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ABSTRACT

In this thesis we study the Population Monte Carlo (PMC) algorithm and utilise simulations to

improve the efficiency of the algorithm by optimising the algorithm parameters. We then ap-

ply these optimisation results to a cosmological parameter estimation problem, specifically that

of determining the initial conditions for structure formation. We accomplish this by using cos-

mic microwave background (CMB) data to constrain models with an admixture of adiabatic and

isocurvature modes.

We review the standard cosmological model and current cosmological probes used for cosmol-

ogy and discuss the CMB anisotropy spectrum, which forms the basis for our cosmological

parameter estimation study. We briefly outline linear perturbation theory and initial conditions

that form the basis of the inflationary models considered in this thesis. We describe the adiabatic

and isocurvature perturbations and investigate their effect on the CMB anisotropy spectrum.

We outline the Bayesian parameter estimation methodology adopted in our study and review

Monte Carlo sampling, specifically the Markov Chain Monte Carlo (MCMC) and PMC algo-

rithms explaining why these methods are used in Bayesian parameter estimation. We discuss

recent developments to the PMC and MCMC algorithms and discuss various applications of

these algorithms in cosmology.
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We focus on optimising the performance of the PMC algorithm with respect to its algorithm pa-

rameters that are specified initially. However, we first define a measure of efficiency, related to

the computational cost of the sampling algorithm and then use simulations to maximise this mea-

sure with respect to the algorithm parameters. These algorithm parameters include the sample

size drawn at each iteration, the number of importance functions used, and the parameters that

characterise the importance functions. Before this though, we will first investigate the optimi-

sation of the PMC algorithm for a multivariate Gaussian target distribution, and present results

for choosing the optimal algorithm parameters that maximise efficiency. We will also explore

the performance of PMC on more complex distributions such as the banana shaped, bimodal and

hypercube distribution, and discuss the advantages and shortfalls for these distributions.

We incorporate the results from the previous optimisation study by applying the PMC algorithm

to a cosmological parameter estimation problem. We constrain models with an admixture of

adiabatic and isocurvature perturbations using the nine-year data release from the Wilkinson Mi-

crowave Anisotropy Probe (WMAP) experiment. We discuss challenges faced in sampling such

complex distributions, the modifications to the PMC sampler needed to achieve convergence,

and the efficiencies achieved in sampling these distributions. We present results on the marginal

and joint parameter distributions for all possible admixtures of adiabatic and isocurvature modes.

We then perform a principal component analysis to determine the degeneracies that arise from

the introduction of isocurvature modes. In comparison to similar studies undertaken with the

WMAP one-year and three-year datasets, we find that the allowed isocurvature fraction is more

tightly constrained than in previous studies.
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CHAPTER 1

Introduction

There has been a dramatic increase in both the quantity and quality of cosmological data from

different observations. These observational data have improved our understanding of the uni-

verse by awarding merit to theoretical models that explain the data well and provide estimates

for those quantities or parameters that these models depend on. Of the observed data, there are

arguably three types that have revolutionised cosmology viz: the cosmic microwave background

(CMB) radiation, specifically CMB anisotropies, observed by space-based and all-sky experi-

ments such as the Wilkinson Microwave Anisotropy Probe (WMAP) [1, 2] and Planck [3, 4],

standard candles such as Type Ia Supernovae [5, 6], and the detection of the imprint of baryon

acoustic oscillations (BAO) in the early universe on galaxy clustering [7].

The CMB is the residual radiation from decoupling after the epoch of recombination when the

universe was only a few hundred thousand years old. Having travelled virtually undisturbed ever

since makes it a powerful probe of cosmology and early-universe physics. The tiny anisotropies

reflect the small perturbations in the energy density of the universe at the initial time. Supernovae
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data indicate that the expansion rate is increasing [6], thereby strongly motivating the case for

dark energy.

All data points to the following: The strongly favoured standard cosmological model depicts

a flat or nearly flat universe that is approximately 13.7 billion years old and made of just under

30% non-relativistic matter, of which only one-sixth is ordinary baryonic matter. Roughly 70%

of the contents of the universe is dark energy, with the remaining contents being cold dark mat-

ter (CDM). Cold dark matter can only be observed by its gravitational interaction with baryonic

matter [8]. It also explains the gravitational amplification of the small fluctuations, seen in the

CMB, capable of forming the large scale structures that we see today. The dark energy com-

ponent is believed to be in the form of vacuum energy density referred to as the cosmological

constant, Λ, or a time varying component scalar field such as quintessence [9]. Dark energy is

the mysterious component whose domination of the energy density is hypothesized to explain

the accelerated expansion of the universe. There is much evidence in current observational data

to support a model of dark energy with the equation of state (i.e., the ratio of pressure to energy

density) exactly equal to -1 [10]. Relativistic components, such as photons and neutrinos make

up a small fraction of the total density of the universe today.

With the large amount of cosmological data come new challenges requiring sophisticated

data analysis methods. The scientific interpretation of such data requires a deep understanding

of statistics. Over the last three centuries astronomy has aided the development of statistical

methodology since many statistical theories were originally formulated as astronomical prob-

lems. Modern statistics in the field of astronomy, commonly known as astrostatistics, has been

growing since the 1990’s, stimulated by astronomical image processing [11, 12], galaxy clus-

tering [13], Bayesian analysis [14], and astrostatistics in general [15]. Bayesian analysis plays

a key role in cosmology and amongst its applications is the analysis of CMB data which has

been providing insights into modern quantitative cosmology [16]. Some of the key statistical
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applications in cosmology are model selection and parameter estimation.

Cosmologists often perform statistical inference by fitting theoretical models to cosmologi-

cal data, establishing cosmological parameter estimates and confidence intervals to quantify the

uncertainty in those estimates. In Bayesian statistics, estimates are obtained from evaluating the

posterior probability distribution of the parameters [17], with recent cosmological data, enabling

precision parameter estimation [18, 19, 20]. In cosmology, the posterior distribution is generally

multidimensional and lacks an analytical expression. Therefore, evaluating the posterior involves

integration over a large multidimensional parameter space, which is computationally expensive

and time consuming. Evaluating these integrals can be done with the aid of efficient sampling

algorithms.

Sampling algorithms provide a sequence of observations which are approximated from the

posterior distribution when direct sampling is difficult. This chain sequence, or sample set, can

then be used to approximate quantities with respect to the posterior distribution. Algorithms

such as nested sampling [21] are widely used in the field of cosmology [22, 23, 24, 25] through

publicly available software packages such as CosmoNest [22, 23] and MultiNest [26]. The most

popular sampling algorithm is Markov Chain Monte Carlo (MCMC) [27] with its own publicly

available package for cosmological applications called COSMOMC [28].

This thesis focuses on a hybrid Adaptive Importance Sampling (AIS) algorithm [29] called

Population Monte Carlo (PMC) [30], which has already been applied to the field of cosmology

[31, 32, 33] with its own publicly available code called CosmoPMC [34]. PMC is iterative in de-

sign, generating independent sample sets at each iteration, which can be used for parameter esti-

mation. This enables easy parallelisation of a single run thereby distributing the time-consuming

likelihood evaluation for these models and significantly reducing the wall-clock time. The al-

gorithm has its own convergence criterion enabling the sampler to automatically stop when this

criterion has been satisfied, thereby avoiding regular monitoring and analysis of the chains.
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The PMC algorithm, although automated, must be initialised according to the desired target

distribution. These inputs affect the performance of the sampler as measured by computational

expense and wall-clock time used to attain the sample. It is therefore necessary to optimise PMC

with regards to these inputs. We address this problem by deriving a statistic that will measure

the effect that varying algorithm parameters will have on the performance of PMC. We undergo

a systematic study to optimise the performance of PMC, thereby improving the efficiency, after

which we apply our results to the parameter estimation problem in cosmology as in a similar

study done for MCMC [35].

The MCMC algorithm has been extensively applied to cosmology including deriving con-

straints on cosmological parameters such as the baryon density (Ωbh
2), cold dark matter density

(Ωch
2), the energy density of the cosmological constant (ΩΛ), the scalar spectral index (ns) and

optical depth to reionisation (τ ), using CMB data from WMAP-5 [36]. The power spectrum

of galaxies, observed by the Sloan Digital Sky Survey (SDSS) [37] in conjunction with CMB

data from WMAP have been used to provide extensive cosmological parameter estimations us-

ing MCMC [38]. MCMC has been used to provide constraints on the normalisation of the matter

power spectrum, σ8, and other applications of cosmological parameter estimation using baryon

acoustic oscillations from SDSS [39, 40], and undertaken a comparison study between CMB

data from WMAP nine-year [40, 41] and Planck [42, 43]. The population Monte Carlo algo-

rithm, on the other hand, has recently been introduced to the cosmology community. It is not as

widely used as MCMC. Nonetheless applications involving cosmological parameter estimation

using CMB data from WMAP-5 for the standard ΛCDM model have already been done using

PMC [31], and even provided a comparison to MCMC. PMC has also provided constraints on

σ8 and the dark energy equation of state [44] and the publicly available CosmoPMC has been

modified to incorporate various data such as CFHTLenS, BAO from SDSS [44, 45], with ex-

tended applications to model selection [33, 45]. The PMC algorithm, although relatively new in
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the cosmology community, is increasing in popularity therefore making it a useful alternative to

MCMC.

In addition to measuring the basic cosmological parameters, cosmologists are interested in

the physical processes that played a role in the early universe, in particular inflation and the

models that describe it. The simplest inflationary models predict purely adiabatic fluctuations.

We know that a purely adiabatic model fits present data very well, but so does a mixture of adi-

abatic perturbations, correlated with isocurvature mode contributions [46]. A necessary study

is therefore to determine how much isocurvature contribution is permitted by data. Early con-

straints [47, 48, 49, 50] on isocurvature perturbations were established shortly after the Cos-

mic Background Explorer (COBE) [51]. However, it was only after the precisely observed first

acoustic peak in the CMB by Boomerang [52] and Maxima [53] that reasonable constraints

on isocurvature perturbations [46] became possible. Some constraints before the WMAP first-

year data release were carried out [54, 55, 56, 57] with some studies looking at the effect of

isocurvature initial conditions on relaxing the constraints on ΩΛ [58, 59]. The WMAP first-

year data [60] was used to constrain various mixtures of adiabatic and isocurvature perturbations

[1, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75]. Results for similar studies were

established using a combination of data from WMAP-5 [76], the Supernovae Legacy Survey

(SNLS) [77] and SDSS in [78]. Constraints on adiabatic mode with an additional isocurva-

ture mode using more recent data from the WMAP seven- and nine-year experiments as well as

Planck have been carried out in [79, 80, 81]. Constraining models with mixtures of adiabatic

and isocurvature perturbations becomes more difficult since the complexity of the distributions

to be investigated increases as more isocurvature modes are added to the model. It is therefore

necessary to establish a reliable and effective way of sampling these distributions if we are to

determine which models are preferred by the data and how much isocurvature contribution is

allowed. This thesis addresses this problem using PMC.
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This thesis begins with Chapter two providing the foundation for the cosmology used in this

study. We review the standard cosmological model and the relevant cosmological data used for

cosmology. We outline the inflationary models explaining the initial conditions of the universe

and how the CMB anisotropies is used to discriminate such models. Chapter 3 describes the role

of parameter estimation and the MCMC and PMC algorithms in detail. Chapter 4 contains re-

sults of our study to optimise the PMC algorithm through the use of simulations. We describe the

simulations and illustrate our findings for PMC against various target distributions. In Chapter 5,

we apply our results from Chapter 4 to the cosmological parameter estimation problem of con-

straining mixed adiabatic and isocurvature perturbation models. In the last chapter, we present

concluding remarks.



CHAPTER 2

The standard cosmological model

There are various cosmological models that aim to explain the universe we live in. Fortunately,

observational data has improved our understanding of the universe by discriminating between

these models. It is widely accepted that we live in a homogeneous and isotropic universe that has

large scale structures such as galaxy clusters and CMB anisotropies originating from small ini-

tial fluctuations in the matter and radiation in the early universe, which grew due to gravitational

instability. This is known as the Big Bang model. These effects can be explained mathematically

and have well-established physics to describe them. The fact that all models are subject to math-

ematical scrutiny provides a concrete justification for models that can explain the data. In this

Chapter, we outline the standard cosmological model along with underlying linear perturbation

theory, which is the basis for understanding the formation of large scale structures and CMB

anisotropies. We begin by introducing the Friedmann-Robertson-Walker model, which forms

the basis of the Big Bang model, followed by the Einstein equations and the energy momentum

conservation principle to derive the evolution equations for the different species of the universe.
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Then follows a description of the initial conditions and the role of the CMB anisotropies as a

probe into the early universe. We explain why the CMB is a useful tool in providing constraints

on the cosmological parameters.

2.1 The expansion of the universe

The universe was first observed to be expanding by Edwin Hubble in 1929 [82], who related the

recessional velocity v of a galaxy to its distance d away from us by

v = H(t)d (2.1.1)

where H(t) is the Hubble parameter that represents the expansion rate as a function of time.

The Hubble parameter is related to the scale factor a(t) describing the expansion of the universe

according to

H(t) =
ȧ(t)

a(t)
, (2.1.2)

where ȧ refers to the derivative of a with respect to time t. At present time t0, the Hubble

parameter is measured to be H0 = 67.4± 1.4 km sec−1 Mpc−1 [3].

The evolution of the scale factor for a homogeneous and isotropic universe is described by(
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λc2

3
, (2.1.3)

which is known as the Friedmann equation, with ρ representing the mass-energy density. The

symbol Λ represents the cosmological component and in the standard model, has been shown to

produce the current accelerated expansion phase. The term K is the curvature of the universe and
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usually takes on three discrete values for the geometries, namely,

K =


1 Closed universe,

0 Flat universe,

−1 Open universe.

The symbol c represents the speed of light and can be scaled to 1 by using a geometric unit

system. Therefore we re-write the Friedmann equation as(
ȧ

a

)2

=
8πG

3
ρ− K

a2
, (2.1.4)

where Λ = 0. Letting p represent the pressure resulting from mass-energy ρ, we have the local

energy conservation equation

ρ̇+ 3H(ρ+ p) = 0. (2.1.5)

The second term in equation (2.1.5) corresponds to the dilution of ρ due to the Hubble expansion.

The third term represents the work done by the pressure of the fluid. We also have mass-energy

related to the pressure by

p = ωρ, (2.1.6)

where ω = ω(ρ) depends only on the local energy density and is known as the linear equation of

state. Equation (2.1.6) models the cosmological constant, Λ, with ω = −1 corresponding to Λ set

to zero. For a flat universe (K = 0) dominated by one fluid with equation of state ω = constant,

we solve for ρ using equations (2.1.6) and (2.1.5) to obtain

ρ ∝ a−3(1+ω), (2.1.7)

which relates the mass-energy to the scale factor. This relation is useful in determining the

dominant component during any time period. These components are matter, radiation, and the



2.1 The expansion of the universe 10

cosmological constant Λ.

Matter: ω = 0, ρ ∝ a−3, (2.1.8)

Radiation: ω =
1

3
, ρ ∝ a−4, (2.1.9)

Λ : ω = −1, ρ ∝ constant. (2.1.10)

By differentiating equation (2.1.4) with respect to time we obtain

2
ȧ

a

(
äa− ȧ2

a2

)
=

8πG

3
ρ̇+ 2

Kȧ
a3
. (2.1.11)

Substituting for ρ̇ from (2.1.5) and using (2.1.4) again, equation (2.1.11) can be written as

ä

a
=

−4πG

3
(ρ+ 3p), (2.1.12)

which is known as the Raychaudhuri equation [83].

We can relate the scale factor to time depending on the dominant component. It is convenient

to normalise the scale factor so that it equals 1 at present time t0 i.e. a0 = 1. We know from

(2.1.9) that ρ ∝ 1/a3 for matter domination. Fixing the proportionality constant by the present

density ρ0 yields

ρ =
ρ0
a3
. (2.1.13)

Substituting (2.1.13) into the Friedmann equation gives the following result

ȧ2 =
8πG

3

ρ0
a
. (2.1.14)

To solve this, we suppose a follows a power law, a ∝ tq; therefore ȧ ∝ tq−1. In the right hand

side we have a−1 ∝ t−q. These powers must be equal; therefore, q = 2/3, which means that

a(t) ∝
(
t

t0

)2/3

, (2.1.15)
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if matter is the dominant component. Similarly if radiation dominates,

a(t) ∝
(
t

t0

)1/2

, (2.1.16)

so the universe expands faster if matter dominates instead of radiation. Similarly in a Λ domi-

nated universe

a(t) ∝ et (2.1.17)

and we have exponential growth.

The density parameters are generally expressed as dimensionless quantities by comparing

them to the critical density ρcrit = 3H2

8πa2G
. The critical density is the boundary value between a

contracting universe and expanding universe. If the density of the universe is found to be greater

than ρcrit, then we have a closed model, whereas for a universe that has a density less than ρcrit

we have an open model. We use subscripts r,m, and Λ to denote the radiation, matter, and dark

energy component, respectively, to simplify the notation. The density parameters expressed as

ratios of ρcrit, depending on the dominant component are

Ωr =
ρr
ρcrit

, (2.1.18)

Ωm =
ρm
ρcrit

, (2.1.19)

and

ΩΛ =
ρΛ
ρcrit

=
Λ

8πGρcrit
, (2.1.20)

with curvature given by

ΩK =
ρK
ρcrit

=
−3K

8πGa2ρcrit
. (2.1.21)

These quantities are constrained by

Ωr + Ωm + ΩΛ + ΩK = 1, (2.1.22)
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which is a dimensionless form of the Friedmann equation. The current density ρ0, excluding

curvature, in terms of the current critical density is given by

Ω0 = Ωr0 + Ωm0 + ΩΛ0, (2.1.23)

where Ωr0, Ωm0, and ΩΛ0 are the current density for radiation, matter and the dark energy compo-

nent respectively. The Friedmann equation is an important equation in cosmology as it describes

how the expansion of the universe evolves with time. The scale factor is related to the redshift of

distant objects by

a = (1 + z)−1, (2.1.24)

where we have set a0 = 1 as mentioned previously. Using this relation, we can write the Fried-

mann equation in terms of redshift to yield

H2(z) = H2
0

[
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ + Ωk(1 + z)2

]
. (2.1.25)

This equation explains how the expansion rates depends on the different components and the

evolution of their energy densities with redshift. Since redshift is analogous with time, equation

(2.1.25) shows that radiation was the dominant component during the early universe and that the

cosmological constant will dominate eventually. Determining these densities is therefore, vital

in our understanding of the evolution of our universe. Matter is made of two non-relativistic

components, namely the visible baryonic and cold dark matter components such that Ωm = Ωb+

Ωc where Ωb and Ωc, are the baryonic and cold dark matter densities relative to the critical density,

respectively. Cold dark matter has many candidates, namely: WIMPs, Axions, WIMPzillas, and

Primordial black holes [84, 85]. In a similar way, radiation is made up of relativistic photons

and neutrinos, since we assume them to be massless as in the standard cosmological model. The

CMB photons are the dominant source of photons in the universe. We therefore neglect those
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generated from stars since their contribution to the density is very small. We denote the density

of CMB photons and neutrinos as ΩCMB and Ων , respectively with Ωr = ΩCMB + Ων .

The standard cosmological model, including experiments depicts a flat universe with mean

energy density of ρ̄cr = 9.9× 10−30g cm−3 at an age of 13.75± 0.11 billion years old and made

up of relativistic components, such as photons and neutrinos as well as non-relativistic ordinary

matter consisting of baryons, dark matter, and dark energy. The matter that we see, i.e., baryonic

matter, only constitutes 5% of the total content of the universe, whereas dark energy accounts for

68% [3].

The most compelling evidence for dark energy came from observations of Type Ia supernovae

in 1998 by A. G. Riess et al. [5] and S. Perlmutter et al. [6] which indicated an increasing

expansion rate. It is a hypothetical form of energy that tends to increase the expansion rate of

the universe. Dark energy is supported by measurements of the CMB anisotropies [3]. There are

two well known conjectures as to what dark energy is, namely the cosmological constant, ΩΛ,

which is equivalent to the vacuum energy, filling space homogeneously with a constant energy

density, and scalar fields with energy density changing in space and time.

The cold dark matter represents the remaining contents of the universe and was first intro-

duced by Fritz Zwicky in 1934 to account for the ”missing mass” in the dynamics of galaxy

clusters [86, 87]. It is detectable through gravitational interaction with baryonic matter and has

an impact on the CMB anisotropies [41].

2.2 The cosmic microwave background

The Big Bang model was strongly favoured since 1964 due to the discovery of the CMB radiation

by Arno Penzias and Robert Wilson [88]. This radiation was predicted as a remnant of the Big

Bang after 379,000 years. The CMB photons that free stream towards us and often regarded as an
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image of the universe during its infant years. It is the moment of last scattering, when the photons

scattered off the electrons and have been freely travelling through the universe ever since. Thus,

we cannot see beyond the CMB since the photons were tightly coupled to the baryons.

Measurements by the Cosmic Background Explorer (COBE) satellite confirmed the perfect

black body spectrum of the CMB with a temperature of 2.725 K and detected the fluctuations in

the CMB at a level of 10−5 K [89]. The CMB photons have a perfect blackbody spectrum, which

is strong evidence to support the big bang theory over the Steady-State universe [90], because

the photons had to be in equilibrium before they freestreamed towards us. This intensity as a

function of frequency ν, is given by

Iν =
4π~ν3/c2

exp (2π~ν/kBT )− 1
, (2.2.26)

for ~ the reduced Planck constant, kB the Boltzmann constant and T its temperature. The spec-

trum is shown in figure 2.1. Following COBE, the Wilkinson Microwave Anisotropy Probe

(WMAP) has produced more accurate measurements of the CMB anisotropy spectrum and bet-

ter constraints on cosmological parameters that affect the CMB spectrum [41, 91].

The anisotropies of the CMB are a good way to compare theory with observations. An

important CMB statistic is the two-point correlation function of the temperature distribution.

The distribution is expanded in spherical harmonics since it is a two-dimensional field measured

everywhere on the sky, therefore the two-point function of the CMB is a function of multipole

moment l.

2.3 Large-scale structure

The universe on large scales is homogeneous and isotropic, however on small scales the universe

is not as smooth, because there are observed structures such as planets, stars, and galaxies. The

various forms of structure in the Universe are collectively referred to as large-scale structure
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Figure 2.1: The intensity of the CMB radiation as a function of wavenumber measured from the
Far InfraRed Spectrophotometer (FIRAS) [92] instrument on the COBE satellite.

(LSS). Galaxies are useful for understanding cosmology. Galaxies tend to cluster together by

gravitational attraction in filaments with voids between them. Galaxy clusters can contain thou-

sands of galaxies and also tend to cluster together with other galaxy clusters. The distribution of

galaxies helps us to understand the universe, from the time they started forming, at z ≈ 10, to the

present universe, at z ≈ 0. We now have a large enough sample of galaxies with corresponding

redshifts to study galaxy clustering and the evolution of our universe.

The growth of structure under gravitational instability is key in explaining the evolution of

structure. The overdensities in the matter distribution, which grows after matter-radiation equal-

ity, create regions with more mass than others. The perturbations grow in time under the influence

of gravity to form the structures we see today. Gravitational instability is influenced by properties

of the universe, such as the expansion rate and its material composition. Hence it can be used to

estimate cosmological parameters.

Surveys of large-scale structure aim to provide a 3-dimensional image of the universe by

digitizing the entire sky. A large enough sample of galaxies, quasars and stars with correspond-
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Figure 2.2: CMB temperature anisotropy spectrum. Taken from the 9-year WMAP data [41].
Two estimates of the WMAP nine-year power spectrum along with the best-fit model spectra
obtained from each; black-a weighted spectrum and best-fit model; red-the same but for a Monte
Carlo estimated spectrum and model.

ing redshifts collectively sample the universe as a whole. The Center for Astrophysics (CfA)

Redshift Survey [93] was the first attempt to map the large-scale structure of the universe with

the Sloan Digital Sky Survey [94] being the most recent, obtaining about 930 000 galaxies, 120

000 quasars, and 460 000 stars. Statistical measures are in place to extract information from the

samples such as the two-point correlation function which measures the likelihood of two galax-
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ies having a given separation, r, and its Fourier space analogue, the power spectrum, P (k), that

decomposes the pattern into waves with wavenumber k ≡ 2π/λ and specifies the amplitude of

those waves. We derive the power spectrum by quantifying the perturbation as the difference in

the density in a specific region compared to the average background density, given by

δ =
ρ(x)− ρ̄(x)

ρ̄(x)
, (2.3.27)

where ρ(x) is the density of that region and ρ̄(x) is the average density of the background. The

density perturbation simplifies in Fourier space and we use the convention

A(x) =

∫
1

(2π)3
A(k) exp(ik.x)d3k, (2.3.28)

to obtain

δ(x) =

∫
1

(2π)3
δ(k) exp(ik.x)d3k, (2.3.29)

where δ(k) is the Fourier component of δ(x). From isotropy, we have all the xi as being identical

and the perturbation distribution can be characterised by the power spectrum,

P (k) =
⟨
|δ(k)|2

⟩
, (2.3.30)

where ⟨.⟩ is the expectation over many realisations.

Cosmological models with different parameters produce predictions of these quantities which

can be compared to the observed data. Hence by obtaining the best fit, we are able to constrain the

cosmological parameters. Dark matter dominates the matter density and is required to produce

the universe we see today and our theory of dark matter can be compared to observations to

constrain it by producing compatible galaxy distributions. In addition to the matter density, other

cosmological parameters such as the dark energy density, Hubble parameter, normalisation of

density perturbations and even the dark energy equation of state can be constrained with this

data [95, 96, 97].
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2.4 Type Ia supernovae

The eventual fate of the universe can be determined by measuring the properties of distant type Ia

supernovae since they provide a record of changes in the expansion over time. It is now possible

to make precise measurements of distant type Ia supernovae and by extending our measurements

of the expansion history to earlier times, we can indirectly observe the slowing down caused

by the gravitational attraction due to the mass density. Mathematically we can illustrate this by

re-writing the Friedmann equation in equation (2.1.25) as

H2(z) = H2
0

[
Ωm(1 + z)3 + (1− ΩΛ)(1 + z)3(1+ŵ)

]
, (2.4.31)

with

ŵ(z) ln(1 + z) =

∫ z

0

w(t)

1 + t
dt. (2.4.32)

From equation (2.1.12), we have the redshift at the beginning of the acceleration epoch,

zacc =

[
(3w(zacc) + 1)

Ωm − 1

Ωm

]−1/3ŵ(zacc)

− 1. (2.4.33)

Observed supernovae of type Ia provide measurements for zacc thus enabling us to constrain the

matter density and dark energy [98, 99]. There are recent experiments such as the Supernova

Legacy Survey (SNLS) [100], whose primary goal is to measure the equation of state of dark

energy by measuring several hundred type Ia supernovae with remarkable precision at redshifts

0.3 < z < 1. Another useful observation for cosmology is the baryon acoustic oscillations,

which we discuss next.

2.5 Baryon acoustic oscillations

The baryon-photon fluid has regions of overdensity which promotes gravitational attraction;

while the heat from the photon and matter interact to produce an outward pressure to counter
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the force of gravity. These cancellation of forces produce oscillations similar to sound waves,

that propagate in the photon-baryon fluid. These oscillations are referred to as baryon acoustic

oscillations (BAO), which is a standard ruler because we can estimate its true size with high

precision from measurements of the CMB acoustic peaks. The oscillations manifest themselves

as regular periodic fluctuations in the density of the baryonic matter of the universe. The BAO

matter clustering provides a standard ruler for a length scale in cosmology [101], that can be

measured from the large-scale distribution of matter [7] and used to measure the expansion his-

tory of the universe, and hence the evolution of dark energy with cosmic time [102, 103, 104].

In addition to these constraints, Ωm,ΩΛ, and the geometry of the universe are constrained by

the observed acoustic oscillations in the CMB and large-scale galaxy distributions [7, 105]. The

Baryon Oscillation Spectroscopic Survey (BOSS) [106] is expected to map the baryon acous-

tic oscillation signature with unprecedented accuracy thereby improving the constraints on the

Hubble expansion and dark energy.

2.6 Background and perturbed Friedmann-Robertson-Walker
models

The FRW model describes a homogeneous and isotropic universe and is given by the line ele-

ment,

ds2 = gµνdxµdxν = a2(τ)
[
−dτ 2 + γij(x⃗)dx

idxj
]
, (2.6.34)

where indices µ and ν range from 0 to 3, a being the scale factor accounting for the expansion

rate of the universe and gµν the unperturbed Robertson-Walker metric. The spatial coordinates

are indicated by i and j and range from 1 to 3 with γij = gij/a
2 being the symmetric spatial

part of the metric for a constant curvature space. The conformal time is represented by τ and

is related to proper time by dt = a(τ)dτ . The line element can also be written in spherical
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coordinates with k representing the curvature of space in the following way:

ds2 = a2(τ)

(
−dτ 2 +

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

])
. (2.6.35)

The constant k takes the values 1, 0 or -1, corresponding to a close (spherical), flat (euclidean),

or open (hyperbolic) universe, respectively. Units are chosen such that the speed of light is unity.

In the presence of perturbations, there is no uniquely preferred coordinate system although

the coordinates must reduce to equation 2.6.34 in the limit of zero perturbation. A coordinate

system satisfying this criteria is called a gauge. The perturbed FRW metric accounts for the

inhomogeneity of the universe and the most general first-order perturbation to the line element

is [107],

ds2 = a2(τ)
[
−dτ 2 + γij(x⃗)dx

idxj + hµν(x⃗, τ)dx
µdxν

]
, (2.6.36)

where hµν is the metric perturbation and its components can be explicitly written as

h00 = −2A,

h0i = −Bi,

hij = 2(Dγij + Eij),

where Eij is a traceless 3-metric with the trace of hij proportional to D. For a flat universe

(k = 0), a Cartesian coordinate system can be chosen such that γij = δij . The term A is referred

to as the lapse function and perturbs the conformal time component, which also specifies the

relation between τ and proper time along the threading. The term Bi is referred to as the shift

function, and specifies the relative velocity between the threading and the world-lines orthogonal

to the slicing and 2(Dδij + Eij) is the perturbation to the curvature of space.

The components of the metric perturbation are broken down further into scalar, vector and

tensor perturbations by decomposing every symmetric tensor and every vector into longitudinal
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and transverse parts. The tensor mode ET
ij is gauge-invariant is the part of hij that is unattainable

from the gradient of a scalar or vector. The vector mode are found inB⊥
i andE⊥

ij and corresponds

to the transverse vector parts of the metric. There are two degrees of freedom to each part

which can be eliminated by imposing a gauge condition. The scalar mode is spin-0 under spatial

rotation and corresponds physically to Newtonian gravitation with relativistic modifications and

is generally believed to be generated by the vacuum fluctuation of the inflation field. Any two of

the scalar parts of the metric A,D,B||
i and E||

ij can be set to zero by a gauge transformation.

All three modes described above evolve independently in linear perturbation theory, therefore

they can be examined individually. We consider only the scalar perturbations with a spatially flat

background spacetime in this study. The line element is then

ds2 = a2(τ){−(1 + 2A)dτ 2 −Bidτdx
i + [(1 + 2D)δij + 2Eij]dx

idxj}, (2.6.37)

where A, Bi, D and Eij are fixed according to the choice of gauge.

We first consider the conformal Newtonian gauge for scalar modes of the metric perturba-

tions, which is characterised by scalar potentials ψ and ϕ, the latter representing gravitational

potential in the Newtonian limit. The four scalar perturbations to the metric are given by A = ψ,

D = ϕ and Bi = Eij = 0, with the line element

ds2 = a2(τ)[−(1 + 2ψ)dτ 2 + (1 + 2ϕ)δijdx
idxj]. (2.6.38)

The synchronous gauge includes scalar, vector and tensor modes with only the space-space com-

ponent, (h00 = h0i = 0), of the metric tensor perturbed. The line element in this gauge is

therefore

ds2 = a2(τ)[−dτ 2 + (δij + hij)dx
idxj]. (2.6.39)
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2.7 Einstein equations and energy momentum conservation

The Einstein field equations relate the geometry of the universe to its matter contents by relating

the Einstein tensor Gµν to the energy-momentum tensor Tµν according to

Gµν = Rµν − gµν
R

2
= 8πGTµν , (2.7.40)

with Rµν and R ≡ gµνRµν representing the Ricci tensor and Ricci scalar, respectively. The Ricci

tensor is given by

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓ

β
µν − Γα

βνΓ
β
να, (2.7.41)

where Γν
αβ are the Christoffel symbols given by

Γµ
αβ =

gµν

2

[
∂gαν
∂xβ

+
∂gβν
∂xα

− ∂gαβ
∂xν

]
, (2.7.42)

and commas denoting derivatives with respect to x.

The Einstein equations therefore relate the perturbations in the metric to the perturbations

in matter and radiation [108]. From the Einstein equations, and considering a homogeneous

universe with mean energy density ρ̄(τ) and pressure P̄ (τ), we obtain the evolution equations

[109]:

H2 =

(
ȧ

a

)2

=
8π

3
Ga2ρ̄− k, (2.7.43)

d

dτ
H =

d

dτ

(
ȧ

a

)
= −4π

3
Ga2

(
ρ̄+ 3P̄

)
, (2.7.44)

with the Hubble parameter shown as a function of conformal time. Equation 2.7.44 is called the

acceleration equation, which expresses mathematically that the expansion of the universe is due

to the density and pressure filling the universe with positive acceleration requiring a component

with negative pressure P̄ < −ρ̄/3.

If the matter components of the universe are treated as an ideal fluid at all times, then it

can be described by the energy density contrast δ and the velocity divergence θ. However a full
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treatment for the radiation component requires the use of the Boltzmann equation, however in the

baryon-photon regime, the single fluid can be treated as a perfect fluid without loss of accuracy.

For the case of non-massive neutrinos, the energy momentum tensor for such a fluid is given by

[109]

T µ
ν =

∑
n

Png
µ
ν + (ρn + Pn)V

µVν , (2.7.45)

where V µ = dxµ
√
−ds2

is the four-velocity of the fluid, ρ = ρ̄ + δρ and P = P̄ + δP are the

proper energy density and pressure in the fluid rest frame respectively, with the barred quantities

referring to the background, and δρ and δP are the density and pressure fluctuations, respectively.

The components of the perturbed energy-momentum tensor are

T 0
0 = −(ρ̄+ δρ) (2.7.46)

T 0
i = (ρ̄+ P̄ )vi = −T i

0, (2.7.47)

T i
j = (P̄ + δP )δij + Σi

j, Σi
i = 0, (2.7.48)

where vi ≡ dxi/dτ is the coordinate velocity of the fluid (assumed non-relativistic), and Σi
j ≡

T i
j − δijT

k
k /3 is the anisotropic shear perturbation which denotes the traceless component of T i

j .

The mass density and pressure of the FRW background universe are represented by ρ̄(τ) and

P̄ (τ) respectively.

Introducing variables θ and σ such that,

(ρ̄+ P̄ )θ ≡ ikjδT 0
j , (2.7.49)

(ρ̄+ P̄ )σ ≡ −(k̂ik̂j −
1

3
δij)Σ

i
j, (2.7.50)

where θ = ikjvj is the divergence of the fluid velocity and σ is related to the shear stress. We

also define the density contrast δ ≡ δρ/ρ̄ = −δT 0
0 /ρ̄.
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Substituting the metric and stress-energy tensor in the Einstein equation, we obtain the field

equations for the perturbations [109]:

k2η − 1

2

ȧ

a
ḣ = −4πGa2δρ, (2.7.51)

k2η̇ = 4πGa2(ρ̄+ P̄ )θ, (2.7.52)

ḧ+ 2
ȧ

a
ḣ− 2k2η = −8πGa2δρ, (2.7.53)

ḧ+ 6η̈ + 2
ȧ

a
(ḣ+ 6η̇)− 2k2η = −24πGa2(ρ̄+ P̄ )σ. (2.7.54)

When ȧ approaches zero, i.e. the limit of no expansion, equation 2.7.52 reduces to the ordinary

Poisson equation for gravity, viz ∇2η = −4πa2Gδρ. Terms that are proportional to ȧ account

for the expansion and play an important role for modes with wavelengths (λ ∼ 1/k) comparable

to or larger than the the Hubble radius, H−1.

The subscript j = 1, 2, · · · , n is used to denote the different species. We define the critical

density of the universe ρ̄cr as the total density required for a flat universe; therefore, the ratio of

the density of each species to the critical density can be represented as Ωj ≡ ρ̄j/ρ̄cr. With this in

mind, we can rewrite equations (2.7.52)-(2.7.54) as

k2η − 1

2

ȧ

a
ḣ = −3

2
H2ρ̄cr

∑
j

Ωjδj, (2.7.55)

k2η̇ =
3

2
H2ρ̄cr

∑
j

Ωj(1 + wj)θj, (2.7.56)

ḧ+ 2
ȧ

a
ḣ− 2k2η = −9H2ρ̄cr

∑
j

Ωjc
2
sjδj, (2.7.57)

ḧ+ 6η̈ + 2
ȧ

a
(ḣ+ 6η̇)− 2k2η = −9H2ρ̄cr

∑
j

(1 + wj)Ωjσj, (2.7.58)

where wj = pj/ρj is the equation of state for the jth species and c2s =
∂pj
∂ρj

is the square of

the sound speed. First order evolution equations for density and velocity perturbations can be
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obtained from the conservation equations

T µν
;µ = ∂µT

µν + Γν
αβT

αβ + Γα
αβT

νβ = 0, (2.7.59)

which yield the time evolution equations for the density perturbations and the divergence of the

fluid velocity

δ̇ = −(1 + w)

(
θ +

ḣ

2

)
− 3

ȧ

a

(
δP

δρ
− w

)
δ, (2.7.60)

θ̇ = − ȧ
a
(1− 3w)θ − ẇ

1 + w
θ +

(
δP

δρ

)
k2δ

1 + w
− k2σ, (2.7.61)

(2.7.62)

where w is given by the equation of state w ≡ P/ρ. For a constant equation of state, equations

(2.7.61) and (2.7.62) simplify further since δP/δρ ≡ c2s = w and ẇ = 0, and are valid for

the global fluid. The evolution equations for photons, baryons, cold dark matter and massless

neutrinos are [109]

δ̇γ = −4

3
θγ −

2

3
ḣ, (2.7.63)

δ̇b = −θb −
1

2
ḣ, (2.7.64)

δ̇c = −1

2
ḣ, (2.7.65)

δ̇ν = −4

3
θν −

2

3
ḣ, (2.7.66)

for the density contrasts δ, and

θ̇γ = k2
(
1

4
δγ − σγ

)
+ aneσT (θb − θγ), (2.7.67)

θ̇b = − ȧ
a
θb + c2sk

2δb +
4ρ̄γ
3ρ̄b

aneσT (θγ − θb), (2.7.68)

θc = 0, (2.7.69)

θ̇ν = k2
(
1

4
δν − σν

)
, (2.7.70)
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for the velocity divergences. The corrective terms in equations (2.7.63-2.7.66) are due to the

baryons coupling to photons through Thomson scattering before recombination. The indices γ, b,

c and ν correspond to photons, baryons, cold dark matter, and relativistic neutrinos, respectively.

σT is the Thomson cross section, ne is the electron number density, and ρ̄γ and ρ̄b the density

of photons and baryons, respectively. After the radiation component decouples from the matter

component for a mode within the horizon, there is significant shear stress from the photons and

neutrinos, which produces two additional equations for the quadrupole [109]

σ̇γ =
4

15
θγ −

3

10
kFγ3 +

2

15
ḣ+

4

5
η̇ − 9

10
aneσTσγ, (2.7.71)

σ̇ν =
4

15
θν −

3

10
kFν3 +

2

15
ḣ+

4

5
η̇, (2.7.72)

where Fν3 and Fγ3 are the third moments of the momentum-averaged phase space densities for

neutrinos and photons. The photon shear stress is particularly useful for studying the primary

CMB polarisation.

2.8 Initial conditions

The standard cosmological model based on the smooth Friedmann-Robertson-Walker universe

does not explain the existence of the large structures we see today such as galaxies and galaxy

clusters. Gravitational instability can produce these structures but it requires some initial irregu-

larities or primordial fluctuations to act upon, which cannot be explained with the standard model.

The idea of inflation [110] was proposed, which provides the linear imprints in the matter and

radiation content required for generating the irregularities needed to initiate structure formation

during the early universe. Inflation posits that the universe underwent very rapid growth during

the first fraction of a second before it settled down to its current rate of expansion. Quantum

fluctuations in the energy density of the inflationary field were caught up in the expansion and
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stretched to classical scales and these form the primordial fluctuations which seeded structure

formation. In what follows, we discuss the types of fluctuations produced beginning with the

adiabatic mode.

The adiabatic mode is generated in the simplest inflationary model [111] and produces a non-

zero curvature perturbation. The perturbations can be classified in terms of an overall entropy

perturbation, ϕ and for the adiabatic mode ϕ = 0. The densities of all species are perturbed in

proportion at some initial time i, such that

δc,i = δb,i =
3

4
δγ,i =

3

4
δν,i, (2.8.73)

or with relative entropy between two species x and y

Sxy =
δx

1 + wx

− δy
1 + wy

(2.8.74)

for w being the equation of state for each of the respective species. In practice the entropy is

conveniently defined relative to the photon density, i.e. y = γ. This is done because the time

dependence of Sxγ is naturally captured.

Isocurvature modes on the other hand, correspond to perturbations in entropy with no pertur-

bation in curvature. They are another possibility for initial conditions that are well defined. These

isocurvature modes depict ratios of different species that are not spatially constant initially. There

are four isocurvature modes: the CDM, baryon, neutrino density, and neutrino velocity isocur-

vature modes. For the CDM mode, which was first proposed by [112], the ratio of the CDM to

photon varies spatially, and fluctuations are imprinted on the CDM component only, hence

δc,i = 1, δb,i = δγ,i = δν,i = 0, (2.8.75)

with corresponding relative entropies,

Scγ = δc −
3

4
δγ ≈ 1, (2.8.76)
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and all other entropies equal to zero. In a similar way we have for the baryon mode [113]

δc,i = 0, δb,i = 1, δγ,i = δν,i = 0, (2.8.77)

with

Sbγ = δb −
3

4
δγ ≈ 1. (2.8.78)

The neutrino density and velocity isocurvature modes were introduced in [114] and are charac-

terised to have no curvature and matter components but an initial perturbation in the neutrino

density is balanced by the photons. The neutrino to photon ratio is initially spatially perturbed

but the total density perturbation vanishes. The initial perturbation of each species is given by

δc,i = δb,i = 0, δγ,i = −Rν

Rγ

δν,i, (2.8.79)

with Rν and Rγ representing the fractional contributions from the neutrino and photons respec-

tively. Relative entropies are given by

Sνγ =
3

4
δν −

3

4
δγ

= −3

4
δγ

(
1 +

Rγ

Rν

)
(2.8.80)

with all other entropies equal to zero. For the neutrino velocity isocurvature mode, the neutrino

velocity divergence is initially perturbed but balanced by the baryon-photon velocity. The initial

perturbation for the neutrino velocity mode is given by

θc,i = 0, θb,i = θγ,i = −Rν

Rγ

θν,i. (2.8.81)

2.9 CMB anisotropies

The CMB power spectrum measures the temperature anisotropies over a range of angular scales.

The temperature variations are small enough that the early universe appears homogeneous during
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the formation of the CMB. One of the useful properties of the CMB is its ability to constrain

models because of its sensitivity to the cosmological parameters. In practice these dependencies

can be studied with the aid of publicly available software such as CMBFAST [115] or CAMB

[28]. Instead of angular scale θ, the anisotropies are measured as a function of multipole which

relates to angular scales as follows ℓ ≈ 180◦

θ
, therefore large angular scales correspond to small

ℓ and vice versa. There are statistics in place that enable us to extract the relevant information

from the CMB, which we discuss briefly in what follows.

2.9.1 Angular power spectrum Cℓ

The temperature distribution across the sky is the fundamental quantity that we measure for the

CMB. If we denote the temperature over the sky as T (θ, ϕ), with spherical angular coordinates

on the celestial sphere θ, ϕ, then the dimensionless temperature anisotropy is given by

∆T

T
(θ, ϕ) =

T (θ, ϕ)− T̄

T̄
, (2.9.82)

with mean temperature of the CMB photons, T̄ . In order to simplify the mathematics, spherical

harmonics Y ℓ
m, which is the analogue of a Fourier series for the surface of a sphere is used instead

such that
∆T

T
(θ, ϕ) =

∞∑
ℓ=1

ℓ∑
m=−ℓ

aℓmY
ℓ
m(θ, ϕ). (2.9.83)

The coefficient aℓm is in Fourier space and is the amplitude of the irregularities on different

scales, and hence quantifies the anisotropies. The aℓm generally follows a Gaussian probability

distribution with mean zero and variance dependent on ℓ. This brings us to an important statistic

which is the radiation angular spectrum Cℓ, given by

Cℓ =
⟨
|aℓm|2

⟩
, (2.9.84)



2.9 CMB anisotropies 30

averaged over all possible universes or equivalently all observers in our universe. TheCℓ depends

only on ℓ. The difference between our region of the universe compared to the average region

of the universe is known as cosmic variance and is quite significant for large angular scales.

The most important regions for cosmological parameter estimation is ℓ ≥ 2 because the dipole

moment (ℓ = 1) is believed to be caused mainly by the relative motion of the earth with respect

to the CMB.

Before last-scattering the photons are tightly coupled to the baryons, but there is still some

small degree of movement of the photons through the baryon-photon fluid. The fluid is oscil-

lating with constant compression and rarefaction under the combined influence of gravitational

collapse and pressure, and calculating the anisotropies involves these physical processes. When

the photons decouple from the fluid, the baryons are able to gravitationally collapse leading to

the subsequent formation of galaxies and galaxy clusters whereas the photons begin to travel

freely towards us. The distribution of photons is retained as they free stream and this reflects the

fluctuations in the baryon-photon fluid at the time. This manifests as acoustic characteristics in

the power spectrum of the CMB.

There are regions of the CMB spectrum that behave differently and can be explained by dif-

ferent physical processes. Large scales for ℓ ≤ 15 were first probed by the COBE satellite and

is known as the Sachs-Wolfe plateau, which is caused by the gravitational potential between

regions. The first peak at ℓ ≈ 200 was confirmed by BOOMERANG [116], an earth based

balloon experiment designed to detect the CMB photons from the upper stratosphere. Experi-

ments on earth have limited sky coverage and also limited by the atmosphere, thereby motivating

the Wilkinson Microwave Anisotropy Probe (WMAP) satellite [91] and Planck Surveyor [3, 4]

projects.
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2.10 Effect of cosmological parameters on the CMB temper-
ature spectrum

The CMB anisotropy is sensitive to changes to the cosmological parameters, such as the matter

density Ωmh
2, which consists of baryon and cold dark matter density contributions. Therefore

changes to Ωbh
2 and Ωch

2 result in changes to the temperature spectrum. Apart from these

parameters, the cosmological constant density ΩΛ, the optical depth to reionisation τ , the scalar

spectral index ns, and scalar amplitude As also affect the CMB anisotropy spectrum. In this

section we briefly explain the physical significance of these parameters and their effect on the

CMB anisotropy spectrum. The significance of these effects is that it can be used to compare

theory with observation enabling us to constrain cosmological models and obtain estimates for

the cosmological parameters, by finding best-fit likelihood estimates with their corresponding

uncertainty.

2.10.1 Baryon density Ωbh
2

The baryon density influences the propagation of the acoustic waves in the baryon-photon fluid

before last scattering. Therefore, if there are more baryons in the fluid, the sound speed of the

waves decreases, resulting in changes to the location of peaks and troughs in the CMB spectrum.

Odd numbered peaks are enhanced while even peaks are lowered if Ωbh
2 increases. Figure 2.3

illustrates the baryon density effect on the Cℓs.

2.10.2 Cold dark matter density Ωch
2

The total matter density is made up of both the baryon and cold dark matter density contributions,

i.e. Ωmh
2 = Ωbh

2+Ωch
2, and since the CMB spectrum is sensitive to the matter density, we can

keep the baryon density constant and vary Ωch
2 to trace its effect on the spectrum. Increasing the
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Figure 2.3: The effects on the temperature angular power spectrum for various baryon densities
Ωbh

2.

CDM density slightly suppresses the entire angular spectrum, with the first two peaks decreasing

by a large factor. The third and following peaks however are enhanced with respect to the first

two peaks. From equations (2.1.9) and (2.1.16), we know that increasing the matter density

will reduce the age of the universe bringing the epoch of matter-radiation equality τeq closer to

recombination. For a lower matter density, there is less occurrence of gravitational instability

at recombination and the gravitational potential is reduced. This implies that radiative pressure

is higher therefore increasing oscillations, inducing photon-density perturbations that are larger

than in a universe with higher matter density.
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Figure 2.4: Sensitivity of the angular power spectrum to the CDM density Ωch
2.

2.10.3 Cosmological constant density ΩΛ

The angular diameter distance, dA, is a useful way of measuring distances based on the angle

subtended by an object, φ, of known size, d, such that dA = d/φ. The cosmological constant

and curvature only affect the CMB spectrum through the angular diameter distance and late-

time integrated Sachs-Wolfe (ISW) effect [117]. In our study the dark energy is restricted to

a cosmological constant. Therefore, dark energy contributed negligibly during last scattering,

and has affected only the photons free-streaming towards us since then. For a flat universe

ΩK ≡ 1− ΩΛ − Ωm = 0 and φ = d
a
/∆τ for comoving distance ∆τ . We therefore have [108]

dflatA = a∆τ =
∆τ

1 + z
, a0 = 1. (2.10.85)
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Figure 2.5: The angular power spectrum for various dark matter densities ΩΛ.

The CMB spectrum is shifted to lower ℓ for higher ΩΛ, since at low z the angular diameter

distance reduces to the comoving distance.

2.10.4 Optical depth τ

After last scattering the photons from the CMB have been free-streaming towards us, but at some

point in time later the photons once again interacted with the free electrons through Thomson-

scattering. This second interaction erases information carried by the photons about the anisotropies

and causes a dampening in the CMB temperature by a factor of eτ , where τ is the optical depth to

reionisation. As a result of this temperature reduction, the Cℓ is also reduced by e−2τ . Therefore,

all modes within the horizon at reionisation are affected by the second photon-electron interac-

tion, while modes outside are not. Figure 2.6 shows the sensitivity of the temperature angular
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Figure 2.6: Small shifts of the angular power spectrum for various τ .

spectrum to τ .

2.10.5 The spectral index ns

The primordial fluctuations are typically quantified by a power spectrum, which gives the power

of the variations as a function of spatial scale. If we denote the temperature perturbation at

reionization by Θ, then we can write the CMB angular power spectrum as

Cℓ =
2

π

∫ ∞

0

k2P (k)|Θℓ(k)|2dk, (2.10.86)

where P (k) is the primordial power spectrum for wavenumber k. Many inflationary models

predict that the scalar component of the fluctuations obeys a power-law

P (k) ∝ kns−1 (2.10.87)
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Figure 2.7: Large shifts of the angular power spectrum for various ns.

where ns is known as the scalar spectral index. From equation (2.10.87) we can see that the slope

of the Cℓ is controlled by ns, with ns < 1 lowering small-scale anisotropy and ns > 1 producing

the opposite effect. The special case that ns = 1 corresponds to scale-invariant fluctuations.

Figure 2.7 illustrates large variations for ns.

2.10.6 The scalar amplitude As

The comoving curvature perturbations, denoted by R vary with scale, and for an inflationary

model we can expand lnR(ln k) in a Taylor series whose terms decrease in size. For the sim-

plest inflationary model, the initial condition for density perturbations can be described by the

amplitude and slope of the power spectrum ⟨|R|2⟩ ∝ kn defined,

∆2
R ≡

(
k3/2π2

) ⟨
|R|2

⟩
. (2.10.88)
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Figure 2.8: Shifts of the angular power spectrum for various As.

The scalar amplitude is given by

A2
s ≡ ∆2

R(k0), (2.10.89)

with k0 = 0.05Mpc−1. There are many definitions of As which can be cosmology dependent

[118, 119]. For inflationary potential V (ϕ), the slope n involves V n therefore As and n can in

principle constrain potentials. The effect of the scalar amplitude on the angular power spectrum

is shown in 2.8.

2.11 CMB dependence on initial conditions

In Section 2.8 we highlighted and briefly discussed the density contrasts for the baryons and

photons as well as the baryon-photon common velocity divergence and gravitational potential
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Figure 2.9: Comparison of CMB temperature power spectra for AD, CI, BI, NID and NIV modes
for the same cosmological model. Spectra for all modes have a flat ΛCDM universe with Ωbh

2 =
0.022, Ωch

2 = 0.125 and h = 0.7. The isocurvature spectra are normalized to have the same
power as the adiabatic spectrum at ℓ = 10. These spectra are obtained using CAMB. Figure
courtesy of [120].

evolution during the tight-coupling regime. We know that the Cℓs were dependent on the multi-

pole moments Θℓ(τ, k), which by the line of sight integral approach are given by

Θℓ(k, τ0) =

∫ τ0

0

S(k, τ)jℓ[k(τ − τ0)]dτ, (2.11.90)

where jℓ is a spherical Bessel function [121]. Assuming the contribution to the source function

S(k, τ) due to the polarization is small, we conclude that

S = e−τe (η̇ + α̈) + g(τ)

[
δγ
4

+
θ̇b
k2

+ 2α̇

]
+ ġ(τ)

[
θb
k2

+ α

]
, (2.11.91)
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where g(τ) is the visibility function, and

α = − Rν

15 + 4Rν

τ. (2.11.92)

Each mode has a different source function due to the differing behaviour of photon perturbations

resulting from the distinct initial conditions. Each mode, therefore, has a characteristic contribu-

tion to the CMB angular spectrum, enabling us to fit the best-spectrum for a given set of data,

thus discriminating between adiabatic, isocurvature, and mixed adiabatic isocurvature models.

Figure 2.9 illustrates the CMB temperature power spectra for the cold dark matter (CI), neu-

trino velocity (NIV), neutrino density (NID), and baryonic (BI) mode for the same cosmological

model. We include the adiabatic (AD) mode spectrum for comparison against the isocurvature

mode spectra, which are normalised to have the same power at ℓ = 10, such that C ISO
10 = 2.5CAD

10 .

Each mode has clearly distinctive features regarding positions and amplitudes of the acoustic

peaks, the height of the Sachs-Wolfe plateau, and the steepness of the spectrum on small scales.

The spectrum of the NIV mode is the most similar, regarding shape, to the AD spectrum

as compared to the other isocurvature modes. Both spectra illustrate virtually the same Sachs-

Wolfe plateau and ISW effect. The NIV spectrum is dampened at small scales (high ℓ) with the

acoustic peaks shifted to larger scales (lower ℓ). This is due to the NIV mode exciting a pure

sin krs harmonic, unlike the driven cos krs harmonic for the AD mode, where rs denotes the

sound horizon.

The peaks of the NID spectrum are positioned at the troughs of the NIV mode, since both

modes are free oscillations with cosine (NID) and sine (NIV) like phases. The NID mode how-

ever has more power at lower ℓwith a trough before the first peak. The first peak and Sachs-Wolfe

plateau have almost the same height.

The CI and BI mode have the same CMB spectrum which is indistinguishable since their

photon evolution equations are similar, therefore we choose to discuss only the CI mode since
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this mode is considered in our mixed adiabatic with isocurvature mode models in Chapter 5. The

CI mode excites a sin krs like harmonic therefore the peak positions are close to the troughs of

the AD spectrum. The CI spectrum decreases at low ℓ and does not have a Sachs-Wolfe plateau.

In the next Section we parametrise the isocurvature and adiabatic contributions so that we

can constrain these contributions using the effects of the isocurvature mode features in the CMB

spectrum. In our approach we determine the isocurvature fraction because the sub-dominant

contribution impacts studies of other parameters, such as dark energy [122].

2.12 Isocurvature mode parametrisation

The standard cosmological model depicts a spatially flat universe containing baryons, CDM,

photons, neutrinos, and a cosmological constant Λ; with a primordial spectrum of Gaussian

adiabatic density perturbations, described by a monomial power law [41, 91, 123, 124]. This is

consistent with current CMB anisotropy and LSS data. However, models with an appreciable

isocurvature component may also explain the data sufficiently.

Predictions of the CMB anisotropies and LSS data may be derived entirely from the pertur-

bations of the above constituents. Therefore, models with a significant isocurvature component

may explain the data just as well as a model with a purely adiabatic mode. If the ratios of den-

sity contrasts are not constant, the fluctuations are said to be generated from isocurvature initial

conditions [114]; therefore, it is worthwhile to determine whether models having an isocurvature

component can also account for the current data. Doing this entails providing constraints on

models which in addition to the adiabatic mode, include either one, two, or three isocurvature

modes as well as cross-correlations between the allowed modes.

There are four types of isocurvature perturbations as mentioned in Section 2.8, namely the

baryon, CDM (CI), neutrino-density (NID), and neutrino-velocity (NIV). The baryon and CDM
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isocurvature modes imprint almost the same perturbations on the CMB, therefore we do not

consider them separately. Instead we consider only CI, NID, and NIV modes. Considering only

quadratic observables, perturbations in all modes, including the adiabatic (AD) mode, can be

completely characterised by a matrix valued power spectrum [114, 125]

⟨XI(k)X
∗
J(k

′)⟩ = AIJ(|k|)δ2(k− k′), (2.12.93)

where the indices I, J = 1, 2, 3, 4 label the modes AD, CI, NID, NIV respectively, and XI(k)

represents the amplitude of the Ith mode with wavenumber k. The overall Cℓ is a sum over

normalised mode spectra with amplitudes AIJ such that

Cℓ =
∑
IJ

AIJC
IJ
ℓ . (2.12.94)

Auto-correlations are represented by the diagonals, such thatAIJ is always positive definite, with

cross-correlations represented by off-diagonal elements.

Previous work in providing constraints for adiabatic and mixed adiabatic with isocurvature

modes has been done in [71, 80], using the popular MCMC sampling algorithm. We closely

follow the parametrization and methodology of their work and implement the optimised PMC

algorithm. A full analysis of all four modes is studied in this thesis using the WMAP nine-year

released data.

Various models have been proposed that produce a mixture of adiabatic and isocurvature

perturbations. One possibility is that during inflation, there exists a calculable field of mass

that is relatively small to the Hubble scale, giving significant power on large scales. Hence this

field may be used to establish various initial conditions [126, 127]. Another model explains

that inflation is driven by two scalar fields [125, 128, 129]. Perturbations in the direction of

motion of the dominant field correspond to the adiabatic perturbations. While the orthogonal

perturbations correspond to the isocurvature perturbations [130]. All other trajectories generate
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correlated adiabatic isocurvature perturbations. The amplitudes for auto- and cross-correlations

are specified by the respective model. These are two such possibilities for models that generate

primordial perturbations. Other possibilities are discussed in [114].

We use a covariance matrix in equation (2.12.93) which provides a complete description of

the primordial perturbations for Gaussian initial conditions, with the amplitudes represented by

AIJ . To ensure the matrix is nonnegative definite, the cross correlation spectral indices are set to

the mean of the corresponding auto-correlation spectral indices. We define a random variable z,

to represent the contribution from each mode to the power spectrum such that

AIJ ∝ zIJ (2.12.95)

where

tr(zzT ) =
N∑

I,J=1

z2IJ = 1. (2.12.96)

The symmetric matrix z contains all information regarding fractional contributions by the auto-

and cross-correlations, therefore, there are only D = N(N + 1)/2 independent correlations and

the coefficients zIJ cover the unit sphere of dimension d = D− 1, on which we use the measure

corresponding to the usual volume element. The transformation from wi to the zIJ parameters is

accomplished by mapping the surface of the d-dimensional sphere, Sd into a d-dimensional ball

Bd, using the volume preserving mapping

r(θ) =

[
d

∫ θ

0

dθ̄ sin(d−1) θ̄

]1/d
, (2.12.97)

where θ is the angle with respect to the north pole of Sd, the point corresponding to a purely

adiabatic model. r is the radial coordinate of Bd. In order to transform the exploration of Bd

into the sphere Sd we have
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z11 = cos θ, z12 = sin θ√
2

w1

r
, · · · , z1N = sin θ√

2

wN−1

r
,

z22 = sin θwN

r
, · · · , z2N = sin θ√

2

w2N−2

r
,

...

zNN = sin θwd

r
,

for symmetric zIJ , where wi are the Cartesian coordinates of the Euclidean space into which Bd

has been embedded with r = |w|, and θ = θ(w). Following the framework of Bucher et al.

[114] we define the non-adiabatic fraction as

fISO =
zISO

zISO + z⟨AD,AD⟩
(2.12.98)

with zISO representing the fraction of isocurvature contribution to the data given by

zISO =
√

1− z2⟨AD,AD⟩ (2.12.99)

for both auto- and cross-correlations. This is the parametrisation that we will use when con-

straining adiabatic and isocurvature modes in Chapter 5. In Chapter 5 we briefly discuss the

cosmological parameters that we wish to constrain using PMC and their effect on the CMB spec-

trum. There are two cases to which we apply the PMC algorithm, namely, the pure adiabatic

model and mixed models with adiabatic and isocurvature modes. In both these cases we apply

the PMC algorithm, discussing the results and possible challenges in sampling the target parame-

ter space. However, we must first examine the Monte Carlo algorithms used for sampling, before

proceeding to the cosmological parameter estimation study.



CHAPTER 3

Monte Carlo sampling methods

3.1 The general problem

In order to quantify our beliefs in certain propositions and events, we assign a real number to that

degree of belief, which is proportional to how strong that belief is. This number is referred to as

a probability [131]. For a particular event, A, we denote the probability of that event given some

background information I by P (A|I). To ensure consistency, rules of probabilities are in place,

such that for events A and B

P (A|I) + P (Ā|I) = 1 (3.1.1)

and

P (A,B|I) = P (A|B, I)× P (B|I) (3.1.2)

where Ā is the event that A does not occur, and P (A,B|I) is the joint probability of events A

and B. Using this foundation we have Bayes’ theorem [17],

P (A|B, I) = P (B|A, I)P (A|I)
P (B|I)

. (3.1.3)
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By replacing A with a set of parameters x, and B with data set D, we have:

π(x|D) =
P (D|x)P (x)

P (D)
. (3.1.4)

The term π(x|D), is known as the posterior distribution of the model parameters and P (D|x)

and P (x) are known as the likelihood and prior probability respectively. The denominator in

equation (3.1.4) is called the evidence and is relevant to model selection but not to parameter

estimation, therefore we do not consider it in this study. We omit the notation for dependence

on data for convenience and write π(x) instead throughout this thesis. The prior distribution

encodes all knowledge of x from previous experiments, whereas the likelihood is the probability

that we obtained the data had the set of parameters, x, been chosen. We can thereafter provide

inference on π(x) using the likelihood. It is generally difficult to evaluate the posterior directly

since we most often lack an analytical expression for it, therefore we indirectly use the likelihood

to evaluate the posterior since it only depends on the given data set. We rely on using a sample

from this distribution to evaluate any integrals related with π(x). That is,

τ =

∫
f(x)π(x)dx (3.1.5)

can be approximated empirically by,

τ ≈ 1

Ns

Ns∑
i=1

f(xi) (3.1.6)

where (x1, x2, · · · , xNs) is a sample of size Ns drawn from π(x). A sampling algorithm is thus

required for this process.

3.2 The Markov Chain Monte Carlo algorithm

It was not until the introduction of computers that simulations of random processes such as

Monte Carlo were widely used to solve mathematical problems involving integration, optimisa-

tion, stochastic exploration, to name a few. Very often in statistics, the Monte Carlo process was
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used to solve expectations of certain quantities with respect to a probability density function,

specifically for a probability distribution function p of observation x, we have the expectation of

some function f given by the integral

I =

∫
Ω

p(x)f(x)dx, (3.2.7)

where Ω is the real space of p. The Monte Carlo algorithm works by drawing random numbers

X1, X2, · · · , Xn where Xj are random variables drawn from density p, i.e., Xj ∼ p for j =

1, 2, · · · , n. A Monte Carlo estimator of equation (3.2.7) is then given by

În =
1

n

n∑
j=1

f(Xj). (3.2.8)

Thus we have În → I = Ep[f(X)] =
∫
Ω
p(X)f(X)dX for n→ ∞.

To quantify the error in our estimation, we use the central limit theorem (CLT). LetX1, X2, · · · , Xn

for independent identically distributed (i.i.d.) random variables with E(Xi) < ∞ and variance

Var(Xi) = σ2 < ∞ for all i = 1, 2, · · · , n. The central limit theorem states that if for a popula-

tion mean µ we have

Zn =
1
n

∑n
i Xi − µ

σ/
√
n

, (3.2.9)

then Zn converges to a standard normal variable, i.e. Z∞ ∼ N(0, 1) which is equivalent to

p(Zn) =
1√
2π
e−Z2

n/2, (3.2.10)

for n→ ∞. Since we do not know the population mean µ, we can estimate it from a sample

µ̂ ≈ 1

n

n∑
i

Xn + ξσ/
√
n, (3.2.11)

where ξ ∼ N(0, 1). The second term in equation (3.2.11) represents the error in the approxi-

mation. We are therefore able to determine the error if we can estimate the standard deviation
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σ of the sample, enabling us to calculate confidence intervals for µ. In practice the maximum

likelihood estimate is used, i.e.,

ˆσ2
ML =

1

n− 1

n∑
j

(
Xj − X̄n

)2
. (3.2.12)

This illustrates that the error is inversely proportional to the square root of the sample size; hence,

to decrease the error by a factor of ten say, we need to increase the sample size by a factor of a

hundred.

3.2.1 Markov Chains

The “classical Monte Carlo” algorithm generates an independent series of random numbers,

which are specified by a target distribution π. This can however be difficult for high dimensional

problems or complicated target distributions. Markov chains are designed to overcome this prob-

lem, specifically the Markov Chain Monte Carlo (MCMC) algorithm, which was introduced in

1953 [27] to simulate a liquid in equilibrium with its gas phase. It was only after 1990 that

MCMC became popular amongst statisticians.

Markov chains are a series of random variables X1, X2, · · · that are assumed to have a finite

number of states 1, 2, · · · , T , i.e., Xi can only assume values S1
1 , S

2
2 , · · · , ST

T . In a Markov chain

given a set of states {i}, the probability of the next state depends only on the current state which

is equivalent to

P (Xn = in|Xn−1 = in−1, Xn−2 = in−2, · · · , X0 = i0) = P (Xn = in|Xn−1 = in−1), (3.2.13)

which is known as a transition probability.

We assume homogeneity with regards to steps, which implies P (Xn = in|Xn−1 = in−1)

does not depend on n. We assume there are d states such that for each j = 1, 2, · · · , d state,

π
(k)
j = P (Xk = j) (3.2.14)
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is the probability to find the chain in state j at step k. From the laws of probability,

π
(k)
j ≥ 0, (3.2.15)

d∑
j=1

πk
j = 1 (3.2.16)

therefore

π
(k+1)
l =

d∑
j=1

P (Xk+1 = l|Xk = j)π
(k)
j (3.2.17)

=
(
π(k)P

)
l
, (3.2.18)

where P = (P (Xk+1 = l|Xk = j)) is a matrix of transition probabilities. Hence, for any state in

general

πk+1 = πkP, (3.2.19)

which is known as the Chapman-Kolmogorov equation which relates the joint probability distri-

butions of different sets of coordinates on a stochastic process.

The distribution π is called a stationary distribution if conditions πj ≥ 0 and
∑d

j πj = 1

remain unchanged. Stationary distributions are not necessarily unique, i.e.,

π = πP, (3.2.20)

where π is a left eigenvector of P . Markov chains do not necessarily converge, however we

are interested in chains that converge independently of initial distribution π0. The distribution

is stationary when convergence is achieved. For this we need to consider two conditions, viz:

irreducibility and periodicity.

• Irreducibility -The state j is reachable from state i if there is an n > 0 that satisfies P (Xk+n =

j|Xk = i) > 0. A chain is then said to be irreducible if every j is reachable from every i.
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• Periodicity -A state j is called periodic with period r ≥ 1 if r is the greatest integer such that

P n
ii = 0 if n is not a multiple of r. A state is called aperiodic if it has r = 1 and a chain is

called aperiodic if every state is aperiodic.

A Markov chain is said to be aperiodic if it has one aperiodic state. For a finite state space,

an irreducible Markov chain has a unique stationary distribution, and if it is aperiodic,

lim
k→∞

π(k) = π, (3.2.21)

for all initial distributions. Another property that certain Markov chains have is the property of

recurrence. The recurrence time or step of state i given by Ti = min{n ≥ Xn = i given X0 = i}

for random variable Ti. In a sense, recurrence time is the minimum time it takes to get back to a

state. A state i is called recurrent if P (Ti < ∞) = 1; otherwise i is transient. A recurrent state

is called positive recurrent if E [Ti] < ∞, otherwise it is called null recurrent. A Markov chain

is said to be positive recurrent if all states are positive recurrent. These properties lead us to the

ergodic principle, which states that an ergodic Markov chain has a unique stationary distribution

π such that

π = πP, and (3.2.22)

lim
k→∞

π(k) = π ∀ π(0). (3.2.23)

A chain that is irreducible, aperiodic and positive recurrent is called ergodic. In the next Section

we will look at a specific MCMC algorithm that is commonly used in practice.

3.2.2 The Metropolis-Hastings Algorithm

The Metropolis algorithm was generalised into a Metropolis-Hastings (MH) algorithm [132],

enabling complete Bayesian inference of all kinds. We consider the MH algorithm for a contin-

uous state space. Letting t(y|x) represent the transition probability density of finding a system



3.2 The Markov Chain Monte Carlo algorithm 50

in state y given it is in state x, we have a sufficient condition for existence of a unique stationary

distribution given by

π(k+1)(y) =

∫
Ω

t(y|x)π(k)(x)dx. (3.2.24)

The goal of the MH algorithm is to construct a Markov chain such that its asymptotic distribution

of states is identical to the target distribution, thereby providing a solution to equation (3.1.6).

The target distribution π is therefore a stationary distribution. A useful condition for stationarity

is the detailed balanced equation (DBC)

π(x)t(y|x) = π(y)t(x|y). (3.2.25)

The proof follows as: ∫
Ω

π(x)t(y|x)dx =

∫
Ω

π(y)t(x|y)dx (3.2.26)

= π(y)

∫
Ω

t(x|y)dx (3.2.27)

= π(y) (3.2.28)

with the last line due to
∫
Ω
t(x|y)dx = 1. The MH algorithm satisfies this property thus making

it a useful tool for sampling the posterior distribution of parameters. The steps of the algorithm

is as follows:

• To move from state xk to xk+1, we draw a proposal yk from the proposal distribution q(yk|xk).

• We accept the proposal i.e. set xk+1 = yk as our new state with probability

ρ(yk, xk) = min
[
π(yk)

π(xk)
× q(xk|yk)
q(yk|xk)

, 1

]
(3.2.29)

• Otherwise, reject the proposal and set xk+1 = xk.
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Note that the Metroplis algorithm has q(x|y) = q(y|x) ∀ x, y, therefore,

ρ(yk, xk) = min
[
π(yk)

π(xk)
, 1

]
. (3.2.30)

This means that if the proposed step yk, has a higher probability density than xk, the proposal

will always be accepted. If π(yk) = π(xk), the step will be accepted only with probability

π(yk)/π(xk). The proposal is typically, but not restricted to, a Gaussian distribution with covari-

ance CT , that controls the step size for the following chain element. We say the step is accepted

if π(x∗)/π(xn) ≥ 1; otherwise it is rejected. The chain is correlated and in the infinitely long

chain limit, the chain fully explores the target parameter space spanned by π, with the limiting

distribution of the chain equivalent to π; at which time we say the chain has converged. The

proposal distribution should be chosen such that it can be fine-tuned to resemble π. The step size

is important because the sampler could miss regions of the target distribution for too large steps.

Conversely, for too small steps, the chain could remain stuck at regions for a long time, failing

to fully explore the target parameter space within the restricted time limit. It is therefore nec-

essary to carefully consider the covariance. There are monitors and diagnostic tools that assess

convergence [35, 133], as well as recommendations for optimal scaling and calibration [134].

Even though it is widely used in cosmological parameter estimation, the MCMC sampler has

been scrutinised because it cannot be easily parallelised and has correlations in its final sample set

[31, 135]. In this thesis we study an alternate importance sampling algorithm called Population

Monte Carlo (PMC), which overcomes these shortfalls.
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3.3 Population Monte Carlo algorithm

PMC is an iterative sampling algorithm that aims to improve estimates of parameters using the

sequence of samples generated after each iteration. It is based on the identity,

⟨f⟩ =

∫
f(x)π(x)dx

=

∫
f(x)

π(x)

q(x)
q(x)dx. (3.3.31)

We use equation (3.3.31) to independently draw a sample (x1, x2, · · · , xNs) from q, where q

is known as the importance function. This function is synonymous with the trial distribution

in MCMC. It is an initial guess of the target distribution which adapts iteratively to π. The

importance function therefore has the property of a probability density function such that q(xi) ≥

0 for i = 1, 2, · · · , Ns. A convergent estimator of equation (3.3.31) is,

⟨f⟩ ≈ 1

Ns

Ns∑
i=1

f(xn)
π(xn)

q(xn)

=
1

Ns

Ns∑
i=1

f(xn)wn, (3.3.32)

where

wn =
π(xn)

q(xn)
, (3.3.33)

are known as the importance weights. The normalised importance weights are defined as,

w̄n =
wn∑Ns

i=1wi

. (3.3.34)

Using this result we obtain the self-normalised importance ratio,

⟨fN⟩ ≈
1

Ns

Ns∑
i=1

f(xn)w̄n, (3.3.35)
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which is independent of the normalisation of π(x).

The estimation is done via an adaptive method using importance sampling. Sample sets are

generated at each iteration t = 1, 2, · · · , T , from respective importance functions, (q1, q2, · · · , qT ).

The importance weights at each iteration, t, are computed by,

wt
n =

π(xtn)

qt(xtn)
; n = 1, · · · , Ns, (3.3.36)

with the normalised importance weights obtained from equation (3.3.34). These weights form

the basis for the updating procedure as all parameters of the importance function are updated

accordingly to w̄n. This process continues at each iteration, at which a measure is in place to

signal to the sampler if it should stop or continue. This measurement is based on the closeness

between q and π(x).

We use the Kullback Liebler divergence [136] as a measure of the fit between q and π(x),

given by,

K(π||qt) =
∫

ln

(
π(x)

qt(x)

)
π(x)dx. (3.3.37)

This measure is adjusted accordingly with each iteration of qt, so as to minimise K. To enable q

to closely match π(x) and ensure the computation of K is feasible, a linear sum of a number of

mixture densities or components for q are suggested [137] instead of an explicit form. That is,

qt(xt, αt, θt) =
Nc∑
d=1

αt
dϕd(x

t, θtd), (3.3.38)

where αt = (αt
1, α

t
2, · · · , αt

Nc
) are the component weights associated with the sample size cho-

sen from each respective component, ϕd, for Nc components. These are constrained such that∑Nc

d=1 αd = 1. Each ϕd is therefore dependent on a parameter set θd. It is suggested [31], that the

ϕd distributions chosen are either multivariate Gaussian or Student-t distributions with the latter

chosen in the case that π(x) is suspected to have heavy tails. In this thesis we find t-distributions
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to be less efficient in general than Gaussian distributions which proved to be sufficient for our

studies. We therefore have components of dimension D such that,

ϕd(x, µd,Σd) = (2π)−D/2|Σd|−1/2

exp

[
−1

2
(x− µd)

TΣ−1
d (x− µd)

]
, (3.3.39)

with covariance matrix Σd and mean µd. We summarise the algorithm based on [30] as follows:

(a) First choose an importance function based on a linear combination of densities ϕd.

(b) Draw a sample set (x11, x
1
2, · · · , x1Ns

) from these densities, thereafter, computing the weights

w1
n for each sample point x1n for n = 1, · · · , Ns. At any iteration t, the importance weights are

updated by

wt
n =

π(xtn)∑Nc

d=1 αdϕd (xtn, µ
t
d,Σ

t
d)
, (3.3.40)

with corresponding w̄t
n given in equation (3.3.34).

(c) Once this is done, we iterate and update component weights αd, and the parameters of the

components, using the normalised importance weights w̄t
n, such that

αt+1
d =

Ns∑
n=1

w̄t
nρd, (3.3.41)

µt+1
d =

Ns∑
n=1

w̄t
nx

t
nρd/α

t+1
d , (3.3.42)

Σt+1
d =

∑Ns

n=1 w̄
t
n(x

t
n − µt+1

d )(xtn − µt+1
d )Tρd

αt+1
d

, (3.3.43)

where

ρd = ρd(xn, αd, µd,Σd)

=
αdϕd(xn, µd,Σd)∑Nc

d=1 αdϕd(xn, µd,Σd)
, (3.3.44)



3.3 Population Monte Carlo algorithm 55

and can be regarded as the weighted PDF of the components, with respect to a particular sample

point. We then draw a new sample set (xt+1
1 , xt+1

2 , · · · , xt+1
Ns

) from the updated components and

compute wt+1
n associated with each new sample point. This procedure is repeated until iteration

T , when equation (3.3.37) is minimised sufficiently, hence satisfying the convergence criterion.

The degeneracy of the importance weights wt
n as the dimension increases is a drawback of

the importance sampling scheme. The problem arises here when the variance of the weights

Var({wt
n}) is large, with max{wt

n} ≈ 1. This indicates a low number of representative samples

and often occurs when π and qt have disjoint support. The maximum of the importance weights

converges to 1 if Ns is sub-exponential in the system dimension. For a likelihood P (D|xt) we

have for sample point n at any iteration,

wn ∝ P (D|xn) =
M∏
i=1

P (Di|xn), n = 1, · · · , Ns, (3.3.45)

where the importance weights are drawn from a likelihood consisting of a product of a possible

large number of factors M , which can result in a large variance of the normalised importance

weights, hence indicating a low number of effective samples. To overcome this problem for

Gaussian mixture densities, a nonlinear transformation of the importance weights is suggested

[138], creating a Nonlinear PMC (NPMC) algorithm. For a nonlinear positive function φt :

(0,∞) → (0,∞), that may depend on iterations t and sample size Ns, we have the nonlinear

transformation

wt∗
n = φt(wt

n) (3.3.46)

with corresponding normalised transformed importance weights

w̄t∗
n =

wt∗
n∑Ns

i=1w
t∗
i

. (3.3.47)

The algorithm is then updated as before with w̄t∗
n replacing w̄t

n.
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There are two types of nonlinear transformations with the first given by

wt∗
n = (wt

n)
γt

, (3.3.48)

where γt adapts with every iteration and 0 < γt ≤ 1, with γt closer to 0 during earlier iterations

and approaching 1 as the sampler gets closer to converging. This transformation method is known

as tempering and recommended choices of γt are polynomial functions of the form γt = tm for

m ≥ 0 or a sigmoid function γt = 1
1−e−t .

The second type of transformation is called clipping, where we have

wt∗
n = min

(
wt

n,Υ
t
MT

)
, (3.3.49)

where Υt
MT

is a specified threshold value that denotes the M th
T highest importance weight, with

1 < MT ≤ Ns. The threshold is chosen to guarantee that the number of samples that satisfy

wt
n ≥ Υt

MT
, is equal to MT < Ns. A sufficient requirement is that MT is selected to adequately

represent the target distribution. An alternative to the transformation in equation (3.3.49) is to

use

wt∗
n =

2βt

1 + exp
(

−2wt
n

βt

) − βt, (3.3.50)

where βt > 0 should increase along with iterations since there is a progressive reduction in the

nonlinear distortion of the standard weights. The above transformation can be implemented if the

ESS, calculated using the conventional importance weights, is below some minimum specified

by the user. In the applications considered in Chapter 5, we found it necessary to implement

these techniques, specifically the soft clipping method, in order to improve the sampling of large

and degenerate parameter spaces.

The conventional PMC algorithm has already been applied successfully to cosmological pa-

rameter estimation and model selection using weak gravitational lensing in the Canada-France
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Hawaii Telescope Lensing Survey (CFHTLenS) [45], strengthening support for the standard cos-

mological model. Apart from constraining the cosmological parameters of the standard model,

tight constraints have also been obtained for dark energy and the primordial power spectrum pa-

rameters [139]. A recent Bayesian technique called Model Averaging [139] has been designed

to overcome the problem of weak model discrimination with data, which can result in underes-

timating the uncertainty of parameters. The method aims to solve this problem by incorporating

the uncertainty of the correct model into the calculation of the parameter probabilities, which

requires estimating posterior probabilities of models and parameters using PMC. PMC has even

had success in challenging inference for the multivariate skew-normal model parameters [140],

through a Bayesian analysis approach. The NPMC algorithm has been applied to stochastic

kinetic models (SKMs) [138], which are multivariate Markov jump processes that explain the

interaction among species in biochemical systems according to a set of unknown rate parame-

ters. To estimate the posterior distribution of these rate parameters requires Bayesian analysis,

via Monte Carlo sampling techniques. A comparison between MCMC and PMC has been done

in a cosmological setting [31] and in a SKM problem with NPMC and MCMC, with both studies

concluding higher computational costs for MCMC. The increased availability of computational

resources, such as high performance computing systems, motivates the use of algorithms that can

easily run in parallel.



CHAPTER 4

Optimisation of PMC algorithm parameters

The PMC sampler must be initialised such that its algorithm parameters are specified according

to the choice of the target distribution. The choice of the algorithm parameters will ultimately

affect the performance of the algorithm. This Chapter focuses on selecting the parameters to

optimise the performance of PMC. We define a measure of performance so as to determine the

effect of the algorithm parameters. Furthermore, we will also address the convergence of the

chain and compare convergence measures for the PMC algorithm to that used for MCMC. The

optimisation study is extensively investigated for a wide range of target distributions that are

commonly experienced in practice. We begin by examining the measure of convergence of the

chains.

4.1 A sufficient convergence statistic

PMC is capable of detecting when the importance function has converged sufficiently to the target

distribution. This process of stopping the sampler when convergence is achieved can therefore
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be automated. In this Section, we establish the convergence criteria and discuss its compatibility

with a convergence statistic used in MCMC algorithms to determine if it is sufficient.

Following the work of [31], instead of the Kullback-Liebler divergence, K, we use an esti-

mator of equation (3.3.37) at each iteration t,

ESSt =
1

Ns

(
Ns∑
n=1

(w̄t
n)

2

)−1

, (4.1.1)

which is called the normalised Effective Sample Size, which essentially measures the number of

sample points accepted. The statistic lies in the range [0, 1], with ESS ≥ 95% indicating that

convergence has been achieved [31], which we confirm from our simulations. For complex dis-

tributions of high dimensions (greater than six) however, the ESS threshold decreases to 80%

[31]. We compare this statistic to the convergence statistic r, used in [35] for the MCMC algo-

rithm, since both measures require different criteria to be satisfied to indicate convergence. The

statistic r is defined as,

r =
σ2
x̄

σ2
π

, (4.1.2)

where σ2
x̄ is the variance from the sample mean and σ2

π is the variance of the target distribution.

Convergence is achieved when r < 0.01, which indicates the mean of the sample is close enough

to the target mean.

We conduct a simulation to compare the effectiveness of both these statistics which involves

sampling from a one dimensional Gaussian target distribution. In order to relate the r statistic

to ESS, we look at which statistic requires more iterations to satisfy convergence criteria. This

indicates which of the two statistics are more strict. We use 100 realisations at various sample

sizes, viz: Ns = 30, 40, 50, 80, 100, 150, 200, 300, 400. Figure 4.1 shows an ESS cut-off greater

than 99% is related to the r statistic cut-off of r < 0.01. A high ESS cut-off of 99% is used

since the mixture densities are of the same form as the target distribution. Furthermore, we are

working with a one dimensional distribution, so high ESS measures can be achieved. For small
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Figure 4.1: The minimum number of iterations, Nit required to attain r < 0.01 against Nit

required to attain an ESS greater than 99%. Data points for each sample size (in orange) are
shown with error bars from the standard deviation estimated from 100 independent realisations.
The corresponding sample sizes are indicated next to the points. The dashed curve represents
a one-to-one relationship between the two statistics. Nit for Ns = 300 and 400 are almost the
same.

sample sizes less than 200 the statistic r is far stricter than ESS judging by the greater number of

iterations required to achieve r < 0.01 as can be seen from Figure 4.1. However for large enough

Ns (Ns ≥ 200) results indicate that ESS is just as strong a constraint as r, since to achieve both

statistics, the same number of iterations are required. The difference between ESS and r is that

the latter is more dependent on the sample size for an accurate estimate of the target mean,

whereas ESS requires that most sample points replicate the target distribution, irrespective of the

coverage of high density regions. This means that for smaller sample sizes, convergence based

on the r statistic requires many more iterations than convergence based on the ESS statistic. It is

therefore advisable to choose the sample size large enough to increase the probability of covering

all regions of the target parameter space. In what follows we explain how the algorithm can be

optimised to find high density regions of an unknown parameter space. We will investigate the
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choice of an adequate sample size in Section 4.4.3 but first we derive a quantity to measure the

performance of PMC.

4.2 Defining efficiency

Computational cost and wall-clock time are affected by the number of sample points PMC must

evaluate to converge. A weighted proportion (αdNs) of samples are drawn from each mixture

density, ϕd, that collectively make up the sample of size Ns at each iteration t. Hence in order

to compute qt, each component must evaluate every sample point x1, x2, · · · , xNs . All Ns points

are thereafter evaluated Nc times. The number of components may vary per iteration since low

sample weights (αd ≈ 1/Ns) are disregarded. The total computational cost for varying number

of components at each iteration t is then given by,

Ncost,t = Nc,tNs. (4.2.3)

If no components become disregarded, then after T iterations we have the total number of eval-

uations,

NTotal =
T∑
t=1

Ncost,t = TNcNs, (4.2.4)

where NTotal is the total number of evaluations and is the actual computational cost that we wish

to minimise. Note that we are not restricted to a constant sample size at each iteration [141],

therefore equation (4.2.3) can be modified as necessary. For the purpose of this study however,

we keep the sample size constant at each iteration. We define the efficiency, E, of the PMC

algorithm to be the inverse computational cost, which is then measured by,

E = (NTotal)
−1 . (4.2.5)

In what follows we will determine the optimal choice of the PMC algorithm parameters by

maximising E with respect to those parameters through the use of simulations.



4.3 Simulations 62

4.3 Simulations

In this Section we describe the PMC algorithm parameters which affect efficiency of the sampler

and briefly explain the simulation used to optimise efficiency with respect to these parameters.

A large number of independent realisations are conducted in order to derive the relationship

between E and the input variables, which we refer to as PMC algorithm parameters, thereby

allowing us to study the optimal choices of these parameters. The mixture densities follow a

Gaussian distribution for all simulations in this thesis. We are required to choose Nc and Ns

initially, as well as the parameters of the mixture densities, arising from their mean, µd, and

covariance, Σd. We choose to draw the mean and diagonal covariance, Σd = diag(σd, · · · , σd),

from uniform distributions as follows. We choose σd such that,

σd ∼ UNIFORM(σ0 − σ1, σ0 + σ1), (4.3.6)

with σ0 and σ1 representing the center and width of the uniform distribution respectively and

similarly for the mean,

µd ∼ UNIFORM(µ0 − µ1, µ0 + µ1). (4.3.7)

The six PMC algorithm parameters are therefore (Ns, Nc, σ0, σ1, µ0, µ1).

Each simulation involves varying all six algorithm parameters over a specific range, creating

a discrete parameter space over which E is measured. To reduce noise in the simulated data we

use 30 realisations for each point in the parameter space. To obtain the relationship of E against

each algorithm parameter, we average over the remaining five algorithm parameters reducing the

parameter space to the parameter of interest with corresponding E. Using this method enables

us to optimise the performance of PMC for each of its algorithm parameters.
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4.4 The Gaussian target distribution

We first run a simulation on a simple target distribution and use the ESS convergence statistic

as well as the measure of efficiency to gauge the performance of PMC on a distribution that has

the same functional form as its components. A multivariate Gaussian distribution for various

dimensions is used as our target distribution. The dimensions considered are 2, 3, 4, 5 and 8

to give us a general understanding of the performance of PMC against dimension. The target

distribution is

π(x) ∼ N(µ, I), (4.4.8)

with µ a vector of means set to 1 for all dimensions, and I is the Identity matrix.

The components are able to obtain the exact functional form of this target distribution and

PMC is therefore able to match q very closely to π, obtaining a high ESS. We therefore use an

ESS ≥ 98% as our convergence statistic. Using this ESS cut-off, we now study the relationship

of E and the algorithm parameters.

4.4.1 Sensitivity to mixture density parameters

We first examine the parameters of the mixture densities, specifically the effect of the algorithm

parameters σ0, σ1, µ0 and µ1 on E. If the shape of the mixture densities is well matched to the

target distribution we would expect much quicker convergence. The mixture density parameters

will reflect our prior knowledge of the target distribution, therefore this section will illustrate

the penalty for limited prior knowledge. We vary σ1 and µ1 over a range that will sufficiently

illustrate the efficiency of the algorithm against these parameters. This relationship is shown in

the top panel of figure 4.2 for the dimensions considered.

For lower dimensions (≤ 3), efficiency is more sensitive and penalised for larger variances

which reflects more ignorance about the target distribution parameters. For larger dimensions
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Figure 4.2: Top left: The efficiency against the scatter of the uniform distribution from which the
variance of the mixture density is drawn. Top right: As in the top left panel, the efficiency against
µ1 for various dimensions. Bottom left: The efficiency against σ0. The vertical line represents the
magnitude of the variance of the target distribution. Bottom right: Efficiency against µ0 which
peaks at the target mean indicated by the vertical line. This indicates that PMC performs best
when the components are positioned close to the target as would be expected.

however, efficiency is relatively flat as σ1 and µ1 increase, indicating that the penalty for lack of

knowledge of the target parameters is not substantial, compared to that for smaller dimensions.

This would indicate that PMC is not very sensitive to the selection of σ1 and µ1 when the dimen-

sion of the distribution considered is greater than three for a multivariate Gaussian distribution.

The positioning of components is also important when initialising the sampler. This is done

by selecting σ0 and µ0 to position the variance and mean of the mixture density respectively. The

ideal situation is to position the components directly on the target i.e. setting σ0 and µ0 to the
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mean and variance of the target distribution. This is not possible in most situations due to the

lack of information about the underlying distribution. We illustrate how efficiency is affected by

the choice of σ0 and µ0 in the bottom plots of Figure 4.2. Results from the simulation show that

µ0 should be chosen to position the components in high density regions of the target parameter

space, preferably matching the means of the components with that of π. We find PMC favours

a large width compared to the target distribution and performs better as compared to a smaller

choice of σ0. Efficiency increases even after σ0 exceeds the width of the target distribution, which

is shown by the vertical line. PMC quickly adapts to sample the target distribution when there is

a good match of distributions between the mixture densities and the target distribution. When the

mixture densities encompass all relevant regions of the target distribution, it is able to quickly

assume the target distribution shape, covering all relevant regions of low and high density. This

occurs when σ0 is chosen to be larger than the width of the target distribution. On the other

hand, when σ0 is chosen smaller than that, the sampler searches in a manner synonymous with

‘searching in the dark’, since it has little information about the parameter space spanned by

π. The sampler must then find relevant regions of the parameter space with more trial and error,

hence requiring more iterations. It is therefore advisable to choose a larger width when specifying

the covariance matrix than what you assume the target covariance to be. This is in agreement

with MCMC [35] but here the efficiency is not as strongly dependent on σ0.

Prior information is important when initialising the sampler but the relative penalty due to

ignorance of the mixture density parameters is less severe for higher dimensions.

4.4.2 Optimal number of components

The sampler is initialised such that all components have an equal probability of succeeding in

sampling π; therefore, we assign equal weighting to all components, i.e. α1 = α2 = · · · = αNc .

Components that sample from the target, such that the variance of the normalised importance
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weights is low, will have more samples drawn from their distribution function, whereas compo-

nents that struggle to sample the target distribution and remain stuck in very low density regions

will be discarded or buried. The sampler can be modified such that components that are buried,

can be revived by positioning them close to the component with highest weight, αj,max, and given

the same covariance matrix as that component. The weights for all components can then be dis-

tributed equally. This is needed for more complex distributions and we implement this method

in our application to cosmology. Other reasons that may cause the components to be buried are

due to their covariance no longer satisfying the criteria for being positive-definite, i.e. λi ≤ 0

for eigenvalue λ corresponding to dimension i. This is most likely to occur in regions of the

target parameter space that are degenerate and is difficult to overcome. For the Gaussian target

distribution however, components rarely become buried as most often they are able to sufficiently

sample π.

Figure 4.3: The efficiency against the minimum number of components,Nmin
c , needed for conver-

gence. These are points from our simulation averaged over all five remaining PMC parameters.
Data points including 1σ errors are shown along with fitting curves for all dimensions.
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The results of the simulation for various dimensions of the target distribution are shown in

Figure 4.3. The plot illustrates fitting curves along with the data and 1σ errors. We fitted a power

law to each of these curves and found a power law index consistent with -1 in each case, that is

E ∼ 1/Nc.

As can be seen from the figure, the optimal choice for the number of components isN opt
c = 2.

Components, like the target distribution, are multivariate Gaussian distributions which enables

the least amount of components, namely Nc = 2, to match the target distribution, which is

required to satisfy the ESS convergence criterion. For more complex target distributions however,

we are not guaranteed that this result will persist, as studied in section 4.5.

4.4.3 Optimal sample size

We next consider how the efficiency varies as a function of sample size and derive what the

optimal choice of the sample size, Ns, is for a given dimension. The optimal sample size, N opt
s ,

should be large enough to yield the required ESS but small enough to minimise the computational

cost, hence maximising E. As can be seen in Figure 4.4, there is a particular Ns, corresponding

to the number of iterations, T , that maximises E. Iterations, as efficiency, are averaged over the

many independent realisations mentioned in Section 4.3. We therefore examine the relationship

of T against Ns and find it is well described by the sum of two exponential functions given by,

T (Ns) = a1 exp

[
b1
Ns

]
+ a2 exp

[
b2
Ns

]
(4.4.9)

where a1, a2, b1 and b2 are the fitting parameters found using least squares. By assuming the

number of components do not change significantly after each iteration (since this is evident in

most realisations), we use equation (4.4.9) in conjunction with equation (4.2.4) to obtain a profile
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Figure 4.4: Left: The minimum number of iterations required for convergence according to the
sample size chosen for various dimensions of the target distribution. Right: The corresponding
efficiency against the sample size.

of E against Ns such that

E = [NTotal]
−1

=
1

NsNc

[
a1 exp

(
b1
Ns

)
+ a2 exp

(
b2
Ns

)]−1

. (4.4.10)

In Figure 4.5 we show an example of the fit of T to the data using the 3-dimensional case, and

the corresponding efficiency fit. In this case and in other dimensions, the adopted functional

form provides a good fit to the simulation data. The optimal sample size is found by maximising

equation (4.4.10) with respect to Ns to obtain N opt
s , with Nc = N opt

c = 2 since these are the opti-

mal number of components. The data for the simulation is shown in Figure 4.6, which illustrates

the relation between the optimal sample sizes and dimension, D in the top left plot. To extend

the range of theNs−D relation, we have filled in other dimensions than those mentioned earlier,
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Figure 4.5: Left: Fitting function for T against the data shown for a 3-dimensional target distri-
bution. The solid curve represents the fitting function with the closed circles representing data
points. Including error bars would make the plot very crowded but here the emphasis is on the
behaviour of T against Ns and the quality of fit to the data, which proves quite accurate. Right:
The corresponding fit to data of efficiency against sample size including 1σ errors bars obtained
from the sample variance of the realisations.

but keeping σ1 and µ1 fixed (sampling the full 6 dimensional PMC algorithm parameter space is

very costly, particularly in higher dimensions), since the study in Section 4.4.1 indicated a weak

dependence on those parameters. Closed circle points represent the full six PMC algorithm pa-

rameter simulation while open circles represent the restricted simulation. The figure suggests

that there is a simple power law relation between N opt
s and D, and we find that,

N opt
s = γDβ, (4.4.11)

where γ ≈ 49.1558±15.53 and β ≈ 1.964±0.049
0.03 are the best fits to the free parameters. Equation

(4.4.11) indicates a quadratic relation between N opt
s and D, which is explained by the elements

of the covariance matrix scaling as D2.
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Figure 4.6: Top Left: The optimal sample size for the complete algorithm parameter set simula-
tion shown by closed circles with the restricted set shown by open circles. Data is shown with
1σ errors. Top Right: The cost of sampling multivariate Gaussian distributions of various di-
mensions using optimal sample size and number of components. Solid line represents the fitting
curve for equation (4.2.4) using (4.4.11) and (4.4.9). Bottom: The optimal number of iterations
T opt for the corresponding optimal sample size in each dimension. The data indicates that the
number of iterations required to converge for all dimensions are the same when using an optimal
sample size.

By using the optimal sample size we can determine the optimal number of iterations for
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Dimension Ns,opt NTotal at Ns,opt

2 136± 73 2485.61

3 403± 142 8446.2

4 806± 275 16641.4

5 1098± 321 26096.8

6 [1697± 463] 39640.6

7 [2793± 587] 58430.2

8 2941± 682 74389.2

9 [3641± 984] 99526.8

10 [4696± 617] 121269

11 [5330± 1463] 148763

16 [11410± 2852] 326761

20 [17637± 3636] 470523

Table 4.1: Optimal sample size including 1σ errors. Entries in brackets represent the restricted
algorithm parameter simulation. The last column illustrates the corresponding computational
cost for Ns,opt at Nc = 2 components.

each dimension and the associated computational cost. We find that using N opt
s will result in

convergence with the same number of iterations, that is, the optimal number of iterations, T opt,

is virtually the same for all dimensions as can be seen in the bottom panel of Figure 4.6. The

relationship of the number of evaluations to dimensions is quadratic, as shown in the top right

plot of Figure 4.6, which is due to the quadratic relation between N opt
s and D. The optimal

sample size and computational cost for each each dimension is shown in Table 4.1. We have thus

been able to optimise the algorithm with respect to the sample size from equation (4.4.11) for

an optimised number of components N opt
c = 2 and mixture density parameters based on prior

knowledge of the target distribution.
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4.5 Complex target distributions

So far we have considered the simple case of a Gaussian target distribution and used compo-

nents that have the same probability distribution function as that of the target. It is instructive to

investigate cases where the target distribution have a different functional form to that of the com-

ponents and to determine whether or not these mixture densities can adapt in order to reconstruct

more complex distributions. To this end we investigate the ability of PMC to efficiently sample

from a banana shaped, bimodal and hypercube target distribution. We will start by looking at the

banana shaped target distribution.

4.5.1 Banana distribution

The banana distribution has a strong degeneracy between parameters that are twisted. The target

distribution for D random variables, xi, for i = 1, · · · , D, is a multivariate Gaussian distribution

in all dimensions, except xD which is twisted in the remaining dimensions, in the following

manner

(x1, · · · , xD−1, y) ∼ N (0,Σ) (4.5.12)

with the random variable y encoding the twist, such that

y = xD +B

(
x2D−1

σ2
1

− 1

)
+ · · ·+B

(
x21
σ2
1

− 1

)
. (4.5.13)

We set σ1 = 10 with D × D covariance matrix Σ = diag(σ2
1, σ

2
1, · · · , 1). The parameter B

controls the degree of complexity of the distribution, shown in Figure 4.7 in a 2-dimensional

case, for illustrative purposes. We therefore, use B synonymously with complexity. We find

that PMC is unable to sample dimensions higher than two when complexity exceeds B ≈ 1.5.

Consequently we examine only the two-dimensional case. We illustrate how PMC uses multiple

components, shown by blue contours in Figure 4.7, to adequately cover the target parameter
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Figure 4.7: Contour plots of two dimensional distributions; with two different values of B,
showing the effect of complexity on a banana distribution. Components of a converged chain are
shown by solid blue contours covering the distribution with B = 5.

space for the case of B = 5. We wish to know how the degree of complexity affects the number

of components required to reach convergence. In order to determine this, we conduct a simulation

whereby we vary B, and for a particular Nc, we run a number of realisations until convergence

is achieved. If a sufficiently large number of realisations have converged, e.g. more than 50%,

then we are able to sample the target distribution of that complexity with at least that many

components. We optimise all other algorithm parameters and position them in regions of high

density ensuring we have ideal situations for each complexity chosen. This is done to ensure that

failure to achieve convergence is due to insufficient components and not other factors. Results

of the simulation are shown in Figure 4.8, which illustrates that the number of components must

be increased along with increasing complexity. To investigate efficiency against complexity,

we follow the same methodology as mentioned in Section 4.3, but with algorithm parameters

Ns, Nc, µ0, σ0, and B. We exclude σ1 and µ1 because of their weak effect on E. Results are

shown in the right panel of Figure 4.8. We find efficiency decreases exponentially at low B,
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Figure 4.8: Banana target distribution results. Left panel: The minimum number of components,
shown by triangles, required to sufficiently sample the target parameter space of a banana dis-
tribution as a function of complexity, B. Right panel: Efficiency decreases exponentially with
complexity as shown by square points with 1σ error bars obtained from the standard deviation of
realisations. The corresponding computational cost, NTotal, is shown by triangles.

whereas at high complexity, 6 ≤ B ≤ 8, efficiency becomes constant due to the compensation

with the sample size. PMC requires more iterations for the components to adapt to the degenerate

parameter space. Therefore increasing complexity causes the number of iterations to decrease

exponentially. This effect causes the exponential decrease of efficiency at low B.

The banana target distribution forces PMC to use more components than in the case of the

Gaussian target distribution. There is a minimum number of components Nmin
c , that the sampler

requires in order to sufficiently sample the target distribution. If we use less components than

Nmin
c , convergence will not be achieved. The computational cost is proportional to the number

of components, as can be seen in equation 4.2.4, and we find that T stabilises for Nc ≥ Nmin
c ,
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Figure 4.9: A symmetric bimodal distribution with two peaks shown by a contour plot at 1σ
levels. Peaks that are close together result in a mixture Gaussian distribution shown by a = 1
(solid) and peaks that are separated by a region of low probability are shown with a = 3 (dashed).

therefore the optimal number of components is N opt
c = Nmin

c .

We will now look at a more complicated distribution, specifically, the bimodal distribution.

4.5.2 Bimodal distribution

Distributions with more than one peak can pose a problem for PMC, specifically those with

narrow peaks connected by regions of very low probability. We consider the symmetric bimodal

distribution

p(x) ∝ exp

[
−1

2
(x− a)Σ−1(x− a)T

]
+ exp

[
−1

2
(x+ a)Σ−1(x+ a)T

]
, (4.5.14)

with modes situated at ±a and covariance Σ = I , the identity matrix. A visual representation

of a two-dimensional bimodal distribution for different modes is shown in Figure 4.9. If a =

(a1, a2, · · · , aD) for D dimensions, then the greater the value of |ai| for i = 1, 2, · · · , D, the
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Figure 4.10: Plot of efficiency against a scaled by the width of each peak (blue squares). The
corresponding cost NTotal of the simulation is shown by the solid blue line. Regions of interest
are separated by vertical dashed lines.

further are the modes from each other and the more distinct the peaks are. We consider the case

of ai = a for all dimensions for simplicity. Furthermore we look at only the two dimensional

case since our goal in this Section is to analyse the dependency of efficiency on a. By increasing

a, we increase the distance between the two peaks and increase the length of the low probability

region that separates them.

In keeping with the methodology of previous Sections, we conduct a simulation to investigate

the relation between E and a, including a as an algorithm parameter. The relation between E

and other algorithm parameters remain unchanged for the bimodal target distribution. As shown

in Figure 4.10, efficiency behaves differently for different values of a. There are essentially three

regions of a that affect the performance of PMC —these are [0, 1), [1, 3), and [3,∞); scaled to

the standard deviation of each peak. Distributions that fall into each range are shown in Figure
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Figure 4.11: Shape of bimodal distributions for a in ranges [0, 1) (left), [1, 3) (middle) and [3,∞)
(right). Contours represent 68% confidence regions.

4.11. In the first range, [0, 1), there is no region of low probability that separates the peaks and

we are left with an almost perfect Gaussian distribution (fig 4.11 left panel), hence with Gaussian

components, the sampler adapts easily and quickly to the target distribution.

If a increases to within the second interval, [1, 3), we are faced with a mixture Gaussian

distribution of two peaks, which are still significantly close together. At a close to 1 (fig 4.11

middle panel), there are two regions of high density where each mode is situated. Components

tend to intersect with both these regions, until eventually adapting to one mode. This occurs after

many iterations, which takes a long time. Approaching the upper limit of the second interval

[1, 3), the two peaks become distinct, i.e., they are separated by a significant low probability

region, thus enabling each component to represent each peak well. This is indicative of the

behaviour in the third interval (fig 4.11 right panel). In the third interval, [3,∞), the dependence

of E on a can be explained by the sum of two power laws. PMC exhibits the lowest efficiency

and we are faced with the problem of false convergence. This occurs when components adapt to

only one peak, because the other is too far away. This can result in a satisfactory ESS that signals

to PMC that convergence has been reached; when in fact it has not. This is a shortcoming of PMC

for these types of distributions, i.e., the sampler will stop searching the target parameter space if
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convergence has been reached even though the full distribution has not been properly sampled.

The convergence statistic and criteria must be modified in order to overcome this problem.

In the next Section we consider a distribution that is often difficult to sample in practice, i.e.,

the hypercube distribution.

4.5.3 Hypercube distribution

In this Section we consider the hypercube target distribution, which in one dimension is simply

the uniform distribution

prob(x) =



1
b−a

for a ≤ x ≤ b,

0 otherwise.

It is a square grid in a two dimensional parameter space, i.e., the plane. For higher dimensions the

parameter space can be thought of as the volume within the hypercube with the probability of the

vector of parameters being the inverse of the volume if within the multidimensional parameter

space, and 0 otherwise. The hypercube target distribution will require many mixture densities,

specifically Gaussian densities, to adapt to the shape of the flat target distribution. The mismatch

of the distributions between the target and components will require Nc to increase significantly,

especially in higher dimensions. In our study we consider the unit interval length such that

a = 0, b = 1. We first examine the simplest of the hypercube distribution which is one dimension

or univariate hypercube distribution.

One dimension

We consider the simplest case of one dimension and position the components at various locations

within the target parameter space so as to cover the boundaries and central regions. We illustrate
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Figure 4.12: Left panel: Using 4 Gaussian mixture densities situated within the target parameter
space with widths large enough to cover most of the parameter space. The yellow region is the
parameter space of the target distribution. Right panel: Histogram of the ESS we achieved from
the simulation with 8 Gaussian mixture densities. Vertical dashed line represents ESS cut-off of
96%.

the positioning of four components with respect to the target distribution in Figure 4.12. This

is an ideal situation such that components sufficiently overlap almost all regions of the target

parameter space.

The algorithm is able to achieve at least an ESS of 96% since the parameter space is small and

PMC requires at least 8 components to achieve this. However, all components must effectively

cover the target parameter space as in Figure 4.12. We repeat this simulation a number of times

to determine the amount of trials that are able to converge. We plot the histogram of the ESS

statistic in the right panel of Figure 4.12, which shows that a significant amount of trials permit

convergence. We find the means of the components play an important role as the more central

the positioning of the components relative to the target parameter space, the greater the fraction

of points accepted. Intuitively this is reasonable because the Gaussian mixture densities overlap
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Figure 4.13: The distribution of the sample points from an iteration with corresponding ESS ≈
0.96. This illustrates the sample can reasonably adapt to the complex target distribution.

the parameter space of the target more than if they were closer to the end-points. There is no sig-

nificant change in the performance when the widths are adjusted. Note that with 4 components,

we are able to attain an ESS of 96%. A converged sample is shown in Figure 4.13.

Higher dimensions

We increase the target distribution dimension to 2 and configure the means and widths of the

components as in the univariate case. We assume from the number of vertices scaling with

dimension, D, that we would need at least 8D components. We therefore choose to use 64

components and when the simulation is left to run for 3000 iterations, it is able to achieve an

ESS of 96%. The distribution of ESS achieved is shown in the right panel of Figure 4.14, and the

distribution of the converged chain is illustrated in the left panel of Figure 4.14. The distribution

is very close to a square resembling the shape of the target distribution. We note the ESS on

average exceeds 96% after 700 iterations, which is very time consuming and the cost of achieving

an ESS of 98%, as in the Gaussian target case, is much higher. The weights of all components
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Figure 4.14: Left panel: The joint distribution of a converged sample from a two dimensional
hypercube. Green regions represent the 95% confidence level with red representing the 68%
level. Right panel: Histogram of ESS for a two dimensional simulation using 64 components
(solid line). Dashed vertical line is the 96% ESS marker.

stabilise at the same weight during the simulation which indicates that each mixture density does

not progress to higher density regions in order to draw more samples. A progression of two

components is shown as an example after every 500th iteration in Figure 4.15.

For three dimensions we use 83 components with the same initialisation as for the previous

lower dimensional studies. Using such a large number of components increases the computa-

tional cost significantly. Much time is spent inverting the covariance matrices of all components.

We experience numerical problems when such a large number of components is used, due to

some components venturing into regions of low density, which results in the component weight,

αj for component j, approaching zero. When this happens, adjustments must be made to re-

duce the number of components or redistribute the samples drawn from all components. While

this can overcome the problem of small component weights, another problem arises when the

covariances of components become singular or are no longer positive-definite: components be-
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Figure 4.15: Progression of two components during the simulation after every 500 iterations
shown by dashed blue and solid red horizontal bars in the shaded yellow region. The range
of the y-axes has been scaled so that each component is distinguished from each other. Both
components overlap in the first iteration and are essentially the same for the remaining iterations
judging by the negligible difference in weights. The shaded region represents the positioning of
the target mean with respect to the component mean and the width of the region is proportional
to the target width.

come situated in regions of the target parameter space that are degenerate with respect to certain

parameters. In this instance we disregard these components thus reducing the overall number of

components.

For the three dimensional case the ESS oscillates around 80%, far from the 96% goal, and al-

though it may be possible to reach this ESS level with more components, this does not seem

practical in terms of the computational time and resources required. Overall the hypercube dis-

tribution seems to present a challenge for the PMC algorithm to sample, a challenge which

becomes particularly significant in higher dimensions.



CHAPTER 5

Application of PMC methods to cosmology

5.1 The likelihood function for CMB data

We briefly discussed the likelihood in Section 3.1 and now address its role in real cosmological

problems incorporating data. To derive the likelihood function we closely follow the approach

and notation of Dodelson [108]. Several effects are accounted for by the likelihood code. These

are the mode coupling due to sky masking and non-uniform pixel weighting; beam window

function uncertainty, which is correlated across the entire spectrum; and residual point source

subtraction uncertainty. All of these effects are addressed in [36, 142] and [143]. We let s rep-

resent the true temperature anisotropy of the sky in a particular pixel, and the average of the

temperature anisotropies over the entire sky by ∆, which is an estimate of s. The true anisotropy

is believed to follow a Gaussian distribution with zero mean and variance due to the signal de-

noted by CS (i.e., CS is the usual cosmic variance). The probability distribution for s given CS
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is

P (s|CS) =
1√
2πCS

exp

[
− s2

2CS

]
, (5.1.1)

and similarly for ∆ given s,

P (∆|s) = 1√
2πCN

exp

[
−(∆− s)2

2CN

]
, (5.1.2)

where CN is the variance due to the noise including all source noise covariance in the maps.

We ultimately want two statistics: the best-fit estimate and its uncertainty, which summarise the

information contained in the data.

The likelihood function is an integral over all possible s such that

L =

∫ ∞

−∞
P (s|CS)P (∆|s)ds. (5.1.3)

Therefore, substituting (5.1.1) and (5.1.2) into (5.1.3), we obtain

L =

∫ ∞

−∞

1√
2πCS

exp

[
− s2

2CS

]
1√

2πCN

exp

[
−(∆− s)2

2CN

]
ds. (5.1.4)

The exponent in (5.1.4) depends on both the variance of the noise and of the signal. Therefore,

C = CN + CS, (5.1.5)

which is the full covariance matrix and incorporates contributions from both the noise and the

signal. We can now rewrite the likelihood for a single pixel as

L =
1√
2πC

exp

[
−∆2

2C

]
. (5.1.6)

The likelihood function is a product over all Np measurements over all pixels, given by

L =
1

(2π)Np/2|C|1/2
exp

[
−1

2
∆C−1∆T

]
(5.1.7)
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where ∆ = (∆1,∆2, · · · ,∆Np) is now a vector of measurements over all Np pixels. Finding

determinants of matrices of large dimension is computationally expensive. This is why much

time is spent computing the likelihood for a given model. The covariance is symmetric with

Np(Np + 1)/2 independent elements. Considering the special case when C is diagonal with all

elements equal, we have the likelihood over all Np pixels for a single parameter,

L ∝
(

1

CS + CN

)Np/2

exp

[
−1

2

∑Np

i=1∆
2
i

(CS + CN)

]
. (5.1.8)

The signal covariance matrix represents the theoretical signal in a CMB experiment and can be

used to forecast the performance of an experiment. This is done by finding the best-fit CS that

maximises the likelihood function, which is accomplished by simply differentiating (5.1.8) with

respect to CS and equating to zero to solve for CS . Doing this produces the best-fit

ĈS =
1

Np

Np∑
i=1

∆2
i − CN , (5.1.9)

which states that the theoretical signal is the difference between the variance of the data points

and the variance of the noise. By assuming the likelihood is quadratic in the parameters, we

obtain the error associated with (5.1.9) by taking twice the coefficient of the quadratic term in a

Taylor expansion, so that

lnL(CS) = lnL(ĈS) +
1

2

∂2 lnL
∂C2

S

|CS=ĈS
(CS − ĈS)

2. (5.1.10)

Representing the uncertainty by σCS
, we have

σCS
=

(
−∂

2 lnL
∂C2

S

)−1/2

=

√
2

Np

(CS + CN). (5.1.11)
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Equation (5.1.11) shows that in order to reduce the uncertainty tenfold, we must increase the

number of pixels a hundredfold. In the event that the free parameters are the Cℓ’s instead, we

have

σCS
=

√
2

(2ℓ+ 1)fs
(CS + CN,ℓ), (5.1.12)

where the number of pixels have been replaced with (2ℓ + 1)fs for fs representing the fraction

of the sky covered. This is an accuracy threshold for the Cℓ measurements and is due to cosmic

variance. In practice the likelihood analysis is more complicated and because we are using the

WMAP nine-year data in this chapter, we briefly describe how the likelihood works for WMAP.

The likelihood code uses the Fisher matrix, lnF , to assign errors to points in the CMB angular

spectra, i.e., the code calculates the inverse Fisher matrix for the given CMB model spectrum,

which is used to calculate −2 lnL. The central likelihood routine uses a pixel-based likelihood

for low ℓ, specifically 2 ≤ ℓ ≤ 30 for the TT spectrum and 2 ≤ ℓ ≤ 24 for the TE, EE and

BB spectra. The value −2 lnL returned by the likelihood code is renormalised by subtracting a

constant offset ln |Cf |,

−2 lnL = χ2 + ln |F−1| − ln |Cf |, (5.1.13)

where ln |Cf | is the sum of the determinant contributions to −2 lnL computed for the CMB

spectrum and χ2 measures the fit of the model spectrum to the data.

5.2 Parameter estimation: Adiabatic model

We apply the optimised PMC algorithm to the posterior distribution of the flat ΛCDM model

with six parameters, mentioned in Section 2.10. We do this with the latest CMB data from the

WMAP nine-year release [41]. We emphasize that our aim is not to make updated precision

constraints of the cosmological parameters, but to optimise the performance of the sampler for

a cosmological parameter estimation problem. Nevertheless the results obtained are interesting
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and original in their own right, as they provide the most recent constraints on mixed adiabatic

models correlated with two or more isocurvature modes.

5.2.1 Cosmological data

The WMAP mission objective is to determine the geometry, content, and evolution of the uni-

verse using a map of the temperature and polarization anisotropy of the CMB radiation. The

likelihood of any model is calculated using the publicly available Version 5 WMAP 9 code

[36, 60, 91, 142, 144]. In most parts, the likelihood for the nine-year data release is the same as

the seven-year release except for minor adjustments [41].

In order for the likelihood to return a useful statistic, it must be given as input, the theoret-

ical CMB power spectra for that model. We use the publicly available package CAMB [28] to

compute the spectra. The WMAP nine-year likelihood code then takes as input the spectra for

temperature (TT), B-mode (BB) and E-mode (EE) polarization as well as cross temperature with

E-mode (TE), and returns the log likelihood for that model as computed in equation 5.1.13. This

statistic is normalised to the log likelihood of the fiducial model and used as the numerator in

equation 3.3.33. The data described in this section is used in our parameter estimation study for

the purely adiabatic model and the models with adiabatic correlated with isocurvature modes.

5.2.2 Cosmological parameters

The parameters of interest are the standard six parameters for the flat ΛCDM model which are:

the baryon density (Ωbh
2); the cold dark matter density (Ωch

2); the dark energy density (ΩΛ);

optical depth to re-ionization (τ); the scalar spectral index (ns); and the amplitude of the primor-

dial power spectrum (As). We set flat uniform priors over a large enough range of interest for all

parameters except As, with priors for the remaining parameters designed to exclude points that

would cause numerical errors. The range of these uniform distributions are shown in Table 5.1.
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Symbol Description Minimum Maximum

Ωbh
2 Baryon density 0.01 0.04

Ωch
2 Cold dark matter density 0 0.4

ΩΛ Dark energy density 0.5 0.9

τ Optical depth to re-ionization 0.01 0.2

ns Scalar spectral index 0.8 1.3

As Amplitude of the 0 none

primordial power spectrum

Table 5.1: Prior constraints for cosmological parameters.

5.2.3 Optimizing PMC for cosmological parameter estimation: Adiabatic
model

We assume that the joint distribution for the cosmological parameters is well approximated by

a multivariate Gaussian distribution. There are, however, degeneracies expected between some

of the parameters [145], which we expect to affect the performance of the sampler. In keeping

with [31], we use Gaussian mixture densities, with covariance matrices and vector of means

as its parameters. A covariance matrix must therefore be specified for each component ini-

tially. We use the inverse Fisher matrix (F) as the covariance, which is calculated by taking

the derivatives of the Cℓs with respect to the cosmological parameters at the fiducial model val-

ues (Ωbh
2,Ωch

2,ΩΛ, τ, ns, As) = (0.0226, 0.11, 0.734, 0.088, 0.963, 15.7). Each component is

provided a covariance

Σd = cdF−1 , for d = 1, · · · , Nc, (5.2.14)

where cd is a scalar randomly chosen in the range [1, 3]. We choose this range following our

result in Section 4.4.1 for σ0 and in keeping with the result for µ0, we choose the means of the

components such that they are shifted to within 1% of the fiducial model. We initially use a

non-conservative number of components, Nc = 15, to ensure that the algorithm can in fact reach
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Figure 5.1: Adiabatic target distribution. Progression of ESS for runs that use different amount
of components. The run with Nc = 2 requiring 26 iterations to exceed a 96% ESS. The run using
prior updates is indicated by Nc = [2].

convergence and keep the sample size at Ns ≈ 2000, which is the optimal sample size for a six

dimensional Gaussian target distribution from Table 4.1. Results from [31] indicate the target

distribution closely follows a Gaussian distribution. The likelihood evaluation of all models has

been parallelised. ThereforeNs must be selected so that the work can be divided equally amongst

all the processors. For this simulation, convergence is reached with the ESS exceeding 96% after

11 iterations.

We wish to investigate the dependency of cost as a function of the number of components, also

if it is possible to sample the entire parameter space with as few components as possible. We

therefore use two components but keeping the sample size the same and initialise the algorithm

as in the 15 component case. Results are shown in Figure 5.1, which shows that more iterations

are required to reach convergence (≈ 26 iterations). Nonetheless the Nc = 2 run remains less

costly with an efficiency almost three times more than the 15 component run as can be seen in

Table 5.2.
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Nc NTotal Efficiency (×1000)

15 325 500 3.07× 10−3

2 109 200 9.16× 10−3

[2] 42 000 23.81× 10−3

Table 5.2: Summary of simulation with different components using a sample size of Ns = 2100.
The Nc = [2] case used updates from the previous run.

It is worth investigating if prior knowledge affects the performance of the sampler. There-

fore we use information from the converged chain of the 15 component run to initialise another

simulation using 2 components. From the 15 components we chose 2 that have the covariance

with highest determinants. Their means and covariances are now used as the initial parameters

of the mixture densities for the updated run. With the same sample size as before, we find this

simulation takes the same number of iterations to converge as the 15 component run (≈ 11). This

suggests PMC is sensitive to the initial choice of the algorithm parameters when the target dis-

tribution has parameters that display mild degeneracies. A key strategy for the PMC algorithm

that we infer from this study is that it is worthwhile starting with a larger number of components

using a less conservative sample size initially and updating the next run based on these results.

The initial run need not converge but requires that an ESS exceeds 20% for some iteration which

will yield sufficient distribution parameters to update the next run in which we can reduce the

sample size and number of components thereby reducing the computational cost. This ESS limit

must be adjusted to a smaller value, if the dimension of the target distribution increases [31].

There are some key points in this Section worth pointing out. Our results in this Section were

more sensitive to the initialisation of the covariance matrices of the components compared to

Section 4.4.1, as the sampler would fail to converge if samples were drawn from a very low

density region. This is due to the degeneracies between parameters making them more complex
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Figure 5.2: Pure adiabatic model. Marginal distributions between pairs of parameters illustrating
the mild degeneracies. Confidence regions of 95% and 68% are shown by the green and red
contours respectively.

than the Gaussian target distribution considered. The sampler would also take a long time to find

models satisfying the prior conditions if a poor choice of the covariances and means is chosen. It
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Parameter mean ±1σ MLE from WMAP nine-year ±1σ

Ωbh
2 0.0226± 0.0005 0.0226± 0.0005

Ωch
2 0.1136± 0.0046 0.1138± 0.0045

ΩΛ 0.713± 0.027 0.721± 0.025

τ 0.096± 0.013 0.089± 0.014

ns 0.977± 0.013 0.972± 0.013

Table 5.3: Estimates from samples along with Maximum Likelihood Estimates (MLE) from
WMAP nine-year data only [41].

is because of this that an updating procedure with various component sizes must be adopted. As

mentioned in Section 5.1, the most time consuming step in computing the likelihood for the spec-

ified model is inverting the covariance matrix, but this process is parallelised, which drastically

reduces the wall-clock time for PMC to sample the target parameter space.

Included for interest are some of the marginal distributions between the six cosmological

parameters along with the marginal means and errors obtained from the run using two compo-

nents with prior information from previous runs. These are shown in Figure 5.2 and Table 5.3

respectively. Statistics obtained from all runs with different components are in good agreement

with each other. We find that parameter estimates are consistent with estimates obtained from

the WMAP team’s analysis, which we list for comparison.

5.3 Sampling models with the adiabatic mode correlated with
isocurvature modes

In this study we consider the adiabatic mode correlated with a single, two, and finally three

isocurvature modes. For convenience we denote the modes as AD (adiabatic), CI (cold dark

matter), NID (neutrino density), and NIV (neutrino velocity). The likelihood function described
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in Section 5.1 is used with the difference being the input spectrum, which is now a sum of the

spectra for adiabatic and isocurvature contributions. The target distributions studied are very

complex with a higher dimensional and degenerate parameter space. It is for this reason that the

performance of the sampler is extremely sensitive to the initial parameters chosen for the Gaus-

sian mixture densities. For instance, if a component begins sampling in a region of low density,

the covariance of that component will be updated to an invalid matrix (singular or negative def-

inite) or the component weight α will be updated to a value close to zero. To overcome these

numerical problems we use the ‘revive’ method discussed in Section 4.4.2, which increases the

chance of achieving convergence by moving components to higher density regions.

Prior constraints are now extended to the auto-correlations such that zII > 0 for I = CI, NIV,

NID. It is therefore necessary to position components in a region of high density. It is for this

reason that we start the algorithm with components positioned close to the adiabatic model. The

means of the components are slightly perturbed around means obtained from the converged sam-

ples listed in Table 5.3 with the means of the auto- and cross-correlations set very close to zero.

The covariance matrix is made up of a submatrix from the adiabatic results in Section 5.2.3

with the remaining off-diagonals set to zero and diagonal elements corresponding to the auto-

correlations set to ≈ 10−3.

In our model the adiabatic auto-correlation is omitted since it is calculated from As, therefore

the number of parameters to be estimated are D = 5 + N(N+1)
2

for N being the total amount of

modes considered. Our initial covariance ΣISO
ij is thus,

ΣISO
ij = ΣAD

ij , for 1 ≤ i ≤ 6, 1 ≤ j ≤ 6, (5.3.15)

ΣISO
ij = 0, for i ̸= j and 6 < i ≤ D, 6 < j ≤ D, (5.3.16)

ΣISO
ii = 10−3, for i > 6, (5.3.17)
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where ΣAD
ij is the adiabatic covariance matrix obtained from the converged samples in Section

5.2.3. This enables a gradual movement along the degenerate target parameter space so that

components can adapt accordingly to those regions of the target distribution.

The Gaussian target distribution requires a minimum of two components to achieve convergence.

However, the complexity of these target distributions motivates the use of many more compo-

nents to explore the parameter space. These distributions are banana-like, and the complexity,

defined in Section 4.5.1, is equivalent toB ≈ 6. While we do not know the shape of the posterior

in advance, the inherent degeneracies motivate choosing a larger Nc than 2. We therefore use 10

components and optimal sample size from Table 4.1. Using more than 10 components does not

improve the efficiency of the sampler.

The complex parameter space of the target distribution in addition to the high dimension proves

that it is more costly to sample from the the pure adiabatic case than would be expected. The

cost of sampling these distributions is shown in Table 5.4. We use the optimal sample size

of Ns = 3000, 6000 and 10000 for the adiabatic plus one, two, and three isocurvature modes,

respectively. The same results are found with larger sample sizes with the same number of it-

erations. It is therefore the number of components and their initial positioning that affect the

performance of the sampler more significantly than the choice of Ns. For all mixed models,

the exploration of the target parameter space is gradual and converges at different rates for each

model. With respect to the single isocurvature mode models, the AD+CI model requires the

most iterations (≈ 30) followed by the AD+NID model (≈ 25). The ESS statistic is expected to

decrease as the dimension and complexity of the target distribution increases, but as long as the

importance weights do not become degenerate, the ESS statistic can still achieve a large enough

level, greater than 85%, which is sufficient for convergence.

The mixed models including two and more isocurvature modes are more complex. The higher

dimension increases the parameter space causing the conventional ESS to stabilise at very low
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Model Iterations NTotal Efficiency (×1000)

AD+CI 30 900 000 1.11× 10−3

AD+NID 25 750 000 1.33× 10−3

AD+NIV 17 510 000 1.96× 10−3

AD+CI+NIV 34 2 040 000 0.49× 10−3

AD+CI+NID 32 1 920 000 0.52× 10−3

AD+NIV+NID 34 2 040 000 0.49× 10−3

AD+CI+NIV+NID 41 4 100 000 0.24× 10−3

Table 5.4: The cost and efficiency of sampling models with correlated adiabatic and isocurvature
modes.

values because there is significant degeneracy of the importance weights, {wt
n} at iteration t, as

discussed in Section 3.3. This is due to the high dimension and complexity of the target dis-

tribution. Nonetheless we explore the parameter space using the conventional PMC algorithm

until there is no change in marginal distributions and statistics from the sample which occurs

after 30 iterations. To overcome the degeneracy problem of the importance weights, we adopt

the soft clipping transformation method in equation (3.3.50) with βt = t
t+1

, for t > 0. This

satisfies the requirement that βt > 0 and increases with iterations since βt → 1 as t → ∞. The

transformation of the importance weights occurs only when the conventional ESS calculated is

less than 50%. The transformation enables the chain to converge with an ESS greater than 90%.

We use information obtained from the run using conventional PMC. The converged chain from

that run is used to construct a covariance matrix and position components around models with

various fISO and a good χ2 statistic, i.e. within a 2σ confidence level. The updated run using

the soft clipping transformation thus uses prior information from the conventional PMC run, and

is able to converge quickly afterwards. The costs of these simulations are shown in Table 5.4,

taking into account the expense of using conventional PMC prior to the transformation method.
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On a side note, the simpler distribution with one isocurvature mode achieves a reasonably high

ESS without the transformation of the importance weights since there is negligible degeneracy

of {wt
n} for the lower dimensional target distribution. Nonetheless we implemented the soft clip-

ping transformation to confirm that the results are consistent with conventional PMC.

The complete mixture model including all isocurvature modes proves most difficult to sample.

The parameter space is challenging due to the high dimension and degeneracy amongst the pa-

rameters. The conventional PMC algorithm is unable to achieve a converged chain because of the

degeneracy of wn. Therefore we use the NPMC algorithm, in addition with updates from previ-

ous runs. The soft clipping transformation is used for the two isocurvature mode mixed models.

The algorithm struggles to probe regions of higher isocurvature fractions. We therefore ensured

that each update positioned components into regions with increasing fISO and high likelihood.

The sampler often becomes stuck in regions of parameter space for a long time with no change

in statistics from the sample. When this occurs we stop the algorithm and update it for the next

run. This process is continued until the ESS threshold for convergence is exceeded. The cost

of the simulation is given in Table 5.4. As expected, the mixed model including all isocurvature

modes is computationally the most expensive case.

Having ensured that the PMC algorithm has converged for all adiabatic and isocurvature mode

combinations, we turn to the results from the chains. The results that follow for the correlated

two and three mode cases are the most recent. We begin by looking at the the adiabatic mode

correlated with a single isocurvature mode first.

5.3.1 Adiabatic mode correlated with a single isocurvature mode

In this section we examine the adiabatic mode correlated with one of the three isocurvature

modes (i.e., the CI, NID, and NIV mode). For each of the above combinations we illustrate the

one-dimensional marginal posterior distributions from samples derived using PMC in Figures
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5.3 (AD+CI), 5.4 (AD+NID), and 5.5 (AD+NIV). The top two rows in the Figures illustrate

the cosmological parameters with the last row showing the distributions of the auto- and cross-

correlations. For convenience we denote z⟨I,J⟩ as ⟨I, J⟩. The distributions of mixed models are

shown by the solid curve against the pure adiabatic model represented by the dashed curve. The

dashed curve are only for the six cosmological parameters considered, which were obtained from

the converged samples in Section 5.2. The marginalised posterior distributions for all models are

in all cases as broad or broader than the pure adiabatic model. For all three mixed models, we

find that the mean optical depth is lower than the pure adiabatic results but the uncertainty is

large enough to indicate consistency between the mixed and adiabatic model. The marginal dis-

tribution of ΩΛ has a more pronounced skewed normal distribution for all mixed models. The

introduction of isocurvature contributions shifts the cosmological constant density to the higher

values. The cosmological constant density has the same effect on the CMB spectrum as in the

adiabatic case. An increase in the density shifts the spectrum to lower multipoles, thereby modi-

fying the locations of the peaks. The scalar amplitude, As, is directly proportional to ⟨AD,AD⟩,

which is less constrained compared to the pure adiabatic case. Therefore the distributions in the

mixed models are much broader compared to the pure adiabatic model.

The fractions permitted for the pure isocurvature modes and cross-correlations are small, and

all cross-correlations are consistent with zero at the 2σ level, with all three models dominated

by the adiabatic mode. Models with high isocurvature fractions do not fit the data better than

the best-fit adiabatic model. The marginal distributions for the relative powers ⟨I, J⟩ follow a

prominent skewed normal distribution for the auto-correlations, making it challenging for Gaus-

sian components to replicate. Our mean estimates are for all model parameters are illustrated

in Table 5.5 along with their 68% confidence levels. These results for all cosmological pa-

rameters are consistent with previous analysis with WMAP seven-year [79] and nine-year data

[41]. The spectral index is in good agreement with results using Planck+WMAP nine-year data
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Figure 5.3: Adiabatic plus CI. Row 1 and 2 —the marginal posterior distributions for the six
cosmological parameters. Row 3 —the marginal posterior distributions of the auto- and cross-
correlations of the modes. The dashed line represents the pure adiabatic model with the adiabatic
and isocurvature mixed model shown by the solid line.

ns = 0.9603 ± 0.0073 [81], with emphasis on tight bounds on ns being crucial on constrain-

ing inflation. Unlike the adiabatic model, all mixed models include a scale-invariant spectrum

with ns = 1 within the 1σ error. This exceeds the limit for the simplest inflation models with

ns ≤ 0.98 [146, 147].
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Figure 5.4: Adiabatic plus NID. Distributions as described in Figure 5.3 including only the
neutrino density isocurvature mode.

These results indicate a strong preference for the adiabatic model, as most models are sampled

with Z⟨AD,AD⟩ ≥ 99%, although there is evidence to indicate that models with isocurvature

contributions are sufficient to explain the data with maximum auto-correlations ≤ 5%. The frac-

tional isocurvature contributions by all mixed models are consistent with previous findings using

WMAP nine-year data [80]. Our results show that fISO is virtually the same for all models, being

less than 9% with the least permitted fraction for the AD+NID model (fISO ≤ 6%). The frac-
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Figure 5.5: Adiabatic plus NIV. Distributions as described in Figure 5.3 including only the neu-
trino velocity isocurvature mode.

tional isocurvature contribution allowed is lower than results using WMAP first-year [71] and

three-year [148] data, with a reduction by almost 50% from the first-year data, and far fewer

mixed models preferred by the data. We find all estimates for the ⟨I, J⟩ parameters to be in

agreement with previous work using WMAP nine-year, three-year and first-year data with pure

isocurvature contributions reduced by more than 50% compared to the first-year and three-year

data.
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Parameter AD+CI AD+NID AD+NIV

Ωbh
2 0.023± 0.001 0.023± 0.001 0.023± 0.001

Ωch
2 0.113± 0.007 0.111± 0.005 0.113± 0.005

ΩΛ 0.724± 0.042 0.739± 0.037 0.728± 0.032

τ 0.088± 0.013 0.089± 0.014 0.088± 0.014

ns 0.981± 0.026 0.987± 0.021 0.986± 0.015

As 15.33± 0.36 15.16± 0.50 15.27± 0.84

Z⟨AD,AD⟩ 0.998± 0.003 0.999± 0.001 0.998± 0.002

Z⟨CI,CI⟩ 0.029± 0.022 · · · · · ·
Z⟨NID,NID⟩ · · · 0.03± 0.02 · · ·
Z⟨NIV,NIV ⟩ · · · · · · 0.04± 0.02

Z⟨AD,CI⟩ −0.03± 0.03 · · · · · ·
Z⟨AD,NID⟩ · · · −0.006± 0.025 · · ·
Z⟨AD,NIV ⟩ · · · · · · −0.017± 0.035

ZISO 0.06± 0.03 0.04± 0.02 0.06± 0.03

fISO 0.05± 0.03 0.04± 0.02 0.06± 0.03

Table 5.5: Adiabatic plus one isocurvature mode. We illustrate the mean with 68% confidence
intervals for mixture models of adiabatic (AD) and one of three isocurvature modes, i.e. CI, NIV,
NID.

We find it useful to quantify the posterior distributions in terms of its principal components

which are the underlying structure in the model fit to the data. Principal components indicate

the direction in which there is the most variance in the data. Principal component analyses can

be constructed into eigenvalues and eigenvectors of the covariance for the data. We therefore

calculate the eigenvalues, λα, and eigenvectors, yα. The largest eigenvalue, λ0, indicates the

largest variance in the data and corresponding eigenvector, y0, indicating the direction of the de-

generacy. The components of the eigenvector (eigen-directions) are indicative of the contributed

weight towards the degeneracy. We consider the eigen-directions that collectively make up 90%



5.3 Sampling models with the adiabatic mode correlated with isocurvature modes 102

Figure 5.6: Adiabatic plus CI. Selected joint distributions between parameters depicting the most
degenerate direction. Contour colours follow the same convention as Figure 5.2.

of the degeneracy.

For all mixed models we find that the error is dominated by ΩΛ, ns and cross-correlation ⟨AD, I⟩

for I = CI, NIV, NID. Amongst the cosmological parameters we find significant degeneracy be-

tween ns and Ωch
2 because the principal effect of the isocurvature modes is to modify the CMB

temperature anisotropies at low ℓ. We plot some of these joint distributions in Figures 5.6 (CI),

5.7 (NIV) and 5.6 (NID). All models have a strongly positive correlation between ΩΛ and ns.

The cosmological constant density is increased when the isocurvature contribution increases,

which also shifts the spectral index to higher values. The NIV model has the smallest shift in ΩΛ

since it is negatively correlated to ⟨AD,NIV ⟩ as seen in Figure 5.7. The joint distribution of

the cosmological parameters and the auto- and cross-correlation parameters are degenerate for
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Figure 5.7: Adiabatic plus NIV. Selected joint distributions between parameters depicting the
most degenerate direction. Contour colours follow the same convention as Figure 5.2.

all modes, making it challenging to achieve convergence, and with more isocurvature modes the

distribution becomes more complex, as we will see in the next Section.
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Figure 5.8: Adiabatic plus NID. Selected joint distributions between parameters depicting the
most degenerate direction. Contour colours follow the same convention as Figure 5.2.
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5.3.2 Adiabatic mode correlated with two isocurvature modes

In this Section we present the results of the adiabatic mode correlated with two isocurvature

modes. The three mixed models are AD+CI+NID, AD+CI+NIV and AD+NID+NIV. In all three

cases the fraction of isocurvature has now increased to 24.6% (AD+CI+NID), 21% (AD+CI+NIV)

and 18% (AD+NID+NIV) as seen in Table 5.6, with a reduction of 38 − 59% from that found

using WMAP first-year [71] and three-year [148] data. The baryon density however, is excluded

from the range allowed using three-year data which was found to be 0.025 < Ωbh
2 < 0.027.

Compared to the adiabatic results, we find all cosmological parameters to be consistent. The

constraint on ns is poorer compared to the adiabatic model but still excludes the scale-invariant

model. The adiabatic contribution decreases significantly as expected, with the pure isocurvature

contribution much higher than in the single mode case.

Marginal posterior distributions for all mixture models are illustrated in Figures 5.9 (AD+CI+NID),

5.10 (AD+CI+NIV), and 5.11 (AD+NIV+NID). The cosmological parameters have not shifted

significantly from the mean values in the adiabatic case, but we can see the deviation from a

Gaussian distribution specifically for ΩΛ. The width of the As distribution has increased as ex-

pected since ⟨AD,AD⟩ is less constrained compared to the single isocurvature mode case. The

posterior distributions of the auto- and cross-correlations are shown in the last two rows of each

Figure illustrating the shift of ⟨AD,AD⟩ to lower power.
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Parameter AD+CI+NID AD+CI+NIV AD+NID+NIV

Ωbh
2 0.024± 0.001 0.021± 0.001 0.022± 0.001

Ωch
2 0.119± 0.006 0.123± 0.008 0.119± 0.006

ΩΛ 0.71± 0.04 0.67± 0.05 0.68± 0.04

τ 0.091± 0.015 0.079± 0.014 0.079± 0.013

ns 0.952± 0.024 0.923± 0.045 0.957± 0.025

As 15.69± 0.66 19.51± 2.58 18.33± 2.50

Z⟨AD,AD⟩ 0.941± 0.045 0.961± 0.027 0.972± 0.019

Z⟨CI,CI⟩ 0.128± 0.075 0.040± 0.025 · · ·
Z⟨NID,NID⟩ 0.110± 0.063 · · · 0.027± 0.017

Z⟨NIV,NIV ⟩ · · · 0.065± 0.032 0.083± 0.036

Z⟨AD,CI⟩ −0.075± 0.080 −0.115± 0.046 · · ·
Z⟨AD,NID⟩ 0.061± 0.058 · · · −0.082± 0.037

Z⟨AD,NIV ⟩ · · · −0.112± 0.048 −0.091± 0.048

Z⟨CI,NID⟩ −0.119± 0.057 · · · · · ·
Z⟨CI,NIV ⟩ · · · 0.057± 0.032 · · ·
Z⟨NID,NIV ⟩ · · · · · · 0.059± 0.026

ZISO 0.32± 0.12 0.26± 0.09 0.22± 0.08

fISO 0.25± 0.08 0.21± 0.06 0.18± 0.06

Table 5.6: Adiabatic plus two isocurvature modes. The same conventions apply as in Table 5.5.
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Figure 5.9: Adiabatic plus CI+NID. As in Figure 5.3, with the last six plots in the bottom rows
showing the marginal posterior distributions of the auto- and cross-correlations for the amplitude
of the modes.
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Figure 5.10: Adiabatic plus CI+NIV. Distributions as in Figure 5.9, with CDM density and
neutrino velocity isocurvature modes included.



5.3 Sampling models with the adiabatic mode correlated with isocurvature modes 109

0.0175 0.0200 0.0225 0.02500.0175 0.0200 0.0225 0.0250

Ωbh
2

0.10 0.11 0.12 0.130.10 0.11 0.12 0.13

Ωch
2

0.60 0.65 0.70 0.75 0.800.60 0.65 0.70 0.75 0.80

ΩΛ

0.04 0.08 0.120.04 0.08 0.12

τ

0.90 0.95 1.000.90 0.95 1.00

ns

12 15 18 21 24 2712 15 18 21 24 27

As

0.85 0.90 0.95 1.000.85 0.90 0.95 1.00

〈AD,AD〉

0.04 0.08 0.120.04 0.08 0.12

〈NID,NID〉

0.05 0.10 0.15 0.200.05 0.10 0.15 0.20

〈NIV,NIV〉

−0.2 −0.1 0.0−0.2 −0.1 0.0

〈AD,NIV〉

−0.150 −0.075 0.000−0.150 −0.075 0.000

〈AD,NID〉

0.00 0.05 0.10 0.150.00 0.05 0.10 0.15

〈NIV,NID〉

Figure 5.11: Adiabatic plus NID+NIV. Distributions as in Figure 5.9, with the both neutrino
density and neutrino velocity isocurvature modes.
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Figure 5.12: Top: The CMB angular power spectrum, CTT
ℓ , for the best-fit mixed model (green

dashed) for AD+CI+NID overlapping the fiducial adiabatic model spectra (solid black). This
model has an fISO = 27%. The adiabatic contribution is shown by the red dash-dot curve with
the non-adiabatic contribution by the blue dotted curve. Bottom: The same for models with
AD+CI+NIV with a best-fit mixed model with fISO = 25%.

We plot the CTT
ℓ spectra for the various mode contributions compared to the fiducial adia-

batic spectrum in Figure 5.12 to illustrate how well models with high isocurvature fractions can

explain the data. The AD+CI+NID model has the greatest isocurvature contribution, with the

best-fit models having both positive and negative mode correlations, which cancel each other

to produce a small non-adiabatic power, as a result leaving an adiabatic contribution with a

power closely matched to the total spectrum. We illustrate a mixed model with parameters

(Ωbh
2,Ωch

2,ΩΛ, τ, ns, As, fISO) = (0.023, 0.123, 0.685, 0.087, 0.93, 15.5, 0.27) for AD+CI+NID

(top panel) and for AD+CI+NIV with parameters (0.02, 0.132, 0.643, 0.088, 0.89, 22.37, 0.25)
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Figure 5.13: Adiabatic plus CI+NID. Selected joint distributions between parameters depicting
the most degenerate direction. Contour colours follow the same convention as Figure 5.2.

(bottom panel). For the AD+CI+NIV model, the non-adiabatic contribution is negative which

reduces the excess power provided by the adiabatic contribution. This model has negative corre-

lations with the adiabatic mode and illustrates the significance of correlated adiabatic and isocur-

vature models.

Using principal component analysis, we find that most degeneracies occur between the auto-

and cross-correlations for all mixed models. This is in agreement with the degeneracies found

using WMAP first-year data [71]. The degree of degeneracy between the ⟨I, J⟩ parameters is

shown for selected combinations in figures 5.13 (AD+CI+NID), 5.14 (AD+CI+NIV) and 5.15

(AD+NID+NIV). As in the single mode case, there is also degeneracy between ns and ΩΛ for all

mixed models with a strong positive correlation between the two parameters.
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Figure 5.14: Adiabatic plus CI+NIV. Selected joint distributions between parameters depicting
the most degenerate direction. Contour colours follow the same convention as Figure 5.2.

As with all mixed models the increase in pure isocurvature contributions induces an increase in

ΩΛ and ns. For the AD+CI+NIV and AD+NIV+NID models, the cosmological constant den-

sity and spectral index are positively correlated with Ωbh
2 and negatively correlated with Ωch

2.

This effect is evident in the contour plots. For these models, ns and ΩΛ are shifted to lower

values compared to the adiabatic model, thus increasing Ωch
2 and decreasing Ωbh

2. For the

AD+CI+NID model however, the baryon density has increased despite no increase in ΩΛ. This

is due to the relation between ⟨CI, NID⟩ and ΩΛ, where a negative cross-correlation between CI

and NID induces a decrease in the cosmological constant density.

A good example of the complexity of the target distribution is shown in the relation between

⟨AD, CI⟩ and ⟨AD, AD⟩ in the AD+CI+NIV model. The distribution closely follows a banana
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Figure 5.15: Adiabatic plus NIV+NID. Selected joint distributions between parameters depicting
the most degenerate direction. Contour colours follow the same convention as Figure 5.2.

shaped distribution as studied in Section 4.5.1. The joint distribution of parameters is very

complex, illustrating the need for many components to achieve convergence. The degeneracy

amongst parameters increases as we introduce more isocurvature modes. This is most evident in

our general mixture model including all isocurvature modes, which we study next.

5.3.3 Adiabatic mode correlated with all three isocurvature modes

In this Section we consider the general model with an adiabatic mode correlated with all three

isocurvature modes (i.e., CI, NIV and NID). The statistics for the cosmological parameters and

relative mode amplitudes are given in Table 5.7. The one-dimensional marginal distributions for

all parameters are shown in Figure 5.16.
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The adiabatic mode is much weaker with a smaller mean of 0.88 and there are much larger

Parameter AD+CI+NID+NIV

Ωbh
2 0.0252± 0.0011

Ωch
2 0.117± 0.005

ΩΛ 0.73± 0.03

τ 0.09± 0.01

ns 0.99± 0.02

As 17.29± 0.87

Z⟨AD,AD⟩ 0.88± 0.02

Z⟨CI,CI⟩ 0.172± 0.041

Z⟨NID,NID⟩ 0.185± 0.045

Z⟨NIV,NIV ⟩ 0.08± 0.03

Z⟨AD,CI⟩ 0.034± 0.075

Z⟨AD,NID⟩ −0.022± 0.043

Z⟨AD,NIV ⟩ −0.005± 0.059

Z⟨CI,NID⟩ −0.216± 0.041

Z⟨CI,NIV ⟩ −0.102± 0.024

Z⟨NID,NIV ⟩ 0.102± 0.036

ZISO 0.495± 0.045

fISO 0.363± 0.028

Table 5.7: All three isocurvature modes. Statistics of converged samples from PMC. The same
conventions as in Table 5.5

isocurvature contributions allowed, with the isocurvature fraction increasing to 36%. The data

from WMAP-9 permit a much smaller isocurvature fraction compared to the first-year (60% [71])

and third-year (44% [148]) data. There is a noticeable increase in Ωbh
2 although it is less than

the lower limit found using WMAP three-year data [148] and WMAP first-year data [71]. The

1-d histogram shows that the CDM density is consistent between adiabatic and mixed model.
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The baryon density is no longer in agreement with estimates found in the adiabatic model at the

1σ level. Apart from these parameters, all other cosmological parameters are consistent with

their values for the adiabatic model. The departure of Ωbh
2 from the purely adiabatic model is

strongly correlated with larger isocurvature contributions.

In Figure 5.17 we plot the CMB spectrum for a mixed model with a high likelihood and

isocurvature fraction. The parameters of the mixed model are (Ωbh
2,Ωch

2,ΩΛ, τ, ns, As, fISO)

= (0.026, 0.125, 0.679, 0.099, 0.958, 18.22, 0.39). The mixed model is indistinguishable from

the adiabatic model. Therefore we plot the error bars of the data instead. We also decompose

the spectrum of the mixed model into its adiabatic and isocurvature contributions. We notice

⟨AD,AD⟩ and ⟨AD,NIV ⟩ contributions account for most of the total spectrum.

We use principal component analysis to determine which parameters are most degenerate.

The parameters that contribute the most to the degenerate direction are (in descending order)

⟨AD,CI⟩, ⟨AD,AD⟩, ⟨NID,NID⟩, ⟨CI,NID⟩, ⟨AD,NID⟩ and ΩΛ. These parameters collectively

contribute to over 90% of the degenerate direction. The WMAP first-year analysis found similar

parameters contributing to the degeneracy. We also search for degenerate directions that arise

from smaller subsets in order to determine what physical effects are responsible for flat direc-

tions. We find the spectral index to be strongly correlated with the baryon and cold dark matter

density as in the previous mixed models studied. The two-dimensional marginal distributions

illustrating the degeneracies are shown in Figure 5.18.

The introduction of isocurvature modes induces degeneracy amongst the cosmological parame-

ters. Mixed models are capable of generating CMB spectra compatible with a purely adiabatic

model, and the data are consistent with these models. This demonstrates that the data permit

large amounts of isocurvature. Statistically there is no evidence to prefer this model over the

adiabatic model, as there is no further reduction in χ2 for these models and they have more free
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Figure 5.16: Adiabatic plus CI+NID+NIV. Distributions as in Figure 5.9, for models with corre-
lated adiabatic and three isocurvature modes.

parameters. In keeping with the Occam’s razor principle, one would be inclined to choose the

simpler adiabatic model that explains the data as well as the more general mixture model.

The constraints on mixed adiabatic and isocurvature models presented here are the most updated
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Figure 5.17: Adiabatic plus three isocurvature modes. The angular power spectrum of CMB
temperature anisotropies, Cℓ, for a mixed model with high isocurvature fraction and likelihood
(black dashed). The spectrum is a good fit to the data shown by the purple error bars. Errors
include instrument noise and uncertainties due to correlated beam and point source subtraction.
The spectra for all isocurvature and adiabatic contributions are also shown.

for the adiabatic mode correlated with two or three isocurvature modes. Considering the com-

plex nature of these distributions and the necessity of good choice of the covariance matrix for

the PMC, or MCMC sampler, these covariance matrices provide useful starting points for a future

study using the most recent Planck data [3, 4].
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Figure 5.18: Adiabatic plus CI+NID+NIV. Selected two dimensional marginal distributions of
degenerate parameters. Contours follow the same convention as Figure 5.2.



CHAPTER 6

Conclusion

The amount of available cosmological data is increasing at a very fast pace and the precision

of this data is unprecedented. The WMAP team has made excellent data available for cosmol-

ogy with the recent Planck experiment building on this progress. The new data require faster

and more efficient methods of analysis. Therefore it is worth investigating alternate sampling

algorithms that can be easily run in parallel with straight-forward diagnostics for convergence.

Large clusters of slower CPUs are easier and cheaper to attain than a single up-to-date super-

computer. Therefore, parallel processing is the way forward in sampling data. The PMC sampler

is easily parallelised and has convenient methods to assess convergence. This assessment can

be automated, but the algorithm has to be initialised according to a specific target distribution

to optimise its performance. In this thesis we established various methods for optimising the

performance of this algorithm for various target distributions. For the case of a Gaussian target

distribution we found that the sampler was optimised with as little as two components in all di-

mensions and the optimal sample size scaled quadratically with dimension. Prior information
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about the target distribution was useful to maximise efficiency, since the mixture densities could

be initialised to sufficiently cover all regions of parameter space within a few iterations.

We also investigated the performance of the PMC algorithm on more complex distributions,

namely, the banana-shaped, bimodal, and hypercube distribution. We defined a measure of com-

plexity,B, for the banana-shaped distribution that enabled us to maximise efficiency with respect

to the parameter through simulations. The complex nature of the banana-shaped distribution

forced PMC to use more components to adequately sample the degenerate parameter space. The

number of components required for convergence increased with complexity, and we found effi-

ciency decreased exponentially with increased B. The bimodal distribution provided a different

challenge to the PMC algorithm in that the distance between modes had a significant effect on

efficiency, especially when these modes were separated by large regions of low density. For

this case, the algorithm only sampled well the region around one mode if components were not

carefully positioned to cover the entire parameter space. However, if components were well

positioned, or the modes were closely situated, then PMC achieved convergence within a few

iterations. For the challenging hypercube distribution the algorithm had to use a relatively large

number of components to achieve convergence, with the number of components becoming im-

practically large as the dimensionality of the hypercube distribution increased.

We thereafter applied our results from the simulations to a cosmological parameter estimation

problem, namely, using CMB data from the WMAP nine-year release to constrain admixtures

of adiabatic and isocurvature perturbations. We showed that the six parameters of the pure adia-

batic model can be sampled with as little as two components and a sample size equivalent to the

optimal sample size found for a Gaussian target distribution of six dimensions. The mixed mod-

els studied included an adiabatic mode correlated with one, two, and three isocurvature modes.
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These models are significantly complex with degenerate parameter spaces, with the underlying

distributions requiring a larger number of components to achieve convergence. Using the PMC

algorithm on admixture models containing two or more isocurvature modes caused significant

degeneracies amongst the importance weights, which required us to implement the Non-linear

Population Monte Carlo algorithm (NPMC) instead. The admixture model with the adiabatic

mode and all three isocurvature modes was the most challenging of all models and numerous

updates were required before convergence was reached.

Our constraints derived for the single isocurvature mode model were consistent with a simi-

lar study performed using WMAP nine-year data. The results for admixture models with two or

three isocurvature modes are new and indicate a smaller allowed isocurvature fraction compared

to previous studies using earlier WMAP data releases. The covariance matrices derived in this

thesis for the various admixture models using the WMAP nine-year dataset will serve as use-

ful prior information for updated constraints on isocurvature perturbations with future datasets.

Specifically we expect that the higher precision CMB temperature and polarisation power spec-

tra measured by Planck will yield stronger constraints on isocurvature perturbations. The results

derived here will be a useful starting point for such a future study.
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H. Hoekstra, H. Hildebrandt, T. D. Kitching, Y. Mellier, L. Miller, L. Van Waerbeke,

K. Benabed, C. Bonnett, J. Coupon, M. J. Hudson, K. Kuijken, B. Rowe, T. Schrab-

back, E. Semboloni, S. Vafaei, and M. Velander, “CFHTLenS: combined probe cosmolog-

ical model comparison using 2D weak gravitational lensing,” Mon. Not. R. Astron. Soc.,

vol. 430, pp. 2200–2220, Apr. 2013, 1212.3338.

[46] K. Enqvist, H. Kurki-Suonio, and J. Väliviita, “Limits on isocurvature fluctuations from

Boomerang and MAXIMA,” Physical Review D., vol. 62, p. 103003, Nov. 2000, astro-

ph/0006429.

[47] R. Stompor, A. J. Banday, and K. M. Gorski, “Flat Dark Matter–dominated Models with

Hybrid Adiabatic Plus Isocurvature Initial Conditions,” Astrophys. J., vol. 463, p. 8, May

1996, astro-ph/9511087.

[48] W. Hu, E. F. Bunn, and N. Sugiyama, “COBE Constraints on Baryon Isocurvature Mod-

els,” Astrophys. J. Lett., vol. 447, p. L59, July 1995, astro-ph/9501034.

[49] W. Hu and N. Sugiyama, “Thermal history constraints on the isocurvature baryon model,”

Astrophys. J., vol. 436, pp. 456–466, Dec. 1994, astro-ph/9403031.



BIBLIOGRAPHY 131

[50] T. Chiba, N. Sugiyama, and Y. Suto, “Microwave background anisotropies in primeval

isocurvature baryon models: Constraints on the cosmological parameters,” Astrophys. J.,

vol. 429, pp. 427–433, July 1994, astro-ph/9311012.

[51] E. L. Wright, S. S. Meyer, C. L. Bennett, N. W. Boggess, E. S. Cheng, M. G. Hauser,

A. Kogut, C. Lineweaver, J. C. Mather, G. F. Smoot, R. Weiss, S. Gulkis, G. Hinshaw,

M. Janssen, T. Kelsall, P. M. Lubin, S. H. Moseley, Jr., T. L. Murdock, R. A. Shafer, R. F.

Silverberg, and D. T. Wilkinson, “Interpretation of the cosmic microwave background

radiation anisotropy detected by the COBE Differential Microwave Radiometer,” Astro-

phys. J. Lett., vol. 396, pp. L13–L18, Sept. 1992.

[52] P. de Bernardis, P. A. R. Ade, J. J. Bock, J. R. Bond, J. Borrill, A. Boscaleri, K. Coble,

B. P. Crill, G. De Gasperis, P. C. Farese, P. G. Ferreira, K. Ganga, M. Giacometti, E. Hivon,

V. V. Hristov, A. Iacoangeli, A. H. Jaffe, A. E. Lange, L. Martinis, S. Masi, P. V. Mason,

P. D. Mauskopf, A. Melchiorri, L. Miglio, T. Montroy, C. B. Netterfield, E. Pascale, F. Pi-

acentini, D. Pogosyan, S. Prunet, S. Rao, G. Romeo, J. E. Ruhl, F. Scaramuzzi, D. Sforna,

and N. Vittorio, “A flat Universe from high-resolution maps of the cosmic microwave

background radiation,” Nature., vol. 404, pp. 955–959, Apr. 2000, astro-ph/0004404.

[53] S. Hanany, P. Ade, A. Balbi, J. Bock, J. Borrill, A. Boscaleri, P. de Bernardis, P. G. Fer-

reira, V. V. Hristov, A. H. Jaffe, A. E. Lange, A. T. Lee, P. D. Mauskopf, C. B. Netterfield,

S. Oh, E. Pascale, B. Rabii, P. L. Richards, G. F. Smoot, R. Stompor, C. D. Winant,

and J. H. P. Wu, “MAXIMA-1: A Measurement of the Cosmic Microwave Background

Anisotropy on Angular Scales of 10’−5◦,” Astrophys. J. Lett., vol. 545, pp. L5–L9, Dec.

2000, astro-ph/0005123.

[54] L. Amendola, C. Gordon, D. Wands, and M. Sasaki, “Correlated Perturbations from Infla-



BIBLIOGRAPHY 132

tion and the Cosmic Microwave Background,” Physical Review Letters, vol. 88, p. 211302,

May 2002, astro-ph/0107089.

[55] E. Pierpaoli, J. Garcı́a-Bellido, and S. Borgani, “Microwave background anisotropies and

large scale structure constraints on isocurvature modes in a two-field model of inflation,”

Journal of High Energy Physics, vol. 10, p. 15, Oct. 1999.

[56] C. Gordon and A. Lewis, “Observational constraints on the curvaton model of inflation,”

Physical Review D., vol. 67, p. 123513, June 2003, astro-ph/0212248.

[57] D. Langlois and A. Riazuelo, “Correlated mixtures of adiabatic and isocurvature cos-

mological perturbations,” Physical Review D., vol. 62, p. 043504, Aug. 2000, astro-

ph/9912497.

[58] R. Trotta, A. Riazuelo, and R. Durrer, “Cosmological constant and general isocurvature

initial conditions,” Physical Review D., vol. 67, p. 063520, Mar. 2003, astro-ph/0211600.

[59] R. Trotta, “The cosmological constant and the paradigm of adiabaticity,” New Astronomy

Reviews., vol. 47, pp. 769–774, Nov. 2003, astro-ph/0304525.

[60] G. Hinshaw, D. N. Spergel, L. Verde, R. S. Hill, S. S. Meyer, C. Barnes, C. L. Bennett,

M. Halpern, N. Jarosik, A. Kogut, E. Komatsu, M. Limon, L. Page, G. S. Tucker, J. L.

Weiland, E. Wollack, and E. L. Wright, “First-Year Wilkinson Microwave Anisotropy

Probe (WMAP) Observations: The Angular Power Spectrum,” The Astrophysical Journal

Supplement Series, vol. 148, no. 1, p. 135, 2003.

[61] M. Beltrán, J. Garcı́a-Bellido, J. Lesgourgues, A. R. Liddle, and A. Slosar, “Bayesian

model selection and isocurvature perturbations,” Physical Review D., vol. 71, p. 063532,

Mar. 2005, astro-ph/0501477.



BIBLIOGRAPHY 133

[62] M. Beltrán, J. Garcı́a-Bellido, J. Lesgourgues, and M. Viel, “Squeezing the window on

isocurvature modes with the Lyman-α forest,” Physical Review D., vol. 72, p. 103515,

Nov. 2005, astro-ph/0509209.

[63] H. Kurki-Suonio, V. Muhonen, and J. Väliviita, “Correlated primordial perturbations in

light of CMB and large scale structure data,” Physical Review D., vol. 71, p. 063005, Mar.

2005, astro-ph/0412439.

[64] D. Parkinson, S. Tsujikawa, B. A. Bassett, and L. Amendola, “Testing for double inflation

with WMAP,” Physical Review D., vol. 71, p. 063524, Mar. 2005, astro-ph/0409071.

[65] G. Lazarides, R. Ruiz de Austri, and R. Trotta, “Constraints on a mixed inflaton and

curvaton scenario for the generation of the curvature perturbation,” Physical Review D.,

vol. 70, p. 123527, Dec. 2004, hep-ph/0409335.

[66] F. Ferrer, S. Räsänen, and J. Väliviita, “Correlated isocurvature perturbations from mixed

inflaton curvaton decay,” Journal of Cosmology and Astroparticle Physics., vol. 10, p. 10,

Oct. 2004, astro-ph/0407300.

[67] J. Väliviita and V. Muhonen, “Correlated Adiabatic and Isocurvature Cosmic Microwave

Background Fluctuations in the Wake of the Results from the Wilkinson Microwave

Anisotropy Probe,” Physical Review Letters, vol. 91, p. 131302, Sept. 2003, astro-

ph/0304175.

[68] A. P. Andrade, C. A. Wuensche, and A. L. Ribeiro, “Correlated mixture between adiabatic

and isocurvature fluctuations and recent CMB observations,” Physical Review D., vol. 71,

p. 043501, Feb. 2005, astro-ph/0501399.



BIBLIOGRAPHY 134

[69] M. Beltrán, J. Garcı́a-Bellido, J. Lesgourgues, and A. Riazuelo, “Bounds on cold dark

matter and neutrino isocurvature perturbations from CMB and LSS data,” Physical Review

D., vol. 70, p. 103530, Nov. 2004, astro-ph/0409326.

[70] J. Valiviita, “Correlated adiabatic and isocurvature CMB fluctuations in the light of the

WMAP data,” ArXiv Astrophysics e-prints, Oct. 2003, astro-ph/0310206.

[71] K. Moodley, M. Bucher, J. Dunkley, P. G. Ferreira, and C. Skordis, “Constraints on isocur-

vature models from the WMAP first-year data,” Physical Review D, vol. 70, p. 103520,

Nov. 2004, astro-ph/0407304.

[72] A. P. A. Andrade, C. A. Wuensche, and A. L. B. Ribeiro, “Predictions of Mixed Non-

Gaussian Cosmological Density Fields for the Cosmic Microwave Background Radia-

tion,” Astrophys. J., vol. 602, pp. 555–564, Feb. 2004, astro-ph/0312028.

[73] C. Gordon and K. A. Malik, “WMAP, neutrino degeneracy, and non-Gaussianity con-

straints on isocurvature perturbations in the curvaton model of inflation,” Physical Review

D., vol. 69, p. 063508, Mar. 2004, astro-ph/0311102.

[74] P. Crotty, J. Garcı́a-Bellido, J. Lesgourgues, and A. Riazuelo, “Bounds on Isocurvature

Perturbations from Cosmic Microwave Background and Large Scale Structure Data,”

Physical Review Letters, vol. 91, p. 171301, Oct. 2003, astro-ph/0306286.

[75] H. V. Peiris, E. Komatsu, L. Verde, D. N. Spergel, C. L. Bennett, M. Halpern, G. Hinshaw,

N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page, G. S. Tucker, E. Wollack, and

E. L. Wright, “First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:

Implications For Inflation,” Astrophys. J. Supp., vol. 148, pp. 213–231, Sept. 2003, astro-

ph/0302225.



BIBLIOGRAPHY 135

[76] M. R. Nolta, J. Dunkley, R. S. Hill, G. Hinshaw, E. Komatsu, D. Larson, L. Page, D. N.

Spergel, C. L. Bennett, B. Gold, N. Jarosik, N. Odegard, J. L. Weiland, E. Wollack,

M. Halpern, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, and E. L. Wright, “Five-

Year Wilkinson Microwave Anisotropy Probe Observations: Angular Power Spectra,” As-

trophys. J. Supp., vol. 180, pp. 296–305, Feb. 2009, 0803.0593.

[77] “SNLS - Supernovae Legacy Survey Home Page.” http://cfht.hawaii.edu/SNLS/.

[78] I. Sollom, A. Challinor, and M. P. Hobson, “Cold dark matter isocurvature perturbations:

Constraints and model selection,” Physical Review D., vol. 79, p. 123521, June 2009,

0903.5257.

[79] J. Väliviita, M. Savelainen, M. Talvitie, H. Kurki-Suonio, and S. Rusak, “Constraints

on Scalar and Tensor Perturbations in Phenomenological and Two-field Inflation Mod-

els: Bayesian Evidences for Primordial Isocurvature and Tensor Modes,” Astrophys. J.,

vol. 753, p. 151, July 2012, 1202.2852.

[80] M. Savelainen, J. Väliviita, P. Walia, S. Rusak, and H. Kurki-Suonio, “Constraints on

neutrino density and velocity isocurvature modes from WMAP-9 data,” Physical Review

D, vol. 88, p. 063010, Sept. 2013, 1307.4398.

[81] Planck Collaboration, P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud,

M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, and

et al., “Planck 2013 results. XXII. Constraints on inflation,” ArXiv e-prints, Mar. 2013,

1303.5082.

[82] E. Hubble, “A Relation between Distance and Radial Velocity among Extra-Galactic Neb-

ulae,” Proceedings of the National Academy of Science, vol. 15, pp. 168–173, Mar. 1929.



BIBLIOGRAPHY 136

[83] A. Raychaudhuri, “Relativistic Cosmology. I,” Physical Review, vol. 98, pp. 1123–1126,

May 1955.

[84] E. W. Kolb, D. J. H. Chung, and A. Riotto, “WIMPZILLAS!,” in Dark matter in Astro-

physics and Particle Physics (H. V. Klapdor-Kleingrothaus and L. Baudis, eds.), p. 592,

1999, hep-ph/9810361.

[85] S. Scopel, “Particle dark matter candidates,” Journal of Physics Conference Series,

vol. 120, p. 042003, July 2008, 0711.2870.

[86] F. Zwicky, “On the Masses of Nebulae and of Clusters of Nebulae,” The Astrophysical

Journal, vol. 86, p. 217, Oct. 1937.

[87] F. Zwicky, “Die Rotverschiebung von extragalaktischen Nebeln,” Helvetica Physica Acta,

vol. 6, pp. 110–127, 1933.

[88] A. A. Penzias and R. W. Wilson, “A Measurement of Excess Antenna Temperature at

4080 Mc/s.,” Astrophysical Journal, vol. 142, pp. 419–421, July 1965.

[89] G. F. Smoot, C. L. Bennett, A. Kogut, E. L. Wright, J. Aymon, N. W. Boggess, E. S.

Cheng, G. de Amici, S. Gulkis, M. G. Hauser, G. Hinshaw, P. D. Jackson, M. Janssen,

E. Kaita, T. Kelsall, P. Keegstra, C. Lineweaver, K. Loewenstein, P. Lubin, J. Mather,

S. S. Meyer, S. H. Moseley, T. Murdock, L. Rokke, R. F. Silverberg, L. Tenorio, R. Weiss,

and D. T. Wilkinson, “Structure in the COBE differential microwave radiometer first-year

maps,” Astrophysical Journal Letters, vol. 396, pp. L1–L5, Sept. 1992.

[90] H. Bondi and T. Gold, “The Steady-State Theory of the Expanding Universe,”

Mon. Not. R. Astron. Soc., vol. 108, p. 252, 1948.



BIBLIOGRAPHY 137

[91] C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G. Hinshaw, N. Odegard, K. M.

Smith, R. S. Hill, B. Gold, M. Halpern, E. Komatsu, M. R. Nolta, L. Page, D. N. Spergel,

E. Wollack, J. Dunkley, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, and E. L. Wright,

“Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps

and Results,” The Astrophysical Journal Supplement Series, vol. 208, no. 2, p. 20, 2013.

[92] J. C. Mather, E. S. Cheng, D. A. Cottingham, R. E. Eplee, Jr., D. J. Fixsen, T. Hewagama,

R. B. Isaacman, K. A. Jensen, S. S. Meyer, P. D. Noerdlinger, S. M. Read, L. P. Rosen,

R. A. Shafer, E. L. Wright, C. L. Bennett, N. W. Boggess, M. G. Hauser, T. Kelsall, S. H.

Moseley, Jr., R. F. Silverberg, G. F. Smoot, R. Weiss, and D. T. Wilkinson, “Measure-

ment of the cosmic microwave background spectrum by the COBE FIRAS instrument,”

Astrophys. J., vol. 420, pp. 439–444, Jan. 1994.

[93] J. Huchra, M. Davis, D. Latham, and J. Tonry, “A survey of galaxy redshifts. IV - The

data,” Astrophys. J. Supp., vol. 52, pp. 89–119, June 1983.

[94] D. J. Eisenstein, D. H. Weinberg, E. Agol, H. Aihara, C. Allende Prieto, S. F. Anderson,
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F. Montesano, D. Muna, A. D. Myers, T. Naugle, R. C. Nichol, P. Noterdaeme, S. E. Nuza,

M. D. Olmstead, A. Oravetz, D. J. Oravetz, R. Owen, N. Padmanabhan, N. Palanque-
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