
PRACTICAL REASONING FOR
DEFEASIBLE DESCRIPTION LOGICS

by

Kody Moodley

Submitted in fulfilment of the academic requirements for the degree of

Doctor of Philosophy

in the

School of Mathematics, Statistics and Computer Science

University of KwaZulu-Natal,
Durban,

South Africa

Supervisor: Prof. Thomas Meyer
Co-Supervisors: Prof. Uli Sattler, Dr. Deshen Moodley

November 2015

Preface

The work reported on in this thesis was carried out at the Centre for Artifi-

cial Intelligence Research and the CSIR Meraka Institute in Pretoria, South

Africa, from August 2011 to December 2015, under the supervision of Pro-

fessor Thomas Meyer and Dr Deshen Moodley.

During the period from September 2013 to September 2014, the work

was conducted at the Information Management Group of the department of

Computer Science at the University of Manchester, United Kingdom, under

the supervision of Professor Uli Sattler.

These studies represent original work by the author and have not otherwise

been submitted in any form for any degree or diploma to any tertiary institu-

tion. Whenever other researchers work is used, they are duly acknowledged

in the text.

Declaration 1 - Plagiarism

I, , declare that:

1. The research reported in this dissertation, except where otherwise in-

dicated, is my original research.

2. This dissertation has not been submitted for any degree or examination

at any other university.

3. This dissertation does not contain other person’s data, pictures, graphs

or other information, unless specifically acknowledged as being sourced

from other persons.

4. This dissertation does not contain other persons’ writing, unless specif-

ically acknowledged as being sourced from other researchers. Where

other written sources have been quoted, then:

(a) Their words have been re-written but the general information at-

tributed to them has been referenced

(b) Where their exact words have been used, then their writing has

been placed in italics and inside quotation marks, and referenced.

5. This dissertation does not contain text, graphics or tables copied and

pasted from the Internet, unless specifically acknowledged, and the

source being detailed in the dissertation and in the References section.

Signed:

Declaration 2 - Publications

Below is a list of publications contributing towards the content of this thesis.

1. Meyer, T., Moodley, K. and Varzinczak, I. (2012) A Protégé Plug-in for

Defeasible Reasoning. In Proceedings of the Twenty Fifth International

Workshop on Description Logics (DL). CEUR Workshop Proceedings,

Volume 846, ISSN: 1613-0073.

2. Meyer, T., Moodley, K. and Varzinczak, I. (2012) A Defeasible Rea-

soning Approach for Description Logic Ontologies. In Proceedings of

the Annual Research Conference of the South African Institute for

Computer Scientists and Information Technologists (SAICSIT). p69-

78, ISBN: 978-1-4503-1308-7, ACM New York.

3. Casini, G., Meyer, T., Moodley, K. and Varzinczak, I. (2013). To-

wards Practical Defeasible Reasoning for Description Logics. In Pro-

ceedings of the Twenty Sixth International Workshop on Description

Logics (DL). CEUR Workshop Proceedings, Volume 1014, p587-599,

ISSN: 1613-0073.

4. Casini, G., Meyer, T., Moodley, K. and Varzinczak, I. (2013). Non-

monotonic Reasoning in Description Logics: Rational Closure for the

ABox. In Proceedings of the Twenty Sixth International Workshop on

Description Logics (DL). CEUR Workshop Proceedings, Volume 1014,

p600-615, ISSN: 1613-0073.

5. Casini, G., Meyer, T., Moodley, K. and Nortje, R. (2014). Relevant

Closure: A New Form of Defeasible Reasoning for Description Log-

ics. In Proceedings of the Fourteenth European Conference on Logics

in Artificial Intelligence (JELIA). Lecture Notes in Computer Science

(LNCS), Volume 8761, p92-106, ISBN: 978-3-319-11557-3, Springer In-

ternational Publishing.

6. Meyer, T., Moodley, K. and Sattler, U. (2014). Practical Defeasible

Reasoning for Description Logics. In Proceedings of The Seventh Euro-

pean Starting AI Researcher Symposium (STAIRS). Volume 264, p191-

200, ISBN: 978-1-61499-420-6, IOS Press.

7. Meyer, T., Moodley, K. and Sattler, U. (2014). DIP: A Defeasible-

Inference Platform for OWL Ontologies. In Proceedings of the Twenty

Seventh International Workshop on Description Logics (DL). CEUR

Workshop Proceedings, Volume 1193, p671-683, ISSN: 1613-0073.

8. Casini, G., Meyer, T., Moodley, K., Sattler, U. and Varzinczak, I.

(2015). Introducing Defeasibility into OWL Ontologies. In Proceedings

of the International Semantic Web Conference (ISWC). Lecture Notes

in Computer Science (LNCS), Volume 9367, p409-426, ISBN: 978-3-

319-25009-0, Springer International Publishing.

I was the primary author for Publications 1 to 3 and 6 to 8 in which I

contributed somewhat to the theoretical aspects but more heavily in practical

implementation and evaluation of tools and algorithms. For publications 4

and 5, I was responsible for the implementation, experimental evaluation

(and write-up thereof) of several algorithms central to the work.

Signed:

Acknowledgements

Firstly, I would like to thank my supervisors Tommie Meyer, Uli Sattler and

Deshen Moodley. I really could not have asked for better supervisors and

they were each integral to completing this PhD. Thank you also to Giovanni

Casini and Ivan Varzinczak for helpful discussions on my work.

I am very grateful that, during my tenure at the University of Manchester,

Uli and the students of the Information Management Group really went out

of their way to make me feel welcome. In particular, I would like to thank

Slava Sazonau, Liang Chang, Nico Matentzoglu and Jared Leo for keeping

me sane and entertained while I conducted my research. Thank you to Nico

for helping me with sourcing data for the empirical component of my work,

and thanks also to Bijan Parsia for his useful comments on my experiments.

Matthew Horridge was an inspiration to me on how to conduct practical

research in my area and I am grateful to him for his example in this regard.

Back in Pretoria, I would like to thank Marlene Jivan for all her help with

handling various administration tasks relevant to this PhD, and Nishal Morar

for keeping me company at the office while he did his Masters degree. Of

course, this PhD could not have been completed without funding and I have

been very fortunate to receive it in abundance from the National Research

Foundation, the Commonwealth Scholarship Commission, the CSIR Meraka

Institute and the University of KwaZulu-Natal. I would particularly like to

thank Quentin Williams from the CSIR Meraka Institute for his help with

arranging funds for me.

Finally, I would like to thank my family for their encouragement during

my studies, and a very special appreciation goes to my wife Nicole for her

unconditional love, understanding and support throughout this PhD - thanks

for putting up with me.

Contents

List of Figures 11

List of Algorithms 15

Abstract 16

1 Introduction 17

1.1 Motivation . 18

1.2 Uncertainty vs. Exceptions in Knowledge Representation . . . 20

1.3 Goals . 20

1.4 Organisation of Thesis . 22

2 Background and Related Work 24

2.1 Description Logics (DLs) . 25

2.1.1 Syntax and Semantics 26

2.1.2 Common Reasoning Problems 30

2.1.3 Trade-off between Expressivity and Complexity 38

2.2 The Web Ontology Language (OWL) 44

2.3 Incomplete Knowledge . 45

2.3.1 Defeasibility . 46

2.3.2 Uncertainty . 46

2.3.3 Subjectivity or Relativity 47

2.4 Circumscription . 47

2.4.1 Basic Circumscription 47

7

CONTENTS 8

2.4.2 Prioritised Circumscription 52

2.4.3 Grounded Circumscription 54

2.4.4 Complexity Considerations 55

2.4.5 Discussion . 56

2.5 Default Reasoning . 58

2.5.1 Basic Default Logic . 58

2.5.2 Defaults Embedded in Description Logics 60

2.5.3 Discussion . 64

2.6 Minimal Knowledge and Negation as Failure (MKNF) 65

2.6.1 DLs of MKNF . 66

2.6.2 Discussion . 69

2.7 Defeasible Logic . 70

2.7.1 Basic Defeasible Logic 71

2.7.2 Combining Defeasible and Description Logics 76

2.7.3 Discussion . 78

2.8 Preferential Reasoning . 79

2.8.1 Propositional Foundations 80

2.8.2 Description Logic Foundations 84

2.8.3 Rational Closure for Description Logics 93

2.8.4 Rational Extensions of an ABox 98

2.8.5 Discussion . 99

2.9 Overriding . 101

2.9.1 Discussion . 104

2.10 Summary and Discussion . 105

2.11 Notation and Conventions . 107

3 Requirements Analysis 108

3.1 Need for Defeasible Description Logics 109

3.1.1 Dataset . 110

3.1.2 Experiment Setup . 111

3.1.3 Results and Discussion 114

3.2 Inferential Character . 117

CONTENTS 9

3.2.1 Formal Properties . 118

3.2.2 Semi-Formal Properties 124

3.3 Discussion . 128

4 Algorithms for Defeasible Reasoning 130

4.1 Exceptionality to Classical Entailment 131

4.1.1 Disjoint Union of Ranked Interpretations 131

4.1.2 Exceptionality in Terms of Unsatisfiability 136

4.2 Ranking of a Defeasible Knowledge Base 144

4.3 Rational Closure . 169

4.4 Lexicographic Closure . 180

4.4.1 Semantics . 181

4.4.2 Procedure . 186

4.4.3 Discussion . 201

4.5 Relevant Closure . 203

4.6 Optimisations . 222

4.7 Syntactic Sugar . 226

4.7.1 Defeasible Equivalence 226

4.7.2 Defeasible Disjointness 228

4.8 Discussion . 231

5 Inferences of Defeasible Reasoning 233

5.1 Preferential Algorithms . 233

5.2 Non-Preferential Algorithms 239

5.2.1 Overriding . 240

5.2.2 Circumscription . 243

5.2.3 Default Reasoning . 250

5.3 Discussion . 254

6 Performance of Defeasible Reasoning 257

6.1 Artificial Data . 258

6.1.1 Data Generation Model 258

CONTENTS 10

6.1.2 Experiment Setup . 270

6.1.3 Ranking Compilation Results 274

6.1.4 Entailment Checking Results 277

6.1.5 Discussion . 289

6.2 Modified Real World Data . 291

6.2.1 Data Curation Methodology 292

6.2.2 Introducing Defeasibility into the Data 293

6.2.3 Experiment Setup . 300

6.2.4 Ranking Compilation Results 303

6.2.5 Entailment Checking Results 307

6.2.6 Discussion . 315

7 DIP: Defeasible-Inference Platform 320

7.1 Protégé . 321

7.1.1 User Interface . 321

7.1.2 The OWL API . 323

7.2 Defeasible-Inference Platform (DIP) 325

7.2.1 Expressing Defeasible Subsumption 325

7.2.2 Reasoning Facilities . 327

7.2.3 Interface . 330

7.2.4 Architecture . 332

7.3 Discussion . 336

8 Conclusions 337

8.1 Summary of Contributions . 337

8.2 Outstanding Issues . 342

8.3 Future Work . 345

9 Bibliography 347

List of Figures

2.1 Class hierarchy for Example 3. 35

2.2 Satisfaction of a defeasible subsumption by a ranked interpre-

tation. 87

2.3 Multiple valid typicality orderings of ranked interpretations. . 90

2.4 Ordering ranked models in pursuit of the minimal ones. 96

3.1 An ontology in MOWLRep loaded into the graphical ontology

editor Protégé contains a class name which has an annotation

indicating the need for defeasible representation. 112

3.2 Ontologies in MOWLRep loaded into the graphical ontology

editor Protégé containing names indicating the need for defea-

sible representation. 115

3.3 Results for evaluation: “String” column indicates ontologies

which contained hits only in string names, “Annotations” col-

umn indicates ontologies which contained hits only in anno-

tations, “Both” column indicates ontologies which contained

hits both in string names and annotations. 116

4.1 Graphical illustration of constructing the horizontal disjoint

union of ranked interpretations R1, ..., Rn to form R. 134

4.2 Intuitive semantics: exceptionality is not propagated through

roles for the counter-example in Proposition 1. 138

4.3 Non-refined ranked model for KB of Example 24. 182

4.4 Refined ranked model for KB of Example 24. 184

11

LIST OF FIGURES 12

4.5 Lexicographic-tree for a general problematic rank Di−1 = {α1,

α2, α3, α4}. 218

6.1 Basic flowchart of artificial ontology generation. 265

6.2 Relevant metrics and characteristics of the artificial ontologies. 269

6.3 Average time to compute the ranking for the artificial ontologies.275

6.4 Influence of the ranking size on the ranking compilation per-

formance. The Y-axis in Figure 6.4b denotes the number of

ontologies in our data that have the indicated ranking size. . . 276

6.5 Influence of the recursion counts on the ranking compilation

performance. The Y-axis in Figure 6.5b denotes the number

of ontologies in our data that have the indicated recursion count.276

6.6 Average metrics pertaining to the ranking compilation per on-

tology. From left to right: number of defeasible axioms, rank-

ing size, number of hidden strict subsumptions, size of the

first rank (containing the non-exceptional defeasible axioms),

number of axioms in a general rank, number of exceptional-

ity checks to compute a ranking, number of exceptional LHS

concepts of defeasible subsumptions, number of unsatisfiable

LHS concepts of defeasible subsumptions and time to compute

a ranking. 277

6.7 The average performance of Rational and Lexicographic Clo-

sure across our artificial dataset. 278

6.8 Average and maximum number of classical entailment checks

per defeasible entailment check using the Rational and Lexi-

cographic Closures. RC stands for Rational Closure and LC

stands for Lexicographic Closure. 279

6.9 Potential and actual main performance factors for Rational

Closure. 280

6.10 The main performance influencer for Lexicographic Closure in

our dataset is problematic rank size. 282

LIST OF FIGURES 13

6.11 Overall performance of Basic Relevant Closure on the data.

We omit the graphs for Minimal and Lexicographically Rel-

evant Closures because their performance is almost identical

with Basic Relevant Closure. 283

6.12 Influence of HST size on Relevant Closure performance. 285

6.13 Average (rounded off to the nearest whole number) metrics

for computation of the Relevant Closure on the artificial data. 286

6.14 Mean and median times for all closures in the evaluation for

the artificial data. 287

6.15 Average problematic rank sizes occurring in each percentage

defeasibility category. 288

6.16 Ontology metrics for the LHS-incoherent cases in the dataset. 300

6.17 Percentage defeasibility distribution across the modified real

world ontologies. 301

6.18 Average ALC constructor distribution across an ontology in

our modified real world dataset. 301

6.19 Ontology metrics and ranking compilation results for the mod-

ified real world data. 303

6.20 Ranking compilation time per modified real world ontology. . . 303

6.21 Number of recursions required to rank the modified real world

ontologies. 304

6.22 The performance of ranking compilation vs the number of de-

feasible axioms in the ontology that have unsatisfiable LHSs. . 305

6.23 Average metrics obtained during the evaluation of ranking

compilation performance for the modified real world data. . . 306

6.24 Average performance of Rational and Lexicographic Closure

in the modified real world data. 308

6.25 Average Rational Closure performance vs. ontology size in the

modified real world dataset. 309

LIST OF FIGURES 14

6.26 The performance of Lexicographic Closure is predominantly

determined by problematic rank size for the modified real

world data as well. 310

6.27 The performance of Basic Relevant Closure on the modified

real world data. The other Relevant Closures have almost

identical performance on the same data. 312

6.28 The major influence on Relevant Closure performance, for the

modified real world data, is still the number of nodes in the

hitting set tree. 312

6.29 Justification metrics for the non timed out queries posed to

the modified real world data. 313

6.30 Justification metrics for the timed out queries posed to the

modified real world data. 314

7.1 Protégé 4 ontology editor. 322

7.2 The class description pane for the class name Student in Protégé.

The button labelled “d” in the figure is the extra feature added

by DIP which allows one to toggle the attached axiom as de-

feasible. 325

7.3 Graphical rendering of a defeasible annotation property in DIP.326

7.4 The control panel interface of the DIP tab in Protégé. 331

7.5 Panels provided in the DIP tab to display the list of defeasible

and strict axioms present in the ontology. 332

7.6 A high-level architectural view of DIP’s components and their

interaction. 333

List of Algorithms

- Procedure Exceptional(T , E) 148

- Procedure ComputeRankingA(〈T ,D〉) 150

- Procedure ComputeRankingB(〈T ,D〉) 157

- Procedure Rank(〈T ,D〉,R,C) 170

- Procedure RationalClosureA(〈T ,D〉,R,δ) 171

- Procedure RationalClosureB(〈T ,D〉,R,δ) 173

- Procedure LAC(〈T ,D〉,δ,R′,D ′i−1) 193

- Procedure LexicographicClosureA(〈T ,D〉,R,R′,δ) 194

- Procedure BasicRelevantClosure(〈T ,D〉,R,C ,δ) 206

- Procedure MinimalRelevantClosure(〈T ,D〉,R,C ,δ) 211

- Procedure RelaxSubsumption(O, C) 297

15

Abstract

Description Logics (DLs) are a family of logic-based languages for formalis-

ing ontologies. They have useful computational properties allowing the de-

velopment of automated reasoning engines to infer implicit knowledge from

ontologies. However, classical DLs do not tolerate exceptions to specified

knowledge. This led to the prominent research area of nonmonotonic or de-

feasible reasoning for DLs, where most techniques were adapted from seminal

works for propositional and first-order logic.

Despite the topic’s attention in the literature, there remains no consensus

on what “sensible” defeasible reasoning means for DLs. Furthermore, there

are solid foundations for several approaches and yet no serious implementa-

tions and practical tools. In this thesis we address the aforementioned issues

in a broad sense. We identify the preferential approach, by Kraus, Lehmann

and Magidor (KLM) in propositional logic, as a suitable abstract framework

for defining and studying the precepts of sensible defeasible reasoning.

We give a generalisation of KLM’s precepts, and their arguments moti-

vating them, to the DL case. We also provide several preferential algorithms

for defeasible entailment in DLs; evaluate these algorithms, and the main

alternatives in the literature, against the agreed upon precepts; extensively

test the performance of these algorithms; and ultimately consolidate our im-

plementation in a software tool called Defeasible-Inference Platform (DIP).

We found some useful entailment regimes within the preferential context

that satisfy all the KLM properties, and some that have scalable performance

in real world ontologies even without extensive optimisation.

16

Chapter 1

Introduction

An ontology is a knowledge representation artefact which, either formally or

informally, specifies a conceptual understanding of a domain of interest.

The main conceptual building blocks of ontologies are individuals (ob-

jects in the domain), concepts (classes of objects in the domain) and roles

(relationships between objects, or classes of objects, in the domain).

Description Logics (DLs) [10] are a family of logic-based languages (frag-

ments of First-order logic) traditionally used for representing ontologies.

With DLs one can formalise the aforementioned components of ontologies,

as well as specify logical relationships between them, using logical sentences

called DL axioms. DL ontologies can thus be thought of, in a sense, as sets

of DL axioms describing a domain of interest. DL ontologies are the types

we are exclusively interested in for the purposes of this thesis, and therefore,

all further references to the term ontology in this thesis allude to these.

Key features of DLs themselves which make them interesting from a prac-

tical perspective are (1) they have a precise, logic-based syntax and model-

theoretic semantics which eliminates ambiguity in represented knowledge and

(2) they are decidable, meaning that one can devise procedures for automated

inference from DL-specified knowledge, that are guaranteed to terminate.

The decidability of DLs eventually led to the development of highly-

optimised practical procedures for performing inference on-demand, often in

17

CHAPTER 1. INTRODUCTION 18

a matter of micro seconds, for real-world application ontologies. Their success

as formalisms for representing application ontologies is attested by their ser-

vice as the logical underpinning of the Web Ontology Language (OWL) [101].

OWL is a set of languages for formalising ontologies on the Web towards the

realisation of Tim Berners-Lee’s vision of the Semantic Web [25].

OWL became a W3C recommendation for representing ontologies on the

Web in 2004, and is currently in its second major version - OWL 2 [84].

1.1 Motivation

A limitation of classical DLs is their inability to cope with exceptions. That is,

their inability to represent and reason with knowledge that is generally sound

but permits exceptions. For example, while the proposition that students

usually do not pay taxes appears to be a sound one, it is quite possible that

there are exceptional types of student who are required to pay taxes - for

example employed students.

Classical DLs will not allow this common sense reasoning because all

stated facts are considered “universally true” or infallible. Therefore, we are

only allowed to state rigid statements like “students do not pay taxes”, and

such information has to be logically reconciled with any additional informa-

tion we discover. This behaviour is certainly useful for many applications.

For example, adding to our knowledge that employed students are types

of student, classical DLs have to infer that employed students inherit the

property of general students, and thus do not pay taxes. Again, this is very

sensible reasoning provided we have no other information.

However, if we later discover that employed students are required to pay

taxes, while intuition might tell us that employed students are exceptional

students, classical DLs will have to reconcile this new information with what

we knew previously - that employed students are exempt from taxes. The

only way to logically reconcile these incompatible situations in classical DLs

is to infer that employed students do not exist. Clearly, this is not suitable

CHAPTER 1. INTRODUCTION 19

reasoning behaviour in contexts where we would like to express generalised

(defeasible) statements and permit exceptions to these statements without

leading to logical incoherences and other incompatibilities.

Within the area of reasoning with exceptions in DLs, we have found that

there is a general scarcity of practical implementations and tools. In addi-

tion, while it is clear that not all theoretical issues have been resolved in

the majority of proposals, we believe that in many cases the foundation is

solid enough to begin practical investigations. Such practical investigations

are not meant purely for evaluating reasoning performance to complement

existing complexity results. Rather, the impetus we are advocating to ad-

dress practical issues in defeasible reasoning, is meant to lead to concrete

implementations and tools. These tools, in turn, are meant for studying the

behaviour of reasoning proposals in practical settings to gain deeper insight

into their inferential merit. User feedback from such tools would then drive

the refinement of the theoretical notions in defeasible reasoning.

In other words we highlight that, unlike in many classical logics, defeasi-

ble reasoning has no universally agreed upon definition for entailment. We

therefore believe that, while there are guidelines on what constitutes sensible

defeasible reasoning, there is not necessarily a unique notion of “sensible” for

a particular formalism. Therefore, it is ultimately up to the user to decide

what inferential behaviour suits them best in different applications.

Existing approaches to addressing exceptions in DLs have mainly de-

scended from five methodologies: Circumscription [136], Default Logic [161],

Preferential Logic [117], Autoepistemic Logic [141] and Defeasible Logic [149].

We give more detailed presentations of applicable descendents of these for-

malisms in Chapter 2. However, since Autoepistemic Logic does not address

exceptions in a direct way, and since the rule-based approach of Defeasible

Logic is quite orthogonal to the aforementioned formalisms, the descendents

of these two approaches are not given as much attention in this thesis.

CHAPTER 1. INTRODUCTION 20

1.2 Uncertainty vs. Exceptions in Knowledge

Representation

It must be mentioned that there are a variety of “modes” of defeasibility

that can be introduced into KR formalisms. In Section 2.3 we argue that

the root cause of the need for defeasible representation is the lack of access

to complete knowledge. This incompleteness of knowledge leads to multi-

farious modes of defeasible representation. A popular term often used to

collectively refer to these modes is “uncertainty”. However, we believe that

the term “uncertainty” could be misleading if we use it to describe the notion

of defeasibility that we are interested in for this thesis.

The statements “john is either a quaker or a pacifist”, “there is a 25%

chance of snow tomorrow” and “it is possible that susan went home” all

have symptoms of uncertainty in their representations. Therefore, the term

uncertainty is quite appropriate to describe these representations.

However, for this thesis, we are interested in representing generalisations

that hold in typical, usual, normal or default circumstances, but that permit

the occurrence of exceptions. For example, we would like to be able to state

that students usually do not pay taxes or typical sushi dishes contain fish.

Upon encountering exceptions, such as employed students or vegetarian

varieties of sushi, we would still like our reasoning to be able to conclude

meaningful knowledge about sushi and students. Therefore, we do not use

the term uncertainty to describe the issue we are dealing with. Rather, we use

the term exceptions which more accurately describes our problem of focus.

1.3 Goals

The broad goal of this thesis is to select an appropriate formalism from

the literature and take the first steps towards making it practical for DLs.

We choose to extend the preferential approach [111, 117, 116], by Kraus,

Lehmann and Magidor (KLM), towards this aim.

CHAPTER 1. INTRODUCTION 21

The main reason for choosing the preferential approach is that it has a

much broader and abstract perspective on defeasible reasoning. In particular,

it pioneered the study of nonmonotonic inference from the perspective of the

consequence relations that it could induce. This led to the formulation of

a series of inference rules (called the KLM postulates) that KLM argue any

“rational” defeasible reasoning mechanism should satisfy.

We believe that such an abstract view is very helpful in developing “sound”

and “sensible” defeasible reasoning behaviour (more details are presented in

Chapter 2). In fact, one of the goals of this thesis is to motivate the logical

merit of the KLM postulates within the setting of DLs.

That is to say, we address the question: since defeasible reasoning allows

one to draw “plausible” inferences from “generally” sound knowledge, and

there are no universally agreed upon definitions for “plausible” and “general”,

what common rules of inference should any reasonable definition satisfy?

In the same thread we plan to evaluate the main existing approaches to

defeasible reasoning, as well as novel preferential algorithms introduced by

us, against these rules of inference. This would give us a clearer picture as

to the inferential character of each proposal.

Towards practically implementing preferential reasoning for DLs, we are

going to address the following general questions:

(1) Is there actually a demonstrable need for defeasible reasoning in DL-

based ontologies (in real-world application settings)? We provide quantita-

tive evidence for this because there are only anecdotal and subjective argu-

ments for this in the literature.

(2) What are some useful defeasible entailment regimes within the pref-

erential framework? (3) Which of our preferential algorithms (and the alter-

native formalisms in the literature) satisfy the KLM postulates? (4) If some

of the regimes or formalisms do not satisfy all the postulates, which ones do

they not satisfy? (5) How does the practical performance of the preferential

algorithms look? (6) Is it possible to integrate preferential reasoning algo-

rithms into existing tools for ontology development? (7) If so, how can this

CHAPTER 1. INTRODUCTION 22

be done in a fairly unobtrusive and seamless manner? Of course, there are

many interesting sub-questions to each of the aforementioned questions, and

we explore some of these in the rest of this thesis.

1.4 Organisation of Thesis

The thesis is structured as follows: Chapter 2 gives some background, logical

preliminaries and related work on defeasible reasoning for DLs.

Chapter 2, in giving a flavour for the current defeasible reasoning propos-

als in DLs, constitutes solid ground from which to compare the representa-

tional aspects of each formalism, as well as their entailment mechanisms.

In Section 2.8 we introduce the preferential reasoning approach for DLs

which constitutes the theoretical foundation of this thesis. This is because

we actually select this approach as our formalism of choice to extend towards

the pragmatic goals of this thesis. We motivate why we choose this formalism

over the others in Section 2.10.

In Chapter 3 we again take a more general perspective than just pref-

erential reasoning. There we perform an experimental evaluation to give

quantitative evidence suggesting that defeasible reasoning is indeed required

in real world application ontologies. This strengthens the anecdotal argu-

ments in the literature from the point-of-view of biology and biomedicine.

We also extend KLM’s motivational arguments for their rationality pos-

tulates by giving a generalisation of these postulates to the DL case, and

arguing for their logical merit in this setting. We show, by means of ex-

amples, that these postulates capture intuitive rules of inference that any

defeasible reasoning mechanism for DLs should satisfy.

Lehmann also argues the case for the rationality of some informal prop-

erties of inference in the propositional setting. We generalise his arguments

to the DL case also in Chapter 3.

Chapter 4 gives a detailed description of five algorithmic constructions for

preferential reasoning in DLs. The chapter also makes explicit many elemen-

CHAPTER 1. INTRODUCTION 23

tary but interesting theoretical results about these constructions. We also

give a detailed explanation as to how preferential reasoning can be reduced

to classical reasoning for DLs.

Chapter 5 evaluates our preferential reasoning algorithms, and the main

alternative formalisms of Chapter 2, against the formal KLM postulates.

This gives us a general picture of the inferential characters of the main ex-

isting defeasible reasoning approaches for DLs.

In Chapter 6 we perform a thorough performance evaluation of our pref-

erential reasoning algorithms. Since naturally occurring data is not available,

we take two approaches to sourcing data for the evaluation: a purely syn-

thetic approach, as well as a way to introduce defeasible subsumption into

existing classical ontologies.

Chapter 7 presents the implementation aspects of a tool we have devel-

oped called Defeasible-Inference Platform (DIP). The tool is integrated into

the well-known ontology editor Protégé and is able to execute all the algo-

rithms presented in Chapter 4. Finally, we give our conclusions, summaries

and directions for future work in Chapter 8.

Chapter 2

Background and Related Work

In order to place past work in the area into context, it seems prudent to refer

back to the motivating problem(s) which ushered investigation into so-called

nonmonotonic or defeasible logics.

One of the “holy grails” of Artificial Intelligence (AI) in general is to be

able to simulate or automate the reasoning methodology of a rational human

being. Indeed, the sub-area of AI called Knowledge Representation and

Reasoning (KRR) is directly concerned with the development of appropriate

languages (often rooted in formal logic and given a formal semantics) to

represent knowledge.

The knowledge itself usually takes its form as a set of logical sentences

describing the chosen topic of interest called a formal ontology or knowledge

base (KB for short), along with an entailment relation and accompanying

procedures for deriving inferences from this knowledge.

One of the defining characteristics of classical logics for ontology specifi-

cation is that they comply with the property of monotonicity. A monotonic

formalism enforces that addition of knowledge to the KB can only result in

additional inferences. In other words, addition of new information that con-

flicts with the old information cannot force “overriding” or ignorance of the

old information. Essentially, this property models the implicit assumption

that all facts in the KB are universally true or infallible. One can immediately

24

CHAPTER 2. BACKGROUND AND RELATED WORK 25

see that this property is unsuitable for modelling knowledge which is sub-

ject to exceptions. Human beings are notably adept at performing rational

inference in the presence of exceptions.

Students are exempt from paying tax, unless they are not when they are

employed [72]. Sushi contains fish, unless it does not in the case of vegetarian

varieties. Birds fly, unless they do not in the case of ostriches and penguins.

From a theoretical perspective, this is the core problem that the related

approaches listed in this chapter address, including the approach that we

base our own investigation on. That is, how to enable computer systems to

perform similarly well in deriving rational inferences from knowledge, in the

presence of exceptions.

It must be noted that the list of approaches to reasoning with exceptions

given in this chapter is not an exhaustive one. Rather, these are the main (or

more well-known) approaches to this problem in the literature. For various

reasons mentioned in Chapter 1, we have chosen DLs as our formalisms to

focus on. Therefore, in this chapter, we survey only those related approaches

that address DLs.

In Section 2.1, we present the syntax and semantics of classical DLs. In

Sections 2.4 to 2.9 we give a concise account of the most popular approaches

addressing exceptions specifically within the context of DLs. We very briefly

compare these approaches in Section 2.10 (although we have a more detailed

comparison of their inferences in Chapter 5). Finally, in Section 2.11, we

very briefly mention some relevant notation, acronyms and terminology that

we adopt throughout this thesis.

2.1 Description Logics (DLs)

Description Logics [10] are a family of fragments of first-order logic that

have good computational properties (They are all decidable). DLs are used

for representing declarative knowledge about a chosen domain of interest,

while enabling automated reasoning over such knowledge to reveal implicit

CHAPTER 2. BACKGROUND AND RELATED WORK 26

facts about the domain. DLs also form the logical underpinning of the Web

Ontology Language (OWL) which is the W3C recommended formalism for

representing ontologies on the Semantic Web [25].

Each DL offers a set of logical features which together determines the

expressive power of that particular DL, that is, its scope for representing

various types of knowledge. However, the more expressive the DL the more

computationally intensive it is to perform automated inference with it. This

trade-off between expressivity and complexity should therefore be considered

when picking the appropriate DL for a particular application.

In this thesis, our main focus will be on the well-known DLALC [175] (and

more expressive relatives), which is generally considered to be of moderate

to high expressivity.

2.1.1 Syntax and Semantics

In this section, we present the basic expressive DL ALC. ALC forms the ba-

sis, in later chapters, for our investigation into DL-extensions that are able

to handle exceptions.

Syntax of ALC

We start with a basic vocabulary: a set of concept names Nc (also called

atomic concepts), role names Nr (also called atomic roles) and individual

names Ni. Nc additionally contains the special concepts > (The top concept)

and ⊥ (The bottom concept), which we define in the next section. The core

features of ALC, namely negation (¬), conjunction (u), disjunction (t),

existential role quantification (∃) and universal role quantification (∀), can

be combined with the basic vocabulary to form complex concept expressions.

Given a concept name A ∈ Nc and a role name R ∈ Nr, the permissible

combinations to produce a complex concept C can be specified inductively by:

C ::= A | > | ⊥ | ¬C | C u C | C t C | ∃R.C | ∀R.C

CHAPTER 2. BACKGROUND AND RELATED WORK 27

To give some examples: let Human, Male, Red, Green and Blue be concept

names, and let hasChild be a role name. We can denote the set of females in

our domain by the expression Humanu¬Male using negation and conjunction.

To refer to the objects in our domain that are fathers who have at least one

daughter we can use the expression Human uMale u ∃hasChild.¬Male, which

makes use of negation, conjunction and an existential role quantifier.

In general, for concepts of the form ∃R.C, we refer to C as a role filler for

R in ∃R.C. Those people who only have sons can be captured by Human u
∀hasChild.Male, using conjunction and a universal role quantifier. Using dis-

junction, we can refer to all the objects in our domain that have a primary

colour: Red t Green t Blue.

Of course, since our concept grammar is inductively defined, we can nest

expressions as well. For example, grandparents who only have granddaugh-

ters can be captured by ∃hasChild.(∃hasChild.>) u ∀hasChild.(∀hasChild.¬Male).

In addition to the capability of forming concept expressions, the thrust

of DLs is to represent knowledge in the form of logical sentences (called

axioms) describing relationships between concept expressions. The main type

of axiom in DLs is called subsumption or inclusion. Subsumptions have the

form C v D (intuitively meaning that C is a subtype of D) where C and

D are DL concepts. In the case where we do not restrict C and D to be

concept names, we refer to such subsumptions as general concept inclusions

(GCIs). The expression C ≡ D (intuitively meaning that C is equivalent to

D) is called an equivalence statement and it abbreviates {C v D,D v C}.
Given concepts C and D, axioms of the form C ‖ D are called disjointness

axioms (intuitively capturing that C and D are disjoint or distinct).

Examples of concept inclusions include: Heart v AnatomicalOrgan,

StudenttLecturer v ∃hasAccess.Library, Dog v ∀hasClaw.NonRetractableClaw.

Respectively, these subsumptions capture that: a heart is a type of anatomi-

cal organ, if one is either a student or a lecturer (or both) then one has access

to the university library and dogs only have non-retractable claws.

CHAPTER 2. BACKGROUND AND RELATED WORK 28

Some examples of equivalence axioms include: Pizza ≡ ∃hasPart.PizzaBase

and Lecturer ≡ ∃worksFor.University u ∃teaches.UniversityCourse. The former

captures that pizzas have pizza bases and the “other direction” is also true

i.e., things which have pizza bases are pizzas. Similarly, the latter axiom

specifies that lecturers work for some university and teach some university

course. The other direction seems intuitive as well, that is, entities who work

for a university and teach a course are lecturers. Equivalence statements

that have a concept name on one side of the symbol ≡, are sometimes called

definitions because they accomplish exactly that - defining terms in the KB

(such as Lecturer and Pizza in our examples).

Some examples of disjointness statements include Dog ‖ Cat and Male ‖
Female where, intuitively, these capture that dogs and cats (and resp. males

and females) are disjoint or distinct entities (one cannot be both). As we

shall discover later, disjointness and equivalence statements can be captured

by using subsumption and are thus just syntactic sugar for allowing syntactic

abbreviations for axioms.

Therefore, a finite set of GCIs constitutes the so-called terminological or

intensional component of an ALC knowledge base (KB) - TBox for short.

One can also assign properties to individual objects (or pairs of objects)

from the domain using so-called assertional or extensional statements. There

are two basic types of assertion: concept assertions of the form C(a) (where C

is a possibly complex ALC concept), and role assertions of the form R(a, b).

C(a) intuitively states that a is an instance of C and R(a, b) intuitively means

that a is related to b through the role R.

Some examples of ABox assertions include: Student(john) (intuitively,

john is a student) and marriedTo(john,mary) (john is married to mary). A

finite set of assertions about our domain is called an ABox which forms the

extensional component of the KB. Thus an ALC KB is a tuple (T ,A) where

T is a TBox and A is an ABox. Either the ABox or TBox (or both) may

be empty. In the next section we give the precise logical meaning of concept

expressions as well as TBox and ABox statements.

CHAPTER 2. BACKGROUND AND RELATED WORK 29

Semantics of ALC

In keeping with Tarskian-style semantics, the “truth” of an axiom in ALC
is determined by its satisfaction in a relevant interpretation. First-order

interpretations are adopted for the semantics of DLs and hence ALC. An

ALC interpretation I is a structure 〈∆I , ·I〉 where ∆I is a non-empty set of

objects denoting the domain of discourse and ·I is a called an interpretation

function. The function maps each individual name a ∈ Ni to an element of

the domain (aI ∈ ∆I), each concept name A ∈ Nc to a subset of the domain

(AI ⊆ ∆I) and each role name R ∈ Nr to a set of ordered pairs on the

elements of the domain (RI ⊆ ∆I×∆I).

For complex concepts, ·I is defined inductively as follows: Let I be an

interpretation, R be a role name and C, D ALC concepts, then:

>I = ∆I

⊥I = ∅
(¬C)I = ∆I\CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∃R.C)I = {a ∈ ∆I | there is a b ∈ CI s.t. (a, b) ∈ RI}
(∀R.C)I = {a ∈ ∆I | for all b, (a, b) ∈ RI =⇒ b ∈ CI}

Similarly, for TBox and ABox statements, an interpretation I satisfies:

C v D if CI ⊆ DI (C is subsumed by D),

C ≡ D if CI = DI (C is equivalent to D),

C ‖ D if CI ∩DI = ∅ (C is disjoint with D),

C(a) if aI ∈ CI (a is an instance of C),

R(a, b) if (aI , bI) ∈ RI (a is related to b via R)

If an interpretation I satisfies an axiom α (written as I
 α) then it is

referred to as a model for that axiom. An interpretation I is a model for a

TBox (resp. ABox) T (resp. A) if it satisfies all the axioms in T (resp. A).

CHAPTER 2. BACKGROUND AND RELATED WORK 30

These results can be written as I
 T (resp. I
 A). Therefore, I will be a

model for an ALC KB (T ,A) if is a model for both T and A.

2.1.2 Common Reasoning Problems

The precise syntax and semantics of DLs, together with their nice computa-

tional properties, make them amenable to automated inference. There are

three basic types of reasoning tasks for DLs namely, concept or role satisfia-

bility, KB satisfiability and the more general task of entailment.

Definition 1 (Concept and Role Satisfiability) Let K be a DL KB and

let C (resp. R) be a possibly complex concept (resp. role name). C (resp. R)

is satisfiable w.r.t. K if there is a model I for K s.t. CI 6= ∅ (resp. RI 6= ∅).

If a concept or role name is not satisfiable w.r.t. to a KB then we say it is

unsatisfiable w.r.t. the KB.

Example 1 Consider the following KB K:

SweetTaste v ¬SavouryTaste,

Fruit v ∀taste.SweetTaste,

Vegetable v ∀taste.SavouryTaste,

Tomato v Fruit u ∃taste.SavouryTaste,

SweetPotato v Vegetable u ∃taste.SweetTaste

The concept names Tomato and SweetPotato, in Example 1 on Page 30, are

unsatisfiable w.r.t. K. That is, one cannot construct a model for K in which

there are Tomato (or SweetPotato) objects. 2

The task of checking satisfiability in DLs can be summed up as follows: given

a KB K and a possibly complex concept C (or role name R), determine if C

(or R) is satisfiable w.r.t. K.

If there is at least one concept name or role name in a KB that is unsatis-

fiable (as is the case in K) we say that the KB is incoherent. Incoherence

CHAPTER 2. BACKGROUND AND RELATED WORK 31

is generally considered to be an undesired or unintended situation in ontol-

ogy engineering. In most cases, appropriate debugging techniques [174] are

adopted to “repair” such consequences.

A more serious problem is if the KB is unsatisfiable (we also say that the

KB is inconsistent), which leads us to define the circumstance under which

a KB is satisfiable (or consistent).

Definition 2 (KB Satisfiability or Consistency) A DL KB K is satis-

fiable (or consistent) if it has a model.

Recall that Tomato is unsatisfiable w.r.t. K in Example 1 on Page 30. This

enforced that in all models for K there could not be any instance of tomato.

Suppose we now add the assertion Tomato(t1) to K. This enforces that in

each model for K∪{Tomato(t1)}, there should be a tomato instance referred

to as t1. This is a logical contradiction and means that there is no model for

K ∪ {Tomato(t1)}. This KB is therefore inconsistent. The DL consistency

task is principally straightforward: determine if the given KB has a model.

Finally, the most general reasoning task of DLs is that of entailment. That

is, determining if a particular ABox or TBox statement “logically follows”

from a given KB.

Definition 3 (Entailment) Given a DL KB K and a TBox (or ABox state-

ment) α, α is entailed by K, written as K |= α, if each model for K is also

a model for α.

An implicit semantic property of DLs is the open-world assumption (OWA),

which is the assumption in DLs that information contained in our KB is

incomplete. This is in contrast to the closed-world assumption (CWA) fre-

quently used in databases [160]. Consider an ALC KB (T ,A) where the

TBox T = ∅ and the ABox A =

{hasIngredient(dish1, carrot1)}. A mentions that there is a meal called dish1

which has an object called carrot1 as an ingredient. Using the CWA, one

will derive that carrot1 is the only ingredient in the dish. In fact, if we addi-

tionally add to A the assertion Vegetable(carrot1), and to our TBox T the

CHAPTER 2. BACKGROUND AND RELATED WORK 32

axiom ∀hasIngredient.Vegetable v VegetarianDish, we can go so far as to ob-

tain (T ,A) |= VegetarianDish(dish1). On the other hand, if we use the OWA

then we cannot infer that carrot is the only ingredient of dish1. All we know

is that dish1 has carrot as one of its ingredients (it may have others that are

not yet mentioned). The OWA allows for the possibility of more ingredients

(not explicitly stated) and hence we cannot deduce VegetarianDish(dish1).

The OWA and CWA have their respective appropriate applications. DLs, as

a direct result of the semantics, employ the OWA and this has proven to be

appropriate for most DL applications. For more detailed information about

these issues, the interested reader should consult the DL Handbook [10]. The

tasks of determining concept or role satisfiability and KB consistency are very

important in the ontology engineering process. Both tasks can be reduced to

the task of entailment: a concept C is unsatisfiable w.r.t. a KB K if and only

if K |= C v ⊥ and K is inconsistent if and only if K |= > v ⊥. However,

their most common use case (in their most literal sense) is to ensure that the

ontology developed avoids becoming incoherent or inconsistent. I.e., these

tasks are generally employed in an iterative manner on the KB, after some

modifications are made to it. In contrast, the “bread and butter” of au-

tomated DL reasoning remains the derivation of implicit knowledge (called

entailments) from KBs that are both consistent and coherent.

Example 2 Consider the following KB K [8]:

∃systolic pressure.High pressure v ∃finding.Hypertension,

∃finding.Hypertension u ∃history.Hypertension v ∃risk.Myocardial infarction,

RiskyPatient ≡ ∃risk.Myocardial infarction,

systolic pressure(bob, p1), High pressure(p1),

history(bob, h1), Hypertension(h1)

In Example 2 on Page 32 we can deduce that Bob is at risk of getting a heart

attack. I.e., K |= RiskyPatient(bob). In each model for K the object referred

to as bob belongs to the extension RiskyPatient. 2

CHAPTER 2. BACKGROUND AND RELATED WORK 33

Therefore, the problem of entailment is: given a KB K and an axiom α,

determine if K |= α. The exhaustive or brute-force approach of constructing

all possible models for K, and examining the constraints that these models

satisfy, is not viable because there are infinitely many of them.

Tableau-based algorithms avoid this näıve approach, evolving over the

years with the help of numerous optimisations to the current maturity of

having feasible performance for “on-demand” reasoning [98, 102, 103]. It

can be shown that, for some DLs, the tasks of satisfiability, consistency and

entailment can be reduced to each other.

For example, checking if K |= RiskyPatient(bob) in Example 2 on Page 32

can be accomplished by adding ¬RiskyPatient(bob) toK and checking whether

the resulting KB is consistent. If it is inconsistent then we can deduce that

K |= RiskyPatient(bob). Also, given a KB K and concepts C, D, K |= C v D

if and only if the concept C u ¬D is unsatisfiable w.r.t. K [10].

In general, the preferred reduction in practice is reducing general entail-

ment to the consistency problem. The task of consistency is concerned with

determining if there is a model for a given KB. Therefore, tableau algorithms

generally work by trying to construct models for the given KB.

Numerous implementations of such procedures for the standard DL rea-

soning tasks have been consolidated in software reasoning engines called DL

reasoners. Some of these, for example CEL [17], have specialised designs and

optimisations for low-complexity DLs, while others such as HermiT [78], are

developed for very expressive DLs. More details about reasoning in DLs can

be found in the DL Handbook [10] or other provided references.

Finally, we mention that in addition to the standard reasonings tasks

discussed earlier in this section, there are various non-standard reasoning

tasks [113] that have been developed to meet specialised requirements in the

ontology engineering setting. We conclude with a brief discussion of some of

the more prominent of these.

CHAPTER 2. BACKGROUND AND RELATED WORK 34

Classification: A commonly used, informative representation of a KB, is

the so-called subsumption hierarchy (also known as the concept hierarchy or

taxonomy). It can be defined as the explicit representation of the subsump-

tion relationship between each pair of concept names in the KB, as a directed

acyclic graph (DAG).

Example 3 Let SM be an abbreviated concept name representing the “San

Marzano” variety of tomato. Consider the following KB:

NonVegPizza ≡ Pizza u ¬VegPizza,

ItalianPizza ≡ Pizza u ∀topping.(∃origin.Italy),

VegPizza ≡ Pizza u ¬∃topping.MeatTopping,

Pizza1 v Pizza u ∀topping.(Avocado t Ricotta t SM),

Pizza1 v ∃topping.Avocado u ∃topping.Ricotta u ∃topping.SM,

Pizza2 v Pizza u ∀topping.(Mozzarella t Prosciutto t SM),

Pizza2 v ∃topping.Mozzarella u ∃topping.Prosciutto u ∃topping.SM,

Pizza3 v Pizza u ∀topping.(Ricotta t SM),

Pizza3 v ∃topping.Ricotta u ∃topping.SM,

Prosciutto v MeatTopping u ∃origin.Italy,

Avocado v VegTopping,

SM v VegTopping u ∃origin.Italy,

Ricotta v VegTopping u ∃origin.Italy,

Mozzarella v VegTopping u ∃origin.Italy,

VegTopping v ¬MeatTopping

The task of computing the concept hierarchy is termed classification. Clas-

sification reveals the subsumption relationship between concept names to a

knowledge engineer, that might otherwise be non-obvious in its original ax-

iomatic representation. Applied to Example 3 on Page 34, we illustrate the

resulting taxonomy in Figure 2.1.

In the worst case, given the n concept names in a KB, it would take n2 − n
subsumption entailment tests to compute the hierarchy. However, in prac-

CHAPTER 2. BACKGROUND AND RELATED WORK 35

>
Pizza

VegPizza

Pizza1

Pizza3

NonVegPizza

Pizza2

ItalianPizza

Pizza2

Pizza3

VegTopping

Avocado

Ricotta

Mozzarella

SanMarzano

MeatTopping

Prosciutto

Italy

Figure 2.1: Class hierarchy for Example 3.

tice, with the development of an enhanced traversal algorithm [13] and sub-

sequent optimisations [179, 77], in addition to novel techniques [76], one can

vastly reduce this number. Current implementations can classify a KB on

demand even if its size is in the order of hundreds of thousands of concept

names [115, 106].

Least Common Subsumer: Given a KB K and a set of concepts C =

{C1, ..., Cn}, a concept C is a common subsumer for C w.r.t. K if K |= Ci v C

for 1 ≤ i ≤ n. C is a least common subsumer (LCS) for C w.r.t. K if

there is no common subsumer C ′ for C w.r.t. K s.t. K |= C ′ v C and

K 6|= C v C ′ [55, 56, 14, 7, 21].

In Example 3 on Page 34, a LCS for {Pizza2,Pizza3} is ItalianPizza, al-

though this is quite a simplistic example because we restrict ourselves to

concept names. However, in general we can compute the LCS for general

concept expressions and the LCS itself may also be a concept expression.

CHAPTER 2. BACKGROUND AND RELATED WORK 36

Furthermore, in general, there need not exist an LCS for a given set of con-

cept descriptions. Thus the problem is a non-trivial one.

LCS computation has various applications in vivification [120, 34] and

“bottom-up” ontology development, by enriching the KB with the LCS for

a chosen set of terms and its axiomatic relationship with each of these

terms [15]. That is, explicitly representing in the KB, the most specific con-

cept descriptions which capture the common properties of the given terms.

Unification: There are various scenarios in which independent KBs make

use of the “same” terms. If some of these KBs are integrated, it is useful to

avoid redundancy in the form of term duplication.

Example 4 Consider the following concept expressions:

1. Mother u ∀child.Mother,

2. Parent u ¬Male u ∀child.(Parent u ¬Male)

Expressions 1 and 2 of Example 4 on Page 36 are meant to represent the

same concept - individuals that are mothers of only daughters who are also

mothers. However, these expressions are not logically equivalent (having the

same models), making it non-trivial to automatically determine such.

Unification [18] is the inference problem: given two concepts C, D, finding

a substitution T such that T (C) ≡ T (D), where T is a function that maps

some of the atomic concepts in C, D to an arbitrary DL concept expression.

It is easy to see that for Example 4 on Page 36, if we choose a T

which maps the atomic concept Mother in each expression to the expression

Parent u ¬Male, then this substitution unifies Expressions 1 and 2.

The idea with unification is to offer a service highlighting distinct concept

expressions in the KB which could possibly be intended to capture the same

knowledge. After integration of knowledge from different sources (indepen-

dent KBs), the likelihood of distinct concept expressions intending to capture

the same knowledge increases. KB integration is an example of a suitable

setting in which to apply unification in order to avoid redundancy.

CHAPTER 2. BACKGROUND AND RELATED WORK 37

Explanation: In KBs with many axioms it can sometimes be difficult to

understand the specific reasons why a particular entailment holds. This prob-

lem has been a source of frustration for ontology engineers since the advent of

software ontology editors such as Protégé1, TopBraid Composer2, OntoStu-

dio3 and the NeOnToolkit4.

Justification-based explanation [94] has been the most successfully ap-

plied solution to this problem. The approach presents to the user the mini-

mal (w.r.t. set inclusion) subsets of the KB that entail the axiom in question

(called justifications), as the concise reasons for the entailment. Justifications

are sometimes called minAs [19] and MUPSes [174] in the literature. There

are three categories of algorithm (coined by Parsia et al. [151]) for computing

justifications, namely, blackbox, glassbox and hybrid algorithms.

Blackbox algorithms [94, 104] use a DL reasoning implementation purely

as an “oracle” to test entailment of the axiom in question. The basic idea is

to devise clever strategies to shrink (remove axioms from), and extend (add

axioms to) the ontology until a minimal subset that entails the relevant axiom

is reached. As mentioned, the reasoner is employed in these algorithms only

to periodically test if the entailment still holds in the progressively smaller

subsets that are devised.

The main optimisations for these procedures seek to minimise the number

of these tests which are the source of greatest complexity in the algorithms.

The main advantage of blackbox approaches is their independence of DL rea-

soning implementations, making them possible to be used in accompaniment

with any sound and complete reasoning procedure.

Glassbox approaches [174, 140], in contrast, use sophisticated labelling and

tracing techniques in the tableau construction itself to identify the minimal

information contributing to the entailment of the given axiom. There are also

other reasoners (that are not based on tableau procedures) which use similar

1protege.stanford.edu
2topquadrant.com
3semafora-systems.com
4neon-toolkit.org

CHAPTER 2. BACKGROUND AND RELATED WORK 38

labelling tracing techniques. Since glassbox techniques require modification

of the underlying internals of the reasoner in question, they are therefore

dependent on the implementation.

Hybrid approaches, as the name suggests, try to combine strategies from

both blackbox and glassbox methods [104, 188, 112].

Repair: The area of repair in non-standard reasoning for DLs, asks the

question: we have a set of undesired or unintended entailments in our KB,

what are the “minimal” or “best” (for some definition thereof) modifications

we could make to the KB in order to no longer have these entailments?

Syntactic approaches examine the sentences in the KB in order to answer

this question. For example, whereas justifications represent the minimal

subsets of the KB that entail some axiom(s), repair is concerned with the

maximal subsets of the KB that do not entail the unintended axioms. Mini-

mality of modification to the original ontology is thus a priority in this area

which is related closely with Belief Revision [145, 68].

In addition to syntactic approaches there are also semantic approaches [118,

156] to find minimal change to the knowledge in the KB. The latter ap-

proaches define minimal change w.r.t. the models for the KB. The starting

point is usually defining a measure of distance or difference between two ar-

bitrary models and trying to minimise this distance measure between the

models for the original KB and the repaired KB which no longer entails the

relevant knowledge.

2.1.3 Trade-off between Expressivity and Complexity

As mentioned earlier, the family of DLs vary according to the set of logical

features they provide, and by extension, the worst case computational com-

plexity of their decision procedures. The spectrum of DLs can, in a broad

sense, be categorised into three groups: low, medium and high-expressivity

or complexity DLs. Such a categorisation can be subjective since it is highly

dependent on the spectrum of features required in different applications.

CHAPTER 2. BACKGROUND AND RELATED WORK 39

Nevertheless, there is a general consensus in the literature on what con-

stitutes a low, medium or high expressivity DL. In this section, we discuss

popular DLs in each category, their relationship to each other in terms of

expressivity and complexity and the applications for which they are suitable.

The EL and DL-Lite families: Some prominent examples of low-complexity

or so-called “light-weight” DLs include those in the EL [9] and DL-Lite fami-

lies [5]. These formalisms provide relatively few logical features in the pursuit

of major reasoning performance, and both families are polynomial-time de-

cidable (tractable) w.r.t. the standard DL reasoning tasks.

The logic EL is a representative example of this family. Its concept lan-

guage merely consists of the top concept (>), DL conjunction (u) and exis-

tential quantifiers on roles (∃).
An obvious positive of these restricted languages is their tractability

which happens to lead to extremely good practical performance [16, 106].

The question is if one is able to capture meaningful and useful knowledge

with such a restricted logic.

There is evidence which suggests that these logics have useful applica-

tion with a case in point being that EL is the underlying language used for

representing the large-scale biomedical ontology SNOMED [57, 184, 64].

In fact, EL underscores numerous other prominent ontologies in the do-

main of life sciences, including the Gene Ontology (GO) [6] and restricted

versions of Galen [166, 159]. The necessity conditions of a drug overdose,

for example, is captured in SNOMED by the EL axiom Drug overdose v
Drug-related disorder u ∃rolegroup.(∃causative agent. Drug or medicament).

It turned out that, while EL is sufficient for representing some knowledge

in biomedical applications, it is insufficient for representing certain types of

knowledge about roles. One may wish to capture that if an anatomical organ

a is part of another anatomical organ b, then it a is also contained in b. ELH
extends EL with simple role inclusions (SRIs), represented by the letter H
for hierarchy of roles. SRIs, as an additional type of TBox axiom, capture

CHAPTER 2. BACKGROUND AND RELATED WORK 40

subsumption relationships between atomic roles (role names).

We can represent the “part-of” and “contained-in” relationship men-

tioned earlier by the SRI partOf v containedIn. The good news is that this

additional feature comes “for free” complexity-wise because ELH remains

tractable [36]. In medical terminologies, however, it is important to be able

to represent so-called right-identity rules [150, 183, 100]. For example, in the

anatomy of the human body, we know that the femur bone is composed of

different parts or regions, namely, the head, neck and shaft. Common sense

tells us that a fracture of one of these parts of the femur can be regarded

generally as a fracture of the femur as a whole.

Example 5 Consider the following KB:

FemurFracture ≡ Fracture u ∃location.Femur,

FemurShaft v ∃partof.Femur,

Fracture(fracture1),

∃location.FemurShaft(fracture1)

It is clear that we cannot conclude FemurFracture(fracture1) from the KB in

Example 5 on Page 40, even though this is an intuitive conclusion to make

from a common sense point of view. The problem, of course, is that DLs

cannot identify the “common sense” that if a is located in b and b is a part of c

then a should be located in c as well, because there is no special interpretation

of the location and partof relations in DLs. Nevertheless, there are possible

modelling solutions to this that do not require additional expressivity.

One possibility is to add FemurShaft as a disjunct to the first axiom in

Example 5 on Page 40. This would give us the axiom FemurFracture ≡
Fracture u ∃location.(Femur t FemurShaft). This is not a particularly elegant

solution, especially considering that one needs to add such a disjunct for

each part of the femur in order to cater for different possible sub-locations

of femur fractures. Of course, this solution would take us beyond the realm

of EL (disjunction is disallowed in EL).

CHAPTER 2. BACKGROUND AND RELATED WORK 41

A more elegant solution could be changing the first axiom to FemurFracture

≡ Fracture u ∃location.(Femur t ∃partof.Femur). This is a respectable solu-

tion but we have to repeat this pattern of modelling in order to cater for

fractures of other bones (e.g. the tibia etc.) if we so wish. 2

Because of the frequency, in medical domains, of the kind of modelling prob-

lem in Example 5, an additional DL feature was devised called role chain-

ing [100] or role composition. The role subsumption P ◦ Q v R (read as the

composition of P and Q is subsumed by R) captures the constraint that if a

is P-related to b, which in turn is Q-related to c, then a is R-related to c.

Role chaining is not restricted to two role names as in our discussion.

An arbitrary number of role names (on the left hand side of the inclu-

sion) are allowed. Role chaining allows us to add the role inclusion (RI)

location ◦ partof v location to the KB in Example 5 on Page 40 and immedi-

ately obtain the desired conclusion FemurFracture(fracture1).

ELH together with the capability of role chaining (on the left hand side

of role subsumptions) results in the DL EL+ [17] which is supported by the

CEL implementation. It is worth mentioning that SNOMED makes use of role

chaining in a few of its axioms which technically makes it an EL+ ontology.

EL++ [9] is a further enhancement to EL+, adding the bottom concept

(⊥), nominals (singleton concepts) and concrete domains [127] (e.g. refer-

ences to numbers and strings). EL+ and EL++ remain the most prominent

variants of EL that are tractable, and the aforementioned variants of EL
form the logical underpinning of the OWL 2 EL profile.

The DL-Lite family of DLs [5] are a group of tractable logics that have

been designed with very specific application scenarios in mind. The pri-

mary applications lie in ontology-based data access (OBDA) [61, 92, 152], as

alternative formalisms for concept modelling (thereby providing automated

reasoning services for such models) [47, 35, 67, 138], information and data

integration [46, 80, 147, 139]. OBDA has been a prominent topic in DLs in

recent times. The basic idea is that we have a physical data source (usu-

CHAPTER 2. BACKGROUND AND RELATED WORK 42

ally a relational database) and auxiliary knowledge about the application

domain pertaining to the data (in the form of a DL TBox). The task is to

answer queries about instance data while taking into account knowledge in

the TBox.

A simple example can be given concerning data about patients in a med-

ical facility. Suppose we have a database which purely stores information

about the systolic pressure readings of patients and their relatives5. A doc-

tor might obviously have knowledge about what systolic pressure readings

constitute a case of hypertension. Furthermore, she may know that a patient

who has a family history of hypertension is at risk of myocardial infarction

(getting a heart attack).

This knowledge is not contained in the database itself, but she can encode

it in a DL TBox without modifying the database, and then ask queries about

patients using the terminology in the TBox. For example, she can query the

database to find the patients at risk of getting a myocardial infarction.

Because of the specialised requirements of such applications (queries have

to be performed over very large databases relative to the number of facts in

the TBox), certain restrictions have to placed on the language of the TBox

to make reasoning efficient in such a setting. The resulting DL-Lite fam-

ily disallows all disjunction and qualifications on existential role restrictions

(∃R.C is not allowed where C 6= >) and have been proposed as reasonable

candidates for application in tasks such as OBDA.

The significance of the DL-Lite family is highlighted by the fact that it

forms the basis of the OWL 2 QL profile (a targeted set of sub-languages of

the OWL 2 standard). The QL in OWL 2 QL stands for Query Language,

alluding to the application of query answering over large data sources. For

detailed information about the DL-Lite family and applications, the reader

should consult the provided references.

5Note that this scenario is similar to that of Example 2 on Page 32, although the

knowledge expressed in that example cannot be represented in DL-Lite. An alternative

formulation of the knowledge would thus be required.

CHAPTER 2. BACKGROUND AND RELATED WORK 43

Very Expressive DLs: We briefly discuss some of the more expressive DLs

that form the basis of the OWL 2 DL (The full language of OWL 2). In

Section 2.1.1, we have presented the moderate complexity DL ALC which

is already intractable (w.r.t. the problem of checking concept satisfiability).

TBox entailment in ALC is an exptime-complete problem [172].

Even though ALC is sufficient for accurate and relatively precise repre-

sentation of knowledge from many application domains, there are various

types of knowledge which it cannot capture.

For example, in ALC we can capture that dogs have at least one leg

(Dog v ∃hasLeg.>), but we cannot express that a dog has exactly four legs

(Dog v = 4 hasLeg.>) or that land mammals have at least two legs (Mammal

u ∀hasHabitat.Land v ≥ 2 hasLeg.>). Such features are known as number

restrictions or cardinality restrictions on roles.

Recall that SRIs cannot be expressed in ALC either. Another useful

feature pertaining to roles, absent from ALC, is called inverse roles. Inverse

roles allow one to state for example that the isIngredientOf role is the inverse

of hasIngredient (hasIngredient ≡ isIngredientOf−).

Thus by stating that hasIngredient (salad instance1, lettuce instance1)

one can immediately infer isIngredientOf (lettuce instance1, salad instance1).

If we extend ALC with all the features mentioned above (and allowing

transitivity of roles), the resulting logic is called SHIN . If, additionally,

we allow role fillers for cardinality restricted roles to be concepts other than

> (i.e., we allow number restrictions to be qualified), then we have the DL

SHIQ. Therefore, we can express that dogs have exactly two hind legs

(Dog v = 2hasLeg.HindLeg) in SHIQ.

Interestingly, in SHIN (and SHIQ), we are allowed to state expressions

that require an interpretation domain with an infinite number of elements in

order to construct models for them [103, Section 3.4]. When this is true of a

logic, then we say that it does not possess the finite model property (FMP).

Extending SHIQ with the ability to express singleton concepts called nom-

CHAPTER 2. BACKGROUND AND RELATED WORK 44

inals (we can state {usain bolt} v Sprinter), we obtain the DL SHOIQ.

SHOIQ, together with various properties that one can enforce on roles [99],

results in the DL SROIQ which is the logical underpinning of (and the most

expressive DL supported by) the OWL 2 standard.

2.2 The Web Ontology Language (OWL)

The Web Ontology Language (specifically its latest version OWL 2) is a W3C

recommendation for representing ontologies on the Semantic Web [25]. OWL

is logically underpinned by DLs and provides additional non-logical features

such as annotations for storing meta-data about ontologies. Ontologies ex-

pressed with OWL are mostly serialised in a variety of concrete XML-based

syntaxes, such as RDF/XML, Manchester OWL and OWL/XML.

Because of its correspondence with DLs, reasoning with OWL ontologies

is accomplished by exploiting the common reasoning tasks of the underlying

DL used to express the ontology. While there are a variety of concrete syn-

taxes mentioned above for OWL, there is just one formal syntax. However,

there are two semantics: direct semantics and RDF-based semantics.

The language defined by the full OWL 2 syntax, together with direct se-

mantics is called OWL 2 DL. OWL 2 defines three profiles or sub-languages

targeted for different application settings. The categorisation is made ac-

cording to the trade-off between expressivity and computational complexity.

The three profiles are OWL 2 EL, OWL 2 QL, OWL 2 RL These languages

have been discussed in Section 2.1.3 save for OWL 2 RL.

OWL 2 RL is a profile designed to restrict the expressivity of OWL 2 to

a language that can be implemented using rule-based technologies such as

Description Logic Programs (DLPs) [87]. OWL 2 DL remains the language

of interest for our purposes of possible integration of defeasible features.

CHAPTER 2. BACKGROUND AND RELATED WORK 45

2.3 Incomplete Knowledge

Knowledge is prone to imperfections. The primary method by which humans

obtain knowledge is through the senses, which are themselves imperfect and

limited. The limited nature of the senses necessarily leads to the acquisition

of knowledge that is incomplete in the broadest sense of the word.

The seemingly endless refinement and evolution of this incomplete knowl-

edge indicates that it is subject to change with time. Perfect knowledge, in

contrast, has to be unchanging and absolute, without need of qualification.

Unfortunately, such knowledge still eludes humanity at large.

Yet, despite the inherent incompleteness of our knowledge, we humans

have to infer things from it to accomplish various tasks, and in keeping with

this, our natural languages are enriched with vocabulary to express incom-

pleteness. We say things like “lawyers are usually dishonest”, “It is likely

that it will rain tomorrow”, “James is roughly 50 years old” etc., where the

emphasised words in these phrases allude to a lack of complete information.

Although classical logics cater for some forms of incompleteness in knowl-

edge, they are much more limited than natural languages in this regard. One

particular example of incomplete knowledge that classical logics can repre-

sent is disjunction. For example, if I flip a coin, even if I don’t know what

the outcome of this flip will be, I do know that it will either be heads or tails.

With regards to us humans, the incompleteness of our knowledge invari-

ably leads us to employ “guesswork” when explicitly representing knowledge.

Some may use all relevant information at their disposal and apply this infor-

mation sensibly to inform their guesswork, others may not.

It is the symptoms of this guesswork which indicate that we do not have

access to complete knowledge. The three main symptoms in KR are: defea-

sibility, uncertainty and subjectivity or relativity. We shall discuss these and

mention which of these we are specifically interested in for this thesis.

CHAPTER 2. BACKGROUND AND RELATED WORK 46

2.3.1 Defeasibility

A defeasible statement is one that is potentially fallible or can be refuted

upon the discovery of more information.

Students normally don’t pay taxes, sushi usually contains fish, birds typ-

ically can fly are all sentences are all punctuated by terms which express

generalisations that are inapplicable to exceptions. For example, employed

students, vegetarian sushi and ostriches or penguins represent exceptions to

the mentioned defeasible statements. Therefore, it is sometimes useful to

ignore exceptions where possible and make generalised statements in order

to reason and derive plausible inferences from such knowledge.

However, in classical logics, there is no native machinery that allows us

to represent generalisations that admit exceptions.

2.3.2 Uncertainty

Particular types of knowledge, linked to statistical information and proba-

bilities, are expressed because of underlying uncertainty. Sentences like: “1

in 4 people will contract cancer at some point in their lives” and “there is a

60% chance that David has diabetes” represent empirically determined like-

lihoods of events happening. The computation and representation of these

likelihoods (or probabilities) are only necessary because we do not know,

a priori, all individuals who will contract cancer (or respectively, whether

David has diabetes or not).

Fortunately, this kind of representation is supported in many classical

probabilistic logics [146]. Classical logics that do not natively support prob-

abilities also cater for certain forms of uncertainty. For example, if I know

that john is either a soccer player or a tennis player, it represents a kind

of uncertainty about which category john belongs to. Of course, this kind

of uncertainty can be expressed using disjunction which is native to many

classical logics including DLs.

CHAPTER 2. BACKGROUND AND RELATED WORK 47

2.3.3 Subjectivity or Relativity

John is “tall”, Suzie is “young” and this hotel is “cheap” are examples of

sentences which contain terms that are subjective or relative because there

are no known definitions of these terms that are absolute.Therefore, a relative

definition is adopted in order to attach meaning to these statements.

There are various extensions of classical logic (often called fuzzy log-

ics [187]) which enable one to specify subjective meanings for these terms.

In some cases, subjective terms (especially those that can be interpreted

numerically) can be defined in classical logics. For example, one can use

datatypes [144] in OWL to specify a term “adultAge” and assign it a value,

e.g. 18, which represents an objective minimum age for an adult.

This thesis is particularly concerned with addressing the specific type of de-

feasible knowledge (Section 2.3.1) in which we would like to make generalised

statements that permit exceptions. For example we would like to express that

students generally don’t pay taxes which is not falsified even upon discovering

that students who are employed in certain contexts are obliged to pay taxes.

We now analyse the state-of-the-art of various approaches in the literature

which aim to represent and reason with such knowledge.

2.4 Circumscription

Circumscription is a class of nonmonotonic logics proposed by John Mc-

Carthy in 1980 [136]. The basic aim is to be able to represent, in KR

formalisms, the presumption that something is “normal” and behaves as

expected unless otherwise specified.

2.4.1 Basic Circumscription

Consider the following version of the checkerboard example from Raymond

Reiter [164]:

CHAPTER 2. BACKGROUND AND RELATED WORK 48

Example 6 Suppose we have a black and white checkerboard and we toss a

coin over the checkerboard. We have to model the problem of some agent

predicting where the coin will land.

Essentially, there are three possibilities in Example 6: either the coin lands on

a white square, black square or partially over both. In classical logics it is easy

to represent this knowledge using disjunction: (∀x, y) (hasCoinTossResult(x, y)

=⇒ black(y) ∨ white(y)). The problem is how classical logics interpret ex-

ceptions to this.

Suppose the coin lands on the floor, on the table next to the board, on

the moon, or anywhere else outside the boundaries of the board. The repre-

sentation becomes: (∃x, y)(hasCoinTossResult(x, y) ∧ ¬black(y) ∧ ¬white(y)).

No models for this accumulated knowledge exist.

The cases of the coin landing outside the boundaries of the checkerboard,

while possible, are exceptional and not in the “spirit” of solving the problem

at hand. We would not like the agent to consider them unless it really has

to. One way to eliminate these situations from consideration is to add them

as “qualifications” to the agent’s knowledge about the system.

That is, we can rephrase the problem as follows: if the coin is tossed over

the checkerboard and it does not land on the floor and it does not land on

the table and it does not land on the moon etc., then where does it land?

The obvious drawback of this solution is that the possible qualifications can

be endless or not known a priori. 2

Thus we require a formalism which (i) permits exceptions (unlike classical

logics), since it is possible for them to occur, and (ii) does not require one to

explicitly list such exceptions. Circumscription models the tentative assump-

tion that the information we have is complete and any additional information

that we encounter, which conflicts with what we know, can be immediately

identified as an abnormal case.

For Example 6 on Page 48, the consideration that the checkerboard is

the only place where the coin can land is our assumption of “complete” in-

CHAPTER 2. BACKGROUND AND RELATED WORK 49

formation. The treatment of circumstances in which the coin lands outside

the checkerboard, as abnormal cases, is the heart of the circumscriptive tech-

nique.

The pioneers of the circumscriptive technique were McCarthy and Lifs-

chitz [136, 137, 121, 124], whose expositions were primarily in the setting of

first-order logic. In this thesis we are dealing exclusively with DLs, therefore

we give here the state-of-the-art of circumscription applied to DLs [32].

The main approach for introducing circumscription into DLs is what is

called Predicate Circumscription. The basic idea of the approach is to add

concept and role names (collectively, these are sometimes referred to as ab-

normality predicates) to the vocabulary of the KB. The job of the additional

concept and/or role names are to account for the abnormal or exceptional

objects in the models.

Given abnormality predicates, it is only necessary to consider those mod-

els of the KB in which the extension of these predicates are minimal (w.r.t. set

inclusion). Such models are generally known as minimal models.

The intuition behind this necessity is that we should consider the most

“normal” situations possible when making inferences, in which there are as

few exceptional cases as possible (further motivating examples are given by

Lifschitz [124] and McCarthy [137]). Indeed it is not hard to notice, then,

that circumscription will favour models in which the extensions of the ab-

normality predicates are empty (favouring situations in which there are no

exceptions). Non-empty extensions will thus only be considered if there is

evidence (information in the KB) which enforces them to be such.

In order to identify minimal models, a preference relation, <M, is defined

over all models. Suppose Nc, Nr and Ni are respectively the set of concept

names, role names and individual names representing the vocabulary of our

KB. In addition, suppose that M ⊆ Nc ∪ Nr denotes the set of predicates

we wish to minimize. An interpretation I of the KB is “preferred” over an

interpretation J (written I <M J) [32] if:

1. ∆I = ∆J and for all a ∈ Ni, a
I = aJ ;

CHAPTER 2. BACKGROUND AND RELATED WORK 50

2. for all p ∈M, pI ⊆ pJ ;

3. there is a p ∈M such that pI ⊂ pJ ;

The first condition ensures that both models refer to the same domain, the

second and third are the main conditions requiring consideration of only those

models in which the abnormality predicates are minimal w.r.t. set inclusion.

Specifically, the second condition makes sure that the more preferred

model, I, does not interpret any minimised predicate to have more members

than the less preferred model, J .

The third requires at least one minimised predicate to have fewer members

in the more preferred model, than in the less preferred one.

In some versions of circumscription, a fourth condition is required to

define the preference relation: (4) for all p ∈ (Nc ∪ Nr)\M, pI = pJ ; This

condition enforces that the two models should interpret all other symbols

(non-minimised) in exactly the same way, in order to be comparable via the

preference relation.

This is also called fixing the extension of the selected predicates. The only

implication of including or excluding this condition is obviously the impact

on the conclusions one is able to draw, since we are generally looking at a

different set of models in each case.

If the condition is excluded, we are essentially allowing the comparison

of models (via <M) which differ in their extensions of the non-minimised

predicates. In general, when we allow this (the non-minimised predicates to

vary) then it results in the derivation of more conclusions (fewer minimal

models) and when we fix these predicates by including condition (4), then

we derive fewer conclusions (more minimal models) [32].

The decision of which predicates to minimise, fix and allow to vary is called a

circumscription pattern. It is the circumscription pattern that determines the

models we are looking at to decide entailment. Note that the non-minimised

predicates do not have to be exclusively fixed or exclusively varied (simulated

by the inclusion or exclusion of condition (4) above).

CHAPTER 2. BACKGROUND AND RELATED WORK 51

The user is given freedom to separate the non-minimised predicates into

those he/she would like to fix and those he/she would like to allow to vary,

resulting in a refined version of condition (4).

We give an example illustrating the impact of the circumscription pattern

on the entailment relation:

Example 7 Consider the following KB:

1. Student v ¬∃receives.TaxInvoice t AbStudent

2. EmployedStudent v Student u ∃receives.TaxInvoice

Axiom 1 of Example 7 on Page 51 intuitively says that students normally do

not pay taxes (either that or they are abnormal students). Axiom 2 says that

employed students are students that are compelled to pay taxes. Intuitively

speaking, a sensible inference of this knowledge should be that employed

students are abnormal students (EmployedStudent v AbStudent) and thus it

should still be rational to additionally infer that employed students pay taxes

(Axiom 2), even though students normally don’t pay taxes (Axiom 1).

If we choose the circumscription pattern that minimises AbStudent and

fixes all other predicates in the KB, then we indeed obtain the desired

inferences mentioned above. In addition, we also obtain that abnormal

students are exactly those students who pay taxes (AbStudent ≡ Student u
∃receives.TaxInvoice).

This is all fine and well, but one may find it sensible to also assume

that exceptions to Axiom 1 are highly unlikely to the point of treating the

explicitly stated exceptions as the only exceptions. I.e., we may want to

conclude that |= AbStudent ≡ EmployedStudent.

Since Example 7 on Page 51 has only one explicitly represented excep-

tion - employed students - it should be reasonable to conclude that employed

students are the only abnormal students (leading to EmployedStudent ≡
AbStudent) until further notice. However, using the current circumscription

pattern does not yield this entailment. The following counter-model, I,

CHAPTER 2. BACKGROUND AND RELATED WORK 52

proves this: ∆I = {a, b}, StudentI ,AbIStudent = {a}, TaxInvoiceI = {b},
receivesI = {(a, b)}, EmployedStudentI = ∅.

It is easy to see that this model minimises the extension of AbStudent, that

is, there is no model in which the extension of AbStudent is empty (smaller

than in I) while keeping the extension of all the other predicates the same

as in I. But I does not satisfy the axiom AbStudent v EmployedStudent and

therefore cannot satisfy EmployedStudent ≡ AbStudent.

A solution is to change the circumscription pattern. We find that allowing

receives and TaxInvoice to vary (fixing the remainder of the predicates) gives

us the additional inference we desire - EmployedStudent ≡ AbStudent. We

can see that, using this pattern, the interpretation I mentioned earlier is no

longer a minimal model for our KB. One possible minimal model is J :

∆J = {a}, StudentJ = {a}, EmployedStudentJ = AbJStudent = TaxInvoiceJ

= receivesJ = ∅ and it is obvious that J
 EmployedStudent ≡ AbStudent.

Of course, it may also be sensible in some applications to assume that

exceptional things (e.g. employed students) do not exist unless it is explicitly

stated that they do. Indeed this is in keeping with the mandate of the

circumscription discussed in Example 6 on Page 48. This would mean that we

should be able to conclude EmployedStudent ≡ AbStudent ≡ ⊥ from Example 7

on Page 51.

However, we can only achieve this by also allowing EmployedStudent to

vary. Doing so, and then introducing an employed student into the mix by

adding the assertion EmployedStudent(john), results in the intuitive conclu-

sion EmployedStudent ≡ AbStudent ≡ {john}. For more information about this

latter presumption in circumscription see Section 2.4.3. 2

2.4.2 Prioritised Circumscription

Up to now, we have only considered the case of introducing a single ab-

normality predicate into the KB. Of course, circumscription allows for an

arbitrary number of abnormality predicates to be introduced and minimised

CHAPTER 2. BACKGROUND AND RELATED WORK 53

during reasoning. Suppose we introduce another abnormality predicate into

our knowledge, we obtain the following KB:

Example 8 Consider the following KB:

1. Student v ¬∃receives.TaxInvoice t AbStudent

2. EmployedStudent v Student u ∃receives.TaxInvoice t AbEmployedStudent

3. EmployedStudentParent v EmployedStudent u ¬(∃receives.TaxInvoice)

Minimising AbStudent and AbEmployedStudent, allowing receives and TaxInvoice to

vary and fixing the remainder of the predicates in Example 8 on Page 53, has

the consequence that we can derive neither of the axioms EmployedStudent v
∃receives.TaxInvoice nor EmployedStudent v ¬(∃receives.TaxInvoice). Essen-

tially, this is because circumscription cannot decisively prefer which abnor-

mality predicate (AbStudent or AbEmployedStudent) to apply to a given object.

That is, the models in which AbStudent and AbEmployedStudent are minimised,

are mutually exclusive. If there are no situations in which both predicates

are minimal w.r.t. all the models, then one has to “prefer” one situation over

the other in order to derive one of the conclusions mentioned above.

The question is how this preference is determined among an arbitrary

number of abnormality predicates. In the case of Example 8 on Page 53, we

only have two minimised predicates and it is argued that the more intuitive

conclusion to draw would be EmployedStudent v ∃receives.TaxInvoice (i.e.,

preferring to minimise AbEmployedStudent over AbStudent).

Intuitively speaking, this choice simulates the reasoning paradigm that:

given a student who is employed, one would prefer to assign to the student

the properties in the KB which are most specifically applicable to employed

students (Axiom 2), and therefore assume that this student is not an abnor-

mal employed student (minimising AbEmployedStudent).

This would be in contrast to preferring to assume that the student is

not abnormal (minimising AbStudent) and being able to assign attributes of a

general student (Axiom 1) to them, but enforcing that the student must be

CHAPTER 2. BACKGROUND AND RELATED WORK 54

an abnormal employed student so as not to clash with Axiom 2. 2

The specificity approach to prioritisation discussed in Example 8 on Page 53

is quite sensible because it starts at the most specific information that we

know about an object and starts to “generalise” (attribute more general

properties to the object) and stops when there a conflict or contradiction

is reached. In fact, to emulate this behaviour with a general number of

abnormality predicates, it has been recommended that the preference relation

(<min) over the predicates should mirror the classical concept hierarchy of

the KB [12].

That is, more generally, if KB |= X v Y then AbX <min AbY (Minimising

AbX should be preferred over minimising AbY). In addition, since the sub-

sumption hierarchy is a partial order on the concept names in the KB, the

preferences over minimised predicates is also usually a partial order [32].

Using the above approach models a kind of defeasible inheritance or over-

riding strategy in the reasoning process. The preference relation over the

minimised predicates, if respecting the concept hierarchy of the KB, also

simulates an intuitive semantic notion: the more specific the category being

considered, the more unlikely it is to have exceptions.

In general, however, the preferences over minimised predicates is left up

to the user (ontology developer) in circumscription and becomes an extra

component of the circumscription pattern of a KB.

2.4.3 Grounded Circumscription

Grounded circumscription [178] introduces a localised version of the closed

world assumption (CWA) [160] to circumscription, by only allowing individ-

uals explicitly mentioned in the KB to appear in the extension of minimised

predicates. This kind of circumscription is applied in situations where as-

sumption of complete information is appropriate in making inferences. That

is, where a kind of CWA is suitable.

Such an assumption is useful in certain applications such as matchmaking

CHAPTER 2. BACKGROUND AND RELATED WORK 55

in web services [85]. A scenario is also given by the conclusion EmployedStudent

≡ AbStudent ≡ {john} in Example 7 on Page 51.

2.4.4 Complexity Considerations

Circumscription has been studied in the context of first-order logics [136,

137, 121, 124] and propositional logics [65, 45] as far back as 1980, but apart

from Brewka [38] and Cadoli, Donini and Schaerf [44], it was only in the last

two decades that serious interest arose in tackling DLs.

Bonatti, Wolter and Lutz established initial complexity results in 2006 [32]

and 2009 [33] by showing that circumscription in ALCIO and ALCQO are

decidable (both in NExpEXP) with some preconditions (binary predicates must

be allowed to vary). It is also shown that the complexity decreases signifi-

cantly (to NPNEXP) if there are bounds placed on the number of minimised

and fixed predicates.

More recently, attention was turned to determine the decidability of cir-

cumscription in DLs that do not have the finite model property. Bonatti et

al. [27] show that DL-LiteF and ALCFI, even though they do not have this

property, are both decidable (when using certain reasonable circumscription

patterns).

For less expressive DLs such as EL-variants [9] and the DL-Lite family [5],

there have been similar complexity investigations [28, 29, 31]. However, since

we are primarily interested in handling exceptions in DLs of ALC or higher

expressivity, we focus on the complexity of circumscription in such cases.

In general, practical implementations and performance results for circum-

scription in DLs is not well represented in the literature. Grimm, Hitzler,

Krisnadhi and Sengupta [86, 178] give tableau algorithms for computing cir-

cumscription in variants of ALC. However, implementations and evaluations

thereof are not documented in great detail.

In fact, in general, the absence of comprehensive empirical investigations

into the practical performance of circumscription for DLs is a major problem.

CHAPTER 2. BACKGROUND AND RELATED WORK 56

2.4.5 Discussion

Circumscription, although being one of the more mature proposals for deal-

ing with exceptions in DLs, is not without its limitations. One issue is its

inherent limitation in dealing with disjunctive information. Depending on

how we model knowledge, we can get counter-intuitive results.

Disjunction: Recall Example 6 on Page 48. Given a coin tossed over

a black-and-white checkerboard, circumscription was able to model that

the coin should land either on a white block or on a black block on the

board and not anywhere else. In DLs, a possible formalisation could be

represented by the axiom: CoinToss v (= 1 landsOn.BlackSquare) t (=

1 landsOn.WhiteSquare).

If we minimise the role landsOn, we eliminate the possibility of the coin

landing on the floor or the moon etc. because the models for these relevant

scenarios are not minimal w.r.t. landsOn (w.r.t. set inclusion). But, for the

same reason, we also obtain the undesired consequence that models in which

the coin lands (partially) on both a black and white square are not permitted.

One might ask if a different modelling choice could solve the problem.

The following formalisation avoids the problem of interpreting the disjunction

exclusively: CoinTossResult v BlackSquare t WhiteSquare t AbCoinTossResult, if

minimising the predicate AbCoinTossResult. But, this formalisation also permits

counter-intuitive possibilities like the coin landing partially on a black (or

white) square and partially on the moon (or any other surface)!

Of course, if one had the expressivity of number restrictions then we could

actually formalise the coin toss in DLs without even having to resort to cir-

cumscription: CoinTossv (= 1landsOn.BlackSquare t= 1landsOn.WhiteSquare)

u ∀landsOn.(BlackSquare tWhiteSquare). This formalisation would not per-

mit models in which the coin lands outside the checkerboard bounds and will

permit models in which the coin lands on both a black and white square.

Nevertheless, in general, the behaviour of circumscription in the presence

of disjunctive information is still a significant limitation. Fortunately, a so-

CHAPTER 2. BACKGROUND AND RELATED WORK 57

lution is proposed by Eiter et al. [65] called theory curbing. Theory curbing

addresses the issue by not only permitting minimal models, but also the least

upper bound models of these minimal models.

In our coin toss example, even though models in which the coin lands

on both a black and white square are not minimal, they are “least upper

bound” models for the minimal models such that they interpret the disjunc-

tive information inclusively. Therefore such models are also considered in

the circumscription. For more detailed information about the approach, the

interested reader should consult the provided reference above.

Another drawback to circumscription, from a user perspective, is con-

cerning the circumscription pattern.

Circumscription Pattern: As explained in Sections 2.4.1 to 2.4.3, the

circumscriptive pattern is integral to determining the inferences one is able

to draw from the given knowledge. In fact, it also affects the computational

complexity (and in many cases, decidability) of circumscription. In most

cases, the user is entirely responsible for deciding the circumscription pattern.

While leaving the pattern up to the user provides flexibility in reasoning, we

argue that it can unnecessarily complicate matters.

Even if the circumscription pattern could be partially suggested, fully

suggested or automated by the reasoning engine, it is not clear how one

could formalise this. That is, to date, a formal methodology for determining

reasonable circumscription patterns in practice has not yet been developed.

This leads us to other issues with the current complexity and implementation

landscape of circumscription in DLs.

Complexity and Implementation: Even though there are various expres-

sive DLs for which circumscription is decidable (see Section 2.4.4), these re-

sults are dependent on restrictions to the circumscription pattern. Of course,

even though decidability is reached, this is not a guarantee of good perfor-

mance in practice. Furthermore, in most cases the complexity of circum-

CHAPTER 2. BACKGROUND AND RELATED WORK 58

scription is substantially higher than the complexity of standard reasoning

in the underlying DL.

To compound matters, even though we know of notable implementations

and performance evaluations of circumscription in DLs (by Piero Bonatti and

colleagues as well as Pascal Hitzler and colleagues), these implementations

and evaluations remain unpublished to a large extent.

2.5 Default Reasoning

In 1980, within the setting of first order logic, Raymond Reiter [161] presented

a formalism for encoding so-called defaults. Defaults, intuitively speaking,

enable the representation of the plausible conditions under which a conclusion

(first order sentence) could be entailed by a first order theory (KB).

2.5.1 Basic Default Logic

A general default is of the form α:β
γ

where α, β and γ are respectively the

prerequisite, justification and consequent of the default. Defaults can be read

as “if α holds and it is consistent to assume that β holds, then γ plausibly

holds (i.e., we can believe γ)”.

The phrase “consistent to assume that” is the critical part of the defi-

nition of a default and is given a formalisation by Reiter in his work. The

following example of a default, Student(x):¬TaxPayer(x)
¬TaxPayer(x) , encodes that, given a gen-

eral student x, if it is consistent to assume that x does not pay taxes, then

it is plausible to conclude that it doesn’t.

Defaults of the form α:β
β

, like the above example, are called normal de-

faults. Those that contain free variables in α, β or γ are known as open

defaults, while those that don’t are called closed defaults.

Formally, a default KB is a pair 〈W ,D〉, whereW is a finite set of first order

sentences, and D a finite set of defaults of the form discussed. For each

default δ = α:β
γ

s.t. δ ∈ D, Reiter explains that one can conclude γ from the

KB (written 〈W ,D〉 ` γ) if ¬β cannot be deduced from W together with

CHAPTER 2. BACKGROUND AND RELATED WORK 59

the other defaults in D. A more formal inductive definition is given in his

exposition [161, Theorem 2.1].

Reiter envisaged the primary use-case for his defaults as “meta-rules”

that one can apply to a first order KB to compute plausible extensions for it.

Indeed it is shown that there could be multiple extensions for a given default

KB because defaults can “interact” with each other.

Consider the default theory 〈W ,D〉 whereW = {EmployedStudent(x) =⇒
Student(x),EmployedStudent(john)} and D =

{Student(x):¬TaxPayer(x)¬TaxPayer(x) , EmployedStudent(x):TaxPayer(x)
TaxPayer(x)

}.
There are two extensions of 〈W ,D〉 that are incompatible. In one, we

deduce that john is a student and apply the first default deriving that john

is not a tax payer - the formula ¬TaxPayer(john), and in the other, we notice

that john is an employed student and apply the second default deriving that

john is a tax payer - TaxPayer(john).

Reiter showed that the case of multiple extensions implies that there

are clashes or undesired interaction between defaults [161, Corollary 3.4].

Furthermore, he showed that for general defaults there is a possibility of a

default theory to have no extension. This result led him to restrict his view

of practically applicable defaults to normal defaults. Indeed most, but not

all [165], naturally occurring examples of defaults are normal ones.

It is important to note that Reiter intended his formalism for deriving

plausible beliefs. That is, for a sentence to be logically deducible in default

logic, there need only be at least one extension in which it appears - the so-

called credulous approach. This is in opposition to the skeptical approach of

other nonmonotonic logics which require the formula to be in all extensions.

Applied to the student and employed student example above, default logic

states that john being a tax payer is a plausible inference to make from the

KB, and one can choose to pursue this line of reasoning when continuing to

derive more beliefs. Nevertheless, it is also plausible to derive that john is

not a tax payer since there is an extension to prove this as well. The user

ultimately decides which option to adopt further. We now turn our attention

CHAPTER 2. BACKGROUND AND RELATED WORK 60

to defaults applied to DLs.

2.5.2 Defaults Embedded in Description Logics

In the 90s, Baader and Hollunder attempted to embed Reiter’s defaults into

terminological formalisms (DLs) [11]. They consider the case where 〈W ,D〉
represents a default theory in whichW is a DL (ALCF in their investigation)

KB and D is a finite set of open defaults.

In Reiter’s treatment of open defaults, Skolemization is needed to make im-

plicit individuals (introduced through existential quantification) explicit in

the theory. To see why this is necessary, we give an example for the DL case:

Example 9 Let 〈W ,D〉 = 〈{∃hasFriend.Student(john)}, {Student:¬EmployedPerson
¬EmployedPerson

,
Student:∃hasFriend.Student
∃hasFriend.Student }〉 be a default theory.

In Example 9 on Page 60, without an individual in our theory known to be a

student, our defaults’ prerequisite conditions are not met and the rules cannot

“fire” to derive plausible inferences about students. However, the existential

role quantifiers in W and D do introduce implicit student individuals into

our theory.

The idea is to make these individuals explicit in the KB so that default

reasoning can give the desired inferences. The way we accomplish this is

through skolemization, i.e., the introduction of skolem functions to act as

placeholder terms for the implicit individuals. See Reiter’s’ exposition [161,

Section 7] for details of how the functions are defined.

SkolemizingW , we obtainW ′ = {hasFriend(john, lily), Student(lily)} (by

introducing the skolem constant lily). We also have to introduce a unary

skolem function for the consequent of the default with existential quantifiers.

We can derive that lily is unemployed: ¬EmployedPerson(lily), and that john

has a friend who is unemployed: (∃hasFriend. ¬EmployedPerson)(john).

We can also derive that john has a friend, who has a friend that is a

student (∃hasFriend. ∃hasFriend.Student) (john). 2

CHAPTER 2. BACKGROUND AND RELATED WORK 61

Even though Skolemization helps to derive inferences that might otherwise

have been lost, it is not without its problems. In particular, Skolemization

can lead to strange and counter-intuitive inferences [11]:

Example 10 Let 〈W ,D〉 = 〈{(∃hasSpouse.Woman t Bachelor)(john),

hasSpouse(john, sarah), Woman(sarah)}, { :¬Woman
¬Woman

}〉 be a default theory.

In order to identify the individuals that the default :¬Woman
¬Woman

can be applied to,

we have to skolemize the ABox assertions. Skolemizing ∃hasSpouse.Woman

gives us two additional assertions: hasSpouse(john, david) and Woman(david).

Semantically, this narrows down our view to those interpretations of our

ABox in which john has a spouse named david and david is a woman. But,

because of the disjunction in (∃hasSpouse.WomantBachelor)(john), we find

that it is perfectly acceptable for david not to be a woman in a model of our

extended ABox.

Therefore, the “woman” default can fire and we can derive ¬Woman(david)

and therefore, in order to satisfy (∃hasSpouse.Woman t Bachelor)(john) we

have to accept that john is a bachelor - Bachelor(john), even though there

is clear evidence in the ABox that he has a female spouse (sarah is a spouse

of john and she is a woman). 2

The problem in Example 10 on Page 61 is caused by not keeping track of

what the skolem terms represent in the translated formulae. David Poole

offers a solution to keep track of the skolem translation [154] using Hilbert’s

ε-symbol.

However, skolemization has other types of counter-intuitive inferences [11]:

Example 11 Consider the two ABoxes: A1 = {(∃R.(A u B))(a)} and A2 =

{(∃R.(A u B))(a), (∃R.A)(a)} and their skolemised versions, A′1 = {R(a, b),

(A u B)(b)} and A′2 = {R(a, c), (A uB)(c),R(a, d),A(d)}.

Notice that A1 is logically equivalent to A2. Given an open default {A:¬B¬B },
we can apply it to the individual d in A′2 to obtain ¬B(d) and, hence,

CHAPTER 2. BACKGROUND AND RELATED WORK 62

(∃R.¬B)(a). However, this is not a consequence of A′1 (even though A1

and A2 are logically equivalent). 2

Lifschitz [122] adopts a model-theoretic approach to open defaults which

avoids the problems caused by Skolemization. Unfortunately, his approach

is not easily amenable to algorithmic construction. Moreover, there are “un-

expected” inferences obtained in this approach for some special cases (see

Section 3 of the work by Baader and Hollunder [11]).

On the other hand, considering the proposal of Baader and Hollunder,

even without the problems of Skolemization, computing extensions for theo-

ries for a finite W and D still leads to undecidability [11, Section 4].

The authors therefore propose a restricted semantics in which defaults are

only applied to explicitly mentioned individuals in the ABox. The obvious

limitation is that one will not be able to derive some desired inferences, such

as those discussed in Example 9 on Page 60. The good news is that with

this restriction, decidability of computing extensions is retained and various

algorithms have been presented to this end [11, Section 5].

One such algorithm is implemented by Kolovski, Parsia and Katz [108] in

the OWL reasoner Pellet [182] and shown to have reasonable performance.

Despite the overall bleak outlook for defaults (in terms of being suitable

for practical use), there are some who felt that the representation part of the

formalism is very intuitive and still appropriate for integration into logics

such as DLs. This persistence led to the recent work by Sengupta, Hitzler

and Janowicz [177], who provided a new semantics for normal defaults.

Their resulting new notion of defaults (called free defaults) can be applied

to implicit individuals while still retaining decidability, improving on the

approach by Baader and Hollunder [11].

Another important issue surrounding defaults is the non-native treatment

of specificity. Consider the following example:

Example 12 LetW = {EmployedStudent v Student,EmployedStudent(john),

(EmployedStudent u ∃hasChild.>)(sarah)} and D =

CHAPTER 2. BACKGROUND AND RELATED WORK 63

{Student:¬TaxPayer¬TaxPayer , EmployedStudent:TaxPayer
TaxPayer

, EmployedStudentu∃hasChild.>:¬TaxPayer
¬TaxPayer }.

We obtain that john and sarah are plausibly tax payers, and also plausibly

not tax payers. Since sarah and john are both general students and also

employed students (with sarah even being a more specific type of employed

student that has a child), it should be reasonable to prefer applying the more

specific defaults to them.

That is, the defaults whose prerequisites most specifically characterise

them. This would mean that the third default would be preferred to apply

to sarah to derive that sarah is not a tax payer, and the second default

would be preferred to apply to john to derive that he is a tax payer.

Extensions determined by applying the other defaults to these individuals

should, arguably, be ignored. 2

It is widely accepted that respecting specificity (of the kind exhibited in

Example 12 on Page 62) should, in general, be a native attribute of defeasible

reasoning formalisms. Since this property is not native to Reiter’s default

logic, there have been attempts to introduce appropriate versions of priorities

on defaults that are taken into account when computing extensions [39, 37,

40, 12].

The approach by Baader and Hollunder [12], and those by Brewka [40],

are the most compelling proposals to date for handling specificity and pri-

orities in defaults. In general, priorities may be specified arbitrarily in these

approaches, i.e., left up to the user to decide. However, the priority ordering

on defaults induced by specificity of knowledge in W , is advocated as an

implicit presumption in reasoning.

Reiter’s original formalism also natively endorses transitivity, which leads

to undesired inferential behaviour [165]. If we have defaults expressing that

university students are usually adults (UniversityStudent:Adult
Adult

), and that adults

are usually employed (Adult:EmployedPerson
EmployedPerson

), then default reasoning admits the

conclusion that university students are usually employed. That is, if we had

an ABox assertion UniversityStudent(john) in our theory, then the theory can

CHAPTER 2. BACKGROUND AND RELATED WORK 64

be extended to include EmployedPerson(john).

Reiter proposes a solution to block transitivity by explicitly rewriting

defaults to break the transitive links between them [165]. For our university

student example, this approach would rewrite the default Adult:EmployedPerson
EmployedPerson

into Adult:EmployedPersonu¬UniversityStudent
EmployedPerson

.

The obvious issue with this solution is that it causes the introduction of

non-normal defaults, that is, defaults that do not share the nice computa-

tional properties that normal defaults do. For example, there is no guarantee

that default theories with non-normal defaults will have an extension [161].

Fortunately, in many cases, Reiter’s rewritings can avoid the introduction of

non-normal defaults.

2.5.3 Discussion

While Reiter’s default logic is very intuitive from a representational point-

of-view, his formalism is not practically useful “out-of-the-box”. Much of

the formalism has had to be significantly revised in subsequent work to be

suitable for DLs and to retain decidability. Some other relevant limitations

include the following:

Computational Complexity and Performance: Decidability is not a

guarantee of good practical performance. While many modifications to de-

fault logic are made to ensure decidability, there are very few attempts at

proving tighter bounds on computational complexity. Moreover, implemen-

tation of default logic has a very sparse representation in the literature.

In fact, to the best of our knowledge, there is only one contemporary

implementation by Kolovski, Parsia and Katz [108] with reasonable perfor-

mance. Yet, since their work, there has been a definite wane in implemen-

tation and development of tools for representing Reiter-style defaults in DL-

based ontologies. Hence, defaults have not been practically embraced, and

thus, its expected practical performance in ontology development settings

remains unclear.

CHAPTER 2. BACKGROUND AND RELATED WORK 65

Semantics: At the inception of default logic, Reiter himself admits that

a significant drawback to the proposal is that it lacked a model theory.

Lukaszewicz [126] later attempted to fill this gap and Etherington [66] built

upon his foundation. Delgrande, Shaub and Jackson [60] use the foundation

of Etherington and Lukaszewicz to define completely novel variants of default

logic, modifying what they deem are unintuitive aspects of the formalism.

While these efforts are all noble additions to the default logic thread in

defeasible reasoning, we argue that the kind of semantics they present are

not instructive as to the meaning of default rules themselves. That is, a

semantics in which we can interpret the meaning of a default rule in some

interpretation or model structure, is not given. Indeed it is perhaps a difficult

task to accomplish this seeing as defaults are encoded as inference rules.

We argue that this situation leads to the following unpleasant consequence

of default reasoning research. That is, there is no general consensus on which

variant (or combinations thereof) of Reiter’s logic is the most suitable as a

general nonmonotonic formalism. The picture is even more fuzzy in the

context of DLs. Beyond the target of decidability (which has been met by

various modifications to default logic), the semantic characterisation of the

inferences that defaults give has not been standardised.

2.6 Minimal Knowledge and Negation as Fail-

ure (MKNF)

In the early 90s, Donini et al. [62] introduced epistemic operators, similar to

those presented in Autoepistemic Logic [142], into terminological languages

(the ancestors of DLs). This was in response to motivations by those such as

Reiter [163], Lifschitz [123] and Levesque [119] that terminological languages

should have epistemic querying capabilities. That is, viewing a KB as a set

of statements about an external world, one should be able to pose queries

about the external world that the KB is representing, as well as about what

CHAPTER 2. BACKGROUND AND RELATED WORK 66

the KB itself knows about the external world.

A simple example is given using KB = {(∃owns.Dog)(susan),Dog v Pet}
which represents that susan owns at least one dog, and that dogs are pets.

One can ask the obvious query KB |= (∃owns.Pet)(susan)? (“does susan

own a pet?”) and obtain the obvious answer “YES”. However, one cannot

ask queries of the form KB |= (∃Kowns.KPet)(susan)? (“is there something

known to be owned by susan and known to be a pet?”), to which the system

should respond “NO” because there is no such evidence in KB.

2.6.1 DLs of MKNF

Current DLs of MKNF [63, 107] enrich standard DLs with two epistemic

operators on concepts, namely, K and A. The operator K (called the mini-

mal knowledge operator) can be used in front of a concept C to obtain KC,

which intuitively represents all those objects which are known to be C’s. In

contrast, the operator A represents a negation as failure [54] modality which

differs from K. The concept AC intuitively represents all those objects which

can be assumed to be C’s.

In order to capture default-like statements, AC is used with a negation in

front of it as in ¬AC, which represents the objects that cannot be assumed

to be C’s (notice the close correspondence with the meaning of a justification

in a default presented in Section 2.5). In fact, the default Student:¬TaxPayer
¬TaxPayer can

be encoded in the following DL axiom using the MKNF modalities discussed:

KStudent u ¬ATaxPayer v ¬TaxPayer.

Despite the similarities between MKNF and default logic, MKNF remains

a more general formalism in which one can encode defaults [110] and possi-

bly embed and study other nonmonotonic formalisms [125, 63]. In order to

encode so-called “minimal knowledge” and the “default-like assumption” of

negation as failure, the semantics of DLs with MKNF is built upon a more

general interpretation structure 〈I,M,N〉 where I = 〈∆, ·I〉 is a standard

DL interpretation and M, N are sets of standard DL interpretations.

We state the concept language of ALC with MKNF (ALCKNF) [63, Sec-

CHAPTER 2. BACKGROUND AND RELATED WORK 67

tion 2.2] here. Given a concept name A and role name R, one can define the

concept language of ALCKNF as:

C ::= A | > | ⊥ | ¬C | C u C | C t C | ∃R.C | ∀R.C | KC | AC

ALCKNF allows one to use the epistemic operators on roles as well which

gives us the role language:

S ::= R | KR | AR

The semantics is analogous to that of standard DLs until we get to concepts

(and roles) that include the epistemic operators. Atomic concepts and atomic

roles are interpreted in I analogous to standard DLs. That is, for a given

concept name A and role name R, AI,M,N = AI and RI,M,N = RI . For the

“non-MKNF” complex concepts we can extend this in the following way:

>I,M,N = ∆

⊥I,M,N = ∅
(¬C)I,M,N = ∆\CI,M,N

(C uD)I,M,N = CI,M,N ∩DI,M,N

(C tD)I,M,N = CI,M,N ∪DI,M,N

(∃R.C)I,M,N = {a ∈ ∆ | there is a b ∈ CI,M,N s.t. (a, b) ∈ RI,M,N}
(∀R.C)I,M,N = {a ∈ ∆ | for all b, (a, b) ∈ RI,M,N =⇒ b ∈ CI,M,N}

It is apparent that the above definition does not capture novel semantics

and is analogous to standard DLs. However, when we interpret concepts

(and roles) containing epistemic operators, we notice the first references to

the sets M and N . Intuitively, M and N are introduced to interpret the

minimal knowledge and negation as failure notions on concepts (hence the

assigned letters to name these sets):

CHAPTER 2. BACKGROUND AND RELATED WORK 68

(KC)I,M,N =
⋂
J∈M

CJ ,M,N

(AC)I,M,N =
⋂
J∈N

CJ ,M,N

That is, (KC)I,M,N denotes the intersection of the C’s in each interpretation

of the given “minimal knowledge” set of interpretations M (the key is that

the interpretation domain ∆ is fixed across interpretations). (AC)I,M,N is

interpreted analogously, but on the “negation as failure” set of interpretations

N . The meaning of “minimal knowledge” and “negation as failure”, as well

as the difference between K and A, in this context, becomes more clear when

we define what constitutes a model for an ALCKNF KB.

The axiom language of ALCKNF is the same as that of ALC. We have

subsumptions in the TBox and concept and role assertions in the ABox.

Satisfaction in an interpretation 〈I,M,N〉 is analogous to standard DLs.

We say that an axiom α is satisfied in a structure 〈M,N〉 if α is satisfied

in 〈I,M,N〉 for each I ∈ M. We extend this satisfaction definition to

TBoxes, ABoxes and, more generally, to ALCKNF KBs in an analogous way

to standard DLs. We now define a model for an ALCKNF KB:

Definition 4 (Model for ALCKNF KB) Let K be an ALCKNF KB. A

set of interpretations M is a model for K if the structure 〈M,M〉 satisfies

K and, for each set of interpretations M′ ⊃M,〈M′,M〉 does not satisfy K.

Therefore, Definition 4 on Page 68 enforces a notion of maximality to the set

of interpretations that satisfy the KB. Coupled with the interpretation of K

and A defined above, we can see that KC intuitively captures the C’s that

we know to be present in each (and every) interpretation that satisfies our

knowledge. One can see that this maximisation of the set of interpretations

that satisfy our knowledge actually captures a notion of minimal knowledge

about C’s.

Recall that one can encode defaults in DLs of MKNF. For example, one can

represent the information that “by default, students do not pay taxes” using

the axiom KStudent u ¬ATaxPayer v ¬TaxPayer. This MKNF encoding

CHAPTER 2. BACKGROUND AND RELATED WORK 69

intuitively means “if something is known to be a student and it cannot be

assumed to be a tax payer, then it is not a tax payer”.

The semantics of DLs with MKNF state that “known to be” means ap-

pearing in all applicable interpretations, and that “cannot be assumed to be”

means there is at least one applicable interpretation in which this assumption

is false. An employed student introduced in the KB who does pay taxes will

then be interpreted as conflicting with the ¬ATaxPayer predicate, and thus

be allowed to retain its tax paying property.

When translating prerequisite-free defaults into MKNF axioms, a new

concept has to be introduced into the translation [63, Section 3.1] to align

with the semantics of Baader et al. [11] (recall that, in the latter work of

Baader et al., defaults are only applied to individuals explicitly mentioned

in the ABox to avoid counter-intuitive inferences).

In addition to default representation, DLs with MKNF are useful for

representing integrity constraints [163]. Integrity constraints are statements

about what the KB should know (what it is required to know). For example,

one can add the integrity constraint KEmployee v AMale t AFemale [63,

Example 3.2] to a KB indicating that “any known employees should be known

to be either male or female”. This constraint will then force inconsistency of

the KB if an employee is added without explicitly mentioning their gender.

In summary, linking up with our philosophy on imperfect knowledge (Sec-

tion 2.3), we recall that incompleteness is unfortunately a general property

of knowledge. Since DLs with MKNF try to model this incompleteness more

abstractly than other approaches to defeasible reasoning, by distinguishing

between general constraints and explicitly known facts, they are, representa-

tionally speaking, very powerful formalisms for reasoning with exceptions.

2.6.2 Discussion

DLs with MKNF are indeed very expressive formalisms and add a new di-

mension to knowledge representation and reasoning with DLs. However, as

we now discuss, it seems that “with great power comes great complexity”.

CHAPTER 2. BACKGROUND AND RELATED WORK 70

Computational Complexity: In order to obtain decidable reasoning for

ALCKNF , Donini et al. [63, Section 4] adopted the strategy of reducing

reasoning in ALCKNF to reasoning in ALC. They tried to show that one can

represent the models for anALCKNF KB by a finite set ofALC KBs, in which

case reasoning can be executed on the latter and thus inherit decidability.

However, they found that such a representation does not exist in gen-

eral. Instead they identified a restricted subset of ALCKNF KBs for which

such representations exist. While this subset might capture a large sub-

set of realistic KBs, it definitely omits other perfectly reasonable ones (see

Definitions 4.2 and 4.11 in their exposition [63] which give the criteria for

representable KBs). Even accepting these restrictions, though, a first upper

bound for complexity is identified as 3expspace [63, Section 4.3] which is

discouraging when compared with other defeasible reasoning approaches.

Representational Complexity: We also argue that, from the perspec-

tive of an ontology engineer, the usage of epistemic features in DLs has the

potential to be cognitively complex. It can be argued that the operators

themselves are intuitively simple to understand and, considering there are

just two extra operators, it is not a major departure from the feature set of

standard DLs.

However, in some cases it may lead to cognitive burden in modelling.

Specifically, it is sometimes unclear which operator, K or A should be used.

For example, it is unclear whether the integrity constraint KEmployee v
AMale tAFemale is equivalent to KEmployee v KMale tKFemale.

2.7 Defeasible Logic

Defeasible logic is a formalism consolidated by Donald Nute [149] sharing sim-

ilar core ideas to that of John Pollock concerning defeasible reasoning [153].

The key representational elements of the logic are default-like sentences called

CHAPTER 2. BACKGROUND AND RELATED WORK 71

defeasible rules (one can also represent counterpart strict rules), as well as

specialised rules called defeaters which specify conditions under which defea-

sible rules may be overridden.

In order to better understand the intuition behind these constructs, it is

helpful to consider the philosophical underpinnings of defeasible logic. An

important perspective that both Pollock and Nute take in their treatises is

that whenever we represent knowledge as logical sentences, we have implicit

justifications for “believing” these statements that we write down. They

explain that some of these reasons are “conclusive” whereas others aren’t.

This allows one to draw a distinction between strict rules whose justifications

are all conclusive, and defeasible rules that have some inconclusive ones.

2.7.1 Basic Defeasible Logic

Defeasible logic is generally built upon propositional logic but can, in princi-

ple, be built upon richer languages. A defeasible logic theory or KB consists

of five components: a set of facts, a set of defeasible rules, a set of strict

rules, a set of defeaters and a priority relation (an acyclic and transitive

partial order in most formalisations) among defeasible rules.

Facts are statements about the domain represented by a literal (e.g. “john

is a student” represented by Student(john)). A defeasible (resp. strict) rule

r has the form r : A(r) =⇒ B(r) (resp. r : A(r) → B(r)) consisting of its

unique label r. A(r) is called the antecedent or body of r and represents a

set of literals and B(r) is a single literal called the consequent or head of r.

Rules may have no body but they always have a head.

An example of a defeasible rule is “Employed students generally pay

taxes” written as EmployedStudent(x) =⇒ TaxPayer(x). An example of

a strict rule is “All students have a student ID” written as Student(x) →
hasID(x). Defeaters, as mentioned earlier, are caveats that can prevent the

application of rules. Hence, it is important to note that defeaters do not aid

in drawing conclusions, rather, they are used to prevent some. Similar to

rules, they have the form A(r) ; B(r) where A(r) is called the antecedent

CHAPTER 2. BACKGROUND AND RELATED WORK 72

or body of r and represents a set of literals and B(r) is a single literal called

the consequent or head of r.

Defeaters are required to have both a head and a body. An example of

a defeater is “Employed students who are actually university teaching as-

sistants might not be obliged to pay taxes” written as EmployedStudent(x),

TeachingAssistant(x) ; ¬TaxPayer(x). We also may need to specify priorities

among rules. For example, given rules r1 : Student(x) =⇒ ¬TaxPayer(x),

r2 : EmployedStudent(x) → Student(x) and r3 : EmployedStudent(x) =⇒
TaxPayer(x), and a fact f1 : EmployedStudent(john), there is a conflict

between r1 and r3 when applied to f1. If we apply r1 then we derive

¬TaxPayer(john), while applying r3 gives us the contradictory conclusion

TaxPayer(john). It makes sense to prefer applying r3 over r1 since r3 is

applied to the more specific information about john (that he is employed).

We can specify this preference using r3 > r1.

Just like default logic, defeasible logic follows a fixed-point construction

in deriving inferences. Recall that the inference mechanism of default logic

worked by applying default rules in an arbitrary order to derive extensions.

During the application of rules in a particular ordering, other rules may

become blocked and a fixed point is reached when no other rules can be

applied. The goal is to compute all such fixed points or extensions of the

given KB, or sometimes to just determine if a given formula appears in any

of these extensions.

In defeasible logics, the inference mechanism is, in principle, slightly dif-

ferent because of the added defeater constructors. Additionally, given a

propositional atom q and a defeasible logic KB K, we have four different

types of conclusions one can draw about q: (1) “+∆q” which means that q

is definitely provable from K (i.e., purely from the facts and strict rules) (2)

“−∆q” which means that q can be shown to not be definitely provable from

K (3) “+δq” which means that q is defeasibly provable from K and (4) “−δq”
which means that q can be shown to not be defeasibly provable from K.

Conclusions are thus meta-theoretical statements about provability and

CHAPTER 2. BACKGROUND AND RELATED WORK 73

not part of the language of defeasible logic. Suppose we are given a defeasible

logic theory K = 〈F,R,D,>〉 where F is the set of facts, R is the set of rules

(both defeasible and strict), D is the set of defeaters and > is the priority

relation onD. Then the first two (strict) conclusion types are derived through

the following inference rules:

• +∆q: q can be definitely proved from K if either q ∈ F or there is a

strict rule r ∈ R with q as the head and, for all antecedent atoms a in

r, a can be definitely proved from K.

• −∆q: q can be shown to not be definitely provable from K if q 6∈ F and

for each strict rule r ∈ R with q as the head, there is an antecedent

atom a in r s.t. a can be shown to not be definitely provable from K.

The two rules have recursive definitions with a straightforward meaning (the

terminating case of recursion is when we find compatible knowledge in our

fact base). The first rule says that we can definitely prove q if it is already

contained in our fact base, or it appears as the consequent of a strict rule

whose antecedents are all either satisfied or, when recursing on strict rules

who have these antecedents as consequents, we eventually reach a termination

point with all antecedents of a strict rule present in our fact base.

The second rule is just the complement of the first rule: we can show

that q is not definitely provable from K if it is not satisfied (not in our fact

base) and for each strict rule in which q is the consequent there is at least one

antecedent a in this rule that is not satisfied (not in our fact base) or, if all

antecedents a are satisfied for some rules, then we recurse on these by taking

those rules with a as consequent, examining their antecedents to eventually

terminate when we find an antecedent that is not in the fact base.

The two defeasible inference rules are more complex considering that we

have to take into account defeaters (we have to consider “opposing” chains

of reasoning) and priority relations among rules. As we shall see, these rules

also “interact” or “depend” on each other.

CHAPTER 2. BACKGROUND AND RELATED WORK 74

• +δq: q is defeasibly provable from K if either +∆q w.r.t. K, or (1)

there is a rule r ∈ R (defeasible or strict) with q as the consequent and

for each antecedent a of r, +δa w.r.t. K, and (2) −∆(¬q) w.r.t. K, and

for each s ∈ R∪D s.t. ¬q is the consequent of s, either (3a) there is an

antecedent a of s such that −δa w.r.t. K or (3b) there is a rule t ∈ R
(defeasible or strict) with q as the consequent s.t. for each antecedent

a of t, +δa w.r.t. K and t has priority over s (t > s).

• −δq: q can be shown to not be defeasibly provable from K if −∆q

w.r.t. K and (1) for each rule r ∈ R (defeasible or strict) with q as

consequent, there is an antecedent a of r s.t. −δa w.r.t. K, or (2)

+∆(¬q) w.r.t. K, or there is an s ∈ R ∪D s.t. ¬q is the consequent of

s such that (3a) for each antecedent a of s, +δa w.r.t. K and (3b) for

each t ∈ R (defeasible or strict) with q as the consequent, either there

is an antecedent a of t s.t. −δa w.r.t. K or t does not have priority over

s (t 6 >s).

We run through the inference rule +δq and skip discussion on −δq (the

latter is just the negation of the former). Firstly, if q is definitely provable

(derivable purely from the strict rules and facts) then it is intuitive that the

additional defeasible rules and defeaters should not interfere with this. That

is, it is intuitive to infer that it q is (defeasibly) provable even considering the

additional defeasible constructors as well.

Now supposing that we are given a defeasible logic KB K from which we

cannot derive q purely from the strict information. This means we have to

argue based on the defeasible information. Let us suppose that there are

no “attacks” on concluding q using the defeasible rules. Then, Point (1) of

the definition for +δq says that, considering the defeasible rules with q as a

consequent, if we can find one whose antecedents are all defeasibly provable

(at this point in the inductive definition, defeasibly provable here reduces to

the termination case of definitely provable) then we can conclude that q is

also defeasibly provable.

CHAPTER 2. BACKGROUND AND RELATED WORK 75

Now one has to consider possible “attacks” on concluding q. Point (2)

has to eliminate the attack which forces us to definitely prove ¬q (from the

strict information only) because this would clearly contradict with defeasibly

proving q. In addition, we have to consider all the possible defeasible rules

and defeaters that could possibly lead us to prove ¬q.
This is done in Point (3) and in order to endorse q we need to ensure

that, for each defeasible rule with ¬q in the head (allowing us to conclude

¬q), either: (a) there is an antecedent of such a rule that is not defeasibly

provable (here we refer to the complementary rule −δq whose terminating

case is −∆q), or (b) there is another defeasible rule whose head is q (allowing

us to conclude q) and it has higher priority then the one leading us to the

contradictory case ¬q.
We have given a very brief presentation of the mechanics of defeasible logic

including its language constructs and inference mechanism. More recently, a

very interesting investigation in defeasible logic by Antoniou et al. [3] revealed

that much of the constructs in defeasible logic are “syntactic sugar”. That

is, these constructs do not add any expressive power to the logic.

The authors found that for any well-formed defeasible logic KB (the pri-

ority relation is acyclic and only defined on rules with conflicting or com-

plementary heads), the KB can be reduced purely to a set of strict and

defeasible rules (absorbing the facts, defeaters and priority relation). There-

fore, representationally speaking, this logic closely resembles default logic

when restricted to normal defaults.

The main advantage of formalisms resembling that of defeasible logic are

its low computational complexity. It is been shown to have linear complexity

in the size of the defeasible logic theory [131]. However, the price that we

pay for such efficiency is that defeasible logic embodies a relatively “shallow”

reasoning paradigm, especially when compared to logics such as DLs. There-

fore, there will be some desirable intuitive inferences that defeasible logic will

be too weak to capture. Since our formalisms of interest are DLs, we have

to discuss the state-of-the-art in combining defeasible logic with DLs.

CHAPTER 2. BACKGROUND AND RELATED WORK 76

2.7.2 Combining Defeasible and Description Logics

Defeasible logic was originally designed as a proof-theoretic rule system with

a propositional base language used for antecedents and consequents in rules.

In terms of semantics, such characterisations (which came in a variety of

flavours [82, 130]) came much later in the development.

Thus defeasible logic, in principle, may be superimposed over a formal-

ism such as Description Logic. There have been various approaches that

accomplish this [1, 81, 195].

Wang et al. [195] and Antoniou et al. [1] took similar approaches by

proposing to place defeasible logic rules “on top of” a DL ontology. In the

rules one is allowed to express dl-literals (literals representing references to

concepts in the underlying ontology) only in the antecedent of rules. Essen-

tially, the inference mechanism follows the same structure as presented in

Section 2.7.1 but when we have to check provability of antecedents that are

dl-literals (representing DL concepts), this is done using a DL reasoner with

respect to the underlying ontology. Thus, an applicable DL reasoner needs

to be embedded in the defeasible logic reasoner.

The approach by Governatori [81] appears a more natural combination

of defeasible logic with DLs. The set of ABox statements in the DL KB

constitutes the facts in a defeasible logic theory, the subsumptions are trans-

lated into strict rules and defeasibility is introduced by adding standard

defeasible rules to the theory. A KB in this hybrid theory has the structure

K = 〈A, T , R,>〉 where A is an ABox, T is a TBox, R is a set of defeasible

rules and > is the priority relation among the rules in R.

Governatori chooses ALC− to be the logic for A and T . This restricted

version of ALC omits existential role restrictions from consideration. There-

fore, since the only additional constructs over propositional logic that need to

be considered are universal role restrictions, he formulates additional infer-

ence rules (four types mirroring those presented in Section 2.7.1) for deriving

knowledge of the form (∀R.C)(a) where R is a role name, C is a concept

and a is an individual. In particular, only explicitly mentioned individuals

CHAPTER 2. BACKGROUND AND RELATED WORK 77

in A are considered in the inference mechanisms. The defeasible rule types

are defined as follows:

• +δ(∀R.C)(a): “all a’s R-successors are C’s” is defeasibly provable from

K if for each individual b mentioned in A, either −δR(a, b) (see speci-

fication of −δq in Section 2.7.1), or +δC(b) (see specification of +δq in

Section 2.7.1).

• −δ(∀R.C)(a): “all a’s R-successors are C’s” can be shown to not be

defeasibly provable from K if there is an individual b mentioned in A
s.t. +δR(a, b) and −δC(b).

Notice that the rules above loosely simulate the semantics of universal role

restrictions in DLs. Pothipruk and Governatori [155] later extend this ap-

proach to allow expression of existential restrictions in the KB but they do

not formulate inference rules for defeasible derivation of such information. In

summary, the combination of defeasible logic and DLs follows the basic model

of placing rules on top of an underlying DL ontology and using the inference

mechanisms of defeasible logic to draw conclusions using these rules.

The structure of rules and the inference mechanisms have to be modified

to take into account the additional richness of DLs and some restrictions

need to be placed on the expressive power of the combined system in order

to prevent counterintuitive inclusions.

Representationally speaking, defeasible logic appears to have a close re-

semblance with default logic. However, Antoniou et al. [2] show that a fairly

representative version of defeasible logic can be embedded in default logic,

suggesting that default logic may be a more general and inferentially powerful

formalism. Still, standard defeasible logic remains the most computationally

efficient nonmonotonic formalism in recent years, having a linear worst case

complexity in the size of the defeasible theory.

In addition to the presented integration efforts with DLs, defeasible logic

has also been applied in various other settings. Most notably in logic program-

ming [4] for which, it can be argued, it is more naturally suited. Even though

CHAPTER 2. BACKGROUND AND RELATED WORK 78

defeasible logic was not designed with a formal semantics in mind, various

semantics have been proposed subsequently. An argumentation-theoretic se-

mantics has been proposed by Governatori et al. [82] and a model-theoretic

semantics has been presented by Maher [130].

2.7.3 Discussion

Even though the combinations of defeasible logic and DLs attempt to closely

model the semantics of DLs in inference rules (e.g. for universal role restric-

tions), the resulting mechanism falls short in a number of ways from the

inferential power of DLs. This is because the inference rules alone cannot

make use of the richness of the DL and therefore the combined approach

inherits the same inferential weaknesses of standard defeasible logic.

Here is a simple instance of this weakness: given the set of DL subsump-

tions {C v D,¬C v D} (where C and D are DL concepts) one would be

able to conclude, using DL reasoning, that > v D (everything in the domain

is a D). However, translating this set into the corresponding strict rules

in {C → D,¬C → D} (where C and D are literals) we find that, using

defeasible logic, one cannot derive D (+∆D).

We have mentioned an extension of this approach [155] which allows ex-

pression of existential restrictions in rules. However, there is no accompa-

nying mechanism for deriving relevant inferences from these. In DLs, for

example, given the TBox {Student v ¬Employed} and the following ABox

{(∃hasFriend.Student)(john)}, one would be able to conclude that “john has

a friend who is not employed” ((∃hasFriend.¬Employed)(john)). However,

in the translation to defeasible logic we have the rule r : Student(x) →
¬Employed(x) and the ABox {(∃hasFriend.Student)(john)} from which we

cannot derive the inference that +∆(∃hasFriend.¬Employed)(john) because

there is no applicable inference rule.

In summary, defeasible logic was, by design, intended to be very com-

putationally efficient. As a result, its overt proof-theoretic flavour placed

much emphasis on justifying inference through proof strategy and argument.

CHAPTER 2. BACKGROUND AND RELATED WORK 79

In the end, the investigation of enriching its language of antecedents and

consequents, and taking such structure into account during inference, re-

mains under-developed. Finally, this has led to a more “shallow” reasoning

paradigm relative to other approaches.

2.8 Preferential Reasoning

In the late 80s to early 90s, Kraus, Lehmann and Magidor (KLM) [111,

117, 116] took to studying nonmonotonic reasoning from the standpoint of

the consequence relations that it should induce. This was quite a different

perspective from which to proceed when compared to many other approaches

to defeasible reasoning.

The basic motivation for this is that nonmonotonic formalisms define

approaches for deriving plausible inferences when knowledge is considered

imperfect (see Section 2.3), and since there may be various notions of plau-

sibility that one can define, there may be multiple definitions for entailment.

KLM argued that, even though there can be multiple notions of plausibility,

the consequence relations that each notion induces should at least satisfy

some basic logical properties in order to be called “rational” entailment.

In other words, they defined a standard for “rational” nonmonotonic en-

tailment [117, Section 3], so that future nonmonotonic formalisms can be

evaluated against this standard to understand their logical merit.

The resulting preferential approach, as it is often called, is this general

framework that we choose as the basis for our entire investigation in this

thesis. Throughout this thesis, unless otherwise stated, when we refer to

the term preferential, we are referring to the general framework introduced

by KLM to investigate defeasible reasoning. In the normal cases we refer to

this general framework by the phrases: “preferential approach”, “preferential

framework” or “preferential context” etc.

We motivate fully in Section 2.10 why we choose the preferential ap-

proach, over the other candidates presented in this chapter, towards the goals

CHAPTER 2. BACKGROUND AND RELATED WORK 80

of this thesis. For now, we start by giving a basic overview of the preferential

approach in the context of propositional logic. Thereafter, in Section 2.8.2,

we discuss the state-of-the-art in efforts to generalise this approach to DLs.

Section 2.8.2 is particularly important because it serves as the theoretical

basis of the work presented in this thesis.

2.8.1 Propositional Foundations

Nonmonotonic reasoning, as the name suggests, does not, in general, sat-

isfy the logical property of monotonicity. While there may also be various

other logical properties that nonmonotonic reasoning does not satisfy, KLM

diverted the focus by studying nonmonotonic reasoning from the perspec-

tive of the consequence relations it induces [111], in order to identify logical

properties that it should actually satisfy.

Their initial characterisations of nonmonotonic consequence relations con-

sidered KBs represented in classical propositional logic [111]. That is, given

a KB of sentences represented in classical propositional logic, the idea was to

characterise “suitable” nonmonotonic entailment relations to be able to con-

clude what classical propositional sentences would follow from this KB. The

suitability of the entailment relations was determined by investigating the

logical properties that they should satisfy. This can be seen as a meta-level

approach for introducing nonmonotonic reasoning into propositional logic.

However, KLM later took a different approach to introducing nonmono-

tonic reasoning in propositional logic. In this later work [117], the idea was

to enrich propositional logic with a kind of “defeasible implication” (i.e., a

connective on the object level), and then given a KB represented in the new

logic, to agree upon logical properties that this connective should satisfy, in

order to induce suitable nonmonotonic entailment relations for the new logic.

This perspective can be seen as an object-level approach for introducing non-

monotonic reasoning into propositional logic and is the one that we explore

further in this thesis.

In this latter investigation, KLM introduce a new connective |∼ into

CHAPTER 2. BACKGROUND AND RELATED WORK 81

propositional logic called conditional implication (also called defeasible im-

plication). The intended, intuitive meaning of the sentence p |∼ q is that p

usually implies q, where p and q are classical propositional formulas. They

use conditional KBs to encode knowledge about the domain of interest.

Definition 5 (Conditional KB) A conditional KB is a pair 〈TPL,DPL〉
where TPL is a finite set of classical propositional formulas and DPL is a

finite set of conditional implications.

Within this context, they agreed on a series of logical postulates (called the

KLM postulates) that they argue the connective |∼ should satisfy if it is

to induce suitable nonmonotonic consequence relations [117, Section 3]. We

restate the properties below for completeness:

(Ref) α |∼ α (LLE)
|= α↔ β, α |∼ γ

β |∼ γ

(And)
α |∼ β, α |∼ γ

α |∼ β ∧ γ
(Or)

α |∼ γ, β |∼ γ

α ∨ β |∼ γ

(RW)
α |∼ β, |= β → γ

α |∼ γ
(CM)

α |∼ β, α |∼ γ

α ∧ β |∼ γ

(RM)
α |∼ γ, α 6|∼ ¬β
α ∧ β |∼ γ

The property (Ref) stands for Reflexivity and it obviously captures that

α should be plausibly derivable from itself. (LLE) stands for Left Logical

Equivalence and captures that if α and β are indistinguishable, and γ can

be plausibly derived from α, then γ should be plausibly derivable from β as

well. The (And) postulate endorses that β∧γ is plausibly derivable from α if

both β and γ are plausibly derivable from α separately. The (Or) postulate

says that γ is plausibly derivable from α ∨ β if it is plausibly derivable from

α and β separately.

(RW) stands for Right Weakening and captures that if β is plausibly deriv-

able from α and γ is classically derivable from β, then γ is plausibly derivable

CHAPTER 2. BACKGROUND AND RELATED WORK 82

from α (notice that Right Weakening captures a kind of transitivity property

for |∼). The properties of Cautious Monotonicity (CM) and Rational Mono-

tonicity (RM) are perhaps the most interesting of the postulates because they

concern weakened versions of the property of Classical Monotonicity. Obvi-

ously, we would not like |∼ to satisfy classical monotonicity (because we are

interested in defining nonmonotonic consequence relations), but if it did, it

would satisfy the following property:

(M)
α |∼ γ

α ∧ β |∼ γ

(M) says that if γ is plausibly derivable from α, then γ is plausibly derivable

from α∧β for any formula β (whatever additional information I have, it can-

not force me to retract my conclusions). Monotonicity enforces cumulative

knowledge. That is, one can only build upon existing knowledge and cannot

retract old knowledge. Cautious Monotonicity weakens classical monotonic-

ity by stating that if I can plausibly derive γ from α, I can plausibly derive

γ from α ∧ β provided that I can also plausibly derive γ from β separately.

Rational Monotonicity is a related property which weakens classical mono-

tonicity by endorsing α ∧ β |∼ γ if γ is plausibly derivable from α and one

cannot plausibly derive ¬β from α. Both (CM) and (RM), then, define some

extra safety conditions under which we can endorse cumulative knowledge.

At this point, while we have described the postulates that the connective

|∼ should satisfy, we have not discussed how it is possible to evaluate a

particular consequence relation against these postulates to determine if it

satisfies them or not.

It is clear that given a KB K = {α1 |∼ β1, . . . , αn |∼ βn}, there are in

general many closures of K. That is, there are many supersets K′ of K that

satisfy the KLM postulates. For example given a particular K′ I can evaluate

whether it satisfies the (And) rule by verifying for each α1 |∼ β1 ∈ K′ and

α1 |∼ β2 ∈ K′ that α1 |∼ β1 ∧ β2 ∈ K′. We motivate why any nonmonotonic

DL should satisfy the KLM postulates in Chapter 3.

CHAPTER 2. BACKGROUND AND RELATED WORK 83

With an aim towards defining “rational” entailment regimes for nonmono-

tonic formalisms, KLM use the term rational consequence relation to refer

to a consequence relation that satisfies all the KLM postulates. They also

identified the most “conservative” rational consequence relation, that is, the

one endorsing the fewest (positive) plausible inferences. They coined this

relation the Rational Closure [117, Section 5] and provided a model-theoretic

description of Rational Closure using a “preference” style of semantics based

on the proposal by Yoav Shoham [180].

KLM also define entailment regimes based on consequence relations that

satisfy all the KLM postulates except for RM, such as Preferential entail-

ment [117, Definition 2.8] and Ranked entailment [117, Section 4]6. However,

considering the pragmatic goals of this thesis, these proposals are not suit-

able to consider because they define consequence relations which are mono-

tonic [117, Sections 2.4 and 4.2], and therefore defeats the purpose of a

defeasible reasoning paradigm which has to be able to revise knowledge.

Therefore, for this thesis, we focus on Rational Closure as a starting

point for developing practical systems for defeasible reasoning in the context

of DLs. The semantic foundation of preferential reasoning, and hence Ra-

tional Closure, rests on the notion of a ranked interpretation [117, Definition

3.8] (and we present a generalisation of this definition, for DLs, in the next

section). KLM also precisely define what an exception [117, Definition 2.20]

is, in terms of ranked interpretations, and we present a generalisation of this

definition in the next section for DLs. The notion of exception will prove to

be central to, and of vital importance for, generalising the KLM algorithm for

computing Rational Closure to the DL setting. It also proves to be essential

for giving novel (but related) algorithms for computing defeasible entailment

in the preferential framework for DLs.

6It was demonstrated by KLM that the notions of preferential entailment and ranked

entailment are actually identical [117, Section 4.2]

CHAPTER 2. BACKGROUND AND RELATED WORK 84

2.8.2 Description Logic Foundations

In this section we present the state-of-the-art when it comes to the theoreti-

cal foundation of preferential reasoning in DLs (or, equivalently, preferential

DLs). All relevant definitions and characterisations are adapted from the

work of Giordano et al. [71] and Britz et al. [41].

In preferential DLs, a new kind of subsumption relation @∼ is employed

in the language. Using @∼ , one can formulate subsumption statements of the

form C @∼D called defeasible subsumption statements or just defeasible sub-

sumptions, where C and D are classical ALC concepts. C @∼D is read as “C

is usually subsumed by D”. For our purposes, since we are interested in ALC,
our base language consists of the standard concept and axiom language for

ALC (Section 2.1.1) together with defeasible subsumption. Now, in order to

interpret defeasible subsumption statements we have to enrich the semantics

for classical DLs.

In classical DLs [10], the semantics is built upon first order interpreta-

tions. These interpretations vary on the elements which appear in the inter-

pretation domain (∆I) and the manner in which we assign terms to these

elements (and pairs of these elements in the case of roles) - defined by an

interpretation function (·I). In the preferential context, an additional compo-

nent on which the interpretations can vary, is introduced. This component

represents the manner in which we can order the elements of the domain,

using a modular ordering7 (≺I).

Definition 6 (Modular Order) Given a set X, a relation ≺ ⊆ X ×X is

modular if there is an ordering function o : X −→ N s.t. for every x, y ∈ X,

x ≺ y if and only if o(x) < o(y).

7Historically, this ordering started out as a partial order as a theoretical exercise and

led to the definition of preferential interpretations. Later, KLM defined the notion of

ranked interpretation which considered totally ordered, well-founded sets (those having a

minimal element) to which to map the elements of the domain, defining a “ranking” or

total order on the elements. In this thesis, we do not take such a general stance, we pick

a specific well-founded set - the natural numbers - to define our ranked interpretations.

CHAPTER 2. BACKGROUND AND RELATED WORK 85

Intuitively, the ordering on domain elements can be seen to reflect the “typ-

icality” or “normality” of the element w.r.t. all possible properties that it

can possess. We elaborate more on this later in this section. Interpretations

whose ordering on domain elements respects Definition 6 on Page 84, are

known as ranked interpretations [117].

Definition 7 (Ranked Interpretation) A ranked interpretation is a struc-

ture R := 〈∆R, ·R,≺R〉, where 〈∆R, ·R〉 is a DL interpretation (which we

denote by IR and refer to as the classical interpretation associated with R),

and ≺R is a modular ordering on ∆R.8

Modular orderings allow us to “rank” the elements in the domain by assigning

a natural number to each element representing their “level” in the model.

However, function o in Definition 6 on Page 84 still allows for “levels” in our

ranked interpretation that do not contain any elements.

For example, let S = {x1, x2, x3, x4} be a set of elements, and let ≺
be a modular ordering on the elements of S defined s.t. x1 ≺ x2, x2 ≺ x4

and x1 ≺ x3. Then we can define an ordering function o (as described in

Definition 6 on Page 84) s.t. o(x1) = 0, o(x2) = 2, o(x3) = 2 and o(x4) = 4

which respects ≺. Notice that we have no elements in S on level 1 and level

3 of our ordering. In order to remedy this situation we define the rank of

a domain element in a ranked interpretation using a ranking function which

eliminates these empty levels:

Definition 8 (Rank of a Domain Element) Let R = 〈∆R, ·R,≺R〉 be a

ranked interpretation, the rank of an element x ∈ ∆R, denoted by rkR(x), is

the length of the chain x0 ≺R . . . ≺R x where x0 is any minimal element in

the ordering ≺R.

We can also refer to the top-most (highest) rank in a ranked interpretation:

8Given X ⊆ ∆R, we denote the set {x ∈ X | for every y ∈ X, y 6≺R x} with min≺R(X).

Intuitively, min≺R(X) denotes the most “typical” elements of X. That is, the elements in

X that are the most minimal in the partial ordering.

CHAPTER 2. BACKGROUND AND RELATED WORK 86

Definition 9 (Maximal Rank) Given a ranked interpretationR, the max-

imal rank (denoted by max(R)) of R is rkR(x) for some x ∈ ∆R s.t. there

is no y 6= x s.t. y ∈ ∆R and rkR(y) > rkR(x). Similarly, given a non-

empty set of ranked interpretations R = {R1, ...,Rn} where n > 0, the

maximal rank for R, denoted by max(R), is the largest number in the set

{max(R1), ...,max(Rn)}.

We point out that the bottom-most or lowest rank of any ranked interpre-

tation is always 0 unless otherwise stated. We sometimes refer to this rank

as the minimal rank of a ranked interpretation. Given the definition of the

rank of an element in a ranked interpretation, we can also define the rank of

a concept in a ranked interpretation as follows.

Definition 10 (Rank of a Concept in a Ranked Interpretation)

Given a ranked interpretation R, and a concept C, let RC = {rkR(x) | x ∈
CR}. Then, the rank of C w.r.t. R (denoted by rkR(C)) is the smallest

number in RC. If CR = ∅ then we say that C has no rank w.r.t. R or

equivalently that C has infinite rank w.r.t. R (denoted by rkR(C) =∞).

Given the semantic foundation we have laid, we can interpret defeasible sub-

sumption statements of the form C @∼D (see Figure 2.2 for a graphical rep-

resentation) using ranked interpretations. Technically, C @∼D is satisfied in

a ranked interpretation R if min≺R(CR) ⊆ DR (see Definition 7 on Page 85)

and we denote this by R
 C @∼D. We also say that R is a ranked model for

C @∼D (analogous to the classical DL case).

We can also interpret classical DL subsumptions C v D in ranked inter-

pretations in the usual way. That is, a ranked interpretationR = 〈∆R, ·R,≺R
〉 satisfies a subsumption C v D if 〈∆R, ·R〉 satisfies it, and we denote this by

R
 C v D (R is a ranked model for C v D). One can construct defeasible

KBs consisting of both classical and defeasible DL subsumptions.

CHAPTER 2. BACKGROUND AND RELATED WORK 87

∆R

c,d ¬c,d c,d

c,¬d ¬c,¬d

c,d ¬c,d c,¬d

(Typicality)≺R

〈∆R, ·R,≺R〉
 C @∼D

Figure 2.2: Satisfaction of a defeasible subsumption by a ranked interpretation.

Definition 11 (Defeasible KB)

A defeasible KB is a structure 〈T ,D〉 where T is a (possibly empty) finite

set of classical DL subsumptions, and D is a (possibly empty) finite set of

ALC defeasible subsumptions (called a defeasible TBox or DTBox).

We can extend satisfaction in a ranked interpretation to defeasible KBs as

well. A defeasible KB 〈T ,D〉 is satisfied by a ranked interpretation R if R
satisfies each subsumption in T ∪D. In such cases we say that R is a ranked

model for 〈T ,D〉. Based on Definition 10 on Page 86 we can extend the

notion of the rank of a concept to the context of a defeasible KB.

Definition 12 (Rank of a Concept w.r.t. a Defeasible KB)

Given a defeasible KB 〈T ,D〉 and a concept C, let R be the set of all ranked

models for 〈T ,D〉 and let RC = {rkR(C) | R ∈ R}. Then, the rank of C

w.r.t. 〈T ,D〉 (denoted by rk〈T ,D〉s(C)) is the smallest number in RC.

As discussed earlier, there is no unique version of entailment for nonmono-

tonic formalisms in general. Some formalisms such as Circumscription even

give the user of the reasoning system a degree of control in defining entail-

ment by supplying a circumscription pattern. In the preferential context we

also have multiple possible entailment proposals. Indeed, it can be argued

that different proposals can be suitable for different applications. Before

we explore this issue, we define the notion of entailment in the preferential

context that is analogous to classical DL entailment.

CHAPTER 2. BACKGROUND AND RELATED WORK 88

Recall that classical DLs consider all models for a given classical KB in

order to define entailment. The analogous proposal in the preferential context

is to consider what follows in all ranked models for the given defeasible KB.

This version of entailment is called ranked entailment and is a generalisation

of ranked entailment in the propositional setting [117, Section 4].

Definition 13 (Ranked Entailment) Given a defeasible KB 〈T ,D〉 and

a defeasible subsumption C @∼D, C @∼D is ranked entailed by 〈T ,D〉, written

as 〈T ,D〉 |=r C @∼D, if each ranked model for 〈T ,D〉 is also a ranked model

for C @∼D.

It turns out that ranked entailment is monotonic in the DL case as well [41,

Section 4], and this results in an entailment regime which is unsuitable for

defeasible reasoning which is supposed to be able to retract old knowledge.

However, before we explore the problem of defining appropriate versions of

entailment for preferential DLs, we have to formalise the central principle of

exception in this context, since this thesis is concerned with DL reasoning in

the presence of exceptions.

We recall that, in contrast to a standard DL subsumption C v D, which

we read as “all C’s are D’s”, the reading of the defeasible subsumption C @∼D,

is that “the most typical C’s are D’s” (see Definition 7 on Page 85 and accom-

panying footnote). It is the ordering on elements in a ranked interpretation

that allows us to isolate typical elements. The semantic paradigm which this

approach captures is very intuitive because it is one which we as humans

often employ (albeit in an implicit way). Consider the following example:

Example 13 Suppose that Bob and John are mechanics. If we don’t have

any other information then as humans we may implicitly regard Bob and John

as typical mechanics and assign to them properties that a typical mechanic

may possess. For example we may conclude that Bob and John both work in

a workshop. However, we may later discover that, while Bob works from a

workshop, John is actually a mobile mechanic and only repairs machinery at

the clients premises - which means he does not work from a workshop. One

CHAPTER 2. BACKGROUND AND RELATED WORK 89

may say that Bob is more typical than John w.r.t. the property of possessing

a workshop. What this means is that John is more exceptional than Bob

w.r.t. the same property. But what if we consider a different property of a

typical mechanic? We may consider a typical mechanic to have one or more

types of machinery that they specialise in. If we find that John indeed has

a specialisation in motorboats but that Bob does not have a specialisation

in any specific equipment types then we implicitly consider John to be more

typical than Bob in this context. 2

Example 13 on Page 88 raises an often asked question about typicality in the

context of ranked interpretations: given a ranked interpretation, what is the

motivation for its chosen typicality ordering of domain elements? It is an

interesting question because when it comes to the components of a standard

first order interpretation, it is not often motivated why one would choose a

particular interpretation domain rather than another.

Similarly, it is also seldom motivated why one would assign (or not assign)

a specific term from our vocabulary to an element of the domain. However,

when it comes to typicality orderings, a motivation for a particular ordering

choice is often demanded.

The preferential DLs that we consider give the following explanation:

given two elements x and y in some interpretation domain of a ranked inter-

pretation, if we choose to interpret x as less exceptional (more typical) than

y (written x ≺ y), we mean that we assume that there is a function or black-

box that is able to consider every conceivable property of x and y, aggregate

the exceptionality of x and y w.r.t. these properties, and in the end assign a

natural number to x and y representing their “degree of exceptionality”.

Thus x ≺ y (x is less exceptional than y) if the degree of exceptional-

ity of x is less than that of y. Essentially, the typicality orderings can vary

across ranked interpretations because evaluating typicality w.r.t. all conceiv-

able properties could be a subjective task.

Returning to Example 13 on Page 88, we show how the framework of

ranked interpretations handles multiple conflicting typicality orderings. If

CHAPTER 2. BACKGROUND AND RELATED WORK 90

we only had the constraint in our KB that typical mechanics work in a work-

shop (Mechanic @∼ ∃hasWorkshop.>) then, assuming that Bob is a prototypical

mechanic i.e., Bob ∈ min≺R(MechanicR) for some ranked model R for our

knowledge, then John has to be considered more exceptional (higher in the

ordering) than Bob in R.

Let us suppose that this is not the case. That is, perhaps Bob is considered

more exceptional than John, or they are considered equally exceptional. If

they are equally exceptional then we have a conflict with our knowledge,

because this tells us that John is also a typical mechanic and should possess

a workshop (whereas Example 13 on Page 88 tells us otherwise). If our

ordering dictates that Bob is more exceptional than John, then we have a

conflict with our assumption that Bob is a prototypical mechanic because it

means that John is lower down in our ordering.

Essentially, this means that the ranked interpretations whose ordering

functions dictate that John and Bob are equally exceptional, or that Bob is

more exceptional than John, are incompatible with our knowledge.

Similarly, if we only had the constraint that typical mechanics have a

specialisation (Mechanic @∼ ∃hasSpecialisation.>) then Bob is more exceptional

than John (assuming John is a prototypical mechanic). But what if we have to

satisfy both constraints? Suppose our background knowledge is that typical

mechanics work in workshops and that typical mechanics have at least one

specialisation. Consider three possible ranked models for this knowledge:

∆R(a)

x Andyspecialises

zworksIn

worksIn

Bob

yJohn
specialises

∆R
′(b)

Andy x

worksIn

specialises

specialises

Johnz

yBob

worksIn

∆R
′′(c)

Andy x

worksIn
specialises

Bob

Johny
worksIn

specialises

z

Figure 2.3: Multiple valid typicality orderings of ranked interpretations.

It is clear that if our background knowledge about mechanics is correct, then

there must exist at least one typical mechanic who satisfies both our con-

CHAPTER 2. BACKGROUND AND RELATED WORK 91

straints. If there isn’t, then we would be in a logically incoherent situation

and would have to revise or retract our statements (if no typical mechanics

exist then no mechanics exist). Since Example 13 on Page 88 makes mention

only of Bob and John, and both these individuals are missing one of the re-

quired properties, we have to conclude that there must be a third individual.

Let’s call him Andy and he is a very typical mechanic i.e. he possesses both

required properties by working in a workshop and specialising in automobiles.

Both Bob and John can then be seen as exceptional w.r.t. the prototypical

mechanic Andy. But how do we decide who is more exceptional between

Bob and John? The answer is that we don’t have to because Andy satisfies

our knowledge; Bob and John are exceptional to Andy so the exceptionality

distinction between them does not matter. The typicality orderings in the

ranked models (a), (b) and (c) in Figure 2.3 are all valid for our knowledge

and so we have to consider all of them.

A strong advantage of preferential logics is the behaviour represented in

Figures 2.2 and 2.3 where the ranked interpretations satisfy that the most

typical C’s (lowest in the ordering) are also D’s, but still allows some C’s

that are not as typical (higher up in the ordering) to not be D’s. This is the

ability to gracefully cope with exceptions - which is something that standard

DLs cannot.

Many fields such as biology and medicine deal with information which

holds in general but is fallible under exceptional circumstances. Given this

setting, biologists and medical professionals still have to draw conclusions and

make decisions based upon this information. Preferential DLs are developed

for applications of this kind. This leads us to a formal definition for concept

exceptionality in preferential DLs, which is a straightforward generalisation of

the definition given by KLM in the propositional case [117, Definition 2.20].

Definition 14 (Concept Exceptionality) Given a defeasible KB 〈T ,D〉
and a concept C, C is exceptional w.r.t. 〈T ,D〉 if 〈T ,D〉 |=r > @∼ ¬C. Each

subsumption C @∼D ∈ D (for any concept D) is also said to be exceptional

w.r.t. 〈T ,D〉.

CHAPTER 2. BACKGROUND AND RELATED WORK 92

That is, a concept C is exceptional w.r.t. a defeasible KB 〈T ,D〉 if there

is no ranked model R for 〈T ,D〉 s.t. there is an element x on the most

typical (bottom-most) level of the model that also belongs to CR (the most

typical elements in our models are not C’s). This intuitively captures that

C’s cannot be considered “prototypical” or “stereotypical” in any sense in

our models. Consider the following example.

Example 14 Let 〈T ,D〉 be a defeasible KB where:

T = {MobileMechanic v Mechanic,GeneralMechanic v Mechanic} and

D = {Mechanic @∼ ∃hasWorkshop.>,Mechanic @∼ ∃hasSpecialisation.>,
MobileMechanic @∼ ¬∃hasWorkshop.>,GeneralMechanic @∼ ¬∃hasSpecialisation.>}

It is easy to see that one cannot “realise” a MobileMechanic or GeneralMechanic

object on the bottom level of a ranked model for 〈T ,D〉. In other words, the

concepts MobileMechanic and GeneralMechanic are exceptional w.r.t. 〈T ,D〉.
This behaviour is intuitive because these concepts can be seen as exceptional

types of Mechanic that do not possess all the properties that one would typ-

ically associate with the latter. 2

We now define concept unsatisfiability in the context of preferential DLs. The

definition is analogous to the one for classical DLs. Interestingly, concept

unsatisfiability in this context also characterises a special case of concept

exceptionality.

Definition 15 (Ranked Concept Unsatisfiability) Given an ALC de-

feasible KB 〈T ,D〉 and an ALC concept C, C is ranked unsatisfiable w.r.t.

〈T ,D〉 if 〈T ,D〉 |=r C @∼⊥. We refer to C as totally exceptional w.r.t. 〈T ,D〉.

Notice that if 〈T ,D〉 |=r C @∼⊥ then 〈T ,D〉 |=r > @∼ ¬C. That is, total excep-

tionality is logically stronger than exceptionality. Also, total exceptionality

(or equivalently ranked unsatisfiability) is analogous to classical unsatisfia-

bility. This is easy to see because C @∼⊥ says that typical C’s do not exist,

which corresponds to saying that C’s do not exist (it is straightforward to see

that for any ranked interpretation R, R
 C @∼⊥ if and only if R
 C v ⊥).

CHAPTER 2. BACKGROUND AND RELATED WORK 93

On the other hand, > @∼ ¬C is logically weaker. It allows C’s to exist

but prescribes that the most typical things in our domain are not C’s. We

would like to draw a distinction between exceptionality and its special case of

total exceptionality. The need to distinguish between these will become more

apparent when we present algorithms for computing defeasible entailment in

Chapter 4. Hence, separating out the totally exceptional cases we can refer

to concepts that are normally exceptional.

Definition 16 (Concept Normal Exceptionality)

Given an ALC defeasible KB 〈T ,D〉 and an ALC concept C, C is nor-

mally exceptional w.r.t. 〈T ,D〉 if C is exceptional but not totally exceptional

w.r.t. 〈T ,D〉.

We have presented an overview of the semantic foundation for preferential

reasoning in DLs. Linking up with the pragmatic goals of this thesis, which

is to build practical reasoning systems upon this foundation, we have to give

an overview on the state-of-the-art in this regard.

2.8.3 Rational Closure for Description Logics

Recall that ranked entailment (Definition 13 on Page 88), in the DL setting,

is monotonic and therefore unsuitable for defeasible reasoning. However, in

the propositional setting, KLM presented the landmark entailment regime for

preferential reasoning, Rational Closure, which is not monotonic and enjoys

some elegant mathematical properties [117, Section 5].

Furthermore, KLM argue that Rational Closure is the most conservative

notion of nonmonotonic entailment that can be considered rational [117,

Thesis 1.1]. That is, a rational nonmonotonic formalism may endorse more

inferences than Rational Closure but it should at least endorse all Rational

Closure’s inferences.

Because of this, the main efforts to generalise preferential reasoning to

DLs have converged on generalising the definition of Rational Closure to

DLs. Indeed, this is probably the best starting point for defining defeasible

CHAPTER 2. BACKGROUND AND RELATED WORK 94

entailment in preferential DLs. KLM give several definitions for Rational

Closure in their seminal work, in terms of rational consequence relations [117,

Definition 5.7], ranked model semantics [117, Section 5.7] and the rank of a

(propositional) formula w.r.t. a conditional KB [117, Theorem 5.17].

The main efforts to characterise Rational Closure for DLs opted to gen-

eralise the definition based on the rank of a formula. Giordano et al. [71,

Definition 21] and Britz et al. [41, Definition 14] generalise the rank of a

propositional formula to the rank of a concept in DLs but w.r.t. a defeasi-

ble KB (recall that Definition 10 on Page 86 is a definition w.r.t. a ranked

interpretation).

Since KLM formulated their definition operationally (because the seman-

tic perspective was not their initial angle of investigation), the definitions of

Giordano et al. [71, Definition 21] and Britz et al. [41, Definition 14] mirror

this convention. Before we restate this definition we have to define the notions

of exceptional subset [71, Definition 19] and exceptional subset sequence [71,

Definition 20] of a defeasible KB.

Definition 17 (Exceptional Subset) Let K = 〈T ,D〉 be a defeasible KB.

Then, the exceptional subset of K (denoted by E(K)) is defined as 〈T ,Dexc〉
where Dexc = {C @∼D ∈ D | C is exceptional w.r.t. 〈T ,D〉}.

Definition 17 on Page 94 allows us to define a sequence of exceptional subsets

of a defeasible KB.

Definition 18 (Exceptional Subset Sequence)

Given a defeasible KB K = 〈T ,D〉, the exceptional subset sequence of K is

the sequence E0, E1, ..., En (n ≥ 0) where E0 = K and Ei = E(Ei−1) for

1 ≤ i ≤ n.

Informally, we start with the original KB E0 and obtain the set of all defea-

sible subsumptions in E0 that are exceptional. This subset will constitute

E1 and we recurse on E1 to obtain E2 and so on. The process is executed

until we reach a fixed point in which one of two things will happen for some

CHAPTER 2. BACKGROUND AND RELATED WORK 95

i: (1) Ei = Ei−1 (all the subsumptions in Ei are exceptional) or (2) Ei = ∅
(none of the subsumptions in Ei are exceptional). Given this exceptional-

ity sequence we can give an operational definition for the rank of a concept

(corresponding with the semantic one given in Definition 12 on Page 87) as

follows [71, Definition 21].

Definition 19 (Rank of a Concept w.r.t. a Defeasible KB)

Given a concept C, a defeasible KB 〈T ,D〉 and its exceptional subset se-

quence E = {E0, . . . , En}. Then, the rank of C w.r.t. 〈T ,D〉 (denoted by

rk〈T ,D〉p(C)) is the smallest 0 ≤ i ≤ n s.t. C is not exceptional w.r.t. Ei. If

C is exceptional w.r.t. Ei for each 1 ≤ i ≤ n then C has infinite rank denoted

by rk〈T ,D〉p(C) =∞.

The correspondence between the semantic definition (Definition 12 on Page 87)

and procedural definition (Definition 19 on Page 95) for the rank of a con-

cept has been shown by Giordano et al. [71, Proposition 13]. Therefore, the

following definition for Rational Closure (agreed upon by current generali-

sations of preferential reasoning for DLs), is actually a semantic definition

(see the work by Giordano et al. [71, Definition 22] and of Britz et al. [41,

Definition 15]).

Definition 20 (Rational Closure of a Defeasible KB) Given a defea-

sible KB 〈T ,D〉 and a defeasible subsumption C @∼D, C @∼D is in the Ratio-

nal Closure of 〈T ,D〉 (denoted by 〈T ,D〉 |=rational C @∼D) if rk〈T ,D〉s(C) <

rk〈T ,D〉s(C u ¬D) or rk〈T ,D〉s(C) =∞.

While Definition 20 on Page 95 arguably captures an intuitive and reasonable

form of entailment in the preferential context, it is still recommended to study

its characterisation in terms of ranked models in detail, in order to determine

its logical merit.

Recall that ranked entailment (i.e., all ranked models for our KB) was too

strong a notion of entailment. Rational Closure, then, narrows its view to

a subset of these models. It is important to note that this subset is not

CHAPTER 2. BACKGROUND AND RELATED WORK 96

some arbitrary one, and indeed, upon studying Rational Closure from other

perspectives (such as its consequence relation and its definition in terms of

the rank of a concept) one can appreciate that its model-theoretic charac-

terisation would, at the very least, be interesting if not suitable as a general

entailment regime. The current DL versions of Rational Closure point to a

characterisation in terms of minimal ranked models [71, Definition 25] similar

to the propositional case [117, Section 5.7].

Minimal ranked models are defined by placing a partial ordering on the

ranked models for the KB - this is in addition to the partial ordering on

the elements of the domain (see Figure 2.4 for an example). The minimal

〈T ,D〉 = 〈∅, {C @∼D}〉

I: c,d¬c,d ≺ J :
c,d

¬c,d

I is a minimal ranked model for 〈T ,D〉

Figure 2.4: Ordering ranked models in pursuit of the minimal ones.

ranked models in the partial order are those in which there is no element of

the domain that can be moved to a more typical level in the strata (i.e. if it

can be moved, then it is not possible without violating at least one axiom in

the KB). We adapt the definition for minimal ranked models here from the

work of Giordano et al. [71].

Definition 21 (Minimal Ranked Model) Let R = 〈∆R, ·R,≺R〉 and R′

= 〈∆R′, ·R′, ≺R′〉 be two ranked interpretations. We say that R is more

preferred than R′ if:

- ∆R = ∆R
′
,

- ·R = ·R′,

- for each x ∈ ∆R, rkR(x) ≤ rkR′(x) and there is a y ∈ ∆R s.t. rkR(y) <

rkR′(y).

CHAPTER 2. BACKGROUND AND RELATED WORK 97

Given a defeasible KB 〈T ,D〉 and a ranked model R for 〈T ,D〉, we say that

R is a minimal ranked model for 〈T ,D〉 if there is no other ranked model R′

for 〈T ,D〉 s.t. R′ is more preferred than R.

Further to Definition 21 on Page 96, Giordano et al. [71, Theorem 7] show

that there is a minimal ranked model R that is canonical [71, Definition 24

and Definition 25] for each consistent ALC defeasible KB 〈T ,D〉, that defines

Rational Closure. That is, R
 C @∼D if and only if 〈T ,D〉 |=rational C @∼D.

In fact, Giordano et al. show that there always exists such a canonical

ranked model for any consistent ALC defeasible KB and there will always

be more than one of these. Nevertheless, they showed that any one of these

models is sufficient to characterise Rational Closure. We are going to repeat

the definition of minimal canonical ranked model here, since it is essential

for characterising Rational Closure in ALC. However, before we do this, we

introduce some new terms.

Given a defeasible KB 〈T ,D〉 and a query axiom δ = C @∼D, we refer to

the set of all concepts and subconcepts occurring in 〈T ,D〉 and δ, together

with their negations, as the concept universe for 〈T ,D〉 and δ (always denoted

by C〈T ,D〉,δ). Given the notion of concept universe, we can define the subsets

of C〈T ,D〉,δ that are compatible with 〈T ,D〉.

Definition 22 (Compatible Concepts for a Defeasible KB)

Let 〈T ,D〉 be a defeasible KB and let δ = C @∼D be a query axiom. Then,

{C1, . . . , Cn} ⊆ C〈T ,D〉,δ is compatible with 〈T ,D〉 if 〈T ,D〉 6|=r C1 u C2 u
. . . u Cn v ⊥.

Definition 22 on Page 97 leads us to a succinct definition for a minimal

canonical ranked model for some defeasible KB 〈T ,D〉.

Definition 23 (Minimal Canonical Ranked Model) Let 〈T ,D〉 be a de-

feasible KB and R be a minimal ranked model for 〈T ,D〉. Then, R is

a minimal canonical ranked model for 〈T ,D〉 if for each compatible subset

{C1, . . . , Cn} ⊆ C〈T ,D〉,δ, there is an x ∈ (C1 u C2 u . . . u Cn)R.

CHAPTER 2. BACKGROUND AND RELATED WORK 98

Giordano et al. [71, Theorem 7] have shown that the Rational Closure of

each ALC defeasible KB, that has a ranked model, can be characterised by

a single canonical ranked model. The semantics for Rational Closure is then

defined by this minimal canonical ranked model.

From a pragmatic perspective, the first attempt at a procedure for com-

puting a defeasible entailment regime similar to Rational Closure (in the

DL case) was the effort of Casini and Straccia [51] for ALC. A substantial

advantage of this syntactic procedure was that it was composed entirely of

classical DL entailment checks. In contrast, Giordano et al. [75] present a

tableau calculus for constructing ranked models in their preferential exten-

sion of ALC, however, both these constructions do not compute exactly the

notion of Rational Closure we define in Definition 20 on Page 95.

Notwithstanding, all existing procedures for computing Rational Closure

in the literature, that are based on classical DL decision steps, are variants of

the syntactic procedure by Casini and Straccia. In fact, an updated variant

of this procedure is presented in Chapter 4 together with some alternative

forms of defeasible entailment for preferential DLs.

2.8.4 Rational Extensions of an ABox

In the literature for preferential DLs, the general arc has been to first “lift”

the theoretical foundation of KLM, from the propositional setting, to DLs.

Thereafter, the next step is to characterise and develop algorithms for Ratio-

nal Closure for the TBox (i.e., TBoxes that contain defeasible subsumptions)

and finally, to address entailment for ABoxes. Because of the difference in

structure of DLs (over classical propositional logic), ABox approaches lead

to a unique set of challenges.

In these approaches the task is to consider an extended notion of de-

feasible KB (we extend the structure 〈T ,D〉 to 〈T ,D,A〉 i.e., including a

classical ABox A) and to define what defeasible entailment means in this

context. That is, for the two main types of assertions C(a) and R(a, b) in

ALC, we have to define defeasible counterparts for these assertions so that we

CHAPTER 2. BACKGROUND AND RELATED WORK 99

can ask if a presumably can fall under the concept C (in the former assertion)

and if a is presumably related to b via R (in the latter), from 〈T ,D,A〉.
Giordano et al. [71, Section 3.3] and Casini et al. [50] presented both se-

mantic definitions and algorithmic constructions, based on these definitions,

for ABox Rational Closure in ALC. The basic intuition behind these efforts

is to consider the individuals mentioned in the ABox as typical as possible

(considering those ranked models in which the objects referred to by the

mentioned individual names are as low down as possible in the ordering).

A positive attribute of the semantics is that it has a similar flavour to the

semantics for TBoxes mentioned in the previous section and thus inherits

some attractive properties of the latter.

It can also be shown that the worst-case computational complexity of

their ABox procedure is the same as for TBox entailment [50, Proposition 3].

Although, upon an analysis of the algorithms in relation to one another, and

having experience of the nature and size of ABoxes in real-world ontologies,

it is expected that ABox entailment would not perform as well, in practice,

as the TBox procedures it is based on.

Despite the presence of a foundation for reasoning with ABoxes, there are

still some gaps to be filled in the area. The issue of how to handle implicit

individuals in the ABox, for example, arises in this context as well (echoing

the situation in default reasoning - see Example 9 on Page 60). We refer

the reader to the provided references for more detailed information about

preferential reasoning for ABoxes. We remind the reader that the primary

concern of this thesis is a practical foundation for preferential reasoning with

TBoxes. Therefore, we do not explore ABox entailment any further in this

thesis.

2.8.5 Discussion

Because of its relative immaturity to other forms of defeasible reasoning in

DLs, the preferential approach (and specifically its suitability for defeasible

reasoning in DLs) requires more investigation. As we have discussed in this

CHAPTER 2. BACKGROUND AND RELATED WORK 100

section, the preferential approach is a framework for defeasible reasoning.

The framework can be used for a variety of purposes: to study the logical

merit of nonmonotonic formalisms, to compare nonmonotonic formalisms

from the standpoint of their consequence relations and, of course, to build

entailment proposals on top of the framework (there is not just one notion

of entailment in the preferential framework).

Rational Closure defines a very useful defeasible entailment regime for

DLs and is, in our view, just as strong a candidate for TBox defeasible rea-

soning as any other defeasible formalism in the literature (if not superior in

some respects). However, for some situations where more adventurous rea-

soning is required, its inferential behaviour can be viewed as slightly weak.

Nevertheless, even in such settings, it is a suitable starting point from which

to investigate more adventurous entailment regimes for preferential DLs.

Alternatives to Rational Closure: In the efforts to lift the preferential

framework to DLs, Rational Closure was the first notion of entailment to be

lifted to the DL case. This is indeed very reasonable since Rational Closure

is the most conservative notion enjoying all the desirable KLM properties.

However, in some settings a more adventurous reasoning behaviour is re-

quired and Rational Closure can sometimes be too skeptical to give back

some of these more adventurous inferences. We give more detail about this

issue in Chapter 4.

Application to Inexpressive DLs: Another hindrance to the acceptance

of preferential DLs is that they have only been sparsely applied to low-

complexity DLs [70, 53] where the motivation for investigation is to identify

fragments of DLs that will yield tractable preferential reasoning.

CHAPTER 2. BACKGROUND AND RELATED WORK 101

2.9 Overriding

One of the more recent approaches to defeasible reasoning is the work by

Bonatti et al. [27] on giving a semantics for “overriding” in DLs. The ap-

proach is unique because it is targetted specifically at DLs. Their semantics

for overriding is actually a lightweight framework for extending an arbitrary

DL, say DL, with the ability to represent and reason with so-called defeasible

inclusions (DIs for short). The resulting extensions are called DLN .

From a representational point-of-view, the formalism is similar to prefer-

ential reasoning in the sense that we have two types of terminological axiom:

strict subsumptions and defeasible subsumptions. In overriding the authors

introduce a notion of DI (of the form C vn D) that is similar in style to

defeasible subsumption in the Preferential context.

The intended intuitive meaning of C vn D is “C’s are normally also D’s,

unless otherwise stated”. Bonatti et al. go on to define a unique notion of

entailment for DLN KBs and thus DIs have a unique intuitive meaning which

closely resembles that of Reiter’s defaults [161].

In the preferential case (Section 2.8), even though we had a single se-

mantics for defeasible subsumption, the intuitive interpretation of such sub-

sumptions can change based on which ranked model(s) we choose to define

entailment. That is, its intuitive interpretation can change from a skeptical

notion (typical C’s are D’s) in the case of Rational Closure, to a credu-

lous notion (C’s are D’s unless I explicitly know otherwise) in the case of

Lexicographic Closure.

Syntactically speaking, the only difference between a particular DL and

DLN is that the latter introduces a new concept name NC into the vocabulary

for each DL concept C. The idea behind these names is to refer to the normal

instances of a particular concept. That is, a DLN interpretation I is a DL
interpretation in which NCI ⊆ CI for every DL concept C.

Semantically speaking, satisfaction of strict subsumptions (of the form C

v D) in a DLN interpretation is defined analogously to the classical DL

case. Entailment is also defined analogously to the DL case. That is, the

CHAPTER 2. BACKGROUND AND RELATED WORK 102

sentences satisfied in each DLN model for a KB K, are what logically follow

from K. Bonatti et al. denote the subset of strict subsumptions in K with S
and a model for S ⊆ K is called a pre-model for K.

The essential difference in DLN , of course, is the definition for satisfaction

of a DI in a DLN interpretation. Recall that all approaches to dealing with

exceptions in KR formalisms must address two key issues. The first is to

define exception in their context and define a mechanism for dealing with an

exception to some default or defeasible information. The second is to define

a mechanism to specify and deal with priorities among default sentences that

conflict with each other.

In overriding these issues are dealt with by specifying the conditions un-

der which some DI can be safely overridden by a normality concept. The

normality concept then basically represents an exception to the DI. If we

ignore priorities among DIs for the time being (i.e., assuming all DIs have

equal priority), then a DI C vn D is overridden by a normality concept NX

in an interpretation I (w.r.t. a KB K) if each pre-model J for K is s.t. either:

1. there is an x ∈ NXJ s.t. x ∈ (C u ¬D)J or,

2. NXJ = ∅

For example, givenK = { EmployedStudentv Student, Studentvn ¬(∃receives.

TaxInvoice) }, one can observe that Student vn ¬(∃receives.TaxInvoice) is

not overridden by the normality concept NEmployedStudent because we can

construct a pre-model J of K s.t. for each x ∈ NEmployedStudentJ , x ∈
(¬Student t ¬(∃receives.TaxInvoice))J and NEmployedStudentJ 6= ∅.

However, adding EmployedStudent v ∃receives.TaxInvoice to K causes the

DI Student vn ¬(∃receives.TaxInvoice) to be overridden by NEmployedStudent

in each model for K because we cannot construct such a pre-model of K.

Things become a little more involved when we introduce priorities among

DIs. A priority relation ≺ is a strict partial order on the DIs in a KB.

Although this relation can be user-specified we restrict our attention to re-

CHAPTER 2. BACKGROUND AND RELATED WORK 103

lations determined by specificity [27, Page 11]: C1 vn D1 ≺ C2 vn D2 if and

only if |= C1 v C2 and 6|= C2 v C1.

For example, let K = { EmployedStudent v Student, Student vn ¬(∃receives.

TaxInvoice), EmployedStudent vn ∃receives.TaxInvoice, EmployedStudent u
Parent v ¬(∃receives.TaxInvoice) }. K contains two defaults where the one

with antecedent EmployedStudent has higher priority than the one with an-

tecedent Student (according to specificity).

When taking into consideration priorities among DIs, we have to intro-

duce a third condition to characterise overriding. The full conditions are

now provided in the following definition reformulated from Bonatti et al. [27,

Definition 1, p12]:

Definition 24 (Overriding) A DI C vn D is overridden by a normality

concept NX in an interpretation I (w.r.t. a KB K) if each pre-model J for

K is s.t. either:

1. there is an x ∈ NXJ s.t. x ∈ (C u ¬D)J or,

2. NXJ = ∅ or,

3. there is a DI C1 vn D1 ≺ C vn D s.t. { NW | for each x ∈ NW I,

x ∈ (¬C1 tD1)
I } \ { NY | C1 vn D1 is overridden in NY w.r.t. I }

6⊆ { NZ | for each x ∈ NZJ , x ∈ (¬C1 tD1)
J }.

Note that Definition 24 on Page 103 is recursive (condition 3 recursively

refers to overriding). Intuitively, condition 3 ensures that higher priority

DIs are satisfied unless they are explicitly overridden. Very informally, the

set { NW | for each x ∈ NW I , x ∈ (¬C1 t D1)
I } represents the set of

normality concepts that do not represent exceptions w.r.t. C1 vn D1 in I; {
NY | C1 vn D1 is overridden in NY w.r.t. I } represents the set of normality

concepts that explicitly override C1 vn D1 in I and { NZ | for each x ∈
NZJ , x ∈ (¬C1tD1)

J } represents the set of all normality concepts that do

not represent exceptions w.r.t. C1 vn D1 in a pre-model J for K.

CHAPTER 2. BACKGROUND AND RELATED WORK 104

For example, given the KB K = { EmployedStudent v Student, Student

vn ¬(∃receives. TaxInvoice), EmployedStudent vn ∃receives. TaxInvoice },
we can verify using Definition 24 on Page 103 that NStudent does not over-

ride Student vn ¬(∃receives. TaxInvoice) or EmployedStudent vn ∃receives.

TaxInvoice in all DLN interpretations I. We can also verify in the same way

that NEmployedStudent does override Student vn ¬(∃receives. TaxInvoice)

in some interpretations (recall EmployedStudent vn ∃receives.TaxInvoice ≺
Student vn ¬(∃receives. TaxInvoice) according to specificity).

Satisfaction of a DI in a DLN interpretation I is defined in terms of

overriding. We restate the definition here [27, Definition 2, p15]:

Definition 25 (DI Satisfaction) A DI C vn D is satisfied in an interpre-

tation I if each normality concept NX is either satisfied in I (for each x ∈
NXI, x ∈ (¬C tD)I) or NX overrides C vn D in I.

Given the semantic foundation, entailment for DLN is defined analogously

to classical entailment: a model for a DLN KB K is a model for each of

its DIs and strict subsumptions and we can derive a DI δ from K if and

only if each model for K is a model for δ (written as K |≈ δ). Bonatti et

al. [27] also give a syntactic procedure for deriving DIs from DLN KBs. For

pragmatic reasons, the procedure is restricted to KBs that do not contain

normality concepts of the form NC because reasoning with such cases must

take into account the infinitely many normality concepts in the language.

The worst case complexity for performing DI inference in ALCN is exptime-

complete (i.e., the worst case complexity of the underlying classical DL is

not increased).

2.9.1 Discussion

Overriding is a fairly recent proposal for defeasible reasoning in DLs. The

mechanism has been designed as a lightweight framework for extending any

classical DL to be able to represent and reason with DIs. There are a number

of strengths and weaknesses with this framework. Some strengths include

CHAPTER 2. BACKGROUND AND RELATED WORK 105

that it can be reduced to classical DL entailment under some restrictions

on the KB and query, reasoning is tractable for some low-complexity DLs,

the worst case complexity is not increased when extending a variety of DLs

ranging from ALC to SHIQ and there are implementations and performance

evaluations for low-complexity DLs.

Some weaknesses are that the language is perhaps too permissive which

results in restrictions having to be placed on the vocabulary of KBs in order

to guarantee certain desirable practical properties and to devise procedures.

This also leads to the observation that the semantic characterisation of the

DLN framework is perhaps not as conceptually elegant as other formalisms

such as default logic, circumscription and preferential reasoning.

As we shall also see in Chapter 5, overriding does not define a “rational”

entailment relation (according to KLMs notion of rationality). This places

some doubt over its inferential merit even though, in many representative

examples in the literature, it gives back the intuitively desired inferences.

2.10 Summary and Discussion

In this chapter we have discussed the evolution of various approaches to

defeasible reasoning and their contemporary application to DLs. We notice

that some proposals, such as circumscription, MKNF, preferential reasoning

and overriding, proposed new semantics and constructs in the object language

to deal with exceptions.

Other approaches such as default and defeasible logic opted to take a rule-

based (or argumentation-based) approach. MKNF did not plan to address

exceptions in a direct manner, rather, it addressed a more general underlying

problem which perhaps leads to exceptions in many circumstances. Its high

computational complexity remains a significant drawback.

Circumscription enjoys an intuitive semantics and is well studied in the

literature especially with respect to computational complexity. Unfortu-

nately, the computational results are not encouraging and, while there are

CHAPTER 2. BACKGROUND AND RELATED WORK 106

reasonable implementations, there are not many practically viable ones for

DLs. In addition, allowing full flexibility in the circumscription pattern is

perhaps too permissive if we want formalisms whose consequence relations

can be characterised to some degree using formal postulates.

Defeasible subsumption (preferential reasoning), defeasible rules (defeasi-

ble logic), defaults (default logic) and DIs (overriding) have a close relation-

ship in terms of what they intuitively want to represent. Even though default

and defeasible logics have various proposals for semantics, they suffer from

instability in terms of agreeing upon an interpretive model-theoretic seman-

tics. We argue that this fact contributes to some of the problems with these

formalisms such as counterintuitive conclusions and odd theoretical results

(e.g. general default theories do not have to have extensions [161]).

The preferential approach and overriding are much more clear than de-

fault and defeasible logic from a semantic perspective. Although, practical

algorithms and implementations are just starting to emerge in the literature

for the former proposals. It is clear, then, that all approaches to defeasible

reasoning in DLs have their strengths and weaknesses.

In selecting a suitable formalism for practical development in this thesis,

we have to agree on certain requirements for practical defeasible reasoning

in DLs. We advocate the following broad requirements: (i) the formalism

should have an intuitive representation, (ii) its inferential character must be

“sensible”, (iii) its complexity of reasoning must not be too much higher

than the underlying classical DL it is extending and (iv) it must be fairly

simple to implement and integrate into modern ontology editing systems.

In keeping with this philosophy, we have provisionally accepted the pref-

erential reasoning approach as the most viable candidate to address. This

is because the notion of defeasible subsumption is a representationally sim-

ple and intuitive construct. It is also the only extra expressivity added to

DLs. Since preferential reasonings were historically developed first from the

perspective of consequence relations, the formalisation of the inference mech-

anisms and semantics came later.

CHAPTER 2. BACKGROUND AND RELATED WORK 107

We believe this is a good thing. It gives a more abstract perspective of

defeasible reasoning behaviour and allows one to debate on the intuition and

merit of logical postulates, prior to formalising details of semantics and en-

tailment. A major advantage to preferential reasoning is its full reduction to

classical DL entailment. That is, if we extend any DL to be able to represent

defeasible subsumption, we can use any sound and complete reasoning im-

plementation for the underlying classical DL to perform defeasible inference

over the added feature of defeasible subsumption.

This independence of reasoning implementation is a very positive aspect

for a number of reasons and is a particularly strong advantage over most

other defeasible reasoning approaches to DLs. It means that existing DL

reasoners can be used off-the-shelf to perform defeasible inference and that

existing tools for ontology editing and reasoning are not difficult to extend

to be able to support defeasible inference (see Chapter 7).

2.11 Notation and Conventions

In this thesis we use the terms ontology and knowledge base (KB) inter-

changeably. We sometimes refer to the “classical counterpart” or “classical

translation” of a defeasible subsumption C @∼D or, respectively, set of defea-

sible subsumptions { C1
@∼D1, . . ., Cn @∼Dn }. These refer to the classical

versions C v D (respectively { C1 v D1, . . ., Cn v Dn }) of each construct.

Chapter 3

Requirements Analysis for

Defeasible Reasoning

From a practical and empirical perspective, the state-of-the-art of defeasible

reasoning research for DLs is not yet mature. One goal of this thesis is to

make some headway in this area (at least for the preferential approach) to

show that some formalisms are suitable for practical implementation and use

in modern ontology editing systems (even in their current state).

In this chapter we address two issues with defeasible reasoning for DLs:

(i) the lack of quantitative evidence for the need of defeasible reasoning in

DLs and (ii) the lack of a standard for the inferential “shape” of defeasible

reasoning in DLs. For (i), while there has been anecdotal evidence in the

literature which suggests a need for the representation of defeasible informa-

tion in real world ontologies, to the best of our knowledge there has been no

empirical work published to confirm or refute this. Therefore, we start off

by conducting a rudimentary empirical analysis of real-world ontologies to

give prima facie evidence supporting that there is, in fact, a general need for

representing defeasible knowledge.

Similarly, for (ii), there has been no investigation and standardisation

of which syntactic inference rules, satisfied by classical DL inference, should

be inherited by defeasible DL inference. We generalise the KLM formal

108

CHAPTER 3. REQUIREMENTS ANALYSIS 109

properties from the preferential reasoning setting in DLs, and motivate why

these properties should be satisfied by any defeasible notion of subsumption

(i.e. notion of default) for nonmonotonic extensions of DLs. We also discuss

some semi-formal structural properties that we motivate should be satisfied

by any defeasible entailment relation for DLs. We conclude with a discussion

about some gaps that need to be filled.

3.1 Need for Defeasible Description Logics

One cannot deny that there has been a solid plea in the literature for the capa-

bility of representing defeasible information using formal KR languages [158,

186, 93, 176].

The general argument indicates that classical KR languages are limited

when it comes to representing defeasible statements. Examples are used,

predominantly from the areas of biology and biomedicine, to motivate that

it would certainly be useful and desirable if KR formalisms were enriched to

be able to express information that is fallible w.r.t. exceptions.

Yet, for all the purported need for defeasible representation, there seems

to be no empirical evaluation of real world ontologies establishing this as an

irrevocable fact.

Here we conduct a rudimentary evaluation to uncover some quantitative

evidence which would indicate more clearly whether there is a need for defea-

sible reasoning. As one can imagine, there are a multitude of ways in which

to conduct this evaluation.

One obvious approach could be centered on a kind of user study, gath-

ering experiential information from the ontology engineer or domain expert

(the users of such systems). Such a study would certainly be fruitful in

giving indication of the need for defeasible reasoning but we instead take a

contrasting “bottom-up” approach since it is simpler to conduct and would

nevertheless give adequate preliminary indication of the need for defeasible

reasoning (that can be corroborated by future user studies).

CHAPTER 3. REQUIREMENTS ANALYSIS 110

We conduct a lexical analysis of ontology documents (explained in Sec-

tion 3.1.2) to identify some symptoms indicating a need for defeasible repre-

sentation.

3.1.1 Dataset

A key requirement of the data that we conduct our evaluation on, is variety

(since we wish to draw conclusions about the general need for defeasible

reasoning in real world ontologies). Ideally we would like to use ontologies

that are diverse in terms of domain (regardless of their structural properties).

The Manchester OWL Repository (MOWLRep) [135] is an initiative con-

cerned with building a framework for sharing OWL ontology datasets for use

in OWL empirical research. The main motivation behind the framework is to

provide data that is diverse and not biased for any particular experimental

application, thus hopefully making results more significant and extrapola-

tions more accurate.

We obtain a recent snapshot of MOWLRep for our evaluation here (as

well as in Chapter 6). MOWLRep itself currently consists of three main

ontology datasets: the Bioportal corpus of ontologies1, the Oxford Ontology

Library (OOL)2 and the Manchester OWL Corpus (MOWLCorp)3.

Whereas Bioportal and OOL are generally well known and established

corpora in the OWL community, MOWLCorp [132] is the culmination of

a recent OWL ontology curation effort by researchers at the University of

Manchester. The ontologies in this latter corpus were obtained through so-

phisticated web crawls and filtration techniques.

In our 2014 snapshot of MOWLRep, there are 344 ontologies in the Bio-

portal subset, 793 ontologies in the OOL subset and 20, 996 ontologies in the

MOWLCorp subset. In terms of the average ontology metrics (such as ontol-

ogy size and DL expressivity), we do not give them here because they have

1bioportal.bioontology.org
2cs.ox.ac.uk/isg/ontologies
3mowlrepo.cs.manchester.ac.uk/datasets/mowlcorp

CHAPTER 3. REQUIREMENTS ANALYSIS 111

little bearing on this kind of evaluation (we do, however, give such metrics

in our evaluation in Chapter 6 where these characteristics become relevant).

3.1.2 Experiment Setup

The Web Ontology Language does not natively support the expression of

defeasible information. What this effectively means is that any (logic-based)

axioms expressed in OWL ontologies are interpreted as universally true state-

ments about the particular application domain being described.

For the most part, this assumption is an acceptable one to make, but

in certain domains it is unsuitable because there may be exceptions to the

axiom. In domains where defeasible statements are more obviously required,

users may still (either advertently or inadvertently) indicate that defeasible

representation is needed through non-logical metadata constructs in OWL.

In this investigation we focus on OWL Annotations and the string rep-

resentations of entities (concept, individual and role names) in the OWL

ontology document to inform whether defeasible reasoning is either implic-

itly or explicitly called for.

OWL Annotations: The OWL 2 standard includes constructs in the lan-

guage called OWL annotations (also called OWL annotation axioms) which

can be added to ontologies to hold meta data descriptions of the ontology.

Most often, these annotation axioms are used in a very similar way to com-

puter programming comments. In other words, they are used to annotate

the different parts of the ontology with natural language descriptions of the

concepts, roles and axioms in the ontology, together with their utility.

OWL annotations can be attached to any entity (concept, role, individual

and axiom) in the ontology. In addition, one can attach multiple annotations

per entity. Figure 3.1 gives an example of annotation usage in an ontology

of MOWLRep indicating a need for defeasible representation.

When we mean that a particular symptom in an ontology “indicates a need

for defeasible representation”, we do not necessarily mean that the ontology

engineer intended defeasible representation from the start. What we mean is

CHAPTER 3. REQUIREMENTS ANALYSIS 112

Figure 3.1: An ontology in MOWLRep loaded into the graphical ontology editor Protégé

contains a class name which has an annotation indicating the need for defeasible repre-

sentation.

that their chosen representation most likely is a counter-measure or “work-

around” for the fact that defeasible representation is not supported in OWL.

In other words, using a suitable defeasible representation (for example

defeasible subsumption) one may be able to capture the intended meaning of

their representation in a more natural way. In fact, the modelling behaviour

in Figure 3.1 is a common strategy to work around the lack of defeasible

reasoning support. That is, the engineer creates separate classes to refer to

the canonical entities of a particular type and the exceptional entities of that

type. This strategy is actually embodied in a standardised ontology design

pattern (ODP) [186, Section 5.2].

Entity String Representations: logic, as a study of deductive processes, is

concerned with the “form” of propositions and not in their string represen-

tations (or the natural language meanings that we attach to these string

representations). Therefore, from the point of view of deductive inference,

the sentences EmployedStudent v Student are C v D are indistinguishable.

Of course, since OWL ontologies are also meant for transmission and

interpretation among humans, we need to know what the symbols in our

ontology represent in the real world on a lower level than their algebraic

semantics. Therefore, we often use natural language terms (for the concept,

role and individual names in our ontology) to refer to things we are describing.

CHAPTER 3. REQUIREMENTS ANALYSIS 113

We therefore look for clues in the lexical representation of concept and role

names in the ontology to indicate where the engineer wished to indicate de-

feasible information. For example, encountering an axiom like TypicalStudent

v ¬∃receives.TaxInvoice may indicate that the engineer would prefer a more

natural representation of the axiom using defeasible subsumption: Student

@∼ ¬∃receives.TaxInvoice.

Hence we conduct a straightforward string matching procedure on each

class, role and individual name (as well as annotations) in the ontologies of

MOWLRep. We specifically search for string expressions containing terms

that are related in natural language meaning to “exceptions”, “typicality”,

“abnormality” etc. We make use of both synonym and antonym terms to

get adequate coverage of the cases. In many cases we only need to search for

the “root” word e.g. “normal” and we automatically detect cases where the

words “normally” and “abnormal” occur.

The following list is exhaustive w.r.t. the root expressions that we search

for in the terms of the ontologies:

- “normal”, “abnormal”.

- “typical”, “atypical”, “prototypical”.

- “standard”, “non-standard”, “nonstandard”.

- “regular”, “irregular”.

- “except” (includes “exception” and “exceptional”).

- “usual”, “unusual”.

- “conventional”, “unconventional”.

- “canonical”, “non-canonical”, “noncanonical”.

- “anomalous”, “anomaly”.

CHAPTER 3. REQUIREMENTS ANALYSIS 114

When searching the concept, role and individual names in the ontology, we

want to ensure that we detect accurate cases such as “normalStudent” and

“typicalMammalianCell”. We also want to eliminate “false” hits for e.g. “nor-

mals” and “standards” (referring to vector normals in linear algebra and rel-

ative conventions respectively). Therefore, we add such cases manually as

exceptions to ignore in our search list of expressions.

We also ensure that we search only for cases where our root expressions

are not suffixes in the term. We conjecture that it is far more likely to be

a false hit when the root expression occurs as a suffix of the term. This

is because ontology engineers often adopt the convention of using nouns as

concept names. Since our root expressions are all adjectives, they would most

likely precede a noun in natural language grammar.

This strategy eliminates false hits such as “highStandard” and “longNor-

mal”. In our evaluation we found that the root expressions usually occur as

adverbs in role names (for e.g. “usuallyComposedOf” and “typicallyLocate-

dIn”). Figure 3.2 gives some examples of names in ontologies indicating need

of defeasible representation.

To summarise our methodology, we search for our root expressions in each

ontology document in MOWLRep. If an ontology contains a hit (an entity

contains the given expression either in a name or annotation) then we regard

the ontology as a successful hit. We count the number of ontologies that are

successful hits in MOWLRep.

3.1.3 Results and Discussion

Since our evaluation is of a rudimentary nature, the results can be accurately

summarised in the single table of Figure 3.3.

It is interesting to note the considerable percentage of ontologies of Bio-

Portal and OOL that contain hits (22% and 27% respectively). Also, it is

interesting that the ontologies of BioPortal do not contain any hits what-

soever in annotations. The numbers, we conjecture, suggest that there is a

significant need for defeasible representation in OWL ontologies. We have to

CHAPTER 3. REQUIREMENTS ANALYSIS 115

(a) An ontology about operating systems in MOWLRep indicating the

need for defeasible constructs.

(b) An ontology describing aspects about use cases containing a role name

which indicates need of defeasible expression.

Figure 3.2: Ontologies in MOWLRep loaded into the graphical ontology editor Protégé

containing names indicating the need for defeasible representation.

point out to the reader that there are factors in our evaluation which may

incorrectly inflate this significance. But there are also factors which may

incorrectly deflate this claimed significance.

CHAPTER 3. REQUIREMENTS ANALYSIS 116

Figure 3.3: Results for evaluation: “String” column indicates ontologies which contained

hits only in string names, “Annotations” column indicates ontologies which contained

hits only in annotations, “Both” column indicates ontologies which contained hits both in

string names and annotations.

A successful hit in our evaluation does not state unequivocally that there

is a definite need for defeasible representation in that ontology. There are

perhaps some hits for which this is not the case. However, we claim that in

most cases the hits connote a need for defeasible reasoning support (although

we defer a deeper analysis giving evidence for this). On the other hand

there are factors in the data which could understate the need for defeasible

reasoning. The most important one is that contemporary ontology engineers

may have learned to avoid modelling choices leading to symptoms displaying

a need for defeasible reasoning.

That is, because defeasible reasoning support is not available, work arounds

are created to model exceptions in alternative ways that do not require de-

feasible representation. In fact, conventions such as abiding by monotonic

knowledge representation [24, Page 9], and design patterns to model excep-

tions, have been developed to address this [186, Section 5.2].

Therefore, even though our evaluation is by no means a comprehensive

indicator that defeasible reasoning support is needed in OWL, the results add

some numerical value to the anecdotal examples in the literature motivating

the need for defeasible reasoning. Hence, in summary, we believe that the

numbers of our evaluation, together with the pleas in the literature, are

sufficient grounds from which to claim that the need for defeasible reasoning

in OWL is significant.

CHAPTER 3. REQUIREMENTS ANALYSIS 117

3.2 Inferential Character

At their core, classical logics all have a universally agreed upon character to

them: usually they consist of a language (a set of symbols) that may be com-

bined using specified syntactical and grammatical rules to form propositions

(logical sentences), together with some semantic machinery for interpreting

the meaning of these sentences in some model theory.

One unifying characteristic of classical logics with a model-theoretic se-

mantics is that entailment from a set of propositions (logical theory) is defined

as what holds in all models of the theory. However, as we know, classical logic

did not, historically speaking, start out with fully formed model theories.

Rather, there was simply a syntax for representing propositions. Entail-

ment was defined by formulated inference rules (born from the furnace of

hotly contested philosophical debate). Of course, Alfred Tarski then paved

the way for model theories with his definition for the logical truth of a propo-

sition relative to its satisfaction in a relevant “interpretation”.

Therefore, if we are concerned with what propositions follow from theories

expressed in classical logics, then we can study the question both from the

perspective of their model theories, and from the perspective of the properties

(inference rules) that these model theories actually obey.

Now there is an argument that, in the case of defeasible extensions to

classical formalisms, it is desirable to retain as many of these properties as

possible. I.e., the argument goes that the inferential character of defeasible

(or nonmonotonic) formalisms should only deviate from classical formalisms

where necessary in order to effectively take into account the exceptions.

KLM discussed which properties to retain for nonmonotonic inference

(specifically in the context of propositional logic) and agreed upon the ones

we recapped in Section 2.8.1. Reformulating these properties for the DL case

is a straightforward affair [42, Definition 2] but explicit motivation for why

they should be satisfied in this setting is still missing in the literature.

We address this concisely in the following subsections by using real world

examples to indicate why it is sensible for defeasible reasoning mechanisms

CHAPTER 3. REQUIREMENTS ANALYSIS 118

in DLs to satisfy these properties.

3.2.1 Formal Properties

We recap here the formal properties that should be satisfied by rational

nonmonotonic consequence relations interpreted in the context of DLs [42,

Definition 2]. While it has been argued by KLM that these properties should

be satisfied by nonmonotonic extensions of propositional logic, it has not

been sufficiently argued in the DL case.

Here we motivate with examples that it is sensible to require that these

properties be satisfied for nonmonotonic extensions of DLs as well. It is

important to note that we do not claim that these are the only properties

that should be satisfied by nonmonotonic extensions of DLs. Rather, we

recommend that these are the minimal properties that should be satisfied in

order to be called rational.

Of course, motivation of abstract properties of this nature in logic is a

philosophical matter. Hence, there are likely to be various competing per-

spectives to our own about these properties. Our general view is that we

are confident in the integrity of these properties as minimal requirements

of a rational nonmonotonic reasoning behaviour, but, at the same time, we

are open to possible variants of these properties. That is, if there are any

disagreements with these properties, it is more likely that they could be re-

solved with fairly minor modifications to the properties, rather than entirely

omitting any of them as requirements of rational nonmonotonic inference.

The properties we are discussing pertain to a notion of defeasible conse-

quence with respect to DLs. “Consequence” here can be interpreted on both

the object and entailment levels. As we know, in classical DLs, subsumption

defines the main notion of consequence (between DL concepts) on the object

level. Therefore, the properties we are going to present essentially define a

class of notions of (defeasible) subsumption (i.e., exactly those which satisfy

the properties themselves).

We define a defeasible conditional relation ; (a placeholder for our var-

CHAPTER 3. REQUIREMENTS ANALYSIS 119

ious possible notions of subsumption) as a binary relation on the concept

language for ALC. We recommend that any ; should satisfy the following

seven properties (the KLM properties) where C, D and E represent ALC
concepts:

(Ref) C ; C (LLE)
|= C ≡ D, C ; E

D ; E

(And)
C ; D, C ; E

C ; D u E
(Or)

C ; E, D ; E

C tD ; E

(RW)
C ; D, |= D v E

C ; E
(CM)

C ; D, C ; E

C uD ; E

(RM)
C ; E, C 6; ¬D

C uD ; E

One possible reading of the sentence C ; D is “D is plausibly derivable from

C”. In this sense, C ; D can be thought of as a general form for default

statements in DLs. We can either directly substitute or interpret default

statements from specific defeasible DL formalisms in this more general de-

fault form to evaluate the particular formalism against the above postulates.

We discuss the merit of any such notion of defeasible subsumption abiding

by these properties below, together with some motivating examples for the

context of DLs.

Reflexivity (Ref): The reflexivity property is quite uncontentious and intu-

itive. Since ; is considered here as a relation between ALC concepts, we

have to consider the semantics of concepts when interpreting this property.

Obviously, we know that classical subsumption respects (Ref) because a set is

always a (nonstrict) subset of itself. However, classical subsumption is mono-

tonic and is therefore not a relevant interpretation of ; for our purposes. ;

has to be interpreted as a defeasible notion of subsumption.

An important agreement to make is our natural language reading of ;,

i.e., the intuitive notion of defeasible consequence that this relation is in-

tended to capture on the object level. Given a conditional sentence C ; D

where C and D are ALC concepts we choose the reading “usually, objects

CHAPTER 3. REQUIREMENTS ANALYSIS 120

having the property C also have the property D”. It is clear, given this read-

ing, that (Ref) is a sensible constraint to satisfy for defeasible inference in

DLs. In fact, “usually, objects having the property C also have the property

C” is a tautological statement4 no matter our interpretation of usually.

Left Logical Equivalence (LLE): Left logical equivalence holds that, if two

sets are logically indistinguishable (contain the same elements), then either

set will share the same “default” properties.

For example, consider the concepts Student and Person u ∃enrolledIn.

EducationalInstitution representing the set of all students and the set of all

persons that are enrolled at some educational institution, respectively.

If the aforementioned concepts actually refer to the same set of objects

from the domain of discourse, and it is further known that students usually

don’t pay taxes, then nothing is preventing us from concluding that persons

who are enrolled at educational institutions also usually don’t pay taxes.

This is, of course, all predicated on the fact that we accept the constraint

|= Student ≡ Person u ∃enrolledIn. EducationalInstitution. That is, exceptions

are not permitted to this equivalence.

It then makes sense to attribute the properties typically associated with

Student, to Person u ∃enrolledIn.EducationalInstitution as well, since these are

just distinct names for describing the same set of entities in the domain.

(And): If it is known that Swedes are usually tall, and it is also known that

Swedes are usually blonde, (And) endorses the conclusion that Swedes are

usually both tall and blonde.

A description more reminiscent of the concept semantics of DLs is that: if

we can usually attribute the property of tallness and blondeness to the same

group of entities in the domain, then there appears to be no rational reason

to prevent both properties to be attributed simultaneously to the group.

In other words, no matter our formalisation of “usually”, we talk here

about two typical (although independent) properties of the same group (i.e.,

Swedes), and if we are willing to defeasibly attribute these properties to

4Note the hint at supraclassicality in the statement.

CHAPTER 3. REQUIREMENTS ANALYSIS 121

Swedes independently, then it makes sense to attribute them simultaneously

to this group.

(Or): If it is known that Swedes are usually tall, and it is also known in-

dependently that basketball players are usually tall, (Or) endorses that a

group of entities consisting of either Swedes or basketball players (or both)

are usually tall as well.

If we interpret this rule in the setting of propositional logic, it implies

that if independent premises lead to the same defeasible conclusion then

their disjunction is still sufficient to entail that conclusion. Essentially this

property defines a compelling condition under which a specific generalisation

or inductive inference can be made.

In other words, if I can attribute a default property to a number of (pos-

sibly disjoint) sets of these entities, then I can attribute the default property

to the union of these sets of entities. This is a fairly straightforward and

intuitive property to retain from classical logic.

Right weakening (RW): If it is known that mechanics are usually male, and

that males infallibly have a Y -chromosome, then (RW) will endorse the con-

clusion that mechanics usually have a Y -chromosome. In other words, it

makes sense to attribute to the typical properties of a group, all its univer-

sally true meta-properties.

An alternative description is that if I am ready to attach a plausible

attribute to a group of entities, then I should also be ready to attach to these

entities all strict (universally true) conclusions from this plausible attribute.

(RW) actually defines a property which is similar to transitivity for ;

even though it is not the natural translation of classical transitivity. A nat-

ural translation of the classical transitivity property for ; is:

(Trans)
C ; D, D ; E

C ; E

However, endorsement of (Trans) is perilous because, in the propositional

case, KLM have showed that, in the presence of (Ref), (LLE), (RW), (And),

(Or), (CM), (Trans) is equivalent to monotonicity [111] and, by application

CHAPTER 3. REQUIREMENTS ANALYSIS 122

of these aforementioned properties, it can easily be shown that this result

generalises to the DL case as well.

Of course, transitivity would not be a useful property to endorse for de-

feasible consequence because, for example, if high school dropouts are usually

adults, and adults are usually employed, one should not necessarily conclude

that high school dropouts are usually employed [165, Section 2]. In one par-

ticular interpretation of usually, this example alludes to the problem with

accepting (Trans). That is, just because I believe that high school dropouts

are usually adults, it does not mean that I believe that they are typical

adults. It may be that they are abnormal sorts of adults (w.r.t. to some

attribute). Therefore, the next statement: adults are usually employed, may

lose the transitive link with the first statement because we may be implicitly

referring to typical adults in the second statement.

Cautious Monotonicity (CM): The last two properties we discuss are perhaps

the most interesting and significant ones when it comes to defining defeasible

inference mechanisms. This is because these properties simulate “weaker”

forms of monotonicity.

In other words, the idea here is that just because we do not want defeasible

inference mechanisms to be monotonic in general (indeed that is the very

property we want to avoid in general), it shouldn’t mean that we should not

abide by some “cumulative reasoning” properties.

Classical monotonicity says that: “in all circumstances, all facts stated

before still have to hold and peacefully coexist with new facts as they come

to light”. In other words, in this case reasoning is always cumulative.

However, just because we do not want cumulativity to hold all of the time,

it does not mean that it is not a reasonable inferential behaviour in some

circumstances. Cautious monotonicity (and later Rational monotonicity)

are proposals for isolated circumstances in which monotonic (or cumulative)

reasoning behaviour is perhaps still sensible to inform defeasible consequence.

While C ; E is sufficient grounds for (M) to be able to endorse CuD ;

E (for any D), (CM) is more “cautious” by only allowing D’s that can be

CHAPTER 3. REQUIREMENTS ANALYSIS 123

plausibly derived from C. For example, one may accept that cakes are usually

delicious, and whereas this is sufficient information for (M) to conclude that

cakes made with rotten eggs are also usually delicious, (CM) will only allow

one to draw this conclusion if rotten eggs are a typical property of cakes

(which, as we know, they are not).

To give a positive example for (CM): if we accept that cakes are usually

delicious, then (CM) will accept that cakes containing sugar are also usually

delicious because the property of containing sugar can be plausibly attributed

to cakes themselves (i.e., cakes usually contain sugar).

Rational Monotonicity (RM): Rational monotonicity is inferentially stronger

(more permissive) than (CM). That is, (RM) poses weaker premises than

(CM) from which one can make the same cumulative inference. It holds

that given C ; E (E is plausibly derivable from C), as long as one cannot

plausibly derive the negation of D from C, then adding D to our knowledge

does not affect our plausibility of deriving E.

To use the cake example, if we know that cakes are usually delicious,

and we cannot say that cakes usually don’t contain salt (there may indeed

be recipes of cakes that contain a smidge of salt), then it is reasonable to

conclude that cakes containing salt are usually delicious.

Essentially, there is no indication in our premises that the ingredient of

salt is “abnormal” in cakes, and therefore, its presence in cakes shouldn’t

affect what plausible inferences we can draw about cakes in general.

It is worth mentioning that (RM) is slightly different in form to the afore-

mentioned properties in that it is a “negative” property. That is, it talks

about things that we don’t know in addition to what we know in its premises,

whereas the other properties only discuss what we do know.

This latter aspect of (RM) becomes more significant in Section 3.2.2 when

we discuss some semi-formal properties of nonmonotonic inference.

In conclusion, w.r.t. the properties discussed above, KLM recommend

that they be satisfied by any nonmonotonic ; that is to be considered “ra-

tional” and we agree with this view. Again, this is not to say that we believe

CHAPTER 3. REQUIREMENTS ANALYSIS 124

these are the only properties that such a relation should obey, but rather

that these are the minimal properties to respect.

Indeed our main argument, from the examples we have given, is that

there seems to be no reason not to obey any of these properties. Hence, if

any nonmonotonic consequence relation for DLs does not obey one or more

of these properties, it is likely to diminish the logical merit of this relation

(at least somewhat).

It is also worth mentioning that some of the properties mentioned in this

section are actually derived from other more elementary properties which are

documented in the literature [111]. In other words, satisfaction of certain

combinations of these elementary properties may imply satisfaction of one of

the properties discussed here.

3.2.2 Semi-Formal Properties

Although we have motivated that the logical properties in Section 3.2.1

should be satisfied by nonmonotonic extensions for DLs, it may make sense

for these extensions to satisfy additional logical properties as well. There has

been some interesting work (in the setting of propositional logic) to identify

some of these properties and also relate them to the existing ones [26].

Yet, beyond the realm of formal properties, there appear to be other

“inferential rules” that seem very reasonable to obey but are difficult to

describe in a formal sense. Such rules can, however, be explained intuitively.

Daniel Lehmann discussed five such rules in his exposition of Lexicographic

Closure for a defeasible extension of propositional logic [116].

We now discuss these properties in the context of DLs and motivate their

applicability in defining rational defeasible entailment regimes.

Presumption of typicality: Given concepts C, D, E and the premise C ; E,

supposing that C ; ¬D is not endorsed, we have to accept C u D ; E

according to (RM). However, if C ; ¬D is endorsed, we can either accept

or not accept C uD ; E. Either option is consistent with (RM).

Presumption of typicality prefers to endorse cumulativity unless there is

CHAPTER 3. REQUIREMENTS ANALYSIS 125

compelling evidence not to. That is, we prefer to endorse C uD ; E. For

DLs this means that we should be ready to treat any subclass of entities

of some more general class as typical members of this class, unless there is

explicit evidence to the contrary.

For example, suppose we know of a student named John, and we also

know that students usually don’t pay taxes. Assuming we have no other

information, we must endorse that it is plausible that John does not pay

taxes. If we later find out that John is employed then we should still endorse

that John plausibly does not pay taxes, because we do not know anything

about employed students which differentiates them from typical students.

In other words, given our information, there is nothing to suggest that

employed students are exceptional. This is the idea behind presumption of

typicality: presume that we are in a typical situation unless there is evidence

to the contrary. An example of such evidence for our example is, of course,

finding out that employed students are usually obliged to pay taxes. In such

a case we would realise that employed students are exceptional w.r.t. typical

students (because they conflict w.r.t. the property of paying taxes).

This is clearly a very reasonable property to endorse for defeasible in-

ference in a variety of situations. Not accepting this property would define

a more cautious or skeptical reasoning behaviour which may be desirable

in certain settings. However, if a more adventurous reasoning behaviour is

required, then presumption of typicality is a sensible rule to obey.

Presumption of independence: Presumption of independence takes a step

further from presumption of typicality. If I know that students usually don’t

pay taxes (Student ; ¬(∃receives.TaxInvoice)) but I also know that students

are usually not married (Student ; ¬(∃marriedTo.Person)), then should I

accept the conclusion that students who are married usually don’t pay taxes

(Student u ∃marriedTo.Person ; (¬∃receives.TaxInvoice))?

One argument is that we shouldn’t accept this conclusion because if stu-

dents are usually not married, it means that married students refer to an

atypical subclass of students, and it therefore seems reasonable in some sense

CHAPTER 3. REQUIREMENTS ANALYSIS 126

to be cautious in transferring the property of not paying taxes to these stu-

dents. However, presumption of independence endorses the conclusion that

married students usually don’t pay taxes. The argument for this is obvi-

ously that matrimonial matters and tax paying status are independent of

each other (from an intuitive perspective).

Yet another reading of this property can be: if no relationship is specified

between two classes of entities (representing default properties) then one can

presume that there is none. Therefore, just because a student is married, if

there is no evidence to suggest it, one should not assume that it affects their

tax paying status.

Priority to typicality: Sometimes the conclusions of presumption of indepen-

dence and presumption of typicality conflict with each other. The question

arises: which rule should we prefer in such circumstances?

Daniel Lehmann argues in the propositional case that one should give

preference to presumption of typicality. We agree with this view in the DL

case as well and motivate with an example.

Suppose we know that students generally don’t pay taxes. Suppose we

also know that students who are employed generally do pay taxes. Presump-

tion of typicality endorses the conclusion that students who are employed

and have children generally do pay taxes, because there is no other infor-

mation forcing us to derive that students who are employed generally don’t

have children (i.e., that employed students who have children are abnormal

employed students).

However, applying presumption of independence, we can derive that stu-

dents who are employed and have children generally do pay taxes (same as

above), as well as, the conclusion that students who are employed and have

children generally do not pay taxes.

The former conclusion is derived because we presume that the properties

of having children and tax paying status are independent. The latter conclu-

sion is derived because we presume that being employed and having children

is independent of tax paying status. Since it is clear that accepting both the

CHAPTER 3. REQUIREMENTS ANALYSIS 127

above conclusions is contradictory, we have to pick just one.

We therefore look to presumption of typicality to resolve the conflict

and accept whatever conclusion that this rule endorses. Presumption of

typicality cannot lead to the dichotomous conclusions that presumption of

independence can sometimes lead to, because the rule purely inherits the

properties of the typical members of the given antecedent class (and these

properties themselves will be consistent w.r.t. each other).

Respect for specificity: One may usually attribute some property to a general

class of objects, but, if some property of a subclass of these objects clashes

with the property attributed to the general class, then what should we do?

Should we prefer to “override” the property of the general class (i.e., prefer

information that is more specific) or should we prefer to retain the property

of the general class (i.e., reject the more specific information)?

Students usually don’t pay taxes, employed students are more specific

types of students and they usually do pay taxes. Even more specific than

employed students are those employed students who have children (they may

receive tax exemptions based on their situation). Note the violation of mono-

tonicity in this reasoning behaviour.

In other words, if I wish to draw some conclusion about the tax paying

status of a particular student, I should prefer to use the maximum knowledge

(the most specific knowledge) available about this student in order to inform

my conclusion. In this connection, we humans tend to regard inferences made

using more specific information about the premise, to be more sound than

inferences made using less (more general) information about the premise.

This is certainly rational behaviour and harks back to what we said about

incomplete knowledge in Section 2.3. That is, having incomplete knowledge

about a situation is often the very circumstance forcing us to make defeasible

statements in the first place. As the saying goes, “knowledge is power”, and

the more (reliable) knowledge we have about a situation, the more we should

trust the inferences drawn about it.

In other words, more specific information about a situation is more infor-

CHAPTER 3. REQUIREMENTS ANALYSIS 128

mation about it and would thus lead to more sound inferences about it.

Avoidance of junk: This property simply says that we should endorse the

least number of conclusions that are induced by the formal and semi-formal

properties on a starting set of premises. In other words, among all the

consequence relations satisfying all the properties, the ones we should choose

are those that are smallest (according to set inclusion).

3.3 Discussion

In this chapter we started off by giving quantitative evidence suggesting that

the need for defeasible representation in DL-based ontologies is significant.

We also motivated the main inferential properties that one should retain from

classical logics when moving to the defeasible case (for DLs).

While we argued for the minimal properties that defeasible mechanisms

should satisfy, there remains work to be done in studying properties that are

related to the aforementioned ones and comparing them in terms of inferential

strength a la Bezzazi, Makinson and Pérez [26].

There may also be novel semi-formal properties that one could introduce

to inform defeasible consequence in DLs. In this chapter we focused purely

on generalising Lehmann’s arguments for his five properties, in the propo-

sitional setting, to DLs. Another important issue is the formalisation of

Lehmann’s semi-formal properties. We hold that if such properties could not

be formalised in some way (even under certain restrictions or assumptions),

then their usefulness in defining sensible defeasible entailment is very limited

because we cannot definitively prove if a formalism actually satisfies them.

Investigations are also needed to establish performance requirements of

defeasible reasoning in DLs. Of course, once defeasible formalisms are adopted

and integrated into ontology editing tools, there will be more data from which

to extrapolate projections about this required performance.

Any comments thus far on performance can only be speculative in nature,

because there can be no strong indication of how much longer one should be

CHAPTER 3. REQUIREMENTS ANALYSIS 129

willing to wait for defeasible inference over classical inference.

Just as classical DLs have a series of popular standard and non-standard

reasoning tasks which users most often utilise to gain insight into their ontolo-

gies and attached data, defeasible DLs are yet to establish the most pertinent

standard and non-standard reasoning tasks for this setting.

We foresee that it is not just a straightforward reformulation of analo-

gous reasoning tasks for the defeasible context. Principles such as concept

unsatisfiability and ontology inconsistency would invariably have different

meanings in the defeasible context. Non-standard tasks such as classification

would also need to be reformulated and redefined for the defeasible case (if

these are actually interesting reasoning problems in the new context).

Finally, there may be other novel reasoning problems that are unique

to the defeasible case. For example, one may want to calculate the list of

exceptions (exceptional entities) in an ontology of defeasible statements. One

may also require to compute the hierarchy of exceptions (the exceptions-to-

exceptions taxonomy) of the ontology.

Such considerations need to be investigated and formalised, if need be,

in order to pave the way for integration and development of defeasible rep-

resentation and reasoning services for ontology editing tools.

Chapter 4

Algorithms for Defeasible

Reasoning

This chapter introduces algorithms for computing various notions of defea-

sible entailment within the context of preferential DLs. Each form of en-

tailment mentioned herein has its respective strengths and weaknesses, and

we discuss these when we present each proposal. A substantial advantage

to our algorithms are that they reduce to a series of classical DL entailment

checks, and hence, we start off this chapter by explaining how this reduction

works and why it is possible. We then establish an algorithm for deciding if

a defeasible subsumption is in the Rational Closure of a defeasible KB.

Section 2.8.2 explained that Rational Closure is the only known ratio-

nal consequence relation that exhibits both syntax-independence and a clear

model-theoretic definition. The remainder of the algorithms in this chapter

compute syntax-dependent variants of Rational Closure, which serve as alter-

natives to its cautious reasoning paradigm. While these algorithms all follow

the basic structure of the Rational Closure algorithm, they all have significant

differences from this basic structure. For each algorithm, we demonstrate the

computational complexity, termination, soundness and completeness.

130

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 131

4.1 Exceptionality to Classical Entailment

The central notion of reasoning with DLs that express defeasible subsump-

tion is concept exceptionality (Definition 14 on Page 91). Firstly, we recall

that concept exceptionality induces an a priori ordering on the defeasible

subsumptions in a defeasible KB. This ordering is determined by the de-

gree of exceptionality of the defeasible subsumptions in the KB, and Defini-

tions 17 and 18 allude to a procedure for computing this ordering. We will

present such a procedure later in the chapter and the reader will notice that

it forms the core of all our presented algorithms for deciding defeasible en-

tailment. For now, we prove some foundational properties of ranked models

which are useful to demonstrate how verification of concept exceptionality

can be accomplished using classical DL entailment.

4.1.1 Disjoint Union of Ranked Interpretations

In this section we generalise the definition of disjoint union of interpreta-

tions [109, Lemma 11], [10, Theorem 5.12], [168, Section 6.7] from classical

DLs to preferential DLs. We show that, in the preferential case, we have two

notions of disjoint union (DU for short) of ranked interpretations. We also

prove some properties of these constructions which are useful in the sequel.

We start off by recalling the definition of disjoint union of interpretations in

the classical DL case.

Definition 26 (DU of Interpretations) Let K be a classical DL TBox

and I = {I1, ..., In} a finite set of interpretations s.t. ∆I1 , . . . ,∆In are pair-

wise disjoint. Then, the disjoint union of each Ii in I (denoted by I =
⊎

I)

is defined as I = 〈∆I , ·I〉 where ∆I =
n⋃
i=1

∆Ii and ·I is s.t. AI =
n⋃
i=1

AIi and

RI =
n⋃
i=1

RIi for any concept name A (resp. role name R).

It turns out that, for ALC, the disjoint union of an arbitrary set of models

for a TBox is also a model for the TBox. This is known as the disjoint union

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 132

model property and is a well known result in the literature [109, Lemma

11], [128], [10, Theorem 5.12], [168, Section 6.7], although we restate it here.

Lemma 1 (DU of Models are Models) Given an ALC TBox K, a finite

set of models I for K (all of whose domains are pairwise disjoint) and

I =
⊎

I , then I
 K.

A direct proof for Lemma 1 on Page 132 is elusive in the DL literature.

However, it is known that DLs have a close correspondence with Modal Log-

ics [172, 173, 58] and there is an indirect proof in this setting [59, Lemma

4.2] that can be adapted for Lemma 1.

Now, in the preferential case, we wish to define a similar notion of dis-

joint union but for ranked interpretations. Because of the stratification of the

domain elements in ranked interpretations, one can define two notions of dis-

joint union: horizontal and vertical disjoint union of ranked interpretations.

Loosely speaking, a horizontal disjoint union of ranked interpretations places

the candidate ranked interpretations “side-by-side” next to each other when

taking their union, while a vertical disjoint union of ranked interpretations

“piles” the ranked interpretations one-by-one on top of each other.

Definition 27 (Horizontal DU of Ranked Interpretations)

Given a defeasible KB 〈T ,D〉 and a finite set of ranked interpretations R =

{R1, ...,Rn} for 〈T ,D〉 s.t. ∆R1 , . . . ,∆Rn are pairwise disjoint, the horizon-

tal disjoint union of each ranked interpretation in R (denoted by R = � R)

is defined as R = 〈∆R, ·R,≺R〉 where ∆R =
n⋃
i=1

∆Ri, ·R is defined s.t. AR =

n⋃
i=1

ARi and RR =
n⋃
i=1

RRi for any concept name A (resp. role name R),

and ≺R is defined s.t. the rank of each element x ∈ ∆R is the same as

its rank in its “original” ranked interpretation. That is, for each x ∈ ∆R,

rkR(x) = rkRi
(x) if and only if x ∈ ∆Ri for some 1 ≤ i ≤ n.

It is clear that Definition 27 on Page 132 closely mirrors Definition 26 on

Page 131 except that, in addition, we have to handle the ordering component

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 133

of ranked interpretations in Definition 27. We prove that the disjoint union

model property extends to the horizontal disjoint union of ranked models as

well.

Lemma 2 (Horizontal DU of Ranked Models are Ranked Models)

Given a defeasible KB 〈T ,D〉, a finite set of ranked models R for 〈T ,D〉
(all of whose domains are pairwise disjoint) and R = �R, then R
 〈T ,D〉.

Proof: The proof is quite straightforward and would be analogous to a proof

(in the DL case) for Lemma 1 on Page 132. Notice from Definition 27

on Page 132 that we are not altering the interpretation of the elements in

the combined ranked interpretation (i.e., they inherit their interpretation

from their originating ranked model). In addition, we notice that for each

C @∼D ∈ D, rkR(C) = min{rkR1(C), ..., rkRn(C)}. In other words, the rank

of the left hand side (LHS) concept C of each defeasible subsumption (in the

combined ranked interpretation) will be the minimal value from the ranks of

C in each constituent ranked model. By definition of ranked model, the min-

imal C objects in this constituent model will have to satisfy D and therefore

will satisfy D in the combined interpretation as well. See Figure 4.1 for a

graphical representation of the proof strategy. 2

We can also define a notion of vertical disjoint union of ranked interpre-

tations. Informally, we place ranked interpretations one-by-one “on top of

each other”. These kinds of constructions differ significantly from horizon-

tal disjoint unions of ranked interpretations because we have to redefine the

ranks of elements of the domain (we cannot preserve the rank of elements

in their originating interpretations as we did previously). Because the se-

quence in which we combine the ranked interpretations will affect the rank

of the elements in the domain, we assume an ordering on the given ranked

interpretations. That is, we have to specify the order in which we pile the

interpretations on top of each other.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 134

max(Rn)

max(R1)

max(R2)

max(R)

m

.

.

.

0

R1 R2 Rn

R

Figure 4.1: Graphical illustration of constructing the horizontal disjoint union of ranked

interpretations R1, ..., Rn to form R.

Definition 28 (Vertical DU of Ranked Interpretations) We let 〈T ,D〉
be a defeasible KB and R = {R1, ...,Rn} a finite ordered set of ranked

interpretations s.t. ∆R1 , . . . ,∆Rn are pairwise disjoint, the vertical disjoint

union of each ranked interpretation in R (denoted by R = � R or R =

R1� ... �Rn) is defined as R = 〈∆R, ·R,≺R〉 where ∆R =
n⋃
i=1

∆Ri, ·R is de-

fined s.t. AR =
n⋃
i=1

ARi and RR =
n⋃
i=1

RRi for any concept name A (resp. role

name R), and ≺R is defined s.t. for each x ∈ ∆R ∩∆R1, rkR(x) = rkR1(x)

and for each x′ ∈ ∆R∩∆Ri, rkR(x′) = (max(R1)+...+max(Ri−1))+rkRi
(x′)

for 2 ≤ i ≤ n.

Definition 28 on Page 133 is analogous to Definition 27 on Page 132 except for

the treatment of the ranks of elements of the interpretation domain. Taking

the simple case of combining just two ranked interpretations, we keep the

ranks, say 0 to k, of the first ranked interpretation R1 the same. Then, when

we add the second ranked interpretation R2, we set the rank of the elements

in the first “level” of R2 to k + 1 and those in the second rank to k + 2

etc. (max(R1) + rkR2(x)). We can also prove that the disjoint union model

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 135

property extends to the vertical disjoint union of ranked models.

Lemma 3 (Vertical DU of Ranked Models are Ranked Models)

Given a defeasible KB 〈T ,D〉, a finite ordered set of ranked models R for

〈T ,D〉 (all of whose domains are pairwise disjoint) and R = �R, then

R
 〈T ,D〉.

Proof: We prove the simplest case of combining two ranked models and then,

by induction, the result extends to the general case. Let R1 and R2 be two

ranked models for 〈T ,D〉 and letR = R1�R2 be their vertical disjoint union.

Suppose thatR 6
 〈T ,D〉. This means that for some C @∼D ∈ D, R 6
 C @∼D.

This, in turn, means that there is an x ∈ min≺R(CR)∩ (¬D)R. Picking such

an x we can show that there are only two cases. Either x ∈ (C u ¬D)R1 or

x ∈ (C u ¬D)R2 because x, by Definition 28 on Page 133, has exactly one

ranked interpretation from which it can originate.

Case 1: x ∈ (C u ¬D)R1 . Assume that x 6∈ min≺R1
(CR1), this means that

there is a y ∈ CR1 s.t. rkR1(y) < rkR1(x). We pick a minimal such y, i.e.,

s.t. there is no z ∈ CR1 s.t. rkR1(z) < rkR1(y). Therefore, y ∈ min≺R1
(CR1).

But ∆R1 ⊆ ∆R and thus we know that x, y ∈ ∆R. In addition, CR = CR1 ∪
CR2 because of Definition 28 on Page 133 and therefore x, y ∈ CR. Because

the interpretation R2 is placed “on top of” R1 it means that the elements of

R1 are lower than the elements of R2 in the combined interpretation R. And

because y ∈ min≺R1
(CR1), it must be the case that y ∈ min≺R(CR) (there is

no element of R that is more minimal than y, satisfying the same property).

But this means that x is not a minimal element of CR (x 6∈ min≺R(CR))

because y is more minimal than x. This is a contradiction with our earlier

observation that x ∈ min≺R(CR) ∩ (¬D)R.

Case 2: x ∈ (C u ¬D)R2 . Assume that x 6∈ min≺R2
(CR2), this means that

there is a y ∈ CR2 s.t. rkR2(y) < rkR2(x). We pick a minimal such y, i.e.,

s.t. there is no z ∈ CR2 s.t. rkR2(z) < rkR2(y). Therefore, y ∈ min≺R2
(CR2).

It is important to note that there can be no C’s in R1 because otherwise

it would not be possible that the C’s in the “top” interpretation R2 can be

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 136

minimal w.r.t. R. Therefore, y must be a minimal element C w.r.t. R. Just

like Case 1, we have that x is not a minimal element of CR (x 6∈ min≺R(CR))

anymore, because y is more minimal than x. Therefore, we have a contra-

diction with the assumption that x ∈ min≺R(CR) ∩ (¬D)R.

Therefore our supposition that R 6
 〈T ,D〉 is false and we accept that

R
 〈T ,D〉. 2

4.1.2 Exceptionality in Terms of Unsatisfiability

Recall that a concept C is exceptional w.r.t. a defeasible KB 〈T ,D〉 if

〈T ,D〉 |=r > @∼ ¬C. It turns out that if our language is propositional (even

restricting the ALC concept language defined in Section 2.1.1 to boolean

operators and connectives), then checking exceptionality of C w.r.t. 〈T ,D〉
corresponds to checking (un)satisfiability of C (in a classical sense) w.r.t. the

classical counterpart of 〈T ,D〉 [117, Lemma 5.21 and Corollary 5.22]. Here

we take propositional ALC to define the following concept language:

C ::= A | > | ⊥ | ¬C | C u C | C t C

As we can see, this language is a subset of the full concept language for ALC
given in Section 2.1.1. We take the semantics of propositional ALC to be

analogously defined to standard ALC (but restricted to the above vocab-

ulary). Returning to the relationship between concept unsatisfiability and

concept exceptionality, we restate the lemma showing their correspondence:

Lemma 4 (Exceptionality vs. Unsatisfiability in Propositional ALC)
〈T ,D〉 |=r > @∼ ¬C if and only if T ∪D′ |= > v ¬C for any finite 〈T ,D〉 and

C represented in propositional ALC.

It is fairly straightforward to see that the introduction of roles in full ALC
causes this correspondence to be broken:

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 137

Proposition 1 (Exceptionality vs. Unsatisfiability in ALC) 〈T ,D〉 |=r

> @∼ ¬C if and only if T ∪ D′ |= > v ¬C for any finite 〈T ,D〉 and C repre-

sented in ALC.

“ =⇒ ”: The contrapositive is: If T ∪ D′ 6|= C v ⊥ then 〈T ,D〉 6|=r > @∼ ¬C.

There is a model I for T ∪ D′ s.t. there is an x ∈ CI . We can see that I
can be considered a ranked model R for 〈T ,D〉 where ∆R = ∆I , ·I = ·R

and ≺R:= rk : ∆R → {0}. We have to show that (i) R is a ranked model

for 〈T ,D〉 and (ii) that xR is such that xR ∈ min≺R(∆R) and xR ∈ CR.

For (i), we can see that R satisfies each X @∼ Y ∈ D because I satisfies each

X v Y ∈ D′, ·I = ·R and min≺R(XR) ⊆ XI . For (ii), it is clear that

xR ∈ CR because ·I = ·R and x ∈ CI . It is also clear that xR ∈ min≺R(∆R)

because rk(xR) = 0.

“ ⇐= ”: (counter-example) let T = ∅, D = {> @∼ ¬X,C @∼ ∃R.X} then,

T ∪D′ |= > v ¬C but 〈T ,D〉 6|=r > @∼ ¬C because, considering the following

ranked model R for 〈T ,D〉 , where ∆R = {a, b}, CR = {a}, XR = {b},
RR = {(a, b)}, rk(a) = 0 and rk(b) = 1, R 6
 > @∼ ¬C. 2

The fact that exceptionality doesn’t correspond with unsatisfiability in full

ALC is actually a positive consequence of the semantics of defeasible sub-

sumption and exceptionality. In the counter-example to Proposition 1 on

Page 137, the unsatisfiability of C is “caused” by the unsatisfiability of X

(w.r.t. T ∪D′). This is justifiably intuitive because: “if all C’s have at least

one relationship to some X but there are no X’s then there cannot be any

C’s either”.

W.r.t. exceptionality, however, the exceptionality of X is not propagated

to C (w.r.t. 〈T ,D〉). This is also justifiably intuitive because: “if X’s are

exceptional and C’s have at least one relationship to some X then it doesn’t

mean that C is exceptional”. That is, just because I am related to someone

who is exceptional doesn’t necessarily mean that I am exceptional as well.

While this behaviour bodes well for an intuitive semantics, the issue with

roles that we highlighted above means that we still have the problem of re-

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 138

ducing exceptionality to classical DL entailment for full ALC (and any DL

with roles). However, we do have some useful information from Proposition 1

on Page 137. That is, we know that the “left to right” direction of the cor-

respondence does hold. This tells us that exceptionality is logically stronger

than (classical) unsatisfiability. In other words, we know that exceptionality

characterises a certain kind of unsatisfiability.

The counter-model pattern R for Proposition 1 on Page 137, illustrated

in Figure 4.2, seems to suggest that unsatisfiabilities caused directly by a role

filler being unsatisfiable are not included in this kind of unsatisfiability.

C,¬X

R
X

Typicality

〈∆R, ·R,≺R〉 6
 > @∼ ¬C

Figure 4.2: Intuitive semantics: exceptionality is not propagated through roles for the

counter-example in Proposition 1.

Thus our general claim is: exceptionality corresponds to “propositional un-

satisfiability” in ALC. The remainder of this section is concerned with for-

malising “propositional unsatisfiability” for ALC and proving this claim.

Intuitively speaking, what we mean by propositional unsatisfiability is

that we exclude cases where the unsatisfiability of a concept is derived di-

rectly from the unsatisfiability of a role filler in the KB (like the counter-

example illustrated in Figure 4.2).

There is evidence in support of our claim because we notice that unsatisfi-

ability and exceptionality correspond in the propositional case (Lemma 4 on

Page 136), and therefore, it must be the case that the issue with roles is the

only barrier to a correspondence for ALC because all the non-propositional

features of ALC concern roles.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 139

In order to exclude from consideration all those unsatisfiabilities caused

by roles, we need a way of “localising” our view to individual objects in an

interpretation domain without placing constraints from the KB on its neigh-

bourhood (all other objects in the interpretation domain which are related to

the given object via some role). We use materialisation and internalisation

(well known in the context of propositional logic) to achieve this:

Definition 29 (Materialisation) The materialisation of a classical DL sub-

sumption C v D (resp. defeasible DL subsumption C @∼D) is ¬C tD. The

materialisation of a set of classical DL subsumptions T (resp. defeasible DL

subsumptions D) is the set consisting of the materialisations for each sub-

sumption in T (resp. D). We denote the materialisation of a subsumption

α by mat(α), and the materialisation of a set of subsumptions K by mat(K).

Definition 29 on Page 139 is central to defining the internalisation of a KB:

Definition 30 (Internalisation) Let K be a set of DL subsumptions (each

of which is either classical or defeasible), the internalisation of K is defined

as:
d
mat(K). We denote the internalisation of K by the concept CK.

The notion of internalisation allows us to isolate our view to objects in an in-

terpretation without placing constraints on its neighbourhood. For example,

given the KB 〈T ,D〉 in the counter-example to Proposition 1 on Page 137,

we have that C is not exceptional w.r.t. 〈T ,D〉 but yet C is unsatisfiable

w.r.t. T ∪ D. This unsatisfiability is caused directly by the role filler for

R being unsatisfiable. We would like to exclude these kinds of cases from

consideration when characterising exceptionality for ALC.
The good news is that when we internalise our knowledge to obtain CT ∪D′ ,

we indeed exclude these cases because we find that 6|= CT ∪D′ v ¬C1. The

1Note that, in the propositional case, a classical KB and its internalised form corre-

spond exactly in terms of their entailments. Indeed, this is the deduction theorem for

propositional logics [91, 69, 189]. Our results are based on the fact that the deduction

theorem does not generalise to ALC as illustrated by our examples.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 140

statement |= CT ∪D′ v ¬C means that the axiom CT ∪D′ v ¬C is logically

valid (or satisfied) in any interpretation for CT ∪D′ and C and, therefore,

because we have that 6|= CT ∪D′ v ¬C, we know that there is an object z s.t.

z ∈ (CT ∪D′)I ∩ CI for some classical interpretation I.

We give a simple example I for which this is the case: ∆I = {a, b},
XI = {b}, CI = {a} and RI = {(a, b)}. It is clear that (CT ∪D′)I = {a}.

It is clear that internalisation, and the accompanying validity approach,

does not place constraints on the neighbourhood of the object being consid-

ered. For example, in our interpretation I above, we see that the object b is

in the neighbourhood of a and belongs to the concept XI . However, it is not

possible for such a b to exist in a model for T ∪D′ since > v ¬X appears in

T ∪D′ and this constraint enforces that each object in each model for T ∪D′

cannot belong to the interpretation of X.

In particular from this approach, we notice that neighbourhood objects

are allowed to violate any axiom in our defeasible KB (either in T or D′).
However, this behaviour does not accurately reflect the ranked model seman-

tics of exceptionality. That is, it can be shown that given any 〈T ,D〉, each

ranked model R for 〈T ,D〉 is s.t. for each z ∈ ∆R, z ∈ (CT)R. The following

lemma demonstrates this.

Lemma 5 (Ranked Models Classically Satisfy T) Let R be a ranked

model for some defeasible KB 〈T ,D〉. Let I be the classical DL interpretation

〈∆I , ·I〉 such that ∆I = ∆R and ·I = ·R. Then I is a model for T .

Proof: We know that R
 T because R
 〈T ,D〉. Assume that I is not a

model for T . Therefore, there is a C v D ∈ T s.t. there is an x ∈ CI and

x 6∈ DI . This must mean that x ∈ CR and x 6∈ DR because ∆I = ∆R and

·I = ·R. But this is a contradiction with R
 T . Therefore, I
 T . 2

Lemma 5 on Page 140 shows that every element in a ranked model for a

defeasible KB 〈T ,D〉 must satisfy each axiom in T . Therefore, applied to

our context of internalising knowledge from the defeasible KB, it should only

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 141

be the defeasible subsumptions in the KB that can be violated by exceptional

objects (whereas our classical subsumptions should not be violated).

The following example illustrates this: let T = {A v ∃R.B,∃R.X v
¬C,B v X} and D = {B @∼ ¬C,> @∼ A t B}. We can see that C is ex-

ceptional w.r.t. 〈T ,D〉 but that 6|= CT ∪D′ v ¬C. The following interpreta-

tion I demonstrates that the latter validity does not hold: ∆I = {a, b},
AI = CI = {a}, BI = {b}, XI = ∅ and RI = {(a, b)}. It is clear that b is

allowed to violate the axiom B v X and this is what causes us to lose the

validity |= CT ∪D′ v ¬C.

Thus, we investigate the approach of internalising purely the defeasible

subsumptions contained in D. We arrive at a formal definition for proposi-

tional unsatisfiability for preferential ALC (and preferential DLs in general):

Definition 31 (Propositional Unsatisfiability for Preferential DLs)

Let T ∪ D′ be the classical counterpart of a defeasible KB 〈T ,D〉, and C a

concept, C is propositionally unsatisfiable w.r.t. T ∪ D′ if T |= CD′ v ¬C.

Given Definition 31 on Page 141, we now formalise our claim about the cor-

respondence between exceptionality and propositional unsatisfiability. Even

though this claim turns out to be false, it is not as a result of some deficiency

in Definition 31. Rather, it is that propositional unsatisfiability is slightly too

weak to capture exceptionality in full ALC. It actually turns out that there

is a special kind of exceptionality (captured in Definition 15 on Page 92)

called total exceptionality which can be propagated through roles.

Proposition 2 Let 〈T ,D〉 be a defeasible KB and C a concept. Then, C

is exceptional w.r.t. 〈T ,D〉 if and only if C is propositionally unsatisfiable

w.r.t. T ∪ D′.

“ =⇒ ” (counter-example) T = {X v Y }, D = {X @∼ ¬Y,C @∼ ∃R.X}.
〈T ,D〉 |=r > @∼ ¬C but T 6|= CD′ v ¬C. 2

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 142

The counter-example for Proposition 2 on Page 141 illustrates the occurrence

of totally exceptional LHS concepts of defeasible subsumptions. That is, in

the example, the concept X is totally exceptional w.r.t. the KB.

We have argued in Section 2.8.2 that these kinds of concepts are usually

the result of modelling errors in ontology development because it represents

a form of logical incoherence (see Definition 15 on Page 92). This is essen-

tially the representation of defeasible information which actually “behaves”

as strict information to cause logical incoherence.

For example, the axioms C @∼⊥ and C v ⊥ have the same ranked models.

Therefore, representing C @∼⊥ in the DTBox is actually the same as represent-

ing C v ⊥ in the TBox. Hence, in the above example, the axiom X @∼ ¬Y
is masquerading as defeasible information whereas it should be treated as

strict information since 〈T ,D〉 = 〈{X v Y }, {X @∼ ¬Y,C @∼ ∃R.X}〉 is ranked

equivalent to 〈T̂ , D̂〉 = 〈{X v Y,X v ¬Y }, {C @∼ ∃R.X}〉 (both KBs have

the same ranked models).

Unfortunately, it appears that there is no (declarative) reduction to clas-

sical DL entailment for total exceptionality. However, we will show in Sec-

tion 4.2 that there is a useful operational reduction. We now show that

eliminating the case of total exceptionality (and only this case), gives us a

clean and declarative reduction to classical DL entailment for exceptionality.

We restrict ourselves to 〈T ,D〉’s in which each LHS concept of the sub-

sumptions in D are not totally exceptional. We define such 〈T ,D〉’s as left

hand side coherent (LHS-coherent):

Definition 32 (LHS-coherent) A defeasible KB, 〈T ,D〉, is LHS-coherent

if C is not totally exceptional w.r.t. 〈T ,D〉 for each C @∼D ∈ D. 〈T ,D〉 is

LHS-incoherent if it is not LHS-coherent.

This leads to a positive result and reduction to classical DL entailment for

exceptionality:

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 143

Theorem 1 (Reducing Exceptionality to Classical DL Entailment)

Given a defeasible KB 〈T ,D〉 which is LHS-coherent, and a concept C, C

is exceptional w.r.t. 〈T ,D〉 if and only if C is propositionally unsatisfiable

w.r.t. T ∪ D′.

Proof: We replace the above statement by its contraposition:

T 6|= CD′ v ¬C if and only if 〈T ,D〉 6|=r > @∼ ¬C.

“ =⇒ ” We pick a model I of T s.t. there exists an x ∈ (CD′)I ∩CI . We will

show that we can construct a ranked model R for 〈T ,D〉 from the informa-

tion in I s.t. there is a y ∈ min≺R(∆R)∩CR corresponding to the element x

in ∆I . Our strategy is as follows: we know that 〈T ,D〉 is LHS-coherent so we

know that for each X @∼ Y ∈ D there is a ranked model RX for 〈T ,D〉 s.t. XR

is non-empty. We pick such a ranked model RX for each X @∼ Y ∈ D and let

R be the set containing these models and only these models (i.e.,
⋃
{RX} for

each X @∼ Y ∈ D). We obtain the horizontal disjoint union of these models

R〈T ,D〉 = �R (Definition 27 on Page 132). Lemma 2 on Page 133 tells us that

R〈T ,D〉 is a model for 〈T ,D〉. But we also know that I can be considered as a

ranked interpretation RI for 〈T ,D〉 where ∆RI = ∆I , ·RI = ·I , rkRI(z) = 1

for each z ∈ ∆RI\{x} and rkRI(x) = 0. Let R = R〈T ,D〉�RI (we place RI
on top of R〈T ,D〉). We make one slight modification to the ranking function

of R. That is, we set rkR(x) = 0 (we push x to the bottom level of R).

It is clear that every element of ∆R satisfies T because we have taken the

disjoint unions of interpretations and we have not changed the interpretation

function for R. It is clear that each element of ∆R satisfies D because the

most minimal X objects (for each X @∼ Y ∈ D) in R satisfy D because R〈T ,D〉
is a model for 〈T ,D〉. We also note that x ∈ CRD′ and so x also satisfies D.

“ ⇐= ” There exists a ranked model, R, such that R
 〈T ,D〉 and there

exists an x ∈ CR s.t. rkR(x) = 0. We have to show that there exists a model

I for T such that there exists a y ∈ CD′I ∩ CI . We define an interpretation

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 144

I = 〈∆I , ·I〉 s.t. ∆I = ∆R and ·I = ·R. From Lemma 5 on Page 140 we

know that I
 T . We select the element y ∈ ∆I s.t. y = x. All we need to

prove is that y ∈ CD′I . Let us assume that y 6∈ CD′I . This means that there

exists a X @∼ Y ∈ D such that y ∈ XI and y 6∈ Y I . This must mean that

the corresponding x in ∆R is an exceptional element of XR and therefore it

cannot reside on the bottom-most level of R. That is, this is a contradiction

with the fact that rkR(x) = 0. Therefore y ∈ CD′I . 2

We now have an understanding of how exceptionality can be reduced to

classical DL reasoning. In the next section we will show an interesting and

useful a priori ordering of axioms in a defeasible KB based on exceptionality.

Furthermore, we present an algorithm for computing this a priori ordering for

a given defeasible KB. As we shall see, this precompiled view of a defeasible

KB is required for all the defeasible entailment algorithms that we present

in this Chapter (Section 4.3 onwards).

4.2 Ranking of a Defeasible Knowledge Base

As we saw in Chapter 2 there are various approaches for permitting excep-

tions in DL reasoning. It becomes apparent in the presentation of these

approaches that there are some basic issues, with regards to exceptions, that

all such approaches should address. One of these issues is that there must be

some way of handling priorities among defeasible statements in the formalism

under consideration.

Most of the presented approaches in Chapter 2 (except for Rational Clo-

sure and similar entailment regimes) choose to fully “externalise” the priority

relation among defeasible statements. That is, they choose to fully hand over

the specification of this relation to the ontology engineer. While this may give

desirable flexibility to the user to decide which information should override

other information, we argue that this relation should not be completely arbi-

trary. Indeed, many of the proponents of these formalisms agree on specificity

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 145

as one property that should always be satisfied by this relation.

For example, if students usually don’t pay taxes and employed students

usually do pay taxes then, assuming we want to draw inferences about the

tax paying status of students in general, we can apply the first “default”

to conclude that students usually don’t pay taxes. This is certainly the

most reasonable inference to make if we have no other information. On

the other hand, suppose we want to draw generalised inference about the

tax paying status of employed students, then both above defaults become

applicable (employed students are also students). However, applying both

defaults leads to the contradictory situation that employed students pay taxes

and don’t pay taxes.

Clearly one would rather prefer applying the default that takes into ac-

count the most specific (and therefore the most complete) knowledge relevant

to the query. That is, if we are asking about general students it should be

safe to conclude that they generally don’t pay taxes (applying the first de-

fault). Whereas, if we are asking about employed students, knowledge about

employed students specifically should take precedence over knowledge about

more general students (if there is a clash with applying both defaults).

Bonatti et al. [27] characterise priority relations on defaults that are de-

fined by specificity: let K = S ∪D be a finite knowledge base of DIs (D) and

SIs (S). Then the priority relation among the DIs in D (which we denote

by ≺) is defined by specificity if: for any δ1 = C1 vn D1 and δ2 = C2 vn D2

s.t. δ1, δ2 ∈ D, δ1 ≺ δ2 (it is preferred to apply δ1 over δ2) if and only if

S |= C1 v C2 and S 6|= C2 v C1.

The above version of specificity intuitively says that δ1 has a higher prior-

ity than δ2 if and only if C1 is more specific than C2 (according to the strict

information in the KB). We note that it is possible to define several variants

of this property depending on which approach to defeasible reasoning we are

dealing with. For example, we may not want the priority relation to be de-

fined by specificity (this might be too strong). However, we may just want

our priority relation to respect specificity. In other words, the “right-to-left”

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 146

direction of the above definition by Bonatti et al. [27] may be enforced (but

not the other direction). We may also choose to involve the defeasible infor-

mation (in addition to the strict information) when determining specificity.

In fact, we define such a variant at the end of this section for the preferential

reasoning context.

It can be convincingly argued that, at the very least, some version of speci-

ficity should be satisfied by the priority relation on defaults. Interestingly,

preferential reasoning mechanisms such as Rational Closure (see Section 2.8)

abide by this philosophy. We will show in this section, and more broadly

in this chapter, that such approaches presume that specificity should be re-

spected. That is, the property of specificity is “internalised” in the semantics

of Rational Closure and similar constructions.

In fact, the first step in all the procedures we present in this chapter

(including Rational Closure) is to compute the ordering on the defeasible

subsumptions in the defeasible KB. It is possible to compute the ordering

because it is induced by exceptionality (see Definition 14 on Page 91). Con-

sider the following example:

Example 15 Consider the following defeasible KB 〈T ,D〉:

〈{
EmployedStudent v Student

}
,


Student @∼ ¬(∃receives.TaxInvoice),

EmployedStudent @∼ ∃receives.TaxInvoice,

EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice)


〉

2

Intuitively speaking, the information represented in Example 15 on Page 146

is that employed students are types of students, students usually aren’t

obliged to pay taxes, employed students usually are obliged, and employed

students who are parents usually aren’t obliged again.

This example illustrates that employed students are exceptional types of

students (w.r.t. paying taxes), and employed students who are parents are ex-

ceptional types of employed students (again w.r.t. paying taxes). Informally

then, we can build an “exceptionality chain” from the antecedent concepts in

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 147

the defeasible subsumptions of 〈T ,D〉. That is, we can conceive of the chain

Student ≺〈T ,D〉 EmployedStudent ≺〈T ,D〉 EmployedStudent u ∃hasChild.> rep-

resenting the fact that students are the least exceptional entities in 〈T ,D〉,
employed students are exceptional students, and employed students that are

parents are exceptional employed students.

Using the semantics of exceptionality and defeasible subsumption, we can

confirm the correctness of this chain. It is easy to see that one can “realise”

or instantiate a Student object on the bottom-most level of a ranked model

for 〈T ,D〉 (Student is not exceptional w.r.t. 〈T ,D〉). One cannot expect

EmployedStudent objects to be able to reside on the bottom-most level as

well because it would lead to a contradictory situation (EmployedStudent is

exceptional w.r.t. 〈T ,D〉). Therefore, the lowest level that these objects can

occur on is the second-level of a ranked model for 〈T ,D〉. Similarly, the

lowest possible level for EmployedStudent u ∃hasChild.> objects is the third

level of a ranked model for 〈T ,D〉.
Example 15 on Page 146 demonstrates that we can compute an ordering

of the antecedent concepts of the defeasible subsumptions in a defeasible KB.

Recall that from Definition 14 on Page 91, exceptionality of an antecedent

concept of a subsumption extends to the subsumption as a whole. Therefore,

we can order sentences in our KB according to degree of exceptionality.

We observe that while Student is not exceptional w.r.t. 〈T ,D〉 in Exam-

ple 15 on Page 146, both EmployedStudent and EmployedStudentu∃hasChild.>
are exceptional w.r.t. 〈T ,D〉. However, notice that if we ignore the constraint

about general students in 〈T ,D〉 (Student @∼ ¬(∃receives.TaxInvoice)), then

EmployedStudentu∃hasChild.> still remains exceptional w.r.t. the remainder

constraints. EmployedStudent, however, is no longer exceptional.

Informally, this behaviour illustrates that EmployedStudent is exceptional

w.r.t. the properties of a general student (removing constraints about gen-

eral students allows one to consider employed students as prototypically nor-

mal and unexceptional). In contrast, EmployedStudentu∃hasChild.> remains

exceptional w.r.t. the remaining constraints about employed students (the

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 148

former don’t pay taxes while the latter do). However, we notice that em-

ployed students that are parents are consistent with the properties of general

students (both of them don’t pay taxes), and therefore removing constraints

about general students does not impact on their exceptionality.

In summary, the “exception-to-exception” ordering of a defeasible KB,

as described above, can be computed using an iterative procedure. The pro-

cedure includes a core sub-routine (called Exceptional) to capture all the

exceptional subsumptions from a given set of defeasible subsumptions (see

Definition 17 on Page 94). Note that in this section, we first concentrate

on LHS-coherent KBs 〈T ,D〉 (see Definition 32 on Page 142). Recall that

LHS-coherent KBs are those where the LHS concepts of all defeasible sub-

sumptions are s.t. 〈T ,D〉 6|=r C @∼⊥. Later in this section we will address

general 〈T ,D〉’s that are possibly LHS-incoherent.

Procedure Exceptional(T , E)
Input: A set of strict subsumptions T and a set of defeasible

subsumptions E s.t. T ∪ E is LHS-coherent.

Output: Eexc ⊆ E such that Eexc is exceptional w.r.t. T ∪ E
1 Eexc := ∅;
2 foreach C @∼D ∈ E do

3 if T |= CE v ¬C then

4 Eexc := Eexc ∪ {C @∼D};

5 return Eexc;

Note that CE in Line 3 represents the internalisation of the set E (see Defi-

nition 30 on Page 139) and the entailment check T |= CE v ¬C represents

the reduction to classical DL entailment for checking exceptionality of C

w.r.t. T ∪ E (see Theorem 1 on Page 143). Observing this entailment check

we note that T (the strict subsumptions) can also contribute to the excep-

tionality of a concept and, therefore, we take this information into account

when computing the exceptional subsumptions of a given set.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 149

It is clear that Procedure Exceptional on Page 148 terminates because E
is finite. Its soundness (all the elements of Eexc are exceptional w.r.t. E)

follows from the soundness of our reduction of exceptionality to classical DL

entailment (see Theorem 1 on Page 143). We use 〈T ,D〉 from Example 15

on Page 146 to illustrate the behaviour of Procedure Exceptional:

Example 16 Consider the following defeasible KB 〈T , E〉:

〈{
EmployedStudent v Student

}
,


Student @∼ ¬(∃receives.TaxInvoice),

EmployedStudent @∼ ∃receives.TaxInvoice,

EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice)


〉

After executing Procedure Exceptional on Page 148 on 〈T , E〉 we obtain:

Eexc =

{
EmployedStudent @∼ ∃receives.TaxInvoice,

EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice)

}
2

In Example 16 on Page 149 we see that EmployedStudent and EmployedStudent

u ∃hasChild.> are the only known antecedent concepts that are exceptional

w.r.t. 〈T , E〉. Therefore, we move the defeasible subsumptions in which they

occur on the LHS to the exceptional set Eexc.
Example 16 on Page 149 shows that one can recursively apply Proce-

dure Exceptional on Page 148 to obtain the exceptionality sequence (see

Definition 18 on Page 94) of a defeasible KB. From this exceptionality se-

quence we can determine the ranking of a defeasible KB.

Definition 33 (Ranking of a Defeasible KB) Let 〈T ,D〉 be a defeasi-

ble KB, then the ranking for 〈T ,D〉 is a sequence of subsets D0, . . . ,Dn of

D s.t. for each 0 ≤ i ≤ n, for each C @∼D ∈ Di, rk〈T ,D〉p(C) = i (see Defini-

tion 19 on Page 95).

Definition 33 on Page 149 characterises an ordering of the defeasible sub-

sumptions in the KB according to the rank of their antecedent concepts

which, in turn, is determined by their degree of exceptionality.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 150

We will show now that there is only one minor difference between the

ranking of a defeasible KB and its exceptionality sequence, from the per-

spective of their operational definitions. That is, when we move to the next

subset in the sequence, the ranking “cuts” the exceptional axioms from the

previous subset and “pastes” them into the next subset, whereas the excep-

tionality sequence “copies” these axioms into the next subset in the sequence.

The procedure that we now present for computing the ranking of a defea-

sible KB is based on Procedure Exceptional on Page 148. We first consider

the case where the input defeasible KB is LHS-coherent (see Definition 32

on Page 142) and later address general defeasible KBs.

Procedure ComputeRankingA(〈T ,D〉)
Input: A LHS-coherent defeasible KB 〈T ,D〉.
Output: The ranking R = {D0, . . . ,Dn} for 〈T ,D〉.

1 R:=∅;
2 E0 := D;

3 E1 := Exceptional(T , E0);
4 i := 0;

5 while Ei+1 6= ∅ do

6 i := i + 1;

7 Ei+1 := Exceptional(T , Ei);

8 for j = 1 to i do

9 Dj−1 := Ej−1 \ Ej;
10 R := R ∪ {Dj−1};

11 return R;

Observe that Lines 1 to 7 of Procedure ComputeRankingA on Page 150 com-

pute the exceptionality sequence for 〈T ,D〉 and Lines 8 to 10 do the “cut-

ting” and “pasting”, as described above, to arrive at the ranking for 〈T ,D〉.
We briefly illustrate the behaviour of Procedure ComputeRankingA with an

example.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 151

Example 17 Consider the original defeasible KB 〈T , E〉 in Example 16 on

Page 149:

〈{
EmployedStudent v Student

}
,


Student @∼ ¬(∃receives.TaxInvoice),

EmployedStudent @∼ ∃receives.TaxInvoice,

EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice)


〉

Executing Lines 1 to 7 of Procedure ComputeRankingA on Page 150, we ob-

tain:

E0 =


Student @∼ ¬(∃receives.TaxInvoice),

EmployedStudent @∼ ∃receives.TaxInvoice,

EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice)

,

E1 =

{
EmployedStudent @∼ ∃receives.TaxInvoice,

EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice)

}
,

E2 =
{

EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice)
}

,

E3 = ∅

Thereafter, executing Lines 8 to 10 on this sequence we obtain the ranking:

D0 = { Student @∼ ¬(∃receives.TaxInvoice) },
D1 = { EmployedStudent @∼ ∃receives.TaxInvoice },
D2 = { EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice) }

2

We have to show that Procedure ComputeRankingA on Page 150 actually

terminates and that it is sound (i.e., the computed ranking corresponds with

its semantic definition). Notice that to show termination we have to show

that the condition on Line 5 is actually falsified at some point. That is, we

should obtain an i s.t. Ei+1 = ∅. To show this, it is sufficient to demonstrate

that Ei+1 becomes smaller with every iteration of the while loop.

Formally, this amounts to demonstrating that: Ei+1 ⊂ Ei for each 0 ≤ i ≤
n− 1. Observe that it can never be the case that Ei+1 ⊃ Ei for any such i

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 152

because the procedures are only retaining the exceptional items from some set

in the next set of the sequence (the procedure does not add any information

to the set). Therefore, the only other possibility which contradicts with what

we have to prove is Ei+1 = Ei for some i. Intuitively this case means that all

axioms in the given set are exceptional w.r.t. the given defeasible KB. The

following lemma helps to prove that this is impossible.

Lemma 6 (Ei+1 6= Ei for LHS-coherent KBs) Given a defeasible KB

〈T ,D〉, if 〈T ,D〉 is LHS-coherent then there is a C @∼D ∈ D s.t.

〈T ,D〉 6|=r > @∼ ¬C.

Proof: Suppose that 〈T ,D〉 is LHS-coherent and, contrary to the lemma

statement, that for each C @∼D ∈ D s.t. 〈T ,D〉 |=r > @∼ ¬C. We proceed by

trying to derive a contradiction from this. For each C @∼D ∈ D we pick a

ranked model RC for 〈T ,D〉 s.t. there is an x ∈ CRC (we know that such

ranked models exist because 〈T ,D〉 is LHS-coherent). Now, we take the

horizontal union of these ranked models R = �RC (see Definition 27 on

Page 132). R is also a ranked model for 〈T ,D〉 by Lemma 2 on Page 133.

We pick a C @∼D ∈ D s.t. rkR(C) = min{rkR(X) | X @∼ Y ∈ D} (there must

be a minimal rank because of the modular ordering on the elements of ranked

models). Now, we pick an element y ∈ min≺R(CR). From our supposition

we know that C is exceptional w.r.t. 〈T ,D〉 and therefore, rkR(y) > 0. How-

ever, notice that the minimality of y’s rank suggests that y 6∈ (X u¬Y)R for

each X @∼ Y ∈ D. That is, it is the most minimal element in R that belongs

to any XR s.t. X @∼ Y ∈ D. We also know that there is no element z on the

bottom-most rank of R s.t. z ∈ XR for some X @∼ Y ∈ D (because all the

axioms in D are exceptional). However, this implies that the rank of y is not

minimal w.r.t. each ranked model for 〈T ,D〉. In other words, we can “push”

y to the bottom-most rank in R (let rkR(y) = 0). All other things equal,

the modified R will still be a ranked model for 〈T ,D〉 because it does not

violate any axiom in D as described earlier. However, the resulting modified

R is now s.t. R 6
 > @∼ ¬C. Therefore, our supposition is false. That is, we

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 153

have found a ranked model R for 〈T ,D〉 and a C @∼D ∈ D s.t. R 6
 > @∼ ¬C.

2

Notice that Lemma 6 on Page 152 proves that Ei+1 ⊂ Ei for i = 0. In other

words, we have proven that because E0 is LHS-coherent (as stipulated in

our procedure), it is guaranteed to contain non-exceptional axioms. Hence,

because such axioms are removed from E0 when moving to E1, E1 is guaranteed

to be smaller than E0. It is easy to see, by induction, that this holds for

0 ≤ i ≤ n− 1 because of monotonicity of classical reasoning (our procedure

is reduced to classical entailment). That is, if Ei is LHS-coherent, then Ei+1 is

LHS-coherent (removing axioms cannot cause us to gain LHS-incoherence).

The soundness for Procedure ComputeRankingA on Page 150 has been

shown in an independent effort to our own [71, Proposition 13]. Essentially,

this result shows the correspondence between the semantic (Definition 12 on

Page 87) and procedural (Definition 19 on Page 95) definitions for the rank

of a concept. We rephrase their proof statement here to make it clear to the

reader what was required to be shown using our own terminology.

Lemma 7 (Soundness of Procedure ComputeRankingA) Let 〈T ,D〉 be a

LHS-coherent defeasible KB and R = {D0, . . . ,Dn} its computed ranking

(according to Procedure ComputeRankingA on Page 150). Then, C @∼D ∈ Di
if and only if rk〈T ,D〉s(C) = i for each 0 ≤ i ≤ n.

We now turn our attention to general defeasible KBs. That is, we per-

mit the possibility that the KB is not LHS-coherent. Recall from Defini-

tions 15 and 32 that a LHS-incoherent KB 〈T ,D〉 is s.t. C is ranked unsat-

isfiable w.r.t. 〈T ,D〉 for some C @∼D ∈ D.

It turns out that LHS-incoherent KBs cannot be handled purely by the

standard ranking procedure (Procedure ComputeRankingA on Page 150).

That is, a modification of this procedure is required. The reason for this

relates to the semantics of defeasible subsumption and specifically to the

semantics of ranked unsatisfiability of a concept.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 154

We recall that C @∼⊥ and C v ⊥ have the same ranked models (i.e., they

are ranked equivalent axioms). It is easy to see, then, that one can encode

the latter classical subsumption using purely defeasible subsumptions. For

example, the set {C @∼D,C @∼ ¬D} encodes the same information as C @∼⊥
and, therefore, C v ⊥ (which is also equivalent to {C v D,C v ¬D}).

While this behaviour is acceptable (and arguably intuitive) from a se-

mantic perspective, it turns out to be problematic when reducing total ex-

ceptionality to classical DL entailment (see Proposition 2 on Page 141). It

is actually not too difficult to notice why this is the case. We recall from

Section 4.1 that our reduction of exceptionality to classical DL entailment

treats the strict information T and the defeasible information D differently.

That is, T is applied as “global” constraints in the ranked models and D is

applied “locally” to objects in the models (ignoring neighbourhood objects).

It is clear then, that if we represent information such as {C @∼D,C @∼ ¬D}
in our KB (i.e., strict information that is just masquerading as defeasible

information), then we would not treat these constraints globally in our re-

duction as they should be. Of course, this may in turn lead to incorrect

inferences. The phenomenon that {C @∼D,C @∼ ¬D} is actually equivalent to

{C v D,C v ¬D} is called hidden strict information. It has been shown in

Section 4.1 that hidden strict information is a side-effect that can only occur

in LHS-incoherent defeasible KBs.

We recall that the “right-to-left” direction of the proof for Theorem 1

(our reduction of exceptionality to classical entailment) on Page 143 holds

for general 〈T ,D〉’s (not just LHS-coherent ones) and therefore, the reduction

stated in Theorem 1 is sound for exceptionality w.r.t. general 〈T ,D〉’s but it

is incomplete for these cases. That is, the “left-to-right” direction does not

hold for general 〈T ,D〉’s.
This is the reason why we cannot, in general, use our reduction to pinpoint

all the exceptions in a LHS-incoherent KB (using Procedure ComputeRankingA

on Page 150). However, we will show that, by performing some additional

operations in Procedure ComputeRankingA, and using the same classical re-

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 155

duction we have presented, we can still pinpoint all the exceptions in such

KBs. Before we give this complete procedure, we present an example to show

the incompleteness of our reduction when applied to LHS-incoherent KBs.

Consider the following example adapted from Proposition 2 on Page 141.

Example 18 Consider the following defeasible KB 〈T ,D〉:

〈{
Dessert v ¬PizzaTopping,

Fruit v Dessert

}
,

{
Fruit @∼ PizzaTopping,

DessertPizza @∼ ∃hasTopping.Fruit

}〉
2

In Example 18 on Page 155, notice that, from a semantic perspective, both

Fruit and DessertPizza are totally exceptional w.r.t. 〈T ,D〉. This means we

should obtain that both these concepts are exceptional using our reduction

to classical entailment. That is, we should obtain both T |= CD′ v ¬Fruit

and T |= CD′ v ¬DessertPizza.

However, while we do have the former entailment, we do not have the

latter, and we will construct a model for T to show this later in this example.

Why do we get the former entailment, though? We observe that T effectively

tells us that all Fruit objects are not PizzaTopping objects. On the other hand,

the first statement in D tells us that typical Fruit objects are PizzaTopping

objects. Clearly this is an incompatible situation and the result is that we

will not find Fruit objects anywhere in any ranked model for our knowledge.

Therefore, we notice that it would be equivalent to replace Fruit @∼

PizzaTopping with Fruit v PizzaTopping (i.e., with its strict counterpart).

This effectively means we can remove the former statement from D and

add its classical counterpart (the latter statement) to T . In other words,

Fruit @∼ PizzaTopping is actually hiding its strict behaviour, or more eloquently,

its strict behaviour is not “visible” to our reduction.

Consider the following model I for T . I = 〈∆I , ·I〉 s.t. ∆I = {a, b},
DessertI = {b}, PizzaToppingI = {a}, FruitI = {b}, DessertPizzaI = {a}
and hasToppingI = {(a, b)}. It is easy to see that a ∈ CID′ and therefore

T 6|= CD′ v ¬DessertPizza.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 156

Notice also that because of the non-globalisation of the constraint Fruit

@∼ PizzaTopping, Fruit objects are allowed to exist in the neighbourhood

of a. That is, b is allowed to belong to FruitI . The end result is that the

defeasibility of Fruit @∼ PizzaTopping actually “masks” the total exceptionality

of DessertPizza.

Example 18 on Page 155 shows the incompleteness of our reduction of

exceptionality to classical entailment for general 〈T ,D〉’s. Unfortunately,

there seems to be no such reduction that is declarative. Fortunately, there is

an operational approach to cater for these cases using our existing reduction

for LHS-coherent 〈T ,D〉’s.
To convey the intuition of this procedure, consider the KB in Example 18

on Page 155. T |= CD′ v ¬Fruit but T 6|= CD′ v ¬DessertPizza (even though

DessertPizza is totally exceptional w.r.t. 〈T ,D〉). We also observed that

it is equivalent to remove Fruit @∼ PizzaTopping from D and add its classical

counterpart to T (it is strict information parading as defeasible information).

The resulting KB, say 〈T ∗,D∗〉, would be:

〈
Dessert v ¬PizzaTopping,

Fruit v Dessert,

Fruit v PizzaTopping

 ,
{

DessertPizza @∼ ∃hasTopping.Fruit
}〉

It is straightforward to see that Fruit v ⊥ follows classically from T ∗. Since

strict information must be satisfied globally, it implies that, even after addi-

tionally considering the defeasible information in D∗, there will not be any

Fruit objects in any ranked model for the composite KB.

Now, it is interesting to observe that if we apply our reduction to check if

DessertPizza is exceptional w.r.t. this modified KB (where all the hidden strict

information is filtered into T), we finally obtain T ∗ |= CD∗ v ¬DessertPizza.

This behaviour tells us informally that we can apply our exceptionality re-

duction recursively on a defeasible KB to filter the hidden strict information

into the TBox. It can be shown that eventually a point is reached where the

incrementally modified defeasible KB becomes LHS-coherent, in which case

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 157

the procedure reduces to the same behaviour as Procedure ComputeRankingA

on Page 150. Pseudocode of our general ranking procedure is given in Pro-

cedure ComputeRankingB on Page 157.

Procedure ComputeRankingB(〈T ,D〉)
Input: A defeasible KB 〈T ,D〉.
Output: 〈T ∗,D∗〉 (version of 〈T ,D〉 in which all hidden strict

information in D is moved to T) and the ranking

R = {D0, . . . ,Dn} for 〈T ,D〉.
1 T ∗:=T ;

2 D∗:=D;

3 R:=∅;
4 repeat

5 i := 0;

6 E0 := D∗;
7 E1 := Exceptional(T ∗, E0);
8 while Ei+1 6= Ei do

9 i := i + 1;

10 Ei+1 := Exceptional(T ∗, Ei);

11 D∗∞ := Ei;
12 D∗ := D∗ \ D∗∞;

13 T ∗ := T ∗ ∪ {C v D | C @∼D ∈ D∗∞};
14 until D∗∞ = ∅;
15 for j = 1 to i do

16 Dj−1 := Ej−1 \ Ej;
17 R := R ∪ {Dj−1};

18 return 〈T ∗,D∗〉,R;

Procedure ComputeRankingB on Page 157 differs from the more basic Pro-

cedure ComputeRankingA on Page 150 mainly at Line 8 and Lines 11 − 13.

Line 8 introduces a new termination condition for the computation of the

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 158

exceptionality subset sequence. Recall that in Procedure ComputeRankingA

(at Line 5) the sequence terminates when none of the axioms in the given

set are exceptional. I.e., the next set in the sequence will be empty. How-

ever, when the defeasible KB is LHS-incoherent then there is another possible

termination condition. I.e., that all the axioms in a given set are exceptional.

A very simple example is the set {C @∼D,C @∼ ¬D}. That is, if Proce-

dure ComputeRankingB on Page 157 encounters such a set, it clearly denotes

a fixed point (an indication that all axioms in this set are totally exceptional).

When such a point is reached, we remove these hidden strict axioms from

D (Line 12) and add their strict counterparts to T (Line 13). We have to

repeatedly execute the exceptionality subset sequence procedure (Lines 4-14)

whenever we have to transfer hidden strict information to the TBox. Eventu-

ally, the KB becomes LHS-coherent which means it does not contain totally

exceptional axioms (Line 14).

After all hidden strict axioms are filtered out of D, the algorithm works

the same as Procedure ComputeRankingA on Page 150. We return the rank-

ing as well as the modified defeasible KB (with the hidden strict axioms

now in T). It is easy to verify that executing Procedure ComputeRankingB

(on Page 157) on 〈T ,D〉 from Example 18 (on Page 155) gives R = ∅ and

〈T ∗,D∗〉:

〈
Dessert v ¬PizzaTopping,

Fruit v Dessert,

Fruit v PizzaTopping,

DessertPizza v ∃hasTopping.Fruit

 , ∅

〉

We have to show that Procedure ComputeRankingB on Page 157 terminates.

Essentially, we have to show that the while loop and the repeat loop ter-

minate. It is fairly straightforward to see that there are only two cases:

(1) 〈T ,D〉 is LHS-coherent, in which case termination of the while loop fol-

lows immediately from our arguments for Procedure ComputeRankingA on

Page 150. In addition, from the same arguments we know that termination

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 159

happens when Ei = ∅ for some i. This means that D∗∞ = ∅ (Line 11) and

then we terminate the repeat loop because of Line 14.

(2) the other case is when 〈T ,D〉 is LHS-incoherent. If there is no i

for which Ei = ∅ it means that the exceptionality subsets have stopped

decreasing in size so that Ei = Ei+1 6= ∅ for some i and therefore the while

loop terminates. To show that the repeat loop terminates for this case,

observe that the fixed point axioms are removed from D∗ (Line 12) and we

recurse on this smaller D∗ (Line 6). Since D is finite we have to reach the

point where Ej is empty for some j > i.

Observe that the additional operations in Procedure ComputeRankingB on

Page 157 are only introduced to handle hidden strict information. Hidden

strict information, in turn, is ranked unsatisfiable information. We notice

that, by definition, ranked unsatisfiable information has infinite rank (see

Definitions 10 and 12). This is the motivation for the choice of symbol D∗∞
representing the set of hidden strict subsumptions.

Note that Procedure ComputeRankingB on Page 157 transfers all such

information to the TBox. From a semantic perspective, it is clear that such

behaviour cannot influence the rank of ranked satisfiable information in the

KB (because C @∼⊥ is ranked equivalent to C v ⊥). Finally, we observe

that, apart from the infinite rank information, Procedure ComputeRankingB

on Page 157 treats the remainder information in the same way as Proce-

dure ComputeRankingA on Page 150.

The arguments expressed above give credibility to the claim that the

soundness of Procedure ComputeRankingA on Page 150 transfers over to the

context of Procedure ComputeRankingB on Page 157 as well. However, this

can also be formally demonstrated by the following lemma.

Lemma 8 (Soundness of Procedure ComputeRankingB) Given a

LHS-incoherent defeasible KB 〈T ,D〉, for each C @∼D ∈ D, C @∼D ∈ D∗∞ (for

some D∗∞ during iteration of the repeat loop of Procedure ComputeRankingB

on Page 157) if and only if 〈T ,D〉 |=r C @∼⊥.

Proof: “ =⇒ ” We have to show that if C @∼D ∈ D∗∞ for some D∗∞ during ex-

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 160

ecution of Procedure ComputeRankingB on Page 157, then 〈T ,D〉 |=r C @∼⊥.

It is clear that D∗∞ is the fixed point set in which all axioms are exceptional

w.r.t. 〈T ,D〉 (Line 11). If we take the contrapositive of Lemma 6 on Page 152

we find that D∗∞ is LHS-incoherent and therefore 〈T ,D〉 |=r C @∼⊥.

“⇐= ” We have to show that for each C @∼D ∈ D, if 〈T ,D〉 |=r C @∼⊥ then

C @∼D ∈ D∗∞ for some D∗∞ during execution of Procedure ComputeRankingB

on Page 157. Informally, what we have to show is that, even though we

know that our reduction is incomplete for general 〈T ,D〉’s (see Example 18 on

Page 155), it will eventually still capture all the hidden strict information (by

recursive application of Lines 4− 14). If this was not the case, it entails that

there is a C @∼D ∈ D s.t. 〈T ,D〉 |=r C @∼⊥ but for each D∗∞ in the execution

of Procedure ComputeRankingB on Page 157, C @∼D 6∈ D∗∞. It is easy to

see then that upon termination of Procedure ComputeRankingB we have a

〈T ∗,D∗〉 s.t. for each C @∼D ∈ D∗ s.t. 〈T ∗,D∗〉 |=r C @∼⊥, T ∗ 6|= CD∗ v ¬C
(our reduction fails to recognise the exceptionality of C). We will show that

this is impossible.

I.e., we pick a C @∼D ∈ D∗ s.t. 〈T ∗,D∗〉 |=r C @∼⊥. We know that

T ∗ 6|= CD∗ v ¬C (our reduction fails to recognise the exceptionality of C).

But Procedure ComputeRankingB on Page 157 also partitions the KB into

a ranking D0, . . . ,Dn. Therefore, because our reduction has “missed” the

total exceptionality of C, there will be some 0 ≤ i ≤ n s.t. C @∼D ∈ Di,
T ∗ ∪ Di |=r > @∼ ¬C and for each X @∼ Y ∈ Di, T ∗ 6|= CDi

v ¬X. We pick a

model IX for T ∗ for each X @∼ Y ∈ Di s.t. there is an x ∈ (CDi
uX)IX . We

take the disjoint union (Definition 26 on Page 131) of these models to obtain

I =
⊎
IX for each X @∼ Y ∈ Di. By Lemma 1 on Page 132 we know that I

is a model for T ∗.
Now, let R = 〈∆R, ·R,≺R〉 be a ranked interpretation s.t. ∆R = ∆I , ·R = ·I

and ≺R is defined s.t. for each x ∈ CRDi
, rkR(x) = 0, and, for each y 6∈ CRDi

,

rkR(y) = 1. We have to show that R
 T ∗ ∪ Di. It is clear that R
 T ∗

because ∆R = ∆I , ·R = ·I and I
 T ∗. Assume that R 6
 Di. This

implies that there is a X @∼ Y ∈ Di s.t. R 6
 X @∼ Y . This means there is a

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 161

z ∈ (X u ¬Y)R s.t. there is no z′ ≺R z s.t. z′ ∈ XR. There are two cases:

Case 1: rkR(z) = 0. This case is clearly impossible because z ∈ CRDi
which

implies that z ∈ (¬X t Y)R.

Case 2: rkR(z) = 1. This implies that there is no z′ ∈ XR s.t. rkR(z′) = 0.

But by definition of R (and I), there exists a y ∈ (CRDi
uX)R. By definition

of ≺R, rkR(y) = 0. This is a contradiction with z′.

Therefore, we have shown that R
 T ∗ ∪ Di. But we also know that there

is an y ∈ (CRDi
u C)R s.t. rkR(y) = 0. This is clearly in contradiction with

our earlier finding that T ∗ ∪Di |=r > @∼ ¬C. Therefore, we have proven that

if 〈T ,D〉 |=r C @∼⊥ then C @∼D ∈ D∗∞ for some D∗∞ during the execution of

Procedure ComputeRankingB on Page 157. 2

We now discuss the phenomenon of hidden strict information from the user

perspective. It must be stressed that our view is that hidden strict informa-

tion is a symptom of poor knowledge engineering choices. That is, we believe

it is a result of ontology modelling errors. We note that such axioms are to-

tally exceptional, which is equivalent to saying that their antecedents are

ranked unsatisfiable. Preferential unsatisfiability itself is analogously defined

to classical DL unsatisfiability. There is a general consensus in the literature

that classical DL unsatisfiability is, in most cases, an erroneous situation and

the result of incorrect ontology design choices. Therefore, this argument can

be inherited by the case of ranked unsatisfiability as well.

In fact, we argue that ranked unsatisfiability is even stronger evidence

for poor design choices than classical unsatisfiability. Informally, this can be

explained by observing that, while there are multifarious causes for classical

unsatisfiability, the reason for ranked unsatisfiability is comparatively more

focused. That is, it is a caused by conflicts between defeasible information

of the same priority or degree of exceptionality. We give some examples:

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 162

Example 19 Consider the following classical KB K:
Student v ¬(∃receives.TaxInvoice),

EmployedStudent v Student,

EmployedStudent v ∃receives.TaxInvoice,

EmployedStudent u ∃hasChild.> v ¬(∃receives.TaxInvoice)


2

It is clear from the KB in Example 19 on Page 162 that EmployedStudent

and EmployedStudent u ∃hasChild.> are both classically unsatisfiable w.r.t. K.

That is, no objects belonging to these concepts can occur in any standard DL

model for K. Translating all the axioms in K to their defeasible counterparts

we obtain the defeasible KB K′:
Student @∼ ¬(∃receives.TaxInvoice),

EmployedStudent @∼ Student,

EmployedStudent @∼ ∃receives.TaxInvoice,

EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice)


We note that K′ is LHS-coherent, which means that neither EmployedStudent

nor EmployedStudent u ∃hasChild.> are ranked unsatisfiable w.r.t. K′. How-

ever, both these concepts are normally exceptional w.r.t. K′. Even though

they are exceptional, objects that belong to these concepts can be reconciled

in a ranked model for K′. We have the freedom to spread these objects across

the levels of the ranked model if they cannot peacefully co-exist on the same

level. The following KBs illustrate a similar situation to Example 19 on

Page 162:

K =

{
> v ¬D,

C v ∃R.D

}
K′ =

{
> @∼ ¬D,

C @∼ ∃R.D

}

Again we find that C and D are classically unsatisfiable w.r.t. K and, in

contrast, neither is ranked unsatisfiable w.r.t. K′. In fact, C is not even

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 163

normally exceptional w.r.t. K′. The semantics of ranked models allows the

power to reconcile the defeasible axioms by spreading C and D objects across

the levels of the ranked models. As we shall see in the next three example

KBs, ranked unsatisfiability is arrived at when we force incompatibility in

the confines of a particular level of a ranked model:

K =

{
C v ¬D,

C v D

}
K′ =

{
C @∼ ¬D,

C @∼ D

}

Notice that in K we have a very crude manner of enforcing that C is classically

unsatisfiable. That is, there is a direct conflict in the “definition” of the

concept C given in K. It is not an indirect conflict in the sense that there

is a sub-concept of C whose definition conflicts with that of C. Therefore,

we find that this carries over to the defeasible translation K′ because here

C is ranked unsatisfiable. If we allow that there be strict axioms in our

defeasible translation then we can obtain more interesting examples of this

kind of conflict.

K =


Dessert v ¬PizzaTopping,

Fruit v Dessert,

Fruit v PizzaTopping

 K′ =


Dessert v ¬PizzaTopping,

Fruit @∼ Dessert,

Fruit @∼ PizzaTopping



In the KBs above we allow the defeasible translation K′ to retain a strict

axiom - Dessert v ¬PizzaTopping. We find that Fruit is classically unsatis-

fiable w.r.t. K and also ranked unsatisfiable w.r.t. K′. There is a conflict in

the definition of Fruit, i.e., that Fruit is enforced to belong to PizzaTopping

and its complement. Fruit is enforced to belong to ¬PizzaTopping because we

know that Fruit @∼ Dessert, Dessert v ¬PizzaTopping and by application of

the Right Weakening KLM postulate we arrive at Fruit @∼ ¬PizzaTopping.

We can even extend the above example to include roles, reiterating that

ranked unsatisfiability can be propagated through roles. We add the axiom

DessertPizza v ∃hasTopping.Fruit to the above KBs to obtain.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 164

K =


Dessert v ¬PizzaTopping,

Fruit v Dessert,

Fruit v PizzaTopping,

DessertPizza v ∃hasTopping.Fruit

K′ =


Dessert v ¬PizzaTopping,

Fruit @∼ Dessert,

Fruit @∼ PizzaTopping,

DessertPizza @∼ ∃hasTopping.Fruit


The classical unsatisfiability of Fruit (w.r.t. K) is retained in the above ex-

ample. In addition we find that DessertPizza is also unsatisfiable w.r.t. K.

When moving over to the defeasible translation K′, we find that both Fruit

and DessertPizza are also ranked unsatisfiable. That is, knowing that we

cannot realise Fruit objects in a ranked model of the knowledge, if we enforce

that DessertPizza objects have relations to Fruit objects, then DessertPizza

objects cannot exist either. This behaviour closely resembles the behaviour

in classical DLs (i.e., the classical unsatisfiability of a concept can propagate

through roles).

To summarise our discussion about the logical merit of hidden strict in-

formation, we maintain that it is an indication of errors in the ontology

engineering process. In the framework of ranked model semantics, we note

that it corresponds to conflicts in defeasible subsumptions of the same prior-

ity and, given an example such as {C @∼D,C @∼ ¬D}, the framework does not

attempt to choose between accepting C @∼D and C @∼ ¬D from an inference

perspective. Rather, the framework treats this situation as a form of logical

incoherence (it is the same as accepting {C v D,C v ¬D}) and leaves this

to be debugged by the ontology engineer if desired. This philosophy aligns

with other approaches such as the one by Bonatti et al [27, Example 1] for

overriding in DLs (see Section 2.9).

To conclude this section on the ranking of a defeasible KB, we demon-

strate two important properties of this ranking. The first is that the ranking

respects the property of specificity, and the second is that it is possible for the

ranking to be refined further by user input if desired. We will make the latter

property more precise at the end of this section. For now we demonstrate

that the ranking respects specificity. The proof statement is represented in

the following lemma. Notice that this captures a more powerful version of

specificity based on defeasible subsumption.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 165

Lemma 9 (Ranking Respects Specificity) Let 〈T ,D〉 be a defeasible KB.

Then, for each pair of defeasible subsumptions C1
@∼D1, C2

@∼D2 ∈ D, if

〈T ,D〉 |=r C1
@∼ C2 and 〈T ,D〉 6|=r C2

@∼ C1 then rk〈T ,D〉s(C1) ≥ rk〈T ,D〉s(C2).

Proof: Suppose there exists a pair of subsumptions C1
@∼D1, C2

@∼D2 ∈ D
s.t. 〈T ,D〉 |=r C1

@∼ C2, 〈T ,D〉 6|=r C2
@∼ C1 and, in contrast to the consequent

of Lemma 9 on Page 165, rk〈T ,D〉s(C1) < rk〈T ,D〉s(C2). We pick a ranked

model R for 〈T ,D〉 s.t. rkR(C1) = rk〈T ,D〉s(C1). Notice that picking an ele-

ment x ∈ min≺R(CR1) we know that x ∈ CR2 (〈T ,D〉 |=r C1
@∼ C2). But then

it follows from this that rkR(C2) ≤ rkR(C1) which means that rk〈T ,D〉s(C2) ≤
rk〈T ,D〉s(C1) which contradicts with rk〈T ,D〉s(C1) < rk〈T ,D〉s(C2). 2

Observe that Lemma 9 on Page 165 defines specificity of knowledge w.r.t. de-

feasible subsumption as well (as opposed to purely strict information like

Bonatti et al. [27, Page 11] do). Thus, a desirable property of the ranking is

that it will not only satisfy specificity induced by defeasible subsumption, but

also specificity induced by strict information (strict subsumption is logically

stronger than defeasible subsumption). In other words, T |= C v D =⇒
〈T ,D〉 |=r C v D =⇒ 〈T ,D〉 |=r C @∼D. Consider the following examples.

Example 20 Consider the following defeasible KB 〈T ,D〉:〈{
EmployedStudent v Student

}
,
{

Student @∼ ¬(∃receives.TaxInvoice)
}〉

2

In Example 20 on Page 165, employed students are more specific than gen-

eral students (induced by the strict subsumption in T). Of course, the rank-

ing respects this specificity relationship because rk〈T ,D〉s(EmployedStudent) =

rk〈T ,D〉s(Student). Note that the reason why they can share the same rank is

that there is no information in 〈T ,D〉 which forces one to consider any of the

concepts as exceptional. Now, if we add such information to our knowledge

we have 〈T ,D〉:〈{
EmployedStudent v Student

}
,

{
Student @∼ ¬(∃receives.TaxInvoice),

EmployedStudent @∼ ∃receives.TaxInvoice

}〉

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 166

Again, employed students are more specific than general students (induced by

the strict subsumption in T). In addition, notice that EmployedStudent is ex-

ceptional w.r.t. 〈T ,D〉 so the ranking ensures that rk〈T ,D〉s(EmployedStudent) >

rk〈T ,D〉s(Student). Now, consider the case where our strict subsumption is

represented as a defeasible subsumption:

〈
∅,


EmployedStudent @∼ Student,

Student @∼ ¬(∃receives.TaxInvoice),

EmployedStudent @∼ ∃receives.TaxInvoice


〉

Again, the ranking preserves rk〈T ,D〉s(EmployedStudent) > rk〈T ,D〉s(Student)

because it respects specificity induced by defeasible subsumption. This is

arguably quite intuitive because there is no information precluding us from

doing so. However, it is perhaps not intuitive for EmployedStudent @∼ Student

to be represented defeasibly. One would imagine that all employed students

are students. That is, it does not make sense to weaken such a statement to

say that just the typical employed students are students.

We now demonstrate that, if it is desirable to the user, the ranking can

be modified (under some restriction), while still preserving properties such

as respect for specificity. Consider the following defeasible KB 〈T ,D〉 where:

T =

{
EmployedStudent v Student,

SelfSponsoredStudent v Student

}
,

D =



Student @∼ ¬(∃receives.TaxInvoice),

Student @∼ ∃access.UniversityLibrary,

Student @∼ ¬SelfSponsoredStudent,

EmployedStudent @∼ SelfSponsoredStudent,

EmployedStudent @∼ ∃receives.TaxInvoice,

EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice),

EmployedStudent u ∃worksFor.University @∼ ¬SelfSponsoredStudent


Applying the ranking procedure (Procedure ComputeRankingB on Page 157)

to 〈T ,D〉 we obtain the ranking:

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 167

D0 =


Student @∼ ¬(∃receives.TaxInvoice),

Student @∼ ∃access.UniversityLibrary,

Student @∼ ¬SelfSponsoredStudent

,

D1 =

{
EmployedStudent @∼ SelfSponsoredStudent,

EmployedStudent @∼ ∃receives.TaxInvoice

}
,

D2 =

{
EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice),

EmployedStudent u ∃worksFor.University @∼ ¬SelfSponsoredStudent

}

{D0,D1,D2} represents the exceptionality ranking of 〈T ,D〉. It is impor-

tant to understand that this ranking is induced by exceptionality (of the

antecedent concepts of the subsumptions in D). Preferential reasoning en-

tailment regimes generally use this base ranking to aid in deciding entailment

(details are presented in subsequent sections of this chapter). However, the

ranking can be refined if desired by the user. Informally, this refinement is

a re-assignment of ranking values to each sentence in D. Of course, in order

to guarantee the elegant mathematical properties of the intended entailment

regime, there needs to be a restriction on how the ranking may be modi-

fied. Before we describe this restriction we define a general refinement of a

ranking.

Definition 34 (General Ranking Refinement) Let 〈T ,D〉 be a defeasi-

ble KB and R = {D0, . . . ,Dn} its ranking. Then, a general refinement for R

is a set R′ = {D′0, . . . ,D′m} s.t. D0 ∪ . . . ∪ Dn = D′0 ∪ . . . ∪ D′m and m ≥ n.

Now we have to define the conditions under which a refinement of a ranking

will still preserve the desirable properties of rational consequence relations

(when used in the computation of inference).

Definition 35 (Safe Ranking Refinement)

Let 〈T ,D〉 be a defeasible KB, R = {D0, . . . , Dn} its ranking and R′ =

{D′0, . . . ,D′m} a general ranking refinement for R. Then, R′ is a safe ranking

refinement for R if: for each pair of axioms C1
@∼D1 ∈ Di,D′k and C2

@∼D2 ∈
Dj,D′l (where 0 ≤ i, j ≤ n and 0 ≤ k, l ≤ m), if i > j then k > l.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 168

Informally, Definition 35 on Page 167 says that a safe ranking refinement pre-

serves the relative ranks of sentences that do not have the same rank. In other

words, a meaningful safe refinement for R tries to re-assign ranks to sentences

that are of the same rank. For example, a user may decide that the original

ranking {D0,D1,D2} in the above example is too coarse for her. That is, she

may decide that employed students’ tax paying property is more important

than whether they are self sponsored or not. Therefore, she can “split” the

rank D1 into two sub-ranks: {EmployedStudent @∼ SelfSponsoredStudent} and

the other (higher sub-rank) {EmployedStudent @∼ ∃receives.TaxInvoice}. The

refined ranking R′ would then be:

D0 =


Student @∼ ¬(∃receives.TaxInvoice),

Student @∼ ∃access.UniversityLibrary,

Student @∼ ¬SelfSponsoredStudent

,

D1 =
{

EmployedStudent @∼ SelfSponsoredStudent
}

,

D2 =
{

EmployedStudent @∼ ∃receives.TaxInvoice
}

,

D3 =

{
EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice),

EmployedStudent u ∃worksFor.University @∼ ¬SelfSponsoredStudent

}

Of course, similar refinements can be made for D0 and D3. Notice that such

refinements will result in rankings that respect the exceptionality-induced

ranking. In other words this means that, according to the original ranking,

if a concept C1 is more exceptional than a concept D1, then in the refined

ranking C1 will still have a higher rank than D1. In contrast, we may have the

case where our original ranking stipulates that two concepts C2 and D2 have

equal exceptionality (appear in the same rank), but in the refined ranking

we are allowed to make a distinction between them (we can specify that C2

has a higher rank than D2 or vice versa). The important thing to observe is

that this refinement is not motivated by exceptionality, but would be defined

by other user-centered desiderata. We have thus given a presentation of the

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 169

major details and intuitions pertaining to the ranking of a defeasible KB.

We reiterate that this ranking is the backbone of all entailment regimes,

presented in this chapter, for deciding inference in the preferential context.

Arguably the most important of these (at least from a theoretical perspective)

is the most conservative rational consequence relation called Rational Closure

which we discuss in the next section.

4.3 Rational Closure

It was shown by KLM that Rational Closure is the most conservative ra-

tional consequence relation. By “most conservative” we mean “gives back

the fewest positive entailments”, where a positive entailment is one of the

form 〈T ,D〉 |=rational C @∼D (as opposed to a negative entailment of the form

〈T ,D〉 6|=rational C @∼D). Given the semantic definition of Rational Closure

(Definition 20 on Page 95), as well as a procedure for computing the rank of

a concept w.r.t. a defeasible KB, it is straightforward to give an algorithmic

characterisation for Rational Closure.

That is, given a defeasible KB 〈T ,D〉 and a query axiom C @∼D, to decide

if C @∼D is in the Rational Closure of 〈T ,D〉 we need to compute the ranks

of C and C u ¬D w.r.t. 〈T ,D〉. Notice that this corresponds to identifying

where to place C and C u ¬D in the exceptionality ranking R for 〈T ,D〉.
Then, from Definition 20 on Page 95, it is straightforward that C @∼D is

in the Rational Closure of 〈T ,D〉 if the rank of C is strictly less than the rank

of C u ¬D (informally, if the objects of C u ¬D are more exceptional than

objects of C). We start off by giving a pseudocode procedure for computing

the rank of an arbitrary concept in a given ranking R for some defeasible KB.

Recall that Procedure ComputeRankingA on Page 150 is used to compute the

rank of LHS concepts of defeasible subsumptions in the KB. Also, recall that

this procedure actually depends on Procedure Exceptional on Page 148

(which computes the exceptionality subset sequence). Hence, our procedure

here is just a modification of Procedure Exceptional to compute the rank

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 170

of an arbitrary concept (one that does not necessarily appear in the KB).

Procedure Rank(〈T ,D〉,R,C)
Input: A LHS-coherent defeasible KB 〈T ,D〉, its ranking

R = {D0, . . . ,Dn} and a concept C.

Output: The natural number value representing the rank of C

w.r.t. 〈T ,D〉.
1 i:=0;

2 while T |= CDn∪...∪Di
v ¬C do

3 if i = n then

4 return ∞;

5 i := i + 1;

6 return i;

The critical thing to notice about Procedure Rank on Page 170 is that it

only accepts LHS-coherent 〈T ,D〉’s as input. The reason why we only need

to consider LHS-coherent KBs is that, after the computation of the ranking

for a general defeasible KB, all the hidden strict inclusions are moved to the

TBox (see Procedure ComputeRankingB on Page 157). The modified KB

(where all hidden strict information is moved to the TBox) is then returned

by Procedure ComputeRankingB (see Line 18 of the procedure). This KB is,

by definition, LHS-coherent and thus we only need to consider these KBs.

It is clear that the procedure terminates when i = n (Line 3 − 4). No-

tice that T |= CDn v ¬C (Line 2) represents the case where C is totally

exceptional. Since the procedure closely follows the ranking procedures in

Section 4.2, the soundness (the computed rank of the concept corresponds

with the semantic notion of the rank of a concept) follows from our arguments

in that section. Now that we are able to compute the rank of a concept, the

procedure to compute Rational Closure is a straightforward characterisation

of its semantic definition.

Because Procedure RationalClosureA on Page 171 closely follows the se-

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 171

Procedure RationalClosureA(〈T ,D〉,R,δ)
Input: A LHS-coherent defeasible KB 〈T ,D〉, its ranking

R = {D0, . . . ,Dn} and a defeasible subsumption δ = C @∼D.

Output: true if δ is in the Rational Closure of 〈T ,D〉, false

otherwise.

1 if Rank(〈T ,D〉, R, C) <

Rank(〈T ,D〉, R, C u ¬D) or Rank(〈T ,D〉, R, C) =∞ then

2 return true;

3 return false;

mantic definition of Rational Closure, and the procedural and semantic defi-

nitions for the rank of a concept correspond (see Section 4.2), it is clear that

the procedure is sound. Here’s an example to illustrate its behaviour:

Example 21 Consider the following defeasible KB 〈T ,D〉:
〈{

EmployedStudent v Student
}
,

{
Student @∼ ¬(∃receives.TaxInvoice),

EmployedStudent @∼ ∃receives.TaxInvoice

}〉
2

The ranking R for 〈T ,D〉 in Example 21 on Page 171 is the sequence of

subsets of D:

D0 = {Student @∼ ¬(∃receives.TaxInvoice)},
D1 = {EmployedStudent @∼ ∃receives.TaxInvoice}

Suppose we want to verify if the axioms Student @∼ ¬(∃receives.TaxInvoice),

EmployedStudent @∼ ∃receives.TaxInvoice and EmployedStudent u ∃hasChild.>
@∼ ¬(∃receives.TaxInvoice) are in the Rational Closure for 〈T ,D〉. It is

straightforward to determine:

Rank(〈T ,D〉, R, Student) = 0,

Rank(〈T ,D〉, R,EmployedStudent) = 1,

Rank(〈T ,D〉, R,EmployedStudent u ∃hasChild.>) = 1

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 172

In addition, we can determine that:

Rank(〈T ,D〉, R, Student u ∃receives.TaxInvoice) = 1,

Rank(〈T ,D〉, R,EmployedStudent u ¬(∃receives.TaxInvoice)) = ∞,

Rank(〈T ,D〉, R,EmployedStudent u ∃hasChild.> u ∃receives.TaxInvoice) = 1

Therefore we can conclude that axioms Student @∼ ¬(∃receives.TaxInvoice)

and EmployedStudent @∼ ∃receives.TaxInvoice are in the Rational Closure of

〈T ,D〉, while EmployedStudentu∃hasChild.> @∼ ¬(∃receives.TaxInvoice) is not.

While Procedure RationalClosureA on Page 171 is straightforward and

amenable to practical implementation, it is not the most efficient algorithmic

characterisation for Rational Closure. We will give an alternative character-

isation which, from a practical perspective, is computationally less intensive.

However, before we give this procedure we must introduce a new term.

Definition 36 (C-compatible) Let 〈T ,D〉 be a LHS-coherent defeasible

KB, R = {D0, . . . ,Dn} its ranking and C a concept. Now, let R′ ⊆ R be a

sequence of subsets Dn,Dn−1, . . . ,Di where 0 ≤ i ≤ n. Then, R′ (resp. C⋃R′)

is C-compatible w.r.t. R if T ∪Dn ∪Dn−1 ∪ . . .∪ Di 6|=r > @∼ ¬C. If there is

no j < i s.t. T ∪Dn∪Dn−1∪ . . .∪ Dj 6|=r > @∼ ¬C then we say R′ (resp. C⋃R′)

is maximally C-compatible w.r.t. R.

Informally, Definition 36 on Page 172 describes the maximal amount of

knowledge in the ranking (while respecting its ordering) that does not enforce

exceptionality of a given concept. Notice that an immediate consequence of

this, is the following lemma.

Lemma 10 (Rank and Maximal Compatibility Correspondence)

Given a defeasible KB 〈T ,D〉, its ranking R = {D0, . . . ,Dn} and a concept

C. Then, Rank(〈T ,D〉, R, C) = i if and only if {Dn, . . . ,Di} is maximally

C-compatible w.r.t. R for each 0 ≤ i ≤ n.

Given Definition 36 on Page 172 and Lemma 10 on Page 172, we can give an

intuitive description of our alternative procedure for Rational Closure in the

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 173

following way: given a defeasible KB 〈T ,D〉, its ranking R and a query axiom

C @∼D, to determine if C @∼D is in the Rational Closure of 〈T ,D〉 all we have

to do is (1) identify the maximal C-compatible subset of R and (2) look in

all classical models for T , if those objects that satisfy (the internalisation

of) the C-compatible subset of R and C, also satisfy D. Then C @∼D is

in the Rational Closure of 〈T ,D〉, otherwise not. We have consolidated the

mechanics of the algorithm described above in Procedure RationalClosureB

on Page 173.

Procedure RationalClosureB(〈T ,D〉,R,δ)
Input: A LHS-coherent defeasible KB 〈T ,D〉, its ranking

R = {D0, . . . ,Dn} and a defeasible subsumption δ = C @∼D.

Output: true if δ is in the Rational Closure of 〈T ,D〉, false

otherwise.

1 i := Rank(〈T ,D〉, R, C);

2 if i =∞ then

3 return T |= C v D;

4 else

5 return T |= CDn∪...∪Di
u C v D;

Therefore, Procedure RationalClosureB on Page 173 works by progressively

(or incrementally) ignoring facts in our KB, starting with the least excep-

tional (or least specific), until we reach a point where our knowledge allows

us to consider the antecedent of our query axiom as prototypical. There-

after, we check if the consequent is a property of this antecedent w.r.t. the

remaining knowledge. Consider the student and employed student example:

Example 22 Consider the following defeasible KB 〈T ,D〉:
〈{

EmployedStudent v Student
}
,

{
Student @∼ ¬(∃receives.TaxInvoice),

EmployedStudent @∼ ∃receives.TaxInvoice

}〉
2

The ranking R for 〈T ,D〉 in Example 22 on Page 173 is the sequence of

subsets of D:

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 174

D0 = {Student @∼ ¬(∃receives.TaxInvoice)},
D1 = {EmployedStudent @∼ ∃receives.TaxInvoice}

Suppose that we want to verify if axioms Student @∼ ¬(∃receives.TaxInvoice),

EmployedStudent @∼ ∃receives.TaxInvoice and EmployedStudent u ∃hasChild.>
@∼ ¬(∃receives.TaxInvoice) are in the Rational Closure for 〈T ,D〉. It is

straightforward to determine, for each query antecedent C, the maximal

C-compatible subsets of R.

{D0,D1,D2} is maximally Student-compatible,

{D1,D2} is maximally EmployedStudent-compatible,

{D1,D2} is maximally (EmployedStudent u ∃hasChild.>)-compatible

It is easy to see that Line 1 of Procedure RationalClosureB on Page 173

is responsible for determining the maximal C-compatibility. Thereafter, we

can execute classical DL reasoning to answer our queries (Line 5):

T |= CD2∪D1∪D0 u Student v ¬(∃receives.TaxInvoice),

T |= CD2∪D1 u EmployedStudent v ∃receives.TaxInvoice,

T 6|= CD2∪D1 u EmployedStudent u ∃hasChild.> v ¬(∃receives.TaxInvoice)

Therefore we can conclude that the axioms Student @∼ ¬(∃receives.TaxInvoice)

and EmployedStudent @∼ ∃receives.TaxInvoice are in the Rational Closure of

〈T ,D〉, while EmployedStudentu∃hasChild.> @∼ ¬(∃receives.TaxInvoice) is not.

Notice that Rational Closure reasoning (Procedure RationalClosureA

and RationalClosureB), in the case where the antecedent concept of our

query is not exceptional, looks at all objects in our models for T which

satisfy all our defeasible subsumptions and the antecedent of our query. If

the consequent of our query is satisfied by each of these objects then we can

infer that the query axiom is in the Rational Closure of our KB2.

2Recall from Section 4.1 that the internalisation mechanism is only necessary to allow

the role neighbourhood of an object to violate defeasible subsumptions in ALC. Because

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 175

We now show that Procedure RationalClosureB on Page 173 corresponds to

Procedure RationalClosureA (they give back the same entailments). Note

that showing this correspondence proves termination and soundness for Pro-

cedure RationalClosureB. We first prove the case where the antecedent of

our query does not have infinite rank (according to both procedures) and

then later address the infinite rank case. Lemma 11 on Page 175 shows that

if C @∼D is in the Rational Closure using Procedure RationalClosureA then

it will be in the Rational Closure using Procedure RationalClosureB.

Lemma 11 (RationalClosureA vs. RationalClosureB, =⇒)

Let 〈T ,D〉 be a LHS-coherent defeasible KB, its ranking R = {D0, . . . ,Dn},
C @∼D a query axiom and i, j natural numbers s.t. i = Rank(〈T ,D〉, R, C)

and j = Rank(〈T ,D〉, R, C u¬D). If i < j then T |= CDn∪...∪Di
uC v D for

each 0 ≤ i ≤ n.

Proof: We have to show that if i < j then T |= CDn∪...∪Di
u C v D. Assume

i < j but T 6|= CDn∪...∪Di
u C v D. We try to derive a contradiction. The

latter statement implies that there is a classical model I for T s.t. there is an

x ∈ (CDn∪...∪Di
uC)I s.t. x 6∈ DI . But, because we know that i < j it implies

that C u ¬D would still be exceptional w.r.t. T ∪ Dn ∪ . . . ∪ Di (it would

only become non-exceptional w.r.t. T ∪Dn ∪ . . .∪Dj where Dn ∪ . . .∪Dj ⊆
Dn ∪ . . . ∪ Di). Therefore, T |= CDn∪...∪Di

v ¬(C u ¬D). This is clearly in

contradiction with our model I for T . Therefore, T |= CDn∪...∪Di
uC v D.2

Now, we have to show that if C @∼D is in the Rational Closure according to

Procedure RationalClosureB on Page 173 then it will also be in the Rational

Closure according to Procedure RationalClosureA on Page 171.

we don’t have roles in propositional languages, Rational Closure is inferentially indistin-

guishable from classical reasoning in the case where the antecedent concept of our query is

not exceptional w.r.t. our KB. This seems to be a very reasonable and desirable paradigm

for many applications of defeasible reasoning.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 176

Lemma 12 (RationalClosureA vs. RationalClosureB, ⇐=)

Let 〈T ,D〉 be a LHS-coherent defeasible KB, C @∼D a query axiom and i

the lowest natural number s.t. T 6|= CDn∪...∪Di
v ¬C (according to Procedure

RationalClosureB). Then, if T |= CDn∪...∪Di
uC v D then Rank(〈T ,D〉, R, C)

< Rank(〈T ,D〉, R, C u ¬D).

Proof: We have to show that if T |= CDn∪...∪Di
uC v D then Rank(〈T ,D〉, R, C)

< Rank(〈T ,D〉, R, C u ¬D). Assume that T |= CDn∪...∪Di
u C v D but that

Rank(〈T ,D〉, R, C) 6< Rank(〈T ,D〉, R, C u ¬D). There are two cases:

Case 1: Rank(〈T ,D〉, R, C) = Rank(〈T ,D〉, R, C u ¬D). We know that

Rank(〈T ,D〉, R, C) = i because of Lemma 10 on Page 172. Because of our

assumption that Rank(〈T ,D〉, R, C) = Rank(〈T ,D〉, R, C u ¬D), we can in-

fer that Rank(〈T ,D〉, R, C u ¬D) = i. But this would imply that T 6|=
CDn∪...∪Di

v ¬(Cu¬D). This, in turn, means that there is a classical model I
for T s.t. there is an x ∈ (CDn∪...∪Di

)I s.t. x ∈ CI and x 6∈ DI . This is clearly

in contradiction with our original assumption that T |= CDn∪...∪Di
u C v D.

Therefore, Rank(〈T ,D〉, R, C) 6= Rank(〈T ,D〉, R, C u ¬D).

Case 2: Rank(〈T ,D〉, R, C) > Rank(〈T ,D〉, R, C u ¬D). Notice that the

term Rank(〈T ,D〉, R, C) defines the lowest number i s.t. T 6|= CDn∪...∪Di
v

¬C. Hence Rank(〈T ,D〉, R, C u ¬D) = j where j < i. This implies that

T 6|= CDn∪...∪Dj
v ¬(C u ¬D) where Dn ∪ . . . ∪ Di ⊂ Dn ∪ . . . ∪ Dj. By

definition of Rank(〈T ,D〉, R, C), i is the lowest number s.t. C is not ex-

ceptional w.r.t. the ranking. Therefore, because i > j, C is still excep-

tional w.r.t. Dn ∪ . . . ∪ Dj. In other words, T |= CDn∪...∪Dj
v ¬C. This

is clearly in contradiction with T 6|= CDn∪...∪Dj
v ¬(C u ¬D). Therefore,

Rank(〈T ,D〉, R, C) 6> Rank(〈T ,D〉, R, C u ¬D).

We now turn our attention to the case where Rank(〈T ,D〉, R, C) = ∞.

We have to show, for any defeasible KB, that if Rank(〈T ,D〉, R, C) = ∞
(according to Procedure Rank on Page 170), then T |= C v D (Line 3 of Pro-

cedure RationalClosureB). This is straightforward to see from Lines 1− 3

of Procedure RationalClosureB on Page 173. The converse also holds by

monotonicity of classical entailment. 2

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 177

In terms of the worst-case computational complexity of computing Ratio-

nal Closure for ALC defeasible KBs, observe that we first need to compute

the ranking of the KB (see Procedure ComputeRankingB on Page 157). No-

tice that, in the worst case, we do n exceptionality checks to determine E1,
where n is the number of axioms in E0. In the worst case, only one axiom

would not be exceptional in E0. If all of them are exceptional then we have

a fixed point and we stop, therefore it cannot be the worst case. Similarly,

if none of them are exceptional then our ranking only has one rank and we

stop, so this cannot be the worst case either. Hence, to determine E2 we

would have to do n− 1 exceptionality checks and for E3, n− 2 checks, and so

on. The result is a quadratic number of exceptionality checks (classical ALC
entailment checks) in the number of defeasible subsumptions in the KB.

After computing the ranking, one could use either of the aforementioned

procedures for computing Rational Closure (Procedure RationalClosureA

or RationalClosureB). It is clear that, in the worst case for these proce-

dures, we have n + 1 classical entailment checks where n is the number of

ranks in the computed ranking of the KB. Thus we have a linear number

of operations for these procedures. To compute the ranking itself requires

a quadratic number of exceptionality checks in the size of D (if the KB

is LHS-coherent). Notice that in the general case (when the KB is LHS-

incoherent) we have to perform these quadratic number of checks each time

we reach a fixed point with totally exceptional axioms. In the worst case,

at each of these fixed points we will have one axiom from D moved to T .

Thus we will have to perform the quadratic number of exceptionality checks

n times (where n is the size of D). This gives a cubic complexity n3 for

the full ranking procedure. Therefore, in total we have a linear number of

operations in the size of the ranking, with a cubic number of operations

(in the number of defeasible subsumptions) to compute the ranking, on top

of the decision procedure for classical ALC (which is in exptime). The

result is thus a procedure that still terminates in exptime. Therefore, Ra-

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 178

tional Closure for ALC (with defeasible subsumption) is not in a higher

complexity class than classical entailment for classical ALC. One can also

observe that Procedure RationalClosureB on Page 173 is likely to be less

computationally intensive in practice, than Procedure RationalClosureA on

Page 171. The reason is that Procedure RationalClosureB only requires to

compute the rank for the antecedent concept of our query. Whereas, Proce-

dure RationalClosureA requires to compute the ranks of two concepts.

To conclude this section we show that, although Rational Closure may be

useful for a variety of applications, it sometimes cautious to draw inferences

that may be useful in other applications. Consider the following example:

Example 23 Consider the following defeasible KB 〈T ,D〉 where:

T =

{
EmployedStudent v Student,

SelfSponsoredStudent v Student

}
,

D =



Student @∼ ¬(∃receives.TaxInvoice),

Student @∼ ∃access.UniversityLibrary,

Student @∼ ¬SelfSponsoredStudent,

EmployedStudent @∼ SelfSponsoredStudent,

EmployedStudent @∼ ∃receives.TaxInvoice,

EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice),

EmployedStudent u ∃worksFor.University @∼ ¬SelfSponsoredStudent


2

Applying the ranking procedure (Procedure ComputeRankingB) to the 〈T ,D〉
in Example 23 on Page 178 we obtain the ranking:

D0 =


Student @∼ ¬(∃receives.TaxInvoice),

Student @∼ ∃access.UniversityLibrary,

Student @∼ ¬SelfSponsoredStudent

,

D1 =

{
EmployedStudent @∼ SelfSponsoredStudent,

EmployedStudent @∼ ∃receives.TaxInvoice

}
,

D2 =

{
EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice),

EmployedStudent u ∃worksFor.University @∼ ¬SelfSponsoredStudent

}

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 179

In Example 23 on Page 178 EmployedStudent @∼ ∃access.UniversityLibrary is not

in the Rational Closure of 〈T ,D〉. However, there is a reasonable argument

that a more adventurous (yet still sensible) reasoning paradigm should en-

dorse this conclusion. The issue is that Rational Closure defines a reasoning

paradigm which roughly corresponds to: “I will only conclude something if

I have conclusive evidence to do so”. In other words, if something is excep-

tional according to Rational Closure, Rational Closure will only allow it to

inherit properties enforced by axioms of the same degree of exceptionality.

Hence, employed students are not allowed to inherit the property of having

access to a university library from general students.

Similar behaviour dictates that employed students who have children (as

well as employed students who work for a university) do not have access to a

university library, when it seems reasonable (using adventurous reasoning),

to conclude that they do. Analogously, adventurous reasoning should be

able to conclude that employed students that have children usually are self

sponsored, because this is a typical property of employed students. By the

same token, our knowledge does not preclude us from inferring that employed

students who work for a university are obliged to pay taxes.

Our arguments boil down to the fact that there are no constraints which

prevent one from making the above inferences, therefore, a more adventur-

ous reasoning methodology could permit them. For example, just because

employed students are exceptional, an adventurous reasoning paradigm may

argue that the reason why they are exceptional is related to their tax pay-

ing property (irrelevant to the property of having access to a library), and

therefore one may conclude that they have access to a library.

Example 23 on Page 178 demonstrates that Rational Closure defines a

more skeptical or cautious reasoning paradigm in the presence of exceptions.

This does not mean that Rational Closure is not useful. Rather, it is recom-

mended for applications where this reasoning paradigm is more suitable. We

stated a case for more adventurous reasoning that may be used to conclude

more inferences than those that are endorsed by Rational Closure. Such a

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 180

paradigm is motivated by the fact that there are no constraints which prevent

the endorsement of these conclusions. In other words, one may be interested

in a reasoning paradigm which is roughly closer to: “I will assume that some-

thing can be inferred, unless there is explicit knowledge to the contrary”.

This latter paradigm is one that lies on the opposite side of the spectrum

to Rational Closure. It can be seen as a venturous extension to Rational

Closure’s skeptical entailment regime. In the next section we present a ra-

tional consequence relation which defines such a reasoning paradigm. It is

an adaptation to DLs of the presumptive reasoning paradigm, developed by

Daniel Lehmann [116], called the Lexicographic Closure.

4.4 Lexicographic Closure

The Lexicographic Closure (LC) of a defeasible KB defines an entailment

regime that represents a venturous extension to Rational Closure’s skeptical

inference. That is, LC will give back all the positive inferences that Rational

Closure gives but it will also give back additional inferences. Nevertheless,

LC remains a rational consequence relation satisfying all the KLM postulates.

As we will see later, LC is a syntax-dependent construction.

More specifically, if the goal is to derive the maximal number of positive

inferences, LC favours finer granularity of axioms in the KB construction.

That is, given two defeasible KBs K1 and K2 which are logically equivalent

(having the same ranked models), supposing that the granularity of knowl-

edge in K2 is finer than that of K1, then it is possible that LC will give more

positive inferences for K2 than for K1. We demonstrate this property with

examples at the end of this section.

We first provide a semantics for Lexicographic Closure which is actually

an incremental adaptation of the semantics of Rational Closure based on

its canonical model construction. This semantic characterisation is also a

generalisation of the one given by Daniel Lehmann for the propositional

case [116]. Thereafter, we provide an algorithmic construction of LC based

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 181

on the one by Casini and Straccia [52] and prove the correspondence with its

semantics.

4.4.1 Semantics

Given an ALC defeasible KB 〈T ,D〉, we will define a minimal canonical

model for 〈T ,D〉 and propose this model as the base for characterising a

semantics for Lexicographic Closure. We saw that Rational Closure can be

characterised by a single minimal canonical model for 〈T ,D〉 (see Defini-

tion 23 on Page 97). For brevity, we shall refer to this model as the Rational

Closure defining model (RCDM for short) for a defeasible KB. Intuitively, we

propose a refinement of this model in which we modify only the ordering on

the elements in the domain.

Recall from the end of Section 4.2, that in order to guarantee the com-

putation of a rational consequence relation, the exceptionality ranking of

the KB should be respected. Nevertheless, we demonstrated that it was

still possible to refine the ranking by distinguishing between sentences of the

same rank. Of course, this description is from the algorithmic perspective.

From the model-theoretic perspective, such a refinement can be perceived in

a ranked model for the KB, as distinguishing between objects of the domain

that have the same rank.

The semantics we propose for Lexicographic Closure adopts this view.

Though the question still remains: what criteria do we use to distinguish

between objects of the same rank? In principle, there is a multitude of

criteria to choose from. However, for Lexicographic Closure we choose to

focus on the number of sentences that are classically satisfied by an object

in a ranked model.

As we saw with Rational Closure, algorithmically speaking, the nonmono-

tonic nature of the reasoning mechanism is realised through ignorance of

knowledge that is inconsistent with the query being asked. Intuitively, using

the maximal amount of knowledge at our disposal should, in general, lead to

more accurate inferences. Therefore, the idea is to ignore the least amount of

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 182

knowledge as possible. The intuition behind counting the sentences that are

classically satisfied by an object in a ranked model, is to arrive at a refined

ranking of objects in the domain taking into account this factor. This idea,

in turn, hopefully leads to a semantics that could allow us to retain more

sentences algorithmically. Consider the following example.

Example 24 Consider the following defeasible KB 〈T ,D〉:

〈{
EmployedStudent v Student

}
,


Student @∼ ¬(∃receives.TaxInvoice),

Student @∼ ∃access.UniversityLibrary,

EmployedStudent @∼ ∃receives.TaxInvoice


〉

2

For brevity and readability, we use symbols S, E, U and T to refer to the

concept names Student, EmployedStudent, UniversityLibrary and TaxInvoice re-

spectively in Example 24 on Page 182. Similarly, we use the abbreviations

acc. and rec. to refer to the role names access and receives respectively. Con-

sider the following ranked model R for 〈T ,D〉.

R = 〈∆R, ·R,≺R〉:

{S}
x1

{U}
x2

acc.

{E, S}x3

{E, S}x4

{T}x5 {T}x6

rec.

rec.

acc.

2

1

0

Figure 4.3: Non-refined ranked model for KB of Example 24.

We can encode the model in Figure 4.3 as R = 〈∆R, ·R,≺R〉 where ∆R =

{x1, x2, x3, x4, x5, x6}, SR = {x1, x3, x4}, ER = {x3, x4}, UR = {x2}, TR =

{x5, x6}, acc.R = {(x1, x2), (x3, x2)} and rec.R = {(x3, x6), (x4, x5)}. rkR(x1) =

0, rkR(x2) = rkR(x3) = rkR(x4) = 1 and rkR(x5) = rkR(x6) = 2.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 183

Given this representation, we can observe that R 6
 E @∼ ∃acc.U even

though it makes intuitive sense to be able to infer E @∼ ∃acc.U from our KB.

In other words, there is no information in my KB that prevents me from

inferring that employed students have access to a university library. The

reason whyR does not satisfy this axiom is that x4 violates it. In other words

x4 6∈ (¬E t ∃acc.U)R (x4 is not in the materialised concept representing the

axiom E @∼ ∃acc.U). Observe that if we look at the materialised concept for

each defeasible subsumption in the KB, we can determine the number of these

materialised concepts that each object in ∆R satisfies. These numbers are

3, 3, 2, 1, 3, 3 for x1, x2, x3, x4, x5, x6 respectively. Now, even though x3 and

x4 (and x2) have the same rank, it is possible to consider x3 more “normal”

in a sense than x4 because x3 satisfies more materialised concepts from the

KB than x4.

More precisely, we can refine the second rank (rank 1) of R to include

three sub-ranks. The most typical of these sub-ranks would include element

x2 since it satisfies the most materialised concepts (i.e., three). The second,

higher sub-rank would include element x3 because it satisfies two materi-

alised concepts. Finally, x4 would be present in the highest sub-rank because

it satisfies just one materialised concept. This refined ranked model R′ is

depicted below. Note that we do not need to consider the subsumptions in

T because every object in a ranked model has to satisfy the applicable mate-

rialised concepts for T , while this is not necessarily the case for the defeasible

subsumptions, as we have demonstrated.

Considering R′ in Figure 4.4 it is easy to verify that R′
 E @∼ ∃acc.U , which

captures our earlier intuition about employed students having access to a

university library.

Essentially, Example 24 on Page 182 presents the basic idea of the se-

mantic paradigm we want to capture with Lexicographic Closure. What

remains is to formalise the construction in Example 24 and give a concrete

semantic definition for Lexicographic Closure. The first step is to define the

lexicographic ordering on the objects in a ranked model for a defeasible KB.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 184

R′ = 〈∆R′ , ·R′ ,≺R′〉:

{S}
x1

{U}
x2

acc.

{E, S}x3

{E, S}x4

{T}x5 {T}x6

rec.
rec.

acc.

4

3

2

1

0

Figure 4.4: Refined ranked model for KB of Example 24.

Definition 37 (Cardinality Ordering) We let 〈T ,D〉 be a LHS-coherent

defeasible KB, R a ranked model for 〈T ,D〉 and x ∈ ∆R. The cardinality

rank of x in R w.r.t. 〈T ,D〉, denoted by lrkR(x), is the natural number

defined by the cardinality of the following set {C @∼D ∈ D | x ∈ (¬C tD)R}.
The cardinality ordering for R w.r.t. 〈T ,D〉, denoted by ≺lexiR, is a total

pre-order on the elements of ∆R defined by the function lrk w.r.t. 〈T ,D〉.
That is, for any two elements x and y in ∆R, x ≺lexiR y if and only if lrkR(x)

< lrkR(y).

Informally, Definition 37 on Page 183 assigns a natural number to each ele-

ment in the domain that represents the number of defeasible subsumptions

that it satisfies in the KB 〈T ,D〉. As we demonstrated in Example 24 on

Page 182, the idea is to use the ordering defined by a standard ranked model

as a base and, for the objects which have the same rank, we can refine their

ranks by taking the lexicographic ordering over these two orderings (see Def-

inition 38 on Page 185).

Since it was shown that, for ALC, Rational Closure can be characterised

by a single canonical ranked model for any consistent KB 〈T ,D〉, we can

build the semantics of Lexicographic Closure upon this model. We will now

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 185

define a ranked model that is a “lexicographic refinement” of this model.

This model, which we call the Lexicographic Closure defining model (LCDM)

for 〈T ,D〉, will be the base-point for defining Lexicographic Closure.

Definition 38 (Lexicographic Closure Defining Model) Let 〈T ,D〉 be

a LHS-coherent defeasible KB, R = 〈∆R, ·R,≺R〉 the RCDM for 〈T ,D〉.
The Lexicographic Closure defining model (LCDM) for 〈T ,D〉 is defined as

R′ = 〈∆R′ , ·R′ ,≺R′〉 where ∆R
′

= ∆R, ·R′ = ·R and ≺R′ is defined on ∆R
′

as follows: for each (a, b) ∈ ∆R
′ ×∆R

′
, a ≺R′ b if a ≺R b or a ≺lexiR b.

It is easy to see that, given that the RCDM exists for some 〈T ,D〉, the

LCDM (Definition 38 on Page 185) also exists for 〈T ,D〉. From the definition

of LCDM it is straightforward to show that Lexicographic Closure is an

inferential extension of Rational Closure. That is, we will now show that

Lexicographic Closure gives back all the positive inferences that Rational

Closure gives (and possibly others).

Lemma 13 (Lexicographic Closure Extends Rational Closure)

Let 〈T ,D〉 be a LHS-coherent defeasible KB, R the RCDM for 〈T ,D〉 and

R′ the LCDM 〈T ,D〉. Then, if R
 C @∼D then R′
 C @∼D for any C @∼D.

Proof: Assume that R
 C @∼D. Of course we know that R and R′ only dif-

fer in the ordering on the domain elements (that is, ∆R = ∆R
′
and ·R = ·R′).

It is also apparent from the definition of lexicographic refinement on the or-

dering that min≺R′ (C
R′) ⊆ min≺R(CR). Therefore R′
 C @∼D. 2

Given the notion of LCDM, we can define Lexicographic Closure in an anal-

ogous way to Rational Closure (Definition 20 on Page 95).

Definition 39 (Lexicographic Closure of a Defeasible KB) Given a de-

feasible KB 〈T ,D〉, its LCDM R and a defeasible subsumption C @∼D, C @∼D

is in the Lexicographic Closure of 〈T ,D〉 (denoted by 〈T ,D〉 |=lexico C @∼D)

if rkR(C) < rkR(C u ¬D) or rkR(C) =∞.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 186

Thus we have given a semantics for Lexicographic Closure by adapting the

intuitions of Daniel Lehmann [116] in the propositional setting, to the DL

case. In the next section we give a procedure for computing Lexicographic

Closure and prove its correspondence with the semantics proposed in this

section.

4.4.2 Procedure

In the DL case, there has been very little work on defining Lexicographic

Closure (in the sense of Daniel Lehmann [116]). The only known applica-

tion to DLs is the procedure developed by Casini and Straccia [52]. In this

section we devise a variant of this procedure which aligns with the semantic

foundation of preferential DLs (as delineated in Section 2.8) as well as with

the semantics for Lexicographic Closure proposed in the previous section.

The lexicographic refinement of the ordering on objects of a ranked model

(Definition 37 on Page 183) manifests itself, on the level of sentences in the

KB, as a refinement of the ordering on these sentences (the exceptionality

ordering). Consider the following example.

Example 25 Consider the following defeasible KB 〈T ,D〉:

〈{
EmployedStudent v Student

}
,


Student @∼ ¬(∃receives.TaxInvoice),

Student @∼ ∃access.UniversityLibrary,

EmployedStudent @∼ ∃receives.TaxInvoice


〉

2

The KB in Example 25 on Page 186 is the same as the one in Example 24

on Page 182. In the latter example we showed that the ordering on the

objects in a ranked model can be refined to reflect the number of sentences

in the KB that each object satisfies (classically). On the level of sentences,

and specifically with regards to the ranking of a defeasible KB, we advocate

that sentences with the same rank can be distinguished using the tool of

lexicographic ordering mentioned in Section 4.4.1. It is easy to see that the

ranking for 〈T ,D〉 is:

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 187

D0 =

{
Student @∼ ¬(∃receives.TaxInvoice),

Student @∼ ∃access.UniversityLibrary,

}
,

D1 =
{

EmployedStudent @∼ ∃receives.TaxInvoice
}

Now, imagine that our query is concerning employed students. That is, our

query is of the form EmployedStudent @∼X for some concept X. It is straight-

forward to see that, in order to find the maximal EmployedStudent-compatible

information in the ranking, Rational Closure will eliminate all information

in D0. Intuitively, some might argue that this is too “drastic”. That is, even

though it is reasonable to eliminate Student @∼ ¬(∃receives.TaxInvoice) (be-

cause it is contributing to the exceptionality of the concept EmployedStudent),

it is not as reasonable to eliminate Student @∼ ∃access.UniversityLibrary. This

is because the latter information has nothing to do with the exceptionality

of EmployedStudent.

Therefore, one can view this elimination behaviour of Rational Closure as

quite “coarse”. The idea behind Lexicographic Closure, from an algorithmic

perspective, is to take a “fine-grained” approach to this elimination of infor-

mation. Recall that the goal is to determine the maximally C-compatible

subset of the ranking (for a concept C). Therefore, instead of removing

“whole ranks” at a time to arrive at this set, Lexicographic Closure starts by

removing a single axiom from the lowest rank (there are k ways to do this

if k is the number of axioms in the particular rank). If this is not sufficient

to ensure C-compatibility we try to remove two axioms from the rank (to

borrow a phrase from combinatorics, there are “k choose 2” ways to do this).

This procedure continues until we have C-compatibility. If we have elimi-

nated all k axioms from the rank then we move to the next rank and so on.

It is not difficult to see that we have a combinatorial explosion of operations

in the size of the ranks.

Applied to our example KB, we notice that there are only two axioms in

D0 and so we have a simple case. We have to try removing a single axiom from

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 188

D0. There are two ways to do this because there are only two axioms. Remov-

ing Student @∼ ∃access.UniversityLibrary does not result in EmployedStudent-

compatibility, however, removing Student @∼ ¬(∃receives.TaxInvoice) does.

Therefore we only need to remove the latter and we are left with:

D0 =
{

Student @∼ ∃access.UniversityLibrary
}

,

D1 =
{

EmployedStudent @∼ ∃receives.TaxInvoice
}

From this ranking we can infer EmployedStudent @∼ ∃access.UniversityLibrary

follows from T ∪D0 ∪D1. Although this is simplistic example, we can easily

extend this notion for the case where we have k axioms in the rank. How-

ever, before we demonstrate the general case, we will state what it means

to take the conjunction (which we denote by ∧), or disjunction (which we

denote by ∨), of a set of DL axioms. In actuality, when refer to the con-

junction (resp. disjunction) of axioms, we are in fact referring to the con-

junction (resp. disjunction) of their materialised counterpart concepts (see

Definition 29 on Page 139). That is, the conjunction of the axioms C1
@∼D1

and C2
@∼D2 is actually the conjunction of their materialised counterpart con-

cepts ¬C1tD1 and ¬C2tD2 respectively. In other words, their conjunction

is the concept (¬C1 tD1) u (¬C2 tD2). Similarly, the disjunction of these

axioms is the concept (¬C1 tD1) t (¬C2 tD2).

Consider the case of three axioms: i.e., let D′0 be the first rank in some

ranking for a defeasible KB. And assume that D′0 contains three axioms

α1, α2 and α3. Logically speaking, Lexicographic Closure will first check

if α1 ∧ α2 ∧ α3 (the combination of all three constraints, together with the

rest of the knowledge in the ranking) enforces exceptionality of the query.

If it does, then it will check if (α1 ∧ α2) ∨ (α1 ∧ α2) ∨ (α2 ∧ α3) enforces

exceptionality (all combinations of two of the three constraints). If it does,

then it will check if α1 ∨ α2 ∨ α3 enforces exceptionality (all combinations of

one constraint). If it does, then it will eliminate α1, α2 and α3 and proceed

to D′1 and repeat the process.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 189

Observe that the Lexicographic Closure procedure follows the same basic

iteration as the Rational Closure procedure. The main difference is that, dur-

ing the phase of identifying C-compatibility, the procedure replaces the ax-

ioms in a rank (i.e., the “conjunction of the axioms” in the set) with progres-

sively “weakened” versions of this information until we reach C-compatibility.

The discussion following Example 25 on Page 186 gives a general intuition

behind the Lexicographic Closure algorithm that we are going to propose.

However, we now need to formalise this procedure. The first step is to define

the “lexicographic refinement” of an exceptionality ranking for a defeasible

KB. Recall from Example 25 that we need to enumerate all ways of removing

1 ≤ k ≤ n axioms from a rank (set of axioms of size n) of the exceptionality

ranking. We accomplish this by referring to the powerset of the rank, and

to the cardinalities of the sets appearing in this powerset. We can thus

define the Lexicographicalisation of an exceptionality ranking for use in the

Lexicographic Closure procedure.

Definition 40 (Lexicographicalisation of a Ranking) Consider a LHS-

coherent defeasible KB 〈T ,D〉, let R = {D0, . . ., Dn} be its ranking, let P(X)

(resp. |X|) denote the powerset (resp. cardinality) of an arbitrary set of el-

ements X. Then, for 0 ≤ i ≤ n, the Lexicographicalisation of Di is a

sequence of collections D ′i = {D′1, . . . ,D′m} (m = |Di|) s.t. for 1 ≤ k ≤ m,

D′k = {S ∈ P(Di) | |S| = k}. R′ = {D ′0, . . . ,D ′n} is called the Lexicographi-

calisation of the ranking R, where D ′i is the Lexicographicalisation of Di ∈ R
for 0 ≤ i ≤ n.

Given a standard rank Di of size n, Definition 40 on Page 189 allows us to

refer to all subsets of Di of size 1 ≤ k ≤ n. In effect, this allows us to

enumerate all ways of removing k axioms from the rank, which we can use

in our procedure for computing Lexicographic Closure. For example, given

a rank Di = {α1, α2, α3, α4, α5} where each αi is an axiom, we can calculate

the Lexicographicalisation D ′i for Di as the sequence of collections:

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 190

D′1 = {{α1}, {α2}, {α3}, {α4}, {α5}},
D′2 = {{α1, α2}, {α1, α3}, {α1, α4}, {α1, α5}, {α2, α3},
{α2, α4}, {α2, α5}, {α3, α4}, {α3, α5}, {α4, α5}},

D′3 = {{α1, α2, α3}, {α1, α2, α4}, {α1, α2, α5}, {α1, α3, α4}, {α1, α3, α5},
{α1, α4, α5}, {α2, α3, α4}, {α2, α3, α5}, {α2, α4, α5}, {α3, α4, α5}},

D′4 = {{α1, α2, α3, α4}, {α1, α2, α3, α5}, {α1, α2, α4, α5}, {α1, α3, α4, α5}, {α2, α3, α4, α5}},
D′5 = {{α1, α2, α3, α4, α5}}

In particular, notice that for any Di and its Lexicographicalisation D ′i =

{D′1, . . . ,D′m} where m = |Di|, D′1 will be a collection of singleton sets (each

set corresponds to an axiom from Di), and D′m will be a singleton collection

consisting of the set Di and only Di. Again, we reiterate that D′k (for 1 ≤ k ≤
m) represents an enumeration of “all ways of removing k axioms from a set of

m axioms”. Depending on how we use these sets, the dual of this statement

could apply (i.e., it could also mean “all ways of retaining (or preserving) k

axioms from a set of m axioms”).

Now, we mention an important aspect of the lexicographic procedure which

leads to a simple optimisation. We notice that we do not need to consider

the Lexicographicalisation of each rank in the ranking. That is, Rational

Closure is too coarse in determining maximal C-compatibility (using Proce-

dure Rank). In other words, in the last step of this procedure, when we are

eliminating the last rank from the ranking that is contributing to the ex-

ceptionality of C, there are possibly some irrelevant axioms in this last rank

which we should keep. I.e., this is where the notion of Lexicographicalisation

comes in. To take a fine-grained look at this problematic rank of the ranking.

Definition 41 (Problematic Rank) Let 〈T ,D〉 be a LHS-coherent defea-

sible KB, R = {D0, . . ., Dn} its ranking, C @∼D a query and {Di, . . . ,Dn}
the maximal C-compatible subset of R w.r.t. C @∼D (w.r.t. 〈T ,D〉), where

0 ≤ i ≤ n. If i > 0 then the problematic rank w.r.t. C @∼D (w.r.t. 〈T ,D〉) is

the set Di−1. If i = 0 then the problematic rank is the empty set.

In other words, the problematic rank is the last rank thrown out by the

procedure which computes maximal C-compatibility. Given that we have for-

malised the main differences of the Lexicographic Closure procedure (w.r.t. the

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 191

Rational Closure procedure) we are in a position to present a procedure for

computing the construction. However, before we do so, we introduce some

foundational definitions.

Recall that Rational Closure coarsely eliminates “whole ranks” in or-

der to arrive at C-compatibility for the query. Given a standard ranking

R = {D0, . . . ,Dn} for some KB 〈T ,D〉 and a query C @∼D, suppose that

R′ = {Dn, . . . ,D2} is maximally C-compatible for 〈T ,D〉. This means

that D1 is the problematic rank for 〈T ,D〉 which, in turn, means that

{Dn, . . . ,D2,D1} is not C-compatible for 〈T ,D〉. Therefore, according to

Lexicographic Closure, it may be too strong to eliminate the whole of the

problematic rank D1. That is, perhaps it is just some of the axioms in D1 that

are problematic and need to be eliminated. In order to have a finer-grained

view of D1 we need to look at its Lexicographicalisation (Definition 40 on

Page 189). In particular, the goal is to locate the maximal amount of in-

formation from D1 that we can retain. This information is defined by the

lexicographically additive concept (LAC) for the problematic rank w.r.t. R′

and C.

Definition 42 (Lexicographically Additive Concept) Let 〈T ,D〉 be a

LHS-coherent defeasible KB, C @∼D a query, R′ = {Dn, . . . ,Di} the maximal

C-compatible subset of the ranking {D0, . . . ,Dn}, and D ′i−1{D′1, . . . ,D′m} the

Lexicographicalisation of the problematic rank Di−1. Let k be the largest num-

ber s.t. 1 ≤ k ≤ m− 1 and T 6|= C⋃R′ u (
⊔
CS∈D′k) v ¬C. Then, the concept

(
⊔
CS∈D′k) is known as the lexicographically additive concept (LAC) for Di−1

w.r.t. R′ and C. D′k is called the lexicographically additive subset (LAS) of

Di−1 w.r.t. R′ and C.

The LAC simply represents the maximal knowledge from the problematic

rank which is still compatible with the query. Notice that 1 ≤ k ≤ m− 1

and not 1 ≤ k ≤ m. This is because if k = m then it implies that we are

keeping allm axioms from the problematic rank. It is clear that this shouldn’t

be allowed because the maximal C-compatible subset is {Dn, . . . ,Di} and

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 192

therefore {Dn, . . . ,Di,Di−1} will not be C-compatible. Given the definition

of LAC, that maximal C-compatibility is defined in terms of exceptionality,

and that exceptionality is reducible to classical DL entailment (Theorem 1

on Page 143), we can formulate a description of Lexicographic Closure in

terms of classical DL entailment.

Definition 43 (Lexicographic Closure w.r.t. Classical Entailment)

Let 〈T ,D〉 be a LHS-coherent defeasible KB, C @∼D a query, R′ = {Dn, . . . ,Di}
the maximal C-compatible subset of its ranking {D0, . . . ,Dn}, and CR′ the

LAC for Di−1 w.r.t. R′ and C. Then, C @∼D is in the Lexicographic Closure

of 〈T ,D〉 if T |= C⋃R′ u CR′ u C v D.

Now we can give the pseudocode algorithm for computing Lexicographic Clo-

sure. The algorithm is composed of Procedure LexicographicClosureA and

a sub-procedure LAC. The latter sub-procedure is responsible for computing

the LAC for the given antecedent of the query, while the former consolidates

all relevant components of the procedure (as described in Definition 43 on

Page 192).

We reiterate that {Dn, . . . ,Di,Di−1} is not C-compatible and so we can-

not keep all axioms from Di−1, we have to remove at least one. Therefore

we assign k = m − 1 (keep m − 1 of the m axioms in Di−1) on Line 1 of

Procedure LAC, instead of assigning k = m. If k reaches 0 (Line 4 of Pro-

cedure LAC) then it corresponds to the case of not keeping any axioms from

Di−1 which means the LAC should, theoretically speaking, be the empty

concept ⊥. However, as we shall see later, we use the LAC in the Lex-

icographic Closure procedure by taking its conjunction with the maximal

C-compatible concept for the ranking. Of course the conjunction of any con-

cept with the ⊥ concept will return ⊥ and this is not the behaviour we

want to capture. Rather, we would like Lexicographic Closure to revert to

using only the standard maximal C-compatible concept for the ranking, if

it cannot find any information to keep from Di−1. Therefore, we assign the

> concept to the LAC for this case. In other words, the conjunction of >

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 193

Procedure LAC(〈T ,D〉,δ,R′,D ′i−1)
Input: A LHS-coherent defeasible KB 〈T ,D〉, a query δ = C @∼D, the

maximal C-compatible subset R′ = {Dn, . . . ,Di} of the

ranking {D0, . . . ,Dn} (1 ≤ i ≤ n− 1), and the

Lexicographicalisation D ′i−1 = {D′1, . . . ,D′m} for the

problematic rank Di−1.
Output: LAC for Di−1 w.r.t. R′ and C.

1 k := m - 1;

2 while T |= C⋃R′ u (
⊔
CS∈D′k) v ¬C do

3 k := k - 1;

4 if k = 0 then

5 return >;

6 return (
⊔
CS∈D′k);

with the maximal C-compatible concept for the ranking will return the latter

concept. Given this sub-procedure for computing the LAC, we can devise a

non-näıve algorithm (although still having substantial headroom for optimi-

sation) for computing Lexicographic Closure. The pseudocode is represented

in Procedure LexicographicClosureA.

Procedure LexicographicClosureA works by first finding the standard

rank of the antecedent of our query (and corresponding maximal C-compatible

subset of the ranking). This is done in Line 1 using Procedure Rank. Notice

that this behaviour is analogous to the Rational Closure procedure. The

departure point is Lines 2 − 3 which take care of some special cases. The

first is the case where i = 0. This means that the antecedent concept is not

exceptional and therefore we check entailment w.r.t. all the knowledge (we do

not need to eliminate any axioms). The same can be said of the case where

the problematic rank just has a single axiom. In the latter case, there is only

one way to repair the exceptionality of C, and that is to remove the single

axiom. This leaves us with the standard maximal C-compatible concept.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 194

Procedure LexicographicClosureA(〈T ,D〉,R,R′,δ)
Input: A LHS-coherent defeasible KB 〈T ,D〉, its ranking

R = {D0, . . . ,Dn}, a query δ = C @∼D, the problematic rank

Di−1 and its Lexicographicalisation D ′i−1 = {D′1, . . . ,D′m}.
Output: true if δ is in the Lexicographic Closure of 〈T ,D〉, false

otherwise.

1 i := Rank(〈T ,D〉, R, C);

2 if i = 0 or |Di−1| = 1 then

3 return T |= CDn∪...∪Di
u C v D;

4 else

5 CR′ = LAC(〈T ,D〉, δ, {Dn, . . . ,Di},D ′i−1);
6 return T |= CDn∪...∪Di

u CR′ u C v D;

If the special cases do not apply, we are left with the core case in Lines 4−
6: the antecedent concept is exceptional and the problematic rank has more

than one axiom. Sub-procedure LAC is used to “fine-comb” through the prob-

lematic rank Di−1. Starting with keeping m− 1 axioms from Di−1 (remem-

ber we cannot keep all m because {Dn, . . . ,Di,Di−1} is not C-compatible

w.r.t. R), if this does not give C-compatibility then we keep m − 2 axioms

and so on. We terminate when we reach C-compatibility or when k = 0 (we

cannot keep any axioms). Consider the following example:

Example 26 Consider the following defeasible KB 〈T ,D〉 where:

T =
{

EmployedStudent v Student
}

D =



Student @∼ ¬(∃receives.TaxInvoice),

Student @∼ ∃access.UniversityLibrary,

Student @∼ ¬SelfSponsoredStudent,

EmployedStudent @∼ SelfSponsoredStudent,

EmployedStudent @∼ ∃receives.TaxInvoice,

EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice),

EmployedStudent u ∃worksFor.University @∼ ¬SelfSponsoredStudent


2

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 195

Applying Procedure ComputeRankingB to 〈T ,D〉 in Example 26 on Page 194

we obtain the ranking:

D0 =


Student @∼ ¬(∃receives.TaxInvoice),

Student @∼ ∃access.UniversityLibrary,

Student @∼ ¬SelfSponsoredStudent

,

D1 =

{
EmployedStudent @∼ SelfSponsoredStudent,

EmployedStudent @∼ ∃receives.TaxInvoice

}
,

D2 =

{
EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice),

EmployedStudent u ∃worksFor.University @∼ ¬SelfSponsoredStudent

}

Notice that EmployedStudent @∼ ∃access.UniversityLibrary is not in the Rational

Closure of 〈T ,D〉. However, applying Procedure LexicographicClosureA

to this query and KB gives the maximal EmployedStudent-compatible subset

of the ranking as {D2,D1}, the problematic rank is D0. D′k on Line 6 of Pro-

cedure LAC is calculated as { { Student @∼ ¬(∃receives.TaxInvoice) }, { Student

@∼ ∃access.UniversityLibrary }, { Student @∼ ¬SelfSponsoredStudent } }. There-

fore, on Line 5 of Procedure LexicographicClosureA, (
⊔
CS∈D′k) = CR′ =

(¬Studentt¬(∃receives.TaxInvoice)) t (¬Studentt ∃access.UniversityLibrary)

t (¬Studentt¬SelfSponsoredStudent). We observe that the middle disjunct is

“compatible” with EmployedStudent and therefore T |= CDn∪...∪Di
u (

⊔
CS∈D′k)

u EmployedStudent v ∃access.UniversityLibrary.

Similar behaviour reveals that employed students who have children (as

well as employed students who work for a university) can inherit the property

of having access to a university library from general students, because of the

fine-grained behaviour of Lexicographic Closure. We can also derive that

employed students who have children are usually self sponsored, because this

is a typical property of employed students. Another useful inference, that

employed students who work for a university are obliged to pay taxes, can

be made using Lexicographic Closure.

Hence, Lexicographic Closure does not inherit the inferential caution of

Rational Closure described in Example 23 on Page 178.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 196

We have to show that Procedure LexicographicClosureA terminates, and

that it corresponds with the semantics presented in Section 4.4.1 (i.e., that

the procedure is sound and complete). Termination is trivial to show because

Procedure Rank and Sub-procedure LAC both terminate. The former has been

shown earlier in this chapter, the latter can be extrapolated from Lines 3− 5

of Sub-procedure LAC.

Soundness and completeness for Procedure LexicographicClosureA can

be shown by demonstrating that Definitions 39 and 43 on Pages 185 and

192 for Lexicographic Closure actually correspond. Before we do so, we

prove some intermediate results. The first result shows that incoherence

of a concept, w.r.t. a defeasible KB 〈T ,D〉, can only be caused by strict

information. This means that, considering that 〈T ,D〉 is LHS-coherent (all

strict information is surely in T), then incoherence of a concept can only be

caused by T itself. Recall also that the case of a concept being incoherent

w.r.t. a defeasible KB corresponds exactly to the concept having infinite

rank. The following proves the result just discussed (and has been proven

independently as well [41]).

Lemma 14 (Strict Facts are Responsible for Incoherence) Let 〈T ,D〉
be a LHS-coherent defeasible KB and C a concept. Then, T |= C v ⊥ if and

only if 〈T ,D〉 |=r C v ⊥.

Proof: The contrapositive is 〈T ,D〉 6|=r C v ⊥ if and only if T 6|= C v ⊥.

“ =⇒ ” Assume 〈T ,D〉 6|=r C v ⊥. This implies that there is a ranked

model R for 〈T ,D〉 s.t. there is an x ∈ CR. Let I = 〈∆I , ·I〉 s.t. ∆I = ∆R

and ·I = ·R. Assume that I 6
 T . This means there is an X v Y ∈ T
s.t. I 6
 X v Y which, in turn, implies that there is a y ∈ XI s.t. y 6∈ Y I .
But this implies that R 6
 X v Y because ∆R = ∆I and ·R = ·I . We reach

a contradiction with R
 T and therefore, I
 T and it is clear that there

is a z ∈ CI corresponding to x ∈ CR. Hence, T 6|= C v ⊥.

“ ⇐= ” Assume that T 6|= C v ⊥. This means there is a model I for T
s.t. there is an x ∈ CI . We also know that 〈T ,D〉 is LHS-coherent which

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 197

implies that 〈T ,D〉 6|=r X v ⊥ for each X @∼ Y ∈ D. This obviously tells

us that there is a ranked model RX for 〈T ,D〉 s.t. RX 6
 X v ⊥ for each

X @∼ Y ∈ D. We pick such an RX for each X @∼ Y ∈ D. Observe that, for

each RX , by virtue of having an element y ∈ XRX , there must be a min-

imal such element y′ ∈ XRX . This implies that y′ will satisfy X @∼ Y ∈ D.

We will refer to this observation later in the proof. For now, we take the

horizontal disjoint union (Definition 27 on Page 132) of each RX to obtain

R′. From Lemma 2 on Page 133 we know that R′
 〈T ,D〉. However, we

do not know of any element in ∆R
′

that belongs to CR
′

which is the goal

of this proof. But we do know that there is an element x ∈ CI . Thus we

plan to augment the ranked model R′ with this information about I. We

define a ranked interpretation from the information in I. That is, we define

RI = 〈∆RI , ·RI ,≺RI〉 s.t. ∆RI = ∆I , ·RI = ·I and ≺RI s.t. rkRI(w) = 0 for

each w ∈ ∆RI . Now, we take the vertical disjoint union (Definition 28 on

Page 133) of R′ and RI (i.e., the construction R′�RI) to obtain R′′. Since,

by definition, we know there is an element of CR
′′
, the crux is to show that

R′′ is a ranked model for 〈T ,D〉. It is easy to show that R′′
 T because

R′
 T , RI
 T , ∆R
′′

= ∆R
′ ∪∆RI and ·R′′ = ·R′

⊎
·RI (Definition 28 on

Page 133). To understand that R′′
 D it is sufficient to observe that any

element of the topmost rank of R′′ (i.e., the elements inherited from RI)
satisfies D vacuously. This is because for any such element z, if z ∈ XR

′′

for some X @∼ Y ∈ D then z 6∈ min≺R′′ (X
R′′). This is because of the con-

struction of R′ which guarantees that there is an element of XR
′

for each

X @∼ Y ∈ D. And, because these elements are all of lower rank than z, z will

always satisfy D. Therefore, R′′
 〈T ,D〉 and there is a z′ ∈ CR′′ . Hence,

〈T ,D〉 6|=r C v ⊥. 2

The second result demonstrates that the minimal elements of a concept in

the LCDM correspond exactly with those elements of the concept that satisfy

the most number of subsumptions (materialised concepts) in the KB.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 198

Lemma 15 (Minimality vs. Maximal Compatibility and LAC)

Let 〈T ,D〉 be a LHS-coherent defeasible KB, R its LCDM, C @∼D a query,

R′ = {Dn, . . . ,Di} maximal C-compatible subset of its ranking {D0, . . . ,Dn},
and CR′ the LAC for Di−1 w.r.t. R′ and C. Then, x ∈ min≺R(CR) if and

only if x ∈ (C⋃R′ u CR′ u C)R for any x.

Proof: “ =⇒ ” Assume that x ∈ min≺R(CR). Suppose the consequent

of our proof statement holds (i.e., that x ∈ (C⋃R′ u CR′ u C)R). Then,

by definition of C⋃R′ = CDn∪...∪Di
and CR′ = (

⊔
CS∈D′k), we know that the

number of subsumptions X @∼ Y ∈ D that x “satisfies” (see Definition 37 on

Page 183) is defined as: the number of subsumptions in Dn ∪ . . . ∪ Di plus

the number of subsumptions in any S ∈ D′k. We will refer to this number

as nsx. Hence, nsx = |Dn ∪ . . . ∪ Di| + |S| for any S ∈ D′k. Now, assume

that the consequent of our proof statement does not hold. I.e., assume that

x 6∈ (C⋃R′uCR′uC)R. This means that either (1) there is an X @∼ Y ∈ Dj for

some Dj ∈ R′ s.t. x ∈ (X u¬Y)R, or (2) x 6∈ (
⊔
CS∈D′k)R (or both). In either

case, it will mean that nsx < |Dn ∪ . . . ∪ Di| + |S| for any S ∈ D′k. Because

we know that x is a minimal element of C in R, we know that there is no

y ∈ CR s.t. y ≺R x. By definition of ≺R (see Definition 38 on Page 185),

we know that (i) there is no such y s.t. y is lower than x in the RCDM

Rrational for 〈T ,D〉 and (ii) there is no such y s.t. nsy > nsx. Observe that,

by definition of maximal C-compatible set (Definition 36), our reduction to

classical entailment for concept exceptionality (Theorem 1 on Page 143),

and LAC (Definition 42) that T 6|= C⋃R′ u CR′ v ¬C. Which is logically

equivalent to saying that T 6|= C⋃R′ uCR′ uC v ⊥. This means that there is

a classical model I for T s.t. there is an element x ∈ (C⋃R′uCR′uC)I . From

Lemma 14 on Page 196 we can derive that 〈T ,D〉 6|=r C⋃R′ u CR′ u C v ⊥.

This implies that there is a ranked model R′ for 〈T ,D〉 s.t. there is an

element z ∈ (C⋃R′ u CR′ u C)R
′
. This last piece of information, together

with the definition of minimal canonical ranked model, tells us that there is

a z′ ∈ (C⋃R′ u CR′ u C)R. That is, there is a representative element in R
for each element in each standard ranked model for 〈T ,D〉. But this would

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 199

mean that nsz′ > nsx. We arrive at a contradiction with (ii). Therefore we

have shown that x ∈ (C⋃R′ u CR′ u C)R.

“⇐= ” Assume that x ∈ (C⋃R′ uCR′ uC)R. Let Rrational be the RCDM for

〈T ,D〉. By definition of maximal C-compatible subset Dn ∪ . . . ∪ Di (Defi-

nition 36 on Page 172) and our reduction to classical entailment for concept

exceptionality (Theorem 1 on Page 143), we know that 〈T ,Dn∪ . . .∪Di〉 6|=r

> @∼ ¬C, and that it is the smallest i for which this is possible. This tells

us that the rank of C w.r.t. 〈T ,D〉 (and also w.r.t. Rrational) is i. That is,

rk〈T ,D〉 = rkRrational
= i. Therefore, it is easy to see that x is a minimal ele-

ment of C in Rrational because Rrational is a minimal ranked model. The goal

is to show that after the lexicographic refinement of the ordering for Rrational,

x will remain a minimal element of C. By definition of CR′ = (
⊔
CS∈D′k) we

see that |Dn ∪ . . . ∪ Di| + |S| for any S ∈ D′k is the maximal number of

subsumptions in D that an element of C can satisfy. Therefore x satisfies

the maximal number of subsumptions that any C can satisfy. Hence, accord-

ing the Lexicographic refinement of the ordering (Definition 37 on Page 183),

which favours (“pushes down”) elements that satisfy more subsumptions from

D, x has to be a minimal element of C w.r.t. R. That is, x ∈ min≺R(CR).2

We can now move on to showing that our reduction to classical entailment

for Lexicographic Closure, given by Procedure LexicographicClosureA on

Page 194 and Definition 43 on Page 192, corresponds with our presented

semantics for it (Definition 39 on Page 185). We formulate the following

lemma to capture what we have to show.

Lemma 16 (Definitions 39 and 43 correspond) Let 〈T ,D〉 be a LHS-

coherent defeasible KB, R its LCDM, C @∼D a query, R′ = {Dn, . . . ,Di} the

maximal C-compatible subset of its ranking {D0, . . . ,Dn}, and CR′ the LAC

for Di−1 w.r.t. R′ and C. Then, T |= C⋃R′ u CR′ u C v D if and only if

〈T ,D〉 |=lexico C @∼D.

Proof: “ =⇒ ” We have to show that if T |= C⋃R′ u CR′ u C v D then

〈T ,D〉 |=lexico C @∼D. Since |=lexico is defined in terms of the LCDM R, we

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 200

have to show that if T |= C⋃R′ u CR′ u C v D then R
 C @∼D. Assume

that T |= C⋃R′ u CR′ u C v D but that R 6
 C @∼D. This means that there

is an element x ∈ min≺R(CR) s.t. x 6∈ DR. From Lemma 15 on Page 198 we

know that x ∈ (C⋃R′uCR′uC)R. We obviously know that R
 T . However,

even stripping away the ordering component of R we are left with a classical

interpretation I = 〈∆I , ·I〉 s.t. ∆I = ∆R, ·I = ·R and, therefore, I
 T .

But, by our initial assumption that T |= C⋃R′ u CR′ u C v D (each model

for T satisfies C⋃R′ uCR′ uC v D), it follows that I
 C⋃R′ uCR′ uC v D.

But we know that x ∈ (C⋃R′ u CR′ u C)I (because x ∈ (C⋃R′ u CR′ u C)R,

∆I = ∆R and ·I = ·R) and x 6∈ DI (again because x 6∈ DR, ∆I = ∆R and

·I = ·R). This is clearly a contradiction with I
 C⋃R′ u CR′ u C v D.

Therefore, R
 C @∼D.

“⇐= ” We have to show that if R
 C @∼D then T |= C⋃R′ u CR′ u C v D.

Assume that R
 C @∼D but T 6|= C⋃R′ u CR′ u C v D. This is logically

equivalent to saying that T 6|= C⋃R′uCR′uCu¬D v ⊥. From Lemma 14 on

Page 196 we know that 〈T ,D〉 6|=r C⋃R′uCR′uCu¬D v ⊥. Therefore, there

is a ranked model R′ for 〈T ,D〉 s.t. there is a y ∈ (C⋃R′ uCR′ uC u ¬D)R
′
.

This tells us that there is a y′ ∈ (C⋃R′ uCR′ uCu¬D)R by definition of min-

imal canonical ranked model (that is, there is a representative element in R
for each element in each standard ranked model for 〈T ,D〉). From Lemma 15

on Page 198 we know that y′ ∈ min≺R(CR) and we arrive at a contradiction

with R
 C @∼D because y′ 6∈ DR. Hence, T |= C⋃R′ u CR′ u C v D. 2

An analysis of Procedure LexicographicClosureA reveals that the worst-

case computational complexity is increased from exptime-complete (for

classical ALC) to 2-exptime-complete (double exponential time). This

can be demonstrated by observing that, in the worst case, our input defea-

sible KB will only contain defeasible axioms (i.e., T = ∅). Therefore, to

identify the LAC we need to compute an exponential number of subsets of

size k of a set of n elements (where n is the size of the problematic rank).

I.e., the number of disjuncts in the LAC would be exponential in the size of

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 201

the problematic rank. This exponentially-sized input for the ALC decision

procedure, together with the exponential number of operations required (in

the worst case) in the decision procedure itself, results in the 2-exptime-

complete complexity for Lexicographic Closure.

4.4.3 Discussion

We have given a semantics and procedure for computing the Lexicographic

Closure of a defeasible KB. We have shown the correspondence between its

ranked model semantics and its reduction to classical entailment. We have

also demonstrated that Lexicographic Closure is an inferential extension of

Rational Closure. Intuitively, Rational Closure defines a cautious inference

mechanism (“I will only infer something if there is explicit evidence which

proves it”) and Lexicographic Closure defines the credulous counterpart to

this: “I will infer something as long as there is no evidence to the contrary”.

We foresee that both inference mechanisms should have applicability in a vari-

ety of contexts. Perhaps Lexicographic Closure may be suitable for more real-

world applications than Rational Closure because the latter may be viewed as

defining an inference relation that is too cautious. We conclude this section

by mentioning two aspects of Lexicographic Closure that point to possible

variants which may also prove useful. The first aspect is that Lexicographic

Closure is syntax-dependent. That is, performing Lexicographic Closure in-

ference on two logically equivalent KBs (having the same ranked models but

that are syntactically different) may yield different inferences. Consider the

example:

Example 27 Consider the following defeasible KB 〈T ,D〉:

T =
{

EmployedStudent v Student
}

,

D =


Student @∼ ¬(∃receives.TaxInvoice) u ∃access.UniversityLibrary,

Student @∼ ¬SelfSponsoredStudent,

EmployedStudent @∼ SelfSponsoredStudent,

EmployedStudent @∼ ∃receives.TaxInvoice


2

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 202

Applying Procedure ComputeRankingB to 〈T ,D〉 in Example 27 on Page 201

we obtain the ranking:

D0 =

{
Student @∼ ¬(∃receives.TaxInvoice) u ∃access.UniversityLibrary,

Student @∼ ¬SelfSponsoredStudent

}
,

D1 =

{
EmployedStudent @∼ SelfSponsoredStudent,

EmployedStudent @∼ ∃receives.TaxInvoice

}

It is straightforward to verify that Lexicographic Closure does not give the

intuitive inference that employed students have access to a university li-

brary. Recall from Example 26 on Page 194 that we obtained this infer-

ence with a logically equivalent KB. In that example, the axiom Student @∼

¬(∃receives.TaxInvoice) u ∃access.UniversityLibrary was represented in a more

fine-grained manner. I.e., this axiom was “split” into the two axioms Student

@∼ ¬(∃receives.TaxInvoice) and Student @∼ ∃access.UniversityLibrary. Lexico-

graphic Closure thus favours finer-grained representation of axioms in terms

of giving back the most number of positive inferences.

The behaviour of Lexicographic Closure in Example 27 on Page 201 sug-

gests possible variants of the procedure to catch these hidden inferences.

That is, one could define possible normal forms for the KB which could “break

axioms apart” into irreducible components, from which Lexicographic Clo-

sure would then be able to capture the hidden inferences. There have been

numerous efforts concerning normal forms themselves in DLs, for applications

other than the one we propose. One such related contribution is the work

of Horridge, Parsia and Sattler [96] on laconic and precise justifications [94].

We anticipate that similar methods, to those used in this work, may be used

to address the syntax sensitivity of Lexicographic Closure.

Finally, observing the behaviour of the Lexicographic Closure procedure,

we notice that it defines an agnostic or näıve attitude towards identifying the

maximal C-compatible knowledge. That is, it does not discriminate between

the axioms to determine which ones contribute (and which ones don’t) to the

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 203

exceptionality of the query antecedent. In other words, Lexicographic Clo-

sure defines a brute force approach to determining maximal C-compatibility,

even though Procedure LexicographicClosureA is not a fully näıve proce-

dure. Because of this behaviour, it is likely that Lexicographic Closure may

not perform very efficiently in practice. Prima facie, an obvious solution is

to identify heuristics to prune away many of the irrelevant axioms to the

exceptionality in question. We now discuss a class of inference procedures

related to Rational and Lexicographic Closure that adopt this approach.

4.5 Relevant Closure

As we demonstrated in Section 4.3, the Rational Closure is quite coarse in

removing axioms from the ranking in order to reach C-compatibility. In

fact, Rational Closure may eliminate axioms that are irrelevant to the ex-

ceptionality of the query antecedent. In the previous section we showed that

Lexicographic Closure will not exhibit this behaviour. Rather, Lexicographic

Closure is extremely näıve when its comes to eliminating axioms from the

ranking that are irrelevant to the exceptionality of the query. It will eliminate

a single axiom at a time until it reaches C-compatibility and so it is not in

danger of eliminating irrelevant axioms. However, this brute force approach

may prove to be inefficient from the perspective of reasoning performance.

In this section we present a class of reasoning procedures, called the Rel-

evant Closures [48], that define a notion of relevance for axioms w.r.t. the

exceptionality of the query antecedent. For all classes of Relevant Closure,

relevance is defined in terms of justifications [94, 20]. A justification for an

axiom that is entailed from a KB is a minimal subset (w.r.t. set inclusion) of

the KB that entails the given axiom. In general there may be multiple justifi-

cations for an entailment. There has been extensive research into computing

justifications for entailments in DL-based ontologies, and computing them

efficiently [105, 94, 20]. Drawing from this work, we assume the existence

of a black-box function called AllJusts(〈T ,D〉, C) to compute the set of all

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 204

justifications for C being exceptional w.r.t. a defeasible KB 〈T ,D〉. We give

specialised definitions for justification and function AllJusts(〈T ,D〉, C) for

our purposes here.

Definition 44 (Justification for Exceptionality) Let 〈T ,D〉 be a LHS-

coherent defeasible KB and C a concept s.t. 〈T ,D〉 |=r > @∼ ¬C. Then a

justification for 〈T ,D〉 |=r > @∼ ¬C is a set D′ ⊆ D s.t. 〈T ,D′〉 |=r > @∼ ¬C
and there is no D′′ ⊂ D′ s.t. 〈T ,D′′〉 |=r > @∼ ¬C. D′ is also called a C-

justification w.r.t. 〈T ,D〉.

From this given definition of justification in our context of exceptionality, we

can define AllJusts(〈T ,D〉, C) as the function which returns the set of all C-

justifications w.r.t. 〈T ,D〉 |=r > @∼ ¬C. Since there are numerous optimised

algorithms for AllJusts(〈T ,D〉, C) in the literature we do not give a novel

one here. In our subsequent algorithms for Relevant Closure, we assume the

use of one of these existing procedures for computing all justifications.

In the remainder of this section we introduce three instances of the class

of Relevant Closures. The first is known as Basic Relevant Closure (BRelC

for short), the second as Minimal Relevant Closure (MRelC for short) and the

third as Lexicographically-Relevant Closure (LRelC for short). Although all

these constructions subscribe to a notion of relevance rooted in justifications,

they differ slightly in how they apply justifications to identify maximal C-

compatibility. We shall now focus on explicating the first instance of Relevant

Closure called the Basic Relevant Closure.

Basic Relevant Closure defines the relevant axioms of 〈T ,D〉 w.r.t. the ex-

ceptionality of C, as those that appear in some C-justification for 〈T ,D〉 |=r

> @∼ ¬C. I.e., the following definition of relevance is adopted.

Definition 45 (Relevance and C-basis) Let 〈T ,D〉 be a LHS-coherent

defeasible KB, C a concept s.t. 〈T ,D〉 |=r > @∼ ¬C, and J = AllJusts

(〈T ,D〉, C) = {J1, . . . ,Jn}. Then, the C-basis for 〈T ,D〉 |=r > @∼ ¬C is

the set J1 ∪ . . . ∪ Jn. An axiom α ∈ D is relevant for 〈T ,D〉 |=r > @∼ ¬C if

α ∈ J1 ∪ . . . ∪ Jn.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 205

That is, Basic Relevant Closure views any axiom appearing in a C-justification

as relevant to the exceptionality of C. The basic idea, then, is to only elim-

inate axioms that appear in this set from the ranking when identifying the

maximal C-compatible set. In order to capture this new behaviour, we will

introduce an adaptation (to the case of Basic Relevant Closure) of the notion

of maximal C-compatibility (Definition 36 on Page 172). We call this notion

maximally-relevant C-compatibility.

Definition 46 (Maximally-relevant C-compatibility) Let 〈T ,D〉 be a

LHS-coherent defeasible KB, R = {D0, . . . ,Dn} its ranking, C @∼D a query

s.t. 〈T ,D〉 |=r > @∼ ¬C, and C the C-basis w.r.t. 〈T ,D〉 |=r > @∼ ¬C. Now,

let R′ be a sequence of subsets D′0, . . . ,D′i where D′j = Dj\C for 0 ≤ j ≤ i

and let R′′ ⊂ R be the sequence of subsets Di+1, . . . ,Dn. Then, R′ ∪ R′′

(resp. C⋃(R′∪R′′)) is maximally-relevant C-compatible w.r.t. R if T ∪Dn∪. . .∪
D′i∪. . .∪D′0 6|=r > @∼ ¬C and there is no k < i s.t. T ∪Dn∪. . .∪D′k∪. . .∪D′0 6|=r

> @∼ ¬C.

Intuitively, the maximally-relevant C-compatible set of a ranking charac-

terises a procedure for computing maximal C-compatibility, where at each

step we only consider eliminating relevant axioms from the ranking (i.e., those

in Dj ∩ C). We can now easily formalise Basic Relevant Closure in terms of

classical entailment.

Definition 47 (Basic Relevant Closure of a Defeasible KB)

Let 〈T ,D〉 be a LHS-coherent defeasible KB, R = {D0, . . . ,Dn} its ranking,

C @∼D a query, and R′ the maximally-relevant C-compatible subset of R.

Then, C @∼D is in the Basic Relevant Closure of 〈T ,D〉 if T |= C⋃R′uC v D.

We do not give a ranked model semantics here for Basic Relevant Closure.

One of the reasons is that Basic Relevant Closure does not characterise a

rational consequence relation. That is, it does not satisfy some of the KLM

postulates and therefore a ranked model semantics is, perhaps, less inter-

esting for such a consequence relation. Even though this is an unfortunate

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 206

theoretical result, it does not detract from Basic Relevant Closure possibly

having useful applications. We will give more detail about this in Chapter 5.

In fact, in that chapter we show that most defeasible reasoning formalisms

mentioned in this thesis do not natively characterise rational consequence

relations.

For now we still have to provide a procedure for Basic Relevant Closure.

Just like Lexicographic Closure, we use the same basic template of the Ra-

tional Closure algorithm but substitute our augmented notion of maximal C-

compatibility. Pseudocode is presented in Procedure BasicRelevantClosure.

Procedure BasicRelevantClosure(〈T ,D〉,R,C ,δ)

Input: A LHS-coherent defeasible KB 〈T ,D〉, its ranking

R = {D0, . . . ,Dn}, the C-basis C , and a query δ = C @∼D.

Output: true if δ is in the Basic Relevant Closure of 〈T ,D〉, false

otherwise.

1 i := 0;

2 R′′ := R;

3 while T |= C⋃R′′ v ¬C do

4 if i = n then

5 return T |= C v D;

6 R′′ := R′′\(Di ∩ C);

7 i := i + 1;

8 return T |= C⋃R′′ u C v D;

Procedure BasicRelevantClosure works by following the same basic se-

quence of Rational Closure, except, at each stage where axioms are eliminated

from the ranking, only relevant axioms are eliminated (Line 6). Observe that

we never have to eliminate any other axioms because they are irrelevant to the

exceptionality of the query. I.e., the axioms in D\C are always retained (see

Line 3). We illustrate the behaviour of Procedure BasicRelevantClosure

with an example.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 207

Example 28 Consider the following defeasible KB 〈T ,D〉:

T =
{

1. EmployedStudent v Student
}

D =



2. Student @∼ ¬(∃receives.TaxInvoice),

3. Student @∼ ∃access.UniversityLibrary,

4. Student @∼ ¬SelfSponsoredStudent,

5. EmployedStudent @∼ SelfSponsoredStudent,

6. EmployedStudent @∼ ∃receives.TaxInvoice,

7. EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice),

8. EmployedStudent u ∃worksFor.University @∼ ¬SelfSponsoredStudent


2

Applying Procedure ComputeRankingB to 〈T ,D〉 in Example 28 on Page 206

we obtain the ranking:

D0 =


2. Student @∼ ¬(∃receives.TaxInvoice),

3. Student @∼ ∃access.UniversityLibrary,

4. Student @∼ ¬SelfSponsoredStudent

,

D1 =

{
5. EmployedStudent @∼ SelfSponsoredStudent,

6. EmployedStudent @∼ ∃receives.TaxInvoice

}
,

D2 =

{
7. EmployedStudent u ∃hasChild.> @∼ ¬(∃receives.TaxInvoice),

8. EmployedStudent u ∃worksFor.University @∼ ¬SelfSponsoredStudent

}

Suppose our query is the axiom EmployedStudent @∼ ∃access.UniversityLibrary.

The EmployedStudent-justifications are {1, 2, 6} and {1, 4, 5}. Therefore, the

EmployedStudent-basis is {1, 2, 4, 5, 6}. On the first iteration of the while

loop in Procedure BasicRelevantClosure we eliminate Axiom 2 and Ax-

iom 4. We do not need to eliminate any more axioms because we have

EmployedStudent-compatibility. It is easy to see that EmployedStudent @∼

∃access.UniversityLibrary is indeed in the Basic Relevant Closure of 〈T ,D〉.
Recall that Rational Closure would not give back this inference. So BRelC

does not have the same inferential caution that Rational Closure has.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 208

However, Basic Relevant Closure can also be seen to be too “coarse” in

its elimination of axioms. Observe that EmployedStudent u ∃hasChild.> @∼

SelfSponsoredStudent cannot be inferred. But it seems intuitive to be able to

conclude this seeing as EmployedStudent @∼ SelfSponsoredStudent, and there is

nothing which precludes one from inferring that employed students who also

have children are usually self sponsored. The reason for this caution is that

Basic Relevant Closure does not distinguish among the axioms appearing

in the EmployedStudent u ∃hasChild.>-basis, when eliminating them from a

particular rank. I.e., it removes all such axioms from that rank.

In our example the EmployedStudent u ∃hasChild.>-justifications are J1 =

{1, 2, 6}, J2 = {1, 4, 5} and J3 = {6, 7}. The EmployedStudent u ∃hasChild.>-

basis is therefore {1, 2, 4, 5, 6, 7}. On the first iteration of the while loop in

the procedure we remove Axiom 2 and Axiom 4 as usual. As a matter of

interest, notice that Axioms 2 and Axiom 4 are the lowest ranked axioms

in J1 and J2 respectively. On the second iteration we will remove both

Axiom 5 and Axiom 6 from the ranking (because they both appear in the

EmployedStudent u ∃hasChild.>-basis). However, notice that Axiom 5 is not

the lowest ranked axiom in any EmployedStudent u ∃hasChild.>-justification.

Recalling that Rational Closure removes axioms in order from lowest

ranked to higher ranked, intuition tells us that applying a similar behaviour

to Relevant Closures would give more sound inferences. That is, perhaps we

should choose our EmployedStudent u ∃hasChild.>-basis as the lowest ranked

axioms from each of the EmployedStudent u ∃hasChild.>-justifications. In

fact, this behaviour allows us to infer EmployedStudent u ∃hasChild.> @∼

SelfSponsoredStudent from our example because we will not remove Axiom 5

from D1 (only Axiom 6 will be removed).

Because of the finite number of ranks, Procedure BasicRelevantClosure

will terminate (n is finite). The soundness and completeness (correspondence

with Definition 47 on Page 205) follows straightforwardly by noticing that

C⋃R′′ (Line 8 of Procedure BasicRelevantClosure on Page 206 corresponds

exactly with C⋃R′ in Definition 47 on Page 205 and C⋃(R′∪R′′) in Definition 46

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 209

on Page 205. The computational complexity of Basic Relevant Closure in-

creases to 2-exptime-complete just like Lexicographic Closure. This is

because we require computation of all C-justifications which has been shown

to require an exponential number of entailment checks in the number of

defeasible subsumptions in the KB [94]. Specifically, computation of all jus-

tifications is accomplished by constructing a hitting set tree [162] where each

node in the tree is labelled with a justification for the entailment in question.

The basic procedure for constructing this graph assumes that we have a

procedure or black-box for computing one justification for the entailment in

question. Using such a procedure we generate the root node of the tree. Then,

for each axiom α in the label of this node, we construct an edge (labelled

with α) from the root to a newly constructed node, say n. The label for a

node n will then be a new justification for the entailment generated using

our black-box procedure, with the input ontology minus all the axioms on

the path (labels on the sequence of edges from the root node) to n. If the

entailment no longer holds at some node n then that branch of the tree is

“closed” with the terminating label ‘x’. The construction is complete when

all leaves of the tree are labelled with ‘x’.

From the above construction we notice that when none of the justifi-

cations overlap (or share any elements) this number of nodes in this tree

grows exponentially in the worst case (in the number of justifications for the

entailment).

Returning to Example 28 on Page 206, recall that we discussed a slightly

different notion of relevance that one could define in terms of C-justifications.

That is, we could restrict ourselves to the lowest ranked axioms in each C-

justification (as opposed to keeping them all). This would give us a principled

and finer-grained behaviour when eliminating axioms from the ranking. This

is the philosophy adopted by the second instance of Relevant Closure, called

Minimal Relevant Closure. The Minimal Relevant Closure procedure follows

the same structure as that of Basic Relevant Closure. The only difference is

in its notion of relevance which is based on the minimally ranked axioms in

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 210

the C-justifications. This notion of relevance is defined by minimal-relevance

and minimal C-basis .

Definition 48 (Minimal Relevance and Minimal C-basis) Let 〈T ,D〉
be a LHS-coherent defeasible KB, C a concept s.t. 〈T ,D〉 |=r > @∼ ¬C, and

J = AllJusts(〈T ,D〉, C) = {J1, . . . ,Jn}. Then, the minimal C-basis for

〈T ,D〉 |=r > @∼ ¬C is the set J ′1 ∪ . . . ∪ J ′n where J ′i = {α ∈ Ji | there

is no α′ ∈ Ji s.t. rk〈T ,D〉(α
′) < rk〈T ,D〉(α)}. An axiom β ∈ D is minimally

relevant for 〈T ,D〉 |=r > @∼ ¬C if β ∈ J ′1 ∪ . . . ∪ J ′n.

Given this new notion of relevance, the maximally-relevant C-compatible

subset of the ranking (Definition 46 on Page 205) is analogously defined for

Minimal Relevant Closure. The only difference is that instead of C-basis

in Definition 46, we use the notion of minimal C-basis (Definition 48 on

Page 210). The same can be said of the definition for Minimal Relevant

Closure in terms of classical entailment. It is analogous to Basic Relevant

Closure. The only difference being that the notion of relevance subscribed

to is defined by minimal C-basis which, in turn, defines a slightly different

notion of maximally-relevant C-compatibility. Therefore, the pseudocode

below is given for completeness even though it is virtually the same as Pro-

cedure BasicRelevantClosure on Page 206. The only difference is that the

minimal C-basis is supplied as input (rather than the standard C-basis).

Termination, soundness and completeness for MinimalRelevantClosure

on Page 211 follow the same arguments as Procedure BasicRelevantClosure

on Page 206. Furthermore, the computational complexity, yet again, remains

2-exptime-complete as is the case for Basic Relevant Closure because we

do not do any additional operations. I.e., we only restrict ourselves to a

subset of the C-basis based on the ranks of the axioms (which can be “read-

off” directly from R). As we have shown in Example 28 on Page 206, Minimal

Relevant Closure is less cautious than Basic Relevant Closure and captures

inferences that Basic Relevant Closure cannot. In other words, Minimal

Relevant Closure is an inferential extension of Basic Relevant Closure. We

demonstrate this below.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 211

Procedure MinimalRelevantClosure(〈T ,D〉,R,C ,δ)

Input: A LHS-coherent defeasible KB 〈T ,D〉, its ranking

R = {D0, . . . ,Dn}, the minimal C-basis C , and a query

δ = C @∼D.

Output: true if δ is in the Minimal Relevant Closure of 〈T ,D〉, false

otherwise.

1 i := 0;

2 R′′ := R;

3 while T |= C⋃R′′ v ¬C do

4 if i = n then

5 return T |= C v D;

6 R′′ := R′′\(Di ∩ C);

7 i := i + 1;

8 return T |= C⋃R′′ u C v D;

Lemma 17 (MRelC Extends BRelC) Let 〈T ,D〉 be a LHS-coherent de-

feasible KB and C @∼D a query. Then, if C @∼D is in the Basic Relevant

Closure of 〈T ,D〉 then C @∼D is in the Minimal Relevant Closure of 〈T ,D〉.

Proof: We pick a C @∼D in the Basic Relevant Closure of 〈T ,D〉. Let C be

the C-basis w.r.t. 〈T ,D〉 and Cmin the minimal C-basis w.r.t. 〈T ,D〉. It is

clear by their definitions (Definition 45 on Page 204 and 48 on Page 210)

that Cmin ⊆ C . Notice that, by Definition 46 on Page 205, the maximally

relevant C-compatible subset defined in terms of the minimal C-basis - Cmin,

will be a superset of the maximally relevant C-compatible subset defined in

terms of the standard C-basis - C . By monotonicity of classical entailment

and Definition 47 on Page 205 it follows that C @∼D has to be in the Minimal

Relevant Closure of 〈T ,D〉. 2

We will not give a ranked model semantics for Minimal Relevant Closure

either because it is not a rational consequence relation. However, at this

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 212

point, the reader may enquire about the significance or logical merit of the

Relevant Closures since they are not rational consequence relations. What

we can say is that Basic and Minimal Relevant Closures do not satisfy all

the KLM postulates but they do satisfy most of the foundational ones which

may give credence to their logical merit. We will give more details about the

satisfaction of postulates in Chapter 5. For now we can link Basic Relevant

Closure to Rational Closure in terms of inferential power [48, Proposition 2].

Lemma 18 (BRelC Extends Rational Closure) Let 〈T ,D〉 be a LHS-

coherent defeasible KB, R = {D0, . . . ,Dn} its ranking, C @∼D a query and C

is the C-basis w.r.t. R. If C @∼D is in the Rational Closure of 〈T ,D〉 then

C @∼D is in the Basic Relevant Closure of 〈T ,D〉.

Proof: We know from Lemmas 11 and 12 that: C @∼D is in the Rational

Closure of 〈T ,D〉 if and only if T |= C⋃MC u C v D, where MC is the

maximally C-compatible subset of R (see Definition 36 on Page 172). We

also know from Definition 47 on Page 205 that C @∼D is in the Basic Relevant

Closure of 〈T ,D〉 if and only if T |= C⋃MRC u C v D where MRC is the

maximally-relevant C-compatible subset of R (see Definition 46 on Page 205).

The crux of this proof is to show that MC ⊆MRC and by monotonicity of

classical entailment the result stated in this lemma would follow immediately.

Observe that the special case where C is not exceptional w.r.t. 〈T ,D〉 implies

that C = ∅ and this culminates in a case where MC = MRC. It is clear that

in such a case, Rational Closure and Basic Relevant Closure will correspond.

We instead focus on the core case where C is exceptional w.r.t. 〈T ,D〉.
We begin by unpacking the definitions of MC and MRC. MC is the set

Dn ∪ . . . ∪ Di where 0 ≤ i ≤ n is the smallest number s.t. T 6|= CDn∪...∪Di
v

¬C. MRC is the set Dn ∪ . . . ∪Dj+1 ∪D′j ∪ . . . ∪D′0 where 0 ≤ j ≤ n is the

smallest number s.t. T 6|= CDn∪...∪Dj+1∪D′j∪...∪D′0 v ¬C (where D′k = Dk\C for

0 ≤ k ≤ n). There are three cases:

Case 1: i = j. By definition of MRC we know that T 6|= CDn∪...∪Dj+1∪D′j∪...∪D′0

v ¬C. This means that T |= CDn∪...∪Dj∪D′j−1∪...∪D′0 v ¬C. Because of our

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 213

assumption in this case that i = j and that T 6|= CDn∪...∪Di
v ¬C (by def-

inition of MC), we know that T 6|= CDn∪...∪Dj
v ¬C. Therefore, it must

be the case that T 6|= CDn∪...∪D′j v ¬C because of classical monotonicity

and the fact that D′j ⊆ Dj (D′j = Di\C). Hence, there must exist an

α ∈ D′j−1 ∪ . . . ∪ D′0 s.t. α ∈ C (so that we can obtain a C-justification

in T ∪ Dn ∪ . . .Dj+1 ∪ D′j ∪ . . . ∪ D′0). But this is impossible because, by

definition of D′k we know that there is no α ∈ D′j−1 ∪ . . . ∪ D′0 s.t. α ∈ C .

Hence, we arrive at a contradiction.

Case 2: i < j. By definition of MC we know that T 6|= CDn∪...∪Di
v ¬C.

But from i < j we also know that Dn ∪ . . .∪Dj ⊆ Dn ∪ . . .∪Di. By classical

monotonicity this means that T 6|= CDn∪...∪Dj
v ¬C. This also means that

T 6|= CDn∪...∪D′j v ¬C because D′j ⊆ Dj (by definition of D′k for 0 ≤ k ≤ n).

By definition of MRC it is clear that T |= CDn∪...∪Dj∪D′j−1∪...D′0 v ¬C (this

is because j is the smallest number s.t. T 6|= CDn∪...∪Dj+1∪D′j∪...D′0 v ¬C).

Therefore, there must exist an α ∈ D′j−1 ∪ . . . ∪ D′0 s.t. α ∈ C (in order to

obtain a C-justification in Dn∪. . .∪Dj∪D′j−1∪. . .D′0). But this is impossible

by definition of D′k for 0 ≤ k ≤ n. Hence, we arrive at a contradiction.

Case 3: i > j. This is the only possible case. By definition we have MC

= Dn ∪ . . . ∪ Di and MRC = Dn ∪ . . . ∪ Dj+1 ∪ D′j ∪ . . .D′0. And because

of our assumption that i > j it is clear that i ≥ j + 1 and therefore that

Dn ∪ . . . ∪ Di ⊆ Dn ∪ . . . ∪ Dj+1 ∪ D′j ∪ . . .D′0 (and hence MC ⊆ MRC). 2

In other words, Lemma 18 on Page 212 says that Basic Relevant Closure is

inferentially stronger than Rational Closure and from Lemma 17 on Page 211

we know that Minimal Relevant Closure is inferentially stronger than Basic

Relevant Closure. Of course, the right to left directions of these statements

will not hold in general. Therefore, since Rational Closure has a solid and

well-motivated characterisation both semantically and proof-theoretically, its

inferential relationship with Basic and Minimal Relevant Closure provides

good argument in favour of the sensibility of the latter constructions (as

useful defeasible reasoning methodologies).

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 214

We will now discuss the last known instance of Relevant Closure called

the Lexicographically-Relevant Closure. This instance of Relevant Closure

gets its name from the fact that it is actually a possible optimisation for

computing Lexicographic Closure, using the notion of relevance adopted by

Relevant Closures. Consider the following example.

Example 29 Consider the following defeasible KB 〈T ,D〉:

T =

{
1. GradStudent v Student,

2. ResearchStudent ≡ GradStudent u ∀enrolledIn.PureResearchDegree

}
,

D =



3. Student @∼ ¬(∃receives.TaxInvoice),

4. Student @∼ ∃access.UniversityLibrary,

5. Student @∼ ¬(∃assigned.OfficeSpace),

6. Student @∼ ∃takes.Course,

7. ResearchStudent @∼ ¬(∃takes.Course),

8. ResearchStudent @∼ ∃assigned.OfficeSpace


2

Applying Procedure ComputeRankingB to 〈T ,D〉 in Example 29 on Page 214

we obtain the ranking:

D0 =


3. Student @∼ ¬(∃receives.TaxInvoice),

4. Student @∼ ∃access.UniversityLibrary,

5. Student @∼ ¬(∃assigned.OfficeSpace),

6. Student @∼ ∃takes.Course,

,

D1 =

{
7. ResearchStudent @∼ ¬(∃takes.Course),

8. ResearchStudent @∼ ∃assigned.OfficeSpace

}

Suppose our query is the axiom ResearchStudent @∼ ∃access.UniversityLibrary.

Lexicographic Closure will answer affirmatively to this query. The maxi-

mal ResearchStudent-compatible subset of the ranking is D1. The LAC for

ResearchStudent w.r.t. the ranking is (
d
{3, 4}) t (

d
{3, 5}) t (

d
{3, 6}) t

(
d
{4, 5}) t (

d
{4, 6}) t (

d
{5, 6}). In other words, all ways of keeping two

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 215

axioms from D0 results in maximal ResearchStudent-compatibility. It is easy

to see that the first disjunct of the LAC is compatible with ResearchStudent

(together with D1) and therefore the LAC as a whole is compatible with

ResearchStudent. However, note that according to Procedure LAC, we have to

perform two operations to arrive at the LAC. That is, we first have to com-

pute all ways of keeping three axioms and check if this is compatible with

ResearchStudent. It turns out that this is not the case, therefore we have to

compute all ways of keeping two axioms (which is compatible). Hence, there

will be a large number of such iterations when the size of the problematic

rank is large.

Recall that, for this procedure, if our problematic rank has n axioms then

we require at most n− 1 combinatorial computations to arrive at the LAC.

To avoid a potential bottleneck in performance, and assuming that one has

computed the C-basis for our query, we can make use of it to avoid many

of the iterations of Procedure LAC. In this case the ResearchStudent-basis

C = {5, 6, 7, 8} (remember that we assume Axioms 1 and 2 are background

knowledge since they are strict, and therefore cannot be altered or elimi-

nated). How many iterations can we avoid at the very least? Well, we can

observe that D0\C will return the set of axioms from D0 that do not appear

in a ResearchStudent-justification, and this means that these axioms are ir-

relevant to the exceptionality of ResearchStudent. In other words, we know

we always have to keep these axioms and hence we save |D0\C | iterations.

Therefore, we only have to perform Procedure LAC on the set D0 ∩ C with

D0\C (the irrelevant axioms) as background knowledge at each step.

Applied to our example we notice that D0\C = {3, 4} and so we will

always keep these axioms. We then apply Procedure LAC with D0∩C = {5, 6}
as the problematic rank (with {3, 4} included in our background knowledge at

each step). We try all ways of keeping one axiom from this set which cannot

be achieved since both Axiom 5 and 6 are sufficient to cause exceptionality

of ResearchStudent (together with D1). Therefore, we have to eliminate both

Axiom 5 and 6 to obtain ResearchStudent-compatibility. We thus use only

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 216

one combinatorial computation for calculating the LAC, as opposed to two

without the helpful C-basis optimisation. Note that in the worst case for

our example, we would have required three combinatorial computations to

derive the LAC (|D0| = 4).

Of course, we need to formalise our description of Lexicographically-

Relevant Closure given in the above discussion. The definition and procedure

for this closure will be analogous to those for Lexicographic Closure (see Defi-

nition 43 on Page 192 and Procedure LexicographicClosureA on Page 194).

The only difference is that Lexicographically-Relevant Closure will conform

to a slightly different notion of LAC (see Definition 42 on Page 191). We

call this new notion the lexicographically-relevant additive concept (LRAC for

short).

Definition 49 (Lexicographically Relevant Additive Concept)

Let 〈T ,D〉 be a LHS-coherent defeasible KB, R = {D0, . . ., Dn} its rank-

ing, C @∼D a query, R′ = {Dn, . . . ,Di} the maximal C-compatible subset of

R, C the C-basis for 〈T ,D〉, Drelevant = Di−1 ∩ C , Dirrelevant = Di−1\C
and Drelevant = {D′1, . . . ,D′m} the Lexicographicalisation of Drelevant. Let k

be the largest number s.t. 1 ≤ k ≤ m− 1 and T 6|= C⋃R′ u (CDirrelevant
) u

(
⊔
CS∈D′k) v ¬C. Then, the concept (CDirrelevant

)u (
⊔
CS∈D′k) is known as the

lexicographically-relevant additive concept (LRAC) for C w.r.t. R. D′k is

called the lexicographically-relevant additive subset (LRAS) of R w.r.t. C.

The attentive reader will notice that showing the exact correspondence be-

tween LAC and LRAC proves that Lexicographically-Relevant Closure and

Lexicographic Closure characterise the same inferences. Lexicographically-

Relevant Closure is thus a potential optimisation for computing Lexico-

graphic Closure. However, in order to show the correspondence between

the LAC and LRAC, we have to unpack their definitions which are admit-

tedly quite dense. We shall restrict our attention to the notions of LAS and

LRAS described in the Definitions for LAC and LRAC. The reason is that

we wish to strip away the internalisation mechanism of LAC and LRAC to

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 217

make our proofs easier to follow. The crux of the matter is then to show that

the LAS and LRAS correspond exactly. Our strategy for showing this is to

represent the computation of the LAS and LRAS as tree problems and show

that the solutions of these problems correspond exactly.

Definition 50 (Lexicographic-tree) Let 〈T ,D〉 be a LHS-coherent defea-

sible KB and R = {D0, . . ., Dn} its ranking. A Lexicographic-tree for

the problematic rank Di−1 is an edge-labelled and node-labelled tree T =

〈N,E,Ln, Le〉 where N is a set of nodes, E is a set of edges, Ln is a node

labelling function and Le is an edge labelling function s.t.:

1. Ln : N → P(Di−1) where P(Di−1) is the powerset of Di−1 and Le : E →
Di−1.
2. The root node r ∈ N of T is s.t. Ln(r) = Di−1.
3. For each n1, n2 ∈ N , there is an edge en1→n2 ∈ E from n1 to n2 if

Ln(n2) ⊂ Ln(n1) and there is no n3 ∈ N s.t. Ln(n2) ⊂ Ln(n3) ⊂ Ln(n1).

4. For each en1→n2 ∈ E, Le(en1→n2) = Ln(n1)\Ln(n2).

5. For some n ∈ N , Path(n) denotes the set of edge labels from r to n.

Notice that the label of each edge in T represents a single axiom from Di−1.

We also point out that Ln(n1) = Ln(r)\Path(n1) for any n1 ∈ N . Finally,

observe that T has a single leaf node l s.t. Ln(l) = ∅.

Therefore, Definition 50 on Page 217 describes a tree in which the root node

corresponds to the full set of axioms in the problematic rank Di−1. For each

axiom α ∈ Di−1 we can remove α from this set to obtain a subset of Di−1
which will represent a new node in the tree. For each of these subsets, in

turn, we can remove a single axiom from them to obtain subsets of these and

so on. We can follow this construction until we have a node for each axiom in

Di−1 (i.e., each such node is labelled with a singleton set containing a unique

axiom from Di−1). Finally, each of these latter nodes will have an edge to

the empty set node l.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 218

If we let Di−1 = {α1, α2, α3, α4} (that is, Di−1 contains four axioms) then

the Lexicographic-tree T for Di−1 is depicted in Figure 4.5.

∅

{α1} {α2} {α3} {α4}

{α1, α2}{α1, α3}{α1, α4} {α2, α3}{α2, α4}{α3, α4}

{α1, α2, α3}{α1, α2, α4} {α1, α3, α4}{α2, α3, α4}

{α1, α2, α3, α4}

α1α2α3α4

α2α3α4α1α4 α3

α1
α4 α2α3 α2 α1

α4 α3α4
α2α3

α2
α4 α1α3 α1α2 α1

α4α3α2α1

Figure 4.5: Lexicographic-tree for a general problematic rank Di−1 = {α1, α2, α3, α4}.

Given the definition of a Lexicographic-tree, we can characterise the problems

of identifying the LAS and LRAS in terms of tree traversal problems w.r.t. the

Lexicographic-tree. Informally, the perspective is that we can traverse the

tree (visit each node) starting from the root node and work towards the leaf

node. At each point in the traversal (i.e., at each node) we try to add the

label of the node (a subset of Di−1) to the maximal C-compatible subset of

the ranking. Of course, adding the label of the root node to the maximal C-

compatible subset of the ranking will cause C to be exceptional (because Di−1
is the problematic rank). Therefore, we have to continue visiting the children

of the root node in a breadth-first fashion. Traversing the tree from the root

upwards (i.e., from the largest subsets to the smallest subsets) ensures we

will find a maximal subset.

We have depicted the tree in Figure 4.5 in a structured way. I.e., we

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 219

have placed the problematic rank (root node) at the bottom of the picture,

and all subsets of this rank are placed in “levels” above this node in the

picture, in decreasing order of size. Therefore, we can actually assign a

number to each level in the picture representing the size of the subsets in

that level. Considering this levelled-structure to the tree, starting at the

root node begins at level k = |Di−1|, we add the associated knowledge Ln(r)

to the ranking and test exceptionality of C. If C is still exceptional we move

to level k − 1 (to the children of the root node whose subsets are of size

k− 1). We then process the labels of each of these children in the same way,

one-by-one and in a breadth-first manner.

If at least one of these subsets (when added to the ranking) do not enforce

C to be exceptional, then this will be a maximally C-compatible subset of

the problematic rank. In other words, if the current level in the tree is k,

then we have identified a way of keeping k axioms from the problematic rank.

Therefore, we have indirectly identified the LAS because it will constitute the

set of all subsets of size k (i.e., those of equal size to the identified maximal

C-compatible ones). However, if none of the children represent C-compatible

subsets, then we move to a higher level in the tree etc.

Therefore, in essence, the task is to find a minimal path to a node n

in the tree s.t. the label of n represents a maximal subset of Di−1 that is

compatible with C (when combined with the maximal C-compatible subset

of the ranking). Thereafter, the LAS will be the set of all node labels in

the tree that have equal size to n. To formalise this, we give a definition

for maximally compatible node (the node at the end of the minimal path as

discussed) and LAS (a revised definition w.r.t. a Lexicographic-tree).

Definition 51 (Maximally Compatible Node and LAS) Let 〈T ,D〉 be

a LHS-coherent defeasible KB, R = {D0, . . ., Dn} its ranking, C @∼D a

query, R′ = {Dn, . . . ,Di} the maximal C-compatible subset of R, and let

T = 〈N,E,Ln, Le〉 be the Lexicographic-tree for Di−1. Then a node n1 ∈ N
is maximally compatible for Di−1 w.r.t. C if T 6|= C⋃R′ u CLn(n1) v ¬C and

there is no n2 ∈ N s.t. Path(n2) ⊂ Path(n1) and T 6|= C⋃R′ u CLn(n2) v ¬C.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 220

The LAS for T w.r.t. R′ and C is the set D′ = {Ln(n2) | n2 ∈ N and

|Ln(n2)| = |Ln(n1)|}.

Definition 51 on Page 219 confirms that a maximally compatible node n in

a Lexicographic-tree is (1) a node whose label is compatible with the query

antecedent C, and (2) has the shortest path from the root of any node that

satisfies (1). It also confirms that the LAS is the set of labels (subsets) in the

Lexicographic-tree where each is of equal size to the label of the maximally

compatible node(s) in the tree.

Now we have to define a notion of LRAS w.r.t. a Lexicographic-tree.

Recall that the LRAS restricts our view to the C-basis (union of all C-

justifications) when eliminating axioms from the problematic rank. There-

fore, in this case, when traversing the Lexicographic-tree we will only consider

paths to nodes n′ s.t:

- Di−1\C ⊆ Ln(n′) (the irrelevant axioms are always retained).

- Path(n′) ⊆ C (we are only interested in nodes that contain subsets of C).

The maximally compatible nodes that we find in this context will be called

maximally-relevant compatible nodes and the LRAS will be defined in terms

of such nodes.

Definition 52 (Maximally-Relevant Compatible Node and LRAS)

Let 〈T ,D〉 be a LHS-coherent defeasible KB, R = {D0, . . ., Dn} its ranking,

C @∼D a query, R′ = {Dn, . . . ,Di} the maximal C-compatible subset of R,

T = 〈N,E,Ln, Le〉 the Lexicographic-tree for Di−1, and C the C-basis for

〈T ,D〉. Then a node n1 ∈ N is maximally-relevant compatible for Di−1
w.r.t. C if:

1. Di−1\C ⊆ Ln(n1).

2. Path(n1) ⊆ C .

3. T 6|= C⋃R′ u CLn(n1) v ¬C.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 221

4. There is no n2 ∈ N s.t. Path(n2) ⊂ Path(n1) and T 6|= C⋃R′ u CLn(n2) v
¬C.

The LRAS for T w.r.t. R′ and C is D′ = {Ln(n3) | n3 ∈ N and |Ln(n3)| =

|Ln(n1)|}.

Finally, we can show the LAS and LRAS correspond by demonstrating

that in any Lexicographic-tree there is a maximally compatible node n and

maximally-relevant compatible node n′ s.t. n = n′.

Lemma 19 (LAS and LRAS Correspond) Let 〈T ,D〉 be a LHS-coherent

defeasible KB, R = {D0, . . ., Dn} its ranking, C @∼D a query, C the C-basis

for 〈T ,D〉, and T = 〈N,E,Ln, Le〉 the Lexicographic-tree for Di−1. Then,

there is a maximally compatible node n ∈ N and maximally-relevant compat-

ible node n′ ∈ N (w.r.t. C) s.t. n = n′.

Proof: We first show an intermediate result: that there is a maximally com-

patible node n1 ∈ N s.t. Path(n1) ⊆ C . Suppose there is no such node. It

implies that for each maximally compatible node n1 ∈ N , there is an ele-

ment x ∈ Path(n1) s.t. x 6∈ C . It is straightforward to see that this would

contradict with the definition of justification and the definition of maximally

compatible node. This is because we can easily choose a node n2 ∈ N

s.t. Ln(n2) = Ln(n1) ∪ {x ∈ Path(n1) | x 6∈ C }. It is clear that Ln(n2) is

compatible with C because we have only added axioms to Ln(n1) that are ir-

relevant to the exceptionality of C. This causes a contradiction with n1 being

a maximally compatible node because Ln(n1) ⊂ Ln(n2). Therefore, we have

proven that there is a maximally compatible node n1 ∈ N s.t. Path(n1) ⊆ C .

Now, we have to show that n1 is also a maximally-relevant node in T w.r.t. C.

It is clear that n1 complies with Requirements 2, 3 and 4 of Definition 52 (by

Definition 51 on Page 219). What remains to be shown is that n1 complies

with Requirement 1. I.e., we have to show that Di−1\C ⊆ Ln(n1). This is

quite straightforward to see because, by definition of Lexicographic-tree we

know that Ln(n1) = Di−1\Path(n1). We have also shown that Path(n1) ⊆ C

and therefore it immediately follows that Di−1\C ⊆ Ln(n1). Therefore, n1 is

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 222

a maximally-relevant compatible node for T w.r.t. C. 2

Lemma 19 on Page 221 clearly shows that the LAS and LRAS will be equal

for any Lexicographic-tree because the maximally compatible and maximally-

relevant compatible nodes are the same. Adding the internalisation mecha-

nism back to the fold it follows immediately that the LAC and LRAC also cor-

respond. Finally, this result proves that Lexicographically-Relevant Closure

and Lexicographic Closure correspond. This means that Lexicographically-

Relevant Closure is a potentially optimised way in which to compute Lexi-

cographic Closure.

It must be mentioned that we have presented just three instances of Rel-

evant Closure. Indeed these are the only investigated notions of Relevant

Closure at present. As we have stated earlier, Relevant Closure defines nu-

merous inference procedures because, based on the relevance notion of justi-

fications, there are numerous ways to use axioms in justifications to “repair”

the exceptionality of the entailment. In other words, for Basic, Minimal

and Lexicographically-Relevant Closures we have employed just three pos-

sible ways. In theory, there are other “repair” approaches in this class to

investigate. Some may have more logical merit than others. Nevertheless,

knowledge of these gaps in Relevant Closure research remains impetus for

future work.

4.6 Optimisations

In this fairly brief section we demonstrate some results which suggest useful

optimisations for the procedures discussed in Sections 4.3 to 4.5. The first

result is an interesting relationship between a defeasible KB 〈T ,D〉 and its

classical counterpart T ∪ D′. The result was actually shown in the left to

right direction of the “proof” for Proposition 1 on Page 137. However, we

give a more explicit and intuitive representation here for this context.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 223

Lemma 20 (Exceptionality Implies Classical Unsatisfiability)

Let 〈T ,D〉 be a LHS-coherent defeasible KB and T ∪D′ its classical counter-

part. If C is exceptional w.r.t. 〈T ,D〉, then C is unsatisfiable w.r.t. T ∪ D′

for any concept C.

Modern DL reasoners are highly optimised to check satisfiability or unsatisfi-

ability of concepts [182, 191, 90]. Therefore, if we want to verify if a concept

is exceptional or not, we can, as an approximation first check if it is unsat-

isfiable w.r.t. the classical counterpart of the KB (because it can only be

exceptional if it is unsatisfiable). This would almost certainly save many ex-

ceptionality checks on satisfiable concepts seeing as, in practice, the number

of satisfiable concepts vastly outweigh the number of unsatisfiable concepts

in real-world ontologies. Therefore, to identify all the exceptional concepts

in the KB, we can first identify all the unsatisfiable concepts first to vastly

narrow the search space, and then recurse on this much smaller set to iden-

tify the exceptional concepts using the reduction mentioned in Theorem 1 on

Page 143. This optimisation is applicable for the computation of the ranking

and for deciding entailment using a preferential reasoning paradigm.

On a related note, we saw in Lemma 9 on Page 165 that the ranking

of a defeasible KB respects specificity. This result leads to another possible

optimisation for computation of the ranking which informally states: “all

subclasses of exceptional things are exceptional”. More formally:

Lemma 21 (Exceptionality Propagates Through Subsumption) Let

〈T ,D〉 be a LHS-coherent defeasible KB and C1 a concept s.t. 〈T ,D〉 |=r

> @∼ ¬C1. Then, for any concept C2 s.t. T |= C2 v C1, 〈T ,D〉 |=r > @∼ ¬C2.

Proof: Suppose that 〈T ,D〉 |=r > @∼ ¬C1 and there is a concept C2 s.t. T |=
C2 v C1 but that 〈T ,D〉 6|=r > @∼ ¬C2. Therefore, there is a ranked model

R for 〈T ,D〉 s.t. there is an x ∈ C2
R and rkR(x) = 0. Let I ′ = 〈∆I′ , ·I′〉

be a classical interpretation s.t. ∆I
′

= ∆R and ·I′ = ·R. We know that

I ′
 T because R
 T , ∆I
′

= ∆R and ·I′ = ·R. But from our assump-

tion that T |= C2 v C1 it follows that I ′
 C2 v C1. This means that

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 224

xI
′ ∈ C2

I′ ∩ C1
I′ . But this must mean that xR ∈ C1

R because ∆I
′

= ∆R

and ·I′ = ·R. This means that R 6
 > @∼ ¬C1 which is a contradiction with

〈T ,D〉 |=r > @∼ ¬C1. Therefore, 〈T ,D〉 |=r > @∼ ¬C2. 2

The result of Lemma 21 on Page 223 allows us to infer that a concept is

exceptional if we know it is more specific than a known exceptional concept

(using syntactic, heuristic or other techniques). This optimisation can be

used in numerous applications of defeasible reasoning. It should be partic-

ularly useful when updating the ranking of a KB after it is incrementally

modified (axioms are added or removed). This would allow one to avoid

recomputing the entire ranking from scratch after the KB is modified.

In fact, Lemma 21 on Page 223 hints at another useful result for incre-

mental update of the ranking. Loosely speaking, it identifies that “subsets

of exceptional things are at least as exceptional as these things”. That is,

the following lemma concerning the ranks of more specific concepts holds.

Lemma 22 (Degree of Exceptionality Respects Subsumption)

Let 〈T ,D〉 be a LHS-coherent defeasible KB and C1 a concept s.t. 〈T ,D〉 |=r

> @∼ ¬C1. Then, for any concept C2 s.t. T |= C2 v C1, rk〈T ,D〉(C2) ≥
rk〈T ,D〉(C1).

Proof: Suppose that rk〈T ,D〉(C2) < rk〈T ,D〉(C1). By definition of rk〈T ,D〉 we

know there is a ranked model R for 〈T ,D〉 s.t. rkR(C2) = i and there

is no other ranked model for 〈T ,D〉 where the rank of C2 is lower than i.

The same can be said of C1. We pick this relevant ranked model R′ for

C1. We pick an x ∈ min≺R(C2
R). From T |= C2 v C1 we know that

x ∈ C1
R. But this means that rkR(C2) ≥ rkR′(C1) which is a contradiction

with rk〈T ,D〉(C2) < rk〈T ,D〉(C1). Therefore, rk〈T ,D〉(C2) ≥ rk〈T ,D〉(C1). 2

Lemma 22 on Page 224 says that concepts that are more specific than some

exceptional concept are at least as exceptional as this concept. It is a very

straightforward result but very useful to avoid näıve recomputation of the

ranking when the KB is incrementally modified.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 225

Recall that in Section 4.5, the presented Relevant Closures require com-

putation of justifications in order to avoid removing irrelevant or unnecessary

axioms to the exceptionality in question. This is certainly one way to avoid

unnecessary entailment checks. However, justification finding is a compu-

tationally complex task and standard DL reasoning tasks need to be used

(or modified in the case of glassbox approaches) to pinpoint them. There is

another approach to prune away irrelevant axioms to the exceptionality that

does not require DL reasoning. This approach uses the principle of module

for a KB w.r.t. a signature (set of terms from the KB) [83, 170]. Intuitively,

a module of a KB w.r.t. a signature is a small subset of the ontology which

preserves the meaning of the terms in the signature.

The topic of modularisation of ontologies is a broad and involved research

area. For our purposes, we are interested in applying the techniques of mod-

ularisation to prune away irrelevant axioms in the ranking (without using

reasoning). So for our context, the signature of interest would be the set of

terms used in our reasoning query. Intuitively, what we want to do is extract

a module of our KB that eliminates as many irrelevant axioms as possible,

but at the same time not eliminating any axioms that contribute to the ex-

ceptionality of the query. Therefore we are interested in modules which have

two properties: (1) they should preserve all justifications for all entailments

that can be formed over the signature of our query. I.e., the module should

retain all axioms relevant to our query. And (2) the module should be as

small as possible (the module should exclude as many axioms as possible to

reduce entailment checks and increase the performance).

So-called star locality-based modules [170] satisfy both of these properties.

However, since we are in the context of defeasible reasoning, and modular-

isation is predominantly developed for classical reasoning systems, one may

ask if the property of preserving all justifications for all entailments over the

given signature actually translates to the defeasible case. The answer is yes

because we have shown extensively that defeasible reasoning (in ALC) can

be reduced to classical DL entailment.

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 226

4.7 Syntactic Sugar

We recall from Section 2 when we introduced DLs, that one can express

useful abbreviations (concise syntactic forms) for subsumption statements.

We call such abbreviations “syntactic sugar” because they do not add to the

expressivity of DLs but just offer more concise (and sometimes more intuitive)

representations of certain semantic relationships. The main ones we have

discussed for classical DLs are equivalence and disjointness statements.

For example, the equivalence statement Man ≡ Person uMale (men and

persons who are male refer to the same objects in the domain) is an abbre-

viation for the two subsumptions Man v PersonuMale and PersonuMale v
Man. That is to say, the two subsumptions and the equivalence statement

have the same models (i.e., they are satisfied in the same interpretations).

Similarly, the disjointness statement Man ‖ Woman (the set of objects in

the domain referred to as men, and the set referred to as woman, are dis-

joint) is an abbreviation for the subsumption ManuWoman v ⊥. Of course,

these correspondences are a convenient result of the semantics that DLs have

assigned to the constructs of subsumption, equivalence and disjointness.

The questions now are: is it useful and intuitive to be able to talk about

defeasible versions of equivalence and disjointness and, if so, what semantics

should we assign to such notions in the preferential context? To address

the first question we present some examples to make it evident that humans

often do make defeasible equivalence and defeasible disjointness statements.

4.7.1 Defeasible Equivalence

In the area of advertising, many companies and business analysts use the

terms digital marketing and online marketing interchangeably. In other

words, they usually refer to the same principle. Considering that digital

marketing refers to advertising through digital media channels, it is clear

that online marketing (for example through social media) is a form of digital

marketing. On the other hand, it may be contentious to state that all digital

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 227

marketing takes place through the Web.

Television and Radio advertising is usually propagated through digital

media and, although it is sometimes transmitted online as well, the tradi-

tional “offline” channels remain the ones reaching the majority of customers.

It therefore makes sense to say that the concepts DigitialMarketingCampaign

(DMC for short) and OnlineMarketingCampaign (OMC for short) are usually

equivalent.

Now, in the framework of ranked model semantics, what semantics can

one assign to such a statement? We recall that we interpreted a defeasible

subsumption C @∼D as “typical C’s are D’s”. Seeing as classical equivalence

corresponds to the rendering of subsumption in both directions for the given

concepts, we experiment with such an approach in the defeasible context to

study its semantic intuition.

Reversing the direction of this subsumption, we arrive at “typical D’s are

C’s” (or the subsumption D @∼ C). Advocating both these subsumptions to

define defeasible equivalence seems to give back an intuitive semantic repre-

sentation for defeasible equivalence. Essentially these subsumptions together

restrict our view to the models in which the typical C’s and typical D’s

coincide.

That is, where the typical C’s are typical D’s are classically equivalent. Of

course, we can only study the merit of this semantic definition by examining

how it relates to our intuition in real-world examples. In the digital vs. online

marketing example, it certainly does make sense to talk about typical digital

marketing campaigns and typical online marketing campaigns coinciding.

However, only one direction of this defeasible subsumption relationship is

contentious from an intuitive perspective.

That is, it is clear that online marketing falls within the jurisdiction of

digital marketing, but the converse constraint may have exceptions. In other

words, we should only enforce that typical digital marketing campaigns are

online marketing campaigns. Formally speaking, we agree upon the following

definition for defeasible equivalence:

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 228

Definition 53 (Defeasible Equivalence) Two concepts C and D are de-

feasibly equivalent (written as C ∼=D) in a ranked interpretation R if:

min≺R(CR) = min≺R(DR).

Besides its intuitive merit, this representation borrows a useful correspon-

dence from the classical case. That is, the semantic relationship between

defeasible equivalence and defeasible subsumption is analogous to the rela-

tionship between classical equivalence and classical subsumption.

In other words, given the semantics we have assigned, defeasible equiva-

lence can be represented in terms of defeasible subsumption. Therefore, for

our marketing example the statement DMC ∼=OMC is logically equivalent

to DMC @∼ OMC, OMC @∼ DMC collectively.

The proof demonstrating the reduction of defeasible equivalence to de-

feasible subsumption is straightforward and we therefore do not specify it

here.

4.7.2 Defeasible Disjointness

Recall from Section 2.1 that one can express that two concepts C and D are

disjoint (they cannot share any elements), and we denote this by C ‖ D. For

example, we know that birds and plants are disjoint (Bird ‖ Plant), married

men are disjoint with bachelors (Man u ∃marriedTo.> ‖ Bachelor) etc. Is

there a case for defeasible disjointness?

We feel that there is, and we give an interesting example as a case in point.

In describing human physiology, it may make sense to add a constraint to our

knowledge that people whose eye irises are blue are disjoint with those whose

eye irises are green. However, there are exceptions to this constraint and one

example of this is expressed through the condition known as Heterochromia3.

The condition defines cases in which people have distinct colours either in

one eye iris, or in the irises of each eye. In light of this condition, and other

conditions like it, it seems useful to be able to represent that two concepts

3nlm.nih.gov/medlineplus/ency/article/003319.htm

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 229

are usually disjoint, thereby avoiding logical incoherence and inconsistencies

caused by exceptions.

Whereas the typical C’s and D’s coinciding seemed an appropriate def-

inition for defeasible equivalence, for defeasible disjointness the typical C’s

and D’s being distinct seems a compelling definition. That is, the typical C’s

and D’s are disjoint:

Definition 54 (Defeasible Disjointness) Two concepts C and D are de-

feasibly disjoint (written as C o o D) in a ranked interpretation R if:

min≺R(CR) ∩min≺R(DR) = ∅.

For our Heterochromia example, Definition 54 on Page 229 essentially holds

that: blue-eyed people are usually disjoint with green-eyed people, if and

only if, typical people with blue eyes, and typical people with green eyes, are

distinct.

The question now arises if defeasible disjointness is actually syntactic

sugar or do we need to enrich the expressivity of defeasible DLs to be able

to capture this principle? A study of the semantics given in Definition 54 on

Page 229 as well as ranked model semantics gives us a clue as to a represen-

tation of defeasible disjointness in terms of defeasible subsumption.

That is, we arrive at the following defeasible subsumption rendering: typ-

ical blue-eyed people and typical green-eyed people will be disjoint, if and

only if, the most typical objects in our domain that are either blue-eyed or

green-eyed are not both blue and green-eyed. This reduction is quite intuitive

and lends more credibility to the semantics of Definition 54 on Page 229.

We give a proof for the reduction of defeasible disjointness to defeasible

subsumption here because it is perhaps not as straightforward as it is for

defeasible equivalence.

Lemma 23 (Defeasible Disjointness w.r.t. Defeasible Subsumption)

For any ranked interpretation R, R
 C oo D if and only if R
 CtD @∼ ¬(Cu
D).

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 230

Proof: =⇒ we pick a ranked interpretation R s.t. min≺R(CR) ∩ min≺R(DR)

= ∅. We assume thatR 6
 CtD @∼ ¬(CuD) and try to derive a contradiction.

We know there is an x ∈ min≺R(CR ∪DR) s.t. x ∈ CR ∩DR. This means

that there is no y ≺R x s.t. y ∈ CR and similarly there is no z ≺R x s.t.

z ∈ DR. This clearly implies that x ∈ min≺R(CR) and x ∈ min≺R(DR). I.e.,

x ∈ min≺R(CR) ∩ min≺R(DR). This is a contradiction with our assumption

that min≺R(CR) ∩ min≺R(DR) = ∅. 2

⇐= we pick a ranked interpretation s.t. R
 C t D @∼ ¬(C u D) and we

assume that min≺R(CR) ∩ min≺R(DR) 6= ∅. We try to derive a contradic-

tion from this. From the latter assumption we know that there is an x ∈
min≺R(CR) ∩ min≺R(DR). Therefore, there can be no y ≺R x s.t. either

y ∈ CR or y ∈ DR. This advertently means that x ∈ min≺R(CR ∪ DR)

which, given our selected R, implies that x 6∈ CR ∩ DR. This is clearly a

contradiction with the fact that x ∈ min≺R(CR) ∩ min≺R(DR). 2

Finally, we conclude this section by pointing out that our notion of defeasible

disjointness, while a reasonable characterisation, is possibly not the only

reasonable notion one can devise. There may be other sensible notions within

the preferential framework, and we ourselves have considered two possible

definitions borrowed from classical disjointness.

In classical disjointness we know that the axiom C ‖ D can be equivalently

represented by the subsumptions C v ¬D or C uD v ⊥.

In principle, the defeasible counterparts of these statements can be used to

expression a notion of defeasible disjointness. However, the defeasible coun-

terpart of the latter statement would not be suitable to capture defeasible

disjointness.

That is, the ranked interpretations satisfying the statement C u D @∼⊥
are the same as those satisfying C uD v ⊥ (classical disjointness).

The other possibility, namely C @∼ ¬D, is more interesting. It says that

typical C’s should not be D’s. Because typicality is restricted only to the

LHS with defeasible subsumption, this notion does not treat C and D sym-

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 231

metrically.

That is, the statements C @∼ ¬D and D @∼ ¬C are not logically equivalent

(whereas their classical counterparts are). Thus a sensible notion of defeasible

disjointness needs to take into account both these defeasible subsumptions

in some way. Nevertheless, we leave such an investigation as future work.

4.8 Discussion

In this chapter we have presented how the principle of concept exception-

ality can be reduced to classical entailment (Section 4.1). This base result

paves the way to be able to characterise and compute the core structure

of all our preferential reasoning paradigms - the exceptionality ranking of a

defeasible KB (Section 4.2). The subsequent algorithmic constructions we

gave (Sections 4.3 to 4.5) essentially varied only in the notion of maximal

C-compatibility of the ranking that they subscribe to.

In the case of Lexicographic Closure 4.4 we also gave a semantic charac-

terisation in terms of ranked models which corresponds to our presented pro-

cedure. We showed that Lexicographic Closure is an inferential extension of

Rational Closure, while Minimal Relevant Closure is an inferential extension

of Basic Relevant Closure (though the latter two procedures are non-rational

in the KLM sense). We also defined a type of Relevant Closure called the

Lexicographically-Relevant Closure which corresponds exactly with Lexico-

graphic Closure, and defines an optimised procedure for computing the latter.

In the next chapter we show which requirements (argued for in Chapter 3)

are satisfied by each of the constructions in this chapter. We also perform

similar evaluations for some of the non-preferential proposals mentioned in

Chapter 2.

Finally, as a matter of philosophical interest, since the procedures we

have presented are meant to address monotonicity of classical entailment,

they must be nonmonotonic in nature. However, we have shown that these

procedures actually reduce to classical entailment. Some readers may in-

CHAPTER 4. ALGORITHMS FOR DEFEASIBLE REASONING 232

quire at this point how to intuitively understand this. One could consider

the following explanation: suppose I am an agent who cannot comprehend

defeasible statements. That is, I can only reason about strict statements (like

our presented reasoning procedures). Then I can still adhere to a defeasible

reasoning paradigm when reconciling my knowledge, using the principle of

selective ignorance.

In other words, if I accept as fact that students don’t pay taxes (strict

information), but I later encounter a specific student (for example an em-

ployed one) who does pay taxes, then I have a choice: I can either choose to

ignore this latest finding so that I can still accept my previous finding. Or, I

can choose to ignore the previous finding to accept the latter one. Of course,

the presented procedures in this chapter adhere to the latter paradigm (more

specific knowledge is more important).

Chapter 5

Evaluating the Inferences of

Defeasible Reasoning

In Chapter 3 we made a case for the satisfaction of the KLM postulates by

arguing that a defeasible reasoning mechanism, in the context of DLs, should

at the very least satisfy these properties in order to guarantee sensible reason-

ing behaviour. This chapter evaluates the preferential reasoning algorithms

presented in Chapter 4, and the applicable alternatives in Chapter 2, against

these formal properties motivated in Chapter 3.

We first evaluate our preferential algorithms against the formal KLM

properties given in Section 3.2.1 of Chapter 3. Thereafter, we consider the

alternative defeasible reasoning approaches mentioned in Chapter 2 against

the same requirements. We conclude with a short discussion about the sig-

nificance of the results.

5.1 Preferential Algorithms

In Chapter 2 we have presented overviews of various defeasible reasoning for-

malisms that address the exception problem in DLs. Among those presented

proposals, we chose to further develop the preferential approach towards the

pragmatic goals of this thesis.

233

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 234

The main reasons we chose the preferential approach were 1) its general-

ity as a framework for defeasible reasoning and 2) the structural properties

that it respects. These characteristics make the inferential behaviours of en-

tailment regimes built on top of the framework, have a more clearly defined

“shape” or “structure”.

The framework as a whole is also arguably more conceptually simple

and elegant than other formalisms, in part because it handles the matter of

priorities internally without need of user input. Notwithstanding, restricted

refinement of priorities is still permitted in the framework (see Section 4.2).

In this section we evaluate the preferential reasoning algorithms (pre-

sented in Chapter 4) against the advocated KLM properties motivated in

Section 3.2.1. Since preferential DLs introduce a new notion of subsumption

(@∼) in the language, and it has a clear ranked model semantics, it is very

easy to substitute this notion for ; defined in Section 3.2.1 and evaluate it

against the postulates.

Examining current literature concerning the preferential approach (as ap-

plied to DLs) it is surprising to note that there is no explicit demonstration

that @∼ , when interpreted in any ranked interpretation, actually satisfies all

the KLM postulates. This is of course the object-level perspective of the

relation. This result is expressed in the following lemma, the proof of which

is fairly straightforward:

Lemma 24 (Defeasible Subsumption Satisfies KLM Postulates) Let

R be a ranked interpretation. Then, for any three concepts C, D and E:

1. R
 C @∼ C (Ref)

2. If R
 C ≡ D and R
 C @∼ E then R
 D @∼ E (LLE)

3. If R
 C @∼D and R
 C @∼ E then R
 C @∼D u E (And)

4. If R
 C @∼D and R
 E @∼D then R
 C t E @∼D (Or)

5. If R
 C @∼D and R
 D v E then R
 C @∼ E (RW)

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 235

6. If R
 C @∼D and R
 C @∼ E then R
 C uD @∼ E (CM)

7. If R
 C @∼D and R 6
 C @∼ ¬E then R
 C u E @∼D (RM)

Proof: 1. R
 C @∼ C if and only if min≺R(CR) ⊆ CR and the latter follows

by definition of the function min≺R (see Definition 7 on Page 85).

2. (LLE) follows easily as well: If R
 C @∼ E (the minimal C’s are all E’s)

and R
 C ≡ D (C and D correspond to the same set of elements) we can

deduce that the minimal C’s are equivalent to the minimal D’s and hence it

follows that R
 D @∼ E (the minimal C’s are D’s).

3. (And) is straightforward: If R
 C @∼D (the minimal C’s are all D’s)

and R
 C @∼ E (the minimal C’s are also all E’s) then R
 C @∼D u E
(the minimal C’s are in the intersection of D and E). In other words, if

min≺R(CR) ⊆ DR and min≺R(CR) ⊆ ER then min≺R(CR) ⊆ DR ∩ ER.

4. Assume that R
 C @∼D and R
 E @∼D but that R 6
 C tE @∼D. There

is an x ∈ min≺R((C t E)R) s.t. x 6∈ DR. There are three cases:

Case 1: x ∈ CR and x 6∈ ER. By definition of min≺R , there is no y ≺R x

s.t. y ∈ (C t E)R. That is, for each y ≺R x, y 6∈ CR and y 6∈ E)R. This

means that x ∈ min≺R(CR). But from our assumption that R
 C @∼D it

means x ∈ DR. This is a contradiction with our assumption that x 6∈ DR.

Case 2: x ∈ ER and x 6∈ CR (Symmetric to Case 1).

Case 3: x ∈ CR and x ∈ ER. By definition of min≺R , there is no y ≺R x

s.t. y ∈ (C t E)R. That is, for each y ≺R x, y 6∈ CR and y 6∈ E)R.

Therefore, x ∈ min≺R(CR) and x ∈ min≺R(ER). From both our assumptions

R
 C @∼D and R
 E @∼D we derive that x ∈ DR. Again, we arrive at a

contradiction with our assumption that x 6∈ DR.

5. R
 C @∼D implies that min≺R(CR) ⊆ DR. R
 D v E implies

that DR ⊆ ER. By transitivity of ⊆ (subset inclusion), we obtain that

min≺R(CR) ⊆ ER. I.e., that R
 C @∼ E.

6. Assume that R
 C @∼D and R
 C @∼ E but that R 6
 C u D @∼ E.

There is an x ∈ min≺R((C u D)R) s.t. x 6∈ ER. We know obviously from

x ∈ min≺R((C uD)R) that x ∈ (C uD)R). There are two cases:

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 236

Case 1: x ∈ min≺R(CR). From R
 C @∼ E we know that x ∈ ER. This is a

contradiction with our assumption that x 6∈ ER.

Case 2: x 6∈ min≺R(CR). There is a y ≺R x s.t. y ∈ min≺R(CR). We pick

such a y. Therefore, from R
 C @∼D we know that y ∈ DR. But this

contradicts with x ∈ min≺R((C u D)R) which says that there is no z ≺R x

s.t. z ∈ CR ∩DR.

7. Assume that R
 C @∼D and R 6
 C @∼ ¬E but that R 6
 C u E @∼D.

Our second assumption implies that there is an x ∈ min≺R(CR) s.t. x ∈ ER.

From our third assumption, there is a y ∈ min≺R((C u E)R) s.t. y 6∈ DR.

We have three cases:

Case 1: x ≺R y. From R 6
 C @∼ ¬E we know that x ∈ min≺R(CR) and

x ∈ ER. This contradicts with y ∈ min≺R((C u E)R) (i.e., that there is no

element more minimal than y also belonging to both C and E).

Case 2: y ≺R x. Contradicts with x ∈ min≺R(CR) because y ∈ CR (from

y ∈ min≺R((C u E)R)).

Case 3: rkR(x) = rkR(y). From R
 C @∼D we know that x ∈ DR. But if x

is of equal rank to y and x is contained in min≺R(CR) then it must be the

case that y ∈ min≺R(CR). From our assumption that R
 C @∼D it means

y ∈ DR. This contradicts with our earlier assumption that y 6∈ DR. 2

Lemma 24 on Page 234 shows that, restricting ourselves to a single ranked

interpretation, the semantics of defeasible subsumption satisfies all the KLM

postulates.

Unfortunately, the literature also does not demonstrate definitively which

defeasible entailment regimes (induced by defeasible subsumption) satisfy

which postulates. I.e., to the best of our knowledge, the proofs for this meta-

level consideration of the KLM postulates are not explicitly provided.

Even though the majority of these proofs are fairly straightforward, we

provide them here for completeness and ease of reference. It must be em-

phasised though that the results for Rational and Lexicographic Closure are

accepted and known by the preferential reasoning community in general.

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 237

We start off by showing that both Rational Closure and Lexicographic

Closure induce rational consequence relations. In other words, they each

satisfy all the formal KLM postulates.

It turns out that we do not need involved proofs to show this. In fact this

result follows from Lemma 24 and the fact that both Rational and Lexico-

graphic Closure can be characterised in terms of single ranked models (see

Definitions 23 and 38 on Pages 97 and 185 respectively). Furthermore, we

have shown Lexicographically-Relevant Closure to be an equivalent construc-

tion to Lexicographic Closure (see Lemma 19 on Page 221). This means that

Lexicographically-Relevant Closure also computes a rational consequence re-

lation.

Within the preferential reasoning algorithms, this leaves us with the Basic

and Minimal Relevant Closures. We have stated in Section 4.5 that these

constructions do not define rational consequence relations. I.e., they do not

satisfy all the KLM postulates. Here we demonstrate which of the postulates

they do in fact satisfy, as well as provide applicable counter-examples to show

which of the postulates they do not satisfy.

Theorem 2 (The Relevant Closures w.r.t. KLM Postulates) The Ba-

sic and Minimal Relevant Closures satisfy the properties (Ref), (And), (RW)

and (LLE) and do not satisfy the properties (Or), (CM) and (RM).

Proof: we show that for any defeasible KB K: 1. (Ref) - for any concept

C, C @∼ C will be in the basic and minimal Relevant Closures of K. By Def-

inition 47 on Page 205, this is the case if and only if C v C is classically

entailed by the classical counterpart of the maximally-relevant C-compatible

subset of the ranking for K (both notions of maximal relevance apply here for

each closure). In other words, our procedures reduce to classical subsump-

tion checking. By the semantics of classical subsumption, we know that any

set of elements is a non-strict subset of itself, therefore both closures satisfy

(Ref).

2. (And) - if C @∼D and C @∼ E is in the a basic (resp. minimal) Relevant

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 238

Closure for K, then C @∼D u E is also in the basic (resp. minimal) Relevant

Closure for K. But the premises of this argument imply that the maximally-

relevant C-compatible subset of the ranking is s.t. C v D and C v E are

both classically entailed by its classical counterpart. Because the (And) rule

is satisfied by classical entailment we obtain that C v DuE is also classically

entailed by its classical counterpart. Therefore, both closures also satisfy the

(And) property.

3. (LLE) - if C @∼ E and C ≡ D are in the basic (resp. minimal) Relevant

Closure for K, then D @∼ E is also in the basic (resp. minimal) Relevant Clo-

sure for K. The first premise means that C v E classically follows from the

maximally-relevant C-compatible subset of the ranking for K. The second

premise can be understood as follows: all our preferential reasoning algo-

rithms imply that any strict query such as C ≡ D will be in the selected

defeasible closure of the KB if and only if it follows classically from the TBox

(strict information) in the KB alone. By monotonicity of classical entailment

we would also have that C ≡ D follows classically when adding the classical

counterpart of the maximally-relevant C-compatible subset of the ranking to

the TBox. Thus, from both our derivations C ≡ D and C v E, as well as

classical reasoning, we can easily infer D v E. Therefore, both closures will

satisfy (LLE).

4. (RW) - if C @∼D and D v E are in the basic (resp. minimal) Relevant Clo-

sure for K, then C @∼ E is also in the basic (resp. minimal) Relevant Closure

for K. A similar argument to (LLE) is used. D v E can be derived classically

from the strict information alone. From the union of this strict information

and the classical counterpart of the maximally-relevant C-compatible subset

of the ranking we can classically derive C v D. By monotonicity of classical

entailment we can derive both the above conclusions from this latter union

of sets. Using classical reasoning it is easy to see we can derive C v E via

transitivity of classical subsumption. Therefore, (RW) is also satisfied by

both closures.

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 239

We now give counter-examples for the unsatisfied properties:

5. (Or) - consider the defeasible KB K = { A @∼B, B @∼ C, A @∼ ¬C, A @∼D,

G @∼D, D @∼ E, G @∼H, H @∼ ¬E, G @∼ E }. The ranking for K is: D0 = { B @∼ C,

D @∼ E, H @∼ ¬E }, D1 = { A @∼B, A @∼ ¬C, A @∼D, G @∼D, G @∼H }. We can

derive both A @∼ E and G @∼ E, using basic and minimal Relevant Closure,

from K. The former conclusion can be inferred by noting that there is a

single A-justification: { A @∼B, B @∼ C, A @∼ ¬C }, and the latter conclusion

can be inferred by noting that the G-justifications are: { G @∼ E, G @∼H,

H @∼ ¬E } and { G @∼D, G @∼H, D @∼ E, H @∼ ¬E }. Finally, it is clear that

we cannot derive A t G @∼ E because the A t G-justifications are: { A @∼B,

B @∼ C, A @∼ ¬C, G @∼ E, G @∼H, H @∼ ¬E } and { A @∼B, B @∼ C, A @∼ ¬C, G @∼D,

G @∼H, D @∼ E, H @∼ ¬E }.
6. (CM) & (RM) - consider the defeasible KB K = { E @∼ ¬G, H @∼ E, B @∼ ¬D,

C @∼D, C @∼B, C u D @∼G, C @∼H, C u D @∼H }. The ranking for K is: D0

= { E @∼ ¬G, B @∼ ¬D, H @∼ ¬E }, D1 = { C @∼D, C @∼B, C uD @∼G, C @∼H,

C u D @∼H }. There is only one C-justification { B @∼ ¬D, C @∼D, C @∼B }
and it is clear from this that one can derive both C @∼D and C @∼ E, using

both basic and minimal Relevant Closure. However, we have three (C uD)-

justifications { B @∼ ¬D, C @∼D, C @∼B }, { C u D @∼G, C u D @∼H, H @∼ E,

E @∼ ¬G } and { C u D @∼G, C @∼H, H @∼ E, E @∼ ¬G }. Clearly, one cannot

derive C uD @∼ E after removing the (C uD)-basis axioms from D0. 2

5.2 Non-Preferential Algorithms

In this section we evaluate whether the main alternative formalisms for de-

feasible reasoning in DLs satisfy the KLM properties or not. It is critical to

point out that, by design, most of these alternatives cannot be directly com-

pared to the preferential approach, nor directly evaluated against the KLM

properties discussed in Section 3.2.1 of Chapter 3.

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 240

This is because in many cases the applicable formalism has been designed

towards addressing different concrete reasoning problems than our preferen-

tial reasoning approaches. Therefore, we have to evaluate some of the for-

malisms by first placing some restrictions and underlying assumptions on the

representations we choose, so that they can be directly evaluated against the

KLM consequence relation postulates introduced in Chapter 3.

We address the formalisms in order of how directly they can be evaluated

against the KLM postulates (i.e., how many restrictions do we need to place

on the formalism before it can be directly evaluated). We start with the

formalism which can be most directly evaluated - overriding (Section 2.9).

We do not consider DLs of MKNF and Defeasible Logic in this evalu-

ation. The main reason for eliminating DLs of MKNF is that they differ

quite considerably from the aforementioned formalisms in terms of their rep-

resentational goals (they are more general formalisms allowing one to express

epistemic statements in addition to default statements). We also eliminate

Defeasible Logic because, when integrated into DLs, it is too dissimilar in

terms of its approach, to the aforementioned formalisms.

5.2.1 Overriding

The most recent approach currently to defeasible reasoning for DLs, is the

one by Bonatti et al. [27] on overriding (see Section 2.9). It is specifically

targetted at DLs and is, representationally speaking, most similar to the

preferential approach.

The central representational element introduced is the notion of a de-

feasible inclusion vn relation (analogous in spirit to @∼). Because of this

correspondence, we can consider vn to induce a consequence relation on DL

concepts in an analogous way to @∼ .

We recall that a major difference between preferential reasoning, and

other defeasible formalisms for DLs, is that specificity (see Example 12 on

Page 62) is internalised in the mechanism of preferential reasoning (i.e., speci-

ficity is natively respected). Whereas, in other formalisms, priorities between

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 241

defaults can either be user-specified or be assumed to be defined by speci-

ficity [137, 12, 33].

The version of overriding we talk about here is the one which assumes

that priorities among defeasible inclusions are defined by specificity. Bonatti

et al. have made our work much easier by evaluating their formalism against

the KLM rationality properties themselves [27, Theorem 8, p30].

However, there are two issues we have identified with their evaluation

that need to be addressed in this thesis. The first is that the authors have

not considered the (And) property in their presentation. The second is that

the authors have considered, for some KLM properties, two possible formu-

lations of these properties and evaluated them in both. Here will extend

the insight of Bonatti et al. by demonstrating whether or not the (And)

property holds for overriding. For the latter issue we will make clear which

KLM properties have more than one formulation for overriding and which

of these formulations are applicable for our evaluation. The (And) property

can formulated as follows in the setting of overriding:

(And)
C vn D, C vn E
C vn D u E

We now demonstrate that (And) is actually satisfied in general by overriding:

Lemma 25 (Overriding w.r.t. KLM Postulate (And)) Overriding sat-

isfies (And).

Proof: We have to show that, given a DLN KB K and concepts C, D and

E, if K |≈ C vn D and K |≈ C vn E then K |≈ C vn D u E. We assume

that the premises hold but that K 6|≈ C vn D u E. We try to derive a

contradiction from this. We pick a model I for K s.t. I 6
 C vn D u E.

From Definition 25 on Page 104 we know that there is a normality concept

NX s.t. NX does not override C vn D u E in I and that there is an x ∈
NXI s.t. x ∈ CI but that x 6∈ (D u E)I . Because NX does not override

C vn D u E in I we know from Definition 24 on Page 101 that there is a

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 242

pre-model J for K s.t. NXJ 6= ∅, for each x ∈ NXJ , x ∈ (¬C t (D uE))J ,

and for all higher priority DIs condition 3 of Definition 24 also holds. But

we also know that I
 C vn D and I
 C vn E because I is a model

for K and K |≈ C vn D and K |≈ C vn E. By Definition 25 on Page 104

we know that for each normality concept NY either NY overrides C vn D
(resp. C vn E) in I or each x ∈ NY I is s.t. x ∈ (¬CtD)I (resp. (¬CtE)I).

Suppose that NX overrides C vn D (resp. C vn E) in I. This means that

there is no pre-model J ′ for K s.t. all the conditions of Definition 24 are

satisfied for these DIs w.r.t. NX in I. But it is clear that (¬Ct (DuE))J ⊆
(¬C tD)J and (¬C t (DuE))J ⊆ (¬C tE)J (i.e., the first two conditions

are satisfied for these DIs w.r.t. NX in J). Therefore it must be the case

that the pre-model J does not satisfy the third condition for overriding for

these DIs w.r.t. NX in I. This means that there is a DI δ′ which is of higher

priority than these DIs which is sacrificed even though it is not explicitly

overridden in I. But the DIs that are of higher priority than C vn D and

C vn E are the same as those that are of higher priority than C vn D u E
(because priority is defined by specificity of the DI antecedents). But this

would mean that condition 3 of Definition 24 does not hold for C vn D uE
w.r.t. NX in I. This is a contradiction with our assumption that there is a

pre-model J for K satisfying all the overriding conditions for C vn D u E.

Therefore, there is no such pre-model and C vn D uE is satisfied in I, and

hence K |≈ C vn D u E. 2

Finally, we can clarify that, although Bonatti et al. claim that (LLE) is not

satisfied in general by overriding [27, Theorem 8, p30], this result holds for

the following formulation of the KLM property:

(LLE1)
C vn E, C ≡ D

D vn E

That is, in the above formulation of (LLE), C ≡ D is interpreted as defeasible

consequence rather than as a classical consequence of the (strict part of the)

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 243

KB. Another possible interpretation of this property is to treat C ≡ D as

a classical consequence of the strict component of the KB (just the classical

subsumptions). The property can then be formulated as follows.

(LLE2)
C vn E, |= C ≡ D

D vn E

It turns out that (LLE2) is satisfied in general by overriding [27, Theorem

10, p35]. In an analogous way, one can also formulate two versions of the

(RW) property for overriding. However, in that case, neither version holds

in general for overriding and a counter-example is given to show this [27,

Theorem 8, p30]. The following theorem consolidates the evaluation results

for overriding (where priorities among DIs are defined by specificity).

Theorem 3 (Overriding w.r.t. KLM Postulates) Overriding satisfies

the properties (Ref), (Or), (And) and (LLE2) but does not satisfy (LLE1),

(RW), (CM) and (RM).

5.2.2 Circumscription

As there are a variety of semantics for circumscription in DLs, and there are

no standardised circumscription patterns, we have to choose a representative

semantics and pattern which can be evaluated against the KLM postulates.

Here we subscribe to the semantics of Bonatti, Lutz and Wolter [32]

because it defines a basic, intuitive and representative semantics for circum-

scription in DLs. We have stated the semantics in Section 2.4.1 which ex-

presses three conditions for determining if a model I for a circumscribed KB

is more preferred or more minimal than another model J for the KB.

In that same section we talked about a fourth possible condition for when

we would like to fix the extension of certain predicates. Here we do not

consider this fourth condition. In fact, in terms of circumscription pattern,

we are not going to consider varying or fixing predicates. We only introduce

abnormality predicates that are to be minimised during reasoning.

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 244

We are going to evaluate this version of circumscription against the KLM

postulates regardless of varying or fixing other predicates. This is helpful

because we can get a more general perspective of the inferential character of

circumscription independent of user-specified circumscription patterns.

From a representational perspective, in order to formulate the KLM pos-

tulates within this setting we have established, we define a translation of

defeasible subsumptions of the form C @∼D to circumscription defaults of the

form C v D t AbC .

Definition 55 (Circumscription Default) A circumscription default is

a subsumption of the form C v D t AbC where C and D are ALC concepts

and AbC is a concept name representing the abnormal instances of C.

Of course, we do not claim that circumscription defaults capture the same se-

mantics as C @∼D (indeed circumscription defaults are interpreted in classical

DL interpretations while defeasible subsumptions are interpreted in ranked

interpretations). Rather, we believe that the notion of circumscription de-

fault is a natural analogue of defeasible subsumption in the circumscription

setting and intuitively captures a similar meaning in the latter context.

Therefore, even though circumscription does not introduce a defeasible

subsumption relation in the language like @∼ (preferential reasoning) and

vn (overriding), we can actually interpret v in the circumscription default

C v D t AbC as defining a notion of defeasible subsumption because we

are going to minimise AbC during reasoning. That is, this syntactic form

of subsumption statement represents a similar intuitive meaning to C @∼D

and hence allows us to reformulate the KLM postulates for this new notion

of defeasible subsumption, and to evaluate consequence in circumscription

against these postulates.

However, before we formulate the KLM postulates in this context, we

have to define the kinds of KBs we are interested in for this version of cir-

cumscription, as well as the general circumscription pattern we consider. For

the former, we are going to focus on circumscribed defeasible KBs:

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 245

Definition 56 (Circumscribed Defeasible KB) A circumscribed defea-

sible KB is a structure of the form 〈T ,D〉 where T is a classically consistent

set of subsumptions of the form C v D s.t. C and D do not contain any

abnormality predicates, and D is a set of circumscription defaults (Defini-

tion 55 on Page 244).

Given a circumscribed defeasible KB, when performing reasoning, we only

consider a very general circumscription pattern. As we discussed in Sec-

tion 2.4.2, we define a partial order on the abnormality predicates ocurring

in D determined by specificity. Specificity in this context means that an

abnormality predicate AbC1 is given minimisation priority during reasoning

over another predicate AbC2 if: T ∪ D |= C1 v C2 and T ∪ D 6|= C2 v C1.

That is, we admit only the following circumscription pattern (called a basic

circumscription pattern):

Definition 57 (Basic Circumscription Pattern) Let 〈T ,D〉 be a circum-

scribed defeasible KB and δ a circumscription default. Then, the basic cir-

cumscription pattern w.r.t. 〈T ,D〉 and δ is the structure 〈M,≺M〉 whereM
is the set of all abnormality predicates AbC appearing in D together with the

one in δ, and ≺M is a strict partial order on the elements of M defined by

specificity. The elements of M are to be minimised during reasoning and

≺M defines the minimisation priority among the predicates of M.

Notice that we do not allow the minimisation of roles in this form of circum-

scription. Bonatti et al. [32] refer to this kind of circumscription as concept

circumscription. Entailment in circumscription is defined in terms of mini-

mal models. That is, given a circumscribed defeasible KB 〈T ,D〉, there is an

ordering <min placed on the standard DL models of T ∪ D. The ordering is

defined by the three conditions mentioned earlier in this section and in Sec-

tion 2.4.1. A model I for 〈T ,D〉 is thus a minimal model for 〈T ,D〉 if there

is no other model J for 〈T ,D〉 s.t. J <min I. The notation of entailment is

presented in the following definition:

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 246

Definition 58 (Entailment in Circumscription) Let 〈T ,D〉 be a circum-

scribed defeasible KB and δ a circumscription default. Then, δ is entailed by

〈T ,D〉, written as 〈T ,D〉 |=circ δ, if each minimal model for 〈T ,D〉 is a

model for δ.

We can now reformulate the KLM postulates within this setting:

Definition 59 (KLM Rationality Postulates for Circumscription)

The KLM rationality postulates for circumscription are as follows:

(Ref) |= C v C t AbC

(LLE)
|= C ≡ D, |= C v E t AbC

|= D v E t AbD

(And)
|= C v D t AbC , |= C v E t AbC

|= C v (D u E) t AbC

(Or)
|= C v E t AbC , |= D v E t AbD

|= C tD v E t AbCtD

(RW)
|= C v D t AbC , |= D v E

|= C v E t AbC

(CM)
|= C v D t AbC , |= C v E t AbC

|= C uD v E t AbCuD

(RM)
|= C v E t AbC , 6|= C v ¬D t AbC

|= C uD v E t AbCuD

It proves to be quite straightforward to evaluate the form of circumscription

we have defined, which we shall call basic circumscription, against the prop-

erties formulated in Definition 59 on Page 246. The result is demonstrated

by the proof of the following theorem:

Theorem 4 (Basic Circumscription w.r.t. KLM Postulates) Basic cir-

cumscription satisfies the properties (Ref), (LLE), (RW), (And) and (Or) but

does not satisfy (CM) and (RM).

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 247

Proof: we show that for any circumscribed defeasible KB K = 〈T ,D〉 and

concepts C, D and E:

1. (Ref) - K |=circ C v C t AbC . This is clearly straightforward because CI

⊆ CI ∪ AbCI for any interpretation I for any KB and C.

2. (And) - if K |=circ C v D t AbC and K |=circ C v E t AbC then

K |=circ C v (D u E) t AbC . We pick a K, C, D and E s.t. the premises

are satisfied. Picking a minimal model I for K, since I
 C v D tAbC and

I
 C v E t AbC , we know that I
 C v (D t AbC) u (E t AbC). By

the distributive law of set algebra, we can therefore conclude that I
 C v
(D u E) t AbC and therefore that K |=circ C v (D u E) t AbC .

3. (LLE) - if T ∪ D |= C ≡ D and K |=circ C v E t AbC then K |=circ

D v E t AbD. We pick a K, C, D and E s.t. the premises are satisfied. We

also pick a minimal model I for K. We know that I
 C v E t AbC and

I
 C ≡ D. I.e., that CI ⊆ EI ∪ AbCI and CI = DI . We have to show

that DI ⊆ EI ∪ AbDI . In other words, it would be sufficient to show that

AbC
I ⊆ AbD

I . Assume that AbC
I 6⊆ AbD

I . This means there is an x ∈ AbCI

s.t. x 6∈ AbDI .
Case 1: x ∈ CI . Therefore, x ∈ DI because CI = DI . Also, x ∈ EI ∪
AbD

I because DI ⊆ EI ∪ AbD
I . From our assumption that x 6∈ AbD

I it

must be the case that x ∈ EI . But this means that I is not a minimal model

for K because even if x 6∈ AbC
I , I will still be a model for K. This is a

contradiction with our assumptions.

Case 2: x 6∈ CI . This also means that I is not a minimal model for K
because even if x 6∈ AbCI , I will still be a model for K (because CI ⊆ EI

∪ AbCI). This is a contradiction with our assumptions. Therefore, AbC
I ⊆

AbD
I and hence DI ⊆ EI ∪ AbDI . Finally, K |=circ D v E t AbD.

4. (RW) - if T ∪ D |= D ≡ E and K |=circ C v D t AbC then K |=circ C v
E t AbC . We pick a K, C, D and E s.t. the premises are satisfied. We also

pick a minimal model I for K. It is clear that CI ⊆ DI ∪ AbCI and DI ⊆
EI . Hence, by union of sets, it is clear that CI ⊆ EI ∪ AbCI . Finally, we

can conclude that K |=circ C v E t AbC .

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 248

5. (Or) - it must be said that (Or) is not satisfied in general for arbitrary

priority relations among abnormality predicates. To see this, consider the

following circumscribed defeasible KB 〈T ,D〉 = 〈{> v (C tE)u¬D}, {C v
DtAbC , E v DtAbE}〉 and the circumscription default CtE v DtAbCtE.

Let I = 〈∆I , ·I〉 be an interpretation s.t. ∆I = {x} and ·I is defined s.t. CI =

AbC
I = {x} and EI = DI = AbE

I = AbCtE
I = ∅. It is clear that I is a

model for T ∪D and, if we fix the non-abnormality predicates, it is also clear

that there is no J <min I s.t. J is a model for T ∪ D. In other words,

it is clear that the extension of AbC could not be empty in J because this

would violate the default C v DtAbC . Therefore, I is a minimal model for

〈T ,D〉, I
 C v D t AbC , I
 E v D t AbE but I 6
 C t E v D t AbCtE
because x ∈ (C t E)I and x 6∈ DI and x 6∈ AbCtE

I . However, in the

given counter-example, specificity is not respected during minimisation of

abnormality predicates. Since we are interested only in priority relations

defined by specificity we can demonstrate that (Or) is satisfied with this

restriction. We have to show that if K |=circ C v D t AbC and K |=circ E v
DtAbE then K |=circ CtE v DtAbCtE. We pick a K, C, D and E s.t. the

premises are satisfied. We also pick a minimal model I for K. It is clear that

I
 C v D t AbC and I
 E v D t AbE. But we also know, because of

specificity, that AbC
I ⊆ AbCtE

I and AbE
I ⊆ AbCtE

I . Let us assume that I
6
 C t E v D t AbCtE. We will derive a contradiction from this. It means

that there is an x ∈ (C t E)I s.t. x 6∈ DI and x 6∈ AbCtEI .
Case 1: x ∈ CI . This means that x ∈ AbCI because I
 C v DtAbC and x

6∈ DI . But specificity tells us that AbC
I ⊆ AbCtE

I (because C v C tE is a

tautology) and therefore that x ∈ AbCtEI . This is a contradiction. Therefore

it must be the case that x ∈ EI

Case 2: x ∈ EI . We follow an analogous argument to Case 1 to find that x

∈ AbCtEI and derive a contradiction again.

We therefore have to conclude that I
 C tE v D tAbCtE and hence that

K |=circ C t E v D t AbCtE.

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 249

We now give counter-examples to demonstrate that basic circumscription

does not satisfy (CM) and (RM). The strategy is that, for each property,

we identify a circumscribed defeasible KB s.t. the premises of the property

are entailed by this KB and the conclusion is not (using Definition 58 on

Page 246).

6. (CM) - Consider the circumscribed defeasible KB 〈T ,D〉 = 〈{> v C u
E u ¬D}, {C v D t AbC , C v E t AbC}〉 and the circumscription default

C u E v D t AbCuE. Let I = 〈∆I , ·I〉 be an interpretation s.t. ∆I = {x}
and ·I is defined s.t. CI = AbC

I = EI = {x} and DI = AbCuE
I = ∅. It

is clear that I is a model for T ∪ D and it is also clear that there is no

J <min I s.t. J is a model for T ∪ D. In other words, it is clear that

the extension of AbC could not be empty in J because this would violate

the default C v D t AbC . Therefore, I is a minimal model for 〈T ,D〉 and

I 6
 C u E v D t AbCuE because x ∈ (C u E)I and x 6∈ DI and x 6∈ AbCuEI .
7. (RM) - Consider the circumscribed defeasible KB 〈T ,D〉 = 〈∅, {C v
D t AbC}〉 and the circumscription default C u E v D t AbCuE. Suppose

we minimise AbC and AbCuE and fix the rest of the predicates. It is clear

that K |=circ C v D t AbC and that K 6|=circ C v ¬E t AbC . We show

that K 6|=circ C u E v D t AbCuE. Consider the following interpretation

I = 〈∆I , ·I〉 where ∆I = {x, y} and ·I is defined s.t. CI = EI = {x, y},
DI = {x}, AbCI = {y}, AbICuE = ∅. Clearly, I is a model for K. Assume

that I is not a minimal model for K. This can only mean that there is a

model J for K which is the same as I except for the extension of AbC . That

is, s.t. AbC
J ⊂ AbC

I , or more specifically, s.t. AbC
J = ∅. But this cannot

be the case because such a J would no longer satisfy C v D tAbC , because

y ∈ CJ and y 6∈ DJ and y 6∈ AbCJ .Therefore, I is a minimal model for K
and it is clear that I 6
 CuE v DtAbCuE because y ∈ (CuE)I and y 6∈ DI

and y 6∈ AbCuEI . Hence, K 6|=circ C u E v D t AbCuE. 2

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 250

Even though we do not explicitly take priorities among abnormality pred-

icates into consideration in our proofs, the properties that hold in general

would also hold even if prioritisation is defined by specificity. This is because

we have given a very general definition for minimising abnormality predi-

cates (i.e., for minimal models of a circumscribed KB). Therefore, by taking

a view independent of circumscription pattern, we are allowed to substitute

any such pattern to define a notion of minimal model. This means that

we consider all possible minimal models in the broadest sense of the word

all. When we incorporate priorities, some minimal models will obviously no

longer be minimal and hence we are considering a subset of these. That is,

if our results hold for all minimal models it will hold for a subset of these.

For properties (CM) and (RM) that don’t hold, our counter-examples

are also applicable when considering priorities defined by specificity. This

is because the given counter-models are still minimal models when consider-

ing the priorities among abnormality predicates. Thus the results we have

obtained still apply to cases of prioritisation among abnormality predicates.

5.2.3 Default Reasoning

For classical default logic, the broad focus has always been on applying a set

of defaults to a set of first-order logic formulas to extend this set with new

first-order formulas representing defeasible inferences that one can make from

the default theory. As we demonstrated in Section 2.5, current adaptations

of Reiter’s default logic to the DL case define an analogous mechanism [11].

The representational differences are that our default theory in the DL case

consists of normal defaults of the form C:D
D

where C and D are DL concepts,

and our set of first-order formulas is replaced by a set of DL axioms (either

TBox or ABox).

However, the issue with these approaches concerns the reasoning question

being asked. That is, these approaches only consider extending the DL KB

with ABox information. I.e., they define a way to apply the defaults to

the given DL KB in order to defeasibly derive ABox statements from this

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 251

KB. Since our focus in this thesis is purely on TBox defeasible reasoning, an

evaluation of the current default logic approaches for DLs against the KLM

postulates is irrelevant.

Therefore, to make such an evaluation relevant, we have to generalise

the mechanism of default logic so that we can apply normal defaults to a

DL TBox to extend this TBox with more classical subsumption statements

representing the defeasible inferences one can make from this TBox. We

believe this scenario to be the most natural adaptation of default logic to

derive TBox knowledge from application of defaults. Nevertheless, we have

to be careful not to define an approach that is too far removed from the

natural mechanism of default logic because our goal is to evaluate the general

default reasoning mechanism and not invent a novel variant of default logic.

We will now adapt the definitions for the main constructs in default logic

to be able to derive TBox information from our default theories. Thereafter,

we consider how to evaluate the reasoning mechanism against the KLM pos-

tulates. We adopt the same definition of normal DL default that Baader et

al. [11] subscribe to. That is, a normal DL default is one of the form C:D
D

where C and D are DL concepts and the statement intuitively means that if

an object is known to have property C, and it is consistent to believe that it

has property D also, then it has property D. This leads us to define what a

DL default KB is in our setting:

Definition 60 (DL Default KB) A DL default KB is a structure 〈T ,D〉
where T is a consistent and finite set of classical DL subsumption statements

and D is a finite set of normal DL defaults.

Now the core principle in the reasoning mechanism for default logic is the

notion of extension of a default KB. Here we reinterpret this notion in the

context of DL Default KBs and call it a DL default extension:

Definition 61 (DL Default Extension) Let 〈T ,D〉 be a DL default KB.

Then, T ′ ⊇ T is a DL extension of 〈T ,D〉 if: T ′ is deductively closed and

for each C:D
D
∈ D, if > v C u ¬D 6∈ T ′ then C v D ∈ T ′.

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 252

Reiter also gives an operational definition for extensions in terms of fixed

points. Baader et al. [11], in their extension of defaults to DLs, also adopt this

definition. We give the natural interpretation of this constructive definition

for our context here:

Definition 62 (DL Default Extension as Fixed Points) Let E be a set

of classical DL subsumption statements, and 〈T ,D〉 a DL default KB. We

define E0 = T and for all i ≥ 0: Ei+1 := Ei ∪ {C v D | C:D
D
∈ D and

> v C u ¬D 6∈ E }. Then, E is a DL default extension of 〈T ,D〉 if:

E =
⋃
i≥0 Th(Ei) where Th(S) stands for the deductive closure of the set

of classical DL subsumptions S.

To define entailment in default logic one has to consider the skeptical ap-

proach and at least two versions of a credulous one. The skeptical approach

defines that a default C:D
D

defeasibly follows from (is logically entailed by)

a DL default KB 〈T ,D〉 if C v D appears in each DL default extension of

〈T ,D〉. We shall write this version of entailment as 〈T ,D〉 `s C:D
D

. The most

obvious credulous approach is to logically entail C:D
D

if it appears in at least

one extension of 〈T ,D〉. We write this version of entailment as 〈T ,D〉 `c C:D
D

.

Yet another credulous approach is to pick an arbitrary extension and take

this extension to define entailment. We do not consider this latter form of

entailment in our evaluation because it requires us to consider the choice of

this extension and this is not appropriate if we want to get a more general

perspective of the inferential behaviour of default logic. Therefore, from here

on we assume the term credulous to refer to the former (more popular) notion.

Skeptical Entailment: Interestingly, for the version of default logic we have

presented, we find that skeptical entailment (what follows in each extension)

is monotonic. This is because a DL default extension of any DL default

KB 〈T ,D〉 is the deductive closure (over |=) of a superset of T . Clearly,

because |= is monotonic, skeptical entailment in our version of default logic

is also monotonic. This is perhaps not surprising if we recall the goal of

the underlying mechanism of default logic and the notion of extension itself.

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 253

That is, essentially we are constructing all supersets of a classical theory that

are internally consistent (by using a set of default rules as generative agents

to catalyse this process).

Implied by this is the fact that, if we take the union of any two extensions

of a default theory, we will get an inconsistency [161, Theorem 3.3]. Indeed,

they are separate extensions exactly because of this fact. Because of this gen-

eral situation, it is very straightforward to verify that this version of default

logic satisfies all the KLM postulates and so we omit proofs for this case. But

as our above discussion points out, this result is not necessarily a positive

aspect of skeptical entailment in default logic seeing as it is monotonic.

Credulous Entailment: The credulous approach only requires one extension

to contain the inference under consideration. This view of entailment is not

necessarily monotonic and we can formulate and evaluate the KLM proper-

ties w.r.t. this entailment relation. The results of this evaluation are demon-

strated by Theorem 5 on Page 253:

Theorem 5 (Default Logic w.r.t. KLM postulates)

Skeptical Default Logic is monotonic and satisfies all the KLM postulates, and

Credulous Default Logic is monotonic and satisfies all the KLM postulates

except for (And) and (Or).

Proof: The skeptical case is trivial, we prove the credulous case. We show

for any DL default KB 〈T ,D〉 and concepts C, D and E:

1. (Ref) - 〈T ,D〉 `c C:C
C

. In other words, we have to show that there is a

DL default extension T ′ for 〈T ,D〉 s.t. C v C ∈ T ′. Since T ′ is deductively

closed and C v C is a tautology it follows that (Ref) is satisfied.

2. (LLE) - if 〈T ,D〉 `c C:D
D

and T |= C ≡ E then 〈T ,D〉 `c E:D
D

. Picking

a 〈T ,D〉 s.t. 〈T ,D〉 `c C:D
D

we can see that there is a DL default extension

s.t. C v D is contained in this extension. The second premise T |= C ≡ E

clearly demonstrates that C ≡ E is contained in all extensions because every

extension T ′ for 〈T ,D〉 is s.t. T ′ ⊇ T . Therefore it is clear that E v D will

be in the extension that C v D (and C ≡ E) appears in.

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 254

3. (RW) - an analogous argument to the one for (LLE) can be used to prove

that (RW) alo holds.

4. (M) - We will now show that credulous entailment in our default logic is

actually monotonic, and therefore satisfies (CM) and (RM) as well, because

these are weakened versions of classical monotonicity. Notice that for any

C v D ∈ T ′ where T ′ is a DL default extension, it must be the case that

C uE v D ∈ T ′ for any E because T ′ is a deductively closed set of classical

DL subsumptions and classical DLs satisfy monotonicity.

We now give a counter-example for the (And) property:

5. (And) - Consider the DL default KB 〈T ,D〉 = 〈{E v ¬D}, {C:D
D
, C:E
E
}〉.

There are two extensions for 〈T ,D〉, namely, E1 = Th({E v ¬D})∪{C v D}
and E2 = Th({E v ¬D}) ∪ {C v E} where Th(S) denotes the deductive

closure of the set of sentences S. Of course, it is clear that C v DuE is not

an element of either extension.

6. (Or) - Consider the DL default KB 〈T ,D〉 = 〈{> v (E u ¬D) t (C u
¬D)}, {C:D

D
, E:D
D
}〉. There are two extensions for 〈T ,D〉, namely, E1 = Th({> v

(Eu¬D)t(Cu¬D)}) ∪ {C v D} and E2 = Th({> v (Eu¬D)t(Cu¬D)})
∪ {E v D} where Th(S) denotes the deductive closure of the set of sentences

S. Of course, it is clear that C v D and E v D do not both occur in any

particular extension. 2

5.3 Discussion

In this chapter we showed that, apart from Lexicographic Closure, Ratio-

nal Closure and Lexicographically-Relevant Closure, all other preferential

and non-preferential formalisms studied in this thesis do not satisfy all the

KLM postulates. We found that the Relevant Closures, overriding and basic

circumscription do not satisfy (CM) and (RM). In addition, (Or) is not satis-

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 255

fied by the Relevant Closures although overriding and basic circumscription

both satisfy (Or) when the priority relations among DIs (resp. abnormality

predicates) are defined by specificity. Overriding, however, does not sat-

isfy standard (LLE) and (RW) as well. In our opinion, such properties are

more important to be satisfied by defeasible entailment since they contain

tautologies as part of their premises.

We presented a natural interpretation of the mechanism of default logic

for generating TBox statements (subsumptions) by applying DL defaults to

a classical DL TBox. This version of default logic was found to define a

monotonic entailment relation for both skeptical and credulous entailment.

In the former entailment regime all the KLM postulates are satisfied, while

in the latter (And) and (Or) are not satisfied in general.

It is important to note that the monotonicity of credulous entailment

is quite different from the monotonicity of skeptical entailment in default

logic. We notice that the former is monotonic on the meta-level (entailment

level) but it is nonmonotonic on the object level. For example, given the DL

default KB 〈T ,D〉 = 〈{Penguin v Bird}, {Bird:∃hasAbility.Flying∃hasAbility.Flying }〉 we can derive

an extension T ′ of 〈T ,D〉 containing Penguin v ∃hasAbility.Flying. Even after

adding Penguin:¬(∃hasAbility.Flying)
¬(∃hasAbility.Flying) to D, T ′ still remains an extension because we

cannot apply Penguin:¬(∃hasAbility.Flying)
¬(∃hasAbility.Flying) to extend T ′ further. However, if we

apply Penguin:¬(∃hasAbility.Flying)
¬(∃hasAbility.Flying) to penguins and not Bird:∃hasAbility.Flying

∃hasAbility.Flying we will

derive that penguins do not fly, which overrides the flying ability of birds.

This is clearly nonmonotonic behaviour on the object level. For skeptical

entailment such behaviour is not allowed.

Of course, an interesting (though undesirable) behaviour of the credu-

lous approach to default logic is that conflicting beliefs are allowed to co-

exist. For example, in the above KB 〈T ,D〉, we can derive both 〈T ,D〉 `c
Penguin:¬(∃hasAbility.Flying)
¬(∃hasAbility.Flying) and 〈T ,D〉 `c Penguin:∃hasAbility.Flying

∃hasAbility.Flying because there is an

extension containing Penguin v ∃hasAbility.Flying, one containing Penguin v
¬(∃hasAbility.Flying) and none containing Penguin v ⊥.

Finally, it is worth mentioning that Reiter advocates the intended ap-

CHAPTER 5. INFERENCES OF DEFEASIBLE REASONING 256

plication of default logic as determining one consistent set of beliefs about

the world [161, Section 2.2]. That is, the intention is to pick a single exten-

sion and to reason within this extension until evidence forces one to switch

to another. This scenario differs from the skeptical vs. credulous notions of

reasoning we investigated in the previous section. It is clear that reasoning

within this single extension is monotonic and satisfies all the KLM postulates

but it is not clear as to how to choose such an extension (i.e., it appears to

be a user-specified decision with no clear guidelines as how to choose it).

Chapter 6

Evaluating the Performance of

Defeasible Reasoning

An important question that we ask of our defeasible reasoning algorithms,

from a practical perspective, is: how much does one pay for the additional

expressivity of defeasible subsumption in terms of practical reasoning per-

formance. We have shown that the worst case computational complexity of

Rational Closure is not higher than reasoning with the underlying classical

formalism that we extend (see Section 4.3). This is good news, but does not

guarantee good performance in practice.

On the other hand, we have also shown that Lexicographic Closure and

its equivalent construction Lexicographically Relevant Closure are in the 2-

exptime complexity class. The same result holds for the Basic and Minimal

Relevant Closures. In these cases, it would be interesting to observe whether

this high complexity translates into exceptionally slow inferences in practice.

In this chapter we present experiments which attempt to answer these

questions. The idea behind these experiments is to give a preliminary under-

standing of the practical performance one can expect from defeasible reason-

ing algorithms, when employed on “real world” ontologies. Also, as stated

earlier, we wish to get a sense of how much more expensive (computationally

speaking) defeasible reasoning is than classical reasoning for DLs.

257

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 258

As mentioned in Chapter 1, we have a significant problem when evalu-

ating the performance of defeasible reasoning because there are no naturally

occurring ontologies with defeasible features. That is, because the represen-

tation of defeasible knowledge is not yet natively supported by standard-

ised ontology languages such as OWL, the accompanying tools for editing

and maintaining ontologies also do not facilitate the representation of such

knowledge.

We have thus chosen two approaches to generate ontologies with defeasible

features for our evaluation. The first is a fully automated method to con-

struct TBoxes (and DTBoxes) containing exceptions using random sampling

techniques to construct subsumption statements from generated concept and

role names. The second approach considers a principled manner in which to

modify existing real world ontologies without defeasible features, to include

such features. We report separately on the results for each of these datasets.

The algorithms that we evaluate are the ones presented in Chapter 4

namely Rational Closure, Lexicographic Closure, Basic Relevant Closure,

Minimal Relevant Closure and Lexicographically Relevant Closure.

6.1 Artificial Data

We start off by reporting on the results conducted on artificially synthesised

ontologies. While this approach is susceptible to biases in the generation

strategy, it has been agreed upon to be a sensible preliminary methodology

to obtain data for evaluation [30, p756-757], since there are no naturally

occurring ontologies with explicitly modelled defeasible features.

6.1.1 Data Generation Model

Before we detail the actual method we use to generate our artificial ontologies

and suitable entailment queries, we need to discuss some requirements that

we have of the resulting data. In developing our methodology for generating

synthetic ontologies we focus on two broad categories of parametrisation for

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 259

influencing the generation of an ontology: global and local parameters.

Global parameters are those that pertain to the overall metrics of the ontol-

ogy such as the number of axioms, classes, roles etc., while local parameters

consider the structure of individual axioms (and class expressions) in the

ontology. The latter parameters include factors such as nesting depth of

expressions and the length of conjunctions and disjunctions.

We first discuss the global and local parameters chosen for generating

ontologies and thereafter we consider the generation of axioms to be used

as entailment queries in our evaluation. In the following subsection, we

begin with the global parameters for ontologies and then move to the local

parameters, concluding with a basic flow chart and overview of the ontology

generation process.

Global Parameters

Firstly, one of the main goals of our evaluation is to obtain a preliminary

indication of how “hard” defeasible reasoning would be in real world ontology

development settings.

Therein lies a significant problem because we are not really in a position

to accurately predict what these ontologies would look like when defeasible

technologies become more widely adopted. One of the fundamental consider-

ations, which we do not know a priori, is what percentage of the subsumptions

in a real world ontology would users make defeasible?

Anecdotal evidence and our rudimentary lexical analysis of real world on-

tologies (see Chapter 3) suggests that the proportion of defeasible vs. strict

information in real world ontologies would likely be lower than 25%. However

there are various factors which could render this figure unreliable. For ex-

ample, ontology engineers may have learned over time to avoid representing

defeasible information in the meta-data of their ontologies because standard-

ised ontology languages such as OWL and accompanying editing tools do

not support the expression of defeasibility. In fact, the Marine Top Level

Ontology [194] is an example of an application ontology that abides by the

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 260

monotonicity property as a matter of design practice [24, Page 9].

A positive aspect of generating our data is that we do not have to select

a single value for the proportion of defeasible statements. We can actually

consider a range of possible values. Therefore, our first decision for the ar-

tificial data is that we consider ontologies with varying ratios of defeasible

to strict axioms and bin these ontologies into categories. We consider 10

categories for our evaluation. Each category represents a different percentage

defeasibility (ratio of the number of defeasible vs. number of strict subsump-

tion statements in the ontology) in increments of 10 from 10 to 100. We

point out that the zero percent case of defeasibility means that defeasible

reasoning is no longer applicable and therefore the case is omitted from our

evaluation. For simplicity we only generate subsumption statements (either

defeasible or strict) in our ontologies. That is, we do not generate syntactic

sugar statements such as equivalence and disjointness statements. There is

evidence to confirm that the number of subsumption statements far outweigh

other forms of axioms in real world ontologies [97]. In any case, all of these

latter axioms can be rewritten as subsumption statements.

Apart from the proportion of defeasible statements, we conjecture that

it seems reasonable to assume that the remaining structure of real world de-

feasible ontologies might be very similar to that of existing non-defeasible

real world ontologies. Therefore, in order to inform the parameterisation

of our ontology generation method, it seems prudent to analyse some non-

defeasible real world data to gather some metrics to use in our strategy. We

use data from the recently established Manchester OWL Repository (MOWL-

Rep) [135] for this purpose. The main motivation behind the establishment

of the repository was to address biases in OWL empirical research where

experiments are performed on cherry picked data or data lacking sufficient

variety. The goal is to provide a platform for sharing high quality data with

emphasis on variety for OWL empirical evaluations. We further motivate the

use of MOWLRep for our investigations in Section 6.2.

Returning to our current concerns with generating artificial ontologies,

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 261

another factor to decide is the size of the ontologies to generate. Again, we

can consider a range here. However, the emphasis with this first investigation

is to give a very general sense of how defeasible reasoning would perform with

ontologies of “reasonable” size. I.e., with “non-toy” examples. Research in

classical DL reasoning optimisation is still grappling with the problem of

reasoning with large-scale ontologies [89, 134], what then to speak of our

defeasible reasoning algorithms which have to perform more work over the

underlying classical reasoning steps? Therefore, for our purposes of gaining

a preliminary insight into the performance of defeasible reasoning, we argue

that it is not yet necessary to tackle large-scale ontologies in depth1.

Although we do not generate large-scale ontologies we would still like

to be somewhat representative of real world, non-defeasible ontologies in

terms of the ontology sizes that we consider. Performing an analysis of

the ontologies in MOWLRep, we found that the median ontology sizes in

this dataset were around 3, 800 axioms (including non-TBox axioms). When

restricting attention to TBox axioms the median ontology size obtained was

2, 200 axioms. Therefore, we choose to generate ontologies whose maximum

sizes are capped at a figure within this range. In our resulting data the

maximum ontology sizes we generated were approximately 3, 500 axioms.

Such sizes are representative of numerous real world application ontologies

in corpora outside MOWLRep as well (such as the SWEET corpus [157]).

In each percentage defeasibility category we would also like to have a

minimum size for the generated ontologies. From our practical experience

working with application OWL ontologies (i.e., those not built purely for

demonstrational or educational purposes), the minimum sizes we have en-

1It is notable that the size of the ontologies in our dataset cannot be considered large-

scale in comparison with some bio-medical ontologies such as those stored in the NCBO

BioPortal corpus [196]. For example, the National Cancer Institute (NCI) thesaurus [181]

appears in this corpus and has versions which contain more than 110, 000 axioms. At the

same time, the concept hierarchies of most of these large bio-medical ontologies are rather

shallow, making them less interesting from the standpoint of reasoning complexity. These

ontologies also generally do not make use of all the expressive features available in ALC.

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 262

countered of such ontologies have ranged between 150− 250 axioms. A good

example of a small ontology (roughly 150 axioms) that is used for semantic

web applications is the Friend of a Friend (FOAF) vocabulary2. We therefore

choose 150 axioms as our lower bound for ontology size in each percentage

defeasibility category. Recall that, even though we do not generate ontologies

of large-scale size, one of our goals is still to present harder (yet not patho-

logical) cases for our reasoner. In terms of isolating what makes reasoning

hard for contemporary DL (and OWL) reasoners, there has been work done

in prediction of classical OWL reasoner performance which suggests that

the overwhelmingly dominant indicator of reasoning performance is ontol-

ogy size [171]. Since our defeasible reasoner is built upon classical reasoning

steps, it stands to reason that ontology size would be the primary indicator of

performance in our context as well. Therefore, there is no reason to generate

ontologies of smaller size than 150 axioms because there is no evidence to

suggest that these cases would be harder for our algorithms.

In summary we generated 35 ontologies in each percentage defeasibility

category, varying uniformly in size between roughly 150 and 3, 500 axioms.

We argue that the number 35 is appropriate to give us a good spread of

ontology sizes between 150 and 3, 500. The DL ALC is used to generate

each ontology because the theoretical foundation of our algorithms has been

explicitly investigated in the context of ALC (although, in principle, the re-

sults are applicable to a wide class of DLs up to the expressivity of SHIQ).

In terms of concrete syntax and format we express the generated ontologies

using OWL with OWL/XML syntax. Since DLs are the logical underpin-

ning of OWL, using data in the OWL format preserves the relevance of this

evaluation. The main reason for using the OWL format, as opposed to a DL

format, is the far superior availability of ontology data and tool support.

Our dataset thus consists of a total of 350 ALC ontologies with no ABoxes

(our algorithms are specialised for TBoxes only at this stage). In order to

represent defeasible subsumption in OWL ontologies (it is not included in the

2foaf-project.org

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 263

OWL specification) we “mark” relevant classical subsumption statements in

the ontology as defeasible using meta-data constructs in OWL called OWL

annotations3. Such constructs can be associated with specified OWL axioms

and, using OWL processing tools such as the Java-based OWL API [95], one

can programmatically identify the defeasible axioms in an OWL ontology.

Another global parameter which we consider for ontology generation is

called ontology signature size. An ontology signature is the set of concept

and role names mentioned explicitly in the ontology. We therefore have to

consider the number of class names and role names to generate per ontology

(relative to the number of axioms we wish to generate per ontology). Again

consulting our analysis of MOWLRep we found that the number of concept

names (respectively role names) per ontology were roughly 40% (respectively

1.5%) of the number of axioms in the ontology. Therefore these values are

used in our ontology generation procedure.

The last global parameter that we consider for ontology generation is

what we call DL constructor distribution. This is basically the proportion of

axioms in the ontology which contain a particular DL construct (ALC con-

struct in our case). That is, for each of the main ALC concept constructors:

negation, disjunction, conjunction, existential and universal role restrictions,

we are interested in the percentage of axioms in an ontology that contain each

construct (whenever the ontology actually does contain the construct). This

is the core variable or local parameter for our ontology generation method-

ology and, when examining the metrics of MOWLRep ontologies, we found

the average values 6.2%, 26.6%, 21.1%, 4.3%, 14% and median values 1.5%,

17.8%, 11.1%, 2.2%, 4.3%, for negation, existential role restrictions, conjunc-

tion, disjunction and universal role restrictions, respectively.

Local Parameters

The structure of individual axioms in our generated ontologies can be in-

fluenced by many parameters. We reiterate that we simplify our task by

3w3.org/TR/owl2-syntax, Section 10.2

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 264

only generating subsumption statements in our ontologies. A subsumption

statement has a left hand side (LHS) class expression and a right hand side

(RHS) class expression. The structure, then, of a subsumption statement is

defined by the structure of its LHS and RHS class expressions. We focus

on two main parameters influencing the construction of a class expression:

nesting depth and conjunction or disjunction length.

Nesting depth refers to the number of sub-class expressions in a given

class expression. For example, the class name A has a nesting depth of 1, the

expression ∃R.A has a nesting depth of 2 (consisting of A and ∃R.A) and the

expression ∃R.(A u B) has a nesting depth of 4 (consisting of A, B, (A u B)

and ∃R.(A u B)). Syntactic analysis of ontologies in MOWLRep reveals that,

on average, the nesting depth of class expressions in real world ontologies is

just 1. That is, the majority of classes in real world ontologies are names.

However, even though the average nesting depth is just 1, we have en-

countered isolated cases in MOWLRep where this number reaches 188 (and

even one ontology where it reaches 1, 707). However, the majority of these

larger nesting depths occur in the larger ontologies in MOWLRep (which are

much larger than the ontologies in our synthetic dataset), so we opt for a

lower maximum nesting depth for our synthetic data. We omit the strange

case of 1, 707 from consideration because it is a single occurrence in the

22, 000 ontologies of MOWLRep. The next highest nesting depth is 188 and

the accompanying ontology sizes for such occurrences is in the order of tens

of thousands of axioms, whereas we have decided that the ontologies of our

dataset should have a maximum of 3, 500 axioms. Therefore, we choose to

cap the maximum nesting depth at 19 (one tenth of 188) for our ontologies.

Conjunction and disjunction length refers to the number of conjunct

classes or disjunct classes in a particular level of nesting for a given class

expression. For example, the top level disjunction length of the class expres-

sion At (∃R.BtD)tC is 3 even though the sub-expression (∃R.BtD) has a

further 2 disjuncts. When examining class expressions (that actually contain

conjunction and disjunction) in the ontologies of MOWLRep, we find that

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 265

the average conjunction length is around 2 and the average disjunction length

is around 2.5. Just like in the case of nesting depth, the maximum values en-

countered are much larger. We encountered a maximum conjunction length

of 85 in MOWLRep and we therefore choose a maximum conjunction length

of 9 for our data. The maximum disjunction length is 194 and the next

highest is 143 but these two cases are the odd ones out in the data (an order

of magnitude larger than the remainder of maximum values in MOWLRep).

Therefore, we choose the next highest value of 63 (a maximum disjunction

length of 6) for our synthetic data.

Ontology Generation

We feed our selected global and local parameter values into a basic ontology

construction procedure. The procedure consists of four main phases (a flow

chart of this process is depicted in Figure 6.1). We give a brief description

of each phase here.

Input global and local parameter values

Generate ontology seed signature

Generate complex concepts

Construct subsumptions

Introduce exception cluster

Ontology

consistent?

Stop

yes

no

1

2

3

4a

4b

Figure 6.1: Basic flowchart of artificial ontology generation.

1. Input global and local parameter values: We first provide the input pa-

rameter values for the procedure. The main global parameters consist of the

number of axioms to generate for the current ontology, the number of concept

and role names to use in the construction of these axioms, the percentage of

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 266

the axioms to make defeasible, and the distribution of DL constructors across

the axioms of the ontology. The local parameters are also given, namely, the

maximum nesting depth and maximum conjunction or disjunction length of

a class expression.

2. Generate ontology seed signature: The first main step of the procedure is to

generate a set of concept and role names which would be the building blocks

for constructing complex concepts and eventually subsumption statements

in later steps of the process. If n (respectively m) is the number of concept

names (respectively role names) to generate, then we generate concept names

A1, . . . ,An and role names R1, . . . ,Rm. We divide the concept names into two

equally-sized disjoint sets representing LHS concept names and RHS concept

names. The intention with this is that the concept names in each respective

set are predominantly used as either LHS concepts or RHS concepts (and not

both). We introduce a 98% chance that we do not use a concept name in the

LHS set as a RHS concept name (and vice versa) in atomic subsumptions.

As we shall see in later phases, this is necessary to ensure that we minimise

the syntactic equivalences between concept names in our generated ontology.

3. Generate complex concepts: For each concept name in the LHS and RHS

sets of Phase 2, we generate three complex concepts containing this concept

name. The generated expressions are not divided into LHS and RHS ex-

pressions. This results in a total number of concepts that are sufficient to

construct all the axioms in the ontology (recall that we are required to gen-

erate 2.5 times more axioms than concept names for the ontology). We use

our provided maximum nesting depth and maximum conjunction and dis-

junction lengths to construct the complex concepts. Since the occurrence of

the maximum values are very isolated in real world data, we also introduce a

very small chance (around 0.01%) to generate expressions having values close

to the provided maximums. We use the values obtained for DL constructor

distribution to determine the chance of generating a class expression of a

particular type. For example, the chance to generate a concept containing

a universal restriction on a role would be around 4%. If we have to gener-

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 267

ate an existential or universal role restriction then we randomly select from

the given set of role names in Phase 2. When we have to generate conjunc-

tions or disjunctions, the conjuncts and disjuncts are randomly selected from

the union of the LHS and RHS class name sets as well as newly introduced

complex expressions.

4a. Construct Subsumptions: Analysis of real world ontologies such as those

found in MOWLRep reveals that the majority of axioms describe relation-

ships between names (class names). Therefore, we introduce a large chance

(60%) to generate such axioms (a name is randomly selected from the LHS

and RHS concept name sets from Phase 2, to define each axiom). In modern

ontology editing systems, the perspective of ontologies is largely concept-

centric (rather than axiom-centric). That is, editing is centred around spec-

ifying the subsumption relationship between concept names and concept ex-

pressions in the ontology (the subsumption relationship between a partic-

ular class name and other names or expressions is called its “definition”).

More specifically, the definition of a concept name in editing tools is basi-

cally the enumeration of the set of concepts that are either a sub-concept of,

super-concept of, equivalent with or disjoint with the given concept name.

Therefore, in these tools the axioms that are defined using such interfaces

are mostly of the form A v B or A v C (where A and B are concept names

and C is a complex concept). As mentioned earlier we impose a 60% chance

of generated axioms of the form A v B. A 35% chance is assigned to gener-

ate axioms of the form A v C. For the remaining 5% of cases we allow the

generation of axioms of the form C v D (where both C and D are complex

expressions). These latter types of axiom (also called general class axioms)

are by far in the minority in real world ontologies. Constructed axioms are

added three at a time to the ontology. The reason for this becomes clear in

the optional Phase 4b which functions in tandem with Phase 4a.

4b. Introduce Exception Cluster: In order to present challenging reasoning

cases to our defeasible reasoner, we have to ensure that there are excep-

tions in our generated ontologies. Our methodology thus far may or may

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 268

not “organically” introduce exceptions in the ontology, but, to make sure

that there are exceptions we assign a small chance to introduce an excep-

tion cluster into the ontology. An exception cluster is a set of 3 axioms

that represent classic defeasible inheritance example patterns. Take the

running student example in this thesis: students generally don’t pay taxes

(Student @∼ ¬(∃receives.TaxInvoice)), but there are specific types of students

that do generally pay taxes, i.e., employed students (EmployedStudent v
Student, EmployedStudent @∼ ∃receives.TaxInvoice). The general pattern is C @∼D,

E v C and E @∼ ¬D. A variant of this pattern is C @∼D, CuE @∼ ¬D. We can

also have exceptions-to-exceptions so we can extend both patterns to C @∼D,

E v C, E @∼ ¬D, F v E, F @∼D and C @∼D, C u E @∼ ¬D, C u E u F @∼D

respectively. The concepts C, D, E and F are randomly selected from the

generated signature and complex expressions. We impose a 20% chance to

introduce an exception cluster each time 3 axioms have been added to the

ontology in Phase 4a.

Whenever we generate three axioms (that do not represent an exception

cluster) in Phase 4a, we only add them as strict axioms to the ontology.

Defeasible axioms are mainly introduced when we add exception clusters.

Once we reach the target percentage defeasibility of the ontology we stop

introducing exception clusters. If after generating the ontology the desired

percentage defeasibility is still not met, we randomly select the remaining

required number of axioms to be defeasible and “toggle” them to be such.

To summarise the data generated using the above methodology, we give some

relevant metrics of the ontologies in Figures 6.2a and 6.2b.

Entailment Query Generation

In addition to the ontologies we also randomly generated a set of defeasible

subsumption statements (entailment queries) for each ontology using terms

in their signatures (concept and role names in the ontology). The number of

queries we generated per ontology was 1 percent of the ontology size. In other

words, we chose to vary the number of generated queries proportionately

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 269

(a) Global and local metrics of generated ontologies.

(b) Average ALC constructor distribution per generated ontology.

Figure 6.2: Relevant metrics and characteristics of the artificial ontologies.

according to the size of the ontology. This was to increase the chances of

a generated query set being more “representative of”, or “relevant to”, the

corresponding ontology as a whole (in terms of signature). All generated

queries were stored to file together with their corresponding ontologies.

We claim that the value of 1 percent of ontology size (for the number of

queries) is appropriate to give fairly representative average query times, while

still guaranteeing termination of our experiments in reasonable time. For the

LHS class expressions of the entailment queries we randomly selected from

the exceptional LHS classes of defeasible subsumptions in the ontologies. This

is to provide interesting and meaningful queries to our reasoner. If we ask

queries with non-exceptional LHSs then defeasible reasoning reduces exactly

to classical reasoning (only one classical entailment check is required) and

the results would be less interesting for our purposes.

For the RHSs we would like to select expressions that are at least “rel-

evant” to the LHS expression so that it makes sense to actually pose the

queries to our reasoner. If the terms in the RHS expression are completely

unrelated to the terms in the LHS expression then it is not meaningful to pose

such queries to the defeasible reasoner. Therefore, we use the notion of mod-

ularisation (see Section 4.6) to achieve this. We extract a module (subset)

of the ontology that is relevant to the terms in the LHS expression and then

collect the terms in this module. The RHS expressions are then randomly

generated from these terms. The generated subsumptions are all defeasible

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 270

because we are purely interested in the performance of “core” defeasible rea-

soning. Of course our algorithms themselves do support strict entailment

queries but these queries follow from the ontology if and only if they follow

via classical entailment from the strict axioms in the ontology. Therefore the

performance of such reasoning tasks are irrelevant for our evaluation.

There are, obviously, a variety of ways to generate defeasible entailment

queries. For example we could have used a strategy to generate the LHS

expressions as well. We could have also randomly selected class expressions

from the relevant module to stand as RHS expressions for our queries. How-

ever, we conjecture that our strategy represents a sensible first method for

an investigation such as ours. Our test data (both ontologies and entailment

queries) are available as a public download4.

6.1.2 Experiment Setup

In this section, we give a description of our experimental conditions, the tasks

that we execute, the important results we wish to report, and our hypotheses

about how the algorithms would perform on the data.

Test Setup and Hardware

The first task was to generate the ranking for each of the ontologies in the

dataset. We recorded the average time it took to generate a ranking (accord-

ing to Procedure ComputeRankingB in Section 4.2) for the ontologies of each

percentage defeasibility set. The rankings were all stored to file so that they

would not have to be recomputed at a later stage.

The second set of tasks were to execute the generated set of entailment

queries, using the Rational, Lexicographic, Basic, Minimal and Lexicographi-

cally Relevant Closures. We group our results for Rational and Lexicographic

Closure together because they have a clear skeptical vs. credulous inference

relationship. We group the results for Basic, Minimal and Lexicographically

4krr.meraka.org.za/~kmoodley/ontologies/Synthetic.zip

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 271

Relevant Closures together because these mechanisms all employ the use of

justifications. We recorded the average time to compute an entailment using

each of these procedures over the dataset.

In terms of optimisations, we use two main techniques described in Sec-

tion 4.6 for ranking compilation and entailment checking. For ranking com-

pilation the core optimisation is represented by Lemma 20 on Page 222. That

is, if a LHS expression is not unsatisfiable (w.r.t. the classical counterpart of

the ontology) it can never be exceptional (w.r.t. its defeasible form). There-

fore, we only need to test exceptionality of class expressions that are unsatis-

fiable. For entailment checking, we can prune away axioms from the ranking

that are irrelevant to the terms in the query being asked. Modularisation, as

described in Section 4.6, is used for this purpose.

All experiments were executed on an Intel i7 Quad Core machine run-

ning Windows 10, with 8GB of memory allocated to the JVM (Java Virtual

Machine). Java 1.7 is used with 3GB of memory allocated to the stack for

running threads. For loading and analysing the ontologies of our dataset, we

use version 3.5.4 of the popular and well-supported Java OWL API [95].

As we have shown in Chapter 4, our defeasible reasoning algorithms are

built upon classical entailment checks. Thus, we would need to select an

existing DL reasoning implementation to perform these classical entailment

checks from within our defeasible reasoner. While running our evaluation

with multiple implementations would have been interesting for comparison,

such an investigation is not necessary to ascertain the price we pay for rea-

soning with defeasible (in addition to classical) subsumption. We therefore

chose to utilise a single DL reasoner for our evaluation. In particular, we

would ideally like to use the fastest and most robust implementation.

Consulting the latest results of the OWL Reasoner Evaluation Workshop5,

we identified the top three OWL 2 DL (expressive DL) reasoners for the stan-

dard reasoning tasks of: classification, consistency checking and satisfiability

testing (in terms of performance and robustness). Robustness was measured

5dl.kr.org/ore2014/results.html

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 272

as the number of ontologies that were successfully processed in the allotted

time. The top reasoners were Konclude6 [185], HermiT7 [79], MORe8 [167],

Chainsaw9 [193], FaCT++10 [192] and TrOWL11 [190].

Modern DL reasoners are optimised for classification whereas various

other reasoning tasks such as identifying unsatisfiable class names (inco-

herence) are usually performed by first classifying the ontology, and then

“reading” the relevant information from the results.

Thus, we chose to focus on the reasoners which performed best in OWL

2 DL classification. These were respectively, Konclude, HermiT and MORe.

Konclude, unfortunately, does not yet have a direct interface to the OWL

API. Therefore, our choice was to select the next best reasoner - HermiT.

Hypotheses

The main insight we wish to gain from our evaluation is a general sense

of the performance of defeasible reasoning (ranking compilation time and

entailment query time) as well as clues as to where the major bottlenecks lie

in this kind of reasoning. Our hypotheses are thus centered around these two

insights. The first obvious hypothesis is that ranking compilation would be

a much slower affair than entailment checking because there would be many

more exceptionality checks in the former process.

The major bottleneck for ranking compilation should lie with the filtering

out of hidden strict inclusions, and the main factor influencing the perfor-

mance of this subprocess would be the number of iterations of the repeat

loop (recursions) of Procedure ComputeRankingB. Note here that the major

factor is not necessarily the number of hidden strict inclusions, but rather in

the number of times hidden strict inclusions need to be transferred to the

6derivo.de/produkte/konclude.html
7hermit-reasoner.com
8cs.ox.ac.uk/isg/tools/MORe
9chainsaw.sourceforge.net

10owl.man.ac.uk/factplusplus
11trowl.org

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 273

TBox. Another factor that should influence perfomance is the length of the

exception-to-exception chain for a particular ontology (the number of ranks

in the ranking).

For Rational Closure we expect the main bottleneck to lie in computing

the rank of C for a query C @∼D. The higher the rank of C the more excep-

tionality checks are required to find C-compatibility. We also expect Rational

Closure to be the best performing of the five entailment regimes because its

worst case computational complexity is lower than the other regimes. The

major bottleneck for Lexicographic Closure should be the identification of

the LAC and the major factor influencing the performance of this subpro-

cess is the size of the problematic rank. Recall that, in the worst case, the

LAC has an exponential number of disjuncts (in the size of the problematic

rank). Therefore, we expect the performance of Lexicographic Closure to

drastically degrade when or if the problematic rank size increases drastically

in the data.

For the Basic, Minimal and Lexicographically Relevant Closures we ex-

pect the majority of computation time to be taken by computation of justi-

fications. The bottlenecks for these algorithms would then inherit the bot-

tleneck of justification computation which is the construction of the hitting

set tree (the major performance factors are the number of nodes in the tree

and the number of justifications per entailment). We expect all the Relevant

Closures to be slower than Rational Closure because they are in the double

exponential time complexity class (worse than Rational Closure).

Because Lexicographically Relevant Closure combines mechanisms from

Lexicographic Closure and Minimal Relevant Closure, it would inherit the

bottlenecks from both. I.e., computation of justifications as well as comput-

ing the LAC. We have promoted the potential of Lexicographically Relevant

Closure as a possible optimisation for Lexicographic Closure because of its

potential to decrease the problematic rank size (by removing C-basis axioms

from it). However, its success as an optimisation will then depend on justifi-

cations being much quicker to compute (than the LAC) and the C-basis size

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 274

being large relative to the problematic rank size (large portions of the prob-

lematic rank will then be pruned away making the LAC easier to compute).

Finally, since Lexicographic Closure and the Basic, Minimal and Lexico-

graphically Relevant Closures have the same worst case complexity we ex-

pect their performances to be more comparable with each other than with

Rational Closure. We also expect Lexicographic Closure to be worst per-

forming over the data (which means we anticipate many occurrences of large

problematic rank sizes in the data). Basic and Minimal Relevant Closures

would likely perform very similarly given their almost identical procedures.

Although, we do anticipate that these procedures would perform significantly

better than Lexicographic Closure over the data. Essentially we are antic-

ipating that justification computation would be easier to perform than the

computation of LACs in our data.

6.1.3 Ranking Compilation Results

It is important to note that we view the compilation of the ranking as an

“offline” process prior to performing defeasible inference. That is, the ranking

can, and should, be precompiled and stored to file whenever there is a stable

version of the ontology. When reasoning needs to be conducted then the

ranking is loaded and entailment queries can be posed with this ranking (the

ranking should not be computed as part of every entailment query).

That being said, the ranking times we obtained for our data seem very

reasonable considering that we have implemented only one optimisation for

Procedure ComputeRankingB. As a point of reference, the average ranking

times we observed in our data are comparable to the average times to compute

all justifications for an entailment in the BioPortal corpus of ontologies [94,

Figure 6.1, Page 99]. The percentile plot in Figure 6.3 gives a summary of

the ranking times.

Percentile plots are chosen to represent the data because they give a good

general picture of the performance for the majority of the data, and it also

helps to reveal the outlier cases more clearly. For example, if we obtain

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 275

Figure 6.3: Average time to compute the ranking for the artificial ontologies.

a value of 5 seconds for the 90th percentile (P90) then it means that 90%

of ontologies in the dataset could be ranked in 5 seconds or less. By this

definition we note that the 50th percentile is actually the median value for a

given dataset and P100 is the maximum value obtained.

Looking at the percentile plot of the ranking times in Figure 6.3, it seems

that ranking compilation gets harder exponentially as the percentage defea-

sibility increases (the ontology sizes, including strict axioms, are roughly the

same across the percentage defeasibility categories). This behaviour is to be

expected since as percentage defeasibility increases, the proportion of defea-

sible axioms increases, and with this, the number of LHS class expressions

(of defeasible subsumptions) that could potentially be unsatisfiable. Recall

that for the ranking procedure, we have to perform an exceptionality check

w.r.t. the ontology for each of these class expressions.

In addition, as we anticipated, the general trend is that ranking times

increase with the number of ranks (also called the ranking size or the length

of the exception-to-exception chain). Figure 6.4 illustrates this trend.

We observe that there is a dip in the curve between the ranking sizes of

5 and 10 and also between 15 and 16. The reason for these breaks in the

trend is that these portions of the data coincide with brief declines in the

percentage defeasibility of ontologies (percentage defeasibility is the other

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 276

(a) Average ranking time versus the num-

ber of ranks in the ranking.

(b) Ranking sizes encountered together

with their frequencies.

Figure 6.4: Influence of the ranking size on the ranking compilation performance. The

Y-axis in Figure 6.4b denotes the number of ontologies in our data that have the indicated

ranking size.

major factor influencing ranking compilation time). The other important

factor is the number of times we have to recurse on the ranking procedure

to filter out the hidden strict subsumptions. It is sensible to anticipate that

when this recursion factor increases, our ranking times will also increase.

This is confirmed in Figure 6.5.

(a) Ranking time vs recursion count. (b) Recursion count frequencies.

Figure 6.5: Influence of the recursion counts on the ranking compilation performance. The

Y-axis in Figure 6.5b denotes the number of ontologies in our data that have the indicated

recursion count.

We have two dips in the curve of Figure 6.5a. One between recursion counts

4 and 5 and another between 6 and 7. The dips coincide with declines in

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 277

percentage defeasibility (from 72% to 64% and 83% to 67% respectively).

It must also be mentioned that the reliability of the curve shape in Fig-

ure 6.5a is greater between recursion counts 0 and 5. These are the most

frequent counts found in the data (see Figure 6.5b) and thus the correspond-

ing average values for the ranking time are more reliable in this range. The

same can be said of the ranking size range between 3 and 5 for Figures 6.4a

and 6.4b. We conclude this section with a summary of average metrics per-

taining to the ranking compilation over the entire dataset (see Figure 6.6).

Figure 6.6: Average metrics pertaining to the ranking compilation per ontology. From left

to right: number of defeasible axioms, ranking size, number of hidden strict subsumptions,

size of the first rank (containing the non-exceptional defeasible axioms), number of axioms

in a general rank, number of exceptionality checks to compute a ranking, number of ex-

ceptional LHS concepts of defeasible subsumptions, number of unsatisfiable LHS concepts

of defeasible subsumptions and time to compute a ranking.

6.1.4 Entailment Checking Results

For entailment checking, we report first on the results for Rational and Lex-

icographic Closures. Recall that the main goal is to get a general idea of the

practical performance of these algorithms as well as insights into where the

main bottlenecks lie for these inference mechanisms.

Rational and Lexicographic Closure

The performance results for both reasoning algorithms are encouraging. For

Rational Closure the picture is especially bright even though the performance

degrades by roughly one order of magnitude as the percentage defeasibility of

the ontologies increase. For Lexicographic Closure the performance degrades

more considerably (roughly 3 − 4 orders of magnitude) as the percentage

defeasibility increases. Nevertheless, for Lexicographic Closure, the median

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 278

values up to the 50% defeasibility case stay below the 1 second mark which

is very reasonable performance for a largely unoptimised procedure. The

overall results for the two algorithms are depicted in Figure 6.7.

(a) Average entailment checking times for Rational Closure.

(b) Average entailment checking times for Lexicographic Closure.

Figure 6.7: The average performance of Rational and Lexicographic Closure across our

artificial dataset.

It is noteworthy that the average defeasible inference times using Rational

Closure range between just 11ms and 43ms across the dataset (the maximum

average time taken to compute an inference for any individual query in the

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 279

dataset, using Rational Closure, was 313ms). For Lexicographic Closure the

performance is much slower, ranging between 25ms and 65s on average.

Although, looking at the median values for the latter, we find that the

inference times drop considerably to between 13ms and 17s. This shows that

there is wider variance in the inference times for Lexicographic Closure. That

is, there are very hard cases and very easy cases also in the data. We will

try to isolate where the hardness for these cases lie (for both Rational and

Lexicographic Closure) later in this section.

For now we are in a position to give an answer to one of our questions

at the start of this chapter (i.e., how much more intensive, on average, is

defeasible reasoning than classical reasoning?). We plot the average number

of classical entailment checks we use per defeasible entailment check for both

Rational Closure and Lexicographic Closure. The results are illustrated by

the graph in Figure 6.8.

Figure 6.8: Average and maximum number of classical entailment checks per defeasible

entailment check using the Rational and Lexicographic Closures. RC stands for Rational

Closure and LC stands for Lexicographic Closure.

As we can see the graph depicts how many classical entailment checks it takes

(on average) to compute a single defeasible entailment check. It is interesting

that this value stays fairly consistent around the 3.5 mark for Rational Clo-

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 280

sure across the different percentage defeasibilities. Since classical entailment

checks are the most computationally intensive components of our procedures

for Rational Closure, we can make the generalisation that Rational Closure

would likely take roughly 3.5 times as long as classical inference for ALC (for

real world ontologies having sizes represented in our dataset).

Looking at the number of entailment checks for Lexicographic Closure we

can see that they are not drastically more than Rational Closure. In fact,

it takes roughly only one more entailment check to compute Lexicographic

Closure (its average number of entailment checks stays consistently around

4.5). However, the very similar numbers of classical entailment checks belie

the large discrepancy in performance between Rational and Lexicographic

Closure. Therefore we have our first clear indication that the main perfor-

mance factor Lexicographic Closure is not the number of classical entailment

checks. Hence, we cannot make the generalisation that Lexicographic Closure

takes roughly 4.5 times as long as classical entailment for ALC.
Returning to Rational Closure, our hypothesis was that its major bottle-

neck would lie with the computation of the rank of the antecedent concept

of the query being posed. Examining the graph depicted in Figure 6.9a, we

find little evidence to support this hypothesis.

(a) Query time vs. the rank of the an-

tecedent for RC.

(b) Query time vs. number of axioms in

the C-compatible subset for RC.

Figure 6.9: Potential and actual main performance factors for Rational Closure.

Judging from the data points in the graph there seems to be no consistent

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 281

increase in query times as the average rank of the antecedent increases. What

we can observe is that the average rank of query antecedents in our dataset

lies predominantly between 2 and 3. Nevertheless, there is considerable vari-

ance in query time for this range of average antecedent ranks, from roughly

2ms to 150ms (Figure 6.9a depicts a logarithmic scale). Therefore, our hy-

pothesis was false and there must be another variable which is contributing

more to Rational Closure query time.

As mentioned earlier, the most computationally intensive components of

the Rational Closure procedure are its classical entailment checks (each one

is an exptime-complete problem for ALC). Figure 6.8 has illustrated that

the number of classical entailment checks does not vary very much around

3.5 (not enough to warrant the large variance in query times between the

antecedent ranks of 2 and 3). Therefore, it stands to reason that it is likely

that the individual classical entailment checks themselves are taking longer

than usual to compute for the hard cases. In other words, our hypothesis

shifts to the suspicion that we are inheriting the main performance factor for

classical entailment checking - which is well known to be ontology size.

This suspicion is actually confirmed by the correlation shown in Fig-

ure 6.9b. I.e., in this graph we can see that as the number of axioms in

our C-compatible subset of the ranking increases, the query times also in-

crease. The increase is quite dramatic until the C-compatible subset size

is between 50 and 100 (the scale is logarithmic), thereafter the query times

actually start to taper but still increase (although the number of occurrences

of C-compatible subset sizes above this range also decreases dramatically).

It is worth mentioning, then, that ontology size (specifically the number of

defeasible axioms in the ontology) will always be a significant factor on per-

formance for all our defeasible reasoning algorithms.

For the Lexicographic Closure we recall that our expectation was that

the problematic rank size will be the major deciding factor for performance.

We also anticipated “high” problematic rank sizes occurring quite frequently

in our data. Figure 6.10 confirms the first expectation.

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 282

Figure 6.10: The main performance influencer for Lexicographic Closure in our dataset is

problematic rank size.

Figure 6.10 also helps us to define what constitutes a “high” problematic

rank size. The query times that fall below the 1, 000ms (1 second) mark

are very acceptable for this relatively unoptimised implementation of Lexico-

graphic Closure. We thus choose to assign the corresponding average prob-

lematic sizes for these cases as “low” problematic rank sizes. In our data this

translates to values between 1 and 25. For queries that take between 1 and

100 seconds to terminate, we term the corresponding problematic sizes as

“medium-sized” (the values range roughly between 25 and 125. Finally, for

any queries that take longer than 100 seconds to terminate we consider the

corresponding problematic rank sizes as “high”. For our dataset this value

is any number greater than roughly 125.

Therefore, it is sensible for those interested in keeping Lexicographic Clo-

sure performance very practical, to minimise the problematic rank size as

far as possible. Outside the scope of optimisation techniques, an obvious

design practice for defeasible ontologies to minimise problematic rank size is

to reduce the number (or ratio) of defeasible axioms in the ontology.

In summary, we can extrapolate that the time to compute Lexicographic

Closure (using our current algorithm) ranges between two times as long as

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 283

Rational Closure (in the 10% defeasibility case) to 3 orders of magnitude

higher than those for Rational Closure (in the 100% defeasibility case). We

can surmise, then, that Lexicographic Closure should range roughly between

7 and 3, 500 times as long as classical entailment for defeasible ontologies of

similar size to those in our dataset (recall that Rational Closure takes 3.5

times as long as classical entailment).

Basic, Minimal and Lexicographically Relevant Closure

For the Relevant Closures we notice, interestingly, that the performance for

all three algorithms are almost identical. The performance discrepancy be-

tween Basic and Minimal Relevant Closure is just 0.01% and this is consistent

with our hypothesis. Lexicographically Relevant Closure is around 0.18%

faster than both Basic and Minimal Relevant Closure. We encountered iso-

lated queries in the data that required inordinate reasoning times and thus,

for pragmatic reasons, we had to impose a timeout of 1, 000 seconds for each

query to be able to terminate our experiments in reasonable time. We plot

the general results for Basic Relevant Closure in Figure 6.11.

Figure 6.11: Overall performance of Basic Relevant Closure on the data. We omit the

graphs for Minimal and Lexicographically Relevant Closures because their performance is

almost identical with Basic Relevant Closure.

It is interesting to note that there is no marked increase in reasoning time

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 284

as the percentage defeasibility of ontologies increases. This is in contrast

to what we witnessed with Rational and Lexicographic Closure. Since the

computation of justifications is known to be an intensive procedure (relative

to classical entailment checking), it is not surprising that the justification

computation stage of the algorithms consumes over 99% of reasoning time.

Our results also indicate that the performance of computing justifications

is not majorly affected by percentage defeasibility in our dataset. This is in-

teresting and we conjecture that the reason for this is that the “relevant

modules” for each query remain fairly consistent in size across the different

ontology sizes. That is, justification computation makes use of modulari-

sation to prune away axioms from the ontology that are irrelevant to the

entailment. Therefore, it stands to reason that the size of these modules per

entailment query stays consistent even when the ontology sizes change.

Looking at the maximum reasoning times obtained as compared to the

90th-percentile we can see there is a significant difference between the two.

This means that there are a few isolated queries where the corresponding

justifications were very hard to compute. We conjecture that the very high

maximum reasoning times are responsible for elevating the mean times sig-

nificantly above the median times as well.

Given the predominance of justification computation in the algorithms,

the Relevant Closures should then, in principle, inherit the main performance

factor for justification computation - the size of the hitting set tree (HST)

generated. That is, the number of nodes in the HST tree. Horridge [94,

Section 3.3.4] has explained that justification overlap (the degree to which

justifications share common axioms) is a major factor in the practical perfor-

mance of justification computation. That is, the more justifications actually

share common axioms, the smaller the hitting set tree becomes and the faster

it is to actually complete the tree construction - yielding all justifications.

Conversely, the less overlap there is between justifications, the more

branches (or “repair paths”) need to be generated from the combinations

of unique axioms in the justifications, for the hitting set tree. In the worst

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 285

case, when there is no justification overlap whatsoever, the number of nodes

in the hitting set tree grows to 2(n+1) − 1 where n is the number of justifica-

tions for the given entailment.

The hypothesis, then, that HST size will have a considerable effect on

reasoning performance for the Relevant Closures holds true for our data.

Figure 6.12 depicts a constant and linear increase in reasoning time as the

HST size increase (both axes are represented using a logarithmic scale).

Figure 6.12: Influence of HST size on Relevant Closure performance.

As one can imagine, the justifications for the entailments in an ontology are

very much determined by the modelling factors during ontology construction.

The sheer variety in these modelling decisions causes variation in the makeup

of justifications for entailments in the ontology. In fact, there is an entire sub-

area of ontology research which deals with the justificatory structure [22, 23]

of ontologies. This area is concerned with the analytical study of various

aspects of justifications in ontologies from the theoretical side, from the per-

spective of practical computation, as well as from a user comprehension (or

cognitive) perspective. Therefore, in pursuit of considerable optimisations

for the Relevant Closure algorithms, it is likely that one would have to gain

decent insight into the justificatory structure of real world ontologies.

It must also be mentioned that we did not perform such a study in order to

inform our parametrisation for our generated ontologies in this dataset. In

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 286

other words, it is not known how the justificatory structure of the ontologies

in our dataset compares with that of real world ontologies. However, we have

logged three key metrics for our data that we can compare with real world

data: the average number of justifications computed, the average size of each

justification and the HST size.

We also logged the average C-basis and minimal C-basis sizes encountered

in our Basic and Minimal Relevant Closure algorithms. The values are shown

in Figure 6.13.

Figure 6.13: Average (rounded off to the nearest whole number) metrics for computation

of the Relevant Closure on the artificial data.

The values for the timed out cases in Figure 6.13 are those logged at the

cut-off time i.e., at the 1, 000 second mark. It is interesting to note the very

large difference between the average HST sizes of the non timed out cases

and the timed out cases. The queries which could not be processed within

1, 000 seconds had to construct hitting set trees with 1, 000, 000 nodes on

average. For the cases that terminate we could construct HST sizes up to

266, 387 (the 99th-percentile was 35, 334) in the allotted 1, 000 seconds.

In terms of comparing the average performance of the Relevant Closures

with the Rational and Lexicographic Closures, we obviously find that Ra-

tional Closure has, by far, the best performance on our data. Of course,

this is consistent with our hypothesis considering also that Rational Closure

generally removes more defeasible axioms from the ontology (and is thus

inferentially weaker than the remaining algorithms). A performance com-

parison graph for the mean and median times of all algorithms is given in

Figure 6.14.

The main extrapolations we can make from the graphs in Figure 6.14 are that

Rational Closure is by far the reasoning paradigm with the strongest perfor-

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 287

(a) Mean times.

(b) Median times.

Figure 6.14: Mean and median times for all closures in the evaluation for the artificial

data.

mance (around 2 to 3 orders of magnitude lower than the other algorithms).

The Basic, Minimal and Lexicographically Relevant Closures are virtually

identical in performance. In relation to Lexicographic Closure we find that

the Relevant Closures are faster overall (on average over the entire dataset,

Lexicographic Closure takes 4 times as long as the Relevant Closures).

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 288

However, this last fact can be misleading because we also notice that

the mean performance of Lexicographic Closure is actually better than the

Relevant Closures for the 10% to 40% defeasibility categories (LC takes ap-

proximately half the time of the Relevant Closures in this range). Thereafter,

the performance of Relevant Closure overtakes that of Lexicographic Closure.

The main reason is that from 10% to 40% defeasibility we have low problem-

atic rank sizes (see Figure 6.15). From 50% to 100% the mean sizes increase

slowly but the max sizes increase more dramatically which is perhaps to

blame for the degradation in performance for LC.

Figure 6.15: Average problematic rank sizes occurring in each percentage defeasibility

category.

Another question we wished to answer at the start of this evaluation was if

Lexicographically Relevant Closure is faster than (an optimisation for) Lex-

icographic Closure. The results that we obtained cannot definitively answer

this question but they suggest that Lexicographically Relevant Closure excels

(is faster than Lexicographic Closure) when the number of defeasible axioms

(percentage defeasibility) increases above 50% for our dataset. Between 10%

and 40% (for low problematic rank sizes) it is clear that Lexicographic Clo-

sure is without need of optimisation by way of computing justifications (as

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 289

Lexicographically Relevant Closure does).

6.1.5 Discussion

In summary for our artificial data, we believe that our results are sufficient

grounds from which to claim that Rational Closure would be a viable defeasi-

ble reasoning formalism to be used in future real world ontologies containing

defeasible features. What we mean here by viable is in terms of reasoning

performance (reasoning times) using similar reasoner interaction paradigms

to those used for classical DL reasoners in real world ontology editing tools.

A reasoner interaction paradigm is a manner in which users of modern

ontology editing tools actually invoke the accompanying reasoners to derive

knowledge from their ontologies. For example, classification is a very popular

reasoning task in modern ontology editing software. The process of iteratively

classifying an ontology to derive the main results for the users purposes is

a typical reasoner interaction paradigm. In other words, we believe that

Rational Closure would perform reasonably well in computing the defeasible

subset or superset relationship between class names in a defeasible ontology

(if or when a rudimentary non-naive algorithm for this is developed).

Another interaction paradigm would be for a user to supply as input an

axiom, and for the reasoner to answer in the affirmative if the axiom is a

logical entailment of the ontology, or in the negative if this is not the case.

In essence this is the simplest task conceivable for defeasible reasoning and

our evaluation results indicate that Rational Closure would perform very well

for this kind of interaction.

Yet another interaction paradigm is embodied in the software plug-in for

the ontology editor Protégé called the DLQueryTab12. In the DLQueryTab

the user specifies a class expression and the main task of the plug-in is to

invoke the reasoner to compute the set of all class names in the ontology that

are either a subclass or superclass of the given expression. Again, considering

that this task is related to the task of classification, we claim that Rational

12protegewiki.stanford.edu/wiki/DLQueryTab

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 290

Closure would also perform reasonably well at computing the defeasible sub-

classes or superclasses for the given expression.

Our main conclusion is that Rational Closure would give back inferences in

times that can be considered “on-demand” using similar reasoner interaction

paradigms to those mentioned above. Our confidence in this conjecture is

based on the performance obtained in our evaluation of the artificial data

(Rational Closure takes just 3.5 times as long as classical entailment) as well

as the fact that we currently use only one optimisation for its computation

(i.e., modularisation).

When we examine the results for Lexicographic Closure and the Relevant

Closures we cannot make the same claims about their performance as for

Rational Closure. Even though we have also used only modularisation as

an optimisation for these algorithms, there is some doubt as to whether

they would be useful (from a performance perspective) using similar reasoner

interaction paradigms to those discussed above.

That is, whereas one might be willing to wait a few seconds or even up

to a couple of minutes for the reasoner to determine if a specified axiom is

defeasibly entailed by the ontology or not, whether it is feasible to wait 15

minutes (we even encountered some cases which take much longer) remains

to be seen. However, if we consider the interaction with a defeasible reasoner

to represent a completely different interaction paradigm to classical reasoning

then perhaps one would be willing to wait that long. For example, waiting

2 or 3 minutes to compute all justifications for an entailment seems very

reasonable on the whole (Horridge [94, Page 99] has shown that it sometimes

takes close to 15 minutes for entailments in BioPortal ontologies).

Therefore, if defeasible reasoning were to be seen by users as embody-

ing a different reasoner interaction paradigm (similar to the computation of

justifications) then Lexicographic Closure and the Relevant Closures might

still hold significance as useful forms of defeasible reasoning. It must also be

reiterated that there is very little currently in the way of optimisations for all

algorithms. Hence, the picture may be considerably brighter for these latter

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 291

algorithms when more sophisticated optimisation strategies are introduced.

6.2 Modified Real World Data

In this section, we take a step further than using purely synthetic ontologies.

We describe a principled way of introducing defeasible subsumption into

real-world ontologies. We then perform an evaluation of the performance of

defeasible reasoning (analogous to that in Section 6.1) on the resulting data.

Previously, in terms of data for the evaluation of defeasible reasoning per-

formance, the norm has been the use of automatically generated ontologies

with defeasible features. The most notable attempt at a benchmark of syn-

thetic defeasible ontologies is LoDEN13. LoDEN is however not applicable for

our purposes because the focus in this benchmark is on low complexity DLs,

whereas we are interested in ontologies that are at least of ALC expressivity.

Naturally, there are obvious shortcomings with artificially generated on-

tologies, such as possible biases in the generation methodology. However,

there is no question of finding representative data because there are virtually

no naturally occurring ontologies with intended defeasible features.

We instead choose a middle-ground approach, taking advantage of the

rich set of (classical) OWL ontologies that we have on the Web in vari-

ous repositories and corpora. Since DLs form the logical underpinning of

OWL, this data is immediately applicable for our purposes. The basic idea

of our approach is to “toggle” selected subsumptions in these ontologies to

be defeasible subsumptions, thereby making these ontologies useful as data

to evaluate our defeasible reasoning algorithms.

Of course, this is to be done with care to generate cases challenging for the

reasoner. For example, we need to ensure cases where there are more than

one rank in the ranking of the ontology (Procedure ComputeRankingB). Our

method is given in Section 6.2.2, together with its strengths and weaknesses.

13loden.fisica.unina.it

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 292

6.2.1 Data Curation Methodology

For our initial data, we sample some classical OWL ontologies which we can

later pass through our procedure for the introduction of defeasible features.

The natural choice is to select the same data that is traditionally used to

evaluate the performance of existing classical DL reasoners.

However, even in such a setting, there is no precise consensus on what

data to use. The result is that data is generally curated manually by choosing

“well-known” ontologies and corpora from which to sample, or arbitrarily

selecting from the variety of respectable corpora on the web.

Choice of Corpora

While there are bona fide ontology benchmarks available such as LUBM [88]

and its extension UOBM [129], it was pointed out that there are shortcomings

in manual selection of ontologies and ontology corpora for evaluation of DL

reasoning performance [133]. In particular, the main limitation with such

selection procedures is that they result in datasets lacking sufficient variety.

Thus the results of evaluations can be heavily skewed or biased towards

the particular benchmarks being used. The Manchester OWL Repository [134]

is an effort to address this issue. The Repository is a framework for shar-

ing ontology datasets for OWL empirical research. The current version

of the repository contains three core datasets, namely versions of NCBO

Bioportal14 [148, 196], The Oxford Ontology Library (OOL)15 and MOWL-

Corp16 [133].

While Bioportal and OOL are already established ontology corpora that

are actively used in DL reasoner evaluations, MOWLCorp is a recent gather-

ing of ontologies through sophisticated web crawls and filtration techniques.

We obtain a recent snapshot of the Manchester OWL Repository as the

base dataset for our evaluation. There are 344, 793 and 20, 996 ontologies in

14bioportal.bioontology.org
15cs.ox.ac.uk/isg/ontologies
16mowlrepo.cs.manchester.ac.uk/datasets/mowlcorp

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 293

the Bioportal, OOL and MOWLCorp corpora respectively.

Filtration Process and Choice of DL Reasoner

For loading and analysing the ontologies of our dataset, we use the popular

and well-supported Java-based OWL API [95].

As we have shown in Chapter 4, our defeasible reasoning algorithms are

built upon classical entailment checks. Just as in Section 6.1, we chose to

utilise a single DL reasoner to perform these checks: the fastest and most

robust implementation at the time - HermiT.

Given our choice of tools for manipulating and reasoning with the on-

tologies in our dataset, we filtered out the ontologies that could be loaded

and parsed by the OWL API (each within an allotted 40 minutes). The re-

maining ontologies were then tested to determine if they were classifiable by

HermiT within an additional 40 minutes each. Those ontologies which did

not pass this test were also removed from the data.

In order to remove some of the cases which are very likely to be easy

for our reasoner, we elected to remove ontologies with less than 100 logical

axioms (ignoring annotations and other axioms carrying meta-information).

This is justifiable because ontology size is proven to be an overwhelmingly

dominant factor in reasoning performance [171] (see Section 6.1 for a more

involved motivation of the number 100). Finally, we stripped the ontologies

of ABox data because our defeasible reasoner is currently purely equipped

with (D)TBox entailment procedures. This leaves us with 252, 440 and 2335

ontologies in Bioportal, OOL and MOWLCorp respectively.

6.2.2 Introducing Defeasibility into the Data

In this section, we describe a systematic technique to introduce defeasi-

ble subsumptions into the ontologies of our dataset, thereby making them

amenable to defeasible reasoning evaluation.

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 294

Methodology

Our approach hinges upon an important relationship between concept excep-

tionality (Definition 14 on Page 91) and classical concept unsatisfiability. We

rephrase this relationship (captured in Lemma 20 on Page 222) to be more

intuitive for this setting:

Lemma 26 If a concept C is exceptional w.r.t. a knowledge base 〈T ,D〉 then

C is unsatisfiable w.r.t. T ∪ D′, where D′ is the classical translation of D.

Lemma 26 on Page 294 states that if a class is exceptional in a defeasible

ontology then it will necessarily be unsatisfiable in the classical translation

of the ontology. This result is useful because we can use it to narrow down

the search space for identifying exceptional classes in classical ontologies.

Taking the contrapositive of Lemma 26, we obtain the result that if a class

is satisfiable w.r.t. a classical ontology then it is necessarily not exceptional

w.r.t. any defeasible translation of the ontology. Therefore, we can elimi-

nate ontologies from our dataset without LHS-classes of subsumptions that

are unsatisfiable, because these could never become exceptional by turning

classical subsumptions into defeasible ones.

The next definition is a generalisation of standard incoherence to axioms

with complex left hand side (LHS) concepts:

Definition 63 (Classical LHS-coherence) A classical TBox T is LHS-

coherent if each C v D ∈ T is s.t. T 6|= C v ⊥. T is LHS-incoherent if it

is not LHS-coherent.

Eliminating all ontologies from our dataset that are LHS-coherent leaves us

with 11, 46 and 77 ontologies in the Bioportal, OOL and MOWLCorp cor-

pora respectively. Thus, in total we have 134 ontologies for our performance

evaluation. The task is to “relax” some of the subsumptions of our ontolo-

gies to be defeasible. The obvious näıve approach to introducing defeasibility

would be to convert all subsumptions to defeasible ones. Naturally, this is not

likely to be the general approach of defeasible-ontology engineers in practice.

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 295

The other extreme would be to develop an approach to identify the minimal

(for some defined notion of minimality) amount of defeasibility to introduce

into the ontology in order to successfully “cater for all the exceptions”. The

latter approach would be interesting, and we are currently investigating such

an approach; however, we propose that a reasonable approximation of such

a procedure yields meaningful data for performance evaluation.

The approach that we discuss here is in the spirit of such an approxima-

tion. We illustrate the problem by means of an example:

Example 30 Consider the following TBox T :

1. Mechanic v ∃hasWorkshop.>,

2. Mechanic v ∃hasSpecialisation.>,

3. MobileMechanic t GeneralMechanic t CarMechanic v Mechanic,

4. MobileMechanic v ¬∃hasWorkshop.>,

5. MobileMechanic u ¬∃status.OnStandBy v ∃hasWorkshop.>,

6. GeneralMechanic v ¬∃hasSpecialisation.>,

7. CarMechanic v ∃hasSpecialisation.Car


MobileMechanic, GeneralMechanic and the class expression MobileMechanic u
¬∃status.OnStandBy are unsatisfiable w.r.t. T . An intuitive analysis of T tells

us that the ontology engineer probably intended to model that mechanics usu-

ally have a workshop (Mechanic @∼ ∃hasWorkshop.>) and usually specialise in

certain types of equipment that they repair (Mechanic @∼ ∃hasSpecialisation.>).

This translation of Axioms 1 and 2 in Example 30 on Page 295, is a

minimal and intuitive way to introduce defeasibility into T , catering for

exceptional types of mechanic - i.e., mobile and general mechanics.

However, we also have an exceptional type of mobile mechanic in T (an

“exception-to-an-exception”). That is, mobile mechanics who are no longer

“on standby” or “on call” (MobileMechanic u ¬∃status.OnStandBy). These

mechanics would then be assigned a workshop for their repair tasks.

To cater for such mechanics we would have to relax Axiom 4 as well of

Example 30 on Page 295 to express that mobile mechanics usually don’t have

a workshop (MobileMechanic @∼ ¬∃hasWorkshop.>).

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 296

We now define a general defeasible translation function (DTF) for converting

classical subsumptions to defeasible subsumptions in classical ontologies.

Definition 64 (DTF) Let T be a set of classical subsumptions of the form

C v D, then F : T → {C @∼D | C v D ∈ T } ∪ T is a DTF for T .

We also have to formalise what we mean when a particular DTF “caters for

all exceptions” in the TBox. We call such a function a safe DTF.

Definition 65 (Safe DTF) Let T be a set of classical subsumptions, let F

be a DTF for T and let D be the special DTF that translates all subsump-

tions in T to defeasible ones. Then, F is a safe DTF for T if C is totally

exceptional w.r.t. D(T) if and only if C is totally exceptional w.r.t. F (T),

for each C v D ∈ T .

We try to define a safe DTF that places a small upper bound on the subset

of axioms to relax using the well-known notion of justification [94].

If we compute the justifications for T |= MobileMechanic v ⊥ (the con-

cise reasons for MobileMechanic being unsatisfiable and possibly exceptional)

we obtain a single justification {1, 3, 4}. Relaxing these axioms would be

sufficient for catering for mobile mechanics (in fact, it is only necessary to

relax Axiom 1 as mentioned earlier). Similarly, we arrive at {2, 3, 6} to cater

for general mechanics and {4, 5} for mobile mechanics no longer on call.

The basic idea is thus to take the union of the justifications for the un-

satisfiable LHS-classes and relax these axioms to defeasible ones. We obtain

that {1, 2, 3, 4, 5, 6} should be relaxed in Example 30 on Page 295, which is

admittedly a large proportion of our TBox. However, as we discover later in

this section, the proportion is much smaller in practice on larger real-world

ontologies.

However, while computing all justifications has been shown to be fea-

sible in general on real-world ontologies, black-box (reasoner-independent)

procedures are known to be exponential in the worst case [94]. To avoid

this potential computational blowup, we obtain a small upper bound of the

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 297

(union of) justifications by extracting a star locality based module [170] for

the ontology in question, w.r.t. the set of unsatisfiable LHS-classes.

A module of an ontology w.r.t. a signature (set of terms from the ontology)

is a small subset of the ontology that preserves the meaning of the terms in

the signature. We specifically choose star locality based modules because

of two key properties: (i) they preserve all justifications in the ontology for

all entailments (or axioms) that can be constructed with the given signature

(depleting property [169, Section 3]), and (ii) they are smaller in size relative

to other modules which have the depleting property. The pseudocode of our

method is given in Procedure RelaxSubsumption.

Procedure RelaxSubsumption(O, C)
Input: LHS-incoherent TBox O, C = {C | (C v D ∈ O for some

D) ∧ (O |= C v ⊥)}
Output: Defeasible ontology 〈T ,D〉

1 T := ∅; D := ∅;
2 M := extractStarModule(O, sig(C)); T := O\M;

3 foreach X v Y ∈M do

4 D := D ∪ {X @∼ Y };

5 return 〈T ,D〉;

Line 2 of Procedure RelaxSubsumption is responsible for extracting a hope-

fully small set of axioms from the ontology which preserves the meaning of

the set of terms in C (the function sig(C) extracts the signature or set of class

and role terms in the set C). Finally, it can be shown that our procedure

defines a safe DTF for knowledge bases.

Theorem 6 (Safety of our DTF) Let F be the DTF defined by Procedure

RelaxSubsumption, and O a classical TBox. Then F is a safe DTF for O.

Proof: By Definition 65 on Page 296, we have to show that, for any concept

C, C is totally exceptional w.r.t. D(O) if and only if C is totally exceptional

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 298

w.r.t. F (O) (where D is the special DTF which translates all subsumptions

to defeasible ones).

“ =⇒ ”: Suppose that, for some C v D ∈ O, C is totally exceptional

w.r.t. D(O) but C is not totally exceptional w.r.t. F (O). We show that

this leads to a contradiction. From our supposition that C is not totally

exceptional w.r.t. F (O) we have two cases: either C is not exceptional at

all w.r.t. F (O) or C is normally exceptional w.r.t. F (O).

Case 1: C is not exceptional w.r.t. F (O). From our supposition that C is

totally exceptional w.r.t. D(O) we can infer thatO |= C v ⊥ from Lemma 26

on Page 294. Let J1, . . . ,Jn be the justifications for O |= C v ⊥. Because

we know that C is totally exceptional w.r.t. D(O) it must be the case that

for at least one 1 ≤ i ≤ n, C is totally exceptional w.r.t. D(Ji). We can

easily see from the depleting property of star locality based module that

D(Ji) ⊆ F (O). Therefore C is totally exceptional w.r.t. F (O) because

there is a justification for this in F (O). This is a contradiction and therefore

it cannot be the case that C is not exceptional w.r.t. F (O).

Case 2: C is normally exceptional w.r.t. F (O). This is impossible because

we have shown in Case 1 that there is a justification Ji for O |= C v ⊥ s.t. C

is totally exceptional w.r.t. D(Ji). Therefore D(Ji) ⊆ F (O) and it must be

the case that C is totally exceptional w.r.t. F (O).

“ ⇐= ”: Suppose that, for some C v D ∈ O, C is totally exceptional

w.r.t. F (O) but C is not totally exceptional w.r.t. D(O). We know there

is a justification J ⊆ F (O) s.t. C is totally exceptional w.r.t. J and J ′ |=
C v ⊥ where J ′ is the classical counterpart of J (Lemma 26 on Page 294).

Assume there is a classical statement in J . This is impossible because F is

defined s.t. each α ∈ F (O) where α′ (classical counterpart of α) is part of a

justification for the unsatisfiability of C, has to be part of the star locality-

based module we consider. This means α′ will be translated to defeasible

in F (O). Therefore, it must be the case that D(J) = J . Then there is

a justification for C being totally exceptional w.r.t. D(O) because D(J) ⊆
D(O). Hence it must be that C is totally exceptional w.r.t. D(O). 2

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 299

Discussion

There are two conflicting issues with the procedure we have presented for

introducing defeasibility into OWL ontologies: (i) minimality of modification

to the original ontology and (ii) the representative quality of the resulting

defeasible ontology as something that might be built by an ontology engineer

with access to defeasible features.

While (i) and (ii) would be a useful goals for a methodology automating

the introduction of defeasible features into OWL ontologies, our approach

does not yet meet such desiderata. It is clear that the minimal axioms to

relax in Example 30 on Page 295 would be {1, 2, 4}, yet we relax {3, 5, 6} as

well.

The resulting ontology should also ideally resemble a naturally occurring

ontology with defeasible features introduced where explicitly needed by the

ontology engineer. For instance, in Example 30 on Page 295, it does not make

sense (from an intuitive point of view) to relax MobileMechanic v Mechanic

(all mobile mechanics are mechanics) to MobileMechanic @∼Mechanic (typical

mobile mechanics are mechanics). Such constraints should ideally remain

strict.

Furthermore, a critical observation is that logical incoherence in classical

ontologies may be caused by erroneous modelling. In ontology development

tools, large emphasis has been placed on debugging incoherence by making

modifications to the ontology to remove the “unwanted” entailments such

as C v ⊥. This is likely to have prevented many developers publishing

incoherent ontologies.

Given the above main shortcomings of our approach, we do not argue

that ours is the ideal methodology. Rather, we hope that it serves as a

stepping stone from purely synthetic approaches to investigate and develop

more suitable methodologies. Our modified real world ontologies are available

as a public download17.

17krr.meraka.org.za/~kmoodley/ontologies/NonSynthetic.zip

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 300

6.2.3 Experiment Setup

Our setup, methodologies and design choices for the experimental evaluation

can be summarised as follows:

Data Summary

The input data for our experiments are 134 LHS-incoherent ontologies (cu-

rated as described earlier in this section) from the Manchester OWL Repos-

itory. The ontologies are divided across three corpora: 11, 46 and 77 in

Bioportal, OOL and MOWLCorp respectively. The DL expressivity distribu-

tion of the data ranges from variants of ALC all the way up to SROIQ [99].

There are 35 DL variants in total represented in the data. Figure 6.16 pro-

vides some average properties of the ontologies in our dataset.

Figure 6.16: Ontology metrics for the LHS-incoherent cases in the dataset.

We also give an illustration in Figure 6.17 of how much defeasibility our

methodology has introduced in to the curated ontologies. The average ratio

of defeasible to strict axioms in each ontology is 6%, the median being 1%,

the minimum ratio being 0.01% and the maximum being 98%.

It is very interesting to note that the percentage defeasibility of most on-

tologies in the data stay well below 10%. It would be interesting to see if

our reasoning performance for the 10% defeasibility category of the artificial

data (Section 6.1) generalises to the current data as well. There are a number

of factors, though, which make the current data different from the artificial

data. The main one in terms of performance is probably ontology size. In

our current data we have far larger ontologies in general than the artificially

generated ones.

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 301

Figure 6.17: Percentage defeasibility distribution across the modified real world ontologies.

In terms of the ALC constructor distribution, Figure 6.18 shows that for the

most part the distribution for the real world data closely matches that of the

artificial data (see Figure 6.2b). The only discrepancy is with universal role

restrictions which occur more frequently in the real world data than in our

artificial data. While this is not ideal, we conjecture that overall this would

not detract from the significance of the results for the artificial data.

Figure 6.18: Average ALC constructor distribution across an ontology in our modified real

world dataset.

In addition to the ontologies, we generated a set of entailment queries (de-

feasible subsumptions of the form C @∼D) for each ontology to present to our

defeasible reasoner. We follow a similar strategy to Section 6.1: for the C’s

we use the existing LHS-incoherent classes in the ontology. For the D’s we

take the ⊥-syntactic locality module of the ontology w.r.t. to the signature of

C (including ⊥) and randomly generate RHS D’s from the module signature.

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 302

Tasks

The first task is to precompile the exceptionality rankings of each ontology

in the dataset. The rankings are then stored on file for later use in entail-

ment testing. It is important to note that the computation of the ranking

is considered as an offline, precompilation process for each stable version of

an ontology. Such a task is not meant to be executed on-demand during

defeasible entailment tests.

Lemma 26 on Page 294 is used as an optimisation in the ranking pro-

cedure. We only need to check exceptionality of C @∼D’s where C is unsat-

isfiable w.r.t. the classical translation of 〈T ,D〉 (see Lines 2 to 4 of Proce-

dure Exceptional in Section 4.2).

The entailment tests are then performed on the precomputed rankings

and the results of both tasks are recorded. I.e., we test if C @∼D is follows

from the ontologies using the various closures presented in Chapter 4. We

recorded the average time it took to compute the rankings, and to answer

entailment questions. The same optimisations were used as for the artificial

data evaluation.

Equipment

The evaluation was carried out on an Intel i7 Quad Core machine running

Windows 10. 8GB of memory is allocated to the Java Virtual Machine (Java

1.7 with 3GB of memory allocated to the stack for running threads). HermiT

is the underlying classical DL reasoning implementation.

Hypotheses

Our general predictions are analogous to those of the artificial data because

the ontology metrics (apart from ontology size, classical subsumptions and

percentage defeasibility distribution) of both datasets are somewhat simi-

lar. However, we expect the data to contain ranking sizes not more than

roughly 5. That is, we expect there to be very few cases where there are

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 303

exceptions-to-exceptions (if any). The reason for this prediction is that on-

tology engineers would probably try to avoid introducing incoherences in

their ontologies which correspond to exceptions.

6.2.4 Ranking Compilation Results

It must be pointed out that the presentation of our results for this data is

going to be significantly different to that of the artificial data in Section 6.1.

The reason is that we do not have the ontologies binned into neat categories

w.r.t. percentage defeasibility.

The overall results for ranking compilation are quite promising. Fig-

ures 6.19 and 6.20 give an overview of results w.r.t. ranking compilation.

Figure 6.19: Ontology metrics and ranking compilation results for the modified real world

data.

Figure 6.20: Ranking compilation time per modified real world ontology.

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 304

Examining the ranking times in Figures 6.19, we notice that on average over

the entire dataset, it takes 3 minutes to rank a single ontology. However,

the “median” column of the ranking times, shows us that the majority of

rankings were computed in less than half a second. The most intensive

ranking to compute was Ontology 134 which has 415, 258 TBox axioms of

which 6, 010 are defeasible (it took roughly 4 hours to compute).

As expected, we have very little variance in ranking size (between 1 and 3),

therefore we do not need to examine in detail the influence of ranking size on

the compilation time. However, the most challenging cases in theory for our

reasoner are the ones in which there are hidden strict inclusions in the DT-

Box. Examining the number of recursions we have to perform over the data,

we find that the need to recursively execute Procedure ComputeRankingB is

much less frequent than the artificial data (see Figure 6.21).

Figure 6.21: Number of recursions required to rank the modified real world ontologies.

Therefore, the number of recursions does not impact the hardness of rank-

ing compilation considerably because average recursion depth is 1.5 with the

maximum of just 4 (and very little occurrences of 2, 3 and 4 in the data). This

is also confirmed by the fact that the average compilation time for the cases

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 305

with no recursions is by far the highest (255 seconds). Hardness, therefore,

is mainly determined by other factors. Since a naive ranking compilation

procedure has to check exceptionality of each defeasible axiom in the ontol-

ogy, in most cases we expect the number of defeasible axioms to be the main

contributor to hardness. However we also have an optimisation (Lemma 26

on Page 294) which says that we only need to check exceptionality of the

defeasible axioms with unsatisfiable LHSs.

Therefore, it stands to reason that the number of unsatisfiable LHSs in

the ontology would be the main contributor to hardness for our dataset. We

plot the number of defeasible axioms in the ontology that have unsatisfiable

LHSs against the ranking compilation time to reveal that this is indeed the

case (see Figure 6.22).

Figure 6.22: The performance of ranking compilation vs the number of defeasible axioms

in the ontology that have unsatisfiable LHSs.

Both the X and Y axes are represented in logarithmic scale and we can see

that from around 100 unsatisfiable LHSs the ranking times start to increase

dramatically. In summary the compilation times for the modified real world

data are, in general, comparable with those for our artificial data.

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 306

The average time to compile a ranking in the artificial data was around 100

seconds, whereas in our modified real world data this figure is around 176

seconds. However, we have much smaller percentage defeasibility ratios in

the latter dataset than we do in the former. It would be interesting to see

in the future whether real world defeasible ontologies would have similar

percentage defeasibility ratios to those in our dataset.

An analysis of our algorithm, together with the results obtained in this

evaluation, reveals that the number of unsatisfiable LHSs (and to a lesser

extent the number of recursions) are the main contributors to hardness of

ranking compilation.

It must also be mentioned that one should not ignore the number of strict

axioms (i.e., overall ontology size with both defeasible and strict axioms) as

a contributor to reasoning hardness. As we have repeatedly stressed, our

algorithms are built upon classical entailment checks for which ontology size

is the dominant indicator of hardness.

In fact, we notice that the average number of defeasible axioms in our

real world dataset is only one third that of the artificial data, and yet we still

obtained some cases in the real world data where compilation is harder than

in the artificial data. We attribute most of this to the fact that ontology

sizes are much larger on average in the real world dataset (see Figures 6.19

and 6.16 for a comparison).

To conclude the ranking compilation analysis, we give some average met-

rics of this part of the evaluation in Figure 6.23.

Figure 6.23: Average metrics obtained during the evaluation of ranking compilation per-

formance for the modified real world data.

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 307

6.2.5 Entailment Checking Results

As we did in Section 6.1, we report first on the results for Rational and

Lexicographic Closure and then on the results for the Relevant Closures. We

also give a brief comparison and discussion of the results for both groups of

closures at the end of this section.

Rational and Lexicographic Closure

For Rational Closure, all queries (except those for Ontology 134) in the mod-

ified real world data could be executed in less than a second. On average

over all ontologies the query time was around 80ms and 90% of all queries

could be executed in 200ms or less. For Lexicographic Closure the average

query time was much slower (around 18 seconds) but this is because of iso-

lated queries that were much slower than average. This is corroborated by

the median query time of around 250ms and the 75th percentile of 1.9 sec-

onds (75% of the queries could be executed in 1.9 seconds or less). The plot

of the average query times for both Rational and Lexicographic Closure are

presented in Figure 6.24.

The data therefore confirms our analysis and generalisations in Section 6.1:

that the performance of Rational Closure (even using our preliminary imple-

mentation) is feasible for TBox reasoning in modern ontology editing tools.

The vast majority of queries terminate within 100ms. There are, however, a

significant number of queries which take between 100 and 500ms to compute.

This is in slight contrast to the results for the artificial data which found that

less than 1% of all queries posed to the reasoner took longer than 100ms to

compute (extremely few queries even approached close to 100ms).

We hypothesise that the main reason for the queries between 100 and

500ms is the much larger ontology sizes obtained in our dataset. In fact,

we postulate that the sheer magnitude of ontology sizes in the data has the

largest impact on the performance of Rational Closure. Figure 6.25 lends

credence to this claim (both axes are of logarithmic scale).

However, even though the performance of Rational Closure decreases con-

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 308

(a) Rational Closure performance in the modified real world data.

(b) Lexicographic Closure performance in the modified real world data.

Figure 6.24: Average performance of Rational and Lexicographic Closure in the modified

real world data.

siderably with the larger ontology sizes (the reason for this is that the perfor-

mance of classical entailment also decreases as ontologies become larger), the

performance still remains acceptable for practical reasoning tasks in ontology

editing tools.

For the Lexicographic Closure we find that the performance on modified

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 309

Figure 6.25: Average Rational Closure performance vs. ontology size in the modified real

world dataset.

real world data is very similar to our artificial data (even considering the

much larger ontology sizes in the former dataset). This is quite interesting

because, considering that the major performance factor for Lexicographic

Closure is problematic rank size, it must be the case that the problematic

rank sizes encountered in the current dataset are comparable to those ob-

tained in the artificial dataset. We plot the performance of Lexicographic

Closure against problematic rank size in Figure 6.26 to illustrate this (the

reader may compare the graph with Figure 6.10).

To illustrate that the problematic rank sizes of both datasets in our evalu-

ation were very similar we give some figures: the mean values for the artificial

and modified real world data were roughly 39 and 36 respectively, the median

values 24 and 16, the 75th percentile values 58 and 39, the 90th percentile

values 102 and 109 and the maximum values 236 and 320. There was, how-

ever, one anomalous ontology (Ontology 134) in the latter dataset which,

for some queries, had a mammoth problematic rank of roughly 5900 axioms.

However, we excluded the results for these queries from consideration because

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 310

Figure 6.26: The performance of Lexicographic Closure is predominantly determined by

problematic rank size for the modified real world data as well.

they require over 1, 000 seconds to compute.

Just like in Section 6.1 we would like to ascertain, for the current dataset,

how much more expensive the Rational and Lexicographic Closures are than

classical entailment. We find that, on average, the number of classical en-

tailment checks required to check a defeasible entailment (using Rational

Closure) is 2.7 and Lexicographic Closure is not much higher at 3.3. Since

the most intensive component, by far, of the Rational Closure algorithm is its

classical entailment checks, we can infer that Rational Closure takes roughly

2.7 times as long as classical entailment over the data.

For the Lexicographic Closure, just as in Section 6.1, the number of classi-

cal entailment checks is not much higher than Rational Closure. However, the

algorithm requires computation of the LAC (which is an exponential prob-

lem in the size of the problematic rank). This intensive component of the

algorithm means that we cannot base our comparison of Lexicographic Clo-

sure and classical entailment performance purely on the number of classical

entailment checks. Therefore, we first compare the performance of Lexico-

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 311

graphic Closure to that of Rational Closure and then extrapolate an indirect

comparison with the performance of classical entailment.

The 10th percentile for Lexicographic Closure is 2.5ms while the same per-

centile for Rational Closure is 1.39ms (Lexicographic Closure takes roughly

twice as long). The 75th percentile value is 3 orders of magnitude higher

than that of Rational Closure. From this we generalise that, for the majority

of queries, the times for Lexicographic Closure are expected to be between

twice as long as Rational Closure, to 3 orders of magnitude higher than those

for Rational Closure. Rational Closure itself takes 2.7 times as long as clas-

sical entailment. Therefore, one can make the very general projection that

Lexicographic Closure would roughly take between 5.4 and 2700 times as

long as classical entailment (for the majority of queries).

Basic, Minimal and Lexicographically Relevant Closure

The results for the Relevant Closures follow a similar pattern to that of the

artificial data. All three closures have almost identical performance over

the data. Again, this is because justification computation forms the main

component of all three algorithms and it consumes 99% of the reasoning time

for each query. The overall performance is depicted in Figure 6.27.

Interestingly, whereas Lexicographically Relevant Closure was ever so slightly

faster in the artificial data than the other two Relevant Closures, here it is

slightly slower by a similar margin. We conjecture that the reason for this is

that the problematic ranks are slightly larger in this dataset. In other words,

after these problematic ranks are pruned (by removing the axioms from them

that appear in the minimal C-bases) their sizes are still slightly larger than

those in the artificial dataset.

We again imposed a timeout of 1, 000 seconds for each query and found

that roughly 2% of them did not terminate within the time limit. For all

cases it is no surprise that the major bottleneck for performance remains the

computation of the justifications. Specifically, the bottleneck for computation

of justifications is construction of the hitting set tree. We plot the query times

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 312

Figure 6.27: The performance of Basic Relevant Closure on the modified real world data.

The other Relevant Closures have almost identical performance on the same data.

against the HST size in Figure 6.28.

Figure 6.28: The major influence on Relevant Closure performance, for the modified real

world data, is still the number of nodes in the hitting set tree.

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 313

Figure 6.28 clearly demonstrates that HST size has a major impact on the

performance of the Relevant Closures. However, there are two outlier cases

when the HST size is at 9 and 32. The corresponding query times for these

cases are 51, 405ms and 24, 881ms respectively. The reason for these depar-

tures from the general trend is ontology size - these queries are executed on

Ontology 134 in the dataset which has in excess of 400, 000 axioms (6010 of

which are defeasible). This ontology is far larger than the vast majority of

the other ontologies in the dataset.

To give the reader a sense of the justificatory structure of the non timed

out cases, we plot the percentile occurrences of: number of justifications, size

of a single justification and HST size for these queries in Figure 6.29.

(a) Number of justifications per query. (b) Average justification size per query.

(c) HST size per query.

Figure 6.29: Justification metrics for the non timed out queries posed to the modified real

world data.

Figure 6.29 gives some important insight into the complexity of justification

computation that our algorithms are able to execute while still retaining

reasonable defeasible inference times. We believe that any defeasible infer-

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 314

ence time of below 10 seconds (just higher than the 97th percentile value)

is acceptable for our preliminary implementation of the Relevant Closures.

Given this upper limit we can extrapolate that our algorithms would be able

to compute just over 20 justifications with maximum HST sizes around 1, 000

to stay within this reasoning time.

In other words, for more complex justification computation (computing

much more than 20 justifications and HST sizes closer to 10, 000 than to

1, 000) we cannot guarantee inference times lower than 10 seconds with the

current implementation for the Relevant Closures.

We conclude our analysis of the performance of the Relevant Closures

with an illustration of the justification metrics for the timed out queries in

the modified real world dataset (see Figure 6.30).

(a) Number of justifications per query. (b) Average justification size per query.

(c) HST size per query.

Figure 6.30: Justification metrics for the timed out queries posed to the modified real

world data.

The main discrepancies between the timed out cases and the non timed

out cases are the number of justifications and the HST size. On average

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 315

the queries computed in excess of 300 justifications by the cut off time of

1, 000 seconds. In fact, we have one case in excess of 1, 000 justifications. In

addition, the HST sizes grow to the millions of nodes by the cut off time.

Interestingly, the average sizes of individual justifications stay very similar

to the non timed out cases (around a maximum of 20).

In terms of relating the performance of Lexicographically Relevant Clo-

sure with that of its equivalent construction the Lexicographic Closure, Fig-

ures 6.27 and 6.24 reveal that they have very similar performance overall in

the data.

In the artificial data, we witnessed that Lexicographic Closure was better

in performance for 10% to 40% defeasibility. For the remainder of cases,

the Relevant Closures (including Lexicographically Relevant Closure) were

considerably better in performance.

Our explanation as to why the Lexicographically Relevant and Lexico-

graphic Closures have more similar performances in this dataset, is that the

justificatory complexity of the ontologies in this dataset is higher than that

of the artificial data (we compute more justifications with larger HST sizes).

Nevertheless, the problematic rank sizes encountered here are still similar to

those in the artificial dataset. Therefore, the performance of Lexicographi-

cally Relevant Closure does not surpass that of Lexicographic Closure.

6.2.6 Discussion

We summarise the main observations and insights of our evaluation in the

following subsections:

Rational and Lexicographic Closure

Rational Closure is the best performing of our presented defeasible reason-

ing algorithms and is suitable, even in its current implementation, for use in

modern ontology editing tools. The data suggests that Rational Closure en-

tailment testing takes roughly 3 times as long as classical entailment testing.

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 316

Specifically, the figures show that the mean times to test a defeasible entail-

ment, using Rational Closure, are roughly between 25ms and 1880ms across

both datasets. Therefore performance is well suited to reasoning in typical

ontology development environments even without sophisticated optimisation.

As one would expect with the much larger ontology sizes in the real

world dataset, the mean performance of Rational Closure increases from

roughly 25ms in the artificial dataset to roughly 81ms in the real world data.

Again, even though there is a considerable increase in query times in terms of

magnitude, even the slowest times in the real world data are still fast enough

to be considered suitable for modern ontology editing systems.

The major factor for Rational Closure performance has been shown to

be ontology size (as inherited from classical entailment). The only other

factor which could significantly affect Rational Closure is the length of the

exception to exception chain. This has been shown to be fairly short, relative

to the number of exceptions in the ontologies, in the artificial data (around

a maximum of 16) and much shorter in the real world data (maximum of 3).

Although we do not know how long this chain would be in practice when

real world defeasible ontologies become widely engineered, there is no evi-

dence to suggest that the lengths would be wildly different to the ranges we

encountered in our datasets.

For the Lexicographic Closure we found that the data showed very large

variance in query times between the median and worst cases (3 to 4 orders of

magnitude). Therefore, it is harder to evaluate at this juncture how feasible

its performance would be for modern ontology editing systems.

The major performance factor was shown to be the size of the problematic

rank and we could extrapolate that, to keep its performance very practical

(say below 10 seconds per query), the problematic rank size should be kept

lower than roughly 100 axioms. A very effective way to curb the problematic

rank size is to not introduce too many defeasible subsumptions into the

ontology. In other words, to keep the defeasibility of the ontology very low.

This remains a major open question: what would the percentage defeasibility

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 317

values be for real world defeasible ontologies to be engineered in the future?

If these values would be very low (say lower than 10%), and the overall

sizes of the defeasible ontologies are similar to existing classical ontologies,

then we project that Lexicographic Closure performance would be feasible

for the vast majority of data.

Even though we found Lexicographic Closure to be the worst performing

of our presented algorithms (as we anticipated), we saw that its overall per-

formance was hampered by isolated cases which were extremely hard (large

ontologies with high problematic rank sizes).

If we have to compare its performance with that of Rational Closure (the

highest average query times obtained with Rational Closure were around 1.9

seconds), we actually find that the 55th percentile value for Lexicographic

Closure is 1878ms (very close to 1.9 seconds). In other words, 55% of the

queries posed to Lexicographic Closure could be processed in times very

similar to Rational Closure overall.

Its performance was also quite consistent across both datasets: we found

that the mean times obtained in the real world data were roughly 5% faster

than in the artificial data.

The Relevant Closures

The performance of the Relevant Closures is almost exclusively determined

by the performance of justification computation. Since the performance of

justification computation is highly sensitive to justificatory structure, and the

latter is relatively unpredictable in real world ontologies, the performance of

the Relevant Closures should be similarly unpredictable.

The data also gives some insights as to what kinds of justificatory struc-

ture are complex for reasoning. We found that the performance of the Rel-

evant Closures is acceptable (below 10 seconds per query) if the maximum

number of justifications that we need to compute does not increase signifi-

cantly above 20 and the accompanying HST sizes do not grow considerably

above the 1000 mark.

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 318

In fact, we found that the reasoning times reduce by around 80% when we

concentrate only on queries which have these justificatory structures. A

positive observation is that the majority of queries fell into this particular

justificatory structure bracket. In other words, the harder cases where we

had to compute more than 20 justifications with HST sizes much higher than

1000 occurred much less frequently in the data.

Interestingly, the mean times for the Relevant Closures were roughly 24%

faster in the real world data than in the artificial data.

Our results suggest that, overall, the Lexicographically Relevant Closure

is not a very effective optimisation for Lexicographic Closure. However, the

data shows that when the justificatory structure of the ontology is simple

(entailments have less than 20 justifications with HST sizes not much higher

than 1000) then the Lexicographically Relevant Closure mean times are re-

duced by 82% in the real world data and by 81% in the artificial data.

In the end it is difficult to evaluate the suitability of the Relevant Closures,

in terms of performance, for current ontology editing systems. The main

reason is the unpredictability of justificatory structure which is the major

influence in performance here.

Concluding remarks

In conclusion, we find that Rational Closure is the hero in terms of perfor-

mance and the villains are the Lexicographic Closure and Relevant Closures.

The main question that needs to be addressed, before the latter algorithms

can be exonerated from (or bound to) their unfortunate title, is percentage

defeasibility. If we know how much defeasibility is going to be used in real

world ontologies, we would be in a better position to predict the performance

of these algorithms.

While Rational Closure is perfectly suitable even its current implemen-

tation for use in current ontology editing tools, one would like to ascertain

if its inferential caution is a drawback in practice. In other words there is

scope for another investigative thread in this area to study the trade off be-

CHAPTER 6. PERFORMANCE OF DEFEASIBLE REASONING 319

tween the inferential power of a defeasible entailment regime and its practical

performance.

Finally, regardless of percentage defeasibility and other factors influencing

reasoning performance, there is still a lot of scope for optimisation for all the

algorithms that we have presented in this thesis. We hope that this evaluation

sheds some light on which areas we need to concentrate on for this purpose.

Chapter 7

DIP: Defeasible-Inference

Platform

In the previous chapter we showed that we do not pay an inordinate price for

the extra expressivity of defeasible subsumption and basic defeasible reason-

ing tasks (based on the preferential reasoning foundation). Even though our

algorithms still leave considerable room for optimisation, the performance of

Rational Closure in particular is perfectly acceptable to be used in current

ontology engineering environments, even in its existing state.

The performances of the Lexicographic and Relevant Closures are not as

promising as Rational Closure but they still appear sufficient to be used, at

least in an experimental manner, on small to medium-sized ontologies.

These algorithms can only benefit (in terms of optimisation) from im-

plementation and integration into widely used ontology editing tools, and

with a view towards faster implementations we have developed a plugin,

Defeasible-Inference Platform (DIP), for the ontology editor Protégé includ-

ing the aforementioned preferential reasoning algorithms.

In this chapter, we give an overview of DIP including its functionality,

architecture and user interface (UI) design. We first give a brief overview

of Protégé and the OWL API (the API Protégé uses to manipulate OWL

ontologies), after which we introduce DIP and its integration into Protégé.

320

CHAPTER 7. DIP: DEFEASIBLE-INFERENCE PLATFORM 321

Finally, we give helpful instructions on how to access and use DIP in Protégé.

7.1 Protégé

Protégé is a free and open source ontology editor and knowledge base frame-

work, originally developed by the Stanford Center for Biomedical Informatics

Research at the Stanford University School of Medicine.

There are now four major versions, Protégé 3.x, Protégé 4.x, Protégé

Desktop1 (or Protégé 5) and WebProtégé2. Protégé 3.x is a legacy version of

Protégé providing support for working with older frame-based [114] ontolo-

gies along with ontologies expressed using the now dated OWL 1 standard.

Protégé 4 was developed as part of the “CO-ODE” project by the Uni-

versity of Manchester in collaboration with Stanford Medical Informatics

between 2007 and 2009. The Protégé 4.x versions do not allow frame-based

ontology editing and were tailored for the shift to the next version of OWL,

OWL 2 (which became a W3C recommendation in December, 2012).

Finally, incremental improvements to Protégé 4 between 2009 and 2013

eventually led to a new major release in 2014 - Protégé Desktop. When we

use the term Protégé, in the remainder of this chapter, we are referring to

the latest versions namely Protégé 4 and Protégé 5.

7.1.1 User Interface

Protégé makes use of a “tabbed” graphical user interface (see Figure 7.1).

Each tab displays a different “ontology view”. The most frequently used tabs

are the following:

• Classes

• Object Properties

1protege.stanford.edu
2webprotege.stanford.edu

CHAPTER 7. DIP: DEFEASIBLE-INFERENCE PLATFORM 322

• Individuals

• Entities

Figure 7.1: Protégé 4 ontology editor.

The Classes tab offers a class or concept driven view of the ontology. Here,

the focus is on viewing the class hierarchy of the ontology, that is, the sub-

sumption relationship between class names added to the ontology by the

ontology engineer.

One can see an example of this hierarchy on the left hand side of Fig-

ure 7.1. The class names are arranged in a “‘tabbed” format to indicate

their subsumption relationship with other class names. That is, class names

that are aligned vertically are sibling classes. Those that are indented with

respect to others are subclasses of these others.

The “asserted” class hierarchy tab displays the taxonomy of the class

names in the ontology as specified by the ontology engineer, as opposed to

the “inferred” class hierarchy which is the (possibly) revised hierarchy after

inferences made by a reasoner are incorporated into the asserted hierarchy.

Class names in Protégé are indicated by a preceding tan-coloured circular

icon in the interface. The Object Properties tab displays the role names

CHAPTER 7. DIP: DEFEASIBLE-INFERENCE PLATFORM 323

(object property is OWL lingo for role name) in the ontology and the relevant

information pertaining to them. Object properties are differentiated from

other entities in the ontology by a preceding blue-coloured rectangular icon.

The Individuals tab displays the ABox information about the instances or

individuals in the ontology. Individuals are indicated by a preceding purple-

coloured, diamond-shaped icon.

The Entities tab combines the previously discussed tabs so that all the

perspectives can be viewed and browsed simultaneously.

Protégé has support for a variety of ontology reasoners which can be

installed as plugins in the Protégé system and be accessed via the “Reasoner”

menu in the main toolbar.

To indicate inferences drawn from the ontology by installed reasoners,

Protégé makes effective use of color in the interface. For example, after the

reasoner classifies the ontology, the inferred subclasses, superclasses, equiva-

lent classes, ABox assertions are displayed against a pale yellow background

in each of the relevant tabs. Also, concept names which are found to be

unsatisfiable in the ontology are displayed using red text.

Since Protégé allows working with multiple ontologies simultaneously,

there is an “Active Ontology” tab displaying details and metadata about

the ontology currently being worked on. There are numerous manuals and

helpful resources on the Web for getting started with using Protégé3.

7.1.2 The OWL API

Since Protégé is built primarily for OWL ontologies, an API is needed for

loading, parsing and manipulating ontologies expressed in OWL.

The OWL API [95] is a Java-based API developed for creating, editing

and managing OWL ontologies. Version 4 (the latest as of writing) follows,

very closely, the OWL 2 structural specification recommended by the W3C.

Protégé itself has a very modular structure. In fact, it can be seen as set

of plugins that interact together to provide the functionality of the complete

3protege.stanford.edu/support.php#documentationSupport

CHAPTER 7. DIP: DEFEASIBLE-INFERENCE PLATFORM 324

system. It includes, as one of its modules, the OWL API as its API of choice

for loading and manipulating OWL ontologies (though there are alternatives

available such as Jena4 and Sofa5).

The reader is reminded that DLs form the logical underpinning of OWL

languages and thus we can make some correlations between the constructs

in these languages. Figure 7.1 illustrates a few of these correlations.

OWL Syntax DL Syntax

owl:subClassOf v
owl:complementOf ¬
owl:intersectionOf u
owl:unionOf t
owl:someValuesFrom ∃
owl:allValuesFrom ∀

Table 7.1: Correlation between OWL and DL syntax.

In the OWL API, ontologies are viewed as sets of axioms and annotations

(meta-information about entities in the ontology). The API serves as a set

of interfaces for manipulating and reasoning with OWL ontologies.

The OWLOntologyManager interface in particular, provide the means for

loading, editing and saving ontologies. The OWLOntologyManager also pro-

vides access to the OWLReasoner interface which, in turn, provides access to

inference services of a particular reasoning implementation (e.g. FaCT++).

To construct the building blocks (individuals, concept names and role

names) of an ontology, one can use the OWLDataFactory class, which can

also be accessed through the OWLOntologyManager interface.

Finally, the OWLOntology interface provides access to all the axioms and

entities in an ontology. It also allows for selective access to axioms by various

criteria such as axiom type (equivalence axioms, subclass axioms, disjointness

axioms etc.) or axiom signature.

4jena.sourceforge.net
5sofa.projects.semwebcentral.org

CHAPTER 7. DIP: DEFEASIBLE-INFERENCE PLATFORM 325

7.2 Defeasible-Inference Platform (DIP)

DIP6 is a plugin for Protégé providing the capability of representing defeasible

subsumption statements in OWL ontologies, as well as reasoning with the

resulting defeasible ontologies using the algorithms presented in this thesis.

We discuss the aspects of DIP allowing us to represent defeasible sub-

sumption in OWL first, and thereafter we expand on the core functionality

- the defeasible reasoning engine.

7.2.1 Expressing Defeasible Subsumption

Of course, as we have stated numerous times in Chapter 6, OWL does not yet

natively support defeasible subsumption. To get around this issue, we employ

the use of OWL annotations which are metadata, non-logical constructs in

OWL, to indicate whether a selected classical subsumption in Protégé should

be treated as defeasible by DIP.

For example, in order to represent the defeasible subsumption Student

@∼ ¬(∃receives.TaxInvoice), a modeller would add the classical subsumption

Student v ¬(∃receives.TaxInvoice) to the ontology in Protégé, and then “tog-

gle” this subsumption to be defeasible by pressing the button labelled “d”

on the widget housing this subsumption in Protégé (see Figure 7.2).

Figure 7.2: The class description pane for the class name Student in Protégé. The button

labelled “d” in the figure is the extra feature added by DIP which allows one to toggle the

attached axiom as defeasible.

The mechanism by which this is achieved, is that an annotation is added

to (or removed from) the axiom which indicates that it is meant to be in-

6github.com/kodymoodley/defeasibleinferenceplatform

CHAPTER 7. DIP: DEFEASIBLE-INFERENCE PLATFORM 326

terpreted as defeasible. If this annotation is present then DIP considers the

subsumption in its defeasible reading, if the annotation is not present then

the axiom is considered classical by DIP. The following snippet of text shows

how the defeasible annotation is attached to the intended axiom in OWL:

<SubClassOf>

<Annotation>

<AnnotationProperty abbreviatedIRI="defeasible"/>

<Literal datatypeIRI="&xsd;boolean">true</Literal>

</Annotation>

<Class abbreviatedIRI="Student"/>

<ObjectComplementOf>

<ObjectSomeValuesFrom>

<ObjectProperty abbreviatedIRI="receives"/>

<Class abbreviatedIRI="TaxInvoice"/>

</ObjectSomeValuesFrom>

</ObjectComplementOf>

</SubClassOf>

In Figure 7.3 we see the graphical rendering of the above annotation in

Protégé. We point out that DIP extends Protégé’s axiom rendering capability

to display the “UsuallySubClassOf” keyword (as shown in the figure) but

this is purely a rendering tweak and, from the perspective of OWL and any

classical reasoning implementation, the axiom is still considered classical.

Figure 7.3: Graphical rendering of a defeasible annotation property in DIP.

Now that we have demonstrated how to represent defeasible subsumption in

Protégé using DIP features, we can move on to discussing the core reasoning

capabilities and features of DIP.

CHAPTER 7. DIP: DEFEASIBLE-INFERENCE PLATFORM 327

7.2.2 Reasoning Facilities

The most popular inferential insight into classical ontologies is usually their

concept hierarchy (see Section 2.1). The reasoning service which computes

this artefact is called classification because it reveals the implicit subset and

superset relationships between all concept names in the ontology.

Classification typically requires many classical entailment checks. In fact,

the focus in optimisations for classification is how to reduce this number of

entailment checks from the worst case. Recalling that we need multiple

classical entailment checks to perform a single defeasible entailment check, it

becomes clear that classification for ontologies with defeasible subsumption

can become impractical with our relatively unoptimised defeasible reasoning

algorithms.

Furthermore, we cannot inherit many optimisations for classification from

the classical case because we do not have some desirable properties of classical

subsumption, like transitivity for example: if C @∼D and D @∼ E are in the

Rational Closure of a KB, it does not necessarily mean that C @∼ E is also in

the Rational Closure of the KB.

We promote a different reasoning task as the core reasoning service of

DIP - the querying for the defeasible subclass and (or) superclasses of a

given class expression. That is, given a user specified class expression C

constructed from the vocabulary of the ontology, DIP is used to compute all

(class) names A in the ontology s.t. either C @∼ A or A @∼ C follows from the

ontology (using a selected preferential reasoning algorithm).

This “interaction model” with the reasoner is actually used, in the classi-

cal case, by the popular Protégé plugin called the DL Query Tab7. The DL

Query Tab, which was developed by Matthew Horridge at the University of

Manchester, comes pre-installed in most current versions of Protégé.

Horridge’s tool is able to compute the set of all named classes in the

given ontology that are either subclasses, superclasses or equivalent classes

with the user specified class expression. It is also able to give the ABox

7protegewiki.stanford.edu/wiki/DLQueryTab

CHAPTER 7. DIP: DEFEASIBLE-INFERENCE PLATFORM 328

instances of the given expression. For DIP we have chosen to focus purely

on defeasible subclasses and superclasses (the natural analogues to classical

subclasses and superclasses).

The reason for not considering ABoxes (as we mentioned earlier in this

thesis) is that ABox algorithms, in the preferential case, are not yet mature.

We hold that this task for preferential reasoning algorithms is still helpful

to gain insight into ontologies containing defeasible subsumption. For exam-

ple, it is quite natural, given an ontology describing species of birds, to ask

the reasoner which ones usually don’t fly.

This can be accomplished using DIP’s interaction model by supplying the

class expression ¬(∃ability.FlyingAbility) and then asking for all mentioned

class names A s.t. A @∼ ¬(∃ability.FlyingAbility) follows from the ontology.

DIP would then, for example, return class names such as Emu, Ostrich

and Penguin if such terms are appropriately described in the ontology. This

task returns the defeasible subclasses of the given expression.

In contrast, one might also want to ask for the defeasible superclasses of

a given expression. For example, one might ask for the typical attributes of

students (Student) in an ontology describing university students. DIP should

then return attributes such as NonTaxPayer, Poor and UnMarried (students

are usually non-tax payers, poor and unmarried).

We re-emphasise that DIP will return only (class) names as results. This

is mainly to ensure better performance because there are far fewer named

classes in an ontology, than there are complex class expressions that can be

constructed with the vocabulary.

Therefore, in ontologies which are appropriately designed for this purpose,

a reasoning task that is increasing in popularity is the querying for required

fillers (non-complex ones) of existentially quantified roles. Matthew Horridge

augmented the DL Query Tab with this functionality to address the demand

for such a reasoning service in Protégé8.

Recently, this service was exploited to aid in the taxonomic revision of

8github.com/protegeproject/existentialquery

CHAPTER 7. DIP: DEFEASIBLE-INFERENCE PLATFORM 329

afrotropical bee species [143]. Here we devise an example setting of our own

to illustrate the usefulness of this reasoning task:

Example 31 Consider the following defeasible KB:

T =



Dish ≡ ∃hasIngredient.> u ∃hasTasteQuality.>,

SushiDish v Dish u ∃hasFilling.>,

VegMakimono t SweetSushi v SushiDish,

VegMakimono t SweetSushi v ¬(∃hasIngredient.Fish),

hasWrapping v hasIngredient,

hasFilling v hasIngredient,

hasCondiment v hasIngredient



D =



SushiDish @∼ ∃hasWrapping.> u ∃hasCondiment.>,

SushiDish @∼ ∃hasIngredient.Fish,

SushiDish @∼ ∃hasIngredient.SoySauce,

SushiDish @∼ ∃hasIngredient.Ginger,

SushiDish @∼ ∃hasTasteQuality.Salt,

SweetSushi @∼ ∀hasFilling.Fruit,

SweetSushi @∼ ∃hasTasteQuality.Sweet,

SweetSushi @∼ ¬(∃hasTasteQuality.Salt)


2

Regarding the knowledge represented in Example 31 on Page 329, one can

pose the natural language question “what are the typical properties of sushi?”.

In DL terms this question can be answered by querying the KB for the de-

feasible superclasses of SushiDish.

Rational Closure will endorse that, structurally, sushi is usually composed

of an external wrapping and is usually also accompanied with condiments

(∃hasWrapping.> u ∃hasCondiment.>). It will also endorse that sushi usually

has a salty taste even though there is an exception to this - sweet sushi.

It will also endorse that sushi usually has the ingredients fish, ginger and

soy sauce even though there are two exceptional cases in the ontology - sweet

sushi and vegetarian makimono, which don’t contain fish.

However, since DIP (like the DL Query Tab) will only return named

classes as results, we will not return any results for the expression SushiDish

CHAPTER 7. DIP: DEFEASIBLE-INFERENCE PLATFORM 330

because there are no named classes in the ontology that are defeasible super-

classes of SushiDish.

Rather, the user is encouraged to ask more specific questions such as:

“what are the typical ingredients of sushi?” or “what is the typical taste

of sushi?”. In essence the user is asked to supply a role name (for example

hasIngredient or hasTasteQuality) in addition to the query class expression.

In our example, we can identify the typical ingredients and taste of sushi

by asking DIP if the axioms SushiDish @∼ ∃hasIngredient.X and SushiDish

@∼ ∃hasTasteQuality.Y follow from our ontology (according to the selected

closure), for all named classes X and Y in the ontology.

The set of all X’s and Y’s returned by DIP will constitute the typical

ingredients and taste of sushi according the preferential closure algorithm

currently selected in DIP.

7.2.3 Interface

We have chosen to design the interface for DIP to closely resemble the DL

Query Tab by Matthew Horridge, i.e., by bundling most of its reasoning

functionality in a separate tab in the Protégé UI.

Classical DL reasoners are integrated into Protégé in a far less conspicuous

manner. Because most of these reasoners implement the standard OWLRea-

soner interface from the OWL API, Protégé communicates their reasoning

results to the user (in terms of the UI display) in the same way.

Since DIP is supposed to reason with the extra construct of defeasible

subsumption, it is not possible to implement the OWLReasoner interface

alone. One would have to also extend the OWL API to be able to distinguish

between classical and defeasible subsumption statements.

We decided that this is not a feasible undertaking at present, but it is a

worthwhile project for the future if defeasible reasoning becomes widely used

in practical settings. Therefore, we adopt the approach of the DL Query

Tab since the defeasible analogues of its reasoning tasks are potentially very

useful to gain insight into defeasible ontologies.

CHAPTER 7. DIP: DEFEASIBLE-INFERENCE PLATFORM 331

In Figure 7.4 we give a screenshot of the DIP Tab in Protégé.

Figure 7.4: The control panel interface of the DIP tab in Protégé.

At the top of Figure 7.4 we see the text box labelled “Query (class expres-

sion)”. Here the user is required to specify a class expression constructed

from the vocabulary of the loaded ontology.

Below this text box there is a button labelled “Execute” for executing the

reasoning task and displaying the results in the two panels below this button.

On the right hand side of the execute button, there are two drop-down lists.

The first is the reasoning algorithm menu from which the user would select

the desired closure algorithm to use, i.e., either Rational, Lexicographic, or

one of the Relevant Closures.

The second drop-down list contains the role names (object properties

in OWL-speak) mentioned in the ontology. If desired, we can select a role

name from this list to focus our reasoning task specifically on the fillers of

this role which satisfy our provided class expression query (see Example 31

on Page 329).

The two results panels display the list of exceptions in the ontology and

the results of our query, respectively. The list of exceptions corresponds

CHAPTER 7. DIP: DEFEASIBLE-INFERENCE PLATFORM 332

to the LHS concepts of the axioms in the exceptionality ranking that we

discussed in Chapter 4.

The panel labelled “Defeasible Properties” partitions the results of our

query into two sections: the strict subclasses (or superclasses) and the defea-

sible subclasses (or superclasses), of the provided class expression.

According to all the preferential reasoning algorithms presented in this

thesis, the strict results are those that follow (using classical reasoning) from

the TBox itself (excluding the DTBox).

On the far right hand side of Figure 7.4, we have two checkboxes for the

user to indicate whether he or she would like to see either the subclasses or

superclasses of the given query (or both).

For convenience, we have also provided two panels on the DIP tab to

display the list of defeasible and strict axioms in the ontology (see Figure 7.5).

Figure 7.5: Panels provided in the DIP tab to display the list of defeasible and strict

axioms present in the ontology.

The defeasible axioms are each rendered against a pink background, while

the strict axioms are each rendered against a light green background.

7.2.4 Architecture

One of the most attractive features of DIP is that its algorithms reduce

to classical reasoning procedures. Therefore, as long as there is a sound and

CHAPTER 7. DIP: DEFEASIBLE-INFERENCE PLATFORM 333

complete classical DL reasoner selected in Protégé, DIP will use this reasoner

to perform the defeasible inferences it requires.

Here we give an informative diagram (Figure 7.6) which highlights DIP’s

interaction with a given classical reasoning implementation, as well as em-

phasising the architectural composition of the tool, and how the different

components work together.

Classical DL Reasoner

Ranking

Generator

C-Compatibility

Generator
Query Answerer

Parser

OWL Ontology Ranking

Ranking

Query Results

CLASSICAL

MECHANISMS

DEFEASIBLE

MECHANISMS

INPUT/OUTPUT

Figure 7.6: A high-level architectural view of DIP’s components and their interaction.

As we have pointed out in Chapter 4, concept exceptionality is a central

principle in preferential reasoning. Through concept exceptionality one can

discern an a priori exceptionality ranking (also discussed Chapter 4) of the

LHS concepts in the ontology. DIP thus has a “Ranking Generator” compo-

nent which computes this ranking for every stable version of the ontology.

Whenever the ontology is modified (i.e., logical axioms are added, edited

or removed), DIP recomputes this exceptionality ranking to reflect the changes.

The loaded ontology first has to go through a simple “Parser” component to

identify and separate the defeasible subsumption statements from the clas-

sical statements. Once the ranking is computed, it is stored to the ontology

file. Again, this can be accomplished by using the ever versatile OWL an-

CHAPTER 7. DIP: DEFEASIBLE-INFERENCE PLATFORM 334

notation. Concretely speaking, DIP annotates each axiom in the ontology

with the number representing its rank in the computed ranking (if the axiom

actually appears in the ranking).

This feature is useful because when the ontology is reloaded from file at

a later stage, if the ontology has not been modified, then we do not have

to recompute the ranking. We need only load the ranking by analysing

the annotations of the defeasible axioms in the ontology. This behaviour of

serialising the ranking is represented by the arrow between the “Ranking”

and “OWL Ontology” components.

Here we also make clear that the ranking of the ontology is independent of

a query or reasoning task that needs to be executed. Therefore, the computa-

tion of the ranking is viewed as an “off-line” task. This is the reason why we

do not have an arrow connecting “Ranking Generator” to “C-Compatibility

Generator” in Figure 7.6.

When reasoning needs to take place, we require the ranking itself and a

query (for example a class expression) as input for the “C-Compatibility Gen-

erator” component. The implementation of this component is actually the

major differentiating factor between the preferential reasoning algorithms.

Here the algorithms try to identify the maximal subset of the ranking which

preserves that the query is not exceptional (or can be considered normal).

As we know from Chapter 4, the algorithms base their notions of “maximal”

on different principles.

For example, Rational Closure regards each rank in the ranking as the

most elementary “blocks” of knowledge to play around with when it decides

on the maximal knowledge to retain. Lexicographic Closure breaks these

blocks into smaller chunks and decides on which permutations of them to

retain. The Basic Relevant Closure only retains axioms that are known

not to contribute to the exceptionality of the query (by using justifica-

tions). The Minimal Basic Relevant Closure allows the retaining of axioms

that contribute to the exceptionality of the query, except those that are of

lowest rank in the ranking (i.e., the least exceptional ones). Finally, the

CHAPTER 7. DIP: DEFEASIBLE-INFERENCE PLATFORM 335

Lexicographically-Relevant Closure combines the latter approach with Lexi-

cographic Closure for possible optimisation gains.

Once the C-Compatible subset of the ranking is identified, this artefact is

sent to a “Query Answerer” module which liaises with a classical reasoning

implementation (the currently selected one in the context of Protégé) to

answer the user-posed query. The “Query Answerer” component deals with

actually formulating the appropriate question (reasoning task) to ask the

classical reasoner based on the defeasible query posed by the user.

In the case of DIP we advocate the computation of the defeasible sub-

classes or superclasses of a given class and the latter task can, for example,

be formulated as a classification problem in terms of classical reasoning. In

other words, if we would like to identify the defeasible superclasses of a given

class C, then in essence we are asking for all names X in the ontology such

that C @∼X follows from the ontology, according to the selected closure.

We saw in Chapter 4 that, once the C-Compatible subset of the ranking is

obtained, then C @∼X follows from the original ontology if and only if C v X

follows classically from the classical translation of the C-Compatible sub-

set. Therefore, after classifying the classical translation of the C-Compatible

subset we can “read off” the superclasses of C as our results.

The defeasible subclasses are a bit more performance intensive to obtain

because, in the worst case, we have to obtain X-Compatibility for each name

X in the ontology (to determine if X @∼ C follows from the ontology).

The “Query Answerer” component is abstractly developed to cater for

the possible future development of defeasible queries that are different to

the subclass/superclass ones that we discuss above. In other words, the

reasoning task that we describe above is just one possible task that is useful

in the defeasible context. In future we may identify novel and interesting

reasoning tasks that give other useful insights into defeasible ontologies.

CHAPTER 7. DIP: DEFEASIBLE-INFERENCE PLATFORM 336

7.3 Discussion

We have presented DIP as a prototype tool for reasoning over the termi-

nological part of defeasible ontologies. We believe that it provides a core

reasoning service which is beneficial to use, at least experimentally, for ex-

amining and comparing the inferential character of preferential reasoning

algorithms. While DIP provides the core reasoning task of computing defea-

sible subclasses and superclasses of a given expression, there may prove to

be other compelling reasoning tasks giving insight into defeasible ontologies.

There are also a host of other features which one can imagine would be

complementary to DIP. For example, since defeasible subsumption is not

transitive in general (contraposition also does not hold in general), the prob-

lem of developing optimised classification algorithms in this context is a non-

trivial problem. Further to this, for the same reasons just mentioned, it is

not clear how to best visualise and display the defeasible class hierarchy to

an end user. Of course, a directed graph of some kind might suffice but the

necessary formalisation thereof still needs to be agreed upon.

Chapter 8

Conclusions

We conclude this thesis with a summary of the main contributions, a discus-

sion about some outstanding issues that could not be addressed as well as a

presentation of suggestions for interesting future work.

8.1 Summary of Contributions

We set out with a pragmatic mindset to make the first steps in taking the

state-of-the-art of defeasible reasoning theory (for DLs) into the practical

sphere. We chose to focus on the preferential reasoning approach in this

regard for a variety of reasons.

It has an elegance that speaks well to intuition without losing its strong

logical character. It also defines quite an abstract framework for defeasible

reasoning which gives it a certain robustness.

This generality in the formalism (and its outlook of studying the structure

of rational consequence relations) makes it useful as a lens through which one

can study other defeasible reasoning formalisms.

What we have essentially done in this thesis is motivate that the prefer-

ential reasoning approach is, in its current state, “ready” to be transferred

to the practical setting.

We do not claim that all theoretical aspects have been resolved yet. In

337

CHAPTER 8. CONCLUSIONS 338

fact we will show some of the main gaps still needing to be filled in this

regard in Sections 8.2 and 8.3.

Our main thrust in this thesis is to show that preferential reasoning (for

terminological knowledge) is practically viable in DLs from both a qualita-

tive and quantitative perspective (despite the already known, and slightly

disappointing, complexity results for some algorithms).

The main reason for promoting the application of preferential reasoning

in practical settings is to stimulate feedback from users of DL-based systems

on what areas need to be improved and investigated further, both from a

theoretical and practical perspective.

Ultimately, this relationship between the users of defeasible reasoning

formalisms, and the engineers of such formalisms, is going to be more intimate

than with classical reasoning formalisms. This is because there is generally a

much clearer consensus on what constitutes entailment in classical formalisms

with a precise model-theoretic semantics.

Defeasible reasoning systems, on the other hand, are more contentious

when it comes to entailment. Indeed, it seems likely that there is no single

“best” defeasible entailment regime. In practice, different regimes may be

suitable in different contexts.

With this spirit of breaching the divide between theory and practice

for defeasible reasoning in DLs, we actually contribute concretely with the

first known implementation of a system for preferential reasoning in DLs -

Defeasible-Inference Platform (DIP).

It is clear from the composition and content of the thesis that we have

taken a broad approach by addressing a variety of areas towards our ultimate

aim (although not being comprehensive in terms of depth in any one area).

We list more specifically the individual contributions we have made below,

together with their significances in the broader context of the thesis goals:

1. Starting out in Chapter 3 we have strengthened anecdotal arguments

expressing that there is a need for defeasible features in DL-based lan-

guages used in practical settings. There we performed a preliminary

CHAPTER 8. CONCLUSIONS 339

lexical analysis of ontology documents to reveal quantitative evidence

supporting that, in general, there is a significant plea for defeasible

representation in real world ontologies.

2. KLM argued convincingly, that even after introducing their notion of

defeasible implication to propositional logic, that this relation should

still retain some inferential properties of classical implication (when

interpreted on the entailment level). However, their arguments have

not been generalised to the DL case. In Chapter 3 we motivated the

rationality of these postulates in the DL setting by taking into account

the added structure of DLs (we had to take into account the concept

semantics of DLs to supplement the arguments by KLM).

3. The central principle behind reasoning about exceptions in the prefer-

ential framework is the definition of concept exceptionality. The critical

theoretical contribution which paved the way for practical implemen-

tation of preferential reasoning for DLs, is the reduction of concept ex-

ceptionality to classical DL entailment. To this end we have provided

an alternative semantical characterisation for this reduction, using the

notion of disjoint union of ranked models. This is done at the start

of Chapter 4 and, even though the reduction is already expressed in

the literature, our proofs showing this reduction are unique and more

self-contained than others in the literature. A very strong advantage

of our preferential algorithms, over other nonmonotonic formalisms, is

that they all reduce fully to classical DL entailment allowing one to use

off-the-shelf DL reasoners to perform defeasible inference.

4. In Chapter 4 we also provide a semantical characterisation for Lexico-

graphic Closure for DLs, and a novel algorithm for computing it in this

setting. We also go on to define an alternative way to compute Lexi-

cographic Closure using the construction of Lexicographically-Relevant

Closure which may be an optimisation for Lexicographic Closure in

some practical settings.

CHAPTER 8. CONCLUSIONS 340

5. Although it does not exactly fit the “practical reasoning” theme of this

thesis, we have also contributed a defeasible notion of disjointness (as

well as equivalence) of class expressions (see the end of Chapter 4). We

have also motivated their intuition with examples and demonstrated

that they can be represented using defeasible subsumption.

6. We also gave a few preliminary optimisations for computing preferential

reasoning in DLs. In our experiments, the most impactful has been

the demonstration of the relationship between concept incoherence and

concept exceptionality (see Lemma 26 on Page 294). In other words

we were able to show that, considering the classical counterpart of the

ontology, only incoherent concepts have the potential to be exceptional

(w.r.t. to the defeasible counterpart of the ontology). If a concept is

not incoherent it can never be exceptional.

7. Chapter 5 gives the first evaluation of the major defeasible reasoning

formalisms for DLs against the KLM postulates. This contribution

makes the relationships between the inferential behaviours of the for-

malisms clearer. In particular, it highlights the attractiveness of the

Lexicographic Closure as a defeasible reasoning algorithm striking a

good balance between rational inferential behaviour as well as inferen-

tial strength.

8. In Chapter 6 we give a thorough performance evaluation of the rea-

soning algorithms presented in this thesis. The evaluation is only pre-

liminary in the sense that our data is not wholly naturally occurring,

and thus, one cannot be definitive in extrapolations from the data (al-

though we can make reasonably strong generalisations from it). We

found that the performance of Rational Closure is already well suited

to practical use in real world ontology development settings. We found

large discrepancies in performance between the average and worst cases

for the Lexicographic and Relevant Closures. This was the main neg-

ative that we found in the evaluation. However, the mean times and

CHAPTER 8. CONCLUSIONS 341

75th-percentile times for entailment checking using these closures were

well below the one second mark. We believe this is very encourag-

ing because (a) the algorithms use only two optimisations and (b) the

majority of data (both synthetic and modified real world) are not con-

siderably hard.

9. We have also identified the major bottlenecks and barriers to prefer-

ential reasoning performance in DLs. We found that all algorithms

inherited the main (and obvious) performance influencer from classical

reasoning - ontology size. In particular, we have uncovered a critical

question which would reveal the fate of preferential reasoning perfor-

mance if it were to be accepted in practical settings. This is the question

of percentage defeasibility of ontologies. What fraction of the axioms in

a real world ontology would contain defeasible statements? Answering

this question would go far to reveal how much more work one needs to

do (over and above classical reasoning) in order to perform defeasible

inference. Rational Closure does not have a major performance bottle

neck. We showed that its main performance influencer is the number

of defeasible axioms (which is proportional to the number of potential

exceptions in the ontology). The bottleneck for Lexicographic Closure

is the computation of the LAC whose performance is highly dependent

on problematic rank size. We found that, as this number increases close

to, and beyond, the number 100, the performance drastically degrades

to unacceptable levels. For the Relevant Closures we found that justi-

fication computation is by far the major performance influencer. For

justification computation itself we found the major bottleneck to be

the construction of the hitting set tree (the number of nodes in the tree

is mainly determined by the degree of overlap in the justifications).

10. While sourcing data for our performance evaluation in Chapter 6, we

provided a novel method for introducing defeasible features into OWL

ontologies [49] thereby enriching the quality of the data (and hence

CHAPTER 8. CONCLUSIONS 342

extrapolations from the data).

11. Our practical focus in this thesis culminated in the development of a

plugin tool for the ontology editor Protégé for representing and reason-

ing with defeasible subsumption in modern OWL ontologies. The tool

currently provides functionality for computing the defeasible subclasses

and superclasses of a user-specified class expression.

8.2 Outstanding Issues

While we have contributed significantly to making preferential reasoning

more practical for DLs, there are some areas that we could not address for

pragmatic reasons. We list the most relevant issues not addressed here:

1. The most glaring omission of this thesis is the topic of preferential rea-

soning for the ABox. Although there are a number of proposals for the

semantics of ABox preferential reasoning [50][71, Section 3.3], there are

a number of issues which still need to be solidified both from a theo-

retical and practical perspective. In particular, the current algorithms

require one to consider all possible orderings (sequences) of individu-

als explicitly mentioned in the ABox in order to construct preferential

extensions of the ABox. The procedure has an exptime-complete

worst case complexity but it is clear that when a large number of indi-

viduals are mentioned in the ABox, the performance of the algorithm

would drastically degrade.

2. While the theoretical foundation of our work assumes that we are work-

ing with the ALC concept language, our results are, in principle, ap-

plicable to a wide class of DLs ranging from ALC all the way up to

SHIQ [74]. We have, however, not discussed in detail how our results

are able to generalise to more expressive DLs than ALC. Although

there have been independent efforts to explore preferential reasoning in

CHAPTER 8. CONCLUSIONS 343

low complexity DLs [73, 70, 53], we ourselves have not yet investigated

this problem in detail.

3. The fact that we have not considered ABox reasoning in detail meant

that we could not comprehensively compare alternative forms of defeasi-

ble reasoning for DLs. As we saw in Chapter 5, some major formalisms

started off considering the problem of deriving defeasible ABox-like in-

ferences from some defeasible background knowledge. In other words,

considering some object of the domain, and some incomplete knowledge

about this object, one can use some defeasible background knowledge

about the domain to assign some additional plausible attributes to this

object. For example, if I know of a student named John and I know

that students usually don’t pay taxes (and if I know nothing else), then

one can plausibly derive that John does not pay taxes. In contrast,

preferential reasoning took a different initial outlook: given some de-

feasible background knowledge about some domain of a terminological

nature, what other defeasible knowledge (also of a terminological na-

ture) can I derive from this knowledge? For example, if I know that

students usually don’t pay taxes, and I know that employed students

are types of student, what should I conclude about the tax paying

status of employed students in general?

4. Daniel Lehmann presented some informal properties of defeasible infer-

ence that he felt should be satisfied in general [116]. We ourselves have

also motivated the sensibility of these properties in our particular gen-

eralisation of them to the DL case (see Chapter 3). However, Lehmann

mentioned that these properties appear to have no purely formal rep-

resentation. Because of the inability to formalise these properties, we

have not been able to evaluate the formalisms mentioned in this thesis

against them. However, if it is indeed the case that these properties

have no formal representation, then we question the usefulness of stat-

ing and discussing them in the context of automated reasoning. In

CHAPTER 8. CONCLUSIONS 344

other words, if we cannot make design decisions in the development of

a defeasible formalism which can guarantee that these properties are

satisfied, then what use are they? The only obvious use appears to

be that, provided we agree that they are intuitive properties, we can

show by counter-examples when a particular formalism does not sat-

isfy them. However, we are more interested in formally demonstrating

when a particular formalism would satisfy these conditions as well as

designing formalisms from the ground up to respect them. Therefore,

we believe there must exist either a formal, or at least semi-formal, way

to represent these properties, and this still remains to be investigated.

5. On the subject of performance, we have left clues in Chapter 6 as to

where possible optimisations for preferential reasoning might lie. We

ourselves have used just two optimisations in this thesis: (a) ignorance

of knowledge that is irrelevant to the query being posed (using mod-

ularisation), and (b) when identifying exceptions, ignoring knowledge

that does not have the potential to contain exceptions (Lemma 26 on

Page 294). However, despite these, our algorithms remain very mod-

estly optimised compared with classical reasoning implementations.

With regards to the compilation of the exceptionality ranking of an

ontology, there is also tremendous scope for techniques to avoid näıve

recomputation of the ranking every time the ontology is modified.

6. With regards to evaluating the performance of preferential reasoning,

in Chapter 6 we devised a method for introducing defeasibility into real

world ontologies. The method worked by identifying the potentially ex-

ceptional axioms in the ontology by identifying its classically incoherent

concepts. We tried to “cater” for all these exceptions by converting all

axioms related to the signature of the incoherent concepts, to defeasible

axioms. This was not the most laconic way to introduce defeasibility

because we may unnecessarily require that an axiom be defeasible. An

interesting problem remains to be solved of whether we can introduce

CHAPTER 8. CONCLUSIONS 345

a “minimal” number of defeasible axioms to the ontology in order to

cater for all potential exceptions.

8.3 Future Work

Section 8.2 showed the areas that need to be addressed towards the goals of

this thesis (i.e., within the scope of the broad “vision” of this thesis). Apart

from earmarking these issues for investigation in future work, we also identify

areas outside of the scope of this thesis (although related in topic) that would

be interesting to address.

Defeasible Quantifiers: In this thesis we focused purely on one notion of de-

feasibility introduced into DLs - defeasible subsumption. In principle, one

could also introduce notions of defeasibility for other constructs in DLs. Re-

cently there has been a proposal by Britz et al. [43] for defeasible versions of

the existential (∃) and universal (∀) role quantifiers in DLs.

Borrowing from the authors work, we have the example concept expres-

sion Lawyeru∀hasClient.PayingClient which describes the set of all entities in

our domain representing lawyers, all of whose clients are paying clients.

However, if we would like to refer to those lawyers who normally defend

only paying clients, the above representation is too strong. We need an alter-

native representation capturing this latter intuition using defeasible universal

role quantifiers (∀•∼).

Similarly, the representation Lawyer u ∃hasClient.PayingClient refers to

those lawyers each of which has at least one paying client. However, with

classical existential role quantifiers it is difficult to be able to capture: all

those lawyers whose normal clientelé includes at least one paying client.

We wish to explore the integration of (∀•∼) and (∃•∼) into DLs with defeasible

subsumption and the associated effects on reasoning.

Additional Inferential Postulates: In Chapter 3 we argued that the ratio-

nality postulates of KLM should be the minimal requirements of a rational

defeasible entailment regime. However, we also remarked that there may be

CHAPTER 8. CONCLUSIONS 346

other rules that may be suitable in various defeasible reasoning contexts.

One particular effort in this area is by Bezzazi et al. [26] who have ex-

plored, amongst other properties, variants of Rational Monotonicity and

weakened versions of transitivity and contraposition, together with the infer-

ential relationships between these properties.

Performance Benchmarking and Comparison: It would be highly beneficial

for defeasible reasoning research if there could be a way to standardise a

benchmark of ontology data that could be used across (or easily converted

for) different defeasible reasoning formalisms.

This would enable the possibility of comparing the practical performance

of different formalisms which, again, would be highly beneficial to the defea-

sible reasoning community.

For this to happen, three main issues need to be addressed: firstly, one

needs to establish a comparison of current defeasible reasoning formalisms

in terms of expressive power. Once the expressivity relationships between

formalisms is clear, one can isolate the “intersection” of this expressive power.

That is, what kinds of knowledge can all of these formalisms express.

The second issue is to identify how to represent the same piece of knowl-

edge in each formalism (i.e., how to translate between different representa-

tions). This would pave the way for establishing benchmark ontologies.

Finally, to compare the performances of the different formalisms, one

would also need to provide up-to-date implementations for each of them.

We have done our part in this thesis by providing one for the preferential

approach in DLs.

Chapter 9

Bibliography

[1] Grigoris. Antoniou. A Nonmonotonic Rule System Using Ontologies. In

Proceedings of the International Workshop on Rule Markup Languages

for Business Rules on the Semantic Web, held at the International

Semantic Web Conference. Citeseer, 2002.

[2] Grigoris Antoniou and David Billington. Relating Defeasible and De-

fault Logic. In Proceedings of the Australian Joint Conference on Ar-

tificial Intelligence: Advances in Artificial Intelligence, pages 13–24.

Springer Berlin Heidelberg, 2001.

[3] Grigoris Antoniou, David Billington, Guido Governatori, and Michael J

Maher. Representation Results for Defeasible Logic. ACM Transactions

on Computational Logic (TOCL), 2(2):255–287, 2001.

[4] Grigoris Antoniou, David Billington, Guido Governatori, and Michael J

Maher. Embedding Defeasible Logic into Logic Programming. Theory

and Practice of Logic Programming, 6(06):703–735, 2006.

[5] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael

Zakharyaschev. The DL-Lite Family and Relations. Journal of Artifi-

cial Intelligence Research, 36(1):1–69, 2009.

347

CHAPTER 9. BIBLIOGRAPHY 348

[6] Michael Ashburner, Catherine A Ball, Judith A Blake, David Bot-

stein, Heather Butler, J Michael Cherry, Allan P Davis, Kara Dolinski,

Selina S Dwight, Janan T Eppig, et al. Gene Ontology: Tool for the

Unification of Biology. Nature Genetics, 25(1):25–29, 2000.

[7] Franz Baader. Least Common Subsumers and Most Specific Concepts

in a Description Logic with Existential Restrictions and Terminolog-

ical Cycles. In Proceedings of the International Joint Conference on

Artificial Intelligence, volume 3, pages 319–324. Citeseer, 2003.

[8] Franz Baader. Ontology-Based Monitoring of Dynamic Systems. In

Proceedings of the International Conference on Principles of Knowledge

Representation and Reasoning. AAAI press, 2014.

[9] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL
Envelope. In Proceedings of the International Joint Conference on Ar-

tificial Intelligence, volume 5, pages 364–369, 2005.

[10] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele.

Nardi, and Peter F. Patel-Schneider, editors. The Description Logic

Handbook. Cambridge University Press, 2003.

[11] Franz Baader and Bernhard Hollunder. Embedding Defaults into Ter-

minological Knowledge Representation Formalisms. Journal of Auto-

mated Reasoning, 14(1):149–180, 1995.

[12] Franz Baader and Bernhard Hollunder. Priorities on Defaults with

Prerequisites, and their Application in Treating Specificity in Termi-

nological Default Logic. Journal of Automated Reasoning, 15(1):41–68,

1995.

[13] Franz Baader, Bernhard Hollunder, Bernhard Nebel, Hans-Jrgen Prof-

itlich, and Enrico Franconi. An Empirical Analysis of Optimization

Techniques for Terminological Representation Systems. Applied Intel-

ligence, 4(2):109–132, 1994.

CHAPTER 9. BIBLIOGRAPHY 349

[14] Franz Baader and Ralf Küsters. Computing the Least Common Sub-

sumer and the Most Specific Concept in the Presence of Cyclic ALN -

Concept Descriptions. In Proceedings of the Annual German Confer-

ence on Artificial Intelligence (KI), pages 129–140. Springer, 1998.

[15] Franz Baader, Ralf Küsters, and Ralf Molitor. Computing Least Com-

mon Subsumers in Description Logics with Existential Restrictions. In

Proceedings of the International Joint Conference on Artificial Intelli-

gence, volume 99, pages 96–101, 1999.

[16] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. Is

Tractable Reasoning in Extensions of the Description Logic EL Useful

in Practice? In Proceedings of the International Workshop on Methods

for Modalities, volume 450, 2005.

[17] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. CEL A

Polynomial-time Reasoner for Life Science Ontologies. In Automated

Reasoning, pages 287–291. Springer, 2006.

[18] Franz Baader and Paliath Narendran. Unification of Concept Terms in

Description Logics. Journal of Symbolic Computation, 31(3):277–305,

2001.

[19] Franz Baader and Rafael Peñaloza. Axiom pinpointing in general

tableaux. Journal of Logic and Computation, 20(1):5–34, 2010.

[20] Franz Baader and Rafael Peñaloza. Axiom Pinpointing in General

Tableaux. Journal of Logic and Computation, 20(1):5–34, 2010.

[21] Franz Baader, Baris Sertkaya, and Anni-Yasmin Turhan. Computing

the Least Common Subsumer w.r.t. a Background Terminology. Jour-

nal of Applied Logic, 5(3):392–420, 2007.

[22] Samantha Bail, Matthew Horridge, Bijan Parsia, and Ulrike Sattler.

The Justificatory Structure of the NCBO Bioportal Ontologies. In

CHAPTER 9. BIBLIOGRAPHY 350

Proceedings of the International Semantic Web Conference, pages 67–

82. Springer, 2011.

[23] Samantha Bail, Bijan Parsia, and Ulrike Sattler. The Logical Diversity

of Explanations in OWL Ontologies. In Proceedings of the ACM Inter-

national Conference on Information & Knowledge Management, pages

559–568. ACM, 2013.

[24] Chryssoula Bekiari, Martin Doerr, Carlo Allocca, Julien Barde, and

Nikos Minadakis. MarineTLO Documentation. Forth.

[25] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The Semantic

Web. Scientific American, 284(5):28–37, 2001.

[26] Hassan Bezzazi, David C. Makinson, and Ramón Pino Pérez. Beyond

Rational Monotony: Some Strong Non-Horn Rules for Nonmonotonic

Inference Relations. Journal of Logic and Computation, 7(5):605–631,

1997.

[27] Piero A Bonatti, Marco Faella, Carsten Lutz, Luigi Sauro, and Frank

Wolter. Decidability of Circumscribed Description Logics Revisited.

In Advances in Knowledge Representation, Logic Programming, and

Abstract Argumentation, pages 112–124. Springer, 2015.

[28] Piero A Bonatti, Marco Faella, and Luigi Sauro. EL with Default At-

tributes and Overriding. In Proceedings of the International Semantic

Web Conference, pages 64–79. Springer, 2010.

[29] Piero A Bonatti, Marco Faella, and Luigi Sauro. Adding Default At-

tributes to EL++. In Proceedings of the AAAI Conference on Artificial

Intelligence, 2011.

[30] Piero A Bonatti, Marco Faella, and Luigi Sauro. Defeasible Inclusions

in Low-complexity DLs. Journal of Artificial Intelligence Research,

pages 719–764, 2011.

CHAPTER 9. BIBLIOGRAPHY 351

[31] Piero A Bonatti, Marco Faella, and Luigi Sauro. On the Complexity

of EL with Defeasible Inclusions. In Proceedings of the International

Joint Conference on Artificial Intelligence, volume 22, pages 762–767.

Citeseer, 2011.

[32] Piero A Bonatti, Carsten Lutz, and Frank Wolter. Description Logics

with Circumscription. In Proceedings of the International Conference

on Principles of Knowledge Representation and Reasoning, pages 400–

410, 2006.

[33] Piero A Bonatti, Carsten Lutz, and Frank Wolter. The Complexity

of Circumscription in DLs. Journal of Artificial Intelligence Research,

pages 717–773, 2009.

[34] Alex Borgida and David W Etherington. Hierarchical Knowledge Bases

and Efficient Disjunctive Reasoning. In Proceedings of the International

Conference on Principles of Knowledge Representation and Reasoning,

pages 33–43. Morgan Kaufmann Publishers Inc., 1989.

[35] Alexander Borgida and Ronald J. Brachman. Conceptual Modeling

with Description Logics. In Description Logic Handbook, pages 349–

372, 2003.

[36] Sebastian Brandt. Polynomial-time Reasoning in a Description Logic

with Existential Restrictions, GCI Axioms, and What Else? In Pro-

ceedings of the European Conference on Artificial Intelligence, vol-

ume 16, page 298, 2004.

[37] Stefan Brass. Deduction with Supernormal Defaults. In Nonmonotonic

and Inductive Logic, pages 153–174. Springer, 1993.

[38] Gerhard Brewka. The Logic of Inheritance in Frame Systems. In Pro-

ceedings of the International Joint Conference on Artificial Intelligence,

pages 483–488. Citeseer, 1987.

CHAPTER 9. BIBLIOGRAPHY 352

[39] Gerhard Brewka. Nonmonotonic Reasoning: Logical Foundations of

Commonsense, volume 12. Cambridge University Press., 1991.

[40] Gerhard Brewka. Adding Priorities and Specificity to Default Logic.

In Logics in Artificial Intelligence, pages 247–260. Springer, 1994.

[41] Katarina Britz, Giovanni Casini, Thomas Meyer, Kody Moodley, and

Ivan Varzinczak. Ordered Interpretations and Entailment for Defeasible

Description Logics. Technical report, CAIR, CSIR Meraka and UKZN,

South Africa, 2013. Available at http://tinyurl.com/cydd6yy.

[42] Katarina Britz, Thomas Meyer, and Ivan Varzinczak. Semantic Foun-

dation for Preferential Description Logics. In Proceedings of the Aus-

tralasian Joint Conference on Artificial Intelligence, pages 491–500.

Springer, 2011.

[43] Katarina Britz, Thomas Meyer, and Ivan Varzinczak. Preferential Role

Restrictions. In Proceedings of the International Workshop on Descrip-

tion Logics, volume 1014, pages 93–106, 2013.

[44] Marco Cadoli, Francesco M. Donini, and Marco Schaerf. Closed World

Reasoning in Hybrid Systems. In Zbigniew W. Ras, Maria Zemankova,

and Mary L. Emrich, editors, Proceedings of the International Sympo-

sium on Methodologies for Intelligent Systems, pages 474–481. Elsevier,

1990.

[45] Marco Cadoli and Maurizio Lenzerini. The Complexity of Propositional

Closed World Reasoning and Circumscription. Journal of Computer

and System Sciences, 48(2):255–310, 1994.

[46] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele

Nardi, and Riccardo Rosati. Description Logic Framework for Infor-

mation Integration. In Proceedings of the International Conference on

Principles of Knowledge Representation and Reasoning, pages 2–13,

1998.

CHAPTER 9. BIBLIOGRAPHY 353

[47] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Description

Logics for Conceptual Data Modeling. In Logics for Databases and

Information Systems, pages 229–263. Springer, 1998.

[48] Giovanni Casini, Thomas Meyer, Kody Moodley, and Riku Nortj. Rel-

evant Closure: A New Form of Defeasible Reasoning for Description

Logics. In Eduardo Ferm and Joo Leite, editors, Logics in Artificial

Intelligence, volume 8761 of Lecture Notes in Computer Science, pages

92–106. Springer, 2014.

[49] Giovanni Casini, Thomas Meyer, Kody Moodley, Uli Sattler, and Ivan

Varzinczak. Introducing Defeasibility into OWL Ontologies. In Pro-

ceedings of the International Semantic Web Conference, pages 409–426.

Springer, 2015.

[50] Giovanni Casini, Thomas Meyer, Kody Moodley, and Ivan Varzinczak.

Nonmonotonic Reasoning in Description Logics. Rational Closure for

the ABox. In Proceedings of the International Workshop on Description

Logics, pages 600–615, 2013.

[51] Giovanni Casini and Umberto Straccia. Rational Closure for Defeasi-

ble Description Logics. In Proceedings of the European Conference on

Logics in Artificial Intelligence, pages 77–90, 2010.

[52] Giovanni Casini and Umberto Straccia. Lexicographic Closure for De-

feasible Description Logics. In Proceedings of the Australasian Ontology

Workshop, volume 969, pages 28–39, 2012.

[53] Giovanni Casini, Umberto Straccia, and Thomas Meyer. A Polynomial

Time Subsumption Algorithm for EL⊥ under Rational Closure. Tech-

nical report, CSIR Meraka Institute, ISTI-CNR, UCT, South Africa

and Italy, 2015. Available at http://tinyurl.com/qx9sdxd.

[54] Keith L Clark. Negation as Failure. In Logic and Data bases, pages

293–322. Springer, 1978.

CHAPTER 9. BIBLIOGRAPHY 354

[55] William W Cohen, Alexander Borgida, Haym Hirsh, et al. Computing

Least Common Subsumers in Description Logics. In Proceedings of the

AAAI Conference on Artificial Intelligence, pages 754–760, 1992.

[56] William W Cohen and Haym Hirsh. Learning the CLASSIC Descrip-

tion Logic: Theoretical and Experimental Results. Proceedings of the

International Conference on Principles of Knowledge Representation

and Reasoning, pages 121–133, 1994.

[57] Roger A Cote and Stanley Robboy. Progress in Medical Information

Management: Systematized Nomenclature of Medicine (SNOMED).

Jama, 243(8):756–762, 1980.

[58] Giuseppe De Giacomo and Maurizio Lenzerini. Boosting the Cor-

respondence Between Description Logics and Propositional Dynamic

Logics. In Proceedings of the National Conference on Artificial Intelli-

gence, pages 205–212, 1994.

[59] Maarten De Rijke and Holger Sturm. Global Definability in Basic

Modal Logic. Essays on Non-classical Logic, 1:111–135, 2001.

[60] James P. Delgrande, Torsten Schaub, and W. Ken Jackson. Alternative

Approaches to Default Logic. Artificial Intelligence, 70(1):167–237,

1994.

[61] Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Li Ma, Edith Schon-

berg, Kavitha Srinivas, and Xingzhi Sun. Scalable Grounded Conjunc-

tive Query Evaluation Over Large and Expressive Knowledge Bases.

Springer, 2008.

[62] Francesco M Donini, Maurizio Lenzerini, Daniele Nardi, Andrea

Schaerf, and Werner Nutt. Adding Epistemic Operators to Concept

Languages. In Proceedings of the International Conference on Princi-

ples of Knowledge Representation and Reasoning, pages 342–353. Cite-

seer, 1992.

CHAPTER 9. BIBLIOGRAPHY 355

[63] Francesco M Donini, Daniele Nardi, and Riccardo Rosati. Description

Logics of Minimal Knowledge and Negation as Failure. ACM Transac-

tions on Computational Logic (TOCL), 3(2):177–225, 2002.

[64] Kevin Donnelly. SNOMED-CT: The Advanced Terminology and Cod-

ing System for eHealth. Studies in Health Technology and Informatics,

121:279–290, 2006.

[65] Thomas Eiter, Georg Gottlob, and Yuri Gurevich. Curb Your Theory!

A Circumscriptive Approach for Inclusive Interpretation of Disjunctive

Information. In Proceedings of the International Joint Conference on

Artificial Intelligence, volume 13, pages 634–634, 1993.

[66] David W Etherington. A Semantics for Default Logic. In Proceedings of

the International Joint Conference on Artificial Intelligence, volume 87,

pages 495–498, 1987.

[67] Enrico Franconi and Gary Ng. The i.com Tool for Intelligent Con-

ceptual Modelling. In Proceedings of the International Workshop on

Knowledge Representation meets Databases, 2000.

[68] Peter Gärdenfors. Belief Revision, volume 29. Cambridge University

Press, 2003.

[69] G. Gentzen. Untersuchungen über das logische Schließen. I. Mathema-

tische Zeitschrift, 39(1):176–210, 1935.

[70] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Poz-

zato. Reasoning about Typicality in Low Complexity DLs: The Logics

EL⊥Tmin and DL-LitecTmin. In Proceedings of the International Joint

Conference on Artificial Intelligence, volume 22, pages 894–899. Cite-

seer, 2011.

[71] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca

Pozzato. Semantic Characterization of Rational closure: From Propo-

sitional Logic to Description Logics. Artificial Intelligence.

CHAPTER 9. BIBLIOGRAPHY 356

[72] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Poz-

zato. Reasoning about Typicality in Preferential Description Logics.

In Logics in Artificial Intelligence, pages 192–205. Springer, 2008.

[73] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca

Pozzato. Prototypical Reasoning with Low Complexity Description

Logics: Preliminary Results. In Logic Programming and Nonmonotonic

Reasoning, pages 430–436. Springer, 2009.

[74] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Poz-

zato. Rational Closure in SHIQ. In Proceedings of the International

Workshop on Description Logics, pages 543–555, 2014.

[75] Laura Giordano, Nicola Olivetti, Valentina Gliozzi, and Gian Luca

Pozzato. mathcalALC + T: a Preferential Extension of Description

Logics. Fundamenta Informaticae, 96(3):341–372, 2009.

[76] Birte Glimm, Ian Horrocks, Boris Motik, Rob Shearer, and Giorgos

Stoilos. A Novel Approach to Ontology Classification. Web Semantics:

Science, Services and Agents on the World Wide Web, 14(0):84–101,

2012.

[77] Birte Glimm, Ian Horrocks, Boris Motik, and Giorgos Stoilos. Op-

timising Ontology Classification. In Proceedings of the International

Semantic Web Conference, pages 225–240. Springer, 2010.

[78] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe

Wang. HermiT: an OWL 2 Reasoner. Journal of Automated Reasoning,

53(3):245–269, 2014.

[79] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe

Wang. HermiT: an OWL 2 reasoner. Journal of Automated Reasoning,

53(3):245–269, 2014.

CHAPTER 9. BIBLIOGRAPHY 357

[80] Francois Goasdoue, Veronique Lattes, and Marie-Christine Rousset.

The Use of CARIN Language and Algorithms for Information Integra-

tion: The Picsel System. International Journal of Cooperative Infor-

mation Systems, 9(04):383–401, 2000.

[81] Guido Governatori. Defeasible Description Logics. In Rules and Rule

Markup Languages for the Semantic Web, pages 98–112. Springer,

2004.

[82] Guido Governatori, Michael J Maher, Grigoris Antoniou, and David

Billington. Argumentation Semantics for Defeasible Logic. Journal of

Logic and Computation, 14(5):675–702, 2004.

[83] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike

Sattler. Extracting Modules from Ontologies: A Logic-based Approach.

In Modular Ontologies, pages 159–186. Springer, 2009.

[84] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter

Patel-Schneider, and Ulrike Sattler. OWL 2: The Next Step for OWL.

Web Semantics: Science, Services and Agents on the World Wide Web,

6(4):309–322, 2008.

[85] Stephan Grimm and Pascal Hitzler. Semantic Matchmaking of Web

Resources with Local Closed-World Reasoning. International Journal

of Electronic Commerce, 12(2):89–126, 2007.

[86] Stephan Grimm and Pascal Hitzler. A Preferential Tableaux Calculus

for Circumscriptive ALCO. In Axel Polleres and Terrance Swift, edi-

tors, Web Reasoning and Rule Systems, volume 5837 of Lecture Notes

in Computer Science, pages 40–54. Springer, 2009.

[87] Benjamin N Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker.

Description Logic Programs: Combining Logic Programs with Descrip-

tion Logic. In Proceedings of the International Conference on World

Wide Web, pages 48–57. ACM, 2003.

CHAPTER 9. BIBLIOGRAPHY 358

[88] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A Benchmark

for OWL Knowledge Base Systems. Web Semantics: Science, Services

and Agents on the World Wide Web, 3(2):158–182, 2005.

[89] Volker Haarslev and Ralf Möller. High Performance Reasoning with

Very Large Knowledge Bases: A Practical Case Study. In Proceed-

ings of the International Joint Conference on Artificial Intelligence,

volume 1, pages 161–168, 2001.

[90] Volker Haarslev and Ralf Müller. RACER System Description. In

Automated Reasoning, pages 701–705. Springer, 2001.

[91] J. Herbrand. Recherches sur la theorie de la demonstration. PhD thesis,

University of Paris, 1930.

[92] Stijn Heymans, Li Ma, Darko Anicic, Zhilei Ma, Nathalie Steinmetz,

Yue Pan, Jing Mei, Achille Fokoue, Aditya Kalyanpur, Aaron Kershen-

baum, et al. Ontology Reasoning With Large Data Repositories. In

Ontology Management, pages 89–128. Springer, 2008.

[93] Robert Hoehndorf, Frank Loebe, Janet Kelso, and Heinrich Herre. Rep-

resenting Default Knowledge in Biomedical Ontologies: Application to

the Integration of Anatomy and Phenotype Ontologies. BMC Bioin-

formatics, 8(1):377, 2007.

[94] Matthew Horridge. Justification Based Explanation in Ontologies. PhD

thesis, University of Manchester, 2011.

[95] Matthew Horridge and Sean Bechhofer. The OWL API: A Java API

for OWL Ontologies. Semantic Web, 2(1):11–21, 2011.

[96] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic and Pre-

cise Justifications in OWL. In Proceedings of the International Seman-

tic Web Conference, pages 323–338. Springer, 2008.

CHAPTER 9. BIBLIOGRAPHY 359

[97] Matthew Horridge, Tania Tudorache, Jennifer Vendetti, Csongor I.

Nyulas, Mark A. Musen, and Natalya F. Noy. Simplified OWL On-

tology Editing for the Web: Is WebProtégé Enough? In Harith Alani,

Lalana Kagal, Achille Fokoue, Paul Groth, Chris Biemann, JosianeX-

avier Parreira, Lora Aroyo, Natasha Noy, Chris Welty, and Krzysztof

Janowicz, editors, Proceedings of the International Semantic Web Con-

ference, volume 8218 of Lecture Notes in Computer Science, pages 200–

215. Springer Berlin Heidelberg, 2013.

[98] Ian Horrocks. The Fact System. In Automated Reasoning with Analytic

Tableaux and Related Methods, pages 307–312. Springer, 1998.

[99] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The Even More Ir-

resistible SROIQ. In Proceedings of the International Conference

on Principles in Knowledge Representation and Reasoning, volume 6,

pages 57–67, 2006.

[100] Ian Horrocks and Peter F Patel-Schneider. Reducing OWL Entailment

to Description Logic Satisfiability. In Proceedings of the International

Semantic Web Conference, pages 17–29. Springer, 2003.

[101] Ian Horrocks, Peter F Patel-Schneider, and Frank Van Harmelen. From

SHIQ and RDF to OWL: The Making of a Web Ontology Language.

Web Semantics: Science, Services and Agents on the World Wide Web,

1(1):7–26, 2003.

[102] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical Reason-

ing for Expressive Description Logics. In Logic for Programming and

Automated Reasoning, pages 161–180. Springer, 1999.

[103] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical Reasoning

for Very Expressive Description Logics. Logic Journal of the IGPL,

8(3):239–263, 2000.

CHAPTER 9. BIBLIOGRAPHY 360

[104] Aditya Kalyanpur. Debugging and Repair of OWL Ontologies. PhD

thesis, 2006.

[105] Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin.

Finding All Justifications of OWL DL Entailments. In Karl Aberer,

Key-Sun Choi, Natasha Noy, Dean Allemang, Kyung-Il Lee, Lyndon

Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mi-

zoguchi, Guus Schreiber, and Philippe Cudr-Mauroux, editors, Pro-

ceedings of the International Semantic Web Conference, volume 4825

of Lecture Notes in Computer Science, pages 267–280. Springer Berlin

Heidelberg, 2007.

[106] Yevgeny Kazakov, Markus Krötzsch, and Frantǐsek Simanč́ık. The

Incredible ELK. Journal of Automated Reasoning, 53(1):1–61, 2014.

[107] Peihong Ke and Uli Sattler. Next Steps for Description Logics of Min-

imal Knowledge and Negation as Failure, 2008.

[108] Vladimir Kolovski, Bijan Parsia, and Yarden Katz. Implementing OWL

Defaults. In Proceedings of the OWL Experiences and Directions Work-

shop, volume 216, 2006.

[109] Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Model-

theoretic Inseparability and Modularity of Description Logic Ontolo-

gies. Artificial Intelligence, 203:66–103, 2013.

[110] Kurt Konolige. On the Relation between Default and Autoepistemic

Logic. Artificial Intelligence, 35(3):343–382, 1988.

[111] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. Nonmonotonic

Reasoning, Preferential Models and Cumulative Logics. Artificial In-

telligence, 44(1–2):167–207, 1990.

[112] Petr Křemen and Zdeněk Kouba. Incremental Approach to Error Ex-

planations in Ontologies. In Networked Knowledge-Networked Media,

pages 171–185. Springer, 2009.

CHAPTER 9. BIBLIOGRAPHY 361

[113] Ralf Küsters. Non-standard Inferences in Description Logics. Springer-

Verlag, 2001.

[114] Ora Lassila and Deborah McGuinness. The Role of Frame-based Rep-

resentation on the Semantic Web. Linköping Electronic Articles in

Computer and Information Science, 6(5), 2001.

[115] Michael J Lawley and Cyril Bousquet. Fast Classification in Protégé:

Snorocket as an OWL 2 EL Reasoner. In Proceedings of the Aus-

tralasian Ontology Workshop, volume 122, pages 45–49, 2010.

[116] Daniel. Lehmann. Another Perspective on Default Reasoning. Annals

of Mathematics and Artificial Intelligence, 15(1):61–82, 1995.

[117] Daniel Lehmann and Menachem Magidor. What Does a Conditional

Knowledge Base Entail? Artificial Intelligence, 55(1):1–60, 1992.

[118] Daniel Lehmann, Menachem Magidor, and Karl Schlechta. Distance Se-

mantics for Belief Revision. The Journal of Symbolic Logic, 66(01):295–

317, 2001.

[119] Hector J. Levesque. Foundations of a Functional Approach to Knowl-

edge Representation. Artificial Intelligence, 23(2):155–212, 1984.

[120] Hector J Levesque. Making Believers out of Computers. Artificial

Intelligence, 30(1):81–108, 1986.

[121] Vladimir Lifschitz. Computing Circumscription. In Proceedings of the

International Joint Conference on Artificial Intelligence, volume 85,

pages 121–127, 1985.

[122] Vladimir Lifschitz. On Open Defaults. In John W. Lloyd, editor, Com-

putational Logic, ESPRIT Basic Research Series, pages 80–95. Springer

Berlin Heidelberg, 1990.

CHAPTER 9. BIBLIOGRAPHY 362

[123] Vladimir Lifschitz. Nonmonotonic Databases and Epistemic Queries.

In Proceedings of the International Joint Conference on Artificial In-

telligence, pages 381–386, 1991.

[124] Vladimir Lifschitz. Circumscription. In Handbook of Logic in Artificial

Intelligence and Logic Programming, volume 3, pages 297–352. 1994.

[125] Vladimir Lifschitz. Minimal Belief and Negation as Failure. Artificial

Intelligence, 70(1):53–72, 1994.

[126] Witold Lukaszewlcz. Two Results on Default Logic. In Proceedings of

the International Joint Conference on Artificial Intelligence, volume 1,

pages 459–461. Morgan Kaufmann Publishers Inc., 1985.

[127] Carsten Lutz. The Complexity of Description Logics with Concrete

Domains. PhD thesis, 2002.

[128] Carsten Lutz, Robert Piro, and Frank Wolter. Description Logic

TBoxes: Model-theoretic Characterizations and Rewritability. In Pro-

ceedings of the International Joint Conference on Artificial Intelligence,

pages 983–988. AAAI Press, 2011.

[129] Li Ma, Yang Yang, Zhaoming Qiu, Guotong Xie, Yue Pan, and Sheng-

ping Liu. Towards a Complete OWL Ontology Benchmark. In The

Semantic Web: Research and Applications, volume 4011 of Lecture

Notes in Computer Science, pages 125–139. Springer Berlin, 2006.

[130] M. J. Maher. A Model-Theoretic Semantics for Defeasible Logic. In

Proceedings of the Workshop on Paraconsistent Computational Logic,

pages 67–80, 2002.

[131] Michael J Maher, Andrew Rock, Grigoris Antoniou, David Billington,

and Tristan Miller. Efficient Defeasible Reasoning Systems. Interna-

tional Journal on Artificial Intelligence Tools, 10(4):483–501, 2001.

CHAPTER 9. BIBLIOGRAPHY 363

[132] Nicolas Matentzoglu, Samantha Bail, and Bijan Parsia. A Corpus of

OWL DL Ontologies. In Proceedings of the International Workshop on

Description Logics, pages 829–841, 2013.

[133] Nicolas Matentzoglu, Samantha Bail, and Bijan Parsia. A Corpus of

OWL DL Ontologies. In Proceedings of the International Workshop on

Description Logics, pages 829–841, 2013.

[134] Nicolas Matentzoglu, Bijan Parsia, and Uli Sattler. An Empirical In-

vestigation of Difficulty of Subsets of Description Logic Ontologies. In

Proceedings of the International Workshop on Description Logics, pages

659–670, 2014.

[135] Nicolas Matentzoglu, Daniel Tang, Bijan Parsia, and Uli Sattler. The

Manchester OWL Repository: System Description. In Proceedings of

the International Semantic Web Conference, pages 285–288, 2014.

[136] John McCarthy. Circumscription - A Form of Non-Monotonic Reason-

ing. Artificial Intelligence, 13(1–2):27–39, 1980.

[137] John McCarthy. Applications of Circumscription to Formalizing

Common-Sense Knowledge. Artificial Intelligence, 28(1):89–116, 1986.

[138] Deborah L McGuinness and Jon R. Wright. Conceptual Modelling for

Configuration: A Description Logic-based Approach. Artificial Intelli-

gence for Engineering Design, Analysis and Manufacturing, 12(4):333–

344, 1998.

[139] Thomas Meyer, Kevin Lee, and Richard Booth. Knowledge Integration

for Description Logics. In Proceedings of the National Conference on

Artificial Intelligence, volume 2, pages 645–650. AAAI Press, 2005.

[140] Thomas Meyer, Kevin Lee, Richard Booth, and Jeff Z Pan. Finding

Maximally Satisfiable Terminologies for the Description Logic ALC.
In Proceedings of the National Conference on Artificial Intelligence,

volume 21, page 269. AAAI Press., 2006.

CHAPTER 9. BIBLIOGRAPHY 364

[141] Robert C. Moore. Semantical Considerations on Nonmonotonic Logic.

Artificial Intelligence, 25(1):75–4, 1985.

[142] Robert C. Moore. Semantical considerations on nonmonotonic logic.

Artificial Intelligence, 25(1):75–94, 1985.

[143] Nishal A. Morar. Extending Classical Reasoning for Classification

Queries Over Ontologies. Master’s thesis, University of KwaZulu-Natal,

2015.

[144] Boris Motik and Ian Horrocks. OWL Datatypes: Design and Imple-

mentation. Springer, 2008.

[145] Bernhard Nebel. Syntax-based Approaches to Belief Revision. Belief

revision, 29:52–88, 1992.

[146] Nils J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71–87,

1986.

[147] Natalya F Noy. Semantic Integration: A Survey of Ontology-based

Approaches. Association for Computing Machinery, Special Interest

Group on Management of Data Record, 33(4):65–70, 2004.

[148] Natalya F. Noy, Nigam H. Shah, Patricia L. Whetzel, Benjamin Dai,

Michael Dorf, Nicholas Griffith, Clement Jonquet, Daniel L. Rubin,

Margaret-Anne Storey, Christopher G. Chute, and Mark A. Musen.

BioPortal: Ontologies and Integrated Data Resources at the Click of a

Mouse. Nucleic Acids Research, 37(suppl 2):W170–W173, 2009.

[149] Donald Nute. Defeasible logic. Handbook of Logic in Artificial Intelli-

gence and Logic Programming, 3:353–395, 1994.

[150] Lin Padgham and Patrick Lambrix. A Framework for Part-of Hierar-

chies in Terminological Logics. In Principals of Knowledge Represen-

tation and Reasoning, pages 485–496, 1994.

CHAPTER 9. BIBLIOGRAPHY 365

[151] Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging OWL

ontologies. In Proceedings of the International Conference on the World

Wide Web, pages 633–640. ACM, 2005.

[152] Antonella Poggi, Mariano Rodriguez, and Marco Ruzzi. Ontology-

based Database Access With DIG-Mastro and the OBDA Plugin for

Protégé. In Proceedings of the OWL Experiences and Directions Work-

shop, volume 8, 2008.

[153] John L Pollock. Defeasible Reasoning. Cognitive science, 11(4):481–

518, 1987.

[154] David Poole. Variables in hypothesis. In Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence, pages 905–908, 1987.

[155] Pakornpong Pothipruk and Guido Governatori. ALE defeasible de-

scription logic. In Proceedings of the National Conference on Artifi-

cial Intelligence: Advances in Artificial Intelligence, pages 110–119.

Springer, 2006.

[156] Guilin Qi and Jianfeng Du. Model-based Revision Operators for Termi-

nologies in Description Logics. In Proceedings of the International Joint

Conference on Artificial Intelligence, pages 891–897. Citeseer, 2009.

[157] Robert G. Raskin and Michael J. Pan. Knowledge Representa-

tion in the Semantic Web for Earth and Environmental Terminology

(SWEET). Computers & Geosciences, 31(9):1119–1125, 2005.

[158] Alan L. Rector. Defaults, Context, and Knowledge: Alternatives for

OWL-indexed Knowledge Bases. In Pacific Symposium on Biocomput-

ing, volume 9, pages 226–237. World Scientific, 2004.

[159] Alan L Rector, Jeremy E Rogers, and Pam Pole. The GALEN High

Level Ontology. Studies in Health Technology and Informatics, pages

174–178, 1996.

CHAPTER 9. BIBLIOGRAPHY 366

[160] Raymond Reiter. On Closed World Databases. In Hervé Gallaire and

Jack Minker, editors, Logic and Data Bases, pages 119–140. Plenum

Press, 1978.

[161] Raymond Reiter. A Logic for Default Reasoning. Artificial Intelligence,

13(1):81–132, 1980.

[162] Raymond Reiter. A Theory of Diagnosis from First Principles. Artifi-

cial intelligence, 32(1):57–95, 1987.

[163] Raymond Reiter. On Asking What a Database Knows. In JohnW.

Lloyd, editor, Computational Logic, ESPRIT Basic Research Series,

pages 96–113. Springer Berlin Heidelberg, 1990.

[164] Raymond Reiter. In Talk given at the Christian Doppler Lab for Expert

Systems, March 31, 1992.

[165] Raymond Reiter and Giovanni Criscuolo. On Interacting Defaults. In

Proceedings of the International Joint Conference on Artificial Intelli-

gence, volume 81, pages 270–276, 1981.

[166] Jeremy E Rogers and Alan L Rector. The GALEN Ontology. Medical

Informatics Europe, pages 174–178, 1996.

[167] Ana A. Romero, Bernardo Cuenca Grau, and Ian Horrocks. MORe:

Modular Combination of OWL Reasoners for Ontology Classification.

In Proceedings of the International Semantic Web Conference, pages

1–16. 2012.

[168] Sebastian Rudolph. Foundations of Description Logics. In Axel

Polleres, Claudia d’Amato, Marcelo Arenas, Siegfried Handschuh,

Paula Kroner, Sascha Ossowski, and Peter F. Patel-Schneider, edi-

tors, Reasoning Web. Semantic Technologies for the Web of Data – 7th

International Summer School.

CHAPTER 9. BIBLIOGRAPHY 367

[169] Uli Sattler, Thomas Schneider, and Michael Zakharyaschev. Which

Kind of Module Should I Extract? In Proceedings of the International

Workshop on Description Logics, 2009.

[170] Ulrike Sattler, Thomas Schneider, and Michael Zakharyaschev. Which

Kind of Module Should I Extract? International Workshop on De-

scription Logics, 477:78, 2009.

[171] Viachaslau Sazonau, Ulrike. Sattler, and Gavin Brown. Predicting

OWL Reasoners: Locally or Globally? In International Workshop on

Description Logics, pages 713–724, 2014.

[172] Klaus Schild. A Correspondence Theory for Terminological Logics:

Preliminary Report. In Proceedings of the International Joint Confer-

ence on Artificial Intelligence, pages 466–471, 1991.

[173] Klaus Schild. Querying Knowledge and Data Bases by a Universal

Description Logic with Recursion. PhD thesis, 1995.

[174] Stefan Schlobach and Ronald Cornet. Non-standard Reasoning Services

for the Debugging of Description Logic Terminologies. In Proceedings of

the International Joint Conference on Artificial Intelligence, volume 3,

pages 355–362, 2003.

[175] Manfred Schmidt-Schauß and Gert Smolka. Attributive Concept De-

scriptions with Complements. Artificial Intelligence, 48(1):1–26, 1991.

[176] Stefan Schulz, Holger Stenzhorn, Martin Boeker, and Barry Smith.

Strengths and Limitations of Formal Ontologies in the Biomedical Do-

main. Revista Electronica de Comunicacao, Informacao & Inovacao

em Saude: RECIIS, 3(1):31, 2009.

[177] Kunal Sengupta, Pascal Hitzler, and Krzysztof Janowicz. Revisiting

Default Description Logics and Their Role in Aligning Ontologies. In

Thepchai Supnithi, Takahira Yamaguchi, Jeff Z. Pan, Vilas Wuwongse,

CHAPTER 9. BIBLIOGRAPHY 368

and Marut Buranarach, editors, Semantic Technology, volume 8943 of

Lecture Notes in Computer Science, pages 3–18. Springer International

Publishing, 2015.

[178] Kunal Sengupta, Adila Alfa Krisnadhi, and Pascal Hitzler. Local

Closed World Semantics: Grounded Circumscription for OWL. In Pro-

ceedings of the International Semantic Web Conference, pages 617–632.

Springer, 2011.

[179] Rob Shearer and Ian Horrocks. Exploiting Partial Information in Tax-

onomy Construction. Springer, 2009.

[180] Yoav Shoham. Readings in nonmonotonic reasoning. chapter A Se-

mantical Approach to Nonmonotonic Logics, pages 227–250. Morgan

Kaufmann Publishers Inc., 1987.

[181] Nicholas Sioutos, Sherri de Coronado, Margaret W. Haber, Frank W.

Hartel, Wen-Ling Shaiu, and Lawrence W. Wright. NCI Thesaurus:

A Semantic Model Integrating Cancer-related Clinical and Molecular

Information. Journal of Biomedical Informatics, 40(1):30–43, 2007.

[182] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,

and Yarden Katz. Pellet: A Practical OWL-DL Reasoner. Web Seman-

tics: Science, Services and Agents on the World Wide Web, 5(2):51–53,

2007.

[183] Kent Spackman. Managing Clinical Terminology Hierarchies Using

Algorithmic Calculation of Subsumption: Experience with SNOMED-

RT. Journal of the American Medical Informatics Association, 2000.

[184] Kent A Spackman, Keith E Campbell, and Roger A. Côté. SNOMED

RT: A Reference Terminology for Health Care. In Proceedings of the

AMIA Annual Fall Symposium, page 640. American Medical Informat-

ics Association, 1997.

CHAPTER 9. BIBLIOGRAPHY 369

[185] Andreas Steigmiller, Thorsten Liebig, and Birte Glimm. Konclude:

System Description. Web Semantics: Science, Services and Agents on

the World Wide Web, 27:78–85, 2014.

[186] Robert Stevens, Mikel Egaña Aranguren, Katy Wolstencroft, Ulrike

Sattler, Nick Drummond, Matthew Horridge, and Alan Rector. Using

OWL to Model Biological Knowledge. International Journal of Human-

Computer Studies, 65(7):583–594, 2007.

[187] Umberto Straccia. Reasoning within Fuzzy Description Logics. Journal

of Artificial Intelligence Research, 14:137–166, 2001.

[188] Boontawee Suntisrivaraporn. Polynomial-Time Reasoning Support for

Design and Maintenance of Large-Scale Biomedical Ontologies. PhD

thesis, 2009.

[189] A. Tarski. Über einige fundamentale begrie der metamathematik. In

Classe III, volume 23, pages 22–29. Proc. of society of sciences and

letters Warsaw, 1930.

[190] Edward Thomas, Jeff Z. Pan, and Yuan Ren. TrOWL: Tractable OWL

2 Reasoning Infrastructure. In The Semantic Web: Research and Ap-

plications, pages 431–435. Springer, 2010.

[191] Dmitry Tsarkov and Ian Horrocks. FaCT++ Description Logic Rea-

soner: System Description. In Automated Reasoning, pages 292–297.

Springer, 2006.

[192] Dmitry Tsarkov and Ian Horrocks. FaCT++ Description Logic Rea-

soner: System Description. In Automated Reasoning, pages 292–297.

Springer, 2006.

[193] Dmitry Tsarkov and Ignazio Palmisano. Chainsaw: a Metareasoner

for Large Ontologies. In Proceedings of the OWL Reasoner Evaluation

Workshop, 2012.

CHAPTER 9. BIBLIOGRAPHY 370

[194] Yannis Tzitzikas, Carlo Allocca, Chryssoula Bekiari, Yannis Mar-

ketakis, Pavlos Fafalios, Martin Doerr, Nikos Minadakis, Theodore

Patkos, and Leonardo Candela. Integrating Heterogeneous and Dis-

tributed Information about Marine Species through a Top Level Ontol-

ogy. In Emmanouel Garoufallou and Jane Greenberg, editors, Metadata

and Semantics Research, volume 390 of Communications in Computer

and Information Science, pages 289–301. Springer International Pub-

lishing, 2013.

[195] Kewen Wang, David Billington, Jeff Blee, and Grigoris Antoniou. Com-

bining Description Logic and Defeasible Logic for the Semantic Web. In

Grigoris Antoniou and Harold Boley, editors, Rules and Rule Markup

Languages for the Semantic Web, volume 3323 of Lecture Notes in

Computer Science, pages 170–181. Springer Berlin Heidelberg, 2004.

[196] Patricia. L. Whetzel, Natalya F. Noy, Nigam H. Shah, Paul R. Alexan-

der, Csongor Nyulas, Tania Tudorache, and Mark A. Musen. BioPortal:

Enhanced Functionality via New Web Services from the National Cen-

ter for Biomedical Ontology to Access and Use Ontologies in Software

Applications. Nucleic Acids Research, 39(suppl 2):W541–W545, 2011.

