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ABSTRACT

The traditional design methodologies for tunnel and underground excavations are divided in to
three categories: Empirical, Analytical, and Observational approaches, whereas in the last years the
Numerical approach has strongly become popular both for the intrinsic simplicity of the software

packages and their ability to manage problems unsolvable with the classic methods.

In this thesis, the underground openings have been analyzed using constitutive models other than
the Mohr-Coulomb theory. FLAC is used for the analysis and the software has been implemented to
include the Polyaxial Strength Criterion. The details of the modifications made in the software are
presented and the results are compared with the Singh's elasto-plastic stress distribution in

squeezing grounds.

The applicability of the Polyaxial Strength Criterion has been therefore extended to all the
numerical suites designed for geo-mechanical purposes (FEM, FDM, ...) and the obtained results
compared to the observations of deformation and radial squeezing pressure of the instrumented

tunnels in the Chibro-Khodri underground power station.

This study will develop better comprehension of the behavior of the underground openings and also

provide a useful tool to the designers in the planning stages.
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Chapter 1

1 INTRODUCTION

1.1 FRAMEWORK

The unceasing development that characterizes the modern economy is directly linked to the quality,
capacity and efficiency of the infrastructure, connecting the strategic nodes of each nation.
The famous mountain (San Gottardo, Frejus..) or undersea (Euro Tunnel) road or railway tunnels are not
the only underground excavations today as there is a consolidated trend of moving all the facilities
underground such as power stations, metro stations, parking and storage space for dangerous and nuclear
waste to reduce the impact that they could induce to the narrow space and environment.

In mixed structures, with superstructure and underground infrastructure, the excavated part is always the
most important and determinant for the success of the entire realization. The possibility to excavate
always in safe and competent soils or rock masses is rare and a deviation from the original alignments is
not possible, the engineers have to take the challenge of facing these conditions.

The excavation of tunnels in non-competent ground, in particular in Squeezing Conditions, is one of the
most challenging experiences in geotechnical engineering for the difficulties and uncertainties involved
both in the design and in the execution of works. The Squeezing ground conditions occur when the
modification of the stress field in a rock mass, due to the opening of a void, induces an overstress such
that the rock fails. The rock mass failures are often consequence of a large time dependent deformations
at the excavation boundaries. The choice of the most appropriate excavation-support system is the key to
avoid loss of functionality or stability in the excavation works.

Nowadays, despite of considerable amount of studies in this field, a universally accepted theory valid for
prediction of support pressures and design of underground caverns in squeezing ground conditions does
not exist. The designing approaches adopted in tunnel engineering are commonly subdivided in to three
main categories:

Empirical In the empirical approaches, the geotechnical design parameters are determined by
expressions exclusively founded on the empirical analysis of the data collected by the
observation of the behavior of a large number of underground excavations. The long
experience accumulated in the worldwide tunnel practice over many years permitted
development of several empirical relations, which are commonly used in tunneling
engineering.

Analytical The analytical methods predict the behavior of a soil or rock mass by means of the
application of theoretical laws. These can be subdivided in Elastic and Elasto-Plastic
Theories. A rock mass can be represented as a homogeneous mass of resistance lower
than the resistance of undisturbed rock material, or as blocks of undisturbed rock material
but naturally spaced out by joints and fractures, depending on the ratio between spaces of
the discontinuities and excavation dimension. The analytical resolution of complex
geotechnical problems entails the introduction of a high number of parameters, which
cannot be easily determined and may distort the final results obtained from analytical
approach.



The use of analytical approaches, by the resolution of easy problems, is strongly
suggested for didactic purposes. The theoretical understanding of how a rock mass
behaves below the surface is necessary for proper planning of excavation or any
application of support technique.

Observational In this category, are placed those methodologies that produce suggestions for the final
design of an underground excavation based on the observation and subsequent
comparison of the behavior of an underground opening with the corresponding
performance predicted at the designing stage. Specific provisional inspection galleries are
also excavated before the final design of an underground work to determine the quality
index of a complex rock mass system and finally design and calibrate the correct
retaining system.

The design of underground excavations cannot just rely on only one technique chosen among the
traditional methods. The recommended procedure is based on the use of a rational combination of more
than only one approach for an initial comparison of the consistency of the results and an ongoing work of
refinement of the applied approach based on an observational technique. This iterative procedure leads to
the best possible results for difficult situations.

1.2 PROBLEM STATEMENT

About 30 years ago, for the first time, numerical methodologies were applied to real geo-mechanical
problems, with a considerable delay with respect to other engineering disciplines. The numerical
solutions, although not complex from a theoretical point of view, overcome the difficulty of resolving
complex geometries which cause complexities in analytical closed Equations. The presently available
techniques allow a detailed analysis of any engineering problem and simplify the realization any complex
problem and allows comparison of different design approaches for the problem. Numerical and traditional
methodologies are indissolubly interconnected; any numerical model to be implemented needs a set of
physical laws describing the overall behavior of the selected ground, while the empirical approaches help
in determination of the indexes of quality and resistance for the surrounding ground.

Among the high number of analytical models suggested in literature, only a small number has been
converted to numerical models suitable for commercial applications. The small choice of failure criterion
in geotechnical software commonly available is directly related to the fact that tradition is to use only a
few established relations. The absence of periodic upgrades of the available software is a complex
problem that, combined with difficulty in the implementation of user defined failure criteria, discourages
many from promoting the application of their innovative theories into real practical applications.

1.3 ScorPE AND OBJECTIVES OF THE THESIS

In this thesis, motivated by the above considerations, an innovative numerical failure criterion, able to
model deep underground excavation in squeezing rock conditions, is developed and converted to a form
such that it can be easily implemented in any numerical application software. The Polyaxial Constitutive
model, introduced by Singh et al. in 1998 has been modified and applied in this thesis.

The present constitutive model has been, specifically fitted for describing the behavior of very weak rock
masses. This model has the merit of incorporating the effect caused by the intermediate principal stress on
shear resistance of the rock mass. The applicability of this failure criterion has the main difficulty in its
application into numerical approaches, discouraging its extensive use in practice although the good
feedbacks of its applications in the field problems are shown.

In the present work, the Polyaxial Strength Criterion has been converted into a more convenient form and
has been expressed in the format of Mohr-Coulomb criterion by using equivalent shear strength
parameters. The relationship between these equivalent shear strength parameters and the strength

2



parameters used in Mohr-Coulomb criterion has been established. This allows the Polyaxial Strength
Criterion to be implemented in any numerical code that uses Mohr-Coulomb criterion. This has been
implemented in two stages. In the first stage, a specific programming code in FISH, has been incorporated
in FLAC (two dimensional explicit finite differences program for engineering mechanics computation)
strictly following the Singh’s Polyaxial Strength Criterion and laid the foundations for the second stage.
In second stage, the Polyaxial Strength Criterion relationship has been suitably modified to be expressed
in the form similar to Mohr-Coulomb criterion and obtain equivalent parameters, which can be used
without any modification in the geotechnical numerical suites and this approach is more elegant, and
convenient to use. This approach, in fact, brings out the similarities between Singh’s Theory and Mohr-
Coulomb failure criterion by introducing new equivalent shear strength parameters.

The results obtained from both the numerical approaches suggested in this work are examined and
compared to the analytical solution suggested by Singh for analyzing the polyaxial state of stress around a
circular tunnel in squeezing conditions. The suggested constitutive models give results, which are in very
close agreement with the analytical solution.

In the final part of this research, to demonstrate the potential of the failure model proposed, the Squeezing
pressures observed in three instrumented sections of a tunnel section in case of severe squeezing is
compared to the results obtained by numerical model suggested in this study as well as with the Mohr-
Coulomb criterion. It is observed that for Squeezing conditions the suggested approach using Polyaxial
Strength Criterion and using uniaxial compressive strength obtained by Barton’s relation gives better
results.

1.3 ORGANIZATION OF THE THESIS

This thesis is subdivided into 6 Chapters. The three main Chapters of this research are written as set of
already published research papers or ready for a future publication. The present Chapter is intended to
provide a general introduction of this research and explains the organization of the following Chapters.

The second Chapter presents an exhaustive description of the squeezing phenomenon and a review of the
designing techniques currently available in squeezing conditions. A separate section of this Chapter is
exclusively dedicated to introduce the Polyaxial Strength Criterion and its analytical applications.

Chapter 3, initially written for the international conference INDOROCK 2011 organized by the Indian
Society of Rock Mechanics and Tunneling Technology (ISRMTT) at IIT Roorkee (India), has been
successively updated and published at the beginning of 2012 in the VVolume 18 of the Journal of Rock
Mechanics and Tunneling Technology (ISSN 0971-9059).

It describes the first successful effort to implement a programming code for the numerical application of
the Polyaxial Strength Criterion in FLAC and includes all the verification of its complete functionality.

In Chapter 4, already accepted for publication by the Journal of Tunneling and Space Technology (ISSN:
0886-7798), it is presented the proposed modification of the Polyaxial Strength Criterion to achieve the
Equivalent Mohr-Coulomb Theory. The relative Equivalent parameters of shear resistance are also
described and determined. As for the numerical model for FLAC the present methodology is verified in a
specific numerical application.

In Chapter 5, already accepted for publication by the International Journal of Geomechanics (ISSN: 1532-
3641 elSSN: 1943-5622), the Equivalent Mohr-Coulomb constitutive model, as described in Chapter 4
and subsequently modified, is applied to a real case of tunnel subjected to severe squeezing conditions,
the inspection gallery of Chhibro Khodri, India. All the stages of the implementation are clearly explained
and the outcomes compared to the observation executed during the excavations execution.

Finally, in Chapter 6, the conclusions of this work and some suggestions for further studies are given.
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Chapter 2

2 LITERATURE REVIEW

2.1 INTRODUCTION

The behavior of the rock mass has been studied extensively in the recent decades in order to define a
reliable law for predicting the advent of squeezing phenomena in underground excavations. In this
Chapter, the main characteristics and recent improvements of empirical, analytical, observational and
numerical methods, the universally recognized approaches in rock mechanics, are explained in detail.

Because the exclusive use of one of these techniques is not sufficient for a correct analysis of squeezing
of rocks, the knowledge of the largest number of them is the fundament for its satisfactory investigation.

This review of literature is the foundation for the development of a new approach for the analytical and
numerical application in tunneling engineering of the polyaxial constitutive model based on objective in
situ observations.

2.2 SQUEEZING OF RocCkKs

One of the biggest challenges of the Rock Mechanics, and specifically of Underground Engineering, is to
develop a reliable theory for predicting support pressures for the Squeezing ground conditions in order to
prevent any adverse situations. According to an official definition suggested by the International Society
for Rock Mechanics (ISRM), Barla (1995), the Squeezing of Rock can be described as “the time
dependent large deformation which occurs around the tunnel and is essentially associated with creep
caused by exceeding a limiting shear stress. Deformation may terminate during construction or continue
over a long time period”.

In an undisturbed rock mass, any natural or artificial alteration of the initial spatial configuration, in fact,
induces an immediate re-distribution of the state of stress with the final intent of reaching a new stable
condition. The stress redistribution following the opening of an underground excavation produces a
generalized increment of the difference between maximum and minimum principal stresses (deviatoric
stress o4 = 61 - o3) in the surrounding rock mass and maximum at the internal surfaces of the void. If the
new stress configuration does not exceed the resistance of the rock mass, stable / non-squeezing
conditions are maintained, otherwise unstable / squeezing conditions may be observed.

The overcoming of the material resistance may produce localized or diffused failures. The plasticization
of the rock mass always starts at the surface of the excavation, where the stress conditions are more
critical, and, successively, moves in the outwards direction. The installation of an internal support system
is usually necessary in case of failure to increase the possibility of achieving a new safe state.

The convergence of the faces of an excavation in squeezing conditions can be so pronounced that, in
complex cases, may even exceed the 10% of the radius of the cavity. Excessive deformations may create
unpleasant aesthetic effects as well as affect the functionality and even the stability of underground works,
causing big delays in their final accomplishments.

The magnitude of the deformations and the time needed for the complete stabilization are a complex
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function of the tectonic, geological and hydrogeological characteristics of the formations affected by the
excavations as well as of the petrographic and geotechnical properties of the rock mass. The technologies
of excavation and the rapidity of the installation of a support system have also a strong influence and their
choice plays a central role in the reduction of squeezing.

FIGURE 2-1 - SAINT MARTIN LA PORTE ACCESS ADIT AT CHAINAGE 1325 M BEFORE RE-SHAPING
THE TUNNEL CROSS SECTION (BARLA, BONINI, DEBERNARDI, (2010))

For these reasons, a careful preliminary study of the geological and geo-mechanical properties of the rock
mass allows the preventive estimation of possible conditions of instability, in order to implement without
delays the appropriate methodologies for the squeezing control. A late identification of an unstable
condition results in slow and hazardous excavation, due to the use of inappropriate construction
techniques, and can even entail the necessity of modifying the tunnel alignment during the realization of
the works.

The degree of Squeezing is quantified by the strain measured at the surface of an excavation and is
commonly subdivided in to 5 classes of magnitude as indicated in Figure 2-2. Such classification was
introduced by Hoek (2000) with reference to his approximate relationship for the tunnel radial strain &
estimation as given by Equation 2-1.

=015, (1_%)Ucr(%l)/ [pe054 1)

where P, is the hydrostatic in situ stress, P; the internal reaction of the lining and o the uniaxial
compressive strength of the rock mass.

According to the observations reported by Hoek (2000), Squeezing conditions occur when the minimum
strain, espressed as normalized closure at the internal surface of the lining, reaches the minimum amount
of 1 %. The chart of strain versus non-dimensional stress is plotted in Figure 2-2, which is used to classify
squeezing rock conditions.

According to Dube and Singh (1986), Squeezing is a phenomenon generally related to low resistance
overstressed grounds, whereas hard rocks may undergo rock burst conditions.
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FIGURE 2-2 - CLASSIFICATION OF SQUEEZING BEHAVIOR (HOEK, 2000)

In the following sections of this Chapter, the most common techniques available for the rock mass
characterization and the solutions for a proper design of underground excavations have been described.
The organization of this Chapter has been conceived with a special focus on the squeezing problems in
tunneling engineering.

2.3 EMPIRICAL AND SEMI-EMPIRICAL METHODS

2.3.1 CLASSIFICATION OF A Rock MASss

A rock mass is hardly a continuous, homogeneous and isotropic volume, but is more often affected by
discontinuities, faults, joints and could have been subjected to various actions of alteration and
degradation in its geological history. Only the combination of the information coming from the
petrographic and geotechnical conditions of the rock matrix with those relative to the physical and
geometrical characteristics of the sets of discontinuities distinguishing the volume considered returns an
appropriate description of the overall rock mass state.

To describe a rock mass an extensive use of the engineering geo-mechanical classifications is made these
days. The modern geo-mechanical engineering classifications rank a rock mass assigning simple indexes
of quality to the different components of the material and combine them in a global index, function of
their bigger or smaller contribution to the overall resistance. By means of a coherent system of ranking
any parameter that could negatively influence the stability of an underground excavation can be
identified, providing the basis for the stability analysis.

The rock masses were, in the course of time, classified on the basis of their origin, mineralogical
composition, void index, fracture/joint intensity, joint inclination, flow rate of water, velocity of
propagation of shock waves, weatherability, colour, grain size or surface properties. A complete
geological and geotechnical characterization of a rock mass primarily includes the recognition of the local
main lithotypes, followed by the description of the geomechanical characteristics, such as:

e mechanical conditions of the rock matrix, including degree of alteration, structure, color, texture
and compressive strength of intact rock matrix;



e geo-structural and geo-mechanical conditions of the natural discontinuities comprising of, for
each family of joints, orientation, persistence, spacing, aperture, filling composition and
mechanical properties.

The evaluation of the effects produced by the presence of an aquifer completes the description of the
factors that affects the stability of an underground excavation. The parameters part of the first group can
be easily determined in laboratory or with easy in situ tests, while those of the second group need specific
in situ characterization.

The rating system on the basis of a geo-mechanical classification system must rely on clear guidelines
regarding the methods of monitoring and following subdivision into classes of quality. A classification,
based on objective considerations, easily reproducible and consistent in different scenarios, encourages
the sharing of results and their comparison in view of a constant evolution of the methodologies of design
and construction.

The vast amount of case studies existing in literature allowed the development of several classification
systems and relating to important geotechnical properties. Angle of Friction ¢, Cohesion c, Elastic
Modulus E and Uniaxial Compressive Strength o, are some of the important parameters deducible by
means of empirical or semi-empirical relations.

The most used classifications are currently three, the RMR introduced by Bieniawski (1973) for the South
African Council for Scientific and Industrial Research (CSIR), the Q System by Barton (1974) and the
more recent GSI by Hoek and Brown (1997), classification specifically made in support of the homonym
non-linear constitutive model.

2.3.2 TERZAGHI’S ROCK LOAD THEORY AND DEERE’S ROCK QUALITY
DESIGNATION (RQD)

The geo-mechanical classification introduced by Terzaghi in 1946 is the first organized attempt to predict
the load applied to the support of a deep tunnel by the observation of the characteristics of the
surrounding rock mass. His theory is based on his long professional experience in alpine railway tunnels
excavation and differs from the preceding techniques in considering the strength of a rock mass as the
complex combination of several geological and geotechnical parameters.

According to Terzaghi's approach, a rock mass is, in fact, classified on the basis of the uniaxial
compressive strength, frequency and spatial distribution of the discontinuities, geological origin of the
rock mass, presence of water and swelling materials, chemical alteration suffered and in situ stress
conditions.

Based on these factors, Terzaghi describes the rock mass and defines nine homogeneous classes of rock as
shown in Table 2-1. For each class, he gave a certain range of values of the load applied to the lining and
included suggestions for its proper installation.

The load P,, vertically applied on the lining as shown in Figure 2-3, is derived indirectly through the Rock
Load Factor H, (the height of the fractured rock above the excavation) in accordance with the Equation 2-
2:

(2-2)



Rock Class

Definition

Rock Load Factor Hp
(feet) (B and Ht in feet)

Remark

|. Hard and intact

Hard and intact rock contains no joints and fractures. After

excavation the rock may have popping and spalling at excavated face.

Light lining required only if spalling or
popping occurs.

I1. Hard stratified and schistose

Hard rock consists of thick strata and layers. Interface between strata
is cemented. Popping and spalling at excavated face is common.

0t00.58B

Light support for protection against
spalling. Load may change between
layers.

I11. Massive, moderately jointed

Massive rock contains widely spaced joints and fractures. Block size
is large. Joints are interlocked. Vertical walls do not require support.
Spalling may occur.

0t00.25B

Light support for protection against
spalling.

1V. Moderately blocky and
seamy

Rock contains moderately spaced joints. Rock is not chemically
weathered and altered. Joints are not well interlocked and have small
apertures. Vertical walls do not require support. Spalling may occur.

0.25 B 10 0.35 (B + Ht)

No side pressure.

V. Very blocky and seamy

Rock is not chemically weathered, and contains closely spaced joints.
Joints have large apertures and appear separated. Vertical walls need
support.

(0.35t0 1.1) (B + Ht)

Little or no side pressure.

VI. Completely crushed but
chemically intact

Rock is not chemically weathered, and highly fractured with small
fragments. The fragments are loose and not interlocked. Excavation
face in this material needs considerable support.

1.1 (B + Ht)

Considerable side pressure. Softening
effects by water at tunnel base. Use
circular ribs or support rib lower end.

VII. Squeezing rock at moderate
depth

Rock slowly advances into the tunnel without perceptible increase in
volume. Moderate depth is considered as 150 ~ 1000 m.

(1.1t0 2.1) (B + Ht)

Heavy side pressure. Invert struts
required. Circular ribs recommended.

VIII. Squeezing rock at great
depth

Rock slowly advances into the tunnel without perceptible increase in
volume. Great depth is considered as more than 1000 m.

(2.110 4.5) (B + Ht)

I1X. Swelling rock

Rock volume expands (and advances into the tunnel) due to swelling
of clay minerals in the rock at the presence of moisture.

up to 250 feet,
irrespective of B and Ht

Heavy side pressure. Invert struts
required. Circular ribs recommended.
Circular ribs required. In extreme cases
use yielding support.

TABLE 2-1- DEFINITION OF TERZAGHI’S RoCK CLASSES AND RoCK LOAD THEORY

Notes: The tunnel is assumed to be below groundwater table. For tunnel above water tunnel, Hp for Classes IV to VI reduces 50%. The tunnel is
assumed excavated by blasting. For tunnel boring machine and roadheader excavated tunnel, Hp for Classes Il to VI reduces 20-25.




Terzaghi's methodology has found wide application in North America, where the drill and blast and
steel arches techniques were very common. Such methodologies essentially correspond to those
used during his alpine experience. Unfortunately the method is not particularly suited to excavation
methods different from the traditional ones and has a tendency to overestimate the squeezing
pressure in tunnel of large diameter (Singh and Goel, 1999).

Surface

FIGURE 2-3 - TERZAGHI’S (1946) RoCck LOAD FACTOR CONCEPT

The opening of a tunnel causes the relaxation of the rock mass surrounding the void, allowing its
partial closure. According to the Rock Load Theory, this movement is contrasted by the friction
generated at the border of the plasticized area and by the pressure borne by the internal support
system installed at the surface of the excavation.

In 1970, Deere slightly modified the classification suggested by Terzaghi as shown in Table 2-3,
correlating it to his index RQD (Rock Quality Designation, 1964). The RQD index classifies a rock
mass on the basis of the observed degree of jointing of a core sample recovered from a borehole. It
is calculated as the percentage of the drill core recovery of the pieces of rock having lengths of 10
cm or more, Expressed as in Equation 2-3.

_ X Lengthof core>10cm
Total length of corerun

RQD X100 (2-3)

In Table 2-3, in accordance with the classification RQD, is shown the subdivision into classes of
rock mass quality as suggested by Deere.

The major disadvantage of the RQD approach is that, problem which obviously also affects the
modified version of the Rock Load System, the knowledge of just the degree of rock mass
fracturing does not allow a complete description of the rock mass in complexity. RQD is, however,
an excellent indicator of fracturing rock and it is basic element in some of the most used rock mass
classification systems: Rock Mass Rating system (RMR) and Q-system.
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Rock class and condition RQD (%) Rock load (Hp) Remarks
I. Hard and intact 95-100 Zero Same as Table 2-1
11. Hard stratified or schistose 90-99 0-05B Same as Table 2-1
I11. Massive moderately jointed 85-95 0-0.25B Same as Table 2-1
Types IV, V, and VI reduced by
about 50% from Terzaghi values
1V. Moderately blocky and seamy 75-85 0.25 B-0.35 (B + Ht) because water table has little
effect on rock load (Terzaghi,
1946; Brekke, 1968)
V. Very blocky and seamy 30-75 (0.2-0.6) (B + Ht) Same as above
VI. Completely crushed 3-30 (0.6-1.10) (B + Ht) Same as above
Vla. Sand and gravel 0-3 (1.1-1.4) (B + Ht) Same as above
VII. Squeezing rock at moderate depth NA (1.10-2.10) (B + Ht) Same as Table 2-1
VIII. Squeezing rock at great depth NA (2.10-4.50) (B + Ht) Same as Table 2-1
1X. Swelling rock NA Up t0 80 m irrespective Same as Table 2-1

of the value of B, Ht

TABLE 2-2 - TERZAGHI’S ROCK LOAD SYSTEM AS MODIFIED BY DEERE’S (1970)

RQD

>90%

75-90% | 50-75%

25-50% | 0-25%

Rock mass Quality

Very Good

Fair

Good

Poor

Very Poor

TABLE 2-3 - QUALITATIVE DESCRIPTION OF A ROCK MASS BY MEANS OF THE ROCK QUALITY DESIGNATION

2.3.3 BIENIAWKI’S ROCK MASS RATING SYSTEM (RMR)

The RMR classification was developed by Bieniawski (1973) for the South African Council for
Scientific and Industrial Research (CSIR). Prior to appearing in the present form, the RMR
classification has been updated 7 times, both in the allocation of points to different parameters and
in the inclusion of correction factors to refine the results and facilitate its use in special conditions.
The last update is dated 1993; to avoid misunderstanding it is really important to always define if

the version used is different.

In order to apply a rock mass classification, it is essential that the rock mass is divided into
homogeneous geo-mechanical regions. The RMR index, then, will be determined in each region
making use of the following 6 parameters:

RMR; - Joints Spacing

RMR;, - Joints Condition
RMRs - Groundwater condition
RMRg - Joints Orientation

RMR; - Rock Quality Designation (RQD)
RMR; - Uniaxial Compressive Strength of the Intact Material
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(a) Five basic rock mass classification parameters and their ratings

Strength of intact Point load strength index (MPa) > 10 4-10 2-4 1-2
1 rock material Uniaxial compressive strength (MPa) > 250 100-250 | 50-100 | 25-50 5-25 1-5 <1
Rating 15 12 7 4 2 1 0
) RQD (%) 90 - 100 75—90 50 — 75 25— 50 <25
Rating 20 17 13 8 3
3 |_Joint spacing (m) >2 06-2 0.2-0.6 0.06 —0.2 <0.06
Rating 20 15 10 8 5

Condition of joints

not continuous,very rough

slightly rough surfaces,

slightly rough surfaces

continuous, slickensided

continuous joints, soft

4 surfaces, unweathered, slightly weathered, highly weathered, surfaces, or gouge <5 mm gouge >5 mm thick, or
no separation separation <1 mm separation <1 mm thick, or separation 1-5 mm separation >5 mm
Rating 30 | 25 20 10 0
Groundwater inflow per 10 m tunnel length (I /min), or none <10 10 - 25 25— 125 > 125
5 joint water pressure/major in situ stress, or 0 0-0.1 0.1-02 02-05 >05
general conditions at excavation surface Compl. Dry Damp Wet Dripping Flowing
Rating 15 10 7 4 0

(b) Rating adjustment for joint orientations

Strike and dip orientation of joints very favourable favourable fair unfavourable very unfavourable
tunnels 0 -2 -5 -10 -12
Rating foundations 0 -2 -7 -15 -25
slopes 0 -5 -25 -50 - 60
(c) Effects of joint orientation in tunnelling
Strike perpendicular to tunnel axis . . .
- — - - - Strike parallel to tunnel axis Dip 0° - 20°
Drive with dip Drive against dip
Dip 45° —90° Dip 20° — 45° 45° —90° Dip 20° — 45° Dip 45° —90° Dip 20° — 45° irrespective of strike
very favourable favourable fair unfavourable very unfavourable fair fair

TABLE 2-4 — CLASSIFICATION OF THE JOINTED ROCKS AS PER BIENIAWSKI (1993) AND RELATIVE ADJUSTMENT FOR JOINT ORIENTATION
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Bieniawski clearly defined the procedure for the evaluation of these six factors. The process for the
determination of the first five is summarized in Table 2-4.a, while the procedure for the evaluation of the
remaining one, which considers the effect of the joints on the excavation in numbers, is split up in Tables
2-4.b and 2-4.c.

The system of ranking is based on the attribution of a value that describes the status of each one of the six
parameters. The sum of the results of each characterization returns the RMR index.

6
RMR=>"" RMR, (2-4)
The sum of the first 5 indices lies between 0 and 100, while the, always negative, sixth is an adjustment

parameter which is a function of the angle formed between the excavation and discontinuities. Only after
having applied the necessary corrections, a rock mass can be classified in accordance to Table 2-5.

RMR Rating 100-81 |[80-61|60-41|40-21 20-0
Class Number [ | i v V

Description Very Good | Good Fair Poor | Very Poor
TABLE 2-5- RoCK MAss CLASSES FOR THE RMR CLASSIFICATION

The observation of the behavior of 168 tunnels excavated in hard rock is the basis of the proposed
approach. For this reason it is reasonable to expect a better degree of correlation when applied to this kind
of rock. However, this classification has been widely spread in various fields, both mining and in civil
engineering, from tunneling to slope stability and foundations, in any condition of rock.

As shown in Table 2-6, Bieniawski correlated each RMR class of rock to appropriate values of rock mass
cohesion and internal friction angle, unsupported tunnel span and its self-support time. The knowledge of
these values is fundamental in any geotechnical design approach.

Class Number | 1 Il v \Y
. 10 year for 6 months for 1 week for 10 hours for 30 minutes for
Average stand-up time
15 m span 8 m span 5 m span 2.5 mspan 0.5 m span
Rock mass cohesion (kPa) > 400 300 — 400 200 — 300 100 — 200 <100
Rock mass friction angle > 45° 35° —45° 25° —35° 15° —25° <15°

TABLE 2-6 — MEANING OF THE RMR CLASSES OF QUALITY

2.3.3.1 CORRELATIONS IN TERMS OF RMR

The results of RMR classification can be related to the value of modulus of deformation and unconfined
compressive strength by means of several empirical formulations. Bieniawski (1978) proposed the
following relation for determining the modulus of deformation Eg4, which is recommended for hard rocks
(RMR > 50).

Bieniawski E,[GPa]=2-RMR -100 (2-5)
Different other approaches have been proposed for the empirical evaluation of E4 in weak rock masses:

Stille (1986) E,[GPa]=0.05-RMR (RMR <52) (2-6)

RMR-10

Serafim & Pereira (1983) E,[GPa]=10 “ (RMR <50)

(2-7)
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RMR-30

Mehrotra, Mitra & Agrawal (1991) E,[GPa]=10 %

(2-8)

\/; RMR-32
Hoek and Brown (1997) E,[GPa]= 10°' 10 % (i< 100) (2-9)

The uniaxial resistance of the rock mass o, can be indirectly estimated using the formulation produced
by Mohr-Coulomb with the values of cohesion and internal angle of friction suggested in Table 2-5 by
Bieniawski.

_ 2ccosg

Mohr-Coulomb o. =
“ 1-sing (2-10)

2.3.4 NORWEGIAN GEOTECHNICAL CLASSIFICATION

This classification system was developed by Barton, Lien and Lunde, all members of the Norwegian
Geotechnical Institute (NGI), in 1974. Usually it is called Barton's system or, more simply, Q system.

The Barton’s approach, as the classification proposed by Bieniawski, is based on the attribution of indices
of quality to six important parameters characterizing the rock mass that put together define the global
index of quality. The characterizing factors must be individually evaluated accordingly to the accurate
guideline produced by Barton for their consistent calculations are:

o RQD (Rock Quality Designation)
e Jn (joint set number)

e Jr (joint roughness number)

Ja (joint alteration number)

Jw (joint water parameter)

SRF (stress reduction factor)

Q - value Rock mass quality
400 - 1000 | Exceptionally Good
100 - 400 Extremely Good

40-100 Very Good
10- 40 Good
4-10 Fair

1-4 Poor
01-1 Very Poor
0.01-0.1 Extremely Poor

0.001-0.01 | Exceptionally Poor

TABLE 2-7 - Q RoCcK MASS QUALITY
FOR TUNNELING

The 6 indices are grouped into 3 quotients, multiplied together to obtain the value of the global index of
Q (from which the name of the classification) as expressed by the Equation 2-11:

= R?D J (2-11)

Q J, SRF

n
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The first ratio, RQD/J, , is proportional to the size of the blocks constituting the rock mass. The second,

J, /3., is an approximation of the shear strength that we can expect from at the surface of the
discontinuities, which is, of course, influenced by roughness and degree of alteration. The third quotient,
J,,/SRF , is an indication of the stress condition borne by the rock mass, the in situ stress and the pore
water pressure, which significantly reduces the shear strength of the joints of rock.

Barton, in contrast to the Bieniawski’s approach, does not consider relevant the effect of orientation of
joints with respect to the six factors included in the index Q.

As shown by Table 2-7, the range of admissible Q is very large. An exceptionally poor rock mass can
present a Q value equal to 0.001 and one exceptionally good up to 1000. The accuracy in its
determination is particularly useful for weak rocks, the condition where the classification has shown
better correlation.

EFMNARC Energy Absorption | i
(Joules) 1400 1000 700 500 0
Exceptionally| Extremely Very Poor | Fair| Good |V Ext. |[Exc.
poor poor poor good good |good
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RQD _ J, J,
Rock Mass Quality Q = n xT XW orQ, or Q,,
REINFORCEMENT CATEGORIES
1) Unsupported 6) Fiber reinforced shotcrete and bolting,
2) Spot bolting, sb 910 12¢m, S(fr)+B
3) Systematic bolting, B 7) Fiber reinforced shotcrete and bolting,
4) Systematic bolting (and unreinforced 12to 15cm, S(fr)+B
shotcrete, 4 to10cm, B(+S) 8) Fiber reinforced shotcrete > 15cm, reinforced
5) Fiber reinforced shotcrete and bolting, ribs of shotcrete and bolting, S(fr), RRS+B
510 9cm, S(fn+B 9) Cast concrete lining, CCA

FIGURE 2-4- GRIMSTAD AND BARTON (1993) CHART FOR THE DESIGN OF SUPPORT

The optimum choice of tunnel support requirements can be deduced by the value of Q. The chart in
Figure 2-4, introduced by Grimstad and Barton in 1993, suggests the appropriate support as a function of
the Equivalent Dimension (of the excavation) and Q value, making use of all the latest available
techniques of confinement.

The values of the Equivalent Support Ratio (ESR), necessary for the determination of the Equivalent
Dimension, are tabulated in Table 2-8.

By means of Equivalent Support Ratio ESR and Q, Barton also proposed an estimation of the maximum
length of unsupported tunnel Dpay.

D,.. =2-ESR-Q* (2-12)
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A Temporary mine openings 3-5

Permanent mine openings, water tunnels for hydro-electric
projects, pilot tunnels, drifts and headings for large excavations.

Storage rooms, water treatment plants, minor road and railway
tunnels, surge chambers and access tunnels in hydro-electric project
Underground power station caverns, major road and railway
tunnels, civil defense chamber, tunnel portals and intersections.

Underground nuclear power stations, railway stations, sports and

public facilities, underground factories.
TABLE 2-8 - EXCAVATION CATEGORIES DETERMINATION

2.3.4.1 CORRELATIONS IN TERMS OF Q

As for the RMR classification, based on the index Q, many useful empirical relationships have been
proposed.

A mean value of the Modulus of Deformation E4 can be evaluated by means of the relation suggested by
Barton (2002).

_ V3
E, =10-Q (2-13)

Where Q., Modified Tunnel Quality Index, can be expressed as follows

Q. =Q%50 (2-14)

Singh (1997) observed that, on the basis of the observation of the 35 instrumented tunnels, the magnitude
of the Modulus of Deformation is also influenced by the in situ stress confinement in accordance to the
following correlation

Ed - H O.ZQO.SG H > 50 m (2_15)
While the Modulus of Elasticity E. can be expressed as follows
_ 0.6 =0.14
E. =15QE, (2-16)

where Er is the Modulus of Elasticity for the intact rock.

To ensure the feasibility of the Mohr-Coulomb failure criterion, Barton, making use of the same indices,
introduced the definition of Q, and derived two simple relations for the determination of angle of internal
friction ¢ and cohesion c.

L3,
¢ =tan 1(J—JW] : (2-17)
._RQD 1 o,
J SRF 100 (2-18)

n
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Goel and Singh (2006) modified the formulation of the internal angle of friction given by Equation 2-17,
incorporating the effect of the rock blocks interlocking, as follows

J
-1 r
¢ =tan (J— J, + 0.1J (2-19)

a

2.3.5 CORRELATION BETWEEN RMR AND Q

Numerous attempts have been made to relate the results of the Q and RMR classifications. The
determination of a certain law, valid in any condition of rock mass, which links these two approaches,
creates objective difficulties. Some methods, in fact, have shown good results only in the soft rocks range,
while others only in the hard rocks field.

Bieniawski (1989) RMR =9InQ + 44 (2-20)
Rutledge and Preston (1978) RMR =5.9InQ + 43 (2-21)
Moreno (1980) RMR =5.4InQ +55.2 (2-22)
Cameron-Clarke and Budavari (1981) RMR =5InQ +60.8 (2-23)
Abad et al. (1984) RMR =10.5InQ +41.8 (2-24)

And the approach suggested by Barton in 1995, the only relation based on a natural logarithm:

Barton (1995) RMR =15log Q +50 (2-25)

The variety of solutions proposed, is a clear indication of the difficulty of finding a direct relationship
between the two classifications. Goel (1995) ascribes this difficulty to the complex determination of some
factors of RMR and Q and, on the basis of this hypothesis, he suggests the use of the indexes RCR (Rock
Condition Rating) and N (Rock Mass Number).

The RCR is the RMR index unconstrained by the effect of the crushing strength of the rock mass g (A in
the Equation 2-26) and of the adjustment of joints orientation (B).

RCR = RMR — (A +B) (2-26)

The Rock Mass Number N is, instead, a stress free Q index:

Goel proposes to use modified versions of the indices suggested by Barton and Bieniawski for an indirect
determination of their relationship. The advantage of using N and RCR instead of Q and RMR is that
there are no concerns in their determination and, therefore, their comparison cannot be influenced by
errors of personal evaluation.

Based on the observation of 63 case studies he proposed the following correlation between RCR and N:

which, valid for g. > 5 MPa has shown a significant correlation coefficient of 0.92.
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2.3.6 GEOTECHNICAL STRENGTH INDEX (GSI)

The Geological Strength Index was introduced for the first time by Hoek in 1994 and was subsequently
modified in collaboration with other authors. The latest version of the classification is dated 2000.

The GSI, even though has all the necessary features, was not born as geo-mechanical classification, but it
was ideated by Hoek as support for the prediction of the parameters my, s and a of the Hoek and Brown
failure criterion.

The methodology of rock mass classification is founded upon the visual observation of rock mass degree
of jointing and surface alteration of rock. The combination of these two parameters, making use of the
chart in Figure 2-5, returns the value of GSI.

FIGURE 2-5 - GEOLOGICAL STRENGTH INDEX FOR JOINTED ROCK MASSES
(HOEK AND MARINOS, 2000)

The Hoek and Brown non-linear failure criterion, introduced for the first time in 1980, presents the
formulation suggested in 2002, as:

' a
1 1 O-
0,=03%0y (mb %Ci + 3) (2-29)

The parameters my, s and a can be directly computed knowing the entity of the resulting GSI of the rock
mass making use of the following correlations:

GSI —100
M =M &P 58 14D (2-30)

GSI -100
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a= % + % (ee% - ez%j (2-32)

Where m; is a constant of the material that can be determined by laboratory testing or estimated by
specific tables, and D represents the degree of disturbance associated to the method of excavation used.

The values of the Q and RMR indexes can be related to the GSI. In particular, it is recommended to
convert the GSI to Q index for weak rock mass (GSI < 18) and to RMR for harder materials (GSI > 18) in
accordance to the following relations:

GSI = RMRgg —5 (2_33)
GSI = 9 In Q‘+44 (2_34)

Where the Q’ is a modified version of the Barton’s index which contains only the first four factors of the
original form:

_RODJ,

2-35
13 (2-35)

Q'

n a

2.4 ANALYTICAL METHODS

During the construction of an underground excavation, the initial state of equilibrium of the adjacent rock
mass is disturbed. Consequently, the volume affected would be subject to a redistribution of stresses,
which is followed by deformations in the direction of the opening.

As already mentioned, if the induced state of stress overcomes the characteristic resistance of the
material, the installation of an internal support is necessary for the obtainment of equilibrium and
reducing excessive deformations. The opportunity of installing supports to reach the equilibrium and
reduce deformations basically depends on:

Ratio between excavation dimensions and discontinuities spacing
Number of discontinuity sets

Rock mass resistance characteristics

Original state of stress

Shapes of void and excavation techniques applied

O O0OO0OO0Oo

2.4.1 STRESS ANALYSIS OF A TUNNEL IMMERSED IN AN ELASTIC CONTINUUM

If the spacing among the discontinuities characterizing a rock mass is much bigger than the excavation
dimensions, it would be admissible to consider that as a massive hard rock. Since the resistance of a rock
material is usually sufficient to support very intensive stresses, avoiding the beginning of the
plasticization, it will behave as an “elastic continuum”. In elastic conditions, an analytical description of
the stress field modification can be made for any stress field and for several shapes of voids. It is not
common to experience truly elastic conditions in tunneling engineering but a preliminary analytical
solution by an elastic model allows a first important determination of dangerous stress concentrations.

2.4.1.1 STRESS FIELD OF A CIRCULAR TUNNEL IN AN ELASTIC MEDIUM

The prediction of stresses and deformations induced in an isotropic elastic rock mass by opening of a
circular tunnel can be easily made by means of analytical approaches. In the following paragraphs the
case of circular tunnels in hydrostatic and anisotropic original stress field is described through analytical
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solutions. The proposed procedures will be subsequently extended to the case of elliptic and non-circular
tunnels.

2.4.1.2 CIRCULAR TUNNELS - HYDROSTATIC IN SITU STRESS FIELD

The analytical determination of the stress field surrounding a circular tunnel in hydrostatic in situ
conditions is based on the four important hypotheses:

1. Circular tunnel of infinite length;

2. Homogeneous, Isotropic rock mass of infinite extension;

3. Hydrostatic virgin in situ stress Py

4. Constant radial pressure P; applied to the internal surface of the tunnel;

FIGURE 2-6 - REPRESENTATION OF THE PROBLEM AND DIAGRAM OF STRESSES

Due to the radial symmetry of all the elements characterizing the problem, a circular tunnel subjected to a
hydrostatic stress field can be considered as an axial symmetrical plane strain problem, which entails that
the stresses induced by the excavation are only function of the distance from the tunnel axes.

U/ Po

'S Pi=0
2 mmmaa Pi=02Pu

FIGURE 2-7 - MAXIMUM AND MINIMUM PRINCIPAL STRESSES
AROUND A CIRCULAR TUNNEL IN HYDROSTATIC CONDITIONS
IN ACCORD TO EQUATIONS 2-38 AND 2-39
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A lined circular tunnel surrounded by an isotropic mass can be modeled as a cylinder of infinite length
and infinite thickness (r. — r;). The effect of an internal lining is simulated by means of the constant radial
stress P; at the internal face, proportional to its structural stiffness, while the hydrostatic stress field
through a stress Py, equal to the geostatic vertical pressure, is radially applied to the external face of the
cylinder. The simplified section of the cylinder is shown in Figure 6a. Considering the plane
perpendicular to the tunnel direction in Figure 2-6a, the stresses observed in tangential oy and radial o,
directions illustrated in Figure 2-6b are principal stresses, in the specific case, maximum o; and minimum
O3.

The equilibrium of the small portion of rock mass shown in Figure 2-6b, occurs when the resultant of all
the forces applied on it is null. The equation of equilibrium in cylindrical coordinates can be expressed as
follow:

% L% =% _ (2-35)
o r

For the integration of this differential Equation, which shows the modified state of stress, the introduction
of the two following constitutive relations valid in elastic field is necessary:

Poisson’s ratio de, =wde,, (2-36)

Hooke’s law do =Ede (2-37)

For an infinite, lined, tunnel, the boundary conditions are summarized as follow:
r=r cr =P
r=re cr=06=Po

The analytical solution formulation of radial and tangential stresses

(Po — 5 )ri2

o, =P, -
’ r (2-38)
(Po B P| )ri2

c,=PF, + 2

(2-39)

Some consideration comes out by the observation of the relations 2-38 and 2-39. The Mohr’s circles
representing the stress configuration are concentric, with center equal to the original hydrostatic pressure
Po. The size of the circles proportionally decreases moving away from the tunnel centerline and reduces to
the point Py at the infinite. For the same reason, the sum of o, and o, as expressed by the Equation 2-40,
is constant and equal to twice the original in situ stress in presence of any confinement at the surface of
the tunnel.

(Po — P| )ri2

2

(Po B P| )riz _

o,+o,=P, - +P, + > =2P, (2-40)

r r

Figure 2-7 illustrates how the most severe state of stress is concentrated at the surface of the tunnel,
where the deviatoric stress (cy — o), in absence of lining reaction, reaches the value of two times P,.
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The deviatoric stress decreases rapidly moving away from the tunnel centerline, at the distance of two
diameters behind the tunnel surface, the difference between the original stress Py and the principal stresses
is only 4%. The pressure P; applied to the internal surface of the tunnel has the effect to reduce the
difference between the principal stresses but, considering its small entity with respect to the high
pressures produced, it cannot induce sensible decrement in the stress conditions.

2.4.1.3 CIRCULAR TUNNELS — NON-HYDROSTATIC IN SITU STRESS FIELD

In order to make easier the treatment of a tunnel under non-hydrostatic stress conditions, it is assumed
that the in situ original stresses P, and P, are coincident with the horizontal and vertical directions as
shown in Figure 2-8. The principal stresses are interrelated through the horizontal stress ratio A as in
Equation 2-41.:

R=4FR (2-41)

The determination of the vertical component of the in situ stress does not present particular
complications and can be estimated by means of the following easy relation:

R =yh

(2-42)

where y is the unit weight of the overlying rock mass and h is the depth below the surface.

FIGURE 2-8 — CIRCULAR TUNNEL
IN A NON-HYDROSTATIC STRESS FIELD

Measurements of vertical stress at various mining and civil engineering sites around the world as reported
by Hoek and Brown (1990) estimate the average unit weight of the earth’s crust equal to 27 kN/m®. As
illustrated in Figure 2-9, the measurements can vary from the expected geostatic pressure, but they can be
improved by means of specific geological surveys.

The horizontal component of the in situ stress, instead, is a function of many parameters not always easy
to determine. P, can be either bigger or smaller than the vertical component P, because A (sometimes K or
Ko), can show a large range of values ranging between 0 and 4.
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At low depths, up to 1000 meters below the ground level, the gravitational effect of the rock mass is not
preponderant and A is a complex combination of the effects of gravity, superficial morphology,
subsidence phenomena and, for the most part, intra-crustal tectonic stresses. For this reason in the vicinity
of the ground surface A can manifest that wide range of values.

FIGURE 2-9 - VERTICAL STRESS MEASUREMENTS
(UNDERGROUND EXCAVATION IN ROCKS, HOEK AND BROWN (1990))

Beyond that point the difference between vertical and horizontal components of the in situ stress reduces,
showing the tendency to hydrostatic conditions.

FIGURE 2-10 — VARIATION OF THE RATIO OF AVERAGE HORIZONTAL STRESS TO VERTICAL STRESS WITH DEPTH
BELOW SURFACE (UNDERGROUND EXCAVATION IN ROCK, HOEK AND BROWN (1990))
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Again the 116 measurements of in situ stress, shown in Figure 2-10, collected in various parts of the
world and published by Hoek and Brown (1990) confirm that, for low depths, it is not possible to get an
estimation of the original stress field, while the range of values for A becomes narrow when the depth of
1000 meters is exceeded.

The state of stress inducted by the opening of a circular tunnel in an anisotropic stress condition is well
described by the Kirsch’s equations (1898). The Kirsch’s equations are based on the linear theory of
elasticity and assume isotropic rock properties. They reduce to Equations 2-38 and 2-39 when the
horizontal stress ratio is equal to one.

2 2 4
o= PV((1+z)(l-%)—(l-i)[l-“%ﬁ%jcoswj (2-43)
r r r

1 r’ 3’
09=§Pv (@L+A) 1+ |+(L-4) 1+ = [cos20 (2-44)

r r
2 4
T, = % R, [ (- /1)(1+ ZrLz' - ?;lejsenZGJ (2-49)

Differently from the isotropic case, the radial o, and normal oy tensions are not always principal stresses;
this condition is achieved only along the principal directions and at the tunnel surface, where the
expression of shear stress in Equation 2-45 becomes null. In an anisotropic stress field, the induced
modifications of the stress field are not only sensitive to the distance from the centerline r, but are mostly
a function of 6, measured with the horizontal plane passing through the center of excavation. In Figure
2-11 is presented the distribution of the principal stresses in radial and tangential direction for different
values of horizontal ratio.

FIGURE 2-11 - TANGENTIAL AND RADIAL PRINCIPAL STRESS
IN HORIZONTAL DIRECTION FOR INCREASING VALUES OF A

In absence of internal confinement, the tangential stress at the tunnel contour (r/ri=1), which is shown in
Figure 2-12, can be expressed by means of Equation 2-46. The radial and shear stresses expressed by the
relations 2-43 and 2-45 are, instead, null.

when 0 = 90°, 270°  0,/P, =(34-1)

o/ =(1+A)+2(1- 1)c0s29) (2-46
/PV R when 6 =0°,180°  &,/P, =(3-4)
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The maximum tangential stress observed at the tunnel surface is always larger with respect to that
registered in a hydrostatic stress field and located in the portion of tunnel. It is in normal direction to the
minimum in situ principal stress direction. This difference is more evident when the vertical principal in
situ stress is predominant (A is bigger than 1).In the direction of the maximum in situ stress, instead, the
tangential stress is smaller than the constant, hydrostatic, 2*P,.

(o1
/4.8

N W g N

0 10 20 30 40 50 60 70 80 90

FIGURE 2-12 - TANGENTIAL STRESS AT THE TUNNEL SURFACE FOR INCREASING VALUES OF A

When the horizontal stress ratio is smaller than 1/3 or bigger than 3, concentration of tensile stresses are
also recognizable. These kinds of stresses are particularly dangerous in tunneling engineering because of
the low resistance of the rock masses, which is approximately only half the rock mass cohesion.

2.4.1.4 NON CIRCULAR TUNNELS IN NON-HYDROSTATIC IN SITU STRESS FIELD

The analytical resolution of the stress distribution induced by the excavation of a tunnel different from the
typical circular shape presents objective difficulties of implementation and a numerical approach for its
analysis would be certainly more appropriate. The analytical solution of two specific cases is, however,
possible and it is of great importance to extend the acquired knowledge of several underground
excavations of different shapes.
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FIGURE 2-13 — GEOMETRICAL CONFIGURATION OF AN ELLIPTIC TUNNEL
IMMERSED IN AN ANISOTROPIC STRESS FIELD

The first example presented in this section, as shown in Figure 2-13, is the case of an elliptic tunnel. For
the elliptic example, assuming the principal stresses coincident with the major and minor axes, a and b
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of the ellipse, the pressure o, perpendicular point by point to the surface of the void, as suggested by
Ribacchi (1986), is expressed by the following relation:

2
Pl(1-1 (a+1j sin2g-1|+22
b b
O-ﬂ = >
[a—ljsinzml
b2

The geometrical characteristics of an ellipse can be described by means of the non-dimensional ratio a/b
between maximum and minimum lengths of the principal axis. In particular, when a/b is equal to 1, the
ellipse reduces to a circle and the relation 2-47 is coincident with the Equation 2-44.

(2-47)

Some considerations come out from the study of the Equation 2-47. As already mentioned, for the
analysis of a circular tunnel, the most problematic stress configuration is observed when A is external to
the range 1/3 to 3 which corresponds to the generation of tensile stresses. The tensile stress observed and
the extension of the interested tunnel surface is a function of the distance A from the boundaries of the
compressive stresses range.

FIGURE 2-14 — STRESS DISTRIBUTION AT THE SURFACE OF AN ELLIPTIC TUNNEL
WITH MAJOR AXES IN HORIZONTAL DIRECTION

Now the case of a circular tunnel subjected to an anisotropic stress field is compared to the elliptic tunnel
with horizontal major axes (a/b>1) shown in Figure 2-14a. If the tangential stress at the tunnel surface is
evaluated for different values of the horizontal ratio, the following outcomes can be deducted from the
comparison with the circular case:

FIGURE 2-15 - STRESS DISTRIBUTION AT THE SURFACE OF AN ELLIPTIC TUNNEL
WITH MAJOR AXES IN VERTICAL DIRECTION

e The development of tensile stress conditions is anticipated when the maximum in situ stress is
directed vertically and delayed when it is directed horizontally;
¢ In hydrostatic conditions, the maximum tangential stress is considerably larger;
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o If the horizontal ratio is bigger than 1, the maximum compressive tension, which is located at
crown 6 =90°, is smaller.

The same comparison is now performed to an elliptic tunnel with the maximum axes horizontally oriented
as shown in Figure 2-15.

e The development of tensile stress conditions is anticipated when the maximum in situ stress is
directed horizontally and delayed when is directed vertically;

e The maximum entity of the compressive stress in hydrostatic conditions is larger than that
observed in a circular tunnel;

e If the maximum principal stress is oriented in the direction of the minimum tunnel axes, the
tangential stress produced by an elliptic excavation is considerably larger.

Throughout the analysis of the three above presented cases of circular and elliptic tunnels subjected to
anisotropic stress field, it is observed that the state of stress at the internal surface of an underground
excavation can be manipulated to achieve a less critical condition just modifying the shape of the tunnel
section.

For anisotropic stress conditions, an elliptic tunnel section oriented with the major axes parallel to the
maximum principal in situ stress direction is an efficient choice. This configuration allows reducing the
portion of tunnel subjected to tensile stresses and the magnitude of the compressive stresses. In
hydrostatic stress conditions, instead, the best option is always the circular shape.

A rectangular shaped tunnel can be considered in place of an elliptic shape. The stress distribution is
similar to that obtained for an elliptical option but, in the proximity of the four corners, a severe increment
of the tangential stress is observed. The entity of this increment, which is present for any value of A, is
direct function of the curvature of the corners and is so large that the resistance of the material may be
locally overcome. The local failure of rock has the positive effect of mitigating the state of stress
produced without compromising the global stability of the excavation. Its advent can be, however,
minimized by increasing the original radius of curvature.

2.4.1.5 EFFECT OF THE ROCK MASS ANISOTROPY ON THE STRESS FIELD

According to Lekhnitskii, 1973, the state of stress at the contour of a tunnel immersed in an anisotropic
rock mass, which presents directionally dependent properties, is strongly influenced by the orientation of
the maximum and minimum components of the modulus of elasticity E. The maximum stress at the tunnel
surface, in fact, tends to increase in the direction of the maximum.

Nevertheless, the response of an isotropic rock mass is noticeably different only in cases of pronounced
anisotropy as, for instance, sedimentary rock or rock masses provided with explicitly oriented
discontinuities (Martino and Ribacchi. 1972).

2.4.2 TENSIONAL ANALYSIS OF A TUNNEL IMMERSED IN A STRONGLY FRACTURED
ROCK MASS

The choice of the best location for the realization of an underground infrastructure is hardly based on a
rational investigation of the geological and geotechnical structures present in the local area. More
frequently the engineers must make the best of the geo-structural conditions imposed by other than
engineering motivations.

When the degree of fracturing present in the rock mass is such that the ratio of excavation dimension /
joint spacing is very large, the rock volume behaves as a granular soil and its original resistance
drastically decreases. This condition can be modeled by means of an equivalent rock of weaker
characteristics than those of the rock matrix. The drop in resistance is a direct function of the degree of
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the physical and chemical alteration undergone by the rock mass and can be evaluated by means of any
geo-mechanical classification. In these conditions the probability of facing difficulties during the
excavation is very high even in presence of ordinary in situ stress fields.

The analytical determination the state of stress inducted by excavation of a tunnel is possible in respect of
a relatively high number of initial conditions. The large number of geometrical or physical restrictions
corresponds to a poor flexibility of the present approach, in particular when used for complex designing.
In spite of these limitations, it is still widely applied and carved out an important preparatory role in the
understanding of Tunneling Engineering. In fact, with the success of the numerical methods applied to
geo-mechanical problems, almost every engineering problem can be easily reproduced and solved without
any particular knowledge of tunneling engineering, but a strong analytical background is, however, still
necessary to verify the accuracy of the numerical outcomes.

2.4.2.1 STRENGTH OF ROCK MASSES

The knowledge of the strength of a rock mass is fundamental for the design of underground
infrastructures. The boundary between admissible and non-admissible states of stress in the three-
dimensional principal stress space c1-6,-03 is represented by a convex surface. This surface is called
failure criterion or yield function and its general formulation is expressed as follow:

®(0,,0,,0,)=0 (2-48)

When the stress applied to an element of the rock mass lies on the failure surface it fails and the plastic
deformations start.

Depending on the characteristics of the rock mass, the limit surface will expand (hardening behavior) or,
more commonly in rock masses, will contract (model softening behavior) when overlaid. The velocity of
this contraction is different for different types of rocks. The modeling of the different behaviors at failure
of the yield criteria can be represented in one-dimension as a function of the single principal stress and
related strain as shown in Figure 2-16.

Considering the real resistance of a rock mass, it cannot support an unlimited amount of stress. The
maximum limit that it can handle is given by the pressure of failure. Beyond that point it cannot withstand
any further stress.

AUW

@ 1 — Perfectly Elasto-plastic Law

2 — Brittle with Progressive Failure Law

@ 3 — Brittle Law
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&
>

FIGURE 2-16 — IDEAL STRAIN SOFTENING RESPONSE
OF A ROCK MASS
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Depending on the post failure behavior, it is possible to represent a rock mass through three simple
models. A rock mass will follow a perfectly elasto-plastic law (line 1 in Figure 2-16) if the stress
supported by the material after the failure remains constant for increasing plastic deformation while brittle
(line 3) or brittle with progressive failure laws (line 2) will be observed when a sudden or gradual decay
of the supported pressure (and, therefore, the contraction of the vyield criterion).
In the presence of a brittle material, it is essential to know the values of resistance before (peak condition)
and after (residual conditions) the contraction failure criterion surface.

2.4.2.1.1 FAILURE CRITERIA FOR ROCK MASSES

Several studies in the past have shown that because of the small difference between the intermediate
principal stress o, and the corresponding minimum principal stress o3, encountered in most geotechnical
problems, the behavior at failure of a rock mass is not substantially affected by intermediate principal
stress. For this reason, generally, the constitutive models are expressed as a function of the minimum and
maximum principal pressures o; and oz only, with a consequent simplification of their spatial
representation. The failure criteria are usually drawn on three standard bi-dimensional planes, the ;- o3,
the (c1-o03)/2- (o1 + o3) /2 and, finally, the t—c plane, as the failure envelope of the Mohr’s circles
limit the conditions of shear resistance. These representations are equivalent and conversions from one to
another are controlled by simple geometric relations.

The easiest and most applied failure criterion is that suggested by Mohr-Coulomb. According to this
approach, the failure of a soil or a rock is due to a combination of shear and normal stress, and is
formulated, as shown in Equation 2-49. The shear stress is a linear function of the angle of internal
friction ¢ and cohesion c of the material considered. The extensive use of this method is primarily due to
its intrinsic simplicity of use and determination of the two parameters characterizing the shear strength.
The Mohr-Coulomb failure criterion can be also expressed in terms of principal stresses as described in
Equation 2-50:

T=C+otang (2-49)
or
o, =N,0;+0, (2-50)
T b) Normal and Shear stresses a) Principal stresses
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FIGURE 2-17 - TYPICAL REPRESENTATION OF THE MOHR-CouLOMB CRITERION
IN TERMS OF PRINCIPAL STRESSES (A) AND SHEAR AND NORMAL STRESSES (B)
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In Equation 2-49, ¢ and c respectively describe the slope and the intercept of the failure envelope in the
Mohr’s plane. The parameter N, of the Equation 2-50, instead, quantifies the increment of resistance with
increasing confining pressure o3, while o defines the uniaxial compressive strength of the rock mass.
The graphical representations of the Equation 2-49 and 2-50 are shown in Figures 2-17a and 2-17b.

The main limitation of the Mohr-Coulomb failure criterion is overestimation of the rock mass strength in
tensile stress region or in low confining pressure. To partially reduce this problem it is introduced a
tensile cut-off oy in tensile region, as shown in Figure 2-17.

A more realistic rock mass behavior can be obtained by using non-linear failure criteria. The
characteristic concavity downwards of these constitutive models results in a smaller tensile strength and
in instantaneous cohesion and angle of friction that increase and decrease respectively, with increasing
confining pressure 3.

b) Normal and Shear stresses a) Principal stresses
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FIGURE 2-18 - TYPICAL REPRESENTATION OF A NON-LINEAR FAILURE CRITERION

In Figure 2-18 a typical representation of the non-linear failure criterion is shown. Among them, the
criterion proposed by Hoek and Brown, which was already discussed in the rock mass classifications
section, is the most used. Unlike any other existing two-dimensional non-linear constitutive models it can,
in fact, rely on the reproducibility and repeatability typical of the Mohr-Coulomb strength criterion and on
the complete and consistent theoretical and practical background based on specific numerical, analytical
and empirical solutions developed by the authors of the present theory.

For the Hoek-Brown criterion it is possible, for the resolution of geomechanical problems, making use of
Phase2, software package written by Rocscience, implementing the finite element method. Unlike the
Mohr-Coulomb failure criterion, the Hoek and Brown criterion is hardly used on other geo-mechanical
numerical suites. Hoek et al. (2002), for this reason, introduced the generalized Hoek-Brown failure
criterion, by making use of the equivalent parameters of resistance ¢ 'and ¢' as shown in Figure 2-19,
which allows its application through the best fitting linear Mohr-Coulomb failure criterion.

The suggested equivalent cohesion and angle of friction are a function of the parameters characterizing
the Hoek and Brown failure criterion as expressed by the following relations:

. 6am, (s +m,o', )"
'=sin™ : s 2-51
’ [2(1+ af2+a)+(s+myo'y, )" J (250
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o O [(1+ 2a)s+(1-a)m,o'y, (s+myo'y, ) ]

- (2-52)
1 ac-.
(L+a)2+a) [L+ 02M (ST M0’
(1+a)2+a)
where o', = 0", /0 and o; is the uniaxial compressive  strength  of  rock material.

O'3max 1S the upper limit of the confining stress over which the relation between the criteria is considered.
For underground excavation Hoek et al (2002) proposed the following relation for its determination:

. -0.94
o
0'3mx =043 0", [ = ] (2-53)
Olin-situ
where o, g, 1S the maximum in situ stress registered in the direction perpendicular to the tunnel

direction and o, is the rock mass uniaxial strength.

2.4.2.1.2 POLYAXIAL STRENGTH CRITERIA

Conditions of triaxial state of stress (o, = o3), on which most of the geo-mechanical constitutive models
are normally based, are accomplished only occasionally. In field, when the intermediate principal stress
does not coincide with the minimum principal stress, these conditions are called polyaxial state of stress.
Very pronounced polyaxial conditions are observed in the proximity of the surface of an underground
excavation. For example, the stress oriented in the direction of a tunnel, which is intermediate principal
stress, is two times the vertical in situ stress, and much greater than the minimum principal stress (radial),
which is only equal to the resistance opposed by the lining system.

Several authors have tried to propose strength criteria that take into account the effect of the intermediate
principal stress at failure to describe the behavior of a rock mass. The first author who conducted specific
laboratory experiments to verify the effect of intermediate principal stress on the rock strength was Mogi
(1967). Nadai (1950) and Drucker and Prager (1952) previously grasped the importance of the
intermediate principal stress to explain the behavior of a rock mass under polyaxial stress, but were able
to produce constitutive models based only on theoretical considerations as the suitable equipment for
polyaxial testing were not available. From the analysis of numerous polyaxial tests carried out on
specimens of fractured rocks Mogi (1967) suggested the following empirical failure criterion:

0, =05 _ fl[al + fo, +0'3J (2-54)

2 2

The intermediate principal stress therefore physically improves the characteristic resistance of a fractured
rock. In accordance with the relation proposed by Mogi its impact, compared to that of the minimum
principal pressure, is modulated by a coefficient § smaller than 1.

The constitutive model suggested by Mogi was subsequently modified by Al-Ajmi in 2006, which
produced the following Mogi-Coulomb strength criterion:

T =a+bo,, (2-55)
where 1, is the octahedral shear stress and o, » is expressed as follows:
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o, +0
Tnz == (2-56)

In Equation 2-55 the coefficients a and b are equivalent to cohesion and tangent of the angle of internal
friction in the Mohr-Coulomb plane.

FIGURE 2-19 - RELATIONSHIPS BETWEEN MAJOR AND MINOR PRINCIPAL STRESSES FOR HOEK-BROWN AND
EQUIVALENT MOHR-COULOMB CRITERIA (HOEK, CARRANZA-TORRES, CORKUM (2002))

In 1995, on the basis of several polyaxial laboratory lab tests performed on hollow cylinders, Wang and
Kemeny proposed the following criterion:

1-f ¢73/72

L o1 Al [ﬁ} (2-57)
qC qC

Where f (0.10-0.20) and A (0.75-200) are constants of the material and g. the average uniaxial
compressive strength of the rock material for various orientations of the planes of weakness.
When the minimum principal stress is much smaller than the intermediate principal stress (o3 « ©y), the
relation 57 reduces to the following form:

o,~q. +(A+f)(0,+0,) (2-58)

In 1998, starting from the observation in laboratory and in field of an overestimation of the shear stress of
a rock mass by the classical theory of elasto-plasticity, Singh et al. (1998) suggested a semi empirical
approach that incorporates the effect of the intermediate principal stress o, in the conventional
formulation of the Mohr-Coulomb failure criterion by replacing o3 with the average value of 5, and o3 in
the second term of the Mohr-Coulomb formulation:

O, +03 A

0,—0,=0, + (2-59)
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where A =

The Polyaxial Strength Criterion, as suggested by Singh in Equation 2-59, has shown great reliability in
weak rocks underground practical applications in northern India. It will be extensively treated in
subsequent sections of this thesis.

2.4.3 STRESS FIELD OF A CIRCULAR TUNNEL IN AN ELASTO-PLASTIC MEDIUM

At the opening of an underground excavation a redistribution of the original stress field occurs and elasto-
plastic deformations, in the surrounding rock mass, can be observed. Exceeded the limit of 1% of the
tunnel radius (Hoek, 2000), the new conditions of stress overcome the rock mass resistance and the
plasticization of the material starts. The plasticized area around the excavation (plastic zone) presents
characteristic of residual resistance (Goguel, 1947) smaller than those of the original rock mass. The
development of the rock mass failure may end either with the collapse of the underground structure or
with the achievement of a new equilibrium, usually facilitated by the installation of support. The
predicted magnitude of the plasticized zone for different support systems at the internal surface of the
excavation is of significant importance in rock mechanics.
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FIGURE 2-20- TYPICAL REPRESENTATION OF THE
PEAK AND RESIDUAL CONDITIONS
OF THE MOHR-CouLOMB FAILURE CRITERION

Based on the Mohr-Coulomb failure criterion, for a circular tunnel of infinite length subjected to a radial
internal pressure P; and an hydrostatic pressure Py equal to the overburden stress (plane strain conditions),
surrounded by a perfectly elasto-plastic or brittle rock mass, an exact closed-form solution for
determining the radius of the plastic zone can be obtained. In this paragraph, this analytical solution is
developed as suggested by Ribacchi (1986) on the hypothesis that the behavior of the rock mass can be
described by a peak failure envelope and a residual failure envelope, as shown in Figure 2-20. The result
can however be extended to the case of perfectly elasto-plastic rock mass exchanging the residual strength
parameters with those of peak.

The symmetry of the geometry of excavation and applied forces allows considering the radial o, and
tangential oy stresses as minimum o3 and maximum o principal stresses respectively. In the plastic zone
the state of stress is governed by the equation of equilibrium and by the failure criterion in terms of
residual parameters:

r = r (2-60)

33



_1+sing, o 4 2C, COS ¢,

%0 1sing, °" " 1-sing, (2-61)
Po
b
SR =
= /g =
w e e T
— \ XD =
. T DI

BIURRIRE

FIGURE 2-21 - PLASTICIZED TUNNEL UNDER
HYDROSTATIC STRESS FIELD

Substituting the relation 2-61 in Equation 2-60, the equation of equilibrium can be rewritten as follows:

oo, ko, +k;
or r

(2-62)

Because k; and k; are only constant functions of residual cohesion and angle of internal friction and the
previous relation can be solved taking in to account the following boundary condition:

o, =P at r=r,
where P; is the reaction of the lining installed on the surface of the excavation (r = r;). The resulting
differential equation has the solution of the following form:

im M =1In L (2-63)
K, | K,P +k r

By means of the above Equation, the distribution of the radial pressure within the plasticized zone can be
predicted. The Equation 2-65 describes the tangential stress in the broken zone and is obtained by
substituting the Equation 2-64 in the chosen failure criterion in terms of residual parameters (Equation 2-
61).

; osin ¢r/l—sin ¢,
J —C, cotg, (2-64)

o, =(P +c, cotg, )[—
r
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The state of stress within the plasticized ring is, therefore, exclusively a function of applied pressure P; on
the internal surface of the excavation and the parameters of residual resistance chosen.

Equations 2-64 and 2-65 do not allow, however, to define the external limit of the plastic zone. Radial
pressure Py, at the plastic radius and its extension r, are obtained by assuming that at this distance are
reached the peak failure conditions as expressed by the Equation 2-65:
1+sing 2c_ cosd
o, = P P, + P °
1-sing, 1-sing,

(2-66)

In addition to this, as shown in Figure 2-22, at the contour of the elastic zone is also valid the relation 2-
40 existing between the principal stresses Py, and .

o, =2P, + P, (2-67)
The equivalence of the two previous relationships returns the value of the radial stress Py, in rp,.

_Zcpcos¢p
° 1-sing,
1+sing,
+—
1-sing,

P, =

= Po(l—sin ¢p)—cp cos ¢, (2-68)

In the elastic zone, the minimum and maximum principal stresses, determined using Equations 2-38 and
2-39, are expressed respectively as:

2

o =P, (P, - Pb)(r% ] (2-69)
2

o, =P, +(P, - Pb)(r% ) (2-70)

For the hypothesis of continuity, at the plastic radius r,, the radial load P, computed using Equation 2-64

for the plastic zone and using Equation 2-69 for the elastic zone must be equivalent. Accordingly to this,

equating the different Equations 2-64 and 2-69 of the radial pressure o,, the magnitude of the plastic
radius is determined as:

. osin %sin ;"

(P +c, cot¢r)(r—pj —c, cotg=P,(L—sing,)-c, cosg,
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FIGURE 2-22 - PROBLEM OF A PLASTICIZED CIRCULAR TUNNEL IN HYDROSTATIC
STRESS CONDITIONS IN ACCORD TO RIBACCHI’S HYPOTHESES (1986)
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The typical distribution of radial and tangential stresses under isotropic in-situ stress field is shown in
Figure 2-23.
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FIGURE 2-23 - DISTRIBUTION OF RADIAL AND TANGENTIAL STRESSES
UNDER ISOTROPIC IN-SITU STRESS FIELD
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In 1975, Daemen proposed a similar relation for the determination of the state of stress within the plastic
zone. He replaced the boundary conditions introduced to solve the differential Equation 2-60 assuming a
known extent of the plasticized zone. The reaction of the lining P; is determined as follows:

—C, cotg, (2-72)

25in¢r/14in¢
- r r
P, :(Po(l_sm ¢p)_cp cos ¢, + ¢, cotg, {F_IJ

p

Daemen in his analysis also included the contribution of the gravitational weight of the plasticized ring to
the load applied to the containment system P;:

2sing -1/
1-sing, |[r, Hsing,
1-3sing,

R

AP =%y, -1 (2-73)
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FIGURE 2-24- PROBLEM OF A PLASTICIZED CIRCULAR TUNNEL
IN ANISOTROPIC STATE OF STRESS (SINGH, 2006)

Singh and Goel (2006) extended the approach suggested by Daemen to the case of anisotropic in-situ
stress (A # 1). Assuming a circular plastic zone for any original state of stress and using the relation 2-46,
directly derived from Kirsch's Equations, to replace 2P, in Equation 2-67, the formulation of the internal
pressure P; in horizontal (6 = 0°) and vertical directions (6 = 90°) becomes:

2c, cosg, :
P,[(1+ 1)+ 2(1— 2)cos 20] - 1osing, ] g
P = 5 +C, cotg, r—' —C, cotg, (2-74)
p
1-sing,
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which is coincident with the Daemen’s approach when A = 1.

Based on the experience gained in the study of tunnels in the north of India, Singh and Goel (2006)
suggest the use of two different constitutive models, the Polyaxial Strength Criterion at peak condition
that reduces to Mohr-Coulomb in residual state, in his theory of stress distribution. According to these
hypotheses, the Equation 2-74 is transformed as:

b _ P[L+2)+2@L- 4)cos20]- o, — AP, 12

' 2+%

(2-75)

-~ —c, cotg,
rp

r 20 %sin &
+C, cotg,

The generalized procedures presented above can be applied, making use of any failure criteria to most of
the practical situations with only slight differences due to the different formulations.

Many other different approaches were suggested for the prediction of the plastic zone and determination
of the plastic radius. The approach proposed by Duncan-Fama (1993), which uses the Mohr-Coulomb
failure criterion, and that suggested by Carranza-Torres and Fairhurst (2000), which uses the Hoek-Brown
failure criterion, are of great importance.

According to Duncan-Fama the pressure applied to the wall of the excavation P below which the
development of the plasticized zone is observed, can be expressed as:
per — 2|:)0 ~ O

) 2-76
N (2-76)

where o, is the UCS of the rock mass and N, = (1+sin¢)/(1-sing). The above formulation coincides with
the relations 2-64 and 2-72 when the radius of the gallery is equal to the plastic radius (r; = rp).

If P; is a pressure applied to the surface of the excavation lower than the critical pressure P, the
extension of the plastic radius of the associated plasticized region is expressed by the following relation:

o {( 2(cy(N, ~1)+ 0, ) }

p = N, +1f(N, -1)P, + o, )

(2-77)

According to the approach suggested by Carranza-Torres and Fairhurst (2000) the internal critical
pressure was defined as follows:

o = [picr _ %}mbad (2-78)

b

where F’iCr is the scaled critical pressure, while m, and s are parameters of the Hoek-Brown failure
criterion. The extension of the plastic radius can be, instead, calculated with the following Equation:

)

r,=r-e (2-79)

38



pi is the internal pressure applied and P; is the relative scaled internal pressure. The scaled internal
pressure can be expressed as follows:

i, s (2-80)

2
m,og; My,

P =

2.5 OBSERVATIONAL METHODS

The observational methods are based on the continuous monitoring of the deformations recorded on the
surfaces of a geotechnical work, which are the basis for the analysis, interpretation and the potential
revision of the initial design proposal. The major developments observed in recent years are in the
excavation techniques with a widespread use of monitoring techniques which results in better
understanding of the rock masses. .

Also with regard to the observational methods, great contribution to their development has been made by
Karl Terzaghi that in the same period of the Rock Load System introduction, has given them the first
organic treatment. In an unpublished introduction to the book "Theoretical Soil Mechanics" (1945)
reported by Peck in 1969 he opposed a third way, the "experimental method", to the two most popular
approaches in geotechnical engineering at that time, the abuse of (1) "wasteful™ excessive factors of safety
and the (2) "dangerous” practice of making rigid assumptions in accordance with general, average
experience.

"[...] Soil Mechanics, as we understand it today, provides a third method which could be called
the experimental method. The procedure is as follows: Base the design on whatever information
can be secured. Make a detailed inventory of all the possible differences between reality and the
assumptions. Then compute, on the basis of the original assumptions, various quantities that can
be measured in the field. For instance, if assumptions have been made regarding pressure in the
water beneath a structure, compute the pressure at various easily accessible points, measure it,
and compare the results with the forecast. Or, if assumptions have been made regarding stress
deformation properties, compute displacements, measure them, and make similar comparison. On
the basis of the results of such measurements, gradually close the gap in knowledge and, if
necessary, modify the design during construction.

Soil mechanics provides us with the knowledge required for practical application of this 'learn as
you go' method [...]."

In 1945 were, therefore, already known the basic principles of the observational method, but its
implementation was obstructed by the difficulty in determining the constitutive parameters of a rock
mass and by the absence of appropriate technologies for the proper monitoring of the application of a
design.

Peck (1969), through a revisitation of the introductory contribution of Terzaghi, set the basis for a
reliable, repeatable, simple and relatively low cost approach. One of the big issues in the application
of the observational methods is, in fact, the unjustified complexity and cost of their practical
applications. For these reasons, in 1969, he formally defined all the steps that, in his opinion, are
necessary for the satisfactory implementation of Observational Methods:

a. Exploration sufficient to establish at least the general nature, pattern and properties of the
deposits, but not necessarily in detail

b. The assessment of the most probable conditions and the most unfavourable conceivable
deviations from these conditions, in this assessment geology often plays a major role
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c. The establishment of the design based on a working hypothesis of behaviour anticipated under the
most probably conditions

d. The selection of quantities to be observed as construction proceeds and the calculation of their
anticipated values on the basis of the working hypothesis

e. The calculation of values of the same quantities under the most unfavourable conditions
compatible with the available data concerning the subsurface conditions

f.  The selection in advance of a course of action or modification of design for every foreseeable
significant deviation of the observational findings from those predicted on the basis of the
working hypothesis

g. The measurement of quantities to be observed and the evaluation of actual conditions
h. The modification of design to suit actual conditions

In his considerations Peck emphasized the importance of the preliminary understanding of the rock mass
conditions as fundament for the design project. The suggested analysis, however, is inapplicable in some
cases, particularly with respect to the point (c) where the "hypothesis of behaviour anticipated under the
conditions most probably" are mentioned. The knowledge of the rock mass characteristics is, instead,
always affected by an unavoidable degree of uncertainty, even more so given the poor quality of the
geological and geotechnical investigation techniques present in that period, which has a large impact on
the usability and safety of the facilities installed. In the design phase, therefore, a moderately conservative
safety factor is necessary and should be maintained, if not improved, during the whole evolution of the
work, by means of technical interventions of improvement, the magnitude of which is suggested by the
results of the observation.

The constantly increasing application observed in the last 30-40 years of the monitoring techniques in
rock mechanics is closely linked to the development in tunneling of the "non-rigid” supports. Among
these special containment systems can be listed as tunneling rods and bolts, deformable steel ribs, which
allow a slow but controlled deformation of the rock mass with consequent partial dissipation of the state
of stress generated in the vicinity of an excavation. In that context Rabcewicz developed the New
Austrian Tunnelling method (NATM, 1964-5), which can be described as the applicative version of the
approaches suggested by Terzaghi and Peck. This method has evolved considerably over the years and is,
today, one of the most efficient approaches in rock mechanics. It cannot be exclusively included within
the observational methods, but, due to the continued use of numerical computation for the real-time
verification of the initial assumptions, can also be placed among the numerical methods.

Today, having shown great efficacy in minimization of the risk and cost reduction during the construction
and maintenance of geotechnical works, the observational method has become an indispensable tool in
engineering practice and research. Recently, in fact, the observational approaches have been included in
the Eurocode 7 (UNI EN 1997-1:2005 and EN 1997-2:2007), the set of European rules for the
geotechnical design, so their use has been officially disciplined for a consistent application in any
geotechnical context.

2.6 NUMERICAL METHODS FOR UNDERGROUND OPENINGS

In rock mechanics, numerical methods are not part of the traditional methodology since they have been
applied only recently. In soil and rock mechanics, unlike in mechanical and structural engineering, the use
of numerical methods has long been hampered because of major difficulty in obtaining reliable
constitutive relations describing the behavior of rock mass or soil. The numerical methods were not
invented with the purpose of supplanting the other traditional methods, but to overcome some of their
limitations. For this reason they can be only applied in combination with more traditional theories.
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The extensive use of numerical methods in engineering is due to the simplicity and rapidity in solving
cases that would otherwise require longer analysis. The resolution of analytical problems by numerical
methods does not present any particular difficulty, only a high computational complexity, which has
limited their practical application until the introduction of adequate computers and application software.
Recently numerical software suites having specifically direct applications in soil and rock mechanics have
been put on the market, allowing the generation and resolution of complex geo-mechanical models
without particular experiences in programming and numerical analysis.

The advantages derived from the simplicity of use of the application software, as already indicated in the
section of the analytical methods, can turn into significant limitations when the software is used by
inexperienced users, who, in the event of erroneous results, would not be able to appreciate it. Moreover,
because the rock mass is a particularly complex material, its behavior will follow many and as much
complex laws. But, in the context of commercial software, it is not possible to implement such a large
number of constitutive laws, whose compilation is often complex, for the resolution of specific cases. For
this reason, the commercially available numerical suites incorporate only the most "traditional”
constitutive laws which are widely applied in practice, giving, only in some cases, the possibility to
accommodate one’s own built-in constitutive models for special purposes.

The most common numerical approaches for solving geo-mechanical problems are based on the
discretization of the entire domain (FEM, FDM) or on the discretization of the contour (BEM). The
choice of a particular approach over another is, in a manner similar to what is seen for the different
analytical approaches, usually suggested by the ratio between the size of the excavation and spacing of
the rock joints of interest. These three approaches are particularly suitable when the discontinuities in the
rock mass are not so frequent, such that the rock mass can be considered continuous (hard rock) or when
the degree of fracturing is so high that the rock volume is comparable to a weaker equivalent continuum
(weak rock). If, instead, the size of the blocks of rock observed in the volume is comparable to the size of
the excavation, the determination of the possible movements of the blocks of rock are more important
than the global conditions of the rock mass itself. Under these conditions, the discrete element method
(DEM) is recommended.

Referring to these considerations Barton (1995) suggests choosing the most suitable numerical approach
on the basis of Q value of the corresponding rock mass under examination. For values of Q smaller than
0.1 and larger than 100 FEM, FDM and BEM are preferable, while within the same range, the DEM is the
more appropriate.

Here, all the different numerical approaches will not be explained in detail, as this would not be important
in the development of this thesis. In Chapter 3, however, it will be explained as to how to modify the
software FLAC, the two-dimensional explicit finite difference program for engineering mechanics
computation, and a specific methodology for its refinement.

2.6.1 FINITE ELEMENTS METHODS (FEM)

FEM numerical method is probably the most applied method in soil and rock mechanics. The term Finite
Elements, attributed to Clough (1960), but its first applications are dated back to the 50s. In principle,
well in advance of the first application in rock mechanics, it was exhaustively used for the solution of
practical problems in aerospace, mechanical and structural engineering.

In this approach, the continuum domain is discretized by means of reasonably small elements similar in
shape (lines for one-dimensional domains, triangles and rectangles in two-dimensional domains,
hexahedra and tetrahedra in those three-dimensional) with homogeneous physical characteristics, which
share the corners (nodes) with the other components of the medium.
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Its large development is primarily due to the simplicity of use and the ability to overcome the limits of
traditional Finite Differences Methods in dealing with complex geometries and boundary singularities.

2.6.2 FINITE DIFFERENCES METHODS (FDM)

The finite differences method is one of the oldest numerical approaches. The first practical
implementation is attributed to Runge (1908) that applied the finite differences to solve the partial
differential equation of Saint-Venant's torsion problem (Higgins, 1943). The finite differences methods do
not have a long tradition in soil and rock mechanics and only with the commercial introduction in 1996 of
the software FLAC a valid alternative to the several finite elements analysis software has arrived. The
software code FLAC, since the initial version introduced by Cundall and Board (1988), performs an
explicit solution, which, in contrast to what happens in the FEM, does not need to allocate extra space for
the stiffness matrix with great reduction in complexity and computational time.

Using the FDM, the domain is divided by ordered connected sets of discrete points (nodes). It needs of a
resolving grid quite homogeneous to be properly implemented, then, there are difficulties in refining the
grid just in the presence of local singularities or in representing complex boundaries. Significant
improvements in this respect are observed by using irregular triangular meshes or Voronoi grid systems
(Jing and Hudson, 2002).

2.6.3 BOUNDARY ELEMENTS METHODS (BEM)

In the Boundary Elements Methods, only boundaries are discretized, which imply that if the domain
extends to infinity, the external artificial boundaries are not required. The presence of an artificial
boundary is, instead, fundamental in FEM and FDM to control the computational complexity of a
physical model. The use of the BEM is particularly advantageous when the ratio of volume / surface of
the domain is very large (Katsikadelis, 2002). In addition, the model complexity increases in presence of
non-homogeneous domains because at each change of material the discretization of the separation surface
is required.

In BEM, unlike to what happens in FEM and FDM, the solution is approximated to the boundary of the
involved domain allowing reducing the order of a problem; a three dimensional problem therefore
becomes two-dimensional and two-dimensional becomes one-dimensional.

2.6.4 DISCRETE ELEMENTS METHODS (DEM)

This method was specifically developed for the determination of local and global motion of a large
number of distinct elements subjected to external modification of their initial equilibrium.

The Discrete Elements Methods are often confused with the Distinct Elements Method introduced by
Cundall (1971) and subsequently formalized by Cundall and Hart (1992), which is just a DEM developed
for the quantification of rock blocks movements in close proximity to an excavation. The Distinct
Elements Method was subsequently extended, in accordance to the studies promoted by Munjiza (2004),
to many different industrial applications as pharmaceutical tableting, flow simulations and impact
analysis in combination with the FEM.

2.6.5 HYBRID METHODS

The hybrid methods allow managing more complex geo-mechanical problems by combining the qualities
of two different traditional numerical methods but using only one resolving code. The most common
hybrid codes combine FEM or FDM, which are appropriate to manage the zones close to an excavation or
a singularity, with BEM, to describe the more distant regions from them (Beer and Watson, 1992; Carter
and Xiao, 1993). Phase, the commercial software distributed by Rocscience, follows this hybrid scheme.
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Very common are also hybrid methods FEM / DEM (see next paragraph) or FDM / FEM (Itasca Flac that,
only in specific contexts, implements the finite elements).

2.6.6 RECENT IMPROVEMENTS IN NUMERICAL METHODS IN ROCK MECHANICS

The refinement of the numerical techniques of representation and resolution has achieved accuracy
absolutely unimaginable just 50 years ago. By means of specific numerical analysis, it is possible to study
both local and global behavior of a fractured rock mass.

Several authors have, in fact, numerically simulated various geotechnical tests on intact and fractured
rocks with the aim to investigate the origin and evolution of plasticity in order to extend the knowledge
acquired in the underground real cases.

Stefanizzi (2007) by means of ELFEN (Rockfield Software, 2006) numerical finite / discrete elements
software numerically simulated deformations and failure of standard homogeneous rocks in different
laboratory tests (Brazilian, uniaxial and triaxial compressive tests). In their analysis, the behaviour of the
intact rock is described by means of FEM until the rock fails while, at the opening of cracks, they are
modeled by means of DEM. The possibility of correctly investigating formation and development of
fracturing in a rock mass by means of numerical approaches is confirmed by studies of Munjiza (2004)
who has positively compared the result of FEM / DEM mixed models with numerous laboratory triaxial
tests on homogeneous rocks and those by Liyanapathirana et al (2005) who focused their research on the
numerical behavior of anisotropic structured soils (sedimentary and residual soils).
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3.1 ABSTRACT

The traditional design methodologies for tunnel and underground excavations are divided in to three
categories: Empirical approaches, Analytical approaches, and Observational approaches, whereas in
the last years the Numerical approach has strongly become popular both for the intrinsic simplicity of
the software packages and their ability to manage problems unsolvable with the classic methods.

In this paper, the underground openings have been analyzed using constitutive models other than the
Mohr-Coulomb theory. FLAC is used for the analysis and the software has been implemented to include
the Polyaxial Strength Criterion. The details of the modifications made in the software are presented and
the results are compared with the Singh's elasto-plastic stress distribution in squeezing grounds. This
study will develop better comprehension of the behavior of the underground openings and also provide a
useful tool to the designers in the planning stages.

3.2 INTRODUCTION

Many constitutive models have been developed to describe the behavior of a rock mass after modification
of its equilibrium. In severe conditions none of these, however, has demonstrated sufficient correlation to
the effective measured reactions. In fact, several experiences of back analysis in tunnels excavation
(Jethwa, 1981), when compared to the results of the more applied designing procedures, have shown a
marked tendency to overestimate the squeezing® of the rock masses.

To meet the needs of a more suitable theory for squeezing conditions, Wang and Kemeny (1995)
performed several tests on anisotropic tuff to advance the hypothesis that the intermediate principal stress
in an anisotropic rock mass under a polyaxial stress field could influences its behavior.

* Corresponding autor. Tel.: +27 (0)31 260 1077; fax: +27 (0)31 260 1411.
Email address: scussel@ukzn.ac.za (D. Scussel).

! According to the International Society for Rock Mechanics (ISRM), the definition of Squeezing:

"Squeezing of rock is the time dependent large deformation which occurs around the tunnel and is essentially associated with the
creep cause by exceeding a limit shear stress" Barla (1995)
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Rock mass in the vicinity of an underground excavation is a clear example of a medium subjected to a
polyaxial stress field: o3 is very small or equal to zero, o, is close to the in situ vertical stress (for deep
tunnels) and o, could be double the intermediate principal stress. Moving away in the radial direction, the
difference between maximum and minimum stress is less appreciable.

01
Oz Oz
O3 Os O3
Oz
01 y

FIGURE 3-1 — TYPICAL STRESS DISTRIBUTION AROUND AN UNDERGROUND OPENING

The classical strength theory assumes that only minor and major principal stresses influence the stability
of the rock surrounding the excavation. However, in practical situations, the consideration of intermediate
principal stress results in enhancement of strength. This can be explained by the significant work done by
the intermediate principal stress component along the tunnel direction that compresses wedges of rock,
increasing their global resistance and preventing rock falls.

3.3 ELASTO-PLASTIC THEORY OF STRESS DISTRIBUTION IN BROKEN ZONE
USING POLYAXIAL STRENGTH CRITERION IN SQUEEZING GROUND
CONDITIONS

Singh, et. al. (1998) investigated the effects of the intermediate principal stress on the strength of
anisotropic rock mass, and proposed to modify the Mohr-Coulomb criterion by replacing o3 with the
average value of o, and o3. The Polyaxial Strength Criterion based on semi-empirical approach has
shown better correlation between analytical results and observations. The criterion suggested by them is
given below:

o, +O'3j 2sing (3-1)

0,-0,=0, +
s ”( 2 Jl-sing

Starting from Equation 3-1, they formulated an elasto-plastic theory of stress distribution in broken zone
in squeezing ground.

Initial hypothesis can be summarized as follows:

e Rock mass is isotropic, homogeneous and dry;

e Rock mass follows the Polyaxial Strength Criterion in the elastic zone, whereas the Mohr-
Coulomb's theory inside the broken zone

o Circular tunnel of radius r; is uniformly supported, and circular broken zone is of radius r,

o There is no rock burst or brittle failure.
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FIGURE 3-2 - SCHEMATIC BOUNDARY CONDITIONS OF THE PROBLEM

Stress distribution within the broken zone is given as:

Gr:(Pbﬁ'qi—FL]L _qi
a l-a r, a

O-g = qCI' + (1+a)0r

Squeezing Pressure at the lining in the vertical direction (6 = 90°):

r.
Pv: Pb+&+Lrp _ _q&_Lri
a l-«a r a l-a

p

and in the horizontal direction (6 = 0°):

ph :[pb +qi)(1] e
o r a
p
((L+A) +2(L— A) 08 20) — 0o, — &, Al 2
2+A/2

where P, =P,

TTT T RTTTT

(3-4)

(3-5)

Squeezing pressure at the lining for hydrostatical initial stress and negligible effect of rock mass weight

IS:
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2I:)v _qcmass — 0y % n qcr ( rl Ja qcr (3 6)

(i A o le | 4 )
2+ A a @

2sing, 2sin @,

2C, COS @
where A= ——— g =—7"1 | =7 1/3’ _ & r
1-sing, 1-sin g, Qemass = T7Q Qe 1-sin g,

p

3.4 NUMERICAL ANALYSIS

3.4.1 STATEMENT OF THE PROBLEM

The introduction of several engineering numerical analysis suites (FEM, FDM, BEM, DEM) has
changed the approach to excavation problems. Now, it is possible to carry out a more detailed analysis
considering complexities such as the influence of new parameters, particular geometries and boundaries
shapes, introducing new excavation technigue or considering the complex rock mass-liner interaction.
Many very powerful codes have been developed for different constitutive models and are available for the
analysis of geo-mechanical problems, but none of them consider the effect of the intermediate principal
stress in the evaluation of plasticity.

The scope of this work is to include the Polyaxial Strength Criterion among the more common
constitutive model codes for FLAC and make it available for practical tunnel design. FLAC (Itasca) is a
two-dimensional explicit finite difference program for solving many computational problems of
geotechnical engineering and rock mechanics.

In this study FLAC has been chosen for implementing a user-defined constitutive model, which is not
present in this software and also in any other standard software. The model has been compiled in FISH,
the built in program language. The inclusion of this feature in this software makes it ideal software for
many practical studies of underground openings.

3.4.2 MODIFICATIONS TO IMPLEMENT THE POLYAXIAL CONSTITUTIVE MODEL

To develop a FISH code to incorporate the Polyaxial Strength Criterion, it is important to redefine the
constitutive model's formulation consistent with the sign convention in FLAC. Starting with this,
compression is taken as negative and the ordering of the principal stresses is 61 < 6, < &3 as in structural
engineering.

To avoid misunderstanding, when the data requested for the execution of the model are inserted by not an
expert user, the variable needed are always positive in sign. This obviously affects the formulation of the
constitutive model because, in such a reference system, Cohesion and Uniaxial Compressive Strength
would be negatives.

Incorporating these, Mohr-Coulomb Theory and Polyaxial Strength Criterion will take the form given as:
Mohr-Coulomb o,—-N,o;+0, =0 (3-7)

Polyaxial: 0,—0;+0, — (%}A =0 (3-8)

Other necessary step is to reformulate the Polyaxial Strength Criterion to make it similar to the Mohr-
Coulomb formulation, as suggested below:
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o,—o;N’' +o', =0 (3-9)
Where ¢ is the Compressive strength of the rock mass at the internal boundary of a tunnel

O-'cr:O-cr _ﬁAZO
2

and, where N¢=1+S!n¢ N, = %
1-sing 1-sing

The Polyaxial Strength Criterion as given by Equation 3-9 is shown in a graphical form in Figure 3-3. The
similarity with the Mohr-Coulomb criterion is quite evident. However, this criterion incorporates the
intermediate principal stress, which is not incorporated in Mohr-Coulomb criterion. Therefore, the
parameters N', and o’ are different from the corresponding N, and o. It is appropriate to highlight that
the intermediate principal stress required to be evaluated only in elastic condition and is automatically
computed by FLAC.

a=atan(N's)

G'cr=o-cr+0-2/2

O3 <
t
Lo
Y4
O

FIGURE 3-3 - GRAPHICAL POLYAXIAL STRENGTH CRITERION

In order to have a three dimensional constitutive model in elastic zone and a bi-dimensional model after it
fails, in the analysis, a new approach is suggested in this paper. A new relationship based on the similarity
between equations 3-7 and 3-9, is proposed below:

Lisi .
o, — 0, m +Gcr—62ﬂ=0 (3-10)
1-sing 1-sing

The advantage of the above Equation is that it can handle both elastic zone and plastic zone by

appropriately choosing the parameters. The values of the parameters a., B, ¢ and o, to be used are given
in Table 3-1. Substituting the corresponding values for peak and residual state in Equation 3-10 results:
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¢ o Or

a 0 Or
B bp 0

2C_ CoS 2C. CoS
O'cr 77’Q% or p @p r ¢r

1-sin ?, 1-sin o,
TABLE 3-1 - VALUES PROPOSED FOR PEAK
AND RESIDUAL STATE

Substituting in Equation 3-10 the peak and residuals values results in:

1 .
o, - 0'3£+J +7/Q% -0, M =0 (3-11)
1-sing, 1-sing,
and
1+si 2
o, — oy MNP |, 28 _ (3-12)
1-sing, ] 1-sing,

In this formulation the value of UCS is directly put as a parameter. The advantage of inputting the value
directly is that it can be modified in the formulation without changing the FISH code every time. This
way, the problem can be solved using the peak and residual parameters that could describe the behavior of
an elastic rock mass and transform the formulation of the failure criteria at plasticity.

3.4.3 SOLUTION SCHEME
In each step to compute the stresses, these are evaluated, transformed in principal stresses and ordered.

FLAC chooses a guess elastic strain increment and calculates the corresponding stress increments
applying the Hooke's law. The incremental stresses are given below:

AG, = ay A’ + a, (A + Ae%)

AG, = a4 A€ + (A + Ae%s) (3-13)

Ao, = OllAees +a, (Aeel + Aeez)
After this step, it is evaluated whether the new three components violate the yield criterion given by

equations 3-14, representing the equation 3-11, and 3-15, representing the tension cut, for shear or
tension.

f=0,—N 40310

Shear Yield Function (3-14)

e ]
Tension Yield Function fi=0" -0, (3-15)
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FIGURE 3-4 - DOMAINS FOR A SPECIFIC G; VALUE

The equation for the bisector of the angle originated by the tension and the shear yield function is given
as:

h(oy,0,,0,)=0; — 0" —ap(al—op) (3-16)

where

Equations 3-14, 3-15 and 3-16 are shown in a graphical form in Figure 3-4 in a two dimensional plot
between o, and o3 for a particular value of o,. A three dimensional plot is actually needed to represent the
zones of failure or no failure but for the sake of simplicity a two dimensional plot is shown. By locating a
stress point on this Figure one can make out in which zone it lies. If the sign of f; and h are negative, shear
failure takes place, when h is positive and f; negative, tensile failure takes place and no failure when both
h and f; are positive.

The violation of the yield criterion means that FLAC calculated a point beyond the yield function and
plastic deformation takes place (e” > 0). A correction is needed to move it back to the yield boundary (the
guess elastic strain increment was not elastic).

The treatment of the tensile failure is the same as in Mohr-Coulomb constitutive model in FLAC.
Therefore only shear failure correction is applied in the present study.

Starting from the flow rule's formulation given as:

Aef =1 . (3-17)
oo,
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g, =0, — chf3 (3-18)

Where g5 is the Shear potential function and A° as unknown. In this function o, is absent because,
although not constant in the entire domain, it is a constant value for a particular zone. The elastic guess
increments in the three directions are given as:

Aef =71
Ae! =0 (3-19)
Ae) =-N 2
where N, :w
1-siny

The total increment applied at the beginning must be separated from its plastic part, which is calculated
with the flow rule (Equation 3-17) and then substituted in Equation 3-21 that gives the value of elastic
strain in the incremental expression of the Hooke's law to be used for computing the principal stresses
(Equation 3-22):

 AQ® p i
Ae, = A6’ + Ae, =123 (3-20)

e _ _ ApP
Ag =Ag; — Ag, (3-21)

Ao, =a,Ae 1+a2(Ae 2 +Ae 3)—/15(051—052NW)
Ao, = a,Ae 2 +ay(Ae 1 +Ae 3)-La,(L-N,) (3-22)
Ao, =a,Ae 3 +a2(Ae 1+Ae z)—/IS(—alNW +a2)

The stress increment values are used to compute the new values of stresses as given by the Equation given
below:

oM = o) - Fa,(L-N,) (3-23)

The superscript New means new values and | is used to represent the principal stresses obtained by adding
the guess elastic strain to the initial principal stresses field. The second part of the expression is the stress
component due to the plastic strain correction.

The value of A° now can be computed by using the new values of stresses using Equation 3-23 and
substituted in shear yield function given by Equation 3-14. The right hand side of the Equation is equated
to zero to ensure that the point lies on the shear failure yield line, since the point cannot lie above that.
The value of 1A’ is obtained as:

. f,(o)) (3-24)

o, —a,N - Nw(— aN, +az)
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Now FLAC can compute the new stress field and repeat again until the value of the maximum unbalanced
force of the system reduces to a negligible value and thus a static solution is obtained.

3.4.4 COMPARISON OF NUMERICAL AND ANALYTICAL RESULTS

In the present study an example is considered for which the geometrical configuration is shown in Figure
3-5. The numerical values of various parameters used for this problem are presented in Table 3-2. This
example has been used to validate the implementation of the Polyaxial Constitutive Model in the finite
difference code in FLAC.

Pv
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FIGURE 3-5 - GEOMETRICAL CONFIGURATION OF THE MODEL
The results of this study for this particular example are compared with the results obtained by Elasto-

Plastic theory of stress distribution in broken zone in squeezing ground conditions as suggested by Singh
etal.

r 3.2 [m] Q 0.001

g:)slz?]r&c;gg 32 % 1, [m] ” 27 [KN/m]
oo 30 [°] Py 15 [MPa]
o 20 [°] P, 1.52 [MPa]
G, 2 [MPa] Py 15 [MPa]
G 0.1 [MPa] OQumass 1.89 [MPa]
E 5 [GPa]
V) 0.25

TABLE 3-2 - DATA OF THE NUMERICAL PROBLEM

The analytical solution of the above problem has been obtained with the spreadsheet presented in
appendix A.
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Results of analytical and numerical stress distribution computation are shown in Figure 3-6.
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FIGURE 3-6 - COMPARISON OF ANALYTICAL AND NUMERICAL FLAC SOLUTION FOR THE TUNNEL PROBLEM IN
FIGURE 3-3

The Figure shows generally good agreement between the results obtained by two methods. It can be
observed that the predictions are very good up to a certain distance and beyond a certain distance. There
is some problem at the boundary of the plastic zone where the predictions cannot be made at all due to the
inherent drawbacks of using finite difference method and FLAC. The mesh could not be refined further in
this region due to the limitation of the software. The difference in the stresses computed by two different
methods at various distances in percentages is reported in appendix in Table 3-3.

3.5 CONCLUSIONS

The elasto-plastic Polyaxial Model produced in this paper introduces an alternative to design tunnels in
squeezing rock masses. A new relationship between the principal stresses and uniaxial compressive
strength is suggested in this work, which can handle both the elastic and plastic zone according to Singh's
Theory by appropriately choosing the parameters. The proposed relationship is used to bring out the effect
of intermediate principal stress as the development of principal stresses in an underground opening
through an example it is shown that the effect of the intermediate principal stress contributes to the
enhancement of the peak characteristics of the underground excavation.
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3.7 LIST OF SYMBOLS:
r, ri, rp: Distance from the center of the tunnel, internal and plastic radius;

e®, eP e: Elastic and Plastic Strain

K, G, v, E: Bulk, Shear, Poisson's, Young's Modulus;
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Q: Barton's Number;

v: Rock Mass Unit Weight;

o1, 02, 3. Maximum, Intermediate, Minimum Principal Stress;
o' Tension Cut;

o1, Oo, Top, Pz: Stress distribution around a tunnel in Radial, Tangential directions and along the Tunnel
direction;

Pv, Ph, A: Overburden Pressure, Horizontal Pressure, Horizontal Ratio;
Ocmass: Jers Oci: Peak, Residual, Uniaxial Compressive Strength;

dp, Or, ¢: Peak, Residual, internal friction angle;

Cp, Cr, C: Peak, Residual, Cohesion;

y: Dilation angle;

0: Angle between the horizontal axis of a tunnel and the line between its center and point considered.
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3.9 APPENDIX A: SPREADSHEET FOR THE IMPLEMENTATION OF THE TUNNEL
SOLUTION

Extract from the spreadsheet for the implementation of the stress distribution around circular openings
subjected to symmetrical loading:

Geometrical data and Strength Parameter

Determination of P;

Y 27.0 | kN/m3 ri 15 m Py 4.37 MPa

Q 0.001 I 8.0 m P; 1.52 MPa

dp 30.0 ° P, 15.0 MPa

dr 20.0 ° P, 15.0 MPa

Cp 2.0 MPa A 1.0

Cr 0.1 MPa

Flac Theoretical Difference
r G./Pv | c/Pv | o,/Pv ’ Gi/Pv Radial Tangent.
3.59 | 0.1186 0.2609 | 0.1161 0.2559 | 2.1162%  1.9434%
4.36 | 0.1497 0.3236 | 0.1465 0.3179 | 2.1755%  1.8026%
5.15 | 0.1807 0.3840 | 0.1774 0.3809 | 1.8515% 0.8141%
5.94 | 0.2125 0.4524 | 0.2088 0.4450 | 1.7605% 1.6720%
6.74 | 0.2453 0.5193 | 0.2407 0.5099 | 1.9201% 1.8371%
7.55 | 0.2813 0.5927 | 0.2730 0.5759 | 3.0231%  2.9087%
8.36 | 0.3586 1.6500 | 0.3512 1.6488 | 2.1048% 0.0733%
9.19 | 0.4706 1.5440 | 0.4624 1.5376 | 1.7746%  0.4159%
9.94 | 0.5497 1.4660 | 0.5406 1.4594 | 1.6849% 0.4517%
10.62 | 0.6071 1.4100 | 0.5979 1.4021 | 1.5448%  0.5609%
11.30 | 0.6546 1.3620 | 0.6448 1.3552 | 1.5188%  0.5022%
11.99 | 0.6946 1.3230 | 0.6845 1.3155 | 1.4738%  0.5710%
12.69 | 0.7284 1.2890 | 0.7184 1.2816 | 1.3980%  0.5740%
13.40 | 0.7572 1.2600 | 0.7474 1.2526 | 1.3096%  0.5918%
14.11 | 0.7821 1.2350 | 0.7722 1.2278 | 1.2830%  0.5858%
14.83 | 0.8036 1.2140 | 0.7938 1.2062 | 1.2377%  0.6446%
1556 | 0.8224 1.1950 | 0.8127 1.1873 | 1.1970%  0.6462%
16.29 | 0.8389 1.1780 | 0.8291 1.1709 | 1.1838%  0.6051%
17.04 | 0.8535 1.1640 | 0.8438 1.1562 | 1.1496%  0.6746%
17.79 | 0.8664 1.1510 | 0.8567 1.1433 | 1.1332% 0.6728%
18.54 | 0.8778 1.1400 | 0.8681 1.1319 | 1.1230% 0.7113%
19.31 | 0.8882 1.1290 | 0.8784 1.1216 | 1.1197%  0.6567%
20.08 | 0.8973 1.1200 | 0.8875 1.1125 | 1.1025%  0.6755%
Average 1.573% | 0.895%

TABLE 3-3- RESULTS OF THE DIFFERENT APPROACH
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3.10 APPENDIX B: FISH CoDE

*

* FISH version of Singh model with

* strain hardening/softening

*

set echo off
def b_singh
constitutive_model
f_prop m_g m_k m_fric m_dil m_ten
f_prop m_beta m_delta m_qg
f_prop m_ftab m_ttab m_ind m_epdev m_epten
f_prop m_btab m_dtab m_qgtab
f_prop m_el m_e2 m_x1m_sh2
f_prop m_npsi m_nphi m_csnp m_qdelta

f_prop m_PO

float $sphi $spsi $s11i $s22i $s12i $s33i $sdif $sO $rad $s1 $s2
$s3

float $si $sii $psdif $fs $alams $ft $alamt $cs2 $si2 $dc2 $dss
float $sdelta $sbeta

float $apex $epsav $tpsav $delps $de3ps $depm Seps $ept $epss
float $bisc $pdiv $anphi $tco

int S$icase $m_err $iftab $ittab

int $ibtab $iqtab $idtab

Case_of mode

Case 1
; --- put initial table values in prop arrays ----
if m_epdev = 0.0 then

if m_epten = 0.0 then

S$iftab = int(m_ftab)
S$idtab = int(m_dtab)
Sittab = int(m_ttab)
$ibtab = int(m_btab)

$igtab = int(m_gtab)

if $iftab # 0 then

m_fric = table($iftab, 0.0)
end_if
if $idtab # 0 then

m_delta = table($idtab, 0.0)
end_if
if $ittab # O then

m_ten = table($ittab, 0.0)
end_if
if $ibtab # 0 then

m_beta = table($ibtab, 0.0)
end_if
if $igtab # 0 then

m_q = table($igtab, 0.0)
end_if

end_if

end_if
; --- data check ---
$m_err=0

if m_fric > 89.0 then

$m_err=1

end_if

if m_ten < 0.0 then

$m_err=2

end_if

if m_beta < 0.0 then

$m_err=3

end_if
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if m_delta < 0.0 then

$m_err=4 Case 2
end_if —
if $m_err # 0 then ; Running section
nerr = 126 j mmmmmmmmmm
error=1 zvisc =1.0
end_if if m_ind # 0.0 then
; m_ind =2.0
$sphi = sin(m_fric * degrad) end_if
$sdelta = sin(m_delta * degrad) $anphi = m_nphi
$sbeta = sin(m_beta * degrad) ; --- get new trial stresses from old, assuming elastic increments ---
$spsi = sin(m_dil * degrad) $s11i = zs11 + (zde22 + zde33) * m_e2 + zdell * m_el
m_npsi = (1.0 + $spsi) / (1.0 - $spsi) $522i = 2522 + (zdell + zde33) * m_e2 + zde22 * m_el
m_nphi = (1.0 + $sheta) / (1.0 - $sphi) $s12i = 2512 + zdel2 * m_sh2
m_qdelta = $sdelta / (1.0 - $sphi) $s33i = 2533 + (zdell + zde22) * m_e2 + zde33 * m_el
m_csnp =m_q-2zs33 * m_qdelta $sdif = $s11i - $s22i
; m_csnp =m_qg-2zs33 * m_PO $s0 = 0.5 * ($s1li + $s22i)
;use previous for anisotropic state of stress $rad = 0.5 * sqrt ($sdif*$sdif + 4.0 * $s12i*$s12i)
mel =mk+40*m_g/3.0 ; --- principal stresses ---
me2 =mk-20*m.g/3.0 $si = $s0 - $rad
m_sh2 =2.0*m_g $sii = $s0 + $rad
m_x1 = m_el - m_e2*m_npsi + (m_el*m_npsi - $psdif = $si - $sii
m_e2)*m_nphi

; --- determine case ---
if abs(m_x1) < 1e-6 * (abs(m_e1) + abs(m_e2)) then

section
$m_err=5
if $s33i > $sii then
nerr = 126
; --- 833 is major p.s. ---
error=1
$icase =3
end_if
$s1 = SPsi
; --- set tension to prism apex if larger than apex ---
$s2 = $sii
$apex = m_ten
$s3 = $s33i
if m_fric # 0.0 then
exit section
$apex = m_csnp / (m_nphi - 1)
end_if

end_if
if $s33i < $si then
m_ten = min($apex,m_ten)
; --- 33 is minor p.s. ---

61



SPicase =2
$s1 = $s33i
$s2 = $si
$s3 = $sii
exit section
end_if
; --- $33 is intermediate ---
Sicase =1
$s1 =i
$s2 = $s33i
$s3 = Ssii

end_section

section
; --- shear yield criterion ---
$fs = $s1 - $s3 * $anphi + m_csnp
$alams = 0.0
; --- tensile yield criterion ---
$ft =m_ten - $s3
$alamt = 0.0
; --- tests for failure ---

if $ft < 0.0 then

$bisc = sqrt(1.0 + $anphi * $anphi) + $anphi

$pdiv = -$ft + ($s1 - $anphi * m_ten + m_csnp) * $hisc

if $pdiv < 0.0 then
;---  shear failure ---

$alams = $fs / m_x1

$s1 = $s1 - $alams * (m_el - m_e2 * m_npsi)
$s2 = $s2 - $alams * m_e2 * (1.0 - m_npsi)

$s3 = $s3 - $alams * (m_e2 - m_el * m_npsi)

m_ind = 1.0
else
;---  tension failure ---

$alamt = $ft/ m_el

$tco= $alamt * m_e2
$s1 = $s1 + $tco
$s2 = $s2 + $tco
$s3 =m_ten
m_ind = 3.0
end_if
else
if $fs < 0.0 then
;- shear failure ---
$alams = $fs / m_x1
$s1 = $s1 - $alams * (m_el - m_e2 * m_npsi)
$s2 = $s2 - $alams * m_e2 * (1.0 - m_npsi)
$s3 = $s3 - $alams * (m_e2 - m_el * m_npsi)
m_ind = 1.0
else
;- no failure -
zs11 = $s1li
7522 = $s22i
2533 = $s33i
2512 = $s12i
exit section
end_if
end_if
; --- direction cosines ---

if $psdif = 0.0 then

$cs2 =1.0
$si2 =0.0
else

$cs2 = $sdif  / $psdif
$si2 = 2.0 * $s12i / $psdif
end_if
; --- resolve back to global axes ---
case_of S$icase

case 1l
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$dc2 = ($s1 - $s3) * $cs2 end_if
$dss = $s1 + $s3 end_section

zs11 =0.5* ($dss + $dc2)

2522 =0.5* ($dss - $dc2) $epsav = 0.0
2512 =0.5* ($s1 - $s3) * $si2 $tpsav = 0.0
7533 = $s2 if zsub > 0.0 then
case 2 $epsav = $eps / zsub
$dc2 = ($52 - $s3) * $cs2 S$tpsav = $ept / zsub
$dss = $s2 + $s3 ; --- reset for the next zone ---
zs11 = 0.5 * ($dss + $dc2) $eps =0.0
2522 =0.5* ($dss - $dc2) $ept =0.0
2512 =0.5* ($s2 - $s3) * $si2 end_if
7533 =$s1 ; --- softening/hardening ---
case 3 if $epsav > 0.0 then
$dc2 = ($s1 - $s2) *$cs2 $epss = m_epdev + $epsav
$dss = $s1 + $s2 S$iftab = int(m_ftab)
zs11 = 0.5 * ($dss + $dc2) $idtab = int(m_dtab)
2522 = 0.5 * ($dss - $dc2) $ibtab = int(m_btab)
2512 =0.5* ($s1 - $s2) * $si2 Sigtab = int(m_qtab)
2533 = $s3 if $iftab # 0 then
end_case m_fric = table($iftab, $epss)
zvisc = 0.0 end_if
; --- accumulate hardening parameter increments --- if $ibtab # 0 then
if m_ind = 1.0 then m_beta = table($ibtab, $epss)
$delps = $alams end_if
$de3ps = -$alams * m_npsi if $idtab # 0 then
$depm = ($delps + $de3ps) / 3.0 m_delta = table($idtab, $epss)
$delps = $delps - $depm end_if
$de3ps = $de3ps - $depm if $igtab # 0 then
$eps = m_qg = table($igtab, $epss)
$eps+sqrt(0.5*($delps*$delps+$Sdepm*$depm+$de3ps
*$de3ps)) end_if
end_if ; - data check ---
if m_ind = 3.0 then $m_err=0

$ept = $ept - $alamt if m_fric > 89.0 then



$m_err=1
end_if
if m_beta <- 1.0 then
$m_err =3
if m_d < 0.0 then
$m_err=4
end_if
end_if

if $m_err # 0 then

if m_fric # 0.0 then

$apex = m_csnp / (m_nphi - 1)

end_if
m_ten = min($apex,m_ten)
end_if
if $tpsav > 0.0 then
$epss = m_epten + $tpsav
$ittab = int(m_ttab)

if $ittab # 0 then

nerr = 126 m_ten = table($ittab, $epss)
error=1 end_if
end_if m_epten = $epss
; if m_ten < 0.0 then
m_epdev = $epss $m err=4
; nerr = 126
$sphi = sin(m_fric * degrad) error=1
$sdelta = sin(m_delta * degrad) end_if
$sbeta = sin(m_beta * degrad) end_if
$spsi = sin(m_dil * degrad)
m_npsi = (1.0 + $spsi) / (1.0 - $spsi) Case 3

m_nphi = (1.0 + $sbeta) / (1.0 - $sphi) S —
m_qdelta = $sdelta/ (1.0 - $sphi)
m_csnp =m_q-2zs33 * m_qdelta R —

; m_csnp =m_q-2s33 * m_P0O cm_max =m_k+4.0*m_g/3.0

;use previous for anisotropic state of stress sm_max = m_g
m_x1 =m_el-m_e2*m_npsi + (m_el*m_npsi - m_e2)*m_nphi Case 4
if abs(m_x1) < 1e-6 * (abs(m_el) + abs(m_e2)) then ; Add thermal stresses
$m_err=5 j mmmmmm e
nerr = 126 ztsa = ztea * m_k
error=1 ztsh = zteb * m_k
end_if ztsc = ztec * m_k
; --- reset tension to prism apex if larger than apex --- ztsd = zted * m_k

$apex = m_ten End_case



end

set echo=on
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Chapter 4

4 A NEW APPROACH TO OBTAIN TUNNEL SUPPORT PRESSURE
FOR POLYAXIAL STATE OF STRESS
D. Scussel®, S. Chandra®

& School of Civil Engineering, Surveying and Construction, University of KwaZulu Natal, Durban, South
Africa
® Department of Civil Engineering, Indian Institute of Technology, Kanpur 208 016, India

Keywords: Tunnel Excavation, Polyaxial Strength Criterion, FLAC, Strain Softening, FDM, Finite Difference
Analysis, Finite Element Analysis.

4.1 ABSTRACT

Nowadays the numerical approaches to the tunnels designing are widely integrated to the traditional
technologies (Empirical, Analytical and Observational Approaches). The numerical suites have, in fact,
the advantage of an intrinsic simplicity of use and the ability to solve problems that, because of the
complexity and plurality of the factors at play, cannot be easily managed through the analytical and
empirical methodologies.

Unfortunately the numerical software applications, commercially available for geo-mechanical purposes,
have the limitation of using only the most famous constitutive models. This study sets the target of
extending the numerical applicability of a constitutive model different from the commonly used one to
increment the choice of model codes available for geotechnical numerical suites.

In this paper a general methodology to extend the applicability of the Polyaxial Strength Criterion,
introduced by Singh el al. (1998), to any numerical application is explained. The present procedure does
not require any specific compilation of numerical constitutive model and takes advantage of the bi-
dimensional Mohr-Coulomb model already present in every numerical suite.

The Polyaxial Strength Criterion is a tri-dimensional constitutive model, introduced for the analysis of
severe squeezing in underground excavations. The approach explained by Singh has shown high
coefficients of correlation with the observations in many cases of tunnels in high squeezing conditions in
Himalayan region.

2 Corresponding autor. Phone: +27 31 260 1077, Fax: +27 31 260 1411, Mail: scussel @ukzn.ac.za
University of KwaZulu-Natal

College of Agriculture, Engineering and Science, Howard College, Centenary Building

King George V Avenue, Durban 4041, South Africa
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4.2 INTRODUCTION

It is in the second part of the 18th century, with the birth of the railway transport, that the construction of
underground openings evolved from a nearly artisan approach to one, more scientific that combined the
miners' knowledge with continuous improvements in the excavation techniques.

Terzaghi in 1946 made the first step in the direction of a new and modern designing methodology and
proposed the rock mass classification, which correlated the rock mass condition to the squeezing pressure
applied to the internal steel ribs of a tunnel. Subsequently, several other rock mass classification systems
have been advanced, starting from Deere's RQD (1964) to the more comprehensive RMR (Bieniawski
1974, 1976, 1979, 1984) or Q system (Barton et al. 1974) classification. These analyze the characteristics
of a rock mass and return both the class of quality of the material and suggestions on the best retaining
system for a particular kind of work.

When the ratio between the spacing of discontinuities and the dimensions of the excavation is small, the
effect of the discontinuities is shared in the whole volume, and the fractured rock mass is considered as a
continuous model. In such cases, the classifications of rock masses are expected to clearly define reliable
strength parameters for that particular rock mass quality and give suitable elastic/ plastic parameters for
constitutive laws. This approach allowed the designers to apply elastic and elastic/plastic models to
fractured rock masses, as it was already possible in soils. The first failure criterion implemented in the
analytical solutions was the Mohr-Coulomb constitutive model (MC), widely utilized in soil mechanics as
well, which describes the rock mass through only two parameters, Cohesion and Angle of Internal
Friction. It, nowadays, is still one of the most employed models in practical applications.

In 1980, Hoek and Brown proposed an empirical nonlinear failure criterion, which combines the
experience of several test on specimens of intact rock to the results of the specific rock mass classification
GSI (Geological Strength Index). The model has been subjected to many updates in the years to reach its
final formulation, by Hoek et al., in 2002.

Results of Polyaxial tests on Dunham Dolomite (Mogi, 1967)
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FIGURE 4-1 - RESULTS OF POLYAXIAL TESTS ON DUNHAM DoLoMITE (MoGlI, 1967)

In this direction, the Polyaxial Strength Criterion (PSC) introduced by Singh et al. (1998) is another
significant addition. They intuited the applicability of the large number of studies on the polyaxial
constitutive models to underground applications in severe squeezing conditions, explaining the
differences between what was predicted by the traditional elasto-plasticity theory and their observations.

67



After the careful back analysis of many data from monitored underground cavities in hard geological
conditions, they observed an appreciable rock mass strength enhancement in the vicinity of the excavation
that they related to a positive confining effect of the pressure in the tunnel direction (in this case
intermediate principal stress o).

The effect of the intermediate principal stress was not considered in the traditional theories but, now it is
demonstrated from many polyaxial tests (test similar to the triaxial test, but where o, and o3 are not equal
and can be independently varied) on specimens of fractured rocks, that the intermediate principal stress
holds a prominent role in the failure of rock material. In Figure 4-1, the outcomes of about 50 polyaxial
tests on specimens of Dunham Dolomite (Mogi 1967) are shown. The starting point of each curve is
plotted from the result of a conventional triaxial test (o, = o3), and then the subsequent points correspond
to the maximum principal stress at failure coming from specimens of the same material sheared keeping
o3 constant, but increasing o.

Starting from the observation of this phenomenon, in laboratory and in field, Singh et al. (1998) suggested
a semi empirical approach that incorporates the effect of the intermediate principal stress o, in the
conventional formulation of the Mohr-Coulomb failure criterion by replacing o3 with the average value of
o7 and o3 in the second term of the Mohr-Coulomb formulation:

Mohr-Coulomb 0,— 0, =0, +0,A (4-1)

0, + 03 A

Polyaxial (Singhetal., 1998) o, -0,=0, + (4-2)

2sin ¢
1-sing

where A =

IR AR I AR T

S 2 T
TTTTR%TTT1

TTTTTTTTON

FIGURE 4-2 - PROBLEM OF A CIRCULAR TUNNEL

IN ELASTO-PLASTIC ROCK MASS (SINGH AND GOEL, 2006)

68



Singh (2006) also produced the Elasto-Plastic Theory of Stress Distribution for tunnels in Broken Zone
using the Polyaxial Strength Criterion in Squeezing Ground conditions. The stress field around an
opening is shown in Figure 4-2. In this solution the plastic radius r, (boundary between plastic and elastic
zones) has a particular value for a given field problem and it is obtained by means of multipoint
extensometers readings. The procedure to get the radius of broken zone from the readings of multi point
extensometers is explained by Jethwa (1981). According to the Elasto-Plastic theory, the stresses are
given as:

Tangential and Radial Stress in horizontal and vertical direction at the elastic zone boundary:

o = p = R+ 2)+2(1—2)c0s 20] - Qupess — P(A/2) (4-3)
o (2+A/2)
o, =R, [0+ 1)+201-A)cos26]-P, (4-4)

where 6 = 0° and 90°.

In the same directions, the stress distribution inside broken zone follows the following relations:

o, =[P, +c¢, cot ‘A](% j —c, cotg, (4-5)
p

Oy = N¢,ro-r +qcr (4-6)
where A— 2SN _ 2sind ¢r:1+s!n¢r
1-sing, 1-sing, " 1-sing,

This theory of stress distribution presupposes the use of two different constitutive models in the same
solution, the Polyaxial Strength Criterion at failure that reduces to Mohr-Coulomb criterion in residual
conditions. This characteristic makes its implementation in a numerical application more difficult.

Unfortunately the modern tunneling engineering theories rely less on analytical solutions and make more
use of numerical models applications both for their versatility and simplicity of use. Today there are
several numerical suites able to positively solve any engineering problem applying the most common
failure criteria.

Scussel and Chandra (2012) have introduced one numerical constitutive model compiled in FISH code
(the programming language embedded within FLAC) to include the Polyaxial Strength Criterion among
the more common failure criteria codes present in the finite difference numerical suite FLAC (Itasca) with
satisfactory results.

The solution scheme is based on an algorithm that, depending on the necessity, can resolve a finite
difference grid in FLAC with the Polyaxial Strength Criterion or the Mohr-Coulomb theory only
adequately modifying the rock mass strength parameters initially inputted in the model.

The numerical application developed in FISH does not have the simplicity of use so that it can be directly
put to a commercial use. Another disadvantage of this kind of approach is the considerably slower
computational velocity compared to the built in failure criteria already present in the numerical suite.

Moreover a code written exclusively for one specific software, even if probably the most common one,
does not show necessary requirements of universality. In fact it does not consent the verification by
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means of different numerical methodologies (FEM, BEM, etc.) of the applicability of the Polyaxial
Strength Criterion to a particular case.

The present work, starting from the examination of these objections, suggests a procedure which is able to
adapt the Polyaxial Strength Criterion, with the use of equivalent shear strength parameters in the Mohr-
Coulomb Theory and incorporate the effects of intermediate principal stress. The application of this
suggested approach in a numerical application should neutralize all the disadvantages of an application
written in FISH for FLAC and would encourage the use of the Polyaxial Strength Criterion in future
studies and civil works.

4.3 DEVELOPMENT OF AN EQUIVALENT MOHR-COULOMB FAILURE CRITERION

FIGURE 4-3- STRESS FIELD INDUCED IN THE VICINITY

OF A CIRCULAR TUNNEL IN HYDROSTATICAL STRESS CONDITIONS

The excavation of an underground opening produces a redistribution of the original stress field into the
rock mass in the proximity of the excavated tunnel. As indicated in Figure 4-3, stress distribution after the
modification is similar to the stress field inside a polyaxial hydraulic test cell. The in situ stress in the
tunnel direction becomes intermediate principal stress o, in the new configuration, and the principal
stresses in the directions perpendicular to the tunnel axis are redistributed. The intermediate principal
stress o, compresses the joints of rocks, improving the global stability of the rock mass surrounding the
excavation.

The determination of the in situ stress in direction and magnitude, therefore, is the key to apply the
Polyaxial Strength Criterion to a practical underground application.

While the determination of the vertical component of the in situ stress does not pose any problem, the
horizontal component is a function of many parameters not always easy to determine. It is common
practice to express the horizontal stress ratio as a multiple of the vertical component through the
parameter A (sometimes K or Ko), horizontal stress ratio.

P,=A-P, (4-7)

At low depths, up to 1000 m below the ground level, the gravitational effect of the rock mass is not
predominant and A is a complex combination of the effects of gravity, superficial morphology, subsidence
phenomena and, for the most part, intra-crustal tectonic stresses. For this reason in the vicinity of the
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ground surface A can manifest a wide range of values. Beyond 1000 m, the difference between vertical
and horizontal components of the in situ stress reduces, showing the tendency to hydrostatical conditions.
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FIGURE 4-4- VARIATION OF THE RATIO OF AVERAGE HORIZONTAL STRESS
TO VERTICAL STRESS WITH DEPTH BELOW SURFACE

(UNDERGROUND EXCAVATION IN ROCKS, HOEK AND BROWN (1990))

The measurements of in situ stress at 116 locations, shown in Figure 4-4, collected in various parts of the
world and published by Hoek (1980) confirm how, for low depths it is not possible to get an estimation of
the original stress field, while the range of values for A becomes narrow when the depth of 1000 m is
exceeded.

In light of what was observed by Hoek and Brown, this paper it is assumed that for average values of the
in situ stresses encountered for most of the deep underground excavations, A may be taken as equal to 1.
The methodology proposed in this paper is general enough to incorporate any other value of A obtained
by measurement of in situ stresses. The hydrostatic condition of the in situ stress allows an easy analytical
determination of the state of stress induced by the opening of a circular tunnel, which will is compared
with the numerical solution obtained in this study. The stress in the direction of underground excavation
is then evaluated as follow:

o,=R,=y-h (4-8)

For specific applications of the proposed methodology, an accurate value of o, should be substituted in
Equations 4-2. It is, therefore, suggested that o, should either be directly measured in situ or use indirect
empirical relations like the one proposed by Sheorey (1994), which correlates the horizontal stress ratio A
with the deformation modulus of the upper part of the earth’s crust measured in the horizontal
direction Ey [GPa] at depth z [m].

2=0.25+7E,,(0.001+/2) (4-9)
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For a constant value of A, the o, in the Polyaxial Strength Criterion becomes a constant and one can
compare it with the Mohr-Coulomb Criterion for a specific depth in the same bi-dimensional
representation. A typical plot of o; and o3 at failure for both the criteria, for a particular value of o, is
shown in Figure 4-5.

The mathematical representation of Mohr-Coulomb criterion and Polyaxial Strength Criterion in a bi-
dimensional representation on the o;-o3 plane, as presented in Figure 4-5 is expressed as:

Polyaxial o,=N',0,+0", (4-10)

Mohr-Coulomb o, =N,o5+0, (4-11)

where N, —1TSNG . 1 _2ec0sg :[UCSmZAj:and A= 2sind
1-sing 1-sing 1-sing 2 1-sing

FIGURE 4-5- BI-DIMENSIONAL REPRESENTATION

OF PSC AND MC IN THE 61-63 PLANE

The salient differences between the representations of both criteria is a smaller slope and a significantly
larger value of the intercept, which correspond to a considerable increment of the rock mass strength for
small values of the minimum principal stress os..

Starting with the representation shown in the o;-o3 plane, it is possible to draw for both the failure criteria
on the bi-dimensional (t—c) plane, as shown in Figure 4-6.

In this representation, the Polyaxial Strength Criterion keeps the same geometrical differences with
respect to the Mohr-Coulomb Criterion as shown in Figure 4-5 on the o;-03 plane, smaller slope and
bigger intercept on the shear axis.

It is, therefore, possible to describe the Polyaxial Strength Criterion by means of a modified angle of
friction and cohesion as is done for the Mohr-Coulomb envelope. These modified parameters are called
equivalent frictional angle (¢) and equivalent cohesion (c').
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T =C'+otan ¢' (4-12)

FIGURE 4-6 - BI-DIMENSIONAL REPRESENTATION

OF PSC AND MC IN THE T—6 PLANE

The positive confining effect of o, is confirmed in the Mohr-Coulomb plane, the shear strength is
observed to be higher using the Polyaxial Strength Criterion. The strength envelope for Polyaxial Strength
Criterion shows slightly less value of the equivalent angle of friction but there is a significant increase in
the value of equivalent cohesion. These two equivalent parameters of rock strength can be used to write
an equivalent Mohr-Coulomb Failure Criterion in terms of maximum and minimum principal stresses.
The Equation 4-10, in the modified form, is given below with the modified parameters:
1= N'yeq) 03+ O oreq (4-13)
, 1+sing' , 2c'cosg’
Where N’y =—"— ¢. and &= ¢
1-sing 1-sing

The graphical representations of Equation 4-10 and 4-13 are completely indistinguishable from one other.

4.4 DETERMINATION OF EQUIVALENT COHESION AND ANGLE OF INTERNAL
FRICTION

Equivalent cohesion c¢' and equivalent friction angle ¢' can be determined taking advantage of the
interchangeability of Equations 4-10 and 4-13. The values are computed firstly equating the formulation
of the angular coefficients (N’; and N’ q)) and, later, the intercepts (o and o ) from these Equations.

The geometrical equivalence between the angular coefficient of the Equations 4-10 and 4-13 allows to
determine the equivalent internal angle of friction ¢’.

N’4= N’ eq)

The above equivalence, with some easy calculation, returns the following relation between ¢ and ¢
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o cin1 SiNG
g=sin 2—sing

(4-14)

In Figure 4-7, the graphical representation of the nonlinear relation between the internal angles of friction
¢ and the corresponding equivalent angle ¢' as expressed by Equation 4-14 is shown. Its expression
involves only the Mohr-Coulomb internal angle of friction ¢, which, as anticipated in Figure 4-6, is
always higher than ¢'. Only for ¢ equal to 0 and 90° the values are same as that of ¢'.

¢l
A 0=
90 —
s D ¢
|
0 90

FIGURE 4-7 - GRAPHICAL RELATION BETWEEN ¢ AND ¢

For angles of ¢ consistent with the typical underground rock mass conditions, as shown in Table 4-1, the
difference with the equivalent ¢' varies between 9 ° and 11 °.

¢ []

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

40.00

¢ []

11.90

13.32

14.79

16.30

17.86

19.47

21.13

22.84

24.60

26.41

28.27

TABLE 4-1 - RELATION BETWEEN ANGLE ¢ AND EQUIVALENT ANGLE ¢' OF INTERNAL FRICTION

If the objective of the reader is to implement a subroutine to incorporate the presented Equations in a
numerical software (the subroutine in Fish ready for use for FLAC can be read in Appendix A), it should
be highlighted that the function sin™ is not always present in the programming code of the numerical
suites, but it can be substituted as follow by the more common function tan’t:

sin g
2-sing

. 2
sin
1+ )1+ 7¢
2-sing
Similar to the determination of the equivalent internal friction angle, the equivalent cohesion is obtained
by equating the two equivalent terms of the uniaxial compressive strength of the rock mass:

¢'=2tan™ (4-15)

G'a =G (eq)
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The determination of c¢' is directly dependent on the knowledge of ¢'. Substituting Equation 4-14 in ¢'y
(eq)» the formulation of the equivalent cohesion is expressed as follow:

C'= (UCS +o, ?jB (4-16)
where A:128|r1¢ and B= 1-sing -
~sing (2—sin¢)cos(sin‘1sm_¢]
2-sing

The formulation of the parameters A and B is only function of the internal angle of friction and can be
easily tabulated as in Table 4-2.

¢ [°] | 20.00 | 22.00 | 24.00 | 26.00 | 28.00 | 30.00 | 32.00 | 34.00 | 36.00 | 38.00 | 40.00
A 1.04 1.20 1.37 1.56 177 2.00 2.25 2.54 2.85 3.20 3.60

B 0.41 0.40 0.39 0.37 0.36 0.35 0.34 0.33 0.32 0.31 0.30
TABLE 4-2 - ESTIMATION OF A AND B FOR INCREASING VALUES OF INTERNAL ANGLE OF FRICTION

UCS

{> '
0 10 20 30 40 50 @

FIGURE 4-8- GRAPHICAL RELATION BETWEEN

ANGLE ¢ OF INTERNAL FRICTION AND NON-DIMENSIONAL COHESION

In order to formulate a non-dimensional equivalent cohesion, both terms of Equation 4-16 must be
divided by the Uniaxial Compressive Strength UCS to obtain:

C (1492 Alg (4-17)
UCS UCS 2

The expression of ¢' is more complex than that of ¢, it is still a function of ¢ as for the equivalent internal
angle of friction but is also related to the magnitude of UCS and o,, which is a function of depth. In
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Figure 4-8, the effect of the variation of the internal angle of friction ¢ of the rock mass for constant
increments of the o,/UCS ratio is shown.

For a particular rock mass, with a given value of UCS, the increments of o, correspond to a significant
increment of the apparent cohesion. This behaviour is amplified for values of internal friction angles
bigger than 30°.

The bottom most line in Figure 4-8, shows negative inclination, is the representation of the equivalent
cohesion for the intermediate principal stress value of zero. Its decrease with increasing values of ¢ is due
to total absence of any lateral confinement. This is easily explained by the Mohr's circle at failure in
Figure 4-9. In fact, for a fixed combination of maximum and minimum principal stresses at failure, an
enhancement of the internal angle of friction or equivalent angle of friction, (the two are directly related)
correspond to a reduction in cohesion.

T
A

(i)!

N

SNy
Q
a
v
Q

o_
<

FIGURE 4-9 - RELATION BETWEEN INTERNAL FRICTION ANGLE ¢’
AND EQUIVALENT COHESION C' FORG, =0

4.5 COMPARISON OF ANALYTICAL AND NUMERICAL RESULTS

The advantages of this methodology can be easily shown through a practical application. The following
example of deep tunnel subjected to squeezing is utilised to compare the solutions making use of the
Polyaxial Strength Criterion as specified in the analytical solution proposed by Singh et al. (2006) and,
afterwards, substituting the equivalent parameters of resistance in the Mohr-Coulomb Theory. In another
case, the proposed theory will be applied to a numerical model to illustrate the simplification in the
analysis as compared to the code implemented by Scussel and Chandra (2012).

¢p or Cp Cr A

30° 20° 0.2MPa | 0.1 MPa 1

Pv Po Pi UCS ri
15 MPa | 15MPa | 1.52 MPa | 1.89 MPa | 3.2 m

TABLE 4-3 - ROCK MASS DATA OF A TYPICAL PROBLEM
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A typical example of deep circular tunnel subjected to a hydrostatic in situ stress field has been selected.
Stresses and rock mass quality have been dimensioned such as to observe a plastic circular zone that,
under Polyaxial Strength Criterion, is 8 m long. The arbitrary rock mass and geometrical characteristics of
the proposed example are summarised in Table 4-3.

The peak internal angle of friction is converted to its equivalent value for the application of Polyaxial
Strength Criterion exclusively in elastic field as explained in the Singh's analytical solution. At failure the
criterion adopted reduces to the Mohr-Coulomb Theory and the original residual resistance parameters are
used. Substituting ¢,, Po and UCS into Equations 4-14 and 4-16 the equivalent parameters of resistance
for the elastic zone are obtained as:

g, =sint SN0 _1q 470
2-sin30°
c'=(1.89+1515'”_3(;00J L-sin30 —— |=5.972MPa
—sin (2 -sin30°)cos sin’lL
2-sin30°

The squeezing pressure applied by the rock mass to the internal lining of the tunnel, as already mentioned,
is evaluated with the assumption that the broken zone surrounding the circular excavation shows a

constant radius of 8 m.

P

Elastic
Zone

FIGURE 4-10—- GEOMETRICAL CONFIGURATION

OF THE APPLICATION EXAMPLE

The analytical solutions according to Singh's and Equivalent Mohr-Coulomb Theory are obtained. The
formulation of squeezing pressure P; from both the techniques is derived from the evaluation of the
Equation 4-5 at a distance from the center of the tunnel r equal to its internal radius r;.
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The formulation of radial pressure at the boundary of the elastic zone P, instead, is direct expression of
the constitutive model at peak condition, which is different for the two approaches:

2R, - (UCS + Rysing, /L—sing, )
Singh 2 _Sin¢".)/(l_sm¢p.)
2-15 - (1.89 +15sin 30°/(1 - sin 30°))
(2 —sin30°)/(1—sin30°)

2R, - (20'p cos¢'p/(1 —sin ¢'p))
a 2/L—sing'))
 2-15-(2-5.972 - c0s19.47°/(1 - 5in19.47°))
(2 —sin19.47°)/(1 - sin19.47°)

=4.37MPa

Equivalent Mohr

=4.37MPa

Both the technigues, Singh's and equivalent Mohr-Coulomb Theory give the same magnitude of P,. The
direct consequence of this is that the Squeezing Pressure (calculated at r = r; ), as given below, is also
unique:

2sing,

r 1-sing,
I:)i:[Pb+CrCOt¢r]( Irj _CrC0t¢r
p

—[4.37 +0.1cot 200](3- A_O)M%W —0.1cot 20° =1.52MPa

In appendix B, Table 4-4, it is presented a detailed analysis of the stress field induced in the rock mass at
different distances from the center of the tunnel. The relative difference between the two approaches is

shown in Figure 4-11, and it may be observed that there are no appreciable differences and the errors are
negligible.
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FIGURE 4-11 - COMPARISON OF THE ANALYTICAL SOLUTIONS (STRESS DISTRIBUTION)

The results obtained by the numerical application of the proposed equivalent parameters method by
means of the Mohr-Coulomb model in FLAC are compared with the polyaxial numerical solutions
obtained by using the modified FLAC code as suggested by Scussel & Chandra (2012). A finite
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difference grid in FLAC representing the problem was developed, and the radial pressure equal to the
previously determined squeezing pressure P; has been applied to the internal surface of the tunnel to
simulate the correct reaction of the support to get the same plastic radius equal to 8 m. The problem was
solved, with the Polyaxial Constitutive Model composed in FISH language by Scussel and Chandra, and
then with the proposed method. The results obtained by both the methods are plotted in Figure 4-12. The
difference between the numerical outcomes of the two techniques is negligible, and is smaller than an
average 0.1% as reported in Table 4-4.

In addition to the matching stress fields obtained from the two analyses, the time needed to solve the problem by two
approaches was also determined. In both the cases a common grid was used (3500 zones). The user-defined
Polyaxial Constitutive Model in FISH needed 75 s to achieve the convergence, while the modified parameters in the
Mohr-Coulomb approach took only 24 s, that means that the suggested approach is more than three times faster. In
more complex situations this may turn out to be more advantageous.
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FIGURE 4-12 - COMPARISON OF THE NUMERICAL SOLUTIONS (STRESS DISTRIBUTION)

The results obtained by analytical method as proposed using equivalent parameters of Mohr-Coulomb Theory are
compared with numerical solution obtained by using equivalent parameters in FLAC. The stress distribution
estimated by using both the methods is presented in Figure 4-13. The results obtained are in close agreement with
each other. The average difference between the results estimated by two methods is smaller than 1.0-1.2 % in the
elastic zone (see again Appendix B and Table 4-4) and is slightly higher for the broken zone, due to the coarseness
of the grid used in the analysis.

4.6 CONCLUSIONS

In this work a new method is proposed, where in the polyaxial state of stress can be incorporated in the
analysis by a very simple approach. The proposed method incorporates the intermediate principal stress in
the analysis and has the ease of applicability to many available software, This method uses modified
angle of friction and cohesion values, which can be calculated by the given Equations and the analysis
reduces to the same format as in Mohr-Coulomb theory. The approach is quite general and may be used
for both hydrostatic and nonhydrostatic stress fields by means of any analytical or numerical method of
analyzing tunnel support. The method when used in numerical scheme is easily adoptable and leads to
less computational efforts.
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FIGURE 4-13 - COMPARISON OF THE ANALYTICAL AND NUMERICAL SOLUTIONS

The application of the Polyaxial Strength Criterion is quite important when the pressures encountered are
high and the specific characteristics of rock masses produce significant squeezing phenomena in the field.
In these conditions the study of the complex rock mass-support behavior cannot be simulated by means of
physical models, and the use of a specific numerical model is, therefore, the only way to reproduce the
response of a rock mass in accordance with the Polyaxial Theory.

Thus, the proposed methodology achieves all the objectives mentioned at the beginning of this study. The
results obtained by the proposed method are compared with numerical approaches and analytical
solutions and are in good agreement. It can be implemented in any geo-mechanical numerical suites with
excellent results.

4.7 LIST OF SYMBOLS:
r, ri, rp: Distance from the center of the tunnel, internal and plastic radius;

61, G2, 03. Maximum, Intermediate and Minimum Principal Stress;

o1, Ce, Tor: Stress distribution around a tunnel in Radial, Tangential directions;

Po: in situ Stress in the tunnel direction;

Py, Pn, A: In situ Vertical and Horizontal Pressure, Horizontal Ratio;

Qemass: Jer» Ocr- Peak, Residual, Uniaxial Compressive Strength (UCS) of the rock mass;
dp, dr, O Peak, Residual internal angle of friction;

Cp, Cy, C: Peak, Residual Cohesion;

0: Angle between the horizontal axis of a tunnel and the line between its center and point considered.
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4.9 APPENDIX A: FLAC'S CODE FOR THE AUTOMATIC DETERMINATION OF THE
EQUIVALENT MOHR-COULOMB PARAMETERS

def dati
; Data entry: in situ stress in tunnel direction, uniaxial compressive strength and angle of
; friction as in the previously presented example:
PO = 15e6
gmass = 1.89e6
fp =130
; The angle of friction is now converted into radians and the rock mass resistance at
; the surface o of the tunnel is entered:
efp = fp*degrad
gmassl = gmass + PO * sin(efp)/(1-sin(efp))
; The equivalent angle of friction ¢' is determined accordingly to the Equation 4-15.
; The older versions of FLAC admit only a limited number of characters for each row,
; for this reason the determination of ¢' is split in 3 rows:
aaa = sin(efp)/(2-sin(efp))
bbb = aaa/ (1 + sqrt(1-aaa*aaa))
efpl = 2 * atan(bbb)
; Which is now converted to degrees
fpl = 0.5 * efpl * 360 / pi
; Finally the equivalent cohesion c' is estimated as specified by the equation 4-16
coepl = 0.5 * gmassl * (1 - sin(efpl)) / cos(efpl)
end

dati

At this point the variable fpl and coepl can be implemented for the application in the numerical model.
In order to evaluate the results of the subroutine, the function PRINT FISH can be used to show the
magnitude of the individual variables.

Here the results of the proposed subroutine:

flac: print fish
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FISH symbols ...
Value
3.3333E-01
1.7157E-01
5.9715E+06
(function) 0
5.2360E-01
3.3984E-01
30
1.9471E+01
1.5000E+07
1.8900E+06
1.6890E+07

Name
aaa
bbb
coepl
dati
efp
efpl
fp
fpl
PO
gmass

gmassl
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4.10 APPENDIX B: SPREADSHEET FOR THE COMPARISON OF THE TUNNEL

SOLUTIONS

s Ao amalytca aluions | F1a¢ (Mon equi) Flac (PSC) I el W L

r [m] o, /Pv Y o/Pv Y o/Pv co/PV o/Pv ap/Pv
3.59 0.1161 0.2559 0.1161 0.2559 0.00% 0.00% 0.1187 0.2607 0.1187 0.2607 0.00% 0.00% 2.15% 1.84%
4.36 0.1465 0.3178 0.1465 0.3178 0.00% 0.00% 0.1493 0.3227 0.1500 0.3233 0.45% 0.21% 2.38% 1.73%
5.15 0.1774 0.3809 0.1774 0.3809 0.00% 0.00% 0.1807 0.3873 0.1807 0.3840 0.00% 0.86% 1.81% 0.81%
5.94 0.2089 0.4450 0.2089 0.4450 0.00% 0.00% 0.2120 0.4507 0.2127 0.4527 0.31% 0.44% 1.81% 1.70%
6.74 0.2408 0.5101 0.2408 0.5101 0.00% 0.00% 0.2460 0.5200 0.2453 0.5193 0.27% 0.13% 1.88% 1.79%
7.55 0.2731 0.5761 0.2731 0.5761 0.00% 0.00% 0.2760 0.5813 0.2813 0.5927 1.91% 1.93% 2.96% 2.83%
8.36 0.3514 1.6486 0.3514 1.6486 0.00% 0.00% 0.3653 1.6607 0.3587 1.6507 1.84% 0.60% 2.05% 0.12%
9.19 0.4627 1.5373 0.4627 1.5373 0.00% 0.00% 0.4747 1.5453 0.4707 1.5447 0.85% 0.04% 1.72% 0.48%
9.94 0.5410 1.4590 0.5410 1.4590 0.00% 0.00% 0.5520 1.4667 0.5500 1.4667 0.36% 0.00% 1.66% 0.52%
10.62 0.5977 1.4023 0.5977 1.4023 0.00% 0.00% 0.6087 1.4100 0.6073 1.4100 0.22% 0.00% 1.60% 0.55%
11.30 0.6450 1.3550 0.6450 1.3550 0.00% 0.00% 0.6560 1.3627 0.6547 1.3627 0.20% 0.00% 1.49% 0.56%
12.00 0.6848 1.3152 0.6848 1.3152 0.00% 0.00% 0.6953 1.3227 0.6947 1.3227 0.10% 0.00% 1.43% 0.57%
12.69 0.7185 1.2815 0.7185 1.2815 0.00% 0.00% 0.7293 1.2893 0.7287 1.2887 0.09% 0.05% 1.41% 0.56%
13.40 0.7473 1.2527 0.7473 1.2527 0.00% 0.00% 0.7580 1.2600 0.7573 1.2600 0.09% 0.00% 1.33% 0.58%
52.58 0.9836 1.0164 0.9836 1.0164 0.00% 0.00% 0.9953 1.0267 0.9953 1.0267 0.00% 0.00% 1.19% 1.00%
53.69 0.9843 1.0157 0.9843 1.0157 0.00% 0.00% 0.9960 1.0267 0.9960 1.0267 0.00% 0.00% 1.19% 1.07%
54.80 0.9849 1.0151 0.9849 1.0151 0.00% 0.00% 0.9967 1.0267 0.9967 1.0267 0.00% 0.00% 1.19% 1.13%
55.93 0.9855 1.0145 0.9855 1.0145 0.00% 0.00% 0.9973 1.0260 0.9973 1.0260 0.00% 0.00% 1.19% 1.13%
57.07 0.9861 1.0139 0.9861 1.0139 0.00% 0.00% 0.9980 1.0267 0.9980 1.0267 0.00% 0.00% 1.20% 1.25%
58.22 0.9866 1.0134 0.9866 1.0134 0.00% 0.00% 0.9980 1.0260 0.9980 1.0260 0.00% 0.00% 1.15% 1.24%
59.38 0.9871 1.0129 0.9871 1.0129 0.00% 0.00% 0.9987 1.0267 0.9987 1.0267 0.00% 0.00% 1.16% 1.35%
60.55 0.9876 1.0124 0.9876 1.0124 0.00% 0.00% 0.9993 1.0273 0.9993 1.0273 0.00% 0.00% 1.18% 1.47%
61.74 0.9881 1.0119 0.9881 1.0119 0.00% 0.00% 0.9993 1.0273 0.9993 1.0273 0.00% 0.00% 1.13% 151%
62.94 0.9885 1.0115 0.9885 1.0115 0.00% 0.00% 0.9993 1.0273 0.9993 1.0273 0.00% 0.00% 1.08% 1.56%
64.14 0.9890 1.0110 0.9890 1.0110 0.00% 0.00% 1.0000 1.0280 1.0000 1.0280 0.00% 0.00% 1.11% 1.67%
65.36 0.9894 1.0106 0.9894 1.0106 0.00% 0.00% 1.0000 1.0293 1.0000 1.0293 0.00% 0.00% 1.07% 1.84%
66.60 0.9898 1.0102 0.9898 1.0102 0.00% 0.00% 1.0000 1.0300 1.0000 1.0300 0.00% 0.00% 1.03% 1.94%
Average 0.00% 0.00% Average 0.11% 0.07% 1.27% 0.93%
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TABLE 4-4 - COMPARISON OF THE TUNNEL SOLUTIONS

Column A: Plastic Zone °r P
\

Elastic Zone Or

R =

(P‘b+cr tan ¢, X% —c, tan™ g,
r 2
Pv _(Pv - Plb{ %
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Column B: Plastic Zone (N¢,r0r + qcr)

BN

Oy

Elastic Zone (2R, -0,)

Column C: Plastic Zone O-% = [(Pb +c, tan™ ¢r(%) —c, tan™ ¢r)
v [
r 2
Elastic Zone % =[PV —(R, - pb{ %} ]

Column D: Plastic Zone O-% -(N,,0, +0,)

\

EN

: O
Elastic Zone %/ =(2R, -0,)

|A-B C-D
Column E and F: | %/Q(A, B) and | %/g(C, D)

Column G and H: Numerical solution (Mohr Equivalent)

Column I and J:  Numerical solution (Singh's Theory)

|6-H | -J

Column K and L: | %/g(G,BH) and | %/g(l,\])
|A-G B-H

Column M and N: | %/Q(A,G) and | %/g(B, H)

2P, _(20'p cos¢'p/(l—3i” ¢'p))
2/(1—sin ¢'p)

2P, —(UCS + R;sing, /(1-sing, )
(2-sing, )/-sing,)

where P, = and P, =

85



Chapter 5

5 A NEW APPROACH TO DESIGN OF TUNNELS IN SQUEEZING

GROUND

3
D. Scussel® , S. ChandraP

a School of Civil Engineering, Surveying and Construction, University of KwaZulu Natal, Durban, South
Africa

b Department of Civil Engineering, Indian Institute of Technology, Kanpur 208 016, India

Keywords: Tunnel Support Pressure, Polyaxial Strength Criterion, FLAC, Strain Softening, FDM, Finite
Difference Analysis, Finite Element Analysis.

5.1 ABSTRACT

The study of the mechanical behavior of discontinuous rock masses is a rapidly growing subject. Many
researches are reported in literature concerning the estimation of the tunnel support pressures
incorporating the real behavior of a rock mass using different types of constitutive models and rock
parameters. These studies have favored the introduction of various analytical solutions for the easier geo-
mechanical cases but have not been converted into numerical models suited for commercially available
software and, therefore could not be used in real and more complex engineering applications.

The notable constitutive models used in common practice in rock mechanics are Mohr-Coulomb and
Hoek-Brown failure criteria. Most of the commonly available software supports only these two failure
criteria. The difficulties faced in possibly implementing new constitutive model into the numerical suites
already available, are so large that the studies using innovative constitutive models result in a mere
academic exercise.

In this paper a new methodology is described for the application of the Polyaxial Strength Criterion
suggested by Singh et al. (1998), which is characterized by the direct influence of all the principal stresses
in the resistance of a rock mass. The methodology applied in this research, uses the format of the Mohr-
Coulomb model using equivalent angle of friction and cohesion of the rock mass surrounding the
underground opening as introduced by Scussel and Chandra (2012). The equivalent parameters of rock
mass resistance, which are directly derived from the common Mohr-Coulomb parameters, are also
influenced by the intermediate principal stress o, in accordance with what was suggested in the Polyaxial
Strength Criterion, and by the approach chosen for quantifying the uniaxial compressive strength o, of
the rock mass. In demonstration of the practical applicability of this constitutive model, it has been used

3Corresponding author

Phone: +27 31 260 1077, Fax: +27 31 260 1411, Mail: scussel@ukzn.ac.za

University of KwaZulu-Natal

College of Agriculture, Engineering and Science, Howard College, Centenary Building
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to predict the squeezing of rock observed and measured at three different instrumented sections of a
tunnel from an Indian squeezing rock conditions.

5.2 INTRODUCTION

One of the biggest challenges of the Rock Mechanics, and specifically of Underground Engineering, is to
develop a reliable theory for predicting support pressures for the Squeezing ground conditions in order to
prevent any adverse situations. It is observed that squeezing of rock results in extreme deformations at the
internal surfaces of a deep underground opening.

The squeezing of rock is a phenomenon that may sometimes continue for long periods of time. The
present study is focused with particular emphasis to the short-term analysis of squeezing in tunneling,
which represents the immediate reaction of the rock mass surrounding a tunnel section moving away from
the excavated face and that is the base from which the time dependent deformations will develop.

The Squeezing of Rock is the result of a complex overstress field applied to the rock mass due to the
transformation in the original state of tension subsequent to the opening of an underground excavation.
When the induced stress exceeds the resistance of the affected material, the rock fails and the radial
deformations at the lining become unacceptable. The squeezing condition defines, therefore, the boundary
between stable and unstable excavations. A late identification of the unsafe stress conditions result in
slow and hazardous excavation, use of faulty construction techniques and tunnel misalignments, which
directly increase the overall costs of the work.

FIGURE 5-1 - SINGH ET AL. (1992)
APPROACH FOR PREDICTING SQUEEZING CONDITIONS

The modern worldwide sharing of information coming from different case studies has increased the
amount of observational data available and encouraged several attempts of predicting the Squeezing
potential of a rock mass. Singh et. al. (1992) defined a clear boundary between safe and unsafe excavation
conditions in underground openings. A relevant set of 39 case histories, subdivided among stable,
squeezing and rock busting conditions, was represented in a semi-log plot as function of depth and
Barton’s Number Q as given in Figure 5-1.
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The entire region is sub divided in two regions, one region showing Squeezing and the other region
showing Non-Squeezing conditions. The relation below gives the boundary between these two regions:

H =350Q" [m] (5-1)

In accordance to the classical Theory of Elasticity, in hydrostatic conditions of stress, the maximum
tangential stress oy induced at the surface of an unconfined circular tunnel is equal to two times the
overburden pressure P, which is equal to y-h. At failure, the maximum value of the tangential stress is
equal to the uniaxial resistance of the rock mass o and the depth of the excavation h is equal or bigger
than the limit depth of Squeezing H. Substituting in equation oy, then, the value of H in h, Singh produced
the following formulation of Uniaxial Compressive Strength of a rock mass:

o, =0.7y Q% [MPa] (5-2)

where the unit weight of the rock mass y is expressed in kN/m?, The present formulation is fitted for weak
rock mass condition, Barton’s number Q smaller than 10, in absence of water (J,, equal to 0).

In case of excavations in weak rocks, when squeezing conditions are expected, it would be better to rely
only on empirical relations derived from the results of the rock mass observations according to the
Barton’s classification. This classification, in fact, has the highest number of case studies that prove
efficacy of the classification system shown particularly for weak rock conditions.

The choice of the right o, is important for the correct application of any constitutive model since it can
vary considerably their behavior. In 2002 Barton proposed a formulation conceptually analogous to that
suggested by Singh et. al., but, as given in Equation 5-2, it presents a further margin of safety:

Oc = 057 ch/3 [MPa] (5'3)

where Q. is the modified Barton’s Number, which can be expressed as follow.

O-ci
Qc - Qm

Expressed in Equation 5-4 is the Mohr-Coulomb classical formulation of the Uniaxial Compressive
Strength, as a function of the internal angle of friction ¢ and cohesion c. Initially introduced for hard
rocks, it is widely used for any rock mass and is given as:

_2ccosg

Tor 1-sing >-4)

Further, Singh et al. (1998), emphasizing the relevance of the intermediate principal stress o, in the
resistance of the rock mass in the vicinity of tunnel, suggested a modified Mohr-Coulomb constitutive
model in order to incorporate it and introduced the Polyaxial Strength Criterion. According to the Singh’s
approach, the confining effect of the minimum principal stress in the right part of the Mohr-Coulomb
Theory, equation 5, is substituted in the new criterion by the average of the intermediate and minimum
principal stress in order to consider the real confining stress configuration in field. The revised expression
is given in Equation 5-6:

Mohr-Coulomb Failure Criterion 0, — 03 =0, +0,A (5-6)
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O, + 0, A

Polyaxial Strength Criterion 0,—0,=0, + (5-6)

2-sing
1-sing

where A=

The important confining effect developed due to the intermediate principal stress, and its role in
predicting a more realistic behavior at failure of a rock mass has been shown by many authors in recent
past (Mogi 2006, Al-Ajimi 2007, Haimson 2009 and M. Singh 2011). The laboratory studies of Mogi
(1969-74, 1977, 1979, 1981 and 2006) have shown, instead, that the effect of the intermediate principal
stress is strongly affected by the ratio o,/c3. When this ratio increases, as it is observed on the internal
boundary of an underground excavation, the effect of the intermediate principal stress consequently
increases. According to several observations made in the field, the tension distribution at the internal
surface of an underground opening cannot be treated as a truly uniaxial stress field because the stress
along the direction of a tunnel, generally the intermediate principal stress, has a dominant role in the
definition of the start of squeezing.

The rock mass surrounding the internal surface of an underground void, in absence of radial confinement
(o3 = 0), satisfies the conditions needed to apply Equation 5-6. In these conditions, for a particular case of
hydrostatic original stress, substituting the uniaxial rock mass resistance given by Equation 5-3 as
suggested by Singh, the Polyaxial Strength Criterion given by Equation 5-6 reduces to the formulation of

the ultimate compressive strength of the rock mass at the tunnel surface, o, given as:

_ 3
G&Iim - 0'7 }/ Q + 0-2 % (5_7)

At the surface of the tunnel, therefore, a truly uniaxial stress is not applied but a biaxial combination of
tangential oy and longitudinal P, stress exists. The magnitude and the orientation of the original stress
field is a function of many parameters of not easy definition, and it cannot be expressed as only function
of the excavation depth. For this reason it is also not possible to quantify the intermediate principal stress
and to give a clear definition of the depth of potential squeezing making use of the Equation 5-7 as shown
for determining Equation 5-1 without a specific investigation of the original stress conditions.

Scussel and Chandra (2012), on the basis of an accurate analysis of the state of stress in the region of rock
mass surrounding an underground opening, using the similarity between Polyaxial Strength Criterion and
Mohr-Coulomb model, suggested the Equivalent Mohr-Coulomb constitutive model. The Equivalent
Mohr-Coulomb Constitutive Model (M-C) maintains the Mohr’s structure and can simulate the effect of
the intermediate principal stress o, by only modifying the parameters of shear resistance. It allows and
simplifies the analytical and numerical applications of the Polyaxial Strength Criterion (PSC). Attempts
of this kind have been already made to express the Hoek and Brown criterion through the Mohr-Coulomb
constitutive law. Hoek et al. (2002), Carranza-Torres (2004), Priest (2005), Sofianos and Nomikos
(2006), Yang and Yin (2010) and Shen et al. (2011) have simulated its behavior in several different
numerical and analytical soil and rock mechanics applications. These approaches, however, have shown
results more or less approximated for the objective analytical difficulties of describing, through one
linear, a non-linear model (Brown, 2008).

The present method is applicable when one of the principal stresses is constant, which is generally the
case for long underground excavations, where the stress along the length is fixed and equal to the
component of the original stress in that direction. For this particular condition the Polyaxial Strength
Criterion is fully comparable with a bi-dimensional linear failure criterion, which presents intercept and

89



slope different to the original shear resistance parameters. According to this hypothesis, the Polyaxial
Strength Criterion can be easily rewritten in the form of a Mohr-Coulomb failure model making use of the
new equivalent Internal Angle of Friction ¢' and the equivalent Cohesion ¢' and may be expressed as
given in the Equation 5-8.

0, — 0, N¢(eq) =0, (5-8)

_l+sing'

, _ 2c'cos ¢’
c e =1 ging'

o = : and
1+sing'

where

The two equivalent parameters of resistance can be easily determined by means of the Equations 5-9 and
5-10:

.1 Sing )
¢'=sin 2 sing (5-9)
c'= [Ucr + 0, ng (5-10)
where A:lzsﬂ and B= 1-sing -
—sing (2—sin¢)cos(sin‘125|:i¢r;¢J

The formulation of the equivalent internal angle of friction ¢’, as well as the parameters A and B, which
are only functions of the angle of internal friction and can be easily tabulated substituting a realistic range
of values for rock masses into the expressions given above and are tabulated as shown in Table 5-1 and
Table 5-2.

¢ [°] | 20.00 | 22.00 | 24.00 | 26.00 | 28.00 | 30.00 | 32.00 | 34.00 | 36.00 | 38.00 | 40.00

o' [] 1190 | 13.32 | 1479 | 16.30 | 17.86 | 19.47 | 21.13 | 22.84 | 24.60 | 26.41 | 28.27
TABLE 5-1 - RELATION BETWEEN ANGLE ¢ AND EQUIVALENT ANGLE ¢' OF INTERNAL FRICTION

¢ [°] | 20.00 | 22.00 | 24.00 | 26.00 | 28.00 | 30.00 | 32.00 | 34.00 | 36.00 | 38.00 | 40.00
A 1.04 1.20 1.37 1.56 177 2.00 2.25 2.54 2.85 3.20 3.60

B 0.41 0.40 0.39 0.37 0.36 0.35 0.34 0.33 0.32 0.31 0.30
TABLE 5-2 - ESTIMATION OF A AND B FOR INCREASING VALUES OF INTERNAL ANGLE OF FRICTION

The ultimate rock mass strength at the tunnel surface in the absence of radial confinement can be,
therefore, expressed in the following way as equivalent uniaxial compressive strength o'
o = 2c'cos ¢’
cr - '
1+sing (5-11)
A rational choice of the three parameters characterizing o’¢, (o2. ¢, and o) is essential for the correct
application of the method. A preliminary investigation of the site characteristics is recommended for the

evaluation of the in situ intermediate principal stress, while the internal angle of friction can be
determined directly by means of Equation 5-12 suggested by Barton (2002) which Singh and Goel (2006)
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modified to incorporate the effect of the rock blocks interlocking. This relation is directly related to the
factors J;, J, and J,, as defined in his classification system.

tan¢=(JrJ% j+o.1 (5-12)

In this paper for the determination of uniaxial compressive strength the use of the Equation 5-3 is strongly
recommended. Its feasibility in a real underground application will be investigated in the following
sections of this work.

Singh (2006), proposed an analytical elasto-plastic solution of stress distribution in broken zone as an
application of his Polyaxial Strength Criterion in tunnel engineering, which can be used to determine the
Squeezing Pressure P;. The solution given by Singh as presented in Figure 5-2 is similar to the Daemen's
approach (1975) and applicable in the direction of the principal in situ stress to any initial state of stress,
given the initial hypothesis of radial broken zone. This assumption, based on his in situ observations,
made in several Himalayan tunnels, does not entail a constant reaction of the lining when a non-
hydrostatic original stress field is considered.

I

T
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FIGURE 5-2 - PROBLEM OF A CIRCULAR TUNNEL
IN AN ELASTO-PLASTIC ROCK MASS

According to Singh’s solution, given the circular shape of the broken zone and the in situ principal
stresses coincident with horizontal and vertical directions, the radial o, and tangential g stresses in
horizontal, 6 = 0° in Figure 5-2, and vertical direction, 6 = 90° in the same figure, correspond to the
minimum o3 and maximum o principal stresses and, in elastic region, can be evaluated by means of the
Kirch’s equations.

If the radial pressure o at the plastic radius r, is Py, the tangential stress at the elastic boundary in vertical
directions can be expressed as follows:

o,=(3-1)P-PR, (5-13)
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Since, at the plastic radius, the peak failure conditions are reached, the values of the principal stresses can
be substituted in the Polyaxial Strength Criterion as expressed in equation 5-6 to determine the magnitude
of Py,

(3-A)P-0, —P,(A2)
(2+A2)

where Py, the component of the original in situ stress in the tunnel direction, is substituted in .

P, =

(5-14)

Inside the broken zone the residual failure criterion is valid but, it must be highlighted that, in accord to
the Singh’s approach the Polyaxial Strength Criterion reduces to the Mohr-Coulomb theory, as expressed
by equation 5-16, after failure. In the plastic zone, therefore, the state of stress is governed by the equation
of equilibrium and by the Mohr-Coulomb failure criterion in terms of residual parameters:

a —
A Al (5-15)
or r
1+sin 2C_cos
o, = +sing, o, +— ¢r =0 (5-16)

“1-sing, ' 1-sing,

Substituting the tangential stress as maximum principal stress from Equation 5-16 in the equation of
equilibrium 5-15, it can be integrated with the following boundary condition, o, =B, r=r,, to

determine the evolution of radial stress in vertical direction:

o, =[P, +¢, cot ¢“](%p) —c, cot ¢,

2sing,
1-sing,

(5-17)

wherea =

The same procedure can be reproduced in the horizontal direction to determine the relative squeezing at
the wall.

If needed, by means of an analytical solution, the increment of squeezing pressure due to the gravitational
effect of the fractured rock mass in crown can be quantified by just introducing the self-weight of the rock
mass in the equation of equilibrium.

The application of two different constitutive criteria in the same solution, easy to be solved in an
analytical treatment, has limited applicability when the real conditions of excavation do not satisfy the
initial hypotheses of the original solution. The use of the approach proposed by Scussel and Chandra
permits the application of the same criterion both in peak and residual condition and the resolution with
any commercial numerical suite.

Making use of the equivalent Mohr-Coulomb resistance parameters, P, can be expressed as in equation 18
and substituted in Equation 5-17 to determine the distribution of the radial stress in vertical direction.

(3-A)P-0o',

P =
* (N, -1

(5-18)
¢(eq)
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5.3 CASE STuDY — THE CHHIBRO KHODRI TUNNEL

In this research the case study analyzed is the Indian project of the Chhibro-Khodri Tunnel, which is
famous for large magnitude of the observed squeezing phenomenon and excessive delays suffered during
its excavation. This project has been chosen for the amount and quality of the information coming from
the work of characterization and back analysis carried out by Jethwa (1979) in the sections of larger geo-
mechanical weaknesses.

The Chhibro-Khodri Tunnel is an important part of the Yamuna (River) Hydroelectric Project. The whole
scheme was subdivided into 4 main stages. It started with the 516 m long barrage built at Dakpathar on
Yamuna River to provide water to the power houses of Dhakrani and Dhalipur and completed in 1965.

FIGURE 5-3 - GEOLOGICAL SECTION ALONG THE CHHIBRO KHODRI TUNNEL (JAIN ET AL., 1975)

The following parts of the project extended the hydroelectric activities to the entire area and realized a
dense and complex net of dams and tunnels in order to take advantage of the favorable morphology and
the infinite water reserve.

The tunnel between Chhibro and Khodri was excavated in the second part of the second stage of the
works. It receives the water discharged from the Chhibro Power station and directs it to the 120 MW
(4*30MW) capacity Khodri power house. The tunnel is 5.6 km long and has 7.5 m diameter circular cross
section.

The main inconveniences in the excavation were expected through the Krol and Nohan intra-thrust
regions. A small inclined tunnel, the Kalawar Inspection Gallery, was excavated to observe the reaction of
the Red Shales and Black Clays in those formations at the installation of the proposed linings.

Jethwa instrumented this tunnel and determined the radial horizontal Squeezing Pressures Py,
deformations u, at the surface of the tunnel as well as the radii of the plastic region r, around the
excavations. The final geological mapping, shown in Figures 5-6 and 5-7, was carried out by Jain et al
(1975) while the determination of the Physical, mineralogical and shear resistance characteristics of the
rock masses went through once again by Jethwa (1979).
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FIGURE 5-4 - REGIONAL GEOLOGY OF THE CHHIBRO KHODRI TUNNEL

A reasonably acceptable range of values for the shear resistance parameters, describing the behavior at
failure of the weaker rock masses was assumed on the basis of the surveys conducted by Dube (1979).
Three relevant tunnel sections are considered in this analysis; two were excavated in Red Shales and one
in Black Clays and a concise summary of the essential geometrical and geotechnical characteristics of the
instrumented sections is contained in Table 5-3.

Sect | Soil/Rock | 1y r, | Depth y o b | ¢ o e e Degree P;
# Type | [ml | m | m | kvml | © | keal - prl | B | g, ::Zing -
1| el |15 |60 | 280 | 273 | OB ) =T\ 31 B0 Db ol o8 | severe | 047
2 | gon |45 |31 | es0 | 27z | 02 ] ST LS B Bl g | 60 | verySevere | 030
3 2:2;‘; 45 | 144 | 280 264 | 0% =B 2 20 0L o | 45 Severe 12

TABLE 5-3 - GEOMETRICAL DIMENSIONS AND ROCK MASS CHARACTERISTICS

Without any specific analysis by the author of the uniaxial strength of the matrix o of the two rock
masses, the use of data in the literature is, therefore, necessary.
According to Terzaghi and Peck (1967) very weak clays show o between 5 and 25 MPa, while a weak
clay between 25 and 50 MPa. For this reason, in this analysis an intermediate value between these two
classes, 25 MPa, has been taken as reference for the uniaxial strength the black clays. The observation of
a different behavior by the red shales surrounding the other two instrumented sections allows to assume
better conditions for the rock matrix. This hypothesis is confirmed by Hoek (2000), which suggests an o;
for the shales between 50 and 100 MPa, and Koncagul and Santi (1999), which, in turn, observed values
between 60 and 100 MPa in their laboratory tests. Even in this case, in the absence of specific
information, an intermediate value equal to 75 MPa was chosen. The geometrical extensions and the
suggested values of the rock mass quality and resistance can be used for the numerical or analytical
determination of the Squeezing Pressure. In this paper, the analytical solutions according to the classical
Mohr-Coulomb and suggested Equivalent Mohr-Coulomb Theories are compared to the measured
Squeezing pressures as shown in Table 5-3.
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5.4 METHOD OF ANALYSIS

If the hypothesis, presented in the introductive part of this paper, that the influence of the stress in the
tunnel direction on the rock mass resistance is accepted, the results of the observation of the rock mass
behavior in the tunnel proximity may be also influenced by the effect of the lateral confinement. In
support to this hypothesis, a simple comparison of the Equation 5-2 with the other proposed relations
shows that the Singh’s approach returns always considerably higher values as compared to the other
methods.

In this research, to avoid doubling the effect of the intermediate principal stress on the rock mass
resistance, the major principal stress at the tunnel surface is obtained using Equation 5-7, but substituting
for o as given in Equation 5-3. To determine the ultimate compressive strength at the tunnel surface,
therefore, the following relation may be used:

_ 1/3 A
Cyim=05y Q" +o, A (5-19)

In the absence of a detailed estimation of the original state of stress, and for the rock mass
characterization as suggested by Jethwa (1979), a hydrostatic original stress field is assumed in this
analysis. Such simplification is often used in the designing stage of underground excavation and, when

pronounced stress anisotropy is not prefigured, it does not entail results too dissimilar from the real rock
mass-support behavior.

Given the simple geometry of the excavation, a circular and uniformly lined tunnel, surrounded by a
substantially homogeneous and isotropic fractured rock mass, the state of stress induced around the
gallery can be determined by means of analytical approaches. In this paper, four different approaches are
used to obtain the results for the above-mentioned case study. The first approach uses Mohr-Coulomb
Theory and the other three approaches use the Equivalent Mohr-Coulomb Theory but are different in the
sense that the uniaxial strength o has been obtained differently. The details of the four approaches used
in the present research are described below:

Approach 1: In this, the Mohr-Coulomb Failure Criterion has been used.

Approach 2: The Equivalent Mohr-Coulomb Failure Criterion is applied and the uniaxial
compressive strength as given by Equation 5-4 is used.

Approach 3: Equivalent Mohr-Coulomb Failure Criterion has been applied and the uniaxial
compressive strength is used as suggested by Barton and given in Equation 5-3.

Approach 4: Equivalent Mohr-Coulomb Failure Criterion has been used and the uniaxial
compressive strength is used as suggested by Singh and given in Equation 5-2.

Approach 1 Approach 2 Approach 3 Approach 4
Sect # [0} c Qemass g o' c' O'cmass [} c' Ofcrass ¢ c' Ofcrass
1| [MPa] [MPa] - [’ [kPa] | [MPa] [ [MPa] | [MPa] [l [MPa] | [MPa]
1 30 0.1 0.346 0.025 19.47 2.83 0.346 19.47 3.98 3.626 19.47 4.68 5.588
2 30 0.1 0.346 0.012 19.47 6.69 0.346 19.47 7.56 2.839 19.47 8.11 4.375
3 25 0.1 0.314 0.016 15.54 2.17 0.314 15.54 2.85 2.095 15.54 3.82 4.657

TABLE 5-4 - PEAK RESISTANCE PARAMETERS FOR THE DIFFERENT APPROACHES

In the present analysis, the measured radii of the plastic zone are used for the determination of the radial
component of the squeezing pressure and, then, compared to the results of the real squeezing pressures
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monitored by Jethwa (1979) in the field. This study uses lowest among the parameters of resistance as
suggested by Dube (1977), since when they carried out the study, there was a consolidated predisposition
in the engineering rock mass classifications to overestimate the resistance of the weak rocks. This
approach was subsequently corrected in the following classifications.

In Table 5-4 are presented the equivalent shear peak resistance parameters corresponding to each
suggested approach and calculated by means of the Equations 5-9 and 5-10. The equivalent parameters
are derived from the Mohr-Coulomb peak shear parameters suggested by Jethwa, as shown in Table 5-1 -
configuration 1. From these results it is confirmed that the modified approaches show increasing values of
equivalent cohesion; this behavior is consistent with the relation expressed in Equation 5-10, which is
directly influenced by the magnitudes of the uniaxial compressive strength computed for each approach.

observations Approach 1 Approach 2 Approach 3 Approach 4
Po APv Pi Pi Avg Err Pi Avg Err Pi Avg Err Pi Avg Err
sectd [MPa] | [MPa] [MPa] [MPa] [%] [MPa] [%] [MPa] [%] [MPa] [%]
1 7.64 0.04 0.17 0.49 -189% 0.32 -88% 0.18 -4% 0.09 47%
2 18.56 0.16 0.30 0.54 -81% 0.36 -19% 0.31 -3% 0.28 7%
3 7.39 0.14 1.22 1.25 -2% 0.99 19% 0.80 35% 0.52 58%
IAVG| | 90.6% IAVG| | 42.1% IAVG| | 13.8% IAVG| | 37.2%

TABLE 5-5 - COMPUTED SQUEEZING PRESSURES

The Squeezing Pressure analytically computed using all the four approaches for the three different
monitored sections described in Table 5-3 are summarized in Table 5-5. The presented values are
obtained by substituting the relative combination of equivalent cohesion and internal angle of friction in
the Equation 5-17 when r = ;.

The results presented in the table are then compared with the measured Squeezing Pressures and the
relative percent variance are alongside listed. It is observed that the squeezing pressures computed using
approach 3 give the smallest error as compared to the observed values and on an average for all the three
sections it is obtained as 13.8 %. In approach 4, the pressures calculated are consistently smaller than the
observed values in the field. The underestimation of the Squeezing Pressure, which is about 37% on an
average, can be explained as a direct consequence of overestimation of the confining stress due to the use
of Polyaxial Strength Criterion along with the Singh’s formulation of the Uniaxial Compressive Strength.
The major reason for this could be the value of uniaxial compressive strength which has been computed
using equation given by Singh's, which itself is dependent on intermediate principal stress. Thus implying
that the effect of intermediate principal stress is incorporated two times. This approach resulted in
underestimation of the expected squeezing pressure, which may turn out to be dangerous in some cases.

The Singh’s and Barton’s formulations of the uniaxial compressive strength are modified in more general
relations, as shown in Equations 5-20 and 5-21, where the initial constant factor which characterizes the
two approaches is substituted by the variables f; and f,.

o, =fy Q¥ (5-20)

o, =f,7Q" (5-21)

The entity of the uniaxial compressive strength in accordance to the Equations 5-20 and 5-21 was
calculated for a reasonable range of values of the parameters f;. The resulting o, were applied, as in the
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approaches 3 and 4, to the Polyaxial Strength Criterion and corresponding Squeezing pressures
calculated. The outcomes of these are summarized in Tables 5-6 and 5-7 respectively.

factor f;
Observ. 0.45 ‘ 0.465 | 0.48 ‘ 0.495 ’ 0.51 ‘ 0.525 | 0.54 | 0.555 ‘ 0.58 ‘ 0.595 ‘ 0.61 I 0.625
Pi
Sect #

[MPa] [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa]

1 0.17 0.177 | 0.172 | 0.167 | 0.162 | 0.157 | 0.151 | 0.146 | 0.141 | 0.132 | 0.127 | 0.122 | 0.116
2 0.30 0.310 | 0.308 | 0.306 | 0.304 | 0.302 | 0.301 | 0.299 | 0.297 | 0.294 | 0.292 | 0.290 | 0.288
3 1.22 0.697 | 0.686 | 0.675 | 0.664 | 0.653 | 0.642 | 0.632 | 0.621 | 0.602 | 0.592 | 0.581 | 0.570
Error [%] | 169 | 159 | 162 | 173 | 184 | 195 | 209 | 224 | 250 | 265 | 281 | 29.6

TABLE 5-6 - VARIATION OF THE INTERNAL PRESSURE P; FOR DIFFERENT VALUES OF THE FACTOR f,

When the factor f; is equal to 0.471, corresponding to an average error of 15.5 %, and f, equal to 0.519,
corresponding to an average error of 12.66%, the differences between the observed pressure and the
analytical predictions are minimum. The optimum values of f; obtained are in the proximity of 0.5, as
suggested by Barton, in confirmation with the initial hypotheses of this research.

factor f,
Observ. 0.45 ‘ 0.465 | 0.48 ‘ 0.495 ’ 0.51 ‘ 0.525 | 0.54 | 0.555 ‘ 0.58 ‘ 0.595 ‘ 0.61 ’ 0.625
Pi
Sect #

[MPa] [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa]

1 0.17 0.192 | 0.187 | 0.182 | 0.178 | 0.173 | 0.168 | 0.163 | 0.159 | 0.151 | 0.146 | 0.141 | 0.136
2 0.30 0.315 | 0.313 | 0.312 | 0.310 | 0.308 | 0.307 | 0.305 | 0.303 | 0.300 | 0.299 | 0.297 | 0.295
3 1.22 0.818 | 0.811 | 0.804 | 0.797 | 0.790 | 0.784 | 0.777 | 0.770 | 0.758 | 0.752 | 0.745 | 0.738
Error [%] | 16.9 | 160 | 151 | 141 | 132 | 130 | 140 | 149 | 165 | 177 | 190 | 203

TABLE 5-7 - VARIATION OF THE INTERNAL PRESSURE P; FOR DIFFERENT VALUES OF THE FACTOR f;

The errors determined for the different values of f; are also shown in Figure 5-7.
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factorfy and factorf;
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FIGURE 5-5 - AVERAGE ERRORS IN THE DETERMINATION OF
THE SQUEEZING PRESSURE P; FOR DIFFERENT VALUES OF f;
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To be precise, for the f; equal to 0.471 and 0.519, the Squeezing pressures determined in the two test
section surrounded by Red Shales are almost coincident with the observations, but the same cannot be
said for the instrumented tunnel section in Black Clays.

In the end, the results obtained using the approach 2 in general overestimate the Squeezing Pressures
observed in field by an average of 42 % because of the low entity of the chosen Uniaxial Strength
formulation. The high errors registered in approach 1, 91% using Mohr-Coulomb theory, are due to the
fact that the intermediate principal stress is not included in the analysis at all.

5.5 CONCLUSIONS

The methodology suggested in this paper, if wisely used, gives more realistic results for Squeezing
conditions than the other traditional theories prevalent in tunnel engineering. The combined use of
Polyaxial Strength Criterion and Mohr-Coulomb uniaxial compressive strength demonstrated high
correlation in the Squeezing Pressure determination in conditions of severe squeezing due to the weakness
of the rock mass affected by an excavation.

The proposed Equivalent Mohr-Coulomb failure criterion, which is a modified form of Polyaxial Strength
Criterion, has been applied to three instrumented test sections, simulated the behavior of the rock mass in
squeezing conditions, and demonstrated its concrete applicability and simplicity of being embedded into
analytical solution as well as into numerical models. The present methodology uses the Barton’s
engineering rock mass classification and by considering improved resistance parameters incorporates the
effect of a tridimensional state of stress in rock mass.

Out of the four approaches adopted in this research to evaluate the support pressures for the three sections
of the tunnel chosen for this study, it has been observed that using the equivalent Mohr-Coulomb failure
criterion with the uniaxial compressive strength obtained by the Barton's relationship using y and Q and
o only gives the minimum error as compared to the actual observations which is of the order of 14
percent. If the uniaxial compressive strength is obtained as suggested by Singh, the results differ on
average by about 37 percent. If the uniaxial compressive strength is obtained using Mohr-Coulomb
correlation, the difference in the observed and the predicted results on an average are lower by about 42
percent. If the Mohr-Coulomb criterion was used instead of the Polyaxial Strength Criterion, the pressures
predicted are higher by about 91 percent on an average. It is therefore recommended to use the equivalent
Mohr-Coulomb failure criterion for polyaxial state of stress with the uniaxial compressive strength
evaluated by using the Barton’s Theory.
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5.7 LIST OF SYMBOLS:
Hp: Terzaghi’s Rock Load Factor;

v: Rock Mass Unit Weight;
h, H: Depth and Limit Depth of Squeezing;
P: Overburden Pressure;

r, 1, rp: Distance from the center of the tunnel, internal and plastic radius;
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o1, 02, 3. Maximum, Intermediate and Minimum Principal Stress;

o1, Op, Tor: Stress distribution around a tunnel in Radial, Tangential directions;

Po: Hydrostatic in situ Stress;

A: Horizontal Stress Ratio;

Pi, Py, Pn: Squeezing Pressure, Squeezing Pressure in vertical and horizontal directions;
Oemass» Jers Ocr- Peak, Residual, Uniaxial Compressive Strength (UCS) of the rock mass;

oi: Uniaxial Compressive Strength (UCS) of the rock matrix;

Toim- Ultimate Compressive Strength of the rock mass at the tunnel surface;
dp, Or, &: Internal Friction Angle, Peak Internal Friction Angle, and Residual Internal Angle of Friction;
Cp, Cr, C: Peak, Residual, Cohesion;

¢’, ¢’, o’ Equivalent Internal Friction Angle, Cohesion and Uniaxial Compressive Strength (UCS) of
the rock mass;

0: Angle between the horizontal axis of a tunnel and the line between its center and point considered:;
Q, Qc: Barton’s Number and Modified Barton’s Number;

Ji, Jws Ja: Joint Roughness, Seepage, Alteration Numbers.
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Chapter 6

6 CONCLUSIONS

6.1 SUMMARY
In the present research the following goals have been achieved.

Firstly, a detailed bibliographic review of the traditional and innovative design techniques of
underground excavation was produced. The interest was particularly directed to the empirical and
the analytical approaches and how the experience and the results of the rock mass observation can
be translated into realistic constitutive laws used for engineering purposes.

It was carried out a careful analysis of the similarities and differences between the Polyaxial
Strength Criterion and the Mohr-Coulomb Failure Criterion. Based on the results obtained,
different formulations of the Polyaxial Strength Criterion were proposed and validated. Their
application allows the implementation of the Polyaxial Strength Criterion in personalized
numerical applications.

The first attempt, as presented in the Equation 3-10 of Chapter 3, permits to have an adaptable
Polyaxial Criterion that, depending on the necessities, can easily change into the Mohr-Coulomb
Theory only conveniently modifying two specific parameters.
On the base of this Equation, an appropriate code in FISH for the famous geo-mechanical finite
differences numerical suite FLAC (FDM) was produced.

In the same Chapter, the proposed user defined constitutive model for FLAC was applied to a
simple numerical model of circular tunnel excavated in weak rocks and plasticized by an
adequate choice of the original state of stress. The numerical resolution of the stress field induced
by the excavation was successfully compared to the analytical polyaxial elasto-plastic theory of
stress distribution in broken zone in squeezing ground as proposed by Sing et al (2006).

The suggested formulation of the Polyaxial Strength Criterion was furthermore evolved in the
subsequent Chapter. The analytical expression of the Equivalent Mohr-Coulomb Failure
Criterion, as already suggested by its name, is totally undistinguishable from the more common
Mohr-Coulomb Theory. It relies on clear analytical relation for the determination of the
equivalent parameters of resistance ¢’ and c’, which, differently from the Mohr-Coulomb
parameters ¢ and ¢, incorporate the positive confining effect of the intermediate principal stress
o,. The present approach was, on turn, applied to the same typical case of plasticized tunnel and
the results compared to those already generated by the previous numerical technique.

Analytical analyses by means of the Equivalent Mohr-Coulomb Theory were performed on three
representative sections of the Chhibro-Khodri instrumented inspection gallery. The determination
of the parameters of the Equivalent Mohr-Coulomb Theory is described steps by steps for the
correct application of the methodology in cases of severe squeezing conditions.

6.2 CONCLUSIONS

The elasto-plastic Polyaxial model produced in Chapter 3 introduces an alternative to numerically design
tunnels in squeezing rock masses. A new relationship between the principal stresses and uniaxial
compressive strength is suggested in this work, which can handle both the elastic and plastic zone
according to Singh's Theory by appropriately choosing the parameters.

101



The application of the Polyaxial Strength Criterion, as explained in Singh’s Theory, is fairly important
when the pressures encountered are high and the weakness of rock masses produce significant squeezing
phenomena in the field. In these conditions the study of the complex rock mass-support behavior cannot
be simulated by means of physical models and the use of a specific numerical model is, therefore, the
only way to reproduce the response of a rock mass in accordance with the Polyaxial Theory.

The proposed relationship is used to bring out the effect of intermediate principal stress as the
development of principal stresses in an underground opening. Through an example it is shown that the
effect of the intermediate principal stress contributes to the enhancement of the peak characteristics of the
underground excavation but it can easily overestimated.

In Chapter 4 is proposed a new constitutive model where the polyaxial state of stress can be incorporated
in the analysis by a very simple approach. The analytical formulation of the Polyaxial Strength Criterion
is converted to Mohr-Coulomb theory with modified angle of friction and cohesion values. The approach
is quite general and may be used for any analytical or numerical method of analyzing tunnel support.

The methodology suggested in this thesis, if wisely used, gives more realistic results for Squeezing
conditions than the other traditional theories prevalent in tunnel engineering.

The proposed Equivalent Mohr-Coulomb failure criterion, in Chapter 5, has been applied to three
instrumented test sections to simulate the behavior of the rock mass in squeezing conditions,
demonstrating its concrete applicability and simplicity of being embedded into analytical solution as well
as into numerical models. The present methodology suggests the use of the Barton’s engineering rock
mass classification Q and uniaxial rock mass resistance formulation and by considering improved
resistance parameters incorporates the effect of a tridimensional state of stress in rock mass.

Out of the four approaches adopted in this research to evaluate the support pressures for the three sections
of the tunnel chosen for this study, it has been observed that using the equivalent Mohr-Coulomb failure
criterion with the uniaxial compressive strength obtained by the Barton's relationship using y and Q. only
gives the minimum error as compared to the actual observations which is of the order of 14 percent. If the
uniaxial compressive strength is obtained as suggested by Mohr-Coulomb, the results differ on average by
about 42 percent. If the uniaxial compressive strength is obtained using Singh's correlation, the difference
in the observed and the predicted results on an average are lower by about 37 percent. If the Mohr-
Coulomb criterion was used instead of the Polyaxial Strength Criterion, the pressures predicted are higher
by about 91 percent on an average. It is therefore recommended to use the equivalent Mohr-Coulomb
failure criterion for polyaxial state of stress with the uniaxial compressive strength evaluated by using y
and Q..

The method can be implemented in any analytical solution or geo-mechanical numerical suite with
excellent results. It, when used in numerical schemes, is easily adoptable and leads to less computational
efforts. The results obtained by the proposed method are in good agreement with the available analytical
solutions and, if applied to real cases of squeezing conditions, it predicts the Squeezing. Thus, the
proposed methodology achieves all the objectives mentioned at the beginning of this study.

6.3 RECOMMENDATIONS FOR FURTHER DEVELOPMENTS

In view of the limitations of the present study future work might be undertaken with attention on the
following subjects.

i. A better computational capacity and integration in the numerical suite of the constitutive model in
FISH proposed for FLAC in the Chapter 3 can be achieved by converting the shown code to C++,
the natural programming language of the embedded numerical constitutive models in FLAC.
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There are real cases in which the stress acting in the direction parallel to a tunnel axis is not
intermediate between the major and minor principal stresses existing in the perpendicular
direction but, just, the biggest. This combination of the involved stresses is typical of tunnel
excavated in the perpendicular direction to the axes of a recent mountain chain (i.e. Himalaya). In
these conditions, failure is generated in the tunnel direction and the stresses acting in the
perpendicular plane became the intermediate confining pressure. A failure mechanism like that
can be efficiently modeled by reformulating the algorithm presented in Chapter 3 as explained in
Chapter 4.

On the base of the assumption expressed in Chapter 5, the Polyaxial Strength Criterion
formulation expressed in Equation 5.14 can be positively extended to cases of rock masses
subjected to evident anisotropy.

The choice of the correct theory for the uniaxial compressive stress o, determination when it is
associated to the Polyaxial Strength Criterion is a complex problem. An intensive work of back
analysis would allow not overestimating its magnitude and, therefore, avoiding a possibly
dangerous underestimation of the squeezing pressure ascertained.
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