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ABSTRACT

Electronic noses are targeted at determining odour character in a fashion that emulates conscious

odour perception in mammals. The intention of this study was to develop an organisational framework

for electronic noses and deploy a sample cheese odour discriminator within this framework.

Biological olfactory systems are reviewed with the purpose of extracting the organisational principles

that result in successful olfaction. Principles of gas handling, chemoreception, and neural processing

are considered in the formulation of an organisational framework. An electronic nose is then

developed in accordance with the biologically inspired framework.

Gas sensing is implemented by an array of six commercially available (tin oxide) semiconductor

sensors. These popular gas sensors are known to lack stability thus necessitating hardware and signal

processing measures to limit or compensate for instability. An odorant auto-sampler was developed to

deliver measured amounts of odorant to the sensors in a synthetic air medium. Each measurement

event encodes a simulated sniff, and is captured across six sensor channels over a period of 256

seconds at a sampling rate of 1Hz. The simulated sniff captures sensor base references and responses

to odorant introduction and removal.

A technique is presented for representation and processing of sensor-array data as a two-dimensional

(2D) image where one dimension encodes time, and the other encodes multi-channel sensory outputs.

The near optimal, computationally efficient 2D Discrete Cosine Transform (DCT) is used to represent

the 2D signal in a decorrelated frequency domain. Several coefficient selection strategies are proposed

and tested. A heuristic technique is developed for the selection of transform domain coefficients as

inputs to a non-linear neural network based classifier. The benefits of using the selection heuristic as

compared to standard variance-based selection are evident in the results. Benefits include; significant

dimensionality reduction with concomitant reduction in classifier size and training time, improved

generalisation by the neural network and improved classification performance. The electronic nose

produced a 99.1 % classification rate across a set of seven different cheeses.
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Appendix A

SELECTED SOFTWARE IMPLEMENTATIONS

This study was implemented mainly in software. Hardware involvement was limited only to the

capturing of raw measurements. Given that much of the software implementation is concerned with

mundane issues such as the straightforward implementation of algorithms described in the text, this

appendix is selective with respect to the software that is presented. A full listing of all source code

may be found in RESULT_CD:\Configuration and its various subdirectories.

A.1 Organisation of Appendix A

The following aspects ofthe software implementation are presented in this appendix.

• The AWK implementation of the Measurement Control Language (MCL) compiler

• The MCL command set description (Note: the MCL implementation of the measurement

event is listed in Chapter 3 and is not repeated here)

• A code selection from the IDE illustrating compiler invocation

• The MCL interpreter

• Selected pre-processing scripts

• Modified Simulator source code (code fragment)

A.2 The Measurement Control Language three-pass compiler

Table A.1: Measurement control language command set

Command Description
stop Shutdown the svstem
open( valve) Open the specified valve or valve set
close( valve) Close the specified valve or valve set
flush( begin) Begin flushing the odorant delivery manifold and sensor head
flush( end) Stop flushing
rate( high) Activate high flow rate
rate( low) Activate low flow rate (measurement flow rate)
capture Capture the current output ofthe six sensors (one sample only)
delay( period) Delay for the specified number of seconds
loop( dest, iterations) Go back to destination no more than the specified number of iterations
log( open) Create a new log file for sensor data (filename is auto-generated)
log( close) Close the currentlY ooen log file
macro name( paras) Begin macro definition with name and oarameters specified
mend End current macro defmition

A.1



The MCL command set contains twelve directly executable commands that are understood by a

command interpreter that is described in section AJ. Two non-executable commands (macro &

mend) exist for the sake of macro definition. Macros are expanded during pass two of the three-pass

compilation process. The compiled output is written to file in text format. This makes it possible for

the programmer to easily inspect and modify the compiled output.

A simple demo script ("Test.nse") is provided below. Sections A.2.! to A.2J illustrate the AWK

implementation of each compiler pass and the output as each pass processes the demo script.

Listing of Test.nse, the original demo script:

# This is a simple demo program
# It is designed to demonstrate compilation output only

##########Example macro#########
macro sample (cell, dur, NumSamples)

# air flow via sample cell number "cell"
open ( cell)
# capture several samples: "NumSamples" + 1
# delay for "dur" seconds between captures
rpt:

capture
delay( dur )
loop( rpt, NumSamples)

close(cell)
)

mend
###########End of Macro################

###########MAIN PROGRAM#############
# capture 21 samples each from sample cells 1,2 & 3
# sampling period 2 seconds
# flow rate is low
# delay 20 seconds between changing cells

# open the log file
log (open)

rate (low)

sample(l, 2, 20
delay (20)
sample (2, 2, 20
delay(20)
sample (3, 2, 20
log (close)

stop
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A.2.1 First pass compiler script

Filename: Pass I

Description: The first pass is implemented as an AWK script. The script reads the MCL input file,

removes all comments, brackets and punctuation marks, and prints the uncommented output to the

standard output. The standard output is redirected to a file ("pass I.out") by the calling program

"compile.bat" which is described in section A.2.4.

PassI listing:

BEGIN fORS = " "}

NF > 0 {split($O, a} #split input line into array of fields

i = 1

#now count the number of fields from the left, that do

#not start with the "#" character

while (substr(a[i], 1, 1) != "#" && i <= NF) i++

#print those fields

for(y=l; y < i; y++)

out = aryl

gsub(/[(),{}\[\]]/," ",out)

print out

if (i != 1) print "\n"}

END fORS = "\n"

print}

PassI output for Test.nse:

macro sample cell dur NumSamples

open cell
rpt:
capture
delay dur
loop rpt NumSamples
close cell

mend
log open
rate low
sample 1 2 20
delay 20
sample 2 2 20
delay 20
sample 3 2 20
log close
stop
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A.2.2 Second pass compiler script

Filename: Pass2

Description: The second pass is also implemented as an AWK script. The script reads the

uncommented MCL output file ("passl.out") from pass one. It then buffers all macro definitions and

expands macro insertions in the main program. The uncommented macro expanded output is written

to the standard output. The standard output is redirected to a file ("pass2.out") by the calling program

"compile.bat" which is described in section A.2.4.

Pass2 listing:

~Macro processor for enose script

BEGIN { mcro = "0"

mline = 0

domacro = "false")

$1 "macro" && NF >= 2 {

mcro = $2

macros[$2] = NF - 2

macro[mcro,"args","O"] = 0

macro [mcro, "lines", "0"] = 0

for (j = 3; j <= NF; j++)

macro [mcro, "args",j-2] $j

macro[mcro,"args","O"]++

next

mcro != "0" && $1 != "mend" { mline++

macro [mcro, "lines",mline] $0

macro [mcro, "lines", "0"]++

$1 "mend" mcro = 0

mline = 0

next )

mcro "0" {for (mac in macros) {

if ($1 == mac && macros [mac] NF -1 ) {

domacro = "true"

for (cmds = 1; cmds <= macro[mac,"lines","O"]; cmds++) {

out = macro [mac, "lines",cmdsj
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Pass3 output for Test.nse:

1 23 0 0
2 10 0 0
310 0
4 20 0 0
5 21 2 0
6 22 4 20
7 11 0 0
8 21 20 0
9 2 0 0
10 20 0 0
11 21 2 0
12 22 10 20
13 12 0 0
14 21 20 0
15 3 0 0
16 20 0 0
17 21 2 0
18 22 16 20
19 13 0 0
20 24 0 0
21 0 0 0

A.2.4 Final control script

The Project options window is used to input the sample category names. This information is inserted

into the final script header.
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Final output IDE (Test.scr) that includes header:

[CFG]
Sample 1:
cheese
Sample 2:
goodwine
Sample 3:
greatwine
Sample 4:
beer
Sample 5:
Empty
Sample 6:
Empty
Sample 7:
Empty
Sample 8:
Empty
Experiment:

4
Date:
18/09/2003
[END]
[CODE]
1 23 0 0
2 10 0 0
3 100
4 20 0 0
5 21 2 0
6 22 4 20
7 11 0 0
8 21 20 0
9 2 0 0
10 20 0 0
11 21 2 0
12 22 10 20
13 12 0 0
14 21 20 0
15 3 0 0
16 20 0 0
17 21 2 0
18 22 16 20
19 13 0 0
20 24 0 0
21 0 0 0
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A.2.5 Compiler invocation shell script

Filename: compile.bat

Description: The compiler is invoked via a Microsoft Windows ® command shell ("command.com")

script. The script uses the 32-bit Windows version of the GNU-AWK interpreter ("gawk.exe") to

interpret each stage of the compilation process. Data is transferred appropriately between compiler

passes via text files.

Listing:

@echo off

gawk.exe -f Pass1 %1 > Pass1.out

gawk.exe -f Pass1 %11 gawk.exe -f Pass2 > Pass2.out

gawk.exe -f Pass1 %11 gawk.exe -f Pass2 gawk.exe -f Pass3 > pass3.tmp

:wait

if not exist pass3.tmp goto wait

rename pass3.tmp pass3.out
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A.2.6 Windows IDE Compiler invocation function

Procedure name: BuildIt

Description: The IDE uses the BuildIt procedure to compile the MCL script. BuildIt does the

following:

• Copy the compiler files (passl, Pass2, Pass3, gawk.exe & compile.bat) to the

working directory. We assume that the script is already in this directory.

• Create a header file that contains set-up information such as cheese sample

names, experiment number and date.

• Compile the script

• Optionally print the header and compiler outputs to the IDE

• Insert header into the compiler Pass3 output.

• Cleanup the working directory

Note: The header information, which includes cheese sample names, experiment number and date are

all entered into the IDE directly. This information is not in the script.

Known bug: BuildIt does not work on Windows 2000 and possibly XP. The Shell invocation fails.

Work around: Press the build button (hammer icon). The IDE will copy all the necessary files to the

working directory. Open a command shell in the working directory and type "compile.batfilename"

where filename is the name of the script to be compiled. The IDE will resume proper function and

control of the process automatically when the file "pass3.out" is produced.

Listing:

Private Sub BuildIt()

Dim i As Integer, srcfl As Integer

Dim shstr As String, hfile As String

Dim sourcefound As Boolean

'Create header file and write header to it

hfile = setup.WorkingDir & "\" & setup.HeaderFileName

Open hfile For Output As #1

Print #1, "[CFG]"

For i 1 To 8

Print #1, "Sample" & i & "."

Print #1, setup. Sample (i)

Next i
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Print #1, "Experiment:"

Print #1, setup. ExpNurn

Print #1, "Date:"

Print #1, setup.ExpDate

Print #1, "[END]"

Print #1, "[CODE] "

Close (1)

'Optionally view the header file in the IDE

If setup.ViewHeader = True Then

LoadNewDoc hfile

ActiveForm.LoadAFile hfile, 1

End If

'find the source file

source found False

For srcfl = 1 To frmDocs.Count

If (Mid (frmDocs (srcfl) .Caption, InStrRev(frmDocs(srcfl) . Caption, ".")

+ 1)) = "nse" Then

source found = True

Exit For

End If

Next srcfl

If sourcefound = False Then

MsgBox "Compile error: Missing source file."

Exit Sub

Else

frmDocs(srcfl) . Set Focus

rnnuFileSave Click

If Len(Dir(setup.WorkingDir & "\pass1.out"))

Kill setup.WorkingDir & "\pass1.out"

If Len(Dir(setup.WorkingDir & "\pass2.out"))

Kill setup.WorkingDir & "\pass2.out"

If Len(Dir(setup.WorkingDir & "\pass3.out"))

Kill setup.WorkingDir & "\pass3.out"

<> 0 Then

<> 0 Then

<> 0 Then

'copy files to working directory

fcopy

While Len(Dir(setup.WorkingDir & "\compile.bat")) 0

DoEvents

Wend

'Execute the compile.bat command shell script

retval = Shell (setup.WorkingDir & "\compile.bat " &
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(Mid (ActiveForm.Caption, InStrRev (ActiveForm. Caption, "\") + 1)))

While Len(Dir(setup.WorkingDir & "\pass3.out")) 0

DoEvents

Wend

'Optionally print pass1 output to the IDE

If setup.ViewPOut(l) = True Then

LoadNewDoc setup.WorkingDir & "\pass1.out"

ActiveForm.LoadAFile setup.WorkingDir & "\pass1.out", 1

End If

'Optionally print pass2 output to the IDE

If setup.ViewPOut(2) = True Then

LoadNewDoc setup.WorkingDir & "\pass2.out"

ActiveForm.LoadAFi1e setup.WorkingDir & "\pass2.out", 1

End If

'Optionally print pass3 output to the IDE

If setup.ViewPOut(3) = True Then

LoadNewDoc setup.WorkingDir & "\pass3.out"

ActiveForm.LoadAFile setup.WorkingDir & "\pass3.out", 1

End If

'Write header to compiler output

Open hfile For Input As *1

Open setup.WorkingDir & "\Pass3.out" For Input As *2

LoadNewDoc setup.OutputFileName

ActiveForm.rtfText.Text = StrConv(InputB$(LOF(l), 1), vbUnicode)

& StrConv(InputB$(LOF(2), 2), vbUnicode)

'Cleanup

Close (1 )

Close (2)

Kill setup.WorkingDir & "\PASS1"

Kill setup.WorkingDir & "\PASS2"

Kill setup.WorkingDir & "\PASS3"

Kill setup.WorkingDir & "\gawk.exe"

Kill setup.WorkingDir & "\compile.bat"

End If

End Sub
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A.3 MCL interpreter for DOS

The MCL interpreter was written specifically for MS-DOS because the legacy data capture card that

was used in this study required an IBM XT with an 8MHz backplane bus and MS-DOS. The

interpreter is written in C and can easily be parted to newer operating systems with newer capture

cards.

#define tcc

#define badd Ox700

//#define data 30s

#include <stdio.h>

#include <stdlib.h>

#include <dos.h>

#include "displib.h"

#include "pc30.h"

void batchman(void);

long filesize(FILE *stream);

unsigned int BASE;

static int AD[6];

void main (void)

printf("\nFinding parallel ports");

BASE = findLPT(l); /* find LPT1 */

if (BASE 0) BASE = findLPT(2); /*find LPT2 */

/* Clear all outputs */

if (BASE 0)

printf("\n\nError: cannot find LPT");

exit (0);

printf("\n All valves off");

Valve(OxOO,BASE);

Auxil(OxOO,BASE);

printf("\ninitialising PC26");

if ( pc26init() == -1 ) printf("\npc26init failure"), exit(O);

printf("\nrunning batchman");

batchman() ;
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return;

void batchrnan(void)

int line, cmd, datl = 0, dat2

char batname[40], str[80];

FILE *batptr;

0, *bat, *iptr, mode 1;

printf("\nWhat is the name of your batch file? ");

scanf("%s", &batname);

if ( batptr = fopen( batname,"r" ) ) == NULL) (

printf( "Could not open input file.\n" );

printf ( "Exiting program. \n" );

exi t ( 0 );

/* allocate memory for command array - bat will point to start of array */

bat = (int *) calloc(( (int)filesize(batptr) / 8) + 32, sizeof(int));

/* iptr will point to current instruction in array */

iptr = bat;

/* Command array format ...

Each command uses 4 integers. Space is allocated for 256 commands.

int 1: line number <- not really required :-)

int 2: command opcode

int 3: datal

int 4: data2

Now read in each line from the batch file, strip the 4 ints and

store in the command array. The command array will be used to

sequence the data capturing process.

*/

while (! (feof(batptr))) (

fgets(str, 80, batptr);

line = 0, cmd = 0, datl 0, dat2 = 0;

sscanf (str, "%d %d %d %d", &line, &cmd,. &datl, &dat2);

if (cmd == 22) line = dat2;

iptr[O] = line, iptr[l] = cmd, iptr[2] = datl, iptr[3] = dat2;

printf("\n%d %d %d %d", iptr[O], iptr[l], iptr[2], iptr[3]);

iptr += 4;

iptr = bat; /* look at the first command */

/* Decode and execute the command. If the current command is 0, then stop;

if the current mode is 0 (i.e. error), then stop. */
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1) {

on"); Valvel128, BASE); break;

on"); Valve(64, BASE); break;

on"); Valve (32, BASE); break;

on"); Valve(16, BASE); break;

on"); Valvel8, BASE); break;

on"); Valve 14, BASE); break;

on"); Valve (2, BASE); break;

on"); Valve(l, BASE); break;

on"); Auxil(4, BASE); break;

off"); Valve (0, BASE); break;

off"); Valve(O, BASE); break;

off"); Valve(O, BASE); break;

off"); Valve(O, BASE); break;

off"); Valve (0, BASE); break;

off"); Valve (0, BASE); break;

off"); Valve (0, BASE); break;

off"); Valve(O, BASE); break;

off"); Valve(O, BASE); break;

while(iptr[l] != 0 && mode

switch (iptr [1] )

case 1: printf("\n1

case 2: printfl"\n2

case 3: printfl"\n3

case 4: printf("\n4

case 5: printf("\n5

case 6: printf("\n6

case 7: printfl"\n7

case 8: printfl"\n8

case 9: printfl"\n9

case 11: printf("\na11

case 12: printf("\nall

case 13: printfl"\na11

case 14: printf("\nall

case 15: printf("\nall

case 16: printf("\nall

case 17: printf("\nall

case 18: printf("\nall

case 19: printf("\nall

case 20: capture lAD) ;

printfl"\n%d %d %d %d %d %d",AD[0],AD[1],AD[2],AD[3],AD[4],AD[5]);

break;

case 21: printf I "\ndelay %d seconds", iptr[2]); delay(iptr[2] * 1000) ;

break;

case 22: /* branch to another instruction */

if( iptr[3] > 0) /* test loop counter */

iptr[3] -= 1; /*decrement loop counter*/

iptr = ((iptr[2] - 2) * 4) + bat; /*implement the jump*/

else

iptr[3] iptr[O]; /* restore loop counter */

break;

default: Valve(O,BASE), AuxillO,BASE), mode 0;

printfl"\nError-all off"); break;

iptr += 4; /* Move to next instruction */

return;

long filesizelFILE *stream)

A.15



long curpos, length;

curpos = ftell(stream);

fseek(stream, DL, SEEK_END);

length = ftell(stream);

fseek(stream, curpos, SEEK_SET);

return length;

static int

int pc26init(void)

gl [7] ;

int i;

printf("\n\nPC26 initialisation:");

printf("\n Setting base address");

set_base(badd);

printf("\n Fault diagnosis");

if (diag()) (

printf("\n PC-3D fault.");

return -1;

printf("\n Hardware initialisation");

init();

printf("\n Setting clock prescaler");

ad_prescaler(1D) ;

printf("\n Setting clock divider");

ad_clock(2DD) ;

printf("\n Setting Channel gains");

for (i = D; i < 16; i++) set_gain(i, D);

printf("\n Selecting channels");

for (i = D; i < 6; i++) gl[i] = ( i + 2 );

gl[i] = 16;

printf("\nPC26 initialised");

return D;

/* Must be preceded by a call to PC26init */

/* requires pointer to array of 6 integers to store values*/

/* returns -1 for error 0 for success */

int capture(int *d_a)

if (m_chan(gl, 6, d_a)

return -1;

ok_3D) return D;
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/********************************************************

Valve: writes data to the valve drivers

arguments: unsigned int a

only lower byte is considered.

a 1 turns on the corresponding valve

a 0 turns off the corresponding valve

masking is implemented

unsigned int base

base address of the centronics interface

********************************************************/

int Valve(unsigned int a, unsigned int base)

outportb (base, -a );

return 0;

/********************************************************

Auxil: writes data to the auxilliary drivers

arguments: unsigned int a

only lowest nibble is considered.

masking is implemented

a 1 turns on the corresponding output

a 0 turns off the corresponding output

all hardware inversions are compensated

for in code.

unsigned int base

base address of the centronics interface

********************************************************/

int Auxil(unsigned int a, unsigned int base)

outportb (base + 2, -( a A OxOb));

return 0;

/********************************************************

Find the base address of the computer's parallel port.

arguments: 1 - find LPTl

2 - find LPT2

3 - find LPT3

return value: unsigned int - port adress
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o - no port found

********************************************************/

unsigned int findLPT (int a)

unsigned int far *addrptr; /* pointer to location of LPT address */

switch (a)

case 1 :

addrptr = (unsigned int far *)OxOOOO0408;

return *addrptr;

case 2 :

addrptr = (unsigned int far *)OxOOOO040A;

return *addrptr;

case 3 :

addrptr = (unsigned int far *)OxOOOO040C;

return *addrptr;

default:

return 0;
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AA Preprocessing scripts

A.4.1 Fast ocr script

The code indicated below is a modification of the freeware implementation of the fast DCT based on

the algorithm proposed by, Z. Cvetkovic & M. V. Popovic in IEEE signal processing, 1992 no. 8.

This program produces the following data types: PUR, DCT, D 1C, D2C, ID 1 & ID2.

Fdct.c listing:

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>

#define invroot2 0.7071067814
#define M PI 3.14159265358979

static void rarrwrt(double f[],int n)
{

int i;

for (i=O; i<=n-1; i++) {
printf("%4d : %f\n",i,f[i]);

/* fast nCT based on IEEE signal proc, 1992 #8, Z Cvetkovic & M V Popovic */

static int N=O;
static int m=O;
static double two_over_N=O;
static double root2 over rootN=O;
static double *C=NULL; -

static void bitrev(double *f, int len)
{

int i,j,m,halflen;
double temp;

if (len<=2) return; /* No action necessary if n=l or n=2 */
halflen = len»l;
j=l;
for(i=l; i<=len; i++){

if(i<j){
temp=f[j-l] ;
f[j-l]=f[i-l] ;
f[i-ll=temp;

)

m = halflen;
while (j >m) {

j=j-m;
m=(m+l»>l;

j=j+m;

static void inv_sums(double *f)
{

int ii,stepsize,stage,curptr,nthreads,thread,step,nsteps;
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for(stage=1; stage <=m-1; stage++) (
nthreads 1«(stage-1);
stepsize = nthreads«1;
nsteps (1«(m-stage)) - 1;
for (thread=1; thread<=nthreads; thread++) (

curptr=N-thread;
for(step=1; step<=nsteps; step++){

f[curptr] += f[curptr-stepsize];
curptr -= stepsize;

static void fwd_sums(double *f)
(

int ii,stepsize,stage,curptr,nthreads,thread,step,nsteps;

for (stage=m-1; stage >=1; stage--){
nthreads 1«(stage-1);
stepsize = nthreads«1;
nsteps = (1«(m-stage» - 1;
for (thread=1; thread<=nthreads; thread++){

curptr=nthreads +thread-1;
for (step=1; step<=nsteps; step++) (

f[curptr] += f[curptr+stepsize];
curptr += stepsize;

static void scramble(double *f,int len) (
double temp;
int i,ii1,ii2,halflen,qtrlen;

halflen = len » 1;
qtrlen = halflen » 1;
bitrev(f,len);
bitrev(&f[O], halflen);
bitrev(&f[halflen], halflen);
ii1=len-1;
ii2=halflen;
for(i=O; i<=qtrlen-1; i++) (

temp = f[ii1];
f[ii1] f[ii2];
f[ii2] = temp;
iil--;
ii2++;

static void unscramble(double *f,int len)
(

double temp;
int i,ii1,ii2,halflen,qtrlen;

halflen = len » 1;
qtrlen = halflen » 1;
ii1 = len-1;
ii2 = halflen;
for(i=O; i<=qtrlen-1; i++){

temp = f[ii1];
f[ii1] f[ii2];
f[ii2] = temp;
ii1--;
ii2++;

)

bitrev(&f[O], halflen);
bitrev(&f[halflen], halflen);
bitrev(f,len);

static void initcosarray(int length)
{
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int i,group,base,item,nitems,halfN;
double factor;

//printfl"FCT-- new N=%d\n",length);
m = -1;
dol

m++;
N = l«m;
if (N)length) {

printf("ERROR in FCT-- length %d not a power of 2\n",length);
exit(l);

j

jwhile(N<length);
if(C != NULL) free(C);
C = (double *)callocIN,sizeofldouble));
if(C == NULL) {

printf("Unable to allocate C array\n"};
exit(l);

}
halfN=N/2;
two over N = 2.0/ldouble)N;
root2 over rootN = sqrt(2.0/(double)N);
forli~O;i<~halfN-l;i++) C[halfN+i]=4*i+l;
for (group=l;group<=m-l;group++){

base= l«(group-l);
nitems=base;
factor = 1.O*(l«lm-group));
forlitem=l; item<=nitems;item++} C[base+item-l]=factor*C[halfN+item-l];

//printf("before taking cos, C array =\n"); rarrwrt(C,N);
for(i=l;i<=N-l;i++) C[i] = 1.O/(2.0*cosIC[i]*M PI/(2.0*N)));
//printf("After taking cos, Carray = \n"}; rarrwrtIC,N};

static void inv_butterfliesldouble *f)
(

int stage, iil, ii2,butterfly,ngroups, group, wingspan, increment,baseptr;
double Cfac,T;

for(stage=l; stage<=m;stage++) (
ngroups=l«lm-stage);
wingspan=l«(stage-l);
increment=wingspan«l;
for (butterfly=l; butterfly<=wingspan; butterfly++){

Cfac = C[wingspan+butterfly-l];
baseptr=O;
for (group=l; group<=ngroups; group++){

iil=baseptr+butterfly-l;
ii2=iil+wingspan;
T=Cfac * f[ii2];
f[ii2]=f[iil]-T;
f[iil]=f[iil]+T;
baseptr += increment;

static void fWd_butterflies(double *f)
(

int stage,iil, ii2, butterfly, ngroups, group, wingspan, increment,baseptr;
double Cfac,T;

for (stage=m; stage>=l;stage--){
ngroups=l«lm-stage);
wingspan=l«(stage-l);
increment=wingspan«l;
forlbutterfly=l; butterfly<=wingspan; butterfly++)(

Cfac = C[wingspan+butterfly-l];
baseptr=O;
for (group=l; group<=ngroups; group++){

iil=baseptr+butterfly-l;
ii2=iil+wingspan;
T= f[ii2];
f[ii2]=Cfac *If[iil]-T);
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f[iil]=f[iil]+T;
baseptr += increment;

static void ifct noscale(double *f, int length)
{

if (length != N) initcosarray(length);
frO] *= invroot2;
inv_sums(f);
bitrev(f,N) ;
inv butterflies(f);
unscramble(f,N);

static void fct_noscale(double *f, int length)
{

if (length != N) initcosarray(length);
scramble(f,N);
fwd_butterflies(f);
bitrev(f,N) ;
fwd sums(f);
frO] *= invroot2;

static void ifct_defn_scaling(double *f, int length) {
ifct_noscale(f,length);

static void fct_defn_scaling(double *f, int length) (
int i;

fct noscale(f,length);
for(i=O;i<=N-l;i++) f[i] *= two_over_N;

void ifct(double *f, int length) {
/* CALL THIS FOR INVERSE ID DCT DON-MONRO PREFERRED SCALING */

int i;

if (length != N) initcosarray(length); /* BGS patch June 1997 */
for(i=O;i<=N-l;i++) f[i] *= root2 over_rootN;
ifct_noscale(f,length);

void fct(double *f, int length) {
/* CALL THIS FOR FORWARD ID DCT DON-MONRO PREFERRED SCALING */

int i;

fct noscale(f,length);
for(i=O;i<=N-l;i++) f[i] *= root2_over_rootN;

/****************************************************************
2D FAST DCT SECTION

****************************************************************/

#define VERBOSE 0

static double *g = NULL;
static double two over sqrtncolsnrows 0.0;
static int ncolsvalue - 0;
static int nrowsvalue = 0;

static void initfct2d(int nrows, int ncols) (
if (VERBOSE) printf("FCT2D -- Initialising for new nrows=%d\n",nrows);
if «nrows<=O) I I (ncols<O){

printf("FCT2D -- ncols=%d or nrows=%d is <=O\n",nrows,ncols);
exit(I);

)

if(g != NULL) free(g);
9 = (double *)calloc(nrows,sizeof(double»;
if(g == NULL) {

printf("FCT2D -- Unable to allocate 9 array\n");
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exit (1) ;
}
ncolsvalue = nco1s;
nrowsvalue = nrows;
two_over_sqrtncolsnrows 2.0/sqrt(nco1s*1.0*nrows);

void fct2dldouble f[], int nrows, int nco1s)
/* CALL THIS FOR FORWARD 2d DCT DON-MONRO PREFERRED SCALING */
{

int u,v;

if ((ncols!=ncolsvalue) I I (nrows!=nrowsvalue)) I
initfct2d(nrows,ncols);

}
for lu=O; u<=nrows-1; u++) {

fct_noscale(&f[u*ncols],ncols);
}
for (v=O; v<=ncols-1; v++) {

for (u=O; u<=nrows-1; u++) {
g[u] = f[u*ncols+v];

}

fct noscale(g,nrows);
for-(u=O; u<=nrows-1; u++){

f[u*ncols+v] = g[u]*two_over_sqrtncolsnrows;

void ifct2dldouble f[], int nrows, int ncols)
/* CALL THIS FOR INVERSE 2d DCT DON-MONRO PREFERRED SCALING */
{

int u/v;

if ((ncols!=ncolsvalue) I I (nrows!=nrowsvalue)) {
initfct2d(nrows,ncols);

}
for (u=O; u<=nrows-1; u++){

ifct_noscale(&f[u*ncols],ncols);
}

for (v=O; v<=ncols-1; v++) {
for (u=O; u<=nrows-1; u++){

g[u] = f[u*ncols+v];
}

ifct_noscale(g,nrows);
for (u=O; u<=nrows-1; u++) I

f[u*ncols+v] = g[u]*two_over_sqrtncolsnrows;

1***************************************************** ************
UNCOMMENT THIS SECTION TO TEST 1D FAST DCT

*****************************************************************/

/*

int rnain(void)
I

double *f=NULL;
int i,nsiz;

dol
printf("Enter nsiz~");

scanf("%d", &nsiz};
printf("nsiz=%d\n",nsiz};
if(nsiz==O)break;
f = (double *)calloc(nsiz,sizeof(double));
if (f == NULL) I

printf("Unable to allocate f array\n");
exit (1) ;

}

for (i=O; i<=nsiz-1; i++) {
f[i]= li+l)*l.O;
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f[2] = 42.0;

printf("Before fct f[] is:\n");
rarrwrt(f,nsiz};

fct(f,nsiz);

printf("After fct f[] is:\n");
rarrwrt(f,nsiz);

ifct(f,nsiz};

printf("After ifct f[] is:\n"); rarrwrt(f,nsiz);
free (f);

}while(l==l};
return(O};
}

*/

float tukey(int n, int N,float alpha) (
/*
%Tukey window generator By Bashan Naidoo
%... tukey(N, alpha, M, cols)
%n -sample number
%N -window length
%alpha -fraction of window taken up by the rolloff
%
%The calculated window is returned, and a new graph of the window is plotted
%
%This window function generates a right half (positive) tukey window. The window
%commences at the first sample in the output stream. The first N samples belong to
%the window. The rest are set to zero. The last alpha percent of the first N samples
%are in the form of a cosine roll-off from the max value of 1 to O.

%output = 1 for 0 <= n <= alpha*N/2
%output = 0.5[1.0 + cos( pi*(n - alpha*N/2} / 2*(1 - alpha}*N/2)] for alpha*N/2 < n <= N/2
%alpha must be between 0 and 1
*/

if( n > N ) return 0.0;
if ( n <= (int) (alpha * N )} return 1. 0;

N *= 2;
return (float) (0.5 * (1.0 + cos( 2*M_PI*(n - (alpha*N/2)) / (2 * (I-alpha) * N/2»»;

/*****************************************************************
UNCOMMENT THIS SECTION TO TEST 20 FAST OCT

*****************************************************************/

static void rarrwrt2d(double f[],int nrows,int nco1s)
(

int row;

for (row=0;row<=nrows-1; row++) {
printf("Row %4d\n",row);
rarrwrt(&f[row*ncols],ncols);

main(int argc, char *argv[])
(

double *f=NULL;
float fp, ALPHA;
int i,j,nrows = O,ncols = 0, r, c, dotdisp, WL;
FILE *infile, *ofile;
char dline[200], ifilename[100] , d1filename[100] , d2filename[100] , dctfilename[100];
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char id1filename[100) , id2filename[100) , direc[100)
ifileshort[100) = {"\O"};

char *slashloc, *dotposition;

{"\O"}, ifile[100) {"\O"},

if ( argc > 1 )
for ( i i < argc - 1; i ++ ) (

strcmp(argv[i), "_f"} ==
strcmp(argv[i), "-d") ==
strcmp(argv[i), "-rows")
strcmp(argv[i), "-cols")

o ) strcpy (ifile, argv[i+1);
o ) strcpy (direc, argv[i+1]);

o ) sscanf(argv[i+1), "Id",
== 0 } sscanf(argv[i+1), "Id",

&nrows);
&ncols);

}

if (ifile == "\0" 11 direc == "\0" 11 nrows == 0 11 ncols == 0) (
for ( i = 0; i < argc; i++) printf("\n argv[%d] = Is", i, argv[i);
printf(" \n%s\n%s\n%d\n%d", ifile, direc, nrows, ncols);
printf("\nProper usage:");
printf("\nfdct -d workingdir -f datafilename -rows #rows -cols #cols");
exit(l);

}
} else (

printf("Enter name of working directory: "I;
scanf("%s", &direc};

printf("\nEnter input file name: "I;
scanf("%s", &ifile};

printf("\n\nEnter nrows:");
scanf("%d",&nrows);
printf("\nEnter ncols:");
scanf("%d",&ncols);

Ilsee if the directory terminates in a slash ...
slashloc = strrchr ( direc, '\\ ') ;
i = strlen(direc};
if (slashloc == NULL 11 ((slashloc - direc + 1) < i» strcat( direc, "\\"};

1* slashloc = strchr( direc, (int)"\\");
Ilif (slashloc == NULL 1 I (slashloc - direc < sizeof(direc») slashloc = strchr( direc,

(int)"I");
if (slashloc == NULL 11 (slashloc - direc < sizeof(direc») strcat( direc, "\\");

*1
printf("\nWorking directory... Is", direc);

Ilgenerate input filename

dotposi tion = strrchr ( ifile, (int)'.');
dotdisp = dotposition - ifile + 1;
strncpy(ifileshort, ifile, dotdisp -1);
strcat(ifileshort, "\0");
strcpy(ifilename, direc);
strcat(ifilename, ifileshort);
printf("\n\nlnput filename... %s.reg", ifilename);

Ilgenerate DCT output filename
strcpy(dctfilename, ifilename);
strcat(dctfilename, ".dct");
printf ("\nDCT output filename ... Is", dctfilename);

Ilgenerate D1 (DCT with no DC terms) output filename
strcpy(d1filename, ifilename);
strcat(dlfilename, ".d1");
printf("\nDCT with no DC terms... Is", d1filename);

Ilgenerate D2 (DCT with no DC & HF terms) output filename
strcpy(d2filename, ifilename);
strcat(d2filename, ".d2");
printf("\nDCT with no DC & HF terms... Is", d2filename);

no DC terms) output filenameIlgenerate inverse Dl (DCT with
strcpy(id1filename, ifilename);
strcat(id1filename, ".id1");
printf("\ninverse DCT with no DC terms ... %5", idlfilename);

Ilgenerate inverse D2 (DCT with no DC & HF terms) output filename
strcpy(id2filename, ifilename);
strcat(id2filename, ".id2");
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printf("\ninverse DCT with no DC & HF terms ... %s", id2filename);

//sprintf(ifilename,"c:\\My Documents\\FDCT\\Debug\\data1i");
//sprintf(ofilename,"c:\\My Documents\\FDCT\\Debug\\data10");
//sprintf(invofilename,"c:\\My Documents\\FDCT\\Debug\\data10i");

f = (double *)calloc(nrows*ncols,sizeof(double»;
if (f == NULL) (

printf("Unable to allocate f array\n");
exit(l);

//scan input file into array
fp = 0.0;
strcpy(ifile, ifileshort);
strcat(ifile, ".reg");
if( (infile = fopen(ifile, "rt") == NULL) (

printf("\nUnable to open input file");
exit (1) ;

fort r = 0; r <= nrows - 1 ; r++){
forI c = 0; c <= ncols - 1; c++ )(

fscanf(infile, "%f", &fp);
f[(r * ncols) + cl = fp;

// printf("\nf[%d) = %f", (r*ncols )+c, f[(r * ncols) + c);
}

}

fclose{infile);

//printf("Before fct2d f[) is:\n");
//rarrwrt2d(f,nrows,ncols);

//calculate 2D DCT
fct2d(f,nrows,ncols};

//printf("After fct2d f[) is:\n");
//rarrwrt2d(f,nrows,ncols);

//Output DCT data to .dct file
ofile = fopen{dctfilename, "wt");

fort r = 0; r <= nrows - 1
fort c = 0; c <= ncols

fprintf(ofile,"%f ",
}

fprintf(ofile, "\n");
}

fclose(ofile);

rH) (

- 1; CH ) (

f[(r * ncols) + c));

//clear all dc terms
forI r 0; r < ncols; r++} f[r) 0;
//f[O) = 0.0;

//Output DCT data without DC terms to .d1 file
ofile = fopen(d1filename, "wt");

for( r = 0; r <= nrows - 1 ; r++){
fort c = 0; c <= ncols - 1; c++ ) (

fprintf(ofile,"%f ", f[(r * ncols) + c));
}

fprintf(ofile, "\n"};

fclose (ofile) ;

//compute inverse DCT of .dl data (will destroy .d1 data)
ifct2d(f,nrows,ncols);

//Output inverse DCT without DC terms to .id1 file
ofile = fopen (id1 filename, "wt");

fort r = 0; r <= nrows - 1 ; r++) {
fort c = 0; c <= ncols - 1; c++ )(

fprintf(ofile,"%f ", f[(r * ncols} + c)};
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fprintf(ofile, "\n");
}

felose(ofile);

IIRESCAN .d1 data file into array
fp = 0.0;
infile = fopen(d1filename, "rt");

forI r = 0; r <= nrows - 1 r++){
fort e = 0; e <= neols - 1; c++ ) {

fseanf(infile, "if", &fp);
f[(r * neols) + e] = fp;

II printf("\nf[%d] = if", (r*neols )+e, f[(r * neols) + e]);
}

}

felose(infile);

IISet HF terms = 0.0 (i.e. from row 20 onwards)
WL = 50; Ilwindow length
ALPHA = 0.75; Ilroll-off starts at 0.75 window length
fort r = 0; r <= nrows - 1 ; r++){

fort e 0; e <= neols - 1; c++ ){
f[(r * neols) + cl *= tukey(r,WL,ALPHA);

IIOutput DCT data without DC & HF terms to .d2 file
ofile = fopen(d2filename, "wt");

forI r = 0; r <= nrows - 1 ; r++) {
fort e = 0; e <= neols - 1; c++ ) {

fprintf(ofile,"%f ", f[(r * neols) + e]);
}

fprintf(ofile, "\n");
}

felose(ofile);

Ileompute inverse DCT of .d2 data (will destroy .d2 data)
ifet2d(f,nrows,neols);

IIOutput inverse DCT without DC & HF terms to .id2 file
ofile = fopen(id2filename, "wt");

fort r = 0; r <= nrows - 1 ; r++){
fort e = 0; e <= neols - 1; c++ ){

fprintf(ofile,"%f ", f[(r * neols) + cl);
}

fprintf(ofile, "\n");
}

felose(ofile);

Ilprintf("After ifet2d f[] is:\n");
Ilrarrwrt2d(f,nrows,neols);
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A.4.2 D3C coefficient selection script

This program takes D2C files as input and produces DC3 files. The program must be informed which

coefficients to select. Coefficient ranking is performed in Matlab. A configuration file is produced

informing d3clean.c what coefficients should be selected. Depending on the selection, d3clean.c will

produce the following dat types: D3C2 to D3C8, D3CA & D3CB.

d3clean.c listing:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
1*
This program takes D2C data and converts it to D3C data.
D3C data is a selection of up to 20 coefficients from the D2C pattern vector type.
The program scans the current directory and generates a file the lists all the D2C input
files to be processed. The corresponding D3C output files will be generated if they dont
already
exist. The program also requires a selection file that indicates
the coefficients for selection. The selection file has the following format:
Line 1: Row Col
Line 2: 2 3
Line 3: 48 S
etc ...
There can be a maximum of 20 selected coeffs in the file. The Col figure must be in the range
1. .. 8
*1
int main(int argc, char *argv[)(

FILE *d2clst, *d3clst, *d2cfile, *outfile, *sfile;
char direc [100 1 = ("'0"), cmdstr [100], d3cname [20], d2cname [20], outname [20], line [100],

selectfile[100);
int nxtname = 0, i, dotdisp, slash = "", lines = 0, sel[20)[2);
char *dotposition, *slashloc;
float f1, f2, f3, f4, fS, f6, f7, f8;

if ( argc > 1 ) (
for ( i = 0; i < argc - 1; i ++ ) (

if ( strcmp(argv[il, "-d") 0
if ( strcmp(argv[i), "-f") == 0

strcpy (direc, argv[i+1]);
strcpy (selectfile, argv[i+l);

}

if (direc == "'0" ) (
Ilfor ( i = 0; i < argc; i++) printf("'n argv[%d) = %s", i, argv[i);
Ilprintf(" 'n%s''', direc);
printf("'nproper usage:");
printf("'nlstgen -d workingdir -f selectionfile");
exit(l);

}

} else (
printf("Enter name of working directory: ");
scanf("%s", &direc);
printf("Enter name of selection file: ");
scanf("%s", &selectfile);

Ilsee if the directory terminates in a slash ...
slashloc = strrchr( direc, slash);
i = strlen(direc);
if (slashloc == NULL 11 ((slashloc - direc + 1) < i»

flushall () ;
strcpy(cmdstr, "dir IB ");
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strcat(cmdstr, direc);
strcat(cmdstr, "*.d2c > ");
strcat(cmdstr, direc);
strcat(cmdstr, "listd2c.txt \n");
printf("\n%s",cmdstr);
system(cmdstr);

flushall () ;
strcpy(cmdstr, "dir IB ");
strcat(cmdstr, direc);
strcat(cmdstr, "*.d3c > ");
strcat(cmdstr, direc);
strcat(cmdstr, "listd3c.txt \n");
printf("\n%s",cmdstr);
system(cmdstr);

strcpy( cmdstr, direc);
strcat( cmdstr, selectfile);
if( (sfile = fopen( cmdstr, "rt"» == NULL) (

printf("\nCould not open coefficient selection file.");
exit(l);

while (!feof(sfile»{
fgets (line, 100, sfile);
lines++;

}
rewind(sfile) ;
if (lines> 21) printf("\nMaximum of 20 coefficients allowed in selection list. Using first

20.") ;
fgets(line,100,sfile); Ilremove first line - header: row col
for( i = 1; i < lines; i++ )(

fscanf (sfile, "%*d %d %d\n", &sel [i] [1], &sel [i] [2]);
}
printf("\nSelected coefficients:");
printf("\nRow Col");
fori i = 1; i < 21; i++ ) (

printf("\n%d %d", sel[i] [1], sel[i] [2]);
}

fclose (sfile);

strcpy( cmdstr, direc);
strcat( cmdstr, "listd2c.txt");
if( (d2clst = fopen( cmdstr, "rt"» == NULL)

printf("\nCould not open listd2c.txt.");
exit(l);

strcpy( cmdstr, direc);
strcat( cmdstr, "listd3c.txt");
if( (d3clst = fopen( cmdstr, "rt"» == NULL)

printf("\nCould not open listd3c.txt.");
exit(l);

while (!feof(d2clst» (
fscanf( d2clst, "%s\n", &d2cname);
printf("\n\n****Processing %s****", d2cname);
dotposi tion = strrchr ( d2cname, (int)'.');
dotdisp = dotposition - d2cname +1;
fseek(d3clst, 0, SEEK_SET);
nxtname = 0;
while(!feof(d3clst» (

fscanf( d3clst, "%s\n", &d3cname);
if (strncmp( d2cname, d3cname, dotdisp) 0) (

nxtname = 1;
printf(" .... cancelled");
break;

}

if( nxtname == 1) continue;

strncpy(d3cname, d2cname, dotdisp );
strncpy(d3cname + dotdisp, "\0", 1);
printf(" %s ... wait", d3cname);
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strcpy( cmdstr, direc);
strcat( cmdstr, d2cname);
if( (d2cfile = fopen( cmdstr, "rt"}) == NULL)

printf("\nCould not open %5.", cmdstr);
exit(l);
}

//Here we remove all header info and blank lines - store results in *.out
strcpy( outname, direc);
strcat( outname, d3cname);
strcat( outname, "d3c");
if( (outfile = fopen( outname, "w+t"» == NULL)

printf("\nCould not open %5.", outname);
exit (1);
}

/* This is the old code. It works but store coeffs in order of their line number.
The modified code below stores them in order of there apperarance in the selection file.

lines = 0;
while(!feof(d2cfile)) (

if (fgets(line, 100, d2cfile) == NULL) continue;
if(sscanf(line, "%f %f %f %f %f %f %f %f\n", &fl, &f2, &f3, &f4, &f5,

&f6, &f7, &f8) 8) (

*/

lines++;
for(i = 0; i < 20; i++){

if(lines == sel[i) [1))(
switch ( sel[i] [2] ) {
case 1: fprintf(outfile,
case 2: fprintf(outfile,
case 3: fprintf(outfile,
case 4: fprintf(outfile,
case 5: fprintf(outfile,
case 6: fprintf(outfile,
case 7: fprintf(outfile,
case 8: fprintf(outfile,

"%f ",
n%f n
"%f ",
"%f "f
"%f If,
U%£ ",
"%f ",
"%f "

fl); break;
f2); break;
f3); break;
f4); break;
f5); break;
f6); break;
f7); break;
f8); break;

for(i = 0; i < 20; i++) (
lines = 0;
whi1e(!feof(d2cfile)) {

if (fgets(line, 100, d2cfile) NULL) continue;
lines++;
if(lines == sel[i] [1]) {

if(sscanf(line, "%f If %f %f %f %f If If\n", &f1, &f2,
&f3, &f4, &f5, &f6, &f7, &f8) == 8) (

break;

break;

break;

break;

break;

break;

break;

break;

switch( sel [i) [2] ){
case 1 : fprintf(outfile, n%f " fl) ;,

case 2 : fprintf(outfile, "%f " f2) ;

case 3: fprintf(outfile, "%f " f3) ;,

case 4 : fprintf(outfile, "%f " , f4) ;

case 5: fprintf(outfile, "%f " f5) ;,

case 6: fprintf(outfile, "%f " f6) ;,

case 7 : fprintf(outfile, "If " f7) ;

case 8 : fprintf(outfile, "%f " f8) ;

}
break;

}

rewind(d2cfile);
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fclose(d2cfile);
fclose(outfile);

//sprintf(cmdstr, "%sfdct -d %5 -f %5 -rows %d -cols 8", direc, direc, d3cname,
n) ;

//printf{"\n%s\n",cmdstr);
//system(cmdstr);

fclose(d2clst);
fclose{d3clst);
return 0;

A.4.3 Pattern-set generator script

The programs fdct.c and d3clean.c process individual measurement files in a batch process. These

files are assembled into datasets by patgen.c.

Listin of Patgen.c:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>

void putpattern( FILE *outfile, char *infilename, char *catname, int catcount, int catnum, int
patnum, int setnum);

void putpattern{ FILE *outfile, char *infilename, char *catname, int catcount, int catnum, int
patnum, int setnum){

FILE *infile;
char data[lOO]
int n;

("\O");

if{ (infile = fopen{ infilename, "rt" » == NULL) {
printf("\n could not open %5", infilename );
exit(l);

//read data and write to pattern file
fprintf{outfile, "\n#************ pattern %d ************", setnum);
fprintf{outfile, "\n#input vector %d", patnum);
fprintf(outfile, "\n#File: %5", infilename);
fprintf(outfile, "\n#Category: %s\n", catname);
while(!feof{infile» {

sprintf{data, "\0\0\0");
fgets(data, 100, infi1e);
if( strlen{data) > 1) fputs(data, outfile);

)

fclose(infile);

//print output vector
fprintf(outfile, "\n#output vector %d\n", patnum);
for(n = 0; n < catcount; n++) {

if{n == catnum) fprintf{outfile,"l ");
else fprintf(outfile,"O ");

}

fprintf(outfile,"\n\n");
return;
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int main(int argc, char *argv[]) {

FILE *lst, *dfile, *pfile, *trfile, *vafile, *tsfile;
char direc[lOO] = ("\O"), lstfilename[lOO] = ("\O"), cmdstr[lOO], line[lOO], dfilename[100] ,

data[100];
int exp, incr, i, cat = 0, fields = 0, datacat = 0, tmp = 0, patsize = 0, catcount[25]

(a), *distrib[25] = {NULL}, distribcnt[25] = (a);
int TS = 40, TR = 30, VA = 30, val, x, y, z, trpats, vapats, tspats, 1, m;
long n = 1, lines, vecs;
char *slashloc, categories [25] [20] ("\O"), ext[5] = ("\O"), samplecat[20] ("\O");
time t t;
unsigned int rndseed = 0;
int pats[4] = (a);
float datum2;

i < argc - 1; i ++ ) (
strcmp(argv[i], "-d") == 0 ) strcpy (direc, argv[i+1]);
strcmp(argv[i], "-I") == 0 ) strcpy (lstfilename, argv[i+1]);
strcmp(argv[i], "-tr") 0) sscanf (argv[i+1], "%d" , &TR);
strcmp(argv[i], "-ts") == 0 ) sscanf (argv[i+1], "%d", &TS);
strcmp(argv[i], "-va") == 0 ) sscanf (argv[i+1], "%d", &VA);
strcmp{argv[i], "-seed") == 0 ) sscanf (argv[i+1], "%u", &rndseed);

Ilscan command line args
if ( argc > 1 ) {

for ( i = 0;
if
if
if
if
if
if

)

if (direc == "\0" 11 lstfilename == "\0" )
printf("\nProper usage:");
printf("\nlstgen -d datadir -1 listfile(*.lst) -tr trsetpercentage -ts

tssetpercentage -va vasetpercentage -seed randomseed ");
exit{l);

)

) else ( lino args? then ask for input
printf{"Enter name of data directory: ");
scanf("%s", &direc);
printf("Which list must be analysed? (list filename): "); Ilall files in the list

must have the same size.
scanf("%s", &lstfilename);

II printf ("Enter name of result file: ");
II scanf{"%s", &resfilename);

)

Ilsee if the directory terminates in a slash ...
slashloc = strrchr ( direc, '\ \ ' ) ;
i = strlen(direc);
if (slashloc == NULL 11 «slashloc - direc + 1) < i)) strcat ( direc, "\ \") ;

Ilopen the file list - files in the list are RAW files with header info
strcpy{ cmdstr, direc);
strcat( cmdstr, lstfilename);
if( (1st = fopen( cmdstr, "rt")) == NULL)

printf{"\nCould not open %s.", cmdstr);
exit (1) ;

IIScan through all the files in the 1st file. Get their categories and pattern sizes
Ileach category MUST be equally represented in the 1st file
while ( !feof(lst)) (

Ilopen a rawfile companion for the listed data file - raw file contains header for
the data file

sprintf(line,"\O\O\O");
fgets(line, 100, 1st);
if (strlen(line)<=4) continue;
sscanf(line, "%3d %4d.%s", &exp, &incr, &ext);
sprintf{dfilename-;- "%s%03d_%04d.raw", direc, exp, incr);
if{ (dfile = fopen{ dfilename, "rt" )) == NULL) (

printf("\n could not open %s", dfilename );
continue;

)

Ilscan header info for category name
while(!feof(dfile)){

fgets(data, 100, dfile);
if(sscanf(data, "Sample: %s\n", &samplecat) != 1) continue;
if{ strcmp(samplecat, "Air") == 0 11 strcmp{samplecat, "blank") 0 11

strcmp(samplecat, "air") == 0 ) continue;
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break;
}

fclose(dfile);
if (strcmp(samplecat, "\0")== 0) {

printf("\n Could not find sample category in file %s", dfilename);
continue;

Ilcat points to the first empty slot in the category name array "categories"
11 If a new category is found, allocate memory space for the data
11 open data file to see how much data it contains ...
sprintf( dfilename, "%s%03d_%04d.%s", direc, exp, incr, ext);
if( (dfile = fopen( dfilename, "rt" )) == NULL) {

printf("\n could not open %s", dfilename );
continue;

Ilfind the number of lines in the file
lines = 0;
while(!feof(dfile)) {

sprintf(data,"\O\O\O");
fgets(data, 100, dfile);
if(strlen(data) >= 4 ) lines++; Ilcount only non-empty lines

}
rewind(dfile);

Ilfigure out number of fields in a file from the file extension
if (strcmp(ext, "pur") == 0) fields = 6;
if (strcmp(ext, "d3c") == 0) {

for (fields = 0; fields < 8; fields++) if (fscanf (dfile, "%f", &datum2) EOF)
break;

}
else fields = 8;
fclose (dfile) ;

if(patsize == 0) patsize = lines * fields;
if( (lines * fields) != patsize) {

printf("\n Error; incorrect pattern size in %s ", dfilename);
exit(l);

Ilsee if category is new
fort datacat = 0; datacat <= cat; datacat++ ) {

tmp = strlen(samplecat);
if( strncmp(categories[datacat], samplecat, tmp ) o ) break;

file!");

}

Ilif new, then add to category list
if ( datacat == cat + 1 ) {

datacat--;
strcpy(categories[cat++], samplecat);
Ilallocate mem: "fields" floats per line * number of lines

catcount[datacat]++; Ilincrement the pattern count for this category

n++;

IIPrint number of files processed and categories found
printf("\n\n %ld files have been processed.\n", --n);
vecs = n;
printf("\nCategories found .... ");
for(n = 0; n < cat; n++) printf("\n%3d %s %d patterns", (int)n, categories[n],

catcount[n]);
rewind(lst);

Ilsee that all categories are equally represented in the list file
11 ie. compare the size of each category to the first category
for(n = 0; n < cat; n++) {

if (catcount[n] != catcount[O])

printf("\n Skew data set error - uneven category representation in list

exit(l);
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(int) (TR * «float)catcount[0)/100.0»;
(int) (VA * «float)catcount[0]/100.0»;
catcount[O] - vapats - trpats;

IINOW create arrays for each category (one element per pattern)
IIEach array element will have value 1,2 or 3.
IIDepending on the value of the element, the pattern will be written to the

1.training, 3.testing or 2.validation set.
IIThere will also be one more pattern file (the "output" file) that contains all

patterns.
trpats
vapats
tspats

for(n = 0; n < cat; n++) distrib[n] = (int *) calloc(catcount[O], sizeof(int»;
for(n = 0; n < catcount[O); n++) (

if( n < trpats ) val = 1;
else if (n < ( vapats + trpats) ) val = 2;
else val = 3;
for( x = 0; x < cat; x++) distrib[x) [n) = val;

)

Ilnow shuffle the order of data in these distrib[] arrays

printf("\nShuffling pattern set");
if (rndseed == 0) srand( (unsigned) time ( NULL) ); II set a new seed number - use random

seed
else srand(rndseed); Iluse user specified seed

for(n = 0; n < cat; n++){
for ( i = 0; i < 10000; i++) {

x = (int) (({float)rand() I Ox7fff) * ( catcount [0) - 1»;
y = (int) «(float)rand() I Ox7fff) * ( catcount[O] - 1»;
if( abs(x) > catcount[O) I I abs(y) > catcount[O) ) continue;
z = distrib[n) [x);
distrib [nl [xl distrib [nl [yl ;
distrib[n) [y] = z;

Ilfor debug purposes
for(l = 0; 1 < cat; 1++)(

for(m = 0; m < catcount[O]; m++) printf(" Id", distrib[l] [m]);
printf("\n") ;

Ilnow that the numbers are shuffled we can write the corresponding patterns to the
various files.

IIThere will be no skew as the number of l's, 2's & 3's are the same in each category.
IIOpen the pattern files in there original order - as indicated in the 1st file
Ilfind the category of the pattern and look at the distrib array for that class.
Ilif the corresp distrib array element has value 1 then write the pattern to the training

set ... etc
Ila counter is required for each distrib array to show which is the current element

starting from O.

Ilopen the pattern ****OUTPUT**** file - will contain all patterns
sprintf( dfilename, "%s%3s%03d.pat", direc, ext, exp );
if ( (pfile = fopen ( dfilename, "w+t" » == NULL) (

printf("\n could not open %s", dfilename );
exit (1) ;

time(&t);
fprintf (pfile, "SNNS pattern definition file V1.4\n");
fprintf (pfile, "generated at %s\n\n", ctime ( &t»;
fprintf (pfile, "No. of patterns %d\n", vecs);
fprintf (pfile, "No. of input units %d\n", patsize);
fprintf (pfile, "No. of output units %d\n", cat);
fprintf (pfile, "\n");

Ilprint output vector format to pattern file comments
fprintf(pfile,"\n\n# Output vector format for this pattern file ..... H);
for (n = 0; n < cat; n++) fprintf (pfile, "\n# %3d %s", (int) n, categories [n);

Ilopen the ****TRAINING**** pattern file - will contain the training set
sprintf( dfilename, "%s%3s%03dtr.pat", direc, ext, exp );
if ( (trfile = fopen ( dfilename, "w+t" » == NULL) (

printf("\n could not open Is", dfilename );
exit(l);
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time(&t);
fprintf (trfile, "SNNS pattern definition file Vl.4\n");
fprintf (trfile, "generated at %s\n\n", ctime( &t));
fprintf (trfile, "No. of patterns Id\n", cat * trpatsl;
fprintf (trfile, "No. of input units %d\n", patsize);
fprintf (trfile, "No. of output units Id\n", catl;
fprintf (trfile, "\n");

//print output vector format to pattern file comments
fprintf(trfile,"\n\n# Output vector format for this pattern file ..... "I;
for(n = 0; n < cat; n++) fprintf(trfile, "\n# 13d %s", (intln, categories[n]);

//open the ****VALIDATION**** pattern file - will contain the validation set
sprintf( dfilename, "%s%3s%03dva.pat", direc, ext, exp I;
if( (vafile = fopen( dfilename, "w+t" II == NULL) {

printf("\n could not open Is", dfilename );
exit(l);

time(&tl;
fprintf (vafile, "SNNS pattern definition file Vl.4\n");
fprintf (vafile, "generated at %s\n\n", ctime( &tll;
fprintf (vafile, "No. of patterns %d\n", cat * vapats);
fprintf (vafile, "No. of input units %d\n", patsize);
fprintf (vafile, "No. of output units %d\n", cat);
fprintf (vafile, "\n"l;

//print output vector format to pattern file comments
fprintf(vafile,"\n\n# Output vector format for this pattern file ..... "I;
for(n = 0; n < cat; n++1 fprintf(vafile, "\n# %3d %s", (intln, categories[n]);

//open the ****TEST**** pattern file - will contain the test set
sprintf( dfilename, "%s%3sI03dts.pat", direc, ext, exp );
if( (tsfile = fopen( dfilename, "w+t" )) == NULL) {

printf("\n could not open %s", dfilename );
exit(l);

time(&t);
fprintf (tsfile, "SNNS pattern definition file Vl.4\n"l;
fprintf (tsfile, "generated at %s\n\n", ctime( &tll;
fprintf (tsfile, "No. of patterns %d\n", cat * tspats);
fprintf (tsfile, "No. of input units Id\n", patsizel;
fprintf (tsfile, "No. of output units %d\n", catl;
fprintf (tsfile, "\n");

//print output vector format to pattern file comments
fprintf(tsfile,"\n\n# Output vector format for this pattern file ..... "I;
for(n = 0; n < cat; n++1 fprintf(tsfile, "\n# 13d %s", (int)n, categories[n]);

//all output files are open and headers written - now go through the list again and get the
input data

vecs = 0;
forti = 0; i < cat; i++1 catcount[i] = 0; //reset category counters
while ( !feof(lst)) {

//open a rawfile companion for the listed data file - raw file contains header for
the data file

sprintf (line, "\0\0\0"1;
fgets(line, 100, 1st);
if (strlen(linel <= 4) continue; //check for blank line
vecs++;
sscanf(line, "%3d_%4d.%s", &exp, &incr, &ext);
sprintf(dfilename, "%s%03d_%04d.raw", direc, exp, incrl;
if ( (dfile = fopen ( dfilename, "rt" )) == NULL) {

printf("\n could not open Is", dfilename I;
exit(ll;

}

//scan headerinfo for category name
while(!feof(dfile)) {

fgets(data, 100, dfile);
if(sscanf(data, "Sample: %s\n", &samplecat) != 1) continue;
if( strcmp(samplecat, "Air") == 0 I1 strcmp(samplecat, "blank") 0 I1

strcmp(samplecat, "air"1 == 0 ) continue;
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break;
)
fclose (dfile) ;
if (strcmp(samplecat, "\0")== 0) (

printf("\n Could not find sample category in file %s", dfilename);
exit(l);

Ilsee if category is new
for( datacat = 0; datacat < cat; datacat++ ) (

tmp = strlen(samplecat);
if( strncmp(categories[datacat], samplecat, tmp) o ) break;

)

Ilif new then error and exit.
if ( datacat == cat + 1 ){

printf("\nError new category encountered!!! !");
exit (1);

)
Ilif not new, print the data followed by the output vector.
Ilopen the data file to read the input vector ...
sprintf( dfi1ename, "%s%03d_%04d.%s", direc, exp, incr, ext);

putpattern( tsfile, dfilename, samplecat, cat, datacat, vecs,

putpattern( vafile, dfilename, samplecat, cat, datacat, vecs,

\ printf("\n %s ---> %d", dfilename, distrib[datacat] [catcount[datacat]]);
putpattern( pfile, dfilename, samplecat, cat, datacat, vecs, ++pats[O]);
switch (distrib[datacat] [catcount[datacat]++]){

case 1: putpattern( trfile, dfilename, samplecat, cat, datacat, vecs,
++pats[l]); break;

case 2:
++pats[2]); break;

case 3:
++pats[3]); break;

)

fclose(lst);
fclose(pfile);
fclose(trfile);
fclose(tsfile);
fclose(vafile);
printf("\ndone\n");

return 0;
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********

A.5 Simulator utility source modification

The bignet utility that is provided with SNNS needed to be modified to accept command line

parameters. This made it possible for training to be fully automated via Linux bash shell scripts. A

code fragment is provided below indicating the modification. Full details and a precompiled modified

utility for an Intel x86 based Linux platform may be found on the

RESULT_CD:\Configuration\Software\Simulator.

bignet.c

/* $State: Exp $ $Locker: $ */
/******Modified by B.N. - 17/01/2000 *******/
/******Added features - command line interface*******/
/*******Enables bignet to be called from a shell script*******/

/******* NEW COMMAND LINE ARGS - B.N.
-i number of input units
-h number of hidden units
-0 number of output units
-n network name
-f network filename (to be saved)
***************************************************************/

/*****************************************************************************

FILE
SHORTNAME
SNNS VERSION

PURPOSE
NOTES

AUTHOR
DATE

CHANGED BY
IDENTIFICATION
RCS VERSION
LAST CHANGE

$Source: /usr/local/bv/SNNS/SNNSv4.1/tools/sources/RCS/bignet.c,v $
bignet.c
4.1

SNNS-Network Generator for special 3 Layer Feedforward Networks

Niels Mache
01.10.90

Sven Doering
$State: Exp $ $Locker: $
$Revision: 2.4 $
$Date: 1995/11/16 07:20:06 $

Copyright (c) 1990-1995 SNNS Group, IPVR, Univ. Stuttgart, FRG

******************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* SNNS-Kernel constants and data type definitions */
#include "glob typ.h"
/* SNNS-Kernel User-Interface Function Prototypes */
#include "kr ui.h"

static void errChk( err code
int err code;
{ -

if (err code != KRERR NO ERROR) {
printf( "%s\n", krul error( err_code ));
exit ( 1 );
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int main(int argc, char *argv[])
{

int ret code, i, a, j, unit no;
int IUnits, aUnits, Hunits;
char netname[80] , file_name[80);
struct PosType unit-pos;
float initialize_params[5];

printf ( "\n%s \n", krui_getVersion () );
printf( ,,---- Network Generator for 3 Layer Feedforward Networks ----\n\n");
if ( argc < 11) {

printf( "No. of input units: " I;
scanf( "%i", &IUnits I;
printf( "No. of output units: " I;
scanf( "%i", &OUnits );
printf( "No. of hidden units: " );
scanf ("%i", &HUnits I;

else

forI a = 1; a < argc; a++) {
if(strcmp(argv[a) ,"-i"I==OI sscanf(argv[i+1), "%i", &IUnits);
if(strcmp(argv[aj,"-h"I==O) sscanf(argv[i+1], "%i", &HUnits);
if(strcmp(argv[a], "-0"1==01 sscanf(argv[i+lj, "%i", &OUnits);
if(strcmp(argv[a], "-n"I==OI sscanf(argv[i+1], "%s", netname);
if(strcmp(argv[a] ,"-f"I==OI sscanf(argv[i+lj, "%s", file_name);
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Appendix B

SELECTED RESULTS·

The extensive nature of the result set can easily cause one to get lost in the details. For this reason

Chapter 5 presents a focussed set of results, this appendix expands that result set and the

RESULT_CD contains a full result set which includes a large amount of contextually less-significant

detail.

B.1 Organisation of Appendix B

This appendix groups results according to dataset. Dataset correlation tables and dataset-classifier

training history graphs are presented for each considered dataset. The following datasets are

considered:

• PUR & DCT - representing raw data in the source and transform domains

• D1C & D2C - representing DC and HF filtered data in the transform domain

• D3CA & D3CB - representing coefficient selected data in the transform domain

B.2 Input dimensionality comparison across selected datasets

Input dimensionality vs Dataset

- ... --8

D1C D2C

Dataset

D3CA D3CB

Figure 8.1: Dataset input dimensionality for selected datasets.

Raw data is represented by the PUR dataset. The remaining datasets all represent transform domain

data. Each transform domain dataset is made up of a unique selection of transform coefficients. In the

DCT dataset, all 2048 transform coefficients are selected.
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B.3 PUR dataset results

Table B.1: Category correlation coefficient matrix in upper triangular form (PUR dataset)
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Dataset: PUR File size (MB) 2.71

Input units: (input dimensionality) 1566 Total training time: (hh:mm:ss) 08:28:11

Hidden units: (capacity) 100 Classification rate: (test set) 97.32 %

Output units: (classes) 7 Saved network file:

Figure B.2: Training result - 100 hidden unit neural network with the PUR dataset

Briefcomment: A stable trajectory is achieved, thus indicating convergence of the learning algorithm.

An acceptably high classification rate is achieved, but training time and input dimensionality (file

size) are undesirably high for any embedded application.
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B.4 DCT dataset results

Table B.2: Category correlation coefficient matrix in upper triangular form (DCT dataset)
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Total training time: (hh:mm:ss)
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Saved network file:

3.54

11:21:27

96.43%

Figure B.3: Training result - 100 hidden unit neural network with the PUR dataset

Briefcomment: Similar to the PUR result. A stable trajectory is achieved, thus indicating convergence

of the learning algorithm. Classification rate is good, but training time, input dimensionality and file

size are undesirably high. This result is worse than the PUR result.
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8.5 01 C dataset results

Table B.3: Category correlation coefficient matrix in upper triangular form (D1C dataset)

Camembert ~"""_-"'='"~"""_"';;'~"'"
Brie
BrieTB

. Blue
Mozzarella
Chevin
Laberyl

Training and validation error

"Training er'ror" ---10 I.", a 1 ida-tion ert"'or It -+--

13.6 "Learning ~·ate" --

13.5

0.4

...
(/)

:E:
13.3

13.2

AA
0.1

~-" ," ,~- " ," ," ,, " , " ," , " , ," ," ," , " , " " ," " " ,," ,," ," ," ," , " ,," ,"

'"..0
0 10 20 30 40 50 60 70 80 90 100

epochs <x10)

Dataset: DIC File size (MB) 6.91

Input units: (input dimensionality) 2040 Total training time: (hh:mm:ss) 23:02:17

Hidden units: (capacity) 200 Classification rate: (test set) 96.88%

Output units: (classes) 7 Saved network file: If JP;~OO4~·1~best;~~~~i
Figure B.4: Training result - 100 hidden unit neural network with the D1C dataset

Brief comment: Learning is more rapid than in DCT dataset. A stable trajectory is achieved, thus

indicating convergence of the learning algorithm. Classification rate is good, but training time,

network capacity and file size are excessively high. This is an undesirable result.

BA



B.6 D2C dataset results
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Table 8.4: Category correlation coefficient matrix in upper triangular form (D2C dataset)
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Figure 8.5: Training result - 100 hidden unit neural network with the D2C dataset

Brief comment: An unstable trajectory is evident, thus indicating the inability of the learning

algorithm to converge. Classification rate is unacceptably low, however, training time and input

dimensionality are desirably reduced. This result is undesirable.
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B.7 D3CA dataset results

Table 8.5: Category correlation coefficient matrix in upper triangular form (D3CA dataset)
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Figure 8.6: Training result - 100 hidden unit neural network with the D3CA dataset

Briefcomment: The trajectory indicates a consistently high error, thus indicating the inability to learn.

The D3CA coefficient selection has produced a poor dataset. Classification rate is poor, but training

time and input dimensionality are desirably low. This is an undesirable result.
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B.8 D3CB dataset results
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Table B.6: Category correlation coefficient matrix in upper triangular form (D3CB dataset)
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Input units: (input dimensionality) 8 Total training time: (hh:mm:ss) 00:00:36

Hidden units: (capacity) 12 Classification rate: (test set) 99.11

Output units: (classes) 7 Saved network file:

Figure B.7: Training result - 12 hidden unit neural network with the D3CB dataset

Briefcomment: A stable trajectory is achieved, thus indicating convergence of the learning algorithm.

Classification rate, training time and input dimensionality have all attained desirable levels. This is a

desirable result. A detailed discussion ofD3CB results is offered in Chapter 5.
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CHAPTER 1

INTRODUCTION

1.1 A brief perspective

Olfaction is a chemical sense that is specifically adapted for the perception of gaseous or vaporous

substances. Other chemical senses exist, for example the sense of taste and the vomeronasal sense that

is involved in the specific detection of pheromones. These chemical senses are fundamentally similar

but differ significantly in their intended purpose. The chemical senses are involved in a broad

spectrum of application ranging from basic survival to abstract social and cultural functionality.

It is of utmost importance that a common misconception about olfaction is dispelled from the outset.

The olfactory sense is not intended to identify chemical composition even though this may be possible

in some instances. Instead it relates chemical odours to abstract objects through association. For

example, the aroma emanating from a mug of fresh coffee ultimately results in an emotional response

such as relaxation, and a cerebral classification such as "Mocha Java!". This is similar to other senses

such as hearing where a sound is classified as an abstract object such as the word "Hello" and no

consideration is given to the elemental frequencies that constitute the sound. While the output of a

sensor (cochlea for example) may be a fundamental measurement, the output of the entire sensory

system is most often abstract.

When building an artificial olfactory system, it is the abstract associative output that must be

emulated. Therefore, artificial olfactory systems or "electronic noses" as they are commonly known

are not intended to perform fundamental gas analysis. Specialised analytical instruments such as Gas

Chromatographs and Mass Spectrometers (GCIMS) exist for that purpose.

In their book "Electronic noses: Principles and applications" [1], Dr Julian Gardner and Dr Philip

Bartlett traced the notion of artificial odour measurement back to 1920 when the concept was first

proposed by Zwaardemaker and Hogewind [2]. In 1954 Hartman [3] published the first discovery of

an electrochemical sensor that responded to gaseous odorants, but it was only in 1982 that Persaud

and Dodd of Warwick University arguably produced the first successful artificial olfactory system [4].

In the two decades since then the field of artificial olfaction experienced rapid growth and was driven

largely by the continued efforts of the of the Warwick University team under the principal leadership

ofDr Gardner.
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Although it is a young discipline, the field of artificial olfaction has spun off a variety of commercial

ventures. In their article "The how and why of electronic noses" [5] Professors Troy Nagel and Susan

Schiffman provide a useful review of the state of the art and industry as it stood in 1998 at the

commencement of this study.

1.2 The olfactory sense

Perhaps the least understood of the biological senses, it is ironic that the chemical sense is also the

oldest and most prolific of all biological senses. Found in plants and animals, from unicellular

organisms to mammals the chemical senses are confounding by virtue of their variability in design

and purpose. In lower life forms chemical sensitivity exists even in the absence of a nervous system,

while in humans, although highly developed, the chemical senses are largely limited to emotional and

subconscious responses and struggle to produce value in the domain of the conscious mind. Hold your

breath and try to imagine the scent of strawberries. Most find it impossible, but how simple it is to

recall an image of a strawberry with your eyes closed.

Furthermore, the value of the olfactory sense varies with age. Although children possess the same

olfactory sensitivity as adults, they exhibit poor odour identification and memory abilities due to their

level of mental development. The elderly also exhibit poor olfactory performance. Given that

conscious olfactory ability is limited in early and advanced age [6], one may question the value and

purpose of the olfactory sense in humans. Some believe that our olfactory sense is perhaps an

evolutionary remnant that was previously more highly developed and critical for survival and is now

fading away.

Survival aside, the olfactory sense has certainly found increased significance in modem culture [7]. It

is therefore no surprise that the recent social relevance has brought the olfactory sense into the

commercial limelight. Virtually every chemical consumer product now takes olfactory appreciation

into account. The fragrance and high-end food and wine industry are premised largely on the

importance of olfactory appreciation. The flavour impact that food producers seek is primarily an

olfactory phenomenon. It is well known that expensive food, wine and scents are "feel good"

products. Such food is consumed to create a feeling of well-being. The pivotal role that olfaction

plays in the regulation of emotion is seldom realised.
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"The persuasive power of an odour cannot be fended off, it enters into us like breadth into our lungs,

it fills us up, imbues us totally. There is no remedy." Patrick Suskind [8]

1.3 The electronic nose

Poorly defined and apparently mysterious, the olfactory sense seems to defy complete emulation. At

first glance it may be argued that the purposes served by the biological sense are so different from

those that are desired of an electronic nose that there is no need for close emulation. The question

must be asked, what is expected from an electronic nose and how does that differ from its biological

counterpart?

The electronic nose is involved in the detection of predefined odour conditions, which incorporates

odour classification. That is, the electronic nose is primarily used as an odour discriminator, and this

is remarkably similar to the human olfactory system, the main difference being that the discrimination

is most often subconscious in humans where the discrimination result is propagated largely to the

centres of emotion. For practical purposes, the addition of emotional value may be regarded as an

extra-olfactory process and need not feature in our electronic nose model. The biological analogy may

be regarded as applicable to the extent that it discriminates odours, consciously or otherwise.

Odour and chemical discrimination are not necessarily the same. Several chemically pure substances

are known to have distinctly different odours at different concentrations. The non-linearity gets even

more complicated when natural odours, which are usually complex mixtures of gases, some of which

suppress the detection of the others, are considered. Chapter 2 offers a more detailed discussion on

this issue.

The high-level organisational framework for biological olfaction, electronic odour discrimination and

traditional gas analysis is the same, and may be described as a three step process namely, gas

handling, sensing and signal processing. The uniqueness of the electronic nose is particularly apparent

at the sensing and signal processing stages. It is at the sensory and signal processing levels that most

of the current research effort is concentrated [9]. This study is focused on signal processing and uses

commercially available sensing technology.

Given the obvious novelty and allure of this study it would be negligent to pass up its obvious

recreational potential, so it was decided that the experimental nose should be used to distinguish fine

wines. Unfortunately, the sensors' receptive fields did not permit effective wine discrimination. This
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was discovered by trial and error. So the next best thing was done, the system was used to

discriminate "fine cheeses". From a technical perspective the choice of cheese as the subject of

discrimination has many advantages. Cheeses produce complex and variable gas mixtures with subtle

variations from one cheese to the next. Continuous bacterial action and the effects of oxidation also

make for an interesting and challenging classification task. Cheese discrimination is certainly a

demanding test of olfactory performance.

1.4 Applications of the electronic nose

There are several factors that influence the application of electronic noses. Foremost among these are:

• Low cost relative to traditional gas analysis systems,

• The possibility of continuous online measurement,

• Reduced size, and

• Discrimination of abstract user-definable odour conditions.

These factors contribute to the remarkable versatility of the electronic nose. Applications typically

include online chemical and food process control, alarm condition detection and diagnosis of various

medical conditions

In their article [5] "The how and why of electronic noses" Troy Nagle and Susan Schiffman provide a

detailed table of commercially available electronic nose products, indicating their cost, size, and

technology among other things. The smallest and simplest devices, not mentioned in the table, are

pocket sized breath analysers and gas leak detectors. Intelligent gas leak detectors are able to

determine when a gas detection event is due to a leak or normal usage in a kitchen environment.

Medical diagnosis includes the non-invasive detection of various conditions that give rise to oral

malodour, for example liver cancer. Electronic nose technology is also being rolled out in the dairy

industry where the monitoring of product quality and animal health are performed online while a cow

is being milked. Conditions such a ketosis in cows produce detectable odour signatures in their milk

[10].

It is difficult to say what the future holds for electronic nose technology. Perhaps the technology will

be generalised and used to detect liquid phase odours as well. Research on electronic tongues has

already begun [9]. Electronic noses have also been incorporated into miniature robots that are able to

locate odour sources. Perhaps future research will produce chemosensory micro-machines that can be
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injected into the human blood stream to seek out various pathologies from their chemical by-products.

These devices may then administer localised treatment.

1.5 Specific contributions

This thesis builds a plausible biologically inspired basis for the design of an electronic nose.

Biological system organisation is the result of evolutionary adaptation. These adaptations provide

valuable indicators of olfactory functional requirements. Selected biological subsystems are studied,

and analogous engineering solutions are proposed. The following specific functional adaptations of

the biological organism were investigated: gas handling and headspace regulation, the detection

mechanism, establishment of an elementary orthogonal feature map, and signal classification.

The following seminars, conference papers and publications were produced in the course of this

study.

Naidoo, B.: 'Biologically inspired signal transformations and neural classification of odours in an

electronic nose', pp. 69-74, Proceedings of the 14th annual symposium of the pattern recognition

society of South Africa, Langebaan, ISBN 0-7992-2218-6, November 2003.

Naidoo, B.: 'Electronic noses turn up in Brighton: Overview of the 7th international symposium on

olfaction & electronic nose (ISOEN 2000: 20-24 July 2000)', ChemoSense, ISSN: 1442-9098, Vol. 2,

No. 4, September 2000.

Naidoo, B., and Broadhurst, AD.: 'Sensor array data processing using a 2-d discrete cosine

transform', pp. 153-158 in, Gardner, J.W., and Persaud, K.C., (eds.): 'Electronic Noses and Olfaction

2000', Series in sensors, Institute of Physics, Bristol, 2000.

Levy, D.C., and Naidoo, B.: 'How machines can understand smells and tastes: Controlling your

product quality with neural networks', Ch 22, pp. 199-207 in, Bell, G.A, and Watson, AJ., (eds.):

'Tastes & Aromas: The chemical senses in science and industry', UNSW Press, 1999, Sydney,

Australia.

Naidoo, B., Levy, D.C., Bell, G.A, and Barnett, D.: 'Food odour classification in an artificial

olfactory system', International conference on engineering applications of neural networks (EANN _

1995), Finland.
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Naidoo, B., Levy, D.C., Bell, G.A., and Barnett, D.: 'Classification of data from non-ideal gas

sensors', Proceedings of the Sixth Australian Conference on Neural Networks (ACNN - 1995), p.61­

64.

Naidoo, B.: 'Neural Network Based Classification of Sensory Data in an Artificial Olfactory System',

Presented at the South African Institute of Electrical Engineers (SAIEE) Annual Post-Graduate

Paperette Evening, 1994, Durban.

1.6 Thesis overview

This study investigates the notion that the emulation of biological system organisation will benefit the

development of an artificial olfactory discriminator. Chapter 2 presents an analysis of biological

olfactory system organisation and proposes a framework for the development of an artificial olfactory

discriminator.

An artificial olfactory system is then deployed in the proposed framework. Chapter 3 describes the

system front-end that is responsible for capture of raw olfactory measurements. This incorporates

odorant handling, sensing and recovery.

Chapter 4 describes the software implementation that emulates low-level olfactory processing in the

mammalian brain. This is a pre-classification processing stage and is typically used to extract relevant

features in the data and to reduce the complexity of the classification problem. It is modelled on actual

neural processing in the mammalian olfactory system.

Final odour classification and system performance is addressed in Chapter 5. Artificial neural

networks are used to classify the processed odour measurements. Chapter 6 concludes with a brief

discussion on the major outcomes and their significance in the context of this study.
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CHAPTER 2

BIOLOGICALLY INSPIRED SYSTEM ORGANISATION

2.1 Introduction

The contemporary description of electronic noses and olfaction offered in Chapter 1 helps to build a

general paradigm. Chapter 2 seeks to establish a technical basis on which to build a solution. Selected

findings in the field of biological olfaction are used to produce a clear technical basis for the

organisation of artificial olfactory systems.

Artificial olfaction is a young field with most of the research and development having taken place in

the last decade. As such, there is no globally applicable specification framework for electronic nose

development. Each electronic nose is specified in a manner that is technology and application

specific. In such circumstances, it is beneficial to consider the organisational principles that lead to

successful biological olfaction. Mammalian olfaction will be considered in particular.

Biological theory provides valuable insight into olfactory system architecture and functionality.

Extensive investigations into olfactory receptor cell functionality continue to inspire and guide the

development of electro-chemical sensors. Neural coding of olfactory stimuli and the associated

biological signal processing pathway provide clues regarding necessary signal processing. This

chapter presents selected details in the cross-disciplinary theories of gas handling, sensing and

discrimination. At each stage inferences are made from the study of biological olfaction, and a

specification framework for the electronic nose is evolved.

2.2 Elements of olfactory biology

Although the study of biological olfaction already spans several decades, the research community is

still in the process of establishing a definitive and globally acceptable model of olfaction. In the light

of recent findings, a consensus of opinion is emerging, and many of the older theories on

chemoreception and neural processing have been replaced [11]. This section presents aspects of the

generally acceptable model of olfaction. Major topics are touched on with the purpose of establishing

a simple theoretical model.
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The biological odour-processing pathway is decomposed into a complex sequence of processes. It is

useful to arrange the various processes in four categories:

• Pre-receptor events: processes that influence the availability of stimulus molecules at the

detection surface.

• Chemoreception: the process of stimulus detection and electrical (neural) representation.

• Low-level processing: transformation of the initial neural code.

• High-level processing: selection, association and other higher-brain processes.

olfactory bulb

olfactory epithelium

~-- olfactory cortex

amygdala

limbic system

cribriform plate

turbinates

Figure 2.1: Simplified anatomy of the human olfactory system

[Modification of the original image (uresp. wmf) from LifeART

Super Anatomy 1, Copyright © 2002, Lippincott Williams &

Wilkins, a WaIters Kulwer Company.]

2.2.1 Pre-receptor events

The process of conscious odour discrimination starts with the deceptively simple action of sniffmg.

Stimulus bearing air is drawn vi& the nostrils, past the turbinate bone structures and over the olfactory

epithelium. Individual stimulus molecules eventually reach the receptive surfaces thereby triggering a

cascade of neural processes. This sampling phase incorporates several invisible processes that

influence the spatial and temporal profile of stimulus delivery to the receptive surfaces. Such factors
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that influence the availability of odour molecules at the receptor surface are referred to as pre-receptor

events [1]. In this section, some of these events and their implications for the electronic nose are

considered.

Sniffing and air flow-rate: Contemporary wisdom has seldom acknowledged sniffing for the pivotal

role it plays in natural olfactory processes. Recent studies [12, 13] have characterised sniffing as an

integral part of a larger feedback loop that regulates the olfactory process. Sniffs are modulated in

frequency, duration and depth, indicating a temporal dimension in odour perception [13]. Airflows

resulting from ordinary respiration or deliberate sniffing impose a detectable modulation of olfactory

nerve signals [12]. These facts imply that odour detection is episodic (Le. not continuous) with a

defmite identification period that begins and ends with each sniff. The inhalation and exhalation

transients are encoded in each detection cycle. This indicates the possible usefulness of airflow

control in the electronic nose, a topic that is described in more detail in Chapter 3.

As a general rule, higher air flow-rates are believed to improve odorant detection [14]. However,

actual flow rates through each nostril always differ in humans [14]. When sniffmg through the high

flow-rate nostril alone, sniffs are short and shallow. When using only the low flow-rate nostril, sniffs

are longer [14]. This implies that odorant detection is integrated over time until some detection

threshold is reached. Perhaps the electronic nose should therefore have a fixed odorant flow-rate into

the detection chamber over a standard period of time. This will ensure that a standard volume of

odorant bearing air is sampled in each cycle.

Furthermore, the normal birhinal (dual-nostril) sniff allows only the high flow-rate nostril and its

associated epithelium to reach optimum threshold. The other nostril will detect at a sub-threshold

level. This conveys two slightly different images of the detection event to the brain [14]. Sub­

threshold olfactory images are not necessarily subsets of full-threshold images. Therefore, sub­

threshold images are able to enrich the detectable feature set. The implications for the electronic nose

are clear. Detection should be dispersed among two or more simultaneously sampled parallel

channels, each operating at a different flow-rate, over the same fixed period. The parallel

measurement system imposed a significant cost penalty and could not be implemented in this study.

Parallel measurements can be serialised and executed sequentially on one set of sensors, provided that

the sensors and sample gases are stable. Unfortunately, the Sn02 sensors under consideration lack

stability [15, 16] and the composition of the sampled headspace will be modified by each successive

measurement.

Given that each measurement event dilutes the headspace, a sequential measurement system is not

representative of the simultaneous sampling that takes place in two nostrils. Sequential measurement
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systems would have to wait for very long periods between measurements for headspace equilibration,

and there is no guarantee that the same equilibration point will be reached each time. Alternately, a

portion of the original headspace can be maintained for a subsequent measurement. This was not done

either, due to the cost penalty that it would incur. The system was therefore restricted to a single

measurement channel operating at one predefined flow rate.

Temperature, Humidity and Concentration: Apart from atr flow-rates, other factors such as

temperature, humidity and concentration may also affect the detection process. In mammalian

olfactory systems, temperature and humidity are regulated as air enters the warm, moist nasal cavity

and passes over the turbinate bone structures and mucus membranes. The electronic nose should

operate similarly over a restricted temperature and humidity band. The use of an air-conditioned

environment and bottled synthetic air attempts to emulate this characteristic and so provide

temperature and humidity stability. Chapter 3 deals with these issues in greater detail.

The vast majority of odours are complex mixtures of pure gases. The relative concentrations of gases

in an odour mixture are a key factor in mixture classification. Where significant variations in total

mixture concentration take place, it is believed that feedback signals from the brain cause

compensatory adaptation in the olfactory sensor neurons. This is believed to extend the dynamic range

of the detection mechanism [17]. It would therefore be prudent to take reasonable steps to limit the

concentration range over which the experiment is to take place. The sensors selected for this

experiment do not have a wide linear dynamic range and compensatory adaptation is an advanced

topic left for a future study.

The rate of change of stimulus concentration in the nose (as the stimulus is introduced and removed)

has also been shown to affect conscious perception. In fact, the rate of change of concentration may

be more important than the absolute concentration itself [18]. This indicates that data capture should

commence before stimulus introduction and terminate after stimulus removal. The captured transient

could encode features that characterise stimulus identity.

The final concentration related phenomenon to be considered is speed of detection. The concentration

of a stimulus in the nose has been shown to influence detection latency [12]. Detection thresholds are

reached more rapidly for concentrated stimuli, thus reducing detection latency. Under controlled

conditions, detection latency can be used as an indicator of stimulus identity. For example, one can

discriminate between freshly sliced blue cheese and mild cheddar simply by the time it takes to obtain

an effective sniff. The pungent blue cheese will always reach the detection threshold faster. In this

situation, one wishes to identify the solid substance that produces the aroma. Each substance will have

its own evaporation rate and vapour pressures. As long as all environmental variables are kept
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constant, each substance should produce a characteristic concentration transient and response time.

All that remains is to deploy a system with the necessary sensitivity and resolution to capture this

information.

One barrier remains before odorant molecules reach the receptor surface, that is the mucus layer.

Contrary to popular belief, the nose does not directly detect substances in the gaseous phase. The

receptive surface is physically isolated from the nasal airflow by a mucus layer that is typically 351lm

thick. Odorant molecules must dissolve into and traverse this aqueous layer for detection to take

place. A typical odorant takes 300 milliseconds to traverse the mucus layer [19]. The layer is

constantly replaced to prevent fouling of the detection mechanism. Mucus flows over the receptive

surface at the surprisingly high speed of 10 to 60 millimetres per minute [20]. Experts in electronic

olfaction are not convinced that the above-mentioned functionality need be emulated in any form [11].

The most important phenomenon at the mucosal surface (from the electronic nose point of view) must

be the differential sorption of odorants [21]. The detectable spatial distribution of odorants at the

mucus surface is believed to be a result of turbulent stimulus flows imposed by the turbinate bone

structures [12]. There is also clear evidence of temporal separation of odour mixture components.

This is imposed by differential diffusion rates of component gases through the mucus layer [12]. The

effect is similar to gas separation in the separation columns of gas chromatographs [22,23]. It is clear

that the temporal signature may encode aspects of mixture identity. Some commercial electronic

noses now use gas separation columns. This study did not implement gas separation due to cost and

complexity considerations.

2.2.2 Chemoreception: The olfactory epithelium

Having traversed the mucus layer, odorants become available for detection at the receptor cells of the

olfactory epithelium. Each receptor cell produces an electrical representation (codification) of

stimulus detection. Once generated, the codewords are propagated to the olfactory bulb in the brain

for further processing. The later subject is discussed in Section 2.2.3. Detection may be summarised

as a process of odorant discovery wherein the presence of an odorant is expressed as a neural

codeword. Several detection-related issues are considered in this section.

Detection: Theories of olfactory detection date back as far as the first century BC. The Roman

philosopher Lucretius speculated that odours are delivered to the nose as a cloud of very small

airborne particles. He also suggested that the detected shape of the particle would determine the

character of the odour [I]. Two millennia later, in 1952, Amoore presented similar findings [24] based
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on scientific investigation. In 1964 Amoore went on to discover highly specific receptor sites with

complementary characteristics to those of the odorant molecules [25]. The odorant and its

complementary receptor site form the basis of a "lock and key detection mechanism". This model has

since been expanded and refined, but remains the generally accepted foundation of modem theories.

When an odorant molecule binds with a complementary receptor protein, a complex electrochemical

process is set in motion. This process, known as the transduction cascade, takes place entirely within

the olfactory sensor neuron and is responsible for producing the neural (electrical) codeword. It will

not be necessary to consider the transduction cascade any further for the purpose of this study,

however, sensor physics is discussed in Chapter 3.

Detection mechanisms: In his study on detection mechanisms across several species, 1. Boeckh [26]

suggested three categories of detection:

• Labelled-line detection: for each pure stimulus there exists one receptor type such that the

receptor completely identifies the stimulus.

• Array detection: were each pure stimulus produces a unique distributed response (pattern of

multi-component intensities) across an array of dissimilar receptors with broad overlapping

receptive fields.

• Temporal signature: a characteristic temporal response is created across any number of sensors

configured as labelled-line or array detectors.

Labelled-line and array detection mechanisms produce very different types of data. The two classes of

data necessitate very different modes of information processing. Consequently, there are two classes

of olfactory system that cater to the needs of the detection mechanisms, these are:

• Odour specialists: where each odorant detection event is mapped onto a unique neural codeword

by a highly selective (labelled-line) receptor [26]. The single receptor is able to completely

identify the odorant. The detection event is asserted along a single line that is not shared by other

odorant detections. Highly selective receptors with orthogonal (non-overlapping) receptive fields

are required. The orthogonal codification of stimulus identity takes place at the receptor level.

Therefore, there is no need for complex decoding of stimulus identity at post receptor levels. This

simple architecture does have a significant drawback. A unique receptor type is required for every

stimulus type. Given that an average human being may need to detect in excess of 10 000

stimulus types, over 10 000 distinct receptor proteins would be required at the receptor level.

Since a unique gene is required for the production of each protein, the olfactory system would

consume a disproportionate amount of the organism's genetic code.
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• Odour generalists: where the matrix of detectors is made up of mildly selective receptors that

have large overlapping receptive fields [26]. Any single stimulus should produce a distributed

response across the detection array such that the total response is unique for that stimulus. In such

a system, each detection event is coded across multiple codewords. Since each receptor type is

differentially receptive to a large spectrum of stimuli, the array is able to detect more stimuli than

there are receptor types. The flexibility of generalised detection comes at a cost. Each detection

event produces a complex multi-codeword pattern that has to be further decoded. Distinctions

between patterns are usually fine and non-linear. This makes the discrimination mechanism very

sensitive to variations in the transfer characteristic of the receptors.

Specijicity: Boeckh [26] went on to state that labelled-line mechanisms were rare. Evidence showed

that most olfactory systems, including human, were odour generalists with array detectors.

Spatial coding and lijespan: The olfactory epithelium in each nostril is broadly divided into four

zones. Any given receptor is expressed only in one of the four zones, however, each receptor is

randomly distributed within the zone amongst other receptors of that zone. [27]. Therefore, the

olfactory epithelium itself expresses a broad (non-specific) categorisation of odorant identity based on

the zone of detection. It is assumed that receptors are randomly distributed in order to prevent

extinction of a receptor type in the event of localised epithelial damage. This morphological

adaptation and the high receptor cell redundancy imply a harsh operating environment where sensor

neurons are often damaged. In fact, olfactory sensor neurons in the rat are replaced every 28 days on

average due to rapid degradation. This may be used as an indicator that electronic sensors will also

require frequent replacement due to environmentally imposed degradation [11]. It would therefore be

wise to deploy electronic sensors in a controlled and safe environment. These issues are addressed

further in Chapter 3.

There is no shortage of research articles describing olfactory detection. This is due largely to the fact

that a definitive detection model was so elusive. However, recent discoveries by Dr L. Buck and her

colleagues at Howard Hughes Medical Institute (HHMI) at Harvard Medical School have precipitated

a seemingly robust and complete description of olfactory detection.

Combinatorial coding: There are as many as 1000 distinct odorant receptor proteins in mammals.

Each sensor neuron is known to express only one receptor protein [28]. These receptors form the

binding sites in a "lock and key" detection mechanism. Here it is believed that stimulus molecules

bind with receptor proteins that posses a complimentary molecular structure. However, Ressler,

Sullivan and Buck have also shown [34] that each receptor interacts with multiple odorants and that

each odorant is detected by multiple receptors. A many-to-many mapping! Taken at face value, this
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appears to contradict the unique binding requirements of the lock and key theory. Buck and Malnic et

al [29, 30] explain that the receptors do not detect entire molecules as previously assumed. Instead,

they detect smaller structural features in odorant molecules, and individual structural features may be

common to a diversity of odorants. Therefore, odorants that are described by multiple features are

detected across multiple receptor types. Given that a particular feature may be common to a group of

distinct odorants, the entire group may be detected by the one receptor that is designed for the feature

in question.

Every odorant is identified by a unique combination of receptors. Given that there are approximately

1000 distinct receptor types, the combinatorial coding scheme [30] is able to code far more than 1000

distinct odours. Whether pure substances or complex mixtures, odorants are coded across multiple

codewords thus preserving the notion that mammals are odour generalists.

It is also known that some pure odorants (not mixtures) are perceived differently under different

concentrations. For example, indole an organic compound smells putrid at high concentrations and

flowery at low concentrations. Combinatorial coding provides an explanation for this phenomenon.

Larger amounts of a chemical cause it to bind to lower affinity receptors thus increasing variety of

bindings and hence changing its coded representation and perceived character [31]. This indicates that

the stimulus must be made uniformly available to all sensors in an electronic nose. Otherwise; a

partial characterisation and misclassification may result.

Suppression: Since natural odours are usually complex mixtures of gases, odour perception depends

on reception and neural processing of multiple components [28]. Given that the low flow-rate nostril

and its associated olfactory epithelium produce sub-threshold detection [14], it seems obvious that the

character of the odorant at that nostril may be perceived differently.

Individual odour components have been shown to compete for receptor sites at the olfactory

epithelium. This effectively allows one component to suppress the detection of another [32]. The

phenomenon takes place at the receptor cell level [32] and is sensitive to the concentration of

suppressing odorants [33]. Therefore, the reduced concentration of the suppressing odorant at the low

flow rate nostril may retard suppression thus exposing constituent odorants that could be suppressed

in the high flow-rate nostril. This would effectively expand the detectable feature set for odour

mixtures.

It is clear that odour mixtures do not express themselves as linear combinations of individual

component detections. The mechanism is non-linear and superposition of single component detections
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does not strictly occur when detecting a mixture. Perhaps non-linear discrimination mechanisms

would be required in the electronic nose.

2.2.3 Low-level processing: The olfactory bulb

Each sensor neuron projects its single axon through the cribriform plate into the olfactory bulb. On

their way to the olfactory bulb, these axons fasciculate or converge to form the olfactory nerve. The

sensory image presented in the olfactory nerve is a complex and dispersed depiction of a multitude of

sensory events across the four zones of the olfactory epithelium. The information that is broadly

organised by zonal affiliation in the olfactory epithelium [27] is refined in the olfactory bulb to

produce a clear and unique combinatorial map [34] for that odour stimulus. A brief look at olfactory

bulb structure reveals some inner workings of this transformation.

The olfactory bulb is a distinctly layered structure [35] that implements the next processing stage for

olfactory stimuli. The fITst synaptic contacts in the olfactory pathway take place in the glomeruli of

the olfactory bulb. Neural interactions in the bulb are complex and are still the subject of

investigation. Only the core functionality is presented here. Many fmer details that are still the subject

ofbiological research are not considered.

olfactory
epithelium

cribriform plate

olfactory bulb

•

Qlomeruli[

olfactory
sensor
neuron

periglomerular cell

mitral & tufted cells

.------"_~__-.v.:::_:..--."._y.,_::..'-----.J.=..;_~e---'-\U:=--~~\U::'--"-.....\=,-.....\.U:::c~'"'\I;.--- .....,"-, __ mucus layer
cilia

Figure 2.2: Schematic of selected epithelial and bulbar structures
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Figure 2.2 presents a partial depiction of olfactory bulb structure. Axons from the olfactory epithelium

project into the bulb and terminate in prominent spherical structures called glomeruli. These glomeruli

are located in the outer (glomerular) layer of the olfactory bulb. Each glomerulus is mainly a

collection of synaptic contacts between a single mitral or tufted cell and a multitude ofaxons from

olfactory sensor neurons. Mitral and tufted cells propagate the sensory signal to higher processing

levels in the brain, while periglomerular cells mediate inter-glomerular interactions. These lateral

interactions serve to refine the sensory input [36] through processes of inhibition or excitation.

A breakthrough discovery published in 1994 [34] showed that the randomly distributed sensor

neurons projected their axons onto small and distinct subsets of olfactory bulb glomeruli, such that

each glomerulus expressed axons for one receptor type only. Therefore, receptor genes that are

expressed in random and dynamically distributed sensor neurons later converge on specific locations

in a discrete and fixed glomerular map. It was also shown that these glomerular maps are consistent

across distinct individuals of a species [37].

The significance of the fmding may be expressed as follows. In the nose, an odour is coded by a

unique combination of randomly distributed active sensor neurons. This distribution varies across

individuals of a species and varies with time as the olfactory epithelium constantly regenerates. When

a detection event is expressed along an axon, it is clear that detection has taken place, but there is no

clear indication of stimulus identity because axons are associated with randomly mixed receptor

types. When this signal reaches the olfactory bulb of the brain, the axon will terminate in a glomerulus

that is distinctly associated with a single receptor gene. This glomerulus occupies a fixed position in

an ordered spatial map of distinct glomeruli. By virtue of its stereotyped spatial location, the active

glomerulus indicates a clearly categorised detection event.

Each receptor protein detects a specific structural feature of an odorant molecule. Therefore, different

structural features are mapped onto specific stereotyped locations on the olfactory bulb. The olfactory

bulb therefore presents a combinatorial feature map called the bulbar map to the higher processing

centres in the brain. Furthermore, given that the underlying receptor proteins each detect structurally

unique features, the feature map may be regarded as orthogonal. It can be seen that the bulbar map

describes each odour as a unique combination of archetypal bases. This is remarkably similar to the

orthogonal discrete trigonometric transform (DTT) domain representation of measured signals, where

signals are decomposed into linear combinations of unique basis vectors.
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2.2.4 High-level processing: Cortical and limbic pathways

The stereotyped bulbar map is projected directly to the higher brain. This region of the brain that

receives direct bulbar input is called the olfactory cortex. It is believed that the olfactory cortex is

responsible for integrating spatio-temporally coded information from the olfactory bulb [38]. This

spatial integration is clearly expressed in the structure of neural connectivity between the bulb and

cortex. The cortex possesses an array of localities that are similar to bulbar glomeruli. It is convenient

to refer to this collection of cortical loci as a cortical map.

Studies of connectivity between bulbar and cortical maps have shown that:

• Individual bulbar outputs project onto multiple cortical loci [39], and

• Each cortical locus receives multiple bulbar outputs [40].

Based on the above experimental findings, it is assumed that each cortical locus receives a unique

selection of bulbar outputs [1]. This means that each cortical locus may be able to encode some

rudimentary odour quality. It should be noted that the glomeruli code a detailed and elementary map

of structural features in the odour molecule. Individual loci in the bulbar map are far too elementary to

code odour quality. These structural features may be regarded as the building blocks of odour quality.

Therefore, multiple "building blocks" are integrated at each cortical locus to generate a higher-level

representation of odour quality.

The value added cortical outputs then project to several parts of the brain [38]. These regions may be

grouped into two major pathways [1,41]:

• The olfactory association pathway, and

• The limbic pathway.

The olfactory association pathway forms the basis of associative odour memories. This is where

conscious discrimination and perception takes place. The limbic pathway is responsible for emotional

and hormonal responses to odour stimuli. The neural network classification mechanisms described in

Chapter 5 emulate the conscious discrimination functionality of the olfactory association pathway.

The limbic system or emotional brain is not considered here due to a present difficulty in obtaining

applicable findings. It is known that the processing at this level is sub-conscious and poorly defined.

The limbic system should be revisited in a future study to establish its olfactory significance and

perhaps to incorporate new fmdings into this body ofwork.
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2.3 Summary

This review of natural olfaction and mammalian olfaction in particular has provided insights and

suggestions for the development of an electronic nose. Figure 2.3 provides a graphical summary of

olfactory processes and the implementation mechanism of each process in biological and electronic

systems.

A summary of inferences made from the study of biological systems is given in the following three

sections. Justifications for the inferences are omitted here as they have already been dealt with in

preceding sections. Chapters 3, 4 and 5 describe the implementation details.

Olfactory epithelium

Air conditioned room and
synthetic air medium (Chapter 3)

Not implemented

Taguchi gas sensors [16] & data
acquisition system (Chapter 3)

Discrete cosine transform
(Chapter 4)

Coefficient selection heuristic
(Chapter 4)

Artificial neural network
(Chapter 5)

Figure 2.3: Biological and electronic processing analogy
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2.3.1 Gas handling

To mimic the biological system, a standardised measurement procedure must be employed. Each

measurement should capture the transient response to stimulus introduction and removal while

delivering stimuli at fixed flow-rates over standard time intervals.

It was also shown that measurement across several parallel channels operating at different flow-rates

could be useful. This was not implemented due to cost and complexity considerations in this study.

Environmental temperature and humidity must be stabilised, and for this purpose an air-conditioned

room and a synthetic air medium were used.

The concentration of stimuli must be kept within sensory range to avoid saturation, as electronic

sensors do not have the wide dynamic range and adaptation mechanisms that biological systems

possess.

It is known that gas separation columns can enhance the temporal signature of odour mixtures thus

making them more identifiable. However, separation columns were not implemented in this study due

to cost and complexity considerations.

2.3.2 Chemoreception

It is preferable to model the system on biological odour generalists with array detection as used by the

mammalian olfactory system. Therefore, sensors should have broad overlapping receptive fields thus

ensuring wider sensitivity, and signal processing techniques should be used to extract stimulus

identity.

It was shown that a controlled and safe environment would be necessary to protect the sensors from

degradation. The use of a synthetic air medium also reduces the possibility of chemical attack on the

sensors.

The enclosure for the different sensors must ensure that stimulus gases are made uniformly available

to all sensors. This prevents partial characterisation of stimuli.
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2.3.3 Signal processing

It has been established that the olfactory bulb expresses a decorrelation of receptor array signals. To

mimic this in this study, the measured signals are decomposed to a linear combination of orthogonal

bases in order that the limited number of sensors can identify many different stimuli. Various discrete

trigonometric transforms can achieve this, such as the discrete cosine transform, which is described in

Chapter 4 and which was selected in this study.

The olfactory cortex was shown to select specific subsets of signals from the olfactory bulb for use as

inputs to the final classification process. In this study specific transform domain coefficients are

selected so that they are able to efficiently code stimulus identity. Chapter 4 describes this selection

mechanism.

The discrimination mechanism in biological odour generalist systems is a non-linear neural-network.

Artificial neural networks, which are described in Chapter 5, are used to mimic this discriminator.

Selected transform coefficients are used as input to this fmal classification stage.

2.4 Conclusion

This chapter describes the mammalian olfactory system organisation and function. Various principles

and processes of olfaction have been identified which are relevant to artificial olfaction. A functional

and organisational description is a traditional strength of the biological sciences and the review of

biological literature presented here has been most valuable in establishing an organisational

framework for the deployment of the electronic nose.
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CHAPTER 3

ODOUR RESPONSE MEASUREMENTS

3.1 Introduction

Chapter 3 provides a description of the chosen technology and methodology for odorant sensing. The

development of odour measurement hardware and software formed an integral part of this study. The

aim was to use existing sensor technology to build a sensory front-end that could detect (measure)

odours for classification at a subsequent stage.

Selected aspects of the hardware, software and operating principles are presented here. Figure 3.1

illustrates the general system architecture. This chapter emphasises three technical issues:

• The chosen sensor technology,

• Gas/odorant handling, and

• Measurement configuration.

Post measurement signal processing and pattern recognition are dealt with in Chapters 4 and 5

respectively.

Hardware Software

Figure 3.1: System architecture

3.1



3.2 Measurement system front-end

An overview of the system hardware is presented in this section. Section 3.2.1 introduces the concept

of headspace sampling that guided the hardware development. Section 3.2.2 describes gas reticulation

and the associated control strategies. Sensor technology is discussed in Section 3.2.3, and methods of

improving post-measurement sensor recovery are discussed in Section 3.2.4.

3.2.1 Headspace sampling

Naturally occurring odours have concentrations that are variable in space and time. Biological

systems attempt to compensate for the variation through several mechanisms. At the peripheral level,

the processes of controlled sniffing and threshold detection are used to present a partially stabilised

olfactory image to the brain. The controlled volume of odorant bearing air that is sampled in the nose

is called the odorant headspace. As described in Section 2.2.1, the parallel or simulated parallel

sampling system that emulates a birhinal sniff could not be implemented.

Aggregate vs. specific molecular sampling: Electronic noses attempt to sample the character or

"flavour impact" [42] of an entire odorant headspace in a fashion that emulates the biological sense.

This is different from conventional gas chromatograph or mass-spectrometer analysis of specific

molecular composition [16]. Molecular analysis requires a costly sensory front-end that is able to

resolve the identities of individual molecular constituents. Aggregate headspace sampling generally

uses sensors that possess receptive fields with wide footprints in molecular space. The single sensory

output is representative of an aggregate detection that spans the receptive field. Precise molecular

composition and molecular dynamics such as suppression (masking of one detectable molecular

species' by another) are not explicitly resolvable. However, the consequences of molecular

combinations are implicit in the sensory output. Aggregate sampling therefore provides a broad

characterisation of odour character, which is similar to the final characterisation that takes place in

biological systems.

Equilibration: Prior to sensing, the electronic nose must produce a gaseous headspace from the solid

cheese sample. This is achieved by placing the solid cheese sample in a clean sampling cell that is free

of extraneous odorants. Time is then allocated for volatiles from the sample to evolve into gaseous

phase and reach an acceptable equilibrium. This equilibration period must not be so long as to allow

the effects of oxidation and bacterial action to become evident. Thus the cheese must maintain its

'.An ensemble of che~ically identical molecular entities that can explore the same set of energy levels on the
tImescale of the expenment- IUPAC Compendium of Chemical Tenninology [43].
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characteristic odour. Once produced, the headspace is transferred to the measurement cell or sensor

head where it is sampled.

Internal dynamics: Cheese odour headspaces are typically unstable. That is, the odorant mix evolves

over time. Chemical composition of the cheese sample, bacterial action, chemical decomposition and

equilibration rates of volatiles all affect headspace character. These intrinsic processes differ from

one cheese to another and are responsible for the unique odour of each cheese.

External dynamics: External dynamics such as temperature variation also affect headspace character.

In order to reduce spurious variation in headspace character the following external factors were

controlled:

• Temperature,

• Measurement cell volume,

• Equilibration time,

• System pressure,

• Gas flow rate, and

• Carrier gas purity.

The regulation of external variables ultimately results in more preCIse odour discrimination.

Headspace regulation also finds application in traditional gas analysis technologies such as mass

spectroscopy and gas chromatography. These technologies apply headspace regulation for exactly the

same reason as biological systems - the reduction of spurious variability.

Static and dynamic headspace: Headspace may be described as static or dynamic depending on

whether it is sampled in-situ or introduced into a gas flow and moved to a remote measurement cell

[44]. This study employs static headspace equilibration followed by dynamic transfer to a

measurement cell. The static phase permits equilibration of volatiles in a sealed sample chamber for a

fixed period. During the dynamic phase, the sample chamber is merged with a carrier gas flow that

travels through the measurement cell. Dynamic transfer causes a desirable dilution of the headspace

en route to the measurement cell. Dilution is addressed in greater detail in Section 3.2.4.

The design of the system hardware was guided by the principle of headspace management. Section

3.2.2 provides a brief overview of the gas handling system design.
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3.2.2 Odorant handling

The gas circuit has four main components:

• The carrier gas source,

• Eight sample equilibration cells,

• A sensor head or measurement cell, and

• The gas reticulation and flow control system.

Gas source: Bottled synthetic air is used as a carrier medium. This provides a standardised source of

clean air for odorant transport. Section 3.2.4 addresses carrier gas purity in greater detail. A secondary

advantage of using bottled gas is that it can travel through the system under its own pressure and

removes the need for a gas pump that could introduce its own odour into the headspace. In

applications such as these, specialised non-lubricated and non-fouling pumps are often used at

considerable cost. The synthetic air source is pressure regulated and flow-restricted. Pressure gauges

and a flow meter were used to monitor carrier gas delivery.

Sample cells: Eight identical sample cells were used to allow for automated measurement of eight

odour sources, one of which could be a control. Figure 3.2b shows the glass sample cells. Each

sample cell has a volume of 1.2 x 10-4 m3 or 120 cubic centimetres. Cheese samples were cut into

blocks of approximately one cubic centimetre and placed in the sample cells for headspace

equilibration. The gas reticulation system transferred each headspace in turn to the measurement cell

for measurement.

Measurement cell

Flow restrictor
and bypass

valve

Sample cells

Valve controller Valves

Figure 3.2a: Gas circuit hardware

3.4

Figure 3.2b: Sample cells and valve sets



u ...
:;:; Q)
(J) ... -o
.s;:.- c
cr:u~
>. >.

Cl) u

500 cc/min

Flow restrictor

bypass
vawe

Valve
pair

Valve
pair

• Solenoid actuated valve

Sample cell

Synthetic air inlet manifold

Odorant delivery manifold

Vent

Measurement
cell

Flow
Meter

Figure 3.3: Gas circuit schematic

Measurement cell:

The gas delivery and electrical measurement systems converge in the measurement cell, which has a

volume of 4.08 x 10-4 m3 (or 408 cm3
). Six metal oxide semiconductor sensors were used to detect the

cheese odorants that were transferred to the measurement cell. Section 3.2.3 deals with sensor

technology in greater detail. Figures 3Aa & 3Ab show the measurement cell.

Gas reticulation: The gas reticulation system transports gas through the system under software control

at a flow rate of approximately I x 10-5 m3/s (or 10 cm3/s). This software is described in greater detail

in Section 3.3. Figure 3.3 illustrates the complete gas circuit. All valves are normally closed. Some
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valves are hardwired together (as indicated by valve sets 1 to 9 in Figure 3.3) and always work in

pairs. Valve 10 may be used to bypass the flow-restrictor on the carrier gas source. The flow restrictor

is used to limit the flow rate during headspace transfer to the measurement cell. Valves 9 and 10 are

opened simultaneously to flush the odorant delivery manifold and measurement cell at maximum flow

rate. These valves remain closed during other operations. Valve sets 1 through 8 may be operated

individually or in any combination to transfer headspaces or combinations thereof to the measurement

cell.

3.2.3 Sensing

There are two main approaches to chemical sensing [45]:

1. The use of highly selective sensors with minimal signal processing, and

2. The use of less selective sensors and pattern recognition which when combined, produce the

necessary specificity.

Electronic noses generally fall into the latter category where a broad spectrum of chemicals can be

detected (but not necessarily identified) with a minimal set of sensors. Within this category, there are

currently two main classes of sensors [46]:

1. Inorganic Metal Oxide Semiconductor (MOS) devices such as tin-dioxide sensors, and

2. Organic conducting and insulating polymer devices, which were not commercially available at

the time of hardware development.

This study uses tin-dioxide (Sn02) MOS sensor technology manufactured by Figaro Engineering

(Osaka, Japan). These are the most widely used of all gas sensors [11]. Figure 3.4a shows the sensor

head with its array of six Figaro 8-Series Taguchi Gas Sensors.

T. Seiyama and N. Taguchi discovered metal oxide semiconductor sensor technology separately in

1962 [47]. Figaro Engineering produced the first commercial release of tin-dioxide sensors in 1967.

These devices were designed for application in gas alarm systems. By 1988 the notion of odour

sensing had already been proposed, and K. Takahata of Figaro Engineering predicted that MOS

devices could be used in such applications [16]. He also identified the relationship between sensor

output and actual "smell" as a technical problem that needed clarification. This remains the subject of

research today. Chapters 4 and 5 explain the approach that was adopted in this study.

Advantages ofMOS technology: The simple construction, low cost and small weight and size of MOS

sensors make prolific application of the technology possible. Traditional Gas-ChromatographylMass­

Spectroscopy (GCIMS) technologies have analytical power, but they are cumbersome and expensive.

MOS technology allows continuous [48], online, real-time in-situ detection [49]. Furthermore, MOS
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Figure 3.4a: Measurement cell front view Figure 3.4b: side view

technology is easily produced [48]. This introduces new possibilities such as affordable odour

monitoring in the food industry, compact breath analysers and low cost intelligent gas alarms. MOS

devices are also able to detect over a wide concentration range relative to other sensors, and perform

well at low concentrations [16,50]. However, they still remain limited in terms of dynamic range and

adaptability relative to olfactory receptor neurons.

Problems associated with MOS sensors: When compared to GC/MS, MOS sensors provide reduced

analytical ability [15]. Each sensor has a broad and poorly defmed receptive field. Various

combinations of input gases at various concentrations can produce the same sensory output.

Therefore, the single output cannot be used as an accurate indicator of concentration or chemical

composition. This problem may be addressed by the use of arrays of sensors and modern signal

processing techniques. Sensor stability is another source for concern. Sensory characteristics can be

temporarily or permanently modified by the sensor's exposure to certain gases or operating

conditions. This is remedied by protecting the sensors from adverse operating conditions such as

corrosive atmospheres and high temperatures. Instability is discussed further in this section.

Sensor construction: Figure 3.5 illustrates the internal construction of the Figaro 8-Series gas sensor

[51]. A mass of sintered crystalline Sn02 particles is deposited around a ceramic tube. The tube fulfils

the dual role of supporting the substrate and providing electrical insulation from a heater element that

passes through it. The heater keeps the substrate at an operating temperature of 400 QC. Gold

electrodes are deposited at either end of the substrate and lead wires are bonded to them. These lead

wires connect to an external resistance measurement circuit. The heated sensor element is housed in a

flameproof enclosure. A fine SUS316 stainless steel mesh allows gases to reach the sensor substrate

while preventing the passage of flame. This is necessary in the presence of combustible gases for

which these sensors are specified.
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Figure 3.5: Figaro a-series sensor construction and electrical connection diagram

Operating principle: The operating characteristics of all gas sensors are dependent on their working

temperature [46]. The electrochemical processes that take place in MOS sensors are no exception. The

following discussion considers only the specified operating temperature of 400 QC.

At 400 QC, and in the absence of gaseous oxygen, electron mobility is high, and the substrate offers

little resistance to the flow of electrons across crystal grain boundaries [52]. This results in a low

resistance measurement across the sensor electrodes. The opposite extreme is encountered in clean air

that contains oxygen, where the resistance reaches its peak value. For the purposes of this discussion,

clean air may be considered as natural oxygen bearing air that is devoid of any detectable combustible

gas speCIes.

In clean air, oxygen, which has a high electron affinity, is adsorbed2 on the Sn02 particle surfaces

where there is an abundance of mobile (valence) electrons. These donor electrons are transferred to

the adsorbed oxygen atoms creating a positive (electron depleted) space charge layer under the surface

of the particle [53]. This surface potential acts as a barrier to electron flow between the particles [54],

and increases the total electrical resistance across the sintered particle substrate.

The high resistance state is the normal sensor condition in the absence of a detectable gas. When a

detectable gas is present, oxygen sorbates are consumed in a catalytic oxidation of the gas [53], where

the substrate functions as the catalyst. During this reaction the adsorbed oxygen atom releases the

2 Sorption is a generic term that refers to the process whereby sorbates (odorants) attach to sorbants (solid or
semi-solid base material) either as a surface attachment (adsorption) or by migrating into the solid phase
(absorption). Desomtion is the reverse process where sorbates are liberated back into the atmosphere.
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Figure 3.6: Potential barrier at the crystal grain boundary

bound lattice electron back into the Sn02 lattice, and bonds with the detectable gas. The release of an

electron increases total electron mobility, decreases the space charge layer and ultimately increases

conductivity. The reaction products then desorb, creating a vacant site for further oxygen sorption.

The original space charge is restored as soon as a new oxygen atom occupies the vacant site. The

formulae below describe the detection of carbon monoxide (CO) [52]. This is the simplest type of

reaction that takes place at the surface.

'l202 gas + vacant site + e- lattice ~ O-adsorbed

CO + O-adsorbed ~ C02 gas + vacant site + e-lattice

(3.1)

(3.2)

Equation (3.1) describes the sorption of oxygen, which produces an elevated potential barrier as

illustrated in Figure 3.6. Equation (3.2) describes the oxidation of carbon monoxide and desorption of

the reaction product (C02), which reduces the height of the same potential barrier and restores the

vacant site and valence electron. Oxygen adsorption (3.1) reduces conductivity while the catalytic

conversion of CO (3.2) increases conductivity. The total conductivity at any given time is related to

the rates of these two reactions.

Depending on the specific gas, some of the products desorb immediately after the catalytic oxidation

reaction as with CO, while others remain in a sorbed state and gradually desorb after further

decomposition [15]. This delayed desorption has a cascade of consequences. During detection, the

adsorbed oxygen atom releases the bound lattice electron in the catalytic oxidation of the gas.
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Substrate conductivity increases indicating a detection phenomenon. Thereafter, the following

happens:

• The reaction products remain sorbed thus occupying a potential oxygen sorption site.

• The local space charge is prevented from recovering to its pre-detection distribution.

• Sensor conductivity exhibits a memory of the detection event long after the fact. This impedes

sensor recovery and future detections.

• Reaction products eventually desorb creating a vacant site for oxygen adsorption.

• The local pre-detection space charge and conductivity are restored after sorption of oxygen at that

site.

The sensor's operating temperature of 400 QC is chosen so as to maximise desorption and sensor

recovery rates. Further details of the complex surface reactions are beyond the scope of this project.

However, Heiland and Kohl's [15] "Physical and chemical aspects of oxidic semiconductor gas

sensors" may be consulted for further information.

Gas specijicity: The sensors used in this study achieved a measure of gas selectivity through the

variation of sensor materials and operating temperature [52]. The controlled addition of catalysing

materials or surface chemical modifiers to the substrate, for example palladium [15] or silicon dioxide

[55], achieves limited gas selectivity. Further proprietary details were not available for the sensors

used in this study. It should be noted that the receptive fields of such sensors remains large not

withstanding the selectivity enhancement. As mentioned at the start of this section, the sensors used in

this study have broad and poorly defined receptive fields. Table 3.1 lists the six sensors that were used

and indicates the principal region of their receptive fields. Note that all the sensors responded to

cheese odours regardless of the specified receptive field.

Table 3.1: List of Figaro MOS sensors used in this study

Sensor Receptive field specifzed by manufacturer

TGS800 General air contaminants

TGS813 General hydrocarbons

TGS826 Ammonia, amine

TGS822 Solvent vapour

TGS842 Methane, natural gas

TGS880 Fumes from food
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3.2.4 Recovery

Several mechanisms were put in place to promote rapid recovery of the sensory system after each

odorant measurement. The underlying approach was to control the quality of air to which the sensors

were exposed.

Construction materials: Construction materials in the gas circuit were selected so that they were:

• Chemically stable and unlikely to react with odorant gases,

• Unlikely to absorb or produce detectable gases, and

• Did not contain any silicone rubber or adhesives, which damage MOS devices [54,55].

These measures reduce the quantity of noise gases generated by the materials in the gas circuit.

During the initial commissioning of the system, the gas circuit was flushed with pure oxygen for an

hour. This was done in order to minimise and stabilise any oxidisable agents in the system.

Synthetic air carrier: Bottled synthetic air was used as the transport medium for all odorants and for

general flushing of the system. The gas 'BOC special gases Air IQ Zero' (supplied by Afrox South

Africa Ltd) has near zero humidity and is composed of high purity oxygen and nitrogen in a

proportion that simulates a natural atmosphere. The use of bottled synthetic air keeps environmental

noise gases out of the system.

High dilution: Field trials of MOS sensor technology have shown that exposure to high food odour

concentrations caused significant sensor drift and reduced sensor lifespan [53]. The increased reaction

rate in the presence of high gas concentrations raises the temperature of the substrate. Experiments

have shown an increase in operating temperature from 400 QC to 500 QC [16] in some cases.

Concentration induced temperature peaks affect the sensitivity of the sensor in two ways:

• In the short term: adsorption and desorption rates, and surface reactions are modified. Restoring

the normal operating temperature reverses this phenomenon.

• In the long term: crystal growth is accelerated and the number of grain boundaries is reduced.

This phenomenon is not reversible and results in permanent damage to the sensor.

Fortunately, MOS sensors are able to detect gases at low concentrations. Equation (3.3) shows that a

power law relationship exists between detectable gas concentration and sensor resistance [1].

Furthermore, sensitivity or the slope of the curve increases at lower concentrations [56].

3.11



where: 11<J = change in sensor's electrical resistance

X = gas concentration

0.5 ~r ~ 1.0

(3.3)

maximum slope at low
concentration

All these factors indicate that low concentrations should be used. The dynamic headspace transfer

mechanism was designed so as to dilute the headspace in a fixed volume of synthetic air. This

transfers odorants into the measurement cell at a reduced concentration. Figure 3.7 illustrates the

shape of the curve described by Equation (3.3), take note of the raised sensitivity at low

concentrations.

General form: MOS conductivity change

Increasing concentration (X)

Figure 3.7: The relationship between concentration and conductivity change

System flushing: Immediately after a measurement is taken, the odorant delivery manifold and sensor

head are flushed with synthetic air. This ensures that residual gases are removed from the system so

that the sensors can re-establish their base references and new measurements can be taken.
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3.3 Measurement configuration tools

The gas reticulation system (Figure 3.3) is managed by electrically actuated valves. These valves in

turn are controlled by software running on a Personal Computer (PC). This section provides a brief

description ofthe software. A more comprehensive description is provided in Appendix A.

In order to maximise flexibility, a simple interpreted language was created. Table 3.2 provides a

summary of the language command set. Measurement control scripts were written in this language

and were compiled to a byte code that was interpreted and executed. The compiler that produces the

byte code was written in the AWK scripting language. Compiled byte code is interpreted and

executed by an interpreter that runs on a PC. The interpreter was written in the C programming

language. An Integrated Design Environment (IDE) was also developed for the programming

language. Figure 3.8 illustrates the IDE window as it appears immediately after a successful

compilation. The compiler, interpreter and IDE are described in greater detail in Appendix A.

Table 3.2: Measurement control language command set

Command Description
stop Shutdown the system
open( valve) Open the specified valve or valve set
c1ose( valve) Close the specified valve or valve set
f1ush( begin) Begin flushing the odorant delivery manifold and sensor head
f1ush( end) Stop flushing
rate( high) Activate high flow rate
rate( low) Activate low flow rate (measurement flow rate)
capture Capture the current output of the six sensors (one sample only)
delay( period) Delav for the specified number of seconds
loop( dest, iterations) Go back to destination no more than the specified number of iterations
log( open) Create a new log file for sensor data (filename is auto-generated)
log( close) Close the currently open log file
macro name( paras) Begin macro definition with name and parameters specified
mend End current macro definition

The simple compiler offers no syntax checking or error detection. The author of the control script

must verify its correctness. The control script in Listing 1 was used to capture data for this study. The

five-phase measurement event that is coded in this script is described in Section 3.4.
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IIThis script is used to flush the system with pure Oxygen.
IIThis will hopefully burn out any impurities.

IIFlush macro
macro sysflush[ period) {

f1ush[ begin)
delay{ period J

flush( end)
}

mend

. liSample selection macro
macro sample! num, duron, durwait J{

open(num)
delay( duron )

close( num)
delay[ durwait )

Figure 3.8: Screen capture of the tOE indicating various compilation output windows

Listing 1: Measurement control script used to capture data

# Control script to capture odour responses from the new sensors - to test cheese response
# Experiment number 4
# NOTE: same control strategy is used as exp3 for wines

# Cheeses:
#1 FVcamembert: Fairview Camembert
#2 FVbrie:
#3 FVbrietb: Brie with tomato and basil
#4 FVbluerock:
#6 SBmozza: Simonsberg tradition Mozzarella
#7 FVchevinsrp: Chevin with sweet red peppers

#NB: sample chamber 5 is not used due to manufacturing defect

####SAMPLlNG MACRO#####
macro sample (bottle, dur, Bstationary, Bflowing, Oflowing, Ostationary, flushing) {
log(open)

#Phase 1:
10:

Capture "Bstationary" samples of blank odour (air) in stationary mode

capture
delay( dur)
loop( 10, Bstationary)

# Phase 2:
flush(begin)
11 :

capture "Bflowing" samples of flowing blank odour (air) - gas flow to measurement cell via flush circuit
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capture
delay( dur)
loop( 11, Bflowing)

flush(end)
delay(dur)

# Phase 3: Capture "Oflowing" samples of flowing odour - gas flow to measurement cell via sample cell
open( bottle)
12:

capture
delay( dur)
loop( 12, Oflowing)

close(bottle)

# Phase 4:
13:

Capture "Ostationary" samples of stationary odour - all valves closed - static headspace

capture
delay( dur)
loop( 13, Ostationary)

# Phase 5: Capture "flushing" samples of flushing odour - gas flow to measurement cell via flush circuit
flush( begin)
14:

capture
delay( dur)
loop( 14, flushing)

flush( end)
log(close)

}
mend
######SAMPLlNG MACRO ENDS######

######RECOVERY MACRO######
macro recover(cycles,dur){
r1 :

flush(begin)
delay(dur)
flush(end)
delay(dur)
100p(r1, cycles)
f1ush(begin)
delay(5)
f1ush(end)
delay(5)

}
mend
######RECOVERY MACRO ENDS######

#tltJtliftftftt:ttf::MAIN PROGRAMUtltltftftfC!tUtflftf
rate(Jow)
cyc:
recover(10,2)
sample(1, 1,20,30,50,40, 116 )
recover(10,2)
sample(2, 1,20,30,50,40, 116 )
recover(10,2)
sample(3, 1,20,30,50,40, 116 )
recover(10,2)
sample(4, 1,20, 30, 50, 40, 116 )
recover(10,2)
sample(6, 1, 20, 30, 50, 40, 116 )
recover(10,2)
sample(7, 1,20,30,50,40, 116 )
loop( cyc, 19 )
stop
U:tt.'t:#tftf::#!#?MAIN PROGRAM ENDS###tftfJfJftf::tffllf#
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3.4 The standard measurement event

Once off 'snap-shot' measurements are only of value if the sensors reach a meaningful steady state

after the introduction of the cheese headspace [57]. Given the unstable nature of the sensors and the

dynamic headspace, a stable and repeatable steady state (measurement plateau) is unlikely to occur. It

is therefore necessary to capture the sensor's temporal response to the stimulus. This also increases

the total information that is provided by the sensors [45,57] and complies with the methodology

proposed in Chapter 2 (Sections 2.2.1 & 2.3.1).

The measured temporal response includes the detection and recovery transients, that is, the sensory

response to the introduction and removal of the stimulus headspace. Given that each cheese produces

an unstable but chemically distinct headspace, and each sensor has an unstable but unique transfer

characteristic, the detection and recovery transient of each sensor is likely to be a function of

headspace identity. It is also reasonable to assume that headspace identity can be extracted from such

data using appropriate signal processing and pattern recognition techniques. Measurement of temporal

responses effectively implements a simulated sniff and is able to expose:

• The initial base reference,

• Detection transient (ramp-up),

• Detection plateau,

• Recovery transient (ramp-down), and

• Final base reference.

Measured temporal dynamics are likely to vary from sensor to sensor as well as from one cheese to

another, thereby providing a wealth of information [57] that could be used to identify cheeses.

A temporal measurement technique was developed and standardised for this investigation. Each

measurement is called a measurement event. The measurement event spans 256 measurements taken

across six sensors at a sampling rate of 1Hz. The output of each sensor is sampled to 12-bit accuracy

(4096 discrete levels) over the range OV to 5V. It should be noted that 8-bit resolution (256 discrete

levels) would have sufficed provided that the measured signals spanned the 8-bit range.

Unfortunately, the signal range in response to cheese headspace could not be predicted in advance. All

that was known was that the measured signals would stretch out somewhere within the extremes of

OV to 5V. This 5-volt range was therefore sampled to 12-bit precision in the knowledge that the

signal would span a subset of that range. As it turned out, the typical measurement spanned 20% of

the full 12-bit range (see Figure 3.9), which is well in excess of the desired minimum 8-bit resolution.

3.16



25.--------r-----r.----~---.---------r-:---__,

: Samples :<taken at 1Hz)
, .. .

20

o
o 50 100 150 200 250 300

A c
Measurement phases

E

Figure 3.9: A plot of the outputs of the six different sensors for a typical measurement event.

The typical measurement plot in Figure 3.9 shows to varying degrees, that the sensors are not able to

achieve a flat measurement plateau. The measurement event is comprised of five distinct phases:

Phase A

Description: Capture data with sensors in their resting state. That is, in the presence of static (not

flowing) carrier gas only.

Purpose: To establish the base reference.

Duration: 21 samples taken at 1Hz.

Note: Even in pure, static (not flowing) synthetic air some degree of noise is evident.

Phase B

Description: Capture data with pure carrier gas flowing at the measurement flow rate.

Purpose: To establish sensor response to flowing carrier (control odour).

Duration: 31 samples taken at 1Hz.
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Note: simply making the pure carrier gas flow at the measurement flow rate produces a noticeable

change in sensor output. This exposes an element of the sensor instability.

Phase C

Description: Capture data during dynamic headspace transfer at the measurement flow rate.

Purpose: To establish the detection transient ramp-up.

Duration: 51 samples taken at 1Hz.

Note: Sensor response appears delayed due to time taken for the headspace constituents to reach the

sensor's active surfaces and for surface reactions to commence. Five of the six sensors reach their

peak activation during this phase.

Phase 0

Description: Halt the headspace transfer and capture data with the static headspace that remains in the

sensor head.

Purpose: To establish the detection plateau.

Duration: 41 samples taken at 1Hz.

Note: Some sensors show a significant change in their outputs and continue to produce a dynamic

output after 40 seconds of static headspace.

Phase E

Description: Capture data while flushing the odorant delivery manifold and sensor head with pure

carrier gas at the measurement flow rate.

Purpose: To establish the recovery transient (ramp-down).

Duration: 117 samples taken at 1Hz, truncated to 112 samples (discussed in Chapter 4, Section 4.2.)

Note: Sensor response appears delayed due to time taken for the headspace constituents to purge from

the measurement cell and the sensor's active surfaces. After 116 seconds of purging with pure carrier

gas, some sensors still remain significantly far off from their original base references.

Each measurement is logged to a separate file and stored with an auto-generated filename. File

naming conventions are discussed in Chapter 4.

3.5 Conclusion

This chapter presents the design of the sensory front-end that produces raw measurements. Various

principles and practices that are pertinent to the production of raw measurements are addressed. The
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design philosophy favoured a conservative and limited hardware deployment with a maximal amount

of functionality deployed in software. This in turn permits greater flexibility.

Both the hardware and software functionality remain closely guided by biological principles discussed

in Chapter 2. Most notable are the environmental stabilisation measures that were incorporated in the

hardware, and the standardised simulated sniff deployed in the software controlled measurement

event.
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CHAPTER 4

A DATA PREPROCESSING STRATEGY

4.1 Introduction

Having investigated biological system organisation in Chapter 2, a biologically inspired measurement

and signal processing strategy was developed. This in turn led to the development of a measurement

event that was distributed across time and sensor-space (presented in Chapter 3). Each measurement

event is therefore represented as a two-dimensional matrix of measurements that spans the six sensors

and 256 sampling instants. This chapter presents the manner in which that data is refined and prepared

for final classification.

The processing methodology adopted here can be broadly arranged into two phases. The first phase

transforms or maps the data onto an orthogonal or decorrelated vector space. This emulates the role of

the olfactory bulb in mammalian olfaction. The domain of the new vector space should preferably be

described by a basis set that is fixed (i.e. never needs subsequent modification). Each new odour

measurement is then expressed as a linear combination of these standard bases. Several orthogonal

vector space transformations can be used to achieve this. Section 4.2 addresses this issue.

Phase two is comprised of an assortment of basis or coefficient selection strategies [57]. Coefficient

selection emulates the selective convergence of bulbar outputs at each cortical locus where

classification and association processes commence. Various coefficient selection strategies are

proposed in Section 4.3.

4.2 The discrete cosine transformation

It is important to establish the reason for which decorrelation is employed. Continuing with the

biological analogy, the olfactory nerve presents to the brain a confusing mass of signals from a variety

of receptor types. The olfactory bulb separates and sorts these signals so that each glomerulus

expresses exactly one receptor type. Each glomerulus then produces a single output that is correlated

purely with one receptor type and therefore decorrelated from other receptor types. The total bulbar

output consequently expresses a weighted combination of decorrelated bases, where each receptor

type is a basis and the glomerular output is the weighting factor.
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Orthogonal transform bases represent source domain patterns such that any given transform basis

cannot be reproduced by a combination of other bases in that transformation. The orthogonal Fourier

spectrum provides a case in point. It is impossible to represent any pure sinusoidal wave as a linear

combination of other sinusoids. Therefore each orthogonal basis represents a unique source domain

pattern. The arbitrary input signal is simply a linear combination of these unique patterns.

Classification is made simpler when the signal is expressed in this fashion; an explanation follows.

Individual coefficients (and the bases they represent) are orthogonal features and may be included or

excluded from the final feature set without affecting other features. Therefore, disruptive features may

be removed and useful ones preserved. This is exactly what happens in the olfactory cortex where

cortical loci accumulate only those glomerular outputs that are of special interest thus reducing the

dimensionality of the specific classification problem.

The functionality described above can be emulated with any orthogonal transformation followed by

an informed (intelligent) coefficient selection mechanism. The immediate task would be to find a

suitable transform.

When it comes to information distribution, one transform is known to be optimal. It is a well­

established fact that the Karhunen-Loeve Transform (KLT), also known as Principal Component

Analysis (PCA), stores the maximum amount of information in the fewest coefficients [58]. This

effectively reduces the number of significant basis vectors. The majority of bases, which encode little

information, could be eliminated and a reduced and focused feature set would remain for

classification purposes.

Several studies have already shown that KLTIPCA performs well for any fixed set of olfactory

measurements [e.g. 59,60]. The success of the KLT can be attributed to a single fact; the KLT

statistically optimises its basis functions to suit the prevailing measurement signal statistic [61].

Before use, the KLT must be allowed to optimise its basis functions. To do this it needs a set of

olfactory measurements that fully describes the general measurement statistic for the expected

duration of the experiment. The covariance matrix is computed for the data set, and the eigenvectors

of the matrix are used as the bases. The eigenvectors with the largest eigenvalues encode the most

information. The eigenvectors (bases) are arranged in decreasing eigenvalue order.

The KLT cannot be regarded as a fixed transform. It modifies its own transformation to suit the

training data that it is presented with. If the signal statistic were to change at a later stage, the

transformation would no longer be optimal and the underlying covariance matrix and eigenvectors

4.2



would need to be recomputed. To summarise, the KLT requires a stable signal statistic and a training

set that describes fully the domain and range of that stable input signal.

The KLT is described as the optimal l vector space transformation. The remammg non-optimal

orthogonal transformations still offer benefits in other areas where the KLT does not excel. Frequency

spectral analysis, for example, does not require the representational efficiency of the KLT. Rather, it

requires a basis set of uniform amplitude sinusoids that span a frequency spectrum. The Discrete

Fourier Transform (DFT) would be better suited to that application.

The electronic nose places two requirements on the transform, representational efficiency and

insensitivity to sensor drift. The KLT performs best only on representational efficiency. All of the

"sub-optimal" orthogonal transforms have fixed bases and offer insensitivity to sensor drift. They also

offer varying degrees of representational efficiency. A comprehensive study of Discrete

Trigonometric Transforms (DITs) and Discrete Orthogonal Transforms (DOTs) by Elliot and Rao

[61] shows that the Discrete Cosine Transform (DCT) [58] offers the best representational efficiency

of all sub-optimal DOTs. The DCT is often referred to as the near-optimal transform. A further

benefit offered by the DCT is computational speed. Several fast implementations of the DCT now

exist, while no globally applicable fast implementations exist for the KLT.

In the nose, each basis vector represents a geometric feature of an odorant (as detected by a geometry

specific receptor). The question then arises, what do the DCT basis vectors represent in terms of the

current application? Given that DCT bases are fixed for any given transform size (independently of

the application), one immediately observes that the bases do not offer any special relationship to

electronic nose data. However, these bases offer near-optimal compression of arbitrary information

content into a small number of coefficients. That is, the transformed vector space expresses a

concentration of information in a reduced subspace. Classification can then be effected in this low

dimensionality subspace. Section 4.3 expands the concept of coefficient (subspace) selection.

As with all DTTs, the DCT was originally specified for a one-dimensional data sequence. This was

subsequently generalised for two-dimensional data, and several fast implementations developed. This

thesis makes use of the fast implementation proposed by Cvetkovic and Popovic in 1992 [62]. Their

algorithm provides exceptional computational efficiency [63] with regard to the number of

multiplications and additions. This experiment processed all measured data in an offline batch mode.

The improved speed of the efficient DCT algorithm was not essential, but its use was retained given

the possibility of future development of an online system.

I The word optimal applies only to the ability of the transform to pack the maximum amount of information into
the fewest coefficients. It does not apply to other issues such as implementation complexity and speed.
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The ID DCT is defined as follows:

Given anyone-dimensional sequence of raw data

x ={xo,Xl""'XN_1}

forfastcomputation N =2P
, pE D

The DCT produces a transformed sequence of equal size

where each element is the result of the DCT described below

_ 2 ( )~ (2k+l)mr
X --e n ~XkCOS , n=O,l, ... ,N-l

n N k=O 2N

(4.1)

(4.2)

(4.3)

for n =0

otherwise

A two-dimensional DCT is achieved in several steps. Firstly, applying the ID DCT to the rows of the

(m x n) measurement matrix x shown in (4.4).

XO,O XO,l xO,Cn-l)

X=
x1,o

(4.4)

xCm-1),l) xCm-1),Cn-l)

This produces an intermediate matrix X that is transformed in the horizontal direction only by the

application of(4.3).

XO,O XO,1 XO,Cn-l)

X=
X1,o

(4.5)

XCm-1),O XCm-1),Cn-l)
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Taking the ID DCT ofthe columns in X produces the fmal matrix X. This is achieved by transposing

X and then applying the horizontal transformation (4.3) a second time and transposing the result.

X=[DCT(XT)J (4.6)

Alternatively, the fast DCT algorithm [62] achieves the same result but exploits the symmetry of the

cosine function to reduce the number of computational steps.

As indicated by (4.1), the fast transform places a constraint on data dimensionality that requires the

transform length to be a positive power of two. The two-dimensional problem transforms both the

rows and columns of the measured data matrix. The input matrix must therefore have dimensionality

where {p,q} E 0 (4.7)

In this experiment raw measurement matrices had a dimensionality of 6 x 261, corresponding to the

six sensors that were sampled across 261 sampling instants (described in Chapter 3). In order to

satisfy the transform, simple padding and pruning were used to adjust measurement matrix

dimensionality by:

• Adding two dummy channels with zero output, thus increasing the sensor-channel dimensionality

from 6 to 8, and

• Deleting the last 5 sampling instants of Phase E (sensor recovery), thus reducing the sampling­

instant dimensionality from 261 to 256.

Figure 4.1 illustrates a two-dimensional view of a typical measurement matrix prior to dimensionality

adjustment, and Figure 4.2 illustrates the 2D DCT of an adjusted matrix.

Both the source and transform domains are two-dimensional, therefore, the distribution of information

in each domain may be viewed as the volume under the curve. Figures 4.1 & 4.2 clearly show that the

information distribution is more dispersed in the source domain and localised towards the lower

temporal frequencies in the transform domain.
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Source domain Measured data (6 x 261 )

Sensor number
1 1Sample number (time)

100
(])
-0
~

.~ 50 6
0-
E«

Figure 4.1: 2-D plot of a typical measurement event, indicating spatially and temporally distributed
information content before transforming with the OCT. Dark lines indicate actual sensor traces and

shading is used only to assist in visualisation.

Transform domain: DCT (8 x 256)

X 105

2

1.5

(]) 1
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~
.~ 0.50..
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-0.5

-1
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200~150 7

100 4
50

Temporal frequency 0 0 Sensor frequency

Figure 4.2: 2-D DCT of typical measured data, indicating the frequency information content in the
sensor and temporal (sample) domains.
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Figure 4.3: Measured data projected onto the temporal axis

Figures 4.3 & 4.4 are projections of the source and transform domain curves onto their respective

temporal axes. When one moves from source to transform domain, the graphs show:

• A reduction in area under the curves, and

• Information localisation or compression towards the lower temporal frequency subspace.

Transform domain: 20 OCT side view
1200 .-----,-----r-----,-----.---=-~_____,,______,

800

ID 400
~
0..
E« 01flQe{Qqa~--~-==_-===----------

-1005':---1::-:::0-~15---=20:----=2::-5----C3Q

-400

25050
-800 '------L------'--'---__--'- -'----__--'---.J

1

Figure 4.4: 20 OCT of measured data projected onto the temporal frequency axis
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4.3 Transform coefficient selection

The underlying intentions in coefficient selection are simple:

• Pack as much data as possible into a few transform components, and then select a number of these

high value components for classification purposes. This reduces the dimensionality of the

classification problem.

• To facilitate classification by selecting those components (dimensions or bases) in which

separation is less complex, in a selection process based on a statistical separability measure.

Basic theory: The DCI is called an orthogonal transform [64] because it produces a set of orthogonal

basis vectors that span the transform vector space. That is, an arbitrary vector x in the transform

domain can be represented as a linear combination of transform bases x\, X2,· .. ,xn, e.g.

(4.8)

The transform domain has a fmite number of bases and is therefore a finite dimensional vector space.

The dimensionality of the transform vector space V is equal to the number of bases. In this case,

dim V =8x 256 = 2048 (4.9)

When a subset of the orthogonal bases is selected for further processing, a subspace H, with reduced

dimensionality, is being selected. The classifier then classifies orthogonal projections of data from V

onto H. Provided that the projections onto H encode substantial and significant information, it is

assumed that classification results in the reduced vector space H may be generalised to the larger

vector space V. It is further assumed here that classification in the subspace is simpler or more

effective than in the full transform domain. The degree of accuracy in these assumptions may be

deduced from the final classification results presented in Chapter 5.

The theory and assumptions discussed above led to the development of a signal processing regime.

Figure 4.5 illustrates the signal processing pathway that generates various datasets along the way.

These datasets are summarised in Table 4. I. The rest of Section 4.3 describes the reduced (coefficient

selected) datasets and their associated selection methodologies. The dataset PUR is composed of all

raw sensor measurements. These were transformed using the discrete cosine transform and saved as

the DCT dataset. Subsequent selections were preformed on the DCI dataset or derivatives thereof.
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Table 4.1: Overview of datasets generated by the signal processing pathway

Rankin
Variance

Separability
indicator

Separability
indicator

filter

Top 8 components only (do not span any axes)

Top 8 components that span the sensor frequency axis

Dataset
DIC
IDI
D2C
ID2

D3CA

D3CB

Data selection was divided into two categories viz. frequency based selection and variance based

selection. Frequency based selection dealt primarily the removal of DC and high frequency

components (discussed in Section 4.3.1 and 4.3.2). Variance based selection first ranked the bases

according to variance or a separability indicator (details in Sections 4.3.3 and 4.3.4), and then selected

from the ranked list.

Rank
components
by variance

Rank
components

by separability
indicator

Select: top 2
to top 8

coefficients

Select top 8
coefficients

Select top 8
that span the

sensor
frequency

axis

Figure 4.5: Signal processing pathway showing dataset generation
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4.3.1 DC coefficient removal

Apart from their lack of selectivity, the most significant disadvantage with MOS sensors is sensor

base-reference drift. Sections 3.2.3 and 3.2.4 described the underlying causes for drift and some of the

counteracting measures that were employed during hardware development. Signal processing also

plays a significant roie in the stabilisation of sensory data.

Drift manifests as a modification to sensor base references in the absence of an odour stimulus. These

base-reference variations are difficult to predict with regard to their duration and magnitude.

Fortunately, short-term drift is minimised by a highly diluted headspace (Section 3.2.4), and long­

term drift is expressed on a time-scale (days to months) that is large relative to the 256-second

measurement window. It is therefore assumed that drift is expressed as a DC level shift in the time­

scale of each measurement. The first coefficient selection strategy entails the removal of DC

components. The intention is to preserve only the dynamic response of each sensor.

The component (0,0) in the transform domain is the DC component and represents the vertical

displacement of the entire measurement matrix in the source domain. If this component is zeroed and

an inverse transform taken, the resultant source domain data will show that:

• The 2D measurement matrix (such as that in Figure 4.1) retains its shape,

• The entire measurement matrix appears level shifted (vertically) such that the measurement

matrix has a zero average, and

• Relative DC offsets between sensor channels are preserved within the matrix.

Although the matrix as a whole has a zero average, each channel taken separately may still have a

non-zero average, and hence continue to encode the undesirable effect of drift. The ideal would be to

extract the purely dynamic response of each sensor channel.

When using linear transforms the source domain signal is expressed as a linear combination of

weighted transform bases (4.8). The DCT weighting factors (i.e. transform coefficients) are expressed

in the DCT coefficient matrix (4.10). Some of the DCT bases are plotted in Figure 4.6.

t Sensor frequency axis

~

Temporal frequency axis

4.10

(4.10)



Basis for DCT coefficient X(O ,0) x 10.4 Basis for X(O ,2)

5
ID
U
:::::;
~ 0
Cl.

E
<::(

-5
7

Sensor number

Basis for X(O ,5)

200

Time (Sample #)

Basis for X(O,7)

Figure 4.6: Source domain DCT basis functions corresponding to selected coefficients from the first
column vector of the DCT coefficient matrix (Equation 4.10)

All components in the fIrst column vector {Xo,o •.. X7,o} of (4.10) encode basis functions with zero

derivatives in the source domain temporal dimension. That is, they represent constant level shifts over

the time dimension only. The global DC basis, represented by the Xo,o term is plotted in Figure 4.6.

This basis has a zero derivative over both sensor and temporal dimensions. The bases represented by

terms X1,o to X7,o (some of which are also plotted in Figure 4.6) vary over the sensor dimension but

remain constant (DC) in the temporal dimension. In summary, all coefficients in this column vector

represent bases that remain constant over time. When this entire column vector {Xo,o ... X7,o} is

zeroed in the transform domain, the signal in the source domain expresses the desired dynamic

response. Figure 4.7 illustrates the source domain effect of this modifIcation where individual sensor

traces express purely dynamic responses with a zero average value for each trace.

Two new data sets were generated:

Dataset ID!

Description:

Domain:

The transform domain column vector {Xo,o ... X7,o} is zeroed and a two-dimensional

inverse DCT is taken. This extracts the source domain dynamic response curve.

This dataset stores modifIed source domain data.

Dimensionality: 2048 (Each measurement in the IDI dataset has 8x256 values)
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Typical ID1 measurement
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Figure 4.7: Typical source domain ID1 data showing the six sensor traces with the removal of all DC

DatasetDIC

Description: The transform domain column vector {Xo,o ... X7,o} is removed.

Domain: Transform domain subspace

Dimensionality: 2040 (Each measurement in the Die dataset has 8x255 values)

Significance ofthe modification: The sensor base reference or response to a stimulus-free environment

is made up of two components.

base reference = operating point + drift component (4.11)

Drift is a variable, age-related output and is not a function of present operating conditions. The

Typical D1C measurement

40
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0
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u -20::J
:!:
a.

-40E
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-60

-80

-100

20 40 60 80 100 120 140 160 180 200 220 240

Temporal frequency
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Figure 4.8: Typical D1C data viewed along the temporal frequency axis.
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Figure 4.9: Sensor output is composed of stimulus response, operating point and drift.

operating point is the current response to pure carrier gas. In an ideal situation drift does not exist, and

the base reference and operating point are equivalent. The operating point expresses potentially useful

information that could assist in classification. When the base reference is measured it is impossible to

determine (under present operating conditions) the separate magnitudes of drift and operating point.

The unpredictable drift component is undesirable so the entire base-reference is removed, thus

removing potentially useful operating point information.

As discussed earlier, DC drift is constant during the course of a single measurement but does vary

over time causing unpredictable level shifts across measurements taken at different times.

Independence from this type of drift provides a long-term benefit. Unfortunately drift is removed

along with useful operating point information that encodes the sensor response to the stimulus free

carrier gas. If accurately extracted, operating point data can potentially assist in the classification

process. Therefore there exists a trade-off between short-term separability and long-term stability, the

cost ofwhich can only be discovered experimentally.

The data produced here is stored in two datasets, one in the source domain, and the other in the

transform domain. Both datasets were applied initially to the classifier because it was not known

which signal type was more conducive to separation by the neural network classifier.
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4.3.2 High frequency removal

The infonnation distribution illustrated in Figure 4.8 still retains the general fonn of the original DCT

(Figure 4.4). As the high frequency temporal components are small they encode very little

infonnation. The removal of these components, which is common in image compression, IS

sometimes useful in classification applications as well. The justification, however, is different.

A generally accepted rule of thumb in neural network based classification states that more training

data is required to characterise high dimensionality input spaces (measurements). This requirement is

further strengthened when the data is noisy or when the measurements across categories are highly

correlated. It has already been established (in Chapter 3) that MOS sensor arrays are highly correlated.

It would therefore seem logical that the reduction of input dimensionality via the removal of

coefficients with low infonnation content would benefit classification. In this way, a significant

reduction in dimensionality can be achieved with minimal infonnation loss.

The DCT (Figure 4.4) and DIC (Figure 4.8) distributions exhibit low infonnation content in the high

frequency temporal components. An analysis of area under the transfonn domain curve of a typical

measurement showed the following. Consider the high temporal-frequency subspace beyond temporal

component 50.

XO,50 XO,51 ... XO,255]

X7,255

t (4.12)

High temporal frequency subspace

The high temporal-frequency subspace indicated in (4.12) contains 1640 coefficients. This accounts

for more than 80% of the 2048 DCT coefficients, yet it contains approximately 7% of the total area

under the curve. Deletion of this subspace results in an 80% dimensionality reduction with a loss of

7% of total infonnation. The benefit, if any, of this trade-off would be evident in the classification

results (Chapter 5).

The removal of high frequency components was effected by the application of a Tukey window in the

transfonn domain. The Tukey window function (4.13) produces a symmetric window centred on zero

temporal frequency. Figure 4.10 illustrates the modified Tukey window as it was implemented in this

study. Filter coefficients were adjusted to produce a total window length of 50 samples in the positive

temporal frequency domain with cosine roll-off occupying the last 25% of the window. For

completeness, the window is zeroed at zero temporal frequency to prevent the passage of DC. Note
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Tukey window
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Figure 4.10: Tukey window used to remove high temporal frequencies

that temporal frequency DC components have already been removed by this stage. The window is

extended across the channel component axis.

{

1.0,

w(n) = [ (Inl-aNI2 ]]
0.5 1.0+cos 2JC 2(I-a)NI2 '

n Sample number

N Window length

a Roll-off commencement 0 :s; a :s; 1

o:s; 1nl :s; aN12

aN 12:s; Inl:S; N 12
(4.13)

Two new data sets were generated:

Dataset ID2

Description: The transform domain column vector {Xo,o ... X7,o} and high temporal-frequency

subspace are zeroed. A two-dimensional inverse DCT is then taken. Figure 4.11

illustrates a typical ID2 curve. The signal is smoothed by the removal of high

frequency components.

Domain: This dataset stores modified source domain data.

Dimensionality: 2048 (Each measurement in the ID2 dataset has 8x256 values)
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Typical 102 data
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Figure 4.11: Typical source domain 102 data

DatasetD2C

Description: The transform domain column vector {Xo,o ... X7,o} and high temporal-frequency

subspace are removed. Figure 4.12 illustrates a typical D2C curve.

Domain: Transform domain subspace.

Dimensionality: 392 (Each measurement in the D2C dataset has 8x49 values)

Typical 02C data
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Figure 4.12: Typical transform domain 02C data illustrating the removal of DC and HF components
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4.3.3 Simple variance-based selection

Sections 4.3.1 and 4.3.2 discussed selection strategies that were based on frequency. The filtering out

of specific frequency bands is common practice in the fields of digital and analogue communications

where it is often used for bandwidth and noise reduction. The advent of digital image processing

reinforced the need for efficient data compression. It also introduced the notion of data selection based

on coefficient variance.

H.C. Andrews proposed variance-based selection in his 1971 paper "Multidimensional rotations in

feature selection" [65]. The technique is based on a statistical analysis of transform domain

information distribution. Given a set of transform domain measurements, the covariance matrix 'P

can be computed. The main diagonal of this matrix indicates the variances of the transform

coefficients. Andrews proposed that those elements with the largest variances be retained.

The question arises, what do these retained coefficients represent? It is widely believed that main

diagonal coefficients with high variances encode high levels of information and are therefore

incorporated into some image compression schemes. This belief is not strictly true. Retained

coefficients encode high levels of information variance or deviation, which differs from an absolute

indication of information content. This type of information is very likely to benefit classification,

which seeks those components with high spread (variation) in the pattern space. Provided that data is

separable, the high variance (spread) in pattern space allows more flexibility for the formation of

decision boundaries.

New variance-selected data sets were generated as follows. The covariance matrix for D2C data was

computed. Main diagonal elements were then ranked in decreasing order of variance. The highest

ranked coefficients were selected and retained. There was no clear indication of the number of

coefficients that should be retained. A leading authority in electronic olfaction, Dr. Julian Gardner

(University of Warwick), published works where the optimal KLT was used as the orthogonal

transform. In some investigations data could be separated with as few as two principle components

being preserved [42]. The DCT was not expected to perform as well as the KLT, so it was anticipated

that more components would be required. A range of datasets was produced with each dataset

retaining a different number of coefficients. The smallest dataset retained two components and the

largest retained eight.
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Datasets D3C2 to D3C8

Description: The top 2 to top 8 variance ranked components are retained in their respective

datasets. All other components are eliminated.

Domain: Transform domain subspaces.

Dimensionality: Dimensionality ranges from 2 to 8.

4.3.4 Coefficient selection heuristic

The coefficient-selected data sets considered thus far were all generated by traditional feature

extraction methodologies. In this section, a modified technique is developed that addresses some of

the limitations of the previously considered techniques. As a starting point, the fundamental

requirements of classification are considered and a selection heuristic is evolved that attempts to

satisfy those requirements. A heuristic approach may be defined2 as any technique that uses

knowledge of the problem to improve the average performance without necessarily influencing the

best or worst case scenarios [66].

So what are the fundamental requirements of successful classification? Given that a set of data is

separable into distinct classes, the two fundamental requirements that facilitate separation are:

• Individual instances of a particular class must be closely clustered around the class centroid in the

feature space.

• The distinct class centroids must be spread as far apart as possible in the feature space.

A feature space is any domain that describes features of the data on orthogonal axes. During training,

the classifier evolves boundaries between class clusters in feature space, such that the individual

classes are separated and made distinct by these boundaries. Tightly clustered classes with highly

separated centroids give the classifier more space in which to develop its decision boundaries.

The aim of the heuristic is to identify those coefficients that best satisfy the two classification

requirements described above. The selection strategies considered thus far eliminated the following

coefficients:

• DC components which are influenced by drift of the sensors,

• HF components which possessed low information content, and

• Components that expressed small variance.

D2C coefficients are now re-evaluated in terms of the two classification requirements.

2 The meaning of the word "heuristic" has changed over time. The current defmition in the machine intelligence

community goes beyond the traditional association of heuristics with "rules of thumb".
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It is traditionally assumed that components with high variances represent spread-out data and should

be more separable [65,58]. This is not always applicable. In a classification problem, variance alone is

not necessarily an adequate measure of a coefficient's usefulness. In natural data, coefficients with

high average values will usually exhibit high variances and vice versa. In mathematical terms, the

variance of a component is often proportional to its mean. This exposes a possible scaling problem

where components with lower means are less likely to be preserved even if their variances are large

relative to their means.

The coefficient selection heuristic extends variance-based selection and addresses the limitation in

that approach when applied to classification problems. There exists at least one case where the

variance-based selection fails. Consider Figure 4.13.

Both distributions (Figure 4.l3a & 4.13b) will produce the same globat3 variance (Figure 4. 13c) even

though one distribution is clearly more separable. A dilemma is consequently introduced when

interpreting separability according to global dataset variance. That is, if an arbitrary coefficient n is

considered, a large global variance could indicate either that:

• The categories are distinct and far apart as in Figure 4.l3a (at one extreme), or the

• Categories are spread out and overlapping as in Figure 4.13b (other extreme).

Large global variance is not a good basis on which to infer the degree of separability. Additional

information is required to resolve the dilemma.

} Ch"",.

} Cheese B

Coefficient n

(a)

Coefficient n

(b)

Global
mean

Global
standard
deviation

Coefficient n

(c)

Figure 4.13: Seperable (a) and inseparable (b) class distributions can produce the same variance (c)

3 Global variance refers to the variance across the entire dataset irrespective ofclass memberships of' d"d I
measurements. ill IVI ua
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For the sake of simplicity, let us analyse the idealised scenario depicted in Figure 4.14, which

illustrates the orthogonal projection of a separable dataset on one dimension in feature space. The

intention is to determine if this dimension (or basis and coefficient) should be retained or discarded.

The illustrated data spans three classes that are clearly separable in the chosen dimension because:

• The classes are distinct and tightly clustered, and

• Individual clusters are far apart.

These observations may be expressed in terms of statistical means and standard deviations as follows.

A set of representative training data, for which all class memberships are known, is projected onto a

single dimension. The arithmetic mean for each class is calculated in this dimension using (4.14). The

class means locate the centroid of each class in the current dimension (Figure 4.14c). The standard

deviation for each distinct class is calculated in a similar fashion using (4.15). The class standard

deviations give an indication of the compactness of each class in the current dimension (Figure 4.14c).

Consider the set of projected class A measurements {x;
The mean of class A in the current dimension is

Class A

} aM,A

standard

Class A j'''''''"mean

} Class B

B
Global

B rmean

}CI=C C rGlobal
standard
deviation

(4.14)

(a) (b) (c)

Figure 4.14: Calculation of individual class statistics
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The sample standard deviation of class A in the current dimension is

k 2

I(X; -1)
i=O

0"A = 1/-'---"---k-_-l-- (4.15)

By applying these calculations to all classes in the dataset, a set of class means (CM) and a set of class

standard deviations (CS) are generated.

CM={1 B

CS = {O"A O"B

c }
O"c }

(4.16)

By finding the mean of CS, single measure is established, that provides an indicator of general class

compactness in the selected dimension. The smaller the value of CS the more compact the classes.

Similarly, by finding the sample standard deviation of CM, a single figure 0"CM is established, that

represents the spread of the category centroids. The larger the value, the more spread out the class

centroids will be.

Finally, the two measures are combined to produce a single indicator of separability (S) in the current

dimension.

S = aO"CM

CS
(4.17)

a is a constant of proportionality. The separability measure is biased in favour of class compactness

for Cl < 1, and for Cl > 1 it will favour centroid dispersal as an indicator of separability. In this study Cl

was set to 1, equally weighting compactness and centroid dispersal.

A new data set was generated much like the D3C2 - D3C8 datasets, however, components were

ranked according to the separability indicator S.

Dataset D3CA

Description: D2C components are ranked according to the separability indicator (equation 4.17),

and the top 8 components are retained. All others are eliminated.

Domain: Transform domain subspace.

Dimensionality: 8 components.

The final step in the heuristic's development was based on a brief analysis of information distribution

in the transform domain. Figure 4.2 clearly shows that information content diminishes significantly as
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Description:

one proceeds along the temporal frequency axis towards the high temporal frequency components.

The same cannot be said for the sensor frequency axis. Some degree of reduction is generally evident

towards the high sensor frequency components, however, the reduction is not as consistent or

pronounced and the level of information remains significant across the axis.

This is not surprising when one considers that the sensor frequency axis encodes the responses of

differentially selective sensor channels, and selectivity differentiation across the sensor array is the

principal means of odour separation. Chapter 2 explains that the temporal dimension was not expected

to produce as much value as the spatial (sensor) dimension due to the lack of a gas separation column.

This expectation is validated by the transform domain information distribution.

It was therefore decided to bias the coefficient selection mechanism in favour of the sensor frequency

axis. This is achieved by choosing the eight highest separability-ranked components such that they

span the sensor frequency axis. A new dataset, which may be viewed as a modification of the D3CA

dataset, was generated.

Dataset D3CB

D2C components are ranked according to the separability indicator (equation 4.17),

and the top 8 components that span the sensor frequency axis are retained. All others

are eliminated.

Domain: Transform domain subspace.

Dimensionality: 8 components.

4.4 Preliminary classification results

Section 4.3 describes the rationale and methodology employed in the development of a signal

processing pathway. It should be noted here that the process was not conducted in an entirely open

loop fashion. Sample measurements were taken upfront and subjected to the signal processing

mechanism as it developed. New datasets were produced and classified by artificial neural networks,

which is explained in greater detail in Chapter 5. Classification results were used as indicators of the

potential usefulness of the signal processing to that stage. This effectively closed the loop and assisted

in the further refinement of the signal processing methodology.

This study de-emphasises the role of these interim results for good reason. The sample dataset was

captured on old sensors prior to the final hardware deployment. Furthermore, given that the
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measurement set was small and not representative of the general signal statistic, the outcomes would

at best, provide only weak indicators of performance. The temptation to extract deep significance

from preliminary data such as this must be avoided. This is a well-established principle in the field

[67]. Nonetheless, the interim results (Table 4.2) provided a measure of confidence in the developing

strategy.

Table 4.2: Summary of results

Dataset Classification rate
Training time Required hidden

hh:mm:ss laver size
PUR 97.77% 17:01:22 200
DlC 96.88% 23:02:17 200
D2C 99.11% 10:20:42 500
D3C8 35.27% 00:03:13 40
D3CA 35.27% 00:16:00 175
D3CB 99.11 % 00:00:36 12

The classification rate is defined as the percentage of measurements that are correctly classified and

the hidden layer size is a measure of the complexity of the artificial neural network that was used.

These issues are explained in greater detail in Chapter 5. For the moment, three criteria are considered

with respect to the classifier:

• Optimal hidden layer size must be found experimentally, and smaller sizes are preferable,

• Training time must be minimised, and

• Classification rate must be maximised.

The D3CB dataset, as produced by the final selection heuristic, produced the highest classification

rate with the smallest hidden layer size and the shortest training time.

Other datasets did not perform as well:

• Low classification rate:

• Large hidden layer size:

• Long training time:

D3C8 and D3CA

D2C

PUR, D1C and D2C

Full datasets as well as explanations for the classification results are considered in Chapter 5.

4.5 Conclusion

The signal processing methodology proposed in this chapter was developed for the specific

classification problem under consideration. The strategy proposed is related to and derived from

existing signal and image processing methods, however, there is a major departure with regard to

intention or purpose. In image processing, coefficient selection is usually implemented with the
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intention of compressing and subsequently restoring the data stream with minimum information loss.

In classification problems, the burden of restoration is removed. This chapter proposed that it is

possible to select a feature subspace (i.e. a subset of an orthogonal feature space) in such a manner

that classification results within that subspace may be generalised over the original feature space. The

technique was developed such that the classification problem is simpler in the subspace and yet

remains representative of the larger more difficult problem. Unlike image compression where

selection methods are guided by the need to restore, in this approach they are guided by the need to

remain representative of the larger problem.

Significant benefits included a dimensionality reduction factor of 256 (decrease from 2048 to 8

coefficients), and preliminary results indicated a significant reduction in classifier size and training

time while exceeding the classification rate for the original PUR dataset.

This chapter proves by way of example that "informed" dimensionality reduction alone could greatly

improve classification results. D3CB data is a pure subset of the datasets DCT, DIC and D2C. That is,

the improvement was achieved only by modifying the selection mechanism while preserving exactly

the retained coefficients. This result shows that retention of only those dimensions that are known to

encode the most separable data can improve classification performance.
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CHAPTER 5

CLASSIFICATION BY NEURAL NETWORK

5.1 Introduction

Chapter 4 presented the evolution of a signal processing methodology, dataset generation and

preliminary classification results. This chapter discusses the final experiment, and takes a deeper look

at selected concepts and principles related to classification by artificial neural networks. A full dataset

is captured and final classification results are presented.

After construction of the system hardware, new sensors were installed. These were powered up and

.allowed to stabilise for three weeks according to the manufacturer's instructions. The system

remained powered up for the duration of the experiment and a backup power source ensured that

sensors remained energised continuously.

The full dataset was captured over a period of three months. Data was archived and processed offline.

The various datasets described in Chapter 4 were then assembled into training, validation and test sets

for the neural network classifier. This chapter describes the configuration, control and outcomes of the

classification process.

5.2 Software environment

Many different types of artificial neural network classifiers exist. The most commonly used classifier

is the multiplayer feed-forward network, which is usually trained by the back-propagation algorithm

or some variant thereof. This investigation employed the prolific back-propagation neural network

paradigm. A single hidden layer network is used, as it is known to approximate any continuous

function [68]. The theory of back-propagation [69] is well established and easily accessible and is not

discussed in any detail here. Only selected issues pertaining to training configuration are considered

where appropriate.
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5.2.1 Stuttgart Neural network Simulator

All commercial and public domain neural network simulators support some form of back-propagation

algorithm and multi-layer feed-forward neural architecture. However, implementation details and

configuration facilities vary greatly across simulators. The Stuttgart Neural Network Simulator

(SNNS) version 4.1 for Linux [70] was selected for this study. It offered the necessary neural network

implementation, performance and flexibility.

5.2.2 Neural network configuration system

A total of 700 cheese odour measurements were taken across 7 distinct categories. Table 5.1 shows

the cheese categories and the respective number of measurements taken. The measurement quantities

were influenced by sample availability during the three-month test period. It is a basic requirement

that classes are uniformly represented in the training set. The most under-represented category

(FVlaberyl) therefore dictated that the final number of samples used per category be restricted to 80.

Table 5.1: Odorant categories

Cheese Category label Measurements Used

Fairview Brie with tomato & basil "FVbrietb" 100 80

Fairview Brie "FVbrie" 100 80

Fairview Camembert "FVcamembert" 100 80

Fairview Laberyl "FVlaberyl" 80 1 80

Fairview Chevin with sweet red pepers "FVchevinsrp" 100 80

Fairview Blue Rock "FVbluerock" 100 80

Simonsberg Traditional Mozzarella "SBmozza" 120 80

Only the first 80 measurements of each cheese category were used. These measurements were taken

in a fixed sequence as indicated by the measurement script in Chapter 4. Fairview Laberyl was the

first cheese to run out. All measurements taken after that point were not used in this study. The fmal

database of 560 distinct raw measurements was processed into the various datasets as described in

chapter 4. Given the large number of separately stored raw and transformed measurements, it is useful

to review the naming convention for measurement files. Each measurement or transformed

measurement is stored to a separate file that is named according to the following convention:

I The lower measurement count was related to the commercial availability of "Fairview Laberyl"
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004_xxxx.yyy

where:

004

yyy

represents the experiment number. Experiments 001 to 003 belong to the system test and

commissioning phases, and are not discussed in this thesis. This study deals exclusively with

cheese data captured in experiment 004.

refers to the measurement increment number. The first measurement starts at increment 0001.

refers to the data-type or dataset. These include raw', pur', dct, dlc, d2c, idI, id2, d3c".

Note:

'The pur dataset is simply a reformatted version of the original raw measurement files. Actual measurement

data remain unchanged across these file types.

"Datasets D3C2-D3C8, D3CA & D3CB all use the d3c file extension. In order to prevent confusion, datasets

are separated into appropriately named directories. When dealing with any d3c file, one must consider the

source directory for that file.

The set of raw measurements are made available on the accompanymg CD m

"SUPPORT_CD:\measurements\raw". Raw measurements were processed into the various datasets as

described in Chapter 4, and the datasets were assembled into pattern sets for the neural network

training process.

Pattern sets: The word "pattern" is used by SNNS to describe the basic unit of training or testing data.

A pattern is composed of two parts,

• The "input pattern" or "input vector" which is applied at the neural network input, and

• The corresponding "output pattern" or "output vector" which represents the desired optimal

output given the current input.

A pattern set is a collection of several patterns in a single file, which may be used for training or

testing the neural network. The 560 transformed measurement files in each dataset were reformatted

into (560) patterns and assembled into appropriate pattern sets. For example, Figure 5.1 illustrates the

header and first two patterns from a pattern file in the D3CB dataset.

Each output vector indicates the class identity of the input vector. Note that the output dimensionality

of 7 corresponds to the 7 cheeses, and the input dimensionality of 8 is determined by the D3CB

specification. The neural network learns the input-output relationship from these patterns. Four

distinct pattern sets were generated for each dataset. These are described in Table 5.2.
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SNNS pattern definition file Vl.4
generated at Fri Mar 24 12:57:232000

No. of patterns : 560
No. of input units : 8
No. of output units: 7

# Output vector format for this pattern file .....
# 0 FVchevinsrp
# 1 FVbrie
# 2 FVbrietb
# 3 FVbluerock
# 4 SBmozza
# 5 FVcamembert
# 6 FVlaberyl
#************ pattern 1 ************
#input vector 1
#File: c:\mydocu~1\exp4\004_0560.d3c
#Category: FVchevinsrp
15.808782 -19.07976916.483618 -2.622664 -39.133820 13.431553 16.92482420.718163
#output vector 1
1000000

#************ pattern 2 ************
#input vector 2
#File: c:\mydocu~1\exp4\004_0002.d3c
#Category: FVbrie
1.111362 13.482435 -0.468171 -7.890170 -10.961367 -16.139294 10.3839162.977654
#output vector 2
0100000

Figure 5.1: Partial listing of a pattern file including the header and first two patterns

Table 5.2: Pattern sets used in training and testing of neural networks

Pattern set Number ofpatterns Use

Full 560 - all patterns Testing only (not very useful, see discussion)

Training 168 - unique 30% of full set Training only (used to teach the neural network)

Validation 168 - unique 30% of full set Validation only (used to control training)

Test 224 - unique 40% of full set Testing only (unseen data for performance appraisal)
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Given any dataset (PUR, DCT, DIC, D2C, IDl, ID2, D3C2-D3C8, D3CA or D3CB) of 560

appropriately transformed patterns, a random selection of 168 patterns (24 per category) is stored in

the training set. The pattern set generator, for which the source code is provided in

RESULT_CD:\configuration\software\preprocessors\patgen.c, was written such that the random

number generator seed could be specified and the same random selection could be made across all

datasets. That is, all training sets contained the same appropriately transformed patterns in the same

sequence. Validation and test sets were generated in a similar fashion. The full pattern-set is the

combination of the training, validation and test sets.

Automated training: An automated script driven training system was developed due to the large

number of datasets and the need to train multiple neural networks in the search of an optimal classifier

in each dataset. The collection of training scripts may be found on the attached RESULT_CD. Consult

the file "RESULT_CD:\configuration\training_config.txt" for further information.

Schedule files: Training schedule files were used to exert broad control over the whole training

process and various scripts were used to implement subtasks. Each dataset has its own training

schedule file. Consult the file "RESULT_CD:\configuration\training_config.txt" for further

information.

Each record (row) in a schedule file contains the necessary information to train a single neural

network. The significance of each field (column) is explained in the schedule file header. The training

script "RESULT_CD:\configuration\training_scripts\batsh" extracts each schedule record in turn and

trains the neural network according to the settings stipulated in the record. Figure 5.2 describes the

algorithm and organisation of this high-level script. The scripting engine was developed as part of this

study. In order for it to work, minimal source code modification to SNNS and subsequent

recompilation was necessary. "RESULT_CD:\configuration\software\simulator\installation.txt"

contains further details in this regard.

During training, the training set is processed repeatedly. Each pass through the training set is referred

to as an epoch. The neural network weights are adjusted at the end of each epoch so that the network

improves its approximation of the input-output relationship that is expressed in the training set. One

must strive to ensure that the training set is representative of the general class of data, or signal

statistic from which it is derived.
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Log training start time

Train neural network
(using batchman & batch4 script)

Training

Log training stop time

Generate training history plot for current network
(learning rate, training error, validation error vs. epoch)

Figure 5.2: High-level training script (batsh) that processes all networks in a training schedule file
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Start

Get cuqent r(l~ordparameters
from schedule file

no

If the trailing etrorreached a new low....
save the best-trained network (trbest)

Select the validation set, test the network,
and compute the validation error

If the validation error reached a new low...
save the best-validated network (vabest)

If the trailing error dropped by 80% or more since the last
parameter update....
reduce lellrtling rate(Il), momentum (P) and flat-spot (c)

'·tferm:s by half. .
< >,;' ':\: r',,' ",':',

,. ,

Validation

Parameter
update

Testing

Figure 5.3: Low-level training algorithm (batch4) that is invoked (by batsh) to train a network

During the iterative processing of training data, the network develops a model of the general class of

data from which the training set was derived. This is called generalisation, which is the network's

ability to learn a general trend from specific data.
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When assessing the quality of this learned generalisation, it is necessary to test the neural network

with a separate test set that is produced from the same general class of data that produced the training

set, such that the two sets have no intersection. Any intersection of test and training data will skew

and invalidate the test result because the network would have had the opportunity to learn the

intersecting portion of the test set during training.

A further pattern set (validation set) was used to determine when to stop training. Excessive training

results in a phenomenon called over-training which results in a loss of generalisation. That is, after

extracting the desired general signal characteristic, the learning process continues to the point that the

network learns the exclusive specifics of the training data. In this scenario, the neural network is over­

optimised for the specific training data. The over-trained network can therefore classify training data

very accurately but usually performs poorly on other (validation or test) data even though such data is

derived from the same general class of data as the training set. As training proceeds, the validation

error (classification error for validation data) drops, but when over-training commences, the validation

error rises again and diverges from the declining training set error. This divergence is used to detect

over-training.

Validation process: Training is stopped at regular intervals (every 10 epochs) during the training

phase. At each instance, the partially trained network is tested against the validation set. Every time

the validation error reaches a new low, the network is saved as the best-validated network. When

training eventually stops, it is the best-validated network that is regarded as the end product. The

validation set may be regarded as a second test set, and the validation error as an auxiliary test error.

In the event of over training, validation errors will increase above the recorded minimum and the

network will not be saved. The temptation to use the test set for validation purposes must be avoided.

For valid test results, the test set should have no influence on the training process. This includes

determining when to save the network or stop training.

'"
'" " .

.. - ........_.-

unit i

unit}

t---+ O.
J

Figure 5.4: Two connected units ("neurons") in a feed forward neural network
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Parameter control: There are several variants of the backpropagation algorithm. This study makes use

of "backpropagation with momentum and flat-spot elimination". The weight update equation is

provided below. The equation calculates the update for a single weight wij that connects unit (neuron)

itounitj.

~Wij(t+ 1) = 170jOj + flAwij(t)

where

f;([~Wij++ -Dj
f;([~Wij+C)~OkWjk

for output units

for hidden units

(5.1)

and

f;

desired output at unit j

actual output at unit j

first derivative of the sigmoid transfer function

c flat spot elimination term that is optionally added to the

weighted sum to ensure a non-trivial gradient and thereby

prevent training stagnation.

The formula may be described as follows:

~wij (t + 1) - The next weight update

176j Oi - Scaled product of local gradient and unit i activation

17 Scaling factor called the learning rate

6j Error-surface-gradient term (describes local gradient)

0i Unit i output

- Scaled previous weight update

f.i Scaling factor called momentum

Learning Rate (17 ) is a scaling factor for the weight update. It influences the magnitude of the update

or the step size across the error surface. The Momentum (f.i) term is used to add a fraction of the

previous update to the current one. This effectively smoothes the trajectory due to the integrating

effect of memory (i.e. retaining a vestige of the previous update), and it reduces the sensitivity of the

update to the immediate error surface gradient. Momentum is intended to help the neural network
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escape local minima. In the event of the error surface gradient becoming very small, the neural

network will rapidly lose momentum and run the risk of stagnating. The Flat-Spot (c) term is an offset

that is added to the gradient calculation in such instances.

The general training objectives are:

• To find the global minimum in the error surface,

• To avoid getting trapped in local minima along the path to the global minimum, and

• To encourage entrapment in the global minimum.

This study implemented an online control mechanism for the Learning Rate ( 1J ), Momentum (J1 ) and

Flat Spot (c) parameters. The purpose of training is to traverse the error surface and to find the global

minimum while avoiding entrapment in intervening local minima. Large 1J and J1 cause the network

to move over the error surface in large and bold steps. Momentum reduces the sensitivity to the local

gradient causing the network to occasionally go against the gradient (hence the reference to

"boldness"). Given that the neural network usually commences training at a considerable distance

from that global minimum, the larger steps allow the neural network to rapidly converge on the

general vicinity of the global minimum. The step size also allows the network to step over and escape

some local minima. However, when the global minimum is approached, the intention is to get trapped

or drawn in as deep as possible. A large step size does not serve this end. In fact a large 1J (which

translates into large step size) often causes the network to oscillate in the general vicinity of the global

minimum. A reduction in step size (1J ) at this point will increase the search resolution and a reduction

in J1 will make the training process more sensitive to the immediate local gradient. In effect, the

network will take smaller more tentative steps and is likely to fmd and be trapped (drawn in) by the

global minimum.

The intention of the control strategy is to appropriately reduce the 1J, J1 & c parameters as the global

minimum is approached. The average training error is calculated after every 10 training epochs. If at

any time the calculated error drops below 20% of its initial value, the parameters 1J, J1 and care

halved. This action is repeated each time an 80% (or higher) drop in training error is detected.
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5.2.3 Result post-processing

After 1000 training epochs (as indicated by Figure 5.3), the final network is saved. By this stage the

training script would have produced three saved versions of the current network:

• The best-validated network (saved with file extensions ".vabest.net"),

• The best-trained network (saved with file extensions ".trbest.net"), and

• The final network after 1000 epochs (saved with file extensions ".final.net").

The best-validated and best-trained networks are the networks with the lowest validation and training

errors respectively. The control scripts were written as general research tools and produce more output

than is necessary for this study. This study deals principally with the best-validated network. All

saved networks can be found in the appropriate directory under "RESULT_CD:\results\saved_nets\".

The final script stages are all related to the testing of the saved networks. In its final stage, the training

script (Figure 5.3) tests the classification performance ofl all three saved networks against all four

pattern-sets (training, validation, testing and final pattern-sets). The results are saved to file (with

extension ".res") and can be found in the appropriate dataset directory under

"RESULT_CD:\results\network_output\". For the purposes of this study, the final classification

results are obtained by testing the best-validated network against the test pattern-set.

Control is then handed back to the high-level script (Figure 5.2) where graphs of results are produced.

A training history graph for the current network is produced first. Figure 5.9 to Figure 5.12 are

selected examples of such graphs. The full set of graphs may be found in the appropriate dataset

subdirectories under "RESULT_CD:\results\network_output\".

Finally, the high-level script runs a result processing script (ressh) that analyses all result (".res") files

and extracts classification rate statistics. The statistics are saved to log files such that each file

contains the classification statistics for all networks in a given dataset. The directory

"RESULT_CD:\results\log_files" contains the full set of logs. These logs are used to produce graphs

of "Classification rate vs. Hidden layer size". Figure 5.14 illustrates a selection of these graphs. The

file "RESULT_CD:\results\log_files\result_logs.txt" describes the log-file format.

In summary, the result processing script sections do the following:

Test and analyse trained networks against all datasets,

Generate training history graphs for each network, and

Generate result logs for each data set and plot classification rate vs. hidden units graphs.
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5.3 Training configuration

The final experiment produced large amounts of data and results. To avoid getting lost in less

significant detail, this thesis only considers selected data and results. The full data and result set is

provided on the CD set, and Appendix B provides a more comprehensive set of graphs and result

tables.

Making sense of the complexity: Raw data is stored in the PUR dataset. Fully pre-processed data is

stored in the D3CB dataset. Several intermediate datasets were extracted along the pre-processing

pathway. A separate neural network classifier classified each dataset. The training of each network,

referred to as a dataset classifier, entailed a distinct sub-experiment.

The sub-experiment: The required hidden layer size (learning capacity) of each dataset classifier had

to be determined experimentally. This meant that for each dataset:

• Several neural networks of different capacities had to be trained,

• Each network needed to be tested and the results analysed,

• One of them would be appropriately chosen as the fmal dataset classifier, and

• There were 15 such sub-experiments corresponding to the number of datasets.

Section 5.2 introduced the concept of training schedule files that were created to exert broad control

over the experiment. These files also record aspects of experimental procedure. They are used to

guide the high-level (Figure 5.2) and training (Figure 5.3) scripts by providing configuration

information for each neural network that is to be trained. Training schedule files may be found in the

appropriate dataset directories under "RESULT_CD:\configuration\datasets". The script

"RESULT_CD:\configuration\datasets\TrainAll" is used to initiate training across all datasets.

The schedule file for the PUR dataset is provided in Figure 5.5. The file header describes the

significance of each field. The numbered rows represent four different neural networks that must be

trained to classifY this dataset. After training, one of them is selected as the dataset classifier. The

only parameters that change across these four networks are the hidden layer size, neural network name

and result file name. In order to simplifY the stored information, all filenames are stated without file

extensions. The scripts read the filenames from the schedule file, append the appropriate standard

extensions and continue processing.
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Column descriptions:
seq - sequence point number from 1,2,3,...
LR - learning rate
MM - Momentum term
FS - Flat spot elimination coefficient
fnet - name of network file (exclude the" .net" extension)
fres - name of result file
ftr - name of training set file
fts - name of test set file
fva - name of validation set file
ffull- name of full data set file
seed - seed integer for random number generator
trcyc- number of training epochs between validations
cycmax- maximum number of training cycles (multiple oftrcyc)
hid- Hidden layer size

seq LR MM FS foet fres ftr fts fva ffull seed trcyc cycmax hid
1 0.1 0.1 0.05 pur004A pur004A pur004tr pur004ts pur004va pur004 125 10 1000 25
2 0.1 0.1 0.05 pur004B pur004B pur004tr pur004ts pur004va pur004 125 10 1000 50
3 0.1 0.1 0.05 pur004C pur004C pur004tr pur004ts pur004va pur004 125 10 1000 100
4 0.1 0.1 0.05 pur004D pur004D pur004tr pur004ts pur004va pur004 125 10 1000 200
-1

Figure 5.5: Schedule file for networks in the PUR dataset

After training the four networks, one may add new networks to the schedule file (from sequence point

5 onwards in this case). The training script can then be informed to reprocess the schedule file from

the new sequence point onwards. This facility was used extensively when processing the final D3CB

dataset (see Figure 5.20). For example, initial results may show that optimum capacity lies somewhere

between 100 and 200 hidden units. One can then go back and insert new networks with intermediate

capacity and continue in the cycle until an optimum size is found.

The search for optimum capacity was fully implemented only on the fmal D3CB dataset. All other

datasets were coarsely searched. This choice is related to network training time and network size.

Both size and training time must be minimised for a solution to be regarded as a good one. This is a

general Artificial Intelligence (AI) performance measure referred to as "space and time complexity"

[66]. It is applied to various AI technologies including neural networks. Section 5.4 provides a more

detailed perspective on the issue.

From a practical point of view, any solution with low space-time complexity requires less processing

power and little storage space. This reduces the cost of the solution and often permits the solution to

be deployed as a low cost embedded system.
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5.4 Results

5.4.1 Pre-processing results

Chapter 4 described the evolution of a data pre-processing methodology. Starting with original data

(PUR dataset), various datasets were produced and stored along the route to the fmal D3CB dataset.

Some of the intermediate datasets were analysed and subjected to classification in order to test the

notion that the fmal stage dataset does indeed produce the best performance.

Dataset correlation: The basic separability criteria described in Chapter 4 may be evaluated in terms

of correlation coefficients. The covariance matrix C is calculated for each dataset X The correlation­

coefficient matrix R is then calculated as follows:

R(X)- C(X)
- ~C(X)C(X)

(5.2)

The main diagonal of matrix R(X) represents the level of correlation between measurements in the

same class (autocorrelation levels), while the off-diagonal components represent the level of

correlation between data from different classes (cross-correlation levels). Auto-correlation levels

provide an indication of measurement similarity within a class, while cross-correlation levels indicate

inter-class similarity. Matrices C and R are symmetric about the main diagonal. Table 5.3 illustrates

the correlation coefficient matrix R for the PUR dataset in upper triangular form.

Recall that the separability criteria discussed in Chapter 4 required

• Tight clustering of data around their respective class centroids, and

• Maximum dispersal of class centroids.

In terms of correlation coefficients, each class must have a high autocorrelation (tight clustering), and

distinct classes must have a low cross-correlation (high spread). Correlation coefficient matrices were

calculated for all datasets. Some of these may be found in Appendix B.

The correlation coefficient matrices may be illustrated graphically as in Figure 5.6, where the

correlation coefficients of PUR and D3CB datasets are plotted. It is clear that the original

measurements (PUR dataset) have an undesirably high cross-correlation. For example the correlation

between "Blue" and "Laberyl" (0.94) is higher than the autocorrelation of the class "Chevin" (0.92)

and equivalent to the autocorrelations of classes "Camembert", "Brie"; and "BrieTB". This clearly
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indicates an unfavourable spread of data for this dataset (PUR). The D3CB dataset on the other hand

indicates a considerable improvement in correlation data.

Table 5.3: Category correlation coefficient matrix in upper triangular form (PUR dataset)

BrieTB Blue Mozzarella Chevin Labe
Camembert
Brie
BrieTB
Blue
Mozzarella
Chevin
Laberyl

Table 5.4: Category correlation coefficient matrix in upper triangular form (D3CB dataset)

Camembert
Camembert
Brie
BrieTB
Blue
Mozzarella
Chevin
Laberyl

The description of dataset correlation may be simplified further.

• The average value of the main diagonal components provides a single generalised indicator of

autocorrelation for all classes in the dataset.

• The average value of all off-diagonal components provides a similar measure of cross-correlation

for all classes in the dataset.

Original data

4 5 6 7

D3C-B data

Figure 6: Original (PUR) and D3CB correlation coefficient matrices
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Figure 5.7: Average diagonal (auto) and off-diagonal (cross) correlation coefficients

The dataset D3CB as produced by the heuristic technique (presented in Chapter 4) shows drastically

improved indicators of separability. The ratios of diagonal to off-diagonal elements were calculated

for each dataset and plotted in Figure 5.8.
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Figure 5.8: Ratios of average auto and cross-correlation values in each dataset
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These correlation coefficient averages were computed for all datasets. Some of the results are

illustrated in Figure 5.7. The figure reveals several facts.

• With the exception ofD3CB, all datasets exhibit high cross-category correlations. Thus indicating

that data are similar across classes and potentially difficult to separate.

• Cross-correlation was worse in the transform domain (DCT) than the source domain (PUR).

• Removal of the DC term in the transform domain (DIe) marginally improved (reduced) the

cross-correlation figure.

• The Tukey window was used to remove 80% of the DIC data. The resultant D2C dataset did not

show any degradation in the correlation ratio.

• Transform domain datasets D IC and D2C produced the same correlation ratio as their source

domain counterparts, ID I and ID2. This indicated no correlation advantage in either domain.

• The drastically reduced datasets D3C8 and D3CA produced a degraded correlation ratio,

however, their figures still improved on that of the DCT dataset.

• Drastic dimensionality reduction coupled with the use of a-priori knowledge (the need to span the

channel frequency axis) produced the desired improvement in correlation ratio as evident in the

D3CB dataset.

The results shown here support some of the assumptions made in Chapter 4, namely,

• DC coefficient removal is beneficial,

• HF removal can be achieved without significant degradation, and

• A coefficient selection heuristic based on a-priori knowledge can produce the best result.

5.4.2 Training results

As described in Section 5.2.2, each dataset was arranged into pattern sets, and these were used to train

a suitable dataset classifier. Several networks were trained in the search for each dataset classifier.

The choice of dataset classifier was based on a subjective analysis of post-training results.

Some of these post-training results are discussed in this section. Due to the large amount of results

produced, a comprehensive discussion would be too tedious therefore selected results are discussed.

Appendix B contains a more comprehensive result set.

The schedule file for the PUR dataset is presented in Section 5.3. The training results of the four

networks stipulated in that schedule are now discussed. The graph in Figure 5.9 shows the training

history of the 25 hidden unit network (pur004A) in the PUR dataset. Training error, validation error

and learning rate are plotted with respect to the training epoch number.
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Hidden units: (capacity) 25 Classification rate: (test set) 21.43 %

Output units: (classes) 7 Saved network file:

Figure 5.9: Training result - 25 hidden unit neural network with the PUR dataset

Error rates remained high throughout the training period so the training parameter control mechanism

remained inactive as indicated by a constant learning rate over 1000 epochs. The initially high

learning rate, momentum and flat-spot elimination parameters remained unchanged and should have

encouraged rapid learning. However, there was no indication of significant learning. Assuming that

the training data and algorithm were sound, the cause for poor training performance was most likely a

lack of learning capacity in the network. In simpler terms, there were too few hidden units and a

resultant shortage of trainable weights. With too few weights, a network is unable to model (describe)

the system that produced the training data. It is simply not possible to store the required knowledge in

a learning mechanism that lacks the necessary learning capacity.
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Figure 5.10: Training result - 50 hidden unit neural network with the PUR dataset

The number of hidden units was increased to 50. The network exhibited improved performance but

this improvement was not sustained and the learning process became unstable. It has already been

established that a network with 25 hidden units lacks the capacity to model this system. Perhaps the

increase to 50 hidden units is still lacking in this regard. It is generally accepted that under-capacity

produces drift and instability in the training process because the network is unable to describe

sufficient modelling parameters in its small number of weights. Therefore, as new knowledge is

committed to memory, the same small set of weights is modified, and old knowledge is lost or "forced

out" of memory. At any given time, the under-capacity network can only store a partial model of the

system. During training, one finds that the network is unable to stabilise, and its error levels fluctuate

depending on the partial model it stores at that time.
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Dataset: PUR Best network saved at epoch #: >850

Input units: (input dimensionality) 1566 Total training time: (hh:mm:ss) 08:28:11

Hidden units: (capacity) 100 Classification rate: (test set) 97.32 %

Output units: (classes) 7 Saved network file:

Figure 5.11: Training result - 100 hidden unit neural network with the PUR dataset

A further increase in capacity(to 100 hidden units) produced successful training, a stable trajectory

and a high classification rate. The increased number of trainable weights extended the training time to

8Yz hours. Automated training parameter control was triggered three times due to significant error

reduction.

Validation and training errors followed similar trajectories. Validation error did not diverge

significantly or rise relative to training error in the latter stages of training, thus indicating no evidence

of over-training in the first 1000 epochs. Over-training is described in Section 5.2.2. The best network

is saved when minimum validation error is achieved. The point at which this "best validated network"

is saved was not explicitly recorded by the training script, however the graph indicates that minimum

validation error was achieved somewhere beyond epoch 850. It is therefore presumed that the best

network was saved somewhere between epoch 850 and 1000.
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Output units: (classes) 7 Saved network file:

Figure 5.12: Training result - 200 hidden unit neural network with the PUR dataset

The fmal network in the PUR dataset was trained with 200 hidden units. This incurred a considerable

training time penalty (17 hours) and produced a marginally improved classification rate. The four

networks (pur004A to pur004D) all have the same input and output dimensionality and train on the

same pattern sets. The variation in training time may therefore be attributed to changes in hidden layer

sizes. Figure 5.13 illustrates the linear relationship between hidden layer size and training time. The

gradient of the graph indicates a training time of approximately 5 minutes and 4 seconds per hidden

unit.

Given that the previous network (pur004C) provided a relatively good model with 100 hidden units,

this network possibly has an excessive learning capacity. The network assimilated most of the

knowledge within the first 100 epochs. Automated training parameter control was triggered three
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times by epoch 190 due to rapid error reduction. After that, there was little change in the error

trajectory.

Training time vs hidden layer size (PUR dataset)
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Figure 5.13: Linear relationship between training time and capacity for PUR dataset

The network pur004D.vabest.net is not regarded as a viable solution for the following reason: The

training set contains 168 patterns and the network contains 200 hidden units. It is known that a multi­

layer neural network can completely separate an arbitrary training set ofp patterns, if the network has

p-l units in a single hidden layer [711. In fact, this criterion describes a worst-case scenario (upper

bound) where, for instance, the p patterns may belong to p distinct classes. Given that natural datasets

contain fewer classes than patterns, and the classes are generally clustered, fewer than p-l hidden

units are usually required to classify the pattern set. It therefore stands to reason that a 200 hidden unit

network cannot be regarded as a good solution when there are only 168 training patterns representing

7 classes. Given the high learning capacity of the network, the question may be asked; why was the

200-unit network unable to perfectly separate the 168 training set patterns? There are two obvious

possibilities:

• The data was not separable, where the clustering is such that clusters overlap (interpenetrate) in a

manner that prevents the formation of substantially error-free decision boundaries, and

• The network is trapped in a strong local minimum and was unable to find the global minimum.

This can happen as a result of the random initial conditions and trajectory on the error surface.

The long training time and large memory footprint (5.445MB weight set in RAM) also serve as

indictors of inadequacy.
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Figure 5.14: Classification error vs. capacity for selected datasets

Performance comparison: As discussed in Section 5.3, several networks of different capacity were

trained in each dataset. In each dataset, one network was chosen as the dataset classifier. This choice

was based on three criteria:

• Preferably high classification rate (obtained from the application of the test set to the best

validated network),

• Preferably short training time, and

• Preferably small capacity (i.e. Fewer hidden units and smaller memory footprint).

These criteria needed to be appropriately balanced. For example, several networks with marginally

higher classification rates were rejected on the basis of an unjustifiable increase in size and training

time. In any given application, the fmal classifier choice must always be made subject to the

immediate requirements. There is no consistent and objective approach in this regard, and high

classification rates alone do not always justify a choice. The initial requirements of this experiment

were that the classifier exceed 95% classification rate, and classifier size and training time be

minimised. This would enable future embedded deployment. Furthermore, the smaller the capacity of

a network, the better it generalises [72).
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Figures 5.14 to 5.18 provide result comparisons for the following significant datasets:

• PUR & DCT - representing raw data in the source and transform domains,

• D1C & D2C - representing DC and HF filtered data in the transform domain, and

• D3CA & D3CB - representing coefficient selected data in the transform domain.

The signal processing mechanisms that produced these datasets are described in Chapter 4.

Figure 5.14 shows the classification errors for the various networks that were trained in each dataset.

The subjectively chosen dataset classifier is circled in each graph. More networks were trained in the

D3CA and D3CB datasets because training was much faster (see Figure 5.16). It will later become

clear that a comprehensive search was only feasible and necessary in the D3CB dataset.

Figures 5.16 and 5.17 illustrate time and space complexities for the six selected datasets. Logarithmic

scales were used due to the wide spread of data. From an engineering perspective, there are several

objectives that must be simultaneously achieved or balanced. With respect to classification, the

following major objectives exist:

• Classification performance (Figure 5.15) - the most basic requirement.

• Speed or time complexity (Figure 5.16) - fast training and execution require cheaper hardware

platforms with less processing power.

• Memory footprint or space complexity (Figure 5.17) - small classifiers require cheaper hardware

platforms with smaller memories.

If space and time complexity is sufficiently low, the classifier may be implemented in an embedded,

possibly hand-held system. It is clear from Figures 5.16 and 5.17 that the D3CB dataset provides the

best result in terms of space-time complexity.
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Figure 5.15: Dataset classifier classification rates for selected datasets
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Training time vs Dataset
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Figure 5.16: Dataset classifier training time for selected datasets
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Figure 5.17: Dataset classifier file size for selected datasets

Combined performance measure: Given that the classification rate must be maximised while training

time and network size must be minimised, a combined performance measure may be computed for

each dataset classifier.

~ classification rate
perlormance measure =----------

(network size)(training time)
(5.3)

Figure 5.18 clearly shows that dataset D3CB outperforms other datasets in terms of the performance

criteria.

5.25



Combined Performance vs Dataset
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Figure 5.18: Combined performance measures for selected dataset classifiers

Capacity optimisation: It is clearly evident that the best classifier would be found in the fully pre­

processed dataset D3CB. This dataset produced classifiers with the best classification rates and the

smallest space-time complexity. It was therefore decided that a comprehensive search be performed

for the optimal capacity classifier in the D3CB dataset. The rapid training speed of the D3CB dataset

also assisted in this regard.
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Figure 5.19: Locating the optimal D3CB neural network (Le. the dataset classifier)
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Figure 5.19 illustrates training time, test set classification rate, and validation error for all networks in

the D3CB dataset. The intention was to find the smallest network (lowest capacity) that produces high

classification rates, low training times and low validation errors. The zoomed intersection of the three

graphs clearly shows that the network with 12 hidden units strikes the ideal balance of low capacity

and good performance.

Column descriptions:
seq - sequence point number from 1,2,3,...
LR - learning rate
MM - Momentum term
FS - Flat spot elimination coefficient
fnet - name of network file (exclude the" .net" extension)
fres - name of result file
ftr - name of training set file
fts - name of test set file
fva - name of validation set file
ffull- name of full data set file
seed - seed integer for random number generator
trcyc- number of training epochs between validations
cycmax- maximum number of training cycles (multiple oftrcyc)
hid- Hidden layer size

seq LR MM FS fnet fres fir fts fva ffull seed trcyc cycmax hid
1 0.1 0.10.05 d3c004A d3c004A d3c004tr d3c004ts d3c004va d3c004 125 10 1000 12
2 0.1 0.1 0.05 d3c004B d3c004B d3c004tr d3c004ts d3c004va d3c004 125 10 1000 25
3 0.1 0.1 0.05 d3c004C d3c004C d3c004tr d3c004ts d3c004va d3c004 125 10 1000 50
4 0.1 0.1 0.05 d3c004D d3c004D d3c004tr d3c004ts d3c004va d3c004 125 10 1000 75
5 0.1 0.1 0.05 d3c004E d3c004E d3c004tr d3c004ts d3c004va d3c004 125 10 1000 100
6 0.10.1 0.05 d3c004Fd3c004Fd3c004trd3c004tsd3c004vad3c004125 10 1000 125
7 0.1 0.1 0.05 d3c004G d3c004G d3c004tr d3c004ts d3c004va d3c004 125 10 1000 150
8 0.1 0.1 0.05 d3c004H d3c004H d3c004tr d3c004ts d3c004va d3c004 125 10 1000 175
9 0.1 0.1 0.05 d3c0041 d3c0041 d3c004tr d3c004ts d3c004va d3c004 125 10 1000 2
10 0.10.10.05 d3c004J d3c004J d3c004tr d3c004ts d3c004va d3c004 125 10 1000 4
11 0.1 0.1 0.05 d3c004K d3c004K d3c004tr d3c004ts d3c004va d3c004 125 10 1000 6
12 0.1 0.1 0.05 d3c004L d3c004L d3c004tr d3c004ts d3c004va d3c004 125 10 1000 8
13 0.1 0.1 0.05 d3c004M d3c004M d3c004tr d3c004ts d3c004va d3c004 125 10 100010
14 0.1 0.1 0.05 d3c004N d3c004N d3c004tr d3c004ts d3c004va d3c004 125 10 1000 9
15 0.1 0.1 0.05 d3c0040 d3c0040 d3c004tr d3c004ts d3c004va d3c004 125 10 1000 11
16 0.1 0.1 0.05 d3c004P d3c004P d3c004tr d3c004ts d3c004va d3c004 125 10 1000 13
17 0.10.10.05 d3c004Q d3c004Q d3c004tr d3c004ts d3c004va d3c004 125 10 1000 14
18 0.1 0.1 0.05 d3c004R d3c004R d3c004tr d3c004ts d3c004va d3c004 125 10 1000 15
19 0.1 0.1 0.05 d3c004S d3c004S d3c004tr d3c004ts d3c004va d3c004 125 10 1000 16
20 0.1 0.1 0.05 d3c004T d3c004T d3c004tr d3c004ts d3c004va d3c004 230 10 1000 12
21 0.1 0.1 0.05 d3c004U d3c004U d3c004tr d3c004ts d3c004va d3c004 108 10 1000 12
22 0.10.10.05 d3c004V d3c004V d3c004tr d3c004ts d3c004va d3c004 123 10 1000 12
23 0.1 0.1 0.05 d3c004W d3c004W d3c004tr d3c004ts d3c004va d3c004 99 10 1000 12
24 0.10.1 0.05 d3c004X d3c004X d3c004tr d3c004ts d3c004va d3c004 0 10 1000 12
-1

Figure 5.20: D3CB schedule file

5.27



The search procedure is effectively encoded in the D3CB schedule file. The file initially contained

schedule entries 1 through 8. This performed a coarse search for optimal hidden layer size in the range

12 to 175. As it turned out the first schedule entry (sequence point 1) with 12 hidden units produced

the best result. Thereafter, schedule entries 9 to 19 were added to refme the search around the 12

hidden unit network. As it turned out, the 12 hidden unit network (sequence point 1) remained the

optimal network.

Finally schedule entries 20 to 24 were added. These were 12 hidden-unit networks similar to sequence

point 1, but with different random number seeds. They produced results that were similar to the

network specified in sequence point 1. This network (d3c004A.vabest.net), the first network to be

trained in the D3CB dataset, was selected as the dataset classifier. The training history of the chosen

D3CB dataset classifier is considered next.

Training and validation error

"Tr'.=ining et-.t-'or ll ---"Validation er't··or· 1I -+--
"Learning t-'at.e 11 --

0.5

0.4

w 0.3
(f)
E

I
1302

0.1 I-- '+....++-1<.....
I~ '~""I"I"'I"'I"""I"I"IIII'IIII'I'I"I"III'IIIIIIIIIIIIIIIIIIII-+N--++

~ 1,...., .-
0

0 10 20 30 40 50 60 70 80 90 100

epochs (x10)

Dataset: D3CB Best network saved at epoch #: >950

Input units: (input dimensionality) 8 Total training time: (hh:mm:ss) 00:00:36

Hidden units: (capacity) 12 Classification rate: (test set) 99.11

Output units: (classes) 7 Saved network ftle: ~G:4~:~ineSf.iittrl~~
'. '~'ry;,.. ;iIj!' :'.,/'~"",

Figure 5.21: Training result - 12 hidden unit neural network with the D3CB dataset

5.28



Most notable are the low capacity, high classification rate and the very short total training time. The

trajectory indicates rapid and stable learning with no evidence of over-training. The classification rate

is raised regardless of the very low space and time complexity. Input dimensionality is reduced to

only 8 and the total training time is reduced to 36 seconds.

5.4.3 Final Result

A result comparison of the initial (PUR) and final (D3CB) datasets follows. Table 5.5 shows

comparative results. Result improvements were noted across all measured criteria. Significant and

desirable reductions were achieved in input dimensionality, capacity, training time and network file

size. Not withstanding these reductions in information content and capacity, classification rates

increased by from 97.32% to 99.11 %.

Table 5.5: Final comparative result

PUR Dataset D3CB Dataset Result modification

(Original data) (Fully pre-processed) (Relative to PUR)

Dataset
pur004C.vabest.net d3c004A.vabest.net

classifier

Input space
1566 8

Dimensiona1ity reduced to

dimensionality 0.51 % of 1566

Hidden units
Hidden units reduced to

100 12
12% of 100

Training time
08:28: 11

Training time reduced to
00:00:36

(hh:mm:ss) 0.12% of 08:28:11

Network file size 2,847,856 5,887 File size reduced to

(bytes) (2.71MB) (5.74KB) 0.22% of2,847,856

Classification Absolute increase
97.32 99.11

rate (%) 1.79%

5.5 Conclusion

This chapter presents the design, implementation and analysis of the classification stage in the

olfactory system. The classification output represents the final system output. The biologically

inspired organisational framework (Chapter 2), design of the olfactory measurement front-end
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(Chapter 3), and signal processing mechanism (Chapter 4) all influenced the fmal classification result.

Encoded in these results are the effects of system organisation, measurement, pre-processing and

classification.

The search for optimal classifiers across 15 datasets would have been onerous and was avoided. A

coarse search and result analysis quickly identified the fully processed D3CB dataset as the best

candidate for full investigation. The search for an optimal classifier for the D3CB dataset showed by

pure coincidence that the first network to be trained was optimal. Several similar (12 hidden unit)

networks were trained with different random seeds but all of them produced the same result thereby

lending further credibility to the discovery of the 12 hidden unit network as the optimal classifier for

the dataset.

The D3CB dataset produced the benefit of low measurement dimensionality at 256 orders of

magnitude less than raw DCT data. The final network produced the best result across all performance

categories, namely lowest space-complexity, lowest time-complexity and highest classification rate.
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CHAPTER 6

CONCLUSION

Biological olfactory systems typically define the upper limit of olfactory performance. This study

briefly investigates the biological organisation or functional design that ultimately leads to successful

olfactory discrimination in animals. An organisational framework is produced, and an artificial

olfactory system is deployed in that framework. Although the underlying organisation is

conceptualised in a biological paradigm, the artificial olfactory system is very much a study in

engineering with inspirational cues drawn from biological olfactory organisation.

The biological olfactory sense contains many unusual specialisations such as the continuous

replacement of receptor neurons on a monthly cycle and orthogonal signal decorrelation in the

olfactory bulb. Specialisations such as these shed light on the nature of the problem and the biological

solutions that have evolved over millions of years. These biological solutions are composed of

elements that have close parallels in the engineering paradigm. As explained in Chapter 2, the core

biological logic can be expressed in engineering terms.

Contributions of this thesis: The mam contribution made by this study is the proposition and

demonstration of the fact that biological olfactory organisation provides a sound basis on which to

. specify an artificial olfactory system. The following specific contributions were made.

• The importance of temperature, humidity and flow-rate regulation was discovered and used to

guide the design of a gas handling front-end.

• Gas separation and sub-threshold detection in parallel detection channels were found to be

important.

• The notion of controlled sniffing was investigated and used to develop a standardised temporal

measurement procedure.

•
•

•

•

The bulbar map was shown to be similar to a discrete orthogonal transformation.

The architecture of axonal projections from the bulbar map to each cortical locus was shown to be

a subspace selection mechanism in the bulbar coefficient space, and was emulated in the

electronic nose.

A separability based coefficient selection mechanism was developed for the classification

problem. The mechanism should be generally applicable to other classification problems.

A gas auto-sampler, measurement control language and automated neural network training

mechanism were developed.
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Descriptions of the major conclusions follow.

Temporal episodic nature of olfactory discrimination: The entire process of conscious olfactory

discrimination in animals, from pre-receptor processes to final classification, is regulated by the

simple act of sniffing. Among other things, the regulated sniff creates a standard temporal context in

which odour measurements may be compared. This standardised measurement control system is

partially emulated in the odour measurement event that is described in Chapter 3. It is a fundamental

organisational cue derived from biological olfaction and is used to standardise the measurement

procedure.

Regulation of the measurement conditions: Several environmental variables are regulated in the

biological nose at the pre-receptor level. Quite predictably, the aim is to keep the detection

mechanism in its optimal sensing state. The same analogy is applied to the electronic nose where

temperature, humidity, carrier purity, gas flow-rate and concentration are regulated. This need to

regulate environmental conditions is a significant limiting factor in the industrial application of

electronic noses. The solution to the problem lies mainly in the development of more robust sensor

technology, which is beyond the scope of this study.

Broad-spectrum array detection: Electronic noses are distinct from gas analysers by virtue of their

ability to discriminate abstract user-definable odour conditions. It is for this purpose that the detection

mechanism must be specified as an array of sensors with distinct but broad and overlapping receptive

fields. This allows the array to sense a wider variety of odorants but necessitates advanced signal

processing for condition discrimination. Chapter 2 explains that most biological olfactory systems are

array based odour generalists. That is, they have evolved into generic odour detectors, which is

similar in purpose to the electronic nose.

The need for signal processing: Broad-spectrum array detectors are able to detect a wide range of

odorants, but they have greatly reduced discriminatory ability. Any given odorant will produce a

poorly defined and variable pattern of excitation across the array. It is therefore necessary to perform

olfactory discrimination at some subsequent signal processing stage.

Fixed·orthogonal transformation: An orthogonal transformation takes place in the mammalian

olfactory bulb and is stereotyped or unchanging across individuals of a species. Similar to the family

of discrete trigonometric transforms, the bulbar transformation expresses arbitrary input stimuli as

weighted combinations of fixed orthogonal transform bases. The DCT may be used to emulate the

bulbar transformation.
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Heuristically optimised coefficient selection: Bulbar outputs represent the fundamental building

blocks of odour character. Various combinations of these outputs converge in different regions of the

olfactory cortex where classification processes begin. It is presumed that the bulbar signals that

converge on a particular cortical locus provide focused information that is useful in a particular

classification task. In a similar fashion, a small focused selection of DCT coefficients are used to

classify cheese odours in the electronic nose. The selection methodology for bulbar outputs is not well

understood and was not emulated. A heuristic coefficient selection approach was developed with the

specific requirements of classification problems in mind.

The strategy proposed in Chapter 4 is related to and derived from existing signal and image

processing methods, however, there is a major departure with regard to intention or purpose. In image

processing, coefficient selection is usually implemented with the intention of compressing and

subsequently restoring the data stream with minimum information loss. In classification problems, the

burden of restoration is removed. Chapter 4 proposed that it is possible to select a feature subspace

(Le. a subset of an orthogonal feature space) in such a manner that classification results within that

subspace may be generalised over the original larger feature space. The technique was developed such

that the classification problem is simpler in the subspace and yet remains representative of the larger

more difficult problem. There remains significant scope for further research into subspace selection.

Capacity optimised neural classification: The number of hidden units in a neural network affects

training time, memory utilisation and final classification rate. A capacity optimised network is able to

simultaneously produce low time and space complexity, and high classification rates. There is no fast

method for finding optimal capacity. Given that some networks took as long as 24 hours to train, the

search for optimal classifiers across 15 datasets would have been onerous and was avoided. A coarse

search and result analysis quickly identified the fully processed D3CB dataset as the best candidate

for comprehensive capacity optimisation.

The D3CB dataset produced the benefit of low measurement dimensionality at 256 times smaller than

DCT data. The final network produced the best result across all performance categories namely,

space-complexity, time-complexity and classification rate. A classification rate of 99.11 % was

achieved across 560 odour measurements in 7 cheese categories. The optimised classifier trained in 36

seconds and required 5.74 KB of storage.

Suggestions for further work: This study covered a vast research domain that spans biological

research areas, measurement, signal processing, and pattern recognition. There were many topics that
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could not be addressed in this initial study. The following specific suggestions are made for further

work in this area:

• Further investigation is required into bulbar, limbic and cortical functionality and integration of

new knowledge into the system architecture.

• A parallel-measurement, multi-flow-rate system, and gas separation column should be

incorporated into a future system.

• Use of a hybrid sensor-array that incorporates various technologies such as newer tin-dioxide,

conductive polymer, optical and quartz crystal microbalance sensors will improve performance in

future systems.

• A deeper investigation should be undertaken into other orthogonal transforms, peA and

coefficient selection at the pre-processing level. It is suggested here that multiple parallel

transforms can be used to feed the coefficient selector.

• Other classification methods that are not biologically inspired such as support vector machines

and statistical classifiers should be considered for the final classification stage.

• Adaptive classification that is capable of constant online learning may provide better emulation of

biological functionality.

• Structured knowledge systems may be considered for high-level decision-making and the

management and integration of multiple specialised pre-processors and classifiers into a

dynamically configurable unified system.
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