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Abstract 

Introduction 

 

Background: Similar to other infectious organisms, Mycobacterium tuberculosis (M. 

tuberculosis) is known to develop drug resistance via acquisition of mutations in its 

deoxyribonucleic acid (DNA).  These genomic mutations often arise during the course of drug 

therapy as the result of non-compliance or inappropriate drug regimens, which create selective 

drug pressure that leads to the development of resistant strains. Although mutations that cause 

resistance to first-line anti-tuberculosis drugs have been well characterized, there is a significant 

amount of drug resistance in M. tuberculosis for which the genetic basis has not been defined.  

Knowledge of resistance conferring mutations is important for the treatment of drug-resistant 

tuberculosis (TB). Conventional phenotypic drug susceptibility testing (DST) in M. tuberculosis 

is a lengthy, cumbersome and requires laboratory containment. Therefore, molecular methods to 

determine drug resistance rapidly are highly desirable. 

 

Method: To identify novel mutations associated with drug resistance in TB, we exploited the 

results of a whole genome sequencing (WGS) study of clinical M. tuberculosis isolates from 

KwaZulu-Natal (Cohen et al., 2015). We selected loss-of-function (LOF) mutations that were 

associated with resistance. Using isogenic strains with single genes inactivated, DSTs, growth 

inhibition and complementation assays we functionally tested if these LOF mutations caused 

resistance. 

 

Results: LOF mutations in ald, encoding L-alanine dehydrogenase occurred only in drug-

resistant clinical strains. The ald LOF mutations occurred frequently within resistant clinical 

isolates from Lineage 4. The Δald conferred a growth advantage in a single gene knockout model 

in the presence of D-cycloserine. Minimum inhibitory concentration (MIC) measurements of 

clinical and laboratory strains with mutations in ald displayed increased resistance to D-

cycloserine when treated in vitro. With complementation analyses of the mutant with the cognate 

M. tuberculosis ald gene we confirmed susceptibility to D-cycloserine was partially restored, in 

this way confirming the association of the ald knock-out strain with D-cycloserine resistance.  

 

Conclusion: LOF of ald may represent a novel mechanism of resistance to D-cycloserine. Whole 

genome association studies can identify novel drug resistance conferring mutations which will 

aid in improving rapid molecular diagnostics required for the development of tailored patient 

treatment regimens. 
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CHAPTER 1 

Literature Review 

1.1 Introduction 

Approximately one third of the world’s population is infected with M. tuberculosis, the etiologic 

agent responsible for TB (WHO, 2015). While many individuals who harbour M. tuberculosis 

never develop active disease, TB is often a lethal disease and is estimated to have been responsible 

for approximately 1.5 million deaths in the year 2015 (WHO, 2015). 

 

Antibiotic therapy can be effective at treating the disease, however, the emergence of drug-

resistant TB has made control efforts more difficult. Since its initial documentation in the 1940s 

(Schatz and Waksman, 1944, Crofton and Mitchison, 1948), drug-resistant TB has increased 

globally.  In 2014, the World Health Organization (WHO) reported nearly 480,000 new cases of 

multidrug-resistant TB (MDR-TB) (WHO, 2015). MDR-TB is defined as M. tuberculosis with 

resistance to isoniazid (INH) and rifampicin (RIF). Regrettably, South Africa has one of the 

highest rates of TB globally, and one of the highest burdens of MDR-TB in the world (WHO, 

2015). 

 

Further along the scale of drug-resistant TB is the existence of extensively drug-resistant TB 

(XDR-TB). XDR-TB is defined as M. tuberculosis that is resistant to both INH and RIF, but also 

two other classes of anti-tuberculosis therapy, namely a fluoroquinolone and at least one of the 

injectable second-line drugs (Dahle, 2006). Second-line treatment is very expensive and more 

challenging to patient care as some of these drugs need to be administered intravenously (Pooran 

et al., 2013, Pietersen et al., 2014). TB treatment is often associated with serious medical 

complications due to certain drugs being very toxic and having harsh side effects (Sacchettini et 

al., 2008, Högberg et al., 2010).  

 

Diagnostic limitations are a major barrier to the identification and subsequent management of 

drug-resistant TB. With a replication rate of approximately 24 hours, M. tuberculosis is a 

particularly slow growing bacterium (Ginsberg and Spigelman, 2007). Primary isolation using 

solid or liquid culture medium takes three to six weeks for isolation (Naveen and Peerapur, 2012). 

The slow growth rate of M. tuberculosis also means that standard phenotypic laboratory DST can 

take an additional six weeks to appropriately identify M. tuberculosis and determine a clinical 

isolate’s individual drug susceptibility pattern (Garg et al., 2003, Parrish and Carrol, 2008). 

Clinically, these delays translate into late diagnosis of drug-resistant TB and deferred initiation 
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of an efficacious drug regimen, potentially leading to amplification of resistance, additional 

person-to-person spread of drug-resistant TB as well as increased morbidity and mortality (Garg 

et al., 2003).   

 

Recently developed genotypic tools have improved diagnostic efforts.  One such molecular test, 

the Xpert MTB/RIF assay has been recently implemented as a “point of care test” for the 

simultaneous detection of M. tuberculosis and diagnosis of RIF resistance in under two hours 

(Boehme et al., 2010). This test has been shown to have excellent sensitivity in smear-positive 

pulmonary TB (Boehme et al., 2010). These assays have improved TB case detection among both 

drug susceptible and MDR-TB.  While Xpert MTB/RIF detects RIF resistance, it is unable to 

distinguish MDR from XDR-TB as well as being unable to detect INH and other mono-resistances 

(Evans, 2011). The Xpert MTB/RIF assay is less sensitive than culture therefore culture based 

assays are still required, and culture still remains the standard for TB diagnosis and DST (Evans, 

2011).  

 

Another molecular genetic tool used for the detection of resistance to first and second-line anti 

TB drugs of M. tuberculosis complex is the GenoType MTBDRplus and GenoType MTBDRsl 

(Hillemann et al., 2009, Miotto et al., 2008, Hillemann et al., 2005). These tests are based on a 

DNA strip technology that can be performed from pulmonary patient specimen and from culture 

material (Lacoma et al., 2008). Results are obtained in approximately five hours compared to one 

to two months with conventional methods. The GenoType MTBDRsl test however, is only able 

to manipulate a limited number of resistance conferring mutations and this assay is only able to 

detect one in three to four cases of XDR-TB (Theron et al., 2014). The GenoType MTBDRplus 

and GenoType MTBDRsl is less sensitive in smear negative patients and requires confirmatory 

culture methods (Tomasicchio et al., 2016). Thus, these tools are still not optimal, and new 

improved therapeutic and diagnostic interventions are still urgently required to effectively halt 

the drug-resistant TB epidemic. 

 

While current genotypic tests are useful, these tests are only able to identify known resistance 

mutations. As indicated above the GenoType MTBDRsl has limited sensitivity for 

fluoroquinolone and aminoglycoside resistance indicating, there is still a significant amount of 

drug resistance in M. tuberculosis for which the molecular determinants are unknown (Zhang and 

Yew, 2009, Desjardins et al., 2016) even for these standard second-line drugs. Thus, it is likely 

that there are yet unidentified M. tuberculosis genes that confer drug resistance to these agents as 

well as to other second-line drugs where the resistance mechanisms have been less 
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comprehensively studied. Recent interest in WGS on sputum or on cultured isolates (Brown et 

al., 2015) has been increasing, this technology could potentially generate a full catalogue of all 

resistance conferring mutations and allow us to fully comprehend the genetic foundation of drug 

resistance (Köser  et al., 2013, Coll et al., 2015, Starks et al., 2015, Colijn and Cohen, 2016). 

 

The first M. tuberculosis genome to be successfully sequenced was the laboratory strain H37Rv 

by Cole and colleagues in 1998 (Cole et al., 1998). In this important undertaking, it was revealed 

that the M. tuberculosis genome contains 4,411,529 base pairs and approximately 4000 genes. 

While H37Rv is a fully drug susceptible strain, WGS has advanced dramatically since then and 

increasing numbers of studies of clinical isolates are beginning to shed additional light on the 

genetic diversity of drug susceptible and drug-resistant M. tuberculosis (Farhat et al., 2013, Köser  

et al., 2013, Zhang et al., 2013, Casali et al., 2014, Cohen et al., 2015, Farhat et al., 2016) 

   

 

Figure 1.1: The M. tuberculosis H37Rv genome (Cole et al., 1998). H37Rv is GC-rich genome containing 

4,411,529 base pairs. This genome was reported to encode 4057 genes, of which 4007 encoding RNA for 

proteins and 50 encoding for RNA molecules 

 

Various studies using WGS have shown that for the first-line drugs INH and RIF; genome 

sequencing can predict a drug susceptibility phenotype determined in culture with high specificity 

and sensitivity (Coll et al., 2015, Walker et al., 2015). For example, a study conducted by Coll et 



4 

 

al., (2015) utilized WGS derived mutations as a predictor for drug resistance. In this study in 

silico inferred resistance phenotypes were compared to traditional DST. From their mutation 

analysis the authors were able to predict a 96.0% and 92.8% of resistance to RIF and INH 

respectively when compared to conventional methods (Coll et al., 2015). The comparison was 

less successful in other first-line drugs namely, pyrazinamide (PZA), as these strains possessed a 

resistant profile which was not recognizable by the genome analysis, although there are still 

reliability issues with DST for this drug. In ethambutol, however, it was found that susceptible 

strains possessed mutations that had previously been associated with resistance. Upon extending 

their analysis to second-line drugs, they found that only 39% of capreomycin resistant strains 

were unable to be identified by use of the authors in silico genome analysis. For the drug 

moxifloxacin, of the 42 strains that were tested, ten were classified as phenotypically resistant by 

conventional DST methods, but only six of which were identified as resistant by the mutation 

analysis (Coll et al., 2015).  

 

In another study, Farhat et al., (2013) developed a phyC method to identify mutations significantly 

evolving more frequently on drug resistance branches of the phylogenetic tree as compared to 

drug sensitive mutations. This was done, utilizing a permutation test to control for phylogenetic 

tree topology and the distribution of phenotypic resistances (Farhat et al., 2013). The authors 

discovered that mutations in the gene ponA1 conferred a modest growth advantage in the presence 

of low levels of RIF (Farhat et al., 2013). Zhang et al., (2013) developed a method that pre-filtered 

single nucleotide polymorphisms (SNPs) identified as phylogenetic i.e. inherited and not related 

to drug resistance (Zhang et al., 2013). The authors then identified genes with either an 

overabundance of non-phylogenetic mutations in general, or a greater number of non-

phylogenetic mutations in drug-resistant strains than in drug sensitive ones (Zhang et al., 2013). 

Both studies robustly recovered known resistance mechanisms for a number of drugs, and 

identified novel mutations associated with resistance. However, only the ponA1 mutation was 

characterised functionally to show that it contributed to RIF resistance so it is unknown whether 

any of the other identified mutations actually confer resistance. This illustrates how important it 

is to use molecular studies to characterise mutations identified in WGS association studies. 

 

Another approach has been to use targeted sequencing of known resistance conferring loci (Farhat 

et al., 2016). Farhat et al., (2016), sequenced 1397 clinical strains and could predict >90% 

resistance to RIF and INH. However, the results of this study further illustrated that for second-

line drugs a considerable proportion of drug resistance is not explained by known mutations.  



5 

 

Further elucidation of the genomic basis of resistance is therefore needed to develop much-needed 

improvements in the design of rapid molecular diagnostics. To develop these assays, we must 

identify all the relevant genes and genetic mutations that confer resistance. This will only be 

achieved by combining WGS studies with functional genomics.  

In this masters study we used data from a genome wide association study to identify mutations 

associated with resistance. We focussed on frameshift mutations and intragenic insertions or 

deletions which we termed LOF mutations as these are guaranteed to inactivate the gene and result 

in a loss of gene function. In contrast the effects of non-synonymous SNPs on gene function are 

hard to predict in silico. Utilizing genomes from this completed WGS transmission study (Cohen 

et al., 2015), we selected LOF mutations associated with resistance. Screening isogenic strains 

with insertional inactivation of individual genes we were able to identify a novel mechanism by 

which M. tuberculosis gains resistance to D-cycloserine. We employed molecular techniques to 

determine that this ald LOF mutation caused resistance to D-cycloserine. To date, little is known 

about clinical isolates and resistance to D-cycloserine. Given the toxicities associated with D-

cycloserine (Kendig et al., 1956, Murray, 1956, Bankier, 1965, Yew et al., 1993, Cunha, 2001, 

Torun et al., 2005, Mitnick et al., 2008) and technical difficulties (Kam et al., 2010) in performing 

DSTs to this drug, a rapid molecular test could provide a better avenue to determine resistance.  
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1.2 D-cycloserine  

1.2.1 Discovery 

D-cycloserine also known as oxazolidine, is an anti-tubercular drug that was initially discovered 

as a metabolic product of Streptomyces in 1952 (Kuehl Jr et al., 1955).  D-cycloserine is an 

analogue of D-alanine, and was found to be produced by Streptomyces lavendulae and 

Streptomyces garyphalus (Harris et al., 1955, Kuehl Jr et al., 1955, Zawadzke et al., 1991). D-

cycloserine exists in a cyclic form and is obtained naturally as a d-isomer (Lee et al., 1998).  

 

1.2.2 Structure of D-cycloserine  

 

Figure 1.2: Chemical structure of D-cycloserine. This drug belongs to a group of organic compounds 

termed alpha amino acids (Takahashi et al., 1981), that have their amino group attached to a carbon atom, 

which is adjacent to a carboxylate group (Takahashi et al., 1981).  

 

1.2.3 Mechanism of action 

Early studies provided insight into the mode of action of D-cycloserine (Pittillo and Foster, 1954, 

Bondi et al., 1957, Morrison, 1962, Zygmunt, 1963).  Pittillo and Foster.,(1954) demonstrated 

that D-alanine reversed the effects of D-cycloserine when added  to liquid cultures of Aerobacter 

aerogenes (Pittillo and Foster, 1954).  

 

Bondi et al.,(1957), showed in Staphylococcus aureus that alanine supplementation negated the 

effect of D-cycloserine (Bondi et al., 1957). This study deduced that D-cycloserine interferes with 

the alanine metabolism pathway (Bondi et al., 1957).  

 

Further studies conducted on Escherichia coli (E. coli) and S. aureus demonstrated that D-alanine 

was more effective at reversing the effects of D-cycloserine than L-alanine (Zygmunt, 1963). 

Work conducted on M. tuberculosis and Mycobacterium phlei also demonstrated that growth 

inhibition by D-cycloserine was reversed by  the addition of D-alanine (Morrison, 1962).  
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D-cycloserine is an analogue of D-alanine and is known to be an inhibitor of peptidoglycan cell 

wall biosynthesis (Caceres et al., 1997). Peptidoglycan is a composite polymer made up of glycan 

chains which are cross linked by short peptide chains (Typas et al., 2012, Barreteau et al., 2008). 

Peptidoglycan is an integral component of the bacterial cell wall including that of M. tuberculosis 

(Typas et al., 2012). In addition to providing architectural support, peptidoglycan is crucial for 

cell durability. Several potent antibiotics have also been known to target the synthesis of 

peptidoglycan, as peptidoglycan is an ideal target for drug design (Kieser and Rubin, 2014). 

Peptidoglycan is the backbone of bacterial cell wall, and is essential for cell wall biosynthesis and 

maintenance of all bacteria including mycobacteria (Morlock et al., 2003). 

 

 

 

Figure 1.3: Chemical structure of D-alanine. D-cycloserine is the structural analogue of D-alanine 

(https://pubchem.ncbi.nlm.nih.gov/compound/D-alanine) 

 

D-cycloserine is involved in the competitive inhibition of two key enzymes in the alanine 

metabolism pathway. These two important enzymes were also found to be targets in initial studies 

conducted on E. coli (Neuhaus and Lynch, 1964, Reitz et al., 1967, Lambert and Neuhaus, 1972). 

The two enzymes, alanine racemase (encoded by alr) (Lambert and Neuhaus, 1972) and D-

alanine:D-alanine ligase  (encoded by ddlA) (Strominger et al., 1960, Prosser and de Carvalho, 

2013) are essential in the synthesis of peptidoglycan (Walsh, 1989).  Alanine racemase is essential 

for the conversion of L-alanine to D-alanine (Strych et al., 2001, LeMagueres et al., 2005). 

Bacteria use D-alanine for the synthesis of the peptidoglycan cell wall. Once D-alanine is created 

by alanine racemase, the D-alanine molecules are then joined to create a dipeptide. This D-

alanine:D-alanine dipeptide is created by a ligase enzyme D-alanine:D-alanine ligase which 

synthesizes the dipeptides and allows for further elongation to create the peptidoglycan cell wall 

(Bruning et al., 2011).  

https://pubchem.ncbi.nlm.nih.gov/compound/D-alanine
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In earlier studies conducted on M. tuberculosis, alanine racemase and D-alanine:D-alanine ligase 

enzymes were proposed targets of D-cycloserine in mycobacteria (Reitz et al., 1967, David et al., 

1969). Studies conducted on M. smegmatis revealed that inactivation of the alanine racemase and 

D-alanine:D-alanine ligase enzymes result in susceptibility to D-cycloserine, and overexpression 

of alanine racemase is implicated in resistance to D-cycloserine (Zhang, 2005).  

 

1.2.4 Clinical Uses 

An oral bacteriostatic agent for the treatment of TB, D-cycloserine belongs to Group four of the 

World Health Organization categorization (WHO, 2008a).  As a second-line agent, D-cycloserine 

is commonly used in the treatment of MDR and XDR-TB (Caminero et al., 2010). An advantage 

of using D-cycloserine in the treatment of drug-resistant TB is that it has not shown to have cross 

resistance to other antibiotics (WHO, 2008b, Caminero et al., 2010). Beyond its anti-tubercular 

activity, D-cycloserine is also known to have broad-spectrum activity against gram-positive 

bacteria, including S. aureus and some gram-negative bacteria, including E. coli (Roze and 

Strominger, 1966, Lambert and Neuhaus, 1972).  

 

Terizidone is a derivative of D-cycloserine and structurally is formed by two molecules of D-

cycloserine joined by a molecule of terephtalic dialdehyde (Zitkova and Toušek, 1974). 

Terizidone is rapidly metabolised to form two molecules of D-cycloserine after administration to 

humans. Terizidone has similar activity to D-cycloserine in that it is used to treat patients with 

MDR and XDR-TB and is also an oral bacteriostatic drug.  Terizidone is administered to patients 

as it may have an improved safety profile and is a cheaper alternative in resource limited settings 

(Zitkova and Toušek, 1974, Galietti et al., 1991, Vora, 2010). 

 

 

 

 

 

 

 

 

Figure 1.4: Chemical structure of Terizidone. This drug possesses double molecules of D-cycloserine 

that are joined by a molecule of terephtalic dialdehyde (Hwang et al., 2013). 
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1.2.5 Limitations of D-cycloserine chemotherapy 

While D-cycloserine is an effective antimicrobial in TB treatment, its severe toxicity limits its use 

(Cunha, 2001, Torun et al., 2005, Mitnick et al., 2008). D-cycloserine has been known to promote 

increased anxiety and depression in patients (Kendig et al., 1956, Murray, 1956). Side effects 

include drowsiness, vertigo, memory loss, psychosis, convulsion and seizures (Yew et al., 1993, 

Bankier, 1965).  

 

Phenotypic DST and current molecular testing for D-cycloserine resistance is not performed 

routinely by clinical laboratories due to instability of the drug (Kam et al., 2010) and due to 

difficulties with the assay. D-cycloserine is unstable in acidic conditions, but relatively stable 

under alkaline and neutral pH conditions (Woods, 2000, Kam et al., 2010). Therefore, use of 

freshly prepared solutions of D-cycloserine is recommended for determination of bacterial 

susceptibility, and complicates testing in clinical laboratories.  

 

Given the toxicities of D-cycloserine, it would be ideal to prescribe this drug only to individuals 

who harbor susceptible strains (Bastos et al., 2014, Cegielski et al., 2014). Rapid diagnostics that 

predict resistance to these drugs do not yet exist, therefore the development of molecular 

diagnostics that assess D-cycloserine resistance will allow for optimization of MDR and XDR 

regimens. This in turn will lead to improved care of patients with drug-resistant TB.  
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1.3 Roles of D-alanine:D-alanine ligase and alanine racemase in the mechanisms of action 

and resistance to the peptidoglycan inhibitor D-cycloserine 

Multiple studies in different organisms have shown that D-cycloserine interferes with the 

metabolism and incorporation of D-alanine into the peptidoglycan cell wall. D-cycloserine has 

been shown to target the two enzymes, alanine racemase and the D-alanine:D-alanine ligase. Only 

recently have studies been carried out to determine which of these enzymes is the principle target 

in mycobacteria.  

 

1.3.1 D-alanine branch pathway of peptidoglycan biosynthesis 

Alanine racemase and D-alanine:D-alanine ligase function in attaining D-alanine from L-alanine 

into UDP-muramvl pentapeptide. D-alanine is the central molecule which functions in the 

crosslinking step of peptidoglycan assembly and is a key component in peptidoglycan synthesis 

(Feng and Barletta, 2003).  The pyridoxal phosphate-dependent alanine racemase catalyzes the 

conversion of L-alanine to D-alanine, while the ATP-dependent D-alanine:D-alanine ligase 

synthesizes the D-alanine:D-alanine dipeptide, which is incorporated into UDP-muramyl 

tripeptide by a D-alanine:D-alanine adding enzyme (MurF) (Feng and Barletta, 2003). These 

enzymes constitute the D-alanine branch pathway of peptidoglycan biosynthesis (Walsh, 1989).  

 

 

Figure 1.5: A diagrammatic representation showing the alanine metabolism pathway and targets of 

D-cycloserine in bacteria. Alanine racemase and D-alanine:D-alanine ligase are involved in the synthesis 

of peptidoglycan. Alanine racemase functions in converting L-alanine to D-alanine, which are joined to 

create a dipeptide. The dipeptide is formed by D-alanine:D-alanine ligase which allows for further 

elongation to create the peptidoglycan cell wall.  
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1.3.2 D-cycloserine competitively inhibits alanine racemase and the D-alanine:D-alanine 

ligase 

The targets of D-cycloserine were initially elucidated in other bacteria. Experimental studies 

conducted on S. aureus demonstrated that D-cycloserine possessed the correct conformation that 

is required to bind L- and D-alanine on the enzyme surface. This was not demonstrated by L-

cycloserine. The authors showed that D-cycloserine played a role in the competitive inhibition of 

alanine racemase (Roze and Strominger, 1966). 

 

Studies conducted on E. coli showed that D-cycloserine can target both alanine racemase and D-

alanine:D-alanine ligase (Lambert and Neuhaus, 1972). Research conducted on D-cycloserine 

resistant mutants of Streptococcus gordonii also showed an overproduction of the alanine 

racemase and D-alanine:D-alanine ligase enzymes, in this way proposing that these two enzymes 

play a synergistic role against D-cycloserine inhibition (Reitz et al., 1967). 

 

These studies implicated both alanine racemase and D-alanine:D-alanine ligase as potential D-

cycloserine drug targets in mycobacteria.  

 

1.3.3 Mechanism of action of D-cycloserine in mycobacteria 

The first proposal that D-alanine:D-alanine ligase was the target for D-cycloserine in M. 

tuberculosis was a study that isolated strains resistant to D-cycloserine and evaluated their uptake 

of alanine (David, 1971). The D-cycloserine resistant mutant strains were categorised as being 

either alanine permease competent or defective by measuring their uptake of D-alanine and other 

amino acids. The authors found D-cycloserine resistance mutants with normal uptake of D-alanine 

and hypothesised that these strains might harbour mutations in the ddl gene which encodes D-

alanine:D-alanine ligase. However, there was no molecular confirmation to support the 

hypothesis (David, 1971).  

 

The first formal genetic analysis of alr (gene which encodes alanine racemase) was conducted by 

Caceres et al., (1997). The authors constructed a genomic library from a D-cycloserine resistant 

mutant of M. smegmatis which was transformed back into wild-type M. smegmatis. The clones, 

which were resistant to D-cycloserine, were selected and isolated for downstream analysis. In 

their experiments, D-cycloserine resistant mutants were observed to carry a mutation in the 

promoter region of alr, which subsequently causes its overexpression. The D-cycloserine resistant 

phenotype was also confirmed in M. intracellulare and M. bovis BCG by overexpressing the M.  

smegmatis alrA gene suggesting that this mechanism of resistance could also occur in slow-
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growing and pathogenic mycobacterial species. They suggested that this was evidence indicating 

that alrA was the target for D-cycloserine, due to target amplification and less competitive 

inhibition by D-cycloserine (Caceres et al., 1997). However, if the target for D-cycloserine is 

actually ddlA then it is possible that increasing the D-alanine pool might overcome competitive 

inhibition at the second stage of the D-alanine branch pathway.  

 

Further work on the characterization of mycobacterial alr was conducted in M. smegmatis. In a 

study where the alr gene was insertionally inactivated by homologous recombination, it was 

observed even in the absence of D-alanine,  that alr was not necessary for growth (Chacon et al., 

2002).  The authors concluded that there could be an alternate pathway for D-alanine synthesis. 

However, in a subsequent study to re-evaluate if an alr knock-out could grow in the absence of 

D-alanine, the alr gene was knocked out and replaced with a kanamycin resistant cassette. Mutant 

colonies were grown in the presence and absence of D and L-alanine. The authors observed strains 

lacking the alr gene did in fact require D-alanine for growth in both Luria-Bertani medium and 

7H11 minimal medium. This indicated  that alr is essential for obtaining D-alanine for cell wall 

synthesis,  compatible with it being the target for D-cycloserine (Milligan et al., 2007). This is 

indicative that insertional inactivation of the alr gene utilised by Chacon et al., (2002) may not 

have eliminated all alanine racemase activity completely. Studies have shown that insertional 

inactivation can in some cases permit continued production of the active protein (Iredale, 1999, 

Vanhaesebroeck et al., 2004).  

 

The role of alanine racemase was further investigated in macrophages of mice using M. 

tuberculosis H37Rv (Awasthy et al., 2012). The alr gene was inactivated using a two-step 

homologous recombination technique and tested in vivo and in vitro. In vitro growth assays 

showed that the alr knockout requires low concentrations of D-alanine for growth and removal 

of this amino acid resulted in no visible growth. In the macrophage model, the alr mutant 

exhibited poor growth relative to the wild-type illustrating the need for D-alanine for survival 

intracellularly. They went on further to infect mice intravenously with the wild-type H37Rv and 

the alr mutant. After a week of infection, mice were sacrificed and organs were plated for colony 

forming units (CFU). Once inside the mice M. tuberculosis strains lacked available D-alanine, 

which resulted in the alr mutant initially losing viability and thereafter stabilizing. This suggested 

that a lack or depletion of this amino acid makes cells more susceptible to D-cycloserine. The 

authors concluded that alanine racemase is a drug target of D-cycloserine (Awasthy et al., 2012).  

 



13 

 

To explore the relative roles of alanine racemase and D-alanine:D-alanine ligase in resistance to 

D-cycloserine a subsequent study showed that overexpression of the ddl gene from either M. 

smegmatis or M. tuberculosis could cause resistance to D-cycloserine in M. smegmatis raising the 

possibility that the D-alanine:D-alanine ligase could also be the target (Feng and Barletta, 2003). 

This was supported by the observation that a strain overexpressing both the alr and ddl genes 

displayed a higher level of resistance to D-cycloserine than strains overexpressing either gene 

alone. Belanger et al. (2000) engineered a temperature -sensitive mutant of M. smegmatis which 

was composed of a single amino acid substitution in D-alanine:D-alanine ligase (Belanger et al., 

2000).  The authors found the mutant strain to be more susceptible to D-cycloserine due to the 

decreased activity of the mutated D-alanine:D-alanine ligase enzyme further supporting the ligase 

as a target.  

 

More recent metabolomic studies have suggested that D-alanine:D-alanine ligase is in fact the 

principal target for D-cycloserine (Prosser and de Carvalho, 2013). Using [2H] isotopically 

labelled L-alanine and a mass spectrometry approach the authors tracked alanine racemase and 

D-alanine:D-alanine ligase activity in M. tuberculosis treated with D-cycloserine in order to 

determine the mechanism of action. It was found that D-alanine:D-alanine ligase was more 

inhibited indicative of D-alanine:D-alanine ligase as a target of D-cycloserine (Prosser and de 

Carvalho, 2013).  

 

Halouska et al.,(2013) aimed to identify the target of D-cycloserine by incorporating 

metabolomics and Nuclear Magnetic Resonance (NMR). They grew M. tuberculosis H37Rv and 

M. smegmatis mc2 155 cultures in media supplemented with 13C labelled alanine. The cultures 

were treated with D-cycloserine and the metabolome was extracted. The authors applied NMR to 

characterize the metabolome of  M. tuberculosis H37Rv and M. smegmatis mc2 155 cultures 

(Halouska et al., 2013). They utilised D-alanine production as a readout and found an 

accumulation of this amino acid. The authors proposed that this may be as a result of the inhibition 

of D-alanine:D-alanine ligase by D-cycloserine. They concluded that D-alanine:D-alanine ligase 

is the principal target of D-cycloserine as cell growth is suppressed when the production of D-

alanyl-D-alanine is stopped (Halouska et al., 2013).  
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1.4 Mechanism of Resistance to D-cycloserine 

Resistance to D-cycloserine occurred as early as the 1950s (Steenken and Wolinsky, 1956, 

Bottero et al., 1958, Cohen and Dross, 1960, Grosset and Canetti, 1962). Strains resistant to D-

cycloserine were first observed in M. tuberculosis in 1956 (Cummings, 1956). Cummings et 

al.,(1956) showed 36% of patients receiving D-cycloserine therapy for six months developed 

resistance.  Another early key finding was that resistant mutants selected in vitro had a range of 

MICs suggesting multiple mechanisms of resistance (Nitti and Tsukamura, 1957, Tsukamura et 

al., 1963). Despite these early phenotypic observations, the genetic mechanisms of resistance in 

clinical isolates has not been defined.  

 

1.4.1 cycA 

Like resistance to other drugs, D-cycloserine resistance occurs in steps with an additional level of 

resistance. Isolation and classification of step-wise D-cycloserine resistant mutants have been 

performed in numerous bacterial species, including S. aureus (Howe et al., 1964), E. coli (Curtiss 

et al., 1965), Streptococcus gordonii (Reitz et al., 1967) and mycobacteria (Caceres et al., 1997, 

David, 1971). 

 

Further genetic studies characterised cycA, which encodes a permease (Curtiss et al., 1965) that 

transports the amino acids β-/L-/D-alanine, glycine and D-serine as well as D-cycloserine. These 

studies led researchers to investigate cycA in mycobacteria. Mycobacterium bovis bacillus 

Calmette-Guérin (BCG), which originated from the infectious M. bovis, is used as a vaccine 

against TB (Brosch et al., 2007). BCG is innately resistant to D-cycloserine (Goh and Rastogi, 

1991, Pelayo et al., 2009) and has a mutation in cycA relative to M. bovis. By complementing 

BCG with wild-type cycA they were able to partially restore susceptibility to D-cycloserine, 

suggesting cycA was also a D-cycloserine transporter in mycobacteria. But other mechanisms of 

resistance may also contribute to the D-cycloserine phenotype in BCG (Chen et al., 2012).  

 

1.4.2 Alanine racemase and the D-alanine:D-alanine ligase 

The studies described above would suggest that promoter or regulatory mutations that result in 

the upregulation of alr and ddlA genes result in resistance to D-cycloserine. Conceivable 

intragenic mutations in either or both of these genes could lead to a loss of affinity of D-

cycloserine and resistance.  
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Due to the limited data available for clinical strains, of interest was a WGS study conducted on 

patient isolates. Here, the authors found in one particular patient the acquisition of the mutation 

S22L, a nonsynonymous mutation in the gene alr which was predicted to confer resistance to D-

cycloserine (Merker et al., 2013).  

 

1.4.3 Other mechanisms of resistance  

In addition to cycA, alr and ddlA there may be other mechanisms of D-cycloserine resistance. 

Peteroy et al.,(2000) constructed a laboratory mutant resistant to both D-cycloserine and 

vancomycin of M. smegmatis (Peteroy et al., 2000). In pathogenic bacterial organisms resistance 

to D-cycloserine and vancomycin resistance is normally associated with D-alanine:D-alanine 

ligase which is encoded for by the ddlA gene (Van Heijenoort, 1996).  The authors were unable 

to find mutations associated with this phenotype, including characterization of ddl, and the 

mechanism of resistance in their mutant model remains unknown. Work from other bacteria 

indicate that resistance to D-cycloserine may be more complex, and mutations in d-amino acid 

dehydrogenase (DadA) can cause resistance in E. coli (Baisa et al., 2013).  

 

1.5 L-alanine dehydrogenase  

L-alanine dehydrogenase was initially discovered in Bacillus subtilis (Wiame and Pierard, 1955). 

Rv2780 encodes L-alanine dehydrogenase (ald), which catalyzes the NAD-dependent 

interconversion between L-alanine and pyruvate. The forward reaction is necessary for aerobic 

utilization of alanine as a nitrogen source and the reverse reaction is involved in the reductive 

amination of pyruvate to L-alanine (Feng et al., 2002).  The forward and reverse reaction of L-

alanine dehydrogenase are as follows:  

 

  

1.5.1 Significance of L-alanine dehydrogenase in pathogenesis 

Alanine dehydrogenase activity  has proven to be important in some bacteria as it has been 

associated with persistence models such as sporulation.  

 

Bacillus subtilis has the ability to differentiate into heat-resistant spores under environmentally 

stressed conditions (Siranosian et al., 1993). This study revealed alanine is required for normal 

spore formation, and alanine dehydrogenase plays an essential role in growth when alanine is the 

sole carbon source, as alanine dehydrogenase is required for the catalytic deamination of alanine 
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to pyruvate and ammonia. The authors observed the ald gene is essential for normal sporulation, 

as the ald mutants showed a defectiveness in sporulation, and that pyruvate supplementation 

partially abrogated the phenotype suggesting that pyruvate generated by alanine dehydrogenase 

is an essential metabolic substrate under certain conditions (Siranosian et al., 1993).  

 

Myxococcus xanthus, is a gram-negative bacterium which is able to produce myxospores under 

starvation conditions (Bretscher and Kaiser, 1978).  This study confirmed that the aldA gene does 

encode a functional alanine dehydrogenase, which again is essential for the catalytic 

interconversion of alanine to pyruvate and ammonia. The ald mutants displayed reduced rates of 

sporulation, indicating ald is required for normal development (Ward et al., 2000).  

 

In mycobacteria, the L-alanine dehydrogenase enzyme was found to be present in infectious M. 

tuberculosis strains and absent in the vaccine strains of BCG (Andersen et al., 1992).  Chen et 

al.,(2003) showed BCG strains were unable to utilise L-alanine or D-alanine as a sole nitrogen 

source due to a frameshift mutation in the ald gene (Chen et al., 2003). This could be reversed by 

complementing with wild-type ald. BCG’s inability to replicate in humans has been proposed to 

be associated with the absence of a functional alanine dehydrogenase preventing the development 

of protective immunity (Scandurra et al., 2006). In M. bovis the ald gene possesses a single 

nucleotide deletion and consequently lacks alanine dehydrogenase (Chen et al., 2003). These 

studies demonstrated that there are differences in the central metabolism between M. bovis and 

M. tuberculosis (Chavadi et al., 2009). Regardless of changes in metabolism, M. bovis can cause 

disease in humans and BCG complemented with the M. tuberculosis ald gene displayed no change 

in survival in both macrophages and mice (Scandurra et al., 2006).  

 

Mycobacterium marinum is the causative agent of fish and amphibian TB (Aronson, 1926, Clark 

and Shepard, 1963). Gene expression profiling of M. marinum, used as a surrogate to study the 

pathogenicity of M. tuberculosis  in its persistence state in granulomas, found that ald was one of 

the genes upregulated in frog granulomas upon nutrient starvation (Chan et al., 2002). This 

indicates that ald may be important in maintaining the NAD pools under stressful conditions, or 

could be involved in persistence (Ramakrishnan et al., 2000, Chan et al., 2002).  

 

In Mycobacterium smegmatis L-alanine dehydrogenase activity was increased during oxygen 

depleted conditions (Dick et al., 1998, Hutter and Dick, 1998, Raynaud et al., 1998, Usha et al., 

2002). This has led to the belief that L-alanine dehydrogenase may be involved in the recycling 

of NADH under respiratory-inhibitory conditions such as hypoxia (Hutter and Dick, 1998). This 
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study also showed alanine dehydrogenase was overproduced under anaerobic conditions, which 

mimic dormancy (Hutter and Dick, 1998). Feng et al., (2002), further illustrating that L-alanine 

dehydrogenase may play an essential role in oxygen limited environments (Feng et al., 2002).  

 

In a study conducted on M. tuberculosis, ald was found to be upregulated under hypoxic 

conditions (Giffin et al., 2012). Here, alanine dehydrogenase played a multi-specific enzymatic 

role where it was able to utilize both glyoxylate or pyruvate as substrates. In a subsequent study, 

alanine dehydrogenase was found to be highly expressed in the late non-replicating persistent 

(NRP-2) stage (Giffin et al., 2016). They also reported a growth defect in strains which possessed 

the alanine dehydrogenase mutant. This study in M. tuberculosis showed that ald had a role in 

reaeration of hypoxic cultures. 

 

1.6 Problem statement 

The emergence of drug-resistant M. tuberculosis poses a huge threat to TB control strategies. To 

overcome this significant problem, there is need for the development of novel rapid diagnostics 

for the detection and identification of drug-resistant M. tuberculosis. Similarly, the identification 

of genes and mechanisms which may confer drug resistance in M. tuberculosis are urgently 

required to stem this global epidemic.  

 

1.7 Rationale 

To date little is known regarding the mechanism of resistance of D-cycloserine among M. 

tuberculosis clinical strains. By utilizing WGS we would be able to identify novel drug resistance 

conferring mutations, which could elucidate new mechanisms leading to D-cycloserine resistance. 

We incorporated the use of ald’s LOF in housekeeping and clinical M. tuberculosis strains to 

demonstrate D-cycloserine resistance in vitro. 

 

1.8 Hypothesis 

L-alanine dehydrogenase (ald) is involved in the alanine metabolism pathway. Genomic 

association studies identified LOF mutations in ald restricted to drug-resistant strains. We 

hypothesise that polymorphisms in ald may cause D-cycloserine resistance. 
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1.9 Aim 

To determine the functional consequences of ald’s LOF and their effect on D-cycloserine 

susceptibility.  

1.10 Specific Objectives 

1. To characterise novel LOF mutations identified by genomic studies to determine their 

effect on drug susceptibility. 

 

2. To perform DST’s to first and second-line TB drugs on single gene knock-outs to identify 

genes that confer drug resistance. 

 

3. To compare growth and viability of the sequenced clinical isolates under selective drug 

exposure. 

 

4. To assess if loss of ald function confers increased cycloserine resistance as evidenced by 

longer TTP in Mycobacterial Growth Indicator Tubes (MGIT) supplemented with D-

cycloserine. 

 

5. To assess if complementation of ald restores growth inhibition by D-cycloserine. 
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CHAPTER TWO 

Materials and Methods 

 

2.1 Study design 

2.1.1 Study Population 

Samples for this study were obtained retrospectively and prospectively from individuals during 

2008-2013 (based in Kwazulu-Natal, South Africa). Full ethical approval was obtained from the 

University of KwaZulu-Natal following protocols Ref:  

 

EXP052/06- Rapid survey of drug-resistant tuberculosis in Kwazulu-Natal,  

BF005/09- Treatment outcomes of Extensively Drug-Resistant (XDR-TB) at King George V 

Hospital, Kwazulu-Natal, South Africa 

BE075/12- New diagnostics for TB Drug-Susceptibility Testing (TB-DST) 

BE085/12- Analysis of any microbiological data generated from the laboratory, including 

bacteria, mycobacteria, fungi and parasites for publication purposes 

and BE022/13- Collection of Sputum, Urine and Blood samples for research at K-RITH 

 

Expedited ethical approval was obtained from the University of KwaZulu-Natal following 

protocol Ref:  

 

BE482/16- Genetic mechanisms of D-cycloserine resistance 

 

2.2 Procedures 

2.2.1 DNA extraction 

Isolation of genomic DNA using the cetyltrimethylammonium bromide (CTAB)-lysozyme 

method is one of the most efficient methods of extraction (Larsen et al., 2007a). This method 

yields high quality DNA which is useful for Southern blotting, PCR and the screening of clones 

(Connell, 1994). The CTAB-lysozyme method is suitable for isolation of DNA from small volume 

cultures (Larsen et al., 2007a).  

 

2.2.1.1 Growth conditions of clinical strains prior to extraction 

Clinical isolates were streaked on Middlebrook 7H10 agar medium. A single colony was picked 

for growth in Middlebrook 7H9 liquid medium supplemented with 0.5% glycerol, 0.05% Tween 
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80 and 10% oleic acid-albumin-dextrose-catalase (OADC) at 37C with 5% CO2 (Larsen et al., 

2007b). DNA was extracted from the liquid culture using the (Larsen et al., 2007a) protocol.  

 

2.2.1.2 Extraction of genomic DNA (Larsen et al., 2007a) 

Procedure 

Day 1 

1. Preceding DNA extraction, 1 mL of 10% glycine was added to 10 mL late log culture. The 

samples were vortexed briefly and incubated at 37C with a CO2 content of ~5 % for 24 hours.  

 

Day 2 

2. Samples were removed from the incubator and transferred to individually labelled 50 mL 

conical tubes. Centrifugation followed at 2000 x g for 10 minutes.  

3. The supernatant was discarded and samples were resuspended in 450 µL GTE solution. 

Samples were then transferred to individual microcentrifuge tubes holding 50 µL of a freshly 

prepared 10 mg/mL lysozyme solution. 

 

Day 3 

4. The samples were further incubated at 37C, 5% CO2 for 24 hours. 

5. A 2:1 solution of 10% SDS and 10 mg/mL proteinase K was prepared. A volume of 150 µL 

of this freshly prepared solution was added to the samples and were mixed gently. The 

samples were incubated for a period of 30 minutes on a heating block at 55C.   

6. A 200 µL aliquot of NaCl was added to each sample tube and mixed gently.  

7. CTAB solution was preheated to 65C. A volume of 160 µL of this reagent was added to each 

sample tube. Samples were further incubated for 10 minutes at 65C.  

8. Following heating, ~1 mL of 24:1 (v/v) chloroform/isoamyl was added to the sample tubes. 

The tubes were shaken vigorously.  

9. Tubes were centrifuged at 7000 x g for 5 minutes. 

10. The aqueous supernatant (900 µL) was then transferred to a new microcentrifuge and 

~900 µL of 24:1 (v/v) chloroform/isoamyl was added and the extraction process repeated. 

11. Following centrifugation, the aqueous supernatant (~800 µL) was transferred to a new 

microcentrifuge tube.  

12. To the supernatant 560 µL of isopropanol was added. Samples were mixed by inversion to 

precipitate the DNA. 

13. Samples were incubated at room temperature for 10 minutes. 

14. Following incubation samples were microcentrifuged at 7000 x g for 10 minutes.  
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15. The supernatant was then discarded and the pellet was washed with 1 mL of 70% ethanol. 

16. Samples were again microcentrifuged at 7000 x g for 10 minutes. 

17. The supernatant was discarded post ethanol wash and the pellets were allowed to air-dry for 

15 minutes. 

18. To the pellet 50 µL of TE buffer was added to elute the DNA.  A 24-hour incubation in the 

4C refrigerator followed to dissolve the DNA.  

19. Samples were then stored at 20C for downstream applications.  

 

2.2.2 Drug susceptibility testing (DST)  

DST is critical in prescribing an effective drug regimen for appropriate patient care (Woods, 

2000). Testing is traditionally conducted on cultured M. tuberculosis isolates from patients 

(Woods, 2000). Phenotypic testing involves culturing of patient isolates in the presence of TB 

drugs to determine resistance and susceptibility profiles (Sirgel et al., 2009).  

 

2.2.2.1 Growth conditions for DST (Larsen et al., 2007b) 

M. tuberculosis strains of interest were cultivated in Middlebrook 7H9 liquid medium 

supplemented with 0.5% glycerol, 0.05% Tween 80 and 10% OADC at 37C with 5% CO2.  

Strains were grown to an optical density at 600 nm (OD600) of 0.3 to 0.8. Cultures were diluted to 

a starting inoculum of 1x 103 CFU/mL for downstream testing. The initial inoculum was 

confirmed by plating onto 7H10 Middlebrook solid agar medium. Fresh cultures were used as 

older cultures may result in unreliable DST results. Cultures were grown from a glycerol stock 

and passaged once before DST set up.  

 

2.2.2.2 Agar proportion method (Canetti et al., 1963, Canetti et al., 1969, Kent and Kubica, 1985) 

DST was performed on 7H11 Middlebrook agar medium supplemented with OADC. Strains were 

tested on control and anti-tubercular media.  The following drugs were tested at the WHO 

recommended critical concentrations i.e. isoniazid 0.1 µg/mL, isoniazid 1.0 µg/mL, rifampicin 

1.0 µg/mL, ethambutol 7.5 µg/mL, streptomycin 2.0 µg/mL, ofloxacin 2.0 µg/mL and kanamycin 

6.0 µg/mL. The critical concentration is defined as the amount of drug in the medium that prevents 

the growth of sensitive bacteria but not that of resistant mutants (WHO, 2008b). 

 

When conducting the agar proportion method, resistance of a strain is established at the 1% level. 

A strain is considered resistant if 1% or more of the bacterial population is resistant to a specified 

drug. The tested cultures were incubated for 3-4 weeks. The percentage of the colonies on the 

drug containing agar plates is compared to the drug free medium to determine resistance.  
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Procedure 

1. Strains grown on 7H10 agar medium were used as the source of inoculum. 

2. Colonies were picked and homogenized with 3mm diameter sterile glass beads. 

3. Samples were vortexed for approximately 20 seconds and the suspension adjusted to equate 

a McFarland standard 1.  

4. Cultures were diluted ten-fold (0.5 mL of bacterial suspension diluted in 4.5 mL in sterile 

distilled water) 

5. A volume of 100 µL of each dilution was inoculated onto each quadrant plate.  

6. Plates were incubated at 37 ºC in the presence of 5% CO2 for 3-4 weeks.  

7. Result interpretation was done by comparing growth on control media and media containing 

drug. If more than 1 % of the test population was observed on the drug containing media, the 

result was interpreted as resistant to that drug.  
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2.2.3 ald complementation of CDC1551 knock-out and M. bovis BCG Danish 1331 

2.2.3.1 PCR amplification of ald from H37Rv 

All PCR reagents were kept on ice to prevent degradation. The Δald of M. tuberculosis (JHU2780-

209) was obtained from the Tuberculosis Animal Research and Gene Evaluation Taskforce 

(TARGET) mutant library (http://webhost.nts.jhu.edu/target/). 

 

A 1.116 kb fragment spanning the ald gene region was PCR amplified from M. tuberculosis 

(H37Rv) genomic DNA using primers from Integrated DNA Technologies (IDT) containing the 

NotI and PciI restriction sites.  

 

Primer set KM_P27 (5’AAATTTGCGGCCGCATGCGCGTCGGTATTCCGACCG 3’) and  

KM_P28 (5’GGTGGTACATGTTCAGGCCAGCACGCTGGCG 3’) was used.  

 

Procedure 

1. In a sterile 0.2 mL microfuge tube, reagents were mixed in the following order: 

 

Table 2.1 Reagents used in PCR amplification of ald from H37Rv 

Reagents Amount (µL) 

Nuclease free water 4  

Buffer(2x) 12.5  

Template DNA 0.25  

dNTPs mix 5  

DMSO 1.25  

Forward primer 0.75  

Reverse primer 0.75  

Taq DNA polymerase 0.5  

Total  25  

 

2. The KOD Xtreme TM Hot Start DNA Polymerase kit was used (Merck Millipore, Cat. 

No:71975-3). The PCR reaction mix contained 1 x PCR buffer, 0.3 μM KM_P27 forward 

primer, 0.3 μM KM_P28 reverse primer, 0.4 mM dNTP mix, 0.5 U Taq polymerase, 5% 

DMSO and 0.025 ng total DNA.  

3. All reagents were mixed gently by vortex and briefly centrifuged to collect all components to 

the bottom at the tube. 

http://webhost.nts.jhu.edu/target/
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4. Amplification reactions consisted of an initial denaturation step of 2 minutes at 94°C, 

followed by 35 cycles of 15 seconds at 98°C, 30 seconds at 60°C, and 70 seconds at 68°C, 

and a final extension step of 5 minutes at 68°C. A final holding step was set at 4 °C.  

5. PCR products were run on a 0.9% agarose gel at 150 V, 400 mA for 30 minutes with the 

correct size product excised.  

 

2.2.3.2 Gel Purification of PCR product 

This procedure was conducted in accordance with the protocol in the QIAquick® Gel Extraction 

Kit (Qiagen, Cat. No:28706) with modifications. Gel slices were excised from a 0.9% agarose 

gel.  

 

Procedure 

1. A 450 µL aliquot of Buffer QG was added to a micro-centrifuge tube containing a 150mg gel 

slice.  A yellow colour of the Buffer QG is indicative of a relatively neutral pH (≤7.5).  

2. This was followed by the addition of 150 µL 100% isopropanol to each sample tube and 

mixed gently. 

3. A QIAquick spin column was then placed in a 2 mL collection tube. The sample was applied 

to the QIAquick column and centrifuged for 1 minute. In this way, DNA binding to the 

column took place.  

4. The flow-through was discarded and the QIAquick column was inserted a collection tube.  

5. An aliquot of 750 µL of Buffer PE was added to the column and centrifuged at 15000 x g for 

one minute.  

6. The flow through was discarded. The column was centrifuged once more in the 2 mL 

collection tube for one minute at 15000 x g to eliminate remaining wash buffer.  

7. The QIAquick column was placed into a sterile 1.5 mL microcentrifuge tube. Fifty microliters 

of nuclease free water (Qiagen.: Cat no 129114), was added to the middle of the QIAquick 

membrane to elute the DNA.  

8. The column was allowed to stand for two minutes to increase the yield of purified DNA and 

thereafter centrifuged for two minutes. The product was stored at -20°C until further use. 

 

2.2.3.3 Digestion of backbone vector and of PCR product 

The backbone vector AYp240 contained an Emerald fluorescent protein expressed off the 

mycobacterial optimized promoter (MOP) (George et al., 1995) in a modified L5_integrating 

mycobacterial expression vector. PciI and NotI restriction sites were used to digest the chosen 

vector to remove the Emerald fluorescent protein as well as to digest the PCR amplified product, 
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to facilitate insertion of the ald gene to create the pMCZ-MOP_Rv2780 expression vector for 

complementation.  

 

Digestion conditions for backbone vector (AYp240): 

Table 2.2 Reagents used in digestion reaction of the backbone vector (AYp240) 

Reagents Amount (µL) 

Template DNA 39.53  

Buffer 5  

BSA 0.5  

PciI 2.5  

NotI -HF       2.0  

dH20 0.47  

Total  50  

 

 

Digestion conditions for PCR product (ald): 

Table 2.3 Reagents used in digestion reaction of the PCR product (ald) 

Reagents Amount (µL) 

Template DNA 22.67  

Buffer 5  

BSA 0.5  

PciI 2.5  

NotI -HF       2.0  

dH20 17.33  

Total  50  
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2.2.3.4 Gel Purification of backbone vector and PCR product 

This procedure was performed as explained in section 2.2.4.2 using the QIAquick® Gel 

Extraction Kit (Cat. No.:28706). 

 

Procedure 

1. The gel purified products were run on a 0.9% agarose gel at 150 V, 400 mA for 30 minutes.  

2. Gel images were viewed using the BIO-RAD ChemiDocTM MP Imaging System.  

 

 

Figure 2.1: Agarose gel electrophoresis of digested and purified backbone vector and ald PCR 

product. AYp240 and PCR amplified ald (Rv2780) were restriction digested using PciI and NotI. Digested 

products were purified using gel extraction. Purified digests were run on a gel to confirm digests.  

 

2.2.3.5 Ligation of ald fragment with mycobacterial expression vector  

Procedure 

1. After digestion and purification of the vector backbone and PCR product, a 5:1 molar ration 

of insert to vector was incubated for 4 hours at 22ºC to facilitate ligation of the ald to the 

vector backbone. 

2. The ligation reaction was set up as follows: 
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Table 2.4 Reagents used in the ligation reaction of the PCR product (ald) 

 

3. The entire ligation reaction was then dialyzed using a 0.025 µm nitrocellulose membrane 

(Merck Millipore, Cat Number VSWP02500) to remove excess salts and enzymes. 

4. A 2.5 μL aliquot of the dialyzed ligation mixture was added to 50 μL in house prepared DH5 

E. coli electrocompetent cells and gently mixed by tapping lightly. All tubes were kept on 

ice.  

5. The mixture was then transferred to a 0.2cm cuvette and then electroporated in the BIO-RAD 

Gene Pulser Xcell using the following settings:  2.5 kV, 25 µF and 1000 Ω, following which 

cells were kept on ice for two minutes.  

6. The cells were recovered in 1 mL SOC medium, and incubated shaking at 37ºC for 1hour to 

allow for healing and expression of the antibiotic resistance product. 

7. Healed cells were then plated on LB agar + 50 µg/mL Zeocin and incubated at 37ºC overnight.  

 

2.2.3.6 Plasmid Mini Preparation 

This procedure was conducted in accordance with the protocol in the QIAprep® Spin Miniprep 

Kit (Qiagen, Cat. No: 27106) with slight modifications. 

 

Procedure 

1. Six colonies from transformation plates were picked and used to inoculate 5 mL LB broth + 

50 µg/mL zeocin in 15 mL centrifuge tubes, which were incubated at 37ºC overnight.  

2. A 2 mL volume of the overnight cultures were centrifuged at 12000 x g for 3 minutes to pellet 

cells.  

3. Supernatants were discarded and the pellets resuspended in 250 µL of Buffer P1 (Tris Buffer), 

and transferred to 1.5 mL microcentrifuge tubes.  

Reagents Amount (µL) 

Vector  5.1  

Insert 6.56  

Buffer 2  

Ligase 0.2  

dH20 6.14  

Total  20  
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4. A volume of 250 µL of Buffer P2 (NaOH and SDS) was added to the resuspended pellets 

containing Buffer P1 and mixed by inverting the tubes 4-6 times. A clear solution was 

observed.  

5. Thereafter, 350 µL Buffer N3 was added (acetic acid, a neutralisation agent), and the 

microcentrifuge tubes were mixed thoroughly by inverting 4-6 times, at which point, the 

solution turned turbid.   

6. Samples were then centrifuged for 10 minutes at 15000 x g. 

7. Supernatants were transferred to labelled spin columns, following which the columns were 

centrifuged for 60 seconds at 15000 x g and the flow through from the collection tubes 

discarded.  

8. Spin columns were then washed with 750 µL Buffer PE and centrifuged for 60 seconds at 

15000 x g and the flow through discarded.  

9. An additional centrifugation step was conducted for 60 seconds at 15000 x g to remove 

residual wash buffer.  

10. Spin columns were then placed in a clean 1.5 mL microcentrifuge tubes.  

11. Samples were eluted by the addition of 50 µL nuclease free water (Qiagen.: Cat no 129114) 

to the membrane of the spin columns. Tubes were allowed to stand for two minutes before 

being centrifuged for two minutes at 15000 x g to recover plasmid DNA. 

 

2.2.3.7 Confirmatory Digest and Gel Electrophoresis 

Procedure 

1. Plasmid DNA preparations were then digested using restriction enzyme SacI to confirm 

successful clones. 

2. The confirmatory digest was set up as follows: 

 

Table 2.5 Reagents used in confirmatory digestion of transformants 

Reagents Amount (µL) 

Template DNA 2 

Buffer 1 

BSA 0.1 

SacI 0.9 

dH20 6 

Total  10  

 



29 

 

3. Digest products were run on a 0.9% agarose gel at 150V, 400mA for 30 minutes.  

4. Gel images were viewed using the BIO-RAD ChemiDocTM MP Imaging System.  

 

 

 

Figure 2.2: SacI digest confirmation of transformant colony picks 

Gel image showing confirmatory digest of transformant colony picks for the pMCZ-MOP_Rv2780 

complementation vector. Expected digested product sizes are 339bp and 1195bp for plasmid carrying the 

exogenous ald. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Schematic illustration of pMCZ-MOP_Rv2780.  Rv2780 (ald) was cloned into our L5 

integrating, zeocin-marked mycobacterial expression vector, under the control of MOP using the NotI and 

PciI sites indicated.  
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2.2.3.8 Transformation of ald into M. tuberculosis (Van Kessel and Hatfull, 2007, Parish and 

Stoker, 1998) 

A successful clone of pMCZ-MOP_Rv2780 was then transformed into CDC1551 Δald and 

M. bovis BCG Danish 1331. 

 

Procedure 

1. M. tuberculosis strain CDC1551 Δald was grown in Middlebrook 7H9 liquid medium 

containing kanamycin (50 µg/mL) supplemented with 0.5% glycerol, 0.05% Tween 80 and 

10% OADC. The M. bovis BCG Danish 1331 was grown in Middlebrook 7H9 liquid medium 

supplemented with 0.5% glycerol, 0.05% Tween 80 and 10% OADC. These strains were 

incubated at 37C with 5% CO2 to an optical density at 600 nm (OD600) of 0.6 to 0.8. 10 mL 

of starting culture was used.  

2. The culture was transferred to individually labelled 50 mL conical tubes. Centrifugation 

followed at 4000 x g for 15 minutes.  

3. The supernatant was discarded and the pellet was washed with a 5 mL volume of sterile room 

temperature 10% sterile glycerol. The cells were then centrifuged at 4000 x g for 15 minutes. 

4. Step 3 was repeated with the pellet this time being washed with a 2.5 mL volume of sterile 

room temperature 10% sterile glycerol. 

5. After centrifugation and discarding of the supernatant, the pellet was resuspended in 1/10th 

the original volume of the culture. 

6. A 400 µL volume of cells was used for each transformation. Total DNA of 100ng was mixed 

with the respective competent cells in a sterile microcentrifuge tube.  

7. The bacteria and DNA was then transferred to a 0.2cm cuvette and then electroporated using 

the Biorad Gene Pulser Xcell using the following settings:  2.5 kV, 25 µF and 1000 Ω. A 

volume of 1 mL of 7H9 containing OADC and 20% Tween 80 was added to the electroporated 

cells and then transferred to a 30 mL inkwell which was incubated shaking at 37oC overnight 

to allow for expression of antibiotic resistance. 

8. Healed cells were plated on 7H10 agar containing zeocin (20 µg/mL) for M. bovis BCG 

Danish 1331, and zeocin (20 µg/mL) and kanamycin (25µg/mL) for CDC1551 Δald, with the 

plates being incubated at 37°C for 3-4 weeks to allow for the growth of transformants.  
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2.2.3.9 Small Scale DNA Extraction for confirmatory diagnostic PCR 

This procedure was conducted in accordance with the protocol in the Hain GenoLyse Extraction 

Kit (Cat. No.: 51610) with modifications.  

 

Procedure 

1. Two transformant colonies for each transformation were scraped off the plate and used to 

inoculate 3 mL of 7H9 liquid medium, containing zeocin (20 µg/mL) for M. bovis BCG 

Danish 1331::pMCZ-MOP_Rv2780 (hereafter referred to as BCG::ald-comp), and zeocin 

(20 µg/mL) and kanamycin (25 µg/mL) for CDC1551Δald:: pMCZ-MOP_Rv2780 (hereafter 

referred to as Δald-comp), supplemented with 0.5% glycerol, 0.05% Tween 80 and 10% 

OADC. These cultures were incubated shaking at 37oC for two weeks.  

2. An aliquot of 500 µL cells were centrifuged for 5 minutes at 15 000 x g 

3. After centrifugation the supernatant was discarded and 100 µL of Lysis Buffer (A-LYS) was 

added to the pellet and resuspended.  

4. The samples were incubated for a period of 30 minutes on a heating block at 95C.   

5. A 100 µL aliquot of Neutralization Buffer (A-NB) was added to each tube and mixed gently. 

6. The tubes were then centrifuged for 5 minutes at 15 000 x g.  

7. Following centrifugation, the supernatant was transferred to a new microcentrifuge tube, with 

a 5 µL aliquot of the supernatant used for downstream PCR.  

 

2.2.3.10 Small Scale DNA Extraction for confirmatory PCR 

PCR primers were internal to the integrated region of the plasmid, but external in relation to ald, 

to ensure PCR amplification of our exogenously inserted ald gene and not the endogenous ald 

locus.  

 

A 1.319 kb fragment spanning the MOP and ald gene was amplified from transformant colony 

picks using the ANY_P58 (5’TGGCAGTCGATCGTACGCTAGTT 3’) and ANY_P59 

(5’GAGCCTATGGAAAAACGCCAGCA 3’) primers from Integrated DNA Technologies 

(IDT). All PCR reagents were kept on ice to prevent degradation. 

 

Procedure 

1. In a sterile 0.2 mL microfuge tube, reagents were mixed in the following order: 
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Table 2.6 Reagents used in PCR amplification of exogenously inserted ald gene 

Reagents Amount (µL) 

Nuclease free water 1 

Buffer(10x) 12.5 

Template DNA 2.5 

dNTPs mix 5 

DMSO 1.25 

Forward primer 1 

Reverse primer 1 

Taq DNA polymerase 0.75 

Total 25 

 

2. The Qiagen Taq DNA Polymerase kit was used (Qiagen, Cat. No:201203. The PCR reaction 

mix contained 1 x PCR buffer, 0.4 μM ANY_P58 forward primer, 0.4 μM ANY_P59 reverse 

primer, 0.4 mM dNTP mix, 0.5 U Taq polymerase and 5% DMSO.  

3. All reagents were mixed gently by vortex and briefly centrifuged to collect all components to 

the bottom of the tube. 

4. Amplification reactions consisted of an initial denaturation step of 2 minutes at 94°C, 

followed by 35 cycles of 15 seconds at 98°C, 30 seconds at 55°C, and 90 seconds at 68°C, 

and a final extension step of 5 minutes at 68°C. A final holding step was set at 4 °C. A gel 

product of 1.319kb was confirmed by electrophoresis.  

5. The PCR products were run on a 0.9% agarose gel at 150V, 400mA for 30 minutes.  

6. Gel images were viewed using the BIO-RAD ChemiDocTM MP Imaging System. 
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Figure 2.4: Confirmation of complementation of ald gene in CDC 1551 Δald and M. bovis BCG 

Gel image showing PCR amplification of a 1.319kb fragment spanning the MOP and ald gene from DNA 

obtained from Δald-comp and BCG::ald-comp transformant colony picks confirming presence of 

exogenously introduced ald.  
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2.2.4 D-cycloserine growth assay assessed by Mycobacterial Growth Indicator Tube  

2.2.4.1 BD BACTEC™ MGIT™ 960 System ((Leitritz et al., 2001, Alcaide et al., 2000, Tortoli et 

al., 1999, Hanna et al., 1999) 

The BACTEC™ MGIT™ 960 System is an automated system which utilizes a fluorescent 

indicator i.e. an oxygen-quenched fluorochrome, tris 4, 7-diphenyl-1, 10-phenonthroline 

ruthenium chloride pentahydrate, which is able to detect oxygen depletion due to bacterial growth. 

As oxygen is used, the fluorochrome is no longer inhibited and results in fluorescence within the 

MGITs. 

 

The system accommodates MGITs which are incubated at 37C. The tubes are scanned into the 

system by a barcode, the machine scans the MGITs every hour for increased fluorescence.  Viable 

organisms utilize the oxygen and thus produce a fluorescent signal, indicating positivity. A tube 

is considered instrument negative if they remain in the machine for a period of 42-56 days with 

no signs of growth/positivity. TTP is recorded in days and hours. 

 

The MGIT medium consists of 7 mL modified Middlebrook 7H9 broth base medium that supports 

faster growth of mycobacteria. MGIT OADC (Oleic acid, Albumin, Dextrose and Catalase) or 

MGIT 960 Growth Supplement is further added to the medium to support the growth of M. 

tuberculosis complex.  

  

2.2.4.2 MGIT Preparation (see Appendix 1) 

2.2.4.3 Antibiotic preparation (see Appendix 1) 

The MGIT tubes were added with and without D-cycloserine to achieve final concentrations of 

0, 7.5 µg/mL, 15 µg/mL and 30 µg/mL. MGITs were set up in triplicate. A drug control for each 

concentration of D-cycloserine was set up as a negative control. 

 

2.2.4.4 Growth conditions for MGIT growth inhibition assay and set up (Larsen et al., 2007b) 

M. tuberculosis strains of interest were cultivated in Middlebrook 7H9 liquid medium 

supplemented with 0.5% glycerol, 0.05% Tween 80 and 10% OADC at 37C with 5% CO2 with 

agitation at 37C. Strains were grown to an optical density at 600 nm (OD600) of 0.3 to 0.8. 

Cultures were diluted to a starting inocula of 1x 103 CFU/mL for downstream testing. The initial 

inoculum was confirmed by plating onto 7H10 Middlebrook solid agar medium. Fresh cultures 
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were used as older cultures could result in unreliable results. Cultures were grown from a glycerol 

stock and passaged once before assay set up.  

Procedure  

1. Growth of cultures was monitored by measuring the OD600.  

2. If strains were at their desired OD i.e. ~ 0.3-0.8, they were diluted to 1x 103 CFU/mL in 50 mL 

conical tubes.  

3. The diluted cultures were vortexed and 500 μL was added into each MGIT tube for each 

concentration in triplicate. 

4. Dilutions of the starting inoculum were plated onto 7H10 Middlebrook solid agar medium to 

determine the CFU of the initial inoculum.  

5. After inoculation, each MGIT was scanned into the BACTEC™ MGIT™ 960 System.  

6. Tubes remained in the system until positive for growth. Once flagged positive, the TTP for 

each tube was recorded.  

 

2.2.5 D-cycloserine minimum inhibitory concentration (MIC) determination on Löwenstein–

Jensen (LJ) 

Löwenstein–Jensen (LJ) is a selective egg-based medium used to culture Mycobacterium species 

for decades (Canetti et al., 1963). LJ slants incorporates inspissated eggs, malachite green and 

glycerol to promote the growth of mycobacteria (Canetti et al., 1969). D-cycloserine drug 

susceptibility has only been validated on LJ medium and is not performed routinely due to 

instability associated with the drug (Woods, 2000, Kam et al., 2010).  

 

2.2.5.1 Antibiotic preparation (see Appendix 1) 

2.2.5.2 LJ medium preparation (see Appendix 1) 

2.2.5.3 Growth conditions for LJ MIC determination of D-cycloserine and assay set up (Larsen 

et al., 2007b) 

M. tuberculosis strains of interest were cultivated in Middlebrook 7H9 liquid medium 

supplemented with 0.5% glycerol, 0.05% Tween 80 and 10% OADC at 37C with 5% CO2.  

Strains were grown to an optical density at 600 nm (OD600) of 0.3 to 0.8. Cultures were diluted to 

a starting inocula of 1x 103 CFU/mL for downstream testing. The initial inoculum was confirmed 

by plating onto 7H10 Middlebrook solid agar medium. Fresh cultures were used as older cultures 

may result in unreliable results. Cultures were grown from a glycerol stock and passaged once 

before assay set up. 
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Procedure 

1. Growth of cultures was monitored by measuring the OD600.  

2. The strains were diluted to 1x 103 CFU/mL in 50 mL conical tubes.  

3. The diluted cultures were vortexed and 100 μL was added into each LJ slopes for each 

concentration in duplicate. 

4. Dilutions of the starting inoculum were plated onto 7H10 Middlebrook solid agar medium to 

determine the CFU of the initial inoculum.  

5. The inoculated LJ slopes were incubated at 37°C with 5% CO2 for 4 weeks. 

6. Result interpretation of the LJ slopes were done after 4 weeks to report the MIC for each 

tested strain. MIC is defined has the lowest drug concentration, which inhibits 90% of the 

bacterial population when compared to the no drug control (Sirgel et al., 2009, Angeby et al., 

2012).  

 

2.2.6 Statistical tests 

Statistical analysis and graphical representation of graphs were done on Graph Pad Prism (version 

6.0). Statistical tests used in the analysis were the Two-Way ANOVA, to compare across groups. 

A p value <0.05 was considered significant. The Mann-Whitney U test was used for pairwise 

comparisons. One-sided t-test was used to compare mean TTP and growth inhibition in MGIT.  
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CHAPTER THREE 

Results 

 

3.1 Population based WGS of M. tuberculosis clinical isolates 

We assembled a collection of drug susceptible and drug-resistant clinical isolates that were 

collected retrospectively and prospectively from individuals during 2008-2013 in Kwazulu-Natal, 

South Africa (Table 3.1). We selected isolates from different studies to have a population based 

sample that was enriched for drug resistance isolates and reflected the antecedents of current 

circulating strains. 

 

The KwaZulu-Natal Drug Surveillance Study was a multicentre study conducted to determine the 

incidence of drug-resistant TB across KwaZulu-Natal, included susceptible isolates, and provided 

samples that represented the diversity of strains circulating in the province. The PROX, CUBS 

and NHLS studies were prospective studies of patients with MDR and XDR-TB, and allowed us 

to enrich for strains with multiple second-line resistances. The Phage study was also a 

contemporary prospective study that allowed us to access drug susceptible isolates. We also 

included three historical isolates (KZN4207, KZN1435, KZN605) that had been previously 

sequenced (Koenig, 2007, Ioerger et al., 2009).  

 

For genotypic-phenotypic studies it is important to eliminate the potential confounding effects of 

mixed infection. We therefore streaked isolates from glycerol stocks onto 7H10 agar medium and 

picked single colonies for sub-culture for the majority of these strains. DNA was extracted using 

conventional CTAB methodology (Larsen et al., 2007a). WGS and analysis of these strains was 

conducted at the BROAD Institute (Cohen et al., 2015). 
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Table 3.1: Description of study cohorts (Cohen et al., 2015) 

Cohort Name 

 

Cohort Description Collection Strategy and 

Year of Collection 

KwaZulu-Natal Drug 

Surveillance Study (KZN-

SUR) 

Cross-sectional study of 

outpatients and inpatients 

hospitalised with a cough. 

Samples were collected from 

each district in KwaZulu-Natal 

Retrospective, 2008– 

2010 

Prospective Collection of 

Extensively Drug- 

Resistant TB (PROX) 

Prospective study of patients 

newly 

commencing XDR treatment at 

the King DinuZulu 

Hospital 

Prospective, 2010– 

2012 

Phage Study Patients newly diagnosed with 

pulmonary 

TB at  

Prince Cyril Zulu clinic in 

central Durban. These samples 

were collected before the start 

of treatment 

Prospective, 2013 

National Health Services 

Laboratory (NHLS) 

Collection of drug-resistant 

clinical isolates 

sent for DST at the central 

NHLS TB Laboratory 

Prospective, 2013 

Collection of Urine Blood 

Sputum Study (CUBS) 

Prospective collection of 

patients newly 

initiating MDR or XDR 

treatment at the King DinuZulu 

Hospital 

Prospective, 2013 
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3.2 Identification of loss-of-function mutations associated with resistance. 

To identify mutations associated with resistance our sequences of clinical isolates from KwaZulu-

Natal were combined with a dataset of 161 sequenced strains from China. Whole genome 

association analysis to identify drug resistance conferring mutations in M. tuberculosis is 

problematic. The accumulation of mutations occurs in a stepwise fashion, with resistance to first-

line drugs usually preceding second-line and third-line resistance. As a result, mutations known 

to cause resistance to first-line drugs are often associated with second-line phenotypic resistance 

when association analysis are done. In addition, drug resistance is transmitted and clonal 

expansion of drug-resistant strains has amplified resistance in our setting (Cohen et al., 2015). 

Genetic drift can also occur during clonal expansion and non-resistance conferring mutations can 

therefore be erroneously associated with resistance. To overcome this, analysis at the BROAD 

Institute combined a measure of convergent evolution with the strength of association to 

overcome these problems. In addition, multiple mutations in single genes were collapsed to form 

a single variant, which increase power to detect rarely occurring variants. This analysis was then 

applied to strains only with unexplained resistance. The details of this analysis are beyond the 

scope of this Master thesis and have been described elsewhere (Desjardins et al., 2016).  

 

We chose to concentrate on LOF mutations. These mutations included insertions or deletions 

(INDELS), frameshift mutations and stop codons. Unlike SNPs whose effects on protein function 

are hard to predict bioinformatically, LOF mutations will definitely cause inactivation of proteins. 

By focussing on LOF mutations we reasoned that we would have a greater chance of identifying 

mutations that have phenotypic consequences. From the association analysis, we therefore 

identified 21 genes (Table 3.2) with LOF mutations, from strains with unexplained drug 

resistance, that had the strongest association with resistance to any drug.  
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Table 3.2: Genes with loss-of-function associated with phenotypic resistance 

List of genes with LOF mutations that were associated with resistance in M. tuberculosis. Gene 

number, name and putative functions were taken from the annotated H37Rv genome 

(http://tuberculist.epfl.ch/).  

 

Gene 

Number 

Gene 

Name 

Function 

Rv0157 pntB NAD(P) subunit and functions as a proton pump across the membrane 

 

Rv0205  A membrane protein. May play a role in cell wall and cell wall 

processes 

 

Rv0242c fabG4 3-oxoacyl- [acyl-carrier protein] which is involved in the fatty acid 

biosynthesis pathway 

Rv0552  hypothetical protein with unknown function 

 

Rv0554 bpoC hypothetically involved in detoxification reactions 

 

Rv0579  hypothetical protein with unknown function 

 

Rv0779c  transmembrane protein with unknown function 

 

Rv1157c  alanine and proline rich protein with unknown function 

 

Rv1187 rocA Involved in the arginase pathway 

 

Rv1250  Potential transport of drug across the membrane 

 

Rv1277  hypothetical protein with unknown function 

 

Rv1375  hypothetical protein with unknown function 

 

Rv1975  hypothetical protein with unknown function 

 

Rv2042c  hypothetical protein with unknown function 

 

Rv2088 pknJ Involved in signal transduction (via phosphorylation) 

 

Rv2780 ald May play a role in cell wall synthesis as L-alanine is an important 

constituent of the peptidoglycan layer 

 

Rv3197A whiB7 Involved in transcriptional regulation 

 

Rv3436c glmS catalyzes the first step in hexosamine metabolism 

 

Rv3448 eccD4 ESX-4 secretion system protein with unknown function 

 

Rv3569c hsaD Catalyzes the hydrolysis of 4,9-DHSA 

 

Rv3823c 

 

mmpL8 A membrane transporter thought to be involved in the transport of lipids 

http://tuberculist.epfl.ch/
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3.3 Functional analysis of knock-out mutant in genes associated with resistance 

To determine if LOF mutations could cause resistance to selected first and second-line drugs we 

acquired a panel of transposon mutants. From the list of 21 genes-associated with unexplained 

resistance, eight genes had 11 representative strains in a single gene knock-out library; 

Tuberculosis Animal Research and Gene Evaluation Taskforce (TARGET) mutant library 

(http://webhost.nts.jhu.edu/target/) (Table 3.3).  

 

The TARGET mutant library consists of strains with a single gene knock-out which is transposed 

with a kanamycin resistant marker.  

 

We performed phenotypic DST using the agar proportion method at the WHO recommended 

critical concentration on these eleven strains against six anti-tubercular drugs. The mutants all 

displayed kanamycin resistance as they all possessed a kanamycin resistance marker in the 

transposon which was used to generate the knockout mutant.  

 

The eleven strains from our phenotypic screen against six first and second-line anti-tuberculous 

drugs failed to uncover any unexpected drug resistances.  

  

http://webhost.nts.jhu.edu/target/
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Table 3.3: Phenotypic DST of transposon TARGET mutants against anti-tubercular drugs 

(Desjardins et al., 2016) 

Each strain was identified by the gene number (#) and the TARGET mutant library identification 

(ID). Critical drug concentrations listed are represented in µg/mL. S = Susceptible and R = 

Resistance. Drugs tested were isoniazid (INH), rifampicin (RIF), ethambutol (EMB), 

streptomycin (STR), ofloxacin (OFL) and kanamycin (KAN). 

 

 

  

Gene # Lib ID INH 0.2 INH 1 RIF 1 EMB 7.5 STR 2 OFL 2 KAN 6 

Rv0157 JHU0157-1366 S S S S S S R 

Rv0242c JHU0242c-319 S S S S S S R 

Rv1250 JHU1250-1 S S S S S S R 

Rv1375 JHU1375-874 S S S S S S R 

Rv1375 JHU1375-874 S S S S S S R 

Rv1375 JHU1375-141 S S S S S S R 

Rv2088 JHU2088-60 S S S S S S R 

Rv2780 (ald) JHU2780-209 S S S S S S R 

Rv3197A JHU3197A-222 S S S S S S R 

Rv3823c JHU3823c-114 S S S S S S R 

Rv3823c JHU3823c-1817 S S S S S S R 
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3.4 Association of L-alanine dehydrogenase (ald) with D-cycloserine resistance 

The drug resistance screen to rifampicin, isoniazid, streptomycin, ethambutol and ofloxacin 

revealed no hits so we then looked at the function of each of the 21 genes identified in our 

association analysis to see if there were any pointers to which drugs the LOF mutations could be 

causing resistance to. We were intrigued by Rv2780 which encodes for an alanine dehydrogenase 

(ald) that interconverts pyruvate and L-alanine (Figure 1.5). We therefore hypothesised that 

mutations in L-alanine dehydrogenase could lead to changes in alanine flux that could ameliorate 

the effects of D-cycloserine and cause resistance. 
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3.5 Genetic variability of ald in clinical isolates  

To determine if there was a relationship between LOF mutations in ald and drug resistance we 

first looked to see if these mutations only occurred in drug-resistant isolates. Table 3.4 shows the 

11 different LOF mutations in our dataset and the drug-resistant profile of the strains harbouring 

these mutations. There were 7 insertions, 3 deletions and 1 stop codon. These LOF mutations 

occurred exclusively in MDR or XDR strains supporting our idea that ald was implicated in some 

form of resistance. The mutations were also found to have occurred in multiple different lineages 

indicative of convergent evolution. 

 

Table 3.4: Loss-of-function mutations in ald with respect to spoligotype and DST  

For each LOF mutation, the size, type of mutation, nucleotide position or codon number, number 

of isolates in which the mutation occurs, the spoligotype of those isolates, and the level of drug 

resistance of the isolate are listed.  

Polymorphism # isolates Spoligotype DST 

1bp insertion, nt 128 1 LAM4 MDR 

1bp deletion, nt 132 4 T1 MDR (4) 

2bp insertion, nt 133 1 X3 XDR 

2bp deletion, nt 304 1 LAM4 XDR 

1359bp insertion, nt 304 1 LAM4 MDR 

1bp insertion, nt 317 3 X2 MDR (2), poly (1) 

2bp insertion, nt 433 2 LAM4 MDR (1), XDR (1) 

Q153* 1 LAM4 XDR 

1bp deletion, nt 459 8 X3 MDR (4), XDR (4) 

5bp insertion, nt 837 2 LAM4 XDR (2) 

2bp insertion, nt 966 1 LAM4 XDR 
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3.6 Development of a growth inhibition assay to evaluate the role of ald mutants in D-

cycloserine resistance   

DST is difficult for D-cycloserine and the only proposed method is testing using LJ medium. 

However, we wanted to test for D-cycloserine resistance in a more controlled medium because 

we were not sure whether levels of L-alanine and other factors could alter metabolism in a way 

that might affect the alanine metabolism pathways, and influence DST. We initially tried the Trek 

Sensititre MYCOTB MIC plate (MYCOTB; Trek Diagnostic Systems, Cleveland, OH), a 

commercially available broth based assay conducted in 96 well plates to determine resistance to 

D-cycloserine. However, we experienced high false positive rates in our control strains. We 

therefore developed a growth inhibition assay using the MGIT system. The principle of the assay 

was to compare the TTP in the presence or absence of drug. MGIT tubes were inoculated based 

on OD but CFU’s were also determined for all inocula to ensure tubes had roughly equivalent 

levels of bacteria at the start of the assay. 
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We initially performed a growth assay in MGIT to determine if there was a growth advantage of 

selected TARGET mutants in the presence of D-cycloserine. The assay was conducted on seven 

of the TARGET mutant stains and CDC1551 which is a fully susceptible laboratory strain. Testing 

was conducted with varying concentrations of D-cycloserine in triplicate. Each strains growth 

was monitored for TTP, a shorter TTP suggests a growth advantage in the presence of D-

cycloserine.  

 

In comparison to CDC1551, only the ald LOF mutant had a significant growth advantage in the 

presence of D-cycloserine at 7.5 μg/mL and 15 μg/mL (p = 0.0075 and 0.0441, respectively). All 

other transposon mutants displayed no significant difference in growth kinetics relative to 

CDC1551 with p > 0.05. This supported our hypothesis that ald LOF mutations causes resistance 

to D-cycloserine. 

 

Table 3.5: Confirmation of growth advantage of transposon TARGET mutants in the 

presence of D-cycloserine is specific to ald loss-of-function (Desjardins et al., 2016) 

 

The MGIT growth assay was performed on CDC1551, the ald LOF mutant and single gene knockouts 

strains in the presence of D-cycloserine. The strains were cultured in triplicate in 0, 7.5 µg/mL and 

15 µg/mL D-cycloserine. The TTP for each strain was recorded in days since inoculation. The standard 

error mean (SEM) of the three replicates is shown above. The mean MGIT TTP and growth inhibition for 

the varying concentrations of D-cycloserine for each mutant strain were statistically compared (using a one-

sided t-test) to CDC1551.  

  

    0 μg/mL 7.5 μg/mL 15 μg/mL 

Gene 

number 

Lib ID TTP SEM p-

value 

TTP SEM p-

value 

TTP SEM p-

value 

- 

 

 CDC1551 6.2 0.0212 n/a 16.9 0.8706 n/a 35.2 1.9605 n/a 

Rv2780 

(ald) JHU2780-209 6.3 0.0289 0.8343 8.5 0.4766 0.0075 25.0 0.4527 0.0441 

Rv1250 
JHU1250-1 6.1 0.0289 0.0880 19.0 0.2819 0.9740 41.1 0.5052 0.8844 

Rv1375 
JHU1375-141 6.2 0.0488 0.0994 22.0 0.4455 0.8476 41.6 0.1472 0.8902 

Rv1375 
JHU1375-874 6.0 0.0526 0.0617 22.4 0.3852 0.9627 41.0 0.3046 0.8951 

Rv2088 
JHU2088-60 6.0 0.0367 0.6077 21.6 0.6519 0.9711 41.3 0.3769 0.8997 

Rv3823 
JHU3823c-114 3.4 0.2350 0.0099 16.3 3.1519 0.4588 34.8 0.8177 0.4548 

Rv3823 
JHU3823c-1817 6.3 0.0212 0.9080 19.3 0.8357 0.8403 42.0 0.0000 0.9080 
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3.7 Growth inhibition by D-cycloserine testing of the Δald mutant and control strains   

To confirm if ald LOF conferred resistance to D-cycloserine, we assessed growth inhibition of 

the Δald mutant and appropriate control strains.  

 

We assessed CDC1551 (a fully susceptible reference strain which possessed wild-type ald, ddl 

and alr genes), the ald knockout (Δald) strain and the ald knock-out complemented with wild-

type ald from M. tuberculosis (Δald-comp). The Δald-comp strain was created by cloning the 

H37Rv ald gene onto an integrative vector harboring a kanamycin resistance cassette.  

 

In addition, we included BCG as an additional positive control. BCG is naturally resistant to D-

cycloserine, which may be explained by a cycA point mutation (Chen et al., 2012). BCG also 

possesses a frameshift in ald (Chen et al., 2003, Garnier et al., 2003). To determine the effect of 

the ald frameshift on inhibition by D-cycloserine, we performed our growth assay on M. bovis 

BCG Danish 1331 (BCG) and M. bovis BCG 1331 complemented with wild-type ald from M. 

tuberculosis (BCG::Δald-comp).  
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We performed the D-cycloserine growth assay on the CDC1551 (WT-as represented on the 

graph), the Δald strain, Δald-comp and BCG strains. (Figure 3.1). The Δald strain displayed a 

shorter TTP when compared to wild-type CDC1551 in the presence of D-cycloserine at 7.5 µg/mL 

(P < 0.0001, ANOVA), indicative of a significant growth advantage at this concentration. At the 

15 µg/mL D-cycloserine concentration the Δald strain still showed a growth advantage as 

compared to the wild-type CDC1551(P < 0.0001, ANOVA) but grew slowly relative to the BCG 

strain (P < 0.0001, ANOVA). In addition, we observed that the Δald-comp strain, had greater 

growth inhibition in comparison to the Δald strain (P < 0.0001, ANOVA), but was still inhibited 

significantly less than CDC1551 (P < 0.0001, ANOVA) suggesting that ald complementation 

partially reverted the growth advantage to D-cycloserine at both the 7.5 µg/mL and 15 µg/mL 

concentration. BCG showed minimal growth inhibition when exposed to both low and high dose 

D-cycloserine compatible with its resistant phenotype.  In conclusion, the ald LOF strain 

displayed a growth advantage relative to CDC1551 compatible with a resistance phenotype and 

the ald-comp displays partial restoration of wild-type behaviour.  
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Figure 3.1: Assessment of laboratory strains TTP in the presence of D-cycloserine. The MGIT growth 

assay was performed on CDC1551 (WT), the Δald-comp, Δald strain, and BCG strains in the presence of 

D-cycloserine. The strains were inoculated in triplicate at the 0, 7.5 μg/mL, 15 μg/mL and 30 μg/mL D-

cycloserine drug concentrations. Each strains TTP was documented as days positive from the time of 

inoculation. Error bars represent the SEM of the mean TTP. Two-way ANOVA was used to calculate the 

p-values.   

 

 

 

.  
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The D-cycloserine growth assay was then performed on the BCG and BCG::ald-comp, to evaluate 

the effect of the ald frameshift on growth in the presence of D-cycloserine. At the 7.5 µg/mL D-

cycloserine concentration there was no statistically significant difference in growth between BCG 

and BCG::ald-comp. At the 15 µg/mL and 30 µg/mL D-cycloserine concentrations the BCG::ald-

comp displayed significant inhibition of growth relative to BCG (p < 0.02 and p < 0.0001, 

respectively) (Figure 3.2).  

 

Although we did not fully reverse the resistance phenotype this result suggests ald LOF does play 

a role in D-cycloserine resistance in M. bovis BCG. BCG has a cycA point mutation which is 

implicated in its resistance phenotype, although complementation with cycA only partially 

restored susceptibility suggesting other mechanisms of resistance are involved (Chen et al., 2012). 

The mutation in cycA could therefore explain the modest results of our complementation, but 

differences in the genetic background could also contribute. Experimentation involving the 

complementation of wild-type cycA will need to be evaluated to address this issue.  
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Figure 3.2: Complementation of ald in M. bovis BCG prompts slower growth in the presence of high 

dose D-cycloserine. The MGIT growth assay was performed on BCG and BCG::ald-comp strains in the 

presence of D-cycloserine. The strains were inoculated in triplicate at the 0, 7.5 μg/mL, 15 μg/mL and 

30 μg/mL D-cycloserine drug concentrations. Each strains TTP was documented as days positive from the 

time of inoculation. The BCG::ald-comp showed inhibition of growth at higher concentrations of D-

cycloserine. This indicates that ald LOF may contribute to D-cycloserine resistance. Error bars represent 

the SEM of the mean TTP. Two-way ANOVA was used to calculate the p-values.  
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3.8 Growth inhibition by D-cycloserine of clinical isolates with ald mutations   

We next sought to determine whether clinical isolates with mutations in ald and alr exhibited a 

growth advantage in the presence of D-cycloserine. Clinical isolates with varying L-alanine 

dehydrogenase (ald) and alanine racemase (alr) mutations, with diverse drug susceptibility 

phenotypes and varying genetic backgrounds were assessed in the D-cycloserine growth assay. 

They are listed below with their corresponding ald and alr mutations, their DST pattern and 

spoligotype (Table 3.6).  

 

Table 3.6: Clinical isolates tested by the D-cycloserine growth assay with mutations in ald 

and alr genotypes  

 Strain ald alr DST Spoligotype 

TKK-04-0103 WT WT XDR X3 

TKK-01-0019 WT WT XDR LAM3 

TKK-03-0065 WT WT Susceptible Beijing 

TKK-04-0054 WT WT XDR Beijing 

TKK-04-0149 WT WT Susceptible Beijing 

TKK-03-0109 WT WT Susceptible Beijing 

TKK-02-0053 5bp ins at 837 WT XDR LAM4 

TKK-02-0006 Q153* WT XDR LAM4 

TKK-02-0051 2bp ins at 433 WT XDR LAM4 

TKK-04-0071 1bp del at 459 WT MDR X3 

TKK-04-0105 WT Y343T XDR LAM4 

TKK-02-0004 WT K157E XDR LAM4 

TKK-04-0075 1bp del at 132 Y388D MDR T1 
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The D-cycloserine growth assay was performed in MGIT on these clinical isolates with various 

mutations. At concentrations of 7.5 μg/mL, 15 μg/mL and 30 μg/mL of D-cycloserine, clinical 

isolates with the ald LOF mutation displayed a growth advantage when compared to strains with 

wild-type ald (p < 0.05 at all tested concentrations), demonstrating that the growth advantage seen 

in laboratory strains with ald LOF mutations extends to clinical strains (Figure 3.3).  

 

All three clinical strains with SNPs in alanine racemase also exhibited a growth advantage in the 

presence of 7.5 µg/mL, 15 µg/mL and 30 µg/mL D-cycloserine relative to wild-type strains 

(p < 0.05 at all tested concentrations). When compared to strains with only ald LOF mutations, 

clinical strains with SNPs in alanine racemase did not have significantly different growth at the 

7.5 µg/mL and 15 µg/mL of D-cycloserine but did exhibit a significant growth advantage at 

30 µg/mL of D-cycloserine (p < 0.05). This suggests that at high concentrations of D-cycloserine, 

ald LOF mutations confer less of a growth advantage than the assayed nonsynonymous SNPs in 

the direct target of D-cycloserine, alanine racemase. This in turn indicates that intragenic alr 

mutations should confer higher levels of resistance than ald mutations.  
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Figure 3.3: Assessment of clinical strains TTP in the presence of D-cycloserine. The MGIT growth 

assay was performed on clinical isolates with mutations in ald and alr in the presence of D-cycloserine. 

The strains were inoculated in triplicate at the 0, 7.5 μg/mL, 15 μg/mL and 30 μg/mL D-cycloserine drug 

concentrations. Clinical strains with LOF mutations in ald or polymorphisms in the target of D-cycloserine, 

alr exhibit a shorter time to positivity in the presence of D-cycloserine. Each strain’s TTP was documented 

as days positive from the time of inoculation. Error bars represent the SEM of the mean TTP. Two-way 

ANOVA was used to calculate the p-values.  
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3.9 DST of an Δald strain and controls 

Our growth inhibition assay provided a discriminatory tool to test our hypothesis that LOF 

mutations in ald result in D-cycloserine resistance. To be certain we carried out an MIC evaluation 

of our control strains using the only recognized method of DST using LJ medium. 

 

According to the WHO guidelines the critical concentration for resistance on LJ medium was 

lowered to 30 µg/mL (WHO, 2012). When we carried out susceptibility testing on our strains we 

found CDC1551 (WT as represented in Table 3.7) displayed an MIC of 15 µg/mL and was most 

susceptible as compared to the other strains.  The Δald strain showed an MIC of 25-30 µg/mL 

greater than that of CDC1551. The ald-comp displayed an intermediate MIC of 20 µg/mL relative 

to Δald.  

 

The BCG (positive control) strain displayed the greatest resistance with an MIC of 40-60 µg/mL. 

The BCG::ald-comp strain MIC was 40 µg/mL, demonstrating no change to BCG. The M. bovis 

ATCC 19210 strain showed an MIC of 25 µg/mL comparable to that of the Δald strain. We can 

conclude from the MIC testing conducted on these strains that the Δald strain confers a low-level 

of resistance to D-cycloserine.  

 

Table 3.7: The ald loss-of-function mutation confers an increased level of resistance to D-

cycloserine (Desjardins et al., 2016) 

  D-cycloserine MIC (µg/mL) 

 Strain Assay 1 Assay 2 Assay 3 

CDC1551 (WT) 15 15 - 

Δald 25 30 25 

Δald-comp 20 20 20 

BCG  40 40 60 

BCG::ald-comp 40 - 40 

M. bovis ATCC 19210 - 25 25 

 

MIC testing was conducted in three independent experiments to determine reproducibility. Minus (-) signs 

depict strains not tested for a specific assay.  

  



56 

 

3.10 Contribution of ald, alr, ddlA and cycA mutations to D-cycloserine resistance in 

clinical isolates from KwaZulu-Natal  

Having shown that LOF mutations in ald can cause resistance to D-cycloserine we wanted to 

assess their contribution to resistance relative to other potential drug resistance conferring 

mutations. We therefore examined our dataset for other clinical isolates with mutations in the 

known targets of D-cycloserine, i.e. alanine racemase (alr) and D-alanine:D-alanine ligase (ddlA). 

We identified forty-four clinical strains with varying genetic backgrounds which we then assessed 

for D-cycloserine drug susceptibility using LJ medium. This assay included 22 strains with wild-

type ald, alr, ddlA and cycA alleles, 13 strains which possessed mutations in ald, seven which 

possessed mutations in the alr gene and two which had mutations in both ald and alr genes. Seven 

strains were retested, four of which were outliers. We also assessed the level of resistance in ald 

LOF strains relative to strains which possess mutations in the alr gene.  In our data set we 

observed no clinical isolates with ddlA and cycA mutations, and therefore no DST could be 

conducted on strains harboring mutations in these genes. 
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Table 3.8: List of clinical isolates with representative mutations and MIC to D-cycloserine 

as determined on LJ media (Desjardins et al., 2016)  

 

a Mutation previously predicted to have high impact on alr function (Köser  et al., 2013). 

b Mutation previously known to confer D-cycloserine resistance (Merker et al., 2013). 

 

Strain Name Spoligotype DST ald alr ddlA cycA LJ MIC

TKK-04-0075 T1 Pre-XDR 1bp del at 132 Y364D WT WT 40

TKK-01-0050 T1 MDR 1bp del at 132 Y364D WT WT 40

TKK-02-0035 X3 XDR 1bp del at 459 WT WT WT 15 (40)

TKK-04-0071 X3 Pre-XDR 1bp del at 459 WT WT WT 40

TKK-04-0040 X2 poly 1bp ins at 317 WT WT WT 20 (20)

TKK-04-0038 LAM 4 Pre-XDR 2bp del at 304 WT WT WT 40

TKK-02-0037 X3 XDR 2bp ins at 133 WT WT WT 30 (40)

TKK-02-0051 LAM 4 XDR 2bp ins at 433 WT WT WT 40

TKK-04-0060 LAM 4 Pre-XDR 2bp ins at 433 WT WT WT 30 (30)

TKK-02-0053 LAM 4 XDR 5bp ins at 837 WT WT WT 40

TKK-02-0049 LAM 4 XDR 5bp ins at 837 WT WT WT 25 (25)

TKK-02-0006 LAM 4 XDR Q153* WT WT WT 40

TKK-04-0122 LAM 4 XDR R15Q WT WT WT 30

TKK-02-0004 LAM 4 XDR WT K133E WT WT 60

TKK-02-0055 Beijing XDR WT L89R WT WT 60

TKK-04-0090 LAM4 mono WT L89R WT WT 40

TKK-04-0105 LAM4 XDR WT M319T 
a WT WT >60

TKK-02-0007 LAM4 XDR WT R373G WT WT 25 (25)

TKK-01-0018 CAS1-Kili poly WT WT WT WT 15

TKK-01-0054 X3 mono WT WT WT WT 20

TKK-01-0084 LAM 4 susceptible WT WT WT WT 40 (40)

TKK-03-0065 Beijing susceptible WT WT WT WT 20

TKK-04-0054 Beijing Pre-XDR WT WT WT WT 20

TKK-01-0007 LAM 3 susceptible WT WT WT WT 15

TKK-01-0033 LAM 4 XDR WT WT WT WT 15

TKK-01-0036 LAM 4 mono WT WT WT WT 30

TKK-01-0060 LAM 3 poly WT WT WT WT 15

TKK-03-0021 T1 susceptible WT WT WT WT 20

TKK-03-0099 X1 susceptible WT WT WT WT 20

TKK-04-0109 LAM 4 XDR WT WT WT WT 20

TKK-04-0149 Beijing susceptible WT WT WT WT 15

TKK-02-0018 T3 Pre-XDR WT WT WT WT 20

TKK-02-0062 CAS1-Kili Pre-XDR WT WT WT WT 15

TKK-01-0019 LAM 3 XDR WT WT WT WT 15

TKK-01-0035 LAM 4 MDR WT WT WT WT 20

TKK-01-0081 LAM 4 susceptible WT WT WT WT 20

TKK-01-0035 LAM 4 MDR WT WT WT WT 20

TKK-02-0050 LAM 4 XDR WT g-8t 
b WT WT >60 (>60)

TKK-04-0103 X3 XDR WT WT WT WT 20

TKK-04-0070 LAM 4 Pre-XDR 1bp ins at 128 WT WT WT 40

TKK-04-0047 LAM 3 poly G213S WT WT WT 30

TKK-03-0026 Unknown susceptible WT A284G WT WT 20

TKK-03-0020 S susceptible WT WT WT WT 20

TKK-03-0029 EAI1SOM susceptible WT WT WT WT 10
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We found that clinical strains with the ald mutations exhibited a median MIC of 40 µg/mL which 

was significantly higher than strains that were wild-type at all of the putative D-cycloserine 

resistance conferring loci. In total 91% of clinical strains which possessed the wild-type alr and 

ald genes had an MIC of ≤ 20 µg/mL. 

 

Two strains (TKK-04-0122 and TKK-04-0047) possessed nonsynonymous SNPs in ald also 

displayed an MIC of 30 µg/mL suggesting these mutations also result in LOF. Taken together 

these results indicate that LOF mutations and nonsynonymous SNPs in ald can result in resistance 

to D-cycloserine at or above the WHO recommended critical concentration of 30 µg/mL. 

 

In our assessment of clinical strains with alr mutations, we found these strains displayed a high 

level of resistance to D-cycloserine in comparison to strains that possessed wild-type alr and ald 

genes. One strain (TKK-02-0050), which possessed a promoter mutation in alr displayed an MIC 

of > 60 µg/mL, which is compatible with a study conducted on M. smegmatis, where it was 

observed that a mutation in the promoter region of alr conferred resistance to D-cycloserine 

(Caceres et al., 1997).  
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Figure 3.4: Distribution of D-cycloserine MIC of M. tuberculosis clinical strains with diverse drug 

susceptibility phenotypes and varying genetic backgrounds (Desjardins et al., 2016). D-cycloserine 

MIC testing was performed on clinical isolates with mutations in ald and alr using LJ medium. This analysis 

includes the strains with wild-type ald and alr genes, LOF mutations in ald, nonsynonymous mutations 

(NSY) in ald and alr genes and promoter mutations (PRO) in alr. Strains which possessed ald and alr 

mutations displayed a significantly greater resistance to D-cycloserine in comparison to strains which 

possessed WT ald and alr. The median of wild-type and ald LOF strains are represented as open circles 

and quartiles are represented as connected bars. The strains with ald LOF displayed greater resistance when 

compared to wild-type strains (P < 0.0002, Mann–Whitney U test). 
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CHAPTER FOUR 

Discussion 

The objective of this study was to identify novel genes and mechanisms implicated in drug 

resistance in clinical isolates of M. tuberculosis in KwaZulu-Natal. Focussing on LOF mutations 

we were able to provide new insights into the genetic basis of D-cycloserine resistance in clinical 

isolates.  Due to the toxicities (Cunha, 2001, Torun et al., 2005, Mitnick et al., 2008) and severe 

side effects (Kendig et al., 1956, Murray, 1956, Bankier, 1965, Yew et al., 1993) associated with 

the administration of D-cycloserine to patients , it would be particularly worthwhile to develop a 

rapid molecular based assay to detect D-cycloserine resistance. In this way, it would be possible 

to prescribe this drug to patients which actually harbor susceptible M. tuberculosis strains, thereby 

avoiding unnecessary severe drug associated side-effects. In addition, due to technical difficulties, 

phenotypic D-cycloserine DST is not routinely performed (Woods, 2000, Kam et al., 2010, WHO, 

2014). The development of molecular diagnostics would greatly expand the detection of 

resistance to this still widely used second-line anti-tuberculosis drug.  Our results will therefore 

contribute to improved diagnostics for D-cycloserine. 

 

 Based on an association and correlation evolution analyses performed (Desjardins et al., 2016), 

we identified genes with LOF mutations which may be associated with phenotypic resistance. 

From this screening, we focused on ald LOF, which encodes for L-alanine dehydrogenase. Eleven 

different ald mutations were observed in drug-resistant M. tuberculosis clinical strains (Table 

3.4). Distinct ald LOF mutations occurred independently multiple times consistent with 

convergent evolution. This suggests a positive selective pressure. We do not have direct evidence 

that this was D-cycloserine as we do not have detailed drug histories for these patients and many 

of them were primary TB infections. However most of the mutations occurred within resistant 

clinical isolates from Lineage 4 which is associated with the evolution of XDR-TB (Chihota et 

al., 2012, Muller et al., 2013, Cohen et al., 2015). (Figure S1). Patients infected with strains within 

this lineage will have definitely received D-cycloserine therapy. It is therefore highly likely that 

exposure to D-cycloserine was the antibiotic pressure that selected for ald mutations, and our 

experimental validation confirmed mutations in ald confer resistance to D-cycloserine in vitro.  

 

An important part of this study was the development of a reliable assay to assess susceptibility to 

D-cycloserine. Testing on LJ medium is cumbersome and not amenable to more high-throughput 

testing. Our attempts using simple culture in broth were not reliable. So, we optimized a growth 

assay utilizing the BD BACTEC™ MGIT™ 960 system, with titered innocula, which allowed us 
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to evaluate the effects of D-cycloserine on growth in a carefully controlled, sensitive and 

quantitative fashion. This enabled us to show that the Δald possessed a growth advantage in the 

presence of D-cycloserine relative to the wild-type and complemented controls (Figure 3.1). We 

were then able to validate our assay using classical MIC determination on LJ slopes confirming 

ald contributes to D-cycloserine susceptibility in vitro (Table 3.7). 

 

We hypothesised that the mechanism by which ald LOF confers D-cycloserine resistance in M. 

tuberculosis is through the prevention of the conversion of L-alanine to pyruvate, which in turn 

leads to the accumulation of intracellular L-alanine (Figure 1.5). If ald LOF increases available 

L-alanine, then this could reduce the competitive inhibition of alanine racemase and D-alanine 

ligase activity by D-cycloserine through increased substrate availability, which would allow for 

continued cell wall synthesis. At increasing D-cycloserine concentrations drug would eventually 

overwhelm the moderate level of resistance provided by the increased L-alanine pool which is 

what we observed. Metabolomic experiments would be able to test this hypothesis. 

 

Previous work has shown that the innate resistance of M. bovis BCG to D-cycloserine is in part 

due to a SNP in the alanine transporter cycA, but additional genes may be involved (Chen et al., 

2012). Here we hypothesised that the frameshift in ald present in M. bovis BCG (Chen et al., 

2003) might also contribute to D-cycloserine resistance. While complementation of functional 

ald into M. bovis BCG did not affect the MIC to D-cycloserine (Table 3.7) we did see at higher 

concentrations in our growth assay, the growth of complemented strains in the presence of D-

cycloserine was significantly more inhibited than that of M. bovis BCG (Figure 3.2). This suggests 

that ald LOF also contributes to D-cycloserine resistance in M. bovis BCG. It is possible that the 

contribution of ald to D-cycloserine resistance would have greater penetrance in a genetic 

background with the wildtype cycA, and further experimentation could address this. For example, 

the permease cycA probably also transports alanine and mutations in this gene and could therefore 

alter the intracellular flux of L-alanine. The reason the phenotype was not restored may also be 

partly due to an integrative vector being used from which sub-optimal expression is achieved. 

This could also explain why complementation of the ald into the ald knockout strain only partially 

restored a growth advantage with D-cycloserine (Figure 3.1). Further experimentation evaluating 

the overexpression of ald needs validation.  

 

The muted complementation of BCG led us to test M. bovis which also has the same ald mutation 

as BCG. It is generally thought that only BCG is resistant to D-cycloserine but a previous study 

has reported M. bovis to have an elevated MIC (Rist et al., 1967) for D-cycloserine which we 
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confirmed for the reference M. bovis strain ATCC 19210. This prompted us to further evaluate 

other strains of the MTBC, which like M. bovis lack RD9 (Brosch et al., 2002) and which share a 

frameshift mutation in ald. However, experimentation is ongoing and has proven to be difficult 

to conduct as supplementation of pyruvate (required for growth of these strains) was found to 

increase the MIC of D-cycloserine (data not shown). As the ald LOF mutation emerged in the 

RD9 lineage prior to antibiotic therapy, it suggests that the mutation could be selected for in the 

absence of drug. It is however unclear what the adaptive advantage of ald in these strains might 

be, however ald mutations do not lead to a loss of fitness in a mouse model in an M. tuberculosis 

genetic background.  Further experimentation is warranted to obtain conclusions. 

 

Having observed ald LOF causes a moderate level of resistance to D-cycloserine in laboratory 

strains we wanted to determine if this phenomenon was also reflected in clinical strains which 

possessed the ald LOF.  

 

Our data showed, clinical strains (Figure 3.4, Table 3.8) with ald LOF mutations displayed a low-

level of resistance to D-cycloserine. In contrast strains, which harbored non-synonymous and 

promoter mutations in alr displayed a high level of resistance when compared to strains with only 

ald LOF mutations. Clinical isolate, TKK-02-0050 was of particular interest due to this strain 

possessing a promoter mutation in alr, and was predicted to cause resistance from studies 

conducted with M. smegmatis. This mutation most likely causes an upregulation of the alr gene 

and therefore increases the available enzyme which would reduce competitive inhibition by D-

cycloserine. 

 

Testing of our clinical isolates indicated that the majority of the strains with ald LOF mutations 

displayed a median MIC of 40 µg/mL (Figure 3.4, Table 3.8) and it is unclear if this represents a 

clinically significant MIC or not. There is a dearth of studies evaluating how low-level resistance 

conferring mutations effect TB treatment outcomes. In the case of INH resistance the katG 

mutation, S315T, confers high level INH resistance (Wengenack et al., 1997, Saint-Joanis et al., 

1999, Pym et al., 2002, Dalla Costa et al., 2009, Ando et al., 2010) and up to 94% of INH resistant 

clinical strains are known to harbor this mutation in some settings (Musser et al., 1996, Telenti et 

al., 1997, Mokrousov et al., 2002, Morlock et al., 2003, Guo et al., 2006, Muller et al., 2011). The 

inhA promoter mutations are known to confer  low-level  INH resistance and this mutation is 

observed in up to 35% of INH resistant clinical strains (Brossier et al., 2006, Dalla Costa et al., 

2009, Ando et al., 2010, Muller et al., 2011). However, it is still unknown if increasing INH 

concentrations are necessary or can overcome this low-level resistance although a study is 
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currently evaluating this. Similarly, our data show that mutations in ald are associated with low-

level resistance to D-cycloserine and we cannot predict the clinical importance, but increasing D-

cycloserine levels will not be possible due to toxicity.  

 

Two clinical isolates (TKK-04-0075 and TKK-01-0050) harbored both ald and alr mutations. In 

our investigation of D-cycloserine resistance these strains displayed an elevated MIC of 40 µg/mL 

to D-cycloserine (Figure 3.4, Table 3.8). It is possible that ald LOF mutations may represent a 

“stepping stone” mutation to higher level resistance conferred by alterations in the direct targets 

of D-cycloserine.  

 

In two strains which possessed the wildtype ald, alr, ddlA and cycA alleles (TKK-01-0084 and 

TKK-01-0036) we observed an increased MIC to D-cycloserine. These two strains revealed MICs 

of 40 µg/mL and 30 µg/mL (Figure 3.4, Table 3.8) respectively. We propose resistance in these 

strains is not caused by mutations in ald, alr, ddlA and cycA, indicating alternate mechanisms of 

D-cycloserine resistance could exist in M. tuberculosis.  

 

D-cycloserine is an inhibitor of the peptidoglycan biosynthesis pathway, but very little is known 

about it targets. Previous studies have shown that overproduction of alanine racemase and D-

alanine:D-alanine ligase may play a role in D-cycloserine resistance (Chacon et al., 2002, 

Milligan et al., 2007, Chacon et al., 2009, Awasthy et al., 2012). In BCG, resistance to D-

cycloserine may be caused by the polymorphism in the alanine transporter cycA (Chen et al., 

2012). However, none of our characterized clinical strains carried the ddlA and cycA mutations 

that are normally associated with D-cycloserine resistance. This led us to assume that mutations 

in ddlA and cycA may not be of clinical relevance in D-cycloserine resistance. This observation 

shows the value of more accurate genetic characterization of drug targets in a laboratory to predict 

clinically relevant mutations. 

 

In 2008 the recommended WHO D-cycloserine critical concentration was set at 40 µg/mL, as 

verified on LJ medium (WHO, 2008a). The critical concentration was later lowered to 30 µg/mL 

(WHO, 2012). Based on our data, we established a tentative epidemiological cut-off (ECOFF) 

value of 20 µg/mL in our assessment of wild-type strains (Figure S2). ECOFFs are determined 

from analysing MIC distributions of a large number of wild-type strains which possess no known 

drug resistance mechanisms and from patients who have not been exposed to drug (Kahlmeter et 

al., 2003, Kahlmeter and Brown, 2004, Turnidge et al., 2006, Angeby et al., 2012, Kahlmeter, 

2015). Defining ECOFF values is especially important in cases where strains exhibit elevated 
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MICs that do not reach the critical concentration breakpoints (which should be defined on the 

basis of predicting clinical success) (Kahlmeter, 2015). ECOFF values may also be useful in 

circumstances where clinical breakpoints are not known and these values can then be used to 

detect and compare resistance (Kahlmeter et al., 2003, Kahlmeter and Brown, 2004). We observed 

clinical isolates which possess ald LOF mutations are likely to have D-cycloserine MICs close to 

the critical concentration breakpoints that define D-cycloserine resistance, even if they appear to 

be D-cycloserine susceptible according to standard DST methods. This necessitates considering 

ECOFF values in redefining the parameters of resistance, more especially to drugs which exhibit 

low-level resistance mechanisms as observed in our study of D-cycloserine.  

 

However, testing on more wild-type strains in South Africa and other geographical areas is 

required to establish a more concrete ECOFF for D-cycloserine. Our data also suggests the current 

critical concentration of D-cycloserine by WHO standards be re-evaluated (Angeby et al., 2012, 

Torrea et al., 2015). This is necessary as conventional DST methods alone may result in the 

exclusion of isolates exhibiting low-level resistance.  

 

The combination of D-cycloserine or terizidone (a D-cycloserine analogue) with other TB drugs, 

encompasses an important component of the MDR and XDR treatment regimen in South Africa 

(http://www.health-e.org.za/wp-content/uploads/2014/06/MDR-TB-Clinical-Guidelines-

Updated-Jan-2013.pdf). Further examination of the global distribution of ald LOF and other D-

cycloserine resistance conferring mutations will enable an evaluation of the extent of D-

cycloserine resistance in the absence of phenotypic drug resistance testing. Ultimately the 

identification of these mutations will allow studies to determine if they impact on clinical 

outcomes, and provide critical information for the development of rapid genetic based tests for 

D-cycloserine resistance.  

 

  

http://www.health-e.org.za/wp-content/uploads/2014/06/MDR-TB-Clinical-Guidelines-Updated-Jan-2013.pdf
http://www.health-e.org.za/wp-content/uploads/2014/06/MDR-TB-Clinical-Guidelines-Updated-Jan-2013.pdf
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Conclusion 

Our data is representative of diverse drug resistance profiles of clinical isolates in KwaZulu-Natal. 

We were able to identify potential drug resistance conferring mutations by utilizing whole genome 

sequencing (Cohen et al., 2015, Desjardins et al., 2016). 

 

Our results identified that ald LOF mutations represent a novel resistance mechanism to D-

cycloserine albeit at a low-level of resistance. These strains should therefore be treated with 

attentiveness for resistance, even if they appear to be D-cycloserine susceptible on conventional 

testing methods. They may represent a stepping stone to higher level resistance. The clinical 

implication of these mutations is unknown, but given that D-cycloserine can cause severe 

neurological side effects their presence could be sufficient to exclude D-cycloserine treatment 

where other options are available. 

 

Although our data are from a single province of a single country we have also expanded the 

knowledge of genetic mechanisms of resistance. We have also shown that both alr promoter and 

intragenic mutations are associated with higher levels of resistance to D-cycloserine. We did not 

find ddl or cycA mutations in our data which suggests these genes may be of lesser importance in 

conferring D-cycloserine resistance. 

 

Due to limitations of drug resistance testing in the presence of pyruvate we are currently unable 

to determine if all the RD9 strains of the MTBC have an elevated MIC to D-cycloserine. But this 

seems highly likely in which case ald LOF is a rare example of emergence of a bacterial drug 

resistance conferring mechanisms in the absence of antibiotic selective pressure.  

 

Our work will provide data for the development of novel molecular diagnostics which will allow 

individualized use of D-cycloserine and reduction MDR-TB associated drug toxicities. 
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Appendix 1 

Media Formulation 

7H9 Broth  

1. 4.7 g powdered Middlebrook 7H9 broth base was dissolved in 900 mL dH2O. 

2. 5 mL of 40% glycerol was added to the mixture. 

3. Autoclaved at 121C for 15 minutes. 

4. Media was allowed to cool and 100 mL OADC and 2.5 mL 20% Tween 80 added. 

5. Stored at 4C until use, three-week expiration post preparation. 

 

7H10 Agar   

1. 19 g powdered Middlebrook 7H9 broth base was dissolved in 900 mL dH2O. 

2. 12.5 mL of 40% glycerol was added to the mixture. 

3. Autoclaved at 121C for 15 minutes. 

4. Media was allowed to cool to ~65C and 100 mL OADC added. 

5. 25 mL media was poured per petri dish and allowed to cool.  

6. Stored at 4C until use, three-week expiration post preparation. 

 

LB Broth  

1. 25 g powdered LB broth base (Sigma L3522), was dissolved in 1000 mL dH2O. 

2. Autoclaved at 121C for 15 minutes. 

3. Media was allowed to cool and stored at 4C until use, three-week expiration post preparation. 

 

LB Agar  

1. 37 g powdered LB agar base (Sigma L3147), was dissolved in 1000 mL dH2O. 

2. Autoclaved at 121C for 15 minutes. 

3. Media was allowed to cool to ~65C and desired drug added at this interval if required.  

4. 25 mL media was poured per petri dish and allowed to cool.  

5. Stored at 4C until use, three-week expiration post preparation. 

 



86 

 

SOC medium  

1. 20 g powdered Bacto Tryptone and 5 g Bacto Yeast Extract was weighed out. 

2. The weighed out powders and 2 mL of 5 M KCl and 10 mL of 1 M MgCl2 was dissolved in 

970 mL dH2O. 

3. The medium was autoclaved at 121C for 15 minutes. 

4. Media was allowed to cool to ~ 65C and sterile 10 mL of 1 M MgSO4 and 20 mL of 1 M 

glucose was added.  

5. Stored at 4C until use, three-week expiration post preparation. 

1 M Sodium phosphate buffer (pH 8) (Sambrook and Russell, 2001) 

1. 138 g powdered NaH2PO4.H2O (monobasic; m.w.=138) was dissolved in 1 L dH2O using a 

magnetic stirrer to achieve a 1 M stock concentration.  

2. To a separate flask 142 g powdered Na2HPO4 (dibasic; m.w.=142) was dissolved in 1 L dH2O 

using a magnetic stirrer to achieve a 1 M stock concentration.  

3. To prepare a 50 mL of sodium phosphate buffer at pH 8, add 4.66 mL of 1 M Na2HPO4 and 

0.34 mL of 1 M NaH2PO4 to 45 mL dH2O. 

4. pH was adjusted to 8 with concentrated HCl or NaOH.  

5. Prepared working solutions were filter sterilized using a 0.22-micron filter system. 

6. Stored at room temperature, one-month expiration post preparation. 

 

D-cycloserine antibiotic preparation 

D-cycloserine (Sigma C6880), was prepared freshly in 0.1M Sodium phosphate buffer (pH 8) on 

the day of LJ preparation testing due to instability of the drug. The stock of D-cycloserine was 

prepared and filter sterilised with a 0.22-micron filter. 

 

MGIT supplementation 

The MGIT (Mycobacteria Growth Indicator Tube), contains 7 mL of Middlebrook 7H9 broth 

base (BD BBLTM MGITTM Cat. No. 245122) 

1. To the 7 mL MGIT tubes 800 µL growth supplement which contains OADC (Oleic acid 

Dextrose Albumin Catalase) was added. (BD BACTECTM MGITTM Cat. No. 245124). 
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Preparation of Löwenstein-Jensen (LJ) medium 

LJ medium is required for mycobacterial culture (Jensen, 1954) and is recommended by the WHO 

(Woods, 2000, Kam et al., 2010). Fresh eggs were used for LJ preparation.  

1. To a sterile flask dissolve 2.4 g monopotassium dihydrophosphate (KH2PO4), 0.24 g 

magnesium sulfate (MgSO4.7H2O), 0.6 g magnesium citrate, 3.6 g L-asparagine in 600 mL 

dH2O. 

2. Autoclaved at 121C for 20 minutes. 

3. To avoid contamination, eggs were cleaned by washing them thoroughly with plain soap and 

rinsed with water. Thereafter the eggs were wiped with 70% ethanol and cracked with a sterile 

knife. A 1000 mL egg homogenate was used. 

4. The egg suspension and 600 mL sterile LJ medium were aseptically mixed and cooled to 

approximately 50-60C.  

5. The appropriate volume of D-cycloserine was added to the LJ tubes prior to inspissation to 

achieve final concentrations of 0, 10, 15, 20, 25, 30, 40, 60, and 120 µg/mL. 

6. The drug containing medium was dispensed in 6 mL amounts into screw cap 15 mL conicals 

and placed in a slanted position on the inspissator at 85C for approximately one hour to set.  

7. To check for sterility, the prepared batch of media was incubated at 37C for 24 hours.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 

 

Appendix 2 

Supplementary Figures 

 
The ald LOF mutations occurred within drug-resistant clinical isolates from Lineage 4. This 

mutation occurred in 25 MDR and XDR M. tuberculosis strains, indicating that this LOF occurred 

in patients receiving second-line treatment.  

 

 

Figure S1: Pattern of convergent evolution in drug-resistant M. tuberculosis strains (Desjardins et 

al., 2016). A) Distribution of mutations across full length of the ald gene. Position of insertions (blue 

triangles), deletions and nonsense (red triangles) mutations in ald of M. tuberculosis drug-resistant strains. 

Mutations in ald which occur in M. bovis BCG are also displayed. B) Phylogenetic representation of ald 

LOF mutation in Lineage 4 drug-resistant strains. Inner Grey ticks represent MDR M. tuberculosis 

strains. Inner Black ticks represent XDR M. tuberculosis strains. Outer blue ticks represent insertion 

mutations in ald, and red triangles represent deletion and nonsense mutations in ald.  
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Figure S2: Distribution of D-cycloserine resistance in clinical M. tuberculosis strains (Desjardins et 

al., 2016) This histogram represents distribution of D-cycloserine MICs of the respective M. tuberculosis 

clinical strains according to the different mutations possessed. The current critical concentration (CC) for 

D-cycloserine and tentative epidemiological cut off (ECOFF) are shown. The MICs of BCG and M. bovis 

are also represented on this histogram.  

 

 

 

 

 


