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Abstract

The diffuse interstellar medium (ISM) exhibits a wide range of physical conditions that are influenced by in-

situ star-formation, cosmic ray energy density, photoelectric heating by dust as well as mechanical energy input

from both impulsive disturbances such as supernova explosions and steady injection of energy in the form of

stellar winds. This exchange of gas, metals and energy between the ISM and stars is a fundamental process

through which galaxies evolve. Since star formation is intimately related to the amount and physical properties

of cold atomic and molecular gas phases, understanding the properties of cold ISM in galaxies is important to

reveal the process of star formation and galaxy evolution. Despite large efforts from the astronomy community

over last three decades, the evolution of cold atomic and molecular gas in galaxies is still poorly constrained.

The MeerKAT Absorption Line Survey (MALS) will use blind search of H I 21-cm absorption lines, which is

an excellent tracer of cold atomic gas, to trace the evolution of cold gas in galaxies at z < 2.

In this project, we use quasars with sight lines passing through the discs/halos of nearby galaxies to search

for H I 21-cm absorption and understand the properties of cold atomic gas. In addition, we also search for hy-

droxyl (OH) molecular absorption lines in these environments. The study is based on sight lines selected from

the Sloan Digital Sky Survey (SDSS), and are observed with the Giant Metrewave Radio Telescope (GMRT)

and the Very Large Array (VLA). A lot of emphasis is put on learning and describing the fundamentals of ra-

dio interferometry, radio data analysis using the Common Astronomy Software Applications package (CASA)

and physical processes in the ISM of galaxies. In addition, we also present results from a pilot project using

the Southern African Large Telescope (SALT) to discover high�z quasars selected in a dust-unbiased way.

This will provide ideal targets for MALS to build a comprehensive picture of the ISM and resolve several

fundamental issues related to active galactic nucleus (AGNs).
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CHAPTER 1

Introduction

This chapter presents the main theoretical aspects relevant to the thesis, regarding the interstellar medium,

radiative processes and spectral line broadening. This discussion draws heavily from basic textbooks such as

Draine (2010); Pradhan & Nahar (2011); Rybicki & Lightman (2008) and Shu (1991).

Information of astrophysical objects is obtained through observations of electromagnetic radiation. Gas

and dust interact with radiation in several ways. To be able to interpret the observations correctly, it is important

to understand these processes.

1.1 The Interstellar Medium

The material between the stars that is composed of gas, dust and charged particles (protons, nuclei and elec-

trons) called cosmic rays, distributed throughout our galaxy and others is called the interstellar medium (ISM)

(Draine, 2010). Approximately 99% of the mass of the ISM is in the form of gas, and the remaining 1% is

(sub)micron size silicate and carbonaceous dust grains. The ISM is warmed up by incoming radiation, cosmic

rays, and collisions between dust and gas particles, and is cooled down when the gas and dust emit radiation.

The evolution of a galaxy depends critically on the structure of the ISM and the interactions taking place in

it. The structure of the ISM is shaped by the life cycle of stars, from a star formation which extracts gas from

the ISM, to supernova explosions which returns gas back into it. This cyclic process, does not only enhance

this medium with heavy elements but also releases great amounts of energy to shape it. Thus, the study of the

cold atomic and molecular gas plays a major role in understanding the formation and subsequent evolution of

galaxies.

The gas exists in four phases in the ISM; (i) the hot ionized medium, which is found in hot, low density

cavities of the supernova remnants, (ii) the warm ionized medium, which consist of partially ionized gas, (iii)
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the warm neutral medium, which consist of warm neutral gas, and (iv) the cold neutral medium which is found

in cold cloud cores (Draine, 2010).

Molecular clouds contain internal structures, elongated filaments and dense condensations of matter. In

these dense and cold regions, star formation takes place. However, in the simplest reasonable model, the cloud

of gas will collapse when the inward pressure is greater then the outward pressure. The physical conditions

for collapse can be approximated by the Virial Theorem, a theorem which states that a gravitational system is

stable as long as 2K +U = 0, where K and U are the system kinetic and potential energy. If at some point the

magnitude of internal kinetic energy is less than half the magnitude of the potential energy, i.e. 2K +U < 0,

then the system will be unstable and collapse to form first a protostar and eventually an actual star where fusion

reactions form heavier elements. Cooling is a crucial ingredient for star formation. Depending on temperature

and density, a variety of cooling processes can affect the gas. For densities (n) below the critical density,

cooling rate per cm3 is proportional to n2.

Massive stars form most of the heavy elements and, at the end of their relatively short lifespan, they explode

as supernovae spreading new elements to the ISM. The main interacting forces in the star formation process

are gravitation, turbulence, magnetic pressure, rotation, and gas pressure.

1.1.1 The 21-cm Line of Neutral Atomic Hydrogen (H I)

The neutral atomic gas is traced through the H I 21-cm line, and is found in warm neutral medium (WNM) and

cold neutral medium (CNM) (Draine, 2010). The proton and electron have an intrinsic angular momentum

spin s =±1/2 and therefore, have a magnetic dipole moment. Due to the presence of magnetic fields created

by the motion of these charged particles, the electron and the proton can only spin in a direction parallel or

anti-parallel to their magnetic dipole moments (see Fig. 1.1).

The total angular momentum spin has two possible values, F = 0 or F = 1 and therefore has two eigen-

states. These two states are known as triplet and singlet. However, this comes from the Pauli’s exclusion

principle, “which requires a total wave function of two electrons (including spin) to be antisymmetric under

the exchange, 1 ⌧ 2” (Draine, 2010). For example, an antisymmetric spatial wave function requires a sym-

metric spin function, which means that the total spin, S = 1, with three possible projections Sz = 1, Sz = 0,

and Sz = -1. For obvious reasons, “the Sz = 1 configuration is called the triplet state, while Sz = 0 is called the

singlet state” (Draine, 2010). In the triplet state, the electron and proton magnetic moments are pointing in the

same direction (parallel) and corresponds to a higher energy level.

The singlet state, corresponds to a lower energy level, and the magnetic moments of the two particles are

anti-parallel. When an atomic hydrogen is excited into the triplet state (e.g. due to collisions), it will eventually

go back to its lowest possible energy level (the singlet state).

Between the two states, the energy difference is DE = 5.9 ⇥10�6 eV, which corresponds to a frequency n

= 1420.4 MHz (l=21 cm). So the transition from F = 1 to F = 0 state will result in an emission of a photon
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at l = 21 cm. This so-called spin-flip or hyperfine transition is a magnetic dipole transition (forbidden line)

and has an extremely long lifetime. The hydrogen atom can stay in the triplet state for ⇠ 11 million years.

Although the transition is rare, hydrogen atoms are very abundant in the Universe, which makes the H I 21-cm

line easily detectable. A schematic representation of the hyperfine transition of H I 21-cm is shown below.

Figure 1.1: Schematic of H I 21-cm ground state hyperfine splitting, showing the electron and proton spins.

This radiation is produced whenever an electron reverses its spin, changing its energy very slightly in the

process Ianjamasimanana (2014).

Neutral atomic hydrogen H I 21-cm line can be observed through emission or absorption. The H I 21-cm

line has successfully been used as a mapping tool for the distribution and kinematics of the atomic hydrogen.

It has also been used to infer the matter distribution in galaxies. H I 21-cm has been mapped through surveys

of a pre-selected galaxy sample (targeted survey) or by means of observations of a large volume of space in

the sky (blind survey).

The limited sensitivity of current radio telescopes makes it difficult to detect H I 21-cm emission in indi-

vidual objects past z = 0.1. According to Gupta et al. (2010), “the detectability of H I 21-cm absorption is

independent of redshift, since it depends only on the strength of the background radio sources and H I 21-cm

absorption cross-section of the galaxies”.

Hence, H I 21-cm absorption allows us to study neutral gas systems at high redshift, where the systems

are thought to be precursors to present day galaxies (Curran & Webb, 2006). However, very few H I 21-cm

absorption systems are known to date, leaving many gaps in understanding the role these absorption systems

may play in the galactic evolution.

1.1.2 Molecular Gas

The connection between the phases of the ISM and star formation has been the subject of a number of in-

vestigations. However, star formation is found to be more closely linked to the molecular phase of the ISM.

The molecular gas represents the densest component of the ISM and is localized in discrete giant molecular

clouds, which tend to be irregularly shaped with a density distribution far from homogeneous. Molecular

clouds contain embedded cores in which new stars form.

Molecular clouds are formed primarily from hydrogen arranged molecules, which consist of two atoms,
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e.g. H2. In the visible portion of the electromagnetic spectrum H2 does not interact with light i.e. H2 is invisible

to optical telescopes. However, when studying the molecular clouds, there are several kinds of tracers that can

be used, such as dust or molecules, which live deep within the molecular clouds, e.g. OH and CO.

Hydroxyl radical (OH) is an example of a molecule with the ground electronic state having non zero

electronic orbital angular momentum, with seven electrons. A brief description of OH is discussed in the later

chapters. However, CO molecule forms by a series of gas phase chemical reactions that are important when

most hydrogen is in molecular form. Direct formation from atoms, C + O ! CO, is possible but unlikely due

to the small cross-sections of the atoms (Osterbrock & Ferland, 2006).

OH and CO are the most abundant molecules that can be searched using radio telescopes since these are

tracers of the molecular interstellar matter. Unlike molecular hydrogen, in the mm-region of the spectrum,

CO is particularly active since it absorbs and emits electromagnetic radiation efficiently. According to Draine

(2010), most molecules “exist only deep inside dense clouds of hydrogen, protected by the outer layers of gas

and dust”, because they can be quickly broken apart when exposed to ultraviolet radiation in space. Also, dust

blocks the starlight coming to the cores, thus reducing the external heating. Both the diffuse H I clouds and

the molecular clouds are quite cold, with temperature below 100 K i.e. associated with star formation.

The primary focus of this research project is to study the properties of cold gas in the ISM of nearby

galaxies, through H I 21-cm and OH 18-cm absorption lines.

1.2 Radiative Transfer

Electromagnetic radiation provides most of the information we have on the astrophysical Universe. Electro-

magnetic waves emitted by cosmic sources travel through vast distances before being detected by our instru-

ments. The space they cross is not empty, but it is filled with mixture of ions, atoms, molecules and large dust

grains.

The propagation of electromagnetic radiation through a medium is affected by absorption, emission and

scattering processes. In this section, we describe these processes in detail. However, we are going to exclude

scattering process. For this work, we follow Rybicki & Lightman (2008), the radiative transfer chapter, which

describes these interactions mathematically. According to Rybicki & Lightman (2008), “if a ray passes through

matter, energy may be added or subtracted from it by emission or absorption, and can be used to understand

the properties of the intervening medium as well as the source from where the radiation originated”.

1.2.1 Emission and Absorption of Photons

If a 2-state system is in the ground state, denoted by X1, it can transition into its excited state X2 by absorbing

a photon with energy E2 �E1. Absorption is described by,

X1 +hn ! X2. (1.1)
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Bohr’s frequency condition described in eqn. (1.2), gives the frequency at which the spectral line occurs,

where h denotes Planck’s constant,

hn = E2 �E1. (1.2)

Let us suppose that we have number density n1 of absorbers X in level 1. The rate per unit volume at which

the absorbers absorb photons will be proportional to both the density of photons of the appropriate energy and

number density n1, so we can represent the rate of change of n1 due to photo-absorption by level 1 (Draine,

2010), ✓
dn2

dt

◆

1!2
=�

✓
dn1

dt

◆

1!2
= n1B12un , n =

E2 �E1

h
, (1.3)

where un is the radiation energy density per unit frequency, and the proportionality constant B12 is the Einstein

B coefficient for the transition 1 ! 2. A neutral atom in the gaseous state can absorb radiation and transfer

an electron to an excited state. However, an absorber X in an excited level 2 can decay to a lower level with

emission of a photon. Below we illustrate the two ways this can happen (see Fig. 1.2):

Spontaneous emission: X2 ! X1 +hn , (1.4)

Stimulated emission: X2 +hn ! X1 +2hn . (1.5)

Figure 1.2: Three basic processes in which light interacts with the atoms: (a) absorption, (b) stimulated

emission, and (c) spontaneous emission Griffiths (1995).

Spontaneous emission is a random process. It is independent of the presence of radiation field, with a

probability per unit time, A21, Einstein A coefficient. As described in eqn. (1.4), “an emission line is formed

when an atom or molecule makes a transition from a quantized energy level E2 of an atom, to a lower energy

level E1, emitting a photon of a particular energy and wavelength” (Draine, 2010). According to Draine

(2010), “a spectrum of such photons will show up as an emission spike at the frequency associated with these

photons”. However, absorption occurs when an atom or molecule absorbs a photon and then make a transition

from a lower discrete energy state, E1, to a higher discrete energy state, E2, i.e. as described in eqn. (1.1).

Generally, these absorbed photons come from the background continuum radiation (e.g. a typical radio

loud quasar or a radio galaxy) and a spectrum will show a drop in the continuum radiation at the frequency

associated with the absorbed photons. In the case of neutral atomic hydrogen, absorption occurs when a

frequency matching condition, n = 1420.4 MHz or l = 21 cm is satisfied. If we receive light with precisely

this wavelength l missing, we assume, that somewhere on the sight-line to the source there must be H I. These
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transitions are transparent to dust, allowing for detection of any absorption system towards even the dustiest

line of sight.

1.2.2 Two Level System: Einstein A and B Coefficients

In 1917, Einstein provided a simple interpretation of the Planck spectrum for blackbody1 radiation based on

matter radiation interactions. In particular he showed that the analytic form of the Planck function implies

the existence of spontaneous emission (which was not known at the time), beyond stimulated emission and

absorption. He also derived two equations linking the rates of these three phenomena so that if one knows one

of them, it is easy to derive the remaining two. The arguments developed are as follows.

Let us consider transitions involving two atomic levels such that the energies are E2 > E1. For this case, the

transition is given by a discrete quantum of energy shown in eqn. (1.2). In accordance with the old quantum

theory, which entails Planck’s definition of light quanta (Pradhan & Nahar, 2011). “Einstein postulated three

distinct radiative processes that connect the two levels” shown in Fig. 1.3 (Pradhan & Nahar, 2011).
!
!
!

! ! !

!

!

!

Figure 1.3: The three radiative processes connecting two levels, 2 and 1.

The interaction between the atoms and the photons are described by the intrinsic probability coefficients

(photon emission rate, s�1) as follow: (i) Atoms with energy, E1 can absorb a photon in a radiation field

of density un and make a transition to the excited state with energy E2 with a probability coefficient B12,

(ii) Atoms in an excited state with energy E2 can make a transition to the lower energy state via stimulated

emission of a photon, with probability coefficient B21, resulting in a transition from level 2 to level 1 induced

by some other photon, and (iii) However, atoms in an excited state with energy E2 can also fall back into the

lower energy state via spontaneous emission, with probability coefficient A21.

Stimulated emission occurs if photons of identical frequency, polarization and direction of propagation are

already present, and the rate of stimulated emission is proportional to the density of these photons. Thus the

total rate of depopulation of level 2 due to emission of photons can be described by,
✓

dn1

dt

◆

2!1
=�

✓
dn2

dt

◆

2!1
= n2 (A21 +unB21) , (1.6)

where the coefficient B21 is the Einstein B coefficient for the transition from 2 ! 1 as shown in Fig. 1.3. Thus

now we have three coefficients postulated by Einstein characterizing radiative transitions between levels, 2

and 1: A21, B21 and B12.
1A blackbody is an ideal construction referring to an object that absorbs all the electromagnetic radiation impinging onto it.
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We will now show that these coefficients are not independent of one another. According to Rybicki &

Lightman (2008), “ the radiation field becomes the blackbody radiation field in Local Thermodynamic Equi-

librium (LTE)”.

The correct analytical form of the blackbody spectrum has been derived by Planck in 1900 and is known as

the Planck function. His model required that the energy of radiation in the cavity had to be quantised in small

packets each of energy hn . “Einstein built upon this idea and proposed the quantisation of electromagnetic

radiation itself in 1905 to explain Photoelectric effect” (Rybicki & Lightman, 2008). In LTE the intensity is

given everywhere by the blackbody spectrum,

Bn(T ) =
2hn3

c2
1

e
hn

kBT �1
, (1.7)

with specific energy density (kB is define as Boltzmann constant),

(un)LT E =
4p
c

Bn(T ) =
8phn3

c3
1

e
hn

kBT �1
, (1.8)

this distribution have units of energy per volume per spectral unit (Pradhan & Nahar, 2011). If we place

absorber X into a blackbody radiation field, then the rate of change of level 2 is,

dn2

dt
=

✓
dn2

dt

◆

1!2
+

✓
dn2

dt

◆

2!1

= n1B12 (un)LT E �n2 (A21 +B21 (un)LT E)

= n1B12
8phn3

c3
1

e
hn

kBT �1
�n2

 
A21 +B21

8phn3

c3
1

e
hn

kBT �1

!
. (1.9)

If the absorbers are allowed to come to equilibrium with the radiation field, we have the ratio of n2 to n1 fixed

by the Boltzmann equation,
n2

n1
=

g2

g1
e

E1�E2
kBT , (1.10)

where the g0s are the statistical weights of the lower and upper levels, for H I 21-cm, g1 = 1 and g2 = 3 and

E1 �E2 = 5.9⇥ 10�6 eV is the energy splitting, see Fig. 1.1. In thermal equilibrium dn2/dt = 0, therefore,

eqn. (1.9) becomes,

n1B12 (un)LT E = n2A21 +n2B21 (un)LT E . (1.11)

Now solving for un from eqn. (1.11),

(un)LT E =
A21/B21

(n1/n2)(B12/B21)�1
. (1.12)

The condition for LTE to be satisfied, eqn. (1.8) must hold. For the expression in eqn. (1.12) to be equal

to eqn. (1.8) “for all temperatures, T , we must have the following Einstein relations” (Rybicki & Lightman,

2008),

B21 =
c3

8phn3 A21, (1.13)

and,
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g1B12 = g2B21, (1.14)

or,

B12 =
g2

g1
B21 =

g2

g1

c3

8phn3 A21. (1.15)

Hence, the stimulated emission B21 and absorption B12 terms are both determined by A21 and the ratio g2/g1

i.e. we only require one of these A21, B12, B21 to get the other two.

Equation (1.13) and (1.14) connects any microscopic process and its inverse process (i.e. they are generally

known as detailed balance relations), here absorption and emission (Rybicki & Lightman, 2008). “Einstein

was led to include the process of stimulated emission by the fact that without it he would not get Planck’s law,

but only Wien’s law, which was known to be incorrect” (Rybicki & Lightman, 2008).

According to Rybicki & Lightman (2008), “one will obtain Wien’s law when stimulated emission is ne-

glected, because Wien’s law is the expression of the Planck spectrum when hn >> kBT . But when hn >> kBT ,

level 2 is very sparsely populated relative to level 1, n2 << n1”.

1.2.3 Equation of Radiative Transfer

Let us consider a beam of radiation with intensity In entering a slab of material. Let s measure the path-

length along the direction of propagation. In order to define the equation of radiative transfer we neglect

scattering and assume that the only processes affecting the intensity are absorption and emission (Rybicki &

Lightman, 2008). As radiation propagates through the medium, the intensity evolves according to the equation

of radiative transfer,

dIn =�an Inds+ jnds. (1.16)

Eqn. (1.16) gives the radiative transfer equation in differential form. The term “�an In is the net change in In

due to absorption and stimulated emission (both process are linear in In ) and jnds is the change in In due to

spontaneous emission by the material in the path of the beam” (Rybicki & Lightman, 2008). The absorption

coefficient an at frequency n , with dimensions of 1/length is normally positive. Emission coefficient jn at

frequency n , “has dimensions of power per unit volume per unit frequency per unit solid angle” (Rybicki &

Lightman, 2008).
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Figure 1.4: Radiative transfer geometry showing the path-length and the optical depth.

1.2.4 Emission and Absorption Coefficients in Terms of Einstein Coefficients

Absorption and emission can be due to atoms, ions or molecules etc. Atoms, ions or molecules with discrete

energy levels contribute to the absorption and emission coefficient. In this section, we want to write the

absorption and emission coefficient in terms of Einstein coefficients.

Let us start with the emission coefficient jn . Each atom which undergoes the transitions 2 ! 1, emits the

energy hn in a random direction. Therefore, “the amount of energy emitted per unit volume, per unit solid

angle, per unit time, per unit frequency is” (Rybicki & Lightman, 2008),

jn =
hn
4p

n2A21fn , (1.17)

where A21 is the transition probability coefficient per unit time and we have that fndn is the probability that

the emitted photon will have frequency in (n ,n +dn). Similarly, the probability per unit time for absorption

is,

a
0
n =

hn
4p

fnn1B12. (1.18)

Eqn. (1.18) gives the absorption coefficient uncorrected for stimulated emission, and a 0
n is strictly a positive

coefficient. The absorption coefficient an is proportional to the net absorption i.e. true absorption minus

stimulated emission (negative absorption), is described by,

an =
hn
4p

fn(n1B12 �n2B21), (1.19)

or re-writing eqn. (1.19) using the Einstein relation,

an =
hn
4p

fnn1B12

✓
1� g1n2

g2n1

◆

=
hn
4p

fnn1B12

⇣
1� e�

hn
kBT⇤
⌘
, (1.20)
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where T⇤, is the excitation temperature of level 2 relative to level 1 is defined by,

n2

n1
=

g2

g1
e�

E21
kBT⇤ , (1.21)

where n2, n1 are the populations of the upper and lower levels. The radiative transfer equation can be expressed

in terms of Einstein coefficients as follows,

dIn
ds

=�aIn + jn

=�hn
4p

(n1B12 �n2B21) Infn +
hn
4p

n2A21fn . (1.22)

1.2.5 Integration of the Equation of Radiative Transfer

We can now change the independent variables from path-length s to optical depth tn defined by,

dtn = ands. (1.23)

The optical depth is a measure of the decreased photon intensity relative to the assumed continuum, where tn

can be expressed as,

tn(s) =
Z s

s0
an(s’)ds’. (1.24)

According to Rybicki & Lightman (2008), “a medium is optically thick or opaque when, tn , integrated along

typical path through the medium satisfies tn >> 1”. However, when tn << 1, the medium is said to be

optically thin or transparent. In the optically thin medium, any emitted photon is very likely to escape the

cloud of gas without being absorbed by another atom, the optical depth of the cloud is small, tn << 1. In an

optically thick medium the “average photon of frequency n cannot traverse the entire medium without being

absorbed” (Rybicki & Lightman, 2008). For hn << kBT⇤ eqn. (1.20) reduces to,

an ⇡ hn
4p

fnn1B12

✓
hn

kBT⇤

◆
. (1.25)

If T⇤ is independent of the path-length s, then tn can be expressed as follows,

tn =
(hn)2

4p
fnB12

1
kB

Z n1

T⇤
ds0. (1.26)

We now define the number of atoms per unit area i.e. the density integrated along the line of sight through the

absorbing material is called the column density,

N =
Z

nds, (1.27)

in units (atoms/cm2). The density of atoms which are in the proper state to absorb the photon of interest. Eqn.

(1.26) can be expressed as,

tn =
(hn)2

4p
fnB12

Nl

kB
. (1.28)
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Now we express the radiative transfer equation as,

dIn =�Indtn +Sndtn , (1.29)

or,

dIn
dtn

=�In +
jn
an

=�In +Sn , (1.30)

where Sn is referred to as source function defined as the “ratio of the emission and the absorption coefficients”

(Rybicki & Lightman, 2008),

Sn =
jn

an
, (1.31)

or, in terms of Einstein coefficients,

Sn =
n2A21

n1B12 �n2B21

=
8phn3

c3

✓
n1g2

n2g1
�1
◆�1

. (1.32)

It is important to remember that eqn. (1.29) does not include scattering process, such as scattering by dust

grains or by electrons. Radiation in thermal equilibrium with a blackbody enclosure of temperature T have

special properties. Thermodynamics can be used to show that the specific intensity of radiation in a blackbody

cavity is a universal function of temperature and frequency, In = Bn(T ).

Based on similar reasoning(s), one can also show that for any material in thermal equilibrium, Sn = Bn(T )

(Kirchoff’s Law). Within a region that is in thermal equilibrium, the specific intensity of radiation field is given

everywhere by the Planck function, jn = anBn , since Sn = Bn . This is not the same as saying In = Bn , which

is only true for very thick medium, tn ! •. According to Rybicki & Lightman (2008), “thermal radiation

becomes a blackbody radiation for optically thick medium, tn >> 1”. The equation of radiative transfer for

thermal radiation is,

dIn
dtn

=�In +Bn , (1.33)

since Sn = Bn through a blackbody enclosure. In radio frequency regions hn << kBT (Reyleigh-Jeans limit),

therefore the Planck function becomes,

In = Bn(T )⇡
2n2

c2 kBT, (1.34)

which is proportional to T . It is conventional in radio astronomy to measure intensity in terms of brightness

temperature defined by,

Tb =
c2

2n2kB
In . (1.35)
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The source function can be defined by,

Sn =
2n2kB

c2 Ts, (1.36)

where Ts is the spin temperature. According to Field (1958) , “the spin temperature is defined through a ratio

between the number densities ni of hydrogen atoms in the two hyperfine levels (which we labelled with a

subscript 1 and 2 for singlet and triplet levels, respectively) of the electronic ground state”. It is defined via

(n2/n1) = (g2/g1)e�(E21/kBTs), where (g2/g1) = 3 is the ratio of the spin degeneracy factors and the excitation

temperature is T⇤ ⌘ E21/kB = 0.068 K (very low), is the temperature corresponding to the difference between

the levels.

H I 21-cm is primarily collisionally excited in cold neutral medium (CNM) but in warm neutral medium

(WNM) Lyman-a radiation plays a role (Field, 1958) . We also note that Ts ⇡ T⇤ for spin flip transitions or

forbidden transition, which have a very low spontaneous emission rate, A21 = 2.896⇥ 10�15 (very small).

H I 21-cm is a forbidden transition, and this often happens in the ISM where the density is very low. This

transition is different from permitted transition, transitions which occur relatively quickly i.e. having high rate

of spontaneous emission.

We can now formally integrate eqn. (1.29) by moving Indtn to the left hand side and multiplying by the

integrating factor etn ,

dIn + Indtn = Sndtn

etn (dIn + Indtn) = etn Sndtn

d (etn In) = etn Sndtn . (1.37)

We now integrate this from some initial point, which we define to be tn = 0, with initial value In(0);

etn In(tn)� In(0) =
Z tn

0
et 0n Sn(t

0
n)dt 0. (1.38)

Now multiplying by e�tn to obtain the equation of radiative transfer in integral form,

In(tn) = In(0)e�tn +
Z tn

0
e�(tn�t 0n )Sn(t

0
n)dt 0. (1.39)

Since Sn is proportional to Ts, let suppose Sn is independent of t 0
n , if we have a cloud with uniform temperature,

we can remove the source function from the integral to obtain,

In(tn) = In(0)e�tn +
Z tn

0
e�(tn�t 0n )Sn(t

0
n)dt 0

= In(0)e�tn +Sn
⇥
1� e�t⇤ . (1.40)

If we have an optically thick cloud , tn >> 1, In ! Sn i.e. the radiation field looses memory of its initial

intensity and becomes more and more determined by the properties of the surrounding medium, note that if

In > Sn then dIn/dtn < 0 and In decreases along the ray (net absorption). On the other hand, if In < Sn then

dIn/dtn > 0 and In increases along the ray (net emission).
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Therefore, “the source function is the quantity that the specific intensity relaxes to”, if given a sufficient

optical depth (Rybicki & Lightman, 2008). If we have an optically thin cloud, tn << 1, In ! tnSn +(1�

tn)In(0). An astrophysical important case is to suppose there is some source of continuous radiation (e.g.

Quasar), with brightness temperature Tbg behind the cloud with temperature Ts, where Tbg >> Ts. This radia-

tion will be absorbed in passing through the cloud. In this general case the total brightness temperature Tb the

observer sees is,

Tb = Ts
⇥
1� e�tn

⇤
+ e�tn Tbg. (1.41)

For optically thin cloud eqn. (1.41) is defined by,

Tb = tnTs +[1� tn ]Tbg. (1.42)

However, for optically thick cloud, tn >> 1, eqn. (1.41) becomes,

Tb = Ts. (1.43)

If the medium is optically thick at all frequencies, it becomes a blackbody. The optical depth is a product of

the absorption cross-section and column density of the absorber. If we integrate over the line of sight L, we

obtain,

tl =
Z L

0
a(l )ds =

Z L

0
nabss(l )ds = s(l )

Z L

0
nabsds = Ns(l ). (1.44)

In eqn. (1.44), s(l ) represents the absorption cross-section and has units of cm2/absorber. Eqn. (1.44)

assumes that everything is constant with optical depth. The observed intensity can be described by,

Il = Il ,0e�Ns(l ), (1.45)

so if s(l ) is known and Il/Il ,0 measured, the column density can be determined by,

tl =� ln
✓

Il
Il ,0

◆
= Ns(l ), (1.46)

solving for N,

N =
1

s(l )
ln
✓

Il ,0
Il

◆
. (1.47)

In practice this is not how N is solved because lots of physics that requires modelling or fitting goes into s(l ).

The actual line shape is determined by the distribution of material as a function of velocity and the temperature

distribution along the line of sight. The radiative transfer gives the overall profile. This calculation of N

depends sensitively on getting all the physics governing s(l ) as correct as possible. The final total cross-

section, s(l ), for the transition is then the convolution of broadening mechanism which are briefly discussed

in the next section.
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1.3 Spectral Lines: Broadening Mechanism

All spectral lines have a finite width and a particular line profile. According to Shu (1991), “the shape of the

line is directly dependent on the atomic transitions”. However, there are several mechanisms accountable for

the broadening of the line. To begin with, due to the uncertainty principle, there is the fundamental or natural

breadth of a line. “The line width must reflect this uncertainty by way of broadening, as well as other radiative

and collisional effects” (Pradhan & Nahar, 2011).

When a system makes a transition between two discrete energy levels E2 and E1 emitting a single photon,

the frequency of the photon should be equal to w = (E2 �E1)/h̄. The nature of the width of the spectral line

contains important information about the state of the physical system, so it is very important to understand the

mechanisms that cause broadening. The finite width of the spectral line can arise because of several reasons

among which three particular processes are of important in astrophysics, “namely; thermal broadening, natural

broadening and collisional broadening” (Pradhan & Nahar, 2011).

1.3.1 Spontaneous Emission and the Natural Line Width

Natural broadening is the spectral width exhibited by the molecule in the absence of interactions with other

atoms. This is a result of the Heisenberg uncertainty principle, which states that energy and time cannot

be simultaneously measured precisely. According to Griffiths (1995), “the Heisenberg uncertainty principle,

DEDt � h̄, as time available for an energy measurement decreases, the inherent uncertainty of the result in-

creases, because an electron in an excited state occupies its orbital for only a brief instant, Dt” i.e. limited

lifetime in each state causes an uncertainty in energy of state.

Absorption of photons does not take place at one exact unique frequency/wavelength but over a (small)

range. From Fourier transform point of view, the radiative decays with limited lifetime form a wave packet

emitted at random time. This stretch in time domain essentially forms natural line broadening in wavelength

domain through Fourier transform.

All real line would have a broadening by at least an amount given by the following considerations. As an

atom tries to absorb a resonant line photon, it simultaneously tries to decay back spontaneously to the lower

state i. “Following through the Fourier transform analysis of the decaying probability amplitude, we obtain

an expression for the intensity spread in the quantum mechanical case in frequency space” (Pradhan & Nahar,

2011),

Ł(w) =
G/2p

(w f i �w)2 +(G/2)2 . (1.48)

Eqn. (1.48) is a Lorentzian line shape and it is fully characterized by the central frequency w f i and the full

width at half maximum (G). This line-shape will be observed whenever the density of final states is nearly

constant over the width of the line. Note that if the final level is not the ground state of the system it will decay

as well further broadening the line-width. A better generalization, which takes into accounts the fact that the
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upper states may be “fuzzy” because of spontaneous decays gives,

Ł(n) = 1
p


Gi f /4p

(n �ni f )2 +(Gi f /4p)2

�
, (1.49)

with Gi f , the total width of the line given by,

Gi f = Â
n< f

A f n +Â
n<i

Ain. (1.50)

In eqn. (1.50), A f n and Ain are the spontaneous decay rates for transition f ! n and i ! n. The absorption

coefficient for a given line is given by (Pradhan & Nahar, 2011),

an =

✓
pe2

mec

◆
f12f(n)

=

✓
pe2

mec

◆
f12

"
G21/4p2

(n �n21)
2 +(G21/4p)2

#
. (1.51)

Below we are going to estimate the natural atomic hydrogen line width. Let suppose a photon emitted by an

atom at rest, the Heisenberg uncertainty principle DEDt � h̄ can also be written as 2pDnDt � 1. Since Dt ⇠

occupation time in the excited state, we have that Dt ⇠ 1/A21, therefore we have that for H I, A21 ⇠ 3⇥10�15

s�1. From this, the natural line width is given by,

Dn =
A21

2p
⇠ 5⇥10�16 Hz,

however, in velocity units, at n0 = 1420.4 MHz, this gives,

Dv = Dn c
n0

⇠ 10�19 km/s.

This is very small for any observed Dv (natural line width) i.e. the Universe is 13 billion years old, so something

moving at 10�19 km/s would only have moved about 40 m since the big bang. From these calculations,

we notice that the natural width is unlikely to be important. Thus natural broadening is usually negligible

compared to other broadening effects. In the next two sections we are going to investigate other sources of

broadening.

1.3.2 Thermal Broadening

The atoms that make up the gas of the stellar atmosphere are continuously in motion. “The individual atoms

will have random motions away from or towards the observer, leading to red or blue-wards frequency shifts”

(Pradhan & Nahar, 2011). According to Pradhan & Nahar (2011), “these motion may only be described by

the thermal motion of the gas, or it may include the larger-scale motions of turbulence or rotation”. However,

the shifting of the rest wavelength by varying the amount for different populations of atoms will usually result

in the observed lines being broadened by an amount significantly greater than the natural line width.
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The “total absorption coefficient an in a line at a given frequency n , absorbed by an atom in its rest frame

at the Doppler-shifted frequency n(1� v/c) is obtained by integrating the absorption coefficient of an atom

an [n(1� v/c)] over all velocities” (Pradhan & Nahar, 2011),

an =
Z +•

�•
an [n(1� v/c)] fMax(v)dv. (1.52)

The Doppler shift depends on the relative movements of the object (e.g. velocity of that atom), which in turn

depends on the ambient temperature. In the LTE, a Maxwellian function fMax shown in eqn. (1.52) is a good

approximation for velocity distribution of particles. The probability of atoms with a line of sight velocity v

and (v+dv) is given by,

fMax(v)dv =
✓

1
v0p1/2

◆
exp
✓
�v2

v2
0

◆
dv. (1.53)

Kinetic theory (i.e. classical limit) relates the root mean square velocity to temperature by, 1
2ma

⌦
v2↵= 3

2kBT ,

and therefore we have that,
⌦
v2↵=

Z +•

�•
v2 fMax(v)dv =

v2
0

2
, (1.54)

where,

v0 =

r
2kBT
ma

=
p

2sv = b, (1.55)

where b is the broadening parameter and ma is the atomic mass. The symmetric Doppler width about the

central frequency n21, note now we use n21, instead of n . The thermal (Doppler) width is defined as,

DnD ⌘ n21

c
v0 =

n21

c
b. (1.56)

The line profile due to the thermal motion of atoms is described by the normalised Gaussian, given by,

an =
1p
pb

exp
✓
�v2

b2

◆
, (1.57)

Assuming that there is no bulk flow, v̄ = 0. In the previous section we have shown that the natural broadening

is so tiny for H I 21-cm that way we will neglect it completely from henceforth. However, like before we are

going to estimate the thermal width for H I 21-cm atoms with kinetic temperature T = 100 K, v21 = 1420.4

MHz, and we get that,

DvD =
n21

c
b ⇠ 6106.4 Hz,

or in velocity units,

Dv = DvD
c

n21
⇠ 1.3 km/s.

This type of broadening is significant at very high temperatures or at low pressures.

1.3.3 Collisional Broadening

To this point, we have briefly describe the broadening mechanism(s) arising from intrinsic properties of the

atom and collective effects of the motion of atoms. Collisional broadening happens in high density environ-

ments where the time between the collisions is less than the time between the start and end of an emission due
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to a transition between energy levels. The collision interrupts the emission event. This introduces a broadening

of the line around the line centre in a Lorentzian profile, with the same form as with natural broadening.

The magnitude of this effect depends on the frequency ncol at which such collisions occur. This frequency

can be estimated following Pradhan & Nahar (2011) as,

ncol = v0ns , (1.58)

where v0 =
p

3kBT/ma is the thermal speed of the atoms or ions, n is the density and s is the cross-section

for collisions. Collisional broadening takes into account the fact that the gas is not just filled with one atomic

species that is doing the emitting and absorbing. As mentioned above, since we are looking at cool regions,

therefore a higher total pressure in the system (especially from free electrons that zip around with high speeds)

produces a higher rate of collisions between the emitting atoms and their neighbours.

In order for collisional broadening to dominate over thermal broadening, a very dense gas is needed.

This is related to pressure, which is why “collisional broadening is sometimes called Pressure broadening”

(Pradhan & Nahar, 2011). This can enhance the effective value of Gi f by several orders of magnitude above

the natural broadening level. However, the is a difference between collisional and pressure broadening. In

pressure broadening, random fluctuating electric fields broaden the energy levels, even if the particles undergo

no actual collisions.

Below we are going to estimate the collisional broadening width. The uncertainty in energy because of

collision(s) DE can be estimated from the uncertainty principle, to be DEDt ⇡ h̄, which gives us the collisional

broadening width,

Dncol ⇡
1

2ptcol
. (1.59)

According to Pradhan & Nahar (2011), “the mean free path for collisions, l is defined by, nlpd2 = 1, where

d is the effective diameter for a collision close enough to affect the radiation process”. The mean velocity as

previously used, is given by v̄ =
p

3kBT/ma, apply to all occurrences. The mean time between successive

collisions is,

tcol =
l
v̄
=

1
npd2

p
ma/3kBT , (1.60)

using the above equations we get the width to be,

Gcol = Dncol =
1

2ptcol
=

1
2

nd2
p

3kBT/ma. (1.61)

Let suppose we have H I gas of density n = 10 cm�3, the diameter of the atom, d = 2a0 = 10�10 m, where, a0,

is the Bohr radius and the temperature, T = 100 K. We estimate the width of collisional broadening to be,

Gcol =
1
2

nd2
p

3kBT/ma ⇠ 8⇥10�11 Hz, (1.62)

this is also very small to be observable. In the next section, we are going to define the function that takes into

account the convolution of broadening mechanisms discussed.
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1.3.4 The Voigt Profile

This section deals with some of the physics that allows us to draw physical conclusions about the absorber

from the shape of the absorption lines. While the depth of absorption line provides information about the

number of the exact ion encountered in the cloud and hence about the chemical composition of the cloud, the

width and more general shape of the line feature tells us the size of the entire system as well as providing hints

about its internal structure.

The line shape of spectroscopic transitions depend on the broadening mechanism of the initial and final

states and include natural broadening, collisional broadening and Doppler broadening, as discussed. Natural

and collisional broadening are homogeneous mechanisms and produce Lorentzian line shape.

Figure 1.5: Comparison between Gauss and Lorentz line profiles. The Gaussian dominates the line core while

the Lorentzian drops off much slowly. The two curves have the same equivalent width, the same area, and the

same width.

However, the combination of Lorentzian and Gaussian (Fig. 1.5) line shapes can be approximated by a

Voigt function, a function for which there is no closed form expression. The Voigt profile is a convolution of

these two line shapes. We need a net profile, the combination of these mechanisms, because we want to extract

the physical properties of the gas, such as its velocity distribution, temperature and density. Quite often one

has to take simultaneously into account both line profiles i.e. Gaussian and Lorentzian. Now let suppose we

have two functions, f (n) and g(n), the convolution of these two functions is given by the relation,

f (n)?g(n) =
Z +•

�•
f (n � t)g(t)dt. (1.63)

If we take the convolution of eqn. (1.51) and (1.57), we obtain the net line profile which is given by,

an =

✓
pe2

mec

◆
f12p
2p

Z +•

�•

(G21/4p2)exp
⇣
� v2

2s2
v

⌘

sv
�
n �n21 �n21

v
c
�2

+(G21/4p)2
dv. (1.64)
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Using the transformation equations,

y2 =
m

2kT
v2,

p
2svdy = dv, (1.65)

a =
G21

4pDnD
. (1.66)

We defined the dimensionless frequency to be,

u =
n �n21

n21

cq
2kT
m

=
n �n21

DnD
. (1.67)

Using these transformation equation, eqn. (1.64) can be expressed as,

an =

✓
pe2

mec

◆
f12fn

=

✓
pe2

mec

◆
f12

ap
pDnD

Z +•

�•

e�y2

(u� y)2 +a2
dy. (1.68)

The Voigt function is described as,

fn =
1p

pDnD
H(a,u), (1.69)

where the convolution is conveniently expressed by the Hjerting function H(a,u),

H(a,u) =
a
p

Z +•

�•

e�y2

(u� y)2 +a2
dy. (1.70)

The optical depth for an absorption line is related to the column density of the gas N by,

tl =
pe2

mec2 fi jl 2
i jNfl , (1.71)

where li j is the wavelength of the transition, fi j is the oscillator strength and fl is the line profile. Note that

u acts as an independent variable, it is the difference between the wavelength along the profile and the line

centre in units of the Doppler width.

Also, we note that a is not a function of Dn and therefore does not vary with location across the absorption

profile. For the given transition, a is a function of only the damping constant, the wavelength of the line

centre, and the thermal width. The thermal width also appears in the normalization of the Voigt function.

The width G of the natural line profile is much narrow than the thermal width and the net line profile is then

indistinguishable from a Gaussian.

Taking the line profile into velocity space we obtain,

fV (v) =
1

sv
p

2p
H(a,u), (1.72)

where u =
v

sv
p

2
, (1.73)

and a =
G21c

4pn21sv
p

2p
. (1.74)

19



Finally, we evaluate the optical depth, eqn. (1.71), by replacing fl , and inserting fi j = 0.45, G21 = 6.26⇥108

s�1 and li j = 1215.67 Å (For Lyman-a), we have:

t(v) = pe2

mec
fi jli jNfV (v)

= 2.65⇥10�15 fi jli jNfV (v)

= 1.45⇥10�12NH IfV (v), (1.75)

with l in Å and f(v) in s/km. The plots of the intensity functions for each column density value is shown

below,

Figure 1.6: Normalized intensity vs velocity for Lyman-a profile, b = 10 km/s, with a range of NH I values:

1011, 1014, 1017, cm�2 (where NH I = 1011 cm�2 correspond to a smaller curve).

The differences are quite large. For low column density, we only see the effect of thermal broadening,

i.e. the Lorentzian is absent. At large column density, however, the broadening is entirely due to collisional

broadening (the width significantly exceeds the thermal motions).

Thermal motions are not the only way in which a velocity dispersion can arise. Bulk movements of material

can also broaden spectral lines. For a line to be broadened, the emitting atoms must be moving at different

speeds along the line of sight. This could occur where a gas cloud is rotating, where gas is flowing inwards

or outwards from a centre, or where gas is in turbulent or chaotic motion (Jones et al., 2004). Therefore a

galaxy rotating about its centre will produce a spectrum in which the lines are broaden. In fact, typical thermal

velocities are ⇠km/s, while bulk flows are ⇠100 km/s.

One can distinguish thermal broadening in a spectrum from broadening due to bulk motions by noting that,

thermal broadening depends on the mass of the individual emitting atom (heavy atoms move more slowly) so

the lines from different elements will have different values of Dl/l . Broadening from bulk motion will affect
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all spectral lines equally, they will have the same value of Dl/l , and it doesn’t have to be Gaussian. However,

Voigt profiles are useful approximations for the intensity distribution in spectral lines.
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CHAPTER 2

Radio Interferometry

2.1 Radio Interferometry Techniques

In this chapter we summarize the essentials of radio interferometry. The history of radio interferometry takes

us back to the mid 1940s, when the first radio interferometric observations were performed on the Sun. For

example, McCready et al. (1947) used a single antenna located on a high coastal cliff in Australia to point

east as the Sun rose. A fringe pattern was recorded from the interference between the direct radiation from

the Sun and that reflecting from the ocean surface below. This “sea interferometry” finds its analog at visible

wavelengths in a Lloyd’s mirror.

The Lloyd’s Mirror “experiment uses wavefront division at a mirror to produce two source interference

patterns”. According to Allman et al. (1993), “an interference pattern is produced between the light (i.e. light

from a monochromatic slit) coming directly from a point source and indirectly from its reflection in a plane

mirror” i.e. reflection at a mirror produces a phase shift. As a result, the pattern is almost similar to that

produced in Young’s double slit experiment, except for a fringe displacement due to the phase shift. One

obtains uniformly spaced fringes in the small angle approximation.

The paper of McCready et al. (1947) is the first to note the Fourier transform relationship between the

quantity measured by an interferometer and the radio brightness distribution, a relationship which forms the

basis of all modern Fourier Synthesis telescopes based on aperture synthesis.

Aperture synthesis is a type of interferometry where a number of antennas, arranged in a particular pattern,

or array receives radiation from an astronomical object at the same time and the signals are combined pairwise

in the correlator. The technique of signal combination in most modern interferometers is a cross-correlation

(a method used to find where two signals match), but the signals can also be added. The response of each pair

of antennas contains amplitude and phase, which generally are represented as a complex number. Below we
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are going to explain why astronomers use radio interferometry, and then in the coming sections we will give

a brief discussion on the fundamental equations used in derivation of the final map or image from the radio

interferometric observations and the advantages of increasing the number of antennas.

Avison & George (2012) writes that, the maximum resolution for a conventional telescope can be approx-

imately given by,

q = 1.22
l
D
. (2.1)

Equation. (2.1), gives the angular resolution, q , in radians, the wavelength, l , and the diameter of the mirror

or parabolic dish, D. “The factor 1.22 is estimated from a calculation of the position of the first dark circular

ring surrounding the central Airy disk of the diffraction pattern”, a full discussion is given by Argyle &

Argyle (2012). Generally, the mirrors required to produce angular resolutions of milliarcseconds (for optical

wavelengths e.g. l ⇠ µm) need to be only a few tens of meters in diameter. If we the study the Universe using

mm/radio wavelengths, l ⇠ 102 �103 µm, the telescopes would need parabolic dishes of ⇠ 104 �107 m.

Hence, this would be very difficult to build. Currently the largest steerable single dishes have diameters of

⇠100 m. The field of radio astronomy aims to achieve resolutions comparable with optical telescopes, so they

use a technique of interferometry, where the signals received by two or more antennas are combined together

to approximate having a single large dish. For an interferometer, the maximum resolution is given by,

q ⇠ l
bmax

, (2.2)

where bmax is the maximum separation (baseline) between two antennas of the interferometer. In the following

sections, we will introduce the fundamental relationship between the spatial coherence function and the sky

brightness. This forms the basis of synthesis imaging. We are going to show how interferometry exploits

this relationship in practice. We will also discuss basics of image formation and reconstruction, calibration,

self-calibration and spectral line analysis. These techniques will be used in later chapters to reduce data from

the Giant Metrewave Radio Telescope (GMRT) and Very Large Array (VLA).

2.1.1 Van Cittert-Zernike Theorem

The goal of radio astronomy is to receive, process and interpret cosmic signals. Let us suppose we have an

astronomical object located at a point “r” and time “t”. This object causes electromagnetic waves, described

by a vector field, E(r, t), to propagate through space where it can be detected at R by an astronomer. While

the electric field varies rapidly and randomly, the time average of its variance as a function of frequency is

well defined. For this case, we treat the electric field as scalar i.e. we ignore the polarization properties of

E(r, t). We define a signal as a response of a probe to the radiation field (Taylor et al., 1999). The signal

v(r, t), is proportional to E(r, t) and ignoring the constant of proportionality, the intensity of radiation I(r) can

be measured as,

I(r) =< v(r, t)v⇤(r, t)> . (2.3)
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In the above equation, eqn. (2.3), the asterisk represent the complex conjugate. The coherence theory describes

the phenomenon of interference as a statistical description of electromagnetic radiation (Taylor et al., 1999).

Coherence is a term which refers to the degree of correlation between two measurements of the radiation field.

The mutual coherence function is defined by,

G(r1,r2,t) =< v(r1, t)v⇤(r2, t � t)>, (2.4)

which is nothing more than the correlation function between random signals measured at two points r1 and r2

at times differing by t . The degree of coherence is given by,

g(r1,r2,t) =
G(r1,r2,t)p
< I(r1)I(r2)>

. (2.5)

The radiation is said to be coherent if |g| = 1, or incoherent if |g| = 0, and it is defined to be partially coherent

if |g| lies somewhere in between.

If the points r1 and r2 coincide, G(r,r,t) is called the auto-correlation function. The auto-correlation

function is the Fourier transform of the power spectrum of the radiation field, this theorem is known as Wiener-

Khinchin Theorem (Taylor et al., 1999). If the mutual coherence function is measured with t = 0, then

G(r1,r2,0) is called the spatial coherence function. The spatial coherence of two points illuminated by a

quasi-monochromatic source of incoherent radiation is given by the Van Citter-Zernike Theorem.This theorem

forms the basis of Fourier Synthesis imaging.

There are two assumptions required, (1) we assume that the source is far enough away that the incoming

radiation is described by a plane wave (Taylor et al., 1999). (2) The emission from the source must be spatially

incoherent at the source (Taylor et al., 1999).

From the Van Cittert-Zernike Theorem, the spatial coherence function is related to the sky brightness as

follows,

G(r1,r2,0) =
Z

I(s)e�2pis·(r1�r2)/cdW. (2.6)

Here s is a unit vector directed towards the source, I(s) is the intensity and dW is an element of the solid angle.

The measurement of the spatial coherence function depends only on the relative difference between r1 and r2.

2.1.2 Two Element Interferometry

The basic measuring device in synthesis mapping is the interferometer. A two element interferometer has two

identical antennas separated by a distance b. Let us suppose the two antennas are directed towards a point

source of some flux density, in a direction indicated by the unit vector s. Since the source is in the far field of

the interferometer, the incoming wave front can be considered to be a plane wave.

The plane wave incident on the interferometer arrives at the right antenna first then at the left antenna (see

Fig. 2.1). The time delay between two identical antennas with separation b, is given by, tg = b · s/c and is

called the geometrical delay. Below we show the schematic diagram for the two element interferometer.
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Figure 2.1: Diagrammatic representation of a two-element interferometer Taylor et al. (1999).

The signals from the antennas pass through amplifiers and filters which select the frequency of interest

with bandwidth Dn . The voltage signal response produced at the two antennas due to the electric field from

this point source, are multiplied together and time-averaged in a device called the correlator (Taylor et al.,

1999). That is, for input voltages from two antennas, V1(t) and V2(t), the correlator output is proportional to

<V1(t)V2(t)>. Below we represent the two voltage signals as,

V1(t) = v1 cos2pn(t � tg); V2(t) = v2 cos2pnt,

the correlator output is then,

r(tg) =
1
T

Z t+T/2

t�T/2
v1v2 cos(2pnt)cos(2pn(t � tg))dt

=
1
2

v1v2 cos2pntg. (2.7)

We have assumed that the averaging time T is larger compared to 1/n (Taylor et al., 1999). The result is the

interferometer fringe pattern. The correlator output can be recast in terms of the radio brightness integrated

over the sky. Let us suppose we have I(s), representing the sky brightness in the direction s at the frequency

n . However, if A(s) is the effective collecting area of an antenna in the direction s, the signal power received

by each antenna over a bandwidth Dn in a solid angle element dW is A(s)I(s)DndW. So the correlator signal

per solid angle element dW is,

dr = A(s)I(s)DndWcos2pntg.

Integrating over the celestial sphere, we obtain,

r = Dn
Z

A(s)I(s)cos2p b · s
c

dW. (2.8)
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In practice, the angular response of the antenna element falls rapidly to small values outside a narrow angular

width defined by their diameter i.e. for large dishes. It is usually more convenient to refer measurements to a

reference position s0, commonly referred to as the phase tracking centre (Taylor et al., 1999). Then we have s

= s0 + s and,

r = Dn cos
✓

2pn b · s0

c

◆Z
A(s)I(s)cos

✓
2pnb ·s

c

◆
dW (2.9)

�Dn sin
✓

2pn b · s0

c

◆Z
A(s)I(s)sin

✓
2pnb ·s

c

◆
dW.

The complex visibility is defined as,

V = |V |eifV =
Z

A0(s)I(s)e�2pinb·s/cdW, (2.10)

In eqn. (2.10), A0(s) ⌘ A(s)/A0 is the normalized antenna beam pattern. Using eqn. (2.10) , we write eqn.

(2.9) as,

r = A0Dn |V |cos
✓

2pnb · s
c

�fV

◆
. (2.11)

An interferometer is a machine for measuring the visibility, which is nothing more than the spatial coher-

ence function with a different normalization. The amplitude and phase of the visibility (see eqn. (2.12)) is

determined after application of suitable calibration.

In practice, in order to make use of eqn. (2.10), we introduce a convenient coordinate system. A commonly

used system is the one where the baseline vector is specified in a coordinate system represented by (u,v,w),

where w points in the direction of interest, here w is chosen to point towards the phase tracking centre (s0).

The coordinates (u,v) are components projected onto the plane perpendicular to w, where u points toward the

East and v points toward the North (Taylor et al., 1999). However, for phase centres not at the zenith, they do

not necessarily point to the usual North and East directions.

The coordinates (u,v,w) are measured in wavelengths. However, the positions on the sky are defined by l

and m i.e. the direction cosines measured with respect to u and v axes. Thus a synthesized image in the l-m

plane represents a projection of the celestial sphere onto a plane tangent to the l-m origin (Taylor et al., 1999).

In these coordinates, we have,
nb · s

c
= ul + vm+wn,

nb · s0

c
= w,

dW =
dldm

n
=

dldmp
1� l2 �m2

,

so that eqn. (2.10) can be written as,

V (u,v,w) =
Z Z

A0(l,m)I(l,m)e�2pi[ul+vm+w(
p

1�l2�m2�1)] dldmp
1� l2 �m2

. (2.12)

Two assumptions are required for eqn. (2.12) to reduce to a two dimensional Fourier transform. First when |l|

and |m| are sufficiently small, we have,

w
⇣p

1� l2 �m2 �1
⌘
⇡�1

2
�
l2 +m2�w ⇡ 0,
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for |l|, |m| small, i.e. small field imaging, the dependence of the visibility upon w is very small and can be

omitted (Taylor et al., 1999). Another assumption, if the baselines are coplanar, w lie in the direction of the

celestial pole so, w ⇡ 0 (Taylor et al., 1999). With the above two assumptions, eqn. (2.12) can be written as,

V (u,v) =
Z Z

A0(l,m)I(l,m)e�2pi(ul+vm)dldm. (2.13)

In principle in order to invert the visibilities, eqn. (2.13), we need to have measured the full uv-plane, which

we never do. However, eqn. (2.13) can be inverted to give,

A0(l,m)I(l,m) =
Z Z

V (u,v)e2pi(ul+vm)dudv. (2.14)

V (u,v) is a wave and so consist of the amplitude and phase. To summarize, an interferometer is a device for

measuring the amplitude and phase of the complex visibility function. By Van Cittert-Zernike Theorem, the

visibility is related to the sky brightness. If the measurement of the visibility is confined to a plane, or if only

a small region of the sky is considered, V (u,v) and I(l,m) reduce to a Fourier transform pair. And since the

Fourier theory states that any well behaved signal (including images) can be decomposed into its sinusoidal

components, we use this theory to retrieve the amplitude and phase of the complex visibility function.

2.1.3 Aperture Synthesis

The fundamental result of the previous section is that, “there is a Fourier transform relationship between the

sky brightness and the visibility function” (Taylor et al., 1999). In practice, antenna arrays are used to measure

the visibility function on many baselines and therefore at many spatial frequencies.

Unless the telescopes are moved repeatedly to change the baseline spacing and the observations, the two

element interferometer provides a very limited information about the structure of the source. As a general case,

this process can be speed up by putting a number of telescopes along the baseline (the use of the interferometric

arrays). If the array is constituted by N different antennas, each pair is combined as an interferometer, setting

each instrumental delay to match the known geometric time delay for that plane wave (having specified a

reference point), the time average of the correlation ri, j becomes an estimate of the visibility function Vi, j,

where (i, j) refers to an antenna pair.

There are only N(N � 1)/2 ways of combining N antennas, which sets an upper limit on the number

of possible visibilities. “Each unique baseline adds a new Fourier component (unique fringe spacing) to be

imaged” (Taylor et al., 1999). Furthermore, increasing the number of telescopes, increases the sensitivity. This

is known as aperture synthesis, where the signals from a number of antennas are combined to give an effective

resolution of the longest baselines. This technique of aperture synthesis helps to produce high resolution

images. The most suitable resolution attained with a single radio antenna has historically been of order 20

arc-seconds while that achieved with aperture synthesis can be four orders of magnitude better.
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2.1.4 Interpretation of Aperture Synthesis

As a general case, we would utilize interferometric array(s) to measure visibilities for our astronomical source

tightly packed over the entire uv-plane. The Fourier transform of V (u,v) (densely packed visibility function)

would give us an image of the astronomical source just as it had been observed with a filled aperture telescope

with a diameter equal to the diameter of our telescope array:

I(l,m) =
Z Z

V (u,v)e2pi(ul+vm)dudv, (2.15)

Practically, interferometric arrays and observing strategies will leave gaps in the uv-plane coverage and as a

result if we naively take the Fourier transform of the uv-plane sampled only at the measured visibilities we

have a dirty image, given by,

ID(l,m) =
Z Z

V (u,v)S(u,v)e2pi(ul+vm)dudv, (2.16)

where S(u,v) is the sampling function over the uv-plane, uv-coverage traces the observed spatial Fourier

components following the earth rotation. S(u,v) is equal to one, “where we have a measurement and zero

otherwise” (Taylor et al., 1999). Typically, our point spread function (PSF) or dirty beam will have more

artefacts than would have been the case in the ideal case. Using the term of eqn. (2.16) and the convolution

theorem, the dirty image can be described by the following equation,

ID(l,m) = I(l,m)⌦B(l,m). (2.17)

Eqn. (2.17) shows the true image I(l,m), convolved with the PSF or B(l,m), which may depart significantly

from the ideal case if S(u,v) is sparse. The dirty beam is described by the following equation,

B(l,m) =
Z Z

S(u,v)e2pi(ul+vm)dudv. (2.18)

The uv-coverage is a set of baseline vectors. Since it difficult to do science on the dirty image, in the next

section we will explain in detail the techniques used to recover the true image.

2.2 Editing and Calibration of the Visibility

In the previous section, we have explained that we are limited to a finite number of antennas and a finite

amount of time over which to make the observations. Because of these limitations, there will always be gaps

or holes in the measurement of the visibility function.

Measured visibilities are always corrupted by noise (e.g. thermal noise due to receivers or in the case of the

Sun, due to the source itself) and instrumental imperfections. However, its not just the sun that can increase

receiver noise. Particularly, “at low frequencies (e.g. < 1 GHz), the sky is very bright and often dominates the

noise” (Taylor et al., 1999).
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The purpose of calibration is to detect errors or to examine the effects of the instrumental and atmospheric

factors in the measurements, and recover the true signal.

In the simplest case, this is done by observing simple sources (i.e. point sources) of known flux density,

spectrum and shape to derive the response of the instrument and modifications introduced by the atmosphere.

Its often the case at low frequencies that there is no such thing as a blank patch of sky. However, a careful

inspection of the visibility data is normally performed before calibration. This involves examining samples of

data for unexpected amplitude levels or phase variations. This also includes examination of radio frequency

interference (RFI) and identifying dead antennas. The antenna is termed dead, when it is not working during

the observation.

In the following sections we are going to describe the common procedures adopted to obtain corrected

visibilities.

2.2.1 Antenna-based Calibration

For a point of unit amplitude at the phase tracking centre, the visibility function is unity everywhere. We have

argued that the visibility measurements should be calibrated because of the noisy interference from various

objects. The calibration is performed because visibilities contains wavelength dependent atmospheric and

instrumental terms.

The data reduction consist on deriving these terms from the observation of sources with known properties.

For practical situations the relation between the observed and the true visibilities can be considered linear and

it is possible to write,

V obs
i, j (t) = Gi, j(t)Vtru

i, j (t)+ ei, j(t)+hi, j(t), (2.19)

where Gi, j is the baseline based complex gain term, the time of the observations is given by t, hi, j is a stochastic

complex noise term, and ei, j is the baseline based complex offset term (Taylor et al., 1999). Both V and Gi, j

have complex values and are general functions of frequency, polarization and time. The use of complex

numbers is a convenience, since it describe the combination of two correlator outputs (often termed the Real

and Imaginary, or Cosine and Sine correlator outputs) into one complex quantity (Taylor et al., 1999). Thus

the complex offset and noises of two independent correlators. The term, Gi, j, is required to compensate for

the atmospheric or instrumental effects.

As we will see in the data analysis chapters, calibration steps involves determining the values of Gi, j

(deriving the gains). In order to invert eqn. (2.19) and determine the best approximation of the true visibilities

Vtru
i, j from the observed visibilities V obs

i, j , we would assume average values in periods of time in between which

known calibration sources would be observed.

The measured antenna pair gains can be used to correct the correlator output data directly. However, “the

best calibration procedure is used to determine the gain factors for individual antennas” (Taylor et al., 1999).

The baseline based offset term ei, j, is generally negligible unless a correlator is malfunctioning or unless there
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is significant cross-talk between the various antenna channels. It should also be noted that the antenna gains

can drift with time, and so we need to calibrate on times shorter than the instrument changes.

The simplest method to determine this term is to observe a part of the radio sky that contains no emission

and integrate a few minutes in order to decrease the contribution from the stochastic noise sources.

2.2.2 Amplitude and Phase Calibration

We have outlined the basics of initial calibration, and the relationship between the observed and true visibil-

ities. In this section we are going to explain in detail the calibration made by observations of radio sources

in the sky. Calibration using radio source method does not determine the cause of the calibration problem

i.e. corruption; it only determines the complex gains of the entire system at a specific time and in a specific

direction (Taylor et al., 1999). Calibrator sources are most useful for determining temporal variations over

time-scales longer than about a few minutes. Some of these variations are associated with refraction variations

over the array, caused by the troposphere and the ionosphere.

The output of an interferometer or correlator is different from the true astronomical visibility for a variety

of reasons i.e. due to instrumental effects and propagation effects in the earth atmosphere and ionosphere.

There are disturbances in the ionosphere due to effects like, solar flare effects, geomagnetic storm effects

etc. At low radio frequency (e.g. < 1 GHz), these effects of the ionosphere are most dominant. There are

two other effects, however, which are more troublesome. The first is scintillation, where because of diffractive

effects the flux density of the source changes rapidly. The flux density modulation could approach 100 percent.

The other is that slowly varying, large scale refractive index gradients cause the apparent source position to

wander. At low frequencies, the source position could often wander by several arc-minutes, i.e. considerably

more than the synthesized beam, which need to be corrected.

Although the scintillation effects cannot be corrected, to correct the other effects we need a source which

can either be assumed to be a point source or have well determined structures. These sources can be termed as

calibrator sources or simply calibrators.

As a standard observing procedure, calibrator sources are observed at least once an hour or sometimes as

frequently as every 10 minutes. “These calibrator observations are not only important for tracking instrumen-

tal phase and gain drifts, atmospheric and ionospheric gain and phase variations, but for monitoring the quality

and sensitivity of the data and for spotting the occasional gain and phase shifts” (Taylor et al., 1999). How-

ever, if a calibrator source is within ⇠10� of the target source, atmospheric phase fluctuations will be better

calibrated. With these conditions, “hourly observations of the calibrators are more than sufficient, except at 22

GHz or higher frequencies where they should be no further apart than 30 minutes” (Taylor et al., 1999). So it

is required to have a large set of calibrators for observations.

The visibilities V (u,v) are a measurement of amplitude and phase. The phase of an astronomical source

(e.g. point source) at the phase centre is known exactly from geometry. After compensating for group delay
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the phase for a point source at the phase centre should be zero for every baseline. We observe a strong point

source (flux/phase calibrator) periodically during the observations.

Since the phase calibrators amplitudes remain constant during the course of the observations, its measured

amplitude provides a measure of the system gain (and its variation) for each baseline. The measured am-

plitudes and phases of these strong calibrators can be used to determined antennas-based complex gains (as

described below). These gains are then applied to the data to obtain true visibilities for the entire observation.

Most data corruption occurs before the signal pairs are correlated, so that the baseline based complex gain

Gi j(t) can be approximated by the product of the associated antenna-based complex gains, gi(t) and g j(t) (see

eqn. (2.20)),

Gi, j(t) = gi(t)g⇤j(t) = ai(t)a j(t)ei(fi(t)�f j(t)), (2.20)

where ai(t) is an antenna-based amplitude correction and fi(t) is an antenna-based phase correction. Obser-

vations of calibrator sources determine Gi j(t) for each of the N(N �1)/2 baselines, where N is the number of

antennas. There are algorithms which then solve for the N values of gi(t).

In general, the gain corrections in time and frequency can be decoupled. The bandpass calibration which

determines and corrects for variations in gains as a function of frequency is discussed later.

2.3 Bandwidth Smearing

Synthesis imaging is strictly valid only for monochromatic radiation. “When visibility measurements from a

finite bandwidth are gridded as if monochromatic, aberration in the image will result” (Taylor et al., 1999).

Radio synthesis telescope have an inherent chromatic aberration, often referred to as bandwidth or delay beam

smearing, because they form images by adjusting phase Df rather than the arrival time Dt = Df/2pn of the

correlated signals for each point in the image.

For observations of finite bandwidth this leads to a radial smearing that increases linearly away from the

point in the image for which the time delays were equalized (this is known as the delay tracking centre). This

aberration may be kept minimum by observations with a set of narrow bandwidth channels, i.e., in spectral

line mode, since one may then use the actual central frequencies of each channel rather than the band centre

frequency when constructing the images.

For wide field continuum images the maximum bandwidth per channel will be determined by the desire to

avoid this delay beam smearing. Although the use of narrow frequency channels can minimise the delay beam

smearing, there is still the problem that the uv-coverage itself changes with frequency (Taylor et al., 1999).

This is because the Fourier spacings to which an interferometer is sensitive scale with frequency and implies

that the point spread function (side-lobe structure) will too (Taylor et al., 1999).

This must be taken into account when analysing the spectral line data cubes or making continuum images

using wide bandwidths.
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2.4 Deconvolution

In this section we are going to describe how the visibility measurements collected by an interferometric array

can be used to produce high quality maps of the sky. The methods that will be used are all non-linear and will

generate estimates of the visibility function, V (u,v), at positions in the Fourier plane where it is not measured.

According to Taylor et al. (1999), the “deconvolution process or algorithms uses some a-priori knowledge

about the image to remove the effect of dirty beam side-lobes”. The two most widely used algorithms are

CLEAN and the maximum entropy method (MEM) (Taylor et al., 1999). In this report we will only discuss

CLEAN in detail.

The CLEAN algorithm (J. Högbom (1974)), gives solutions to the convolution equation by representing

the radio source by a number of point sources in an otherwise empty field of view (Taylor et al., 1999).

According to Taylor et al. (1999), “CLEAN uses a simple iterative approach is employed to find the positions

and strengths of these point sources”.

Therefore, a final deconvolved map, known as a CLEAN map, is the sum of these point components

convolved with a CLEAN beam. Högbom CLEAN often greatly reduce the side-lobes in astronomical images

even after the weighting tapers have been applied, since it makes use of the known form of the dirty or

synthesized beam to further correct the image while reconstructing it.

CLEAN is a numerical deconvolution process applied in the image domain that relies mainly on the idea

of “breaking down the intensity distribution into the sum of point sources responses, and then replace each

one of them with the corresponding response to a clean beam, that is a beam free of side-lobes” (Taylor et al.,

1999).

After Högbom, other deconvolution algorithms use the same ideas and it is therefore possible to speak

of a family of CLEAN algorithms, most are based on the assumption that is somehow possible to model the

intensity distribution as a collection of point sources.

Below, we are going to briefly describe Högbom CLEAN one of the current available CLEAN algorithm.

2.4.1 The Högbom Algorithm

According to Taylor et al. (1999), this algorithm proceeds as follows;

1. Compute the map and the response to a point source by Fourier transformation of the visibilities and the

transfer function after some weighting has been applied, that is compute the dirty beam and the dirty

map. This first step is also needed to initialize a clean component list to a set of zero values.

2. Find the global peak among these images, i.e. the scale that contains the maximum total flux, and record

the position, flux, and scale size for the image in which this occurs .

3. Records the position and magnitude of the point source subtracted in the model.
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4. Go to (2) except if any remaining peak is below some user specified level. The remainder of the dirty

map is now termed the residuals.

5. Convolve the accumulated point source model, with an idealized CLEAN beam (Usually an elliptical

Gaussian fitted to the central lobe of the dirty beam).

6. To the CLEAN map formed in (4), add the residuals of the dirty image.

2.5 Data Reduction and Spectral Line Analysis

The data from the interferometer such as GMRT and VLA must undergo editing, calibration, imaging, con-

tinuum subtraction and Doppler shift correction. In the following section, we discuss bandpass calibration,

self-calibration, continuum subtraction and data cubes.

2.5.1 Bandpass Calibration

The bandpass calibration is used to compensate for the changes of gain with frequency. A strong source with

a flat or known spectrum is observed (usually once every few hours). In an ideal interferometer under non-

dispersive sky, “the instrumental response would be the same at all frequencies, i.e. the bandpass would be

flat with amplitude 1.0 and phase 0.0” (Taylor et al., 1999). However, in reality this is not the case, because a

variety of effects ensure that this is not achieved.

Generally there are delays or errors, introduced by dispersion in the delay lines and since they are fairly

stable, they can be removed through occasional monitoring measurements. The correlator itself generates

some frequency variations. Nevertheless, most of the effects introducing bandpass variations, vary slowly

and therefore can be removed through observations of strong point sources (usually also the standard flux

calibrator). Note that the bandpass calibrator need not be a point source, so long as its apparent structure does

not change over the band.

It is important that the bandpass calibrator is observed long enough so that bandpass calibration does not

make a “significant contribution to the signal to noise ratio in the dataset” (Taylor et al., 1999).

2.5.2 Self-Calibration

In this section we will briefly discuss self-calibration which interprets the visibility data by introducing some

plausible assumptions about the source structure.

The gain of antenna element is unique to each antenna and its value needs to be calibrated against a

target source on the sky. The basis of self-calibration is treating antenna gains as free parameters that can be

iteratively adjusted to reconcile the observed visibilities with a model of a target source.
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For a baseline, the complex gain Gi, j(t) can be approximated by the product of two antenna based complex

gains as in eqn. (2.20). However, by clever telescope design, ei j(t) = 0, we ignore noise for simplicity,

therefore,

V obs
i j ⇠ Gi j(t)Vtru

i j = gi(t)g⇤j(t)V
tru
i j . (2.21)

The self-calibration essentially involves producing a model of the sky that when Fourier transformed and cor-

rected by gain factors reproduces the observed visibilities. One can determine the antenna gains by minimizing

the sum of the squares of the residuals, as given below,

S = Â
k

Â
i, j

wi j(tk)|V̄i j(tk)�gi(tk)g⇤j(tk)V̂i j(tk)|2, (2.22)

where wi j are the weights, i.e. purely from signal to noise considerations, each should be set to the reciprocal

of the variance of ei j. The time over which the gains should be held constant i.e. the solution interval depends

upon the required signal to noise ratio to obtain reliable solutions and upon the variations introduced by the

atmosphere and telescope.

An interesting and illuminating connection to ordinary calibration is apparent if eqn. (2.22) is re-expressed

as (Taylor et al., 1999),

S = Â
k

Â
i, j

wi j(tk)|V̂i j(tk)|2|Xi j(tk)�gi(tk)g⇤j(tk)|2, (2.23)

where,

Xi j(t) =
V̄i j(tk)
V̂i j(tk)

. (2.24)

The main advantage of self-calibration is that fairly robust gain solutions can be derived as a function of

time, in the direction of source (which is most of the times not possible through observations of primary and

secondary calibrators), however the results and the speed of convergence depend on the initial source model.

An example of an iterative process that both solves for antenna gains and bootstraps the sky model is the

following:

1. Create an initial source model, typically using calibrations based on the observations of primary and

secondary calibrators.

2. Solve for complex gains; often starting with phase-only solutions and solving for both amplitude and

phase in subsequent iterations.

3. Examine the derived solutions.

4. Apply the gains to correct the observed data.

5. Make a new model, from the corrected data.

6. Go to (2), unless the current model is satisfactory.

These are the steps for performing self-calibration. Below we introduce continuum subtraction.
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2.5.3 Continuum Subtraction

Often the goal of spectral line observing and data reduction is to produce a cleaned data cube containing only

the spectral line emission or absorption. The data cube is produced by imaging each frequency channel in the

spectral line data the same way as would be applied to the single channel in a continuum data set. Channels

can be used individually, but usually they are assembled into a single data structure with three axes, namely;

right ascension, declination and frequency (Taylor et al., 1999). However, mathematically a data cube is not a

true cube, its axes have two different types of units, angle and frequency, and it does not necessarily have the

same number of pixels on each axis (Taylor et al., 1999).

In spectral line analysis, continuum subtraction is one of the first steps to be carried out after all the

calibrations have been applied to the visibility data set. To begin with, subtraction of the continuum makes it

easier to see the spectral line and to compare the emission or absorption in different channels, and then one

does not have to deconvolve repeatedly the same continuum emission common to all the channels (Taylor

et al., 1999). Thus, subtracting the continuum reduces, and in some cases avoids entirely, the effort involved

in deconvolving line signal. This is a particularly beneficial because deconvolution is inherently non-linear

and may give rather different results for different channels simply, because the (u,v) coverage and the noise

are different (Taylor et al., 1999).

The continuum signal can be subtracted in the image plane or in the (u,v) data i.e. visibility plane. In the

(u,v) data plane, the reduction steps involve, fitting a smooth function to the data for each baseline in the line

free channels, and subtracting the function from the baselines. Alternatively, one can also make a continuum

image using line-free channels and then subtract the model visibilities corresponding to these from the original

dataset. Eventually, in both the approaches, the continuum subtracted dataset is Fourier transformed, and if

necessary, deconvolved to make the spectral line cube (Taylor et al., 1999).

2.5.4 Velocity Reference Frames and CVEL

Most radio telescopes are attached to the surface of the Earth, so they are in the topocentric rest frame. How-

ever, most astronomical objects are not. Since spectral line observations give us a lot of information about

velocities of the objects that we are observing, it is important to be clear on what velocity reference frame we

are using. The control systems of most radio telescopes can transform among several rest frames by allowing

for the Earth’s rotation and orbital motion, the solar motion, and centre of mass effects within the solar sys-

tem. The observing frequency is then tracked to keep a spectral line centred in a specific channel (Taylor et al.,

1999).

Without this tracking, we may even see our spectral line shifting from channel to channel during the course

of a single day observation i.e. resulting in the smearing of the line signal. The tracked frequency is usually

called the sky frequency and it varies from day to day for our objects.

The velocity frame to use depends on the science objectives. For our observations presented in the thesis,
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we are going to use barycentric (BARY) or heliocentric (HELIO) frames. The barycentric system is commonly

used in observing galaxies, and the barycentric velocity is listed in many catalogs (Taylor et al., 1999). There

are other reference frames such as the Local Standard of Rest (LSR) frame. This frame actually has two

definitions of LSR, the kinematic LSR (LSRK) and dynamic LSR (LSRD). Most of the time LSRK is used

and is generally synonymous with LSR. Velocities of objects in the Milky Way are often catalogued relative

to LSR.

If we had to image our line datasets without correcting for the Doppler shift, we would end up blend-

ing/smearing our spectral features across channels. For this reason, spectral regridding of the data set is done

prior to the imaging. For this purpose, the CVEL task has been developed in CASA. We will be using CVEL

to correct for the Doppler shift, and at the same time, change the velocity reference frame to the BARY.

In the next chapters we are going to apply all the radio interferometry techniques covered in these sections

to reduce the data set from GMRT and VLA.
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CHAPTER 3

GMRT Search for H I 21-cm Absorption Towards SDSS J1443+0214

In this chapter, we apply the principles of radio interferometry and data analysis discussed in the previous

chapters to analyse a dataset from the Giant Metrewave Radio Telescope (GMRT). These GMRT data were

taken on June 2, 2012 to search for H I 21-cm absorption towards the quasar from the Sloan Digital Sky

Survey (SDSS) called SDSS J1443+0214 (see Fig. 3.1). The quasar is at redshift, zq=1.82 and shows optical

emission lines from a galaxy at zg=0.3714. The presence of galaxy is determined only from the emission lines

detected in the SDSS spectrum of the quasar. The SDSS image itself shows no indication of the presence of

the galaxy. This implies that the galaxy is very faint. Based on the FIRST survey (Faint Images of the Radio

Sky at Twenty-Centimeters), “the background quasar at 1.4 GHz has a peak and the integrated flux densities

of 135 mJy/beam and 140 mJy”, respectively (White et al., 1997). The deconvolved source size in the FIRST

survey which has a resolution of ⇠500 is 1.2600⇥0.9400. This implies that the radio source is compact at the

resolution of FIRST survey (White et al., 1997). The objective of the GMRT observation was to search for

H I 21-cm absorption from the foreground galaxy at zg=0.3714. The GMRT spectrum from these data are

already published by Gupta et al. (2013). We perform a detailed analysis of this GMRT dataset to reproduce

the published results.
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Figure 3.1: The Sloan Digital Sky Survey (SDSS) Data Release 12 image of the quasar J144304.53+021419.3.

3.1 Description of GMRT Observations

The Giant Metrewave Radio Telescope (GMRT) consists of 30 antennas, with diameter of 45 m. The config-

uration consists of a central core having 14 antennas positioned randomly within 1 km (see Fig. 3.2). This

is also called the Central square. The remaining 16 antennas are distributed roughly in a Y-configuration,

with the length of each arm being ⇠14 km. The shortest and the longest baseline are approximately 100 m

and 25 km, respectively. The hybrid configuration allows GMRT to be sensitive to both small and large scale

structures simultaneously. The array is designed to operate at 30 - 1450 MHz. In particular, it operates in six

frequency bands which are referred to as 50, 153, 233, 325, 610 and 1420 MHz bands.

The redshifted 21-cm frequency for zg=0.3714 is 1035.73 MHz. Therefore, for the GMRT observation

of SDSS J1443+0214 to search for 21-cm absorption, the L-band i.e. 1420 MHz band which covers 1000-

1450 MHz was used. The data were acquired in dual polarization mode. The GMRT software back-end was

used to split the baseband bandwidth of 4.17 MHz into 512 channels. At the redshifted 21-cm frequency this

corresponds to a velocity coverage and spectral resolution of ⇠1210 and 2.4 km/s, respectively. The standard

flux density calibrator 3C286 was observed for flux and bandpass calibrations. The compact radio source

J1445+099, which is classified as a very good calibrator for all four VLA calibrators and is within ⇠7.08�

from the quasar was chosen as the phase calibrator and observed every 45 min for ⇠10 mins.

38



Figure 3.2: The figure shows all the 30 antennas of the GMRT with 14 of them clustered in the Central square

and the rest along the Eastern, Southern and Western arms.

3.2 Data Analysis

The results presented in Gupta et al. (2013), were based on the data analysis carried out using the Astronomical

Image Processing System package (AIPS). Here we perform the same analysis using the Common Astronomy

Software Applications package (CASA) version 4.1.0. CASA is a suite of tools for calibration and analysis

of astronomy data from single dish telescopes and radio interferometers. The CASA tasks are Python scripts

which use CASA tools and are intended to be tasks that are commonly performed when analysing astronomical

data. The first step in using CASA is to get the data into a usable format. CASA uses its own internal data

structure, called a Measurement Set which is nothing more than a set of tables containing the data from the

observations. In the following we describe various steps in the analysis.

1. Importing data into CASA: The data from the GMRT archive was obtained in the Flexible Image

Transport System (FITS) format. Since CASA deals with measurement sets (ms), the first step in the

analysis is to convert the FITS data into ms. For this we used the CASA task importgmrt.

2. Obtaining a summary of the observation: The next step is to obtain a summary of the ms. We use

task listobs for this purpose. The output is shown in Fig. 3.3. As can be seen from this, the total

observation time was 8.65 hrs. However, only ⇠6 hrs was used on-source i.e. SDSS J1443+0214.

The remaining time was mostly used for observing the flux/bandpass calibrator (3C286) and the phase
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calibrator (J1445+099).

Figure 3.3: The listobs output showing the scan summary, source coordinates and frequency set-up for

the observations. The target SDSS J1443+0214 is referred to as Field ID 2.

The listobs output also provides the frequency set-up used for the observations. As can be seen, the

baseband bandwidth of 4.17 MHz which is split into 512 frequency channels and starting from 1037.663

MHz was used for the observations. Generally, it is a good idea to save the listobs output for future

reference, as it gives the basic structure of the observations, indicating for example which source was

observed at what time. As GMRT observations are usually reduced with AIPS, our choice of using

CASA to reproduce the results, also enables some comparisons between the CASA and AIPS.

3. Inspecting and flagging 3C286 visibilities: A careful inspection of the flux calibrator is needed to

identify bad data. As bad data can lead to wrong calibration we need to identify and flag these so that

they are not included in the calibration procedures. For this, we display the data set in various ways. As

the first step in calibration is to determine gains as a function of time, we first focus on identifying bad

data for a single frequency channel. For this purpose, we choose channel 100 which is far away from

the band centre i.e. likely to be free from line emission/absorption. The channel is also away from the

band edges to reliably identify bad data.

We use task plotms to plot the visibilities of 3C286 for channel 100. In CASA tasks, one can use either

the source name e.g., field = 3C286 or the source ID e.g., field = 0 to specify a particular
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source. We set spw = 0:100 to select the data for channel 100. The output is shown in Fig. 3.4

where we plot amplitudes and phase as a function of uv-distance.

(a) (b)

Figure 3.4: Amplitude and Phase vs uv-distance for 3C286.

As 3C286 is a point source (unresolved) for GMRT at L-band it should give us constant amplitudes and

phase with respect to uv-distance. But since the data plotted in Fig. 3.4 are uncalibrated this is not the

case. Also we notice that amplitudes for several baselines are close to zero. These may be coming from

antennas not working during the observations. We identify that these data are corresponding to four bad

antennas, W03, C10, S01 and W05. Plotting individual baselines for these antennas shows that the

phases with respect to time are totally random. This further confirms that the antennas were not working

and the amplitudes are not low because of the low gain of these antennas. We use task flagdata to

flag the antennas, W03, C10, S01 and W05 for all sources and all times. Next we iterate over the

baselines of remaining antennas to identify time-ranges with problems and flag these using flagdata.

The data after flagging are shown in Fig. 3.5. Most of the low amplitude visibilities have been accounted

for.
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(a) (b)

Figure 3.5: Amplitude and Phase vs uv-distance for 3C286, after initial inspection and flagging of the data.

4. Obtaining the model of 3C286 : CASA already has models (clean component image) for standard flux

density calibrators such as 3C286 at various frequencies. We use task setjy to fill the model visibility

column for 3C286 with the amplitudes and phases corresponding to the source model at the observing

frequency. We chose the fluxscale to be standard = ‘Perley-Butler 2010’ and set fluxdensity =

-1 which allows us to choose the default standard values. Setjy produces the output in the logger,

from which one can see that it has identified calibrator source 3C286 and computed the flux density of

16.96 Jy at the observing frequency for stokes I.

5. Choosing the reference antenna: All the calibration procedures require choosing a reference antenna.

Using task plotants we look at the graphical plot of the GMRT antenna positions (see Fig. 3.2). This

plot is useful for picking a reference antenna. Typically, an antenna close to the centre of the array is a

good choice, and having no problems during the observations. In our analysis we will use antenna C01

as the reference antenna.

6. Solving for antenna based gains for 3C286: We use task gaincal to solve for antenna based com-

plex gains for 3C286. We set the parameter spw = 0:100 to select the data for channel 100 as

mentioned above and calmode = ap to specify amplitude and phase calibration. We set the solint

= 1 min. The table produced by the task gaincal is then applied to the flux calibrator using task

applycal to check if the flagging and calibration are well done. As before we use task plotms for

inspection. But this time we set the input parameter datacolumn = corrected instead of data.

The calibrated data plotted this way are shown in Fig. 3.6. The amplitudes and phases are as expected

for a standard flux density calibrator.
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(a) (b)

Figure 3.6: Amplitude and Phase vs uv-distance for 3C286, after flagging and calibration.

7. RFI inspection: In this step we identify and flag radio frequency interference (RFI) in the calibrated

baseline based visibilities for 3C286. We use CASA viewer for this. Using viewer we can plot

the data for each baseline as a raster plot with x-axis as frequency channel and y-axis as time. The

calibrated visibilities for a baseline (C01-C02) are shown in the left panel of Fig. 3.7. The visibilities

affected by RFI appear as a bright horizontal line. This is true for RFI appearing at a particular time.

RFI appearing at a particular frequency (e.g. satellite) will be seen as vertical line in the plot shown. To

flag these, we use the mouse to draw a region around the corrupted visibilities and double click in that

region. This region (blue) in Fig. 3.7 (right panel) shows the flagged visibilities. Like this we examined

all the baselines to identify and flag RFI affected data.
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(a) (b)

Figure 3.7: RFI inspection for 3C286 calibrated visibilities. (a) Unflagged RFI appear as a bright horizontal

line, (b) Flagged data is marked in blue.

8. Determining bandpass calibration: After successfully determining gains as a function of time for

3C286 and flagging RFI affected visibilities, the next step is to determine gains as a function of fre-

quency. This is done using the task bandpass. We use the input solint = inf. This will derive

one bandpass solution for the whole 3C286 scan. We also use combine = scan. If there had been

two observations of the bandpass calibrator (for example), this command would have combined the data

from both the scans to form one bandpass solution. During this procedure, we apply the calibration table

obtained when we performed task gaincal on the fly with the parameter gaintable. This allows

us to average 3C286 over the entire scan without losing the signal-to-noise ratio. Bandpass calibration

simply builds a table with the amplitude and phase as a function of frequency for each spectral win-

dow containing more than one channel. Typically, solutions are near unity for the central channels and

decrease near edges. The bandpass solutions for nine of the GMRT antennas are shown in Fig. 3.8.
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Figure 3.8: Bandpass solution for nine GMRT antennas. The different colours represent different polariza-

tions.

9. Solving for antenna based gains for J1445+099: We chose J1445+099 to be the phase calibrator

because it is close to SDSS J1443+0214. Therefore atmospheric phase fluctuations between the two

will be correlated. The phase calibrator was inspected following the same procedure as in the flux

calibrator. We use task gaincal to solve for antenna based amplitudes and phases for J1445+099. We

set the parameters spw = 0:100, solint = 1 min and calmode = ap as before. But for this

step, we apply the bandpass solutions on the fly, specified in gaintable input parameter, and we use

field = 0,1. This task generates a second gaincal table.

10. Fluxscale: The next step is to set the flux density scale using task fluxscale. We use the flux

calibrator whose flux density was set in setjy to derive the flux density of J1445+099. For this step,

we apply the table produced in step (9) on the fly while running task fluxscale. After using task

fluxscale we get that the flux density of our phase calibrator J1445+099 to be 2.57 ± 0.02 Jy.

To check whether or not the application procedure was correct, we use task applycal to apply the

calibration solutions to the phase calibrator itself. We apply both the bandpass and gaincal tables

for this purpose and use task plotms to examine the calibrated data. The calibrated data are shown in

Fig. 3.9. We stress that for a point-like source amplitude should be flat (and without any ripples) and the

phase should be flat and centred at 0 degrees.
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(a) (b)

Figure 3.9: Amplitude and Phase vs uv-distance for phase calibrator, after flagging and calibration.

11. Apply calibration to calibrators and target source: In this step we use task applycal to interpolate

the gains in time and apply the calibration tables i.e. both gains as a function of time and frequency, to the

calibrators and the target source. We do this by setting the gainfield and gaintable parameters

appropriately. RFI inspection was performed on the target source after applying the calibration.

12. Splitting the calibrated data: The next step is to split the calibrated data for calibrators and target

source into separate files using task split. This speeds up the processing for subsequent steps. Any

further analysis will be done on these splitted data files.

13. Continuum imaging: As mentioned above, the task split was used to separate the uv-data for each

source. In this step we make a single channel map of the calibrators and the target source. This is done by

using task clean in CASA. This task was used to Fourier invert the calibrated data for channel 100 and

then perform CLEANing i.e. deconvolution. We use the input parameter mode = mfs which makes a

single multi-frequency synthesis image out of the specified channels. Input psfmode = clark sets

the algorithm to make the synthesized beam, and the parameter imagermode = csclean sets the

mode of the CLEAN. We set the image size and the pixel size with input parameters, imsize = 1024

and cell = 0.5 arcseconds, respectively. The pixel size was determined from the resolution (R)

of the interferometer, where the pixel size is 1
3R (R ⇠ 1.73 arcseconds). The task clean creates five

datasets with extensions .flux, .image, .model, .psf, and .residual. Fig. 3.10 shows

CLEAN maps of flux calibrator and phase calibrator, which has flux densities and rms of 16.96 ± 0.01

Jy, ⇠ 9.33 mJy/beam/channel and 2.57 ± 0.02 Jy, ⇠2.97 mJy/beam/channel, respectively.
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(a) (b)

Figure 3.10: Single channel maps, of (a) 3C286 and (b) J1445+099. The contour levels start at 3s .

Fig. 3.11 (a) shows the single channel map of SDSS J1443+0214, which has a flux density of 113.83

mJy and rms of ⇠ 1.58 mJy/beam/channel. Clearly, there are significant phase and amplitude errors in

the map, as a result of which the target source does not come out as a point source.

In the next step, we make a channel averaged continuum image of the target source to obtain the con-

tinuum map with best possible signal-to-noise ratio (SNR). As the absorption line is between channels

200 and 350, we use task split to select only the line-free channels. We now have two data sets: one

with line free channels and the one with all the frequency channels. For obtaining the continuum map,

we use the same parameters in clean as before, except that now we average all the (line free) channels

to make the image (see Fig. 3.11 (b)).

In addition to creating a CLEAN image, clean also saves the clean components i.e. model of the target

source. The parameter usescratch = True tells clean to save the visibilities corresponding to

this model as a discrete data column in the MS. This model is required for later self-calibration steps.

However, as can be seen from the right panel of Fig. 3.11, although the model is not a point source,

but is a good starting point for the self-calibration. Compared to the previous single channel image, the

errors appear to be larger in this channel averaged image. This is primarily due to the higher SNR in the

latter so that the errors which were previously buried in the noise are now detectable.
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(a) (b)

Figure 3.11: (a) Single channel map of SDSS J1443+0214. (b) Channel averaged map of SDSS J1443+0214.

The contour levels start at 3s .

14. Self-calibration: In the previous step we made an approximate model, averaging ⇠200 line-free chan-

nels. With a reasonable model in place, we are in a position to (self-)calibrate the science target directly.

We use task gaincal for this purpose. The task is used both for general gain calibration using an

external calibrator, and for self-calibration.

We first focus on correcting only for phase errors. For this, we perform phase-only self-calibration using

the task gaincal. This compares the data column with the model column, which has been filled with

the clean components corresponding to the initial model. For phase-only self-calibration, we would

like the solution interval to be short enough so that it tracks the changes in the atmospheric phase with

high accuracy, but long enough so that we measure phases with good SNR. The solution interval used

is solint = 1.0 min, and the input calmode = p specifies that we are only doing phase only

self-calibration. The phase solutions are written in the table produced by gaincal. We examine the

derived phase solutions using task plotcal. We find these solutions to be reasonable and apply these

to the line free channel data using task applycal.

At this point the self-calibrated data are stored in the MS in the corrected data column. Because

we want to try more rounds of self-calibration, it is often useful (though not strictly necessary) at this

point to split out the channel averaged corrected data into a new data set. The next step is to clean

the self-calibrated data to generate the map shown in Fig. 3.12 (a). The residuals look better this time

around. We use viewer and compare the first (see Fig. 3.11 (b)) and second images (see Fig. 3.12

(a)). One can see a noticeable improvement in the noise and some improvement in the signal, so that the

overall signal-to-noise ratio has significantly improved.

The phase-only self-calibration was repeated three times until the map stopped improving further. The

results are summarized in Table. 3.1 and Fig. 3.12. In Fig. 3.12 (c), it can be noted that the improvement

with respect to the previous image (panel-b) is marginal. Therefore, the next step is to correct for
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amplitude errors through amplitude-and-phase (ap) self-calibration.

As amplitude varies much more slowly, the solution interval used for this step is solint = 15 min

with input calmode = ap, specifying that we are doing amplitude and phase self-calibration. The

input visibility data for this step is the channel averaged, phase-only self-calibrated dataset. After per-

forming the ap self-calibration, the next step is to make another map using the same clean parameters

as before (see Fig. 3.12 (d)). We compare the third and fourth images. The noise level is much better,

while the flux has not changed markedly.

We attempted another round of ap self-calibration but it did not improve the image further. Therefore,

this i.e. the image in panel (d) is our best continuum image. The results of the self-calibration such as

peak flux density and rms after each iteration of phase-only or ap self-calibration are shown in Table. 3.1.

(a) (b)

(c) (d)

Figure 3.12: Continuum image of SDSS J1443+0214 after phase-only (panels a, b and c) and amplitude

calibration (panel d). The contour levels start at 3s .
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Table 3.1: Results of self-calibration.

Model Peak flux density [mJy/beam] rms [mJy/beam/channel] Figure Reference

Initial model 112.90 0.408 Fig. 3.11 panel (b)

1 phase-only 156.87 0.408 Fig. 3.12 panel (a)

2 phase-only 159.75 0.204 Fig. 3.12 panel (b)

3 phase-only 160.37 0.184 Fig. 3.12 panel (c)

1 amp and phase 159.46 0.162 Fig. 3.12 panel (d)

15. Applying self-calibration solutions to line dataset: Next step is to apply gains from the last iteration

of phase-only and the amplitude-and-phase self-calibration steps to the line visibility data set. We use

task applycal for this purpose and then split the calibrated data column.

16. Continuum subtraction: Next we subtract the continuum from the self-calibrated line data set obtained

in step (15) using task uvconstsub. This task makes fits to the line free channels and subtracts the

emission in the uv-domain. The task uvconstsub operates on the corrected data column and writes

the continuum subtracted data in a new measurement set with the extension .contsub. However,

setting the input parameter want cont = T, produces two new datasets, including .contsub the

continuum subtracted data and .cont the continuum estimate.

17. Setting velocity rest frame: Since spectral line observations give us a lot of information about kinemat-

ics of the objects, it is important to be clear on what reference frame we are using. There are two ways

to change the rest frames in CASA. The task clean can change the reference frame of the spectral

axis. However, task cvel is a more general spectral regridding tool, which corrects for Doppler shifts,

or change the channelisation of the data prior to imaging. For our analysis, we use cvel to correct for

the Doppler shift, and at the same time, change the velocity reference frame to BARY.

Before we do that, we set the rest frequency of H I 21-cm line in the measurement set. Here we are

using an MS file with extension .contsub that was produced in step (16). The rest frequency of the

H I 21-cm line is 1420.405752 MHz. We open the spectral window table of the MS using tb.open

and insert the rest frequency using tb.putcell. The default rest frequency in the file is the central

observing frequency. After inserting the rest frequency we close the file using tb.close. We also ran

the task listobs to check that the reference frequency has been actually changed. Finally, we run task

CVEL, with input parameter outframe = BARY to change the reference frame of this data set.

18. Imaging the continuum subtracted line data set to obtain the image cube: Next step is to image the

line dataset obtained from the previous step. For this step, we use clean as before. This time, We set

the input parameter mode = channel to produce an image with multiple frequency channels. We
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set threshold = 3 mJy i.e. roughly 3 times the expected spectral rms. This forces clean to stop if

the maximum residual is below this value. We also set the maximum number of clean iterations to be

niter = 200. The clean with these parameters produces the final stokes I image cube. We detect

H I 21-cm absorption at the location of the quasar from this cube. The spectrum which has an rms of

1.2 mJy/beam/channel is presented in the next section.

3.3 Results

The studies of H I 21-cm absorption and emission have led to the discovery of neutral interstellar medium

(ISM) with temperatures over the range, ⇡ 20�104 K. These studies have led to models suggesting that there

exist, “two distinct stable H I phases which co-exist in pressure equilibrium: a cold, high-density (n⇡ 10�100

cm�3) phase, the cold neutral medium (CNM) and a warm diffuse, low-density (n⇡ 0.1�1 cm�3) phase, the

warm neutral medium (WNM)” (e.g. Roy et al., 2013).

According to Kulkarni & Heiles (1988), “the high number densities in the CNM indicate that the H I 21-

cm transition is likely to be thermalized in this phase, with the H I 21-cm excitation temperature (the ‘spin

temperature’ , Ts) approximately equal to the kinetic temperature Tk”. In the WNM, “the relation between the

spin and kinetic temperatures is complicated”, however, Liszt (2001), suggest that “the spin temperature is

expected to be lower than the kinetic temperature in this phase”. The relative filling factors of the different

phases remain uncertain and may vary with location in the galaxy (Braun & Walterbos, 1992). Roy et al.

(2013) suggest that, “the difficulty of detecting the WNM in H I 21-cm absorption (i.e. due to its low optical

depth) has meant that relatively little is observationally known about the physical conditions in the WNM”.

The kinetic temperature and spin temperature, are two different temperature used to describe the conditions

in the gas for H I. The physical (kinetic) temperature Tk, characterizes the velocity distribution of the H I

atoms in small scales i.e. scales on which bulk motions are negligible. The spin temperature Ts, “it describes

the population in the two hyperfine levels of the ground state of neutral hydrogen, i.e. it is defined by the

Boltzmann distribution, n1 = 3n0e�hn10/kBTs , where n0 and n1 represent the populations in the lower and upper

levels of H I 21-cm hyperfine transitions and n10 is the rest frequency of the H I 21-cm line” (Field, 1958).

Field (1958) suggested that, “for a single H I cloud, Ts is determined by a combination of three mechanisms,

namely: collisions, the Lyman-a radiation field and the radiation field around the rest wavelength of the

hyperfine 21-cm transition”. These mechanisms may cause direct transition between the two hyperfine states.

In the ISM, especially in the regions far away from H II regions and Supernovae remnants, the H I 21-cm

continuum radiation field generally contributes negligibly to the excitation.

Roy et al. (2013) emphasizes that “in high density regions of ISM (i.e. far from bright UV sources), the

collisional mechanism dominates over Lyman-a excitation mechanism and the spin temperature is equal to

the kinetic temperature” i.e. this is the case in the CNM. However, the collisions can not thermalize the H I

21-cm transition in the WNM i.e. because the density is very small. Liszt (2001) obtained “Ts ⇠ 1000�5000
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K for Tk ⇠ 5000�10000 K, for typical ISM pressures, in the absence of external influences (e.g. bright radio

sources and sources of UV photons)”.

Roy et al. (2013) argues that, “if the excitation by the Lyman-a in the WNM is intense (e.g. for a single

homogeneous H I cloud) and resonant scattering of Lyman-a radiation causes the Lyman-a colour tempera-

ture to approach the kinetic temperature, then the spin temperature would be driven to kinetic temperature”.

However, this is somewhat uncertain but it does appear reasonable to assume that Ts ⇡ Tk, in the CNM and that

Ts < Tk in the WNM. Below we are going to estimate the kinetic and spin temperature following Liszt (2001)

discussion.

According to Liszt (2001), “the gas kinetic temperature is typically estimated from the Doppler tempera-

ture, TD, TD represents the width of the Gaussian core of the line”. “The Doppler temperature is derived from

the full width at half maximum (FWHM) of an H I 21-cm component by the relation, TD = 21.86W 2 K, where

W is the FWHM (km/s)”, definition used by Payne et al. (1982).

With negligible contributions from bulk motions, turbulence, etc, the line width will be dominated by

thermal broadening i.e. one would have Tk = TD. According to Leung & Liszt (1976), TD is given by the

expression,

TD = Tk +
mHv2

turb
kB

, (3.1)

where “mH is the mass of the hydrogen atom, vturb gives the contribution to the line width from the thermal

motions and kB is the Boltzmann constant”.

One can use TD and Tk interchangeably i.e. If such non-thermal broadening is negligible. In the general

case, “the Doppler temperature only provides an upper limit to the kinetic temperature” (Roy et al., 2013).

In H I 21-cm absorption spectra, “both the spin and Doppler temperatures affect the line profile; the spin

temperature determines the total integrated optical depth, while the Doppler temperature” i.e. the combination

of the “kinetic temperature and any non-thermal motions” determines the line width (see eqn. (3.1)) (Roy

et al., 2013). The Doppler temperature measurements shown in Table. 3.2 are estimated using Payne et al.

(1982) definition.

Generally, an absorption profile can be treated as arising from a number of absorbing clouds along the

line of sight. However, if each cloud of gas is individually in equilibrium, at the kinetic temperature Tk, its

line profile would be the Voigt profile. The Voigt profile, is a convolution of the Gaussian function with the

Lorentzian, which reduces to a Gaussian for unsaturated absorption lines i.e. if collisional broadening is ne-

glected. As such, “the simplest physically motivated model for an unsaturated absorption profile consists of a

sum of multiple Gaussian components, with the width of each component determined by the kinetic tempera-

ture of the gas”. In principle, “such a Gaussian de-composition allows one to derive the kinetic temperature of

individual clouds” (Roy et al., 2013).

In our analysis, a strong H I 21-cm absorption line is detected at zg = 0.3715 towards SDSS J1443+0214. In

Fig. 3.13, we normalized the spectrum using the continuum flux density and fitted two Gaussian components
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(Model A & B) simultaneously to model the absorption. Our attempt to use only one component resulted

in large residuals. However, using two Gaussian components produce a good fit (having small residuals) to

the absorption spectrum. We show the Gaussian fits to the profile (Fig. 3.13) and summarize the results in

Table. 3.2. The total integrated H I 21-cm optical depth due to the absorber towards SDSS J1443+0214 was

calculated by integrating across the line profile, and is estimated to be
R

tdv ⇠ 3.6 ± 0.2 km/s.

Figure 3.13: The GMRT spectrum showing H I 21-cm absorption detected towards SDSS J1443+0214 . The

zero velocity axis corresponds to the 1035.63 MHz. The fitted parameters are given in Table. 3.2. The red lines

are the Gaussian fits to the absorption spectrum. Residuals are plotted in dashed line and they are arbitrarily

shifted for clarity.

Table 3.2: Two component Gaussian fits to the 21-cm absorption profile.

Quasar ID tpeak FWHM Tk

(km/s) (Kelvin)

SDSS J1443+0214 A 0.290 9 ± 1 1800

B 0.040 20 ± 4 8800

The H I column density (density projected along the line of sight towards the quasar) for an optically thin

cloud is estimated using the relation (e.g. Kulkarni & Heiles, 1988),

NH I = 1.835⇥1018 ⇥ Ts

fc

Z
t(v)dv cm�2, (3.2)

where Ts is the spin temperature of H I gas in Kelvin, fc represents the fraction of H I cloud that covers a

background radio source and t(v) is the 21-cm optical depth in a velocity interval v� v+ dv. We assume fc
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to be unity, Ts is an unknown quantity and here we adopt a value of 100 K, typical temperature for CNM in

the Galaxy. Using eqn. (3.2), we measure the H I column density to be ⇠ 6.6⇥ 1020 cm�2. Thus this system

qualifies as a damped Lyman-a (DLA) and perhaps corresponds to a sight line passing through the disk of a

galaxy. Further, the upper limit on the temperature of component A is consistent with it being arising from

CNM. The limit on the temperature of component B is too high to draw any direct conclusions. However,

since the Hubble Space Telescope (HST) offers a much greater sensitivity, the measurement of H I 21-cm

column density using the HST are required to estimate the total H I 21-cm column density along the sight line

and put constraints on the spin temperature and physical conditions in the gas. Finally, we also note that the

observational results derived from our analysis through CASA are identical to those published in Gupta et al.

(2013).

54



CHAPTER 4

GMRT and VLA Search hydroxyl (OH) Absorption

In the interstellar medium, molecular gas is present over a wide range of densities from diffuse gas to dense

clouds. The different types of molecular clouds are classified on the basis of their optical appearance i.e.

the visual extinction (AV ). The clouds with AV <1 and 1< AV <5 are called diffuse and translucent clouds,

respectively. In these clouds, the Carbon, whose ionization potential is less than that of Hydrogen, is mainly

in the singly ionized state. The clouds with larger AV s are referred to as dark clouds. Due to the absence

of any ionizing radiation field in these clouds, the Carbon is mostly in neutral state or in CO. Most of the

molecular gas in ISM are in Giant Molecular Clouds (GMCs) with masses ranging from 103 to 105 M�. These

have well defined boundaries and complex substructures, and are the sites of active star formation. Therefore,

detecting and understanding the molecular phase is crucial to understand the current and future star formation

in galaxy(ies). Molecules are also of overwhelming importance for studying cold regions which do not produce

H I emission and are optically thick or opaque to optical lines.

Molecules in ISM can be detected through emission and absorption lines. The first detection of an inter-

stellar molecule at radio wavelengths was the hydroxyl (OH) radical. It was detected at 1667 MHz (18-cm)

in absorption against Cassiopeia A by Weinreb et al. (1963). This discovery provided a positive evidence for

the existence of OH, and in general the presence of molecular gas, in the interstellar medium. It is now well

known that OH is present in both diffuse and dense phases of the molecular ISM.

The ground state of OH has an electronic angular momentum L = 1 and spin angular momentum S = 1/2.

Thus, by spin-orbit coupling, the total angular momentum is either J = 3/2 or J = 1/2, leading to the 2p3/2

and the 2p1/2 rotational states. The microwave transitions of OH in the ground state, 2p3/2, J = 3/2, arise

from two L-type doublet-levels (i.e. due to the interaction between the rotation of the nuclei and the unpaired

electron in the outer shell), each of which is split by hyperfine interactions with the hydrogen nucleus, resulting

in four transitions (Weinreb et al., 1963). This splitting is illustrated in Fig. 4.1, where these states are labelled
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with ‘+’ and ‘-’ for the higher and lower energy states, respectively.

For our observations to search for OH absorption lines, we chose two quasar sight lines passing through

foreground galaxies. Both these sight lines show (i) 21-cm absorption (i.e. the presence of cold atomic gas is

confirmed) and (ii) signatures of reddening by dust, thus exhibiting conditions favourable to possess molecules.

We searched for OH absorption in these galaxies through observations of OH main lines at the frequencies of

1665.4018 MHz and 1667.3590 MHz.

In this chapter we present GMRT and VLA observations of OH molecular absorption lines towards these

quasars, namely, SDSS J1443+0214 and SDSS J0849+5108 (see Fig. 3.1, and Fig. 4.15). First, we are going

to focus on the quasar SDSS J1443+0214, at redshift, zq = 1.82. This system has already been introduced in

the previous chapter and H I 21-cm absorption line was detected at zg = 0.3715. The H I 21-cm absorption

from the galaxy at zg = 0.3120 towards the quasar SDSS J0849+5108, zq = 0.584 has been presented in Gupta

et al. (2013).

Figure 4.1: The 18-cm ground state transitions of the OH molecule. These transitions are due to hyperfine

interactions with the nuclear spin, and each doublet state is further split into 2 levels, corresponding to F =

J+ I, where I is the nuclear spin, equal to ±1/2. Transitions between these 4 independent energy states result

in the 18-cm ground state spectral line at ⇠ 1612, 1665, 1667, and 1720 MHz.

4.1 GMRT Search for OH Absorption Towards SDSS J1443+0214

4.1.1 Description of GMRT Observations

The GMRT observation of OH was carried out in January, 2013 using a baseband bandwidth (for observations

at L-band) of 4.17 MHz split into 512 spectral channels (resolution ⇠ 2 km/s). A summary of the observation

is given by the listobs output in Fig. 4.2. The standard flux density calibrator 3C286 within ⇠33.7� from

the quasar was observed twice during observing track for both flux and bandpass calibration. The compact

radio source J1445+099 within ⇠7.08� from the quasar was chosen as the phase calibrator and observed every

45 min for ⇠ 10 mins.
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4.1.2 Data Analysis

The NRAO CASA package (version 4.1.0) was used for data reduction, following standard procedures as

described in the previous chapter. As usually, the data of flux-density calibrator, phase calibrator and target

source were inspected at various stages for bad antennas, baselines and time ranges. The observations, espe-

cially the data on phase calibrator J1445+099 and the target source SDSS J1443+214, were affected by radio

frequency interference (RFI).

In the following we describe various steps in the analysis. As we are using GMRT for the observations

here, therefore the first step follows exactly like in the previous chapter where we convert the data from FITS

format into a MS using the task importgmrt.

1. Obtaining a summary of the observation: The summary of the measurement set is shown in Fig. 4.2.

We use task listobs for this purpose. The total observation time was 8.20 hrs. However, only ⇠ 6

hrs was used on-source i.e. SDSS J1443+0214. The remaining time was mostly used for observing the

flux/bandpass calibrator (3C286) and the phase calibrator (J1445+099).

Figure 4.2: The listobs output showing the scan summary, source coordinates and frequency set-up for

OH observations. The target SDSS J1443+0214 is referred to as Field ID 2.

In the listobs output (Fig. 4.2), one can see that the observing frequency has now been changed to

cover the OH main lines.

2. Inspecting and flagging 3C286 visibilities: In the next step, we identify bad data on 3C286. For this

purpose we choose channel 100 which is far away from the band centre i.e. likely to be free from line
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emission/absorption. We use task plotms to plot the visibilities of 3C286 for channel 100. The output

is shown in Fig. 4.3, where we plot the amplitude and phase as a function of uv-distance.

(a) (b)

Figure 4.3: Amplitude and Phase vs uv-distance for 3C286.

The data plotted in Fig. 4.3 are uncalibrated. We notice that the amplitudes for several baselines are

close to zero. These may be coming from antennas not working during the observations. We identify

that these data are corresponding to four bad antennas, C09, C12, W02 and W05. Plotting individual

baselines for these antennas shows that the phases with respect to time are totally random. This further

confirms that the antennas are not working and the amplitudes are not low because of the low gains of

the antennas.

We use task flagdata to flag the antennas, C09, C12, W02 and W05 for all sources and all times.

However, we also noticed that antennas, C06, S06 and E05 have bad band-shapes showing spikes

and the phases for individual baselines for these antennas with respect to time are also totally random.

We use task flagdata to flag these antennas as well. The data after flagging are shown in Fig. 4.4.

Most of the low amplitude visibilities have been accounted for.
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(a) (b)

Figure 4.4: Amplitude and Phase vs uv-distance for 3C286, after initial inspection and flagging of the data.

3. Obtaining the model of 3C286: In this step, we use task setjy to fill the model visibility column

for 3C286 with amplitudes and phases corresponding to the source model at the observing frequency.

We choose the fluxscale to be standard = ‘Perley-Butler 2010’ and set fluxdensity

= -1, which allows us to choose the default standard values. Setjy produces the output in the logger,

from which one can see that it has identified the calibrator source 3C286 and filled in the know flux

density of 15.857 Jy for stokes I. The flux density of 3C286 is slightly different from the one obtained in

the previous chapter because we are observing at a different frequency, RestFreq = 1212.83328

MHz.

4. Choosing the reference antenna: In our analysis we will use antenna C00 as the reference antenna (see

Fig. 3.2). The behaviour of this antenna was also checked and found to be good during initial inspection.

5. Solving for antenna based gains for 3C286: We use task gaincal to solve for antenna based ampli-

tudes and phases for 3C286. We set the parameter spw = 0:100 to select the data for channel 100 and

calmode = ap to specify amplitude and phase calibration. We set solint = 1 min. The table

produced by the task gaincal is then applied to the flux calibrator using task applycal to check

if the flagging and calibration are well done. As before we use task plotms for inspection. But this

time we set the input parameter datacolumn = corrected instead of data. The calibrated data

plotted this way are shown in Fig. 4.5. Clearly the amplitudes and phases are as expected for a standard

flux density calibrator.
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(a) (b)

Figure 4.5: Amplitude and Phase vs uv-distance for 3C286, after flagging and calibration.

6. 3C286 RFI inspection: In this step, we use viewer to plot the data for each baseline as raster plot with

x-axis as frequency channel and y-axis as time. Fig. 4.6 on the left panel, show the calibrated visibilities

for a baseline (E03 - E04). The visibilities affected by RFI appear as a black horizontal stripe (this is

true for RFI appearing at a particular time). To flag these, we use the mouse to draw a region around the

corrupted visibilities and double click in that region. This region (blue) in Fig. 4.6 (on the right panel)

shows the flagged visibilities. This data is strongly affected by RFI, especially channels 266 and 430.

Like this we examine all the baselines to identify and flag RFI affected data.

(a) (b)

Figure 4.6: RFI inspection for 3C286 calibrated visibilities. (a) Unflagged RFI appear as a black horizontal

stripe, (b) Flagged data is marked in blue.
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7. Determining bandpass calibration: After successfully determining gains as a function of time for

3C286 and flagging RFI affected visibilities, the next step is to determine gains as a function of fre-

quency. This is done using the task bandpass. We set the input solint = inf i.e. doing so, will

derive one bandpass solution for the entire 3C286 scan. We also use combine = scan. During band-

pass calibration, we apply the calibration table obtained when we performed task gaincal on-the-fly

with the parameter gaintable. This allows us to average 3C286 over the entire scans without losing

the signal-to-noise ratio. Bandpass calibration builds a table with the amplitude and phase as a function

of frequency for each spectral window containing more than one channel. Typically, solutions (e.g. for

a perfect bandpass) are near unity for the central channels and decrease near the edges. The bandpass

solutions for seven of the GMRT antennas are shown in Fig. 4.7.

Figure 4.7: Bandpass solution for seven GMRT antennas. The different colours represent different polariza-

tions. Antenna C06 and C09 were affected by RFI and were removed.

8. Solving for antenna based gains for J1445+099: We choose J1445+099 to be the phase calibrator

because it is within 7.08� from SDSS J1443+0214. This source was inspected following the same

procedure as in the flux calibrator. We use task gaincal to solve for antenna based amplitudes and

phases for J1445+099. We set the parameters spw = 0:100, solint = 1 min and calmode =

ap as before. But for this step, we apply the bandpass solutions on-the-fly, specified in gaintable

input parameter, and we use field = 0,1. This task generates a second gaincal table.

9. Fluxscale: The next step is to set the flux density scale using task fluxscale. For this, use the flux

calibrator whose flux density was set in setjy to derive the flux density of J1445+099. For this step,

we apply the table produced in step (8) on-the-fly. After using task fluxscale we get that the flux

density of our phase calibrator J1445+099 to be 2.59 ± 0.02 Jy. The flux density for J1445+099 is

almost the same as the one obtained in the previous chapter, which was 2.57 ± 0.02 Jy.
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To check whether or not the calibration procedure was correct, we use task applycal to apply the

calibration solutions to the calibrator itself (J1445+099). We apply both the bandpass and gaincal

tables that have been generated in the previous sections. The calibrated data are shown in Fig. 4.8. We

stress that for a point-like source amplitude should be flat (and without any ripples) and the phase should

be flat and centred at 0 degrees.

(a) (b)

Figure 4.8: Amplitude and Phase vs uv-distance for phase calibrator, after flagging and calibration.

10. J1445+099 RFI inspection: In this step, we use viewer to plot the data for each baseline as raster

plots. The visibilities affected by RFI appear as darker stripes. Following the same procedure as in step

(6) we examined all the baselines to identify and flag RFI affected data.
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(a) (b)

(c) (d)

Figure 4.9: RFI inspection for J1445+099 calibrated visibilities. (a) In baseline C00 - E04 and (c) C08 - E04

, the unflagged RFI appear as darker stripes. In (b) and (d) flagged data are marked in blue.

11. Apply calibration to calibrators and target source: In this step we use task applycal to interpolate the

gains in time and apply the calibration tables i.e. both gains as a function of time and frequency, to the

calibrators and the target source. We do this by setting the gainfield and gaintable parameters

appropriately. RFI inspection was performed on the target source after applying the calibration, see

Fig. 4.10.
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(a) (b)

Figure 4.10: RFI inspection for SDSS J1443+0214 calibrated visibilities. Here we only show one baseline

C08 - E04.

12. Splitting the calibrated data: The next step is to split the calibrated data for calibrators and target

source into separate files using task split. This speeds up the processing for subsequent steps. Any

further analysis will be done on these splitted data files.

13. Continuum imaging: As mentioned above, the task split was used to separate the uv-data for each

source. In this step we make a single channel map of the calibrators and the target source. This task,

Fourier inverts the calibrated data for channel 100 and CLEANing is controlled interactively. We use

the input parameter mode = mfs which makes a single multi-frequency synthesis image out of the

specified channels. Input psfmode = clark sets the algorithm to make the synthesized beam as

clark which is also the default choice.

The parameter imagermode = csclean sets the mode of the CLEAN in the visibility plane. We use

the same image size and the pixel size as in the previous chapter because we are using the same array and

observing at a similar frequency. Fig. 4.11 shows maps of the flux calibrator and phase calibrator, which

has a flux density and rms of 15.83 Jy, ⇠ 8.69 mJy/beam/channel and 2.58 Jy, ⇠ 5.12 mJy/beam/channel

respectively.

We also notice that for 3C286, the rms in Fig. 4.11 (left panel) is almost equal to that obtained in the

map (rms ⇠ 9.33 mJy/beam/channel) of the same source (see Fig. 3.10) obtained in the last chapter. The

rms of J1445+099 is two times compared to that obtained in the previous map of the same source. This

is because large portions of J1445+099 data is affected by RFI and flagged.
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(a) (b)

Figure 4.11: CLEAN maps of (a) 3C286 and (b) J1445+099. The contour levels start at 3s .

14. Self-calibration: The next step (refer to the previous chaper) is to make an approximate model of the

source via the task clean, averaging ⇠ 200 line free channels, see Fig. 4.12 (a). With a reasonable

model in place, we are in a position to (self-)calibrate the science target directly. We use task gaincal

for this purpose. The task is used both for general gain calibration using an external calibrator, and for

self-calibration.

The phase self-calibration was repeated two times until the map stopped improving i.e. we checked the

changes in the rms and peak flux density (results are shown in Table. 4.1). Also note that in Fig. 4.12

(c), the improvement with respect to the previous map is really marginal.

The next step is to experiment with amplitude and phase self-calibration. The solution interval used for

this step is solint = 15 min with input calmode = ap specifying that we are doing amplitude

and phase self-calibration. We compare the third image, Fig. 4.12 (c), and fourth image Fig. 4.12 (d).

The noise level is much better, while the flux has not changed markedly. The contour levels in these

images start at 3s . Fig. 4.12 (d) is our best continuum image. The results of the self-calibration such as

peak flux density and rms are given in Table. 4.1.
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(a) (b)

(c) (d)

Figure 4.12: (a) Channel averaged map of SDSS J1443+0214. Continuum image of SDSS J1443+0214 after

phase-only (panels b and c) and amplitude calibration (panel d). The contour levels start at 3s .

Table 4.1: Results of self-calibration.

Model Peak flux density [mJy/beam] rms [mJy/beam/channel] Figure Reference

Initial model 124.97 0.335 Fig. 4.12 panel (a)

1 phase-only 140.41 0.251 Fig. 4.12 panel (b)

2 phase-only 141.47 0.251 Fig. 4.12 panel (c)

1 amp and phase 143.25 0.245 Fig. 4.12 panel (d)

15. Applying self-calibration solutions to line dataset: Next step is to apply gains from the last iteration

of phase-only and the amplitude-and-phase self-calibration steps to the line visibility data set. We use

task applycal for this purpose and then split the calibrated data column.

16. Continuum subtraction: Next we subtract the continuum from the self-calibrated line data set obtained

in step (15) using task uvconstsub. Like in the previous section, this task makes fits to the line free

channels and subtracts the emission in the uv-domain. The task uvconstsub operates on the corrected
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data column and writes the continuum subtracted data in a new measurement set (MS) with the extension

.contsub.

17. Setting velocity rest frame: Here, we use cvel to correct for the Doppler shift, and at the same time,

change the velocity reference frame to BARY.

Before we do that, we set the rest frequency of OH 18-cm line in the measurement set. Here we are using

an MS file produced in the previous step. The rest frequency for this observation is 1666.3804 MHz i.e.

this is the average frequency of the two main lines that we are interested in. We open the spectral window

table of the MS using tb.open and insert the rest frequency using tb.putcell. The default rest

frequency in the file is the central observing frequency. After inserting the rest frequency we close the

file using tb.close. We also ran the task listobs to check that the reference frequency has been

actually changed. Finally, we run task CVEL, with input parameter outframe = BARY to change the

reference frame of this data set.

18. Imaging the spectral continuum subtracted data set to obtain the image cube: Next step is to image

the line dataset obtained from the previous step. For this step, we set the input parameter mode =

channel to produce an image with different planes. We set threshold = 3 mJy, telling clean

to stop if the maximum residual is below this value. A dirty cube (niter = 0) is generated by task

clean, after setting all the parameters and running clean. Viewer provides the animation function

useful for inspecting the 3D data cube. The rms in this cube was ⇠ 1.7 mJy/beam/channel. This rms

is a little bit higher compared to the rms we measured in a search for H I 21-cm absorption towards

SDSS J1443+0214 (recall that we measured the rms of ⇠1.2 mJy/beam/channel in H I 21-cm absorption

spectrum). This is most likely due to higher levels of RFI in the OH data set.

4.1.3 Results

We do not detect OH absorption towards SDSS J1443+0214. The spectrum is shown in Fig. 4.13. According

to Gupta et al. (2006), “the OH column density of the absorbing gas NOH (i.e. for an optically thin cloud in

thermal equilibrium), is related to the excitation temperature Tx and the 1667.3590 MHz (main line) optical

depth t1667 by the expression”,

NOH = 2.25⇥1014
✓

Tx

f

◆Z
t1667(v)dv, (4.1)

where f is the fraction of the background emission covered by the absorber. The column density, NOH , is in

cm�2, Tx is in Kelvin and dv in km/s. However, the OH excitation temperature Tx cannot be directly estimated.

So we assume Tx = 10 K as in Gupta et al. (2006). This is a typical temperature in dark clouds in the Milky

Way. In the optically thin regime, the integrated optical depth of the line and 3s optical depth limit on it is

estimated using, Z
t1667(v)dv = 1.06

3⇥srms

Scont
⇥FWHMH I, (4.2)
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where srms is the rms for the smoothed H I 21-cm spectrum, Scont = 143.25 mJy/beam (see Table. 4.1) is the

flux density of the continuum source, and FWHMH I of the detected H I 21-cm absorption line/components

(see Table. 4.2). The upper limit on OH column densities for detected H I 21-cm absorption components are

given in Table. 4.2.

Figure 4.13: GMRT spectrum towards SDSS J1443+0214 showing OH non-detection. The vertical lines at

frequency 1214.2922 MHz and 1215.7193 MHz represents the expected locations of OH main lines corre-

sponding to zabs = 0.3715 for the H I 21-cm absorption towards SDSS J1443+0214.

Table 4.2: OH column density limits (3s ) for the H I 21-cm absorption components presented in the previous

chapter. The rms (srms = 0.7) used here was obtained from the spectrum of H I 21-cm absorption smoothed

to ⇠15 km/s (corresponding to the average FWHM of two H I 21-cm absorption components). This was done

using the task specsmooth.

Quasar FWHMH I NOH

(km/s) (cm�2)

SDSS J1443+0214 9 ± 1 5⇥1014

20 ± 4 1⇥1015

4.2 VLA Search for OH Absorption Towards SDSS J0849+5108

In this section, we will briefly discuss the analysis of the VLA search for OH absorption towards SDSS

J0849+5108.

4.2.1 Description of VLA Observations

The Very Large Array (VLA), like GMRT, is a radio interferometer.
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Astronomers from around the world, mainly, use VLA for “atmospheric/weather studies, satellite tracking,

and other miscellaneous science”. The VLA “consists of 27 antennas (e.g. each antenna is 25 m in diameter) in

a Y-shaped array with four configurations, arranged such that the A array, has a maximum antenna separation

of 36 km, B array 10 km, C array 3.6 km, and D array 1 km” (see Fig. 4.14) (Thompson et al., 1980). Generally,

the telescopes are switched between these configurations every four months or so. The antennas can be moved

along rails to different positions.

Figure 4.14: Figure showing all the 27 VLA antennas. Photo reference: http://images.nrao.edu/

images/VLASouth_med.jpg

The VLA telescope is very similar to the GMRT except for the operating frequencies and the fact that

VLA is reconfigurable. As mentioned in the previous chapter, GMRT also has a Y-shaped configuration but

consists of fixed antennas spread over 25 km. The other main difference between the two arrays is their range

of operating frequencies. While VLA primarily observes above ⇠1 GHz, GMRT operates below ⇠1 GHz.

They are thus complimentary.

The VLA operates at the higher frequency bands ranging from 1 GHz to 50 GHz. There are also a few

lower frequency bands such as 74 MHz and 327 MHz. The antennas have receivers for seven wavelength

bands, “centred near 90, 20, 6, 3.6, 2, 1.3, 0.7 cm i.e. these bands are commonly referred to as P, L, C, X, U,

K and Q bands” (Thompson et al., 1980).

We used VLA L-band to search for OH main lines from zg = 0.3120 towards the quasar SDSS J0849+5108,

zq = 0.584. As discussed by Gupta et al. (2013), “the background radio source of quasar galaxy pair (QGP)

SDSS J0849+5108 has been the subject of considerable debates and there are speculations about its optical

spectrum being affected by foreground galaxy lensing/or reddening”. “They also reported the detection of H I

21-cm, Na I and Ca II absorption at zg = 0.3120 in the spectrum of QSO and associated these to a luminous

red galaxy (LRG)” (Gupta et al., 2010). Based on the FIRST survey, “the background quasar at 1.4 GHz has a

peak and the integrated flux densities of 344 mJy/beam and 350 mJy” (White et al., 1997). The deconvolved

source size in the FIRST survey which has a resolution of ⇠500 is 0.9300⇥0.4800.
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Figure 4.15: The Sloan Digital Sky Survey (SDSS) Data Release 12 image of the quasar

J084957.97+510829.0. The galaxy responsible for H I 21-cm, Ca II and Na I absorption at zg = 0.3120 is

represented by ‘G1’.

The VLA A-array observations to search for OH were carried out in October, 2012. The A-array was

chosen as it is most effective in reducing the impact of RFI. The total observing time was 4 hrs and split into

two observing runs of 2 hrs that took place on the 27 and 28 October 2012. The observing strategy and set-up

were exactly same for both the runs. The standard calibrator 3C147 was used for flux and bandpass calibration,

and the compact radio source J0834+5534 was observed every 20 mins for about 1 min for phase calibration.

The observational parameters are summarized in Fig. 4.16. We have used 0.5 MHz baseband bandwidth split

into 128 frequency channels (with 16 unique spectral windows and two circular polarization channels called

RR and LL) yielding a spectral resolution of ⇠ 0.95 km/s.

One of the main difference (apart from multiple IFs) from the previous datasets considered till now is that

the data file from the two individual runs are about 100 GB i.e. an order of magnitude larger than the GMRT

datasets. Otherwise, the VLA data analysis was carried out following the same strategy as adopted for the

GMRT observations described in the previous sections. In the following, we will describe in broad strokes the

steps carried out in the data reduction.

4.2.2 Data Analysis

The data analysis was carried out using the CASA (version 4.1.0) developed by the NRAO, using standard

procedures. Most of these data were corrected out for a variety of reasons (e.g. malfunctioning antennas, radio

frequency interference etc.). After editing the data, standard calibration procedures were carried out to obtain

the antenna-based complex gains. Then imaging, self-calibration and spectral analysis steps were carried out.
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The first step in the data reduction as usual is to obtain a summary of the measurement set (MS). We

use task listobs for this purpose. The output is shown in Fig. 4.16. As can be seen in Fig. 4.16, the

spectral windows were chosen such that to centre the sub-bands appropriately to cover the OH main lines

with sufficient spectral resolution, and also to cover the maximum bandwidth to yield the good continuum

sensitivity (see also Table 4.3).

Figure 4.16: The listobs output showing the scan summary, source coordinates and frequency set-up for

the observations. The target SDSS J0849+5108 is referred to as Field ID 3. Note that this is not the complete

listobs output. For frequency set-up see Table 4.3.

After this, as a general data editing and examination strategy, at this stage in the data reduction process,

one wants to focus on the calibrators. The data reduction scheme is to determine various corrections from

the calibrator sources, then apply these correction factors to the science target. In this step we inspect the

flux/bandpass calibrator. We examined all the spectral windows for bad data i.e. bad antennas, baselines and

RFI using the steps/tools already described. The task setjy was then used to fill the model visibility column

for J0542+4951 with amplitudes and phases corresponding to the source model at the observing frequency.

The flux densities estimated by Setjy for different IFs are given in Table 4.3.
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Table 4.3: Frequency set-up used for VLA observations. The last column has fluxes determined by setjy

for J0542+4951.

IF No. Freq(GHz) BW(kHz) Ch.Sep(kHz) Flux (Jy)

1 1.22741397 500.0000 3.9063 24.8759

2 1.22791397 500.0000 3.9063 24.8682

3 1.22841397 500.0000 3.9063 24.8605

4 1.22891397 500.0000 3.9063 24.8528

5 1.22941397 500.0000 3.9063 24.8451

6 1.22991397 500.0000 3.9063 24.8374

7 1.23041397 500.0000 3.9063 24.8298

8 1.23091397 500.0000 3.9063 24.8221

9 1.26843905 500.0000 3.9063 24.2595

10 1.26893905 500.0000 3.9063 24.2522

11 1.26943905 500.0000 3.9063 24.2449

12 1.26993905 500.0000 3.9063 24.2376

13 1.27043905 500.0000 3.9063 24.2303

14 1.27093905 500.0000 3.9063 24.2230

15 1.27143905 500.0000 3.9063 24.2157

16 1.27193905 500.0000 3.9063 24.2084

In the next step, we use task gaincal to solve for antenna based complex gains for J0542+4951 and then

determine the bandpasses. In Fig. 4.17, we show the calibrated data for J0542+4951 for IF 11 with parameter

spw = 11:50. The bandpasses for IF 11 are shown in Fig. 4.18.

(a) (b)

Figure 4.17: Amplitude and Phase vs uv-distance for J0542+4951 (IF 11), after flagging and calibration.

72



Figure 4.18: Bandpass solution for eight VLA antennas. The different colours represent different polariza-

tions. These Bandpass solutions are for spectral window 11. Antenna 9 was affected by RFI and removed.

The next step is to use task gaincal to solve for antenna based amplitudes and phases for J0834+5534

for all the IFs. We set the parameters spw = 0:50, solint = 1 min and calmode = ap. In this step,

we apply the bandpass solutions on-the-fly, specified in gaintable input parameter, and we use field =

1,2. This task generates a second gaincal table.

After this we set the flux density scale using task fluxscale. To derive the flux density of J0542+4951,

we use the flux calibrator whose flux density was set in setjy. From this we get the flux density of our phase

calibrator J0834+5534 to be ⇠6.3 Jy.

We then applied all the calibrations to the target source and split the calibrated data. As OH main lines are

in IFs 11 and 14 of the dataset, we splitted only IFs 9 to 16. All the above mentioned steps were carried out

for the data from both the observing runs, and the calibrated data were combined.

In the following, we focus only on calibrated data from IFs 11 and 14. After performing all the preliminary

steps, we proceed to do self-calibration. We first focus on correcting only for phase errors. For this, we

perform phase-only self-calibration using the task gaincal. The solution interval used is solint = 1.0

min for phase self-calibration for both IFs 11 and IF 14. In the next step we perform amplitude and phase

self-calibration. The solution interval used for this step is solint = 8.0 min. The self-calibrated images

for IF 11 and the results are given in Fig. 4.19 and Table. 4.4, respectively. For IF 14 the results are given in

Fig. 4.20 and Table. 4.5. In these images, the contour levels start at 3s . Fig. 4.19 panel (d) and Fig. 4.20 panel

(d) are our best (self)-cal images.
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(a) (b)

(c) (d)

Figure 4.19: (a) Channel averaged map of SDSS J0849+5108 for IF 11. Continuum image of SDSS

J0849+5108 after phase-only (panels b and c) and amplitude calibration (panel d). The contour levels start at

3s .
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(a) (b)

(c) (d)

Figure 4.20: (a) Channel averaged map of SDSS J0849+5108 for IF 14. Continuum image of SDSS

J0849+5108 after phase-only (panels b and c) and amplitude calibration (panel d). The contour levels start at

3s .

From the final self-calibrated continuum image of the target from the combined dataset, we measure a flux

density of ⇠208 mJy. The source is compact i.e. unresolved. We then subtracted the continuum and corrected

data for the heliocentric motion of the Earth. Finally, this was imaged to get the spectral line cubes for IFs

11 and 14 that cover the two OH main lines. The spectra are shown in Fig. 4.21. The spectral rms in the

unsmoothed spectra are 3.9 and 4.4 mJy/beam respectively.

Table 4.4: Results of self-calibration for IF 11.

Model Peak flux density [mJy/beam] rms [mJy/beam/channel] Figure Reference

Initial model 189.1370 1.3340 Fig. 4.19 panel (a)

1 phase-only 204.3566 0.6856 Fig. 4.19 panel (b)

2 phase-only 204.8465 0.6827 Fig. 4.19 panel (c)

1 amp and phase 207.9471 0.6712 Fig. 4.19 panel (d)

75



Table 4.5: Results of self-calibration for IF 14.

Model Peak flux density [mJy/beam] rms [mJy/beam/channel] Figure Reference

Initial model 180.6421 1.0866 Fig. 4.20 panel (a)

1 phase-only 200.6427 0.6822 Fig. 4.20 panel (b)

2 phase-only 201.7470 0.6439 Fig. 4.20 panel (c)

1 amp and phase 208.4010 0.6311 Fig. 4.20 panel (d)

4.2.3 Results

Given the redshift of the 21-cm absorption from Gupta et al. (2013) , we expect the corresponding OH lines

with rest frequencies of 1665.4018 and 1667.3590 MHz to occur at 1269.3611 MHz and 1270.8528 MHz,

respectively. There is, however, no evidence of OH absorption in either case (see Fig. 4.21). However, Gupta

et al. (2013) detected H I 21-cm absorption at zg = 0.3120 and the H I 21-cm profile is resolved into three

components. We used these components and the same idea as in the previous chapter to estimate the limits on

OH column density. In Table. 4.6 we list the estimates of OH column density for this system obtained using

eqn. (4.1). The OH filling factor f was assumed to be unity for these calculations.

(a) (b)

Figure 4.21: GMRT spectra towards SDSS J0849+5108 showing OH non-detection for two main lines, (a) and

(b). The vertical dashed lines at (a) 1269.3612 MHz and (b) 1270.8530 MHz, represent the expected locations

of OH main lines corresponding to zg = 0.3120 from the H I 21-cm absorption towards SDSS J0849+5108.
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Table 4.6: OH column density limits (3s ) for the H I 21-cm absorption components presented in Gupta et al.

(2013). The rms used here for IF 11 and IF 14 (smoothed to 10 km/s) is srms = 1.2 mJy/beam/channel and

srms = 1.4 mJy/beam/channel, respectively (Fig. 4.21).

Quasar FWHMH I NOH

(km/s) (cm�2)

J0849+5108 4 ± 1 1.8 ⇥1014

13 ± 2 5.9 ⇥1014

8 ± 2 3.6 ⇥1014

4.3 Conclusion

Liszt & Lucas (1999) has suggested that OH is a good tracer of molecular hydrogen H2 (e.g. H2 has no

permanent dipole and no radio emission), under a variety of physical conditions. Since it is difficult to directly

detect H2, its column density, is usually inferred from observations of other species referred to as tracers of

H2 (e.g. Combes & Pineau des Forêts, 1999). “The OH column density is known to correlate with the visual

extinction AV and, hence, with the total hydrogen column density, NH2” (Crutcher, 1979). In this project we

have carried out a search for redshifted OH absorption in two sight-lines i.e. towards SDSS J1443+0214 and

SDSS J0849+5108.

Despite the detection of H I 21-cm absorption and signature of reddening due to dust, we do not detect OH

absorption to the levels of 1015 cm�2 in both the cases. Given that the level of extinction is not very high, it

is quite likely that these sight lines are (at best) tracing diffuse or translucent molecular gas. In that case, our

column density limits are about an order of magnitude poorer. This is generally true for molecular absorption

line searches in the literature.

Our datasets were highly affected by radio frequency interference (RFI). This signal can result in a negative

effect on discovering new systems, especially systems with low column densities. Constant presence of RFI

can hide new line detections as well as disguise lines. As long as RFI is present in low-frequency spectra

observations there will be certain redshift bins in which H I 21-cm or OH absorption lines cannot be detected

due to irremovable RFI, which will negatively effect discoveries of new systems.

Although new detections are always the preferred outcome, the lack of new detections does not necessarily

correlate to a lack of results. We are still able to derive the column density for OH in both cases. When we

estimate the column densities of our objects we need to bear in mind the uncertainties in the values of spin

temperature and covering factor for the different objects. The spin temperature Ts could be greater than 100

K. If this were so, it would only increase our estimate of the column density. And the covering factor might

be less than unity.

The next major improvement in this field will therefore come from the availability of MeerKAT telescope
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which will be the most sensitive telescope at ⇠ 1 GHz and ideally suited for OH absorption lines in diffuse

ISM. As MeerKAT will also be capable of doing blind H I 21-cm and OH absorption line searches it will also

detect sight lines through dense molecular ISM that have been missed till now. This will also lead to a much

better understanding of the global evolution of cold gas in the (e.g. z < 1) Universe, but will also turn up many

interesting instances of galaxies at intermediate redshifts in which the ISM can be studied (Zwaan et al., 2015).
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CHAPTER 5

Building a Dust-unbiased Sample of Radio Loud Quasars

In the previous chapters, we presented results of H I 21-cm and hydroxyl (OH) absorption line searches from

two quasar-galaxy pairs (QGPs). The H I 21-cm absorption and moderate amounts of dust extinction are

detected in both cases. These signatures suggest that the sight lines are passing through the cold atomic gas

and the physical conditions in the gas may be favourable for the formation of molecules. However, we do not

detect OH absorption in either case using GMRT/VLA.

In general, despite large efforts from the community over last three decades, most of the molecular absorp-

tion line searches till date have resulted in null detections. At present, about 50 intervening 21-cm absorbers

are known at 0 < z < 3.5. In comparison, only a handful of molecular absorbers are known.

OH and CO are the most abundant molecules that can be searched for using radio telescopes. While “CO

emission is detected in bright quasi-stellar objects (QSOs)” (e.g. Omont et al., 1996) and starburst galaxies, the

available radio telescopes are not sensitive enough to detect CO emission from normal galaxies beyond the lo-

cal Universe. Due to the same reasons i.e. lack of suitable strong sources at mm-wavelengths, the extragalactic

CO absorption at mm-wavelengths, besides two low-z active galactic nucleus (AGNs), has only been detected

in four sources. This scenario at mm-wavelengths is expected to change with the “Atacama Large Millime-

ter/submillimeter Array” (ALMA) and other upcoming facilities (Carilli & Blain, 2002). Similarly, 18-cm OH

mega-maser emission has been reported from starburst galaxies (Darling & Giovanelli, 2002). However, at

z�0.1 only five OH molecular absorption systems are known to date; in two of these cases absorbing gas is

associated with the AGN itself, and in the remaining three cases absorption arises from the intervening lensing

galaxy (e.g. Darling, 2004; Kanekar et al., 2004).

The scarcity of molecular absorption line detections at radio wavelengths is due to the following two

reasons:
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1. Small size/covering factor of molecular clouds: Compared to the diffuse atomic gas which is most

commonly detected in absorption line surveys, the molecular gas clouds have much smaller volume

filling factor in ISM. Due to the smaller absorption cross-section, the probability to detect these clouds

is much smaller.

2. Limitations of current radio telescopes: The instantaneous bandwidths offered by the current radio

telescopes have been too small. In addition, large fraction of frequency ranges have been affected by

the radio frequency interference (RFI). As a result large blind surveys of absorption lines have not

been possible. Instead, H I 21-cm or OH absorption line searches of sight lines selected based on the

presence of Mg II absorber or DLAs from optical surveys have been carried out. Since molecular gas is

accompanied by dust, the sight lines passing through molecular ISM are expected to be missed out in

optical surveys, and therefore, searches based on optical surveys are not ideal for detecting molecular

ISM.

Due to these reasons, although radio absorption line searches, till date, have provided valuable constraints

on the evolution of diffuse atomic gas in galaxies, they haven’t really been helpful in detecting reservoirs

of molecular gas (Gupta et al., 2012). Therefore, a large blind absorption line survey (e.g. the MeerKAT

Absorption Line Survey) at radio wavelengths can overcome these limitations, and provide an unbiased view

of the cold atomic and molecular gas in galaxies.

The MeerKAT Absorption Line Survey (MALS) will use the excellent sensitivity and large instantaneous

bandwidth of MeerKAT to carry out the first sensitive search of atomic and molecular gas in the ISM at z< 1.5.

The main strategy is to observe radio-loud quasars (RLQs) i.e. brighter than 200 mJy (at ⇠1 GHz). This will

allow the survey to obtain 5s sensitivity to detect 100 K atomic gas in subDLAs (N(HI)>1019 cm�2) over

0 < z < 1.5 in <2 hrs of integration. It is important that the target RLQs for MALS are selected in a dust-

unbiased way.

Therefore, through the MALS collaboration, we are carrying out an ambitious program to build a purely

infrared selected sample of ⇠600 radio loud quasars (RLQs; 200 mJy at 1 GHz) at z > 1.51. These RLQs

candidates are well-suited for both, (i) studying various AGN related issues at the main epoch of galaxy

formation and AGN evolution, and (ii) follow-up in radio, which is also unaffected by the dust extinction, to

search for intervening H I 21-cm and OH absorption lines using MeerKAT radio telescope to constrain the

evolution of cold ISM in galaxies at z < 1.5. The sample of Infrared (IR) selected RLQs and intervening

absorbers discovered through this program will be the largest to-date.

In this chapter, we briefly discuss the details of observations and analysis of a sample of 16 targets observed

with the Southern African Large Telescope (SALT) to test the target selection and observing strategy.
1The redshift and flux density cut are motivated by MALS. As MeerKAT Ultra high frequency (UHF) band can observe H I

21-cm absorption at z < 1.5, observations of z > 1.5 quasars is required to maximize the redshift path of the survey. The flux density

of >200 mJy will allow the survey to reach desired optical depth sensitivities in <2 hrs of observing time per target.
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5.1 Target Selection for the Pilot Project with SALT

In this section we are going to give a brief overview of four astronomical surveys and than give a summary of

how they were used for target selection.

1. The NRAO VLA Sky Survey (NVSS) is a “1.4 GHz (⇠ l = 20-cm) continuum survey covering the

entire sky north of J2000.0” d = -40� declination (82% of the celestial sphere) (Condon et al., 1998)

i.e. covering the total area of ⇠ 33, 700 deg2. This survey produced images with a “full width at half-

maximum (FWHM) resolution of 4500 and a limiting peak source brightness of about 2.5 mJy/beam”

(Condon et al., 1998). The rms uncertainties in right ascension and declination vary from  100 for

sources stronger than 15 mJy to 700 at the survey limit.

2. The Catalina Real-Time Transient Survey (CRTS) is a synoptic sky survey that utilizes data taken by

the “three wide-field telescopes in Arizona and Australia, covering the total area of ⇠ 30, 000 deg2” in

order to discover rare and interesting transient phenomena. According to Drake et al. (2014), the “three

telescopes repeatedly survey the sky between declination d = -75� and + 65�”. The limiting magnitudes

are ⇠ 20 � 21 mag per exposure. With time baselines from 10 mins to 6 years (Djorgovski et al.,

2011). The “basic goal of CRTS is a systematic exploration and characterization of the faint, variable

sky” (Drake et al., 2014). However, “each of the telescope is ran as a separate sub-survey”. These

telescopes consist of the “Catalina Schmidt Survey (CSS), the Mount Lemmon Survey (MLS) and the

Siding Spring Survey (SSS)”. Each telescope has a “4k ⇥ 4k CCD camera, which for the CSS, MLS

and SSS cover 8.2, 1.1 and 4 deg2”, respectively (Drake et al., 2014).

3. The Sydney University Molonglo SKy Survey (SUMSS) is a “radio imaging survey at 843 MHz of the

whole sky south of declination -30� covering the total area of ⇠ 8,000 deg2”. “With a resolution of 4300

and an rms noise level of ⇠ 1 mJy/beam”. The SUMSS has a “similar sensitivity and resolution to the

NVSS” (Sadler & Hunstead, 2002).

4. The “Wide-field Infrared Survey Explorer (WISE) uses a 40 cm telescope feeding arrays with a total of

4 million pixels. WISE is achieving a sensitivity more than 100 times better than InfraRed Astronomical

Satellite (IRAS) in the 12 µm band” (Wright et al., 2010).

The number density of radio sources (>200 mJy) with their optical counterparts are very sparsely identified

in the Southern hemisphere. We use IR colours from AllWISE catalogue to identify z > 1.5 RLQ candidates.

The AllWISE catalogue provides all sky W1 (3.4µm), W2 (4.6µm), W3 (12µm) and W4 (22µm) photometry.

We cross-correlate all the sources brighter than 200 mJy at declination < +20 degrees from NVSS/SUMSS

with the AllWISE catalogue and identify ⇠8500 radio sources with counterparts within 3 arcsec. In Fig. 5.1,

we plot the distribution of W2-W3 and W1-W2 colours for these in Cyan. The radio sources identified as
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galaxies (all are at z < 1) and quasars in the literature are plotted as filled black and coloured circles respec-

tively. We searched for the best criterion to separate z > 1.5 quasars from the rest and find that the (W1-

W2)<1.3(W2-W3) - 3.04 and W1-W2>0.6 maximises (⇠75% efficiency) the z > 1.5 quasar fraction. Using

this criterion (dashed lines in Fig. 5.1), we identify ⇠1500 radio sources that are unresolved in NVSS/SUMSS,

and also detected in CRTS. Overall, we have about [450, 850, 200] RLQ candidates in the magnitude bins of

[V<20, 20<V<22 and V>22]. Note that the CRTS criterion is only imposed to increase the likelihood of

obtaining a good SNR spectrum with the chosen telescope, and the candidate selection is purely IR-based.

Figure 5.1: WISE colour-colour plot for radio sources (d <+20�, >200 mJy) with WISE counterparts (Cyan).

Radio galaxies and quasars are shown as black and coloured circles respectively.

For the pilot project with SALT we selected 16 targets with V<22 from the parent sample of 1500 candi-

dates (PI: N. Gupta; Program ID: 2014-2-SCI-027). Here, we present results from the SALT

Robert Stobie Spectrograph (RSS) observations of this sample.

5.2 Description of SALT Observations

With a 10-metre diameter, the Southern African Large Telescope (SALT) is the largest single optical telescope

in the Southern hemisphere and it is designed mainly for spectroscopy. The segment design consists of a

spherical primary mirror mosaic of 91 separated but identical 1 m wide hexagons. The SALT primary mirror

is mounted at a fixed altitude of 37� from the vertical and can move in azimuth for target acquisition. By

moving the instrument payload at the primary focus, astronomical objects can be tracked i.e. the payload

tracker has a range of ± 6� (Smith et al., 2006). The spherical aberration corrector (SAC) mounted concentric

to and 13.08 m (half the radius of curvature) away from the primary mirror, has a circular 8 arc-minute field

of view over a declination range of -75� to +10� and feeds the prime focus with an F/4.2 beam.
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SALT has a fixed elevation and therefore observing with it is more difficult than observing with most

ground-based telescopes. SALT can rotate through 540� in azimuth. Astronomical objects are “traced as the

earth rotates without adjusting the azimuth angle for a period of up to two hours i.e. using a tracker, which

moves across the mirror on a virtual spherical focus” (Smith et al., 2006). Hence, this gives the telescope an

annulus-shaped observing area in the sky (see Fig. 5.2).

Figure 5.2: Visibility annulus of objects observable with SALT as a function of declination and hour

angle, and the hashed area shows the range of motion for the tracker at two different declinations.

Photo reference: http://www.sal.wisc.edu/PFIS/docs/rss-vis/ebb/pfis/observer/

intro.html#SALT

The objective of our observations, was to obtain the low-resolution spectra of 16 high-z quasar candidates.

The Robert Stobie Spectrograph (RSS) with 200 slit and grating pg0900 (low resolution) covering 4500 - 7500

Å were used for this purpose. This results in a resolution of ⇠4 Å. Each object was typically observed for

15-20 minutes with additional ⇠10 min for set-up and acquisition. The candidates are typically faint (V-

magnitude: 20-21.5, see Table. 5.1) and we rely on the detection of strong emission lines, for the success of

these observations. For wavelength calibration and flat fielding we requested day time spectral flats and arc

lamp images. The same set-up was used for all the targets and the position angle of the slit was chosen such

that a bright star always falls in the slit. Fig. 5.3 shows one example of typical data which we use in this

work. The bright star (see Fig. 5.3) is represented by the broad horizontal white line and the target object i.e.

candidate RLQ appears as a faint horizontal white line. The sky lines are the vertical white (bent) lines in

Fig. 5.3. We drew a red vertical line to show the bending of the sky lines (see Fig. 5.3). The spectral coverage

has two gaps, this is due to physical gaps between three CCD chips that read out the dispersed spectra (see

Fig. 5.3).
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Figure 5.3: The 2D spectrum taken with SALT. The horizontal axis is the dispersion direction with wavelength

getting redder towards the right. The coloured bar at the bottom is the intensity scale of the image. The three

CCD chips comprising the RSS detector can also be seen, with gaps between them. The red vertical line show

the bending of the sky lines.
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Table 5.1: Spectroscopic observations summary for Galaxies-possible quasar discussed in this work. The

SALT RSS-pg0900 grating with pc03850 order-blocking filter was used for all observations. Slitlets in all

masks were 80 long and 200 wide.

Target RA (J2000) Dec. (J2000) Moon phase [%] CRTS V-mag Date

J040015-142328 04h00m15.04s -14d23028.200 58.5 19.20 - 19.70 2014-11-30

J093919-173135 09h39m19.19s -17d31035.600 75.8 19.00 - 19.60 2015-02-09

J095231-245351 09h52m31.67s -24d53051.000 78.4 19.00 - 19.40 2015-03-30

J101313-254654 10h13m13.09s -25d46054.700 61.3 20.70 - 21.70 2014-11-30

J111820-305458 11h18m20.61s -30d54058.500 76.5 17.80 - 18.00 2015-02-28

J115222-270126 11h52m22.02s -27d01026.100 1.3 19.90 - 20.60 2015-03-19

J115450-281251 11h54m50.43s -28d12051.000 90.8 20.20 - 21.00 2015-03-02

J121128-351002 12h11m28.44s -35d1002.500 20.9 20.90 - 21.90 2015-03-16

J123409-332638 12h34m9.97s -33d26038.700 17.4 20.50 - 21.30 2015-02-22

20.8 20.50 - 21.30 2015-03-16

J124553-161645 12h45m53.74s -16d16045.700 1.2 20.20 - 21.00 2015-03-19

J125215-310351 12h52m15.17s -31d03051.200 45.5 19.80 - 20.50 2015-04-25

J125443-383357 12h54m43.00s -38d33057.300 41.4 20.00 - 20.70 2015-03-14

J130508-285041 13h05m8.44s -28d50041.800 2.0 20.00 - 20.70 2015-03-21

J131736-134532 13h17m36.56s -13d45032.600 41.2 19.80 - 20.50 2015-03-14

J141327-342235 14h13m27.16s -34d22035.600 76.3 19.10 - 19.60 2015-04-09

J143708-294718 14h37m8.95s -29d47018.700 80.0 19.30 - 19.90 2015-03-30

5.3 Spectroscopic Data Reduction

In this section we describe the methods of reducing the data provided from the SALT pipeline (the “product”

data) into wavelength calibrated spectra. The data are based on observations (long-slit) obtained between

November, 2014 and April, 2015.

In these observations the arc lamp was used only for the arc frames needed for wavelength calibration. The

objects under investigation are the quasar candidates (see Table. 5.1), which are at unknown redshifts. The

purpose of this pilot project was to confirm QSO nature of the objects and measure their redshifts.

The data reduction was carried out using the pipeline which reduces SALT RSS data, provide by Dr Matt

Hilton. The data were in the Flexible Image Transport System (FITS) format. All spectroscopic data reduction

are carried out by the pipeline, which include wavelength calibration and sky subtraction (flux calibration was

not performed). The pipeline removes the cosmic rays at the extraction step, therefore the 1D spectra is cosmic

ray free. A summary of the data reduction for long-slit spectroscopy is given below.
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1. Bias-subtraction: The subtraction of the bias level is the first step in the data reduction. This bias level

is introduced onto the CCD chip for ensuring that the chip is working in a linear regime. Such offsets

are subtracted from all the images, by using a bias image, taken without exposing the chip.

2. Flat-fielding: This is a technique used to correct for the bias of the pixel sensitivity due to the intrinsic

performance of the CCDs and the optics. To correct for anomalies in the optical path i.e. such as specs

of dust on the optical surfaces, flat field frames are used. This correction can be done by dividing the

science image by the normalised flat-field frame. In our SALT observations, the flat field image was

obtained through observing uniform light (see Fig. 5.3).

3. Distortion correction: The sky lines have a definite curvature (distortions) along the spatial axis (see

Fig. 5.3). This is due to the different path lengths the light takes through the optics along the slit.

Generally, it is impossible to guide incident light into an instrument without aberration. Effects such as

aberration or distortion in the images are mostly significant and recognizable. The raw spectra seen in

the image invariably show a series of bent spectral features i.e. SALT data also have such artefacts.

4. Wavelength calibration: In this step, we associate the pixel coordinates in the CCD with the absolute

wavelength by comparison with emission data whose absolute wavelengths are generally known. The

Neon arc lamp was used for this purpose.

5.4 Quasar Redshift Measurements

We used a similar idea as Kurtz & Mink (1998), to measure the redshift of quasars by “cross-correlating the

spectra with the Sloan Digital Sky Survey (SDSS) galaxy spectral and QSO templates using the RVSAO/XCSAO

package for image reduction and analysis facility (IRAF)”. RVSAO is a set of programs used to obtain red-

shifts from digital spectra. It operates in the IRAF environment. However, the very important task of the

system is XCSAO, which implements the cross-correlation method. We examined each spectrum individually,

using an initial guess for the redshift based on visual inspection as an input for XCSAO. The 2D spectra is used

as a sanity check to identify that the lines in the 1D spectra are real.

In order to test for the confidence level of each redshift measurement, we used a quality-rating system (Q)

on visual inspection. Q = 3 rating, or Q = 2, were given to quasar candidates exhibiting multiple emission

features or to quasars exhibiting two strongly detected emission features. Quasars showing two emission

features, but exhibiting both faint and strong emission feature were given Q = 1; and quasars with tentative z

values i.e. these were quasars showing only one faint emission line, were given Q = 0.

Through these steps we successfully measured redshifts of 12 out of 16 targets. Of these 12, 8 are at z> 1.5

i.e. 67 % efficiency of detection z > 1.5 quasars. The results are summarized in Table. 5.2 and the spectrum

of each object is shown in Fig. 5.4, 5.7 etc. The SALT RSS spectra corresponds to the black lines in Fig. 5.4,
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blue lines are the sky lines, and the red lines show the best match redshifted SDSS spectra in each case. The

emission line(s) used to determine the redshifts are also identified.

Table 5.2: Spectroscopic redshifts of quasars measured using SALT RSS. Q is the redshift quality flag.

Target Redshift Q

J040015-142328 1.138 2

J093919-173135 ... .....

J095231-245351 2.390 3

J101313-254654 2.969 3

J111820-305458 2.132 3

J115222-270126 2.698 3

J115450-281251 0.896 1

J121128-351002 ... ....

J123409-332638 ... ....

J124553-161645 1.045 0

J125215-310351 1.939 2

J125443-383357 2.777 3

J130508-285041 ... ...

J131736-134532 1.267 2

J141327-342235 2.553 3

J143708-294718 2.111 3

(a) (b)

Figure 5.4: (a) The zem = 1.138 quasar J040015-142328, showing C II and Mg II emission lines. (b) The

zem = 2.390 quasar J095231-245351, showing Si II, Si IV, C IV and C III emission lines.
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(a) (b)

Figure 5.5: (a) The zem = 2.969 quasar J101313-254654, showing Lyman-a , O I and C IV broad emission

lines. (b) The zem = 2.132 quasar J111820-305458, showing Si IV, C IV and C III emission lines.

(a) (b)

Figure 5.6: (a) The zem = 2.698 quasar J115222-270126, showing Lyman-a , N V, Si II, O IV, C IV and C III

emission lines. (b) The zem = 0.896 quasar J115450-281251, showing Mg II and O II emission lines.
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(a) (b)

Figure 5.7: (a) The zem = 1.045 quasar J124553-161645, showing Mg II emission line. (b) The zem = 1.939

quasar J125215-310351, showing C IV, C II and C III emission lines.

(a) (b)

Figure 5.8: (a) The zem = 1.267 quasar J131736-134532, showing a broad C III and Mg II emission lines. (b)

The zem = 2.553 quasar J141327-342235, showing Lyman-a , O I, Si IV and C IV emission lines.
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(a) (b)

Figure 5.9: (a) The zem = 2.111 quasar J143708-294718, showing Si IV, C IV and C III emission lines. (b)

The zem = 2.777 quasar J125443-383357, showing Lyman-a , C II, Si IV, C IV and C III emission lines.

We were not able to measure redshifts for all 16 candidates observed. In 2 cases, namely J123409-3326383

and J121128-351002, the data were unusable as the observing conditions did not meet the Principal Inves-

tigator (PI) constraints and the telescope had technical problems (e.g. issues such as telescope/instrument

problems, incorrect observational set-ups, standard stars with low counts). In the fourth i.e. case of J093919-

173135, the spectrum of the target source is overwhelmed by the nearby bright star leading to non-detection.

For J130508-285041, the quasar trace was not detectable so the redshift cannot be measured. In Fig. 5.10, we

show two long-slit 2D spectra: the one on the left, shows the case of J093919-173135. On the right panel, we

show a typical example of successful observations.

(a) (b)

Figure 5.10: (a) On the left panel, the target object is undetectable due to bright nearby star. The sky emission

and the reference star have completely overwhelm the spectrum of the object of interest. (b) On the right panel,

we show an example of long-slit 2D spectra of a faint QSO. Here, we notice that there is a faint horizontal

white line corresponding to the target source (see text for details).

Despite all this, it is apparent that our target selection strategy is generally successful. We plan on con-

tinuing in the field and in the upcoming SALT semesters, we will observe a much larger sample of candidate
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RLQs to gather targets for MALS and address various issues related to AGNs.
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CHAPTER 6

Future Prospects

The existence of red (i.e. dust-obscured) quasars are predicted in both the orientation-based AGN unification

models and the evolutionary scenarios where the obscured phase represents a transitional phase between the

merger-induced starburst stage and the unobscured UV-bright quasar stage. In addition, the reddening can

also be caused by dusty gas associated with an intervening galaxy. While the existence of red quasars is not

contested, the fraction of such quasars missing from the existing optically selected samples is highly uncertain,

with estimates ranging from 10% to 50%.

Systematic searches of red quasars are necessary to (i) quantify the time spent by quasars in the obscured

phase, (ii) establish link between the galaxy evolution and black hole growth, (iii) distinguish between various

models of quasar outflows, (iv) estimate the quasar contribution to UV to gamma-ray backgrounds and, finally,

(v) uncover the population of dusty (AV > 1) intervening absorbers missed in optical surveys. This last point

is crucial to unravel the evolution of cold atomic and molecular gas in galaxies and its links with the global

star-formation activity.

The pilot SALT program to identify IR selected quasars presented in this thesis, paves the way for carrying

out an ambitious program using SALT and various other optical telescopes to build the first, large, purely

infrared-selected sample of radio-loud quasars (RLQs) at z > 1.5, that is well-suited for both: (i) studying

the above mentioned AGN related issues at the main epoch of galaxy formation and AGN evolution, and (ii)

follow-up in radio, which is also unaffected by the dust extinction, to search for intervening H I 21-cm and

OH absorption lines using MeerKAT radio telescope (i.e. the MeerKAT Absorption Line Survey (MALS)) to

constrain the evolution of cold ISM in galaxies at z< 1.5. Personally, the experience gained through the CASA

based data reduction of datasets from GMRT and VLA will be valuable for developing pipeline for MeerKAT

data analysis and carrying out early science with MeerKAT, and eventually make substantial contributions to

MALS, and building a comprehensive picture of ISM.
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