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ABSTRACT

This dissertation consists of two main sectionse Tifst is a review of laser resonators
using spherical mirrors, and incorporates a phygptics numerical model of a Fabry-Perot
laser resonator without gain. The output of thisdelpwhich includes spot sizes, loss, and
transverse mode formation, is compared to the petexsicalculated using published analytical
results. This comparison serves as a verificatioth® numerical methods used, as well as a

frame of reference for the model of a Porro prissonator which follows in the second section.

The second section proposes a new method for amglfAorro prism resonators. The
analysis incorporates both geometric as well assiphl optics concepts, with the prisms
modelled as rotating elements with amplitude arasphdistortions. This yields expressions for
the orientation of the loss at the apex of eacbnmriand as well as the number of petals in the
“petal-pattern” beam structure commonly observeanfiPorro prism lasers. These expressions
are included in a numerical model, which is firsted to verify the development of the
characteristic petal-pattern. Next, the numericatiet is used to investigate the development of
the beam structure, in both time and space, inseb®orro resonators with a range of Fresnel
numbers and stability parameters. This leads toesoew insight into the transverse modes of

these lasers.
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1. INTRODUCTION

The theory of the stimulated emission of radiaftmm atoms and molecules, as opposed
to spontaneous emission, was proposed in 1917 bgriAEinstein. In 1958 the principles of
amplification of light were published by Arthur ISchawlow and Charles H. Townes, and
contained the idea of arranging mirrors at eachadradcavity containing a substance that could
be excited to emit light, the gain medium. The orsrwould bounce the light back and forth so
that all the photons would be moving in the samedtiion. The first laser, an acronym for Light
Amplification by the Stimulated Emission of Radaatj was built in 1960 by Theodore Maiman
of the Hughes Aircraft Companytiedman 2000). It consisted of a flashlamp-pumped ruby
crystal, with the ends of the crystal silvered ¢ove as the mirrors of the first laser resonator.
Since then lasers have proven to be a powerful wahl a broad range of applications from
barcode scanners to nuclear fusion. Their usefsiise=ms from their ability to generate very

high radiation density at remote distances witthlggecision.

The simplest type of resonator, the planar FabrptPesonator, consists of two plane
parallel mirrors separated by some distance. éixisemely difficult to trap light in this way; if
the mirrors are not perfectly parallel then a bediriight between them will tend to “walk off”
the mirrors and escape at the edges. One way taindight between two mirrors is to put
curvature on one or both mirrors, which, withintaer limits (which will be discussed), causes
light to be reflected towards the optical axis.sTrelaxes the alignment tolerances sufficiently
to allow lasers to be constructed using even loin-gaedia, which require a beam to make

many round trips through the gain medium in a ratam

Another approach to dealing with the problem ofrbesalk-off is to replace the end
mirrors of a resonator with Porro prisms, nameedrate Italian Ignazio Porro, who invented
them in 1850. Porro prisms are right-angled prisamgl reflect a ray back parallel to its initial
direction even when the Porro prism is misaligrnEudis property has been shown to be very
useful in the design of lasers intended for fietet,uor in environments where re-alignment is
impractical. One exotic example is a Porro prissetathat was an integral component of the
MOLA laser altimeter which was sent on an unmanméssion to Mars in 1992. Porro prism
lasers have also been used extensively for oveye2®s in ranging and target designation

systems, primarily for the military.

Previously the Porro prisms making up a Porro prissonator have been treated as plane

mirrors, albeit by taking into account the effeofsPorro prisms on the polarisation of light.
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This accounts for some of their characteristice gbample that the amount of light coupled out
of the resonator can be optimised by changing #firawthal angle between the prisms, but this
approach does not explain the characteristic beamtgsre which is evident in the laboratory.
What is typically observed is that as the azimuthrale is varied the beam structure changes,
having the appearance of a circular pattern ofsapéaigh intensity with low intensity between
them at some angles, and a flatter intensity grofith a low intensity area in the centre at other
angles. This is illustrated in Figure 1 by imagédbeams from a Nd:YAG Porro prism laser
captured on a CCD camera in the laboratory.

Figure 1 Typical beam intensity distributions from an Nd:YAG Porro
prism laser.

The aim of this dissertation is to attempt to expthe beam patterns obtained from Porro
prism resonators by means of an analysis of the ifiethis kind of resonator, and then to verify
this by means of a numerical model as well as Ipegment.

This dissertation is divided into the following ghers: Preliminary work consists of a
review of fundamental laser theory in the balant€lapter 1. A numerical model of Fabry-
Perot resonators is presented in Chapter 2, thdtsesf which are compared to theoretical
predictions and is used to validate the modellirghmds used. A review of literature on Porro
prism lasers is presented in Chapter 3, followedabgliscussion of the properties of these
systems. Our research is presented in Chapter ihviticludes an analytical and numerical
model of a Porro prism resonator which for thetfiime predicts the beam mode structure
produced by these resonators. The beam modes feebdiy this model are verified

experimentally. The conclusions and suggestionfuitiner work are in Chapter 5.
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1.1Review of relevant theory

Laser beam and resonator theory is covered in rmumeexcellent textbooks. A
comprehensive review articl&ggelnik & Li 1966), as well as two textbookSi¢gmanl1986;

Hodgson & WebeP005) were referred to in this section. All otheferences are noted.

The basic properties of resonators are determirad fthe first-order properties of the
system using ray transfer matrix analysis, which urely geometrical approach; although the

ray matrix approach can be extended to descritemargl optical beanBglangerl991).

A paraxial ray of an optical system is charactelibg its distancex from the optic %)
axis and by its slope with respect to that axis. The slogés assumed to be small. The path of
the ray through a given optical component depemdthe optical properties of the component
as well as on the input conditions. For paraxigbrdne output quantities andx,' are linearly

dependent on the input quantitiag, &), represented in matrix form by:

e ol w

A B
where the matri){C D} is the ray transfer matrix of the optical compdnen

Table 1 gives the ray transfer matrices of a feticapcomponents.

Table 1 The Ray Transfer Matrices of three elementary optical
structures in air.

Optical component Ray Transfer Matrix
a homogeneous medium of length 1 d
0 1]
a thin lens, focal length 1 0
-1/ f 1]
a spherical mirror, radius of curvatuRe 1 0
-2/R 1]

A sequence of optical components can be handldeifollowing manner:
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Component 1

M

Component 2
M

Uq >

u 7

Figure 2 Diagram of a ray passing through a sequence of optical
components.

Suppose an input ray passes through two optical components with raysfex matrices

M; andM, respectively, as shown in Figure 2. The first congnt transformsg, as:

r, =Myrg. (1-2)
r1 is now the input ray to the second component &tsl tgansformed as:

I, =Myr, =MoMyrg.
In general, the ray transfer matrix of a ray pag$imoughn optical components is given by:

M =MnMn—1"'M3M2Ml (1‘3)

A B
If M = {C D} is the transformation matrix of a resonator, ang any first-order ray with

positiony and slopeg/”: 1, = {y} .
y

After one round trip through the resonator theisayansformed as

r =Mr, (1-4)
After p passes through the resonator the final ray cdouvel from:

r,=MP"r. (1-5)

This can be simplified using an eigenfunction asiaty

Eigenvectory; andyv, exist which form a complete, orthogonal set, seffidents of expansion

1 andp, can be found such that any initial rgycan be expressed in terms of the eigenvectors:

Io =BV + 5V, (1-6)
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SO [ BV + BoAPy, . (1-7)
Scalar eigenvaluels can be found which satisfy the eigenequation:

Mr = Ar (1-8)
or M-14=0. (1-9)
A non-trivial solution (for eigenvectors# 0) only exists ifdet(M —14) =0

or

which using AD — BC = 1 (assumimg/n, = 1) gives the quadratic equation:

A2 -(A+D)A+1=0. (1-10)
Letting m= A; D : (1-11)
we get eigenvalues A, =m= m® -1. (1-12)

Values of [m <1 give |A| <1, which by (1-12) means that remains bounded for afh.

Therefore a paraxial ray in a resonator will baquiically refocused, and the resonator is stable.

This stability condition can be written as

-1<1(A+D)<1. (1-13)
For a stable resonator (1-12) can be rewritten as

Mo =mziv1-m? (1-14)
and in this casg, , is a complex number with multiple cyclic solutipss:
letting m = cosd, Ay, =cosfzisind=e"?. (1-15)
By (1-7) this implies that any ray will exhibit oscillatory behaviour.
The eigenvectors can be found by forming the modklix

adj[M - 14], . :‘ e Ag
2
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D-A4 -B
SO v; 2( 1} andyv, :(A 1 ] (1-16)
- —/2

After a sufficient number of passpghrough a resonator the term with the largestreigkie

will dominate, and
I, - BiA;"v;asp - (1-17)

whereJ; is the larger of eigenvalugsandi..

A real resonator will always contain a limiting ajpee of radiusa, which might be the
laser rod, a cavity mirror, or an iris placed ie ttesonator. The limiting aperture radauss
another important parameter of a resonator beatuasdines the transverse extent available to

the laser beam.

The laser beam that emerges from a resonator cahdracterized by its mode, or the
distribution of intensity in a plane at a point radoits path, and is given as some function

[ (X, ¥). The total power in a continuous beam can be tztkd from:

o= | TI (%, y)ixdy. (1-18)

A normalised beam is defined as one with unit power
Prorm = j '[ 1 (x, y)dxdy=1. (1-19)

A propagating laser beam which encounters an apediuradiusa will be clipped, and

the laser powelP, transmitted through the aperture can be calculated

g=??0hme (1-20)

r=06=0

and the fraction of laser power transmit@edan be found from:

T=-2. (1-21)
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A related parameter useful in estimating the oufjower from a laser is the round-trip

diffraction lossV, defined as:

_h
I:)O

V=1 (1-22)
where Py is the initial power, andP; is the power remaining after one complete roumu tr

through a resonator.

The simplest laser resonator is the Fabry-Peranegsr, which comprises two mirrors
with spherical curvatures of radil® and R, respectively, separated by some distabcas
shown in Figure 3. Typically one mirror reflectsO%0 of the incident light, and the other is

partially reflecting, allowing a certain percentagfethe laser beam to be coupled out of the

R\/

resonator as the useful beam.

Figure 3 Fabry-Perot resonator with spherical mirrors.

For the Fabry-Perot resonator illustrated in Figdithe ray transfer matrix is:

M”‘":@ Sj:(—;@ (1)]@ ﬂ(—zlml (1)](; ij

1—£ ZL(l—Lj

= " R . (1-23)
-2(R +R, —2L) 1+£(&_1j_£
R1R2 RZ R2

From (1-13) this leads to the stability conditiom & Fabry-Perot resonator:

R (20
RA R

Defining the stability parametegs andg, to be:
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L L
gl:l_ﬁ and gzzl_g, (1-25)

then a resonator is stable if

0<g,g,<1. (1-26)
For a resonator with no apertures the equivalepaameter is defined:

G=2g,0,-1 (1-27)
and is the first of the two fundamental parametéis generalised resonator used to characterize
and compare resonators.

Because of the symmetry of any mirror-aperture ersfaperture configuration, the
second important parameter of generalized resan@&adhe effective Fresnel number, defined

as:
NF =— y (1‘28)

and is determined by the propagation distance fsnenencounter of the limiting aperture to the
next(L), as well as the limiting aperture radaisResonators with the same Fresnel number and
wavelength will have equivalent diffraction propestbecause the ratio of cross-sectional area

to length is the same.
This implies that the resonator configurations able 2 are equivalent, becauseandNr are

identical for each.

Table 2 Three equivalent resonators. Note that for all three the
G-values, as well as the N values, are identical.

Parameter Units Resonator 1 Resonator 2 Resonator 3
A pum 1.064 1.064 1.064
L cm 10 20 100
R cm 40 80 400
G - 0.75 0.75 0.75
a cm 0.045 257 0.064 002 0.143 114
Ne - 1.924 95 1.924 95 1.924 95
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Because the ray transfer matrix of a curved miwith radiusR is identical to that of a
lens with focal lengthiR/2 (or to two lenses with focal lengR), the behaviour of a beam in a
resonator is equivalent to the beam passing thra@ugimfinite series of lenses a distarice
apart. Figure 4 shows the “dual” or equivalent nedor to Figure 3. The mirrors in Figure 3 are
replaced by lenses with focal lengths= R, andf, = R, as shown in Figure 4. The two
resonators are equivalent, the only differenced#iat the ray pattern is folded in Figure 3 and

unfolded in Figure 4.

M1 M2 M1

f1 f2 f2 f1

Figure 4 Equivalent resonator of Figure 3, with lenses and flat mirrors.

For comparison, the ray transfer matrix of the ld€d resonator in Figure 4 is:

v (A B)( 1 oy 1 oyriLy 1 oy 1 oy1L
s c b) (-Uf, 1)\-1f, 1)0 1)-1/f 1)\-1/f 1)0 1

(1-29)
1-2L 2L(R -L)

_ R, Ry

| -2(R+R,-2L) 4L2+RR,-2L(2R +R,) (1-30)
RR, RR,

which is equal to Eq. (1-23) whéy= R; andf,= R..

A geometrical or ray transfer approach is usefufjuantify the degree of stability of a
resonator but does not predict the intensity digtion of a laser beam. The most common and
useful beam produced by a real laser has a Gausgimsity profile. This is illustrated in

Figure 5, and has the form:

_ -2r?) 2P -2r?
I(r)—loexr{ 7 J—ﬂwzex wzj (1-31)
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where P is the total power in the beam, and is the sanadl atoss sections of the beam, and

o 1S the size of the laser beam and is defined asrdkius at which the beam irradiance

(intensity) has fallen to 17¢13.5 percent) of its peak value (see Figure 5).

lo

1/e%lo

_/

~— ) —>

Figure 5 A Gaussian beam profile showing the beam radius w.

Many lasers are designed to produce a beam withusstan intensity profile (see Figure
5), which has characteristic propagation properfé@some point along the axis of propagation
(usually denoted = 0) the beam has the smallest transverse exiemiyn as the waist, which is

also the point at which the wave front is planar.

5 Gaussian
laser 0 profile
| -
Gaussian o
profile _____ ——em T :__.._- _______________________________________ C—
..

Plane wavefront 7=7 A
R
Max. curvature

Z=00
Plane wavefront

Figure 6 Propagation of a Gaussian laser beam.

Diffraction causes light to spread transversely eaukes the wavefronts to acquire curvature as

they propagate (see Figure 6) according to:

N~

2
W2) = @y 1+(Zi] (1-32)

R
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2
and R(2) = z{1+ (Z—ZRJ } (1-33)

where zis the distance propagated from the plane wherevttvefront is flat,

m, is the radius of the 9é@radiance contour at the plane where the waveéisoftat,

_

Zg is the Rayleigh range,

w(2) is the radius of the 19eontour, and
R(2) is the wavefront radius of curvature after pragiagy a distance.

If z=0 marks the position of the waist (and the placghath R(2) is infinite), then as the beam
propagatef(z) passes through a minimum at some figitezz, and rises again toward infinity

aszincreases, and asymptotically approaches the whlngself.

Simultaneously, asR(z) asymptotically approacheg for large z, w(z) asymptotically

approaches the value :

a(z) =22 (1-34)
Tty

Ty

wherezis much larger thaﬁ)l_ so that the 1fdrradiance contours asymptotically approach a

cone of angular radius :

H:@:

A
_ (1-35)
z T,
This value is the half-angle divergence of the Gaus TEM, beam and is a measure of the

divergence or spread of the beam with distance.

Using the steady-state condition that the radiuthefphase front of the beam must be
identical at an arbitrary but defined plane in tegonator reveals the property that the intensity
distribution is identical at that plane after eveound trip, and that this distribution is an
eigenmode of the resonator. In a resonator withapertures there are infinitely many

eigenmodes, and these are referred to as translecsmagnetic (TEM) resonator modes.
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2m1 S 202

Z1 Z2

Figure 7 Diagram of a stable Fabry-Perot resonator.

The lowest order, or “fundamental” transverse mddey,, is a Gaussian beam, and has
a waist of radiusw,, defined to be the minimum radius of the beam. fhaer Fabry-Perot
resonator illustrated in Figure 7 the waist is tedaat a distanca from mirror 1 on the optical

axis and a distancg from mirror 2.

The waist size is given by:

s _(AYLR-LIR,-LYR+R,-L)
o) R o

and it is located at

- LR-L) 4, = LR-L)

“R+R-2L ™ ZTRuR -2l (=)

Using Gaussian propagation within the resonatoegythie spot sizes on each mirror:

i_(ARY L(R, - L) an
ai_[iTj(&—LW%+%—LY ‘

z

c%4=(mgj2( L(R, - L) (139

7 ) (R —L)R +R, -L)

The higher-order eigenmodes can take the formereith Hermite-Gaussian functions
(Luks 1976; Bekshaev1999) in rectangular coordinates, or of Laguereaissian functions
(Wang & Stephari991;Arlt et al. 2001; Webb & Jonef004) in cylindrical coordinates. The
Hermite-Gaussian modes are denoted by TEMheren is the order in th&-direction andnis

the order in thg-direction, and have an intensity distribution led form:
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2

_ X2 x? yv2 y?
|nm(X, y)— |0 H H,T Ex _F H m,T Ex _E (1-39)
The Hermite polynomials can be found usiStefend963;Kimel & Elias1993):

n

Ho(2)= (-)"e” Se (1-40)
z

oy _Nn=2) . v n(n-2)(n-2)n-3)/, \n-a
or H,(z)=(22) T(ZZ) + > (22)" - +... (1-41)

The first few Hermite polynomials are given:

Figure 8 Hermite-Gaussian mode patterns: TEMgy, TEM3g, TEMy3,
TEM,,.

Figure 8 shows transverse mode patterns for Hei@Gatgssian modes of various orders. Notice

that the transverse extent of the modes increaskower.
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f— Wwn —
- w —

1 1 L T 4 i
0.5 1.0 1.5 2.0 2.5 3.0 x/w

Figure 9 lllustration of radius xs of higher-order mode Is,,, as
compared to the Gaussian spot size w

The spot sizes of higher-order modes in rectangardinates can be approximated by:
w, =wvn and w, = awm (1-43)

where w is the spot size of the corresponding TigMode andn andn are the orders of the

andy-modes respectively.

This allows us to determine which higher-order nsodél pass through an aperture of radiys

namely those indices given by

2
N<Npax = (ij . (1-44)

The eigenmodes can also be equivalently expressedylindrical coordinates using

Laguerre functions. A Laguerre-Gaussian beRad@ett et al1996) is given by:

(2 (AP ’ r2
|(r): IO(ZFJ (LP(ZFJJ ex;{— 2;i| (1-45)

The Laguerre polynomialép(x) are the solutions of the differential equation

d?L dL
p p [
2 + (I +1- X)E + pr =0. (1-46)

X
dx

Some polynomials of low order are
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Ly(x) =1
Li(x) =1 +1-x (1-47)
L,(x) =11 +1)(1 +2) - (1 +2)x+1x°.

Figure 10 shows Laguerre-Gaussian modes of vadaiess.

Figure 10 Laguerre-Gaussian mode patterns: LOO, Lll, L22, L33.

Using Egs. (1-21) and (1-31), the transmission @aassian beam passing through a circular
aperture is given by:

2
T,,=1-exg - 2(% . (1-48)
w

The transmission of several low-order transversdariatensity profiles was calculated
using Egs. (1-21) and (1-39) as a function of {hertre radiug, and is shown in Figure 11.

100
90 +
80
70 A
60 -
50 A
40
30 A
20 -
10 A

0 + = ‘ ‘ ‘ ‘ T 7
0 0.01 002 003 004 005 006 007 0.08
Aperture radius a (cm)

Transmission (%)

w

Figure 11 Transmission values for several TEM,,,, modes as a
function of the aperture size. The resonator was modelled with G =
0.75. The vertical lines represent a = 2wy, a = 2.5w,, and a = 3w,
respectively.
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Figure 11 illustrates the property of Fabry-Peesonators that the higher-order modes
are larger in transverse extent than lower-ordedenpso for any aperture radiast is clear
that the Gaussian or TEyimode has the highest transmission (or lowest |@sy] that the
higher-order modes have successively lower trarssomsvalues (or higher losses). Therefore
any aperture inside a resonator will introduce dgswhich discriminate against higher-order
transverse modes and favour the lower-order mdslestl§1972). This effect can be used in a
resonator to discriminate against high-order madeklimit a beam to low-order modeé&lgws
et al. 2000). The higher losses of higher-order modea nesonator also implies that given
sufficient time the output beam will converge toe tfiundamental or Gaussian mode.
Spontaneous emission and the reseeding of higkder-onodes in a real laser limits the degree

of convergence, however.

Some resonators do not produce Hermite-Gaussiaha@uerre-Gaussian) eigenmodes. It is
however also possible to characterize the sizepamplagation properties of any arbitrary non-
Gaussian beam using the Second-Moment method, vidiglso the basis of the so-called “M-
squared” method for characterizing laser bea8iegiman1998). This formulation starts by
evaluating the second moment of the beam intenmitfile 1(x, y) across the rectangular

coordinatex (or alternatively across thyecoordinate) in the form

2 J: (x=%)°1(x y)ixdy
= (1-49)

[ 1(x y)ixdy

I
00

X

wherex, is the centre of gravity of the beam. The seaondient propagates according to
2 2 2 2
0.5(2)=0," +0," x(2-2) (1-50)
where 0y is the variance at the beam waist;
Op is the variance of the angular spread of the begparing from the waist; and

Z, is the location of the beam waist along the z.axis

This quadratic propagation dependence holds foraabitrary real laser beam, whether it is

Gaussian or non-Gaussian.

Considering thex-component of (1-31), the beam spot size paramejeis just twice the
variance, i.ewy = 20,. Therefore for any arbitrary beam it is convenigenadopt the spot-size

or beam-width definitions:
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W, =20, (1-51)

where (capital)W is the general beam width notation for arbitraealrbeams, with this
definition being coincident with the Gaussian bgaamameters for ideal Gaussiabeams. The
second-moment-based beam widty defined above will then propagate exactly like the
Gaussian spot sizex(z) of an ideal Gaussian beam, except for the irmertf an M?
multiplication factor in the far-field spreading tfe beam. This leads to the second-moment

width definitions

W

X

2
2(2) =W, M( j (2-2,) (152

TMNy

whereM, is a parameter characteristic of the beam.

As a result, using these definitions one can wheenear-field far-field product for an arbitrary

beam in the form

W,, xW, (2)= M 2 NELS (1-53)
T

The parameter$!,’ and My2 give a measure of the “quality” of an arbitraryabe General

properties of thesk!? values include:

* The values oM, andM,” are> 1 for any arbitrary beam profile, with the limit M* = 1

occurring only for single-mode Gaussian beams

» TheM? values evidently give a measure of “how many tidiéfsaction limited” the real beam

is in each transverse direction.

Arbitrary real laser beams can then be fully chirdmed by exactly six parameters, namely

W0X1 WOya Zox, ZOy, sz andMy2

There are a number of methods or algorithms forsungag the beam diametat/(ight et
al. 1992), for example the slit scan meth@h#épple1994), variable aperture method, knife-
edge scan method, and second-moment metBiegrfianl993; Champagne & Bélanget995;
Siegmanl998). All the methods are reliable for perfecu&aan beams but suffer from various
errors when applied to non-Gaussian beam shapessdtond moment method is a standard
method of measuring beam width when using 2D beafilg data (e.g. CCD cameras). This

method has difficulties in implementation since s@oin the wings of the beam contributes



-18- Chapter 1ntroduction

excessive errors, resulting in deviations in thanbevidth calculation. This can be avoided by

mathematically eliminating any noise.

The second-moment method requires the acquisitiom @omplete array of beam
intensities using a raster-scanned pinhole or a C&bera Roundy2008). For simplicity, it is
assumed that the beam profile for the measuremetiteobeam diameter is acquired as a
256x256 square pixel array. Then, the first ordeedr moments. andy. (the beam centroid

coordinates) are given by:
_ 1 o256 _ 1 o256
X, —P—zl xP(x,y) andy, —P—zl yP(X, ) (1-54)
H H

where P(x, Y) is the local intensity at each pixel site d@ds given by:

256 256
Ph =2, 2. PxY) (1-55)

By calculating the second moments about the cehtbgiam widths can be determined as

(), = 5 T e Pocy

1 2
and <y2>c ZEZE% f%(y- Ye) P(xY). (1-56)

The beam radii are given by

W, =2 /<x2>c andW, =2 /<y2>c . (1-57)

This approach was used to verify the beam-size egalealculated by the GLAD optical

modelling program.
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2. ANALYSIS AND NUMERICAL MODEL OF
FABRY-PEROT RESONATORS

2.1Introduction

The temporal development of the transverse modssrgile Fabry-Perot resonators was
studied using a numerical model. The temporal bebawf the spot size, beam quality factor
(M and loss is presented, and the values of thasengters given by the numerical model are
compared with those from analytical models. The enpdtterns from the numerical model are
compared with the patterns predicted for stabley-Rerot resonators. Agreement between the
numerical model and analytical models lends crétibio this method of modelling a laser

resonator.

In the analysis that follows a symmetrical resonatibh two spherical mirrors of radius
R; = R, = R separated by a distante and with two clear apertures of radmsocated at the
mirrors, was modelled for simplicity. The formaligmeasily extended to the asymmetric case
whereR; # R,. A schematic representation of a symmetrical stdadbry-Perot resonator is

shown in Figure 12.

a a
gl —
2m0
R1 R2
20 20

Figure 12 Symmetric Fabry-Perot resonator.

As noted in Section 1-1, any chosen stable resomatequivalent to any other with the
same values of the equivalent G-parameter andte#e€resnel number when considering
resonator stability, beam modes and loss. For gezial case of a symmetric Fabry-Perot
resonator with both mirrors apertured the equivaBrmparameter is given byHpdgson &
Weber2005, p.267-270):
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G=0,=0,, (2-1)
and the effective Fresnel number is given as in(EQ@8) by:
N, =a®/AL (2-2)

In the following models and calculations the resondengthL was kept at 10 cm, and the
mirror radiusR and clear aperture radius were varied. Resonators with the effective G-
parameter$ = -0.111,G = 0.5,G = 0.75,G = 0.833,G = 1.0 were modelled, witNr values
between 1.5 and 18.

2.2Numerical model of a Fabry-Perot resonator

A physical optics numerical model based on the agagion of optical beams, which are
represented by the complex amplitude of the opti@alefront, through optical components was
developed for a symmetric Fabry-Perot resonatasintwulate a beam travelling between two
mirrors, from laser switch-on and over any numtferoand trips (Lawrence1987;Lawrence
1991; Vtorova et al.1991;Siegman2000). A single beam was defined on a full-widgid of
0.3 cm in a 256 x 256 array. The resonator was casetof two spherical end mirrors of radius
R, which were separated by a distahcén the model, apertures located at the mirrofsndd
the clear or limiting apertura of the resonator. In an actual resonator, if ner@ping
components are included in the resonator, thettirthittng aperture would be the radius of the
component which limits the transverse extent of beam, typically the laser rod or mirror
mounts. The resonator contained no gain mediumttencdhirrors were taken to reflect 100% of
the radiation, so that the only losses consideretevthe losses at the mirror apertures. The
initial beam was randomly generated noise, andyttie was simulated by recording and then
resetting the energy to unity after each round, tgwing the loss per round trip due to
diffraction only. A wavelength of 1.064m was used, since the models would be compared to a
laboratory Nd:YAG laser. A diagnostics subroutimamacterised the beam, and on each round
trip the aperture size, spot sizes and the beatityqjoaM? in the x- and y-directions as well as
the loss were written to a text file for analydibe beam pattern was recorded after each round
trip in order to visualise the changes in intengdigtribution; it proved useful to record

sequences of beam patterns at various stages & deselopment.

The following data is typical of that obtained frdhe numerical model, and the temporal

behaviour of parameters like spot si&#, loss, and mode structure can be used to chasecter

! The GLAD code is given in Appendix 7.1.
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a resonator. The specific resonator witk 10 cm,R = 40 cm, and clear aperture radas

0.056 cm was modelled, and some pertinent resudtprasented.

Figure 13 shows the spot si@eas a function of the number of round trpsso also as a
function of time. The spot size, (component in the-direction) is shown, but the modes are
radially symmetrical, so thgvalues are identical. The spot sizgsandw, are calculated with

the second moment method described in Section 1.1.

0 1000 2000 3000 4000 5000
# round trips p

Figure 13 Spot size w (x-direction) as a function of the number of
round trips p.

Initially, when the beam is simply apertured noibe spot size is large and comparable
to the aperture radius. As the beam traverses aepasses through the resonator the more
divergent elements of the beam are apertured asdrladd, and the spot size is confined
between an upper and lower bound. The spot sizegelsaon each round-trip between these
bounds, and the spot size convergeswte 0.022631 cm, which is within 0.01% of the
theoretical value (using Eqg. 1-28), after approxaha4000 round trips. The oscillation of the
spot size between an upper and a lower bound camderstood as the transfer of the beam
energy between low-order transverse modes. Whend#ta is expanded along thpeaxis

sufficiently to view the point-to-point behavioar periodic structure is evident.
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A e

p =500 p = 2000 p = 4000

@ (cm)

Figure 14 Change of amplitude of pattern with the number of round
trips p.
The same pattern is observed at all points aloegpthxis, but the magnitude of the
pattern decreases between the upper and lower §daanairds convergence, when the pattern
disappears. This can be seen in Figure 14, wherartiplitude of the periodic pattern is shown

near 500, 2000 and 4000 round trips through thenagsr.

Figure 15 shows the behaviour of the beam quaditjof,M?, as a function of the number

of round trips, or with time, after switch-on.

0 1000 2000 3000 4000 5000
# round trips p

Figure 15 M?® (x-direction) as a function of the number of round trips p.

The behaviour of? shows a similar pattern to that of the spot sizeamely that the
value is initially high before any mode structuseeivident, and then decreases by oscillating
within bounds until it converges at about 4000 wtmips. M? converges to a value of 1.07,

which is close to th#? value of 1 for a Gaussian beam (see Section 1phga 17).

Figure 16 shows the round-trip diffraction lossagsinction of the number of round trips
p. The loss was calculated by noting the amountnefgy lost from the beam after one round
trip through the resonator as a percentage of grimfpre the round trip. Note again that in the
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simulation the energy does not continuously deereath each round trip but is re-normalized
to unity after the loss calculation, and also thay absorption losses or loss due to radiation
coupled out of the resonator are not included.

0.2

0.18
0.16
0.14

012
0.1 & |

0.08 {9
0.06 |

- ‘ ‘

2000 3000 4000 5000
# round trips p

loss (%)

0.04 +
0.02
0

0 1000

Figure 16 Loss as a function of the number of round trips p.

The loss is initially high corresponding to the @ipsion of the non-axial elements of the
beam as the beam is apertured at successive milratscreases within narrow bounds and
converges to a value of 0.0011% after approximat8B0 round trips. The loss too exhibits an
oscillatory behaviour, the pattern and period ofichbremains throughout the history of the
beam, although the amplitude decreases with tintkeaseam converges.

The graphs of the spot size M? and loss all show an oscillation of a fixed pattand
period (although decreasing in amplitude in eacdelaA close inspection of the mode after
each round trip reveals the significance of théspat

0 00 oD o0 o0 o 0 0o 0
~ . . X % A y 7

Figure 17 Mode structure after successive round trips, showing
correspondence to spot size.
Figure 17 shows the mode at the first mirror aftech round trip after 1000 round trips,
and how each successive spot corresponds to a@oitiite oscillatory pattern. The pattern of

modes repeats every 13 round trips, as suggestétetetail of the plots of spot si2d? and
loss.
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p=100 5 o @ o @ o @ e ©® o o
p=500 o o o o @ o @ o o o ©
p=1000 O

p=2000

p=4000

Figure 18 Series of beams, one per round trip, at several points in the
evolution of the mode.

Figure 18 shows the series of 13 round trips aersd\different moments in time along
the evolution of the mode pattern. After 100 rounps the nature of the spot size oscillation
becomes clear — there is clearly a mixture of fE(Gaussian) and TEM (doughnut) modes,
and there is a significant change in the spot B@® one round trip to the next. The largest
mode pattern (g) is a doughnut mode, with the Bitgmt the centre dropping to zero. Alternate
spots ((b), (d), (), (h), (j) and (I)) have a Gsia® distribution pattern. At around 500 round
trips the series of modes still shows a large vianan spot size, but the centre of mode (g) is
no longer zero. The series at 1000, 2000 and 400@ s progressive convergence to a constant

Gaussian mode.

Pioneering work on the numerical modelling of retons was done in order to study the
losses associated with low- and higher-order trarsgvmodes in stable Fabry-Perot resonators,
which shows that higher-order modes experiencesasingly higher losse$¢x & Li 1961,
Fox & Li 1963;Fox & Li 1968). This leads to the tendency of a beam ctimgisf high-order
modes to converge to lower-order modes. Also pamtimre studies in which the fractions of
higher-order modes are measured, and the periedittation of intensity in a COTEA laser
with a Fabry-Perot resonator is found to be cailmsedompeting modesMartinez et al.1997;
EncinasSanz et al1999).

Figure 19 shows how the size of the intracavityrtapes affects the rate of convergence
of the mode structure. An aperture valuenaf 2w exhibits convergence after about 200 round
trips; a = 2.5» converges after about 4000 round trips, andéahe 3w case had still not
completely converged after 30000 round trips.
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# round trips p

Figure 19 Spot size w (x-direction) on the mirrors as a function of the
number of round trips p for aperture values a = 2w (yellow), a = 2.5w
(purple), a = 3w (blue).

Figure 19 suggests that soon after switch-on a beseillates between a number of
higher-order transverse modes, and that after feciemtly large number of passes the mode
converges to the TEM or Gaussian mode. The number of passes requiredofovergence
depends on the clear aperture radiushe larger the aperture and consequently thectefée

Fresnel numbeNg, the slower the beam converges to the Gaussiae.mod

This trend of slower convergence with increasiMg was found to hold for every
resonator studied and can be explained by greegenirdination against the higher-order modes
in all resonators, but which is more pronouncedréaonators with smaller apertures and

correspondingly lower values BE.

2.3 Verification of numerical model

Analytical models which necessarily make certaisuagptions and approximations are
routinely used to calculate resonator parametershis section a brief discussion of each
expression derived from a widely accepted analytinadel is followed by a comparison
between the results obtained for the analyticahoettand the numerical method to validate the

results given by the numerical model.

The analytical expressions for the waist radiys(Eqg. (1-36)) and beam radius at the
mirrors, w; andw, (Eqg. (1-38)) are derived from the propagation pEth Gaussian beam in a
resonator. The mirrors are assumed to be effegtinéhitely large, and the model includes no
edge effects. The numerical model, on the othedhiarthe repetitive propagation of the beam

through a resonator as a complex wave functionjrariddes diffraction.
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Table 3 Comparison of beam sizes calculated analytically and
with a GLAD numerical model.

(O] W1=0)

G (cm) (cm)

Analytical | Analytical | GLAD

-0.111 0.012307| 0.018461 0.018593

0.75 0.021167( 0.02262§ 0.022631

0.833 0.023699| 0.024753 0.024944

The beam waist radib, were not calculated explicitly in the numericaldeb the values
given were calculated analytically. Analytical vesuof the spot size on both mirrass = w,
(for a symmetrical resonator) were calculated, @ndpared to the value to whiah converges
in the numerical model. The values are found téediby typically less than 0.7%, and the

agreement is good.

Since the apertures are located at the mirrors eviies beam size i®; (or w,), and

noting (Eqg. (1-22) and Eq. (1-48)) thhy (and therefor&/) is a function of% only, the round-

trip loss of a Gaussian beafyd) over two passes (or one round trip) through asomnator

(with -1 <G < 1) was calculated analytically fe% =2, 2.5 and 3 respectively. These values are
shown in the first row of Table 3.

The loss values from the numerical model were fonatdto be independent @&, so
three values of G were used, nam@y= -0.111, 0.75 and 0.833 respectively. The nurakric

model values are those otanvergediffractive beam passing through apertures withsame

% -values as used in the analytical calculation.

The agreement between the analytical and numermeallts is not good, with
significantly higher losses from the numerical mlodeut this stems from an important
difference in these two modelling techniques. Thalyical model assumes that the beam has a
perfect Gaussian intensity distribution which ex®im the transverse direction to infinity. The
losses in the numerical model must correspond mamithe losses of a TEMbeam, with
small contributions from the competing higher-ordeodes. It is reasonable to assume that

these higher-order modes account for the higheebsf the numerical model.
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An alternative approach to calculating the roumglnssesv (Hodgson & WebeR005,
p.267-270) was followed as a comparison to the austHollowed above. For the case of a
stable symmetric resonator apertured at both nsitttee round-trip losses for the TEMnodes

can be approximated with the empirical relation
V = exr{— aN Fﬁ) (2-3)

whereag = 2.9 andBy = 1.16 for the casé = 0.8.

Table 4 shows a comparison of the round trip losasésulated using (2-3) for the caGe
= 0.8 with the round trip losses from the numerioaldel for the cas€ = 0.83. The agreement

IS better, especially for the smallest aperture @z 2 w; or Ng = 1.9).

Table 4 Comparison of round trip loss calculated analytically,
with the numerical model, and using an empirical method.

G V (%)
a=2a)1 a=2.&01 a.=3601
; all G,
Analytical 6.700 x10 | 7.453x16 | 3.046 x16
(TEMoo) 1<G<1
-0.111 0.14907 0.00158 0.00090
Numerical
(converged) 0.75 0.17211 0.00116 0.00073
0.833 0.16966 0.00096 0.00048
Empirical
0.8 0.203 0.00304 1.27 xto
(TEMoo)

The selective influence of loss at an aperturdaarc however: higher-order beams are
selectedagainst with higher loss, and lower-order modes are $etsfor, and will dominate
after sufficiently many round trips. This suppotte understanding that the mode pattern
converges to the lowest-order mode in the absefnperturbations like continuous reseeding by

spontaneous emission in the resonator.

The periodicity of a beam in a laser resonatortmdefined as the number of round trips
required for any ray to return to an initial pasitiand orientation, and can be found using
geometrical ray analysis. Applying this to a stals@mmetrical Fabry-Perot resonator, if an
initial ray vectorr, corresponds to an infinitesimal element of a mpatern, then using Eqs.

(1-6), (1-7) and (1-15), aftgrcycles the ray vectay, is:
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My = Bv,€P° + Byv,e
s0 I, =1oCoSPA+i(BV, = BV, )sin pb. (2-4)

From Eq. (1-23) in Section 1-1, the ray transfetrmaVl; of an empty symmetrical Fabry-

Perot resonator in terms Gfis given by:

mir (2'5)

_[2G*-1 GR@1-G)
-4G/R 2G?-1

whereL andR are shown in Figure 12, ailis defined in Eq. (2-1).

Then by Egs. (1-11) and (1-12):

A, =2G% -1+ 2|/G*(G? -1) (2-6)

are the eigenvalues and functions onlyspfand

Vio = (i %MRJ (2-7)
1
are the eigenvectors of the mathkil;.
From Eq. (1-11) m=2G?-1 (2-8)
and from Eq. (1-15), 6 = arccospG? -1). (2-9)

By Eq. (2-4), the ray exhibits periodicity whejw ro, or when copéd = 1 (and sirpd = 0). This

gives the condition for periodicity:

2n 4n

P=0—,—,...
6 0

(2-10)
whereP is the periodicity and number of round trips, amastbe awhole number

If ry = B{o} andr , = B/p } then to plot the ray positioy it is first necessary to solve the
0 p

simultaneous equations implicit in Eq. (1-6) toccidte:

Yo

RVG? -1

+

Bir +%§. (2-11)
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Now using Eq. (2-4), can be plotted as a functionfin the following graphs the ray position
y is plotted. The ray slopg shows the same periodicity

1.0 T T T T T 5

05F

> 0.0 ).
-05F \\/ \/ ]
-1.0 .. \ . . . -

0 2 4 6 8 1

0 12

# round trips p

Figure 20 Plot of ray position y, as a function of the number of round
trips p for the particular case where G = 0.75. The periodicity is
indicated with points, and periodicity P = 4.35 in this case.

In Figure 20 the ray positionis plotted as a function gf for the casé& = 0.75. In this
case the periodicity is 4.35, which is not a wholenber. Since is any ray in the beam this
means that the beam will vary periodically, but goénts at which it is identical to the initial
beam will occur at some point within the resonaiod not on the starting mirror. Therefore the

mode on the starting mirror will be the same asititeal mode only whenp = kP is a whole

number for some integ&r

Whole values for the periodicity can be calculabgdusing the steps (2-4) to (2-10) in
reverse, namely using a chosen periodicity to ¢aed, m, G (and thereforg) and lastlyR for
some choseh. Notice that Eq. (2-8) yields tw@-values:

m+1

G=x == (2-12)

There are therefore two resonators which both taeesame periodicitl?. For example, im =

0.5 then both a resonator wih= 0.866and a resonator wit® = -0.866 will have periodicity

P = 6. Figure 21 shows the plot of a ray passingubh these two resonators. Note that in the
resonator withG < 0 the ray is contained and does not extendvesssly beyond the starting

position, whereas the resonator wah> 0 has a greater transverse extent.

% The Mathematica eigenfunction code to calculagepiériodicity is given in Appendix 7.2.
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G =+0.866 G =-0.866

[ .

Figure 21 Plots of a ray path through two resonators, both with m =
0.5 and periodicity P = 6 round trips. Note that these plots are drawn
to the same scale.
In both the numerical as well as the analyticalgigenmode) models the periodicity is found to
depend only on the equivale@-parameter, which quantifies the stability, and ontthe

effective Fresnel numbé:.

Analytical model Numerical model
0.03
;4 4.35 ,‘ 0.0275
0.025 -
B
> S 0.0225 |
\| s
0.02 | I
| 13 |
0.0175
0 2 4 6 8 10 0015
1980 1985 1990 1995 2000

# round trips # round trips p

Figure 22 Comparison of Numerical and Analytical models of
resonator with G = 0.75, with non-identical periodicity.

Figure 22 shows the periodicity in the output of thumerical model typical of stable
resonators (as already seen in Figures 13 to 1i6eifbehaviour of the spot siZd? and loss)
compared to the ray position behaviour from themigode model. It is immediately evident
that the periodicity differs — for the numerical debit is 13, whereas for the eigenmode model
it is 4.35. This value being close to 4.33 andftloe that 3 x 4.33 = 13 implies that after a single
cycle the ray has returned to its initial heightl sshope at an intermediate position along the
optical axis, and that three cycles or 13 roungktere required for the ray to return to its ihitia
height and slope at the initial position. Indeettisgr, = (1, 0) and substituting = 13 into (2-

4) givesri3 = (1, 0) as expected. This is consistent withrégpiirement that the periodicity be a

whole number for the ray to return to its initig@ight and slopat the initial position
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Analytical model Numerical model
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Figure 23 Comparison of Numerical and Analytical models of
resonator with G = 0.809, with identical periodicity (P = 5) in both
cases.
By comparison, Figure 23 shows the periodicity fritw® numerical model for a resonator
corresponding to the analytical or eigenmode mddefthe case oP = 5, a chosen whole
number. In this case, and for all resonators cparding to whole-numbd?-values (forP > 2),

the periodicity of the numerical model was founeéxactly match that of the analytical model.

2.4 Conclusion

A numerical model of a stable Fabry-Perot resonatas developed. The numerical
model was tested against several different “textkb@nalytical models, and predictions of spot
size andvi? were found to be in good agreement. There was stisoeepancy in the round-trip
loss figures obtained which was understandableegime analytical loss model was not an intra-

cavity model. These values can therefore be ustdoenfidence for resonator design.

The model is also able to produce a picture ofdbmpeting temporal processes in a
resonator, which is useful for modelling modal Qi in an empty Fabry-Perot resonator. 2-D

plots of the beam are easily produced, allowingyfaphical comparison and interpretation.
The following tendencies of stable Fabry-Perot nesars were noted:

* The round-trip loss decreases with increading

e The spot sizes (waist and on the mirrors) are etifom of L andR only

* The time or number of round trips required for cengence increases with increasing
Nr

» Given sufficient time, a resonator will always cenge to the lower-order TEM mode
TEMoo
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« The periodicity in the spot sizB|” and loss is a function @& only

Although only the intensity of beams was discussbé, numerical model contains
complete phase information, at every point on thani and at every time in its evolution. This
information would be valuable if the model was exted to include intra-cavity phase

elements, for example.

For this project the model was extended to the raomgplex Porro prism resonator.
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3. PORRO PRISM LASERS

3.1Introduction

The Porro prism resonator configuration has beetelyi used for over 30 years in
commercial and military applications where theliérent ruggedness makes them ideally suited
to applications where a laser beam is requiredatge distance from the source, and where the
source is not a stable platform. In typical fiekkuhe conditions these resonators are subject to
could include shock and large temperature variatiand will experience some degree of
optical misalignment. Porro resonators have be¢ensively used in long-range military beam
applications like range finders and laser desiggaudeja 1989; Singh et al.1995; Cole
1998;Bahuguna et al2007), as well as in exotic laser systems sucheaMars Observer Laser
Altimeter (Afzal 1994), the CALIOP lidar systenwinker et al.2004), the XI UV laser trigger
system Sundvold et al1999), and in a LASTEC diode-pumped Nd:YAG laserdse in space
(Joseph2007).

Porro prism lasers have been incorporated into npagnts Richards1982;Lundstrom
1983; Lundstrom1984; Severinssorl985;Reeder1988;Reed1997;Gregor et al.1998;Ishizu
2004; Yanagisawa & Hirano2005), and into several experiments, includingaset for the
production of synchronized giant radiation pulsé®dgaetskii & Chernetsl967), an
experiment to optimize the cooling of slab Nd:gléssers u et al. 1989), an experiment to
determine the output energy characteristics intirgfanirror Q-switch laserd_(kac1991), and

in experimental techniques to eliminate parasit&irg in high-gain laser§{orm1992).

N

=i
el
& T

Figure 24 Schematic diagram of a Porro prism resonator, showing the
following optical elements: (a) Porro prisms, (b) Nd:YAG rod, (c) Q-
switch, (d) quarter-wave plate, (e) polarizing beam cube, (f) lenses,

and (g) apertures.
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The Porro prism resonator investigated in thisststiown schematically in Figure 24,
was based on a flash lamp pumped Nd:YAG laser pagsive Q—switching and Porro prisms

in the place of end mirrors.

In this section the literature on Porro resonatsrseviewed, after which some useful

results are summarized.

3.2 Literature review

The study of Porro prism resonators followed froamye work on flat-roof resonators
commonly used in microwave systentiFfancia 1965;Checcacci et al1966;Pasqualetti &
Ronchi1l973;Ronchi1l973;Mansfield et al1983;Yassin &Lain 1985).

Right angle prisms, often referred to as Porronmishave the useful property that all
incident rays on the prism are reflected back parab the initial propagation direction,
independent of the angle of incidence. Thus amalnitanar wave front remains planar after
reflection. This property was initially exploited Michelson interferometer$?éck 1962) to
relax the tolerances on misalignment, and then geeg Gould et al.1962) as a means to
overcome misalignment problems in optical resosatmploying Fabry—Perot cavities by

replacing the end face mirrors with crossed roafps.

Much of the theoretical work to date has focusedgenmetric methods to model the
inverting properties of such resonatokai¢ & Ko 1984). The prism can be modelled as a ray
deviator by replacing an imaginary mirror some ahse behind the prism, and the alignment
sensitivity of Porro resonators is quantified byidag an expression for the beam centroid
displacement as a function of prism misalignmehte main effect of misalignment is to reduce
the active volume of the laser mediubeé & Leungl988;Lee & Leungl989a;Lee & Leung
1989b). The model correctly accounts for the bedamction, but does not account for the
complex field distribution found experimentally fnothe laser. Optical ray tracing software
extends these resultfRgpaport & Bass2000), Rapaport et al.2001), and geometrical
techniques can also be used to study the propeatiasprism to determine the conditions to
prevent a beam from being obscured by the prisarfases {sai & Lin 2008). A recurrence
relation is found which describes the steppingagfsraround the longitudinal axis of a Porro

prism resonatorSee et al1980), but the effect of this on the beam strucisireot discussed.

Internal phase shifts and output polarization staee accounted for using polarization
considerations in several papers. Early work dedtls the polarization in resonators with a
Porro prism replacing one end mirr@uchmanl965;Podgaetskii & Chernet$967). The first

comprehensive study of polarization in a Porro mesar shows the effect of polarization on the
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output coupling reflectivity, the Q-switch, and ts@red energy in a laser ro@hun & Teppo
1976). A comment in the conclusion of this papegsl@xs the usefulness of these resonators,

and the subsequent military interest:

“The laser rangefinder has successfully withstob@ @'s on a shock machine and has
been subjected to actual ground firing. Earlietste$ the resonator alone indicate no change in

the alignment of the optical assembly after 17,6@fes of up to 200-g peak acceleration.”

The rotation of a prism in a Porro prism resona@@mn be used to optimize the energy
extracted from a laseChen et al.1996), and to compensate for birefringence antbase the
performance of lasers using cylindrical laser r(Rishards1987). A Jones matrix formulation
can be used to describe the phase shifts introdbge®orro prisms and other polarizing
elements in a Porro resonatégtawal et al.2007). Clearly the rotation of the prisms with
respect to each other is an important propertyasfdPprism resonators and, as will be shown

later, is found to have a profound effect on thanbetructure.

3.3Pumping and gain

The laser medium, Q-switch and means of excitadi@nidentical to a traditional solid-
state laser. The choice of the gain medium detasnithe wavelength that the laser will
produce. The work in the following sections is gaheand applicable to any gain medium.
However, Porro resonators are commonly used withYyNG@ lasers (wavelength 1064 nm)
which have high gain and are simple and rugged gimda be useful in field application
(Dudeja 1989; Afzal 1994; Singh et al.1995;Cole 1998; Winker et al.2004;Bahuguna et al.
2007; Joseph2007). In the system under discussion the actiegimm was a 50 mm long

Nd:YAG rod of radius 3 mm, and the laser was pulssidg a C¥:YAG passive Q—switch.

The energy or power which can be obtained by a lag#etermined by the active volume

or the volume of gain medium which contributeshe kasing process.

3.4 Properties of prisms

Mirrors have the well-known property that they eeflan incident ray at an angle equal to
the incident angleHecht & Zajac1997). As a consequence, any tilt of a mirror walult in a
deflection of the reflected ray away from the ogltiaxis. Porro prisms, however, are simple
45°-90°-45° prisms orientated to reflect an incidexy.
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Aligned Porro prism Misaligned Porro prism
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Figure 25 Reflection of a ray by an aligned and misaligned Porro
prism.

Referring to Figure 25, when a Porro prism isdilby an angl¢gg about an axis which lies along

the apex of the prism the shift in the optical ads be calculated as follows:

y=4tp SO p=4tp.
. D A
Also sin2y=— and cosy=—.
4 B 4 B
Solve forB: D = A
. T Vg
sin 2 —+ cog — =+
{522)] {3es)
D= 2Asin(£ + ﬁj
4
Forp=0: Dy =\2A
D .
Then for3#0 o - (cosB = sinp)
0

R =1+ B for small angleg, in radians. (3-1)
0

Therefore any tilt of a prism around the apex @& gnism will cause only a small shift

(proportional to the tilt angle of the prism) pdehto the optical axis.
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By “crossing” the Porro prisms, so that the apetesat 90° to each other (as shown later
in Figure 34), any misalignment in one directionc@mpensated for by one prism and any
misalignment in the orthogonal direction is compged for by the other prism, thus making the
resonator insensitive to misalignment. If the azlmbianglex is less than 90° then an angular
misalignment of one prism is only partially coneettinto a shift of the beam parallel to the
optical axis, with some residual angular deflectibhus the deflection of the beam in a Porro

resonator subject to misalignment is a functiothefazimuthal angle.

0°<a<90°

Figure 26 Misaligned Porro prism resonator

These geometrical techniques are also used todmarisie effect of misalignment of one
prism in a Porro prism resonator in three dimersibee & Leungl989a). Ifn and( are the tilt

angles of the output beam in the horizontal (y) eextical (x) directions, respectively then

n=-p (3-2)

and & =arcsi cosasings 77 | forp=<1°, (3-3)
(0052 @sin? B +sin? Gcos’ ,8)

C Scota forp << 1° (3-4)

where « is the prism azimuthal angle, afids the misalignment or tilt angle.

Figure 26 shows that the beam deflection is limedne range of £1°, which is typical, and that

the deflection is much smaller than the misalignnaemle.
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Figure 27 Plot of beam deflection angle { as a function of
misalignment angle g for a = 30{red), a =459blue) and a =
60qgreen).
For a resonator in multimode operation, the smatiede volume is the only cause for
the decrease of the output power, since additidifthction losses are only generated if the

fundamental mode gets clipped by the active medium.

3.5Resonator stability

In a conventional Fabry-Perot resonator the stgwfi the resonator is determined by the
radius of curvature on the mirrors. In a Porro nesor however the Porro prisms do not
contribute any focusing power and so intracavitysés may be included to determine the
stability. A telescopic configuration is commonlgead to tailor the beam size to match that of
the active mediumHanna et al.1981).

Referring to Figure 28, in the general case thatep exist between the intracavity lenses
and the Porro prisms the ray transfer makfix.s given in (1-29) for a resonator consisting of

two plane mirrors with intracavity lenses needbdamodified in the following way:

In Section 1.1 on pages 4-5 it was stated thatnaptyeresonator with spherical mirrors
and apertures can be analysed by replacing theisahmirrors with plane mirrors and lenses,
and unfolding the resonator. Since Porro prismglsimeflect a field (albeit with inversion
about the prism apex), in a Porro prism resondterRorro prisms can in turn be replaced by
mirrors. This is illustrated in Figure 28.
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Figure 28 An unfolded representation of a Porro prism resonator.
Note the gaps d; and d, between the lenses and mirrors.

Following the approach given itéanna et al.1981) the spaces, d, are accounted for in the

ray transfer matrix to give:

= N

M (1 4yl 01 dy1 d (1 01 Lyl O)1 d,)1 d,}(1 Oy1
Pre o 1 % 100 1)o 1)F 1)o 1)F 1)o 10 1)F 1)o
(3-5)
wheredy, da, L, f;, f> are shown in Figure 28.
The stability of the system can be calculdiesing the stability function in Eq. (1-13):
+
‘A D‘sl. (36)
2
20F )

20f

N

0 £
—10L q -Pebogsgeg | g
-10 0 10 20 30
]
(a)

® The Mathematica code for the stability calculasioan be found in Appendix 7.3.
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10 0 10 20 30

(b)

Figure 29 Plots of the stability function as a function of f; (x-axis) and
f, (y-axis) (@) L=10cm,d;=d,=0,and (b)L=10cm, d;=d,=2
cm.

In Figure 29 the regions for whidi andf, give rise to stable resonators are plotted in
shades of blue while the unstable regions are wNit¢e that the traditional stability plot is in
terms of theg- (or G-) parameters, which are not defined when theregaps between the
focussing elements and the mirrors. Therefore thisds are in terms of the focal lengthsnd
f,. Figure 29 shows the influence of the spaces lmtwke lenses and the mirrors or Porro
prisms on the stability of the resonator. In Fig@® (a), for example, the resonator with
intracavity lenses witl;, = f, = 10 cm is equivalent to a Fabry-Perot resonaitin spherical

mirrors withR; = R, = 20 cm and is marginally stable, whereas in @8 (b) it is stable.

3.6 Out-coupling and polarization

The angle between the prism axes influences the Iséability as well as the polarization

in the resonator, which in turn determines the amhofiradiation coupled out of the resonator.

In a traditional mirror resonator the laser beamcasipled out through a partially
transmitting output coupling mirror. In a Porro gm resonator, with both resonator mirrors
replaced by roof prisms, output coupling is realibg polarization techniques using a polarizer.
The orientation of the Porro prisms with respeatdoh other (or the angle between the apexes)
affects the polarization within the resonator, &md angle is commonly adjusted in order to

optimize the fraction of energy coupled out of theonator. When a particular Porro angle is
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required a retardation plate can be used to chidnggpolarization fractions and allow the output

coupling to be adjusted to its optimum value.

The Jones matrix method can be used to calculatpdtarization shift experienced by a
beam in a Porro prism resonat@h(in & Teppol976). The polarizer-Porro prism-polarizer
matrix My, for a Porro prism orientated at a transmissionea@ of 0° is given Buchman
1965;Podgaetskiil969) by

Mop =M M M,

10
where M p :( J is the matrix for polarizer orientation of transsion axig) = 0°,

A B
M, = ('B A*j is the matrix for the Porro prism, with
i

A= co{%j +i sin(%j coq24), and

B= sin(gjsin(Za) , and

P is the index dependent Porro prism internal plshgfeangle, and

a is the azimuth angle of the Porro prisms.

< v (1 0fA BY1 0
PP lo o)iB A )0 O
(A 3-7
ol (3-7)

For a Porro prism the phase shifassociated with total internal reflection is:

1
cos%sin2 y- 12j
L (3-8)

P=rm+4tan™ —
sin®y

where y is the incident angle, amdis the refractive index of the prism. Since a Bqrism

roof angle is 90° is 45°; thus, there is a finite phase shift whes tefractive index is other

than \/E .
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The effective reflectivityRer is then Chun & Teppdl976)

Rt =M oM, = cOS’ (gj + sinz(gj cos’(2a). (3-9)

Figure 30 is a plot of the reflectivifys as a function of azimuthal angi€for several values of
refractive inde»n, and was plotted using Egs. (3-8) and (3-9).
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Figure 30 Plot of reflectivity R as a function of the azimuthal angle o
for several values of refractive index n.
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4. TRANSVERSE MODES IN PORRO PRISM
RESONATORS

4 .1 Introduction

Beams with either radially-symmetric lobed (or ‘@&X patterns, or flattened doughnut
patterns are reported to be characteristic of Ppnism lasersNortier 1981; Preussler2007;
Steyl 2007). Figure 31 (a) shows the lowest-order Hex@iaussian mode which, as will be
discussed in the next section, was the beam steugitedicted previously in the literature.
Figure 31 (b) however shows the sort of mode wiécliommonly obtained experimentally
from a Porro prism resonator where the number ofsspr petals is a function of the rotation of

the Porro prisms with respect to each other.

(@) (b)

Figure 31 (a) is the lowest-order Hermite-Gaussian mode pattern, the
Gaussian beam, while (b) shows the type of modes typically observed
from Porro prism resonators.

Despite the ubiquitous nature of these lasersdrfigid, for a long time the output modes

from such lasers were not fully understood.

In early work a consideration of the theoreticalgarties of resonators with corner cube
prisms specifically mentions the influence of bevef finite width at the prism edges as a
possible explanation for a tendency for distinetgitudinal sectors to oscillate independently,
but does not go on to develop this idea into a toedgch could be used to explain

experimental result®dhan’ev1973).

A physical optics model which solves the FresnetKoff integral equation for the case

of a stable, large aperture roof mirror resonatrctudes that Hermite-Gaussian modes can be
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expected from them (see Figure 31 (a) for examguhel) therefore also fails to account for the
true field pattern found from such resonatdbdu & Caspersoril981). This is because only
the optical path length experienced by the beatharkernel of the Fresnel—Kirchoff diffraction
integral is considered, thus treating the prisrthasigh it were acting like a perfect mirror, with
an identical ABCD matrix representation albeit irpmrating the inverting properties of the

prisms.

Zhou & Casperson’s approach appears to be the preferrdélfar Porro prisms. The
conclusion that Hermite-Gaussian modes can be tegbeftom these lasers is used to
investigate the time-dependence of the transvemsterim a theoretical and numerical model of
a Porro prism resonato€lien et al.2006), and is also included in a textbodtodgson &
Weber2005, p.585-590), which states that the beam guadiithe laser resonator is not affected
by the prism. The chapter on Porro prism lasess alimmarizes key findings of Porro prism
resonators and proceeds to derive an expressidhdaeduced output power on misalignment
in terms of the Porro angle, the displacement aragid the gain and saturation parameters of
the gain medium, but does not explain the comptarsiverse field patterns found in Porro

prism resonators.

A comprehensive numerical model of a Q-switchedd> Porro prism laser is used to
study pumping and gain, thermal effects, polarmatnd associated output coupling effects,
and Q-switching flenriksson et al2005; Henriksson & Sjoeqvis2007). This model includes
temporal effects, but the prisms are modelled wldne mirrors and do not predict the beam

structure.

This is a recurring problem in the literature, wighly a hint at a solution offered in
(Virnik et al. 1987) and Anan’ev et al1977), where it was proposed to treat the fieldepas

as a result of diffractive coupling between a lmea@mbination of sub-resonators.

Clearly the approach of treating Porro prisms agpk plane mirrors (albeit having an
effect on the intracavity polarization) is not $ciffnt to explain the beam structure observed
from these lasers, and a deeper understanding eoffihd in the resonator requires an
investigation as to how the properties of prisnifedifrom plane mirrors in a resonator, which
could not be found in the literature. This giveserto a new analytical model which accounts for

diffraction losses not only at the limiting apegubut also from the prism apexes.

We present a new approadhitgin, Burger & Forbes2007a;Litvin, Burger & Forbes

2007b), and are the first to consider the loss fthenapex of the prisms. We include this as a
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loss screen in a physical optical model of the &qmism resonator, and also consider the
conditions required for a field in a resonator @peat back on itself. We predict a petal pattern
beam (see Figure 31 (b)), where the number of p@daican be calculated for discrete values of
the Porro angle. This new analytical model is thsé@d confirmed by including it in a

numerical model, the output of which is in goodemgnent with the predicted mode patterns.

These petal patterns were also observed experitiyeaitéhe predicted Porro angles.

The numerical model is then used to further ingesé the mode patterns from a range of
stable and unstable Porro prism resonators withelamtracavity apertured(rger & Forbes
2007; Burger & Forbes2008a;Burger & Forbes2008b). We discover that the higher-order
modes of these resonators have a kaleidoscopermpattd investigate the temporal

development and characteristics of these modeseTlinedes are verified experimentally.

Further we make use of non—planar, unidirectiomslonance analysiBdllig 1997;
Bollig et al. 1997; Hodgeson & WebeR005; Liu et al. 2005) to understand the oscillating
modes supported in these resonators. These higter-onodes bear close resemblance to
recently reported kaleidoscope modddcDonald et al. 2000; Bouchal 2003; Anguiano-
Morales et al.2008) which are named after the patterns formed kaleidoscopeBrewster
1819).

These similarities and the implications thereof diseussed in Section 4.5. This leads to
the conclusion, in Section 4.6, that the petal-hkedes hitherto reported are in fact only the
lowest-order modes, while higher-order kaleidoscopedes are possible given sufficient

transverse spatial extent to oscillate.

4.2 Analytical model

We propose that a “loss-screen” approach be usetbtiel a resonator containing Porro
prisms. The approach used is to describe the presnstandard mirror elements, but with
associated amplitude and phase screens, as iledtim Figure 32. These screens act on the
incoming field by modifying both its amplitude amdhase by means of a suitable optical

transfer function(x,y):
Uout (X, Y) =Uj (% (X y) = Ui (X Y) AlX y) expla(x, Y)) . (4-1)

where A(x,y) describes the amplitude effects, agk,y) describes the phase effects of the

prism respectively.
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Figure 32 lllustration of the effect of phase and intensity screens on
an incident field.

In the case of a Porro prism, the apex of eachmpvidere the prism surfaces meet is
never perfect, and the edge is always bevelledwesextent. This represents a narrow area of
loss in the resonator. The amplitude screen intregldosses not only at the edges of the
element (transverse confinement), but also at évellong the apex.

This bevel can be the a result of the machininggss, and a typical specification is a
width of <5pm (CVI 2009), but even a perfect prism would have aliogsat the intersection
of the two surfaces. There is complete interndéotibn on the reflective surfaces of the prism,
but reflections of less than 100% at the apex assalt of the rounded or flat surface at the
apex.

y

Loss (%)

y (mm)

@) (b)

Figure 33 (a) Sketch of the path of rays in the region of a rounded
bevel. (b) Transmission (loss) at the apex of a Porro prism for a
rounded bevel with radius 3 mm (blue) and for a flat bevel (purple).
Note that for the rounded bevel, for |y| > 2 mm the loss is 0%.
Similarly, for the flat bevel, for y > 3 mm the loss is 0%.
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Figure 33 (a) is a schematic of a Porro prism, shgwhe partial reflection of the beam
in the region of the apex or bevel. Figure 33 (mves the calculated transmission (loss) at the
apex of a Porro prism for both a rounded and ftlgfecbevel. The half-width of the bevel is
taken to be 3 mm, which is much wider than woulddend on a typical prism, but illustrates
the point. The reflectivity is calculated purelyng Snell’s law for a BK7 prisrm(= 1.50669 at
1064 nm) and shows that in the region of the bthekransmission (or loss) is high, but drops
to 0% on the prism faces where the beam experiararaplete internal reflection. According to
(Hodgson & WebeR005, p.585-590), for high quality prisms, whichidsit edge widths of less
than 5um, the additional loss per round trip is less tBd&%0 overall. In this case, the extraction
efficiency is as high as for a conventional resongtrovided that the small-signal gain is

chosen high enough.

Nevertheless, the bevel at the prism apex represenarrow rectangular region of 100%
loss across the centre of the field, and which dasnall impact on the overall losses. The

impact of the bevel on the mode will be shown.

The phase screen allows for the optical path kengtvary as a function of the input
position on the prism face, for example, to modedrs in the prism angle or fabrication errors
on the prism surfaces. With this approach, theratiffve effects of the prisms are taken into
account, and the screens can be treated as inirg~ekements that change the eigenmodes of a
standard mirror—mirror resonator. Only the ampktustreen approach was used to model
perfect prisms with high losses where the prismesdgeet. With the prism orientated with the
bevel vertical the loss area has the same heighegsrism and the same width as the bevel, 2

The transfer function for the new prism model tivtudes only the amplitude effects,
t(xy) = 1 for k| <o (4-2)
0 forx > 9.
This loss function describes a high loss regiom@lithe apex of the prism, with 100% losses,
and no losses elsewhere within the clear aperfuteeelement.
4.2.1 The “loss-screen” approach

The following section shows the effect of this neansfer function on the structure of

the emergent beam.
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Figure 34 A typical Porro prism based Nd:YAG laser with passive Q—
switch, showing the following optical elements: Porro prisms
(elements a and h); intra—cavity lenses (elements b and g); a

beamsplitter cube (element c); a quarter wave plate (element d), and

a passive Q—switch (element e).

Referring to Figure 34, and considering for the raotmonly the two Porro prisms and their
impact on the propagating field, imagine viewing tiesonator along its length from one prism
(elementh) looking towards the other (elemest. On encountering a prism, the field inverts
itself around the prism apex, and reverses itsggafion direction, travelling back towards the
opposite prism. The same inversion and reversingropagation direction takes place again,
and this sequence repeats on each pass. The paisold essentially be treated as perfect
mirrors but with a field inverting property.

A geometric approach is useful in understandingsyrametry and repeatability of the
resonator modes: consider a propagating ray viel@w the optical axis and assume, without
any loss of generality, that the Porro prism (PB}east to the observer has its apex in the
horizontal plane, while the opposite PP has itxaptated at some angtefrom the horizontal,
referred to henceforth as tR®rro angle By way of example, consider the casenct 60°, as
illustrated in Figure 35 (a) — (e). In the analygisfollow the pertinent information is the
location of the prism apexes, which is illustratagl solid lines 1 and 2 in Figure 35,

corresponding to elemerttsanda in Figure 34 respectively.
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Figure 35 (a) — (e): Evolution of a ray as it is reflected back and forth
in the resonator, for starting Porro angle a = 60° After 3 round trips
the pattern is complete (e) and starts to repeat. (f) — (j): Equivalent
case but with a = 30°% and now taking 6 round trips for completion .

Havinga priori knowledge of how the mode will develop, considetaxting ray located
as shown in Figure 35 (@), travelling away from thewver towards PP 2. This location was
chosen based on the assumption of high loss alengpexes, thus avoiding the apex zones. At
PP 2 the ray is inverted about the prism apex (RPRard travels back towards the viewer
parallel to the optical axis as indicated in Fig8ee(b). At PP 1, the ray is inverted about the
axis of prism 1, and travels back towards PP 2uffei®5 (c)). This process continues until the
complete pattern is created (Figure 35 (e)), apddly has returned to its starting position. This
happens after three round trips. Clearly subsequefleictions simply duplicate the pattern. A
second example is shown in Figure 35 (f) — (j), ehihe case ofr = 30° is illustrated. The
same propagation rules apply so that eventuallgr afix complete round trips the pattern starts
repeating itself. By dividing the field into equssctors this approach correctly predicts the petal
pattern formation often observed from such ladews this is a “ray” picture based @npriori
knowledge and not physical reasoning. Also, thipragch is only useful for limited Porro
angles.

An alternative approach, which is more useful indelbng such a resonator, is to
consider that since losses are introduced ontdigle from each prism apex, and the field is
then inverted, one can view the situation as thglitude screen being inverted after each prism
reflection. From the viewpoint of the field travelj inside the resonator, the equivalent picture
is that of the field remaining inversion free, vehilhe prisms edges invert after each pass,

essentially appearing to rotate by an amount depenth the Porro angle, and hence the main
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area of losses (the apex edges) also appear te.réta example of this rotation is shown in

Figure 36.

(d (e) ®

Figure 36 The apexes of two Porro prisms at angles ¢ and .
Initially the apex of PP 1 is in the horizontal plane (a), but after
successive reflections about the inverting edges of the two prisms the
apex will appear to be rotating about the circle: (b) 1 pass, (c) 2
passes and (d) 3 passes (e) 4 passes (f) 5 passes.

In order to develop a physical optics model basedhis approach, expressions are
needed for the equivalent picture of the rotatingrp apexes (high loss areas). Consider the
rotation of the first PP apex, denoted with thessuipt 1, whose position on the circle in Figure
36 is described by the vectar = (x5, y1) with angular displacement given lgy. The region of
high loss is then simply a line passing throughdhgin with slopeyi/x;. Without any loss of
generality it is assumed that the resonator is @éesuch that the first PP has an edge parallel to

the horizontal axis, with the second PP rotatdd@Porro angle, as illustrated in Figure 34.
Referring to Figure 36, and considering only theifpan of apex 1:
(a) This is the initial position of; relative tov,, as viewed along the resonator axis.
(b) After one reflection (about axis 2) appears to have rotated through an angle of
ta+a=+2a; g =+2a.

(c) On a return trip a second reflection about axissuits inv, appearing to have rotated

through an angle of 20 —-2a = -4a; @ = —2a.
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(d) After a third reflection (about axis 2) appears to have rotated through an angle of

+3a0+3a =+6a; @ = +4a.

(e) After a fourth reflection (about axis 1) appears to have rotated through an angle of

-4a-4a=-8a; ¢ =-4a.

(f) After a fifth reflection (about axis 2); appears to have rotated through an angle of
+5a +5a =+10a; @ = +60 .

In general then, afterreflections this vector has rotated through areaéign) given by:
6,(n) =(-)"*2na, (4-3)

where a is the Porro angle, and the angular position of #ector aftem reflections can be

found from:
am =3 6,0) =%[1— (-D)" @+2n)]. (4-4)
i=0

Prior to any reflections the apex of the first priss at@(0) = 0, so that if we imagine the

apexes rotating about the unit circle, then theoreg(n) may be expressed as:

() = (C9S¢l(n) —sinﬂ(n)j(lj | @s)
sing (n) cosg (n)
Similar expressions can be derived for the secéhdgex:
6,(n)=(-1"2na; (4-6)
oM =a-2 - ()" ar2n); (@7)
v, () = (c9s¢2(n) —sinqoz(n)j(lj. 48)
sing,(n) cosg,(n)

Note that the notation has been selected so thanitial positions of the two apexes are given
by:

v; (0) = (;} , (4-9a)

v, (0) =[°9S”j. (4-9b)
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with corresponding initial apex loss regions along= 0 andy, = (tam) X, respectively.
Recall Eg. (1-8) Mr = Ar.
This is the eigenequation of a nain a resonator with ray transfer mathik

This is a statement of the necessary conditiorrdesonance. If the resonator is stable,
then the eigenvalueisare complex and imply an inherent periodicityshewn in Section 2.3,
pages 27-31, and imply that after a certain nunobeound trips the ray will repeat on itself. A
consequence of this is that since the transformatiatrix M is a function of the Porro angle,
the condition implied by Eq. (1-8) will only be matt some discrete starting angles at which the
rotating edges repeat on themselves. At these atigiefield is finitely sub—divided by the
prisms losses, and it takes a certain number adgsafor the sub—division of the field to be
complete. The resulting field is then made up ofreular pattern of spots which we refer to as
petals or as a petal pattern. At other anglesedlyes never repeat on themselves, thus infinitely
sub—dividing the field. With this formalism we aable to find the angles at which these
repeating patterns manifest themselves, as weheasumber of sub—divisions (or equivalent,
number of petals) that will be observed. Considereikample the first Porro prism apex. It will

return on itself whemry(n) = v,(0), which leads from Eq. (4-5) to the relation:

cosg (n) -sing(n 10
os@ () —sin@(m)) _(1 0} @10
sing (n) cosg(n) 01
This will be true when
a h :
@g(n)= > [1— D" @+ 2n)] =i2m, (4-11)
for any integei.
Solve fora. a= |47
1-(-)"@+2n)
To select only the positive solutions farlet n = 2m, where m is any integer.
Now a= |24n ,
1- (=) @+ 4m)
. i7
which becomes a=— (4-12)
m

for any positive integerisandm
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Thus we have derived a simple expression for th@liranglesa that will lead to a finitely

sub—divided field (or repeating pattern from themetric viewpoint):

The same result can be derived by starting frontoveg. The implication is that only at
these specific angleg will the field be finitely sub—divided, thus leadi to some regions with
low loss for lasing. In addition, since the positiof these sub-divisions remains stable (i.e.,
they repeat on themselves) after a certain nunmrauad trips, the modal pattern that oscillates
inside such a resonator will give rise to a petdtgrnonly at those angles given by Equation
(4-12). At other Porro angles the high loss ap&y#sontinuously rotate to new positions, thus

resulting in high losses across the entire field.

We can now go on to calculate how many petalshweilbbserved for a given Porro angle
a. The number of petals will be equal to the numifesub—divisions of the field, but the field
may not be completely sub—divided in one completation of the vector; it may take several
complete rotations for this to happen. Note thatghb—divisions will not necessarily be equal
to the Porro angle; when several rotations areetén complete the sub—divisions, it is likely
that the area between the initial apexes will be-divided further. In general the following
expression relating the Porro angle to the totahlmer of sub—divisions (petals) of the field can

be written:

a_-t (4-13)

The validity of this is evident from the followirttguristic argument: The complete circle
(27) divided by the total number of sub—divisiddsnust return the angle of each sub—division.
If the sub—division is completed in one rotatidren the sub—division angle will equal but if
more complete rotations are needed, then thisreslllt ina itself being sub—divided by integer
amount. Thus both the left and rand hand sides of Eq.3{represent the same quantity — the

final angle of each sub—division. A simple rearamgnt of this equation then yields:

N=22 (4-14)

Since each reflection may only increase the nurabsub—divisions in multiples of two,
we deduce thall must be an even number. The positive intggeow appears to take on the
meaning of the number of complete cycles requicegtturn the apexes back onto one another.
At present we cannot offer a simple analytical rodtlof determining, but can offer the

following conditions: (i)j is the lowest positive integer such theis even, and (ii) < .
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Equations (4-12) and (4-14) are new predictiontaghich initial anglesr will result in
stable petal pattern output, and how many pé&falsll be observed in the pattern respectively.
A plot of the allowed angles for petal pattern fatimn together with the number of petals that
will be observed is shown in Figure 37.

Since the sub-divisions divide the circle finitethe angle subtended by each sub-
division is given by:

w=""== (4-15)

Thus the more complete rotations needed to comtiietpattern, the smaller the angle of each
sub—division. The simplest case is whenl; thenj = 1 and the circle is divided into divisions
of a. For higher values the lossless regions between the highsiaissdivision lines become
small. Thus although there is an infinite numbersolutions fora that lead to finite sub—
divisions of the field, if the number of divisions too large, diffraction will blur the spot
structure and no petal pattern will be observed.
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Figure 37 Plot of the discrete set of angles a that give rise to a petal
pattern, with the corresponding number of petals to be observed.
Data calculated for j 00 [1,100] and i O [1,50].
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Taking this into account, and considering the ddfion of a field propagating between
areas of high losses, it is reasonable to suppegelrte approach and theory presented here is
the explanation for the observed (and sometime®ips¢rved) petal patterns from Porro prism
resonators. The governing equations for the onseetal patterns and the number of petals
observed are given by Eqs. (4-12) and (4-14) resmbye.

4.3 Numerical model

The first step in writing a numerical model for arf® prism resonator is to interpret the

optical components in the resonator.

The laser was modellédy successive passes through a folded—out regofeditmwing
the approach described in Section 1.1 on page @ising the Prony metho&iegman & Miller
1970;Siegmaril986).

Since the Fabry-Perot resonator equivalent to amyoPresonator can be found and
described in terms of a ray transfer matrix, it wasided to simplify the model and use lens-
mirror distancesl;=0 andd,=0, and also to use a symmetric configuration Withf, =f. Then,
using the equivalence of lenses and spherical miaond from (1-25) above, the G- or stability

parameters in (1-27) can be calculated for a réeocantaining identical intracavity lenses:

L
G=9,=0g,=1-—. 4-16
9.=9> ot (4-16)
a2
And, to reiterate Equation (1-28): Ng = i (4-17)

In this case the Porro ray transfer malfixeduces to:
1 1L 1 0y 1 O0)y1 L 1 0y 1 0y1 iL
M = 2 4 4 4 4 27, (4-18)
0 1 )\-f 1) -f 10 1)\-f 1\ f 10 1

The model uses diffractive optics numerical techag_awrencel987;Lawrencel991)
and simulates a beam travelling in a symmetric makwo from laser switch-on and over any
number of round trips. A single beam is definecamquare field of 0.4 x 0.4 cm, using a beam

array size of 256256.

* The GLAD code for the Porro prism resonator cafooed in Appendix 7.4.
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In the model each prism was assumed to be equivdatera perfect flat mirror
superimposed on a rotating loss line (see Figude \8ish the rotation of the loss region for
prism 1 given by Eq. (4-4) and that for prism 2Hy. (4-7). The mirrors were separated by a
distanceL, and the resonator contained two intracavity lensiefocal lengthf located at the
mirrors. Apertures located at the mirrors defirieg ¢lear or limiting aperture of the resonator.
The resonator contained no gain medium, absorfdgses or loss due to radiation coupled out
of the resonator, so that the only losses congiderere the losses at the apertures and the
rotating loss lines. The initial beam was randogdyerated noise, and the gain was simulated
by recording and then resetting the energy to uaftgr each round trip, giving the loss per
round trip due only to diffraction. Typically theashal build—up data was recorded until the loss

per round trip stabilized to within 0.5%.

A diagnostics subroutine characterises the beathpareach round trip the aperture size,
spot sizes and the beam qualityMfrin thex- andy-directions as well as the loss are written to
a text file for analysis. The beam pattern is takemrism 1, and can be recorded after each
round trip in order to visualise the changes irngity distribution; it proved useful to record

sequences of beam patterns at various stages & des@lopment.

In keeping with the available experimental laserftillowing parameters were used:

L=10cm

2 =1.064um

« fwas varied from -1000 to 60 cm which correspondgvalues of -1 to 1.2 (shown in
Figure 38)

e awas varied from 0.04 to 0.12 cm, which correspdndl; - values of 1.5 to 13.5

e a prism bevel width of 0.002 cm was used.

® The code used in the verification of GLAD'S Malculations are given in Appendix 7.5.
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Figure 38 Plot showing the stability of the g- values used in the
numerical model.

4.3.1 Mode patterns

The numerical model was used for extensive testh@analytical predictions of Section
4.2. A marginally stable resonator with no intrabalenses (“flat-flat”) was modelled because

this configuration does not exhibit any higher-oratansverse modes.

S o Q@
a0 s ©|® ®
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Figure 39 Analytically calculated sub—division of the field using
Equations (4-4) and (4-7) (top row), with corresponding petal patterns
calculated numerically using this model, with a = 90°, 60°, 45°, 36°
and 30°respectively.
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Figure 39 shows examples of some results of resmatithg = G = 1 and identicaNg,
with the analytical prediction of the stabilizedbsdivision of the field shown in the top row,
with corresponding petal patterns calculated nuca#lyi shown below. The top row of Figure
39 shows the calculated apex positions after miaby Equations (4-4) and (4-7), and after a
stable pattern has emerged. The numerical modedatty predicts the following features of the

petal pattern:
e The number of petals is correctly predicted by 43-1

e The prism apexes coincide with the zero-intengitas between the petals.

Related work Forbes, Burger & Litvin2006) shows that the brightness of Porro
resonator beams is strongly influenced by the abgteveen the two prism edges, and that at
those angles at which petal patterns are obsemedinds an increase in the laser brightness
relative to nearby non-petal pattern generatinges@nd that there also appears to be a trend
towards improved brightness and beam quality fasé¢hangles at which fewer petals are

generated.

The numerical model was used to further investigladeproperties of these resonators.
Both the lens focal lengthfs and the aperture radiaswere varied in order to investigate the
impact of resonator stabilit® given in (4-16) and effective Fresnel numblrgiven in (4-17)

on the oscillating modes.

The first observation is that unstable resonatarsndt generate repeating petal-like
patterns, while stable resonators do. To preempt discussion to follow later with the
following geometrical optics argument: a ray traieg the resonator must return to a loss—free
sub—division in order to create the complete pptdtern. The lack of ray repeatability and
confinement in an unstable resonator precludesftbi® happening, and hence only stable
resonators exhibit the petal-like modes. Loss asehanism to explain this observation can
further be eliminated in that the loss for bottbktaand unstable resonators was set arbitrarily in
this study and yet did not influence the observatbpetals, or the lack thereof. The discussion
to follow will therefore concentrate on stable megimrs only. Without any loss of generality, all
spatial modes to follow are calculated at the fatene of the Porro prisms, and may be

propagated to any other plane if so desired.

The following data is typical of that obtained frahe numerical model and can be used

to characterise a Porro prism resonator. Althoughdharacteristics described apply to some
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extent to all Porro prism resonators, configuraiamich best illustrate the characteristic under

discussion are presented.

Consider by way of example three stable resonatioosen so that = 0.75 and with
Porro anglesd) of 60°, 45° and 30° respectively. When the irdaraty aperture is very small
(N ~ 1.5), no mode is able to resonate (crossed adenpatterns in Fig. 40, 41). At
intermediate aperture sized:-(~ 3.5) the conventional petal-like modes are olegkrwith 6, 8
and 12 petals foor = 60°, 45° and 30° respectively. At large apersizes N- > 6) the petal—
like modes give way to more complex mode patterhghvwe call kaleidoscope modes after
their resemblance to the patterns produced by plieab toy, the kaleidoscope. This increase in
mode complexity as the aperture size increasesstgythat the petal-like modes are in fact the
lowest-order modes of Porro prism resonators, wipiteviously unreported higher-order

kaleidoscope modes also exist, and can be ma@sadoate if given sufficiently large transverse

freedom. These results are shown in Figure 40.

Nr=
1.504 3.383 6.015 9.398 13.353

a=60°

45°

o=

a=30°

Figure 40 Modal patterns for three Porro angles with increasing
effective Fresnel number to the right in each row. As N is increased
(through an increase in aperture size), the modes become more
complex, departing from the petal-like standard.
Porro prism resonators appear to offer a rich leajols of possible modes, many of which
have not been associated with this type of resomataviously. While the previous discussion
focused on one particular resonator for three Pangles, we illustrate in Figure 41 that the

resonator paramet& also influences the oscillating mode, as one mégpect.

While the results are illustrated far = 45°, similar results are found at other Porro

angles.
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Nr
1.504 2.349 3.383 4.605 6.015 7613 9.398 11372 18.353

45 deg
G=050 G=-0111

a=

G=0833 G=075

Figure 41 The output modes of a number of Porro prism resonators
arranged as a function of G (rows) and Ng (columns). Note that in the
petal-like cases the single repeating mode is shown, while in the
higher-order mode cases, only one of the oscillating modes is shown.

4.3.2 Mode Periodicity

The higher-order kaleidoscope modes depicted inirBigtO and Figure 41 exhibit an
interesting feature: they repeat after a fixed nembf passes through the resonator. This
periodicity is not a function of the Porro angtebut rather ofG, and is the result of the

resonator’s complex eigenvalues.

Figure 42 shows the spot sizeas a function of the number of round trjpsso also as a
function of time. The spot size, (component in the-direction) is shown, but the modes are
radially symmetrical, so thgvalues are identical. The spot sizgsandw, are calculated with
the Second Moment Method described in Section d.fpages 16-17 above. The periodicity in

the region ofp = 2000 is shown in the insert, with the associatedes patterns.
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Figure 42 Plot of spot size for 12 000 round trips (double passes)
through a resonator with Porro angle 30°for G = 0.9, N = 9.4,
illustrating the periodic nature of the spot size and showing eventual
convergence. The sequence of modes through one period is also
shown.

This periodicity can be defined as the number ofveational round trips (double passes)
required for any ray to return to an initial pasitiand orientation, and can be found using
geometrical ray analysis. Following the periodiatyalysis in Section 2.3 on pages 27 - 31, if
the Porro resonator matri is given by (4-18) then an initial ray, which da@ thought of as
any element of a mode pattern, can be written &soarow vectorr, describing both the
position and angular deviation of the ray. Afperound trips through the resonatos,will be

transformed into a new vectgyaccording to:

ro=MPro=>"APBr,, (4-19)

where/; andr; are the eigenvalues and eigenvectors of the misitrigspectively angs are the
coefficients required for the expansionrgfn terms of the eigenvectors. For repeatabilityhef
mode we requirg, = ro, found from the solution to the simultaneous eiguat (for each
i) AP =1. Using the Porro resonator matik and following the approach given in Section®2.3

in Eqns (2-4) to (2-11), the periodicity of the Roresonator is found to be a function of the
stability paramete®, and given by:

® Mathematica code to determine periodicity for Bagsonators is given in Appendix 7.6.
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2n 4n

P=0°"22
66

(4-20)

whereP is the periodicity and number of round trips, andstbe awhole numberand, as in
Eq. (2-9) in Section 2.3:

6 = arccospG? -1) (4-21)
whereG is given in (4-16). This is the same expressiowas derived in (2-9), and is expected
since the Fabry-Perot and Porro resonators aréicdéeif R = 2f.

As in Section 2.3 on pages 27 - 8] can be plotted as a function @fin the following
graphs the ray positionis plotted:

Analytical model Numerical model

\ N N N N —7—

A b A b )
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# round trips p # round trips p

Figure 43 Comparison of Numerical and Analytical models of
resonator with G = 0.9, with identical periodicity (P = 7) in both cases.
Figure 43 shows the periodicity from the numerivaldel for a resonator corresponding
to the analytical or eigenmode model for the cdde ® 7. For Porro resonators as with Fabry-
Perot resonators, for all resonators correspontinghole-numbeiP-values (forP > 2), the

periodicity of the numerical model was found to@&kamatch that of the analytical model.

This approach allows the periodicity of the cyclimgdes to be determined analytically,
and compared to the periodic pattern observedarsgiot size data from the numerical model.

The results are illustrated graphically in FiguBe ds well as in Table 5.
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Table 5 Periodicity comparison

G P
Theory Model

-1.0 none none

0.0 none none

0.5 3 3
0.707 4 4
0.809 5 5
0.867 6 6

0.9 7 7
0.924 8 8
0.94 9 9

Table 5 shows the agreement in periodicity prediddg geometric resonator theory

compared to that observed in the numerical modehf®beam loop modes.

One can understand this periodicity if one considbe similarities to the well-known
Herriot cell resonatorHodgson & WebeR005) and by following the path of a ray through t
resonator. Such resonators result in a periodibay is not a double pass through the resonator,
as is the case in a standard Fabry—Perot systemather is based on a uni—directional analysis,
where the number of passes can be made very large domplete “round trip” — in this case
“round trip” refers to the condition that the beaspeats a previous path through the resonator.
The number of reflections and the orientation & beam, and hence the periodicity of the
resonator, can be controlled by judicious choicahef resonator parameters. This concept is
illustrated in Figure 44 where a standard resoriatoperated as a non—planar ring lasér et
al. 2005). In this case the beam passes through gmnator six times (or reflects off each

mirror three times) in a single “round trip”.
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Figure 44 A multi—-pass beam pass is possible for a given resonator
configuration. If the gain region is small and central then a Gaussian
mode is expected. The resonator can be forced into a higher multi—
pass mode by off-centre pumping.
Such a configuration leads to a complex output bpattern based on the possible beam
paths through the resonator, which we can refeastbeam loops. Since each beam loop has a
particular output pattern, it is convenient to retfie these patterns as modes of the resonator.

Thus the modes and their periodicity are linkedH®ychoice of resonator parameters.

4.3.3 M?

Each transverse mode pattern has an assodiftedlue which is a measure of its size.
Figure 45 shows the behavior of th& parameter as a function of time (or equivalerting

number of round tripp) in a Porro prism resonator.

Initially, when the field is essentially random sej theM? —value is high (> 10). Within a
hundred round trips the value oscillates betwe8rafd 8.5, dropping to an oscillation between

7.0 and 7.2 by = 6000. Further convergence is slow.
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Figure 45 Temporal behaviour of M? in a Porro prism resonator, G =
0.9, Np = 9.4.

4.3.4 Loss

Figure 46 shows high initial loss, settling to beémn 0.2 and 0.49 within a few hundred
round trips, and to between 0.22 and 0.3 by1000, after which convergence is slow. As for
the M? parameter, the late slow convergence is indicati/@ residual higher-order mode
component.
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Figure 46 Temporal behaviour of loss in a Porro prism resonator, G =
0.9, Np = 9.4.

An increase in round trip loss inside the laselitgag also associated with an increase in the

number of sub—divisions of the fieMlor, equivalently, in a decrease in the Porro angle
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Figure 47 Plot of the round—trip loss as a function of the number of
petals as predicted by the numerical model.

Figure 47 shows that for a fixed aperture radisthe stabilized round-trip losses
increase nearly linearly with the number of petalthe petal pattern over the region that one
might reasonably expect to observe petals. Thisiésto the ever decreasing low loss area as the
sub—divisions become closer together. This plaessictions on the allowed Porro angles that

can actually be observed experimentally from saskis.

The numerical model also correctly predicts thehbigorder kaleidoscope beam modes
to have higher losses than the lower-order pekal-ihode. Because our numerical model
allows the modes to oscillate indefinitely, loskesgon ultimately results in the convergence of

all starting fields to the petal-like patternssaswn in Figure 48.
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Figure 48 Development in time of the transverse modes in two Porro
prism resonators (above) a = 60° G = 0.9, Nr = 9.4, and (below) a =
305 G =0.75, Ng = 13.5.

Figure 48 shows examples of two Porro resonatotis thie mode pattern @t = 10, or
just after switch-on when the mode is no more stinecl than apertured noise, and then in steps
of 1000 round trips thereafter. In the series alfave 60°,G = 0.9,N: = 9.4) the mode pattern
soon appears petal-like, with variation mainly ive tsize of the mode pattern. In the series
below @ = 30°,G = 0.75,Nr = 13.5) the kaleidoscope modes are apparent iretfien between
approximatelyp = 500 top = 2000 round trips. Aftep = 2500 the petal-pattern is apparent, with

decreasing oscillation in the variation in the msie.
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Figure 49 Comparison of the number of round trips required for mode
convergence for increasing aperture sizes in a Porro prism resonator
with a =305 G =0.9.
Figure 49 shows that increasing the limiting apersizea increases the number of round
trips required for the beam to converge to a gedtern. FoN: = 6.0 a few hundred round trips
are required, folNz = 9.4 about 7000 round trips are required, and\fo= 15.9 the mode

requires over 32000 round trips for convergence.

In the presence of gain and hence a limited bupdi#ue, such a complete convergence
would not necessarily take place, but partial cogerce at least is expected, and would follow
the behaviour of stable Fabry-Perot resonatdiatinez et al.1997;EnciasSanz1999), and in
this respect agrees with the prediction for Pomisnp resonators byChen et al2006), that a

slowly-opened Q-switch (and therefore longer pugd)result in a lower-order mode beam.

4.4 Experimental verification

The Porro prism resonator investigated in thisysiadhown schematically in Figure 34,
and was based on a flash lamp pumped Nd:YAG laghr passive Q—switching. The active
medium was a 50 mm long Nd:YAG rod of radius 3 riimvo Porro prisms at either end of the
laser formed the resonator, replacing traditionarors. The stability of the resonators was
determined by the two intra—cavity lenses nearmptisms, but in our experiment no intracavity
lenses were used, yielding a marginally stablen@asws. The resonator was confined in the

transverse direction by the clear aperture of fhtecal elements, such as lenses, prisms and gain
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rod. The laser was pulsed using d"(fAG passive Q—switch. A quarter wave plate togethe
with a polarizing beamsplitter cube ensured vaeabltput coupling from the laser by
polarization control (by rotation of the waveplateby rotation of the prisms).

The assembled laser used in our experiments isrsiowigure 50. The spatial intensity
profile of the laser output was measured using & Q@amera (model COHU 4812). The
temporal characteristics were detected with aasilidetector coupled to a SDimpedance, and

displayed on a two channel oscilloscope (TektrdidS 360).

Figure 50 Photograph of assembled laser. The beamsplitter cube
and one of the Porro prisms can be made out on the left of the
assembly.

It is pertinent at this point to discuss the pa$isibof the experimental observation of
these complex beam patterns. Their losses aretsatin a mode competing environment they
are distinct from the petal-like patterns for adimeriod in the order of 1-fs, which is
comparable to the mode build—up time of a typicaivaly Q—switched Porro prism laser (see
Figure 34). Thus while we cannot prove analyticéligt these complex beams are transverse
modes of the resonator, their lifetime is such thatvery likely they are transverse modes, and
there should be the possibility of observing thexpegimentally. There are however some
limitations and technical challenges to such anegrgent. It is likely that in a conventional
linear standing-wave resonator some combinatiomhe$e modes might appear, and with a
time-averaged measurement a multi-mode patternddmilobserved. We believe that we have

observed this.
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@) (b) (©)

Figure 51 (a) Petal mode, (b) Experimental beam pattern, (c) Average
of 5 cycles of higher-order modes at 1000 round trips.

Figure 51 (a) — (b) shows the comparison of a presly calculated petal pattern together
with experimental verificationL{tvin, Burger & Forbes2007b). A time-averaged output in the
time period of the complex modes is shown in Figbte(c). Two observations can be made:
firstly, the resulting pattern is again similaragetal-like pattern, despite no petal-like mode
component in the sequence, and secondly, the pasteows an elongation of the energy
distribution, and a departure from the compactlpetaen in Figure 51 (a). The latter is more
consistent with the experimentally observed pattetrich was measured on a stable resonator
with large apertures. This suggests (but does rotep that the complex modes we predict do
indeed exist, and are stable enough with low endogges to be resonant in the cavity. In this
sense they are likely to be viewed as higher-ordedes of the resonatoByrger & Forbes
2008a;Burger & Forbes2008Db).

Further support for the validity of the model coniemm Figure 52, which shows the
similarity in time-averaged beam pattern predidgdthe numerical model to that observed
experimentally from a Porro prism resonator whgkdjustecaway from the azimuthal angles

given in (4-12), where no petals are expected.

@) (b)

Figure 52 (a) Result of numerical model time-average, (b)
Experimental beam pattern, both from a Porro prism resonator in
which the azimuthal angle a is tuned away from a petal pattern.
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In order to measure distinct kaleidoscope modespbssible that the approach of others
in selecting multi-pass modes might be employegettter with knowledge of our particular
field distributions, as predicted in this work. has been shown that either preferentially
increasing the gairL{u et al. 2005) or the lossBpllig 1997), or altering the phas@ron et al.
1999a;0ron et al.1999b;Machavariani et al2002;Chu 2007) for a particular path can force
oscillation of a particular multi-pass beam modiee Thallenge is to adapt such approaches to

mode selection in Porro prism resonators.

4 5Discussion

Using Egs. (4-12) and (4-14), the finite sub—dmisof the field is predicted at angles

67.5 anda = 77.14, with associated petal numbers of 10 and 14 réispéc No finite sub—
division is expected atr = 79.0. These cases are shown in Figure 53 (a) — (cectisply,
where the locations of the prism apexes are shaound the unit circle after several hundred
rotations. In insets (a) and (b) the apexes ararlgleepeating on themselves, resulting in a
stable pattern, whereas in (c) the field does esult in any lossless regions because of the non—
repeating apex positions. This latter situationhfisibs the formation of a stable mode since all
regions have high loss, while the former scenarmgdd potentially support lasing in the lower

loss regions of the field.

The numerical model of the resonator confirms {hee Figure 53 (d) — (f)), showing a
stable mode pattern far = 67.5 anda = 77.14, with the correct number of petals (10 and 14
respectively) as predicted by the theory. @t 79.0 the output mode never stabilizes and
results in a random field with high losses. Expertal results verify these findings, with petal
patterns occurring when they shoutd< 67.5 anda = 77.14), and with the correct number of
petals: 10 and 14 respectively (see Figure 53 iid) (a)). Ata = 79.0 no petal pattern was
observed experimentally, in agreement with the mhemd numerical model, with the camera
image showing the time-averaged intensity froml#ser. Thus the theoretical, numerical and

experimental results are all in very good agreement
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Figure 53 The analytical model depiction of finitely sub—divided fields
in (a) and (b), and an infinitely sub—divided field in (c). Numerically

this results in a pattern with (d) 10 petals, (e) 14 petals, (f) no petals.
The corresponding experimentally observed output is shown in (g) —

o)

The anglesr for which an output beam existed for the testrlagere limited to between
63° and 87. The absence of output below°88as due to increased misalignment between the
Porro prisms with decreasing angle away frorfi @de crossed case). It should be noted that
this was a particular artefact of the resonatoreustudy, and is not a general property of Porro
resonators. The absence of output aboveve®s due to two effects: (i) the output coupling
method of the given cavity: at 9@crossed Porro prisms) no output existed becaasgyc
losses were 100% due to the polarization basedubetupling method; and (ii) near 9the
number of predicted petals increases very rapidlyn Worro angle. Since this reduces the
available low loss area for the each petal, eitieeipetals are observed due to the inherently

high losses, or the close proximity of the pete&ds to blurring due to diffraction.

The available experimental data at selected anglés shown in Table 6, and is in

excellent agreement with the theoretical and nuraépredictions.
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Table 6 Petal pattern observations: theory and experiment.

Experiment Theory

a N a N
68° £ 0.5 16 67.5000 16
72°+0.5 10 72.0000 10
77°+£05 14 77.1429 14
80°+0.5 18 80.0000 18

The complex higher-order modes revealed in the ipusv section show distinct
similarities to so—called kaleidoscope modggDonald et al.2000;Bouchal2003; Anguiano-
Morales et al.2008). The similarities are visual, which we ackiemige to be subjective given
that such modes have not been put on a firm matieahbasis, but more important similarities

exist in the generating mechanisms.

Field distributions have been proposed which aeesalt of the coherent superposition of
n cosine gratings, each rotated with angular incrémef ¢ = 7#fn (Bouchal 2003). The
similarity between this and a rotating loss onfiakl at anglesr = 77n (Eq. (4-12) withi = 1)

in Porro prism resonators probably accounts fotikemess in output modes.

Kaleidoscope modes have also been generated usisged apertures to sub—divide the
input field to an axiconAnguiano-Morales et al2008). This type of obstruction pattern is
identical to the final loss field observed in Poprism resonators (see Figure 39). While such
fields were previously created external to therlaseity, we have shown that the fundamental
property of field sub—division in Porro prisms ganoduce similar fields directly from the laser

cavity.

The generating mechanisms in boogchal2003) and Anguiano-Morales et aR008)
have strong points of commonality with how intrata¥orro prisms are treated. However for
completeness we must point out that the studieguastion dealt with diffraction-free beams
created by plane waves travelling on cones, witlolomious link to our resonator. Despite this

the output modes bear very strong likeness in farmd, perhaps also in properties.

The modes produced by the “kaleidoscope laser’garerated in a similar way to the
Porro prism laser, in that in this case geometyicahaped apertures (triangle, rhombus,

pentagon, hexagon and octagon) are placed insid&asier resonatoMcDonald et al.2000).
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As for the Porro prism laser, the mode patternslyged show an increasing complexity with

increasing Fresnel number.

The ubiquitous nature of Porro prism resonatorsesakstudy of such modes necessary
in its own right, but there also exists the podisybof using such complex modes to excite

complex photonic crystal structures, and so furstedy is required.

4.6 Conclusions

Presented here is a new approach to modelling Rwison resonators that combines
geometrical and physical optical aspects. It shinasfor specific prism angles these resonators
must generate petal-like patterns or kaleidoscatenms, and gives the generating equation for
the prism angles at which this will happen. It Hasen shown that resonators produce
kaleidoscope patterns as opposed to petal-likeenpattonly if they have sufficiently large
intracavity apertures (or sufficiently high Fresmeimbers). These higher-order modes closely
resemble recently reported kaleidoscope modes atieet fundamental property of field sub—
division in Porro prism resonators. The appearahdest the petal mode and then increasingly
complex kaleidoscope modes with increasing apersize leads to the conclusion that the
petal-like modes are the lowest-order modes ofdPprism resonators, while higher-order
modes exist in the form of kaleidoscope—like fielige also predict that the standard petal
mode is only observable from stable Porro prisnomesors, and indicate how the stability

criterion (G parameter) impacts on the cyclical nature of igédr-order modes.

The petal results are confirmed experimentally otest resonator; we believe it is
possible to observe the kaleidoscope modes expatathe but acknowledge that there are

some technical challenges to overcome before dsmng

This work has implications on how such resonatoesuged in the field. Variable output
coupling based on rotating the prisms is often eygad, but as has been shown here, this will
have a significant impact on the output mode frbm laser, affecting laser beam propagation,

far field laser intensity and laser brightness.
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5. CONCLUSIONS AND FUTURE WORK

Porro prism resonator technology is considered éontature $iegman2000) but
nevertheless the petal-pattern beam which has ey observed from these resonators has
never been explained in published literature. Time af this dissertation was to develop a

model of a Porro prism resonator to investigatebem structure from these lasers.

Porro prism resonators have previously been treagegabry-Perot resonators with field
inverting properties and polarization effects. Hfiere a simple numerical model of a stable
Fabry-Perot resonator was developed for two reasorsly, the Fabry-Perot numerical model
serves as a validation of the modelling techniqusesd by comparing the output of the model
with analytical formulas from text-book theory. 8adly the model was used to investigate the
properties of transverse mode formation in FabmgPeesonators to serve as a reference with
which we could compare the differences in outpuanhe from Fabry-Perot and Porro prism
resonators. The temporal development of spot MZeynd loss were investigated and found to
agree well with the understanding that shortly raft@itch on the beam consists of a rapidly
cycling series of modes, and that given sufficieme (and the absence of the reseeding of
higher-order modes) discrimination against the érghrder modes results in the convergence to

the lowest-order or Gaussian beam.

Next we considered the fact that one of the majfferénces between Fabry-Perot
resonators and Porro prism resonators was theapabte presence of a narrow area of loss
across the field, the result of the prism having twtical surfaces which meet at the apex. This
provided a hint that the unique beam structures fRorro prism lasers could be caused by
diffraction loss in this region. This led to a napproach to modelling Porro prism resonators
that combines geometrical and physical optical etspeand is based on tracking the apex
“shadow” as the field passes from one Porro prisnthe next inside a resonator, and we
discovered that petal-like patterns will be geregtabnly for certain discrete azimuthal prism
angles. We have given the generating equationhiiptism angles at which this will happen.
This allowed the apex loss to be included in thenerical model as a rotating loss screen,
which formed the basis of the Porro prism resonatmdel. The results are confirmed
experimentally on a test resonator. This work Ingglications on how such resonators are used
in the field. Variable output coupling based oratioig the prisms is often employed, but as has
been shown here, this will have a significant impacthe output mode from the laser, affecting

laser beam propagation, far field laser intengity @ser brightness.
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Further, we have applied a previously-developedcharattical model of intracavity Porro
prisms to stable and unstable Porro prism resomatith large intracavity apertures. We have
shown that higher-order modes exist onliNifis sufficiently large, and that these higher-order
modes closely resemble recently-reported kaleiqmseoodes due to the fundamental property
of field sub—division in Porro prism resonatorseTdppearance of first the petal mode and then
increasingly complex kaleidoscope modes with irgirepaperture size leads to the conclusion
that the petal-like modes are the lowest-order madePorro prism resonators, while higher-
order modes exist in the form of kaleidoscope-figkls. We also predict that the standard petal
mode is only observable from stable Porro prisnomators, and indicate how the stability
criterion G parameter) impacts on the cyclical nature of tighdr-order modes. We believe it
is possible to observe these modes experimentally,acknowledge that there are some

technical challenges to overcome before doing so.

Further work could include the decomposition of ghedicted kaleidoscope modes into

Hermite-Gaussian or Laguerre-Gaussian polynomials:

1) =" c,Ga(x Vo) (5-1)

wherec, (n =0, 1, ...) are coefficients representing the posegried by the-th order mode,

2 V1 X2 x?
and Gn(x,vo)z(mg] WH,{ Ve Jex;{—gj; (5-2)

H, is then-th order Hermite polynomial, ang is the spot size of the modes.

Either the method described iBgrghi et al.2001) could be followed, in which the
orthogonality and completeness of the Hermite pmiyials are exploited to fit these
polynomials to a given intensity distribution, or2adimensional genetic algorithm could be
written which would evaluate a fit of a set of H&e¥Gaussian polynomials against a given
kaleidoscope mode and optimize the coefficientsf this set of polynomials to achieve a “best
fit".

It would be interesting to measure the polarizatbnhe individual petals making up a
beam experimentally and see whether it changes oenpetal to the next as it does in the

lobes of the fields of higher-order Laguerre-GaarssieamsGaspersorl976).

It would also be extremely useful to investigate thr-field propagation of both petal and

kaleidoscope beams (in other words the low- antdrigrder modes), varying both the stability
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parameter as well as the Fresnel number of thenaésiounder study, and also to investigate,
using the analysis of-frbes et al2008), whether the petals of a beam propagakéseparate
guasi-Gaussian beams, or whether the beam progagata compound beam. The far-field
beam pattern will determine the usefulness of thesems over a distance. If the petals
propagate as separate quasi-Gaussians then théy eouseful in the differential measurement
of atmospheric turbulence.

If the beams combine over a distance to form aimatle beam structure then this would
have implications as to the divergence and brigistrad the beam, and to their usefulness in

ranging applications.
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7. APPENDIX

7.1 GLAD model of a symmetrical Fabry-Perot resonator

Cir-Mir Reson 03.inp

variab/dec/int step pass STOP
variables/declare/real L R1 Apertur Dfitxomega Dfit
variables/monitor/add L R1 Apertur step Dfitxomega
Dmsqy

write/on

array/set 1 256

fieldsize=0.3

L=10

R1=52.3607

Apertur=0.08 #2wl=0.
0.0618819 3wl= 0.0742582

nopass = 10000 #600 #200
set/density 128 128

macro/def reson/o

pass = pass + 1 list # increment

step =step + 1 # increment

prop L/2 # propagate

macro/run diagnostix

WI1x=Dwx;

mirror/sph 0 -R1 # concave mi
radius

clap/c/n O Apertur #0.14 #
aperture

prop L # propagate 4

macro/run diagnostix

W2x=Dwx;

mirror/sph 0 R1 # concave mi
radius

clap/c/n O Apertur #0.14 #
aperture

prop L/2

energy # calculate

variab/set energyl 1 energy

loss = (1 - energy1)*100 # determine

normalising peak I=1

pltflag=0
if [step>99] then
if [step<120] then
pltflag=1
endif
endif
if pltflag=1 then
set/window/center-width 0.1 0.1
title L=@L R1=@R1 at @step steps

plot/watch circ_mode_R1=@R1_Ap=@Apertur_Step=@

yomega Dmsgx Dmsqy
Dfityomega Dmsqgx

0495055 2.5wl=

pass counter
step number
45 cm.

rror of 50 cm

.14 cm. radius

5 cm. along beam

rror of 50 cm

.14 cm. radius

energy in the beams

loss (%) before

step.plt
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plot/bitmap/intensity/burnpattern 1 min=0
plot/meta/wmf
pause 2
plot/plot_log/clear
watch/close
watch/start
endif

# Output data to text file

write/disk/on 'Output-R=@R1_Ap=@Apertur.txt'/noov

C

Apertur=
Dfitxomega=
Dfityomega=
Dmsgx=
Dmsqy=

energy/norm 1 1
variab/set energyl 1 energy # reset energ

loss=
write/disk/off
macro/end

macro/def diagnostix/o
fitmsquared/both/nocorrection 1 # Diagnosti
variables/set Dfitxcent fitxcent ~ # X-beam ce
variables/set Dfitycent fitycent  # Y-beam ce

variables/set Dfitxomega fitxomega # X-radius

gaussian

variables/set Dfityomega fityomega # Y-radius
gaussian

variables/set Dfitxrad fitxrad # X-transver
gauss

variables/set Dfityrad fityrad # Y-transver
gauss

variables/set Dfitxsig fitxsig # X-standar

variables/set Dfitysig fitysig # Y-standar

variables/set Dfitxsigf fitxsigf ~ # X-standar
space

variables/set Dfitysigf fitysigf ~ # Y-standar

space
variables/set Dmsgx msqx # M2 in the
variables/set Dmsqy msqy # M2 in the

Dwx=2*Dfitxsig
Dwy=2*Dfitysig

macro/end
nbeam 1 # establish
wavelength/set 1 1.064 # set wavele

units/field 1 fieldsize

resonator/name reson
C **++x Eigen/Test **++*
resonator/eigen/test 1

C *kkkk Elgen/Set *kkhkk
resonator/eigen/set 1 # set beam 2

erwrite

yltol

cs of Beam #2
nter

nter

of equivalent

of equivalent

se radius of equiv
se radius of equiv
d deviation

d deviation

d deviation, freq

d deviation, freq

x-direction
y-direction

2 beams
ngths

to eigen mode
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clear11 # start with

beam 2

energy/norm 1 1

status/p

pass =0 # initialize

step=0 # for pass c

gain/converge/set eps1=.001 npoints=5 # set conver
# .1 percent

write/off

write/disk/on 'Output-R=@R1_Ap=@Apertur.txt'/overwr
write/disk/off

reson/run nopass
write/on

title diffraction mode shape

plot/watch circ_mode_ R1=@R1_Ap=@Apertur_diffr_mode.

plot/bitmap/intensity/burnpattern 1 min=0
plot/meta/wmf

a plane wave in

variables
ounters

gence criterion to
energy change

ite

plt
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7.2 Mathematica code - periodicity of a Fabry-Perot resnator

Mir Reson Eigen calcs ito g 03 assym.nb

Eigenequation analysis of Porro resonator

= Variables

Clear[m, Mmir, &40, 80, A1, A2, v, v2, B1, B2, L, R1l, R2, gl, g2, periodicity, p]
Rl = oo;

R2 = 1048;

L=177.2;

= Set known variables

AD =1
&0 = 0;

= ABCD Matrix for a Mirror Resonator

mirrcr(R_] :=

0
@
-2 1
f1 @
flatmirror := L Fia '

(1 odn

gap[d_] := l\D 1 }.‘

L L
Mrdir[R1 , R2 ] := gup[;] .mirrer{R1].gap[L].mirrer[RZ] .qap[;] /F Simpldfy;

MatrixForm[Mmir[R1l, R2]]:

= Mirror Resonator Analysis
L
gl=1l-—3}
Rl
L
g2 s l-—}
R2
1
m= — (Mmir[R1, R2][[1, 1]] +Mnir[R1, R2][[2. 2]]) // Pactor;
{evale, evecs} = Eigensystem[Mmir[Rl, R2]]:

Al =evale[[1]] // 8implify:
AZ =evale[[2]] // Bimplify:

vl=evecs[[1]] // Simplify;
vZ=evecs[[2]] // Bimpld fy:
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= Find coefficients

Cleax[s8l, 82]:

FPO= 81wl + f2vi;

(# AO=PO[[1]] # ©0=PO[[2]] )

8ol = Solve[ {40 ==PPO[[1]], @0 ==PRO[[2]]}, {B1, B2}]:
Bl=B1/.ecl[[1, 1]] // Bimpld fy;

B2=52/.e0l[[1, 2]] // Bimpldfy;

s Define Ray Propagation function
PPlp_] := B1AIF vl + B2 A2F 2,
PP[0] // Simplify;

= Option 1: Given R, find periodicity P

&= H[ArcCos[m]];

am
paricdisdity= ¥
=]
s Output
Print["Mmir = ", MatrixForm[Mmir[R1, R2]]]
Print["L s ", L]
Print["R1 = ", R1]
Print["R2 F IR 4 |
Print["gl = ", gl]
Print["gl = ", gi]
Frint["m = ", m]
Print["al = ", a1]
Print["a2 = ®, Az2]
Peint["vl = kY
Print["wvi = "owd]
Print["A1 = ", B1]
Print["82 = ", B2]
Print["FP[0] = ", PP[0]]
Frint["FP[p] = ", MatrixForm[PP[p]]]
Print["m = ", m]
Print["@ = ", N{8]]
Print["F = ", H[perioedicity]]
Show|

Graphice[Plet[{PP[p] I1]}: {p. D, 25},
Plot8tyla+ {Elua, Thick},
FPlotBRange - 1.13,
Frame + Trus,
FramefStyle—+ Directive[Thick, 12],
FramelLabel—+ {"# round trips p", "3"}.
Ticks «+ {Noeme, None} ,
LabelStyle—+ {12, PontFamily-+ "Arial"},
Gridlines <+ { (#x«) {}.
fl{#ye){-1.0, Light@ray}, {-0.5, LightGray}, {0.5, LightBray}, {1.0, Light3ray}}}1]

Export[
"D:\Data\PROJECTA\NLC PAFERS & TALES'MSc Thesie - Porre Project\@raphice\periodicity.wmf”,
%]
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7.3 Mathematica code to plot the stability of a Porro pism resonator

Resonator Matrix Model 02.nb

Comparison of Ray Transfer Matrixes for Mirror - and Lens - Resonators

= Ray Transfer Matrix elements

1 0
lena[£f_] :=[ ];

1
\-F 1
1 0}
mirror[R_] := z 1];
B
sy LS,
gap[d_] := ILn 1)
Mirror

Clear[R1, R2, £1, £2, L]
ABRCDmir{R1 , RZ_] := gap[dl] .mirror{R1l].gap[L].

mirrcr[R2] .gap[di].gap(d42] .mirror{R2)].gap(L] .mirrer[R1] .gap[dl]:
MatrixForm[8implify[ABCDmir[R1, R2]]]

Rl=2fl; R2=2¢£2y
MatrixForm[8impli fy[ARCOmir[R1, R2]]]

StabilityPrmir[fl_, £2_] ==
1
— ([ (Bxtract[ABCDmir[£l, £2], {1, 1}]) + [Bxtract[ABCDmir[£1, £2], {2, 2}]));:
2

Stablefonemir[fl , £2_] := If[-1«< StabilityPonmir[fl, £2] <1, 1, 0];

s Graphics - Mirror

dl=0; d2= 105
LeIdg
Show(
Graphice]|
ContourPlet[8tabilityFomir[R1, R2], {R1, -10, 30}, {R2, -10, 30},
Centourlabele—+ Automatie, PletPointa— 100, Contoure—+ 5, PlotRange—+ {-1, 1},
Frame + Trus,
FrameStyle- Directive[Thick],
LabelStyle— {18, FontFamily— "Arial"},
FrameLabel -+ {"f,", "£,"}.,
GridlLinea
{
(wxs) {-20.0, =10, 0, 10, Z0},
(*yw) {-20.0, -10, 0, 10, 20}
}- @ridlinesftyle— Directive[Light3ray]

1
1
1

Export["D:\Data)PROJECT\NLC PAPERS & TALES\MSc
Thesis - Porre Project\Graphics\StabdlityMir 10_0_0.wmE", %]
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Lens

Clear[R1, R2, £1, £2, L];
ABCDlens(fl_, £2_] :=

gap[dl] .lena[fl] .gap[L] .lena[f2] .gap[d2] .gap[d2] .lena[fl] .gap[L] .lena[fl] .gap[d1]:
MatrixForm|[S8impli fy[ABCDlana[£f1l, £2]]]

StabilityPFrnlens[f1_, £2_] :=
1
— | (Extract[ABCDlens[fl, £2], {1, 1}]) + (Extract[ABCDlans[£f1l, £2], {2, 2}]) )
2

StableZonelens[fl_, £2_] := If[-1 < StabilityPnlena[fl, £2] <1, 1, 0];

dl = 0p
dz =03
L=10;

ABCDlens[15, 15]
StabilityFnlens[15, 15]
Stablelonalens[l5, 15]
{+8impld fy[ABCD[£1, £2] J2+)

= Graphics - Lens

dl=0; d2=0;
L=10;
Show|
Graphica|
CentourFlet[StabilityFnlens[£1, £2], {£1, -10, 230}, {£2, -10, 30}, (+ContourStyle+None, )
Contourlabsle -+ Automatic, PleotPoints—+ 100, Contours + 5, PlotRange—+ {-1, 1},
Frame + Truas,
FrameStyle—+ Directive[Thick],
LabelStyle- {18, FontFamily-+ "Arial"},
(# ContourlabelssDirective[l0,"Arial®], =)
FramaLabel -+ {"£,%, "£;"},
GridLines -+
{
(wx#) {-20.0, =10, 0, 10, 20},
(*yw) {-20.0, -10, 0, 10, 20}
}, BridlLinesBtyle— Directive[Lightdray]

Export|["D:\Data'\PROJECT\NLC PAPERE & TALKS\Msc
Thesis - Porro Project\Graphics\StabilitylLens 10_0_0.wmf", %]

dl=2; d2= 2;
L=10;
Show[
Braphics[
ContourPlot[StabilityFnlens[£1, £2], {£1, -10, 30},
{f2, -10, 30}, (+ContourStyle+Nons,+)Contourlabele—+ Autematic,
PlotPointe< 100, Contoura—+ 5, PlotRangse—+ {-1, 1},
Frame + Truse,
FrameStyle— Ddrective[Thick],
LabelStyla-+ {18, FontFamily—+ "Arial®},
(% Contourlabale+{1l0,FontFamily+"Arial"}, =)
FrameLabel-—+ {"£,", "£:"}.
Bridlines -+
{
(#x+) {-20.0, -10, 0, 10, 20},
(#y#) {-20.0, -10, 0, 10, 20}
}. Bridlinesftyle— Directive|[Light3ray]
1.
Graphice[ {Red, PointSize[Largs], Point[{{5, 5}, {9, 8}, {10, 10},
{20, 20}, {40, 40}, {60, 60}, {100, 100}, {-100, -100}, {-50, -50}}]}]

Export["D:\Data\PROJECT\NLC PAPERS & TALES\MSc
Thesis - Porre Project\Graphics\StabilityLens 10_2_Z2.wmE", %]
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7.4GLAD code — Porro prism resonator

CH#
write/screen/off

variab/dec/int step pass f1 f2 totalsteps arraysize
ffNoSteps ffstepcount

variab/dec/real angle ResonLength Apertur
variab/dec/real Dfitxcent Dfitycent Dfitxomega Dfit
Dfityrad Dfitxsig Dfitysig Dfitxsigf Dfitysigf Dfit
DdelThetax DdelThetay Dwx Dwy loss
variables/monitor/show

variables/monitor/add angle step totalsteps f1 f2 A
Dmsqgx Dmsqy loss

# Invariable

arraysize = 256

fieldsize = 0.4

totalsteps = 2000

Wavel = 1.064 # microns
prism_lens_distl =0

prism_lens_dist2 =0

inter_lens_dist = 10

ResonLength = prism_lens_distl + prism_lens_dist2 +

f=20 # Far-fie
#ApStep=0.005 # setin

# Variable

f1 = 4*ResonLength # set in ResS
f2 = 4*ResonlLength # set in ResS

#InitApertur = 0.04

# Starting Apertur, reset in ResLoop, incr. with 0.
Apertur=0.16

ObsWidth = 0.002

angle=30.0

NoCycle = 14
avg_go = totalsteps - 5*NoCycle

# System
plotcount = 1000
set/density 128 128 # NB This
setting

# that wo
histpltx=0.12
maxlIplt=1

#

macro/def plot_history/o

copy/lc 12

copy/row 2 3 1 step # copy X-s
macro/end

#

pass plotcount

yomega Dfitxrad
ysig Dmsgx Dmsqy

pertur Dwx Dwy

inter_lens_dist
Id lens, cm
ResStep

tep
tep

002 each loop

is the largest

rks for wmf

ection
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macro/def reson/o

step = step + 1 list # increm
number

step1000=1000+step

pass = pass + 1 list # increm
counter

ent step

ent pass

prop prism_lens_distl # prism to cv lens

lens/sph/element 1 f1 # ideal cv (+)
clap/cir/no 1 Apertur
prop inter_lens_dist #to cx lens
clap/cir/no 1 Apertur
lens/sph/element 1 2 # - # idea
lens #1
prop prism_lens_dist2 # to prism
obs/rec 1 1 ObsWidth 0 0 90-step*2*angle # rot
mirror/flat 1

prop prism_lens_dist2 #to lens
lens/sph/element 1 2 # ideal

clap/cir/no 1 Apertur

prop inter_lens_dist #torod
clap/cir/no 1 Apertur

lens/sph/element 1 f1 #ideal cv |

prop prism_lens_distl # to prism
obs/rec 1 1 ObsWidth 0 0 -90+angle+step*2*angle

mirror/flat 1

pass = pass + 1 list # incremen
counter

variab/set energyl 1 energy # energyl is
trip

loss = (1 - energy1)*100 # determine
normalising peak I=1

peak/norm 1
terml=step/plotcount
term2=floor(step/plotcount)

if step > avg_go then

#if [abs(term1-term2)<0.0201] then # Select

##if step > totalsteps-100 then # Select
set/window/center-width Apertur
titte L=@ResonLength f1=@f1 f2=@f2 at @step st
plot/watch

AP_NFmode_@angle_deg_fl=@f1_f2=@f2_Ap=@Apertur_Step

plot/bitmap/intensity/burnpattern 1 max=maxIpl
plot/meta/wmf
pause 2
plot/plot_log/clear
watch/close
watch/start

endif

macro/run diagnostix

# Output data to text file

lens #2

lex ()

ating of obs

cx lens #1

ens #2

t pass

energy after round

loss (%) before

1st 20/1000
last 100

eps

=@step1000.plt
to
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write/disk/on

'‘AP_dev_data_@angle_deg_fl=@fl_f2=@f2_Ap=@Apertur.t

C

Apertur=
Dfitxomega=
Dfityomega=
Dmsgx=
Dmsqy=

udata/set step pass loss # store loss
energy/norm 1 1
variab/set energyl 1 energy # reset ener

loss=
write/disk/off

if step > avg_go then
add/incoherent 4 1

endif

macro/end

#

macro/def ApLoop
pass =0 # initializ
step=0 # for pass

resonator/name reson
resonator/eigen/test 1

resonator/eigen/set 1 # set beam
clear11 # start wit
beam 1
#noise 1 1 # start wit
beam 1

noise/deltacorrelated 1 .1
energy/norm 1 1

plot/plot_log/clear
reson/run totalsteps-1

title Loss per pass
plot/watch

AP_loss_@angle_deg fl=@fl_f2=@f2_Ap=@Apertur_Step=@
plot/udata 1 left=10 right=totalsteps min=0 max=5

plot/meta/wmf

# Plot Beam Average
titte Beam Tail Average
set/window/center-width .2 .2

plot/watch AP_NFmode @angle_deg_fl=@f1l_f2=@f2_Ap=

plot/bitmap/intensity 4 # 1 0
plot/meta/wmf

# Lens & propagate
lens/sph/element 1 f

prop f

peak/norm 1

titte FF Beam Pattern
set/window/center-width .2 .2

xt'/nooverwrite

(%)

gyltol

e variables
counters

2 to eigen mode
h a plane wave in

h a plane wave in

step.plt

@Apertur_avg.plt
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plot/watch

AP_FFmode_@angle_deg_fl=@f1_f2=@f2_Ap=@Apertur_Step

plot/bitmap/intensity/burnpattern 1
plot/meta/wmf

watch/close
watch/start

# Apertur=Apertur+ApStep
macro/end

#

macro/def diagnostix/o
fitmsquared/both/nocorrection 1
variables/set Dfitxcent fitxcent ~ # X-beam ce
variables/set Dfitycent fitycent ~ # Y-beam ce
variables/set Dfitxomega fitxomega # X-radius

# Diagnosti

gaussian
variables/set Dfityomega fityomega # Y-radius
gaussian
variables/set Dfitxrad fitxrad # X-transve
variables/set Dfityrad fityrad # Y-transve
variables/set Dfitxsig fitxsig # X-standar
variables/set Dfitysig fitysig # Y-standar
variables/set Dfitxsigf fitxsigf ~ # X-standar
space
variables/set Dfitysigf fitysigf ~ # Y-standar
space
variables/set Dmsgx msqx # M2 in the
variables/set Dmsqy msqy # M2 in the

Dwx=2*Dfitxsig
Dwy=2*Dfitysig
macro/end

#

# write/screen/off
nbeam 4 # estab
array/set 1 arraysize
#array/set 2 arraysize 1 data
#array/set 3 arraysize totalsteps data
array/set 4 arraysize arraysize data

units/field 0 fieldsize
variab/set Units 1 units
units/s 2 Units

units/s 3 Units 1
units/s 4 Units

wavelength/set 1 WavelL #setw

write/disk/on
'AP_dev_data_@angle_deg_fl=@f1_f2=@f2_Ap=@Apertur.t

write/disk/off

macro/run ApLoop/1

=@step.plt

cs of Beam #1
nter

nter

of equivalent

of equivalent
rse radius

rse radius

d deviation

d deviation

d deviation, freq
d deviation, freq

x-direction
y-direction

lish 1 beam

# avg

avelengths

xt'/overwrite
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7.5 Verification of GLAD beam size calculations

7.5.1 Generate and save GLAD beam data

c## outfile
variab/dec/int n m arraysize

arraysize=1024 #512

fieldsize = 1

wavelength/set 1 1.064

set/density 128 128 # NB This
setting that works for wmf #256 256
w=0.20

n=2

m=1

#

macro/def writebeam
peak/norm 1 1
#outfile/intensity 'I_beam@n@mh.csv'/noheader/com
outfile/intensity
I H@n@m_fieldsize_@fieldsize_ArraySize_@arraysize.
1

#outfile/phase 'P_beam@n@mh.csv'/noheader/comma 1

set/window/center-width fieldsize/2 fieldsize/2

title "test infile, outfile"

plot/iw I_ H@n@m_fieldsize @fieldsize_ArraySize_@ar
plot/bitmap/intensity 1 1 0

fitgeo/msquared 1
variables/set Ffitxcent 1 fitxcent
variables/set Ffitycent 1 fitycent
variables/set Ffitxomega 1 fitxomega
variables/set Ffityomega 1 fityomega
variables/set Ffitxrad 1 fitxrad
variables/set Ffityrad 1 fityrad
variables/set Ffitxsig 1 fitxsig
variables/set Ffitysig 1 fitysig
variables/set Ffitxsigf 1 fitxsigf
variables/set Ffitysigf 1 fitysigf
variables/set Fmsgx 1 msgx
variables/set Fmsqy 1 msq
C
C FITGEO/MSQUARED
C
write/disk/on

I H@n@m_fieldsize_@fieldsize_ArraySize_@arraysize.
C
Ffitxcent=
Ffitycent=
Ffitxomega=
Ffityomega=
C

is the largest
#512 512

mal

csv'/noheader/comma

raysize.plt

txt'/nooverwrite
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C
write/disk/off
macro/end

3 —
nbeam 1

array/set 1 arraysize

units/field 1 fieldsize/2 fieldsize/2

#gaussian/cir 1 1 w
hermite 1 1wwnm

macro/run writebeam

7.5.2 Read beam and calculate spot size in Mathematicackmamparison

GLAD beam centroid and size 02.nb

This file reads the csv cutput of a beam from a GLAD program, and calculates the:
- centroid

- beam radius (omega)

eg.From "AP model 03.... .inp"

fileno=1;

(% select appropriate number here according to file you want to analysa «)
filename= filesst[[filenc]];

Imatrix = Import[filename, "cev"];

MatrixPlot[Imatrix, ColerFunction< "Rainbow" (+"CMYEColora®s) ]
Export["I_HOO fieldeize 1.000 ArraySize 1024 MM.wmi", %]

Imatrix = Transpose[Imatrix];

{n, m} =Dimeneione[Imatrix]:;

field=1; (w 15 =)
i-1 1
xx[i_] := fisld [_ - _}
o 2
j=1 1
yyli_] := fiold[— - —]
m 2

[ n

Py = Z Imatrix[[i, j]]}:
(13 )
Do D xx(i] Imateix (4, 411 Ei, B, yy[d] Imatrix[[i, 1]

{Centex, Centry} = { P }:
Py By

- | FiaTh (oxfd] - Centrso” Imatrix([4, 3]]

{8igx, Sigy}= '3.\4| = "

I
|| Fi1 Tiea (¥¥[d] - Centry)® Imatrix[[1, 4]]
‘\ Py

{Cmegax, Cmegay} = {2 Sigx, 2 Sigy}:

Print["Fila : ", filenama]

Print["Centroidix,y) = ", Centrx, ", ", Centry]
{# Print["Sigma{x,¥) = ", 8igx,", ",S8igy] )
Print[ "Omega(x,y) = ", Omegax, ", ", Omegay]
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7.6 Mathematica code - periodicity of a Porro prism resnator

= Variables

Clear[m, Mlene, 40, 80, A1, A2, v1, vi, 81, 82, L, £, £1, £2, g, p]

= ABCD Matrix for a Lens Resonator
[ 1 0]

lemae[f_] := ¥
|71

1 o

&
| :LJ"
B

10
flatmirror := [ ] ;
01

mirrer[R_] :=

g - |
gap([d_] := ]:
bt ltU 1

Mlens[fl , £2_] :=gap[L/2].lene[fl] .gap[dl] .flatmirrer.gap[dl].lens[£f1].
gap[L].lene[f2] .gap[d2] .flatmirror.gap[d2)] .lens[£f2] .gap[L/ 2] // Simplify
MatrixForm[Mlens[£f1l, £2]];

= Use simplified case

dl = dz=d;
fl = £2 = £;

= Lens Resonator Analysis

e (Mlens[£1, £2][[1, 1]] + Mlena[£1, £2][[2, 2]]) // Facter;
2

{evala, eveca} = Eigesnsystem[Mlans[fl, £2]];:

Al =wevals([1]] // Bimpld fy;
A2 =evale[[2]] // Bimpld fy;

vl =evecs[[1]] // Simplify;
w2 = aveca[[2]] // Simpli £y

s Find coefficients

Clear[f1l, B2)

PPO= 81wl + B2 w2}

(% A0=PO[[1]] & ©0=PO[[2]] %)

sol = Solwe[{A0 == PRO[[1]], 60 == PRO[([2]]}. {B1, B2}]:
Bl=51/. eol[[1, 1]] // Bimpldify;

B2 =52/, 80l[[1, 2]] // Bdmplify;

= Define Ray Propagation function

PP[p_] := B1A1F vl + B2 A2F v2
PP[0] // Simplify;
MatrixPForm[FP[p]] // Bimplify;
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= Set known variables

&0 =1;
&0 =05
d= 23
Li=10;

= Option 1: Given f, find periodicity P (d1=d2=0 case only)

m=2g®-1;
&= H[ArcCos[m]]

i
periocdicity=s —;
a

= Option 2: Given periodicity P, find f (d1=d2=0 case only)

pericdicity= 8;
i
B —
periodicity

m = Coa[8];

q=N[\fm;1].- (+ g=- 22 4
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s OQutput
Print["-- Eigem Output for Lene Rescnatocr --"]
Print["Mlens = ", MatrixForm[Mlena[fl, £2]], Bold]

Print["PP[0]
Print["PP[p]

Print["dl
Print["dZ
Print["L

Print["f1
Print["f2

Print["Al
Print["AZ
Print[ "+l
Print["wv2
Print["BAl
Print["B2

Printc["f
Print["g
Print["m
Print["8
Prink["P

Show|[

", PF[0]]
*, MatrixForm[PP[p]]]

", di]
", da]
LI 7%
=, £1]
", £3]

", A1)
"pAaz]
" owl]
".wi]
" B1]
", B2]

' J
"rg]
", m]
" 8]
", periedicity]

Graphice[Plet[{PP[p] [1]}. {p, O, 10},
PlotStyle + {Blua, Thick},
PlotRange + 1.13,

Frams -+ Trusa,

FrameStyle— Directive[Thick, 12],
FramsLabel- {"# round tripe p", "¥"}.
Ticks + {Wema, None} ,
LabelStyle-~ {12, FontFamily- "Arial"},
Gridlines + { («x+) {}.,

{{*y*){-1.0, Light@ray}, {-0.5, Light3ray}, {0.5, LightGray}, {1.0, Light3ray}}1]]-

Graphice[{Point8ize[0.03],
Blue, Point[{&0, A0}], Point[{0., 1}], Point[{pericdicity, 1}], Point[{2 pericdicity, 1}]}

18]

Export["D: \Data’ PROJECT\NLC PAPERS &

TALES\MSc Thesis - Porre Project\Graphice\pericdicity P=8.wmf", %]



