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Abstract 

 

Progress in technology in the field of magnetic resonance imaging (MRI) has provided medical 

experts with a tool to visualise the heart during the cardiac cycle. The heart contains four 

chambers namely the left and right ventricles and the left and right atria. Each chamber plays an 

important role in the circulation of blood throughout the body. Imbalances in the circulatory 

system can lead to several cardiovascular diseases. In routine clinical medical practice MRIs are 

produced in large quantities on a daily basis to assist in clinical diagnosis. In practice, the 

interpretation of these images is generally performed visually by medical experts due to the 

minimal number of automatic tools and software for extracting quantitative measures.  

 

Segmentation refers to the process of detecting regions within an image and associating these 

regions with known objects. For cardiac MRI, segmentation of the heart distinguishes between 

different ventricles and atriums. If the segmentation of the left ventricle and right ventricle 

exists, doctors will be interested in quantifying the thickness of the ventricle walls, the 

movement of each ventricle, blood volumes, blood flow-rates, etc. 

 

Several cardiac MRI segmentation algorithms have been developed over the past 20 years. 

However, much attention of these segmentation methods was afforded to the left ventricle and 

its functionality due to its approximately cylindrical shape. Analysis of the right ventricle also 

plays an important role in heart disease assessment and coupled with left ventricle analysis, will 

produce a more intuitive and robust diagnostic tool. Unfortunately, the crescent like shape of the 

right ventricle makes its mathematical modelling difficult. Another issue associated with 

segmenting cardiac MRI is that the quality of images can be severely degraded by artefactual 

signals and image noise emanating from equipment errors, patient errors and image processing 

errors. The presence of these artefacts attribute to additional difficulty for segmentation 

algorithms and many of the currently available segmentation methods cannot account for all of 

the abovementioned categories.  

 

A further downfall of current segmentation algorithms is that there is no readily available 

standard methodology to compare the accuracy of these approaches, as each author has 

provided results on different cardiac MRI datasets and segmentation done by human readers 

(expert segmentation) is subjective. This thesis addresses the issues of accuracy comparison by 

providing a framework of mathematical, statistical and clinical accuracy measures. The use of 

publically available cardiac MRI datasets in which expert segmentation is performed is 

analysed. The framework allows the author of a new segmentation algorithm to choose a subset 
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of the measures to test their algorithm. A clinical measure is proposed in this thesis which does 

not require expert segmentation on the cardiac MRI dataset, where the stroke volumes of the left 

and right ventricle are compared to each other.  

 

This thesis proposes a new three dimensional cardiac MRI segmentation algorithm that is able 

to segment both the left and right ventricles. This approach provides a robust technique that 

improves on the use of the difference of Gaussians (DoG) image filter. The main focus was to 

find and extract the region of interest that contains the ventricles and remove all the unwanted 

information so that the DoG parameters are created from intensity profiles of this localised 

region. Two methods are proposed to achieve this localisation, depending on the type of cardiac 

MRI dataset that is present. 

 

The first method is used if the cardiac MRI dataset contains images from a single MRI view. 

Local and global motion maps are created per MRI slice using pixel intensities from images at 

all time points though the cardiac cycle. The segmentation results show a slight drop in 

evaluation metrics on the state of the art algorithms for the left ventricle and a significant 

improvement over the state of the art algorithms for the right ventricle using the publically 

available cardiac MRI datasets. The algorithm is also robust enough to withstand the influence 

of image noise and simulated patient movement. 

 

The second approach to find the region of interest is used if there are MRIs from three views 

present in the cardiac MRI dataset. The novel method projects ventricle segmentation in the 

three dimensional space from two cardiac MRI views to provide an automatic ventricle 

localisation in the third MRI view. This method utilises an iterative approach with convergence 

criteria to provide final ventricle segmentation in all three MRI views. The results show increase 

in segmentation accuracy per iteration and a small stroke volumetric error measurement on final 

segmentation. 

 

Finally, proposed in this thesis is a triangular surface mesh reconstruction algorithm to create 

the visualisation of both the left and right ventricles. The segmentation of the ventricles are 

extracted from the MRI per slice and combined to form a three dimensional point set. The use 

of segmentation from the three orthogonal MRI views further improves the visualisation. From 

the three dimensional point set, the surface mesh is constructed using Delaunay triangulation, 

convex hulls and alpha hulls. The volume of the ventricles are calculated by performing a high 

resolution voxelisation of the ventricle mesh and thereafter several quantification measures are 

computed. The volume methodology is compared to the commonly used Simpsons method and 

the results illustrate that the proposed method is superior. 
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CHAPTER 1 -  INTRODUCTION 

 

Cardiovascular magnetic resonance imaging (CMRI) is a medical imaging method applied to 

the cardiovascular system that allows the simultaneous visualisation and analysis of both 

cardiac function and anatomy [4]. It is based on the same principles as magnetic resonance 

imaging (MRI), but with optimisation for the cardiovascular system. One of the main 

components of the cardiovascular system is the heart. The human heart is a powerful muscular 

organ that maintains blood circulation through the body. It contains four chambers namely the 

left and right ventricles and the left and right atria. The left and right ventricles are adjoined, 

separated by a wall, with each supporting one of two different circulations. The systemic 

circulation is maintained by the left ventricle and pumps blood to the organ tissues, the brain, 

and the rest of the body, while the pulmonary circulation is maintained by the right ventricle 

which pumps blood through the pulmonary artery and the lungs. 

 

Imbalances in the circulation system lead to cardiovascular diseases (CVD) such as: coronary 

heart disease, arrhythmia, acute myocardial infarction (heart attack), congestive heart failure, 

hypertension (forcing the heart to pump against higher pressures), congenital heart diseases 

(defects or holes between the ventricles), etc. CVD is one of the most common causes of death 

[5], accounting for 30% of all global deaths in 2008, according to the World Health 

Organisation. Thus it is essential to diagnose cardiac diseases at the earliest stages. 

 

To date, adult cardiology deals mostly with the left ventricle, hence the kinematics of the right 

ventricle is not as well-understood as that of the left, although this is slowly changing [1]. 

Imaging is more difficult due to its thin wall and asymmetric geometry [6], [7]. However, 

abnormalities in right ventricular function are also associated with a number of life-threatening 

defects. Also, right ventricle dysfunction can also adversely affect the left ventricle and can lead 

to heart failure [8]. Unfortunately, because of its different shape and pressures, much of the 

research on the left ventricle functional assessment cannot be easily transferred to the right 

ventricle.  

 

In routine clinical medical practice images are produced in large quantities on a daily basis to 

assist in diagnosis of internal bodily ailments, such as CVD. Improvements in CMRI now 

provide more detailed anatomical and functional information about the heart and are gaining 

more importance in CVD diagnosis. However, in practice, the interpretation of these images is 

generally performed visually due to the minimal presence of automatic tools and software for 
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extracting quantitative measures. Visual inspection of images performed by human readers or 

experts is subjective and unreliable. It is thus necessary to have efficient and powerful computer 

vision techniques to aid and speed up visualisation and analysis of such images. These 

techniques or algorithms, that automatically identify region of interest in CMRI, are intended to 

support medical experts in their work. 

 

Segmentation refers to the process of detecting regions within an image and associating these 

regions with known objects. In other words, segmentation of the medical image distinguishes 

between different organs, tissues, vessels, blood flow, etc. A precise segmentation allows not 

only a better visualisation of the object but also makes it possible to quantify that particular area 

of interest and provide further meaningful information. For example from the MRIs of a human 

heart, if segmentation of the left and right ventricles exist, doctors will be interested in 

quantifying the thickness of the ventricle walls, the movement of each ventricle, blood volumes, 

blood flow-rates, etc. [9] . 

  

1.1 Motivation and Research Objectives 

 

Over the last 20 years, various segmentation techniques for CMRI have been developed [2]. 

During this time, much attention was afforded to the left ventricle and its functionality due to 

the cylindrical shape [1] in the short axis MRI view (SAV). This made the left ventricle easy to 

locate and identify. Thus mathematical shape modelling was possible. Analysis of the right 

ventricle also plays an important role in heart disease detection and coupled with left ventricle 

analysis produce a more intuitive diagnosis tool. Unfortunately, the crescent like shape of the 

right ventricle makes mathematical modelling difficult. 

 

The research topic was formulated on a visit to the University of the Free State, Medical Physics 

department in February 2008. There was a genuine need by Professor William I.D. Rae and his 

team, at the Medical Physics department to perform research into the understanding of the right 

ventricle of the human heart via magnetic resonance imaging, in terms of volumetric calculation 

and relation to diseases. Hence collaboration was then created between the University of the 

Free State, Medical Physics department and the University of KwaZulu-Natal, Electronic 

Engineering department, where research information, results and MRIs were shared and 

discussed. Ethical approval was obtained through the University of the Free State Ethics 

Committee (ETOVS NR 56/08).  

 

 



 3

The main focus areas of this research was to: 

a) Develop and implement a robust three dimensional segmentation algorithm of the 

human heart, which focussed on: 

i. Automating the identification process of the left and right ventricle. 

ii. Utilising multiple CMRI data sets, from multiple planes, which need not be 

orthogonal to each other. 

iii. Defining the spatial relationship between the images from different imaging 

directions. 

iv. Improving existing shape and intensity models. 

v. Providing time-continuous segmentation over the full cardiac cycle. 

b) Calculate clinical measures of ventricle functionality such as volume and flow-rate. 

c) Develop a set of mathematical, statistical and clinical methods for the validation of 

segmentation and quantification models. 

 

1.2 Layout of Thesis 

 

This thesis concerns itself with ventricle segmentation methods performed on cardiac MRI. 

Thus the first four chapters of this thesis are dedicated in building up the theoretical ground 

work of these segmentation systems. Furthermore, these chapters provide a literature review of 

the most commonly used segmentation and evaluation methods developed. The following two 

chapters utilise specific properties of the segmentation methods highlighted in the literature 

review, to propose and assess the performance of a new three dimensional ventricle 

segmentation system.  

 

Chapter 2 provides an introduction to cardiovascular systems and the functioning of the human 

heart. Thereafter the technology of MRI creation of the heart is discussed and the acquisition of 

heart images in three different MRI views are presented. Several relevant clinical terms and 

parameters are introduced to assess and quantify the function of the ventricles. Measurement of 

these parameters could determine the type of cardiovascular disease that is listed in this chapter. 

 

Chapter 3 addresses the issue of non-standard methodology of comparing the different 

segmentation algorithms developed by various authors. Discussions of accuracy, precision and 

efficiency measures of cardiac MRI segmentation algorithms are presented by means of a series 

of mathematical, statistical and clinical evaluation criteria. Since all published results of 

segmentation algorithms were not applied to the same cardiac MRI dataset, this chapter 

provides details of three publically available MRI datasets. Finally, a clinical measure for 
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evaluation is proposed that does not require a comparison to an expert segmented MRI dataset, 

but instead requires both left and right ventricle segmentation.  

 

A literature review of existing ventricle MRI segmentation algorithms is provided in Chapter 4. 

The algorithms or methods are split into four categories namely; image based or intensity 

models, active contours or deformable, model based and registration based methods and each is 

discussed in a separate sub-section. The state of art methods for each category is tabled, which 

provide the specific method used, the ventricle that is segmented and type of MRI dataset used. 

Finally a discussion of the strengths and weaknesses of each category is presented. 

 

Having embarked on this literary and theoretical review of cardiac MRI segmentation methods, 

a new three dimensional ventricle segmentation system is proposed in Chapter 5. This 

segmentation algorithm uses image and intensity based methods combined with three 

dimensional information from ventricle motion as well as ventricle segmentation from other 

three cardiac MRI views. This chapter initially presents an outline of the ventricle segmentation 

system, focussing on the major sub-systems. Thereafter, the entire proposed algorithm is 

analysed in detail. For each component in the algorithm reasons for choice as well as 

effectiveness in segmentation are presented. Two proposed methods that aid in the localisation 

of the ventricles are presented, depending on the MRI information available from the respective 

cardiac MRI dataset. 

 

Chapter 6 provides details all results obtained during the complete evaluation of the proposed 

three dimensional ventricle segmentation system. The chapter starts off by defining the platform 

and testing methods to be used in the evaluation. For the initial testing, the proposed 

segmentation method focusing on the short axis view is evaluated and compared to other state 

of the art segmentation systems using the same cardiac MRI dataset. The next set of results 

assess the proposed segmentation system that utilises MRIs from all three views obtained from 

the locally created dataset at the University of the Freesate. Finally all results achieved during 

the testing phase are presented and accounted for.  

 

The last chapter, Chapter 7, summarises all important points highlighted throughout this thesis 

in a methodical manner. A discussion of the strengths and weaknesses of the proposed 

segmentation system is presented. Based on this discussion, possible improvements and future 

research are proposed. 
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1.3 Original Contributions of the Thesis 

 

The main aim of this research was to develop and recommend the best automatic left and right 

ventricle segmentation method or approach to be performed on cardiac MRI. To achieve this, a 

framework for accuracy evaluation and comparison of cardiac MRI segmentation algorithms is 

presented. A five point rating scale is introduced to minimise the subjectivity of expert visual 

assessment of the segmentation on a set of cardiac MRI. It is recommended that authors of 

segmentation algorithms utilise the publically available cardiac MRI datasets and the proposed 

framework to publish their segmentation accuracy results. The effectiveness of commonly used 

mathematical and statistical segmentation accuracy measures against the ground truth is 

presented and assessed. The framework concludes by proposing the use of the clinical measure 

of stroke volume to calculate the accuracy of the segmentation of the left and right ventricles 

when ground truth segmentation is not available. 

 

A novel and robust three dimensional automatic segmentation algorithm of both the left and 

right ventricles is developed in this thesis. The algorithm utilises the segmentation information 

provided in the two chamber, four chamber and short axis MRI views. It also involves an 

iterative process with convergence criteria to obtain ventricle segmentation in all three MRI 

views. The heart of the approach uses the Difference of Gaussian edge or feature detection filter 

by creating a method that automatically chooses the Difference of Gaussian parameters from 

intensity profiles within the region of interest per MRI. 

 

For segmentation of a cardiac MRI datasets that only contain the short axis view, the 

segmentation is adjusted by locating the ventricle regions of interest from motion maps for 

consecutive images in the cardiac cycle as well as from a reference image which is the end 

systolic cardiac time. Thus local and global motion during the cardiac cycle was tracked. A 

comprehensive performance evaluation of the proposed system was conducted for both 

approaches. The results portrayed that the proposed algorithm performs on average better than 

the state of the art methods, especially on the right ventricle. Furthermore, the closeness to the 

ground truth by the segmentation is validated through the use of the evaluation framework.   

 

Finally, the ventricle volume calculation is improved by combining segmentation from three 

cardiac MRI views for both left and right ventricle. This proposed technique constructs a 

surface mesh around the outer segmentation points from three MRI views using Delaunay 

triangulation, convex hulls and alpha hulls. A novel method of calculating the alpha radius for 

the alpha shape is developed in order to account for the right ventricle concave structure. The 
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left and right ventricle volume is contained within the surface mesh using the ray tracing mesh 

voxelisation technique.  

 

1.3.1 Publications 

a) Y. Brijmohan, S.H. Mneney, W.I.D. Rae, “Improvement of Ventricle Volumetric 

Calculation and Visualization in Cardiac MR”, World Congress on Medical Physics and 

Biomedical Engineering, June 1-12, 2015. 

b) Y. Brijmohan, S.H. Mneney, W.I.D. Rae, “Mathematical, Statistical and Clinical 

Methods for the Evaluation of Segmentation Algorithms as used in Cardiac MRI” – 

submitted to SAIEE Africa Research Journal – Awaiting feedback. 

c) Y. Brijmohan, S.H. Mneney, W.I.D. Rae, “Automatic Cardiac MRI Segmentation 

Using Multiple Views” – submitted to IEEE Transaction of Biomedical Engineering – 

Awaiting feedback. 

d) A. Moodley, W.I.D. Rae, Y. Brijmohan, et al. “The Impact of Optic Nerve Movement 

on Optic Nerve Magnetic Resonance Diffusion Parameters”, South African Journal of 

Radiology, Vol. 18(1), 2014 – Proposed algorithm used to track motion of the eye on 

MRIs. 

 



 7

CHAPTER 2 -  MEDICAL BACKGROUND AND MAGNETIC
RESONANCE IMAGING 

 

The understanding of the function and makeup of the human heart is fundamental prior to 

development of any segmentation algorithms. This chapter provides an introductory material 

and gives detail on how imaging of the heart is acquired. Section 2.1 is dedicated in providing 

the medical background for the circulation of blood via expansion and contraction of the 

ventricles. The following section, Section 2.2, shows how all the four chambers of the heart can 

be visualised via magnetic resonance imaging. The viewing or imaging planes can be adjusted 

as demonstrated in Section 2.3. The resultant images from each plane provides different shapes 

and angles of the ventricles. Once the ventricles are segmented, volumes and clinical metrics 

can be calculated, as shown in Section 2.4, which can aid in disease diagnosis. Several common 

causes of cardiovascular diseases are listed in Section 2.5.  

 

2.1 Cardiovascular System and Cycle 

 

The cardiovascular system contains the heart and a closed circuit of vessels such as arteries, 

veins and capillaries. The heart is a muscular pumping device that circulates blood throughout 

the body through this circuit of vessels. The heart is divided into four chambers (two atria and 

two ventricles) as shown in Figure 2-1. The atria receive blood coming into the heart, while the 

ventricles pump blood out of the heart [10] [11]. The events of a cardiovascular system consist 

of: 

a) Deoxygenated blood entering the right atrium. 

b) When the right atrium is filled, blood is injected into the right ventricle (RV). 

c) On contraction of the RV, blood is pumped through the pulmonary valve to the lungs. 

This is known as the pulmonary circulation. 

d) The lungs extract the carbon dioxide and water from the blood and oxygen is absorbed. 

e) This oxygenated blood returns to the heart to the left atrium. 

f) Thereafter the blood is injected into the left ventricle (LV), via the mitral valve. 

g) The blood is then pumped, on contraction of the LV, into the aorta and the rest of the 

body. This is known as the systemic circulation. 
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Figure 2-1: Cross-sectional view of a human heart clearly depicting the four chambers [8] 

The pulmonary and systemic circulation occurs simultaneously during the cardiac cycle (or 

complete heartbeat). In terms of times, the cardiac cycle is divided into two sequential phases 

namely diastole, which is the period of chamber relaxation or filling, and systole, which is the 

period of chamber contraction or ejection. The Wiggers diagram [13] is a standard diagram used 

in cardiac physiology that provides a combined representation of the heart’s electrical activity, 

chamber pressures and ventricle volumes during a cardiac cycle. This is graphically represented 

in Figure 2-2, for the left ventricle and atrium.  

 

 

Figure 2-2: Wiggers diagram depicting relationship with the electrocardiam, the ventricle and atrium pressures, 
heart sounds and ventricle volume changes [9] 
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The heart rate, normally measured in beats per minute, is the frequency of the cardiac cycle. 

Ventricular systole begins at the apex of the heart and the blood is squeezed to the base of the 

heart during ventricular contraction [14]. This causes an increase in ventricle pressure, as can be 

seen at time 200ms in Figure 2-2, and a decrease in blood volume. At the end of contraction, the 

ventricles relax with rapid pressure reduction in the chambers. During the ventricular diastole 

period, the volume of blood in the ventricles begin to increase, resulting in an increased 

ventricular size. To maintain an optimal cardiovascular system, the amount of blood leaving and 

entering both the ventricles must be the same.  

 

2.2 Magnetic Resonance Imaging 

 

Biological tissues consist mainly of water molecules which contain hydrogen atoms. Magnetic 

resonance imaging uses the signal from the nuclei of these atoms to produce images [3]. The 

nucleus of the hydrogen atom contains a proton having a positive charge and an electron having 

a negative charge, while it being neutral. MRI relies on the magnetic properties of these protons. 

The protons possess a spin of angular momentum, which induces a magnetic field, coincident 

with the axis of spin. When the protons are placed in a strong magnetic field, the induced 

magnetic field of the protons (axis of spin), aligns itself with the applied magnetic field. 

Thereafter by applying radio-frequency (RF) pulses, the alignment of the protons are disturbed 

and brought out of their equilibrium state. During the relaxation period when the proton returns 

to its equilibrium state, a RF pulse having the same frequency is emitted [15]. A receiver coil 

measures the amplitude and relaxation time of the received signal to generate the image. 

 

The intensity or contrast of the image created at the receiver coil depends on three features of 

biological tissue [3], namely: 

a) Proton density, which is the number of excitable proton spins per unit volume, 

determines the maximum signal that can be obtained from a given tissue. 

b) Longitudinal Relaxation time T1, which is the time it takes for the excited spins to 

recover and be available for the next excitation. 

c) Transverse Relaxation time T2, which is time that the signal fades after excitation.  

Thus MRIs are constructed based on these metrics, by varying the timing of the RF pulses. 

 

MRI generates cross-sectional images of the human body [3]. Each of these images is known as 

a MRI slice and consist of a two dimensional matrix of pixels. To construct an MRI slice for a 

particular region within the body a linear magnetic field gradient is introduced during the period 

that the RF pulse is applied [16]. Gradients are additional magnetic fields that are generated by 
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gradient coils which adds to or subtracts from the main magnetic field. The process of obtaining 

an MRI slices is depicted in Figure 2-3, where an application of a strong gradient (red line) 

yields a thin slice, whereas the application of a weak gradient (green line) produces a thicker 

slice. The slice position is obtained by changing the centre frequency of the applied RF pulse. 

As a result, the frequency and phase of the applied RF pulse enables unique spatial 

identification of each volume element in the body, which is known as a voxel. Thus each pixel 

of an MRI provides information on a corresponding voxel [3]. 

 
To enable interoperability amongst different manufacturers of MRI equipment, the DICOM 

(Digital Imaging and Communications in Medicine) standard was created, which defines the 

method for the transmission of medical images and accompanying data. DICOM was originally 

developed by the National Electrical Manufacturers Association (NEMA) and the American 

College of Radiology for computerised axial tomography and magnetic resonance imaging scan 

images [17]. In this standard, a medical directory structure is specified to contain all patient 

metadata, as well as guidelines on how to perform an MRI on a patient, more specifically the 

orientation of the patient. MRIs are presented in the image co-ordinate system and are contained 

in DICOM format which provide information about the patient co-ordinate system.  

 

DICOM defines the reference co-ordinate system (RCS) [18] or patient co-ordinate system or 

Left, Posterior, Superior (LPS) [19] relative to the MRI machine. The direction of the axes is 

defined fully by the patient’s orientation. The x-axis is increasing to the left hand side of the 

patient. The y-axis is increasing to the posterior (back) side of the patient. The z-axis is 

increasing toward the superior (head) of the patient. Figure 2-4 depicts this co-ordinate system 

graphically.  

 Field Strength 
(Tesla) 

RF Pulse  

(1.5 Tesla) 

Distance (mm)     Thin Slice      Thick Slice 

Figure 2-3: RF pulse applied during application of gradient [3].  

Strong Gradient 

Weak Gradient 

Applied 
RF Pulse  
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Table 2-1 presents the parameters in the DICOM header (from each MRI) that are important in 

translating points from image co-ordinate system to points in the patient co-ordinate system and 

Table 2-2 provides a detailed expansion and explanation of the DICOM tags.  

Table 2-1: DICOM tags used to determine patient orientation [17]. 

Table 2-2: Explanation of each DICOM tag [17]. 

Thus each point ( , )i j  in the MRI (image co-ordinate system) is translated to the patient co-

ordinate system point ( , , )x y z  as shown in (2.1), where the definitions are provided in Table 

Parameter Name DICOM Tag Parameter Description 

Image Position (0020,0032) The x, y and z co-ordinates of the upper left hand 
corner of the image (centre of the first voxel 
transmitted) in mm. 

Image Orientation (0020,0037) The direction of the cosines of the first row and 
first column with respect to the patient. 

Pixel Spacing (0028,0030) Physical distance in the patient between the 
centre of each pixel in mm. 

Slice Thickness (0018,0050) Nominal slice thickness, in mm. 
Slice Location (0020,1041) Relative position of the image plane, expressed in 

mm. 

Parameter Name Parameter Expansion Parameter Description 

Image Position ImagePosition(1)=sx 
ImagePosition(2)=sy 
ImagePosition(3)=sz 

x co-ordinate in patient co-ordinate system. 
y co-ordinate in patient co-ordinate system 
z co-ordinate in patient co-ordinate system 
 

Image Orientation ImageOrientation(1) = xxdi 
ImageOrientation(2) = xydi 
ImageOrientation(3) = xzdi 
ImageOrientation(4) = yxdj 
ImageOrientation(5) = yydj 
ImageOrientation(6) = yzdj 
 

Direction of cosine of row x to x in patient 
Direction of cosine of row x to y in patient 
Direction of cosine of row x to z in patient 
Direction of cosine of row y to x in patient 
Direction of cosine of row y to y in patient 
Direction of cosine of row y to z in patient 

Pixel Spacing PixelSpacing(1) = PSi 
PixelSpacing(1) = PSj 
 

Physical distance between x points in image. 
Physical distance between y points in image. 
 

          

 

Posterior (+y) 

 

Anterior (-y) 

Right (-x) 

Head (+z) 

Feet (-z) 

Left (+x) 

 

Figure 2-4: Illustration of patient co-ordinate system and image co-ordinate system from DICOM standard [19]. 
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2-2. The matrix provided in (2.1) is invertible as the determinant will not be zero, thus the 

image co-ordinates can be obtained from the patient co-ordinates. 

1

x xxdi yxdj sx i PSi
y xydi yydj sy j PSj
z xzdi xzdj sz

×     
     = ×     
          

.   (2.1) 

 

2.3 Cardiac MRI Views 

 

The standard procedure to obtain CMRI is to perform slices in three views namely two chamber 

view (2CV), four chamber view (4CV) and short axis view (SAV) [1]. Images in each of these 

views have a link to the patient co-ordinate system. In each view, several slices can be obtained 

normally from the apex of the ventricle to the base of the ventricle. However, in routine cardiac 

MRI, only one slice is imaged in the 2CV and 4CV which is used for positioning purposes [1]. 

Figure 2-5 shows the direction of the slices or gradients required to obtain the specific view. 

The first image (coronal view) is obtained by taking slices perpendicular to the y-axis in the 

patient co-ordinate system and the transverse plane is achieved by slices perpendicular to the z-

axis. 

 

   
(a) Coronal View      (b) Transverse Plane View             (c) 2 Chamber View 

  
           (d) 4 Chamber View             (e) Short Axis View    

Figure 2-5: Cardiac MRI along different axes. The next image is in the direction of the cut (shown in yellow).  
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The 2CV is created by slices through the heart where only two chambers are visible on the same 

image. The chambers are either the left ventricle and left atrium, or right ventricle and right 

atrium. Figure 2-6 depicts four slices taken in the 2CV for the left hand side and right hand side 

chambers. On average, 6 slices are required to fully encompass the two ventricles [1]. From 

Figure 2-6 it can be seen that there is no visual distinction between the ventricle and the atrium, 

with both having similar intensities and contrasts. This poses a problem for segmentation in the 

2CV view. 

 

 
The 4CV provides visualisation of all four chambers on a single MRI as shown in Figure 2-7. It 

can be seen that overlapping pixel intensity and contrast between the ventricle and the atrium 

existing, making segmentation difficult. Furthermore, the shape of the ventricles and atrium 

varies per slice. A certain degree of overlap is also present at the end of Slice 1 and Slice 6. On 

an average, 6 slices are required to fully visualise the ventricles.  

 

The SAV provides MRI slices where the left and right ventricles are visible on the same image. 

Figure 2-8 provides ten MRI slices in the SAV, which is the average number required to fully 

visualise the ventricles. The left ventricle shape is circular, whereas the right is a crescent. At 

the end slices, Slice 1 and Slice 10, the shape of the ventricle are distorted. A further 

complication in the ventricle is the presence of the papillary muscle. Some authors choose to 

include papillary in the segmentation and some do not [20]. Another artefact present is the wrap 

around effect, where the bottom of the image appears at the top as indicated in Slice 9. 

         (a) LV Slice 1           (b) LV Slice 2            (c) LV Slice 3           (d) LV Slice 4 
 

         (e) RV Slice 1           (f) RV Slice 2            (g) RV Slice 3           (h) RV Slice 4 

Figure 2-6: Examples of Cardiac MRI in Two Chamber View. (a) to (d) are per slice view depicting the left 
ventricle and left atrium. (e) to (h) are per slice view depicting the right ventricle and right atrium.  

LA 
LV 

RV 
RA 
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 (a) Slice 1   (b) Slice 2  (c) Slice 3  (d) Slice 4 
 

 
                                            (e) Slice 5    (f) Slice 6 

Figure 2-7: Examples of Cardiac MRI in Four Chamber View per slice. The left ventricle, left atrium, right ventricle 
and right atrium are visible. 

 
    Slice 1     Slice 2        Slice 3                    Slice 4 
 

 
    Slice 5     Slice 6        Slice 7                    Slice 8 

 

 
            Slice 9     Slice 10  

Figure 2-8: Examples of Cardiac MRI in Short Axis View per slice.  

LV 
RV 

LV RV 

RA LA 

Papillary 
muscles 

Wrap around 
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2.4 Functions of Left and Right Ventricles 

 

With every heartbeat, the ventricles perform the function of continuously circulating blood 

throughout the body. As can be inferred from Wiggers diagram (Figure 2-2), during each 

cardiac cycle, the pressure as well as the volume of the ventricle changes. The volume of blood 

ejected during the cycle is known as the stroke volume (SV). Two main times in the cycle are 

the focus area to calculate the stroke volume. The first is the end diastolic volume (EDV) which 

is volume at the end of diastole phase (chamber relaxation or filling) and the second, the end 

systolic volume (ESV), which is the end of the systole phase (chamber contraction or ejection). 

The stroke volume is therefore calculated as the difference between the EDV and ESV as in 

(2.2). Another measure called the Ejection Fraction (EF) can be computed as shown in (2.3), 

which is the ratio of volume of blood pumped out a ventricle with each heartbeat. 

SV EDV ESV= −         (2.2) 

    SVEF
EDV

=        (2.3) 

In a normal functioning heart, to maintain blood circulation, the stroke volume of the left 

ventricle must equal that of the right. It is shown that the right ventricle EDV is greater than the 

left; hence the EF of the left will be greater which implies that the left ventricle works harder 

than the right [1]. Thus the above mentioned measures are a key component in determining the 

global functioning of the left and right ventricles. 

 

2.5 Effect of Cardiovascular Diseases on MRI 

 

Imaging of the heart via MRI can be used to provide the following information in the 

cardiovascular system that could be created as a result of an ailment [21], [22], and [23]: 

a) Imbalance in blood circulation calculated by the amount of blood entering and leaving 

the ventricles. 

b) Reduced blood flow to a ventricle as a result from artery blockages. 

c) Damage of ventricles and tissues due to a heart attack. 

d) Damage of the ventricle valves. 

e) Abnormal growth from cancerous tumours. 

f) Increased or reduced thickness of myocardial, ventricle walls 

g) Aneurisms of the heart. 
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2.6 Summary 

 

An introduction into the functioning of the human heart is presented in this chapter, describing 

the cardiac cycle and circulation of blood throughout the human body. Thereafter, the 

acquisition of images via magnetic resonance imaging, on different viewing planes, is explained 

and visualised. Finally, several metrics and ventricle volumes calculations are introduced which 

can be obtained from cardiac MRI. This is key in determining the presence of cardiovascular 

diseases. 
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CHAPTER 3 -  CARDIOVASCULAR MRI SEGMENTATION 

COMPARISON METRICS 

 

Image segmentation refers to the process of detecting regions within an image and associating 

these regions with known objects. In other words, segmentation of the medical image 

distinguishes between different organs, tissues, vessels, blood flow, etc. A precise segmentation 

allows not only a better visualisation of the object but also makes it possible to quantify that 

particular area of interest and provide further meaningful information. For example from the 

MRIs of a human heart, if segmentation of the left and right ventricles exist, doctors will be 

interested in quantifying the thickness of the ventricle walls, the movement of each ventricle, 

blood volumes, blood flow-rates, etc. [1]. The segmentation of a ventricle from an MRI will 

produce a closed contour or delineation which encloses the said ventricle. 

 

Section 3.1 provides the framework for the evaluation of ventricle segmentation algorithms. 

This section initially discusses visual assessment and thereafter looks at comparison to a ground 

truth. Methods of ground truth creation are also looked at. Three publically available datasets 

are presented which contain representation of the ground truth by expert manual segmentation. 

Thereafter mathematical and statistical measures are described in which the segmentation can be 

compared to the ground truth. Section 3.2 provides methods of volume calculation achieved 

from segmentation contours for the entire ventricle. This section also contains a proposed 

clinical assessment method when both the left and right segmentation contours are available. 

Section 3.3 and 3.4 provides assessment of the segmentation comparison methods stated in 

Section 3.1 and Section 3.2.  

 

3.1 Evaluation and Comparison of Segmentation Methods 

 

Segmentation methods can be evaluated based on three criteria namely accuracy, precision and 

efficiency of the recognition and delineation [68]. Accuracy is measured by the closeness to the 

ground truth, precision by the repeatability of the segmentation method and efficiency by the 

speed and ease of application of the method used. The main aim of cardiac MRI segmentation is 

to isolate the inner and outer surfaces of the left ventricle and right ventricle, so that several 

clinically relevant measurements can be calculated. Although there has been extensive research 

in the field of cardiac ventricle segmentation, there has been little research performed on the 

evaluation of such segmentation.  
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We assume that all MRIs are obtained for a patient P as a series of N two dimensional 

images iP and is denoted as follows:  

{ } 1iP P i N= ≤ ≤ .     (3.1) 

Each patient image iP consists of a set of m n× pixels referenced by location ( , )k lx y  and 

intensity ( , ) ( , )
k li x y i k lI P x y= . If an object jO  in the image iP  has been segmented, the resultant 

delineation by M landmark points is represented as a set of pixel locations as in (3.2). 

1 , 1 , 2 , 2 , , ,{(x ,y ),(x ,y ),...,(x ,y )}
i j i j i j i j i j i j i jPO S PO S PO S PO S PO MS PO MS POS =  .  (3.2) 

 

The first method used to evaluate cardiac segmentation accuracy is by subjective evaluation, 

where an expert visually compares the image segmentation.  A method is proposed in Section 

3.1.1.1 in which a five point rating scale aims to provide experts with a larger range to accept or 

decline a segmentation performed on a ventricle. As research in this area progressed, supervised 

evaluation became more common, where the segmented image is compared against a manually 

segmented or a representation of ground truth segmentation. Section 3.1.1.6 and Section 3.1.1.7, 

presents a series of mathematical and statistical methods which are based on supervised 

evaluation.  

3.1.1.1 Visual assessment of segmentation without ground truth 

The accuracy of a segmentation algorithm is quantified through comparison against a ground 

truth which in most cases is manual delineation by an expert [70]. However, manual 

delineations involve tedious work and is time consuming. Initial assessment of segmentation 

accuracy was performed visually by experts and was termed subjective evaluation. The major 

downfall of this method is that the result is exposed to expert bias and variability, due to its 

subjectivity [73]. Each expert has their own standards to assess the accuracy of the 

segmentation.  

 

To minimise the subjectivity, the first proposed method of segmentation evaluation is to allow a 

minimum of three experts aE , where 3 a Q≤ ≤ , to visually assess the segmentation on a set of 

images chosen from P .In this method, the experts are provided with the images iP  and the set of 

associated
i jPOS for the segmented region j . Each 

i jPOS is superimposed on the corresponding 

iP and presented to the experts. Each of the three experts will either accept ( 1)
POjiaSE =  or reject 

( 0)
POi jaSE = the segmentation for region of interest j . The basic average accuracy 

calculation,
jOA , as shown in (3.3), can be performed for the region of interest j on a set of 

K images, where K N≤ and is given by: 
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1 1 100%
POi j

j

Q K

aS
a i

O

E
A

Q K
= =

 
 ÷
 ÷= ×

× ÷
 ÷
 

∑∑
.      (3.3) 

For further precision, a 5 point rating scale (Likert scale [74]) can be used by each expert where 

a scoring of each
POjiaSE will be as indicated in Table 3-1. Hence the accuracy calculation from 

(3.3) will now be represented as:  

1 1 100%
5

P Oi j

j

Q K

aS
a i

O

E
A

Q K
= =

 
 ÷
 ÷= ×
 ÷× ×
 ÷
 

∑∑
.    (3.4) 

The method described in (3.4) can also be influenced by bias, depending on the sequence with 

which the data is presented. To minimise such bias, it is recommended that a large enough 

datasets ( K ) and a large number of experts ( Q ) be used. From the above description it can be 

seen that this process could become very time consuming, hence this accuracy method 

evaluation cannot be used for real time systems and diagnosis. 

Table 3-1: Five point rating scale for expert visual assessment 

3.1.1.2 Statistical assessment of segmentation without ground truth 

Unsupervised segmentation evaluation approaches do not require a reference image or ground 

truth, but instead evaluates a segmentation based on how well it matches a broad set of 

characteristics of a set of segmented images as desired by experts [70]. This ability not to use a 

ground truth for evaluation purposes allows the segmentation algorithm to function over a wide 

range of conditions and work with many different types of images.  

 

The Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm [78] employs 

a probability map to create a ‘best fit’ from a number of segmentations, a , for an object j . 

From the segmentations, computation of a probabilistic estimate of the hidden, implicit, true 

segmentation is computed and a measure of the performance level achieved for each 

segmentation is calculated. The probabilistic estimate of the true segmentation is formed by 

Score Description 

1 Poor Segmentation (Does not cover entire ROI) 

2 Fair Segmentation (50% to 80% of points lie on boundary of ROI) 

3 Good Segmentation (80 to 90 % of points lie on boundary of ROI) 

4 Very Good Segmentation (90 to 99% of points lie on boundary of ROI) 

5 Excellent Segmentation (All points lie on boundary of ROI)  

* ROI = Region of Interest 
 



 20

estimating an optimal combination of the segmentations, weighting each segmentation 

depending upon the estimated performance level, together with a prior model that can account 

for the spatial distribution of structures and spatial homogeneity constraints. 

 

STAPLE exploits expectation maximisation to calculate segmentation reliability by estimating 

the performance parameters and a probabilistic estimate of the true segmentation, by iterated 

estimation [78]. This reliability measure can be represented as
PO POi j i j

f
aS Gθ and defined as the 

probability that a segmentation a , at iteration f , reports that a point v ( , )k lx y= has a particular 

segmentation 
i jPOS given a true segmentation

i jPOG . The first step of each iteration is estimation 

of the conditional probability of the true segmentation given the segmentation decisions and 

previous observed data vfrD  with repetition r . The conditional probability that the point v  

belongs to a class
POi j

f
S vW  at iteration f is represented as below [78]: 

( | , )
PO i j i ji j

f f
S v PO PO vW p G S D θ= =  .   (3.5) 

 The second step is to update the estimation of the performance parameters 1
PO POi j i j

f
aS Gθ + .  

3.1.1.3 Establishment of representation of ground truth by experts 

The easiest method to obtain a representation of the ground truth is to have an expert manually 

delineate the object of interest j . However, manual delineations involves tedious work and is 

time consuming. Furthermore, this method is exposed to expert bias and variability, due to its 

subjectivity. Each expert has their own standards to assess the accuracy of the segmentation. 

Thus it is proposed that more than one expert must be used and the representation of the ground 

truth can be derived from the set of these delineations. The other factor to consider in manual 

segmentation by experts is precision, which is quantified by the reproducibility of segmentation 

results obtained from using the same image. Hence it is also proposed that the expert manually 

segment the same image more than once. 

 

The proposed methods of ground truth estimation calculation must allow a minimum of three 

experts aE , where 3 a Q≤ ≤ , to manually segment the object of interest j on a set of images 

chosen from P . The experts are provided with the images iP  and will create at least two 

segmented sets
i jaPO eG , where max2 e E≤ ≤ , for each iP .  

 

The first method in obtaining the ground truth is to use a voting based system [73] where each 

pixel from the segmented sets 
i jaPO eG will be classified using a threshold t  as follows: 
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max( ) 1
2i jPO

Q Et × +
= .     (3.6) 

The threshold defines the number of experts that have voted for this pixel to be a part of the 

ground truth. Thus each pixel in the ground truth, for all 3 a Q≤ ≤ and max2 e E≤ ≤ , is given by:  

 ( )
max

1 1
( ) ( )

i j i j i j i j i j

EQ

aPO e PO aPO e qPO f PO
q f

G x G G x G t
= =

 
∈ ⇔ ∈ ≥ ÷

 
∑∑    (3.7) 

The second method in obtaining the ground truth is to use a probability based method such 

STAPLE (Section 3.1.1.2) that creates a ‘best fit’ from a number of segmentations for an 

object j . In this method, each
i jaPO eG is fed into the STAPLE algorithm to obtain

i jPOG .  

3.1.1.4 Establishment of ground truth by use of Cardiac Phantoms 

Phantoms of the heart have been built and developed, both physically and digitally. The 

advantage in using these phantoms is that the exact anatomy of the phantom is known, thus 

providing a ground truth that can be used to evaluate different segmentation techniques. 

Physical human heart phantoms are normally constructed from some type of a material, such as 

Polyvinyl Alcohol hydrogel, that mimics elasticity of human soft tissue and is composed of 

anatomically correct left and right ventricle structures [77]. Furthermore, the phantom is able to 

be precisely controlled via software such that motion and independent control of compression, 

stretching and torsion motion of tissue deformation can be defined. The flexible motion control 

software allows users to easily program and execute sophisticated cardiac motion events [77]. 

The physical phantom is thus MRI compatible and imaging through multiple slices is possible 

throughout the controlled cardiac cycle. 

 

The use of physical phantoms is limited in that there is a high cost associated to create a realistic 

range of patient sizes, variations, and deformations [78]. Thus the introduction of computer 

generated digital phantoms offers a more practical solution. Digital phantoms create a virtual 

model of the human anatomy and imaging of these phantoms is also performed digitally using 

an accurate computerised model of the physics of the imaging process. With simulation, it is 

therefore possible to perform clinically relevant experiments entirely on the computer. 

 

Although much work and research has been done in the creation and optimisation of physical 

and digital phantoms, these phantoms do not fully reflect clinically produced images as it is 

difficult to construct a phantom that displays a full range of characteristics, such as noise and 

partial volume effects. Furthermore, the image resolution is substandard in comparison to 

clinical MRIs. 
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3.1.1.5 Establishment of ground truth using publically available human 
sample datasets 

Supervised evaluation methods require comparison of the segmented image to a ground truth or 

gold standard [70]. This explicitly requires a sample dataset which must be easily available to 

all authors. For medical images, due to ethical considerations, a large dataset is difficult to be 

made public. In order to use any MRI dataset, for comparison or evaluation purposes, approval 

must be sought from the respective medical or ethical boards. There are a handful of datasets 

made publically available on the internet that have obtained relevant approval to be published. 

The other problem with a publically available dataset is whether the ground truth is correct, as 

these are created by manual segmentation by experts and are subjective. Each expert has their 

own set of rules for what to include in the segmentation of the ventricles [71], [72]. The sections 

below will describe the three most commonly used publically available datasets. For the 

sections that follow, the expert delineations presented in these publically available dataset will 

be taken as a representation of the ground truth. 

3.1.1.5.1 Sunnybrook Cardiac Data 

The Sunnybrook Cardiac Data (SCD), also known as the 2009 Cardiac MR Left Ventricle 

Segmentation Challenge data [71], consists of 45 MRI datasets from a mixed range of patients 

having different pathologies, of which 32 are male and 13 are female. Breaking the datasets 

down further, 9 are from healthy patients, 12 from patients having heart failure with infarction, 

12 from patients having heart failure without infarction and 12 from patients having 

hypertrophy.  

 

For each dataset, DICOM images are presented in the SAV with each image being of size 

256x256 pixels. MRI slices are presented from the apex slice to the base slice for the left and 

right ventricle. Contained with the DICOM images is a set of manually delineated contours of 

the left ventricle only. Furthermore, these contours are only available for the endocardium 

(inner contour) and epicardium segmentation (outer contour) at the end diastole cardiac phase 

and for the endocardium at the end systole cardiac phase. An extract with segmentation of a 

patient with a normal functioning heart at end diastole cardiac phase and end systole is shown in 

Figure 3-1 and Figure 3-2, whereas the segmentation of patient having heart failure with 

infarction at end systole cardiac phase in shown in Figure 3-3. 
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Figure 3-2: : SAV MRI from SCD at the end systolic cardiac phase for a patient with no cardiac abnormalities 

with segmentation performed on left ventricle endocardium (blue contours) 

 
Figure 3-1: SAV MRI from SCD at the end diastolic cardiac phase for a patient with no cardiac abnormalities 
with segmentation performed on left ventricle endocardium (blue contours) and epicardium (green contours) 

from the base slice (upper left image) to apex slice (lower right image) 
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A set of rules for expert manual delineation was defined [71] and applied twice to each patient 

MRI dataset so that the first pass would be the draft and the second the acceptance. The initial 

procedure was to locate the end diastole and end systole images for all slices by manually 

browsing through the captured MRI. Thereafter the base and the apex slices were found, where 

the apex slice is taken to be the lowest slice that includes a blood pool in both the end diastole 

and end systole images. The contour drawing process then commenced where it was specified 

that the both the endocardium and epicardium contours for the end diastole phase to be created 

and was only necessary to draw endocardium contours for end systole phase. In general all 

contours drawn needed to be in a smooth curve. One assumption made during the above 

contouring process was to include trabeculae and papillary muscles in the segmentation area. 

3.1.1.5.2 Right Ventricle Segmentation Challenge Data 

The Right Ventricle Segmentation Challenge Data (RVSCD), provides a series of MRI data for 

the right ventricle for 48 patients [72] acquired at Rouen University Hospital in 2008. These 

patients were diagnosed with pathologies of myocarditis, ischaemic cardiomyopathy, 

arrhythmogenic right ventricular dysplasia, dilated cardiomyopathy, hypertrophic 

cardiomyopathy, aortic stenosis [72]. The average age of the patients was 52 years with a 

deviation of ± 18 years, with 36 being male.  

 
Figure 3-3: SAV MRI from SCD at the end diastolic cardiac phase for a patient with heart failure with 
segmentation performed on left ventricle endocardium (blue contours) from the base slice (upper left 

image) to apex slice (lower right image) 
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The MRIs are presented in DICOM format in the SAV only for each patient. The images have 

been cropped and zoomed to a resolution of 256x216 pixels, with the ventricles appearing 

central to the image. For each patient dataset, the number of images were filtered by the relevant 

expert, such that only the slices from base to the apex of the ventricle were presented. 

Furthermore images from the end diastole and end systole cardiac phases were identified and 

numbered accordingly. 

 

The set of rules defined for the expert manual delineation following the same as that used in the 

SCD (Section 3.1.1.5.1). Initially the base and apex slices were identified and all end diastole 

and end systole images for slices inclusive and in between were extracted. For these extracted 

images, countours were drawn to segment the right ventricle endocardium and epicardium 

areas. Once again, trabeculae and papillary muscles were included in the segmentation area. 

Figure 3-4 illustrates an extract from this dataset for a patient with no cardiac abnormalities. 

3.1.1.5.3 York University Dataset 

The York University Dataset (YUD) consists of 33 patients under the age of 18 acquired from 

the Department of Diagnostic Imaging of the Hospital for Sick Children in Toronto. These 

patients were diagnosed with pathologies such as cardiomyopathy, aortic regurgitation, enlarged 

ventricles and ischemia [9].  

 

The patient datasets were presented in a raw data image data matrix stored in a Matlab created 

file. For the 33 patients a total of 7980 images were presented in the stored image matrix. Each 

 
Figure 3-4: SAV MRI from RVSCD at the end diastolic cardiac phase for a patient with no cardiac 

abnormalities with segmentation performed on right ventricle endocardium (blue contours) from the base 
slice (upper left image) to apex slice (lower right image) 



 26

image is of size 256x256. Manual delineation by the expert aimed to create segmentation 

contours of the left ventricle endocardial and epicardial where visibly possible [9]. This resulted 

in a total of 5011 segmented images. For this dataset, trabeculae and papillary muscles were 

also included in the segmentation area. A sample of one of the patient data over single slice for 

the entire cardiac cycle is shown in Figure 3-5. Unfortunately, the set of rules defined for the 

expert manual delineation was not publically available. 

 
Figure 3-5: SAV MRI from YUD at for entire cardiac cycle for a patient with cardiac abnormality with 
segmentation performed on left ventricle endocardium (red contours) and epicardium (red contours) 
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3.1.1.6 Mathematical assessment of segmentation with Ground Truth 

For ventricle segmentation, it is almost impossible to get the absolute true segmentation [2]. 

Thus a representation of the ground truth is required. Section 3.1.1.3 and Section 3.1.1.4 depicts 

methods that can be used to obtain a representation of the ground truth. In this section, we shall 

assume that the ground truth segmentation for each region of interest is present and shall be 

represented as:  

1 , 1 , 2 , 2 , , ,{(x ,y ),(x ,y ),...,(x ,y )}
i j i j i j i j i j i j i jPO G PO G PO G PO G PO MG PO MG POG =  .   (3.8) 

 

Several basic metrics based on distance measures are defined below that can be used to compare 

the segmentation to the ground truth for object j on image iP . In essence they all follow the 

principle; the smaller the measured outcome, the better the segmentation accuracy. Equations 

(3.2) and (3.8) can be re-represented as depicted in (3.9) and (3.10), with the points aligned. 

1 , 2 , , 1 , 2 , ,{x ,x ..., x , y ,y ..., y }
i j i j i j i j i j i j i j

T
PO S PO S PO MS PO S PO S PO MS POS = .  (3.9) 

1 , 2 , , 1 , 2 , ,{x ,x ...,x , y ,y ...,y }
i j i j i j i j i j i j i j

T
PO G PO G PO MG PO G PO G PO MG POG = .  (3.10) 

 

The simplest method of distance measure is the Mean (3.11), which calculates the average 

distance between the segmentation points and the ground truth in terms of pixels. Following 

from this, the Mean Square Error (3.12) can be derived which in essence is the average of the 

square of the errors. If each point represents a dimension, then the vectors
i jPOS and 

i jPOG are 

vectors in 2M dimensional space. Hence the Euclidean Distance 1 (2M dimensions), can be 

defined as in (3.13). Realistically though, the pixel distance measure is in the two dimensional 

space. Thus (3.13) can be reduced to a two dimensional Euclidean Distance measure as shown 

in (3.14). 
2

1

1 (b) (b)
2i j i j i j

M

PO PO PO
b

Mean S G
M =

= −∑ .    (3.11) 

( )
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1 ( ) ( )
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b

MSE S b G b
M =

= −∑ .    (3.12) 
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1

1 ( ) ( )
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M
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b

ED S b G b
=

= −∑ .    (3.13) 
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1

12 ( ) ( ) ( ) ( )
i j i j i j i j i j

M

PO PO PO PO PO
b

ED S b G b S b M G b M
M =

= − + + − +∑  . (3.14) 

 

The Hausdorff distance (Haus) measure (3.15) and (3.16) is an indication of the extent to which 

each point in the segmented set 
i jPOS  lies near some point in the ground truth set

i jPOG . The 
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directed Hausdorff distance function, ( , )h C D , identifies the point, maxc C∈ , that is furthest 

away from all points d D∈ , and returns the distance measure from point maxc to its nearest 

neighbour in D [75]. In essence, each point of C  must be within a distance of ( , )h C D of some 

point of D . The distance measure ( , )dist c d can be calculated using a formula similar to that 

used in (3.14). Hence the Hausdorff distance calculation aims to measure the degree of 

mismatch between two sets by measuring the distance of a point in C that is furthest away from 

a point in D and vice versa. Figure 3-6 illustrates this graphically where the segmentation 

contour of the left ventricle is visualised in red and the ground truth contour in blue. The 

Hausdorff distance is the maximum distance from a red point in set
i jPOS to a blue point in 

set
i jPOG , calculated by: 

max( ( , ), ( , ))
i j i i i iPO POj POj POj POjHaus h S G h G S= ,   (3.15) 

where; 

( , ) max min ( , )
d Dc C

h C D dist c d
∈∈

= .    (3.16) 

 

 
 

3.1.1.7 Statistical Assessment with Ground Truth 

The majority of statistical segmentation accuracy measures are region based and focuses on the 

region overlap, for object j on image iP , between the segmented region
i jPORS and representation 

of the ground truth region
i jPORG . The output is normalised from 0 to 1, where 0 represents no 

overlap and 1 perfect alignment. The degree of overlap can be quantified by three measures 

namely True Positive (TP), False Negative (FN) and False Positive (FP), as depicted in Figure 

3-7. 

 

Figure 3-6: Hausdorff distance calculation on left ventricle which calculates the furthest distance that the red 
segmentation contour is from the ground truth blue contour. 
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Figure 3-7: Overlap measures to define region based segmentation accuracy 

There are several statistical measures based on similarity that can now be defined. The Jaccard 

Index (3.17) is the size of the intersection divided by the size of the union [76]. The Dice 

Coefficient (3.18) is similar to the Jaccard and measures two times the area of the intersection 

between two segmentation and ground truth divided by the sum of the area of the two [76]. The 

Sensitivity measure [76] is the fraction of positives that are correctly detected and is defined in 

(3.19). 

i i

i j

i i

POj POj
PO

POj POj

SR GR TPJac
SR GR FP TP FN

∩
= =

∪ + +
.   (3.17) 
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i
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PO

POj

SR GR TPSens
GR TP FN

∩
= =

+
.    (3.19) 

Several other statistical measures can be used to measure segmentation accuracy such as 

Specificity, Cohen Kappa, Rand Index, Interclass Correlation, Volumetric Similarity Coefficient 

and Mutual Information [77], but these will not be discussed here. 

 

3.2 Calculation of ventricular volumes from segmentation 

 

The mathematical and statistical methods in Section 3.1.1.6 and Section 3.1.1.7 requires the 

presence of a ground truth segmentation for that particular MRI dataset. However the publically 

available cardiac MRI datasets for ventricle segmentation only has ground truth representations 

in the SAV. Thus if evaluation of ventricle segmentations in other cardiac MRI views is 

required, then the methods of Section 3.1.1.1 and 3.1.1.2 need to be used, which could be 

subjective. This section introduces a clinical criterion that is based on unsupervised evaluation 

which allows an objective accuracy measure of the segmentation algorithm. 
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3.2.1.1 Clinical Assessment without Ground Truth 

One of the main aims of obtaining accurate segmentation of the left and right ventricles of the 

heart is that certain clinical factors can be computed. The stroke volume (SV) is the volume of 

blood that is ejected from a ventricle [7]. This volumetric measure can be computed by 

subtracting the ventricular volume at the end of contraction (systole) from the ventricular 

volume at the end of relaxation (diastole). This can be represented as shown below, where ESV 

is the end systole volume and EDV is the end diastole volume:  

        SV EDV ESV= − .     (3.20) 

Another measure called the ejection fraction (EF) can be computed, which is volume of blood 

pumped out from a ventricle with each heartbeat, and is given by: 

 SVEF
EDV

= .     (3.21) 

To maintain equilibrium in a normal functioning heart, the stroke volumes of the left and right 

ventricles must be the same [1]. Thus this can be used as a measure of accuracy if both the 

ventricles are segmented. The percentage error in stroke volumes between the left ventricle 

( LVSV ) and right ventricle ( RVSV ) is defined as: 

100%LV RV
error

LV

SV SVSV
SV

 −
= × ÷

 
    (3.22) 

 

The most commonly used method of calculating ventricular volumes is Simpsons rule for 

measuring volumes [56]. In this method, the volume at a particular cardiac time (either end 

diastole or end systole) is obtained by multiplying the segmented area by the slice thickness per 

slice. The volume of the ventricle is achieved by adding each slice volume for all slices that 

segment that ventricle. This method is visually represented in Figure 3-8 and Figure 3-9, where 

the distance between the slices (slice thickness) is clearly shown.  
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Figure 3-8: Segmented portions of the left ventricle in the short axis MRI view for a patient with slice thickness 
of 9mm. 
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To derive the volume in this figure using Simpsons rule, the area of slice one is multiplied by 

the slice thickness and added to area of slice two multiplied by the slice thickness, until the 10th 

slice is reached. From Figure 3-9, the volume for the left ventricle in the short axis MRI view is 

represented as [56]: 
10

,
1

( )
i LVSA LV PO i

i
V Area S ST

=

= ×∑ ,     (3.23) 

where
i LVPOS is the segmentation of the left ventricle for MRI i in the short axis view and iST is the 

slice thickness, which is normally a constant for a particular acquisition.  

 

It can also be seen from Figure 3-9 that the ‘step area’ volume approximation per slice leads to 

significant errors in the volumetric calculation if the slice thickness is not the same as the voxel 

dimensions. Furthermore, there is some debate as to the inclusion of the slice thickness at the 

end slices (above slice 10 and below slice 1) in the volume calculation. Figure 3-9 does not 

include either.   

 

Although Simpsons rule is the accepted standard for ventricular volumetric calculation from 

cardiac MRIs [56], several authors have provided methods aimed to be more accurate. The 

biplane Simpson’s disk method assumes that the left ventricle in the short axis view represents a 

disc [55]. The volume is obtained by the summation of the stack of discs along the left ventricle 

long axis. The biplane area length method [56] used to calculate atrium volumes, combines a 

percentage of the four chamber view area and the two chamber view area. Several geometric 

calculations have also been proposed, which do not require full segmentation of the ventricles. 

These include hemisphere cylinder model, the single and biplane ellipsoid model and Teichholz 
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Figure 3-9: Segmented portions of the left ventricle encased in a surface plot using Simpsons rule in the short 
axis MRI view for a patient with slice thickness of 9mm. 
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model [56], [59], [61]. The area or volume of the ellipsoid is based on the longitudinal, 

transverse and anto-posterior diameters which are perpendicular to each other. The last method 

used is semi-automatic, where the user manually identifies the boundaries in a three 

dimensional view [56] and a thresholding technique is used. 

 

3.3 Effectiveness of distance and statistical based measures 

 

In order to compute the effectiveness that the distance and statistical measure have in assessing 

ventricle segmentation contours to the ground truth contour, a series of tests is performed on the 

ground truth contour. The cardiac MRI dataset used for the first test is a subset from the 

RVSCD (Section 3.1.1.5.2). For a particular patient from the dataset, the ground truth 

representation consists of a contour with 273 points which segments the right ventricle. This is 

visually represented in Figure 3-10 (a) and is denoted by RV1. 

 

 
The series of tests performed is as follows: 

i. Move two points of the contour RV1 away from the right ventricle to create RV2 

(Figure 3-10 (b)). This will create a gap in the overlap. 

ii. Move two points of the contour RV1 towards the right ventricle to create RV3 (Figure 

3-10 (c)). Theoretically, the overlap result should not be effected.  

      
(a) RV1                         (b) RV2                   (c) RV3 

 

   
    (d) RV4                 (e) RV5  

Figure 3-10: Segmentation of Right Ventricle using 273 contour points. The red arrow indicates the contour 
points that has moved from the ground truth representation in (a) 
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iii. Move points of the contour of RV1 to align the contour closer to the endocardium 

border of the right ventricle to create RV4 (Figure 3-10 (d)). This improves the ventricle 

segmentation but does not create a smooth contour. 

iv. Move points of the contour of RV1 to align the contour closer to the endocardium 

border of the left ventricle and the epicardium border of the right ventricle to create 

RV5 (Figure 3-10 (e)). This is a common occurrence if shape models are used to 

perform automatic segmentation 

v. Repeat the tests from i to iv above for a contour length of 148 points to determine the 

effect of using less contour points in the ventricle segmentation.  

 

The distance and statistical based accuracy measures from equations (3.11), (3.12), (3.13), 

(3.14), (3.15), (3.17), (3.18) and were applied to the series of tests discussed above. For the 

accuracy calculation of (3.4), three expert observers were used and the parameters chosen 

are 1K = and 3Q = . The segmentation accuracy for all images is tested against the segmentation 

of RV1 and the results as displayed in Table 3-2.  

Table 3-2: Segmentation accuracy calculation on right ventricle segmentation using various mathematical and 
statistical methods with the availability of the ground truth (273 contour points) 

 
Table 3-3 provides segmentation accuracy calculations on a set of images similar to that of 

Table 3-2 with the difference being that the number of contour points to perform the 

segmentation has been reduced to 148. This is normally the case for different automatic and 

semi-automatic segmentation algorithms that have varying contour lengths.  

Table 3-3: Segmentation accuracy calculation on right ventricle segmentation using various mathematical and 
statistical methods with the availability of the ground truth (148 contour points) 

 

Test 
 
Number 

(%)
jOA  

i jPOMean
 

i jPOMSE  2
i jPOED  

i jPOHaus
 

i jPODice  
i jPOJac  

i jPOSens  

RV1 86.6 0 0 0 0 1 1 1 
RV2 86.6 0.0110 0.0330 0.0220 2.8284 0.9993 0.9986 1 
RV3 93.3 0.0110 0.0330 0.0220 2.2361 0.9993 0.9986 0.9986 
RV4 100 0.0678 0.2253 0.1355 2.8284 0.9951 0.9903 0.9903 
RV5 40 1.5696 14.5476 3.1392 12 0.9141 0.8418 1 
A=Visual Expert Accuracy (3.4)   Mean=Mean error (3.11)    MSE=Mean Square Error (3.12)    
ED2=Euclidean Distance 2 (3.14) Haus = Hausdorff Distance (3.15)   Dice = Dice Coefficient (3.18)    
Jac = Jaccard Index (3.17)             Sens = Sensitivity (3.19) 
 

Test 
 
Number 

(%)
jOA  

i jPOMean
 

i jPOMSE  2
i jPOED  

i jPOHaus
 

i jPODice  
i jPOJac  

i jPOSens  

RV1 86.6 0 0 0 0 1 1 1 
RV2 86.6 0.0203 0.0608 0.0405 2.8284 0.9990 0.9980 1 
RV3 93.3 0.0203 0.0608 0.0405 2.2361 0.9986 0.9972 0.9972 
RV4 100 0.0980 0.3682 0.1959 3.1623 0.9947 0.9895 0.9895 
RV5 40 1.4865 13.7297 2.9730 12 0.9120 0.8383 1 
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Figure 3-11 depicts the five images of left ventricle segmentation acquired from the SCD 

(Section 3.1.1.5.1) and have the contours obtained in the test method similar to Figure 3-10. 

LV1 contour is a representation of the ground truth (expert manual delineation). LV2 and LV3 

have two points that have been moved away from LV1. LV4 aims to improve segmentation 

accuracy by not including one papillary muscle. LV5 converges on the endocardial border of the 

right ventricle. Table 3-4 provides detail on the resultant comparative measures to the ground 

truth representation. 

 

Table 3-4: Segmentation accuracy calculation on left ventricle segmentation using various mathematical and 
statistical methods with the availability of the ground truth (112 contour points) 

 
The first source of uncertainty encountered in utilizing the representation of the ground truth 

from the SCD and RVSCD datasets was that different local experts had their own set of 

guidelines to manually segment the left and right ventricles. However, once the rules defined in 

Section 3.1.1.5.1 and Section 3.1.1.5.2 were presented to the observers, the inter-expert 

variability decreases. For this study, trabeculae and papillary muscles were included in the 

ventricular segmentation. Thus the results of the Visual Assessment by Experts was within a 

Test 
 
Number 

(%)
jOA  

i jPOMean
 

i jPOMSE  2
i jPOED  

i jPOHaus
 

i jPODice  
i jPOJac  

i jPOSens  

LV1 93.3 0 0 0 0 1 1 1 
LV2 86.6 0.0268 0.0804 0.0536 2.2361 0.9975 0.9950 1 
LV3 86.6 0.0268 0.0804 0.0536 2.8284 0.9990 0.9980 0.9980 
LV4 80 0.1473 1.0134 0.2946 8 0.9822 0.9650 0.9650 
LV5 40 1.8973 9.4866 3.7946 5 0.8601 0.7545 1 

   
             (a) LV1                           (b) LV2                         (c) LV3 

 

  
                         (d) LV4                           (e) LV5  

Figure 3-11: Segmentation of Left Ventricle using 112 contour points. The red arrow indicates the contour points 
that has moved from the ground truth representation in (a). 
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four percent variability. It must also be noted that having the three experts present in the same 

venue at the same time was logistically difficult. Instead, the segmentations were provided to 

them on an individual basis which led to the process being time consuming. 

 

As expected from the results in Table 3-2 and Table 3-4, when assessing the accuracy of the 

ground truth representation against itself, all the distance measures are zero and all the statistical 

overlap measures are one. For the two point deviations (RV2, RV3, LV2 and LV3), the distance 

measures are very similar. The Hausdorff distance gives a better indication to the degree of 

point displacement than the other distance measures as it does not depend on the number of 

contour points. The Jaccard index and Dice-coefficient do depict that there are some non-

overlapping areas between the segmentation and ground truth. The Sensitivity measure will 

always be one if the ground truth is completely overlapped by the segmented area and thus can 

be misleading as to the segmentation accuracy. For the segmentations with large point 

misplacement (RV5 and LV5), the value of the distance measures increase significantly. Once 

again the Hausdorff distance provides a true indication of the degree of the pixel-wise point 

displacement with values of 8 and 5 respectively. The statistical overlaps are also significantly 

affected. 

 

Table 3-3 illustrates the effect that the reduction in segmentation points has on distance and 

statistical accuracy methods. It can be seen for small point variations (RV2 and RV3) that mean, 

mean square error and Euclidean distance measures almost doubled. This is due to the 

1 / 2M and 1 / M factors equations (3.11), (3.12) and (3.14). However, as more points are 

displaced from the ground truth (RV4 and RV5), the distance errors mimics the larger contour 

errors due to the fact that less number of points are displaced in the smaller contour count. It 

must also be noted that all the statistical accuracy measures and the Hausdorff distance measure 

remains within 5% irrespective of the number of displaced points for varying contour sizes. 

 

3.4 Effectiveness of clinical based measures 

 

A dataset of 10 volunteers from the Universitas Hospital (University of the Free State) was used 

to calculate the various clinical measures. The dataset consisted of five male volunteers and five 

female volunteer with no known cardiac abnormalities. Each image is of size 256x256 pixels, 

20 images per cardiac cycle and a slice thickness of 9mm. Together with each dataset is a set of 

three manually delineated contours, from three experts, that segment the left and right ventricle 

in the SAV view from the apex slice to the base slice.  
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In order to perform the volumetric calculation, each contour area was calculated per slice and 

converted from pixel value to actual area value represented in cm2 by using the DICOM 

information. Thereafter, by applying Simpsons rule for measuring volumes, each slice area was 

multiplied by the slice thickness and a summation of each volume was performed from the apex 

slice to the base slice. 

 

Table 3-5 contains all the volumetric information for the left and right ventricle calculated for 

each expert delineation [19]. The stroke volume error from (3.22) is also presented. Figure 3-12 

depicts the deviation from the ideal ventricle volumes for one expert. The average stroke 

volume is calculated over all three experts for each patient dataset and an error plot showing the 

deviation from the ideal is presented in Figure 3-13. 

Table 3-5: Stroke volume error calculations from three experts on an MRI dataset of 10 patients. 

 

 

Volunteer 
Number 

Expert 1 Expert 2 Expert 3 
LV SV 

(ml) 
RV SV 

(ml) errorSV  
(%)  

LV SV 
(ml) 

RV SV 
(ml) errorSV  

(%)  
LV SV 
 (ml) 

RV SV 
(ml) errorSV  

(%) 
1 91.8 81.5 11.22 81.5 66.1 18.90 71.1 81.0 13.92 
2 53.6 56.3 5.04 49.3 34.8 29.41 45.0 33.3 26.00 
3 56.5 54.8 3.01 49.8 42.9 13.86 45.9 71.1 54.90 
4 37.9 28.9 23.75 37.7 22.7 39.79 43.2 28.8 33.33 
5 86.8 74.1 14.63 81.3 34.6 57.44 77.4 77.4 0.00 
6 76.8 64.0 16.67 74.4 61.2 17.74 86.4 77.4 10.42 
7 53.7 45.7 14.90 46.6 30.0 35.62 52.2 46.8 10.34 
8 53.7 43.6 18.81 51.8 46.1 11.00 62.1 52.2 15.94 
9 72.2 77.0 6.65 65.6 63.5 3.20 78.3 70.2 10.34 
10 54.3 51.3 5.52 57.6 53.6 6.94 56.7 63.9 12.70 
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Figure 3-12: Stroke volume for left and right ventricles for Expert 1. Blue line represents the ideal stroke 

volume. 
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As can be inferred from Table 3-5, there is a variation in the stroke volume errors between 

volunteers and also between experts. Simpson’s method can be one factor that influences the 

stroke volume error per volunteer. The inter-expert variation can be attributed to the 

interpretation of the set of rules in performing the manual delineation. Figure 3-12 shows 

graphically the segmentation error for Expert 1 around the blue line which represents the 

equality of the stroke volumes of the left and right ventricles. For four volunteers, the clinical 

segmentation accuracy is within 7%. Averaging the stroke volume error among the three experts 

may not necessarily improve the segmentation accuracy due to the inter-expert variability 

(Figure 3-13). 

 

3.5 Summary 

 

This chapter has presented a series of mathematical, statistical and clinical measures that can be 

used to calculate the accuracy of the segmentation performed on cardiac MRI. The 

mathematical and statistical methods are dependent on the availability of a ground truth 

segmentation. The difficulty in obtaining a representation of the ground truth is due to inter-

expert variability and the set of rules that define an accurate segmentation, such as the inclusion 

or exclusion of papillary muscles. The lack of publically available datasets with ground truth 

segmentations of the left and right ventricle further hamper segmentation algorithm 

comparisons. It is proposed that the datasets of SCD, RVSCD and YUD be used as they are 

supplied with ground truth representations by expert manual delineations. However, these 

ground truth representations are subjective and conform to a set of rules that the expert has used.  
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Figure 3-13: Stroke volume for left and right ventricles for average of three experts. Blue line represents the 

ideal stroke volume. 
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Phantoms (physical or digital) can be used to obtain the ground truth segmentation of the 

ventricles. However, work in this field is still at its infancy and it shows the difficulty of 

constructing a phantom that displays a full range of characteristics, such as partial volume effect 

and noise. In the absence of the ground truth, it is proposed that the visual assessment of 

segmentation method be used. This method is time-consuming and not suitable for real time 

diagnosis. The STAPLE algorithm may also be used, but this algorithm requires a large 

segmented dataset. A method of obtaining a representation of the ground truth by expert manual 

delineation is also discussed. 

 

The mathematical or distance based measures are particularly sensitive to the “panhandle 

problem”, where there is a strong local deviation that does not necessarily take up much 

volume, but results in a large shape difference. Furthermore, it was shown that the Hausdorff 

distance is one of the best to use, due to the small number of pixels between the ventricles. 

Region based measures are sensitive to misplacement of the segmentation contour. Jaccard is 

numerically more sensitive to mismatch than Dice. Region based measures become unsuitable 

for objects that differ in size. The clinical measure required that both left and right ventricle 

segmentation be performed at the end diastole and end systole, so that the stroke volume could 

be computed. This measure did not require the ground truth.  

 

Depending on the type of ventricle segmentation algorithm (manual delineation, semi-

automatic, fully automatic), if at least two of the mathematical, statistical or clinical measure are 

used, it will provide a good indication of the accuracy of the algorithm. Thus the effectiveness 

of various algorithms can be assessed and compared. 
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CHAPTER 4 -  EXISTING CARDIOVASCULAR MRI 

SEGMENTATION APPROACHES 

 

Ventricle segmentation methods can be represented in three categories namely manual 

segmentation, semi-automatic segmentation which requires human interaction and fully-

automatic segmentation [2]. The manual segmentation methods are normally performed by 

medical experts who have a defined set of rules as to what anatomical objects to include and 

exclude in a segmentation. The semi-automatic method requires limited assistance from the 

user, which normally includes specifying the centre of the ventricle or tracing a part of the 

ventricle border. In literature, most existing methods have focused in segmenting the left 

ventricle in the short axis MRI view [2]. The semi-automatic and fully automatic methods can 

be further broken down into four categories namely; image based or intensity models, active 

contours or deformable, model based and registration based. These will be explained further in 

the subsections below. A full review on how these segmentation methods are applied to CMRI 

is provided in [2] and [25]. 

 

4.1 Image and Intensity Based Segmentation 

 

Image and intensity based segmentation methods perform some form of processing on the pixel 

intensities in the MRI image, by exploiting different features such as edges, texture and shapes. 

The types of processing include edge based filters, thresholding and region based analysis or 

dynamic programming which searches for optimal paths. These techniques require little or no 

prior knowledge of the region of interest. A literature survey of the methods used to segment 

ventricles in cardiac MRI is presented in Table 4-1. 

 

Edge based filters aims to find the boundary between portions of the image that show intensity 

discontinuities or an abrupt local change in the pixel intensity. There are several standard edge 

detection filters present in literature, which can be grouped by either being gradient based or 

Laplacian based [26]. Gradient based edge detectors find the boundaries by looking for the 

maximum and minimum in the first order derivative of the image, whereas Laplacian based 

finds the zero crossings in the second derivative of the image.  
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Table 4-1: List of image and intensity based segmentation methods provided by various authors 

No. Author Filter or Thresholding Type 
Ventricle 

Segmented 

Dataset and MRI 
View Used for 

Results 

1 Goshtasby et al. [81] Laplacian of Gaussian Left and 
Right Own, SAV 

2 Kaushikkar et al. [82] Laplacian of Gaussian (3D) Left Own, SAV 

3 Weng et al. [83] Bell image intensity model Left and 
Right Own, SAV 

4 Nachtomy et al. [84] Gradient-echo protocol Left Own, SAV 
5 Waiter et al. [85] 2D weighted polynomial fitting Left Own, SAV 

6 Katouzian et al. [86] Threshold decomposition opening 
Left and 

Right Own, SAV 

7 Lin et al. [52] Fourier Transform Left Own, SAV 

8 Liu et al. [87] topological stable-state 
thresholding 

Left SCD, SAV 

9 Lee et al. [88] Region growth with iterative 
thresholding 

Left Own, SAV 

 

For an image iP  that consists of a set of m n× pixel, referenced by location ( , )x y  and 

intensity ( , ) ( , )i x y iI P x y= , the gradient of the image is given in (4.1) and its vector magnitude 

represented in (4.2) [27]. Thus the gradient vector points in the direction of maximum rate 

change in ( , )i x yI∇ at coordinates ( , )x y , where xG and yG is the first order derivative with respect 

to ( , )x y . 

/
/

x i x
i

y i y

G II
G I

   ∂ ∂
∇ = =   

∂ ∂      
 ,    (4.1) 

2 2
i x yI G G∇ = + .          (4.2) 

Some of the gradient based edge detectors are Sobel, Robert Cross and Canny [28]. The 

Laplacian based edge filter is given by the second-order derivative given by [27]: 

2 2
2

2 2
i i

i
x y

I II
 ∂ ∂

∇ = + 
∂ ∂  

.               (4.3) 

The one dimensional Gaussian filter [29] can be created in terms of the normal distribution 

function given below, where σ (sigma) defines the width of the distribution: 
2

221( )
2

x

G x e σ

πσ

−
= .          (4.4) 

The Gaussian filter can be extended to a two dimensional space for images, as depicted in (4.5) 

by the product of two Gaussians [30]. 1( , )G x y will form a matrix with x  being the distance 

from the origin in the horizontal axis and y the distance from the origin in the vertical axis. 
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2 2

22
2

1( , )
2

x y

G x y e σ

πσ

+
−

= .            (4.5) 

The disadvantage of edge based detectors is that they assume that every sub-region in an image 

is sufficiently uniform so that the transition between the two regions can be determined purely 

on the basis of discontinuities [28]. Furthermore, these methods are susceptible to noise and 

thus some form of pre-processing, such as image smoothing, need to be performed.  

 

Region based analysis attempts to group a set of pixels according to intensity, colour and 

texture. Thresholding is the simplest form of region based analysis whereby the object of 

interest is separated from the background by choosing the qualifying value as depicted below 

[28]:  

1, ( , )
B( , )

0, ( , )
i

i

I x y T
x y

I x y T
∀ >

=  ∀ ≤
.    (4.6) 

Equation (4.6) will result in the creation of a binary image. If the threshold qualifying value, T , 

is constant throughout the whole image, the process is known as global thresholding. Variable 

thresholding is achieved by allowing T to be changed in the image according to some 

algorithm. The challenge in the region based approach is to select the optimal T per image. 

These thresholding techniques become effective only if the pixel intensities of the segmented 

object fall outside the range of the intensity levels of the background and becomes problematic 

at blurred region boundaries.  

 

4.2 Active Contours and Deformable Models 

 

Deformable models have been the pioneering segmentation method used for ventricle 

segmentation during the 1980’s and 1990’s. It was made popular by the introduction of active 

contours or snakes [53] [54], in which the contours iteratively deform their shapes according to 

internal and external forces. The internal forces, which are the regularisation terms, control the 

smoothness of the curve. The focus of the algorithm development is to optimise the external 

forces, which pulls the contour towards the segmentation region. The advantage of the active 

contour segmentation method is that it will always produce a continuous boundary 

segmentation. 

 

The active contour algorithm is initialised by a set of control points, 
i jPOS , that aim to segment 

object jO  in the image iP  with M points and is represented as: 
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1, 1, 2, 2, , ,{(x , y ),(x , y ),...,(x , y )}
i j i j i j i j i j i j i jPO PO PO PO PO M PO M POS = .  (4.7) 

The control points form the contour with a smooth curvature, where the control points are 

evenly spaced and the contour adheres to image edges [31]. The process involves minimising 

the energy function below: 

S
internal forces external force

(S ) (S ) (S ) (S )
i j i j i j i j

POi j

PO continuity PO curvature PO image POE E E Eα β γ
 
 ÷= + +
 ÷
 

∑
 

,     (4.8) 

where α , β and γ are the controlling coefficients, depending on whether even control point 

spacing, contour smoothness or binding the contour to the edge takes preference respectively 

[31].  

 

A review of all different external forces methods is provided in [2] and [26] and a summary of 

the state of the art work is provided in Table 4-2. The initial methods involved focussing on 

edge detection or boundary detection [89], [90], [93] using approaches similar to those 

described in Section 4.1, where the contour starts at some initial point and then deforms to the 

boundary of the epicardium or endocardium. However, these approaches require the ventricle 

boundaries to have sharp intensity transitions and very low noise. Improvements in the active 

contour algorithms utilise region based terms, where the intensity and texture are considered 

within sub-regions of the image and overlaps between regions of different intensity profiles 

forms the segmentation. These methods are highly dependent on the overlap criteria specified 

which usually requires assistance from the user for the first segmented image. Another 

improvement was to replace the edge or boundary detection with the use of a gradient vector 

flow (GVF) field [120], which is calculated as a diffusion of the gradient vectors of an edge or 

boundary map as computed from the image and allows convergence of the contours from both 

inner and outer sides.  

 

All the improvements discussed above allow the contours to shift predefined points based on the 

chosen energy minimisation function. Another approach of active contour segmentation for 

cardiac MRI is to use the level set theory developed by Osher et. al. [155] or geodesic active 

contour introduced by Caselles et al. [156]. With this approach, the contours move completely 

as a particular level of a function, with the initial contour being at the zero level. This approach 

catered for the segmentation of multiple objects. Combination of both level sets and edge or 

region based have been investigated, which improved efficiency in both initialisation and 

convergence [26].  
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The major step or downfall in the deformable methods is the initialisation of the active contours 

and in most cases the algorithms are slow converging [31]. User interaction is also a 

requirement, either minimally or extensively, especially at the initialisation of the contour stage. 

The presence of image noise and low contrast on the ventricles still pose challenges with these 

methods. 

Table 4-2: List of deformable model segmentation methods developed by various authors 

No. Author Deformable Model Type Ventricle 
Segmented 

Dataset and MRI 
View Used for 

Results 
1 Ranganath [89] Active contours – Edge Left Own, SAV 
2 Heiberg et al. [90] Active contours – Edge (3D) Left Own, SAV 

3 Hautvast et al. [91] Active contours – Region Left and 
Right 

Own, SAV 

4 Zhukov et al. [92] Active contours – Region (3D) Left Own, SAV 
5 Chakraborty et al. [93] Active contours – Edge and Region Left Own, SAV 

6 Santarelli et al. [120] 
Active contours – Edge and 
Gradient Vector Flow Left Own, SAV 

7 Wang et al. [121] Active contours – Edge and 
Gradient Vector Flow Left Own, SAV 

8 El Berbari et al. [122] Active contours – Edge and 
Gradient Vector Flow Left Own, SAV 

9 Wu et al. [123] Active contours – Edge and 
Gradient Vector Flow Left Own, SAV 

10 Pham et al. [124] Active contours – Region and 
Gradient Vector Flow (3D) Left Own, SAV 

11 Pieciak [125] Active contours and Fourier 
descriptors Left Own, SAV 

12 Gotardo et al. [126] 
Active contours and Fourier 
descriptors and Principle 
component analysis (3D) 

Left Own, SAV 

13 Battani et al. [127] Level set Right Own, SAV 

14 Ammar et al. [128] Level set and Active contours – 
Edge Left Own, SAV 

15 Pluempitiwiriyawej et 
al. [129] 

Level set and Active contours – 
Edge and Region  

Left and 
Right Own, SAV 

16 Paragios [130] Level set and Gradient Vector Flow Left Own, SAV 

17 Yezzi et al. [131] Level set and Principle Component 
Analysis Left Own, SAV 

18 Lynch et al. [132] Level sets and coupling of contours Left Own, SAV 
19 Ben Ayed et al. [133] Level set and coupling of contours Left Own, SAV 

20 Ngo et al. [134] 
Level sets and Deep belief 
networks Left SCD, SAV 

 

 

4.3 Model Based Segmentation 

 

Model based segmentation exploits a prior knowledge about the properties of an object of 

interest which is to be segmented [2]. The shape and appearance of the left ventricle is well 
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known in the SAV. Using this knowledge, an automated segmentation algorithm/model can be 

developed. This model is then superimposed over the unknown, un-segmented patient data. The 

model’s appearance and parameters are subsequently adjusted until the model matches the un-

segmented data within a defined tolerance value. The final shape and position of the model will 

reflect the shape and position of the object of interest.  

 

Active Appearance Models of the human heart do exist [32]. These represent the appearance of 

the heart in terms of statistical features which considers the spatial form of the ventricles (shape) 

and the volumetric colour distribution inside the ventricle (texture) [33]. Multiple instances of 

similar data are analysed statistically to obtain a model.  

 

In order to segment an image, the image is matched to the model iteratively, until the difference 

between model and MRI image is minimised. The shape variation of the model is commonly 

achieved by using Principal Component Analysis (PCA) [34], on a training dataset of example 

shapes, to describe the main direction of variance. However, these models assume that the data 

is normally distributed, which is not always the case. Respiration, fat and any movement of the 

patient while the MRI is being performed will result in large shape variations. This may lead to 

a creation of a model that has the incorrect desired shape. Another problem with this method is 

that appearance matching may lock on incorrect features and get stuck in a local minimum. This 

is a problem for quantitative analysis. Also, local structures and boundary information is not 

specifically considered. 

 

Active shape models (ASM) and Active appearance models (AAM) are both statistical models 

that consider both shape and texture variability within a training set. ASM only considers the 

texture distribution surrounding landmark points. Landmark points are the significant points that 

segment the area of interest. The general method in creating these models is to have N training 

dataset of images, with each image having M landmark points, which outlines the area of 

interest. 

 

If an object jO  in the image iP  has been segmented the resultant training set by M landmark 

points is represented as: 

1, 1, 2, 2, , ,{(x , y ),(x , y ),...,(x , y )}
i j i j i j i j i j i j i jPO PO PO PO PO M PO M POS = .   (4.9) 

For 2D images these n landmark points can be represented as [33]: 

1 , 2 , , 1 , 2 , ,{x ,x ..., x , y ,y ..., y }
i j i j i j i j i j i j i j

T
PO S PO S PO MS PO S PO S PO MS POS = .  (4.10) 

The above representation (4.10) is a vector in 2M dimensional space. The training set now can 

be represented as: 
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( )2 31
| | | ... |

j j j j N jO P O P O P O P OS S S S S=  .    (4.11) 

The first step in building a model is to align each training vector in 
jOS into a common co-

ordinate frame. There are various methods to achieve this [33]. Assume 
jOS is now aligned to 

produce 
jOS


. 

 

The next step is to reduce the dimensionality of the aligned training vector 
jOS


, by applying 

principle component analysis. PCA will produce a set of eigenvectors, 

1 2 3 2( | | | ... | )
jO MPCA p p p p= , that are orthogonal to each other and its associated eigenvalue 

vector, 1 2 3 2M( , , ,..., )
jOλ λ λ λ λ= . The eigenvector ep  corresponding to the largest value of eλ  is 

called the principle component. In essence, if we choose g  eigenvectors ( ep ) corresponding to 

the largest values of eλ  we can approximate any of the aligned training vectors 
1 jP OS


 by [33]: 

1 1j j jP O P O OS S PCA b≈ +
 

,     (4.12) 

where 
1 jP OS


 is the mean of 

1 jP OS


 and: 

1 1
( )

j j j

T
O P O P Ob PCA S S= −

 
.    (4.13) 

j

T
OPCA now forms the model and b  is the shape parameter. To recover the original image 

points 
i jPOS , the following equation is applied iteratively [33]: 

1, , , ( )
i j j jPO Xt Yt s P O OS T S PCA bθ= +


,         (4.14) 

where , , ,Xt Yt sT θ performs a rotation by θ , a scaling by s , and a translation by ,t tX Y . 

 

To fit the model to a new image is a little tricky. A set of parameters, that define shape and 

position, must be found that best matches the model to the image. The parameters that can be 

varied are , , , ,t tb X Y sθ . To aid in the matching/searching process, texture surrounding each of 

the model points are considered.  

 

There are various searching algorithms and improvements that have been developed. Table 4-3 

provides detail on the different approaches made by various authors in improving ventricle 

segmentations using ASM and AAM. Mitchell et al. [35], was the first to apply AAM to 

automatically segment the left and right ventricles of the heart. They developed a hybrid 

ASM/AAM which improved the searching method in AAM. Mitchell et al. extended their 

research to produce a full 3D AAM, and applied it to 3D cardiac MR data and 2D + time 



 46

echocardiograms [37]. Results of the above applications of AAM have shown to be superior to 

other segmentation approaches, since they combine correlated intensity and shape knowledge, 

resulting in increased robust performance. 

 

Table 4-3: List of shape model segmentation methods developed by various authors 

No. Author Shape Model Type Ventricle 
Segmented 

Dataset and MRI 
View Used for 

Results 
1 Mitchell et al. [35] AAM Left Own, SAV 
2 Stegmann et al. [15] AAM Left Own, SAV 

3 Mitchell et al. [37] ASM and AAM Left and 
Right Own, SAV 

4 Lelieveldt et al. [95] AAM (3D) Left Own, SAV 
5 Mitchell et al. [94] AAM (3D) Left Own, SAV 

6 Ordas et al. [135] ASM and Invariant optimal features Left and 
Right Own, SAV 

7 Stegmann et al. [136] AAM (3D) Left Own, SAV 
8 van Assen [48] ASM (3D) Left Own, SAV 
9 Abi-Nahed et al. [137] ASM and Robust point matching Right Own, SAV 

10 Zambal et al. [138] ASM (3D) using 2D AAM Left Own, SAV 

11 Zhang et al. [139] ASM and AAM (3D) Left and 
Right 

Own, SAV 

12 Davatzikos et al. [38] ASM and Wavelet Transforms Left Own, SAV 

13 Mehmet [40] AAM with Independent component 
analysis 

Left and 
Right 

Own, SAV 

14 Yuan et al. [41] ASM and Support Vector Machines Left Own, SAV 
15 Beichel et al. [42] AAM with improved searching Left Own, SAV 

16 Andreopoulos et al. 
[9] AAM (3D) with improved searching Left YUD, SAV 

 

An interesting approach was developed by Davatzikos et al. called hierarchical active shape 

models using the wavelet transform [38]. Here the data is decomposed into the wavelet 

transform and thereafter PCA is performed on each wavelet band separately. With this method 

global and local shape variations can be described and the performance of this method is better 

than standard ASM when a small number of training samples is used. However, when the 

training dataset is large, the performance is comparable to standard ASM.  

 

An effective method as an alternative to PCA is called Independent Component Analysis (ICA). 

Vectors computed using ICA show localised shape variation. The selection of ICA vectors to 

use in the shape model is not natural as with PCA. Several methods do exist that make this 

choice of vectors. Mehmet has developed a novel method of combining PCA and ICA using 

AAM [40]. This method was successfully applied in segmentation of short-axis cardiac MRI. 

ICA was used in the shape model, while PCA was used in the texture modelling.  
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Support Vector Machines (SVM) has shown potential for learning classification functions that 

can be applied to object recognition. SVM finds strength in object discrimination. Yuan et al 

[41] have successfully combined ASM and SVM to produce a better segmentation model. 

Beichel et al [42] have developed the Robust Active Appearance Model (RAAM). Their main 

focus was to optimise the searching method by means of mean-shift based mode detection. Also 

in their algorithm, they have made no assumptions about the distribution of noise disturbances 

in the image to be matched (to the AAM model). They claim that this method is robust enough 

to tolerate up to 50% of image area covered by noise disturbances. 

 

One of the major issues with the AAM is that it uses PCA which describes the main direction of 

shape variation within a training data set. However, PCA fits a Gaussian hyper-ellipsoid to the 

training data set and thus assumes that the data is normally distributed, which in most cases it is 

not. Furthermore, PCA produces eigenvectors which describe global variations, in that if a 

shape parameter that corresponds to a particular eigenvector is changed, the entire shape 

deforms. This poses a serious problem if we are trying to achieve a locally accurate 

segmentation. 

 

4.4 Registration Based Segmentation 

 

Registration based methods utilises an atlas that describes the different structures (ventricles) 

present in the image. Image segmentation is performed by mapping the target image coordinates 

to the atlas by using a registration process by means of a mathematical transform [43]. 

Thereafter, segmentation of ventricles throughout the entire cardiac cycles is possible by 

utilising the same principle. Registration based segmentation methods have only recently (from 

2010) gained popularity and research interest [4]. The focus of the research investigated various 

registration algorithms to match atlases to target cardiac MRI and also strategies for atlas 

construction. Table 4-4 summarises the state of art research in this field. 

 

The initial step in these approaches is the creation of the atlas, which is normally obtained from 

a selection and combination of expert manually delineated images which extracts the ventricles. 

The initial works by Lorenzo-Valdes et al [44] [140], used only a single atlas, and thus the atlas 

was constructed by means of averaging over a several manually delineated images. Since 2008, 

multi-atlas segmentation started to become popular [143] and hence the atlas set consisted of 

multiple segmented images, where each image is treated equally for the registration portion.  



 48

If an object jO  in the image iP  has been segmented with points
i jPOS the resultant atlas of size 

N created is denoted as follows: 

( ,S ), {1,..., }
i ji i POA P i N= = .    (4.15) 

Table 4-4: List of atlas based segmentation methods developed by various authors 

No. Author Atlas Registration Type Ventricle 
Segmented 

Dataset and MRI 
View Used for 

Results 

1 Lorenzo-Valdes et al. 
[44] 

Non rigid registration (NRR) Left and 
Right 

Own, SAV 

2 Lorenzo-Valdes et al. 
[140] Expectation minimisation, NRR Left and 

Right Own, SAV 

3 Lotjonen et al. [141] Principle component analysis, 
Expectation minimisation, NRR  

Left and 
Right Own, SAV 

4 Zhuang et al. [142] 
Local Affine transform and NRR 
 

Left and 
Right Own, SAV 

5 Išgum et al. [151] NRR and Weighted decision fusion Left Own, SAV 

6 Zhuang et al. [143] NRR and patch-based label fusion Left and 
Right 

Own, 2CV and 
4CV 

7 Zuluaga et al. [144] Affine transformation and locally 
normalised cross correlation  

Left and 
Right 

RVSCD, SAV 

8 Ou et al. [145] NRR, attribute-based Right RVSCD, SAV 
9 Bai et al. [146] B-spline NRR, Gaussian kernels Right RVSCD, SAV 

10 Zhuang et al. [147] Region Based and Fluid registration 
Left and 

Right 
Own, SAV and 

2CV 

11 Kirisli et al. [148] affine transformation and B-spline 
NRR 

Left and 
Right 

Own, 2CV and 
4CV 

12 Hoogendoorn et al. 
[149] NRR with spatial normalization Left and 

Right 
Own, 2CV and 

4CV 

13 Yang et al. [150] affine transformation and B-spline 
NRR 

Left and 
Right 

Own, 2CV and 
4CV 

14 Tsadok et al. [57] Fast Marching Method and B-spline 
NRR Left Own, 2CV and 

4CV 
 

Several methods have been proposed to differentiate images in the atlas and to preselect the 

ones that are most suited to segment the target image. These methods include visual inspection 

[150], feature selection [151] and population level processing [147]. Pre-processing of the atlas 

images may be performed to further sort the atlas so that it aids the registration process to 

efficiently compute distances between the atlases and target image. 

 

The next step in the segmentation method is to obtain spatial correspondence between each atlas 

image iP and the target image to be segmented argT etP . This is achieved by using a registration 

method , , ,i Xt Yt sT θ , which performs a rotation by θ , a scaling by s , and a translation by ,t tX Y . In 

this way a set of registered atlas is formed which can be represented as: 

arg , , , ( ) ( ,S ), {1,...,L N}
T et i jiP i Xt Yt s i i POA T A P iθ= = = <  .       (4.16) 
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It must be noted that a subset, L , of the total number in the atlas is chosen for the registration. 

The resultant S
i jPO

 are then fused together by a fusion criteria to form the final segmentation of 

the target image argT etP . 

 

In literature, several authors have proposed different methods in which the registration and 

fusion processes are performed so that the computational cost is kept to a minimum and 

segmentation accuracy to a maximum. The initial research used non-rigid registration, where 

the transformation that accounts for elastic deformations and the similarity between the atlas 

and the target image is maximised. Thereafter, several other methods such as expectation 

minimisation, Markov random fields, deformable registration, etc. [44] [45] have been used. 

 

Registration based methods are dependent on the creation of the atlas, which is normally 

obtained from a large set of manually segmented images. Due to the registration process, the 

segmentation is computationally expensive, depending on the size of the atlas used. There is a 

trade-off between a reduction of atlas pool size and the accuracy of the segmentation.  

 

4.5 Other Segmentation Approaches 

 

There are several other image segmentation methods that have been applied to cardiac MRI, but 

are less popular than those described above. The graphcut method [96], [97], [100] and [152] 

aims to perform segmentation by constructing a graph that separates the boundary and region 

information of the ventricles from the rest of the image, by utilising a minimal cost algorithm. 

For this to happen, the pixel vertices are the graph nodes and the boundary pixels are the edges 

of the graph. The graph edges are assigned weighting which is obtained from the image gradient 

magnitude and directional information [96]. Thus segmentation is obtained by finding a 

minimum cost path between the start and end vertex. This method normally requires expert user 

interaction for the initial vertices. To minimise on the user interaction, hybrid models have been 

proposed that utilise shape models or atlas based models [98] and machine learning [99]. 

 

Pixel classification approaches find use where disconnected regions in an image or set of 

images belonging to the same tissue class need to be identified. The regions normally have 

similar grey-level values and segmentation is performed by either Gaussian Mixture Model 

fitting using the Expectation minimisation algorithm or clustering (K-means or Fuzzy). A list of 

these approaches is presented in Table 4-5. 
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Table 4-5: List of pixel classification segmentation approaches used by various authors 

No. Author Pixel Classification Type Ventricle 
Segmented 

Dataset Used 
for Results 

1 Boudraa [101] Fuzzy Clustering Left Own, SAV 

2 Gering [102] GMM and Markov Random Fields Left and 
Right 

Own, SAV 

3 Lynch et al. [103] K-Means Clustering Left Own, SAV 
4 Kedenburg et al. [104] Fuzzy clustering and graphcut Left Own, SAV 

5 Pednekar et al. [105] GMM and Fuzzy clustering and 
graphcut Left Own, SAV 

6 Cocosco et al. [106] Clustering Left Own, SAV 

7 Chittajallu et al. [153] Knowledge driven Markov Random 
Field Left SCD, SAV 

 

 

4.6 Location of Region of interest for the ventricles 

 

Several authors have performed a method of locating the region of interest (ROI), which in this 

case is the heart ventricles, as the initial step to their segmentation algorithm. The reasons for 

this is that unnecessary information or artefacts (partial volume effects) are removed from the 

MRI, thereby reducing the computational load. There are various algorithms that can achieve 

this localisation namely intensity statistics based as recommended in [103], image filter based as 

described in [52], [108] and motion based as mentioned in [104], [109], [105]. A summary of 

the methods used to locate the region of the heart is shown in Table 4-6 below. 

Table 4-6: List of approaches to determine the region of interest (ROI) around heart. 

No. Author ROI Detection Method Ventricle 
Segmented 

Dataset and MRI 
View Used for 

Results 

1 Lynch et al. [103] Texture analysis and K-means 
clustering Left Own, SAV 

2 Huang et al. [107] Motion – Texture analysis and K-
means clustering 

Left Own, SAV 

3 Lin et al. [52] Fourier Transform Left Own, SAV 
4 Jolly [108] Time based Fourier analysis Left  Own, SAV 
5 Hadhoud et al. [109] Motion – Standard deviation map Left Own, SAV 
6 Pednekar et al. [105] Motion – Hough transform Left Own, SAV 
7 Cocosco et al. [110] Motion – Variance maps Left Own, SAV 

 

Motion based methods rely on that basis that the heart is the only moving organ in the MRI for a 

cardiac cycle at a particular slice. This method described in [109] depends on calculating the 

standard deviation motion map between all images for different time frames in the middle slice. 

Thereafter the resultant standard deviation motion map image is converted to a binary image by 

applying a threshold. After thresholding, there is a possibility that other objects may be selected. 

Thus the authors propose to use a window that is of radius 55mm from the centre of the image. 
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This may not be adequate in patients with larger hearts, but can be adapted upward as required. 

The use of the Hough transform is also common in these approaches as it has the ability to 

detect circular regions around the ventricles.  

 

4.7 Summary 

 

This Chapter has provided a literature survey on the most common methods that are used to 

segment the ventricles of the heart. Amongst the segmentation methods studied, approximately 

65.7% of the approaches focused on segmentation of the left ventricle only, 5.7% on the right 

ventricle only and 28.6% on the both the left and right ventricles. Furthermore, approximately 

5.7% of the methods presented provided results on the publically available datasets described in 

Section 3.1.1.5. This poses a challenge when trying to compare newly developed segmentation 

algorithms to the current state of the art.  

 

Another observation made is that 94.2% of the methods segmented the ventricles in the SAV. 

From the discussions in Section 3.2, the error with regards to the utilisation of Simpsons rule for 

the volume calculation could hamper the clinical measures. User interaction in the segmentation 

process is prominent in registration based, image and intensity based and active contours. Image 

and intensity techniques become effective only if the pixel intensities of the ventricles fall 

outside the range of the intensity levels of the background MRI and becomes problematic at 

blurred region boundaries. Active contours algorithms are slow converging and presence of 

image noise and low contrast on the ventricles still pose challenges. Model based and 

registration based segmentation is highly dependent on the training dataset and performs poorly 

if required to describe local variations such as papillary muscles. 
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CHAPTER 5 -  PROPOSED SEGMENTATION METHODS 

 

The main aim of this research was to develop an automatic ventricle segmentation method that 

is able to distinguish between the left and right ventricles from cardiac MRI. From the 

observations presented in Chapter 4, it can be seen that about two thirds of the segmentation 

algorithms focussed on the left ventricle. Only in recent years has more attention been afforded 

to the right ventricle and resulted in the Right Ventricle Segmentation Challenge competition 

[111]. Also, from Chapter 4, it is noticed that segmentation focus was in the SAV. This Chapter 

will initially propose a new algorithm for automatic segmentation of left and right ventricles in 

the SAV using an image and intensity based segmentation method. This forms the basis of the 

next algorithm, to utilise segmentation information from all MRI views concurrently in an 

iterative fashion to achieve final segmentation. 

 

Section 5.1 provides a brief overview of the algorithm used in the proposed segmentation 

model. This gives a basic idea of the different sub-components involved in the segmentation 

process. Thereafter in Section 5.2 reasons are provided as to why there is a need to utilise and 

segment the ventricles in other MRI views than in the SAV. Section 5.3 will analyse each sub-

component in detail and account for the reason of choice in each case. The next Section, 5.4, 

will describe the approach of segmentation in three MRI views.  

 

5.1 System Overview 

 

This section presents an automatic image and intensity based ventricle segmentation algorithm 

that uses the difference of Gaussians (DoG) weighting function on cardiac MRIs obtained from 

multiple views. The choice of utilising this type of method were as follows: 

(i) Segmentation of both left and right ventricles can be performed using image and 

intensity based methods as described in the review in Section 4.1. 

(ii) The University of the Freestate required that papillary muscles be excluded from the 

ventricle volume calculations as motivated in [7] and [112]. Model based and 

registration based methods cannot with ease exclude papillary muscles as the shape and 

size of these muscles vary.  

(iii) The difference of Gaussians technique is believed to mimic how neural processing in 

the retina of the eye extracts details from images destined for transmission to the brain 

[113].  
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(iv) There are several factors that provide a challenge to ventricle segmentation in the SAV. 

These factors include similar intensity profiles across different region of interests, 

difficulty in identifying ventricles at the end slices, partial volume artefacts, relatively 

fast movement of the heart during contraction causing blurring and patient movement 

(both voluntary and involuntary). As a result of the problems above, other MRI 

information is required to provide an accurate segmentation. 

 

Being a filter based method, several parameters must be chosen with each dependent on the 

intensity profile of the current image. This selection issue is addressed by proposing an 

automatic method of choosing the parameters based on the creation of region of interest in close 

proximity to the ventricles. This segmentation algorithm is presented in Figure 5-1 and 

discussed in detail in Section 5.3. 

 

5.2 Problems in Segmenting Ventricles when using one MRI View 

 

The quality of MRIs can be severely degraded by noise. Image noise can result from a number 

of factors which can be grouped into three categories namely those resulting from equipment 

factors, patient factors and image processing factors [3]. Examples of some of these categories 

are shown in Figure 5-2 [1].  

 

An MRI, acquired from a patient, consists of a two dimensional matrix of pixels which provides 

information of a corresponding three dimensional volume element within the patient which is 

known as a voxel. The size of the voxel is dependent on the MRI slice thickness, field of view 

and matrix size [3]. As a general rule of thumb, as the voxel size decreases, the MRI resolution 

increases, which will in turn provide a better representation of the object of interest, but 

reducing the voxel size comes at a cost. In clinical practice, an optimal slice thickness is sought. 

Thinner slices can be susceptible to a high level of RF noise, where thicker slices are associated 

with issues such as increased partial volume effect. To take into account all of these equipment 

sources of noise, the following parameters are considered and optimised namely; magnetic field 

strength, number of excitations, echo time, repetition time, flip angle, selection of transmit and 

receive RF coils [3]. 
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Figure 5-1: Block diagram of the proposed segmentation algorithm 
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Patient movement as well as blood flow movement and respiration movement will result in 

certain artefacts being created which may influence the quality of the image in the object of 

interest, as well as volumetric calculations. Furthermore, excessive patient movement could 

disrupt the MRI co-ordinate system, which could lead to different slices being out of sync, thus 

causing a range of interference effects and other artefacts. 

 

Image processing errors normally stem from the following factors in the SAV, 1) the overlap 

between the intensity distributions within the cardiac regions; 2) the lack of edge information; 

  
        (a)          (b)    
 

  
        (c)          (d)    

 

 
(e) 

Figure 5-2: Examples of MRI degraded by image noise [1]. (a) Flow artefact affecting the detection of ventricle 
edge. (b) Partial volume effect causing uncertainty in determining the amount of blood that is from the left or 
right ventricle. (c) Patient movement – poor image quality and blood intensity not consistent. (d) Wrap around 

artefact in SAV. (e) Wrap around artefact in 2CV affecting ventricle edge detection. 
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3) the shape variability of the ventricles across slices and phases; and 4) the inter-subject 

variability of these factors [4]. Furthermore due to voxel sizes, the ventricles at the apex and 

base slices are more difficult to identify. The presence of papillary muscles further adds to the 

complexity of ventricle segmentation.  

 

Also, analysis of cardiac functionality is focused and quantified through the ventricle volumes. 

More specifically, the measures required are the end diastole volume, end systole volume, 

stroke volume and ejection fraction [1]. These volumetric measurements are dependent on the 

accuracy of the ventricle segmentation and the MRI slice thickness. Section 3.2 has discussed 

the problem in ventricle volume calculations using Simpsons rule. Furthermore, if the apex and 

the base slice is not at the ventricle ends, due to the slice thickness, the calculated volume error 

increases. Research has been performed at the University of the Freestate, to determine and 

calculate right ventricular volumes by utilising MRIs from different views [1]. However, this 

process was very manual. From the discussion above, it can be concluded that if more 

information and a higher image resolution is provided, some of these issues can be mitigated. 

This is the basis of the proposed segmentation method, where additional image information is 

sought from other MRI views. 

 

5.3 Details of the Proposed Algorithm 

 

This section is dedicated in examining the details of the different components in the proposed 

ventricle segmentation algorithm. The proposed algorithm requires a set of cardiac MRIs 

obtained for a patient P  consisting of a series of N  two dimensional images, iP , and is denoted 

as follows: 

{ }, 1 ,iP P i N N S T= ≤ ≤ = × .     (5.1) 

N is a count of the total number of slices, S , from the apex to base of the ventricles multiplied 

by the number of MRIs per cardiac cycle T multiplied by number of views to segment. Each 

patient image iP  consists of a set of m n×  pixels referenced by location ( , )k lx y  and intensity 

( , ) ( , )
k li x y i k lI P x y= . The sections below will describe each step in achieving segmentation of 

both the left and right ventricles.  

5.3.1.1 Interpreting and Re-ordering the MRI Dataset 

The first step in the proposed algorithm is to manually assess the cardiac MRI dataset to be 

segmented. This process includes determining the number of MRI views present in the dataset 

and extracting the images that covers the ventricles from the apex slice to the base slice for the 
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entire cardiac cycle. The University of the FreeState [1] provided guidelines in selecting the 

apex and base slice for all three views.  

 

The publically available datasets described in Section 3.1.1.5 only contains MRIs in the SAV. 

The datasets are already interpreted and ordered such that only the MRIs from the apex slice to 

the base slice are present and the end diastole and end systole MRIs are also clearly ordered. 

Thus in order to utilise these datasets, the proposed algorithm is split into two parts, with the 

first only dealing with segmentation in the SAV and the other with segmentation using multiple 

MRI views. 

5.3.1.2 Identification of End-Systole Image 

The next step in the proposed segmentation algorithm is to identify the MRI at the end systole 

cardiac phase for each image slice s , 1 s S≤ ≤ and utilise this as the reference, ,ref sP . The end 

systole phase is when the ventricles are contracted and contains the least amount of blood. This 

identification process is manual and guidelines to extract the end systole is once again provided 

by the University of the FreeState [1]. This step is required if the MRI dataset only contains the 

SAV. 

5.3.1.3 Localisation of the Cardiac Ventricles via Motion Maps 

Due to the large distribution of pixel intensity throughout a single MRI, the image needs to be 

cropped so that the region of interest focuses mainly in the immediate vicinity of the ventricles. 

There are several approaches to extract the region of interest which is provided in Section 4.6. 

The approach proposed here builds on the methodology introduced by Hadhoud et al. [109], 

with the difference being that two standard deviation motion maps are used.  

 

The two standard deviation motion maps are computed per MRI slice and denoted as sσ and 

,s refσ . The first map ( sσ ) is computed as described in [109] and depicted in (5.2), where the 

standard deviation per pixel for all MRIs in the cardiac cycle per slice s  is calculated. T is the 

number of MRIs per cardiac cycle and µ  is the average difference pixel intensity value.  

1
2

( , ) , 1( ,y ) , ( ,y )
1 ( )

1k l k l k l

T

s x y s j x s j x
j

I I
T

σ µ
−

+= − −
− ∑ .   (5.2) 

 

The second standard deviation map is computed similar to the first, but the difference is applied 

from the current image ,s jP  to the end systole image ,ref sP . In essence the first map provides 

local motion and the second global motion for that particular slice. 
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To remove all the unwanted objects and noise from the image, the wavelet transform on the 

standard deviation motion maps is applied. This is where the proposed method differs from the 

one in [109]. The wavelet transform has the ability of providing a multi-resolution and multi-

frequency decomposition of images. One of the most important properties is that the wavelet 

transform de-correlates mutually dependent parts of the image and performs an energy 

compaction of the samples representing the image. Furthermore both anomalies and trends can 

be analysed on an equal statistical footing. The Discrete Wavelet Transform of an image at scale 

0a  is defined as in (5.3), where b = H, V, D (Horizontal, Vertical and Diagonal) and m n×  is 

the size of iP  [23]. ( , , )oW a g hϕ  are the approximation coefficients at scale 0a , while 

(a, , h)bW gψ  are the horizontal, vertical and diagonal coefficients at scales 0a a≥ .  

1 1
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0 0

1 1
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×
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×

,   (5.3) 

The effect of the wavelet transform using the Haar coefficients is depicted in Figure 5-3(a). 

 
In order to create the region of interest around the ventricles, the wavelet transform in two levels 

is applied to both standard deviation motion maps. Figure 5-3(b) displays the resultant 
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(b) 

Figure 5-3: Two level discrete wavelet transform on images. (a) Block diagram of the wavelet transform process. (b) 
Wavelet transform of the standard deviation map. 
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transform of the first standard deviation motion map. From this figure it can be seen that the 

unwanted areas are distinctly contained in regions the LH, HH and HL regions. Thus these 

regions are removed and the inverse wavelet transform is performed on LL2 (demarcated in red 

in Figure 5-3(b)). All low intensity values from the inverse wavelet transform are removed and 

each image is converted to a binary image. From the binary image the region of interest is 

calculated for both standard deviation maps. The final region of interest for slice s  is the union 

of region of interest for the processed inverse wavelet transform of both sσ  and ,s refσ  and is 

depicted as sROI . 

5.3.1.4 Application of Difference of Gaussians within the Region of 
Interest 

5.3.1.4.1 Pixel Statistics in Region of Interest 

Once the final region of interest, sROI , is calculated as described in Section 5.3.1.3, several 

pixel statistic measures need to be calculated. These include the maximum intensity value, 

minimum intensity value, mean intensity value and the grey level co-occurrence matrix [22]. 

The grey level co-occurrence matrix calculates how often a pixel with intensity value of c , 

occurs adjacent to a pixel with the value d . 

5.3.1.4.2 Selection of Difference of Gaussian Parameters 

The one dimensional Gaussian filter [29], from Section 4.1, can be created in terms of the 

normal distribution function given below, where σ  (sigma) defines the width of the 

distribution: 
2

2
12

1
1

1( )
2

x

G x e σ

πσ

−

= .     (5.4) 

As shown in Figure 5-4, the filter decays rapidly at some value of x  (position), which in this 

case is 3−  and 3  and for σ =1. Although the filter is non-zero for [ ; ]x ∈ −∞ ∞ , defining a filter 

window 3 3x− ≤ ≤  would yield a reasonable filter implementation with reduced processing 

complexity.  
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The Gaussian filter can be extended to a two dimensional space for images, as depicted in (5.5), 

by the product of two orthogonal Gaussians [29]. 
2 2

2
12

1 2
1

1( , )
2

x y

G x y e σ

πσ

+
−

= .    (5.5) 

1( , )G x y  will form a matrix with x  being the distance from the origin in the horizontal axis and 

y  the distance from the origin in the vertical axis. Once again a filter window can be applied 

where w wx x x− ≤ ≤  and w wy y y− ≤ ≤ . The net result will be a Gaussian filter matrix of size 

(2x 1,2 1)w qy+ + . To apply the Gaussian filter, with a specific width σ  and window w , to an 

image iP , the convolution is used as below: 

1 1( , ) ( , )iG iP G x y P x y= ∗ .     (5.6) 

The net result is a blurred image as depicted in Figure 5-5(b) and (c). The Difference of 

Gaussian (DoG) is an approach that can be used to increase the visibility of edges and other 

details present in the image. It uses the band pass filter property of the Gaussian filter to remove 

the high frequency detail of the image which often contains noise and also some low frequency 

components representing the homogeneous areas in the image. 

 

The algorithm involves the subtraction of one blurred version of the image from another blurred 

version. This can be visualised in Figure 5-5(d). The blurring effect can be modified by 

choosing different σ  values for the Gaussian filter. As can be seen from Figure 5-4, the 

resultant DoG filter is a band-pass filter that will preserve spatial information that lies between 
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Figure 5-4: Distribution of Gaussian filters with two different sigma values and the resultant DoG filter in one 
dimension. 
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the ranges of frequencies from the two blurred images. In essence, only a small amount of 

spatial frequencies, that are present in the original greyscale image, will be kept. 

 

 
In order for the DoG method to be used as an edge detector, a threshold, t , must be applied to 

the resultant DoG image in order to keep strong zero-crossings (large difference between the 

positive maximum and the negative minimum). Figure 5-5(e) and (f) depict two such threshold 

  
(a)     (b) 

 

  
(c)     (d) 

 

  
(e)     (f) 

Figure 5-5: Application of DoG algorithm on a two dimensional cardiac MRI in the short axis view.  
(a) Original MRI image. (b) Gaussian filter applied with a high sigma value.  (c) Gaussian filter applied with a 
low sigma value. (d) DoG filter applied with sigma values used in (b) and (c). (e) Application of small threshold 
value on (d). Red contours segment both the right and left ventricle  (f) Application of large threshold 
value on (d). Red contour segments on the left ventricle.  
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application, with the former being a much lower threshold value. From the application of the 

threshold, ventricle segmentation can be performed which is also shown in these images by the 

red contour lines. In Figure 5-5(f), it can be seen that due to the high threshold value, portions of 

the right ventricle have been omitted. Thus, for ventricle segmentation per MRI slice, the 

optimum filter width σ , window w  and threshold t , must be chosen.  
 

The region of interest and subsequent pixel statistics measures are computed per image slice as 

described in Section 5.3.1.3 and Section 5.3.1.4.1 above. From experimentation on a large 

number of datasets obtained from different sources, the optimal DoG parameters are obtained as 

follows: 

i) The window ( w ) must be a matrix whose rows and columns must be of equal width. 

The number of pixels enclosing the region of interest is computed. The choice of w  is 

calculated as follows:  

1 [ ]
5s s

c
w ROI c= ∑ .     (5.7) 

This will ensure that almost the entire Gaussian bell curve is taken into account and the 

filter will decay to nearly zero at the edges of the curve, so that no discontinuities is 

present in the image. As the window size decreases, smaller image features are detected.  

ii) The filter width ( 1sσ  and 2sσ ) are chosen from the grey level co-occurrence matrix for 

slice s . 1sσ  is the column number that contains the most number of occurrences and 

2sσ  is the right most column number of occurrences greater than 50. In essence the 

spread of the DoG is dependent on the spread of the pixels within the region of interest. 

The effect of choosing the filter width values are shown graphically in Figure 5-6. A 

small difference in 1sσ  and 2sσ results in less feature points being selected as it 

considers points that separate areas of high pixel intensity difference. This produces 

difficulty in creating the segmentation contour. The optimum selection of 1sσ  and 2sσ is 

depicted in Figure 5-6 (d), where more feature points are included due to the increased 

filter band and thus the segmentation contour of both the left and right ventricle can 

easily be created. Increasing the filter width difference too much could lead to non-

detection of smaller features as more points of similar texture are included. This is 

shown is Figure 5-6 (e), where the papillary muscles are not detected (red arrows). 

iii) The threshold ( st ) is chosen to be 60% of the value of the mean intensity for region of 

interest, sROI . This will ensure that the strongest features or edges are kept in the 

filtered image which results from areas large intensity differences. The effect is shown 

in Figure 5-5(e) and (f). 
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The resultant MRI image is then converted to a binary image, resulting from the application of 

the threshold ( st ). The segmentation contours of the left and right ventricle can be automatically 

drawn by focussing on the region of interest and tracing the areas of the binary image. 

 

 
                        (a) 

 
Figure 5-6: Effect of adjusting the filter width values 1sσ  and 2sσ . 

(a) Original MRI image.           (b) Small difference in value between the two filter widths.  
(c) Increase in value between the two filter widths. (d) Optimum filter widths as chosen by proposed 
algorithm. (e) Large difference in value between the filter widths.  

 

5.4 Automatic Cardiac MRI Segmentation Using Multiple Views 

 

Researchers on cardiac MRI segmentation algorithms have focussed their efforts in the SAV as 

the left and right ventricles are visible on the same image and there is a clear separation between 

both. Furthermore, in routine cardiac MRI acquisition, only one slice is imaged in the two 

chamber view (2CV) and one in the four chamber view (4CV), which is used for patient 

positioning purposes. Another problem in the 2CV and 4CV is that there is overlapping pixel 

intensity and contrast between the ventricle and the atrium, which leads to segmentation 

complexity as can be seen in Figure 5-7.  

 

Volumetric imaging is the acquisition of MRI data from a volume rather than a single slice. In 

clinical practice, image acquisition is performed in two parts, with the first being to determine 

the general position of the heart and the second for volumetric images. The volumetric images 

are obtained in three views namely, short axis view, two chamber view and four chamber view. 

By choosing the gradient axes, one set of image view slices can be selected from another set of 

image view slices. Hence all these three views are linked to an orthogonal co-ordinate system as 

described in Section 2.2 and Section 2.3 . 

   
                               (b)                                                          (c)  

  
                               (d)                                                          (e)  
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Figure 5-7  depicts samples of the images obtained in each view. The SAV is obtained by taking 

slices perpendicular to the long-axis as shown in Figure 5-8. In this view the left and the right 

ventricles are clearly visible between the apex slice to the base slice. From the base slice 

onwards, the atria appear in the images. The 2CV is obtained for the left and right side of the 

heart with the combination of ventricle and atrium. The 4CV is obtained from a gradient parallel 

to the long-axis (Figure 5-8). In this view all four chambers are visible. From experimental data, 

the ventricles can be clearly seen in approximately 10 slices in the SAV, 6 slices in the 2CV and 

8 slices in the 4CV, depending on the slice thicknesses selected and the size of the patient’s 

heart. 

 

5.4.1 Segmentation by Projection 

The cardiac MRIs obtained for a patient P  consist of a series of N  two dimensional images, iP  

and is denoted as per equation (5.1). The DICOM [7] information per iP  will contain 

information about the image and patient orientation. If an object jO  in the image iP  has been 

segmented (for example the left ventricle), the resultant delineation by M landmark points is 

represented as:  

 
(a) 2 Chamber View (2CV)               (b) 4 Chamber View (2CV)           (c) Short Axis View (SAV) 

Figure 5-7: Examples of MRIs obtained on different views depicting the cardiac chambers namely Left Ventricle 
(LV), Left Atrium (LA), Right Ventricle (RV) and Right Atrium (RA). The red circles highlights the minimial 

difference in pixel intensities from ventricle to atrium  

 
  (a) 2CV to 4CV                        (b) 4CV to SAV 

Figure 5-8: Positioning of MRI slices to obtain different MRI views 
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1, 1, 2, 2, , ,{(x , y ),(x , y ),...,(x , y )}
i j i j i j i j i j i j i jPO PO PO PO PO M PO M POS =  .   (5.8) 

Since all MRI views are linked to a common coordinate system called the patient coordinate 

system [8], each landmark point , ,( , )
i j i jq PO q POx y  in (5.8) can be translated to 

, , ,( , ,z )
i j i j i jqT PO qT PO qT POx y  as shown in (5.9), where each variable is described in Table 5-1, which 

is extracted from Table 2-2. 

, ,

, ,

, 1

i j i j ii i i

i j i i i i j i

i i ii j

qT PO q PO PP P P

qT PO P P P q PO P

P P PqT PO

x x PSixxdi yxdj sx

y xydi yydj sy y PSj

xzdi xzdj szz

  ×   
     
  = ×   
     
       

.   (5.9) 

Table 5-1: Variable definition for translation to patient coordinate system for each image Pi [7]. The example 

value column is from a typical patient for translation from SAV. 

  
Hence (5.8) can be represented in the three dimensional patient coordinate systems as: 

1 , 1 , 1 , , , ,{(x ,y ,z ),...,(x , y ,z )}
i j i j i j i j i j i j i jPO T T PO T PO T PO MT PO MT PO MT POS = .  (5.10) 

Let us suppose that we are presented with 10 MRIs from the SAV and 5 MRIs from the 2CV. 

Using the existing segmentation methodologies described in Chapter 4, we can achieve 

approximate segmentation of the left ventricle in these MRIs, which will be represented as 

follows: 

,2 , { }:1 i 15, j 1
i jSA CV LV POS S= <= <= = .     (5.11) 

Translating all these segmentation points to the patient coordinate system will result in: 

,2 , , { }:1 i 16, j 1
i jSA CV LV T PO TS S= <= <= = .    (5.12) 

Given the thq  MRI in the 4CV, 4 qCVP , where 4 qCVP P∈ , automatic segmentation of the ventricle 

can be performed on this MRI by initially translating the entire MRI slice into the patient 

coordinate system by applying (5.9) to each point ( , )k lx y  of 4 qCVP . This will result in 4 qCV TP . 

Parameter Name Variable Example value Parameter Description 
Image Position sx 

sy 
sz 

-4.9091 
-253.0448 

-1.7645 

x co-ordinate in patient co-ordinate system. 
y co-ordinate in patient co-ordinate system 
z co-ordinate in patient co-ordinate system 
 

Image Orientation xxdi 
xydi 
xzdi 
yxdj 
yydj 
yzdj 

 

0.8306 
0.5556 
0.0389 
-0.3478 
0.5718 
-0.7430 

Direction of cosine of row x to x in patient 
Direction of cosine of row x to y in patient 
Direction of cosine of row x to z in patient 
Direction of cosine of row y to x in patient 
Direction of cosine of row y to y in patient 
Direction of cosine of row y to z in patient 

Pixel Spacing PSi 
PSj 

 

1.3672 
1.3672 

Physical distance between x points in image. 
Physical distance between y points in image. 
 

Note: The above table parameters are obtained from the DICOM information per image. 
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Finding the intersecting points of this translated 4CV MRI with all the translated segmentation 

points from the SAV and 2CV, will create a segmentation region of interest in the 4CV MRI as 

per:  

4 , , ,2 , , 4q qCV LV T SA CV LV T CV TS S P= ∩ .     (5.13) 

This is depicted graphically in Figure 5-9 and Figure 5-10.  

 

 

It can be shown that the matrix in (5.9) is invertible, as the determinant will not be zero, and 

thus each intersecting point 
4 1 4 1 4 1, , , , , ,( , y ,z )

CV CV CVq q qrT P O rT P O rT P Ox  of 4 , ,qCV LV TS  can be translated back 

onto the original MRI 4CV as follows: 

 

Figure 5-10: Short axis segmentation contours (red) of left ventricle translated to an image in 4CV in patient co-
ordinate system. 

 

 

Figure 5-9: 2 chamber view segmentation contours (magenta) of left ventricle translated to an image in 4CV in 
patient co-ordinate system 
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4 1 4 4 4 4 1 4

4 1 4 4 4 4 1 4

4 1 4 4 4 4 1

1

r, ,

r, ,

, ,

. /

1

CV CV CV CV CV CVq q q q q q

CV CV CV CV CV CVq q q q q q
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P O P P P rT P O P

r P O P P P rT P O
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−
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



 
 

.  (5.14) 

 

The resultant segmentation region of interest in the 4CV image, after applying (5.14) to 

4 , ,qCV LV TS , can now be represented by
4 ,OCV LVqPS . A rectangular border can enclose the region of 

interest by finding the maximum and the minimum x and y coordinates in 
4 ,OCV LVqPS (Figure 

5-11). By using the DoG approach described in Section 5.3.1.4, the left ventricle in the 4 qCVP  

image can be automatically segmented by focusing within the rectangular region of interest. 

Thus the segmentation of the left ventricle on the thq  MRI at the thf  iteration in the 4CV will 

be represented as 
4 ,O ,CV LVqP fS . Similarly by using all the respective 4CV images the entire left 

ventricle can be segmented. 

 
The above method can be applied to other objects of interest such as the right ventricle. 

Furthermore, given segmentation of the ventricle in any two views, this methodology can be 

used to automatically segment the third view. 

5.4.2 Achieving Convergence 

The method described in Section 5.4.1 above is based on the assumption that approximate 

segmentation is available in two cardiac MRI views. This approximate segmentation can be 

improved by projecting the newly segmented view back onto that particular view. This process 

will continue to be iterative until a convergence is reached. The convergence measure used will 

 

Figure 5-11: Region of interest for left ventricle segmentation in 4CV formed from intersecting points from SAV and 
2CV segmentations. 
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be both mathematical (distance based) and statistical (overlap based) by using the Hausdorff 

Distance and Dice Coefficient measures respectively. These measures are described in Section 

3.1.1.6 and Section 3.1.1.7. 

 

The aim of convergence is to minimise the Hausdorff Distance between the current 

segmentation in all three views to the previous segmentation from the respective MRI view and 

similarly maximise the degree of overlap between the current and previous segmentation. In 

essence, as depicted in (5.15), convergence is reached for ventricle segmentation on the thq  

MRI at the thf iteration in the 4CV if the Hausdorff distance is less than the threshold HConv  

and Dice coefficient is greater than the threshold DConv . This convergence criterion can be 

applied to all MRI views. 

,O , ,O , 14 4

,O , ,O , 14 4

,

,

P f P fCV LV CV LVq q

P f P fCV LV CV LVq q

S S H

S S D

Haus Conv

Dice Conv
−

−

≤

≥
.   (5.15) 

 

5.5 Summary 

This chapter has presented a novel automatic segmentation method, whereby the segmentation 

of a ventricle in the third MRI view can be obtained from projecting the ventricle segmentations 

from two other views. The segmentation after the projection is provided by the difference of 

Gaussians edge detector in which the parameters for the filter were chosen by analysing the 

subsequent region of interest intensity profiles. If only a single cardiac MRI view is provided in 

the dataset to be segmented, the proposed algorithm reduces and finds the ventricle region of 

interest by analysing motion of the ventricle intensities throughout the cardiac cycle and thereby 

creating a standard deviation motion map. It can be concluded that in order for the DoG method 

to be used in efficient cardiac segmentation and algorithm is required to choose the parameters 

of the DoG filter optimally. 
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CHAPTER 6 -  PERFORMANCE OF THE PROPOSED 

SEGMENTATION METHODS 

 

This chapter is dedicated to assess the performance of the proposed MRI ventricle segmentation 

method that was presented in Chapter 5. The evaluation criteria used follows the mathematical, 

statistical and clinical measures that are described in Chapter 3. Due to limitations in the 

publically available datasets, discussed in Section 6.1 when it comes to the image acquisition 

and expert segmentation, a new dataset from the University of the Freestate is also utilised in 

the evaluation.  

 

Section 6.1 will provide a description of the platform and testing method used in assessing the 

performance of proposed segmentation method. Section 6.2 and Section 6.3 will use the 

platform defined above and carry out different tests on the two proposed algorithms. 

 

6.1 Experimental Method 

 

It is of importance that in order to compare the complexity of different segmentation algorithms, 

they must be computed on similar platforms. Hence all results, for the proposed methods were 

obtained on an Intel® Core ™ i5, 2.5 GHz PC platform. This system was equipped with 4 

Gigabyte of RAM, running the Windows 7 64 bit operating system. The results of the proposed 

segmentation algorithms on different cardiac MRI datasets were executed from within the 

Matlab environment.   

 

Section 3.1.1.5 recommends the usage of the publically available datasets in order to assess the 

performance of any newly developed segmentation algorithm. However, these datasets have 

several problems as described below: 

i) MRI contained in the dataset is from the SAV only. 

ii) Representation of ground truth via expert manual segmentation required the 

segmentation contours to be smooth. 

iii) Representation of ground truth enclosed papillary muscles and trabeculae within the 

segmented region.  

iv) Left and right ventricle segmentation contours are not from the same set of MRIs. 
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v) Approximately 5.7% of the state of the art methods presented in Chapter 4 utilise these 

datasets for presentation of their results. 

 

As a result of the issues stated above with regards to publically available datasets, a dataset from 

the Universitas Hospital (University of the Free State) was used to evaluate the accuracy of the 

proposed segmentation algorithm. The dataset consisted of five male patients and five female 

patients with no cardiac abnormalities. Full 2CV and 4CV imaging were also performed in 

obtaining this dataset. Each image is of size 256x256 pixels, 20 images per cardiac cycle and a 

slice thickness of 9mm. The dataset also consisted of expert manual delineation of the left 

ventricle and right ventricle in the SAV, 2CV and 4CV at the end diastole and end systole 

cardiac phases. Initially, from the given dataset, all images from SAV, 2CV and 4CV for a 

particular patient were identified at the end diastole and end systole cardiac times. A set of rules 

was defined in performing the expert manual delineation of these images [1], so that the 

segmentation contours could be as close to the anatomy as possible. As a result, papillary 

muscles were excluded from the segmentation region. 

 

To assess the performance of the proposed method of ventricle segmentation, the mathematical 

and statistical measures described in Section 3.1.1.6 and Section 3.1.1.7 respectively will be 

used. More specifically, it will include the Hausdorff Distance and Dice coefficient metrics. The 

clinical based measure of comparing left and right ventricle volumes (Section 3.2.1.1) using 

Simpsons rule will also be calculated. 

 

Finally, to test the robustness of a segmentation algorithm it is proposed that a series of images, 

from any of the cardiac MRI datasets described above be chosen, and various noise and motion 

effects be added to the images. These effects will be created by image based filters that will 

attempt to simulate noise and patient movement which is currently present on some MRI 

acquisitions. The filters to use are described below and depicted visually in Figure 6-1: 

i) Gaussian white noise with constant mean and variance, 

ii) Speckle noise which adds multiplicative noise to the image, iP , using the equation 

, *i speckle i iP P n P= + , where n  is uniformly distributed random noise with zero mean and 

variance. 

iii) Point-spread function which simulates a blurred image to represent patient motion. The 

filter corresponds to the linear motion across 15 pixels at an angle of 5 degrees. To 

simulate the blur, the filter is convolved with the image iP . 

Segmentation of the ventricles in each of these filtered images will be performed and compared 

against the representation of the ground truth for the original image.  
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6.2 Results for Application of Proposed Method on MRI Datasets in 
Short Axis View 

 

The proposed segmentation algorithm was tested on three datasets namely, the Sunnybrook 

Cardiac Data (SCD) [25], Right Ventricle Segmentation Challenge Data (RVSCD) [26] and the 

locally obtained dataset from Universitas Hospital. The patients with no cardiac abnormalities 

were chosen for the initial test set.  

 

The proposed algorithm is applied to nine slices for each patient in each dataset in the SAV at 

the end diastole and end systole cardiac phases. These times were chosen as the expert manual 

segmentation or ground truth representation was available together with each dataset and 

  
    (a)          (b) 

  
    (c)          (d) 

Figure 6-1: Various image filters applied to MRI to simulate noise and patient movement.  
(a) Original MRI.  (b) Gaussian white noise applied to MRI.      (c) Speckle noise filter applied to MRI. (d) 
Point-spread function which simulates a blurred image on MRI that represents patient motion.  
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clinical quantification metrics could be computed after segmentation. To evaluate the 

segmentation, the Hausdorff distance and Dice coefficient were calculated for each 

segmentation by using the proposed segmentation method against the ground truth 

representation. Table 6-1 depicts the segmentation results on each dataset per MRI slice for a 

chosen patient or volunteer from that dataset. The distance and statistical measures are averaged 

for the end diastolic and end systolic MRI for that slice. Figure 6-2 and Figure 6-3 shows 

graphically the segmentation performed by the proposed algorithm on slices from the SCD and 

RVSCD datasets respectively for a particular patient. 

Table 6-1: Accuracy measurements of proposed segmentation method per MRI slice in the short axis view using 
MRIs for a patient from three datasets. 

 

The results depicted in Table 6-1 and Table 6-2 illustrate the ability of the proposed 

segmentation algorithm to provide an accurate segmentation over a variety of datasets. The 

segmentation accuracy on the right ventricle shows an average pixel-wise distance of less than 4 

and an overlap of approximately 92%±2% over all slices from different datasets. The results for 

the SCD dataset show a slight reduction in segmentation accuracy as compared to the UFS 

dataset. This is due to the proposed segmentation algorithm not including papillary muscles 

whereas the representation of the ground truth in the SCD does. The results from Table 6-1 also 

depict the general observation that slices close to the apex and base of the ventricles in the short 

axis view are difficult to segment with a high accuracy, due to the close proximity of other 

features and partial volume effects due to the relatively thick slices. It can also be seen from 

Figure 6-3, as indicated by the red arrow, that the segmentation of the proposed method does 

not perform well at the bottom left of the right ventricle due to similar intensity profiles. Thus if 

more information is provided, from other views (Section 5.4.1), then the segmentation contour 

will be refined to not include that region and be closer to the expert manual delineated contour. 

Slice 
Number 

Left Ventricle 
(SCD) 

Right Ventricle 
(RVSCD) 

Left Ventricle 
(UFS) 

Right Ventricle 
(UFS) 

Haus Dice Haus Dice Haus Dice Haus Dice 
1 4.8593 0.7915 4.7488 0.9063 4.4930 0.8765 3.5136 0.8892 
2 4.2355 0.8266 4.3141 0.9159 3.3961 0.8963 3.1686 0.9095 
3 3.8008 0.8329 3.6236 0.9206 2.9369 0.9095 2.8720 0.9270 
4 3.6764 0.8430 3.4122 0.9206 2.7802 0.9095 2.6890 0.9352 
5 3.6056 0.8568 3.3730 0.9352 2.1787 0.9206 2.4727 0.9501 
6 4.3350 0.8568 3.5136 0.9418 2.1213 0.9352 2.3160 0.9569 
7 5.5322 0.8451 3.4650 0.9486 2.6418 0.9418 2.5323 0.9420 
8 5.7151 0.8162 3.4122 0.9501 3.1820 0.9418 3.0764 0.9150 
9 5.9789 0.7619 4.9438 0.8874 3.3686 0.9176 3.4122 0.8953 

Average 4.6376 0.8256 3.8674 0.9252 3.0110 0.9165 2.8948 0.9244 
Deviation ± 1.34 ± 0.06 ± 1.08 ± 0.04 ± 1.48 ± 0.04 ± 0.62 ± 0.04 

 
Haus = Hausdorff Distance of proposed segmentation in comparison to expert delineation.  
Dice = Dice Coefficient of proposed segmentation in comparison to expert delineation. 
SCD = Sunnybrook Cardiac Data RVSCD = Right Ventricle Segmentation Challenge Data               
UFS = Universitas Hospital Data from University of the Free State 
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                           (a) Slice 3            (b) Slice 4           (c) Slice 5 
 

   

   
                           (a) Slice 6            (b) Slice 7           (c) Slice 8 

Figure 6-2: Segmentation of left ventricle in the SAV performed by expert manual delineation (blue contours) and 
proposed algorithm (red contours) for multiple slices from a patient in the SCD dataset.  
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                                       (a) Slice 1           (b) Slice 2   (c) Slice 3 
 

   
 

 

 

  

 

 
                                       (a) Slice 4           (b) Slice 5   (c) Slice 6 

 Figure 6-3: Segmentation of right ventricle in the SAV performed by expert manual delineation (blue contours) and 
proposed algorithm (red contours) for multiple slices from a patient in the RVSCD dataset. The red arrows shows 

the portion of the ventricle that the proposed method does not perform well in. 
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As expected, the standard deviation motion maps were different per slice per dataset and hence 

the DoG parameters per MRI slice was different, yielding a better accuracy. The window size 

varied from the apex to about the fourth slice, due to the size of the ventricle increasing. The 

intensity profile across different datasets varied, hence the filter width ( 1sσ  and 2sσ ) varied 

according to the grey level co-occurrence matrix. The results showed an average 1sσ  of 5±3 and 

2sσ  of 2±2. The mean intensity for region of interest varied by approximately 30, which 

resulted in a respective threshold deviation of ±18. 

 

To remove the comparison to the ground truth representation, several clinical measures were 

calculated on both the left and right ventricle segmentation as shown in Table 6-2 for three 

patients. These measures included end systolic volume, end diastolic volume, stroke volume and 

ejection fraction. The stroke volume error between the left and right ventricle is thus calculated. 

It must be noted that even though the SCD did not contain contours for the right ventricle, the 

right ventricle was still segmented using the proposed segmentation method. The same applies 

for the RVSCD, where the left ventricle was also segmented. 

Table 6-2: Volumetric measurement of proposed segmentation method in the short axis view for three patients 
from different datasets 

 

The stroke volume error over all patients is less than 10%, averaging approximately 6%±2.5%. 

The errors can be attributed to the small segmentation errors (SCD and RVSCD datasets) as 

well as the voxel error from Simpsons Rule, which is due to the 9mm slice thickness. 

 

To test the robustness of the proposed algorithm, a series of images for one patient at the end 

diastole and end systole phase, from the apex slice to the base slice, in the RVSCD and UFS 

dataset was chosen. Various noise and motion effects were added to these images. The resultant 

images to which the filters were applied in creating the effects and the respective segmentation 

contours are depicted visually in Figure 6-4. Table 6-3 provides the average Hausdorff and 

average Dice coefficients and deviation obtained over all segmented images from this series for 

both datasets. 

 

 
Volunteer 

Dataset 
 EDV (ml) ESV (ml) SV (ml) EF (%) SV Error 

(%) 

SCD LV 119.2 37.8 81.4 68.3 8.4 RV 125.3 43.4 74.6 59.5 

UFS LV 66.5 20.2 46.3 69.6 3.7 RV 76.7 32.1 44.6 58.1 

RVSCD LV 77.8 27.5 50.3 64.7 6.9 RV 97.2 43.4 53.8 55.3 

 



 76

Table 6-3: Accuracy measurements of proposed segmentation on distorted MRI in short axis view. 

 

 

The robustness test results of Table 6-3 shows that the proposed algorithm still performs very 

well on images that have noise and motion effects. In comparison to the segmentation of Table 

6-1 on the normal images, the robustness tests shows a deviation of less than 3 pixel distance in 

terms of the Hausdorff measure and less than 0.016 in terms of overlap using the Dice 

coefficient. Thus the proposed method can be used to accurately segment MRIs that contain 

patient movement as well as other artefacts which are created as a side effect of the MRI capture 

process. 

 

MRI Dataset Average Haus Haus Deviation Average Dice Dice Deviation 

RVSCD 6.3620 0.5439 0.9245 0.0254 

UFS 6.8620 0.1586 0.9045 0.0261 
 

   
(a)     (b) 

 

   
(c)     (d) 

Figure 6-4: Segmentation performed by proposed algorithm for the right ventricle on images where noise and 
motion effects were introduced.  

(a) Original MRI in the short axis view with the blue contour depicting expert delineation of right ventricle. 
(b) Gaussian white noise applied to MRI from (a). Red contour is the segmentation achieved by algorithm. 
(c) Speckle noise filter applied to MRI from (a). Purple contour is the segmentation achieved by algorithm.  
(d) Point-spread function which simulates a blurred image on MRI from (a) that represents patient motion. Green 
contour is the segmentation achieved by the proposed algorithm 
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For further in-depth analysis of the proposed segmentation method, the entire datasets of the 

SCD and RVSCD was tested. These will include cardiac MRIs from patients with cardiac 

problems and abnormalities. As discussed in Section 3.1.1.5.1, the SCD dataset contains MRI of 

9 healthy patients, 12 having heart failure with infarction, 12 having heart failure without 

infarction and 12 having hypertrophy. The segmentation results of these patient MRIs are 

presented in Table 6-4, with the metrics averaged at the end diastole and end systole over all 

slices for patients with a particular cardiac abnormality. Thereafter the results for all patients is 

compared to the existing state of the art segmentation algorithms/methods discussed in Chapter 

4, which is depicted in  . Similarly Table 6-6, compares the segmentation results on the RVSCD 

dataset to other segmentation methods. 

Table 6-4: Average Dice coefficient and Hausdorff distance of the proposed segmentation algorithm on the SCD 
dataset for patients with different pathologies.  

 

Table 6-5: Comparison of Proposed segmentation algorithm with other segmentation methods on the SCD dataset 
for all patients with different pathologies. 

  
Table 6-6: Comparison of Proposed segmentation algorithm with other segmentation methods on the RVSCD 

dataset for all patients with different pathologies.  

 

For the SCD dataset, the proposed segmentation algorithm does not perform as well as 

compared to the others. This is due to the proposed method excluding papillary muscles and 

trabeculae from the segmentation contour as depicted in Figure 6-2 and the resultant 

segmentation contour is not smooth. However, the deviation from the best performing method 

[154] is 1.72 in terms of the Hausdorff distance and 0.06 for the Dice coefficient on average 

 Proposed Mahapatra 
et al. [99] 

Mahapatra 
et al. [152] 

Chittajallu 
et al. [153] 

Ngo et al. 
[134] 

Liu et al. 
[87] 

Dreijer et 
al. [154] 

Average Haus 3.56 ±1.2 3.3 ± 0.5 1.8 ± 0.4 2.2 ± 0.3 2.08 ±0.46 2.3 ±0.36 1.84 ±0.32 

Average Dice 0.85 ±0.07 0.85 ± 0.09 0.91 ± 0.11 0.88 ± 0.07 0.90 ±0.04 0.89 ±0.04 0.91 ±0.04 

 Normal HF-NI HF-I HYP All 

Average Haus 3.0415 3.5125 3.3075 4.385 3.5613 

Average Dice 0.8367 0.865 0.870 0.8175 0.8473 

HF-NI=Heart failure with No infarction, HF-I= Heart failure with Infarction, HYP=Hypertrophy 
 

 Proposed 
Zuluaga et al. 

[144] 
Ou et al. [145] 

Maier  et al. 

[100] 
Bai et al. [146] 

Grosgeorge et 

al.  [98] 

Average 
Haus 4.89 ± 1.67 10.51± 9.17 23.16 ± 19.86 11.15 ± 6.62 9.26 ± 4.93 9.97 ± 5.49 

Average 
Dice 0.87 ± 0.09 0.55 ± 0.32 0.80 ± 0.19 0.78 ± 0.20 0.76 ± 0.20 0.78 ± 0.23 
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over all MRIs from the SCD dataset. The majority of the deviation comes from the 

segmentation of MRIs from patients with Hypertrophy as indicated in Table 6-4. This can be 

visualised in Figure 6-5, where the red arrow shows the area of the right ventricle in which the 

proposed method segmented as the left ventricle. This is due to the similar intensity profiles. 

Once again if more information was provided from segmentation from other MRI views, the 

region of interest created for the left ventricle will exclude that overlapping region. 

  

6.3 Results for application of proposed method on MRI datasets 
that have three views 

 

The publically available datasets, namely the Sunnybrook Cardiac Dataset (SCD) [11], Right 

Ventricle Segmentation Challenge Dataset (RVSCD) [12] and the York University Dataset 

(YUD) [13], cannot be used in the evaluation of the proposed segmentation algorithm as they 

contain only MRIs in the short axis view.  

 

A dataset from the Universitas Hospital (University of the Free State - UFS) was used to 

evaluate the accuracy of the proposed segmentation algorithm. The dataset consisting of five 

male patients and five female patients with no cardiac abnormalities was chosen. The Hausdorff 

distance and Dice coefficient measures are used to compare the accuracy of the proposed 

segmentation algorithm to the expert manual delineation. 

 

To provide the initial segmentation estimates, left and right ventricles in the SAV were 

segmented using Active Appearance Model (AAM), described in Section 4.3. The training set 

for the AAM was obtained from SCD and RVSCD. It must be noted that these training sets 

included papillary muscles as a part of the segmentation. The left and right ventricles in the 

          

 

                          (a) Expert segmetation                    (b) Resultant ROI after DoG              (c) Proposed Segmentation 
 

Figure 6-5: Segmentation of ventricle in the SAV performed by expert manual delineation (blue contour) and 
proposed algorithm (red contour) for a slice from a patient with Hypertrophy in the SCD dataset. The red arrow 

shows the portion of the ventricle that the proposed method does not perform well in. 
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2CV were segmented using the proposed method in Section 5.3. User interaction was required 

to identify two points on the mitral valve, pulmonary valve and tricuspid valve that separates the 

ventricles from the atrium on each MRI slice at the end diastole and end systole cardiac phase. 

The results of the initial segmentation accuracy of the left ventricle of a patient in the SAV and 

2CV are shown in Table 6-7 and Table 6-8 respectively in the columns Iteration 1. The 

Hausdorff distance and Dice coefficient are averaged for the resulting segmentation on the end 

diastole and end systole images per MRI slice. 

 

The segmentation of the left and right ventricles of all slices in the 4CV was performed by 

applying the proposed algorithm using the initial segmentation in the SAV and 2CV. The results 

are depicted in Table 6-9 for the left ventricle. Iteration 2 results in the SAV were achieved by 

using the segmentations of the 2CV Iteration 1 and 4CV Iteration 1. Thereafter the Iteration 2 

2CV segmentation was obtained by using the proposed algorithm on the segmentation of SAV 

Iteration 2 and 4CV Iteration 1. 

Table 6-7: Accuracy measurements per iteration of proposed segmentation method on left ventricle per MRI 
slice in the short axis view at end diastolic cardiac phase. 

Table 6-8: Accuracy measurements per iteration of proposed segmentation method on left ventricle per MRI 
slice in the 2 chamber view at end diastole cardiac phase 

 

LV / 2CV 
Slice 

Number 

Starting Set Iteration 1 Iteration 2 Iteration 3 

Haus Dice Haus Dice Haus Dice Haus Dice 

1 4.8811 0.7428 3.1623 0.8288 2.5495 0.8621 2.2361 0.8919 
2 4.6165 0.9134 3.6401 0.9078 2.8284 0.9134 2.5495 0.9030 
3 6.4284 0.9423 4.0311 0.9343 2.9155 0.9423 2.5000 0.9423 
4 6.3876 0.9037 4.2426 0.9008 2.5495 0.9008 2.5000 0.9078 
5 6.2867 0.8977 4.7434 0.9003 3.6056 0.8919 2.8284 0.9008 

 
 

LV / SAV 
Slice 

Number 

Starting Set Iteration 1 Iteration 2 Iteration 3 
Haus Dice Haus Dice Haus Dice Haus Dice 

1 8.3958 0.8978 7.2111 0.6472 3.8079 0.8000 2.8284 0.8864 
2 7.7471 0.9270 7.1589 0.7301 4.5000 0.7611 2.5495 0.9008 
3 4.4216 0.9036 4.2426 0.7936 3.6401 0.8218 2.5495 0.8845 
4 3.3243 0.9433 3.5355 0.9010 2.5000 0.9030 2.5000 0.9008 
5 3.8544 0.9142 3.1623 0.8784 2.5495 0.9003 2.2361 0.9078 
6 5.0643 0.8745 3.6056 0.8621 2.8284 0.8919 2.2361 0.9048 
7 8.0654 0.8875 4.0311 0.8803 3.5000 0.8864 2.2361 0.8956 
8 8.0082 0.8932 3.2016 0.8681 2.9155 0.8578 2.1213 0.8956 
9 5.4301 0.8288 4.7434 0.8387 3.1623 0.8621 2.5000 0.8864 

10 5.1021 0.8515 3.3541 0.8314 2.5000 0.8344 2.5000 0.8681 
Haus = Hausdorff Distance of proposed segmentation in comparison to expert delineation.  
Dice = Dice Coefficient of proposed segmentation in comparison to expert delineation. 
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Table 6-9: Accuracy measurements per iteration of proposed segmentation method on left ventricle per MRI 
slice in the 4 chamber view at end diastole cardiac phase 

 

The convergence measures were chosen such that Hausdorff distance convergence, HConv , is 

1.5 and the Dice Coefficient convergence, DConv , is 0.98. It was observed that on an average of 

the ten patients the convergence was achieved at the fourth iteration. The final accuracy 

measures at the fourth iteration are also displayed in Table 6-7, Table 6-8 and Table 6-9. 

 

As a final test of accuracy of the proposed segmentation method, several clinical measures were 

calculated on both the left and right ventricle segmentation at Iteration 4. These measures 

included end systolic volume, end diastolic volume, stroke volume and ejection fraction as 

depicted in Table 6-10. The stroke volume error between the left and right ventricle is thus 

calculated. 

Table 6-10: Volumetric measurement of proposed segmentation method in the three MRI views for a patient 

 

From the results depicted in Table 6-7, Table 6-8 and Table 6-9, the segmentation accuracy 

increases per iteration. This can be visualised in Figure 6-6 and Figure 6-7. The accuracy can be 

attributed to the region of interest being refined per iteration and thus the Difference of 

Gaussian intensity model ignores points outside the region of interest. The volumetric measures 

of Table 6-10, provides further justification for the use of the proposed algorithm, showing an 

average stroke volume error of 7.1%. 

 

An in depth analysis of the results also reveal the difficulty in performing segmentation at the 

ventricle ends, showing a decreased accuracy in comparison to the expert delineation. This is 

due to other artefacts being present, such as the valves, and also partial volume effect. Also to 

LV / 4CV 
Slice 

Number 

Iteration 1 Iteration 2 Iteration 3 Iteration 4 
Haus Dice Haus Dice Haus Dice Haus Dice 

1 6.7082 0.5926 5.6569 0.6840 3.3541 0.8288 2.9155 0.8681 
2 8.2462 0.8321 5.4301 0.8537 3.5000 0.8726 2.8284 0.8921 
3 6.5277 0.8515 3.1623 0.9172 2.6926 0.9196 2.5000 0.9182 
4 6.0000 0.8887 4.7434 0.8803 2.9155 0.8932 2.5495 0.9078 
5 3.5000 0.8148 3.0000 0.8621 2.9155 0.8515 2.6401 0.8745 

 

MRI View  EDV (ml) ESV (ml) SV (ml) EF (%) SV Error 
(%) 

SAV LV 79.6 28.1 51.5 64.7 4.7 RV 97.4 43.5 53.9 55.3 

2CV LV 90.7 38.8 51.9 57.2 11.9 RV 97.9 52.2 45.7 46.7 

4CV 
LV 109.7 44.7 65 59.3 

4.8 RV 105.1 43.2 61.9 58.9 
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(a) Iteration 1     (b) Iteration 2 

 

   
(c) Iteration 3     (d) Iteration 4 

Figure 6-6: Segmentation per iteration of proposed method on left ventricle for slice 6 in the short axis view.  

 

   
(a) Iteration 1     (b) Iteration 2 

   
(c) Iteration 3     (d) Iteration 4 

Figure 6-7: Segmentation per iteration of proposed method on left ventricle for slice 3 in the 4 chamber view. 
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be considered is the fact that experts also find difficulty in delineating the ventricles in these 

regions. However, the accuracy was still within a three pixel length and 85% overlap showing 

the ability of this algorithm to adapt to these effects. The other factor that played a negative role 

in the accuracy is the voxel error, which is due to the 9mm slice thickness. Figure 6-8 depicts 

visually the segmentation of the proposed algorithm in comparison to expert manual delineation 

in the SAV. The remaining figures, Figure 6-9, Figure 6-10, Figure 6-11, Figure 6-12 and 

Figure 6-13 shows the effect of the proposed algorithm segmenting the left and right ventricles 

in the SAV, 4CV and 2CV. 

 

Although convergence of the algorithm is achieved on the fourth iteration, this is still a time 

consuming process as the translation from one plane to another is processing intensive. With the 

majority of the algorithm being automatically processed, the average time taken per ventricle 

segmentation is approximately fifteen minutes on the “Matlab” simulation engine. Thus 

optimisation of the algorithm implementation is required if the clinical results, calculated from 

the proposed segmentation, are to be used in a real time diagnosis environment.  

 

The proposed method was used to segment the left and right ventricles for all ten patients from 

the UFS dataset at the end diastole and end systole cardiac phases. Table 6-11 shows the 

average of the Hausdorff distance and Dice coefficient for all patients at both cardiac phases for 

each MRI view. These metrics fall within the acceptable level of the state-of-art measures from  

. A final assessment of the effectiveness of this algorithm is done by comparing the results 

obtained on the SAV for multiple MRI views (Table 6-7) and single MRI view (Table 6-1). The 

Hausdorff distance and Dice coefficient at iteration 3 from Table 6-7 is 2.43 and 0.89 

respectively and that of Table 6-1 is 3.01 and 0.92 respectively. It can therefore be concluded 

that by providing more information from other MRI views, the average distance of the points is 

much closer to the representation of the ground truth by 24% in this instance. 

Table 6-11: Average Dice coefficient and Hausdorff distance of the proposed segmentation algorithm in all MRI 

views on the UFS dataset for all 10 patients.  

 

 

 SAV 2CV 4CV All 

Average Haus 2.2901 2.3105 2.5979 2.3995 

Average Dice 0.9025 0.9213 0.9034 0.9090 
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                           (a) Slice 1            (b) Slice 2           (c) Slice 3 
 

 
                           (a) Slice 4            (b) Slice 5           (c) Slice 6 

Figure 6-8: Segmentation of left ventricle in the SAV performed by expert manual delineation (blue contours) and 
proposed algorithm (red contours) for multiple slices from a patient in the UFS dataset.  
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Figure 6-10: Segmentation of left ventricle in the 4CV performed by proposed algorithm (red contours) for multiple 

slices from a patient in the UFS dataset.  

 

 
Figure 6-9: Segmentation of right ventricle in the SAV performed by proposed algorithm (red contours) for multiple 

slices from a patient in the UFS dataset.  
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Figure 6-12: Segmentation of left ventricle in the 2CV performed by proposed algorithm (red contours) for multiple 
slices from a patient in the UFS dataset.  

 

 
Figure 6-11: Segmentation of right ventricle in the 4CV performed by proposed algorithm (red contours) for multiple 

slices from a patient in the UFS dataset.  
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6.4 Summary 

 

This chapter has provided details on the testing methodology and results obtained by the 

proposed segmentation algorithm on cardiac MRI. Left ventricle segmentation on the SCD 

dataset has shown comparable results with other state of the art segmentation methods. The 

main reason for the divergence is that the proposed method removes papillary muscles and 

trabeculae from the segmentation contour, whereas the representation of the ground truth 

contour did not. However, the segmentation of the right ventricle from the RVSCD dataset 

using the proposed algorithm has shown excellent results when compared to state of the art 

approaches. The results of the segmentation of the locally obtained MRI dataset from the 

University of the Freestate has depicted measures in the acceptable range for all three MRI 

views.    

 

 

 

Figure 6-13: Segmentation of right ventricle in the 2CV performed by proposed algorithm (red contours) for 
multiple slices from a patient in the UFS dataset.  
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CHAPTER 7 -  VISUALISATION OF CARDIAC 

VENTRICLES 

 

Image segmentation of an object of interest, such as the ventricles, will produce a set of points 

that is a subset of the respective MRI per slice. Combining segmentation of MRI slices for that 

object will create a set of points in the three dimensional space, known as the three dimensional 

point set. The natural follow up from the segmentation is to produce a visualisation in the three 

dimensional space. Surface reconstruction is the process of finding a mathematical description 

of the physical shape created from the three dimensional point set [45]. Once the surface mesh 

is created for the object of interest, the volume within the mesh can be calculated which can 

then provide several quantification measures.  

 

Section 7.1 provides a background into triangular mesh reconstruction. Thereafter, two methods 

of improving the ventricle volumetric calculation is proposed in Section 7.2. These methods will 

in turn improve the visualisation. The first method uses segmentation from three cardiac MRI 

views to obtain a better visualisation of the ventricles. This removes the uncertainty of whether 

to use the end slice thickness. The second proposed approach fits a surface mesh around the 

outer segmentation points using Delaunay triangulation, convex hulls and alpha hulls. The 

ventricle volume is then calculated after converting the closed surface mesh into a voxel 

volume. Results of these two proposed methods on an MRI dataset are presented in 7.3. 

 

7.1 Triangular Surface Mesh Reconstruction 

 

A triangular mesh consists of the three dimensional point set as its vertices and a structure that 

connects these vertices to form triangles or faces. The mesh is normally continuous with the 

ability of having different triangle sizes to achieve good approximation of the physical surface 

[45]. The Delaunay triangulation is defined as the collection of edges from the three 

dimensional point set. The edge is a part of the collection if and only if there exists a circle that 

passes through the vertices of that edge and the circle does not contain any other vertex within 

[46]. This is visually represented in Figure 7-1 where it can be seen that the circumscribed 

circles do not contain any of the other points within. An example of the Delaunay triangulation 

on a three dimensional point set is shown in Figure 7-2. 

 

 



 88

 

Figure 7-1: Delaunay Triangulation on a set of five points with circumscribed circles. 

 
The Delaunay triangulation normally describes convex type surfaces due to the circular fit. 

There have several algorithms in literature that adapts and improves on the Delaunay 

triangulation to describe concave and other types of surfaces. These include the alpha shapes or 

alpha hulls algorithm, crust algorithm and Cocone algorithm. A full review of these algorithms 

is provided in [45] and [47]. 

 

7.2 Ventricle Visualisation Methods  

 

An MRI, acquired from a machine, consists of a two dimensional matrix of pixels derived from 

a corresponding set of three dimensional volume elements which is known as a voxels. The size 

of the voxel is dependent on the MRI slice thickness, field of view and matrix size [3]. As a 

general rule of thumb, as the voxel size decreases, the MRI resolution increases, which will in 

turn provide a better representation of the object of interest. In clinical practice, an optimal slice 

thickness is sought. Thinner slices can be susceptible to a high level of RF noise, whereas 
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Figure 7-2: Delaunay Triangulation on a three dimensional point set. 
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thicker slices are associated with issues such as increased partial volume effect [3]. From 

Section 3.2, it can be concluded that a more accurate ventricle volumetric calculation algorithm 

is required, especially when the slice thickness is large.  

7.2.1 Utilising MRI Segmentation Information from Three Views 

As discussed in Section 2.2 and 2.3, standard cardiac MRI acquires orthogonal slices in three 

views namely two chamber view (2CV), four chamber view (4CV) and short axis view (SAV) 

[1]. Images in each of these views have a link to the patient co-ordinate system and several 

slices can be obtained per view. The DICOM [17] header describes the parameters of 

conversion from the slice plane to the patient co-ordinate system.  

 

To enhance ventricle volume visualisation, it is proposed that multiple slices in the 2CV and 

4CV be acquired per patient together with the ventricle segmentation dataset on all three views. 

Ventricle segmentation can be performed using manual delineation or using existing semi-

automatic or fully automatic algorithms from Chapter 4. This proposed method of volume 

visualisation can be supported by Figure 7-3, where the additional points (three dimensional 

point set) generated by the 2CV and 4CV segmentation (in red), reveals additional volume 

portions that were not included by the application of Simpsons rule in Figure 3-9.  

 

It must be noted that if the slice thickness was considered above slice 10 in Figure 3-9, the 

volume excluded by the Simpson’s method will be reduced. However there will still be some 

degree of error. 
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Figure 7-3: Additional segmentation information from two chamber and four chamber MRI view (red plot) projected 
onto short axis segmented portions of the left ventricle encased in a surface plot using Simpsons rule. 
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It can also be seen from Figure 7-3 that the ventricle ends are rounded, allowing a better fit to 

the actual left ventricle shape. Furthermore, the step surface also encloses some of the boundary 

points which could result in volume over estimation. Figure 7-4 extracts and displays all 

segmented areas per MRI view per slice of both the left and right ventricle collated on a single 

three dimension view.  

From Figure 7-4, an improved visualisation of the ventricle shapes is achieved. In order to 

calculate the volume contained within the information obtained from the three MRI views, a 

surface must enclose all the segmented areas. This is discussed in Section 7.2.2 below. 

7.2.2 Triangular surface mesh formation and volume calculation 

The three dimensional point set defined by the segmentation from all three MRI views does not 

contain enough information to enable accurate calculation of the enclosed volume. In this 

section it is proposed that a triangular surface mesh reconstruction algorithm be used to extract 

the ventricle surface from the three dimensional point set and calculate the enclosed volume of 

the surface.  

 

Let ,2 ,4 ,SAV CV CV RVS denote the three dimensional point set obtained by combining the right 

ventricle segmentation of slices from the SAV, 2CV and 4CV, where: 

,2 ,4 , { }:1 i , j 1
i jSAV CV CV RV POS S a= <= <= = ,   (7.1) 

and a is the total number of MRIs that cover the right ventricle in all the views. The Delaunay 

triangulation (DT) algorithm [63] is used to perform the initial surface reconstruction which 
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Figure 7-4: Two three dimension plots of segmented area of the left and right ventricle from the two chamber view, 
four chamber view and short axis view. 
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returns the set of vertices and faces ( DTFV ) that represents the triangular surface mesh and is 

represented as: 

,2 ,4 ,( )DT SAV CV CV RVFV DT S= .    (7.2) 

An example of the three dimensional point set for the right ventricle is shown in Figure 7-5 and 

the resultant Delaunay triangulation is depicted in Figure 7-6.   

 

 
 

From Figure 7-6 it is apparent that the reconstruction produces the convex hull of the point set 

and does not accurately reproduce the concaved shape of the right ventricle. To overcome this 

problem it is proposed that the alpha hull (AH) [64] of the Delaunay triangulation be computed, 

which will produce another set of faces and vertices AHFV , which is denoted as follows: 

,2 ,4 ,( ( ))AH SAV CV CV RVFV AH DT S= .   (7.3) 

 

 

 

Figure 7-6: Three dimensional point set (red) and Delaunay triangulation (transparent blue faces and yellow 
edges) of the right ventricle. 
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Figure 7-5: Three dimensional point set of the right ventricle obtained by combining segmentation from all 
three MRI views. 
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The alpha radius ( Rα ) of the AH controls the level of detail of the resultant surface mesh. A 

value of Rα = ∞ returns the convex hull of the points and if Rα is chosen too small there will be 

holes in the reconstructed mesh surface. Determining the optimal Rα is often done by 

experimentation [65], however a novel method of calculating the Rα is proposed as follows for a 

given point set: 

1 EAV
R

E

NL
N

α
 

= × − ÷
 

.     (7.4) 

L is the average edge length of the triangles in the convex hull of ,2 ,4 ,SAV CV CV RVS , EAVN is the 

number of edges that are longer than L and EN is the total number of edges in the convex hull. 

This method to calculate the Rα produces a tight triangular surface mesh with no holes as shown 

in Figure 7-7. It is important that no holes are present in the final surface mesh as each of the 

mesh faces are used in determining the bounding volume.  

 

To improve the resolution of the triangular surface mesh model created in (7.3), a ray tracing 

mesh voxelisation technique similar to that described in [62] is used. This method begins with a 

100 100 100× × voxel cube and traces rays along the X, Y and Z axis until they intersect with the 

mesh faces. The points of intersection along the rays are marked off as the voxel surface. The 

result is a high resolution voxel representation of the original surface mesh. The volume 

enclosed by the mesh (or three dimensional point set) is then computed by performing a count 

of the number of voxels making up the high resolution voxel representation multiplied by the 

volume of an individual voxel. The computation of the left ventricle volume follows the same 

procedure as described above. 
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Figure 7-7: Alpha hull accurately represents the concaved structure of the right ventricle (blue faces and yellow 
edges). 
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7.3 Results of Ventricle Visualisation Method 

 

A cardiac MRI dataset was obtained from the Universitas Hospital (University of the Free State) 

which consisted of five volunteers with no cardiac abnormalities. Full imaging in the SAV, 2CV 

and 4CV were performed on each volunteer. MRI’s were of size 256x256 pixels, 20 images per 

cardiac cycle and a slice thickness of 9mm in all views. The dataset also consisted of expert 

manual delineation of the left ventricle and right ventricle in the SAV, 2CV and 4CV at the end 

diastole and end systole cardiac times. It must be noted that papillary muscles were excluded in 

the expert ventricular segmentation. 

 

Using the expert manual segmentation, the left and right ventricles were extracted for each MRI 

view per volunteer and combined to form two three dimensional point sets, one at the end 

diastolic cardiac time and the other at the end systolic. Thereafter the proposed triangular 

surface mesh method described in Section 7.2.2 was applied to each point set. The three 

dimensional point set for the left ventricle of a volunteer contained 4145 vertices from the 

segmentation of the three views and obtained a higher resolution after voxelisation by 

containing 194951 voxels. Table 7-1 provides the comparative results per volunteer between 

Simpsons rule and the proposed method for calculating volume at the end-diastolic cardiac time. 

The calculated average of the Simpsons rule across all MRI view is also depicted. The average 

volume value only holds true if the segmentation of all three views cover the entire volume, 

which is not the case. 

Table 7-1: Volumetric measurements of Simpsons Rule versus Proposed method for all MRI views at the end 
diastolic cardiac time. 

 
Figure 7-8 shows the visualisation of the left and right ventricles at the end diastolic cardiac 

time for one of the volunteers. Due to the smooth surface fit, papillary muscles are included 

within the surface. Table 7-2 and Figure 7-9 provides a comparison of the stroke volume per 

volunteer, showing on an average a stroke volume error 2.14%. 

Volunteer 
Number 

Left Ventricle Volume 
Measures using Simpsons 

Rule (ml) 

Right Ventricle Volume 
Measures using Simpsons 

Rule (ml) 

Volume Measures 
using Proposed 

Method (ml) 

% Difference 
Between Simpsons 
Rule and Proposed 

Method 
2CV 4CV SAV Avg. 2CV 4CV SAV Avg. Left 

Ventricle 

Right 

Ventricle 

Left 

Ventricle 

Right 

Ventricle 

1 94.82 97.38 87.52 93.24 97.47 82.00 84.89 88.12 94.55 98.09 1.39 10.16 

2 67.73 67.19 78.93 71.29 52.77 60.80 71.25 61.61 76.80 70.26 7.18 12.32 

3 81.32 72.47 72.19 75.33 76.30 68.02 61.15 68.49 75.29 70.85 0.05 3.33 

4 92.76 89.31 70.00 84.03 87.72 83.12 52.29 74.38 100.30 93.18 16.22 20.18 

5 67.83 85.53 61.59 71.65 60.29 77.82 60.34 66.15 81.36 78.33 11.93 15.55 
 

Avg. = Average volume value of Simpsons Rule in the three MRI views. 
2CV = Two Chamber View  4CV = Four Chamber View  SAV = Short Axis View 
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Table 7-2: Stroke Volume measurements of Simpsons Rule versus Proposed method. 

 

From Figure 7-8 it can be clearly seen that a high quality visualisation of the cardiac ventricles 

is achieved, with a smooth surface covering the entire ventricle without any holes. The presence 

of the ellipsoidal (or oval) shape of the left ventricle and the combined crescent/triangular shape 

of the right ventricle can clearly be observed. There is also a space between the ventricles which 

can be attributed to the ventricle walls. 

 
Volunteer 
Number 

Simpsons Rule Proposed Method 
Stroke 

Volume Left 
Ventricle (ml) 

Stroke 
Volume Right 
Ventricle (ml) 

Stroke 
Volume 

Error (%) 

Stroke 
Volume Left 

Ventricle (ml) 

Stroke 
Volume Right 
Ventricle (ml) 

Stroke 
Volume 

Error (%) 
1 52.7 47.3 5.3 48.51 47.99 1.07 
2 47.1 35.1 12 38.00 36.51 3.93 
3 50.7 40.8 9.9 40.60 41.82 2.99 
4 59.8 47.0 12.8 56.74 55.69 1.86 
5 44.6 30.1 14.4 43.08 43.45 0.86 
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Figure 7-8: Two mesh surface plots of segmented area of the left and right ventricle using the proposed algorithm. 
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There is a slight difference between the ventricle volume calculation of the proposed method in 

comparison to Simpsons rule, indicating on average a 7.35% deviation in the left ventricle and 

12.31% deviation in the right ventricle across the five volunteers. In some volunteers the 

volume difference is not that significant, since some of the points from the three dimensional 

point set lie within the slice thickness area of the Simpsons rule and the remaining on the 

outside. Thus no clear trend could be established in the volume data from both methods, due to 

the volume over-estimation and under-estimation by the Simpsons rule. Another comparison 

done was to use the segmentation results for a patient using the proposed segmentation 

algorithm (Table 6-10) and apply the proposed volumetric calculation method to the 

segmentation contours. This is depicted in Table 7-3, where the difference is similar to that 

obtained from Table 7-1. 

Table 7-3: Comparison of Volumetric measurements of Simpsons Rule versus Proposed method for all MRI views 
at both cardiac phases for a patient whose results is obtained by using the proposed segmentation algorithm 

(Table 6-10). 
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Figure 7-9: Visual comparison of the left and right ventricle stroke volume after applying the proposed method of 
volume calculation. 

Cardiac 
Phase 

Left Ventricle Volume 
Measures using Simpsons 

Rule (ml) 

Right Ventricle Volume 
Measures using Simpsons 

Rule (ml) 

Volume Measures 
using Proposed 

Method (ml) 

% Difference 
Between Simpsons 
Rule and Proposed 

Method 
2CV 4CV SAV Avg. 2CV 4CV SAV Avg. Left 

Ventricle 

Right 

Ventricle 

Left 

Ventricle 

Right 

Ventricle 

End-
Diastole 90.7 109.7 79.6 93.3 97.9 105.1 97.4 100.1 97.6 99.1 4.3 1.0 

End-
Systole 38.8 44.7 28.1 37.2 52.2 43.2 43.5 46.3 40.2 42.4 3.0 3.9 

 
Avg. = Average volume value of Simpsons Rule in the three MRI views. 
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The high accuracy of the proposed method of volume calculation is achieved by the low stroke 

volume error, which can be credited to both the segmentation of all three MRI views as well as 

the ability of the proposed algorithm to accurately approximate the surface mesh by 

voxelisation. 

 

7.4 Summary 

 

In this Chapter an improved method of calculating cardiac ventricular volumes is proposed 

using convex and alpha hulls to obtain the triangular surface mesh. Thereafter, a high resolution 

voxelisation of the ventricle mesh is performed, from which the volume is calculated. A higher 

quality visualisation of the ventricles is thus achieved, showing a smooth surface cover. The 

results indicate that this method performs better than Simpsons rule for volume calculation as 

the stroke volume errors calculated over all volunteers using the proposed algorithm are lower 

than that obtained using Simpsons rule. 
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CHAPTER 8 -  CONCLUSION 

 

This thesis has presented and discussed several aspects of cardiac MRI ventricle segmentation 

and proposed a new ventricle segmentation algorithm as well as a new ventricle volumetric 

calculation algorithm. In this chapter, the important findings and conclusions of each of the 

chapter are initially presented. Thereafter, future work and recommendations, which could 

improve the overall performance of the proposed algorithms are descibed. 

 

8.1 Chapter Summaries 

 

The thesis starts with an introduction to MRI and segmentation, focussing on the human heart. 

Literature review of state of the art cardiac MRI segmentation methods, in Chapter 4, showed 

that there are many image processing approaches that could be used to segment both the left and 

right ventricles, with approximately 65% of the methods focussing on the left ventricle. 

However, the results presented by more than 90% of the authors was achieved using their own 

cardiac MRI dataset. This posed a major problem in comparing the different ventricle 

segmentation algorithms.  

 

To address this issue, a framework for the evaluation of segmentation algorithms on cardiac 

MRI is presented in Chapter 3, by using mathematical, statistical and clinical measures on 

publically available MRI datasets. More specifically the framework recommended that the 

Hausdorff distance, Dice coefficient and stroke volumes be used. The effectiveness of each 

measure is quantified through a series of tests that manipulates the ground truth segmentation 

contour. It was shown that mathematical or distance based measures are particularly sensitive to 

the “panhandle problem”, where a strong local deviation that does not necessarily take up much 

volume, results in a high distance value. On the other hand, statistical measures are sensitive to 

misplacement of the segmentation contour. The major contribution in the framework was to 

introduce the clinical measure of stroke volume error between the left and the right ventricle. As 

shown in the results, this measure provided a good estimation of segmentation accuracy. 

However, this method is affected by systematic left and right ventricle segmentation errors such 

as slice thickness error. Thus it is proposed that a combination of all of these measures must be 

used to assess the accuracy of any MRI ventricle segmentation algorithm. 
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Chapter 5 introduced a robust novel three dimensional automatic left and right ventricle 

segmentation algorithm. This technique was split into two parts, depending on the type of 

cardiac MRI dataset presented to segment. Both approaches performed ventricle localisation as 

the initial step and thereafter applied the difference of Gaussian image filter. It was shown that 

the difference of Gaussian image filter provides good ventricle segmentation if the filter 

parameters are chosen properly. Thus a novel system was developed to choose these parameters 

by looking at the pixel intensity profile within the ventricle region of interest.  

 

If the dataset only contained the short axis MRI view, the ventricle region of interest was 

formed by the use of standard deviation motion maps in combination with the wavelet 

transform. This approach allowed comparison to state of the art methods, where left ventricle on 

the SCD had shown comparable results and the right ventricle segmentation has shown 

significant improvement. The main reason for the divergence is that the proposed method 

removes papillary muscles and trabeculae from the segmentation contour, whereas the 

representation of the ground truth contour did not. In addition, the robustness of the algorithm 

was tested against simulated noisy and blurry images, which also displayed encouraging results.  

 

The second approach of ventricle localisation was formed if the cardiac MRI dataset contained 

three MRI views (SAV, 2CV and 4CV). A novel, iterative three dimensional left and right 

ventricle segmentation algorithm was presented, in which the segmentation is automatically 

performed in the third MRI view by projecting the segmentation from the other two views into 

the patient coordinate system. It was shown that the region of interest created by the projection 

accurately splits the ventricle from the atrium in MRI views, where the intensity and texture 

values are the same for both chambers, as in the 2CV and 4CV. The results provided revealed 

that segmentation accuracy increases per iteration and convergence is achieved in 

approximately four iterations.  

 

A new algorithm for the visualisation of the segmented ventricles and computation of ventricle 

volumes was described in Chapter 7, to account for the inaccuracy measure due to the slice 

thickness. The method included using Delaunay triangulation during the surface mesh 

reconstruction. The volumetric calculation was compared against the commonly used Simpsons 

method, exhibiting an improved performance. It was also revealed in this chapter 7 that using 

segmentation information from the three orthogonal MRI views yields a better visualisation of 

the ventricles. Thus the resultant surface mesh was much smoother as more points were 

available for the triangulation method. 
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8.2 Future Work 

 

All results were obtained using the Matlab software environment [51] with little processing or 

memory optimisation used on matrix and image processing. Furthermore, it was beyond the 

scope of this research to time profile each simulation. Thus, for the two proposed MRI ventricle 

segmentation algorithms to be used for real time diagnosis, it is recommended that another 

programming language such as Microsoft Visual C++ be used.  

 

Another optimisation that could be performed is to use a more accurate initial segmentation 

algorithm to the method proposed in Section 5.4, especially in the 2CV or 4CV MRI. This will 

result in quicker convergence of the algorithm as well as provide more accurate volumetric 

measurements. 

 

The visualisation algorithm that appears in the chapter 7 does not make provision for the 

presence of papillary muscles, even though the segmentation per MRI may consider these 

muscles. Thus an improvement could be made where the papillary muscles could be fit with a 

triangular surface mesh. The actual ventricle volume will now be the difference between the 

total mesh coverage and the volume of the papillary mesh. 

 

This work can readily be extended to segment the outer surfaces of the cardiac muscle and thus 

a segmentation of the entire heart and not only the cavities off the ventricles could be achieved 

using the algorithms proposed here. 
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