
Parallel Patch-Based Volumetric Reconstruction from

Images

Robert Jermy

July 7, 2014

In ful�llment of the degree Master of Science in Computer Engineering, College of Agri-
culture, Engineering and Science, University of KwaZulu-Natal.

Supervisor: Mr. B. Naidoo
Co-Supervisor: Prof. J.R. Tapamo
Examiner's Copy

COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE

DECLARATION 1 - PLAGIARISM

I, ……………………………………….………………………., declare that

1. The research reported in this thesis, except where otherwise indicated, is my original research.

2. This thesis has not been submitted for any degree or examination at any other university.

3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless
specifically acknowledged as being sourced from other persons.

4. This thesis does not contain other persons' writing, unless specifically acknowledged as being sourced
from other researchers. Where other written sources have been quoted, then:

a. Their words have been re-written but the general information attributed to them has been referenced
b. Where their exact words have been used, then their writing has been placed in italics and inside

quotation marks, and referenced.

5. This thesis does not contain text, graphics or tables copied and pasted from the Internet, unless
specifically acknowledged, and the source being detailed in the thesis and in the References sections.

Signed

………………………………………………………………………………

CMC Feb 2012

5

Form EX1-5

As the candidate's Supervisor I agree/do not agree to the submission of this thesis.

Acknowledgements

I would like to thank my supervisor for his guidance and input throughout this degree

as well as providing the topic and giving constructive criticism and positive feedback as

required. I would also like to thank my family and �ancée for proof reading and providing

feedback on my dissertation in its various incarnations and for putting up with me pushing

reconstructed models in their faces at fairly regular intervals.

ii

Abstract

Three Dimensional (3D) reconstruction relates to the creating of 3D computer models from

sets of Two Dimensional (2D) images. 3D reconstruction algorithms tend to have long ex-

ecution times, meaning they are ill suited to real time 3D reconstruction tasks. This is a

signi�cant limitation which this dissertation attempts to address. Modern Graphics Pro-

cessing Units (GPUs) have become fully programmable and have spawned the �eld known

as General Purpose GPU (GPGPU) processing. Using this technology it is possible to of-

�oad certain types of tasks from the Central Processing Unit (CPU) to the GPU. GPGPU

processing is designed for problems that have data parallelism. This means that a partic-

ular task can be split into many smaller tasks that can run in parallel, the results of which

and are not dependent upon the order in which the tasks are completed. Therefore to

properly make use of both CPU parallelism and GPGPU processing a 3D reconstruction

algorithm with data parallelism was required. The selected algorithm was the Patch-Based

Multi-View Stereopsis (PMVS) method, proposed and implemented by Yasutaka Furukawa

and Jean Ponce. This algorithm uses small oriented rectangular patches to model a surface

and is broken into four major steps: Feature detection; feature matching, expansion and

�ltering. The reconstructed patches are independent and as such the algorithm is data par-

allel. Some segments of the PMVS algorithm were programmed for GPGPU and others for

CPU parallelism. Results show that the feature detection stage runs 10 times faster on the

GPU than the equivalent CPU implementation. The patch creation and expansion stages

also bene�ted from GPU implementation. Which brought an improvement in the execution

time of two times for large images, and equivalent execution times for small images, when

compared to the CPU implementation. These results show that the use of GPGPU and

CPU parallelism can indeed improve the performance of this 3D reconstruction algorithm.

Contents

1 Introduction 1

1.1 Three Dimensional Reconstruction . 1

1.2 Parallelism . 2

1.3 Problem Statement . 2

1.4 Outline of this Thesis . 2

2 Literature Review 4

2.1 Multi-View Stereopsis . 4

2.1.1 Scene Representation . 4

2.1.2 Initialisation Requirements . 5

2.1.3 Photo-Consistency Measure . 5

2.1.4 Visibility Model . 6

2.1.5 Shape Prior . 6

2.1.6 Evaluation of MVS Results . 6

2.2 Mathematical Background . 10

2.2.1 Notation . 10

2.2.2 Homogenous Coordinates . 10

2.2.3 Intrinsic and Extrinsic Parameters 11

2.2.4 Epipolar Geometry . 12

2.2.5 The Essential and Fundamental Matrix 12

2.2.6 Triangulation . 13

2.2.6.1 Midpoint Triangulation . 14

2.2.6.2 Linear Triangulation . 14

2.2.6.3 Optimal Triangulation Method 15

2.2.7 Numerical Methods . 15

2.2.7.1 Limited Memory Broyden-Fletcher-Goldfarb-Shanno Opti-

misation Algorithm . 15

2.2.7.2 Solving Systems of Linear Equations 17

2.3 Parallel Processing . 17

2.3.1 Parallelism on the CPU . 17

2.3.2 The Graphics Card as a Massively Parallel Processor 18

2.3.2.1 Introduction . 18

2.3.2.2 Graphics Processor Architecture 18

i

2.3.2.3 General Purpose Graphics Processing Units 19

2.3.2.4 Parallel Programs and Data Parallelism 20

2.3.3 Compute Uni�ed Device Architecture 21

2.3.3.1 Programming Structure . 21

2.3.3.2 CUDA Memories . 22

2.3.4 An Example of Parallel Processing 23

2.4 Selection of Modern MVS Algorithms . 25

2.4.1 Accurate, Dense, and Robust Multi-View Stereopsis 25

2.4.2 Multiple Hypotheses Depth-Maps for Multi-View Stereo 26

3 Patch-Based Multi-View Stereo 28

3.1 Introduction . 28

3.2 Model Representation . 28

3.2.1 Patch Model . 28

3.2.2 Photometric Discrepancy Function 29

3.2.3 Image Model . 30

3.2.4 Patch Optimisation . 31

3.3 Initial Feature Matching . 31

3.3.1 Feature Detection . 31

3.3.1.1 Gaussian Kernels . 31

3.3.1.2 Harris Feature Detector . 32

3.3.1.3 Di�erence of Gaussians Feature Detector 32

3.3.1.4 Detecting Features in Windows 32

3.3.2 Feature Matching . 33

3.3.2.1 Feature Matching Procedure 33

3.4 Patch Expansion . 34

3.4.1 Selecting Cells for Expansion . 34

3.4.2 Expansion Procedure . 35

3.5 Patch Filtering . 35

3.6 Polygonal Mesh Reconstruction . 36

3.6.1 Mesh Creation . 36

3.6.2 Mesh Optimisation . 36

4 Methodology and Results 38

4.1 Introduction . 38

4.2 Speci�cations . 39

4.2.1 System . 39

4.2.2 Programs . 39

4.3 Test Implementations . 39

4.4 Initial Feature Matching . 39

4.4.1 Feature Detection . 41

4.4.1.1 Gaussian Smoothing . 42

4.4.1.2 Harris Feature Detector . 42

ii

4.4.1.3 Di�erence of Gaussians Feature Detector 43

4.4.2 Candidate Creation . 43

4.4.2.1 Finding Feature Pairs . 44

4.4.2.2 Initialising a Three Dimensional Patch 44

4.4.2.3 Re�ning a Three Dimensional Patch 44

4.4.2.4 Optimising a Three Dimensional Patch 45

4.5 Patch Expansion . 46

4.6 Patch Filtering . 48

4.6.1 Filtering of Outliers . 48

4.6.2 Remove Occluded Patches . 49

4.6.3 Remove Patches that Lack Neighbours 49

4.6.4 Remove Small Groups of Erroneous Patches 49

4.7 Polygonal Mesh Reconstruction . 50

4.7.1 Mesh Reconstruction . 50

4.7.2 Mesh Optimisation . 51

4.8 Results . 51

4.8.1 Skull dataset . 51

4.8.1.1 Reconstruction Results . 52

4.8.1.2 Reconstructions from Full Size Images 53

4.8.1.3 Reconstructions from Half Size Images 55

4.8.1.4 Reconstructions from Quarter Size Images 57

4.8.1.5 Timing Results . 60

4.8.1.6 Comparison to the Original Algorithm 63

4.8.1.7 Discussion . 65

4.8.2 Middlebury Dinosaur Dataset . 66

4.8.2.1 Dinosaur Sparse Ring . 66

4.8.2.2 Dinosaur Ring . 67

4.8.2.3 Dinosaur Hemisphere . 68

4.8.2.4 Results of the Middlebury Evaluation 69

5 Conclusion 70

5.1 Summary . 70

5.2 Future Work . 71

Bibliography 72

A Derivations 75

A.1 Separability of Gaussian Kernels . 75

A.2 Full Response of the Harris Filter . 75

A.3 Finding the Fundamental Matrix . 76

iii

B Reconstruction Results 77

B.1 Roman Action Figure . 77

B.1.1 Reconstructions from Full Size Images 77

B.1.2 Reconstructions from Half Size Images 78

B.1.3 Reconstructions from Quarter Size Images 81

B.1.4 Timing Results . 84

C DVD 86

iv

List of Tables

2.1 Results of the Middlebury evaluation. 9

4.1 Timing results for skull dataset with CUDA algorithm. 61

4.2 Timing results for skull dataset with the original PMVS algorithm. 64

4.3 Average number of patches reconstructed. 65

4.4 Ratio of the number of reconstructed patches 65

4.5 Middlebury evaluation results of the modi�ed algorithm. 69

B.1 Timing results for roman dataset. 85

v

List of Figures

2.1 Middlebury datasets and hemisphere . 7

2.2 The main components of epipolar geometry. 12

2.3 The �xed function pipeline of an old NVIDIA GeForce GPU. 19

2.4 Matrix multiplication. 21

2.5 The input and output of a Gaussian blurring kernel. 23

2.6 2D Gaussian blurring. 24

2.7 Sample input of the PMVS algorithm . 25

2.8 Outputs of the PMVS �ltering stage. 26

2.9 Final Mesh Model [1]. 26

2.10 Results of the depth map MVS algorithm. 27

3.1 Patch Model [1]. 29

4.1 Feature Matching Pipeline. 41

4.2 Sample images of the skull data set. 42

4.3 Sample output of the Harris Feature Detector. 43

4.4 Sample output of the Di�erence of Gaussians feature detector. 43

4.5 Model after initial feature matching step. 45

4.6 Model after the �rst expansion step. 47

4.7 Model after the second expansion step. 47

4.8 Model after the third expansion step. 48

4.9 Model after the �rst �ltering step. 50

4.10 Model after the second �ltering step. 50

4.11 Model after the third �ltering step. 50

4.12 Final mesh model of the skull. 51

4.13 Full size images, cell size of one, patch size of nine. 53

4.14 Full size images, cell size of one, patch size of seven. 53

4.15 Full size images, cell size of one, patch size of �ve. 54

4.16 Full size images, cell size of two, patch size of nine. 54

4.17 Full size images, cell size of two, patch size of seven. 54

4.18 Full size images, cell size of two, patch size of �ve. 55

4.19 Half size images, cell size of one, patch size of nine. 55

4.20 Half size images, cell size of one, patch size of seven. 56

4.21 Half size images, cell size of one, patch size of �ve. 56

4.22 Half size images, cell size of two, patch size of nine. 56

vi

4.23 Half size images, cell size of two, patch size of seven. 57

4.24 Half size images, cell size of two, patch size of �ve. 57

4.25 Quarter size images, cell size of one, patch size of nine. 58

4.26 Quarter size images, cell size of one, patch size of seven. 58

4.27 Quarter size images, cell size of one, patch size of �ve. 58

4.28 Quarter size images, cell size of two, patch size of nine. 59

4.29 Quarter size images, cell size of two, patch size of seven. 59

4.30 Quarter size images, cell size of two, patch size of �ve. 59

4.31 Timing graph for full size images with a cell size of two. 60

4.32 Timing graph for half size images with a cell size of two. 62

4.33 Timing graph for quarter size images with a cell size of two. 62

4.34 Timing graph for full size images with a cell size of one. 62

4.35 Timing graph for half size images with a cell size of two. 63

4.36 Timing graph for quarter size images with a cell size of one. 63

4.37 Point cloud reconstruction of the dinosaur sparse ring dataset. 67

4.38 Mesh reconstruction of the dinosaur sparse ring dataset. 67

4.39 Point cloud reconstruction of the dinosaur ring dataset. 68

4.40 Mesh reconstruction of the dinosaur ring dataset. 68

4.41 Point cloud reconstruction of the dinosaur hemisphere dataset. 69

4.42 Mesh reconstruction of the dinosaur hemisphere dataset. 69

B.1 Full size images, cell size of two, patch size of nine. 77

B.2 Full size images, cell size of two, patch size of seven. 78

B.3 Full size images, cell size of two, patch size of �ve. 78

B.4 Half size images, cell size of one, patch size of nine. 79

B.5 Half size images, cell size of one, patch size of seven. 79

B.6 Half size images, cell size of one, patch size of �ve. 80

B.7 Half size images, cell size of two, patch size of nine. 80

B.8 Half size images, cell size of two, patch size of seven. 81

B.9 Half size images, cell size of two, patch size of �ve. 81

B.10 Quarter size images, cell size of one, patch size of nine. 82

B.11 Quarter size images, cell size of one, patch size of seven. 82

B.12 Quarter size images, cell size of one, patch size of �ve. 83

B.13 Quarter size images, cell size of two, patch size of nine. 83

B.14 Quarter size images, cell size of two, patch size of seven. 84

B.15 Quarter size images, cell size of two, patch size of �ve. 84

vii

List of Algorithms

2.1 L-BFGS Algorithm. 16

2.2 Gaussian smoothing on the GPU. 24

4.1 Initial Feature Matching Procedure. Adapted from [1]. 40

4.2 Patch Expansion Algorithm. Adapted from [1]. 47

viii

Nomenclature

3D Three Dimensional

MVS Multi-View Stereo

CPU Central Processing Unit

CUDA Compute Uni�ed Device Architechture

DoG Di�erence of Gaussians

FPS Frames per Second

GPGPU General Purpose computing on Graphics Processing Units

GPU Graphics Processing Unit

GSL GNU Scienti�c Library

GTM Ground Truth Model

L-BFGS Limited Memory Broyden-Fletcher-Goldfarb-Shanno

MUTEX Mutual Exclusion

NCC Normalised Cross Correlation

PC Personal Computer

PMVS Patch-Based Multi-View Stereopsis

SVD Singular Value Decompisition

VSTL Vertex Shading, Transform and Lighting

ix

Chapter 1

Introduction

The topic of Three Dimensional (3D) reconstruction from images has many di�erent meth-

ods. All with the same goal of creating an accurate reconstruction of a 3D model from a

sequence of input images. This dissertation aims to improve upon an existing 3D recon-

struction algorithm. This is achieved by making use of parallel processing on the Central

Processing Unit (CPU) and the Graphics Processing Unit (GPU). There is not a single

algorithm that is suitable for all problems, as such an algorithm should be chosen based

on the speci�c requirements of the problem.

1.1 Three Dimensional Reconstruction

All 3D reconstruction algorithms aim to create an accurate and detailed 3D model of some

object or scene, but how they go about this task, and their suitability to a particular

task, varies greatly. For example voxel based methods provide a highly scalable method of

creating a model of an object. These methods however are not well suited to large scene

datasets where the large number of voxels required creates a prohibitively high memory

and processing requirement.

Patch based methods such as the one that is the basis of this dissertation are suited

to both object and scene datasets. These methods attempt to densely cover a surface in

small oriented patches so that the patches provide an accurate point cloud reconstruction.

This can then be used to create an accurate and complete mesh model [1, 2]. Patch

based methods are suited to parallelisation because they create a model made of many

unconnected patches. This disconnectedness is also the major drawback of patch based

methods. Patches do not have any inherent connectivity information and thus some amount

of processing is required to determine neighbourhood information [1, 3].

In general all 3D reconstruction algorithms take a series of calibrated input images and

from these create a 3D model of the object or scene in the images. A calibrated image

refers to an image with known extrinsic and intrinsic camera parameters. The extrinsic

parameters store the translation and rotation of the camera relative to a reference point in

space. The intrinsic parameters store the internal parameters of the camera: focal length,

pixel size, and principal point.

A major issue with 3D reconstruction algorithms is that they tend to take a pro-

1

hibitively long time to create a 3D model from calibrated input images. This problem can

be mitigated by making use of parallel processing, such as multi-core methods, typical of

CPU threads, and many-core methods, typical of GPU threads.

1.2 Parallelism

The CPU can be thought of as a general purpose processor. It can perform complex

calculations while also running a media player that allows one to listen to music or run

a word processor. For these reasons CPU threads can be thought of as semi-independent

programs. Most modern personal computers (PCs) have four physical cores and four virtual

cores. This allows eight independent threads to be run in parallel, allowing for a signi�cant

speed-up to processing, although this speed-up falls short of an eight times increase.

The GPU on the other hand has a very speci�c purpose: it is dedicated to doing �oating

point calculations. Only recently though has this power become available to developers

in the form of OpenCL and NVIDIA's Compute Uni�ed Device Architecture (CUDA).

Where the CPU runs up to eight simultaneous and complex threads the GPU can run

thousands of simultaneous light-weight threads. This type of processing power is often

called �Embarrassingly Parallel Processing� [4] due to the large number of simultaneous

threads.

Both types of parallelism have their uses and they are used to improve the performance

of the PMVS algorithm. CPU threads are used to �supervise� a particular reference image,

while GPU threads are used for smaller speci�c tasks during the run time of the program.

1.3 Problem Statement

This dissertation aims to build on the work done by Furukawa and Ponce. Using the

Patch-Based Multi-View Stereopsis (PMVS) [1, 5] algorithm as a starting point. What

impacts can parallel processing make to the execution time of the program? If parallelism

does make an impact on processing which methods should be used, and where?

The general problem statement is:

Can parallel processing, both CPU and GPU based, be used to improve the

execution time of three dimensional reconstruction algorithms?

1.4 Outline of this Thesis

Chapter 2 contains a literature review, covering the work done in the �eld of 3D recon-

struction. It includes di�erent algorithms that create a 3D model from input sequences of

images.

Chapter 3 has a detailed description of the Patch-Based Multi-View Stereopsis [1]

(PMVS) algorithm developed by Furukawa and Ponce. This is the method that forms the

foundation of this thesis and upon which the implementation was built.

2

Chapter 4 provides information about modi�cations that were made to the algorithm

to improve its e�ciency. As well as images of reconstructed models and timing information

for the primary dataset.

Chapter 5 concludes this dissertation and discusses what was achieved and possible

extensions to the work.

3

Chapter 2

Literature Review

2.1 Multi-View Stereopsis

The objective of a multi-view stereo (MVS) reconstruction algorithm is to construct an

accurate three-dimensional model of an object, or scene, from a set of calibrated input

images in a reasonable amount of time. There are many di�erent types of multi-view

stereo algorithms that make use of a multitude of di�erent methods to construct a model.

Work by Seitz et al. has determined six categories that can be used to classify the various

MVS algorithms. These are Scene Representation, Photo-Consistency Measure, Visibility

Model, Shape Prior, Reconstruction Algorithm and Initialisation Requirements [3]. These

classi�cations may not �t all methods of three-dimensional reconstruction, however they

do allow one to break a particular algorithm into its component parts.

2.1.1 Scene Representation

The way that a MVS algorithm represents a scene is very important to the algorithm as

a whole. Certain scene representations will work better for object data sets, for example

voxel based methods. These methods often require some sort of initial bounding volume

like a convex hull or visual hull. Other methods work on both scene and object data sets.

For example patch based methods like the one presented in this dissertation do not require

a bounding volume and are thus able to adequately model scenes and objects. Depth map

based methods such as the depth map fusion method [6, 7] create depth maps from multiple

views and do not require a bounding volume. This makes them acceptable for both object

and scene datasets. These methods create scalable models of the object or scene as they

run, rather than carving away at a �xed virtual block like voxel based methods.

Voxels based methods represent the 3D geometry of an object as a series of discrete

voxels. The accuracy of the 3D reconstruction can be changed by altering the resolution of

the voxel grid. Unfortunately for voxel based methods to work properly a bounding volume

is required around the scene. As such voxel based methods will only work on object data

sets, or scenes where a strict bounding volume can be de�ned [1, 3].

Polygonal Mesh methods represent surfaces as a series of connected planes which can

4

be deformed to create an accurate 3D model of the scene. These methods generally require

some sort of initial model to re�ne such as a visual hull or convex hull [8]. This makes these

methods only viable for object datasets, or scenes with a strict bounding volume [1, 3].

Depth Map Fusion methods create depth maps for each input view. These depth maps

are then fused together to create a 3D model. These methods do not require an initial

bounding volume and can therefore be used for objects and scenes [1, 3].

Patch based methods represent the surface of the scene with a number of patches that

are oriented towards the camera that observes them. They require no bounding volume or

visual hull and can model both objects and scenes. A �nal post-processing step is needed

to transform the patch model into a mesh model. This is only necessary if a closed surface

representation is required [1].

2.1.2 Initialisation Requirements

All MVS algorithms require an input set of calibrated images. Calibrated in this case

means that the extrinsic and intrinsic parameters of the camera are known. The extrinsic

parameters are the position and orientation of the camera that captured each image known

relative to some to a global origin. The intrinsic parameters of the camera are the pixel size,

focal length, and principal point. It is possible to generate the camera parameters using a

set of uncalibrated images using a method known as Structure from Motion [9, 2] which

uses common features to determine the relative positions of the cameras. For larger scene

datasets a method such as bundle adjustment can be used to group images and cameras

into smaller subsets [10]. Bundle adjustment attempts to group and optimise bundles of

vectors based on their proximity which makes it suited to such problems. Some methods

require more input information, such as a visual hull or bounding volume around the object

that was modeled. While other algorithms require silhouette images to construct a visual

hull [8, 3].

2.1.3 Photo-Consistency Measure

The photo-consistency measure is used to measure the visual compatibility between the

di�erent input images. Most of these measures compare a set of pixels in one image to a

corresponding set of pixels in another. The photo-consistency measure can be de�ned as

either a scene space or an image space method [3].

Scene space methods operate by taking a patch from one reference image and projecting

it into the other input images to determine the amount of agreement between them. There

are a number of methods that can be used to determine the agreement between images,

such as the variance of projected pixels in the images [3].

Image space methods use an estimate of the scene geometry to warp an image from the

reference viewpoint to predict a di�erent viewpoint. The predicted image is then compared

to the measured image to yield a photo-consistency measure called the prediction error [3].

5

2.1.4 Visibility Model

The purpose of a visibility model is to determine which views are considered when evalu-

ating photo-consistency. This stage ensures that images that may not have a clear view of

the object or scene are not used when measuring photo-consistency. The visibility model

is also important for dealing with occlusions. This is a necessity for all modern MVS al-

gorithms if they are going to be used on real world datasets. Three techniques for dealing

with visibility are detailed below.

Geometric techniques try to model the image formation process as well as the shape of

the scene to determine which parts of the scene are visible in the images [3, 11, 12].

Quasi-Geometric techniques attempt to estimate visibility relationships based on ap-

proximate geometric reasoning. A popular method is to ensure that photo-consistency

analyses are done between cameras that have similar positions and orientations [3, 13].

Outlier Based methods just treat all occlusions as outliers, this technique is useful when

there are a su�cient number of good views. One of the most commonly used methods is

to avoid comparing views that are far apart [3].

2.1.5 Shape Prior

Shape priors are used to assist the MVS algorithm to converge to the correct surface. They

do this by giving the algorithm a reconstruction bias. Some methods try to minimise the

scene based photo-consistency and typically seek minimal surfaces with small surface area;

however these methods tend to smooth over surfaces with high curvature [3].

There are other methods that favour maximal surfaces. These methods tend to be

space carving methods that remove voxels only if they are not photo-consistent [3].

2.1.6 Evaluation of MVS Results

One of the major problems with MVS algorithms is that it can be di�cult to compare

the results of one algorithm to those of another. This means that more often than not

the only measure of a 3D reconstruction algorithm's accuracy is qualitative rather than

quantitative. This may have been one of the reasons that research in the �eld of multi-view

stereo 3D reconstruction was fairly slow when compared to binocular 3D reconstruction [3].

Seitz et al. proposed a method for quantitatively comparing MVS algorithms in their pa-

per �A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms� [3].

Their paper covers a number of state-of-the-art MVS algorithms and classi�es the vari-

ous implementations, before �nally o�ering a quantitative measure of the accuracy of the

reconstruction.

The authors decided on two objects that could be used to test these algorithms. A

sample of these objects as well as the ground truth models are shown in Figure 2.1a. A

robotic arm, that could be accurately positioned on a one metre radius hemisphere, was

used to capture images of the objects. The captured hemisphere is shown in Figure 2.1b.

6

The captured images had a resolution of 640x480 pixels. The arm photographed two sets

of images of each object using two di�erent arm con�gurations because the arm would

cast shadows over the object in certain positions. The images without any shadows were

selected for the �nal dataset. Each object was used to make three data sets with varying

numbers of images. These are listed in decreasing order of size: a hemisphere containing

more than 300 images, a ring containing between 40 and 50 images, and a sparse ring

(referred to as SparseR. in Table 2.1) containing 24 images.

(a) (b)

Figure 2.1: (2.1a) The objects that were used to create the image data and Ground Truth
Models [3]. (2.1b) Hemisphere that the robot arm rotated around. The pyramids represent
the viewpoints that the images are taken from [3].

Using this method Seitz et al. produced a high quality, calibrated set of input images.

They also made use of a laser scanner to create Ground Truth Models (GTMs) of both

objects. These models have an accuracy of 0.05mm to 0.2 mm [3]. From this data it

is possible for an algorithm to be tested and then quantitatively rated according to two

criteria. To test an algorithm �rst one must reconstruct the 3D models from the input

data that was supplied, then the reconstructed model can be compared to the GTMs

to determine how �good� the reconstruction is. The remaining question is how can one

quantitatively measure goodness, which is by no means a scienti�c term?

Seitz et al. determined two metrics, accuracy and completeness, that would rate the

goodness of an algorithm. The accuracy is the distance d such that X% of the points on [the

MVS reconstruction] are within distance d of [the GTM] [3]; this metric shows how closely

the MVS reconstruction models the GTM. In their paper the authors use an accuracy

threshold of X = 90%, so if d = 0.65 it means that 90% of the MVS reconstruction

is within 0.65mm of the GTM. The completeness is de�ned as the fraction of points of

[the GTM] that are within an allowable distance d of [the MVS reconstruction] [3]. In

other words the completeness is the amount of the GTM that is modeled by the MVS

reconstruction, so a reconstructed model with many holes will have a low completeness

7

score. The Middlebury evaluation is only relevant for closed mesh models, and does not

provide relevant results for point clouds.

Table 2.1 shows the results of a number of MVS algorithms. The table is an amalga-

mation of the data collected by Seitz et al. [3] and Furukawa and Ponce [1]. The table

lists the authors of a particular algorithm and their results on the Middlebury datasets.

The Middlebury datasets contain two objects: a temple and a dinosaur. The dinosaur has

a fairly uniform texture and the full dataset contains 363 images. The temple also has

a fairly uniform texture and gaps between the pillars creating shadows and obscurations.

The full temple dataset contains 317 images. These two datasets are each split into three

sets: hemisphere, ring and sparse ring. The number of images in each dataset is shown in

Table 2.1.

The PMVS algorithm by Furukawa and Ponce [1] has the highest accuracy and best

completeness score for each set of the dinosaur dataset. Their algorithm also performs

consistently well on the temple dataset but is outperformed on the hemisphere set by

Campbell et al. [6]. More up-to-date results can be found on the Middlebury web page [14].

8

T
em

p
le

D
in
o

F
u
ll
(3
17
)

R
in
g
(4
7)

S
p
ar
se
R
.
(1
6)

F
u
ll
(3
63
)

R
in
g
(4
8)

S
p
ar
se
R
.
(1
6)

B
ra
d
le
y
[1
5]

0.
57

98
.1
%

0.
48

93
.7
%

0.
39

97
.6
%

0.
38

94
.7
%

C
am

p
b
el
l[
6]

0.
41

99
.9
%

0.
48

99
.4
%

0.
53

98
.6
%

F
u
ru
ka
w
a[
16
]

0.
65

98
.7
%

0.
58

98
.5
%

0.
82

94
.3
%

0.
52

99
.2
%

0.
42

98
.8
%

0.
58

96
.9
%

F
u
ru
ka
w
a[
1]

0.
49

99
.6
%

0.
47

99
.6
%

0.
63

99
.3
%

0.
33

99
.8
%

0.
28

99
.8
%

0.
37

99
.2
%

G
o
es
el
e[
17
]

0.
42

98
.0
%

0.
61

86
.2
%

0.
87

56
.6
%

0.
56

80
.0
%

0.
46

57
.8
%

0.
56

26
.0
%

H
er
n
an
d
ez
[1
3]

0.
36

99
.7
%

0.
52

99
.5
%

0.
75

95
.3
%

0.
49

99
.6
%

0.
45

97
.9
%

0.
60

98
.5
%

K
ol
m
og
or
ov
[1
8]

1.
86

90
.4
%

2.
80

85
.7
%

P
on
s[
19
]

0.
60

99
.5
%

0.
90

95
.4
%

0.
55

99
.0
%

0.
71

97
.7
%

V
og
ia
tz
is
[1
1]

1.
07

90
.7
%

0.
76

96
.2
%

2.
77

79
.4
%

0.
42

99
.0
%

0.
49

96
.7
%

1.
18

90
.8
%

V
og
ia
tz
is
[1
2]

0.
50

98
.4
%

0.
64

99
.2
%

0.
69

96
.9
%

Z
ac
h
[7
]

0.
51

98
.8
%

0.
56

99
.0
%

0.
55

98
.7
%

0.
51

99
.1
%

T
ab
le
2.
1:

R
es
u
lt
s
fr
om

th
e
M
id
d
le
b
u
ry

ev
al
u
at
io
n
.
T
h
e
�
rs
t
va
lu
e
is
th
e
ac
cu
ra
cy

of
th
e
re
co
n
st
ru
ct
io
n
(i
.a
a)
.
T
h
e
se
co
n
d
va
lu
e
is
th
e
co
m
p
le
te
n
es
s

(c
c%

),
w
h
ic
h
is
th
e
p
er
ce
n
ta
ge

of
p
oi
n
ts

on
th
e
G
T
M

th
at

ar
e
w
it
h
in

1.
25
m
m

of
th
e
M
V
S
re
co
n
st
ru
ct
io
n
.
T
h
e
n
u
m
b
er
s
in

th
e
p
ar
en
th
es
es

at
th
e

to
p
of

th
e
ta
b
le
ar
e
th
e
n
u
m
b
er

of
im

ag
es

u
se
d
in

th
e
re
co
n
st
ru
ct
io
n
.
R
ec
re
at
ed

fr
om

[1
,
3]

9

2.2 Mathematical Background

2.2.1 Notation

Throughout this thesis there a number of di�erent types of values are displayed, this section

serves to describe the notations that are used.

• All matrices are shown as a capital letter, for example F is the fundamental matrix

that is described later in this section.

• Scalar values are shown as lowercase letters, x or y.

• Vectors are shown as bold letters with an arrow over them, −→x = (x, y).

• Points are shown as bold letters with a bar over them, x = (x, y).

• Points in an image are referred to using the references (h, v), representing horizontal

and vertical position.

• All vectors are considered to be column vectors unless otherwise stated. Therefore
−→
xT is a row vector.

2.2.2 Homogenous Coordinates

Homogenous coordinates represent the position of a point in 3D space using four parameters

instead of three. They are often labeled as (x, y, z, w). When the w parameter is set to

one, homogenous coordinates behave identically to normal 3D coordinates. Homogenous

coordinates allow any point, including points at in�nity, to be represented. They also

simplify the mathematical calculations that are used in projective geometry.

When de�ning the position of a point on a two-dimensional plane a pair of coordinates

(x, y) are used. If R2 is thought of as a vector-space then the point (x, y) can be thought

of as a vector starting at the origin of R2 and ending at (x, y). Homogenous coordinates

are used to represent points in two-dimensional space using a three-vector.

The equation of a line in two-dimensional space is ax + by + c = 0. This line can be

represented as a vector (a, b, c)T . However (a, b, c)T does not uniquely de�ne a speci�c line

because ax + by + c = 0 is the same line as (ka)x + (kb) y + kc = 0, for every non-zero

value of k. This means that (a, b, c)T and k (a, b, c)T represent the same line for any non-

zero value of k. This representation of lines and coordinates is known as the homogenous

representation [20].

The point x = (x, y)T is on the line
−→
L = (a, b, c)T only if ax + by + c = 0. This is

equivalent to (x, y, 1) (a, b, c)T = (x, y, 1)
−→
L = 0, so the point (x, y)T can be represented as

(x, y, 1)T in homogenous coordinates. It is evident that (kx, ky, k)
−→
L = 0 for any non-zero

constant k. Therefore (x, y, 1)T ≡ (kx, ky, k)T ≡ (x, y)T [20].

10

2.2.3 Intrinsic and Extrinsic Parameters

Ideal pinhole cameras [20] can be characterised according to two matrices that contain

their intrinsic and extrinsic parameters. The intrinsic parameters of a camera represent

the internal properties of the camera such as the focal length, size of pixels in the image

plane and position of the camera centre. The extrinsic parameters represent the position

and orientation of the camera with reference to a set of world coordinates. The intrinsic

parameters of a camera have the following form:

Mi =


f
hx

s ox

0 f
hy

oy

0 0 1

 (2.1)

The camera has a focal length of f , which is the distance from the aperture to the

focal plane. The origin of the image is given by the point pair (ox, oy) and the physical

dimensions of the pixels are given by (hx, hy). Using these data it is possible to transform

points from the camera's coordinate system (xc, yc) into the image's coordinate system

(himg, vimg) and vice versa using the following equations.

xc = (himg − ox)hx (2.2)

yc = (vimg − oy)hy

The aspect ratio of the image is given by aspect ratio =
hy
hx
, and s is called the skew

parameter which can generally be set to zero and thus ignored.

The extrinsic parameters of a camera provide the means for moving the origin of the

camera Oc to the origin of the world Ow using a transformation vector
−→
T , and then

rotating the axis system of the camera such that it is aligned with the axes of the world

using rotation matrix R. The rotation matrix and translation vector have the following

form:

R =

 R1T

R2T

R3T

 =

 R11 R12 R13

R21 R22 R23

R31 R32 R33

 (2.3)

−→
T = Ow −Oc =

 T1

T2

T3

 (2.4)

The extrinsic parameter matrix is formed according to:

Me =
[
R|−→T

]
=

 R11 R12 R13 −R1T

R21 R22 R23 −R2T

R31 R32 R33 −R3T

 (2.5)

11

Finally the intrinsic and extrinsic parameters can be multiplied to form the camera

matrix P = MiMe which transforms 3D word coordinates into pixel coordinates in the

image.

2.2.4 Epipolar Geometry

Figure 2.2: The main components of epipolar geometry. Adapted from [21].

Epipolar geometry can be used to �nd important geometric details about objects in a

camera's �eld of vision. Figure 2.2 shows two pinhole cameras with optical centres Ol and

Or. These cameras have image planes Πl and Πr respectively. The point of intersection

of the line originating from an optical centre Oi and passing through the image plane Πi

such that it is orthogonal to Πi is called the principal point. The distance between the

optical centre and the principal point is called the focal length and the line between them

de�nes the optical axis of the camera. The line that joins Ol and Or is called the base

line. The points where the base line intersects the image planes are the epipoles, denoted

as el and er. These represent the projection of the camera centres into their respective

image planes.

Given a 3D point X that is visible in both Πl and Πr it is possible to de�ne the epipolar

plane, Πe, that is the plane with vertices X, Ol and Or. The epipolar plane intersects the

image planes and these intersections are called the epipolar lines, denoted as −→ul and
−→ur.

An epipolar line −→ur describes the projection of the point xl onto the image plane Πr.

Each camera has its own coordinate system such that the z-axis is co-linear with the

optical axis. The points xl = [xl, yl, zl]
T and xr = [xr, yr, zr]

T represent the images of the

3D point X in the image planes Πl and Πr respectively.

2.2.5 The Essential and Fundamental Matrix

By using a translation vector
−→
T = Or−Ol, that translates the position of one camera centre

to the other, and a rotation matrix R that aligns their systems of axes, it is possible to

12

change from one coordinate system to another. Given two vectors −→xl and
−→xr both of which

point towards
−→
X from their respective camera centres, Or and Ol, then

−→xr = R
(
−→xl −

−→
T
)
.

The epipolar plane Πe in the coordinate system of the left camera is spanned by
−→
T

and −→pl, thus
−→pl −

−→
T also belongs in that plane, therefore

(
−→xl −

−→
T
)(−→

T ×−→xl

)
= 0.

−→
T ×−→xl =

 T1 T2 T3

pl1 pl2 pl3

i j k

 =

 0 −T3 T2

T3 0 −T1
−T2 T1 0


 pl1

pl2

pl3

 = A · −→xl (2.6)

Because R is orthogonal

−→
xT
r RA

−→xl = 0 (2.7)
−→
xT
r E
−→xl = 0 (2.8)

E = RA is called the essential matrix, which is of rank two and stores encoded infor-

mation about the extrinsic parameters of both the left and right cameras. The essential

matrix transforms image plane coordinates from one camera to image plane coordinates of

the other camera. With
−→
xT
r E
−→xl = 0 where −→xl and

−→xr are image points on the planes Πl

and Πr respectively. Since these points lie on the epipolar lines of the other image plane

the following equations hold:

−→ur = E−→xl (2.9)

−→ul = ET−→xr (2.10)

The pixel coordinates−→xpi of a point
−→xi are given by

−→xpi = Mij
−→xi whereMij is the matrix

of intrinsic parameters for camera j as de�ned in Equation 2.1. Using this relationship the

following equations are found.

(
M−1ir

−→xpr

)T
EM−1il

−→xpl = 0 (2.11)
−→
xT
prM

−T
ir EM−1il

−→xpl = 0 (2.12)
−→
xT
prF
−→xpl = 0 (2.13)

Where F = M−Tir EM−1il is called the fundamental matrix, which is a matrix of rank

two and stores encoded information of the intrinsic and extrinsic camera parameters. It

describes the epipolar geometry in terms of pixel coordinates as opposed to the essential

matrix which uses the image plane coordinates.

2.2.6 Triangulation

There are a number of methods that one can use to resolve a 3D point P from two 2D

image points pl and pr and their respective camera information. The naive triangulation

13

method is to project lines from the optical centres of the cameras through their respective

points in the image plane out into the focal plane. In Figure 2.2 these lines are given by
−→
Pl and

−→
Pr. This 3D point is the intersection of these two lines. In real multi-view stereo

problems these two lines often do not intersect exactly and as such a better method is

required. Three such methods are considered here.

2.2.6.1 Midpoint Triangulation

The midpoint triangulation method creates a line between the two rays
−→
Pl and

−→
Pr that

is orthogonal to both. A numerical optimiser is then used to minimise its length. Finally

the position of the 3D point P is the midpoint of this joining line. This method is not

projective invariant, and although simple to compute, often performs poorly [22].

Let P = (Mi |−Mici) and the centre of a camera be given by Oi =

(
ci

1

)
using

homogenous coordinates. The point at in�nity that is seen on the image plane as point xi

is given by

(
M−1xi

0

)
. Therefore the equation for any point on a ray that projects onto

xi is

(
ci + αM−1i xi

1

)
. Given any two images their respective rays may cross in space,

according to αlM
−1
l xl − αrM−1r xr = −→cr − −→cl . A numerical minimisation method can be

used to change the values of αl and αr such that the squared distance between the two

rays and the midpoint given by
(−→cl + αlM

−1
l xl +−→cr + αrM

−1
r xr

)
/2 is minimised.

2.2.6.2 Linear Triangulation

One of the most common methods of triangulation is the method of linear triangulation [5,

20, 22]. This method makes use of the camera matrix and some geometric properties

to accurately triangulate a 3D point. If xi = PX, in homogenous coordinates xi =

w (h, v, 1)T , where h and v are the coordinates of the points, in pixels, and w is an unknown

scaling factor. Using P iT to denote the ith row of the camera matrix P the following

equations can be found:

wh = P 1Txi (2.14)

wv = P 2Txi (2.15)

w = P 3Txi (2.16)

Then eliminate w from the �rst and second equations:

hP 3Txi = P 1Txi (2.17)

vP 3Txi = P 2Txi (2.18)

When looking at the 3D point from two views a total of four linear equations are found

14

that can then be written in the form of Ax = 0. Equations of the form Ax = 0 can be

solved using a method such as singular value decomposition (SVD) or another method for

solving equations of the form Ax = b which is described in Section 2.2.7.2.

2.2.6.3 Optimal Triangulation Method

The optimal triangulation method can be used to �nd a 3D point in space that is the

exact intersection of two rays [20, 22]. The optimal triangulation method was initially

implemented as an alternative to linear triangulation in the dissertation. However its long

processing time made it unsuitable for this particular implementation. Brie�y the method

uses the known fundamental matrix for a pair of cameras, as well as corresponding feature

points that have been located in each of the input images. The method �rst changes the

position of the feature points in the image. This small change ensures that the points in

the left and right images project out to the same 3D point.

2.2.7 Numerical Methods

2.2.7.1 Limited Memory Broyden-Fletcher-Goldfarb-Shanno Optimisation Al-

gorithm

The Limited Memory Broyden-Fletcher-Goldfarb-Shanno [23] (L-BFGS) algorithm is an

implementation of the standard BFGS algorithm, with an extra variable m introduced.

This variable is the maximum number of corrections that can be stored, so for the �rst

m iterations of the algorithm it is identical to the normal BFGS method. Which is itself

an approximation to Newton's method that uses an approximation of the Hessian matrix

computed from �rst derivatives. Thereafter the oldest correction is pushed out and replaced

with the second oldest correction.

L-BFGS makes use of matrix-vector and matrix-matrix multiplication. For this reason

it was considered for a GPU implementation. Fei et al. [24] created a GPU implementation

of this algorithm which they showed could outperform the CPU implementation when

computing Voronoi tessellation with one thousand vertices and over. The authors made

use of NVIDIA's CUDA to implement the matrix operations as well as the CUBLAS library

for solving of equations.

The L-BFGS algorithm is outlined in Algorithm 2.1 below:

15

Algorithm 2.1 L-BFGS Algorithm [23].

Inputs:

Choose x0 as a starting point.

Choose m, the maximum number of corrections to store.

Choose two constants 0 < β′ < 0.5 and β′ < β < 1.
Choose a symmetric, positive-definite matrix H0.

Outputs:

Minimal solution to the smooth nonlinear function f with known gradient g.

1) Set k = 0 and q = g0 ≡ ∇f (x0).
2)

dk = −Hkgk

xk+1 = xk + αkdk

where :

αk = pks
T
k q

gk ≡ ∇f (xk)

pk =
1

yTk sk
sk = xk+1 − xk
q = q − αkyk
yk = gk+1 − gk

where αk satisfies the Wolfe conditions:

f (xk + αkdk) ≤ f (xk) + β′αkg
T
k dk

g (xk + αkdk) ≥ βgTk dk

3) Let m̂ = min {k,m− 1}. Then

Hk+1 =
(
V T
k · · ·V T

k−m̂
)
H0 (Vk−m̂ · · ·Vk)

+ pk−m̂
(
V T
k · · ·V T

k−m̂+1

)
sk−m̂s

T
k−m̂ (Vk−m̂+1 · · ·Vk)

+ pk−m̂+1

(
V T
k · · ·V T

k−m̂+2

)
sk−m̂s

T
k−m̂ (Vk−m̂+2 · · ·Vk)

...

+ pksks
T
k

where :

Vk = I − pkyksTk

4) Set k = k + 1 and go to 2.

16

2.2.7.2 Solving Systems of Linear Equations

When attempting to triangulate a point the triangulation algorithm requires the solution

of an equation in the form Ax = b where x is the homogenous 3D coordinate of the

triangulated point. Finding a least squares solution to equations of this form is possible

using the equation:

x =
(
ATA

)−1
ATb (2.19)

The reason this equation is useful is because the matrix
(
ATA

)
may be invertible. This

gives a least squares error solution to the problem [25] and the least squares error can be

found by calculating the distance between Ax and b.

2.3 Parallel Processing

One of the major problems that this thesis aims to tackle is the relevance of parallel pro-

cessing to a particular 3D reconstruction algorithm and possibly reconstruction algorithms

in general. Two types of parallel processing are discussed and implemented. The �rst type

uses multiple CPU threads to run speci�c parts of the program in parallel. The second type

makes use of the relatively new method of general purpose processing on GPUs (GPGPU),

speci�cally NVIDIA's CUDA. These two methods of parallel processing are very di�erent

from one another and require di�erent programming approaches. This can be attributed

to the fact that the CPU and GPU have very disparate architectures as they were designed

for di�erent tasks. The CPU was designed as a general purpose processor that can run

an operating system as well as perform complex �oating point problems. The GPU on

the other hand has a design much more focused on running thousands of small threads in

parallel. It is essentially a very powerful mathematics processor.

2.3.1 Parallelism on the CPU

The CPU is a general purpose processor that is suited to run multiple instructions in a

pipeline allowing for near simultaneous operation of instructions. The pThreads library [26]

is a C and C++ open source library that allows one to create independent CPU threads.

The library provides important functionality for CPU based parallel processing.

When processing data in parallel one needs to be mindful of how the �nal result of a

thread may e�ect the results of other threads that are currently running. If there is not

a su�cient amount of data parallelism then MUTual EXclusions (MUTEXs) can be used.

A MUTEX will temporarily lock a shared resource when a thread writes to it. This way

other threads cannot access the resource until the thread with the MUTEX releases it.

This allows data to be written to shared memory without multiple threads attempting to

gain simultaneous access.

17

2.3.2 The Graphics Card as a Massively Parallel Processor

2.3.2.1 Introduction

Massively parallel processors are designed to take advantage of the parallelism that is

present in some problems in an attempt to improve the performance of a program by

several orders of magnitude. These sorts of programs used to be run on very large, and

very expensive, computing clusters that were only available to researchers with large grants

or corporations with the necessary capital to a�ord such a cluster. The high running cost

o�set the performance gains for many years.

This started to change as the video game industry required computers that could

generate 3D computer graphics in real time. The fast evolving video game industry drove

hardware manufacturers to create a�ordable graphics cards that could be attached to any

personal computer [4]. These graphics processing units (GPUs) were many-core processors.

Current generation GPUs that can be bought by any user have hundreds of compute cores,

for example the GTX550Ti which has 192 Compute cores. The top of the range GPUs

have thousands of compute cores, for example the NVIDIA GTX Titan which has 2688

cores.

Researchers and programmers soon realised that GPUs could be used to run highly

parallel programs without the need of an expensive compute cluster; this became the �eld

known as GPGPU. GPGPU is so called because it makes use of the GPU, which is essen-

tially a numeric computing engine which specialises in 3D graphic computations, to solve

many general problems in wide ranging �elds from mathematics and physics to computer

vision and medical imaging. There were still many limitations with the GPGPU frame-

work and it was a non-trivial task to create a GPGPU program because all mathematical

operations had to be cast as graphics operations that the �xed-function processors on the

GPU could understand.

More recent developments in the �eld, such as NVIDIA's compute uni�ed device archi-

tecture (CUDA) and OpenCL, have made programming on the GPU much simpler. CUDA

extends the C++ language and allows programs to run on the GPU and CPU simultane-

ously. Furthermore because of a number of recent changes to the hardware of GPUs their

processors no longer require problems to be cast as graphical operations and they can be

programmed almost as one would program a CPU.

2.3.2.2 Graphics Processor Architecture

The graphics processing unit began its life cycle as a �xed function processing pipeline

however this pipeline could not be programmed [4]. Through the use of Application Pro-

gramming Interfaces (APIs) it was possible for game developers and designers to use the

�xed function GPU to create 3D worlds in a video game. The �xed function pipeline of a

GPU is shown in Figure 2.3.

In the �xed function pipeline the CPU, known as the host, oversees all operations

passed to the GPU, or the device. The host interface receives instructions from the host

18

and is able to interpret and execute these instructions on the device. The vertex control

stage converts triangle data from the host interface into a form that is understood by

the device. This is then placed in the vertex cache which can be accessed by the Vertex

Shading, Transform and Lighting (VS/T & L) stage of the pipeline. This stage transforms

the vertices and assigns values to them, such as colours, normals, and texture coordinates.

The triangle setup stage creates equations for the edges of each triangle which are then

used to interpolate colours and other vertex data. The raster stage then determines which

pixels are within each triangle, then for each of these pixels it interpolates vertex values

that are necessary for shading the pixel. The shader stage �nally applies colour to each

of the vertices. The Raster OPeration (ROP) stage is used to determine which objects

are adjacent or overlapping for transparency type e�ects and for getting rid of occluded

pixels. Finally the Frame Bu�er Interface (FBI) writes the �nal result to the frame bu�er

memory [4].

Figure 2.3: The �xed function pipeline of an old NVIDIA GeForce GPU [4].

2.3.2.3 General Purpose Graphics Processing Units

The topic of General Purpose computing on GPUs relates to using the GPU as a general

purpose processor. Originally GPUs were used simply to calculate, process, and draw

19

geometry and graphics. However modern GPUs have begun to make their internal pipeline

available to the programmer, making them very useful for computationally intensive tasks.

GPUs tend to have many cores suited to small, but highly parallel, operations. For this

reason GPUs can be used for tasks that are data parallel in nature (see Section 2.3.2.4)

such as matrix multiplication.

2.3.2.4 Parallel Programs and Data Parallelism

The GPU is a very powerful tool when it comes to improving the execution time of a

program. It does however have a number of limitations and it is by no means a panacea

for every slow program. Therefore it is important to use the GPU only where it is relevant.

It performs best on problems that display a large amount of data parallelism.

Data parallelism is when calculations are largely independent of one another, in other

words the result of a particular thread A will have no impact on the result of thread B,

regardless of order of execution. The GPU does not run instructions sequentially in the

same way that a CPU does. For example if a particular problem is running in 5000 threads

on the GPU there is a chance that thread 3000 will execute before thread 20. If the result

of thread 3000 is based on the result of thread 20 the GPU will return an incorrect answer.

If this were the case one would say that this particular problem does not display data

parallelism and is probably not suitable for an implementation on the GPU.

The reason that data parallelism is such an important aspect of GPU programming is

based on the primary reason GPUs were made: to process graphics and display them on

a computer monitor. If a video game is running at 60 frames per second (FPS) the GPU

has to process an entire frame in 1
60

th
of a second, and a single frame may be composed

of millions of triangles and several million pixels. This meant that there was a great

opportunity for the GPU to make use of hardware parallelism to exploit the nature of the

parallel data.

A very good example of a problem that does display data parallelism is matrix multi-

plication. Two matrices,M and N , of size n×n are multiplied together to obtain result P .

Figure 2.4 shows what a sample calculation would look like. A row in M is multiplied by

a column in N to �nd the value of a single element in P . This calculation shows that the

value of an element of P has no impact on the value of any other element of P . The only

values that are required are from the input matrices M and N . Therefore the problem of

matrix multiplication displays data parallelism and would be suitable for implementation

on a GPU.

20

Figure 2.4: Matrix multiplication. Adapted from [4].

2.3.3 Compute Uni�ed Device Architecture

The compute uni�ed device architecture (CUDA) was developed by NVIDIA. The �rst

graphics card that was based on this architecture was the GeForce 8800. This was a large

step in the evolution of graphics processing, moving away from discrete vertex and pixel

shaders towards a uni�ed shader architecture. This re�ned architecture allowed NVIDIA

to create a set of additions to the standard C++ library that allowed programs to have

portions of their code executed on a NVIDIA CUDA capable card.

2.3.3.1 Programming Structure

In many ways programming a CUDA device is very similar to programming a normal CPU.

However there are a few important di�erences to be considered. The �rst major di�erence

is that a CUDA GPU cannot allocate its own memory. It relies on the CPU, referred to as

the host, to allocate memory on the GPU. The host is used to supervise many aspects of

GPU computing using CUDA. It will allocate and free memory for the device; it will call

the code that runs on the GPU, referred to as a kernel, and de�ne the number of blocks

and threads on which that kernel will run. The next major di�erence between parallelism

on CUDA devices and that of the CPU is that CUDA kernels are run in what is called a

21

grid of blocks. Each block contains a number of threads that are extremely light-weight

and it is assumed that it takes negligible time to initialise a thread. As has been mentioned

CUDA threads are designed to be lightweight and all threads will run the exact same piece

of code. Therefore a method is required to di�erentiate between threads. This is possible

because each block, and each thread in a block, is given an ID. Using this ID it is possible

for a thread A running the same code as thread B to process di�erent data. These blocks

are further divided into units called warps which are groups of threads with continuous ID

values. The purpose of warps is to hide high latency operations such as memory accesses.

This is achieved by detecting if a thread is waiting for some high latency operation to

complete. If it is waiting the next warp is selected for execution while the previous warp

waits for the high latency operation to �nish. Another di�erence is that CUDA makes use

of a number of di�erent memories with di�erent access levels, which is discussed in the

next section.

2.3.3.2 CUDA Memories

CUDA capable GPUs have a number of di�erent types of memories that a programmer

can use. All of these types of memories are faster than CPU memory. However when

compared with one another there can be dramatic speed di�erences. The four types of

memory, listed in increasing order of speed, are: global memory, shared memory, texture

memory, and local (or register) memory.

1. Global memory is the largest memory available to the GPU, it is usually Graph-

ics Double Data Rate 5 (GDDR5) Synchronous Dynamic Random Access Memory

(SDRAM). It is available to all blocks running on the GPU and can be accessed by

all threads running within the blocks. This is the slowest memory available, due in

part to its large size. There are some internal optimisations that have been made for

this memory, the major optimisation is that when a thread loads a block of memory

determine which views are considered for that warp. This means that any threads in

the same warp as the thread that requested the memory block will not have to make

a call to global memory but rather to local memory, which is much faster.

2. Shared memory is shared by all threads in a single block, but is not shared between

blocks. Shared memory can be declared dynamically or statically by the host. It can

be accessed much faster than the global memory but is limited in the fact that it is

smaller and is only accessible by the threads in a block.

3. Texture memory is used by the GPU to store texture information. This is generally

used for video gaming and video processing tasks where many pixels have to be

processed. Fortunately this memory can be used in GPGPU as a faster form of

global memory. Texture memory can be accessed by all blocks in a grid and thus all

threads in a block. This is bene�cial for some programs, however texture memory

can be slower than shared memory.

4. Local or register memory can only be accessed by single threads and is the fastest

22

form of memory being composed of high speed registers. This memory is very useful

when a thread needs to run some small calculations very fast.

2.3.4 An Example of Parallel Processing

An example of how parallel processing can be used is outlined below. This example is

relevant because it was used in the main program described in this dissertation during

the feature detection stage that is discussed in Section 4.4.1. Image convolution is used

frequently in almost all aspects of image processing. It involves convolving an image

with a discrete function, called a convolution kernel, to create an output image. There

are a number of di�erent types of convolution kernels and they perform many di�erent

functions. For example the Gaussian convolution kernel, which was used in the program,

when convolved with an image creates a blurred version of the input image, thus removing

its the high frequency components. This has uses in problems such as feature detection

where high frequency noise may be erroneously detected as a feature.

The convolution operation takes an input image such as the left image of Figure 2.5

and blurs it so that it looks like the right image of Figure 2.5. The input image as well as

the convolution kernel are loaded into the texture memory of the GPU. The CUDA kernel

then uses a one dimensional Gaussian kernel to blur the image in the h-direction. It then

takes the blurred image and blurs it in the v-direction. This has the cumulative e�ect of

a 2D Gaussian kernel (Appendix A.1).

(a) Input image of a skull. (b) Blurred version of the input image. (σ = 4.0)

Figure 2.5: The input and output of a Gaussian blurring kernel.

A simple example of a 2D Gaussian kernel is shown in Figure 2.6. The right hand

matrix represents the input image that was convolved with the Gaussian function. The

Gaussian function is the smaller matrix in the centre. It averages the neighbouring pixels

of the central pixel in the input image to change the value of the central pixel. The output

image is shown in the matrix on the right with a new value for the central pixel.

Image convolution can make use of the highly parallel nature of the GPU because the

value of an output pixel relies only on the values of the input pixels and the Gaussian

23

kernel.

Figure 2.6: Example of a 2D Gaussian kernel blurring a segment of an image.

A CPU and GPU implementation of this convolution were written with the CPU algo-

rithm taking 3.764 seconds to create the blurred image. The GPU took 0.367 seconds to

create the same output which is approximately 10 times faster. These steps are shown in

Algorithm 2.2

Algorithm 2.2 Gaussian smoothing on the GPU.

Input: Image I and Gaussian kernel G
Output: Smoothed image I ′

(h, v)← Unique h and v ID of the current pixel in I
radius← Radius of the Gaussian kernel G
// First the h-direction derivative is found and saved

// Then the v-direction derivative of the h-derivative

// image is found. This is the resultant image. The

// GPU pseudocode for both is shown below for simplicity.

For each Gaussian value Gk in G (k)

{// For h direction

n = h+ k − radius
s = s+ I (n, v)Gk

}

{// For v direction

n = v + k − radius
s = s+ I (h, n)Gk

}

end for

I ′ (h, v) = s

24

2.4 Selection of Modern MVS Algorithms

2.4.1 Accurate, Dense, and Robust Multi-View Stereopsis

�Accurate, Dense, and Robust Multi-View Stereopsis� by Furukawa and Ponce [1] presents

a novel patch-based MVS reconstruction algorithm that outputs a dense collection of small

rectangular patches that cover the surfaces that are visible in the input images. A �nal

post-processing stage creates a closed mesh model.

Figure 2.7: Sample input image to be analysed by the PMVS algorithm [1].

The algorithm operates by detecting and matching features between input images. A

sample image is shown in Figure 2.7. These matched features are used to create a sparse

set of patches that form the starting point which is shown in Figure 2.8a. The expansion

stage takes a set of patches as inputs and uses them to seed the creation of new patches

nearby to create a more dense collection of patches. The expansion stage can produce

many erroneous patches which need to be removed in a �nal �ltering stage. This �ltering

stage applies three �lters to the set of patches. The �rst �lter removes patches whose

projections are not visible in at least three input images (Figure 2.8b). The second �lter

enforces a strong form of visibility consistency by removing patches that are not visible

in enough images (Figure 2.8c). The �nal �lter enforces a weak form of regularisation

by removing outlying patches that do not have enough patches that are their neighbours

(Figure 2.8d). This �ltering stage is very aggressive and removes a large number of points.

The expansion and �ltering steps are iterated three times to ensure dense coverage of the

object.

25

(a) Initial patches (b) Filter 1 (c) Filter 2 (d) Filter 3

Figure 2.8: The initial patches found after feature detection and matching are shown in
2.8a, the expansion step is not shown. Next the initial patches are passed through the three
�lters: (2.8b) Weak Visibility; (2.8c) Strong Visibility and (2.8d) Weak Regularisation [1].

The PMVS algorithm produces very accurate results and is able to operate on object

and scene data sets. Furthermore because the patches are independent of one another it

is highly parallel. The �nal mesh model of the face data set is shown in Figure 2.9.

Figure 2.9: Final Mesh Model [1].

2.4.2 Multiple Hypotheses Depth-Maps for Multi-View Stereo

Campbell et al. propose a depth-map based MVS algorithm in the paper �Using Multiple

Hypotheses to Improve Depth-Maps for Multi-View Stereo� [6] which overcomes two of the

major issues common to these types of algorithms. The two problems that the authors

have identi�ed are:

• Spurious matches due to repeated texture.

• Matching failure due to occlusion, distortion and lack of texture.

The authors overcome these problems by making additions to the normal depth-map based

MVS algorithm. The �rst change was to create good depth estimates for each pixel, and

26

then select the optimal depth of the pixel by enforcing consistent depth between neigh-

bouring pixels. This helps to remove spurious results from repeated texture because pixels

representing the same portion of an object in di�erent images are expected to have similar

depths to their neighbouring pixels. Whereas the pixels in repeated textures will have

di�erent depths to neighbouring pixels. The second addition was to allow the depth-map

optimisation procedure to return an unknown state when it was unable to �nd an optimal

depth. This unknown state allowed the authors to overcome the problem of matching

failure since the unknown state adds no weight to the �nal depth of the pixel. Because of

this the depth of the pixel can be determined from other images.

These additions have allowed the authors to create a very accurate depth-map based

MVS algorithm, the performance of which is shown in Table 2.1. Their approach also

gives very good results when there are few input images, which can cause many depth-map

based algorithms to fail [3, 6]. Figure 2.10 shows the results of the algorithm by Campbell

et al. on an input of only three images.

Figure 2.10: Results of the depth map MVS algorithm by Campbell et al. Only three input
images are used, shown on the top; the recovered depth map is shown on the bottom left
and the �nal rendering created from the depth map is shown on the bottom right [6].

27

Chapter 3

Patch-Based Multi-View Stereo

3.1 Introduction

The patch-based multi-view stereo reconstruction algorithm, described in the paper �Accu-

rate, Dense, and Robust Multiview Stereopsis� [1] by Furukawa and Ponce shows a method

for creating dense 3D models of objects, scenes, and crowded scenes. Their algorithm makes

use of 3D patches that are used to densely model the surface of the object.

The technique makes use of a match, expand, and �lter approach. The matching stage

takes a sequence of calibrated images and creates a sparse set of 3D patches. The expansion

and �ltering stage are iterated three times, with the expansion stage using existing patches

to create many more patches, some of them erroneous. The �ltering stage makes use of

three fairly strict �ltering algorithms that removes patches that may not be visible or are

outliers. This ensures that the reconstruction is mostly constructed of correct and accurate

patches.

The output of the algorithm is a dense set of oriented rectangular patches that closely

model the surface that they cover. This algorithm was chosen as the starting point for this

dissertation since the patches are inherently disconnected, and can therefore be processed

somewhat separately and in parallel.

3.2 Model Representation

3.2.1 Patch Model

Patch-based multi-view stereo reconstruction makes use of a dense set of small rectangular

patches to accurately model a surface. These patches are oriented such that they are

normal to the surface they lie on. Geometrically a patch, p, is de�ned by its centre c (p),

a three-dimensional position in space, and its unit normal vector −→n (p) which originates

from c (p) and initially points towards the camera observing it (Figure 3.1). A patch is

optimised such that the entire patch is normal to the surface it is modeling. Furthermore

each patch stores its reference image R (p), in which p is visible. The orientation of the

patch is set such that one of its edges is parallel to the x-axis of the reference camera

and the initial size of the patch is chosen such that when the patch is projected into the

28

reference image R (p) it is seen as a µ× µ pixel square.

Figure 3.1: Patch Model [1].

3.2.2 Photometric Discrepancy Function

The photometric discrepancy function is used to determine whether the projections of p

onto two images I1 and I2 match. If the patch projections in the images match closely

then the patches most likely represent the same point on the surface. This function is

used to determine whether a patch will accurately model the surface it is placed on. If the

photometric discrepancy score between the proposed patch projections in I1 and I2 is low

it implies that the image portions that the patches project on to are approximately the

same. This means that the patch projections will most likely represent the same point.

The photometric discrepancy function for a patch p is de�ned as:

g (p) =
1

|V (p) \R (p)|
∑

I∈V (p)\R(p)

h (p, I, R (p)) (3.1)

where:

g (p) = is the photometric discrepancy score of p,

V (p) = is the set of images in which pis visible,

R (p) = is the reference image of p, and

h (p, I1, I2) = is the pairwise photometric discrepancy of the patch projection

in images I1and I2.

V (p) is �rst estimated by checking the angle between the camera viewing R (p) and

the cameras of all the other input images. The images that are within a certain angle are

assumed to be in V (p).

The pairwise photometric discrepancy function, h (p, I1, I2) is calculated using the fol-

lowing procedure:

1. Create a µ× µ grid for p that is centred at c (p) and aligned with the image axes

2. Initialise the normal −→n (p) such that it points into the optical centre of O (R (p))

3. Project the grid points into the images in V (p).

4. Using bilinear interpolation sample the pixel colour at the projection of the grid

points in image I1 and I2. The calculated colours in these images are denoted as

29

q (p, I1) and q (p, I2) respectively.

5. The pairwise photometric discrepancy h (p, I1, I2) is given by one minus the nor-

malised cross correlation (NCC) between q (p, I1) and q (p, I2).

Because the photometric discrepancy function makes use of pixel colours to determine

correlation it can be sensitive to non-uniform lighting conditions. It may therefore not

perform well when there are specular highlights in an image. This is dealt with simply by

regarding images that are non-Lambertian as outliers and discarding patches with poor

photometric discrepancy scores. The photometric discrepancy function is also sensitive to

uniform texture. This leads to false positive matches in areas that are the same colour.

However a large portion of these erroneous patches are removed in the �ltering stages. With

this in mind an improved set of visible images, V ∗ (p) is de�ned, which can be considered

as the set of images in which p is truly visible.

V ∗ (p) = {I|I ∈ V (p) , h (p, I, R (p)) ≤ α} (3.2)

where:

V ∗ (p) = the set of images in which the patch is truly visible,

I = the image currently being compared, and

α = the minimum photometric consistency value.

Using this new set of images in which p is truly visible an improved photometric dis-

crepancy score can be calculated for a patch.

g∗ (p) =
1

|V ∗ (p) \R (p)|
∑

I∈V ∗(p)\R(p)

h (p, I, R (p)) (3.3)

By de�nition both V (p) and V ∗ (p) contain the reference image R (p) as the �rst image

in the set.

3.2.3 Image Model

One of the problems with using patches to model scenes or objects is the lack of connectivity

information. For this reason each image is divided into cells that monitor which patches

project into them. Every image is divided into a grid of β1 × β1 pixel cells denoted as

Ci (x, y) where the subscript i refers to an image and x and y denote the position within

the cell grid. Each cell stores the set of patches, Qi (x, y), that project into them. A patch

p is reprojected into each image in V (p). The patch will fall into a particular cell Ci (x, y)

then this cell will add p to Qi (x, y). Similarly a patch that is reprojected into V ∗ (p) will

fall in a cell C∗i (x, y) and this cell will store the set of patches Q∗i (x, y).

30

3.2.4 Patch Optimisation

The optimisation step is used to re�ne the geometric parameters, the patch centre c (p)

and patch normal −→n (p) of a patch p, by minimising the photometric discrepancy score

g∗ (p). Some assumptions are made to simplify the optimisation procedure. First the patch

centre is constrained to lie on a line such that its reprojection into the reference image does

not change. In other words c (p) lies on the line between the optical centre of the camera

corresponding to R (p) and the position of c (p) before the start of optimisation, denoted

as c0 (p). Secondly the patch normal can only have its pitch and yaw modi�ed where

pitch is rotation around the axis de�ned by the projection of the negative h-axis onto the

patch plane and yaw is de�ned similarly using the projection of the negative v-axis of the

image. In other words the patch may not rotate in its own plane. The assumptions make

the optimisation problem have only three degrees of freedom. The optimisation is then

performed using the conjugate gradient method.

If a patch does not have at least γ images in V (p) before optimisation it is deleted. After

the optimisation the number of visible images in V (p) as well as in V ∗ (p) is recomputed.

If there are fewer than γ images in V ∗ (p) the patch fails the optimisation stage and is

deleted.

3.3 Initial Feature Matching

The initial feature matching step is used to create a sparse set of patches which were used

to seed the expansion and �ltering steps. First features are detected using Harris and

di�erence of Gaussian detectors, which �nd corner and blob features. These features are

ordered according to the strength of their response before they are matched. Features

are matched across input images using the known position of the cameras and epipolar

geometry. Initially an estimated position of a new patch is found using triangulation

techniques. The patch is initialised and then optimised. If the optimisation procedure is

successful the patch is created and stored using the image model de�ned in Section 3.2.3;

if the optimisation fails then the patch and the primary feature used to generate it are

discarded.

3.3.1 Feature Detection

3.3.1.1 Gaussian Kernels

A two-dimensional Gaussian kernel with standard deviation σ is de�ned as Gσ (x, y) [27].

The zero-mean two-dimensional Gaussian kernel has the formGσ (x, y) = e−
x2−y2

2σ2 . A useful

property of the Gaussian kernel is that it is separable which allows the two-dimensional

kernel to be split into two one-dimensional kernels, Gσ(x) = e
−x2
2σ2 and Gσ (y) = e

−y2

2σ2 .

See Appendix A for the derivation. The separated kernels can be applied sequentially to

the image to get the same results as one would get when applying the two-dimensional

kernel to the same image. The Gaussian kernel is a continuous function which needs to be

31

discretised to work with images. This is achieved by sampling the continuous function at

regular intervals.

3.3.1.2 Harris Feature Detector

The response of the Harris �lter [28] is de�ned in Equation 3.4 as:

H = det (M)− λtrace2 (M) (3.4)

where:

M = Gσ1 ∗
(
∇I∇IT

)
,

∇I =
[

∂I
∂x

∂I
∂y

]T
, and

∗ = the 2D convolution operator.

The standard deviation for the Gaussian kernel is σ1 = 1 and the value of lambda is

λ = 0.06. See Appendix A.2 for full calculation of the response of the Harris �lter.

3.3.1.3 Di�erence of Gaussians Feature Detector

The di�erence of Gaussians feature detector [29] is used to identify corner and blob features

in a grayscale image by subtracting two di�erently blurred versions of the same image.

The response of the di�erence of Gaussians detector at a point in the image is de�ned in

Equation 3.5 as:

D =
∣∣∣(Gσ0 −G√2σ0) ∗ I∣∣∣ =

∣∣∣Gσ0 ∗ I −G√2σ0 ∗ I∣∣∣ (3.5)

where:

Gσ0 ∗ I = the image Iconvolved with a Gaussian

kernel with standard deviation σ0, and

G√2σ0 ∗ I = the image Iconvolved with a Gaussian

kernel with standard deviation
√

2σ0.

3.3.1.4 Detecting Features in Windows

When using feature detectors it is important to ensure uniform coverage of the image as

seen in Figures 4.3 and 4.4. This is done by using a n × n pixel sliding window. The

window is shifted over the image a pixel at a time and the η local maxima or minima with

the strongest responses, that have not been selected before, are saved from the current

window. The feature matching window is used to ensure that there is an even distribution

of feature points over the entire image.

32

3.3.2 Feature Matching

3.3.2.1 Feature Matching Procedure

Once features have been detected, the next step is to attempt to match multiple features

across the set of input images to create an initial sparse set of patches. To do this consider

an image Ii with a camera that views it with optical centre O (Ii). For each feature f

detected in image Ii we collect all features, f
′, of the same type in another image, Ij , that

lie within two pixels of the epipolar line that is created when f is projected into image

Ij . Then using the feature pair (f, f ′) it is possible to triangulate a three-dimensional

point that will become the centre of a candidate patch. These points are sorted in order

of increasing distance from O (Ii). From this list of feature pairs the following procedure

is followed to create a candidate patch:

c (p) ← Triangulation
(
f, f ′

)
(3.6)

−→n (p) ←
−−−−−−−→
c (p)O (Ii)/

∣∣∣−−−−−−−→c (p)O (Ii)
∣∣∣ (3.7)

R (p) ← Ii (3.8)

where:

c (p) = the 3D centre point of the patch,(
f, f ′

)
= is the feature pair from images (Ii, Ij),

−→n (p) = the 3D vector de�ning the patch normal,

O (Ii) = the optical center of the camera viewing image Ii, and

R (p) = the reference image of the patch.

The initial set of visible images V (p) is created by assuming that the patch is visible in

an image only if the angle between the patch normal and the line joining the patch centre

and the optical centre of the camera is above a certain threshold.

V (p) ←
{
Ii|−→n (p) ·

−−−−−−−→
c (p)O (Ii)/

∣∣∣−−−−−−−−→c (p) /O (Ii)
∣∣∣ > cos (ι)

}
(3.9)

where:

V (p) = the set of images in which pshould be visible,

Ii = the image that is being tested to see if it is in V (p),

O (Ii) = the 3D optical centre of the camera viewing Ii, and

ι = the angular threshold, set to
π

3
.

Next V ∗ (p) is initialised using Equation 3.3. Finally c (p) and−→n (p) are optimised using

the optimisation procedure described in Section 3.2.4. Once the geometric parameters of

the patch have been re�ned, V (p) and V ∗ (p) are recalculated using the same methods

as before. Finally, if |V ∗ (p)| ≥ γ (in other words if there are at least γ images with low

photometric discrepancy) the patch p is successfully created. The image model (Section

33

3.2.3) is updated by projecting p into its image cells Ci (x, y) and C∗i (x, y), and Qi (x, y)

and Q∗i (x, y) are updated. Any features that lie in cells now occupied by the patch are

deleted, since only one patch per cell is required for the feature matching step.

3.4 Patch Expansion

The goal of the expansion procedure is to create at least one patch in every image cell

Ci (x, y). The procedure for patch expansion is to use existing patches, and expand them

outwards into neighbouring cells. During expansion it is assumed that adjacent image cells

correspond to roughly the same area on the object or scene. As such expansion does not

account for depth discontinuities which are resolved in the �ltering stage. Expansion is

divided into two steps, selection and expansion.

In the selection step the adjacent and immediately diagonal cells to a patch are selected

as possible expansion areas. If one of these cells is currently occupied there is no reason

for it to be considered for expansion.

The set of cells are then checked to see if they are valid for expansion. If the patch

is a neighbour of one of the cells then the cell is an expansion candidate. A new patch is

created in each candidate cell and initialised to be identical to the expanding patch except

for the fact that the new patch centre projects into the centre of the candidate image cell.

Using this starting point the new patch is optimised and if it passes the optimisation step

the expansion into that cell is successful.

3.4.1 Selecting Cells for Expansion

The set of cells that are neighbours of a patch p are stored in C (p).

C (p) =
{
Ci
(
x′, y′

)
|p ∈ Qi (x, y) ,

∣∣x− x′∣∣+
∣∣y − y′∣∣ = 1

}
(3.10)

where:

C (p) = the set of cells which are neighbours of p,

Ci
(
x′, y′

)
= the cell that may be a neighbour of p, and

Qi (x, y) = the set of patches that project into Ci (x, y).

Once the neighbouring cells have been identi�ed it is possible to determine in which

cells the expansion is required. There is no need to expand into a cell if that cell already

contains a patch that is a neighbour of p. If an image cell Ci (x′, y′) ∈ C (p) contains a

patch p′ which is a neighbour of p, Ci (x′, y′) can be removed from C (p). Once again the

subscript i of a cell Ci (x, y) represents the image Ii that contains that cell and x and y

represent the position in the cell grid. Patches p and p′ are said to be neighbours if:

2ρ1 >
∣∣(c (p)− c

(
p′
))
· −→n (p)

∣∣+
∣∣(c (p)− c

(
p′
))
· −→n

(
p′
)∣∣ (3.11)

where:

34

ρ1 = the distance in 3D space that corresponds to

an image displacement of β1pixels in R (p).

The distance above is calculated on the plane de�ned by the patch centres and normals.

It is unnecessary to expand into an empty cell if there is a depth discontinuity when viewed

from the camera that corresponds with Ii. In practice it is di�cult to judge if a depth

discontinuity is present, as such an expansion is deemed unnecessary if Q∗i (x, y) already

contains patches.

3.4.2 Expansion Procedure

The procedure to generate a more dense collection of patches begins by considering each

image cell Cj (x, y) inC (p). A new patch p′ is created in Cj (x, y). The patch centre c (p′) is

initialised by projecting a line from O (Ij) through the centre of Cj (x, y) until it intersects

the plane de�ned by c (p) and −→n (p). This point of intersection is the expanded patch's

centre. Then −→n (p′), R (p′), and V (p′) are initialised from the corresponding parameters

of p. The improved set of visible images V ∗ (p′) is created using Equation 3.2.

The optimisation procedure explained in Section 3.2.4 is run on p′. If, after the optimi-

sation, the set of truly visible images, V ∗ (p′), contains less than γ images the patch fails

the optimisation and is discarded. Any images in which p′ should be visible according to a

depth map test are added to the set V (p′), then V ∗ (p′) is updated once again. Finally the

number of images in the set V ∗ (p′) is used to determine whether the patch exists. In other

words if |V ∗ (p′)| ≥ γ the patch p′ is created and projected into Cj (x, y) and C∗j (x, y) and

Qj (x, y) and Q∗j (x, y) are updated accordingly.

3.5 Patch Filtering

After the patch expansion step the number of patches has increased greatly. However many

of these patches may be erroneous and should therefore be removed. Since the expansion

step is only concerned with creating new patches, and not with ensuring that they �t with

nearby patches, it is necessary to perform �ltering to ensure that the patches accurately

model the surface.

To this end four �lters are used to make sure the generated patches provide an accurate

representation of the surface which they are modeling.

The �rst �lter enforces visibility consistency by removing patches that are not neigh-

bours of other patches that project into the same image cell. U (p) is the set of patches

that are not consistent with the current visibility information of the patch p. This means

that patch p and another patch p′ are not neighbours (where neighbours are de�ned as in

Equation 3.11) but are stored in the same cell of an image where p is visible. The patch p

is considered an outlier and removed if:

|V ∗ (p)| (1− g∗ (p)) <
∑

pi∈U(p)

(1− g∗ (pi)) (3.12)

35

In other words if the sum of photometric consistency scores of the patches in U (p) is

greater than the photometric consistency score of p multiplied by the number of images

from which this score is calculated then p is an outlier and is removed.

The second �lter enforces a more strict visibility consistency. For each patch p a depth

map test is used to determine in how many images in V ∗ (p) the patch should be visible.

If this number, denoted as |V ∗D (p)|, is too small then the patch is discarded as an outlier.

|V ∗D (p)| < γ (3.13)

The third �lter enforces a weak form of regularisation. For each patch p collect the

patches p′ that lie in its own and adjacent cells in all images of V (p). This set of patches

is called A (p). Next the set of patches in A (p) that are neighbours of p according to

Equation 3.11 are added to N (p). Patches that are neighbours can be thought of as being

connected to one another. Therefore if there are many patches that are close to p, but not

neighbours of p, then p can safely be labeled as an outlier. If the following inequality holds

then p is removed.

|N (p)|
|A (p)|

< 0.25 (3.14)

The fourth �lter works in much the same way as the third �lter, except instead of

operating on a single patch it operates on connected groups of patches. If the group of

patches have a discontinuity with the surrounding model they are removed as outliers.

3.6 Polygonal Mesh Reconstruction

The polygonal mesh reconstruction stage uses the dense point cloud created after the �nal

iteration of expansion and �ltering to create a closed mesh model of the surface. Once this

mesh is created it is optimised such that the vertices are closer to the surface that it is

modeling.

3.6.1 Mesh Creation

The mesh is created using the Poisson surface reconstruction library written by Kazhdan

et al. [30]. Their method treats the problem as a spatial Poisson problem. This allows the

method to create a mesh that is the global best �t since it does not need to divide the

patches into smaller segments. It creates a triangular mesh from the reconstructed patches

with smaller triangles in densely covered areas and larger triangles in sparsely covered

areas.

3.6.2 Mesh Optimisation

The closed mesh created using the method outlined in Section 3.6.1 is optimised to create

a �nal closed mesh. This is achieved by optimising an energy function that optimises the

3D position of the vertices with respect to patches that are generated from each vertex.

36

For each vertex vi that has been created by Poisson surface reconstruction create the

set of images, V (vi), in which the vertex should be visible according to a depth map

test. For each unique pair of images (Ij , Ik) in V (vi) create a patch that is centred at vi

with a normal that is orthogonal to the reconstructed surface. This patch is then optimised

according to the procedure discussed in Section 3.2.4 but with only two images. All patches

are then added to the set P (vi). This set of patches is used to optimise the position of

the vertex according to Equation 3.15 below:

E
′
p (vi) = ζ3

∑
p∈P (vi)

1− exp

(
−
(−→n (p) · (c (p)− vi)

τ/4

)2
)

(3.15)

where:

ζ3 = the linear combination weight (set to 1.0 or 4.0),

−→n (p) = the patch normal,

c (p) = the patch centre,

vi = the position of the vertex, and

τ = the average edge length of the mesh.

37

Chapter 4

Methodology and Results

4.1 Introduction

The modi�ed PMVS algorithm was tested using the skull dataset which is described in

Section 4.8.1. Eighteen experiments were conducted with three variables: image size, cell

size, and patch size. By changing the values on these variables the overall quality of the

reconstruction can be changed. With higher quality settings (full size images, one pixel

cells, and large patches) the best models are created, however these models also incur the

longest running time.

The number of patches, and thus the density of the reconstruction of 3D model, are

directly related to image and cell size. The algorithm runs by making sure at least one

patch exists in every image cell which means that a single cell may contain many patch

projections. However if a patch projection exists in a cell the expansion step will not create

a new patch in that cell. For this reason there is not a noticeable di�erence in the patch

density of the outputs of the original and new algorithms.

The original PMVS algorithm [5] made use of the GNU Scienti�c Library (GSL) to

optimise patches (Section 3.2.4). It also used a CPU based algorithm to detect features

in the input sequence of images (Section 3.3.1). The mesh creation stage of the original

algorithm could use a slightly modi�ed version of Furukawa's visual hulls [31] or Poisson

surface reconstruction [30]. The original mesh optimisation stage used each generated

vertex to create a new set of patches to optimise the vertex.

The modi�ed PMVS algorithm makes use of a CUDA based L-BFGS [32] optimiser

to optimise patches. It also used a CUDA texture memory based feature detector to

detect di�erence of Gaussian and Harris features. The mesh creation stage of the modi�ed

algorithm used the Poisson surface reconstruction [30] library to create a closed mesh. The

mesh optimisation stage was changed to use the existing image model to �nd patches that

correspond to a vertex and optimise that vertex.

38

4.2 Speci�cations

4.2.1 System

The system that was used to implement and test this program was a desktop PC running

Ubuntu 11.10 64 bit. It had an Intel i7 3.6 GHz CPU with eight computational cores, 16

GB of 1600MHz DDR3 RAM, and two NVIDIA GeForce GTX 550Ti 1GB GPUs with 192

CUDA cores per card. The operating system and libraries were installed to a 60GB solid

state drive.

4.2.2 Programs

The following programs and libraries were used in this implementation. NVIDIA's CUDA

library was used to port some processing onto the GPU. The pThreads [26] library was

used to create multiple CPU threads. The boost library [33] was used for its shared pointer

functionality. The L-BFGS [24] library was used to run optimisation on the GPU. The

PMVS-2 [5] program implemented by Furukawa and Ponce was used as the basis for the

implementation. Finally the Poisson surface reconstruction [30] library is used to create

the initial mesh model.

4.3 Test Implementations

Initial tests were performed using the OpenCV library [34]. The di�erence of Gaussians and

Harris detectors were implemented on both CPU and GPU. An initial implementation of

the PMVS algorithm was implemented using OpenCV up to the end of the initial matching

stage. However the execution time of this stage was extremely slow and Furukawa's original

PMVS implementation was used as a starting point.

4.4 Initial Feature Matching

The initial feature matching step, discussed in Section 3.3, creates a sparse set of three-

dimensional patches that are passed to the next stage of the program. The pipeline of this

step is shown in Figure 4.1. First features are found in pairs of images using the Harris and

Di�erence of Gaussian operators. The features detected using these operators are de�ned

to either have the type Harris or DoG. Features of the same type are compared to one

another using epipolar geometry. If a pair of features passes the epipolar geometry test

then they are used to triangulate a three-dimensional position which is used as a candidate

patch centre. Finally if the patch is visible in at least three input images and the image

segments that the patch projects into have an NCC score as de�ned in Section 3.3, the

patch is con�rmed and stored, causing the internal models to be updated according to the

method in Section 3.2.3.

39

Algorithm 4.1 Initial Feature Matching Procedure. Adapted from [1].

Input: Features detected in input images.

Output: Initial sparse set of patches P.

P← φ
For each image Ii with optical centre O (Ii) do

For each feature f detected in Ii do

For each feature f ′ in every other image Ij do

F←{Features f ′ that satisfy epipolar consistency with f};
CC←{Triangulated candidate centres from (f, f ′)};
Sort CC in order of increasing distance from O (Ii);
For each candidate centre in CC do

Create a patch candidate p;
Initialise c (p), n (p), and R (p); // Equations(3.6, 3.7, 3.8)

Initialise V (p) and V ∗ (p); // Equations(3.9, 3.2)

Optimise the geometric parameters of p;
Recompute V (p) and V ∗ (p); // Equations(3.9, 3.2)

If |V ∗ (p)| < γ then

Try next candidate centre; //failure

Else

Update cells with p;
Remove features from cells where p was stored;

Add p to P; //success

40

Figure 4.1: Feature Matching Pipeline.

4.4.1 Feature Detection

In the feature matching step two feature detection methods are used to �nd blob, corner,

and edge features. The feature detectors that were implemented were the Harris, described

in Section 3.3.1.2, and the di�erence of Gaussians (DoG), described in Section 3.3.1.3. Both

of these �lters were run over small windows within the image to get uniformly distributed

features across all input images. The feature detector passes the set of feature points to

the next stage in the pipeline, as shown in Figure 4.1. Both feature detectors make use

of Gaussian smoothing to remove noise and �nd features. This part was implemented on

the GPU using CUDA and the execution time of the detection stage was sped up by two

times when the standard deviation of the Gaussian function was in the range of σ = 1.0 to

σ = 2.0. These are the values that are used for the datasets discussed in this thesis. The

feature detection was sped up by ten times when the standard deviation of the Gaussian

function was set to σ = 4.0 (Shown in Figure 2.5).

This increase in execution time was because of the highly parallel nature of Gaussian

smoothing. Gaussian smoothing averages the value of the pixels in the neighbourhood of

a particular pixel. This means that each GPU thread is responsible for the averaging of a

single output pixel, meaning that many output pixels can be computed simultaneously.

41

Figure 4.2: Sample images of the skull data set.

4.4.1.1 Gaussian Smoothing

The Gaussian smoothing algorithm was implemented on the GPU using CUDA. The two-

dimensional Gaussian kernel was split into its one-dimensional components as explained in

Section 3.3.1.1. The pixel data from a single input image was loaded into the GPU texture

memory by the CPU. Then the kernel was loaded into a di�erent texture in the GPU

texture memory. This allows the size of the kernels to change during run time. The GPU

algorithm performs smoothing in the h- and v-directions before returning the smoothed

image to the CPU.

An image is loaded into the texture memory of the GPU in grayscale. Then the �rst

and second derivatives of this image are computed in parallel on the GPU. This portion

of the detection stage is common to both DoG and Harris and as such it was used as the

primary area to improve the detection stage.

4.4.1.2 Harris Feature Detector

The Harris feature detector was implemented according Section 3.3.1.2. Initially the �rst

derivatives of an image, dI
dh and dI

dv , are computed as described in Section 4.4.1.1. These

�rst derivative images are then di�erentiated to �nd the second derivatives, d
2I
dh2

, d
2I
dv2

, and
d2I
dhdv . The second derivatives are then used to create the response image H. The following

values are calculated for each pixel (h, v):

D (h, v) =
d2I

dh2
· d

2I

dv2
−
(
d2I

dhdv

)2

(4.1)

trace (h, v) =
d2I

dh2
+
d2I

dv2
(4.2)

The results of Equations 4.1 and 4.2 are used to create the response image H (h, v) =

D (h, v)− 0.06 · trace (h, v).

All values in H that are either local minima or local maxima are used to create the �nal

response image. Finally a small sliding window is moved across the image and the four

features with the strongest response in a window are saved. Figure 4.3 shows three images

with Harris features highlighted in blue. The features in these images are distributed evenly

across the entire image however the actual response value is not shown in these images.

42

Figure 4.3: Sample output of the Harris Feature Detector.

4.4.1.3 Di�erence of Gaussians Feature Detector

The Di�erence of Gaussians feature detector was implemented as described in Section

3.3.1.3. It locates features by comparing an image to versions of itself at di�erent blur

levels. It is an approximation of the Laplacian of Gaussian detector [35]. The detector

that was implemented compares two di�erent versions of the same image, referred to as

IC and IN , which denote the current and next levels of blurred images respectively. These

images are then compared to create a DoG image:

D (h, v) = IN (h, v)− IC (h, v)

The resultant di�erence image D (h, v) is then searched for local maxima and minima

which become the detected features. Robust feature points tend to survive the Gaussian

blurring and are therefore highlighted as local minima or maxima. Figure 4.4 shows three

images with di�erence of Gaussian features in red.

Figure 4.4: Sample output of the Di�erence of Gaussians feature detector.

4.4.2 Candidate Creation

Candidate creation was run in parallel on the CPU such that each thread is responsible

for a single reference image I. All other images are added to the set I. No mutexes are

required because it does not matter if approximately the same patch is created twice, since

one of them will be removed in the �ltering step later in the process.

43

4.4.2.1 Finding Feature Pairs

A pair of images is used to identify two features that correspond to the same 3D point.

An image I is used as the reference image. Next a secondary image I ′ is selected from the

full set of images I. Using the known camera parameters P and P ′, which correspond to

images I and I ′ respectively, the angle between the cameras is found. Each camera has an

optical axis denoted as
−→
Op and

−→
O
′
p respectively.

cos θ =

(
−→
Op ·

−→
O
′
p

)
(4.3)

If θ is less than 60◦ then I ′ is kept in the set I otherwise it is removed. This step reduces

the number of secondary images that need to be searched for features, thereby reducing

the processing required.

Features from the detection stage are loaded into image cells C (h, v). The size of the

image cells is an experimental parameter and is set to either 1 × 1 pixels or 2 × 2 pixels.

The features are then sorted in descending order of response. For each feature, f , in image

I an epipolar line is drawn in image I ′. This is done by drawing a line that starts at O (I)

and passes through f (h, v) in the virtual image plane. When this 3D line is reprojected

into image I ′ it creates an epipolar line, which intersects the left and right epipole, and

should contain the point that corresponds to f . If there are any features f ′ in I ′ within two

pixels of the epipolar line then the feature pair (f, f ′) is used to create a patch candidate.

Several such pairs are found and false positives will be discarded in the next stage.

4.4.2.2 Initialising a Three Dimensional Patch

A 3D patch p is created and de�ned as follows. Using 3D triangulation as described in

Section 2.2.6.2 the patch centre c (p) can be calculated. The feature pair (f, f ′) is projected

into 3D space, the point of closest intersection is then said to be c (p). A rough estimate of

the patch normal −→n (p) is generated by creating a unit vector that originates at c (p) and

points towards the optical centre of the camera which corresponds to the reference image

I. This patch normal is used to orient the patch in such a way as to approximate the

orientation of the surface. The normal will be optimised to provide a better orientation

later. The reference image of the patch is de�ned as R (p) and is initially set to I. Next

the set of visible images for the patch is created. I and I ′ are added to V (p), with I as

the �rst and I ′ as the second image in the set. The angle between the patch normal and

the other images in I is found. If this angle is less than 60◦ the image is added to V (p).

If there are at least three images in V (p) the patch is re�ned.

4.4.2.3 Re�ning a Three Dimensional Patch

A 2D rectangle is created and centred at the point where c (p) reprojects into R (p). This

rectangle is then projected out to the plane de�ned by c (p) and −→n (p). A η×η grid (where

η is set to either �ve, seven, or nine) is created on this rectangle with the centre grid point

corresponding to c (p) and aligned with the axes of R (p). By comparing this grid between

44

all of the images in V (p) it is possible to �nd the set V ∗ (p). The set V ∗ (p) contains

the images in which the values of the grid projections are very similar. The �rst image of

V ∗ (p) is set to R (p). Then for each other image in V (p) the normalised cross correlation

between the projection of the grid points into R (p) and the image in V (p) is found. If

the NCC score is greater than 0.7 (this initial NCC value was empirically determined by

Furukawa and Ponce [1]) the image is added to V ∗ (p). If the size of V ∗ (p) is greater than

three the patch is reserved for optimisation, otherwise it is removed.

4.4.2.4 Optimising a Three Dimensional Patch

The patch optimisation procedure described in Section 3.2.4 is used to improve the patch

position such that it more closely models the surface of the object or scene. The objective

function being optimised is the normalised NCC score as shown in Equation 3.3. The

following geometric constraints are placed upon the system: c (p) is constrained to lie

on the line that joins it and optical centre of the camera viewing the reference image,

C (R (p)). The patch is constrained to rotate using only pitch and yaw. This creates a

three degree of freedom optimisation procedure which is solved using the Limited-memory

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method [23, 24], which is implemented using

CUDA [32]. Every evaluation of the optimisation function requires several image loads since

the patch is repeatedly projected into the images of V ∗ (p) to determine the NCC score.

The optimisation is run until the average NCC score reaches a maximum value, meaning

that the sub-images that the patch projects into correspond very highly with one another.

Now V (p) and V ∗ (p) are cleared and reinitialised as described in Section 3.2.4. If V ∗ (p)

still has more than three images the patch generation is deemed a success, and the patch

p is created. It is then projected into image cells Q (x, y) and Q∗ (x, y) and any features

that were in those cells are deleted.

At the end of the initial feature creation step a noisy and sparse point cloud has been

created as shown in Figure 4.5. This point cloud shows the approximate shape of the object

being modeled with noise surrounding the object. All of these patches will be expanded to

create more patches. Thereafter the �ltering step will remove many of the noisy patches

as well as some salient patches.

Figure 4.5: Model after initial feature matching step.

45

4.5 Patch Expansion

The patch expansion procedure runs a total of three times. Its purpose is to create a

more dense set of patches that closely match the object that is being modeled. The patch

expansion step does not check for any sort of occlusion or depth discontinuities because

this is left to the �ltering step.

The expansion procedure works by iterating over the set of existing patches, denoted as

P. First a patch p is selected from P. A search is done for any patches that are neighbours

of p. First p is reprojected into the images in V∗ (p). At each of these locations a check is

done to see if there are any other patches in neighbouring cells (see Section 3.2.3). If there

are no neighbouring patches in a particular cell then the expansion begins.

A new patch, p′, is created at the centre of the empty image cell. Speci�cally it is set to

be equal to the 3D intersection point of the ray that projects from the optical centre of the

camera viewing R (p), through the centre of the empty image cell and the plane de�ned

by the patch p. All the other patch parameters are set to be equal to the corresponding

values of p. This is a very rough approximation and the patch is optimised to improve its

position.

The optimisation step is then run on this new patch. If after the optimisation there

are at least three images in V∗ (p′) then the patch expansion was successful and the patch

p′ is added to the list of patches. It should be noted that patches created during one step

of the expansion procedure will not themselves be expanded in that same step, only in

subsequent steps. Algorithm 4.2 shows the expansion process as explained above.

The expansion process runs three times over the course of the execution of the program.

Figures 4.6, 4.7 and 4.8 show the reconstructed model at the end of the three expansion

steps. Figure 4.6 shows the �rst call to the expansion step that runs after initial feature

matching (shown in Figure 4.5). At this stage there are still many noises patches but

the object being reconstructed is clearly visible. Figure 4.7 shows the second call to the

expansion step that occurs after the �rst �ltering step. The majority of the noisy patches

have been removed leaving a clear view of the object being reconstructed. Figure 4.8 shows

the �nal call to the expansion step that occurs after the second �ltering step. Very few

noisy patches remain and the surface of the object is densely covered in patches.

46

Algorithm 4.2 Patch Expansion Algorithm. Adapted from [1].

Input: Set of patches P from the feature matching step.

Output: Expanded set of reconstructed patches.

While P is not empty

Select and remove a patch p from P;
For each image cell Ci (x, y) containing p

Collect a set C of image cells for expansion;

For each cell Ci (x′, y′) in C

Create a patch candidate p′

Set c (p′) according to the method described in...

n (p′)← n (p);
R (p′)← R (p);
V (p′)← V (p);
Compute V ∗ (p′);
Optimise the geometric components of p′;
Add visible images to V (p′) using a depth-map test;

Recompute V ∗ (p′);
If |V ∗ (p′)| < γ

Select a new cell from C;

Add p′ to P;
Add p′ to Qj (x, y) and Q∗j (x, y);

Figure 4.6: Model after the �rst expansion step.

Figure 4.7: Model after the second expansion step.

47

Figure 4.8: Model after the third expansion step.

4.6 Patch Filtering

The patch �ltering step is run after the expansion step and this �ltering culls the number of

patches signi�cantly. This strict �ltering serves a purpose here as the patch expansion step

does not check for any occlusions or depth discontinuities. The patch �ltering step makes

use of four �lters. The purpose of the �ltering step is to make sure that reconstructed

patches match other patches in their neighbourhood.

4.6.1 Filtering of Outliers

The �rst �lter in the pipeline removes patches that do provide a response that is as strong

as the best neighbouring patch. First patches are collected and divided into a number of

groups with this number set to the number of threads that are run (in this case eight). A

patch is selected and its NCC score is computed as described in Section 3.2.2. Then each

patch that is in a cell that is a neighbour of C (p) is tested to see if it is a neighbour of p. If

p′ is a neighbour of p the NCC score of p′ is stored and denoted as ncc1. This is repeated

for all patches in neighbouring cells. Each time if the NCC score of the tested patch p′ is

greater than ncc1, then ncc1 is replaced with the NCC score of p′.

The second stage runs in a similar fashion to the �rst, except only images in V ∗ (p) are

considered. Patches that are in cells that are neighbours of the cell containing p are stored

in C (p). Then for each patch p′ in C (p) the depth of p and p′ are computed. If p and

p′ are neighbours and the depth of p is less than the depth of p′ then p′ occludes p. The

NCC score of the patch p′ with the highest NCC is stored in ncc2.

Finally a value gain = NCC (p)−ncc1−ncc2 is calculated where NCC (p) is the average

normalised cross correlation of the patch in the images of V ∗ (p). If this gain is less than

zero the patch is considered an outlier and is removed from the set of patches. The NCC

score of a patch represents how closely it models the surface. While the gain value provides

a relative measurement of how closely the patch p models the surface. If NCC (p) is not

as high as the sum of the best NCC scores of two neighbouring patches, then p may be an

outlier and is removed.

48

4.6.2 Remove Occluded Patches

The second �lter removes a patch p if it is occluded by another patch p′ that is a neighbour

of p. Equation 3.11 is used to determine if patches are indeed neighbours. If the ray from

the centre of the camera intersects one of the neighbouring patches before intersecting p

then p is said to be occluded and is removed. Threads for this �lter select a single image

as reference and use this image to determine visibility. A patch p is said to be occluded if

there is another patch p′ in its cell, or its neighbouring cells, that is closer to the camera

viewing p. Any occluded patches are discarded.

4.6.3 Remove Patches that Lack Neighbours

The third �lter removes patches that either do not have enough neighbouring patches, or

that are not consistent with their neighbours. Each thread selects a single reference image

to operate upon. For each patch p that projects into the image, the neighbouring cells of

p are found using Equation 3.10. These neighbouring cells are checked for patches, which

are stored in C (p). Then for each patch p′ in C (p) Equation 3.11 is used to determine

whether p and p′ are neighbours if this is the case then p′ remains, otherwise it is removed

from C (p). If there are at fewer than six patches in C (p) then p is removed for being

inconsistent.

If the patch p is consistent, i.e. it has enough neighbouring patches, then the depth of

p is checked in the images of V ∗ (p). If the depth of the patch is consistent with the depth

of its neighbouring patches in these images the patch p is kept, otherwise it is removed.

4.6.4 Remove Small Groups of Erroneous Patches

The �nal �lter selects a patch p and �nds all of the patches that are connected to it. A

patch p′ is said to be connected to p if it is a neighbour of p according to Equation 3.11. If

the size of this group of patches is determined to be too small the entire group of patches

is removed as an outlier.

The previous three �lters ensure that a single patch is consistent with the information

of the patches in its neighbourhood. However if several erroneous neighbouring patches

are created they will not be removed by these �lters. Thus the �lter to remove connected

components is used to remove these small groups of erroneous patches.

Figures 4.9, 4.10 and 4.11 show samples of the output of the �ltering step which is

called immediately after the expansion. Figure 4.9 shows the results of the �rst call to

the �ltering step, the majority of the noisy patches are removed as well as some salient

patches. Figure 4.10 shows the second call to the �ltering step. There are now very few

noisy patches many of the patches being removed in this step are correct patches with low

photometric consistency scores. Figure 4.11 shows the �nal call to the �ltering stage with

almost all noisy patches removed and a dense set of patches that closely model the surface

of the skull.

49

Figure 4.9: Model after the �rst �ltering step.

Figure 4.10: Model after the second �ltering step.

Figure 4.11: Model after the third �ltering step.

4.7 Polygonal Mesh Reconstruction

The polygonal mesh reconstruction step takes the dense patch model that was created

and turns it into a closed mesh model. This process is performed in two steps: a mesh

reconstruction algorithm is used to turn the point cloud into a closed mesh model. A

mesh optimisation stage is used to pull the vertices of the mesh closer to the reconstructed

surface of the model.

4.7.1 Mesh Reconstruction

For the mesh reconstruction stage the Poisson Surface Reconstruction algorithm by Kazh-

dan et al. [30] is used to create a closed mesh model from the dense set of patches. The

Poisson surface reconstruction algorithm is extensible. The parameters used for the cre-

ation of the meshes are shown below:

50

• Octree depth of 10

• At least γ samples per node (γ is the minimum image requirement from Section

3.3.2.1)

• Patch normals are used to re�ne vertices

4.7.2 Mesh Optimisation

The mesh optimisation stage aims to move the vertices of the closed mesh, created in

Section 4.7.1, closer to the surface of the object. Two implementations of the energy

function were written.

The �rst was as described in Section 3.6.2. This method took between 50 and 150

seconds to execute depending on the number of vertices in the input mesh even when run

in parallel on eight cores.

The second method does not generate new patches for each vertex but rather uses the

existing patches that were generated by the modi�ed PMVS algorithm. For each vertex

vi a depth map test is used to determine in which images it is visible, these images are

added to the set V (vi). For each image in V (vi) determine which cell vi projects into. If

this cell is occupied by a patch p add this patch to the set P
′
(vi). From this point the

algorithm works as described in Section 3.6.2 but optimises over the set of patches P
′
(vi).

The output of the mesh optimisation stage is shown below in Figure 4.12.

Figure 4.12: Final mesh model of the skull.

4.8 Results

4.8.1 Skull dataset

The skull dataset contains 24 high resolution images with an average resolution of 1950×
1750 pixels. For this data set 18 experiments were run. The size of the image cells were set

to either 1×1 pixels or 2×2 pixels; the patch size was set to 5×5, 7×7, or 9×9; and the

image size was set to quarter-size, half-size, or full size. Sample images are shown for each

reconstruction, as well as timing information and the number of patches reconstructed.

Each image has a label in Table 4.1 given as follows: LβCγPδ, where β is the image level

and two corresponds to quarter-size, one corresponds to half-size, and zero corresponds to

51

full-size. The size of a square image cell is denoted by γ and δ is the size of the square

patch.

The experimental values of β, γ, and δ were determined empirically and each of these

e�ect the quality of the reconstruction. Both the cell size and image size control the density

of patches in the reconstructed output. When the size of the image is halved the number

of cells is quartered. The values for cell size and image size were determined such that the

reconstruction was still subjectively recognisable.

The size of the patch correlates to the observed quality of the reconstruction. When a

larger patch is used the images that a patch projects onto need to match closely in a larger

area. This results in reconstructions that more closely model the surface. The maximum

patch size of 9×9 was chosen due to RAM limitations on the PC running the experiments.

Reconstructions using patches smaller than 5 × 5 did not produce dense reconstructions

and were therefore not considered. This dataset is available from Furukawa's website [36].

4.8.1.1 Reconstruction Results

The reconstructions can be roughly grouped based on the three changing parameters, and

changing these parameters changes the reconstruction quality signi�cantly. Full size images

provide a better �nal reconstruction than images that have been downsampled, however

larger images also take longer to process. The timing results show that the processing time

decreases three-fold with a halving of image size (one quarter as many pixels). When the

cell size is set to one a patch is reconstructed for every pixel and when it is two a patch is

reconstructed for every four pixels. With smaller cell sizes the �nal reconstruction is more

dense. The reconstruction time decreases by approximately three times upon doubling the

cell size. The �nal variable is the size of the patch which was set to either �ve, seven, or

nine. Increasing the patch size by two increases the processing time by 1.5 times as shown

in Table 4.1.

Each �gure shows three pictures of the same reconstruction from di�erent orientations

and each subsection groups reconstructions based on their image size.

The size of the input images alters the number of cells, and thus the reconstruction

density of the model, by a factor of n2. When the size of the image is halved the total

number of cells in the image is reduced to a quarter. Further by reducing the size of the

image neighbouring pixels are averaged to �nd a new pixel value. This new pixel value

is thus less representative of the object being modeled which lowers the quality of the

reconstruction.

The cell size determines the total number of cells in the image where a cell size of 1×1

means there are h × v cells in an image that are 1 × 1 pixels in size. When the size of

the cell is doubled to 2 × 2 the total number of cells in the reconstruction is reduced to

a quarter. This change e�ects the density of the output model with smaller cells creating

denser reconstructions.

The patch size determines the neighbourhood that is used to check the correlation

between patch projections in the input images. Larger patches project onto a larger area

in the images. This means that patch projections provide a more accurate representation

52

of the surface they are modeling because larger patches project onto more pixels.

4.8.1.2 Reconstructions from Full Size Images

The reconstructions from the full size images with cell size one provide high density re-

constructions with very minor di�erences in reconstruction quality over the varying patch

sizes. The reconstructions using a patch size of nine (Figure 4.13) and of seven (Figure

4.14) are very similar. The reconstruction with patch size �ve in Figure 4.15 displays some

holes above the eyebrows and below the left eye.

When the size of the cells is set to two the quality of the reconstructions changes

noticeably with patch size. The reconstruction with the smallest holes is shown in Figure

4.16. When the patch size is set to seven as shown in Figure 4.17 larger holes are visible

above the eyebrows and between the eyes. Finally when the patch size is set to �ve as

shown in Figure 4.18 the model contains many holes over the surface of the reconstruction.

Figure 4.13: Full size images, cell size of one, patch size of nine.

Figure 4.14: Full size images, cell size of one, patch size of seven.

53

Figure 4.15: Full size images, cell size of one, patch size of �ve.

Figure 4.16: Full size images, cell size of two, patch size of nine.

Figure 4.17: Full size images, cell size of two, patch size of seven.

54

Figure 4.18: Full size images, cell size of two, patch size of �ve.

4.8.1.3 Reconstructions from Half Size Images

The reconstructions from half size images with cell size one are shown in Figures 4.19, 4.20

and 4.21. The di�erences between these images are very minor. The reconstruction with

patch size �ve have several small holes distributed over the surface.

When the cell size is set to two the di�erence between the quality of the reconstructions

is more noticeable than with a cell size of one. A patch size of �ve (Figure 4.24) and seven

(Figure 4.23) produce models with a more sparse distribution of patches when compared

to a patch size of nine (Figure 4.22).

Figure 4.19: Half size images, cell size of one, patch size of nine.

55

Figure 4.20: Half size images, cell size of one, patch size of seven.

Figure 4.21: Half size images, cell size of one, patch size of �ve.

Figure 4.22: Half size images, cell size of two, patch size of nine.

56

Figure 4.23: Half size images, cell size of two, patch size of seven.

Figure 4.24: Half size images, cell size of two, patch size of �ve.

4.8.1.4 Reconstructions from Quarter Size Images

The reconstructions from quarter size images with a cell size of one have more noisy patches

on top of the skull. The reconstructions are less dense due to the lower number of image

cells. The di�erence between the reconstructions with patch sizes of nine (Figure 4.25)

and seven (Figure 4.26) are not signi�cant. When the patch size is reduced to �ve (Figure

4.27) there are more holes visible on the front of the skull.

57

Figure 4.25: Quarter size images, cell size of one, patch size of nine.

Figure 4.26: Quarter size images, cell size of one, patch size of seven.

Figure 4.27: Quarter size images, cell size of one, patch size of �ve.

58

Figure 4.28: Quarter size images, cell size of two, patch size of nine.

Figure 4.29: Quarter size images, cell size of two, patch size of seven.

Figure 4.30: Quarter size images, cell size of two, patch size of �ve.

59

4.8.1.5 Timing Results

Table 4.1 shows the timing results for the skull dataset. Each column shows the timing for

one of the major parts of the reconstruction algorithm. From the tables one can see that

the time for feature detection and the initial feature matching step remain approximately

constant for images of the same size. Full size images typically take ∼ 330 seconds. The

�rst expansion step typically takes the most time, a maximum of 68% in L2C1P9 (Figure

4.25), and a minimum of 21% for L0C1P5 (Figure 4.15). The reason the �rst expansion

takes so long is because the initial feature matching step creates a very sparse set of patches,

sparse in this case meaning that very few of the image cells contain a patch. This �rst

expansion step tries to create a patch in every cell and since so few cells are populated

this amounts to the creation of many patches. The second and third expansion steps take

a much shorter time to run because at this stage the number of reconstructed patches is

much higher due to the initial expansion. This leads to more cells being occupied and

therefore fewer cells are expanded into. Filtering tends to take more time as many patches

have been created during expansion. The �lters will check all patches to make sure they

are consistent with nearby patches causing them to have longer run times.

The total processing time decreases as reconstruction quality is decreased. This makes

sense because smaller images have fewer image cells, meaning that fewer patches are cre-

ated. As the cell size increases the number of cells in the reconstruction decreases meaning

that fewer patches are created. The �nal thing that will decrease processing time is de-

creasing the size of a patch. The reason this decreases processing time is that there are

fewer patch grid points and thus fewer pixel comparisons between images visible to a patch.

Figure 4.31: Timing graph for full size images with a cell size of two.

60

ID
D
et
ec
ti
on

(s
)

M
at
ch
in
g
(s
)

E
x
p
an
d
1
(s
)

F
il
te
r
1(
s)

E
x
p
an
d
2(
s)

F
il
te
r
2(
s)

E
x
p
an
d
3(
s)

F
il
te
r
3(
s)

T
ot
al
(s
)

N
u
m
b
er

of
P
at
ch
es

L
0C

1P
9

34
.7
93

38
.5
56
8

29
77
.6
1

18
7.
41
2

66
2.
26
3

21
6.
66
4

36
1.
12
3

23
6.
06
5

49
56
.0
61
8

55
76
04
4

L
0C

1P
7

34
.9
47

33
.9
94
1

19
38
.0
1

14
3.
77
6

58
2.
28
3

17
8.
88
7

35
9.
74
3

19
6.
00
3

37
09
.0
57
1

55
43
76
4

L
0C

1P
5

37
.7
02

33
.3
51
7

95
4.
91
7

93
.2
48
7

53
4.
71
3

13
5.
36
3

41
2.
90
5

16
5.
41
8

26
27
.7
18
4

52
45
86
0

L
1C

1P
9

9.
08
8

7.
58
71
4

95
1.
53
5

48
.4
22
5

18
3.
75
6

53
.0
88
8

15
5.
69
8

56
.5
75

15
28
.7
07
54

13
32
46
5

L
1C

1P
7

9.
23
9

6.
80
78
3

62
5.
38
8

39
.9
57
1

13
9.
20
1

45
.7
28
5

73
.2
98
5

47
.3
70
3

10
50
.7
56
43

12
59
47
2

L
1C

1P
5

10
.0
61

6.
29
83
3

36
6.
21

31
.1
59
5

89
.0
60
3

36
.5
49
8

40
.4
47
2

38
.7
90
9

68
8.
46
97
3

11
69
60
4

L
2C

1P
9

2.
54
8

1.
99
07
4

29
0.
69
6

12
.5
43
6

38
.7
99
7

13
.2
61
2

34
.0
65
9

13
.4
35
4

42
4.
72
97
4

32
92
49

L
2C

1P
7

2.
28
8

1.
56
76

17
0.
34
5

10
.6
05
3

21
.9
29
3

10
.7
67
9

19
.1
52
7

11
.0
93
5

26
3.
55
65

30
41
76

L
2C

1P
5

2.
30
6

1.
12
19
4

86
.2
46
1

7.
81
70
5

9.
97
00
1

8.
44
71

6.
17
69
6

8.
68
12
2

14
6.
62
69
8

26
81
96

L
0C

2P
9

38
.9
15

33
.7
62
1

66
2.
77
3

41
.0
56
1

85
.5
04
4

44
.9
88
3

73
.8
35
6

48
.4
07
3

12
98
.1
46
8

12
09
98
2

L
0C

2P
7

39
.6

28
.1
42
2

39
1.
96
6

28
.3
91
3

96
.0
11
5

35
.6
39
7

63
.0
81
1

38
.9
97
8

99
6.
00
86

11
12
73
5

L
0C

2P
5

41
.1
88

22
.6
73

15
1.
55
6

15
.1
4

78
.9
54
6

21
.4
82
2

59
.7
59
8

26
.5
63
1

70
3.
26
67

85
85
42

L
1C

2P
9

10
.1
19

5.
50
70
4

20
5.
25
3

10
.8
86

26
.2
48
7

11
.6
65
9

13
.1
93

12
.0
17
1

36
4.
85
84
4

28
56
66

L
1C

2P
7

10
.1
24

4.
72
86
9

13
1.
55
2

8.
34
57
7

26
.3
63
4

9.
36
19
8

16
.1
76
9

9.
90
82
1

28
6.
54
02
5

27
84
23

L
1C

2P
5

8.
81
9

4.
33
74
4

64
.7
14
9

6.
16
34
3

17
.6
03
2

7.
14
08
3

5.
22
43
7

7.
37
88
3

18
1.
93
34

24
14
31

L
2C

2P
9

2.
27
7

1.
71
85
2

52
.4
44
5

2.
94
12
4

3.
91
28
9

2.
97
94
4

2.
38
28
5

3.
04
52
7

87
.4
28
91

71
23
4

L
2C

2P
7

2.
27
8

1.
23
58
8

32
.2
24
2

2.
22
85
8

2.
28
12
3

2.
30
79
7

1.
01
07
3

2.
34
67
9

61
.6
99
48

64
42
6

L
2C

2P
5

2.
31
5

0.
87
56
63

17
.5
30
1

1.
65
23
1

2.
15
69
8

1.
80
50
6

0.
56
49
1

1.
78
93
1

44
.5
26
63
3

59
04
6

T
ab
le
4.
1:

T
im

in
g
re
su
lt
s
fo
r
sk
u
ll
d
at
as
et

w
it
h
C
U
D
A
al
go
ri
th
m
.

61

Figure 4.32: Timing graph for half size images with a cell size of two.

Figure 4.33: Timing graph for quarter size images with a cell size of two.

Figure 4.34: Timing graph for full size images with a cell size of one.

62

Figure 4.35: Timing graph for half size images with a cell size of two.

Figure 4.36: Timing graph for quarter size images with a cell size of one.

Figures 4.31 to 4.36 show bar graphs of the amount of time spent on each stage of the

processing. From these �gures it can be seen that the majority of the total processing time

is spent on the �rst expansion step.

4.8.1.6 Comparison to the Original Algorithm

The original PMVS algorithm was the written by Furukawa [5] and was used to test the

performance of the modi�ed algorithm presented in this dissertation. The original program

was run on the skull dataset described in Section 4.8.1 using the same con�guration �les

that were used to generate Table 4.1. The timing results of the original algorithm are

shown in Table 4.1.

The �rst modi�ed expansion stage runs slower than the original algorithm when small

cell sizes are used: for reconstruction L0C1P9 the modi�ed algorithm takes 2977.61 versus

2842.72 for the original algorithm.

The modi�ed algorithm ran the �rst expansion stage faster for the datasets with full

size images and a cell size of 2× 2.

The modi�ed algorithm then performs consistently faster for the subsequent expansion

stages.

63

ID
D
et
ec
ti
on

(s
)

M
at
ch
in
g
(s
)

E
x
p
an
d
1
(s
)

F
il
te
r
1(
s)

E
x
p
an
d
2(
s)

F
il
te
r
2(
s)

E
x
p
an
d
3(
s)

F
il
te
r
3(
s)

T
ot
al
(s
)

N
u
m
b
er

of
P
at
ch
es

L
0C

1P
9

57
.4
07

35
.0
82

28
42
.7
2

24
9.
28
4

84
9.
43
6

32
8.
59

88
8.
29
6

-
-

-

L
0C

1P
7

57
.0
79

33
.7
19

20
41
.7
1

22
1.
41
7

83
9.
23
2

31
5.
86

89
5.
01
9

-
-

-

L
0C

1P
5

58
.1
41

30
.9
61

93
6.
36

20
2.
74

93
6.
58
6

-
-

-
-

-

L
1C

1P
9

25
.1
84

5.
29
1

66
0.
40
5

67
.6
1

15
7.
36
6

72
.3
45

16
8.
17
9

75
.9
69

12
61
.9
3

13
55
29
2

L
1C

1P
7

24
.5
7

3.
60
3

44
5.
96
5

58
.1
15

10
7.
92
1

61
.6
29

11
4.
24
5

65
.9
26

91
0.
69
5

13
26
82
9

L
1C

1P
5

24
.8

3.
33
7

29
6.
13
7

49
.8
94

87
.8
52

55
.4
87

78
.5
26

58
.4
75
3

68
0.
75
2

12
94
45
9

L
2C

1P
9

6.
25
4

2.
35
4

19
8.
85

18
.6
47

68
.8
64

19
.9
25

70
.8
54

20
.4
54

41
7.
61
5

36
74
79

L
2C

1P
7

6.
22
9

1.
26
9

12
0.
38
4

15
.3
89

41
.5
44

17
.1
66

42
.0
86

17
.1
52

27
2.
60
5

35
37
11

L
2C

1P
5

6.
13
4

0.
71
3

65
.2
86

12
.4
81

23
.8
58

13
.7
13

23
.5
10
7

14
.3
05

17
0.
58

33
88
57

L
0C

2P
9

57
.6
76

21
.7
48

71
1.
86
7

58
.2
66

13
0.
45
1

62
.6
93

86
.5
86

64
.7
99

12
12
.6
3

12
17
29
9

L
0C

2P
7

58
.0
46

20
.9
96

49
8.
35
4

49
.8
51

12
0.
51
4

54
.4
79

78
.6
54

56
.9
79

95
4.
24
6

11
78
69
2

L
0C

2P
5

59
.0
2

16
.5
31

32
9.
30
9

42
.8
85

14
0.
83
7

48
.6
71

10
5.
88
9

52
.1
46

81
0.
43
5

10
94
75
7

L
1C

2P
9

24
.6
89

2.
44
8

15
8.
24
5

15
.3
15

26
.6
73

16
.0
7

17
.7
67

16
.5
71

27
6.
47
5

32
21
61

L
1C

2P
7

24
.7
05

1.
31
7

10
4.
76
8

12
.4
92

16
.7
01

13
.3
96

12
.6
3

13
.8
28

19
8.
27
8

30
95
23

L
1C

2P
5

24
.4
57

1.
18
8

61
.7
35

10
.5

11
.0
73

11
.2
32

8.
62
7

11
.5
55

13
8.
22

29
47
70

L
2C

2P
9

6.
24
6

1.
59
8

41
.9
32

4.
22
1

8.
98
5

4.
32
5

6.
63
2

4.
46

84
.1
22

86
28
5

L
2C

2P
7

6.
21
2

0.
79
9

26
.6
24

3.
38
6

6.
29
1

3.
62
6

4.
49
5

3.
64
1

60
.5
33

83
38
4

L
2C

2P
5

6.
15
2

0.
33
9

15
.3
12

2.
77
8

3.
7

2.
81
5

2.
36
5

2.
86
3

39
.6
41

76
17
7

T
ab
le
4.
2:

T
im

in
g
re
su
lt
s
fo
r
sk
u
ll
d
at
as
et

w
it
h
th
e
or
ig
in
al

P
M
V
S
al
go
ri
th
m
.

64

The approximately 2× speed increase in the feature detection stage is due to the fact

that the output of the Gaussian smoothing operation is data parallel and thus each GPU

thread can compute the modi�ed value of a single pixel, compared to the CPU version

where each new pixel value is calculated sequentially.

The optimisation step does not bene�t as much from GPU processing due to the fact

that every time that Equation 3.1 is computed several image reads are required to calculate

the NCC score. The slowest operation for most processing is memory reading and writing.

This problem is dealt with by attempting to do other processing tasks while the memory

is being loaded. The computation of the photometric discrepancy is fairly inexpensive in

terms of processing and due to this the memory operations are the bottleneck.

The number of patches reconstructed by the original and the new algorithm are very

similar. This is due to the fact that the algorithm tries to �ll every single image cell that

contains the object or scene. The feature detection step is used to seed the creation of

patches, so provided that correct features are detected the following expansion and �ltering

steps are able to create a su�ciently dense collection of patches.

4.8.1.7 Discussion

Table 4.1 shows the output information gathered from the running of the experiment. In

the Section 4.1 it was stated that the number of patches reconstructed related directly to

both image and patch size. When the image size is halved the number of cells reduced to

a quarter. Similarly when the cell size is doubled the total number of cells is reduced to

a quarter. Table 4.3 shows the average number of patches reconstructed for each pair of

image and cell sizes and Table 4.4 shows the ratio of patches created for each pair of image

and cell sizes.

Pair Average Reconstructed Patches

L0C1 5455223

L1C1 1253847

L2C1 300540

L0C2 1060420

L1C2 268507

L2C2 64902

Table 4.3: Average number of patches reconstructed.

L0C1 L1C1 L2C1 L0C2 L1C2 L2C2

L0C1 1 4.35 18.15 5.14 20.32 84.05

L1C1 1 4.17 1.18 4.67 19.32

L2C1 1 0.28 1.12 4.63

L0C2 1 3.95 16.34

L1C2 1 4.13

L2C2 1

Table 4.4: Ratio of the number of reconstructed patches .

Table 4.4 shows that the expected relationships between cell size and image size hold in

65

reality. Halving the size of the input images or doubling the image size cause the number

of patches that are reconstructed to be quartered. This can be seen when comparing L0C1

to L1C1 with a ratio of 4.35, meaning that there are 4.35 times more patches in L0C1 than

in L1C1. L0C1 has 5.14 times as many patches as L0C2. These values are close to the

expected value of four times more patches for full sized images, or for one pixel size cells.

When examining the timing results along with the number of patches reconstructed

it can be seen that a patch size of nine, when compared to a patch size of seven, only

creates 0.58% more patches but takes 25% longer for the L0C1 pair. For the L1C1 pair

a cell size of nine creates 5.48% more patches and takes 31% longer than a patch size of

seven. Similarly for the L2C1 pair, a patch size of nine creates 7.62% more patches but

takes 38% longer. Similar values are found when looking at the results when a cell size

of two is used. From this data and inspection of the reconstruction results there is not a

clear global advantage to using a patch size of nine over a patch size of seven.

The �rst expansion step is the most expensive set of computations performed during

the run time of the program. The execution time of the expansion steps increases with

patch size, image size, and smaller cells.

4.8.2 Middlebury Dinosaur Dataset

The Middlebury dinosaur dataset was discussed in Section 2.1.6. The captured images of

the dinosaur were split into three datasets with varying numbers of image. The modi�ed

algorithm discussed in this thesis was used to generate a closed mesh model for each of the

three datasets.

The meshing algorithm used for the dinosaur in this dissertation di�ers slightly from

the one that was used by Furukawa and Ponce. They used Furukawa's iterative snapping

algorithm [31, 1] to create the mesh models for these datasets. This implementation uses

the Poisson surface reconstruction method that cannot make use of foreground and back-

ground information. After the closed mesh has been created from the oriented patches.

The mesh optimisation algorithm that was discussed in Section 3.6.2 was used to pull the

mesh vertices closer to the original reconstructed patches.

4.8.2.1 Dinosaur Sparse Ring

The sparse ring dataset contains 16 images of the dinosaur. The reconstruction was per-

formed using full size images, cell size of 2× 2, and a patch size of 9× 9. The point cloud

model is shown in Figure 4.37 and the mesh model is shown in Figure 4.38. The recon-

struction from the sparse ring is the most complete according to the Middlebury evaluation

(Table 4.5) The patches are more sparse around the base of the dinosaur and on its right

shoulder (Middle image of Figure 4.37). The reconstructed mesh smooths over these sparse

areas but had to estimate the surface where there was no patch data.

66

Figure 4.37: Point cloud reconstruction of the dinosaur sparse ring dataset.

Figure 4.38: Mesh reconstruction of the dinosaur sparse ring dataset.

The reconstruction of the dinosaur from the sparse ring has a large hole on the right

shoulder of the dinosaur. There are many noisy patches along the edge of its spines.

4.8.2.2 Dinosaur Ring

The ring dataset contains 48 images of the dinosaur. The reconstruction was performed

using full size images, cell size of 2× 2, and a patch size of 9× 9. The point cloud model is

shown in Figure 4.39 and the mesh model is shown in Figure 4.40. The patch reconstruction

of the dinosaur ring dataset was the most accurate according to the Middlebury evaluation

(Table 4.5). The reconstructed patches are very sparse over the right shoulder (Middle

image of Figure 4.39). These sparse patches and a few outlying patches that were not

removed caused the mesh model to balloon out at the right shoulder.

67

Figure 4.39: Point cloud reconstruction of the dinosaur ring dataset.

Figure 4.40: Mesh reconstruction of the dinosaur ring dataset.

4.8.2.3 Dinosaur Hemisphere

The hemisphere dataset contains 363 images in a hemisphere around the dinosaur. The

reconstruction was performed using half size images, cell size of 2 × 2, and a patch size

of 9 × 9. The point cloud model is shown in Figure 4.42 and the mesh model is shown

in Figure 4.42. The reconstruction from the full hemisphere dataset provides the least

accurate and complete reconstruction as seen in Table 4.5. The entire left side of the

dinosaur is sparsely reconstructed (Right image of Figure 4.41). Because of these sparse

patches the mesh reconstruction of the right hand side is inaccurate.

68

Figure 4.41: Point cloud reconstruction of the dinosaur hemisphere dataset.

Figure 4.42: Mesh reconstruction of the dinosaur hemisphere dataset.

4.8.2.4 Results of the Middlebury Evaluation

The results of Middlebury evaluation of the dinosaur reconstruction are shown in Table 4.5.

The table shows that the sparse ring and ring datasets provide the best reconstructions

of the dinosaur. These reconstructions compare well to the original algorithm in both

accuracy and completeness. The full hemisphere reconstruction did not provide an accurate

reconstruction and this can be seen in Table 4.5. The completeness is poor at 89.4%

compared to the original algorithm at 99.8%.

Modi�ed Algorithm Original Algorithm [1]

Metric Accuracy Completeness Accuracy Completeness

Sparse Ring 0.44 mm 98.8% 0.37 mm 99.2%

Ring 0.43 mm 98.4% 0.28 mm 99.8%

Hemisphere 0.89 mm 89.4% 0.33 mm 99.8%

Table 4.5: Results of the modi�ed and original reconstruction algorithms for the Middle-
bury dinosaur datasets.

69

Chapter 5

Conclusion

5.1 Summary

This dissertation shows the work that was done to improve upon the existing PMVS-2

algorithm. A CUDA version of the feature detector was implemented and it was seen to

run 10 times faster than the original algorithm for all image sizes. The numeric optimi-

sation algorithm was replaced with the CUDA based L-BFGS. This change improved the

execution time of the initial matching step.

The primary aim of the work was to construct a dense cloud of oriented patches that

closely model the surface. A mesh creation and optimisation step were added that turned

the 3D point cloud into a closed mesh model.

The �nal models of the skull show a dense collection of patches that model the surface.

The most dense reconstruction was shown in Figure 4.13. This image shows a reconstruc-

tion containing 5576044 patches that were created in 4956.0618 seconds using the modi�ed

algorithm. The same reconstruction with the original algorithm ran out of memory and

did not produced an output model. The fastest reconstruction can be seen in Figure 4.30

with 59046 patches created in 44.526633 seconds using the modi�ed algorithm. The orig-

inal algorithm performed the same reconstruction in 39.641 seconds and created 76177

patches.

The feature detector was changed such that the common part of the algorithm, Gaus-

sian smoothing, would run on the GPU. The algorithm was a texture memory based imple-

mentation of the separable Gaussian kernel operator. This algorithm ran faster than the

original CPU based sequential algorithm with the performance increase related to image

size and magnitude of σ. For σ = 4.0 as used in Figure 2.5 the GPU algorithm performed

approximately 10 times faster than the CPU implementation. For the reconstructions of

the skull dataset the feature detection stage ran approximately two times faster due to the

smaller value of σ ≈ 1.0.

The initial matching and expansion steps both made use of the patch optimisation

algorithm described in Section 3.2.4. The optimisation algorithm was changed to a CUDA

version of the L-BFGS algorithm. The result of this change to the optimisation stage made

a small di�erence.

The modi�ed algorithm performed faster on the �rst expansion stage with full size

70

images and a cell size of 2×2. The modi�ed algorithm performed the �rst expansion slower

than the original algorithm on the other datasets. The modi�ed algorithm performed faster

than the original algorithm on the subsequent expansion steps.

The modi�ed algorithm performed well in the Middlebury evaluation on the dinosaur

dataset. The ring and sparse ring provided the best accuracy and completeness respec-

tively. The full hemisphere reconstruction was not very accurate or complete due to the

sparseness of the reconstructed patches. This reconstruction could be improved by running

the algorithm again with di�erent parameters until a better solution is found.

These results show that it is indeed feasible to use GPUs and more speci�cally CUDA

to improve the execution time of some portions of the PMVS algorithm. Speci�cally parts

that are highly data parallel such as feature detection. CUDA does not provide any real

improvement to the expansion stage with its GPU-based optimisation step. The reason

that the subsequent expansion steps ran faster on the modi�ed algorithm is because fewer

patches were generated when using the GPU-based optimisation.

5.2 Future Work

This dissertation discussed work that turned a series of calibrated images into a 3D mesh

model. The primary extensions to make would be to allow uncalibrated images to be used

as an input. This is possible using structure from motion to determine camera parameters

from the images themselves [2, 9].

It is also possible to allow for larger sets of input images by clustering like views and

generating sub-models from these using any MVS technique which are then grouped into a

�nal model. Furukawa et. al. described and implemented this idea in �Towards Internet-

Scale Multi-View Stereo� [2, 37].

More research could be done on using di�erent CUDA optimisation methods to de-

termine which method works best for patch optimisation. Research should be conducted

on other types of 3D reconstruction algorithms to determine their suitability for CUDA

optimisation.

Porting of the expansion and �ltering stages onto a CUDA or generic GPGPU platform

should be possible. The expansion step attempts to create new patches in empty cells

from existing nearby patches. This can be run independently since it would not matter if

multiple new patches were created in a new cell since erroneous patches are removed by

the �lters.

71

Bibliography

[1] Y. Furukawa and J. Ponce, �Accurate, dense, and robust multiview stereopsis,� Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 32, pp. 1362 �1376,

August 2010.

[2] Y. Furukawa, B. Curless, S. Seitz, and R. Szeliski, �Towards internet-scale multi-view

stereo,� in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference

on, pp. 1434 �1441, June 2010.

[3] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, �A comparison and

evaluation of multi-view stereo reconstruction algorithms,� in Computer Vision and

Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 1, pp. 519 �

528, 2006.

[4] D. Kirk and W. Hwu, Programming Massively Parallel Processors. Morgan Kaufman,

1st ed., 2010.

[5] Y. Furukawa, �Patch-based multi-view stereo software.�

http://grail.cs.washington.edu/software/pmvs/, 2010.

[6] N. D. Campbell, G. Vogiatzis, C. Hernández, and R. Cipolla, �Using multiple hy-

potheses to improve depth-maps for multi-view stereo,� in Proceedings of the 10th

European Conference on Computer Vision: Part I, ECCV '08, (Berlin, Heidelberg),

pp. 766�779, Springer-Verlag, 2008.

[7] C. Zach, �Fast and high quality fusion of depth maps,� in 3D Data Processing, Visu-

alization and Transmission, 2008.

[8] A. Laurentini, �The visual hull concept for silhouette-based image understanding,�

Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 16, pp. 150

�162, Feb. 1994.

[9] S. Agarwal, N. Snavely, I. Simon, S. Seitz, and R. Szeliski, �Building Rome in a day,�

in Computer Vision, 2009 IEEE 12th International Conference on, pp. 72 �79, Oct.

29 2009.

[10] Y. Furukawa and J. Ponce, �Accurate camera calibration from multi-view stereo and

bundle adjustment,� in Computer Vision and Pattern Recognition, 2008. CVPR 2008.

IEEE Conference on, pp. 1 �8, June 2008.

72

[11] G. Vogiatzis, P. Torr, and R. Cipolla, �Multi-view stereo via volumetric graph-cuts,�

in Computer Vision and Pattern Recognition, pp. 391�398, 2005.

[12] G. Vogiatzis, C. Hernandez, P. Torr, and R. Cipolla, �Multiview stereo via volumetric

graph-cuts and occlusion robust photo-consistency,� Pattern Analysis and Machine

Intelligence, IEEE Transactions on, vol. 29, pp. 2241 �2246, dec. 2007.

[13] C. Hernandez and F. Schmitt, �Silhouette and stereo fusion for object modeling,�

Computer Vision and Image Understanding, vol. 96(3), pp. 367�392, 2004.

[14] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, �Multi-view stereo,�

http://vision.middlebury.edu/mview/, 2009.

[15] D. Bradley, T. Boubekeur, and W. Heidrich, �Accurate multi-view reconstruction

using robust binocular stereo and surface meshing,� in Computer Vision and Pattern

Recognition, 2008.

[16] Y. Furukawa and J. Ponce, �High-�delity image-based modeling,� tech. rep., University

of Illinois at Urbana-Champaign, 2006.

[17] M. Goesele, B. Curless, and S. Seitz, �Multi-view stereo revisited,� in Computer Vision

and Pattern Recognition, 2006.

[18] V. Kolmogorov and R. Zabih, �Multi-camera scene reconstruction via graph cuts,� in

Proceedings of the 10th European Conference on Computer Vision, vol. III, pp. 82�96,

2002.

[19] J. Pons, R. Keriven, and O. Faugeras, �Modelling dynamic scenes by registering multi-

view image sequences,� in Computer Vision and Pattern Recognition, vol. II, pp. 822�

827, 2005.

[20] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cam-

bridge University Press, 2nd ed., 2003.

[21] B. Cyganek and J. P. Siebert, An Introduction to 3D Computer Vision Techniques

and Algorithms. Wiley, 2009.

[22] R. Hartley and P. Sturm, �Triangulation,� tech. rep., 1997.

[23] D. C. Liu and J. Nocedal, �On the limited memory BFGS method for large scale

optimization,� Mathematical programming, vol. 45, no. 1-3, pp. 503�528, 1989.

[24] Y. Fei, G. Rong, B. Wang, and W. Wang, �Parallel L-BFGS-B algorithm on GPU,�

Computers and Graphics, vol. 40, no. 0, pp. 1�9, 2014.

[25] O. Bretscher, Linear Algebra with Applications. Upper Saddle River: Prentice Hall,

3rd ed., 1995.

[26] B. Barney and L. L. N. Laboratory, �POSIX threads programming.�

https://computing.llnl.gov/tutorials/pthreads/, December 2013.

73

[27] G. Stockman and L. G. Shapiro, Computer Vision. Upper Saddle River, NJ, USA:

Prentice Hall PTR, 1st ed., 2001.

[28] C. Harris and M. Stephens, �A combined corner and edge detector,� in In Proc. of

Fourth Alvey Vision Conference, pp. 147�151, 1988.

[29] D. Marr and E. Hildreth, �Theory of Edge Detection,� Proceedings of the Royal Society

of London. Series B, Biological Sciences, vol. 207, no. 1167, pp. 187�217, 1980.

[30] M. Kazhdan, M. Bolitho, and H. Hoppe, �Poisson surface reconstruction,� in Proceed-

ings of the fourth Eurographics symposium on Geometry processing, SGP '06, (Aire-

la-Ville, Switzerland, Switzerland), pp. 61�70, Eurographics Association, 2006.

[31] Y. Furukawa and J. Ponce, �Carved visual hulls for image-based modelling,� Interna-

tional Journal of Computer Vision, vol. 81, pp. 53�67, March 2009.

[32] N. Okazaki, �libLBFGS: a library of limited-memory Broyden-Fletcher-Goldfarb-

Shanno (L-BFGS).� Internet: http://www.chokkan.org/software/liblbfgs/, December

2010.

[33] B. Karlsson, �Smart pointers in boost.� C/C++ Users Journal, April 2002.

[34] G. Bradski, �OpenCV,� Dr. Dobb's Journal of Software Tools, 2000.

[35] K. G. Derpanis, �Outline of the relationship between the di�erence-of-Gaussian and

Laplacian-of-Gaussian,� tech. rep., York University, September 2006.

[36] Y. Furukawa and J. Ponce, �3d photography dataset.�

http://homes.cs.washington.edu/ furukawa/research/mview/index.html, May 2006.

[37] Y. Furukawa, �Clustering views for multi-view stereo (CMVS) software.�

http://www.di.ens.fr/cmvs/, July 2010.

74

Appendix A

Derivations

A.1 Separability of Gaussian Kernels

Given a two-dimensional Gaussian kernel g (x, y) and an image f (x, y) the convolution of

the kernel with the image is:

g (x, y) ∗ f (x, y) =
m∑
k=1

n∑
l=1

g (k, l) f (x− k, y − l)

m∑
k=1

n∑
l=1

e−
k2+l2

2σ2 f (x− k, y − l)

m∑
k=1

e−
k2

2σ2

{
n∑
l=1

e−
l2

2σ2 f (x− k, y − l)

}
(A.1)

From this it can be seen that convolving the image with a two-dimensional Gaussian

kernel is the same as convolving the image �rst with one of the kernels, then convolving

the result with the other kernel, the order of convolution is unimportant because the the

linear convolution operator is commutative and associative.

A.2 Full Response of the Harris Filter

H = det (M)− λtrace2 (M) (A.2)

M = Gσ1 ∗
(
∇I∇IT

)
(A.3)

∇I =
[

∂I
∂x

∂I
∂y

]T
(A.4)

where:

Ix =
∂I

∂x
,

Iy =
∂I

∂y
,

75

M = Gσ1 ∗

([
Ix

Iy

] [
Ix Iy

])

= Gσ1 ∗

[
I2x IxIy

IxIy I2y

]

H = det

(
Gσ1 ∗

[
I2x IxIy

IxIy I2y

])
− λtrace2

(
Gσ1 ∗

[
I2x IxIy

IxIy I2y

])
(A.5)

A.3 Finding the Fundamental Matrix

Given two camera matrices P and P ′. The fundamental matrix F is found according to

F =



det


P 1

P 2

P ′1

P ′2

 det


P 1

P 2

P ′2

P ′0

 det


P 1

P 2

P ′0

P ′1



det


P 2

P 0

P ′1

P ′2

 det


P 2

P 0

P ′2

P ′0

 det


P 2

P 0

P ′0

P ′1



det


P 0

P 1

P ′1

P ′2

 det


P 0

P 1

P ′2

P ′0

 det


P 0

P 1

P ′0

P ′1





(A.6)

where:

pj = the jth row of P, and
pj1

pj2

p′j1

p′j2

 = a 4×4 matrix.

76

Appendix B

Reconstruction Results

B.1 Roman Action Figure

The roman dataset contained 48 high resolution images of an action �gure of a roman

soldier as well as the corresponding extrinsic and intrinsic parameters. The parameters

that were used on this dataset are the same as the skull dataset (Section 4.8.1). However

due to memory requirements on the experimental PC full size images with 1×1 cells could

not be tested. This dataset is available from Furukawa's website [36].

B.1.1 Reconstructions from Full Size Images

Figures B.1, B.2, and B.3 show the results of the new reconstruction algorithm on the

roman dataset. The reconstructions from full size images using a patch size of 9×9, shown

in Figure B.1, provides the best reconstruction of the soldier however the reconstruction

took 74 minutes. From the images and Table B.1 it can be seen that the number of

reconstructed patches decrease as patch size decreases.

Figure B.1: Full size images, cell size of two, patch size of nine.

77

Figure B.2: Full size images, cell size of two, patch size of seven.

Figure B.3: Full size images, cell size of two, patch size of �ve.

B.1.2 Reconstructions from Half Size Images

Figures B.4, B.5, and B.6 show reconstructions of the roman action �gure using a cell size

of 1× 1 pixels. These reconstructions have dense coverage of the object and take between

28 and 72 minutes to be computed. Once again the most dense reconstruction is created

with a patch size of 9× 9 but the di�erence between the three reconstructions is small.

Figures B.7, B.8, and B.9 show reconstructions of the roman action �gure with a cell

size of 2× 2 pixels. These reconstructions took between nine and 19 minutes to compute.

Patch sizes of 9×9 and 7×7 create dense reconstructions with similar numbers of patches.

The reconstruction using 5× 5 patches was much less dense.

78

Figure B.4: Half size images, cell size of one, patch size of nine.

Figure B.5: Half size images, cell size of one, patch size of seven.

79

Figure B.6: Half size images, cell size of one, patch size of �ve.

Figure B.7: Half size images, cell size of two, patch size of nine.

80

Figure B.8: Half size images, cell size of two, patch size of seven.

Figure B.9: Half size images, cell size of two, patch size of �ve.

B.1.3 Reconstructions from Quarter Size Images

Figures B.10, B.11, and B.12 show reconstruction using quarter size images with a cell size

of 1 × 1 pixels. The most patches were reconstructed when the patch size was 9 × 9 and

took 16 minutes to compute.

Figures B.13, B.14, and B.15 show reconstruction using quarter size images with a cell

size of 2× 2 pixels. These reconstructions took between two and four minutes to compute.

81

Figure B.10: Quarter size images, cell size of one, patch size of nine.

Figure B.11: Quarter size images, cell size of one, patch size of seven.

82

Figure B.12: Quarter size images, cell size of one, patch size of �ve.

Figure B.13: Quarter size images, cell size of two, patch size of nine.

83

Figure B.14: Quarter size images, cell size of two, patch size of seven.

Figure B.15: Quarter size images, cell size of two, patch size of �ve.

B.1.4 Timing Results

Table B.1 shows the timing results for the reconstructions of the roman dataset. Results

could not be captured for full sized images, with a cell size of 1× 1 pixels due to memory

limitations on the PC running the experiments.

84

ID
D
et
ec
ti
on

(s
)

M
at
ch
in
g
(s
)

E
x
p
an
d
1
(s
)

F
il
te
r
1(
s)

E
x
p
an
d
2(
s)

F
il
te
r
2(
s)

E
x
p
an
d
3(
s)

F
il
te
r
3(
s)

T
ot
al
(s
)

N
u
m
b
er

of
P
at
ch
es

L
0C

1P
9

16
2.
45
9

-
-

-
-

-
-

-
-

-

L
0C

1P
7

16
0.
84
9

-
-

-
-

-
-

-
-

-

L
0C

1P
5

16
1.
41
2

-
-

-
-

-
-

-
-

-

L
1C

1P
9

36
.1
61

35
.2
21
5

24
98
.3
9

12
1.
48
2

50
7.
22
3

13
5.
05
5

58
1.
78

15
1.
16
4

43
16
.2
55
5

23
60
53
6

L
1C

1P
7

36
.6
39

37
.6
33
4

14
70
.5
4

97
.0
05
5

34
4.
34
6

11
1.
29
9

32
7.
76
9

12
2.
85
3

28
01
.3
88
9

21
33
12
2

L
1C

1P
5

38
.5
44

33
.5
08
8

67
3.
50
6

69
.9
89
8

21
5.
18
4

84
.0
83
6

17
6.
02
7

93
.6
56

16
51
.8
53
2

17
71
50
0

L
2C

1P
9

9.
64
6

11
.3
34
2

54
4.
46
1

28
.8
22
7

13
4.
13
6

31
.8
21
4

11
4.
08
6

34
.2
94
2

97
4.
89
72

63
98
01

L
2C

1P
7

9.
75
6

8.
25
90
2

30
4.
1

22
.0
62
2

85
.4
56
9

25
.0
60
4

60
.1
85
9

26
.7
71

60
8.
38
07
2

53
70
49

L
2C

1P
5

8.
82
3

5.
98
64
2

12
0.
58
1

15
.3
82
9

49
.3
86
3

18
.2
48
7

43
.2
75
5

20
.6
77
6

34
3.
16
61
2

43
60
63

L
0C

2P
9

16
0.
68
4

17
3.
01
8

19
54
.9
3

90
.1
43
3

47
6.
03
8

10
3.
12
4

28
8.
43
4

11
1.
83
4

44
72
.7
91
3

17
86
23
9

L
0C

2P
7

16
2.
34
5

13
9.
15
4

88
5.
71

57
.4
70
1

26
5.
88
8

67
.2
90
7

14
4.
03
9

73
.6
02
2

29
22
.1
24

13
86
76
8

L
0C

2P
5

16
3.
19
7

11
1.
46
6

34
4.
88
9

37
.4
76
5

10
3.
59
5

41
.9
67
9

74
.9
10
8

46
.7
08
3

20
56
.9
23
5

10
36
44
1

L
1C

2P
9

38
.6
17

37
.3
24
8

54
8.
58
6

25
.0
37
9

11
7.
63
6

28
.5
81
8

41
.5
44
1

28
.9
22
6

11
33
.5
66
2

49
49
05

L
1C

2P
7

39
.1
88

26
.9
21
1

29
2.
83
9

18
.1
34
6

83
.6
87
8

21
.4
34

41
.7
31

23
.3
54
6

81
7.
98
81

43
80
66

L
1C

2P
5

39
.9
50

23
.6
26
9

12
2.
61
8

12
.2
86
1

31
.3
19
2

13
.8
64
4

15
.8
70
1

14
.4
13
1

55
0.
41
18

31
84
53

L
2C

2P
9

8.
95
1

9.
42
00
4

11
0.
40
1

5.
74
50
2

21
.1
10
2

6.
10
04
1

7.
79
46
1

6.
26
89
1

23
7.
67
19
9

12
17
83

L
2C

2P
7

9.
0

6.
25
95
4

49
.2
20
6

3.
96
82
6

12
.1
48
2

4.
41
99
6

5.
18
81
3

4.
55
33
8

15
6.
21
26
7

99
82
0

L
2C

2P
5

8.
63
5

4.
84
12
3

22
.7
43
3

2.
75
01
1

6.
67
14

3.
02
41
2

4.
60
41
4

3.
39
13
7

11
6.
61
44
7

83
95
4

T
ab
le
B
.1
:
T
im

in
g
re
su
lt
s
fo
r
ro
m
an

d
at
as
et
.

85

Appendix C

DVD

The DVD contains all of the source code for the modi�ed PMVS-2 algorithm and the

meshlab models that were generated by the algorithm. It also contains some sample

reconstructions of the intermediate stages of the algorithm.

86

	1 Introduction
	1.1 Three Dimensional Reconstruction
	1.2 Parallelism
	1.3 Problem Statement
	1.4 Outline of this Thesis

	2 Literature Review
	2.1 Multi-View Stereopsis
	2.1.1 Scene Representation
	2.1.2 Initialisation Requirements
	2.1.3 Photo-Consistency Measure
	2.1.4 Visibility Model
	2.1.5 Shape Prior
	2.1.6 Evaluation of MVS Results

	2.2 Mathematical Background
	2.2.1 Notation
	2.2.2 Homogenous Coordinates
	2.2.3 Intrinsic and Extrinsic Parameters
	2.2.4 Epipolar Geometry
	2.2.5 The Essential and Fundamental Matrix
	2.2.6 Triangulation
	2.2.6.1 Midpoint Triangulation
	2.2.6.2 Linear Triangulation
	2.2.6.3 Optimal Triangulation Method

	2.2.7 Numerical Methods
	2.2.7.1 Limited Memory Broyden-Fletcher-Goldfarb-Shanno Optimisation Algorithm
	2.2.7.2 Solving Systems of Linear Equations

	2.3 Parallel Processing
	2.3.1 Parallelism on the CPU
	2.3.2 The Graphics Card as a Massively Parallel Processor
	2.3.2.1 Introduction
	2.3.2.2 Graphics Processor Architecture
	2.3.2.3 General Purpose Graphics Processing Units
	2.3.2.4 Parallel Programs and Data Parallelism

	2.3.3 Compute Unified Device Architecture
	2.3.3.1 Programming Structure
	2.3.3.2 CUDA Memories

	2.3.4 An Example of Parallel Processing

	2.4 Selection of Modern MVS Algorithms
	2.4.1 Accurate, Dense, and Robust Multi-View Stereopsis
	2.4.2 Multiple Hypotheses Depth-Maps for Multi-View Stereo

	3 Patch-Based Multi-View Stereo
	3.1 Introduction
	3.2 Model Representation
	3.2.1 Patch Model
	3.2.2 Photometric Discrepancy Function
	3.2.3 Image Model
	3.2.4 Patch Optimisation

	3.3 Initial Feature Matching
	3.3.1 Feature Detection
	3.3.1.1 Gaussian Kernels
	3.3.1.2 Harris Feature Detector
	3.3.1.3 Difference of Gaussians Feature Detector
	3.3.1.4 Detecting Features in Windows

	3.3.2 Feature Matching
	3.3.2.1 Feature Matching Procedure

	3.4 Patch Expansion
	3.4.1 Selecting Cells for Expansion
	3.4.2 Expansion Procedure

	3.5 Patch Filtering
	3.6 Polygonal Mesh Reconstruction
	3.6.1 Mesh Creation
	3.6.2 Mesh Optimisation

	4 Methodology and Results
	4.1 Introduction
	4.2 Specifications
	4.2.1 System
	4.2.2 Programs

	4.3 Test Implementations
	4.4 Initial Feature Matching
	4.4.1 Feature Detection
	4.4.1.1 Gaussian Smoothing
	4.4.1.2 Harris Feature Detector
	4.4.1.3 Difference of Gaussians Feature Detector

	4.4.2 Candidate Creation
	4.4.2.1 Finding Feature Pairs
	4.4.2.2 Initialising a Three Dimensional Patch
	4.4.2.3 Refining a Three Dimensional Patch
	4.4.2.4 Optimising a Three Dimensional Patch

	4.5 Patch Expansion
	4.6 Patch Filtering
	4.6.1 Filtering of Outliers
	4.6.2 Remove Occluded Patches
	4.6.3 Remove Patches that Lack Neighbours
	4.6.4 Remove Small Groups of Erroneous Patches

	4.7 Polygonal Mesh Reconstruction
	4.7.1 Mesh Reconstruction
	4.7.2 Mesh Optimisation

	4.8 Results
	4.8.1 Skull dataset
	4.8.1.1 Reconstruction Results
	4.8.1.2 Reconstructions from Full Size Images
	4.8.1.3 Reconstructions from Half Size Images
	4.8.1.4 Reconstructions from Quarter Size Images
	4.8.1.5 Timing Results
	4.8.1.6 Comparison to the Original Algorithm
	4.8.1.7 Discussion

	4.8.2 Middlebury Dinosaur Dataset
	4.8.2.1 Dinosaur Sparse Ring
	4.8.2.2 Dinosaur Ring
	4.8.2.3 Dinosaur Hemisphere
	4.8.2.4 Results of the Middlebury Evaluation

	5 Conclusion
	5.1 Summary
	5.2 Future Work

	Bibliography
	A Derivations
	A.1 Separability of Gaussian Kernels
	A.2 Full Response of the Harris Filter
	A.3 Finding the Fundamental Matrix

	B Reconstruction Results
	B.1 Roman Action Figure
	B.1.1 Reconstructions from Full Size Images
	B.1.2 Reconstructions from Half Size Images
	B.1.3 Reconstructions from Quarter Size Images
	B.1.4 Timing Results

	C DVD

