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ABSTRACT

Lie symmetry group methods provide a useful tool for the analysis of differential
equations in a variety of areas in physics and applied mathematics. The nature
of symmetry is that it provides information on properties which remain invariant
under transformation. In differential equations this invariance provides a route
toward complete integrations, reductions, linearisations and analytical solutions
which can evade standard techniques of analysis. In this thesis we study two
problems in quantum mechanics from a symmetry perspective: We consider for
pedagogical purposes the linear time dependent Schrödinger equation in a potential
and provide a symmetry analysis of the resulting equations. Thereafter, as an
original contribution, we study the group theoretic properties of the density matrix
equation for the quantum Brownian motion of a free particle interacting with a
bath of harmonic oscillators. We provide a number of canonical reductions of
the system to equations of reduced dimensionality as well as several complete
integrations.
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1. INTRODUCTION

1.1 Summary

The theory of open quantum systems in physics provides a rich source of problems
for analysis. These arise in the course of replacing the time evolution equations for
closed quantum systems which are assumed to evolve in isolation with equations
for open quantum systems which evolve in interaction with their environments. A
number of these open systems models are differential equations of various forms
[2, 3, 9, 10, 23]. The usual research aim in such cases once the mathematical model
has been constructed is to obtain a maximal amount of information from a given
equation or system of equations. A useful tool to this end is the application of
Lie symmetry groups for differential equations [1, 14, 15, 16, 26]. A differential
equation which when subjected to Lie symmetry analysis is found to have corre-
sponding infinitesimal symmetry generators may be integrated or solved on the
basis of canonical transformations couched within the symmetry generators.

In this thesis we consider a problem from open quantum systems as a subject
of symmetry analysis: The quantum Brownian motion for the behaviour of a free
particle immersed in a thermal reservoir - an environment at thermal equilibrium
at high temperature. The model is described by the partial differential equation

∂ρ

∂t
=

i~
2m

(
∂2ρ

∂x2
− ∂2ρ

∂y2

)
− 1

2
a2(x− y)2ρ, (1.1)

for the density matrix in the position representation ρ(x, y), and has been the
subject of a number of studies in the physics literature [3, 9, 10, 29].

Applying symmetry based techniques we subject (1.1) to analysis. The main
results are that there are a number of nontrivial integrations for (1.1) which may
be arrived at directly using symmetries. Furthermore hidden in the algebraic
properties of the equation is the Heisenberg-Weyl group. This leaves it in the local
equivalence class of the diffusion equation as well as the Schrödinger equations for
the free particle and harmonic oscillator. These are original results of relevance to
researchers in open quantum systems and mathematicians working in differential
equations and symmetry groups.

The thesis is structured as follows: The remainder of this introduction contains
further material on symmetry, quantum mechanics and open quantum systems -
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the very basics. Chapter 2 and Chapter 3 are essentially background material for
the reader. The theoretical framework and standard algorithms for calculating
symmetries are introduced in Chapter 2. We introduce both the tools for calculat-
ing and obtaining symmetries and the details of Lie algebras and groups within the
context of differential equations. Chapter 3 turns toward the application of sym-
metry methods for partial differential equations. We use the Schrödinger equation1

in a potential

i
∂ψ

∂t
= −∂

2ψ

∂x2
+ V (x, t)ψ (1.2)

as an example for illustrating symmetry concepts. Chapter 4 contains the main
result of the thesis: the analysis of the quantum Brownian motion model as well as
a statement of specific problems where this type of work has potential for future
research. A basic idea of quantum mechanics at the level of [23][Ch 2.] and
differential equations at the level of [1][Ch.1] has been assumed.

1.2 Lie Symmetries

An important tool in the study of differential equations is the use of Lie symmetry
methods which reflect the invariance of the differential equation under infinitesimal
transformation. These were introduced by Lie who through his work on continuous
groups of geometrical transformations was lead into the study of the symmetries of
differential equations [14, 15]. Not long after, Noether studied the Action Integral
under infinitesimal transformation proving the eponymous theorem [24].

Although we will deal further with symmetry in Chapter 2 a simple example
with all the essentials is to consider the invariance of functions in a two-dimensional
space (x, y) where x and y are independent. The infinitesimal symmetries are
obtained by taking the transformations

x̄ = x+ εξ(x, y) ȳ = y + εη(x, y), (1.3)

where ε is the infinitesimal parameter. The requirement for the invariance of a
function f(x, y) is that

f(x̄, ȳ) = f(x, y) (1.4)

from which
f(x̄, ȳ) = f(x+ εξ, y + εη). (1.5)

The Taylor expansion of this expression in the parameter ε leads to

f(x̄, ȳ) = f(x, y) + ε

{
ξ
∂f

∂x
+ η

∂f

∂y

}
(1.6)

1 For the most part we will use units such that m = ~ = 1. This Schrödinger equation is,
strictly speaking, missing a factor of one half.
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which may be written as the differential operator

G = ξ(x, y)∂x + η(x, y)∂y (1.7)

acting on f as
f(x̄, ȳ) = (1 + εG)f(x, y). (1.8)

G is a symmetry of f if Gf = 0, i.e.

ξ
∂f

∂x
+ η

∂f

∂y
= 0 . (1.9)

This can be considered both as an equation for ξ and η given the function f or as
an equation for the form of f given a generator G with coefficient functions ξ and
η. The former is the statement that an arbitrary function f can have an infinite
number of symmetries, i.e. if one simply chooses for an arbitrary k

ξ = k(x, y)
∂f

∂y
and η = −k(x, y)∂f

∂x
. (1.10)

The latter is that given a generator G a class of functions which admits the gen-
erator may be found, eg. consider

G = y∂x − x∂y. (1.11)

The constraint (1.9) becomes

y
∂f

∂x
− x

∂f

∂y
= 0. (1.12)

This has the associated Lagrange’s system

dx

y
=

dy

−x
(1.13)

with the characteristic variable

u = x2 + y2. (1.14)

It may be then be inferred from (1.14) that any function of the form f(x2 + y2)
possesses G as a symmetry.

This idea is of course generalizable to functions of more independent variables
as well as a dependence of one or more of the variables on each other which
is the case with ordinary, partial and systems of differential equations. There
are various types of symmetries of differential equations studied in the literature
[1, 26]. The simplest are point transformations which map the original space
of variables into itself. The other types may depend on derivatives of various
orders as well as integrals. These are termed generalized and nonlocal symmetries
respectively. In this thesis we limit our discussion to symmetry properties under
point transformation.
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1.3 Closed and Open Quantum Systems

The differential equations (1.1) and (1.2) are both drawn from quantum mechanics.
They are examples of open and closed quantum systems respectively. This section
gives a brief overview of both, it is not meant to be exhaustive. Details on both
quantum mechanics and open system dynamics may be found in [2] and [23] in
which the emphasis is more on the various aspects of quantum information and
computation.

1.3.1 Closed Quantum Systems

In standard quantum mechanics one works with closed quantum systems which
are postulated to evolve unitarily in isolation. They are described by state vectors
|ψ〉 which are the elements of an underlying Hilbert space H or density matrices
ρ formed from the outer product of state vectors2

ρ = |ψ〉〈ψ|. (1.15)

The state vector |ψ〉 may then be expanded in terms of a basis on H such as
position |q〉 or momentum |p〉. We have in the momentum representation, for
example,

|ψ〉 =

∫
dp|p〉〈p|ψ〉 (1.16)

and we denote the momentum space wave functions as

ψ(p) = 〈p|ψ〉. (1.17)

Finally, given the states |ψ(p)〉 and |φ(p′)〉 (where the prime is used to distinguish
two sets of momentum values) the probability that the states overlap is found
according to

|〈ψ|φ〉|2 =

∫
dpdp′ψ∗(p)φ(p′)δ(p′ − p), (1.18)

where the ∗ denotes the conjugate, and the integration is over the entire range of
momentum values. This is assumed to be finite.

The time evolution of a closed quantum system is assumed to be generated by
the Hamiltonian, H, to give the Schrödinger equation

i
∂

∂t
ψ = Hψ. (1.19)

We also have the Liouville-von Neumann equation for the density matrix

∂ρ

∂t
= −i[H, ρ], (1.20)

2 We will only be working with pure states in this thesis see, [2] for details.
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where the square brackets denote the commutator. The Schrödinger equation (1.2)
is generated by the classical Hamiltonian for a particle in a potential treated as
the operator

Ĥ = p̂2 + V (x̂, t), (1.21)

where x̂ and p̂ = i∂/∂x represent the quantisation of classical position and mo-
mentum variables such that

x̂|x〉 = x|x〉 and p̂|x〉 = i
∂

∂x
|x〉. (1.22)

1.3.2 Open Quantum Systems

The difference between closed and open quantum systems is essentially that open
quantum systems are assumed to evolve in interaction with their environments
while closed quantum systems are assumed to evolve in isolation. To model an open
quantum system one considers a larger closed quantum system divided into the
open system (which we are interested in) and an environment (which we average
over statistically).

The entire system is built on the composite Hilbert space H = HS ⊗HE where
HS is the open system Hilbert space, HE is the environment Hilbert space and ⊗
denotes the tensor product. For our purposes we will assume that initial states in
the entire system are separable3 whence |ψ〉 ∈ H may be written as |ψ〉S ⊗ |ψ〉E
where |ψ〉S ∈ HS and |ψ〉E ∈ HE .

We have the density matrix for the total system as

ρ = ρS ⊗ ρE. (1.23)

Since the total system is assumed to be closed the density matrix evolves unitar-
ily according to the Liouville von Neumann equation (1.20). The total system
Hamiltonian may be written as

H = HS +HI +HE, (1.24)

reflecting the environment, the interaction and the system degrees of freedom. In
principle, the dynamics of the open system may then be obtained by allowing the
unitary evolution of the total system as

ρ(t) → U(t, t0)ρ(t0)U
†(t, t0) (1.25)

and then taking the partial trace over the environmental degrees of freedom,

trE{ρ(t)} = ρS(t) =
∑

E

E〈ψ|Uρ(t0)U †|ψ〉E, (1.26)

3 These could also, in principle, be entangled states [2].
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after a time interval, t−t0, from an initial state for the total system ρ(t0). However,
for systems with many environmental degrees of freedom this is not feasible. The
alternative approach is to replace equation (1.20) with an equation for the time
evolution of reduced density matrix ρS in which the evolution of the environment
plays a passive role through dissipative operators and possibly interaction terms
in the Hamiltonian valid on the timescale for which the system environment corre-
lations occur. The most common is the Gorini-Kossakowski-Sudharshan-Lindblad
equation4 [8, 17] which describes Markovian, short term, memoryless correlations.
This is

dρ

dt
= −i[H, ρ]− 1

2

n∑
j=1

(
{LjL

†
j, ρ} − 2LjρL

†
j

)
, (1.27)

where H is the Hamiltonian and L are the Lindblad operators. The quantum
Brownian motion model equation (1.1) and a number of standard models in open
quantum systems are based on this equation [2, 3, 9].

4 Political correctness.



2. LIE SYMMETRY GROUPS

2.1 Introduction

The idea of a symmetry in its simplest sense relates to regularity in the structure
of an object. If an object is regular then it has aspects that persist under types
of transformation, eg. in geometry the invariance of the equilateral triangle about
reflections about an axis or the invariance of a circle after a rotation about its
center. Symmetries are clues about how objects behave under transformations.
Lie group theory is the study of symmetry properties of abstract mathematical
structures [1, 14, 15, 16, 24, 26].

In the study of the group theoretic properties of differential equations the struc-
ture of the symmetry group and the concomitant algebra summarizes the effect of
the differential equation on the its space of dependent and independent variables
and their derivatives. The symmetry group of an equation, if there is one, deter-
mines the structure of the differential equation and the corresponding Lie algebra
determines the equivalence class of the differential equation under transformation
[1, 26]. The knowledge of the symmetry group can be used to find invariant,
mapping, reduction and solution properties of an equation. Isometry between
symmetry groups can then be used to identify equivalent differential equations.

2.2 Lie Groups of Transformations

Groups are algebraic structures the ideas of which underly familiar objects such as
the integers or matrices. They have diverse applicability and are widely studied.
In order to explore the properties of differential equations in a more general and
abstract way the notion of continuous groups and groups of transformations are
required. This section is an introductory delving into the ideas of group theory.
We follow the introduction by Bluman [1] [Ch. 2]. Further details regarding sym-
metry groups may be found in [1, 26].

Group: A group is a set of elements G with a law of composition between the
elements, φ, satisfying the following axioms :

(i) Closure Property: For any elements x and y of G φ(x, y) is an element of
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G.

(ii) Associative Property: For any elements x, y, z of G

φ(x, φ(y, z)) = φ(φ(x, y), z).

(iii) Identity Element: There exists a unique identity element I of G such that
for any element x of G

φ(x, I) = φ(I, x) = x.

(iv) Inverse Element: For an element x of G there exists a unique inverse
element x−1 in G such that

φ(x, x−1) = φ(x−1, x) = I.

Subgroup: A subgroup of G is a subset of G which forms a group with the same
law of composition φ.

Abelian Group: A group G is abelian if φ(x, y) = φ(y, x) holds for all elements
x and y in G.

Groups of Transformations: The set of transformations

x̄ = X(x; ε)

defined for each x in the space D ⊂ Rn depending on the parameter ε ∈
S ⊂ R with φ(ε, δ) defining a law of composition of parameters ε and δ in S
forms a group of transformations on D if:

(i) For each ε in S the transformations are one-to-one onto D. In particular x̄ ∈
D.

(ii) S with the law of composition φ forms a group G, i.e. if x̄ = X(x; ε) and
ȳ = X(x; δ), then ȳ = X(x;φ(ε, δ)), and x̄ = x when ε = I.

One-parameter Lie Group of transformations: A one-parameter Lie group
of transformations is a group of transformations which satisfies the additional
conditions1:

(i) The parameter ε is continuous, i.e. S is an interval in R, with 0 ∈ S, and
ε = 0 corresponds to the identity element I.

1 All statements are for standard forms of transformations.
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(ii) X is infinitely differentiable wrt x in D and an analytic function of ε in S.

(iii) φ(ε, δ) is an analytic function of ε and δ for ε ∈ S and δ ∈ S.

Lie Algebras:
The Lie Bracket [x, y]LB of x and y is

[x, y]LB = xy − yx.

A Lie algebra2 is a vector space L equipped with the Lie Bracket that

(i) is Bilinear, i.e.

[x, ay + bz]LB = a[x, y]LB + b[x, z]LB, [ay + bz, x]LB = a[y, x]LB + b[z, x]LB,

(ii) is Antisymmetric

[x, y]LB = −[y, x]LB,

(iii) satisfies the Jacobi Identity

[x, [y, z]]LB + [y, [z, x]]LB + [z, [x, y]]LB = 0

for all vectors x, y, z ∈ L and a, b ∈ R.

A Lie algebra L is said to abelian if [x, y]LB = 0 ∀x, y ∈ L.

A Lie algebra L is called solvable if the derived series

L ⊇ L′ = [L,L]LB ⊇ L′′ = [L′,L′]LB ⊇ . . . ⊇ Lk = [Lk−1,Lk−1]LB

is such that Lk = 0, for some k ∈ N.

2.3 Symmetries

2.3.1 Infinitesimal Transformations

An infinitesimal transformation in the space of independent variables (x, y) is given
by:

x̄ = x+ εξ(x, y), ȳ = y + εη(x, y), (2.1)

2 Here, we use an example of a Lie algebra that is relevant to our context. There are a
multitude of other examples of Lie Algebras [4].
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where ε is an infinitesimal parameter. Equivalently we may regard the differential
operator

G = ξ(x, y)∂x + η(x, y)∂y , (2.2)

where ∂x and ∂y denotes differentiation with regard to the respective variable, as
the generator of the transformation (2.1) since

x̄ = (1 + εG)x, ȳ = (1 + εG)y.

Let y = y(x) in the case of a dependence of y on the variable x. Under the
restriction that the coefficient functions ξ and η be differentiable functions of x
and y the transformation induced in the first derivative dy/dx by an infinitesimal
transformation (2.1) is

dȳ

dx̄
=

d(y + εη)

d(x+ εξ)

=
dy + εdη

dx+ εdξ

=

(
dy

dx
+ ε

dη

dx

)(
1 + ε

dξ

dx

)−1

=
dy

dx
+ ε

(
dη

dx
− dy

dx

dξ

dx

)
+O(ε2).

Since ε is an infinitesimal,

dȳ

dx̄
= y′ + ε(η′ − y′ξ′) (2.3)

and the (′) denotes total differentiation wrt x. The first extension of the differential
operator G is then specified as

G[1] = G+ (η′ − y′ξ′)∂y′ = ξ∂x + η∂y + (η′ − y′ξ′)∂y′ . (2.4)

The generalization for the generator to the nth extension is

G[n] = G+
n∑

i=1

{
η(i) −

∑i
j=1

(
i
j

)
y(i+1−j)ξ(j)

}
∂y(i) (2.5)

and the indices denote total differentiation wrt x and
(

i
j

)
are binomial coefficients.
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2.3.2 Symmetries of Ordinary Differential Equations

For the nth order ordinary differential equation

E
(
x, y, y′, y′′, . . . , y(n)

)
= 0

if

G[n]
[
E
(
x, y, y′, y′′, . . . , y(n)

)]∣∣∣∣
E=0

= 0 (2.6)

the differential equation is invariant under the action of the nth extension of (2.2),
admits the one parameter Lie group of point transformations (2.1) and G is a
symmetry of the differential equation.

The important feature about the structure of equation (2.6) is that it is a linear
first order partial differential equation and the method of characteristics can be
used to solve it. It has the associated Lagrange’s system

dx

ξ
=
dy

η
=

dy′

η′ − y′ξ′
= . . . =

dyn

η(n) −
∑n

j=1

(
n
j

)
y(n+1−j)ξ(j)

. (2.7)

The new variables obtained on integration may be used to reduce the order of
the equation to n − 1. In the case of a partial differential equation the number
of independent variables can be reduced using the characteristics. The coefficient
functions are not necessarily restricted to being point functions of the spatial
variables. If ξ and η are functions of x, y and y′ and the first extension G[1] is
independent of y′′ then G is termed a contact symmetry. In the case that ξ and
η are functions of x, y, and the derivatives y′,. . . , yn−1 a generalized symmetry is
obtained. For ξ and η with integrals in their arguments the symmetry G is termed
nonlocal.

The imposition that ξ and η be point functions, ξ = ξ(x, y) and η = η(x, y)
and separation by relevant powers of y′, y′2 . . . etc. leads to a system of over-
determined linear partial differential equations from (2.6). The general symmetry
generator G obtained on solution is usually written as a number of one parameter
symmetries for aesthetic and computational reasons. As an example we give below
the symmetry calculations for the ordinary differential equation corresponding to
the classical free particle.

Classical Free Particle

The Newton equation for the motion of a free particle in one dimension is given
by

y′′ = 0. (2.8)
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The infinitesimal symmetries corresponding to (2.8) are obtained from the condi-
tion

G[2]E
∣∣
E=0

= 0, (2.9)

where the operator G[2] is the second extension of the infinitesimal generator. We
have

G = ξ(x, y)∂x + η(x, y)∂y, (2.10)

G[1] = (η′ − y′ξ′)∂y′ +G (2.11)

and
G[2] = (η′′ − 2y′′ξ′ − y′ξ′′)∂y′′ +G[1]. (2.12)

We may write the differentials η′, η′′; ξ′, ξ′′, etc. as,

η′ =
∂η

∂x
+ y′

∂η

∂y
, (2.13)

η′′ =
∂2η

∂x2
+ 2y′

∂2η

∂x∂y
+ y′2

∂2η

∂y2
+ y′′

∂η

∂y
. (2.14)

It follows from condition (2.9) that

(η′′ − 2y′′ξ′ − y′ξ′′) = 0. (2.15)

Expanding out the differentials leads to

∂2η

∂x2
+ 2y′

∂2η

∂x∂y
+ y′2

∂2η

∂y2
+ y′′

∂η

∂y
− 2y′′

(
∂ξ

∂x
+ y′

∂ξ

∂y

)
−y′

(
∂2ξ

∂x2
+ 2y′

∂2ξ

∂x∂y
+ y′2

∂2ξ

∂y2
+ y′′

∂ξ

∂y

)
= 0 . (2.16)

The terms involving y′′ are set to zero when the differential equation is taken into
account. Separating in powers of y′ leads to the system of determining equations

∂2η

∂x2
= 0 (2.17)

2
∂2η

∂x∂y
− ∂2ξ

∂x2
= 0 (2.18)

∂2η

∂y2
− 2

∂2ξ

∂x∂y
= 0 (2.19)

∂2ξ

∂y2
= 0. (2.20)

The system (2.17)-(2.20) has the solution,

η(x, y) = (A1y + A2)x+ A3y
2 + A4y + A5 (2.21)
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ξ(x, y) = A1x
2 + (A3y + A6)x+ A7y + A8 . (2.22)

The symmetry generator (2.10) may now be written in terms of the constants
of integration obtained from solving the determining equations as the eight one
parameter symmetries

G1 = ∂x (2.23)

G2 = ∂y (2.24)

G3 = x∂x (2.25)

G4 = y∂y (2.26)

G5 = x∂y (2.27)

G6 = y∂x (2.28)

G7 = xy∂y + x2∂x (2.29)

G8 = y2∂y + xy∂x, (2.30)

where we have set each of the Ai = δij and δij is the Kronecker delta function.

2.3.3 Symmetries of Partial Differential Equations

The symmetries of partial differential equations are slightly more involved than
the symmetries for ordinary differential equations. The condition for the general
partial differential equation

E(xi, yj, yj,i, . . .) = 0, (2.31)

in which the xi, i = 1,m, are independent variables, the yj j = 1, n, are dependent
and yj, i denotes a partial derivative with respect to xi to possess a symmetry

G = ξi∂xi
+ nj∂yj

, (2.32)

where summation is implied, is

G[s]E|E=0 = 0. (2.33)

This is exactly the same as the condition for ordinary differential equations gen-
eralized to higher dimensions. The restriction that the coefficient functions ξi and
ηj be constrained to point functions is the usual analysis. As was the case with or-
dinary differential equations this may be extended to a dependence on derivatives
and integrals.

The symmetry properties of partial differential equations and their analysis
will be addressed in the next chapters. Note that although the algorithm for ob-
taining the symmetries of partial differential equations is essentially the same as
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for ordinary differential equations the number of determining equations increases
dramatically with the number of variables. The usual practice is to use a com-
puter package for the calculation of the symmetries. There are a number of these
specialized for the calculation of symmetries [11, 25]. In this thesis PROGRAM LIE

developed by Head [11] is used.

2.4 Lie Algebras

The generators of the infinitesimal transformations or the symmetries

Gα = ξα∂x + ηα∂y, α = 1 . . . n (2.34)

form a vector space. The dimension of the Lie algebra is the dimension of the vec-
tor space of its generating operators and may be finite or infinite. The Lie Bracket
can be used to determine the algebraic structure corresponding to the symmetries
of a given differential equation, first integral or function. Preservation of the alge-
braic structure in the symmetries of a differential equation is a sufficient condition
for establishment of equivalence classes. The presence of solvable algebras is a
useful guideline when examining symmetries for a change of variables to perform a
reduction of order [26]. The representations of a Lie Algebra are not unique. Since
Lie algebras can be isomorphic to one another a given algebra is usually identified
with a standard classification. The classification schemes for standard algebras are
discussed in [19, 20] and [21]. We list below the standard classification tables for
Lie algebras of dimensions two and three.

Tab. 2.1: Canonical forms of Lie Algebras of Dimension Two
Type [G1, G2] Canonical Forms Algebra
I 0 G1 = ∂xG2 = ∂y A1

II 0 G1 = ∂y G2 = x∂y A1

III G1 G1 = ∂y G2 = x∂x + y∂y A2

IV G1 G1 = ∂y , G2 = y∂y A2
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Tab. 2.2: Standard Classification of Lie Algebras of Dimension Three
Algebra Nonzero Commutation Relations
3A1

A1 ⊗ A2 [G1, G3] = G1

A3,1 (Weyl) [G2, G3] = G1

A3,2 [G1, G3] = G1, [G2, G3] = G1 +G2

A3,3 (D ⊗s T2) [G1, G3] = G1, [G2, G3] = G2

A3,4 (E(1, 1)) [G1, G3] = G1, [G2, G3] = G2

Aa
3,5 (0 < |a| < 1) [G1, G2] = G1, [G2, G3] = aG2

A3,6 (E(2)) [G1, G3] = −G2, [G2, G3] = G1

Ab
3,7 (b > 0) [G1, G3] = bG1 −G2, [G2, G3] = G1 + bG2

A3,8 (sl(2,R)) [G1, G2] = G1, [G2, G3] = G3, [G3, G1] = −2G2

A3,9 (so(3)) [G1, G2] = G3, [G2, G3] = G1, [G3, G1] = G2

2.5 First Integrals and Noether’s Theorem

First integrals in dynamical systems correspond to conserved quantities, such as
momenta, charge or energy. The significance of first integrals is that a complete
set of first integrals is equivalent to a complete integration i.e. a solution can
be deduced in a global functional form albeit a quadrature or implicitly. Note
that symmetries may be used directly to find the first integrals corresponding to
an ordinary differential equation whereas for calculus of variations problems one
applies Noether’s theorem.

2.5.1 First Integrals

A function, I = f(x, y, y′, . . . , yn−1), is a first integral of an nth ordinary differential
equation if

G[n−1]I = 0 (2.35)

and
dI

dx

∣∣∣∣
E=0

= 0 (2.36)

are satisfied and the dependence on yn−1 is nontrivial. The first integral is obtained
from the n characteristics, ui, associated with (2.35) and the n− 1 characteristics,
vi, associated with (2.36). The first integral is then

I = h(vi) , (2.37)

where h is an arbitrary function of its arguments.
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2.5.2 Noether’s Theorem

For a first order classical Lagrangian L(t, x, ẋ), the Action Integral

A =

∫ t2

t1

L(t, x, ẋ)dt, (2.38)

is invariant under the infinitesimal transformation generated by the differential
operator

G = T∂t +Xi∂xi
, (2.39)

if there exists a function, f , such that

ḟ = T
∂L

∂t
+Xi

∂L

∂xi

+
(
Ẋi − ẋiṪ

) ∂L
∂ẋi

+ ṪL (2.40)

in which the summation over repeated indices is implied. The expression for the
first integral,

I = f −

[
TL+ (Xi − ẋiT )

∂L

∂ẋi

]
, (2.41)

is obtained when the Euler Lagrange equation [26] is invoked in (2.40).
The differential operator (2.39) is referred to as a Noether symmetry. Every

Noether symmetry is a Lie symmetry of the Euler-Lagrange equations [26] related
to the Action Integral. The function f is often referred to as a gauge term, a
distinction which has its origins in physics. Noether’s theorem provides a direct
means of calculating first integrals associated to a Lagrangian or Hamiltonian
using (2.41). There are obviously extensions to higher order Lagrangians and
Lagrangians with more than one independent variable.

The calculation of first integrals and the use of Noether’s theorem will not be
relevant for this work, we include it for completeness.



3. THE SCHRÖDINGER EQUATION

An old problem in the study of symmetry properties is the study of an equation
containing an arbitrary term. This is called the group classification problem and
the idea of it is to examine the forms for the term which admit a certain amount
of symmetry. This pioneering work was again by Lie [14, 15, 16] who performed
the classification of linear equations with two independent complex variables and
a potential, implicitly studying the one dimensional time-dependent Schrödinger
equation

i
∂u

∂t
= −∂

2u

∂x2
+ V (x, t)u (3.1)

for a particle in a potential V (x, t). His results [16] were that (3.1) admits as po-
tentials the harmonic and repulsive oscillator and that these are locally equivalent
to the Schrödinger equation for the free particle. Since Lie’s original paper was
published in 1881, one can guess that there has been much subsequent work on
the subject of classification for a variety of Schrödinger equations [1, 26].

The purpose of the present chapter is to introduce the essentials of symmetry
analysis using equation (3.1) as our starting point. The group classification of
(3.1) leads to forms V ∝ x2, V ∝ 1/x2 and V ∝ cst for the autonomous potential
V = V (x) which have respectively 5, 5 and 3 nontrivial symmetries in addition
to the infinite number of solution symmetries and the homogeneity symmetries
admitted by (3.1) for V arbitrary. These symmetries then provide a route for
introducing the analysis. The harmonic oscillator, free particle and Ermakov-
Pinney cases (1/x2) are each treated in an application of a symmetry related
technique.

The chapter is structured as follows: In the next section we give the proof of the
group classification for (3.1). Thereafter we study the properties of the free particle
Schrödinger equation and use the infinitesimal symmetry group to construct the
finite Lie group of transformations and find the functional forms of the equations
group invariant solutions. The harmonic oscillator Schrödinger equation is used
to describe mapping and solution properties using symmetry and the Ermakov-
Pinney potential equation is used to illustrate the procedure for reduction of order.
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3.1 Group Classification

The general form of the symmetry generators of equation (3.1) correspond to the
vector field

G = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u (3.2)

acting on the space of variables (t, x, u). The coefficient functions τ , ξ and η are
now found from the determining equations obtained from the condition

G[2]E
∣∣
E=0

= 0, (3.3)

where G[2] is the second prolongation of the vector field (3.2) and E is obtained
after rearranging (3.1). Analysis of (3.1) by PROGRAM LIE returns the determining
equations

τuu = 0

τu = 0

τx = 0

iτux + ξu = 0

2ξux − iuτuuV − ηuu = 0

iuτuV + iτxx − iτt + 2ξ = 0

−2iuτux + uξuV − 2ηux + ξxx + iξt = 0

−iuτxxV − uηuV + uτtV + uVtτ + uVxξ − iu2τuV
2 − ηxx + ηV − iηt = 0.

Once the trivial integrations have been performed the form of the generator G
may be written as

G = τ(t)∂t + ξ(t, x)∂x + η(t, x, u)∂u. (3.4)

This leads to the simplified set of determining equations

ηuu = 0 (3.5)

τt − 2ξx = 0 (3.6)

2ηxu − iξt − ξxx = 0 (3.7)

uV (ηu − τt)− u(Vtτ + Vxξ) + iηt − ηV + ηxx = 0. (3.8)

Equations (3.5)-(3.7) give the following information

η = a(x, t)u+ b(x, t) (3.9)

and
ξ = 1

2
τt + c(t), (3.10)
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ax = i (τtt + ct) ⇔ a = i
(

1
8
τttx

2 + 1
2
ctx
)

+ d(t) . (3.11)

Substitution of (3.9) and (3.10) into equation (3.8) gives

uV (a−τt)−uVtτ−uVx(
1
2
τt +c)+ i(uat +bt)+(uaxx +bxx)−V (ua+b) = 0. (3.12)

Separating this equation in powers of u gives

i
∂a

∂t
+
∂2a

∂x2
− τtV − τVt − ξVx = 0 (3.13)

and

i
∂b

∂t
+
∂2b

∂x2
− bV = 0. (3.14)

Here, the function b(x, t) satisfies the original differential equation. It generates
via (3.9) what is termed a solution symmetry since the solution of the original
differential equation is required in order to specify the symmetry. A characteristic
property of partial differential equations which are linear, or related to a linear
equation is that they possess a generator of this type. Substitution of (3.11) into
(3.13) gives the equation for the potential,

−1
8
τtttx

2 − 1
2
cttx+ id+ 1

4
iτtt − Vtτ − Vx(

1
2
τt + ct) = 0. (3.15)

For an autonomous potential the following ordinary differential equation is ob-
tained for V (x):

(1
2
τt + ct)

dV

dx
= i(dt + 1

4
τtt)− (1

8
τtttx

2 + 1
2
cttx)− τtV. (3.16)

For V = V (x) arbitrary we have the conditions

V : τt = 0 ⇒ τ = k0

V ′ : 1
2
xτt + c = 0 ⇒ c = 0

− : 1
8
τtttx

2 + cttx− i1
4
τtt + idt = 0 ⇒ ḋ = 0 ⇒ d = d0,

from (3.16). We have that

η = d0u+ b(t, x, u) (3.17)

τ = k0 (3.18)

ξ = 0. (3.19)
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This gives the point symmetries

G1 = b(t, x, u)∂u (3.20)

G2 = u∂u (3.21)

G3 = ∂t . (3.22)

The general solution of (3.16) for the potential V is

V =
k(t)

(1
2
τtx+ c)2

− 1

τt
(1

8
τtttx

2 + ctx+ idt − i1
4
τtt) + (3.23)

2
3

1

τ 2
t

(1
2
τtx+ c)(1

4
τttt + ctt)− 1

6

τttt
τ 3
t

(1
2
τtx+ c)2.

The solution for V may then be written as

V = λ2(µx+ ν)2 +
ω2

(µx+ ν)2
+ χ2, (3.24)

and λ, ω, χ, µ and ν are constants which depend on the autonomy of V . The
following forms for (3.1) may be obtained if the scaling and translation parts of
(3.24), µ and ν, are absorbed into the x variable:

i
∂u

∂t
= −∂

2u

∂x2
+ χ2u, (3.25)

i
∂u

∂t
= −∂

2u

∂x2
+ λ2x2u, (3.26)

i
∂u

∂t
= −∂

2u

∂x2
+
ω2

x2
u. (3.27)

Restrictions on the functional forms of V (x) allow us to integrate (3.16) by sepa-
ration in powers of x. This enables the admission of a number of new symmetries
over and above the solution, homogeneity, and autonomy symmetries, G1, G2 and
G3. The symmetry and algebraic properties of equations (3.25), (3.26) and (3.27)
are presented below for the values of the parameters χ2 = 0, λ2 = 1 and ω2 = 1.

3.2 The Free Particle

As one of the oldest problems in quantum mechanics its no surprise the group
theoretical properties of the free particle Schrödinger equation

i
∂u

∂t
= −∂

2u

∂x2
, (3.28)
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are well travailed. In addition it is of the equivalence class of a diffusion equation
under the point transformation

t→ it (3.29)

which is a textbook problem in symmetry considered in both Bluman and Kumei
[1] as well as Olver [26].

3.2.1 Symmetries and Algebras

The infinitesimal generators returned by LIE are:

K1 = ∂t (3.30)

K2 = ∂x (3.31)

K3 = 2t∂t + x∂x (3.32)

K4 = u∂u (3.33)

K5 = ux∂u + 2it∂x (3.34)

K6 =
[

1
2
it+ 1

4
x2
]
u∂u + it2∂t + itx∂x (3.35)

K∞ = k(x, t)∂u. (3.36)

The function k(x, t) is any solution1 of

i
∂2k

∂t
= −∂

2k

∂x2
. (3.37)

The equation’s algebraic properties follow from the nonzero commutator brackets
of the symmetries. The commutator of K∞ with any of the other symmetries is
zero. This follows because it is of the form of the homogeneity symmetry K4 when
u = k is a solution of the equation. The brackets for the nontrivial symmetries
K1 −K6 are:

K1 K2 K3 K4 K5 K6

K1 0 0 2K1 0 2iK2
1
2
iK4 + iK3

K2 0 0 K2 0 K4
1
2
K5

K3 −2K1 −K2 0 0 K5 2iK6

K4 0 0 0 0 0 0
K5 −2iK2 −K4 −K5 0 0 0
K6 −1

2
iK4 − iK3 −1

2
K5 −2iK6 0 0 0

1 Note that while for the equations treated in this thesis the symmetry corresponding to the
infinite number of solution symmetries of the partial differential equation satisfies the original
equation this is not necessarily the case. In the study of equations which contain nonlinearities
in their derivatives the equation may for instance admit a generator which is the solution of a
linear partial differential equation. This usually points to a transformation relating the original
nonlinear equation to the linear equation found in the symmetries [22].
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In order to identify the Lie algebra we look for closed lower dimensional subalgebras
contained in K1-K6 and use the standard classification tables from Chapter 2.
The generators K2, K4 and K5 immediately form a closed subalgebra. These
are identified with the Heisenberg-Weyl algebra A3,1 which has the commutator
brackets

[Σ1,Σ2] = 0, [Σ1,Σ3] = 0, [Σ2,Σ3] = Σ1. (3.38)

The generators K1, K3 and K6 are not closed directly or in standard form. How-
ever, since any linear combination of symmetries is itself a symmetry we may write
K̄1 = iK1, K̄3 = 1

2
(iK3 + 1

2
iK4) and K̄6 = −iK6 obtain

[K̄6, K̄1] = K1, [K̄6, K̄1] = −2K̄3, [K̄3, K̄6] = K̄6. (3.39)

The algebra is now identified as sl(2,R) or A3,8.
The algebra of (3.28) may be written as {A3,1⊗sA3,8⊗s∞A1}, where the abelian

algebra for the commutativity of K∞ with the other symmetries has been denoted
as ∞A1 and ⊗s is the semi-direct sum. Further details on the representation
theory of Lie algebras may be found in [4].

3.2.2 Lie Groups of Transformations

Another property is that the infinitesimal generators lead directly to the construc-
tion of the corresponding finite Lie group of transformations where the sleight of
hand used is to solve the associated Lagrange’s system for the symmetry as an
initial value problem with respect to the group parameter. One finds, for example,
from (3.28)

ū(t̄, x̄, ε), x̄(t, x, ε), t̄(t, x, ε), (3.40)

where ε is the group parameter and the initial condition is

u = ū, t = t̄, x = x̄, (3.41)

when ε = 0. This gives the functional forms for the group invariant solutions which
satisfy

i
∂ū

∂t̄
= −∂

2ū

∂x̄2
. (3.42)

The symmetry K5, for example, has the characteristic system

dū

dε
= ūx̄,

dx̄

dε
= 2it̄,

dt̄

dε
= 0. (3.43)

This may be integrated with the initial value condition (3.41) to give the finite
transformations

ū = u exp(itε2 + xε), x̄ = 2itε+ x, t̄ = t, (3.44)
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which enables us to write the functional form for the solution, say u = f(x, t), as

u = exp(−itε2 − xε)× f(x− 2itε, t). (3.45)
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The complete set of integrations is:

ū t̄ x̄
K1 u t+ ε x
K2 u t x+ ε
K3 u te2ε xeε

K4 ueε t x
K5 u exp(itε2 + xε) t x+ 2itε

K6 u
√

(1− iεt) exp
(
−εx2

4−iεt

)
t

1−iεt
x

1−iεt

The functional forms for u(x, t) which leave the equation invariant are found by
solving for the original variables. We have that

u = f(x, t− ε) (3.46)

u = f(x− ε, t) (3.47)

u = f(e−εx, e−2εt) (3.48)

u = e−εf(x, t) (3.49)

u = (1− iεt)−
1
2 exp

(
−εx2

4− iεt

)
× f

(
x

1− iεt
,

t

1− iεt

)
. (3.50)

Each of these is a particular type of special solution of (3.28). The form of the
solution (3.46) for example reflects invariance under translations in t and (3.47)
translations in x while (3.48) provides scaling solutions.
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3.3 The Harmonic Oscillator

3.3.1 Symmetries and Algebras

The harmonic oscillator equation

i
∂u

∂t
= −∂

2u

∂x2
+ x2u (3.51)

arises if the form of the potential is taken to be V (x) = x2. This has the symme-
tries:

H1 = i∂t (3.52)

H2 = u∂u (3.53)

H3 = e−2it (∂x + xu∂u) (3.54)

H4 = e2it (∂x − xu∂u) (3.55)

H5 = e4it
(

1
2
i∂t + x∂x + (x2 − 1

2
)u∂u

)
(3.56)

H6 = e−4it
(

1
2
i∂t − x∂x + (x2 + 1

2
)u∂u

)
(3.57)

H∞ = h(t, x)∂u. (3.58)

The function h(t, x) here is any solution of

i
∂h

∂t
= −∂

2h

∂x2
+ x2h. (3.59)

The table of commutator brackets is given by

H1 H2 H3 H4 H5 H6

H1 0 0 2H3 −2H4 −4H5 4H6

H2 0 0 0 0 0 0
H3 −2H3 0 0 −2H2 −4H4 0
H4 2H4 0 2H2 0 0 4H3

H5 4H5 0 4H4 0 0 2H1

H6 −4H6 0 0 −4H3 −2H1 0

The Heisenberg-Weyl algebra, A3,1, is then formed from H2, H3 and H4 and the
sl(2,R) algebra, A3,9, from H1, H5 and H6, up to various factors2.

2 The author points out that if the standard form of the classical Hamiltonian H = 1
2 (p̂2 + q̂2)

for the harmonic oscillator had been used in the calculation instead of H = p̂2 + q̂2 this would
not be necessary.
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3.3.2 Solution Surfaces

Another application of symmetry is the construction of invariant solution surfaces
and the mapping of solutions to solutions. For example, consider the associated
Lagrange’s system for H4

dt

0
=
dx

1
=

du

−xu
. (3.60)

The characteristics are found to be

v = t and w = ue1/2x2

.

Substituting the ansatz
u = e−1/2x2

f(t) (3.61)

into (3.51) gives f(t) = eit. Define the solution surface Σ0 by

Σ0 = u−1e−1/2x2+it (3.62)

H4Σ0 = −2xu−1e−1/2x2+3it (3.63)

H2
4Σ0 = (4x2 − 2)u−1e1/2x2+5it (3.64)

...

The solutions

u0 = e−1/2x2

(3.65)

u1 = −2xe−1/2x2+3it (3.66)

u2 = (4x2 − 2)e−1/2x2+5it (3.67)
...

illustrate the idea that symmetries map solutions into solutions. H3 acts as an
annihilation operator, whilst H6 acts as a double annihilation operator. Equally,
H5 is a double ladder operator, mapping by two states at a time, viz u0 → u2 → u4.
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3.4 The Ermakov-Pinney Potential

The final form of the Schrödinger equation which was found from the group clas-
sification was the Ermakov-Pinney type potential [28]. This gives an equation of
the form

i
∂u

∂t
= −∂

2u

∂x2
+

1

x2
u. (3.68)

The symmetries of this equation are

G1 = u∂u (3.69)

G2 = ∂t (3.70)

G3 = 2t∂t + x∂x (3.71)

G4 = 4itx∂x + 4it2∂t − (2it+ x2)u∂u (3.72)

G∞ = g(x, t)∂u, (3.73)

where g(x, t) is a solution of the equation

i
∂g

∂t
= −∂

2g

∂x2
+

1

x2
g. (3.74)

The generators G2, G3 and G4 form, up to a closure with an addition of G1 where
appropriate, the sl(2,R) algebra.

As an application we consider the reduction of order of (3.68) using the sym-
metry generators. The combined symmetry

G = G1 +G2 +G3 = (2t+ 1)∂t + u∂u + x∂x (3.75)

has the associated Lagrange’s system,

dt

2(t+ 1)
=
dx

x
=
du

u
. (3.76)

This gives the characteristics

ζ =
x

(t+ 1)
1
2

η =
u

x
(3.77)

for the form of the similarity solution

u = xh(ζ) = xh

(
x

(t+ 1)
1
2

)
, (3.78)
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where h is an arbitrary function of its argument. The substitution of (3.78) into
(3.68) and simplification gives the ordinary differential equation

x2

(t+ 1)
h′′ + 2

x

(t+ 1)
1
2

h′ − i
1

2

x3

(t+ 1)
3
2

h′ − h = 0. (3.79)

This is recognizable as,

2ζ2h′′ + ζ(4− iζ2)h′ − 2ν2h = 0, (3.80)

which may be solved using the method of Frobenius with the ansatz

h =
∞∑

j=0

ajζ
j+s (3.81)

and substitution into equation (3.80) to obtain a recurrence relation for the coef-
ficients aj and the value of s.

3.5 Remarks

We have given a basic outline of the applications of symmetry properties to partial
differential equations using a number of standard examples. The group classifica-
tion problem for the Schrödinger equation was used to illustrate the standard uses
of symmetry techniques for the analysis of equations containing arbitrary terms.
This provided a number of problems with which to continue the analysis. The
free particle Schrödinger equation was used to demonstrate the construction of Lie
groups of transformations and group type solutions using symmetry. The harmonic
oscillator equation provided a means for demonstrating the mapping properties of
solutions and their relation to the corresponding generators. Finally we used the
Ermakov-Pinney equation to show how symmetry methods are related to reduction
of order. These types of applications will be used in Chapter 4 for the quantum
Brownian motion model. In our discussion of Lie algebraic properties we gave the
algebras of the corresponding equations in the standard classifications and clarified
how these may be obtained using standard tables. A possible omission is that we
have not demonstrated the local equivalence of equations using purely algebraic
properties. It cannot be emphasized enough that the algebraic properties of its
symmetries determine the invariance properties of the differential equation.



4. ANALYSIS OF THE QUANTUM BROWNIAN MOTION
MODEL

In open system dynamics the general idea is that one models a reduced quantum
subsystem of a larger quantum system which is evolving unitarily and averages over
the effects of the remaining environmental degrees of freedom on the subsystem.
The fundamental problem is to study the time evolution of the reduced system
conditional on environmental dissipation. This may be approached in two ways:
One approach is to construct a density operator for the total closed system allow
it to evolve unitarily and then use the partial trace to obtain the density operator
for the reduced system by statistically averaging over the environmental effects on
the open system. This is known as the quantum operations formalism [23]. The
alternative is to place a variety of restrictions on the evolution of the system and
formulate statistically a quantum dynamical semigroup to reflect the transfer of
energy and entropy from the open system to the environment via the build up of
system environment correlations [2]. This leads to the formulation of an evolution
equation for the density matrix which replaces the Liouville-von Neumann equation
for the evolution of a closed quantum system and includes dissipative effects. The
most common type is the Lindblad equation [17, 8] which describes the behaviour
of open systems for short term, memoryless correlations. The equation for the
reduced density matrix ρ has the form

dρ

dt
= − i

~
[H, ρ]− 1

2

n∑
j=1

(
{LjL

†
j, ρ} − 2LjρL

†
j

)
, (4.1)

where H is the Hamiltonian, which may include interaction terms, and L are the
dissipative Lindblad operators describing the environmental effects.

A simple open quantum system model both amenable to analysis and ubiqui-
tous in open quantum systems literature is the quantum Brownian motion model
[3, 9, 10, 5, 6, 7, 29]. The model consists of a non-relativistic free particle of mass
m weakly interacting with a high temperature bath of harmonic oscillators. The
master equation for the density operator is

∂ρ

∂t
=

i~
2m

(
∂2ρ

∂x2
− ∂2ρ

∂y2

)
− 1

2
a2(x− y)2ρ (4.2)
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where a2 = 4mγkT/~2, T is the temperature of the environment, γ is a mea-
sure of dissipation, k is Boltzmann’s constant and x and y have the meaning of
coordinates. This is the Lindblad equation (4.1) with the operators, [10],

H =
p̂2

2m
and L = ax̂. (4.3)

(Here, p̂ and x̂ are momentum and position operators.) The appealing physical
features of this model are that for both equation (4.2) and its generalizations it
has been shown numerically and analytically that the system localizes for certain
types of initial conditions i.e. the density operator becomes approximately diago-
nal and we have, ρ(x, y) ≈ ρ(x, x). This is the decoherence phenomenon whereby
the quantum fluctuations in the particle dynamics are damped by thermal fluctu-
ations in the environment. An important result is that the particles phase space
trajectory becomes approximately equivalent to classical Brownian motion [10].

In this chapter the aim is to study the analytical properties of the quantum
Brownian motion equation (4.2) from the perspective of symmetry analysis. A
straightforward symmetry analysis by PROGRAM LIE reveals that equation (4.2)
has sufficient symmetry for it to be interesting. These symmetries suggest a
change of variables for the equation into a form which is easier to study. A check
of the nonzero commutators of this equation gives the corresponding algebra as{
(A1 ⊗s A3,1)⊗s A

a
3,5

}
where ⊗s is the semi-direct sum. A curious point is that

this contains the Heisenberg-Weyl algebra, A3,1, in common with the free particle
and harmonic oscillator Schrödinger equations. The symmetries of this equation
are then used to reduce the order of the system in terms of either the number of
variables, the degree of the derivative or both. Analysis of these reduced equations
lead directly to solutions of (4.2) once the variables have been inverted. These are
the main part of our results.

4.1 Lie Symmetries and Algebras

We begin by performing the symmetry analysis of equation (4.2). For aesthetic
purposes we rewrite the equation as

∂u

∂t
= A

(
∂2u

∂x2
− ∂2u

∂y2

)
+B(x− y)2u, (4.4)
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where the constants A = i~/2m and B = −1
2
a2 have been introduced and we have

set u = ρ. The analysis by PROGRAM LIE returns the symmetries

X1 = ∂x + ∂y (4.5)

X2 = ∂t (4.6)

X3 = u∂u (4.7)

X4 = −u∂u + 2t∂t + (x+ 2y)∂x + (2x+ y)∂y (4.8)

X5 = (x− y)u∂u − 2At(∂x + ∂y) (4.9)

X6 = 2B(x− y)tu∂u + ∂x − 2ABt2(∂x + ∂y) (4.10)

X7 =
[
2A2B(x− y)t2 − x

]
u∂u + 2At∂x − 4

3
(∂x + ∂y) (4.11)

X∞ = f(t, x, y)∂u , (4.12)

where f(t, x, y) is any solution of (4.2).
The symmetries immediately suggest information on the structure of the dif-

ferential equation. The recurrence of the differential operator ∂x + ∂y and the
terms (x− y) in the symmetry generators (4.5)-(4.12) suggests the transformation
of variables

v = x− y (4.13)

w = x+ y. (4.14)

Also, it may be observed that (4.4) can be written as

∂u

∂t
= A(∂x − ∂y)(∂x + ∂y)u+B(x− y)2u (4.15)

from which
∂u

∂t
= A

∂2u

∂v∂w
+Bv2u. (4.16)

Since it is a straightforward point transformation none of the the essential prop-
erties of the solution are altered. The algebraic properties of the equation remain
invariant under the transformation. It is this transformed equation which we will
concentrate on. The symmetries of this equation are

Y1 = ∂w (4.17)

Y2 = ∂t (4.18)

Y3 = 2t∂t − v∂v + 3w∂w (4.19)

Y4 = u∂u (4.20)

Y5 = uv∂u − At∂w (4.21)

Y6 = 2Butv∂u − ABt2∂w + ∂v (4.22)

Y7 = (w − ABt2v)u∂u − At∂v + 1
3
A2Bt3∂w (4.23)

Y∞ = g(t, v, w)∂u. (4.24)
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The function g(t, v, w) is again any solution of (4.16).
The Lie algebra of the symmetries is determined by the commutators of (4.17)-

(4.24). These are:

Y1 Y2 Y3 Y4 Y5 Y6 Y7

Y1 0 0 3Y1 0 0 0 −Y4

Y2 0 0 2Y2 0 −AY1 −2BY5 −AY6

Y3 −3Y1 −2Y2 0 0 −Y5 Y6 3Y7

Y4 0 0 0 0 0 0 0
Y5 0 AY1 Y5 0 0 Y4 0
Y6 0 2BY5 −Y6 0 −Y4 0 0
Y7 Y4 AY6 −3Y7 0 0 0 0

In terms of the standard algebraic classification of equation (4.16), the symmetries
Y4, Y5 and Y6 constitute a representation of the Weyl algebra A3,1 which has the
structure

[G1, G2] = 0, [G1, G3] = 0, [G2, G3] = G1. (4.25)

We may rescale Y3 as Ȳ3 = 1
3
Y3 to obtain the commutators

[Y1, Ȳ3] = Y1, and [Y2, Ȳ3] = 2
3
Y2. (4.26)

The bracket [Y1, Y2] = 0, gives that Y1, Y2 and Ȳ3 are of the form of the algebra
Aa

3, 5

[G1, G3] = G1, [G2, G3] = aG2 where (0 < a < 1). (4.27)

Since Y7 commutes with Y4, Y5 and Y6, the algebra may be decomposed as {(A1⊗s

A3,1) ⊗s A
a
3,5} . This is especially promising since the algebra A3,1 is shared with

the linear diffusion equation and the Schrödinger equation for the free particle.
We will see below that there is a corresponding reduction.

4.2 Reduction by Symmetry

The symmetries of the differential equations (4.4) and (4.16) now give a route into
the applications highlighted in the Chapter 3. Each of the non-trivial symmetries
(4.5)-(4.11) and (4.17)-(4.23) provides a possible route for reducing either the order
of the system or the number of independent variables using the solution of the cor-
responding associated Lagrange’s system [1, 14, 26]. Also note that, in principle,
we could also take linear combinations of symmetries and then use those to find
characteristics as well provided that the Lagrange’s system could be integrated.
We find in this section the various reductions to lower dimensional and/or lower
order partial differential equations using the symmetry generators. The reduction
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by Y1 gives an analytic solution independent of w. The symmetries X2 (Y2) and X3

(Y4) are used to illustrate the separations of variable solution. The characteristics
obtained from Y4 give a reduction in terms of similarity variables [1] to a second
order nonlinear partial differential equation in two-independent variables. Reduc-
tion by Y5 results in a first order nonhomogenous partial differential equation that
provides a complete integration of (4.4). The most physically interesting change
of variables is that of Y6 which reduces the quantum Brownian motion model,
under transformation, to a type of damped heat equation. The reduced partial
differential equation provided by Y7 has nonlinear and time-dependent coefficients.

Reduction by Y1

The first reduction is fairly simple. The characteristic system1 corresponding to
Y1 = ∂w is

du

0
=
dw

1
=
dv

0
=
dt

0
. (4.28)

The integration of this is
u = F (v, t). (4.29)

Substitution into equation (4.16) gives the first order differential equation

∂F

∂t
= Bv2F. (4.30)

The equation has the solution

u = exp[Bv2t]φ(v), (4.31)

in terms of x and y, and ρ

ρ = exp
[
−1

2
a2(x− y)2t

]
φ(x− y). (4.32)

Reduction by Y2 and Y4

The symmetries Y2 = ∂t and Y4 = u∂u reflect the autonomy and homogeneity
of (4.16) (inherited from (4.4)). These allow one to construct the separation of
variables solution to the problem [1, 26]. We have trivially that using Y2 or Y4

alone that the equation admits the forms

u = F (v, w, t) and u = F (v, w). (4.33)

1 Note that in the following cst will denote constants with respect to the characteristics, and
we will introduce additional variables as required.
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The first is not very helpful and the second is the time-independent solution.
However we may also use the linear combination Y2 +χY4 as a generator for some
constant χ. This has the associated Lagrange’s system

du

χu
=
dt

1
=
dv

0
=
dw

0
(4.34)

from which we may obtain the separation of variables form

u =

∫
dχC(χ) exp(χt)F (v, w), (4.35)

where we have introduced the function C(χ) in the parameter. The form for (4.16)
is

A
∂2F

∂v∂w
= (χ−Bv2)F (4.36)

which may be solved directly by applying separation of variables for a second time.
If we let F = V (v)W (w) we have,

AV ′W ′ = (χ−Bv2)VW. (4.37)

This may be separated into the ordinary differential equations

AV ′ = µ(χ−Bv2)V (4.38)

and
µW ′ = W. (4.39)

The solution of which is

F (v, w) =

∫
dµD(µ) exp

[µ
A

(χv − 1
3
Bv3)

]
exp

[
w

µ

]
, (4.40)

where we have integrated over the parameter µ and introduced the function D(µ).
Finally we have

u =

∫
dχdµC(χ)D(µ) exp

[
χt+

µ

A
(χv − 1

3
Bv3) +

w

µ

]
. (4.41)

Reduction by Y3

The usual idea when searching for similarity transformations is to employ an ansatz
which reflects invariance under a group of scalings and then substitute into the
differential equation to find the correct values of the scaling constants. There is
also a close connection to dimensional analysis [1]. The scaling symmetry

Y3 = 2t∂t − v∂v + 3w∂w (4.42)
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allows us to obtain the correct variables directly. We find the associated Lagrange’s
system

dt

2t
=
dv

−v
=
dw

3w
=
du

0
. (4.43)

The first and the second equalities give

dt

2t
+
dv

v
= 0 (4.44)

from which the characteristic
t1/2v = k1. (4.45)

The first and the third give
dt

2t
− dw

3w
= 0 (4.46)

and
t1/2w−1/3 = k2, (4.47)

clearly we also have
u = cst. (4.48)

The solution for u in terms of these characteristics is

u = F (t1/2v, t1/2w−1/3) = F (k1, k2). (4.49)

We now substitute this into (4.16) to obtain the equation

1
2
t−1/2v

∂F

∂k1

+ 1
2
t−1/2w−1/3 ∂F

∂k2

= A

[
−1

3
tw−4/3 ∂

2F

∂k1k2

]
+Bv2F. (4.50)

This is identified in the new variables as

1
2
k1
∂F

∂k1

+ 1
2
k2
∂F

∂k2

+ 1
3
Ak4

2

∂2F

∂k1∂k2

−Bk2
1F = 0. (4.51)

Reduction by Y5

We have that Y5 = uv∂u − At∂t. The associated Lagrange’s system is

−du
uv

=
dw

At
=
dv

0
=
dt

0
. (4.52)

We have
v = cst (4.53)

and
t = cst (4.54)
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as characteristics. This and the first and second of these equations give the general
form for u as

u = F (v, t) exp
[
−vw
At

]
. (4.55)

Equation (4.16) is then reduced to a first order nonhomogenous partial differential
equation for F

∂F

∂t
+
v

t

∂F

∂v
+

(
1

t
−Bv2

)
F = 0. (4.56)

This can be solved from the associated Lagrange’s system

dt

1
=
tdv

v
=

dF

F
(
Bv2 − 1

t

) . (4.57)

This gives the solution for F

F (v, t) =
1

t
exp[−1

3
Bv2t]Π

(v
t

)
. (4.58)

And, finally for ρ

ρ =
1

t
exp

[
−1

6
a2(x− y)2t+ i

2m

~

(
x2 − y2

t

)]
Π

(
x− y

t

)
, (4.59)

where Π is an arbitrary function of its argument.

Reduction by Y6

The symmetry Y6 = 2Butv∂u − ABt2∂w + ∂v gives the system

du

−2Butv
=

dw

ABt2
=
dv

−1
=
dt

0
. (4.60)

The second and third characteristics give

ABt2 + w = cst = g1 (4.61)

and from the last we have
t = cst = g2. (4.62)

The form for u is
u = exp(Bg2v

2)F (g1, g2). (4.63)

Substitution into (4.16) leads to

∂F

∂g2

− A2Bg2
2

∂F

∂g2
1

= 0. (4.64)
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This is identifiable as the backwards heat equation

∂F

∂s
+

~2a2

8m

∂2F

∂r2
= 0 (4.65)

in the time variable s = 1/t = 1/g2 and r = g1. This is clearly the most interesting
case. The solution for ρ can then be written in terms of these as

ρ = exp
[
−1

2
a2t(x− y)2

]
F (r, s), (4.66)

where F is any solution of (4.77) and where the variables r and s are now defined
by

r = − i~
2m

× 1
2
a2t2 + (x+ y) and s =

1

t
. (4.67)

The properties of this solution will be discussed further in the next section.

Reduction by Y7

The final symmetry gives the characteristic system,

du

(w − ABt2v)u
= −dv

At
=

3dw

A2Bt3
=
dt

0
. (4.68)

The second and the third of these give the characteristic

1
3
ABt2v + w = cst = h1. (4.69)

We also have
t = cst = h2. (4.70)

Integration for u gives

u = exp

[
3w2

2A2Bh3
2

+ 1
2
Bh2v

2

]
F (h1, h2). (4.71)

This leads to the following equation in the characteristic variables

∂F

∂h2

+
h1

h2

∂F

∂h1

+ 1
3
A2Bh2

2

∂2F

∂h2
1

− 9h2
1

2A2Bh4
2

F = 0. (4.72)
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4.3 Analytical Solutions

We found in the previous section that there were several possible reductions of the
quantum Brownian motion equation to equations of lower dimensionality as well
as degree. We found that Y1, Y5, and Y6 allow for reductions to equations which
may be solved exactly and the Y2 and Y4 can be used to construct the separation
of variables solution to the problem. These give solutions for the distribution
ρ(x, y, t) of the density matrix in the position representation

ρ =

∫
dxdyρ(x, y, t)|x〉〈y|, (4.73)

once the variables have been inverted. The solutions which we obtained were

ρ(x, y, t) = exp
[
−1

2
a2(x− y)2t

]
Φ (x− y) , (4.74)

ρ(x, y, t) =
1

t
exp

[
−1

6
a2(x− y)2t+ i

2m

~

(
x2 − y2

t

)]
Π

(
x− y

t

)
, (4.75)

where Φ and Π are arbitrary functions of their arguments, and

ρ(x, y, t) = exp
[
−1

2
a2(x− y)2t

]
F (r, s) (4.76)

where F (r, s) is the solution to the backwards heat equation

∂F

∂s
+

~2a2

8m

∂2F

∂r2
= 0 (4.77)

with the variables r and s defined by

r = −i i~
4m

× a2t2 + (x+ y) and s =
1

t
. (4.78)
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Since the backwards heat equation (4.77) is a well known problem the various
forms of the solution may be obtained directly [26, 27]. The following solutions
are well known for α, β, µ arbitrary constants and k = −~2a2/8m,

F (r, s) = r2n +
n∑

j=1

(2n)(2n− 1) . . . (2n− 2j − 1)

j!
(ks)jr2n−2j

F (r, s) = r2n+1 +
n∑

j=1

(2n+ 1)(2n) . . . (2n− 2j + 1)

j!
(ks)jr2n−2j+1,

F (r, s) = α
r

s3/2
exp

(
−r2

4ks

)
+ β,

F (r, s) = α
r

s1/2
exp

(
−r2

4ks

)
+ β,

F (r, s) = α exp(−kµ2s) cos(µr) + β,

F (r, s) = α exp(−kµ2s) sin(µr) + β,

F (r, s) = α exp(−µr) sin(µr − 2kµ2s) + β,

F (r, s) = α exp(−µr) cos(µr − 2kµ2s) + β,

F (r, s) = αerf

(
r

2
√
ks

)
+ β,

F (r, s) = αerfc

(
r

2
√
ks

)
+ β

F (r, s) = α

[√
s

π
exp

(
− r2

4ks

)
− s

2
√
k
erfc

(
r

2
√
ks

)]
.

Here, n is a positive integer, erf is the error function and erfc is the complementary
error function. These are probability distributions defined by

erfz ≡ 2√
π

∫ z

0

exp(−ξ2)dξ, (4.79)

and erfcz = 1− erfz.
Note that for the construction of solutions to (4.77) we may also use symmetry
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analysis as a starting point. The symmetries of (4.77) are:

Z1 = ∂s (4.80)

Z2 = ∂r (4.81)

Z3 = 2s∂s + r∂r (4.82)

Z4 = F∂F (4.83)

Z5 =
~2a2

4m
s∂r + Fr∂F (4.84)

Z6 =

(
r2 − ~2a2

4m
s

)
F∂F +

~2a2

2m
sr∂r +

~2a2

2m
s2∂s (4.85)

Z∞ = f(r, s)∂F , (4.86)

where f(r, s) is any solution of (4.77).
These may be used to construct various types of solution for the heat equation.

For example, the symmetry Z5 gives

F (r, s) = C1s
1/2 exp

[
r2

4ks

]
, (4.87)

where C1 is a constant of integration. Also, by repeated action of the symmetry
generators on the solutions we may also construct an infinite hierarchy of polyno-
mial solutions above in a similar vein as for the harmonic oscillator equation in
Chapter 3. The surface defined by

Σ0 = C1 = us1/2 exp

(
−r2

4ks

)
(4.88)

acted on by Z5 provides the hierarchy

u0 = Σ0s
−1/2 exp

(
r2

4ks

)
, (4.89)

u1 = Σ1s
−1/2 exp

(
r2

4ks

)
×
(
r − r

2s

)
. . . (4.90)

and so forth using Zn
5 Σn. Further details on the symmetry approach to construc-

tion of solutions to the heat equation may be found in [26].
The results above are a fairly decent beginning for constructing analytic solu-

tions for the quantum Brownian motion model. Many of these results are original.
Of course, these solutions are provided independent of initial, boundary and ter-
minal conditions. One could use symmetry to include these in the construction
by arguing that the symmetry be consistent with the boundary conditions [22].
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Clearly the imposition of terminal conditions at t = ∞ and at t = 0 will place
restrictions on the nature of the arbitrary functions Π, Φ and the form of the
solution for F . A further constraint is that the solution be normalizable which is
required since ρ is a probability distribution. This is the condition from quantum
mechanics that

tr ρ = 1, (4.91)

or ∫ ∞

−∞

∫ ∞

−∞
dxdyρ(x, y, t)δ(x− y) = 1, (4.92)

where δ is the Dirac delta function. If all these conditions are met it would be
interesting to explore whether the decoherence behaviour and the tendency for the
solution to localize i.e. the important physical aspects of the model mentioned
in the introduction to this Chapter are valid for our solutions and their possible
extensions. This is a question for future research.

4.4 Extensions

We also point out that the version of the quantum Brownian motion model which
we have studied can be generalized to include both potential and dissipative terms
[2]. This is merely modifying the standard Lindblad equation with the Hamiltonian
and Lindblad operators

H =
p̂2

2m
+ V (x̂), (4.93)

and
L = ax̂+ ibp̂. (4.94)

Here the constants a, b again relate to specific thermal properties of the bath. The
term involving b is the dissipator while V (x) is the potential. The constants have
the meaning

a =

(
~2

4mγkT

)1/2

b =

(
~2

4mγkT

)1/2
γ

~
, (4.95)

where k is Boltzmann’s constant, the parameter γ is a measure of the dissipation
and T is the temperature of the bath. The master equation (4.1) takes the form

dρ

dt
= − i

~
[H, ρ]− i

~
γ [x̂, {ρ, p̂}]− 2MγkT

~2
[x̂, [x̂, ρ]] (4.96)

which is written in the position representation as

∂ρ

∂t
=

i~
2m

(
∂2ρ

∂x2
− ∂2ρ

∂y2

)
−γ(x−y)

(
∂ρ

∂x
− ∂ρ

∂y

)
−2mγkT

~2
(x−y)2ρ− i

~
(V (x)−V (y))ρ.

(4.97)
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A useful exercise would be an analysis of this problem especially with regard
to group classification. Another would be to modify the potential, for example, to
include a situation such as one encounters with the nonlinear Schrödinger equa-
tion with the aim of finding analytical solutions. The clue is that the algebraic
structure of the modified equation (4.16) corresponds to the free particle equation
and it is to be expected that similar algebraic properties hold for related problems
including the dissipative harmonic oscillator and possibly the time dependent har-
monic oscillator. The latter of which is known to be integrable by quadrature for
the Schrödinger equation [12, 28].

4.5 Discussion

In this chapter we have studied the model equation for the quantum Brownian
motion equation from a symmetry perspective. The symmetries of the model
equation point out a simplified form of the problem as a route for the analysis.
The algebraic properties and reduction of this equation to a series of other partial
differential equations were also found. Among these was a mapping of the quantum
Brownian model to the diffusion equation. This was used to construct a variety
of analytical solutions to the model. We also discussed possible extensions of this
work to more general forms of the quantum Brownian motion model including
quantum Brownian motion with potentials. The analysis is expected to be of use
to practitioners in open quantum systems and quantum mechanics.



5. SUMMARY

The main work of this thesis has been the application of Lie symmetry group based
techniques [1, 14, 15, 16, 26] to the partial differential equation for the quantum
Brownian motion model from open quantum systems [2, 9, 10]. Chapters 1-3
contains the background material for the analysis. The main results are contained
in Chapter 4.

Chapter 1 introduces the problem and the basic ideas from quantum mechanics
and open quantum systems.

Chapter 2 contains an introduction to the theory of Lie symmetry groups for
differential equations. In this chapter the basic algorithm for calculating the sym-
metries of a differential equation and the rudiments of symmetry analysis are
explained. The theoretical background concerning Lie groups, and Lie algebras
are included. The properties of Lie algebras necessary for the development of later
text are explained and tables of low dimensional Lie algebras are for reference.

Chapter 3 gives a survey of the applications of Lie symmetry groups to the one
dimensional time dependent Schrödinger equation in an autonomous potential as
an example of the application of symmetry groups to partial differential equations.
This chapter acts as an introduction to the techniques available when applying
symmetry groups to partial differential equations within the context of a standard
problem. The various techniques of Lie analysis for partial differential equations
were applied to the Free Particle, Harmonic Oscillator and Ermakov-Pinney partial
Schrödinger equations.

Chapter 4 contains the main results of the thesis - the symmetry analysis
of equation (4.2). A symmetry analysis of this equation is performed and the
symmetries are used to study the transformation and algebraic properties of the
model. The main results are that a number of new analytical solutions for the
model may be obtained by mapping the problem to the 1 + 1 diffusion equation
using the symmetries. The results are discussed in §4.3 and mark a valuable
contribution to the subject in that the quantum Brownian motion model is well
known the literature [2, 10] and this research indicates that the model contains
further, previously unknown, analytical properties. Possible extensions of this line
of research aimed at further symmetry analysis for related models would in this
case also be valuable. This is discussed in §4.4.

Overall, I have introduced the theory of Lie symmetry groups [1, 26] and dis-
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cussed various applications to problems in quantum mechanics and specifically
presented an analysis of the quantum Brownian motion model [9, 10] from the
theory of open quantum systems [2].
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