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Abstract

A multicarrier index modulation technique in the form of quadrature spatial modulation (QSM)

orthogonal frequency division multiplexing (QSM-OFDM) is proposed, in which transmit antenna

indices are employed to transmit additional bits. Monte Carlo simulation results demonstrates a 5 dB

gain in signal-to-noise ratio (SNR) over other OFDM schemes. Furthermore, an analysis of the

receiver computational complexity is presented.

A low-complexity near-ML detector for space-time block coded (STBC) spatial modulation

(STBC-SM) with cyclic structure (STBC-CSM), which demonstrate near-ML error performance and

yields significant reduction in computational complexity is proposed. In addition, the union-bound

theoretical framework to quantify the average bit-error probability (ABEP) of STBC-CSM is

formulated and validates the Monte Carlo simulation results.

The application of media-based modulation (MBM), to STBC-SM and STBC-CSM employing radio

frequency (RF) mirrors, in the form of MBSTBC-SM and MBSTBC-CSM is proposed to improve

the error performance. Numerical results of the proposed schemes demonstrate significant

improvement in error performance when compared with STBC-CSM and STBC-SM. In addition, the

analytical framework of the union-bound on the ABEP of MBSTBC-SM and MBSTBC-CSM for the

ML detector is formulated and agrees well with Monte Carlo simulations. Furthermore, a

low-complexity near-ML detector for MBSTBC-SM and MBSTBC-CSM is proposed, and achieves a

near-ML error performance. Monte Carlo simulation results demonstrate a trade-off between the

error performance and the resolution of the detector that is employed.

Finally, the application of MBM, an index modulated system to spatial modulation, in the form of

spatial MBM (SMBM) is investigated. SMBM employs RF mirrors located around the transmit

antenna units to create distinct channel paths to the receiver. This thesis presents an easy to evaluate

theoretical bound for the error performance of SMBM, which is validated by Monte Carlo simulation

results. Lastly, two low-complexity suboptimal mirror activation pattern (MAP) optimization

techniques are proposed, which improve the error performance of SMBM significantly.
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Introduction

1 Multiple-Input Multiple-Output (MIMO)

The ever-increasing demand for multimedia services, which require substantial improvements in

throughput and link reliability of wireless communication systems, has increased the research for the

5G wireless systems anticipated for the year 2020. The 5G network is anticipated to have improved

quality of service (QoS), improved energy efficiency, full mobility of connected wireless networks,

improved spectral efficiency, which is ten times larger than the current 4G wireless systems [1, 2]. To

meet the proposed target for 5G communication, multiple-input multiple-output (MIMO) systems

have shown increased attractiveness [3]. In conventional (traditional) MIMO systems, a single input

data is encoded and transmitted by all the transmit antennas simultaneously, through different

channel paths, while at the receiver, multiple copies of the transmitted symbol are received with

different phases and at different times by all receive antennas. Hence, MIMO is able to achieve

improved error performance over single-input single-output (SISO) systems because spatial diversity

gain. However, in modern (conventional) MIMO systems, not all antennas are employed to transmit

the encoded data [4–6].

Some of the benefits of MIMO, which achieved through multiplexing gain, diversity gain and the use

of smart antennas includes the following [4, 7]:

a. Higher data rates/improved capacity is achieved, because multiple transmit antennas are

employed.

b. Increase in transmission range.

c. MIMO is robust in dealing with multiple data streams.

d. Significant improvement in error performance as multiple copies of the same signal are received.

e. Improved QoS due to the diversity gain from multipath signals.

f. A diversity order of NtNr may be achieved through MIMO, where Nt and Nr denote the

2
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1. MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO)

number of transmit and receive antennas, respectively.

Although MIMO has the aforementioned benefits, some significant challenges exist [4, 7]:

a. Multipath propagation of MIMO signals makes it susceptible to interchannel interference (ICI).

b. The need for inter-antenna synchronization (IAS) as a result of multiple transmit antennas

employed.

c. MIMO systems employ multiple RF units, which increase the hardware and computational

complexity.

d. The cost, power consumption, form factor and hardware components is increased.

The advantages offered by MIMO are achieved through the following [6]:

1.1 Spatial multiplexing

In spatial multiplexing techniques, multiple transmit antennas are employed to transmit independent

information sequences, with each layer being superimposed [6, 8]. Employing Nt transmit antennas,

the bit rate can be improved by a factorNt without additional bandwidth, when compared with single-

input multiple-output (SIMO)/single-input single-output (SISO) systems. At the receiver, an algorithm

to separate the different layers is implemented to detect the transmitted information. A good example

of the spatially multiplexed MIMO system, is the well known Bell-labs layered space-time architecture

(BLAST) [9], the basic objective of spatial multiplexing is to provide higher bit rates [6].

1.2 Spatial diversity

Spatial diversity [10], exploits the advantage of multiple independent copies of transmitted symbols,

arriving at the receiver from different pathways, hence, making it possible to improve the error

performance of wireless communication. Unlike spatial multiplexing, which aims to increase data

rate, the basic objective of spatial diversity is to improve the error performance of the system by

counteracting the effects of multipath induced fading. However, when spatial diversity is combined

with channel coding or adaptive modulation, it can achieve higher data rates [6]. The level of

improvement achieved through spatial diversity depends on the fading characteristics of the channel,

which is caused by the time and frequency variation of the channel [4]. Alamouti space-time block

coded (STBC) systems are perfect examples of spatial diversity schemes [11, 12].

3
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2. SYSTEM MODEL OF MIMO

1.3 Smart antenna and beamforming

The basic objectives of smart antennas and beamformers, are to improve the signal-to-noise ratio

(SNR) and to suppress co-channel interference. Beamforming antennas are arrays of antennas,

having individual elements that can receive signals from a particular direction. The received signals,

from the different antenna elements, arrive at different time instants and phase shifts because, of the

antenna geometry. Employing phase shifters or delay elements, these phase shifts or delay times can

be compensated for [6].

2 System Model of MIMO

Fig. 1 depicts the system model of an Nt ×Nr MIMO system.

ReceiverHInput bits Detected bits

1

2

Nt

1

2

Nr

. . .

. . .

Transmitter

Fig. 1: System model of MIMO

An input bit stream is modulated into an M -ary amplitude and/or phase modulation (APM) Nt ×

1 transmission vector x = [x1 x2 · · · xNt ]T and transmitted through an Nr × Nt channel H =

[h1 h2 · · · hNt ] having its elements represented as:

H =


h1,1 h1,2 · · · h1,Nt

h2,1 h2,2 · · · h2,Nt

...
...

. . .
...

hNr,1 hNr,2 · · · hNr,Nt

 (1)
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2. SYSTEM MODEL OF MIMO

where ha,b, a ∈ [1 : Nr] and b ∈ [1 : Nt] is the channel fading coefficient from the b-th transmit

antenna to the a-th receive antenna. The columns represent the channel vectors for the transmit

antennas, while the rows represent the channel vectors for the receive antennas. Considering a

frequency-flat Rayleigh fading channel, the Nr × 1 receive signal vector y at the receiver may be

represented as:

y =
√
ρHx+ n (2)

where ρ is the average SNR at the receiver, n = [n1 n2 · · · nNr ]T is an Nr × 1 additive white

Gaussian noise (AWGN) vector, whose entries are independently and identically distributed (i.i.d.)

with a distribution according to CN(0, 1). H denotes the Nr × Nt channel matrix which is an i.i.d.

Rayleigh fading channel with a distribution according to CN(0, 1).

The receiver receives the faded signal by the receiving antenna, demodulates it, while appropriate

detection algorithms are implemented to estimate the transmitted symbol(s). The ML detector for

MIMO is represented as [13]:

m̂ = argmin
m∈Ω

py (y | xm,H) (3)

where m̂ is the estimate of the m-th, m ∈ [1 : M ] transmitted symbol xm of the APM constellation

Ω, py is the probability density function (PDF) of the random variable y. A reduced form for (3) is

given as [13]:

m̂ = argmin
m∈Ω

‖g‖2F − 2<
(
yHH

)
(4)

where g = Hx, ‖·‖F denotes the Frobenius norm operator and<(·) denotes the real part of a complex

variable.

In [3], a low-complexity near-ML detector based on orthogonal projection has been presented. A

projection matrix Pmat, which projects a signal orthogonal unto a subspace h1, h2, · · ·, hNt such that

Pmath1 = Pmath2 = · · · = PmathNt = 0 is given as [3]:

Pmat = INt −H2:Nt(H
H
2:NtH2:Nt)

−1HH
2:Nt (5)

where INt denotes an Nt × Nt identity matrix, H2:Nt
∆
= [h2 h3 · · · hNt ] and (·)−1 represents the

inverse.

5
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3. INNOVATIVE IMPLEMENTATIONS OF MIMO

Considering (2), If s = x1, it can be deduced that:

Pmat(y − h1s) = Pmat(h2x2 + h3x3 + · · ·+ hNtxNt + n) = Pmat(n) (6)

however, If s 6= x1, (6) may be represented as:

Pmat(y − h1s) = Pmat(h1x1 − h1s) + Pmat(n) (7)

Comparing (6) and (7), it can be deduced that the norm of (6) is less than the norm of (7). Hence, the

most likely candidate set of the transmitted APM symbol, which offer the minimum Frobenius norms

and a subset of Ω can be chosen. The ML detection can be performed on this subset, hence, reducing

the computational complexity of the ML detector.

3 Innovative Implementations of MIMO

The demand for improved data services for next-generation multimedia applications require

improvement in capacity, spectral efficiency and link reliability [14]. MIMO is able to achieve these

by increasing the modulation order or employing an increased number of transmit/receive antennas.

However, MIMO is limited by ICI, IAS, computational complexity of its detector, complexity of the

hardware design, etc. [15]. Hence, different innovative implementations of MIMO, which offer

multiplexing and/or diversity gains and mitigate the limitations of MIMO are presented in the

subsections [8–11].

3.1 V-BLAST

In order to increase the capacity of MIMO, V-BLAST employs the spatial multiplexing of Nt transmit

antennas to transmit Nt symbols. A major disparity between the traditional MIMO is that, whereas

theNt transmit antennas are employed to transmit the same symbol for traditionalMIMO, the symbols

of BLAST are transmitted as parallel streams [16, 17]. Therefore, the spectral efficiency of traditional

MIMO, which employs transmits all antennas to transmit a single symbol, is improved significantly

by a factor ofNt. However, similar to MIMO, V-BLAST is plagued by ICI and IAS. Furthermore , the

computational complexity of the joint detector for V-BLAST increases exponentially with the number

of data streams [17].

In order to reduce the computational complexity, several detectors have been proposed. For example,

optimal ordering of each sublayer was investigated in [18], where each sublayer is detected

6
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3. INNOVATIVE IMPLEMENTATIONS OF MIMO

separately. The substreams are detected in turns employing linear detecting weights, while the other

substreams are assumed to be interferences. Furthermore, sorted QR decomposition has been

employed to improve the computational complexity of the optimal ordered MMSE detector for

V-BLAST, while retaining the error performance [19].

3.2 MIMO orthogonal frequency division multiplexing (MIMO-OFDM)

In order to achieve high data rates in single carrier systems, wider bandwidths are employed, however,

intersymbol interference (ISI) in single-carrier systems occurs, when the signal bandwidth becomes

greater than the coherence bandwidth. Traditionally, adaptive equalizers are employed to eliminate

the ISI, however, with increased data rate, the complexity of the equalizers are significantly increased,

hence, making a high data rate for single-carrier communication is not feasible [20]. To solve the

problem of frequency selectivity in single-carrier transmission, multi-carrier schemes such as filtered

multi-tone (FMT) transmission and OFDM have been introduced.

3.2.1 OFDM

OFDM is one of the most widely used modulation techniques, and can be found in standards like

WiMAX, long term evolution (LTE) and LTE-advanced. It mitigates the effect of ISI, reduces

computational complexity by employing a one-tap equalizer and improves power and spectral

efficiency because it implements power and bit-loading algorithms [21].

OFDM splits a wideband signal into several independent narrowband orthogonal signals called

subcarriers. An incoming stream of information bits, are mapped into APM symbols from an APM

constellation set. These symbols are employed to form an N × 1 vector of an OFDM symbol x[k]

represented as:

x[k] =
[
x0[k] x1[k] · · · xN−1[k]

]T
(8)

where xl[k], l ∈ [0 : N − 1] is the APM symbol transmitted through the l-th subcarrier of the k-th

OFDM symbol, N is the size of the OFDM symbol and [·]T denotes the transpose of a vector. In

practice, the OFDM subcarriers z†(k) =
[
z†0(k) z†1(k) · · · z†N−1(k)

]T
are produced by the

implementation of the inverse fast Fourier transform (IFFT) on each element of x[k], where (·)†

denotes a time domain signal. The N samples of the OFDM symbol generated by performing the

IFFT may be expressed as [22]:

7
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3. INNOVATIVE IMPLEMENTATIONS OF MIMO

z†l (k) =
1√
N

N−1∑
l=0

xl[k]exp
(
i2πkl

N

)
(9)

A cyclic prefix/suffix (CP) c†(k), having V × 1 vector, taken from the beginning/end z†l (k) is

efficiently chosen, such that the sampling duration for c†(k) is greater than the delay spread of the

received symbol. The CP is appended/prepended to the end/beginning of the OFDM symbol to

reduce the effect of ISI [21, 22]. Hence, the new time domain vector formed z†OFDM (k), is of the

form represented as:

z†OFDM (k) =

z†0(k) z†1(k) · · · z†N−1(k)︸ ︷︷ ︸ c†N (k) c†N+1(k) · · · c†N+V−1(k)︸ ︷︷ ︸
OFDM symbol CP

 (10)

The received time domain signal vector y†OFDM (k) is given by:

y†OFDM (k) = h†(k)⊗ z†OFDM (k) + n†(k) (11)

where⊗ denotes a time convolution. h†(k) is the channel impulse response,n†(k) is an AWGN vector

encountered at the receiver, whose entries are i.i.d. random variables with distributionCN(0, σ2). The

received signal after the CP is removed is given by:

y†(k) =
[
y†1(k) y†2(k) · · · y†N−1(k)

]
(12)

The N -point FFT is performed on the time domain signal at the receiver after the removal of the CP.

The FFT for an individual subcarrier is represented by [22]:

yl[k] =
1√
N

N−1∑
l=0

y†l (k)exp
(
−i2πkl
N

)
, l ∈ [0 : N − 1] (13)

The frequency response of the received signal yOFDM [k] =
[
y1[k] y2[k] · · · yN−1[k]

]T
is given

by [20]:

yOFDM [k] = h[k]xl[k] + n[k] (14)

where n[k] is an AWGN vector at the receiver, whose entries are i.i.d. random variables with

distribution CN(0, σ2), h[k] is the frequency response of the channel.

8
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3. INNOVATIVE IMPLEMENTATIONS OF MIMO

The bit error of single carrier OFDM systems can further be improved by the MIMO implementation

of OFDM (MIMO-OFDM). Hence, the next paragraph introduces MIMO-OFDM.

3.2.2 MIMO-OFDM

MIMO-OFDM [23, 24], combines the advantages of MIMO and OFDM to improve the error

performance, capacity and reliability of MIMO, SISO and SIMO [21, 23]. MIMO-OFDM employs

OFDM modulators, which perform IFFT of the incoming signal, and appends/prepends the CP to the

time domain signal. This signal is transmitted using Nt transmit antennas via an Nr × Nt MIMO

channelH . The individual channel impulse response between the m-th transmit antenna and the n-th

receive antenna, having L independent delayed path (taps), for an individual OFDM symbol is

expressed as [20]:

h†m,n(k) =
L−1∑
φ=0

βm,n(φ)δ(t− τφ), φ ∈ [1 : L] (15)

where m ∈ [1 : Nt], n ∈ [1 : Nr], βm,n and τφ are the fading coefficient and delay spread for the φ-th

path between the m-th transmit antenna and the n-th receive antenna, respectively, and δ(·) is the unit

sample response given by the Dirac delta function.

The advantages of OFDM, apart from the elimination of ISI, includes efficient use of the spectrum

due to overlapping of subcarriers. Furthermore, it is resistant to frequency selectivity because the

wideband is divided into several narrowband frequencies [20]. The use of FFT and IFFT makes it

computationally efficient, while different detection algorithms can be implemented with reasonable

complexity. However, OFDM systems suffer from reduced error performance caused by high peak-

to-average power ratio (PAPR) [25]. Some techniques employed in reducing high PAPR are: clipping

and filtering of signals outside the required region [26], the application of specialized coding schemes

such as simple odd parity code [27], use of partial transmit sequence or selective mapping [28], etc.

3.3 Alamouti space-time block codes (STBC)

The Alamouti STBC [11], exploits spatial diversity to improve the reliability of the traditional MIMO

system by employing two time-slots. In the first time-slot, two APM symbols x1 and x2 are transmitted

by the transmit antennas t1 and t2, respectively, while the symbols −x∗2 and x∗1 are transmitted by t1

and t2 during the second time-slot, respectively. The Alamouti STBC codewordX may be represented

as [20].

9
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3. INNOVATIVE IMPLEMENTATIONS OF MIMO

X =

x1 −x∗2
x2 x∗1

 (16)

where the rows and columns represent the transmit antennas and the time-slots, respectively.

Although the spectral efficiency of classical MIMO is not improved, the redundant copies of the

transmitted symbols yield an improved error performance [29]. Furthermore, STBC is able to

achieve maximum diversity without feedback from receivers and the receivers employ linear

processing. However, the improvement in error performance is achieved with increased

computational complexity, especially when the ML detector is employed [30]. A variation of STBC

is the orthogonal STBC [31, 32].

3.4 Index modulation

Index modulation employs alternative ways than amplitude/frequency/phase to transmit information

via the carrier of the transmitted signal. It employs the indices of distinct channel pathways to convey

information by exploiting the ON/OFF status of subcarrier, antenna, light emitting diodes, time-slots,

modulation types etc. [1]. Interestingly, this area of research has evolved significantly within a very

short time frame.

Some advantages of index modulation are as follows [33]:

a. In contrast to traditional modulation schemes, that uses up its total transmission energy, index

modulation can transfer saved transmission energy from inactive transmit components to the

active components, hence, improving the error performance.

b. Index modulation performs energy-efficient information transmission by activating/deactivating

components of its system and exploiting the same for transmitting information.

c. Systems, which employ index modulation are capable of improving its spectral efficiency

without increasing its hardware complexity.

Several index modulated systems have been considered in the literature [33], however, an overview

of some index modulated systems, which are employed during this research are discussed on the next

page.

10
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3.4.1 Spatial modulation (SM)

In SM, a single antenna from a group of Nt transmit antennas is employed to transmit a symbol at any

given instance, hence, the need for IAS is eliminated, and ICI is canceled. The index of the transmit

antenna, like all index modulated systems, conveys additional information. Furthermore, the spatial

domain is employed to improve the spectral efficiency/error performance of classical MIMO only to a

degree.

Some advantages of SM, are as follows [4]:

a. SM is energy efficient, because it employs a single RF chain at any given time.

b. As mentioned earlier, IAS and ICI is eliminated, since only one antenna is active and only one

symbol is transmitted at any time instance.

c. The capacity of SM is improved in contrast to classical MIMO because of the additional bits

employed.

d. Reduction in the cost of hardware cost and hardware complexity.

Although these advantages exist for SM, it has some limitations. Some of the disadvantages of SM

are as follows:

a. It yields a logarithmic relationship between the number of transmit antennas and the spectral

efficiency.

b. The number of transmit antennas that can be employed must be in the power of two.

c. Unlike generalized SM (GSM) [34, 35], SM can only transmit one symbol at any time. Hence,

the spectral efficiency is reduced, when compared to GSM [34, 35].

d. SM does not exploit the potential for transmit diversity.

3.4.2 Space shift keying modulation (SSK)

SSK [36], employs the principle of SM to transmit information. In SSK, only the spatial domain

is employed as constellation to transmit information. Unlike MIMO, which transmits information

through the APM symbol, SSK employs a single transmit antenna at a time, with the transmitted

tone as its constellation, while other antennas transmit at zero power. The symbol transmitted is not

considered, however, the index of the transmitted symbol contains the information. Given the input

11
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3. INNOVATIVE IMPLEMENTATIONS OF MIMO

bits [b1 b2] for a 2 × 2 SSK system, the transmitted symbol, activated antenna index and the transmit

antenna vector x are presented in Table 1.

Table 1: Example of SSK modulation [36]

bits symbol antenna index x

[0 0] 0 1 [1 0 0 0]T

[0 1] 1 2 [0 1 0 0]T

[1 0] 2 3 [0 0 1 0]T

[1 1] 3 4 [0 0 0 1]T

The SSK scheme demonstrates significant improvement over the phase shift keying maximal ratio

combining (PSK-MRC) scheme and vertical-BLAST, however, the number of antennas needed to

achieve higher data rates is large and could be unimplementable especially for smaller devices.

An improvement on the SSK scheme is the Bi-SSK scheme [35]. Bi-SSK employ a pair of transmit

antennas to improve the data rate of SSK. However, this improvement is achieved with a trade-off

in error performance as there is a marginal reduction in error performance of Bi-SSK over the SSK.

Furthermore, although the data rate of Bi-SSK is improved, an increase in the RF chains ultimately

increase the computational complexity of the system.

3.4.3 Quadrature spatial modulation (QSM)

In a bid to improve the advantages offered by SM, several studies aimed at improving the error

performance and throughput of SM has been conducted. In this regard, QSM has been found to be a

promising candidate [37, 38]. In QSM, the throughput of SM is improved by simultaneously

transmitting the in-phase and the quadrature component of an APM symbol, employing one or two

transmit antennas, whose indices are used to convey additional information. A diagram to illustrate

the QSM system is depicted in Fig. 2. An incoming bit stream d of log2(MN2
t ) bits, at the input of

the QSM system is split into three parts at every instance.

12
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Real bits

Bit Splitter

Imaginary bits

Spatial vector 

for imaginary 

part

M-QAM 

symbol

. . .
1

2

Nt

Signal 

Modulator

d

Spatial vector 

for real part

Fig. 2: System model of QSM modulator

The first n = log2M bits [d1 d2 · · · dn] are employed to select an APM symbol mk
QSM , k ∈ [1 :

M ]. The second subgroup of log2Nt bits is used to activate the antenna with antenna index `< for

transmitting the real part of the generated M -QAM symbol, while the third subgroup of log2Nt bits

is used to activate the antenna with antenna index for transmitting the imaginary part of the M -QAM

symbol, where `<, `= ∈ [1 : Nt].

The complex symbol mk
QSM being selected from the M -QAM symbol constellation is further broken

down into its real and imaginary components being mk,<
QSM and mk,=

QSM , respectively, such that:

mk
QSM = mk,<

QSM + imk,=
QSM (17)

where i =
√
−1 is the imaginary part of a complex number.

mk,<
QSM and imk,=

QSM are then transmitted by the `<-th and `=-th antennas, respectively, such that the

signal vectormQSM for the transmission is given in (18) as:

mQSM = mk,<
`<

+ imk,=
`=

(18)

where mk,<
`<

and imk,=
`=

are Nt × 1 vectors having mk,<
QSM and imk,=

QSM as the non-zero entries in the

13
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Table 2: Grouping of input bit stream for 4× 4 antenna configuration 4-QAM modulation

Grouping Symbol Real Imaginary

[d1 d2 · · · d6] bits bits bits

1 0 1 1 0 0 10 11 00

1 1 1 1 1 1 11 11 11

0 0 0 0 0 1 00 00 01

1 0 0 1 1 1 10 01 11

0 1 1 0 0 1 01 10 01

`<-th and `=-th positions, respectively. Hence, when `< 6= `=,mQSM takes the form shown below:

mQSM =

0 · · · 0 mk,<
QSM︸ ︷︷ ︸ 0 · · · 0 imk,=

QSM︸ ︷︷ ︸ 0 · · · 0

`<-th position `=-th position


T

(19)

and when `< = `=,mQSM takes the form:

mQSM =

0 · · · 0 mk,<
QSM + imk,=

QSM︸ ︷︷ ︸ 0 · · · 0

`<=`=-th position


T

(20)

The real and imaginary parts are transmitted orthogonally, hence, ICI is eliminated, unlike SM, which

employs a single antenna for its transmission, such as to eliminate ICI. A numerical illustration of the

QSM mapping technique is given in Table 2 and Table 3. Assume the grouped bits entering the input

of the QSM modulator at every instant, is given as [d1 d2 · · · d6], such that, a 4-QAM modulation

scheme and four transmitting antennas are employed to transmit [d1 d2 · · · d6].

The grouping is first carried out by taking a set of log2(MN2
t ) bits, in this case, the first group of

log2(MN2
t ) bits in Table 2 are [1 0 1 1 0 0]. These bits are then split into three subgroups such as

shown in Table 2. The log2M symbol bits for generating the 4-QAM symbol is [1 0], log2Nt antenna

bits used for transmitting the real part of the 4-QAM symbol is [1 1] and log2Nt antenna bits used for

transmitting the imaginary part of the 4-QAM symbol is [0 0]. After the grouping of the bits, further

processing of the bits for spatial multiplexing is performed as shown in Table 3.

The symbol mk
QSM is split into the real part mk,<

QSM and imaginary part mk,=
QSM , which are transmitted

by the `<-th and `=-th transmit antennas obtained from the real and imaginary bits in Table 2. For

example, taking the first row of Table 3, it means the symbol “+1” will be transmitted by the fourth

antenna and “−i” by the first antenna. Other antennas remain inactive, resulting in the vectors mk,<
`<

for the real part andmk,=
`=

for the imaginary part. The transmitted vector is then obtained by summing
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Table 3: Outputs from the QSM modulator

4-QAM Spatial Activated mQSM

symbol symbol antenna

mk
QSM mk,<

QSM imk,=
QSM `< `=

+1− i +1 −i 4 1
[
−i 0 0 1

]
+1 + i +1 +i 4 4

[
0 0 0 1 + i

]
−1− i −1 −i 1 2

[
−1 −i 0 0

]
+1− i +1 −i 2 4

[
0 +1 0 −i

]
−1 + i −1 +i 3 2

[
0 +i −1 0

]
the vectors for the real and imaginary parts, which gives mQSM . This means that the transmission of

mk
QSM at this instant will be carried out by the first and the fourth antennas simultaneously, which are

transmitted orthogonally to each other, hence canceling ICI. The signal at the receiver is given by:

yQSM =
√
ρ (h`<x< + ih`=x=) + n (21)

where ρ is the energy of the transmitted symbolh`< and h`= are the `<-th and `=-th column vectors for

the frequency response of the Nr ×Nt channelH , x< and x= are the real and imaginary components

of mk
QSM being transmitted. n is an AWGN signal vector, whose entries are i.i.d. random variables

with distribution CN(0, 1). The detector implements the ML rule given by:

[
ˆ̀<, ˆ̀=, û<, û=

]
= argmin

`<,`=∈[1:Nt],
u<,u=∈[1:M ]

(∥∥yQSM −√ρ (h`<x< + ih`=x=)
∥∥2

F

)
(22)

where ˆ̀< and ˆ̀=, ˆ̀<, ˆ̀= ∈ [1 : Nt] are the estimated antenna indices employed in transmitting the real

and imaginary parts, respectively. û< and û=, û<, iû= ∈ Ω are the estimates of the real and imaginary

parts of the transmitted M -QAM symbol, respectively.

For conventional MIMO, the received bits after detection will be just two bits, whereas for QSM, the

spectral efficiency is improved, since the antenna detected also carries additional information. Apart

from the verified improvement in spectral efficiency of QSM systems over SM noted in [37, 38], QSM

is seen to be more energy efficient than SM, as SM requires approximately 3 dB more power to attain

the same error performance of QSM [37, 39].
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3. INNOVATIVE IMPLEMENTATIONS OF MIMO

3.4.4 STBC-SM

STBC-SM [40], combines the spatial diversity offered by STBC [11], and the spectral efficiency

improvement offered by index modulation systems, such as SM [41], to improve the error

performance and spectral efficiency of STBC, while the error performance of SM is improved. In

STBC-SM, two transmit antennas selected from a group of Nt > 2 transmit antennas, which are

employed to transmit an Alamouti codeword. The spectral efficiency offered by the spatial domain of

STBC-SM is 0.5 log2 c bits/s/Hz, where c = bNt(Nt−1)
2 c2p, and bwc2p denotes the nearest power of

two, less than or equal to w. ICI is eliminated in STBC-SM, however, it employs more than one RF

chain, which increases the computational complexity, when the ML detector is employed for

quasi-static frequency-flat Rayleigh fading channel. Several schemes, with the objective of

improving the spectral efficiency/error performance/computational complexity, have been reported in

the literature. For example, labeling diversity has been employed in [42], to improve the error

performance or spectral efficiency of STBC-SM. Furthermore, a reduced computational complexity

scheme for STBC-SM has been presented in [43]. Although, the error performance of SM is

improved by STBC-SM, IAS and the need for the number of antennas employed to be equal to the

power of two still exists.

3.4.5 STBC-SM with cyclic structure (STBC-CSM)

In order to improve the spectral efficiency of STBC-SM and SM, a new scheme, in the form of

STBC-CSM, which employ cyclically rotated transmit antenna pairs, to transmit Alamouti

codewords, has been proposed in [44]. Furthermore, unlike the STBC-SM, which takes its

transmitted symbols x1and x2 from a single constellation set Ω1 [40], STBC-CSM takes its

transmitted symbols from two different constellations Ω1 and Ω2. The second constellation

Ω2 = Ω1e
jθk , is a rotated version of Ω1, where θk is the rotation angle θ of the k-th, k ∈ [1 : Nt − 1]

codebook. The spectral efficiency of STBC-CSM offered by the spatial domain is 0.5 log2 c

bits/s/Hz, where c = bNt(Nt − 1)c2p, whereas c = bNt(Nt−1)
2 c2p for STBC-SM. Although this

improvement exists, there is a decrease in the error performance of STBC-CSM. Furthermore,

similar to STBC-SM, STBC-CSM also suffer from IAS and an increased computational complexity,

because it employ more than one RF chain. Some advancement on STBC-CSM reported in the

literature includes a constellation transformation-based STBC-CSM [45] , which improves the error

performance of STBC-SM, and a reduced computational complexity detector, which can be

employed, for quasi-static and fast frequency-flat Rayleigh fading channel [46].
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3. INNOVATIVE IMPLEMENTATIONS OF MIMO

3.4.6 STBC with temporal spatial modulation (STBC-TSM)

In [47], a new STBC scheme, which employs cyclic spatially modulated codebook with temporal

permutation over four time-slots has been proposed. The spectral efficiency offered by the spatial

domain is given as [47]:

ηTSM =
1

4
log2

(⌊4!

2

Nt!

(Nt − 4)!

⌋
2p

)
bits/s/Hz (23)

where (·)! denotes the factorial. Given a specified number of transmit antennas, it can be deduced from

[47] that the spectral efficiency/error performance of STBC-SM and STBC-CSM has been improved

by STBC-TSM. However, there exists a a trade-off, as the computational complexity for the ML

detector of STBC-TSM is significantly increased, such as shown in Fig. 2(a) of [47]. A differential

modulation scheme for STBC-TSM scheme is presented in [48].

3.4.7 Media-based modulation (MBM)

MBM employs the indices of parasitic elements located around a transmit antenna, such as RF mirrors,

reconfigurable antennas and RF switches to convey information by altering the channel properties of

the transmit antennas depending on the input bits. The ON/OFF status of these parasitic elements are

employed to create distinct channel paths, which forms the spatial constellations of the media-based

system. As would be seen in the later parts of this thesis, the application of MBM has advantages,

which are not limited to the following [49–51]:

a. A single antenna is capable of forming several channel pathways.

b. Since the constellation size of an MBM system is not dependent on the transmit power,

therefore, large constellation sizes are achievable.

c. With MBM, multipath fading is converted into AWGN, hence, improving the error performance

of the system.

d. Smaller form factors of an MBM system can be achieved, since there are no restrictions on the

physical size of MBM unit.

e. MBM allows selection of a subset of good channels by employing suitable algorithms. Hence,

channel paths, which offer superior error performance can be selected.

Several applications of MBM have been reported in the literature. For example, the basic form of

MBM is the SSK scheme, where the transmitted alphabet is its channel realizations [36, 49, 52].
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3. INNOVATIVE IMPLEMENTATIONS OF MIMO

Furthermore, RF switches as a form of MBM was considered in [53], a major limitation of RF

switches is that high-speed switching, low insertion loss, and good isolation are critical for efficient

implementation. In [54, 55], MBM, which employs mrf RF mirrors around a single antenna were

considered for SIMO in the form of SIMO-MBM. A spectral efficiency of

ηSIMO−MBM = log2M + mrf bits/s/Hz can be achieved through this scheme. Furthermore,

in [50], the spectral efficiency of SM ηSM has been improved by the application of mrf RF mirrors

in the form of spatial MBM (SMBM) from ηSM = log2M + log2Nt bits/s/Hz to

ηSM−MBM = log2M + log2Nt + mrf bits/s/Hz. In [54], MBM was investigated for generalized

SM (GSM) in the form of GSM-MBM.

Fig. 3 represents a simplified model of an Nr × 1 SIMO-MBM system having mrf mirrors.

Input bits

MAP

selector

MAP

selector

HH Receiver. . .
. . .

2

Nr

1

mrf   RF 

Mirrors

mrf   RF 

Mirrors

RF mirror 

switch 

controller 

&

Transmitter
Symbol

selector

Symbol

selector

Fig. 3: System model of SIMO-MBM

The input bits of a SIMO-MBM system is split into two, such that log2M bits are employed to select

a symbol x from a given APM constellation set. Anothermrf bits are employed to select a MAP from

the available Mrf MAPs, which is activated during the transmission of x.

The received signal vector y may be represented as:

y =
√
ρHeix+ n (24)

where H is an Nr ×Mrf channel matrix, ei, i ∈ [1 : Mrf ] is an Mrf × 1 vector, having the i-th

element as unity, while other elements are zeros. Similar detector employed by the MIMO system can

be applied for SIMO-MBM such as the MIMO detector in (3).
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3.5 Closed-loop (adaptive) index modulation

In order to further improve the error performance of index modulated system, a closed-loop system

is implemented. The closed-loop system implements certain algorithms based on perfect channel

knowledge to improve error performance. For example, a closed-loop system to improve the error

performance of SM based on optimal symbol modulation order was considered in [56], furthermore,

an adaptive system based on constellation transformation algorithm has been presented in [45]. These

systems have demonstrated superior error performance over their respective open-loop counterparts,

viz; SM and STBC-SM. Based on this background, the motivation of this thesis is presented in the

next section.

4 Research Motivation and Objectives

Traditional MIMO systems exploit spatial multiplexing to improve SIMO and SISO systems,

however, IAS and ICI are major drawbacks of MIMO, because it employs more than one transmit

antenna, hence, increasing the complexity of MIMO. SM [41], which was introduced to eliminate

these drawbacks employs a single active antenna to transmit an APM symbol, with the transmit

antenna conveying additional information through its index. Since a single active antenna is

employed, the need for IAS is eliminated, while ICI is canceled. However, the logarithmic

relationship between the number of transmit antennas of SM and its spectral efficiency

δSM = log2Nt + log2M bits/s/Hz, limits the attractiveness of SM.

To improve the spectral efficiency of SM, GSM [35] and QSM [37, 38], have been proposed. In both

cases, at least one transmit antenna is employed to transmit signals simultaneously. For example, in

GSM [35], two transmit antennas independently transmit two separate symbols simultaneously,

whereas, the indices of the transmit antenna pair are employed to convey additional information.

Also, OFDM offers additional advantages, such as efficient usage of the available spectrum by

allowing overlapping carrier frequencies, conversion of wideband into narrowband flat fading

channels, elimination of ISI. Hence, the motivation to propose a MIMO multicarrier quadrature

spatially modulated OFDM system in the form of QSM-OFDM. QSM-OFDM eliminates ISI and ICI

by transmitting the in-phase and quadrature component separately through orthogonal carriers by

different antennas simultaneously. The improvement offered by QSM-OFDM in terms of error

performance/computational complexity is investigated and compared with SM-OFDM and other

competing schemes. Several schemes which employ the OFDM technique have been considered in
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the literature. For example, in [57], SM-OFDM has been investigated and found to outperform

V-BLAST‘by 5 dB in the presence of Rician channel and 7 dB in the presence of spatial correlation.

Furthermore, SM-OFDM for long term evoluation has been considered in [58], and is found to

outperform V-BLAST-OFDM .

To improve the error performance of SIMO/classical MIMO, which employ a single time-slot for its

transmission through diversity, a scheme, which employs two time-slots was introduced by Alamouti

[11], in the form of STBC. Although it achieved the objective of improving the error performance, it

has similar disadvantages as MIMO, viz; IAS and ICI. In [40], the advantages of SM and Alamouti

STBC was integrated in the form of STBC-SM, to improve the error performance/spectral efficiency

of SM and Alamouti STBC. Furthermore, the computational complexity of STBC-SM is significantly

improved by employing the orthogonality of the Alamouti STBC codeword [40]. However, employing

the orthogonality of the Alamouti STBC codewords is only applicable to quasi-static fading channels,

where the fading coefficient for each of the two time-slots employed are assumed to be the same.

To further improve the spectral efficiency of STBC-SM by exploiting the spatial domain, a cyclically

rotated Alamouti STBC codeword has been proposed in [44], in the form of STBC-CSM. For STBC-

CSM, the pair of symbols employed by the Alamouti codeword x1 and x2 are taken from two sets of

APM constellations Ω1, and a rotated version of Ω1 given as Ω2 = Ω1e
jθk , where θk is the optimized

rotation angle for the k-th codeword. The spectral efficiency offered by the spatial domain of STBC-

CSM is 0.5 log2 c bits/s/Hz, where c = bNt(Nt − 1)c2p, whereas, c = bNt(Nt−1)
2 c2p for STBC-SM.

Although the spectral efficiency of STBC-SM is improved by STBC-CSM, there is reduction in error

performance, as an increase in the number codewords for a given antenna increases the probability

of error, which limits the advantage of this system. Furthermore, the computational complexity of

the optimal STBC-CSM system, imposed by the ML detector, is significantly increased because of

the exhaustive search over its entire codeword matrix. This makes it unattractive for modern wireless

systems. Based on this motivation, this thesis investigates a low-complexity detector for STBC-CSM,

which can be implemented for both quasi-static and fast fading channels. Furthermore, the expression

for the union bound on the average bit error probability for the optimal ML detector is derived, of

which, to the best of the author’s knowledge, has not been presented in existing literature. Numerical

results to validate the expression for the ABEP are presented, while the computational complexities

for the optimal ML and the proposed low-complexity near-ML detectors are compared.

Several index modulated systems have been reported, which employ MBM to improve the

capacity/link reliability of wireless systems, because of the various advantages it offers [49–55, 59].

For example, in [36], SSK as a form of index modulation, employs only one active transmit antenna
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to convey information, with the transmitted tones as its constellations. Thus, eliminating ICI and the

need for IAS, which are the well known limitations of MIMO. However, a large number of transmit

antennas, which are needed to achieve higher data rates becomes a disadvantage for SSK.

Furthermore, RF switches as a form of media-based index modulation, considered in [53], is

criticized because of the switching speed, insertion loss, and isolation requirement, which are crucial

parameters needed for its implementation.

More recently, RF mirrors as a form of MBM has become more attractive because of the ON/OFF

status of the RF mirror, which create Mrf = 2mrf distinct channel paths referred to as mirror

activation patterns (MAPs), where mrf is the number of RF mirrors associated with a given transmit

antenna unit. The application of MBM to SIMO systems, in the form of SIMO-MBM has been

considered in [54]. In SIMO-MBM, mrf RF mirrors located around a single transmit antenna is able

to achieve a spectral efficiency of ηSIMO−MBM = log2M + mrf bits/s/Hz. Hence, improving the

spectral efficiency of ηSIMO = log2M by mrf bits/s/Hz. However, the limit to the number of RF

mirrors that can be employed by a single transmit antenna unit becomes a disadvantage, as large

number of RF mirrors becomes resource intensive, while training, which requires sending pilot

signals is endangered due to channel-time variations [55]. Furthermore, GSM-MBM was proposed

in [60], to improve the error performance/spectral efficiency of GSM, however, since it employs more

than one RF chain, it faces similar challenges as MIMO, viz; ICI and IAS [49].

The attractiveness in employing RF mirrors has been demonstrated further, by improving the error

performance/spectral efficiency of Alamouti STBC in space-time channel modulation (STCM) [59].

Furthermore, the application of MBM to uncoded space-time labeling diversity (USTLD) in the form

of USTLD-STCM [42], to QSM in the form of quadrature channel modulation [61] and quadrature

spatial MBM (QSMBM) [49] has demonstrated the effectiveness of RF mirrors to improve the error

performance/spectral efficiency of wireless systems [51]. To this end, the author is motivated to

investigate the application of MBM to improve the error performance and computational complexity

of SM, in the form of SMBM. The expression for the union bound on ABEP of SMBM is

formulated, which has not been presented in existing literature. Furthermore, this thesis proposes the

application of MBM, which employs RF mirrors to improve the error performance of STBC-SM and

STBC-CSM, employing an optimal ML detector in the form of media-based STBC-SM

(MBSTBC-SM), and MBSTBC-SM with cyclic structure (MBSTBC-CSM). Furthermore, the effect

of the different MAP configurations, similar to the MAP configurations in [59], are investigated for

MBSTBC-SM/MBSTBC-CSM. The theoretical framework to characterize the union bound on the

ABEP for the ML detector of MBSTBC-SM/MBSTBC-CSM is formulated, while numerical results
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to validate the derived expression are presented. In order to reduce the computational complexity for

the optimal ML detector of MBSTBC-SM/MBSTBC-CSM, a low-complexity near-ML detector,

which employs orthogonal projection of signals is investigated for the proposed system.

One of the advantages of media-based index modulation is that, the MAPs comprise of good and bad

channels, which are a subset of the Mrf MAPs. Hence, a subset of the available MAPSs can be

selected to improve error performance [54]. Several antenna selection techniques have been presented

in the literature. For example, in order to improve the performance of SM by exploiting transmit

diversity, transmit antenna selection based on maximizing the minimum Euclidean distance of SM

was considered in [62–64]. Furthermore, in [65], low computational complexity antenna selection

scheme was investigated. For MAP optimization, Euclidean distance (ED) and mutual information-

based selection techniques have been considered in [55, 60]. The drawback of employing the ED-MAP

selection technique is that, the number of iterations employed by its search algorithm over all possible

MAP enumerations are large. Hence, this thesis proposes two MAP optimized selection algorithms

for SMBM.

5 Organization of Thesis

The thesis is grouped into three parts, which are organized as follows:

Part I Gives an introduction and layout of the thesis.

Part II The included papers, which have either been published, accepted for publication or

under review with reputable peer reviewed journals/conference, which are approved by

the department of higher education and training (DHET) South Africa are presented.

Three journals and a conference paper are included in this part.

Part III The conclusion and possible future work is presented for this thesis.

6 Contributions of the Included Papers

6.1 Paper A: Quadrature Spatial Modulation Orthogonal Frequency Division

Multiplexing (QSM-OFDM)

This paper has been accepted for publication with the following details:
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B. S. Adejumobi and N. Pillay, "Quadrature Spatial Modulation Orthogonal Frequency", Journal of

Telecommunication, Electronic and Computer Engineering, vol. 10, no. 4, Oct.-Dec. 2018.

This paper discusses the application of OFDM to QSM. The contributions of this paper are as follows:

a. An enhanced multi-carrier index modulation system in the form of QSM-OFDM is proposed,

which yields an improved spectral efficiency/error performance.

b. The computational complexity of the proposed scheme is formulated and compared with

competing schemes.

c. Numerical results to demonstrate the effectiveness of this scheme are presented and compared

with competing schemes.

6.2 Paper B: Low-Complexity Detection for Space-Time Block Coded Spatial

Modulation with Cyclic Structure

This paper has been published with the following details:

B. S. Adejumobi and N. Pillay, "Low-complexity detection for space-time block coded spatial

modulation with cyclic structure" Journal of Communications, vol. 13, no. 7, Jul. 2018.

The contributions in this paper are as follows:

a. A low-complexity near-ML detector based on orthogonal projections of signals, that can be

employed for quasi-static and fast frequency-flat Rayleigh fading channels, which yields a near-

ML error performance is proposed.

b. A closed-form expression to evaluate the ABEP for the optimal ML detector of STBC-CSM is

formulated.

c. An analytical framework to determine the computational complexity of ML and the proposed

low-complexity near-ML detectors are presented.

d. Numerical results of Monte Carlo simulations to validate the ABEP expression for the ML

detector and the effectiveness in terms of error performance of the low-complexity near-ML

detector is presented.
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6.3 Paper C: RF Mirror Media-Based Space-Time Block Coded Spatial Modulation

Techniques for Two Time-slots

This paper is under review with "IET Communications". The contributions of this paper are as follows:

a. Index modulated media-based STBC-CSM/STBC-SM based on RF mirrors in the form of

media-based STBC-SM (MBSTBC-SM) and media-based cyclically structured space-time

block coded spatial modulation (MBSTBC-CSM) employing RF mirrors are proposed to

improve the error performance of STBC-CSM and STBC-SM.

b. A closed-form expression to evaluate the union bound on ABEP of MBSTBC-CSM/MBSTBC-

SM employing an optimal ML detector is presented.

c. A low-complexity near-ML detector for MBSTBC-CSM and MBSTBC-SM, which can be

applied to quasi-static and fast frequency-flat Rayleigh fading channel is proposed.

d. Analysis of the computational complexities for the optimal ML and low-complexity near-ML

detectors of MBSTBC-CSM and MBSTBC-SM are presented.

e. Numerical results to validate the expression of the ABEP for the optimal ML detector of

MBSTBC-CSM and MBSTBC-SM employing different MAP configurations are presented,

furthermore, results demonstrating the effects of the resolutions employed by the

low-complexity near-ML detector are presented.

6.4 Paper D: A Study of Spatial Media-Based Modulation Using RF Mirrors

This conference paper has been published and the details are as follows:

B. S. Adejumobi, N. Pillay, and S. H. Mneney "A study of spatial media-based modulation using RF

mirrors," in Proceedings of IEEE AFRICON, Sep. 2017, pp. 336-341.

This paper investigates the application of MBM to SM in the form of spatial MBM (SMBM) and

presents the following contributions:

a. A theoretical ABEP bound for the ML detector of SMBM is formulated.

b. Numerical results from Monte Carlo simulations, are employed to validate the theoretical

framework for the ABEP of SMBM, which were not in previous literature are presented

SMBM.
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c. Two low-complexity suboptimal MAP optimization techniques are proposed for a closed-loop

SMBM system. Furthermore, the numerical results to demonstrate the effects of the proposed

MAP optimization schemes are presented and discussed.
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1. INTRODUCTION

Abstract

This paper investigates the application of quadrature spatial modulation (QSM) to orthogonal

frequency division multiplexing (OFDM). In comparison to spatial modulation OFDM (SM-OFDM),

the proposed QSM-OFDM achieves an enhanced spectral efficiency by decomposing the amplitude

and/or phase modulated signal into its real and imaginary components as the transmitted symbols.

The index/indices of the activated transmit antenna(s) are employed to convey additional

information. These symbols are transmitted orthogonally to eliminate inter-channel interference with

little trade-off in synchronization. The average bit error probability for QSM-OFDM and other

schemes, including the SM-OFDM, conventional multiple-input multiple-output (MIMO-OFDM),

maximal-ratio combining single-input multiple-output (MRC-OFDM), vertical Bell Laboratories

layered space-time architecture (VBLAST-OFDM) and Alamouti-OFDM systems are demonstrated

using Monte Carlo simulation. The expressions for the receiver computational complexities in terms

of the number of real operations are further derived. QSM-OFDM yields a significant signal-to-noise

ratio gain of ≈ 5 dB with little trade-off in computational complexity over SM-OFDM, while

substantial gains greater than 5 dB are evident, when compared to MIMO-OFDM, MRC-OFDM, and

ALAMOUTI-OFDM.

1 Introduction

Recent applications have placed a great demand for high data rates and spectrally efficient systems

with extremely low error rates; hence, the rapid growth in research areas that can improve future

wireless systems in terms of capacity and link reliability. In traditional wireless communication

systems, designers have resorted to employing high-order modulation schemes, such as (M ≥ 64)

M -ary quadrature amplitude modulation (MQAM) to increase spectral efficiency. However, it

becomes disadvantageous when high-order MQAM (M ≥ 16) is used, because of channel fading

and the additive noise from the wireless equipment [1]. The use of multiple-input multiple-output

(MIMO) antenna arrangements, such as in WiMAX, HSPA, IEEE 802.11ac, etc., when combined

with spatial multiplexing has become a very promising technique in achieving reliable and spectrally

efficient communications [2]. An example is the Bell Laboratories layered space-time architecture

(BLAST), where the transceiver architecture is designed, such that independent data is

simultaneously transmitted employing different antennas, thereby leading to an increase in

multiplexing gain [3].
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1. INTRODUCTION

MIMO can also be used to reduce error rates by simultaneously transmitting identical data from

multiple antennas as in space-time coding/space-frequency coding [4]. This is performed in order to

exploit the advantage of having multiple received signals, which arrive at the receiver along different

pathways. MIMO increases the transmit diversity and ensures reliability as well as a sufficient

quality of service. As noted in [5], MIMO systems such as BLAST, suffer from high inter-channel

interference (ICI) as a result of the simultaneous transmissions from multiple antennas. Furthermore,

due to high ICI, computational complexity in MIMO systems increases because of the need for

complex receiver algorithms. The complexity cannot be reduced without a trade-off in the error

performance of the system. In order to deal with the limitations offered by conventional MIMO

systems mentioned earlier, spatial modulation (SM) [5, 6], generalized SM (GSM) [7], space shift

keying (SSK) [8], generalized SSK (GSSK) [9] and generalized differential scheme for SM

systems [10], were introduced as promising techniques to alleviate these limitations.

In SM, since only a single transmit antenna is activated at a given instant of time [5, 10], this helps in

eliminating ICI. The need for synchronization amongst the transmit antennas, as well as the

complexity of detection at the receiver is reduced as SM utilizes a single radio frequency (RF)

chain [11]. Comparing SM to other conventional MIMO techniques, it has been observed that SM

techniques improve error rates even with limited transmit antennas, and are robust in dealing with

channel imperfections [5]. SM systems [5, 6, 10], improve spectral efficiency by exploiting the index

of the activated transmit antenna, to convey additional information. Employing a single antenna

eliminates ICI as well as the need for synchronization at the transmitter. However, a major limitation

of SM is that, the spectral efficiency does not increase linearly with the total number of transmitting

antennas as in the case of vertical-BLAST (VBLAST). In GSM and GSSK [7, 9], more than one

antenna is allowed to transmit different symbols, using the antenna indices as a spatial constellation

in the spatial domain but is found to be inferior to SM and SSK in terms of error performance. This is

further improved in bi-space shift keying (Bi-SSK) modulation [12], such as to improve the

throughput of the low-complexity receiver of the SSK system, with little trade-off in the error

performance. In [13], SM technique, which employ two time-slots, to transmit two symbols in each

time-slot, has been considered. however, the complexity of the detection is significantly increased,

when the ML detector is applied.

In 2006, Ganesan et al. [14] proposed a scheme, where SM is combined with OFDM. This is done,

such as to produce a spectrally enhanced, efficient multicarrier system, which is robust to channel

imperfections [5, 14] and yields an improved error performance [1]. The advantage of OFDM arises

because the wireless channel is divided into several narrowband, low-rate, frequency non-selective
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1. INTRODUCTION

subcarriers, which allows for the parallel simultaneous transmission of multiple symbols [15].

SM-OFDM utilizes the SM mapping style, where a group of information bits is mapped into an

amplitude and/phase modulation (APM) symbol and a particular transmit antenna, which is then

transmitted using the MIMO-OFDM system [1]; such that, both the activated transmit antenna and

the APM symbols, are used to convey information [1, 5, 14]. The SM-OFDM scheme was tested for

two different channel conditions; viz. Rician fading channel, and a combined effect of spatially

correlated (SC) and mutually coupled (MC) channels. Furthermore, Mesleh et al. established the

combined effect of all the three channels in [14]. Hwang et al. demonstrated the error performance of

SM-OFDM using a soft-output maximum-likelihood (ML) detector [1]. In [16], precoders were

utilized to improve error performance in SM-OFDM. Although SM-OFDM yields a significant

improvement in error performance over existing schemes, there is still room for improvement.

A new technique of quadrature spatial modulation (QSM), proposed in [17] to improve the throughput

of SM, was achieved by extending the spatial constellations of SM to the in-phase and quadrature

components by utilizing methods as in [5, 7, 12]. One of the antennas is made to transmit the real

part of the modulated symbol, while a second antenna transmits the imaginary part of the modulated

symbol [17]. ICI is eliminated, since the data being transmitted is orthogonal and the modulation

of the data is performed both on the real and imaginary parts of the carrier [17, 18]. For example,

in [19], antenna selection of QSM has been considered, however, the authors did not considered the

application of a multicarrier QSM.

Motivated by the above, the contributions in this paper are as follows:

a. The design of an enhanced multi-carrier modulation system, which improves the spectral

efficiency/error performance of SM-OFDM in the form of QSM-OFDM is proposed. This is

achieved by integrating the OFDM technology [20, 21], with QSM. QSM-OFDM eliminates

ICI and ISI, which are well-known limitations of MIMO.

b. The expressions for the computational complexities in terms of the number of real operations

performed, are formulated for the proposed scheme and competing schemes.

c. Employing Monte Carlo simulations, numerical results to demonstrate the effectiveness of the

proposed scheme are presented.

The remaining parts of this paper are organized as follows: Section 2 addresses the design of the

QSM-OFDM system model. Section 3 analyzes the computational complexities associated with the

different schemes under comparison, while the simulation results as well as related discussions are

presented in Section 4 . Finally, Section 5 provides necessary conclusions and recommendations.
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Fig. A.1: System model of the proposed QSM-OFDM

Notation: The following notations are employed throughout this paper; bold and capital letters

represent matrices, while bold small letters denote column vectors of matrices. Letters with subscript

or superscript, such as (·)< and (·)= represents vectors or variables for real and imaginary parts,

respectively. Other notations include (·)T , (·)H , (·)−1, (·)†, ‖ · ‖F , <(·) and ⊗, which represent

transpose, Hermitian, inverse, time domain signal, Frobenius norm, real part of a complex variable

and time convolution, respectively. Throughout this paper, Nt, Nr and M shall represent the number

of transmit antennas, the number of receive antennas and the MQAM modulation order, respectively.

i =
√
−1 represents a complex number.

2 QSM-OFDM

2.1 The QSM-OFDM Transmitter

A generalized block diagram for the system model of the proposed QSM-OFDM is shown in Fig. A.1.

The QSM modulator in Fig. A.1, is similar to the QSM modulator in [17].

In QSM-OFDM, the input bit stream d having NFFT log2(MN2
t ) bits, entering the QSM-OFDM

modulator is rearranged into a q ×NFFT binary matrix C(k), which is represented as:

C(k) =


C1,1 C1,2 · · · C1,q

C2,1 C2,2 · · · C2,q

...
...

. . .
...

CNFFT ,1 CNFFT ,2 · · · CNFFT ,q

 (A.1)

where NFFT is the total number of OFDM subcarriers, which is determined by the size of the fast

Fourier transform (FFT) employed, q is the total number of bits per subcarrier for a given OFDM

symbol of the size log2(MN2
t ). The bit splitter of the QSM modulator splits each row (subcarrier)
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2. QSM-OFDM

Table A.1: Grouping of input bits for the proposed QSM-OFDM

Subcarrier Grouping Symbol Real Imaginary

p c1 c2 . . . cq bits bits bits

1 1 1 1 1 1 1 11 11 11

2 0 0 0 0 0 1 00 00 01

3 1 0 1 1 0 0 10 11 00
...

...
...

...
...

NFFT 1 0 0 1 1 1 10 01 11

of the q bits into three different subgroups as shown in Table A.1, using a 4 × 4 transceiver system

with 4QAM for illustration. Firstly, log2(M) bits are used to select an MQAM symbol for the p-th

subcarrier, xmp , m ∈ [1 : M ] and p ∈ [1 : NFFT ].

Another log2(Nt) bits are employed to select the `<p-th antenna for transmitting the real part of the

complex variable xmp of the p-th subcarrier, and the third subgroup of log2 (Nt) bits are employed to

select the `=p-th antenna for transmitting the imaginary part of the complex variable xmp of the p-th

subcarrier, where `<p, `=p ∈ [1 : Nt]. The bit processing of Table A.1 is presented in Table A.2.

The symbol xmp is further decomposed into its real xm,<p and imaginary xm,=p components, such that:

xmp = xm,<p + ixm,=p (A.2)

These components are then mapped to form the vectors for the Nt OFDM symbols of the p-th

subcarrier, such that:

Table A.2: Outputs from the QSM modulator

p 4QAM Spatial Activated xpQSM−OFDM

symbol symbol antenna

xmp xm,<p ixm,=p `<p `=p

1 +1 + i +1 +i 4 4
[
0 0 0 1 + i

]
2 −1− i −1 −i 1 2

[
−1 −i 0 0

]
3 +1− i +1 −i 4 1

[
−i 0 0 1

]
...

...
...

...
...

...
...

NFFT +1− i +1 −i 2 4
[
0 1 0 −i

]
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xpQSM−OFDM = xm,<`<p
+ xm,=`=p

(A.3)

where xm,<`<p
and xm,=`=p

are Nt × 1 vectors with xm,<p and ixm,=p as the non-zero entry placed at the

`<p-th and `=p-th positions, respectively, for the p-th subcarrier, p ∈ [1 : NFFT ]. The outputs from

the QSM modulator xpQSM−OFDM , when `<p 6= `=p is of the form represented as:

xpQSM−OFDM =

0 · · · 0 xm,<p︸ ︷︷ ︸ 0 · · · 0 ixm,=p︸ ︷︷ ︸ 0 · · · 0

`<-th position `=-th position


T

(A.4)

and when `< = `=, xpQSM−OFDM takes the form:

xpQSM−OFDM =

0 · · · 0 xm,<p + ixm,=p︸ ︷︷ ︸ 0 · · · 0

`<=`=-th position


T

(A.5)

The outputs of the QSM modulator xpQSM−OFDM , for p ∈ [1 : NFFT ], is buffered in order to stack

NFFT values of xpQSM−OFDM to form matrix J , such that J is an Nt × NFFT frequency domain

matrix represented as:

J =


j1[1] j1[2] · · · j1[NFFT ]

j2[1] j2[2] · · · j2[NFFT ]
...

...
. . .

...

jNt [1] jNt [2] · · · jNt [NFFT ]

 (A.6)

where each column p, of matrix J represents the data to be transmitted on the p-th subcarrier, while

each row ` of matrix J is the OFDM symbol to be transmitted by the `-th antenna, ` ∈ [1 : Nt]. For

example, j`[p] is the data on the p-th subcarrier of the `-th OFDM symbol and will be transmitted

employing the `-th antenna.

The OFDM modulator processes the signal in order to obtain the complex baseband time domain

signals by performing an inverse FFT (IFFT), which may be expressed as:

x†` (t) =
1√
NFFT

NFFT−1∑
p=0

J ` (p) e
i 2πtp
NFFT , 0 ≤ t ≤ NFFT − 1 (A.7)

where x†`(t) is the time domain signal obtained at the t-th time interval of the `-th antenna. This

process is followed by the addition of a cyclic prefix (CP) in order to eliminate inter-symbol

interference (ISI) before the onward simultaneous transmission by Nt transmit antennas via the

MIMO channelH .
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2.2 The QSM-OFDM Receiver

At the receiver, the transmitted data encounters the additive white Gaussian noise (AWGN). The

received time domain signal vector y†l (t), l ∈ [1 : Nr], at any time t, for a single subcarrier may be

represented as:

y†l (t) = H† (t, τ)⊗ x†` (t) +w†l (t) (A.8)

where H†(t, τ) is the time domain multipath Rayleigh fading channel matrix with a delay spread τ

arriving at time t. The frequency flat multipath Rayleigh fading distribution channel matrix

representation ofH†(t, τ) at any time t, for the p-th subcarrier may be defined as:

Hp =


h1,1 h1,2 · · · h1,Nt

h2,1 h2,2 · · · h2,Nt

...
...

. . .
...

hNr,1 hNr,2 · · · hNr,Nt

 (A.9)

and w†l (t) is the Nr × 1 AWGN vector, whose entries are i.i.d. random variables with Gaussian

distribution CN(0, σ2
W ).

The received time domain signal y†l (t) is demodulated by employing a bank of Nr OFDM

demodulators, while the OFDM demodulator removes the CP and performs the FFT operation. The

frequency domain output for a single subcarrier may be represented as:

yp =
√
ρ
(
hp`<x

p
< + ihp`=x

p
=

)
+wp (A.10)

where yp, p ∈ [1 : NFFT ] is the frequency domain vector of the received signal for the p-th

subcarrier of the OFDM symbol, hp`< = [hp1,`< hp2,`< . . . hpNr,`<
]
T represents the Nr × 1 `<-th

column of the frequency response channel matrix Hp for the real variables of the p-th subcarrier of

the OFDM symbol. hp`= = [hp1,`= hp2,`= . . . hpNr,`=
]
T is the Nr × 1 `=-th column of the frequency

response of the channel matrix Hp, for the imaginary variables of the p-th subcarrier of the OFDM.

xp< and xp= represent the real and imaginary complex variables, respectively, of the symbol-under-test

by the ML detector, such as to determine the correct estimate of the received signal, and wp is the

AWGN for the p-th subcarrier of the OFDM symbol, whose entries are i.i.d. with a distribution of

CN(0, σ2). ρ = Es
Nt

, and Es is the energy of the transmitted symbol. The receiver implements a joint
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3. RECEIVER COMPUTATIONAL COMPLEXITY ANALYSIS

ML detection scheme over all possible symbols with the assumption that perfect knowledge of the

channel is known. The equation for the joint ML detector as it applies to QSM-OFDM adopted

from [17] may be represented as:

[
ˆ̀<, ˆ̀=, û<, û=

]
= argmin

`<,`=∈[1:Nt],
u<,u=∈[1:M ]

(∥∥∥yp −√ρ(hp`<xp< + ihp`=x
p
=

)∥∥∥2

F

)
(A.11)

where ˆ̀< and ˆ̀=, ˆ̀<, ˆ̀= ∈ [1 : Nt] are the detected antenna indices for the antennas transmitting the

real and imaginary symbols for the p-th subcarrier, respectively, and û< and û=, û<, û= ∈ [1 : M ]

are the detected estimates for the real and the imaginary symbols u< and u= for the p-th subcarrier. A

further simplification of (A.11) gives:

[
ˆ̀<, ˆ̀=, û<, û=

]
= argmin

`<,`=∈[1:Nt],
u<,u=∈[1:M ]

(
‖g‖2F − 2<(yp

Hg)
)

(A.12)

where g =
√
ρ
(
hp`<x

p
< + ihp`=x

p
=

)
.

The estimates for ˆ̀<, ˆ̀=, û< and û=, are spatially demultiplexed in order to obtain the detected bits at

the output.

3 Receiver Computational Complexity Analysis

This section presents a comparison of the receiver computational complexities for the different

systems being compared with the proposed QSM-OFDM, viz; Alamouti-OFDM, VBLAST-OFDM,

SM-OFDM and MRC-OFDM. In this paper, the computational complexities are resolved to the

number of real multiplications and additions being carried out at the receiver [22]. It should be noted

that where possible, the arithmetic path that gives the lower computational complexity in achieving a

given detection at the receiver is assumed, and the total complexity is the sum of the real

multiplications and real additions for each subcarrier. As a background for the calculation of

computational complexities in terms of real operations performed during processing, a complex

multiplication (CM) is achieved by performing four real multiplications (4m) and two real additions

(2a), which makes a total of 6 real operations, while a complex addition (CA) is obtained by

performing 2a, as explained in [22].
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3. RECEIVER COMPUTATIONAL COMPLEXITY ANALYSIS

3.1 QSM-OFDM

The total computational complexity for the proposed QSM-OFDM for a single subcarrier is given as:

δQSM−OFDM = 25MN2
t Nr + 3MN2

t − 1 (A.13)

The ‖g‖2F in (A.12) is obtained by 10Nrm and 8Nra. yHg is obtained by 4Nrm+ (3Nr− 1)a, since

g is stored and there is no need for recalculation. Additionalm+a is used to obtain ‖g‖2F −2<(yHg).

However, there are MN2
t iterations of ‖g‖2F −2<(yHg), after which the MN2

t outputs are compared

using (MN2
t − 1)a to obtain a minimum value, thus, making the computational complexity in terms

of real operations MN2
t (14N r + 1)m+ (11MN2

t Nr + 2MN2
t − 1)a.

3.2 MRC-OFDM [23]

The product HHY gives an NtNr CM and NtNr − Nt CA, which can be achieved by 4NtNrm +

2Nt(2Nr − 1)a. The product HHH has N2
t Nr CM and N2

t Nr − N2
t CA obtained by performing

4N2
tNrm +

(
4N2

t Nr − 2N2
t

)
a. The division HHY

HHH
is performed by using 2m. The computational

complexity needed to obtain an estimate of the transmitted symbol is ignored because a one-to-one

mapping is performed [24]. Thus, MRC-OFDM has (4N2
t Nr + 4NtNr + 2)m+ (4N2

t Nr − 2N2
t +

4NtNr − 2Nt)a, giving a total complexity for MRC-OFDM as:

δMRC−OFDM = 8N2
t Nr − 2N2

t + 8NtNr − 2Nt + 2 (A.14)

3.3 Alamouti-OFDM [15]

The computational complexity for ‖g‖2F −2<(yHg) imposed by the Alamouti ML detector, is similar

to subsection 3.1 and requires 25Nr+1 operations. The number of iterations the detector performs is

M2, hence, to determine the minimum, the ML detector requires (M2 − 1)a operations. Since the

detection performed is for two MQAM symbols, thus, the total complexity for a single subcarrier is

obtained by dividing the total number of real operations by 2, which gives:

δAlamouti−OFDM =
1

2

(
25NrM

2 −M2 − 25Nr − 1
)

(A.15)
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3. RECEIVER COMPUTATIONAL COMPLEXITY ANALYSIS

3.4 VBLAST-OFDM [3]

Depending on the VBLAST detection algorithm being used, the computational complexities can vary

in different ways. Using the MMSE-OSIC described in [3], the CM imposed is given as

N3
t +2N2

t Nr +Nr. This value is obtained by the multiplications of the channel matrix and an inverse

matrix, hence resulting in (4N3
t + 8NtNr + 4Nr)m + (2N3

t + 4NtNr + 2Nr)a. A minimum of

N3
t +2N2

tNr − N2
t −N tN r + Nr − 1 CA were made in actualizing this, resulting in

2
(
N3
t +2N2

tNr −N2
t −N tN r +Nr − 1

)
a. The total number of operations in terms of m and a

employed to determine the layer having the minimum estimation error of GMMSE in ( [3],(11)) i.e.,

the layer having the minimum Euclidean norm is given as 2NtNrm + (NtNr + Nt − 1)a. The

computational complexity of the quantization slicing function ê = Q(GMMSE × y), which is used to

estimate the transmitted symbol is ignored because, a one-to-one mapping is performed [24]. The

total number of real operations to be carried out by a receiver in detecting the transmitted symbol by

a single transmit antenna is given as:

10N3
t + 4N2

t Nr − 2N2
t + 13NtNr + 8Nr +Nt − 3 (A.16)

Since the technique used for the VBLAST-OFDM recursively decreases in the number of transmit

antennas Nt due to the elimination of detected symbols, the overall number of real operations can be

written as:

δVBLAST-OFDM =

Nt∑
`=1

(
10N3

t,` + 4N2
t,`Nr − 2N2

t,` +13Nt,`Nr + 8Nr +Nt,` − 3) (A.17)

where Nt,` is the number of transmit antennas for the `-th, ` ∈ [1 : Nt] iteration.

3.5 SM-OFDM [1]

The SM-OFDM ML detection process requires (4Nr + 2NtNr)m + (5N r + NtNr − 1)a, while a

total of MNt iterations and (MNt − 1)a operations are employed to obtain the minimum from the

Frobenius norms. The total number of real operations can then be given as:

δSM−OFDM = MNt (3NtNr + 9Nr − 1) (A.18)

Table A.3, summarizes the computational complexities for the different OFDM schemes and are

pictorially represented by the bar chart in Fig. A.2.
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3. RECEIVER COMPUTATIONAL COMPLEXITY ANALYSIS

Table A.3: Comparison of computational complexity for different OFDM systems

SYSTEM 4 bits/s/Hz 6 bits/s/Hz 8 bits/s/Hz

VBLAST 550 550 4516

SM 944 5,312 21,248

QSM 1,647 6,591 26,367

Alamouti 10,496 167,936 2,686,976

The axis on the right (secondary axis) indicates values for the computational complexity of Alamouti-

OFDM, because of the high computational complexity, while the axis on the left (primary axis) is for

the other schemes, such as VBLAST-OFDM, SM-OFDM and QSM-OFDM being compared in this

work. The ALAMOUTI-OFDM scheme has a very high computational complexity when compared

with other schemes in this paper.
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Fig. A.2: Bar chart showing the computational complexities of different system

There is a 24% increase in the computational complexity (in terms of real operations) of the proposed

QSM-OFDM scheme over the SM-OFDM when the spectral length for each subcarrier of the OFDM

symbol is high (6 bits/s/Hz and 8 bits/s/Hz), as can be seen in Table A.3 and Fig. A.2. However,

there is a 74% increase in computational complexity when each OFDM subcarrier is 4 bits/s/Hz. The

VBLAST-OFDM is seen to have the lowest computational complexity in all the schemes compared.

However, because the RF chains of VBLAST increases with the number of transmit antenna, it is

more prone to ICI, furthermore, the complexity involved in the design is higher due to inter-antenna

synchronization (IAS). Nevertheless, it has been included for comparison purposes.
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4. SIMULATION RESULTS AND DISCUSSION

4 Simulation Results and Discussion

In this section, the bit error rate (BER) performance demonstrated by the proposed QSM-OFDM

scheme employing Monte Carlo simulations is quantified. Simulations were performed for 4, 6 and

8 bits/s/Hz as shown in Fig. A.3, Fig. A.4 and Fig. A.5, respectively. Parameters used for the

simulations are given in Table A.4 [1], while Table A.5 compares the BER performance of QSM-

OFDM with other schemes.

Table A.4: Parameters for simulation [1]

Parameters Value

Carrier frequency 2 GHz

Number of subcarriers 256

Antenna Configurations 2× 4 and 2× 4

CP 32

Channel Property ITU EPA model

Modulation Scheme MQAM

Maximum delay spread 6 Hz

The following assumptions were made for the simulations; multipath channels are statistically

independent for the different pathways, time and frequency synchronization is perfect and the total

signal power is the same for all transmissions, while AWGN is assumed in all cases. In all schemes

used for comparison in this paper, the ML detector is employed. Employing the ML detector in the

VBLAST-OFDM system is impracticable because of the extremely large computational complexity.

The ML detector for V-BLAST involves MNt iterations per subcarrier, which is quite large. Hence,

the optimal minimum mean square error (MMSE) detection, which is combined with the ordered

successive interference cancellation (OSIC) as used in [3], is employed in VBLAST-OFDM

simulation of this paper.

Considering Fig. A.3, the improvement of the proposed QSM-OFDM over SM-OFDM is greater

than 3 dB at a BER of 10−5, while a 7 dB gain in SNR is achieved over the Alamouti-OFDM scheme

at a BER of 10−5, while the QSM-OFDM outperforms the MIMO-OFDM and MRC-OFDM by

approximately 2 dB in SNR at the same BER. VBLAST-OFDM shows a slightly better error

performance of ≈ 1 dB in SNR over QSM-OFDM. Howbeit, VBLAST-OFDM suffers from high ICI

as all antennas are made to transmit different symbols. Also, the need for IAS is a major disadvantage

for VBLAST-OFDM as the number of RF chains increase with the number of transmit antennas.
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4. SIMULATION RESULTS AND DISCUSSION

In Fig. A.4, the proposed QSM-OFDM outperforms the SM-OFDM, MIMO-OFDM and

MRC-OFDM by 4 dB, 6 dB and 5 dB gain in SNR, respectively, gain at a BER of 10−5. This is

achieved when a 4× 4 antenna configuration is used with 4QAM for QSM-OFDM, in order to obtain

a 6 bits/s/Hz transmission per subcarrier. However, these gains are reduced by ≈ 2 dB, when a 2× 4

antenna configuration is used with 16QAM. Furthermore, QSM-OFDM achieves significant

improvement of 10 dB in SNR over Alamouti-OFDM at BER of 10−3.

0 5 10 15 20 25

SNR (dB)
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100

B
E

R

OFDM-IM n=8 k=5 64QAM
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SM-OFDM 2x4 8QAM

MRC-OFDM 1x4 16QAM

MIMO-OFDM 4x4 16QAM

QSM-OFDM 2x4 4QAM

VBLAST-OFDM 2x4 4QAM

Fig. A.3: BER versus SNR for 4 bits/s/Hz for QSM-OFDM and other schemes.
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Fig. A.4: BER versus SNR for 6 bits/s/Hz for QSM-OFDM and other schemes.

The VBLAST-OFDM has a slightly better error performance of approximately 1.5 dB in SNR over

QSM-OFDM at a BER of 10−5, when the same number of transmit antennas is employed. However,

when the number of transmit antennas for QSM-OFDM is increased for the same spectral length per

subcarrier, the QSM-OFDM is seen to outperform VBLAST-OFDM at higher SNR. Furthermore, due

to the limitations of VBLAST-OFDM mentioned earlier, the QSM-OFDM in this regard, remains a

better candidate for modern communication systems.

Considering Fig. A.5, which is the 8 bits/s/Hz transmission for a given subcarrier, the proposed QSM-

OFDM outperforms the SM-OFDM scheme by approximately 5 dB when the BER is 10−5. Higher

SNR gain is recorded when QSM-OFDM is compared with other schemes. Furthermore, QSM-OFDM

demonstrates better performance over Alamouti-OFDM and MIMO-OFDM, by achieving a ≥ 10 dB

gain in SNR at a BER of 10−5. Also, the QSM-OFDM is seen to outperform VBLAST-OFDM

at higher SNR. A summary of the BER performance of the proposed QSM-OFDM system being

compared with other OFDM systems is presented in Table A.5.
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Fig. A.5: BER versus SNR for 8 bits/s/Hz for QSM-OFDM and other schemes.

The error performance of QSM-OFDM over SM-OFDM is about 4 dB gain in SNR when 4 bits/s/Hz

is used for each subcarrier of the OFDM symbol. The gain in error performance is maintained with

a narrow increase when the 6 bits/s/Hz and 8 bits/s/Hz are used, respectively. The error performance

of QSM-OFDM over Alamouti-OFDM is highest. It is seen to increase when the spectral length per

subcarrier being used for the QSM-OFDM system is increased. When QSM-OFDM is compared with

MIMO-OFDM and MRC-OFDM, its error performance is minimal (≈ 2 dB) when a 4 bits/s/Hz is

used for each subcarrier of the OFDM symbol but increases to 5 dB and 15 dB when 6 bits/s/Hz and

8 bits/s/Hz are used, respectively.

5 Conclusion

This paper has analyzed the advantage of exploiting the spatial domain as a means of increasing the

spectral efficiency of the system and also benefiting from the gains of OFDM in eliminating ISI and

co-channel interference. The results showed that the proposed QSM-OFDM has a better error

performance than the SM-OFDM system without additional cost of hardware. Also, SM-OFDM will

need a minimum of 4 dB signal power to attain the same BER of QSM-OFDM if the spectral
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Table A.5: Comparison of BER performances of QSM-ODFM over other schemes.

Scheme

4 bits/s/Hz 6 bits/s/Hz 8 bits/s/Hz

Configuration
Gain

Configuration
Gain

Configuration
Gain

(dB) (dB) (dB)

MIMO-OFDM 2× 4 16QAM 2 4× 4 64QAM 5 4× 4 256QAM > 15

SM-OFDM 2× 4 8QAM 4 4× 4 16QAM 4 4× 4 64QAM ≈ 5

Alamouti-OFDM 2× 4 16QAM 7 2× 4 64QAM 12 2× 4 256QAM > 20

MRC-OFDM 1× 4 16QAM 2 1× 4 64QAM 5 1× 4 256QAM > 15

efficiency is made equal. The proposed QSM-OFDM scheme displayed superior error performance

over MRC-OFDM, MIMO-OFDM, and Alamouti-OFDM. From the results, QSM-OFDM also

demonstrates a better error performance than VBLAST-OFDM at high SNR. Since the number of RF

chains for VBLAST-OFDM increases with the number of transmit antennas it becomes more

susceptible to ICI and IAS than the QSM-OFDM. Hence, the proposed QSM-OFDM scheme

becomes the preferred candidate for modern day communication. Since recent research has focused

on energy and spectral efficient devices, the QSM-OFDM becomes a more promising model for

future wireless communication as its design is implementable for the OFDM system.
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1. INTRODUCTION

Abstract

This paper proposes a low-complexity near-maximum-likelihood (ML) detector for space-time block

coded spatial modulation with cyclic structure (STBC-CSM). The proposed detector yields a

significant reduction in computational complexity, which is ≥ 59% compared to the traditional ML

detector, while simulation results demonstrate near-ML error performance. The union bound

theoretical framework to quantify the average bit-error probability of M -ary quadrature amplitude

modulation STBC-CSM over a frequency-flat Rayleigh fading channel is formulated and validates the

Monte Carlo simulation results.

1 Introduction

The demand for improved data services has become a necessity in modern day wireless

communication [1, 2]. Space-time block coded (STBC) spatial modulation (STBC-SM) [3], a novel

multiple-input multiple-output (MIMO) based transmission system, which exploits the advantages of

both the Alamouti STBC and SM [4], have the potential to meet this demand. STBC-SM employs a

pair of transmit antennas selected from a spatial (antenna) constellation to transmit a pair of

amplitude and/or phase modulation (APM) constellation symbols over two time-slots [2, 3]. Since

the transmit antenna pair indices and the APM symbols of STBC-SM are employed in transmitting

information, the spectral efficiency (SE)/error performance is improved compared to Alamouti STBC

and SM.

Several schemes, which make use of the STBC-SM technique have been proposed. For example,

labeling diversity was applied to STBC-SM in [5], similar to the method of [2, 6], to improve error

performance. In [7], STBC-SM with cyclic structure (STBC-CSM), employs cyclic rotation of

activated transmit antenna pairs within a codebook to transmit Alamouti codewords taken from two

different constellation sets, thereby significantly increasing the SE of conventional STBC-SM.

STBC-SM with temporal modulation (STBC-TSM) [8], was proposed to further improve the SE of

STBC-SM, by employing a cyclic spatially rotated codebook with temporal permutations. However,

although STBC-TSM is able to further improve the SE of STBC-SM, the computational complexity

(CC) per time-slot, in terms of real multiplications, was 90% greater than STBC-CSM [8]. Hence,

STBC-CSM is still of interest.

The advantages of STBC-CSM is reduced by the CC imposed by the maximum-likelihood (ML)

detector employed. The optimal ML detector for STBC-CSM in [7] has a large CC as it performs an
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2. STBC-CSM

exhaustive search over all possible matrices, thereby making it impracticable, especially when

high-order M -ary APM constellations are employed. Although, linear detectors can be employed to

reduce the CC due to the orthogonality of the STBC-CSM codeword [3, 7], this is only applicable in

quasi-static fading channels. In [9], low-complexity near ML detection is performed by equalization,

employing the Frobenious norm of the simplified channel. However, the application of this is method

in a fast fading channel is not possible because it is based on the orthogonality of the Alamouti

codeword. In [10], orthogonal projection (OP) of signals was employed as a tool to reduce the CC of

a MIMO system. Furthermore, in [5], OP was employed to reduce the CC of STBC-SM with labeling

diversity, the results in both cases demonstrated near-ML error performance and a significant

reduction in CC when compared with their corresponding ML detectors.

Furthermore, although simulated error performances of STBC-CSM was reported in [7], there was no

theoretical framework to validate the average bit-error probability (ABEP).

Based on the above motivations, a closed-form expression to evaluate the ABEP of STBC-CSM is

proposed. Furthermore, an LC detector based on OP of signals, which yields a near-ML error

performance is proposed. In addition, an analytical framework to determine the CC of the proposed

detector is presented.

The remainder of this paper is organized as follows: Section 2 presents the background of STBC-

CSM. The proposed theoretical framework of the union bound on the ABEP for STBC-CSM is then

presented. The proposed near-ML LC detector of STBC-CSM is then formulated and the CC of the

detectors are analyzed. In Section 3, the numerical results are presented and discussed, and finally, the

paper is concluded in Section 4.

Notation: The following notations are employed throughout this paper; bold and capital letters

represent matrices, while bold small letters denote column vectors of matrices. (·)−1, (·)T , (·)H and

(·)∗ represents inverse, transpose, Hermitian and complex conjugate, respectively. Q(·) and || · ||F

denotes Q-function and Frobenius norm, respectively. Also argmin
w

(·) represents the minimum of an

argument with respect to w and bwc2p denotes the floor of the nearest power of two, less than or

equal to w. Iw denotes a w × w identity matrix having all elements in its diagonal as unity.

2 STBC-CSM
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2.1 Background/System model

Given Nt transmit antennas, the STBC-CSM code set, which employs several transmit antenna pairs

denoted as (t1, t2), where t1, t2 ∈ [1 : Nt] comprises of Nt − 1 codebooks, χk, k ∈ [1 : Nt − 1].

Each codebook contains Nt codewords. The l-th, l ∈ [1 : Nt] codeword of the k-th codebook of

STBC-CSM is given by χk,l = Gl−1Dke
jθk [7], where θk is the optimized rotation angle of the k-th

codebook given in (Table II, [7]),G is an Nt×Nt right-shift matrix [7] withG0 = INt andDk is an

Nt × 2 matrix defined as [7]:

Dk =


xp 0 . . . xq . . . 0

−x∗q 0 . . . x∗p . . . 0

(1+k)-th column


T

(B.1)

where xp, p ∈ [1 : M ] is a symbol from an M -ary quadrature amplitude modulation (M -QAM)

constellation Ω1, and xq, q ∈ [1 : M ] is a symbol from a rotated M -QAM constellation Ω2 = Ω1e
jφ,

where φ is the optimized rotation angle of Ω2 given in (Table II, [7]). The number of usable codewords

is c = bNt(Nt − 1)c2p [7], yielding a SE of 0.5 log2 c+ log2M bits/s/Hz. In the case of STBC-SM,

c = b(Nt2 )c2p.

Given the transmission of the codeword χ` = χk,l, for the `-th, ` ∈ [1 : c] transmit antenna pair,

where ` = Nt(k − 1) + l, the received STBC-CSM signal vectors for time-slots 1 and 2 may be

formulated as [5]:

y1 =

√
ρ

2

(
h1
`,t1s

1
p + h1

`,t2s
1
q

)
+ η1 (B.2)

y2 =

√
ρ

2

(
h2
`,t1s

2
q + h2

`,t2s
2
p

)
+ η2 (B.3)

where yi,i ∈ [1 : 2] is an Nr × 1 received signal vector for the i-th time-slot. ρ
2 is the average

signal-to-noise ratio (SNR) at each receive antenna. s1
p = xpe

jθk and s1
q = xqe

jθk are the transmitted

symbols for time-slot 1, while s2
q = −

(
xqe

jθk
)∗ and s2

p = (xpe
jθk)∗ are transmitted in time-slot 2.

hi`,t1 , hi`,t2 ∈H i are the channel vectors between the `-th, ` ∈ [1 : c] pair of transmit antennas (t1, t2)

and the Nr receive antennas. H i =
[
hi`,1 hi`,2 · · · hi`,Nt

]
, denotes the Nr × Nt frequency-flat

Rayleigh fading channel, where the channel is assumed constant during each time-slot and takes on

independent values in time-slot i [6]. hi`,ϕ =
[
hi,`1,ϕ hi,`2,ϕ · · · hi,`Nr,ϕ

]T
, ϕ ∈ [1 : Nt] are Nr × 1

column vectors of the ϕ-th transmit antenna. ηi denotes the Nr × 1 additive white Gaussian noise
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2. STBC-CSM

(AWGN) vector. The entries of H i and ηi are independent and identically distributed (i.i.d.) over

time-slot i according to the CN(0, 1) distribution.

The optimal ML detector of STBC-CSM performs a joint detection to estimate the index of the

transmit antenna pair and transmitted symbol, and is defined as:

[
ˆ̀, p̂, q̂

]
= argmin

x̂p∈Ω1, x̂q∈Ω2

ˆ̀∈[1:c]

(∥∥∥∥y1 −
√
ρ

2

(
h1
`,t1s

1
p + h1

`,t2s
1
q

)∥∥∥∥2

F

+

∥∥∥∥y2 −
√
ρ

2

(
h2
`,t1s

2
q + h2

`,t2s
2
p

)∥∥∥∥2

F

)
(B.4)

where ˆ̀, p̂ and q̂ denote the estimates of `, p and q, respectively.

The ML detector imposes a high CC as will be discussed in Section 2.3, hence the need for a LC

detector.

2.2 Proposed ABEP analysis for STBC-CSM

Employing a union bound, the ABEP may be formulated as:

ABEP ≤ 1

cM2

∑
S

∑
Ŝ

NSŜP
(
S → Ŝ

)
log2 c+ 2 log2M

(B.5)

where P (S → Ŝ) is the pairwise error probability (PEP) given that the transmitted codeword S is

received erroneously as Ŝ.

NSŜ is the number of bits in error that is associated with the PEP event P (S → Ŝ). S is an Nt × 2

transmit codeword having sip, i ∈ [1 : 2] and siq as the only non-zero elements in the i-th column

corresponding to the t1-th and t2-th positions, respectively.

ConsiderH1 =
[
h1
`,t1 h1

`,t2

]
andH2 =

[
h2
`,t1 h2

`,t2

]
,H1,H2 ∈H , the conditional PEP P (S →

Ŝ |H) may be formulated as [2]:

P
(
S → Ŝ |H

)
= P

(∥∥∥∥y1 −
√
ρ

2

(
h1

ˆ̀,t1
s1
p̂ + h1

ˆ̀,t2
s1
q̂

)∥∥∥∥2

F

+

∥∥∥∥y2 −
√
ρ

2

(
h2

ˆ̀,t1
s2
q̂ + h2

ˆ̀,t2
s2
p̂

)∥∥∥∥2

F

< ‖η1‖
2
F + ‖η2‖

2
F

)
(B.6)
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Similar to the method of [2, 6], (B.6) can be simplified as:

P
(
S → Ŝ |H

)
= Q

(√
ρ

8

(
‖H1‖2F ‖S1‖2F + ‖H2‖2F ‖S2‖2F

))
(B.7)

where S1 = Ŝc1−Sc1 and S2 = Ŝc2−Sc2 , Ŝci and Sci , i ∈ [1 : 2] denotes the i-th column of Ŝ and

S, respectively. Similar to [6], based on the moment generating function (MGF), the unconditional

PEP P (S → Ŝ) is defined as [2, 6]:

P
(
S → Ŝ

)
=

1

2g

[
1

2
M1

(
1

2

)
M2

(
1

2

)
+

g−1∑
υ=1

M1

(
1

2 sin2 θυ

)
M2

(
1

2 sin2 θυ

)]
(B.8)

where Mi(w) =
(

1
1+2wσ2

αi

)Nr
, i ∈ [1 : 2], σ2

αi = ρ
8 ‖Si‖

2
F , and θυ = υπ

2g , with g the number of

iterations needed for convergence of the trapezoidal approximation of the Q-function.

2.3 Proposed LC detector for STBC-CSM

In this section, motivated to reduce the CC of STBC-CSM, a near-ML LC detector based on OP [5] to

reduce the CC of the STBC-CSM ML detector is proposed.

A LC detector for STBC-CSM, which employs OP, firstly selects ζ1 and ζ2 likely candidates z`p =

[ẑ`p,1 ẑ
`
p,2 · · · ẑ`p,ζ1 ] and z`q = [ẑ`q,1 ẑ

`
q,2 · · · ẑ`q,ζ2 ] of the transmitted symbols s1

p and s1
q , respectively, for

the `-th transmit antenna pair, where ` ∈ [1 : c], z`p ⊆ Ω1e
jθk and z`q ⊆ Ω2e

jθk , with ζ1ζ2 << M2.

Employing the method in [5, 10], the projection matrix P i
`,ta , where i, a ∈ [1 : 2], which corresponds

to the projection space, hi`,ta is computed, such that P i
`,tah

i
`,ta = 0. The projection matrix P i

`,ta may

be defined as [5]:

P i
`,ta = INr − hi`,ta

((
hi`,ta

)H
hi`,ta

)−1 (
hi`,ta

)H
(B.9)

where P i
`,ta projects a signal orthogonal to the subspace of the channel vector hi`,ta . hi`,ta is the

channel vector of the ta-th transmit antenna during the i-th time-slot. If ẑ`p,m = s1
p, m ∈ [1 : ζ1] and

ẑ`q,n = s1
q , n ∈ [1 : ζ2], then the sum of the projections can be formulated as [5]:

P 1
`,t2

(
y1 −

√
ρ

2
h1
`,t1 ẑ

`
p,m

)
+ P 2

`,t1

(
y2 −

√
ρ

2
h2
`,t2(ẑ`p,m)∗

)
= P 1

`,t2η1 + P 2
`,t1η2 = ψ1 (B.10)
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P 1
`,t1

(
y1 −

√
ρ

2
h1
`,t2 ẑ

`
q,n

)
+ P 2

`,t2

(
y2 +

√
ρ

2
h2
`,t1(ẑ`q,n)∗

)
= P 1

`,t1η1 + P 2
`,t2η2 = ψ2 (B.11)

however, if ẑ`p,m 6= s1
p and ẑ`q,n 6= s1

q , the sum of the projections in (B.10) and (B.11) yields [5]:

P 1
`,t2

(√
ρ

2
h1
`,t1

(
s1
p − ẑ`p,m

))
+ P 2

`,t1

(√
ρ

2
h2
`,t2

(
s2
p − (ẑ`p,m)∗

))
+ψ1 (B.12)

P 1
`,t1

(√
ρ

2
h1
`,t2

(
s1
q − ẑ`q,n

))
+ P 2

`,t2

(√
ρ

2
h2
`,t1

(
s2
q + (ẑ`q,n)∗

))
+ψ2 (B.13)

From [5], it can be deduced that the Frobenius norms of (B.12) and (B.13) are greater than the

Frobenius norms of (B.10) and (B.11), respectively. Hence, based on OP, the proposed LC near-ML

detection algorithm for the STBC-CSM system follows:

Step 1: Compute the projection spaces ri`,ta,sp and ri`,ta,sq , i, a ∈ [1 : 2], p, q = [1 : M ], ` = [1 : c]

given in (B.14)-(B.17), and the projection matrices P i
`,ta formed from (B.9) for the `-th antenna

pair [5].

r1
`,t1,sp = y1 −

√
ρ

2
h1
`,t1s

1
p (B.14)

r1
`,t2,sq = y1 −

√
ρ

2
h1
`,t2s

1
q (B.15)

r2
`,t1,sq = y2 −

√
ρ

2
h2
`,t1s

2
q (B.16)

r2
`,t2,sp = y2 −

√
ρ

2
h2
`,t2s

2
p (B.17)

Step 2: Determine ζ1 and ζ2 most likely candidate sets z`p = [ẑ`p,1 ẑ`p,2 · · · ẑ`p,ζ1 ] and

z`q = [ẑ`q,1 ẑ
`
q,2 · · · ẑ`q,ζ2 ], respectively, for the `-th transmit antenna pair by choosing ζ1 and ζ2

symbols, which give the smallest projection norms from the metrics given in (B.18) and (B.19),

respectively.

ẑ`p = argmin
ri`,ta,sp

∥∥∥P 1
`,t2r

1
`,t1,sp + P 2

`,t1r
2
`,t2,sp

∥∥∥2

F
(B.18)

ẑ`q = argmin
ri`,ta,sq

∥∥∥P 1
`,t1r

1
`,t2,sq + P 2

`,t2r
2
`,t1,sq

∥∥∥2

F
(B.19)
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Step 3: Determine ˆ̀, p̂ and q̂ by an exhaustive search across all elements in z`p and z`q for all antenna

pairs by employing the ML rule according to [5]:

[ˆ̀, p̂, q̂] = argmin
ˆ̀∈[1:c],z`p,z

`
q

{∥∥∥∥y1 −
√
ρ

2

(
h1
`,t1 ẑ

`
p,m + h1

`,t2 ẑ
`
q,n

)∥∥∥∥2

F

+

∥∥∥∥y2 −
√
ρ

2

(
h2
`,t2(ẑ`p,m)∗ − h2

`,t1(ẑ`q,n)∗
)∥∥∥∥2

F

}
(B.20)

where ẑ`p,m ∈ z`p, ẑ`q,n ∈ z`q, ` ∈ [1 : c], m ∈ [1 : ζ1] and n ∈ [1 : ζ2].

2.4 CC analysis

Similar to [1, 5], the CC in terms of complex operations are formulated. Furthermore, it is assumed

that calculated values are stored in memory, hence, redundant operations are not considered.

Computing h1
`,t1s

1
p, h

1
`,t2s

1
q , h

2
`,t1s

2
q and h2

`,t2s
2
p in (B.4) requires 4Nr complex multiplications. Also,

another 4Nr complex additions are required to sum elements within the Frobenius norm operators.

Since there are two Frobenius norm operators having Nr × 1 vector, an additional 2Nr complex

multiplications and 2Nr − 2 complex additions are added to the CC. Furthermore, because an

exhaustive search, which involves c iterations of the complex operations mentioned are to be

performed, the total CC in terms of complex operations of the ML detector becomes:

δML = cM2 (12Nr − 2) (B.21)

For the LC detection algorithm, the CC involved in computing the four projection matrices P 1
`,t1

,

P 1,
`,t2

, P 2
`,t1

and P 2
`,t2

in (B.18) and (B.19) is given as [5]:

δpm = c
(
8N2

r + 12Nr − 4
)

(B.22)

To determine the ζ1 and ζ2 estimates of xp and xq most likely candidates given in (B.18) and (B.19),

the CC is given as [5]:

δlc = c
(
8MN2

r + 16MNr − 4Nr + 4M
)

(B.23)

The solution for the CC of the exhaustive ML search in (B.20), across the most likely candidates z`p

and z`q is similar to the ML search in (B.4), however, the CC is reduced because the search is across

ζ1ζ2 symbols, and ζ1ζ2 << M2. Hence, the total CC for this stage is given as:

δMLlc = cζ1ζ2(12Nr − 2) (B.24)
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The total CC in terms of complex operations of the proposed LC near-ML detector may be defined as:

δSTBC-CSM LC = (δpm + δlc + δMLlc) = 2c
[
4N2

r (M + 1)

+2Nr(4M + 3ζ1ζ2 + 4)− (2M + ζ1ζ2 + 2)
]

(B.25)

It is important to note that the expression for the CC is not the same as the CC in [5]. This is because

c = bNt(Nt − 1)c2p for STBC-CSM, whereas c = bNt(Nt−1)
2 c2p in [5]. Furthermore, the values for

ζ1 and ζ2 are not necessarily the same as those in [5], they are arbitrary values which offer near-ML

error performance for the STBC-CSM scheme.

Table B.1 presents numerical values of the CCs in terms of complex operations for the ML and LC

detectors, with SE = 5 and 6 bits/s/Hz. The values of ζ1 and ζ2 are arbitrary values chosen, which

offer near-ML error performance. The LC detector yields a 59% and 66% reduction in CC over the

ML detector for SE = 5 and 6 bits/s/Hz, respectively.

Table B.1: Comparison of CCs between ML and LC detectors

STBC-CSM CONFIGURATION SE ML LC

Nt = 3, Nr = 4, c = 4, M = 16, ζ1 = 6, ζ2 = 6 5 47,104 19,408

Nt = 5, Nr = 4, c = 16, M = 16, ζ1 = 6, ζ2 = 3 6 188,416 64,384

3 Numerical results

In this section, the bit-error rate (BER) of STBC-CSM with 16-QAM and Nr = 4 is demonstrated

for the ML detector and the proposed LC detector. The formulated theoretical ABEP of (B.5) is also

evaluated and used to validate the ML detection simulation results.

In Fig. B.1 and Fig. B.2, the notation (Nt, Nr, c,M,SE) is employed to denote the configuration

of STBC-CSM when the ML detector is employed, while (Nt, Nr, c,M,SE, ζ1, ζ2) is employed to

denote the configuration of STBC-CSM when the LC detector is employed.

In all simulations, the BER of the LC detector demonstrates a close match with the ML detector as

depicted in Fig. B.1 and Fig. B.2. It is also evident that the evaluated theoretical ABEP of (B.5) agrees

well with the ML detection simulation results at high SNR.
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Fig. B.1: BER performances for ML, LC detectors including theoretical ABEP of the STBC-CSM ML detector employing;

Nt = 3, c = 4, SE = 5 bits/s/Hz and Nt = 6, c = 16, SE = 6 bits/s/Hz
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Fig. B.2: BER performances for ML, LC detectors including theoretical ABEP of the STBC-CSM ML detector employing;

Nt = 3, c = 4, SE = 5 bits/s/Hz and Nt = 5, c = 16, SE = 6 bits/s/Hz
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4 Conclusion

The theoretical ABEP of STBC-CSM with M -QAM was formulated and validates simulation results

at high SNR. Furthermore, a LC near-ML detector based on OP was formulated and matches very

closely with the ML detector, while significantly reducing the CC of STBC-CSM to 59% and 66% ,

when SE = 5 and 6 bits/s/Hz, respectively. Also, STBC-CSM offers improved spectral efficiency than

STBC-SM, when the same number of transmit antennas are employed.
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1. INTRODUCTION

Abstract

Space-time block coded spatial modulation (STBC-SM) with cyclic structure (STBC-CSM) employs

cyclical rotation of activated transmit antenna pairs to transmit Alamouti codewords taken from two

different constellation sets to improve the spectral efficiency of STBC-SM. Furthermore, existing

literature has shown that media-based modulation (MBM), which employs radio frequency (RF)

mirrors demonstrate significant improvement in spectral efficiency/error performance of wireless

systems. Hence, this paper proposes the application of MBM to STBC-CSM and STBC-SM in the

form of media-based STBC-CSM (MBSTBC-CSM) and MBSTBC-SM, respectively. The theoretical

framework of the union-bound on average bit-error probability of M -QAM MBSTBC-CSM and

MBSTBC-SM, for the maximum-likelihood (ML) detector is formulated and agrees well with Monte

Carlo simulations. Furthermore, due to the large computational complexity of the ML detector, we

propose a low-complexity near-ML detector for MBSTBC-CSM and MBSTBC-SM, which achieves a

near-ML bit error rate performance with 41% reduction in computational complexity.

1 Introduction

Next-generation multimedia applications and services demand significant improvement in capacity

and link reliability [1]. Consequently, recent research has focused on multiple-input multiple-output

(MIMO) systems, which have the potential of meeting these demands, but not without limitations.

For example: the need for inter-antenna synchronization (IAS) between transmit antennas, high

system computational complexity/cost and inter-channel interference (ICI) are challenges in

employing classical MIMO techniques [1, 2]. To address these challenges, while retaining the

advantages of MIMO systems, several schemes have been recently proposed.

Spatial modulation (SM), a novel MIMO based transmission approach, which eliminates IAS, ICI

and requires a single radio frequency (RF) chain has been proposed in [2, 3]. The key idea behind

SM is to map a group of bits, which are employed to select a symbol from the amplitude and/or phase

modulation (APM) constellation and an antenna index in the spatial constellation. The selected

antenna is then employed to transmit the modulated symbol over a wireless channel. However,

despite the advantages possessed by SM, it does not achieve transmit diversity [4]. Furthermore, the

logarithmic relationship between the spectral efficiency and the number of transmit antennas is a

major disadvantage, as a large number of transmit antennas are needed to attain high throughput.

To improve the spectral efficiency/error performance/computational complexity of SM, several

64



i
i

“output” — 2018/11/30 — 6:10 — page 65 — #83 i
i

i
i

i
i

1. INTRODUCTION

schemes based on SM have been proposed [5]. For example, in [6], several low-complexity transmit

antenna selection schemes, which reduce the computational complexity of classical SM by 57%, and

improve the error performance SM by ≈ 10 dB in SNR, was proposed. A transmit precoder based

SM (TPSM) was introduced in [7] for large-scale MIMO. TPSM eliminates multi-user interference

and enhances detection of spatial symbols for large scale MIMO.

In [4], space-time block coded (STBC) spatial modulation (STBC-SM), a scheme which introduces

diversity to SM by combining the advantages of SM and STBC, was proposed. STBC-SM employs

a pair of transmit antennas selected from a set, to transmit an Alamouti STBC codeword in two time-

slots. The computational complexity of the STBC-SM ML detector is significantly reduced due to the

orthogonality of the Alamouti codeword. However, employing more than 8 transmit antennas, a large

number of rotation angles have to be optimized, which causes a reduction in the minimum coding gain

distance (CGD) [4, 8, 9].

To further improve the spectral efficiency/transmit diversity of STBC-SM, several schemes have been

proposed. For example, a high-rate STBC-SM (H-STBC-SM), which employs spatial constellation

matrices for four and six transmit antennas was introduced in [10]. H-STBC-SM improves the spectral

efficiency of STBC-SM by increasing the codewords to twice that of STBC-SM, however, this results

in reduction of error performance when compared with STBC-SM. In [11], another high-rate STBC-

SM, which employs the linear combination of Alamouti STBC parameters was discussed. It was found

to perform better than the STBC-SM scheme in [9], which employs an (n, k) error correcting code to

form the STBC-SM codewords. However, this system is only designed for an even number of transmit

antennas, hence limiting its application.

STBC-SM with temporal modulation (STBC-TSM) [12], was proposed to further improve the

spectral efficiency of STBC-SM, by employing a cyclic spatially rotated codebook with temporal

permutations. Although STBC-TSM is able to further improve the spectral efficiency of STBC-SM,

the computational complexity in terms of real multiplications for each time-slot is 90% more than

STBC-SM [12].

In [13], STBC-SM with cyclic structure (STBC-CSM), employs cyclical rotation of transmit antenna

pairs to transmit Alamouti codewords formed from two different APM constellation sets. Hence,

the spectral efficiency offered by the spatial domain of STBC-CSM is an improvement over STBC-

SM. Furthermore, STBC-CSM require fewer transmit antennas and lower cost, to achieve the same

spectral efficiency as STBC-SM. However, this improvement is not without a trade-off, as there is a

corresponding reduction in error performance, thereby, decreasing the benefits of this scheme [13].
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1. INTRODUCTION

In [14–16], a new technique in wireless communication called media-based modulation (MBM) was

proposed. MBM embeds information into the variation of a finite number of channel states by

changing the radio frequency (RF) properties, such as permeability, resistivity and permittivity

around the antenna to create distinct channel realizations. The application of MBM to a system can

offer the following:

1. Converts static multi-path fading channels into additive white Gaussian noise (AWGN) as noted

in [14, 15], hence, the error performance is improved drastically,

2. Increases the number of channel realizations without requiring additional power,

3. Significantly improves error performance by selecting a subset of channel realizations, which

yield superior error performance.

Several forms of MBM are reported in the literature, for example, in [17], the use of RF switches

were employed as a form of MBM, however, the switching speed becomes a crucial parameter for RF

switching designs. In [18, 19], the channel realizations of the transmitted tones were employed as the

transmitted alphabets of a space shift keying modulation system.

Employing RF mirrors as a form of MBM is particularly attractive because the ON/OFF status of

the RF mirrors creates distinct channel realizations (mirror activation patterns (MAPs)) and serve as

spatial constellations [19]. Furthermore, it yields a linear increase in spectral efficiency, unlike the

logarithmic increase obtained in some systems without MBM, like SM.

As discussed in [16, 17, 19], significant improvement in error performance/spectral efficiency can

be achieved, when MBM is applied to conventional single-input multiple-output (SIMO) systems, in

the form of SIMO-MBM. However, SIMO-MBM systems becomes resource intensive when a large

number of mirrors are employed due to channel-time variations. Furthermore, MBM was applied to

MIMO, in the form of MIMO-MBM [16, 19]. This combination results in a superior error performance

over the conventional MIMO system. In [19], media-based generalized SM (GSM-MBM) was shown

to have an improved error performance over conventional GSM. However, GSM-MBM faces similar

challenges as MIMO.

More recently, MBM has been applied to quadrature spatial modulation (QSM) in the form of

quadrature spatial media-based modulation (QSMBM) [20] and quadrature channel modulation

(QCM) [21]. The presented schemes exhibit significant improvement in spectral efficiency, while

retaining a relatively good error performance. Furthermore, MBM has been applied to the Alamouti

space-time block code (ASTBC) and uncoded space-time labeling diversity (USTLD) in the form of

space-time channel modulation (STCM) [22] and USTLD-STCM [23], respectively, to improve their
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1. INTRODUCTION

spectral efficiency/error performance.

Based on this background, the motivations for this work are as follows:

a. Although STBC-CSM requires fewer transmit antennas to achieve the spectral efficiency of

STBC-SM, the STBC-SM system demonstrates a slightly superior error performance than

STBC-CSM. Furthermore, the application of MBM to traditional/recent MIMO systems results

in significant improvement in error performance/spectral efficiency [19, 20, 22, 23], hence, the

motivation to apply the concept of MBM to STBC-CSM and STBC-SM to improve the error

performance/spectral efficiency of these systems.

b. The high computational complexity imposed by the optimal maximum-likelihood (ML) detector

for STBC systems exists because an exhaustive search over all possible matrices is performed,

however, this becomes impracticable in real-life especially when high-order M -ary APM

constellations are employed. The application of linear detectors, such as zero forcing (ZF) and

minimum mean square error (MMSE) detectors have been employed to reduce computational

complexity of wireless systems, However, its error performance is seriously degraded, when

compared to the ML detector [24]. To further improve MMSE and ZF, nonlinear detectors like

ordered successive interference cancellation (OSIC), have been employed [24, 25]. However, it

does not achieve near-ML error performance due to insufficient receive diversity and imperfect

interference cancellation [24]. Furthermore, the orthogonality of the STBC-SM codeword is

employed as a criterion to achieve a low-complexity ML detector [4]. However, this detector

cannot be applied to a fast fading channel, which have values that change at every time slot.

Hence, the motivation is to investigate a near-ML low-complexity detector for STBC-CSM

having a reduced computational complexity that can be employed for both quasi-static and fast

fading Rayleigh channels. The method of orthogonal projection is a better choice over other

low-complexity schemes, since it is capable of near-ML error performance with very reduced

computational complexity and can be employed for both the quasi-static and fast fading

channels [24, 26].

Based on these motivations, the contributions in this paper are as follows:

a. The application of MBM to improve the error performance/spectral efficiency of STBC-CSM and

STBC-SM, in the form of media-based STBC-SM (MBSTBC-SM) and media-based cyclically

structured space-time block coded spatial modulation (MBSTBC-CSM) is proposed. It employs

mrf RF mirrors to transmit the Alamouti codeword, where mrf is the number of RF mirrors

associated with each transmit antenna unit. Furthermore, it employs the different MAP schemes
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2. MBSTBC-CSM/MBSTBC-SM

illustrated in [22], the MBSTBC-CSM symbols taken from two different constellation sets are

transmitted by a pair of transmit antennas, which are cyclically rotated within a codebook [13].

b. A closed-form expression to evaluate the union bound on average bit-error probability (ABEP)

of an Nt ×Nr M -ary QAM (M -QAM) MBSTBC-CSM and MBSTBC-SM over an independent

and identically distributed (i.i.d) fast frequency-flat Rayleigh fading channel is formulated, and

validates numerical results of the Monte Carlo simulations.

c. Although several low-complexity schemes have been proposed for STBC systems, most of these

schemes are dependent on the orthogonality of the Alamouti codeword. For example, equalization

of symbols was proposed in [8]. Furthermore, the principle of orthogonality was applied in STBC-

SM [4]. However, these methods can only be applied in quasi-static fading channels. Hence, a low-

complexity near-ML detector for MBSTBC-CSM and MBSTBC-SM, which may be employed for

quasi-static or fast fading channels and is capable of approaching near-ML detection, by applying

the principle of orthogonal projection of signals, is proposed.

The remainder of this paper is structured as follows: Section 2 presents a brief background and

system model of the proposed MBSTBC-CSM and MBSTBC-SM systems. In Section 3, a

closed-form expression for calculating the union bound on ABEP of the proposed M -QAM Nt ×Nr

MBSTBC-CSM and MBSTBC-SM systems is formulated. Furthermore, a low-complexity near-ML

detection scheme for MBSTBC-CSM and MBSTBC-SM, which employs orthogonal projection is

proposed in Section 4, while the computational complexity analysis of the ML and the

low-complexity detectors are presented in Section 5. Simulation results and discussions on

MBSTBC-CSM and MBSTBC-SM are presented in Section 6. Finally, the paper is concluded in

Section 7.

Notation: The following notations are employed throughout this paper; bold and capital letters

represent matrices, while bold small letters denote column vectors. Other notations include (·)T ,

(·)H , (·)∗ and (·)−1, which represent transpose, Hermitian, complex conjugate and inverse,

respectively. argmin
w

(·) represents the minimum of an argument with respect to w, bwc2p, Q(·) and

|| · ||F denote the nearest power of two, less than or equal to the w, Q-function and Frobenius norm,

respectively. INt is an Nt ×Nt identity matrix having all elements in its diagonal as unity. j =
√
−1

and <(·) denote a complex number and the real part of a complex number, respectively.

2 MBSTBC-CSM/MBSTBC-SM
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2.1 Background of STBC-CSM/STBC-SM

Similar to the STBC-SM system, STBC-CSM [13] employs the concept of Alamouti STBC and SM.

However, a difference between STBC-CSM and STBC-SM, is that the activated transmit antenna pair

(t1, t2) for STBC-CSM, is cyclically rotated along the total antenna array within a given codebook.

The total STBC-CSM code set comprises of Nt − 1 codebooks, χk, k ∈ [1 : Nt − 1], with each

codebook containing Nt codewords. The l-th, l ∈ [1 : Nt] codeword of the k-th codebook for STBC-

CSM χk,l, is defined by [13]:

χk,l = Gl−1Dke
jθk (C.1)

where θk is the optimized rotation angle for the k-th codebook andG is an Nt×Nt right-shift matrix

havingG0 = INt [13]. Dk is an Nt × 2 matrix defined as [13]:

Dk =

 x1 0 . . . x2 . . . 0

−x∗2 0 . . . x∗1 . . . 0


↓

the (1 + k)-th column

(C.2)

For example, givenNt = 3, theNt−1 codebooks, χ
k

formed from the antenna pairs are given as [13]:

χ
1

=



xp −x∗q
xq x∗p

0 0

 ,


0 0

xp −x∗q
xq x∗p

 ,

xq x∗p

0 0

xp −x∗q


 ejθ1

χ
2

=



xp −x∗q
0 0

xq x∗p

 ,

xq x∗p

xp −x∗q
0 0

 ,


0 0

xq x∗p

xp −x∗q


 ejθ2

(C.3)

where xp, p ∈ [1 : M ] is a symbol from an M -QAM constellation Ω1, and xq, q ∈ [1 : M ] is a

symbol from a rotated M -QAM constellation Ω2 = Ω1e
jφ, M is the modulation order of the APM

constellation, φ is the optimized rotation angle for Ω2. The optimized values for θ and φ are given

in (Table II, [13]). Each row and column of the STBC-CSM codeword matrix represents the transmit

antenna index and the time-slot, respectively. However, the number of usable codewords is c =

bNt(Nt − 1)c2p [13], whereas, it is c = bNt(Nt−1)
2 c2p for STBC-SM. The individual codeword for

STBC-SM is similar to the codewords for STBC-CSM except that, the transmit antenna indices of the
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2. MBSTBC-CSM/MBSTBC-SM

codewords in a given codebook are non-overlapping. The spectral efficiency of STBC-CSM/STBC-

SM is δ = 0.5 log2 c+ log2M bits per channel use (bpcu).

2.2 System model of the proposed MBSTBC-CSM/MBSTBC-SM

d
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switch 

controller 

&
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RF mirror 

switch 

controller 

&

Transmitter

Mapper 1

Ω1 

Mapper 1
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Fig. C.1: System model of MBSTBC-CSM or MBSTBC-SM

Consider the system model of an Nt × Nr M -QAM MBSTBC-CSM/MBSTBC-SM system, with

each antenna equipped with mrf RF mirrors as illustrated in Fig. C.1. A set of input bits of length

d = 2 log2M + log2 c + γmrf are split into three groups of 2 log2M , b` = log2 c and γmrf bits,

where M denotes the constellation size of the Gray-coded M -QAM being employed for the proposed

system, c is the number of usable codewords employed by MBSTBC-CSM and MBSTBC-SM. mrf

is the number of RF mirror units associated with each transmit antenna and γ, γ ∈ [1 : 2] is a scaler

multiplier determined by the scheme employed, as reported in [22]. The first group of d input bits,

2 log2M bits are further subdivided into two groups m1 and m2 each having log2M bits. These bits

are employed to select the symbols xp and xq, p, q ∈ [1 : M ], which denote the p-th and q-th symbols

of the M -QAM constellations Ω1 and Ω2, respectively, where Ω2 = Ω1e
jφ and φ is the optimized

rotation angle given in [13]. Note, for MBSTBC-SM φ = 0, while for MBSTBC-CSM 0 < φ ≤ π.

The second group of d input bits, b` bits are employed to select the `-th, ` ∈ [1 : c] transmit antenna

pair (t1, t2), t1, t2 ∈ [1 : Nt] that is employed to transmit the Alamouti codeword. Lastly, γmrf

bits, are employed to select the MAP indices zk, zl, zm and zn of the available Mrf = 2mrf MAPs

associated with each transmit antenna, where zk, zl, zm, zn ∈ [1 : Mrf ]. zk and zl are the MAP

indices employed by the transmit antennas t1 and t2, respectively, during time-slot 1, while zm and zn

are the MAP indices for the transmit antennas t1 and t2, respectively, during time-slot 2.

Three schemes are reported in [22]. In Scheme 2, γ = 1 [22]; the MAP index zk = zl = zm = zn,
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i.e., the MAP indices activated for time-slots 1 and 2 and for all activated transmit antennas are the

same. A tabular illustration presenting the bit assignments and the outputs from the RF mirror switch

controller of MBSTBC-CSM/MBSTBC-SM with c = 4, 4-QAM employing Scheme 2 is presented in

Table C.1.

Table C.1: Bit assignments and outputs from RF switch controller for Scheme 2

Bits m1 p m2 q b` ` t1, t2 mrf zk

11000110 11 4 00 1 01 2 3,4 10 3

01011101 01 2 01 2 11 4 1,4 01 2

In Scheme 1 and 3, γ = 2, however, the difference between Scheme 1 and Scheme 3 is that, in Scheme

1, zm = zk and zn = zl, while in Scheme 3, zm = zl and zn = zk [22]. Given that Nt is the same

for MBSTBC-CSM and MBSTBC-SM the spectral efficiency of MBSTBC-CSM Rc ≥ Rs, where

Rs is the spectral efficiency of MBSTBC-SM. This is because c = bNt (Nt − 1)c2p for MBSTBC-

CSM, whereas c = bNt(Nt−1)
2 c2p for MBSTBC-SM. Furthermore, the spectral efficiency of Scheme

2 RS2 < RS1 = RS3 , where RS1 and RS3 are the spectral efficiencies of Scheme 1 and Scheme 3,

respectively. This is because 2 groups of mrf bits are assigned to select zk and zl as illustrated in

Table C.2.

Table C.2: Bit assignments for Scheme 1 and Scheme 3

Bits m1 m2 b` mrf1 mrf2

1100011001 11 00 01 10 01

0101110110 01 01 11 01 10

The outputs of the mapped bit assignments of Table C.2 are presented in Table C.3.

Table C.3: Outputs from RF switch controller for Scheme 1 and Scheme 3

Bits p q ` t1, t2 zk zl

1100011001 4 1 2 3,4 3 2

0101110110 2 2 4 1,4 2 3

During the first time-slot, the `-th transmit antenna pair (t1, t2) transmits the symbols sp1 = xpe
jθk

and sq1 = xqe
jθk with the zk-th and zl-th MAP activated, respectively, while in the second time-

slot, sq2 = −(xqe
jθk)∗ and sp2 = (xpe

jθk)∗ are transmitted by the same transmit antenna pair, with
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the zm-th and zn-th MAP indices activated, respectively, where θk is the rotation angle of the k-th

codebook in which the `-th selected codeword is located. The received signal vectors y1 and y2 of

MBSTBC-CSM/MBSTBC-SM over a fast frequency-flat Rayleigh fading channel during time-slots 1

and 2 may be defined as:

y1 =

√
ρ

2

(
H1

`,t1sp1ezk +H1
`,t2sq1ezl

)
+ η1 (C.4.1)

y2 =

√
ρ

2

(
H2

`,t1sq2ezm +H2
`,t2sp2ezn

)
+ η2 (C.4.2)

respectively, where ρ
2 is the average signal-to-noise ratio (SNR) at the receive antennas, H i

`,t1
and

H i
`,t2

, ` ∈ [1 : c], i ∈ [1 : 2], t1, t2 ∈ [1 : Nt], are the Nr ×Mrf channel matrix for the transmit

antennas t1 and t2, respectively, employed during time-slot i.

H i
`,t1
,H i

`,t2
∈ H i = [H i

`,1 H
i
`,2 · · ·H i

`,Nt ] and H = [H1 H2]. η1 and η2 are Nr × 1 AWGN

vectors for time-slot 1 and 2, respectively. H i
`,tα = [hi,`tα,1 hi,`tα,2 · · · hi,`tα,Mrf

], the entries of the

vectors hi,`tα,ψ = [hi,`,tα1,ψ hi,`,tα2,ψ · · · hi,`,tαNr,ψ
]T , ψ ∈ [1 : Mrf ] and ηi = [η1,i η2,i · · · ηNr,i]

T ,

i ∈ [1 : 2] are i.i.d. according to CN (0, 1) distribution. ezk and ezl are Mrf × 1 vectors for time-slot

1 having the zk-th and zl-th element as unity, respectively, while other elements are zeros. ezm and

ezn are Mrf × 1 vectors for time-slot 2 having the zm-th and zn-th element as unity, respectively,

while other elements are zeros. Note, the expectation of the transmitted symbol is unity.

The expression in (C.4.1) and (C.4.2) for the received signal vectors during time-slots 1 and 2 may be

rewritten as:

y1 =

√
ρ

2

(
h1,`
t1,zk

sp1 + h1,`
t2,zl

sq1

)
+ η1 (C.5.1)

y2 =

√
ρ

2

(
h2,`
t1,zm

sq2 + h2,`
t2,zn

sp2

)
+ η2 (C.5.2)

where h1,`
t1,zk

and h1,`
t2,zl

are the zk-th and zl-th column vectors of the channel matrix H1
`,t1

and H1
`,t2

,

given that the zk-th and zl-th MAPs are activated at the t1-th and t2-th transmit antennas, respectively,

during time-slot 1. Also, h2,`
t1,zm

and h2,`
t2,zn

are the zm-th and zn-th column vectors of H2
`,t1

and

H2
`,t2

, given that the zm-th and zn-th MAPs are activated at the t1-th and t2-th transmit antennas,

respectively, during time-slot 2. Considering that in Scheme 2, the same MAP is activated for (t1, t2)
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and for time-slot 1 and 2, the optimal ML detector for Scheme 2 of the proposed MBSTBC-CSM and

MBSTBC-SM may be defined as:

[
ˆ̀, ẑk, p̂, q̂

]
= argmin

ˆ̀∈[1:c], ẑk∈[1:Mrf ]
x̂p∈Ω1, x̂q∈Ω2

(∥∥∥∥y1 −
√
ρ

2

(
h1,`
t1,zk

sp1 + h1,`
t2,zk

sq1

)∥∥∥∥2

F

+

∥∥∥∥y2 −
√
ρ

2

(
h2,`
t1,zk

sq2 + h2,`
t2,zk

sp2

)∥∥∥∥2

F

)
(C.6.1)

while, for Scheme 1 and Scheme 3, it may be defined as:

[
ˆ̀, ẑk, ẑl, p̂, q̂

]
= argmin

ˆ̀∈[1:c], ẑk∈[1:Mrf ]
x̂p∈Ω1 x̂q∈Ω2

ẑl∈[1:Mrf ]

(∥∥∥∥y1 −
√
ρ

2

(
h1,`
t1,zk

sp1 + h1,`
t2,zl

sq1

)∥∥∥∥2

F

+

∥∥∥∥y2 −
√
ρ

2

(
h2,`
t1,zm

sq2 + h2,`
t2,zn

sp2

)∥∥∥∥2

F

)
(C.6.2)

where ˆ̀, ẑk, ẑl, p̂ and q̂ are estimates of `, zk, zl, p and q, respectively.

The expressions in (C.6.1) and (C.6.2) may be further simplified as [23]:

[
ˆ̀, ẑk, p̂, q̂

]
=

√
ρ

2

∥∥∥gkp1∥∥∥2

F
+

√
ρ

2

∥∥∥gkq1∥∥∥2

F
− 2<

(
yH1 g

k
p1

)
− 2<

(
yH1 g

k
q1

)
+
√

2ρ<
((
gkp1

)H
gkq1

)
+

√
ρ

2

∥∥∥gkq2∥∥∥2

F
+

√
ρ

2

∥∥∥gkp2∥∥∥2

F
− 2<

(
yH2 g

k
q2

)
− 2<

(
yH2 g

k
p2

)
+
√

2ρ<
((
gkq2

)H
gkp2

)
(C.7.1)

where gkp1 = h1,`
t1,zk

sp1 , gkq1 = h1,`
t2,zk

sq1 , gkq2 = h2,`
t1,zk

sq2 , gkp2 = h2,`
t2,zk

sp2 , and

[
ˆ̀, ẑk, ẑl, p̂, q̂

]
=

√
ρ

2

∥∥∥gkp1∥∥∥2

F
+

√
ρ

2

∥∥∥glq1∥∥∥2

F
− 2<

(
yH1 g

k
p1

)
− 2<

(
yH1 g

l
q1

)
+
√

2ρ<
((
gkp1

)H
glq1

)
+

√
ρ

2

∥∥gmq2∥∥2

F
+

√
ρ

2

∥∥gnp2∥∥2

F
− 2<

(
yH2 g

k
q2

)
− 2<

(
yH2 g

l
p2

)
+
√

2ρ<
((
gmq2
)H
gnp2

)
(C.7.2)

where gkp1 = h1,`
t1,zk

sp1 , glq1 = h1,`
t2,zl

sq1 , gmq2 = h2,`
t1,zm

sq2 and gnp2 = h2,`
t2,zn

sp2 .
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3 Theoretical ABEP of MBSTBC-CSM and MBSTBC-SM

In this section, the theoretical ABEP of MBSTBC-CSM/MBSTBC-SM over a fast frequency-flat

Rayleigh fading channel employing ML detection is formulated.

Considering that the MBSTBC-CSM/MBSTBC-SM can be viewed as an NtMrf × Nr

STBC-CSM/STBC-SM system [27], having the transmitted codeword

X =
[
(sp1ezk + sq1ezl) (sq2ezm + sp2ezn)

]
being erroneously detected as

X̂ =
[
(sp̂1eẑk + sq̂1eẑl) (sq̂2eẑm + sp̂2eẑn)

]
, where p, q ∈ [1 : M ], t1, t2 ∈ [1 : Nt], t1 6= t2,

zk, zl, zm, zn ∈ [1 : Mrf ], ezb and eẑb , zb, ẑb ∈ [1 : Mrf ] are NtMrf × 1 vectors, which have the

r-th element as unity, where r = Mrf (ta − 1) + zb, a ∈ [1 : 2] and zb is the MAP index associated

with the ta-th transmit antenna, while other elements are zeros.

The ABEP of MBSTBC-CSM/MBSTBC-SM may be defined as:

ABEP ≤ 1

cMγ
rfM

2

∑
X

∑
X̂

NXX̂P
(
X → X̂

)
(log2 c+ 2 log2M + γ log2Mrf )

(C.8)

where P (X → X̂) is the pairwise error probability (PEP), when X is transmitted and detected

erroneously as X̂ . NXX̂ is the number of bits detected in error given the PEP event P (X → X̂).

Given thatH1 = [H1
`,t1
H1

`,t2
] andH2 = [H2

`,t1
H2

`,t2
] are the channel matrix for time-slot 1 and 2,

respectively, the conditional PEP P (X → X̂ |H1,H2) may be formulated as [23]:

P
(
X → X̂ |H1,H2

)
= P

(∥∥∥∥y1 −
√
ρ

2

(
H1

ˆ̀,t1
sp̂1eẑk +H1

ˆ̀,t2
sq̂1eẑl

)∥∥∥∥2

F

+

∥∥∥∥y2 −
√
ρ

2

(
H2

ˆ̀,t1
sq̂2eẑm +H2

ˆ̀,t2
sp̂2eẑn

)∥∥∥∥2

F

< ‖η1‖
2
F + ‖η2‖

2
F

)
(C.9)

In a similar method as [28], (C.9) may be simplified as:

P
(
X → X̂ |H1,H2

)
= Q

(√
ρ

8

(
‖H1‖2F ‖X1‖2F + ‖H2‖2F ‖X2‖2F

))
(C.10)

where X1 = X̂c1 −Xc1 and X2 = X̂c2 −Xc2 , X̂ci and Xci , i ∈ [1 : 2] denotes the i-th column

of X̂ andX , respectively.

Applying a similar method to [28], which employs the approach of the moment generating function

(MGF), the unconditional PEP P (X → X̂) may be formulated as [20]:
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P
(
X → X̂

)
=

1

2g

[
1

2
M1

(
1

2

)
M2

(
1

2

)
+

g−1∑
v=1

M1

(
1

2 sin2 θυ

)
M2

(
1

2 sin2 θυ

)]
(C.11)

where Mi(w) =
(

1
1+2wσ2

αi

)Nr
, σ2

αi = ρ
8 ‖Xi‖2F , i ∈ [1 : 2], and θυ = υπ

2g , g denotes the number of

iterations needed for convergence of the trapezoidal approximation of the Q-function.

4 Low-complexity detector for MBSTBC-CSM/MBSTBC-SM

In this section, a low-complexity detector for MBSTBC-CSM/MBSTBC-SM over a fast

frequency-flat Rayleigh fading channel, is proposed. This is because the optimal ML detector for

MBSTBC-CSM/MBSTBC-SM has an extremely large computational complexity as it employs

cM2Mrf
γ search iterations. Considering an Nt × Nr MBSTBC-CSM/MBSTBC-SM transceiver

system having mrf RF mirrors associated with each transmit antenna. The proposed low-complexity

near-ML detector of MBSTBC-CSM/MBSTBC-SM which employs orthogonal projection [24, 26],

firstly determines ζ1 and ζ2 most likely estimates z`p =
[
ẑ`,pzk,1 ẑ`,pzk,2 · · · ẑ`,pzk,ζ1

]
, z`p ⊆ Ω1e

θk and

z`q =
[
ẑ`,qzl,1 ẑ`,qzl,2 · · · ẑ`,qzl,ζ1

]
, z`q ⊆ Ω2e

θk of the transmitted symbols sp1 and sq1 , for every

transmit antenna pair (t1, t2) and every MAP combination (zk, zl), respectively, where

zk, zl ∈ [1 : Mrf ], Mrf = 2mrf , p, q ∈ [1 : M ], t1, t2 ∈ [1 : Nt], t1 6= t2 and ζ1ζ2 �M2.

To determine the most likely candidate of the transmitted symbol, the orthogonal projection matrix

P i,`
ta,zb

, i, a ∈ [1 : 2] and zb ∈ [1 : Mrf ] corresponding to the channel subspace hi,`ta,zb is computed,

such that P i,`
ta,zb

hi,`ta,zb = 0. P i,`
ta,zb

may be expressed as [26]:

P i,`
ta,zb

= INr − h
i,`
ta,zb

((
hi,`ta,zb

)H
hi,`ta,zb

)−1 (
hi,`ta,zb

)H
(C.12)

where P i,`
ta,zb

is the projection matrix of the ta-th transmit antenna during the i-th time-slot, given that

the `-th transmit antenna pair is selected and the zb-th MAP is activated. If ẑ`,pzk,u1 = sp1 , u1 ∈ [1 : ζ1]

and ẑ`,qzl,u2 = sq1 , u2 ∈ [1 : ζ2], then the sum of the projections can be formulated as [26]:

P 1,`
t2,zl

(
y1 −

√
ρ

2
h1,`
t1,zk

ẑ`,pzk,u1

)
+ P 2,`

t1,zm

(
y2 −

√
ρ

2
h2,`
t2,zn

(ẑ`,pzk,u1)∗
)

= P 1,`
t2,zl

η1 + P 2,`
t1,zm

η2

(C.13.1)
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P 1,`
t1,zk

(
y1 −

√
ρ

2
h1,`
t2,zl

ẑ`,qzl,u2

)
+ P 2,`

t2,zn

(
y2 +

√
ρ

2
h2,`
t1,zm

(ẑ`,qzl,u2)∗
)

= P 1,`
t1,zk

η1 + P 2,`
t2,zn

η2

(C.13.2)

however, if ẑ`,pzk,u1 6= sp1 and ẑ`,qzl,u2 6= sq1 , (C.13.1) and (C.13.2), respectively, yield [26]:

√
ρ

2
P 1,`
t2,zl

h1,`
t1,zk

(
sp1 − ẑ`,pzk,u1

)
+

√
ρ

2
P 2,`
t1,zm

h2,`
t2,zn

(
sp2 − (ẑ`,pzk,u1)∗

)
+ P 1,`

t2,zl
η1 + P 2,`

t1,zm
η2

(C.14.1)

√
ρ

2
P 1,`
t1,zk

h1,`
t2,zl

(
sq1 − ẑ`,qzl,u2

)
+

√
ρ

2
P 2,`
t2,zn

h2,`
t1,zm

(
s2
q + (ẑ`,qzl,u2)∗

)
+P 1,`

t1,zk
η1 +P 2,`

t2,zn
η2 (C.14.2)

Since the Frobenius norms of (C.14.1) and (C.14.2) are greater than (C.13.1) and (C.13.2),

respectively, then, ζ1 and ζ2 symbols, which yields the smallest Frobenius norms are selected as the

most likely candidates of the transmitted symbols. Secondly, an exhaustive search across the most

likely candidate sets z`p and z`q is performed by employing the ML rule. The algorithm for the

proposed low-complexity detector of MBSTBC-CSM/MBSTBC-SM is as follows.

Step 1: Determine the projection spaces ri,`ta,p,zb and ri,`ta,q,zb , and the projection matrix P i,`
ta,zb

, such

that P i,`
ta,zb

hi,`ta,zb = 0 where i, a ∈ [1 : 2], ` ∈ [1 : c], p, q ∈ [1 : M ], zb ∈ [1 : Mrf ]. The projection

spaces for the `-th pair of transmit antennas for the proposed system are expressed as [24, 26]:

r1,`
t1,p,zk

= y1 −
√
ρ

2
h1,`
t1,zk

sp1 , p1 ∈ [1 : M ] (C.15.1)

r1,`
t2,q,zl

= y1 −
√
ρ

2
h1,`
t2,zl

sq1 , q1 ∈ [1 : M ] (C.15.2)

r2,`
t1,q,zm

= y2 −
√
ρ

2
h2,`
t1,zm

sq2 , q2 ∈ [1 : M ] (C.16.1)

r2,`
t2,p,zn

= y2 −
√
ρ

2
h2,`
t2,zn

sp2 , p2 ∈ [1 : M ] (C.16.2)
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where h1,`
t1,zk

, h1,`
t2,zl

, h2,`
t1,zm

and h2,`
t2,zn

corresponds to the zk-th, zl-th, zm-th and zn-th columns of

H1
`,t1

,H1
`,t2

,H2
`,t1

andH2
`,t2

, respectively, for the `-th antenna pair. The projection matrices P 1,`
t1,zk

,

P 1,`
t2,zl

, P 2,`
t1,zm

and P 2,`
t2,zn

are given in (C.17.1)-(C.18.2) as [24, 26]:

P 1,`
t1,zk

= INr − h
1,`
t1,zk

((
h1,`
t1,zk

)H
h1,`
t1,zk

)−1 (
h1,`
t1,zk

)H
(C.17.1)

P 1,`
t2,zl

= INr − h
1,`
t2,zl

((
h1,`
t2,zl

)H
h1,`
t2,zl

)−1 (
h1,`
t2,zl

)H
(C.17.2)

P 2,`
t1,zm

= INr − h
2,`
t1,zm

((
h2,`
t1,zm

)H
h2,`
t1,zm

)−1 (
h2,`
t1,zm

)H
(C.18.1)

P 2,`
t2,zn

= INr − h
2,`
t2,zn

((
h2,`
t2,zn

)H
h2,`
t2,zn

)−1 (
h2,`
t2,zn

)H
(C.18.2)

Step 2: Determine the ζ1 and ζ2 most likely estimates of sp1 and sq1 , z`p =
[
ẑ`,pzk,1 ẑ`,pzk,2 · · · ẑ`,pzk,ζ1

]
and z`q =

[
ẑ`,qzl,1 ẑ`,qzl,2 · · · ẑ`,qzl,ζ1

]
for the `-th, ` = [1 : c] transmit antenna pair and all (Mrf )γ MAP

combinations formulated as [26]:

ẑ`,pzk,u1 = argmin
r1,`
t1,p,zk

,

r2,`
t2,p,zn

∥∥∥P 1,`
t2,zl

r1,`
t1,p,zk

+ P 2,`
t1,zm

r2,`
t2,p,zn

∥∥∥2

F
(C.19.1)

ẑ`,qzl,u2 = argmin
r1,`
t2,q,zl

,

r2,`
t1,q,zm

∥∥∥P 1,`
t1,zk

r1,`
t2,q,zl

+ P 2,`
t2,zn

r2,`
t2,q,zm

∥∥∥2

F
(C.19.2)

where ` ∈ [1 : c], zk, zl, zm, zn ∈ [1 : Mrf ], p, q ∈ [1 : M ].

Step 3: Perform an exhaustive search of all elements in z`p and z`q employing the ML rule over all c

transmit antenna pairs and for all (Mrf )γ MAP combinations. The ML expression for Scheme 2 is

formulated as [26]:

[ˆ̀, p̂, q̂, ẑk] = argmin
z`p,z

`
q

{∥∥∥∥y1 −
√
ρ

2

(
h1,`
t1,zk

ẑ`,pzk,u1 + h1,`
t2,zk

ẑ`,qzl,u2

)∥∥∥∥2

F

+

∥∥∥∥y2 −
√
ρ

2

(
h2,`
t2,zk

(ẑ`,pzk,u1)∗ − h2,`
t1,zk

(ẑ`,qzl,u2)∗
)∥∥∥∥2

F

}
(C.20.1)
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while, for Scheme 1 and Scheme 3, (C.20.1) may be formulated as [26]:

[ˆ̀, p̂, q̂, ẑk, ẑl] = argmin
z`p,z

`
q

{∥∥∥∥y1 −
√
ρ

2

(
h1,`
t1,zk

ẑ`,pzk,u1 + h1,`
t2,zl

ẑ`,qzl,u2

)∥∥∥∥2

F

+

∥∥∥∥y2 −
√
ρ

2

(
h2,`
t2,zm

(ẑ`,pzk,u1)∗ − h2,`
t1,zn

(ẑ`,qzl,u2)∗
)∥∥∥∥2

F

}
(C.20.2)

where ẑ`,pzk,u1 ∈ z`p, ẑ
`,q
zl,u2 ∈ z`q, ` ∈ [1 : c], u1 ∈ [1 : ζ1] and u2 ∈ [1 : ζ2].

5 Computational complexity analysis of MBSTBC-CSM/MBSTBC-SM

In this section, the computational complexities of the proposed ML and low-complexity near-ML

detectors are compared for MBSTBC-CSM/MBSTBC-SM in terms of the number of complex

operations [26, 27].

5.1 Computational complexity of the ML detector for MBSTBC-CSM/MBSTBC-SM

Each term in (C.7.1) and (C.7.2) employs Nr complex multiplications. This is because the vectors in

the Frobenius norm terms have been calculated, hence, it does not have to be calculated again, when

it is needed. Furthermore, the additions of the six terms in (C.7.1) and (C.7.2), which require the real

part of the complex numbers, is ignored. This is because the addition of the real components entail

real operations only [23]. Since an exhaustive search involving cMγ
rfM

2 iterations of the complex

operations already mentioned are employed, the total computational complexity in terms of complex

operations of the proposed ML detector becomes:

cMγ
rfM

2 (10Nr) (C.21)

5.2 Computational complexity of the low-complexity near-ML detector for MBSTBC-

CSM/MBSTBC-SM

The computational complexity involved in computing the projection matrices P 1,`
t1,zk

, P 1,`
t2,zl

, P 2,`
t1,zm

and P 2,`
t2,zn

in (C.17.1)-(C.18.2) is given in [26] as 8N2
r + 12Nr − 4. Since this operation involves

cMγ
rf iterations, the total computational complexity for computing the projection matrices in terms of

complex operations may be formulated as:
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δpm = cMγ
rf

(
8N2

r + 12Nr − 4
)

(C.22)

In order to determine the ζ1 and ζ2 most likely estimates of sp1 and sq1 , given in (C.19.1) and (C.19.2),

respectively, 8MN2
r + 16MNr + 4Nr − 4M complex operations are performed [26]. Since these

operations involves cMγ
rf iterations, the total number of complex operations employed in determining

the ζ1 and ζ2 most likely candidate sets for all transmit antenna pairs and all MAP settings may be

formulated as:

δlc = cMγ
rf

(
8MN2

r + 16MNr + 4Nr − 4M
)

(C.23)

The computational complexity of the exhaustive ML search in (C.20.1) and (C.20.2) across the most

likely candidate sets z`p and z`q is similar to the ML search in (C.7.1) and (C.7.2), however, the

computational complexity is reduced because the search is across ζ1ζ2 symbols, and ζ1ζ2 << M2.

Since these computations undergo cMγ
rf iterations, then, the total computational complexity for this

stage is given as:

δML = cMγ
rfζ1ζ2(10Nr) (C.24)

The total computational complexity in terms of complex operations for the proposed low-complexity

near-ML detector may be defined as:

δMBSTBC−SM 6= δMBSTBC−CSM

= δpm + δlc + δML = 2cMγ
rf

[
4N2

r (M + 1)

+Nr(8M + 5ζ1ζ2 + 8)− 2(M + 1)
]

(C.25)

where c = bNt (Nt − 1)c2p for MBSTBC-CSM, whereas, c = bNt(Nt−1)
2 c2p for MBSTBC-SM, as

noted earlier.

The numerical values of the computational complexities in terms of complex operations, for the ML

and the low-complexity detectors are presented in Table C.4 for a spectral efficiency of 7 bpcu. It

should be noted that although the computational complexities of MBSTBC-CSM and MBSTBC-SM

are the same for a given spectral efficiency δSE , the number of transmit antennas employed by

MBSTBC-SM is more than that of MBSTBC-CSM.
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Table C.4: Computational complexity of ML with low-complexity detector

CONFIGURATION δSE ML LC DIFFERENCE REDUCTION

MBSTBC-CSM c = 4,

7 327,680 66,560 261,120 79.7%ζ1 = 1, ζ2 = 1, 16-QAM

Nt = 3, Nr = 2, mrf = 2

MBSTBC-CSM c = 4,

7 327,680 193,280 134,400 41.0%ζ1 = 10, ζ2 = 10, 16-QAM

Nt = 3, Nr = 2, mrf = 2

MBSTBC-SM c = 4,

7 327,680 66,560 261,120 79.7%ζ1 = 1, ζ2 = 1, 16-QAM

Nt = 4, Nr = 2, mrf = 2

MBSTBC-SM c = 4,

7 327,680 193,280 134,400 41.0%ζ1 = 10, ζ2 = 10, 16-QAM

Nt = 4, Nr = 2, mrf = 2

6 Numerical results and discussion

This section presents the BER performances of the proposed MBSTBC-CSM and MBSTBC-SM

employing ML and low-complexity detectors. The theoretical union bound on the ABEP of the ML

detectors for MBSTBC-CSM and MBSTBC-SM is evaluated and employed to validate the Monte

Carlo simulation results. Furthermore, error performance comparisons between the ML detector,

low-complexity detector and theoretical ABEP of the proposed MBSTBC-CSM and MBSTBC-SM

are presented. It is assumed that the channel state information is fully known by the receiver and have

constant gains during each time-slot and independent values for different time-slots. Also, it is

assumed that the transmit antennas are separated wide enough to prevent correlation of the signals. In

Figs. C.2-C.5, the notations (M,Nt, Nr) are employed for STBC-CSM and STBC-SM, while

(Scheme,M,Nt, Nr,mrf ) is employed for MBSTBC-CSM and MBSTBC-SM.
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6.1 MBSTBC-CSM and MBSTBC-SM
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Fig. C.2: BER performance of STBC-CSM, STBC-SM and MBSTBC-SM for 5 bpcu.

Fig. C.2 and Fig. C.3 displays the theoretical and simulated average BER performances of MBSTBC-

SM for 5 and 6 bpcu, respectively, employing Schemes 1, 2 and 3. These results are compared with

the traditional STBC-CSM and STBC-SM.

Considering Fig. C.2, which displays numerical plots for BER versus the normalized SNR per bit
Eb
No of MBSTBC-SM for a spectral efficiency of 5 bpcu. The numerical results of the theoretical

union bound average BER shows a close match with the simulated results for Scheme 1, 2 and 3.

Scheme 1 and 3 demonstrate a very tight match in terms of error performance, while Scheme 1 and

3 outperforms Scheme 2 by ≈ 3 dB. A major improvement in SNR of 5 dB gain is demonstrated by

Scheme 1 and Scheme 3 over STBC-CSM and STBC-SM when the BER is 10−5, while Scheme 2

outperforms STBC-CSM and STBC-SM by a 2 dB gain in SNR.
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Fig. C.3: BER performance of STBC-CSM, STBC-SM and MBSTBC-SM for 6 bpcu.
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Fig. C.4: BER performance of STBC-CSM, STBC-SM and MBSTBC-CSM for 5 bpcu.
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6. NUMERICAL RESULTS AND DISCUSSION

In Fig. C.3, numerical results of MBSTBC-SM for Schemes 1, 2 and 3 with STBC-CSM and

STBC-SM are compared for 6 bpcu. The theoretical framework for these schemes agrees well with

corresponding simulated values. Scheme 1 demonstrates a close match with Scheme 3, while

Scheme 1 and 3 outperforms Scheme 2 by 3 dB and ≈ 4.5 dB gain in SNR over STBC-CSM and

STBC-SM, when the BER is 10−5. STBC-SM yields a marginal improvement of 0.05 dB gain in

SNR over STBC-CSM, which was not visible in the plots for 5 bpcu shown in Fig. C.2.

Fig. C.4 and Fig. C.5 presents the BER versus Eb
No for Scheme 1, 2 and 3 of MBSTBC-CSM, which

employs 4-QAM and 8-QAM with mrf = 2 for spectral efficiencies of 5 and 6 bpcu, respectively.

The MBSTBC-CSM in Fig. C.4 and Fig. C.5 presents similar results as its MBSTBC-SM counterpart.

For example, in Fig. C.4 there is a tight match between the theoretical BER and the Monte Carlo

simulated results of MBSTBC-CSM for Scheme 1, 2 and 3. Furthermore, Scheme 1 and 3 demonstrate

a tight match in SNR as depicted in Fig. C.4 and Fig. C.5, while Scheme 1 and Scheme 3 outperforms

Scheme 2 in terms of error performance by ≈ 3 dB, when the BER = 10−5 and a 5 dB gain is

observed over STBC-CSM and STBC-SM, when the BER is 10−5. Scheme 2 outperforms STBC-

CSM and STBC-SM by a ≈ 2 dB gain in SNR.
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Fig. C.5: BER performance of STBC-CSM, STBC-SM and MBSTBC-CSM for 6 bpcu.
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6. NUMERICAL RESULTS AND DISCUSSION

6.2 Low-complexity detector

Fig. C.6 and C.7, displays the plots showing the effect of varying the resolution ζ1 and ζ2 of the

low-complexity detector. Keeping Nt = 3, Nr = 2, γ = 2, c = 4 and 16-QAM constant, and

varying the resolution, it can be observed that an increase in the resolution of the low-complexity

detector leads to an improved error performance until the ML error performance is reached and further

increase in resolution can no longer yield better error performance, however this comes at a trade-off,

as an increase in resolution ultimately yields an increase in the computational complexity of the low-

complexity detector. For example, when ζ1 = 1 and ζ2 = 1, there is ≈ 15 dB loss in SNR by

MBSTBC-CSM and MBSTBC-SM from the ML error performance as demonstrated by both Fig. C.7

and C.6, while the computational complexity is reduced by ≈ 80%. whereas, if the resolution is

chosen such that it achieves ML error performance, i.e. ζ1 = 10 and ζ2 = 10, the computational

complexity reduction is 41%.
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Fig. C.6: BER performance of different low-complexity detector resolutions, ML detector including theoretical ABEP of

MBSTBC-CSM, Nt = 3, Nr = 2, M = 16, mrf = 2.
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Fig. C.7: BER performance of different low-complexity detector resolutions, ML detector including theoretical ABEP of

MBSTBC-SM, Nt = 4, Nr = 2, M = 16, mrf = 2.

7 Conclusion

This paper investigated MBSTBC-CSM and MBSTBC-SM employing different MAP positioning

schemes. Significant improvements in SNR was achieved over the traditional STBC-CSM and

STBC-SM. However, as expected, Scheme 1 and 3 demonstrated superior error performance over

Scheme 2. The theoretical expression for the union bound on the ABEP of MBSTBC-CSM and

MBSTBC-SM was presented and shown to validate the Monte Carlo simulation results. Furthermore,

a low-complexity near-ML detector, which employs orthogonal projection of signals was proposed

for MBSTBC-CSM and MBSTBC-SM. As expected, the proposed low-complexity detector achieves

a 41% reduction in the computational complexity of the ML detector, while retaining a close match

in the error performance. The nearness in terms of error performance of the low-complexity detector

to the ML detector is directly proportional to the increment in the resolution of the low-complexity

detector. However, the overall computational complexity needed to achieve the error performance of

the ML detector is not as large as the computational complexity of the ML detector.
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1. INTRODUCTION

Abstract

Media-based modulation (MBM) with radio frequency (RF) mirrors is a recently proposed concept in

wireless communication, which uses RF mirrors located around transmit antennas to create distinct

channel paths to the receiver, primarily allowing an improvement in spectral efficiency. Existing

literature has proposed spatial media-based modulation (SMBM); however, results were not presented

or benchmarked. Hence, this paper, firstly presents Monte Carlo simulation results for SMBM. In

addition, an easy to evaluate theoretical average bit error probability bound for SMBM has been

formulated and agrees well with simulation results. Finally, low-complexity mirror activation pattern

selection for SMBM is investigated. Two low-complexity suboptimal selection schemes are proposed

and improve the error performance of SMBM significantly.

1 Introduction

The next generation of wireless communication systems, require substantial improvements in

throughput and link reliability, in order to support the demand for multimedia applications and

services [1].

Multiple-input multiple-output (MIMO) systems are well known and have the potential to meet these

demands; however, several challenges to its realization still exist, viz. high system complexity/cost,

inter-channel interference (ICI), inter-antenna synchronization and low energy efficiency [1]. On this

note, index modulation MIMO-based schemes have shown much promise [2, 3].

Spatial modulation (SM) is one of the key index modulation schemes that counteract the challenges of

classical MIMO, while maintaining its advantages [2, 3]. SM employs a MIMO-based architecture;

however, the key idea is to employ a single-active transmit antenna per time-slot to transmit a symbol.

SM allows the mapping of additional bits to an antenna index. thus allowing a spectral efficiency of

ηSM = log2MNt bits/s/Hz, where Nt is the number of transmit antennas and M is the amplitude

and/or phase modulation (APM) constellation order. In terms of error performance, SM has been

demonstrated as superior to vertical Bell Laboratories layered space-time architecture (VBLAST) [4].

A drawback of SM is the logarithmic relationship between the spectral efficiency and the number of

transmit antennas. Therefore, very large numbers of transmit antennas are required for highly efficient

communication.

Recently, a new technique termed media-based modulation (MBM) has been proposed in literature [5,
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1. INTRODUCTION

6]. MBM involves the embedding of information in the channel states by changing the radio frequency

(RF) properties, such as permittivity, permeability or resistivity in the vicinity of the transmitter, such

as to create distinct channel perturbations [5]. The embedding of information in the channel is utilized

to achieve the following advantages [5]:

a. A single antenna can increase the number of possible constellation points without an increase

in energy, as each channel state makes up a single constellation point. Hence, a large increase

in spectral efficiency can be realized.

b. A subset of the overall channel realizations may be selected; this attribute can improve the error

performance as channel paths which yield superior error performance may be chosen.

c. Multipath fading channels are evectively converted into Gaussian noise with an increase in

constellation due to constellations diversity, since the constellation is made up of good and bad

channel realizations.

Several methods for MBM are reported in literature. For example, a basic form of MBM is space

shift keying (SSK) modulation [7], where the transmitted alphabet is the channel realization of the

transmitted tone [5, 7, 8]. However, multiple transmit antennas are needed to create complex fade

symbols of the alphabets in SSK. In [9], the use of RF switches for SSK was considered as another

form of MBM, however, a major drawback of employing RF switches is that high-speed switching,

low insertion loss, and good isolation becomes a crucial consideration for the design.

Of particular interest is the use of RF mirrors to create the distinct channel perturbations in the form

of mirror activation patterns (MAPs), i.e. a combination of the ON/OFF status of the mirrors [8],

which results in different channel realizations. Each channel realization corresponds to a MAP of the

MBM system. These MAPs, which are regarded as the constellation, increase the spectral efficiency

of MBM, linearly compared to SM, where the number of transmit antennas are logarithmically related.

In [8, 10], a single-input multiple-output model for MBM (SIMO-MBM) using RF mirrors as

scatterers was investigated. The spectral efficiency is improved over the traditional SIMO system.

However, there is a limit to the number of mirrors that can be employed by a single antenna, since

training requires transmitting test signals, and the use of a large number of mirrors for the system

becomes resource intensive and endangered due to channel time variations [10].

In [8], MBM was further investigated for generalized SM (GSM). Although there were improvements

in terms of spectral efficiency and error performance, ICI is a major limitation as it requires more than

one RF chain as is the case for MIMO-based MBM [8].
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1. INTRODUCTION

Different MAP selection techniques for MBM have been considered in literature, for example, in [8,

10], the Euclidean distance (ED) and mutual information-based selection techniques were considered.

A major limitation of the ED-MAP optimization is that it involves many iterations over all possible

map enumerations for its search algorithm.

Although there are numerical results for the average bit-error probability (ABEP) of SIMO-MBM,

MIMO-MBM, and GSM-MBM [8], there are no evaluated numerical or theoretical results for the

ABEP of SMBM reported in literature. Furthermore, there are no simulation results that have been

reported in the literature, which demonstrate the effect of MAP selection techniques on the ABEP

performance of SMBM.

Based on the motivations mentioned, our contributions in this paper are as follows:

a. An easy to evaluate theoretical ABEP bound for the SMBM system is formulated.

b. The numerical results for the ABEP using Monte Carlo simulations considering an

independent and identically distributed (i.i.d.) Rayleigh frequency-flat fading channel are

presented to validate the theoretical ABEP bound for SMBM.

c. Two low-complexity suboptimal MAP optimization techniques are investigated, viz. the

norm-based (NORM-MAP) selection, and the correlation and norm-based (CNB-MAP)

selection techniques. The effects of the MAP optimization techniques on the ABEP and the

proposed computational complexity for SMBM system are discussed.

The remainder of the paper is organized as follows: Section 2 presents the system model of the

SMBM system for an i.i.d. frequency-flat Rayleigh fading channel. The formulated theoretical ABEP

framework for the SMBM system is presented in Section 3. Section 4 investigates low-complexity

suboptimal MAP selection techniques for a closed-loop SMBM system. Section 5 presents the

numerical results and related discussions. Finally, Section 6 draws the conclusion of this paper.

Notation: The following notations are employed throughout this paper; bold and capital letters

represent matrices, while bold small letters denote column vectors of matrices. Other notations

include (·)T , (·)H , |·|, ‖·‖F , which represents transpose, Hermitian, Euclidean norm and Frobenius

norm, respectively. Also, <(·) represents the real part of a complex variable,

argmaxw(·)/ argminw(·) represents the maximum/minimum of an argument with respect to w,

maxw(·) denotes the maximum value with respect to w and
(·
·
)

represents the binomial coefficient.
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2. SYSTEM MODEL OF SMBM

2 System model of SMBM

The model of the SMBM system, having mrf RF mirrors at each transmit antenna is depicted in

Fig. D.1, where mrf is the number of RF mirrors employed by an antenna. The feedback region

represented with dashed outline represents a closed-loop version of SMBM, and will be discussed in

Section IV.

A typical Nr ×Nt M -ary quadrature amplitude modulation (M -QAM) configuration is investigated,

where Nt and Nr denote the number of transmit antennas and receive antennas, respectively.
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Fig. D.1: System model of SMBM

The SMBM system takes advantage of the mrf RF mirrors to increase the spectral efficiency of the

traditional SM system by mrf bits/s/Hz. In Fig. D.1, an input bit stream consisting of

d = log2MN t + mrf input bits are fed into the SMBM system. These d bits are partitioned into

three sub-streams, such that; log2M bits are mapped to select a symbol xk from an M -QAM

constellation, where k ∈ [1 : M ], log2Nt bits are employed to select a transmit antenna with index l,

l ∈ [1 : Nt], and the remaining mrf bits are employed to select the m-th MAP, m ∈ [1 : Mrf ], where

Mrf = 2mrf . A tabular illustration of the output, from the SMBM bit mapper is presented in Table

D.1. The SMBM system in Table D.1 assumes a 4× 4, 4-QAM SMBM system, having mrf = 2 RF

mirrors at each antenna.
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2. SYSTEM MODEL OF SMBM

Table D.1: Illustration of bit mapping for SMBM system

xk l m

11 11 11

00 00 01

10 11 00

10 01 11

Table D.2 shows the modulated outputs xk, l and m from the RF mirror switch controller and

transmitter.

The frequency flat Rayleigh fading channel H for the SMBM system is an i.i.d. random variable

according to CN(0, 1) and is given as H = [H1 H2 · · · HNt ], whereH l = [hl,1 hl,2 · · · hl,Mrf
],

l ∈ [1 : Nt] and hl,m = [hm1,l h
m
2,l . . . h

m
Nr,l

]T , m ∈ [1 : Mrf ].

Table D.2: Output of the SMBM switch controller

Bits Symbol Antenna MAP

d xk l m

111111 +1 + i 4 4

000001 −1− i 1 2

101100 +1− i 4 1

100111 +1− i 2 4

The Nr × 1 receive signal vector y = [y1 y2 · · · yNr ]T is given as [8]:

y =
√
ρH lx

l
kem + n (D.1)

where ρ is the average signal-to-noise ratio (SNR) at the receiver, xlk is the k-th symbol of a M -QAM

constellation, k ∈ [1 : M ], which is to be transmitted by the l-th activated antenna, l ∈ [1 : Nt]. H l is

the channel matrix for the l-th transmit antenna, em is an Mrf × 1 vector having the m-th element as

the only single unit entry, m ∈ [1 : Mrf ]. The vector n is an Nr × 1 AWGN vector, whose entries are

an i.i.d. random variable with distribution CN(0, 1).

The received signal vector y in (D.1) can be also written as:
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3. THEORETICAL ABEP OF SMBM

y =
√
ρH ls

l
k,m + n (D.2)

where slk,m = xlkem, such that the m-th entry of slk,m is xlk.

The SMBM system under study employs the maximum-likelihood (ML) rule for detection and is

defined as [8]:

[k̂, l̂, m̂] = argmin
k∈[1:M ],l∈[1:Nt],m∈[1:Mrf ]

(∥∥∥y −√ρH ls
l
k,m

∥∥∥2

F

)
(D.3)

where k̂, l̂ and m̂ are estimates of the transmitted symbol, transmit antenna and MAP employed,

respectively.

The detector in (D.3) can be further simplified as [4]:

[k̂, l̂, m̂] = argmin
k∈[1:M ],l∈[1:Nt],m∈[1:Mrf ]

(
‖g‖2F − 2<

(
yHg

))
(D.4)

where g =
√
ρH

l
slk,m.

3 Theoretical ABEP of SMBM

In this section, the theoretical framework for calculating the ABEP of SMBM is presented. Referring

to (D.2), the SMBM system can be viewed as an NtMrf × Nr SM system. Hence, the theoretical

result of SM [11] may be extended to SMBM. Assume that Pa denotes the bit error probability for the

antenna index given that the symbol is correctly estimated, and Pd represents the bit error probability

of the symbol given that the transmit antenna index is correctly estimated. It therefore means that the

total probability of detecting the transmitted bits incorrectly (Pe) is bounded by [11]:

Pe ≥ Pa + Pd − PaPd (D.5)

Hence, from [11] and [12], Pd can be expressed as:
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Pd ∼=
1

n

{
a

c

[
1

2

(
2

bρ+ 2

)Nr
− a

2

(
1

bρ+ 1

)Nr
+ (1− a)

c−1∑
i=1

(
ηi

bρ+ ηi

)Nr
+

2c−1∑
i=c

(
ηi

bρ+ ηi

)Nr]}
(D.6)

where a = 1
1−
√
M

, b = 3
M−1 , n = log2M , ηi = 2 sin2 θi, θi = iπ

4c , Nr is the number of receive

antennas and c is the number of summations required for convergence of the trapezoidal approximation

of the Q-function. Also, adopting the expression in [11] for Pa, Pa can be modified as:

Pa ≤
NtMrf∑
l=1

NtMrf∑
l̂=1

M∑
k=1

N
(
l, l̂
)
µNrα

∑Nr−1
w=0

(
Nr−1+w

w

)
[1− µα]w

NtMrfM log2 (NtMrf )
(D.7)

where N(l, l̂) is the number of bit errors between the transmit antenna with index l, and the estimated

transmit antenna with index l̂, µα = 1
2

(
1−

√
σ2
α

1+σ2
α

)
and σ2

α = ρ
2 |xk|

2.

4 Low-complexity suboptimal MAP selection for closed-loop SMBM

An alternative design to improve the error performance of the SMBM system is a closed-loop SMBM

system presented in Fig. D.1 (inclusive of the feedback represented with a dashed outline). Assume

that the system has nrf mirrors of which mrf mirrors are employed for the transmission. The system

is designed such that, based on perfect channel knowledge, the receiver employs a MAP optimization

algorithm. The algorithm optimizes Nrf = 2nrf MAPs, such that Mrf = 2mrf MAPs are selected,

where nrf > mrf . A requirement for this system is a perfect feedback communication link, so

that the selected Mrf MAPs for the next transmission are relayed to the transmitter without errors.

The MAP criteria for RF mirrors is like that of the antenna selection [3, 13, 14] criteria for MIMO

systems. Considerable work has been performed on antenna selection, in the context of SM MIMO.

Such as [13, 14], where maximization of the minimum ED was proposed, however, the computational

complexity is extremely high. Low-complexity suboptimal antenna selection was considered in [3],

where minimization of antenna correlation was investigated. Some of these antenna selection schemes

can be employed as a criterion for optimizing MAPs in SMBM systems.

95



i
i

“output” — 2018/11/30 — 6:10 — page 96 — #114 i
i

i
i

i
i

4. LOW-COMPLEXITY SUBOPTIMAL MAP SELECTION FOR CLOSED-LOOP SMBM

4.1 NORM-MAP selection for SMBM

The NORM-MAP selection [3] is employed by sorting in descending order the Nrf channel vector

norms in (D.8) for each transmit antenna:

‖hl,1‖2F , ‖hl,2‖
2
F , · · ·

∥∥hl,Mrf

∥∥2

F
, · · ·

∥∥hl,Nrf∥∥2

F
(D.8)

where l ∈ [1 : Nt], Nrf = 2nrf and nrf is the number of RF mirrors for the l-th antenna. The Mrf

MAPs selected corresponds to the channel vectors in (D.8) having the largest amplitudes and is given

as:

‖hz,1‖2F ≥ ‖hz,2‖2F ≥ · · · ≥
∥∥hz,Mrf

∥∥2

F
(D.9)

where z ∈ [1 : Nt], Mrf = 2mrf and mrf is the number of optimized mirrors for the l-th antenna.

The computational complexity of the NORM-MAP selection scheme in terms of floating point

operations is as follows: computing the Frobenius norms in (D.8) requires Nr multiplications and

Nr − 1 additions. Since the computation is performed for Nrf MAPs and Nt antennas, the total

computational complexity imposed by this method is only δNORM−MAP = NrfNt (2Nr − 1).

4.2 CNB-MAP selection for SMBM

Consider the channel matrix HNrf
l = [hl,1 hl,2 · · · hl,Nrf ] having INrf = (Nrf

Mrf
) sets having Mrf

combinations. The correlation MAP optimization criterion [3] for MAP selection employs the

correlation of all (Mrf

2 ) combinations of the channel matrixHMrf

l = [hl,1 hl,2 · · · hl,Mrf
], which is

a subset of HNrf
l for all INrf sets. The channels for the selected MAP set H l is selected according

to [3]:

H l = argmin
INrf

(
max
p,q, p 6=q

( ∣∣hl,pHhl,q∣∣
‖hl,p‖F ‖hl,q‖F

) )
(D.10)

where (hl,p, hl,q) is a member in the set of the
(
Mrf

2

)
combinations of the channel matrix HMrf

l ,

p, q ∈ [1 : Mrf ], l ∈ [1 : Nt]. However, this method becomes impracticable for real-world application.

Some of the reasons are: a) high computational complexity in calculating the channel Frobenius norms

of (D.10), for a large number of iterations; e.g. when Mrf = 16 and Nrf = 32, a minimum of 7.21×

1010 iterations are employed; b) redundancy in the computation of repeated channel combinations, e.g.
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4. LOW-COMPLEXITY SUBOPTIMAL MAP SELECTION FOR CLOSED-LOOP SMBM

redundancy in the computation of (D.10), and c) memory requirement needed in storing the outputs

of (D.10). To reduce the computational complexity, based on [3] a hybrid MAP selection may be

considered. Hence, the NORM-MAP optimization in (D.9) is firstly employed, such that Mrf + 1

MAPs are chosen. Then the correlation metric in (D.10) is employed to obtain the Mrf suboptimal

MAPs from the Mrf + 1 MAPs. To eliminate multiple redundant computations, the optimized Mrf

MAPs IMrf
are chosen according to:

IMrf
= argmin

I∈IMrf+1

(
max
p,q p 6=q

Iϕ (I)

)
(D.11)

where IMrf+1 is the enumeration size
(
Mrf+1
Mrf

)
, Iϕ(I) is an Mrf ×Mrf matrix obtained by deleting

the rows and columns absent in the I-th enumeration of Iϕ, I ∈ [1 : IMrf+1]. Iϕ is an (Mrf + 1) ×

(Mrf + 1) upper-triangular matrix with (Mrf+1
2 ) non-zero entries represented as:

Iϕ =



0 j1,2 · · · j1,Mrf+1

0 0 · · · j2,Mrf+1

...
...

. . .
...

0 0 · · · jMrf ,Mrf+1

0 0 · · · 0


(D.12)

Each non-zero element jp,q in (D.12) corresponds to the correlation outputs of the (hz,p, hz,q)

combinations of the Mrf + 1 MAP channels selected using the NORM-MAP in (D.9), where

p, q ∈ [1 : Mrf ] and p > q.

The non-zero elements jp,q in Iϕ are defined according to:

jp,q =

∣∣∣(hz,p)H hz,q∣∣∣
‖hz,p‖F ‖hz,q‖F

(D.13)

The algorithm for the CNB-MAP selection is summarized as follows:
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4. LOW-COMPLEXITY SUBOPTIMAL MAP SELECTION FOR CLOSED-LOOP SMBM

Algorithm 1 : CNB-MAP selection
1. Arrange the norm of the channel vectors in descending order as in (D.9).

2. Select Mrf + 1 suboptimal MAPs from Nrf MAPs according to (D.9).

3. Obtain Mrf + 1 MAP sets having Mrf MAPs given by
(
Mrf+1
Mrf

)
.

4. For I = 1 to IMrf+1

i. Select the MAP set for I-th enumeration.

ii. Find all
(
Mrf

2

)
combinations inHMrf

z for the I-th enumeration.

iii. Compute all elements of Iϕ according to (D.13).

iv. Obtain the maximum and store in IMrf+1(I).

End

5. The suboptimal MAP set is the MAP set that gives the minimum value in IMrf+1(I).

The computational complexity imposed by the CNB-MAP selection algorithm in terms of floating

point operations is computed as follows: since Step 1 uses the NORM-MAP algorithm in (D.9),

the computational complexity imposed by Step 1 is δstep 1 = NrfNt(2Nr − 1). The computational

complexity imposed by calculating a single entry jp,q of Iϕ as expressed in (D.13) is 2Nr + 2. This

is computed for
(Mrf

2

)
entries of Iϕ. Since Step 4 undergoes Mrf + 1 iterations across Nt antennas,

the computational complexity imposed by Step 4 is δstep 4 =
(Mrf

2

)
Nt(Mrf + 1)(2Nr + 2). Hence,

the overall computational complexity of the CNB-MAP can be represented as δCNB-MAP = δstep 1 +

δstep 4 = NrfNt (2Nr − 1) +
(Mrf

2

)
Nt (Mrf + 1) (2Nr + 2).

A summary of the computational complexities of the different MAP optimization techniques in terms

of complex operations is given in Table D.3.

Table D.3: Computational complexities of NORM-MAP and CNB-MAP

CONFIGURATION NORM-MAP CNB-MAP

Nt = 4, Nr = 4, Mrf = 16, Nrf = 32 896 82,496

Nt = 4, Nr = 4, Mrf = 16, Nrf = 64 1,792 83,392

Nt = 4, Nr = 4, Mrf = 16, Nrf = 128 3,584 85,184

From Table D.3, it can be deduced that the NORM-MAP has a very reduced computational complexity

when compared with the CNB-MAP. There is a 100% increment in the computational complexity

when the MAPs to be optimized are increased by the addition of an RF mirror for the NORM-MAP and

1.09% for CNB-MAP, however, the NORM-MAP still maintains a lower computational complexity

when compared to the CNB-MAP optimization. For example, given nrf = 5 and Mrf = 16, it
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5. NUMERICAL RESULTS AND DISCUSSION

means that 16 MAPs are chosen of the 32 MAPs available. The computational complexity involved

in optimizing these MAPs are 896 and 82,496, for NORM-MAP and CNB-MAP, respectively. If nrf

is increased to 6, while Mrf = 16, the computational complexity of NORM-MAP is doubled while a

1.09% increase is achieved for CNB-MAP. However, the computational complexity for NORM-MAP

is far less than the computational complexity needed by CNB-MAP optimization algorithm as can be

seen from Table D.3.

5 Numerical results and discussion

This section validates the theoretical frameworks presented in Section 3 using the Monte Carlo

simulations. All simulations in this section, are performed over an i.i.d. frequency-flat Rayleigh

fading channel in the presence of AWGN. The average SNR is plotted against the average bit-error

rate (BER).

Fig. D.2 employs the notation (Nt, Nr, mrf , M , d) for SMBM, while the notation for SM is

represented as (Nt, Nr, M , d). Fig. D.2a) compares the theoretical ABEP of SMBM with the ABEP

of the simulated SMBM system for several spectral efficiencies, viz. 9, 10 and 11 bits/s/Hz. As

expected, there is a close match between the simulated and theoretical ABEP at high SNR (SNR ≥

14 dB) because of the bound being employed.

In Fig. D.2b), the ABEP of SMBM is compared with the ABEP of SM employing different

configurations but at the same spectral efficiency, viz. 9 and 13 bits/s/Hz. The results show that for

SM to have the same error performance as the SMBM system, the number of transmit antennas for

SM should be NtMrf . For example, the BER of SM is the same as SMBM with Nt = 2 and

Mrf = 2 when SM employs Nt = 8 transmit antennas.

Considering Fig. D.3, the notation (Mrf , Nrf , d, M ) is employed for NORM-MAP and CNB-MAP.

The BER for NORM-MAP optimization and the CNB-MAP optimization from Nrf = 32 and 64

MAPs to Mrf = 16 MAPs are compared. In Fig. D.3a), the 8 bits/s/Hz is considered employing

4-QAM modulation. It is noteworthy that both MAP optimization schemes match closely at lower

SNR, specifically when the SNR is ≤ 12 dB for both Nrf = 32 and 64 MAPs. However, at SNR

> 12dB the error performance of the CNB-MAP displays an improved error performance over the

NORM-MAP. Also, the error performance is improved as the number of Nrf MAPs being optimized

increases. For example, a 4 dB gain is observed when the MAPs are optimized from 64 MAPs to 16

MAPs and approximately 3 dB when the MAPs are optimized from 32 MAPs to 16 MAPs at a BER

of 10−5.
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Fig. D.2: Comparison between: a) theoretical and simulated BER performances of SMBM for d = 9, 10 and 11 bits/s/Hz.

b) BER of SMBM and SM for d = 9 and 13. bits/s/Hz.

In Fig. D.3b), the 10 bits/s/Hz employing 16-QAM modulation is considered. The optimization

schemes show a tight match in error performances when the SNR is ≤ 20 dB for both Nrf = 32 and

64 MAPs, above this SNR, a marginal improvement of the CNB-MAP over the NORM-MAP is seen.

The CNB-MAP and NORM-MAP show an enhanced error performance of approximately 3 dB and 2

dB, for 64 and 32 MAPs, respectively, over the open-loop SMBM system at a BER of 10−5.
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Fig. D.3: Comparison of error performances for traditional SMBM system with SMBM employing the NORM-MAP and

CNB-MAP optimization technique, for a) 4 × 4, 4-QAM, Mrf = 16, Nrf = 32 and 64. b) 4 × 4, 16-QAM, Mrf = 16,

Nrf = 32 and 64.

6 Conclusion

In this paper, the SMBM system for an i.i.d. Rayleigh frequency-flat fading channel has been

investigated. The formulated theoretical ABEP of SMBM closely matches the Monte Carlo

simulation for the SMBM system in an i.i.d. frequency-flat Rayleigh fading channel, hence,
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validating the proposed theoretical ABEP framework. Low-complexity suboptimal MAP selection is

investigated; numerical results showed that MAP selection techniques improves the BER of SMBM.

The study also confirms that the NORM-MAP selection scheme and the CNB-MAP selection

algorithm show close performance at lower SNR, while the CNB-MAP selection method

outperforms the NORM-MAP selection scheme at higher SNR. However, this comes as a trade-off in

terms of the computational complexity, as the computational complexity of NORM-MAP is 98.9%

less than the computational complexity of CNB-MAP.
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Conclusion

1 Conclusion

This thesis has focused mainly on exploiting the advantages of index modulation in the form of

media-based modulation or antenna indexing based modulation. The wireless systems considered

have demonstrated significant improvement in terms of error performance and spectral efficiency

over the respective traditional schemes. For example, QSM-OFDM demonstrated significant

improvement over SM-OFDM, MIMO-OFDM and MRC-OFDM by 4 dB, 6 dB and 5 dB gain in

SNR, respectively, as depicted in Paper A. Furthermore, MBSTBC-CSM and MBSTBC-SM yielded

a major improvement, which is greater than 5 dB in SNR over the traditional STBC-CSM and

STBC-SM, respectively.

Also, low-complexity detection schemes, which employ the method of orthogonal projection of

signal is employed to reduce the computational complexity of STBC-CSM, MBSTBC-CSM and

MBSTBC-SM have been presented. The low-complexity scheme is able to achieve near-ML error

performance with a 41% reduction in computational complexity for MBSTBC-CSM and

MBSTBC-SM. This reduction in computational complexity occurs at a trade-off with respect to the

resolution of the detector.

MAP optimization techniques to further improve the BER of SMBM have been presented in this

thesis, as expected, an improved error performance was demonstrated for the SMBM system. Hence,

it can be concluded that, index modulation is the way forward for next generation wireless systems.

2 Possible Future Work

The objective of future research of index modulated systems will involve the following:

1. Channel estimation: Although this thesis demonstrates that index modulation of different forms

can improve the spectral efficiency/error performance of next generation systems, a perfect
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channel knowledge at the receiver has been assumed. In real life scenarios, this is not the often

case. Hence, it is necessary to investigate the effect of different channel estimation techniques

and channel estimation errors on index modulation systems.

2. Link reliability: The application of precoders/channel coding techniques can further improve the

error performance of index modulated systems. An in-depth investigation to further improve the

BER of index modulated systems will be beneficial.

3. Computational complexity: The schemes which have been presented in this thesis, have

improved the spectral efficiency/error performance of traditional MIMO schemes. However, it

may become impracticable to implement, if the computational complexity is very large. Hence,

it is important to investigate more techniques which reduce the computational complexities of

the different index modulation systems, and are implementable in real-life.

4. MAP optimization techniques: Investigation of optimal/suboptimal MAP optimization

techniques, which improve error performance of media-based systems are necessary for the

enhancement of next generation media-based index modulation systems.
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