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ABSTRACT 
 

The traditional design methodologies for tunnel and underground excavations are divided in to 

three categories: Empirical, Analytical, and Observational approaches, whereas in the last years the 

Numerical approach has strongly become popular both for the intrinsic simplicity of the software 

packages and their ability to manage problems unsolvable with the classic methods. 

In this thesis, the underground openings have been analyzed using constitutive models other than 

the Mohr-Coulomb theory. FLAC is used for the analysis and the software has been implemented to 

include the Polyaxial Strength Criterion. The details of the modifications made in the software are 

presented and the results are compared with the Singh's elasto-plastic stress distribution in 

squeezing grounds. 

The applicability of the Polyaxial Strength Criterion has been therefore extended to all the 

numerical suites designed for geo-mechanical purposes (FEM, FDM, …) and the obtained results 

compared to the observations of deformation and radial squeezing pressure of the instrumented 

tunnels in the Chibro-Khodri  underground power station .  

This study will develop better comprehension of the behavior of the underground openings and also 

provide a useful tool to the designers in the planning stages. 
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Chapter 1  

1 INTRODUCTION 

1.1  FRAMEWORK 
The unceasing development that characterizes the modern economy is directly linked to the quality, 
capacity and efficiency of the infrastructure, connecting the strategic nodes of each nation.  
The famous mountain (San Gottardo, Frejus..) or undersea (Euro Tunnel) road or railway tunnels are not 
the only underground excavations today as there is a consolidated trend of moving all the facilities 
underground such as power stations, metro stations, parking and storage space for dangerous and nuclear 
waste to reduce the impact that they could induce to the narrow space and environment.  

In mixed structures, with superstructure and underground infrastructure, the excavated part is always the 
most important and determinant for the success of the entire realization.  The possibility to excavate 
always in safe and competent soils or rock masses is rare and a deviation from the original alignments is 
not possible, the engineers have to take the challenge of facing these conditions.  

The excavation of tunnels in non-competent ground, in particular in Squeezing Conditions, is one of the 
most challenging experiences in geotechnical engineering for the difficulties and uncertainties involved 
both in the design and in the execution of works.  The Squeezing ground conditions occur when the 
modification of the stress field in a rock mass, due to the opening of a void, induces an overstress such 
that the rock fails. The rock mass failures are often consequence of a large time dependent deformations 
at the excavation boundaries. The choice of the most appropriate excavation-support system is the key to 
avoid loss of functionality or stability in the excavation works. 

Nowadays, despite of considerable amount of studies in this field, a universally accepted theory valid for 
prediction of support pressures and design of underground caverns in squeezing ground conditions does 
not exist. The designing approaches adopted in tunnel engineering are commonly subdivided in to three 
main categories: 

Empirical In the empirical approaches, the geotechnical design parameters are determined by 
expressions exclusively founded on the empirical analysis of the data collected by the 
observation of the behavior of a large number of underground excavations. The long 
experience accumulated in the worldwide tunnel practice over many years permitted 
development of several empirical relations, which are commonly used in tunneling 
engineering. 

Analytical The analytical methods predict the behavior of a soil or rock mass by means of the 
application of theoretical laws. These can be subdivided in Elastic and Elasto-Plastic 
Theories. A rock mass can be represented as a homogeneous mass of resistance lower 
than the resistance of undisturbed rock material, or as blocks of undisturbed rock material 
but naturally spaced out by joints and fractures, depending on the ratio between spaces of 
the discontinuities and excavation dimension. The analytical resolution of complex 
geotechnical problems entails the introduction of a high number of parameters, which 
cannot be easily determined and may distort the final results obtained from analytical 
approach.   
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The use of analytical approaches, by the resolution of easy problems, is strongly 
suggested for didactic purposes. The theoretical understanding of how a rock mass 
behaves below the surface is necessary for proper planning of excavation or any 
application of support technique. 

Observational In this category, are placed those methodologies that produce suggestions for the final 
design of an underground excavation based on the observation and subsequent 
comparison of the behavior of an underground opening with the corresponding 
performance predicted at the designing stage. Specific provisional inspection galleries are 
also excavated before the final design of an underground work to determine the quality 
index of a complex rock mass system and finally design and calibrate the correct 
retaining system. 

The design of underground excavations cannot just rely on only one technique chosen among the 
traditional methods. The recommended procedure is based on the use of a rational combination of more 
than only one approach for an initial comparison of the consistency of the results and an ongoing work of 
refinement of the applied approach based on an observational technique. This iterative procedure leads to 
the best possible results for difficult situations. 

1.2  PROBLEM STATEMENT 
About 30 years ago, for the first time, numerical methodologies were applied to real geo-mechanical 
problems, with a considerable delay with respect to other engineering disciplines. The numerical 
solutions, although not complex from a theoretical point of view, overcome the difficulty of resolving 
complex geometries which cause complexities in analytical closed Equations. The presently available 
techniques allow a detailed analysis of any engineering problem and simplify the realization any complex 
problem and allows comparison of different design approaches for the problem. Numerical and traditional 
methodologies are indissolubly interconnected; any numerical model to be implemented needs a set of 
physical laws describing the overall behavior of the selected ground, while the empirical approaches help 
in determination of the indexes of quality and resistance for the surrounding ground.  

Among the high number of analytical models suggested in literature, only a small number has been 
converted to numerical models suitable for commercial applications. The small choice of failure criterion 
in geotechnical software commonly available is directly related to the fact that tradition is to use only a 
few established relations. The absence of periodic upgrades of the available software is a complex 
problem that, combined with difficulty in the implementation of user defined failure criteria, discourages 
many from promoting the application of their innovative theories into real practical applications.   

1.3 SCOPE AND OBJECTIVES OF THE THESIS  
In this thesis, motivated by the above considerations, an innovative numerical failure criterion, able to 
model deep underground excavation in squeezing rock conditions, is developed and converted to a form 
such that it can be easily implemented in any numerical application software. The Polyaxial Constitutive 
model, introduced by Singh et al. in 1998 has been modified and applied in this thesis. 

 The present constitutive model has been, specifically fitted for describing the behavior of very weak rock 
masses. This model has the merit of incorporating the effect caused by the intermediate principal stress on 
shear resistance of the rock mass.  The applicability of this failure criterion has the main difficulty in its 
application into numerical approaches, discouraging its extensive use in practice although the good 
feedbacks of its applications in the field problems are shown. 

In the present work, the Polyaxial Strength Criterion has been converted into a more convenient form and 
has been expressed in the format of Mohr-Coulomb criterion by using equivalent shear strength 
parameters. The relationship between these equivalent shear strength parameters and the strength 
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parameters used in Mohr-Coulomb criterion has been established. This allows the Polyaxial Strength 
Criterion to be implemented in any numerical code that uses Mohr-Coulomb criterion. This has been 
implemented in two stages. In the first stage, a specific programming code in FISH, has been incorporated 
in FLAC (two dimensional explicit finite differences program for engineering mechanics computation) 
strictly following the Singh’s Polyaxial Strength Criterion and laid the foundations for the second stage. 
In second stage, the Polyaxial Strength Criterion relationship has been suitably modified to be expressed 
in the form similar to Mohr-Coulomb criterion and obtain equivalent parameters, which can be used 
without any modification in the geotechnical numerical suites and this approach is more elegant, and 
convenient to use. This approach, in fact, brings out the similarities between Singh’s Theory and Mohr-
Coulomb failure criterion by introducing new equivalent shear strength parameters. 

The results obtained from both the numerical approaches suggested in this work are examined and 
compared to the analytical solution suggested by Singh for analyzing the polyaxial state of stress around a 
circular tunnel in squeezing conditions. The suggested constitutive models give results, which are in very 
close agreement with the analytical solution. 

In the final part of this research, to demonstrate the potential of the failure model proposed, the Squeezing 
pressures observed in three instrumented sections of a tunnel section in case of severe squeezing is 
compared to the results obtained by numerical model suggested in this study as well as with  the Mohr-
Coulomb criterion. It is observed that for Squeezing conditions the suggested approach using Polyaxial 
Strength Criterion and using uniaxial compressive strength obtained by Barton’s relation gives better 
results. 

1.3  ORGANIZATION OF THE THESIS 
This thesis is subdivided into 6 Chapters. The three main Chapters of this research are written as set of 
already published research papers or ready for a future publication. The present Chapter is intended to 
provide a general introduction of this research and explains the organization of the following Chapters.  

The second Chapter presents an exhaustive description of the squeezing phenomenon and a review of the 
designing techniques currently available in squeezing conditions. A separate section of this Chapter is 
exclusively dedicated to introduce the Polyaxial Strength Criterion and its analytical applications. 

Chapter 3, initially written for the international conference INDOROCK 2011 organized by the Indian 
Society of Rock Mechanics and Tunneling Technology (ISRMTT) at IIT Roorkee (India), has been 
successively updated and published at the beginning of 2012 in the Volume 18 of the Journal of Rock 
Mechanics and Tunneling Technology (ISSN 0971-9059).  
It describes the first successful effort to implement a programming code for the numerical application of 
the Polyaxial Strength Criterion in FLAC and includes all the verification of its complete functionality.  

In Chapter 4, already accepted for publication by the Journal of Tunneling and Space Technology (ISSN: 
0886-7798), it is presented the proposed modification of the Polyaxial Strength Criterion to achieve the 
Equivalent Mohr-Coulomb Theory. The relative Equivalent parameters of shear resistance are also 
described and determined. As for the numerical model for FLAC the present methodology is verified in a 
specific numerical application. 

In Chapter 5, already accepted for publication by the International Journal of Geomechanics (ISSN: 1532-
3641 eISSN: 1943-5622), the Equivalent Mohr-Coulomb constitutive model, as described in Chapter 4 
and subsequently modified, is applied to a real case of tunnel subjected to severe squeezing conditions, 
the inspection gallery of Chhibro Khodri, India. All the stages of the implementation are clearly explained 
and the outcomes compared to the observation executed during the excavations execution. 

Finally, in Chapter 6, the conclusions of this work and some suggestions for further studies are given. 
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Chapter 2 

2 LITERATURE REVIEW 

 

2.1  INTRODUCTION 
The behavior of the rock mass has been studied extensively in the recent decades in order to define a 
reliable law for predicting the advent of squeezing phenomena in underground excavations. In this 
Chapter, the main characteristics and recent improvements of empirical, analytical, observational and 
numerical methods, the universally recognized approaches in rock mechanics, are explained in detail.  

Because the exclusive use of one of these techniques is not sufficient for a correct analysis of squeezing 
of rocks, the knowledge of the largest number of them is the fundament for its satisfactory investigation. 

This review of literature is the foundation for the development of a new approach for the analytical and 
numerical application in tunneling engineering of the polyaxial constitutive model based on objective in 
situ observations. 

2.2  SQUEEZING OF ROCKS 
One of the biggest challenges of the Rock Mechanics, and specifically of Underground Engineering, is to 
develop a reliable theory for predicting support pressures for the Squeezing ground conditions in order to 
prevent any adverse situations. According to an official definition suggested by the International Society 
for Rock Mechanics (ISRM), Barla (1995), the Squeezing of Rock can be described as “the time 
dependent large deformation which occurs around the tunnel and is essentially associated with creep 
caused by exceeding a limiting shear stress. Deformation may terminate during construction or continue 
over a long time period”. 

In an undisturbed rock mass, any natural or artificial alteration of the initial spatial configuration, in fact, 
induces an immediate re-distribution of the state of stress with the final intent of reaching a new stable 
condition. The stress redistribution following the opening of an underground excavation produces a 
generalized increment of the difference between maximum and minimum principal stresses (deviatoric 
stress d = 1 - 3) in the surrounding rock mass and maximum at the internal surfaces of the void. If the 
new stress configuration does not exceed the resistance of the rock mass, stable / non-squeezing 
conditions are maintained, otherwise unstable / squeezing conditions may be observed.   

The overcoming of the material resistance may produce localized or diffused failures. The plasticization 
of the rock mass always starts at the surface of the excavation, where the stress conditions are more 
critical, and, successively, moves in the outwards direction. The installation of an internal support system 
is usually necessary in case of failure to increase the possibility of achieving a new safe state.  

The convergence of the faces of an excavation in squeezing conditions can be so pronounced that, in 
complex cases, may even exceed the 10% of the radius of the cavity. Excessive deformations may create 
unpleasant aesthetic effects as well as affect the functionality and even the stability of underground works, 
causing big delays in their final accomplishments.  

The magnitude of the deformations and the time needed for the complete stabilization are a complex 
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function of the tectonic, geological and hydrogeological characteristics of the formations affected by the 
excavations as well as of the petrographic and geotechnical properties of the rock mass. The technologies 
of excavation and the rapidity of the installation of a support system have also a strong influence and their 
choice plays a central role in the reduction of squeezing.  

 

 
FIGURE 2-1 - SAINT MARTIN LA PORTE ACCESS ADIT AT CHAINAGE 1325 M BEFORE RE-SHAPING 

 THE TUNNEL CROSS SECTION (BARLA, BONINI, DEBERNARDI, (2010)) 

For these reasons, a careful preliminary study of the geological and geo-mechanical properties of the rock 
mass allows the preventive estimation of possible conditions of instability, in order to implement without 
delays the appropriate methodologies for the squeezing control. A late identification of an unstable 
condition results in slow and hazardous excavation, due to the use of inappropriate construction 
techniques, and can even entail the necessity of modifying the tunnel alignment during the realization of 
the works. 

 The degree of Squeezing is quantified by the strain measured at the surface of an excavation and is 
commonly subdivided in to 5 classes of magnitude as indicated in Figure 2-2. Such classification was 
introduced by Hoek (2000) with reference to his approximate relationship for the tunnel radial strain t 
estimation as given by Equation 2-1.  
 

r  0.15
P0

1Pi
P0

  cr

 3Pi
P0
1  3.8Pi

P0
0.54 

    (2-1) 

 
where P0 is the hydrostatic in situ stress, Pi the internal reaction of the lining and cr the uniaxial 
compressive strength of the rock mass. 
According to the observations reported by Hoek (2000), Squeezing conditions occur when the minimum 
strain, espressed as normalized closure at the internal surface of the lining, reaches the minimum amount 
of 1 %. The chart of strain versus non-dimensional stress is plotted in Figure 2-2, which is used to classify 
squeezing rock conditions. 
According to Dube and Singh (1986), Squeezing is a phenomenon generally related to low resistance 
overstressed grounds, whereas hard rocks may undergo rock burst conditions.  
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FIGURE 2-2 - CLASSIFICATION OF SQUEEZING BEHAVIOR (HOEK, 2000) 

In the following sections of this Chapter, the most common techniques available for the rock mass 
characterization and the solutions for a proper design of underground excavations have been described. 
The organization of this Chapter has been conceived with a special focus on the squeezing problems in 
tunneling engineering. 

2.3  EMPIRICAL AND SEMI-EMPIRICAL METHODS 

2.3.1 CLASSIFICATION OF A ROCK MASS 
A rock mass is hardly a continuous, homogeneous and isotropic volume, but is more often affected by 
discontinuities, faults, joints and could have been subjected to various actions of alteration and 
degradation in its geological history. Only the combination of the information coming from the 
petrographic and geotechnical conditions of the rock matrix with those relative to the physical and 
geometrical characteristics of the sets of discontinuities distinguishing the volume considered returns an 
appropriate description of the overall rock mass state.  

To describe a rock mass an extensive use of the engineering geo-mechanical classifications is made these 
days. The modern geo-mechanical engineering classifications rank a rock mass assigning simple indexes 
of quality to the different components of the material and combine them in a global index, function of 
their bigger or smaller contribution to the overall resistance. By means of a coherent system of ranking 
any parameter that could negatively influence the stability of an underground excavation can be 
identified, providing the basis for the stability analysis.  

The rock masses were, in the course of time, classified on the basis of their origin, mineralogical 
composition, void index, fracture/joint intensity, joint inclination, flow rate of water, velocity of 
propagation of shock waves, weatherability, colour, grain size or surface properties. A complete 
geological and geotechnical characterization of a rock mass primarily includes the recognition of the local 
main lithotypes, followed by the description of the geomechanical characteristics, such as: 

 mechanical conditions of the rock matrix, including degree of alteration, structure, color, texture 
and compressive strength of intact rock matrix; 
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 geo-structural and geo-mechanical conditions of the natural discontinuities comprising of, for 
each family of joints, orientation, persistence, spacing, aperture, filling composition and 
mechanical properties. 

 
The evaluation of the effects produced by the presence of an aquifer completes the description of the 
factors that affects the stability of an underground excavation. The parameters part of the first group can 
be easily determined in laboratory or with easy in situ tests, while those of the second group need specific 
in situ characterization. 
The rating system on the basis of a geo-mechanical classification system must rely on clear guidelines 
regarding the methods of monitoring and following subdivision into classes of quality. A classification, 
based on objective considerations, easily reproducible and consistent in different scenarios, encourages 
the sharing of results and their comparison in view of a constant evolution of the methodologies of design 
and construction. 

The vast amount of case studies existing in literature allowed the development of several classification 
systems and relating to important geotechnical properties. Angle of Friction , Cohesion c, Elastic 
Modulus E and Uniaxial Compressive Strength cr are some of the important parameters deducible by 
means of empirical or semi-empirical relations. 

The most used classifications are currently three, the RMR introduced by Bieniawski (1973) for the South 
African Council for Scientific and Industrial Research (CSIR), the Q System by Barton (1974) and the 
more recent GSI by Hoek and Brown (1997), classification specifically made in support of the homonym 
non-linear constitutive model. 

2.3.2 TERZAGHI’S ROCK LOAD THEORY AND DEERE’S ROCK QUALITY 

DESIGNATION (RQD) 
The geo-mechanical classification introduced by Terzaghi in 1946 is the first organized attempt to predict 
the load applied to the support of a deep tunnel by the observation of the characteristics of the 
surrounding rock mass. His theory is based on his long professional experience in alpine railway tunnels 
excavation and differs from the preceding techniques in considering the strength of a rock mass as the 
complex combination of several geological and geotechnical parameters. 
According to Terzaghi's approach, a rock mass is, in fact, classified on the basis of the uniaxial 
compressive strength, frequency and spatial distribution of the discontinuities, geological origin of the 
rock mass, presence of water and swelling materials, chemical alteration suffered and in situ stress 
conditions.  
Based on these factors, Terzaghi describes the rock mass and defines nine homogeneous classes of rock as 
shown in Table 2-1. For each class, he gave a certain range of values of the load applied to the lining and 
included suggestions for its proper installation.  
The load Pv, vertically applied on the lining as shown in Figure 2-3, is derived indirectly through the Rock 
Load Factor Hp (the height of the fractured rock above the excavation) in accordance with the Equation 2-
2:  

pv HP          (2-2) 
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Rock Class  Definition  Rock Load Factor Hp 
(feet) (B and Ht in feet) Remark  

I.  Hard and intact  
Hard and intact rock contains no joints and fractures. After 

excavation the rock may have popping and spalling at excavated face.  
0 

Light lining required only if spalling or 
popping occurs.  

II. Hard stratified and schistose  
Hard rock consists of thick strata and layers. Interface between strata 

is cemented. Popping and spalling at excavated face is common.  
0 to 0.5 B  

Light support for protection against 
spalling. Load may change between 

layers.  

III. Massive, moderately jointed  
Massive rock contains widely spaced joints and fractures. Block size 
is large. Joints are interlocked. Vertical walls do not require support. 

Spalling may occur.  
0 to 0.25 B  

Light support for protection against 
spalling.  

IV. Moderately blocky and 
seamy  

Rock contains moderately spaced joints. Rock is not chemically 
weathered and altered. Joints are not well interlocked and have small 
apertures. Vertical walls do not require support. Spalling may occur.  

0.25 B to 0.35 (B + Ht)  No side pressure.  

V. Very blocky and seamy  
Rock is not chemically weathered, and contains closely spaced joints. 
Joints have large apertures and appear separated. Vertical walls need 

support.  
(0.35 to 1.1) (B + Ht)  Little or no side pressure.  

VI. Completely crushed but 
chemically intact  

Rock is not chemically weathered, and highly fractured with small 
fragments. The fragments are loose and not interlocked. Excavation 

face in this material needs considerable support.  
1.1 (B + Ht)  

Considerable side pressure. Softening 
effects by water at tunnel base. Use 

circular ribs or support rib lower end.  

VII. Squeezing rock at moderate 
depth  

Rock slowly advances into the tunnel without perceptible increase in 
volume. Moderate depth is considered as 150 ~ 1000 m.  

(1.1 to 2.1) (B + Ht)  
Heavy side pressure. Invert struts 

required. Circular ribs recommended.  

VIII. Squeezing rock at great 
depth  

Rock slowly advances into the tunnel without perceptible increase in 
volume. Great depth is considered as more than 1000 m.  

(2.1 to 4.5) (B + Ht)  Heavy side pressure. Invert struts 
required. Circular ribs recommended.  

Circular ribs required. In extreme cases 
use yielding support.  IX.  Swelling rock  

Rock volume expands (and advances into the tunnel) due to swelling 
of clay minerals in the rock at the presence of moisture.  

up to 250 feet, 
irrespective of B and Ht 

TABLE 2-1- DEFINITION OF TERZAGHI’S ROCK CLASSES AND ROCK LOAD THEORY 

Notes: The tunnel is assumed to be below groundwater table. For tunnel above water tunnel, Hp for Classes IV to VI reduces 50%. The tunnel is 
assumed excavated by blasting. For tunnel boring machine and roadheader excavated tunnel, Hp for Classes II to VI reduces 20-25. 
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Terzaghi's methodology has found wide application in North America, where the drill and blast and 
steel arches techniques were very common. Such methodologies essentially correspond to those 
used during his alpine experience. Unfortunately the method is not particularly suited to excavation 
methods different from the traditional ones and has a tendency to overestimate the squeezing 
pressure in tunnel of large diameter (Singh and Goel, 1999). 

 
FIGURE 2-3 - TERZAGHI’S (1946) ROCK LOAD FACTOR CONCEPT 

The opening of a tunnel causes the relaxation of the rock mass surrounding the void, allowing its 
partial closure. According to the Rock Load Theory, this movement is contrasted by the friction 
generated at the border of the plasticized area and by the pressure borne by the internal support 
system installed at the surface of the excavation.  
In 1970, Deere slightly modified the classification suggested by Terzaghi as shown in Table 2-3, 
correlating it to his index RQD (Rock Quality Designation, 1964). The RQD index classifies a rock 
mass on the basis of the observed degree of jointing of a core sample recovered from a borehole. It 
is calculated as the percentage of the drill core recovery of the pieces of rock having lengths of 10 
cm or more, Expressed as in Equation 2-3. 
 

100
run core oflength  Total

cm 10  core ofength  
x

L
RQD




   
(2-3) 

 
In Table 2-3, in accordance with the classification RQD, is shown the subdivision into classes of 
rock mass quality as suggested by Deere. 
 
The major disadvantage of the RQD approach is that, problem which obviously also affects the 
modified version of the Rock Load System, the knowledge of just the degree of rock mass 
fracturing does not allow a complete description of the rock mass in complexity. RQD is, however, 
an excellent indicator of fracturing rock and it is basic element in some of the most used rock mass 
classification systems: Rock Mass Rating system (RMR) and Q-system. 
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Rock class and condition  RQD (%) Rock load (Hp)  Remarks  

I. Hard and intact  95–100  Zero  Same as Table 2-1  

II. Hard stratified or schistose  90–99  0–0.5 B  Same as Table 2-1 

III. Massive moderately jointed  85–95  0–0.25 B  Same as Table 2-1 

IV. Moderately blocky and seamy  75–85  0.25 B–0.35 (B + Ht)  

Types IV, V, and VI reduced by 
about 50% from Terzaghi values 

because water table has little 
effect on rock load (Terzaghi, 

1946; Brekke, 1968)  

V. Very blocky and seamy  30–75  (0.2–0.6) (B + Ht)  Same as above  

VI. Completely crushed  3–30  (0.6–1.10) (B + Ht)  Same as above  

VIa. Sand and gravel  0–3  (1.1–1.4) (B + Ht)  Same as above  

VII. Squeezing rock at moderate depth  NA  (1.10–2.10) (B + Ht)  Same as Table 2-1 

VIII. Squeezing rock at great depth  NA  (2.10–4.50) (B + Ht)  Same as Table 2-1 

IX. Swelling rock  NA  
Up to 80 m irrespective  

of the value of B, Ht  
Same as Table 2-1 

TABLE 2-2 - TERZAGHI’S ROCK LOAD SYSTEM AS MODIFIED BY DEERE’S (1970) 

 

RQD >90% 75 - 90 % 50 - 75 % 25 - 50 % 0 - 25 % 
Rock mass Quality Very Good Good Fair Poor Very Poor 

TABLE 2-3 - QUALITATIVE DESCRIPTION OF A ROCK MASS BY MEANS OF THE ROCK QUALITY DESIGNATION 

 

2.3.3  BIENIAWKI’S ROCK MASS RATING SYSTEM (RMR) 

The RMR classification was developed by Bieniawski (1973) for the South African Council for 
Scientific and Industrial Research (CSIR). Prior to appearing in the present form, the RMR 
classification has been updated 7 times, both in the allocation of points to different parameters and 
in the inclusion of correction factors to refine the results and facilitate its use in special conditions. 
The last update is dated 1993; to avoid misunderstanding it is really important to always define if 
the version used is different. 

In order to apply a rock mass classification, it is essential that the rock mass is divided into 
homogeneous geo-mechanical regions. The RMR index, then, will be determined in each region 
making use of the following 6 parameters: 

 RMR1 - Rock Quality Designation (RQD)  
 RMR2 - Uniaxial Compressive Strength of the Intact Material  
 RMR3 - Joints Spacing 
 RMR4 - Joints Condition 
 RMR5 - Groundwater condition 
 RMR6 - Joints Orientation 
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(a) Five basic rock mass classification parameters and their ratings 

1 
Strength of intact  Point load strength index (MPa) > 10 4 - 10 2 - 4 1 - 2       

rock material Uniaxial compressive strength (MPa)   > 250 100 - 250 50 - 100 25 - 50 5 - 25 1 - 5 < 1 

Rating 15 12 7 4 2 1 0 

2 
RQD (%)  90 − 100    75 − 90    50 − 75    25 − 50    < 25   

Rating  20   17 13 8  3   

3 
 Joint spacing (m)    > 2    0.6 − 2    0.2 − 0.6    0.06 − 0.2    < 0.06   

Rating  20   15 10 8  5   

4 

 Condition of joints    not continuous,very rough    slightly rough surfaces,   slightly rough surfaces  continuous, slickensided    continuous joints, soft  

 surfaces, unweathered,    slightly weathered,    highly weathered,    surfaces, or gouge <5 mm    gouge >5 mm thick, or  

 no  separation    separation <1 mm    separation <1 mm    thick, or separation 1−5 mm   separation >5 mm   

Rating  30   25  20   10  0   

5 

 Groundwater    inflow per 10 m tunnel length (l /min), or   none  < 10    10 − 25    25 − 125    > 125   
 joint water pressure/major in situ stress, or   0  0 − 0.1    0.1 − 0.2    0.2 − 0.5    > 0.5   
 general conditions at excavation surface   Compl. Dry Damp  Wet    Dripping    Flowing   

Rating 15 10 7 4 0 
(b) Rating adjustment for joint orientations  

Strike and dip orientation of joints  very favourable  favourable  fair  unfavourable  very unfavourable  

Rating  

tunnels  0 − 2  − 5  − 10  − 12  

foundations  0 − 2  − 7  − 15  − 25  

slopes  0 − 5  − 25 − 50  − 60  

(c) Effects of joint orientation in tunnelling  

Strike perpendicular to tunnel axis  
Strike parallel to tunnel axis  Dip 0° − 20°  

Drive with dip  Drive against dip  

Dip 45° − 90°  Dip 20° − 45°  45° − 90°  Dip 20° − 45°  Dip 45° − 90°  Dip 20° − 45°  irrespective of strike  

very favourable  favourable  fair  unfavourable  very unfavourable  fair  fair  
TABLE 2-4 – CLASSIFICATION OF THE JOINTED ROCKS AS PER BIENIAWSKI (1993) AND RELATIVE ADJUSTMENT FOR JOINT ORIENTATION 
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Bieniawski clearly defined the procedure for the evaluation of these six factors. The process for the 
determination of the first five is summarized in Table 2-4.a, while the procedure for the evaluation of the 
remaining one, which considers the effect of the joints on the excavation in numbers, is split up in Tables 
2-4.b and 2-4.c. 

The system of ranking is based on the attribution of a value that describes the status of each one of the six 
parameters. The sum of the results of each characterization returns the RMR index. 




6

1i iRMRRMR      (2-4) 

The sum of the first 5 indices lies between 0 and 100, while the, always negative, sixth is an adjustment 
parameter which is a function of the angle formed between the excavation and discontinuities. Only after 
having applied the necessary corrections, a rock mass can be classified in accordance to Table 2-5. 

RMR Rating 100 - 81 80 - 61 60 - 41 40 - 21 20 - 0 
Class Number I II III IV V 
Description Very Good Good Fair Poor Very Poor 

TABLE 2-5- ROCK MASS CLASSES FOR THE RMR CLASSIFICATION 

The observation of the behavior of 168 tunnels excavated in hard rock is the basis of the proposed 
approach. For this reason it is reasonable to expect a better degree of correlation when applied to this kind 
of rock. However, this classification has been widely spread in various fields, both mining and in civil 
engineering, from tunneling to slope stability and foundations, in any condition of rock. 

As shown in Table 2-6, Bieniawski correlated each RMR class of rock to appropriate values of rock mass 
cohesion and internal friction angle, unsupported tunnel span and its self-support time. The knowledge of 
these values is fundamental in any geotechnical design approach.  

Class Number I II III IV V 

Average stand-up time 
10 year for  
15 m span 

6 months for 
8 m span 

1 week for  
5 m span 

10 hours for  
2.5 m span 

30 minutes for 
0.5 m span 

Rock mass cohesion (kPa) > 400 300 − 400 200 − 300 100 − 200 < 100 

Rock mass friction angle > 45° 35° − 45° 25° − 35° 15° − 25° < 15° 
TABLE 2-6 – MEANING OF THE RMR CLASSES OF QUALITY 

 

2.3.3.1  CORRELATIONS IN TERMS OF RMR 

The results of RMR classification can be related to the value of modulus of deformation and unconfined 
compressive strength by means of several empirical formulations. Bieniawski (1978) proposed the 
following relation for determining the modulus of deformation Ed, which is recommended for hard rocks 
(RMR > 50). 

Bieniawski     1002  RMRGPaEd   (2-5) 

Different other approaches have been proposed for the empirical evaluation of Ed in weak rock masses: 

Stille (1986)     RMRGPaEd  05.0  (RMR < 52)   (2-6) 

Serafim & Pereira (1983)   40

10

10



RMR

d GPaE  (RMR < 50)   (2-7)  
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Mehrotra, Mitra & Agrawal (1991)   50

30

10



RMR

d GPaE    (2-8) 

Hoek and Brown (1997)    38

32

10
10















RMR
ci

d GPaE


 (ci < 100)  (2-9) 

 
 The uniaxial resistance of the rock mass cr can be indirectly estimated using the formulation produced 
by Mohr-Coulomb with the values of cohesion and internal angle of friction suggested in Table 2-5 by 
Bieniawski. 

Mohr-Coulomb
   


sin1

cos2




c
cr

 
  (2-10) 

2.3.4  NORWEGIAN GEOTECHNICAL CLASSIFICATION 

This classification system was developed by Barton, Lien and Lunde, all members of the Norwegian 
Geotechnical Institute (NGI), in 1974. Usually it is called Barton's system or, more simply, Q system.  
The Barton’s approach, as the classification proposed by Bieniawski, is based on the attribution of indices 
of quality to six important parameters characterizing the rock mass that put together define the global 
index of quality. The characterizing factors must be individually evaluated accordingly to the accurate 
guideline produced by Barton for their consistent calculations are: 

 RQD (Rock Quality Designation) 
 Jn (joint set number) 
 Jr (joint roughness number) 
 Ja (joint alteration number) 
 Jw (joint water parameter) 
 SRF (stress reduction factor) 

Q - value Rock mass quality 

400 - 1000 Exceptionally Good 

100 - 400 Extremely Good 

40 - 100 Very Good 

10 - 40 Good 

4 - 10 Fair 

1 - 4 Poor 

0.1 - 1 Very Poor 

0.01 - 0.1 Extremely Poor 

0.001 - 0.01 Exceptionally Poor 
TABLE 2-7 - Q ROCK MASS QUALITY 

 FOR TUNNELING 

The 6 indices are grouped into 3 quotients, multiplied together to obtain the value of the global index of  
Q (from which the name of the classification) as expressed by the Equation 2-11: 

SRF

J

J

J

J

RQD
Q w

a

r

n

       (2-11) 
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The first ratio, nJRQD , is proportional to the size of the blocks constituting the rock mass. The second, 

ar JJ , is an approximation of the shear strength that we can expect from at the surface of the 

discontinuities, which is, of course, influenced by roughness and degree of alteration. The third quotient, 
SRFJ w , is an indication of the stress condition borne by the rock mass, the in situ stress and the pore 

water pressure, which significantly reduces the shear strength of the joints of rock. 

Barton, in contrast to the Bieniawski’s approach, does not consider relevant the effect of orientation of 
joints with respect to the six factors included in the index Q.  

As shown by Table 2-7, the range of admissible Q is very large. An exceptionally poor rock mass can 
present a Q value equal to 0.001 and one exceptionally good up to 1000. The accuracy in its 
determination is particularly useful for weak rocks, the condition where the classification has shown 
better correlation. 
  

 

FIGURE 2-4- GRIMSTAD AND BARTON (1993) CHART FOR THE DESIGN OF SUPPORT 

The optimum choice of tunnel support requirements can be deduced by the value of Q. The chart in 
Figure 2-4, introduced by Grimstad and Barton in 1993, suggests the appropriate support as a function of 
the Equivalent Dimension (of the excavation) and Q value, making use of all the latest available 
techniques of confinement.   
The values of the Equivalent Support Ratio (ESR), necessary for the determination of the Equivalent 
Dimension, are tabulated in Table 2-8. 
By means of Equivalent Support Ratio ESR and Q, Barton also proposed an estimation of the maximum 
length of unsupported tunnel Dmax. 

  4.0
max 2 QESRD       (2-12) 
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A Temporary mine openings 3 - 5 

B 
Permanent mine openings, water tunnels for hydro-electric 

1.6 
projects, pilot tunnels, drifts and headings for large excavations. 

C 
Storage rooms, water treatment plants, minor road and railway 

1.3 
tunnels, surge chambers and access tunnels in hydro-electric project 

D 
Underground power station caverns, major road and railway 

1.0 
tunnels, civil defense chamber, tunnel portals and intersections. 

E 
Underground nuclear power stations, railway stations, sports and 

0.8 
public facilities, underground factories. 

TABLE 2-8 - EXCAVATION CATEGORIES DETERMINATION 

2.3.4.1  CORRELATIONS IN TERMS OF Q 

As for the RMR classification, based on the index Q, many useful empirical relationships have been 
proposed. 
A mean value of the Modulus of Deformation Ed can be evaluated by means of the relation suggested by 
Barton (2002). 
 

3110 cd QE         (2-13) 

 
Where Qc, Modified Tunnel Quality Index, can be expressed as follows 

 

100
cr

c QQ        (2-14) 

 
Singh (1997) observed that, on the basis of the observation of the 35 instrumented tunnels, the magnitude 
of the Modulus of Deformation is also influenced by the in situ stress confinement in accordance to the 
following correlation 
 

 36.02.0 QHEd   H > 50 m    (2-15) 

 
While the Modulus of Elasticity Ee can be expressed as follows 
 

 14.06.05.1 re EQE        (2-16) 

 
where Er is the Modulus of Elasticity for the intact rock.  
To ensure the feasibility of the Mohr-Coulomb failure criterion, Barton, making use of the same indices, 
introduced the definition of Q, and derived two simple relations for the determination of angle of internal 
friction  and cohesion c.  
 

 







 

w
a

r J
J

J1tan      ` (2-17) 

 
100

1 ci

n SRFJ

RQD
c


       (2-18) 
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Goel and Singh (2006) modified the formulation of the internal angle of friction given by Equation 2-17, 
incorporating the effect of the rock blocks interlocking, as follows 
 

 







  1.0tan 1

w
a

r J
J

J
      (2-19) 

 

2.3.5  CORRELATION BETWEEN RMR AND Q 

Numerous attempts have been made to relate the results of the Q and RMR classifications. The 
determination of a certain law, valid in any condition of rock mass, which links these two approaches, 
creates objective difficulties. Some methods, in fact, have shown good results only in the soft rocks range, 
while others only in the hard rocks field.  
 
Bieniawski (1989)   44ln9  QRMR   (2-20) 

Rutledge and Preston (1978)  43ln9.5  QRMR   (2-21) 

Moreno (1980)    2.55ln4.5  QRMR  (2-22) 

Cameron-Clarke and Budavari (1981) 8.60ln5  QRMR   (2-23) 

Abad et al. (1984)    8.41ln5.10  QRMR  (2-24) 

And the approach suggested by Barton in 1995, the only relation based on a natural logarithm: 

Barton (1995)    50log15  QRMR   (2-25) 

The variety of solutions proposed, is a clear indication of the difficulty of finding a direct relationship 
between the two classifications. Goel (1995) ascribes this difficulty to the complex determination of some 
factors of RMR and Q and, on the basis of this hypothesis, he suggests the use of the indexes RCR (Rock 
Condition Rating) and N (Rock Mass Number). 

The RCR is the RMR index unconstrained by the effect of the crushing strength of the rock mass qc (A in 
the Equation 2-26) and of the adjustment of joints orientation (B).  

)( BARMRRCR       (2-26) 

The Rock Mass Number N is, instead, a stress free Q index: 

SRFQN         (2-27) 

Goel proposes to use modified versions of the indices suggested by Barton and Bieniawski for an indirect 
determination of their relationship. The advantage of using N and RCR instead of Q and RMR is that 
there are no concerns in their determination and, therefore, their comparison cannot be influenced by 
errors of personal evaluation.  
Based on the observation of 63 case studies he proposed the following correlation between RCR and N: 

30ln8  NRCR       (2-28) 

which, valid for qc > 5 MPa has shown a significant correlation coefficient of 0.92. 
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2.3.6  GEOTECHNICAL STRENGTH INDEX (GSI) 

The Geological Strength Index was introduced for the first time by Hoek in 1994 and was subsequently 
modified in collaboration with other authors. The latest version of the classification is dated 2000. 

The GSI, even though has all the necessary features, was not born as geo-mechanical classification, but it 
was ideated by Hoek as support for the prediction of the parameters mb, s and a of the Hoek and Brown 
failure criterion. 

The methodology of rock mass classification is founded upon the visual observation of rock mass degree 
of jointing and surface alteration of rock. The combination of these two parameters, making use of the 
chart in Figure 2-5, returns the value of GSI. 

 

 

FIGURE 2-5 - GEOLOGICAL STRENGTH INDEX FOR JOINTED ROCK MASSES  
(HOEK AND MARINOS, 2000) 

The Hoek and Brown non-linear failure criterion, introduced for the first time in 1980, presents the 
formulation suggested in 2002, as: 

a

ci
bci sm 





  

 3
31

'''     (2-29) 

The parameters mb, s and a can be directly computed knowing the entity of the resulting GSI of the rock 
mass making use of the following correlations: 
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Where mi is a constant of the material that can be determined by laboratory testing or estimated by 
specific tables, and D represents the degree of disturbance associated to the method of excavation used. 

The values of the Q and RMR indexes can be related to the GSI. In particular, it is recommended to 
convert the GSI to Q index for weak rock mass (GSI < 18) and to RMR for harder materials (GSI > 18) in 
accordance to the following relations: 

589  RMRGSI       (2-33) 

44'ln9  QGSI       (2-34) 

Where the Q’ is a modified version of the Barton’s index which contains only the first four factors of the 
original form: 

Q '  RQD

Jn

Jr

Ja

       (2-35) 

2.4  ANALYTICAL METHODS 
During the construction of an underground excavation, the initial state of equilibrium of the adjacent rock 
mass is disturbed. Consequently, the volume affected would be subject to a redistribution of stresses, 
which is followed by deformations in the direction of the opening. 

As already mentioned, if the induced state of stress overcomes the characteristic resistance of the 
material, the installation of an internal support is necessary for the obtainment of equilibrium and 
reducing excessive deformations. The opportunity of installing supports to reach the equilibrium and 
reduce deformations basically depends on: 

o Ratio between excavation dimensions and discontinuities spacing 
o Number of discontinuity sets 
o Rock mass resistance characteristics 
o Original state of stress 
o Shapes of void and excavation techniques applied 

2.4.1  STRESS ANALYSIS OF A TUNNEL IMMERSED IN AN ELASTIC CONTINUUM 

If the spacing among the discontinuities characterizing a rock mass is much bigger than the excavation 
dimensions, it would be admissible to consider that as a massive hard rock. Since the resistance of a rock 
material is usually sufficient to support very intensive stresses, avoiding the beginning of the 
plasticization, it will behave as an “elastic continuum”. In elastic conditions, an analytical description of 
the stress field modification can be made for any stress field and for several shapes of voids. It is not 
common to experience truly elastic conditions in tunneling engineering but a preliminary analytical 
solution by an elastic model allows a first important determination of dangerous stress concentrations. 

2.4.1.1  STRESS FIELD OF A CIRCULAR TUNNEL IN AN ELASTIC MEDIUM  

The prediction of stresses and deformations induced in an isotropic elastic rock mass by opening of a 
circular tunnel can be easily made by means of analytical approaches. In the following paragraphs the 
case of circular tunnels in hydrostatic and anisotropic original stress field is described through analytical 
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solutions. The proposed procedures will be subsequently extended to the case of elliptic and non-circular 
tunnels. 

2.4.1.2  CIRCULAR TUNNELS -  HYDROSTATIC IN SITU STRESS FIELD 

The analytical determination of the stress field surrounding a circular tunnel in hydrostatic in situ 
conditions is based on the four important hypotheses: 

1. Circular tunnel of infinite length; 
2. Homogeneous, Isotropic rock mass of infinite extension; 
3. Hydrostatic virgin in situ stress P0  
4. Constant radial pressure Pi applied to the internal surface of the tunnel; 

 

FIGURE 2-6 - REPRESENTATION OF THE PROBLEM AND DIAGRAM OF STRESSES 

 

Due to the radial symmetry of all the elements characterizing the problem, a circular tunnel subjected to a 
hydrostatic stress field can be considered as an axial symmetrical plane strain problem, which entails that 
the stresses induced by the excavation are only function of the distance from the tunnel axes.  

 

FIGURE 2-7 - MAXIMUM AND MINIMUM PRINCIPAL STRESSES 
 AROUND A CIRCULAR TUNNEL IN HYDROSTATIC CONDITIONS 

 IN ACCORD TO EQUATIONS 2-38 AND 2-39 
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A lined circular tunnel surrounded by an isotropic mass can be modeled as a cylinder of infinite length 
and infinite thickness (re – ri). The effect of an internal lining is simulated by means of the constant radial 
stress Pi at the internal face, proportional to its structural stiffness, while the hydrostatic stress field 
through a stress P0, equal to the geostatic vertical pressure, is radially applied to the external face of the 
cylinder. The simplified section of the cylinder is shown in Figure 6a. Considering the plane 
perpendicular to the tunnel direction in Figure 2-6a, the stresses observed in tangential  and radial r 
directions illustrated in Figure 2-6b are principal stresses, in the specific case, maximum  and minimum 
. 

The equilibrium of the small portion of rock mass shown in Figure 2-6b, occurs when the resultant of all 
the forces applied on it is null. The equation of equilibrium in cylindrical coordinates can be expressed as 
follow: 

0



rr

rr 



      (2-35) 

For the integration of this differential Equation, which shows the modified state of stress, the introduction 
of the two following constitutive relations valid in elastic field is necessary: 

Poisson’s ratio  axtr dd  
    (2-36) 

Hooke’s law   Edd      (2-37) 

For an infinite, lined, tunnel, the boundary conditions are summarized as follow: 

r = ri  r = Pi

r = re  r =  = P0 

The analytical solution formulation of radial and tangential stresses 
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Some consideration comes out by the observation of the relations 2-38 and 2-39. The Mohr’s circles 
representing the stress configuration are concentric, with center equal to the original hydrostatic pressure 
P0. The size of the circles proportionally decreases moving away from the tunnel centerline and reduces to 
the point P0 at the infinite. For the same reason, the sum of r and , as expressed by the Equation 2-40, 
is constant and equal to twice the original in situ stress in presence of any confinement at the surface of 
the tunnel.  
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 
 
 (2-40) 

 Figure 2-7 illustrates how the most severe state of stress is concentrated at the surface of the tunnel, 
where the deviatoric stress (r), in absence of lining reaction, reaches the value of two times P0.  
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The deviatoric stress decreases rapidly moving away from the tunnel centerline, at the distance of two 
diameters behind the tunnel surface, the difference between the original stress P0 and the principal stresses 
is only 4%. The pressure Pi applied to the internal surface of the tunnel has the effect to reduce the 
difference between the principal stresses but, considering its small entity with respect to the high 
pressures produced, it cannot induce sensible decrement in the stress conditions. 

2.4.1.3  CIRCULAR TUNNELS – NON-HYDROSTATIC IN SITU STRESS FIELD 

In order to make easier the treatment of a tunnel under non-hydrostatic stress conditions, it is assumed 
that the in situ original stresses Ph and Pv are coincident with the horizontal and vertical directions as 
shown in Figure 2-8. The principal stresses are interrelated through the horizontal stress ratio  as in 
Equation 2-41: 

vh PP  
       (2-41) 

The determination of the vertical component of the in situ stress does not present particular 
complications and can be estimated by means of the following easy relation: 

 hPv  
       (2-42) 

where  is the unit weight of the overlying rock mass and h is the depth below the surface. 

 

FIGURE 2-8 – CIRCULAR TUNNEL 
 IN A NON-HYDROSTATIC STRESS FIELD 

 
Measurements of vertical stress at various mining and civil engineering sites around the world as reported 
by Hoek and Brown (1990) estimate the average unit weight of the earth’s crust equal to 27 kN/m3. As 
illustrated in Figure 2-9, the measurements can vary from the expected geostatic pressure, but they can be 
improved by means of specific geological surveys. 
The horizontal component of the in situ stress, instead, is a function of many parameters not always easy 
to determine. Ph can be either bigger or smaller than the vertical component Pv because  (sometimes K or 
K0), can show a large range of values ranging between 0 and 4. 
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At low depths, up to 1000 meters below the ground level, the gravitational effect of the rock mass is not 
preponderant and  is a complex combination of the effects of gravity, superficial morphology, 
subsidence phenomena and, for the most part, intra-crustal tectonic stresses. For this reason in the vicinity 
of the ground surface  can manifest that wide range of values.  

 

 

FIGURE 2-9 - VERTICAL STRESS MEASUREMENTS  
(UNDERGROUND EXCAVATION IN ROCKS, HOEK AND BROWN (1990)) 

Beyond that point the difference between vertical and horizontal components of the in situ stress reduces, 
showing the tendency to hydrostatic conditions. 

 

FIGURE 2-10 – VARIATION OF THE RATIO OF AVERAGE HORIZONTAL STRESS TO VERTICAL STRESS WITH DEPTH 

BELOW SURFACE (UNDERGROUND EXCAVATION IN ROCK, HOEK AND BROWN (1990)) 
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Again the 116 measurements of in situ stress, shown in Figure 2-10, collected in various parts of the 
world and published by Hoek and Brown (1990) confirm that, for low depths, it is not possible to get an 
estimation of the original stress field, while the range of values for  becomes narrow when the depth of 
1000 meters is exceeded. 

The state of stress inducted by the opening of a circular tunnel in an anisotropic stress condition is well 
described by the Kirsch’s equations (1898). The Kirsch’s equations are based on the linear theory of 
elasticity and assume isotropic rock properties. They reduce to Equations 2-38 and 2-39 when the 
horizontal stress ratio is equal to one. 
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Differently from the isotropic case, the radial r and normal  tensions are not always principal stresses; 
this condition is achieved only along the principal directions and at the tunnel surface, where the 
expression of shear stress in Equation 2-45 becomes null. In an anisotropic stress field, the induced 
modifications of the stress field are not only sensitive  to the distance from the centerline r, but are mostly 
a function of   measured  with the  horizontal plane passing through  the center of  excavation. In Figure 
2-11 is presented the distribution of the principal stresses in radial and tangential direction for different 
values of horizontal ratio. 

 

FIGURE 2-11 - TANGENTIAL AND RADIAL PRINCIPAL STRESS 
 IN HORIZONTAL DIRECTION FOR INCREASING VALUES OF  

In absence of internal confinement, the tangential stress at the tunnel contour (r/ri=1), which is shown in 
Figure 2-12, can be expressed by means of Equation 2-46. The radial and shear stresses expressed by the 
relations 2-43 and 2-45 are, instead, null. 

     cos2-121P 
v  

(2-46)
 when  = 90°, 270°  13P   v  

when  = 0°, 180°    3Pv  
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The maximum tangential stress observed at the tunnel surface is always larger with respect to that 
registered in a hydrostatic stress field and located in the portion of tunnel. It is in normal direction to the 
minimum in situ principal stress direction. This difference is more evident when the vertical principal in 
situ stress is predominant ( is bigger than 1).In the direction of the maximum in situ stress, instead, the 
tangential stress is smaller than the constant, hydrostatic, 2*P0.  

 

FIGURE 2-12 - TANGENTIAL STRESS AT THE TUNNEL SURFACE FOR INCREASING VALUES OF  

When the horizontal stress ratio is smaller than 1/3 or bigger than 3, concentration of tensile stresses are 
also recognizable. These kinds of stresses are particularly dangerous in tunneling engineering because of 
the low resistance of the rock masses, which is approximately only half the rock mass cohesion. 

2.4.1.4  NON CIRCULAR TUNNELS IN NON-HYDROSTATIC IN SITU STRESS FIELD 

The analytical resolution of the stress distribution induced by the excavation of a tunnel different from the 
typical circular shape presents objective difficulties of implementation and a numerical approach for its 
analysis would be certainly more appropriate.  The analytical solution of two specific cases is, however, 
possible and it is of great importance to extend the acquired knowledge of several underground 
excavations of different shapes. 

 

FIGURE 2-13 – GEOMETRICAL CONFIGURATION OF AN ELLIPTIC TUNNEL  
IMMERSED IN AN ANISOTROPIC STRESS FIELD 

The first example presented in this section, as shown in Figure 2-13, is the case of an elliptic tunnel. For 
the elliptic example, assuming the principal stresses coincident with the major   and minor  axes, a and b 
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of the ellipse, the pressure , perpendicular point by point to the surface of the void, as suggested by 
Ribacchi (1986), is expressed by the following relation: 
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The geometrical characteristics of an ellipse can be described by means of the non-dimensional ratio a/b 
between maximum and minimum lengths of the principal axis. In particular, when a/b is equal to 1, the 
ellipse reduces to a circle and the relation 2-47 is coincident with the Equation 2-44. 

Some considerations come out from the study of the Equation 2-47. As already mentioned, for the 
analysis of a circular tunnel, the most problematic stress configuration is observed when  is external to 
the range 1/3 to 3 which corresponds to the generation of tensile stresses. The tensile stress observed and 
the extension of the interested tunnel surface is a function of the distance  from the boundaries of the 
compressive stresses range. 

 

FIGURE 2-14 – STRESS DISTRIBUTION AT THE SURFACE OF AN ELLIPTIC TUNNEL  
WITH MAJOR AXES IN HORIZONTAL DIRECTION 

Now the case of a circular tunnel subjected to an anisotropic stress field is compared to the elliptic tunnel 
with horizontal major axes (a/b>1) shown in Figure 2-14a. If the tangential stress at the tunnel surface is 
evaluated for different values of the horizontal ratio, the following outcomes can be deducted from the 
comparison with the circular case: 

 

FIGURE 2-15 - STRESS DISTRIBUTION AT THE SURFACE OF AN ELLIPTIC TUNNEL  
WITH MAJOR AXES IN VERTICAL DIRECTION 

 The development  of tensile stress conditions is anticipated when the maximum in situ stress is 
directed vertically and delayed when it is directed horizontally; 

 In hydrostatic conditions, the maximum tangential stress is considerably larger; 



27 
 

 If the horizontal ratio is bigger than 1, the maximum compressive tension, which is located at 
crown  = 90°, is smaller.  

The same comparison is now performed to an elliptic tunnel with the maximum axes horizontally oriented 
as shown in Figure 2-15.  

 The development  of tensile stress conditions is anticipated when the maximum in situ stress is 
directed horizontally and delayed when is directed vertically; 

 The maximum entity of the compressive stress in hydrostatic conditions is larger than that 
observed in a circular tunnel;  

 If the maximum principal stress is oriented in the direction of the minimum tunnel axes, the 
tangential stress produced by an elliptic excavation is considerably larger. 

Throughout the analysis of the three above presented cases of circular and elliptic tunnels subjected to 
anisotropic stress field, it is observed that the state of stress at the internal surface of an underground 
excavation can be manipulated to achieve a less critical condition just modifying the shape of the tunnel 
section. 

For anisotropic stress conditions, an elliptic tunnel section oriented with the major axes parallel to the 
maximum principal in situ stress direction is an efficient choice. This configuration allows reducing the 
portion of tunnel subjected to tensile stresses and the magnitude of the compressive stresses. In 
hydrostatic stress conditions, instead, the best option is always the circular shape. 

A rectangular shaped tunnel can be considered in place of an elliptic shape. The stress distribution is 
similar to that obtained for an elliptical option but, in the proximity of the four corners, a severe increment 
of the tangential stress is observed. The entity of this increment, which is present for any value of , is 
direct function of the curvature of the corners and is so large that the resistance of the material may be 
locally overcome. The local failure of rock has the positive effect of mitigating the state of stress 
produced without compromising the global stability of the excavation. Its advent can be, however, 
minimized by increasing the original radius of curvature. 

2.4.1.5  EFFECT OF THE ROCK MASS ANISOTROPY ON THE STRESS FIELD 

According to Lekhnitskii, 1973, the state of stress at the contour of a tunnel immersed in an anisotropic 
rock mass, which presents directionally dependent properties, is strongly influenced by the orientation of 
the maximum and minimum components of the modulus of elasticity E. The maximum stress at the tunnel 
surface, in fact, tends to increase in the direction of the maximum. 

Nevertheless, the response of an isotropic rock mass is noticeably different only in cases of pronounced 
anisotropy as, for instance, sedimentary rock or rock masses provided with explicitly oriented 
discontinuities (Martino and Ribacchi. 1972). 

2.4.2  TENSIONAL ANALYSIS OF A TUNNEL IMMERSED IN A STRONGLY FRACTURED 

ROCK MASS 

The choice of the best location for the realization of an underground infrastructure is hardly based on a 
rational investigation of the geological and geotechnical structures present in the local area. More 
frequently the engineers must make the best of the geo-structural conditions imposed by other than 
engineering motivations. 

When the degree of fracturing present in the rock mass is such that the ratio of excavation dimension / 
joint spacing is very large, the rock volume behaves as a granular soil and its original resistance 
drastically decreases. This condition can be modeled by means of an equivalent rock of weaker 
characteristics than those of the rock matrix. The drop in resistance is a direct function of the degree of 
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the physical and chemical alteration undergone by the rock mass and can be evaluated by means of any 
geo-mechanical classification. In these conditions the probability of facing difficulties during the 
excavation is very high even in presence of ordinary in situ stress fields.  

The analytical determination the state of stress inducted by excavation of a tunnel is possible in respect of 
a relatively high number of initial conditions. The large number of geometrical or physical restrictions 
corresponds to a poor flexibility of the present approach, in particular when used for complex designing.  
In spite of these limitations, it is still widely applied and carved out an important preparatory role in the 
understanding of Tunneling Engineering. In fact, with the success of the numerical methods applied to 
geo-mechanical problems, almost every engineering problem can be easily reproduced and solved without 
any particular knowledge of tunneling engineering, but a strong analytical background is, however, still 
necessary to verify the accuracy of the numerical outcomes.  

2.4.2.1  STRENGTH OF ROCK MASSES 

The knowledge of the strength of a rock mass is fundamental for the design of underground 
infrastructures. The boundary between admissible and non-admissible states of stress in the three-
dimensional principal stress space 1-2-3 is represented by a convex surface. This surface is called 
failure criterion or yield function and its general formulation is expressed as follow: 

  0,, 321         (2-48) 

 When the stress applied to an element of the rock mass lies on the failure surface it fails and the plastic 
deformations start.  

Depending on the characteristics of the rock mass, the limit surface will expand (hardening behavior) or, 
more commonly in rock masses, will contract (model softening behavior) when overlaid. The velocity of 
this contraction is different for different types of rocks. The modeling of the different behaviors at failure 
of the yield criteria can be represented in one-dimension as a function of the single principal stress and 
related strain as shown in Figure 2-16. 

Considering the real resistance of a rock mass, it cannot support an unlimited amount of stress. The 
maximum limit that it can handle is given by the pressure of failure. Beyond that point it cannot withstand 
any further stress. 

 

1 – Perfectly Elasto-plastic Law 

2 – Brittle with Progressive Failure Law 

3 – Brittle Law 

 

FIGURE 2-16 – IDEAL STRAIN SOFTENING RESPONSE 
 OF A ROCK MASS 
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  (2-52) 

where cin  max33 ''   and ci  is the uniaxial  compressive     strength     of     rock material. 

max3'   is the upper limit of the confining stress over which the relation between the criteria is considered. 

For underground excavation Hoek et al (2002) proposed the following relation for its determination: 
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where situin  is the maximum in situ stress registered in the direction perpendicular to the tunnel 

direction and cm' is the rock mass uniaxial strength. 

Conditions of triaxial state of stress (2 = 3), on which most of the geo-mechanical constitutive models 
are normally based, are accomplished only occasionally. In field, when the intermediate principal stress 
does not coincide with the minimum principal stress, these conditions are called polyaxial state of stress. 
Very pronounced polyaxial conditions are observed in the proximity of the surface of an underground 
excavation. For example, the stress oriented in the direction of a tunnel, which is intermediate principal 
stress, is two times the vertical in situ stress, and much greater than the minimum principal stress (radial), 
which is only equal to the resistance opposed by the lining system. 

Several authors have tried to propose strength criteria that take into account the effect of the intermediate 
principal stress at failure to describe the behavior of a rock mass. The first author who conducted specific 
laboratory experiments to verify the effect of intermediate principal stress on the rock strength was Mogi 
(1967). Nadai (1950) and Drucker and Prager (1952) previously grasped the importance of the 
intermediate principal stress to explain the behavior of a rock mass under polyaxial stress, but were able 
to produce constitutive models based only on theoretical considerations as the suitable equipment for 
polyaxial testing were not available. From the analysis of numerous polyaxial tests carried out on 
specimens of fractured rocks Mogi (1967) suggested the following empirical failure criterion: 
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f      (2-54) 

The intermediate principal stress therefore physically improves the characteristic resistance of a fractured 
rock. In accordance with the relation proposed by Mogi its impact, compared to that of the minimum 
principal pressure, is modulated by a coefficient  smaller than 1. 

The constitutive model suggested by Mogi was subsequently modified by Al-Ajmi in 2006, which 
produced the following Mogi-Coulomb strength criterion: 

2,moct ba         (2-55) 

where oct is the octahedral shear stress and m,2 is expressed as follows: 

2.4.2.1.2  POLYAXIAL STRENGTH CRITERIA
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The state of stress within the plasticized ring is, therefore, exclusively a function of applied pressure Pi on 
the internal surface of the excavation and the parameters of residual resistance chosen.  

Equations 2-64 and 2-65 do not allow, however, to define the external limit of the plastic zone. Radial 
pressure Pb at the plastic radius and its extension rp are obtained by assuming that at this distance are 
reached the peak failure conditions as expressed by the Equation 2-65: 
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In addition to this, as shown in Figure 2-22, at the contour of the elastic zone is also valid the relation 2-
40 existing between the principal stresses Pb and .  

bPP  02        (2-67) 

The equivalence of the two previous relationships returns the value of the radial stress Pb in rp. 
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In the elastic zone, the minimum and maximum principal stresses, determined using Equations 2-38 and 
2-39, are expressed respectively as: 
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For the hypothesis of continuity, at the plastic radius rp, the radial load Pb computed using Equation 2-64 
for the plastic zone and using Equation 2-69 for the elastic zone must be equivalent. Accordingly to this, 
equating the different Equations 2-64 and 2-69 of the radial pressure r, the magnitude of the plastic 
radius is determined as: 
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which is coincident with the Daemen’s approach when = 1.  

Based on the experience gained in the study of tunnels in the north of India, Singh and Goel (2006) 
suggest the use of two different constitutive models, the Polyaxial Strength Criterion at peak condition 
that reduces to Mohr-Coulomb in residual state, in his theory of stress distribution. According to these 
hypotheses, the Equation 2-74 is transformed as: 
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The generalized procedures presented above can be applied, making use of any failure criteria to most of 
the practical situations with only slight differences due to the different formulations.  

Many other different approaches were suggested for the prediction of the plastic zone and determination 
of the plastic radius. The approach proposed by Duncan-Fama (1993), which uses the Mohr-Coulomb 
failure criterion, and that suggested by Carranza-Torres and Fairhurst (2000), which uses the Hoek-Brown 
failure criterion, are of great importance. 

According to Duncan-Fama the pressure applied to the wall of the excavation Pi
cr below which the 

development of the plasticized zone is observed, can be expressed as: 
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where cr is the UCS of the rock mass and N = (1+sin)/(1-sin). The above formulation coincides with 
the relations 2-64 and 2-72 when the radius of the gallery is equal to the plastic radius (ri = rp). 

If Pi is a pressure applied to the surface of the excavation lower than the critical pressure cr
iP , the 

extension of the plastic radius of the associated plasticized region is expressed by the following relation: 
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According to the approach suggested by Carranza-Torres and Fairhurst (2000) the internal critical 
pressure was defined as follows: 
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where cr
iP is the scaled critical pressure, while mb and s are parameters of the Hoek-Brown failure 

criterion.  The extension of the plastic radius can be, instead, calculated with the following Equation: 
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pi is the internal pressure applied and Pi is the relative scaled internal pressure. The scaled internal 
pressure can be expressed as follows: 
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2.5  OBSERVATIONAL METHODS 
The observational methods are based on the continuous monitoring of the deformations recorded on the 
surfaces of a geotechnical work, which are the basis for the analysis, interpretation and the potential 
revision of the initial design proposal. The major developments observed in recent years are in the 
excavation techniques with a widespread use of monitoring techniques which results in better 
understanding of the rock masses. . 

Also with regard to the observational methods, great contribution to their development has been made by 
Karl Terzaghi that in the same period of the Rock Load System introduction, has given them the first 
organic treatment. In an unpublished introduction to the book "Theoretical Soil Mechanics" (1945) 
reported by Peck in 1969 he opposed a third way, the "experimental method", to the two most popular 
approaches in geotechnical engineering at that time, the abuse of (1) "wasteful" excessive factors of safety 
and the (2) "dangerous" practice of making rigid assumptions in accordance with general, average 
experience. 

"[...] Soil Mechanics, as we understand it today, provides a third method which could be called 
the experimental method. The procedure is as follows: Base the design on whatever information 
can be secured. Make a detailed inventory of all the possible differences between reality and the 
assumptions. Then compute, on the basis of the original assumptions, various quantities that can 
be measured in the field. For instance, if assumptions have been made regarding pressure in the 
water beneath a structure, compute the pressure at various easily accessible points, measure it, 
and compare the results with the forecast. Or, if assumptions have been made regarding stress 
deformation properties, compute displacements, measure them, and make similar comparison. On 
the basis of the results of such measurements, gradually close the gap in knowledge and, if 
necessary, modify the design during construction. 
Soil mechanics provides us with the knowledge required for practical application of this 'learn as 
you go' method […]." 

 
In 1945 were, therefore, already known the basic principles of the observational method, but its 
implementation was obstructed by the difficulty in determining the constitutive parameters of a rock 
mass and by the absence of appropriate technologies for the proper monitoring of the application of a 
design. 
Peck (1969), through a revisitation of the introductory contribution of Terzaghi, set the basis for a 
reliable, repeatable, simple and relatively low cost approach. One of the big issues in the application 
of the observational methods is, in fact, the unjustified complexity and cost of their practical 
applications. For these reasons, in 1969, he formally defined all the steps that, in his opinion, are 
necessary for the satisfactory implementation of Observational Methods: 
 
a. Exploration sufficient to establish at least the general nature, pattern and properties of the 

deposits, but not necessarily in detail 

b. The assessment of the most probable conditions and the most unfavourable conceivable 
deviations from these conditions, in this assessment geology often plays a major role 
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c. The establishment of the design based on a working hypothesis of behaviour anticipated under the 
most probably conditions 

d. The selection of quantities to be observed as construction proceeds and the calculation of their 
anticipated values on the basis of the working hypothesis 

e. The calculation of values of the same quantities under the most unfavourable conditions 
compatible with the available data concerning the subsurface conditions 

f. The selection in advance of a course of action or modification of design for every foreseeable 
significant deviation of the observational findings from those predicted on the basis of the 
working hypothesis 

g. The measurement of quantities to be observed and the evaluation of actual conditions 

h. The modification of design to suit actual conditions 

In his considerations Peck emphasized the importance of the preliminary understanding of the rock mass 
conditions as fundament for the design project. The suggested analysis, however, is inapplicable in some 
cases, particularly with respect to the point (c) where the "hypothesis of behaviour anticipated under the 
conditions most probably" are mentioned. The knowledge of the rock mass characteristics is, instead, 
always affected by an unavoidable degree of uncertainty, even more so given the poor quality of the 
geological and geotechnical investigation techniques present in that period, which has a large impact on 
the usability and safety of the facilities installed. In the design phase, therefore, a moderately conservative 
safety factor is necessary and should be maintained, if not improved, during the whole evolution of the 
work, by means of technical interventions of improvement, the magnitude of which is suggested by the 
results of the observation.  

The constantly increasing application observed in the last 30-40 years of the monitoring techniques in 
rock mechanics is closely linked to the development in tunneling of the "non-rigid" supports. Among 
these special containment systems can be listed as tunneling rods and bolts, deformable steel ribs, which 
allow a slow but controlled deformation of the rock mass with consequent partial dissipation of the state 
of stress generated in the vicinity of an excavation.  In that context Rabcewicz developed the New 
Austrian Tunnelling method (NATM, 1964-5), which can be described as the applicative version of the 
approaches suggested by Terzaghi and Peck. This method has evolved considerably over the years and is, 
today, one of the most efficient approaches in rock mechanics. It cannot be exclusively included within 
the observational methods, but, due to the continued use of numerical computation for the real-time 
verification of the initial assumptions, can also be placed among the numerical methods. 

Today, having shown great efficacy in minimization of the risk and cost reduction during the construction 
and maintenance of geotechnical works, the observational method has become an indispensable tool in 
engineering practice and research. Recently, in fact, the observational approaches have been included in 
the Eurocode 7 (UNI EN 1997-1:2005 and EN 1997-2:2007), the set of European rules for the 
geotechnical design, so their use has been officially disciplined for a consistent application in any 
geotechnical context. 

2.6  NUMERICAL METHODS FOR UNDERGROUND OPENINGS 
In rock mechanics, numerical methods are not part of the traditional methodology since they have been 
applied only recently. In soil and rock mechanics, unlike in mechanical and structural engineering, the use 
of numerical methods has long been hampered because of major difficulty in obtaining reliable 
constitutive relations describing the behavior of rock mass or soil. The numerical methods were not 
invented with the purpose of supplanting the other traditional methods, but to overcome some of their 
limitations. For this reason they can be only applied in combination with more traditional theories. 
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The extensive use of numerical methods in engineering is due to the simplicity and rapidity in solving 
cases that would otherwise require longer analysis. The resolution of analytical problems by numerical 
methods does not present any particular difficulty, only a high computational complexity, which has 
limited their practical application until the introduction of adequate computers and application software. 
Recently numerical software suites having specifically direct applications in soil and rock mechanics have 
been put on the market, allowing the generation and resolution of complex geo-mechanical models 
without particular experiences in programming and numerical analysis. 

The advantages derived from the simplicity of use of the application software, as already indicated in the 
section of the analytical methods, can turn into significant limitations when the software is used by 
inexperienced users, who, in the event of erroneous results, would not be able to appreciate it. Moreover, 
because the rock mass is a particularly complex material, its behavior will follow many and as much 
complex laws. But, in the context of commercial software, it is not possible to implement such a large 
number of constitutive laws, whose compilation is often complex, for the resolution of specific cases. For 
this reason, the commercially available numerical suites incorporate only the most "traditional" 
constitutive laws which are widely applied in practice, giving, only in some cases, the possibility to 
accommodate one’s own built-in constitutive models for special purposes. 

The most common numerical approaches for solving geo-mechanical problems are based on the 
discretization of the entire domain (FEM, FDM) or on the discretization of the contour (BEM). The 
choice of a particular approach over another is, in a manner similar to what is seen for the different 
analytical approaches, usually suggested by the ratio between the size of the excavation and spacing of 
the rock joints of interest. These three approaches are particularly suitable when the discontinuities in the 
rock mass are not so frequent, such that the rock mass can be considered continuous (hard rock) or when 
the degree of fracturing is so high that the rock volume is comparable to a weaker equivalent continuum 
(weak rock). If, instead, the size of the blocks of rock observed in the volume is comparable to the size of 
the excavation, the determination of the possible movements of the blocks of rock are more important 
than the global conditions of the rock mass itself. Under these conditions, the discrete element method 
(DEM) is recommended.  

Referring to these considerations Barton (1995) suggests choosing the most suitable numerical approach 
on the basis of Q value of the corresponding rock mass under examination. For values of Q smaller than 
0.1 and larger than 100 FEM, FDM and BEM are preferable, while within the same range, the DEM is the 
more appropriate. 

Here, all the different numerical approaches will not be explained in detail, as this would not be important 
in the development of this thesis. In Chapter 3, however, it will be explained as to how to   modify the 
software FLAC, the two-dimensional explicit finite difference program for engineering mechanics 
computation, and a specific methodology for its refinement. 

2.6.1  FINITE ELEMENTS METHODS (FEM) 

FEM numerical method is probably the most applied method in soil and rock mechanics. The term Finite 
Elements, attributed to Clough (1960), but its first applications are dated back to the 50s. In principle, 
well in advance of the first application in rock mechanics, it was exhaustively used for the solution of 
practical problems in aerospace, mechanical and structural engineering.  

In this approach, the continuum domain is discretized by means of reasonably small elements similar in 
shape (lines for one-dimensional domains, triangles and rectangles in two-dimensional domains, 
hexahedra and tetrahedra in those three-dimensional) with homogeneous physical characteristics, which 
share the corners (nodes) with the other components of the medium. 
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Its large development is primarily due to the simplicity of use and the ability to overcome the limits of 
traditional Finite Differences Methods in dealing with complex geometries and boundary singularities.  

2.6.2  FINITE DIFFERENCES METHODS (FDM) 

The finite differences method is one of the oldest numerical approaches. The first practical 
implementation is attributed to Runge (1908) that applied the finite differences to solve the partial 
differential equation of Saint-Venant's torsion problem (Higgins, 1943). The finite differences methods do 
not have a long tradition in soil and rock mechanics and only with the commercial introduction in 1996 of 
the software FLAC a valid alternative to the several finite elements analysis software has arrived. The 
software code FLAC, since the initial version introduced by Cundall and Board (1988), performs an 
explicit solution, which, in contrast to what happens in the FEM, does not need to allocate extra space for 
the stiffness matrix with great reduction in complexity and computational time.  

Using the FDM, the domain is divided by ordered connected sets of discrete points (nodes). It needs of a 
resolving grid quite homogeneous to be properly implemented, then, there are difficulties in refining the 
grid just in the presence of local singularities or in representing complex boundaries. Significant 
improvements in this respect are observed by using irregular triangular meshes or Voronoi grid systems 
(Jing and Hudson, 2002). 

2.6.3  BOUNDARY ELEMENTS METHODS (BEM) 

In the Boundary Elements Methods, only boundaries are discretized, which imply that if the domain 
extends to infinity, the external artificial boundaries are not required. The presence of an artificial 
boundary is, instead, fundamental in FEM and FDM to control the computational complexity of a 
physical model. The use of the BEM is particularly advantageous when the ratio of volume / surface of 
the domain is very large (Katsikadelis, 2002).  In addition, the model complexity increases in presence of 
non-homogeneous domains because at each change of material the discretization of the separation surface 
is required.  

In BEM, unlike to what happens in FEM and FDM, the solution is approximated to the boundary of the 
involved domain allowing reducing the order of a problem; a three dimensional problem therefore 
becomes two-dimensional and two-dimensional becomes one-dimensional. 

2.6.4  DISCRETE ELEMENTS METHODS (DEM) 

This method was specifically developed for the determination of local and global motion of a large 
number of distinct elements subjected to external modification of their initial equilibrium.  

The Discrete Elements Methods are often confused with the Distinct Elements Method introduced by 
Cundall (1971) and subsequently formalized by Cundall and Hart (1992), which is just a DEM developed 
for the quantification of rock blocks movements in close proximity to an excavation. The Distinct 
Elements Method was subsequently extended, in accordance to the studies promoted by Munjiza (2004), 
to many different industrial applications as pharmaceutical tableting, flow simulations and impact 
analysis in combination with the FEM. 

2.6.5  HYBRID METHODS 

The hybrid methods allow managing more complex geo-mechanical problems by combining the qualities 
of two different traditional numerical methods but using only one resolving code. The most common 
hybrid codes combine FEM or FDM, which are appropriate to manage the zones close to an excavation or 
a singularity, with BEM, to describe the more distant regions from them (Beer and Watson, 1992; Carter 
and Xiao, 1993). Phase, the commercial software distributed by Rocscience, follows this hybrid scheme.  
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Very common are also hybrid methods FEM / DEM (see next paragraph) or FDM / FEM (Itasca Flac that, 
only in specific contexts, implements the finite elements). 

2.6.6  RECENT IMPROVEMENTS IN NUMERICAL METHODS IN ROCK MECHANICS  

The refinement of the numerical techniques of representation and resolution has achieved accuracy 
absolutely unimaginable just 50 years ago. By means of specific numerical analysis, it is possible to study 
both local and global behavior of a fractured rock mass. 

Several authors have, in fact, numerically simulated various geotechnical tests on intact and fractured 
rocks with the aim to investigate the origin and evolution of plasticity in order to extend the knowledge 
acquired in the underground real cases. 

Stefanizzi (2007) by means of ELFEN (Rockfield Software, 2006) numerical finite / discrete elements 
software numerically simulated deformations and failure of standard homogeneous rocks in different 
laboratory tests (Brazilian, uniaxial and triaxial compressive tests). In their analysis, the behaviour of the 
intact rock is described by means of FEM until the rock fails while, at the opening of cracks, they are 
modeled by means of DEM. The possibility of correctly investigating formation and development of 
fracturing in a rock mass by means of numerical approaches is confirmed by studies of Munjiza (2004) 
who has positively compared the result of FEM / DEM mixed models with numerous laboratory triaxial 
tests on homogeneous rocks and those by Liyanapathirana et al (2005) who focused their research on the 
numerical behavior of anisotropic structured soils (sedimentary and residual soils). 
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3.1  ABSTRACT 
The traditional design methodologies for tunnel and underground excavations are divided in to three 
categories: Empirical approaches, Analytical approaches, and Observational approaches, whereas in 
the last years the Numerical approach has strongly become popular both for the intrinsic simplicity of 
the software packages and their ability to manage problems unsolvable with the classic methods. 

In this paper, the underground openings have been analyzed using constitutive models other than the 
Mohr-Coulomb theory. FLAC is used for the analysis and the software has been implemented to include 
the Polyaxial Strength Criterion. The details of the modifications made in the software are presented and 
the results are compared with the Singh's elasto-plastic stress distribution in squeezing grounds. This 
study will develop better comprehension of the behavior of the underground openings and also provide a 
useful tool to the designers in the planning stages. 

3.2  INTRODUCTION 
Many constitutive models have been developed to describe the behavior of a rock mass after modification 
of its equilibrium. In severe conditions none of these, however, has demonstrated sufficient correlation to 
the effective measured reactions. In fact, several experiences of back analysis in tunnels excavation 
(Jethwa, 1981), when compared to the results of the more applied designing procedures, have shown a 
marked tendency to overestimate the squeezing1 of the rock masses. 

To meet the needs of a more suitable theory for squeezing conditions, Wang and Kemeny (1995) 
performed several tests on anisotropic tuff to advance the hypothesis that the intermediate principal stress 
in an anisotropic rock mass under a polyaxial stress field could influences its behavior. 

                                                      
* Corresponding autor. Tel.: +27 (0)31 260 1077; fax: +27 (0)31 260 1411.  

Email address: scussel@ukzn.ac.za (D. Scussel). 
 
1 According to the International Society for Rock Mechanics (ISRM), the definition of Squeezing: 
"Squeezing of rock is the time dependent large deformation which occurs around the tunnel and is essentially associated with the 

creep cause by exceeding a limit shear stress" Barla (1995)  
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Rock mass in the vicinity of an underground excavation is a clear example of a medium subjected to a 
polyaxial stress field: 3 is very small or equal to zero, 2 is close to the in situ vertical stress (for deep 
tunnels) and 1 could be double the intermediate principal stress. Moving away in the radial direction, the 
difference between maximum and minimum stress is less appreciable. 

 

FIGURE 3-1 – TYPICAL STRESS DISTRIBUTION AROUND AN UNDERGROUND OPENING 

The classical strength theory assumes that only minor and major principal stresses influence the stability 
of the rock surrounding the excavation. However, in practical situations, the consideration of intermediate 
principal stress results in enhancement of strength. This can be explained by the significant work done by 
the intermediate principal stress component along the tunnel direction that compresses wedges of rock, 
increasing their global resistance and preventing rock falls. 

3.3  ELASTO-PLASTIC THEORY OF STRESS DISTRIBUTION IN BROKEN ZONE 

USING POLYAXIAL STRENGTH CRITERION IN SQUEEZING GROUND 

CONDITIONS 
Singh, et. al. (1998) investigated the effects of the intermediate principal stress on the strength of 
anisotropic rock mass, and proposed to modify the Mohr-Coulomb criterion by replacing 3 with the 
average value of 2 and 3. The Polyaxial Strength Criterion based on semi-empirical approach has 
shown better correlation between analytical results and observations. The criterion suggested by them is 
given below: 

 



sin1

sin2

2
32

31 






 

 cr     (3-1)
  

Starting from Equation 3-1, they formulated an elasto-plastic theory of stress distribution in broken zone 
in squeezing ground.  

Initial hypothesis can be summarized as follows:  

 Rock mass is isotropic, homogeneous and dry; 
 Rock mass follows the Polyaxial Strength Criterion in the elastic zone, whereas the Mohr-

Coulomb's theory inside the broken zone  
 Circular tunnel of radius ri is uniformly supported, and circular broken zone is of radius rp 
 There is no rock burst or brittle failure. 
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FIGURE 3-2 - SCHEMATIC BOUNDARY CONDITIONS OF THE PROBLEM 

Stress distribution within the broken zone is given as:  
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  rcrq   1       (3-2) 

Squeezing Pressure at the lining in the vertical direction ( = 90°): 
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and in the horizontal direction ( = 0°): 
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

 

Squeezing pressure at the lining for hydrostatical initial stress and negligible effect of rock mass weight 
is:  
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3.4  NUMERICAL ANALYSIS 

3.4.1  STATEMENT OF THE PROBLEM 

 The introduction of several engineering numerical analysis suites (FEM, FDM, BEM, DEM) has 
changed the approach to excavation problems. Now, it is possible to carry out a more detailed analysis 
considering complexities such as the influence of new parameters, particular geometries and boundaries 
shapes, introducing new excavation technique or considering the complex rock mass-liner interaction. 
Many very powerful codes have been developed for different constitutive models and are available for the 
analysis of geo-mechanical problems, but none of them consider the effect of the intermediate principal 
stress in the evaluation of plasticity. 

The scope of this work is to include the Polyaxial Strength Criterion among the more common 
constitutive model codes for FLAC and make it available for practical tunnel design. FLAC (Itasca) is a 
two-dimensional explicit finite difference program for solving many computational problems of 
geotechnical engineering and rock mechanics.  

In this study FLAC has been chosen for implementing a user-defined constitutive model, which is not 
present in this software and also in any other standard software. The model has been compiled in FISH, 
the built in program language. The inclusion of this feature in this software makes it ideal software for 
many practical studies of underground openings. 

3.4.2  MODIFICATIONS TO IMPLEMENT THE POLYAXIAL CONSTITUTIVE MODEL 

To develop a FISH code to incorporate the Polyaxial Strength Criterion, it is important to redefine the 
constitutive model's formulation consistent with the sign convention in FLAC. Starting with this, 
compression is taken as negative and the ordering of the principal stresses is 1 < 2 < 3 as in structural 
engineering. 

To avoid misunderstanding, when the data requested for the execution of the model are inserted by not an 
expert user, the variable needed are always positive in sign. This obviously affects the formulation of the 
constitutive model because, in such a reference system, Cohesion and Uniaxial Compressive Strength 
would be negatives. 

Incorporating these, Mohr-Coulomb  Theory and Polyaxial Strength Criterion will take the form given as: 

 Mohr-Coulomb  031  crN      (3-7)
 

 Polyaxial:   0
2

32
31 






 

 Acr


  (3-8) 

Other necessary step is to reformulate the Polyaxial Strength Criterion to make it similar to the Mohr-
Coulomb  formulation, as suggested below:  
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0''31  crN    
     (3-9)

 

Where �cr is the Compressive strength of the rock mass at the internal boundary of a tunnel 

 
0

2
' 2  Acrcr

  

and, where           N 
1 sin
1 sin

            N
'  1

1 sin   

The Polyaxial Strength Criterion as given by Equation 3-9 is shown in a graphical form in Figure 3-3. The 
similarity with the Mohr-Coulomb criterion is quite evident. However, this criterion incorporates the 
intermediate principal stress, which is not incorporated in Mohr-Coulomb criterion. Therefore, the 
parameters N' and ’cr are different from the corresponding N and cr. It is appropriate to highlight that 
the intermediate principal stress required to be evaluated only in elastic condition and is automatically 
computed by FLAC.  

 

 

In order to have a three dimensional constitutive model in elastic zone and a bi-dimensional model after it 
fails, in the analysis, a new approach is suggested in this paper. A new relationship based on the similarity 
between equations 3-7 and 3-9, is proposed below: 

0
sin1

sin

sin1

sin1
231 



















 cr    (3-10) 

The advantage of the above Equation is that it can handle both elastic zone and plastic zone by 
appropriately choosing the parameters.  The values of the parameters and cr to be used are given 
in Table 3-1. Substituting the corresponding values for peak and residual state in Equation 3-10 results: 

FIGURE 3-3 - GRAPHICAL POLYAXIAL STRENGTH CRITERION
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 Peak Residual 

 p r 

 0 r 

 p 0 

cr 

TABLE 3-1 - VALUES PROPOSED FOR PEAK  
AND RESIDUAL STATE  

Substituting in Equation 3-10 the peak and residuals values results in:  
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and 

 0
sin1

cos2

sin1

sin1
31 















r

r

r

r







     (3-12) 

In this formulation the value of UCS is directly put as a parameter. The advantage of inputting the value 
directly is that it can be modified in the formulation without changing the FISH code every time. This 
way, the problem can be solved using the peak and residual parameters that could describe the behavior of 
an elastic rock mass and transform the formulation of the failure criteria at plasticity. 

3.4.3  SOLUTION SCHEME 

In each step to compute the stresses, these are evaluated, transformed in principal stresses and ordered.  

FLAC chooses a guess elastic strain increment and calculates the corresponding stress increments 
applying the Hooke's law. The incremental stresses are given below: 
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After this step, it is evaluated whether the new three components violate the yield criterion given by 
equations 3-14, representing the equation 3-11, and 3-15, representing the tension cut, for shear or 
tension. 

Shear Yield Function   
fs 1 N '  3  'cr     (3-14) 

Tension Yield Function  ft 
t  3  

    (3-15)
 

 

7Q
1

3   or   
2cp cos p

1 sin p

2cr cosr

1 sinr
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FIGURE 3-4 - DOMAINS FOR A SPECIFIC 2 VALUE

 
The equation for the bisector of the angle originated by the tension and the shear yield function is given 
as: 

     
   PPt   13321 ,,h     (3-16) 

where 

    
  cr

tPp NNN ''     and     '1' 2   
 

Equations 3-14, 3-15 and 3-16 are shown in a graphical form in Figure 3-4 in a two dimensional plot 
between 1 and 3 for a particular value of 2. A three dimensional plot is actually needed to represent the 
zones of failure or no failure but for the sake of simplicity a two dimensional plot is shown.  By locating a 
stress point on this Figure one can make out in which zone it lies. If the sign of fs and h are negative, shear 
failure takes place, when h is positive and ft negative, tensile failure takes place and no failure when both 
h and fs are positive. 

The violation of the yield criterion means that FLAC calculated a point beyond the yield function and 
plastic deformation takes place (ep > 0). A correction is needed to move it back to the yield boundary (the 
guess elastic strain increment was not elastic). 

The treatment of the tensile failure is the same as in Mohr-Coulomb constitutive model in FLAC. 
Therefore only shear failure correction is applied in the present study.

  

Starting from the flow rule's formulation given as: 

i

ssp
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g
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31  Ngs        (3-18)
 

Where gs is the Shear potential function and  s as unknown. In this function 2 is absent because, 
although not constant in the entire domain, it is a constant value for a particular zone. The elastic guess 
increments in the three directions are given as: 
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where          N 
1 sin
1 sin  

The total increment applied at the beginning must be separated from its plastic part, which is calculated 
with the flow rule (Equation 3-17) and then substituted in Equation 3-21 that gives the value of elastic 
strain in the incremental expression of the Hooke's law to be used for computing the principal stresses 
(Equation 3-22): 
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The stress increment values are used to compute the new values of stresses as given by the Equation given 
below: 
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The superscript New means new values and I is used to represent the principal stresses obtained by adding 
the guess elastic strain to the initial principal stresses field. The second part of the expression is the stress 
component due to the plastic strain correction.  

The value of s now can be computed by using the new values of stresses using Equation 3-23 and 
substituted in shear yield function given by Equation 3-14. The right hand side of the Equation is equated 
to zero to ensure that the point lies on the shear failure yield line, since the point cannot lie above that. 
The value of s is obtained as: 
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Now FLAC can compute the new stress field and repeat again until the value of the maximum unbalanced 
force of the system reduces to a negligible value and thus a static solution is obtained. 

3.4.4  COMPARISON OF NUMERICAL AND ANALYTICAL RESULTS  

In the present study an example is considered for which the geometrical configuration is shown in Figure 
3-5. The numerical values of various parameters used for this problem are presented in Table 3-2. This 
example has been used to validate the implementation of the Polyaxial Constitutive Model in the finite 
difference code in FLAC. 

 

FIGURE 3-5 - GEOMETRICAL CONFIGURATION OF THE MODEL 

The results of this study for this particular example are compared with the results obtained by Elasto-
Plastic theory of stress distribution in broken zone in squeezing ground conditions as suggested by Singh 
et al. 

ri 3.2 [m] Q 0.001 

distance of 
boundaries 

32 * ri [m]  27 [kN/m3] 

p 30 [°] Pv 15 [MPa] 

r 20 [°] Pi 1.52 [MPa] 

cp 2 [MPa] P0 15 [MPa] 

cr 0.1 [MPa] Qcmass 1.89 [MPa] 

E 5 [GPa]   

 0.25   
TABLE 3-2 - DATA OF THE NUMERICAL PROBLEM 

The analytical solution of the above problem has been obtained with the spreadsheet presented in 
appendix A.  
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Q: Barton's Number;   

: Rock Mass Unit Weight; 

1, 2, 3: Maximum, Intermediate, Minimum Principal Stress;  

t: Tension Cut; 

r, , , Pz: Stress distribution around a tunnel in Radial, Tangential directions and along the Tunnel 
direction; 

Pv, Ph, : Overburden Pressure, Horizontal Pressure, Horizontal Ratio;  

qcmass, qcr, ci: Peak, Residual, Uniaxial Compressive Strength; 

p, r, : Peak, Residual, internal friction angle;   

cp, cr, c: Peak, Residual, Cohesion;  

: Dilation angle;    

: Angle between the horizontal axis of a tunnel and the line between its center and point considered.  
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3.9  APPENDIX A: SPREADSHEET FOR THE IMPLEMENTATION OF THE TUNNEL 

SOLUTION 
Extract from the spreadsheet for the implementation of the stress distribution around circular openings 
subjected to symmetrical loading: 

Geometrical data and Strength Parameter  Determination of Pi

 

 27.0 kN/m3  ri 1.5 m  Pb 4.37 MPa 
Q 0.001   rp 8.0 m  Pi 1.52 MPa 
p 30.0 °  Pv 15.0 MPa     
r 20.0 °  Pz 15.0 MPa     
cp 2.0 MPa   1.0      
cr 0.1 MPa         

 

  Flac  Theoretical  Difference 

r  r/Pv  t/Pv  r/Pv  t/Pv  Radial  Tangent. 

3.59 0.1186 0.2609 0.1161 0.2559 2.1162% 1.9434% 
4.36 0.1497 0.3236 0.1465 0.3179 2.1755% 1.8026% 
5.15 0.1807 0.3840 0.1774 0.3809 1.8515% 0.8141% 
5.94 0.2125 0.4524 0.2088 0.4450 1.7605% 1.6720% 

6.74 0.2453 0.5193 0.2407 0.5099 1.9201% 1.8371% 
7.55 0.2813 0.5927 0.2730 0.5759 3.0231% 2.9087% 
8.36 0.3586 1.6500 0.3512 1.6488 2.1048% 0.0733% 
9.19 0.4706 1.5440 0.4624 1.5376 1.7746% 0.4159% 

9.94 0.5497 1.4660 0.5406 1.4594 1.6849% 0.4517% 
10.62 0.6071 1.4100 0.5979 1.4021 1.5448% 0.5609% 

11.30 0.6546 1.3620 0.6448 1.3552 1.5188% 0.5022% 
11.99 0.6946 1.3230 0.6845 1.3155 1.4738% 0.5710% 

12.69 0.7284 1.2890 0.7184 1.2816 1.3980% 0.5740% 
13.40 0.7572 1.2600 0.7474 1.2526 1.3096% 0.5918% 

14.11 0.7821 1.2350 0.7722 1.2278 1.2830% 0.5858% 
14.83 0.8036 1.2140 0.7938 1.2062 1.2377% 0.6446% 
15.56 0.8224 1.1950 0.8127 1.1873 1.1970% 0.6462% 
16.29 0.8389 1.1780 0.8291 1.1709 1.1838% 0.6051% 
17.04 0.8535 1.1640 0.8438 1.1562 1.1496% 0.6746% 
17.79 0.8664 1.1510 0.8567 1.1433 1.1332% 0.6728% 
18.54 0.8778 1.1400 0.8681 1.1319 1.1230% 0.7113% 
19.31 0.8882 1.1290 0.8784 1.1216 1.1197% 0.6567% 
20.08 0.8973 1.1200 0.8875 1.1125 1.1025% 0.6755% 

Average 1.573% 0.895% 
TABLE 3-3- RESULTS OF THE DIFFERENT APPROACH
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3.10  APPENDIX B: FISH CODE  
* ----------------------------------------- 

* FISH version of Singh model with 

* strain hardening/softening 

* ----------------------------------------- 

set echo off 

def b_singh 

  constitutive_model 

  f_prop  m_g m_k m_fric m_dil m_ten  

  f_prop  m_beta m_delta  m_q 

  f_prop  m_ftab m_ttab m_ind m_epdev m_epten 

  f_prop  m_btab m_dtab m_qtab  

  f_prop  m_e1 m_e2 m_x1 m_sh2  

  f_prop  m_npsi m_nphi m_csnp m_qdelta  

f_prop  m_P0 

; 

  float $sphi $spsi $s11i $s22i $s12i $s33i $sdif $s0 $rad $s1 $s2 
$s3 

  float $si $sii $psdif $fs $alams $ft $alamt $cs2 $si2 $dc2 $dss 

  float $sdelta $sbeta 

  float $apex $epsav $tpsav $de1ps $de3ps $depm $eps $ept $epss 

  float $bisc $pdiv $anphi $tco 

  int   $icase $m_err $iftab $ittab  

  int   $ibtab $iqtab $idtab 

; 

  Case_of  mode 

; ---------------------- 

; Initialisation section 

; ---------------------- 

   Case 1 

; --- put initial table values in prop arrays ---- 

     if m_epdev = 0.0 then 

        if m_epten = 0.0 then 

           $iftab = int(m_ftab) 

           $idtab = int(m_dtab) 

           $ittab = int(m_ttab) 

           $ibtab = int(m_btab) 

           $iqtab = int(m_qtab) 

 

           if $iftab # 0 then 

              m_fric = table($iftab, 0.0) 

           end_if 

           if $idtab # 0 then 

              m_delta  = table($idtab, 0.0) 

           end_if 

           if $ittab # 0 then 

              m_ten  = table($ittab, 0.0) 

           end_if 

           if $ibtab # 0 then 

              m_beta  = table($ibtab, 0.0) 

           end_if 

           if $iqtab # 0 then 

              m_q  = table($iqtab, 0.0) 

           end_if 

        end_if 

     end_if 

; --- data check --- 

      $m_err = 0 

      if m_fric > 89.0 then 

        $m_err = 1 

      end_if 

      if m_ten < 0.0 then 

        $m_err = 2 

      end_if 

      if m_beta < 0.0 then 

        $m_err = 3 

      end_if 
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      if m_delta < 0.0 then 

        $m_err = 4 

      end_if 

      if $m_err # 0 then 

         nerr = 126 

         error = 1 

      end_if 

; 

      $sphi    = sin(m_fric * degrad) 

      $sdelta  = sin(m_delta * degrad) 

      $sbeta   = sin(m_beta * degrad) 

      $spsi    = sin(m_dil * degrad) 

      m_npsi   = (1.0 + $spsi) / (1.0 - $spsi) 

      m_nphi   = (1.0 + $sbeta) / (1.0 - $sphi) 

      m_qdelta = $sdelta / (1.0 - $sphi) 

      m_csnp   = m_q - zs33  * m_qdelta 

;      m_csnp   = m_q - zs33  *  m_P0 

;use previous for anisotropic state of stress 

      m_e1    = m_k + 4.0 * m_g / 3.0 

      m_e2    = m_k - 2.0 * m_g / 3.0 

      m_sh2   = 2.0 * m_g 

      m_x1     = m_e1 - m_e2*m_npsi + (m_e1*m_npsi - 
m_e2)*m_nphi  

      if abs(m_x1) < 1e-6 * (abs(m_e1) + abs(m_e2)) then 

         $m_err = 5 

         nerr = 126 

         error = 1 

      end_if 

 ; --- set tension to prism apex if larger than apex --- 

 $apex = m_ten 

      if m_fric # 0.0 then 

            $apex = m_csnp / (m_nphi - 1) 

      end_if 

      m_ten = min($apex,m_ten) 

; 

    Case 2 

; --------------- 

; Running section 

; --------------- 

      zvisc = 1.0 

      if m_ind # 0.0 then 

        m_ind = 2.0 

      end_if 

      $anphi = m_nphi 

; --- get new trial stresses from old, assuming elastic increments --- 

      $s11i = zs11 + (zde22 + zde33) * m_e2 + zde11 * m_e1 

      $s22i = zs22 + (zde11 + zde33) * m_e2 + zde22 * m_e1 

      $s12i = zs12 + zde12 * m_sh2 

      $s33i = zs33 + (zde11 + zde22) * m_e2 + zde33 * m_e1 

      $sdif = $s11i - $s22i 

      $s0   =  0.5 * ($s11i + $s22i) 

      $rad  =  0.5 * sqrt ($sdif*$sdif + 4.0 * $s12i*$s12i) 

; --- principal stresses --- 

      $si    =  $s0 - $rad 

      $sii   =  $s0 + $rad 

      $psdif =  $si - $sii 

; --- determine case --- 

      section 

        if $s33i > $sii then 

; --- s33 is major p.s. --- 

          $icase = 3 

          $s1    = $si 

          $s2    = $sii 

          $s3    = $s33i 

          exit section 

        end_if 

        if $s33i < $si then 

; --- s33 is minor p.s. --- 
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          $icase = 2 

          $s1    = $s33i 

          $s2    = $si 

          $s3    = $sii 

          exit section 

        end_if 

; --- s33 is intermediate --- 

        $icase = 1 

        $s1    = $si 

        $s2    = $s33i 

        $s3    = $sii 

      end_section 

; 

        section 

; --- shear yield criterion --- 

        $fs    = $s1 - $s3 * $anphi + m_csnp  

   $alams = 0.0 

; --- tensile yield criterion --- 

        $ft    = m_ten - $s3 

        $alamt = 0.0 

; --- tests for failure --- 

        if $ft < 0.0 then 

           $bisc = sqrt(1.0 + $anphi * $anphi) + $anphi 

           $pdiv = -$ft + ($s1 - $anphi * m_ten + m_csnp) * $bisc 

           if $pdiv < 0.0 then 

; ---      shear failure --- 

              $alams = $fs / m_x1 

              $s1 = $s1 - $alams * (m_e1 - m_e2 * m_npsi) 

              $s2 = $s2 - $alams * m_e2 * (1.0 - m_npsi) 

              $s3 = $s3 - $alams * (m_e2 - m_e1 * m_npsi) 

              m_ind = 1.0 

           else 

; ---      tension failure --- 

              $alamt = $ft / m_e1 

              $tco= $alamt * m_e2 

              $s1 = $s1 + $tco 

              $s2 = $s2 + $tco 

              $s3 = m_ten 

              m_ind = 3.0 

           end_if 

        else 

           if $fs < 0.0 then 

; ---      shear failure --- 

              $alams = $fs / m_x1 

              $s1 = $s1 - $alams * (m_e1 - m_e2 * m_npsi) 

              $s2 = $s2 - $alams * m_e2 * (1.0 - m_npsi) 

              $s3 = $s3 - $alams * (m_e2 - m_e1 * m_npsi) 

              m_ind = 1.0 

           else 

; ---      no failure --- 

              zs11 = $s11i 

              zs22 = $s22i 

              zs33 = $s33i 

              zs12 = $s12i 

              exit section 

           end_if 

        end_if 

; --- direction cosines --- 

        if $psdif = 0.0 then 

          $cs2   = 1.0 

          $si2   = 0.0 

        else 

          $cs2   = $sdif       / $psdif 

          $si2   = 2.0 * $s12i / $psdif 

        end_if 

; --- resolve back to global axes --- 

        case_of  $icase 

          case 1 
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            $dc2  = ($s1 - $s3) * $cs2 

            $dss  =  $s1 + $s3 

            zs11  = 0.5 * ($dss + $dc2) 

            zs22  = 0.5 * ($dss - $dc2) 

            zs12  = 0.5 * ($s1  - $s3) * $si2 

            zs33  = $s2 

          case 2 

            $dc2  = ($s2 - $s3) * $cs2 

            $dss  =  $s2 + $s3 

            zs11  = 0.5 * ($dss + $dc2) 

            zs22  = 0.5 * ($dss - $dc2) 

            zs12  = 0.5 * ($s2  - $s3) * $si2 

            zs33  = $s1 

          case 3 

            $dc2  = ($s1 - $s2) *$cs2 

            $dss  =  $s1 + $s2 

            zs11  = 0.5 * ($dss + $dc2) 

            zs22  = 0.5 * ($dss - $dc2) 

            zs12  = 0.5 * ($s1  - $s2) * $si2 

            zs33  = $s3 

        end_case 

        zvisc = 0.0 

; --- accumulate hardening parameter increments --- 

        if m_ind = 1.0 then 

           $de1ps = $alams 

           $de3ps = -$alams * m_npsi  

           $depm  = ($de1ps + $de3ps) / 3.0 

           $de1ps = $de1ps - $depm 

           $de3ps = $de3ps - $depm 

           $eps =  
 $eps+sqrt(0.5*($de1ps*$de1ps+$depm*$depm+$de3ps
*$de3ps)) 

        end_if 

        if m_ind = 3.0 then 

           $ept = $ept - $alamt 

        end_if 

      end_section 

 

      $epsav = 0.0 

      $tpsav = 0.0 

      if zsub > 0.0 then 

           $epsav = $eps / zsub 

           $tpsav = $ept / zsub 

; --- reset for the next zone --- 

           $eps   = 0.0 

           $ept   = 0.0 

      end_if 

; --- softening/hardening --- 

      if $epsav > 0.0 then 

         $epss = m_epdev + $epsav 

         $iftab = int(m_ftab) 

         $idtab = int(m_dtab) 

         $ibtab = int(m_btab) 

         $iqtab = int(m_qtab) 

         if $iftab # 0 then 

            m_fric = table($iftab, $epss) 

         end_if 

         if $ibtab # 0 then 

            m_beta  = table($ibtab, $epss) 

         end_if 

           if $idtab # 0 then 

              m_delta  = table($idtab, $epss) 

           end_if 

           if $iqtab # 0 then 

              m_q  = table($iqtab, $epss) 

           end_if 

; --- data check --- 

         $m_err = 0 

         if m_fric > 89.0 then 
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         $m_err = 1 

         end_if 

       if m_beta < - 1.0 then 

         $m_err = 3 

  if m_d < 0.0 then 

  $m_err = 4 

  end_if 

         end_if 

         if $m_err # 0 then 

            nerr = 126 

            error = 1 

         end_if 

; 

         m_epdev = $epss 

; 

      $sphi    = sin(m_fric * degrad) 

      $sdelta  = sin(m_delta * degrad) 

      $sbeta   = sin(m_beta * degrad) 

      $spsi    = sin(m_dil * degrad) 

      m_npsi   = (1.0 + $spsi) / (1.0 - $spsi) 

      m_nphi   = (1.0 + $sbeta) / (1.0 - $sphi) 

      m_qdelta  = $sdelta / (1.0 - $sphi) 

      m_csnp   = m_q - zs33  * m_qdelta 

;      m_csnp   = m_q - zs33  *  m_P0 

;use previous for anisotropic state of stress 

m_x1    = m_e1 - m_e2*m_npsi + (m_e1*m_npsi - m_e2)*m_nphi 

; 

 if abs(m_x1) < 1e-6 * (abs(m_e1) + abs(m_e2)) then 

            $m_err = 5 

            nerr = 126 

            error = 1 

         end_if 

; --- reset tension to prism apex if larger than apex --- 

         $apex = m_ten 

         if m_fric # 0.0 then 

            $apex = m_csnp / (m_nphi - 1) 

         end_if 

         m_ten = min($apex,m_ten) 

      end_if 

      if $tpsav > 0.0 then 

         $epss = m_epten + $tpsav 

         $ittab = int(m_ttab) 

         if $ittab # 0 then 

            m_ten  = table($ittab, $epss) 

         end_if 

         m_epten = $epss 

         if m_ten < 0.0 then 

            $m_err = 4 

            nerr = 126 

            error = 1 

         end_if 

      end_if 

 

    Case 3 

; ---------------------- 

; Return maximum modulus 

; ---------------------- 

      cm_max = m_k + 4.0 * m_g / 3.0 

      sm_max = m_g 

    Case 4 

; --------------------- 

; Add thermal stresses 

; --------------------- 

      ztsa = ztea * m_k 

      ztsb = zteb * m_k 

      ztsc = ztec * m_k 

      ztsd = zted * m_k 

  End_case 
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end 

set echo=on 
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4.1  ABSTRACT 
Nowadays the numerical approaches to the tunnels designing are widely integrated to the traditional 
technologies (Empirical, Analytical and Observational Approaches). The numerical suites have, in fact, 
the advantage of an intrinsic simplicity of use and the ability to solve problems that, because of the 
complexity and plurality of the factors at play, cannot be easily managed through the analytical and 
empirical methodologies. 

Unfortunately the numerical software applications, commercially available for geo-mechanical purposes, 
have the limitation of using only the most famous constitutive models. This study sets the target of 
extending the numerical applicability of a constitutive model different from the commonly used one to 
increment the choice of model codes available for geotechnical numerical suites. 

In this paper a general methodology to extend the applicability of the Polyaxial Strength Criterion, 
introduced by Singh el al. (1998), to any numerical application is explained. The present procedure does 
not require any specific compilation of numerical constitutive model and takes advantage of the bi-
dimensional Mohr-Coulomb model already present in every numerical suite. 

The Polyaxial Strength Criterion is a tri-dimensional constitutive model, introduced for the analysis of 
severe squeezing in underground excavations. The approach explained by Singh has shown high 
coefficients of correlation with the observations in many cases of tunnels in high squeezing conditions in 
Himalayan region.  

                                                      

2 Corresponding autor. Phone: +27 31 260 1077, Fax: +27 31 260 1411, Mail: scussel @ukzn.ac.za 
University of KwaZulu-Natal 
College of Agriculture, Engineering and Science, Howard College, Centenary Building 
King George V Avenue, Durban 4041, South Africa 
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4.2  INTRODUCTION 
It is in the second part of the 18th century, with the birth of the railway transport, that the construction of 
underground openings evolved from a nearly artisan approach to one, more scientific that combined the 
miners' knowledge with continuous improvements in the excavation techniques. 

Terzaghi in 1946 made the first step in the direction of a new and modern designing methodology and 
proposed the rock mass classification, which correlated the rock mass condition to the squeezing pressure 
applied to the internal steel ribs of a tunnel. Subsequently, several other rock mass classification systems 
have been advanced, starting from Deere's RQD (1964) to the more comprehensive RMR (Bieniawski 
1974, 1976, 1979, 1984) or Q system (Barton et al. 1974) classification. These analyze the characteristics 
of a rock mass and return both the class of quality of the material and suggestions on the best retaining 
system for a particular kind of work. 

When the ratio between the spacing of discontinuities and the dimensions of the excavation is small, the 
effect of the discontinuities is shared in the whole volume, and the fractured rock mass is considered as a 
continuous model. In such cases, the classifications of rock masses are expected to clearly define reliable 
strength parameters for that particular rock mass quality and give suitable elastic/ plastic parameters for 
constitutive laws. This approach allowed the designers to apply elastic and elastic/plastic models to 
fractured rock masses, as it was already possible in soils. The first failure criterion implemented in the 
analytical solutions was the Mohr-Coulomb constitutive model (MC), widely utilized in soil mechanics as 
well, which describes the rock mass through only two parameters, Cohesion and Angle of Internal 
Friction. It, nowadays, is still one of the most employed models in practical applications. 

In 1980, Hoek and Brown proposed an empirical nonlinear failure criterion, which combines the 
experience of several test on specimens of intact rock to the results of the specific rock mass classification 
GSI (Geological Strength Index).  The model has been subjected to many updates in the years to reach its 
final formulation, by Hoek et al., in 2002. 

 

FIGURE 4-1 - RESULTS OF POLYAXIAL TESTS ON DUNHAM DOLOMITE (MOGI, 1967) 

In this direction, the Polyaxial Strength Criterion (PSC) introduced by Singh et al. (1998) is another 
significant addition. They intuited the applicability of the large number of studies on the polyaxial 
constitutive models to underground applications in severe squeezing conditions, explaining the 
differences between what was predicted by the traditional elasto-plasticity theory and their observations. 
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After the careful back analysis of many data from monitored underground cavities in hard geological 
conditions, they observed an appreciable rock mass strength enhancement in the vicinity of the excavation 
that they related to a positive confining effect of the pressure in the tunnel direction (in this case 
intermediate principal stress 2). 

The effect of the intermediate principal stress was not considered in the traditional theories but, now it is 
demonstrated from many polyaxial tests (test similar to the triaxial test, but where 2 and 3 are not equal 
and can be independently varied) on specimens of fractured rocks, that the intermediate principal stress 
holds a prominent role in the failure of rock material. In Figure 4-1, the outcomes of about 50 polyaxial 
tests on specimens of Dunham Dolomite (Mogi 1967) are shown. The starting point of each curve is 
plotted from the result of a conventional triaxial test (2 = 3), and then the subsequent points correspond 
to the maximum principal stress at failure coming from specimens of the same material sheared keeping 
3 constant, but increasing 2. 

Starting from the observation of this phenomenon, in laboratory and in field, Singh et al. (1998) suggested 
a semi empirical approach that incorporates the effect of the intermediate principal stress 2 in the 
conventional formulation of the Mohr-Coulomb failure criterion by replacing 3 with the average value of 
2 and 3 in the second term of the Mohr-Coulomb formulation: 

Mohr-Coulomb   Acr 331           (4-1) 

Polyaxial (Singh et al., 1998) Acr 2
32

31

 


  
(4-2) 

where 



sin1

sin2


A

 

 

FIGURE 4-2 - PROBLEM OF A CIRCULAR TUNNEL  

IN ELASTO-PLASTIC ROCK MASS (SINGH AND GOEL, 2006) 
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Singh (2006) also produced the Elasto-Plastic Theory of Stress Distribution for tunnels in Broken Zone 
using the Polyaxial Strength Criterion in Squeezing Ground conditions. The stress field around an 
opening is shown in Figure 4-2. In this solution the plastic radius rp (boundary between plastic and elastic 
zones) has a particular value for a given field problem and it is obtained by means of multipoint 
extensometers readings.  The procedure to get the radius of broken zone from the readings of multi point 
extensometers is explained by Jethwa (1981). According to the Elasto-Plastic theory, the stresses are 
given as: 

Tangential and Radial Stress in horizontal and vertical direction at the elastic zone boundary: 

      
 22

22cos121 0

A

APqP
P cmassV

br 


     (4-3) 

     bV PP   2cos121     (4-4) 

where  = 0° and 90°. 

In the same directions, the stress distribution inside broken zone follows the following relations: 
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cot cot 


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crrr qN    ,         (4-6) 

where   
r

r
r

r
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p

p NA
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 sin1

sin1
     and     
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sin2
     ,
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, 


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



  

This theory of stress distribution presupposes the use of two different constitutive models in the same 
solution, the Polyaxial Strength Criterion at failure that reduces to Mohr-Coulomb criterion in residual 
conditions. This characteristic makes its implementation in a numerical application more difficult. 

Unfortunately the modern tunneling engineering theories rely less on analytical solutions and make more 
use of numerical models applications both for their versatility and simplicity of use. Today there are 
several numerical suites able to positively solve any engineering problem applying the most common 
failure criteria. 

Scussel and Chandra (2012) have introduced one numerical constitutive model compiled in FISH code 
(the programming language embedded within FLAC) to include the Polyaxial Strength Criterion among 
the more common failure criteria codes present in the finite difference numerical suite FLAC (Itasca) with 
satisfactory results.  

The solution scheme is based on an algorithm that, depending on the necessity, can resolve a finite 
difference grid in FLAC with the Polyaxial Strength Criterion or the Mohr-Coulomb theory only 
adequately modifying the rock mass strength parameters initially inputted in the model. 

The numerical application developed in FISH does not have the simplicity of use so that it can be directly 
put to a commercial use. Another disadvantage of this kind of approach is the considerably slower 
computational velocity compared to the built in failure criteria already present in the numerical suite. 

Moreover a code written exclusively for one specific software, even if probably the most common one, 
does not show necessary requirements of universality. In fact it does not consent the verification by 
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The determination of c' is directly dependent on the knowledge of '.  Substituting Equation 4-14 in 'cr 

(eq), the formulation of the equivalent cohesion is expressed as follow: 

B
A
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
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
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2
' 2       (4-16) 

where  
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sincossin2
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sin1

sin2

1

BA  

The formulation of the parameters A and B is only function of the internal angle of friction and can be 
easily tabulated as in Table 4-2. 

  [°] 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00 

A 1.04 1.20 1.37 1.56 1.77 2.00 2.25 2.54 2.85 3.20 3.60 

B 0.41 0.40 0.39 0.37 0.36 0.35 0.34 0.33 0.32 0.31 0.30 

TABLE 4-2 - ESTIMATION OF A AND B FOR INCREASING VALUES OF INTERNAL ANGLE OF FRICTION 

 

FIGURE 4-8- GRAPHICAL RELATION BETWEEN 

 ANGLE  OF INTERNAL FRICTION AND NON-DIMENSIONAL COHESION 

In order to formulate a non-dimensional equivalent cohesion, both terms of Equation 4-16 must be 
divided by the Uniaxial Compressive Strength UCS to obtain: 

B
A

UCSUCS

c






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2
1

' 2
     (4-17) 

The expression of c' is more complex than that of ', it is still a function of  as for the equivalent internal 
angle of friction but is also related to the magnitude of UCS and2, which is a function of depth. In 
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The formulation of radial pressure at the boundary of the elastic zone Pb, instead, is direct expression of 
the constitutive model at peak condition, which is different for the two approaches: 

Singh  

  
   

  
    MPa

PUCSP
P

pp

ppV
b

37.4
30sin130sin2

30sin130sin1589.1152

sin1sin2

sin1sin2 0















 

Equivalent Mohr  

  
 

  
    MPa

cP
P

p

pppV
b

37.4
47.19sin147.19sin2

47.19sin147.19cos972.52152

'sin12

'sin1'cos'22















 

Both the techniques, Singh's and equivalent Mohr-Coulomb  Theory give the same magnitude of Pb. The 
direct consequence of this is that the Squeezing Pressure (calculated at r = ri ),, as given below, is also 
unique: 

 

   MPa

cr
rcPP rr

p

i
rrbi

r

r

52.120cot1.00.8
2.3 20cot1.037.4                      

cot cot

20sin
20sin2

sin1
sin2





















 

In appendix B, Table 4-4, it is presented a detailed analysis of the stress field induced in the rock mass at 
different distances from the center of the tunnel. The relative difference between the two approaches is 
shown in Figure 4-11, and it may be observed that there are no appreciable differences and the errors are 
negligible. 

 

FIGURE 4-11  - COMPARISON OF THE ANALYTICAL SOLUTIONS (STRESS DISTRIBUTION) 

The results obtained by the numerical application of the proposed equivalent parameters method by 
means of the Mohr-Coulomb model in FLAC are compared with the polyaxial numerical solutions 
obtained by using the modified FLAC code as suggested by Scussel & Chandra (2012). A finite 
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difference grid in FLAC representing the problem was developed, and the radial pressure equal to the 
previously determined squeezing pressure Pi has been applied to the internal surface of the tunnel to 
simulate the correct reaction of the support to get the same plastic radius equal to 8 m. The problem was 
solved, with the Polyaxial Constitutive Model composed in FISH language by Scussel and Chandra, and 
then with the proposed method. The results obtained by both the methods are plotted in Figure 4-12. The 
difference between the numerical outcomes of the two techniques is negligible, and is smaller than an 
average 0.1% as reported in Table 4-4. 

In addition to the matching stress fields obtained from the two analyses, the time needed to solve the problem by two 
approaches was also determined. In both the cases a common grid was used (3500 zones). The user-defined 
Polyaxial Constitutive Model in FISH needed 75 s to achieve the convergence, while the modified parameters in the 
Mohr-Coulomb approach took only 24 s, that means that the suggested approach is more than three times faster. In 
more complex situations this may turn out to be more advantageous.   

 

FIGURE 4-12 - COMPARISON OF THE NUMERICAL SOLUTIONS (STRESS DISTRIBUTION) 

The results obtained by analytical method as proposed using equivalent parameters of Mohr-Coulomb Theory are 
compared with numerical solution obtained by using equivalent parameters in FLAC. The stress distribution 
estimated by using both the methods is presented in Figure 4-13. The results obtained are in close agreement with 
each other. The average difference between the results estimated by two methods is smaller than 1.0-1.2 % in the 
elastic zone (see again Appendix B and Table 4-4) and is slightly higher for the broken zone, due to the coarseness 
of the grid used in the analysis. 

4.6  CONCLUSIONS 
In this work a new method is proposed, where in the polyaxial state of stress can be incorporated in the 
analysis by a very simple approach. The proposed method incorporates the intermediate principal stress in 
the analysis and has the ease of applicability to many available software, This method uses modified 
angle of friction and cohesion values, which can be calculated by the given Equations and the analysis 
reduces to the same format as in Mohr-Coulomb theory. The approach is quite general and may be used 
for both hydrostatic and nonhydrostatic stress fields by means of any analytical or numerical method of 
analyzing tunnel support. The method when used in numerical scheme is easily adoptable and leads to 
less computational efforts.  
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4.9  APPENDIX A: FLAC'S CODE FOR THE AUTOMATIC DETERMINATION OF THE 

EQUIVALENT MOHR-COULOMB PARAMETERS 

def dati 

; Data entry: in situ stress in tunnel direction, uniaxial compressive strength and angle of  

; friction as in the previously presented example: 

 P0 = 15e6 

 qmass = 1.89e6 

 fp = 30  

; The angle of friction is now converted into radians and the rock mass resistance at  

; the surface ci of the tunnel is entered: 

 efp = fp*degrad 

 qmass1 = qmass + P0 * sin(efp)/(1-sin(efp)) 

; The equivalent angle of friction ' is determined accordingly to the Equation 4-15. 

; The older versions of FLAC admit only a limited number of characters for each row,  

; for this reason the determination of ' is split in 3 rows: 

 aaa = sin(efp)/(2-sin(efp)) 

 bbb = aaa / (1 + sqrt(1-aaa*aaa)) 

 efp1 = 2 * atan(bbb) 

; Which is now converted to degrees 

 fp1 = 0.5 * efp1 * 360 / pi 

; Finally the equivalent cohesion c' is estimated as specified by the equation 4-16 

 coep1 =  0.5 * qmass1 * (1 - sin(efp1)) / cos(efp1) 

end 

dati 

 

At this point the variable fp1 and coep1 can be implemented for the application in the numerical model. 
In order to evaluate the results of the subroutine, the function PRINT FISH can be used to show the 
magnitude of the individual variables.  

Here the results of the proposed subroutine: 

flac: print fish 
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          FISH symbols ... 

                             Value    Name 

                                -----    ---- 

                    3.3333E-01    aaa 

                    1.7157E-01    bbb 

                   5.9715E+06    coep1 

          (function)           0    dati 

                    5.2360E-01    efp 

                    3.3984E-01    efp1 

                                   30    fp 

                   1.9471E+01    fp1 

                   1.5000E+07    P0 

                   1.8900E+06    qmass 

                   1.6890E+07    qmass1 
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4.10  APPENDIX B: SPREADSHEET FOR THE COMPARISON OF THE TUNNEL 

SOLUTIONS 

 

Analytical  
Mohr equivalent 

Analytical  
PSC 

Relative difference 
analytical solutions 

Flac (Mohr equiv) Flac (PSC) 
Relative difference 
numerical solutions 

Relative difference 
analytical-numerical 

r [m] r/Pv /Pv r/Pv /Pv r/Pv /Pv r/Pv /Pv 

3.59 0.1161 0.2559 0.1161 0.2559 0.00% 0.00% 0.1187 0.2607 0.1187 0.2607 0.00% 0.00% 2.15% 1.84% 

4.36 0.1465 0.3178 0.1465 0.3178 0.00% 0.00% 0.1493 0.3227 0.1500 0.3233 0.45% 0.21% 2.38% 1.73% 

5.15 0.1774 0.3809 0.1774 0.3809 0.00% 0.00% 0.1807 0.3873 0.1807 0.3840 0.00% 0.86% 1.81% 0.81% 

5.94 0.2089 0.4450 0.2089 0.4450 0.00% 0.00% 0.2120 0.4507 0.2127 0.4527 0.31% 0.44% 1.81% 1.70% 

6.74 0.2408 0.5101 0.2408 0.5101 0.00% 0.00% 0.2460 0.5200 0.2453 0.5193 0.27% 0.13% 1.88% 1.79% 

7.55 0.2731 0.5761 0.2731 0.5761 0.00% 0.00% 0.2760 0.5813 0.2813 0.5927 1.91% 1.93% 2.96% 2.83% 

8.36 0.3514 1.6486 0.3514 1.6486 0.00% 0.00% 0.3653 1.6607 0.3587 1.6507 1.84% 0.60% 2.05% 0.12% 

9.19 0.4627 1.5373 0.4627 1.5373 0.00% 0.00% 0.4747 1.5453 0.4707 1.5447 0.85% 0.04% 1.72% 0.48% 

9.94 0.5410 1.4590 0.5410 1.4590 0.00% 0.00% 0.5520 1.4667 0.5500 1.4667 0.36% 0.00% 1.66% 0.52% 

10.62 0.5977 1.4023 0.5977 1.4023 0.00% 0.00% 0.6087 1.4100 0.6073 1.4100 0.22% 0.00% 1.60% 0.55% 

11.30 0.6450 1.3550 0.6450 1.3550 0.00% 0.00% 0.6560 1.3627 0.6547 1.3627 0.20% 0.00% 1.49% 0.56% 

12.00 0.6848 1.3152 0.6848 1.3152 0.00% 0.00% 0.6953 1.3227 0.6947 1.3227 0.10% 0.00% 1.43% 0.57% 

12.69 0.7185 1.2815 0.7185 1.2815 0.00% 0.00% 0.7293 1.2893 0.7287 1.2887 0.09% 0.05% 1.41% 0.56% 

13.40 0.7473 1.2527 0.7473 1.2527 0.00% 0.00% 0.7580 1.2600 0.7573 1.2600 0.09% 0.00% 1.33% 0.58% 

52.58 0.9836 1.0164 0.9836 1.0164 0.00% 0.00% 0.9953 1.0267 0.9953 1.0267 0.00% 0.00% 1.19% 1.00% 

53.69 0.9843 1.0157 0.9843 1.0157 0.00% 0.00% 0.9960 1.0267 0.9960 1.0267 0.00% 0.00% 1.19% 1.07% 

54.80 0.9849 1.0151 0.9849 1.0151 0.00% 0.00% 0.9967 1.0267 0.9967 1.0267 0.00% 0.00% 1.19% 1.13% 

55.93 0.9855 1.0145 0.9855 1.0145 0.00% 0.00% 0.9973 1.0260 0.9973 1.0260 0.00% 0.00% 1.19% 1.13% 

57.07 0.9861 1.0139 0.9861 1.0139 0.00% 0.00% 0.9980 1.0267 0.9980 1.0267 0.00% 0.00% 1.20% 1.25% 

58.22 0.9866 1.0134 0.9866 1.0134 0.00% 0.00% 0.9980 1.0260 0.9980 1.0260 0.00% 0.00% 1.15% 1.24% 

59.38 0.9871 1.0129 0.9871 1.0129 0.00% 0.00% 0.9987 1.0267 0.9987 1.0267 0.00% 0.00% 1.16% 1.35% 

60.55 0.9876 1.0124 0.9876 1.0124 0.00% 0.00% 0.9993 1.0273 0.9993 1.0273 0.00% 0.00% 1.18% 1.47% 

61.74 0.9881 1.0119 0.9881 1.0119 0.00% 0.00% 0.9993 1.0273 0.9993 1.0273 0.00% 0.00% 1.13% 1.51% 

62.94 0.9885 1.0115 0.9885 1.0115 0.00% 0.00% 0.9993 1.0273 0.9993 1.0273 0.00% 0.00% 1.08% 1.56% 

64.14 0.9890 1.0110 0.9890 1.0110 0.00% 0.00% 1.0000 1.0280 1.0000 1.0280 0.00% 0.00% 1.11% 1.67% 

65.36 0.9894 1.0106 0.9894 1.0106 0.00% 0.00% 1.0000 1.0293 1.0000 1.0293 0.00% 0.00% 1.07% 1.84% 

66.60 0.9898 1.0102 0.9898 1.0102 0.00% 0.00% 1.0000 1.0300 1.0000 1.0300 0.00% 0.00% 1.03% 1.94% 

Average 0.00% 0.00% Average 0.11% 0.07% 1.27% 0.93% 

A B C D E F G H I J K L M N 

TABLE 4-4 - COMPARISON OF THE TUNNEL SOLUTIONS 
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Column B:  Plastic Zone  crrr
V

qNP  

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V
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Column D:  Plastic Zone  crrr
V

qNP  



,  

                    Elastic Zone  rV
V

PP   2  

Column E and F:    DCavg
DC

BAavg
BA

,   and   ,


 

Column G and H:  Numerical solution (Mohr Equivalent) 

Column I and J:     Numerical solution (Singh's Theory) 

Column K and L:    JIavg
JI

BHGavg
HG

,   and   ,


 

Column M and N:    HBavg
HB

GAavg
GA

,   and   ,


 

where  
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Chapter 5 

5 A NEW APPROACH TO DESIGN OF TUNNELS IN SQUEEZING 

GROUND 

D. Scussela
3
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a School of Civil Engineering, Surveying and Construction, University of KwaZulu Natal, Durban, South 
Africa 

b Department of Civil Engineering, Indian Institute of Technology, Kanpur 208 016, India 

  
Keywords: Tunnel Support Pressure, Polyaxial Strength Criterion, FLAC, Strain Softening, FDM, Finite 
Difference Analysis, Finite Element Analysis.  
  

5.1  ABSTRACT 
The study of the mechanical behavior of discontinuous rock masses is a rapidly growing subject. Many 
researches are reported in literature concerning the estimation of the tunnel support pressures 
incorporating the real behavior of a rock mass using different types of constitutive models and rock 
parameters. These studies have favored the introduction of various analytical solutions for the easier geo-
mechanical cases but have not been converted into numerical models suited for commercially available 
software and, therefore could not be used in real and more complex engineering applications. 

The notable constitutive models used in common practice in rock mechanics are Mohr-Coulomb and 
Hoek-Brown failure criteria. Most of the commonly available software supports only these two failure 
criteria. The difficulties faced in possibly implementing new constitutive model into the numerical suites 
already available, are so large that the studies using innovative constitutive models result in a mere 
academic exercise.  

In this paper a new methodology is described for the application of the Polyaxial Strength Criterion 
suggested by Singh et al. (1998), which is characterized by the direct influence of all the principal stresses 
in the resistance of a rock mass. The methodology applied in this research, uses the format of the Mohr-
Coulomb model using equivalent angle of friction and cohesion of the rock mass surrounding the 
underground opening as introduced by Scussel and Chandra (2012). The equivalent parameters of rock 
mass resistance, which are directly derived from the common Mohr-Coulomb parameters, are also 
influenced by the intermediate principal stress 2, in accordance with what was suggested in the Polyaxial 
Strength Criterion, and by the approach chosen for quantifying the uniaxial compressive strength cr of 
the rock mass. In demonstration of the practical applicability of this constitutive model, it has been used 

                                                      
3
Corresponding author  

 Phone: +27 31 260 1077, Fax: +27 31 260 1411, Mail: scussel@ukzn.ac.za 
 University of KwaZulu-Natal 
 College of Agriculture, Engineering and Science, Howard College, Centenary Building 
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to predict the squeezing of rock observed and measured at three different instrumented sections of a 
tunnel from an Indian squeezing rock conditions.  

5.2  INTRODUCTION 
One of the biggest challenges of the Rock Mechanics, and specifically of Underground Engineering, is to 
develop a reliable theory for predicting support pressures for the Squeezing ground conditions in order to 
prevent any adverse situations. It is observed that squeezing of rock results in extreme deformations at the 
internal surfaces of a deep underground opening. 

The squeezing of rock is a phenomenon that may sometimes continue for long periods of time. The 
present study is focused with particular emphasis to the short-term analysis of squeezing in tunneling, 
which represents the immediate reaction of the rock mass surrounding a tunnel section moving away from 
the excavated face and that is the base from which the time dependent deformations will develop. 

The Squeezing of Rock is the result of a complex overstress field applied to the rock mass due to the 
transformation in the original state of tension subsequent to the opening of an underground excavation. 
When the induced stress exceeds the resistance of the affected material, the rock fails and the radial 
deformations at the lining become unacceptable. The squeezing condition defines, therefore, the boundary 
between stable and unstable excavations. A late identification of the unsafe stress conditions result in 
slow and hazardous excavation, use of faulty construction techniques and tunnel misalignments, which 
directly increase the overall costs of the work.  

 

  

FIGURE 5-1 - SINGH ET AL. (1992)  
APPROACH FOR PREDICTING SQUEEZING CONDITIONS 

The modern worldwide sharing of information coming from different case studies has increased the 
amount of observational data available and encouraged several attempts of predicting the Squeezing 
potential of a rock mass. Singh et. al. (1992) defined a clear boundary between safe and unsafe excavation 
conditions in underground openings. A relevant set of 39 case histories, subdivided among stable, 
squeezing and rock busting conditions, was represented in a semi-log plot as function of depth and 
Barton’s Number Q as given in Figure 5-1. 
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The entire region is sub divided in two regions, one region showing Squeezing and the other region 
showing Non-Squeezing conditions. The relation below gives the boundary between these two regions: 

31 350QH    [m]     (5-1) 

In accordance to the classical Theory of Elasticity, in hydrostatic conditions of stress, the maximum 
tangential stress  induced at the surface of an unconfined circular tunnel is equal to two times the 
overburden pressure P, which is equal to h. At failure, the maximum value of the tangential stress is 
equal to the uniaxial resistance of the rock mass cr and the depth of the excavation h is equal or bigger 
than the limit depth of Squeezing H. Substituting in equation , then, the value of H in h, Singh produced 
the following formulation of Uniaxial Compressive Strength of a rock mass: 

31 7.0 Qcr    [MPa]     (5-2) 

where the unit weight of the rock mass is expressed in kN/m3. The present formulation is fitted for weak 

rock mass condition, Barton’s number Q smaller than 10, in absence of water (Jw equal to 0).  

In case of excavations in weak rocks, when squeezing conditions are expected, it would be better to rely 
only on empirical relations derived from the results of the rock mass observations according to the 
Barton’s classification. This classification, in fact, has the highest number of case studies that prove 
efficacy of the classification system shown particularly for weak rock conditions. 

The choice of the right cr is important for the correct application of any constitutive model since it can 
vary considerably their behavior. In 2002 Barton proposed a formulation conceptually analogous to that 
suggested by Singh et. al., but, as given in Equation 5-2, it presents a further margin of safety: 

31 5.0 ccr Q   [MPa]      (5-3) 

where Qc is the modified Barton’s Number, which can be expressed as follow. 

  
 

Expressed in Equation 5-4 is the Mohr-Coulomb classical formulation of the Uniaxial Compressive 
Strength, as a function of the internal angle of friction  and cohesion c. Initially introduced for hard 
rocks,  it is widely used for any rock mass and is given as: 




sin-1

cos 2 c
cr         (5-4) 

Further, Singh et al. (1998), emphasizing the relevance of the intermediate principal stress 2 in the 
resistance of the rock mass in the vicinity of tunnel, suggested a modified Mohr-Coulomb constitutive 
model in order to incorporate it and introduced the Polyaxial Strength Criterion. According to the Singh’s 
approach, the confining effect of the minimum principal stress in the right part of the Mohr-Coulomb 
Theory, equation 5, is substituted in the new criterion by the average of the intermediate and minimum 
principal stress in order to consider the real confining stress configuration in field. The revised expression 
is given in Equation 5-6: 

Mohr-Coulomb Failure Criterion Acr 331     (5-6) 

Qc  Q
 ci

100
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Polyaxial Strength Criterion  Acr 2
32

31





   (5-6) 

where  
sin1

sin2







A  

The important confining effect developed due to the intermediate principal stress, and its role in 
predicting a more realistic behavior at failure of a rock mass has been shown by many   authors in recent 
past (Mogi 2006, Al-Ajimi 2007, Haimson 2009 and M. Singh 2011). The laboratory studies of Mogi 
(1969-74, 1977, 1979, 1981 and 2006) have shown, instead, that the effect of the intermediate principal 
stress is strongly affected by the ratio 2/3. When this ratio increases, as it is observed on the internal 
boundary of an underground excavation, the effect of the intermediate principal stress consequently 
increases. According to several observations made in the field, the tension distribution at the internal 
surface of an underground opening cannot be treated as a truly uniaxial stress field because the stress 
along the direction of a tunnel, generally the intermediate principal stress, has a dominant role in the 
definition of the start of squeezing.  

The rock mass surrounding the internal surface of an underground void, in absence of radial confinement 
(3 = 0), satisfies the conditions needed to apply Equation 5-6. In these conditions, for a particular case of 
hydrostatic original stress, substituting the uniaxial rock mass resistance given by Equation 5-3 as 
suggested by Singh, the Polyaxial Strength Criterion given by Equation 5-6 reduces to the formulation of 
the ultimate compressive strength of the rock mass at the tunnel surface, lim , given as: 

     (5-7) 

At the surface of the tunnel, therefore,  a truly uniaxial stress is not applied but a biaxial combination of 
tangential  and longitudinal P0 stress exists. The magnitude and the orientation of the original stress 
field is a function of many parameters of not easy definition, and it cannot be expressed as only function 
of the excavation depth. For this reason it is also not possible to quantify the intermediate principal stress 
and to give a clear definition of the depth of potential squeezing making use of the Equation 5-7 as shown 
for determining Equation 5-1 without a specific investigation of the original stress conditions. 

Scussel and Chandra (2012), on the basis of an accurate analysis of the state of stress in the region of rock 
mass surrounding an underground opening, using the similarity between Polyaxial Strength Criterion and 
Mohr-Coulomb model, suggested the Equivalent Mohr-Coulomb constitutive model. The Equivalent 
Mohr-Coulomb Constitutive Model (M-C) maintains the Mohr’s structure and can simulate the effect of 
the intermediate principal stress 2 by only modifying the parameters of shear resistance. It allows and 
simplifies the analytical and numerical applications of the Polyaxial Strength Criterion (PSC). Attempts 
of this kind have been already made to express the Hoek and Brown criterion through the Mohr-Coulomb 
constitutive law. Hoek et al. (2002), Carranza-Torres (2004), Priest (2005), Sofianos and Nomikos 
(2006), Yang and Yin (2010) and Shen et al. (2011) have simulated its behavior in several different 
numerical and analytical soil and rock mechanics applications. These approaches, however, have shown 
results more or less approximated for the objective analytical difficulties of describing, through one 
linear, a non-linear model (Brown, 2008). 

The present method is applicable when one of the principal stresses is constant, which is generally the 
case for long underground excavations, where the stress along the length is fixed and equal to the 
component of the original stress in that direction. For this particular condition the Polyaxial Strength 
Criterion is fully comparable with a bi-dimensional linear failure criterion, which presents intercept and 

2  7.0 2
31

lim 
AQ   
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slope different to the original shear resistance parameters. According to this hypothesis, the Polyaxial 
Strength Criterion can be easily rewritten in the form of a Mohr-Coulomb failure model making use of the 
new equivalent Internal Angle of Friction ' and the equivalent Cohesion c' and may be expressed as 
given in the Equation 5-8. 

creqN ')( 31          (5-8) 

'sin1

'sin1
     and     

'sin1

'cos'2
'     where )( 



  





 eqcr N

c
 

The two equivalent parameters of resistance can be easily determined by means of the Equations 5-9 and 
5-10:  




sin2

sin
sin' 1


        (5-9) 

B
A

c cr 





 

2
' 2       (5-10)     

where  

  


























sin2

sin
sincossin2

sin1
   and   

sin1

sin2

1

BA  

The formulation of the equivalent internal angle of friction ’, as well as the parameters A and B, which 
are only functions of the angle of internal friction and can be easily tabulated substituting a realistic range 
of values for rock masses into the expressions given above and are tabulated as shown in Table 5-1 and 
Table 5-2. 

  [°] 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00 

' [°]  11.90 13.32 14.79 16.30 17.86 19.47 21.13 22.84 24.60 26.41 28.27 

TABLE 5-1 - RELATION BETWEEN ANGLE  AND EQUIVALENT ANGLE ' OF INTERNAL FRICTION 

  [°] 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00 

A 1.04 1.20 1.37 1.56 1.77 2.00 2.25 2.54 2.85 3.20 3.60 

B 0.41 0.40 0.39 0.37 0.36 0.35 0.34 0.33 0.32 0.31 0.30 

TABLE 5-2 - ESTIMATION OF A AND B FOR INCREASING VALUES OF INTERNAL ANGLE OF FRICTION 

The ultimate rock mass strength at the tunnel surface in the absence of radial confinement can be, 
therefore, expressed in the following way as equivalent uniaxial compressive strength 'cr: 

'sin1

'cos'2
'







c
cr

      (5-11)
 

A rational choice of the three parameters characterizing ’cr,2. , and cr) is essential for the correct 
application of the method. A preliminary investigation of the site characteristics is recommended for the 
evaluation of the in situ intermediate principal stress, while the internal angle of friction can be 
determined directly by means of Equation 5-12 suggested by Barton (2002) which Singh and Goel (2006) 
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modified to incorporate the effect of the rock blocks interlocking. This relation is directly related to the 
factors Jr, Ja and Jw as defined in his classification system. 

1.0tan 






a

w
r J

JJ      (5-12) 

In this paper for the determination of uniaxial compressive strength the use of the Equation 5-3 is strongly 
recommended. Its feasibility in a real underground application will be investigated in the following 
sections of this work. 

Singh (2006), proposed an analytical elasto-plastic solution of stress distribution in broken zone as an 
application of his Polyaxial Strength Criterion in tunnel engineering, which can be used to determine the 
Squeezing Pressure Pi. The solution given by Singh as presented in Figure 5-2 is similar to the Daemen's 
approach (1975) and applicable in the direction of the principal in situ stress to any initial state of stress, 
given the initial hypothesis of radial broken zone. This assumption, based on his in situ observations, 
made in several Himalayan tunnels, does not entail a constant reaction of the lining when a non-
hydrostatic original stress field is considered.  

 
FIGURE 5-2 - PROBLEM OF A CIRCULAR TUNNEL  

IN AN ELASTO-PLASTIC ROCK MASS 

According to Singh’s solution, given the circular shape of the broken zone and the in situ principal 
stresses coincident with horizontal and vertical directions, the radial r and tangential stresses in 
horizontal,  = 0° in Figure 5-2, and vertical direction,  = 90° in the same figure, correspond to the 
minimum3 and maximum 1 principal stresses and, in elastic region, can be evaluated by means of the 
Kirch’s equations.  

If the radial pressure r at the plastic radius rp is Pb, the tangential stress at the elastic boundary in vertical 
directions can be expressed as follows: 

  bPP  3       (5-13) 
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Since, at the plastic radius, the peak failure conditions are reached, the values of the principal stresses can 
be substituted in the Polyaxial Strength Criterion as expressed in equation 5-6 to determine the magnitude 
of Pb. 

 
   

 22

23 0

A

APP
P cr

b 





     (5-14) 

where P0, the component of the original in situ stress in the tunnel direction, is substituted in 2. 

Inside the broken zone the residual failure criterion is valid but, it must be highlighted that, in accord to 
the Singh’s approach the Polyaxial Strength Criterion reduces to the Mohr-Coulomb theory, as expressed 
by equation 5-16, after failure. In the plastic zone, therefore, the state of stress is governed by the equation 
of equilibrium and by the Mohr-Coulomb failure criterion in terms of residual parameters: 

 
rr

rr   



      (5-15) 
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Substituting the tangential stress as maximum principal stress from Equation 5-16 in the equation of 
equilibrium 5-15, it can be integrated with the following boundary condition, pbr rrP     , to 

determine the evolution of radial stress in vertical direction: 

  rr
p

rrbr cr
rcP 



cot cot 







   (5-17)  

r

r




sin1

sin2
 where




 The same procedure can be reproduced in the horizontal direction to determine the relative squeezing at 
the wall.

 
If needed, by means of an analytical solution, the increment of squeezing pressure due to the gravitational 
effect of the fractured rock mass in crown can be quantified by just introducing the self-weight of the rock 
mass in the equation of equilibrium. 

The application of two different constitutive criteria in the same solution, easy to be solved in an 
analytical treatment, has limited applicability when the real conditions of excavation do not satisfy the 
initial hypotheses of the original solution. The use of the approach proposed by Scussel and Chandra 
permits the application of the same criterion both in peak and residual condition and the resolution with 
any commercial numerical suite.  

Making use of the equivalent Mohr-Coulomb resistance parameters, Pb can be expressed as in equation 18 
and substituted in Equation 5-17 to determine the distribution of the radial stress in vertical direction. 

 
 1

'3

)( 



eq

cr
b N

P
P




      (5-18) 
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5.3  CASE STUDY – THE CHHIBRO KHODRI TUNNEL 
In this research the case study analyzed is the Indian project of the Chhibro-Khodri Tunnel, which is 
famous for large magnitude of the observed squeezing phenomenon and excessive delays suffered during 
its excavation. This project has been chosen for the amount and quality of the information coming from 
the work of characterization and back analysis carried out by Jethwa (1979) in the sections of larger geo-
mechanical weaknesses. 

The Chhibro-Khodri Tunnel is an important part of the Yamuna (River) Hydroelectric Project. The whole 
scheme was subdivided into 4 main stages. It started with the 516 m long barrage built at Dakpathar on 
Yamuna River to provide water to the power houses of Dhakrani and Dhalipur and completed in 1965. 

 

FIGURE 5-3 - GEOLOGICAL SECTION ALONG THE CHHIBRO KHODRI TUNNEL (JAIN ET AL., 1975) 

The following parts of the project extended the hydroelectric activities to the entire area and realized a 
dense and complex net of dams and tunnels in order to take advantage of the favorable morphology and 
the infinite water reserve. 

The tunnel between Chhibro and Khodri was excavated in the second part of the second stage of the 
works. It receives the water discharged from the Chhibro Power station and directs it to the 120 MW 
(4*30MW) capacity Khodri power house. The tunnel is 5.6 km long and has 7.5 m diameter circular cross 
section. 

The main inconveniences in the excavation were expected through the Krol and Nohan intra-thrust 
regions. A small inclined tunnel, the Kalawar Inspection Gallery, was excavated to observe the reaction of 
the Red Shales and Black Clays in those formations at the installation of the proposed linings.  

Jethwa instrumented this tunnel and determined the radial horizontal Squeezing Pressures PI, 
deformations ua at the surface of the tunnel as well as the radii of the plastic region rp around the 
excavations. The final geological mapping, shown in Figures 5-6 and 5-7, was carried out by Jain et al 
(1975) while the determination of the Physical, mineralogical and shear resistance characteristics of the 
rock masses went through once again by Jethwa (1979). 
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FIGURE 5-4 - REGIONAL GEOLOGY OF THE CHHIBRO KHODRI TUNNEL 

A reasonably acceptable range of values for the shear resistance parameters, describing the behavior at 
failure of the weaker rock masses was assumed on the basis of the surveys conducted by Dube (1979). 
Three relevant tunnel sections are considered in this analysis; two were excavated in Red Shales and one 
in Black Clays and a concise summary of the essential geometrical and geotechnical characteristics of the 
instrumented sections is contained in Table 5-3.  

Sect 
# 

Soil/Rock 
Type 

ri  
[m] 

rp 
[m] 

Depth 
[m] 

 
[kN/m3] 

Q 
ci

[kPa]

p r cp cr ua/ri 
[%] 

Degree  
of  

Squeezing 

Pi 

[°] [kN/m2] [kPa] 

1 
Red 

Shales 
1.5 6.0 280 27.3 

.025-
.10 

≈ 75 30-
35 

25-
32 

0.1-
0.15 

0 2.8 Severe 0.17 

2 
Red 

Shales 
4.5 31.1 680 27.3 

.012-
.05 

≈ 75 30-
35 

25-
32 

0.1-
0.15 

0 6.0 Very Severe 0.30 

3 
Black 
Clays 

4.5 14.4 280 26.4 
.016-
.03 

≈ 25 25-
30 

20-
25 

0.1-
0.15 

0 4.5 Severe 1.22 

TABLE 5-3 - GEOMETRICAL DIMENSIONS AND ROCK MASS CHARACTERISTICS 

Without any specific analysis by the author of the uniaxial strength of the matrix ci of the two rock 
masses, the use of data in the literature is, therefore, necessary. 
According to Terzaghi and Peck (1967) very weak clays show ci between 5 and 25 MPa, while a weak 
clay between 25 and 50 MPa. For this reason, in this analysis an intermediate value between these two 
classes, 25 MPa, has been taken as reference for the uniaxial strength the black clays. The observation of 
a different behavior by the red shales surrounding the other two instrumented sections allows to assume 
better conditions for the rock matrix. This hypothesis is confirmed by Hoek (2000), which suggests an ci 
for the shales between 50 and 100 MPa, and Koncagul and Santi (1999), which, in turn, observed values 
between 60 and 100 MPa in their laboratory tests. Even in this case, in the absence of specific 
information, an intermediate value equal to 75 MPa was chosen. The geometrical extensions and the 
suggested values of the rock mass quality and resistance can be used for the numerical or analytical 
determination of the Squeezing Pressure. In this paper, the analytical solutions according to the classical 
Mohr-Coulomb and suggested Equivalent Mohr-Coulomb Theories are compared to the measured 
Squeezing pressures as shown in Table 5-3.  
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5.4  METHOD OF ANALYSIS 
If the hypothesis, presented in the introductive part of this paper, that the influence of the stress in the 
tunnel direction on the rock mass resistance is accepted, the results of the observation of the rock mass 
behavior in the tunnel proximity may be also influenced by the effect of the lateral confinement. In 
support to this hypothesis, a simple comparison of the Equation 5-2 with the other proposed relations 
shows that the Singh’s approach returns always considerably higher values as compared to the other 
methods. 

In this research, to avoid doubling the effect of the intermediate principal stress on the rock mass 
resistance, the major principal stress at the tunnel surface is obtained using Equation 5-7, but substituting 
for cr as given in Equation 5-3. To determine the ultimate compressive strength at the tunnel surface, 
therefore, the following relation may be used: 

     (5-19) 

In the absence of a detailed estimation of the original state of stress, and for the rock mass 
characterization as suggested by Jethwa (1979), a hydrostatic original stress field is assumed in this 
analysis. Such simplification is often used in the designing stage of underground excavation and, when 
pronounced stress anisotropy is not prefigured, it does not entail results too dissimilar from the real rock 
mass-support behavior. 

Given the simple geometry of the excavation, a circular and uniformly lined tunnel, surrounded by a 
substantially homogeneous and isotropic fractured rock mass, the state of stress induced around the 
gallery can be determined by means of analytical approaches. In this paper, four different approaches are 
used to obtain the results for the above-mentioned case study. The first approach uses Mohr-Coulomb 
Theory and the other three approaches use the Equivalent Mohr-Coulomb Theory but are different in the 
sense that the uniaxial strength ci has been obtained differently. The details of the four approaches used 
in the present research are described below: 

Approach 1: In this, the Mohr-Coulomb Failure Criterion has been used. 

Approach 2: The Equivalent Mohr-Coulomb Failure Criterion is applied and the uniaxial 
compressive strength as given by Equation 5-4 is used. 

Approach 3: Equivalent Mohr-Coulomb Failure Criterion has been applied and the uniaxial 
compressive strength is used as suggested by Barton and given in Equation 5-3. 

Approach 4: Equivalent Mohr-Coulomb Failure Criterion has been used and the uniaxial 
compressive strength is used as suggested by Singh and given in Equation 5-2. 

Sect # 

Approach 1 
Q 

Approach 2 Approach 3 Approach 4 

 c qcmass '  c' q'cmass '  c' q'cmass '  c' q'cmass 

[°] [MPa] [MPa] - [°] [kPa] [MPa] [°] [MPa] [MPa] [°] [MPa] [MPa] 

1 30 0.1 0.346 0.025 19.47 2.83 0.346 19.47 3.98 3.626 19.47 4.68 5.588 

2 30 0.1 0.346 0.012 19.47 6.69 0.346 19.47 7.56 2.839 19.47 8.11 4.375 

3 25 0.1 0.314 0.016 15.54 2.17 0.314 15.54 2.85 2.095 15.54 3.82 4.657 

TABLE 5-4 - PEAK RESISTANCE PARAMETERS FOR THE DIFFERENT APPROACHES 

In the present analysis, the measured radii of the plastic zone are used for the determination of the radial 
component of the squeezing pressure and, then, compared to the results of the real squeezing pressures 

 lim  0.5   Qc
1 3  2

A
2
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monitored by Jethwa (1979) in the field. This study uses lowest among the parameters of resistance as 
suggested by Dube (1977), since when they carried out the study, there was a consolidated predisposition 
in the engineering rock mass classifications to overestimate the resistance of the weak rocks. This 
approach was subsequently corrected in the following classifications. 

In Table 5-4 are presented the equivalent shear peak resistance parameters corresponding to each 
suggested approach and calculated by means of the Equations 5-9 and 5-10. The equivalent parameters 
are derived from the Mohr-Coulomb peak shear parameters suggested by Jethwa, as shown in Table 5-1 - 
configuration 1. From these results it is confirmed that the modified approaches show increasing values of 
equivalent cohesion; this behavior is consistent with the relation expressed in Equation 5-10, which is 
directly influenced by the magnitudes of the uniaxial compressive strength computed for each approach.  

observations Approach 1 Approach 2 Approach 3 Approach 4 

Sect # 
P0 Pv Pi Pi Avg Err Pi Avg Err Pi Avg Err Pi Avg Err 

[MPa] [MPa] [MPa] [MPa] [%] [MPa] [%] [MPa] [%] [MPa] [%] 

1 7.64 0.04 0.17 0.49 -189% 0.32 -88% 0.18 -4% 0.09 47% 

2 18.56 0.16 0.30 0.54 -81% 0.36 -19% 0.31 -3% 0.28 7% 

3 7.39 0.14 1.22 1.25 -2% 0.99 19% 0.80 35% 0.52 58% 

|AVG| 90.6% |AVG| 42.1% |AVG| 13.8% |AVG| 37.2% 

TABLE 5-5 - COMPUTED SQUEEZING PRESSURES 

The Squeezing Pressure analytically computed using all the four approaches for the three different 
monitored sections described in Table 5-3 are summarized in Table 5-5. The presented values are 
obtained by substituting the relative combination of equivalent cohesion and internal angle of friction in 
the Equation 5-17 when r = ri. 

The results presented in the table are then compared with the measured Squeezing Pressures and the 
relative percent variance are alongside listed. It is observed that the squeezing pressures computed using 
approach 3 give the smallest error as compared to the observed values and on an average for all the three 
sections it is obtained as 13.8 %. In approach 4, the pressures calculated are consistently smaller than the 
observed values in the field. The underestimation of the Squeezing Pressure, which is about 37% on an 
average, can be explained as a direct consequence of overestimation of the confining stress due to the use 
of Polyaxial Strength Criterion along with the Singh’s formulation of the Uniaxial Compressive Strength. 
The major reason for this could be the value of uniaxial compressive strength which has been computed 
using equation given by Singh's, which itself is dependent on intermediate principal stress. Thus implying 
that the effect of intermediate principal stress is incorporated two times. This approach resulted in 
underestimation of the expected squeezing pressure, which may turn out to be dangerous in some cases.  

The Singh’s and Barton’s formulations of the uniaxial compressive strength are modified in more general 
relations, as shown in Equations 5-20 and 5-21, where the initial constant factor which characterizes the 
two approaches is substituted by the variables f1 and f2. 

31
1   Qfcr          (5-20) 

31
2   ccr Qf          (5-21) 

The entity of the uniaxial compressive strength in accordance to the Equations 5-20 and 5-21 was 
calculated for a reasonable range of values of the parameters fi. The resulting cr were applied, as in the 
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To be precise, for the fi equal to 0.471 and 0.519, the Squeezing pressures determined in the two test 
section surrounded by Red Shales are almost coincident with the observations, but the same cannot be 
said for the instrumented tunnel section in Black Clays. 

In the end, the results obtained using the approach 2 in general overestimate the Squeezing Pressures 
observed in field by an average of 42 % because of the low entity of the chosen Uniaxial Strength 
formulation. The high errors registered in approach 1, 91% using Mohr-Coulomb theory, are due to the 
fact that the intermediate principal stress is not included in the analysis at all. 

5.5  CONCLUSIONS 
The methodology suggested in this paper, if wisely used, gives more realistic results for Squeezing 
conditions than the other traditional theories prevalent in tunnel engineering. The combined use of 
Polyaxial Strength Criterion and Mohr-Coulomb uniaxial compressive strength demonstrated high 
correlation in the Squeezing Pressure determination in conditions of severe squeezing due to the weakness 
of the rock mass affected by an excavation. 

The proposed Equivalent Mohr-Coulomb failure criterion, which is a modified form of Polyaxial Strength 
Criterion, has been applied to three instrumented test sections, simulated the behavior of the rock mass in 
squeezing conditions, and demonstrated its concrete applicability and simplicity of being embedded into 
analytical solution as well as into numerical models. The present methodology uses the Barton’s 
engineering rock mass classification and by considering improved resistance parameters incorporates the 
effect of a tridimensional state of stress in rock mass.  

Out of the four approaches adopted in this research to evaluate the support pressures for the three sections 
of the tunnel chosen for this study, it has been observed that using the equivalent Mohr-Coulomb failure 
criterion with the uniaxial compressive strength obtained by the Barton's relationship using  and Q and 
ci only gives the minimum error as compared to the actual observations which is of the order of 14 
percent. If the uniaxial compressive strength is obtained as suggested by Singh, the results differ on 
average by about 37 percent. If the uniaxial compressive strength is obtained using Mohr-Coulomb  
correlation, the difference in the observed and the predicted results on an average are lower by about 42 
percent. If the Mohr-Coulomb criterion was used instead of the Polyaxial Strength Criterion, the pressures 
predicted are higher by about 91 percent on an average. It is therefore recommended to use the equivalent 
Mohr-Coulomb failure criterion for polyaxial state of stress with the uniaxial compressive strength 
evaluated by using the Barton’s Theory.  
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5.7   LIST OF SYMBOLS: 
Hp: Terzaghi’s Rock Load Factor; 

: Rock Mass Unit Weight; 

h, H: Depth and Limit Depth of Squeezing; 

P: Overburden Pressure; 

r, ri, rp: Distance from the center of the tunnel, internal and plastic radius;    
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1, 2, 3: Maximum, Intermediate and Minimum Principal Stress;  

r, , r,: Stress distribution around a tunnel in Radial, Tangential directions; 

P0:  Hydrostatic in situ Stress; 

: Horizontal Stress Ratio; 

Pi, Pv, Ph: Squeezing Pressure, Squeezing Pressure in vertical and horizontal directions;  

qcmass, qcr, cr: Peak, Residual, Uniaxial Compressive Strength (UCS) of the rock mass; 

ci: Uniaxial Compressive Strength (UCS) of the rock matrix; 

: Ultimate Compressive Strength of the rock mass at the tunnel surface; 

p, r, : Internal Friction Angle, Peak Internal Friction Angle, and Residual Internal Angle of Friction;   

cp, cr, c: Peak, Residual, Cohesion;  

’, c’, ’cr: Equivalent Internal Friction Angle, Cohesion and Uniaxial Compressive Strength (UCS) of 
the rock mass; 

: Angle between the horizontal axis of a tunnel and the line between its center and point considered; 

Q, Qc: Barton’s Number and Modified Barton’s Number; 

Jr, Jw, Ja: Joint Roughness, Seepage, Alteration Numbers. 
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Chapter 6 

6 CONCLUSIONS 

6.1  SUMMARY 
In the present research the following goals have been achieved. 

 Firstly, a detailed bibliographic review of the traditional and innovative design techniques of 
underground excavation was produced. The interest was particularly directed to the empirical and 
the analytical approaches and how the experience and the results of the rock mass observation can 
be translated into realistic constitutive laws used for engineering purposes. 

 It was carried out a careful analysis of the similarities and differences between the Polyaxial 
Strength Criterion and the Mohr-Coulomb Failure Criterion. Based on the results obtained, 
different formulations of the Polyaxial Strength Criterion were proposed and validated. Their 
application allows the implementation of the Polyaxial Strength Criterion in personalized 
numerical applications. 

 The first attempt, as presented in the Equation 3-10 of Chapter 3, permits to have an adaptable 
Polyaxial Criterion that, depending on the necessities, can easily change into the Mohr-Coulomb 
Theory only conveniently modifying two specific parameters. 
On the base of this Equation, an appropriate code in FISH for the famous geo-mechanical finite 
differences numerical suite FLAC (FDM) was produced.  

 In the same Chapter, the proposed user defined constitutive model for FLAC was applied to a 
simple numerical model of circular tunnel excavated in weak rocks and plasticized by an 
adequate choice of the original state of stress. The numerical resolution of the stress field induced 
by the excavation was successfully compared to the analytical polyaxial elasto-plastic theory of 
stress distribution in broken zone in squeezing ground as proposed by Sing et al (2006). 

 The suggested formulation of the Polyaxial Strength Criterion was furthermore evolved in the 
subsequent Chapter. The analytical expression of the Equivalent Mohr-Coulomb Failure 
Criterion, as already suggested by its name, is totally undistinguishable from the more common 
Mohr-Coulomb Theory. It relies on clear analytical relation for the determination of the 
equivalent parameters of resistance ’ and c’, which, differently from the Mohr-Coulomb 
parameters  and c, incorporate the positive confining effect of the intermediate principal stress 
2. The present approach was, on turn, applied to the same typical case of plasticized tunnel and 
the results compared to those already generated by the previous numerical technique. 

 Analytical analyses by means of the Equivalent Mohr-Coulomb Theory were performed on three 
representative sections of the Chhibro-Khodri instrumented inspection gallery. The determination 
of the parameters of the Equivalent Mohr-Coulomb Theory is described steps by steps for the 
correct application of the methodology in cases of severe squeezing conditions. 

6.2  CONCLUSIONS 
The elasto-plastic Polyaxial model produced in Chapter 3 introduces an alternative to numerically design 
tunnels in squeezing rock masses. A new relationship between the principal stresses and uniaxial 
compressive strength is suggested in this work, which can handle both the elastic and plastic zone 
according to Singh's Theory by appropriately choosing the parameters.  
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The application of the Polyaxial Strength Criterion, as explained in Singh’s Theory, is fairly important 
when the pressures encountered are high and the weakness of rock masses produce significant squeezing 
phenomena in the field. In these conditions the study of the complex rock mass-support behavior cannot 
be simulated by means of physical models and the use of a specific numerical model is, therefore, the 
only way to reproduce the response of a rock mass in accordance with the Polyaxial Theory. 

The proposed relationship is used to bring out the effect of intermediate principal stress as the 
development of principal stresses in an underground opening. Through an example it is shown that the 
effect of the intermediate principal stress contributes to the enhancement of the peak characteristics of the 
underground excavation but it can easily overestimated. 

In Chapter 4 is proposed a new constitutive model where the polyaxial state of stress can be incorporated 
in the analysis by a very simple approach. The analytical formulation of the Polyaxial Strength Criterion 
is converted to Mohr-Coulomb theory with modified angle of friction and cohesion values. The approach 
is quite general and may be used for any analytical or numerical method of analyzing tunnel support.  

The methodology suggested in this thesis, if wisely used, gives more realistic results for Squeezing 
conditions than the other traditional theories prevalent in tunnel engineering.  
The proposed Equivalent Mohr-Coulomb failure criterion, in Chapter 5, has been applied to three 
instrumented test sections to simulate the behavior of the rock mass in squeezing conditions, 
demonstrating its concrete applicability and simplicity of being embedded into analytical solution as well 
as into numerical models. The present methodology suggests the use of the Barton’s engineering rock 
mass classification Q and uniaxial rock mass resistance formulation and by considering improved 
resistance parameters incorporates the effect of a tridimensional state of stress in rock mass.  
 
Out of the four approaches adopted in this research to evaluate the support pressures for the three sections 
of the tunnel chosen for this study, it has been observed that using the equivalent Mohr-Coulomb failure 
criterion with the uniaxial compressive strength obtained by the Barton's relationship using  and Qc only 
gives the minimum error as compared to the actual observations which is of the order of 14 percent. If the 
uniaxial compressive strength is obtained as suggested by Mohr-Coulomb, the results differ on average by 
about 42 percent. If the uniaxial compressive strength is obtained using Singh's correlation, the difference 
in the observed and the predicted results on an average are lower by about 37 percent. If the Mohr-
Coulomb criterion was used instead of the Polyaxial Strength Criterion, the pressures predicted are higher 
by about 91 percent on an average. It is therefore recommended to use the equivalent Mohr-Coulomb 
failure criterion for polyaxial state of stress with the uniaxial compressive strength evaluated by using  
and Qc.  
The method can be implemented in any analytical solution or geo-mechanical numerical suite with 
excellent results. It, when used in numerical schemes, is easily adoptable and leads to less computational 
efforts.  The results obtained by the proposed method are in good agreement with the available analytical 
solutions and, if applied to real cases of squeezing conditions, it predicts the Squeezing. Thus, the 
proposed methodology achieves all the objectives mentioned at the beginning of this study. 
 

6.3  RECOMMENDATIONS FOR FURTHER DEVELOPMENTS 
In view of the limitations of the present study future work might be undertaken with attention on the 
following subjects. 

i. A better computational capacity and integration in the numerical suite of the constitutive model in 
FISH proposed for FLAC in the Chapter 3 can be achieved by converting the shown code to C++, 
the natural programming language of the embedded numerical constitutive models in FLAC. 
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ii. There are real cases in which the stress acting in the direction parallel to a tunnel axis is not 
intermediate between the major and minor principal stresses existing in the perpendicular 
direction but, just, the biggest. This combination of the involved stresses is typical of tunnel 
excavated in the perpendicular direction to the axes of a recent mountain chain (i.e. Himalaya). In 
these conditions, failure is generated in the tunnel direction and the stresses acting in the 
perpendicular plane became the intermediate confining pressure. A failure mechanism like that 
can be efficiently modeled by reformulating the algorithm presented in Chapter 3 as explained in 
Chapter 4. 

iii. On the base of the assumption expressed in Chapter 5, the Polyaxial Strength Criterion 
formulation expressed in Equation 5.14 can be positively extended to cases of rock masses 
subjected to evident anisotropy. 

iv. The choice of the correct theory for the uniaxial compressive stress cr determination when it is 
associated to the Polyaxial Strength Criterion is a complex problem. An intensive work of back 
analysis would allow not overestimating its magnitude and, therefore, avoiding a possibly 
dangerous underestimation of the squeezing pressure ascertained. 
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