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ABSTRACT 

Felty and Keefer published the first report on gram negative bacteremia in 1924 and since then 

the incidence appeared to be on the increase . The mortality rate associated with gram 

negative bacteremia in the pre-antibiotic era was high . However, notwithstanding the 

introduction of effective antibiotics, the refinement of antibiotic dosage adjustments by means 

of pharmacokinetic techniques and the in vitro sensitivity testing of causative organisms, the 

mortality rates associated with gram negative bacteremia have not been drastically reduced . 

The objectives of this study were: 

• To review the epidemiology of gram negative bacteremia in a hospital. 

• To determine population pharmacokinetic parameters of antibiotics used in the treatment 

of gram negative bacteremia . 

• To identify clinical , pharmacokinetic and microbial parameters which may innuence the 

outcome of gram negative bacteremia. 

Epidemiology was reviewed retrospectively by studying patient records . The NONMEM 

(Nonlinear mixed effects model) programme was used to determine population 

pharmacokinetic parameters . Antibiotic plasma levels were determined either by HPLC (High 

pressure liquid chromatography) or the EMIT (Enzyme immunoassay method) assay. 

Standard microbiology laboratory techniques were employed to investigate bacterial 

characteristics in vitro . The parameters describing bacterial · eradication were derived from 

killing curves of bacteria versus antibiotic concentrations of drugs. Multiple linear regressions 

were performed to establish the association between pharmacokinetic- and microbial para­

meters and the outcome of the disease. 

The small number of patients in this study do not allow for specific concll)sions. Certain trends 

were however noted. The incidences of gram negative bacteremia in the adult and neonatal 

populations investigated were respectively 5.8 and 66 per 1000 admissions. Mortality rates 

were 32% in the adult population and 66% in the neonatal population. E.coli and P.aeruginosa 

were the most common causative organisms in respectively the adult and neonatal 

population. Unexplained variation between subjects in clearance and volume of distribution 

was significantly reduced if these parameters were adjusted for weight. Multiple regression 

analysis revealed an optimum fit with the four variables , namely serum bactericidal activity 

(SBA) ,concentration at 50% effect (ECso), bacterial rate (BR) and post-antibiotic effect (PAE) ( 

r2 = 0,90) allowing for the derivation of the following equation : 

Days to eradication = 2.91 - 0.51 BR - 0.81 PAE(1hr) + 4.30 ECso - 0.06 SBA 
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INTRODUCTION 

Gram negative bacteremia and septic shock occur primarily in hospitalized patients who 

usually have underlying diseases which render them susceptible to blood stream invasion ( 

Dale and Petersdorf, 1987). The neonate in his immaturity is also highly susceptible to 

invasion by gram negative bacteria and at this age the incidence of gram negative bacteremia 

is higher than at any other period of life (Krugman et al., 1977). The organisms most commonly 

associated with gram negative bacteremia are the enteric bacilli : Escherichia coli , and spe­

cies of klebsiella , enterobacter, proteus and pseudomonas (Dale and Petersdorf, 1987). The 

incidence of gram negative bacteremia has been reported as high as 12 cases per 1000 

admissions in some large urban hospitals. 

The mortality rate associated with gram negative bacteremia is high. In one of the earliest 

articles on the subject of gram negative bacteremia published in the pre-antibiotic era, a 

mortality rate of 32 % was recorded (Felty and Keefer, 1924). More recently in the post 

-antibiotic era, mortality rates of 35 % and 20 % have been reported respectively in neonates 

and adults (Krugman et a/., 1977; Bryan et al., 1983). It would therefore appear that 

notwithstanding the introduction of antibiotics into the therapeutic armamentarium of gram 

negative bacteremia , mortality rates have not altered dramatically. Inappropriate use of 

antibiotics may account for this phenomenon (Haddy et al., 1987). Institution of appropriate 

antimicrobial therapy depends on three factors: 

(1) The accurate and prompt identification of the causative organism. 

(2) The introduction of methods for antimicrobial sensitivity testing which reflect in vivo 

susceptibility. 

(3) The monitoring of antibiotic plasma concentrations with appropriate individualization of 

dosage adjustments when required . 

To allow for all three these factors Schentag et al., (1984) proposed a holistic approach to the 

treatment of infections. This approach designated dual individualization , involves the 

incorporation of in vivo drug pharmacokinetics and in vitro organism pharmacodynamic data 

into the formula for dosage adjustments. 

All the aspects of gram negative bacteremia discussed above are encountered at 

Baragwanath Hospital, a large urban teaching hospital. The hospital contains 3000 beds, but 

the number of patients hospitalized frequently exceeds the number of beds. Daily admissions 

to Baragwanath Hospital are in the order of 500 patients per day. 
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SECTION A 

THE EPIDEMIOLOGY OF GRAM NEGATIVE 

BACTEREMIA IN A COMBINED COMMUNITY AND 

TERTIARY HOSPITAL 

1. INTRODUCTION 

To enable a hospital to set some criteria for the treatment of a specific disease, 

epidemiological knowledge regarding the disease is necessary. At Baragwanath Hospital 

epidemiological information on gram negative bacteremia is lacking. A retrospective 

epidemiological study was therefore performed to determine the nature and extent of 

gram negative bacteremias in adults and neonates at Baragwanath Hospital. A 

secondary objective was to identify factors which could possibly determine the outcome 

of gram negative bacteremia in these patients. 

2. LITERATURE REVIEW 

2.1 DEFINITION 

Gram-negative bacteremia may be defined as the invasion of the blood stream by 

gram-negative bacteria. Clinically it manifests as chills, fever, vomiting, diarrhea and 

prostration. Twenty to forty percent of patients with gram negative bacteremia develop 

septic shock. Septic shock is defined as a condition characterized by inadequate 

perfusion following bacteremia with gram negative enteric bacilli. Hypotension, oliguria, 

tachycardia, tachypnea and fever are observed in most of these patients. The symptoms 

and signs of septic shock are caused by the release of endotoxin, a specific component 

of the cell wall of gram negative bacteria. At present, gram negative bacteremia, 

particularly when associated with the development of septic shock is a major cause of 

morbidity and mortality in hospitals (Dale and Petersdorf, 1987). 

2.2 ETIOLOGY 

The most frequent causative organisms of gram negative bacteremia and septic shock 

are Escherichia coli (E. coli) and species ofklebsiella-enterobacter, proteus, pseudomonas 
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and serratia . (Dale and Petersdorf, 1987). These organisms belong to two families of 

gram negative bacteria namely enterobacteriaccae and pseudomonaceae (Freeman, 1979; 

Boyd and Marr, 1980). 

Enterobacteriaceae are recognized by their peritrichous flagella. With certain exception 

these organisms generally form part of the natural flora of the intestinal tract, and are 

therefore also called enteric bacteria. These organisms are not normally harmful to man 

and become pathogenic only if they invade tissues outside the intestinal tract. 

Pathogenicity is more profound in patients where the host defence mechanisms are 

impaired, for example in newborns, old age and patients on immunosuppressive drugs. 

(Freeman,1979). 

Controversy exists regarding a formal classification of the Enterobacteriaceae. Two 

generally accepted classification schemes are presented in table A.I. The main difference 

between these two (one by Edwards and Ewing, 1972, and the other from the Bergey's 

Manual of Determinative Bacteriology, 1974) is that the former recognizes arizona as a 

genus while the Bergey's Manual refers to this genus as Salmonella arizonae (Edwards 

and Ewing, 1972; Buchanan and Gibbons, 1974). The latest update of these 

classifications was adapted in 1977 by the Enteric Section of the Center for Disease 

Control and is presented in table A.2 (Freeman, 1979). The most important 

modification was the alteration of the official designation Klebsiella pneumoniae to 

Klebsiella oxytoca (Freeman, 1979; Boyd and Marr, 1980). 

A commonly used subclassification was implemented by Escherich in 1886 when he 

grouped together all the lactose fermenting organisms under the designation, coliforms 

(Boyd and Marr, 1980). At present the coliforms also include other gram negative 

organisms which do not necessarily ferment lactose but are related on other biochemical 

grounds. The remainder of this discussion will focus on the coliforms especially the 

enteric gram negative bacilli and pseudomonas. 
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TABLE A.I 

Classification of the Enterobacteriaceae 

Edwards and Ewing Berge,-. Manual (8th ed.) 

FAMILY. Enterobacteriaceae FAMILY. Enterobacteriaceae 

TRIBE 1. ESCHERICHIEAE 

GENUS 1. Escherichia GENUS 1. Escherichia 

SPECIES. E.coli SPECIES. E.coll 

GENUS 2. Sh igella GENUS 2. Edwardslella 

SPECIES. S. dysenteriae SPECIES. E. tarda 

S. flexneri GENUS 3. Cltrobacter 

S. boydii SPECIES. C. freundl 

S. sonnei C. Intermedius 

TRIBE 2. EDWARDSIELLEAE GENUS 4. Salmonella 

GENUS 1. Edwardsiella SPECIES S. choleraesius 

SPECIES E. larda S. typhl 

TRIBE 3. SALMONELLEAE S. enteritidis 

GENUS 1. Salmonelia GENUS 5. Shigella 

SPECIES S. choleraesius S. dysenteriae 

S. typhi S. nexneri 

S. enteritidis S. boydii 

GENUS 2. Arizona GENUS 6. Klebsiella 

SPECIES A. hinshawii SPECIES K. pneumoniae 

GENUS 3. Citrobacter K. ozaenae 

SPECIES C. freundil K. rhlnoscleromatls 

C. diversus GENUS 7. Enterobacter 

TRIBE 4. KLEBSIELLAE SPECIES E. cloacae 

GENUS 1. Klebsiella E. aerogenes 

SPECIES K. pneumoniae GENUS 8. Hafnla 

K. ozaenae SPECIES H. alvei 

K. rhinoscleromatis GENUS 9. Serratia 

GENUS 2. Enterobacter SPECIES S. marcescens 

SPECIES E. cloacae GENUS 10. Proteus 

E. aerogenes SPECIES P. vulgaris 

E. hatnia P. mirabitls 

E. agglomerans P. morganl 

GENUS 3. Serratia P. reltgeri 

SPECIES S. marcescens P. Inconstans 

S. liguetaciens GENUS 11. Yersinia 

S. rubidaea SPECIES Y. enterocolitlca 

TRIBE 5. PROTEEAE Y. pestis 

GENUS 1. Proteus GENUS 12. Erwinia (plant pathogens) 

SPECIES P. vulgaris SPECIES E. herblcola 

P. mirabilis 

P. morgani 

P. reltgeri 

P. providencia 

P. stuarti i 

P. alcatitaciens 

TRIBE 6. Yersineae 

GENUS 1 Yersinia 

SPECIES Y. enlerocolitlca 

Y. pseudotuberculos is 

Y. pestiS 

TRIBE 7. ERWINIEAE (plant pathogens) 

GENUS 1. Erwinia 

GENUS 2. Pectobacterium 

(Taxonomy and spelling according to Freeman, 1979) 
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TABLE A.2 

Changes in taxonomy and nomenclature adopted by the enteric section of the center control 

as of October, 1977 

New Designation Previous Designation 
Klebsiella oxytoca Klebsiella pneumoniae, indole positive, 

or indole and gelatin positive 
Enterobacter sakazakii Enterobacter cloacae, yellow pigment 
Enterobacter gergoviae 
I -Iafnia alvei Enterobacter hafnia 
Citrobacter amalonaticus Citrobacter freundii, malonate negative, 

H2S negative, KCN and adonitol 
positive. 

Providencia stuartii, urea positive Proteus rettgeri, biogroup 5 
Providencia stuartii, biogroup 4 Providencia alcalifaciens, biogroup 4 
Providencia rettgeri Providencia rettgeri, biogroup 1 - 4 
M organella morganii Proteus morgani 
Yersinia enterocolitica (typical) Y. enterocolitica 
Y. enterocolitica, sucrose negative Y. enterocolitica 
Y. enterocolitica, rhamnose positive Y. enterocolitica 
Y. enterocolitica, rhamnose and raffinose Y. enterocolitica 
positive 
Yersinia ruckeri Red mouth bacterium 

(Freeman, 1979) 

2.3 Factors determining the invasion by gram negative bacteria 

rollowing exposure to gram negative organisms the development of bacteremia and 

septic shock will depend on the virulence of the invading organism and the host's defence 

mechanisms. 

2.3.1 Virulence of organisms 

The virulence of an organism is determined by the antigenic structure of the specific 

organism and the ability to invade and cause tissue damage: 

• Antigenic structure 

Antigens are present on the cell surface of most enterobacteriaceae and 

pseudomonaceae and are important for pathogenic and classification purposes. The 

antigens are classified as 0 (somatic), K (capsular), H (flagellar) antigens and pili 

or fimbriae. The gram negative organisms which possess either an 0 or K antigen 
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are more resistant to the bacteriolytic effect of human serum and are therefore more 

virulent. The K I antigen strain of E. coli for example, is responsible for 70 % of 

neonatal meningitis. The K 1 and K2 antigen strains of K. pneumoniae on the other 

hand are responsible for most respiratory tract infections (Boyd and Marr, 1980). 

• Bacterial invasion of host 

Firstly adherence occurs as a result of an interaction between "adhesins" on the 

fimbriae or other parts of the microorganisms and specific receptors on the host cell 

membranes. Bacterial proliferation follows adherence and may be inhibited by IgA 

or polymorphonuclear leucocytes. 

• Tissue damage 

Tissue damage is achieved either by direct destruction or by the release of toxins. 

Two types of toxins namely endotoxins and exotoxins are produced by bacteria. 

The differences between these are summarized in table A.3 (Jawetz et al. , 1982). 

I Endotoxins 

Endotoxin is a lipopolysaccharide substance that forms an integral part of the outer 

membrane of the bacterial cell wall and is released when the cell dies. This 

lipopolysaccharide is composed of lipid A, an attached core oligosaccharide and an 

o polysaccharide side chain. Lipid A is composed of a glucosamine disaccharide 

backbone apparently common to all Enterobacteriaceae. Lipid A is responsible for 

most of the biological effects of endotoxin and is very important in the 

pathophysiology of gram-negative bacteremia. The core oligosaccharide attached to 

lipid A is composed of inner and outer regions. The inner region appears to be 

similar in all Enterobacteriaceae but the outer region which is .composed of hexose 

residues, can vary between different species. 

II Exotoxins 

In addition to endotoxins most of the enteric bacteria also produce exotoxins 

(sometimes referred to as enterotoxins) which are of considerable medical 

importance. These exotoxins can either be heat labile (L T), stable (ST) or both. The 

L T toxin is well characterized and has two subunits, A and B, with different actions. 

Subunit B facilitates the entry of subunit A where it then attaches to the gangliosides 

of some cells. The complex formed between subunit A and the cell membrane is 

referred to as the NAD/ toxin complex. This complex activates adenylate cyclase and 
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leads to · the conversIOn of adenosine triphosphate (A TP) to cyclic adenosine 

monophosphate (cA M P). 

TABLE A.3 

Differences between exotoxins and endotoxins 

Exotoxins Endotoxins 
Excreted by livi!1g ce.lIs, fou.nd in high Integral part of microbial cell walls of 
concentratIons In flUId medIum gram negative organisms liberated upon 

their disintegration 
Poly&e8tides, molecular weight 10 000 to 
900 0 

Lipopolysaccharide complexes. Lipid A 
portion probably responsible for toxicity 

Relative unstable; toxicity often Relative stable; withstand heat over 
destroyed rapidly by heat over 60°C 60°C for hours without loss of toxicity 
Hithly antigenic; stimulate the formation Do not stimulate formation of antitoxin; 
of igh titer antitoxin. Antitoxin stimulate formation of antibodies to 
neutralizes toxin polysaccharide moiety 
Converted into antigenic, nontoxin Not converted into toxoids 
toxoids by formalin, acid, heat, etc. 
Highly toxic, fatal for laboratory animals Weaklfs toxic, fatal for laboratory 
in micrograms or less anima s in hundreds of micrograms 
Do not produce fever Produce fever in host 

(Jawetz et al. , 1982) 

2.3.2 Host defence mechanisms 

I-lost defence mechanisms consist of physical and chemical barriers, inflammatory 

responses, the complement system and immune responses: 

• Physical and chemical barriers 

When skin or mucous membranes are disrupted, invasion of the circulation by 

bacteria can occur. The normal flora may be altered by chronic diseases, 

alcoholism, diabetes mellitus or antibiotics and this may predispose to invasion by 

other microorganisms (Jawetz et al.,). 

• Inflammatory response 

Any injury to tissue, such as that following the establishment and mUltiplication of 

microorganisms calls forth an inflammatory response. During this process 

polymorphonuclear leucocytes migrate to the area and chemical mediators of the 

inflammatory response including prostaglandins are released. The most common 

defect relating to the inflammatory response is neutropenia, which is characterized 
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by 3000 or fewer leucocytes per cubic milliliter. The lower the count becomes, the 

more susceptible is the host to infections. Bone marrow failure, peripheral 

destruction of cells, antineoplastic chemotherapy and neoplastic invasion of bone 

marrow are the main causes of leucopenia (J awetz et al., 1982). 

• Complement system 

The complement system refers to a complex system of proteins and other factors 

found in normal serum of vertebrates. Activation of the complement sequence of 

reactions may occur by the classic pathway set off by antigen antibody reactions or 

by the alternative pathway which is activated by other substances including 

endotoxin. The sequence of reactions following activation of the complement 

system can lead to the production of biologically active factors (i.e. chemotactic 

factors) or cell damage (Jawetz et al., 1982). 

• Immune response 

Immune responses following contact with microorganisms produce a state of 

resistance to the host. Immune responses may be of the T-Iymphocyte, B-cell or 

mixed T and B cell. Deficiency of these responses can cause a diminished defence 

of the host (J awetz et aI., 1982). 

2.4 THE PATHOGENESIS OF SEPTIC SHOCK 

The mortality rate in patients with gram negative bacteremia is obviously higher if they 

develop septic shock. The manifestations of septic shock are largely a result of 

endotoxin release. The lipid A component of endotoxin reacts with cell membranes to 

liberate mediators of the inflammatory response including prostaglandins, leukotrienes 

and thromboxanes. These inflammatory mediators have a marked influence on 

vasomotor tone, microvascular permeability and the aggregation of leucocytes and 

platelets. Although the opposing actions and interactions of these substances are com­

plex, their net effect in initiating the shock state appears to be very significant (Dale and 

Petersdorf, 1987). The lipid A component also activates the alternative complement 

pathway and the intrinsic coagulation system which further contributes to the 

manifestations of endotoxic shock which include the following: 

• Fever 

Endotoxins, certain steroids and antigen-antibody complexes act on cells such as 

granulocytes and monocytes, releasing an endogenous pyrogen which activates the 

hypothalamic thermoregulatory center to produce fever. 
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• Activation of mediators of the inflammatory response 

Cell membrane phospholipases are activated by endotoxin and other bacterial 

products leading to the liberation of arachidonic acid and the synthesis and release 

ofleukotrienes, prostaglandins and thromboxanes. In cells containing phospholipase 

A2 (e.g. neutrophils, monocytes and platelets) the platelet activating factor (PAl') 

is also generated. These mediators of inflammation have marked influences on 

vasomotor tone, microvascular permeability and the aggregation of leukocytes and 

platelet~ . Thromboxane A2 and prostaglandin F2u produce marked pulmonary 

vasoconstriction, leukotrienes 03 and 04 induce microvascular leakage and 

leukotrienes B4 and P AF promote neutrophil aggregation and activation. 

• Activation of the complement cascade 

Microorganisms activate the classic complement pathway and endotoxins the 

alternative pathway. Complement activation, leukotriene generation and the direct 

effect of endotoxin on neutrophils lead to the accumulation of inflammatory cells in 

the lungs. The release of enzymes and the production of toxic oxygen radicals by 

these cells damage the pulmonary endothelium and initiate the acute respiratory 

distress syndrome (ARDS). The activation of the coagulation system leads to 

thrombin generation and platelet aggregation which occur in the microcirculation 

of many tissues. 

• Hypotension 

Endotoxin stimulates the release of catecholamines and glucocorticosteroids from 

the adrenal glands, histamine from mast cells and serotonin from platelets. All 

these released substances in association with the effects of opioid peptide secretion 

in the central nervous system (CNS) and bradykinin generation from kininogen 

contribute to the hypotension which occurs with septic shock. 

• Leucopenia 

Endotoxins cause early leucopenia which coincides with the temperature fIse 

induced by the pyrogens . . 

• Disseminated Intravascular Coagulation (DIC) 

Activation of the coagulation system results ill disseminated intravascular 

coagulation. The initial step is the activation of factor xii (Hageman factor) by 

endotoxin and this is followed by a cascade of reactions ultimately resulting in the 

deposition of fibrin - platelet aggregates in capillaries. 
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• Impaired organ perfusion and acidosis 

As a result of vascular reactions, hypotension and shock, the perfusion of vital 

organs (lung, heart, liver, brain, kidneys) is impaired leading to anoxia and 

inadequate functioning. Poor perfusion and anoxia lead to the accumulation of 

organic a~ids and metabolic acidosis may ensue. Poor perfusion of the kidneys also 

leads . to oliguria. Perfusion disturbances elsewhere cause a sharp decrease in 

arteriovenous oxygen differences (Jawetz et al., 1982). 

2.5 EPIDEMIOLOGY AND OUTCOME OF GRAM NEGATIVE 

BACTEREMIA 

2.5.1 ADULT BACTEREMIA 

2.5.1.1 Incidence and outcome 

One of the earliest reports on gram negative bacteremia appeared in 1924 (Felty and 

Keefer, 1924). In this study which was performed in the pre-antibiotic era a mortality 

rate of 32% was recorded implying a recovery rate of 68%. The main causative 

organism was E. coli which accounted for 32% of cases. In the years that followed 

numerous articles on the subject of gram negative bacteremia appeared in the literature 

suggesting that the incidence of gram negative bacteremia was on the increase (du Pont 

and Spinks, 1969). An alarming finding was the apparent increase in mortality rates 

associated with gram negative bacteremia reported in 1950 after the introduction of 

antibiotic therapy (Young et al., 1977; Bryan et al.,1983). 

Considering referral cases in tertiary hospitals, Du Pont and Spinks (1969) reported an 

increase in the number of gram negative bacteremia cases from '4.9/1000 in 1958 to 

8.1/1000 in 1969. This incidence is still on the increase and reached 12.8/1000 referral 

cases in tertiary hospitals in 1987 (Dale and Petersdorf, 1987). The number of cases of 

gram negative bacteremia appears to be higher at referral than at community hospitals, 

with 75% of the infections in referral hospitals being hospital acquired or nosocomial 

(Haddy et al., 1987). The main reasons for the steady increase in the incidence of gram 

negative bacteremia and for the higher incidence in teaching/referral than community 

based hospitals can be summarized as follows: 

• As a result of increasingly advanced laboratory facilities more blood cultures are 

performed and consequently more episodes are reported. 
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• The wide usage of broad spectrum antibiotics has lead to the emergence of highly 

resistant organisms. 

• Patients in tertiary teaching hospitals are generally more severely ill and are 

subjected to more invasive diagnostic and therapeutic procedures. In addition their 

defence mechanisms are frequently compromised. 

• Older people increasingly contribute to a larger percentage of the population and 

consequently there are now more patients with chronic illnesses. 

• There has been an increase in the use of immunosuppressive agents for various 

indications. 

In 1962 McCabe and Jackson published a seminal article in which they correlated the 

number of deaths of patients who developed gram negative bacteremia with the severity 

of the underlying disease. They divided these diseases into 3 categories: 

• Rapidly fatal: (High possibility of death within a year) i.e. acute and chronic 

leukemia. 

• Ultimately fatal: (possibility of death within 4 years) i.e. aplastic anemia, myeloma, 

lymphomas, metastatic carcinomas, cirrhosis and chronic renal disease. 

• Non- fatal: i.e. diabetes mellitus, and genitourinary, gastrointestinal and obstetrical 

diseases. 

With a few modifications this classification is presently still used to predict outcome of 

gram negative bacteremia. McCabe and Jackson (1962(a); 1962(b)) also pointed out 

that the survival rate was higher in patients receiving antibiotics than in those receiving 

none. This observation was substantiated by a number of reports which followed in later 

years (Ou Pont and Spinks, 1969; Bryan et al. , 1983). 

I t would therefore appear that the two most important factors determining the outcome 

of gram negative bacteremia are the severity of the underlying disease and the instigation 

of appropriate antibiotic therapy. What . constitutes appropriate antibiotic therapy is 

however a subject of debate. Most authors define appropriate therapy as follows: A 

drug to which the organism is susceptible in vitro, started on the day when the first 

positive blood culture is reported and administered for 5 days (Kreger et al. , 1980(a); 
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Bryan et al., 1983). Bryan et al., (1983) showed a good correlation between outcome of 

bacteremia and the initiation of antibiotic therapy only after the flrst positive blood 

culture was obtained. However, in their study design patients who died from shock 

within the flrst 72 hours were not included. This may have accounted for the better than 

expected correlation considering the relatively late initiation of antibiotic therapy. 

Although authorities differ regarding the time at which antibiotic therapy should be 

started and whether combinations of antibiotics should be used or not , they all agree 

that some antibiotic therapy is better than none (Du Pont and Spinks, 1969; Bryan et 

al., 1983). Mortality rates of 60% has been recorded when no antibiotic therapy was 

given (Haddy et al., 1987). Kreger e,t al., (1980(a); 1980(b)) showed a decrease in 

mortality rate in all three categories of underlying disease when appropriate therapy was 

given. The mortality rate with inappropriate and appropriate therapy in the rapidly fatal 

group was 77% and 29% respectively, in the ultimately fatal group 28% and 26% 

respectively and in the non-fatal group 29% and 10% respectively (Dale and Petersdorf, 

1987). 

Authors in favour of combination antibiotic therapy argue that- it gives broader cover 

for mixed infections and resistant organisms and that the effect can be synergistic 

(Marples et al., 1984). The arguments against combination therapy are that it is more 

expensive and that the risks of toxicity and development of resistant strains are higher. 

With the emergence of superinfections Dale and Petersdorf (1987) stated that single drug 

therapy is as effective as combination therapy provided the organism is susceptible to 

the single drug in vitro. 

2.5.1.2 Causative organisms 

E. coli is responsible for approximately 50% of gram negative bacteremias in community 

hospitals and 30% in referral hospitals. This organism is isolated from the urine in 95% 

of patients with bacteremia and is therefore responsible for most bacterernias that follow 

initial urinary tract infections. 

K. pneumoniae is the second most common causative agent and accounts for 15% of 

cases, most of them nosocomial with the respiratory tract as the most common source. 

The respiratory tract normally becomes colonized with K. pneumoniae in patients with 

chronic illnesses, patients recently hospitalized and those who have recently received 

antibiotic therapy. Although K. pneumoniae is the most common organism, the 

respiratory tract can also become colonized with E. coli and P. aeruginosa. Bacteremia 

occurs in 15% of patients with pneumonia (McGowan et al., 1975; Montgomery, 1979). 

, 
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Species of proteus, enterobacter and pseudomonas each contribute approximately 10% 

to the overall number of bacteremias (McGowan et al., 1975). Patients with serious 

disorders of the G IT (perforated appendix, perforated diverticulum and ischemic bowel 

peritonitis) may have local infections without bacteremia. If bacteremia occurs the 

particular species of micro-organisms isolated from the blood will usually reflect the 

pre-existing bowel flora. Polymicrobial bacteremia occurs in 10% of all episodes of 

gram negative bacteremia and is most frequently associated with an intra-abdominal 

source. Biliary tract disease especially when associated with obstruction or ascending 

cholangitis often results in bacteremia with E. coli and species of klebsiella and 

enterobacter. 

In patients with burn wounds or cellulitis, more resistant causative organisms such as 

species of pseudomonas, serratia and acinetobacter are frequently found (Montgomery, 

1979). The hypotension syndrome and "sepsis" in these patients are sometimes 

complicated by other opportunistic organisms and fungi. When bacteremia is caused 

by the introduction of intravascular devices the organisms isolated normally reflect the 

hospital ecology and often include more resistant species (McGowan et al., 1975). 

2.5.2 NEONATAL BACTEREMIA 

2.5.2.1 Incidence and outcome 

Neonatal bacteremias refer to bacteremias acquired within the fIrst month after birth. 

The occurrence is 1-10/1000 live births in the USA with a mortality rate of 10-40% 

(Siegel and McCracken, 1981). In underdeveloped countries the mortality rate can be 

as high as 75% (Siegel and McCracken, 1981; Mir et al., 1987). 

Factors, which predispose to the development of neonatal bacteremia and determine its 

outcome are the following: 

• Age 

Premature infants have a 3 - 10 fold higher incidence of neonatal bacteremia than 

full term infants (Plotkin, 1981). Infants born to mothers with infected amniotic 

fluid have a 1-5% chance of infection. Full term infants may be protected by the 

antibacterial activity of amniotic fluid which appears at 20 weeks of gestation and 

. increases steadily thereafter (Schlievert et al., 1977). 

• Host defence mechanisms 
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Certain host defence mechanisms have been shown to be defective in neonates. 

These include a deficient production of neutrophils, a decrease in the anti-bacterial 

activity of leukocytes, impaired chemotaxis of neutrophils and monocytes and a 

deficiency of complement (C3) especially in ·low birth weight infants. (Mir et al., 

1987). 

• Sex 
Male infants have an approximately 2-fold higher incidence of neonatal sepsis than 

female infants (Plotkin, 1981). 

• Time of onset 

A distinction is drawn between early and late onset infections. Early onset 

infections occur within the first 7 days after birth and late onset infections after a 

week. The mortality rate is considerably higher when the neonate develops an 

infection within the first seven days of life. 

• Resuscitation and hospitalization 

Nosocomial infections are easily acquired by neonates from the hands of staff or via 

hospital equipment such as catheters and feeding tubes. Infants requiring 

resuscitation at birth or having a prolong'ed stay in hospital as a result of 

prematurity or disease are at greater risk of acquiring infections which usually 

involve resistant organisms. 

• Causative organisms 

E. coli is the most common cause of gram negative bacteremia in neonates (Sarff 

et ai. , 1975). The GIT is the main source of E. coli in the neonate with the KI strain 

being the most virulent and associated with the majority of neonatal infections 

especially meningitis. Vertical transmission from mother to child is considered to 

be a common mode of infection (Sarff et al., 1975). 

Species of klebsiella and pseUdomonas are the second most common causative 

organisms of neonatal bacteremia. Other gram negative organisms such as species 

of enterobacter, proteus, salmonella, acinetobacter and cinobacter are less frequent 

causes of neonatal bacteremia. These latter organisms are normally responsible for 

late onset nosocomial infections, they are more resistant and form part of the 

hospital environment (Plotkin,1981.) 
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• Antibiotic therapy 

The choice of antibiotic depends largely on whether the causative organism is 

acquired from the mother or from the hospital environment. With nosocomial 

infections combination antibiotic therapy is advisable due to the number of resistant 

organisms in the hospital. A penicillin-amino glycoside combination is advocated in 

this instance due to wider cover and synergistic effect (Mir et al., 1987). Antibiotic 

toxicity manifests more frequently in the neonatal population as a result of the 

constantly changing metabolism through gestational and chronological ages. The 

monitoring of plasma levels of antibiotics are very important in these patients 

especially for drugs like aminoglycosides which have a small therapeutic index. The 

required duration of therapy is normally longer than in the adult population being 

an average of 10-14 days after symptoms have subsided (Mir et ai., 1987). 
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3. AN EPIDEMIOLOGICAL STUDY OF GRAM NEGATIVE 

BACTEREMIA AT BARAGWANATH HOSPITAL 

3.1 OBJECTIVE 

A retrospective epidemiological study was performed to determine the nature and extent 

of bacterial infections in an adult and neonatal population at Baragwanath Hospital. 

This study will be presented under two headings namely adult and neonatal gram 

negative bacteremia. 

The primary objective of the study was to determine the epidemiology of gram negative 

bacteremias in adults and neonates at Baragwanath Hospital. A secondary objective 

was to identify factors which could possibly determine the outcome of gram negative 

bacteremias in adults and neonates. 

3.2 LOCATION 

This study was carried out at Baragwanath Hospital, Soweto, Republic of South Africa. 

Baragwanath Hospital is the largest hospital in the Southern hemisphere and serves a 

mixed first and third world population. The hospital functions as a teaching, referral and 

community hospital. Patients who are seriously ill are referred to the hospital from rural 

areas and even areas outside the borders of the Republic of . South Africa. The 

community of Soweto is also served by Baragwanath Hospital and presents at the 

hospital with both minor and major diseases. 

Microbiological investigations for Baragwanath Hospital are carried out at the 

laboratories of the South African Institute for Medical Research ,CSAIMR) which are 

located on the premises of Baragwanath Hospital. 

3.3 APPROVAL OF THE STUDY 

The study was approved by the Ethics Committee of Baragwanath Hospital. 

3.4 STUDY DESIGN 

All documented cases of gram negative bacteremia in adults from the medical wards and 

neonates from neonatal intensive care over a six month period were reviewed. The 
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methods of data collection were epidemiological rather than clinical in the sense that 

data was obtained from patient records. A retrospective investigation of bacteriological 

and clinical data was performed. In the fIrst phase of the study the records of blood 

cultures were screened at the SAIMR laboratories at Baragwanath Hospital. All blood 

cultures positive for gra~ negative bacteria from the medical wards and neonatal ICU 

were recorded and the causative organism noted. In the second phase of the study the 

medical records of the patients who had positive blood cultures were traced. The third 

phase of the study involved analyses of recorded data. 

• INCLUSION CRITERIA. Patients with a positive blood culture for gram negative 

bacteria were included in the study. . . 

• EXCLUSION CRITERIA. Patients with a positive blood culture for salmonella, 

neisseria and haemophilus were not included in this study because of the the low 

mortality rate associated with these infections (Du Pont and Spinks, 1969). 

The following populations were defmed: 

• Overall population: This population included all the patients for whom positive 

blood cultures were recorded at the SAIMR. 

• Study population: This population included all patients' with a positive blood culture 

for whom the medical records could be traced. It was not possible to trace the 

medical records of all patients for whom a positive blood culture was reported. 

There are a number of reasons for this discrepancy. Baragwanath Hospital is 

understaffed and handles a large number of patients. A manuRI non-computerized 

ftling system is used which results in certain errors. The medical records of patients 

who die are sent to the mortuary and some records never reach the archives. 

3.5 BACTERIOLOGICAL DATA 

3.5.1 Identification of causative organism 

Organisms were identified and classified according to standard microbiological 

techniques ( Leinette et al., 1980). 
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3.5.2 Antibiotic susceptibility 

The Kirby Bauer disc diffusion technique was used to determine antibiotic susceptibility 

(Bauer et al., 1966). 

3.6 DATA DERIVED FROM MEDICAL RECORDS 

The data gathered from medical records were different for the adults and neonates and 

will be discussed under the respective headings of adult gram negative bacteremia and 

neonatal gram negative bacteremia. 

4 THE INVESTIGATION OF ADULT GRAM NEGATIVE 

BACTEREMIA 

4.1 METHODOLOGY 

This part of the study involved the surveillance of bacteriological and clinical data of 

patients admitted to the medical wards of Baragwanath Hospital from January to June 

1988. The following data were derived from the medical records of patients with gram 

negative bacteremia: 

• Age 

• Sex 

• Presence and severity of underlying disease 

• Initial antibiotic therapy 

• Mortality associated with gram negative bacteremia 

• Acquisition of infection ( community acquired or nosocomial) 

• Route of infection 
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Some of these aspects required further definition: 

• Underlying disease 

The patients were classified according to the presence or absence of underlying 

diseases. Whcn present, such diseases were further categorized according to the 

criteria of McCabe and lackson (1962(a) into rapidly fatal, (death anticipated within 

1 year) ultimately fatal (death anticipated within 4 years) and non- fatal. 

• Nosocomial and community acquired infections 

Nosocomial infections were defined as those confirmed by a positive blood cultures 

and which started on or after the third day of hospitalization (McGowan et al., 1975; 

McCue, 1987). Any positive culture obtained before this was classified as a 

community acquired infection. 

• Mortality associated with gram negative bacteremia 

In the absence of any other explanation bacteremia was considered as the cause of 

death if it occurred within 7 days of the last positive blood culture (Bryan et al., 

1983). 

• Appropriate antibiotic therapy 

For the purpose of this study appropriate therapy was defined according to 

McFarlane and Nana (1985) i.e. an antibiotic to which the isolated organism was 

sensitive (in vitro), which was started on the day when the first blood culture was 

reported as positive, and continued for at least 5 days . . 

• Initial antihiotic therapy 

The first antibiotic that was administered to the patient was recorded as initial 

antibiotic therapy. 
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4.2 RESULTS 

During the period January to June 1988 an average of 3000 patients per month were 

admitted to the medical wards. One hundred and four positive gram negative blood 

cultures were reported during this six month period. The medical records of 76 patients 

could be traced. Three of these patients had polymicrobial infections and therefore 76 

patients and 79 organisms were investigated. Ampicillin was the initial antibiotic 

therapy in all the patients. 

4.2.1 INCIDENCE OF GRAM NEGATIVE BACTEREMIA 

With 104 positive gram negative blood cultures for 6 months (17.3 a month) and 3000 

admissions per month reported, the incidence of gram negative bacteremia in the medical 

wards was therefore 5.8/ I 000 patients a month. 

4.2.2 PREVALENCE OF CAUSATIVE ORGANISMS 

The organisms isolated from patients with gram negative bacteremia are summarized in 

table A.4 and figure A.I . As can be seen from figure A.I the frequency of occurrence 

of individual organisms did not differ markedly between the overall and study 

populations. The percentage of patients with E. coli (53%), proteus (9%), and 

acineto bactc::r (5%) were the same for the two groups. The incidence of klebsiella and 

pseudomonas differed between the two groups by one perc:ent. The study popUlation is 

therefore clearly representative of the overall group. In the study popUlation (figure 

A.2), E. coli was the organism most commonly isolated (53%) followed by klebsiella 

(23 %), proteus (9%) and pseudomonas (8%). The incidence of other organisms was 5% 

or less. 
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TABLE A.4 

Gram negative organisms isolated from the adult population with gram negative bacteremia 

Study population Overall population 

Number of 
isolates 

E. coli 42 

Klebsiella 18 

Proteus 7 

Pseudomonas 6 

Acinetobacter 4 

Serratia I 

Yersinia I 

Citrobacter 0 

Total 79 

E. coli 53% 

Klebsiella 23% 

Percentage 

53 

23 

9 

8 

5 

I 

I 

0 

100 

Number of 
isolates Percentage 

55 53 

25 24 

9 9 

7 7 

5 5 

1 1 

I I 

1 1 

104 100 

Other 2% 

Acinetobacter 5% 

Pseudomonas 8% 

Proteus 9% 

Fig A.2 Percentage distribution of 
organisms in adult study population 
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4.2.3 THE RELATIONSHIP BETWEEN THE CAUSATIVE 

ORGANISM, MORTALITY RATE, UNDERLYING DISEASE AND 

NOSOCOMIAL INFECTION 

Data pertaining to the causative organisms, number of deaths, underlying diseases and 

nosocomial origin are summarized in table A .5 and figure A.3. The only patient with a 

serratia infection died. Aside from this the mortality rate for patients in the present 

study was the highest with klebsiella infections (39%), followed by E. coli (33%), proteus 

(29%) and acinetobacter (25%). For both pseudomonas and yersinia infections no 

deaths were reported. The percentage of patients with an underlying disease prior to 

bacteremia was the highest with proteus (86%), followed by pseudomonas (83%), 

klebsiella (78%), acinetobacter (75%) and E. coli (62%). Forty three percent of patients 

with proteus bacteremia contracted the infection nosocomially followed by 22% of 

patients with klebsiella, 17% with pseudomonas and 10% with E. coli. 

TABLE A.S 

Relationship between underlying disease, death and nosocomial origin of gram negative 

bacteremia in the adult population 

Number Under = Noso= 

of lying comial 

Organism isolates disease % Deaths % origin % 

E. coli 42 26 62 14 33 4 10 

Klebsiella 18 14 78 7 39 4 22 

Proteus 7 6 86 2 29' 3 43 

Pseudomonas 6 5 83 0 0 1 17 

Acinetobacter 4 3 75 1 25 0 0 

Serratia 1 0 0 1 100 0 0 

Yersinia 1 0 0 0 0 0 0 

Total 79 54 25 12 
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4.2.4 ROUTES OF INFECTION 

The different causative organisms and their routes of infection are summarized in tables 

A.6, A.7 and figure A.4. The genitourinary tract (GUT) was the most common source 

of infection (34%), with E. coli the predominant organism (78%). Klebsiella (15%) was 

also found in the GUT but less frequently than E. coli. The lungs were the second most 

common route of infection (24%) where the predominant organisms were klebsiella and 

E. coli (32% each). E. coli was the only organism also found in the GIT and CNS. The 

GIT and CNS were the source of infection in 6 and 3% of the cases respectively. In 

14% of the patients the skin was the route of infection and the organisms responsible 

were E. coli (45%), klebsiella (27%) and proteus (27%). In 16% of patients the route 

of infection was not identified: The organisms involved in these cases were E. coli (23 %), 

klebsiella (31 %) and 15% for both proteus and acinetobacter. Pseudomonas was the 
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only organism where all the routes of infection could be traced with no route reported 

as unknown. This study differentiate between IE end GIT. GIT denotes patients with 

diarrhea whereas IE refers to patients with other intestinal diseases. 

TABLE A.6 

Routes of infection in adult population 

Organism GUT GIT 

E. coli 21 5 

Klebsiella 4 0 

Proteus 0 0 

Pseudomonas 1 0 

Acinetobacter 1 0 

Serratia 0 0 

Yersinia 0 0 

TOTAL 27 5 

GUT 
IE 
Unk. 

Genitourinary tract 
Intestine 
Unkown 

TABLE A.7 

Lung 

6 

6 

2 

4 

1 

0 

0 

19 

Skin 

5 

3 

3 

0 

0 

0 

0 

11 

Bile 

0 

1 

0 

0 

0 

0 

0 

GIT 
eNS 

1 

IE CNS Unk. 

0 2 3 

0 0 4 

0 0 2 

1 0 0 

0 0 2 

0 0 1 

0 0 1 

1 2 13 

Gastrointestinal tract 
Central nervous system 

Percentage distribution of routes of infection in the adult population 

Organism GUT GIT 

E. coli 78 100 

Klebsiella 15 0 
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4.2.5 RELATIONSHIP BETWEEN AGE AND MORTALITY 

Figure A.5 and Table A.8 show the incidence of gram negative bacteremia within various 

age groups and the associated mortality rates. 

The average age of patients was 50.5 years with the highest incidence of bacteremia 

(20%) recorded in the 30-39 age group. The highest mortality rate (50%) occurred in 

the age group 70-79 years. 32% (24) of the 76 patients died. Of these 9 (38%) were 

younger than 50 years and 15 (63 %) were older than 50 years. 

TABLE A.8 

Relationship between age and mortality in the adult population 

Percentage of 

Age Number of patients Number of deaths deaths 

10 - 19 3 I 33 

20 - 29 9 0 0 

30 - 39 15 4 27 

40 - 49 11 4 36 

50 - 59 10 4 40 

60 - 69 13 6 46 

70 - 79 10 5 50 
. 

80 - 89 2 0 0 

90 - 99 3 0 0 
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4.2.6 SEVERITY OF UNDERLYING DISEASE 

The relationship between severity of underlying disease and deaths are summarized in 

Table A.9 and figure A.6. Overall thirty two percent (24) died. Of these 16 (67%) died 

within the first 72 hours of admi~sion. Sixty seven percent of the patients with a rapidly 

fatal, 48% with an ultimately fatal, 38% with a non-fatal and 8% with no underlying 

disease died. 

TABLE A.9 

Relationship between severity of underlying disease and death in the adult population 

(Classification according to McCabe and Jackson, 1962) 

Severity of underlying Number of Number of Percentage Deaths as 

disease episodes deaths deaths % of total 

Rapidly ratal 3 2 67 8 

Ultimately fatal 21 10 48 42 

Non - fatal 26 10 38 42 

No underlying disease 26 2 8 8 

TOTAL 76 24 - 100 
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4.2.7 ANTIBIOTIC RESISTANCE PATTERNS OF ORGANISMS 

ISOLATED 

The resistance patterns of the organisms to antibiotics routinely used in the medical 

wards at Baragwanath Hospital are summarized in Table A.lO and figure A.7. 

Seventy six percent of E.coli, 43% of proteus, 88% of klebsiella and 100% of 

pseudomonas were found to be resistant to ampicillin. Proteus was not tested against 

the aminoglycosides or the third generation cephalosporins. E. coli was the most 

susceptible to the aminoglycosides w.ith only 2% being resistant to gentamicin and 

tobramycin and none to amikacin. Klebsiella showed no resistance to amikacin but a 

29% and 18% resistance to gentamicin and tobramycin respectively. Pseudomonas 

showed a 17% resistance to all aminoglycosides. 

E. coli and klebsiella showed susceptibility to all the third generation cephalosporins 

tested, but pseudomonas was resistant to cefotaxime (50%) and ceftriaxone (33%). 

TABLE A.lO 

Percentage of organisms resistant to antibiotics routinely used in the medical wards of 

Baragwanath Hospital 

Antibiotic E. coli % Proteus % Klebsiella % Pseudomonas % 

Ampicillin 76 43 88 100 

Piperacillin 33 0 53 17 

Gentamicin 2 - 29 17 

Amikacin 0 - 0 17 

Tobramycin 2 - 18 17 

Cefotaxime 0 - 0 50 

Ceftriaxone 0 - 0 33 

= not tested 
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4.3 DISCUSSION 

The case selection in this study was limited to patients admitted to medical wards and 

therefore more restricted than it was in a number of studies reported in the literature. 

Notwithstanding certain similarities were noted. The incidence of gram negative 

bacteremia (5.8/1000 patients) at Baragwanath Hospital corresponds with those reported 

for other centers which have varied from 4.7/1000 patients for community hospitals to 

12.8/1000 patients for teaching hospitals (McCue, 1987; Dale and Petersdorf, 1987). The 

higher incidence of gram negative bacteremia in teaching hospitals is well documented 

and may be ascribed to a number of factors (Ashiru and Osoba, 1986). Patients 

admitted to teaching hospitals are generally severely ill, often immunosuppressed and 

frequently elderly with chronic diseases. Furthermore resistance of organisms to 

antibiotics occurs inore frequently in teaching hospitals which complicates the effective 

eradication of particular organisms (GateH el al., 1988). The incidence of gram negative 

bacteremia at Baragwanath Hospital which serves as a combined teaching and 

community hospital could therefore be expected to be between that reported for 

community and teaching hospitals. Fifteen percent of these infections were hospital 

acquired. 

At Baragwanath Hospital the highest mortality rate (39% ), was associated with gram 

negative bacteremias due to klebsiella infections. Klebsiella associated mortality rates 

of 35.5% (Haddy et al., 1987),45% (Bryan et al., 1983) and 57% (Du Pont and Spinks, 

1969) have previously been reported. The mortality rate associated with klebsiella at 

Baragwanath Hospital therefore appears to correspond to the mortality rates reported 

from other centers. 

Of the klebsiella infections recorded at Baragwanath Hospital 22% were hospital 

acquired and 78% community acquired. The incidence of nosocomial klebsiella 

infections at Baragwanath Hospital was substantially lower than the incidence (up to 

50% ) reported at other centers (Montgomery, 1979; Garcia de la torre et al., 1985). 

The high incidences at these other centres were associated with sporadic epidemic 

outbreaks in intensive care units for neonates or adults, during winter months (Garcia 

de la torre et al., 1985). The lower incidence of nosocomial klebsiella infections at 

Baragwanath Hospital may be ascribed to the design of the study which only included 

patients admitted to medical wards and which was carried out largely during summer and 

autumn months (January to lune). Furthermore the medical wards at Baragwanath 

Hospital consists of individual physically separated units that restrict the spread of 

nosocomial infections. 
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Proteus infections was associated with the third highest mortality rate (29% at 

Baragwanath Hospital of which 43% was hospital acquired). In 86% of the patients 

with proteus bacteremia an underlying disease was present. Proteus species are rarely 

primary pathogens but produce disease in locations previously infected by other 

pathogens. Proteus species are able to establish reservoirs in the inanimate hospital 

environment and are a frequent cause of nosocomial infections (Bryan et al., 1983). 

Furthermore these gram negative bacteria readily develop resistance to antibiotics which 

may account for the high mortality rate associated with proteus infections at 

Baragwanath Hospital. 

E. coli accounted for 53% of all gram negative bacteremias in the medical wards and of 

these only 10% were hospital acquired. The E. coli associated mortality rate was 

however, slightly lower (33%) than the rate associated with klebsiella (39%). This 

association of a high incidence with a lower mortality rate in patients with E. coli 

bacteremia has been documented before (Kreger et al., 1980(a); Kreger et al., 1980(b)). 

In the majority of patients with E. coli bacteremia at Baragwana!h Hospital the source 

of the infection was the GUT (50%). These patients were generally healthy prior to the 

infection and did not fall into the groups with rapidly fatal or ultimately fatal diseases. 

This may account for the lower mortality rate associated with E. coli bacteremia. 

Pseudomonas accounted for 8% of gram negative bacteremias at Baragwanath Hospital. 

In 83% of these patients an underlying disease could be identified while 17% of the 

pseudomonas infections were nosocomial. No deaths were reported as a result of 

pseudomonas infections in the present series. This finding is contrary to the high 

mortality rates associated with pseUdomonas infections in other series (Du Pont and 

Spinks, 1969). There are a number of possible explanations for the low mortality rate 

associated with pseudomonas infections in the present study. Serjous infections with 

pseudomonas are almost invariably associated with local tissue damage or diminished 

host resistance. The present investigation did not include patients admitted to surgical 

wards or burn units. Furthermore only one of the patients with pseUdomonas 

bacteremia was immunosuppressed and only 3 patients had a rapidly fatal underlying 

disease. Hospital strains of pseUdomonas are generally more resistant to antibiotics. In 

the present study however, only one patient had a nosocomial pseUdomonas infection. 

In the present study the GUT (34%) was the most common source of gram negative 

infection. The lungs (24%), skin (14%), GIT (6%) and eNS (3%) were other sources 

of infection. In 16% of the cases the source was unknown. 
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The finding that the GUT was the most common source of infection was not surprising 

in view of the fact that E. coli was the predominant (53%) cause of bacteremias in the 

present series. E. coli is responsible for 79% of all urinary tract infections. Similar 

findings related to E. coli bacteremias have been reported in other studies (Ou Pont and 

Spinks, 1969). 

I t has been reported that klebsiella is the most common cause of pneumonias associated 

with gram negative bacteremia. In the present study the incidence of klebsiella (32%) 

and E. coli (32%) pneumonias was equal. A possible reason [or this discrepancy is that 

klebsiella infections predominate in intensive care units (leU) and during epidemics. 

Patients in the leU were not included in the present investigation and no epidemics 

occurred during the months that the study was carried out. 

The severity of underlying disease as a contributing factor to mortality in patients with 

gram negative bacteremia is clearly shown in the present study. Sixty seven percent o[ 

the patients with a rapidly fatal disease, 48% with an ultimately fatal disease and 38% 

with a non-fatal disease died. 

The majority of patients with a rapidly fatal disease died 72 hours or more after the 

diagnosis o[ gram negative bacteremia had been confirmed due to uncontrolled 

infections. There were a number of reasons for this: These patients were generally 

severely ill, frequently immunosuppressed and had been exposed repeatedly to 

antibiotics which predispose to the development of antibiotic resistance (Kreger et al., 

1980(a». 

The relatively high mortality rates o[ 48% and 38% [or patients with ultimately fatal and 

non-fatal diseases respectively are in agreement with the study of Kreger et al., (1980(b». 

From this study it appears that these patients die of shock within 72 hours of the onset 

of the gram negative bacteremia rather than from a persistent uncontrolled infection as 

in the case of patients with a rapidly fatal disease. In the present study 16 patients 

(67%) died within 72 hours. It therefore appears that the outcome of gram negative 

bacteremia depends not only on the severity of the underlying disease but also on 

whether shock develops within 72 hours. Furthermore it seems that if patients, (with the 

exception of those with rapidly fatal underlying disease) survived the first 72 hours of 

bacteremia, the overall chance of survival was fairly good. 

Review of the literature indicates that the outcome of gram negative bacteremia is in 

part dependent on the initiation of appropriate antibiotic therapy even though there is 



33 

some controversy as to what constitutes appropriate antibiotic therapy. In the present 

study initial antibiotic therapy consisted of ampicillin. As virtually all the isolates were 

resistant to ampicillin, this may have contributed to mortality rates. 

4.4 CONCLUSIONS 

Gram negative bacteremia occurred in 5.8 per 1000 patients admitted to the medical 

wards at Baragwanath Hospital. E. coli was the most common causative organism 

followed by klebsiella and proteus. Fifteen percent of these bacteremias were hospital 

acquired. The incidence of bactcrcmia and nosocomial infections and the fact that E. 

coli was the most common organism suggests that Baragwanath Hospital is consistent 

with the criteria of a combined community and tertiary hospital. These findings 

correlate with literature reports on community and tertiary hospitals. 

Gram negative bacteremia was associated with a high mortality rate in the present study. 

Thirty two percent of the patients died with 67% of these deaths occurring within 72 

hours. Shock has been identified both in the literature and present study as a possible 

cause of early deaths in patients with gram negative bacteremia (Moore et al., 1987). 

Early and adequate treatment of shock is therefore advocated in the management of 

gram negative bacteremia. 

All the gram negative organisms cultured from patients with gram negative bacteremia 

were resistant to ampicillin. It is therefore suggested that an amino glycoside should be 

combined empirically with a suitable penicillin in high risk groups. It is further 

suggested that the initial dose of aminoglycoside be designed to achieve a high peak 

concentration since a high peak concentration is associated with a better outcome in 

gram negative bacteremia (Moore et al , 1984 (a». 

Optimum amino glycoside dosing is best achieved by the application of therapeutic drug 

monitoring. The population pharmacokinetic parameters must be representative of the 

population and it is therefore suggested that a study be designed to calculate such values 

for a gram negative bacteremic population on gentamicin treatment. 
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5 NEONATAL GRAM NEGATIVE BACTEREMIA 

5.1 METHODOLOGY 

This part of the study involved the surveillance of bacteriological and clinical data of 

neonates admitted to the Neonatal Intensive Care Unit (NICU) at Baragwanath 

Hospital from January to June 1988. The NICU consists of 2 units, a transient and 

neonatal unit. The transient unit serves the infants of older gestational age and higher 

body weight. Premature, low birth weight infants are served by the neonatal unit. 

Approximately 150 infants are admitted, monthly to this 30 incubator NICU. The 

following data were obtained from the medical records of neonates with gram negative 

bacteremia: 

• Age (gestational/chronological) 

• Sex 

• Time of onset of infection 

• Route of infection 

• Initial antibiotic therapy 

• Birth weight 

• Method of birth 

Some of the data necessitate further definition: 

• Early and late onset infections 

Early onset was defined as an infection which started within the first 7 days after 

birth. Late onset infections started after the seventh day. 

• Appropriate therapy 

Appropriate therapy was defined as an antibiotic to which the organism was 

sensitive (in vitro) and which was started on the day when the first blood culture was 

reported as positive and then administered for at least 10 to 14 days. 

• Preterm infants 

Infants with a gestational age of less than 40 weeks. 
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• Full term infants 

Infants with a gestational age of at least 40 weeks. 

STUDY DESIGN 

A retrospective investigation of bacteriological and clinical data was performed. In the 

first phase of the study the records of blood cultures were screened at the SAIMR 

laboratories at Baragwanath Hospital. All blood cultures positive for gram negative 

bacteremia were recorded. In the second phase of the study the medical records of the 

infants who had had positive blood cultures were traced. The third phase of the study 

involved analyses of the recorded data. 

• INCLUSION CRITERIA: All infants with a positive blood culture for gram 

negative bacteria were included in the study. 

Categorization of patients 

The following populations were defined: 

• Overall population: This population included all infants for whom a positive gram 

negative blood culture was reported. 

• Study population: This population included all infants with a positive blood culture 

of whom the medical records could be traced. (Reasons for inability to trace all re­

cords are the same as for adult popUlation - see 3.4.) 
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5.2 RESULTS 

Sixty positive gram negative blood bacterial cultures were reported for the six month 

period. The medical records of only 32 of these patients could be traced. 

5.2.1 INCIDENCE OF GRAM NEGATIVE BACTEREMIA 

An average of 150 neonates per month were admitted to the NICU during the study 

period. During the six month period 60 blood cultures positive for gram negative 

bacteria were reported (10 per month). The incidence of gram negative bacteremia was 

therefore 66/1000 neonates. 

5.2.2 PREVALENCE OF CAUSATIVE ORGANISMS 

The organisms isolated from neonates with gram negative bacteremia are summarized 

in table A.II and figure A.8. As can be seen from table A.II the frequency of 

occurrence of individual organisms did not differ markedly between the overall and study 

populations. In the study population (see figure A.9), pseudomonas was the organism 

most commonly isolated (44%), followed by klebsiella and carynobacter (19% each), E. 

coli (9%), bacillus species (normally B.subtalis) (6%) and enterobacter (3%). 
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TABLE A.ll 

Organisms isolated from the neonatal population with gram negative bacteremia 

Study population Overall population 

Number of Number of 

isolates Percentage isolates Percentage 

E. coli 3 9 

Klebsiella 6 19 

Pseudomonas 14 44 

Carynobacter 6 19 

Enterobacter I 3 

Bacillus species 2 6 

Total 32 100 

Cary nobacter 19% 

Pseudomonas 44% 

6 10 

9 15 

32 53 

7 12 

4 7 

2 3 

60 100 

Klebsiella 19% 

.E. coli 9% 

Bacillus species 6% 

Enterobacter 3% 

Fig A.9 Distribution of organisms In 
neonatal study population 
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5.2.3 RELATIONSHIP BETWEEN CAUSATIVE ORGANISM AND 

MORTALITY RATE 

Data pertaining to the relationship between the causative organisms and mortality are 

summarized in table A.12 and figure A.lO. The overall mortality rate for neonates with 

gram bacteremia was 66%. The highest mortality rate was associated with pseudomonas 

(71%) followed by klebsiella (67%) and E. coli (67%). 

TABLE A.12 

Relationship between the causative organism and death in the neonatal population 

Percentage of 
Organism Number of deaths deaths 

E. coli 3 2 67 

Klebsiella 6 4 67 

Pseudomonas 14 10 71 

Carynobacter 6 3 50 

Enterobacter 2 1 50 

Bacillus species 1 1 100 

Total 32 21 
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5.2.4 FACTORS WHICH MAY INFLUENCE THE PROGNOSIS IN 

NEONATES WITH GRAM NEGATIVE BACTEREMIA 

The relationship between mortality rate and factors which may influence prognosis (age, 

sex, gestational age, method of birth and time of onset of infection) is summarized in 

table A.13 and fig A.ll. 

• Weight 

Of the 32 patients in the study group 29 weighed less than 2.5 kg and of these 21 

(72%) died. All the neonates (3) weighing more than 2.6 kg survived. 

• Sex 

An equal number of male and female neonates contracted bacteremia. However, 

75% of the male and 56 % of the female neonates died. 

• Onset of infection 

Forty seven percent of neonates with an early and 82 % with a late onset of 
infection died. 

• Method of birth 

The incidence of death was slightly higher in bacteremias following complicated 
births (71 % versus 61 %). 

• Gestational age 

The incidence of death was higher in infants with a gestational age less than 40 

weeks in comparison with full term infants (80% versus 14%). 
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TABLE A.13 

Relationship between mortality due to gram negative bacteremia and other factors which 

may influence outcome 

Number of Percentage 
Factors Number deaths of deaths 

Weight < 2.5kg 29 21 72 
> 2.5kg 3 0 0 

Sex Male 16 12 75 
Female 16 9 56 

Onset Early 15 7 47 
Late 17 14 82 

Birth Normal 18 11 61 
Complicated 14 10 71 

Gestational Term 7 I 14 
age Preterm 25 20 80 

Fig A.11 Relationship between associated 
factors and mortality in neonatal population 
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5.2.5 ANTIBIOTIC RESISTANCE PATTERNS OF ORGANISMS 

ISOLATED 

The resistance patterns of organisms to antibiotics routinely used at Nl CU are 

summarized in table A.14 and figure A. 12. Sixty seven percent of E. coli, 78 % of 

klebsiella and 100 % of pseudomonas organisms were resistant to ampicillin. E. coli was 

susceptible to all the aminoglycosides and third generation cephalosporins tested. 

Klebsiella showed varying degrees of resistance to the aminoglycosides, amikacin (11 %), 

tobramycin (13%) and gentamicin (56%) as well as to ceftazidime (56%). Pseudomonas 

was resistant to some extent to all aminoglycosides and third generation cephalosporins 

tested. With respect to pseudomonas, the most effective of the aminoglycosides and 

third generation cephalosporins were amikacin (10% resistance) and cefotaxime (72% 

resistance) respectively. 

TABLE A.14 

Percentage resistance of organisms to antibiotics routinely used in the neonatal population 

Antibiotic E. coli % Klebsiella % Pseudomonas % 

Ampicillin 67 78 100 

Gentamicin 0 56 50 

Amikacin 0 11 10 

Tobramycin 0 13 37 

Cefotaxime 0 0 72 

Ceftazidime 0 56 100 

Ceftriaxone 0 0 94 
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5.3 DISCUSSION 

The small numbers of patients used in this study do not allow for specific conclusions. 

Certain trends were however noted. The incidence of gram negative bacteremia (66/1000 

neonates) at the NICU of Baragwanath Hospital was higher than the incidence of 1 to 

10/1000 reported in the literature (Siegel and McCracken, 1981). The populations 

studied by these investigators consisted of normal live birth groups, implying 40 weeks 

gestation and a birth weight of 2.5 kg or more. The high incidence (66/1000) and 

mortality rate (66%) associated with gram negative bacteremia in the present study 

could be accounted for as follows: The study population with respect to gestational age 

(25 infants at 28 to 40 weeks of gestation) and weight (29 of 32 neonates had a weight 

of less than 2.5 kg) was a high risk group. As the immune system only attains maturity 

at 40 weeks gestation in the majority of neonates in the present study the immune system 

was underdeveloped. This could have contributed to the higher incidence of gram 

negative bacteremia and the higher mortality rate. 

A 2: 1 ratio of male to female deaths associated with gram negative bacteremia has 

previously been reported (Plotkin, 1981). This finding was confirmed in the present 

study where a preponderance of male deaths (75% compared to 56% of females) was 

also observed. The preponderance of male deaths is not adequately explained in the li­

terature but Washburn et al. (1965) have postulated a genetic origin that relates to X 

and Y chromosomes of male neonates. 

At the NICU the highest mortality rate was associated with pseudomonas infections 

(71 %), and pseudomonas was also the most commonly isolated organism. Only nine 

percent of the isolated organisms were E. coli with an associated mortality rate of 67%. 

These observations are in contrast to findings reported in the literature. In other studies 

E. coli appears to account for 50 % ofbacteremias in neonates (Chow et al., 1974). E. 

coli infections are usually acquired from the maternal genital tract during delivery and 

frequently occur in full term infants (Chow et al., 1974; Sarff et al., 1975). In the present 

study 25 infants had a gestational age ranging from 28 to 33 weeks. These infants born 

prematurely required prolonged hospitalization and multiple invasive procedures and 

were therefore more likely to develop nosocomial infections. This could account for the 

lower incidence of E. coli and higher incidence of pseudomonas bacteremias in the pre­

sent study. Pseudomonas organisms require minimal nutrients and are able to establish 

reservoirs in the inanimate hospital environment. Furthermore resistance due to the 

acquisition of plasmids by pseudomonas organisms frequently occurs in the hospital 

environment. The incidence of resistant pseudomonas strains in the present study is in 



44 

agreement with an incidence of 64 to 100 % of resistant strains for pseudomonas in 

hospital environments (Mir el al., 1987). 

Sporadic outbreaks of infection with highly resistant strains of klebsiella appear to have 

accounted for the high incidences of klebsiella bacteremias reported in other neonatal 

intensive care units (Marples el al., 1984; Garcia de la torre el al., 1985; Mir el al., 1987). 

I n the present study the incidence of klebsiella bacteremia (19%) was only second to 

pseudomonas bacteremia and was associated with a 67 % mortality. Klebsiella strains 

in the present study were also associated with a high incidence of antibiotic resistance. 

An important factor influencing the outcome of gram negative bacteremia in the neonate 

is appropriate antibiotic therapy (Mir et al., 1987). All the gram negative organisms in 

the NICU were resistant to ampicillin which was routinely used as first line antibiotic 

therapy. Kle~siella was resistant only to cefotaxime and ceftriaxone and pseudomonas 

resistant to all antibiotics tested. 
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5.4 CONCLUSIONS 

Gram negative bacteremia occurred in 66 per 1000 neonates admitted to the neonatal 

intensive care unit at Baragwanath Hospital. In these infants bacteremia was associated 

with a high mortality rate (66%). 

The present study confirms the observations that a lower gestational age, lower birth 

weight and male gender influence the outcome of gram negative bacteremia in neonates. 

The only discrepancy between this study and others was the higher incidence of late 

onset infections with pseudomonas as the most common causative organism. In the 

NICU at Baragwanath inappropriate initial therapy with ampicillin (to which all isolated 

organisms were resistant) may have contributed to the high mortality rate. Another 

problem identified was the highly resistant nature of pseUdomonas and klebsiella strains 

in the NICU. 

It is therefore recommended that resistance patterns in the NICU be monitored monthly 

and that initial antibiotic therapy is modified accordingly. 

The use of aminoglycosides in the treatment of neonatal gram negative bacteremia seems 

logical. Representative population values for these drugs used in neonates are not well 

documented in literature. A study to calculate such values is therefore indicated. 
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SECTION B 

THE DETERMINATION OF POPULATION 

PHARMACOKINETICS OF SELECTED ANTIBIOTICS 

EMPLOYED IN THE TREATMENT OF 

GRAM NEGATIVE BACTEREMIA 

1. INTRODUCTION 

Different factors which can influence the outcome of gram negative bacteremia were 

identified and discussed in section A. The high resistance patterns of organisms to 

ampicillin and inappropriate therapy were highlighted as possible drug related reasons 

for treatment failure. The use of aminoglycosides as first line therapy was advocated in 

both adult and neonatal populations. The combination of an amino glycoside with 

cefotaxime was also discussed in the section on neonatal bacteremia. 

Aminoglycosides, in particular, are toxic drugs which need accurate monitoring during 

treatment. Representative pharmacokinetic parameters for a specific population enables 

more appropriate prediction of a target dose in an individual. Data describing the 

population pharmacokinetics of aminoglycosides aljd third generation cephalosporins in 

neonates with gram negative bacteremia are lacking. 

The non-linear mixed effect model (NONMEM) computer programme estimates 

population · pharmacokinetic parameter values from routinely collected data in a specific 

popUlation. Using NONMEM, parameters can be estimated which represent a specific 

group of patients - ego neonates or patients with renal dysfunction. 

The objective of this study was to determine popUlation pharmacokinetic parameters of 

amikacin, gentamicin and cefotaxime in patients with gram negative bacteremia. Both 

an adult and a neonatal popUlation were investigated. 
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2. LITERATURE REVIEW 

2.1 INDIVIDUALIZATION OF DRUG DOSAGE REGIMENS 

2.1.1 APPLIED PHARMACOKINETICS 

Applied pharmacokinetics, "therapeutic drug monitoring" or clinical pharmacokinetics 

describes the process of using drug concentrations, pharmacokinetic principles, and 

pharmacodynamic criteria to optimize drug therapy for individual patients (Evans, 

1986). 

These disciplines originated with the work of Torsten Teorell published in 1937 (Teorell, 

1937). The term pharmacokinetics did not appear until 1953 and is attributed to Oost 

(Oost, 1953). Until the late 1960's pharmacokinetics remained an academic discipline 

used primarily by those involved in drug research. In 1966 Kruger-Theimer provided a 

comprehensive discussion of the application of pharmacokinetic theory to the design of 

drug dosage regimens (Kruger-Theimer, 1966). 

This study will focus on population pharmacokinetics and not as such on the 

individualization of a dosage regimen. For this reason definitions of the mam 

pharmacokinetic parameters will be outlined briefly (Peck and Rodman, 1986): 

• Bioavailability (F) 

Bioavailability can be defmed as the rate of and extent to which the drug reaches the 

general circulation in an active form. 

• Desired plasma concentration 

• 

The first task in designing a therapeutic regimen is to choose the therapeutic 

objective or endpoint. Studies of drugs which show some relationship between 

plasma concentration and the effect, has served to establish usual "therapeutic 

ranges" defined by a minimum effective concentration (MEC) and maximum safe 

concentration (MSC). The therapeutic range however only acts as a guide and the 

clinical assessment of the patient remains of primary importance. 

Volume of distribution (Vd) 
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Volume · of distribution is simply the size of the compartment necessary to account 

for all the drug in the body if it were present throughout the body in the same 

concentration as in the sample measured. 

• Clearance (CI) 

The clearance of a drug (CI) is a proportionality constant relating the rate of 

elimination (Ro) to plasma concentration (Cp). Clearance refers to the volume of 

fluid (e.g. plasma) cleared of drug per unit time. 

• Elimination rate constant (kd) and half-life (t1f2) 

The elimination half-life (t%) is the time taken for the plasma concentration to 

decline by 50% after all the absorption and distribution processes are completed. 

Half-life is therefore dependent on the elimination rate constant (kd), which is a 

constant relating the amount of drug in the body (A b) with the rate of elimination 

(Ro) (Winter, 1980). 

2.2 POPULATION PHARMACOKINETICS 

The individualization of a dosing regimen is not possible without the aid of popUlation 

pharmacokinetic data. If absolutely no prior information about a drug's disposition is 

available, then its initial use in a patient would constitute an entirely new experiment, 

the consequences of which would be unpredictable. Only after a complete individual 

pharmacokinetic experiment (a complete profile of plasma concentrations in the patient) 

would the pharmacokinetics of the drug in the patient be available for determination of 

the dosage regimen. Clinically this approach is impractical, however, if average 

population pharmacokinetics is available this provides some idea of what to expect of 

the individual on average. Thereafter, one or just a few drug concentrations taken from 

the patient early in the course of therapy and interpreted in the context of popUlation 

data enables one to estimate individualized pharmacokinetics which may lead to further 

refinement of the dosage regimen (Peck and Rodman, 1986). There are two 

requirements for applying popUlation data to the individual: 

• a relevant popUlation pharmacokinetic data base, and 

• a framework for linking the individual patient to the popUlation. 
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Population pharmacokinetics, therefore, entails the summary of pharmacokinetic studies 

in groups of individuals and the establishment of relationships between individual 

patient characteristics and pharmacokinetic parameters. Studies of drug disposition in 

a number of individuals generally reveal that the essential pharmacokinetic parameters 

(e.g. bioavailability, volume of distribution, clearance) lie within a restricted range of 

values. While this is especially true if the study group is homogeneous with regard to 

individual characteristics that influence drug disposition, it is not always the case for a 

group with a greater extent of variability. Population pharmacokinetics describes this 

variability in terms of a number of factors designated as fixed and random effects. 

The fixed effect or popUlation typical value parameters represent the popUlation average 

values ofpharmacokinetic parameters which may in turn be a function of various patient 

characteristics such as (a) age, weight, height and sex; (b) underlying pathology such 

as renal or hepatic impairment and ( c) other influences on drug disposition such as 

concomitant drug therapy, smoking habits and alcohol intake (Beal et al., 1986). 

The random effects quantify the amount of pharmacokinetic variability which is not 

explained by fixed effects i.e. inter- and intrasubject variability. This interindividual 

deviation, (i.e. how the individual differs from the study group) is also termed the 

popUlation variability value for the parameter (Peck and Rodman, 1986; Whiting et 

al., 1986). Current methods of popUlation pharmacokinetic analysis entail calculation 

of the standard deviation as the population variability value. Population studies involve 

the estimation of popUlation typical (i.e. mean) and population-variability (i.e. standard 

deviation) values for each pharmacokinetic parameter. The popUlation mean and 

standard deviation thus summarize the population distribution. Estimation of these 

fixed and random effects allows for: 

• the design of dosage regimens which will, in general, suit patient groups who are at 

particular risk e.g. the elderly or those with impaired renal and hepatic function 

• the design of individual dosage regimens and their optimization by means of 

Bayesian feedback techniques. 

Population pharmacokinetics should be studied in a heterogeneous group of individuals 

exhibiting a range of patient characteristics which are thought to influence drug 

_ disposition: For example a group of patients of varying weight, age, and degree of renal 

dysfunction. This is done deliberately to establish relationships between individual 

patient characteristics and distribution _ of popUlation pharmacokinetic parameter 
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distributions~ The relationship discovered may be categorically quantitative as in the 

observation that smokers (an individual characteristic) tend to have typical theophylline 

clearance values about 50 to 60% higher than those of non-smokers. Alternatively a 

continuous quantitative relationship may be discerned as in the linear relationship 

between creatinine clearance and amino glycoside clearance. 

2.2.1 METHODS OF DETERMINING POPULATION 

PHARMACOKINETIC PARAMETERS 

2.2.1.1 Two stage method, the traditional approach 

The traditional method of determining population pharmacokinetic parameters consists 

of undertaking intensive experimental studies of the pharmacokinetics of a drug in a 

small number of individuals. These individuals are normally healthy volunteers. The 

study IS designed to reveal maximum information about the individual's 

pharmacokinetics, and it involves many samples (often more than 20) per patient 

(Sheiner and Beal, 1984). 

In stage 1 the individual's data is analyzed by curve stripping, log-linear regression or 

nonlinear least squares regression whereby individual pharmacokinetic parameters are 

estimated iteratively by fitting the data to a pharmacokinetic model (Peck et al. , 1984(a); 

Peck et al., 1984(b». In stage 2a, the parameters are summarized by calculating the 

means and standard deviations. These may be taken as estimates of the population­

typical (fixed) and population-variability values (random). In stage 2b, relationships 

between patient characteristics and the estimated pharmacokinetic parameters are 

established by categorization or regression techniques. 

The main drawbacks of this method are: 

• Accurate and precise stage I estimates of individual pharmacokinetic parameters 

require mUltiple, appropriately-timed blood samples that involve costly contrived 

experiments. In this type of study the volunteers generally have to be reimbursed. 

In addition the temporary hospitalization on a clinical research basis can be costly. 

• These studies are most readily performed in groups of healthy volunteers and are 

practically impossible to execute in large numbers of patients undergoing routine 

therapy. 
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• The number of patients is normally small and not a true reflection of a whole 

population. This may lead to population parameter estimates which deviate 

substantially from true population values. This is especially so for the random 

interindividual-effect parameter. 

• Careful control of diet, study conditions etc. all undertaken in the interest of 

obtaining data with low variability can actually prevent the discovery of unexpected 

but important influences on kinetics. 

• In order to be able to use the method of ordinary least squares for the initial 

analysis, some assumptions regarding the error between "true" drug level and 

observed level are necessary. 

These assumptions are that: 

• the different errors are independent of the other 

• the errors are additive 

• the errors... are of the same typical order of magnitude. 

These assumptions are problematical for the following reasons: 

• Absolute measurement errors are often not of constant magnitude. The error may 

differ with low and high drug concentrations 

• The popUlation parameters may 1;>e biased. 

Apart from all the disadvantages the traditional two stage approach remains important 

during the development of new drugs (Peck and Rodman, 1986) 

2.2.1.2 Mixed effect modeling 

(Sheiner et al., 1977; Whiting et al,. 1986; Peck and Rodman, 1986). 

The mixed effect model treats the popUlation and not the individual as the unit of 

. analysis. Mixed effect modeling allows direct estimation of popUlation pharmacokinetic 

parameters in a single stage of analysis applied simultaneously to data from many 

individuals. In this method, an individual's pharmacokinetic parameters are not directly 

determined. Rather, a generalized form of least-squares regression, known as extended 
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least squares, is used to estimate fixed effect and random-effects parameters. Fixed effect 

parameters include the population typical values (means) as well as the coefficients of 

regression relationships between individual patient characteristics and population-typical 

values for the pharmacokinetic parameters. Random-effect parameters are the 

population-variability values (standard deviations) representing interindividual deviation 

from fixed-effect parameter estimates after population relationships and residual random 

error have been taken into account. 

A powerful feature of the mixed effect modeling technique is the ability to accommodate 

patient pharmacokinetic data as it arises in the course of routine clinical therapy. For 

example, only one or two drug concentrations per patient, drawn virtually at random, 

may provide a suitable data base for mixed effects modeling. It has the ability to 

accommodate scanty data from actual clinical therapy (e.g. a specific disease state), thus 

enhancing the use of clinical data for incorporation into techniques of drug regimen 

design and clinical pharmacokinetic forecasting. The principle aim of population 

pharmacokinetic analysis is therefore to account for the inherent kinetic variability 

within a popUlation of patients in terms of a number of readily identifiable factors. 

These may be physiological, pathological, environmental or genetic. One important 

outcome should be the provision of rational dosage guidelines for specific risk groups 

e.g. the very young, the elderly and patients with impaired renal, cardiac or hepatic 

function. 

2.2.1.2.1 Nonlinear mixed effect model approach (NONMEM) 

(Beal and Sheiner, 1980, 1982; Sheiner and Grasela, 1984). 

The NONMEM computer programme is at present the only programme available for 

derivation of population pharmacokinetic parameters from routine clinical data as 

described in the previous section. The NONMEM approach was developed and 

implemented by Sheiner and Beal in 1977. It describes the observed concentration time 

data in terms of: 

1. A number of fixed effect parameters (9d which include mean values of the relevant 

structural pharmacokinetic model parameters or a number of parameters which 

relate the structural model parameters to demographic and pathophysiological 

variables. 

2. Two types of random effect parameters. These can be distinguished as: 
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• the 'variances of the 9K parameters, i.e. the intersubject variability within the 

population (ro9k) 

• the residual intrasubject variable due to random fluctuations in an individuals 

parameter values, measured error and all sources of error not accounted for by 

the other parameters (aD 

Because of the marked difference between the NONMEM approach and the old 

traditional approach several points require clarification: 

• Reliability of NONMEM analysis 

The first question addresses the accuracy of these parameters which are 

calculated from routinely collected data in comparison to the more controlled 

evaluation of a traditional pharmacokinetic analysis. Sheiner et al. (1977) found 

a good correlation between their population values for digoxin (clearance and 

volume of distribution) and previously reported values obtained by traditional 

approaches. The same was true for phenytoin (Grasel~ et al., 1983; Vozeh et 

al., 1981) and procainamide (Grasela and Sheiner, 1984). Values for mexiletine 

and lignocaine results presented by Vozeh et al. (1982) were also in general 

agreement with those reported by other investigators. 

• Number of data points per subject 

I t is difficult to establish from the literature how many data points per subject 

will be sufficient for a NONMEM analysis. It is however true that a high degree 

of intersubject variability can only be explained if a relatively large number of 

subjects expressing that variability is studied (Maitre et al., 1987). Moreover, 

an estimate of the intrasubject component can only be obtained by collecting 

several (3 or 4) samples per subject from the majority of subjects. The 

intrasubject estimate will, however, always be confounded by other sources of 

variability such as assay error and model mis-specification (Whiting et al., 1986). 

• The nature of the population parameter distributions 

The NONMEM approach is based on parameter distributions that are 

unimodal (and probably normal after an appropriate transformation). This 

assumption on the parameter distributions may be the single biggest 

disadvantage of this programme. 

I t is especially important when a new drug is studied, in the absence of any 

knowledge about an underlying genetic polymorphism, not to constrain the pa-
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rameter distributions. Grasela and Sheiner (1984) also documented this flaw in 

the programme when they were not able to use a unimodal estimate of clearance 

to discriminate between fast and slow acetylators in their study on procainamide 

(Whiting et al., 1986). 

2.2.1.2.2 Non-parametric maximum likelihood approach (NPML) 

The non-parametric maximum likelihood approach (NPML) needs no prior assumption 

about the parameter distribution and this may overcome the restrictions ofNONMEM. 

The method gives rise to discrete distributions for the likelihood function and the para­

meter distributions. These are then smoothed to give continuous distributions, which 

may be skewed or multimodal. The NPML approach has been tested successfully on 

simulated data but remains to be proven in practice, where the proportion of data in one 

or more modes may be small (Whiting et al., 1986). 

2.2.2 DATA REQUIRED FOR DETERMINATION OF 

POPULATION PHARMACOKINETIC PARAMETERS USING 

NONMEM 

Although population pharmacokinetics with NONMEM is based on routinely collected 

data, an informal study needs to be designed. It is, however, still important to collect 

appropriate data. This has considerable bearing on the success of popUlation 

pharmacokinetic studies and determines: (a) what can be learned from existing data, and 

(b) what prospective data are required to answer specific questions. 

Two types of data namely kinetic and demographic, are required for population 

pharmacokinetics. 

2.2.2.1 Kinetic data 

As determination of population pharmacokinetic parameters using NONMEM is not 

confined to structured studies, a greater degree of flexibility in the collection and re­

cording of kinetic data is possible. There are two kinds of kinetic data: 

• Data specifying the dosage regimen which is associated with a particular 

concentration measurement, e.g. the dose, route of administration, dosage interval, 

whether steady-state has been achieved and if not, details of the preceding dosage 

history. 
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• Concentration-time data, i.e. concentration measurement(s) and the time(s) between 

sampling and the preceding dose. 

The following plasma concentration data can be considered: 

• Steady state trough concentrations 

Trough levels yield minimal information as they do not represent the "average 

steady-state" concentrations. These levels can therefore not be used in the standard 

steady-state equation to calculate clearance. A mathematical relationship between 

trough concentrations and dosing rate must therefore be established before analysis. 

Several steady-state trough concentrations per patient plus information on the 

dosing interval are necessary. 

• A verage steady-state concentrations 

The relationship between dose rate and an average steady state concentration can 

be formulated with a clearance term or, in the case of non-linear kinetics with 

Michaelis-M enten parameters. 

• Concentration measured at any time after an oral dose 

If concentrations defining the various parts of the entire concentration-time profUe 

are available, the average population values of the usual pharmacokinetic parame­

ters such as rate constants and half-lives can be obtained. Steady-state and non­

steady-state data can be used provided the documentation of the dosage history is 

complete. The kinetic data normally consists of 3 or 4 concentration-times pairs per 

patient, ideally spread out so that all aspects of the relevant profile are covered. The 

randomization of time points may be difficult to achieve in practice but one 

approach is to divide a dosage interval into equal or unequal periods (where n > 2) 

and to acquire one (or more) samples from each patient within-each period, but not 

necessarily within the same dosage interval. 

• Concentration measurements at any time after both intravenous and oral doses 

Applying the same design criteria as described above, the average population values 

of volume of distribution, clearance and bioavailability can be obtained if both 

intravenous and oral data are available. The confidence with which these parame­

ters are estimated, however, will depend very much on the mix of intravenous and 

oral data available. These data should be collected from each patient within a 

period where intraindividual variability is minimized or where changes in important 

demographic factors are carefully recorded. 
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The data requirements presented thus far only serve as general guidelines. Basically any 

data collected routinely can be used to derive population pharmacokinetic parameters 

using NONMEM. The results of the analysis, however, will reflect the type of data 

collected. For instance a predominance of "steady-state concentrations" will provide 

good information about clearance (or the ratio of clearance to bioavailability) but little 

information about volume of distribution. 

2.2.2.2 Demographic data 

Since data may be collected over lengthy periods of time, possible changes in 

pathophysiology within as well as between patients must be taken into account. There 

arc two kinds of demographic data: 

• That obtained at the beginning of a study which defines the pathophysiological 

status of patients at that time, and include age, sex, weight, height, smoking habits, 

alcohol consumption, nature and severity of disease, concurrent medication and 

biochemical and hematological indices. 

• That obtained during any dosage interval of interest to account for changes which 

may have occurred during the course of treatment (Whiting et al., 1986). 

2.3 METHODS OF INDIVIDUALIZING PATIENT DOSAGE 

REGIMENS 

i\ patient's actual pharmacokinetic response to a particular dosage regimen may differ 

from the predicted response even though the initial dosing regimen was based on typical 

population values. Although the aim of population pharmacokinetics is to estimate 

values as representative of the popUlation as possible, interindividual variation still exists 

in the popUlation. The following discussion will present the various approaches [or the 

determination of the individual patient's pharmacokinetics : 

i. Least squares method (LS) 

This method fits blood sample data using the statistical estimation known as 

maximum likelihood. A least squares analysis involves a computer search for pa­

rameters values of the pharmacokinetic model (M) which minimizes the objective 

function (OBJ) described below: 
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n 

I (C - Ci)2 
all] = m 2 

0"1 

(b.t) 

i= 1 

Cm measured drug concentration 

Ci = predicted drug concentration 

0"1 = standard deviations from the random error model (E) for i = 
to n available concentrations. 

The computer search selects values for M that yield estimates of Ci which most closely 

correspond to the measured concentrations. The 0"1 can either be entered in the fitting 

procedure as "known" values or estimated automatically in the procedure under explicit 

assumptions about the functional form of the error model (E) Peck et al., 1984(a); Peck 

et al., 1984(b )). The need to weight observations with the appropriate 0"10 stems from the 

varying absolute error for different values of concentrations measured. For example, if 

an assay has a constant coefficient of variation of 10% and valu'es of 1 to 10 units are 

measured, the absolute error would range from 0.1 (10% ) to 1 (100%) units. 

The following are limitations of the LS method: 

• All of its information regarding the pharmacokinetic parameters is derived 

from the patient's drug concentration data. Thus any prior knowledge of the 

patient's pharmacokinetic values are excluded from the LS analysis. 

• I t requires multiple, well timed drug concentrations to provide accurate and 

precise estimates of the parameters. The minimum number of drug 

concentrations for least-squares estimation is determineq by the number of 

parameters in the model. For examJ:.le, the one-compartment model commonly 

used for intravenous aminoglycosides or theophylline has two parameters (vo­

lume and elimination rate or clearance), thus in such cases at least two 

observations are required. 

• If fewer drug concentrations are available the LS method can be modified to 

accommodate them by fixing one or more parameters at assumed values -

leaving fewer parameters for individualized estimations. 
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H. Bayesian method 

The Bayesian Method combines Bayes ' theorem and maximum-likelihood 

estimations. Bayes' theorem estimates individual pharmacokinetic parameters as 

follows: 

prob (P) . prob (C/P) 
prob (PIC) = prob (C) (b.2) 

prob (PIC) 

prob (P) 

prob (C/P) 

prob (C) 

= Probability 

distribution (Bayes mean estimate ± SO) of the patient's 

pharmacokinetic parameters (P) taking into account 

the measured drug concentration (C) 

= The probability of the patient's parameter within 

the assumed population parameter distribution. 

= The probability of the measured concentrations in the 

context of pharmacokinetic model (M) 

and random (measurement) errors. 

= Unconditional probability distribution of the 

observed levels. 

When the population distributions of population pharmacokinetic parameters are 

approximately Gaussian, application of the method of maximum-likelihood estimation 

of the above expression of Bayes ' theorem results in the following objective function: 

P N -L (Pl - pj)2 L (CI - Ci)2 
OBlbayes - 2 + 2 

O"pj 0"1 

(b.3) 

j=1 i=1 

Pl and Pj = Population and individual's j = 1 to p pharmacokinetic 

parameters 

O"pj and 0"1
2 = Population parameter standard deviations 

CI and Ci = Observed and predicted i = 1 to n available drug 

concentrations 

Minimization of the Bayesian objective function (Olll Bayes) results in estimates of 

pharmacokinetic parameters, closer to the patients real value which take into account 
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the measured and predicted drug concentration along with the information on 

measurement error and the typical variability values of pharmacokinetic parameters in 

the population. 

I t is important to note that the Bayesian method can also be used without any measured 

level in which case only the first summation term remains. This in effect is simply 

predicting the serum concentration using population pharmacokinetic parameters. 

More importantly, however, if more concentrations in the individual are known the 

second summation becomes more predominant and the estimated parameters become 

more representative of the individual. 

The appeal of this approach, in contrast to the intuitive or least-squares approach which 

relies either ent~rely on prior expectations or depends solely upon measured drug 

concentrations, is that it mimics human thinking as follows: 

• The initial therapy is targeted, using population-based parameters adjusted for 

the patients characteristics. 

• Plasma drug concentrations are measured at informative times and compared 

with expected values. 

• Individualized pharmacokinetic parameter estimates are made cautiously 

taking into account both (i) the expected drug levels and their variability (based 

upon the average parameter values and variability in the popUlation) and (ii) 

the measured drug levels and their expected variability (due to measurement 

error and other sources of random variability) (Whiting et al. , 1986). 

2.4 ASPECTS OF NEONATAL PHARMACOKINETICS RELEVANT 

TO INTRAVENOUS DOSING 

2.4.1 DRUG DISTRIBUTION (Vd) 

The age-related differences in the composition of fat and water compartments may have 

an important impact on the distribution of some drugs. The Vd for more water soluble 

. drugs such as the aminoglycosides is closely related to the extracellular water (ECW) and 

total body water (TBW). As a result the volume will increase as the water compartment 

Increases. 
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Neonates have a larger proportion of their body mass made up of water than do older 

infants and adults. Similarly the premature infant (85% TBW) has more body water 

than the Cull term infant (75% TBW). The relative volume of ECW and the ratio of 

extracellular to intracellular water (lCW) is also higher in neonates, than in inCants and 

children. 

During normal development as the TBW content decreases, there is an increase in body 

fat. Fat accounts Cor 16% of body weight in the full-term neonate whereas premature 

babies are practically devoid of any fat. The V d of a more lipophilic drug like diazepam 

is smaller in neonates and infants (1.3 to 2.64 t/kg) than in adults (1.6-3 .24 t/kg) (Milsap 

and Szefler, 1986). 

2.4.1.1 Protein binding 

Greater variability in protein binding of drugs exists during the neonatal than adult 

period. The plasma protein concentration of the neonate is approximately 80% of that 

of an adult. The principle drug binding protein is albumin which shows an increase in 

concentration as well as increased affinity for acidic drugs with an increase in gestational 

age. (Morselli et al., 1980). 

The lower affinity of albumin for acidic drugs in the neonate may be related to 

competition for binding sites by increased concentrations of endogenous substances such 

as bilirubin and free fatty acids. (Morselli et al., 1980). 

The concentration of ai-acid glycoproteins which bind basic drugs such as lignocaine 

and propranolol is also reduced in the neonate (Morselli et al., 1980). 

2.4.2 METABOLISM 

The capacity to metabolize drugs varies throughout development. The liver is the major 

site of the four principle pathways of drug metabolism, namely oxidation, reduction, 

hydrolysis (all Phase I reactions) and conjugation (a Phase II reaction). Studies indicate 

that virtually all of the enzymatic microsomal systems for drug biotransformation are 

present at birth but also that their capacities increase with advancing age (Rane and 

J oms on, 1980; Assae1, 1982). Decreased hepatic uptake, low concentration of 

intracellular carrier proteins and decreased production of bile, diminish enzyme activity 

in neonates (Rane and J omson, 1980). The insufficiency of one pathway may lead to 

metabolism via alternative pathways. For example, the methylation of theophylline to 
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caffeine occurs in neonates but eventually becomes insignificant in older children and 

adults (Morselli et al., 1980). 

UDPG-glucuronyl transferase activity responsible for the conjugation of vanous 

endogenous substances and drugs (e.g. bilirubin; morphine and chloramphenicol) is 

depressed at birth and reaches adult values at an age of three years. Agents such as 

chloramphenicol which are totally dependent on this pathways for elimination are 

potential toxins in neonates. 

2.4.3 RENAL EXCRETION 

Renal function (with respect to renal plasma flow, glomerular filtration, concentrating 

and acidifying abilities, tubular absorption and tubular secretion), when normalized for 

body surface area, is significantly lower in infants and small children than in adults. 

Although often only 20% to 40% that of older children, renal function is usually 

adequate to maintain normal homeostasis. During stressful situations such as infection, 

acid-base imbalance and dehydration, the immaturity and lack of functional reserve of 

the kidney may become apparent in the neonate and young child (Milsap and Szefler, 

1986). 

At birth, kidney blood flow is characterized by increased vascular resistance and a 

preferential intrarenal flow away from the outer kidney cortex. During the postnatal 

period, both increases in cardiac output and decreases in intra renal vascular resistance 

occur which dramatically increase kidney perfusion. Glomerular function is more 

advanced than tubular function at birth and this imbalance may persist until six months 

of age. Premature infants have lower filtration rates than full term infants and also 

develop their filtration capacity more slowly postnatally. In premature infants tubular 

function is even more reduced at birth and is associated with decreased clearance of 

glucose, phosphate, bicarbonate, urea and other nitrogenous wastes. Penicillins which 

depend mainly on tubular secretion for elimination are cleared slowly by the neonate. 

Passive tubular reabsorption may be reduced in the infant and neonate and the relatively 

low urinary pH of this popUlation may also influence the rate and extent of tubular 

reabsorption of some drugs (Morselli et al., 1980). 
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2.5 PHARMACOKINETIC PRINCIPLES OF CEFOTAXIME 

2.5.1 COMPARTMENTAL KINETICS 

After 1M and IV administration, cefotaxime kinetics can be described by a simple two 

compartment open model with a rapid distribution phase (15-20 min) followed by a more 

prolonged apparent elimination phase (0.8-1.34 hours). In neonates the distribution 

and elimination phase have been reported to be respectively 5.6 minutes and 4.8 hours 

(Kearns et at., 1989). It has been shown that cefotaxime obeys linear dose dependent 

kinetics up to 2 g but becomes non-linear at higher doses (Carmine et at., 1983). After 

a 1000 mg intravenous bolus dose, mean peak plasma concentrations range between 81 

and 102 Ilg/mt in adults. Concomitant administration of probenecid increases the 

plasma concentration of cefotaxime (Carmine et ai, 1983). Both glomerular filtration 

and tubular secretion appear to be involved in the renal excretion of cefotaxime 

(Carmine el at, 1983). 

2.5.2 DISTRIBUTION 

Because of its low lipophilicity cefotaximc like the other cephalosporins, generally 

cannot gain entry into cells. The physiological volume to which the cephalosporins 

distribute is the volume of the extracellular water (= 212 mt/kg.). After I.V. infusion 

of 1 g cefotaxime over 30 minutes the apparent volume of distribution at steady state is 

21.6 t/1.?3 m2
• The extent of protein binding of cefotaxime ranges from 30 to 50% 

which is generally lower than that for the other cephalosporins. Concentrations of 

cefotaxime are low in the cerebrospinal fluid if the meninges are not inflamed, but are 

betwecn 3 to 30 Ilg/mi in children with meningitis. Inhibitory concentrations (0.2-5.4 

Ilg/m f,) for most gram-negative bacteria, are attained in purulent sputum, bronchial 

secretions and pleural fluid after doses of 1 or 2 g. Concentrations likely to be effective 

against most sensitive organisms are also attained in female reproductive organs, otitis 

media effusions, prostatic tissue, intestinal fluid, renal tissue, peritoneal fluid and the 

gallbladder wall after usual therapeutic doses. High concentrations of cefotaxime and 

desacetyl-cefotaxime are attained in both the common bile duct and the gallbladder. At 

any time concentrations in the gallbladder wall are about one-fifth to one-tenth of those 

in the bile (Soussy el al .. 1980). 
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2.5.3 ELIMINATION AND METABOLISM 

Cefotaxime is partially metabolised prior to excretion. The main metabolite is the 

microbiologically active product, desacetyl-cefotaxime. Two other inactive metabolites 

M2 and M3 (isomers of desacetyl-cefotaxime lactone in which the p-lactam ring has 

opened) are generally not detected in the serum of healthy volunteers but are found in 

higher concentrations in patients with renal failure. Of an intravenous dose 50 to 60% 

is excreted unchanged, and 24% as desacetyl-cefotaxime in the urine. The mean half-life 

of cefotaxime is reported to be 0.9 to 1.14 hours and the mean half -life of desacetyl­

cefotaxime is 1.3 hours (Mandell and SandIe, 1985; Wise and Wright, 1981). 

2.5.4 FACTORS INFLUENCING CEFOTAXIME 

PHARMACOKINETICS 

2.5.4.1 Age 

• Neonates 

In neonates, the pharmacokinetics of cefotaxime are significantly influenced by 

gestational and chronological age as well as by birth weight. In preterm and low 

birth weight neonates, the elimination half-life is prolonged relative to that of full 

term or normal birth weight neonates of the same age. Half-lives of 5.7 hours for 

preterm babies less than one week old and of 3.4 hours for full term babies of the 

same age have been reported (Kafetzis et al., 1982; Kearns et al., 1989). 

Kearns et al. (1989) were not able to show any difference in the half-lives of 

cefotaxime in babies who weighed less or more than 1000 g respectively but a sig­

nificant linear correlation was found between gestational age "and half-life or total 

body clearance. 

The elimination of the active metabolite desacetyl-cefotaxime is markedly slower in 

premature neonates than in children and adults. The metabolic pathways 

responsible for the formation of desacetyl-cefotaxime are active by 27 to 28 weeks 

of gestation and as the metabolite is largely excreted by renal mechanisms the 

prolonged t 1,12 may be due to developmental immaturity of both glomerular filtration 

and active renal tubular secretion (Kearns et al., 1989). The volume of distribution 

of cefotaxime under steady-state conditions is larger in newborns than in a~ults 

(0:31-0.35 i/kg in neonates and 0.21-0.29 i/kg in adults). 
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• Elderly patients 

An increase in the half-life of cefotaxime in the elderly has been reported (Carmine 

et al., 1983). The study of Ludwig et al. (1988) confirmed this finding but they 

. demonstrated that the decrease in elimination of cefotaxime in the age group 60-80 

years was slight and only reached significance in the age group over 80 years. 

Cefotaxime therefore appears to be a safe drug in the elderly only requiring dosing 

adjustment for age in patients over the age of 80 years. 

2.5.4.2 Diseases 

• Liver diseases 

Patients with drug-induced hepatocellular damage showed no marked changes in 

cefotaxime blood levels but had lower serum concentrations of the desacetyl 

metabolite (Carmine et al., 1983). The serum half-lives of cefotaxime and 

desacetyl-cefotaxime were significantly increased in patients with advanced cirrhosis 

(Balant et al., 1985). 

• Renal disease 

Severe renal dysfunction was associated with a decrease in total plasma clearance, 

renal clearance and the urinary recovery of cefotaxime and desacetyl-cefotaxime. 

The effect on the metabolite was more marked. In these patients the half-life of 

cefotaxime only increased to ± 5.5 hours but the half-life of desacetyl-cefotaxime 

increased to as much as 10-15 hours. The effects of renal failure on the clearance 

of both cefotaxime and its metabolite are even more pronounced when renal failure 

is accompanied by other illnesses such as heart failure, pulmonary edema and 

septicemia (Carmine et al., 1983; Kearns et al., 1989). 

2.6 AMINO GLYCOSIDE PHARMACOKINETICS 

2.6.1 ABSORPTION 

Due to their polarity the aminoglycosides are poorly absorbed from the intestinal tract, 

with only 0.3% to 1.5% of an administered dose appearing in the urine. Nevertheless 

repeated oral or rectal administration may lead to toxic concentrations in patients who 

have severe renal insufficiency. Peritoneal absorption can be substantial and can lead 

to serious side effects. Aminoglycosides are generally well absorbed after intramuscular 

injection. In patients with severe gram-negative sepsis, perfusion of the intramuscular 
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administration site may be reduced because of hypotension, and the rate of absorption 

may be substantially reduced. Repeated injections at the same site may also impair 

absorption and result in variations in the serum levels of the aminoglycosides. 

Peak serum concentrations are generally achieved within 30 to 120 minutes after an 

intramuscular injection. In younger patients with normal renal function the peak 

concentration occurs 30 to 60 minutes after administration with very little variation 

between individuals. In patients older than 40 years the elimination of aminoglycosides 

becomes more variable, with a wider variation in peak times. In patients with renal 

impairment the peak occurs as late as two to three hours after administration. 

Aminoglycosides can also be administered intravenously by bolus injection, by 30 to 60 

minute infusions or by continuous IV infusion but an intermittent infusion over 30 to 

60 minutes is thought to be safer (Rotschafer et al., 1983). 

A higher incidence of toxicity may occur with continuous infusions and besides, the 

relationship between bacterial killing effect and time of exposure to antibiotic indicates 

that aminoglycosides need only be in contact with the bacteria for a very short period 

of time (Zaske, 1986). 

2.6.2 DISTRIBUTION 

Because of their polar nature, the aminoglycosides are largely excluded from most cells, 

the central nervous system and from the eyes. They distribute well into most body fluids 

including synovial, peritoneal, pleural fluids and ascites and slowly into the bile, feces, 

the prostate and amniotic fluid. Binding to serum proteins is less than 10% and is not 

considered to be clinically relevant. These agents cross the placenta and achieve fetal 

serum concentrations of 21 % to 37% of maternal serum concentrations (Zaske, 1986). 

Aminoglycoside antibiotics distribute primarily to a space similar to the extracellular 

fluid compartment. In normal volunteers the extracellular fluid compartment 

approximates 20-25% of body weight. This physiological space is susceptible to changes 

during gram-negative sepsis as a result of e.g. dehydration and congestive heart failure. 

Frequently, patients in the . initial phases of gram-negative sepsis are febrile, vomiting 

and consequently become dehydrated. As a result the extracellular fluid compartment 

and drug distribution are decreased. On the other hand patients who have congestive 

heart failure or peritonitis, patients immediately postpartum and patients receiving 

intravenous hyperalimentation show an increase in distribution volume (Zaske, 1986). 
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The newborn infant with a larger extracellular fluid volume per unit body weight has a 

distribution volume in the range of 50-70% body weight. The distribution volume 

displays marked interpatient variation and may even vary in the same patient during the 

course of therapy with an aminoglycoside. This is especially true for patients who are 

markedly dehydrated in the initial phase of sepsis (small distribution volume) and then 

after administration of intravenous fluids to replace the fluid deficit show an increase in 

distribution volume. 

These changes in distribution volume are independent of any change in renal function 

but will influence the drug's half-life if the total body clearance remains constant. 

Phal'macokinetic model 

Aminoglycoside antibiotics are characterized by linear kinetics and under the right set 

of experimental conditions demonstrate a triphasic decay of serum concentrations with 

time. 

The third phase (confirming the presence of a tissue compartment) can easily be 

demonstrated in patients with compromised renal function . This phase probably results 

from tissue redistribution of aminoglycoside and may explain the accumulation of the 

drug in patients receiving aminoglycosides (Schentag and Jusko, 1977). In a clinical 

setting, however, considering all variables it can be concluded that a one or two 

compartment model will give a reasonable approximation. The infusion rate and serum 

sampling strategies can generally be modified to provide reliable estimates of drug 

elimination and distribution volume with substantially fewer samples. 

2.6.3 ELIMINATION 

Aminoglycosides are eliminated primarily unchanged by the kidney via glomerular 

filtration. Active secretion may account for a small amount of drug elimination. 

Elimination by the kidney accounts for approximately 55-95% of the dose administered. 

Small amounts of these drugs have been found in the bile which thus represents an 

additional route of elimination. 

Wide interpatient variation in elimination exists between patients with normal and 

impaired renal function and this variation is even greater in patients treated for gram­

negative sepsis. In volunteers with normal renal function, the half-life of gentamicin was 

reported to vary between 2.5 and 4 hours and the half-life of amikacin between 0.8 to 
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2.8 hours. When a group of patients with gram-negative sepsis were studied the half-life 

for gentamicin ranged from 0.4-3.27 hours in 855 patients who had normal serum 

creatinine levels. The total body clearance of the aminoglycosides in this group also 

displayed considerable patient to patient variability (Rotschafer et ai., 1983; Zaske et 

ai., 1982). 

2.6.4 Factors influencing the pharmacokinetic parameters of 

aminoglycosides 

• Renal function 

In patients with normal renal function the variation in elimination of 

aminoglycoside can be explained by the small variations in renal function. On the 

other hand only 50% of variation in elimination can be explained by the difference 

in renal function in a population with sepsis (Kaye et ai., 1974; Barza et aI., 1975). 

In patients with sepsis the variation in plasma amino glycoside levels are therefore 

not totally the result of differences in renal function which further complicates the 

dosing regimen of patients with gram-negative bacteremia. 

• Age 

In healthy adults cardiac output, renal blood flow, and glomerular filtration decrease 

with increasing age. The rate of amino glycoside elimination (primarily cleared by 

glomerular filtration) therefore continually decreases with increasing age. 

Endogenous production of creatinine decreases with increasing age, and serum 

creatinine concentrations may be a misleading indicator of glomerular filtration and 

amino glycoside elimination. 

• Distribution volume 

Different disease states can either increase or decrease the distribution volume of the 

aminoglycosides. Edema and congestive heart failure increase the volume of 

distribution while this volume can decrease in patients who are dehydrated. For the 

aminoglycosides there is a significant relationship between half-life and distribution 

volume. The distribution volume is probably a physiological marker of the 

extracellular fluid compartment and when either the elimination rate increases or the 

half-life diminishes, it is an indication that the distribution volume has decreased or 

that the CI has increased. Elderly people who develop severe gram-negative sepsis 
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may develop congestive heart failure and the increase in extracellular fluid and the 

edema may result in a higher distribution volume and half-life of aminoglycosides 

(SandIe and Mandell, 1985). 

• Fever 

Fever also seems to be an important factor influencing the serum concentrations and 

elimination of aminoglycosides . In dogs pretreated with endotoxin, a 25% decrease 

in serum gentamicin concentrations was observed at 60 minutes post-injection 

suggesting an increase in elimination rate (Zaske, 1986). In sick febrile human 

volunteers, serum concentrations of gentamicin were reduced by 40% at one, two 

and three hours after intramuscular injection. Physiologically, fever may change the 

elimination of aminoglycosides by increasing heart rate and cardiac output thereby 

increasing renal blood flow and glomerular filtration. 

• I deal body weight 

Due to their polar nature aminoglycosides were originally thought to distribute 

solely into ideal body mass, and prediction of serum concentrations was thought to 

be improved if methods used ideal body weight rather than total body weight. Later 

data suggested that these agents also distribute into adipose tissue (Bauer et al., 

1980). Gentamicin was found to distribute into 5-6% of excess weight. Thus the 

drug's distribution volume increases with excess weight, presumably due to 

distribution into the extracellular water within adipose tissue. 

• Gender 

The elimination rate constant and clearance of aminoglycosides were significantly 

faster in females than in males. Similarly half-lives were shorter and distribution 

volumes were smaller in females than in males (Zaske,1986). 

• Pregnancy 

The extracellular fluid compartment, total body water, cardiac output, renal blood 

flow, and glomerular filtration are all increased during the later phase of pregnancy. 

The equilibrium is usually reestablished two to five days after delivery. As 

aminogJycosides distribute into the extracellular fluid and are dependent upon 

glomerular filtration for excretion, their serum concentrations are markedly 
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influenced by pregnancy. During pregnancy the half-life of aminoglycosides was 

reported to be shortened (Zaske et al., 1980). 

• Burn patients 

The caloric expenditure of burn patients can be as high as 10 000 calories daily and 

can even be higher with concurrent gram-negative sepsis and fever. Hemodynamic 

changes secondary to burn wounds appear to explain why burn patients have an 

extremely rapid rate of elimination of aminoglycosides. In addition, the extracellular 

fluid compartment in burn patients can be markedly enlarged immediately after the 

injury. Consequently, the occasional burn patient who develops gram negative 

sepsis early in the course of resuscitation may have an extremely high distribution 

volume and a prolonged half-life, even though renal function tests are normal 

(Zaske, 1986). 

• Paediatric patients 

The elimination rate of aminoglycosides in paediatric patients is rapid and the half­

life is shorter than in adults. This rapid rate of elimination is even more apparent 

in paediatric patients with cystic fibrosis, burns or leukemia. 

• Ascites 

An expanded extracellular fluid volume explains the increase in distribution volume 

of aminoglycosides in patients with ascites. The aminoglycosides distribute rapidly 

into the ascites fluid, and a large loading dose is necessary to achieve therapeutic 

serum levels. The half-lives of aminoglycosides are prolonged in these patients due 

to the large extravascular distribution volume. 

• Surgical patients 

Surgical patients after trauma or patients with peritonitis, or pancreatic pseudocyst, 

have marked changes in the physiological parameters which affect the disposition 

of aminoglycoside antibiotics. Surgical patients may also be hypermetabolic 

secondary to trauma or surgical intervention resulting in an increased elimination 

rate of aminoglycosides. These changes have a substantial effect on the clearance 

of aminoglycosides with consequent marked variations in plasma levels (Schentag 

and lusko, 1977). 



70 

• Neonates 

In the newborn, especially the premature patient dynamic changes occur in 

physiologic parameters such as cardiac output, renal blood flow, renal function and 

extracellular fluid volume. The glomerular filtration remains relatively constant at 

low rates until 34 weeks of gestation (coinciding with the completion of glomerulus 

formation) after which it increases. The increase in glomerular filtration rate is 

therefore dependent on postconceptual rather than postnatal age. Hindmarsh et 

al. (1983) studied gentamicin kinetics in very low birthweight infants who required 

2 to 3 successive courses of gentamicin for suspected sepsis. The mean postnatal 

ages at the time of second and third administration periods were 19 ± 9 and 68 ± 

26 days, respectively. Gentamicin clearance was found to correlate well with 

creatinine clearance and with postconceptual age during all 3 administration 

periods. The mean clearance values for the 3 age groups were 0.38 ± 0.14, 0.44 ± 

0.18; and 1.21 ± 0.39 me/kg/min, respectively. The clearance in the infants with a 

mean postnatal age of 68 days was significantly greater than in the other age groups, 

whereas a statistically significant difference was not observed between the infants 

studied at birth and at 19 days of age. The t%~ of the aminoglycosides varies 

inversely with renal clearance, gestational age, and postconceptual age. Gentamicin 

half-lives of 8.86,6.62 and 5.12 hours in infants of post- conceptual ages 30 weeks 

or less, 40 to 37 weeks, and 37 weeks or more, respectively were reported (Besunder 

el al., 1988(a); Besunder el al .. 1988(b); Szefler et al., 1980). 
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3. METHODOLOGY 

The population pharmacokinetics of aminoglycosides and cefotaxime, a third generation 

cephalosporin, used in the treatment of gram negative bacteremia were determined. 

3.1 PATIENT DATA COLLECTION 

Neonates and adults with gram negative bacteremia were investigated. The study was 

performed at Baragwanath Hospital and approved by the Ethics Committee of the 

hospital. The blood samples were collected between January 1987 and June 1988. The 

following data relevant to pharmacokinetic principles were obtained from the medical 

records of patients: 

3.1.1 Adult population 

• Underlying disease 

• Age 

• Sex 

• Weight 

• Serum creatinine concentration 

3.1.2 Neonatal population 

• Age (gestational and postnatal) 

• Sex 

• Weight 

• Height 

• Serum creatinine concentration 

Inclusion criteria were as follows: 
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• Diagnoses 

Only patients in whom the diagnosis of a gram negative bacteremia was confirmed by a 

positive blood culture were included in the study. 

• Hospital status 

Only patients hospitalized In the neonatal intensive care unit (neonates) or In the 

medical wards (adults) of Baragwanath Hospital were included in the study. 

• Sex 

Both males and females were included in the study. 

• Age 

Premature infants (gestational age from 28 tot 33 weeks and postnatal age from 4 ,to 23 

days) were included in the neonatal popUlation. The adult popUlation included only 

patients over the age of 20 years. 

• Informed consent 

Informed consent was obtained from the adults and the parents of the infants included 

in the study. 

3.2 COLLECTION OF PLASMA SAMPLES FOR THE 

DETERMINATION OF ANTIBIOTIC LEVELS 

• Antibiotic therapy 

The neonates received amikacin (amino glycoside) and cefotaxime (third generation 

cephalosporin). The adults received gentamicin (aminoglycoside). 

• Route of administration 

The antibiotics were administered intravenously and intramuscularly respectively to the 

neonates and the adults. 

• Dosing regimens 
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Amikacin 15mg/kg/day was administered in divided doses at 12 or 8 hourly intervals. 

The dosing interval was determined by the renal status of the patient. Scr 

concentrations are routinely used in the adjustment of aminoglycoside blood levels. Scr 

concentrations do not reflect renal function · as accurately as creatinine clearance. 

Creatinine clearance determinations do however require the collection of a 24 hour urine 

specimen which was not practical in the present study. When the serum creatinine level 

therefore exceeded normal values the dosing interval was increased from 8 to 12 hours. 

Cefotaxime 100mg/kg/day was administered in divided doses. 

Gentamicin 3 or 4 mg/kg/day was administered in divided doses at 8 or 12 hourly inter­

vals. The normal dosing interval was 8 hours but if the serum creatinine value exceeded 

the normal 80 - 120 Ilmol/l range, the dosing interval was increased to 12 hours. 

• Plasma sample size 

Five rnl and 2 rnl samples were collected from the adults and neonates respectively. 

• Plasma sample collection protocols 

Blood for determination of amikacin and gentamicin levels was drawn routinely when 

toxicity was suspected or when the clinical response was unsatisfactorily. The standard 

protocol for the collection of amino glycoside plasma levels at the Baragwanath Hospital 

was therefore used. Cefotaxime plasma levels were collected for research purposes and 

therefore a specific protocol was drawn up for this drug. The following requirements 

were set out in the protocols: 

AMINOGLYCOSIDES 

• 

• 

Blood samples were drawn only after steady state had been reached usually after 3 

doses. 

Two samples, a peak (one hour after dosing) and trough level (just before the next 

dose) were collected. The peak level was standardized as one hour after the dose so 

that it would be appropriate to both the I.M. and 5 minute I.V. bolus methods of 

administration . 

. CEFOTAXIME 

• Blood samples were drawn only after steady state had been reached. This was 

usually after 3 doses of the drug had been administered at six hourly intervals. 
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• Three samples, at an half an hour after dosing, 3 hours after dosing and 6 hours after 

dosing were collected. 

• Provided that the clinical status of the patient allowed blood collection two mt 

samples were collected at each sampling time. 

3.3 DETERMINATION OF PLASMA CONCENTRATIONS OF 

DRUGS 

• A high pressure liquid chromatographic (HPLC) method was used to determine 

ccfotaxime concentrations. 

This method was developed by Dr. Seifart (Department Pharmacology, Tygerberg 

Hospital). The validation of the method and the determinations of cefotaxime levels 

were carried out by them at Tygerberg Hospital. The procedures used in the HPLC 

assay and a characteristic HPLC chromatogram of one of the samples are shown in 

Appendix A. 

• An enzyme immunoassay method (EMIT) was used to determine amikacin and 

gentamicin concentrations (Eppel, 1978). 

The EMIT assay which is commercially available is a homogenous enzyme 

immunoassay technique used for the analysis of low concentrations of specific 

compounds in biological fluids . Sensitivity with a coefficient ofvariation(CV) as low 

as 10% is reported for the EM IT assay. Concentrations as low as 0.1 J1g/mt for 

gentamicin and 1 I-lg/mi for amikacin are measurable with the 'EMIT method. 

3.4 STATISTICAL ANALYSIS OF DATA WITH NONMEM 

The popUlation pharmacokinetic analysis was performed on a main frame computer 

(ICL 2988) at the Unversity of Durban-Westville using Double Precision NONMEM 

77 - version II level 1.4 together with the PREDPP package (ADVAN 1, ADVAN 2, 

TRANS 2 and SS2) (Beal and Sheiner, 1980-1986) 
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3.4.1 Pharmacokinetic models utilized during analyses 

3.4.1.1 Amikacin and cefotaxime 

Amikacin and cefotaxime were administered as bolus intravenous injections. The time 

course of the plasma concentrations of these drugs can be adequately described by an 

one compartment open linear model with first order absorption where: 

D -k e 
Cp = Vd 1 -kr -e 

(b.4) 

D -kr e 
Cm = Vd I -kr -e 

(b.5) 

Cp peak plasma concentration 

Cm = trough plasma concentration 

D = dose 

Vd = volume of distribution 

T = dosing interval 

k = CI 
Vd 

CI clearance 

3.4.1.2 Gentamicin 

Gentamicin was administered as an intramuscular injection. The time course of the 

plasma concentration for gentamicin can be adequately described by an one 

compartment open model with first order absorption: 

C ka . D ( -kt - -kat) 
p = V d (ka _ k) . e e (b.6) 

Cp = peak 

D = dose 

ka = absorption constant 

Vd = volume of distribution 

k = CI 
Vd 

CI clearance 
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3.4.2 Statistical models utilized during analyses 

3.4.2.1 Interbtdividual variability (,,) 

The error structures for interindividual variability (1]) can be described either by an 

exponential or an additive model. With the exponential model it is assumed that the 

variability in pharmacokinetic parameters are distributed in a log normal fashion. I t has 

previously been shown that a log normal rather than a normal distribution describes the 

1] appropriately since the distributions of individual parameters in a patient population 

are generally skewed (Grevel et al., 1988). Other advantages of an exponential error 

model are the following: 

• The individual fixed parameters will always be positive and greater than zero. 

• If a symmetrical distribution is assumed, the distribution of individual parameters 

is skewed to the right, which enables a more conservative prediction of plasma levels 

(i.e. a prediction which is always slightly higher than the actual measured level) 

(Sheiner and Beal, 1980). 

For the reasons set out above it was decided to implement the exponential error model 

in the present study. The error models for interindividual variability in, for example, the 

jth individual were: 

(b.7) 

(b.B) 

(b.9) 

Where 1] has a mean value of zero and variance 1](J2. Due to the exponential nature of 

the error model the interindividual variance was given as a variance (J2 and was 

documented as coefficient of variation. 

3.4.2.2 Intraindividual variation (£) 

The intraindividual variation (£) or residual variability in the ith concentration of the jth 

individual was modelled as follows: 
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CijO = Cij . exp(f:ij) (b. 10) 

CijO = measured concentration 

Cij = predicted concentration 

f:lJ = Independent statistical error between individual j and the 

specific plasma concentration ij. Where f: has a mean value of zero and variance of w ·2 

(expressed as .J02 x 100 in results). 

This intraindividual error model allows for: 

• all uncertainty caused by intraindividual time variation in Clj and V dj . 

• pharmacokinetic model misspecifications 

• analytical error in Cijo 

• error in Cij. 

The standard error (SE) of the parameters CI, Vd and Ka and the variances (SE var), 

0 2 and n were estimated by NONMEM. The standard error of the inter- and 

intraindividual variability was approximated using equation b.ll 

SEvar = .J02 + SFvar - .J02 

SE = (SEvar). 100 
8 1 

3.4.3 NONMEM regression models 

(b. 11 ) 

The purpose of the analysis was to relate CI and Vd to relevant patient characteristics. 

The following models were therefore implemented: 

1. CI = 91 

Vd = 92 . 

2. CI = 91 ·WT 

Vd = 92 

3. CI = 01 

Vd = 92 , WT 



4. Cl = el • WT 

Vd = e2 , WT 

5. Cl = (el,WT + e3,Scr) 

Vd = e2 ,WT 

6. CI = el , BSA 
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Vd = el 'BSA (only for amikacin and cefatoxime) 

7. CI = el ,POST 

Vd = e2 (cefotaxime only) 

8. CI = (el 'WT) + (e3'POST) (Cefotaxime only) 

Vd = e2 ,WT 

WT = weight 

Scr = serum creatinine 

BSA = body surface area 

POST = postnatal age 

e3 Ka Additive for gentamicin in models 1 to 5. 

3.4.4 Criteria for testing superiority of one model over another 

(Grevel et al., 1988) 

• Each NONMEM run provides in its output the value of its objective function, which 

is 2 times the negative logarithm of the likelihood function. The difference in the 

objective function (DOBF) obtained is approximately chi square distributed with 

degrees of freedom equal to the number of fixed parameters minus one. For 

cefotaxime and amikacin (2 fixed effect parameters) a DOBF of more than 3.8 (p 

< 0,05) was regarded as significant and for gentamicin (3 fixed effect parameters) a 

DOBF of more than 8 (p < 0.005) was regarded as significant. 

• A lack of correlation between parameters by inspection of the correlation matrix of 

the estimate provided in the NONMEM output. 

• Small standard errors of estimates. 
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• Weighted residuals which are randomly scattered around zero when plotted against 

the predicted concentration. 

• Smaller inter-individual variances. 
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4. RESULTS 

4.1 CLINICAL AND THERAPEUTIC DATA 

The clinical data used for population parameter estimations are summarized in tables 

B.l and B.2. 

Data from the neonatal population on cefotaxime and amikacin are presented in table 

B.l. Eleven infants received both amikacin and cefotaxime while one received 

cefotaxime only. Amikacin was administered as 15 mg/kg/day in divided doses at 12 

hourly intervals to 10 patients and at 8 hourly intervals to one patient. Cerotaxime was 

administered as 100 mg/kg/day in divided doses at 6, 8 or 12 hourly intervals. 

Gestational ages varied from 28 to 34 weeks (a verage 31.1 ± 1.9) and postnatal age from 

4 to 23 days (average 11.6 ± 5.8). Five patients displayed an elevated white blood cell 

count (higher than 10,000 mm3
). Serum creatinine concentrations varied from 39 to 86 

Ilmol/t with an average of 65 ± 14.7llmoljt The average height was 36.7 ± 3.6 cm (30 

to 44 cm) and the average weight was 1.4 ± 0.3 kg (0.930 to 1.765 kg). Forty-six plasma 

samples were collected for analysis (25 for cefotaxime and 21 for amikacin levels.) Two 

peak level samples (after one hour) with concentrations of 34.2 and 22.9 Ilg/mt were 

collected for amikacin and 4 peak level samples (after half an hour) with an average 

concentration of 123.0 ± 9.7 Ilg/mt (112.8 to 136.16 Ilg/mt) for cefotaxime. 

Table B.2 summarizes the data from the adult population receiving gentamicin: Eleven 

patients (7 females and 4 males) were included in the study. Age varied from 21 to 70 

years (43.6 ± 18.2 years) and weight from 46 to 79 kg (61.5 ± 9.1 kg). Ten of the 11 

patients had an elevated white blood cell count. The serum creatinine concentration 

varied from 52 to 187 Ilmoljt with an average of 102.0 ± 34.2 tlmoljt Twenty eight 

plasma levels were collected. Of these, nine were peak levels (after one hour) which 

varied from 3.5 to 6.3 Ilg/mt (average 4.9 ± 1.1 Ilg/mt). Only one patient had a trough 

level concentration higher than 2Ilg/mt. 



TABLE B.1 

Clinical profiles from neonates on amikacin and cerotaxime treatment 

wac 

(1 03 cells 
GA PA 

/mm2) 
Ser Height Weight 

Patients (weeks) (days) (,umolli) Urea (em) (kg) Drug 

1 32 10 8.5 51 1.6 37 1.305 Cefotaxime 

Amikacin 

2 28 11 11.3 72 8.1 37 1.230 Cefotaxlme 

Amikacin 

3 28 6 8.3 78 5.9 34 1.140 Cefotaxime 

Amikacin 

4 32 19 9.9 50 3.7 40 1.765 Cefotaxime 

Amikacin 

5 32 10 9.5 39 3.3 44 . 1.470 Cefotaxime 

Amikacin 

6 32 4 30.7 63 4.8 37 1.260 Cefotaxime 

Amikacin 

- -

Dosing 
Dose Interval 
(mg) (hours) 

70 12 

10 12 

60 12 

20 12 

60 12 

8 12 

45 6 

12 12 

35 6 

11 12 

32 6 

10 12 

Sample 
time 

(hours) 

3.03 
6.00 

3.00 
6.00 

0.53 
3.53 
5.00 

0.53 
3.52 

0.52 

0.52 
6.0 

2.42 
5.02 
6.00 

0.53 
1.90 
3.00 

2.92 
6.00 

3.50 
9.00 

0.50 
3.50 

0.50 
3.50 

Cone. 
(pg/mi) 

58.32 ' 
27.68 

6.5 
4.0 

121.76 
87.35 
33.82 

24.6 
6.2 

136.16 

31.4 
6.5 

55.28 
35.77 
22.41 

24.2 
14.9 
7.5 

23.43 
11.05 

9.1 
2.0 

121 .29 
24.06 

27.4 
14.4 

CD ..... 



TABLE B.1 (con!.) 

Clinical profiles from neonates on amikacin and cefotaxime treatment 

, .. &.Hoi • ., ....... -

Patients 

GA 

WBC 

7 

8 

9 

10 

11 

12 

GA PA 
(weeks) (days) 

32 9 

29 6 

32 23 

32 17 

30 9 

34 15 

Gestational age 

White blood cell count 

Conc. Concentration 

wec 

(1 03 
C ells 

/mm2) 
. --_. 

9.1 

10.5 

11 .5 

12.0 

5.0 

5.3 

Scr 
lumolli) 

86 

52 

70 

64 

85 

70 

PA 

Scr 

Height 
Urea (cm) 

4.8 36 

3.6 32 

3.2 30 

3.0 39 

1.5 37 

1.0 37 

Postnatal age 

Serum creatinine 

Weight 
(kg) Drug 

1.40 Cefotaxime 

Amikacin 

1.120 Cefotaxime 

Amikacin 

0.930 Cefotaxime 

Amikaxin 

1.600 Cefotaxime 

Amikacin 

1.740 Cefotaxime 

Amikacin 

1.400 Cefotaxime 

Dosing 
Dose interval 
(mg) (hours) 

70 12 

10 12 

35 8 

8 12 

25 6 

7 12 

75 6 

10 12 

60 12 

8 8 

60 12 

Sample 
time 

(hours) 

3.02 
4.03 

11.75 

1.50 

3.00 
6.00 

0.50 
6.52 

0.92 

0.92 

4.00 

0 .92 
4.00 

3.58 
4.02 

0.50 
1.00 

0.52 
3.03 
6.C2 

Conc. 
lug/mil 

84.68 ' 
58 .08 
9.31 

19.6 

57.49 
12.87 

27.8 
10.0 

86.05 

34.2 

21 .77 

22.9 
7.0 

46.45 
43 .58 

28.0 
23.5 

112.80 
47.00 
15.75 

Q) 
!\oJ 



TABLE B.2 

Clinical profiles from adult patients on gentamicin treatment 

.. 
wec 

'Age 
(103cells/mm2) 

Ser Weight 
Patients (years) Sex (.umollt) (kg) 

1 67 F 6.9 72 58 

2 70 F 15.4 105 46 

3 45 M 15.0 116 72 

4 21 F 13.6 95 61 

5 21 M 10.4 52 60 

6 44 F 20.7 115 60 

7 57 F 14.0 79 62 

8 29 F 11.1 103 79 

9 31 F 18.0 187 65 

10 32 M 18.1 105 63 

11 63 M 19.1 93 50 

WBC White blood cell count 
Scr Serum creatinine concentration 

Dosing 
Dose interval 
(mg) (hours) 

80 8 

80 12 

80 8 

80 8 

80 8 

80 8 

80 8 

120 8 

60 12 

80 8 

80 8 

Sample 
time 

(hours) 

1.00 
7.75 

0.25 
0.50 

11.75 

1.00 
7.98 

0.98 
7.98 

1.03 
7.98 

1.03 
7.75 

0.25 
0.50 
1.00 
7.75 

1.00 
1.54 
6.03 
7.98 

0.98 
11 .75 

0.25 
0.50 
7.75 

7.98 
0.98 

Cone. 
(.ug/mt) 

6.2 
1.5 

7.1 
8.5 
2.4 

6.3 
0.9 

4.5 
0.4 

6.0 
0.4 

5.1 
0.4 

2.2 
3.4 
4.3 
0.2 

3.7 
3.2 
1.9 
1.1 

4.4 
0.1 

3.8 
6.4 
0.4 

0.9 
3.5 

~ 
w 
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4.2 NONMEM DATA ANALYSES 

4.2.1 Amikacin 

The different models used and the hypothesis testing applied in the NONMEM data 

analysis are presented in tables B.3 and B.4. 

Model 1 serves as the basis of all comparisons and is modeled simply as an average CI 

and Vd with differences between subjects ascribed to inter-individual variation. 

Adjusting CI for weight (Model 2) significantly decreased the unexplained intersubject 

variation (DOBF = 8.74). Adjusting Vd for weight (model 3) similarly significantly 

decreased the OBF (DOBF = 5.6). When both Cl and Vd were adjusted for weight 

simultaneously (model 6) the decrease in OBF was significant when compared to model 

I (2 degrees of freedom) and model 3 (I degree of freedom) but not when compared to 

model 2. However, model 6 was better than model 2 on the grounds of a reduction in 

the intersubject variation of 3.8% to 2.5%. 

The use of BSA (model 4) instead of weight (model 6) to adjust CI and Vd did not 

significantly decrease the OBF. The inclusion of serum creatinine in addition to weight 

(model 5) did not decrease the OBF significantly (model 6). The interindividual variation 

('7) for V d remained approximately constant in all the models and even increased in the 

model where Vd was corrected for weight (model 3). The intra individual variation (E) 

decreased when both Cl and Vd were corrected for weight or BSA (27 to 21%). 
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TABLE B.3 

Influence of different factors on amikacin clearance (CI) and volume of distribution (Vd) 

ID Model OBF CI " (%) Vd " (%) {; (%) 

I Cl = 8\ (i/h) 100.10 0.0947 27 0.304 39 27.0 
Vd = 8 2 (i) 

2 Cl = 8\* WT 91.36 0.0706 3.8 0.303 30 26 
(i/h/kg) 
Vd = 8 2 (i) 

3 CI = 8\ (i/hr) 94.50 0.0683 25.0 0.249 49 21 
Vd = 9 l * WT 
(i/kg) 

4 Cl = 8\ * BSA 87.57 0.8470 1.1 2.920 37 20.6 
(i/hr/I.73 m2) 
Vd = 8 l * BSA 

5 CI = [(8\* WT) + 86.86 8\ = 14.5 0.259 36 20 
(83*Scr)] (i/h/kg) 0.117 
Vd = 8 l * WT 8 3 = 
(i/kg) 0.071 

6 CI = 8\ * WT 89.45 0.0683 2.5 0.238 38 21 
(i/h/kg) (0.0102) (54.6) (0.024) (26) (25) 
Vd = 8 l * WT 
(i/kg) 

*Standard error is shown in parenthesis 

TABLE B.4 

Hypothesis testing for amikacin 

Models 
ID Hypothesis compared DOBF p ~ value Conclusion 

1 Did WT influence Cl alone? I + 2 8.74 P < 0.05 Yes 

2 Did WT influence V d alone ? 1+3 5.6 P < 0.05 Yes 

3 Did WT influence both Cl 1 + 6 10.65 P < 0.05 Yes 
and Vd? 

4 Did BSA influence Cl and V d? 1 + 4 12.53 P < 0.05 Yes 

5 Did Scr influence Cl ? 5 + 6 2.59 0.2< p<O.1 No 

6 Did BSA influence CI and V d 4 + 6 1.88 0.2< p< 0.1 No 
more than WT ? 
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4.2.2 Cefotaxime 

The different models used and the hypothesis testing applied in the NONMEM data 

analysis are presented in tables 13.5 and B.6. Model I serves as the basis of all 

comparisons and is modeled simply as an average CL and Vd with differences between 

subjects ascribed to inter-individual variation. Adjusting CI [or weight (model 2), Vd for 

weight (model 3) or CI for postnatal age (model 4) did not significantly decrease the 

OBr. When both Cl and Vd were adjusted simultaneously for weight (model 7) or 13SA 

(model 6) the decrease in 013F was significant when compared to model 1 (2 degrees of 

freedom). The inclusion of serum creatinine in addition to weight (model 5) did not 

decrease the 013F of models 6 or 7 significantly. 

The '1 for Vd decreased when CI was corrected for postnatal age (model 4), stayed the 

same when both CI and Vd were corrected for 13SA (model G) and increased in all the 

other models. From these results it was not possible to obtain a standard error for the 

Vd parameter. This suggests that either the difference in the popUlation was too small 

or that not enough information regarding the standard error could be obtained from the 

data. 
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TABLE B.S 

Influence of different factors on clearance (el) and volume of distribution (Vd) of 

cefotaxime 

ID Model OBF el " (0/0) Vd " (%) E (0/0) 

1 Cl = 8 1 (f/h) 159.08 0.121 8.60 0.392 9.9 28.8 

Vd = 8 2 (f) 

2 Cl = 8 1* WT 155.92 0.089 2.26 0.425 17.5 24.7 

(f/h/kg) 
Vd ~ 8 2 (f) 

3 Cl = 8 1 (f/h) 157.56 0.1260 11.4 0.296 10.3 26.8 
Vd = 8 2* WT 
(f/kg) 

4 Cl = 8 1 * POST 158.94 0.115 12.0 0.390 4.5 29.0 
(f/h/age) 
Vd = 8 2 (f) 

5 Cl = [(81* WT) + 151.479 8 1 = 13.3 0.311 13.3 23.0 
(83 *Scr)]( f/h/kg) 0.0911 
Vd = 8 2* WT 8 3 = 
(f/kg) 0.00007 

6 Cl = 8 1 * BSA 151.605 1.1203 8.75 3.750 9.6 24.7 
Vd = 8 2 '" BSA 

7 Cl = 8 1 * WT 151.483 0.0919 15.3 0.312 14 23.4 
(f/h/kg) (0.0053) (22) (0.019) (neg = (16) 
Vd = 8 2 * WT lible) 
(f/kg) 

"'standard error is shown in parenthesis 

TABLE B.6 

Hypothesis testing for cefotaxime 

Models 
ID Hypothesis compared DOBF p - value eonclusiol1 

1 Did WT influence Cl alone? 1 + 2 3.16 0.1 < p < 0.05 No 

2 Did WT influence V d alone? 1 + 3 1.52 P < 0.1 No 

3 Did POST influence Cl ? 1 + 4 0.14 P < 0.1 No 

4 Did WT influence CI and V d? 1 + 7 7.6 P < 0.05 Yes 

5 Did BSA influence Cl and V d 6 + 7 0.0 P < 0.1 No 
more than weight? 

5 Did Scr influence Cl ? 5 + 7 0.0 p < 0.1 No 
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4.2.3 Gentamicin 

The different models used and the hypothesis testing applied in the NONMEM data 

analysis are presented in tables B.7 and B.8. Model I serves as the basis of all 

comparisons and is modeled simply as an average CL and Vd with differences between 

subjects ascribed to inter-individual variation. Adjusting CI for weight (model 5) 

significantly decreases the unexplained intersubject variation (DOIH' - 10.78). When 

both Cl and Vd were adjusted for weight simultaneously (model 3) the decrease in onr 
was significant when compared to mode I (2 degrees of freedom). When Vd was 

however adjusted for weight (model 2) the onr increased. The inclusion of serum 

creatinine in addition to weight (model 4) did not decrease the onr of either model 3 

or 5 significantly. 

The 11 for CI decreased markedly when CI was corrected for weight (59 versus 25%). 

Due to limited data regarding Vd it was not possible to obtain a 11 value for Yd. The E 

value decreased only when Cl alone was corrected for weight (29.4 versus 10%.) 

Due to inadequate data regarding the absorption phase, the absorption constant (Ka) 

was calculated by manual iteration using NONMEM. A value for ka of 2.4 hr- I 

produced the smallest minimum objective function and was subsequently used as fixed 

value in all data analyses. 
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TABLE B.7 

Influence of different factors on clearance (CI) and volume of distribution (Vd) of 

gentamicin 

ID Model OBF 

1 C1 = 8 1 (t/h) 51.41 
Vd = 8 2 (t) 

2 Cl = 8 1 (t/h) 55.53 
Vd = 8 2* WT 
(t/kg) 

3 CI = 8 1* WT 42.83 
(t/h/kg) 
Vd = 8 2* WT 
(t/kg) 

4 C1 = [(81* WT) + 40.63 
(83 *Scr)J( t/h.kg) 
Vd = 8 2* WT 
(t/kg) 

5 C1 = 8 1 * WT 40.63 
(f./h/kg) 
Vd = 8 2 (f.) 

*standard error is shown in parenthesis 

8 3 = Ka was fixed at 2.4 

'1 was unobtainable for 8 2 

TABLE B.8 

Hypothesis testing for gentamicin 

Models 

CI 

3.22 

0.223 

0.0544 

8 1 = 
0.0619 
8 3 = 

0.0028 

0.0588 
(0.008) 

ID Hypothesis compared DOBF 

1 Did WT influence CI alone? 1 + 5 lO.78 

2 Did WT influence Vd 1+2 4.12 
alone? (increase) 

3 Did WT influence CI and 1 + 3 8.58 
Vd? 

4 Did Scr influence Cl? 3 + 4 2.20 

" (%) Vd E (%) 

59 12.80 29.4 

57 0.223 25.7 

44 0.218 28.7 

40 0.218 32.8 

25 12.5 lO 
(20) (1.51 ) (17) 

p - value Conclusion 

P < 0.05 Yes 

unobtainable No 

P < 0.05 Yes 

0.4 < P < 0.3 No 
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5. DISCUSSION 

The best fit of the model to the data was obtained when both Vd and Cl were adjusted 

for either weight or body surface area (BSA). Since BSA and weight are equally good 

predictors of clearance it would be more convenient simply to use weight. The inability 

of serum creatinine levels to improve the prediction of CI further in a neonatal 

population was also documented by Kelman et at. (1984). Reasons for this could be the 

homogeneous nature of serum creatinine concentrations in the specific popUlation or the 

fact that serum creatinine is not a true ref1ection of kidney function below 35 weeks ge­

station. 

A CI value of 0.847/t/h/ 1.73 m2
, approximately 50% lower than reported values, was 

obtained in this study (Kasik et at., 1985). In a study where only postnatal and not 

postconceptual age was documented, CI values of 1.35/t/h/ l.73 m2 and 1.48/t/h/1.73 

m2 were reported for infants younger than 1 week weighing less than 2000 g and infants 

older than 1 week weighing more than 2000 g respectively (Zaske, 1986). The direct 

correlation between renal clearance of drugs and postconceptual age has been ascribed 

to immaturity of the glomeruli until 35 weeks of gestation (Kasik et at., 1985). 

The popUlation studied in the present investigation had an average gestational age of 

31 ± 1.9 weeks (range 28-34 weeks) which suggests that the glomeruli were not yet fully 

developed. The difference in gestational age may explain the discrepancy between 

clearance values reported in other studies and the values obtained in the present study. 

The volume of distribution in the present study was 0.238 ± 38% t/kg compared to a 

value of 0.45 ± 40% t/kg reported for a postnatal age of 1-2 weeks (Zaske, 1986). 

Furthermore, for infants of gestational age of less than 32 weeks the Vd for most drugs 

appear to be larger than 0.4 t/kg and only approaches a value of 0.25 t/kg at an age of 

3 months after birth (Kelman et at., 1984; Kasik et a/., 1985). 

The infants in the present study were acutely ill with gram negative bacteremia which 

was associated with fever and dehydration. The latter could account for the observed 

lower Vd. In a study by Marik et at .. (1990) a Vd value of 0.58 t/kg was reported for 

neonates with bacteremia at Baragwananth Hospital which compares favourably with 

the results of the present study. 
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5.2 CEFOTAXIME 

The best fit of the model to the data for cefotaxime was obtained when both Vd and CI 

were adjusted for either weight or BSA, just as for amikacin. Since BSA and weight are 

equally good predictors of clearance it would be more convenient simply to use weight. 

Serum creatinine levels was also unable to improve the prediction of CI further and again 

correlates with the findings by Kelman et al. (1984). The CI value of 0.0919(0.0053) 

t/h/kg in the present study compared favourably to the CI value of 0.074(0.003) t/h/kg 

reported by Kearns et al. (1989) and can be related to the fact that gestational age was 

similar in both instances. In the Kearns study the average postconceptual age was 28.4 

weeks and in the present study 31 weeks. The slightly higher value of 0.0919 can be 

explained by the older age of the study popUlation group. The standard error was 0.003 

and 0.005 respectively for Kearns and the present study. The strength of a NONMEM 

analyses featured strongly with this observation if it is kept in mind that the present 

analysis was performed on routinely collected data (maximum of three samples) in 

comparison with 10 samples over a 12 hour period in the Kearns study. The CI (1.5 

rnI/min) obtained in the present study corresponds to expected values of 2 to 3 ml/min 

for glomerular filtration rate in neonates under 34 weeks of gestation. This suggests that 

glomerular filtration and possibly active renal tubular. secretion were primarily 

responsible for the CI of cefotaxime (McCracken et al., 1982). 

The V d value of 0.312 (0.019) t/kg was also in keeping with literature reports (Balant 

et al., 1985; Kearns et al,. 1989). The larger Vd in neonates compared to adults 

suggests that the dosing interval in neonates can be increased because of the associated 

longer half-life of the drug. 

5.3 GENTAMICIN 

The best fit of the model to the data for gentamicin was obtained when CI was adjusted 

for weight alone or both weight and serum creatinine. Unlike weight alone serum 

creatinine was however unable to improve the prediction of CI further. This observation 

that serum creatinine did not improve CI predictions was contrary to literature reports 

(Rodvold et al., 1990). The small population group and homogenous nature of serum 

creatinine concentrations could account for this discrepancy. Only one patient in the 

group, with a serum creatinine value of 163 jlmolj t, had a degree of renal failure. When 

no variation in a particular parameter is present the parameter becomes less relevant. 
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To obtain a true reflection of the role of serum creatinine values more patients with 

impaired renal function need to be investigated. 

It was therefore difficult to compare the Cl value of this study with values reported in 

the literature where serum creatinine clearance were incorporated in the calculations: 

• 0.815 Clcf + 0.0417 (mi/min/kg) (Rodvold, 1990). 

• 0.73 Clc. + 0.06 (mt/min/kg) (Benet and Sheiner, 1985). 

In the present study a CI parameter could be calculated according to the formula (0.0619 

* Wt) + (0.00277 '" Scr). When this Cl value was compared to the Cl values obtained 

according to the formulation of other investigators (Rodvold, 1990; Benet and Sheincr, 

1985) for an average man 60 yrs of age weighing 70 kg and a Scr value of 1 mg %, the 

following Cl values were obtained: 

• Rodvold 3 i/h 

• Benet and Sheiner 2.79 t/h 

• Present study 4.33 i/h. 

The higher CI value for this study can be explained by the fact that all the patients were 

acutely ill with gram negative bacteremia associated with pyrexia. Schentag et al. (1986) 

documented that pyrexia can increased Cl. 

When Vd was corrected for weight a Vd value of 0.218 i/kg was obtained which 

compared favourably with the values of 0.25 t/kg reported in the literature (Rodvold eL 

al., 1990). The OBF value however increased from 51.41 to 55.53 when Vd was corrected 

for weight in the present study. Whiting eL al. (1986) stated that steady state 

concentrations will provide good information about Cl but little about Vd in a 

NONMEM analysis. More blood samples in a drug level profile are therefore required 

for good Vd estimations. 
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6. CONCLUSIONS 

Population parameter values for amikacin and cefotaxime in neonates and for 

gentamicin in an adult bacteremia population were determined in this study. 

Clearance values obtained for cefotaxime and gentamicin but not for amikacin were 

comparable to values reported in the literature. The reason for the discrepancy with 

amikacin was due to the fact that the literature values were not corrected for gestational 

age. The importance of correction of clearance for gestational age featured strongly in 

this study. 

Steady state data in a small population can therefore be sufficient to estimate 

representative clearance values. The strength of NONMEM also featured strongly with 

the similarities obtained between the results in this study and literature reports on single 

dose studies with mUltiple samples. 

The estimation of Vd in all three populations was satisfactorily but interindividual 

variation values and standard errors in V d was not satisfactorily. To be able to calculate 

better Vd values more data is needed and another study designed to collect more blood 

samples over the drug profile will have to be undertaken. 

The similarity of cefotaxime and amikacin parameter values to those reported in the li­

terature suggests that the ideal models of both these drugs can be used in this clinical 

setting. The following models for the prediction of CI and' V d are therefore proposed: 

• Amikacin 

CI (t/h/kg) = 0.0683 . WT 

Vd (t/kg) = 0.238 . WT 

• Cefotaxime 

CI (f/h/kg) = 0.0919 . WT 

Vd (f/kg) = 0.312' WT 

• Gentamicin 

Cl{f/h/kg) = 0.588 . WT 

Vd{t) = 12.5 

in the neonate both drugs are administered rapidly over a few seconds and Cp maximum 

and Cp minimum can be calculated using a bolus model: 



Cpmax 

FD 
V 

1 -b - e 

-b Cpmin = Cp max e 

94 

(b. J 2) 

(b.l3) 

For a neonate of 1.5 kg recelvmg lOmg amikacin 12 hourly a peak of 27l1g/ml and 

trough of 9.8 I1g/ml can be expected. 

With a dose of 50mg cefotaxime a peak of 10911g/ml and trough of 2l1g/mi can be 

expected in the same neonate. 

The population estimates for gentamicin are limited to patients with normal renal 

function and need to be verified in a study where more patients with a broad spectrum 

of serum creatinine values are incorporated. That implies a study where patients with 

some degree of renal failure are included. 
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SECTIONC 

DUAL INDIVIDUALIZATION: 

AN INVESTIGATION INTO PHARMACOKINETIC -

PHARMACODYNAMIC RELATIONSHIPS WHICH MAY 

IMPROVE GENTAMICIN 

THERAPY IN PATIENTS WITH GRAM NEGATIVE 

BACTEREMIA 

1. INTRODUCTION AND OBJECTIVES 

The pharmacokineticists of the 1990's are faced with the challenge of dual 

individualization in the optimization of the treatment of diseases. Dual individualization 

may be defined as the phenomenon whereby both pharmacokinetic and 

pharmacodynamic data are incorporated into the process of dosage adjustment. The 

ultimate goal of dual individualization is to optimize the dosing regimen for an individual 

patient. Such optimization may have a number of advantages including, lowered 

mortality rates, shortened hospitals stays and more cost effective management of 

patients. 

The application of dual individualization to antibiotic therapy is complex because con­

current interrelationships exist among the drug, the host and the causative organism as 

depicted in fig C.l (Schentag et al. , 1986). Aminoglycoside therapy has been vastly 

improved by the current methods of dosage adjustment based upon pharmacokinetic 

prmciples. However, the classical pharmacokinetic approach tends to oversimplify the 

interactions between the causative organism and the host (fig C.l). Present 



96 

aminoglycoside dosage techniques assume .that concentrations within the desired 

therapeutic range kill susceptible bacteria at an equal. rate. Based upon this assumption, 

current dosage individualization considers only pharmacokinetics, efficacy in terms of 

effective range and toxicity. This approach has been studied in detail in patients. Little 

attention has been paid to simultaneous consideration of all variables relevant to drug 

treatment of infection such as pharmacodynamics, resistance, toxicity, host defences and 

pharmacokinetics. It therefore becomes logical to attempt to develop methods whereby 

the concentration dependent effects of the antibiotic on the orgamsm 

(pharmacodynamic parameters) are incorporated in mathematical formulae designed to 

achieve optimum therapy in man. 

The objective of this study was to identify certain pharmacodynamic parameters for 

gentamicin which can be incorporated in mathematical formulae for optimizing dosage 

regimens. These pharmacodynamic parameters were derived from an investigation in 

patients with gram negative bacteremia due to the organisms, K. pneumoniae and E. 

coli. 

Fig C. 1 Schematic 
interaction among 
antibiotic 

Infection 

Host Defence 

representation of 
bacteria, host and 

the 
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2 LITERATURE REVIEW 

2.1 PHARMACODYNAMIC MODELING 

(Holford and Sheiner, 1981; Schwinghammer and Kroboth, 1988) 

Pharmacokinetic models generally describe drug concentration as a function of both 

dose and time. In contrast pharmacodynamics are in essence independent of time and 

describe pharmacodynamic equilibrium (time-independent) relationships between 

concentration and effect. The pharmacodynamic parameter of maximum effect may 

occasionally be time dependent but this is not always so. The only common feature in 

pharmacokinetic and pharmacodynamic models namely the drug concentration can be 

used to combine the two models and describe the overall dose effect relationship: 

Dose -+ PK -+ CP -+ PO -+ Effect 

PK = pharmacokinetics 

CP = plasma concentration 

PD = pharmacodynamics 

The concentrations in the pharmacodynamic model have to reflect the concentration of 

the drug at the effect site (biophase). The pharmacokinetic models alone may not be 

able to predict such values directly so further modeling is required in order to link 

them: 

Dose -+ PK -+ CP -+ PKCP -+ CE -+ PO -+ Effect 

PKCP = pharmacokinetic - plasma concentration link 

CE = effect site concentration 

The final parameter in this model is the measured effect. For example the observable 

effect for an antihypertensive agent is the lowering of blood pressure, but the 

mechanistic effect may be a direct action namely relaxation of vascular smooth muscle. 

The pharmacodynamic model should refer to the direct effect of the drug on the blood 

vessel and a physiological model is needed to relate this action to the observed effect of 

lowering the blood pressure 
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Dose ""-+PK -tCP -t PKPD -t CE -t PD -t E -t PE -t Effect 

E ' observable effect 

PE = physiological effect at tissue level 

The rest of this discussion will deal with different pharmacodynamic models since the 

relevant pharmacokinetics of aminoglycosides were discussed in Section B, 

2.1.1 Pharmacodynamic models 

2.1.1.1 Types of models 

• Fixed effect model 

A fixed effect is an observed effect which is either present or absent, for 

example the absence or presence of seizures after the administration of 

antiepileptic drugs. A fixed effect can also be defined by specific criteria, for 

example, the effect of an antiarrhythmic drug could be considered to be present 

when 70% suppression of ventricular extrasystoles occurs. With a fixed effect 

the extent of the response is immaterial - it is only important whether it occurs 

or not. The presence or absence of the effect is then related to a particular 

concentration in a statistical fashion. A good example of a fixed effect study 

is that of Beller et al. (1971). They routinely collected data on digoxin toxicity 

in a number of patients receiving digoxin. They defined the effect as the 

presence or absence of toxicity. They were then able to calculate that the 

probability of toxicity with digoxin was 50% at a concentration of 2ng/mI. In 

such studies the probability of an effect can then be expressed over a range of 

concentrations and when this is plotted a sigmoid curve is obtained. 

• Emax model 

The Emax model is the simplest model which adequately describes drug effect 

over a whole range of concentrations and is formulated by the following 

equation sometimes referred to as the Langmuir model: 

E= Emax . C 
ECso + C 

E = effect 

(c. I) 



C 

ECso 

Emax 
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= concentration 

= concentration producing 50% of the maximum effect 

= maximum effect 

The use of the Emax model for pharmacodynamic phenomena can be justified on 

theoretical grounds but empirically it is useful for the following reasons: 

• 

• 

• 

I t predicts the maximum effect a drug achieves 

I t predicts no effect when no drug is present 

It allows for the saturation of effect and demonstrates futility of further 

increasing the dose once maximal effect is achieved. 

The Emax equation can also be adapted to measure an effect which is observed 

as the inhibition of biological phenomenon: 

Emax . C E = Nodrug -
ICso + C (c.2) 

Nodrug effect where no drug is present (for example, resting heart 

rate before a p-adrenergic antagonist is given) 

ICso = the concentration producing 50% inhibition of the maxi-

mum effect 

• Linear model 

When the drug concentration is low in relation to ECso the effect becomes 

proportional to concentration: 

E=S·C 

S = slope of line relating effect to concentration 

C = concentration 

(c.3) 

The disadvantage of this model is that it lacks the ability to define maximum effect. The 

model also does not allow for the saturation of the effect. The linear model can only 

be used over low concentration ranges which may however at times be the larger part 

of the therapeutic concentration ranges of particular drugs. 
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• Sigmoid Emax model 

I-Jill (1910) showed that not all concentration effect curves can be presented 

by the hyperbolic form of the Emax model. He added an extra parameter 

which can alter the simple hyperbolic form: 

N 
E- Emax' C 

- N 
ECso + C 

N number that influences the slope of the curve 

N = 1 hyperbolic curve 

N > 1 sigmoid curve with a steeper slope 

(c.4) 

N < 1 sigmoid curve, shallower in its central part, steeper at low 

concentrations and more shallow at higher concentrations. 

The larger the value of N, the greater the change in response with concentrations around 

the ECso value. Generally the value of N lies between 1 and 3. Occasionally it is much 

greater, in which case the effect appears almost as an all-or-none response, because the 

concentration associated with minimal and maximal responses becomes so narrow 

(Rowland and Tozer, 1989). 

2.1.1.2 Baseline effect 

Many observable drug effects reflect changes from some baseline effect. For 

example blood pressure, may change after the administration of a drug from a 

specific pressure to something else. In this instance the baseline effect needs to be 

incorporated in pharmacodynamic models describing drug effect. 

Equation c.S is the Emax model with Eo the baseline effect. Equation c.6 is the 

linear model with Eo the baseline effect: 

E= Emax· C E 
ICso + C + 0 

(c.S) 

(c.6) 
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2.1.2. Pharmacokinetic-pharmacodynamic models 

2.1.2.1 The pharmacokinetic-independentmodel 

In this model a concentration and effect are directly linked by taking simultaneous 

measurements of the effect and the concentration at the effect site. 

Disadvantages of the pharmacokinetic independent model are: 

• requirements for sampling increase when the concentration is changing rapidly 

• the necessity of ignoring measurement error in the concentration value when relating 

it to effect 

• the necessity for sampling directly from effect site. 

2.1.2.2 The pharmacokinetic-compartment model 

The implementation of an appropriate pharmacokinetic model will result in the more 

accurate prediction of plasma concentrations at specific times. 

The time course of drug concentrations in plasma, urine or other biological fluids is 

usually modelled by compartmental analysis. The concentration of the drug in one of 

the compartments which is not directly accessible to sampling may be predicted from 

analysis of plasma concentrations. 

Advantages of the pharmacokinetic-compartment model are: 

• simultaneous measurements of concentration and effect are not necessary. The 

pharmacokinetic model provides information over the whole blood sample profile 

• timing of sampling and effect measurement can be optimized, independently 

according to the expected model 

• plots of concentration versus effect using the concentration predicted by a 

pharmacokinetic model for the central compartment are useful for the recognition 

of equilibration delays between plasma and effect site concentrations. 
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The major disadvantage of the pharmacokinetic-compartment model is the prerequisite 

that the time-course of effect site concentration parallels the distribution of the drug to 

those tissues that determine the multi-exponential character of the plasma concentration 

-time course. 

2.1.2.3 The effect-compartment model 

Provided the drug enters and leaves the effect site by a first order process it is possible 

to predict the time course of drug accumulation at the effect site as plasma concentration 

changes. For example, if a plasma concentration changes from 0 to a new value of C, 

the equilibrium effect corresponding to this concentration (C) and becomes Be. The 

rate constant (Keo) describes drug loss from the effect site and controls the onset of the 

effect. 

Equations describing the effect site concentrations for a number of pharmacokinetic 

models have been presented in the literature and can be used to determine the actual 

concentration at effect site (Sheiner et al., 1979). 

2.2 METHODS OF MEASURING BACTERIAL GROWTH AND 

DEATH 

Different methods for measuring the effect of antibiotics on microorganisms were 

devised during the course of the present study. In order to describe these methods, the 

following concepts need elaboration. 

2.2.1 Bacterial growth 

2.2.1.1 Definition of growth 

Growth can be defined as the orderly increase in all the components of an organism. 

Cell multiplication is a consequence of growth. In unicellular organisms multiplication 

leads to an increase in the number of individuals making up a population or a culture 

(Jawetz et al., 1982). 
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2.2.1.2 The measurement of growth 

Microbial growth can be measured in terms of cell concentration (the number of cells 

per unit volume of culture) or cell density (dry weight of cells per unit volume of 

culture): 

• Cell concentration 

The viable cell count is usually considered to be a measure of cell concentration. 

The general practice, however, is to measure the light absorption or light scattering 

of a culture by photoelectric means and to relate viable counts to optical 

measurements in the form of a standard curve. By means of the standard curve all 

further readings can be converted to cell concentration. Cell concentration 

determinations are normally used in studies on microbial inactivation. 

• Cell density 

To determine cell density it is usually necessary to perform a large number of dry 

weight measurements which may be difficult technically. For this reason these 

measurements are normally performed by indirect methods such as nitrogen 

determination and photoelectric measurements. Cell density determinations are 

used primarily in studies of microbial biochemistry and nutrition. 

2.2.1.3 Exponential growth 

• The growth constant 

Since the two new cells produced by the growth and division of a single cell are each 

capable of growing at the same rate as the parent cell, the nurriber of cells in a cul­

ture increases exponentially. The rate of growth of a culture at a given moment is 

directly proportional to the number of cells present at that moment. This 

relationship is expressed in the following equation: 

dN =kN 
dt 

Integration of equation c.7 gives: 

N = No
ekt 

No = number of cells at time zero 

(c.7) 

(c.8) 
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N = number of cells at any later time t 

In equation c.8 above, k is the growth constant. 

Solving the equation for k gives: 

k = In(N/No) 
t 

(c.9) 

k represents the rate at which the natural logarithm of cell number increases with time 

and can be determined from the slope of a curve where log cell number is plotted against 

time. 

• The generation 

It is general practice to express the growth rate of a microbial culture in terms of 

generations per hour. For organisms which reproduce by binary fission a generation 

is defined as the doubling of cell number. The number of generations per hour is 

usually determined by plotting cell number against time on a semilogarithmic scale 

and reading directly from the plot the time required for the number to double. 

Alternatively the generation time can be calculated from the following equation: 

g= 
log N - 10gNo 

log 2 

g = generations 

log No = log of number of cells at time 0 

log N = log of number of cells at any later time t 

2.2.1.4 The growth curve 

(c. 10) 

If a liquid medium is inoculated with microbial cells taken from a culture that has 

previously been grown to saturation and the number of viable cells per milliliter 

determined periodically and plotted, a curve of the type shown in Figure C.2 is usually 

obtained. The curve can be divided into 6 phases with the four most important being: 

• The lag phase (A) 

The lag phase represents a period during which the cells, depleted of enzymes, as a 

result of unfavourable conditions at the end of their previous culture history, adapt 

to their new environment. Enzymes and intermediates are formed and accumulate 

until they are present in concentrations sufficient for growth to resume. If the cells 
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are taken from an entirely different medium, it often happens that they are 

genetically incapable of growth in a new medium. In such cases a longer lag may 

occur representing the period necessary for a few mutants in the inoculum to 

mUltiply sufficiently for a net increase in cell number to become apparent. 

• The exponential phase (C) 

During the exponential phase the cells are at steady state. New cell material is being 

synthesized at a constant rate, but the new material is itself catalytic and the mass 

increases in an exponential manner. As this continues either one or more nutrients 

in the medium become depleted, or toxic metabolic products which inhibit growth 

accumulate. For aerobic organisms, the commodity that becomes limiting is usually 

oxygen. As a result, growth rate decreases when the cell concentration exceeds 

lx107/mt At 4 to 5x109/mi, the rate of oxygen diffusion can no longer meet the 

demand even in an aerated medium and the growth becomes progressively slower. 

• The maximum stationary phase (E) 

In the stationary phase the nutrients are exhausted and the accumulation of toxic 

products causes growth to cease almost completely. In most cases, however, some 

cell turnover takes place in the stationary phase. There is a slow loss of cells through 

death, which is just balanced by the formation of new cells through growth and 

division. When this occurs the total cell count increases slowly although the viable 

count stays constant. 

• The phase of decline (death phase, F) 

After a period of time in the stationary phase, which depends on the organism and 

on the culture conditions, the death rate increases until it reaches a steady state 

where cell death and cell growth are constant. Frequently, after the majority of cells 

have died,the death rate decreases drastically, so that a small number of survivors 

may persist for months or even years (Jawetz et al., 1982). 
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2.2.2 Bacterial death 

2.2.2.1 Definition 

For a microbial cell, death means irreversible loss of the ability to reproduce (grow and 

divide). 

2.2.2.2 Measurement of death 

When dealing with microorganisms, one does not customarily measure the death of an 

individual cell but the death of a population. The number of cells dying during each 

time interval is a function of the number of survivors present so that death of a 

population proceeds as an exponential process according to the following equation: 

S - S -kt - oe 

So = number of microorganisms at time 0 

S = number of survivors at any later time t 

k = rate of exponential death 

2.2.2.3 Effect of drug concentration 

(c.ll) 

When antimicrobial drugs are used to inactivate microbial cells, it is commonly observed 

that the concentration of drug present is often related to the time required to kill a given 

fraction of the population as expressed by the following equation: 

k = en . t ( c.12) 

e drug concentration 

t time required to kill a given fraction of cells 

Nand k are constants. 

For example, if n = 5 (as it is for phenol), then doubling the concentration of the drug 

will reduce the time required to achieve the same extent of inactivation 32-fold. This can 

be determined by measuring the slope of the line that results when log t is plotted against 

log e (Jawetz et al., 1982). 
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2.3 APPROACHES TO RELATE THE GROWTH OR DEATH OF 

MICROORGANISMS ISOLATED FROM PATIENTS TO 

ANTIMICROBIAL DRUG CONCENTRATION 

2.3.1 Minimum inhibitory concentration (MIC) and minimum bactericidal 

concentration (MBC) 

The minimum inhibitory concentration (MIC) can be defined as the lowest 

concentration of an antibiotic that visibly inhibits growth of the initial inoculum in 

vitro. The MIC is determined by a serial twofold dilution of the antibiotic incubated for 

24 hours with an inoculum of the organism isolated from a particular patient. The 

different samples are inspected after 24 hours for visible growth and the MIC is then 

taken as the lowest concentration of the antibiotic where no visible growth is noted 

(Ellner and Neu, 1981). 

For minimum bactericidal concentration (MBC) determinations an additional 

incubation step is required. Samples of the dilutions from which MIC were determined 

are plated onto agar plates and incubated overnight. The antibiotic concentration in the 

sample from which no growth (99.9% kill) is obtained is taken as the MBC (Schentag 

et al., 1984). 

The MIC value was the first parameter used for the determination of the susceptibility 

of organisms to a specific antibiotic. Assumptions of susceptibility in relation to 

concentration soon led to the suggestion that antibiotic concentrations should be 

maintained at plasma levels exceeding the MIC in order to be effective (Schentag et al., 

1984). 

At present, efficacy and spectrum of antibiotics are determined by comparing the MIC 

values for different organisms. The main disadvantage of both the MIC and MBC 

values is that they are obtained at fixed antibiotic concentrations. These values as such 

do not allow for the variability in plasma concentrations among different patients. 

When individualizing a dose for a particular patient according to MIC or MBC values 

the pharmacokinetic profile of the antibiotic in a particular patient should thus be 

incorporated in some way. 
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2.3.2 Serum bactericidal activity (SBA) and serum bacteristatic activity 

(SBC) 

The serum bactericidal activity (SBA) is defined as the greatest dilution (lowest 

concentration) of a serum sample, obtained while the patient is receiving antibiotic 

treatment, that kills > 99.9% of an inoculum of the infecting pathogen in vitro over 

18-24 hours. The serum bacteristatic activity (SBC) is determined in a similar way but 

inhibition of visible growth is taken as the end point. The results are expressed as 

dilution titers ego 1 : 8 or 1 : 16 (Wolfson and Swartz, 1985). 

The SBC and SBA values differ from the MIC and MBC values in that the former 

incorporates the patients antibiotic plasma concentration in the measurement. 

Measurement of SBA has a number of advantages and disadvantages for monitoring 

antibiotic therapy: 

Advantages 

• The test takes into account not only the susceptibility of the infecting organism to 

the antibiotic but at the same time the patients ability to absorb, distribute, and 

eliminate the antibiotic 

• The test allows for the determination of 111 vivo synergIsm of simultaneously 

administered antibiotics 

• . In patients who are immunocompromised or in patients with infective endocarditis, 

in which the immuno-phagocytic system is unlikely to exert its full influence, the test 

may offer an approximation of the contribution of an antibiotic to therapy 

• SBA determinations do not require unusual or expensive laboratory equipment. 

Disadvantages 

• SBA identifies an incorrectly treated patient, but provides no guidance on how to 

treat correctly. The actual drug concentration is unknown 

• 

• 

A myriad of technical variables can influence measurements (see Wolfson and 

Swartz, 1985) 

The test does not account for the contribution of the immune system in combating 

infection (the plasma is inactivated during the test) 



110 

e. Timing of SBA titer measurements (peak, trough or random) IS a matter of 

controversy. 

Various serum antibacterial tests were already in use in the pre-antibiotic era (1912 and 

1917) to evaluate the efficacy of quinine derivatives in the treatment of pneumonia. 

Current use dates from 1947 when SBA was successfully used as a therapeutic guide in 

the treatment of two patients with infective endocarditis (Wolfson and Swartz, 1985; 

Drake et al., 1983). 

The possible ' correlation between SBA and the outcome of infection has been 

investigated by a number of researchers with contradictory results. Wolfson and Swartz 

(1985) were unable to show any correlation while M ortino et al. (1985) and Schieler and 

Klastersky (1984) reported positive correlations. In the Schieler study the correlation 

between outcome and SBA in patients with gram negative bacteremia was highly signi­

ficant (P<O.OOOI) (Schieler and Klastersky, 1984). A peak SBA of higher than 1:8 for 

granulocytopenic and higher than 1:16 for immunocompetent pati~nts was associated 

with a favourable outcome. The results of the Mortino study were similar but indicated 

that an even higher SBA value of 1:4 may be required in certain granulocytopenic 

patients. 

Determination of the SBA can be seen as a relatively easy method for the prediction of 

the outcome of infection. A major drawback of SBA estimations is the fact that SBA 

is a relative value. Neither the actual MIC nor the actual antibiotic plasma 

concentration is known. 

2.3.3 Peak to MIC ratio 

The peak to MIC ratio is determined by dividing the peak plasma c~ncentration of the 

antibiotic by the MIC value (Blaser et al., 1987). According to the literature this value 

appears to be one of the most useful indicators of successful clinical outcome of 

infections reported in the literature. Moore et al. (1984(a» showed a 78% success rate 

for both tobramycin and gentamicin in patients with pneumonia when the peak 

concentrations ' were higher than 7l1g/mi (p < 0.006) such peaks were obviously 

associated with a high peak to MIC ratio. They also showed that the duration of 

therapy could be shortened if the peak concentration was maintained relatively high. 

Multivariate' regression analysis of their data revealed that peak to MIC ratio was the 

most significant factor predicting outcome of an infection (p = 0.01) followed by age 

(p= 0.06) and underlying disease (p= 0.09) (Moore et al., 1984(b». 
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A further study by Moore et al. (1987) verified the significance of aminoglycoside peak 

to MIC ratios in predicting successful outcome in patients with gram negative 

bacteremia. 

2.3.4 Serum bactericidal rate (BRT) 

Serum bactericidal rate (BR T) refers to the rate of bacterial killing by an antibiotic as 

measured in a serum medium. Serum allows for protein binding and is a better renection 

of the in vivo situation due to the fact that organisms also grow slower in a serum than 

broth medium. Tisdale et al. (1989) were the first to advocate BRT as a parameter to 

distinguish between antibiotics. They derived BRT values from the slope of different 

killing curves performed at different antibiotic concentrations. These values were then 

compared to differentiate between the effect of drug concentrations, drug combinations 

and different antibiotics. 

2.3.5 Dynamic response concentration (DRe) 

The reason for the slow evolution of dual individualization in antibiotic therapy has 

been the time lag required to determine quantitative susceptibility. Recently an 

automated susceptibility testing device the MS-2 Research System was developed 

(Schentag et at., 1984). The MS-2 Research System generates bacterial profiles in the 

presence of varying antibiotic concentrations within a relatively short time (6 - 8 hours). 

A computer interfaced with this system assimilates the data and provides analysis of 

antibiotic- dependent bacterial growth with reference to the kinetics of uninhibited 

growth. The antibiotic susceptibility index derived in this way is designated the dynamic 

response concentration (0 RC). Schentag et al. (1984) proposed a fundamental model in 

antibiotic therapy. The steps involved in their proposal for dual individualization are 

schematically presented in Figure C.3 and can be described as follows: 

• The causative organism (blood culture, throat swab, etc) is isolated from each 

patient and plasma levels are obtained to measure antibiotic levels 

• Growth curves of the causative organism in the presence of varying concentrations 

of antibiotic are then generated by the MS-2 research system and the ORC is 

calculated 

• The pharmacokinetic plasma concentration profile of the specific drug in the patient 

is calculated 
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• The 0 RC and plasma concentration are then combined in a model to calculate the 

"ideal" dosage regime for the individual (Schentag et al., 1984). 
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Fig C.3 The steps involved in dual 
individualization 

(Schentag, 1986) 
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The development and validation of the dual individualization method were performed in 

two stages. The first stage involved the derivation of a treatment algorithm. Patients 

with pneumonia who were treated with a fixed dose of cefmenoxime were studied. A 

series of cefmenoxime blood levels were determined for each patient. Endotracheal 

aspirates were cultured daily to identify the day of bacterial eradication. The bacterium 

was inoculated into the MS-2 Research System and a ORC value was calculated. The 

clinical response, 0 RC, pharmacokinetic profile and factors influencing the response 

were then documented and analyzed. By multivariate regression analysis the relationship 

between ORC and other pharmacokinetic parameters was evaluated. It was shown that 
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the area under the curve (AUC) above the ORC was a good predictor of the days to 

bacterial eradication (clinical outcome) (r = 0.71). 

In the second stage a prospective study was initiated to test the clinical effectiveness of 

a dosage regimen designed prospectively to achieve a target AUC over DRC 

(AUC/ORC). The clinical purpose of the prospective study was to eradicate bacteria 

causing pneumonia within 4 days by adjusting the cefmenoxime dose to produce an 

AUC/ORC of 140llg.hr.mt-1 (Schentag et al., 1984). Using this approach it was possible 

to cluster the eradication time to 4-6 days (5 ± 2.1 days) whereas the average eradication 

time in the first uncontrolled study was 9 ± 4 days. The difference was statistically 

significant (p < 0.05). Treatment time was significantly shortened (p < 0.05) and the 

correlation between AUC/ORC and eradication time improved over the first study (r 

= 0.89 p < 0.007). 

For the testing and evaluation of this approach to dual individualization Schentag et 

al. (1984) laid down certain criteria: 

• The infection had to be monomicrobial to minimize variances introduced by host 

defence factors 

• Patients had to be on only one antibiotic in order to evaluate the effect of that 

antibiotic alone. The disadvantage of this criterion is that most neutropenic patients 

are excluded because they usually receive a number of antibiotics 

• In order to exclude another variable drugs without a post-antibiotic effect had to 

be used 

• Samples of the organism had to be readily obtained as for example from tracheal 

aspirates 

• There had to be a wide variety of susceptibility of the orgamsms to ensure a 

difference in ORC values for comparisons and calculations. 

I n their review on dual individualization Schentag et al. (1984) stated the need for more 

research on the subject, particularly with other drugs and other types of infection. They 

also advocated in depth research on post-antibiotic effect which may be an important 

factor in the whole process ( Schentag et al., 1985). 
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2.4 PROPOSALS FOR NOVEL APPROACHES TO INVESTIGATE 

THE PHARMACOKINETIC-PHARMACODYNAMIC LINKS WHICH 

CAN BE USED FOR DUAL INDIVIDUALIZATION 

Utilizing the MS-2 Research System to determine dynamic response concentrations 

Schentag et al. (1984) provided a highly effective approach to dual individualization of 

antibiotic therapy. A major advantage of this approach is that the actual effect of a 

specific antibiotic concentration on growth rate is determined. The MS-2 Research 

System is not available in South Africa. Introduction of the MS-2 Research System into 

the Baragwanath Hospital complex will be costly. At present it is not a feasible 

proposition because of a shift in financial priorities towards other more urgently required 

facilities to improve medical care in a partially Third World situation. In this context 

the present study aimed to devise alternative methods for the validation of dual 

individualization. These include the following: 

2.4.1 Bactericidal rate (BR) 

The concept of bactericidal rate as a measure of killing rate is proposed and is defined 

as the time required for the bacterial population to decline by 90% or 1 log cycle at the 

minimum bacteridical drug concentration (MBC). The formulation of the concept 

bactericidal rate is based upon the following: 

• Decimal reduction time (Hurwitz and McCartny, 1985; Fung et al., 1988) 

The parameter of decimal reduction time is widely used in the pharmaceutical field 

for the comparison of the effectiveness of different preservatives and disinfectants. 

Decimal reduction time is defined as the time required for a particular concentration 

of a preservative or disinfectant in a particular medium at a specific pH and tem­

perature to cause a 90% reduction in viable organisms. 

The rationale for applying the principle of decimal reduction time to the dual 

individualization approach is the assumption that each organism is killed at a rate 

specific for that organism and that this killing rate will influence the dosing regimen 

for the individual patient. 

• Serum bactericidal rate (BR1) (Tisdale et al., 1989) 
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The parameter of BRT has already been discussed in 2.3.4. It refers to the time 

required by the colony form units to decline by one logarithmic cycle in the serum 

medium. B R T is calculated from the slope of the regression line of a killing curve 

performed at a specific antibiotic concentration over a period of time. For the 

purpose of the present study the killing curve was performed in a broth instead of 

a serum medium and the BR T determined at the M BC concentration. The M BC 

was selected because it represents the lowest concentration of an antibiotic which 

displays killing action in vitro. 

2.4.2 Concentration at 50% effect 

For DRC determinations Schentag et al.(1984) used growth rates. An alternative 

measure of dynamic response which could be considered in dual individualization is the 

killing rate. The killing rate is obtained by plotting killing curves (fig C.4) for different 

concentrations of the antibiotic over a specified time period. The ECso value can be 

defined as that concentration of the drug at which 50% of the effect occurs. An example 

of killing curves for a specific patient's causative organism at different gentamicin 

concentrations as performed in the present study can be seen in fig C.4. The ECso values 

are calculated from a plot of concentration versus % suppression of growth, measured 

one hour after the lag phase. This time period is chosen to ensure that growth is still in 

the exponential phase. The suppression of growth for the different drug concentrations 

(curves B, C and D) relative to the control curve, A, (when no drug was present) is then 

calculated. The different drug concentrations with their corresponding effects 

(suppression of growth) are then fitted according to Sigmoid Emax (Hill) or Emax 

(Langmuir) models. (see 2.l.1). The ECso and Emax values were then derived by non­

linear least square regression using the STATIS 2 software (Clyde Soft) (see fig.C.S) 

(Kelman, 1988). 
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2.5 POST-ANTIBIOTIC EFFECT AND LEUCOCYTE 

ENHANCEMENT 

2.5.1 Definitions 

P~st-antibiotic effect (P AE) is the phenomenon of suppression of bacterial growth that 

persists after a short exposure of bacteria to certain antimicrobials (Isaaksson, 1988). 

I t needs to be emphasized that it is the persistent suppression of growth and not an 

action of exposure to persisting subinhibitory concentrations for a long period of time. 

Post-antibiotic leucocyte enhancement (PALE) is the enhanced susceptibility of 

organisms in the PAE phase to the antimicrobial activity of human leucocytes. 

2.5.2 History 

Digger et al.( 1944) were the first to document a delay in turbidity (growth) when 

penicillinase was added to a culture of streptococci previously exposed to penicillin G. 

A delay of 1 to 3 hours in normal growth of staphylococci previously exposed to 

penicillin G was demonstrated by Parker and Mash (1948). The same phenomenon was 

also documented for gram negative bacteria and antibiotics developed after penicillin 

(Vogelman and Craig, 1985). 

2.5.3 Mechanisms of post-antibiotic effect 

(Bundtzen et aI., 1981; Vogelman and Craig, 1985) 

The precise mechanisms by which antimicrobials induce post-antibiotic suppression of 

growth are unknown. The observed differences in the P AE of various antibiotics against 

different organisms suggest that more than one mechanism may be involved. The 

growth curves of the test and control cultures are however parallel in the post-antibiotic 

phase which implies that the effect is not due to a popUlation shift to slower growing 

variants (Vogelman and Craig, 1985). 

Two major hypotheses have been proposed to explain the PAE: 

• non- lethal damage produced by the antimicrobial or 
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• limited persistence of the drug at a bacterial binding site. 

For antibiotics which inhibit protein or RNA synthesis the PAE represents a period of 

resynthesis of proteins necessary for intermediary metabolism and unhampered growth 

of the microorganisms. These antibiotics include erythromycin, tetracyclines and 

chloramphenicol which are reversibly bound to subunits on ribosomes and the 

anunoglycosides which are lethally and irreversibly attached to ribosomes. In contrast 

the p-Iactam antibiotics bind to multiple penic~in-binding proteins some of which are 

enzymes involved in cell wall synthesis. It has been shown that the covalently bound 

penicillin-enzyme complex can break down thus regenerating active enzyme molecules 

which may become involved once again in cell wall synthesis. The rate of this process 

differs from organism to organism. The differences in the PAE of various p-Iactam 

antibiotics can therefore be explained by differences in the rates of antibiotic release and 

of regeneration of active enzyme molecules after the removal from the drug milieu 

(Gerber and Craig, 1981). 

2.5.4 Quantification of P AE 

(Bundtzen et al., 1981) 

To determine the PAE, organisms are allowed to grow in a control medium (no drug 

added) and a test medium containing the antibiotic. After exposure to the antibiotic for 

a fixed period of time, the drug effect is terminated by a 1000 times dilution. Thereafter 

the control and test cultures are subjected to identical procedures. Both cultures are 

allowed to grow and the P AE can then be quantified by the following equation: 

PAE =T - C (c.13) 

T = time required for the colony formed units (CFU) in the test me­

dium to increase by one log cycle above the count observed immediately 

after drug removal by dilution. 

C = Time required for the CFU in the untreated control culture to 

increase by 1 log cycle above the count observed immediately after 
dilution. 

2.5.5 Biological significance of P AE 

The P AE has a number of biological consequences which may be important in the 
clinical setting: 
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• Post- antibiotic leucocyte enhancement (PALE) 
McDonald et al. (1981) and Pruul et al. (1981) demonstrated that organisms are 

more susceptible to the antimicrobial activity of human leucocytes in the PAE 

phase. S. aureus and S. pyogenes were however more susceptible than E. coli to the 

antimicrobial effect of leucocytes in the PAE phase (McDonald et al., 1981; Pruul 

et al., 1981) suggesting that gram positive organisms are affected to a larger extent 

than gram negative organisms. 

The PALE effect was also investigated in the mouse thigh model (Gerber et at., 
1983). Organisms pretreated with antibiotics, and therefore in the PAE phase when 

injected into the thighs of mice were killed faster than untreated organisms injected 

in the same way. When the same pretreated organisms were injected into 

neutropenic mice they were not killed and regrowth started as soon as the P AE wore 

off. In the neutropenic mice the PALE effect, therefore did not manifest itself. By 

means of the mouse thigh model in vivo manifestations of PAE and PALE effects 

were demonstrated suggesting that they may have clinical implications with respect 

to the selection of continuous or intermittent dosing regunens of antibiotics (Van 

der Auwera and Klastersky, 1987). 

• Decreased bactericidal activity 

Data are limited but it appears that organisms are less susceptible to the bactericidal 

activity of the antimicrobial drug during the PAE phase while the susceptibility to 

leucocyte antimicrobial effects increases. This implies that inhibition of bactericidal 

activity occurs during the P AE phase. The degree of inhibition of bactericidal 

activity in the P AE phase is dependent on both the organism and the antimicrobial. 

In this respect it was shown that gram negative bacteria are more affected than 

S.aureus and that the antibiotics, trimethoprim and p-Iactams are subjected to 

greater inhibition of bactericidal activity than the aminogfycosides (Craig and 

Gudmundsson, 1986). 

Theoretically this phenomenon may be clinically important. It should be considered 

when dosage intervals of antibiotics are determined particularly when combinations 

of antibiotics are used. Further investigation in this field is however still necessary. 

• Implications for dosage regimens 

More recent data on PAE for a larger number or antimicrobials and microorganisms 

suggest that the presence or absence of a PAE may influence the choice of dosing 

regimens (Craig and Gudmundsson, 1986). From these results of in vitro studies it 
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was postulated that an intermittent dosing regimen may be justified for drugs with 

a prolonged PAE and a continuous dosing regimen for drugs which lack a PAE. 

Verification of this postulate was provided in the thigh model of neutropenic and 

control mice (Craig and Gudmundsson, 1986; llakker-Woudenberg et al., 1984). In 

this model the action of drugs with a pronounced P AE (erythromycin and 

gentamicin) and p-lactams (ampicillin, penicillin and ticarcillin ) which lack a PAE 

against gram negative organisms were investigated against staphyloccus. For 

erythromycin and gentamicin no major differences were observed between 

continuous and intermittent dosing regimens in nonneutropenic mice. In contrast 

for the p-Iactam antibiotics the continuous dosing regimen was significantly superior 

in nonneutropenic mice. In neutropenic mice, however, a continuous dosing regimen 

was always superior regardless of whether the antibiotic displayed a P AE or not. 

The role of host defence mechanisms in the eradication of microorganisms was 

emphasized in these studies (Gerber and Craig, 1981; Gerber et al., 1983). 

Data on the possible applications of the PAE concept in human clinical trials are limited. 

All investigators however, agree that PAE may play an important role in the 

determination of an "ideal" dosing regimen and particularly in the determination of 

dosing intervals (Kirby and Craig, 1981; Grafford and Nilsson, 1981). McCormack and 

Schentag (1987) suggested the following equation for the determination of the ideal 

dosing interval: 

Ideal dosing interval = M + P + T 

M = Time from the previous dose during which the plasma 

concentration was above the MIC or MllC 

P Duration of PAE from previous dose 

( c.14) 

T = Time required for organism to enter a susceptible log phase. 

This equation was derived after studying methicillin treated rabbits with staphylococcal 

endocarditis. Methicillin displayed a PAE against staphylococci in vivo which is in 

keeping with the finding that the p-Iactam antibiotics do produce a PAE with gram 

positive but not with gram negative organisms. All rabbits received the same dose of 

methicillin per 24 hours but it was administered according to different dosage regimens 

namely: 20 mg/kg 4 hourly, 40 mg/kg 8 hourly, 60 mg/kg 12 hourly or continuous 

infusion. The pharmacokinetic profile of methicillin in each rabbit was monitored. Time 

above MIC during the dosing interval, peak to MIC ratio, AUC above MIC, AUC 

above MllC, PAE (duration of the time the serum concentration dropped below MIC 
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until the beginning of bacterial growth) and log growth time (LGT) were also 

determined. 

The 4 hourly and 8 hourly dosing regimes achieved a significantly higher cure rate than 

the 12 hourly and continuous dosing regimens (P < 0.05). The 12 hourly regimen was 

the least effective. The finding that the continuous infusion regimen was less effective 

than the 4 and 8 hourly regimen, stresses the role of a higher susceptibility of organisms 

to the leucocytes in a PAE period and the validation of PAE as a factor to be considered 

when dosage regimens are determined. 

Considerations of the significance of the various parameters investigated, led to the 

formulation of the ideal dosing interval equation (C.14). 

McCormack and Schentag (1987) extrapolated these data to human dosing regimes for 

aminoglycosides. The situation that an antibiotic concentration can fall below M I C 

values is highly unlikely in an in vivo situation due to dosing patterns. The P AE effect 

in vivo is partly dependent on host defence mechanisms to increase phagocytosis by 

leucocytes. They therefore assumed that PAE and LGT are related in vivo and that LGT 

is dependent on host defence mechanisms. They therefore concluded that LGT and PAE 

can be expressed as one concept to describe PAE in vivo. With above assumptions in 

mind they formulate the following: 

Cmin 
C max = -keA 

e 

C min = MIC . [e- keT] 

LD = Vd . Cmax 

MD = (Cmax - Cmin) . Vd 

LD = loading dose 

MD = maintenance close 

A = time above MIC 

T = time ofPAE 

( c.l5) 

( c.16) 

( c.17) 

( c.l8) 

These equations represent a method of applying dual individualization in the calculation 

of aminoglycoside dosages. McCormack and Schentag performed a number of 

simulations to look at different MIC's, serum creatinine values, post-antibiotic effects 

and dosages with the following observations: 
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• Organisms highly susceptible (MIC's of 1 or smaller) required lower dosages of 

aminoglycosides 

• Organisms with MIC's > 4 Ilg/mi should be considered resistant to aminoglycosides 

• In patients with renal impairment low doses of the aminoglycosides every 4 hours 

represent continuous infusions and that may be nephrotoxic and with the P AE kept 

in mind, less effective (McCormack and Schentag, 1987). 
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3 METHODOLOGY 

A prospective investigation of in vitro gentarrucm pharmacodynamic parameters 

(bacteriological data) and in vivo gentamicin pharma.cokinetics (pharmacokinetic data) 

was performed in patients with gram negative bacteremia. 

3.1 LOCATION OF STUDY 

The study was performed in the medical and paediatric wards of Baragwanath Hospital 

during 1987 and 1988. 

3.2 APPROVAL OF THE STUDY 

The study was approved by the Ethics Committees of both Baragwanath Hospital and 

the University of Durban Westville. 

3.3 INFORMED CONSENT 

The patients and parents of patients gave informed consent 

3.4 STUDY DESIGN 

3.4.1 Inclusion criteria 

• Diagnosis 

Patients with a monomicrobialE. coli or K. pneumoniae bacteremia confirmed by 

a positive blood culture were included in the study. Blood cultures were performed 

by SAIMR and the origin of the gram negative bacteremia was identified by the 

physician in charge. 

• Antibiotic susceptibility 

Only strains of E. coli and K. pneumoniae which were susceptible to gentamicin and 

resistant to ampicillin were included. This was necessary in order to investigate the 

relationship between gentamicin and the causative organism. 

• Body temperature 
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Only patients with a body temperature of 37.SoC or higher on the first day of 

gentamicin administration were included in the study. The diagnosis of gram 

negative bacteremia was confirmed by the physician in charge. 

• Sex 
Males and females were included in the study. 

• Age 
No restrictions were placed on age. 

3.4.2 DEFINITIONS OF DATA DERIVED FROM MEDICAL 

RECORDS 

• Route of entry 

The origin of the infection as documented by the physician. 

• Severity of underlying disease 

The physician in charge classified patients according to their underlying disease as 

described by McCabe and Jackson (1962(a)): 

i. Rapidly fatal-disease: This group included patients with leukemia and other 

forms of cancer with a poor prognosis 

ii. Ultimately fatal - disease: This group included patients with an underlying 

disease which could possibly become fatal within four years. Aplastic anemia, 

chronic leukemia and metastatic carcinoma are some of the diseases in this 

group 

iH. Non-fatal - disease: This group consisted of patients with diabetes mellitus 

and genitourinary, gastrointestinal or obstetrical diseases. 

• Study populations 

Two study populations namely those infected with E. coli and K. pneumoniae were 

differentiated according to the blood cultures. 

• Normalization of body temperature 

The time (days) taken for body temperature to normalize to 37°C or less after the 

initiation of gentamicin therapy was taken as a clinical indication of eradication of 

the causative organism. Body temperature although a "soft " indication of successful 
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outcome of therapy was the only parameter which was readily available in this 

study. White blood cell counts (WBC) have also been documented to reflect the 

successful outcome of therapy (Moore et aI., 1984(b)) but in the present study WBC 

counts were performed on the day of admission only. 

Body temperature was taken at eight o'clock every mornmg from the day of 

initiation of gentamicin therapy until the temperature was back to normal 

« 37°C). 

• Community-acquired and nosocomial infections 

When the patient was admitted with an infection (blood culture positive within the 

first 72 hours of admission) the infection was recorded as community acquired. 

Nosocomial infections were all those contracted in hospital. 

3.4.3 INVESTIGATIONS ROUTINELY PERFORMED ON 

ADMISSION 

• Full blood count (including platelet count and differential white cell count) 

• Blood urea and electrolyte levels 

• Blood cultures 

• Serum creatinine levels. 

Blood samples were collected on the day of admission for all the above examinations 

except gentamicin plasma levels and serum creatinine levels which were performed on 

the day of initiation of gentamicin therapy . 

. 3.4.5 GENTAMICIN ADMINISTRATION AND SAMPLING 

Blood samples for the determination of gentamicin concentration levels were only 

collected at the request of the attending physician usually when toxicity was suspected. 

In most instances both trough and peak level samples were collected. The samples (5 

in1 of blood from adults and 2 rnl from neonates) were only collected after steady state 

blood levels had apparently been achieved i.e after four or more doses of gentamicin had 

been administered. 
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3.5. ASSAYS 

The blood samples collected from individual patients with suspected bacteremia were 

routinely sent to the Microbiology Laboratory of the SAIMR for organism 

identification and sensitivity testing. 

Organisms isolated from the first positive blood culture of each patient were inoculated 

into a semi-solid Mueller-Hinton broth,incubated for 24 hours and stored (3 to 6 

months) for further investigations. All further microbial assays were performed by the 

investigator. (See Appendix B). 

The foHowing assays were performed: 

• Minimum inhibitory concentration (M IC) and minimum bactericidal concentration 

(MBC) 

• Serum bacteristatic activity (SEC) and serum bactericidal activity (SEA) 

• Time kill curves 

• Post antibiotic effect (P AE). 

3.5.1 Gentamicin serum levels 

The Gentamicin serum levels were determined by the EM IT method discussed in section 

E. 

3.6 STATISTICAL ANALYSES 

3.6.1 Student-t test 

The student-t test of the BMDP programme was used to determine if any difference 

existed between the means of PAE, ER and ECso values in the two study populations 

namely patients with E. coli and K. pneumoniae bacteremia, respectively (Hill, 1987). 
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3.6.2 Log linear regression 

The STA TIS 2 program (Clyde Soft, 1987) was used to perform log linear regressions 

on the decline data of the MBC concentration killing curve to determine the bactericidal 

rate constants (Kelman, 1988). 

3.6.3 Multiple linear regression 

MUltiple linear regression was performed using the BMDP programme supplied by the 

statistical department of the Potchefstroom University (1-1 ill , 1987). 

3.6.4 Pharmacodynamic modeling 

The STATIS 2 (nonlinear regression model) program (Clyde Soft, 1987), was used to 

analyse the data. The data derived from the killing curves were fitted to the Hill and 

Langmuir sigmoid Emax model and Emu model respectively (Kelman, 1988). 

3.6.5 Calculation of the area under concentration versus time curve (AUC) 

for gentamicin 

A model independent method for the calculation of the AUC for aminoglycosides when 

a few data points are available was used in the present study (Gibaldi and Perrier, 

1982): 

C + C C - C 
AU C = ( I 2 2)~ t + ( 2 2 3 ) te ( c.19) 

C and C3 = trough concentrations at steady state 

C2 = peak concentration 

~t = time of infusion 

te = time from peak to next trough 
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4. RESULTS 

4.1 CLINICAL PROFILES 

The clinical profiles of the patients admitted to the study are summarized in table C.l. 

4.1.1 Number of patients, age and sex 

Fifteen patients were included in the study, eight females and seven males, of which four 

(3 males and 1 female) were infants under the age of one year. The average age of the 

adults was 43.6 ± 18.2 years with the youngest and the eldest being respectively 21 and 

70 years old. 

4.1.2 Type of bacteremia, route of entry and severity of underlying disease 

All the patients had a gram negative bacteremia confirmed by a positive blood culture. 

K. pneumoniae and E. coli were the causative pathogens in respectively eight and seven 

of the patients admitted. 

Four females and four males had K. pneumoniae bacteremia. The K. pneumoniae group 

consisted of 5 patients with pneumonia, an infant with diarrhea and a scalp abscess and 

two adults with hepatitis and carcinoma of the prostate respectively. One of the adults 

and three of the infants contracted the klebsiella bacteremia in hospital. None of the 

patients in the E. coli bacteremia group had a nosocomial infection. The E. coli group 

consisted of an infant with diarrhea, four adults with genitourinary tract infections, one 

adult with a septic abortion and one diabetic patient. Only one patient in the study 

group had a disease classified as rapidly fatal according to the l'v!cCabe and Jackson 

classification (3.4.2). 

4.1.3 Days to bacterial eradication 

Normalization of body temperature was taken as an indication of bacterial eradication 

in the present study. The average body temperature on the day of initiation of 

gentamicin therapy was 38.7 ± 0.5°C. (Range 37.9 - 40.0°C.) Eradication of the 

infection was assumed to occur on the day when temperature had returned to 37.0°C or 

less. The average days to eradication was 2.67 ± 0.9 days (Range 1 - 4 days.). 
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4.2 GENTAMICIN PHARMACOKINETIC DATA 

The pharmacokinetic data collected for the study population are presented in table C.2. 

Dosages and routes of administration of gentamicin varied for individual patients and 

can be summarized as follows: 

• The four infants received intravenous (IV) dosages rangmg from 12.5-25 mg 

gentamicin 8 hourly. The average trough and peak gentamicin levels in this group 

were respectively 1.2 f.lg/mt and 6.9 f.lg/mt respectively. 

• Eight adults received intramuscular (I M) dosages of 80 mg gentamicin 8 hourly 

resulting in an average trough level of 0.6 f.lg/mt and and average peak level of 5.3 

f.lg/ t . 

• Two adults received intramuscular (I M) dosages of 60 and 80 mg gentamicin 12 

hourly and one a dose of 120mg 8 hOUrly. 

• The average AUe for the 15 patients was 22.71 f.lg.hr.mt-t ± 12.26 (Range 11.59 -

58.96 f.lg.hr.mt- t 
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TABLE C.2 

Gentamicin pharmacokinetic data collected from study population 

Patients 

1 
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3 

4 

5 

6 

7 

8 
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to 

11 

12 
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80 8 

80 8 

12.5 8 

80 8 

20 8 

60 12 

15 8 

120 8 

25 8 

80 8 

80 8 

80 8 
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80 8 

80 8 
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Route of 
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1M 

1M 

IV 

1M 

IV 

1M 

IV 

1M 

IV 

1M 

1M 

1M 

1M 

1M 

1M 
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(Jlg/mi) mi- I 

Trough Peak 

0.4 6.4 18.6 

0.9 3.5 15.0 

0.5 5.7 18.0 

0.2 4.3 11.59 

1.6 10.6 39.43 

0.1 4.4 14.86 

1.4 5.5 24.71 

1.1 3.7 15.88 

1.4 5.8 25.60 

0.4 4.5 14.30 

0.9 6.3 23.02 

0.4 5.1 15.66 

2.4 8.5 58.96 

0.4 6.0 17.67 

1.5 6.2 27.35 

IV 
AUC 

Intravenous 
Area under curve 

• 
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4.3 MIC, MBC, SBC and SBA 

The MIC, MBC, SBC and SBA values obtained for organisms isolated from the 

individual patients are summarized in table C.3. The MBC values were identical for all 

organisms isolated (1 Ilg/mt) and the MIC values were either 0.5 or 1 Ilg/mt. The SBC 

values varied from 1:4 to 1:64 with 1:8 being the most common. SBA values varied from 

1:4 to 1:32 with 1:8 once again the most common. 

TABLE C.3 

Minumum inhibitory concentrations (MIC), minimum bacterial concentrations (MBC), 

serum bacteristatic activity (SBC) and serum bactericidal activity (SBA) in the study 

population 

MIC MBC 
ID Organism (Ilg/mt (Ilg/mt) SBC SBA 

1 K. pneum. 0.5 1 1:64 1:32 

2 K. pneum. 0.5 1 1;4 1:4 

3 K. pneum. 1 1 1:8 1:8 

4 K. pneum. 0.5 1 1:8 1:8 

5 K. pneum. 0.5 1 1:64 1:32 

6 K. pneum. 1 1 1:4 1:4 

7 K. pneum. 0.5 1 1:16 1:16 

8 K. pneum. 1 1 1:8 1:8 

9 E. coli 0.5 1 1:16 1: 16 

10 E. coli 1 1 1:8 1:8 

11 E. coli 1 1 1:8 1:8 

12 E. coli 1 1 1:8 1:4 

13 E. coli 0.5 1 1:16 1:16 
14 E. coli 0.5 1 1:16 . 1:8 
15 E. coli 0.5 1 1:16 1:16 
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4.4 EC 50 VALVES 

The data and graphs from which the ECso values were constructed are presented in Ap­

pendix C. The different models used to calculate individual ECso values, and 

corresponding rl values are displayed in table C.4. ECo values for the K. pneumoniae 

(average 0.334± 0.1) and E. coli group (0.369 ±0. 15) did not differ significantly (p = 

0.593). Using the statistical experimental design programme of the STATIS package, a 

type 1 error of 0.05 and power of 0.8, it was calculated that at least 37 patients in each 

study group will be required to detect a 20% statistical difference. 

TABLE C.4 

ECso values from the study population. (MODELS: 1 = Hill 2 = Langmuir) 

Drug Suppression of growth 

concentration ('Yo) ECso Number 
Patlenil (pg/mi) Curve 1 Curve 2 r (pg/mi) of model 

1 0.25 24 11 0.96 0.40 1 
0.5 78 59 
1 99 99 

2 0.25 66 65 0.82 0.20 2 
0.5 99 99 
1 99 99 

3 0.25 32 17 0.98 0.30 1 
0.5 90 88 
1 99 99 

4 0.25 59 73 0.98 0.32 1 
0.5 92 93 
1 99 99 

5 0.25 23 55 0.98 0.34 1 
0.5 66 75 
1 98 95 

1.5 99 99 

6 0.25 13 22 0.86 0.53 2 
0.5 58 42 
1 99 99 

7 0.25 38 44 0.99 0.27 1 
0.5 88 92 

0.75 96 98 
1 99 99 

8 0.25 66 77 0.79 0.31 2 
0.5 99 99 
1 99 99 

9 0.5 83 68 0.77 0.23 2 
0.75 99 90 

1 99 99 

10 0.5 21 19 0.99 0.64 1 
1 98 99 

1.5 99 99 

11 0.5 79 89 0.83 0.33 1 
0.75 95 98 
.1 99 99 

12 0.5 61 64 0.87 0.46 2 
1 72 76 

1.5 99 99 

13 0.5 96 90 0.70 0.29 1 
0.75 99 99 

1 99 99 

14 0.5 90 89 0.76 0.4 2 
0.75 95 92 
. 1 99 99 

15 0.5 84 68 0.97 0.23 1 
0.75 99 90 

1 99 99 
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4.5 BACfERICIDAL RATE 

The data from which the BR values were derived, the r2values of the regression lines and 

the BR values are summarized in table C.S. BR values varied from 0.27 to 1.8 hr with 

no . statistical difference between the K. pneumoniae (0.47 ±0.22) and E. coli 

(0.76 ± 0.49) groups (P = 0.16). 

TABLE C.S Bactericidal rate (BR) data from study population 

DATA VALUES BR 
Patients 11me Sample 1 Sample 2 " (hB) 

1 60 5.59 5.59 0.93 0.27 
90 2.40 2.93 

120 2.18 2.30 

2 60 4.53 4.60 0.99 0.54 
90 3.62 3.71 
120 2.73 2.70 

3 60 5.82 5:85 0.99 0.39 
90 5.70 5.60 
120 3.18 3.30 

4 60 5.18 5.60 0.82 0.29 
90 2.88 3.04 
120 2.92 2.30 

5 60 5.18 5.56 0.97 0.46 
90 4.15 4.30 
120 3.04 3.44 

6 90 6.13 6.00 0.94 0.91 
120 5.08 4.95 
180 4.15 4.00 
240 3.26 3.54 

7 60 5.62 5.62 0.93 0.30 
90 4.74 3.48 
120 2.60 2.4 

8 60 5.65 5.69 0.98 0.62 
90 4.48 4.56 
120 4.16 4.07 
180 2.5 2.3 

9 60 4.7 4.65 0.99 0.77 
120 3.4 3.48 
180 2.0 2.18 

10 120 5.33 5.30 0.92 0.80 
180 4.60 3.68 
240 3.24 2.78 

11 90 4.05 4.00 0.93 1.8 
120 3.51 3.48 
180 2.95 2.90 
240 2.66 2.70 

12 120 6.00 6.00 0.95 0.62 
180 3.83 4.52 
240 2.71 3.14 

13 60 4.60 4.48 0.99 0.42 
90 3.40 3.48 
120 2.10 2.30 

14 90 4.74 4.85 0.93 0.53 
120 4.34 4.44 
150 3.50 3.48 
180 2.60 2.63 

15 60 5.40 5.18 0.91 0.35 
90 4.86 4.85 

120 2.45 2.30 
150 1.6" 1.78 
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4.6 POST-ANTIBIOTIC EFFECT 

The data and graphs from which the duration of post-antibiotic effect was calculated are 

included in Appendix D and summarized in table e.6. 

The duration of the P AE for E. coli and for K. pneumoniae strains did not differ 

significantly. After one hour's exposure to gentamicin the duration of PAE for K. 

pneumoniae was 0.64 ±0.21 hr and for E. coli 0.82 ±0.27 hr (p = 0.8). The same held 

for the two hour exposure PAE with values [or K. pneumoniae being 1.25 ± 0.43 hr and 

E. coli 1.18 ± 0.29 hr (p = 0.773) respectively. 

For each organism however a longer exposure time was associated with a significant 

difference in PAE. For K. pneumoniae the PAE after one hour's exposure to gentamicin 

(0.64 ± 0.21 hr) differed significantly (p = 0.0028) from the PAE after two hours 

exposure (1.25 ± 0.43 hours). The same held for E. coli where the PAE after one hour's 

exposure (0.82 ± 0.27 hr) was significantly shorter (p = 0.0337) than the PAE after two 

hour's exposure (1.18 ± 0.29 hr). 

TABLE C.6 

The post-antibiotic effect data from the study population 

Post antibiotic effect (hr) 

Patients Organism 1 hr exposure 2 hr exposure 

I K. pneum. 0.75 0.83 

2 K. pneum. 0.61 1.48 

3 K. pneum. 0.93 1.48 

4 K. pneum. 0.46 1.65 

5 K. pneum. 0.53 0.95 

6 K. pneum. 0.50 1.28 

7 K. pneum. 0.38 0.55 

8 K. pneum. 0.93 1.77 

9 E. coli 0.48 0.75 

10 E. coli 0.91 1.20 
11 · E. coli 1.10 1.35 

12 E. coli 0.63 1.31 

13 E. coli 1.00 0.85 

14 E. coli 0.51 1.60 

15 E. coli 1.1 1.21 
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4.7 CLINICAL OUTCOME 

The parameters (variables) investigated in the present study regressed against days to 

normalization of temperature (independent variable) as an indication of clinical 

outcome are summarized in table C.7(A) and e.7(B). The results of the multiple linear 

regression analyses on the data are shown in table e.8. 

When only one variable was introduced SBA gave the best correlation (r2 = 0.54 ; P = 
0.002) followed by AUC/ECso (r2 = 0.39; P = 0.02) and peak drug concentration (r2 

= 0.38; P = 0.02). When a second variable was introduced the combination of SBA 

and ECso gave the best correlation (r2 = 0.78 ; P = 0.0001) followed by SBA and AUC/ 

ECso (r2 = 0.66 ; P = 0.0024) and finally SBC and ECso (r2 = 0.68; P = 0.001). A 

regression of SBA and ECso with a third variable, either BR or PAE gave a r2 = 0.85 and 

r2 = 0.84 respectively. When more than four variables were regressed no further 

improvement of the p value occurred: SBA + ECso + BR + PAE (r2 = 0.90 and 

P = 0.001). 



TABLE C.7(B) 

Different variables r.egressed against time to normalization in body temperature 

Patients 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

PAE1 

PAE2 

SBC 

SBA 

AUCIEC50 

PeaklMIC 

AUC/MIC 

AUC/MBC 

PAE1 PAE2 ECso 

(hr.) (hr.) (pg/mi) 

0.75 0.83 0.4 

0.61 1.48 0.2 

0.93 1.48 0.3 

0.46 1.65 0.32 

0.53 0.95 0.34 

0.50 1.28 0.53 

0.38 0.55 0.27 

0.93 1.77 0.31 

0.48 0.75 0.23 

0.91 1.2 0.64 

1.10 1.35 0.33 

0.63 1.31 0.46 

1.0 0.85 0.29 

0.51 1.60 0.4 

1.1 1.21 0.23 

Post antibiotic effect after 1 hour' 

Post antibiotic effect after 2 hours 

Serum bacteristatic concentration 

Serum bactericidal activity 

SBC SBA 

1:64 1:32 

1:4 1:4 

1:8 1:8 

1:8 1:8 

1:64 1:32 

1:4 1:4 

1:16 1:16 

1:8 1:8 

1:16 1:16 

1:8 1:8 

1:8 1:8 

1:8 1:4 

1:16 1:16 

1:16 . 1:8 

1:16 1:16 

Area under concentration curve above Concentration at 50% effect 

Peak divided by MIC 

AUC/ECso 

(pg.hr.mC1 

Ipg/mi) 

18.6 

21 .9 

19.63 

10.53 

50.13 

11 .68 

34.88 

23.26 

36.88 

12.43 

27.84 

14.87 

78.64 

17.67 

38.59 

Area under concentration curve above Minimum inhibitory concentration 

Area under concentration curve above Minimum bactericidal concentration 

AUC/MIC 

PeakiMIC (pg.hr.mC1 

lug/mi 
Ipg/mi) Ipg/mi) 

12.8 17.79 

7.0 19.56 

5.7 14.27 

8.6 9.34 

9.40 48.72 

4.40 8.60 

11.2 32.68 

3.2 16.68 

11.6 33.56 

4.5 9.86 

6.3 22.13 

5.1 11 .22 

17.0 77.28 

12.0 16.89 

12.4 36.20 

AUC/MBC 

(pg.hr.mC1 

/pg/mi) 

13.69 

12.18 

14.27 

6.07 

44.35 

8.60 

28.03 

16.68 

. 29.00 

9.86 

22.13 

11 .22 

71.94 

13.17 

31 .58 

I 

-Co) 
c» 
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TABLE e.s 

Summary of variables and r2 values obtained with multiple regression 

Dependent variable 
2 p r 

SBA 0.54 0.002 

AUC/ECso 0.39 0.02 

Peak gentamicin concentration 0.38 0.02 

SBA + ECso 0.78 0.0001 

AUC/ECso + SBA 0.66 0.0024 

SBC + ECso 0.68 0.001 

SBA + ECso + BR 0.85 0.0001 

SBA + ECso + PAE 0.84 0.0001 

SBA + ECso + MBC 0.83 0.0002 

SBA + ECso + BR + PAE 0.90 0.0001 

SBA + ECso + BR + MBC 0.86 0.0003 



5. DISCUSSION 

When comparing the clinical results of this small group of 8 patients, with K. 

pneumoniae and 7 patients with an E. coli bacteremia with those reported in the litera­

ture 'and in Section A (another group of patients from Baragwanath Hospital), the 

following similarities and differences were noted: 

• In the small group studied in this section (15 patients), the aim was to investigate 

differences in microbial parameters relating to E. coli and K. pneumoniae 

bacteremia. Patients were selected such that approximately equal numbers with E. 

coli and K. pneumoniae were entered into the study and as a result these numbers 

do not reflect the true incidence of bacteremias associated with the two respective 

causative pathogens. From the literature and the results reported in Section A it 

would appear that E. coli is the most common cause of gram negative bacteremia 

and K. pneumoniae is the second most common causative organism. 

• Four (50%) of the patients with K. pneumoniae bacteremias ~cquired their infections 

while in hospital, in five of them (63%) the infection originated in the lungs. These 

findings are consistent with literature reports of K. pneumoniae as a common cause 

of hospital acquired bacterial pneumonia (Montgomery, 1979). 

• The present investigation confirms reports (Haddy et al., 1987) that the 

genitourinary tract is the most common source of E. coli bacteremia (four out of 

seven patients in this study) and that E. coli infections are usually community 

acquired (all seven patients). 

• No deaths were associated with gram negative bacteremia in the present study 

compared with the mortality rate of 32% reported in section A. Possible reasons 

are the following: 

• According to the criteria of McCabe and Jackson (1962(a)), only one patient 

namely the patient with cancer of the prostate could be considered as having a 

rapidly fatal underlying disease. Such patients often have an impaired immune 

system or mUltiple infections making them a high fatality risk group. The pre­

sent study was designed in such a way that patients with multiple infections were 

excluded. 
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• Patients were only included in the study if they were still alive when the first 

positive blood culture results were obtained. A blood culture took 24 to 72 

hours to be performed, the patients who died within the first 24 hours of onset 

of bacteremia were automatically excluded. Kreger et ai., (1980(a) and 1980(b)) 

reported that 40 to 50% of patients with ultimately fatal or non-fatal discases 

died, usually from shock within the first 24 hours of contracting gram negative 

bacteremia. 

• In the present study only three patients were older than 50 years. In patients 

with gram negative bacteremia higher mortality rates appear to be associated 

with older age. Mortality rates of 62% and 38% have been reported in patients 

respectively older than 50 years and younger (McCue, 1987; Kreger et al., 

1980(b)). 

The objective of this study was to determine whether a correlation existed between 

clinical outcome, pharmacokinetic and microbiological variables. The time for body 

temperature to normalize was taken as a reflection of the eradication of the causative 

organism and thus the outcome of gram negative bacteremia. The reliance in the present 

study on the normalization of body temperature as the only indicator of bacterial 

eradication is not entirely satisfactory. However, the present study was performed on 

routinely collected data and body temperature was the only indicator that was regularly 

recorded. Other indicators which may be considered in future studies are decreases in 

WBC counts, eradication of bacteria from the site of origin and eradication of bacteria 

from the blood stream (Schentag et al., 1984 ; Moore et al,. 1987 ; Nix et al., 1987). 

A correlation appears to exist between the pharmacokinetic parameters (peak serum 

gentamicin concentration and AUC) and normalization of body temperature. In the 

patient with the highest peak gentamicin level (10.6 j1g/mi and largest AUC (47.0 

ILg·hr.mi-1
) body temperature normalized after I day of therapy. I'n the three patients 

in whom body temperature took longer than 4 days to normalize peak gentamicin levels 

were lower than 5.5 ILg/mi and the AUC values less than 20 ILg.hr.mi-1 In two of these 

patients gentamicin therapy was changed to other antibiotics. Peak gentamicin levels 

of 6lLg/mi are advocated for the treatment of gram negative bacteremia (Moore et al., 

1984(a)). It would therefore appear that the three patients in whom body temperature 

took longer than four days to normalize, were underdosed. Dosage adjustments in these 

patients might therefore have obviated the need to change to other antibiotics. 

A peak level of 6 j1g/mi or higher is advocated for the best results in treating gram 

negative bacterial infections (Moore et al., 1987). Moore et al., (1987) Teported a highly 
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significant correlation (p = 0.00001) between a high peak gentamicin level/M I C ratio 

and clinical response. 

With the varied dosing regimens in the present study, peak levels of gentamicin ranged 

from 3.2 tJ.g/mt to 10.6 tJ.g/mt and only 6 out of 15 patients had peak gentamicin levels 

exceeding 6 tJ.g/mt. Only one patient had a trough level of higher than 2 tJ.g/mt which 

is normally associated with toxicity. In view of favourable clinical responses and the 

lack of toxic manifestations the clinicians decided to maintain the dosage schedules after 

the results of gentamicin plasma levels became available. Dosages were not adjusted to 

increase the peak plasma levels. 

From the investigations of the sensitivity of causative organisms to gentamicin (M I C, 

MllC, SllC and SllA determinations) it would appear that the individual strains did not 

differ significantly. In all instances MBC values of 1 tJ.g/mt and MIC values were either 

0.5 or 1 tJ.g/mt were obtained. 

SHC and SBA are both dimensionless values that incorporate the peak gentamicin 

concentration and MIC or MBC value. These values displayed a more marked variation 

than the MIC or MBC values. Where all the MIC and MBC values were either I or 0.5 

tJ.gj. e the SBA values varied from I : 4 to I : 32. A SBA equal to 1:8 or higher has been 

reported to be associated with a better outcome of infections (Scielier and Klastersky, 

1984; M ortino et al., 1985). Only three patients in this study had SBA values of less 

than 1:8. Although the peak gentamicin concentration in this study was generally lower 

than that recommended for the treatment of gram negative bacterial infections, the SBA 

values were mostly within the range associated with a favourable outcome of infections. 

These findings accentuate the role of multiple factors contributing to the successful 

outcome of antibiotic therapy. Furthermore it would appear that if the organisms are 

highly susceptible to the drug a smaller dose of the drug may be us'ed. 

ECo and BR values reflecting the rate of killing of organisms, did not differ significantly 

for E. coli and K. pneumoniae strains. The lack of variation in the susceptibility of these 

organisms to gentamicin may account for this finding. When investigating parameters 

which may be used in dual individualization, significance more readily manifests if a 

large variability in the susceptibility of organisms and pharmacokinetics of the drug is 

present in the test popUlation (Schentag et al., 1984). 

The observation that the BR values varied from 0.27 - 1.8 hr in the study popUlation is, 

however, interesting. The BR values were calculated from the MBC regression lines at 
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constant MBC values of IJlg/mi. This observation confirms the suggestion (Schentag 

et al,. 1984) that individual organisms when exposed to an antibiotic can display different 

growth or killing rates which are not reflected in the more static MIC and MBC values, 

(which depend on concentration only). 

The differences in PAE of K. pneumoniae and E. coli after both 1 and 2 hours of 

exposure to the MIC of gentamicin were not significant. For the same organism, 

however, the PAE was significantly longer after a 2 hour than after a 1 hour exposure ( 

p = 0.0337 and p = 0.0028 respectively for E. coli and K. pneumoniae). It is difficult to 

compare the PAE values obtained in the present study to PAE values reported in the 

literature. PAE values reported in the literature for gram negative organisms were 

usually obtained from animal studies and were determined at antibiotic concentrations 

of 4 to 5 times the MIC. Based upon research in experimental animals McCormack and 

Schentag( 1987) reported a P AE for aminoglycosides of 2 to 4 hours in E. coli strains. 

In another study of E. coli strains a P AE of 1. 8 hours was reported for gentamicin at a 

concentration of 2 Jlg/mt (Bundtzen et al., 1981). The average PAE of gentamicin at the 

MIC of 0.5 Jlg/mi in E. coli strains (0.82 ± 0.27 hrs) in the present study therefore 

appears to be in agreement with the results reported by these investigators. The present 

study where the PAE was determined at the MIC of gentamicin may furthermore be 

more representative of the clinical setting. 

I t has also been reported that the P AE mcreases with prolongation of antibiotic 

exposure time until a maximum of 4 to 5 hours (McCormack and Schentag, 1987). This 

observation was confirmed in this study with the statistically significant difference 

observed between the 1 and 2 hour exposure times for both K. pneumoniae and E. coli. 

The increase in the duration of the PAE after 2 hour exposure was greater for K. 

pnewlloniae than E. coli although it did not reach statistical significance. This would 

imply that in the treatment of K. pneumoniae infections it may be possible to 

administered gentamicin at longer dosing intervals than with E. coli infections. 

Furthermore it has been reported that the PAE increases with increasing concentrations 

of the antibiotic up to a concentration of 6-8 times the MIC (Craig and Gudmundsson, 

1986). The effect of different concentrations of gentamicin on the PAE was, however 

not investigated in the present study. 

The objective of this study was to devise dynamic pharmacodynamic parameters which 

can possibly be incorporated with pharmacokinetic parameters in the dual 

individualization approach to gentamicin therapy in patients with gram negative 
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bacteremia . . For the validation of these parameters, they had to be tested against the 

clinical response to gentamicin in patients with gram negative bacteremia. Clinical res­

ponse was measured as the time to normalization of body temperature. Multiple linear 

regression was performed on the data. The analyses were carried out in a stepwise 

logistic way, introducing one variable at a time (see table e.8) When only one variable 

was regressed the use of SBA gave the best correlation followed by AUCjECso value 

The role of SBA as a predictor of outcome is well documented. Both Wolfson and 

Swartz (1987) and Mortino et al., (1985) associated a SBA of more than 1:8 with a 

favourable outcome in patients with a normal and a SBA of more than 1: 16 in patients 

with an impaired immune system. In the present study no mortalities were reported, all 

the patients had a normal immune system and in only three patients was the SBA lower 

than 1 :8. These findings provide support for the role of SBA as an indicator of clinical 

outcome. 

In a study by Schentag et al. (1984) on dual individualization the AUC/ORC provided 

the best correlation (r2 = 0.50) in the prediction of outcome. In the present study the 

parameter that closely resembles the ORC value was the ECso value which also refers to 

killing rate. The AUC/ECso parameter in the present study however only gave the 

second best correlation (table e.8). The only explanation for the inability of ECso values 

to perform better may be the lack of variation in susceptibility of the organisms in the 

present study. Furthermore Schentag et al.,(1984) included patients with renal 

impairment which accounted for a wide variation in AUC/ECso values. 

The peak to MIC ratio in the present study failed to produce a good correlation with 

outcome (p = 0.02). In the literature, however, a good correlation between peak/MIC 

ratio and outcome has been documented (p = 0.0001) (Moore et al. 1987). A possible 

explanation for the mediocre correlation in the present study is the lack in variation of 

MIC values (Blaser et al., 1987). 

The correlation improved markedly when a second variable was introduced. The ECso 

value was the most prominent variable and featured in 3 of the best correlations with 

two variables: SBA and ECso ; SBC and ECso and SBA and AUC/ECso ). These findings 

accentuate the importance of the introduction of a dynamic measurement of bacterial 

killing (ECso) in the prediction of the clinical outcome of gram negative bacteremia. The 

AUC/ ECso and SBA parameter (p = 0.0024) did not perform better than ECso and SBA 

parameter alone (p = 0.0001). AU C has been advocated as a good indicator of outcome 

in a number of literature reports (Moore et al,. 1987; Schentag et al,. 1984). The 

discrepancy between these findings and the results of the present study can once again 
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be explained by the homogenous nature of the MIC of gentamicin and of the renal sta­

tus in the population investigated. (Only one patient show a degree of renal failure.) 

With the introduction of a third variable SBA and ECso remained important and both 

DR and PAE (lhr) improved the fit markedly (p = 0.0001 in both the equations). BR 

is a measurement of killing rate and PAE gives an indication of the time period during 

which killing persists. The importance of including killing rate can once more be seen. 

When a fourth variable was regressed the combination of ECso + SBA + BR + PAE 

performed the best. These 4 variables can therefore be regarded as optimal because 

further inclusion of variables did not improve the fit further (With 5 variables the p value 

increased to 0.0003). The following equation can be derived from the 4 variables in the 

optimum fit and be used to predict the outcome of bacteremia most accurately in the 

population studied: 

Days to eradication = 2.91148 - 0.507014 BR - 0.8lO509 PAE (lhr) + 4.29649ECso -

0.0641010 SBA (c.20) 

The importance of a dynamic indication of bacterial killing becomes apparent if it is ta­

ken into consideration that 3 of these 4 variables refer to bacterial killing rate over time 

(DR, PAE (lhr) and ECso). Another interesting observation with these four variables is 

the similarities between them and the parameters used for the calculation of the ideal 

dosing interval proposed by McCormack and Schentag (1987). 

Ideal dosing interval = Time above MBC + PAE + LGT. (c.14) 

LGT is an indication of log growth over a period of time whereas BR is log kill over a 

period of time. The ECso and SBA parameters used in this investigation represent the 

MBC. The ECso value only refer to a more dynamic MBC value whereas the SBA pa­

rameter incorporates both the drug level and the MBC. The SBA parameter (already 

inc;rporating a plasma level) will be excluded from any equation for dosing intervals. 

I t would therefore appear from this study that the ideal dosing interval formula proposed 

by McCormack and Schentag (1987) included the most relevant parameters for the 

prediction of the outcome of an infection. 
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6. CONCLUSIONS 

The relatively short average time to normalization of body temperature (2.6 days) in this 

study was associated with an absence of mortalities. A single kinetic parameter i.e. peak 

plasma antibiotic concentration is insufficient to predict the outcome of treatment in 

patients with gram negative bacteremia (table e.8). The derived pharmacodynamic pa­

rameters which measure the actual killing rate of the causative organism at specific drug 

concentrations (BRT and ECso) were good predictors of outcome. It is therefore 

suggested that these parameters be included in the determinations of antibiotic 

sensitivity. 

The equation derived from BR, PAE (lhr), ECso and SBA (c.20) for the determination 

of days to eradication provides information on the adequacy or inadequacy of antibiotic 

treatment in specific patients. It appears that treatment will be adequate if the equation 

predicts 2.6 or fewer days to eradication. If the equation predicts more than 2.6 days to 

eradication, treatment is probably inadequate and needs reassessment. The equation 

further accentuates the importance of inclusion of non static bacterial parameters in 

sensitivity determinations. Treatment may be inadequate because the organisms are not 

killed at a satisfactory rate. This possibility is frequently overlooked in the clinical 

situation. PAE as an important determinant of a dosing interval featured strongly in the 

present study (table e.8). It also became apparent that longer exposure of the organism 

to the antibiotic played a more important role with K. pneumoniae than with E. coli 

(table e.6) (p= 0.0028 for K. pneumoniae and p= 0.0337 for E. coli). 

The minimum time required for the determination of the pharmacodynamic parameters 

(ECso, PAE, BRT and SBA) after initial isolation is approximately 2 days. It is therefore 

not practical to routinely determine the parameters in patients with gram negative 

bacteremia. However the clinical advantages of dual individualization in antibiotic 

therapy have been accentuated in this study. The development of automated systems 

for the determination of non static bacteriological parameters seems to be crucial for 

improved antibiotic therapy in patients with gram negative bacteremia. The following 

now chart is a proposal for the improved treatment of gram-negative bacteremia 
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PROPOSED FLOW CHART FOR TREATMENT OF GRAM NEGATIVE 

BACTEREMIA BASED UPON PRESENT STUDY 

Blood culture 

NO DECLINE 

DAY 1 

Measure body temperature 

WBC 

Treat shock 

Initiate empiric drug 

treatment 

Aminoglycoside 

(high peak) and penicillin 

MEASURE BODY TEMPERATURE 

DECLINE 

Wait for blood culture 

results 

Indication of bacterial 

susceptibility. 

Leave on same drug for 5 days 

Check trough levels regularly 

BLOOD CULTURE RESULTS 

If blood culture shows susceptibility 

do the following: 

SBA 

Peak level 

Killing curve for ECso and BR 
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Work out days to eradication based upon following equation: 

2.91 - 0.51 DR - 0.81 PAE(lhr) + 4.30 ECso - 0.06 SDA 

If the predicted days to eradication exceed 2.6 days it is an indication of a more 

resistant organism or an inadequate dose for a particular organism. 

I n both cases a dosing adjustment is justified. 

The following approach to dosing adjustment is recommended taking into consideration 

the killing rate as measured by the ECso and the P AE. 

(l) Estimate C max and C min for a convenient dosing interval: 

ECso Cmax = ---,.--'­
e-ke(T-T) 

Cmin = ECso • (e-keT
) 

(2) Maintenance dose for an infusion, 

MD = 
ti . Cmax . CI (1 - -k-r) e 

(3) Maintenance dose for a bolus, 

MD = (Cmax - C min) . Vd 

C max 

C min 

T 

t; 

= Maximum drug concentration 

= Minimum drug concentration 

= Time ofPAE 

= Dosing interval 

= Time of infusion 
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For example: 

for a 60 kg male, CI= 3.528 i /h , Vd= 12.5i, ECso = 0.64 , PAE= 0.91hr. and r= 

8 hours the following can be expected: 

C max = 4.7 fJ.g/mi 

C min = 0.5 fJ.g/mi 

MD = 56 . .9 mg 8 hourly 

F BODY TEMPERATURE IS STILL ABOVE 37°C CHANGE THERAP 

OMPLETELY 
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SUMMARY 

SECTION A 

A retrospective epidemiological study to determine the nature of gram-negative 

bacteremia in an adult and neonatal population at Baragwanath Hospital was 

performed. The incidence of bacteremia in the adult population was 5.8/ 1000 

admissions. This was associated with a mortality rate of 32% of which 67% of deaths 

occurred within the first 72 hours after admission. E. coli was the organism most 

commonly isolated (53 %), followed by klebsiella (23 %), proteus (9%) and pseudomonas 

(8%). Other organisms accounted for 5% or fewer of the bacteremias. The 

genitourinary tract was the most common route of infection (34%), followed by the 

lungs (24%), skin (14%) and gastrointestinal tract (6%). In 16% of patients the route 

of infection was not identifiable. 

A correlation existed between age and mortality: 38%(9) of patients younger than 50 

years and 63%(15) older than 50 years died. Patients with a rapidly fatal disease had a 

mortality rate of 67% in comparison with 48% in patients with ultimately fatal, 38(~/o 

with non-fatal and 8% with no underlying disease. 

All the isolated organisms were highly resistant to ampicillin. E.coli and klebsiella were 

susceptible to amikacin only, whereas pseudo'monas was resistant to all the 

aminoglycosides. 

E. coli and klebsiella were susceptible to all the third generation cephalosporins, and 

pseudomonas was resistant to cefotaxime and ceftriaxone. 

The incidence of gram negative bacteremia in the neonatal popUlation was 66/1000 

admissions. The mortality rate in this popUlation was 66%. 

Pseudomonas was the organism most commonly isolated (44%) followed by klebsiella 

and carynobacter (19% each), E. coli (9%) and enterobacter (3%), 72% of the infants 

with a birth weight lower than 2,5 kg died. None of the infants with a birth weight 

higher than 2,5 kg died. The same number of male and female infants contracted 

bacteremia. However, 75% of the males and 56% of the females died. 
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There was also a correlation between younger gestational age and late onset of 

bacteremia and deaths. All the organisms, tested, were resistant to ampicillin. E. coli 

was susceptible to all the aminoglycosides and third generation cephalosporins tested. 

Klebsiella was resistant to all three aminoglycosides and ceftazidime and pseudomonas 

to all aminoglycosides and third generation cephalosporins tested. 

SECTION B 

Population parameter values for amikacin and cefotaxime in an neonatal and gentamicin 

in an adult population with gram-negative bacteremia were determined by using the 

NONMEM programme. 

Adjusting Cl and Vd for weight or BSA significantly decrease the OBF for amikacin. 

The inclusion of serum creatinine concentrations in addition to weight did not decrease 

the aBF significantly. From these results it appears that CI and Vd for amikacin can 

be calculated as follows: 

CI(t/h/kg) = 0.0683·WT 

Vd (t/kg) = 0.238·WT 

Adjusting CI and Vd simultaneously for weight or BSA significantly decrease the OBF 

for cefotaxime. The inclusion of serum creatinine in addition to weight did not decreased 

the aUF significantly. From these results it appears that Cl and Vd of cefotaxime can 

be calculated as follows: 

Cl( t/h/kg) = 0.0919' WT 

Vd (t/kg) = 0.312·WT 

Adjusting Cl alone or both CI and Vd for weight significantly decreased the aBF for 

gentamicin. Adjustment ofVd only however increased the OBF. The inclusion of serum 

creatinine concentration in addition to weight did not decrease the aBF significantly. 

From these results it appears CI and Vd of gentamicin can be calculated as follows: 

Cl(t/h/kg) = 0.588·WT 

Vd (t) = 12.5 

SECTION C 

The influence of selected clinical, pharmacokinetic and microbial parameters on the 

outcome of gram negative bacteremia was investigated. These parameters as well as the 



152 

influence of PAE were regressed against the time to normalization of body temperature 

as an indication of cure. When only 1 variable was regressed SBA performed the best 

(r2 = 0.54), with 2 variables SBA + ECso (r2 = 0.78) and SBA + AUC/ECso (r2 = 0.66) 

respectively were the best performers. 

With 3 variables both BR and PAE gave good r2 values. SBA + ECso + BR (r2 = 0.85) 

and SBA + ECso + PAE (r2 = 0.84). 

The optimum fit was obtained with 4 variables: SBA + ECso + BR + PAE (r2 = 0.90). 

When more than 4 variables were regressed the p value started to increase. The number 

of days to normalization of body temperature as an indication of cure can therefore be 

predicted with the following equation: 

Days to eradication = 2:91 - 0.51 BR - 0.81 PAE(lhr) + . 4.30 ECso - 0.06 SBA. 
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APPENDIX A 

PREPARATION OF STANDARDS USED FOR CALIBRATION AND 

CONTROLS DURING ANALYSIS OF CEFOTAXIME. 

Commercially available cefotaxime, 500 mg base as sodium salt per vial, (ClaforanR) for 

injection was used (lot No.: 0788PPF, Exp. dat: 07-90), to prepare a lmg-lrnl stock 

solution. Drug free serum, Q-Pak Lot No.: 3831NOOIAA was used and samples were 

spiked separately with the cefotaxime stock solution. The analysis was done within 60 

minutes, as the stability of cefotaxime in plasma is limited and therefore all standards 

had to be prepared separately. HPLC grade water was used to compensate for the vo­

lume deficit. 

Standard Stock Water A.U.C. x 10-4 

solution (pl,) solution (J1i) addition (J1i) 

Blank 0.0 200.00 no peaks 

recorded 

10.0 10.0 190.0 11.9891 

25.00 25.00 175.00 32.3470 

50.0 50.0 150.00 66.9986 

75.0 75.0 125.00 102.1200 

100.0 100.0 100.0 132.6200 

125.0 125.0 75.0 163.2600 

150.0 150.0 50.0 198.9600 

200.0 200.0 0.0 268.4500 

The best standard calibration line was generated by a 2nd degree polynomial, r = 

0.99984419. The concentrations of all the unknown samples as well as the at random 

included standards were calculated from the above mentioned standard curve. 

An example of a characteristic HPLC chromatogram for a cefotaxime and desacetyl­

cefotaxime sample can be seen on page 170. 
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APPENDIX B 

MICROBIOLOGICAL METHODS 

1 Minimum inhibitory concentration (MIC) and minimum bactericidal 

concentration (MBC) 

Materials 

• Gentamicin was supplied by the Scherag corporation. 

• Mueller-Hinton broth supplemented with CaH (50 mg/t) and Mg2+. (25 mg/t) ions. 

• Mueller-Hinton agar plates 

• Microtiter plates 

• Reference strain E. coli A TCC 25922 

• Organisms cultured from the first positive blood culture of each patient henceforth 

referred to as patient's strain. 

Method 

1. Each micro titer plate well was filled with 100 j1.t Mueller-Hinton broth. 

2. 256 f.1g gentamicin diluted in 100 f.1t broth (final concentration i28f.1g/mt) was added 

to the first well of 100 f.1t 

3. A serial twofold dilution of gentamicin was performed up to the lowest 

concentration of 0.25 f.1g/mt. 

4. The last well in each series acted as a control (i.e. no gentamicin was added). 

5. The strains were prepared as follows. A few colonies from a stock solution of the 

patient's and reference strains were inoculated into two separate Mueller-Hinton 

broth flasks and allowed to grow for approximately 3 hours to ensure log-phase 
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growth . . The concentration of the solutions was then validated with a Mac Farland 

standard to assure that a concentration of 5 x 105 cfu/ml was added to each well. 

6. 5 l1i of the patients, or 511i of the reference strain was added to the wells after which 

the micro titer plates were incubated at 370 C for 18-24 hours. 

7. After incubation for 18-24 hours the micro titer plates were inspected under a 

magnifying glass and lamp. The well with the lowest concentration of antibiotic 

where no visible growth was observed, was noted. The concentration of the 

antibiotic in that well was then taken as the MIC value. 

8. The patient's and reference strains were performed in duplicate. The MIC value for 

the patients strain was only included if the M I C value of the control reference strain 

was 0.25-1 I1g/mi. 

9. Subculturing was then performed on the patient's strain to determine the MBC 

value. Aliquots of organisms obtained from the wells containing the MIC, the four 

serial concentrations above the M I C and the control were then plated on 

Mueller-Hinton agar plates and allowed to grow for a further 18-24 hours. 

10. Following a period of growth for 18-24 hours the agar plates were inspected and the 

concentration of the antibiotic at which a > 99.9% kill had occurred, was taken as 

the MBC. MBC is defined as the lowest concentration at which a 99.9% reduction 

of the initial inoculum (control) occurs. 

2 Serum bacteristatic activity (SBC) and serum bactericidal activity (SBA) 

Materials 

l. Mueller-Hinton serum diluent i.e. 50% Mueller-Hinton broth with 50% pooled 

inactivated human serum supplemented with Ca2+ (50 mg/i) and Mg2+ (25 mg/i) 

IOns 

2. Mueller-Hinton agar plates 

3. Microtiter plates. 

Method 
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1. The microtiter plate wells were each filled with 100 Ilt Mueller-Hinton serum 

diluent. 

2. 100 Ilt of the patient's serum sample containing the peak level of gentamicin was 

then added to the first well. Serial twofold dilutions of the patient's serum were 

added to other wells. 

3. The patient's strain was allowed to grow to log phase and then tested against the 

MacFarland standard to ensure an end concentration of 5 x 105 cful mt. 

4. A 5 Ilt aliquot of a solution containing the patient's strain was then added to each 

well and incubated for 18-24 hours. 

5. After incubation the wells were inspected under a magnifying lamp and mirror and 

the greatest dilution at which no viable growth had occurred was taken as the SBC 

value. 

It is clear that SBC is determined in a similar fashion to MIC except that [or the 

determination of the MIC known antibiotic concentrations are used whereas for the 

determination of SBC serial dilutions of the patient's peak antibiotic serum 

concentration are used. 

6. The sample where no visible growth was observed the four serial samples above and 

the control sample were next subcultured onto Mueller-Hinton antibiotic free agar 

plates and incubated for another 18-24 hours for the determination of SBA. 

3 Time kill curves, killing curves or time kill plots 

(Drake,1983) 

In order to calculate the ECso and bactericidal rate constants, time killing curves were 

performed. 

Materials 

• Mueller-Hinton broth supplemented with Ca2 + (50 Ilg/t) and M g2 + (25 Ilg/mt) 
IOns 

• Bacteria isolated from patient 
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• Gentamicin 

• Mueller-Hinton agar plates 

• Disposable pipettes, glassware, broth and all other instruments were sterilized before 

use 

• Shakers with adjustable speed rates and temperature maintained at 37°C. 

Method 

1. The concentration of the patient's strain of organisms for the initial inoculum was 

standardized at 5 x 105 and 6 x 105 cfu/mt 

2. The equipment consisted of four Erlenmeyer flasks to which Mueller-Hinton broth, 

organisms and various concentrations of gentamicin were added. The composition 

of each flask was as follows: 

• Control: 9 mt Mueller Hinton broth and I mt organism solution. 

• Samples: 8 mt Mueller Hinton broth, 1 mt orgamsm solution and 1 mt 

antibiotic solution with concentrations of %; 0/ .. or 2 x the M I C. 

Every experiment was performed in duplicate and if the two results differed by more 

than 1 log cycle a third experiment was performed. 

3. Immediately after the contents of the control flask were mixed a sample was taken, 

plated as 20 ul/rnl dots onto agar plates and incubated for 24 hours after which a 

colony count was performed to provide the organism concentration at time O. This 

procedure was repeated at fixed intervals for each of the flasks investigated. 

Colony formed units per rnl( cfu/rnl) were calculated from the colony counts per 20 

Ilt dot. 

F or example: 

25 colonies / 20 ,..tt 

125 colonies / 100 Ilt 

= 1250 colonies / 1000 Ilt 

1.25 x 103 cfu/rnl 
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4. Immediately after the addition of the organisms the flasks were placed on a rotator 

at 370 C and agitated at a constant speed for the duration of the experiment. 

5. Sampling for the determination of colony counts was performed at 0, 0.5, I, 1.5, 2 

and 3 hours. The samples were transferred onto agar plates and were incubated 

overnight. 

6. All the colony counts were performed the next morning and the results plotted on 

semilogarithmic graph paper as cfu/mt versus time. 

7. The ECso and bactericidal rate were then calculated. (see figures CA and C.S on 

page 114) 

4 Post-antibiotic effect (P AE) 

The P AE was determined according to the method of Craig and Gudmundsson, 1986). 

Materials 

• Mueller-Hinton broth supplemented with MgH (25 mg/t) and CaH (40 mg/t ions. 

• Gentamicin 

• Mueller-Hinton agar plates 

• Sterilized disposable pipette tips, glassware and instruments. 

Method 

1. In order to determine the PAE two prerequisites have to ' be met (Craig and 

Gudmundsson, 1986). Firstly the organisms must be in the log growth phase. 

Secondly the concentration of the initial inoculum must be high enough to ensure 

that some organisms are left after dilution. In order to fulfil these requirements an 

initial inoculum concentration higher than those required for the execution of killing 

curves, MIC or SBA determinations was selected and allowed to grow for 3 hours 

(ensures log phase growth) before gentamicin was added. 

2. The initial microbial concentration was then taken as the concentration determined 

at 3 hours immediately prior to the addition of the antibiotic. This concentration 

was standardized to 106 _107 cfu/mt. The antibiotic concentration added was the 
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MIC of gentamicin. The MIC concentration was selected because Schentag and 

McCormick (1987) defined PAE as the time required for regrowth to occur after the 

antibiotic concentration had fallen below the MIC. 

3. The apparatus for each experiment, consisted as In the case of killing curve 

experiments, of 4 flasks, 2 control flasks (i.e. no antibiotic added) and 2 flasks to 

which the antibiotic was added. Each flask contained 8 mt broth, 1 mt organisms 

and 1 mt antibiotic with the control flasks containing just 9 mt broth and 1 mt 

orgamsms. 

4. The flasks were placed on the rotator at 37°C and immediately exposure to the 

antibiotic was initiated. Two pairs of flasks (each comprising 1 control and 1 

experimental flask) were incubated for 1 and 2 hours respectively. Colony counts 

were performed at times 0, 1 and 2 hours for the control and at 1 and 2 hours for 

each experiment. 

5. At the end of the exposure time the antibiotic effect was terminated by dilution. A 

10-3 dilution (10 J.li) from both the control and experimental flask was then added 

to 10 mt of prewarmed antibiotic free Meullen-Hinton broth. 

6. Sampling for colony counts was performed at times 0 (immediately after dilution) 

and 0.5, 1, 1.5, 2 and 3 hours after transferred to the antibiotic free Muellen-Hinton 

broth. These samples were transferred to agar plates and incubated over night. 

7. During each experiment, additional controls were prepared by adding the test drug 

at a concentration of 1/1000 of the drug concentration present during the exposure 

time. These controls were included to ensure that residual drug present after 

dilution did not affect the rate of growth. 

8. The agar plates were incubated over night and colony counts were performed the 

next morning on the same basis as for killing curves (cfu/rnl) 

9. The results were plotted on semilogarithmic graph paper as cfu/mt versus time. 

to. P AE was calculated using the following equation which was discussed in section 

2.5.4 

PAE = T - C 
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T = Time required for the CFU count in the test culture to increase by one 

logarithmic cycle above the count observed immediately after drug removal. 

C = time required for the count of CFU in the control culture to increase hy 1 log 

cycle above the count observed immediately after termination of antibiotic 

action. 

11 . Each experiment was performed in duplicate and if the results differed by more than 

1 log cycle a third experiment was performed. 
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ID 1 

ORGANISM K.PNEUMONIAE 

Drug concen = Time (hr) Sample 1 Sample 2 Average 
tration (llg/mi) 

0 0 9.5 x lOS 7.9 x lOS 8.7 x lOS 

0.5 9.5 x lOS 1.0 X 106 9.8 x lOS 

1 8.9 x lOS 1.2 X 106 1.0 X 106 

1.5 7.2 x 106 1.1 X 106 4.2 X 106 

2 2.5 X 107 7.9 X 106 1.6 X 107 

3 8.5 X 107 5.0 X 107 6.8 X 107 

4 9.5 X 108 7.6 X 108 8.6 X 108 

0.25 0.5 9.7 x 105 8.9 x lOS 9.3 X 105 

1 8.9 x lOS 9.5 X 105 9.2 x lOS 

1.5 7.1 x 106 8.0 X 106 7.6 X 106 

2 1.9 X 107 8.3 X 106 1.4 X 107 

3 6.3 X 107 6.0 X 107 6.2 X 107 

4 1.4 X 108 1.0 X 108 1.2 X 108 

0.5 0.5 9.5 x lOS 8.9 X 105 9.2 X 105 

1 9.2 x lOS 8.6 x lOS 8.9 X 105 

1.5 4.3 x 106 3.8 X 106 4. I X 106 

2 5.4 X 106 3.7 X 106 4.6 X 106 

3 4.0 X 107 3.0 X 106 2.2 X 107 

4 1.0 X 108 8.9 X 107 9.5 X 107 
1.0 0.5 8.2 x 105 9.5 x lOS 8.9 X 105 

1 8.6 x lOS 9.2 X 105 8.9 X 105 

1.5 2.5 x 102 8.5 X 102 5.5 X 102 

2 1.5 X 102 2.0 X 102 1.8 X 102 
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ID 2 

ORGANISM K PNEUMONIAE . 
Drug concen = Time (hr) Sample I Sample 2 Average 

tration (tlg/mt) 

0 0 3.5 x lOS 4.0 x lOS 3.8 x lOS 

0.5 3.4 x lOS 4.2 x lOS 3.8 x lOS 

I 4.6 x lOS 5.7 X 106 3.1 X 106 

1.5 1.5 x 106 1.2 X 106 1.4 X 106 

2 4.8 X 106 5.0 X 101 2.7 X 107 

3 5.1 X 107 5.7 X 107 5.4 X 107 

4 3.0 X 108 1.5 X 108 2.3 X 108 

0.25 0.5 4.0 x lOS 4.5 x lOS 4.3 X 105 

I 4.1 X 105 5.2 x lOS 4.7 X 105 

1.5 8.5 x 105 8.8 x lOS 8.7xlOS 

2 1.6 x 106 1.8 X 106 1.7 X 106 

3 5.0 X 106 6.0 X 106 5.5 X 106 

4 1.8 X 107 1.4 X 107 1.6 X 107 

0.5 0.5 4.1 x lOS 4.5 x lOS 4.3 x lOS 

1 5.1 x lOS 5.0 x lOS 5.1 x lOS 
1.5 6.5 x lOS 5.0 x lOS 5.8 X 105 

2 5.6 x 1()4 4.0 x 1()4 4.8 x 1()4 

3 7.0 x 1()4 6.0 x 1()4 6.5 x 1()4 
4 3.0 x 103 4.0 X 103 3.5 X 103 

1.0 0.5 3.4 x 105 4.0 x lOS 3.7 x lOS 
1 3.4 x 1()4 4.0 x 1()4 3.7 x 1()4 
1.5 4.2 x 103 5.0 X 103 4.6 X 103 

2 5.4 X 102 5.0 X 102 5.2 X 102 
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ID 3 

ORGANISM K.PNEUMONIAE 

Drug concen = Time (hr) Sample 1 Sample 2 Average 
tration (jlg/mi) 

0 0 5.7 x lOs 6.9 x lOS 6.3 x lOS 

0.5 6.0 x lOs 7.0 x lOS 6.5 x lOs 

1 1.1 X 106 1.2 X 106 1.2 X 106 

1.5 3.5 x 106 3.7 X 106 3.6 X 106 

2 7.3 X 106 6.0 X 106 6.7 X 106 

3 3.8 X 107 4.5 X 107 4.2 X 107 

4 3.7 X 108 4.3 X 108 4.0 X 108 

0.25 0.5 6.0 x lOs 6.3 x lOS 6.2 x lOS 

1 1.1 X 106 2.0 X 106 1.6 X 106 

1.5 1.7 x 106 2.5 X 106 2.1 X 106 

2 4.8 X 106 5.2 X 106 5.0 X 106 

3 1.2 X 107 2.5 X 107 1.9 X 107 

4 1.2 X 108 3.0 X 108 2.1 X 108 

0.5 0.5 6.0 x lOS 6.5 x lOs 6.3 x lOS 

1 1.1 X 106 3.0 X 106 2.1 X 106 

1.5 1.1 x 106 2.0 X 106 1.6 X 106 

2 6.8 x lOS 7.2 x lOS 7.0 x lOS 

3 4.4 x 1()4 4.0 x 1()4 4.2 x 1()4 

4 1.3 x 1()4 2.0 x t()4 1.7 x t()4 

1.0 0.5 7.7 x lOS 8.0 x lOs 7.9 x lOs 

t 6.6 x lOS 7.0 x lOS 6.8 x lOS 

1.5 5.0 x 1()4 4.0 x 1()4 4.5 x 1()4 

2 1.5 x 103 2.0 X 103 1.8 X 103 
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ID 4 

ORGANISM K.PNEUMONIAE 

Drug concen = Time (hr) Sample 1 Sample 2 Average 
tration (J.lg/mt) 

0 0 4.7 x lOs 9.0 x lOS 6.9 x lOs 

0.5 6.5 x lOS 6.0 x lOS 6.3 x lOS 

1 9.6 x lOS 8.9 x lOS 9.3 x lOs 

1.5 3.3 x 106 4.0 X 106 3.7 X 106 

2 9.2 X 106 1.1 X 107 1.0 X 107 

3 4.3 X 107 5.0 X 107 4.7 X 107 

4 7.9 X 107 9.6 X 107 8.8 X 107 

0.25 0.5 6.5 x lOS 6.0 x lOS 6.3 x lOS 

1 1.0 X 106 9.0 x lOS 9.5 x lOS 

1.5 1.4 x 106 2.0 X 106 1.7 X 106 

2 3.8 X 106 3.0 X 106 3.4 X 106 

3 3.7 X 107 4.0 X 107 3.9 X 107 

4 1.0 X 108 2.0 X 108 1.5 X 108 

0.5 0.5 6.3 x lOS 5.0 x lOS 5.7xlOs 

1 9.5 x lOS 8.0 x lOS 8.8 x lOS 

1.5 1.2 x 106 8.0 x lOS 1.0 X 106 

2 7.0 x lOS 8.0 x lOS 7.5 x lOS 

3 1.4 x lOS 1.2 x lOS 1.3 x lOS 

4 1.0 x 1()4 9.0 x 103 9.5 X 103 

1.0 0.5 6.5 x lOS 5.5 x lOS 6.0 x lOS 
1 1.5 x lOS 4.0 x lOS 2.8 x lOS 
1.5 7.5 x 102 1.1 X 103 9.3 X 102 

2 8.4 X 102 2.0 X 102 5.2 X 102 
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ID 5 

ORGANISM K.PNEUMONIAE 

Drug concen = Time (hr) Sample I Sample 2 Average 

tration (JIg/mt) 

0 0 5.2 x lOS 3.0 x lOS 4.1 x lOs 

0.5 5.6 x lOS 3.4 x lOS 4.5 x lOS 

I 2.7 X 106 2.0 X 106 2.4 X 106 

2 4.6 X 106 7.8 X 106 6.2 X 106 

3 1.1 X 108 2.0 X 108 1.6 X lOR 

4 4.6 X 108 4.8 X 108 4.7 X 108 

0.25 ' 0.5 4.8 x lOS 5.2 x lOS 5.0 x lOs 

1 1.5 X 106 1.8 X 106 1.7 X 106 

2 4.2 X 106 1.8 X 106 3.0 X 106 

3 2.0 X 107 4.7 X 106 1.2 X 107 

4 8.5 X 107 1.2 X 107 4.9 X 107 

0.5 0.5 7.0 x lOS 5.3 x lOS 6.2 x lOS 

1 1.0 X 106 1.5 X 106 1.3 X 106 

2 1.5 X 106 4.5 x lOs 9.8 x lOS 

3 1.1 x lOS 2.0 x lOS 1.6 x lOS 

4 1.8 x 1()4 1.6 x 1()4 1.7 x L()4 

1.0 0.5 5.0 x lOS 5.3 x lOS 5.2 x lOS 

I 1.5 x lOS 3.7 x lOS 2.6 x lOS 

2 1.4 x 1()4 2.0 x 1()4 1.7 x 104 

3 1.1 X 103 2.8 X 103 2.0 X 103 
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ID 6 

ORGANISM K PNEUMONIAE . 
Drug concen = Time (hr) Sample 1 Sample 2 Average 

tration (f.!g/mf.) 

0 0 7.5 x lOS 1.4 X 106 1.1 X 106 

0.5 1.4 x 106 6.0 x lOS 1.0 X 106 

1 2.5 X 106 8.1 x lOS 1.7 x 106 

1.5 1.2 x 107 1.1 X 106 6.6 X 106 

2 7.3 X 106 1.6 X 107 1.2 X 107 

3 8.0 X 107 8.3 X 107 8.2 X 101 

4 8.0 X lOB 8.5 X lOB 8.3 X lOR 

0.25 0.5 8.2 x lOS 1.4 X 106 1-.1 X 106 

I 7.7 x lOS 2.2 X 106 1.5 X 106 

1.5 1.4 x 106 1.5 X 107 8.2 X 106 

2 5.3 X 106 1.6 X 107 1.1 X 101 

3 7.0 X 107 6.0 X 107 6.5 X 107 

4 8.0 X 108 9.0 X lOB 8.5 X 108 

0.5 0.5 7.9 x lOS 1.5 X 106 1.1 X 106 

1 7.9 x lOS 2.4 X 106 1.6 X 106 

1.5 1.6 x 106 1.3 X 106 1.5 X 106 

2 9.8 X 106 1.8 X 107 1.4 X 107 

3 1.8 X 101 2.9 X 101 2.4 X 101 

4 1.5 X 101 9.5 .x 107 5.5 x 101 

1.0 0.5 2.2 x 106 9.0 x lOS 1.6 X 106 

1 2.4 X 106 1.1 X 106 1.8 X 106 

1.5 1.4 x 106 1.0 X 106 1.2 X 106 

2 1.2 x lOS 9.0 x 1()4 1.1 x lOS 

3 1.8 x t()4 1.0 x t()4 1.4 x to" 

4 1.8 X 103 3.0 X 103 2.4 X 103 
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ID 7 

ORGANISM K PNEUMONIAE . 
Drug concen = Time (hr) Sample 1 Sample 2 Average 

tration (Jl.g/mt) 

0 0 5.5 x 1()5 5.6 x 1()5 5.6 x 1()5 

0.5 6.3 x 1()5 6.2 x 106 6.3 x 1()5 

1 1.1 x 106 1.5 x 106 1.3 X 106 

1.5 3.8 x 106 4.2 X 106 4.0 X 106 

2 8.5 X 106 8.9 X 106 8.7 X 106 

3 4.8 X 107 4.0 X 107 4.4 X 107 

4 1.4 X 108 2.9 X 108 2.2 X lOR 

0.25 I 1.3 x 106 2.5 x 106 1.9 x 106 

1.5 2.5 x 106 2.0 X 106 2.3 X 106 

2 5.2 X 106 5.0 X 106 5.1 X 106 

3 1.4 X 107 3.0 X 107 2.2 X 107 

4 1.0 X 108 1.5 X 108 1.3 X 108 

0.5 1 6.5 x 1()5 5.0 x lOs 5.8 x 1()5 

1.5 8.9 x 1()5 5.5 x 1()5 7.2 x lOs 

2 1.0 X 106 6.3 x 1()5 8.2 x 1()5 

3 1.0 x 106 3.0 X 106 2.0 X 106 

4 1.1 X 107 2.0 X 107 1.6 X 107 

1.0 0.5 8.3 x 1()5 7.6 x 1()5 8.0 x 1()5 

1 4.3 x 1()5 4.1 x 1()5 4.2 x 1()5 

1.5 5.5 x IO" 3.0 x 103 2.9 X 104 

2 4.0 X 102 2.5 X 102 3.3 X 102 
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ID 8 
ORGANISM K PNEUMONIAE . 

Drug concen = Time (hr) Sample 1 Sample 2 Average 

tration (Jl.g/mt) 

0 0 2.0 x lOS 6.3 x lOS 4.2 x lOS 

0.5 3.3 x lOS 2.0 x lOS 2.7 x lOS 

1 8.0 x lOS 8.5 x lOS 8.3 x lOS 

1.5 1.2 x 1()6 1.3 x 106 1.3 X 106 

2 3.5 x 1()6 4.3 x 106 3.9 X 106 

3 1.6 X 107 6.0 X 107 3.8 X 107 

4 6:8 x 107 2.6 X 108 1.6 X 108 

0.25 0.5 3.0 x lOS 2.5 x lOS 2.8 x lOS 

1 5.2 x lOS 7.0 x lOS 6.1 x lOS 

1.5 8.5 x lOS 9.0 x lOS 8.8 x lOS 

2 2.9 x 1()6 1.5 x 106 2.2 X 106 

3 1.9 X 107 9.0 X 106 1.4 X 107 

4 8.2 X 107 9.0 X 107 8.6 X 107 

0.5 0.5 4.0 x lOS 3.0 x lOS 3.5 x lOS 

1 8.0 x lOS 5.9 x lOS 7.0 x lOS 

1.5 9.9 x lOS 7.0 x lOS 8.5 x lOS 

2 1.2 x 1()6 1.0 x 106 1.1 X 106 

3 3.5 x lOS 8.8 x lOS 6.2 x lOS 

4 8.5 x lOS 3.0 X 106 1.9 X 106 

1.0 1 4.5 x lOS 5.0 x lOS 4.8 x lOS 

1.5 3.0 x IO" 3.7 x 1()4 3.4 x 1()4 

2 1.5 x IO" 1.2 x 1()4 1.4 x lO" 

3 3.0 x 1()l 2.0 x 102 2.5 X 102 
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ID 9 

ORGANISM E.COLI 

Drug concen = Time (hr) Sample 1 Sample 2 Average 
tration (/lg/mt) 

0 0 6.9 x 1()4 6.0 x 1()4 6.5 x 1()4 

0.5 6.8 x 1()4 6.2 x 1()4 6.5 x 1()4 

I 1.7 x lOS 2.0 x lOS 1.9 x lOS 

1.5 1.5 x 106 9.3 x lOS 1.2 X 106 

2 6.3 X 106 7.1 X 106 6.7 X 106 

3 1.3 X 107 4.0 X 107 2.7 X 107 

4 1.0 X 108 1.5 X 108 1.3 X 108 

0.25 0.5 6.0 x 1()4 6.2 x 1()4 6.1 x 1()4 

1 6.3 x 1()4 6.0 x 1()4 6.2 x 104 

1.5 2.5 x lOS 3.0 x lOS 2.8 x lOS 

2 4.7 x lOS 5.0 x lOS 4.9 x lOS 

2.5 2.3 x lOS 3.1 x lOS 2.7 x lOS 

3 5.8 x 1()4 6.7 x 1()4 6.3 x 1()4 

4 4.3 x 103 3.0 X 103 3.7 X 103 

0.5 0.5 6.2 x 1()4 5.8 x 1()4 6.0 x 1()4 

1 7.2 x 1()4 8.0 x 1()4 7.6 x 1()4 

1.5 1.5 x lOS 9.0 x 1()4 1.2 x lOS 

2 3.3 x 1()4 3.lxl()4 3.2 x 1()4 

2.5 6.3 x 103 7.0 X 103 6.7 X 103 

3 7.6 X 102 6.0 X 102 6.8 X 102 

4 5.7 X 102 3.0 X 102 4.4 X 102 

1.0 0.5 5.5 x 1()4 6.0 x 1()4 5.8 x IQ4 

1 5.0 x 1()4 4.5 x 1()4 4.8 x lQ4 
2 3.4 x 103 3.0 X 103 3.2 X 103 

3 1.0 X 102 1.5 X 102 1.3 X 102 
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ID 10 

ORGANISM E COLI . 
Drug concen = Time (hr) Sample I Sample 2 Average 

tration (Jlg/mt) 

0 0 4.0 x lOS 5.0 x lOS 4.5 x lOS 

0.5 4.2 x lOS 3.8 x lOS 4.0 x lOS 

I 5.1 x lOS 7.3 x lOS 6.2 x lOS 

1.5 8.8 x lOS 9.0 x lOS 8.9 x lOS 

2 1.3 X 106 3.5 X 106 2.4 X 106 

3 1.5 X 107 1.8 X 107 1.7 X 107 

4 1.8 x 108 8.3 X 107 1.3 x 108 

0.5 0.5 4.2 x lOS 5.0 x lOS 4.6 x lOS 

1 6.5 x lOS 7.0 x lOS 6.8 x lOS 

1.5 9.0 x lOS 9.2 x lOS 9.1 x lOS 

2 2.8 X 106 3.0 X 106 2.9 X 106 

3 1.0 X 107 1.4 X 107 1.2 X 107 

4 9.8 X 107 9.6 X 107 9.7 X 107 

1.0 0.5 2.0 x lOS 1.8 x lOS 1.9 x lOS 

1 7.0 x lOS 5.2 x lOS 6.1 x lOS 

1.5 5.8 x lOS 4.0 x lOS 4.9 x lOS 

2 2.1 x lOS 2.0 x lOS 2.1 x lOS 

3 4.0 x 1()4 4.8 x 103 2.2 x 1()4 
4 1.8 x 103 6.0 X 102 1.2 X 103 

1.5 0.5 2.0 x lOS 2.4 x lOS 2.2 x lOS 

I 1.7 x lOS 2.0 x lOS 1.9 x lOS 
1.5 3.0 x 1()4 4.2 x 1()4 3.6 x 1()4 

2 1.2 x 103 7.0 X 102 9.5 X 102 

3.5 2.0 x 102 1.5 X 102 1.8 X 102 
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ID 11 
ORGANISM E.COLI 

Drug concen = Time (hr) Sample 1 Sample 2 Average 
tration (Ilg/mt) 

0 0 2.3 x lOS 3.8 x lOS 3.1 x lOS 

0.5 2.5 x lOS 6.6 x lOS 4.6 x lOS 

1 2.8 X 105 7.0 x lOS 4.9 X 105 

1.5 1.2 x 106 1.1 X 106 1.2 X 106 

2 1.8 X 106 5.0 X 106 3.4 X 106 

3 6.0 X 101 3.5 X 101 4.8 X 101 

4 1.5 x 108 1.1 x 108 1.3 x 108 

0.25 1 3.8 x lOS 4.0 x lOS 3.9 x lOS 

1.5 3.4 x lOS 3.6 x lOS 3.5 x lOS 

2 3.7 x lOS 5.5 x lOS 4.6 x lOS 

3 1.0 x lOS 1.2 x lOS 1.1 x lOS 

4 9.8 x 1()4 9.0 x 1()4 9.4 x 1()4 

0.75 1 2.9 x lOS 3.1 x lOS 3.0 x lOS 

1.5 1.4 x 105 1.0 x lOS 1.2 x lOS 

2 9.3 x 1()4 8.0 x 1()4 8.7 x 1()4 

3 1.8 x 1()4 2.0 x 1()4 1.9 x 1()4 

4 7.5 x 103 8.0 X 103 7.8 X 103 

1.0 1 4.7 x 1()4 1.5 x 1()4 3.1 x 1()4 

1.5 1.1 x 1()4 1.0 x 1()4 1.1 x 1()4 

2 3.3 x 103 3.0 X 103 3.2 X 103 

3 9.0 X 102 8.0 X 102 8.5 X 102 

4 4.6 X 102 5.0 X 102 4.8 X 102 
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ID 12 

ORGANISM E.COLI 

Drug concen = Time (hr) Sample 1 Sample 2 i\ veragc 
tration (p.gjmt) 

0 0 5.2 x lOS 5.0 x lOS 5.1 x 105 

0.5 5.2 x lOS 5.5 x lOs 5.4 x lOS 

I 5.6 x lOS 5.8 x lOS 5.7 X 105 

1.5 1.1 x 106 2.0 X 106 1.6 x IO~ 

2 3.6 X 106 4.2 X 106 3.9 X 106 

3 1.1 x 107 1.0 X 107 1.1 X 107 

4 6.3 X 107 8.0 X 107 7.2 X 107 

0.25 0.5 5.5 x 105 5.0 x lOs 5.3 X 105 

I 8.3 x lOs 7.0 x lOS 7.7 X 105 

1.5 1.3 x 106 1.0 X 106 1.2 X 106 

2 1.4 X 106 1.5 X 106 1.5 X 106 

3 5.5 X 106 6.0 X 106 5.8 X 106 

4 1.2 X 107 1.0 X 107 1.1 X 107 

I 0.5 5.5 x lOs 5.7 x lOs 5.6 X 105 

I 7.3 x lOS 5.5 x lOS 6.4 x lOs 

1.5 1.6 x 106 1.2 X 106 1.4 X 106 

2 1.5 X 106 1.0 X 106 1.3 x 10~ 

3 6.7 X 103 3.3 x 1()4 2.0 x 1()4 

4 5.1 x 102 1.4 X 103 9.6 X 102 

1.5 0 5.5 x lOS 5.0 x lOS 5.3 X 105 

0.5 5.4 x lOS 6.0 x lOS 5.7 X 105 

I 7.7 x lOs 7.0 x lOS 7.4 x lOS 
1.5 2.0 x 1()4 6.0 x 1()4 4.0 x 1()4 

2 2.2 x 103 3.0 X 103 2.6 X 103 

3 9.0 X 102 8.0 X 102 8.5 X 102 
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ID 13 

ORGANISM E.COLI 

Drug conccn = Time (hr) Sample 1 Sample 2 i\ verage 
tration (flg/me) 

0 0 4.7 x 1()4 7.2 x 1()4 6.0 x 1()4 

0.5 5.5 x 1()4 8.0 x 1()4 6.8 x 1()4 

1 9.0 x 1()4 1.2 x lOs 1.1 x lOs 

1.5 3.9 x lOS 2.8 x lOS 3.4 x lOS 

2 2.5 X 106 1.3 X 106 1.9 X 106 

3 5.0 X 106 7.8 X 106 6.4 X 106 

4 2.7 X 107 5.2 X 107 4.0 X 107 

0.5 1 8.5 x l()4 1.0 x lOS 9.3 x 1()4 

1.5 8.3 x 1()4 1.2 x lOS 1.0 x lQ-s 

2 9.5 x 1()4 1.3 x lOS 1.1 x lOS 

2.5 5.2 x 1()4 7.8 x 1()4 6.5 x 104 

3 6.8 X 103 1.1 x 1()4 8.9 x 103 

4 4.0 X 103 9.0 X 103 6.5 X 103 

0.75 0.5 4.6 x 1()4 7.0 x 1()4 5.8 x 104 

I 6.3 x 1()4 6.0 x 1()4 6.2 x 1()4 

2 8.0 x 102 9.0 X 102 8.5 X 102 

3 1.5 X 102 2.0 X 102 1.8 X 102 

1.0 0.5 4.2 x 1()4 4.0 x 1()4 4.1 x 1()4 

1 4.0 x 1()4 3.0 x 1()4 3.5 x 1()4 

1.5 2.5 x 103 3.0 X 103 2.8 X 103 

2 1.3 X 102 2.0 X 102 1.7 X 102 
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ID 14 

ORGANISM E.COLI 

Drug concen = Time (hr) Sample 1 Sample 2 Average 
tration (lJ.g/mt) 

0 0 9.5 x 1()4 8.0 x 1()4 8.8 x 1()4 

0.5 9.7 x 1()4 8.8 x 1()4 9.3 x 1()4 

1 1.6 x lOS 1.0 x lOS 1.3 X 105 

1.5 4.5 x lOS 2.5 x lOS 3.5 X 105 

2 1.2 X 106 8.0 x lOS 1.0 X 106 

3 1.0 X 107 9.0 X 106 9.5 X 106 

4 9.0 X 107 8.0 X 107 8.5 X 107 

0.5 1 6.5 x 1()4 7.0 x 1()4 6.8 x 1()4 

1.5 9.0 x 1()4 8.5 x 1()4 8.8 x 1()4 

2 1.2 x lOS 9.0 x 1()4 1.1 x ]05 

2.5 6.0 x lOS 5.0 x lOS 5.5 X 105 

3 3.0 x lOS 2.0 x lOS 2.5 X ]05 

4 9.5 x 1()4 8.0 x 1()4 8.8 x 1()4 

0.75 1 6.0 x 1()4 5.5 x 1()4 5.8 x 104 

1.5 8.0 x 1()4 7.0 x 1()4 7.5 x 1()4 

2 6.0 x 1()4 6.3 x 1()4 6.2 x 1()4 

2.5 5.5 x 1()4 5.0 x 1()4 5.3 x 1()4 

3 2.0 x 1()4 1.0 x 1()4 1.5 x 1()4 

4 1.6 x ]03 3.0 X 103 2.3 X 103 

1 1 4.7 x 1()4 5.3 x 1()4 5.0 x 1()4 

1.5 5.5 x 1()4 7.0 x 1()4 6.3 x 1()4 

2 2.2 x 1()4 2.8 x 1()4 2.5 x 1()4 

2.5 3.2 x 103 3.0 X 103 3.1 X 103 

3 4.0 X 102 4.3 X 102 4.2 X 102 

4 9.0 X 101 8.0 X 101 8.5 X 101 
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ID 15 

ORGANISM E.COLI 

Drug concen = Time (hr) Sample 1 Sample 2 Average 
tration (j1.g/mf,) 

0 0 6.0 x lOS 2.0 X 105 4.0 X 105 

0.5 8.6 x 105 3.0 x lOS 5.8 X 105 

1 8.0 X 105 7.3 X 105 7.7 x lOS 

1.5 7.7 x lOS 1.0 X 106 8.9 X 105 

2 6.2 X 106 3.0 X 106 4.6 X 106 

3 1.2 X 107 1.8 X 107 1.5 X 107 

4 2.9 X 108 8.3 X 107 1.9 X 108 

0.5 0.5 6.0 x lOS 4.0 X 105 5.0 x lOS 

I 5.0 x lOs 5.2 X 105 5.1 x lOS 

1.5 3.0 x lOS 4.0 X 105 3.5 X 105 

2 7.0 x 1()4 6.0 x 1()4 6.5 x 1()4 

3 5.0 x 103 3.0 X 103 4.0 X 103 

4 9.0 X 102 8.0 X 102 8.5 X 102 

0.75 0.5 6.0 x 105 4.0 X 105 5.0 X 105 

1 8.0 X 105 7.0 x lOS 7.5 X 105 

1.5 7.5 x 105 8.5 X 105 8.0 x lOS 
2 8.5 X 103 6.0 X 103 7.3 X 103 

3 8.5 X 102 5.0 X 102 6.8 X 102 

1.0 0.5 7.0 x lOS 8.0 x lOS 7.5 x lOS 

1 2.5 X 105 1.5 X 105 2.0 X 105 

1.5 7.3 x 1()4 7.0 x 104 7.2 x 1()4 
2 2.8 x 102 2.0 X 102 2.4 X 102 

2.5 5.0 x 102 6.0 X 102 5.5 X 102 
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APPENDIX D 



ID 1 
ORGANISM K. PNEUMONIAE 

During antibiotic exposure 

Time Cantrall Control 2 

0 1.3 x 107 9.5 X 106 

1 7.9 X 10H 8.7 X 108 

2 6.2 X 109 7.1 X 109 

1 Hour exposure 

Time Cantrall Control 2 

0 2.0 x lOS 4.6 x lOS 

1 1.8 X 106 2.0 X 106 

2 1.0 X 107 1.2 X 107 

3 7.6 X 107 7.9 X 107 

2 Hour exposure 

Time Cantrall Control 2 

0 2.1 x 103 2.0 X 103 

1 1.1 x lQ4 1.3 x 1()4 

2 6.2 x lQ4 7.9 x 104 

3 7.6 x lOS 7.9 x lOS 

196 

Average Sample 1 Sample 2 Average 

1.1 x 107 - - -
8.3 X 108 4.0 X 106 8.5 X 106 6.3 X 106 

6.7 X 109 2.0 X 106 1.5 X 106 1.8 X 106 

Average Sample 1 Sample 2 Average 

3.3 x lOS 3.4 x lOS 3.0 x lOS 3.2 x lOS 

1.9 X 106 6.0 x lOS 6.3 x lOS 6.2 x lOS 

1.1 X 107 4.8 X 106 4.7 X 106 4.8 X 106 

7.8 X 107 5.8 X 107 6.0 X 107 5.9 X 107 

Average Sample 1 Sample 2 Average 

2.1 X 103 1.4 X 103 1.6 X 103 1.5 X 103 

1.2 x 1()4 3.5 x 103 4.0 X 103 3.8 X 103 

7.1xlQ4 9.5 x 103 8.9 X 103 9.2 X 103 

7.8 X 105 5.0 x 1()4 5.4 x 1()4 5.2 x 1()4 
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ID 2 

ORGANISM K. PNEUMONIAE 

During antibiotic exposure 

Time Control I Control 2 

0 5.2 x 106 5.0 X 106 

I 3.0 X 107 2.5 X 107 

2 1.0 X 108 9.0 X 107 

1 Hour exposure 

Time Control 1 Control 2 

0 4.0 x 104 4.5 x 1()4 

I 5.0 x 1()4 4.5 x 1()4 

2 4.0 x 106 3.0 X 106 

3 2.0 X 107 1.2 X 107 

2 Hour exposure 

Time Control 1 Control 2 

0 6.0 x 1()4 4.0 x 1()4 

1 6.0 x lOS 3.0 x lOs 

2 6.2 x 106 2.0 X 106 

3 5.0 x 107 3.0 X 107 
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Average Sample I Sample 2 Average 

5.1 X 106 - - -

2.8 X 107 4.6 X 106 4.8 X 106 4.7 X 106 

9.5 X 107 4.0 X 106 4.2 X 106 4.1 X 106 

Average Sample 1 Sample 2 Average 

4.3 x 1()4 3.4 x 1()4 3.5 x 1()4 3.5 x 1()4 

4.8 x 1()4 8.0 x 1()4 7.0 x 1()4 7.5 x 1()4 

3.5 X 106 1.3 X 106 8.0 x lOS 1.1 X 106 

1.6 X 107 1.5 X 107 2.0 X 107 1.8 X 107 

Average Sample 1 Sample 2 Average 

5.0 x 1()4 8.0 x 103 8.4 X 103 8.2 X 103 

4.5 x lOS 1.5 x 1()4 2.0 x 1()4 1.8 x 1()4 

4.1 X 106 3.0 x 1()4 3.4 x 1()4 3.2 x 1()4 

4.0 X 107 2.6 x lOS 1.2 x lOS 1.9 x lOS 
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ID 3 

ORGANISM K. PNEUMONIAE 

During antibiotic exposure 

Time Cantrall Control 2 

0 5.1 x 106 5.5 X 106 

1 5.2 X 107 4.6 X 107 

2 6.0 X 107 7.3 X 107 

1 Hour exposure 

Time Cantrall Control 2 

0 5.0 x 1()4 1.5 x 1()4 

I 6.0 x lOS 1.5 x lOS 

2 5.0 X 106 1.6 x 10~ 

3 1.4 X 107 1.5 X 107 

2 Hour exposure 

Time Cantrall Control 2 

0 2.0 x lOS 4.0 x lOS 

1 1.0 X 106 3.0 X 106 

2 1.0 X 107 3.0 X 107 

3 6.3 X 107 8.8 X 107 
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Average Sample 1 Sample 2 Average 

5.3 X 106 - - -

4.9 X 107 7.5 X 106 6.8 X 106 7.1 X 106 

6.7 X 107 1.0 X 106 3.0 X 106 2.0 X 106 

Average Sample 1 Sample 2 Average 

3.3 x 1()4 9.5 x 103 7.0 X 103 8.3 X 103 
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3.3 X 106 1.3 x lOS 1.0 x lOS 1.2 x lOS 

1.5 X 107 1.4 X 106 2.0 X 106 1.7 X 106 

i\ verage Sample 1 Sample 2 Average 

3.0 x lOS 4.5 X 102 2.0 X 102 3.3 X 102 

2.0 X 106 4.5 X 102 2.7 X 102 3.8 X 102 

2.0 X 107 1.3 X 103 1.0 X 103 1.2 X 103 

7.6 X 107 6.0 X 103 5.0 X 103 5.5 X 103 
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ID 4 

ORGANISM K. PNEUMONIAE 

During antibiotic exposure 

Time Control I Control 2 

0 5.0 x 106 5.7 X 106 

I 4.0 X 101 5.0 X 107 

2 2.5 X 108 6.0 X 108 

1 Hour exposure 

Time Control 1 Control 2 

0 3.6 x 1()4 4.0 x 1()4 

1 4.0 X 105 3.0 x lOS 

2 1.2 X 106 1.5 X 106 

3 9.3 x 106 9.0 X 106 

2 Hour exposure 

Time Control 1 Control 2 

0 4.0 x 1()4 6.0 x 1()4 

1 8.5 x lOS 7.0 x lOS 

2 8.0 X 106 8.3 X 106 

3 7.5 X 107 8.5 X 107 
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Average Sample 1 Sample 2 Average 

5.4 X 106 - - -
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Average Sample 1 Sample 2 Average 
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1.4 X 106 2.0 X 103 4.3 x 1()4 2.3 x 1()4 

9.2 X 106 9.3 X 103 9.5 x 1()4 5.2 x 1()4 

Average Sample 1 Sample 2 Average 

5.0 x 1()4 5.0 x 101 5.2 X 101 5.1 X 101 

7.8 x lOS 5.0 X 101 4.6 X 101 4.8 X 101 

8.2 X 106 1.5 X 102 1.7 X 102 1.6 X 102 

8.0 X 107 1.7 X 103 1.3 X 103 1.5 X 103 
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ORGANISM K. PNEUMONIAE 

During antibiotic exposure 

Time Cantrall Control 2 

0 6.2 x 106 5.0 X 106 

1 3.0 X 107 1.1 X 107 

2 1.7 X 108 6.0 x 10~ 

1 Hour exposure 

Time Cantrall Control 2 

0 1.0 x 1()4 1.3 x 1()4 

1 1.2 x lOS 1.1 x lOS 

2 9.5 x lOS 7.5 x lOS 

3 1.1 X 107 9.0 X 106 

2 Hour exposure 

Time Cantrall Control 2 

0 6.0 x 1()4 7.0 x 104 

1 6.6 X 105 7.0 x lOS 

2 7.5 X 106 7.0 X 106 

3 7.0 X 107 5.0 X 107 
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Average Sample I Sample 2 Average 

5.6 X 106 - - -

2.1 X 107 1.3 X 107 1.0 X 107 1.2 X 107 

3.9 X 108 1.0 X 106 1.3 X 106 1.2 x 106 

Average Sample 1 Sample 2 Average 

1.2 x 1()4 5.0 x 103 6.8 X 103 5.9 X 103 
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ID 6 

ORGANISM K. PNEUMONIAE 

During antibiotic exposure 

Time Control 1 Control 2 

0 1.4 x 107 3.5 X 107 

1 5.5 X 107 4.5 X 107 

2 7.0 X 108 8.5 X 107 

1 Hour exposure 

Time Control 1 Control 2 

0 3.5 x 1()4 3.3 x 1()4 

I 4.0 x lOS 2.8 x lOs 

2 1.5 X 106 7.0 x lOs 

3 9.5 X 106 7.0 X 106 

2 Hour exposure 

Time Control 1 Control 2 

0 4.0 x lOS 2.2 x lOs 

1 2.0 x 106 6.0 x lOS 

2 1.2 x 107 3.8 X 106 

3 9.0 x 107 5.0 X 107 

201 

Average Sample 1 Sample 2 Average 

2.5 X 107 - - -
5.0 X 107 1.3 X 107 2.0 X 107 1.7 X 107 

3.9 X 108 1.2 X 106 9.0 x lOS 1.1 X 106 

Average Sample I Sample 2 Average 

3.4 x 1()4 6.0 x 1()4 3.3 x 1()4 4.7 x 1()4 

3.4 x lOs 3.5 x lOS 2.0 x lOS 2.8 x lOS 

1.1 X 106 9.7 x lOs 8.0 x lOS 8.9 x lOS 

8.2 X 106 4.8 X 106 8.0 X 106 6.4 X 106 

Average Sample 1 Sample 2 Average 

3.1 x lOs 2.5 x 1()4 1.1 x 1()4 1.8 x 1()4 

1.3 X 106 3.5 x 1()4 5.0 x 1()4 4.3 x 1()4 

7.9 X 106 5.0 x 1()4 6.0 x 1()4 5.5 x 1()4 

7.0 X 107 3.5 x lOS 1.5 x lOS 2.5 x lOS 
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ID 7 

ORGANISM K. PNEUMONIAE 

During antibiotic exposure 

Time Cantrall Control 2 

0 4.3 x 106 8.7 X 106 

1 2.5 X 107 7.1 X 107 

2 7.6 X 108 1.3 X 108 

1 Hour exposure 

Time Cantrall Control 2 

0 3.4 x 1()4 5.0 x 1()4 

1 3.5 x lOs 6.5 x lOS 

2 2.5 x 106 3.7 X 106 

3 3.0 X 107 8.9 X 106 

2 Hour exposure 

Time Contrail Control 2 

0 7.1 x I()4 7.9 x 1()4 

1 6.2 x lOs 8.5 X 105 

2 5.0 x 106 7.4 X 106 

3 6.2 X 107 9.3 X 107 
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Average Sample 1 Sample 2 Average 

6.5 X 106 - - -
4.8 X 107 3.5 X 106 8.7 X 106 6.1 X 106 

4.5 X 108 1.0 X 106 5.0 X 106 3.0 X 106 

Average Sample 1 . Sample 2 Average 

4.2 x 1()4 1.5 x 1()4 1.0 x 1()4 1.3 x 1()4 

5.0 x lOS 7.9 x 1()4 7.1 x 1()4 7.5 x 1()4 

3.1 X 106 3.0 x lOS 7.1 x lOS 5.1 X 105 

1.9 X 107 6.0 X 106 7.9 X 106 7.0 X 106 

Average Sample 1 Sample 2 Average 

7.5 x 1()4 2.0 x 1()4 7.1 x 103 4.6 x 1()4 

7.4 x lOS 3.5 x 1()4 3.2 x 1()4 3.4 x 1()4 

6.2 X 106 5.0 x lOS 3.0 x lOS 4.0 x lOS 

7.8 X 107 4.0 X 106 5.0 X 106 4.5 X 106 
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ID 8 

ORGANISM K. PNEUMONIAE 

During antibiotic exposure 

Time Cantrall Control 2 

0 1.2 x 107 1.0 X 107 

1 1.2 X 108 1.0 X 108 

2 1.0 X 109 1.3 X 109 

1 Hour exposure 

Time Cantrall Control 2 

0 1.0 x 1()4 1.2 x 1()4 

I 1.4 x lOS 1.0 x lOS 

2 6.5 x lOS 6.0 x lOS 

3 6.0 X 106 4.3 X 106 

2 Hour exposure 

Time Control I Control 2 

0 7.5 x 1()4 8.3 x 1()4 

1 7.5 x lOS 5.0 x lOS 

2 1.5 X 106 1.7 X 106 

3 1.2 X 107 9.0 X 106 
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Average · Sample 1 Sample 2 Average 

1.1 X 10' - - -
1.1 X 108 7.0 X 106 3.0 X 106 5.0 X 106 

1.2 X 109 8.8 x lOS 8.0 x lOS 8.4 x lOS 

Average Sample 1 Sample 2 Average 

1.1 x 1()4 4.8 x 102 3.6 X 101 4.2 X 102 

1.2 x lOS 8.0 X 102 7.5 X 102 7.8 X 102 

6.3 x lOS 7.0 X 103 3.6 X 103 5.3 X 103 

5.2 X 106 3.2 x 1()4 9.0 x 103 2.1 x 1()4 

Average Sample 1 Sample 2 Average 

7.9 x 1()4 5.6 x 102 4.0 X 101 4.8 X 102 

6.3 x lOS 8.0 x 102 4.6 x 102 6.3 X 102 

1.6 X 106 9.0 X 102 6.0 X 102 7.5 X 102 

1.1 X 107 5.6 X 103 2.6 X 103 4.1 X 103 
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ORGANISM E. COLI 

During antibiotic exposure 

Time Control 1 

0 8.0 x lOS 

1 5.2 X 106 

2 7.7 X 107 

1 Hour exposure 

Time Control I 

0 7.5 x 1()4 

I 3.7x1OS 

2 3.8 X 106 

3 1.2 X 107 

2 Hour exposure 

Time Contrail 

0 5.5 x 103 

1 4.2 x 1()4 

Control 2 

1.0 X 106 

2.8 X 106 

7.0 X 107 

Control 2 

8.2 x 1()4 

4.8 x 105 

4.5 X 106 

1.0 X 107 

Control 2 

6.0 X 103 

5.0 x 1()4 

2 3.0 x lOS 4.4 x lOS 

3 7.5 x 106 7.0 X 106 
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Average · Sample 1 Sample 2 Average 

9.0 x lOS - - -
4.0 X 106 4.7 X 106 4.0 X 106 4.4 X 106 

7.4 X 107 1.1 x lOS 3.3 x lOs 2.2 x lOS 

Average Sample I Sample 2 Average 

7.9 x 1()4 2.5 x 102 2.7 X 102 2.6 X 102 

4.3 x lOS 5.5 X 102 5.1 X 102 5.3 X 102 

4.2 X 106 4.2 X 103 3.8 X 103 4.0 X IOJ 

1.1 X 107 2.5 x 1()4 5.0 x 1()4 3.8 x 1()4 

Average Sample I Sample 2 Average 

5.8 X 103 2.7 X 103 2.1 X 103 2.4 X 103 

4.6 x 1()4 7.3 x 103 6.8 X 103 7.1 X 103 

3.7 x lOS 2.8 x 1()4 3.3 x 1()4 3.lxl()4 

7.3 X 106 6.5 x lOS 7.5 x lOS 7.0 x lOS 
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ID 10 

ORGANISM E. COLI 

During antihiotic exposure 

Time Control 1 

0 8.3 x lOs 

1 3.5 X 106 

2 1.1 X 107 

1 Hour exposure 

Time Control 1 

0 3.5 x 103 

1 1.7 x 1()4 

2 1.6 x lOS 

3 1.4 X 106 

2 Hour exposure 

Time Control 1 

0 4.2 x 1()4 

I 1.2 x lOS 

2 9.7 x lOS 

3 1.4 X 107 

Control 2 

6.8 x lOS 

4.3 X 106 

1.3 X 107 

Control 2 

5.0 X 103 

2.5 x 1()4 

1.2 x lOS 

1.5 X 106 

Control 2 

4.0 x 1()4 

2.3 x lOS 

1.3 X 106 

7.0 X 106 
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Average Sample 1 Sample 2 Average 

7.6 x lOS - - -
3.9 X 106 1.1 X 106 6.8 x lOS 8.9 x lOs 

1.2 X 107 7.0 X 103 6.0 X 103 6.5 X 103 

Average Sample 1 Sample 2 Average 

4.3 X 103 2.3 X 103 8.8 X 102 1.6 X 103 

2.1 x 1()4 4.5 x 103 2.5 X 103 3.5 X 103 

1.4 x lOS 7.8 X 103 6.0 X 103 6.9 X 103 

1.5 X 106 1.0 x lOS 1.3 x lOS 1.2 x lOS 

Average Sample I Sample 2 Average 

4.1 x 1()4 1.0 x 102 1.2 X 102 1.1 X 102 

1.8 x lOS 1.5 X 102 1.6 X 102 1.6 X 102 

1.1 X 106 6.3 X 102 4.5 X 102 5.4 X 102 

1.1 X 107 1.0 X 103 1.5 X 103 1.3 X 103 
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10.10 Post antibiotic effect after 1 hour drug exposure 
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ID 11 

ORGANISM E. COLI 

During antibiotic exposure 

Time Cantrall Control 2 

0 2.2 x 106 1.1 X 106 

1 7.5 X 106 1.3 X 107 

2 4.8 X 107 7.8 X 107 

1 Hour exposure 

Time Cantrall Control 2 

0 1.0 x 1()4 6.3 x 103 

I 1.0 x lOS 5.3 x 1()4 

2 6.0 x lOS 3.8 x lOS 

3 4.7 X 106 5.3 X 106 

2 Hour exposure 

Time Cantrall Control 2 

0 7.8 x 1()4 9.0 x 1()4 

1 3.3 x lOS 4.5 X 105 

2 4.5 X 106 3.5 X 106 

3 6.7 X 107 4.0 X 107 
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Average Sample I Sample 2 Average 

1.7 X 106 - - -
1.0 X 107 2.7 x lOS 6.0 x 1()4 1.7 x 105 

6.3 X 107 7.0 x l()4 4.3 x 1()4 5.7 x 1()4 

Average Sample 1 Sample 2 Average 

8.2 X 103 1.5 X 103 1.5 X 102 8.3 X 102 

7.7 x 1()4 2.5 x 103 5.0 X 102 1.5 X 103 

4.9 x lOS 9.0 X 103 2.5 X 103 5.8 X 103 

5.0 X 106 1.0 x lOS 7.0 X 103 5.4 x 1()4 

Average Sample I Sample 2 Average 

8.4 x 1()4 2.4 x 102 1.6 X 102 2.0 X 102 

3.9 x lOS 2.0 X 102 3.3 X 102 2.7 X 102 

4.0 X 106 6.8 X 102 8.0 X 102 7.4 X 102 

5.4 X 107 4.2 X 103 2.8 X 103 3.5 X 103 
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ID.11 Post antibiotic effect after 1 hour drug exposure 
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ORGANISM E. COLI 

During antibiotic exposure 

Time Control 1 Control 2 

0 5.5 x lOS 1.0 X 106 

1 4.2 X 106 7.5 X 107 

2 1.4 X 107 8.0 X 108 

I Hour exposure 

Time Control I Control 2 

0 5.0 x 103 1.0 x 1()4 

I 3.0 x 1()4 1.0 x lOS 

2 4.0 x lOS 6.0 x lOs 

3 8.5 x 106 3.3 X 106 

2 Hour exposure 

Time Control 1 Control 2 

0 5.0 x 1()4 3.5 x 1()4 

1 5.0 x lOS 4.0 x lOs 

2 5.0 X 106 7.0 X 106 

3 4.3 X 107 7.0 X 107 
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Average Sample 1 Sample 2 Average 

7.8 x lOS - - -
4.0 X 107 9.3 x lOS 9.5 x lOS 9.4 x lOs 

4.1 X 108 3.0 X 102 2.0 X 102 2.5 X 102 

Average Sample 1 Sample 2 Average 

7.5 x 103 9.0 X 102 8.0 X 102 8.5 X 102 

6.5 ~ 1()4 1.7 x 103 2.5 X 103 2.1 X 103 

5.0 x lOS 2.0 x 1()4 1.0 x 1()4 1.5 x t()4 

5.9 X 106 1.0 x lOS 2.0 x lOS 1.5 x lOs 

Average Sample I Sample 2 Average 

4.3 x 1()4 2.0 x 103 5.0 X 101 1.0 X 103 

4.5 x lOS 2.2 X 103 5.1 X 101 1.1 X 103 

6.0 X 106 1.1 x 1()4 1.2 x 102 5.6 X 103 

5.7 X 107 1.1 x lOS 1.2 x 103 5.6 x 1()4 



c 
f 
u 

Drug exposure 

••• •• P 

tOE • 08 1 '~~~~~!:~::~~~::'~~~J:~f:~'~::~'~:~:~.~~~ 1 

'7 

/ tOE. 05 

m 
I 

i~~~~~~~~~~~~~~~~~~~~::=.:::::=~~~':]~~1~lli~~~~~~~~~~ill~· 
I:;: ::=:::::::=:::::::=:::::::==":~::'::::::::::: ... -" 

1.0E • 02 1~'@!'~~~";::-4.~~~~~.£,~~~',.~1 ._--_ .. _-_._._---_._-_ .. _-----._--_ ... _. __ ._ .... .. _ .. __ ._ .. __ ._--_ .. _ .. _. __ ._-_ .. __ . 

o 0.6 1 1.6 2 2.6 
Time (hra) 

control 

-+- 1 hr expoaure 

Regrowth after drug dilution 

1.0E·08 

" , .. J 

I ·· ················ z c 
f 

l ~--- I f 'OE'O'=;~ 
t · 

1.0E • 02 ,,=,~=;,=.~=,,~~,~~;:'~,,~~~~~,~:~~:="~~~"~;~~~J .._._. __ ..... _._ .... _-_._ ... _._._ .... .. ._ ... _-... _ .. _ ... _._ ... __ ..... _ ....... _ ... . 

o 0.6 1 1.6 2 2.5 3 3.6 
Time (hra) 

control 

-+- 1 hr expoaure 

ID.12 Post antibiotic effect after 1 hour drug exposure 



Drug exposure 

1.0E + 08 

I 1~00. t::= 
I 

1,~@!!!§'~,~!!§~~:~!!~,-r?:i!~~~~~~~£~~~~'~""~~"!.1 
I·---····::::.::~::-::~~:::::::··:~::-::.:::::::::::::=:= :::1 
I --I 1.0E + 02 control 

-+- 2 hr expoaure 

o 0.6 1 1.6 2 2.6 
Time (hrs) 

Regrowth after drug dilution 

1.0E 0 OB I::==-~~ 
c 
f 

f 1.0EoO' =~=] 

1.0E + 02 

IL 

~1~~~:¥.:~~~~~1~.lli~~~~~~~~~h~~=~ 

o 0.6 1 1.6 2 2.6 3 3.6 
Time (hrs) 

control 

-+- 2 hr expoaure 

10.12 Post antibiotic effect after 2 hour drug exposure 
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ORGANISM E. COLI 

During antibiotic exposure 

Time Control 1 

0 5.2 x lOS 

I 1.5 X 106 

2 4.0 x 107 

1 Hour exposure 

Time Control I 

0 4.0 x 103 

1 4.0 x 1()4 

2 1.2 X 106 

3 1.2 X 107 

2 Hour exposure 

Time Control I 

0 1.7 x 1()4 

I 1.1 x lOS 

2 1.2 X 106 

Control 2 

4.8 x lOS 

1.4 X 106 

5.5 X 107 

Control 2 

7.0 X 103 

7.0 x 1()4 

9.3 X 106 

9.3 X 107 

Control 2 

1.0 x 1()4 

8.0 x 1()4 

8.8 x lOS 

3 4.2 X 106 5.3 X 106 
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Average Sample I Sample 2 Average 

5.0 x lOS - - -
1.5 X 106 5.7 x 1()4 4.0 x 1()4 4.9 x 1()4 

4.8 X 107 4.0 X 103 8.0 X 102 2.4 X 103 

Average Sample I Sample 2 Average 

5.5 X 103 2.5 X 102 3.0 X 102 2.8 X 102 

5.5 x 1()4 6.0 x 102 8.0 X 102 7.0 X 102 

5.3 X 106 2.0 X 103 2.5 X 103 2.3 X 103 

5.3 X 107 I.lxl()4 3.0 x 1()4 2.0 x 1()4 

Average Sample I Sample 2 Average 

1.4 x 1()4 2.0 x 102 2.5 X 102 2.3 X 102 

9.5 x 1()4 2.0 x 102 2.5 X 102 2.3 X 102 

1.0 X 106 2.0 X 103 2.4 X 103 2.2 X 103 

4.8 X 106 3.0 x 1()4 4.0 x 1()4 3.5 x 104 
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During antibiotic exposure 
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Time Control 1 Control 2 Average Sample 1 Sample 2 Average 

0 3.3 x 107 1.8 X 107 2.6 X 107 - - -
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ORGANISM E. COLI 

During antibiotic exposure 

Time Control 1 Control 2 

0 1.2 x 106 1.0 X 106 

I 1.3 X 107 8.3 X 106 

2 6.7 X 107 8.5 X 107 

1 Hour exposure 

Time Control 1 Control 2 

0 8.2 x 103 8.0 X 103 

1 8.5 x 1()4 7.7 x 1()4 

2 9.5 x lOS 8.3 x lOS 

3 1.2 x 106 1.6 X 106 

2 Hour exposure 

Time Control I Control 2 

0 7.0 x 1()4 8.2 x 1()4 

1 8.5 x lOS 7.0 x lOs 

2 5.5 X 106 6.0 X 106 

3 6.5 X 107 7.5 X 107 

210 

Average · Sample 1 Sample 2 Average 

1.1 X 106 - - -
1.1 X 107 9.0 x lOS 1.5 X 106 1.2 X 106 

7.6 X 107 7.5 x 1()4 5.0 x 1()4 6.3 x 1()4 

Average Sample I Sample 2 Average 

8.1 X 103 1.3 X 103 1.8 X 103 1.6 X 103 

8.1 x 1()4 4.5 x 103 5.5 X 103 5.0 X 103 

8.9 x lOS 1.4 x 1()4 1.1xl()4 1.3 x 1()4 

1.4 X 106 1.3 x lOS 1.2 x lOS 1.3 x lOs 

Average Sample I Sample 2 Average 
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7.8 x lOS 1.3 X 102 2.8 X 102 2.1 X 102 

5.8 x lOS 1.3 X 102 1.5 X 102 1.4 X 102 

7.0 X 107 3.8 X 103 9.0 X 103 8.5 X 103 
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