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OVERVIEW 

The incidence of various forms of postharvest non-chilling physiological rind disorders on various 

species of citrus fruit remains a major challenge to the citrus industry. The expression of these disorders 

cannot be visually observed until about 3-5 weeks after harvest when the fruit have been transported to 

various market destinations. This is because the incidence of rind disorders such as peel pitting and rind 

breakdown (RBD), reduces fruit marketability which causes a significant financial loss to the citrus 

industry. This study evaluated the role of canopy position and non-destructive determination of 

postharvest rind biochemical properties of ‘Marsh’ grapefruit and ‘Nules Clementine’ mandarin in 

relation to its respective rind physiological disorder at non-chilling storage temperature. It was 

hypothesised that preharvest factor such as canopy position may influence rind biochemical properties 

of the fruit and hence, could trigger the incidence of rind physiological disorders on citrus fruit stored 

at non-chilling temperatures after harvest. Similarly, phytohormonal changes in ‘Nules Clementine’ 

mandarin fruit rind from different canopy positions, in relation to the incidence of RBD during 

postharvest non-chilling cold storage were investigated. Rind biochemical properties of citrus fruit 

could be determined non-destructively with the use of visible to near-infrared spectroscopy (VIS/NIRS) 

coupled with appropriate chemometrics. ‘Marsh’ grapefruit (from inside canopy [IC] and outside 

canopy [OC] positions) were harvested from the KwaZulu-Natal and Limpopo provinces while ‘Nules 

Clementine’ mandarins were harvested from Eastern Cape, Western Cape, and Limpopo. Harvested 

fruit were labelled, weighed, and placed in cold storage (7.5 ± 0.5ºC) for 9 weeks. Fruit were analysed 

at 3 week intervals while chemometric models were developed using randomised reference data from 

fruit analysed before and after cold storage. For both citrus cultivars, canopy position showed a highly 

significant (p < 0.001) effect on some biochemical properties, such as total carotenoid and total 

flavonoid concentrations, while a significant (p < 0.05) influence of production region was observed on 



xxii 

 

same properties. Non-destructive determination of fruit rind biochemical properties using VIS/NIRS 

and chemometrics with RPD values ranging from 0.28 to 14.23 demonstrated poor to excellent models. 

Overall, the study revealed that canopy position influences biochemical properties of the citrus fruit 

rind and that high concentrations of these properties hindered the development of postharvest rind 

physiological disorders during non-chilling cold storage. 
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CHAPTER 1 

GENERAL INTRODUCTION AND RESEARCH AIMS 

 

1. Introduction 

Citrus (Citrus spp.) fruit lead among the most economically important horticultural products, such as 

avocados, apples, bananas, and grapes, in both local and international trade markets (Ladanyia and 

Ladaniya, 2010; Magwaza et al., 2012). This is partly because they are a natural source vitamin C, 

carotenoids, and folic acids, amongst many other healthy and beneficial nutrients (Ladaniya, 2008). 

Globally, South Africa is the second largest exporter of fresh citrus fruit after Spain, exporting over 1.6 

million tons (~9 billion rand [ZAR]; September 2017) annually (Citrus Growers’ Association of South 

Africa, 2016). Major export destinations include Northern Europe (22%), Middle East (21%), Asia 

(11%), United Kingdom (10%), Far East (9%), Russia (9%), South Europe (7%), United States (4%), 

Canada (3%) and other (4%) (CGA, 2016). 

 

The fruit belong to the Rutaceae family and are hesperidia, (berries having a leathery peel and internal 

segments) (Soule and Grierson, 1986). However, citrus fruit are confronted with several types of 

postharvest physiological disorders, such as chilling injury and different categories of non-chilling 

physiological disorders. The manifestation of various forms of postharvest non-chilling physiological 

disorders on the rind of various species of citrus fruit is a major challenge posing significant threat to 

the financial gains of the growers at both local and international markets (Agustí et al., 2001). This is 

because the incidence of disorders such as rind breakdown (RBD), rind staining, puffiness, pateca spots, 

and peel pitting on the rinds of citrus fruit ward off potential buyers. Although, symptoms of rind 

physiological disorders of citrus fruit are similar, their terminologies differ among citrus cultivars and 
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varieties. For instance, peel pitting is mostly attributed to ‘Marsh’ grapefruit (Alférez and Burns, 2004) 

and oranges like ‘Navel’ fruit (Alférez and Zacarias, 2001), while rind breakdown is mostly associated 

with ‘Nules Clementine’ mandarin (Cronje et al., 2011) even though some literatures associate it to 

some other cultivar of citrus fruit. 

 

Unfortunately, the causal factors triggering the incidence of postharvest non-chilling physiological rind 

disorders of citrus fruit are yet to be fully identified (Alférez and Zacarias, 2014). Nevertheless, 

preharvest fruit position on tree canopy (otherwise known as canopy position), that is inside canopy 

(IC), has previously been suggested as a possible factor favouring the occurrence of postharvest rind 

disorders in ‘Nules Clementine’ mandarin fruit at non-chilling temperature (Magwaza et al., 2013a). 

Other studies reported that different light levels within the canopy, that is exposure of fruit to high 

(outside) or low (inside) light levels, affected rind carbohydrates and mineral elements during fruit 

development (Cronje et al., 2011). Similarly, it has been suggested that loss of rind moisture content 

could foster the induction and development of the non-chilling physiological rind disorders observed 

in citrus fruit (Alférez and Zacarias, 2014). The incidence of these disorders poses as more critical 

problem to the industry because their expression cannot be visually detected until about 3-5 weeks after 

harvest, when the fruit have been sorted and transported to various marketing destinations (Cronje et 

al., 2011). Furthermore, it becomes problematic as this coincides with the period of commercial export 

to market destinations (Cronje et al., 2011). This means that the incidence of postharvest non-chilling 

physiological rind disorders would have become conspicuous on fruit with such potential of developing 

disorders before reaching the export markets. Hence, any fruit with the non-chilling physiological rind 

disorder(s) is/are prone to be rejected by the regulating body of importing markets. Thus, this leads to 
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more expending because the products are sent back to local markets, which invariably causes significant 

financial loss to the industry. 

 

Therefore, to work towards mitigating the problem, it is important to investigate causal factor(s) related 

to the susceptibility of citrus fruit to postharvest physiological rind disorders at non-chilling 

temperatures. In a bid to identify these factors, the role of canopy position on rind biochemical 

properties in relation to rind physiological disorders in citrus fruit were investigated. Furthermore, 

phytohormonal changes in ‘Nules Clementine’ mandarin fruit rind from different canopy positions were 

investigated in relation to the incidence of RBD during postharvest non-chilling cold storage. Non-

destructive method(s) of determining these properties with a view of being able to sort fruit based on 

their susceptibility levels could help the citrus industry to deliver fruit of appealing appearance to the 

market and hence increase their financial gains as each fruit can be analysed. The non-destructive 

approach means that the current use of ‘representative’ sample measurement of a batch of fruit, which 

is usually time-consuming, destructive, and expensive will no longer be required. Previous studies by 

Magwaza et al. (2014) and Magwaza et al. (2012) documented that visible to near infrared spectroscopy 

(Vis/NIRS) based non-destructive models have high potential of predicting the susceptibility of ‘Nules 

Clementine’ mandarin to RBD. However, the models were not robust enough because they were 

developed using fruit from only one production region in South Africa, Western Cape, which was not 

a representation of fruit grown in the country. Consequently, the present study included a wider 

production area of ‘Nules Clementine’ mandarin fruit, to develop more robust Vis/NIRS based models 

capable of determining the investigated rind biochemical properties. Models were also developed to 

determine the rind biochemical properties of another citrus cultivar – ‘Marsh’ grapefruit. 
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2. Research hypothesis 

The hypothesis was that canopy position, a preharvest factor, affects the biochemical properties of the 

citrus fruit rind such as non-structural carbohydrates, total carotenoids, total phenolic and total 

flavonoid concentrations, and radical-scavenging activities and its susceptibility to postharvest 

physiological rind disorders at non-chilling temperature (7.5 °C ± 0.5). It was further hypothesised that 

these biochemical properties and other targeted metabolites can be used as bio-markers of citrus fruit 

susceptibility to postharvest physiological rind disorders. In this way, biochemical properties would be 

analysed non-destructively to determine rind disorders of citrus fruit such as ‘Marsh’ grapefruit and 

‘Nules Clementine’ mandarin. Furthermore, a robust Vis/NIR based non-destructive model can be 

developed to determine the biochemical property(ies) triggering postharvest physiological rind disorder 

in freshly harvested citrus fruit. 

 

3. Research aims and objectives 

The overall aim was to investigate the effect of canopy position on rind biochemical properties in 

relation to postharvest physiological rind disorders of citrus fruit at non-chilling temperatures. In 

addition, non-destructive determination of such biochemical properties of the citrus fruit rind was 

investigated, which invariably could play a significant role in the overall quality and economic value 

of citrus fruit. 

 

Specific Objectives included the following: 

 

1. To investigate the role of canopy position on physicochemical properties of ‘Marsh’ grapefruit 

after harvest and after postharvest cold storage at non-chilling temperature. 
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2. To evaluate the relationship among canopy position, production region and rind biochemical 

properties in relation to postharvest physiological rind disorders of ‘Marsh’ grapefruit at non-

chilling temperature. 

3. To explicate the role of canopy position, production region on rind biochemical properties in 

relation to postharvest physiological rind disorders of ‘Nules Clementine’ mandarin at non-

chilling temperature. 

4. To develop robust Vis/NIRS based non-destructive models, to determine the rind biochemical 

properties of ‘Nules Clementine’ mandarin and ‘Marsh’ grapefruit. 
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CHAPTER 2 

CAUSES AND NON-DESTRUCTIVE METHODS FOR DETECTING 

PHYSIOLOGICAL RIND DISORDERS ASSOCIATED WITH NON-CHILLING COLD 

STORAGE IN CITRUS FRUIT – A REVIEW 

 

Abstract 

Delivering citrus fruit without the appearance of physiological rind disorders to the market is one 

of the major problems confronting citrus industries globally. The appearance of the disorder on 

fruit rind is mostly unprecedented. Although, various studies have been conducted to investigate 

the factors or mechanisms favouring the incidence of these rind disorders, the exact factors 

triggering the disorders remain unknown. This review highlighted some known factors 

contributing to the development of physiological rind disorders associated with non-chilling cold 

storage. The physiological and biochemical basis for development of the disorders were also 

examined. Various non-destructive techniques for rapid determination of rind biochemical 

properties (presented as potential biomarkers) associated with the disorders were also explicated. 

The prospects of using non-targeted metabolomics to gain a holistic understanding of the 

metabolites triggering the development of citrus rind disorders during postharvest storage at non-

chilling temperatures were discussed. 

 

Keywords: Citrus fruit, ‘Marsh’ grapefruit, Near-infrared spectroscopy, ‘Nules Clementine’, 

Postharvest non-destructive technologies, Rind breakdown, Rind pitting, Targeted and non-

targeted metabolomics,  
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1. Introduction 

Citrus (Citrus spp.) fruit belongs to the Rutaceae family and are scientifically called Hesperidia, 

which are berry fruit having a leathery peel and internal segments (Soule and Grierson, 1986). The 

fruit are the largest economically important subtropical fruit crop grown in more than 50 countries 

around the world including South Africa (Ladanyia and Ladaniya, 2010). They are widely grown 

and consumed because they are a natural source of antioxidants such as vitamin C, phytochemicals 

such as carotenoids, and folic acids amongst many other healthy and beneficial nutrients (Ladaniya 

and Ladanyia, 2008). However, the incidence of various rind physiological disorders such as 

chilling and non-chilling cold storage injuries limit the acceptability of the fruit by consumers 

which invariably results in economic losses for citrus industries globally.  

 

The economic losses suffered by global industries due to physiological disorder can reach as much 

as 60% of the total citrus production (Alquezar et al., 2010; Kader and Arpaia, 2002) and yet the 

mechanisms underlying the incindence of some of these physiologogical disorders are still not 

fully understood. Hence, mitigating solutions to preserve the appearance of citrus fruit rind (or 

rind quality) cannot be developed. Although, non-chilling physiological rind disorders affect the 

marketability of citrus fruit, they do not compromise the internal quality of the fruit (Alquezar et 

al., 2010; Magwaza et al., 2013a). The inability to predict the susceptibility of citrus fruit to rind 

disorder at non-chilling temperature is mainly because the symptom(s) of incidence cannot be 

visually observed until about three to five weeks postharvest (Cronje et al., 2011a; Van Rensburg 

and Bruwer, 2000). It becomes even more problematic as this period coincides with the period of 

commercial export to market destinations from South Africa (Magwaza et al., 2014b; van 
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Rensburg et al., 2004). Hence, novel solutions for non-destructive monitoring or detecting 

physiological rind disorders are required. 

 

Lee et al. (2015) indicated that the incidence of postharvest rind disorders is influenced by certain 

factors to which fruit are exposed during preharvest, harvest or postharvest. Rind biochemical 

properties such as rind dry matter, non-structural carbohydrates and radical-scavenging activities 

constitute some of the most important constituents which play vital roles in the predisposition of 

fruit to different postharvest non-chilling physiological rind disorders (Di Majo et al., 2005; 

Magwaza et al., 2014b, 2014c). For instance, Ezz and Awad (2009) reported a significant 

relationship between sugars and rind pitting disorder of ‘Marsh’ grapefruit. Therefore, this suggest 

that certain rind biochemical properties of citrus fruit could be used as biomarker(s) for predicting 

the susceptibility of fruit to physiological rind disorder at non-chilling storage temperatures. 

However, conventional methods of determining rind biochemical properties are destructive, non-

representative of fruit consignments, laborious, time consuming and require specialized sample 

preparation. Hence, some non-destructive methods of analyses could address these shortfalls and 

are receiving wide acceptance among scientific communities around the worlds. Their benefits 

include the ability to rapidly determine the maturity status (Olarewaju et al., 2016), biochemical 

components such as non-structural carbohydrates, and rind dry matter (Magwaza et al., 2012a; 

Magwaza et al., 2014a) and also monitor/detect physiological rind disorders in individual fruit 

(Magwaza et al., 2012b). The ability to determine the rind biochemical properties of individual 

fruit would help in sorting fruit based on their biochemical status and make decisions about the 

appropriate market to send each consignment. 
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Therefore, the objective of this review was to discuss current knowledge regarding rind quality of 

citrus fruit, postharvest physiological rind disorders and their causes, rind biochemical properties 

and non-destructive methods for detecting them. 

 

2. Anatomy of citrus fruit rind 

Citrus fruit consists of different tissue layers including the pericarp (peel/rind), a non-edible 

portion but an immediate purchase determinant at the market, and the endocarp (carpels), which is 

the edible portion and future purchase determinant (Figure 1). The pericarp, also known as the 

rind, hosts two different tissue layers including flavedo (outmost coloured part of the rind) and 

albedo (whitish coloured part of the rind) tissues. According to Spiegel-Roy and Goldschmidt 

(1996), the flavedo tissue consists of epidermal cells (external layer) and inner tightly packed 

parenchyma cells with no intercellular air spaces followed by the epicarp, hypoderm and the outer 

mesocarp. Hence, a healthy fruit can first be characterized by a flavedo having its epidermis with 

an apolyhedral cell layout covered by a cuticle (Albrigo, 1972a; Medeira et al., 1999). The albedo, 

on the other hand, is an intricate knot of meristematic cells whereby each cell has a direct 

plasmodesmata connection with eight other adjacent cells (Alquezar et al., 2010; Storey and 

Treeby, 1994). This formation results in large intercellular air spaces between the cells, which 

provide the characteristic spongy morphology of the albedo tissue. The albedo tissue occupies 

between 60-90% of the fruit volume during its early stage of development, which later becomes 

thinner as the fruit matures (Spiegel-Roy and Goldschmidt, 1996). 

 

The flavedo tissue also houses oil glands containing the mixture of acid esters, alcohols, aldehydes 

and hydrocarbons (essential oils), which are phytotoxic to surrounding cells, and breakage of these 
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essential oils can contribute to the development of non-chilling physiological rind disorders 

(Knight et al., 2002; Spiegel-Roy and Goldschmidt, 1996). According to Petracek et al. (1998a), 

the oil gland is the site where rupture of oil bodies begins and the release of the oil into the 

surrounding cells could cause rind pitting disorder to the fruit. The breakdown of oil glands was 

reported as the primary symptom of rind pitting of grapefruit (Alférez and Burns, 2004). Further 

review of literature regarding the anatomy of citrus rind can also be found in a publication by 

Magwaza et al. (2013b).  

 

2.1. Rind quality of citrus fruit 

Although difficult to define, the quality of a horticultural product such as citrus fruit at the fresh 

fruit market is basically determined by its appearance. Hence, the condition of the outermost part, 

the rind, of the fruit plays a critical role in its quality characteristics and marketability (Khalid et 

al., 2012; Magwaza et al., 2013a). However, the citrus industry is faced with the challenge of 

delivering citrus fruit of attractive quality, to either local or international retail markets. Basically, 

fruit quality can be described as some carefully worked out attributes evaluated by 

consumers/buyers who either wilfully or unconsciously determine the overall quality attributes of 

a product for immediate or future pre-purchase guidance (Sloof et al., 1996). Therefore, citrus fruit 

rind quality could be based on external properties such as colour (chromatic attributes), size, shape, 

glossiness, shininess and the absence of surface defects or damage (Nicolaï et al., 2014). The 

external appearance influences consumer acceptability of quality (attributes that can be visually 

assessed by the naked eyes) (Nicolaï et al., 2014; Pathare et al., 2013). However, some 

physiological rind disorders still pose threats to the economic gains of the industries around the 

world (Alférez and Burns, 2004; Lafuente and Zacarias, 2006; Magwaza et al., 2013b). 
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2.2. Physiological rind disorder 

Generally, physiological disorders limit the full potential of any horticultural product in the 

markets as consumers tend to discard fruit with any form of physiological disorder(s). These 

disorders may be referred to as the breakdown of tissues caused by adverse effects of the 

environments under which a particular fruit is exposed during the preharvest, harvest or 

postharvest (Morrow and Wheeler, 1997; Verma, 2009). To prolong the postharvest shelf-life, fruit 

are mostly exposed to relatively low temperatures (above freezing point - 0 °C) and up to 12 °C, 

to reduce the process(es) causing fruit to decay (Miller, 1946). This cold treatment, depending on 

citrus cultivar and its threshold, may inflict physiological disorders at either chilling or non-

chilling temperatures (Miller, 1946). Therefore, the occurrences of these disorders are critical 

phenomena compromising either internal (pulp) or external (rind) quality parameters of citrus fruit. 

For this review, focus will be towards the phenomena compromising rind quality (appearance) of 

citrus fruit stored at non-chilling temperatures.  

 

There exist several factors contributing to incidences of rind physiological disorders, ranging from 

preharvest such as cultivar and microclimate to postharvest factors such as temperature and relative 

humidity. Other factors as highlighted by Morrow and Wheeler (1997) include irradiance 

(intensity, photoperiod, and spectral quality), humidity, CO2 concentration, air temperature, air 

movement, moisture level and mechanical effects. Postharvest physiological rind disorders result 

from the alteration of metabolism in response to the imposition of stresses which manifest as cell 

death on citrus rind (Watkins, 2003). Consequently, the incidence of cell death on citrus rind 
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significantly affects its appearance. Hence, such fruit get rejected by buyers in the market which 

result to economic loss for the industry.  

 

According to Magwaza et al., (2013b), several types of physiological rind disorders affect citrus 

fruit. The authors argued that rind disorders highlighted in literature such as peel pitting (Alférez 

et al., 2005; Cajuste and Lafuente, 2007) and rind breakdown (RBD) (Treeby et al., 1995; van 

Rensburg et al., 2004) could be categorized as ‘non-chilling storage physiological rind disorders’ 

and terminologies used interchangeably. Whereas, chilling injury (CI) is another physiological 

rind disorders occurring because of exposure to temperatures below some critical threshold but 

above 0 °C chilling injury is aggravated when fruit are relocated to room temperature (Alférez et 

al., 2005; Martínez-Téllez and Lafuente, 1997; Siboza et al., 2014). Chilling injury was described 

by Lyons and Breidenbach (1987) as an irreversible physiological damage to plants and its parts. 

Therefore, incidence of rind disorder occurring at either chilling or non-chilling temperatures relies 

mostly on factors such as species, cultivar, symptoms, and country in which a research is been 

carried out or produced (Alférez et al., 2005; Magwaza et al., 2013b). Mostly, the incidence of 

chilling injury on citrus rind occurs because of prolonged exposure to chilling temperature while 

the incidence of physiological rind disorder at non-chilling temperature are largely unpredictable. 

 

 

3. Non-chilling physiological rind disorders of citrus fruit 

This section describes some of the most economically important non-chilling physiological rind 

disorders affecting different cultivars of citrus fruit. 
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3.1. Rind breakdown/peel pitting 

Rind breakdown (RBD), peel (rind) pitting or rind staining are physiological disorder occurring 

mostly during postharvest storage at non-chilling temperatures in of citrus fruit such as mandarins, 

grapefruit, and oranges (Alférez et al., 2005) (Figures 2 & 3). Although, the terminology is 

variety/cultivar specific and country specific, but symptoms of disorder are similar on the flavedo 

(coloured part) of respective fruit rind (Magwaza et al., 2013c). Therefore, the use of terminology 

may vary in this review. Cronje (2007) described the disorder as randomly distributed dark/brown 

spot resulting from the collapse of oil glands of the flavedo. Similarly, the disorder was described 

as the collapse of flavedo and albedo tissues resulting in the breakage of oil glands which 

invariably oxidizes and turns bronze in colour due to the release of oil into intercellular spaces 

(Agustí et al., 2001; Alférez and Zacarias, 2014; Alquezar et al., 2010). According to Lafuente and 

Zacarias (2006), the disorder first manifests on the flavedo as sunken areas just above and within 

the oil glands which ultimately turns dark-brown and becomes necrotic around the rind. Examples 

of such occurrences are found affecting fruit such as ‘Marsh’ grapefruit (Petracek et al., 1998), 

oranges (Alférez et al., 2003; Porat et al., 2004) and mandarins (Cronje, 2007; van Rensburg et al., 

2004). Furthermore, Alquezar et al. (2010) described the occurrence of the disorder as erratic with 

unpredictable and high variation characteristics. However, the disorders might occur because of 

the cold intolerance of the previously mentioned cultivars but susceptible to dehydration possibly 

due to their inability to accumulate enough abscisic acid (Sala et al., 2005). Abscisic acid 

contributes significantly to transpiration rate and cell water maintenance of plants and its parts 

(Alférez et al., 2005). Previous studies have suggested that manipulation of relative humidity and 

application of wax during postharvest storage of citrus fruit such as ‘Marsh’ grapefruit at non-

chilling temperature could encourage the development of rind pitting (Alférez et al., 2005; Alférez 
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and Burns, 2004). This is because high relative humidity increases the atmospheric vapour pressure 

which invariably decreases fruit respiration thereby causing the collapse of the rind cells due to 

abnormal water potential with the atmosphere (Alférez et al., 2005; Alférez and Burns, 2004). This 

implies that subjecting fruit to a low atmospheric vapour pressure condition could help to maintain 

the quality of the fruit rind. 

 

3.2. Oleocellosis 

Oleocellosis (Figure 4), which is also referred to as rind-oil spot or autotoxicity, is a physiological 

rind disorder that commonly affect all varieties of citrus fruit (Ladaniya and Ladanyia, 2008). 

However, scientific understanding of the mechanism underlying the development of the disorder 

is still lacking. Although, it is an example of non-chilling physiological rind disorder, the disorder 

appears while fruit are at higher temperatures (Ladaniya and Ladanyia, 2008). Its occurrence is 

sequel to the rupturing of the oil glands which after releasing their phytotoxic contents (terpenes) 

results in necrosis to the surrounding epidermal cells (Knight et al., 2002; Ladaniya and Ladanyia, 

2008). The scarred areas firstly become yellow and the sunken spots then turn conspicuously dark-

brown as the ruptured oil spreads and oxidizes (Lafuente and Zacarias, 2006). It is thought that 

fruit drops during harvesting, handling as well as packaging causes oleocellosis and incidence may 

be aggravated if fruit are harvested immediately after rainfall, irrigation or other climatic 

conditions that increases fruit turgidity (Lafuente and Zacarias, 2006). Oleocellosis can cause 

significant decrease in citrus fruit rind quality as well as fresh fruit export and high percentage of 

the fruit (80%) from a sensitive farm can be susceptible to the disorder (Zheng et al., 2010).  
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In different scientific studies, the relationship of some biochemical and physiological 

characteristics with the occurrence of oleocellosis has been explored. Biochemical characteristics 

such as antioxidant compounds have been suggested to be related with the development of the rind 

disorders. For instance, Yuzu fruit (Citrus junos) with rind spot showed less antioxidative activities 

than fruit without the disorder (Sawamura et al., 1988). Sawamura et al. (1988) reported that total 

tocopherol contents of 8.2 mg/100 g α-tocopherol and 1.0 mg/100 g γ-tocopherol were lower in 

the rind of fruit with rind spot than fruit without the disorder, which had 7.2 and 4.5 mg/100 g, 

respectively. Furthermore, physiological characteristics such as carbon-dioxide and ethylene 

production, as well as total non-structural carbohydrate content were found to be related with 

increased severity of rind-oil spot in jagada fruit (Citrus hassaku) (Kanlayanarat et al., 1988). 

Therefore, proper management of antioxidant compounds, carbon-dioxide and ethylene 

production of the citrus fruit rind could reduce this disorder. 

 

3.3. Necrosis 

Necrosis (Figure 5) is a physiological disorder that affect rind of citrus fruit such as ‘Shamouti’ 

orange and its occurrences cause significant economic losses to citrus industries (Golomb, 1983). 

The disorder appears mostly during the postharvest life of the fruit as superficial pits that grow in 

time and number to form a necrosis patch on the flavedo of citrus fruit rind (Ben Yehoshua et al., 

2001). The collapsed hypodermis tissue of an affected fruit is morphologically identical to 

destroyed oil glands (Ben Yehoshua et al., 2001). The expression of superficial flavedo necrosis 

disorder on citrus fruit rind is similar to the expression of stem end rind breakdown of oranges 

described below and rind pitting of grapefruit (Petracek et al., 1998). This means that this rind 

disorder could easily be confused with stem-end rind breakdown (SERB). 
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3.4. Stem-end rind breakdown (SERB) 

Stem-end rind breakdown (Figure 6) is a severe physiological rind disorder of citrus fruit involving 

the breakdown and subsequent darkening of epidermal tissues around the stem end of fruit (Dou 

et al., 2001; Lafuente and Zacarias, 2006). The disorder has been reported frequently on small, 

thin-skinned fruit stored under a non-chilling postharvest condition, which favours rapid 

dehydration of fruit rind (Porat et al., 2004). The formation of a thin circle of undamaged tissue 

from cells with no stomata and a thick layer of wax around the calyx is a typical characteristic of 

SERB (Dou et al., 2001). According to Lafuente and Zacarias (2006), the disorder is suggested to 

appear following an excessive dehydration of the rind around the stem-end of detached fruit. Other 

factors that could contribute to the incidence of the disorder around the calyx include wax cuticle 

thickness, water potential alteration in stomata number (Albrigo, 1972b). Specific causes of SERB 

are unknown, but some preharvest conditions such as nutritional imbalances influence fruit 

susceptibility to SERB which is more common in small and well-coloured fruit (Ritenour and Dou, 

2003). 

 

4. Causes of non-chilling physiological rind disorders 

There are various preharvest, harvesting, and postharvest conditions that initiate the development 

of various non-chilling physiological rind disorders of citrus fruit (Magwaza et al., 2013b; Peiris 

et al., 1998). Alférez et al. (2003) and Davies and Albrigo (1994) suggested that the cause of most 

disorders is specific to individual fruit and may not be changed. Other disorders occur sequel to 

the influence of environmental conditions of the fruit which could, fortunately, be manipulated 

(Agustí et al., 2004; Alférez and Burns, 2004). However, the causal factor(s) triggering the 
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occurrence of non-chilling physiological rind disorders remain(s) unclear despite huge researches 

invested on the topic (Agustí et al., 2001; Alférez et al., 2003; Magwaza et al., 2013b). Therefore, 

to gain understanding of the cause(s) and mechanism(s) governing different forms of physiological 

rind disorders of citrus fruit and their relationship, it could be important to consider possible factors 

contributing to the development of non-chilling physiological rind disorders. 

 

4.1. Preharvest factors that impact citrus rind quality 

The impact of preharvest factors on citrus quality is increasingly receiving scientific interest 

because many physiological disorders do not always need particular environmental conditions for 

occurrences but share some relationship with the later stages of fruit ripening (Ferguson et al., 

1999). Therefore, the unpredictable nature of non-chilling physiological rind disorder suggests the 

possible role of some preharvest factors on the susceptibility of citrus fruit to the rind disorders. 

These factors may include choice of scion and rootstock cultivar, nutritional imbalances, maturity, 

canopy position, and fruit moisture relations. 

 

4.1.1. Scion and rootstock cultivar  

The postharvest characteristics, including fruit sensitivity to physiological rind disorders, of most 

fruit are genetically predetermined and vary with cultivar (Beverly et al., 1993). Therefore, the 

choice of rootstock/cultivar may be a vital management strategy that growers interested in 

delivering citrus fruit of quality rind (rind without disorder) to various retail markets may consider. 

Although, non-chilling physiological rind disorder affect many citrus cultivars, level of 

susceptibility differs from one fruit to the other. Citrus fruit like ‘Marsh’ grapefruit (Alférez and 

Burns, 2004); ‘Nules Clementine’ mandarin (Cronje et al., 2011a); ‘Fallglo’ tangerine (Petracek 
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et al., 1998b); ‘Navelina’, ‘Navelate’ ‘Shamouti’ and ‘Lane late’ oranges (Agustí et al., 2004; 

Alférez et al., 2003; Establés-Ortiz et al., 2009; Lafuente and Sala, 2002) are known to be highly 

sensitive to non-chilling physiological rind disorders. Interestingly, while ‘Nules Clementine’ 

mandarin fruit are susceptible to postharvest RBD, ‘Oroval Clementine’ mandarin harvested from 

the same orchard and put under same postharvest conditions are RBD tolerant (van Rensburg et 

al., 2004; Van Rensburg and Bruwer, 2000). Similarly, ‘Pinalate’ orange which is susceptible to 

non-chilling physiological rind pitting disorder, is tolerant of CI (Magwaza et al., 2013b). 

Therefore, crop improvement methods such as breeding and grafting which allows for the 

integration of quality traits of two different plants into one may be an effective course towards the 

management of non-chilling physiological rind disorders. 

 

4.1.2. Canopy position  

Position of fruit in the tree canopy, otherwise regarded as canopy microclimate, is considered to 

play significant role in the susceptibility of fruit to physiological rind disorders (Arpaia et al., 1991; 

Duarte and Guardiola, 1995; McDonald et al., 2000; Vitor et al., 2001; Wild, 1991). Furthermore, 

the varying intensity of sunlight reaching fruit in different canopy positions affect rind biochemical 

properties behaviour differently (Cronje et al., 2011b). The authors showed that fruit shading from 

sunlight influence biological processes during growth and development. This is because response 

of photoreceptors mediates light responses, that is, different light colours activate different 

photoperiods which invariably activates different genes. Fruit receiving higher intensity of sunlight 

may accumulate more carbohydrate due to high photosynthetic rate than the ones receiving lower 

intensity of sunlight, but this response may not always be the case (Purvis, 1980).  
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Exposure of fruit to direct sunlight has been linked to development of non-chilling physiological 

rind disorders of citrus fruit by several authors as symptoms are mostly observed in the portion of 

the rind exposed (Chikaizumi, 2000; Medeira et al., 1999; Wild, 1991). Medeira et al. (1999) 

believed high radiation of sunlight may induce plasmolysis, cell collapse, and localised flavedo 

dehydration which invariably form rind pitting of citrus fruit. The level of injury is dependent on 

temperature, period of exposure and cultivar. It is noteworthy that direct exposure of fruit to 

sunlight could result in fruit temperatures exceeding 38 °C (Chikaizumi, 2000). High temperature 

could induce oxidative stress in the rind and increased phenylamine ammonia-lyase (PAL; EC 

4.3.1.5) activity in the rind which is correlated with one form of fruit rind injury or the other 

(McDonald et al., 2000; Poiroux-Gonord et al., 2013; Vitor et al., 2001). Other impacts include 

degradation of cellular membranes, protein and nucleic acids damage and inhibition of pigment 

synthesis (Vogele, 1937). As demonstrated by researchers, direct exposure of fruit to sunlight 

stimulates the concentration of sugars (Cronje et al., 2011a), chlorophyll and carotenoids 

(Khumalo, 2006) during fruit development. Varying intensity of sunlight due to fruit position 

within tree canopy was found to influence citrus rind quality differently (Cronje et al., 2013, 2011a, 

2011b; Magwaza et al., 2012b; Magwaza et al., 2013a). These authors demonstrated that fruit 

exposed to direct (outside canopy) sunlight had significantly higher contents of rind carbohydrates 

and lower incidence RBD than those from shaded sunlight (inside canopy). Therefore, fruit 

harvested from outside canopy position of the tree might not be susceptible to non-chilling 

physiological rind disorder during the period of export to international markets. Also, this means 

that exposing citrus fruit to direct sunlight could play a beneficial role in mitigating susceptibility 

of fruit rind to postharvest non-chilling physiological rind disorders.  
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4.1.3. Mineral nutrition  

A host of varieties of mineral elements are utilised during growth and development to produce a 

high-quality citrus fruit just like any other horticultural fruit. These minerals play their respective 

roles during synthesis, heredity, enzyme activation, membrane permeability and osmotic 

regulation (Clarkson and Hanson, 1980; Mengel and Kirby, 1982; Tisdale et al., 1985). There are 

about thirteen essential elements that contribute significantly to structural development or 

metabolism of the plant or its part, resulting in dysfunctionality if unavailable during growth and 

development (Marschner, 1995; Taiz and Zeiger, 2010). These essential elements include macro- 

and micro- plant nutrients (Marschner, 1995) and their relative concentrations prior to fruit harvest 

are related to various physiological disorders emanating from prolonged postharvest storage life 

(Resnizky and Sive, 1993). However, calcium (Ca), Nitrogen (N), phosphorous (P), potassium 

(K), magnesium (Mg) and sulphur (S) are scientifically known to play key roles in the production 

of quality fruit. 

 

Regarding rind physiology, Ca is widely known to play significant role in cell wall structure and 

membrane function and hence, physiological disorders of numerous fruit (Poovaiah et al., 1988). 

Different researchers have documented the role of Ca in reducing various incidences of 

physiological rind disorders such as creasing of oranges (Storey et al., 2002), albedo breakdown 

of oranges (Treeby and Storey, 2002) and peteca spot of lemon fruit (Storey and Treeby, 2002). 

Furthermore, insufficient amount of Ca has been implicated in the development of physiological 

disorders such as cuticle cracking of cherries (Sekse, 1995) and sweet pepper (Opara et al., 1997); 

bitter pit, internal breakdown and lenticel discolouration in apples (Wills et al., 2004); and 

blossom-end rot in pepper (Li et al., 2004; Morley et al., 1993). Similarly, high concentration of 
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K was thought to be associated with stress response because of reduced respiration conditions of 

citrus fruit since the element is known for stomatal regulations (Storey et al., 2002). Hence, 

exposing fruit to postharvest condition(s) where the concentrations of mineral nutrients of citrus 

rind can be maintained might play a beneficial role in the susceptibility of citrus fruit to non-

chilling physiological rind disorders.  

 

4.1.4. Fruit maturity 

Various studies have linked citrus fruit maturity to physiological rind disorders (Alférez and 

Zacarias, 2001; Almela et al., 1992; Wild, 1991). For instance, Cronje (2009) indicated that mature 

citrus fruit are more susceptible to non-chilling physiological rind disorders. The susceptibility of 

citrus fruit to non-chilling physiological rind disorder are mostly determined at the moment of fruit 

colour break during pigmentation until time of harvest (Assimakopoulou et al., 2009). Similarly, 

the incidence of non-chilling physiological rind disorders has been documented to increase 

quantitatively with citrus fruit maturity (Alférez and Zacarias, 2001). However, mutual 

relationship between peteca spot and fruit maturity have been established (Duarte and Guardiola, 

1995; Undurraga et al., 2009). According to Duarte and Guardiola (1995), fruit harvested green 

was more tolerant to petaca spot, a non-chilling physiological rind disorder, than fruit harvested at 

yellow stage. Therefore, to reduce the incidence of the disorder, the authors applied gibberellic 

acid (a plant growth regulator) to delay colour break due to its ability to retain chlorophyll and 

delay synthesis of carotenoid for a long period of time. 
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Clearly, it could be deduced that fruit susceptibility to non-chilling physiological rind disorders is 

cultivar and maturity dependent. It could also be indicated that rind disorders increase 

concomitantly with rind colour development. 

 

4.2. Postharvest factors that impact citrus rind quality 

The susceptibility of citrus fruit to non-chilling physiological rind disorder as affected by 

preharvest factors have been highlighted above. However, the condition of the fruit during its 

postharvest life could also play significant role in the development of the disorder. Hence, some 

postharvest factors have been implicated in fostering the development of the disorder include fruit 

water loss (Alférez et al., 2010; Alquezar et al., 2010) and wax application (Petracek et al., 1998a; 

1998b; Wild, 1991) while ethylene application has been reported to play protective role against 

the development of the disorder (Porat et al., 2004). 

 

5. Rind biochemical properties of citrus fruit: potential use as biomarkers 

Besides the physical appearance of citrus fruit, other features such as biochemical properties could 

serve as pre-symptomatic biomarkers of physiological rind disorders of citrus fruit (Magwaza et 

al., 2013a). Biomarkers, by definition, are features that are accurately measured and assessed as 

indicators of normal biological processes (Naz et al., 2014). 

 

Meanwhile, biochemical properties such as antioxidants are commonly known for their increased 

activities or existence in citrus fruit rind to be protective against rind physiological disorders 

(Janská et al., 2010; Rivera et al., 2007; Zhu et al., 2011). Furthermore, rind biochemical properties 

of citrus fruit such as carbohydrate, rind dry matter and antioxidants are known to play significant 
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role in the susceptibility of citrus fruit to postharvest physiological disorder as indicated by Di 

Majo et al., (2005). This role was further shown in studies conducted on ‘Nules Clementine’ 

mandarins as there were differences in biochemical properties based on susceptibility of the fruit 

to RBD (Magwaza et al., 2014a, 2014b). Also, other studies have reported relationship between 

vitamin C and CI of ‘Marsh’ grapefruit (Ezz and Awad, 2009). Therefore, using these biochemical 

properties as biomarkers to predict the susceptibility of citrus fruit to non-chilling physiological 

rind disorders are promising. Hence, understanding the behaviour of rind biochemical properties 

of fruit with or without non-chilling physiological rind disorder could provide pivotal direction 

towards unveiling the underlying mechanism(s) of rind disorder at non-chilling temperature. 

 

Furthermore, vulnerability of fruit to postharvest physiological rind disorders at non-chilling 

temperature varies amongst fruit of same cultivar and even among fruit harvested from the same 

tree in the same orchard. This variation is mostly influenced by the position of the fruit within tree 

canopy (canopy position) because different levels of micro-climates reach different position of the 

tree canopy (Magwaza et al., 2013a). 

 

5.1. Non-structural carbohydrates 

Non-structural carbohydrates (NSC) such as glucose, fructose and sucrose have been suggested to 

play key role as regulatory molecules in crop plants because of their ability to control gene 

expression related to plant metabolism and chilling tolerance (Bolouri-Moghaddam et al., 2010). 

These sugars metabolise from starch (Cameron, 1932) which is the most crucial storage 

carbohydrate in most fruit and other tree organs (Goldschmidt et al., 1992).  
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The involvement of NSC in flavedo tissues have been suggested to influence citrus rind adaptation 

to the constantly changing postharvest environmental conditions and sensitivity to the expression 

of physiological damage due to exposure to low temperature (Cronje et al., 2013; Holland et al., 

2005, 2002, Purvis, 1989, 1980). Lower osmotic potential of citrus rind due to high concentration 

of sucrose (an osmoregulatory property of plant cells) has also been linked to the incidence of rind 

disorder (Cronje et al., 2011a). Moreover, NSC have been found to form glass-like layer which 

prevent intracellular compartment from mechanical collapse and enable cells to avoid formation 

of intracellular ice crystals (Ingram and Bartels, 1996; Kosová et al., 2007).  

 

Citrus fruit (‘Nules Clementine’ mandarin) with low concentration of rind NSC was found to be 

more susceptible to non-chilling physiological rind disorder compared to fruit with high 

concentration of the carbohydrates (Cronje et al., 2013, 2011a). Similarly, the concentration of 

carbohydrate in citrus flavedo was thought to affect citrus rind condition during its postharvest life 

and its susceptibility to physiological rind disorders (Holland et al., 2002; Purvis and Grierson, 

1982; Purvis and Rice, 1983). The carbohydrate also affects chloroplast-chromoplast conversion 

during rind colour development (Barry and le Roux, 2010; Huff, 1984).  

 

Therefore, the use of these biochemical properties (metabolites) could be explored as biomarkers 

of non-chilling physiological rind disorders of citrus fruit. 

 

5.2. Pigments 

Chlorophyll and carotenoids constitute the most crucial pigments in citrus fruit rind. Chlorophyll 

characterises the rind of an immature citrus fruit (Ladaniya, 2008), while carotenoid may indicate 
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fruit maturity. As fruit ripens, chromoplast synthesis more of carotenoids while chlorophyll 

disintegrates as chloroplast transform into carotenoid-rich chromoplast.  

 

According to Mauzerall (1977) and Reinbothe and Reinbothe (1996), chlorophyll molecules 

synthesis occurs in the C5 pathway of an intact carbon structure of amino acid glutamate where a 

magnesium (Mg) atom occupies the centre of the chlorophyll molecules. Chlorophyll is essentially 

classified into chlorophyll a and chlorophyll b. While chlorophyll a contains a methyl group at the 

third position of chlorophyll structure, chlorophyll b contains a formyl group illustrated in Figure 

7A (Jones, 1973). Chlorophyll breakdown are said to occur in three stages. First is catalysis by 

chlorophyllase followed by Mg- dechelatase and then pheophorbide a oxygenase stage where the 

porphyrin macrocycle accompanies the loss of green colour (Hörtensteiner and Kräutler, 2011; 

Matile et al., 1996). 

  

On the other hand, carotenoids (50-75%) are mostly dominated in the rind of fruit such as citrus 

and comprises xanthophylls and carotenes (Curl and Baily, 1956). β-carotene (Figure 7B) is the 

most abundant naturally occurring carotene and are pure hydrocarbons. Although, both 

xanthophylls and carotenes comprise of 40 carbon atoms made from eight isoprene units, 

xanthophylls contains additional oxygen molecules (Salisbury and Ross, 1992). The processes for 

the biosynthesis of carotenoids have been widely covered in literature (Alquézar et al., 2008; Kato, 

2012; Kato et al., 2004; Rodríguez-Concepción et al., 2004). However, the metabolic pathway 

(Figure 8) is mostly shared by some other crucial isoprenoids such as gibberellins and 

plastoquinone. Carotenoids, as reported by Rodríguez-Concepción et al. (2004) can serve as 

precursor for the synthesis of abscisic acid (ABA), a plant hormone known to induce heat 
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(Robertson et al., 1994) and chilling (Rikin et al., 1976) tolerance in various plants. However, 

many factors such as genetic, environmental, nutritional, and hormonal factors influence the 

synthesis of these pigments (CRI, 1995; Iglesias et al., 2001; Richardson and Cowan, 1995; Sites 

and Reitz, 1949).  

 

The pigments which are majorly responsible for the colouration of rind and pulp of most citrus 

species functions by preventing photosensitised oxidation of photosynthetic (Harberlandt, 1965; 

Stanier and Cohen-Bazire, 1957) and non-photosynthetic (Goodwin, 1980) tissues and also aids 

photosynthesis. According to Merzlyak and Chivkunova (2000), pigments could protect fruit 

against various pre- and postharvest stresses. For instance, a yellow fruit (with high concentration 

of carotenoid) was reported to be more tolerant to physiological rind disorder compared with green 

grapefruit (Grierson, 1974). Furthermore, carotenoids protect plant cells including rind cells from 

photooxidative damage by terminating singlet oxygen (1O2) synthesised from the chlorophyll 

triplet in the reaction centre of photosystem II (Takano et al., 2005; Telfer, 2005). Therefore, these 

pigments might play positive role in preventing the susceptibility of citrus fruit to the 

unprecedented incidence of non-chilling physiological rind disorders. As a result, could be used 

as a biomarker that can be analysed non-destructively to monitor the rind disorder. 

 

5.3. Phenolic compounds 

Phenolic compounds are part of the most crucial secondary metabolites found in plants (Sharma 

et al., 2012). These compounds play key role as defence mechanism in plants and plant parts 

against reactive oxygen species (ROS) when exposed to low temperature (Lattanzio et al., 2012) 

and stabilises membrane by decreasing its fluidity and inhibiting diffusion of free radicals 
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(Blokhina et al., 2003; Michalak, 2006). Recently, the role of phenolic compounds on the 

antioxidant capacity of citrus fruit rind has been of scientific interest because of their high 

importance (Li et al., 2006; Manthey and Grohmann, 1996; Sun et al., 2010; Xu et al., 2008). The 

compounds possess the ability to emit electromagnetic waves after ultraviolet excitation as well as 

offer well-designed means of exposing indicators of physiological anomalies within the internal 

structure of horticultural produce (Dixon and Strack, 2003; Hahn, 2009; Lichtenthaler and 

Schweiger, 1998). 

 

Compounds such as coumarins, psoralens, phenolic acids and flavonoids are among the many 

phenolic compounds naturally occurring in citrus fruit (Benavente-García et al., 1997; Bocco et 

al., 1998). Flavonoids, found majorly in citrus fruit, are species and variety specific. The 

compounds are categorised as polymethoxylated flavones and flavanone glycosides (FGs) and are 

both associated with the postharvest physiology of the fruit. Citrus rind hosts FGs and phenolic 

acids as the primary groups of phenolics compounds (Simonne and Ritenour, 2011; Ye et al., 

2011). These group of phenolic compounds play physiological role in citrus fruit and also function 

as antimicrobial activity against bacteria and fungus (Mathur et al., 2011). However, the 

concentration of these compounds may be affected by fruit maturity, environmental conditions 

during growth and development, and storage conditions (Abad-García et al., 2012). According to 

Manthey (2004) and Xu et al. (2008), phenolic compounds contribute significantly to the total 

antioxidant capacity of citrus fruit rind. Similarly, the antioxidant enzymatic system has been 

implicated in the chilling and non-chilling conditions triggering physiological rind disorders 

(Cajuste and Lafuente, 2007; Lafuente et al., 2003; Sala et al., 2005; Sala and Lafuente, 1999). 

Magwaza et al. (2013b) reported that boosting the FGs contents of citrus fruit rind could positively 



30 

 

influence the defence mechanism of the fruit due to stressful postharvest storage conditions. 

Therefore, the potential use of these compounds as biomarkers to determine the susceptibility of 

citrus fruit to non-chilling physiological rind disorders is promising.  

 

5.4. Non-volatile organic acids 

Ascorbic, citric, malic, and tartaric acids constitute the major non-volatile organic acids in citrus 

fruit (Kelebek, 2010). The high levels of antioxidant activities in citrus fruit are largely 

concomitant to the presence of organic acids with special reference to vitamin C (ascorbic acid) 

(Mathur et al., 2011; Sdiri et al., 2012). However, the role of citric, malic and tartaric acids towards 

the susceptibility of ‘Nules Clementine’ mandarin to non-chilling physiological rind disorder is 

still unclear (Magwaza et al., 2013b). Vitamin C, on the other hand, is known to be one of the most 

prolific and effective antioxidants freely available in plants and plant parts (Davey et al., 2000; 

Ioannidi et al., 2009). According to Sdiri et al. (2012), vitamin C is a strong antioxidant which 

accounts for a large proportion of citrus fruit antioxidant capacity. Its high concentration in outside 

canopy fruit (sun-exposed fruit) was found to be associated with citrus fruits’ (‘Nules Clementine’ 

mandarin) tolerance to RBD (Magwaza, 2013). Similarly, its role as a defence mechanism against 

most oxidative damage resulting from aerobic metabolism or ROS and as an enzyme co-factor 

makes it an important biochemical property existing in plants (Badejo et al., 2009; Smirnoff, 

1996). Therefore, scientific understanding of the role of vitamin C in citrus fruit and its relationship 

with physiological rind disorder could be useful in preventing postharvest loss in citrus industry. 
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6. Hormone involvement in non-chilling physiological rind disorder 

6.1 Ethylene 

The potential involvement of phytohormone in the tolerance of citrus fruit to non-chilling 

physiological rind disorder have been reported. For instance, a sudden increase in ethylene 

production occurred prior to incidence of rind staining disorder of ‘Navel’ orange stored at non-

chilling temperatures (Alférez et al., 2003). Similarly, artificial application of ethylene to 

‘Navelina’ and Navelate’ orange fruit stored at non-chilling temperature inhibited the incidence of 

rind staining disorder (Cajuste and Lafuente, 2005; Lafuente and Sala, 2002). According to Cajuste 

and Lafuente (2005), the efficiency of ethylene in promoting tolerance of fruit against rind staining 

was connected to its effect on the stimulation of phenyalanine ammonia-lyase (PAL, rate-

controlling enzyme in the synthesis of phenylapropanoids) activity. A change in phenylapropanoid 

metabolism is a crucial response to stress. Rapid increase in this enzyme activity occurred instantly 

after increase in ethylene and was concomitant with the incidence of non-chilling peel pitting 

disorder of citrus fruit (Sala et al., 2005). The increased enzyme activity indicated that PAL 

contribute to the protection of citrus fruit against non-chilling physiological rind disorder (Sala et 

al., 2005). Similarly, increased PAL and peroxidase activities due to ethylene conditioning was 

shown to protect citrus fruit against the development of non-chilling physiological rind disorder. 

Hence, ethylene could aid citrus fruit tolerance to postharvest storage conditions known to 

stimulate the development of non-chilling physiological rind disorders. Therefore, its analysis and 

probably with other rind phytohormones could help to unravel the crucial effect and link between 

hormone type and their involvement in protecting or subjecting citrus fruit to postharvest non-

chilling physiological rind disorders. 
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6.2 Abscisic acid 

The phytohormone abscisic acid (ABA) controls the stomata opening and contributes significantly 

to transpiration rate and cell water maintenance (Alférez et al., 2005). The role of the 

phytohormone in protecting citrus fruit against environmental stress is still unknown but its 

modulation levels enable the adaptation of plant cells to environmental stresses (Alférez et al., 

2005). Studies by Kawada et al. (1979) reported seasonal levels of ABA in the flavedo of ‘Marsh’ 

grapefruit to be correlated with CI tolerance. However, Lafuente et al. (1997) could not establish 

any relationship between changes in ABA and incidence of CI in a highly susceptible ‘Fortune’ 

mandarin fruit during its maturation stage. Although, dehydration of fruit rind has been reported 

to stimulate the synthesis of ABA (Lafuente and Sala, 2002), the role of the hormone in the 

susceptibility of citrus fruit to non-chilling physiological rind disorders is still unknown (Alférez 

et al., 2005). Therefore, the possible involvement of ABA in the susceptibility of citrus fruit to 

postharvest non-chilling physiological rind disorder should be investigated. 

 

7. Non-destructive methods for determining rind biochemical properties 

The postharvest technology aspect of the horticultural industry has been neglected in the time past 

until recently, leaving the problems relating to detection of postharvest physiological rind 

disorders, amongst others, of citrus fruit unsolved (Gao et al., 2010). Identifying the exact cause(s) 

or mechanism(s) underlying postharvest physiological rind disorders of citrus fruit has remained 

a scientific challenge for decades and consumers are quick to discard fruit with rind defects (Cronje 

et al., 2011a; Magwaza et al., 2012a; Magwaza et al., 2013a). Therefore, meeting consumer 

demands for quality fruit and need for rapid and cost-effective innovative means of detecting or 
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monitoring physiological rind disorders non-destructively has necessitated scientific and 

technological research into the subject (Magwaza et al., 2012a).  

 

With the meaningful advancement in science and technology to the improvement of the 

agricultural industry, innovative non-destructive methods of assessing fruit physiology and quality 

have been developed (Gao et al., 2010; Olarewaju et al., 2016). Hahn (2009) explicated that the 

structure and physiological status of a plants or plant parts such as fruit are represented by 

reflectance patterns of light which depends on certain factors. These factors include external 

morphology, internal structure, and distribution of internal metabolites or biochemical components 

(Hahn, 2009). Hence, various non-destructive techniques presented in the literature can be 

employed to detect physiological rind disorders affecting citrus fruit (Raghavendra and Rao, 

2016). These innovative techniques include visible to near infrared (Vis/NIR) spectroscopy 

(Vis/NIRS), hyperspectral imaging, computed tomography imaging, chlorophyll fluorescence 

imaging, X-ray imaging, optical coherence tomography, and magnetic resonance imaging (MRI) 

(Gao et al., 2010; Hahn, 2009). 

 

7.1. Use of computer vision imaging 

Non-visible imaging of horticultural products including citrus fruit has been found immensely 

useful in fruit quality analysis (Bennedsen et al., 2005; Blasco et al., 2009; Mehl et al., 2002). The 

technique can measure the appearance of produce to guarantee acceptable external quality 

standards (Blasco et al., 2009). Computer vision illustrated in Figure 9A is an example of a non-

visible imaging system capable of detecting external characteristics such as skin defects in apples, 

citrus, or peaches. The system is capable of separating external features of fruit based on pre-
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programmed quality guidelines (Blasco et al., 2003). However, automatic identification of skin 

defects remains major challenge since some defects may only imply slight economic loss while 

others translate to huge losses (Blasco et al., 2009). Moreover, predicting or monitoring rind 

disorders before expression could also be a challenge with the use of computer vision as the 

technique only discriminate fruit based on the assessments of fruit appearance (Batchelor and 

Whelan, 1995).  

 

Computer vision systems for citrus fruit identification based on the type of disorder affecting the 

fruit on a real-time operation are commercially unavailable since the machine only make use of 

colour information from acquired images (Blasco et al., 2009). It is also difficult to differentiate 

between various types of rind disorders since many disorders have similar colour expression. 

Nonetheless, due to the differences of shape and size of different disorders, the features have the 

potential to distinguish between various rind disorders. As a result, it makes it possible to produce 

automatic systems to sort fruit based on severity of disorders (Blasco et al., 2009). 

 

Ariana et al. (2006) established a method for detecting rind defects such as black rot and decay. 

The authors reported that integrating Vis/NIR reflectance and ultraviolet induced fluorescence was 

more efficient in detecting most rind disorders than using the same method independently. 

However, the use of ultraviolet light is not encouraged due to its complexity of use and potential 

danger of the system to users (Gómez-Sanchis et al., 2008). Therefore, with ultraviolet light 

excluded and only Vis/NIR reflectance was used to detect damage caused by rot in citrus fruit 

(Gómez-Sanchis et al., 2008). These authors further analysed the spectra of the damage using 

hyperspectral image acquisition technique illustrated in Figure 9B. 
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Hyperspectral imaging technique involves conventional imaging techniques and spectroscopy to 

measure both spatial and spectral information from horticultural produce for the analysis of 

important biochemical parameters (Lu and Chen, 1999; Mehl et al., 2004, 2002; Polder et al., 

2000). Multispectral imaging (Figure 9C) is another technique that produce images using multiple 

spectral part of electromagnetic radiation at the same scale from the same region of an agricultural 

product. Hyperspectral images consist hundreds of continuous spectra for individual spatial site of 

a sample and the strengths of pixels at specific wavelength of a spectrum denote a grey scale image 

of the sample at that wavelength (Gómez-Sanchis et al., 2008; Mehl et al., 2004). These imaging 

techniques have been successfully developed and applied to access internal quality of various 

horticultural products. The techniques could successfully be used as tools to analyse rind 

biochemical concentrations and assist to segregate fruit into quality grades. An overview of its 

application in citrus fruit is presented in Table 1. 

 

7.2. Use of X-ray imaging 

X-ray imaging techniques (Figure 10A) are majorly used in medical diagnosis amongst other 

applications such as industrial components inspection and security (Kotwaliwale et al., 2014). Its 

use for evaluation of quality in agricultural products is still uncommon but has high advantages as 

it compliments current quality evaluation techniques (Casasent et al., 1998). The technique has 

been employed efficiently in recent years for assessing internal quality of agricultural products. Its 

non-contact sensor abilities make it one of the most promising imaging techniques (Kotwaliwale 

et al., 2014). The use of X-ray in measuring internal quality of horticultural produce can be divided 

into three techniques. These are two-dimensional (2D) radiography, line scan radiography and X-
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ray computed tomography (CT, Figure 10B) (Hahn, 2009). This technique is advantageous due to 

its simplicity, accessibility, accuracy, and cost efficiency.  

 

Its application in detecting various forms of internal and external properties of some horticultural 

products have been demonstrated by many scientists (Hahn, 2009; Lin et al., 2008; Njoroge et al., 

2002; Ogawa et al., 2003). The technique has been used for detection of water-core in apple, pits 

in processed olives and cherries, chilling injury in citrus and mechanical bruises (Brosnan and Sun, 

2004; Lin et al., 2008; Ogawa et al., 2003; Reyes et al., 2000). Moreover, Barcelon et al. (1999a) 

successfully used X-ray imaging technique to monitor internal physiological changes during 

ripening of peach fruit at different maturity level. Similarly, an internal ripening disorder, ‘spongy 

tissue’, of ‘Alphonso’ mangoes detected as dark grey patches against the light grey areas of a 

healthy flesh in X-ray images showed the potential use of this technology for on-line sorting 

(Thomas et al., 1993).  

 

Barcelon et al. (1999b) used X-ray absorption as index to detect mango fruit quality based on its 

association with quality indices such as density, moisture content, soluble solids, titratable acidity, 

and pH. Consequently, it was suggested that the technique could be used to non-destructively asses 

the quality of an intact mango fruit. A recent study by van Dael et al. (2016) also demonstrated the 

efficiency of X-ray imaging technique combined with image processing algorithms to detect 

granulation non-destructively and rapidly and endoxerosis internal disorders of oranges and 

lemons, respectively (Table 2). The authors concluded that the classification method was fast, 

robust to noise and could be applied to any existing on-line X-ray radiograph equipment. 
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Therefore, the use of this technique to determine and monitor rind biochemical changes and, hence, 

the susceptibility of citrus fruit to rind disorders is suggested. 

 

7.3. Use of magnetic resonance imaging 

Magnetic resonance imaging (MRI) is a non-destructive and non-invasive technique capable of 

penetrating and visually monitoring of internal structure of biological tissues (Gonzalez et al., 

2001; Nicolaï et al., 2014). The technique can be used to determine the concentration, diffusivity, 

and movement of nuclei (McCarthy, 1994). Magnetic resonance which is commonly referred to as 

nuclear magnetic resonance (NMR) is a phenomenon occurring between atomic particles and 

external magnetic field (McCarthy, 1994).  

 

The technique is mostly used for biomedical research and as radiological diagnostic tool 

(McCarthy, 1994) and its use in the field of horticultural science is speedily gaining scientific 

interest. MRI has been successfully applied as non-destructive tool for detection of various form 

of physiological disorders such as core breakdown in ‘Bartlett’ pears (Yang and Wang, 1989), 

water-core dissipation in ‘Braeburn’ and ‘fuji’ apples (Clark and Burmeister, 1999; Clark and 

Enza, 1999) and bruises in fruit (Chen et al., 1989). The technique has also been found useful in 

monitoring ripening and identification of seeds in mandarin and orange citrus fruit (Galed et al., 

2004; Hernández-Sánchez et al., 2006). Furthermore, Gentili and Horowitz (1968) used MRI to 

determine flavonoids (6-C-β-D-Glucopyranosyldiosmetin and 8-C-β-D-glucopyranosyldiosmetin) 

in citrus fruit. 
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Therefore, its use in detecting, monitoring and prediction of possible metabolites associated with 

physiological rind disorder in citrus fruit may be achievable. However, high cost of instrument and 

low speed of image acquisition are some of the disadvantages associated with the technique which 

could limit its on-line implementation or use (Clark et al., 1997; Hahn, 2009). 

 

7.4. Use of optical coherence tomography 

Optical tomography (OT) is another non-destructive analytical technique appropriate for assessing 

the internal structure of biological tissues (Magwaza et al., 2012a). The technique basically 

recreates the three-dimensional (3D) images of a targeted object through transmission and 

scattering of light. Diffraction tomography, diffuse optical tomography, and optical coherence 

tomography (OCT, Figure 10C) are the three existing central approaches to OT. However, OCT 

provides a more suitable approach for the evaluation of internal structures of biological tissues 

than other approaches (Lasser, 2003; Lu et al., 2004).  

 

Optical coherence tomography is a novel imaging technology, capable of providing visual analyses 

of internal microstructure of biochemical components of agricultural products (Fujimoto, 2003; 

Huang et al., 1991; Magwaza et al., 2012a). The technique can provide non-destructive high-

resolution (1-15µm) cross-sectional tomographic imaging of objects (to the depth of 1-1.5mm) in 

a real-time mode and its image acquisition time is 1-3 sper tomogram (Magwaza et al., 2012a; 

Meglinski et al., 2010). Previously, OCT has only been applied to the biomedical industries for 

diagnosis of tumours and monitoring of blood sugars in diabetic patients, (Sapozhnikova et al., 

2006, 2003; Zagaynova et al., 2005). It has also been used to visualize lipid distribution within 

arterial vessel walls (Hirano et al., 2014). Similarly, it is currently explored for image analyses of 
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internal and external quality attributes of horticultural products such as apples (Verboven et al., 

2013) and onions (Ford et al., 2012; Landahl et al., 2012).  

 

The technique also has high depth in scattering media such as horticultural fruit as it offers means 

to detect and monitor physiological activities and changes of biological tissues during growth and 

development (Magwaza et al., 2012a). The results of these studies have been promising and 

potential use of this technique in detecting and monitoring rind physiological disorder in citrus 

fruit should be explored at a commercial scale. 

 

7.5. Use of Vis/NIR technology 

The application of Vis/NIR for determining external and internal quality parameters of citrus fruit 

was extensively reviewed by Magwaza et al. (2012a). These authors indicated that biological 

materials are opaque to radiation in the Vis/NIR regions of the electromagnetic spectrum and the 

tissue structures composed of cells such as nuclei, mitochondria, membranes, vesicles and cell 

walls contribute significantly to the scattering of Vis/NIR waves by fruit and vegetable tissues 

(Nicolaï et al., 2014). Usually, absorption and scattering of the electromagnetic waves usually 

steers the association between light and matter in the Vis/NIR regions of the electromagnetic 

spectrum (Nicolaï et al., 2014). The intricate chemistry between absorption and scattering depend 

on the spectral and spatial changes at the microstructure level of the complex refractive index 

(Bohren and Huffman, 1983). Basically, biological materials are opaque to radiation in the 

Vis/NIR regions of the electromagnetic spectrum and the tissue structures composed of cells such 

as nuclei, mitochondria, membranes, vesicles and cell walls contribute significantly to the 

scattering of Vis/NIR waves by fruit and vegetable tissues (Nicolaï et al., 2014). Absorption of 
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electromagnetic wave is primarily caused by the C-H, O-H, and N-H bonds of metabolites which 

can be absorbed provided the right energy is excited on one of the vibrational states of the 

molecules which has its own explicit absorption spectrum (Magwaza et al., 2012a; Nicolaï et al., 

2014; Olarewaju et al., 2016). This absorption, which occur in the infrared region, is caused by 

overtones and combinations caused by the fundamental bonds of different metabolites (Nicolaï et 

al., 2014).  

 

Table 3 displays an overview of the application of Vis/NIR in citrus fruit. Quality features of 

‘Satsuma’ mandarin was assessed and tested using Vis/NIR spectra by Gómez et al. (2006). The 

authors then established the association amongst acquired spectra and the fruit physiological 

properties such as firmness, total soluble solids, and acidity. Absorption of pigments of citrus peel 

is high in the ultraviolet and visible electromagnetic spectral range of about 500 nm while low 

reflectance values are mainly originating from scattering in this range (Sighicelli et al., 2005). The 

authors argued that citrus fruit rind has NIR reflectance values of about 80% which decreased 

within two days because of pre-necrosis disorder. Furthermore, a team of researchers from Japan 

used Vis/NIRS to non-destructively and automatically grade fruit such as pear and apple fruit 

effectively based on colour and maturity (Gao et al., 2010; Han et al., 2006). Hence, Vis/NIRS has 

the capacity to absorb the peaks of interested metabolites that could be used to monitor and predict 

rind physiological disorder (Magwaza et al., 2012a). 

 

Considering most of the available non-destructive methods for determinig biochemical properties 

related to the susceptibility of citrus fruit to non-chilling physiological rind disorders, Vis/NIRS is 

possibly the most innovative technique in terms of instrumentation, accessories, chemometric tools 
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and applications (Nicolaï et al., 2007). This is because the technology is fast, objective and can 

accurately determine biomarkers of interest thereby providing an online classification of fruit 

based on it rind quality among other quality parameters for either local or export markets. 

 

8. Future prospect and conclusions 

The physical appearance of citrus fruit in the market plays a major role in its acceptability by 

consumers. A citrus fruit with no rind disorder will be attractive and mostly be of good quality. 

Hence, the significance of rind quality in horticultural (citrus) industries is crucial as it constitute 

as a major decisive factor in global consumer-producer relationship (Lehnert et al., 2014; Schütz 

et al., 2014). Some of the limiting factors affecting fresh citrus fruit market is the physiological 

rind disorders including the ones that occur because of low temperature (Cronje et al., 2011a). 

However, the major biochemical metabolite(s) responsible for these disorders are still unknown. 

Therefore, future scientific research should include non-targeted metabolomics approach for 

possible identification of responsible metabolite(s) triggering physiological rind disorders of citrus 

fruit. Once identified, non-destructive analytical technologies for detecting incidence of 

physiological rind disorders of citrus fruit would be a lot easier to develop or investigate. 

 

Metabolomics is an unbiased identification and quantification or exploration of the entire 

metabolite profile of cell, tissue, or organism (biological system) at a given time under a definite 

set of conditions (Fiehn, 2002; Heyman and Dubery, 2016). It is a recently discovered 

technological methodology offering the potential of providing holistic understanding or detecting 

the minutest of variation in immensely complex biochemical systems of living organisms (Ernst 

et al., 2014; Heyman and Dubery, 2016; Naz et al., 2014; Rochfort, 2005). Moreover, 
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metabolomics plays a key role in screening metabolites which correlate with specific type of 

physiological disorder. Hence, they could be used as early indices of disorder in citrus industries 

(Naz et al., 2014). The metabolomics approached in analysing bio-markers could be targeted or 

non-targeted (Naz et al., 2014).  

 

Targeted metabolomics involve exact quantification of known metabolite(s) using accurate 

analytical standards and concentrating on the changes of the quantitated metabolites which mostly 

correlates to a biological activity (Chen et al., 2008; Fiehn, 2002; Naz et al., 2014). However, non-

targeted metabolomics approach involves the analysis of all probable metabolites existing in each 

sample without having foreknowledge of the metabolite which often leads to the generation of 

enormous data sets (Naz et al., 2014; Scholz et al., 2004).  

 

Non-targeted metabolomics analysis of plant or fruit are particularly thought-provoking because 

of the increased intricacy of the system due to diversity of unknown secondary metabolites (up to 

200,000 metabolites) included in the metabolome (Dixon and Strack, 2003; Ernst et al., 2014). 

However, this comprehensive approach carries the potential of identifying the mechanism(s) 

underlying the physiological rind disorders of citrus fruit which has been a long-term problem in 

citrus industries globally (Heyman and Dubery, 2016; Magwaza et al., 2013b). 

 

Although, rind dry matter (DM) and non-structural carbohydrates were suggested as postharvest 

bio-markers triggering the incidence of physiological rind disorder of citrus fruit. Based on these 

suggestions, possible relationships with non-chilling physiological disorders are worth scientific 

evaluation to proffer solutions to the incidence of rind disorders. This investigation will help to 



43 

 

establish if the earlier mentioned bio-markers are responsible for the occurrences of various forms 

of non-chilling postharvest disorders expressed on other citrus fruit cultivars. 
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Table 1: An overview of the application of computer vision system for detecting physiological disorders of citrus fruit 

SN Fruit Type Physiological 

Disorder 

System Description Wavelength Range 

(nm) 

Model Type Success Rate 

(%) 

Reference 

1 Grapefruit Canker Multispectral imaging system (3-CCD 

RGB, 640x320 pixels) 

200-2500 Discriminate 

analysis 

100 Balasundaram et 

al. (2009) 

2 Mandarin and 

Orange 

Oleocellosis 

Scales 

Stem-end injury 

Thrips scarring 

Wind scarring 

Multivariate imaging system (3-CCD 

RGB, 768x576 pixel, 0.17mm 

resolution) 

- Principal 

component analysis 

and Multiple image 

analysis 

92.8 

91.5 

87.2 

90.5 

100.0 

100.0 

92  

López-García et 

al. (2010) 

3 Lemon and  

mandarin 

Rind defects Machine vision systems (2 CCDs; one 

for RGB and the other for 

monochromatic) (768x576 pixels & 

0.17 mm/pixel resolution) 

Centred at 750 Bayesian 

discriminant 

analysis 

99 Aleixos et al. 

(2002) 

4 Mandarin and 

orange  

 

Chilling injury 

Medfly 

Oleocellosis 

Phytotoxicity 

Scales 

Scarring 

Sooty mould 

Stem-end injury 

Thrips scarring 

Computer vison system - combination 

of Vis, NIR and fluorescence 

(monochromatic RGB camera for Vis 

and fluorescence, and Hamamatsu 

BeamFinder III, C5332-01 camera for 

NIR, 768-576 pixels & 0.17 mm/pixel 

resolution)  

 

RGB (350-400) 

Vis/NIR (400-1800) 

 

Linear discriminate 

analysis 

 

86 

Blasco et al. 

(2009) 

5 Mandarin and 

orange 

Chilling injury 

Medfly 

Oleocellosis 

Phytotoxicity 

Scales 

Scarring 

Sooty mould 

Stem-end injury 

Thrips scarring 

Computer vision systems (CCD 

camera, fluorescence tube, polarizing 

filter, Matrox Meteor II, 768x576 

pixels & 0.17 mm/pixel resolution)  

 

- - 100 

98 

100 

100 

93 

100 

85 

99 

100 

100 

94 

Blasco et al. 

(2007) 

6 Ruby red 

grapefruit 

Canker Hyperspectral imaging system 

(electron-multiplying charge-coupled-

device, 658x496 pixels) 

400-900 Principal 

component analysis 

93 Qin et al. (2008) 
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Table 2: Application of X-ray imaging in detecting physiological disorders of citrus fruit 

  

SN Fruit Type Physiological 

Disorder 

System Description Model Type Success Rate 

(%) 

Reference 

1 Orange Granulation Computer tomography X-ray scanner (2P-CCD 

camera, Nikon metrology 160 Xi Gun set, 1024x1024 

pixel, 75 kV, 468 mA, 128.9 um, 60 ms 

Naïve Bayesian 

method and K-nearest 

neighbour (kNN) 

approach. 

 

96 Van Dael et al. 

(2016) 

2 Lemon Endoxerosis Computer tomography X-ray scanner (2P-CCD 

camera, Nikon metrology 160 Xi Gun set, 1024x1024 

pixel, 75 kV, 468 mA, 128.9 um, 60 ms 

Naïve Bayesian 

method and K-nearest 

neighbour (kNN) 

approach. 

94 Van Dael et al. 

(2016) 
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Table 3: An overview of the application of visible to near infrared spectroscopy in citrus fruit 

 

SN Fruit Type Physiological 

Quality 

parameter 

System Description Wavelength 

Range (nm) 

Optimum 

Wavelengt

h (nm) 

Pre-

processing 

Method 

Model Type Accuracy 

(R2) 

Reference 

1 Mandarin 

 

Rind total sugar 

(mg/g DW) 

Mobile fibre-optic 

spectrophotometer 

(LabSpec2500® near 

infrared analyser in 

diffuse reflectance mode 

with SI array and two 

Peltier cooled InGaAs 

detectors) 

 

350-2500 900-1700 Multiple 

scatter 

correction 

Partial least 

square 

0.93 Magwaza 

et al. 

(2012b) 

2 Orange 

 

TSS (°Brix) Fibre optic probe and 

integrating sphere 

multipurpose analyser 

spectrometer 

 

780-2500 900-1800 First 

derivative 

Partial least 

square 

0.83 Magwaza 

et al. 

(2013c) 

3 Orange 

 

Vitamin C 

(mg/100 mL) 

Fibre optic probe and 

integrating sphere 

multipurpose analyser 

spectrometer 

 

780-2500 900-1800 Multiple 

scatter 

correction 

Partial least 

square 

0.72 Magwaza 

et al. 

(2013c) 

4 Gannan 

 

SSC (°Brix) FT- NIR spectrometer 

equipped with 

interferometer InGaAs 

detector  

800-2500 - Standard 

normal 

variate and 

Multiple 

scatter 

correction 

 

Partial least 

square and 

principal 

component 

regression 

0.99 Lu et al. 

(2006) 

5 Mandarin 

 

Acidity (pH) Spectrophotometer 

(FieldSpec Pro FR with 

Lowell pro-lam 14.5 V 

Bulb/128690 tungsten 

halogen) 

350-2500 400-2350 Moving 

average 

method and 

multiplicati

ve scatter 

correction 

Partial least 

square and 

principal 

component 

regression 

0.84 

and 

0.81 

Gómez et 

al. (2006) 
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Figure 1: Anatomy of citrus rind  

Source: (Donald Blake; Slideplayer.com) 

  



77 

 

 

 

 

 

 

 

 

Figure 2: Visual (A) and microscopic (B) images of rind breakdown (RBD) 

Source: (Cronje et al., 2011a; Magwaza et al., 2012a) 

 

Figure 3: Rind staining or peel pitting at non-chilling temperature in ‘Navelate’ (A) and ‘Navelina’ 

(B) oranges  

Source: (Alférez et al., 2003) 

 

B A 

A B 
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Figure 4: Oleocellosis in ‘Washington Navel’ orange  

Sources: (A) Óscar Mario Castro Solano, The American Phytopathological Society  

               (B) (Knight et al., 2002) 

 

Figure 5: Superficial flavedo necrosis blemish known as ‘Noxan’ in ‘Shamouti’ oranges 

Source: (Ben Yehoshua et al., 2001) 

  

A B 
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Figure 6: Stem-end breakdown of ‘Marsh’ grapefruit (A) and ‘Valencia’ orange (B) 

Source: (Ritenour and Dou, 2003) 

  

A B 
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Figure 7: A schematic depiction of chlorophylls a and b having Mg atom at the centre (A), and β-

carotene (B). 

Sources: (Jones, 1973; Salisbury and Ross, 1992) 

A 

B 
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Figure 8: A Schematic flow chart of the carotenoid biosynthesis pathway in plants  
ABA, abscisic acid; E-CHX, E-carotene hydroxylase; β-CHX, carotene hydroxylase; CMK, 4-

diphosphocytidyl-methylerythritol kinase; CMS, 4-diphosphocytidyl-methylerythritol synthase; CRTISO, 

carotene isomerase; DXP, 1-deoxy-D-xylulose 5-phosphate; DXR, DXP reductoisomerase ; DXS, 1-deoxy-

D-xylulose 5-phosphate-synthase; GGPP, geranylgeranyl diphosphate; GGPS, geranylgeranyl 

diphosphate synthase; G3P, D-glyceraldehyde 3-phosphate; HDR; hydroxymethylbutenyl 4-di- phosphate 

reductase; HDS, hydroxymethylbutenyl 4-diphosphate synthase; E-LCY, lycopene cyclase; β-LCY, 

lycopene cyclase; MCS, methylerythritol 2,4-cyclodiphosphate synthase; MEP, 2-C-methyl-D- erythritol 4-

phosphate; NCED, 9-cis-epoxycarotenoid dioxygenase; NSY, neoxanthin synthase; PDS, phytoene 

desaturase; PSY, phytoene synthase; PTOX, plastid terminal oxidase; VDE, violaxanthin de-epoxidase; 

ZDS, α-carotene desaturase; ZEP, zeaxanthin epoxidase. 

Source: (Alquézar et al., 2008) 
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Figure 9: A schematic set-up of a typical computer vision system (A), hyperspectral imaging 

system (B) and multispectral imaging system (C) 

Sources: (Leiva-Valenzuela et al., 2014; Yoo et al., 2010; Zhang et al., 2014 ) 

   

A 

B C 
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Figure 10: A schematic representation set-up of a typical X-ray imaging (A), X-ray computed 

tomography (B) systems and optical coherence tomography system (C). 

Sources: (Uchida et al., 2001; Vidhya et al., 2017) 

  

A 

B 

C 
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CHAPTER 3 

COMPARATIVE STUDY ON THE ROLE OF CANOPY POSITION ON 

PHYSICOCHEMICAL PROPERTIES OF ‘MARSH’ GRAPEFRUIT DURING 

POSTHARVEST NON-CHILLING COLD STORAGE* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Submitted and formatted according to Scientia Horticulturae (Under review) 
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Abstract 

The physicochemical properties of citrus fruit play a critical role in its maturity and quality 

determination. Hence, this study investigated the effect of canopy position and production region 

on physicochemical properties of ‘Marsh’ grapefruit at harvest and after storage at 7.5 °C for 3, 6, 

and 9 weeks. The study also evaluated the use of BrimA as an adoptable internal quality and 

maturity parameter for 'Marsh' grapefruit. Fruit from inside canopy (IC) and outside canopy (OC) 

were harvested from KwaZulu-Natal (KZN) and Mpumalanga (MP) provinces in South Africa. 

Colour indices were measured using calibrated colorimeter while sugars were measured using high 

performance liquid chromatography. At harvest, IC fruit from MP province were more luminous 

than the OC fruit while inverse results were recorded for fruit from KZN. At harvest, IC fruit had 

higher percentage of titratable acidity (TA) (2.73%) than OC fruit (2.40%) from MP, with opposite 

results from KZN. Overall, our result suggested that canopy position affected some 

physicochemical properties of ‘Marsh’ grapefruit. However, harvested fruit displayed a higher 

level of some physicochemical properties over the period of cold storage. BrimA could potentially 

be used as an index of internal quality of grapefruit but further studies are needed. 

 

Keyword: Acidity, BrimA, Citrus spp., Citrus paradisi, Fruit quality, Rind colour. 
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1. Introduction 

‘Marsh’ grapefruit (Citrus paradisi Macfadyen) is an economically important citrus cultivar 

hybridized from an orange and a shaddock during the early 1700s in the West Indies (Kiani and 

Imam, 2007; Agustí et al., 2014). The fruit is widely cultivated in many parts of the world, 

including South Africa, United States of America, and Israel (Vacante, 2010) because they are 

highly nutritional and have a number of medicinal properties (Kiani and Imam, 2007). 

 

In the fresh produce market, physicochemical properties such as colour, shape and size constitute 

initial factors influencing consumers’ decision to purchase (Opara and Pathare, 2014; Magwaza 

and Opara, 2015). Rind colour is perceived to be a major external quality factor as consumer 

preference is largely determined by fruit appearance in both local and international markets before 

any purchase is done (Singh and Reddy, 2006). Furthermore, previous studies have shown that 

colour and overall appearance are important quality attributes affecting acceptability of citrus and 

other kinds of fruit (Pathare et al., 2013). From a consumer purchase perspective, this suggests that 

good looking citrus fruit will most likely exhibit quality taste experience that ultimately translate 

to financial gains for citrus fruit growers. However, consumer choice of subsequent procurements 

is dependent on fruit internal chemical properties such as total soluble solids (TSS), titratable 

acidity (TA) as well as the ratio of total soluble solids to titratable acidity (TSS/TA) (Opara and 

Pathare, 2014; Magwaza and Opara, 2015). Further indices of flavour quality include sweetness 

index (SI), determined by the quantity of individual non-saturated sugar components (Beckles, 

2012; Magwaza and Opara, 2015), and total sweetness index (TSI), which is determined based on 

the contribution of main sugar components in relation to sucrose (Baldwin et al., 1998; Magwaza 
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and Opara, 2015). Being a non-climacteric fruit, flavour quality of citrus fruit generally decreases 

after harvest (Baldwin, 2009).  

 

Although TSS/TA ratio is mostly used as determinant factor for citrus fruit maturity and internal 

quality, Jordan et al. (2001) reported that sometimes it does not share any relationship with 

organoleptic internal quality perception of fruit. As a result, it has been suggested that a quality 

measurement parameter that is more associated with citrus fruit internal quality is BrimA 

(difference of TSS and TA). BrimA, has been reported to be a better internal quality parameter for 

measuring internal quality or maturity of horticultural products such as grapes (Jordan et al., 2001), 

pomegranate (Fawole and Opara, 2013) and oranges (Obenland et al., 2009) than other industry 

standards including TSS, TA and TSS/TA (Magwaza and Opara, 2015). In view of this, California 

Department of Food and Agriculture set BrimA as industry standard for measuring internal quality 

of navel oranges (Ross, 2012). BrimA, increasingly becoming an international standard of 

horticultural fruit maturity and quality, was well introduced, and adequately discussed in a recent 

review of literature by Magwaza and Opara (2015).  

 

Fruit position within tree canopy, based on the level of exposure of fruit to sunlight, is an important 

preharvest factor, which has been identified as a possible contributor to the postharvest quality of 

horticultural crops. Canopy positions have long been found to affect vitamin C content of 

grapefruit (Harding and Thamas, 1942), and physicochemical properties of ‘Nules clementine’ 

mandarin fruit thereby influencing its outward appearance (Cronje et al., 2011a; Cronje et al., 

2013; Magwaza et al., 2013a). However, very limited research has been conducted to study the 

effect of canopy position on physicochemical properties of ‘Marsh’ grapefruit. Hence, the aim of 
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this study was to evaluate the effect of canopy position and production region on physicochemical 

properties of ‘Marsh’ grapefruit at harvest and after 3, 6, and 9 weeks of cold storage at 7.5 °C. 

The study also evaluated the use of BrimA as an adoptable internal quality parameter for ‘Marsh’ 

grapefruit. 

 

2. Materials and methods 

2.1. Reagent and standards  

All chemicals including Sodium Hydroxide (NaOH), phenolphthalein, Folin-Ciocalteu reagent, 

metaphosphoric acid (MPA), sodium carbonate, gallic acid, quercetin, vitamin C, 2, 6 

dichloroindophenol dye, 2,2-diphenyl-1-picrylhydrazyl (DPPH), acetone, ethanol (HPLC grade) 

and sugars standards (sucrose, D-glucose, and D-fructose) were purchased from Sigma-Aldrich 

Company Ltd. (Dorset, UK). A Phenomenex® column (Rezex RCM - Monosaccharide) was used 

in the analyses. Water was purified in a Milli-Q Integral Water Purification System (Merck 

Millipore corporation, Billerica, MA, USA; σ = 18 M Ω cm−1). 

 

2.2. Fruit harvesting, sampling, and postharvest handling 

Experiments were conducted using ‘Marsh’ grapefruit budded on ‘Troyer’ Citrange ([Poncirus 

trifoliata (L.) Raf.] × [C. sinensis]) and x639 ([Poncirus trifoliata (L.) Raf.] × [C. reshni]) 

rootstocks planted in 1993 at Bolton Citrus Farm, KwaZulu-Natal (KZN) (31° 34′ 44″ S, 28° 44′ 

59″ E) and Unifruitti Farm, Mpumalanga (MP) (24° 22′ 24.39″ S, 30° 42′ 17.67″ E) provinces, 

respectively. Three fruit per canopy position were harvested from a height of 1-2 m from 50 

uniform sized trees, from each farm, at commercial maturity during 2015 and 2016 sessions. The 

canopy positions were inside canopy (IC), i.e. fruit receiving less than 80% of full sunlight, and 
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outside canopy (OC), fruit exposed to 90-100% of full sunlight, of a fruit tree according to Cronje 

et al., (2011a). The rainfall (mm), relative humidity (%), maximum and minimum temperature 

(°C) registered during the growing season in KZN and MP provinces are displayed in Figure 1A-

D. After harvesting, fruit were transported within 48 h at ambient temperature in ventilated cartons 

to the horticultural research laboratory where fruit were washed and sorted for blemishes and fruit 

damage. Upon arrival at the laboratory, fruit were left for 24 h at room temperature (20 ± 1ºC) to 

equilibrate after which each fruit was labelled, weighed, and transferred into cold storage (7.5 ± 

0.5ºC) for 9 weeks. Ten individual fruit using one fruit per replicate were analysed at 3 weeks 

interval for 9 weeks (weeks 0, 3, 6 and 9). 

 

2.3. Rind colour 

Colour parameters (luminosity [L*], greenness [a*], and yellowness [b*]) were measured at three 

equidistant points around the equatorial axis of each fruit during each sampling. A Minolta NR-

4000 colorimeter (Minolta NR 4000, Osaka, Japan) was used after calibration with a standard 

white tile (CR-A43; Y = 93.1, x = 0.3203) (Terry et al., 2007; Pathare et al., 2013). The colour 

index (CI) was calculated using Eq. 1 (Magwaza et al., 2013b). From consumer point of view, a 

fruit with high CI is found acceptable. 

 

CI = (1000 ∗ a) (L ∗ b)⁄         1 

 

Where CI is colour index, a is greenness, L is luminosity and b is the yellowness of the fruit. 
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2.4. Citrus fruit juice extraction 

Fruit were cut into two halves after which the juices were extracted using a commercial juicer 

(Mellerware, South Africa). Extracted juices were then sieved through 4-fold muslin clothes into 

specimen containers which were stored in -20 ºC for future analysis. 

 

2.4.1. Determination of TSS, TA, TSS to TA ratio and BrimA 

Total soluble solids were measured using a digital hand-held refractometer (Palette, Atago, Co. 

Limited, Japan). Titratable acidity was determined according to the method described by Rekha et 

al. (2012) with slight modification. Briefly, 20 mL of fruit juice was placed inside a beaker with 5 

drops of phenolphthalein added and then titrated with NaOH until a change of colour to pink, 

which signifies the endpoint was noticed. The ratio of TSS to TA and BrimA indices were 

calculated using Eqs, 2 and 3, respectively. 

 

TSS: TA ration = TSS/TA        2 

BrimA = TSS – k (TA)        3 

 

Where k is tongue sensitivity index which normality ranges between 2 and 10 (Jordan et al., 2001). 

k = 2 was used in this study which also avoided of negative values (Fawole and Opara, 2013). All 

destructive analyses were done on individual fruit samples. 

 

2.4.2. Extraction and quantification of soluble sugars 

Soluble sugars were extracted from fruit juice samples diluted 1:10 (v/v) with ultra-pure water as 

described by Zielinski et al. (2014) with modifications and determined according to Olarewaju et 
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al. (2017). Briefly, 2 mL of diluted sample juice was centrifuged at 15000 rpm (Himac Centrifuge, 

Hitachi Koki Co., Ltd., Tokyo, Japan) for 20 min. Concentration of sucrose, glucose and fructose 

was then quantified using an isocratic HPLC system equipped with a refractive index detector. A 

1 mL of diluted extract was injected into a Rezex RCM monosaccharide Ca+ (8%) column of 7.8 

mm diameter × 300 mm (Phenomenex, Torrance, CA, USA) with a SecurityGuardTM cartridges of 

4 mm × 3 mm (Phenomenex). The mobile phase used was ultra-pure HPLC-grade water at a flow 

rate of 0.6 mL/min with the column compartment temperature set at 80 °C using a thermos-stated 

column compartment (G1316A, Agilent). The presence and concentration of individual sugars 

were determined by comparing peak area of samples with peak area and concentration of a known 

sugar standard curve (0.05 – 1.25 mg/L; R2 = 0.99). 

 

2.4.3. Determination of sweetness index and total sweetness index 

Sweetness index and TSI were calculated using Eqs. 4 and 5, respectively according to Magwaza 

and Opara (2015). 

 

SI = (1.00 [glucose]) + (2.30 [fructose]) + (1.35 [sucrose])    4 

TSI = (1.00x[sucrose]) + (0.76x[glucose]) + (1.50x[fructose])   5 

 

2.5. Experimental layout and data analysis 

Experiments were laid out using a completely randomised design (CRD) with individual fruit as 

replicate. All statistical analyses were performed using GenStat® 18th Edition (VSN International, 

Hemel Hempstead, UK). Data was subjected to analysis of variance (ANOVA) with canopy 

position, production region and cold storage duration as factors. Season two (2016) data from MP 
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were treated as missing values and least significant difference (LSD) at 5% level was considered 

significant. 

 

3. Results and discussion 

3.1. Comparative effect of canopy position, cold storage, and production region on fruit 

appearance 

There were significant interactions between canopy position, production region and postharvest 

storage time for all colour parameters (p ≤ 0.05) except the interaction between canopy position 

and production region for L* (p = 0.511) and interaction between canopy position and production 

region for CI (p = 0.112) (Figure 2). Rind colour is an important attribute affecting fruit external 

appearance, consumer appeal and purchase decision (Khalid et al., 2012; Pathare et al., 2013). The 

L* values ranged between 79.2 and 80.0 for outside canopy (OC) fruit and between 78.9 and 81.8 

for inside canopy (IC) fruit from KZN province. Luminosity values ranged between 81.4 and 83.1 

for IC fruit and 80.0 and 81.1 for OC fruit from MP. Our data indicated that there was significant 

difference between canopy positions with IC fruit from MP province being more luminous than 

the OC fruit, which had steady decline in L* during cold storage (Figure 2A). However, this was 

contrary with fruit from KZN province. The a* (Figure 2B) and CI (Figure 2D) values of the fruit 

followed the same trends, with a* values increasing towards positive axis of the colour chart 

suggesting that the fruit colour were consistently changing from green to yellow colour. The 

greener rind colour of IC fruit at harvest indicated a reduced expression of carotenoids during colour 

development (Khalid et al., 2012; Cronje et al., 2013). Similar findings were reported in earlier 

studies (Cronje et al., 2011b; Khalid et al., 2012; Magwaza et al., 2014), where OC fruit from KZN 

had higher CI compared to that recorded for IC fruit, but lower in OC fruit from MP with gradual 
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declining trend in both orchards after postharvest cold storage (Figure 2D). It is suggested that the 

reduced intensity of sunlight reaching IC fruit caused the delayed colour change. 

 

External appearance in terms of fruit colouration is the first quality parameter assessed by potential 

consumers who have colour preference for a specific product (Crisosto et al., 2003; Leon et al., 

2006; Pathare et al., 2013) The yellowness (b*) (Figure 2C) values, which ranged from 58.3 to 

63.5 for IC fruit and 53.6 to 64.7 for OC fruit from KZN; and 51.9 to 62.5 for IC fruit and 54.1 to 

63.5 for OC fruit from MP province is an indication of fruit quality in the trade markets. The IC 

fruit from MP were less yellow compared to OC fruit. Similar observations were reported by 

Cronje et al. (2011a) who investigated the effect of canopy position on rind colour of ‘Nules 

Clementine’ mandarin and suggested the varying results could be related to the role of radiation 

and temperature during pigment production. Similar results of development of desirable yellow 

colour during cold storage were also reported by Magwaza et al. (2013a) who investigated how 

canopy position affected rind biochemical profile of ‘Nules Clementine’ mandarin. Despite the 

variability observed, rind colour of all fruit developed more desirable yellow colour during 

postharvest storage with no incidence of non-chilling rind physiological disorders. 

 

3.2 Effect of canopy position, cold storage, and location on physicochemical properties 

Physicochemical properties such as TSS, TA and TSS/TA are vital indices commonly used to 

determine citrus fruit maturity and quality in the industry (Cheong et al., 2012). Contrary to 

expectation, canopy position had no significant effect on TSS (p = 0.914) but had highly significant 

effect on TA and TSS/TA (p < 0.001) (Figure 3). Postharvest storage time and production region 

had highly significant effect on TSS, TA and TSS/TA (p < 0.001). A significant interaction 
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occurred between canopy position, postharvest storage time and production region for the internal 

quality parameters (p < 0.001). Generally, the flavour of a fruit relies greatly on TSS, TA and 

TSS/TA because they determine the overall sensory quality of stored fruit (Mattheis and Fellman, 

1999; Sun et al., 2012). Titratable acidity was higher in OC fruit (3.02%) than IC fruit (2.78%) at 

week 0 for fruit from KZN. However, at weeks 3, 6 and 9, TA in OC fruit became lower than IC 

fruit from KZN, while IC fruit generally had higher TA than OC fruit throughout the entire period 

of cold storage for fruit from MP province (Figure 3B). 

 

The TSS/TA ratio is a suitable means of determining fruit maturity and quality, since TA usually 

degrades (because of the catabolism of citric acid) when there is concurrent accumulation of sugars 

(TSS) (Legua et al., 2011; Navarro et al., 2015). In this study, canopy position influenced the 

TSS/TA ratio such that fruit from OC generally had higher TSS/TA than those from IC for fruit 

from both production regions after cold storage (Figure 3C). However, IC fruit had a higher 

TSS/TA (3.88%) than OC fruit (3.24%) at week 0 for fruit from KZN. However, as storage 

progressed the differences shifted to a higher TSS/TA ratio in OC fruit compared to IC fruit as 

shown in Figure 3C. 

 

3.3 BrimA as a measure of internal fruit quality 

The study also evaluated the potential of BrimA as an adoptable parameter for measuring internal 

quality of grapefruit. For fruit from MP, BrimA was consistently higher in OC fruit than in IC fruit 

throughout cold storage. This suggests better flavour in OC fruit than IC fruit (Figure 3D). 

However, for fruit from KZN, results were more inconsistent throughout cold storage. BrimA was 

higher in IC fruit than OC fruit, with a reversed pattern at weeks 6 and 9 (Figure 3D). The 
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inconsistent results could be attributed to exposure of fruit to different regional climates as 

indicated in Figures 1A and 1B. The amount of rainfall (Figure 1A) was exceptionally higher with 

lower relative humidity (Figure 1B) in KZN than in MP during the month of harvest (May 2016). 

 

The correlation factors between BrimA and other internal quality parameters of ‘Marsh’ grapefruit 

from both production regions were tested and as expected, there was a strong positive correlation 

between TSS/TA and BrimA (r = 0.94) (Table 1). There was also a moderate positive correlation 

between BrimA and TSS (r = 0.65) while there was a negative relationship between BrimA and 

TA (r = -0.65). These results suggest the potential of BrimA as a parameter for measuring quality 

of ‘Marsh’ grapefruit. However, further research involving sensory (especially flavour) evaluation 

would be required to confirm the association between BrimA and consumer acceptability for 

grapefruit as earlier suggested by Jordan et al. (2001) and Obenland et al. (2009), who found 

BrimA to be more related to flavour. 

 

3.4 Effect of canopy position, cold storage, and production region on soluble sugars 

The interaction between the three factors, canopy position, production region and postharvest 

storage time was also significant (p < 0.001). The effect of canopy position was evaluated on three 

major non-structural carbohydrate components of ‘Marsh’ grapefruit juice. The carbohydrates 

included fructose, glucose, and sucrose. Similarly, Canopy position had significant effects on both 

glucose and sucrose (p < 0.001) but not on fructose (p = 0.955) (Figure 4). Results indicated that 

glucose was more concentrated for IC fruit than OC fruit from both regions at week 0. However, 

concentration was inconsistent over the storage period. At week 6, glucose concentrations in fruit 

from KZN were higher in OC fruit than in IC fruit, whereas in fruit from MP, glucose 
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concentrations were higher in IC fruit than OC fruit (Figure 4B). An early report shares some 

similarities on sugar concentrations in ‘Pumelo’ grapefruit by Sun et al. (2012), in which fructose 

and glucose concentrations in the juice of ‘Marsh’ grapefruit were fundamentally steady at 

different stages of postharvest cold storage. However, concentrations of sucrose in the juice 

declined over the storage periods, especially on week 9 (Figure 4C), which agrees with previous 

reports by Magwaza et al. (2013a) in the rind of ‘Nules Clementine’ mandarin and Holland et al. 

(2005) in two orange cultivars, ‘Navelate’ and ‘Pinalate’, stored at 2 and 12 °C. 

 

3.5 Effect of canopy position, cold storage, and location on sweetness index and total 

sweetness index 

Consumer preference for quality fruit is largely determined by organoleptic properties especially 

taste. Determining consumer acceptability of horticultural produce using sweetness index (SI) and 

total sweetness index (TSI), which are proportion of individual sugar components (sucrose, 

fructose, and glucose) has been suggested (Beckles, 2012). The canopy position, production region 

and postharvest storage time had significant effect on SI and TSI of ‘Marsh’ grapefruit (p < 0.001). 

Similarly, interaction between these factors also had significant effect on the parameters (p ≤ 0.05). 

At week 0, the SI value for IC fruit (12.45, 12.50) was higher than OC fruit (11.50, 11.53) from 

KZN while the opposite was found for fruit from MP province (Figure 5A). Fruit from MP 

consistently increased in taste quality as indicated by SI during postharvest for IC and OC fruit 

with sudden increase at week 6 to its peak and then a decline at week 9 suggesting the beginning 

of senescence. The TSI followed similar trends with SI (Figure 5). Therefore, it could be 

hypothesised that production region plays a significant role in the physiological response of 
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‘Marsh’ grapefruit in either canopy position. Although OC fruit are potentially higher in quality 

due to their exposure to higher levels of sunlight (Rosales et al., 2011). 

 

4. Conclusions 

This study has shown the effects of canopy position on physicochemical properties of ‘Marsh’ 

grapefruit at harvest and after 3, 6 and 9 weeks of cold storage. Canopy position effects appeared 

highly dependent on production region both at harvest and after cold storage. Physicochemical 

properties affected by canopy position included rind colour (L*, a*, b*), TA, TSS/TA, BrimA, 

concentrations of glucose and sucrose, SI and TSI. The effect of canopy position effect on TSS 

and fructose concentration was negligible. Also, there were strong interactions between canopy 

position, region, and storage time. Production region also influenced the physiological 

performances of fruit and there were strong interactions between canopy position, production 

region, and storage time. BrimA also demonstrated potential for use as a maturity indicator for 

grapefruit. With such contrasting results, which could possibly be attributed to rootstock and 

climate differences from the two regions further studies are suggested to validate these findings. 
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Figure 1: Rainfall (A), relative humidity (B), maximum temperature and minimum temperature (C) registered during 2015 and 2016 seasons 

in KwaZulu-Natal (KZN) and Mpumalanga (MP) provinces. 

(Source: South African Weather Services) 
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Figure 2: Effect of canopy position (inside canopy (IC) and outside canopy (OC)), on luminosity (L*) (A), greenness (a*) (B), yellowness (b*) 

(C) and colour index (D) of ‘Marsh’ grapefruit from KwaZulu-Natal (KZN) and Mpumalanga (MP) provinces during postharvest non-chilling 

storage (Weeks 0, 3, 6 and 9). 

LSD: least significant difference; P: canopy position; T: postharvest storage time; S: production region; * stands for an interaction between 

factors, vertical bars represent standard error. 
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Figure 3: Effect of canopy position (inside canopy (IC) and outside canopy (OC)) on total soluble solids (A), titratable acidity (B), total soluble 

solids/titratable acidity (C) and BrimA (D) of ‘Marsh’ grapefruit from KwaZulu-Natal (KZN) and Mpumalanga (MP) provinces during 

postharvest non-chilling storage (Weeks 0, 3, 6 and 9).  

LSD: least significant difference; P: canopy position; T: postharvest storage time; S: production region; * stands for an interaction between 

factors, vertical bars represent standard error. 
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Figure 4: Effect of canopy position (inside canopy (IC) and outside canopy (OC)) on fructose (A), glucose (B) and sucrose (C) of ‘Marsh’ 

grapefruit juice content from KwaZulu-Natal (KZN) and Mpumalanga (MP) provinces during postharvest non-chilling storage (Weeks 0, 3, 6 

and 9).  
LSD: least significant difference; P: canopy position; T: postharvest storage time; S: production region; * stands for an interaction between factors, 

vertical bars represent standard error. 
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Figure 5: Effect of canopy position (inside canopy (IC) and outside canopy (OC)) on sweetness index (A) and total sweetness index (B) of 

‘Marsh’ grapefruit from KwaZulu-Natal (KZN) and Mpumalanga (MP) provinces during postharvest non-chilling storage (Weeks 0, 3, 6 and 

9).  
LSD: least significant difference; P: canopy position; T: postharvest storage time; S: production region; * stands for an interaction between factors, 

vertical bars represent standard error. 
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Table 1: Correlation coefficients between internal quality indices of both inside and outside canopy fruit from two production regions 

(KwaZulu-Natal and Mpumalanga Provinces) of citrus fruit in South Africa 

Parameters  BrimA (%) TSS (°Brix) TSS/TA 5 TA (%) 

BrimA (%) -    

TSS (°Brix) 0.6488 -   

TSS/TA (%) 0.9364 0.3925 -  

TA (%) -0.6534 0.1521 -0.8257 - 

Bold value indicates the strong correlation between BrimA and TSS/TA. 

TSS: total soluble solids; TA: titratable acidity. 
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CHAPTER 4 

EFFECT OF CANOPY POSITION ON RIND BIOCHEMICAL PROPERTIES OF 

‘MARSH’ GRAPEFRUIT DURING POSTHARVEST COLD STORAGE AT NON-

CHILLING TEMPERATURE* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Submitted and formatted according Scientia Horticulturae (Under review). 
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Abstract 

A two-year trial was conducted to evaluate the influence of fruit position within tree canopy on 

biochemical properties of ‘Marsh’ grapefruit rind. The study was done in relation to the 

development of rind pitting during postharvest non-chilling cold storage. Fruit from inside canopy 

(IC) and outside canopy (OC) were harvested at commercial maturity in May 2015 and 2016 from 

KwaZulu-Natal (KZN) and Limpopo (LMP) in South Africa. Analyses were performed on 

grapefruit rind after harvest (week 0) and after 3, 6 and 9 weeks of non-chilling cold storage at 7.5 

± 0.5 °C. Colour indices were measured using calibrated chromameter while total phenolic 

concentration was determined by Folin Ciocalteu method. Canopy position showed a significant 

(p < 0.001) effect on parameters such as colour index (CI), total carotenoid content, fructose, 

sucrose, total flavonoid concentration, and radical-scavenging activities. Reducing sugars 

(fructose and glucose) were more concentrated in IC fruit harvested from both production region 

than OC fruit at weeks 0 and 3 but inverse results occurred at weeks 6 and 9. Canopy position 

showed no significant (p > 0.05) effect on vitamin C content of the fruit rind. However, production 

region significantly (p < 0.001) influenced vitamin C (14.4, 14.2, 14.4, 14.8 mg /g DW) and (12.3, 

16.1, 15.9, 14.6 mg /g DW) of fruit rind at weeks 0, 3, 6, and 9 from KZN and LMP, respectively. 

Furthermore, vitamin C had a strong negative but significant correlation with fructose (r = 0.68), 

glucose (r = 0.66) and sucrose (r = 0.63). This study revealed that both canopy position and 

production region can influence biochemical properties of ‘Marsh’ grapefruit rind.  

 

Keywords: Citrus, Colour, Physiological rind disorder, Radical-scavenging activities, Sugars, 

Vitamin C. 
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1. Introduction 

‘Marsh’ grapefruit (Citrus paradisi Macfadyen) are widely cultivated in many part of the world 

including South Africa, United States of America and Israel (Vacante, 2009) for its high nutritional 

and medicinal properties (Kiani and Imam, 2007). However, incidence of rind physiological 

disorder at non-chilling temperatures such as rind pitting causes severe economic losses to fruit 

growers because the disorder affects the sub-epidermal cells of the fruit surface which invariably 

compromise the external appearance of the fruit (Agustí et al., 2001; Alférez et al., 2005, 2003; 

Lafuente and Sala, 2002). Fruit appearance plays a crucial role in the fresh fruit market because it 

influences consumer buying decision (Pathare et al., 2013). That is, a fruit without rind pitting 

disorder is largely preferred compared to fruit with the disorder. More importantly, rind disordered 

fruit is often rejected by consumers in the market even though its internal quality is not 

compromised by the disorder (Agustí et al., 2001).  

 

Biotic and abiotic factors during preharvest and postharvest life influence rind disorders, but it has 

been problematic to associate a definite inductive factor to a postharvest rind disorders. This is 

because different factors can induce similar symptomology in fruit (Alférez and Burns, 2004; 

Grierson, 1986). Despite various scientific studies by researchers to understand the primary factor 

triggering the disorder, the subject is still unknown. Meanwhile, rind biochemical properties such 

as carbohydrates and phytochemicals such as total phenolic and total flavonoids concentrations, 

and vitamin C have been reported to play critical roles in the response of citrus fruit rind to 

postharvest physiological stresses (Cronje et al., 2011a; Magwaza et al., 2013a). These stresses 

manifest as various types of physiological disorders on different citrus cultivars under various 

postharvest storage conditions. These include peel or rind pitting (Alférez and Burns, 2004), rind 
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breakdown (Magwaza, 2013) and chilling injury (Alférez et al., 2005). Similarly, canopy position, 

which determines varying intensity of sunlight and other abiotic factors reaching different 

positions of tree canopy affects the physiological activities and biochemical properties of the fruit 

rind (Cronje et al., 2011a; Magwaza et al., 2014; Syvertsen and Albrigo, 1980). Canopy positions 

have been found to affect the biochemical properties of citrus fruit rinds such as ‘Nules clementine’ 

mandarin fruit thereby influencing its outward appearance (Cronje et al., 2013; Magwaza et al., 

2013a). Therefore, possible link among canopy position, rind soluble sugars and rind breakdown 

of mandarin citrus fruit was suggested by Cronje et al. (2011b). However, limited research has 

been conducted to investigate the effect of canopy position on rind biochemical properties of 

‘Marsh’ grapefruit in relation to the incidence of rind pitting disorder. Therefore, the aim of this 

study was to investigate the effect of canopy position and production region on the biochemical 

properties of ‘Marsh’ grapefruit rind during postharvest cold storage in relation to rind pitting.  

 

2. Materials and methods 

2.1. Reagents and standards 

All chemicals including Sodium Hydroxide (NaOH), Folin-Ciocalteu reagent, metaphosphoric 

acid (MPA), sodium carbonate, gallic acid, quercetin, vitamin C, 2, 6 dichloroindophenol dye, 2,2-

diphenyl-1-picrylhydrazyl (DPPH), acetone, ethanol (HPLC grade) and sugars standards (sucrose, 

D-glucose, and D-fructose) were purchased from Sigma-Aldrich Company Ltd. (Dorset, UK). A 

Phenomenex® column (Rezex RCM - Monosaccharide) was used in the analyses. Water was 

purified in a Milli-Q Integral Water Purification System (Merck Millipore corporation, Billerica, 

MA, USA; σ = 18 M Ω cm−1). 
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2.2. Plant materials 

Experiments were conducted using ‘Marsh’ grapefruit budded on ‘Troyer’ Citrange ([Poncirus 

trifoliata (L.) Raf.] × [C. sinensis]) and x 639 ([Poncirus trifoliata (L.) Raf.] × [C. reshni]) 

rootstocks planted in 1993 on Bolton Citrus Farm, KwaZulu-Natal (KZN) (31° 34′ 44″ S, 28° 44′ 

59″ E) and Olifant Rivers Farm, Limpopo (LMP) (32° 75′ 28″ S, 35° 89′ 31″ E) provinces, 

respectively. Three fruit per canopy position were harvested from a height of 1-2 m of 50 uniform 

sized trees, from each orchard, at commercial maturity over two 2015 and 2016 seasons. The 

canopy positions were inside canopy (IC), that is fruit exposed to less than 80% of full sunlight, 

and outside canopy (OC), fruit exposed to 90-100% of full sunlight, of a fruit tree as described by 

Cronje et al. (2011b). The rainfall (mm), relative humidity (%), maximum and minimum 

temperature (°C) registered during the growing seasons in KZN and LMP provinces are displayed 

in Table 1. After harvesting, fruit were transported within 48 h at ambient temperature in ventilated 

cartons to horticultural research laboratory where fruit were washed and sorted for blemishes and 

fruit damage. Fruit were left for 24 h at room temperature 20 ± 1 ºC to equilibrate after which fruit 

were labelled, weighed, and transferred into cold storage (7.5 ± 0.5ºC) for 9 weeks. Ten individual 

fruit using one fruit per replicate were analysed at 3 weeks interval for 9 weeks (weeks 0, 3, 6 and 

9). 

 

2.3 Rind colour measurement 

Rind colour of remainder fruit was measured at three equidistant points around the equatorial axis 

of each fruit using a chromameter (Konica Minolta NR 4000, Osaka, Japan) after calibration using 

a standard white tile (CR-A43; Y = 93.1, x = 0.3138; y = 0.3203) (Pathare et al., 2013; Terry et 

al., 2007). Measurements were performed at three weeks’ interval for nine weeks of cold storage. 
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Colour indices measured included luminosity (L*), greenness (a*), and yellowness (b*) while 

colour index (CI) was calculated using Eq. 1 (Magwaza et al., 2013b). From consumer point of 

view, a fruit with high CI is found acceptable. 

 

CI = (1000 ∗ a) (L ∗ b)⁄         1 

 

Where CI is colour index, a is greenness, L is luminosity and b is the yellowness of the fruit. 

 

2.4. Sample preparation 

The rind was manually peeled off the fruit using table knife, snap frozen in liquid nitrogen and 

stored at -80 °C before freeze-drying over a period of three days using Virtis Benchtop freeze drier 

system (ES Model, SP Industries Inc., Warmister, USA) at 0.015 kPa and -75 °C. Dry matter (DM) 

was calculated by subtracting the mass of the freeze-dried samples from fresh samples and 

expressed as percentage DM. Dried samples were then milled into a fine powder using pestle and 

mortar and stored in -20 °C for further analysis. 

 

2.5. Determination of total carotenoid content 

Total carotenoid content was determined according to Lichtenthaler (1987) with slight 

modifications. The lyophilized sample (150 mg ± 0.5) was weighed into test tube followed by the 

addition of 2 mL of 80% (v/v) acetone before centrifugation for 10 min using GenVac® (SP 

Scientific, Genevac LTD., Suffolk, UK). The absorbance values of the supernatants were read at 

470, 646.8, and 663.2 nm using Ultraspec UV-1800 Spectrophotometer (Shimadzu Scientific 
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Instruments, Inc., Columbia, USA) for maximum detection of carotenoids, chlorophyll a and b and 

total carotenoid content were calculated using Eqs. 1, 2, and 3, respectively 

 

Ca = 12.25 A 663.2 – 2.79 A646.8       1 

Cb = 21.50 A646.8 – 5.10 A663.2        2 

Cc = (1000 A470 – 1.82 Ca – 85.02 Cb)/198      3 

 

Where Ca is chlorophyll a, Cb is chlorophyll b and Cc is total carotenoid content. 

 

2.6. Extraction and determination of rind soluble sugars  

Soluble sugars were extracted from 150 ± 0.5 mg of the lyophilized sample using 62.5% (v/v) 

aqueous methanol as described by Magwaza et al. (2014b) and modified by Olarewaju et al. 

(2017). Extracts were then diluted in ultra-pure water (1:10). The concentration of fructose, 

glucose, and sucrose were then quantified using an isocratic HPLC binary pump system (Agilent 

Technologies, UK) equipped with a refractive index detector. Diluted extract (1 mL) was injected 

into a Rezex RCM monosaccharide Ca+ (8%) column of 7.8 mm diameter × 300 mm 

(Phenomenex, Torrance, CA, USA) with a SecurityGuardTM cartridges of 4 mm × 3 mm 

(Phenomenex). The mobile phase used was ultra-pure HPLC-grade water at a flow rate of 0.6 

mL/min with the column compartment temperature set at 80 °C using a thermos-stated column 

compartment (G1316A, Agilent). The presence and concentration of individual sugars were 

determined by comparing peak area of samples with peak area and concentration of a known sugar 

standard curve (0.05 – 1.25 mg/L; R2 = 0.99). 
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2.7. Sample extraction for total phenolics and flavonoid analyses  

Extraction was carried out according to modified method of Moo-Huchin et al. (2015) by 

Olarewaju et al. (2017). Briefly, a lyophilized sample of 150 mg ± 0.5 mg was weighed into a test 

tube and 3 mL of 50:50 (ethanol: water) v/v was added. The test tube, covered with aluminium 

foil, containing the mixture was subsequently placed in a shaking water bath (Gesellschaft für 

(GFL), Labortechnik mbH, Burgwedel, Germany) at 70 °C for 2 hrs, while a sample was removed 

and vortexed for 20 s at every 30 min interval. Sample were left to cool to room temperature, then 

centrifuged for 10 min using a GenVac® (SP Scientific, Genevac LTD., Suffolk, UK), and filtered 

using 0.45 µm nylon filter. Extracts were stored at -20 °C for further analysis of total phenolic and 

total flavonoid concentrations. 

 

2.7.1 Determination of total phenolic concentrations 

Extracts were analysed according to modified method of Moo-Huchin et al. (2015) by Olarewaju 

et al. (2017) for total phenolic concentration. Briefly, sample extract (10 µL) was measured into a 

4.5 mL disposable cuvette in triplicate followed by the addition of 1.6 mL of distilled water, Folin-

Ciocalteu reagent (100 µL) and 300 µL of sodium carbonate solution. The solution was mixed and 

incubated in the dark at room temperature for 2 h before the absorbance was measured at 765 nm 

using Ultraspec UV-1800 Spectrophotometer (Shimadzu Scientific Instruments, Inc., Columbia, 

USA). Gallic acid was used to generate a standard curve and total phenolic concentrations were 

expressed as mg gallic acid equivalent (GAE) /g DM. 
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2.7.2. Determination of total flavonoid concentrations 

Extracts were analysed for total flavonoid concentration according to modified method of Lin and 

Tang (2007) by Olarewaju et al. (2017). Briefly, extract (100 µL) was measured into a 4.5 mL 

disposable cuvette followed by the addition of 3 mL of sodium hydroxide solution. The mixture 

was agitated and incubated at room temperature for 10 min. Absorbance was measured in triplicate 

at 420 nm using a Ultraspec UV-1800 Spectrophotometer (Shimadzu Scientific Instruments, Inc., 

Columbia, USA). Quercetin was used to generate a standard curve and total flavonoid 

concentration was expressed as mg quercetin equivalent (QTE) /g DM. 

 

2.8. Sample extraction for determination of vitamin C and radical-scavenging activities 

Extraction was carried out according to a method of Karioti et al. (2004) and Olarewaju et al. 

(2017). A lyophilized sample of 150 mg ± 0.5 mg was measured into a test tube followed by the 

addition of 5 mL of 3% MPA and incubated on ice cubes for 5 min. The extract was centrifuged 

for 20 min using GenVac® (SP Scientific, Genevac LTD., Suffolk, UK). The supernatant was 

stored in -20 °C for further analysis of vitamin C and DPPH radical-scavenging activities. 

 

2.8.1. Determination of Vitamin C 

Vitamin C was determined according to Olarewaju et al. (2017). Briefly, supernatant (0.5 mL) was 

measured into a test tube followed by the addition of 2.5 mL of 0.005% of 2, 6 dichloroindophenol 

dye. The mixture was incubated in the dark for 10 min at room temperature. Absorbance was read 

in triplicate at 515 nm against a 3% MPA solution blank under dim light using Ultraspec UV-1800 

Spectrophotometer (Shimadzu Scientific Instruments, Inc., Columbia, USA) and the amount of 

vitamin C was calculated from a linear standard curve (0.00 – 100.00 µg/g; R2 = 0.96). 
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2.8.2. Determination of radical-scavenging activities 

Determination of radical-scavenging activities using DPPH assay was carried out according to 

Karioti et al. (2004) with modifications according to Olarewaju et al. (2017). Briefly, supernatant 

(20 µL) were measured into 4.5 mL disposable cuvette followed by the addition of 800 µL of 

methanol. One millilitre of 0.1 mM DPPH solution was added, vortexed and incubated in the dark 

at room temperature for 60 min. Absorbance was read in triplicate at 517 nm against a blank 

(absolute methanol) under dim light using Ultraspec UV-1800 Spectrophotometer (Shimadzu 

Scientific Instruments, Inc., Columbia, USA) against the 3% MPA and radical-scavenging 

activities were calculated by the percentage of DPPH that were scavenged using the Eq. 4. 

 

Radical-scavenging activities (%) = (1 – AE/AD) x 100    4 

Where AE is the absorbance of the reaction mixture containing the standard antioxidant, or extract 

and AD is absorbance of the DPPH solution only. 

 

2.9 Statistical analysis 

Experiments were laid out using a completely randomized design (CRD) with individual fruit as 

replicate. All statistical analyses were performed using GenStat® 18th Edition (VSN International, 

Hemel Hempstead, UK). Data were subjected to analysis of variance (ANOVA) with canopy 

position, season, production region and cold storage time as factors. Least significant difference 

(LSD) at 5% level was considered significant. 
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3. Results and discussion 

3.1. Effect of canopy position on rind colour and pigments  

The interaction between canopy position and production region was statistically not significant. 

However, the analysis of variance revealed that canopy position had a highly significant (p < 

0.001) effect on the greenness (a*), yellowness (b*), and colour index (CI) while effect on 

luminosity of the rind during the entire period of cold storage (L*) was not significant (p = 0.118). 

Production region showed significant (p < 0.05) effect on rind colour indices during postharvest 

cold storage. Similarly, canopy position and production region significantly (p < 0.05) affected 

rind pigments (Ca, Cb and Cc) of the fruit during the period of cold storage. The a*, CI and 

chlorophylls a and b followed similar pattern during the period of cold storage except at week 6 

where inverse results occurred. These parameters, which measure the disappearance of 

chlorophylls a and b, and hence, greenness (a*) during cold storage showed consistent 

transformation of the rind colour from green to yellow. The yellow colour encourages purchase of 

the fruit at the markets. Although not statistically significant, OC fruit (-5.80 and -4.27) from KZN 

were greener than IC fruit (-5.38 and -3.86) at week 0 and after week 3 of cold storage, respectively 

(Figure 1B). However, inverse results were obtained after weeks 6 and 9 of cold storage, with IC 

fruit (-4.75 and -2.50) being significantly greener in colour than OC fruit (-4.06 and -0.71), 

respectively (Figure 1B). The inconsistency nature of these results could be attributed to colour 

measurements being taken at different points along the equator axis of the fruit. For fruit from 

LMP, a progressive decline in greenness occurred during cold storage. Inside canopy fruit (-8.44, 

-8.54, -6.37 and -4.96) were significantly greener than OC fruit (-7.96, -6.33, -4.38 and -3.10) at 

weeks 0, 3, 6 and 9, respectively (Figure 1B) while OC fruit were yellower (Figure 1C). This 

concurred with report by Cronje et al. (2013) where OC fruit developed a more intense orange 
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colour (for ‘Nules Clementine’ mandarin) than IC fruit after the colour break. This indicates that 

sunlight contributes to rind colour development of the fruit. Like a* of the fruit rind, a significantly 

higher Ca pigment occurred in OC fruit (-6.00, -6.53, and -5.49 µg/g DW) than IC fruit (-5.30, -

5.00 and -4.51 µg/g DW) from KZN at week 0 and after weeks 3 and 6, respectively (Figure 2A). 

Also, lower Ca pigment occurred in OC fruit (-5.08, -2.73, and -1.98 µg/g DW) than IC fruit (-

5.63, -5.01, and -3.02 µg/g DW) from LMP at week 0 and after weeks 3 and 9 of cold storage, 

respectively (Figure 2A). These results further indicated that exposure of fruit to sunlight 

encourages better rind colouration. Generally, the disappearance of the chlorophyll is primarily 

due to the synthesis of carotenoids (Cronje et al. 2013). Total carotenoids, the pigment responsible 

for the development of the attractive colour (yellow) of the rind that encourages consumer purchase 

of grapefruit, followed an inconsistent pattern during the period of cold storage (Figure 2C). 

However, significantly higher results occurred in IC fruit (10.86 and 9.25 µg/g DW) than OC fruit 

(8.37 and 6.76 µg/g DW) from KZN at weeks 0 and 9, respectively (Figure 2C). Total carotenoids 

in inside canopy fruit (11.13 and 7.76 µg/g DW) from LMP were significantly higher than OC 

fruit (6.78 and 4.14 µg/g DW) at weeks 6 and 9 after cold storage, respectively (Figure 2C). This 

is contrary to the results of Cronje et al. (2013) who reported lower total carotenoid concentration 

of IC fruit than OC fruit. However, this could be because of the differences in eventual colour of 

the fruit investigated. 

 

3.2. Effect of canopy position on non-structural carbohydrates 

Sucrose, glucose, and fructose were the three main non-structural carbohydrates evaluated. The 

carbohydrates were significantly (p ≤ 0.05) affected by canopy position and production region. 

Overall, carbohydrates were significantly higher in IC fruit than OC fruit during the entire period 
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of cold storage with some deviations (Figures 3A-C). In the case of fruit from KZN, reducing 

sugars (fructose and glucose) were more concentrated in IC fruit (284.5 and 205.9 mg/g DW) than 

OC fruit (238.9 and 156.4 mg/g DW), respectively at week 0 and barely increased during the period 

of cold storage. This was in contrast with Magwaza et al. (2013a) who reported higher 

concentration of the sugars in ‘Nules Clementine’ mandarin rind from OC than IC but agreed with 

the results obtained for fruit harvested from LMP, which indicated the influence of production 

region. These reducing sugars (fructose and glucose) became significantly more concentrated in 

OC fruit (263.0 and 91.9 mg/g DW) than IC fruit (222.9 and 177.5 mg/g DW), respectively from 

LMP region after week 9 of cold storage (Figures 3A and 3B). The contrasting results obtained for 

IC and OC fruit from both production regions indicated the influence of either agro-climatic 

conditions or rootstock used in the respective orchards from which fruit were harvested. 

 

Generally, the non-reducing sugar (sucrose) declined regardless of production region over the 

period of cold storage in fruit from both canopy positions. This agreed with the declining trends in 

sucrose concentration reported in literature for ‘Nules Clementine’ mandarin stored at 7.5 °C 

(Magwaza et al., 2013a), ‘Navelate’ (stored at 2 °C), Pinalate’ (stored at 12 °C) oranges (Holland 

et al., 2002) and peach fruit stored at 5 °C (Yu et al., 2016). While difference in concentration of 

sucrose in IC and OC fruit from both regions were not statistically significant at week 0, 

concentration of sucrose in IC fruit, 74.4 and 55.4 mg/g DW, became significantly higher than OC 

fruit, 21.7 and 26.2 mg/g, from KZN at weeks 3 and 6 of cold storage, respectively (Figure 3C). 

 

Previous studies have indicated that non-structural carbohydrates such as sucrose, fructose and 

glucose are important sources of energy that contribute to rind quality of fruit (Cai et al., 2015). 
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These carbohydrates also enhance resistance to fruit stress (Der Agopian et al., 2011) and 

neutralise oxidative challenge during abiotic stress in plants (Keunen et al., 2013). Further studies 

have also revealed that sugars play a role in biosynthesis of phytochemicals such as vitamin C 

which is a good antioxidant that protects plants against physiological disorders (Wei et al., 2017). 

Hence, it could be deduced from this study that the high concentration of sugars contributed 

towards the inhibition of rind pitting development on the fruit during the period of cold storage. 

 

3.3. Effect of canopy position on phytochemicals, vitamin C and radical-scavenging 

activities 

Figure 4 shows the effect of canopy position and production region on phytochemicals, vitamin C 

and radical-scavenging activities of grapefruit rind at week 0 and after weeks 3, 6 and 9 of non-

chilling cold storage. Although production region showed significant (p < 0.05) effects on 

phytochemicals, vitamin C and radical-scavenging activities, canopy position had no significant 

effect on vitamin C (p = 0.917; Figure 4C). On the contrary, a higher concentration of vitamin C 

was reported in OC fruit than IC fruit by Magwaza et al. (2013a) and Magwaza (2013) which was 

speculated to increase the fruit tolerance to rind breakdown of ‘Nules Clementine’ mandarin. 

These discrepancies could be because different type of citrus fruit was used in the study In this 

study, vitamin C was higher in fruit from KZN (14.41 mg/g DW, than fruit from LMP, 12.64 mg/g 

DW at week 0 but became lower in fruit from KZN, 14.19 and 14.43 mg/g DW) than LMP (16.13 

and 15.85 mg/g DW) after cold storage at weeks 3 and 6, respectively (Figure 4C). It was 

speculated that storage temperature play a role in the response of fruit rind in the production of 

vitamin C concentration as observed in fruit from both regions.  
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The concentration of vitamin C was significantly higher in fruit from KZN (14.41 mg/g DW) than 

fruit from LMP (12.64 mg/g DW) at week 0 (Figure 4C). However, a reverse trend occurred 

postharvest with higher concentration occurring in fruit from LMP (16.13 and 15.85 mg/g DW) 

than fruit from KZN (15.85 and 14.43 mg/g DW) at weeks 3 and 6, respectively. The effects of 

canopy position on total flavonoid concentration (Figure 4B) and radical-scavenging activities 

(Figure 4D) were highly significant (p < 0.001). Total phenolic and total flavonoid concentrations 

followed similar trends with significant higher concentrations in IC fruit (2.96 mg GAE /g and 

5.45 mg QTE /g) than OC fruit (2.31 mg GAE /g and 4.31 mg QTE /g) from LMP at week 0 while 

differences in the concentration of IC and OC fruit from KZN were not significant (Figures 4A 

and 4B). The former was in accordance with Magwaza et al. (2014b) who reported a higher 

concentration of total phenolics in the rind of bagged and IC ‘Nules Clementine’ mandarin fruit 

than OC fruit. However, this contradicts McDonald et al. (2000), who reported higher levels of 

phenols and flavanols in the rind of OC ‘Marsh’ grapefruit than IC fruit. The similarity in the result 

of total phenolic and flavonoid concentrations were not surprising since flavonoid is a major 

phenolic group contributing to the total phenolic concentration in the rind of a fruit (Fawole et al., 

2012). The role of sunlight as contributing factor to the synthesis of phenolics was suggested by 

Awad et al. (2001). This could indicate that fruit from both canopy positions received enough 

sunlight for the synthesis of total phenolic concentrations, which could have acted as a defence 

mechanism against possible incidence of physiological disorder such as rind pitting. Furthermore, 

it was expected that total phenolic and total flavonoid concentrations would be higher in the OC 

fruit since the photosynthetically active radiation (PAR) in the OC is known to stimulate the 

synthesis of phenylalanine ammonialyase which induces the production of phenols such as 

phytoalexins (Ben Yehoshua et al., 1992). However, the reason for the inconsistencies was not 
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tested in this study but could possibly be attributed to preharvest cultural practices of the farm 

from which fruit were harvested or postharvest abiotic stress. As previously reported in literature 

(Contreras-Oliva et al., 2011; Del Caro et al., 2004), the concentration of total phenolics and total 

flavonoids generally increased during the postharvest cold storage of the fruit (Figures 4A and 

4B). The increased concentrations could be due to the stimulation of phenylalanine ammonialyase 

activity during cold storage increasing the ability of the grapefruit rind to prevent the incidence of 

postharvest disorders such as rind pitting. 

 

Using radical-scavenging activities of 50% as basis for good activity, good radical-scavenging 

activities were exhibited by IC and OC fruit from both production regions (Figure 4D). Although 

not significant at weeks 0 and 9, the mean values of IC fruit (56.38 and 74.96%) were higher than 

OC fruit (55.56 and 73.86%) from KZN while OC fruit (65.90 and 71.49%) were higher than IC 

fruit (59.49 and 67.32%) from LMP. At week 3, IC fruit (68.87%) were significantly higher than 

OC fruit (61.04%) from LMP while IC fruit (68.35%) were significantly lower than OC fruit 

(76.13%) from KZN at week 6 (Figure 4D). Previous studies have revealed that the antioxidant 

species plays a role in the incidence of different postharvest physiological rind disorders such as 

non-chilling rind pitting in ‘Navelate’ oranges (Cajuste and Lafuente, 2007). In retrospect, the lack 

of physiological rind disorders in IC and OC fruit from both production region suggests that the 

defence mechanisms of the fruit to stress were sustained during cold storage. 

 

3.4. Correlation analyses 

Correlation tests indicated a significant (p < 0.05) strong relationship between certain investigated 

parameters, as presented in Table 2. A strong and negative relationship was revealed between 
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sucrose and luminosity (r = -0.845) while moderate but negative correlations related sucrose with 

greenness (r = -0.537), yellowness (r = -0.450), chlorophyll b (r = -0.503), and total carotenoids 

(r = 0.465). Correlation between reducing sugars (fructose and glucose) was positively strong (r = 

0.869) while sucrose had a moderate but positive correlation with fructose (r = 0.515) and glucose 

(r = 0.505). Furthermore, sucrose shared negative correlation with total phenolic concentration (r 

= -0.533), vitamin C (r = -0.631), and radical-scavenging activities (r = -0.627), and hadpositive 

correlation with total flavonoid concentration (r = 0.590). Strong and negative correlations were 

found between total flavonoids and vitamin C (r = -0.708), radical-scavenging activities and total 

carotenoids (r = -0.731), while positive correlations existed between total flavonoids and fructose 

(r = 0.838), radical-scavenging activities and chlorophyll b (r = 0.744). Radical-scavenging 

activities had poor correlations with vitamin C (r = 0.414), total phenolic (r = 0.369) and flavonoid 

(r = -0.351) concentrations. 

 

4. Conclusion 

This study highlighted the role of canopy position and production region on rind biochemical 

concentrations in grapefruit stored at non-chilling temperature. The non-appearance of rind pitting 

during the study could suggest that biochemical properties of the fruit rind were in their optimal 

levels to defend the fruit against environmental stress. Generally, there was no clear trend in the 

role of canopy position among the measured parameters as fruit rind from the two production 

regions responded differently during postharvest cold storage. However, non-reducing sugars of 

IC and OC fruit from the production regions followed a similar pattern from week 0 to week 6 of 

cold storage. Correlation tests showed that sucrose is an important biochemical property of fruit 

rind which could have a direct or indirect impact on the performances of other biochemical 
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properties. Therefore, the role of rind sucrose in the defence mechanism of fruit against rind pitting 

should not be underrated. 
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Table 1: Climatological data registered during the growing seasons in KwaZulu-Natal (KZN) and Limpopo (LMP) provinces. 

 
(Source: South African weather services) 

  

 1 

SN  Year Region JAN FEB MAR APR MAY JUN 

1 Average rainfall (mm) 2015 KZN 61.2 118.4 37.6 66.2 6.6 15.8 

   LMP 4.4 7.6 60.0 46.8 8.6 0.0 

  2016 KZN 47.4 14.2 76.8 69.0 206.0 42.8 

   LMP 60.4 15.0 57.6 0.2 2.2 0.0 

2 Average minimum temperature (°C) 2015 KZN 21.5 20.5 20.6 16.8 15.1 10.7 

   LMP 20.2 20.4 19.1 16.3 14.1 11.1 

  2016 KZN 21.8 21.3 21.0 18.4 14.5 11.7 

   LMP 20.2 20.7 20.0 17.8 13.5 12.4 

3 Average maximum temperature (°C) 2015 KZN 32.4 31.1 31.2 28.5 28.7 26.4 

   LMP 31.4 33.6 32.5 30.1 31.4 26.0 

  2016 KZN 31.7 32.6 31.4 30.3 26.0 25.2 

   LMP 32.6 33.0 31.6 30.6 25.6 25.3 

4 Average humidity (%) 2015 KZN 69.0 74.0 77.0 81.0 84.0 82.0 

   LMP 73.0 69.0 68.0 72.0 57.0 58.0 

  2016 KZN 69.0 68.0 78.0 81.0 87.0 86.0 

   LMP 63.0 66.0 72.0 64.0 67.0 61.0 
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Table 2: Pearson correlation coefficient matrix between biochemical properties measured in ‘Marsh’ grapefruit rind measured in 2015 and 

2016 seasons 

Values in bold are significantly different from 0 with a significance level alpha = 0.05 

SN Parameters 1 2 3 4 5 6 7 8 9 

 

10 11 12 13 14 15 

1 Luminosity  -               

2 Greenness 0.436  -              

3 Yellowness 0.376 0.485  -             

4 Colour index 0.614 0.944 0.563  -            

5 

Chlorophyll 

a (µg/g DW) 0.219 0.084 -0.071 0.087  -     

 

     

6 

Chlorophyll 

b (µg/g DW) 0.447 0.239 0.054 0.271 0.944  -    

 

     

7 

Total 

Carotenoid 

(µg/g DW) -0.403 -0.287 -0.139 -0.295 -0.844 -0.902 -   

 

     

8 

Rind 

fructose 

(mg/g DW) -0.313 -0.239 -0.209 -0.281 0.000 -0.170 0.221  -  

 

     

9 

Rind glucose 

(mg/g DW) -0.319 -0.207 -0.164 -0.246 -0.295 -0.426 0.446 0.869  - 

 

     

10 

Rind sucrose 

(mg/g DW) 

 

 

-0.845 -0.537 -0.450 -0.646 -0.219 -0.503 -0.465 -0.515 -0.505 

 

 

-      

11 

Dry matter 

(%) 0.123 0.180 0.223 0.181 -0.270 -0.166 0.134 -0.385 -0.227 

 

-0.221  -     

12 

Total 

phenolic 

conc. (mg 

GAE /g DW) 0.311 0.282 0.332 0.294 0.034 0.192 -0.212 -0.593 -0.589 

 

 

 

 

-0.533 0.296  -    

13 

Total 

flavonoid 

conc. (mg 

QTE /g DW) -0.352 -0.280 -0.336 -0.337 0.170 -0.034 0.082 0.838 0.662 

 

 

 

 

0.590 -0.420 -0.599  -   

14 

Vitamin C 

(mg/g DW) 0.420 0.311 0.347 0.36 0.228 0.392 -0.378 -0.675 -0.655 

 

-0.631 0.407 0.699 -0.708  -  

15 

Radical 

scavenging 

activities 

(%) 0.483 0.389 0.170 0.409 0.593 0.744 -0.731 -0.457 -0.578 

 

 

 

-0.627 0.018 0.369 -0.351 0.414  - 
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Figure 1: Effect of canopy position (inside canopy (IC) and outside canopy (OC)) and production region (KwaZulu-Natal (KZN) and 

Limpopo (LMP)) on luminosity (A), greenness (B), yellowness (C) and colour index (D) of ‘Marsh’ grapefruit rind harvested over two 

seasons during postharvest non-chilling storage (Weeks 0, 3, 6 and 9).  

LSD least significant difference; P: canopy position; L: production region; T: storage time; * represent an interaction between factors. 
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Figure 2: Effect of canopy position (inside canopy (IC) and outside canopy (OC)) and production region (KwaZulu-Natal (KZN) and 

Limpopo (LMP)) on rind chlorophyll a (A), chlorophyll b (B), and total carotenoid content (C) of ‘Marsh’ grapefruit harvested over two 

seasons during postharvest non-chilling storage (Weeks 0, 3, 6 and 9).  

LSD least significant difference; P: canopy position; L: production region; T: storage time; * represent an interaction between factors. 
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Figure 3: Effect of canopy position (inside canopy (IC) and outside canopy (OC)) and production region (KwaZulu-Natal (KZN) and 

Limpopo (LMP)) on rind fructose (A), glucose (B), and sucrose (C) of ‘Marsh’ grapefruit harvested over two seasons during postharvest 

non-chilling storage (Weeks 0, 3, 6 and 9).  

LSD least significant difference; P: canopy position; L: production region; T: storage time; * represent an interaction between factors. 
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Figure 4: Effect of canopy position (inside canopy (IC) and outside canopy (OC)) and production region (KwaZulu-Natal (KZN) and 

Limpopo (LMP)) on rind total phenolic concentration (A), total flavonoid concentration (B), vitamin C (C), and radical scavenging activities 

(D) of ‘Marsh’ grapefruit harvested over two seasons during postharvest non-chilling storage (Weeks 0, 3, 6 and 9).  

LSD least significant difference; P: canopy position; L: production region; T: storage time; * represent an interaction between factors. 
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ROLE OF CANOPY POSITIONS ON RIND BIOCHEMICAL CONCENTRATIONS 
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Abstract 

Rind biochemical concentrations and radical-scavenging activities of ‘Nules Clementine’ 

mandarin could play a significant role in the susceptibility of the fruit to various forms of 

physiological rind disorders. This study examined the effect of fruit position within tree canopy 

on biochemical concentrations and radical-scavenging activities of ‘Nules Clementine’ mandarin 

fruit rind after harvest at week 0 and after 3, 6 and 9 weeks of postharvest cold storage at 7.5 ± 0.5 

ºC. Biochemical concentrations and radical-scavenging activities of flavedo and albedo tissues of 

the rind were also examined. Fruit from inside canopy (IC) and outside canopy (OC) were 

harvested at commercial maturity in May 2015 and 2016 seasons from Unifruiti and Swartvelei 

Farms located at Eastern Cape (EC) (33° 27′ 32″ S, 25° 34′ 79″ E) and Western Cape (WC) (19° 

02′ 33.8″ S, 33° 41′ 17.24″ E) provinces of South Africa, respectively. Results showed that canopy 

position played significant (p < 0.001) role on concentrations of total carotenoids, total phenolics 

and total flavonoids as well as rind dry matter, with OC fruit often characterised by higher 

biochemical concentrations than IC fruit during cold storage. The study further showed that 

production region influenced radical-scavenging activities and carbohydrate content of OC and IC 

fruit rind during cold storage. Radical-scavenging activities of OC fruit (61.2 %) were higher than 

IC fruit (52.5%) from EC whereas radical-scavenging activities of IC fruit (67.1 %) were higher 

than those of OC fruit (58.2 %) from WC at harvest. Overall, this study revealed that fruit position 

within tree canopy influenced its rind biochemical concentrations and radical-scavenging 

activities.  

 

Keywords: Albedo, Antioxidants, Citrus fruit, Flavedo, Mandarin, Physiological rind disorder. 
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1. Introduction 

‘Nules Clementine’ mandarin (Citrus reticulata Blanco) fruit is one of the major economically 

important citrus cultivar widely produced in South Africa (Barry and Rabe, 2004). However, the 

incidence of rind physiological disorders such as rind breakdown (RBD) is problematic to the 

industry as it affects fruit appearance, acceptability and ultimately, purchase in both local and 

international markets (Cronje et al., 2011a; Magwaza et al., 2014a). Hence, the financial gains of 

the growers are threatened (Alférez et al., 2003; Cajuste and Lafuente, 2007; Porat et al., 2004). 

The major problem surrounding the disorders is their characteristic development at about three to 

five weeks postharvest (Cronje et al., 2011; Magwaza et al., 2012; van Rensburg et al., 2004). In 

view of these, studies are increasingly focusing on identifying biomarker(s) or factors triggering 

the incidence of rind physiological disorders of citrus fruit (Alférez et al., 2003; Magwaza et al., 

2014c; Porat et al., 2004). The incidence of these disorders, for instance, rind breakdown (RBD) 

of ‘Nules Clementine’ mandarin, does not necessarily compromise the consumable fleshy part of 

the fruit but mostly prevent consumers from purchasing the fruit thereby decreasing the economic 

value of the fruit (Agustí et al., 2001). The rind, also known as pericarp, is a morphological part 

of citrus fruit consisting of flavedo, the outermost orange-coloured part of citrus rind, and albedo, 

the inner whitish part of the rind (Iglesias et al., 2007). The flavedo, which consists of oil glands 

and orange pigments when ripe, plays a significant role in consumer acceptability and eventual 

purchase of the fruit. Considering several reports, the process of non-chilling physiological rind 

disorders is ignited in the cell membrane structure and continues through the epidermal and sub-

epidermal tissues to the flattening of the surrounding cell layers to the eventual collapse cells and 

oil glands of the rind (Agustí et al., 2001; Magwaza et al., 2013b; Medeira et al., 1999; Vercher et 

al., 1994). Furthermore, some authors considered oil glands as the primary sites of injury where 
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ruptured oil bodies are released into the surrounding cells which then causes rind pitting disorder 

to citrus fruit (Petracek et al., 1998). 

 

In various attempts to investigate the incidence of rind physiological disorders, the impact of 

canopy position, a preharvest factor, on rind biochemical profile, and hence, RBD have been 

reported (Cronje et al., 2011a; Magwaza et al., 2014b, 2013). Microclimates, such as temperature, 

vapour pressure deficit and photosynthetically active radiation (PAR), reaching different positions 

of citrus tree canopy in varying intensity affect the physiological activities and biochemical 

composition of fruit and its parts, including the rind (Cronje et al., 2011b; Greene and Gerber, 

1967; Jahn, 1979; Magwaza et al., 2014c; Syvertsen and Albrigo, 1980). For instance, fruit 

exposure to different sunlight levels in citrus tree canopy affects rind concentration of 

carbohydrates and mineral elements during fruit development (Cronje et al., 2011a, 2011b). Hence, 

reduced transpiration due to lower temperature and higher humidity of fruit exposed to low light 

level (inside canopy) could hinder the build-up of carbohydrate (Cronje et al., 2013). Furthermore, 

limited PAR penetrating inside canopy (IC) could favour a reduced rate of photosynthesis and 

osmotic potential of fruit resulting in lower rind biochemical concentrations which could 

encourage the incidence of rind physiological disorders (Cronje et al., 2011a, 2011b, Magwaza et 

al., 2013a, 2013b). 

 

Rind biochemical concentrations and radical-scavenging activities of citrus rind play significant 

roles regarding its susceptibility to physiological disorders and its overall quality (Magwaza et al., 

2013a). Therefore, exploring rind biochemical concentrations such as carbohydrate, carotenoids, 

phenolic and flavonoid concentrations, and radical-scavenging activities of the rind (flavedo and 
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albedo) could proffer a better understanding of the relationship among canopy position, 

biochemical concentrations, and radical-scavenging activities of the fruit rind. This could give new 

knowledge towards the identification of possible biomarker(s) of rind physiological disorder. 

Previous studies have shown that rind carbohydrates of IC fruit were significantly lower than fruit 

from outside canopy (OC) and that greater incidence of RBD occurred on IC fruit rind than OC 

fruit (Cronje et al., 2013, 2011b; Magwaza et al., 2013a). Furthermore, high concentration of rind 

sucrose, an osmoregulatory compound in plant cells, has been implicated for lower osmotic 

potential in plant cells (Huang et al., 2000; Yakushiji et al., 1998). These reports suggested 

potential biochemical link among rind carbohydrates, canopy position and development of rind 

disorder. In addition, inadequate supply of rind carbohydrate for postharvest respiration has been 

implicated in the development of series of rind physiological disorders (Cronje et al., 2011b; 

Holland et al., 1999). 

 

Citrus fruit rinds are naturally high in non-volatile organic acids such as phenolic compounds 

(Benavente-García et al., 1997; Manthey, 2004) which are the major constituents responsible for 

the antioxidant activities of the fruit. Scientific studies on how canopy position affect these 

variables in citrus fruit rind has earlier been reported (Magwaza et al., 2014c, 2013a). However, 

results from the studies were based on fruit harvested from a single production region, which was 

inadequate to confirm the proposed hypothesis regarding the effect of canopy position on rind 

biochemical concentrations of citrus fruit rind and its susceptibility to RBD. Therefore, an 

extensive study to include fruit from other production regions with different agro-climatic 

conditions is necessary to test the hypothesis on ‘Nules Clementine’ mandarins, which was the 

aim of this study. This study investigated the influence of canopy position on biochemical 
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concentrations and radical-scavenging activities of ‘Nules Clementine’ mandarin fruit rind 

(flavedo and albedo) harvested from two production regions at harvest and after postharvest cold 

storage in relation to the development of physiological rind disorders. To the best of the authors’ 

knowledge, the role of canopy position on the biochemical concentrations and radical-scavenging 

activities of the flavedo and albedo of citrus rind after harvest or after cold storage are unknown.  

 

2. Materials and methods 

2.1. Reagents and standards 

All chemicals including Sodium Hydroxide (NaOH), Folin-Ciocalteu reagent, metaphosphoric 

acid (MPA), sodium carbonate, gallic acid, quercetin, 2, 6 dichloroindophenol dye, 2,2-diphenyl-

1-picrylhydrazyl (DPPH), acetone, ethanol (HPLC grade) and sugars standards (sucrose, D-

glucose, and D-fructose) were purchased from Sigma-Aldrich Company Ltd. (Dorset, UK). A 

Phenomenex® column (Rezex RCM - Monosaccharide) was used in the analyses. Water was 

purified in a Milli-Q Integral Water Purification System (Merck Millipore corporation, Billerica, 

MA, USA; σ = 18 M Ω cm−1). 

 

2.2. Plant materials 

A total number of 600 individual fruit were harvested from 50 uniform sized trees at commercial 

maturity over two seasons (2014/15 and 2015/2016) from Unifruiti and Swartvelei Farms located 

at Eastern Cape (EC) (33° 27′ 32″ S, 25° 34′ 79″ E) and Western Cape (WC) (19° 02′ 33.8″ S, 33° 

41′ 17.24″ E) provinces of South Africa, respectively. ‘Nules Clementine’ mandarin fruit from EC 

were budded on ‘Carrizo’ citrange ((Poncirus trifoliata (L.) Raf.) × (C. sinensis)) rootstock and 

planted in 1997 at a spacing of 5.5 x 2 m. Fruit from WC were budded on Rough lemon (C. 
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jambhiri Lush.) rootstock planted in 2001 at a spacing of 5.5 x 2.5 m. To investigate the influence 

of canopy position on biochemical concentrations and radical-scavenging activities of the fruit 

rind, two fruit were harvested per canopy position per tree. The canopy positions were inside 

canopy (i.e. fruit exposed to less than 80% of full sunlight), and outside canopy (i.e. fruit exposed 

to 90-100% of full sunlight) of a fruit tree as described by Cronje et al. (2011a). Each fruit was 

harvested from a height of 1-2 m and was used as an individual replicate comprising a total of 100 

fruit replicates per canopy position. The rainfall (mm), relative humidity (%), maximum and 

minimum temperature (°C) registered during the growing seasons in EC and WC provinces are 

displayed in Figure 1A-D, respectively. After harvesting, fruit were transported within 48 h at 

ambient temperature in ventilated cartons to postharvest research laboratory where the fruit were 

washed and sorted for blemishes and fruit damage. Fruit were left for 24 h at room temperature 20 

± 1 ºC to equilibrate, sorted for physical blemishes and damages, washed, labelled, weighed, and 

transferred into cold storage (7.5 ± 0.5ºC) for 9 weeks. Ten individual fruit using one fruit per 

replicate were analysed at 3 weeks interval for 9 weeks (weeks 0, 3, 6 and 9). 

 

2.3 Rind colour measurement 

Rind colour of individual fruit was measured in the CIE L*, C* and hue angle (h°) space using a 

chromameter (Konica Minolta NR 4000, Osaka, Japan) after calibration using a standard white tile 

(CR-A43; Y = 93.1, x = 0.3138; y = 0.3203) (Pathare et al., 2013; Terry et al., 2007). Readings at 

three equidistant points around the equatorial axis of each fruit were recorded. 
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2.4. Sample preparation 

Individual fruit was manually peeled followed by separation of flavedo part from the albedo using 

lemon zester. Both parts were snap frozen in liquid nitrogen and stored at -80 °C before freeze-

drying over a period of three days using Virtis Benchtop freeze drier system (ES Model, SP 

Industries Inc., Warmister, USA) at 0.015 kPa and -75 °C. Dry matter (DM) was calculated by 

subtracting the mass of the freeze-dried samples from fresh samples and expressed as percentage 

DM. Dried samples were then milled into fine powder using pestle and mortar and stored in -20 

°C for further analysis. 

 

2.5. Determination of total carotenoid content 

Total carotenoid content was determined according to Lichtenthaler (1987) with slight 

modifications. The lyophilized sample (150 mg ± 0.5) was weighted into a test tube followed by 

the addition of 2 mL of 80% (v/v) acetone before centrifugation for 10 min using GenVac® (SP 

Scientific, Genevac LTD., Suffolk, UK). The absorbance values of the supernatants were read at 

470, 646.8, and 663.2 nm using a Ultraspec UV-1800 Spectrophotometer (Shimadzu Scientific 

Instruments, Inc., Columbia, USA) for maximum detection of carotenoids. Chlorophyll a and b 

and total carotenoid content were calculated using Eqs. 1, 2, and 3, respectively. 

 

Ca = 12.25 A 663.2 – 2.79 A646.8       1 

Cb = 21.50 A646.8 – 5.10 A663.2        2 

Cc = (1000 A470 – 1.82 Ca – 85.02 Cb)/198      3 

 

Where Ca is chlorophyll a, Cb is chlorophyll b and Cc is total carotenoid content. 
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2.6. Extraction and quantification of rind soluble sugars  

Soluble sugars were extracted from 150 ± 0.5 mg of lyophilized sample using 62.5% (v/v) aqueous 

methanol as described by Terry et al. (2007), with slight modifications for citrus (Magwaza et al., 

2014b). Concentration of fructose, glucose, and sucrose were then quantified using an isocratic 

HPLC binary pump system (Agilent Technologies, UK) equipped with a refractive index detector. 

A 1 mL of diluted extract was injected into a Rezex RCM monosaccharide Ca+ (8%) column of 

7.8 mm diameter × 300 mm (Phenomenex, Torrance, CA, USA) with a SecurityGuardTM cartridges 

of 4 mm × 3 mm (Phenomenex). The mobile phase used was ultra-pure HPLC-grade water at a 

flow rate of 0.6 mL/min with the column compartment temperature set at 80 °C using a thermos-

stated column compartment (G1316A, Agilent). The presence and concentration of individual 

sugars were determined by comparing peak area of samples with peak area and concentration of a 

known sugar standard curve (0.05 – 1.25 mg/L; R2 = 0.99). 

 

2.7. Sample extraction for total phenolic and total flavonoid concentrations   

Extraction was carried out according to Moo-Huchin et al. (2015) with modifications. A 

lyophilized sample of 150 mg ± 0.5 mg was measured into a test tube and 3 mL of 50:50 (ethanol: 

water) v/v was added. The test tube, covered with aluminium foil, containing the mixture was 

subsequently placed in a shaking water bath (Gesellschaft für (GFL), Labortechnik mbH, 

Burgwedel, Germany) at 70 °C for 2 h with intermittent sample vortexing for 20 s at 30 min 

interval. The sample was left to cool down followed by centrifugation for 10 min using 

GenVac® centrifuge (SP Scientific, Genevac LTD., Suffolk, UK) and filtered using a 0.45 µm 

nylon filter. Extracts were stored at -20 °C for further analysis. 
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2.7.1 Determination of total phenolic concentrations 

Extracts were analysed according to Moo-Huchin et al. (2015) for total phenolic concentration 

with some modifications. Briefly, sample extract (10 µL) was measured into a 4.5 mL disposable 

cuvette in triplicate followed by the addition of 1.6 mL of distilled water, 100 µL of Folin-

Ciocalteu reagent and 300 µL of sodium carbonate solution. The solution was mixed and incubated 

in the dark at room temperature for 2 h before absorbance was read at 765 nm using Ultraspec UV-

1800 Spectrophotometer (Shimadzu Scientific Instruments, Inc., Columbia, USA). Gallic acid was 

used to generate a standard curve and total phenolic concentrations were expressed as mg gallic 

acid equivalent (GAE) /g DM. 

 

2.7.2. Determination of total flavonoid concentrations 

Extracts were analysed for total flavonoid concentration according to Lin and Tang (2007) with 

modifications. Briefly, extract (100 µL) was measured into a 4.5 mL disposable cuvette followed 

by the addition of 3 mL of sodium hydroxide solution. The mixture was agitated and incubated at 

room temperature for 10 min. Absorbance was measured in triplicate at 420 nm using a Ultraspec 

UV-1800 Spectrophotometer (Shimadzu Scientific Instruments, Inc., Columbia, USA). Quercetin 

was used to generate a standard curve and total flavonoid concentration was expressed as mg 

quercetin equivalent (QTE) /g DM. 

 

2.8. Extraction and determination of DPPH radical-scavenging activities 

Extraction was carried out according to Karioti et al. (2004) with some modifications. A 

lyophilized sample of 150 mg ± 0.5 was measured into a test tube followed by the addition of 5 



 

149 

 

mL of 3% aqueous metaphosphoric acid and incubation on ice for 5 min. Extracts was centrifuged 

for 20 min using GenVac® centrifuge (SP Scientific, Genevac LTD., Suffolk, UK). Supernatant 

(20 µL) were measured into 4.5 mL disposable cuvette followed by the addition of 800 µL of 

methanol. One millilitre of 0.1 mM DPPH solution was added, vortexed and incubated in the dark 

at room temperature for 60 min. Absorbance was read in triplicate at 517 nm against a blank 

(absolute methanol) under dim light using Ultraspec UV-1800 Spectrophotometer (Shimadzu 

Scientific Instruments, Inc., Columbia, USA) and radical-scavenging activities were calculated by 

the percentage of DPPH that were scavenged using the Eq. 4. 

 

Radical-scavenging activities (%) = (1 – AE/AD) x 100     4 

 

Where AE is the absorbance of the reaction mixture containing the standard antioxidant, or extract 

and AD is absorbance of the DPPH solution only. 

 

2.9 Statistical analysis 

Experiments were carried out using a completely randomized design (CRD) with individual fruit 

as replicate. All statistical analyses were performed using GenStat® 18th Edition (VSN 

International, Hemel Hempstead, UK). Data were subjected to analysis of variance (ANOVA) with 

canopy position, season, production region and cold storage time as factors. Season two (2016) 

data from WC were treated as missing values and least significant difference (LSD) at 5% level 

was considered significant. 
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3. Results and discussion 

3.1. Effect of canopy position on total carotenoids concentration and rind colour 

The analysis of variance revealed that canopy position had a highly significant (p < 0.001) effect 

on rind total carotenoid content (Figure 2A) and rind colour measured as hue angle (Figure 2B) in 

both seasons. The rind total carotenoid content of ‘Nules Clementine’ mandarin from EC and WC 

at harvest and after cold storage were similar in both seasons. Significant higher total carotenoid 

content occurred in rind of OC fruit than IC fruit at week 0 and after weeks 3, 6 and 9 of cold 

storage in both seasons. These results could explain the converse result of the rind colour (hue 

angle) been significantly higher in IC fruit than OC fruit at week 0. However, a non-significant 

difference occurred after week 6 of cold storage for fruit from WC and after week 9 of cold storage 

for fruit from both EC and WC in 2015 (Figure 2A). The rind colour fairly remained constant after 

weeks 3, 6 and 9 of cold storage in both seasons (Figure 2B) which could be attributed to the effect 

of cold storage in preserving the colour of the fruit for a longer period. A similar result of the 

inverse relationship between total carotenoid content and hue angle had previously been reported 

and the difference had been attributed to varying sunlight levels reaching the two canopy positions 

(Cronje et al., 2013; Hiratsuka et al., 2012). The fruit rind colour in this study further share 

similarities with results reported in literature by Cronje et al. (2011a) and Khalid et al. (2012). 

Inside canopy fruit showed yellower appearance (hue angle, EC = 93.1° and WC = 100.8°) than 

OC fruit which expressed a more orange appearance (hue angle, EC = 85.2° and WC = 78.7°) at 

week 0. 

 

Total carotenoid concentration was significantly higher in flavedo than albedo of both IC and OC 

fruit after harvest and after 3, 6 and 9 weeks of cold storage (Figure 3). These results were not 
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surprising as flavedo tissue bears the colour expression (yellow or orange) of the fruit as against 

the white colour of the albedo. Furthermore, the flavedo is more exposed to sunlight than the 

albedo tissue and sunlight is well known to play an influential role in total carotenoid content 

accumulation in plant tissues (Botella-Pavía et al., 2004; Pizarro and Stange, 2009; Simkin et al., 

2003; Toledo-Ortiz et al., 2010). This premise also explained the increased total carotenoids 

content in OC fruit than IC fruit from EC and WC provinces which agreed with previous authors 

who reported the enhancement of total carotenoid content accumulation in citrus fruit such as sweet 

oranges and mandarins due to light exposure (Cronje et al., 2013, 2011b). 

 

3.2. Effect of canopy position on rind soluble sugars and dry matter 

 The use of carbohydrates as a global biochemical marker of rind physiological disorder was 

previously hypothesised to be impossible due to citrus fruit exposure to different preharvest and 

postharvest factors (Magwaza et al., 2014c). This study supported this hypothesis as fructose, 

glucose, and sucrose of citrus rind respond differently to canopy position from which the fruit were 

harvested. Canopy position significantly affected fructose (p < 0.001), glucose (p < 0.001), and 

sucrose (p < 0.05) concentrations of citrus fruit rind (Figures 4A, 4B and 4C). The significance 

interaction between canopy position, production region and storage time were also noted. At week 

0, rind sugars from both production region followed a similar pattern which corresponded to the 

ones reported earlier in literature where the concentration of these sugars were higher in IC fruit 

than OC fruit (Magwaza et al., 2014c; Rosales et al., 2011; Ting and Deszyck, 1961). However, 

rind sucrose of IC fruit from EC were lower than OC fruit which corresponded to the results 

reported for rind sucrose of ‘Nules Clementine’ mandarin fruit from WC by Cronje et al. (2013) 

and Thorpe (1974). It was explained that exposure of fruit to reduced sunlight (IC) have a reduced 
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sink strength effect on fruit. In 2015, fructose, glucose, and sucrose of IC fruit (313.6, 317.2 and 

210.8 mg/g DW, respectively) were significantly higher than OC fruit (277.1, 160.8, 79.5 mg/g 

DW, respectively) from WC at week 0 (Figures 4A, 4B and 4C). However, significantly higher 

concentration of rind glucose occurred for OC fruit than IC fruit while no significant difference 

was observed for fructose in 2016. The postharvest behaviour of fructose, glucose, and sucrose at 

weeks 3, 6 and 9 followed a similar pattern for both canopy positions and was further observed 

that these sugars were generally high which could partly explain why rind physiological disorder 

did not develop during cold storage (Figure 4). This is because high concentration of sugars is 

known to serve as a source of energy reserves and contribute to the sustenance of rind cell 

structures (Dennis and Blakeley, 2000; Kays and Paull, 2004) and protect plants against possible 

stressful conditions such as chilling injury (Der Agopian et al., 2011; Purvis and Grierson, 1982).  

 

Investigating carbohydrate concentrations in flavedo and albedo, fructose was significantly higher 

in the flavedo than in the albedo while both glucose and sucrose were higher in the albedo at week 

0 (Figure 5). A contrast result occurred after week 6 of cold storage where the concentration of 

fructose became higher in the albedo than flavedo while there were no significant differences after 

weeks 3 and 9 of cold storage (Figure 5A). Lower concentration of sucrose in flavedo remained 

unchanged throughout the period of cold storage while concentration in albedo increased 

consistently and peaked at week 6 before a decline at week 9 (Figure 5B). This suggested the 

possible influence of cold storage in reducing the rate at which sucrose is used in flavedo and 

albedo of the fruit rind. Previous studies have also shown that sucrose concentration in the flavedo 

of fruit attached to its mother plant does not change during extreme cold stress condition, but 

fructose and glucose does change (Holland et al., 1999). Similarly, the concentration of glucose 
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was lower in the flavedo at week 0 but became higher and declined gradually after weeks 3, 6, and 

9 of cold storage (Figure 5C). This could be because of the translocation of glucose from the albedo 

to the flavedo part of the rind influenced by cold temperature (Purvis and Yelenosky, 1983) or 

could be the effect of rind moisture loss. 

 

Although, carbohydrates provide energy to fruit during postharvest life but are also known to be 

responsible for the build-up of DM in fruit (Hiratsuka et al., 2012). In 2015 and 2016 seasons, rind 

DM followed similar trends throughout the period of cold storage, with rind DM ranging from 

23.7 to 29.3% for OC fruit and 10.1 to 35.1% for IC fruit. Highly significant (p < 0.001) difference 

was observed between the canopy positions where OC fruit had higher rind DM than IC fruit at 

weeks 3, 6 and 9 for both production regions (Figure 6). These results agreed with previous reports 

where rind DM of fruit from OC were higher than IC fruit (Cronje et al., 2011b; Magwaza et al., 

2014c, 2013a). It was noteworthy that the rind DM of IC fruit from WC was significantly higher 

than its counterpart from EC while no significant difference occurred in IC and OC fruit from WC 

before cold storage at week 0 in both seasons (Figure 6). 

 

3.3. Effect of canopy position on rind radical-scavenging activities 

DPPH is a reliable assay for measuring antioxidant activities of a fruit (Shahidi et al., 2006; Villano 

et al., 2007). Its ability to donate hydrogen is an established mechanism for anti-oxidation (Babbar 

et al., 2011). Canopy position showed highly significant (p < 0.001) effect on radical-scavenging 

activities of the fruit rind (Figure 7). There was significant interaction amongst the main factors 

(canopy position, production region, season, and storage time) for the radical-scavenging activities 

of the fruit rind (flavedo + albedo). In both seasons, the radical-scavenging activities followed a 
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similar pattern throughout the period of cold storage of the fruit from both production regions. In 

2015, radical-scavenging activities of OC fruit (week 0 = 61.2 and week 3 = 75.1 %) were 

significantly higher than IC fruit (week 0 = 52.5 and week 3 = 67.2 %) from EC (Figure 7A). 

Similar results of higher radical-scavenging activities by DPPH in the OC fruit have been reported 

by Drogoudi and Pantelidis (2011) who reported higher antioxidant capacity in OC apple fruit than 

fruit exposed to shaded canopy position. This could suggest the influence of higher levels of 

temperature on radical-scavenging activities of the fruit which invariably inhibits the development 

rind breakdown on fruit stored at non-chilling temperature. Other preharvest factors such as 

relative humidity could be responsible for the radical-scavenging activities of fruit rind as observed 

at week 0 for WC (Figure 4A). There were no significant differences between fruit from EC after 

weeks 6 and 9 of cold storage in 2015 but 2016 indicating seasonal effect on the scavenging 

activities of the fruit rind. In comparison, the radical-scavenging activities between flavedo and 

albedo differed significantly (p < 0.001), with flavedo having higher radical-scavenging activities 

(59.7, 69.5, 59.8 and 53.3%) than albedo (49.5, 51.9, 51.3 and 47.7%) at weeks 0, 3, 6 and 9, 

respectively (Figure 8). These results explained the ability of the rind to resist the incidence of rind 

physiological disorder initiated from either flavedo or albedo in citrus fruit during postharvest cold 

storage. 

 

3.4. Effect of canopy position on total phenolic, and flavonoid concentrations 

Canopy position significantly (p < 0.001) affected rind antioxidant activities of total phenolic 

concentration and total flavonoid concentration on ‘Nules Clementine’ mandarin fruit rind (Figure 

9). Although, the total phenolic concentration of citrus rind from both production regions in 2015 

was significantly higher than that of 2016, but results followed a similar pattern during the period 
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of the experiments in both seasons. In 2015, the total phenolic concentration of fruit rind sampled 

at week 0 was significantly higher in the rind from OC fruit (4.29 mg GAE /g) than IC fruit (3.62 

mg GAE /g) from WC (Figure 9A). Similar trends were observed at weeks 3 and 6 with an inverse 

result at week 9, where IC fruit became significantly higher than OC fruit (Figure 9A). Although, 

mean concentrations of total phenolic of OC fruit (3.02 and 4.63 mg GAE /g) were higher than IC 

fruit (2.89 and 4.25 mg GAE /g) from EC at weeks 0 and 3, respectively, albeit not statistically 

significant. Reverse results were recorded after 6 and 9 weeks of cold storage, where total phenolic 

concentration of IC fruit was significantly higher than OC fruit from EC after weeks 6 but not 

significant after weeks 9 (Figure 9A). These results are buttressed by Magwaza, (2013) who 

reported higher total phenolic concentrations in the rind of OC fruit than IC fruit at harvest. In 

addition, total phenolic concentration of IC fruit was significantly higher than OC fruit after cold 

storage which agreed with the above-mentioned author. It has been previously suggested that 

production of total phenolic concentrations increases due to radiation from sunlight (Awad et al., 

2001; Hagen et al., 2007). Hence, could explain why there were higher concentrations of total 

phenolic concentrations in OC fruit in this study. Another probable explanation is the production 

of phenylalanine aminialyase which occur because of the availability of photosynthetically active 

radiation (PAR) on the OC position of citrus tree. This PAR usually initiates the synthesis of 

phytoalexins, a phenolic compound considered as a line of defence against stress (Ben Yehoshua 

et al., 1992).  

 

Like the behaviour of total phenolic concentration, total flavonoid concentration followed similar 

trends with slight deviations. For fruit sampled at week 0 in 2015, total flavonoid concentration 

was significantly higher in the rind from OC fruit (1.85 mg QTE /g) than IC fruit (1.32 mg QTE 
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/g) from WC (Figure 9B). Similar trends were observed at weeks 3 and 6 with inverse results at 

week 9, where IC fruit became significantly higher than OC fruit. Although, the mean 

concentration of total flavonoids for OC fruit (1.17 mg QTE /g) were higher than IC fruit (1.09 mg 

QTE /g) from EC at week 0, results are not statistically significant. However, total flavonoid 

concentration of OC fruit (1.75 and 1.67 mg QTE /g) were significantly higher than the IC fruit 

(1.21 and 1.22 mg QTE /g) from EC after 3 and 9 weeks of cold storage, respectively (Figure 9B). 

Reverse results were recorded after 6 weeks of storage, where IC fruit (1.58 mg QTE /g) was not 

significantly higher than OC fruit (1.47 mg QTE/g) (Figure 9B). Saure (1990) and Treutter (2001) 

explained the synthesis of antioxidants, such as total flavonoid concentration, could be influenced 

by genetic background and developmental stage of the fruit. However, temperature and light play 

a significant role in the synthesis. It was further suggested that most enzymes involved in flavonoid 

production are stimulated by sunlight (Lancaster et al., 2000; Treutter, 2001) and total flavonoid 

concentration is higher in sun-exposed apple fruit (Awad et al., 2001). These statements agreed 

with the results obtained in the current study. The general high concentrations of both total 

phenolic concentration and total flavonoid concentration in the rind tissues of ‘Nule Clementine’ 

mandarin could be implicated in the ability of fruit to repel the development of non-chilling rind 

physiological disorders associated with fruit as no disorder was observed on the rind of the fruit 

used in the current study.  

 

Total phenolic concentration and total flavonoid concentration were analysed separately on 

flavedo and albedo tissues of the fruit rind to investigate where the components were more 

concentrated. It was, therefore, revealed that these components were significantly (p < 0.001) 

concentrated, regardless of the canopy position, in the flavedo part of the rind than albedo part 
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(Figures 10A and 10B). This could further explain the significant effect of sunlight radiation 

deposits on the flavedo part of the rind since it is the receptor (Awad et al., 2001; Lancaster et al., 

2000; Treutter, 2001). 

 

3.5. Correlation analysis of investigated parameters 

Pearson’s correlation analysis was used to study the relationship between biochemical 

concentrations and radical-scavenging activities of ‘Nules Clementine’ mandarin fruit rind (Table 

1). A significant (p < 0.05) correlations were revealed. For instance, a strong positive and 

significant relationship that radical-scavenging activities by DPPH exhibited with total phenolic 

concentration (r = 0.73), sucrose (r = 0.62) and fair correlation with total flavonoid concentration 

(r = 0.46) and total carotenoid content (r = 0.48). This agreed with Fawole and Opara (2013) where 

significant and strong correlation occurred between radical-scavenging activities measured by 

DPPH and total phenolic concentrations in pomegranate fruit. Similarly, further studies by Prior 

et al. (1998) and Wang et al. (1997) highlighted the important contribution of phenols and 

flavonoids to antioxidant activities of fruit which might be responsible for preventing the rind of 

‘Nules Clementine’ mandarin from possible physiological disorder during the cold storage. 

Significant (p = 0.05) and positive correlation were also revealed between total phenolic 

concentration and sucrose (r = 0.58); total phenolic concentration and total flavonoid concentration 

(r = 0.65). This further suggests the significant role of sucrose in protecting the rind of the fruit 

during postharvest cold storage. 
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4. Conclusion 

This study revealed the influence of canopy position on rind biochemical concentrations and 

radical-scavenging activities on ‘Nules Clementine’ mandarin fruit. Fruit from OC showed higher 

concentrations of total carotenoid, total phenolics and total flavonoids which were induced by 

sunlight than IC fruit despite the production region. This study confirmed the hypothesis that 

exposing citrus fruit to sufficient light increases total carotenoids content, total phenolic and total 

flavonoids concentrations of the fruit rinds. The results also showed that reducing sugars (glucose 

and fructose) increased, in nearly equal amounts in the rind of fruit from both canopy positions 

throughout the period of cold storage. It was also observed that rind biochemical concentrations in 

flavedo and albedo parts of citrus rind differs from one another and is mostly influenced by 

environmental factors of the orchard. Overall, this study suggests that the rind biochemical 

concentrations and radical-scavenging activities of the rind were high during cold storage and 

could be implicated in the mitigation of the development of rind physiological disorder as no 

disorder was recorded in the study. 
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Figure 1: Rainfall (A), relative humidity (B), maximum temperature (C) and minimum temperature registered during the growing seasons in 

Eastern Cape (EC) and Western Cape (WC) provinces. 

(Source: South African weather services) 
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Figure 2: Effect of canopy position (inside canopy (IC) and outside canopy (OC)), on rind total carotenoid (A) and hue angle (B) content of 

‘Nules Clementine’ mandarin from Eastern Cape (EC) and Western Cape (WC) provinces harvested over two seasons during postharvest 

non-chilling storage (Weeks 0, 3, 6 and 9).  

LSD least significant difference; P: canopy position; S: season; L: production region; T: storage time; * stands for an interaction between factors. 
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Figure 3: Total carotenoid contents of the flavedo and albedo of ‘Nules Clementine’ mandarin from Eastern Cape (EC) and Western Cape 

(WC) provinces during postharvest non-chilling storage (Weeks 0, 3, 6 and 9).  
LSD: least significant difference; R: Rind tissue; T: storage time; L: production region; * stands for an interaction between factors. 
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Figure 4: Effect of canopy position (inside canopy (IC) and outside canopy (OC)) on rind fructose (A), glucose (B), and sucrose (C) of ‘Nules 

Clementine’ mandarin harvested from Eastern Cape (EC) and Western Cape (WC) provinces during postharvest non-chilling storage (Weeks 

0, 3, 6 and 9).  
LSD: least significant difference; P: canopy position; S: season; L: production region; T: storage time; * stands for an interaction between factors  
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Figure 5: Concentration of fructose (A), glucose (B) and sucrose (C) of the flavedo and albedo of ‘Nules Clementine’ mandarin from Eastern 

Cape (EC) and Western Cape (WC) provinces during postharvest non-chilling storage (Weeks 0, 3, 6 and 9).  

LSD: least significant difference; R: Rind tissue; T: storage time; L: production region; * stands for an interaction between factors.  
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Figure 6: Effect of canopy position (inside canopy (IC) and outside canopy (OC) on rind dry matter of ‘Nules Clementine’ mandarin from 

Eastern Cape (EC) and Western Cape (WC) provinces during postharvest non-chilling storage (Weeks 0, 3, 6 and 9).  
LSD: least significant difference; P: canopy position; S: season; L: production region; T: storage time; * stands for an interaction between factors. 
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Figure 7: Effect of canopy position (inside canopy (IC) and outside canopy (OC)) on radical-scavenging activities (DPPH) of ‘Nules 

Clementine’ mandarin fruit rind from Eastern Cape (EC) and Western Cape (WC) provinces during postharvest non-chilling storage (Weeks 

0, 3, 6 and 9).  
LSD: least significant difference; P: canopy position; S: season; L: production region; T: storage time; * stands for an interaction between factors. 
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Figure 8: Concentration of radical-scavenging activities of the flavedo and albedo of ‘Nules Clementine’ mandarin fruit rind from Eastern 

Cape (EC) and Western Cape (WC) provinces during postharvest non-chilling storage (Weeks 0, 3, 6 and 9).  

LSD: least significant difference; R: Rind tissue; T: storage time; L: production region; * stands for an interaction between factors. 
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Figure 9: Effect of canopy position (inside canopy (IC) and outside canopy (OC)) on rind total phenolic concentration and total flavonoid 

concentration of ‘Nules Clementine’ mandarin from Eastern Cape (EC) and Western Cape (WC) provinces harvested over two seasons during 

postharvest non-chilling storage (Weeks 0, 3, 6 and 9).  
LSD least significant difference; P: canopy position; S: season; L: production region; T: storage time; * stands for an interaction between factors  
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Figure 10: Total phenolic and total flavonoid concentrations of the flavedo and albedo of ‘Nules Clementine’ mandarin from Eastern Cape 

(EC) and Western Cape (WC) provinces during postharvest non-chilling storage (Weeks 0, 3, 6 and 9).  
LSD: least significant difference; P: rind part; L: production region, T: storage time; * stands for an interaction between factors 
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Table 1: Correlation coefficients among measured ‘Nules Clementine’ mandarin fruit rind biochemical and antioxidant parameters  

Values in bold are significantly different from 0 with a significance level alpha = 0.05 
 

SN Parameters 1 2 3 4 5 6 7 8 9 

1 DPPH (%) 1 
        

2 DM (%) -0.342 1 
       

3 Fructose (mg/g DW) 0.088 0.020 1 
      

4 Glucose (mg/g DW) 0.021 0.199 0.899 1 
     

5 Sucrose (mg/g DW) 0.617 -0.223 0.482 0.351 1 
    

6 T. flavonoid concentration (mg QTE /g) 0.456 -0.102 0.149 0.140 0.430 1 
   

7 T. carotenoid content (µg /g DW) 0.482 -0.133 0.033 0.212 0.232 0.225 1 
  

8 T. phenolic concentration (mg GAE /g) 0.733 -0.427 0.081 0.023 0.578 0.645 0.439 1 
 

9 h° -0.116 -0.197 0.029 0.125 -0.152 -0.136 0.113 0.09 1 
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CHAPTER 6 

PHYTOHORMONAL CHANGES IN ‘NULES CLEMENTINE’ MANDARIN FRUIT 

RIND FROM DIFFERENT CANOPY POSITIONS DURING POSTHARVEST NON-

CHILLING COLD STORAGE IN RELATION TO PHYSIOLOGICAL RIND 

DISORDER* 
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Abstract 

The role of phytohormones in mitigating or enhancing the incidence of non-chilling rind 

physiological disorder of citrus fruit is largely unknown. Therefore, this study attempted to 

elucidate phytohormonal changes in ‘Nules Clementine’ mandarin fruit rind during postharvest 

cold storage in relation to rind breakdown. Fruit from inside canopy (IC) and outside canopy (OC) 

positions of citrus trees were harvested at commercial maturity from Unifruiti and Swartvelei 

Farms located at Eastern Cape (EC) and Western Cape (WC) provinces of South Africa, 

respectively. Endogenous levels of cytokinins and auxins isomers and conjugates were analysed 

by using ultra-performance liquid chromatograph coupled to a triple quadrupole mass spectrometer 

(MS/MS) equipped with an electrospray interface. Analyses were performed on ‘Nules 

Clementine’ mandarin fruit rind after harvest (week 0) and after 3, 6 and 9 weeks of non-chilling 

cold storage at 7.5 ± 0.5 °C. The result revealed the presence of cytokinins: N6- isopentenyladenine, 

the two Zeatin isomers (trans-zeatin (tZ) and cis-zeatin (cZ), and cytokinin conjugates such as 

glucosides and ribosides (cZ7G and iP9G) and O-glucoside forms (cZROG, cZOG and tZOG) and 

zeatin metabolite glucoside (dihydrozeatin-7-glucoside (DHZ7G). Cis-zeatin-type cytokinins 

including cZ riboside (cZR), cZ riboside-O-glucoside (cZROG), cis-zeatin-7-glucosides (cZ7G) 

concentrations were mostly higher in the OC fruit from both EC and WC provinces during 

postharvest non-chilling cold storage. Whereas dihydrozeatin concentration (the most abundant 

CK) were mostly higher in IC (326.10 and 29.38 pmol/g DW) fruit than OC (65.75 and 17.72 

pmol/g DW) fruit from EC and WC before cold storage, respectively. Fruit without rind disorder 

had lower cZOG, cZR, cZROG and DHZ7G than fruit with the disorder. In fruit with rind disorder, 

tZOG, cZ7G and iP9G were below the limit of detection. The indole-acetic acid (IAA) 

concentration was higher in the IC fruit (344.15 pmol/g DW) than OC fruit (194.20 pmol/g DW) 
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from EC at week 0 while IAA concentration of OC fruit from WC were below the LOD and IC 

fruit had 53.20 pmol/g DW at week 0. Fruit without the disorder had more IAA concentration than 

fruit with RBD while IAAsp were higher in fruit with RBD than fruit without the disorder. The 

study revealed the preventive role of auxins in the incidence of the rind disorder. This study is the 

first to record the negative effect of IAAsp in a physiological disorder of citrus fruit. This study 

further revealed the crucial role and synergistic effect of cZ7G, tZOG, iP9G and IAA in the 

prevention of RBD of ‘Nules Clementine’ mandarin fruit while and cZOG, cZR, cZROG and 

IAAsp aided its incidence. 

 

Keywords: Cis-zeatin, Cytokinins, Dihydrozeatin, Indole-acetic acid, Rind physiological 

disorder, Rind breakdown, Trans-zeatin. 
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1. Introduction 

Physiological rind disorders of citrus fruit (Citrus spp.), which occurs during postharvest storage 

conditions, contribute significantly to the economic losses experienced by the global citrus 

industry (Alférez et al., 2003; Cajuste and Lafuente, 2007; Porat et al., 2004; Cronje et al., 2011a; 

Magwaza et al., 2014). The development of physiological rind disorders in citrus fruit such as rind 

breakdown (RBD) of ‘Nules Clementine’ mandarins at non-chilling postharvest cold storage is 

one of the many factors affecting the financial gains of the industries. 

 

Although various studies have shown that preharvest factor such as canopy position influence the 

susceptibility of fruit to the development of postharvest RBD (Cronje et al., 2011a, 2011b; 

Magwaza et al., 2013; Magwaza et al., 2012), the exact factor(s) triggering the incidence of the 

disorders is(are) still unknown. Canopy position significantly affects rind carbohydrates and 

mineral elements during fruit development (Cronje et al., 2011b). The flavedo of fruit exposed to 

sunlight was reported to have a significantly higher concentration of carbohydrates than those from 

the inside canopy position (Cronje et al., 2011b). Increased transpiration potential by higher 

temperatures and lower relative humidity outside the tree canopy was thought to have induced the 

increased accumulation of carbohydrate (Cronje et al., 2011b). Hence, it was hypothesised that 

increased photosynthetically active radiation (PAR) of exposed region of the tree increased 

osmotic potential and photosynthetic rate of exposed fruit thereby increasing the rind quality and 

tolerance to RBD (Cronje et al., 2011a, 2011b; Magwaza et al., 2013a; Magwaza et al., 2012). 

Chapter 5 demonstrated that exposure of fruit to high or low sunlight within tree canopy affected 

rind biochemical concentrations and radical-scavenging activities of the fruit during postharvest 

cold storage at non-chilling temperature. The radical-scavenging activities of outside canopy fruit 
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rind were reported to be significantly higher than fruit from inside canopy (Olarewaju et al., 2017) 

indicating the crucial role of sunlight in the production of a higher antioxidant activity in the fruit 

rind. 

 

Apart from the continual biochemical changes that occur in harvested fruit, little is known about 

the role of phytohormones during postharvest physiology despite their crucial roles in regulating 

plant physiological processes during growth and development. Phytohormones are known to play 

significant roles in plant responses to environmental conditions (He et al., 2009; Xu and Li, 2006). 

They also play important roles in signal transduction pathways during stress responses while 

regulating the internal and external stimuli (Kazan, 2015). Preharvest abiotic stresses modify the 

endogenous concentrations of phytohormones such as auxins, cytokinins and abscisic acid (ABA), 

which cause plants growth perturbations (Egamberdieva and Kucharova, 2009; Khan et al., 2014). 

Hence, the relationship between canopy position and behaviour of phytohormones during the 

postharvest life of citrus fruit could be an important step that will give impetus to a deeper 

understanding of the factors underlying fruit susceptibility or tolerance to physiological rind 

disorders at non-chilling temperature. This is because canopy position may influence stress 

resistance of the fruit through up-regulation of genes and pathways, which renders tissues cross-

tolerant to many stresses (Bowler and Fluhr, 2000; Leshem and Kuiper, 1996). This may 

subsequently occur during postharvest cold storage or shelf life (Toivonen and Hodges, 2011). 

 

The phytohormone, auxin is known to play crucial roles in different aspects of plant growth and 

development including vascular differentiation (Davies, 1995). Its involvement in improving the 

tolerance of plant (wheat and Arabidopsis) to various preharvest abiotic stresses such as heat, salt 
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and water stresses is widely reported (Hu et al., 2013; Iqbal and Ashraf, 2007; Jung and Park, 

2011; Kazan, 2013). Similarly, cytokinins (CK) has been reported to be involved in maintaining 

cellular proliferation and differentiation as well as prevention of senescence (Schmülling, 2002). 

Cytokinins reduce concentration results in the closure of stomata induced by ABA, which reduces 

carbon uptake and assimilation. The upregulation of CK oxidase could also reduce carbon 

metabolism under stressful conditions (Egamberdieva et al., 2017). Hence, phytohormones could 

play significant role in the susceptibility of ‘Nules Clementine’ mandarin fruit to RBD, which 

mostly become visible only around three to five weeks postharvest as fruit tend towards senescence 

(Cronje et al., 2011a; Magwaza et al., 2012; van Rensburg et al., 2004). Therefore, the aim of this 

study was to investigate phytohormonal changes in ‘Nules Clementine’ mandarin fruit rind from 

different canopy positions in relation to the incidence of RBD during postharvest non-chilling cold 

storage. 

 

2. Materials and methods 

2.1 Chemicals 

Original standards of cytokinins (isoprenoid, aromatic and 2-MeS CKs), auxins, and their 

corresponding isotopically labelled analogues were purchased from Olchemim Ltd. (Olomouc, 

Czech Republic) and Chemiclones (Waterloo, Canada). Chromatographic solvents (acetonitrile 

and methanol (MeOH)) of hyper grade quality, eluent additives (FA and NH4OH) were obtained 

from Sigma-Aldrich (St. Louis, MO, USA) and Merck (Darmstadt, Germany). Potassium 

hydroxide (KOH), sodium and potassium acetate (CH3COONa, CH3COOK), formic acid (CH2O2), 

sodium bicarbonate (NaHCO3) and 99.8% ethanol (EtOH) were purchased from Lach-Ner, s.r.o. 
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(Neratovice, Czech Republic). Deionised (Milli-Q) water prepared by a Simplicity 185 water 

system (Millipore, Bedford, MA, USA) was used for all aqueous solutions. 

 

2.1. Plant materials 

‘Nules Clementine’ mandarin fruit (Citrus reticulata Blanco) were harvested from 50 uniformly 

sized trees at commercial maturity during 2014/15 season from Unifruiti and Swartvelei Farms 

located at Eastern Cape (EC, 33° 27′ 32″ S, 25° 34′ 79″ E) and Western Cape (WC, 19° 02′ 33.8″ 

S, 33° 41′ 17.24″ E) provinces of South Africa, respectively. Fruit from EC were budded on 

‘Carrizo’ citrange ((Poncirus trifoliata (L.) Raf.) × (C. sinensis)) rootstock and planted in 1997 at 

a spacing of 5.5 x 2 m. Fruit from WC were budded on Rough lemon (C. jambhiri Lush.) rootstock 

planted in 2001 at a spacing of 5.5 x 2.5 m. Fruit were harvested from inside canopy and outside 

canopy positions as described elsewhere (Cronje et al., 2011a; Olarewaju et al., 2017). Harvested 

fruit were transported within 48 h under ambient temperature in ventilated cartons to postharvest 

research laboratory where the fruit were washed and sorted for blemishes and fruit damage. Fruit 

were left for 24 h at room temperature 20 ± 1 ºC to equilibrate, sorted for physical blemishes and 

damages, washed, labelled, weighed, and transferred into cold storage (7.5 ± 0.5ºC) for 9 weeks. 

Four replicates of 20 fruit per canopy position were analysed at 3 weeks interval for 9 weeks 

(weeks 0, 3, 6 and 9). 

 

2.2 Rind breakdown rating  

Fruit were evaluated for RBD incidence prior to cold storage and after 3, 6, and 9 weeks after 

cold storage. The incidence of RBD on fruit was visually inspection according to Alférez et al. 

(2003) and Lafuente et al. (1997) on a subjective scale from 0 = no breakdown to 3 = severe 
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breakdown. RBD was expressed as RBD index, after calculations according to equation 1 

(Alférez et al., 2003; Lafuente et al., 1997). 

 

RBD index = 
(𝑃𝑒𝑒𝑙 𝑝𝑖𝑡𝑡𝑖𝑛𝑔 (0−3) 𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑢𝑖𝑡 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑢𝑖𝑡
     (1) 

 

2.3. Sample preparation 

Individual fruit was manually peeled, snap-frozen in liquid nitrogen and cold-stored at -80 °C 

before freeze-drying over a period of three days using Virtis Benchtop freeze dryer system (ES 

Model, SP Industries Inc., Warmister, USA) at 0.015 kPa and -75 °C. Dried samples were then 

hand-milled into fine powder using pestle and mortar and stored in -40 °C for future analysis of 

phytohormones. 

 

2.4. Quantitative analysis of endogenous CKs and auxins 

Three replicates of lyophilized samples were used for analysis of endogenous levels of auxins and 

CKs. 2 mg of each sample were extracted in 0.5 mL of modified Bieleski buffer (60% methanol, 

10% CH2O2 and 30% distilled water (H2O)) (Hoyerova et al., 2006) with isotope-labelled CK (0.25 

pmol per sample of B, R, 9G, 7G and 0.5 pmol per sample of OG, NT) and auxin (5 pmol per 

sample) internal standards for control of purification step and to validate determination (Novak et 

al., 2008). Adjusted purification protocol by Dobrev and Kamínek (2002) was using for the joint 

purification of cytokinins and auxins by MCX cartridges. Auxins were obtained from MCX 

cartridges eluting with 80% MeOH, 0.35M NH4OH solution was used for elution of cytokinin 

nucleotides and 0.35M NH4OH in 60% MeOH for elution of cytokinin bases and O-glucosides. 
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The individual cytokinin elution was collected together. All of auxin and cytokinin elution were 

evaporated to dry by SpeedVac concentrator (CentriVap ® Acid-Resistant benchtop concentrator, 

Labconco Corp. MO, USA,2015) and dissolved in 30 µL of 10% MeOH. The samples were 

analysed by ultra-performance liquid chromatograph (Acquity UPLC® I-class System; Waters, 

Milford, MA, USA) coupled to a triple quadrupole mass spectrometer (MS/MS) equipped with an 

electrospray interface (XevoTM TQ-S, Waters, Manchester, UK) using the analytical separation 

described by Svačinová et al. (2012) for CKs and Pěnčík et al. (2009) for auxins. Quantification 

was obtained by multiple reaction monitoring of [M+H]+ and the appropriate product ion. Optimal 

conditions, dwell time, cone voltage, and collision energy in the collision cell, corresponding to 

the exact diagnostic transition, were optimized for each CK and auxin for selective MRM 

experiments (Pěnčík et al., 2009; Svačinová et al., 2012). Quantification was performed by 

MassLynx™ software package (versions 4.0 and 4.1, Waters, Milford, MA, USA) using a standard 

isotope dilution method. 

 

2.5. Statistical analysis 

The data collected were subjected to the analysis of variance (ANOVA) using GenStat 18.0 (VSN 

International, Hemel Hempstead, United Kingdom). Fischer’s least significant differences were 

calculated and used to separate means at 5% significance level 
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3. Results and discussion 

3.1. Canopy position influenced cytokinins levels during postharvest cold storage 

3.1.1. Trans- and cis-zeatin-type cytokinins 

The concentrations of most of the trans-zeatin-type CKs (data not shown) were below the limit of 

detection (LOD, less than 0.05 pmol/g DW) except trans-zeatin-O-glucoside (tZOG). Temperature 

and/ or sunlight exposure could play a crucial role in the inhibition or production of phytohormones 

and its conjugates in plant tissues. The concentration of tZOG was generally affected by canopy 

position (p < 0.05) and was significantly higher in IC fruit (15.80, 8.58, 11.59, 0.00) pmol/g DW 

than OC fruit (0.00, 0.00, 4.85, 0.00) pmol/g DW from EC after week 0, 3, 6, 9 of postharvest non-

chilling cold storage, respectively (Figure 1A). Similarly, in fruit from WC, the concentration of 

tZOG were higher in IC fruit (12.15, 12.72, 15.96, 8.67) pmol/g DW than OC fruit (0.00, 7.97, 

8.29, 0.00) pmol/g DW from WC region after week 0, 3, 6, 9 of postharvest non-chilling cold 

storage, respectively (Figure 1A). This indicated that exposure of fruit to sunlight could inhibit the 

production of the hormone. Although, there was no significant difference in cis-zeatin-O-glucoside 

(cZOG) concentration of IC and OC fruit from EC, cis-zeatin-type cytokinins including cis-zeatin 

riboside (cZR), cis-zeatin riboside-O-glucoside (cZROG), cis-zeatin-7-glucosides (cZ7G) were 

mostly higher in the OC fruit than IC fruit from both EC and WC provinces during postharvest 

non-chilling cold storage (Figures 1B-E). This indicated that the fruit exposure to cold storage 

triggered the in vitro production of these cytokinin conjugates. The cZR concentrations of IC and 

OC fruit harvested from EC increased from 4.82 and 2.80 pmol/g DW after week 0 and 9 to 6.76 

and 46.20 pmol/g DW, respectively, during postharvest cold storage at non-chilling temperature 

(Figure 1C). Similar trend occurred for fruit harvested from WC. 
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The incidence of RBD only occurred on fruit harvested from EC during 2016 season and was 

observed on IC fruit after week 9 of cold storage. Hence, the result comparing the phytohormonal 

levels of fruit with and without rind disorder was based only on IC fruit from EC after week 9 of 

non-chilling cold storage at 7.5 ± 0.5 °C. Fruit without RBD had higher concentration of tZOG 

(12.86 pmol/g DW) and cZ7G (6.59 pmol/g DW) than fruit with rind disorder (0.00 pmol/g DW) 

and (0.00 pmol/g DW), respectively which were below LOD (Figure 2A & 2E). Other cis-type 

cytokinins including cZOG, cZR and cZROG were significantly higher in disordered (118.13, 

24.14 and 6.97 pmol/g DW) fruit than fruit without disorder (76.52, 11.57 and 4.86 pmol/g DW; 

Figures 2B-D).  

 

Phytohormones are responsible for many physiological responses in plants including prevention 

of diseases and physiological disorders. The crucial function of CKs in the regulation of plant 

immunity against pathogens has been identified (Schäfer et al., 2015). Cytokinins control plants’ 

immune system by modulating salicylic acid signalling and play crucial role in the defence against 

pathogens and insects (Choi et al., 2011; Giron et al., 2013). Several active CKs, such as kinetin, 

6-benzylaminopurine (6-BAP), and tZ have been demonstrated to be capable of increasing 

resistance against hemi- /biotrophic pathogens in Arabidopsis and tobacco (Argueso et al., 2012; 

Choi et al., 2011; Egamberdieva and Kucharova, 2009; Großkinsky et al., 2013, 2011). Scientific 

report of the phytohormone concentration of citrus fruit rind in relation to the prevention or 

manifestation of physiological rind disorder is not available in literature. The cytokinins reported 

in this study could have been involved in the prevention of physiological rind disorder in the 

mandarin fruit used in the study. cZOG, cZR, and cZROG concentrations were higher in fruit with 

RBD than on fruit without RBD. tZOG and cZ7G were absent in fruits with disorder. This 
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indicated that lower concentration of cZOG, cZR, and cZROG and absence of tZOG and cZ7G 

synergistically brought about the immunity in fruits without disorders.  

 

Dihydrozeatin 7-glucosides (DHZ7G) had higher concentration than other measured CKs and were 

mostly higher in IC fruit than OC fruit from both EC and WC provinces during cold storage (Figure 

3A). However, the concentration of DHZ7G became higher in the OC (222.91 pmol/g DW) fruit 

than IC (183.51 pmol/g DW) fruit at week 3 (Figure 3A). N6- isopentenyladenine riboside (iPR) 

and N6-isopentenyladenine-N9-glucoside (iP9G) concentrations were generally higher in the OC 

fruit (1.85, 0.67, 2.63, 6.68 and 8.92, 9.07, 6.72, 7.37 pmol/g DW) than IC fruit (1.48, 0.63, 1.31, 

6.36 and 5.86, 4.66, 5.91 pmol/g DW, Figure 3B & C). The iP9G was below the LOD in fruit 

harvested from EC. Comparing the DHZ7G, iPR and iP9G concentration of fruit with and without 

rind disorder, DHZ7G concentration was significantly higher in fruit with RBD than those without 

(Figure 4). There was no significant difference in the concentration of iPR of fruit with and without 

RBD while iP9G concentration was higher in fruit without RBD than fruit with the disorder 

(Figures 4B & C). The presence of iP9G in the rind of IC and OC fruit harvested from WC and 

absence in fruit from EC could be because of the orchard practice, rootstock and agroecological 

conditions of fruit before harvest as these factors could greatly influence the production of 

endogenous hormones and their conjugates in plant tissues. 

 

Zeatin is considered as an essential cytokinin in higher plants because of its ubiquitous nature and 

high activity (Rodo et al., 2008). Other free bases with cytokinin activity, cZ, N6-(Δ2-isopentenyl) 

adenine and dihydrozeatin are also present in most plant tissues (Rodo et al., 2008). Derivatives 

of these bases include the corresponding ribosides and nucleotides, as well as glucosides with the 
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sugar moiety at the, O- of the side chain or at the N7, N9, or N3 of the adenine ring (Rodo et al., 

2008). The result of this study revealed the presence of DHZ7G, iPR and iP9G in mandarin fruit. 

In CK-mediated resistance, interactions with other phytohormones, such as abscisic acid 

(Großkinsky et al., 2014) or salicylic acid (Argueso et al., 2012; Choi et al., 2010; Großkinsky et 

al., 2011) have previously been reported. However, information about the synergistic role of cZ 

glucoside and iP9G with auxin is not yet documented in literature. In this study, the CK conjugates, 

cZ7G, tZOG and iP9G synergistically acted with the auxin IAA to prevent RBD in mandarin fruit 

rind. 

 

3.2. Canopy position affected auxin concentrations of fruit rind during postharvest cold 

storage 

The influence of canopy position on rind concentration of indole-3-acetic acid (IAA) and IAA-

aspartate (IAAsp) were examined during postharvest non-chilling cold storage. The IAA 

concentration was higher in the IC fruit (344.15 pmol/g DW) than OC fruit (194.20 pmol/g DW) 

from EC at week 0 while IAA concentration of OC fruit from WC were below the LOD and IC 

fruit had 53.20 pmol/g DW at week 0 (Figure 5A). The IAA concentration of OC fruit from EC 

fairly remained constant throughout postharvest period while a significant drop from 344.15 

pmol/g DW at week 0 to 177.14 pmol/g DW at week 3 occurred in IC fruit from EC. The IAAsp 

concentration were below the LOD at week 0 and 3 but increased to 11.83 and 12.17 pmol/g DW 

at week 6 and 9, respectively (Figure 5B). 

 

IAA is an important growth regulator that has been reported to have potent physiological 

regulatory properties. These properties include delaying ripening and softening of fruits, inducing 
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defence responses in plant tissues and inhibition of postharvest physiological disorders (Baldwin, 

2003; Rojo et al., 2003). In this study, fruits without disorder had a high composition of IAA which 

is more than double the value recorded in fruits with RBD. This indicated that the presence of IAA 

could be responsible for the prevention of rind disorder. It was observed that the IAA concentration 

in both IC positions in EC and WC decreased significantly at the end of the cold storage period 

(week 9) compared to the concentration at the initial stage before storage (week 0; Figure 5A). The 

reverse is the case in fruits from OC position of both locations as there were increase in IAA 

concentration at week 9 compared to week 0 (Figure 5A). This suggested that the endogenous 

concentration of IAA during non-chilling postharvest cold storage is dependent on their canopy 

position. The IAA concentration in fruit with disorder is much higher than in fruit without disorder 

indicating the potent ability of IAA to prevent or block the manifestation of physiological disorders 

(Figure 6A). Figure 6 shows the IAA and IAAsp concentrations of fruit with and without RBD. 

Fruit without RBD had higher concentration of IAA than fruit with the disorder while IAAsp were 

significantly higher in fruit with RBD than fruit without the disorder (Figures 6A & B). 

 

This crucial activity of IAA could be an outcome of its synergistic interaction with other hormones 

and or metabolic processes in the fruit during its postharvest life. Plant hormones interact in 

complex networks to balance the response to developmental and environmental cues (Denancé et 

al., 2013). The mechanisms governing these hormonal networks are unknown (Denancé et al., 

2013). The ability of phytohormones to play this crucial role could be dependent on other factors 

such as the presence of coenzymes, seasonal variation, orchard or agricultural practices, 

temperature, and environmental stress. 
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However, the presence of IAAsp, a derivative of IAA resulted in physiological rind disorder in 

this study. The presence of the aspartate group in the IAAsp could be responsible for the 

manifestation of the disorder. The involvement of IAAsp in RBD disorders has not been 

established. This study will be the first to record the negative effect of IAAsp in the physiological 

disorder of citrus fruit. The processes involved in the conversion of IAA to IAAsp could have 

triggered the conditions involved in the manifestation of physiological rind disorder. 

 

5. Conclusion 

The phytohormonal concentration of ‘Nules Clementine’ mandarin fruit rind during postharvest 

non-chilling cold storage shows that different phytohormones are present in the fruit. 

Phytohormonal concentrations from week 0 to week 9 during postharvest cold storage followed 

inconsistent trends. The mechanism responsible for the inconsistency in the fruit rinds is unknown. 

The results also revealed the role of temperature (cold storage and inside canopy environment) and 

exposure to sunlight on the production of phytohormones and their conjugates. The results 

highlighted the positive effect of cZ7G, tZOG, iP9G and IAA in the prevention of physiological 

disorder and the negative effect of cZOG, cZR, cZROG and IAAsp. However, detailed study 

involving molecular physiology, biochemical pathways of phytohormones and enzymes, 

interactions of auxins and cytokinins during postharvest cold storage and effect of postharvest 

storage conditions on phytohormone concentration is suggested to have a better and in-depth 

understanding of the contribution of phytohormones to physiological rind disorder of citrus fruit. 
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Figure 1: Comparison of trans- and cis-zeatin-type cytokinins of ‘Nules Clementine’ mandarin fruit harvested from two canopy positions 

(inside canopy (IC) and outside canopy (OC)) from Eastern Cape (EC) and Western Cape (WC) provinces over two seasons during 

postharvest non-chilling cold storage. Vertical bars represent standard error of the mean value (n = 3). Abbreviations: Trans-zeatin (tZ), 

cis-zeatin (cZ), O-glucoside (OG), riboside (R), riboside-O-glucoside (ROG), 7-glucosides (7G) 
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Figure 2: Comparison of trans- and cis-zeatin-type cytokinins of ‘Nules Clementine’ mandarin fruit with (disorder) and without (none) 

rind breakdown after 9 weeks of cold storage at non-chilling temperature. Vertical bars represent standard error of the mean value (n = 

3). Abbreviations: Trans-zeatin (tZ), cis-zeatin (cZ), O-glucoside (OG), zeatin riboside (ZR), riboside-O-glucoside (ROG), 7-glucosides 

(7G) 
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Figure 3: Comparison of DHZ7G, iPR, and iP9G of ‘Nules Clementine’ mandarin fruit harvested from two canopy positions (inside 

canopy (IC) and outside canopy (OC)) from Eastern Cape (EC) and Western Cape (WC) provinces over two seasons during postharvest 

non-chilling cold storage. Vertical bars represent standard error of the mean value (n = 3). Abbreviations: Dihydrozeatin 7-glucosides 

(DHZ7G), N6- isopentenyladenine riboside (iPR) and N6-isopentenyladenine-N9-glucoside (iP9G).  
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Figure 4: Comparison of DHZ7G, iPR, and iP9G of ‘Nules Clementine’ mandarin fruit with (disorder) and without (none) rind 

breakdown after 9 weeks of cold storage at non-chilling temperature. Vertical bars represent standard error of the mean value (n = 3). 

Abbreviations: Dihydrozeatin 7-glucosides (DHZ7G), N6- isopentenyladenine (iPR) and N6-isopentenyladenine-N9-glucoside (iP9G). 
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Figure 5: Comparison of auxin concentration of ‘Nules Clementine’ mandarin fruit harvested from two canopy positions (inside canopy 

(IC) and outside canopy (OC)) from Eastern Cape (EC) and Western Cape (WC) provinces over two seasons during postharvest non-

chilling cold storage (A and B). Abbreviations: Dihydrozeatin 7-glucosides (DHZ7G), N6-isopentenyladenine (iPR) and N6-

isopentenyladenine-N9-glucoside (iP9G). Abbreviations: IAA, indole-3-acetic acid and IAAsp, IAA-aspartate. 
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Figure 6: Comparison of IAA (A) and IAAsp (B) of ‘Nules Clementine’ mandarin fruit with (disorder) and without (none) rind 

breakdown after 9 weeks of cold storage at non-chilling temperature. Vertical bars represent standard error of the mean value (n = 3). 

Abbreviations: Dihydrozeatin 7-glucosides (DHZ7G), N6-isopentenyladenosine (iPR) and N6-isopentenyladenine-N9-glucoside (iP9G). 

Abbreviations: IAA, indole-3-acetic acid and IAAsp, IAA-aspartate. 
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CHAPTER 7 

MODEL DEVELOPMENT FOR NON-DESTRUCTIVE DETERMINATION OF RIND 

BIOCHEMICAL PROPERTIES OF ‘MARSH’ GRAPEFRUIT AND ‘NULES 

CLEMENTINE’ MANDARINS USING VISIBLE TO NEAR-INFRARED 

SPECTROSCOPY AND CHEMOMETRICS* 
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Abstract 

Rind biochemical properties play major roles in defence mechanism against the incidence of rind 

physiological disorders of citrus fruit during cold storage. However, conventional methods of 

analysis are destructive, time-consuming, and also expensive. Consequently, non-destructive 

techniques were developed to rapidly determine the biochemical properties of ‘Marsh’ grapefruit 

and ‘Nules Clementine’ mandarin fruit rinds using FOSS NIRSystems which acquired the 

electromagnetic spectral from 400 to 2500 nm. Pre-processing algorithms were used to correct 

light scattering properties of the spectra.  Methods with best results in terms of higher coefficient 

of determination (R2), residual predictive deviation (RPD), lower root mean square error of 

prediction (RMSEP) values were used for model development. Fruit rinds were analysed for 

biochemical properties using visible to near infrared spectroscopy (Vis/NIRS) and reference 

methods before and after 9 weeks of cold storage, respectively. Results obtained using partial least 

square regression algorithms showed good to excellent prediction models for rind biochemical 

properties such as sucrose (R2 = 0.99, RMSEP = 0.11, RPD = 11.42), glucose (R2 = 0.99, RMSEP 

= 0.77, RPD = 11.35), total flavonoids (R2 = 0.99, RMSEP = 0.07, RPD = 12.37), vitamin C (R2 = 

0.79, RMSEP = 0.06, RPD = 2.01) and radical-scavenging activities (R2 = 0.91, RMSEP = 0.17, 

RPD = 3.07) of grapefruit. Similarly, excellent models were developed for determination of rind 

biochemical properties of ‘Nules Clementine’ mandarin fruit. This study reported first application 

of Vis/NIR and chemometrics in determining of ‘Marsh’ grapefruit. The precision of the developed 

models to determine rind biochemical properties of ‘Marsh’ grapefruit and ‘Nules Clementine’ 

mandarin fruit rapidly and non-destructively were demonstrated. 
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1. Introduction 

Consumer preference for citrus fruit without rind disorder influences the purchase of fruit at both 

local and international markets. Therefore, purchase for any citrus fruit, is largely depended on 

appearance and rind biochemical properties (Khalid et al., 2012). External appearance, which plays 

a major role in consumer acceptability, is closely linked with rewarding internal sensory quality 

(Pathare et al., 2013). Therefore, evaluation and determination of biochemical properties of citrus 

fruit rind is important in delivering quality fruit to the fresh fruit market. One of the limiting factors 

affecting the citrus industry is the sudden incidence of postharvest physiological rind disorders. 

Most rind disorders manifest only after harvesting and sorting has been completed at the pack-

house and/or when fruit are ready to be delivered to the market, that is, after about three to five 

weeks postharvest (Cronje et al., 2011; Magwaza et al., 2012; van Rensburg et al., 2004).  

 

In the market, rind colour of a fruit constitutes the initial factor that repels or attract potential 

buyers. Moreover, rind biochemical properties such as non-structural carbohydrates constitute 

some of the most important constituents that play vital roles in the predisposition of fruit to 

different postharvest non-chilling physiological rind disorders (Di Majo et al., 2005; Magwaza et 

al., 2014a, 2014b). For instance, Ezz and Awad (2009) reported a significant relationship between 

sugars and rind pitting disorder of ‘Marsh’ grapefruit. This suggests that certain rind biochemical 

properties of citrus fruit could be used as biomarker(s) for predicting the susceptibility of fruit to 

physiological rind disorder. Since the incidence of non-chilling physiological rind disorder of 

citrus fruit is unpredictable, it is important to monitor fruit rind biochemical properties such as 

carbohydrates, dry matter (DM), phytochemicals, vitamin C, and radical-scavenging activities and 

its correlation with the incidence of rind disorder of the fruit. This knowledge could guide growers 
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to ensure that fruit with good quality rind is delivered to the markets irrespective of destinations. 

However, these rind parameters are mostly analysed using destructive, laborious, time-consuming, 

and expensive methods. In view of this, a non-destructive method to determine these rind 

properties could unveil new approach(es) to predicting the overall quality of the fruit rind and 

enhance the delivery of quality fruit at both local and international markets. 

 

Visible to near-infrared spectroscopy (Vis/NIRS) is a non-destructive analytical tool that has 

gained wide recognition in the citrus industry for its suitability in the assessment of quality 

attributes of citrus fruit (Cayuela and Weiland, 2010; Gómez et al., 2006; Magwaza, 2013). Its use 

in assessing the quality of horticultural products such as avocado (Olarewaju et al., 2016) and 

pomegranate (Arendse et al., 2017) is well documented. However, its use in non-destructive 

assessment and determination of biochemical properties of ‘Marsh’ grapefruit is currently 

unknown. The aim of this study was to develop a robust and non-destructive calibration models 

for rapid assessment and determination of biochemical properties of ‘Marsh’ grapefruit and ‘Nules 

Clementine’ mandarin rind using Vis/NIRS. 

 

2. Materials and methods 

2.1. Reagents and standards 

All chemicals including Sodium Hydroxide (NaOH), Folin-Ciocalteu reagent, metaphosphoric 

acid (MPA), sodium carbonate, gallic acid, quercetin, vitamin C, 2, 6 dichloroindophenol dye, 2,2-

diphenyl-1-picrylhydrazyl (DPPH), acetone, ethanol (HPLC grade) and sugars standards (sucrose, 

D-glucose, and D-fructose) were purchased from Sigma-Aldrich Company Ltd. (Dorset, UK). A 

Phenomenex® column (Rezex RCM - Monosaccharide) was used in the analyses. Water was 
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purified in a Milli-Q Integral Water Purification System (Merck Millipore corporation, Billerica, 

MA, USA; σ = 18 M Ω cm−1). 

 

2.2. Plant materials 

Experiments were conducted during 2015/16 seasons using ‘Marsh’ grapefruit and ‘Nules 

Clementine’ mandarin fruit. ‘Marsh’ grapefruit were budded on ‘Troyer’ Citrange ([Poncirus 

trifoliata (L.) Raf.] × [C. sinensis]) and x 639 ([Poncirus trifoliata (L.) Raf.] × [C. reshni]) 

rootstocks planted in 1993 on Bolton Citrus Farm, KwaZulu-Natal (KZN) (31° 34′ 44″ S, 28° 44′ 

59″ E) and Olifant River Farm, Limpopo (LMP) (32° 75′ 28″ S, 35° 89′ 31″ E) provinces, 

respectively. ‘Nules Clementine’ mandarin fruit harvested from Unifruiti Farm, Eastern Cape (33° 

27′ 32″ S, 25° 34′ 79″ E) were budded on ‘Carrizo’ citrange ([Poncirus trifoliata (L.) Raf.] × [C. 

sinensis]) while fruit harvested from Swartvelei Farm, Western Cape (25° 04′ 42″ S, 29° 23′ 09″ 

E) were budded on Rough lemon (C. jambhiri Lush.) rootstocks. A total number of 600 individual 

fruit (per cultivar) were harvested from 50 uniform sized trees at commercial maturity where six 

fruit were randomly selected from inside and outside canopy positions of the tree. After harvesting, 

fruit were transported within 48 h at ambient temperature in ventilated cartons to a horticultural 

research laboratory where fruit were washed and sorted for blemishes and fruit damage. Fruit were 

left for 24 h at room temperature 20 ± 1 ºC to equilibrate after which fruit were labelled, weighed, 

and transferred into cold storage (7.5 ± 0.5ºC) for 9 weeks. The fruit was then analysed for 

biochemical properties before and after cold storage. 
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2.3. Near infrared spectra acquisition 

Visible to near infrared spectra of ‘Marsh’ grapefruit and ‘Nules Clementine’ mandarin fruit were 

acquired using a method described by Sabatier et al. (2013) with modifications according to 

Olarewaju et al. (2016). Briefly, spectral data were acquired in reflectance mode using a laboratory 

bench-top monochromator NIRSystems Model XDS spectrometer (FOSS NIRSystems, Inc., 

Silver Spring, Maryland, USA) equipped with a quartz halogen lamp and lead sulphide (PbS) 

detector (Figure 1). The spectra were acquired with a circular sample cup with a quartz window 

(38 mm in diameter and 10 mm in thickness). The equatorial region of each fruit was carefully 

positioned on the instrumental sample cup and placed in an enclosed window before scanning to 

avoid light leakage. The NIRSystem was operated on Vision software (VisionTM, version 3.5.0.0, 

Tidestone Technologies Inc., KS, USA). Spectra were obtained at 2 nm intervals over a full 

spectral range (450 2500 nm) and each spectrum consisted of 32 scans which were automatically 

averaged and recorded as log 1/reflectance (log 1/R). Line plot representing absorbance spectra 

for grapefruit and mandarin fruit are depicted in Figure 2. The integration time was less than 500 

ms per spectrum collected. Each fruit was scanned two times along the equatorial region after 

rotating the fruit 180° and the two spectra were averaged. 

 

2.4. Reference analysis 

2.4.1. Sample preparation 

Reference measurements were taken from the area of the fruit rind where spectra were acquired 

using conventional destructive methods. Scanned area of the fruit rind was manually peeled off 

using table knife, snap frozen in liquid nitrogen and stored at -80 °C before freeze-drying over a 

period of three days using Virtis Benchtop freeze drier system (ES Model, SP Industries Inc., 
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Warmister, USA) at 0.015 kPa and -75 °C. Dry matter (DM) was calculated by subtracting the 

mass of the freeze-dried samples from fresh samples and expressed as percentage DM. Dried 

samples were then milled into a fine powder using pestle and mortar and stored in -20 °C for 

further biochemical analysis. 

 

2.4.2. Rind pigments analyses 

The total carotenoid concentration was determined using a modified method of Lichtenthaler 

(1987) according to Olarewaju et al. (2017). Briefly, lyophilized sample (150 mg ± 0.5) was 

weighted into a test tube followed by the addition of 2 mL of 80% (v/v) acetone before 

centrifugation for 10 min using GenVac® (SP Scientific, Genevac LTD., Suffolk, UK). The 

absorbance values of the supernatants were read at 470, 646.8, and 663.2 nm for maximum 

detection of carotenoids, chlorophyll a and b and total carotenoid concentration were calculated 

using Eqs. 1, 2, and 3, respectively. 

 

Ca = 12.25 A 663.2 – 2.79 A646.8       1 

 

Cb = 21.50 A646.8 – 5.10 A663.2        2 

 

Cc = (1000 A470 – 1.82 Ca – 85.02 Cb)/198      3 

 

Where Ca is chlorophyll a, Cb is chlorophyll b and Cc is total carotenoid concentration 
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2.4.3. Extraction and quantification of rind soluble sugars  

Soluble sugars were extracted and analysed according to Olarewaju et al. (2017). Concentration 

of fructose, glucose, and sucrose were then quantified using an isocratic HPLC binary pump 

system (Shimadzu Corporation, Kyoto, Japan) equipped with a refractive index detector. A 1 mL 

of diluted extract was injected into a Rezex RCM monosaccharide Ca+ (8%) column of 7.8 mm 

diameter × 300 mm (Phenomenex, Torrance, CA, USA) with a SecurityGuardTM cartridges of 4 

mm × 3 mm (Phenomenex). The mobile phase used was ultra-pure HPLC-grade water at a flow 

rate of 0.6 mL/min with the column compartment temperature set at 80 °C using a thermos-stated 

column compartment (Faculty of Science Workshop, University of Natal, Pietermaritzburg). The 

presence and concentration of individual sugars were determined by comparing peak area of 

samples with peak area and concentration of a known sugar standard curve (0.05 – 1.25 mg/L; R2 

= 0.99). 

 

2.4.4. Sample extraction for phenolics and flavonoid analyses  

Extraction was carried out according to Moo-Huchin et al. (2015) as modified by Olarewaju et al. 

(2017). Briefly, 150 mg ± 0.5 mg lyophilized sample was measured into a test tube and 3 mL of 

50:50 (ethanol: water) v/v was added. The test tube, covered with aluminium foil, containing the 

mixture was subsequently placed in a shaking water bath (Gesellschaft für (GFL), Labortechnik 

mbH, Burgwedel, Germany) at 70 °C for 2 h with intermittent sample vortexing for 20 s at 30 min 

interval. The sample was left to cool down followed by centrifugation for 10 min using 

GenVac® centrifuge (SP Scientific, Genevac LTD., Suffolk, UK) and filtered using a 0.45 µm 

nylon filter. Extracts were stored at -20 °C for further analysis. 
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2.4.4.1. Determination of total phenolic concentrations 

Extracts were analysed according to Moo-Huchin et al. (2015) as modified by Olarewaju et al. 

(2017) for total phenolic concentration. Briefly, sample extract (10 µL) was measured into a 4.5 

mL disposable cuvette in triplicate followed by the addition of 1.6 mL of distilled water, 100 µL 

of Folin-Ciocalteu reagent and 300 µL of sodium carbonate solution. The solution was mixed and 

incubated in the dark at room temperature for 2 h before absorbance at 765 nm using Ultraspec 

UV-1800 Spectrophotometer (Shimadzu Scientific Instruments, Inc., Columbia, USA). Gallic acid 

was used to generate a standard curve and total phenolic concentrations were expressed as mg 

gallic acid equivalent (GAE) /g DM.  

 

2.4.4.2. Determination of total flavonoid concentrations 

Extracts were analysed for total flavonoid concentration according to Lin and Tang (2007) with 

modification by Olarewaju et al. (2017). Briefly, extract (100 µL) was measured into a 4.5 mL 

disposable cuvette followed by the addition of 3 mL of sodium hydroxide solution. The mixture 

was agitated and incubated at room temperature for 10 min. Absorbance was measured in triplicate 

at 420 nm using an Ultraspec UV-1800 Spectrophotometer (Shimadzu Scientific Instruments, Inc., 

Columbia, USA). Quercetin was used to generate a standard curve and total flavonoid 

concentration was expressed as mg quercetin equivalent (QTE) /g DM. 

 

2.4.5. Sample extraction for determination of vitamin C and radical-scavenging activities 

Extraction was carried out according to the method of Brand-Williams et al. (1995) with slight 

modification by Olarewaju et al. (2017). A lyophilized sample of 150 mg ± 0.5 mg was measured 

into a test tube followed by the addition of 5 mL of 3% aqueous metaphosphoric acid and 
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incubation on ice cubes for 5 min. The extract was centrifuged for 20 min using GenVac® (SP 

Scientific, Genevac LTD., Suffolk, UK). Supernatant were stored in -20 °C for further analysis of 

vitamin C and DPPH radical-scavenging activities. 

 

2.4.5.1. Determination of Vitamin C 

Vitamin C were determined according to Barros et al. (2007) and Klein and Perry (1982) with 

modifications by Olarewaju et al. (2017). Briefly, supernatant (0.5 mL) was measured into a test 

tube followed by the addition of 2.5 mL of 0.005% of 2, 6 dichloroindophenol dye. The mixture 

was incubated in the dark for 10 min at room temperature. Absorbance was read in triplicate at 

515 nm against a 3% MPA solution under dim light using Ultraspec UV-1800 Spectrophotometer 

(Shimadzu Scientific Instruments, Inc., Columbia, USA) and the amount of vitamin C was 

calculated from a linear standard curve (0.00 – 100.00 µg/g; R2 = 0.96). 

 

2.4.5.2. Determination of DPPH radical-scavenging activities 

Determination of radical-scavenging activities were carried out according to Olarewaju et al. 

(2017). The Supernatant (20 µL) were measured into 4.5 mL disposable cuvette followed by the 

addition of 800 µL of methanol. One millilitre of 0.1 mM DPPH solution was added, vortexed and 

incubated in the dark at room temperature for 60 min. Absorbance was read in triplicate at 517 nm 

against a blank (absolute methanol) under dim light using Ultraspec UV-1800 Spectrophotometer 

(Shimadzu Scientific Instruments, Inc., Columbia, USA) and radical-scavenging activities were 

calculated by the percentage of DPPH that were scavenged using the Eq. 4. 

 

Radical-scavenging activities (%) = (1 – AE/AD) x 100    4 
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Where AE is the absorbance of the reaction mixture containing the standard antioxidant, or extract 

and AD is absorbance of the DPPH solution only. 

 

2.6. Chemometric data analysis 

Principal component analysis (PCA), a chemometric tool that determines effective wavelengths 

and detects outliers, and partial least squares (PLS) regression analysis, a tool usually used for 

calibration model development, were performed using the Unscrambler chemometric software 

(The UnscramblerTM Version 10.3, CAMO, Oslo, Norway). As a common practice before 

calibration model development, the spectral variation, effective wavelengths and outliers were first 

evaluated using full cross validation (leave-out-one) of PCA (Magwaza et al., 2014a). 

Consequently, identified outliers were removed from the calibration model development (Kuang 

and Mouazen, 2011; Magwaza et al., 2014a, 2014b). 

 

After PCA analyses, spectral data (X) were then related with reference biochemical data (Y) using 

PLS (Sáiz-Abajo et al., 2005) regression (with wide kernel algorithm) which ensured that latent 

variables (LV) were ordered based on their relevance for predicting the Y – variable (Nicolaï et 

al., 2007). The spectral datasets were grouped into various calibration/training (60%) and 

prediction/test (40%) sets, including spectral data of fruit from each and combinations of 

production regions before storage, after storage and merger of overall data. Where necessary, 

spectral data were subjected to several mathematical pre-processing algorithms to smooth spectral 

data, correct light scattering and reduce the changes of light path length during regression analysis 

(Magwaza et al., 2012a). Pre-processing methods investigated either individually or in 
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combination with others included Smoothing using Savitzky-Golay (SG, with segment size of 

seven for averaging at first and second polynomial order of derivative), derivative using Gap, Gap 

Segment and Savitzky-Golay (first and second polynomial order of derivative). Other algorithms 

used were baseline, standard normal variate (SNV), multiplicative scatter correction (MSC), and 

mean normalization. Method(s) that gave the best results in terms of highest coefficient of 

determination (R2, Eq. 7) and residual predictive deviation (RPD, Eq. 8), least root mean square 

error of calibration (RMSEC, Eq. 9) and root mean square error of prediction (RMSEP, Eq. 10) 

were used for calibration model development to predict interested biochemical properties. The 

RPD were rated based on model’s reliability check described in previous studies (Magwaza et al., 

2012b; Zimmermann et al., 2007). That is RPD values greater than 3.0 were regarded as excellent 

models, those between 2.5 and 3.0 were considered good models, those between 2.0 and 2.5 are 

fit for quantitative predictions, those between 1.5 and 2.0 are appropriate for rough predictions 

while value less than 1.5 means that the model is unreliable. 
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Where, n is the number of fruit samples used in model development; yact is the actual value 

measured by a destructive method; ymean is the average value of predicted data; ypred is the Vis/NIR 

predicted the value of fruit rind variables and SD is the standard deviation of reference data values. 

 

2.6 Statistical analysis 

Experiments were laid out using a completely randomized design (CRD) with individual fruit as 

replicate. All statistical analyses were performed using GenStat® 18th Edition (VSN International, 

Hemel Hempstead, UK). Data were subjected to analysis of variance (ANOVA) with canopy 

position, season, production region and cold storage time as factors. Mean separation between 

treatments were performed using least significant difference (LSD) at 5% level of significance. 

 

3. Results and discussion 

3.1. Distribution of reference data sets 

A significant amount of distribution existed among the samples (grapefruit and mandarin) and 

reference data were normally distributed around the mean which, together with range, were similar 

for calibration and validation data sets shown in Tables 1 and 2. For calibration set in grapefruit, 

reference values for sucrose, glucose, and fructose (rind carbohydrates) ranged from 68.50 to 

427.40 mg/g DW, 205.00 to 311.30 mg/g DW, and 105.80 to 268.90 mg/g DW with a mean of 

179.82, 252.27 and 304.53 mg/g DW, respectively (Table 1). Reference values ranged from 68.55 

to 427.30 mg/g DW, 205.20 to 311.20 mg/g DW and 268.90 to 374.60 mg/g DW with a mean of 

178.90, 252.58, and 304.80 mg/g DW, respectively for validation set (Table 1). Percentage 

coefficient of variation (CV%) for other reference parameters including total phenolics, total 

flavonoids, vitamin C, radical-scavenging activities, chlorophyll a, chlorophyll b and total 
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carotenoids were 25.12, 20.92, 6.61, 24.22, 52.71, 60.20, 61.72% (Table 1). Similarly, for 

calibration set in mandarin fruit, reference values for sucrose, glucose, and fructose ranged from 

46.50 to 269.40 mg/g DW, 113.45 to 312.30 mg/g DW, and 152.00 to 332.00 mg/g DW with a 

mean of 92.17, 206.91 and 231.70 mg/g DW, respectively (Table 2). Reference values ranged from 

46.80 to 269.40 mg/g DW, 113.45 to 312.50 mg/g DW and 152.00 to 331.90 mg/g DW with a 

mean of 92.17, 206.79, and 231.64 mg/g DW, respectively for validation set (Table 2). The CV% 

for other reference parameters including total phenolics, total flavonoids, vitamin C, radical-

scavenging activities, chlorophyll a, chlorophyll b and total carotenoids were 35.92, 18.97, 10.89, 

21.45, 36.18, 75.44 and 46.75%, respectively (Table 2). 

 

Wide variations, which could result from production locations or position of the fruit within tree 

canopy, of reference datasets can contribute significantly to model accuracy and reliability as 

discussed in previous studies (Davey et al., 2009; Magwaza et al., 2013; Olarewaju et al., 2016). 

Similarly, various authors have suggested a wide variation of calibration and validation reference 

data sets which enhanced predictive models (Clément et al., 2008; Lu et al., 2006; Magwaza et al., 

2013; Pérez-Marín et al., 2005). Therefore, the wide distribution of reference data was needed for 

effective model development. 

 

The relationship among measured rind biochemical properties (reference data) of citrus fruit rind 

were studied using Pearson’s correlation algorithm for ‘Marsh’ grapefruit and ‘Nules Clementine’ 

mandarin, respectively (Tables 3 and 4). Tests showed no correlation among carbohydrates 

(sucrose, glucose, and fructose), total phenolics and flavonoids concentrations for both citrus 

cultivars (Tables 3 and 4). On the other hand, in grapefruit, vitamin C had a strong correlation with 
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sucrose (r = -0.72), glucose (r = -0.83), radical-scavenging activities (r = 0.84), chlorophylls a (r = 

0.86) and b (r = 0.93), and total carotenoids (r = -0.84). Vitamin C also showed moderate 

relationships with fructose (r = -0.53) and total phenolic concentrations (r = 0.50) while no 

correlation existed with total flavonoid concentrations. However, in mandarin, vitamin C showed 

no relationship with sucrose, total phenolic and flavonoid concentrations but had strong to 

moderate correlations with glucose (r = -0.83), fructose (r = -0.71), radical-scavenging activities 

(r = 0.70), chlorophylls a (r = 0.68) and b (r = 0.62), and total carotenoids (r = -0.67). These 

relationships may indicate the abundant presence of vitamin C in the rind of the fruit as widely 

known as a predominant constituent of antioxidant in citrus fruit. 

 

3.2. Spectral characteristics 

 Figure 1 shows the average absorbance spectra, without application of mathematical pre-

treatments, of ‘Marsh’ grapefruit and ‘Nules Clementine’ mandarin fruit acquired by FOSS 

NIRSystem. Although mathematical pre-treatments were not applied on spectra for the 

development of some models, SG and SNV were employed during the development other models. 

The spectra were similar with to those acquired in previous studies for other citrus cultivars such 

as ‘Satsuma’ mandarin (Gómez et al., 2006), and ‘Valencia’ orange (Magwaza et al., 2011). The 

spectral curves of respective citrus cultivars were similar having notable absorbance peaks around 

450, 650, 970, 1200, 1400, 1800 and 1956 nm. Spectra for ‘Nules Clementine’ mandarin were 

more pronounced at regions 450, 650, and 1876 while peaks at 970 and 1200 were more prominent 

in ‘Marsh’ grapefruit than ‘Nules Clementine’ mandarin. Spectral peaks at 970 and 1200 nm match 

the first and second vibrational overtones that are of close association with the H-O-H stretching 
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modes of H2O absorption (Clément et al., 2008; Lestander and Geladi, 2005; Olarewaju et al., 

2016).  

 

The absorption bands between 1362 and 1388, and at 1402 could be related to the frequencies of 

the first overtones of C-H-C stretching and combinations while wavebands between 1680 and 1754 

nm could be allocated to the first overtones of the C-H stretching and combinations modes (Tewari 

et al., 2008). The sharp spectral curve noticed at 1800 nm could be related to the second overtone 

of C-H stretch mode while the information-rich region from 1956 nm and above could be related 

to the combinations of O-H, C-H and C-C stretches and vibrations associated with carbohydrates 

(Golic et al., 2003; Tewari et al., 2008).   

 

The wavelength absorption bands between 1415 and 2035 nm are mostly associated with phenolics 

and flavonoids (Cozzolino et al., 2004; Dykes et al., 2014; Frizon et al., 2015; Zhang et al., 2008). 

Light absorption by pigments (chlorophylls a and b, and carotenoids) dominates the reflectance 

spectra between 400 and 700 nm because of the electronic transitions occurring in part of the 

photoactive molecule (Toledo-Martín et al., 2016). Carotenoids absorption in the spectral range 

close to 500 nm are convincing and are responsible for the colouration of plants and its organs, 

such as fruit, including plant leaves without chlorophyll (Merzlyak and Gitelson, 1995; Thomas 

and Gausman, 1977). Pigments such as β-carotene, β-cryptoxanthin, lutein, zeaxanthin, capsanthin 

and capsorubin in pepper have been found to be associated with wavebands near 470 nm (Wall et 

al., 2001) while chlorophylls a and b, fruit green colour, could be absorbed in the visible region of 

the Vis/NIRS (498-568 and 670 nm) (Font et al., 2007; Gómez et al., 2006; Tkachuk and Kuzina, 

1982). 
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One factor that mostly makes interpretation of Vis/NIR models in relations to various properties 

of horticultural products difficult is spectra co-linearity. The co-linearity of spectra could allow a 

pooled effect of many wavelengths where each contributes to the model development and not 

necessarily few range(s) of spectra (McGlone and Kawano, 1998). Hence, making use of the whole 

spectra regions during calibration could provide improved models development compared to 

utilising a few parts of the spectra or individual wavebands (Ozaki and Christy, 2007). 

  

3.3. Determination of rind biochemical properties through PLS models 

Multivariate calibration models were developed to determine rind biochemical properties of citrus 

fruit from Vis/NIR spectra using PLS regression algorithm. Although, principal component 

regression algorithm was examined during modelling (data not shown), PLS regression yielded 

better results and was employed. To achieve optimum models for determination of each rind 

biochemical properties, several mathematical pre-processing methods were explored coupled with 

no pre-treatment. However, special emphases were given to the best model statistics (in terms of 

high R2 and RPD, and least RMSEP) which are presented in Tables 5, 6, and 7 for grapefruit and 

Tables 8, 9, and 10 for mandarins. Models were performed by critical examination of different 

wavelength ranges and combinations of fruit harvested from different production regions and 

acquired before (week 0) and after (week 9) cold storage. Tables 6, 7, 9 and 10 contains model 

statistics using pooled spectral data of fruit from different production region and cold storage time.  

 

Often, pre-processing algorithms are used to correct light scattering and reduced changes of light 

pathlength (Magwaza et al., 2012a). The SG algorithm usually improves spectra definitions that 
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are superimposed, eliminate noise in the spectral line and correct baseline region where necessary 

(Osborne, 2000).  Therefore, regression models were developed one after the other in a way that 

LVs were placed along directions of maximal covariance between the spectral matrix X and the 

response vector Y (Naes et al., 2002). Hence, spectral data were correlated with reference data 

obtained by conventional methods. 

 

Similar to Magwaza (2013), cold storage had significant influence on the calibration and validation 

model performances for both grapefruit (Tables 5 and 6) and mandarins (Tables 8 and 9). Models 

based on spectra acquired after storage (week 9) performed better for determining rind biochemical 

properties than those based on spectral acquired before cold storage. Similar trends were observed 

for fruit from the two distinct production regions but for grapefruit harvested from KZN, rind 

biochemical properties including sucrose (R2 = 0.99, RMSEP = 0.11, RPD = 11.42), glucose (R2 

= 0.99, RMSEP = 0.77, RPD = 11.35), fructose (R2 = 0.99, RMSEP = 0.99, RPD = 14.23), total 

phenolics (R2 = 0.94, RMSEP = 0.07, RPD = 3.85), total flavonoids (R2 = 0.99, RMSEP = 0.07, 

RPD = 12.37), vitamin C (R2 = 0.79, RMSEP = 0.06, RPD = 2.01), radical-scavenging activities 

(R2 = 0.91, RMSEP = 0.17, RPD = 3.07), chlorophylls a (R2 = 0.86, RMSEP = 0.08, RPD = 2.53) 

and b (R2 = 0.97, RMSEP = 0.14, RPD = 5.67) were better determined using PLS models based 

on spectra acquired after week 9 of cold storage than those acquired at week 0 (Table 5). These 

excellent models were developed using full spectra range (400-2500 nm) as suggested by 

Olarewaju et al. (2016), 2 LVs and without any application of mathematical pre-processing 

algorithms. 
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Similarly, for mandarins harvested from LMP, sucrose (R2 = 0.97, RMSEP = 0.79, RPD = 5.36), 

glucose (R2 = 0.97, RMSEP = 6.86, RPD = 5.40), fructose (R2 = 0.97, RMSEP = 1.14, RPD = 

5.36), total flavonoids (R2 = 0.80, RMSEP = 0.14, RPD = 3.27), vitamin C (R2 = 0.97, RMSEP = 

0.16, RPD = 5.19), radical-scavenging activities (R2 = 0.94, RMSEP = 2.80, RPD = 3.91), 

chlorophylls a (R2 = 0.94, RMSEP = 0.27, RPD = 3.85) / b (R2 = 0.97, RMSEP = 5.35, RPD = 

5.33), and total carotenoids (R2 = 0.97, RMSEP = 0.60, RPD = 5.30) were better determined with 

models developed using spectral data acquired after week 9 than the ones acquired prior to cold 

storage (Table 8). Models for determining rind sugars and pigments (except chlorophyll a, 400-

2500 nm, pre-processed with SG first order derivative using 4 LVs) were developed using the NIR 

region (700-2500) with SNV pre-treatment algorithm and 7 LVs. The whole spectral range was 

used to develop models that determined total phenolics (SNV applied, 7 LVs), total flavonoids 

(SNV applied, 2 LVs) and radical-scavenging activities (SNV applied, 1 LVs). 

 

Putting agronomic and climatic factors, associated with different production regions and storage 

conditions, into consideration, PLS models were developed from samples of various sources (KZN 

and LMP for grapefruit; and EC and LMP for mandarins) and postharvest conditions (before and 

after cold storage) to build more robust models (Tables 7 and 10). As a result, for grapefruit, 

excellent models were developed to determine sucrose (R2 = 0.94, RMSEP = 35.65, RPD = 3.76), 

vitamin C (R2 = 0.95, RMSEP = 0.20, RPD = 3.33) and chlorophyll b (R2 = 0.94, RMSEP = 0.79, 

RPD = 3.61) while good models determined glucose (R2 = 0.77, RMSEP = 18.81, RPD = 1.80), 

radical-scavenging activities (R2 = 0.85, RMSEP = 5.81, RPD = 2.45), chlorophyll a (R2 = 0.87, 

RMSEP = 0.79, RPD = 2.31), and total carotenoids (R2 = 0.80, RMSEP = 2.86, RPD = 1.71) (Table 

7). Similarly, for mandarins, good models were developed to determine glucose (R2 = 0.73, 
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RMSEP = 35.46, RPD = 1.66), vitamin C (R2 = 0.76, RMSEP = 0.72, RPD = 1.80), radical-

scavenging activities (R2 = 0.70, RMSEP = 6.89, RPD = 1.50), chlorophylls a (R2 = 0.80, RMSEP 

= 0.78, RPD = 1.91) and b (R2 = 0.87, RMSEP = 8.82, RPD = 2.48), and total carotenoids (R2 = 

0.82, RMSEP = 4.47, RPD = 2.10). 

 

In comparison with previous studies, similar results have been reported for non-destructive 

determination of sucrose (R2 = 0.90, RMSEP = 16.5), glucose (R2 = 0.94, RMSEP = 11.41), and 

fructose (R2 = 0.95, RMSEP = 11.58) in ‘Nules Clementine’ mandarin (Magwaza et al., 2012), 

total phenols in coffee (R2 = 0.94, RMSEP = 1.48; Páscoa et al., 2013), yerba mate (R2 = 0.81, 

RMSEP = 0.12; Frizon et al., 2015), and olives (R2 = 0.87, RMSEP = 6.33; Bellincontro et al., 

2012). Also, total flavonoids (R2 = 0.94, SEP = 140) and vitamin C (R2 = 0.80, SEP = 4.89) were 

determined in apples (Pissard et al., 2013) while similar results were reported for determination of 

radical-scavenging activities (R2 = 0.95, RMSEP = 0.23; Moncada et al., 2013) in quinoa. 

 

However, in some instances, models (using pooled data) developed to determine some rind 

biochemical properties such as fructose (R = 0.39, RMSEP = 26.22 and RPD = 0.84) and total 

flavonoids (R = 0.37, RMSEP = 0.79 and RPD = 0.68) of grapefruit from KZN and LMP (Table 

7) were poor. It affected the strength of its determination when data were pooled with the aim of 

increasing model robustness. Similar trend was observed for total phenolics (R = 0.10, RMSEP = 

0.77 and RPD = 0.15) and flavonoids (R = 0.29, RMSEP = 0.19 and RPD = 0.66) concentrations 

of mandarins from EC and LMP (Table 10). The poor models might be attributed to difference in 

the cultural practices among orchards used. Grapefruit and mandarins from different production 

regions were grown on various rootstocks which is known to influence fruit biochemical 
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compositions such as carbohydrates (Barry et al., 2004) and flavonoids (Gil-Izquierdo et al., 2004), 

and fruit response to biotic and abiotic stresses (Cimen and Yesiloglu, 2016; Treeby et al., 1995). 

 

4. Conclusion 

This study demonstrated that Vis/NIR spectroscopy combined with the appropriate pre-processing 

algorithm(s) can be used to develop models for the determination of rind biochemical properties 

of ‘Marsh’ grapefruit and ‘Nules Clementine’ mandarins. The study also revealed that spectral pre-

processing algorithm is not always required in developing excellent predictive model as 

demonstrated in determining rind biochemical properties of ‘Marsh’ grapefruit harvested from 

KZN. Rind biochemical properties such as non-structural carbohydrates, vitamin C and radical-

scavenging activities were determined with a high level of accuracy as reflected by their respective 

high RPD values. Although earlier studies have reported high predictive models for some 

biochemical properties such as rind non-structural carbohydrates of mandarin fruit, the application 

of Vis/NIR spectroscopy to determine rind biochemical properties of ‘Marsh’ grapefruit is the first 

and it provided relatively new information. 
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Figure 1: An image showing the overview of FOSS NIRSystem  
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Figure 2: Line plot of absorbance spectra for ‘Marsh’ grapefruit and ‘Nules Clementine’ mandarin fruit. 
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Table 1: Descriptive statistics for calibration and validation subsets for biochemical properties of ‘Marsh’ grapefruit rind 

  Calibration set  Validation set 

SN Parameter Mean SD Max Min Range CV %  Mean SD Max Min Range CV % 

1 Sucrose (mg/g DW) 179.82 142.64 427.40 68.50 358.90 79.32  178.90 143.12 427.30 68.55 358.75 80.00 

2 Glucose (mg/g DW) 252.27 37.43 311.30 205.00 106.30 14.84  252.58 37.27 311.20 205.20 106.00 14.75 

3 Fructose (mg/g DW) 304.53 33.19 374.70 268.90 105.80 10.90  304.80 33.81 374.60 268.90 105.70 11.09 

4 T. Phenolic (mg GAE/g) 2.35 0.61 4.08 0.31 3.77 25.85  2.31 0.58 3.40 0.31 3.09 25.12 

5 T. Flavonoids (mg QTE /g) 4.71 1.00 7.56 3.03 4.53 21.23  4.70 0.98 7.37 3.03 4.35 20.92 

6 Vitamin C (mg/g DW) 13.17 0.86 14.57 12.18 2.39 6.53  13.16 0.87 14.57 12.18 2.39 6.61 

7 DPPH (%) 62.11 17.45 82.26 9.55 72.71 28.09  63.21 15.31 82.26 26.24 56.02 24.22 

8 Chlorophyll a (mg/g DW) -4.21 2.19 -1.71 -8.40 6.69 -51.96  -4.26 2.24 -1.83 -8.70 6.87 -52.71 

9 Chlorophyll b (mg/g DW) -19.53 11.74 -6.20 -36.10 29.90 -60.09  -19.54 11.76 -6.20 -35.90 29.70 -60.20 

10 Total Carotenoid (mg/g DW) 11.32 6.37 19.90 -6.29 26.19 56.27  11.05 6.82 19.70 -6.29 25.99 61.72 
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Table 2: Descriptive statistics for calibration and validation subsets for biochemical properties of ‘Nules Clementine’ mandarin rind 

 

 

  

  Calibration set  Validation set 

SN Parameter Mean SD Max Min Range CV %   Mean SD Max Min Range CV % 

1 Sucrose (mg/g DW) 92.17 56.14 269.40 46.50 222.90 60.91  92.17 56.26 269.40 46.80 222.60 61.04 

2 Glucose (mg/g DW) 206.91 68.29 312.30 113.45 198.85 33.01  206.79 68.47 312.50 113.45 199.05 33.11 

3 Fructose (mg/g DW) 231.70 50.31 332.00 152.00 180.00 21.72  231.64 50.32 331.90 152.00 179.90 21.73 

4 T. Phenolics (mg GAE/g) 2.27 0.70 4.57 0.14 4.43 31.06  2.14 0.77 4.57 0.14 4.43 35.92 

5 T Flavonoids (mg QTE /g) 1.22 0.22 1.73 0.85 0.89 18.39  1.22 0.23 1.73 0.85 0.89 18.97 

6 Vitamin C (mg/g DW) 13.48 1.46 16.65 12.17 4.48 10.85  13.47 1.47 16.65 12.17 4.48 10.89 

7 DPPH (%) 58.16 12.83 74.80 0.91 73.89 22.07  58.62 12.58 74.80 0.91 73.89 21.45 

8 Chlorophyll a (mg/g DW) -4.84 1.75 -2.15 -7.40 5.25 -36.11  -4.86 1.76 -2.15 -7.40 5.25 -36.18 

9 Chlorophyll b (mg/g DW) -32.42 24.29 13.90 -77.00 90.90 -74.93  -32.38 24.43 13.90 -76.90 90.80 -75.44 

10 Total Carotenoid (mg/g DW) 22.43 10.46 42.00 11.58 30.42 46.65  22.48 10.51 42.10 11.60 30.50 46.75 
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Table 3: Pearson correlation coefficient matrix between biochemical properties of ‘Marsh’ grapefruit  

 

SN Parameters 1 2 3 4 5 6 7 8 9 10 

1 Sucrose (mg/g DW) -          

2 Glucose (mg/g DW) 0.34 -         

3 Fructose (mg/g DW) 0.23 0.68 -        

4 T. Phenolic (mg GAE/g) -0.31 -0.48 -0.16 -       

5 T. Flavonoids (mg QTE /g) 0.26 0.10 0.31 0.63 -      

6 Vitamin C (mg/g DW) -0.72 -0.83 -0.53 0.50 -0.15 -     

7 DPPH (%) -0.60 -0.83 -0.51 0.53 -0.09 0.84 -    

8 Chlorophyll a (mg/g DW) -0.46 -0.90 -0.44 0.55 -0.03 0.86 0.87 -   

9 Chlorophyll b (mg/g DW) -0.66 -0.86 -0.44 0.57 -0.08 0.93 0.91 0.97 -  

10 Total Carotenoids (mg/g DW) 0.58 0.83 0.47 -0.55 0.11 -0.84 -0.86 -0.87 -0.90 - 

Values in bold are significantly different from 0 with a significance level alpha = 0.05 
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Table 4: Pearson correlation coefficient matrix between biochemical properties of ‘Nules Clementine’ mandarin fruit 

SN Parameters 1 2 3 4 5 6 7 8 9 10 

1 Sucrose (mg/g DW) -          
2 Glucose (mg/g DW) 0.45 -         
3 Fructose (mg/g DW) 0.61 0.93 -        
4 T. Phenolics (mg GAE/g) 0.03 0.10 0.07 -       
5 T Flavonoids (mg QTE /g) 0.24 -0.32 -0.17 0.03 -      
6 Vitamin C (mg/g DW) -0.17 -0.83 -0.71 -0.13 0.44 -     
7 DPPH (%) -0.15 -0.69 -0.53 -0.02 0.51 0.70 -    
8 Chlorophyll a (mg/g DW) -0.27 -0.65 -0.44 -0.07 0.25 0.68 0.69 -   
9 Chlorophyll b (mg/g DW) -0.43 -0.55 -0.40 -0.13 0.32 0.62 0.61 0.72 -  

10 Total Carotenoid (mg/g DW) 0.40 0.63 0.47 0.15 -0.36 -0.67 -0.61 -0.67 -0.97 - 

Values in bold are significantly different from 0 with a significance level alpha = 0.05 
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Table 5: Model performance for ‘Marsh’ grapefruit using spectral data acquired (from KwaZulu-Natal and Limpopo) before cold storage 

(at week 0) and after cold storage (at week 9) using FOSS NIRSystem in reflectance mode.  
SN Parameters Production  

region 

Time Pre-treatment Spectral range LV Calibration Model 
 

Validation Model 

 R2 RMSEC  R2 RMSEP SEP Bias Slope RPD  

1 Sucrose  

(mg/g DW) 

KZN  

 

LMP 
 

Wk 0 

Wk 9 

Wk 0 
Wk 9 

 

None 

None  

None 
SG (2nd order) 

700-2500 

400-2500 

700-2500 
400-2500 

6 

2 

7 
4 

0.82 

0.99 

0.70 
0.94 

6.54 

0.11 

3.81 
0.16 

 
0.81 

0.99 

0.65 
0.77 

7.42 

0.11 

4.13 
0.32 

7.56 

0.11 

4.13 
0.33 

-0.51 

-0.00 

4.23 
-0.03 

0.82 

0.99 

0.18 
0.63 

2.03 

11.42 

1.31 
1.40 

 

2 Glucose 

(mg/g DW) 

KZN  

 

LMP 
 

Wk 0 

Wk 9 

Wk 0 
Wk 9 

 

None 

None  

None 
SG (2nd order) 

700-2500 

400-2500 

700-2500 
400-2500 

6 

2 

7 
4 

0.24 

0.99 

0.70 
0.99 

11.88 

0.69 

9.76 
0.90 

 
0.24 

0.99 

0.65 
0.86 

14.39 

0.77 

10.43 
3.89 

14.72 

0.79 

10.68 
4.24 

0.51 

0.07 

0.47 
0.76 

0.22 

1.00 

0.64 
0.72 

0.50 

11.35 

1.35 
1.87 

 

3 Fructose 

(mg/g DW) 

KZN  

 

LMP 

 

Wk 0 

Wk 9 

Wk 0 

Wk 9 

 

None 

None  

None 

SG (2nd order) 

700-2500 

400-2500 

700-2500 

400-2500 

6 

2 

7 

4 

0.79 

0.99 

0.70 

0.99 

16.71 

0.90 

9.76 

0.92 

 
0.75 

0.99 

0.65 

0.86 

17.84 

0.99 

10.43 

4.11 

18.43 

1.02 

10.68 

4.48 

1.58 

0.06 

0.47 

0.80 

0.84 

1.01 

0.64 

0.73 

1.86 

14.23 

1.31 

1.88 

 

4 Total 

Phenolic (mg 
GAE/g) 

KZN  

 
LMP 

 

Wk 0 

Wk 9 

Wk 0 

Wk 9 

 

None 

None  

None 

SG (2nd order) 

700-2500 

400-2500 

700-2500 

400-2500 

6 

2 

7 

4 

0.34 

0.94 

0.27 

0.79 

0.23 

0.07 

0.61 

0.05 

 
0.34 

0.94 

0.28 

0.61 

0.22 

0.07 

0.65 

0.06 

0.22 

0.07 

0.66 

0.07 

-0.05 

-0.00 

-0.04 

-0.01 

0.39 

0.96 

0.25 

0.54 

0.79 

3.85 

0.54 

1.01 

 

5 Total 
Flavonoids 

(mg QTE /g) 

KZN  
 

LMP 

 

Wk 0 
Wk 9 

Wk 0 

Wk 9 
 

None 
None  

None 

SG (2nd order) 

700-2500 
400-2500 

700-2500 

400-2500 

6 
2 

7 

4 

0.37 
0.99 

0.41 

0.96 

0.79 
0.07 

0.96 

0.05 

 
0.37 
0.99 

0.43 

0.82 

0.78 
0.07 

0.97 

0.10 

0.78 
0.07 

1.00 

0.10 

-0.16 
0.00 

0.03 

-0.02 

0.42 
0.99 

0.38 

0.72 

0.84 
12.37 

0.74 

1.80 

 

6 Vitamin C 

(mg/g DW) 

KZN  

 

LMP 
 

Wk 0 

Wk 9 

Wk 0 
Wk 9 

 

None 

None  

None 
SG (2nd order) 

700-2500 

400-2500 

700-2500 
400-2500 

6 

2 

7 
4 

0.11 

0.78 

0.23 
0.96 

0.09 

0.06 

0.05 
0.06 

 
0.14 

0.79 

0.21 
0.82 

0.10 

0.06 

0.06 
0.14 

0.10 

0.06 

0.06 
0.15 

-0.00 

-0.00 

-0.01 
-0.02 

0.11 

0.82 

0.19 
0.69 

0.28 

2.01 

0.43 
1.69 

 

7 DPPH (%) KZN  

 

LMP 
 

Wk 0 

Wk 9 

Wk 0 
Wk 9 

 

None 

None  

None 
SG (2nd order) 

700-2500 

400-2500 

700-2500 
400-2500 

6 

2 

7 
4 

0.23 

0.92 

0.14 
0.98 

9.34 

0.15 

5.86 
0.28 

 
0.21 

0.91 

0.15 
0.82 

10.92 

0.17 

6.93 
0.86 

11.22 

0.17 

7.08 
0.97 

0.69 

0.02 

0.15 
0.22 

0.18 

0.89 

0.12 
0.71 

0.42 

3.07 

0.31 
1.60 

 

8 Chlorophyll 

a (mg/g DW) 

KZN  

 
LMP 

 

Wk 0 

Wk 9 

Wk 0 

Wk 9 

 

None 

None  

None 

SG (2nd order) 

700-2500 

400-2500 

700-2500 

400-2500 

6 

2 

7 

4 

0.76 

0.86 

0.62 

0.96 

0.52 

0.08 

0.24 

0.07 

 
0.73 

0.86 

0.61 

0.85 

0.53 

0.08 

0.61 

0.13 

0.55 

0.08 

0.23 

0.17 

-0.01 

-0.00 

-0.15 

 0.00 

0.80 

0.88 

0.59 

0.77 

1.74 

2.53 

1.17 

1.58 

 

9 Chlorophyll 

b (mg/g DW) 

KZN  

 
LMP 

 

Wk 0 

Wk 9 

Wk 0 

Wk 9 

 

None 

None  

None 

SG (2nd order) 

700-2500 

400-2500 

700-2500 

400-2500 

6 

2 

7 

4 

0.81 

0.97 

0.50 

0.99 

1.51 

0.13 

0.29 

0.20 

 
0.79 

0.97 

0.48 

0.84 

1.58 

0.14 

0.28 

0.64 

1.62 

0.14 

0.29 

0.72 

0.10 

0.00 

0.02 

0.15 

0.87 

0.99 

0.48 

0.72 

2.08 

5.63 

0.93 

1.75 

 

10 Total 
Carotenoids 

(mg/g DW) 

KZN  
 

LMP 

 

Wk 0 
Wk 9 

Wk 0 

Wk 9 

None 
None  

None 

SG (2nd order) 

700-2500 
400-2500 

700-2500 

400-2500 

6 
2 

7 

4 

0.74 
0.23 

0.15 

0.98 

0.73 
4.31 

0.16 

0.12 

 
0.72 
0.16 

0.09 

0.84 

0.72 
4.19 

0.18 

0.37 

0.73 
4.26 

0.18 

0.37 

-0.05 
-0.40 

-0.02 

-0.10 

0.83 
0.22 

0.09 

0.72 

1.82 
0.55 

0.31 

1.91 
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Table 6: Model performance for ‘Marsh’ grapefruit using pooled spectral data acquired (from KwaZulu-Natal and Limpopo) before cold 

storage (at week 0) and after cold storage (at week 9) using FOSS NIRSystem in reflectance mode. 

SN Parameters Production  

region 

Time Pre-treatment Spectral 

range 

LV Calibration Model 
 

Validation Model 

 R2 RMSEC  R2 RMSEP SEP Bias Slope RPD  

1 Sucrose  

(mg/g DW) 

KZN  

LMP 

KZN + LMP 
KZN + LMP 

Wk 0 + Wk 9 

Wk 0 + Wk 9 

Wk 0 
Wk 9 

 

SG (2nd order) 

None  

SG (2nd order) 
SG (2nd order) 

400-2500 

400-2500 

400-2500 
400-2500 

3 

3 

4 
5 

0.91 

0.98 

0.97 
0.95 

11.80 

26.09 

25.23 
  1.63 

 
0.90 

0.98 

0.96 
0.95 

12.84 

26.51 

27.65 
  1.53 

12.87 

26.73 

27.94 
  1.54 

-1.39 

-0.79 

-0.43 
0.03 

0.88 

0.97 

0.97 
0.98 

2.94 

6.20 

0.98 
4.66 

 

 

2 Glucose 

(mg/g DW) 

KZN  

LMP 
KZN + LMP 

KZN + LMP 

Wk 0 + Wk 9 

Wk 0 + Wk 9 
Wk 0 

Wk 9 

 

None 

SG (2nd order)  
SG (2nd order) 

SG (2nd order) 

700-2500 

400-2500 
400-2500 

400-2500 

6 

2 
7 

5 

0.68 

0.69 
0.66 

0.89 

13.48 

13.30 
15.08 

  3.94 

 
0.87 

0.76 
0.61 

0.90 

15.16 

13.41 
16.51 

  3.63 

15.25 

13.41 
16.70 

  3.65 

-1.09 

-1.74 
 0.30 

-0.38 

0.94 

0.67 
0.62 

0.90 

2.80 

1.55 
1.26 

6.76 

 

3 Fructose 
(mg/g DW) 

KZN  
LMP 

KZN + LMP 

KZN + LMP 

Wk 0 + Wk 9 
Wk 0 + Wk 9 

Wk 0 

Wk 9 
 

None 
None  

SG (2nd order) 

SG (2nd order) 

700-2500 
700-2500 

700-2500 

400-2500 

6 
6 

7 

5 

0.27 
0.27 

0.65 

0.90 

23.62 
23.62 

22.45 

4.09 

 
0.64 
0.36 

0.60 

0.92 

23.40 
23.91 

23.91 

  3.76 

22.99 
23.91 

24.19 

  3.77 

-5.25 
-3.04 

2.45 

-0.43 

0.59 
0.31 

0.35 

0.90 

1.21 
0.63 

1.26 

3.28 
 

 

4 Total 
Phenolic  

(mg GAE/g) 

KZN  
LMP 

KZN + LMP 

KZN + LMP 

Wk 0 + Wk 9 
Wk 0 + Wk 9 

Wk 0 

Wk 9 
 

SG (2nd order) 
None  

SG (2nd order) 

SG (2nd order) 

400-2500 
700-2500 

700-2500 

400-2500 

2 
6 

7 

5 

0.86 
0.14 

0.16 

0.96 

0.24 
0.48 

0.51 

0.08 

 
0.88 
0.08 

0.14 

0.97 

0.23 
0.50 

0.55 

0.07 

0.23 
0.50 

0.55 

0.07 

-0.02 
-0.05 

-0.04 

-0.00 

0.90 
0.11 

0.15 

0.97 

2.81 
0.38 

0.43 

5.96 

 

5 Total 

Flavonoids 

(mg QTE /g) 

KZN  

LMP 

KZN + LMP 
KZN + LMP 

Wk 0 + Wk 9 

Wk 0 + Wk 9 

Wk 0 
Wk 9 

 

None 

None  

SG (2nd order) 
SG (2nd order) 

700-2500 

700-2500 

700-2500 
400-2500 

6 

6 

7 
5 

0.35 

0.35 

0.32 
0.98 

0.81 

0.81 

0.99 
0.98 

 
0.32 

0.37 

0.30 
0.10 

0.79 

0.84 

1.00 
0.10 

0.79 

0.84 

1.01 
0.10 

-0.11 

-0.10 

-0.01 
0.00 

0.31 

0.35 

0.34 
0.97 

0.65 

0.72 

0.73 
6.99 

 

6 Vitamin C 

(mg/g DW) 

KZN  

LMP 

KZN + LMP 
KZN + LMP 

Wk 0 + Wk 9 

Wk 0 + Wk 9 

Wk 0 
Wk 9 

 

SG (2nd order) 

None  

SG (2nd order) 
SG (2nd order) 

400-2500 

700-2500 

700-2500 
400-2500 

2 

6 

7 
5 

0.95 

0.96 

0.31 
0.85 

0.16 

0.19 

0.08 
0.11 

 
0.96 

0.96 

0.27 
0.88 

0.16 

0.21 

0.09 
0.10 

0.16 

0.21 

0.09 
0.10 

-0.03 

-0.01 

-0.00 
 0.01 

0.98 

0.93 

0.28 
0.87 

4.60 

4.55 

0.61 
2.63 

 

7 DPPH (%) KZN  

LMP 
KZN + LMP 

KZN + LMP 

Wk 0 + Wk 9 

Wk 0 + Wk 9 
Wk 0 

Wk 9 

 

SG (2nd order) 

None  
SG (2nd order) 

SG (2nd order) 

400-2500 

  400-700 
700-2500 

400-2500 

2 

3 
7 

5 

0.80 

0.86 
0.12 

0.92 

8.64 

4.71 
8.43 

1.24 

 
0.83 

0.85 
0.12 

0.93 

7.75 

5.09 
9.80 

1.16 

7.78 

5.24 
9.96 

1.17 

-0.76 

0.59 
0.60 

-0.07 

0.87 

0.83 
0.10 

0.95 

2.29 

2.24 
0.29 

3.68 

 

8 Chlorophyll a 
(mg/g DW) 

KZN  
LMP 

KZN + LMP 

KZN + LMP 

Wk 0 + Wk 9 
Wk 0 + Wk 9 

Wk 0 

Wk 9 
 

None 
None  

SG (2nd order) 

SG (2nd order) 

400-2500 
  400-700 

700-2500 

400-2500 

3 
6 

7 

5 

0.95 
0.95 

0.61 

0.81 

0.37 
0.37 

0.73 

0.13 

 
0.86 
0.95 

0.70 

0.82 

0.92 
0.36 

0.62 

0.12 

0.91 
0.40 

0.62 

0.12 

-0.22 
1.10 

-0.03 

-0.02 

0.95 
0.94 

0.71 

0.81 

2.72 
3.88 

1.56 

2.17 

 

9 Chlorophyll b 
(mg/g DW) 

KZN  
LMP 

KZN + LMP 

KZN + LMP 

Wk 0 + Wk 9 
Wk 0 + Wk 9 

Wk 0 

Wk 9 
 

None 
None  

SG (2nd order) 

SG (2nd order) 

  400-700 
  400-700 

700-2500 

400-2500 

3 
3 

7 

5 

0.97 
0.97 

0.48 

0.83 

1.83 
1.83 

1.96 

0.53 

 
0.90 
0.97 

0.65 

0.86 

3.80 
1.76 

1.60 

0.48 

3.71 
1.83 

1..62 

0.48 

-0.95 
0.26 

0.02 

-0.06 

0.97 
0.98 

0.61 

0.85 

3.22 
5.85 

1.26 

2.46 

 

10 Total 

Carotenoids 

(mg/g DW) 

KZN  

LMP 

KZN + LMP 
KZN + LMP 

Wk 0 + Wk 9 

Wk 0 + Wk 9 

Wk 0 
Wk 9 

None 

None  

None  
SG (2nd order) 

400-2500 

  400-700 

700-2500 
400-2500 

3 

3 

7 
5 

0.97 

0.97 

0.56 
0.34 

0.78 

0.80 

0.90 
3.24 

 
0.81 

0.97 

0.69 
0.28 

3.15 

0.79 

0.72 
3.13 

3.26 

0.79 

0.73 
3.15 

0.41 

-0.13 

-0.02 
-0.19 

0.86 

0.99 

0.69 
0.34 

2.16 

5.49 

1.48 
0.74 
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Table 7: Calibration model performance developed for ‘Marsh’ grapefruit using pooled spectral data (from KwaZulu-Natal and Limpopo 

separately) acquired before cold storage (at week 0) and after cold storage (at week 9) using FOSS NIRSystem in reflectance mode. 

 

SN Parameters Production  

region 

Time Pre-treatment Spectral 

range 

LV Calibration Model 
 

Validation Model 

 R2 RMSEC  R2 RMSEP SEP Bias Slope RPD  

1 Sucrose  

(mg/g DW) 

KZN + LMP Wk 0+Wk 9 SG (2nd order) 400-2500 5 0.97 24.34 
 

0.94 35.65 36.00 1.24 0.92 3.76  

2 Glucose  

(mg/g DW) 

KZN + LMP Wk 0 + Wk 9 SG (2nd order) 400-2500 5 0.80 16.52 
 

0.77 17.81 17.41 -4.34 0.75 1.80  

3 Fructose  

(mg/g DW) 

KZN + LMP Wk 0 + Wk 9 SG (2nd order) 400-2500 5 0.49 23.56 
 

0.39 26.22 25.99 -4.78 0.42 0.84  

4 Total Phenolic 

(mg GAE/g) 

KZN + LMP Wk 0 + Wk 9 SG (2nd order) 400-2500 5 0.47 0.44 
 

0.59 0.37 0.39 0.07 0.55 1.03  

5 Total 

Flavonoids  

(mg QTE /g) 

KZN + LMP Wk 0 + Wk 9 None 400-2500 6 0.35 0.79 
 

0.37 0.79 0.79 -0.02 0.37 0.68  

6 Vitamin C  

(mg/g DW) 

KZN + LMP Wk 0 + Wk 9 None   400-700 7 0.94 0.22 
 

0.95 0.20 0.20 -0.01 0.95 3.33  

7 DPPH (%) KZN + LMP Wk 0 + Wk 9 SG (2nd order) 400-2500 5 0.76 8.50 
 

0.85 5.81 5.85 -0.31 0.87 2.45  

8 Chlorophyll a 

(mg/g DW) 

KZN + LMP Wk 0 + Wk 9 None   400-700 7 0.83 0.90 
 

0.87 0.79 0.80 -0.02 0.87 2.31  

9 Chlorophyll b 

(mg/g DW) 

KZN + LMP Wk 0 + Wk 9 None   400-700 7 0.93 3.10 
 

0.94 2.80 2.81 -0.02 0.95 3.61  

10 Total 

Carotenoids 

(mg/g DW) 

KZN + LMP Wk 0 + Wk 9 None 400-2500 6 0.76 3.21 
 

0.80 2.86 2.87 -0.07 0.81 1.71  
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Table 8: Model performance for ‘Nules Clementine’ mandarin using spectral data acquired (from KwaZulu-Natal and Limpopo) before 

cold storage (at week 0) and after cold storage (at week 9) using FOSS NIRSystem in reflectance mode.  

SN Parameters Production  

region 

Time Pre-treatment Spectral range LV Calibration Model 
 

Validation Model 

 R2 RMSEC  R2 RMSEP SEP Bias Slope RPD  

1 Sucrose  

(mg/g DW) 

EC 

 
LMP 

 

Wk 0 

Wk 9 
Wk 0 

Wk 9 

 

None 

None  
None 

SG (2nd order) 

700-2500 

400-2500 
700-2500 

400-2500 

6 

2 
7 

4 

0.82 

0.99 
0.70 

0.94 

6.54 

0.11 
3.81 

0.16 

 
0.81 

0.99 
0.65 

0.77 

7.42 

0.11 
4.13 

0.32 

7.56 

0.11 
4.13 

0.33 

-0.51 

-0.00 
4.23 

-0.03 

0.82 

0.99 
0.18 

0.63 

2.03 

11.42 
1.31 

1.40 

 

2 Glucose 

(mg/g DW) 

EC  

 
LMP 

 

Wk 0 

Wk 9 
Wk 0 

Wk 9 

 

None 

None  
None 

SG (2nd order) 

700-2500 

400-2500 
700-2500 

400-2500 

6 

2 
7 

4 

0.24 

0.99 
0.70 

0.99 

11.88 

0.69 
9.76 

0.90 

 
0.24 

0.99 
0.65 

0.86 

14.39 

0.77 
10.43 

3.89 

14.72 

0.79 
10.68 

4.24 

0.51 

0.07 
0.47 

0.76 

0.22 

1.00 
0.64 

0.72 

0.50 

11.35 
1.35 

1.87 

 

3 Fructose 
(mg/g DW) 

EC  
 

LMP 

 

Wk 0 
Wk 9 

Wk 0 

Wk 9 
 

None 
None  

None 

SG (2nd order) 

700-2500 
400-2500 

700-2500 

400-2500 

6 
2 

7 

4 

0.79 
0.99 

0.70 

0.99 

16.71 
0.90 

9.76 

0.92 

 
0.75 
0.99 

0.65 

0.86 

17.84 
0.99 

10.43 

4.11 

18.43 
1.02 

10.68 

4.48 

1.58 
0.06 

0.47 

0.80 

0.84 
1.01 

0.64 

0.73 

1.86 
14.23 

1.31 

1.88 

 

4 Total 
Phenolic (mg 

GAE/g) 

EC  
 

LMP 

 

Wk 0 
Wk 9 

Wk 0 

Wk 9 
 

None 
None  

None 

SG (2nd order) 

700-2500 
400-2500 

700-2500 

400-2500 

6 
2 

7 

4 

0.34 
0.94 

0.27 

0.79 

0.23 
0.07 

0.61 

0.05 

 
0.34 
0.94 

0.28 

0.61 

0.22 
0.07 

0.65 

0.06 

0.22 
0.07 

0.66 

0.07 

-0.05 
-0.00 

-0.04 

-0.01 

0.39 
0.96 

0.25 

0.54 

0.79 
3.85 

0.54 

1.01 

 

5 Total 

Flavonoids 

(mg QTE /g) 

EC  

 

LMP 
 

Wk 0 

Wk 9 

Wk 0 
Wk 9 

 

None 

None  

None 
SG (2nd order) 

700-2500 

400-2500 

700-2500 
400-2500 

6 

2 

7 
4 

0.37 

0.99 

0.41 
0.96 

0.79 

0.07 

0.96 
0.05 

 
0.37 

0.99 

0.43 
0.82 

0.78 

0.07 

0.97 
0.10 

0.78 

0.07 

1.00 
0.10 

-0.16 

0.00 

0.03 
-0.02 

0.42 

0.99 

0.38 
0.72 

0.84 

12.37 

0.74 
1.80 

 

6 Vitamin C 

(mg/g DW) 

EC  

 
LMP 

 

Wk 0 

Wk 9 
Wk 0 

Wk 9 

 

None 

None  
None 

SG (2nd order) 

700-2500 

400-2500 
700-2500 

400-2500 

6 

2 
7 

4 

0.11 

0.78 
0.23 

0.96 

0.09 

0.06 
0.05 

0.06 

 
0.14 

0.79 
0.21 

0.82 

0.10 

0.06 
0.06 

0.14 

0.10 

0.06 
0.06 

0.15 

-0.00 

-0.00 
-0.01 

-0.02 

0.11 

0.82 
0.19 

0.69 

0.28 

2.01 
0.43 

1.69 

 

7 DPPH (%) EC  

 
LMP 

 

Wk 0 

Wk 9 
Wk 0 

Wk 9 

 

None 

None  
None 

SG (2nd order) 

700-2500 

400-2500 
700-2500 

400-2500 

6 

2 
7 

4 

0.23 

0.92 
0.14 

0.98 

9.34 

0.15 
5.86 

0.28 

 
0.21 

0.91 
0.15 

0.82 

10.92 

0.17 
6.93 

0.86 

11.22 

0.17 
7.08 

0.97 

0.69 

0.02 
0.15 

0.22 

0.18 

0.89 
0.12 

0.71 

0.42 

3.07 
0.31 

1.60 

 

8 Chlorophyll 
a (mg/g DW) 

EC  
 

LMP 

 

Wk 0 
Wk 9 

Wk 0 

Wk 9 
 

None 
None  

None 

SG (2nd order) 

700-2500 
400-2500 

700-2500 

400-2500 

6 
2 

7 

4 

0.76 
0.86 

0.62 

0.96 

0.52 
0.08 

0.24 

0.07 

 
0.73 
0.86 

0.61 

0.85 

0.53 
0.08 

0.61 

0.13 

0.55 
0.08 

0.23 

0.17 

-0.01 
-0.00 

-0.15 

 0.00 

0.80 
0.88 

0.59 

0.77 

1.74 
2.53 

1.17 

1.58 

 

9 Chlorophyll 
b (mg/g DW) 

EC  
 

LMP 

 

Wk 0 
Wk 9 

Wk 0 

Wk 9 
 

None 
None  

None 

SG (2nd order) 

700-2500 
400-2500 

700-2500 

400-2500 

6 
2 

7 

4 

0.81 
0.97 

0.50 

0.99 

1.51 
0.13 

0.29 

0.20 

 
0.79 
0.97 

0.48 

0.84 

1.58 
0.14 

0.28 

0.64 

1.62 
0.14 

0.29 

0.72 

0.10 
0.00 

0.02 

0.15 

0.87 
0.99 

0.48 

0.72 

2.08 
5.63 

0.93 

1.75 

 

10 Total 

Carotenoids 

(mg/g DW) 

EC  

 

LMP 
 

Wk 0 

Wk 9 

Wk 0 
Wk 9 

None 

None  

None 
SG (2nd order) 

700-2500 

400-2500 

700-2500 
400-2500 

6 

2 

7 
4 

0.74 

0.23 

0.15 
0.98 

0.73 

4.31 

0.16 
0.12 

 
0.72 

0.16 

0.09 
0.84 

0.72 

4.19 

0.18 
0.37 

0.73 

4.26 

0.18 
0.37 

-0.05 

-0.40 

-0.02 
-0.10 

0.83 

0.22 

0.09 
0.72 

1.82 

0.55 

0.31 
1.91 
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Table 9: Model performance for ‘Nules Clementine’ mandarin using pooled spectral data acquired (from KwaZulu-Natal and Limpopo) 

before cold storage (at week 0) and after cold storage (at week 9) using FOSS NIRSystem in reflectance mode. 
SN Parameters Production  

region 

Time Pre-treatment Spectral 

range 

LV Calibration Model 
 

Validation Model 

 R2 RMSEC  R2 RMSEP SEP Bias Slope RPD  

1 Sucrose  

(mg/g DW) 

EC  

LMP 
EC + LMP 

EC + LMP 

Wk 0 + Wk 9 

Wk 0 + Wk 9 
Wk 0 

Wk 9 

 

SG (2nd order) 

None  
SG (2nd order) 

SG (2nd order) 

400-2500 

400-700 
400-2500 

400-2500 

3 

3 
4 

5 

0.91 

0.98 
0.97 

0.95 

11.80 

26.09 
25.23 

  1.63 

 
0.90 

0.98 
0.96 

0.95 

12.84 

26.51 
27.65 

  1.53 

12.87 

26.73 
27.94 

  1.54 

-1.39 

-0.79 
-0.43 

0.03 

0.88 

0.97 
0.97 

0.98 

2.94 

6.20 
0.98 

4.66 

 

 

2 Glucose 
(mg/g DW) 

EC  
LMP 

EC + LMP 

EC + LMP 

Wk 0 + Wk 9 
Wk 0 + Wk 9 

Wk 0 

Wk 9 
 

None 
SG (2nd order)  

SG (2nd order) 

SG (2nd order) 

700-2500 
400-2500 

400-2500 

400-2500 

6 
2 

7 

5 

0.68 
0.69 

0.66 

0.89 

13.48 
13.30 

15.08 

  3.94 

 
0.87 
0.76 

0.61 

0.90 

15.16 
13.41 

16.51 

  3.63 

15.25 
13.41 

16.70 

  3.65 

-1.09 
-1.74 

 0.30 

-0.38 

0.94 
0.67 

0.62 

0.90 

2.80 
1.55 

1.26 

6.76 

 

3 Fructose 

(mg/g DW) 

EC  

LMP 

EC + LMP 
EC + LMP 

Wk 0 + Wk 9 

Wk 0 + Wk 9 

Wk 0 
Wk 9 

 

None 

None  

SG (2nd order) 
SG (2nd order) 

700-2500 

700-2500 

700-2500 
400-2500 

6 

6 

7 
5 

0.27 

0.27 

0.65 
0.90 

23.62 

23.62 

22.45 
4.09 

 
0.64 

0.36 

0.60 
0.92 

23.40 

23.91 

23.91 
  3.76 

22.99 

23.91 

24.19 
  3.77 

-5.25 

-3.04 

2.45 
-0.43 

0.59 

0.31 

0.35 
0.90 

1.21 

0.63 

1.26 
3.28 

 

 

4 Total 

Phenolic  

(mg GAE/g) 

EC  

LMP 

EC + LMP 
EC + LMP 

Wk 0 + Wk 9 

Wk 0 + Wk 9 

Wk 0 
Wk 9 

 

SG (2nd order) 

None  

SG (2nd order) 
SG (2nd order) 

400-2500 

700-2500 

700-2500 
400-2500 

2 

6 

7 
5 

0.86 

0.14 

0.16 
0.96 

0.24 

0.48 

0.51 
0.08 

 
0.88 

0.08 

0.14 
0.97 

0.23 

0.50 

0.55 
0.07 

0.23 

0.50 

0.55 
0.07 

-0.02 

-0.05 

-0.04 
-0.00 

0.90 

0.11 

0.15 
0.97 

2.81 

0.38 

0.43 
5.96 

 

5 Total 

Flavonoids 
(mg QTE /g) 

EC  

LMP 
EC + LMP 

EC + LMP 

Wk 0 + Wk 9 

Wk 0 + Wk 9 
Wk 0 

Wk 9 

 

None 

None  
SG (2nd order) 

SG (2nd order) 

700-2500 

700-2500 
700-2500 

400-2500 

6 

6 
7 

5 

0.35 

0.35 
0.32 

0.98 

0.81 

0.81 
0.99 

0.98 

 
0.32 

0.37 
0.30 

0.10 

0.79 

0.84 
1.00 

0.10 

0.79 

0.84 
1.01 

0.10 

-0.11 

-0.10 
-0.01 

0.00 

0.31 

0.35 
0.34 

0.97 

0.65 

0.72 
0.73 

6.99 

 

6 Vitamin C 

(mg/g DW) 

EC  

LMP 
EC + LMP 

EC + LMP 

Wk 0 + Wk 9 

Wk 0 + Wk 9 
Wk 0 

Wk 9 

 

SG (2nd order) 

None  
SG (2nd order) 

SG (2nd order) 

400-2500 

700-2500 
700-2500 

400-2500 

2 

6 
7 

5 

0.95 

0.96 
0.31 

0.85 

0.16 

0.19 
0.08 

0.11 

 
0.96 

0.96 
0.27 

0.88 

0.16 

0.21 
0.09 

0.10 

0.16 

0.21 
0.09 

0.10 

-0.03 

-0.01 
-0.00 

 0.01 

0.98 

0.93 
0.28 

0.87 

4.60 

4.55 
0.61 

2.63 

 

7 DPPH (%) EC  
LMP 

EC + LMP 

EC + LMP 

Wk 0 + Wk 9 
Wk 0 + Wk 9 

Wk 0 

Wk 9 
 

SG (2nd order) 
None  

SG (2nd order) 

SG (2nd order) 

400-2500 
  400-700 

700-2500 

400-2500 

2 
3 

7 

5 

0.80 
0.86 

0.12 

0.92 

8.64 
4.71 

8.43 

1.24 

 
0.83 
0.85 

0.12 

0.93 

7.75 
5.09 

9.80 

1.16 

7.78 
5.24 

9.96 

1.17 

-0.76 
0.59 

0.60 

-0.07 

0.87 
0.83 

0.10 

0.95 

2.29 
2.24 

0.29 

3.68 

 

8 Chlorophyll a 

(mg/g DW) 

EC  

LMP 

EC + LMP 
EC + LMP 

Wk 0 + Wk 9 

Wk 0 + Wk 9 

Wk 0 
Wk 9 

 

None 

None  

SG (2nd order) 
SG (2nd order) 

400-2500 

  400-700 

700-2500 
400-2500 

3 

6 

7 
5 

0.95 

0.95 

0.61 
0.81 

0.37 

0.37 

0.73 
0.13 

 
0.86 

0.95 

0.70 
0.82 

0.92 

0.36 

0.62 
0.12 

0.91 

0.40 

0.62 
0.12 

-0.22 

1.10 

-0.03 
-0.02 

0.95 

0.94 

0.71 
0.81 

2.72 

3.88 

1.56 
2.17 

 

9 Chlorophyll b 

(mg/g DW) 

EC  

LMP 

EC + LMP 
EC + LMP 

Wk 0 + Wk 9 

Wk 0 + Wk 9 

Wk 0 
Wk 9 

 

None 

None  

SG (2nd order) 
SG (2nd order) 

  400-700 

  400-700 

700-2500 
400-2500 

3 

3 

7 
5 

0.97 

0.97 

0.48 
0.83 

1.83 

1.83 

1.96 
0.53 

 
0.90 

0.97 

0.65 
0.86 

3.80 

1.76 

1.60 
0.48 

3.71 

1.83 

1..62 
0.48 

-0.95 

0.26 

0.02 
-0.06 

0.97 

0.98 

0.61 
0.85 

3.22 

5.85 

1.26 
2.46 

 

10 Total 

Carotenoids 
(mg/g DW) 

EC  

LMP 
EC + LMP 

EC + LMP 

Wk 0 + Wk 9 

Wk 0 + Wk 9 
Wk 0 

Wk 9 

None 

None  
None  

SG (2nd order) 

400-2500 

  400-700 
700-2500 

400-2500 

3 

3 
7 

5 

0.97 

0.97 
0.56 

0.34 

0.78 

0.80 
0.90 

3.24 

 
0.81 

0.97 
0.69 

0.28 

3.15 

0.79 
0.72 

3.13 

3.26 

0.79 
0.73 

3.15 

0.41 

-0.13 
-0.02 

-0.19 

0.86 

0.99 
0.69 

0.34 

2.16 

5.49 
1.48 

0.74 
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Table 10: Calibration model performance developed for ‘Nules Clementine’ mandarin using pooled spectral data (from KwaZulu-Natal 

and Limpopo separately) acquired before cold storage (at week 0) and after cold storage (at week 9) using FOSS NIRSystem in 

reflectance mode. 

 

SN Parameters Production  

region 

Time Pre-treatment Spectral 

range 

LV Calibration Model 
 

Validation Model 

 R2 RMSEC  R2 RMSEP SEP Bias Slope RPD Corr 

1 Sucrose  

(mg/g DW) 

EC + LMP Wk 0+Wk 9 SG (2nd order) 400-2500 5 0.97 24.34 
 

0.94 35.65 36.00 1.24 0.92 3.76 0.97 

 

2 Glucose  

(mg/g DW) 

EC + LMP Wk 0 + Wk 9 SG (2nd order) 400-2500 5 0.80 16.52 
 

0.77 17.81 17.41 -4.34 0.75 1.80 0.88 

 

3 Fructose  

(mg/g DW) 

EC + LMP Wk 0 + Wk 9 SG (2nd order) 400-2500 5 0.49 23.56 
 

0.39 26.22 25.99 -4.78 0.42 0.84 0.64 

 

4 Total Phenolic 

(mg GAE/g) 

EC + LMP Wk 0 + Wk 9 SG (2nd order) 400-2500 5 0.47 0.44 
 

0.59 0.37 0.39 0.07 0.55 1.03 0.75 

 

5 Total 

Flavonoids  

(mg QTE /g) 

EC + LMP Wk 0 + Wk 9 None 400-2500 6 0.35 0.79 
 

0.37 0.79 0.79 -0.02 0.37 0.68 0.61 

 

6 Vitamin C  

(mg/g DW) 

EC + LMP Wk 0 + Wk 9 None   400-700 7 0.94 0.22 
 

0.95 0.20 0.20 -0.01 0.95 3.33 0.97 

 

7 DPPH (%) EC + LMP Wk 0 + Wk 9 SG (2nd order) 400-2500 5 0.76 8.50 
 

0.85 5.81 5.85 -0.31 0.87 2.45 0.92 

 

8 Chlorophyll a 

(mg/g DW) 

EC + LMP Wk 0 + Wk 9 None   400-700 7 0.83 0.90 
 

0.87 0.79 0.80 -0.02 0.87 2.31 0.93 

 

9 Chlorophyll b 

(mg/g DW) 

EC + LMP Wk 0 + Wk 9 None   400-700 7 0.93 3.10 
 

0.94 2.80 2.81 -0.02 0.95 3.61 0.97 

 

10 Total 

Carotenoids 

(mg/g DW) 

EC + LMP Wk 0 + Wk 9 None 400-2500 6 0.76 3.21 
 

0.80 2.86 2.87 -0.07 0.81 1.71 0.89 
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CHAPTER 8 

SUMMARY AND FUTURE DIRECTION 

 

1. Introduction 

The South African citrus industry is globally recognised and ranks 11th in terms of world fresh 

citrus production and 2nd after Spain in terms of world fresh citrus exports in 2014/2015 seasons 

(Citrus Growers Association, 2016). The industry is the largest exporter of grapefruit ( 225 000 

tons) and 5th largest exporter of soft fruit (including mandarins,  250 000 tons) to different 

destinations around the world (Citrus Growers Association, 2016). However, incidence of rind 

pitting disorder of ‘Marsh’ grapefruit and rind breakdown (RBD) of ‘Nules Clementine’ 

mandarin fruit at non-chilling temperature affects consumer acceptability of the fruit. This effect 

invariably leads to reduced financial gains to the growers. An array of studies has previously been 

done to understand the mechanism(s) underlying the development of these physiological 

disorders during non-chilling postharvest storage in other to design mitigating methods but 

success has been limited. In this study, the overall aims were (a) to investigate the role of canopy 

position on rind biochemical properties in relation to the postharvest physiological rind disorders 

of citrus fruit at non-chilling temperature, (b) to non-destructively determine rind biochemical 

properties of selected cultivars of citrus fruit.  

 

Consequently, this thesis was structured into chapters, with each chapter addressing specific 

objectives; 

▪ Chapter 1: Introduced the thesis by stating the motivation, research hypothesis and 

research aims and objectives. 
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▪ Chapter 2: Presented a detailed review of literature of existing knowledge regarding rind 

quality of citrus fruit, non-chilling physiological rind disorders and their causes, rind 

biochemical properties and non-destructive methods for detecting rind biochemical 

properties. 

▪ Chapter 3: Investigated the role of canopy position on physicochemical properties 

including maturity indices of ‘Marsh’ grapefruit after harvest and after postharvest cold 

storage at non-chilling temperature. 

▪ Chapter 4: Evaluated the relationship among canopy position, production region and rind 

biochemical properties in relation to postharvest physiological rind disorders of ‘Marsh’ 

grapefruit at non-chilling temperature. 

▪ Chapter 5: Explicated the role of canopy position and production region on rind 

biochemical properties in relation to postharvest physiological rind disorders of ‘Nules 

Clementine’ mandarin at non-chilling temperature. 

▪ Chapter 6: Explicated phytohormonal changes in ‘Nules Clementine’ mandarin fruit rind 

from different canopy positions in relation to postharvest physiological rind disorders of 

‘Nules Clementine’ mandarin at non-chilling temperature. 

▪ Chapter 7: Developed a robust Vis/NIRS based non-destructive models to determine rind 

biochemical properties such as non-structural carbohydrates, total carotenoids, total 

phenolic and total flavonoid concentrations, and radical-scavenging activities of ‘Marsh’ 

grapefruit and ‘Nules Clementine’ mandarin. 
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2. General discussion 

2.1. Literature review on causes and non-destructive methods for detecting non-chilling 

physiological rind disorders  

This chapter reviewed the literature on non-chilling physiological rind disorders and non-

destructive methods for detecting their incidence. The objective was to discuss current knowledge 

on the susceptibility of citrus fruit to non-chilling physiological rind disorders, possible causes 

and non-destructive methods of detecting the delayed incidence of the disorder. The chapter also 

reviewed current knowledge on rind biochemical properties of citrus fruit and their potential use 

as pre-symptomatic biomarkers for predicting the incidence of non-chilling physiological rind 

disorders. Non-chilling physiological rind disorder of citrus fruit such as rind pitting or rind 

breakdown (RBD) are critical problems affecting the financial gains of citrus fruit growers 

(Agustí et al., 2001). This is because, the incidences of the disorders are usually delayed until 

about 3-5 weeks after fruit have been sorted in the pack house and transported to various 

marketing destinations (Cronje et al., 2011a). Examples of such disorder were highlighted in the 

review and included RBD, rind pitting, necrosis (Alférez et al., 2005; Ben Yehoshua et al., 2001; 

Magwaza, 2013), and oleocellosis (Ladaniya and Ladanyia, 2008). While some of the possible 

factors, including canopy position, causing incidences of the disorder in citrus fruit were 

discussed, the potential use of rind biochemical properties as biomarkers of physiological rind 

disorders was also discussed. 

 

A study by Magwaza (2013) revealed that rind physiology, behaviour of biochemical properties 

and susceptibility of fruit to non-chilling physiological rind disorders differ from one fruit to the 

other, depending on conditions to which the fruit was exposed. Therefore, discovering exact 
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cause(s) or mechanism(s) underlying the incidence of rind disorder of citrus fruit would be a 

major breakthrough for the industry. This is because rapid and cost-effective innovative means 

to non-destructively detect or monitor the disorders can now be developed owing to the 

meaningful advancement in science and technology (Gao et al., 2010; Olarewaju et al., 2016). 

Consequently, various non-destructive techniques with the ability to detect physiological rind 

disorders of citrus fruit were discussed. The techniques included visible to near infrared 

(Vis/NIR) spectroscopy, hyperspectral imaging, computed tomography imaging, chlorophyll 

fluorescence imaging, x-ray imaging, optical coherence tomography, and magnetic resonance 

imaging (MRI) (Gao et al., 2010; Hahn, 2009).  

 

The prospect of non-targeted metabolomics approach towards the identification of biochemical 

property(ies) triggering the incidence of physiological rind disorders at non-chilling temperatures 

were also discussed. This was done based on its potential to provide holistic understanding or 

determination of the minutest variation in complex biochemical systems of living organism (Ernst 

et al., 2014; Heyman and Dubery, 2016; Naz et al., 2014; Rochfort, 2005). 

 

2.2.  Experimental findings 

The role of fruit position within tree canopy (canopy position) on maturity and quality properties 

of ‘Marsh’ grapefruit stored at non-chilling cold temperature for 9 weeks postharvest was 

reported in chapter 3. Results for maturity and quality indices suggested that fruit used for the 

experiment were matured and of good quality. The results further indicated that canopy position, 

production region and postharvest storage time affected some physicochemical properties such 

as colour indices, glucose, sucrose, sweetness index and total sweetness index. In agreement with 
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previous studies, outside canopy (OC) fruit had higher colour index (CI) than inside canopy (IC) 

fruit from KZN while CI was lower in fruit from MP with gradual declining trends in both 

orchards after postharvest cold storage. Reduced intensity of sunlight reaching IC fruit was 

suggested to have caused the delayed colour change (Cronje et al., 2011a; Khalid et al., 2012a; 

Magwaza et al., 2014a). The yellowness (b*) values ranged from 58.3 to 63.5 for IC fruit and 

53.6 to 64.7 for OC fruit from KZN; and 51.9 to 62.5 for IC fruit and 54.1 to 63.5 for OC fruit 

from MP province. This provided an indication of fruit quality in the trade markets. Canopy 

position, production region and postharvest storage time had a significant effect on total soluble 

solid/ titratable acidity (TSS/TA, maturity and quality index) for fruit from both production 

regions. IC fruit had higher TSS/TA (3.88%) than OC fruit (3.24%) at week 0 for fruit from KZN. 

However, as storage progressed the differences shifted to a higher TSS/TA ratio in OC fruit 

compared to IC fruit. These results showed the influence of production region and postharvest 

cold storage time on the fruit studied.  

  

The role of canopy position on rind biochemical properties of ‘Marsh’ grapefruit and ‘Nules 

Clementine’ mandarin fruit was also investigated. Results were related to non-chilling 

physiological rind disorders and presented in chapters 4 and 5, respectively. This approach was 

employed based on the premise that fruit exposure to various intensity of sunlight affect the 

postharvest quality of fruit rind and its appearance (Bramlage, 1993; Cronje et al., 2013; 

Hamadziripi, 2012; Khalid et al., 2012b). It was also suggested that canopy position affect the 

physiological activities and biochemical composition of fruit rind (Cronje et al., 2011a, 2011b; 

Magwaza et al., 2013). Similarly, the concentration of carbohydrates and mineral elements during 

fruit development have been reported to be affected by canopy position (Cronje et al., 2011b). 
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The study further investigated the use of non-destructive methods to determine the biochemical 

properties of fruit rind and results were presented in chapter 6. In this case, Vis/NIR spectroscopy 

was evaluated as an innovative tool for rapid and cost-effective determination of rind biochemical 

parameters of interest as existing analytical methods are time consuming, expensive and require 

specialised sample preparation (Magwaza, 2013; Olarewaju et al., 2016). Fruit (‘Marsh’ 

grapefruit and ‘Nules Clementine’ mandarin) were harvested at commercial maturity from inside 

canopy (IC) and outside canopy (OC) of 50 trees from two production regions and cold stored at 

non-chilling temperature (7.5 °C ± 0.5) for 9 weeks postharvest. Fruit were scanned for 

acquisition of spectral information before and after cold storage with FOSS NIRSystem for model 

development as described in chapter 7. 

 

The findings revealed that fruit rind biochemical properties from different canopy positions and 

production regions responded differently after harvest and after cold storage. There was no clear 

trend with respect to the effect of canopy position on rind biochemical properties of the fruit as 

inconsistent trends were observed for fruit from both production regions. Chapter 4 reported the 

effect of canopy position on rind pigments, non-structural carbohydrates, vitamin C and radical-

scavenging activities of ‘Marsh’ grapefruit. Lower Ca pigment occurred in OC fruit (-5.08, -2.73, 

and -1.98 µg/g DW) than IC fruit (-5.63, -5.01, and -3.02 µg/g DW) from LMP at week 0 and 

after weeks 3 and 9 of cold storage, respectively. This indicated the influence of sunlight on rind 

colour development. Furthermore, significant higher total carotenoids occurred in IC fruit (10.86 

and 9.25 µg/g DW) than OC fruit (8.37 and 6.76 µg/g DW) from KZN at weeks 0 and 9, 

respectively. Inside canopy fruit (11.13 and 7.76 µg/g DW) from LMP were significantly higher 

than OC fruit (6.78 and 4.14 µg/g DW) at weeks 6 and 9 after cold storage, respectively (Figure 
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2C). This was contrary to the results reported by Cronje et al. (2013) who reported lower 

carotenoid concentration in IC fruit than OC fruit. This deviation was hypothesised to be due to 

differences in the eventual colour of the fruit investigated. Also, non-reducing sugars of IC and 

OC fruit from the two production regions followed similar pattern from week 0 to week 6 of cold 

storage. Correlation tests showed that sucrose is an important biochemical property of fruit rind 

which could have a direct or indirect impact on the performances of other biochemical properties. 

Therefore, the role of rind sucrose in the defence mechanism of fruit against rind pitting should 

not be underrated. 

 

Chapter 5 reported the role of canopy position on rind biochemical properties of ‘Nules 

Clementine’ mandarin fruit. Significant higher total carotenoid content occurred in rind of OC 

fruit than IC fruit at week 0 and after weeks 3, 6 and 9 of cold storage in both seasons. This was 

contrary to what was reported for grapefruit in chapter 4 but supported previous findings by 

Cronje et al. (2013) who also reported higher total carotenoids in OC fruit than IC fruit. 

Combining the findings from these two cultivars of citrus fruit regarding total carotenoids, it 

could be deduced that the effect of canopy position on total carotenoids is cultivar specific. 

 

At week 0, rind sugars from both production regions followed similar pattern which corresponded 

to the ones reported earlier in literature where the sugar concentrations were higher in IC fruit 

than OC fruit (Magwaza et al., 2014b; Rosales et al., 2011; Ting and Deszyck, 1961). However, 

rind sucrose of IC fruit from EC were lower than OC fruit which corresponded to the results 

reported for rind sucrose of ‘Nules Clementine’ mandarin fruit from WC by Cronje et al. (2013) 

and Thorpe (1974). It was explained that exposure of fruit to reduced sunlight (IC) have a reduced 



 

255 

 

sink strength effect on fruit. It was further observed that sugars were generally high in ‘Nules 

Clementine’ mandarin and could partly explain why RBD did not develop during postharvest 

cold storage. This is because high concentration of sugars is known to serve as source of energy 

reserves which also contribute to the sustenance of rind cell structures (Dennis and Blakeley, 

2000; Kays and Paull, 2004) and protect plants against possible stressful conditions such as 

chilling injury (Purvis and Grierson, 1982). 

 

For radical-scavenging activities, OC fruit (week 0 = 61.2 and week 3 = 75.1 %) were 

significantly higher than IC fruit (week 0 = 52.5 and week 3 = 67.2 %) from EC with similar 

reports by Drogoudi and Pantelidis (2011). The authors reported higher antioxidant capacity in 

OC apple fruit than fruit exposed to shaded canopy position. This suggested that high temperature 

of OC fruit influenced radical-scavenging activities which possibly inhibited the development of 

rind breakdown on fruit during non-chilling cold storage. It is recommended that future research 

should attempt to identify the threshold for the important parameters that may be involved in 

RBD etiology. 

 

In chapter 6, the study investigated the phytohormonal changes in ‘Nules Clementine’ mandarin 

fruit rind from different canopy positions in relation to incidence of RBD during postharvest non-

chilling cold storage. It was hypothesised that phytohormones play significant role in the 

susceptibility of ‘Nules Clementine’ mandarin fruit to RBD which mostly become visible only 

around 3-5 weeks postharvest as fruit tend towards senescence (Cronje et al., 2011a).  
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The incidence of RBD only occurred on fruit harvested from EC during 2016 season and was 

observed on IC fruit after week 9 of cold storage. Hence, the result comparing the phytohormonal 

levels of fruit with and without rind disorder was based only on IC fruit from EC after week 9 of 

non-chilling cold storage at 7.5 ± 0.5 °C. Fruit without RBD had higher concentration of tZOG 

(12.86 pmol/g DW) and cZ7G (6.59 pmol/g DW) than fruit with rind disorder (0.00 pmol/g DW) 

and (0.00 pmol/g DW), respectively which were below the limit of detection (LOD). Other cis-

type cytokinins including cZOG, cZR and cZROG were significantly higher in disordered 

(118.13, 24.14 and 6.97 pmol/g DW) fruit than fruit without the disorder (76.52, 11.57 and 4.86 

pmol/g DW). 

 

The IAA concentration was higher in the IC fruit (344.15 pmol/g DW) than OC fruit (194.20 

pmol/g DW) from EC at week 0 while IAA concentration of OC fruit from WC were below the 

LOD and IC fruit had 53.20 pmol/g DW at week 0. The IAA concentration of OC fruit from EC 

fairly remained constant throughout postharvest period while a significant drop from 344.15 

pmol/g DW at week 0 to 177.14 pmol/g DW at week 3 occurred in IC fruit from EC. The IAAsp 

concentration were below the LOD at week 0 and 3 but increased to 11.83 and 12.17 pmol/g DW 

at week 6 and 9, respectively. 

 

The result of this study revealed the presence of dihydrozeatin 7-glucosides (DHZ7G), iPR and 

iP9G in mandarin fruit. In CK-mediated resistance, interactions with other phytohormones, such 

as abscisic acid (Großkinsky et al., 2014) or salicylic acid (Argueso et al., 2012; Choi et al., 2010; 

Großkinsky et al., 2011) have been reported. However, information about the synergistic role of 

cZ glucoside and iP9G in combination with auxin is not documented in literature. In this study, 
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the CK conjugates, cZ7G, tZOG and iP9G synergistically acted with the auxin IAA to prevent 

RBD in mandarin fruit 

 

Chapter 7 focused on using non-destructive approach (visible to near infrared spectroscopy) for 

rapid assessment and determination of rind biochemical properties of ‘Marsh’ grapefruit and 

‘Nules Clementine’ mandarin. This approach was considered due to laborious, time-consuming, 

and expensive nature of conventional methods. The non-representative nature of few sample 

analysis to make decisions on all fruit in consignments for either local or international markets 

also necessitated the need to non-destructively monitor the biochemical status of each fruit rind. 

This was hypothesised to help in the delivery of quality fruit to the fresh fruit markets. 

 

Rind biochemical properties of grapefruit such as sucrose (R2 = 0.99, RMSEP = 0.11, RPD = 

11.42), glucose (R2 = 0.99, RMSEP = 0.77, RPD = 11.35), fructose (R2 = 0.99, RMSEP = 0.99, 

RPD = 14.23), total phenolics (R2 = 0.94, RMSEP = 0.07, RPD = 3.85), total flavonoids (R2 = 

0.99, RMSEP = 0.07, RPD = 12.37), vitamin C (R2 = 0.79, RMSEP = 0.06, RPD = 2.01), radical-

scavenging activities (R2 = 0.91, RMSEP = 0.17, RPD = 3.07), Ca (R2 = 0.86, RMSEP = 0.08, 

RPD = 2.53) and Cb (R2 = 0.97, RMSEP = 0.14, RPD = 5.67) were determined using PLS models 

based on spectra acquired after week 9 of cold storage than those acquired at week 0. This 

suggested the influence of cold storage on the predictive model performance. Similar excellent 

results were achieved for determining rind biochemical properties of ‘Nules Clementine’ 

mandarin fruit. These excellent models were developed using full spectra range (400-2500 nm) 

as suggested by Olarewaju et al. (2016), 2 LVs and without any application of mathematical pre-

processing algorithms. 
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3. General conclusion 

In conclusion, this study attempted to attribute rind biochemical properties to non-chilling 

physiological rind disorder of ‘Marsh’ grapefruit and ‘Nules clementine’ mandarin fruit but the 

substantial absence of the rind disorder did not allow for such correlations. However, non-

destructive models were developed to determine the biochemical properties of the citrus fruit 

using FOSS NIRSystem. Furthermore, this study revealed the positive effect of phytohormones 

cZ7G, tZOG, iP9G and IAA in the prevention of RBD and the negative effect of cZOG, cZR, 

cZROG and IAAsp. However, further studies harnessing molecular physiology, biochemical 

pathways of phytohormones and enzymes, interactions of auxins and cytokinins during 

postharvest cold storage and effect of postharvest storage conditions on phytohormone content 

are suggested in order to have a better and in-depth understanding of the contribution of 

phytohormones to RBD of citrus fruit. 
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