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The Wedderburn-Artin Theorem (1927) characterised 

semisimple Artinian rings as finite direct products of 

matrix rings over division rings. In attempting to 

generalise Wedderburn's theorem, the natural starting point 

will be to assume R/RadR is semisimple Artinian. Such 

rings are called semilocal. They have not been completely 

characterised to date. If additional conditions are 

imposed on the radical then more is known about the 

structure of R. Semiprimary and perfect rings are those 

rings in which the radical is nilpotent and T-nilpotent 

respectively. In both these cases the radical is nil, and 

in rings in which the radical is nil, idempotents lift 

modulo the radical. Rings which have the latter property 

are called semiperfect. The characterisation problem of 

such rings has received much attention in the last few 

decades. 

We study semiperfect rings with a somewhat strong condition 

arising out of the status of generators in the module 

categories. More specifically, a ring R is CFPF iff every 

homomorphic image of R has the property that every finitely 

generated faithful module over it generates the 

corresponding module category. 

The objective of this thesis is to develop the theory that 

leads to the complete characterisation of semiperfect right 

CFPF rings. It will be shown (Theorem 6.3.17) that these 

rings are precisely finite products of full matrix rings 

over right duo right VR right a-cyclic right CFPF rings. 



As far as possible theorems proved in Lambek [16] or Fuller 

and Anderson [12] have not been reproved in this thesis and 

these texts will serve as basic reference texts. 

The basis for this thesis was inspired by results contained 

in the first two chapters of the excellent LMS publication 

"FPF Ring Theory" by Carl Faith and Stanley Page [11]. Its 

results can be traced to the works of G. Azumaya [23], K. 

Morita [18], Nakayama [20;21], H. Bass [4;5], 

Carl Faith [8;9;10], S. Page [24;25] and B. Osofsky [22]. 

Our task is to bring the researcher to the frontiers of FPF 

ring theory, not 50 much to present anything new. 
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C H APT E R 1 

:nunnnmm:: GENERATORS AND FAITHFUL MODULES, PROJECTIVE 

tmnrrmJf!fm! MODULES AND INJECTIVE MODULES 

1.1 INTRODUCTION 

The notion of a generator of mod-R is introduced. The 

main result of this Chapter is Theorem 1.3.3. We note 

that all generators of mod-R are faithful objects. We 

close this chapter by recording some results on 

projective and injective modules for later use. 

1.2 NOTATION AND TERMINOLOGY 

1 

Unless otherwise specified, throughout this thesis all 

rings will be assumed to be associative rings with unitYi 

all modules will be unitarYi a "module" will mean a right 

R-modulei mod-R (respectively R-mod) will denote the 

category of right (respectively left) R-modulesi where 

there is no ambigui t y, a "generator of mod-R" will be 

called a "generator " ; R-homomorphisms will be called 

homomorphismsi where there is no ambiguity we will write 

Hom(M,N) instead of HO~(M,N). 

We will make no dis t inction between M(I) and MI when 

I is a finite set since a finite direct product is the 

same as a finite direct sum. 
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1.3 GENERATORS OF MOD-R 

1.3.1 Definition (generator): 

A module M is a generator of mod-R iff for each 

module N 3 a set I and an epimorphism 

M(I)~ N ~ O. 

An example of a generator of mod-R is RR' 

To present our main theorem we need to define the 

trace of a module in another: 

1.3.2 Definition (trace of a module): 

Let M and N be modules. Then 

2 

The importance of the following theorem lies in its 

frequent usage in the sequel: 

1.3.3 Theorem: 

Let M be a module. "The following are equivalent: 

G
l

: 

G2 : 

G
3

: 

G
4

: 

Proof: 

M is a generator of mod-Ra 

For all modules N 3 an index set I and an 

epimorphism M(l) ~N~O. 

There is a finite integer n > 0 and an object Y 

of mod-R ~ M(n) ~ R ~ Y 

Tr
R 

(M) = R. 

G1 ~ G2 : this is just definition 1.3.1. 

G
2 

=:> G
3 

: Given G2 , 3 I and an 

epimorphism f: M(l) ~ R --7 0, so 

;J m = <mi ) i £ I ~ f (m) = 1. 

Also, ~ a finite set F 3 i t F ~ m. = O. For any 
1 

re: R , f ( mr) = rand i ~ F ~ < m i r ) i = o. So 3 a 
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surjection fk: H( F) ~ R ~ 0 where k is the 

canonical injection k: M(F) ~ M(l). 

Let fk(m) = 1 where mEM(F), and let ~: R~M(F) 

3 

be defined by ~(r) = mr. Then it easily follows that 

~ is an injection and 

M(F) = ~(R) @ ker(fk) ~ R ~ ker(fk). Finally, if 

~I = n, it is clear that M(F) ~ M(n). 

G
3 
~ G

4 
Suppose 3 an epimorphism 

f: M(n)~ R ~ O. Let, for each k, 1 ~ k ~ n, 

i
k

: M ~ M(n) be canonical. There exists 

(m
l

, m2 , ... ,mn )E M (n) 3 

f ( (m
l

, m2 , ... ,mn » = 1, so 
... 

1 = f( E 
k-.1 

Since fik E Horn (M,R) V k, we conclude that 

TrR(M) = R. 

G4 ~ G2 : Suppose TrR(M) = R. Let N be any 

* module. For each nEN, define n £ Horn (R,N) by 

* n (r) = nr. Let {nj}jES be a generating set 

for N. We claim that 3 an epimorphism 

g: H(Hom (M,N» ~ N ~ O. 

Let I = Horn (M,N) = {f:M ~ N \ f is a homomorphism}. 

For each fEI, let Hf = M. Then from 

Mf 
canonical 

) ® Hf 
= H( I) 

~E.1j 

I 
I 

f .. ~ 
N 

we conclude that 3 a (unique) ~: H(I) ~ N 

3 Im~ = ~f"I Imf = TrN (H) . We need only show that 

TrN(M) = N. To this end, let nEN. 
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Since {nj}j£S generates N, 3 a (finite) F C S 

n = E n r for some {r} F· e R 
a(,t! F Ot Ot Ot Ot £ -

= E n* (r ) . 
co(,€.F Ot Ot 

t. 
Since Tr R (M) = R, '3 t£ \N, {mi } i = 1 ~ M and 

t 
{fili = 1 SHorn (M,R) 3 

t 
1=E f.(m.). 

i, ::.~ 1 1 
t 

Thus for each OtEF, E f.(m.r) = r 
\. " 1. 1 1 Ot Ot 

Hence 

* n = E n (r) 
a/£.F Ot Ot 

= E n * (. t f. (m. r » 
ot€f Ot I. -1 1 1 Ot 

t * = E E (n f.)( m. r ) • 
al£.F ;"':1 Ot 1 1 Ot 

* But n f. E Hom(M,N) VOt, Vi. Hence Ot 1 

nETrN(M) . 

This proves the theorem. 

1.4 FAITHFUL MODULES 

1.4.1 Definition (faithful module): 

A module M is called faithful if Mr = 0, 

rER =* r = O. 

Clearly RR is faithful for 

Rr = 0 ~ 1.r =0 ~ r = O. 

The following· will be used often in the sequel: 

1.4.2 Proposition: 

4 

A cyclic right module R/I is faithful iff I contains 

no non-zero two-sided ideals. 

Proof: 

"=>,, : Let R/I be faithful. Let A ~ I be a two-sided 

ideal. We show A = O. Let aEA. 

Then (R/I)a = O. So, since R/I is faithful, a = O. 

Hence A = O. 
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"~,, : Suppose the only ideal in I is the zero ideal. 

Let (R/I)r = O. Then Rr ~ I, so RrR ~ I. But RrR is 

a two-sided ideal, hence RrR = 0, proving thqt r=O. 

R/I is fa i thful. 

When a module M is faithful its associated ring can 

be embedded in a direct product of copies of M: 

1.4.3 Proposition: 

A module M is faithful iff R embeds in MI for some 

1. 

Proof: 

"~": Let M be fai thful. For each 0 + rER, 3 mrEM :3 

* m r + O. r Let R = R-{O} and define 

* * m E Horn (R,M) by m (s) = m s 
r r r 

From 

M R* If ...... 
) M 

1\ 
\ 

\ * f \ ' m r 
\ 

\ 

\R 

3 R* we conclude that a (unique) fE Hom(R,M ) 

* 3 ~ f = m V 0 f rER. If XER is such that r r 

* f(x) = 0, then m r(x) = 0 Y 0 + rER. If x + 0, 

we get m x = 0 x ' contradicting the choice of m . 
x 

Hence x = 0 and f is the required embedding. 

"~,, : Suppose for some index set A, that 

~: R~ MA is an embedding. Let Mr = O. 

A Let ~(l) = m where m = <ma>aEA EM. So 

~(r) = ~(1.r) = ~(1).r = mr = <m r> A = O. a aE 

Since ~ is an embedding, r = O. Hence M is faithful . 
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1.5 FAITHFUL MODULES AND GENERATORS 

It is easy to see that any generator M of mod-R is 

faithful. For suppose M is a generator. Then we can find 

n>O and an object Y of mod-R 3 M(n) ~ R ® Y. Suppose 

Hr = 0, rER. Then H(n)r = 0, so (R ~ Y)r = O. Thus 

Rr = 0, so l.r = r = O .. '. M is faithful. 

The question now arises: Are all faithful modules 

generators? The answer is no as the following example 

shows: 

Let p be any prime and let M = Z . Then M is a PG) 

divisible abelian group, so nZ = Z f 0 V n + o. PG) PG) 

Hence Z is faithful as a Z-module. If Z PG) PG) 

generates mod-Z, then 3 n$ and NZ ~ 

Z (n) = Z (±) N • 
PG) Z 

But Z is torsion, hence so is Z (,\"'t)and therefore Z, PG) PG) , 

a contradiction. 

There do however exist rings over which every faithful 

module is a generator. These rings will be addressed in 

Chapter 5 (page 43). 

1.6 COMPACTLY FAITHFUL MODULES 

1.6.1 Definition (compactly faithful modules): 

A module M is said to be compactly faithful provided 

that for some finite integer n > 0, R embeds in 

Hn. By 1.4.3 it is clear that compactly faithful 

modules are faithful. 

Every generator is compactly faithful. For let M be a 

generator. Then 3 n > 0 and an object X of 

mod-R 3 M
n ~ R e X. Since R can be naturally 

embedded in R ~ X, we can embed R in Mn. M 

is compactly faithful. 
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1.7 PROJECTIVE MODULES 

1.7.1 Definition (projective module): 

Let R : B ~ A be an epimorphism. A module M is 

called projective in case for any homomorphism 

~ : M ~ A 

1.7.2 Proposition: 

3 ahomomorphism 

M- - _f_ - - ->B 

® 

f : M ~ B 

For a module P the fo11owing >are equivalent: 

(a) P is projective. 

(b) Every epimorphism M ~ P ~ 0 splits. 

(c) P is isomorphic to a direct summand of M. 

Proof: See [16] page 83. 

1.7.3 Proposition: 

Let M = (±) M.. Then M is projective iff each M. 
~e~ 1 1 

is projective. 

Proof: See [16] proposition 3 page 82. 

7 

It is immediate from 1.7.3 that a direct summand of a 

projective module is projective. 
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1.8 INJECTIVE MODULES 

1.8.1 Definition (injective module): 

Let k: A ~ B be a monomorphism. A module M is 

called injective in case for any homomorphism 

~ :A ~ M 3 a homomorphism f : B ~ M ~ 

M <---f----B 

~~lk 

1.8.2 Proposition: 

For a module M the following are equivalent: 

(a) M is injective. 

(b) Every monomorphism k : M --) B splits. 

(c) If M embeds in B then M is isomorphic to a 

direct summand of B. 

Proof: 

The proof is dual to 1.7.2. See [16] page 90. 

1.8.3 Proposition: 

Let M = n M.. Then M is injective iff each M. is 
iE 1 1 . 1 

injective. 

Proof: 

8 

The proof is dual to 1.7.3. See [16] Proposition 2 

page 88. 

1.8.4 Definition (essential submodu1e): 

Let N be a module. A submodu1e M of N is essential 

(large) in case M has non-zero intersection with 

every non-zero submodule of N. We will write M A N 

to denote that M is an essential submodule of N. 
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When M ~ Nand N is injective we call N the injective 

hull of M. We will denote the injective hull of M 

(which always exists) by E(M). For other propertie"s 

of E(M) see (16] page 92. 

Among the properties of the injective hull we have 

the following in (mod-R): 

1.B.5 Proposition (properties of the injective hull): 

(a) M is injective iff M = E(M). 

(b) M A N ~ E(M) = E(N). 

(c) If M S Q, Q injective, then Q 

(d) If ®E(M.) is injective then 
.i.E:I 1 

E( <BM.) = (£lE(M.). 
i€l 1 i~I 1 

Proof: See (12] page 209 . 

= E(M) $ E 
, 
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CHAPTER 2 

THE MORITA THEOREM 

2.1 INTRODUCTION 

Morita's study of the category equivalence between mod-R 

and mod-S for two rings Rand S led him to many 

generator theorems, especially the classical Morita 

theorem. 

Two categories A and 53 are (categorically) equivalent if 

there exists additive covariant functors F:~ ~~ and 

G: e ~A which have the property that FG and GF are 

isomorphic to the identity functors on the respective 

categories. The question that was answered by Morita 

was: When are the module categories of two rings Rand 

S equivalent? (Theorem 2.3.1). We shall state, with 

brief justification, some of the ring theoretical 

properties that are shared by rings having equivalent 

module categories. 

We wi 11 wr i te ~ ~ S to denote that A is categor ically 

equi valent to S. 

2.2 CATEGORICAL MODULE PROPERTIES 

2.2.1 Definition (categorical module property): 

A module property is categorical iff it can be 

defined entirely in terms of modules and morphisms 
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(i.e. by objects and arrows). Clearly "projective" 

and "injective" are categorical module properties. 

There are many others. 

It is evident (see [12] section 21) that if an 

object M (respectively a morphism f) of mod-R has 

property P, where P is described entirely in terms 

of modules and morphisms (i.e. by objects and 

arrows), then for any category equivalence 

F: mod-R~ mod-S, F(M) (respectively F(f» also 

has property P. 

So it follows that under a category equivalence, 

categorical module properties will be preserved. 

Since the following properties can each be described 

entirely in terms of objects and arrows, they are 

all categorical and hence are preserved under 

category equivalence: 

(split) monomorphism, (split) epimorphism 

(split) exact sequence 

generator 

direct sum (direct product) of modules 

projective (injective) modules 

finitely presented module 

faithful module 

The following properties: 

semisimp1e module 

finitely generated module 

indecomposable module 

are also preserved since they arise out of the 

preservation of exact sequences and direct sums. 
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Submodu1e lattices are also preserved under category 

equivalence (see [12] Proposition 21.7). Hence 

simple and Artinian modules, being assertions about 

"inclusions", are also preserved under category 

equivalence. 

2.3 THE MORITA THEOREM 

Let Rand S be rings. By imposing conditions on Rand S 

we could obtain that mod-R ~ mod-So Morita's theorem 

shows that this can be done: 

2.3.1 Definition and Theorem (The Morita Theorem, 1958): 

Let R-mod denote the left-right symmetry of mod-R. 

Two rings Rand S are similar or (Morita) 

equivalent, written R ~S, in case the following 

equivalent conditions hold: 

Proof: 

mod-R ~ mod-S 

There exists a finitely generated projective 

. generator (also called a progenerator) P of 

mod-R ~ S ~ End (PR) 

R-mod ~ S-mod 

see [6] Theorem 4.29. 

It is immediately clear from Morita's theorem that 

R ""'"'S iff mod-R ~mod-S. Hence when two rings are 

similar, the categorical module properties listed in 

2.2 possessed by modules over the one ring, will 

also be possessed by modules over the other ring. 

These properties we will choose to call Morita 

invariant "module" properties to avoid confusion 

with Morita invariant "ring" properties which 

follow. 
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2.4 HORITA INVARIANT "RING" PROPERTIES 

When two rings are similar certain ring theoretic 

properties possessed by the one ring will also be 

possessed by the other. Such a property is called a 

Horita invariant "ring" property: 

2.4.1 Definition (Horita invariant "ring" property): 

A property P of rings is a Morita invariant "ring" 

property if it is true that a ring R has property P 

if f every S rv R also has property P. 

Let P be a ring theoretical property enjoyed by a 

ring R and let R ~S. If the property P can be 

described entirely in terms of mod-R, then S enjoys 

the same property. For example, let R be semisimple 

and let R r-.; S. Then every object of mod-R is 

projective. Hence every object of mod-S is 

projective, whence S is semisimple. Other Morita 

invariant "ring" properties are right Artinian, 

right Noetherian and semiprimitive. 

In this thesis we will prove that right "FPF", right 

"CFPF" and "semiperfect" are Morita invariant "ring" 

properties. 
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CHAPTER 3 

SEMI PERFECT RINGS 11111111111111111 

3.1 INTRODUCTION 

3.2 

Semiperfect rings can be characterised in several ways. 

In this chapter we aim to present homological and internal 

characterisations of semiperfect rings, the corresponding 

theorems viz. 3.4 and 3.7 being due to H. Bass [41 and a 

paper by B. Muller [191. We cite some well known results 

which will be used in these proofs so as to afford 

readability. We also try to complete the groundwork 

necessary in order to present the basic module and the 

basic ring of a semiperfect ring in the next chapter. 

NOTATION AND TERMINOLOGY 

From now onwards unless otherwise specified, J will . denote 

the Jacobson radical of a ring or module; R will denote a 

factor ring of R and elements of R will be denoted by x. 

3.3 PRELIMINARIES TO A HOMOLOGICAL CHARACTERISATION OF 

SEMI PERFECT RINGS 

The results which now follow are needed to follow the 

homological characterisation theorem of semiperfect rings. 

3.3.1 Definition (small submodule): 

Let L be an R-submodule of M. Then L is called small 

(or superfluous) provided L+X = M ~ X = M. We write 
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L « M to denote that L is small in M . 

Relevant properties of small submodules are enumerated 

in the following proposition. 

3.3.2 Proposition: 

Let M be any module with Jacobson radical J(M). Then 

(a) if K ~ N 5 M then N « M iff K « M and N/K « M/K 

(b) if K s N s M then K «N =9 K « M 

(c) K. « M
i

, i = 1,2, ... ,n, 
1 

1'\ ~ 

:::;:. G) K. « .0 M. 
hl.l 1~1 1 

( d ) if M is finitely generated then MJ « M 

( e ) I « RR iff I c. J -
( f ) J (Mo) = E {I \ I « M} 

(g) if P is projective then RadP = PJ 

Proof: See [12] propositions 5.17, 5.18, 5.20, , 
15.13, 9.13, 1~.10 and [11] corollary (1.4) . 

Recall that for each module M there is an injective 

module E(M) (see 1.8.4) which satisfies the following 

conditions: 

(i) there exists an exact sequence 

o ~ M ~ E(M) 

(ii) Im~ is an essential subrnodule of E(M). 

See (12] page 207. 

The dual question was investigated by H. Bass (1960) -

see (12] page 315: 

Given any module M does 3 a projective module P 3 

(i) p ~ M ~ 0 is an exact sequence 

(ii) ker~ « P. 

Bass called P a projective cover, if it existed. 
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3.3.3 
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Definition (projective cover): 

Let P and M be modules. An epimorphism ~: P ~ M ~o 

is called a projective cover of M in case P is 

projective and ker~ « P. 

The property of being a projective cover is clearly a 

categorical module property. 

It turns out that modules need not have projective 

covers: 

EXAMPLE 

Consider the two-element cyclic group Z2. As a 

Z - module, Z2 has no projective cover. For suppose 

it did. Let P be such a projective cover. Then 3 an 

epimorphism ~ : P ~ Z2 ~ 0 with ker~ « P. By 

3.3.2 (e), ker ~ S RadP 

= PRadZ by 3.3.2 (g) 

- P.O 

= 0 

So Z2 -::: P and hence pro ject i ve . So 3 a set A 3 

zeAl ~ Z2 ® X. Since zeAl has no elements of 

finite order, we have the desired contradiction. 

3.3.4 Definition (right perfect (semiperfect) ring): 

If R is such that every right (respectively right 

finitely generated) module has a projective cover, R 

is said to be right perfect (respectively 

semiperfect). 

Perfect rings have characterisations parallel to that 

of semiperfect rings (see for example [12] Theorem 

28.4). We are especially concerned with semiperfect 

rings. To this end we recall the definition of the 

soc1e of a module and a few properties of semisimp1e 

modules and rings . 
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3.3.5 Definition (the socle of a module): 

The socle of a module M is the sum of all the minimal 

submodules of M. It will be denoted by SocM. If no 

minimal submodules exist, SocM = O. 

3.3.6 Proposition (characterisation of semisimple 

modules) : 

For a module M the following are equivalent: 

( a ) SocM = M 
, 

(b) M is the sum of some set of simple modules 

( c) M is isomorphic to a direct sum of simple 

modules 

Proof: see [12] Theorem 9.6 

3.3.7 Proposition (characterisation of semisimp1e rings): 

The following statements concerning the ring Rare 

equivalent: 

(a) Every right module is semisimp1e 

(b) RR is semisimple 

Under these conditions we call R semisimple. 

Proof: See [16] proposition 5, page 64. 

3.3.8 Proposition (characterisation of semisimple rings): 

The following statements concerning the ring Rare 

equivalent: 

(a) R is semisimple 

(b) . R is right Artinian and regular 

The equivalence is right-left symmetric. 

Proof: See [161 proposition 2 on page 68. 
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Finally, direct summands and factor rings (modules) of 

semisimple rings (modules) are semisimple (see [16] 

page 64). 

Using the projective covers of finitely generated and 

hence also simple modules we can characterise 

semiperfect rings as the theorem which follows shows: 

3.4 THEOREM (HOMOLOGICAL CHARACTERISATION OF SEMI PERFECT 

RINGS) 

Let J = RadR. The following conditions are equivalent on 

right R-modules: 

(a) Every finitely generated module has a projective 

cover. 

(b) Every simple module has a projective cover. 

(c) Every simple module is isomorphic to eR/eJ for a 

suitable idempotent e£R. 

Under these conditions we call R semiperfect. In this case 

R/J is Artinian. 

Proof: 

(a) ~ (b): Let S be any simple module. Then S is cyclic 

and hence has a projective cover by (a). 

(b) ~ (c): Let S be a simple module. Let p: P ~ S be a 

projective cover of S. We reserve the right to replace P 

by any module isomorphic to it as we proceed. 

exact sequence 0 ~ I ~ R ~ S ~ 0 with 

There is an 

I ~ R a 
maximal right ideal. Since RR is projective and p is an 

epimorphism, 3 u: R ~ P , 

R 
,/ 

U // 



'. 

'. 
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Since p(Imu) = S, we have Imu tker p = P. For let x£P. 

Then p(x)£S. So 3 rER ~ ofJ(r) = p(x). Now 

x = u(r) t (x - u(r» . But u(r) £ Imu and 

p(x - u(r» = p(x) - pu(r) = p(x) - ~(r) = O. 

So(x - u(r» £ ker p. Thus P ~ Imu t ker p. That 

Imu t ker pf:P is clear. So, using the fact that 

ker p « P, we have that Imu = P, so u is an epimorphism. 

But P is projective, so 3 by 1.7.2 some 

X ~ R 3 R = X $ ker u where X = P. So we may assume that 

P = eR for some idempotent e£R. Now 

K = ker p « P= eR < R ~ K « R by 3.3.2(b), so by 

3.3.2(e), K ~ J. Hence eK = K ~ eJ ~ eR. Since 

eR/K = P/ker p ~ S is simple, we have by maximality of K 

that K = eJ or eJ = eR. But eJ ~ eR. For if eJ = eR, 

then eEeJ so that XEJ exists 3 e = ex and e(l - x) = O. 

Since 1 - x is a unit, e = 0, whence P, so S is zero, a 

contradiction. Hence S ~ eR/eJ. 

(c) ~ (a): 

We shall show that (c) implies that R/J is Artinian. 

First we prove the case for J = O. Suppose SocR is a 

proper right ideal of R and take a maximal right ideal I 

with SocR ~I ~ R . 

Then by assumption, S = R/I is isomorphic to eR for some 

idempotent e. Since eR is a direct summand of Rand RR 

is projective, eR is also projective, so S is projective, 

and so by 1.7.2 R = I <±> S' for some s' ~ S. But S' is 

simple so S' ~ 0, and since S' S SocR, SocR $ I, a 

contradiction. So we must have SocR = R and hence R is 

semisimple by 3.3.6 and therefore Artinian by 3.3.8. 

In the general case J(R/J) = O. Let M be any simple R/J 

module. Then M is simple in mod-R as well, so M ~ eR/eJ 

in mod-R for some idempotent. But then 

MR/J S (eR/eJ)R/J::: «e+J)(R/J»R/J 

and e + J is an idempotent. From the above, R/J is 

semisimple and hence Artinian. 
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We are now ready to prove 

finitely generat~d module. 

(c) ~ (a). Let M be a 

Since J ~ annR (M/MJ), M/MJ 

can be regarded as an R/J - module, and since R/J is 

Artinian, M/MJ is semisimple by 3.3.7. Thus by (c), 

since M/MJ is also finitely generated, there exist 
V\ 

finitely many idempotents e i with M/MJ~ ~ e.R/e.J 
':':1 1 1 

where this is an isomorphism in both mod-R and mod-R/J. 

Consider the diagram 

U / 

/ 

i!' 
\"\ 

M 
'V 

) M/MJ ~O 

where p and q are the canonical epimorphisms. ~ e.R is 
i..:1 1 

projective, so u exists. Now q(Imu) = M/MJ, so 

M = Imu + ker q (see 3.4 (b) ~ (c)) = Imu + MJ, 

and since MJ « M by 3.3.2(d), M = Imu, so u is an 

epimorphism. Now 
"t\ V\ 

"" ker p = ® e. J = ( 
i..:: ~ 1 

1"\ 

. (!) e . R ) J, and 
" ":. ~ 1 

<B (e. R) J < < @ e. R by 
\.-=:1. 1 1"\ \'''1. 1 

3.3.2 (d). So 

ker p « <±> e.R. But ker u ~ ker p, 
~ = 1 1 

so 

'" ker u« ID e.R by 3.3.2 (a). 
\. ~ 1 1 

This shows that u is a 

projective cover for M. This completes the proof of the 

theorem. 

3.5 "SEHIPERFECT" IS A HORITA INVARIANT "RING" PROPERTY 

From 3.4 (a) (or (b)) it is clear that "semiperfect" is a 

Morita invariant "ring" property. For let R be a 

semiperfect ring and suppose R,......." S. 3 a category 

equivalence F: mod-R ~mod-S. Since "finitely generated" 

and "projective cover" are Morita invariant properties, 

"semiperfect" is a Morita invariant "ring" property. Hence 

S is semiperfect. 
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3.6 PRELIMINARIES TO AN INTERNAL CHARACTERISATION OF 

SEMI PERFECT RINGS 

Using 3.4 (a) one can characterise semiperfect rings 

internally via projective covers. 

3.6.1 Proposition: 

21 

Projective covers, when they exist, are unique up to 

isomorphism. 

Proof: 

Let p: P ~ M and q: 0 ~ M be two projective covers 

of M. Then P must be projective and q must be an 

epimorphism, so 3 u: P ~ 0 ~ 

.' P 

; / /©/ 1 P 

o CV )M ~ 0 

Since q (Imu) = Imp = M, we have that Imu + ker q = Q 

( see 3. 4 (b) =* (c». But k e r q < < 0, so I mu = Q. 

Hence u is an epimorphism. 

projective 3 
I 

Since 0 is 0 ~ P ~ 
~ 

0 - 0 and 

P = d ® ker u. Now ker p « P and ker u ~ ker p, so 

ker « P by 3.3.2 (a) , hence P 
t ,.., 

U = o =.0. 

3.6.2 Proposition: 

Finite direct sums of projective covers are projective 

covers. 

Proof: 

Let p . : P. 
1 1 

covers. Let 

~ M., 
1 

V\ 

i = 1,2, ... ,n, be projective 

® M. = N. 
i. : ~ 1 

For each i = 1, 2, ... , n, 

we can regard p.: P. ~ N. Let 
1 1 

k. P.---1-
1 1 

V\ 

(±) P. be the canonical 
i ~1 1 

injection. 



.. 

.. 

V\ + CB p. ---------) N 
. ., 1 
1-="&" 

Then 3 f : 

© 

t'\ 

p. 
1 

o p. ~ N 3 
i ~ ~ 1 

fok. = p. Vi. So 
1 1 

22 

Imf = E Imp. = N, so f is an epimorphism. Finally, 
1 

since ker (f) = ker { ker Pi and 
t'\ 

by 3. 3 . 2 (c). 

"" f : .@ p. ~ 
1.:: 1 1 

This establishes that 
t"'\ 

(!) p. 
i~ 1 1 

ID M. is a projective cover. 
i-:o 1 1 

One of the more well-known internal characterisations 

of semiperfect rings R, is that idempotents lift from 

R/J to R. More precisely: 

3.6.3 Definition (lifting idempotents): 

Let I be an ideal in a ring R and let g E R = R/I be 

an idempotent. We say that g can be lifted modulo I in 

case there is an idempotent eER ~ g = e i.e. e - gEl. 

To say that idempotents lift modulo I means that every 

idempotent in R lifts to one in R. 

If I is a nil ideal, idempotents always lift modulo I 

(see [16] proposition 1, page 72). Also, if 

idempotents lift modulo I ~ Rad R, then finite 

orthogona1 sets of idempotents in R = R/I lift to 

orthogona1 sets of idempotents in R. (see [16] 

proposition 2, page 73.) 

-When R = R/J is a division ring we call R a local 

ring. Local rings have been characterised: 
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Proposition (characterisation of local rings): 

For a ring R the following conditions are equivalent: 

(a) R/J is a division ring 

(b) R has a unique maximal right ideal 

(c) All non-units of R are contained in a proper 

ideal 

(d) For every rER, either r or 1 - r is a unit. 

Proof: See [121 proposition 15.15. 

Idempotents can be local: 

3.6.5 Definition (local idempotent»: 

An idempotent eER is local in case eRe is a local 

ring. 

3.6.5 Definition (primitive idempotent): 

An idempotent eER is called primitive in case e f 0 

and for every pair el' e 2 of orthogonal 

idempotents, e = e 1 + e 2 ~ e 1 = 0 or e 2 = O. 

3.6.6 Proposition: 

An idempotent 0 leER is primitive iff eR is an 

indecomposable right ideal in mod-R. 

Proof: 

"~": Suppose 0 + eER is a primitive idempotent. Let 

eR = M ® N. We show that either M = 0 or N = O. 

3 mEM and nEN ~ 2 e = m+n, so em = m + nm. Now mEeR, 

so m = ex for some XER. But then 

ern = e 2 x = ex = m, and 2 so m = m + nm, so 
2 and m = m nm = o . Interchanging m and n gives 

2 and n = n mn = O. Thus {m,n} is an orthogonal set 

of idempotents. Since e is primitive either m = 0 or 

n = O. We may suppose that m = O. Let XEM be any. 

Then for some rER, x = er = (m + n)r = nrEN. 

XEM{\N = 0, so 

x = 0 and hence M = O. 



.. 
"~": Suppose eR is indecomposable. Let 

e =e
l 

+ e
2 

with e l e 2 = e 2e l = O. Then 

elR f\e
2

R = O. We show either e l = 0 or 

e
2 

= O. Let rER be any. Then er£eR and 

er = (e
l

+e 2 )r = elr + e 2r E elR + e 2R, so 

eR C elR + e
2

R. On the other hand, let 

elx + e 2y E elR + e 2R. Then elx + e 2y = 

=(e
1

+e
2

) (e
1

x + e
2
y) = e(e 1 x + e 2y) £ eR, so 

e
1

R + e
2

R ~ eR and hence eR = e 1R (!) e 2R. 

Since eR is indecomposable, either e 1 R = 0 or 

e
2

R = 0 i.e. either e l = 0 or e 2 = O. 

24 

3.6. 7 Remark: Local idempotents are always primitive. 

For let e be local. If eR = M G) N, then the 

projections onto M and N induce idempotents of 

Horn (eR,eR) ~ eRe, so the projections are 0 or e. 

Thus eR is indecomposable. The converse of this 

assertion fails in general (see [16] page 75). 

3.6.8 Proposition: 

The following statements about a projective module P 

are equivalent: 

(a) P is the projective cover of a simple module. 

(b) PJ is a small, maximal submodule of P. 

(c) End(PR ) is a local ring. 

Moreover, if these cond i t ions ho Id, then P - eR for 

some idempotent eER. 

Proof: See [12] proposition 17.19. 

This proposition is used to prove our next result. 
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3.6.9 Proposition: 

The following statements concerning an idempotent e£R 

are equivalent: 

(a) eR/eJ is simple. 

(b) eJ is the unique maximal submodule of eR. 

(c) eRe is a local ring. 

Proof: 

(a) =* (b): 

Let eR/eJ, e£R an idempotent, be simple. It is clear 

that eJ is a maximal submodule of eR. We only have to 

show that eJ is unique. Since eR is projective, 

Rad(eR) = (eR)J =eJ by 3.3.2 (g). eR is cyclic hence 

finitely generated, so by 3.3.2 (d) (eR)J = eJ « eR. 

Let I be any maximal submodule of eR. Then 

Rad(eR) = eJ S I ~ eR. But eJ is maximal in eR so 

eJ = I, proving uniqueness. 

(b) ~ (c): Suppose (b). Then (eR)J = eJ is a small 

maximal submodule of the projective module eR, so by 
/V 

3.6.8 End(eR) =: eRe is a local ring . 

"'" (c) =9 (a): End (eR) =- eRe, so eRe local =9 End(eR) 

is local. But eR is projective, so by 3.6.8 

(eR)J = eJ is a (small) maximal submodule of eR. Hence 

eR/eJ is simple. 

In the theorem which follows, the idea of lifting 

idempotents and the presence of primitive and local 

idempotents serve, among others, to provide a nice 

internal characterisation of semiperfect rings . 
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3.7 THEOREM (INTERNAL CHARACTERISATION OF SEMI PERFECT RINGS) 

Let R be a ring with radical J. The following conditions 

are equivalent: 

(a) Every finitely generated right module has a 

projective cover. 

(b) R/J is Artinian and idempotents can be lifted modulo 

J . 

(c) Every primitive idempotent is local and any set of 

orthogonal idempotents of R is finite. 

(d) There are orthogonal local idempotents 
1'\ 

e.(l ~ i ~ n) with E e. = 1. 
1 1.-1 1 

1'\ 

(e) R = ffi e.R where for each i = 1,2, ... ,n, e.R is 
i-'1 1 1 

indecomposable and End(e.R) 
1 

is a local ring. 

Observe that condition (b) implies that the theorem holds 

in R-mod as well so that the property of being 

semi perfect is left-right symmetric. 

Proof: 

(a) => (b): 

Since (a) ~ 3.4, R/J is Artinian. It remains to be 

shown that idempotents can be lifted modulo J. 

Idempotents of R/J correspond to decompositions 

R/J = A ® B, where A and Bare right ideals of R/J, so 

we have to show that we are able to lift direct 

decompositions of R/J to direct decompositions of R. Let 

R/J = A ® B. Then A and B are cyclic R/J modules and 

hence cyclic R-modules. Let p: P ~ A and q: Q ~ B be 

projective covers in mod-Re Then by 3.6.2, 

P (£) Q --? A (±) B is also a projective cover. Consider 

the canonical R-epimorphism ~: RR ~ (R/J)R' 

ker~ = J « R, so ~: R ~ R/J and hence ~: R --7 A @ B 

is a projective cover. 

R-isomorphic (3.6.1), , 
R = P 

I , 

Q where P 

Since projective covers are 

R ~ P @ Q , and hence 

and Q are right ideals of R, 
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isomorphic to P and Q respectively. The map 

R = P 
I 

Q 
, canonical A 

) (f) B = R/ J takes the 
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idempotent generator of if (respectively d ) to the 

idempotent generator of A (respectively B). This proves 

(a) =* (b). 

(b) =* (c): 

Let e be a primitive idempotent, R/J Artinian and suppose 

idempotents lift modulo J. We show that eRe is a local 

ring. This will establish that e is local (see 3.6.5). 

First we show that e = e + J is a primitive idempotent of 

_2 R = R/J. Suppose e = u + v where u2 = u, v = v, 
- - 0 uv = vu = • 

Then IT(1 e) = u - ue = u u2 - uv = 0 = (1 - e)u, so 

that 1 - e (which is an idempotent in R) is orthogonal to 

u modulo J, where u is an idempotent modulo J. By [16] 

lemma 1 page 73, 3 an idempotent fER 3 f = u and 

f(l - e) = (1 - elf = O. Hence f = ef = efe E eRe. 

Since e is primitive, the only idempotents of eRe are 0 

and e (For if ere is an idempotent for some rER, then so 

is e - ere. Nowe = ere + (e - ere) and 

ere(e - ere) = (e - ere)ere = 0, so by primitivity of e 

either ere = 0 or ere = e). So fE{O,e}, so f = u E{O,e} 

and hence either u = 0 or u = e, showing that e is 

primitive. Hence eR is an indecomposable right ideal 

(3.6.6) of the semisimple ring R (by 3.3.8, since R is 
- -also semiprimitive). But eR ~ R, so eR is itself 

semisimple. Being indecomposable, eR is hence simple in 

mod-R and so also in mod-R. It is clear that the natural 

ring epimorphism R ~ R restricts to an epimorphism of 

the subrings eRe ~ eRe with kernel J A eRe = eJe. Hence 

eRe = eRe/eJe ~ End(eR) is a division ring, so eRe is a 

local ring. 

We now only have to prove that any set of orthogonal 

idempotents is finite. Given any set {e.}. I of 
1 1£ 

orthogonal idempotents of R, we see that {e.}. I is a 
1 1£ 
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set of orthogonal idempotents of R. Since R is Artinian, 

{e.}. is finite, for any set of orthogonal 
1 lEI 

idempotents in a semisimple ring is finite. If 

{ei}iEI is infinite then distinct idempotents must 

exist in R which map onto the same idempotent modulo J, 

Let e. + e. be two such idempotents, Then 
1 J 

-e. = e., so e. - e. E J, so 
1 J 1 J 

e. EJ, so e. = 0 
1 1 

= e., 
J 

contradicting e i ~ e j . Hence {ei}iEI is finite. 

(c) =;} (d): 

It suffices to show that 1 is a sum of primitive 

idempotents. 

First observe that if e = e 1 +e
2 

and 

e
2 

= e
21 

+ e
22 

are decompositions of the idempotents 

e and e 2 into orthogonal idempotents, then 

{e
21

, e
22

, e 1 } is an orthogonal set. For 

o = e 1 e 2 = e 1 (e 21 +e 22 ) = e
1

e
21 

+ e
1

e
22

, 

so 0 = (e 1 e 21 + e1e22)e21 = e 1e 21 , Also, 

o =e
2e 1 = (e

21 
+ e

22
)e

1 
= e

21
e

1 
+ e

22
e

1
, 

so 0 = e21(e21e1 + e 22 e 1 ) = e 21e 1 , 

Similarly one shows that e
22

e
1 

= e
1

e
22 

= 0, and 

hence e 1e 21 = e 21e 1 = e 1e 22 = e
22

e
1 

= 0, 

Now suppose 1 is not the sum of primitive idempotents. 

Then 1 is not primitive, so 3 an orthogonal decomposition 

1 = e 1 +e 2 . Let SI = {e
1
,e

2
}, Now one of e

1 

or e 2 , say el' is not primitive. So 3 an orthogonal 

decomposition e 1 = ell + e 12 . So 

S2 = {e11,e12,e2} is orthogonal sum 1, Proceeding 

as above, the process cannot terminate for that would 

contradict the hypothesis on 1. On the other hand, 
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0:> 

S = U S 
t\:1 n 

is an infinite orthogonal set which contradicts 

(c). Hence 1 is a finite sum of primitive, hence local 

idempotents. 

(d) ~ (e): 
fl 
~ e. where the e. are local, hence 

j:l 1 1 
By (d), 1 = 

'" pr imi ti ve. So R = .~ e.R and this sum is direct . For 
'3.::1 1 

pick k, 1 ~ k ~ n. Then ekR is a direct summand of R, 

(l-e
k

)R, so ekRf\~ e.R = 0 and 
, j:t~ J 

" hence .~ e.R is direct. 
:1"1 1 

Since the e i ' 1 ~ i ~ n, 

are each primitive, e . R is 
1 

indecomposable (by 3.6.6) 

Since the e., 1 ~ i ~ n, are local, e . Re. is a 
111 

local ring 'fi, hence End(e.R)::' e.Re. is local 'fi. 
1 1 1 

(e) ~ (a): 

Since (a) . ~ 3.4 (c), it will be sufficient to prove 

(e) ~ 3.4 (c). Since for each i, 1 ~ i ~ n, e.Re. is 
1 1 

local, e.J is the unique maximal submodule of e.R 
1 1 

(3.6.9). Now let S be a simple module. Then for some i, 

Se. i o. So 3 0 • XES ~ xe. to. The map R ~S 
1 1 

defined by r ~ xr restricted to e.R, has image 
1 

xe . R = S since S is simple, so S is an epimorphic image 
1 

of e . R. But by 3.6.9, e.J is the unigue maximal 
1 1 

.;'>.J 

submodule of eiR, so S = eiR/eiJ. This completes the 

proof of the theorem. 

Henceforth we will be working with semiperfect rings. A­
useful example of a semiperfect ring is a local ring. For 

if R is local, R = R/J is a division ring and hence 

semisimple. By 3.3.8 R is Artinian. The only idempotents 
-of Rare 0 and 1. For let e be an idempotent of R. Then 

e(l - e) = O. Since division rings have no zero divisors 

~ 0, eE{O,l}, hence e lifts to an idempotent of R. 

by 3.7 (b) R is semiperfect. 
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SEMIPERFECT) 
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If R is semiperfect then so is every factor ring of R. 

Proof: 

Given R semiperfect, let I ~ R be any ideal and let 

R = 
r/J 

R=* 

then 

R/I. Consider the canonical epimorphism 

"" R ~ R ~ O. It is clear that E e. = I in 
:i.l 1 

V'\ - -
E e. = I in R, 

i"l 1 
and if the e. are orthogonal in R 

1 

the e. are orthogonal in R. 
1 

So we only have to 

show that local idempotents in R remain local in R by 

3.7 (d). Let eER be a l ocal idempotent. Then eRe is a 

local ring and r/J : eRe ~ eRe = (eRe + 1)/1. 

But (eRe +I-)/I ~eRe/I (\ eRe = eRe/eIe, so eRe is a local 

ring since any factor ring of a local ring is clearly 

local. Then since 

eRe = {ere + IlrER} = {(e + I)(r + I)(e +I)\rER}= eRe, eRe 
-is a local ring and hence e is a local idempotent. 

3.9 IRREDUNDANT CLASS OF REPRESENTATIVES OF INDECOMPOSABLE 

PROJECTIVE MODULES; OF SIMPLE MODULES 

When a ring is semiperfect we can find an irredundant 

class of representatives for the simple as well as the 

projective indecomposable modules in mod-R. 

3.9.1 Definition (irredundant class of representatives): 

Let 1f be a class of R-modules. A class Uf~ ?1 is a 

class of representatives (of the isomorphism types) 

of 'U in case each UE 1£ is isomorphic to some V' E U'. 
If in addition, no two elements of U1are isomorphic, 

then the class of representatives is said to be 

irredundant. 

The lemma which follows is very important to the 

sequel: 
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3.9.2 Exchange lemma: 

Let Ml (±) ••• @ Mn = A 0 
mod-R ~ End (A) is a local 
and an isomorphism M.~ A 

1 

B be 

ring. 

~ X 

a decomposition in 

Then '3 i, 1 ~ i 

for some object X 

mod-R. In particular, if M. is an indecomposable 1 

module, 

Proof: 

3.9.3 Remark: 

i = l, ... ,n, then A ~ M. for some i. 1 

See [7] Lemma 18.17. 

1"\ 
When R is semiperfect, R = .<±:l e.R where the e.R 

t.. ... l. 1 1 
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~ n, 

of 

are indecomposable Vi (3.7(e». Given any primitive 
idempotent 0 + eER, 

1'\ 

eR ::: e . R for some · i. For 1 

.$ e.R = eR ~ (1 - e)R, and since R is .. -=2 1 

semiperfect e is local (3.7(c», so End(eR) -::::: eRe is 
local, so by 3.9.2 for some i, 1 s i ~ n,3 X in 
mod-R ~ e.R~ eR @ X. Since e.R is 1 1 

indecomposable, either eR = 0 or X = O. Since e + 0, 
eR f 0, so X = 0 and hence eR - e.R. 

1 

3.9.4 Definition (primitive module): 
A module M is primitive in case M ~ eR for some 
primitive idempotent eER. 

3.9.3 shows that {e.R}~ 1 is a class of 1 1 = 
representatives for the primitive modules in mod-R. 
If this class were irredundant it would have to 
contain m elements, where m S n. The {ei}~ = 1 

are then called a basic set of idempotents. 

3.9.5 Definition (basic set of idempotents): 
A set of idempotents of a semiperfect ring R is basic 
in case the e., 1 ~ i ~ m, are orthogonal and 1 

{elR, •.. , emR} is an irredundant class of 

representatives of the primitive modules in mod-R. 
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3.9.6 Lemma: 
Let e and f be idempotents in a ring R. Then eR:::: fR 
iff eR/eJ ~ fR/fJ, where J = RadR. 

Proof: 
r-' "~": Suppose eR~fR. We have eR/eJ = eR/eRI\J -

(eR+J)/J. Similarly fR/fJ - (fR+J)/J. Hence 
eR'- fR ~ (eR + J)/J::: (fR + J)/J, so eR/eJ AJ fR/fJ. 

n*=n: Suppose h: eR/eJ ~ fR/fJ is an isomorphism. 
Consider the natural epimorphisms ~: eR ~ eR/eJ and 
~' : f R ~ f R / f J . Sin c e e J ~ J, e J < < R (3. 3 . 2 (e». 
We show ker ~ = eJ «eR. Let eR = eJ + L. We claim 
eR = L. Now 

eR + (1 - e)R = eJ + L + (1 - e)R 
. R = eJ + . . 

Since eJ « 

L =L (\ eR. 

But eR (\R 

(L + ( 1 - e)R) 

R, L + ( 1 - e)R = R. Since L :s; eR, 
Similarly eR = eR (\ R. 

= eR f\ (L + ( 1 - e)R) 
= L + (eR A (1 - e)R) (by the modular 
law) 

= L + 0 

= L. 
Hence eR = L as claimed. Thus, since eR is projective, 
rp is a projective cover. Similarly ~' is a projective 
cover. Consider h~: eR ~ fR/fJ. hrp is an 
e p i mo r phi srn. k e r h rp = {x E e R I h ( ~ ( x» = a} = 
= {xEeR \~(x) = O} = eJ = ker ~ «eR. Since eR is 
also projective, hrp is a projective cover of fR/fJ. 
But so is rp', hence eR ~ fR by 3.6.1. 

3.9.7 Proposition: 

Let R be a semiperfect ring with radical J. Then for 
orthogonal primitive idempotents e l , ... , ern E R 

the following are equivalent: 
~ (a) {e.}. 1 is a basic set of primitive 11= 
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idempotents of R. 

( b) {e.R/e.J}~ 1 is an irredundant class of 
1 1 1 = 

representatives of the simple modules in mod-R. 

(c) {e i R}7 = 1 is an irredundant class of 

representatives of the indecomposable projective 

modules in mod-R. 

Proof 

(a) ~ (b): 
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Let S be any simple module. 

eER, S ~ eR/eJ by 3.4 (c). 

Then for some idempotent 

Thus End(S) ~ eRe/eJe (see 

[12] Corollary 17.12) is a division ring, so eRe is 

local and so also e. Thus e is primitive, so eR is a 

primitive right ideal and so by (a), eR~e.R for 
1 

some i .! . By our lemma, eR/eJ ~ e. R/e. J, so 
1 1 

~ - . S = eiR/eiJ. Hence {eiR/eiJ}i = 1 1S a 

class of representatives of the simple modules in 

mod-R, which has to be irredundant. If it is not, 

then 3 i f k 3 eiR/eiJ ~ ekR/ekJ, so by our 

lemma eiR = ekR, contradicting the irredundancy of 

{eiR}~ =1' 

(b) :::} (c): 

Let P be any non-zero indecomposable projective module 

in mod-R. Then since P is projective 3 a set A and 
, 

P. Since for each i/e.R is a 
1 

direct summand of R(A) and it has local endomorphism 

ring, by 3.9.2, e.R is a direct summand of either P 
1 

or pI. We cannot have that e.R is a direct summand 
1 

of ~ Vi. For then P = O. 3 i 3 

p ~ e i R (i) K for some object K in mod-R. But P is 

indecomposable so e.R or K is O. Since e. ~ 0, 
1 1 

P ::: e . R, proving {e. R} is an irredundant class of 
1 1 

indecomposable projective modules. 
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(c) ~ (a): 

"" Under the assumption {ei}i = 1 is a set of 

orthogonal primitive idempotents. Let M be any 

primitive module in mod-R. We only have to show, by 

3.9.5, that M~e.R for some i, 1 s ism. Now for 
1 

some primitive idempotent eER, M ~ eR. But then eR 

is indecomposable, and also projective. So by (c) 

M :::::. eR ::: e. R for some i, 1 s iSm. 
1 

This completes the proof of the proposition • 
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CHAPTER 4 

THE BASIC MODULE AND THE BASIC RING 

OF A SEMI PERFECT RING 

4.1 INTRODUCTION 
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A semiperfect ring whose decomposition into a direct sum 

of indecomposable projective modules contains exactly one 

copy of each isomorphism type, is called a selfbasic 

ring. The generators for their module categories are 

particularly simple: they are precisely those modules 

for which the ring splits off (Proposition 4.4.1). Every 

semiperfect ring contains a selfbasic subring to which it 

is Morita equivalent. The study of semiperfect rings is 

greatly simplified once this is observed, for in a large 

number of cases results in selfbasic semiperfect rings 

can be applied to general semiperfect rings using Morita 

theory. 

In this chapter we present the basic module and the basic 

ring of a semiperfect ring. We point out that these 

concepts are described only for semiperfect rings. 

4.2 CONSTRUCTION OF THE BASIC MODULE 

When R is semiperfect we can decompose R as follows: 

" R = ® e. R in mod-R where e. is local 1fi. 
j." "l. 1 1 
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Renumber so that {e.R}, 1 ~ i ~ m form a complete set 
1 

of non-isomorphic summands. Then {e.}, 1 ~ i ~ m is a 
1 
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basic set of idempotents and Proposition 3.9.7 applies. 
W\ 

{eiRJ i = 1 is hence an irredundant class of 

representatives of the indecomposable projective modules 

in mod-R. 

From now on we will prefer to call the indecomposable 

projective modules viz. the e.R, 1 ~ i ~ m, the right 
1 

prindecs and each member of the irredundant class of 

representatives, an isomorphism class for the right 

prindecs in mod-R. 

4.2.1 Definition (the basic module): 

The right ideal B = e 1 R ~ e 2R 0 ... G:)emR of R is 

called the basic (right) module of R. 

Henceforth B will always denote the basic module. 

The basic module B of a semiperfect ring is unique up 

isomorphism. For let B' also be a basic module. Then 

~ = fIR $ ® fkR where {fiR} is a 

complete class of non-isomorphic prindecs of R. 

Since each f. is local, 3 one (and exactly one) 
1 

A standard argument allows us to conclude that 
,-So B = B • f.R ....., e.R Vi. 

1 1 

Thus we can speak of "the" basic module. 

4.3 THE BASIC RING 

From the basic module B = e 1R + ••• + emR we obtain 

an orthogonal sum of idempotents viz. 

e l + e 2 + ••• + em' This sum is again an 

idempotent and is called a basic idempotent of R and is 

denoted by eO i.e. eO = e l + ... +e
m

. 
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It is now clear that B = eoR. So 

End (BR) = End( (eoR)R) -::::. eoRe o ' This ring is 

called the basic ring of R and is denoted by RO' Thus 

RO = eORe O ~ End (BR)' 

Henceforth eO and RO will denote a basic idempotent 

and the basic ring respectively. We will be finding it 

"nicer" to work with RO rather than R itself. To work 

with RO instead of R we need to be assured that RO is 

semiperfect whenever R is. To this end we need the 

following: 

4.3.1 Proposition: 

The basic module is a progenerator of mod-R. 

Proof: 
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B is clearly finitely generated, and being a direct 

summand of R, B is also projective. So we only have 

to show that B is a generator of mod-R. Now every 

simple module M in mod-R is isomorphic to e.R/e.J 
1 1 

for some i (Proposition 3.9.7). Using this fact we 

can establish that B is a generator of mod-R. 

Suppose TrR(B) + R. Then 3 a maximal right ideal 

I ~ TrR(B) .£ I. · So R/I is simple, so .3 an 

epimorphism g: B ~ RI! ~ O. Since RI! is simple, 

g :f: O. Since B is projective, 3 f: B ~ R ~ 

B 
/ 

f / g 
/ 

/ 
// @ 

R T) R/I ~ 0 

Then f(B) ~ E Imf = TrR(B) C I, so (~f)B = O. 

Hence g = 0, a contradiction .. '. we must have 

TrR(B) = R and so B is a generator by G4 of 1.3.3 . 
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4.3.2 Proposition: 

A semiperfect ring R is similar to its basic ring 

RO' Hence RO is semiperfect. 

Proof: 

B is a progenerator of mod-R and RO ~ End (BR)' 

Hence condition S2 of the Morita Theorem is 

satisfied, so R""-'RO' By 3.5,R O is semiperfect. 

4.3.3 Definition ("selfbasic") 

A semiperfect ring is selfbasic in case eO = 1. 
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When eO = 1, B = Rand RO = R. Hence it is 

immediate that a semiperfect ring is selfbasic iff 

B = R o·r R 0 = R. 

4.3.4 Proposition: 

The basic ring of a semiperfect ring is selfbasic. 

Proof: 

Let R be semiperfect. Then 1 = V\ 
E e. where the 

~ ::. ~ 1 

e. is a local idempotent Vi (see 3.7 (d». For the 
1 

W\ 
basic idempotent eO of R we have that e = E f. o i,,':1 1 

for some m ~ n, where {f.} c. {e.} and 
1 1 

fiR ~ fjR iff i = j . Let S be the basic ring of 

R. Then S = eORe O' We must show that S is 

selfbasic. Now for each i, 1 ~ i ~ m, 

fi = eOfie O £ eORe O = S. So the identity 

eO of S is a finite sum of orthogonal idempotents 

of S viz. eO = 
M 

E f .. 
\.. "'1. 1 

For each f.£S, 
1 

f.Sf. = f. (eOReO)f. = f.Rf. and the 
1 1 1 1 1 1 

latter is a local ring. So each f . ES is a local 
1 

idempotent. Hence S is semiperfect (3.7 (d». We 

claim that e g is a basic idempotent of S. Let 
fiS and fjS e any two right prindecs in mod-So 
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Suppose f.S ~ f .S. I f we could show i = j we 
1 J 

would be done according to the construction in 4.2. 

Since eOR is a progenerator in mod-R (see 4.3.1) we 

have according to [12] page 178 and Theorem 22.1, 

that the functor 

Hom (eOR,_): mod-R ~mod-S defined by 

Hom (eOR,_): ~ ~ Ho~(eOR,~) defines a 

category equivalence. So under Hom (eOR,_), the 

image of fiR in mod-R is Ho~(eOR,fiR). Now 

HomR(eOR,fiR)~ fiReO as abelian groups 

(see [16] lemma 1 page 63) and the isomorphism is an 

isomorphism of right S - modules as well. Thus 

Hom (eOR, ) : f.R ~ f.Re O = f.S. 
- 1 1 1 

Hence f. S ~ f.S in mod-S =* f. R ......., f.R in 
1 J 1 J 

mod-R =* i = j as required. 

4.4 CONNECTION BETWEEN THE BASIC MODULE AND GENERATORS OF 

MOD-R 

When R is semiperfect its basic module is a direct 

summand of any generator of mod-Re Thus if R is 

selfbasic, RR is a direct summand of any generator of 

mod-Re 

4.4.1 Proposition: 

Let R be a semiperfect ring with basic module Band 

basic ring RO' Then 

(a)RI"VR O' 

(b) A module M is a generator of mod-R iff B is 

isomorphic to a direct summand of M. In particular, 

if R is selfbasic then M generates mod-R iff 

M:::' R (!) Y in mod-R. 

Proof: 

(a) Let R be semiperfect. Then R RO by 4.3.2. 
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(b) n*=" : , 
Suppose M = B' <D X where B ~ B and X is an object 

of mod-R. Since B is a progenerator and hence a 

generator,3 a set I and an epimorphism 

g : B' (l) ~ K ~ 0 for an arbitrary object K of 

mod-R (see G2 of 1.3.3). Now 

H(I) = ~ (I) ~ K(I). Let 

It : H(I) ~ B' (I) be the projection map. Then 

glt : H(I) ~ K is an epimorphism. Hence H is a 

generator of mod-R. 

,,~ " . Let H be a generator of mod-R. Now . 
B = elR ~ ••• Et) e m R ~ R. 3 n > 0 ~ 

H(n) ==: R et) K (see G3 
of 1.3.3) 

= e
1 

R G) C for some object C of mod-R 

Hence M (t) ••• ® H -::: elR (f) C. But End(e1R) is a 

local ring, so by the exchange lemma I H ~ e 1 R (!) X 

for some object X of mod-R. 

Thus H(n) "'- (elR) (n) ® X(n) = e
2

R G> Y for 

some object Y of mod-R. Since End (e 2R) is a local 

ring, e
2

R is isomorphic to a direct summand of 

either elR or X. Since e1R is indecomposable, 

e 2R is thus isomorphic to a direct summand of X. 

Hence M "'V' e1R ® e
2

R ID D for some object D of 

mod-R. Proceeding in this way we eventually obtain 

t ha t H AJ B (±) X. 

Finally, since R selfbasic ~ R = B, our final 

statement follows from (b). 

4.4.2 Corollary: 

Let R be a semiperfect ~ing with basic module B. 
Then 

(a) An epimorphic image MII of a R-module M is a 

generator of mod-R if f M = B' (±) C for some le C and 

B' /V_ B. Th I "'" ~ en H I = B ~ C/l. 
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(b) An epimorphic image B/I of B is a generator of 

mod-R iff I = O. In particular, if R is selfbasic 

then a cyclic module R/I is a generator of mod-R iff 

I = O. 

Proof: 

(a) "~,, Suppose M/I is a generator of mod-R. 

By 4.4.1, M/I ~ B @ X for some object X of mod-R. 

Let ~ : B~ X ~ M/I be this isomorphism. Let 

~(B) = A/I and ~(X) = C/I for submodules A and C of 

M. Now 

M/ I = ~ ( B (±) X) 

= ~(B + X) 

S ~(B) + ~(X) 

= A/I + C/I 

.c (A + C)/I CM/I. 

So M/I = (A + Cl/I, so M = A + C. Since ~ is 1-to-1 

ker ~ = 0 = B (\ X. So 

O=~(B(\X) 

= ~(B) (\ ~(X) 

= A/I f\ C/I 

= (A f\ C)/I 

I = A(\C 

We have done all this to show that there are 

submodules A and C of M 3 M = A + C, I = A {\ C. 

S ince ~ is an isomorphism A/I "'" B. Now the sequence 

o ~ I ~ A ~ A/ I ~ 0 is exact. Since B ~ A/ I 

is projective, ~ is a split epimorphism, so 

A = I @ B in mod-R, and since I C C, 
I 

M = A + C = B + C. This latter sum is direct for 

B' f\ C = (B' f\ A)/\ C = B' f\ I = o . Thus M = B' (±) C. But 

B' ~ A/I ~ B and hence M/I -- B 
, 

(±) C/ I -::: B ~ C/l. 
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"<=,, : 
rD ',;o.J ...tJ C where I C C and B = B. Then Suppose M C::: B' 

MI I ~ B GJ Cl I • Since B is the basic module of R, M/I 

is a generator of mod-R by 4.4.1. 

(b) "~,, : 

Suppose B/I is a generator of mod-R. We must show 

I = o. Applying (a) we obtain that B = B' @ X where 

B'~ B and I ~ X. If X + 0, then X has an 

indecomposable direct summand which is projective 

since B is. So "3 i, 1 5 i 5 m I 3 X ~ e i R (±) Y. 

But then B contains two non-isomorphic prindecs, a 

contradiction. 

"<=": I f I = 0, B/I = B, so B/I is a generator 

follows from the fact that B is a generator. 

If R is selfbasic, R = B, so the final statement 

follows from the preceding one. 
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CHAPTER 5 

_ ........ _._ .. _ ... _._ ..... _ .. _-_ .. _-----_._._--_._. __ ... _ ... _ .. _._ .... _--_._._ ..... __ ._ ....... __ ._ ... __ ... _ ..... __ ._-_ ... __ . __ ... -... _ ....... _ .. _ .. _ ...... _ ... --_ .. _ .. _ ..... _.-.-......•..•............... _ .... __ ._ .... -....... _ .....••............... 

SEMI PERFECT FPF RINGS 
._._.-----_ .. _ ... _ ....... _-_ .... _---_.-. __ ._ .. _._ ... _.-_ .. _ .... _--_ .. _ .. _--_ ... _-_._._-_ .. __ ._ .. _ .. _ .. _-_._.---_ .. _-_._---_._-----_._--_. __ ._-_._ ... _._ .. __ .... . 

5.1 INTRODUCTION 

The study of classical Frobenius algebras led naturally 

to a study of QF (quasi Frobenius) rings, first 

introduced by Ikeda in 1952 . QF rings are precisely 

those rings which are two-sided Artinian and two-sided 

self-injective. PF (pseudo-Frobenius) rings are 

generalisations of QF rings and right PF rings have been 

completely characterised internally by Azumaya [3], 

Osofsky [22] and Utumi [27] during 1966-1967, to be those 

rings over which every faithful module is a generator. 

They also characterised right PF rings as right 

self-injective semiperfect rings having (finite) 

essential right socles. Thus, since all right Artinian 

rings are semiperfect with essential right socles, QF 

rings are also PF. 

Generators in module categories are always faithful 

( s ee 1.5). The converse problem viz. describing those 

rings for which all faithful modules are generators was 

investigated by Osofsky in 1966. The natural follow-up 

to this investigation was to characterise those rings for 

which every finitely generated faithful right as well as 

left module is a generator of mod-R. Such rings are 

called FPF (finitely pseudo-Frobenius) rings and to date 

have not yet been internally characterised. 
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Parallel to the theory of FPF rings is Fp2F rings. A 

ring is said to be right Fp2F in case every finitely 

presented faithful right module is a generator of 

mod-Re We have chosen to focus from FPF rings to CFPF 

rings and not from Fp2F rings. It suffices to mention, 

however, that many of the major theorems in FPF ring 

theory have counterparts in Fp2F ring theory. 

Proposition 5.5.1 and 5.5.5 are such examples. 

In this chapter we prove that every right FPF ring is 

right bounded. In seeking a converse to this result a 

number of important propositions emerge which themselves 

are affirmations of the difficulty involved in 

characterising FPF rings. , 

5.2 NOTATION AND TERMINOLOGY 

Since we have chosen to work in mod-R the results in this 

chapter will be proven for right FPF rings. The results 

will have natural counterparts in R-mod. 

We will denote the right annihilator in R of a module M 

(respectively an element xEM) by M~ (respectively x~ ). 

5.3 RIGHT BOUNDED RINGS 

5.3.1 Definition (right duo): 

A ring is called right duo in case every right ideal 

is an ideal (i.e. a two-sided ideal), 

e.g. all commutative rings are right duo rings. 

Related to the duo rings are the right bounded (and 

strongly right bounded) rings: 

5.3.2 Definition (right bounded ring): 

A ring is right bounded if every essential right 

ideal contains a non-trivial two-sided ideal. 
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5.3 . 3 Proposition 

Any right FPF ring R is right bounded. 

Proof: 

Let R be right FPF and let I be any essential right 

ideal of R. We must show that I contains a 

non-trivial two-sided ideal. Suppose R/I is a 

faithful right R-module. Then since R/I is cyclic and 

hence finitely generated, R/1 is a generator of 

mod-R. So 3 n > 0 and an object X of mod-R ~ 

h: (R/I)(n) ~ R ~ X is an isomorphism. Let 

Xl"'" xn£R be such that h(x1 ,···, xn) = 1. 

-1 R -l. 
Let x 1= {a£R/xa£I}. Then 'IX . 1=0. For 

\. : 1. 1 
V\ 

a£ nx~l.I ~ x.ae:I Vi ~ x.a + I = 0 Vi ~ 
;'~1 1 1 1 

X. a = 0 Vi. 
1 

. . . , 
But then a = h(x1 , ... ,x

n
).a = 

x a) = h(O) = O • 
n 

We now show that -l r Lt X _ R for any x£R. So let 

Q + 0 be a right ideal. Fix arbitrary 0 t xe:R. 

xQ = 0 ~ Q ~ x-lI(\Q =* x-lI {\ Q t o. 
On the other hand, xQ + 0 =* I f\ xQ + 0, so there 

an element y = xq t 0 in I f\ xQ and then 

o t q e: x-lII\Q, so x- 1 I{\Q + O. Hence x-1I~ R 

Then 

is 

as was required, Since any finite intersection of 

essential right ideals is again essential, we have 
1'\ 

that 0 = n x.-1 I is essential, a contradiction. 
:, "1. 1 

.', R/I is not faithful, so I contains a 

non-trivial two-sided ideal by 1.4.2. 

To what extent is the converse of this proposition 

true? Although there is no direct converse it will 

be shown (see 5.4.6) that right self-injective 

st~ongly right bounded rings are right FPF. 
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STRONGLY RIGHT BOUNDED RINGS 

5.4.1 Definition (right self-injective ring): 

A ring R is right self-injective in case RR is 

injective. 

5.4.1 Definition (strongly right bounded ring): 

A ring is strongly right bounded if every non-zero 

right ideal contains a non-zero two-sided ideal. 

5.4.3 Remarks 

(1) When a ring is strongly right bounded every 

non-zero right ideal I will contain a two-sided 

ideal which is essential in I. For let 0 + I £ R 

be a right ideal. Let A be the sum of all ideals 

contained in I. Then A is a non-zero two-sided 

ideal. Suppose K AA = 0 for some right ideal K 

contained in I. "If K t 0 then K contains a 

non-zero ideal, so K ~A + 0, a contradiction. 

Hence K = 0, so A ~ I R . 

(2) A submodule K of M is essential in M iff for each 

o " xe:M 3 re:R ~ 0 + xre:K (see [12] lemma 5.19) 

Recall (see 1.6.1) that every compactly faithful 

module is faithful. The converse is true in the 

presence of strong right boundedness: 
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Proposition: 

A finitely generated faithful module M over a 

strongly right bounded ring R is compactly faithful. 

Proof: 

Let M be a finitely generated faithful module. 3 
••• I b in M 

n 

M = blR + ••. + bnR 

'" 

1'\ 
= I: b.R. 

e: -:~ 1 

(\ b . .l. = O. 
" ,. 1 1 

Suppose not. Let 

We claim 
Y'\ 

(\ b . .L = K. 
~ "1 1 

Now 

K ~ 0 is a right ideal, so R strongly right bounded 

~ 3 by the above remark an ideal I ~ K 3 14. K. Let 

o :f kEK. Then we can find rER30 ,., krEI by 5.4.3.2. 

Since I is a two-sided ideal, R(kr) C le b:L \fi. 
, 1 

Thus b.Rkr = 0 \fi, so Mkr = O. Since M is 
1 

faithful, kr = 0, a contradiction. So K = 0 as 
/ 

claimed. Finally, consider the homomorphism 

n 
~: R ~ M , n > 0, defined by 

~(a) = (b1a, ... , bna). Now 

0 = (bla, ... , b a) ~ b.a = 0 Vi, 
n 1 

" .1.. 
i = 1, ... , n, ~ aEb . .L Vi ~ aE {\ b. 

1 ;"~1. 1 
= o. 

Thus a = 0, so ker ~ = O. Thus ~ is an embedding and 

hence M is compactly faithful by 1.6.1. 

Recall (see 1.6.1) that every generator is compactly 

faithful. In the presence of right self-injectivity 

the converse is true: 

5.4.5 Proposition: 

Over a right self-injective ring a compactly faithful 

module is a generator. 

Proof: 

Let R be right self-injectlve. 

Let M be a compactly faithful module. Then we can 

find n > 0 3 ~: R ~ Mn is an embedding. Since 



la' 

.. R is in j e c t i ve, 3 f: M
n 

- - > R 
R 

o ~ RR ~ M
n 

/ 
/ 

I 
IR © / f 

I 

I 
IL 

RR 
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Hence ~ is a split monomorphism, so R is isomorphic 

to a direct summand of Mn. . '. M is a generator 

(see G3 of 1.3.3). 

5.4.6 Proposition: 

Any right sel~injective strongly right bounded ring R 

is right FPF. 

Proof: 

Let M be any finitely generated faithful module. 

Since R is strongly right bounded, M is compactly 

faithful by 5.4.4. Since R is right self-injective, 

M is a generator by 5.4.5. . '. R is right FPF. 

5.4.7 Corollary: 

Any commutative self-injective ring is FPF. 

Proof: 

All commutative rings are strongly right bounded. 

5.5 SEHIPERF~CT RIGHT FPF RINGS 

5.5.1 Proposition (right FPF is a Horita invariant "ring" 

property) : 

A ring R is right FPF iff every ring S similar to R 

is right FPF. 
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Proof: 

"~": Let R be right FPF and suppose R ~ S. Then :1 
a category equivalence F: mod-R~mod-S. Since 

"finitely generated", "faithful" and "generator" are 

Morita invariant "module" properties, right FPF is a 

Morita invariant~ring"property. Hence R is right FPF 

iff S is right FPF follows from the fact that R ~ R. 

Under what conditions is a semiperfect ring right 

FPF? The following proposition provides a partial 

answer to this question: 

5.5.2 Proposition: 

Any semiperfect right self-injective ring R with 

strongly right bounded basic ring is right FPF. 

Proof: 

Let R be semiperfect and RR injective. Then R 

semiperfect =*R""Ra by 4.3.2. Since "injective" 

is a Morita invariant "module" property, R 

self-injective =* Ra is self-injective. Since Ra 

is also given to be strongly right bounded, RO is 

right FPF by 5.4.6. Since "right FPF" is a Morita 

invariant "ring" property by 5.5.1, R"-'Ra => R is 

right FPF. 

The following example shows that a right FPF ring 

need not be semiperfect. 

5.5.3 Example: ~N where F is a field is right FPF but 

not semiperfect. For suppose F is a field. Then F is 

a commutative self-injective ring and F is right FPF 

by 5.4.7. Since commutativity and injectivity are 

preserved under direct products, F~ is right FPF. 

Suppose tN/Rad(F~) is semisimple. Then 
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~N/Rad(tN) = (F/RadF)IN = ~ is semisimple 

and hence a right Noetherian ring by 3.3.8. Let 

11 = {< f 1 , 0, 0, ... )} 

12 = {< f
1

, f 2 , 0, 0, ... )} 

where fiEF Vi E IN. Then for each kdN, Ik is an 

ideal of IN and 11 < 12 < 13 < ••. , a 

contradiction. Hence IN is not semisimple and so 

cannot be semiperfect. 

5.5.4 Definition (uniform module): 

5.5.4.1 

A non-zero module M is uniform in case I f\K f 0 for 

any two non-zero submodules I and K of M. 

Proposition: 

The property of being uniform is a Morita 

invariant "module" property. 

Proof: 

A module UR is uniform iff End(E(U» is 

indecomposable. Since the properties "injective", 

"essential", "indecomposable" are all Morita 

invariant "module" properties, so is "uniform". 

5.5.5 Proposition: 

If R is a semiperfect right FPF ring, then 

(a) the basic ring RO is strongly right bounded; 

(b) the basic module B is isomorphic to a direct 

summand of any faithful finitely generated module; 

(c) each right prindec eR is a uniform right ideal, 
t'\ 

hence R = @ e.R is a direct sum of uniform 
i ~l 1 

right prindecs e.R, i = 1, 2, ... , n. 
1 
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Proof: 

(a) Suppose R is a semiperfect right FPF ring. 

Assume R is selfbasic. Let 0 • I ~ R be any right 

ideal. Then R/I is cyclic and so finitely 

generated. If R/I is faithful then R/I is a 

generator, so I = 0 by 4.4.2 (b), a contradiction. 

Hence R/I is not faithful, so I contains a non-zero 

two-sided ideal by 1.4.2. Thus R is strongly right 

bounded if it is selfbasic, semiperfect and right 

FPF. Since RO satisfies all these conditions RO 

is strongly right bounded. 

(b) Let M be any finitely generated faithful module. 

Since R is right FPF, M is a generator of mod-R. That 

B is isomorphic to a direct summand of M then follows 

from 4.4.1 (b). 

(c) Suppose 
"'" R = (±) e.R 

i. 0 l. 1 

R is 

for 

semiperfect, selfbasic. Then 

right prindecs e.R, 
1 

i = I, . . . , m . Let I and K be right R-submodules of 

say elR. Suppose I A K = O. We shall show that 

either I = 0 or K = 0 which will prove that elR is 

uniform. 

Let elR/I @ elR/K CD (1 - el)R = M. Then M is 

finitely generated. We show that M is faithful. Let 

Mr = 0, rER. Then (e l + I)r = 0, (e
l 

+ K)r = 0 

and (l-el)r = O. Hence elr E I ~ K = 0 so 

elr = O. Thus r = (e 1 + (1 - e 1 »r = O. So M 

is faithful. Since R is right FPF, M is a generator 

of mod-R, so RR and hence e 1R is isomorphic to a 

direct summand of M i.e. for some object X of mod-R, 

elR (f) X;'M:; 

e R. 
n 
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Since End(elR) is local we have by the exchange 

lemma that elR is isomorphic to a direct summand of 

one of the summands on the right. If elR is 

isomorphic to a direct summand of one of the ekR, 

k ~ 2, then elR ~ ekR (since the ekR are 

indecomposable), contradicting the irredundancy of 

{e.}~ l' Hence elR is isomorphic to a direct 
11= 

summand of elR/I or elR/K. In the first case let 

f/>: elR/I ~ elR ® X' be the isomorphism. 

Consider the composite mapping 

elR ~ elR/I ~)elR $ X' ~) elR. 

ltlf/>lt is an epimorphism 3 I C ker(ltlf/>lt). Next we 

show that ker(ltlf/>lt) = O. For projectivity of elR 

ensures ~ f: elR ~ elR ~ 

~ 0 

Then elR = ker(ltlf/>lt) ® Imf. Since 

e 1R is indecomposable, either ker(ltlf/>lt) = 0 

In the ,latter case, 

(ltlf/>lt)elR = 0, so elR = 0 which is impossible, 

so ker(ltlf/>lt) = O. Hence I = O. Similarly in the 

second ~ase we can conclude that K = O. By repeating 

the above proof we can show that e.R is uniform Vi, 
1 

i = I, ... , m. We have proved the theorem in the 

event that R is selfbasic. 

In the general case, let R be any semiperfect right 

FPF ring, and let Ra be its basic ring. Then Ra 
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is semiperfect, right FPF, selfbasic so that each of 

its prindecs is a uniform RO-module. 

Refer to the proof of 4.3.4. We show that the 

covariant functor 

Ho~(eOR,_) : mod-R""'-1mod-RO defines a duality 

between the module categories in which e.R maps to 
1 

W1 As in 4.3.4 {e.}. 1 is a basic set 
11= 

of idempotents of RO' Hence by the above eiRO 

is a uniform RO-module for each i. But the 

property of being uniform is a Morita invariant 

"module" property (5.5.4.1). Hence e.R is uniform 
1 

in mod-R, for each 1 ~ i ~ m, proving that all 

prindecs of R are uniform. 

This completes the proof of the proposition. 

Proposition (partial converse of 5.5.2): 

Any semiperfect right FPF ring with nil radical J is 

right self-injective. 

Proof: 

Let R be a semiperfect right FPF ring. First assume 
\1'4\ 

that R is selfbasic. Then R = .0 e.R for 
\.. ::::L 1 

mutually non-isomorphic right prindecs 

eiR, i = 1, ... , m. We show that the 

. . . , m, are their own injective hulls . 

It suffices to prove that uR + e.R = e.R for any 
1 1 

0 ~ U E E(e.R), i = 1, ... , m. (For then 
1 

u E E(e.R) ~ u E uR + e.R ~ u E e.R) 
1 1 1 
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Let U = uR te

1 R. Then U C E(e 1R). Let 

M = U t (1 - e
1

)R. Indeed this sum is direct. For 

let K = U (\ (1 - e
1

)R. Then K ~ U S E(e 1R) and 

K {\ e 1 R = U (\ (1 - e 1) R (\ e 1 R = O. But 

e
1

R A E(elR), so that K = O. Then M is faithful 

for Mr = 0, rER, ~ (U t ( 1 - e
1 )R)r = 0 ~ 

(uR t R)r = 0 =:} Rr = 0 ~ r = o . Also, M is 
finitely generated, so R selfbasic ~ M ~ R Cl) 

for some object X of mod-R by 4.4.1 ( b) . Thus 

M = . (uR t e 1 R) (±J (1 - e 1) R ~ e 1 R (!) ••• <!) emR ~ X. 

Since End(e
1

R) is a local ring, e 1R is isomorphic 

to a direct summand of one of the summands on the 
left. Since e 1R,* ejR Vj > 1, e 1 R is 

isomorphic to a direct summand of U = uR t e 1 R. 

But e
1

R is uniform by 5.5.5, hence E(e 1 R) is 

uniform: 

For let 0 f A ~ E(e
1R) and 0 ~ C ~ E(e 1R). 

Since e
1

R ~ E(e
1
R), A (\e

1R :f o. Also 

C A e
1R + O. But e 1R is uniform, so 

X 

(A f\ e 1 R) {\ (C 1\ e 1R) ~ O. Thus A f\ c ~ 0, so 

E(e
1R) is uniform. Thus U CE(e 1R) =9 U is also 

uniform. Thus U is indecomposab1e. Since 0 + e
1R 

is isomorphic to a direct summand of U we must have 
U -:: e'1R. Let D = End(U

R). Then D is a local 

ring isomorphic to End(e
1R) - e

1
Re

1 . 

Rad(D) = J(D) maps onto J(e
1Re

1 ) = e1Je
1 
~ J, 

so J(D) is nil. Let f : U ~ e
1

R be the stated 

isomorphism. Since e 1R ~ U, fED. Now ker f = 0, 

since f is a monomorphism. Hence £ is not nilpotent, 
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so f ,J(D). Hence f is a unit of D End(U) (see 

3.6.4), so in particular f is an epimorphism, so 

feU) = U = elR as required. 
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injective. Similarly, each eiR, i =2, 3, •.. , m, 

is injective. Since a finite direct sum of injective 
M 

modules is injective (see 1.8.5), R = G e.R is 
i '" 1 1 

injective. 

Returning to the general case, let R be a semiperfect 

right FPF ring with nil radical J. Then its basic 

ring RO is se1fbasic. Furthermore, "semiperfect" 

and "right FPF" are Morita invariant "ring" 

properties, so R~ RO =+ RO is also semiperfect 

and right FPF. Now 

J(RO) = J(eORe O) = eOJe O ~ J, so J(RO) is 

nil. Thus by the above, RO is se1~injective. But 

"injective" is a Morita invariant "module" property, 

so R "V RO ~ R is right self-injective.This 

completes the proof of the proposition. 

We can summarise the major results of this chapter 

nicely, in the following theorem which characterises 

semiperfect rings in the case where R/J is Artinian 

and J is nil. 

5.5.7 Proposition: 

Let J( = RadR) be nil and R/J Artinian. Then R is 

semiperfect. Further R is right FPF iff RO is 

strongly right bounded and R is right self-injective. 

Proof: 

Idempotents modu10 ni1 . ide~ls lift (see 3.6.3) so R 

is semiperfect. 

"~" 

"<=:" 
Follows from 5.5.5 (a) and 5.5.6. 

Is 5.5.2 . 
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CHAPTER 6 

._-_._--_._--

SEMI PERFECT CFPF RINGS 

6.1 INTRODUCTION 

The results gathered in the earlier chapters will now be 

used to make a detailed analysis of semiperfect right 

CFPF rings. A right CFPF ring is one all of whose factor 

rings are right FPF. The end result is that semiperfect 

CFPF rings have a "Wedderburn-type" characterisation of 

semisimple rings. More specifically, a ring is 

semiperfect right CFPF iff it is a finite direct product 

of matrix rings over right CFPF rings which satisfy the 

following three properties: 

(i) Every right ideal is a two-sided ideal (right 

duo) . 

(ii) Every finitely generated right module is a direct 

sum of cyclics (right a-cyclic). 

(iii) The ideal lattice is well ordered (right valuation 

ring) . 

Again we lean heavily on the fact that every semiperfect 

ring is Morita equivalent to a selfbasic ring RO' In 

the presence of this condition RO - which is also 

semiperfect and right CFPF - turns out to satisfy the 

first two of our conditions. The third condition 

requires more push and so here, the conditions 

"selfbasic" and "semiperfect" are replaced by "local", a 

far stronger condition. This presents no problem for we 

eventually show that such a Ra is a finite direct 

product of local rings, each having all the stated 

properties. 
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The transition from Ra to R requires Morita theory, 

some standard isomorphism theorems and Kaplansky's 

celebrated theorem that projectives over local rings are 

free. 

Some useful results are encountered en route to the main 

theorems: e.g. CFPF is a Morita invariant "ring" property 

and a finite direct product of CFP~ rings is CFPF. A 

general class of right CFPF rings is also described: any 

right duo ring all of whose factor rings are right 

self-injective is right CFPF. Thus a commutative ring R 

for which RII is injective for every ideal I is CFPF. 

6.2 NOTATION AND TERMINOLOGY 

In being consistent with our approach, results are only 

proved for right CFPF rings. 

(a •. ) 
1J 

wi 11 denote a matr ix wi th entr ies a.. indexed 
1J 

(R) 
n 

by i and j; 

will denote the ring of n x n matrices over R. 

6.3 SEMIPERFECT RIGHT CFPF RINGS 

6.3.1 Definition (right CFPF ring): 

A ring R is right CFPF in case every homomorphic 

image of R is right FPF. 

It is immediately clear that R is right CFPF in case 

every factor ring of R is right FPF. 

6.3.2 Definition (completely right self ~ injective ring»: 

A ring is completely right self-injective in case 

every factor ring is right self-injective. 

6.3.3 Proposition: 

Any completely right self-injective right duo ring R 

is right CFPF. 
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Proof: 

Let R satisfy the given conditions and let ! ~ R be 

any ideal. We show that R/! is right FPF. Now R/! 

is right duo. For let N/I be any right ideal of R/I. 

Since R is right duo, N/I is a two-sided ideal. 

Since right duo rings are strongly right bounded, 

R/! is strongly right bounded. Since R is completely 

right self-injective, R/I is self-injective. Hence, 

by 5.4.6, R/! is right FPF. 

6.3.4 Proposition: 

If R is a semiperfect selfbasic ring then R/A is 

semiperfect selfbasic for all ideals A of R. 

Proof: 

Let R be a semiperfect selfbasic ring. Then 3 
local orthogonal idempotents e l ,···, em 3 

l~el t ... tem where eiR ~ ejR for i + j. Let A 

be an ideal of R. Then R = R/A is semiperfect (by 

3.8). Let 

® e R/e A be m m 

defined by r --7 (elr t elA, ... ,emr t emA). 

Then ~ is an R epimorphism with kernel A and so - "... 

R = elR/elA(±) et> emR/emA in mod-R 

~ elR <±) et) emR as right R/A-modules. Let 

(t) e R = S. m The e., 1 ~ i ~ m 
1 

are local orthogonal idempotents of S (see 3.8) such 

that i = el t ... tem. To show that S is selfbasic 

we show that none of the e.R are isomorphic. 
1 . 

Suppose e. R :: e .R, i, j ~ m, in mod-R. Then 
1 J 

e.R/e.A- e.R/e.A in mod-R. Since e.J 
1 1 J J 1 

(respectively e.J) is the unique maximal submodule 
J 

of eiR (respectively ejR) (see 3.6.9), we 
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conclude that e.A c..e.J (respectively 
1 1 

e A c.. e.J) and since e.J « e.R (respectively 
j - J 1 1 

e.J « e.R) (see 3.3.2 (d», we have by 3.3.2 (a) 
J J 

that e.A «e.R (respectively e.A «e.R). 
1 1 J J 

Hence e.R ~ e.R/e.A canonically is a 
111 

projective cover 10r e.R/e.A. Similarly e.R is 
1 1 J 

a projective cover for e.R/e.A ~ e.R/e.A. 
1 1 J] 

Hence by 3.6.1, e.R~ e.R, so i = j by 
1 J 

definition of the basic module of R (see 4.2). Thus 

S is selfbasic. Since R ~ s, R is selfbasic. 

Under what conditions are right CFPF rings right 

duo? Our next proposition shows this happens when 

the ring is semiperfect and selfbasic: 

6.3.5 Proposition: 

If R is a semiperfect, selfbasic, right CFPF ring 

then R is a right duo ring. 

Proof: 

Let R satisfy the given conditions. Let I be any 

right ideal of R. We must show that I is a two-sided 

ideal. Let A = (R/I)~ in R i.e. 

A = {re:R I (R/I)r = O} = {re:R I Rr ~ I}. 

Then A is a two-sided ideal in R. Let rEA. Then 

Rr S:. I, so lrEI i.e. rEI. Hence AS I. If 0 is any 

two-sided ideal contained in I, then dED ~ 

Rd £ 0 S::. I ~ dE A, so 0 S A. Hence A is the largest 

two-sided ideal of R in I. Since R is right CFPF, 

R/A is right FPF. R/A is semiperfect and selfbasic by 

6.3.4. So the basic ring of R/A viz. R/A is strongly 

right bounded (by 5.5.5). Now I/A is a right ideal 
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of R/A. Suppose I/A f O. Then we can find a 

two-sided ideal CIA f 0 ~ CIA ~ I/A. Then C is a 

two-sided ideal of R such that A ~ C ~ I. By 

maximality of A, C C A, so C = A. Whence CIA = 0, a 

contradiction .. '. I/A = 0, so I = A is a 

two-sided ideal. 

6.3.6 Proposition: 

"Right CFPF" is a Morita invariant "ring" property. 

Proof: 

Let S be aright CFPF ring. Suppose R"..-..., S. Let I be 

any ideal of R. By [12] proposition 21.11, 3 an 

ideal I' of S ~ R/I""" S/I'. Since SII' is right FPF and 

"right FPF" is a Morita invariant "ring" property, 

R/I is right FPF .. '. R is a right CFPF ring. 

6.3.7 Corollary to 6.3.5: 

Any semiperfect right CFPF ring is similar to a right 

duo ring. 

Proof: 

Let R satisfy the given conditions. Then R~RO ~ 

RO is semiperfect and right CFPF (by 3.5 and 

6.3.5). Since Ra is also selfbasic (by 4.3.4), we 

have by 6.3.5 that RO is a right duo ring. Then 

R ~~O ~ R is similar to right duo ring. 

6.3.8 Definition (right valuation ring): 

A ring R is a right valuation ring in case the right 

ideals of R are linearly ordered. We will denote a 

right valuation ring by right VR. 
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Clearly the union of all the proper right ideals of R 

is the unique maximal right ideal of R, so every VR 

is a local ring. 

6.3.9 Proposition: 

If R is a right CFPF local ring then the right ideals 

of R are linearly ordered i.e. R is a right VR. 

Proof: 

Suppose R satisfies the given conditions. Now R is 

selfbasic since 1 is a local idempotent and R = I.R. 

Let Al and A2 be two proper right ideals of R. 

Now R local ~ R is semiperfect (see end of 3.7). 

Since R is selfbasic and right CFPF, R is a right duo 

ring (see 6.3.5). Thus Al and A2 are proper 

two-sided ideals - and so is A = Al n A2 . Now 

R/A. is a cyclic right R/A-module for each i. Let 
1 

M = R/Al ID R/A2 . Then annR(M) = A and M is 

finitely generated over R/A. Furthermore M is 

faithful as a right R = R/A-module. But R is right 

FPF, so M is a generator of mod-R. By 6.3.4 R is 

selfbasic and semiperfect, so we have by 4.4.1 the 

following decomposition in mod-R: 
"'" -"J -M=. R/A1 (±) R/A2= R (f) X for some object X of 

mod-R. Since R is local so is R. Thus we have by 

the exchange lemma that R is isomorphic to a direct 

summand of R/Al or R/A2 . 

But EndR/ A(R/A1 ) = EndR/A(R/At ~ R/Al as 
1 

rings and so EndR(R/A
1

) is local. • 

is indec~mposable as ~n R-module ([12] Theorem 

5.10). So R = R/A is isomorphic to either R/Al or 

R/A2 as R/A-modules, and hence as R-modules. Thus 

either annR(R/A1 ) = annR(R/A) or 
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(R/A ) (R/A) i.e. Al = A or annR 2 = annR 

A2 = A. Hence Al C. A2 or A2 C. Al' 

6.3.10 Definition . (right u-cyclic ring): 

A ring R is right u-cyclic in case every finitely 

generated right R-module decomposes into a direct sum 

of cyclic modules. 

These rings are also referred to as right FGC rings 

in the literature. 

6.3.11 Proposition: 

Let R be a semiperfect ring and let P be a finitely 

generated projective module. Then there exists a 

finite set {e«R}«£F of prindecs of R such that 

P = G) eR. Further \ F\ is the same for all such 
c(.E.,:" « 

representations. 

Proof: 

3 
I 

P. Since Rn is a finite 

direct sum of prindecs each having local endomorphism 

ring, P is a direct sum of modules P«(<<£I) each 

having local endomorphism ring (Krull-Schmidt Theorem 

[111 Proposition 1.2A (2)). Since P i~ finitely 

generated we may take I to be finite. By Proposition 
IM 

3.9.7 {e.R}. 1 is an irredundant set of 
1 1 = 

M 
indecomposable projective modules, if {ei}i =1 is 

a basic set. P"'" (f) e R where F is finite 
O{c (: a 

and 1 ~ a ~ m Va. Since each e R has a local « 

endomorphism ring,. IF\ is uniquely determined by P, 

again by the Krull-Schmidt Theorem. 

This proposition allows us to make the following 

definition: 
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Let R be a semiperfect ring and let M be a finitely 

generated right R-module. Let P be the projective 

cover of M. Then the number of indecomposable 

summands in any direct sum decomposition of P into a 

direct sum of indecomposable right R-modules is 

called the projective cover dimension of M. 

We will denote the projective cover dimension of M by 

p.c.dim(M) . 

We observe that p.c.dim(M) will be finite, and 

well-defined since projective covers are unique up to 

isomorphism. 

6.3.13 Proposition: 

A semiperfect, selfbasic, right CFPF ring R is right 

O'-cyclic. 

Proof: 

Suppose R satisfies the given conditions. 

Let M be any finitely generated right R-module. We 

may assume M , O. Let 0 = annR(M). Then M is 

finitely generated faithful over RID which is right 

FPF. So M is a generator of mod-RID. Since RID is 

selfbasic (see 6.3.4) we have by 4.4.1 the following 

decomposition in mod-RID: 

M IV RID @ X for some object X of mod-RID. 

This is a decomposition in mod-R as well, and as 

R-modules, RID and X are finitely generated. Let p' 

in mod-R be any projective cover of RID and p" be 

any projective cover of X. Then 

p' (±) p" ~ RID 0 X is a projective cover in 

mod-R (see 3.6.2). Let p.c.dim(X) = m. Then 

p.c.dim(M) = p.c.dim(R/D) + p.c.dim(X) > m. 

Thus if X + 0 we can split X as we did M. So 
'" Cl I X-=. R/Al \i:J X in mod-R/A

1 
where 

Al = annR(x). So X::' R/Al (±) X' in mod-R, so 
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M ::: R/D @ R/A
1 

@ X' in mod-R. Since MD = 0, 

X ~ M s> XD = 0, so D S Al' Now p.c.dim(X/) < m. 

If X' ~ 0 we can proceed as above. Since 

p.c.dim(M) = n is finite, this process must stop 

after at most n steps, at which stage we will have 

M : R/D B R/A1 (!) ... 6)R/Am,where 

D ~ Al ~ ... ~ Am' is a direct sum of cyclic 

modules in mod-R. So R is right ~-cyclic by 6.3.10. 

6.3.14 Lemma 1: 

Let R = R R.. Then R is right CFPF iff R
1
. is 

i... ... '1. 1 

right CFPF, i = l, ... ,n. 

Proof: 

See [11] Theorem 3.4.2. 

Lemma 2: 

A finite product of semiperfect rings is semiperfect. 

Proof: 
V'\ 

Let R = R R. where each R. is semiperfect. Let 
~~~ 1 1 

J = RadR and J(R.) = Rad(R.). Then 
1 1 

., V'\ R J = R J(R.) and R ./J(R.) is a finite direct 
.:. ... 1. 1 ':"'L 1 1 

product of semisimple rings (see 3.7 (b» and hence 
p '" semisimple. But R/J .£:: 1[ R./J(R.), so R/J is 

"~:z. 1 1 

semisimple. Let u be any idempotent of R/J. Then 

~(u) = (ul' ... ,un ) where for each i, ui is an 

idempotent of R./J(R.). So 3 an idempotent 
1 1 

e. e:R. ~ e. = u. (see 3.6.3) Vi. Let 
1 1 1 1 

2 
Then e = e and e = u. 

Hence idempotents lift from R/J to R. 

semiperfect by 3.7 (b) . 

• '. R is 
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6.3.15 STRUCTURE THEOREM 
A ring R is semiperfect and right CFPF iff R is 

similar to a finite product of right duo right VR 

right rr-cyclic right CFPF rings. 

Proof: 

given conditions. "~,, : Suppose R satisfies the 

Assume R is selfbasic. Then R = 
IV\ o e. R where 

~ = 1 1 
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e. are local orthogonal idempotents. By 6.3.5,R is 
1 

right duo. Let Al = e J. = ( I - e
1

)R. Then 
1 

A1 is an ideal of R, so RAI C Al = 

Hence e1RA1 = o . So in particular 

elR(1 - ell = 0 i.e. e1R = e 1Re 1 · 

Similarly e.R = e.Re. Vi. Thus 
111 

M l"Y'I 

.1-e 1 . 

R = .$ e.R = 
I.. = 1. 1 

<B e.Re .. So R is a finite 
"":1. 1 1 

direct sum ( = finite product) of local rings 

e.Re. which are right CFPF by Lemma 1. By 6.3.9 
1 1 

each e.Re. is a right VR. Now each e.Re . 
1 1 1 1 

being local is semiperfect,selfbasic and CFPF. Thus 

each e.Re. is right duo by 6.3.5 and right 
1 1 

~-cyclic by 6.3.13. We have R equal to a 

finite direct product of right duo right VR right 

~-cyclic right CFPF rings. 

In general, we use the fact that R I"V Ra to deduce 

that RO is semiperfect and right CFPF and since 

Ra is selfbasic (see 4.3.4) the result ,follows. 

(\ 

"~": Let S = Tt S. where for each i, I ~ i ~ n, 
\, ~ 1. 1 

Si is a right duo right VR right rr-cyclic right 

CFPF ring. Suppose R ---S. We first show that S is 

semiperfect and right CFPF. For each i, S. is a 
1 



J 

• 

• 
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right VR, hence a local ring by 6.3.8 and thus 

semiperfect (see example at the end of 3.7). By Lemma 

2, S is therefore semiperfect. Also, for each i, 

S. is right CFPF, so S is right CFPF by Lemma 1. 
1 

Finally, since "semiperfect" and "right CFPF" are 

Morita invariant "ring" properties, R "'-'S ~ R is 

semiperfect and right CFPF. 

To present 6.3.17 we need the following lemmas. 

6.3.16 Lemma (a): 

Let M be a module. Then for any n > 0 

End(Mn ) ~ (End(M» , the n x n matrix ring over 
n 

End (M) . 

Proof: (see [12] Proposition 13.2) 

Lemma (b): 

Let R = R1 x ... xRm. Then as matrices 

( R ) AJ (RI) x ... x (R ) . 
n n m n 

Proof: 

For rER, let r i be the i-th component, 1 ~ i ~ m. 

Consider the map 

~ : (a .. ) ~ «(a. ')1)' ••• , «a .. ) » 
1) 1) 1) n 

of (R)n into (RI) x ... x(R ) . This is a n m n 

ring isomorphism . 
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6.3.17 CHARACTERISATION THEOREM of semiperfect right CFPF 

rings: 

A ring R is semiperfect and right CFPF iff R is a 

finite product of full matrix rings over right duo 

right VR right ~ -cyclic right CFPF rings. 

Proof: 

"~,, Suppose R is a semiperfect right CFPF ring. 

Then so is RO' Since RO is also selfbasic RO 

is a finite product of right duo right VR right 

~-cyclic right CFPF rings by 6.3.15. So we have 

RO = ' R1 x ... xRm where for each i, 1 si s m, 

Ri is a right duo right VR right ~-cyclic right 

CFPF ring. By Lemma (b), as matrices, for any n 
/'J 

(RO) = (R1 ) x ... x(R ) . n n m n 

By [121 corollary 22.7, since R ~ RO' there exists 

an n and an idempotent matrix 

eE(RO)n 3 R =- e(RO)ne as rings. 

So (RO) ::: (R1 ) x ... x(R ) . n n m n 

Let 0 denote this isomorphism. 

Nowe is the identity of e(RO)ne. Suppose 

Then each e. is an 
1 

idempotent matrix of (R . ) . 
1 n 

Applying [12] Proposition 7.8 we have for each i, 

that e (R.) e,-v e. (R.) e . . So 
1 n 1 1 n 1 

e(RO)ne ~e1(R1)ne1x ... xem(Rm)nem· 

Fix i,l ~ iSm. By [12] Proposition 4.11, 

R . ':: End R ( R . ). By Lemma (a), 
li 1 

(End (R. » -"J End (R. n). So 
1 n 1 

"",' n I 
e

l
· (R

l
· )ne . :::. e.End(R. le. where the 

1 1 1 1 

mapping ei Ri
n ~ R

i
n , defined by 



.. 

--~~ e. 
1 

r. 
1 

is clearly a ring homomorphism. 
r 

So e. is an 
1 

idempotent of End(R. n ), so by [12] Proposition 
1 

, n'.-. ' n ' 
5.9, e i End (R i ) e i = End (e i Ri)' Also e i 

induces a decomposition 
, n 

(1 - e.)R .. 
1 1 

, n. 
By [12] Corollary 17.3 this means that e.R. 1S 

1 1 

68 

finitely generated and projective over Ri' Since 

projective modules over VR rings (which are local 

rings by 6.3.8) are free, a n i > 0 ~ 

, n ...... R ni S e.R. = . . 0 
111 

, n "'-J n' 
End(e.R. ) ~ End(R. ~). Thus for each j, 

1 1 1 

1 ~ j :s m, 3 n. 
J 

e(RO)ne 

"" End ( R 1 n 1) x ... xEnd ( Rm n",) 

~ (End(R
1

» x ... x(End(R» by Lemma (a) 
n1 m n

M 
"... 

(R 1 ) x ... X(R) by [121 Proposition 4.11 
n 1 m nM. 

= a finite product of full matrix rings over right 

duo right VR right a-cyclic right CFPF rings. 

That R is also such a product follows from the fact 

that R ~ e(RO)ne. 

" 4==" Suppose R = (R
1

) x ... x(R ) 
n m n where for 

each i, 1 ~ i ~ m, (R. ) is a 
1 n full matrix ring 

over R. with R. a right duo right VR right 
1 1 

a-cyclic right CFPF ring. By [12 ] Corollary 22.6, 



• 
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for each i, (R.) ~ R.. But R. is right CFPF 
1 nIl 

and since "right CFPF" is a Morita invariant "ring" 

property, (Ri)n~ Ri ~ (Ri)n is right CFPF 

for each i. Thus R is right CFPF by Lemma 1. 

Also for each i, R. is a right VR, hence local and 
1 

so semiperfect. Thus (R.) ~ R. ~ (R.) 
1 nIl n 

is semiperfect for each i ("semiperfect" is a Morita 

invariant "ring" property) and hence R is semiperfect 

by Lemma 2 . 
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