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ABSTRACT 

This dissertation consists of two main sections. The first is a review of laser resonators 

using spherical mirrors, and incorporates a physical optics numerical model of a Fabry-Perot 

laser resonator without gain. The output of this model, which includes spot sizes, loss, and 

transverse mode formation, is compared to the parameters calculated using published analytical 

results. This comparison serves as a verification of the numerical methods used, as well as a 

frame of reference for the model of a Porro prism resonator which follows in the second section. 

The second section proposes a new method for analysing Porro prism resonators. The 

analysis incorporates both geometric as well as physical optics concepts, with the prisms 

modelled as rotating elements with amplitude and phase distortions. This yields expressions for 

the orientation of the loss at the apex of each prism, and as well as the number of petals in the 

“petal-pattern” beam structure commonly observed from Porro prism lasers. These expressions 

are included in a numerical model, which is first used to verify the development of the 

characteristic petal-pattern. Next, the numerical model is used to investigate the development of 

the beam structure, in both time and space, in crossed Porro resonators with a range of Fresnel 

numbers and stability parameters. This leads to some new insight into the transverse modes of 

these lasers. 
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1. INTRODUCTION 

The theory of the stimulated emission of radiation from atoms and molecules, as opposed 

to spontaneous emission, was proposed in 1917 by Albert Einstein. In 1958 the principles of 

amplification of light were published by Arthur L. Schawlow and Charles H. Townes, and 

contained the idea of arranging mirrors at each end of a cavity containing a substance that could 

be excited to emit light, the gain medium. The mirrors would bounce the light back and forth so 

that all the photons would be moving in the same direction. The first laser, an acronym for Light 

Amplification by the Stimulated Emission of Radiation, was built in 1960 by Theodore Maiman 

of the Hughes Aircraft Company (Friedman 2000). It consisted of a flashlamp-pumped ruby 

crystal, with the ends of the crystal silvered to serve as the mirrors of the first laser resonator. 

Since then lasers have proven to be a powerful tool with a broad range of applications from 

barcode scanners to nuclear fusion. Their usefulness stems from their ability to generate very 

high radiation density at remote distances with high precision. 

The simplest type of resonator, the planar Fabry-Perot resonator, consists of two plane 

parallel mirrors separated by some distance. It is extremely difficult to trap light in this way; if 

the mirrors are not perfectly parallel then a beam of light between them will tend to “walk off” 

the mirrors and escape at the edges. One way to contain light between two mirrors is to put 

curvature on one or both mirrors, which, within certain limits (which will be discussed), causes 

light to be reflected towards the optical axis. This relaxes the alignment tolerances sufficiently 

to allow lasers to be constructed using even low-gain media, which require a beam to make 

many round trips through the gain medium in a resonator. 

Another approach to dealing with the problem of beam walk-off is to replace the end 

mirrors of a resonator with Porro prisms, named after the Italian Ignazio Porro, who invented 

them in 1850. Porro prisms are right-angled prisms, and reflect a ray back parallel to its initial 

direction even when the Porro prism is misaligned. This property has been shown to be very 

useful in the design of lasers intended for field use, or in environments where re-alignment is 

impractical. One exotic example is a Porro prism laser that was an integral component of the 

MOLA laser altimeter which was sent on an unmanned mission to Mars in 1992. Porro prism 

lasers have also been used extensively for over 30 years in ranging and target designation 

systems, primarily for the military. 

Previously the Porro prisms making up a Porro prism resonator have been treated as plane 

mirrors, albeit by taking into account the effects of Porro prisms on the polarisation of light. 
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This accounts for some of their characteristics, for example that the amount of light coupled out 

of the resonator can be optimised by changing the azimuthal angle between the prisms, but this 

approach does not explain the characteristic beam structure which is evident in the laboratory. 

What is typically observed is that as the azimuthal angle is varied the beam structure changes, 

having the appearance of a circular pattern of areas of high intensity with low intensity between 

them at some angles, and a flatter intensity profile with a low intensity area in the centre at other 

angles. This is illustrated in Figure 1 by images of beams from a Nd:YAG Porro prism laser 

captured on a CCD camera in the laboratory. 

 

Figure 1 Typical beam intensity distributions from an Nd:YAG Porro 
prism laser. 

The aim of this dissertation is to attempt to explain the beam patterns obtained from Porro 

prism resonators by means of an analysis of the field in this kind of resonator, and then to verify 

this by means of a numerical model as well as by experiment. 

This dissertation is divided into the following chapters: Preliminary work consists of a 

review of fundamental laser theory in the balance of Chapter 1. A numerical model of Fabry-

Perot resonators is presented in Chapter 2, the results of which are compared to theoretical 

predictions and is used to validate the modelling methods used. A review of literature on Porro 

prism lasers is presented in Chapter 3, followed by a discussion of the properties of these 

systems. Our research is presented in Chapter 4, which includes an analytical and numerical 

model of a Porro prism resonator which for the first time predicts the beam mode structure 

produced by these resonators. The beam modes predicted by this model are verified 

experimentally. The conclusions and suggestions for further work are in Chapter 5. 
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1.1 Review of relevant theory 

Laser beam and resonator theory is covered in numerous excellent textbooks. A 

comprehensive review article (Kogelnik & Li 1966), as well as two textbooks (Siegman 1986; 

Hodgson & Weber 2005) were referred to in this section. All other references are noted. 

The basic properties of resonators are determined from the first-order properties of the 

system using ray transfer matrix analysis, which is a purely geometrical approach; although the 

ray matrix approach can be extended to describe a general optical beam (Belanger 1991). 

A paraxial ray of an optical system is characterized by its distance x from the optic (z) 

axis and by its slope x' with respect to that axis. The slope x' is assumed to be small. The path of 

the ray through a given optical component depends on the optical properties of the component 

as well as on the input conditions. For paraxial rays the output quantities x1 and x1' are linearly 

dependent on the input quantities (x0, x0'), represented in matrix form by: 

















=









'' 0

0

1

1

x

x

DC

BA

x

x
                   (1-1) 

where the matrix 








DC

BA
 is the ray transfer matrix of the optical component. 

Table 1 gives the ray transfer matrices of a few optical components.  

Table 1 The Ray Transfer Matrices of three elementary optical 
structures in air. 

Optical component Ray Transfer Matrix 

a homogeneous medium of length d 










10

1 d
 

a thin lens, focal length f 










− 1/1

01

f
 

a spherical mirror, radius of curvature R 










− 1/2

01

R
 

 

A sequence of optical components can be handled in the following manner: 
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Figure 2 Diagram of a ray passing through a sequence of optical 
components. 

Suppose an input ray r0 passes through two optical components with ray transfer matrices 

M1 and M2 respectively, as shown in Figure 2. The first component transforms r0 as: 

011 rMr = .                    (1-2) 

r1 is now the input ray to the second component and gets transformed as: 

    012122 rMMrMr == . 

In general, the ray transfer matrix of a ray passing through n optical components is given by: 

1231... MMMMMM nn −=                   (1-3) 

If 







=

DC

BA
M  is the transformation matrix of a resonator, and r0 is any first-order ray with 

position y and slope y′:  







=

'0 y

y
r . 

After one round trip through the resonator the ray is transformed as 

 0rMr =        (1-4) 

After p passes through the resonator the final ray can be found from: 

0rMr p
p = .       (1-5) 

This can be simplified using an eigenfunction analysis: 

Eigenvectors v1 and v2 exist which form a complete, orthogonal set, so coefficients of expansion 

β1 and β2 can be found such that any initial ray r0 can be expressed in terms of the eigenvectors: 

22110 vvr ββ +=                   (1-6) 
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so     222111 vvr pp
p λβλβ += .                 (1-7) 

Scalar eigenvalues λi can be found which satisfy the eigenequation: 

rrM λ=                     (1-8) 

or     0=− λIM .                             (1-9) 

A non-trivial solution (for eigenvectors v ≠ 0) only exists if 0)det( =− λIM  

or      0=
−

−
λ

λ
DC

BA
 

which using AD – BC = 1 (assuming n2/n1 = 1) gives the quadratic equation: 

      01)(2 =++− λλ DA .               (1-10) 

Letting      
2

DA
m

+=  ,                 (1-11) 

we get eigenvalues   12
2,1 −±= mmλ .                (1-12) 

Values of 1≤m  give 1≤λ , which by (1-12) means that r remains bounded for all p. 

Therefore a paraxial ray in a resonator will be periodically refocused, and the resonator is stable. 

This stability condition can be written as 

1)(1 2
1 <+<− DA .    (1-13) 

For a stable resonator (1-12) can be rewritten as 

      2
2,1 1 mim −±=λ ,                (1-14) 

and in this case λ1,2 is a complex number with multiple cyclic solutions, so: 

letting θcos=m ,    θθθλ iei ±=±= sincos2,1 .               (1-15) 

By (1-7) this implies that any ray rp will exhibit oscillatory behaviour.  

The eigenvectors can be found by forming the modal matrix 

[ ]
2

1
, 21 λ

λ
λ λλ −−

−−
=−

AC

BD
IMadj  
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so     








−
−

=
C

D
v 1

1

λ
 and 









−
−

=
2

2 λA

B
v .               (1-16) 

After a sufficient number of passes p through a resonator the term with the largest eigenvalue 

will dominate, and  

j
p

jjp vr λβ→  as ∞→p                     (1-17) 

where λj is the larger of eigenvalues λ1 and λ2. 

 

A real resonator will always contain a limiting aperture of radius a, which might be the 

laser rod, a cavity mirror, or an iris placed in the resonator. The limiting aperture radius a is 

another important parameter of a resonator because it defines the transverse extent available to 

the laser beam. 

 

The laser beam that emerges from a resonator can be characterized by its mode, or the 

distribution of intensity in a plane at a point along its path, and is given as some function 

),( yxI . The total power in a continuous beam can be calculated from: 

( )dxdyyxIPtot ∫ ∫
∞

∞−

∞

∞−

= , .               (1-18) 

A normalised beam is defined as one with unit power, or 

( ) 1, == ∫ ∫
∞

∞−

∞

∞−

dxdyyxIPnorm .               (1-19) 

A propagating laser beam which encounters an aperture of radius a will be clipped, and 

the laser power Pa transmitted through the aperture can be calculated: 

( ) θ
π

θ

rdrdrIP
a

r

a ∫ ∫
= =

=
0

2

0

               (1-20) 

and the fraction of laser power transmitted T can be found from: 

     
tot

a

P

P
T = .                 (1-21) 
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A related parameter useful in estimating the output power from a laser is the round-trip 

diffraction loss, V, defined as: 

     
0

11
P

P
V −=                  (1-22) 

where P0 is the initial power, and P1 is the power remaining after one complete round trip 

through a resonator. 

 

The simplest laser resonator is the Fabry-Perot resonator, which comprises two mirrors 

with spherical curvatures of radius R1 and R2 respectively, separated by some distance L, as 

shown in Figure 3. Typically one mirror reflects 100% of the incident light, and the other is 

partially reflecting, allowing a certain percentage of the laser beam to be coupled out of the 

resonator as the useful beam. 

 

Figure 3 Fabry-Perot resonator with spherical mirrors. 

For the Fabry-Perot resonator illustrated in Figure 3 the ray transfer matrix is: 
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From (1-13) this leads to the stability condition for a Fabry-Perot resonator: 

1110
21

<







−








−<

R

L

R

L
    (1-24) 

Defining the stability parameters g1 and g2 to be:  
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1
1 1

R

L
g −=  and 

2
2 1

R

L
g −= ,     (1-25) 

then a resonator is stable if 

10 21 << gg .     (1-26) 

For a resonator with no apertures the equivalent G-parameter is defined: 

12 21 −≡ ggG                (1-27) 

and is the first of the two fundamental parameters of a generalised resonator used to characterize 

and compare resonators.  

Because of the symmetry of any mirror-aperture or lens-aperture configuration, the 

second important parameter of generalized resonators is the effective Fresnel number, defined 

as: 

     
L

a
NF λ

2

= ,                 (1-28) 

and is determined by the propagation distance from one encounter of the limiting aperture to the 

next (L), as well as the limiting aperture radius a. Resonators with the same Fresnel number and 

wavelength will have equivalent diffraction properties because the ratio of cross-sectional area 

to length is the same. 

This implies that the resonator configurations in Table 2 are equivalent, because G and NF are 

identical for each. 

Table 2 Three equivalent resonators. Note that for all three the 
G-values, as well as the NF values, are identical. 

Parameter Units Resonator 1 Resonator 2 Resonator 3 

λ µm 1.064 1.064 1.064 

L cm 10 20 100 

R cm 40 80 400 

G - 0.75 0.75 0.75 

a cm 0.045 257 0.064 002 0.143 114 

NF - 1.924 95 1.924 95 1.924 95 
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Because the ray transfer matrix of a curved mirror with radius R is identical to that of a 

lens with focal length R/2 (or to two lenses with focal length R), the behaviour of a beam in a 

resonator is equivalent to the beam passing through an infinite series of lenses a distance L 

apart. Figure 4 shows the “dual” or equivalent resonator to Figure 3. The mirrors in Figure 3 are 

replaced by lenses with focal lengths f1 = R1 and f2 = R2 as shown in Figure 4. The two 

resonators are equivalent, the only difference being that the ray pattern is folded in Figure 3 and 

unfolded in Figure 4.  

 

Figure 4 Equivalent resonator of Figure 3, with lenses and flat mirrors. 

For comparison, the ray transfer matrix of the unfolded resonator in Figure 4 is: 
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which is equal to Eq. (1-23) when f1 = R1 and f2 = R2. 

 

A geometrical or ray transfer approach is useful to quantify the degree of stability of a 

resonator but does not predict the intensity distribution of a laser beam. The most common and 

useful beam produced by a real laser has a Gaussian intensity profile. This is illustrated in 

Figure 5, and has the form: 


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where  P is the total power in the beam, and is the same at all cross sections of the beam, and 

ω is the size of the laser beam and is defined as the radius at which the beam irradiance 

(intensity) has fallen to 1/e2 (13.5 percent) of its peak value (see Figure 5). 

 

Figure 5 A Gaussian beam profile showing the beam radius ω. 

Many lasers are designed to produce a beam with a Gaussian intensity profile (see Figure 

5), which has characteristic propagation properties. At some point along the axis of propagation 

(usually denoted z = 0) the beam has the smallest transverse extent, known as the waist, which is 

also the point at which the wave front is planar.  

 

Figure 6 Propagation of a Gaussian laser beam. 

Diffraction causes light to spread transversely and causes the wavefronts to acquire curvature as 

they propagate (see Figure 6) according to:  
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and     
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
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

+=
2

1)(
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zzR R                 (1-33) 

where  z is the distance propagated from the plane where the wavefront is flat,  

ω0 is the radius of the 1/e2 irradiance contour at the plane where the wavefront is flat,  

λ
πω 2

0=Rz  is the Rayleigh range, 

ω(z) is the radius of the 1/e2 contour, and  

R(z) is the wavefront radius of curvature after propagating a distance z.  

If z = 0 marks the position of the waist (and the place at which R(z) is infinite), then as the beam 

propagates R(z) passes through a minimum at some finite z = zR, and rises again toward infinity 

as z increases, and asymptotically approaches the value of z itself. 

 Simultaneously, as R(z) asymptotically approaches z for large z, ω(z) asymptotically 

approaches the value : 

0

)(
πω
λω z

z =                  (1-34) 

where z is much larger than 
λ

πω0  so that the 1/e2 irradiance contours asymptotically approach a 

cone of angular radius : 

0

)(

πω
λωθ ==

z

z
.                (1-35) 

This value is the half-angle divergence of the Gaussian TEM00 beam and is a measure of the 

divergence or spread of the beam with distance. 

 

Using the steady-state condition that the radius of the phase front of the beam must be 

identical at an arbitrary but defined plane in the resonator reveals the property that the intensity 

distribution is identical at that plane after every round trip, and that this distribution is an 

eigenmode of the resonator. In a resonator with no apertures there are infinitely many 

eigenmodes, and these are referred to as transverse electromagnetic (TEM) resonator modes.  
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Figure 7 Diagram of a stable Fabry-Perot resonator. 

The lowest order, or “fundamental” transverse mode, TEM00, is a Gaussian beam, and has 

a waist of radius ω0,, defined to be the minimum radius of the beam. For the Fabry-Perot 

resonator illustrated in Figure 7 the waist is located at a distance z1 from mirror 1 on the optical 

axis and a distance z2 from mirror 2.  

The waist size is given by: 
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Using Gaussian propagation within the resonator gives the spot sizes on each mirror: 
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The higher-order eigenmodes can take the forms either of Hermite-Gaussian functions 

(Lukš 1976; Bekshaev 1999) in rectangular coordinates, or of Laguerre-Gaussian functions 

(Wang & Stephan 1991; Arlt et al. 2001; Webb & Jones 2004) in cylindrical coordinates. The 

Hermite-Gaussian modes are denoted by TEMnm, where n is the order in the x-direction and m is 

the order in the y-direction, and have an intensity distribution of the form:  
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The Hermite polynomials can be found using (Stevens 1963; Kimel & Elias 1993): 
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The first few Hermite polynomials are given: 
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Figure 8 Hermite-Gaussian mode patterns: TEM00, TEM10, TEM11, 
TEM21. 

Figure 8 shows transverse mode patterns for Hermite-Gaussian modes of various orders. Notice 

that the transverse extent of the modes increases with order. 
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Figure 9 Illustration of radius x5 of higher-order mode I5m, as 
compared to the Gaussian spot size ω 

The spot sizes of higher-order modes in rectangular coordinates can be approximated by: 

nn ωω =    and   mm ωω =                    (1-43) 

where  ω is the spot size of the corresponding TEM00 mode and m and n are the orders of the x- 

and y-modes respectively. 

This allows us to determine which higher-order modes will pass through an aperture of radius a, 

namely those indices given by 

    .
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The eigenmodes can also be equivalently expressed in cylindrical coordinates using 

Laguerre functions. A Laguerre-Gaussian beam (Padgett et al. 1996) is given by: 









−


































=

2

2
2

2

2

2

2

0 2exp22)(
ωωω
rr

L
r

IrI l
p

l

.              (1-45) 

The Laguerre polynomials Ll
p(x) are the solutions of the differential equation 
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Some polynomials of low order are 
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Figure 10 shows Laguerre-Gaussian modes of various orders. 

 

Figure 10 Laguerre-Gaussian mode patterns: L0
0, L1

1, L2
2, L3

3. 

Using Eqs. (1-21) and (1-31), the transmission of a Gaussian beam passing through a circular 

aperture is given by: 
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The transmission of several low-order transverse mode intensity profiles was calculated 

using Eqs. (1-21) and (1-39) as a function of the aperture radius a, and is shown in Figure 11.  

 

Figure 11 Transmission values for several TEMnm modes as a 
function of the aperture size. The resonator was modelled with G = 
0.75. The vertical lines represent a = 2ω1, a = 2.5ω1, and a = 3ω1 

respectively. 
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Figure 11 illustrates the property of Fabry-Perot resonators that the higher-order modes 

are larger in transverse extent than lower-order modes, so for any aperture radius a it is clear 

that the Gaussian or TEM00 mode has the highest transmission (or lowest loss), and that the 

higher-order modes have successively lower transmission values (or higher losses). Therefore 

any aperture inside a resonator will introduce losses which discriminate against higher-order 

transverse modes and favour the lower-order modes (Smith 1972). This effect can be used in a 

resonator to discriminate against high-order modes and limit a beam to low-order modes (Blows 

et al. 2000). The higher losses of higher-order modes in a resonator also implies that given 

sufficient time the output beam will converge to the fundamental or Gaussian mode. 

Spontaneous emission and the reseeding of higher-order modes in a real laser limits the degree 

of convergence, however.  

 

Some resonators do not produce Hermite-Gaussian (or Laguerre-Gaussian) eigenmodes. It is 

however also possible to characterize the size and propagation properties of any arbitrary non-

Gaussian beam using the Second-Moment method, which is also the basis of the so-called “M-

squared” method for characterizing laser beams (Siegman 1998). This formulation starts by 

evaluating the second moment of the beam intensity profile I(x, y) across the rectangular 

coordinate x (or alternatively across the y coordinate) in the form 

( ) ( )
( )dxdyyxI

dxdyyxIxx
x

∫

∫
∞

∞−

∞

∞−
−

=
,

,2
02σ    (1-49) 

where x0 is the centre of gravity of the beam.  The second moment propagates according to 

( ) ( )2
0

22
0

2 zzz xx −×+= θσσσ    (1-50) 

where  σx0 is the variance at the beam waist;  

σθ is the variance of the angular spread of the beam departing from the waist; and  

z0 is the location of the beam waist along the z axis.  

This quadratic propagation dependence holds for any arbitrary real laser beam, whether it is 

Gaussian or non-Gaussian. 

Considering the x-component of (1-31), the beam spot size parameter ωx is just twice the 

variance, i.e. ωx ≡ 2σx. Therefore for any arbitrary beam it is convenient to adopt the spot-size 

or beam-width definitions: 
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xxW σ2≡      (1-51) 

where (capital) W is the general beam width notation for arbitrary real beams, with this 

definition being coincident with the Gaussian beam parameter ω for ideal Gaussian beams. The 

second-moment-based beam width Wx defined above will then propagate exactly like the 

Gaussian spot size ω(z) of an ideal Gaussian beam, except for the insertion of an M2
 

multiplication factor in the far-field spreading of the beam. This leads to the second-moment 

width definitions 
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   (1-52) 

where Mx is a parameter characteristic of the beam.  

As a result, using these definitions one can write the near-field far-field product for an arbitrary 

beam in the form 

 ( )
π
λz

MzWW xxx ×≈× 2
0 .    (1-53) 

The parameters Mx
2 and My

2 give a measure of the “quality” of an arbitrary beam. General 

properties of these M2 values include: 

• The values of Mx
2 and My

2 are ≥ 1 for any arbitrary beam profile, with the limit of M2 ≡ 1 

occurring only for single-mode Gaussian beams 

• The M2 values evidently give a measure of “how many times diffraction limited” the real beam 

is in each transverse direction. 

Arbitrary real laser beams can then be fully characterized by exactly six parameters, namely 

W0x, W0y, z0x, z0y, Mx
2 and My

2. 

 

 

There are a number of methods or algorithms for measuring the beam diameter (Wright et 

al. 1992), for example the slit scan method (Chapple 1994), variable aperture method, knife-

edge scan method, and second-moment method (Siegman 1993; Champagne & Bélanger 1995; 

Siegman 1998). All the methods are reliable for perfect Gaussian beams but suffer from various 

errors when applied to non-Gaussian beam shapes. The second moment method is a standard 

method of measuring beam width when using 2D beam profile data (e.g. CCD cameras). This 

method has difficulties in implementation since noise in the wings of the beam contributes 
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excessive errors, resulting in deviations in the beam width calculation. This can be avoided by 

mathematically eliminating any noise. 

The second-moment method requires the acquisition of a complete array of beam 

intensities using a raster-scanned pinhole or a CCD camera (Roundy 2008). For simplicity, it is 

assumed that the beam profile for the measurement of the beam diameter is acquired as a 

256x256 square pixel array. Then, the first order linear moments xc and yc (the beam centroid 

coordinates) are given by: 

∑= 256
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P
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H
c  and ∑= 256

1
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1
yxyP

P
y

H
c                (1-54) 

where  P(x, y) is the local intensity at each pixel site and PH is given by: 
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By calculating the second moments about the centroid, beam widths can be determined as 
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The beam radii are given by 

   
cx xW 22=  and 

cy yW 22= .                        (1-57) 

This approach was used to verify the beam-size values calculated by the GLAD optical 

modelling program.  
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2. ANALYSIS AND NUMERICAL MODEL OF 

FABRY-PEROT RESONATORS 

2.1 Introduction 

The temporal development of the transverse modes of simple Fabry-Perot resonators was 

studied using a numerical model. The temporal behaviour of the spot size, beam quality factor 

(M2) and loss is presented, and the values of these parameters given by the numerical model are 

compared with those from analytical models. The mode patterns from the numerical model are 

compared with the patterns predicted for stable Fabry-Perot resonators. Agreement between the 

numerical model and analytical models lends credibility to this method of modelling a laser 

resonator.  

In the analysis that follows a symmetrical resonator with two spherical mirrors of radius 

R1 = R2 = R separated by a distance L, and with two clear apertures of radius a located at the 

mirrors, was modelled for simplicity. The formalism is easily extended to the asymmetric case 

where R1 ≠ R2. A schematic representation of a symmetrical stable Fabry-Perot resonator is 

shown in Figure 12. 

 

Figure 12 Symmetric Fabry-Perot resonator. 

As noted in Section 1-1, any chosen stable resonator is equivalent to any other with the 

same values of the equivalent G-parameter and effective Fresnel number when considering 

resonator stability, beam modes and loss. For the special case of a symmetric Fabry-Perot 

resonator with both mirrors apertured the equivalent G-parameter is given by (Hodgson & 

Weber 2005, p.267-270): 
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21 ggG == ,                   (2-1) 

and the effective Fresnel number is given as in Eq. (1-28) by: 

LaNF λ/2=                     (2-2) 

In the following models and calculations the resonator length L was kept at 10 cm, and the 

mirror radius R and clear aperture radius a were varied. Resonators with the effective G-

parameters G = -0.111, G = 0.5, G = 0.75, G = 0.833, G = 1.0 were modelled, with NF values 

between 1.5 and 18. 

2.2 Numerical model of a Fabry-Perot resonator 

A physical optics numerical model based on the propagation of optical beams, which are 

represented by the complex amplitude of the optical wavefront, through optical components was 

developed for a symmetric Fabry-Perot resonator to simulate a beam travelling between two 

mirrors, from laser switch-on and over any number of round trips1 (Lawrence 1987; Lawrence 

1991; Vtorova et al. 1991; Siegman 2000). A single beam was defined on a full-width field of 

0.3 cm in a 256 x 256 array. The resonator was comprised of two spherical end mirrors of radius 

R, which were separated by a distance L. In the model, apertures located at the mirrors defined 

the clear or limiting aperture a of the resonator. In an actual resonator, if no aperturing 

components are included in the resonator, then the limiting aperture would be the radius of the 

component which limits the transverse extent of the beam, typically the laser rod or mirror 

mounts. The resonator contained no gain medium, and the mirrors were taken to reflect 100% of 

the radiation, so that the only losses considered were the losses at the mirror apertures. The 

initial beam was randomly generated noise, and the gain was simulated by recording and then 

resetting the energy to unity after each round trip, giving the loss per round trip due to 

diffraction only. A wavelength of 1.064 µm was used, since the models would be compared to a 

laboratory Nd:YAG laser. A diagnostics subroutine characterised the beam, and on each round 

trip the aperture size, spot sizes and the beam quality or M2 in the x- and y-directions as well as 

the loss were written to a text file for analysis. The beam pattern was recorded after each round 

trip in order to visualise the changes in intensity distribution; it proved useful to record 

sequences of beam patterns at various stages of mode development. 

The following data is typical of that obtained from the numerical model, and the temporal 

behaviour of parameters like spot size, M2, loss, and mode structure can be used to characterise 

                                                 
1 The GLAD code is given in Appendix 7.1.  
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a resonator. The specific resonator with L = 10 cm, R = 40 cm, and clear aperture radius a = 

0.056 cm was modelled, and some pertinent results are presented.  

 

Figure 13 shows the spot size ω as a function of the number of round trips p, so also as a 

function of time. The spot size ωx (component in the x-direction) is shown, but the modes are 

radially symmetrical, so the y-values are identical. The spot sizes ωx and ωy are calculated with 

the second moment method described in Section 1.1. 

 

Figure 13 Spot size ω (x-direction) as a function of the number of 
round trips p. 

Initially, when the beam is simply apertured noise, the spot size is large and comparable 

to the aperture radius. As the beam traverses several passes through the resonator the more 

divergent elements of the beam are apertured and absorbed, and the spot size is confined 

between an upper and lower bound. The spot size changes on each round-trip between these 

bounds, and the spot size converges to ω = 0.022631 cm, which is within 0.01% of the 

theoretical value (using Eq. 1-28), after approximately 4000 round trips. The oscillation of the 

spot size between an upper and a lower bound can be understood as the transfer of the beam 

energy between low-order transverse modes. When the data is expanded along the p-axis 

sufficiently to view the point-to-point behaviour, a periodic structure is evident.  
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Figure 14 Change of amplitude of pattern with the number of round 
trips p. 

The same pattern is observed at all points along the p-axis, but the magnitude of the 

pattern decreases between the upper and lower bounds towards convergence, when the pattern 

disappears. This can be seen in Figure 14, where the amplitude of the periodic pattern is shown 

near 500, 2000 and 4000 round trips through the resonator. 

 

Figure 15 shows the behaviour of the beam quality factor, M2, as a function of the number 

of round trips, or with time, after switch-on. 

 

Figure 15 M2 (x-direction) as a function of the number of round trips p. 

The behaviour of M2 shows a similar pattern to that of the spot size ω, namely that the 

value is initially high before any mode structure is evident, and then decreases by oscillating 

within bounds until it converges at about 4000 round trips. M2 converges to a value of 1.07, 

which is close to the M2 value of 1 for a Gaussian beam (see Section 1.1 on page 17). 

 

Figure 16 shows the round-trip diffraction loss as a function of the number of round trips 

p. The loss was calculated by noting the amount of energy lost from the beam after one round 

trip through the resonator as a percentage of energy before the round trip. Note again that in the 
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simulation the energy does not continuously decrease with each round trip but is re-normalized 

to unity after the loss calculation, and also that any absorption losses or loss due to radiation 

coupled out of the resonator are not included. 

 

Figure 16 Loss as a function of the number of round trips p. 

The loss is initially high corresponding to the absorption of the non-axial elements of the 

beam as the beam is apertured at successive mirrors. It decreases within narrow bounds and 

converges to a value of 0.0011% after approximately 4000 round trips. The loss too exhibits an 

oscillatory behaviour, the pattern and period of which remains throughout the history of the 

beam, although the amplitude decreases with time as the beam converges. 

The graphs of the spot size ω, M2 and loss all show an oscillation of a fixed pattern and 

period (although decreasing in amplitude in each case). A close inspection of the mode after 

each round trip reveals the significance of the pattern. 

 

Figure 17 Mode structure after successive round trips, showing 
correspondence to spot size. 

Figure 17 shows the mode at the first mirror after each round trip after 1000 round trips, 

and how each successive spot corresponds to a point on the oscillatory pattern. The pattern of 

modes repeats every 13 round trips, as suggested by the detail of the plots of spot size, M2 and 

loss.  
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Figure 18 Series of beams, one per round trip, at several points in the 
evolution of the mode. 

Figure 18 shows the series of 13 round trips at several different moments in time along 

the evolution of the mode pattern. After 100 round trips the nature of the spot size oscillation 

becomes clear – there is clearly a mixture of TEM00 (Gaussian) and TEM10
* (doughnut) modes, 

and there is a significant change in the spot size from one round trip to the next. The largest 

mode pattern (g) is a doughnut mode, with the intensity at the centre dropping to zero. Alternate 

spots ((b), (d), (f), (h), (j) and (l)) have a Gaussian distribution pattern. At around 500 round 

trips the series of modes still shows a large variation in spot size, but the centre of mode (g) is 

no longer zero. The series at 1000, 2000 and 4000 show a progressive convergence to a constant 

Gaussian mode. 

Pioneering work on the numerical modelling of resonators was done in order to study the 

losses associated with low- and higher-order transverse modes in stable Fabry-Perot resonators, 

which shows that higher-order modes experience increasingly higher losses (Fox & Li 1961; 

Fox & Li 1963; Fox & Li 1968). This leads to the tendency of a beam consisting of high-order 

modes to converge to lower-order modes. Also pertinent are studies in which the fractions of 

higher-order modes are measured, and the periodic oscillation of intensity in a CO2 TEA laser 

with a Fabry-Perot resonator is found to be caused by competing modes (Martinez et al. 1997; 

Encinas-Sanz et al. 1999). 

Figure 19 shows how the size of the intracavity apertures affects the rate of convergence 

of the mode structure. An aperture value of a = 2ω exhibits convergence after about 200 round 

trips; a = 2.5ω converges after about 4000 round trips, and the a = 3ω case had still not 

completely converged after 30000 round trips. 
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Figure 19 Spot size ω (x-direction) on the mirrors as a function of the 
number of round trips p for aperture values a = 2ω (yellow), a = 2.5ω 

(purple), a = 3ω (blue). 

Figure 19 suggests that soon after switch-on a beam oscillates between a number of 

higher-order transverse modes, and that after a sufficiently large number of passes the mode 

converges to the TEM00 or Gaussian mode. The number of passes required for convergence 

depends on the clear aperture radius a; the larger the aperture and consequently the effective 

Fresnel number NF, the slower the beam converges to the Gaussian mode. 

This trend of slower convergence with increasing NF was found to hold for every 

resonator studied and can be explained by greater discrimination against the higher-order modes 

in all resonators, but which is more pronounced in resonators with smaller apertures and 

correspondingly lower values of NF. 

2.3 Verification of numerical model 

Analytical models which necessarily make certain assumptions and approximations are 

routinely used to calculate resonator parameters. In this section a brief discussion of each 

expression derived from a widely accepted analytical model is followed by a comparison 

between the results obtained for the analytical method and the numerical method to validate the 

results given by the numerical model. 

The analytical expressions for the waist radius ω0 (Eq. (1-36)) and beam radius at the 

mirrors, ω1 and ω2 (Eq. (1-38)) are derived from the propagation path of a Gaussian beam in a 

resonator. The mirrors are assumed to be effectively infinitely large, and the model includes no 

edge effects. The numerical model, on the other hand, is the repetitive propagation of the beam 

through a resonator as a complex wave function, and includes diffraction.  
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Table 3 Comparison of beam sizes calculated analytically and 
with a GLAD numerical model. 

 ω 0 ω 1 = ω 2 

G (cm) (cm) 

 Analytical Analytical GLAD 

-0.111 0.012307 0.018461 0.018593 

0.75 0.021167 0.022628 0.022631 

0.833 0.023699 0.024753 0.024944 

 

The beam waist radii ω0 were not calculated explicitly in the numerical model; the values 

given were calculated analytically. Analytical values of the spot size on both mirrors ω1 = ω2 

(for a symmetrical resonator) were calculated, and compared to the value to which ω1 converges 

in the numerical model. The values are found to differ by typically less than 0.7%, and the 

agreement is good. 

Since the apertures are located at the mirrors where the beam size is ω1 (or ω2), and 

noting (Eq. (1-22) and Eq. (1-48)) that T00 (and therefore V) is a function of 
1ω

a only, the round-

trip loss of a Gaussian beam (T00) over two passes (or one round trip) through any resonator 

(with -1 < G < 1) was calculated analytically for 
1ω

a = 2, 2.5 and 3 respectively. These values are 

shown in the first row of Table 3. 

The loss values from the numerical model were found not to be independent of G, so 

three values of G were used, namely G = -0.111, 0.75 and 0.833 respectively. The numerical 

model values are those of a converged diffractive beam passing through apertures with the same 

1ω
a -values as used in the analytical calculation.  

The agreement between the analytical and numerical results is not good, with 

significantly higher losses from the numerical model, but this stems from an important 

difference in these two modelling techniques. The analytical model assumes that the beam has a 

perfect Gaussian intensity distribution which extends in the transverse direction to infinity. The 

losses in the numerical model must correspond mainly to the losses of a TEM00 beam, with 

small contributions from the competing higher-order modes. It is reasonable to assume that 

these higher-order modes account for the higher losses of the numerical model. 
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An alternative approach to calculating the round-trip losses V (Hodgson & Weber 2005, 

p.267-270) was followed as a comparison to the methods followed above. For the case of a 

stable symmetric resonator apertured at both mirrors the round-trip losses for the TEM00 modes 

can be approximated with the empirical relation 

( )βα FNV −= exp                   (2-3) 

where α00 = 2.9 and β00 = 1.16 for the case G = 0.8. 

Table 4 shows a comparison of the round trip losses calculated using (2-3) for the case G 

= 0.8 with the round trip losses from the numerical model for the case G = 0.83. The agreement 

is better, especially for the smallest aperture size (a = 2 ω1 or NF = 1.9). 

Table 4 Comparison of round trip loss calculated analytically, 
with the numerical model, and using an empirical method. 

 G V (%) 

  a=2ω1 a=2.5ω1 a=3ω1 

Analytical  
(TEM00) 

all G,  

-1 < G < 1 
 6.709 x10-4  7.453 x10-6  3.046 x10-8 

-0.111 0.14907 0.00158 0.00090 

0.75 0.17211 0.00116 0.00073 
Numerical 
(converged) 

0.833 0.16966 0.00096 0.00048 

Empirical 
(TEM00) 

0.8 0.203 0.00304 1.27 x10-5 

 

The selective influence of loss at an aperture is clear, however: higher-order beams are 

selected against, with higher loss, and lower-order modes are selected for, and will dominate 

after sufficiently many round trips. This supports the understanding that the mode pattern 

converges to the lowest-order mode in the absence of perturbations like continuous reseeding by 

spontaneous emission in the resonator. 

 

The periodicity of a beam in a laser resonator can be defined as the number of round trips 

required for any ray to return to an initial position and orientation, and can be found using 

geometrical ray analysis. Applying this to a stable, symmetrical Fabry-Perot resonator, if an 

initial ray vector r0 corresponds to an infinitesimal element of a mode pattern, then using Eqs. 

(1-6), (1-7) and (1-15), after p cycles the ray vector rp is: 
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θθ ββ ipip
p evevr −+= 2211  

so    ( ) θββθ pvviprr p sincos 22110 −+= .                (2-4) 

From Eq. (1-23) in Section 1-1, the ray transfer matrix Mmir of an empty symmetrical Fabry-

Perot resonator in terms of G is given by: 


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




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−−
−−=

12/4

)1(12
2

2

GRG

GGRG
M mir                              (2-5) 

where L and R are shown in Figure 12, and G is defined in Eq. (2-1). 

Then by Eqs. (1-11) and (1-12): 

    )1(212 222
2,1 −±−= GGGλ                  (2-6) 

are the eigenvalues and functions only of G, and  


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1

2,1
RGv                                (2-7) 

are the eigenvectors of the matrix Mmir. 

From Eq. (1-11)    12 2 −= Gm                    (2-8) 

and from Eq. (1-15),    )12arccos( 2 −= Gθ .                  (2-9) 

By Eq. (2-4), the ray exhibits periodicity when rp = r0, or when cos pθ = 1 (and sin pθ = 0). This 

gives the condition for periodicity: 

     K,
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2
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θ
π

θ
π=P                 (2-10) 

where P is the periodicity and number of round trips, and must be a whole number. 
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Now using Eq. (2-4) rp can be plotted as a function of p. In the following graphs the ray position 

y is plotted. The ray slope y’ shows the same periodicity2. 

0 2 4 6 8 10 12

-1.0

-0.5

0.0

0.5

1.0

Ò round trips p

y

 

Figure 20 Plot of ray position yp as a function of the number of round 
trips p for the particular case where G = 0.75. The periodicity is 

indicated with points, and periodicity P = 4.35 in this case. 

In Figure 20 the ray position y is plotted as a function of p for the case G = 0.75. In this 

case the periodicity is 4.35, which is not a whole number. Since r is any ray in the beam this 

means that the beam will vary periodically, but the points at which it is identical to the initial 

beam will occur at some point within the resonator and not on the starting mirror. Therefore the 

mode on the starting mirror will be the same as the initial mode only when kPp =  is a whole 

number for some integer k. 

 Whole values for the periodicity can be calculated by using the steps (2-4) to (2-10) in 

reverse, namely using a chosen periodicity to calculate θ, m, G (and therefore g) and lastly R for 

some chosen L. Notice that Eq. (2-8) yields two G-values:  

2

1+±= m
G .                             (2-12) 

There are therefore two resonators which both have the same periodicity P. For example, if m = 

0.5 then both a resonator with G = 0.866 and a resonator with G = -0.866 will have periodicity 

P = 6. Figure 21 shows the plot of a ray passing through these two resonators. Note that in the 

resonator with G < 0 the ray is contained and does not extend transversely beyond the starting 

position, whereas the resonator with G > 0 has a greater transverse extent. 

                                                 
2 The Mathematica eigenfunction code to calculate the periodicity is given in Appendix 7.2. 
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Figure 21 Plots of a ray path through two resonators, both with m = 
0.5 and periodicity P = 6 round trips. Note that these plots are drawn 

to the same scale. 

In both the numerical as well as the analytical (or eigenmode) models the periodicity is found to 

depend only on the equivalent G–parameter, which quantifies the stability, and not on the 

effective Fresnel number NF.  

 

 

Figure 22 Comparison of Numerical and Analytical models of 
resonator with G = 0.75, with non-identical periodicity. 

Figure 22 shows the periodicity in the output of the numerical model typical of stable 

resonators (as already seen in Figures 13 to 16 in the behaviour of the spot size, M2 and loss) 

compared to the ray position behaviour from the eigenmode model. It is immediately evident 

that the periodicity differs – for the numerical model it is 13, whereas for the eigenmode model 

it is 4.35. This value being close to 4.33 and the fact that 3 x 4.33 = 13 implies that after a single 

cycle the ray has returned to its initial height and slope at an intermediate position along the 

optical axis, and that three cycles or 13 round trips are required for the ray to return to its initial 

height and slope at the initial position. Indeed, setting r0 = (1, 0) and substituting p = 13 into (2-

4) gives r13 = (1, 0) as expected. This is consistent with the requirement that the periodicity be a 

whole number for the ray to return to its initial height and slope at the initial position.  



Chapter 2: Analysis and numerical model of Fabry-Perot resonators - 31 - 
_____________________________________________________________________________________ 
 

 

Figure 23 Comparison of Numerical and Analytical models of 
resonator with G = 0.809, with identical periodicity (P = 5) in both 

cases. 

By comparison, Figure 23 shows the periodicity from the numerical model for a resonator 

corresponding to the analytical or eigenmode model for the case of P = 5, a chosen whole 

number. In this case, and for all resonators corresponding to whole-number P-values (for P > 2), 

the periodicity of the numerical model was found to exactly match that of the analytical model. 

2.4 Conclusion 

A numerical model of a stable Fabry-Perot resonator was developed. The numerical 

model was tested against several different “text-book” analytical models, and predictions of spot 

size and M2 were found to be in good agreement. There was some discrepancy in the round-trip 

loss figures obtained which was understandable since the analytical loss model was not an intra-

cavity model. These values can therefore be used with confidence for resonator design. 

 

The model is also able to produce a picture of the competing temporal processes in a 

resonator, which is useful for modelling modal build-up in an empty Fabry-Perot resonator. 2-D 

plots of the beam are easily produced, allowing for graphical comparison and interpretation. 

The following tendencies of stable Fabry-Perot resonators were noted: 

• The round-trip loss decreases with increasing NF 

• The spot sizes (waist and on the mirrors) are a function of L and R only 

• The time or number of round trips required for convergence increases with increasing 

NF 

• Given sufficient time, a resonator will always converge to the lower-order TEM mode 

TEM00 
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• The periodicity in the spot size, M2 and loss is a function of G only 

 

Although only the intensity of beams was discussed, the numerical model contains 

complete phase information, at every point on the beam and at every time in its evolution. This 

information would be valuable if the model was extended to include intra-cavity phase 

elements, for example. 

For this project the model was extended to the more complex Porro prism resonator. 
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3. PORRO PRISM LASERS 

3.1 Introduction 

The Porro prism resonator configuration has been widely used for over 30 years in 

commercial and military applications where their inherent ruggedness makes them ideally suited 

to applications where a laser beam is required at a large distance from the source, and where the 

source is not a stable platform. In typical field use the conditions these resonators are subject to 

could include shock and large temperature variations, and will experience some degree of 

optical misalignment. Porro resonators have been extensively used in long-range military beam 

applications like range finders and laser designators (Dudeja 1989; Singh et al. 1995; Cole 

1998; Bahuguna et al. 2007), as well as in exotic laser systems such as the Mars Observer Laser 

Altimeter (Afzal 1994), the CALIOP lidar system (Winker et al. 2004), the XI UV laser trigger 

system (Sundvold et al. 1999), and in a LASTEC diode-pumped Nd:YAG laser for use in space 

(Joseph 2007).  

Porro prism lasers have been incorporated into many patents (Richards 1982; Lundstrom 

1983; Lundstrom 1984; Severinsson 1985; Reeder 1988; Reed 1997; Gregor et al. 1998; Ishizu 

2004; Yanagisawa & Hirano 2005), and into several experiments, including a laser for the 

production of synchronized giant radiation pulses (Podgaetskii & Chernets 1967), an 

experiment to optimize the cooling of slab Nd:glass lasers (Lu et al. 1989), an experiment to 

determine the output energy characteristics in rotating mirror Q-switch lasers (Lukac 1991), and 

in experimental techniques to eliminate parasitic lasing in high-gain lasers (Storm 1992).  

 

Figure 24 Schematic diagram of a Porro prism resonator, showing the 
following optical elements: (a) Porro prisms, (b) Nd:YAG rod, (c) Q-
switch, (d) quarter-wave plate, (e) polarizing beam cube, (f) lenses, 

and (g) apertures. 
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The Porro prism resonator investigated in this study, shown schematically in Figure 24, 

was based on a flash lamp pumped Nd:YAG laser with passive Q–switching and Porro prisms 

in the place of end mirrors.  

In this section the literature on Porro resonators is reviewed, after which some useful 

results are summarized. 

3.2 Literature review 

The study of Porro prism resonators followed from early work on flat-roof resonators 

commonly used in microwave systems (diFrancia 1965; Checcacci et al. 1966; Pasqualetti & 

Ronchi 1973; Ronchi 1973; Mansfield et al. 1983; Yassin & Lain 1985).  

Right angle prisms, often referred to as Porro prisms, have the useful property that all 

incident rays on the prism are reflected back parallel to the initial propagation direction, 

independent of the angle of incidence. Thus an initial planar wave front remains planar after 

reflection. This property was initially exploited in Michelson interferometers (Peck 1962) to 

relax the tolerances on misalignment, and then proposed (Gould et al. 1962) as a means to 

overcome misalignment problems in optical resonators employing Fabry–Perot cavities by 

replacing the end face mirrors with crossed roof prisms.  

Much of the theoretical work to date has focused on geometric methods to model the 

inverting properties of such resonators (Kuo & Ko 1984). The prism can be modelled as a ray 

deviator by replacing an imaginary mirror some distance behind the prism, and the alignment 

sensitivity of Porro resonators is quantified by deriving an expression for the beam centroid 

displacement as a function of prism misalignment. The main effect of misalignment is to reduce 

the active volume of the laser medium (Lee & Leung 1988; Lee & Leung 1989a; Lee & Leung 

1989b). The model correctly accounts for the beam direction, but does not account for the 

complex field distribution found experimentally from the laser. Optical ray tracing software 

extends these results (Rapaport & Bass 2000), (Rapaport et al. 2001), and geometrical 

techniques can also be used to study the properties of a prism to determine the conditions to 

prevent a beam from being obscured by the prism’s surfaces (Tsai & Lin 2008). A recurrence 

relation is found which describes the stepping of rays around the longitudinal axis of a Porro 

prism resonator (See et al. 1980), but the effect of this on the beam structure is not discussed. 

Internal phase shifts and output polarization states are accounted for using polarization 

considerations in several papers. Early work deals with the polarization in resonators with a 

Porro prism replacing one end mirror (Buchman 1965; Podgaetskii & Chernets 1967). The first 

comprehensive study of polarization in a Porro resonator shows the effect of polarization on the 
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output coupling reflectivity, the Q-switch, and the stored energy in a laser rod (Chun & Teppo 

1976). A comment in the conclusion of this paper explains the usefulness of these resonators, 

and the subsequent military interest:  

“The laser rangefinder has successfully withstood 150 g's on a shock machine and has 

been subjected to actual ground firing. Earlier tests of the resonator alone indicate no change in 

the alignment of the optical assembly after 17,000 cycles of up to 200-g peak acceleration.”  

The rotation of a prism in a Porro prism resonator can be used to optimize the energy 

extracted from a laser (Chen et al. 1996), and to compensate for birefringence and increase the 

performance of lasers using cylindrical laser rods (Richards 1987). A Jones matrix formulation 

can be used to describe the phase shifts introduced by Porro prisms and other polarizing 

elements in a Porro resonator (Agrawal et al. 2007). Clearly the rotation of the prisms with 

respect to each other is an important property of Porro prism resonators and, as will be shown 

later, is found to have a profound effect on the beam structure. 

3.3 Pumping and gain 

The laser medium, Q-switch and means of excitation are identical to a traditional solid-

state laser. The choice of the gain medium determines the wavelength that the laser will 

produce. The work in the following sections is general and applicable to any gain medium. 

However, Porro resonators are commonly used with Nd:YAG lasers (wavelength 1064 nm) 

which have high gain and are simple and rugged enough to be useful in field application 

(Dudeja 1989; Afzal 1994; Singh et al. 1995; Cole 1998; Winker et al. 2004; Bahuguna et al. 

2007; Joseph 2007). In the system under discussion the active medium was a 50 mm long 

Nd:YAG rod of radius 3 mm, and the laser was pulsed using a Cr4+:YAG passive Q–switch. 

The energy or power which can be obtained by a laser is determined by the active volume 

or the volume of gain medium which contributes to the lasing process. 

 

3.4 Properties of prisms 

Mirrors have the well-known property that they reflect an incident ray at an angle equal to 

the incident angle (Hecht & Zajac 1997). As a consequence, any tilt of a mirror will result in a 

deflection of the reflected ray away from the optical axis. Porro prisms, however, are simple 

45°-90°-45° prisms orientated to reflect an incident ray. 
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Figure 25 Reflection of a ray by an aligned and misaligned Porro 
prism. 

Referring to Figure 25, when a Porro prism is tilted by an angle β about an axis which lies along 

the apex of the prism the shift in the optical axis can be calculated as follows: 

βγ π ±= 4   so βρ π ±= 4 .    

Also    
B

D=γ2sin  and 
B

A=γcos . 

Solve for B:   
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D
 for small angles β, in radians.                (3-1) 

Therefore any tilt of a prism around the apex of the prism will cause only a small shift 

(proportional to the tilt angle of the prism) parallel to the optical axis. 
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By “crossing” the Porro prisms, so that the apexes are at 90° to each other (as shown later 

in Figure 34), any misalignment in one direction is compensated for by one prism and any 

misalignment in the orthogonal direction is compensated for by the other prism, thus making the 

resonator insensitive to misalignment. If the azimuthal angle α is less than 90° then an angular 

misalignment of one prism is only partially converted into a shift of the beam parallel to the 

optical axis, with some residual angular deflection. Thus the deflection of the beam in a Porro 

resonator subject to misalignment is a function of the azimuthal angle α. 

 

Figure 26 Misaligned Porro prism resonator 

These geometrical techniques are also used to consider the effect of misalignment of one 

prism in a Porro prism resonator in three dimensions (Lee & Leung 1989a). If η and ζ are the tilt 

angles of the output beam in the horizontal (y) and vertical (x) directions, respectively then 

  βη −=           (3-2) 
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βαξ  for β ≤ 1°,    (3-3) 

      αβ cot≅         for β << 1°    (3-4) 

where α is the prism azimuthal angle, and β is the misalignment or tilt angle. 

Figure 26 shows that the beam deflection is linear in the range of ±1°, which is typical, and that 

the deflection is much smaller than the misalignment angle. 
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Figure 27 Plot of beam deflection angle ζ as a function of 
misalignment angle β for α = 30°(red), α = 45°(blue) and α = 

60°(green).  

For a resonator in multimode operation, the smaller mode volume is the only cause for 

the decrease of the output power, since additional diffraction losses are only generated if the 

fundamental mode gets clipped by the active medium. 

3.5 Resonator stability 

In a conventional Fabry-Perot resonator the stability of the resonator is determined by the 

radius of curvature on the mirrors. In a Porro resonator however the Porro prisms do not 

contribute any focusing power and so intracavity lenses may be included to determine the 

stability. A telescopic configuration is commonly used to tailor the beam size to match that of 

the active medium (Hanna et al. 1981). 

Referring to Figure 28, in the general case that spaces exist between the intracavity lenses 

and the Porro prisms the ray transfer matrix Mlens given in (1-29) for a resonator consisting of 

two plane mirrors with intracavity lenses needs to be modified in the following way: 

In Section 1.1 on pages 4-5 it was stated that an empty resonator with spherical mirrors 

and apertures can be analysed by replacing the spherical mirrors with plane mirrors and lenses, 

and unfolding the resonator. Since Porro prisms simply reflect a field (albeit with inversion 

about the prism apex), in a Porro prism resonator the Porro prisms can in turn be replaced by 

mirrors. This is illustrated in Figure 28. 



Chapter 3: Porro prism lasers   - 39 - 
_____________________________________________________________________________________ 
 

 

Figure 28 An unfolded representation of a Porro prism resonator. 
Note the gaps d1 and d2 between the lenses and mirrors. 

Following the approach given in (Hanna et al. 1981) the spaces d1, d2 are accounted for in the 

ray transfer matrix to give: 
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where d1, d2, L, f1, f2 are shown in Figure 28. 

The stability of the system can be calculated3 using the stability function in Eq. (1-13): 

1
2

≤+ DA
.                   (3-6) 

 

           (a) 

                                                 
3 The Mathematica code for the stability calculations can be found in Appendix 7.3. 
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            (b) 

Figure 29 Plots of the stability function as a function of f1 (x-axis) and 
f2 (y-axis)   (a) L = 10 cm, d1 = d2 = 0, and (b) L = 10 cm, d1 = d2 = 2 

cm. 

In Figure 29 the regions for which f1 and f2 give rise to stable resonators are plotted in 

shades of blue while the unstable regions are white. Note that the traditional stability plot is in 

terms of the g- (or G-) parameters, which are not defined when there are gaps between the 

focussing elements and the mirrors. Therefore these plots are in terms of the focal lengths f1 and 

f2. Figure 29 shows the influence of the spaces between the lenses and the mirrors or Porro 

prisms on the stability of the resonator. In Figure 29 (a), for example, the resonator with 

intracavity lenses with f1 = f2 = 10 cm is equivalent to a Fabry-Perot resonator with spherical 

mirrors with R1 = R2 = 20 cm and is marginally stable, whereas in Figure 29 (b) it is stable. 

3.6 Out-coupling and polarization 

The angle between the prism axes influences the beam stability as well as the polarization 

in the resonator, which in turn determines the amount of radiation coupled out of the resonator.  

 

In a traditional mirror resonator the laser beam is coupled out through a partially 

transmitting output coupling mirror. In a Porro prism resonator, with both resonator mirrors 

replaced by roof prisms, output coupling is realized by polarization techniques using a polarizer. 

The orientation of the Porro prisms with respect to each other (or the angle between the apexes) 

affects the polarization within the resonator, and this angle is commonly adjusted in order to 

optimize the fraction of energy coupled out of the resonator. When a particular Porro angle is 



Chapter 3: Porro prism lasers   - 41 - 
_____________________________________________________________________________________ 
 

required a retardation plate can be used to change the polarization fractions and allow the output 

coupling to be adjusted to its optimum value. 

The Jones matrix method can be used to calculate the polarization shift experienced by a 

beam in a Porro prism resonator (Chun & Teppo 1976). The polarizer-Porro prism-polarizer 

matrix Mprp for a Porro prism orientated at a transmission angle (θ) of 0° is given (Buchman 

1965; Podgaetskii 1969) by 

    prpprp MMMM =  

where  
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

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=

00
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pM  is the matrix for polarizer orientation of transmission axis θ = 0°, 
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 P is the index dependent Porro prism internal phase shift angle, and 

 α is the azimuth angle of the Porro prisms.  
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 For a Porro prism the phase shift P associated with total internal reflection is: 
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where  γ is the incident angle, and n is the refractive index of the prism. Since a Porro prism 

roof angle is 90°, γ is 45°; thus, there is a finite phase shift when the refractive index is other 

than 2 . 
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The effective reflectivity Reff is then (Chun & Teppo 1976) 

( ).2cos
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sin
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cos 222* α
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+



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

== PP
MMR prpprpeff                 (3-9) 

Figure 30 is a plot of the reflectivity Reff as a function of azimuthal angle α for several values of 

refractive index n, and was plotted using Eqs. (3-8) and (3-9). 

 

Figure 30 Plot of reflectivity Reff as a function of the azimuthal angle α 
for several values of refractive index n. 
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4. TRANSVERSE MODES IN PORRO PRISM 

RESONATORS 

4.1 Introduction 

Beams with either radially-symmetric lobed (or “petal”) patterns, or flattened doughnut 

patterns are reported to be characteristic of Porro prism lasers (Nortier 1981; Preussler 2007; 

Steyl 2007). Figure 31 (a) shows the lowest-order Hermite-Gaussian mode which, as will be 

discussed in the next section, was the beam structure predicted previously in the literature. 

Figure 31 (b) however shows the sort of mode which is commonly obtained experimentally 

from a Porro prism resonator where the number of spots or petals is a function of the rotation of 

the Porro prisms with respect to each other. 

 

(a)                                                          (b) 

Figure 31 (a) is the lowest-order Hermite-Gaussian mode pattern, the 
Gaussian beam, while (b) shows the type of modes typically observed 

from Porro prism resonators. 

Despite the ubiquitous nature of these lasers in the field, for a long time the output modes 

from such lasers were not fully understood.  

In early work a consideration of the theoretical properties of resonators with corner cube 

prisms specifically mentions the influence of bevels of finite width at the prism edges as a 

possible explanation for a tendency for distinct longitudinal sectors to oscillate independently, 

but does not go on to develop this idea into a model which could be used to explain 

experimental results (Anan’ev 1973). 

A physical optics model which solves the Fresnel-Kirchoff integral equation for the case 

of a stable, large aperture roof mirror resonator concludes that Hermite-Gaussian modes can be 
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expected from them (see Figure 31 (a) for example) and therefore also fails to account for the 

true field pattern found from such resonators (Zhou & Casperson 1981). This is because only 

the optical path length experienced by the beam in the kernel of the Fresnel–Kirchoff diffraction 

integral is considered, thus treating the prism as though it were acting like a perfect mirror, with 

an identical ABCD matrix representation albeit incorporating the inverting properties of the 

prisms. 

Zhou & Casperson’s approach appears to be the preferred model for Porro prisms. The 

conclusion that Hermite-Gaussian modes can be expected from these lasers is used to 

investigate the time-dependence of the transverse mode in a theoretical and numerical model of 

a Porro prism resonator (Chen et al. 2006), and is also included in a textbook (Hodgson & 

Weber 2005, p.585-590), which states that the beam quality of the laser resonator is not affected 

by the prism.  The chapter on Porro prism lasers also summarizes key findings of Porro prism 

resonators and proceeds to derive an expression for the reduced output power on misalignment 

in terms of the Porro angle, the displacement angle, and the gain and saturation parameters of 

the gain medium, but does not explain the complex transverse field patterns found in Porro 

prism resonators. 

A comprehensive numerical model of a Q-switched Nd:YAG Porro prism laser is used to 

study pumping and gain, thermal effects, polarization and associated output coupling effects, 

and Q-switching (Henriksson et al. 2005; Henriksson & Sjoeqvist 2007). This model includes 

temporal effects, but the prisms are modelled with plane mirrors and do not predict the beam 

structure. 

This is a recurring problem in the literature, with only a hint at a solution offered in 

(Virnik et al. 1987) and (Anan’ev et al. 1977), where it was proposed to treat the field patterns 

as a result of diffractive coupling between a linear combination of sub-resonators.  

Clearly the approach of treating Porro prisms as simple plane mirrors (albeit having an 

effect on the intracavity polarization) is not sufficient to explain the beam structure observed 

from these lasers, and a deeper understanding of the field in the resonator requires an 

investigation as to how the properties of prisms differ from plane mirrors in a resonator, which 

could not be found in the literature. This gives rise to a new analytical model which accounts for 

diffraction losses not only at the limiting aperture, but also from the prism apexes. 

 

We present a new approach (Litvin, Burger & Forbes 2007a; Litvin, Burger & Forbes 

2007b), and are the first to consider the loss from the apex of the prisms. We include this as a 
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loss screen in a physical optical model of the Porro prism resonator, and also consider the 

conditions required for a field in a resonator to repeat back on itself. We predict a petal pattern 

beam (see Figure 31 (b)), where the number of petals (N) can be calculated for discrete values of 

the Porro angle. This new analytical model is tested and confirmed by including it in a 

numerical model, the output of which is in good agreement with the predicted mode patterns. 

These petal patterns were also observed experimentally at the predicted Porro angles. 

The numerical model is then used to further investigate the mode patterns from a range of 

stable and unstable Porro prism resonators with large intracavity apertures (Burger & Forbes 

2007; Burger & Forbes 2008a; Burger & Forbes 2008b). We discover that the higher-order 

modes of these resonators have a kaleidoscope pattern, and investigate the temporal 

development and characteristics of these modes. These modes are verified experimentally.  

Further we make use of non–planar, unidirectional resonance analysis (Bollig 1997; 

Bollig et al. 1997; Hodgeson & Weber 2005; Liu et al. 2005) to understand the oscillating 

modes supported in these resonators. These higher-order modes bear close resemblance to 

recently reported kaleidoscope modes (McDonald et al. 2000; Bouchal 2003; Anguiano-

Morales et al. 2008) which are named after the patterns formed in a kaleidoscope (Brewster 

1819).  

These similarities and the implications thereof are discussed in Section 4.5. This leads to 

the conclusion, in Section 4.6, that the petal–like modes hitherto reported are in fact only the 

lowest-order modes, while higher-order kaleidoscope modes are possible given sufficient 

transverse spatial extent to oscillate. 

4.2 Analytical model 

We propose that a “loss-screen” approach be used to model a resonator containing Porro 

prisms. The approach used is to describe the prisms as standard mirror elements, but with 

associated amplitude and phase screens, as illustrated in Figure 32. These screens act on the 

incoming field by modifying both its amplitude and phase by means of a suitable optical 

transfer function t(x,y): 

)),(exp(),(),(),(),(),( yxiyxAyxUyxtyxUyxU ininout ϕ== ,                (4-1) 

where A(x,y) describes the amplitude effects, and ϕ(x,y) describes the phase effects of the 

prism respectively.  
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Figure 32 Illustration of the effect of phase and intensity screens on 
an incident field. 

In the case of a Porro prism, the apex of each prism where the prism surfaces meet is 

never perfect, and the edge is always bevelled to some extent. This represents a narrow area of 

loss in the resonator. The amplitude screen introduces losses not only at the edges of the 

element (transverse confinement), but also at the bevel along the apex.  

This bevel can be the a result of the machining process, and a typical specification is a 

width of  5≤ µm (CVI 2009), but even a perfect prism would have a loss line at the intersection 

of the two surfaces. There is complete internal reflection on the reflective surfaces of the prism, 

but reflections of less than 100% at the apex as a result of the rounded or flat surface at the 

apex. 

 

                   (a)                                                                            (b) 

Figure 33 (a) Sketch of the path of rays in the region of a rounded 
bevel. (b) Transmission (loss) at the apex of a Porro prism for a 

rounded bevel with radius 3 mm (blue) and for a flat bevel (purple). 
Note that for the rounded bevel, for |y| > 2 mm the loss is 0%. 

Similarly, for the flat bevel, for y > 3 mm the loss is 0%. 
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Figure 33 (a) is a schematic of a Porro prism, showing the partial reflection of the beam 

in the region of the apex or bevel. Figure 33 (b) shows the calculated transmission (loss) at the 

apex of a Porro prism for both a rounded and flat-edge bevel. The half-width of the bevel is 

taken to be 3 mm, which is much wider than would be found on a typical prism, but illustrates 

the point. The reflectivity is calculated purely using Snell’s law for a BK7 prism (n = 1.50669 at 

1064 nm) and shows that in the region of the bevel the transmission (or loss) is high, but drops 

to 0% on the prism faces where the beam experiences complete internal reflection. According to 

(Hodgson & Weber 2005, p.585-590), for high quality prisms, which exhibit edge widths of less 

than 5 µm, the additional loss per round trip is less than 0.5% overall. In this case, the extraction 

efficiency is as high as for a conventional resonator provided that the small-signal gain is 

chosen high enough. 

Nevertheless, the bevel at the prism apex represents a narrow rectangular region of 100% 

loss across the centre of the field, and which has a small impact on the overall losses. The 

impact of the bevel on the mode will be shown. 

 The phase screen allows for the optical path length to vary as a function of the input 

position on the prism face, for example, to model errors in the prism angle or fabrication errors 

on the prism surfaces. With this approach, the diffractive effects of the prisms are taken into 

account, and the screens can be treated as intra–cavity elements that change the eigenmodes of a 

standard mirror–mirror resonator. Only the amplitude screen approach was used to model 

perfect prisms with high losses where the prism edges meet. With the prism orientated with the 

bevel vertical the loss area has the same height as the prism and the same width as the bevel, 2δ. 

The transfer function for the new prism model then includes only the amplitude effects,  

t(x,y) = 1 for |x| ≤ δ                  (4-2) 

    0 for x > δ. 

This loss function describes a high loss region along the apex of the prism, with 100% losses, 

and no losses elsewhere within the clear aperture of the element.  

4.2.1 The “loss-screen” approach 

The following section shows the effect of this new transfer function on the structure of 

the emergent beam. 
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Figure 34 A typical Porro prism based Nd:YAG laser with passive Q–
switch, showing the following optical elements: Porro prisms 
(elements a and h);  intra–cavity lenses (elements b and g); a 

beamsplitter cube (element c); a quarter wave plate (element d), and 
a passive Q–switch (element e). 

Referring to Figure 34, and considering for the moment only the two Porro prisms and their 

impact on the propagating field, imagine viewing the resonator along its length from one prism 

(element h) looking towards the other (element a). On encountering a prism, the field inverts 

itself around the prism apex, and reverses its propagation direction, travelling back towards the 

opposite prism. The same inversion and reversing of propagation direction takes place again, 

and this sequence repeats on each pass. The prisms would essentially be treated as perfect 

mirrors but with a field inverting property.  

A geometric approach is useful in understanding the symmetry and repeatability of the 

resonator modes: consider a propagating ray viewed along the optical axis and assume, without 

any loss of generality, that the Porro prism (PP) closest to the observer has its apex in the 

horizontal plane, while the opposite PP has its apex rotated at some angle α from the horizontal, 

referred to henceforth as the Porro angle. By way of example, consider the case of α = 60°, as 

illustrated in Figure 35 (a) – (e). In the analysis to follow the pertinent information is the 

location of the prism apexes, which is illustrated as solid lines 1 and 2 in Figure 35, 

corresponding to elements h and a in Figure 34 respectively. 
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Figure 35 (a) – (e): Evolution of a ray as it is reflected back and forth 
in the resonator, for starting Porro angle α = 60°.  After 3 round trips 
the pattern is complete (e) and starts to repeat.  (f) – (j): Equivalent 
case but with α = 30°, and now taking 6 round trips for completion .    

Having a priori knowledge of how the mode will develop, consider a starting ray located 

as shown in Figure 35 (a), travelling away from the viewer towards PP 2. This location was 

chosen based on the assumption of high loss along the apexes, thus avoiding the apex zones. At 

PP 2 the ray is inverted about the prism apex (PP 2), and travels back towards the viewer 

parallel to the optical axis as indicated in Figure 35 (b). At PP 1, the ray is inverted about the 

axis of prism 1, and travels back towards PP 2 (Figure 35 (c)). This process continues until the 

complete pattern is created (Figure 35 (e)), and the ray has returned to its starting position. This 

happens after three round trips. Clearly subsequent reflections simply duplicate the pattern. A 

second example is shown in Figure 35 (f) – (j), where the case of α = 30° is illustrated. The 

same propagation rules apply so that eventually, after six complete round trips the pattern starts 

repeating itself. By dividing the field into equal sectors this approach correctly predicts the petal 

pattern formation often observed from such lasers, but this is a “ray” picture based on a priori 

knowledge and not physical reasoning. Also, this approach is only useful for limited Porro 

angles. 

An alternative approach, which is more useful in modelling such a resonator, is to 

consider that since losses are introduced onto the field from each prism apex, and the field is 

then inverted, one can view the situation as the amplitude screen being inverted after each prism 

reflection. From the viewpoint of the field travelling inside the resonator, the equivalent picture 

is that of the field remaining inversion free, while the prisms edges invert after each pass, 

essentially appearing to rotate by an amount dependent on the Porro angle, and hence the main 
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area of losses (the apex edges) also appear to rotate. An example of this rotation is shown in 

Figure 36.  

(a)                                                    (b) (c)

(d)                                                    (e) (f)

2

-2

4

-4

6

 

Figure 36 The apexes of two Porro prisms at angles φ1 and φ2.  
Initially the apex of PP 1 is in the horizontal plane (a), but after 

successive reflections about the inverting edges of the two prisms the 
apex will appear to be rotating about the circle: (b) 1 pass, (c) 2 

passes and (d) 3 passes (e) 4 passes (f) 5 passes. 

In order to develop a physical optics model based on this approach, expressions are 

needed for the equivalent picture of the rotating prism apexes (high loss areas). Consider the 

rotation of the first PP apex, denoted with the subscript 1, whose position on the circle in Figure 

36 is described by the vector v1 = (x1, y1) with angular displacement given by φ1. The region of 

high loss is then simply a line passing through the origin with slope y1/x1. Without any loss of 

generality it is assumed that the resonator is viewed such that the first PP has an edge parallel to 

the horizontal axis, with the second PP rotated at the Porro angle α, as illustrated in Figure 34.  

Referring to Figure 36, and considering only the position of apex 1: 

(a) This is the initial position of v1 relative to v2, as viewed along the resonator axis. 

(b) After one reflection (about axis 2) v1 appears to have rotated through an angle of 

ααα 2+=++ ; αφ 21 += . 

(c) On a return trip a second reflection about axis 1 results in v1 appearing to have rotated 

through an angle of ααα 422 −=−− ; αφ 21 −= . 



Chapter 4: Transverse modes in Porro prism resonators - 51 - 
_____________________________________________________________________________________ 
 

(d) After a third reflection (about axis 2) v1 appears to have rotated through an angle of 

ααα 633 +=++ ; αφ 41 += .  

(e) After a fourth reflection (about axis 1) v1 appears to have rotated through an angle of 

ααα 844 −=−− ; αφ 41 −= . 

(f) After a fifth reflection (about axis 2) v1 appears to have rotated through an angle of 

ααα 1055 +=++ ; αφ 61 += . 

In general then, after n reflections this vector has rotated through an angle θ1(n) given by: 

αθ nn n 2)1()( 1
1

+−= ,                  (4-3) 

where α is the Porro angle, and the angular position of this vector after n reflections can be 

found from: 
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Prior to any reflections the apex of the first prism is at φ1(0) = 0, so that if we imagine the 

apexes rotating about the unit circle, then the vector v1(n) may be expressed as: 
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Similar expressions can be derived for the second PP apex: 
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Note that the notation has been selected so that the initial positions of the two apexes are given 

by: 
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with corresponding initial apex loss regions along  y1 = 0 and y2 = (tanα) x2 respectively.  

Recall Eq. (1-8)   rrM λ= . 

This is the eigenequation of a ray r in a resonator with ray transfer matrix M. 

This is a statement of the necessary condition for resonance. If the resonator is stable, 

then the eigenvalues λ are complex and imply an inherent periodicity, as shown in Section 2.3, 

pages 27-31, and imply that after a certain number of round trips the ray will repeat on itself. A 

consequence of this is that since the transformation matrix M is a function of the Porro angle, 

the condition implied by Eq. (1-8) will only be met at some discrete starting angles at which the 

rotating edges repeat on themselves. At these angles the field is finitely sub–divided by the 

prisms losses, and it takes a certain number of passes for the sub–division of the field to be 

complete. The resulting field is then made up of a circular pattern of spots which we refer to as 

petals or as a petal pattern. At other angles, the edges never repeat on themselves, thus infinitely 

sub–dividing the field. With this formalism we are able to find the angles α at which these 

repeating patterns manifest themselves, as well as the number of sub–divisions (or equivalent, 

number of petals) that will be observed. Consider for example the first Porro prism apex. It will 

return on itself when v1(n) = v1(0), which leads from Eq. (4-5) to the relation: 
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This will be true when  

[ ] παφ 2)21()1(1
2

)(1 inn n =+−−= ,                (4-11) 

for any integer i.   

Solve for α:   
)21()1(1

4

n

i
n +−−

= πα  

To select only the positive solutions for α, let mn 2= , where m is any integer. 

Now     
)41()1(1

4
2 m

i
m +−−

= πα ,  

which becomes   
m

iπα =                      (4-12) 

for any positive integers i and m                   



Chapter 4: Transverse modes in Porro prism resonators - 53 - 
_____________________________________________________________________________________ 
 

Thus we have derived a simple expression for the initial angles α  that will lead to a finitely 

sub–divided field (or repeating pattern from the geometric viewpoint):  

The same result can be derived by starting from vector v2. The implication is that only at 

these specific angles α will the field be finitely sub–divided, thus leading to some regions with 

low loss for lasing. In addition, since the position of these sub–divisions remains stable (i.e., 

they repeat on themselves) after a certain number of round trips, the modal pattern that oscillates 

inside such a resonator will give rise to a petal pattern only at those angles given by Equation 

(4-12). At other Porro angles the high loss apexes will continuously rotate to new positions, thus 

resulting in high losses across the entire field.  

We can now go on to calculate how many petals will be observed for a given Porro angle 

α. The number of petals will be equal to the number of sub–divisions of the field, but the field 

may not be completely sub–divided in one complete rotation of the vector; it may take several 

complete rotations for this to happen. Note that the sub–divisions will not necessarily be equal 

to the Porro angle; when several rotations are needed to complete the sub–divisions, it is likely 

that the area between the initial apexes will be sub–divided further. In general the following 

expression relating the Porro angle to the total number of sub–divisions (petals) of the field can 

be written: 

Nj

πα 2= .                 (4-13) 

The validity of this is evident from the following heuristic argument: The complete circle 

(2π) divided by the total number of sub–divisions N must return the angle of each sub–division. 

If the sub–division is completed in one rotation, then the sub–division angle will equal α, but if 

more complete rotations are needed, then this will result in α itself being sub–divided by integer 

amount, j. Thus both the left and rand hand sides of Eq. (4-13) represent the same quantity – the 

final angle of each sub–division. A simple rearrangement of this equation then yields: 

α
π2j

N = .                 (4-14) 

Since each reflection may only increase the number of sub–divisions in multiples of two, 

we deduce that N must be an even number. The positive integer j now appears to take on the 

meaning of the number of complete cycles required to return the apexes back onto one another. 

At present we cannot offer a simple analytical method of determining j, but can offer the 

following conditions: (i) j is the lowest positive integer such that N is even, and (ii) j ≤  i.   
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Equations (4-12) and (4-14) are new predictions as to which initial angles α will result in 

stable petal pattern output, and how many petals N will be observed in the pattern respectively. 

A plot of the allowed angles for petal pattern formation together with the number of petals that 

will be observed is shown in Figure 37. 

Since the sub–divisions divide the circle finitely, the angle subtended by each sub–

division is given by: 

jN

απψ == 2
.                 (4-15) 

Thus the more complete rotations needed to complete the pattern, the smaller the angle of each 

sub–division. The simplest case is when i = 1; then j = 1 and the circle is divided into divisions 

of α. For higher j values the lossless regions between the high loss sub–division lines become 

small. Thus although there is an infinite number of solutions for α that lead to finite sub–

divisions of the field, if the number of divisions is too large, diffraction will blur the spot 

structure and no petal pattern will be observed.  

 

Figure 37 Plot of the discrete set of angles α that give rise to a petal 
pattern, with the corresponding number of petals to be observed.  

Data calculated for j ∈ [1,100] and i ∈ [1,50]. 
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Taking this into account, and considering the diffraction of a field propagating between 

areas of high losses, it is reasonable to suppose that the approach and theory presented here is 

the explanation for the observed (and sometimes not observed) petal patterns from Porro prism 

resonators. The governing equations for the onset of petal patterns and the number of petals 

observed are given by Eqs. (4-12) and (4-14) respectively.  

4.3 Numerical model 

The first step in writing a numerical model for a Porro prism resonator is to interpret the 

optical components in the resonator. 

The laser was modelled4 by successive passes through a folded–out resonator following 

the approach described in Section 1.1 on page 9 and using the Prony method (Siegman & Miller 

1970; Siegman 1986).  

Since the Fabry-Perot resonator equivalent to any Porro resonator can be found and 

described in terms of a ray transfer matrix, it was decided to simplify the model and use lens-

mirror distances d1=0 and d2=0, and also to use a symmetric configuration with f1 = f2 = f. Then, 

using the equivalence of lenses and spherical mirrors and from (1-25) above, the G- or stability 

parameters in (1-27) can be calculated for a resonator containing identical intracavity lenses: 

f

L
ggG

2
121 −=== .                (4-16) 

And, to reiterate Equation (1-28): 
L

a
NF λ

2

= .                      (4-17) 

In this case the Porro ray transfer matrix M reduces to: 
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The model uses diffractive optics numerical techniques (Lawrence 1987; Lawrence 1991) 

and simulates a beam travelling in a symmetric resonator from laser switch-on and over any 

number of round trips. A single beam is defined on a square field of 0.4 x 0.4 cm, using a beam 

array size of 256×256.  

                                                 
4 The GLAD code for the Porro prism resonator can be found in Appendix 7.4. 
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In the model each prism was assumed to be equivalent to a perfect flat mirror 

superimposed on a rotating loss line (see Figure 36), with the rotation of the loss region for 

prism 1 given by Eq. (4-4) and that for prism 2 by Eq. (4-7). The mirrors were separated by a 

distance L, and the resonator contained two intracavity lenses of focal length f located at the 

mirrors. Apertures located at the mirrors defined the clear or limiting aperture a of the resonator. 

The resonator contained no gain medium, absorption losses or loss due to radiation coupled out 

of the resonator, so that the only losses considered were the losses at the apertures and the 

rotating loss lines. The initial beam was randomly generated noise, and the gain was simulated 

by recording and then resetting the energy to unity after each round trip, giving the loss per 

round trip due only to diffraction. Typically the modal build–up data was recorded until the loss 

per round trip stabilized to within 0.5%.  

A diagnostics subroutine characterises the beam, and on each round trip the aperture size, 

spot sizes and the beam quality or M2 in the x- and y-directions5 as well as the loss are written to 

a text file for analysis. The beam pattern is taken at prism 1, and can be recorded after each 

round trip in order to visualise the changes in intensity distribution; it proved useful to record 

sequences of beam patterns at various stages of mode development.  

In keeping with the available experimental laser the following parameters were used: 

• L = 10 cm 

• λ = 1.064 µm 

• f was varied from -1000 to 60 cm which corresponds to g-values of -1 to 1.2 (shown in 

Figure 38) 

• a was varied from 0.04 to 0.12 cm, which corresponds to Nf - values of 1.5 to 13.5 

• a prism bevel width of 0.002 cm was used. 

                                                 
5 The code used in the verification of GLAD’s M2 calculations are given in Appendix 7.5. 
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Figure 38 Plot showing the stability of the g- values used in the 
numerical model. 

4.3.1 Mode patterns 

The numerical model was used for extensive tests on the analytical predictions of Section 

4.2. A marginally stable resonator with no intracavity lenses (“flat-flat”) was modelled because 

this configuration does not exhibit any higher-order transverse modes. 

     

     

Figure 39 Analytically calculated sub–division of the field using 
Equations (4-4) and (4-7) (top row), with corresponding petal patterns 

calculated numerically using this model, with α = 90°, 60°, 45°, 36° 
and 30° respectively. 
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Figure 39 shows examples of some results of resonators with g = G = 1 and identical NF, 

with the analytical prediction of the stabilized sub–division of the field shown in the top row, 

with corresponding petal patterns calculated numerically shown below. The top row of Figure 

39 shows the calculated apex positions after rotation by Equations (4-4) and (4-7), and after a 

stable pattern has emerged. The numerical model correctly predicts the following features of the 

petal pattern: 

• The number of petals is correctly predicted by (4-14). 

• The prism apexes coincide with the zero-intensity areas between the petals. 

 

Related work (Forbes, Burger & Litvin 2006) shows that the brightness of Porro 

resonator beams is strongly influenced by the angle between the two prism edges, and that at 

those angles at which petal patterns are observed one finds an increase in the laser brightness 

relative to nearby non-petal pattern generating angles, and that there also appears to be a trend 

towards improved brightness and beam quality for those angles at which fewer petals are 

generated. 

 

The numerical model was used to further investigate the properties of these resonators. 

Both the lens focal lengths f, and the aperture radius a were varied in order to investigate the 

impact of resonator stability G given in (4-16) and effective Fresnel number NF given in (4-17) 

on the oscillating modes.  

The first observation is that unstable resonators do not generate repeating petal–like 

patterns, while stable resonators do. To preempt our discussion to follow later with the 

following geometrical optics argument: a ray traversing the resonator must return to a loss–free 

sub–division in order to create the complete petal pattern. The lack of ray repeatability and 

confinement in an unstable resonator precludes this from happening, and hence only stable 

resonators exhibit the petal–like modes. Loss as a mechanism to explain this observation can 

further be eliminated in that the loss for both stable and unstable resonators was set arbitrarily in 

this study and yet did not influence the observation of petals, or the lack thereof. The discussion 

to follow will therefore concentrate on stable resonators only. Without any loss of generality, all 

spatial modes to follow are calculated at the face of one of the Porro prisms, and may be 

propagated to any other plane if so desired.  

The following data is typical of that obtained from the numerical model and can be used 

to characterise a Porro prism resonator. Although the characteristics described apply to some 
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extent to all Porro prism resonators, configurations which best illustrate the characteristic under 

discussion are presented.  

Consider by way of example three stable resonators chosen so that G = 0.75 and with 

Porro angles (α) of 60°, 45° and 30° respectively. When the intracavity aperture is very small 

(NF ~ 1.5), no mode is able to resonate (crossed out mode patterns in Fig. 40, 41). At 

intermediate aperture sizes (NF ~ 3.5) the conventional petal–like modes are observed, with 6, 8 

and 12 petals for α = 60°, 45° and 30° respectively. At large aperture sizes (NF > 6) the petal–

like modes give way to more complex mode patterns which we call kaleidoscope modes after 

their resemblance to the patterns produced by the optical toy, the kaleidoscope. This increase in 

mode complexity as the aperture size increases suggests that the petal–like modes are in fact the 

lowest-order modes of Porro prism resonators, while previously unreported higher-order 

kaleidoscope modes also exist, and can be made to resonate if given sufficiently large transverse 

freedom. These results are shown in Figure 40.   

 

Figure 40 Modal patterns for three Porro angles with increasing 
effective Fresnel number to the right in each row. As NF is increased 

(through an increase in aperture size), the modes become more 
complex, departing from the petal–like standard. 

Porro prism resonators appear to offer a rich landscape of possible modes, many of which 

have not been associated with this type of resonator previously. While the previous discussion 

focused on one particular resonator for three Porro angles, we illustrate in Figure 41 that the 

resonator parameter G also influences the oscillating mode, as one might expect.  

While the results are illustrated for α = 45°, similar results are found at other Porro 

angles. 
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Figure 41 The output modes of a number of Porro prism resonators 
arranged as a function of G (rows) and NF (columns).  Note that in the 

petal–like cases the single repeating mode is shown, while in the 
higher-order mode cases, only one of the oscillating modes is shown. 

4.3.2 Mode Periodicity 

The higher-order kaleidoscope modes depicted in Figure 40 and Figure 41 exhibit an 

interesting feature: they repeat after a fixed number of passes through the resonator. This 

periodicity is not a function of the Porro angle α but rather of G, and is the result of the 

resonator’s complex eigenvalues.  

Figure 42 shows the spot size ω as a function of the number of round trips p, so also as a 

function of time. The spot size ωx (component in the x-direction) is shown, but the modes are 

radially symmetrical, so the y-values are identical. The spot sizes ωx and ωy are calculated with 

the Second Moment Method described in Section 1.1 on pages 16-17 above. The periodicity in 

the region of  p = 2000 is shown in the insert, with the associated modes patterns. 
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Figure 42 Plot of spot size for 12 000 round trips (double passes) 
through a resonator with Porro angle 30° for G = 0.9, NF = 9.4, 

illustrating the periodic nature of the spot size and showing eventual 
convergence. The sequence of modes through one period is also 

shown.  

This periodicity can be defined as the number of conventional round trips (double passes) 

required for any ray to return to an initial position and orientation, and can be found using 

geometrical ray analysis. Following the periodicity analysis in Section 2.3 on pages 27 - 31, if 

the Porro resonator matrix M is given by (4-18) then an initial ray, which can be thought of as 

any element of a mode pattern, can be written as a two–row vector r0 describing both the 

position and angular deviation of the ray. After p round trips through the resonator, r0 will be 

transformed into a new vector rp according to:   

ii
i

p
i

p
p rrMr βλ∑== 0 ,                 (4-19) 

where λi and ir are the eigenvalues and eigenvectors of the matrix M respectively and βi are the 

coefficients required for the expansion of r0 in terms of the eigenvectors. For repeatability of the 

mode we require rp = r0, found from the solution to the simultaneous equations (for each 

i) 1=p
iλ . Using the Porro resonator matrix M and following the approach given in Section 2.36 

in Eqns (2-4) to (2-11), the periodicity of the Porro resonator is found to be a function of the 

stability parameter G, and given by: 

                                                 
6 Mathematica code to determine periodicity for Porro resonators is given in Appendix 7.6. 
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where P is the periodicity and number of round trips, and must be a whole number, and, as in 

Eq. (2-9) in Section 2.3: 

)12arccos( 2 −= Gθ                              (4-21) 

where G is given in (4-16). This is the same expression as was derived in (2-9), and is expected 

since the Fabry-Perot and Porro resonators are identical if R = 2 f. 

As in Section 2.3 on pages 27 - 31, rp can be plotted as a function of p. In the following 

graphs the ray position y is plotted: 

 

Figure 43 Comparison of Numerical and Analytical models of 
resonator with G = 0.9, with identical periodicity (P = 7) in both cases. 

Figure 43 shows the periodicity from the numerical model for a resonator corresponding 

to the analytical or eigenmode model for the case of P = 7. For Porro resonators as with Fabry-

Perot resonators, for all resonators corresponding to whole-number P-values (for P > 2), the 

periodicity of the numerical model was found to exactly match that of the analytical model. 

This approach allows the periodicity of the cycling modes to be determined analytically, 

and compared to the periodic pattern observed in the spot size data from the numerical model. 

The results are illustrated graphically in Figure 43, as well as in Table 5. 
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Table 5 Periodicity comparison 

P 
G 

Theory Model 

-1.0 none none 

0.0 none none 

0.5 3 3 

0.707 4 4 

0.809 5 5 

0.867 6 6 

0.9 7 7 

0.924 8 8 

0.94 9 9 

 

Table 5 shows the agreement in periodicity predicted by geometric resonator theory 

compared to that observed in the numerical model for the beam loop modes. 

One can understand this periodicity if one considers the similarities to the well–known 

Herriot cell resonator (Hodgson & Weber 2005) and by following the path of a ray through the 

resonator. Such resonators result in a periodicity that is not a double pass through the resonator, 

as is the case in a standard Fabry–Perot system, but rather is based on a uni–directional analysis, 

where the number of passes can be made very large for a complete “round trip” – in this case 

“round trip” refers to the condition that the beam repeats a previous path through the resonator. 

The number of reflections and the orientation of the beam, and hence the periodicity of the 

resonator, can be controlled by judicious choice of the resonator parameters. This concept is 

illustrated in Figure 44 where a standard resonator is operated as a non–planar ring laser (Liu et 

al. 2005). In this case the beam passes through the resonator six times (or reflects off each 

mirror three times) in a single “round trip”.  
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Figure 44 A multi–pass beam pass is possible for a given resonator 
configuration. If the gain region is small and central then a Gaussian 
mode is expected. The resonator can be forced into a higher multi–

pass mode by off–centre pumping. 

Such a configuration leads to a complex output beam pattern based on the possible beam 

paths through the resonator, which we can refer to as beam loops. Since each beam loop has a 

particular output pattern, it is convenient to refer to these patterns as modes of the resonator. 

Thus the modes and their periodicity are linked by the choice of resonator parameters. 

4.3.3 M2 

Each transverse mode pattern has an associated M2-value which is a measure of its size. 

Figure 45 shows the behavior of the M2 parameter as a function of time (or equivalently, the 

number of round trips p) in a Porro prism resonator. 

Initially, when the field is essentially random noise, the M2 –value is high (> 10). Within a 

hundred round trips the value oscillates between 7.8 and 8.5, dropping to an oscillation between 

7.0 and 7.2 by p = 6000. Further convergence is slow. 
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Figure 45 Temporal behaviour of M2 in a Porro prism resonator, G = 
0.9, NF = 9.4. 

4.3.4 Loss 

Figure 46 shows high initial loss, settling to between 0.2 and 0.49 within a few hundred 

round trips, and to between 0.22 and 0.32 by p = 1000, after which convergence is slow. As for 

the M2 parameter, the late slow convergence is indicative of a residual higher-order mode 

component. 
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Figure 46 Temporal behaviour of loss in a Porro prism resonator, G = 
0.9, NF = 9.4. 

An increase in round trip loss inside the laser cavity is also associated with an increase in the 

number of sub–divisions of the field N or, equivalently, in a decrease in the Porro angle. 
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Figure 47 Plot of the round–trip loss as a function of the number of 
petals as predicted by the numerical model. 

Figure 47 shows that for a fixed aperture radius a, the stabilized round–trip losses 

increase nearly linearly with the number of petals in the petal pattern over the region that one 

might reasonably expect to observe petals. This is due to the ever decreasing low loss area as the 

sub–divisions become closer together. This places restrictions on the allowed Porro angles that 

can actually be observed experimentally from such lasers.  

 

The numerical model also correctly predicts the higher-order kaleidoscope beam modes 

to have higher losses than the lower-order petal–like mode. Because our numerical model 

allows the modes to oscillate indefinitely, loss selection ultimately results in the convergence of 

all starting fields to the petal–like patterns, as shown in Figure 48.  
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N N N N N= 10 = 1000 = 2000 = 3000 = 4000  

Figure 48 Development in time of the transverse modes in two Porro 
prism resonators (above) α = 60°, G = 0.9, NF = 9.4, and (below) α = 

30°, G = 0.75, NF = 13.5. 

Figure 48 shows examples of two Porro resonators with the mode pattern at p = 10, or 

just after switch-on when the mode is no more structured than apertured noise, and then in steps 

of 1000 round trips thereafter. In the series above (α = 60°, G = 0.9, NF = 9.4) the mode pattern 

soon appears petal-like, with variation mainly in the size of the mode pattern. In the series 

below (α = 30°, G = 0.75, NF = 13.5) the kaleidoscope modes are apparent in the region between 

approximately p = 500 to p = 2000 round trips. After p = 2500 the petal-pattern is apparent, with 

decreasing oscillation in the variation in the mode size. 
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Figure 49 Comparison of the number of round trips required for mode 
convergence for increasing aperture sizes in a Porro prism resonator 

with α = 30°, G = 0.9. 

Figure 49 shows that increasing the limiting aperture size a increases the number of round 

trips required for the beam to converge to a petal pattern. For NF = 6.0 a few hundred round trips 

are required, for NF = 9.4 about 7000 round trips are required, and for NF = 15.9 the mode 

requires over 32000 round trips for convergence. 

In the presence of gain and hence a limited build–up time, such a complete convergence 

would not necessarily take place, but partial convergence at least is expected, and would follow 

the behaviour of stable Fabry-Perot resonators (Martinez et al. 1997; Encias-Sanz 1999), and in 

this respect agrees with the prediction for Porro prism resonators by (Chen et al. 2006), that a 

slowly-opened Q-switch (and therefore longer pulse) will result in a lower-order mode beam.  

 

4.4 Experimental verification 

The Porro prism resonator investigated in this study is shown schematically in Figure 34, 

and was based on a flash lamp pumped Nd:YAG laser with passive Q–switching. The active 

medium was a 50 mm long Nd:YAG rod of radius 3 mm. Two Porro prisms at either end of the 

laser formed the resonator, replacing traditional mirrors. The stability of the resonators was 

determined by the two intra–cavity lenses near the prisms, but in our experiment no intracavity 

lenses were used, yielding a marginally stable resonator. The resonator was confined in the 

transverse direction by the clear aperture of the optical elements, such as lenses, prisms and gain 



Chapter 4: Transverse modes in Porro prism resonators - 69 - 
_____________________________________________________________________________________ 
 

rod. The laser was pulsed using a Cr4+:YAG passive Q–switch. A quarter wave plate together 

with a polarizing beamsplitter cube ensured variable output coupling from the laser by 

polarization control (by rotation of the waveplate or by rotation of the prisms).  

The assembled laser used in our experiments is shown in Figure 50. The spatial intensity 

profile of the laser output was measured using a CCD camera (model COHU 4812). The 

temporal characteristics were detected with a silicon detector coupled to a 50 Ω impedance, and 

displayed on a two channel oscilloscope (Tektronic TDS 360).  

 

Figure 50 Photograph of assembled laser.  The beamsplitter cube 
and one of the Porro prisms can be made out on the left of the 

assembly. 

It is pertinent at this point to discuss the possibility of the experimental observation of 

these complex beam patterns. Their losses are such that in a mode competing environment they 

are distinct from the petal–like patterns for a time period in the order of 1–2 µs, which is 

comparable to the mode build–up time of a typical actively Q–switched Porro prism laser (see 

Figure 34). Thus while we cannot prove analytically that these complex beams are transverse 

modes of the resonator, their lifetime is such that it is very likely they are transverse modes, and 

there should be the possibility of observing them experimentally. There are however some 

limitations and technical challenges to such an experiment. It is likely that in a conventional 

linear standing-wave resonator some combination of these modes might appear, and with a 

time-averaged measurement a multi–mode pattern would be observed. We believe that we have 

observed this. 
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        (a)                                 (b)                                (c)  

Figure 51 (a) Petal mode, (b) Experimental beam pattern, (c) Average 
of 5 cycles of higher-order modes at 1000 round trips. 

Figure 51 (a) – (b) shows the comparison of a previously calculated petal pattern together 

with experimental verification (Litvin, Burger & Forbes 2007b). A time-averaged output in the 

time period of the complex modes is shown in Figure 51 (c). Two observations can be made: 

firstly, the resulting pattern is again similar to a petal–like pattern, despite no petal–like mode 

component in the sequence, and secondly, the pattern shows an elongation of the energy 

distribution, and a departure from the compact petals seen in Figure 51 (a). The latter is more 

consistent with the experimentally observed pattern, which was measured on a stable resonator 

with large apertures. This suggests (but does not prove) that the complex modes we predict do 

indeed exist, and are stable enough with low enough losses to be resonant in the cavity. In this 

sense they are likely to be viewed as higher-order modes of the resonator (Burger & Forbes 

2008a; Burger & Forbes 2008b). 

Further support for the validity of the model comes from Figure 52, which shows the 

similarity in time-averaged beam pattern predicted by the numerical model to that observed 

experimentally from a Porro prism resonator which is adjusted away from the azimuthal angles 

given in (4-12), where no petals are expected. 

 

(a)                                  (b) 

Figure 52 (a) Result of numerical model time-average, (b) 
Experimental beam pattern, both  from a Porro prism resonator in 
which the azimuthal angle α is tuned away from a petal pattern. 
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In order to measure distinct kaleidoscope modes it is possible that the approach of others 

in selecting multi–pass modes might be employed, together with knowledge of our particular 

field distributions, as predicted in this work. It has been shown that either preferentially 

increasing the gain (Liu et al. 2005) or the loss (Bollig 1997), or altering the phase (Oron et al. 

1999a; Oron et al. 1999b; Machavariani et al. 2002; Chu 2007) for a particular path can force 

oscillation of a particular multi–pass beam mode. The challenge is to adapt such approaches to 

mode selection in Porro prism resonators.   

4.5 Discussion 

Using Eqs. (4-12) and (4-14), the finite sub–division of the field is predicted at angles α = 

67.5° and α = 77.14°, with associated petal numbers of 10 and 14 respectively. No finite sub–

division is expected at α = 79.0°. These cases are shown in Figure 53 (a) – (c) respectively, 

where the locations of the prism apexes are shown around the unit circle after several hundred 

rotations. In insets (a) and (b) the apexes are clearly repeating on themselves, resulting in a 

stable pattern, whereas in (c) the field does not result in any lossless regions because of the non–

repeating apex positions. This latter situation prohibits the formation of a stable mode since all 

regions have high loss, while the former scenarios could potentially support lasing in the lower 

loss regions of the field.  

The numerical model of the resonator confirms this (see Figure 53 (d) – (f)), showing a 

stable mode pattern for α = 67.5° and α = 77.14°, with the correct number of petals (10 and 14 

respectively) as predicted by the theory. At α = 79.0° the output mode never stabilizes and 

results in a random field with high losses. Experimental results verify these findings, with petal 

patterns occurring when they should (α = 67.5° and α = 77.14°), and with the correct number of 

petals: 10 and 14 respectively (see Figure 53 (g) and (h)). At α = 79.0° no petal pattern was 

observed experimentally, in agreement with the theory and numerical model, with the camera 

image showing the time-averaged intensity from the laser. Thus the theoretical, numerical and 

experimental results are all in very good agreement. 
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Figure 53 The analytical model depiction of finitely sub–divided fields 
in (a) and (b), and an infinitely sub–divided field in (c).  Numerically 

this results in a pattern with (d) 10 petals, (e) 14 petals, (f) no petals.  
The corresponding experimentally observed output is shown in (g) – 

(i). 

The angles α for which an output beam existed for the test laser were limited to between 

63° and 87°. The absence of output below 63° was due to increased misalignment between the 

Porro prisms with decreasing angle away from 90° (the crossed case). It should be noted that 

this was a particular artefact of the resonator under study, and is not a general property of Porro 

resonators. The absence of output above 87° was due to two effects: (i) the output coupling 

method of the given cavity: at 90° (crossed Porro prisms) no output existed because cavity 

losses were 100% due to the polarization based output coupling method; and (ii) near 90° the 

number of predicted petals increases very rapidly with Porro angle. Since this reduces the 

available low loss area for the each petal, either no petals are observed due to the inherently 

high losses, or the close proximity of the petals leads to blurring due to diffraction.   

The available experimental data at selected angles α is shown in Table 6, and is in 

excellent agreement with the theoretical and numerical predictions.  
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Table 6 Petal pattern observations: theory and experiment. 

Experiment  Theory 

α N  α N 

68° ± 0.5° 16  67.5000° 16 

72° ± 0.5° 10  72.0000° 10 

77° ± 0.5° 14  77.1429° 14 

80° ± 0.5° 18  80.0000° 18 

 

The complex higher-order modes revealed in the previous section show distinct 

similarities to so–called kaleidoscope modes (McDonald et al. 2000; Bouchal 2003; Anguiano-

Morales et al. 2008). The similarities are visual, which we acknowledge to be subjective given 

that such modes have not been put on a firm mathematical basis, but more important similarities 

exist in the generating mechanisms.  

Field distributions have been proposed which are a result of the coherent superposition of 

n cosine gratings, each rotated with angular increments of ψ = π/n (Bouchal 2003). The 

similarity between this and a rotating loss on the field at angles α = π/n (Eq. (4-12) with i = 1) 

in Porro prism resonators probably accounts for the likeness in output modes.  

Kaleidoscope modes have also been generated using crossed apertures to sub–divide the 

input field to an axicon (Anguiano-Morales et al. 2008). This type of obstruction pattern is 

identical to the final loss field observed in Porro prism resonators (see Figure 39). While such 

fields were previously created external to the laser cavity, we have shown that the fundamental 

property of field sub–division in Porro prisms can produce similar fields directly from the laser 

cavity.  

The generating mechanisms in both (Bouchal 2003) and (Anguiano-Morales et al. 2008) 

have strong points of commonality with how intracavity Porro prisms are treated. However for 

completeness we must point out that the studies in question dealt with diffraction-free beams 

created by plane waves travelling on cones, with no obvious link to our resonator. Despite this 

the output modes bear very strong likeness in form, and perhaps also in properties.  

The modes produced by the “kaleidoscope laser” are generated in a similar way to the 

Porro prism laser, in that in this case geometrically shaped apertures (triangle, rhombus, 

pentagon, hexagon and octagon) are placed inside the laser resonator (McDonald et al. 2000). 
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As for the Porro prism laser, the mode patterns produced show an increasing complexity with 

increasing Fresnel number. 

The ubiquitous nature of Porro prism resonators makes a study of such modes necessary 

in its own right, but there also exists the possibility of using such complex modes to excite 

complex photonic crystal structures, and so further study is required.  

 

4.6 Conclusions 

Presented here is a new approach to modelling Porro prism resonators that combines 

geometrical and physical optical aspects. It shows that for specific prism angles these resonators 

must generate petal–like patterns or kaleidoscope patterns, and gives the generating equation for 

the prism angles at which this will happen. It has been shown that resonators produce 

kaleidoscope patterns as opposed to petal-like patterns only if they have sufficiently large 

intracavity apertures (or sufficiently high Fresnel numbers). These higher-order modes closely 

resemble recently reported kaleidoscope modes due to the fundamental property of field sub–

division in Porro prism resonators. The appearance of first the petal mode and then increasingly 

complex kaleidoscope modes with increasing aperture size leads to the conclusion that the 

petal–like modes are the lowest-order modes of Porro prism resonators, while higher-order 

modes exist in the form of kaleidoscope–like fields. We also predict that the standard petal 

mode is only observable from stable Porro prism resonators, and indicate how the stability 

criterion (G parameter) impacts on the cyclical nature of the higher-order modes. 

The petal results are confirmed experimentally on a test resonator; we believe it is 

possible to observe the kaleidoscope modes experimentally, but acknowledge that there are 

some technical challenges to overcome before doing so. 

This work has implications on how such resonators are used in the field. Variable output 

coupling based on rotating the prisms is often employed, but as has been shown here, this will 

have a significant impact on the output mode from the laser, affecting laser beam propagation, 

far field laser intensity and laser brightness.  
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5. CONCLUSIONS AND FUTURE WORK 

Porro prism resonator technology is considered to be mature (Siegman 2000) but 

nevertheless the petal-pattern beam which has long been observed from these resonators has 

never been explained in published literature. The aim of this dissertation was to develop a 

model of a Porro prism resonator to investigate the beam structure from these lasers. 

Porro prism resonators have previously been treated as Fabry-Perot resonators with field 

inverting properties and polarization effects. Therefore a simple numerical model of a stable 

Fabry-Perot resonator was developed for two reasons. Firstly, the Fabry-Perot numerical model 

serves as a validation of the modelling techniques used by comparing the output of the model 

with analytical formulas from text-book theory. Secondly the model was used to investigate the 

properties of transverse mode formation in Fabry-Perot resonators to serve as a reference with 

which we could compare the differences in output beams from Fabry-Perot and Porro prism 

resonators. The temporal development of spot size, M2 and loss were investigated and found to 

agree well with the understanding that shortly after switch on the beam consists of a rapidly  

cycling series of modes, and that given sufficient time (and the absence of the reseeding of 

higher-order modes) discrimination against the higher-order modes results in the convergence to 

the lowest-order or Gaussian beam.  

Next we considered the fact that one of the major differences between Fabry-Perot 

resonators and Porro prism resonators was the inescapable presence of a narrow area of loss 

across the field, the result of the prism having two optical surfaces which meet at the apex. This 

provided a hint that the unique beam structures from Porro prism lasers could be caused by 

diffraction loss in this region. This led to a new approach to modelling Porro prism resonators 

that combines geometrical and physical optical aspects, and is based on tracking the apex 

“shadow” as the field passes from one Porro prism to the next inside a resonator, and we 

discovered that petal-like patterns will be generated only for certain discrete azimuthal prism 

angles. We have given the generating equation for the prism angles at which this will happen. 

This allowed the apex loss to be included in the numerical model as a rotating loss screen, 

which formed the basis of the Porro prism resonator model. The results are confirmed 

experimentally on a test resonator. This work has implications on how such resonators are used 

in the field. Variable output coupling based on rotating the prisms is often employed, but as has 

been shown here, this will have a significant impact on the output mode from the laser, affecting 

laser beam propagation, far field laser intensity and laser brightness.  
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Further, we have applied a previously-developed mathematical model of intracavity Porro 

prisms to stable and unstable Porro prism resonators with large intracavity apertures. We have 

shown that higher-order modes exist only if NF is sufficiently large, and that these higher-order 

modes closely resemble recently-reported kaleidoscope modes due to the fundamental property 

of field sub–division in Porro prism resonators. The appearance of first the petal mode and then 

increasingly complex kaleidoscope modes with increasing aperture size leads to the conclusion 

that the petal–like modes are the lowest-order modes of Porro prism resonators, while higher-

order modes exist in the form of kaleidoscope–like fields. We also predict that the standard petal 

mode is only observable from stable Porro prism resonators, and indicate how the stability 

criterion (G parameter) impacts on the cyclical nature of the higher-order modes. We believe it 

is possible to observe these modes experimentally, but acknowledge that there are some 

technical challenges to overcome before doing so. 

 

Further work could include the decomposition of the predicted kaleidoscope modes into 

Hermite-Gaussian or Laguerre-Gaussian polynomials: 
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Hn is the n-th order Hermite polynomial, and v0 is the spot size of the modes. 

 Either the method described in (Borghi et al. 2001) could be followed, in which the 

orthogonality and completeness of the Hermite polynomials are exploited to fit these 

polynomials to a given intensity distribution, or a 2-dimensional genetic algorithm could be 

written which would evaluate a fit of a set of Hermite-Gaussian polynomials against a given 

kaleidoscope mode and optimize the coefficients cn of this set of polynomials to achieve a “best 

fit”. 

It would be interesting to measure the polarization of the individual petals making up a 

beam experimentally and see whether it changes from one petal to the next as it does in the 

lobes of the fields of higher-order Laguerre-Gaussian beams (Casperson 1976). 

It would also be extremely useful to investigate the far-field propagation of both petal and 

kaleidoscope beams (in other words the low- and higher-order modes), varying both the stability 
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parameter as well as the Fresnel number of the resonator under study, and also to investigate, 

using the analysis of (Forbes et al. 2008), whether the petals of a beam propagate as N separate 

quasi-Gaussian beams, or whether the beam propagates as a compound beam. The far-field 

beam pattern will determine the usefulness of these beams over a distance. If the petals 

propagate as separate quasi-Gaussians then they would be useful in the differential measurement 

of atmospheric turbulence. 

If the beams combine over a distance to form a multimode beam structure then this would 

have implications as to the divergence and brightness of the beam, and to their usefulness in 

ranging applications. 

 

 



- 78 -                                                                                                                     Chapter 6: References 
_____________________________________________________________________________________ 
 

6. REFERENCES 

Afzal, R.S. (1994) Mars Observer Laser Altimeter: laser transmitter. Applied Optics 33, p. 
3184-3188.  

Agrawal, L., Bhardwaj A., Pal S. & Kumar A. (2007) Jones matrix formulation of a Porro prism 
laser resonator with waveplates: theoretical and experimental analysis. Applied Physics 
B: Lasers and Optics 89, p. 349-357.  

Anan'ev, Y.A. (1973) Unstable prism resonators. Quantum Electronics 3, p. 58-59.  

Anan'ev, Y.A, Kuprenyuk, V.I., Sergeev, V.V. & Sherstobitov, V.E. (1977) Investigation of the 
properties of an unstable resonator using a dihedral corner reflector in a continuous-
flow cw CO2 laser. Quantum Electronics 7, p. 822-824.  

Anguiano-Morales, M., Martínez, A., Iturbe-Castillo, D.M. & Chávez-Cerda, S. (2008) 
Different field distributions obtained with an axicon and an amplitude mask. Optics 
Communications 281, p. 401-407.  

Arlt, J., Kuhn, R. & Dholakia, K. (2001) Spatial transformation of Laguerre-Gaussian laser 
modes. Journal of Modern Optics 48, p. 783-787.  

Bahuguna, K.C., Sharma, P., Vasan, N.S. & Gaba, S.P. (2007) Laser Range Sensors. Defence 
Science Journal 57, p. 881-890.  

Bekshaev, A.Y. (1999) Intensity Moments of a Laser Beam Formed by Superposition of 
Hermite-Gaussian Modes. Fotoelektronika 8, p. 22-25.  

Belanger, P.A. (1991) Beam propagation and the ABCD ray matrices. Optics Letters 16, p. 196-
198.  

Blows, J.L., Forbes, G.W. & Dawes, J.M. (2000) Cavity modes in diode-array end-pumped 
planar lasers with aberrated thermal lenses. Optics Communications 186, p. 111-120.  

Bollig, C. (1997) Single-frequency diode-pumped solid state lasers. PhD thesis, University of 
Southampton, UK. 

Bollig, C., Clarkson, W.A., Hanna, D.C., Lovering, D.S., Jones, G.C.W. (1997) Single-
frequency operation of a monolithic Nd:glass ring laser via the acousto-optic effect. 
Optics Communications 133, p. 221-224.  

Borghi, R., Piquero, G. & Santarsiero, M. (2001) Use of biorthogonal functions for the modal 
decomposition of multimode beams. Optics Communications 194, p. 235-242.  

Bouchal, Z. (2003) Nondiffracting Optical Beams: Physical Properties, Experiments, and 
Applications. Czechoslovak Journal of Physics 53, p. 537-578.  

Brewster, D. (1819) A Treatise on the Kaleidoscope. Archibald Constable & Co., London.  

Buchman, W. (1965) Laser Q-switch using a roof prism end reflector and electro-optical 
retarder. IEEE Journal of Quantum Electronics 1, p. 280-281.  

Burger, L. & Forbes, A. (2007) A model of the transverse modes of stable and unstable porro-
prism resonators using symmetry considerations. Proceedings of SPIE 6663, p. 666305-
1 - 666305-8.  

Burger, L. & Forbes, A. (2008a) Kaleidoscope modes in large aperture Porro prism resonators. 
Optics Express 16, p. 12707-12714.  

Burger, L. & Forbes, A. (2008b) Porro prism lasers: a new perspective. Proceedings of SPIE 
7070, p. 70700L-1.  

Casperson, L.W. (1976) Phase compensation of laser beam modes. Optical and Quantum 
Electronics 8, p. 537-544.  



Chapter 6: References   - 79 - 
_____________________________________________________________________________________ 
 

Champagne, Y. & Bélanger, P.A. (1995) Method for measurement of realistic second-moment 
propagation parameters for nonideal laser beams. Optical and Quantum Electronics 27, 
p. 813-824.  

Chapple, P.B. (1994) Beam waist and M2 measurement using a finite slit. Optical Engineering 
33, p. 2461-2466.  

Checcacci, P.F., Consortini, A. & Scheggi, A. (1966) Modes, phase shifts, and losses of flat-
roof open resonators. Applied Optics 5, p. 1567–1572.  

Chen, J., Wang, P.J., Yau, H.F. & Chang, S.P. (1996) Energy extraction of Porro resonator in 
Pockels cell Q-switch operation. Optical and Quantum Electronics 28, p. 1453-1462.  

Chen, J., Lin, J.T. & Mang, O.Y. (2006) Smaller Output Beam Divergence in the Slowly 
Opened Q-Switch Operation. Optical Review 13, p. 69-76.  

Chu, S. (2007) A design of optical resonator for donut mode generation. Proceedings of SPIE 
6663, p. 66630Q-1 - 66630Q-11.  

Chun, M.K. & Teppo, E.A. (1976) Laser resonator-An electro-optically Q-switched Porro prism 
device. Applied Optics 15, p. 1942-1946.  

Cole, T.D. (1998) NEAR Laser Rangefinder: A Tool for the Mapping and Topologic Study of 
Asteroid 433 Eros. Johns Hopkins APL Technical Digest 19, p. 142-157.  

CVI (2009) Porro Prisms. CVI Optical Components and Assemblies catalogue. 
www.cvilaser.com/Common/PDFsNews/2006_Optical_Components_Catalog.pdf, p. 
34. 

di Francia, G.T. (1965) Flat-roof resonators. Applied Optics 4, p. 1267-1270.  

Dudeja, J.P. (1989) Nd: YAG Laser-Pumped Raman-Shifted Methane Laser as an Eye-safe 
Laser Rangefinder. Defence Science Journal 39, p. 221-232.  

Encinas-Sanz, F., Calderón, O.G., Gutiérrez-Castrejón, R. & Guerra, J.M. (1999) Measurement 
of the spatiotemporal dynamics of simple transverse patterns in a pulsed transversely 
excited atmospheric CO2 laser. Physical Review A 59, p. 4764-4772.  

Forbes, A., Burger, L. & Litvin, I.A. (2006) Modelling laser brightness from cross Porro prism 
resonators. Proceedings of SPIE 6290, p. 62900M-1.  

Forbes, A., Ngcobo, S., Esser, D., Preussler, D. & Bollig, C. (2008) Laser beam propagation 
characteristics of incoherently added diode bars. Proceedings of SPIE 7062, p. 70621A-
1.  

Fox, A.G. & Li, T. (1961) Resonant Modes in a Maser Interferometer. Bell System Technical 
Journal 40, p. 453–488.  

Fox, A.G. & Li, T. (1963) Modes in a maser interferometer with curved and tilted mirrors. 
Proceedings of the IEEE 51, p. 80-89.  

Fox, A. & Li, T. (1968) Computation of optical resonator modes by the method of resonance 
excitation. Quantum Electron 4, p. 460-465.  

Friedman, G. (2000) The light fantastic: Ted Maiman and the world's first laser.  
<http://spie.org/x13999.xml?highlight=x2416> 

Gould, G. Jacobs, S., Rabinowitz, P., Shultz, T. (1962) Crossed Roof Prism Interferometer. 
Applied Optics 1, p. 533-534.  

Gregor, E., Chen, T. & Bruesselbach, H.W. (1998) Compact Diode-pumped Solid-state laser. 
EP Patent 0,796,513. 

Hanna, D.C., Sawyers, C.G. & Yuratich, M.A. (1981) Telescopic resonators for large-volume 
TEM00-mode operation. Optical and Quantum Electronics 13, p. 493-507.  

Hecht, E. (2001) Optics. Addison-Wesley, Reading MA. 



- 80 -                                                                                                                     Chapter 6: References 
_____________________________________________________________________________________ 
 

Henriksson, M., Sjoqvist, L. & Uhrwing, T. (2005) Numerical simulation of a battlefield 
Nd:YAG laser. Proceedings of SPIE 5989, p. 59890I-1 - 59890I-10.  

Henriksson, M. & Sjoeqvist, L. (2007) Numerical Simulation of a Flashlamp Pumped Nd:YAG 
Laser. FOI-R-1710-SE, Swedish Defence Research Agency, Linkoeping. 

Hodgson, N. & Weber, H. (2005) Laser Resonators and Beam Propagation. Springer-Verlag, 
New York. 

 Ishizu, M. (2004) Laser oscillator. US Patent 6,816,533.  

Joseph, P. (2007) Solid State Laser Developments at LASTEC. <http://frontierindia.net/solid-
state-laser-developments-at-lastec> 

Kimel, I. & Elias, L.R. (1993) Relations between Hermite and Laguerre Gaussian modes. 
Quantum Electronics, IEEE Journal of 29, p. 2562-2567.  

Kogelnik, H. & Li, T. (1966) Laser beams and resonators. Applied Optics 5, p. 1550-1567.  

Kuo, I. & Ko, T. (1984) Laser resonators of a mirror and corner cube reflector: Analysis by the 
imaging method. Applied Optics 23, p. 53–56.  

Lawrence, G.N. (1987) Optical system analysis with physical optics codes. Proceedings of SPIE 
766, p. 111-118.  

Lawrence, G.N. (1991) Optical design with physical optics using GLAD. Proceedings of SPIE 
1354, p. 126-135.  

Lee, J.F. & Leung, C.Y. (1988) Beam pointing direction changes in a misaligned Porro prism 
resonator. Applied Optics 27, p. 2701–2707.  

Lee, J.F. & Leung, C.Y. (1989) Method of calculating the alignment tolerance of a Porro prism 
resonator. Applied Optics 28, p. 3691-3697.  

Lee, J.F. & Leung, C.Y. (1989) Lateral displacement of the mode axis in a misaligned Porro 
prism resonator. Applied Optics 28, p. 5278-5284.  

Litvin, I.A., Burger, L. & Forbes, A. (2007a) Analysis of transverse field distributions in Porro 
prism resonators. Proceedings of SPIE 6346, p. 63462G-1 – 63462G-7.  

Litvin, I.A., Burger, L. & Forbes, A. (2007b) Petal-like modes in Porro prism resonators. Optics 
Express 15, p. 14065-14077.  

Liu, W., Huo, Y., Yin, X. & Zhao, D. (2005) Modes of Multi-End-Pumped Nonplanar Ring 
Laser. IEEE Photonics Technology Letters 17, p. 1776-1778.  

Lu, B., Cai, B., Liao, Y., Xu, S. & Xin Z. (1989) Flowing air-water cooled slab Nd: glass laser. 
Proceedings of SPIE 1021, p. 175-180.  

Lukac, M. (1991) Output energy characteristics of optimally pumped rotating mirror Q-switch 
lasers. IEEE Journal of Quantum Electronics 27, p. 2094-2097.  

Lukš, A. (1976) On the moment problem in optics. Czechoslovak Journal of Physics 26, p. 
1095-1101.  

Lundstrom, E.A. (1983) Waveplate for correcting thermally induced stress birefringence in 
solid state lasers. US Patent 4,408,334.  

Lundstrom, E.A. (1984) Output coupler for laser resonator. US Patent 4,461,009.  

Machavariani, G., Davidson, N., Ishaaya, A.A., Friesem, A.A. & Hasman, E. (2002) 
Transformation of a high-order mode-intensity distribution to a nearly Gaussian beam. 
Proceedings of SPIE 5147, p. 271-275.  

Mansfield, D.K., Jones, K., Johnson, L.C. & Semet, A. (1983) Theory of the rooftop resonator: 
resonant frequencies and eigenpolarizations. Applied Optics 22, p.662-665.  

Martinez, C., Encinas-Sanz, F., Serna, J., Mejías, P.M. & Martínez-Herrero, R. (1997) On the 
parametric characterization of the transversal spatial structure of laser pulses. Optics 
Communications 139, p. 299-305.  



Chapter 6: References   - 81 - 
_____________________________________________________________________________________ 
 

McDonald, G.S., Karman, G.P., New, G.H.C. & Woerdman, J.P. (2000) Kaleidoscope laser. 
Journal of the Optical Society of America B 17, p. 524-529.  

Nortier, F. (1981) Investigation of a crossed Porro prism resonator employed in a Q-switched 
Nd:YAG laser. MSc thesis, University of Natal, South Africa. 

Oron, R. Danziger, Y., Davidson, N., Friesem, A.A. & Hasman, E. (1999a) Discontinuous 
phase elements for transverse mode selection in laser resonators. Applied Physics 
Letters 74, p. 1373-1375.  

Oron, R. Danziger, Y., Davidson, N., Friesem, A.A. & Hasman, E. (1999b) Laser mode 
discrimination with intra-cavity spiral phase elements. Optics Communications 169, p. 
115-121.  

Padgett, M. Arlt, J., Simpson, N. & Allen, L. (1996) An experiment to observe the intensity and 
phase structure of Laguerre-Gaussian laser modes. American Journal of Physics 64, p. 
77-82.  

Pasqualetti, F. & Ronchi, L. (1973) Roof-mirror resonators. Journal of the Optical Society of 
America 65, p. 649-654.  

Peck, E.R. (1962) Polarization properties of corner reflectors and cavities. Journal of the 
Optical Society of America 52, p. 253–257.  

Podgaetskii, V.M. & Chernets, A.N. (1967) Using reflecting prisms in a solid-state laser with a 
kerr cell shutter. Journal of Applied Spectroscopy 6, p. 488-490.  

Podgaetskii, V.M. (1969) Application of the Jones Method for Computation of the 
Electrooptical-Shutter Characteristics in a Laser with Porro Prisms as Reflectors. Optics 
and Spectroscopy 26, p. 153.  

Preussler D. (2007). Private communication. National Laser Centre, CSIR, PO Box 395, 
Pretoria, South Africa. 

Rapaport, A. & Bass, M. (2000) Laser resonator design using optical ray tracing software. 
SAND2000-2888J, Sandia National Labs., Albuquerque, NM. 

Rapaport, A., Weichman, L., Brickeen, B., Green, S. & Bass, M. (2001) Laser resonator design 
using optical ray tracing software: comparisons with simple analytical models and 
experimental results. IEEE Journal of Quantum Electronics 37, p. 1401-1408.  

Reed, E.D. (1997) Prism folded laser cavity with controlled intractivity beam polarization. US 
Patent 5,640,412.  

Reeder, R.A. (1988) Laser resonator. US Patent 4,740,986. 

Richards, J. (1982) Laser Resonator. Patent WO/1982/003503. 

Richards, J. (1987) Birefringence compensation in polarization coupled lasers. Applied Optics 
26, p. 2514–2517.  

Ronchi, L. (1973) Low-loss modes and resonances in a quasi-90-roof mirror resonator. Applied 
Optics 12, p. 93-97.  

Roundy, C.B. (2008) Current Technology of Laser Beam Profile Measurements, 
http://www.ophiropt.com/user_files/news/camera_based_systems_for_modern_l
aser_beam_diagnostics.pdf 

See, B.A., Fueloep, K. & Seymour, R. (1980) An Assessment of the Crossed Porro Prism 
Resonator. ERL-0162-TM AR-002-041, Electronics Research Lab., Adelaide, 
Australia, p.1-16.  

Severinsson, A.S. (1985) Method of maintaining a predetermined beam direction in a laser 
pulse transmitter and an apparatus for carrying out the method. US Patent 4,498,180.  

Siegman, A.E. (1986) Lasers. University Science Books, USA.  



- 82 -                                                                                                                     Chapter 6: References 
_____________________________________________________________________________________ 
 

Siegman, A.E. (1993) Defining, measuring, and optimizing laser beam quality. Proceedings of 
SPIE 2, p. 2-12.  

Siegman, A.E. (1998) How to (maybe) measure laser beam quality. DPSS Lasers: Application 
and Issues, MW Dowley, ed. 17, p. 184-199.  

Siegman, A.E. (2000) Laser Beams and Resonators: Beyond the 1960s. IEEE Journal of Special 
Topics in Quantum Electronics 6, p. 1389-1399. 

Siegman, A.E. & Miller, H.Y. (1970) Unstable optical resonator loss calculations using the 
Prony method. Applied Optics 9, p. 2729-2736.  

Singh, I., Kumar, A. & Nijhawan, O.P. (1995) Design of a high-power Nd: YAG Q-switched 
laser cavity. Applied Optics 34, p. 3349-3351 . 

Smith, P.W. (1972) Mode selection in lasers. Proceedings of the IEEE 60, p. 422-440.  

Stevens, H. (1963) Some congruence properties of the Hermite polynomials. Archiv der 
Mathematik 14, p. 391-398.  

Steyl, J. (2007). Private communication, Carl Zeiss Optronics (Pty) Ltd., Nellmapius Drive, 
Irene 0046, South Africa. 

Storm, M. (1992) Controlled retroreflection- A technique for understanding and eliminating 
parasitic lasing. Optical Society of America, Journal, B: Optical Physics 9, p. 1299-
1304.  

Sundvold, S.D., Morrelli, G.L., Brickeen, B.K., Powell, C.A. & Paiva, R.A. (1999) X1 UV laser 
trigger system. Proceedings of SPIE 3613, p. 56-64. 

Tsai, C. & Lin, P. (2008) The determination of positions and orientations of a prism’s surfaces 
based on image orientation change. Applied Physics B: Lasers and Optics 91, p. 105-
114.  

Virnik, Y.Z., Gerasimov, V.B., Sivakov, A.L. & Treivish, Y.M. (1987) Formation of fields in 
resonators with a composite mirror consisting of inverting elements. Quantum 
Electronics 17, p. 1040-1043.  

Vtorova, V.E., Gorbachev, V.I. & Scheglov, V.A. (1991) Review of methods of calculating the 
field in optical cavities and choice of calculation method for free-flow chemical lasers. 
Journal of Russian Laser Research 12, p. 126-146.  

Wang, L.Y. & Stephan, G. (1991) Transverse modes of an apertured laser. Applied Optics 30, p. 
1899-1910.  

Webb, C. & Jones, J. (2004) Handbook of Laser Technology and Applications, Volume 1: 
Principles. Institute of Physics Publishing, Bristol and Philadelphia.  

Winker, D.M., Hunt, W.H. & Hostetler, C.A. (2004) Status and performance of the CALIOP 
lidar. Proceedings of SPIE 5575, p. 8-15.  

Wright, D. Greve, P., Fleischer, J. & Austin, L. (1992) Laser beam width, divergence and beam 
propagation factor—an international standardization approach. Optical and Quantum 
Electronics 24, p. 993-1000.  

Yanagisawa, T. & Hirano, Y. (2005) Self-compensating laser resonator. US Patent 6,901,102.  

Yassin, G. & Lain, D.C. (1985) Rectangular flat-roof microwave resonator for molecular beam 
masers. Journal of Physics D-Applied Physics 18, p. 1979-1985.  

Zhou, G. & Casperson, L. (1981) Modes of a laser resonator with a retroreflecting roof mirror. 
Applied Optics 20, p. 3542–3546.  



Chapter 7: Appendix   - 83 - 
_____________________________________________________________________________________ 
 

7. APPENDIX  

7.1 GLAD model of a symmetrical Fabry-Perot resonator 

Cir-Mir Reson 03.inp 

variab/dec/int step pass STOP 
variables/declare/real L R1 Apertur Dfitxomega Dfit yomega Dmsqx Dmsqy 
variables/monitor/add L R1 Apertur step Dfitxomega Dfityomega Dmsqx 
Dmsqy 
 
write/on 
array/set 1 256 
fieldsize=0.3 
L=10 
R1= 52.3607 
Apertur=0.08                              # 2w1= 0. 0495055 2.5w1= 
0.0618819 3w1= 0.0742582 
                               
nopass = 10000          #600 #200 
set/density 128 128 
 
macro/def reson/o 
   pass = pass + 1 list                # increment pass counter 
   step = step + 1                     # increment step number 
   prop L/2                             # propagate  45 cm. 
   macro/run diagnostix 
   W1x=Dwx; 
   mirror/sph 0 -R1                    # concave mi rror of 50 cm 
radius 
   clap/c/n 0 Apertur #0.14                      # .14 cm. radius 
aperture 
   prop L                             # propagate 4 5 cm. along beam 
   macro/run diagnostix 
   W2x=Dwx; 
   mirror/sph 0 R1                     # concave mi rror of 50 cm 
radius 
   clap/c/n 0 Apertur #0.14                      # .14 cm. radius 
aperture 
   prop L/2 
   energy                              # calculate energy in the beams 
   variab/set energy1 1 energy 
   loss = (1 - energy1)*100            # determine loss (%) before 
normalising peak I=1 
 
   pltflag=0 
   if [step>99] then 
     if [step<120] then 
       pltflag=1  
     endif 
   endif 
   if pltflag=1 then 
     set/window/center-width 0.1 0.1 
     title L=@L R1=@R1 at @step steps 
     plot/watch circ_mode_R1=@R1_Ap=@Apertur_Step=@ step.plt 
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     plot/bitmap/intensity/burnpattern 1 min=0 
     plot/meta/wmf 
     pause 2 
     plot/plot_log/clear 
     watch/close 
     watch/start 
   endif 
 
  # Output data to text file 
  write/disk/on 'Output-R=@R1_Ap=@Apertur.txt'/noov erwrite 
  C 
  Apertur= 
  Dfitxomega= 
  Dfityomega= 
  Dmsqx= 
  Dmsqy= 
 
  energy/norm 1 1 
  variab/set energy1 1 energy         # reset energ y1 to 1 
 
  loss= 
  write/disk/off 
macro/end 
 
macro/def diagnostix/o 
  fitmsquared/both/nocorrection 1       # Diagnosti cs of Beam #2 
  variables/set Dfitxcent fitxcent      # X-beam ce nter 
  variables/set Dfitycent fitycent      # Y-beam ce nter 
  variables/set Dfitxomega fitxomega    # X-radius of equivalent 
gaussian 
  variables/set Dfityomega fityomega    # Y-radius of equivalent 
gaussian 
  variables/set Dfitxrad fitxrad       # X-transver se radius of equiv 
gauss 
  variables/set Dfityrad fityrad       # Y-transver se radius of equiv 
gauss 
  variables/set Dfitxsig fitxsig        # X-standar d deviation 
  variables/set Dfitysig fitysig        # Y-standar d deviation 
  variables/set Dfitxsigf fitxsigf      # X-standar d deviation, freq 
space 
  variables/set Dfitysigf fitysigf      # Y-standar d deviation, freq 
space 
  variables/set Dmsqx msqx              # M2 in the  x-direction 
  variables/set Dmsqy msqy              # M2 in the  y-direction 
  Dwx=2*Dfitxsig 
  Dwy=2*Dfitysig 
macro/end 
 
nbeam 1                                # establish 2 beams 
wavelength/set 1 1.064                 # set wavele ngths 
units/field 1 fieldsize 
 
resonator/name reson 
C ***** Eigen/Test ***** 
resonator/eigen/test 1 
 
C ***** Eigen/Set ***** 
resonator/eigen/set 1                  # set beam 2  to eigen mode 
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clear 1 1                              # start with  a plane wave in 
beam 2 
energy/norm 1 1 
status/p 
pass = 0                               # initialize  variables 
step = 0                               # for pass c ounters 
gain/converge/set eps1=.001 npoints=5  # set conver gence criterion to 
                                       # .1 percent  energy change 
write/off 
 
write/disk/on 'Output-R=@R1_Ap=@Apertur.txt'/overwr ite 
write/disk/off 
 
reson/run nopass 
write/on 
 
title diffraction mode shape 
plot/watch circ_mode_R1=@R1_Ap=@Apertur_diffr_mode. plt 
plot/bitmap/intensity/burnpattern 1 min=0 
plot/meta/wmf 
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7.2 Mathematica code - periodicity of a Fabry-Perot resonator 
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7.3 Mathematica code to plot the stability of a Porro prism resonator 
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7.4 GLAD code – Porro prism resonator 

c##  
write/screen/off 
 
variab/dec/int step pass f1 f2 totalsteps arraysize  pass plotcount 
ffNoSteps ffstepcount 
variab/dec/real angle ResonLength Apertur  
variab/dec/real Dfitxcent Dfitycent Dfitxomega Dfit yomega Dfitxrad 
Dfityrad Dfitxsig Dfitysig Dfitxsigf Dfitysigf Dfit ysig Dmsqx Dmsqy 
DdelThetax DdelThetay Dwx Dwy loss 
variables/monitor/show 
variables/monitor/add angle step totalsteps f1 f2 A pertur Dwx Dwy 
Dmsqx Dmsqy loss 
 
# Invariable 
arraysize = 256                          
fieldsize = 0.4     
totalsteps = 2000  
WaveL = 1.064                             # microns  
prism_lens_dist1 = 0    
prism_lens_dist2 = 0    
inter_lens_dist = 10 
ResonLength = prism_lens_dist1 + prism_lens_dist2 +  inter_lens_dist 
f=20                                      # Far-fie ld lens, cm 
#ApStep=0.005                             # set in ResStep 
 
# Variable 
f1 = 4*ResonLength                    # set in ResS tep 
f2 = 4*ResonLength                    # set in ResS tep 
#InitApertur = 0.04   
# Starting Apertur, reset in ResLoop, incr. with 0. 002 each loop 
Apertur=0.16 
ObsWidth = 0.002                          
angle=30.0 
 
NoCycle = 14 
avg_go = totalsteps - 5*NoCycle 
 
# System 
plotcount = 1000   
set/density 128 128                       # NB This  is the largest 
setting 
                                          # that wo rks for wmf 
histpltx=0.12 
maxIplt=1    
 
 
 
# ------------------------------------------------- ------ 
 
macro/def plot_history/o 
   copy/c 1 2 
   copy/row 2 3 1 step                   # copy X-s ection 
macro/end 
 
# ------------------------------------------------- ------ 
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macro/def reson/o 
   step = step + 1 list                    # increm ent step 
number 
   step1000=1000+step 
   pass = pass + 1 list                    # increm ent pass 
counter 
   prop prism_lens_dist1    # prism to cv lens 
   lens/sph/element 1 f1            # ideal cv (+) lens #2 
   clap/cir/no 1 Apertur 
   prop inter_lens_dist          # to cx lens 
   clap/cir/no 1 Apertur 
   lens/sph/element 1 f2                 # - # idea l cx (-) 
lens #1 
   prop prism_lens_dist2       # to prism 
   obs/rec 1 1 ObsWidth 0 0 90-step*2*angle   # rot ating of obs   
mirror/flat 1 
 
   prop prism_lens_dist2    # to lens 
   lens/sph/element 1 f2                   # ideal cx lens #1 
   clap/cir/no 1 Apertur 
   prop inter_lens_dist          # to rod 
   clap/cir/no 1 Apertur 
   lens/sph/element 1 f1               # ideal cv l ens #2 
   prop prism_lens_dist1    # to prism 
   obs/rec 1 1 ObsWidth 0 0 -90+angle+step*2*angle 
   mirror/flat 1 
 
   pass = pass + 1 list                  # incremen t pass 
counter 
 
   variab/set energy1 1 energy         # energy1 is  energy after round 
trip 
   loss = (1 - energy1)*100            # determine loss (%) before 
normalising peak I=1 
 
   peak/norm 1 
   term1=step/plotcount 
   term2=floor(step/plotcount) 
 
   if step > avg_go then 
   #if [abs(term1-term2)<0.0201] then     # Select 1st 20/1000 
   ##if step > totalsteps-100 then        # Select last 100 
     set/window/center-width Apertur      
     title L=@ResonLength f1=@f1 f2=@f2 at @step st eps 
     plot/watch 
AP_NFmode_@angle_deg_f1=@f1_f2=@f2_Ap=@Apertur_Step =@step1000.plt 
     plot/bitmap/intensity/burnpattern 1 max=maxIpl t 0                        
     plot/meta/wmf 
     pause 2 
     plot/plot_log/clear 
     watch/close 
     watch/start 
   endif 
 
   macro/run diagnostix 
     
  # Output data to text file 
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  write/disk/on 
'AP_dev_data_@angle_deg_f1=@f1_f2=@f2_Ap=@Apertur.t xt'/nooverwrite 
  C 
  Apertur= 
  Dfitxomega= 
  Dfityomega= 
  Dmsqx= 
  Dmsqy= 
 
   udata/set step pass loss            # store loss  (%) 
   energy/norm 1 1 
   variab/set energy1 1 energy         # reset ener gy1 to 1 
 
  loss= 
  write/disk/off 
 
  if step > avg_go then 
    add/incoherent 4 1 
  endif 
macro/end 
 
# ------------------------------------------------- ------ 
 
macro/def ApLoop 
  pass = 0                              # initializ e variables 
  step = 0                              # for pass counters 
  resonator/name reson 
  resonator/eigen/test 1 
  resonator/eigen/set 1                 # set beam 2 to eigen mode 
  clear 1 1                             # start wit h a plane wave in 
beam 1 
  #noise 1 1                            # start wit h a plane wave in 
beam 1 
  noise/deltacorrelated 1 .1 
  energy/norm 1 1 
 
  plot/plot_log/clear 
   
  reson/run totalsteps-1 
 
  title Loss per pass 
  plot/watch 
AP_loss_@angle_deg_f1=@f1_f2=@f2_Ap=@Apertur_Step=@ step.plt 
  plot/udata 1 left=10 right=totalsteps min=0 max=5  
  plot/meta/wmf 
 
  # Plot Beam Average 
  title Beam Tail Average 
  set/window/center-width .2 .2 
  plot/watch AP_NFmode_@angle_deg_f1=@f1_f2=@f2_Ap= @Apertur_avg.plt 
  plot/bitmap/intensity 4 # 1 0 
  plot/meta/wmf 
 
  # Lens & propagate 
  lens/sph/element 1 f  
  prop f 
  peak/norm 1 
  title FF Beam Pattern  
  set/window/center-width .2 .2         
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  plot/watch 
AP_FFmode_@angle_deg_f1=@f1_f2=@f2_Ap=@Apertur_Step =@step.plt 
  plot/bitmap/intensity/burnpattern 1 
  plot/meta/wmf 
 
  watch/close 
  watch/start 
 
#  Apertur=Apertur+ApStep 
macro/end 
 
# ------------------------------------------------- ------ 
 
macro/def diagnostix/o 
  fitmsquared/both/nocorrection 1       # Diagnosti cs of Beam #1 
  variables/set Dfitxcent fitxcent      # X-beam ce nter 
  variables/set Dfitycent fitycent      # Y-beam ce nter 
  variables/set Dfitxomega fitxomega    # X-radius of equivalent 
gaussian 
  variables/set Dfityomega fityomega    # Y-radius of equivalent 
gaussian 
  variables/set Dfitxrad fitxrad        # X-transve rse radius 
  variables/set Dfityrad fityrad        # Y-transve rse radius 
  variables/set Dfitxsig fitxsig        # X-standar d deviation 
  variables/set Dfitysig fitysig        # Y-standar d deviation 
  variables/set Dfitxsigf fitxsigf      # X-standar d deviation, freq 
space 
  variables/set Dfitysigf fitysigf      # Y-standar d deviation, freq 
space 
  variables/set Dmsqx msqx              # M2 in the  x-direction 
  variables/set Dmsqy msqy              # M2 in the  y-direction 
  Dwx=2*Dfitxsig 
  Dwy=2*Dfitysig 
macro/end 
 
# ------------------------------------------------- ------ 
 
#  write/screen/off 
  nbeam 4                                   # estab lish 1 beam 
  array/set 1 arraysize 
  #array/set 2 arraysize 1 data 
  #array/set 3 arraysize totalsteps data 
  array/set 4 arraysize arraysize data                    # avg 
 
  units/field 0 fieldsize 
  variab/set Units 1 units 
  units/s 2 Units 
  units/s 3 Units 1 
  units/s 4 Units 
 
  wavelength/set 1 WaveL                    # set w avelengths 
 
  write/disk/on 
'AP_dev_data_@angle_deg_f1=@f1_f2=@f2_Ap=@Apertur.t xt'/overwrite 
  write/disk/off 
  macro/run ApLoop/1 
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7.5 Verification of GLAD beam size calculations 

7.5.1 Generate and save GLAD beam data 

c## outfile 
 
variab/dec/int n m arraysize 
 
arraysize=1024  #512 
fieldsize = 1 
wavelength/set 1 1.064 
set/density 128 128                       # NB This  is the largest 
setting that works for wmf   #256 256                       # 512 512 
 
w=0.20 
n=2 
m=1 
 
# ------------------------------------------------- ------ 
 
macro/def writebeam 
  peak/norm 1 1 
  #outfile/intensity 'I_beam@n@mh.csv'/noheader/com ma 1 
  outfile/intensity 
'I_H@n@m_fieldsize_@fieldsize_ArraySize_@arraysize. csv'/noheader/comma 
1 
  #outfile/phase 'P_beam@n@mh.csv'/noheader/comma 1  
 
  set/window/center-width fieldsize/2 fieldsize/2 
  title "test infile, outfile" 
  plot/w I_H@n@m_fieldsize_@fieldsize_ArraySize_@ar raysize.plt 
  plot/bitmap/intensity 1 1 0 
 
  fitgeo/msquared 1 
  variables/set Ffitxcent 1 fitxcent 
  variables/set Ffitycent 1 fitycent 
  variables/set Ffitxomega 1 fitxomega 
  variables/set Ffityomega 1 fityomega 
  variables/set Ffitxrad 1 fitxrad 
  variables/set Ffityrad 1 fityrad 
  variables/set Ffitxsig 1 fitxsig 
  variables/set Ffitysig 1 fitysig 
  variables/set Ffitxsigf 1 fitxsigf 
  variables/set Ffitysigf 1 fitysigf 
  variables/set Fmsqx 1 msqx 
  variables/set Fmsqy 1 msq 
  C     
  C FITGEO/MSQUARED 
  C 
  write/disk/on 
'I_H@n@m_fieldsize_@fieldsize_ArraySize_@arraysize. txt'/nooverwrite 
  C 
  Ffitxcent= 
  Ffitycent= 
  Ffitxomega= 
  Ffityomega= 
  C 
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  C 
  write/disk/off 
macro/end 
 
# ------------------------------------------------- ------ 
 
nbeam 1 
array/set 1 arraysize 
units/field 1 fieldsize/2 fieldsize/2 
 
#gaussian/cir 1 1 w 
hermite 1 1 w w n m 
 
macro/run writebeam 

7.5.2 Read beam and calculate spot size in Mathematica for comparison 
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7.6 Mathematica code - periodicity of a Porro prism resonator  
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