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Abstract  

Increased human habitation brings associated pressures with it, such as the introduction of 

contaminants to coastal waters. The major sources of these occur along the KwaZulu-Natal 

coast via Sappi Saiccor discharge points, Tioxide, AECI, the Mlaas canal, Central Works 

Outfall and Southern Works Outfall. This study investigated the effects of sediment structure on 

benthic amphipod communities exposed to sewage and industrial waste from the Central Works 

and Southern Works Outfalls along the Durban coastline, and used a 4-year dataset of sediment 

grain size analysis, metal concentrations, Total Kjeldahl Nitrogen (TKN) and Chemical Oxygen 

Demand (COD) at impacted and reference sites. Results exhibited that the levels of effluent 

being discharged onto the Durban coast from the Southern Works and Central Works Outfalls 

do not accumulate in the fine grained sediments in sites where it would be expected. The Mdloti 

reference site which was dominated by coarse sediment showed the highest concentrations of 

metals. In addition, the outfalls do not have significant effects on the amphipod communities in 

the vicinity. Community structure between sites with similar grain sizes tends to be very similar 

thereby highlighting the possible influence of grain sizes on determining community patterns. 

Overall, there seemed to be no effect of pollutants on the biology or accumulation in the 

receiving environment.  
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1. Introduction  

1.1. General overview of pollution 

Coasts around the world have long been of economic importance, contributing to countries‟ 

economies via agricultural and industrial production, fisheries and residential developments, 

amongst others (Taljaard et al., 2006). Due to the increasing number of people that live by and 

rely on the coast in Africa, and in particular South Africa, pressure on coastal resources in this 

region is increasing significantly (Calamari et al., 1987; Meyer-Reil & Koster, 2000; 

O‟Donoghue & Marshall, 2003). Increased human habitation brings associated pressures with it, 

such as the introduction of contaminants to coastal waters. With these pressures arises the 

concept of ecosystem health. Ecosystem health has been defined as a system free from “distress 

syndrome”, is stable, sustainable and resilient to stress. It is active and maintains its organisation 

and autonomy over time. Distress syndrome is the irreversible breakdown of the system leading 

to system collapse (Constanza, 1992; Rapport et al., 1998).  

 

Contaminants enter coastal waters via sewage and industrial effluent discharges, storm water 

run-off, contaminated ground water seepage, mining and agricultural return flows, dredging and 

deep-sea outfalls (Zauke et al., 1999; O‟Donoghue & Marshall, 2003; Taljaard et al., 2006). 

These pollutants are introduced into the marine environment from either point or non-point 

sources. Point sources include discharge points of industrial and municipal effluent and urban 

runoff, while non-point sources are those from urban and agricultural runoff, groundwater and 

atmospheric inputs (Meyer-Reil & Koster, 2000). The major sources of effluent discharges 

occur along the KwaZulu-Natal coast via Sappi Saiccor discharge points, Tioxide, AECI, the 

Mlaas canal and the Durban outfalls. The focus of this study is on the two Durban outfalls, viz. 

the Southern Works Outfall and Central Works Outfall. The Central Works Outfall deals with 

sanitary waste while Southern Works deals with both sanitary and industrial wastes. The reason 

for investigating these pipelines is to look at influence of these on the benthic community 

structure in those areas in comparison with reference sites. This study provides insight into the 

possible effects of these pipelines on the physico-chemical conditions and the sedimentary 

invertebrate community structure by looking at data representing a four year snapshot of the 

benthos.  

 

Chemical contaminants may have negative effects on ecosystems and can change the well-being 

of organisms and the consequent biogeochemical properties of the biota (Gadzala-Kopciuch et 

al., 2004). The pollutants may be inorganic chemicals as well as natural (i.e. organic material of 

biological origin) and synthetic organic compounds. Such pollutants can attach to particulates in 
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the water and sink to the bottom of the ocean (Reish, 1993). Although dilution of pollutants 

occurs, some settlement of particulates takes place, resulting in their accumulation in the 

sediment (Fleeger et al., 2003). Many contaminants have low water solubility and are particle 

reactive through their ability to sequester high levels of certain metals. Contaminants tend to be 

scavenged to bottom sediments via flocculation, coagulation and sedimentation. The 

concentrations of contaminants in sediment have been found to be significantly higher than that 

in the water column (Huh et al., 1992; Mwanuzi & De Smedt 1999; Hatje et al., 2003; Newman 

& Watling, 2007). Sediments act as final acceptors of pollutants and therefore are used in 

marine contaminant studies worldwide (Sprovieri et al., 2007). Chemical analyses of sediments 

help determine the extent and the nature of contamination in an area (Chapman et al., 1987). 

Sediment grain size analyses, together with measurements of metal concentrations, total 

Kjeldahl nitrogen and chemical oxygen demand provide a comprehensive understanding of how 

the system responds to to contamination. These can then be applied in order to determine the 

possible effects of the anthropogenic sources on the biological system. 

 

1.2. Sediments and contaminants  

Sediments are comprised of diverse components of a variety of sources, which are classified 

into the following categories: detrital material primarily from terrigenous origin, products of 

volcanism, skeletal remains and organic matter from dead organisms, inorganic precipitates 

from seawater, and products from chemical transformations taking place in the sea (Sverdrup et 

al., 1962). Sediment is transported to the sea, settling through the water while being carried by 

ocean currents (Sverdrup et al., 1962). The Agulhas Current, one of the most important currents 

along the east coast of South Africa, together with wind action and fluvial fluxes play a role in 

sediment transport to and along the coast (McClurg, 1988; Schumann, 1988; de Ruijter et al., 

1999). Many rivers flow into the sea off KwaZulu-Natal thereby affecting the shelf benthos. In 

addition, high rainfall as well as urbanisation and increased agricultural activities result in 

erosion and large amounts of sediment, particularly silt and clay, being discharged to the sea 

(Mclurg, 1988). This sediment determines the distribution and survival of benthic fauna and 

resulting ecosystem processes along the KwaZulu-Natal coast (Schumann, 1988).  

 

Sediment characteristics, such as the organic carbon content, grain size composition, mineral 

constituents (e.g. oxides of iron or manganese), and acid volatile sulfides (Di Toro et al., 1990) 

provide supporting information regarding the distribution and composition of pollutants in a 

particular area (de Mora et al., 2004). These characteristics are important factors to consider 

when studying macrobenthic infauna due to the fact that these organisms are exposed to 
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sediment-bound contaminants through their life spans. This study focuses primarily on sediment 

particle size composition and other measurements of selected physico-chemical properties of the 

anthropogenic inputs, such as the concentrations of metals, Total Kjeldahl Nitrogen (TKN) and 

Chemical Oxygen Demand (COD) on the benthic communities. 

 

1.2.1. Sediment grain size 

The particle size grade composition of sediment is determined by sieving and determining the 

settling velocity of the smaller particles. Consequently, sediment is classified into gravels, 

sands, silts, mud and clays according to size grades. Although fine-grained material may be 

formed in the sea, most of it is of terrigenous origin, having previously undergone mechanical 

and chemical weathering en route to the coast (Sverdrup et al., 1962). Fine material may be 

introduced via rivers, resuspension by wave action in shallow water, and from the remains of 

planktonic animals (Sverdrup et al., 1962). The small size of these particles causes them to be 

transported far from their point of entry to the nearshore. Coarse material is mainly transported 

to the coast from land, and being larger, settles quickly to the seafloor in the vicinity of point of 

entry.  

 

Sediment grain size is important in influencing the concentration of metals in sediment (Lin et 

al., 2002; Zhang et al., 2002). According to de Mora et al. (2004), fine silt and clay retain more 

contaminants than coarse sandy sediment. There tends to be a preferential adsorption of 

compounds onto suspended fine-grained particles, and these particulates are ultimately 

introduced into the benthic sediment through sedimentation (Lowrey, 1993). Fine grained 

sediments have a greater surface area to volume ratio and a higher surface electric charge than 

coarse sediments, thereby making them more chemically reactive (Plumb 1981; Power & 

Chapman, 1995; Newman & Watling, 2007). Sites with fine grained sediments therefore exhibit 

higher metal contamination compared to coarse grained sediments in areas where anthropogenic 

inputs of metals are important.  

 

The introduction of man-made structures like pipelines may alter soft-bottom habitats in a 

number of ways. They affect wave fields and change current patterns resulting in changes of 

sand ripple patterns and sediment grain size. In addition they trap organic material which can 

cause organic build-up in the sediment, and shells from fouling organisms modify sediments 

(Davis et al., 1982). Braga et al. (2000) have shown that water around the diffusers was high in 

organic nutrients and they concluded that the high organic content in sediments was due to the 

sewage discharge. This however, would not apply to pipelines disposing of industrial pollutants.  
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A study by Abessa et al. (2005) showed evidence for the potential for sewage to influence 

sediment grain size distribution and increase organic content. Sediments close to the outfall 

diffusers were finer and organically enriched (Abessa et al., 2005). In order to predict the effects 

of these man-made structures, Davis et al. (1982) concluded that the impacts are dependant on 

the size and complexity of the structure, the time passed since it was constructed and the 

behaviour of mobile predators to the structure in terms of foraging. In addition, the flora and 

fauna attached to the structure and the susceptibility and resilience of bottom dwelling 

communities to physical and biological changes can contribute to the impacts caused. 

 

1.2.2. Metals 

Metals that tend to pose an ecological or biological risk include lead (Pb), cadmium (Cd), zinc 

(Zn), mercury (Hg), arsenic (As), silver (Ag) chromium (Cr), copper (Cu) and iron (Fe) 

(Duruibe et al., 2007). These are found naturally in sediment, however their levels can be 

increased through their introduction via anthropogenic sources; they are considered to be 

persistent environmental contaminants as they cannot be degraded or destroyed (Duruibe et al., 

2007; Newman & Watling, 2007; Marín-Guirao et al., 2008). Anthropogenically introduced 

metals can enter the sea via many sources, such as through ground water, domestic and 

industrial developments, urban and riverine runoff, sewage treatment plants, mining activities 

and effluent disposal (Stoffers et al., 1986; Wong et al., 2000; Duruibe et al., 2007).  

 

Metal accumulation in sediments is affected by sediment characteristics such as grain size and 

organic content (Rainbow, 1995a). Organic enrichment is often found in sewage impacted areas. 

It has been found that most sewage sludge has toxic metals that are bound to small particles 

which are often organic matter. This organic matter has been found to be involved in the 

complexing and incorporation of metals within sediment. Significant correlations have been 

found between the metals zinc, copper, lead and cadmium and organic matter (Cheggour et al., 

2000). The release of metals from the sediment into the water column can result through 

disturbances such as bioturbation, storms and dredging (Newman & Watling, 2007). Some 

metals, such as lead, do not have a physiological role (Marín-Guirao, et al., 2008), while other 

metals such as copper and zinc are essential and needed for normal metabolic functions. 

However, if intracellular metal concentrations exceed that required by the organism they can 

exert their toxic effect (Correia et al., 2002; Marín-Guirao, et al., 2008). Those metals that do 

not have physiological roles act on organisms in a number of ways. Some may cause colour or 

shape changes of an organism, histological changes in tissue material, decreased development of 

larvae, abnormal larvae structures, inhibition of growth, prevent the settlement of sessile 
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organisms, delay or prevent sexual maturity or spawning and behavioural changes (Bryan, 

1971). Table 1 lists the sources of essential and non-essential metals encountered in this study, 

and their biological roles. Non-essential substances are defined as those substances that may not 

always be present in biologically significant amounts in the local environment of a species-

population while essential substances are those substances that co-occur in the environment with 

biota in biologically significant amounts (Barata et al., 1998). 

 
Table 1: Essential and non-essential metals considered in this study, their natural and anthropogenic 

sources and biological roles.  

 

METAL 

 

NATURAL AND 

ANTHROPOGENIC 

SOURCE 

 

BIOLOGICAL ROLE/EFFECT 

 

REFERENCE 

 

ESSENTIAL METALS 

Iron Sediment; atmospheric 
aerosols; rain; mining. 

Component of haemoglobin and 
respiratory cytochromes; biochemical 
effects of photosynthesis: reduced 
pigment content, decrease in light 
absorption, decrease in storage 
carbohydrates, increased 
photoinhibition susceptibility; 
participates in two geochemical 
reactions that influence primary 
production in marine systems; 
decreased iron can limit 
phytoplankton productivity; needed by 
some enzymes for energy production 
and protein metabolism; the 
cytochrome system requires iron to 
produce energy. 

Soria-Dengg & 
Horstmann (1995); 
Zhuang et al. (1995); 
Schiff & Weisberg 
(1999); Chambers et 
al. (2001); Haas & 
Levin (2006); 
Pankowski & 
McMinn (2009). 

Copper Anti-fouling coatings on 
hulls of ships; treated 
wood; natural erosion; 
mining; smelting; 
municipal and industrial 
wastewater effluents; 
pesticides. 

Required for the respiratory pigment 
haemocyanin in invertebrates; oxygen 
carrier in blood of molluscs; 
micronutrient for aquatic organisms; 
found in many enzymes; copper 
enzymes play a role in oxygen-free 
radical metabolism thereby having an 
anti-inflammatory effect. 

Weis et al. (1992); 
Hall & Anderson 
(1999); Thomas et al. 
(2000); Lamontagne 
& Foerster (2002); 
Haas & Levin (2006). 

Chromium Chromated Copper 
Arsenate (CCA treated 
wood. 

Taken up by phytoplankton; in its +6 
oxidation state is carcinogenic and 
mutagenic; production of insulin; 
plays a role in lipid metabolism. 

Nabrzyski (1991); 
Weis et al. (1992). 
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Table 1 continued: Essential and non-essential metals considered in this study, their natural and 

anthropogenic sources and biological roles.  

Zinc Sewage treatment 
works; mining. 

Essential part of the enzyme carbonic 
anhydrase; needed for lactate and malate 
dehydrogenases which are used in energy 
production; synthesis of nucleic acids; aids in 
chemical detoxification thereby increasing the 
ability to withstand environmental chemicals 
and toxins; required for essential catalytic 
functions in enzymes. 

Coleman (1992); 
Stevenson & 
Betty (1999); 
Johansen et al. 
(2000); Haas & 
Levin (2006). 

Nickel Sewage treatment 
works; electroplating; 
pigment in oils and 
paints; wind blown soil 
and dust; coal and oil 
combustion. 

Serves as a chemical defense in plants against 
to protect against being eaten 

Martens & Boyd 
(1994); 
Stevenson & 
Betty (1999). 

Cadmium By-product of zinc 
mining; electroplating; 
nickel-cadmium 
batteries. 

Essential nutrient for marine phytoplankton; 
can denature enzymes making them inactive; 
kidney damage 

Morel & 
Malcolm (2005). 

 

NON-ESSENTIAL METALS 

Mercury Combustion of fossil 
fuels; weathering of 
mercury-containing 
rocks; emissions from 
deep-sea hydrothermal 
vents. 

Decreases enzyme activity; accumulates in 
kidneys causing kidney failure. 

Mackey et al. 
(1996); Goyer 
(1997); Kennish 
(2002). 

Lead Lead-acid batteries; 
manufacture of solder 
and alloys; atmospheric 
pollution. 

Toxic to the nervous system; causes  
behavioural changes in organisms; alters the 
metabolism of brain neurotransmitters. 

Bryan (1971); 
Caurant et al. 
(2006); Shukla & 
Singhal (1984). 

 

There are two major pathways, discussed by Luoma (1989), in which metals are taken up by 

deposit feeding and detritus feeding marine organisms. The first is the ingestion of sediment or 

suspended particles that are enriched during feeding; the second is uptake from solution. 

Benthic fauna living in the sediment can therefore be exposed to anthropogenic metal inputs and 

uptake of these pollutants may occur. 

 

Metal toxicity to organisms occurs by the reaction of free metal ions with physiologically active 

binding sites. This process is represented as the development of a metal-biotic ligand complex 

(Di Toro et al., 2001). A ligand is a specific receptor in an organism where the complexation of 

metals leads to acute toxicity (Arnold et al., 2005). At the organisms-water interface, free metal 

ions react with binding sites. The metals form ligands with organic compounds, resulting in 

altered protein structure (Rao et al., 2006). It is this reaction that is identified as the metalbiotic 

ligand complex (De Schamphelaere & Janssen, 2002). The behaviour of metal ions in seawater 
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is related to many different types of binding sites or ligands, which possess differing 

complexation strengths and concentrations (Town & Filella, 2000). 

 
Free metal ion concentrations can be changed without altering the total dissolved metal 

concentrations by changing the availability of these metal-binding ligands (Rainbow, 1995b). 

Ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) are synthetic chelating 

agents and may be present in coastal systems. The presence of these chelators tends to reduce 

metal accumulation (Ray, 1984). Zinc uptake by organisms can be reduced by adding the 

chelating agent EDTA to the bioavailable form in solution. This decreases the absolute 

equilibrium concentration of free zinc ions (Rainbow, 1995b). It must be noted that metal 

toxicity in aquatic environments can also be influenced by factors such as pH and dissolved 

organic carbon (DOC) (Barata et al., 1998).  

 

Sewage tends to have a typical composition, usually comprised of high solid and nutrient 

contents and low concentrations of metals, hydrocarbons and pesticides. However, this is not 

always observed. High metal concentrations have been found in effluent discharges from three 

different outfalls in Sydney (Abessa et al., 2005). High lead and zinc concentrations in Turkey 

were found to be confined to those sites that receive effluent. This enrichment of metals has 

been attributed to steel and petroleum manufacturing and domestic sewage (Ergin et al., 1998). 

A study by Gonzalez et al. (1999) of a submarine sewage outfall showed that the 

hydrodynamics of the area played a role in concentrating pollutants in the some regions due to 

surface and bottom currents; however the highest levels of metals were still found at the 

discharge points. The main pollutants at the sampling sites were copper, lead and zinc of which 

the same dominated the wastewater discharge. 

 

1.2.3. Total Kjeldahl Nitrogen (TKN) and Chemical Oxygen Demand (COD) 

Globally, the input of nitrogen into marine ecosystems has increased by a factor of 20 since 

1860 to the current production of nitrogen being ~150 Tg N yr-1 (Rabalais, 2002). Urban and 

rural wastewater, fertilisers, animal waste, atmospheric deposition of fossil fuel, other 

combustion products, agricultural emissions and nitrogen enriched groundwater all contribute to 

the availability of nitrogen to the marine environment (Paerl, 1997; Cornell et al., 2003). Rivers 

play an important role in nutrient delivery to the ocean. Nitrogen enrichment occurs extensively 

in estuaries or in the nearshore coastal ocean and it has been found in parts of the world that 

anthropogenic nitrogen inputs via rivers exceed any other source of nitrogen input. Nitrogen is 

the primary limiting nutrient in marine waters (Rabalais, 2002). Aquatic systems are influenced 

by inorganic dissolved forms (nitrate, nitrite, ammonium), various dissolved organic compounds 
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(amino acids, urea, composite dissolved organic nitrogen) that are collectively called DON, and 

particulate nitrogen (PON) (detritus, phytoplankton) (Frankovich & Jones, 1998; Rabalais, 

2002). Total nitrogen in a system is the sum of the inorganic and fixed organic nitrogen. One of 

the methods used to determine total nitrogen is by the use of acid Kjeldahl digestion of organic 

nitrogenous compounds. The result of this method is a value that includes organic N and NH4
+-

N (not NO2
- -N and NO3

--N) (D‟Elia et al., 1977). 

 

As aerobic bacteria decompose the organic matter that settles on the sea floor, oxygen levels in 

the sediment decrease until eventually anoxia develops. This results in biological and 

geochemical changes in the benthic environment (Pearson & Rosenburg, 1978; Diego-McGlone 

et al., 2000; Rabalais, 2005). Organic carbon and nitrogen, microbial biomass, microbial 

decomposition potential for substrata and oxygen consumption in communities increase with 

increasing eutrophication (Rabalais, 2002). Eutrophication can result in the increase of 

inorganic nutrients into the system, a decrease in the turbidity of water or a decrease in grazing 

pressure. The most common factor increasing the supply of organic matter to ecosystems is 

nutrient enrichment (Nixon, 1995). Oxygen depletion results from eutrophication, and can affect 

detrital matter decomposition, bioturbation of sediments, nutrient regeneration and the exchange 

of material across the water-sediment interface (Heip, 1995; Kennish, 2002).  

 

Chemical oxygen demand is the measure of the amount of organic and inorganic matter that can 

be broken down by chemical oxidation. It results from the oxidation of reduced compounds 

through anaerobic metabolism and provides information on anaerobic activity (Kristensen, 

1985; Lee et al., 1999). COD is usually higher than Biological Oxygen Demand (BOD) due to 

the fact that chemical oxidation breaks down biological materials as well as solvents, 

hydrocarbons and pesticides, while BOD breaks down decaying animal and plant matter 

(Newman et al., 2007). BOD is defined as a measure of the amount of biodegradable organic 

compounds in terms of the oxygen that is needed for their decomposition. COD and BOD are 

generally specific to a body of water due to the amount and nature of pollutants differing 

between sources (Lee et al., 1999). Hydrogen sulphide (H2S) is considered to be a key 

contributor to chemical oxygen demand in marine sediments (Boucher et al., 1994; Findlay & 

Watling, 1997). COD concentrations decrease in the vicinity of outfalls while further from the 

pipeline these concentrations are higher (Cheggour et al., 1999). High COD levels are 

associated with maximum concentrations of organic matter, which can be detrimental to marine 

organisms. However, Shanmugam et al. (2007), found contradictory patterns with high 
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concentrations of COD, particularly in areas where there was sewage deposition resulting in a 

high organic content. 

 

1.3. Ecological and biological consequences of pollution on amphipods 

Pollution impacts on benthic organisms are highly probable due to the accumulation of 

pollutants in the sediment which these organisms inhabit. The focus here is on the consequences 

of pollution on amphipods due to amphipods being possible indicators of pollution in the areas 

studied as well as the availability of long-term datasets of amphipod communities at the selected 

test sites. 

 

1.3.1 Sediment grain size 

Sediment particle size composition affects marine invertebrates in various ways. Larval 

settlement is affected by particle grain size (Morgans, 1956), and it plays a role in the feeding 

behaviour and burrowing of amphipods. Some amphipods require clay and silt particles as they 

are only able to feed on bacteria absorbed to particles between 3 and 4 µm in diameter (Fenchel 

et al., 1975). Sanders (1958) found that different amphipods tend to inhabit different types of 

sediment, with some flourishing in sediments of fine particle size and others in coarser particle 

sizes. Sandy sediments have been found to be abundant in some amphipods such as ampeliscids. 

Ampeliscids are an important constituent of the marine benthos along the KwaZulu-Natal 

(McClurg, 2004). This dominance by Ampelisca spp. was also observed in other studies 

(Miyadi, 1940; Stickney & Stringer, 1957; Le Bris & Glemarec, 1996). However, contradicting 

studies have shown Ampelisca spp. associated with mud or muddy-sand (Stickney & Stringer, 

1957). In contrast to these finding, amphipods have also been found to inhabit coarse sediment 

(Bergen et al., 2001).  

 

This preference of certain sediment grain sizes by different groups of amphipods has been 

linked largely to their feeding strategies. Deposit-feeders that survive on organic matter 

dominate finer grained sediments while suspension feeders, which also rely on organic matter as 

a food source, tend to occupy coarser grained sediments (Sanders, 1958). Sediment grain size 

preferences also play a role in amphipod burrowing and their choice of habitats. The presence of 

certain grain sizes would determine the species of amphipods that inhabit that area. Grain size 

affects the burrowing capabilities of amphipod groups, as mechanically it is difficult to burrow 

in certain size grades (Oakden, 1984). The same study by Oakden (1984) also showed this 

preference in Phoxocephalid amphipods. These amphipods have been found to react to changes 

in grain size. They will either not burrow in unacceptable grain sizes, exhibit avoidance 
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behaviour if the grain size is not ideal, or they will burrow through the unsuitable sediment to 

find more desirable sediments.  

 

1.3.2. Metals 

Metal accumulation affects the reproduction and development of marine crustaceans. Increased 

metal concentrations may have the following effects on marine organisms: histological or 

morphological changes in tissues; physiological changes such as the suppression of growth and 

development or impaired swimming abilities); biochemical changes such as enzyme activity; 

behavioural changes; and reproductive changes (Shanmugam et al., 2007).  

 

Amphipods store excess metals from their diets in detoxified granules in the ventral caeca. As 

metal exposure increases, these granules increase in number. As the cells pass through a cell 

cycle they are passed long the caecum and released in the gut as mature cells are expelled from 

the caecum epithelium. Increased metal bioavailabilities and increased numbers of granules per 

cell increases the accumulated metal concentration in the ventral caeca and therefore in the body 

of the amphipod (Fialkowski, 2003). 

 

The variability in regulatory abilities of different amphipods to copper and zinc is evident. Some 

species are able to regulate copper at all concentrations but not zinc; some have the ability to 

regulate zinc and not copper; other amphipods cannot regulate copper or zinc while another 

group has the ability to regulate both copper and zinc. At low metal concentrations and long 

term exposure, metal uptake may be gradual. This could result in the deposition of metal in non-

critical tissues such as the exoskeleton, thereby increasing the overall body metal concentrations 

(Rainbow & Moore, 1986; Borgmann et al., 1993). Copper has been found to be responsible for 

the elimination of sensitive or intolerant species of macrofauna from the community (Cheggour 

et al., 1999). Amphipods exhibit a significant correlation between the uptake of zinc and 

cadmium of individuals which could be related to the shared uptake routes of these two metals 

(Rainbow et al., 2000).  

 

Metal accumulation in amphipods has been linked to the size of the animal and season. Some 

studies have shown seasonal patterns in some metals but not others (Thompson, 1999; 

Fialkowski, 2003). Animals of the same size may not be of the same age and therefore would 

exhibit differences in their metal concentrations. This is due to older amphipods having been 

exposed for longer time periods and therefore having higher accumulation (Fialkowski, 2003). 

Metal contents of marine invertebrates can be divided into two components: i) metal absorbed 
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into the body, which is subject to physiological control; and ii) passive adsorption of metal onto 

the body surface, which is beyond metabolic control. Small amphipods have been found to have 

high metal concentrations, particularly iron, copper, zinc and lead. A decrease in size means 

increased surface area:volume ratio. This results in the latter becoming an increasingly larger 

proportion of the total body metal burden. The effect of size is strongest on dissolved iron 

compared with copper, zinc and lead due to its strong ability to be absorbed onto body surfaces 

(Rainbow & Moore, 1986; Rainbow, 1989). 

 

1.3.3. Total Kjeldahl Nitrogen (TKN) and Chemical Oxygen Demand (COD) 

Nitrogen is an essential element in the growth and productivity of primary producers. The 

different forms mentioned above are utilised by phytoplankton in differing proportions, 

resulting in effects on growth, size structure and community composition (Rabalais, 2002; Zehr 

& Ward, 2002). Significant increases in the concentration of organic nitrogen can result in 

eutrophication, which causes increased biomass of nuisance or harmful algae, and an 

accompanying reduction of species diversity (Carpenter et al., 1998; Meyer-Reil & Koster, 

2000; Rabalais, 2002). Ultimately, the effects are on biodiversity and oxygen availability, which 

are both reduced (Shanmugam et al., 2007). 

 

Particulate organic nitrogen (PON) additions can have direct and indirect effects on the 

associated environment. Indirect consequence of particulate organic nitrogen (PON) result in a 

reduction in grazing, increased organic matter flux which leads to hypoxia and changes in 

trophic dynamics (Rabalais, 2002). Algal blooms can additionally lead to decreased oxygen 

concentrations and hypoxia. This affects the displacement of pelagic organisms and the 

selective loss of demersal and benthic organisms. The breakdown of organic matter also results 

in reduced levels of oxygen and a decrease in organic matter in sediment. A decrease in oxygen 

concentration also causes less mobile organisms to become stressed and to move out of the 

sediments and seabed, resulting in death. An increase in organic matter on the seabed provides a 

rich food source for deposit feeding organisms; however, decomposition of organic matter in 

organic-rich sediment uses dissolved oxygen and causes physiological stress to benthic infaunal 

invertebrates. In severe cases this may lead to the death of benthic organisms and this reduces 

their density, biomass and alters the community composition (Segar & Berberian, 1976; Thomas 

et al., 1976; Gross, 1978; Heip, 1995). It has been found that as oxygen levels decrease from 

extremely hypoxic to totally anoxic (0 – 0.5 mg L-1), decrease in benthic infaunal diversity, 

abundance, and biomass is observed. Short-lived, smaller benthic groups replace larger long-

lived ones with certain invertebrates being completely absent (Rabalais, 2002). This thereby 
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influences benthic communities by changing their species abundances, distribution and diversity 

(Pearson & Rosenburg, 1978; Diego-McGlone et al., 2000; Meyer-Reil & Koster, 2000; Borja, 

2003). Oxygen depletion results in the reduction of some groups of macroinvertebrates 

(crustaceans, polychaetes), while others (oligochaetes, molluscs) may thrive in these conditions 

(Myslinski & Ginsburg, 1977; Hooda et al., 2000; Rabalais et al., 2000). It has a significant 

impact on benthic communities by altering their distribution and species abundance and 

diversity (Shanmugam et al., 2007).  

 

Although nitrogen concentrations do fluctuate naturally, drastic changes can occur due to 

anthropogenic influences, thereby resulting in a change in the system functioning (Carpenter et 

al., 1998; Newman et al., 2007). A direct consequence of the addition of PON, caused by 

increases in organic matter content, can result in a richer food source for sediment-dwelling 

deposit feeders. This can, however, cause physiological stress in other organisms, thereby 

changing the density, biomass and composition of benthic communities (Heip, 1995; Kennish, 

2002). Studies have shown that macrofauna are almost completely absent from sediments that 

have a high oxygen demand. Decomposition of organic matter causes increased COD, thereby 

resulting in sediments lacking macrofauna (Findlay & Watling, 1997; Hedmark & Scholz, 

2008). The COD of organic matter accounts for >90% of oxygen flux in the benthos. Oxygen 

uptake in marine sediments is due to the combined effect of aerobic metabolism of benthic 

organisms in conjunction with the reaction of oxygen that diffuses into sediment and decreased 

organic compounds that are diffusing out, (Kristensen, 1985).  

 

In order to survive hypoxic or anoxic conditions, benthic organisms have developed specialised 

adaptations that allow them to overcome these stresses. Some species can access oxygen above 

the sediment-water interface. Tube building amphipods build tubes that protrude 2 – 3 mm 

above the sediment surface thereby allowing the amphipod to overcome the anoxic conditions in 

the sediment (Gallagher & Keay, 1998). Colonising amphipods like Ampelisca spp. are found in 

large groups, using their numbers as a mechanism by which they aerate and detoxify organically 

rich sediments. Ampeliscids bioturbate sediment that was previously anoxic, and a small 

oxidised cylinder is created within the sediment in the process. An oxic-anoxic gradient around 

the tube occurs leading to increased protozoan and aerobic bacterial (nitrifying bacteria) 

activity. Nitrifying bacteria oxidise ammonia to nitrite and nitrite to nitrate. Some of this nitrate 

and nitrite will be used by anaerobic denitrifying bacteria in the sediment for respiration, 

thereby producing nitrous oxide and nitrogen gas (Gallagher & Keay, 1998).  
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1.4. Biomonitoring and bioindicators  

The rate of pollutant accumulation in organisms varies depending on the intensity and duration 

of exposure (Fleeger et al., 2003). In order to determine the extent of this exposure to pollutants, 

various methodologies and techniques have been developed that incorporate analysis of both 

biological and physico-chemical aspects of water and sediment from contaminated and control 

areas. Biological and physico-chemical variables such as abundance, diversity, salinity, depth, 

pH, sediment type, total nitrogen, COD and pollutant concentrations are interlinked, and 

analysing them provides an indication of the health of the ecosystem with reference to bench 

mark data and control areas. Governments in many parts of the world actively manage these 

problems, with biomonitoring playing an important role in assessing the health of the marine 

system (Carballo & Naranjo, 2002). South Africa has in the past 13 years improved on its 

policies and legislation in terms of marine pollution through environmental quality objectives, 

scientific assessment studies, implementing specifications of critical limits and mitigating 

actions, and long-term monitoring programmes (Taljaard et al., 2006). 
 

Biomonitoring of outfall discharges in the marine environment usually involves analysis of 

sediment and associated benthic organisms. The distribution of these organisms is often 

structured by pollution gradients. However, marine biological assemblages experience 

fluctuations in their pattern of distribution and abundance because of natural physical and 

biological processes (Roberts, 1996). Natural physical processes include disturbances such as 

storms, whilst biological processes include settlement and recruitment, competition and 

predation (Dayton, 1984). Anthropogenic disturbance has the potential to alter marine 

assemblages at various scales of organisation within the community and the effects of industrial 

and sewage pollution have received considerable attention (Lindegarth & Hoskin, 2001; 

Ellingsen, 2002; Mucha et al., 2004; Cruz-Motta & Collins, 2004; Van Hoey et al., 2004; Currie 

and Isaacs, 2005; Stark et al., 2005). The structure of local benthic communities is widely used 

as a measure of the impact that an effluent discharge may have in the marine environment 

(Warwick et al., 1990). Benthic organisms are well suited for this purpose as they are generally 

sedentary or have limited mobility (Boening, 1997) and cannot simply move away from adverse 

conditions (Warwick, 1993). They are almost entirely dependent on local conditions for survival 

and reproduction. In harsh conditions some sensitive species might be eliminated and open the 

way for more opportunistic species to proliferate. The net effect would be a skewing of the 

community structure that will tend to reflect the general state of the environment. Pollution 

impact would be manifested by shifts in the abundance of component species, a reduction in 

species diversity and/or a relative proliferation of opportunistic species (Rao et al., 2006).  
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At the end of the 1970s, bioindicators were introduced to represent spatio-temporal changes in 

the marine benthic environment due to pollution. These were aimed at the macrobenthic group 

of organisms due to their sensitivity to pollution gradients (Gómez Gesteira & Dauvin, 2000). 

Biological indicators have been classified as environmental indicators, ecological indicators and 

biodiversity indicators. These categories tend to overlap with some falling between categories 

and others belonging to more than one category (Niemela, 2000). Bioindicators in particular 

have been defined as organisms that provide information on the environmental conditions of 

their habitat by its presence, absence or changes in their behaviour (Wilson, 1994; van der Oost 

et al., 2003). Bioindicators have been used in marine pollution monitoring programmes for three 

reasons: i) to assess those pollutants that are bioavailable and most important; ii) to establish the 

effects of contaminants on biological organisms at levels lower than chemical analytical 

detection limits; and iii) to assess synergistic, additive or antagonistic relationships among 

pollutants (Maher & Norris, 1990). Bioindicators have been classified as opportunistic species 

or sensitive species. Opportunistic species increase under pollutant exposure and are considered 

positive indicators while sensitive, less tolerant species are negative indicators (Belan, 2003). 

According to Carballo & Naranjo (2002), bioindicators can be organisms, species or 

communities, and may serve as subjects of biological and chemical monitoring.  

 

When used efficiently, bioindicators should be able to provide information which could aid 

development planning and decision-making (Salas et al., 2006). Formal, quantitative risk 

assessments have become the focus of environmental policy-making due to the escalating 

awareness of the prevention of damage from toxic chemicals (Russell & Gruber, 1987). van der 

Oost et al. (2003) define environmental risk assessment (ERA) as the procedure by which the 

likely or actual adverse effects of pollutants and other anthropogenic activities on ecosystems 

and their components are estimated with a known degree of certainty using scientific 

methodologies. Risk assessments have multiple advantages in decision-making in that they 

establish quantitative platforms against which comparing and prioritising risks can occur (van 

der Oost et al., 2003). Risk assessments also allow a systematic way of improving the 

understanding of risks and estimating clear, consistent endpoints. Bioindicators are biological 

responses and can be used to assess organisms‟ health status and used as early warning signals 

of environmental risks (van der Oost et al., 2003). Bioindicators provide information based on 

their responses to contaminants that contribute to environmental monitoring programs which are 

designed for surveillance, hazard assessment, compliance or the documentation of remediation. 

They allow information to be obtained that is not possible from chemical residue measurements 

environmentally and biologically (van der Oost et al., 2003). Bioindicators focus on the 
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important molecular events that occur after exposure and result from metabolism. Their use 

overcomes the problems that arise with intrinsic and extrinsic barriers. When multiple sources 

of degradation are present in water, bioindicators prove to be useful in assessing that ecological 

risk. Bioindicators are able to identify a specific pollutant causing environmental damage in a 

multiple pollutant scenario (Keeler & McLemore, 1996). 

 

Bioindicators are useful in the assessment of possible hazards and therefore in the decision-

making process (Keeler & McLemore, 1996; van der Oost et al., 2003). An ecological risk 

assessment is a decision-making process, promoting sound environmental decisions (Finizio & 

Villa, 2002). If properly chosen, bioindicators represent objective systems of evaluation and 

information, serve as key tools for policy objectives, may facilitate the communication of 

countries‟ data priorities and allow reporting complex situations in simple ways that policy 

makers and the public can understand (Casazza et al., 2002). Casazza et al. (2002) divided the 

use of marine benthic bioindicators into three categories: i) indicators at the level of species (the 

presence of a particular species or group of species can act as indicators of environmental stress 

or to identify the community); ii) those at the level of community structure (variation in number 

of species, abundance and biomass during specific period of time have been related to different 

indices such as Shannon-Weiner diversity indices and Simpson‟s dominance index); and iii) 

integrated indices that combine faunal data with chemical and/or ecotoxicological components 

in order to identify distinct areas that are affected by different pollution types. 

 

Depending on the rationale behind the relevant study, organisms used in marine monitoring 

programmes should be selected based on specific criteria. These organisms should have a 

limited mobility. Sedentary benthic organisms are particularly useful for bioaccumulation 

estimates thereby revealing the status of the environment. These organisms are in close contact 

with sediments which are considered to be sinks of many contaminants (Gadzala-Kopciuch et 

al., 2004; Gaspar & Carvalho, 2005; Rao et al., 2006). The organisms should be abundant and 

have a widespread distribution, be simple to identify and sample, have a high tolerance for the 

pollutants being analysed, have population stability and high pollutant accumulating capacities 

(Gadzala-Kopciuch et al., 2004).  

 

1.4.1 Amphipods as bioindicators of pollution 

Amphipods contain many of the specific characteristics of bioindicators. It is for this reason that 

they are common bioindicators of marine pollution worldwide. Amphipods make up a 

significant portion of the macrobenthic communities sampled along the KZN coast. Past data, 
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based on the same sites highlighted in this study, have revealed annual differences in amphipod 

abundance between impacted and reference sites. This study uses these organismal and 

historical data series, available from 2003 to 2006, to evaluate the outcome of long term 

exposure of amphipods to pollutants originating from the selected effluent pipelines along the 

KZN coastline. In this study annual differences are not analysed. Instead, four years of data are 

combined in order to determine the outcome of the long term exposure. Amphipods occur in a 

variety of habitats, including deep ocean environments, freshwater and groundwater (Marsden 

& Rainbow, 2004). They are usually small with a limited mobility, and lack a planktonic larval 

stage, thereby reducing dispersal effects. Their limited mobility, which together with their 

sensitivity to changes in the environment, has made them useful indicators of environmental 

quality (Grosse & Pauley, 1989). Amphipods have been found to be sensitive to significant 

organic matter increases as well as other pollution such as metals and hydrocarbons (de-la-Ossa-

Carretero et al., 2009). Increased amphipod abundances have been found with distance from 

discharge points which suggest that these distant sites were less stressed environments due to 

the sensitivity of amphipods to environmental stresses compared with other marine organisms 

(de-la-Ossa-Carretero et al., 2009). 

 

Amphipods play an important role in marine ecosystem processes like nutrient cycling, 

secondary production, and dispersion and benthic amphipods having several important 

ecological roles in the environment (Thomas, 1993; Ellingsen, 2002). They are abundant, 

dominating many communities and are more sensitive to numerous contaminants than many 

other invertebrates. Amphipods are one of the major benthic components in biomass and 

diversity (6000 species) of marine systems (Grosse & Pauley, 1989; Thomas, 1993; Costa et al., 

1998). Many amphipods are an invaluable food source for numerous economically valuable 

fishes. Some species have not only shown sensitivity to acute and chronic exposure to 

pollutants, but also behavioural responses such as avoidance of sub-lethal concentrations of 

metals and organic pollutants (Thomas, 1993; Linton & Warner, 2003; Wiklund et al., 2006). At 

chronic contaminant levels, amphipods were seen to demonstrate avoidance behaviour by 

decreasing in numbers as the concentration of the contaminant increased, thereby showing that 

the concentration of the toxicant influenced avoidance (Wiklund et al., 2006). Decreasing 

numbers were due to behavioural responses with mortality being low across concentrations. The 

absence of a particular species or group of organisms can still indicate levels of pollution and 

can be used as an indicator. These would be negative indicators as was discussed earlier.  
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Amphipods are used worldwide as indicators in pollution studies, sediment testing and as metal 

biomonitors (Marsden & Rainbow, 2004). They have been suggested as bioindicators of 

chemical changes which include single chemical aspects such as pH and single metal pollutants 

such as cadmium (Hodkinson & Jackson, 2005). Some species, particularly those from the 

families Ampeliscidae, Pontoporeidae, Melitidae and Gammaridae, have shown both positive 

and negative responses to significant increases in organic matter as well as metals and 

hydrocarbons (Dauvin & Ruellet, 2007). Some show high sensitivity to toxins in the sediment, 

especially Polychlorinated Biphenyls (PCBs), pesticides, metals and Polycyclic Aromatic 

Hydrocarbons (PAHs) (Gomez Gesteira & Dauvin, 2000). Some species have been shown to be 

influenced by sediment type, salinity and depth and are abundant near sewage outfalls where 

organic pollution is high (Grosse & Pauley, 1989; Bat et al., 1998). Other species are commonly 

used in metal biomonitoring as they feed on decaying macroalgae, thereby taking up metals in 

solution from the water and food. These amphipods have been used as biomonitors for copper 

and zinc pollution in coastal waters (Rainbow & White, 1989; Moore et al., 1991). Amphipods 

are used as primary bioindicators of sewage outfalls in many parts of the world (Thomas, 1993; 

Linton & Warner, 2003; Bach et al, 2009).  

 

1.5. Rationale for this study 

South Africa has legislation that allows the controlled discharge of effluents into the ocean via 

deep-sea outfalls. There are guidelines in place that are meant to be adhered to and monitoring 

programmes to ensure compliance with these guidelines (Gregory et al., 2005). eThekwini 

Municipality has been discharging sewage and industrial wastes via two deep-sea outfalls along 

the Durban coastline since 1969 (McClurg, 2004). This study followed on from yearly 

monitoring programmes of these outfalls carried out by the CSIR, Durban. Identification of the 

entire benthic communities at the outfalls and reference sites were carried out, and chemical 

analyses of sediment were performed.  

 

The CSIR‟s data show that amphipods are abundant and permanent, and are easy to identify 

compared with other benthic organisms found in the study area (McClurg & Newman, 2008). 

Studies have shown that amphipod species composition, abundance and biomass increase and 

decrease inter-annually (McClurg & Newman, 2008). It is important to determine the reasons 

for these changes in this study area as the outcomes may not only be of use to the CSIR in their 

yearly monitoring programmes, but could also be implemented in monitoring programmes in 

other parts of the country. It would reduce time spent on laboratory work by enabling the 

identification of only amphipods, rather than the entire benthic communities, to provide 
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information about the status of the region in and around the outfalls and reference sites. This 

would allow for individuals being trained in the identification of amphipods rather than 

macrobenthic organisms in general. In addition, it would also result in more accurate 

identification of amphipods in particular rather than perfecting taxonomic skills in many 

different groups of organisms. 

 

In this light, the purpose of this study was to determine i) whether sediment grain size is 

responsible for driving amphipod community structure along the KZN coast; ii) to relate the 

accumulation patterns of the grain sizes with other environmental variables; and iii) establish 

how amphipods respond to sediment grain size and the selected environmental variables. While 

amphipods have proven to be good bioindicators in other parts of the world it cannot be taken 

for granted that they will be useful in South Africa due to geographical and ecological 

differences. Different habitats are influenced by chemical and physical factors such as light 

gradient, wave strength and water temperature as well as substrate composition which differs 

from soft to hard thereby creating further differences in the underwater environment (Casazza et 

al., 2002). If relationships between amphipods and the environmental variables are identified, 

the usefulness of amphipods as indicators will be comfirmed.  

 

In order to understand what drives differences between years, a suite of environmental variables 

such as hydrodynamics, interannual changes in discharge rates, storms, etc., would be needed. 

These supplementary data are not available and therefore comparing years was not possible. 

This study therefore uses four years‟ of data, with each set of yearly data serving as one 

replicate in the analysis; this allows the overall biotic response to be determined at the 

conclusion of many years‟ of long-term exposure. This study will enable a link between 

environmental variables and amphipod communities to be emphasised, and the possible use of 

amphipods as bioindicators of the KwaZulu-Natal coast identified. 

 

The objectives of this study were to: 

1. Assess the distribution of sediment grain size over a portion of the KwaZulu-Natal coastline 

that is influenced by ocean waste-water outlets, with the objective of determining whether 

variables at impacted (effluent discharge) sites are different from those at reference sites. 

 

2. Evaluate the distribution of selected physico-chemical variables over the portion of coastline 

alluded to in 1), above, with the objective of determining whether variables at impacted sites are 

different from those at reference sites. 
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3. Evaluate trends in amphipod community structure over the portion of coastline alluded to in 

point 1), above, with the objective of determining whether the communities at impacted sites are 

different from those at reference sites. 

 

4. Evaluate whether amphipod community structure over the portion of coastline mentioned in 

1), above, is influenced by a) sediment grain size, and/or b) other selected physico-chemical 

variables. 

 

This study is designed to test the following null hypotheses:  

Abiotic data:  

A. Sediment grain size is homogenously distributed across the study area. 

B. The concentrations of selected metals and TKN and COD in the sediment are homogenously 

distributed across the study area. 

C. The spatial patterns of sedimentary metal concentration, TKN and COD are not modified by 

sediment grain size distribution (i.e interaction of A.i with B). 

  

Biotic data:  

D. Amphipod community structure is not influenced by i) sediment grain size distribution, ii) 

metal concentration, iii) TKN, and/or iv) COD. 
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2. Materials and Methods 
2.1. Study area 

The Central Works and Southern Works Outfalls discharge effluent into the sea off the Durban 

coastline (Figure 1). Central Works is a wastewater treatment facility that deals with 

predominantly sanitary wastewater; that is, wastewater that is flushed down toilets or rinsed into 

drains in houses and commercial facilities (McClurg & Newman, 2008). Southern Works 

handles both sanitary and industrial wastewater. Southern Works and Central Works treatment 

plants apply only primary treatment (McClurg & Newman 2008). Table 2 contains the 

specifications for the Central Works Outfall and Southern Works Outfall. 

 

2.2. Wastewater treatment and outfall specifications 

Primary treatment begins with raw sewage which has high ammonium, potassium, nitrate and 

phosphorus concentrations, a high conductivity (due to high solute content) and high alkalinity 

(Stander, 1973; Bramryd, 2002). There are also large amounts of suspended constituents such as 

paper, rags, faecal matter, plastic bottles, etc. (Stander, 1973). Sewage is screened, de-gritted 

and de-greased. Screening may be done manually on hand-raked screens, by mechanically-

raked screens or the cutting up of coarse matter (Stander, 1973), and further screening prevents 

rags and large objects from reaching the sedimentation tanks. Detritus is then removed in the 

detritus channel. The presence of detritus can cause mechanical damage to equipment and can 

settle to form semi-solid banks of sludge which can clog pipes. Settlement of particles of 

organic matter then takes place (Stander, 1973). This isolates and removes insoluble, fine 

particles of organic matter from the bulk of the water, resulting in tank effluent. The settled 

sewage on the bottom of the tank is known as raw sludge. This is regarded as the first step in the 

purification process because organic matter has been removed from the liquid. The liquid phase 

then goes into the secondary treatment phase where it is treated to selected effluent quality 

standards and discharged into a stream or outfall (Stander, 1973; Howard et al., 1997). Sewage 

at the Central Works and Southern Works Outfalls does not undergo secondary treatment and 

therefore it is the product at the end of the primary treatment phase that goes out to sea. 

 

2.3. Sampling design 

Sampling of the two outfall sites was carried out annually during May 2003 – 2006 with Mdloti, 

Cooper Light, and Amanzimtoti selected as reference sites (Figure 2a – f; Figure 3a – d). Due to 

oceanographic and local conditions off the KwaZulu-Natal coast, as well as the possibility of 

other anthropogenic sources of pollution such as those from rivers, it is difficult to select a site 

which can be defined as a control area in the strict definition. Therefore, sites that are as 
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representative as possible of unimpacted areas were used as reference sites. The reference sites 

that were chosen were not identical to impacted sites but permitted the examination of spatial 

trends due to their spatial segregation. 

 
Table 2. Specifications of the Southern Works and Central Works Outfalls (Livingston 1990; McClurg 

TP, June 2008, pers. comm.1). 

 CENTRAL WORKS 

OUTFALL 

SOUTHERN WORKS 

OUTFALL 

Commissioned 1969 1968 

Effluent type Sanitary waste Sanitary & industrial waste 

Distance from shore (m) 3 200 4 200 

Depth of diffuser section (m) 42 – 53 54 – 64 

Main diameter (m) 1.32 1.37 

Length of diffuser section (m) 450 290 

Number of ports 18 34 

Design capacity (m3 per day) 135 000 230 000 

Average volumes discharged during 2006 (m3 per day) 75 000 147 000 

 

These reference sites allow the direction of change, if any, in various biological variables to be 

detected through comparisons between surveys. All data for the years 2003, 2004, 2005 and 

2006 were provided by the CSIR in order to analyse possible changes and trends in amphipod 

community structure and environmental variables with each year serving as replicates. The 

analyses for metals, sediment grain size, total Kjeldahl nitrogen (TKN) and Chemical Oxygen 

Demand (COD) were carried out by the CSIR (Durban).  

 

Methods and protocols in this study were designed by the CSIR (Durban) for the purposes of 

their research and as part of a long-term monitoring programme (McClurg, 2004). In order to 

have a long term dataset from which to assess patterns, site selection, sample design and 

methodology were not altered for the purposes of this study (changing the sampling design was 

also not permitted by the CSIR). Each outfall site consisted of 15 stations, while the three 

reference sites off Mdloti, Cooper Light and Amanzimtoti comprised nine stations each. More 

stations were sampled at the outfalls due to the need for establishing detailed spatial patterns in 

these areas compared to the reference sites. The reference stations were placed at approximately 

the same depth as that of the outfall stations in order to ensure uniformity (Table 3). Stations 

were spaced 200 m apart from each other.  

_________________________________ 
1 Mr TP McClurg, CSIR Natural Resources and the Environment, 359 King George V Avenue, Durban 



Arabi, S. Relationship between Sediment Structure and Infaunal Amphipod Communities along a Pollution 
Gradient on the east coast of South Africa  

 

 31 

Table 3. Depths of reference and outfall sampling grids at all sites. 
 

SITE DEPTH (m) 

Mdloti 56.2 – 59.8 

Central Works Outfall 48.4 – 58.2 

Cooper Light 51.1 – 60.0 

Southern Works Outfall 57.0 – 62.5 

Amanzimtoti 47.3 – 53.4 

 

 

 

 

 

 

Figure 1. Locality map showing the Southern Works Outfall, Central Works Outfall and reference sites along 
the Durban coastline. The Sappi Siaccor outfall was not a part of this study. 
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Figure 2a – e. Biological, sediment and chemical sampling stations at the Southern Works Outfall, 
Central Works Outfall and reference sites. 
 

 

 

a) 

b) c) 

d) e) 



Arabi, S. Relationship between Sediment Structure and Infaunal Amphipod Communities along a Pollution 
Gradient on the east coast of South Africa  

 

 33 

2.4. Biological and sediment sampling 

Sampling was carried out in May on a yearly basis. At each station, a Day grab (0.25 m2) was 

used to sample the seafloor. Three 30 cm3 aliquots of sediment were collected for sediment 

grain size, COD, TKN and metal analyses. These samples were kept on ice while in the field, 

and frozen in the laboratory until further analysis. A separate sediment sample was collected per 

station, washed through a 1 mm sieve, and fixed in 4% formaldehyde for biological analysis. In 

total, 60 samples were collected per impacted site per year (4 samples x 15 stations) and 36 

samples per reference site per year (4 samples x 9 stations). In the field, environmental data 

(water depth, distance from outfall, pH and temperature) were also collected at each station.  

 

2.5. Sample processing 

2.5.1. Biological sample preparation 

The fixed samples were eluted with freshwater in the laboratory through a 235 µm sieve to yield 

the lighter organisms and then microscopically examined to remove denser material with fine 

forceps. Composite fauna at each station were preserved in 70% ethanol. These samples were 

then separated into taxonomic groups. Amphipods from each site were identified to species or 

genus level where possible, counted and preserved in 70% ethanol. This was carried out for 

each sample per station over the 4 year period. 

 

2.5.2. Sediment grain size processing 

One sediment sample per station was used for grain size analysis. Processing of sediment 

samples for grain size analysis involved wet sieving and dry sieving (Southwood & Henderson, 

2000). Sediment was sieved into seven grain size classes according to the Wentworth Scale. 

These classes were mud (<0.063 mm), very fine sand (0.063 – 0.125 mm), fine sand (0.125 – 

0.250 mm), medium sand (0.25 – 0.50 mm), coarse sand (0.5 – 1.0 mm), very coarse sand (1.0 – 

2.0 mm) and gravel (>2.0 mm). The size classes were expressed as a fraction of sample dry 

mass. Sediment grain sizes were converted into Φ (phi) values by using the method explained in 

Morgans (1956). The Φ scale substitutes a logarithm for the diameter of the particle in 

millimetres. This allows the unequal class intervals of the Wentworth scale to be translated into 

equal intervals. The x-axis value that corresponds to the 50% value on the y-axis is read on the 

Φ scale and is converted into millimetres using a conversion chart (Morgans, 1956). 

 

2.5.3. Metal analysis 

One frozen sediment sample per station was defrosted, homogenised and approximately 1 g 

aliquots were placed into a high-pressure digestion vessel. A 10% nitric acid solution was used 
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to digest the sediment with the aid of microwaves. Milli-Q deionised water was used to dilute 

the digests and concentrations of aluminium, iron, arsenic, cadmium, copper, chromium, nickel, 

lead, mercury and zinc were determined and quantified using a VISTA-PRO, CCD 

Simultaneous Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). 

Reference sediment samples were digested and analysed along with all field samples. 

Corrections for extraction efficiency were carried out by running four blanks (concentrated 

nitric acid and deionised water) together with the reference sediment samples and field samples. 

No internal standard was used. 

 

2.5.4. Total Kjeldahl Nitrogen (TKN) 

One 30 cm3 sediment sample was used to carry out the TKN and COD analyses. An ammonium 

stock standard solution was made using ammonium sulphate which was dried at 105 ºC for two 

hours prior to use. An organic nitrogen stock standard was prepared by dissolving 1547 g 

bactopeptone in 1000 ml distilled Milli-Q water with a resistivity of 18 MΩ.cm, and this was 

used to prepare the required series standards of concentrations 0.1 x 10-6, 1 x 10-6 and 10 x 10-6 

mg L-1. The following reagents were used: 50% sulphuric acid for digestion; 153.5 g of NaOH 

was dissolved in 500 mL Milli-Q water, cooled and made up to 5 L for the sodium hydroxide 

neutralising solution; 5 mL of phenol red indicator solution was added to the NaOH solution;  

1 mol L-1 sulphuric acid solution was prepared by diluting 14 g in 500 ml of Milli-Q distilled 

water for the sulphuric acid neutralising solution. 

 

For the digestion of samples, 20 mL of the standards and samples were measured into digester 

tubes. Four to six bumping stones and 2 mL of the digestion were added to each sample and 

mixed well, and allowed to digest in a Lachat BD 46 block digester at 150 ºC for approximately 

1.5 hours in order for the water to evaporate. The temperature was then increased to 340 ºC 

where it was maintained for 30 minutes after which the samples were removed and allowed to 

cool. 

 

The preparation of samples for ammonia analysis on a Bran+Luebbe AutoAnalyser 2 included 

adding 40 mL of the sodium hydroxide neutralising solution to each test tube and mixed well. 

The colour changes to a yellow due to the phenol red indicator solution. The results were 

reported as µg g-1 (NH3–N). 
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2.5.5. Chemical Oxygen Demand mn (COD) 

Aliquots of sediment weighing 0.1 – 1.0 g were placed into a 250 mL Erlenmeyer flask. To this, 

100 mL of de-ionised water, 0.5 mL of a 33% sodium hydroxide (NaOH) m/v solution and 10 

mL of potassium permanganate (KMNO4) solution at a concentration of 0.0125 mol L-1 were 

added. The samples were heated in a water bath for 30 min, 25 mL of manganese sulphate 

(MnSO4) added and then rapidly cooled to room temperature. Approximately 1 g of potassium 

iodide (KI) was added and this mixture and titrated with 0.01 mol L-1 sodium thiosulphate 

(Na2SO3) using starch as an indicator (blue to clear end point). The results were reported as µg 

g-1 COD. 

 

2.6. Data analysis 

All data were pooled, un-averaged, with the years acting as replicates. Data tables were 

constructed per station per site per year. Intra-annual comparisons were not possible due to the 

lack of replication per year (sampling was carried out only once a year). Uni-variate and multi-

variate statistical techniques were used to analyse data.  

 

2.6.1. Abiotic data 

PRIMER v6 was used to perform multivariate statistical analyses. Principal component analyses 

(PCA) were performed on the environmental data, including sediment grain characteristics and 

chemical composition and characteristics (metals, TKN, COD). The data were normalised (zero 

mean ± 1 standard deviation) and ranked, and the correlation-based PCA computed on Euclidian 

distance measures. Sediment granulometry data were not transformed, but the chemical 

composition data were log transformed. Pairwise correlation analyses were carried out for 

sediment grain size and the selected metals, TKN and COD in R 2.7.1 (Ihaka and Gentleman, 

1996).  

 

Multi-Dimensional Scaling (MDS) uses a two-dimensional scatter plot to examine relative 

similarities between stations based on environmental and biological variables (Clarke & 

Warwick, 1994). These ordinations were used to spatially assess the similarities and differences 

of sediment grain size and the physico-chemical variables distributions across sites. BIOENV 

analysis was performed on the full dataset (based on the Spearman rank correlation), which was 

4th root transformed; BIOENV aided the identification of environmental variables that best 

explain the observed community patterns. This resulted in a list of the environmental variables 

that seemed to be driving the community structures, and helped link biological (amphipod 

abundances) and environmental data (sediment type, metals, COD, TKN and depth). Bubble 
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plots for sediment grain sizes and the physico-chemical parameters were plotted, based on the 

results from the correlation analyses (i.e. patterns were only searched for if the pairwise 

correlations revealed strong correlations between variable pairs). Bubble plots are valuable 2D 

representations of the data where symbol size is proportional to the magnitude of an 

environmental variable ie. the larger the bubble the greater the value of the variable. This is a 

visualisation feature of MDS plots that superimpose specific variables onto the MDS as circles 

of differing sizes (Clarke & Warwick, 1994). 

 

Analysis of similarity (ANOSIM) were used to determine whether significant difference 

occurred between impacted and reference sites based on the sediment grain sizes and physico-

chemical parameters.  

 

2.6.2 Biotic data 

The DIVERSE function in PRIMER v6 was used to calculate Shannon-Weiner diversity (H’, as 

log to base e), species richness (S) and number of species (N) at each sample site. These indices 

provided biodiversity information which is important in pollution studies (Magurran, 1988).  

 

PRIMER v6‟s Multi-Dimensional Scaling (MDS) ordinations were used to visually assess 

spatial differences or similarities in amphipod communities in the study area (Clark & Warwick, 

1994). MDS ordinations were based on Bray-Curtis similarities after 4th root transformations 

and standardisation of abundance data. Fourth-root transformations were used because they 

down-weigh abundant species and considers both mid-range and rare species in its analysis 

(Clark & Warwick, 1994). In order to identify the adequacy of MDS ordinations, stress values 

were calculated. Stress increases with reducing dimensionality and increasing quantity of data 

with values being defined from <0.05 – >0.3 (Clark & Warwick, 1994). Bubble plots for the 

biology were based on the results of the BIOENV analyses explained above 

 

In this type of study it was important for the rare species to be considered in order to determine 

any patterns being observed over the years. The SIMPER function was used to identify 

dominant species based on percentage contributions of each species per site for each year. This 

function shows the most abundant species in each site, and which species were responsible for 

clustering, and dissimilarities between the clusters. The results of SIMPER were tabulated for 

all years per site, focussing only on species contributing >3% of the abundance (Field et al., 

1982). This allowed determining which species were most representative of a site. For specific 

details of the PRIMER processes refer to Clarke & Warwick (1994). 
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3. Results 
3.1 Sediment grain size 
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Figure 3. Percentage contributions of each grain size (gravel, very coarse sand, coarse sand, medium sand, fine sand, 
very fine sand and mud) across all five sites over a four-year period. Error bars represent ± standard deviations of the 
mean. CWO = Central Works Outfall, SWO = Southern Works Outfall, MD = Mdloti, AM = Amanzimtoti,  
CL = Copper Light. 
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For the sediment data, Figure 3 shows a dominance at the Central Works Outfall and Mdloti 

reference sites of coarse-grained sediment, and the Southern Works Outfall and Amanzimtoti 

reference sites being dominated by fine-grained sediments. The Cooper Light reference site 

consists primarily of medium grain sizes. 

 

The first three Principal Component (PC) axes were retained as together they explain 89.8 % of 

the variation (PC axes 1, 2 and 3 accounted for 66.1, 12.6 and 11.0 % of the variation, 

respectively). The first two PC axes are displayed in Figure 4 where it can be seen that 

replicates taken from the same site (i.e. replicates meaning data pooled over 4 years and all 

stations within each site) generally cluster together (of course, there are notable exceptions, 

where sometimes sub-clusters per site are visible – e.g. more so for Mdloti and Amamzimtoti – 

but no temporal or spatial influence could be discerned in these cases). Since the PC axes are 

interpretable as linear combinations of the influencing variables along the abscissa and ordinate 

directions (Equation 1), the influence of these variables is easy to interpret as causing the 

difference among sites. Moving from left to right along PC 1 represents an increase in gravel, 

very coarse, coarse, and medium sand, while fine and very fine sand and mud decrease. Large 

numbers (see Equation 1, below) have vectors that are more aligned (parallel) with the PC axis 

  

Figure  4. PCA of sediment grain sizes across all sites. PCA 
1 and PCA 2 are shown. CWO = Central Works Outfall, 
SWO = Southern Works Outfall, MD = Mdloti,  
AM = Amanzimtoti, CL = Copper Light. 
 

Figure 5. Correlations between sediment grain size classes across all 
sites. Narrower ellipses and more intense colours indicate strong 
correlations, while rounder ellipses and lighter colours show weaker 
correlations. Blue and red indicate that the relationships are positive 
and negative, respectively. GrainSCORE1, GrainSCORE2 and 
GrainSCORE3 are the scores along the three PC axes.  
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in question; the smaller the number, the more perpendicular they become with respect to the 

axis: 

 
PC 1 = + 0.345gravel + 0.390very coarse sand + 0.420coarse sand + 0.380medium sand – 0.414fine sand – 0.400very fine sand – 

0.278mud  ……. Equation 1 

 

Similarly, from Figure 5 it can be seen that the first PC axis (denoted by GrainSCORE1) is 

influenced by grain sizes from medium and coarser in a positive manner (narrower blue 

ellipses), while sediment fractions finer than these negatively influence this component axis 

(narrow red ellipses). The narrowness of the ellipses suggests that the influence of those 

variable is large (i.e. in combination they explain 66.1 % of the variation); in contrast to this are 

the narrower ellipses in PC 2 and PC 3 indicate weaker correlations resulting from the grain size 

variables.  

 

Central Works and Mdloti therefore tend to be dominated more by coarser sediment fractions 

(Figure 4), while Amanzimtoti and Southern Works tend to be dominated more by the finer 

sediment fractions. PC 2 on the other hand indicates that, moving from bottom to top in Figure 

4, the dominance of all grain fractions (except fine sand) decreases (Equation 2). This influence 

is most strongly exerted on Cooper Light, which is situated nearer the bottom of the PC 2 axis, a 

region in PC space where sediment fractions with a negative sign (see Equation 2, below) 

dominate. The largest influence is by gravel, very coarse sand, and medium sand: 

 
PC 2 = – 0.634gravel – 0.469very coarse sand – 0.009coarse sand + 0.411medium sand – 0.137fine sand – 0.221very fine sand – 

0.376mud ……. Equation 2  

 

There is a strong positive correlation between gravel and very coarse sand, a strong negative 

correlation between find sand and coarse sand, fine sand and medium sand, and between very 

fine sand and medium sand (Figure 5). These relationships are verified in the PCA plot (Figure 

4), with the PC vectors denoting very coarse sand and gravel positioned nearly parallel with 

each other, and the vectors indicating the negative correlations occurring on opposite sides of 

the plots. With regards to the sites, significant differences occur between all sites based on grain 

sizes (ANOSIM, global R = 0.383, p < 0.001).  
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Figure 6 represents the PC axes 2 and 3. Grain size has very little influence along PC 2, with 

only medium sand exerting an influence in the positive direction, and chiefly gravel, very coarse 

sand, and mud separating the sites in PC space along the negative direction; consequently it is 

Amamzimtoti and Cooper Light that are separated from the other sites along PC 2 by these 

sediment grain size characteristics. Along PC 3 the influence of grain size if even weaker, with 

mud driving differences among sites in the negative direction, and fine sand pulling the sites 

apart in the positive direction (Equation 3). Once again the influence is most strongly seen on 

Amamzimtoti and Cooper Light, with the former having more mud and the latter more fine 

sand: 

 
PC 3 = + 0.152gravel + 0.121very coarse sand - 0.212coarse sand - 0.290medium sand + 0.434fine sand - 0.150very fine sand  

-0.789mud ……. Equation 3 

 

Gravel, very coarse sand and coarse sand (Figure 7) show similar patterns to each other and 

seem to be driving the patterns visible in the grain size MDS plot. These grain sizes appear to 

have a stronger influence on the Central Works Outfall, the Mdloti and Cooper Light reference 

sites, while having less influence on the Southern Works Outfall and the Amanzimtoti reference 

site. However, medium sand shows some influence on Central Works Outfall and the 

Amanzimtoti reference site. The finer grain sizes, fine sand and very fine sand, are definite 

drivers of Southern Works Outfall and Amanzimtoti reference sites. These finer sediments seem 

to have some influence on the Cooper Light reference site as is visible in the bubble plots. All 

the patterns observed in Figure 7 correlate with those found in Figures 4 and 5.  

 

Figure 6. PCA of the different sediment grain sizes across all sites; PC 2 
and PC 3 are shown. CWO = Central Works outfall, SWO = Southern 
Works outfall, MD = Mdloti, AM = Amanzimtoti, CL = Copper Light. 
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Figure 7. a) MDS of sediment grain size distribution at the five sites. The bubble plots represent the same MDS but 
with each grain size (b) gravel, c) very coarse sand, d) coarse sand, e) medium sand, f) fine sand, g) very fine sand) of 
the sampling locations represented by superimposed circles. The grain sizes used here were those identified in the 
correlation analysis in Figure 3. CWO = Central Works Outfall, SWO = Southern Works Outfall, MD = Mdloti,  
AM = Amanzimtoti, CL = Copper Light. 

   
a) MDS of sediment grain size 

      
d) Coarse sand 

      
e) Medium sand 

     
f) Fine sand 

     
g) Very fine sand 

 

      
b) Gravel 

      
c) Very coarse sand 
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3.2 Metals, TKN and COD 
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Figure 8. Concentrations of heavy metals (Hg, Cu, Cd, Pb, Zn, Fe, Cr, Ni, Al), COD and TKN at each site over a 
four-year period. Error bars represent ± standard deviations of the mean. CWO = Central Works Outfall,  
SWO = Southern Works Outfall, MD = Mdloti, AM = Amanzimtoti, CL = Copper Light. 
 
 

Moving from left to right along PC 1 shows that Mdloti is dominated mostly by sediments with 

high concentrations of Cr, Cu, Fe, Pb, Al, Ni, and with a higher COD (Equation 4). Central 

Works Outfall shows few similar patterns to Mdloti with some dominance by Cu and Pb (Figure 

8, 9). Central Works and Southern Works Outfalls exhibit dominance by Cd (Figure 8). 

 
PC 1 = + 0.031Hg + 0.316Cu + 0.093Cd + 0.370Pb + 0.288Zn + 0.387Fe + 0.398Cr + 0.351Ni + 0.371Al + 

0.301COD + 0.103TKN ……. Equation 4 
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For the metal data, the first three PC axes were retained as together they explain 71.9 % of the 

variation (PC axes 1, 2 and 3 accounted for 48.6, 13.5 and 9.7 % of the variation, respectively). 

The first two PC axes are displayed in Figure 9 and show more-or-less the same patterns as the 

sediment data. Again, it can be seen that replicates taken from the same site (i.e. replicates 

implying data pooled over 4 years and all stations within each site) generally cluster together. 

There are some exceptions to this clustering as can be seen from the five outliers. Clustered sites 

tend to be situated closer to one another along the top half of the PC 2 axis. 
 

Hg, Cd and TKN explain most of the separation of the sites along the PC 2 axis (Equation 5), 

although their „power‟ of separating the sites is small compared to along PC 1 (PC 2 explains 

only 13.5 % of the variation, therefore very little separation compared to PC 1). Toward the top 

of Figure 9 the concentrations of TKN and Cd increase; the opposite is true for Hg. The largest 

separation happens between the two sub-groups of SWO, and the two outliers at the bottom. 

 
 PC 2 = – 0.677Hg + 0.043Cu + 0.498Cd + 0.172Pb – 0.176Zn – 0.079Fe – 0.142Cr + 0.127Ni + 0.040Al  

– 0.201COD + 0.378TKN ……. Equation 5 

 

A very strong positive correlation occurs between Fe and Cr (Figure 10). Additionally, strong 

positive correlations are observed between Pb, Fe, Cr, Ni and Al, COD, Zn and Cr. TKN does 

not show a strong correlation with any other variable. These correlations are verified in Figure 9 

 

 

Figure 9. PCA showing the relationship between all metals, 
 COD and TKN across all sites for all years. PC axes 1 and  
2 are shown. CWO = Central Works Outfall, SWO = Southern 
Works Outfall, MD = Mdloti, AM = Amanzimtoti, CL = Cooper 
Light. 
 

Figure 10. Correlations between metals, COD and 
TKN across all sites. Refer to Figure 2 for additional 
details. 
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with the vectors indicating the PCA scores of the metals that are positively correlated occurring 

close (i.e. almost parallel) to one another on the plot. Significant differences occur between all 

sites based on the environmental variables (ANOSIM, global R = 0.353, p < 0.001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. a) MDS of the environmental variables at the five sites. The bubble plots represent the same MDS but with 
each variable: b) lead, c) iron, d) chromium, e) nickel, f) aluminium, g) COD) of the sampling locations represented 
by superimposed circles. The environmental variables used here were those identified in the correlation analysis in 
Figure 8. CWO = Central Works Outfall, SWO = Southern Works Outfall, MD = Mdloti, AM = Amanzimtoti,  
CL = Copper Light. 
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All the variables shown in the bubble plots in Figure 11 exhibit similar patterns, with all 

variables dominating the Mdloti reference site. These patterns mirror those seen in PCA (Figure 

9). However, the distinct clumping of bubbles across all sites shows some influence of these 

variables on the remaining four sites. 

 

3.3 Relationship between biological communities and environmental variables  

 

Site

C
en

tra
l W

or
ks

 O
ut

fa
ll

So
ut

he
rn

 W
or

ks
 O

ut
fa

ll

M
dl

ot
i R

ef
er

en
ce

 S
ite

Am
an

zi
m

to
ti 

R
ef

er
en

ce
 S

ite

C
oo

pe
r L

ig
ht

 R
ef

er
en

ce
 S

ite

Pe
rc

en
ta

ge
 c

on
tr

ib
ut

io
n 

(%
)

0

10

20

30

40

50

60

70

80

90
Amaryllis macrophthalma 
Ampelisca anisuropa 
Ampelisca anomala 
Ampelisca brevicornis 
Ampelisca diadema 
Ampelisca miops 
Ampelisca natalensis 
Ampelisca palmata 
Ampelisca spinimana 
Bathyporeia 
Byblis gaimardi 
Caprellidae 
Corophiidae 
Gammaropsis 
Hippomedon normalis 
Hippomedon onconotus 
Lysianassa 
Mandibulophoxus stimpsoni 
Oedicerotidae 
Photis 
Platyischnopus herdmani 
Stegocephalidae 
Unciolella 
Urothoe 
Urothoe coxalis 
Urothoe elegans 
Urothoe pinnata 
Urothoe pulchella 

 

Figure 12. Cumulative percentage contributions of amphipods for the Central Works Outfall, Southern Works 
Outfall, Mdloti reference site, Amanzimtoti reference site and Cooper Light reference site as identified through a 
SIMPER analysis. Species percent contribution cut-off was set at 3 %. 
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Figure 13. Variation in the (a) diversity, (b) total number of individuals and (c) species richness of amphipods in the 
Central Works Outfall, Southern Works Outfall, Mdloti reference site, Amanzimtoti reference site and Copper Light 
reference site. Bars and error bars represent means and are standard deviations of the mean. 
 

A total of 65 Amphipod species was found across all sites. However, a SIMPER analysis 

identified 28 species contributing 3% or more to the dataset. All sites are dominated by species 

of Ampelisca and Urothoe (Figure 12) and no species was found solely in one site. The 

Amanzimtoti reference site has the highest species richness, total number of individuals and 

diversity of all the sites (Figure 13). The two outfalls and the Mdloti reference site have a very 

low number of individuals compared with Amanzimtoti and Cooper Light reference sites. 

Mdloti was found to have elevated metal concentrations (Figure 8) exhibiting similar diversity 

patterns as the impacted sites. 
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Figure 14. a) MDS of species abundances at the five sites. Turquoise bubble plots represent grain sizes (b) gravel,  
c) coarse sand, d) fine sand, e) very fine sand, f) mud). The grain sizes represented in these bubble plots were 
identified as driving factors of the communities in the BIOENV analysis. CWO = Central Works Outfall, SWO = 
Southern Works Outfall, MD = Mdloti, AM = Amanzimtoti, CL = Copper Light. 
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Figure 14 continued. Green bubble plots represent metals (g) Fe, h) Cr, i) Ni, j) Al), k) Zn and l) COD). These 
variables were superimposed on the species abundance MDS (a). The environmental variables represented in these 
bubble plots were identified as driving factors of the communities in the BIOENV analysis. CWO = Central Works 
Outfall, SWO = Southern Works Outfall, MD = Mdloti, AM = Amanzimtoti, CL = Copper Light. 
 
 

BIOENV results identified gravel, coarse sand, fine sand, very fine sand, mud, Zn, Fe, Cr, Ni, 

Al and COD as the environmental factors driving the observed communities with ρ = 0.820. 

This value shows a strong correlation between these variables and the biotic data. PCAs (Figure 

4 and Figure 9) both identify the same grain sizes and environmental variables as driving factors 

in community structure. Bubble plots representing the BIOENV results were superimposed on 

the biological MDS (Figure 14). Group 1 on the MDS (Figure 14) appears to be driven by fine 

sand, very fine sand, mud and Ni (larger bubble sizes compared with those for the other 

variables). Central Works Outfall, Southern Works Outfall, Mdloti and Cooper Light seem to be 

driven by all the variables except mud, Cr and Al. The community structure represented by the 

   
g) Fe 

   
h) Cr 

    
i) Ni 

   
j) Al 

   
l) COD 

   
k) Zn 



Arabi, S. Relationship between Sediment Structure and Infaunal Amphipod Communities along a Pollution 
Gradient on the east coast of South Africa  

 

 49 

MDS does not show any distinct grouping of sites apart from those stations in Amanzimtoti that 

pulled away from the central clump. This is probably due to the presence of the finer grain sizes. 

These finer grain sizes could also be linked to Amanzimtoti exhibiting higher species richness, 

diversity and density compared with the other sites (Figures 12 – 13). It is the common 

environmental drivers identified in the BIOENV analysis together with the bubble plots that are 

responsible for the general lack of community grouping.  

 
 
4. Discussion 

Marine pollution is continuously increasing due to elevated human activity such as human 

settlement, resource use, infrastructural development, construction, agricultural activities, 

urbanisation and tourism (Islam & Tanaka, 2004). Due to this anthropogenic input of chemicals, 

studies of long-term effects on the marine environment are imperative. The availability of long 

term datasets is invaluable in monitoring and controlling marine pollution. This study in 

particular focuses on the ability of different sediment grain sizes to accumulate metals and 

organic pollution, and its effects on marine benthic communities. 

 

4.1. Sediment grain size and metals 

Sediments provide a temporally and spatially integrated indication of the pollution in an area. 

However, due to naturally occurring metals in sediment, it can be difficult to determine whether 

metal concentrations identified are as a result of anthropogenic sources. The natural ranges of 

metals in the ocean are shown in Table 4 together with the values found in this study. It can be 

seen that some metals were found in higher concentrations at the impacted and reference sites in 

comparison to what is expected to be found naturally. This shows that it is not only the impacted 

sites that are accumulating metals and that the possibility of general pollution effects along the 

KZN coast does exist.  

 

The accumulation of effluents on the seafloor is dependant on several natural and anthropogenic 

factors. These include the proportion of fine-grained sediment (primarily mud) naturally present 

on the seafloor, the type and concentration of contaminants in the effluent, and the 

dispersal/deposition of effluent particulate matter (Schropp et al., 1990; Newman & Mudaly, 

2008; Cuclic et al., 2009). Numerous studies have shown the relationship between sediment 

grain size and metal accumulation. Lin et al. (2002) showed that grain size was a controlling 

factor in the spatial variations in metal distribution. Increases in the percentage of fine-grained 

sediments showed an increase in aluminium, iron, manganese, zinc, copper and lead 

concentrations. Similarly, a study on coastal embayment sediments off the coast of Spain by 
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Rubio et al. (2000) found aluminium, copper, iron and zinc to be almost seven times higher, 

lead and chromium almost four times higher, and nickel, cobalt and arsenic almost double the 

concentration in muddy compared to sandy sediments. Cadmium however, was found to have 

the same average concentration in both sediment types. This affinity of metals towards fine-

grained sediments is partly due to the high specific surface of the smaller particles resulting in 

enrichment due to surface adsorption and ionic attraction. Organic matter coatings are also 

common in fine-grained sediments, binding to various trace elements (Plumb, 1981; Power & 

Chapman, 1995; Rubio et al., 2000; Hartwell & Hameedi, 2007). The discharge of effluents has 

been shown by Gray (1997) to alter the grain size distribution of sediment on the seafloor 

around outfalls. This is due to the addition of fine organic matter in the area of deposition, and 

this is likely to result in altered patterns of metal distribution in outfall-affected sediments. 

 
Table 4. Natural ranges of metals found in this study as well as actual ranges found at each study site. The 

grain sizes found in this study per site is also shown. 

Metal Natural 
range 
(µg/g) 

Central 
Works 
Outfall 
(µg/g) 
Coarse 

sediment 

Southern 
Works 
Outfall 
(µg/g) 
Fine 

sediments 

Mdloti 
reference 
site (µg/g) 

Coarse 
sediment 

Cooper 
Light 

reference 
site (µg/g) 

Mixed 
sediments 

Amanzimtoti 
reference site 

(µg/g) 
Fine 

sediments 

 
Mercury a 

 
0.04 – 0.15 

 
0.00 – 0.1 

 
0.00 – 0.34* 

 
0.00 – 0.12 

 
0.00 – 0.15 

 
0.00 – 0.37* 

Copper a 2.8 – 31 0.71 – 28.9 0.01 – 10.8 0.02 – 6.28 0.02 – 6.47 0.02 – 1.89 
Cadmium a 0.1 – 1.4 0.02 – 0.92 0.02 – 2.54* 0.02 – 0.51 0.02 – 0.91 0.02 – 2.29* 
Lead a 2.7 – 12 2.37 – 24.5* 0.02 – 31.1* 5.13 – 15.5* 0.34 – 6.69 1.59 – 9.87 
Zinc a 9.8 – 62 0.02 – 46.9 0.47 – 38.3 1.98 – 42.8 0.02 – 35.7 0.02 – 32.6 
Iron b 0.76 – 1.38 3.22 – 15.6 3.17 – 7.30 6.42 – 11.6 2.4 – 5.91 2.05 – 4.89 

 
Chromium a 6.5 – 43 7.38 – 48.3* 7.20 – 22.4 13.2 – 29.9 4.23 – 13.9 4.37 – 14.2 
Nickel a 1.6 – 35 0.02 – 15.5 0.02 – 12.7 2.91 – 14.2 0.1 – 5.01 0.57 – 4.87 
Aluminium c 0.005 – 

0.0055 
 

1.85 – 23.9* 1.09 – 4.21* 1.11 – 3.38* 1.11 – 3.99* 0.88 – 3.4* 

       
a Parsons & Connell, 2000 
b Johnson et al., 1997 
c Hydes & Liss, 1977 
* Values in the study higher than the natural metal values 
 

In the present study, a pattern of finer sediments is visible in the Southern Works Outfall and the 

Amanzimtoti reference site. Central Works Outfall and the Mdloti reference site exhibited 

dominance by coarser sediments (refer to Figure 4). These grain size patterns are verified by the 

MDS analyses (refer to Figure 5). The Mdloti river system tends to have coarser sediment grain 

sizes as well, thereby showing the possible influence of the river on the actual reference site 
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(Forbes & Demetriades, 2008). The Cooper Light reference site is a mixture of both grain sizes. 

Since muddy sediment is suitable for pollutant accumulation it would be expected that the 

Southern Works and Amanzimtoti sites should exhibit the highest metal concentrations. 

However, contrary to this expectation, it is Mdloti that seems to be most influenced by the 

different metals present. Mdloti shows elevated levels of lead, zinc, iron, chromium, nickel and 

aluminium. Possible reasons for this elevation at Mdloti could be due to flooding, extreme dry 

or wet years or even river run-off. However the likelihood of such stochastic events, which 

occur infrequently resulting in the distinct patterns found in Mdloti, can be questioned. The 

elevated metals, however, may not be linked to anthropogenic sources and may have originated 

naturally through the weathering of rocks and precipitation (Cuculic et al., 2009). A 

combination of these factors could have resulted in the Mdloti reference site having the highest 

metal concentration from all the sites tested. The movement of the metals from Mdloti to the 

other sites would be minimal due to the location of Mdloti being far away from the remaining 

sites. The State estuarine ranking system, which is based on health and functionality of the 

different systems, has the following classifications: excellent, good, fair, poor and highly 

degraded (Forbes & Demetriades, 2008). The Mdloti sites are located near the heavily polluted 

Mdloti river mouth which is a source of anthropogenic influences. The overall health status of 

the Mdloti system is rated to be poor with habitat loss, eutrophication, freshwater diversions, 

sewage, sea level rise and chemical contamination being threats to the system (Forbes & 

Demetriades, 2008). The Mgeni and Umhlanga rivers (refer to Figure 1) could have also 

resulted in the entire region, which included Mdloti reference site, to be polluted above the 

naturally expected range. The Umhlanga river overall health status is poor with habitat loss, 

eutrophication, freshwater diversions, sea level rise and sewage threatening the environment. 

The Mgeni river system has been given the status highly degraded with habitat loss, 

eutrophication, freshwater diversions, sewage, sea level rise, chemical contamination, litter and 

overexploitation all being major threats to this system (Forbes & Demetriades, 2008). 

Generally, the KZN coast is heavily polluted and therefore no proper reference site can be 

identified. Since the choice of reference sites has been detemined by the CSIR at the inception 

of the monitoring programme, it could not be changed for this study, which had to proceed 

according to the sampling design initially implemented. 

 

The two outfalls have higher concentrations of all metals in comparison to the Amanzimtoti and 

Cooper Light reference sites. Again, the expected pattern when considering grain sizes is that 

Southern Works and Amanzimtoti should accumulate the most metals due to the dominance of 

fine grained sediments at these sites. The lack of this pattern in Amanzimtoti may be attributed 
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to the lack of anthropogenic influence and confirmation of its use as a reference site. However, 

when compared to Mdloti and the Central Works Outfall, the Southern Works Outfall has lower 

metal concentrations which could be due to the actual treatment of the effluent, rapid dilution of 

the effluent once it is pumped to sea or the dynamics of the KwaZulu-Natal coastline. The 

Agulhas Current, and its interaction with the shelf along the KwaZulu-Natal coast, plays a role 

in the distribution of the effluent, thereby possibly preventing the settlement of effluent in and 

around the outfall deposition zone (McClurg, 1988). The Agulhas Current comes closer inshore 

here as well compared with Mdloti where the shelf is wider. This region is also characterised by 

the Durban return eddy, which moves water from the Scotborough region back up onto the 

Natal Bight (Smit AJ, March 2010, pers. comm.2). However, it must be noted that not much is 

known as yet about the role that the Agulhas Current on sediment redistribution and pollution 

accumulation in the KZN benthic regions. 

 

4.2. Total Kjeldahl Nitrogen (TKN) and Chemical Oxygen Demand (COD)  

TKN is a measure of the sum of dissolved inorganic nitrogen and digestible organic nitrogen in 

the sediment. According to Alloway & Ayres (1997), TKN levels in marine sediments should be 

approximately 300 mg l-1, but values ranging from 0 – 2222 mg l-1 have been reported (Darwish 

et al., 2005; Gawad et al., 2008). High TKN concentrations in the Sydney Harbour have been 

attributed to anthropogenic human activities and sewage overflows (Birch et al., 1999), and in 

some instances TKN values at this locality were up to 45 times the acceptable Australian 

guidelines level. Savage et al. (2004) found that coastal ecosystems removed ~25% of nitrogen 

via permanent burial in sediments. Nitrogen removal via denitrification can range between 21 

and 30% in coastal waters, while denitrification in estuaries can remove between 40 and 50% of 

the nitrogen entering as dissolved inorganic nitrogen (Savage et al., 2004). This can result in 

decreased exportation of nitrogen to the ocean (Gardner et al., 1987; Cabrita & Brotas, 2000). 

Levels of TKN in the current study ranged from approximately 35 – 550mg l-1. Patterns found 

between sites were not very strong. However, Mdloti did once again show a slightly higher 

average TKN compared with other sites. The definite reason for this increase is unknown, but it 

could be due to increased nutrients in the sediment via anthropogenic sources. River inputs (as 

discussed previously) to the Mdloti site could be the contributing factor to the elevated TKN 

values due to the increased usage of artificial nitrogen fertilisers being used (Gruber & 

Galloway, 2008). Rivers have large influences on the coastal environments due to their input 

onto the coast.  

 

_________________________________ 
2 Dr Smit AJ, University of KwaZulu Natal, Westville Campus, Durban 
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This widespread introduction of anthropogenic substances causes great difficulties for pollution 

studies like this, as pinpointing a specific source of an impact becomes challenging. In addition, 

reference sites that are closely located to rivers become less ideal in their use as unimpacted 

sites due to the possibility of anthropogenic influences form the rivers.  

 

A study by Kenis et al. (1972) showed that ocean mixing is sufficiently strong to prevent 

oxygen depletion due to sewage that is dumped in the ocean. In addition, during the treatment of 

this sewage, anaerobic treatment can reduce chemical oxygen demand (COD) by 90% (Barker 

et al., 1999). COD levels in the present study ranged from 0.01 mg.l-1 to 4.53 mg.l-1. The Mdloti 

reference site exhibited the highest COD values with the Central Works and Southern Works 

Outfalls again being lower than Mdloti but higher than Amanzimtoti and Cooper Light. 

Significant differences were found between Mdloti and Amanzimtoti, Mdloti and Cooper Light, 

Southern Works and Amanzimtoti, Southern Works and Cooper Light, Central Works and 

Amanzimtoti, Central Works and Cooper Light based on COD (ANOSIM, global R = 0.353, p < 

0.001). There were no significant differences found between Mdloti and Southern Works and 

Central Works. The patterns observed in Mdloti were usually similar to that of impacted sites, if 

not often with higher concentrations of chemicals than the impacted sites. The MDS plot 

(Figure 11) confirms the patterns explained above with the dominance of COD being in the 

Mdloti reference site. High levels of COD generally suggest an impact associated with effluent 

discharge. This possible influence of effluent in impacted sites could be the reason for the high 

COD levels identified. However, this does not explain the elevated levels of COD in the Mdloti 

reference site. The Mdloti site is the furthest away from all the other sites, and therefore possible 

influence from the impacted sites was unlikely to occur only at the Mdloti reference site. 

Possible impacts on the Mdloti reference site that could result in increased COD are breaching, 

sewage from Umhlanga or the movement of low-oxygen bottom-water to the shelf.  

 

4.3. Amphipod community structure and composition 

An important part of a pollution study is to determine whether ecological impacts occur. 

Benthic macrofauna often fill this role of determining the possible repercussions of pollution 

around marine outfalls (McClurg, 2008). The diversity of amphipods on the KwaZulu-Natal 

coast is high and is structured by numerous natural factors. Sediment and water conditions, as 

well as biotic factors such as predation, competition and the availability of food influence the 

communities (McClurg, 2008). According to Haring (2005), benthic organisms are driven more 

by natural sources that anthropogenic ones. Therefore, in order to identify possible 

anthropogenic influences it is important to have reference sites against which comparisons can 
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be made. A wide range of different amphipod species were found in this study with a distinct 

dominance by the families Ampeliscidae (9 different species) and Urothoidae (5 different 

species). The reference sites do show a higher percentage contribution of the dominant species 

when compared with the impacted sites. Byblis gaimardi, Caprellidae and Hippomedon 

oncontus make up relatively large percentage contributions at all sites.  

 

The family Ampeliscidae, comprised mostly of detritus-feeding species, is one of the more 

diversified amphipod families in the ocean (Dauvin & Bellan-Santini, 1996; Griffiths, 1976). 

This family is widely distributed with species inhabiting from the intertidal to abyssal zone with 

a preference to mud and fine sand sediments. They form an important part of soft-bottom 

amphipods worldwide and construct tubes in fine sands and mud. They gather organic materials 

from the sediment surface of filter feed from the water column (Griffiths, 1976). The genus 

Ampelisca tend to be shallow water inhabitants while Byblis is generally found in deep waters 

(Dauvin & Bellan-Santini, 1996). Urothoids are marine gammaridean amphipods that inhabit 

shallow waters and are scarce in deep sea habitats (Jaume & Sorbe, 2001). They form an 

important part of burrowing fauna of intertidal and shallow subtidal sands. Urothoe species are 

well adapted to burrowing (Griffiths, 1976). Due to both Ampelisca sp. and Urothoe sp. having 

preferences to shallow water it was unexpected for these groups to be so dominant and have a 

high percentage contribution in a deep sea study.                                                                                                                  

 

Amphipods are benthic fauna and would therefore be influenced by physical and chemical 

sediment characteristics. Sediment grain size would be expected to structure amphipod 

communities with certain grain sizes being preferred over others due to differences in their 

burrowing ability and food availability (Sanders, 1958; Biernbaum, 1979). In addition, since 

sediment is a sink for contaminants, and grain size plays an important role in contaminant 

accumulation, these factors would be expected to affect benthic community structure 

(Reynoldson, 1987). 

 

Sediment heterogeneity and silt and clay fractions have been found to positively influence 

benthic community structure and tend to exhibit higher diversity in comparison with sediment 

homogeneity (Grebmeier et al., 1989; Mancinelli et al., 1998; Ellingsen, 2002). The type of 

substratum may influence the distribution of some amphipods which have a preference to mud 

or muddy-sand (Meadows, 1964). Meadows (1964) found that sediment grain size may 

influence the distribution of Corophium volutator due to their preference of mud and muddy 

sand compared to coarse sand. Marques & Bellan-Santini (1993) found high amphipod species 
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diversity in medium to fine sand regions, suggesting that substrate grain size may be a 

controlling factor in the biodiversity and development of large amphipod communities. These 

sediment particle size distributions may also play a significant role in determining the nutrient 

quality and quantity for amphipods. In the present study, Amanzimtoti exhibits the highest 

percentage contribution of amphipods, mean diversity, total number of individuals and species 

richness than any of the other sites. Amanzimtoti also exhibited the lowest values for metals, 

TKN and COD. These low concentrations of environmental variables may be attributable to the 

high number of amphipods found at this location. Mdloti, with its high metal concentrations, 

does show lower amphipod diversity indices; however, these are not greatly different from both 

impacted sites. The MDS in Figure 14 shows these patterns well, with Amanzimtoti forming a 

distinct group away from the remaining sites and being driven by fine grain sizes.  

 

The dominant species in Marques & Bellan-Santini‟s (1993) study were Ampelisca spp., which 

tended to have preferences for sandy sediments. However, in this study Ampelisca spp. were 

found across all sites with the highest percentage contribution being Amanzimtoti which was 

dominated by fine sediment grain fractions. This lack of similarity with Marques & Bellan-

Santini‟s (1993) study maybe explained by Bat & Raffaelli (1998), who state that amphipods 

are useful in bioassays and sediment toxicity tests due to their low sensitivity to natural 

variability in sediments such as grain size and organic content. The surface deposit-feeding 

ampeliscid amphipod, Byblis gaimardi, has been found to dominate course grained sediment 

environments in the northeastern Chukchi Sea. This however contrasts findings carried out in 

the Bering Sea where ampeliscid amphipods were not common in the sandy-gravel sediment 

substrate (Feder et al., 1994). The amphipod communities present either prefer certain 

sediments and therefore have inhabited these areas for that reason or do not have preferences 

and therefore are able to inhabit any sediment type.  

 

Metal accumulation is one of the factors that can be responsible for the alteration of benthic 

communities. Some amphipods have been found to be useful indicators of metals due to the 

accumulation capacities of these metals from their food and solution. Some species are 

indicators of zinc and copper in particular, accumulating these metals through food and water 

(Rainbow, 1995a). In a study by Bat et al. (1998), the amphipod Corophium sp. has shown a 

decrease in survival rate and burrowing activity with increased sediment metal concentrations. 

More Corophium sp. individuals chose to burrow in clean sediment than metal contaminated 

sediment. However, some individuals did burrow in low metal contaminated sediment. This was 

attributed by Bat et al. (1998) to be due to either the possible tolerance of some individuals to 
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low metal concentrations, or a reduced toxicity of metals in sediment due to oxidation by 

constant aeration, or that some Corophium sp. individuals were forced to inhabit metal 

contaminated sediment due to clean sediment being fully inhabited by majority of the 

Corophium sp. population. Ultimately, the effect of metals on community structure is important 

to identify. Studies have shown that a correlation between increasing concentrations of metals in 

sediment and decreasing species numbers and an altered abundance and the composition fauna 

exists (Philips & Rainbow, 1994; Warwick, 2001; Balthis et al., 2002; Marsden & Rainbow, 

2004). The results of this study do not show any clear link between metal effects and amphipod 

communities. As can be seen in Figure 12, all sites except for Amanzimtoti show similar 

patterns of community distribution irrespective of whether some metals were higher in 

concentration than others. This lack in pattern between metals and communities is possible due 

to a lack of metal effects on these communities. Although metals are identified, their presence is 

probably at a concentration at which amphipods can survive and if not, flourish.  

 

Metal bioaccumulation is dependent on and driven by many different internal and external 

factors. Marsden & Rainbow (2004) extensively described amphipod metal uptake, 

accumulation, survival and community structure effects. They found that there are numerous 

internal and external factors that affect bioaccumulation in amphipods, and that metal uptake 

rates can vary considerably. Internal factors include individual variability (accounted for by 

physiological processes such as moulting), body size, gender, breeding condition, brooding, 

moulting, growth and behaviour. External factors affecting bioaccumulation are dissolved metal 

concentration, physicochemistry of metal absorption routes across membranes, dissolved 

oxygen, metal interactions, sediment, food, seasonal effects, geographical differences and 

adaptation. Infaunal amphipods are in direct contact with sediment, and hence sediment grain 

size, organic content and the presence of metals are important in the bioavailability of trace 

metals (Marsden & Rainbow, 2004). The bioavailability of metals that are ingested in sediment 

by burrowing amphipods is affected by organic and inorganic sediment constituents. This can 

affect the binding affinities for the metals in the food. Interaction between different metals that 

may share biological uptake pathways due to similar chemistries can also affect the 

accumulation of those metals. The presence of two such metals together can either increase or 

decrease their bioaccumulation. Exposure of amphipods to metals via sediment occurs through 

the release of metals from sediment into interstitial or burrows water. Bioavailability of metals 

in sediments is affected by the amount of metal present, as well as the relative strength of metal 

binding in the sediment and the organism‟s digestive processes (Marsden & Rainbow, 2004). 

Sediment grain size, together with sediment organic content, the presence of other metals and 
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environmental conditions, affects metal binding. The burrowing of infaunal amphipods can 

increase surface sediment oxygen levels and redistribute metals. It has been found that species 

that have been exposed to increased metal concentrations over years may have evolved 

biochemical and physiological mechanisms that aid in the reduction of effect of these toxins 

(Marsden & Rainbow, 2004). It is thought that this could be selected for in brooding amphipods 

with limited mobility. 

 

Note that metal accumulation is naturally driven by sediment grain size; however, in this study 

it was the Mdloti reference site which was dominated by coarse sediments that showed the 

highest concentrations of metals. Studies have shown that increased sediment metal 

contamination correlates with a decreased number of benthic species, and highly contaminated 

sediments have shown a decrease in certain species (Bryan, 1971; Bat & Raffaelli, 1998; 

Beltman et al., 1999; Thompson et al., 1999; Dauvin, 2007). However, it has been difficult to 

attribute these changes solely to metal contamination. There are studies in which distinct benthic 

communities occur at impacted sites (Marsden & Rainbow, 2004); however, in this study, 

communities at the references and impacted sites did not differ significantly although higher 

concentrations of metals were identified in the Mdloti reference site. Following on from that, 

amphipod community composition can be driven by metal contamination and natural increases 

in metals, COD and TKN from natural aerosols, river run-off, etc could have occurred which 

resulted in the patterns identified at Mdloti. Figure 12 shows the percentage contribution of 

amphipods at each site. The species composition at both impacted sites and Mdloti are very 

similar to each other while Amanzimtoti and Cooper Light exhibit similar communities. The 

impacted sites and Mdloti do not have Urothoe coxalis present at all. Table 5 summarises the 

species that were present and absent at each site based in the SIMPER results. The two outfalls 

combined have 10 amphipod species that are absent in those communities when compared with 

the reference sites. Of the 10 species, 6 are absent only at the impacted sites. The three reference 

sites lack between 3 – 4 species in total from the overall list. The reference sites also have 

species that are lacking solely from either impacted site. However, the lack or presence of 

species at both impacted and reference sites cannot be attributed only to pollution exposure, or 

lack thereof. The communities could be driven by many other factors such as the sediment type, 

bathymetry and benthic rugosity, presence of food, and/or competition. 

 

It is clear from the literature that sediment grain size alone does not necessarily have a 

significant impact on benthic communities. Relationships between factors like COD, TKN, 

organic matter content, grain size and sediment accumulation together contribute to differences 
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found in communities (Wu & Shin, 1997; Mancinelli et al., 1998). It is these interactions 

between variables that result in the difficulty often experienced in identifying specific drivers of 

pollution impacts and effects on communities. 

 
Table 5. Presence and absence of all species identified by the SIMPER analysis for each impacted and 
reference site. X – Species not present; √ - Species present. 
 
 Central 

Works 

Southern 

Works 

Mdloti Amanzimtoti Cooper Light 

Amaryllis macrophthalma  X X √ √ √ 

Ampelisca anisuropa  X X √ √ √ 

Ampelisca anomala  √ √ √ √ X 

Ampelisca brevicornis  √ √ √ √ √ 

Ampelisca diadema  √ √ √ √ √ 

Ampelisca miops √ X X √ √ 

Ampelisca natalensis X √ √ √ √ 

Ampelisca palmata  X X √ √ √ 

Ampelisca spinimana √ √ X X X 

Bathyporeia √ √ √ √ √ 

Byblis gaimardi X √ √ √ √ 

Caprellidae √ √ √ √ √ 

Corophiidae √ √ √ √ √ 

Gammaropsis √ √ √ √ √ 

Hippomedon normalis √ √ √ √ √ 

Hippomedon oncontus √ √ X √ √ 

Lysianassa √ X X √ √ 

Mandibulophoxus stimpsoni √ √ √ √ √ 

Oedicerotidae √ √ √ √ √ 

Photis √ √ √ X √ 

Platyischnopus herdmani √ √ √ X √ 

Stegocephalidae X X √ √ √ 

Unciolella √ √ √ √ √ 

Urothoe X X √ √ X 

Urothoe coxalis X X √ √ X 

Urothoe elegans √ √ √ √ √ 

Urothoe pinnata √ √ √ √ √ 

Urothoe pulchella √ √ √ √ √ 
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5. Conclusion 

The primary aim of this study was to determine whether sediment grain size influences the 

amphipod community structure along the KwaZulu-Natal coast together with looking at 

potential impacts of two wastewater outfalls on these benthic communities. The results were 

contradictory when compared with previous studies carried out on the role of grain size on 

community structure and pollutant accumulation. The sites that were dominated by fine grain 

sediments were not those that exhibited the highest concentrations of metals. It was Mdloti, 

which showed dominance by coarse sediments that had the highest metals, TKN and COD 

levels. In terms of community structure, Amanzimtoti had the highest diversity indices levels 

and percentage contributions. Sites with the same grain sizes exhibited similar community 

structures thereby highlighting the role that grain size plays in benthic communities. 

 

The use of amphipod communities in this study was identified to determine patterns and 

possible impacts of pollution. Although communities did not seem to be affected by the outfalls, 

differences in communities were observed. Further studies can be carried out in order to identify 

the specific roles amphipods play at these sites and their use as bioindicators of the 

anthropogenic influences from the outfalls. 

 

An important point that was highlighted in this study is the difficulty in the accessibility of 

suitable reference (unimpacted) sites. In this study the use on Mdloti as a reference site was 

questioned. The influence of rivers on the integrity of reference sites was identified. Although 

the Mdloti reference site was positioned away from the impacted sites, the anthropogenic impact 

from rivers would result in an impact being identified. Generally it appears that although there 

are obvious differences among sites in terms of community structure, there does not seem to be 

much support for the environment in shaping the patterns observed. 

 

The outcomes of the null hypotheses of this study were as follows:  

Abiotic data:  

A. Sediment grain size is homogenously distributed across the study area: rejected. 

B. The concentrations of selected metals and TKN and COD in the sediment are homogenously 

distributed across the study area: rejected. 

C. The spatial patterns of sedimentary metal concentration, TKN and COD are not modified by 

sediment grain size distribution: rejected. 
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Biotic data:  

D. Amphipod community structure is not influenced by i) sediment grain size distribution, ii) 

metal concentration, iii) TKN, and/or iv) COD: accepted. 

 

The lack of information specific to KwaZulu-Natal in terms of sediment grain size, its role in 

pollutant accumulation and the effects of marine pollution on amphipod communities was 

highlighted during this study. This lack of specific information particularly in recent years 

resulted in references often being made to older studies. There is a need for studies on 

amphipods in particular, considering their widespread use as bioindicators worldwide. This 

would allow more informed decisions to be made in terms of the requirements and restrictions 

of effluent discharge thereby minimising possible effects on the environment. 
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