2010).  

 

 

Figure 2.18: Polymer and biomolecule (e.g galactose ligand) coated AuNPs (Ghosh et al., 2008a).  

 

2.8 Application of Functionalised Gold Nanoparticles 

2.8.1 Gene Therapy: Gene Delivery 

The successful delivery of genes into target sites requires effective binding and condensation of 

the genes, effective cellular uptake via endocytosis, effective endosomal escape, effective 

protection against degrading intracellular enzyme, and delivery to the target site (Rana et al., 

2012). Gold nanoparticles provides an excellent platform for gene delivery due to their large 

payload carrying capacity, efficient gene compaction and tenable surface which permits 

enhancement of transfection efficiency. Gold nanoparticles for gene delivery have been applied in 

two ways (Shan et al., 2012):  

(a) Cationic polymer coated AuNPs to bind/condense genes and release them inside the cell. 

(b) Thiolated biomolecule coated AuNPs to target the components of the cytoplasm. 

 

AuNP AuNP AuNP 
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Over the years, many studies have been conducted to demonstrate their gene delivery ability. In 

the early 1990s, Mirkin et al and Alivisatos et al reported an oligonucleotide coated AuNP via the 

thiol-gold bond formation and its application in cancer therapy (Mirkin et al., 1996, Alivisatos et 

al., 1996). They showed that these NPs could efficiently protect siRNA against degrading RNAses 

and deliver it to the cytoplasm with no toxicity. They further demonstrated the gene silencing 

ability of polyvalent RNA-AuNP conjugates in vitro. The gene silencing ability of siRNA-PEG-

poly (β-aminoester)-AuNPs conjugates was also shown in human cells (Lee et al., 2009). A study 

conducted by Rosi and co-workers showed that DNA coated AuNP nanocomplexes could also 

efficiently silence genes through an antisense mechanism (Rosi et al., 2006).  

 
Furthermore, Oishi and co-workers demonstrated the in vitro (HuH-7 cells) gene silencing ability 

of PEG-block-poly (2-(N,N-dimethylamino) ethylmethacrylate) copolymer coated siRNA 

conjugated to AuNPs (Oishi et al., 2006). Giljohann and colleagues further demonstrated the in 

vivo gene silencing ability of PEG-coated-siRNA conjugated AuNPs (Giljohann et al., 2009). 

Braun et al. demonstrated the gene silencing ability of siRNA-Au-nanoshell coated with a TAT-

lipid layer (Braun et al., 2009). Several other studies have demonstrated the efficiency of AuNPs 

in delivering siRNA and gene silencing (Guo et al., 2010, Wadhwani et al., 2010).  

 
Early studies by Niidome and colleagues reported on the ability of primary amine-coated AuNPs 

to effectively deliver pDNA with a luciferase gene into HeLa cells (Niidome et al., 2004). Later 

studies by Ghosh et al. showed that the first-generation lysine dendron (G1-Lys)-coated dsDNA 

Au nanocomplexes was more efficient than polylysine in gene expression (Ghosh et al., 2008b). 

Jiang and co-workers demonstrated the efficiency of Herceptin coated gold-silver NPs in targeting 

the Her-2 receptor overexpressed in breast and ovarian carcinoma cells (Jiang et al., 2008).  

 
Recent studies have shown that combining phototherapy with gene therapy can enhance the gene 

delivery efficiency. For instance, Niidome and co-workers demonstrated laser-induced gene 

expression using PEG-ortho-pyridyl-disulfide (PEG-OPSS)-coated-pDNA conjugated AuNPs 

(Figure 2.19) (Niidome et al., 2006). EI-Sayed and colleagues demonstrated the targeting and light 

scattering ability of AuNPs coated with anti-EGFR. They showed that these NPs had a 6-fold 

higher affinity for cancerous cells than non-cancerous cells, and when incubated with cancer cells, 

activated with a laser, and local heating, cell death was observed (El-Sayed et al., 2005).   
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Figure 2.19: Illustration of DNA delivery using photolabile functionalized AuNPs (Ghosh et al., 2008a). 

 

Oligonucleotide coated AuNPs have also been used in other molecular diagnostic biomedical 

applications, such as in the detection of adenosine triphosphate (ATP) and nucleic acids (Seferos 

et al., 2007, Zheng et al., 2009). A study conducted by Seferos and co-workers demonstrated the 

use of oligonucleotide coated AuNP probes as “nanoflares” in visualization and quantification of 

intercellular mRNA. These vectors were found to be non-toxic, resistant to enzyme degradation 

without the need for any additional transfection reagents.  

 

2.8.2 Chemotherapy: Drug Delivery 

Chemotherapy uses anti-cancer drugs to treat cancer. Delivery of these drugs into cancer cells is 

usually associated with low therapeutic effects due to rapid clearance and non-specific distribution 

as a result of their small size. Poor drug distribution and delivery can result in severe side effects 

and multidrug resistance (Conde et al., 2011). Several factors affect the performance of drug 

delivery vectors, including NP size, surface functionalities, NP rapture/breakdown, and rate of 

drug release. Functionalized AuNPs (FAuNPs) can selectively target anticancer drugs to tumours 

passively or actively (Figure 2.20).   
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Figure 2.20: Illustration of active and passive therapeutic drug targeting using FAuNPs (Ghosh et al., 

2008a).  

 

Anticancer drug loading in AuNPs has been achieved by several methods (Fratoddi et al., 2014):  

(a) Partitioning, which uses the monolayer or bilayer coating on the surface of AuNPs to 

partition hydrophobic anticancer drugs. 

(b) Surface complexation, which uses the amine and thiol binding affinity of AuNPs by 

forming Au-N or Au-S bonds.  

(c) Attachment to stabilizing agents using the peripheral functional groups of the stabilizing 

agent to attach drugs. 

(d) Charge interaction, which uses electrostatic interactions to bind the surface of AuNPs with 

oppositely charged anticancer drugs.  

(e) Encapsulation, which uses the interior of AuNPs to condense hydrophobic drugs.  
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A number of anticancer drugs including curcumin, paclitaxel, doxorubicin, docetaxel, oxaliplatin, 

methotrexate, tamoxifen and 3-mercaptopropionic acid have been delivered using functionalized 

AuNPs (Manju and Sreenivasan, 2012, Chen et al., 2013, Jang et al., 2013, Lu et al., 2013, Ding 

et al., 2013, Zhou et al., 2013a, de Oliveira et al., 2013, Webster et al., 2013). Furthermore, studies 

on the development of Au-Au sulfide nanoshells coated with a thermosensitive hydrogel matrix as 

photothermal stimulated drug-delivery vectors has been reported (Strong and West, 2011).  

 

2.8.3 Other Cancer Applications: Immunotherapy 

Immunotherapy is amongst the strategies that promise to treat cancer, by stimulating the immune 

system of the host, so as to identify and kill tumor cells. Generally, tumors evade immune system 

recognition by developing various mechanisms (Almeida et al., 2014). For example, cancer cells 

are capable of down-regulating the expression of stimulatory molecules and surface antigens 

which in turn suppress recognition and stimulation of T cells (Cruz et al., 2012, Guo and Huang, 

2014).  

Tumor cells are also capable of inhibiting dendritic cells (DCs) by releasing the cytokines e.g. 

TGF-β and IL-10 that suppress immune responses (Zhou et al., 2013b). Tumor cells are also 

capable of inducing cell death in T cells by activating pro-apoptotic factors such as FasL and 

TRAIL (Kichev et al., 2014). Hence, immunotherapy aims at establishing stable immune 

responses against malignant tumors by developing novel strategies.  

One of these strategies involves efficiently delivering antigens to DCs which stimulate cytotoxic 

CD8+ T cell response upon maturation. DCs are antigen presenting cells that are abundantly found 

in lymph nodes along with other macrophages, and immune cells, hence delivering antigens to the 

lymph nodes is regarded as a smart tactic (Bal et al., 2010). Nanoparticles, specifically, AuNPs 

have therefore been used as antigen delivering vectors in immunotherapy due to their tunable size, 

non-toxicity, biocompatibility, and tendency to accumulate in immune cells. Various 

immunotherapeutic pre-clinical studies have been reported recently. Lee et al. formulated AuNP 

conjugated-RFP-CpG (Figure 2.21) for antigen delivery to the lymph nodes. Red fluorescent 

protein (RFP) was selected as a test antigen and was formulated to contain a C terminus with 

additional cysteines, enabling conjugation to AuNPs via an Au-S bond formation.  
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A thiol modified CpG 1668 oligodeoxynucleotide containing a spacer of a 10 adenine nucleotide 

(A10) conjugate was also linked to the RFP-AuNP since CpG 1668 is capable of stimulating strong 

immune responses via TLR-9 activation. It was found that this AuNP-based antigen vector 

displayed significant antitumor efficiency in RFP-overexpressing melanoma tumor models, hence 

showing potential as a vaccine adjuvants for the prevention of cancer.  

 

Figure 2.21: Preparation of RFP/AuNP and CpG/RFP/AuNP for immunotherapeutic application (Lee et 

al., 2012). 

 

Lin et al. synthesized AuNPs conjugated to a modified CpG oligodeoxynucleotide-linked 

triethylene glycol (TEG) for DNA delivery. The use of a TEG spacer in addition of the 

conventional poly-thymidine spacer stimulated CpG macrophages which resulted in improved 

particle uptake without compromising the DNA content. They observed that these TEG modified 

CpG-AuNP nanocomplexes induced infiltration of dendritic and macrophage tumor cells, 

prohibited tumor growth, and stimulated survival in mice, therefore, showing potential as vaccine 

adjuvants for the prevention of cancer (Lin et al., 2013).  

Andersson et al. demonstrated the ability of HSP70-conjugated gold nanorods (AuNRs) to induce 

site-specific, heat-inducible gene expression. HSP70 is a heat shock protein that is promoter-

driven. AuNRs are capable of absorbing light and converting it into heat, and hence inducing the 

stimulation of photothermal expression of the cytokines. For in vitro studies, they transfected 

human-murine B16 and HeLa cells with nanocomplexes of PEI-conjugated AuNRs/HSP70-

enhanced EGFP plasmid, followed by exposure to near-infrared (NIR) light or heat shock at 42 °C 

resulting in significant gene expression. For in vivo studies, mice with B16 melanoma cancer 

cells were transfected with the same nanocomplex and gene expression was verified after 6 and 

24-hours (Andersson et al., 2014). 
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Combination techniques were also demonstrated in FAuNPs mediated immunotherapy. It was 

shown that when synthesized PEGylated AuNPs (∼30 nm) conjugated to necrosis factors were 

transfected into prostate tumour bearing mice, efficient uptake within 24-hours was observed (Kim 

and Jon, 2012). Sun et al. synthesized immunoglobulin G (IgG)-linked-co-factor (PEG-protein G) 

FAuNPs for antigen delivery since co-factors were found to improve AuNP’s NIR plasmonic 

resonance. Thus, when breast tumor cells (SK-BR-3) were transfected with these immune-FAuNPs 

followed by exposure to the laser light, significant cell membrane rapture occurred (Sun et al., 

2013). Furthermore, antigen-conjugated AuNPs as vaccine adjuvants for image cancer 

immunotherapy were developed (Coulie et al., 2014). These reports all attest to the potential and 

applicability of FAuNPs in cancer immunotherapy. 

 

2.9 Gold Nanoparticle Toxicity 

Toxicity is an important aspect that can limit the applicability of NPs in biological systems. 

Physico-chemical properties such as size and surface charge greatly influence the toxicity of NPs. 

These properties play a crucial role in the ability of the NP to avoid recognition by 

macrophages/phagocytes, which in turn means avoiding immune stimulation and renal filtration 

clearance. Hydrophilic NPs ranging from 10 and 100 nm in size are said to be small enough to 

avoid recognition by macrophages/phagocytes but are large enough to avoid renal clearance (Gil 

and Parak, 2008).  

AuNPs are inherently non-toxic; however, size, additional coating, and targeting ligands 

compromise their cytotoxicity in vitro or in vivo. Several studies have reported on the cytotoxicity 

of AuNPs. Investigation of the size-dependence of AuNP’s cytotoxicity in vitro revealed that the 

cytotoxicity of 1-2 nm sized AuNPs was cell-type-dependent with high IC50s, while those that 

were around 15 nm were non-toxic to all cells even at high concentrations (Pan et al., 2007). It 

was reported that small sized AuNPs were capable of suppressing immune responses by 

macrophages, and activating the inflammatory responses by interleukin-1and 6 genes (Yen et al., 

2009).  
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Studies investigating the shape-dependence of AuNPs cytotoxicity in vivo using KM mice 

demonstrated that the rod-shaped AuNPs were highly toxic, while the cube-shaped AuNPs was 

moderately toxic. Sphere-shaped AuNPs, however, showed the best biocompatibility, proving that 

toxicity is also shape-dependent (Sun et al., 2011). High toxicity was observed with the Au-NRs 

due to the surface charges of the cationic CTAB cap/surfactant that is used to synthesize them (Qiu 

et al., 2010).  
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Abstract 

Gene therapy has opened doors for the treatment of genetic disorders such as cancer. However, for 

years, its clinical application has been limited by safety-efficacy issues. Recently, dendritic 

stabilized metal nanoparticles have shown great potential as efficient non-viral modalities for 

plasmid DNA (pDNA) delivery. The objective was to synthesise, characterise and evaluate the 

cytotoxicity profiles and capacity of unmodified and folic acid (FA) modified poly-amidoamine 

generation 5 (PAMAM G5D) grafted gold nanoparticles (AuNPs) to deliver pDNA containing a 

luciferase gene (pCMV Luc-DNA) to various cancer cell lines. The same parameters of 

unmodified and folic acid modified PAMAM G5D control nanoparticles (G5D/G5D:FA NPs) 

were also evaluated for comparative studies. Nanocomplexes prepared with folic acid 

untargeted/targeted PAMAM grafted gold nanoparticles and pDNA were characterised by TEM, 

NTA, UV spectroscopy, NMR spectroscopy, band shift, ethidium bromide dye displacement and 

nuclease protection assays. Cytotoxicity profiles and gene expression were evaluated in five 

mammalian cell lines, HEK293, HepG2, Caco-2, MCF-7, and KB, using the MTT and luciferase 

reporter gene assays. Nanocomplexes at optimum w/w ratios of 5.2:1 and 6.0:1, protected the pDNA 

against serum nucleases and were well tolerated by all cell lines. Transgene expression was higher 

with FA targeted dendrimer grafted AuNPs (Au:G5D:FA), in FA-receptor overexpressing MCF-

7 and KB cells, compared to the G5D/G5D:FA NPs, decreasing significantly (p < 0.05) in the 

presence of excess FA ligand, confirming nanocomplex uptake via receptor mediation. Overall, 

the transfection efficiency of the Au:G5D:FA nanocomplexes superseded that of the G5D/G5D:FA 

nanocomplexes indicating the importance of dendrimer modification and the significant role of 

AuNPs in the formulation of these delivery systems. 

Keywords: pDNA, PAMAM dendrimers, Gold nanoparticles, Folic acid, Gene expression 
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3.1 Introduction 

Cancer, characterised by deregulated cell growth, has remained one of the leading causes of deaths 

around the world (Ferlay et al., 2013), with treatments such as surgery, radiation, hormone, and 

chemotherapy not producing the ultimate desired effect (Liu et al., 2008). Gene therapy has 

emerged as a useful therapeutic approach for the treatment of cancer, and other acquired and 

inherited disorders (Xiao et al., 2013). 

The introduction of a naked gene such a plasmid DNA (pDNA) into diseased cells is usually 

associated with poor gene expression due to the physiological barriers encountered by the DNA 

on its way to the target site, ultimately affecting its cellular biodistribution and bioavailability. 

These barriers include degradation by extracellular enzymes (nucleases and proteases), limited 

cellular uptake due to its hydrophilicity and size, accumulation and degradation by intracellular 

enzymes (lysozymes) and limited uptake into the nucleus of targeted cells due to nuclear pore size 

restriction (Elsabahy et al., 2011). Consequently, a number of viral and non-viral gene delivery 

modalities, have been formulated and extensively studied both in vitro and in vivo, in an effort to 

enhance delivery. However, the safety-efficacy balance has limited their clinical application. 

Viral systems, elicit high gene expression, but their associated inherent toxicity and 

immunogenicity are hurdles encountered in gene therapy studies (Merten and Gaillet, 2016). Non-

viral based modalities formulated with peptides, polymers, lipids, and liposomes are safer 

alternatives but are associated with modest transfection efficiency (Nayerossadat et al., 2012). 

The merging of gene therapy and nanotechnology provides a powerful platform which promises 

to address the issues of safety and gene transfection efficiency associated with non-viral delivery 

systems (Scholz and Wagner, 2012). A combination of the unique properties of metal nanoparticles 

such as gold (Au), silver (Ag), selenium (Se), iron oxide, and platinum (Pt), with those of cationic 

polymers, have the potential to produce safe and efficient delivery systems (Katragadda et al., 

2010). AuNPs have been used in various biomedical applications, due to their ease of synthesis, 

robustness, tunable stability, biodegradability, biocompatibility, low cytotoxicity, and synthetic 

surface amenability (Sardar et al., 2009, Fratoddi et al., 2014, Lazarus and Singh, 2016). 

  



 

56 

Many cationic polymers such as dendrimers, poly-L-lysine (PLL), polyethyleneimine (PEI), 

polyethylene glycol (PEG), poly-D-lactide-co-glycolide (PLGA), and chitosan have been used as 

stabilizers of metal nanoparticles (Xiao et al., 2013), with dendrimers being the least exploited. 

The stabilizing of metal nanoparticles with dendrimers such as PAMAM is preferred mainly due 

to their hyperbranched, well-defined tree-like structure with surface functionalities that can host 

multiple therapeutic biomolecules (Chaplot and Rupenthal, 2014). Dendrimers are protonated at 

physiological pH, enabling them to complex with and condense pDNA, enhancing its efficient 

delivery into cells (Smith, 2008). Their buffering capacity due to the hydrophilic tertiary internal 

amines, facilitate rapid dissociation of the DNA cargo in the cytoplasm, avoiding lysosomal 

degradation, and improving transgene expression (Kambhampati et al., 2015). It has been reported 

that these amines along with those situated at the periphery (primary) of the dendrimers can also 

elicit increased cytotoxicity when abundant, especially at higher generations (>5) (Xiao et al., 

2013). Modifying surface amines via pegylation, methylation, alkylation, acetylation, and 

conjugation with vitamins or amino acids, greatly decreased their cytotoxicity, without 

compromising their desired effects (Luo et al., 2002, Lee et al., 2003, Kim et al., 2004). Since 

Crooks and colleagues first introduced dendrimers as suitable metal nanoparticle stabilizers, a 

number of studies have been reported over the years (Crooks et al., 2001, Shan et al., 2012, Yuan 

et al., 2013, Figueroa et al., 2014).  

Polymers possess a surface that can host multiple biomolecules at a time and can be synthetically 

modified with targeting ligands such as carbohydrates, antibodies, proteins, and vitamins for 

targeted gene expression to the site of pathology (Chaplot and Rupenthal, 2014). FA has been 

extensively used due to its regulation of replication, cell growth and protein synthesis (Llevot and 

Astruc, 2012), is small, non-immunogenic, readily available, biodegradable, and easily conjugated 

to other biomolecules (Chen et al., 2013). Furthermore, it has a high affinity for FA receptors (FA-

Rs) (glycophosphatidylinositols membrane proteins) overexpressed by a majority of cancer cells, 

particularly breast (MCF-7), and cervical (KB) cells, (Figure 3.1) (Mansoori et al., 2010). This 

study focused on designing, characterising and evaluating the cytotoxicity profiles and ability of 

untargeted and FA targeted PAMAM grafted AuNPs to deliver a reporter plasmid (pCMV-Luc 

DNA) to various mammalian cell lines. 
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Figure 3.1: Schematic representation of FA receptor-mediated uptake of AuG5DFA:DNA 

nanocomplex.  
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3.2 Materials and Methods 

3.2.1 Materials 

Methanolic solution of starburst PAMAM dendrimer, generation five (PAMAM G5D), (Mw 

28,826, 128 surface amino groups), gold (III) chloride trihydrate (HAuCl4), bicinchoninic acid 

(BCA), folic acid, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC), dimethylformamide 

(DMF), sodium dodecylsulphate (SDS) and benzolylated dialysis tubing (MWCO 12,000 Da) 

were supplied by Sigma-Aldrich (St. Louis, MO, USA). Ultra-pure DNA grade agarose was 

acquired from Bio-Rad Laboratories (Richmond, VA, USA). Tris (hydroxymethyl)-aminomethane 

hydrochloride (Tris-HCl), 3-(4, 5-dimethylthiazol- 2-yl)-2,5- diphenyltetrazolium bromide 

(MTT), 2-[4-(2-hydroxyethyl)-1-piperazinyl] ethane sulphonic acid (HEPES), dimethyl 

sulphoxide (DMSO), and ethidium bromide (ETB) were purchased from Merck (Darmstadt, 

Germany). Minimum Essential Medium (EMEM) containing Earle’s salts and L-glutamine, 

penicillin (500 units/mL)/streptomycin (5000 µg/mL) and trypsin-versene were purchased from 

Lonza-BioWhittaker (Walkersville, MD, USA). Foetal bovine serum (FBS) was purchased from 

Hyclone (Utah, USA). Human breast adenocarcinoma cells (MCF-7) and Human embryonic 

kidney cells (HEK293) were obtained from American Type Culture Collection (Manassas, VA, 

USA). Human hepatocellular carcinoma cells (HepG2) and Human epithelial colorectal 

adenocarcinoma cells (Caco-2) were purchased from Highveld Biologicals (Pty) Ltd. (Kelvin, 

South Africa). Human cervical adenocarcinoma cells (KB) were obtained from the Institute of 

Biological Chemistry, Academia Sinica, Nankang, Taipei. Plasmid pCMV-Luc DNA (6.2 kbp) 

was purchased from Plasmid Factory (Bielefeld, Germany). 

 

3.2.2 Methods 

 
3.2.2.1 Modification of PAMAM G5D with Folic Acid (G5D:FA conjugate) 

PAMAM G5 NH2 (in 5% 
w

/v methanol) was dried under a nitrogen atmosphere and then dissolved 

in 18 MOhm water. FA (C19H19N7O6) was conjugated to the amino groups of G5D via a 

carbodiimide reaction as previously described (Wiener et al., 1997, Wang et al., 2011) (Figure 

3.2). Briefly, FA, 2.8 µmol (1.23 mg), was dissolved in 3 mL of DMF and reacted with 38.2 µmol 

(7.3 mg) of EDC for 45 minutes under N2 with constant stirring.  
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Thereafter, the activated FA was added drop-wise into G5D solution (3 µmol, 100 µL) solution 

with vigorous stirring. The pH of the solution was adjusted to 9.5, followed by a further 3 days 

stirring under nitrogen. This solution was then dialyzed (MWCO 12, 000 Da) against 18 MOhm 

water for 24 hours, to remove excess unreacted by-products. 
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Figure 3.2: Schematic representation of the synthesis of folic acid conjugated PAMAM G5D. 

 

3.2.2.2 Synthesis of Gold Nanoparticles (AuNPs) 

 AuNPs were synthesised by an adaptation of the Turkevich method (Turkevich et al., 1951). 

Briefly, 0.1 mL of 0.03 M chloroauric acid (HAuCl4) solution was dissolved in 25 mL of MOhm 

water, stirred vigorously and heated until boiling (15 minutes). Thereafter, 1 mL of 1% Trisodium 

citrate (Na3C6H5O7) solution was slowly added with stirring to the reaction mixture until a cherry 

red colour change was evident. The mixture was then removed from the heat and stirred until it 

cooled to room temperature. 
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3.2.2.3 Synthesis of Dendrimer Grafted AuNPs (Au:G5D NPs) and Folic Acid Targeted 

Dendrimer Grafted AuNPs (Au:G5D NPs) 

The unmodified G5D and previously synthesised G5D:FA conjugates were used as templates as 

demonstrated:  

                                       

G5D
FA

EDC
G5D:FA

HAuCl4

Na3C6H5O7

Au:G5:FA

 

 

The Au:G5D and Au:G5D:FA NPs were synthesised as in section 3.2.2.2 to contain a 25:1 

gold/dendrimer molar ratio (Shi et al., 2009). All AuNPs were dialyzed against 18 MOhm water 

for 1 day, to remove unreacted by-products. A total of four nano-scaffolds were successfully 

prepared (Figure 3.3). 
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Figure 3.3: Structural illustrations of the prepared control NPs (G5D and G5D:FA) and test NPs 

(Au:G5D and Au:G5D:FA). 
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3.2.2.4 Nanocomplex Preparation 

Nanocomplexes used for binding, cell viability, and transfection studies were prepared by mixing 

increasing amounts of G5D, Au:G5D, G5D:FA and Au:G5D:FA with 0.25 µg pCMV-Luc DNA 

in 32 µL sterile HBS. This was followed by brief mixing and centrifugation at 13000 revolutions/ 

minute (rpm) for 5 minutes, and a 60 minute maturation period at room temperature. 

 

3.3.2.5 Characterisation: Transmission Electron Microscopy (TEM) and Nanoparticle 

Tracking Analysis (NTA) 

 
The morphology of the synthesised nano-scaffolds and their nanocomplexes prepared at optimum 

binding ratios (
w

/w), as determined from the band shift assay were viewed at an acceleration 

voltage of 200 kV in a Jeol JEM-1010 transmission electron microscope, containing a Soft Imaging 

Systems (SIS) fitted with a MegaView III digital camera with iTEM UIP software (Tokyo, Japan). 

The sizes (z-average hydrodynamic diameter) and zeta potentials of the nano-scaffolds and their 

nanocomplexes were determined by nanoparticle tracking analysis (NanoSight LM10; Malvern 

Instruments Ltd., Worcestershire, UK) at room temperature.  

 

3.2.2.6 Ultra-Violet (UV) and Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy 

The conjugation of FA and G5D onto the surface of AuNPs was monitored by UV-Vis 

spectroscopy (UV-1650PC, Shimadzu, Japan), followed by 
1
H NMR spectroscopy (Bruker DRX 

400), using deuterated (D2O) water as a solvent. 

 

3.2.2.7   DNA Binding Studies: 

Band Shift Assay 

To determine the ability of the prepared nano-scaffolds to bind and complex pDNA, band shift 

assays were conducted. Briefly, samples of preformed nanocomplexes (32 µL) containing gel 

loading buffer (6.4 µL, 50% glycerol, 0.05% bromophenol blue, 0.05% xylene cyanol) were 

subjected to electrophoresis on a 1% (
w

/v) agarose gels with ETB (1 μg/mL, Merck, Darmstadt, 
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Germany), in a Bio-Rad mini-sub electrophoresis tank containing 1 X electrophoresis buffer [36 

mM Tris-HCl, 30 mM, sodium phosphate (NaH2PO4), 10 mM ethylenediamine tetra-acetic acid 

(EDTA), pH 7.5], for 1.5 hours at 50 Volts. Thereafter, the gels were viewed under UV300 

transillumination and images captured at exposure times of 1-2 second (s) using a Vacutec 

Syngene G: Box BioImaging system (Syngene, Cambridge, UK). 

 

Ethidium Bromide Intercalation Assay 

The degree of complexation of the nano-scaffolds was monitored by detecting the fluorescence 

quenching of the DNA-ethidium bromide interaction using a Glomax®-Multi+ detection system 

(Promega), set at an excitation wavelength of 520 nm and an emission wavelength of 600 nm (Tros 

de Ilarduya et al., 2002). Briefly, a mixture of ETB solution (24 µL, 100 µg/mL) and HBS (100 

µL) was prepared in a 96-well FluorTrac flat bottom black plate. The relative fluorescence (RF) 

obtained was set to 0% and was used as a baseline fluorescence reading. To set a 100% relative 

fluorescence, 4.8 µL (3 µg) pCMV-Luc DNA was then introduced to the mixture, followed by a 

step-wise addition of 1 µL aliquots of the prepared NPs. The RF values were recorded after each 

addition until a plateau in fluorescence readings was noticed. 

 

3.2.2.8 Nuclease Protection Assay 

Nuclease protection assays were conducted to monitor the integrity of the pDNA and the stability 

of the preformed nano-scaffolds in the presence of serum nucleases (Singh et al., 2003). Briefly, 

nanocomplexes prepared at sub-optimum, optimum, supra-optimum ratios as previously 

determined in section 3.2.2.7 by band shift assays, were exposed to 10% FBS for 4 hours at 37 °C. 

Thereafter, EDTA and SDS were introduced to the samples to final concentrations of 10 mM and 

0.5% (
w

/v), respectively, and samples incubated at 55 °C for 20 min, followed by electrophoresis 

as described earlier. 
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3.2.2.9 Cell Culture 

All cells were maintained and propagated at 37 °C and 5% CO2, in 25 cm
2
 flasks containing sterile 

EMEM, FBS (10%, 
v
/v), penicillin G (100 U/mL) and streptomycin sulphate (100 μg/mL). The 

cells were split into desired ratios when necessary and the medium changed routinely. 

 

3.2.2.9.1 MTT Cell Viability Assay 

To monitor cell viability after treatment with prepared nanocomplexes in selected cell lines, MTT 

assays were conducted (Singh et al., 2007). Briefly, HEK293, HepG2, Caco-2, MCF-7 and KB 

cells were trypsinised and plated into 48-well plates at densities of 2.3 x 10
4
, 2.0 x 10

4
, 1.8 x 10

4
, 

1.3 x 10
4
, 2.7 x 10

5
 cells/well, respectively, and incubated for 24 hours at 37 °C. Nanocomplexes 

prepared in triplicate at sub-optimum, optimum and supra-optimum ratios were added thereafter, 

followed by a 48-hour incubation at 37 °C.  

Thereafter, the medium was replaced with fresh medium (0.3 mL) and MTT reagent (0.3 mL, 5 

mg/mL in PBS), followed by incubation for 4 hours at 37 °C. The EMEM/MTT mixture was then 

removed, cells washed with PBS (2 x 0.3 mL) and treated with DMSO (0.3 mL). Absorbance 

values of the samples were recorded at 570 nm in a Mindray MR-96A microplate reader. Cell 

viability was related to control untreated cells (100%). 

 

3.2.2.9.2 Apoptosis Assay 

Cell death was investigated using the apoptosis assay as described by Bezabeh et al., (2006), Maiyo 

et al., (2016). Cells with densities of 2.0-2.9 x 10
5
 cells/well, were plated into 12-well plates and 

incubated for 24 hours at 37 °C. Thereafter, nanocomplexes at optimum ratios were introduced to 

the cells and incubated for 24 hours at 37 °C. Cells were washed with PBS and then treated with 

10 μL of AO/ETB (acridine orange/ethidium bromide) dye (100 μg/mL AO and 100 μg/mL ETB). 

Morphological changes of the cells were observed using an Olympus fluorescent microscope 

(X200 magnification), fitted with a CC12 fluorescent camera (Olympus Co., Tokyo, Japan).  

Apoptotic cell death was quantified by calculating the apoptotic index (AI) as below: 
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Apoptotic Index = Number of apoptotic cells 
 

Total number of cells 
 

3.2.2.9.3 Transfection Assay 

Transfection was conducted as described by Singh et al. (2007). HEK293, HepG2, Caco-2, MCF-

7 and KB cells with densities of 2.3- 2.7 x 10
5
 cells/well, were seeded into 48-well plates and 

incubated for 24 hours at 37 °C. The nanocomplexes were added as previously described, and the 

cells were incubated for 48 hours at 37 °C. The medium was then removed, cells washed with PBS 

(2 x 0.5 mL) and lysed with 80 μL/well cell lysis buffer (Promega) for 15 min with shaking at 30 

rpm in a Scientific STR 6 platform rocker. Cell lysates were collected by centrifugation at 

12,000×g for 1 min. To 20 μL of the cell-free extract was added 50 μL luciferase assay reagent 

(Promega), mixed, and luminescence measured in relative light units (RLU) in a Glomax®-

Multi+Detection System (Promega Biosystem, Sunnyvale, USA).  

Protein concentrations of the cell-free extracts were determined using the BCA assay as described 

Smith et al., (1985), and the luciferase activity was expressed as RLU/mg protein. 

 

3.2.2.9.4 Competition Assay 

Receptor-mediated delivery of the FA-targeted nanocomplexes was confirmed by a competition 

assay (Singh et al., 2007). FA (250 µg) was added to the cells and incubated for 20 min at 37 °C 

prior to addition of the nanocomplexes, followed by determination of luciferase activity as 

described above. 

 

3.2.2.10 Statistical Analysis 

Cell viability and transfection studies were performed in triplicate and results expressed as means 

± standard deviation (S.D). The experimental data was analyzed by two-way ANOVA and t-test, 

using GraphPad Prism 6.0 and statistical significant values are indicated by *p < 0.05, **p < 0.01, 

and ***p < 0.001. 
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3.3 Results and Discussion 

3.3.1 Morphology, Size and Zeta Potential of Nanoparticles and Nanocomplexes 

The stability of the nanoparticles under physiological conditions is essential for their biological 

applications. The NPs appeared spherical in shape with uniform distribution, and mean diameter 

sizes ranging between 65-128 nm (Figure 3.4-3.5 and Table 3.1). Nanocomplexes prepared at 

optimum binding ratios presented as clusters of smaller particles with mean diameters ranging 

from 100-150 nm, which is within the optimal size range (100-200 nm) requirements for efficient 

gene delivery via non-specific or receptor-specific endocytosis (Azzam and Domb, 2004, Rejman 

et al., 2004, Grosse et al., 2005). A significant difference (p < 0.05) in nanocomplex size is seen 

between the Au:G5D and G5D nanocomplexes. This could be due to the attachment of the 

dendrimer on the AuNP surface (Qi et al., 2009). 

 

 

 

 

 

 

  

  Figure 3.4: TEM micrograph of AuNPs. Scale bar = 100 nm 

 



 

66 

 

 

                                               

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zeta (ζ) potential reflects the degree of repulsion between the surface charge of the NPs and the 

surrounding solvent (Ostolska and Wiśniewska, 2014), and is closely related to stability, with the 

magnitude (positive or negative) predicting the degree of stability or aggregation of the NPs. Good 

stability has been associated with ζ potentials greater than +25 mV or less than -25 mV (Honary 

and Zahir, 2013). The synthesized AuNPs showed poor stability as indicated by a ζ-potential 

measurement of -7.3 mV (Table 3.1). However, upon conjugation with G5D and folic acid, the 

stability of the nano-scaffolds greatly improved as indicated by the increased ζ potentials of +20.9 

mV (Au:G5D) and +29 mV (Au:G5D:FA). These findings support the notion that the ζ potential 

is affected by the bioconjugation of molecules onto the surface of the NPs (Ostolska and 

Wiśniewska, 2014). 

 

  

A1 

 

B1 

 

A2 

 

B2 

 

Figure 3.5: TEM micrographs of (A1) Au:G5D, (A2) Au:G5D-pDNA, (B1) Au:G5D:FA and (B2) 

Au:G5D:FA-pDNA. Nanocomplexes prepared at optimum weight ratio of 6.0:1 and 5.2:1 w/w 

respectively. Scale bar = 100 nm 
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Table 3.1: Mean size and ζ potential measurements of nano-scaffolds and their nanocomplexes. 

Data presented as mean diameter or ζ potential ± standard deviation (SD). 
 

Nanoparticles and  

Nanocomplexes 

NP:DNA 

(w/w) Ratio 

Mean Diameter   

(nm) ± SD 

ζ Potential (mV) ± SD 

Au  - 65.90 ± 9.80     -7.3 ± 1.6 

G5D   - 161.3 ± 11.9 + 87.2 ± 2.4  

Au:G5D   - 100.5 ± 44.1 + 20.9 ± 2.2 

G5D:FA  - 128.0 ± 1.20 + 71.2 ± 3.4 

Au:G5D:FA   - 77.70 ± 12.5   + 29.0 ± 0.5 

Au:G5D-pDNA 5.2:1 247.9 ± 15.3 *  - 25.0 ± 0.0 

Au:G5D:FA-pDNA  6.0:1 111.7 ± 55.1   - 38.1 ± 0.4 *** 

G5D-pDNA  5.2:1 144.4 ± 8.30 * - 19.7 ± 2.0  

G5D:FA-pDNA  6.0:1 114.5 ± 0.60 - 14.2 ± 0.4 *** 

 

*p < 0.05, **p < 0.01, ***p < 0.001 when test nanocomplexes are compared with control nanocomplexes. NTA size 

and zeta potential distribution is reflected in the Appendix. 
 

 

In general, all nano-scaffolds displayed ζ potentials ranging from +29 mV to +87 mV, while their 

nanocomplexes displayed ζ potentials ranging from -14 mV to -38 mV. The Au:G5D and 

Au:G5D:FA nanocomplexes seemed to be highly stable, based on their ζ potentials of -25 mV and 

-38.1 mV respectively) compared to the G5D and G5D:FA nanocomplexes, suggesting that these 

nano-scaffolds may be better gene delivery vectors. The improved stability is said to be due to the 

combined shielding effect of the targeting ligand and the encapsulated Au ions on the positive 

charges of the dendrimer, preventing particle aggregation. From these findings, it can be predicted 

that the test nano-scaffolds would be better at delivering pDNA than the control nano-scaffolds. 

 

3.3.2 UV-Spectroscopy and 1H NMR Spectroscopy 

The formation of Au:G5D and Au:G5D:FA nano-scaffolds was first confirmed by UV 

spectroscopy. UV spectroscopy showed an absorption band at 536 nm for the AuNPs which was 

within the known absorption range of AuNPs (520-550 nm) (Haiss et al., 2007). Moreover, a 

broadening and red-shift (bathochromic shift) of the absorption band to a longer wavelength of 
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566 nm, for the Au:G5D was evident (Figure 3.6). This is said to be due to the intermolecular 

hydrogen bonding in the AuNPs-G5D interaction (Pan et al., 2003). The covalent attachment of 

FA onto the surface of NPs produces an absorption maxima at 280 nm, and a saddle point at 360 

nm (Zhang et al., 2003, Mansoori et al., 2010) (Figure A3, Appendix A), which corresponds with 

the absorption peak of Au:G5D:FA observed at 287 nm. 

 

 
Figure 3.6: UV- Spectra of (A) AuNPs, (B) Au:G5D NPs and (C) Au:G5D:FA NPs. 

 

 

The formation of Au:G5D and Au:G5D:FA nanoparticles was also verified by 
1
H NMR 

spectroscopy. Significant differences in the chemical shift of protons related to Au:G5D (a), 

Au:G5D:FA (b), G5D:FA (c) were observed when compared to G5D (Figure A5, Appendix A). 

The 
1
H NMR of the G5D shows 6 broad peaks as indicated by a chemical shift ranging from 2.25-

3.34 ppm, which represents the protons of the amino (NH2) and methylene groups (CH2). The 

formation of Au:G5D nano-scaffolds resulted in the downfield shift of protons 4, 5 and 6 of G5D, 

which indicated the interaction of the surface of the AuNPs with the internal amines of the 

dendrimers (Shi et al., 2009). Moreover, the three peaks between 6.50-8.63 ppm observed in 

Figure A5 (A-B), indicated the attachment of the FA protons [H-Ar (7 and 13), NH (18)].  
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All findings were correlated to those reported in literature (Zhang et al., 2010, Santos et al., 2010, 

Chang et al., 2012). Based on the above results it can be concluded that G5D and FA were 

successfully conjugated to the AuNPs. 

 

3.3.3 Binding Studies 

Band Shift Assay 

The complexation of the prepared NPs with pDNA and the binding efficiency or endpoint ratios 

(amount of cationic NPs needed to fully compact pDNA) was first determined using the band shift 

assay. This is a fast and sensitive technique that was first described in the 1980s’ (Fried and 

Crothers, 1981) and (Garner and Revzin, 1981). It is based on the principle that the mobility of the 

nanocomplex is usually retarded compared to that of free nucleic acid during electrophoresis 

(Hellman and Fried, 2007).  

Figure 3.7 shows that all prepared nano-scaffolds effectively bound the pDNA, as indicated by the 

complete retardations at different weight ratios (indicated by the arrows). The G5D and Au:G5D 

NPs both completely retarded at (+/-) charge ratio of 12:1 corresponding to 5.2:1 (
w

/w)] ratio. 

Similarly the endpoint (+/-) ratios of both Au:G5D:FA and G5D:FA was at 21:1 corresponding to 

6.0:1 (
w

/w) ratios. All FA-targeted NPs displayed higher binding charge ratios than untargeted 

NPs, suggesting that the cationic charges were potentially shielded by the FA moieties on the 

surface of the targeted NPs. As a result, an increased amount of positive charges were required to 

fully neutralize a fix amount (0.25 µg) of negatively charged pDNA for targeted NPs, compared 

to untargeted NPs (Mbatha et al., 2016). Therefore, these findings verify the ability of the prepared 

NPs to effectively bind pDNA. 
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Ethidium Bromide Intercalation Assay 

Since its early discovery in the 1960s, the ethidium bromide displacement/intercalating assay has 

been another simple and fast technique that is widely used to monitor the complexation and 

condensation of genes (LePecq and Paoletti, 1967). This assay takes advantage of the fact that 

when ethidium bromide (ETB), a cationic, fluorescent (excited at UV 300 nm light) dye intercalates 

between the base pairs of DNA, its fluorescence is enhanced and decreases upon interaction of the 

DNA with increasing amounts of cationic nano-scaffolds, until no further displacement occurs 

(point of infection or complete complexation) (Geall and Blagbrough, 2000, De Ilarduya et al., 

2002).  

From figure 3.8, we can observe that all nano-scaffolds were able to displace ETB, hence 

confirming a possible degree of DNA compaction. The ETB displacement ranged from 10-30% 

for the untargeted nano-scaffolds (G5D and Au:G5D) and 50-70% for the FA-targeted nano-

scaffolds. The higher displacement observed for the targeted nano-scaffolds suggest a higher 

degree of pDNA compaction and hence a weak binding of pDNA (Chuang and Chang, 2015). 

Therefore, these findings support the idea that the targeted nanocomplexes would easily release 

the DNA cargo upon transfection, sparing it from lysosomal degradation, hence enhancing gene 

transfection efficacy. 

Figure 3.7: Band shift of the interaction between various nanoparticles (A) G5D, (B) Au:G5D, (C) 

G5D:FA, (D) Au:G5D:FA and pCMV-Luc plasmid DNA. Incubation mixtures (20 µL) in HBS 

contained varying amounts of nanoparticle preparation and 0.25 µg plasmid DNA corresponding to 

charge ratios of 7:1, 8:1, 9:1, 10:1, 11:1, 12:1 (5.2:1 w/w) and 13:1 in lanes 2-8 respectively (A-B); 

and  18:1, 19:1, 20:1, 21:1 (6.0:1 w/w), 22:1, 23:1 and 24:1 in lanes 2-8 respectively (C-D). Lane 1: 

naked pDNA. Arrows indicate endpoint ratios. 
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3.3.4 Nuclease Digestion Assay 

It is known that nucleic acids are subjected to nuclease degradation upon direct or intravenous 

injection of nanocomplexes into cells or organs, which results in premature clearance from the 

bloodstream, and a decrease in gene expression (Obata et al., 2009). This is a limitation that all 

gene delivery systems need to overcome prior to use in in vivo systems. Therefore, the ability of 

the nano-scaffolds to stably deliver the cargo DNA into the target sites in “in vivo like” conditions 

was evaluated using a nuclease digestion assay. 

As expected, naked pDNA treated with 10% FBS was completely degraded as illustrated by the 

absence of bands. In contrast, the pDNA complexed to nano-scaffolds was partially protected as 

indicated by the presence of two of the three band forms of pDNA (closed circular and 

superhelical), and partial degradation of the linear form (Figure 3.9). This could be attributed to 

the highly organized globular structures that forms as a result of the electrostatic interaction 

between negatively charged pDNA and cationic nano-scaffolds (Pitard, 2002). In general, it can 

be concluded that all nano-scaffolds afforded sufficient protection to the pDNA. 
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Figure 3.8: Ethidium bromide displacement assay of (A) G5D, (B) Au:G5D, (C) G5D:FA, (D) Au:G5D:FA 

nanoparticles. Arrows indicate point of complexation. 
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3.3.5 MTT Cell Viability Assay 

Successful gene delivery depends largely on the ability to deliver the gene safely and efficiently 

to the target site (Singh et al., 2007). Hence, cytotoxicity evaluation of the nano-carriers prior to 

use in transfection studies is mandatory. The MTT assay, which is based on the reduction of the 

tetrazolium salt, MTT, by living cells to form a blue formazan product which is spectroscopically 

quantified and reported as a measure of cell viability was employed (Denizot and Lang, 1986, 

Berridge et al., 2005) to assess the cytotoxicity profiles of the nanocomplexes in four mammalian 

cancer cell lines, and one non-cancer cell line (HEK293). 

High cell viabilities, ranging from 70%-97% were observed in the HEK293, HepG2, Caco-2 cell 

lines for all tested ratios after treatment with test nanocomplexes (Au:G5D:DNA and 

Au:G5D:FA:DNA), compared to the G5D:DNA and G5D:FA:DNA nanocomplexes (60-89%) 

(Figure 3.10A-B). This significant (p < 0.05) decrease in cytotoxicity indicated that the test nano-

scaffolds were less toxic than the control nanocomplexes at these ratios. This is postulated to be 

due to the reduced portion of the 1o amines of G5D since some are accountable for stabilizing the 

entrapped AuNPs (Shan et al., 2012). From the test nanocomplexes, the FA-targeted G5D grafted 

Au nanocomplexes seemed to be the least toxic (average cell viability of 82%) compared to the 

untargeted G5D grafted Au nanocomplexes. This can be attributed to the G5D surface 

modification by the FA moieties, which may have shielded a portion of the positive charges, hence 

reducing the strong electrostatic interaction between the cells and the NPs (Xiao et al., 2013). 

A B C D 

 

Figure 3.9: Nuclease digestion assay of nanocomplexes. (A) G5D, (B) Au:G5D, (C) G5D:FA, (D) 

Au:G5D:FA. Control: naked pDNA in the absence (+ = positive control) or presence (- = negative 

control) of FBS. Lanes 1-3 contains nanocomplexes at sub-optimum, optimum and supra-optimum 

nanoparticle: DNA ratios. (A) 5.5:1, 6.0:1, 6.5:1; (B) 5.5:1, 6.0:1, 6.5:1; (C) 5.0:1, 5.2:1, 5.5:1 (w/w). 

Red colored numbers indicate endpoint ratios.  
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Overall, there was over 70% cell survival after exposure to the test nanocomplexes, suggesting 

that these nanocomplexes were well tolerated in all tested cell lines, and hence safe to use in 

therapeutic applications. 
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Figure 3.10 (A-B): Cell viability assay of nanocomplexes in HEK293, HepG2, Caco-2, MCF-7 and KB 

cells. Cells were incubated with nanocomplexes containing 0.25 μg pDNA-Luc at indicated ratios (w/w). 

Data are presented as means ± S.D. (n = 3). Control: untreated cells. #p >0.05. 
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3.3.6 Apoptosis Assay 

Following nanocomplex exposure, different outcomes can be observed such as necrosis, 

“unprogrammed cell death” and apoptosis (“programmed cell death”). During necrosis, the cells 

swell and rupture the plasma membrane causing it to lose its integrity, which results in cell death 

due to lysis (Proskuryakov et al., 2003). Apoptosis, on the other hand, is as a result of cytological 

and molecular events which can be seen as morphological changes such as cytoplasmic 

shrinkage/condensation and nuclear DNA fragmentation. These morphological changes were 

identified and quantified microscopically using fluorescence AO/ETB dual staining (Johnstone et 

al., 2007, Elmore, 2007). Viable cells appeared green due to the AO and the non-viable cells 

(apoptotic) orange due to the ETB (Figure 3.11). The AI (Table 3.2), of the Au:G5D:DNA and 

Au:G5D:FA:DNA nanocomplexes were significantly (p < 0.01) lower than those of the G5D:DNA 

and G5D:FA:DNA nanocomplexes (Figure 3.12). These findings correlate with the cytotoxicity 

profiles determined by MTT. 

 

Table 3.2: Apoptotic Indices of NPs in selected cell lines.  

Cell lines  Apoptotic Index  

Control Au:G5D Au:G5D:FA G5D G5D:FA 

HEK293 0.00 0.02 0.08 0.25 0.11 

HepG2 0.00 0.08 0.09 0.17 0.10 

Caco-2 0.00 0.07 0.14 0.50 0.31 

MCF-7 0.00 0.11 0.08 0.33 0.18 

KB 0.00 0.09 0.08 0.15 0.48 
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Figure 3.11: Fluorescence images of (A) HEK293, (B) HepG2, (C) Caco-2, (D) MCF-7 and (E) KB cells treated 

with untargeted/ targeted G5D grafted Au nanocomplexes and untargeted/ targeted G5D nanocomplexes at 

optimum ratios (w/w) for 24 hours showing induction of apoptosis. Green= live (L), orange= early apoptotic (EA); 

late apoptotic (LA) and red= necrotic (N) cells. Scale bar = 100 μm.  
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Figure 3.12: Statistical differences in AI values between test and control NPs in tested cell lines. *p < 0.05, 

**p < 0.01, ***p < 0.001 when control nanocomplexes are compared with test nanocomplexes. 

 

 

3.3.7 Transfection and Competition Studies 

The transfection efficiency of gene delivery systems depends on the NP’s physicochemical 

properties such as shape, size, ζ potential, and stability. The cellular uptake of NPs/nanocomplexes, 

non-specific or receptor-specific involves two steps (a) attachment and (b) internalization (Sahay 

et al., 2010). NPs bind to the cell membrane mainly via electrostatic interactions. Although, 

negative charges predominate the cellular membrane, repelling negatively charge NPs, for cells 

the amount of the negative charges is not significant, suggesting the presence some cationic sites 

for binding of negatively charged nanocomplexes (Honary and Zahir, 2013).  

The sizes of the synthesized NPs fall within the range for efficient specific/non-specific uptake. 

The Au:G5D:DNA and Au:G5D:FA:DNA nanocomplexes displayed high ζ potentials, indicating 

good colloidal stability, a property that augurs well for their systemic use. Figure 3.13 (A-B) shows 

that all nanocomplexes were able to transfect the selected cell lines either by non-specific or 

specific uptake. The buffering capacity introduced by the presence of the PAMAM G5 dendrimer 

could have further facilitated the endosomal escape of the nanocomplexes from the degrading 

lysosomes.  
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The transfection levels in HEK293, HepG2, Caco-2 cells were significantly (p < 0.001) lower than 

those elicited in MCF-7 and KB cells. This could be due to the lack/overexpression of specific 

transcription factors and cell-surface receptors (Mansoori et al., 2010). The transfection activity 

of all nanocomplexes (Figure 3.13A-B) was high, with Au:G5D:DNA and Au:G5D:FA:DNA 

nanocomplexes showing more than a two-fold increase in transfection activity over the G5D:DNA 

and G5D:FA:DNA nanocomplexes at certain ratios. This could be due to the entrapment of 

AuNPs, which helped preserve the 3D spherical structure of the dendrimers, allowing for efficient 

dendrimer-DNA interaction (Shan et al., 2012). Upon interaction with interfaces, dendrimers, 

particularly those with generation numbers >4, can lose their 3D spherical morphology resulting 

in a significant loss of binding sites, hence weakening their DNA binding ability. This explains 

the lower transfection levels observed for the G5D:DNA and G5D:FA:DNA nanocomplexes 

(Bosman et al., 1999). 

The highest transfection levels (8 x 106 RLU/mg protein) was observed in the FA-R positive cell 

lines (MCF-7 and KB). In particular, at the optimum ratios, the FA-targeted Au nanocomplexes 

(Figure 3.13A), showed a significant increase in transfection levels, compared to that of the 

untargeted Au nanocomplexes. This could be due to the interaction of the cognate FA moiety 

incorporated on the surface of these nano-scaffolds, with the abundant FA-receptors on the surface 

of the MCF and KB cells (Srinivasarao et al., 2015). When the FA-R positive cells (KB) were pre-

treated with an excess of free folic acid (250 μg), a significant (p < 0.05) drop (29%) in transgene 

activity by folic acid targeted nanocomplexes was observed (Figure 3.13 A-B), suggesting that 

only a portion of these targeted nano-scaffolds were taken up via receptor-mediated endocytosis 

(Zhang et al., 2015). This was due to the fact that the free folic acid bound to the FA-R on the cells 

prior to the addition of the targeted nanocomplexes and prevented their entry into the cell. 
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Figure 3.13 (A-B): Transfection studies of NP:pCMV-Luc DNA nanocomplexes. HEK293, HepG2, Caco-

2, MCF-7 and KB cells were exposed to nanocomplexes constituted with 0.25 µg DNA and varying 

amounts of nanoparticles at sub-optimum, optimum and supra-optimum ratios. Control 1= untreated cells. 

Control 2= cells + pDNA. The transgene expression is reported as RLU/mg protein. Data are presented as 

means ± SD (n=3). *p < 0.05, *** p < 0.001 for optimum ratios.  
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3.4 Conclusion 

Both Au:G5D and Au:G5D:FA NPs were highly efficient in pCMV-Luc DNA binding and 

delivery. They formed stable nanocomplexes affording good protection to the pDNA against 

nucleases. Furthermore, >70% cell viability was observed, suggesting that these nanocomplexes 

were well tolerated by all cell lines.  Their transfection efficiency superseded that of the controls 

indicating the pivotal roles played by both the dendrimer and the AuNPs in their formulation. 

Receptor-mediated delivery was confirmed by the competition assay, where transfection levels in 

the FA-receptor negative cell lines, were significantly lower (p < 0.001) than that in FA-receptor 

positive cell lines. Future studies would encompass the NP optimisation for in vivo delivery in a 

mouse model. 
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Abstract  

Messenger RNA (mRNA) has not been an attractive candidate for gene therapy due to its 

instability, and hence has received little attention. Recently, studies have successfully shown the 

advantage of using mRNA over pDNA in cancer immunotherapy, where transient therapeutic gene 

expression is needed. The objective of this study was to synthesise, characterise and evaluate the 

cytotoxicity profiles and capacity of unmodified and folic acid (FA) modified poly-amidoamine 

generation 5 (PAMAM G5D) grafted gold nanoparticles (AuNPs) to deliver mRNA containing a 

luciferase gene (Fluc-mRNA) to various cancer cell lines. Nanocomplexes containing mRNA were 

characterised by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), 

UV spectroscopy, NMR spectroscopy, band shift, ethidium bromide displacement and nuclease 

protection assays. Cytotoxicity profiles and gene expression were evaluated in the HEK293, 

HepG2, Caco-2, MCF-7, and KB, cell lines using the MTT and luciferase reporter gene assays 

respectively. Nanocomplexes at optimum weight/weight ratios of 2:1, 3:1 and 4:1, protected the 

mRNA against nucleases and were well tolerated in all cell lines. Transgene expression was 

significantly (p < 0.0001) higher with FA targeted dendrimer grafted AuNPs (Au:G5D:FA), in 

FA-receptor overexpressing MCF-7 and KB cells, compared to the  G5D/G5D:FA NPs, decreasing 

significantly (p < 0.01) in the presence of excess competing FA ligand, confirming nanocomplex 

uptake via receptor mediation. Overall, transgene expression of the Au:G5D and Au:G5D:FA 

nanocomplexes exceeded that of the G5D/G5D:FA nanocomplexes, indicating the pivotal role 

played by the inclusion of a dendrimer in the AuNP delivery system, and the imparting of gold’s 

favourable properties potentiating an increased level of luciferase gene expression. 

 

Keywords: mRNA, PAMAM dendrimers, Gold nanoparticles, Folic acid, Gene expression 
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4.1 Introduction 

Over the years, non-viral gene delivery modalities based on plasmid DNA (pDNA) have been 

extensively evaluated in vitro as potential therapeutic treatments of inherited diseases (McCrudden 

and McCarthy, 2013). However, their failure to demonstrate potency at a clinical level, due to their 

inability to bypass hurdles posed by the nuclear membrane of non-dividing cells and immunogenic 

responses of cytosine-phosphate-guanine (CpG) motifs contained by unmethylated DNA, has 

aroused interest in using mRNA instead of pDNA (Krieg, 2002, Su et al., 2011).   

Since the early study conducted by Malone and co-workers, the use of mRNA in gene therapy has 

been limited by the belief that mRNA is too unstable when transfected into cells (Malone et al., 

1989, Tavernier et al., 2011). Recently, researchers have disapproved that notion by successfully 

demonstrating the feasibility of mRNA-based modalities in several therapeutic applications, 

including tumor vaccination (Saenz‐Badillos et al., 2001) and cancer immunotherapy. Lately, the 

feasibility and non-toxicity of naked mRNA and mRNA complexed with protamine was 

demonstrated in human patients via intradermal injections, resulting in promising immunological 

responses (Weide et al., 2008, Weide et al., 2009).  

The recent interest in mRNA based systems is due to the pharmaceutical safety advantages 

demonstrated over their pDNA-based counterparts. These include, firstly, the ease of mRNA to be 

formulated into an efficient therapeutic agent, since it doesn’t require incorporation of promoters 

and terminators, like pDNA. It lacks immunogenic CpG motifs, which are present in pDNA, and 

does not require to traverse the nuclear membrane to elicit expression, as it is delivered into the 

cytoplasm, resulting in early and improved transfection activities (Mockey et al., 2006). Lastly, 

mRNA can transfect non-dividing cells, and to integrate into the host genome eliminates 

insertional mutagenesis, making it safer to deliver than pDNA (Van Tendeloo et al., 2007). 

However, few studies have explored mRNA transfection over the years and consequently, 

knowledge regarding mRNA transfection is limited (Lu et al., 1994, Bettinger et al., 2001, Read 

et al., 2005, Zohra et al., 2007, Yamamoto et al., 2009). Thus far, the general consensus is that the 

used of cationic non-viral mRNA based delivery systems, particularly, cationic polymers (e.g 

dendrimers), results in significantly improved transgene activity compared with that elicited by 

pDNA-based delivery systems (Tavernier et al., 2011).  
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Dendrimers, particularly, PAMAM, have been shown to elicit high transfection activities in vitro, 

due to their hyperbranched, well-defined, 3 dimensional (3D) structure with multiple surface 

functionalities, extreme buffering capacity and ability to be protonated at physiological pH for 

efficient nucleic acid binding (Chaplot and Rupenthal, 2014). However, their high cytotoxic 

profiles induced by an excess of the surface amines (tertiary, 3o internal and peripheral primary, 

1o) amines, especially at higher generations (>5), has tarnished their use in drug/gene delivery in 

the past (Xiao et al., 2013). Many reports, however, have shown that modifying these surface 

amines via pegylation, methylation, alkylation, acetylation, and conjugation with vitamins or 

amino acids greatly decrease this cytotoxicity (Luo et al., 2002, Lee et al., 2003, Kim et al., 2004).  

Recently, several studies have exploited the incredible properties of dendrimers as stabilizers of 

metal nanoparticles (Shan et al., 2012, Yuan et al., 2013, Figueroa et al., 2014). This strategy 

combines the unique properties of metal nanoparticles with those of cationic dendrimers to produce 

safe and highly efficient non-viral gene delivery systems. To the best of our knowledge, the 

transfection of mRNA using PAMAM dendrimer grafted gold nanoparticles has never been 

explored. For that reason, this study focused on designing FA modified PAMAM grafted gold 

nanoparticles and PAMAM grafted gold nanoparticles and evaluating their cytotoxicity profiles 

and capacity to deliver Fluc-mRNA in vitro. FA modified PAMAM nano-conjugates and PAMAM 

nano-conjugates were also evaluated for comparison purposes.  

 

4.2 Materials and Methods 

4.2.1 Materials 

Methanolic solution of starburst PAMAM dendrimer, generation five (PAMAM G5D), (Mw of 

28,826, 128 surface amino groups), bicinchoninic acid (BCA), folic acid, hydrochloride salt of 1-

(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC), dimethylformamide (DMF), sodium 

dodecylsulphate (SDS), benzolylated dialysis tubing (MWCO, 12,000 Daltons) and ribonuclease 

A (RNase) were supplied by Sigma-Aldrich (St. Louis, MO, USA). Ultra-pure DNA grade agarose 

was acquired from Bio-Rad Laboratories (Richmond, VA, USA). Tris (hydroxymethyl)-

aminomethane hydrochloride (Tris-HCl), 3-(4, 5-dimethylthiazol- 2-yl)-2,5- diphenyltetrazolium 

bromide (MTT), 2-[4-(2-hydroxyethyl)-1-piperazinyl] ethane sulphonic acid (HEPES), Dimethyl 

sulphoxide (DMSO), ethidium bromide (ETB) and gold (III) chloride trihydrate 99% (HAuCl4) 
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were purchased from Merck (Darmstadt, Germany). Minimum essential medium (EMEM) 

containing Earle’s salts and L-glutamine, penicillin (500 units/mL)/streptomycin (5000 µg/mL) 

and trypsin-versene were purchased from Lonza-BioWhittaker (Walkersville, MD, USA). Foetal 

bovine serum (FBS) was purchased from Highveld Biological (Lyndhurst, South Africa). Human 

embryonic kidney cells (HEK293) were obtained from American Type Culture Collection 

(Manassas, VA, USA). Human hepatocellular carcinoma cells (HepG2), human breast 

adenocarcinoma cells (MCF-7) and human epithelial colorectal adenocarcinoma cells (Caco-2) 

were purchased from Highveld Biologicals (Pty) Ltd. (Kelvin, South Africa). Human cervical 

adenocarcinoma cells (KB) were obtained from the Institute of Biological Chemistry, Academia 

Sinica, Nankang, Taipei. Fluc-mRNA was purchased from TriLink BioTechnologies, Inc (San 

Diego, CA).  

 

4.2.2 Methods 

The methods employed in this chapter are similar to that reported in the preceding chapter, with 

slight modifications. Hence for completeness of this chapter, some repetition in these protocols is 

unavoidable. 

 

4.2.2.1 Modification of PAMAM G5D with Folic Acid (G5D:FA)  

PAMAM G5D (dried under nitrogen) was dissolved in 18 MOhm water and conjugated to folic 

acid via carbodiimide chemistry (Wiener et al., 1997, Wang et al., 2011) (Figure A1, Appendix). 

Folic acid, 2.8 µmol (in 3 mL of DMF) was reacted with 38.2 µmol EDC for 45 minutes with 

constant stirring in a nitrogen atmosphere. The activated folic acid was then added slowly with 

stirring into the dendrimer (3 µmol, 100 µL) solution, and the pH maintained at 9.5, The solution 

was stirred for  3 days under nitrogen, followed by removal of  unreacted by-products by dialysis 

(Mw= 12, 000 Daltons) against 18 MOhm water for 24 hours. 

 

 

 

  



 

90 

4.2.2.2 Synthesis of Gold Nanoparticles (AuNPs) 

An adaptation of the Turkevich method was followed to synthesize the AuNPs (Turkevich et al., 

1951). HAuCl4 (0.03 M, 0.1 mL) was dissolved in 25 mL of MOhm water, stirred vigorously and 

heated for 15 minutes until boiling. This was followed by the slow addition of 1 mL of 1% 

trisodium citrate (Na3C6H5O7) with stirring until a red colour change was produced. The mixture 

was then removed from the heat and stirred until it cooled to room temperature. 

 

4.2.2.3 Formulation of Dendrimer Grafted AuNPs (Au:G5D NPs) and Folic Acid Targeted 

Dendrimer Grafted AuNPs (Au:G5D:FA NPs)  

The G5D and G5D:FA were conjugated by addition to the citrate reduced AuNP solution utilising 

the Turkevich method, to produce Au:G5D and Au: G5D:FA NPs in a 25:1 gold/dendrimer molar 

ratio ((Turkevich et al., 1951; Shi et al., 2009). NPs were dialyzed as in 4.3.2.1.  

 

4.2.2.4 Nanocomplex Preparation 

 Nanocomplexes for binding, cell viability, and transfection studies contained a constant amount 

of Fluc-mRNA (0.05 µg) together with increasing amounts of G5D, Au:G5D, G5D:FA and 

Au:G5D:FA NPs. Nanocomplexes were briefly mixed and incubated at room temperature for 60 

minutes. 

 

4.2.2.5 Characterisation: Transmission Electron Microscopy (TEM) and Nanoparticle 

Tracking Analysis (NTA) 

The ultrastructural morphology of the NPs and their nanocomplexes at optimum binding ratios 

(
w

/w), determined from the band shift assay were determined by cryo-TEM, using a Jeol JEM-

1010 transmission electron microscope containing a Soft Imaging Systems (SIS) filted with a 

MegaView III digital camera with iTEM UIP software, operating at an acceleration voltage of 200 

kV (Tokyo, Japan). The z-average hydrodynamic diameters and zeta (ζ) potentials were 

determined by nanoparticle tracking analysis (NanoSight LM10; Malvern Instruments Ltd., 

Worcestershire, UK) at 25C. NPs were sonicated prior to use and nanocomplexes freshly 

prepared. 
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4.2.2.6  Ultra-Violet (UV) and Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy 

Successful functionalisation of the G5D and AuNPs was monitored by UV-Vis spectroscopy (UV-

1650PC, Shimadzu, Japan), and 
1
H NMR spectroscopy (Bruker DRX 400), using deuterated 

(D2O) water as a solvent. 

 

4.2.2.7 Binding Studies  

Band Shift Assay 

Band shift assays were utilised to determine binding of mRNA to the NPs. Nanocomplexes 

prepared as in 4.3.2.4, were subjected to electrophoresis on a 1% (
w

/v) agarose gels containing 

ethidium bromide (ETB) (1 μg/mL), in a Bio-Rad mini-sub electrophoresis tank containing 1 X 

electrophoresis buffer [36 mM Tris-HCl, 30 mM, sodium phosphate (NaH2PO4), 10 mM 

ethylenediamine tetra-acetic acid (EDTA), pH 7.5], for 45 minutes at 50 Volts. Gels were viewed 

and images captured using a Vacutec Syngene G: Box BioImaging system (Syngene, Cambridge, 

UK). 

 

Ethidium Bromide Dye Displacement Assay  

The compaction of the nanocomplexes was assessed using a dye displacement assay (Geall and 

Blagbrough, 2000, Tros de Ilarduya et al., 2002). ETB solution (24 µL, 100 µg/mL) and HBS (100 

µL) were initially added to a 96-well FluorTrac flat bottom black plate, and fluorescence read in a 

Glomax®-Multi+ detection system (Promega) at an excitation wavelength of 520 nm and an 

emission wavelength of 600 nm. This was set as 0% relative fluorescence (RF). The 100% RF was 

obtained after the addition of 0.05 µg Fluc-mRNA. Thereafter, 1 µL aliquots of the respective NPs 

were added and fluorescence measured until a plateau in fluorescence was achieved. 

 

4.2.2.8 RNase A Protection Assay  

The stability of the nanocomplexes and the protection afforded to the mRNA in the presence of 

degrading enzymes was evaluated by a RNase protection assay, adapted from Singh et al., 2003. 

NP:mRNA nanocomplexes prepared at; sub-optimum, optimum, and supra-optimum ratios were 
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exposed to 10% RNase A for 2 hours at 37 °C. This was followed by the addition of 10mM EDTA 

and 0.5% SDS respectively, and samples incubated at 55 °C for 20 min, followed by 

electrophoresis as described previously.  

 

4.2.2.9 Cell Culture  

All cells were maintained and propagated at 37 °C and 5% CO2, in 25 cm2 flasks containing sterile 

EMEM, FBS (10%, v/v), penicillin G (100 U/mL) and streptomycin sulphate (100 μg/mL). The 

cells were split upon confluency into desired ratios when necessary, and the medium changed 

routinely.   

 

4.2.2.9.1 Cell Viability: MTT Assay 

The MTT assay was used to determine the viability of the cells after treatment with the respective 

nanocomplexes as described previously (Singh et al., 2007). HEK293, HepG2, Caco-2, MCF-7 

and KB cells were trypsinised and plated into 48-well plates at densities of 2.3 x 10
4
, 2.0 x 10

4
, 

1.8 x 10
4
, 1.3 x 10

4
, 2.7 x 10

5
 cells/well, respectively, and incubated for 24 hours at 37 °C. 

Thereafter, nanocomplexes at selected ratios were added in triplicate and cells incubated for 24 

hours at 37 °C. Cells containing no nanocomplexes were used as the positive control (100% cell 

survival). After the 24 hour incubation, fresh medium containing the MTT reagent (5 mg/mL in 

PBS) (0.3 mL, EMEM:MTT 1:1 v/v) was then added, followed by a 4 hour incubation at 37 °C. 

The medium-MTT mixture was then aspirated, cells washed with PBS (2 x 0.3 mL) and 0.3 mL 

DMSO added. Absorbance was then measured at 570 nm in a Mindray MR-96A microplate reader.  

 

4.2.2.9.2 Apoptosis Assay 

To determine if apoptosis was instrumental in the cell death recorded, an apoptosis assay was 

conducted as previously described (Bezabeh et al., 2006, Maiyo et al., 2016). Cells (2.0-2.9 x 10
5
 

cells/well) were plated into 12-well plates and incubated for 24 hours at 37 °C. Following the 

addition of nanocomplexes at optimum ratios, the cells were incubated for 24 hours at 37 °C. 

Thereafter, cells were washed with PBS and 10 μL of AO/ETB (acridine orange/ethidium bromide) 

dye (100 μg/mL AO and 100 μg/mL ETB) was added. Cells were viewed for structural and 
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morphological changes under an Olympus fluorescent microscope (X200 magnification), fitted 

with a CC12 fluorescent camera (Olympus Co., Tokyo, Japan). Apoptosis was quantified by 

calculating the apoptotic index (AI) as below: 

Apoptotic Index = Number of apoptotic cells 
 

Total number of cells 
 

 

4.2.2.9.3 Transfection and Competition Assay 

The transfection and competition assays were conducted as previously described (Singh et al. 

2007). Cells with densities of 2.3- 2.7 x 10
5
 cells/well, were seeded into 48-well plates and 

incubated for 24 hours at 37 °C. The nanocomplexes (ratios similar to the MTT assay) were then 

added, and the cells were incubated for 24 hours at 37 °C. Thereafter, the cells were washed with 

PBS (2 x 0.5 mL) and lysed with 80 μL/well cell lysis buffer (Promega) for 15 min with shaking 

at 30 rpm in a Scientific STR 6 platform rocker. Cell suspensions were then centrifuged at 

12,000×g for 1 min. The cell-free extract (20 μL), was added to 100 μL luciferase assay reagent 

(Promega), mixed, and luminescence recorded in relative light units (RLU) in a Glomax®-

Multi+Detection System (Promega Biosystem, Sunnyvale, USA). The BCA assay was used to 

determine the protein concentrations of the cell-free extracts as described previously (Smith et al., 

1985), and the luciferase activity was normalized and expressed as RLU/mg protein. 

The competition assay was performed as previously described (Singh et al., 2007). Briefly, FA 

(250 µg) was incubated with folate receptor positive cells for 20 min at 37 °C, prior to addition of 

the targeted nanocomplexes.  Luciferase activity was determined as described above. 

 

4.2.2.10 Statistical Analysis 

 

Cell viability and transfection studies were performed in triplicate and results expressed as means 

± standard deviation (S.D). The experimental data was analyzed by two-way ANOVA and t test, 

using GraphPad Prism 6.0 and statistical significant values are indicated by *p < 0.05, **p < 0.01, 

***p < 0.001 and ****p < 0.0001, #p > 0.05. 
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4.3 Results and Discussion 

4.3.1 Morphology, Size and Zeta Potential of Nanoparticles and Nanocomplexes 

From the TEM and NTA results respectively, the NPs appeared spherical in shape with a uniform 

distribution and mean diameter sizes ranging between 65-128 nm (Figure 4.1-4.2, Table 4.1, and 

Figure A6, Appendix A). Nanocomplexes prepared at optimum ratios, presented as clusters of 

smaller particles with mean diameter sizes ranging from 101-265 nm (Figure 4.1-4.2 and Figure 

A7, Appendix A). In general, all the nanocomplexes, with the exception of G5D:FA 

nanocomplexes (265.2 nm), fall within the general size range (100-200 nm) required for gene 

delivery via non-specific or receptor-specific uptake (Azzam and Domb, 2004, Rejman et al., 

2004, Grosse et al., 2005). There was no significant size difference (#p >0.05) between the 

Au:G5D/Au:G5D:FA and G5D/G5D:FA nanocomplexes (Table 4.1).  

 

 

 

 

 

 

 
 

Figure 4.1: TEM micrograph of AuNPs. Scale bar = 100 nm. 
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Figure 4.2: TEM micrographs of (A1) Au:G5D, (A2) Au:G5D-mRNA (B1) Au:G5D:FA and (B2) 

Au:G5D:FA-mRNA nanocomplexes prepared at optimum weight ratio of 3:1 and 4:1 w/w respectively. Scale 

bar = 100 nm. 

 

 

Table 4.1: Mean size and ζ potential measurements of gold nanoparticles and their counterparts. 

Data presented as mean diameter ± standard deviation (SD). 

Nanoparticles and 

Nanocomplexes 

NP:mRNA 

(w/w) Ratio 

Mean 

Diameter   

 (nm) ± SD 

 ζ Potential 

(mV) ± SD 

Au  - 65.9 ± 9.8  -7.3 ± 1.6 

G5D   - 161.3 ± 11.9  +87.2 ± 2.4 

Au:G5D   - 100.5 ± 44.1  + 20.9 ± 2.2 

G5D:FA  - 128.0 ± 1.20  +71.2 ± 3.4 

Au:G5D:FA   - 77.7 ± 12.5    +29.0 ± 0.5 

Au:G5D-mRNA 3:1 207.2 ± 35.5 #  -37.3 ± 0.1*** 

Au:G5D:FA-mRNA  4:1 101.8 ± 36.9 #  -65.7 ± 1.4*** 

G5D-mRNA  2:1 118.0 ± 6.20 #  -21.0 ± 0.5*** 

G5D:FA-mRNA  4:1 265.2 ± 51.6 #  -25.8 ± 0.0*** 

#p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 when control nanocomplexes are compared  

with test nanocomplexes. NTA size and zeta potential distribution is reflected in the Appendix. 
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Zeta potential measurements greater than +25 mV or less than -25 mV are reported to be associated 

with good colloidal stability (Honary and Zahir, 2013). The AuNPs alone showed poor stability (-

7.3 mV), but upon G5D and FA functionalisation, the stability improved immensely to +20.9 mV 

(Au:G5D), and +29 mV (Au:G5D:FA) (Table 4.1). Overall, functionalised NPs displayed ζ 

potentials ranging from 20.9 mV to 87.2 mV, and their nanocomplexes ζ potentials ranging from 

-21.0 mV to -65 mV, all indicating good colloidal stability. Au:G5D and Au:G5D:FA 

nanocomplexes also seemed to be highly stable with ζ potentials of -37.3 mV and -65.7 mV 

respectively. This improved stability with the targeted NPs could be due to the shielding or grafting 

effect imparted by FA and the dendrimer which prevents particle aggregation (Fratila et al., 2014). 

From these findings, it can be predicted that these nanocomplexes would be efficient in delivering 

mRNA. 

 

4.3.2 UV-Spectroscopy and 1H NMR Spectroscopy 

The attachment of G5D and FA on the AuNPs was first confirmed by UV spectroscopy. The 

absorption band at 536 nm confirmed the formation of AuNPs, since the known absorption band 

of AuNPs range between 520-550 nm (Haiss et al., 2007). The band shift from 536 nm to 566 nm 

confirmed the attachment of G5D on the surface of the AuNPs (Figure A2, Appendix A), (Pan et 

al., 2003). Furthermore, the covalent attachment of the FA onto the surface of NPs is known by its 

absorption maxima at 280 nm with a saddle point at 360 nm (Zhang et al., 2003, Mansoori et al., 

2010) (Figure A3, Appendix A), corresponding to the absorption peak of Au:G5D:FA observed at 

287 nm.  

 
Moreover, the formation of Au:G5D and Au:G5D:FA nanoparticles was also verified by 1H NMR 

spectroscopy. Significant differences in the chemical shift of protons related to Au:G5D (a), 

Au:G5D:FA (b), G5D:FA (c) were observed when compared to G5D (Figure 4.3). The 1H NMR 

of the G5D shows 6 broad peaks as indicated by a chemical shift ranging from 2.25-3.34 ppm, 

which represents the protons of the amino groups (NH2) and the methylene groups (CH2). These 

findings correlated with those reported by Zhang et al. (2010) and Santos et al. (2010). The 

formation of Au:G5D nano-scaffolds resulted in the downfield shift of protons 4, 5 and 6 of G5D 

which indicated the interaction of the surface of the AuNPs with the internal amines of the 

dendrimers (Shi et al., 2009).  

file:///E:/PhD%20Final%20writup2017/Paper1%20Final2.docx%23_ENREF_17
file:///E:/PhD%20Final%20writup2017/Paper1%20Final2.docx%23_ENREF_17
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Moreover, the three peaks between 6.50-8.63 ppm observed in figure 4.3 (A-B), indicate the 

attachment of FA protons [H-Ar (7&13), NH (18)]. These findings correlate with previous 

literature (Chang et al., 2012). Therefore, based on the UV information and these findings it can 

be concluded that the G5D polymer and FA moiety were successful conjugated to the AuNPs.    

 

 

 

 

 

 

Figure 4.3: The structure of PAMAM G5 dendrimer and 1H NMR spectra of PAMAM dendrimer 

(G5D) and folic acid functionalised gold nanoparticles in D2O. (A) G5D:FA, (B) Au:G5D:FA, (C) 

G5D, (D) Au:G5D.  

 

 

 

 

 

Solvent residual peak 
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4.3.3 Binding Studies 

Band Shift Assay 

The mRNA binding efficiency of the prepared NPs can be seen in Figure 4.4.  

 

 

  

 

 

 

 

 

 

All prepared NPs were able to bind and complex with the mRNA. This can be credited to the 

ability of G5D to become protonated at physiological pH (Chaplot and Rupenthal, 2014). G5D 

and Au:G5D nano-scaffolds completely retarded the mRNA at (w/w) ratios of 2:1 and 3:1, 

respectively, while both G5D:FA and Au:G5D:FA NPs completely retarded mRNA at a (w/w) ratio 

of 4:1. This difference in binding efficiency between the  FA targeted and untargeted NPs, could 

be due to the possible shielding of the cationic charges on the targeted NPs by the FA moiety, 

which meant that more positive charges were required to fully neutralize the negative charges on 

the mRNA (Mbatha et al., 2016). Overall, the complex formation of all nano-scaffolds occurred 

at very low weight/charge ratios, which could be accredited to the single-stranded nature of mRNA 

which is quickly embedded by the highly cationic G5D. 

 

 

 

  

Figure 4.4: Band shift assay of the interaction between various nanoparticles (A) G5D, (B) Au:G5D, 

(C) G5D:FA, (D) Au:G5D:FA and mRNA. Incubation mixtures (20 µL) in HBS contained varying 

amounts of nanoparticle preparation and 0.05 µg mRNA-Luc corresponding to w/w ratios of  1:1, 2:1, 

3:1, 4:1, 5:1, 6:1, 7:1, and 8:1 in lanes 2-8 respectively (A-D). Lane 1: naked mRNA. Arrows indicate 

endpoint ratios. 

    1       2      3      4       5      6      7      8  

A 

    1       2      3      4       5      6      7      8  

B 
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Ethidium Bromide Dye Displacement Assay 

All NPs displaced ETB, indicating a significant degree of mRNA compaction, which bodes well 

for their stability and protection under physiological conditions. The degree of mRNA compaction 

for G5D and Au:G5D nano-scaffolds ranged from 10-30%, while that of G5D:FA and Au:G5D:FA 

nano-scaffolds ranged from 40-70% (Figure 4.5). 

 

 

This higher degree of compaction seen for the targeted nanocomplexes, suggest a weaker binding 

of mRNA, which could translate into easy dissociation of the mRNA from the nanocomplexes 

during transfection, hence avoiding degradation by the lysosomal compartment, in turn enhancing 

gene transfection efficiency (Chuang and Chang, 2015). Hence, it can be concluded that all nano-

scaffolds were able to efficiently bind and compact mRNA, with the targeted nanocomplexes 

showing a higher degree of compaction.  
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Figure 4.5: Ethidium bromide displacement assay of (A) G5D, (B) Au:G5D, (C) G5D:FA, (D) 

Au:G5D:FA nano-scaffolds. Arrows indicate point of complexation. 
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4.3.4 RNase A Digestion Assay 

The integrity of the nanocomplexes may be compromised by degrading enzymes such as RNase 

A, leading to a decreased transgene expression (Obata et al., 2009). To assess the ability of the 

nano-scaffolds to protect the mRNA cargo against these degrading nucleases, which would be 

encountered in circulation in an in vivo system, a RNase A digestion assay was conducted.  

 

 

 

 

 

 

 

 

Figure 4.6 clearly shows the exceptional ability of all NPs to fully protect mRNA, following 

treatment with 10% RNase A, as depicted by the presence of undigested bands in all tested ratios. 

This could be due to the highly organized globular structures that form as a result of the 

electrostatic interaction between the negatively charged single-stranded mRNA and the highly 

cationic G5D containing NPs (Pitard, 2002). By contrast, the treatment of naked mRNA with 

RNase A showed complete degradation (negative control) as illustrated in figure 4.5, lane 2. The 

use of the RNase enzyme was a stringent test for these nanoparticles due to its specificity. 

However, in the circulatory system, the nanoparticles may encounter less specific enzymes and 

possibly at lower concentrations as well. Therefore, it can be concluded that all nano-scaffolds 

afforded exceptional protection to the mRNA cargo, boding well for future in vivo studies. 

 

 

 

Figure 4.6: Nuclease digestion assay of nanocomplexes. (A) G5D, (B) Au:G5D, (C) G5D: FA, (D) 

Au:G5D:FA. Control: naked mRNA in the absence (+ = positive control) or presence (- = negative 

control) of RNase A. Lanes 1-3 contains nanocomplexes at sub-optimum, optimum and supra-optimum 

nanoparticle: mRNA ratios. (A) 1:1, 2:1, 3:1; (B) 2:1, 3:1, 4:1; (C) 3:1, 4:1, 5:1; (D) 3:1, 4:1, 5:1 (w/w). 

Red colored numbers indicate optimum ratios.  

  +            -              1           2          3           1            2            3           1           2            3          1            2           3    

B A C D 
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4.3.5 MTT Assay 

The first step towards understanding how biocompatible a delivery vector will be, often involves 

the use of cell-culture studies, commencing with the assessment of cytotoxicity. To monitor cell 

viability after treatment with prepared nanocomplexes in selected cell lines, a series of MTT assays 

were conducted. This assay uses MTT which enters the cells and passes into the mitochondria 

where it’s reduced to an insoluble, purple coloured formazan product which can be quantified 

spectroscopically and is used as an indication of metabolically active cells.  

No significant (p > 0.05) change in cell viability was observed following treatment with all 

nanocomplexes. Higher cell viabilities (80-97%) were observed in all cell lines for the 

Au:G5D:mRNA and Au:G5D:FA:mRNA nanocomplexes, compared to the G5D:mRNA and 

G5D:FA:mRNA nanocomplexes (68-78%) (Figure 4.7A-B). This is assumed to be due to the 

reduced portion of the cationic charges of the 1o amines of G5D, some of which are responsible 

for stabilising the entrapped AuNPs (Shan et al., 2012).  

 
Noticeably, all FA targeted nanocomplexes showed higher cell viabilities compared to their 

untargeted nanocomplex counterparts (average cell viability of 88% for Au:G5D:FA and 72% for 

G5D:FA. This could be as a result of the shielding effect of FA which may have covered a portion 

of the positive charges on the surface of G5D, hence reducing the strong electrostatic interaction 

between the cells and the NPs (Xiao et al., 2013). Overall, more than 80% of cells were still viable 

after being exposed to the gold containing nanocomplexes at the selected ratios, suggesting that 

these nanocomplexes were superior and well tolerated in all tested cell lines, and therefore 

relatively safe to use.    
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Figure 4.7 (A-B): Cell viability assay of four nanocomplexes in HEK293, HepG2, Caco-2, MCF-7 and KB 

cells. Cells were incubated with nanocomplexes containing 0.05 μg mRNA-Luc at indicated ratios (w/w). 

Nanocomplexes were prepared at sub-optimum, optimum and supra-optimum ratios. Data are presented as 

means ± S.D. (n = 3). Control = untreated cells. #p > 0.05. 
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4.3.6 Apoptosis Assay 

Cell death was also studied by evaluating the ability of NPs to induce apoptosis in selected cell 

lines. All nanocomplexes induced little apoptosis in the cells, as evidenced by very few apoptotic 

(yellow-orange/red) cells visible and the low apoptotic indices (AI) (Table 4.2 and Figure 4.8). 

Noticeably, the AI values of Au:G5D:mRNA and Au:G5D:FA:mRNA nanocomplexes were 

significantly (p < 0.0001) lower than those of the G5D:mRNA and G5D:FA:mRNA 

nanocomplexes particularly, in all cell lines (Table 4.2; Figure 4.9). These findings suggested that 

the Au:G5D:mRNA and Au:G5D:FA:mRNA nanocomplexes were safe and stable, and correlates 

with the cytotoxicity profiles determined by MTT.  

 

   Table 4.2: Apoptotic Indices of NPs in selected cell lines. 

Cell Lines Apoptotic Indices 

 Test NPs Control NPs 

Control Au:G5D Au:G5D:FA G5D G5D:FA 

HEK293 0.0 0.03 0.04 0.07 0.08 

HepG2 0.0 0.06 0.04 0.08 0.09 

Caco-2 0.0 0.05 0.04 0.13 0.11 

MCF-7 0.0 0.04 0.06 0.25 0.23 

KB 0.0 0.05 0.06 0.19 0.20 
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Figure 4.8: Fluorescence images of (A) HEK293, (B) HepG2, (C) Caco-2, (D) MCF-7 and (E) KB 

cells treated with test and control nanocomplexes prepared at sub-optimum ratios for 24 hours showing 

induction of apoptosis. Green= live (L), light orange= early apoptotic (EA) and dark orange = late 

apoptotic (LA) cells. Scale= 100 μm.  
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Figure 4.9: Differences in AI values between the test and control NPs in tested cell lines. ****p < 0.0001. 

 

 

 

4.3.7 Transfection and Competition Assays 

The ability of the NPs to deliver mRNA was evaluated in folate receptor negative cell lines, 

HEK293, Caco-2, and receptor-positive cell lines HepG2, MCF-7 and KB, the latter with low to 

high folate receptor expression. The transfection efficacy of the nanocomplexes was assessed as a 

function of weight ratios (sub-optimum, optimum and supra-optimum). 

All NPs and their nanocomplexes had sizes appropriate for either specific or non-specific uptake 

and were reasonably stable, with the nanocomplexes showing excellent stability. The transfection 

activity of the Au:G5D:mRNA and Au:G5D:FA:mRNA nanocomplexes (Figure 4.10A-B) was 

much higher than that of the naked mRNA (control). This was expected since the introduction of 

naked mRNA into the cells is known to be associated with poor transgene expression mainly due 

to enzymatic degradation (Elsabahy et al., 2011), as evidenced in the RNase A digestion assay. 

All nanocomplexes were able to significantly transfect the selected cell lines. The high transfection 

observed could be due to three reasons. Firstly, since the translation of mRNA occurred in the 

cytoplasm, the major limiting step, which is the nuclear pore entry was avoided, resulting in an 

increased transgene expression. Secondly, since the transfection studies were conducted over a 

duration of 24 hours, more protein expression was measured as the lifetime of mRNA is limited 
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(Tavernier et al., 2011). Lastly, the efficient encapsulation of the mRNA by the highly rigid 

dendrimer, with an exceptional buffering capacity could have helped protect the mRNA from 

degradation and facilitated the endosomal escape of the nanocomplexes from degrading lysosomes 

(Kambhampati et al., 2015). Moreover, the transfection levels in HEK293 and Caco-2 cells were 

significantly (p < 0.001) lower than those elicited in the receptor-positive cells.  HepG2 cells also 

exhibited lower expression, possibly due to fewer receptors on the cell surface compared to the 

MCF-7 and KB cells. Low targeted expression has been associated with a lack of specific 

transcription factors and cell-surface receptors (Mansoori et al., 2010).   

All nanocomplexes showed excellent transfection activity, with Au:G5D:mRNA and 

Au:G5D:FA:mRNA nanocomplexes (Figure 4.10A) showing higher transfection efficiencies 

ranging from 5 x 107 – 6 x 108 RLU/mg protein. This can be accredited to the entrapment of AuNPs 

in the 1 amines of the dendrimer which helped preserve the structural integrity of the dendrimers, 

allowing for efficient interaction between the dendrimers and mRNA (Shan et al., 2012). The 

decreased transfection activity showed by G5D:mRNA and G5D:FA:mRNA nanocomplexes (4 x 

107 – 3 x 108 RLU/mg protein) (Figure 4.10B), could, therefore be due to the loss of the structural 

integrity of the dendrimer due to interaction with interfaces or solid surfaces (Xiao et al., 2013). 

Furthermore, poor dissociation between the mRNA and the G5D due to the strong binding affinity 

possessed by these nano-scaffolds, could have attributed to the decreased transfection efficiency. 

Earlier studies have demonstrated a direct correlation between the binding affinity of the single 

stranded mRNA to cationic polymers and transgene expression (Bettinger et al., 2001).  

Noticeably, the Au:G5D:FA:mRNA nanocomplexes, showed a 4 fold increase in transfection 

activity (6x 108 RLU/mg protein), compared to Au:G5D:mRNA nanocomplexes (2 x 108 RLU/mg 

protein) at the optimum ratios in the FA-R positive cell line, MCF-7. This could be due to the 

interaction that occurs between the targeting ligand, FA, incorporated in these nanocomplexes and 

the FA-Rs abundantly decorating the surface of the MCF-7 cells (Srinivasarao et al., 2015). It is 

generally known that FA has a high affinity for FA-Rs overexpressed by a majority of cancer cells 

(Mansoori et al., 2010).  
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Figure 4.10 (A-B): Transfection studies of (A) Test nanocomplexes (B) Control nanocomplexes. HEK293, 

HepG2, Caco-2, MCF-7 and KB cells were exposed to nanocomplexes constituted with 0.05 µg mRNA 

and varying amounts of nanoparticles at sub-optimum, optimum and supra-optimum ratios. Control 1= 

untreated cells. Control 2= cells + mRNA-Luc. The transgene expression is reported as RLU/mg protein. 

Data are presented as means ± SD (n=3). ****p < 0.0001 for optimum ratios.  
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To confirm the uptake mechanism of the nano-scaffolds, a competition assay was conducted. This 

involved flooding the cells with excess free FA (250 μg) before exposure to the FA targeted 

nanocomplexes (Au:G5D:FA:mRNA and G5D:FA:mRNA).The assay was conducted in the cell 

line with the overall higher targeted transgene expression, viz. MCF-7. A significant (p < 0.01) 

drop of approximately 30% in transgene activity was observed as depicted in figure 4.11, which 

suggests that a large portion of these nanocomplexes were taken up by receptor-mediated 

endocytosis (Zhang et al., 2015), confirming that FA receptor mediation was a key player in the 

high transgene expression obtained. 

 

 

Figure 4.11: Competition studies of FA targeted mRNA nanocomplexes. MCF-7 cells were first exposed 

to excess folic acid (250 μg), then treated with FA targeted nanocomplexes at optimum ratios. The transgene 

expression is reported as RLU/mg protein. Data are presented as means ± SD (n=3).  **p < 0.01.  
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4.4 Conclusion  

Both Au:G5D and Au:G5D:FA NPs were highly efficient in Fluc-mRNA binding and delivery. 

They formed stable nanocomplexes and afforded excellent protection to the mRNA against 

RNases. Furthermore, >80% cell viability was observed, suggesting that these nanocomplexes 

were well tolerated by all cell lines. This was also demonstrated in their superior transfection 

efficiency, indicating the significant roles played by both the dendrimer and the AuNPs in their 

formulation. Lastly, we have confirmed that folate receptor-mediated delivery was the main route 

of entry into the receptor positive cells, as evidenced by the transfection levels in the FA-receptor 

negative cell lines, being significantly lower (p < 0.001) than that in FA-receptor positive cell lines. 

Future studies would encompass the NP optimization for in vivo delivery. 
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Abstract 

For years, the therapeutic development of gene silencing has relied on the elegant, endogenous 

RNA interference (RNAi) mechanism. Recently, the use of exogenous small interfering RNA 

(siRNA) has showed potential and has gained attention as an alternative gene silencing therapeutic. 

However, delivery to targeted sites remains a hurdle, hence, efficient siRNA delivery vectors are 

needed for the clinical improvement of gene therapy. This study is aimed at developing and 

evaluating the safety and efficiency of  siRNA delivery using unmodified and folic acid (FA) 

modified poly-amidoamine generation 5 (PAMAM G5D) functionalised gold nanoparticles 

(Au:G5D/Au:G5D:FA NPs) in various mammalian cell lines. The same parameters were also 

evaluated using unmodified PAMAM G5D and FA modified PAMAM G5D nanoparticles 

(G5D/G5D:FA NPs) for comparative purposes. NPs and their nanocomplexes were formulated 

and analyzed using TEM, NTA, UV spectroscopy, NMR spectroscopy, band shift, ethidium 

bromide displacement and nuclease protection assays. Cytotoxicity was assessed in the HEK293, 

HepG2, Caco-2, and HeLa-Tat-Luc using the MTT assay, while the gene silencing efficiency was 

assessed in HeLa-Tat-Luc cells using luciferase reporter gene assay. Nanocomplexes  at optimum 

w/w ratios, bound and protected siRNA against degrading RNases, were well tolerated by the cells, 

and were able to elicit excellent gene silencing. High gene silencing with Au:G5D and Au:G5D:FA 

nanocomplexes, with Au:G5D:FA exhibiting a significantly (p < 0.001) higher silencing in FA 

receptor overexpressing HeLa-Tat-Luc cells, decreasing significantly (p < 0.001) in the presence 

of excess FA ligand, indicating the uptake mechanism of these NPs to be receptor mediated. These 

results signify and highlight the synergistic role played by Au and the dendrimer in the 

enhancement of transgene silencing. 

Keywords: RNA interference, siRNA, Targeted delivery, Dendrimers, Gold nanoparticles, Folic 

acid. 
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5.1 Introduction 

Small interfering RNA (siRNA) has evoked much interest as an effective gene knockdown tool in 

gene therapy and holds great potential in treating various incurable disorders such as cancer and 

acquired immunodeficiency syndrome (AIDS) (Ziraksaz et al., 2013). This gene knockdown 

ability of siRNA can be accredited to the endogenous elegant RNAi mechanism (Figure 5.1) that 

was discovered by Fire and Mello in the late 1990s which regulates gene expression by silencing 

disease inducing genes. It is said that, upon the delivery of the long, double-stranded RNA 

(dsRNA) into the cytoplasm of eukaryotic cells, it is subjected to cleavage by the enzyme called 

Dicer (RNase III-type) into short fragments of 21–25 base pairs, known as small interferences 

(siRNAs). These siRNAs are then loaded into an RNA-induced silencing complex (RISC), which 

triggers the activation of the RISC by the guide strand (antisense) of these siRNA duplex. The 

activated RISC is then said to bind to and cleaves the complementary strand of the target gene 

(mRNA), resulting in its degradation by intracellular nucleases, which in turn 

silences/downregulates its expression into respective proteins (Tseng et al., 2009, Dorasamy et al., 

2012).  

Though siRNA is inherently produced from a long dsRNA, the introduction of synthetic siRNA in 

various mammalian cancer cell lines has been reported to induce the same effect to the RNAi.  The 

long term gene silencing attained through repeated systemic administrations has aroused much 

attention in its potential as a key therapeutic agent in the advancement of novel medicines. 

However, the inability to bypass the cellular membrane due to their hydrophilic and polyanionic 

nature, and rapid enzymatic degradation, due to the presence of a hydroxyl group at the second 

carbon atom of the sugar moiety favouring hydrolysis of the phosphodiester backbone, leads to 

poor gene silencing efficiency, limiting its application to date (Banan and Puri, 2004, Gary et al., 

2007). Consequently, designing appropriate vectors that are safe, and that will embody the 

protection of the siRNA from degrading enzymes while facilitating its targeted cell specific uptake 

is crucial for its therapeutic application.  
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Figure 5.1: Schematic illustration of the siRNA-mediated gene silencing via the RNAi mechanism. 

 

 

Cationic polymers, such as dendrimers, have been extensively explored as effective pDNA vectors 

over the years and mildly as metal stabilizers recently, due to their associated high transfection 

efficiency. The relatively high cytotoxicity of these dynamic well defined cationic dendrimers, 

PAMAM in particular, which is due to nonspecific interaction of primary amine groups with the 

cell membrane, is the main concern for their potential application in gene therapy studies. In this 

present study, two different approaches have been used to reduce the cytotoxicity of PAMAM 

dendrimers while preserving their gene delivery efficiency. Firstly, the internal amines of the 

dendrimer were modified with gold nanoparticles, forming less toxic complexes with negatively 

charged siRNA. Secondly, the surface primary amines of the gold nanoparticle modified 

dendrimers were partially tailored with a targeting ligand, folic acid producing folate targeted 

dendrimer grafted gold nanoparticle with reduced toxicity. This study focused on designing, 

characterising and evaluating the cytotoxicity profiles of untargeted and FA targeted PAMAM 

grafted AuNPs in various mammalian cell lines and their ability to deliver siRNA to HeLa-Tat-

Luc cells (Figure 5.2).   
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Figure 5.2: Illustration of the delivery of siRNA using Au:G5D:FA NP in HeLa Tat-Luc cells. 
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5.2 Materials and Methods 

5.2.1 Materials 

Methanolic solution of starburst poly (amidoamine), PAMAM dendrimer, generation five 

(PAMAM G5D), (Mw 28,826, 128 surface amino groups), bicinchoninic acid (BCA), folic acid, 

1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC), dimethylformamide (DMF), sodium 

dodecylsulphate (SDS), ribonuclease A (RNase A) and benzolylated dialysis tubing (MWCO 

12,000 Da) were supplied by Sigma-Aldrich (St. Louis, MO, USA). Ultra-pure DNA grade agarose 

was acquired from Bio-Rad Laboratories (Richmond, VA, USA). Tris (hydroxymethyl)-

aminomethane hydrochloride (Tris-HCl), 3-(4, 5-dimethylthiazol- 2-yl)-2,5- diphenyltetrazolium 

bromide (MTT), 2-[4-(2-hydroxyethyl)-1-piperazinyl] ethane sulphonic acid (HEPES), dimethyl 

sulphoxide (DMSO), ethidium bromide (ETB) and gold (III) chloride trihydrate 99% (HAuCl4) 

were purchased from Merck (Darmstadt, Germany). Minimum essential medium (EMEM) 

containing Earle’s salts and L-glutamine, penicillin (500 units/mL)/streptomycin (5000 µg/mL) 

and trypsin-versene were purchased from Lonza-BioWhittaker (Walkersville, MD, USA). Foetal 

bovine serum (FBS) was purchased from Hyclone (Utah, USA). Human embryonic kidney cells 

(HEK293) was obtained from American Type Culture Collection (Manassas, VA, USA). Human 

hepatocellular carcinoma cells (HepG2) and Human epithelial colorectal adenocarcinoma cells 

(Caco-2) were purchased from Highveld Biologicals (Pty) Ltd. (Kelvin, South Africa). The HeLa-

Tat-Luc cell line was provided by the Department of Physiology (University of KwaZulu-Natal, 

Durban, South Africa). The luciferase assay kit containing the assay reagent and cell lysis buffer 

was purchased from the Promega Corporation (Madison, WI). siGENOME non-targeting siRNA 

(D-001210–01) and anti-Luc siRNA (D-002050-01) with sequence: 

GAUUAUGUCCGGUUAUGUA(UU), were obtained from Thermo Scientific Dharmacon 

Products (Lafayette, CO). Solutions of duplexes were prepared according to the manufacturer’s 

specifications in 1 × RNA buffer to a final concentration of 20 μM. Stock solutions were routinely 

stored at –20 oC. All other reagents were of analytical grade and 18 MOhm water was used 

throughout.  
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5.2.2 Methods 

The methods employed in this chapter are similar to those reported in the preceding chapters, with 

slight modifications. Hence for completeness of this chapter, some repetition in these protocols 

will be evident. 

5.2.2.1 Synthesis of PAMAM G5D Modified Folic Acid (G5D:FA conjugate) 

PAMAM G5D was modified with folic acid (FA) (C19H19N7O6) through a carbodiimide reaction 

as previously described (Wiener et al., 1997, Wang et al., 2011) (Figure A1, Appendix A). Briefly, 

FA, 2.8 µmol (1.23 mg) in 3 mL of DMF was reacted under N2 with 38.2 µmol (7.3 mg) of EDC 

for 45 minutes with constant stirring. This was then added dropwise with stirring into the G5D 

solution (3 µmol, 100 µL) and the pH adjusted to 9.5. This solution was further stirred for 3 days 

under nitrogen atmosphere and was then dialyzed (Mw=12 000 Da) against 18 MOhm water for 

24 hours, to remove excess unreacted by-products.  

5.2.2.2 Synthesis of Gold Nanoparticles (AuNPs) 

AuNPs were synthesised by reduction of HAuCl4 (0.03 M) with trisodium citrate (1%) as 

previously described (Turkevich et al., 1951, Lazarus et al., 2014). The colloidal solutions were 

stored for future use and were stable for 6 months. 

 

5.2.2.3 Synthesis of Dendrimer Grafted Gold Nanoparticles (Au:G5D NPs) and Folic acid 

Targeted Dendrimer Grafted Gold Nanoparticle (Au:G5D:FA NPs)  

Au:G5D and Au:G5D:FA NPs were synthesised by an adaptation of 5.2.2.2, to contain a 25:1 

gold/dendrimer molar ratio (Shi et al., 2009). The unmodified G5D and previously synthesized 

G5D:FA conjugates were used as control templates. All AuNPs were dialyzed against 18 MOhm 

water for 24 hours, to remove unreacted by-products.  

 

5.2.2.4 Nanocomplex Preparation  

Increasing amounts of the NPs ranging from 2-8 μg were mixed with either 0.5 µg siCONTROL 

Tox siRNA for binding studies or 0.27 µg anti-Luc siRNA  for cytotoxicity and transfection studies 

in 32 µL sterile HBS. This was followed by brief mixing and centrifugation at 13000 revolutions/ 

minute (rpm) for 5 minutes, and a 60 minute incubation at room temperature.   
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5.2.2.5 Characterisation: Transmission Electron Microscopy (TEM) and Nanoparticle 

Tracking Analysis (NTA) 

A Jeol JEM-1010 transmission electron microscope, containing a Soft Imaging Systems (SIS) 

filtered with a MegaView III digital camera and iTEM UIP software (Tokyo, Japan), set at an 

acceleration voltage of 200 kV, was used to view the morphology of the synthesized nanoparticles 

and their nanocomplexes prepared at endpoint ratios (w/w). NTA (NanoSight NS500; Malvern 

Instruments Ltd., Worcestershire, UK) was used to determine the sizes (z-average hydrodynamic 

diameter) and zeta potentials of the nano-scaffolds and their nanocomplexes (prepared at optimum 

binding ratios (w/w) and diluted to 1 mL). 

 

5.2.2.6 Ultra-Violet (UV) and Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy 

The attachment of G5D and FA onto the AuNP surface was confirmed using UV–Vis spectroscopy 

(UV-1650PC, Shimadzu, Japan) and 1H NMR spectroscopy (Bruker DRX 400), using deuterated 

(D2O) water as a solvent. 

 

5.2.2.7 Binding Studies 

Gel Retardation Assay 

Nanocomplexes at varing (w/w) ratios, containing gel loading buffer (6.4 µL, 50% glycerol, 0.05% 

bromophenol blue, 0.05% xylene cyanol), were subjected to electrophoresis on a 2% (w/v) agarose 

gel containing ETB (1 μg/mL), in a Bio-Rad mini-sub electrophoresis apparatus containing 1 X 

electrophoresis buffer [36 mM Tris-HCl, 30 mM, sodium phosphate (NaH2PO4), 10 mM 

ethylenediamine tetra-acetic acid (EDTA), pH 7.5], for 1 hour at 50 V. The gels were viewed and 

images captured at exposure times of 1–2 seconds using a Vacutec Syngene G: Box BioImaging 

system (Syngene, Cambridge, UK). 

 

Ethidium Bromide Displacement Assay  

The compact binding of the siRNA to the  NPs was assessed fluorescently using a Glomax®-

Multi+ detection system (Promega), set at an excitation wavelength of 520 nm and an emission 

wavelength of 600 nm (Tros de Ilarduya et al., 2010). ETB (24 µL, 100 µg/mL) was first mixed 

with HBS (100 µL) in a 96-well FluorTrac flat bottom black plate and the relative fluorescence 
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(RF) was used as a baseline (0%) fluorescence reading. The 100% relative fluorescence, was set 

by introducing 1.3 µg siRNA to the mixture, which was followed by a systematic addition of 1 µL 

aliquots of the prepared cationic NPs (0.5 µg). The RF values were recorded after each addition 

until a plateau in fluorescence was noticed.   

5.2.2.8 Ribonuclease A Digestion Assay 

Nanocomplexes containing siRNA (0.5 μg) and varying amounts of NPs were prepared at three 

w/w ratios; sub-optimum, optimum, and supra-optimum as determined from the gel retardation 

assay.  Nanocomplexes were exposed to 10% RNase A for 2 hours at 37 °C, followed by addition 

of EDTA and SDS to final concentrations of 10 mM and 0.5% (w/v), respectively. After an 

additional 20 min incubation at 55 °C, the samples were subjected to electrophoresis as described 

previously.  

 

5.2.2.9 Cell Culture   

All cells were maintained and propagated at 37 °C and 5% CO2, in 25 cm2 flasks containing sterile 

EMEM, FBS (10%, v/v), penicillin G (100 U/mL) and streptomycin sulphate (100 μg/mL). The 

cells were split upon confluency into desired ratios, and the medium changed routinely.   

 

5.2.2.9.1 Cell Viability: MTT Assay 

HEK293, HepG2, Caco-2, and HeLa-Tat-Luc cells were trypsinised and seeded into 48-well plates 

at densities of 2.8 x 104, 2.0 x 104, 2.3 x 104, 2.1 x 104 cells/well respectively, and incubated in 0.3 

mL complete medium for 24 hours at 37 °C. Prior to the addition of the preformed nanocomplexes, 

prepared at sub-optimum, optimum and supra-optimum ratios, the medium was replaced with fresh 

medium (0.3 mL). Cells were then incubated for 48 hours at 37 °C. Thereafter, the medium was 

removed and fresh medium (0.2 mL) and MTT reagent (0.2 mL, 5 mg/mL in sterile PBS) was 

added, followed by incubation for 4 hours at 37 °C. The EMEM containing MTT was then 

removed, cells washed with twice with PBS (0.3 mL), and the resulting purple formazan salt 

solubilised with 0.3 mL DMSO. The absorbance values of the samples were then recorded at 570 

nm in a Mindray MR-96A microplate reader. Percentage cell viability was correlated to the 

untreated cells (control =100%). 
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5.2.2.9.2 Transfection and Competition Assay 

HeLa-Tat-Luc cells were trypsinised and seeded into 48-well plates at a density of 2.1 x 104 

cells/well, and incubated in 0.3 mL complete medium for 24 hours at 37 °C. Thereafter, the 

prepared nanocomplexes were added as previously described, and the cells incubated for an 

additional 48 hours at 37 °C. The old medium was then discarded, cells washed with PBS (2 x 0.5 

mL) and lysed with 80 μL/well cell lysis buffer for 15 min on a Scientific STR 6 platform rocker 

at 30 rpm. Cell lysates were obtained by centrifugation at 12,000×g for 1 min. To 20 μL of each 

cell-free extract (supernatant), 100 μL luciferase assay reagent (Promega) was added, mixed and 

the luminescence measured in relative light units (RLU) on a Glomax®-Multi+Detection System 

(Promega Biosystem, Sunnyvale, USA). Protein concentrations of cell-free extracts were 

determined using the BCA assay as previously described (Smith et al., 1985), and the luciferase 

activity was expressed as RLU/mg protein.  

For the competition studies, 50 mM of folic acid solution was added to the cells in each well, and 

incubated for 20 min at 37 °C, prior to addition of the nanocomplexes. Thereafter, the luciferase 

activity was determined and protein concentration determined as above. 

 

5.2.2.10 Statistical Analysis 

 

Cell viability and transfection studies were performed in triplicate and results expressed as means 

± standard deviation (S.D). The experimental data was analyzed by two-way ANOVA and t test, 

using GraphPad Prism 6.0 and statistical significant values are indicated by *p < 0.05, #p >0.05, 

**p < 0.01, and ***p < 0.001. 
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5.3 Results and Discussion 

5.3.1 Synthesis and Characterisation  

The functionalisation of AuNPs with dendrimers has shown to be a promising advancement in the 

design of highly efficient non-viral delivery vectors (Xiao et al., 2013). NPs and their 

nanocomplexes were successfully prepared and investigated. The conjugation of G5D onto 

AuNPs, as well as the attachment of FA moieties onto the G5D was verified using UV (Figure A2-

A3, Appendix A) and 1H NMR spectroscopy (Figure A4-A5, Appendix A). The surface plasmon 

resonance (SPR) peak at 536 nm indicated the formation of AuNPs. The shift in absorption to a 

longer wavelength of 566 nm, suggested a possible modification of the AuNP surface due to the 

attachment of G5D. The absorption peak at 287 nm seen in the spectrum of Au:G5D:FA, correlates 

with that of FA, hence suggesting the successful attachment of the FA moieties (Pan et al., 2003, 

Mansoori et al., 2010). In the 1H NMR spectroscopy, the chemical shift between 2.25-3.34 ppm, 

represented the amino (NH2) and methylene (CH2) proton peaks of G5D. The characteristic proton 

peaks between 6.50-8.63 ppm indicated the conjugation of the FA moiety (Chang et al., 2012).  

TEM (Figure 5.3 and Figure 5.4) and NTA (Table 5.1), revealed that the NPs were spherical with 

diameters ranging from 65-128 nm, while their nanocomplexes imaged at their optimum binding 

weight ratios appeared as globular clusters with diameters ranging from 124.9-162.9 nm. There 

were no significant differences (p < 0.05) in the mean sizes observed in all prepared NPs. 

Furthermore, both the NPs and their nanocomplexes displayed positive zeta (ζ) potentials ranging 

between +29 mV to +87 mV and 25.2 mV to +40.7 mV, respectively. These zeta potential 

measurements are greater than +25 mV and are hence associated with relatively high colloidal 

stability (Honary and Zahir, 2013). Au:G5D and Au:G5D:FA nanocomplexes exhibited greater 

stability than the G5D and G5D:FA nanocomplexes as noted by their significantly higher ζ 

potentials. The positive zeta potentials also indicates that there was little shielding of the positive 

charges of the dendrimers by the folate moieties and the siRNA. 
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Figure 5.3: TEM micrograph of AuNPs. Scale bar= 100. 

 

Figure 5.4: TEM micrographs of (A1) Au:G5D NPs, (A2) Au:G5D-siRNA, (B1) Au:G5D:FA, (B2) 

Au:G5D:FA-siRNA. Nanocomplexes prepared at optimum weight ratio of 5.0:1 and 8.0:1 w/w respectively. 

Scale bar = 100 nm. 
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Table 5.1: Mean size and ζ potential measurements of nano-scaffolds and their nanocomplexes. 

Data presented as mean diameter or ζ potential ± SD. 

Nanoparticles and 

Nanocomplexes 

NP:siRNA 

(w/w) Ratio 

Mean Diameter   

(nm) ± SD 

ζ Potential (mV) 

± SD 

Au  - 65.90 ± 9.80 -7.3 ± 1.6 

G5D   - 161.3 ± 11.9 + 87.2 ± 2.4  

Au:G5D   - 100.5 ± 44.1 +20.9 ± 2.2 

G5D:FA  - 128.0 ± 1.20 +71.2 ± 3.4 

Au:G5D:FA   - 77.70 ± 12.5   +29.0 ± 0.5 

Au:G5D-siRNA 5.0:1 124.9 ± 19.9 # +38.5 ± 2.7 * 

Au:G5D:FA-siRNA  8.0:1 162.9 ± 51.9 # +40.7 ± 1.3 # 

G5D-siRNA  5.0:1 154.9 ± 9.50 # +25.8 ± 0.8 * 

G5D:FA-siRNA  6.0:1 149.7 ± 5.70 # +37.2 ± 1.3 # 

     *p < 0.05, #p > 0.05 when test nanocomplexes are compared with control nanocomplexes. NTA size and zeta 

potential distribution is reflected in the Appendix. 

 

 

5.3.2 Binding Studies  

Gel Retardation Assay 

This assay demonstrated the ability of the prepared NPs to bind and complex the siRNA. It is based 

on a principle that was initially reported by Hellman and Fried (Hellman and Fried, 2007), that 

during electrophoresis, nucleic acids migrate freely across the agarose gel, but when they are 

complexed with carriers such as NPs their mobility is retarded. Figure 5.5,  confirms that all 

prepared NPs were capable of binding and complexing siRNA. The untargeted G5D and Au:G5D 

NPs both completely retarded at a w/w ratio of 5:1. While the targeted G5D:FA and Au:G5D:FA 

NPs completely retarded at w/w ratios of 6:1 and 8:1 respectively. The high binding efficiency 

demonstrated by targeted nano-scaffolds may be attributed to a slight shielding effect subjected by 

the folic acid on the cationic charges on the G5D, however, no drop in positive charge was not 

evident in the zeta potential measurements, where FA containing nanocomplexes had higher 

positive zeta potentials. 
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Ethidium Bromide Dye Displacement Assay 

The degree of siRNA compaction was explored by measuring the decrease in the ETB 

fluorescence, upon its displacement from siRNA by NP induced condensation. From figure 5.6, a 

steady decrease in fluorescence was noted, upon a stepwise addition of the NPs until a plateau was 

reached where no further condensation occurred. G5D and Au:G5D nanocomplexes attained this 

endpoint at 55% and 62% respectively, while the G5D:FA and Au:G5D:FA nanocomplexes 

reached the endpoint at 70% and 78%, respectively. A higher degree of compaction is indicative 

of weaker binding, and suggests the possibility of easier dissociation of siRNA during transfection 

(Chuang and Chang, 2015).  

  

Figure 5.5: Gel retardation assay showing the binding of (A) G5D, (B) Au:G5D, (C) G5D:FA, 

(D) Au:G5D:FA and siRNA. Incubation mixtures (32 µL) in HBS contained varying amounts of 

nanoparticle preparation and 0.5 µg siCONTROL Tox siRNA corresponding to weight ratios of 

2:1, 3:1, 4:1, 5:1, 6:1, and 7:1 in lanes 2-7 respectively (A-C); and  3:1, 4:1, 5:1, 6:1, 7:1, and 8:1 

in lanes 2-7 respectively (D). Lane 1: naked siRNA. Arrows indicate endpoint ratios. 
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5.3.3 Ribonuclease A Digestion Assay 

Naked siRNA delivery to a target site may be compromised by degrading serum nucleases. Hence, 

delivery vectors that will not only bind but also protect the siRNA against such enzymes are vital. 

Following exposure to 10% RNase A, all NPs showed the ability to protect the siRNA across a 

range of tested ratios (Figure 5.7). This was not the case for the uncomplexed/naked siRNA as 

indicated by the absence of a band due to total degradation by the RNase.      
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Figure 5.7: Nuclease digestion assay of nanocomplexes. (A) G5D, (B) Au:G5D, (C) G5D:FA, (D) 

Au:G5D:FA. Control: naked siCONTROL Tox siRNA (0.5 µg) in the absence (+ = positive control) 

or presence (- = negative control) of RNase A. Lanes 1-3 contains nanocomplexes at sub-optimum, 

optimum and supra-optimum nanoparticle: siRNA ratios. (A) 4:1, 5:1, 6:1; (B) 4:1, 5:1, 6:1; (C) 5:1, 

6:1, 7:1; (D) 7:1, 8:1, 9:1 (w/w). Red colored numbers indicate optimum ratios. 
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Nanoparticle µg/µL 

Figure 5.6: Ethidium bromide displacement assay of (A) G5D, (B) Au:G5D, (C) G5D:FA, and  

(D) Au:G5D:FA nanoparticles. Arrows indicate point of complexation. 
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5.3.4 MTT Assay 

Biomedical applications of nano-scaffolds as gene delivery agents often involve deliberate, direct 

injection or ingestion into the body. These nano-scaffolds are often coated with bio-conjugates 

such as nucleic acids, polymers, antibodies and proteins for specific cell targeting. Hence, it is 

crucial to ensure that such enhancements are not detrimental to the cells (Lewinski et al., 2008). 

Therefore in vitro cytotoxicity evaluation of the nanocomplexes is an important aspect to consider 

before assessing their in vivo potential.   

The results presented in Figure 5.8, show some cell specific cytotoxicity as indicated by the 

differences in % cell viability in the various cell lines. There was no observable pattern/relation 

between the increasing N/P ratios of the nano-scaffolds and the level of cytotoxicity. There was 

no significant difference (p > 0.05) in cell viability between the tested cell lines, however when 

the nanocomplexes were compared to the control (cells only), a significant difference (p < 0.0001) 

in % cell viability is seen.  

The higher cell viabilities observed with the Au:G5D and Au:G5D:FA nanocomplexes ranging 

from 70%-90%, suggest that they were less toxic than the G5D and G5D:FA nanocomplexes (50%-

70%). This could be due to the presence of the biocompatible, non-immunogenic and non-

cytotoxic AuNPs, which reduces some of the amines of G5D (Shukla et al., 2005, Shan et al., 

2012, Lee et al., 2008), thereby reducing the cytotoxicity. Hence, the lower cell viability for the 

G5D and G5D:FA nanocomplexes might be due to the increased cationic charges on the G5D even 

after the inclusion of a targeting moiety, folic acid. These findings strongly suggest that the 

inclusion of the non-toxic, inert AuNPs in the formulation of these NP based gene delivery vectors, 

had a positive and favourable influence on cellular toxicity. 
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Figure 5.8 (A-B): Cell viability assay of the NP: siRNA nanocomplexes in HEK293, HepG2, Caco-2, and 

HeLa-Tat-Luc. Cells were incubated with nanocomplexes containing 0.67 μg siGENOME non-targeting 

control siRNA at indicated ratios (w/w). Nanocomplexes were prepared at sub-optimum, optimum and supra-

optimum ratios. Data are presented as means ± S.D. (n = 3). Control = untreated cells. ***p < 0.0001 when 

compared with the control. 
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5.3.5 Transfection and Competition Assay 

This study evaluated the ability of the nanocomplexes to efficiently deliver siRNA into the folic 

acid receptor positive HeLa-Tat-Luc cells. The HeLa-Tat-Luc cell line is a human cervical cell line 

which stably expresses the firefly luciferase gene (Daniels et al., 2013). The anti-Luc siRNA which 

targets the firefly luciferase mRNA was used to determine the level transfection activity of 

nanocomplexes indirectly, by measurement of gene knockdown. Results are expressed as RLU/mg 

protein and as a percentage of luciferase activity, relative to that of untreated control cells (Figure 

5.9 A-B).  

The experimental data revealed that all nanocomplexes successfully bound and compacted the 

siRNA into nanometer-sized globular particles small enough to be internalized by the selected 

cells, either by adsorptive non-specific or specific endocytotic pathways, depending on their 

formulation. Lower gene silencing efficiency (34%) was seen with the unprotected/naked siRNA.  

This was expected since, upon delivery into the cell, naked nucleic acid such as siRNA is subjected 

to enzymatic degradation (Elsabahy et al., 2011). The gene silencing elicited by all prepared 

nanocomplexes ranged from 42%-70%, with that of the Au:G5D:siRNA and Au:G5D:FA:siRNA 

nanocomplexes ranging between 50%-70%, while that for the G5D and G5D:FA nanocomplexes 

ranged between 42%-51%  (Figure 5.9B). These significant differences (p < 0.0001) in gene 

silencing efficiency could be due to many reasons. The weaker gene silencing efficiency observed 

for the G5D and G5D:FA nanocomplexes, could be due to the loss of the structural integrity of the 

dendrimer due to interaction with interfaces or solid surfaces (Xiao et al., 2013). Another reason 

could be due to poor dissociation between the siRNA and the cationic G5D due to their strong 

binding affinity. Earlier studies have demonstrated a direct correlation between the binding affinity 

of nucleic acids to cationic polymers and the transgene expression (Bettinger et al., 2001). These 

findings corroborate with studies conducted by Kang and co-workers, who associated unmodified 

and conjugated G5D with weak gene silencing efficiency (Kang et al., 2005). 

Moreover, the high significant gene silencing efficiency elicited by the test nano-scaffolds can be 

accredited to the presence of AuNPs entrapped in the 1o amines which have been reported to help 

preserve the morphological aesthetics of dendrimers, permitting efficient interaction with the 

siRNA (Shan et al., 2012).  
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These findings are in agreement with reports by Kolhatkar and coworkers on surface tailored 

PAMAM showing good cell membrane permeability and good delivery of siRNA into the targeted 

site (Kolhatkar et al., 2007). Recent studies by Shan et al. and Waite et al. have also demonstrated 

the effectiveness of internally modified and surface tailored G5D in gene silencing (Shan et al., 

2012, Waite et al., 2009). The highest gene silencing was observed at optimum ratios for all 

nanocomplexes. These findings correlate with previous reports suggesting a possible dependency 

of the siRNA-dendrimer complex’s gene silencing ability on the dendrimer generation, the siRNA 

concentration and w/w ratio (Patil et al., 2008).  

Additionally, to confirm that the uptake of the folate-targeted nanocomplexes was receptor-

mediated, a competition study was conducted where the FA-Rs overexpressed on the surface of 

HeLa-Tat-Luc cells were blocked with an excess amount of the free folic acid prior to transfection 

with the nanocomplexes. A significant (p < 0.0001) 30% drop in gene knockdown was seen (Figure 

5.10A-B) indicating that much of these nanocomplexes were endocytosed via FA-Rs (Zhang et 

al., 2015). Overall, these findings suggest that the Au:G5D and Au:G5D:FA  NPs  appear to be 

better siRNA delivery vehicles than the G5D and G5D:FA:siRNA NPs, a finding that correlates 

with the cell viability studies. 
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Figure 5.9 (A-B): Luciferase gene silencing using NP:siRNA nanocomplexes. HeLa-Tat-Luc cells were 

exposed to nanocomplexes constituted with 0.27 µg anti-Luc siRNA and varying amounts of nanoparticles 

at sub-optimum, optimum and supra-optimum ratios. Luciferase gene silencing is reported as RLU/mg 

protein (A), and as a percentage (B). Control 1= untreated cells. Control 2= cells + Anti-Luc siRNA. Data 

are presented as means ± SD (n=3). #p > 0.05, **p < 0.001 ***p < 0.0001.  
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Figure 5.10 (A-B): Competition studies of targeted NP: anti-Luc siRNA nanocomplexes. HeLa-Tat-Luc 

cells were exposed to excess folic acid (250 μg), then treated with nanocomplexes at optimum ratios. 

Luciferase gene silencing is expressed/reported as RLU/mg protein (A) and as a percentage (B). Data are 

presented as means ± SD (n=3). *p < 0.05, **p < 0.001, ***p < 0.0001.  
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5.4 Conclusion 

Both Au:G5D and Au:G5D:FA NPs were excellent siRNA delivery vehicles. Gel retardation and 

ethidium bromide dye displacement assays clearly showed their interaction with siRNA, regardless 

of internal/surface positive charges. They were able to form stable globular nanocomplexes which 

afforded excellent protection to the siRNA against RNase A. The modification of the surface 

amines of the dendrimers with the FA targeting ligand, and the internal modification with AuNPs 

served to produce a reduction of the cytotoxicity of the nanocomplexes (cell viability of up to 90%) 

and an increased siRNA induce luciferase gene silencing (up to 70%). In summary, we have 

demonstrated that Au:G5D and Au:G5D:FA NPs  have many of the ideal characteristics required 

for an efficient  siRNA delivery vehicle, and future studies would be needed to evaluate these NPs 

in vivo.  
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CHAPTER 6 

6 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 

 

6.1 Introduction and Aim 

Gene therapy promises to treat cancer by delivering therapeutic genes, drugs, and adjuvants into 

the tumours. Throughout the years, a variety of gene delivery treatment modalities (viral and non-

viral) have been advanced; however, their clinical application has been limited by high toxicity 

and low transfection efficiency. Although, non-viral vectors are low in toxicity, their transfection 

efficiency is questionable, prompting basic research in this area. Dendrimer stabilized metal 

nanoparticles have shown potential as efficient non-viral modalities. Metal gold nanoparticles 

(AuNPs) are the most promising non-viral delivery scaffolds, owing to their attractive properties, 

that presents a platform for the creation of vectors that could bind, condense, protect and deliver 

therapeutic drugs or genes to target sites with minimal toxicity. This study aimed at evaluating and 

optimizing the delivery efficiencies of functionalized AuNPs for three nucleic acids e.g. plasmid 

DNA (pDNA), messenger RNA (mRNA) and small interference RNA (siRNA) in vitro, to effect 

the required gene expression or silencing. The research undertaken involved the synthesis and 

functionalisation of AuNPs with a dendrimer (G5D) and targeting ligand (folic acid, FA); 

characterisation; nucleic acid binding assessment; enzyme protection studies; cytotoxicity 

evaluation; and gene expression and silencing efficiency.  

6.2 Overall Findings and Conclusion  

All nanoparticles were successfully formulated and confirmed by TEM, NTA, UV spectroscopy 

and NMR. NPs appeared spherical, well dispersed with mean diameter sizes ranging from 65-128 

nm, while their nanocomplexes displayed as clusters with sizes ranging from 100-200 nm. Gel 

retardation and dye displacement studies showed that both Au:G5D and Au:G5D:FA NPs were 

highly efficient in pCMV-Luc DNA, Fluc-mRNA, siRNA binding. They also formed stable 

nanocomplexes affording good protection to pDNA, mRNA and siRNA against nucleases, with 

high cell viability (>80%) and gene expression activity (up to 6 x 108 RLU/mg protein) especially 

for the mRNA nanocomplexes.  Overall, the gene expression and silencing efficiency of Au:G5D 

and Au:G5D:FA NPs was greater than that of G5D and G5D:FA NPs, indicating the important 
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and central roles played by both the dendrimer and the AuNPs in their design and formulation. 

Receptor-mediated delivery was confirmed by the competition assay, where transfection levels in 

the FA-receptor negative cell lines, were significantly lower (p < 0.001) than that in FA-receptor 

positive cell lines. Overall, we have successfully synthesized and demonstrated efficient gene 

delivery using dendrimer grafted gold nanoparticles and FA modified dendrimer grafted gold 

nanoparticles in vitro. 

 

6.3 Future Recommendations  

Studies to date have demonstrated the potential of gold nanoparticles in vitro, with issues that still 

need to be resolved before clinical applications. Proper investigation of AuNPs’ cytotoxicity in a 

wider panel of cell lines may be necessary,  including other detailed toxicological assessments, 

viz. oxidative stress, cell membrane damage, and genotoxicity evaluations. Furthermore, the cell 

specific targeting of AuNPs to minimize side effects, is important, necessitating the selection of 

suitable stabilizing and targeting moieties. Finally, issues of possible immune response will need 

to be extensively evaluated before these NPs can be tested in vivo. Nonetheless, AuNPs present a 

platform for the advancement of drug and gene delivery vectors that could be used for the treatment 

of cancer and other inherited disorders.  
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Appendix A 

Synthesis and Functionalisation  
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Figure A1: Schematic representation of the synthesis of folic acid conjugated PAMAM G5D. 
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UV-Spectroscopy 

 

 
 

 

 

 

200 250 300 350 400 450 500

0

1

2

3

4

5

6

A
b

s
o

rb
a
n

c
e

Wavelength (nm)

 

 

 

200 250 300 350 400 450 500 550 600 650 700

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
b

s
o

rb
a
n

c
e

Wavelength (nm)

Figure A3: UV- Spectra of (D) G5D, (E) G5D:FA NPs and (F) FA.  
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Figure A2: UV- Spectra of (A) AuNPs, (B) Au:G5D NPs and (C) Au:G5D:FA NPs. 
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1H NMR Spectroscopy 
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Figure A4: The structure of folic acid and 1H NMR spectrum. 
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Figure A5: The structure of PAMAM G5 dendrimer and 1H NMR spectra of PAMAM (G5) dendrimer and folic 

acid functionalised gold nanoparticles in D2O. (A) G5D:FA, (B) Au:G5D:FA, (C) G5D, (D) Au:G5D.  
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Nanoparticle Tracking Analysis-Nanoparticles (NPs) 
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Figure A6: ζ potential (mV) and mean size (nm) images of NPs (A) AuNPs, (B) Au:G5D, (C) 

Au:G5D:FA, (D) G5D, and (E) G5D:FA. 
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Nanoparticle Tracking Analysis of pDNA Nanocomplexes 
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Nanoparticle Tracking Analysis of mRNA Nanocomplexes 
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Figure A7: ζ potential and mean size images of nanocomplexes (A) Au:G5D, (B) Au:G5D:FA, (C) 

G5D, and (D) G5D:FA prepared at optimum ratios (w/w). 
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Figure A8: ζ potential and mean size images of nanocomplexes (A) Au:G5D, (B) Au:G5D:FA, (C) 

G5D, and (D) G5D:FA prepared at optimum ratios (w/w). 
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Nanoparticle Tracking Analysis of siRNA Nanocomplexes 
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Figure A9: ζ potential and mean size images of nanocomplexes (A) Au:G5D, (B) Au:G5D:FA, (C) 

G5D, and (D) G5D:FA. 
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