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ABSTRACT 

The aim of this project was to identify and assess all possible solutions to reduce carbon dioxide 

(CO2) emissions from coal power plants in South Africa, identify the most likely solution to be 

implemented industrially in the short to mid-term future, and contribute towards its 

development through lab measurement and further research.  

This thesis thus contains a substantial literature review conducted on the current state of CO2 

emissions in South Africa, conventional and novel coal power plant processes, modes of CO2 

capture, criteria regarding the implementation of CO2 capture techniques, and the various CO2 

capture techniques currently investigated with varying levels of development.  

The study found gas absorption using solvents to be the most likely mid-term CO2 capture 

technique to reach industrial implementation. However, certain challenges still need to be 

overcome, particularly due to numerous limitations of current solvents, to make this technique 

feasible for CO2 capture.  

In an attempt to overcome the main challenge of solvent absorption capacity, it was decided to 

investigate the use of ionic liquids for CO2 absorption. An in-depth review of ionic liquids was 

conducted, as well as a review of measurement techniques and modelling of gas absorption in 

alkanolamine and ionic liquid solvents.  

Four ionic liquids, namely methyl trioctyl ammonium bis(trifluoromethylsulfonyl)imide 

[MOA][Tf2N], 1-butyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide [Bmim][Tf2N], 

1-butyl-3-methyl imidazolium tetrafluoroborate [Bmim][BF4],  and 1-butyl-3-methyl 

imidazolium methyl sulphate [Bmim][MeSO4] were tested for CO2 and O2 absorption by 

measuring equilibrium Pressure-Temperature-Liquid mole fraction (P-T-x) data. Measurements 

were conducted using an Intelligent Gravimetric Analyser (IGA-01) at 303.15, 313.15, and 

323.15 K. CO2 partial pressures of 0.05 to 1.5 MPa and O2 partial pressures of 0.05 to 0.7 MPa 

were investigated. Furthermore, density and refractive index measurements were conducted for 

all solvents. The ionic liquids were benchmarked against other ionic liquids and conventional 

alkanolamine solvents for CO2 absorption capacity and selectivity.  

The study found that ionic liquids achieved higher CO2 absorption capacity at high pressure 

than conventional alkanolamine solvents, but very low absorption capacity at low pressure. Of 

the ionic liquids studied, [Bmim][BF4] and [Bmim][Tf2N] achieved high CO2 absorption and 

high CO2 selectivity over O2. Therefore, these two ionic liquids were selected to be combined 

with conventional alkanolamine solvents, namely Monoethanolamine (MEA), Diethanolamine 

(DEA), and Methyl Diethanolamine (MDEA), in order to form hybrid solvents. 
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P-T-x data was obtained for CO2 absorption in alkanolamine-ionic liquid hybrid solvents 

containing various compositions of the above alkanolamines and ionic liquids, by gravimetric 

analysis, under temperature and pressure conditions as described above. CO2 absorption in the 

hybrid solvents was analysed, compared, and benchmarked against absorption in pure ionic 

liquids and conventional alkanolamine solvents.  

Absorption data for pure ionic liquid systems was modelled using the Redlich-Kwong equation 

of state (RK-EOS), while absorption in hybrid solvents was modelled using the RK-EOS for the 

ionic liquid components and the Posey-Tapperson-Rochelle model for the alkanolamine 

components of each hybrid solvent. All modelling was programmed using Matlab
TM

 R2012B 

engineering programming software. 

Further composition analysis was intended using Fourier transform infrared (FTIR) 

spectroscopy. The design and development of this apparatus is described herein. The apparatus 

possessed limitations in achieving the desired measurements. Recommendations are described 

for future modifications to make the apparatus more applicable for the systems in this work.  

The most important conclusion was that the hybrid solvents successfully achieved higher 

equilibrium CO2 absorption than conventional alkanolamine solvents and pure ionic liquids, at 

low pressure. Absorption increased with higher temperature, lower pressure, and alkanolamine 

concentrations lower than 40wt%. Modelling of CO2 absorption in hybrid solvents using the 

above stated model proved inadequate, with deviations nearly as high as 10% of measured data. 

A process of CO2 capture was simulated using the engineering software Aspen Plus V8.0. CO2 

absorption in the hybrid solvent containing MEA:DEA:[Bmim][BF4] at 31.8:12.1:56.1 wt% was 

benchmarked against CO2 absorption in a conventional alkanolamine solvent. The simulation 

revealed a significant improvement in CO2 absorption using the hybrid solvent at low system 

pressure. However CO2 selectivity and solvent recycle heat duty results were undesirable. 

Finally, recommendations are listed for future research endeavours, simulation and apparatus 

development. 
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CHAPTER 1: INTRODUCTION 

The amount of carbon dioxide (CO2) emitted into the atmosphere by various industries is of 

great concern due to the global warming effects of CO2, and industries worldwide are faced with 

increasing pressure by environmentalists, and the public at large, to reduce their emissions of 

the gas. In 2008, nearly 30000 mega tonnes (Mt) of CO2 was emitted into the atmosphere (IEA, 

2010). This is nearly a 100% increase since 1971. From 1750 to 2011, 365 Gt of CO2 were 

emitted into the atmosphere by fossil fuel and cement industries (IPCC, 2013).The increasing 

worldwide demand for relatively cheap electricity and the advances in coal-to-liquids 

technology has resulted in 42.9% of CO2 emissions stemming from coal industries, with oil and 

gas industries accounting for 36.8% and 19.9% of CO2 emissions respectively (IEA, 2010).  

High CO2 emissions are of great concern due to the fact that CO2 is a greenhouse gas. 

Greenhouse gases trap heat in the earth’s atmosphere, resulting in an overall global surface 

temperature increase known as global warming. The CO2 concentration in the atmosphere at the 

beginning of 2013 was 391 ppm (IPCC, 2013).  

Climate change, including global warming and cooling, is an inevitable natural process that has 

occurred regardless of human activity. However, since the industrial revolution, fossil fuel 

usage and resultant industrial CO2 emissions have collectively contributed towards an increased 

rate and extent of climate change. This poses a threat to many forms of life, including people, 

who may not be able to adapt towards the changes caused by rapid climate change.  

An increased global temperature caused by climate change results in an increased rate of 

melting of ice at freshwater mountain sources, resulting in overflowing rivers that may have the 

potential to cause significant flooding. This would also result in the depletion of drinking water 

at the source in the future. The melting of polar ice caps, at a current rate of 275 Gt ice per year 

(IPCC, 2013),  results in changes in ocean salinity which affects marine life, and rising sea 

levels of 3.2 mm/year (IPCC, 2013) which threaten low lying countries and coastal 

communities. These potentially devastating implications have resulted in much focus on 

reducing greenhouse gas emissions and hence preventing or at least lowering the rate of global 

temperature increase. 

South Africa contains abundant coal reserves. It is estimated that 53% of coal mined in South 

Africa is used to generate electricity, while 36% of electricity produced worldwide stems from 

the burning of coal (Eskom, 2011). It has also been determined that 78 to 83% of CO2 emissions 

stem from the burning of fossil fuels to generate electricity (Figueroa et al., 2008). While the 
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industry is beneficial in providing relatively cost effective electricity, substantial CO2 emissions 

occur. 

On the international scale, South Africa mines 224 million tonnes of coal annually and 25% is 

exported, making South Africa the third largest coal exporting country. It is estimated that 

South African coal reserves amount to 53 billion tonnes, enough to meet the country’s 

electricity needs for nearly 200 years to come (Eskom, 2011).   

The primary electricity utility in South Africa is Eskom Ltd.. While the company harnesses 

energy from a diverse range of sources, nearly 77% of its electricity production stems from the 

burning of coal at its 14 coal-fired power plants (Eskom, 2011). South Africa enjoys cost 

effective electricity due to its abundant coal reserves, but coal energy also results in the country 

emitting substantial amounts of CO2.  

Eskom’s coal operations have made it the second highest CO2-emitting company in the world 

after Huaneng Power International, a Chinese power company. Due to coal power, South 

Africa’s power sector has become the ninth highest CO2-emitting sector in the world. South 

Africa is also the highest CO2 emitter in Africa (CARMA, 2010), with higher emissions than the 

next nine countries combined (CARMA, 2010). Refer to Table 1-1 for an indication of South 

Africa’s power sector in comparison to other countries.  

Table 1-1: The 10 largest CO2 emitting power sectors in the world by country (CARMA, 2010) 

Country 
CO2 emitted 

(Mega 
Tonnes) 

Energy 
produced 

(GWh)  

Fossil fuel 
power (%)  

Hydroelectric 
power (%)  

Nuclear 
power (%)  

Other 
Renewable 
power (%) 

1 China 3120 3260000 82.51 14.51 2.02 0.12 

2 United 
States 

2820 4190000 68.79 6.57 18.4 4.39 

3 India 638 719000 76.3 16 2.41 1.6 

4 Russia 478 896000 63.38 19.66 15.65 0.63 

5 Germany 429 636000 62.11 3.05 24.36 7.46 

6 Japan 414 1030000 33.23 7.57 27.74 2.75 

7 United 
Kingdom 

227 370000 71.35 1.33 20.34 5.28 

8 Australia 224 228000 90.04 6.82 0 1.53 

9 South 
Africa 

218 215000 93.38 0.42 5.68 0.2 

10 South 
Korea 

192 392000 44.29 1.24 35.57 0.11 
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Seven of Eskom’s power plants are among the top 30 CO2-emitting power plants in the world. 

These include Kendal in Witbank (28-million tons),  Majuba in Volksrust (26.5-million tons), 

Matimba in Ellisras (25.5-million tons), Lethabo in Viljoensdrift (23.3-million tons), Tutuka in 

Standerton (22.8-million tons),  Duvha in Witbank (22.4-million tons), and Matla in Bethal 

(22.4-million tons) (CARMA, 2007). While CARMA (2010) contains relatively accurate 

estimates of CO2 emissions in South Africa for the year 2010, the 2011 Annual Report of South 

Africa’s primary electricity utility reported that 127.4 Mt of coal was burned in the past year, 

producing an estimated 230.3 Mt CO2 (Eskom, 2011). South Africa’s percentage of fossil fuel-

derived power shown in Table 1-1 includes coal, gas, and minor oil operations. 

In order to establish a global effort towards the research and reduction of CO2 emissions, many 

governments are considering implementing CO2 emissions taxes and South Africa is no 

exception. National Treasury (2010) reported that discussions have begun on the 

implementation of a CO2 emissions tax. Current cost proposals range between R75-R200/tonne 

CO2, with the most current figure settled on being R120/tonne CO2 (National Treasury, 2013).   

Considering the amount of CO2 emitted through the use of coal power in South Africa, this 

would ultimately result in significant increases in electricity tariffs and the overall cost of living 

in South Africa. Eskom Ltd. would hence require feasible solutions to reduce its CO2 emissions 

and maintain inexpensive electricity production. The overall aim is to produce inexpensive 

electricity in an environmentally friendly manner in an attempt to reduce the rate of climate 

change. 

 

Figure 1-1: Main CO2 Emission Point Sources in South Africa (edited from Surridge, 2005) 
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Refer to Figure 1-1. Most CO2 emission sources in South Africa are situated in Mpumalanga, 

Gauteng and Free State regions. The map includes coal power plants, coal-to-liquids (CTL) 

industries, gas-to-liquids (GTL) industries, oil refining, and steel processes.   

A promising mid-term solution to reducing CO2 emissions and reducing the rate of climate 

change is a strategy called Carbon Capture and Storage (CCS). This involves capturing CO2 

from CO2-emitting industries, compressing it, transporting it to a suitable sequestration site, and 

storing it underground. Refer to Figure 1-2 below: 

 

Figure 1-2: Illustration of Carbon Capture and Storage (CCS) (IPCC, 2005) 

Well developed and feasible techniques of CO2 compression, transportation, and injection exist 

currently (ADEME, 2007). However, an industrially feasible technique of CO2 capture from 

industries remains to be found. CO2 capture was found to be the most energy intensive and 

expensive component of the strategy of CCS. Significant research is thus being conducted 

worldwide to develop feasible solutions for CO2 capture. 

There are two main categories of approach towards finding these solutions. One method of 

approach is to modify processes to operate more efficiently and thus emit less CO2. This 

approach provides solutions that are unique to the particular industry that is under investigation 

for modification. The second approach is to develop processes specifically for the separation 

and capture of CO2. This includes the development of retrofit technology for application 

downstream of CO2-emitting processes. While this solution is often unique to specific industrial 

processes, it provides greater possibility for use in a broader range of industries. 

This study briefly investigated all CO2 capture techniques that may be relevant to coal power 

plants. Coal power plant processes and constraints are identified and explained. There are two 
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main types of processes for coal power plants. These processes are pulverised coal (PC) power 

plants and integrated gasification combined cycle (IGCC) power plants. 

The location in the power plant process where CO2 capture can be implemented varies. Three 

main modes of CO2 capture have been identified: post-combustion capture, pre-combustion 

capture, and oxy-fuel-combustion capture. These modes are explained in this study.  

Focus was then made on CO2 capture. Various concerns regarding the implementation of CO2 

capture at coal power plants were summarised and explained. There are many competing 

strategies of CO2 capture. CO2 capture techniques are designed to make use of the unique 

properties of CO2, and account for the composition, temperature, and pressure of the flue gas to 

be treated. A technique that proves feasible for one industry may not necessarily be well suited 

to other industrial flue gas conditions. 

This thesis addresses nine main CO2 capture techniques, including gas absorption using 

solvents, CO2 capture using membranes, cryogenic separation, hydrate formation, and sorbent 

usage, as well as newly emerging CO2 capture techniques such as enzyme-based systems, metal 

organic frameworks, integrated gasification steam cycle (IGSC), and chemical looping 

combustion.  

It was deduced by literature review that gas absorption using solvents had many advantages 

over other capture techniques. The main distinguishing advantages of the technique included the 

high level of development associated with industrial gas absorption, and the high potential for 

feasible CO2 capture due to the number of possible solvents that may prove efficient for 

continuous industrial CO2 absorption and desorption.  

The most popular solvents studied for CO2 capture are alkanolamines and carbonate-based 

solvents. These solvents result in high CO2 absorption rate and capacity. However, they are also 

highly corrosive and can only be used if diluted with water. Water increases the heat capacity of 

the solvent, resulting in high amounts of energy being required for desorption. Alternative 

solvents need to be found that can either replace alkanolamine solvents, or be blended with 

alkanolamines to reduce desorption energy. This study focuses on the use of ionic liquids as a 

promising replacement of conventional alkanolamine solvents for gas absorption.  

Ionic liquids are liquids which are composed entirely of ions. Cations and anions are present, 

while the ionic liquid as a whole remains a neutral liquid. There has been growing interest in the 

use of ionic liquids, either in their pure state or blended with other solvents such as 

alkanolamines, to capture CO2, as shown in the work of Arshad (2009). Introductory 

information on ionic liquids was provided in this thesis. Ionic liquid synthesis, advantages and 
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disadvantages over other possible solvents, and types of ionic liquids are then presented. A 

review of the methods of analysis of ionic liquids and the resultant trends found, were also 

conducted. This included a review of equipment for absorption measurements and modelling of 

absorption in ionic liquids and alkanolamines. 

This research focussed thereafter on hybrid solvents which combined ionic liquids with 

alkanolamines. CO2 and O2 absorption measurements were conducted by gravimetric analysis 

on four pure ionic liquids. The two most CO2-selective ionic liquids were combined with 

alkanolamine solvents to create hybrid solvents. The alkanolamines used were 

Monoethanolamine (MEA), Diethanolamine (DEA), and Methyl Diethanolamine (MDEA), and 

they were combined with [Bmim][BF4] and [Bmim][Tf2N] ionic liquids. The measurements and 

modelling of gas absorption in ionic liquids and hybrid solvents is presented herein. Finally, the 

results of the measurements and modelling of CO2 absorption in hybrid solvents is discussed 

and benchmarked against conventional solvents, and a simulation of CO2 capture using a 

promising hybrid solvent was discussed and benchmarked against a conventional alkanolamine 

solvent using the engineering software Aspen Plus V. 8.0.  

Recommendations for further research are also included.  
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CHAPTER 2: LITERATURE REVIEW 

As mentioned in Chapter 1, many CO2 capture techniques are currently under investigation 

throughout the world, to suite various industries. This project focused on CO2 capture from coal 

power plants.  

This chapter of the thesis consists of the theory of carbon dioxide capture from coal power 

plants. The chapter begins with an understanding of coal power plant operation. Two main types 

of power plant processes, namely the pulverised coal (PC) and integrated gasification combined 

cycle (IGCC) power plants, are explained and compared mainly on power plant efficiency and 

ease of CO2 capture integration.  

CO2 capture modes are then introduced. These modes refer to the method of integration of CO2 

capture. There are three main modes of capture, namely post-combustion, pre-combustion, and 

oxy-fuel combustion.  

Thereafter, the main overall criteria regarding CO2 capture are explained. The main concerns 

found are capital expenditure, area constraints, disposable materials for CO2 capture processes, 

solvent and other material properties, energy requirements, capture complexity, the level of 

development of CO2 capture techniques, and the overall cost of applying the capture technique. 

These concerns are explained in detail. 

A review of CO2 capture techniques follows. This includes gas absorption using solvents, CO2 

capture using membranes, cryogenic separation, hydrate formation, and sorbent usage. Newly 

emerging CO2 capture techniques are also explained, such as enzyme-based systems, metal 

organic frameworks, integrated gasification steam cycle (IGSC), and chemical looping 

combustion. All techniques are reviewed on their procedure, advantages, disadvantages, current 

challenges to implementation and significant studies made on the technique including pilot plant 

testing. 

The review found that gas absorption using solvents was the most promising CO2 technique that 

could be implemented in the near future. It was decided to investigate this technique further and 

attempt to contribute towards its implementation. The review found many challenges that need 

to be overcome for the use of solvents to be feasible for CO2 capture. In order to overcome the 

disadvantages associated with conventional alkanolamine solvents, it was proposed to combine 

conventional solvents with ionic liquids.   
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A detail review of the study of ionic liquids for CO2 absorption was conducted. This included 

analysis of CO2 Henry’s Law constants, CO2 solubility, CO2 mole fraction, enthalpy and 

entropy of absorption of CO2 in ionic liquids. A review of ionic liquid density, viscosity and 

heat capacity was also conducted.  

Finally, the chapter ends with establishing various trends and relationships between CO2 

absorption and the various properties of ionic liquids and system conditions. 

2.1 Coal power plant operation 

In order to find solutions to reducing CO2 emissions at coal power plants, it is imperative that a 

complete understanding of coal power plant operation is realised. Eskom Ltd., South Africa’s 

primary electricity utility, possesses 14 coal-fired power plants, all of which need to reduce CO2 

emissions.  

There are currently two main types of coal power plants. The first and most abundant type of 

coal power plant is the pulverised coal (PC) power plant. The second and much newer type 

which is gaining interest in many countries is the Integrated Gasification Combined Cycle 

(IGCC) power plant.  

This section discusses the operation of these two power plants.  

2.1.1 Pulverised coal power plants 

All of South Africa’s coal power plants were found to be pulverised coal (PC) power plants. 

Figure 2-1 below illustrates the PC power plants process.  
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Figure 2-1: Pulverised Coal (PC) Power Plant (Eskom, 2011). 1- Coal heap; 2- Boilers; 3- 

Superheated steam in turbine; 4- Generator rotor; 5- Transmission lines; 6- Condensed H2O; 7- 

Cooling tower; 8- Stack  

Heaped coal is transported via conveyor belts to a pulveriser, which grinds the coal to 50 μm 

diameter. The coal is then transferred to a boiler via hot air blasts. The coal is burned in the 

boiler and the resulting heat energy that is generated is used to heat tubes that are filled with 

water. These tubes can be numerous kilometres long and filled with water (Eskom, 2011). The 

heat from the burning coal is enough to convert the water in the tubes into superheated steam at 

high pressure.  

The steam moves to a turbine and is used to turn the turbine blades, spinning the turbine. The 

turbine shaft is linked to a generator rotor. The generator consists of an electromagnet which 

spins inside a large copper coil (Eskom, 2011). This generates electricity. Electricity flows 

through transmission lines and transformers to reach consumers at required voltages.  

The steam that drove the turbines is cooled and condensed in cooling towers, enabling it to be 

pumped as water and recycled to the boilers for reheating.  

The gases that are released during coal combustion are filtered using bag filters to remove ash. 

The efficiency is claimed to be at 99.8% ash removed (Eskom, 2011). The remaining gases are 

emitted through the stack as flue gas.  
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Depending on the quality of the coal (particularly sulphurous and nitrogenous content), 

emissions may contain harmful gases such as SO2, H2S and NOX. If this is the case, then 

desulphurisation and denitrification processes are also installed to treat ash-free flue gas and 

then emit it into the atmosphere via a stack.  

Brennecke and Gurkan (2010) and McColl (2011) noted that the typical composition of flue gas 

emitted from coal-fired power plants is 12-13 vol% CO2, 68-77 vol% N2, 6.2-16 vol% water, 3-

4.4 vol% O2, and lower concentrations of other components, 200-420 ppm SO2, 60-420 ppm 

NOX, 50 ppm CO, and 60 ppm hydrocarbons. The flue gas is typically emitted at 0.1-0.17 MPa  

and temperatures of 363.15 to 412.15 K (NETL, 2010, Eskom, 2011, McColl, 2011).  

2.1.2 Integrated gasification combined cycle power plants 

IGCC power plants are relatively new power plant processes which aim to ensure that flue gas 

emission composition and conditions are favourable for efficient CO2 capture. Modifications of 

this process are the subject of ongoing research throughout the world. Figure 2-2 below 

illustrates the basic IGCC process. 

 

Figure 2-2: Integrated Gasification Combined Cycle (IGCC) Power Plant, including CO2 

Capture Unit (Arshad, 2009) 

Air is sent through an air separation unit to obtain oxygen gas (O2) as shown above. Nitrogen 

can be released into the atmosphere in this process, but it is often recovered and recycled in 

cryogenic processes as a cold source. The air separation unit may utilise membrane technology 

or cryogenic separation.  
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O2 at 95 % purity (NETL, 2010) is sent to a gasifier. Coal is sent to the gasifier and burned in 

the presence of nearly pure O2. Coal is partially oxidised to produce syngas, which is a mixture 

of CO, CO2, and H2 (Kanniche and Bouallou, 2007), in the gasifier. The gasifier operates at 3.5-

7.0 MPa and 1255-1644 K. The necessary temperature is maintained using high pressure steam. 

The reactions occurring in the gasifier are (Steeneveldt et al., 2006): 

CxHy + xH2O → xCO + (x+ y/2)H2.....................(R2-1) 

CxHy + (x/2)O2 → xCO + (y/2)H2.......................(R2-2) 

The syngas is treated for particulate removal and is sent to a shift convertor to undergo a water 

gas shift reaction: 

CO + H2O → CO2 + H2 .............................(R2-3)  

(393.15 – 623.15 K; 15 MPa) (Font et al., 2006) 

Steam is added to the convertor as a reactant. A gas mixture of CO2, H2, sulphurous and 

nitrogenous compounds leave the convertor. Although not shown in Figure 2-2, the syngas is 

usually cooled to remove unreacted steam as water. The gas is then treated to remove sulphur 

and sometimes nitrogenous compounds, depending on their concentration.  

The result is a gas mixture containing approximately 50 vol% H2, 40 vol% CO2, 2 vol% CO and 

other trace elements. The gas occurs at 2.7 MPa and 310 K (NETL, 2010). 

At this point in the process, CO2 may be removed using a feasible CO2 capture technique. CO2 

may then be compressed and stored. After CO2 capture, H2 is burned to generate high pressure 

steam which is used to drive turbines and hence produce electricity. The design of the turbine 

system varies, but all are aimed at achieving an efficient system using recyclable steam.  

The electricity generated by the turbine is used to heat steam for the gasifier and shift convertor, 

as well as achieve desired pressure and temperature for the air separation unit and CO2 

compression. The remaining electric energy is used commercially.  

Gielen (2003) has estimated that IGCC power plants with CO2 capture can be 25-40% more cost 

effective than PC power plants. This study took into account the energy required for air 

separation, compression and other energy requirements. The decrease in operating cost is due to 

the fact that the gas mixture to be treated for CO2 capture possesses CO2 in comparatively 

higher concentrations and at higher pressure. Separation is thus easier and compression costs are 

lower.  
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2.1.3 Comparison between PC and IGCC power plants 

The Intergovernmental Panel on Climate Change (IPCC) had summarised emissions, energy 

increases and cost estimates for PC and IGCC power plants. The values are presented in Table 

2-1.      

Table 2-1: Estimated Performance and Cost Comparison between PC and IGCC Power Plants (IPCC, 2005) 

Performance and cost measures 

PC Plant IGCC Plant 

Range           
Low-High 

Rep. 
Value 

Range        
Low-High 

Rep. 
Value 

Emission rate without capture (kg CO2/kWh)  0.736 – 0.811 0.762 0.682 – 0.846 0.773 

Emission rate with capture (kg CO2/kWh)       0.092 – 0.145 0.112 0.065 – 0.152 0.108 

Percentage CO2 reduction per kWh (%)       81 – 88 85 81 – 91 86 

Plant efficiency with capture, LHV basis (% )       30 – 35 33 31 – 40 35 

Capture energy requirement (% increase input/kWh) 24 – 40 31 14 – 25 19 

Total capital requirement without capture (US$/kW)  1161 – 1486 1286  1169 – 1565 1326 

Total capital requirement with capture (US$/kW)  1894 – 2578 2096  1414 – 2270 1825 

Percent increase in capital cost with capture (%) 44 – 74 63 19 – 66 37 

COE* without capture (US$/kWh)    0.043 – 0.052 0.046 0.041 – 0.061 0.047 

COE with capture only (US$/kWh) 0.062 – 0.086 0.073 0.054 – 0.079 0.062 

Increase in COE with capture (US$/kWh) 0.018 – 0.034 0.027 0.009 – 0.022 0.016 

Percent increase in COE with capture (%) 42 – 66 57  20 – 55 33 

Cost of net CO2 captured (US$/tonne CO2) 29 – 51 41 13 – 37 23 

*Cost of electricity 

There are many important conclusions that can be made from Table 2-1. Firstly, it is indicated 

that IGCC power plants without CO2 capture may result in higher CO2 emissions than PC power 

plants. However, if CO2 capture is integrated into IGCC, less CO2 emissions occur than for PC 

power plants. The IGCC plant would also be more efficient, require less capture energy in 

relation to plant energy output and result in a lower cost of electricity (COE) than PC plants 

with CO2 capture.  

IGCC plants are more expensive to construct than PC plants but if CO2 capture is integrated, 

then IGCC plants require less capital investment overall. This is due to the fact that CO2 capture 

is expensive when integrated with PC plants, since the flue gas to be treated for CO2 capture is 

emitted at low pressure.  

Overall the cost of CO2 captured in terms of US$/tonne CO2, is lower for IGCC plants than PC 

plants.      

The International Energy Agency (IEA) had tabulated results comparing standard IGCC plants 

with CO2 capture integrated thereafter, to IGCC plants built with CO2 capture. The results prove 
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that it is not beneficial to set up an IGCC plant without CO2 capture and then try to add a CO2 

capture process. Designing an IGCC plant with CO2 capture from the beginning can potentially 

provide higher power, higher CO2 capture and lower capture costs, than if CO2 capture was 

added to an already existing IGCC plant. The resultant cost of electricity is also lower.   

Table 2-2: Comparison of IGCC Plants with and without CO2 Capture (IEA,2007) 

Performance 
Standard IGCC 

Plant (no capture) 

Standard IGCC Plant 
Retrofitted for CO2 

Capture  

Pre-investment IGCC 
Plant Retrofitted for 

CO2 Capture 

Net power, kW     509.28 424.83 448.85 

Efficiency, %HHV   35.4 29.5 29.5 

Heat rate, Btu/kWh HHV 9.653 11.569 11.55 

CO2 captured, kg/hr     N/A 380.73 401.60 

Cost       

Total plant cost, $k     589.896 678.196 682.953 

Total plant cost, $/kW 1.158 1.596 1.522 

Fixed operating, $k/y    10.806 11.56 11.586 

Variable operating, $k/y    13.837 14.878 15.173 

Fuel @$1.35/MMBtu    51.157 51.144 53.947 

COE, $/MW.ha     45.74 59.32 57.23 
*Cost of electricity 

There were some conflicting reports stated by IEA (2007), which suggested a higher CO2 

capture efficiency in PC power plants and a higher net plant efficiency of 35 % in PC plants, as 

opposed to 31% in IGCC plants. IEA (2004) estimated IGCC plant efficiency to be as high as 

41%. The relatively small inconsistencies prevalent when comparing PC power plants to IGCC 

power plants, is evidence of the uncertainty in emissions, cost, and energy estimates pertaining 

to IGCC processes.  

In terms of CO2 capture and energy penalties, PC power plants suffer a high energy penalty for 

CO2 capture, due to the flue gas being available at undesirable conditions of low CO2 partial 

pressure and high flue gas temperature.  

CO2 capture in IGCC power plants incurs a lower energy penalty since the syngas that needs 

treatment for CO2 capture, occurs at relatively high CO2 partial pressure. However, high 

amounts of energy are needed for air separation to produce O2 for the gasifier. Jones et al. 

(2011) noted that air separation that is required to produce O2 at 95 mol% purity may account 

for 65% of the total auxiliary power and account for 16% of the gross power consumption of the 

plant. This is because the air separation unit (ASU) operates at 4 to 14 atm.  



14 
 
 

Jones et al. (2011) had summarised various studies towards optimising the ASU. Optimisation 

includes finding an ideal operating pressure, efficient integration of air products to the gasifier, 

gas and liquid handling, phase change behaviour of O2 (O2 may be produced as a gas or liquid 

depending on ASU conditions), and optimisation of gas turbine operating pressure.  

In addition to the amounts presented in Table 2-1 and Table 2-2 above, it is important to also 

note that PC power plants are significantly more developed than IGCC power plants, for 

generating electricity worldwide. The integration of post combustion CO2 capture into PC 

power plants is a more feasible short to mid-term solution. Cost estimates are available at 

greater certainty. However, although the IGCC process is not well developed for electricity 

production, Pre-combustion IGCC equipment and unit processes are well developed. 

Steeneveldt et al. (2006) stated that there are over 400 gasifiers in operation worldwide, that are 

used for the ultimate production of residual oils and high value liquid products such as 

petroleum. The IGCC process is a modification of the already well developed coal-to-liquids 

(CTL) process to produce electricity instead of liquid products.  

While most industries see the modification of existing PC plants for CO2 capture as a promising 

mid-term solution, it is becoming increasingly apparent that IGCC power plants are the best 

long term option for new coal power plant construction.   

2.2 CO2 capture modes 

The modes of CO2 capture refers to the location and manner in which CO2 is captured. There 

are three main modes of CO2 capture: post-combustion capture; pre-combustion capture; and 

oxy fuel-combustion capture. It is imperative that these modes be understood, since many 

capture techniques can only be feasibly applied in certain modes.   

2.2.1 Post-combustion capture 

Post-combustion CO2 capture, in the context of coal power plants, refers to the capture of CO2 

after coal combustion.  

Refer to Figure 2-1. In the case of post-combustion capture, a CO2 capture unit would be 

installed after ash handling of the flue gas, and before the stack. The mode is referred to as post-

combustion, because it is the flue gas emanating from the boiler where coal is combusted that is 

being treated for CO2 removal.  

The obvious advantage of post-combustion CO2 capture is that the original process is not 

altered, since capture occurs downstream of coal combustion and other separation processes. 



15 
 
 

Modifications to the original process need not be necessary. A retrofit capture process may be 

installed after ash handling, desulphurisation and denitrification processes. Post-combustion 

capture is also applicable to other coal processes such as IGCC power plants and coal-to-liquids 

(CTL) processes.     

An important disadvantage is that the flue gas that is available for treatment occurs at low 

pressure (often ambient pressure) and low CO2 composition (Dias and Oliveira, 2010). As 

previously mentioned, flue gas emitted during coal combustion contains CO2 at 13 vol%. At 

most, the CO2 composition is 15 vol% (Descamps et al., 2008). The low CO2 composition 

ultimately means that the CO2 partial pressure is less than ambient. It is thus very difficult to 

separate CO2 from flue gas at such conditions. Regardless of most CO2 capture techniques, it is 

often proposed that the technique be applied in a complex multistage process to achieve desired 

CO2 capture. And even once CO2 is captured, there is a significant cost associated with the 

compression of CO2 for transportation and storage.        

2.2.2 Pre-combustion capture 

Pre-combustion CO2 capture involves capturing CO2 before combustion (ie. upstream of 

combustion and turbine processes). In the context of coal power plants, this mode applies only 

to IGCC power plants. Refer to Figure 2-2. CO2 capture occurs after shift conversion and 

sulphur removal. In Figure 2-2, CO2 capture is shown to take place by gas absorption, using an 

absorber and stripping column. Although CO2 capture is occurring after gasification and shift 

conversion, the mode is regarded as pre-combustion capture because CO2 is being captured 

before H2 gas is combusted and used to drive turbines.    

The advantage of this mode is that the flue gas that is available for CO2 capture treatment occurs 

at high pressure (approximately 2.7 MPa) (NETL, 2010). Moreover, CO2 exists at compositions 

exceeding 40 vol%. These conditions are favourable as many CO2 capture techniques are 

efficient only for flue gases with high CO2 partial pressure. High CO2 partial pressure increases 

the driving force for CO2 separation, and results in CO2 being isolated at relatively high 

pressure, reducing compression costs substantially (Dias and Oliveira, 2010). 

The obvious disadvantage is that due to CO2 capture occurring upstream, downstream 

combustion properties and conditions need to be re-evaluated. This is typically done with the 

aid of computer simulations. The change in downstream conditions requires a re-evaluation of 

operational and safety procedures, which may require additional equipment. Another obvious 

barrier to the implementation of pre-combustion capture in coal power plants is the fact that it is 

applicable only to IGCC power plants. There are comparatively few IGCC plants that are 
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presently in operation. The uncertainty and other barriers to implementing IGCC processes 

hence apply to pre-combustion capture as well. As Table 2-1 above shows, IGCC processes 

without CO2 capture are expected to be less efficient than PC power plant processes. This 

further discourages investment in the construction of IGCC plants with pre-combustion CO2 

capture.     

2.2.3 Oxy-fuel combustion capture 

An innovative modification of the PC power plant is oxy-fuel combustion, which involves 

burning coal in nearly pure oxygen. This mode of combustion involves modifying a PC power 

plant process and introducing a specific CO2 capture method in post-combustion mode. Figure 

2-3 provides an illustration of the process. 

 

Figure 2-3: Oxy-fuel Combustion Capture (Arshad, 2009) 

Air is first sent to an air separation unit (ASU), where oxygen is separated from nitrogen and 

other gases. Separation may be done using cryogenic methods. The nitrogen is either emitted 

into the atmosphere or recovered and sold or utilised, while oxygen is used in the boiler. 

Coal is burned in the presence of nearly pure oxygen, generating heat which converts water to 

superheated steam, for use in steam turbines. The burning of coal in the presence of pure 
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oxygen results in a flue gas consisting mainly of CO2 and water vapour. The flue gas is treated 

for ash and trace amounts of sulphurous products, producing a flue gas stream comprising 

exclusively of CO2 and H2O as water vapour.  

The flue gas is then treated for CO2 capture using ammonia scrubbing, cryogenic separation or 

newer methods such as CO2 anti-sublimation explained in Section 2.4.3.  

There are numerous advantages of oxy-fuel combustion. The main advantage is that the flue gas 

available to be treated for CO2 capture is of high CO2 partial pressure (Figueroa et al., 2007 and 

Davison, 2007). Moreover, the flue gas is composed mainly of CO2 and H2O. Aside from 

complete cryogenic separation and CO2 anti-sublimation, even ammonia or NaOH scrubbing or 

partial condensation under recycle can separate these two components. CO2 can be separated 

and made available at high pressure, reducing compression costs. Aside from the benefits in 

terms of CO2 capture, there is an increased possibility of integrating oxy-fuel combustion into 

PC power plants. This is an attractive option compared to constructing entirely new IGCC 

power plants. An ASU may be retrofitted at the beginning of a PC power plant process and CO2 

capture technique retrofitted at the end. Davison (2007) estimated oxy-fuel combustion to result 

in lower CO2 emissions than IGCC processes. 

There are some disadvantages however. Coal burns at a high flaming temperature in the 

presence of pure oxygen, which puts much strain on the material of construction (Arshad, 

2009). Flue gas is often recycled to enable some control over temperature changes, as shown in 

Figure 2-3. Cooled CO2 streams after CO2 capture may also be used to lower the temperature of 

the boiler to protect boiler material. Feasible air separation is also a challenge. ASUs often 

require high amounts of energy either in terms of refrigeration or high pressure, or both, 

resulting in high operating costs. The flue gas composition also limits the number of possible 

CO2 capture techniques that may be feasibly used. Cryogenic methods for air separation are 

presently accompanied with high energy penalties and hence less commercially available power 

generation. Efforts are made however to improve the efficiency of cryogenic methods, as 

explained in Section 2.4.3.     

2.3 Criteria regarding the introduction of CO2 capture techniques in coal power 

plants  

In order to identify a feasible solution for CO2 capture at coal power plants, various constraints 

needed to be identified. Thereafter, a CO2 capture technique could be judged on its applicability 

based on these constraints. Davison (2006), GPA (2004), and Osman (2011) have summarised a 
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few factors that affect the implementation of CO2 capture, not only in coal power plants but in 

industry in general. 

2.3.1 Capital expenditure 

The immediate factor of concern for any company to introduce CO2 capture is the initial capital 

investment that is required for the CO2 capture process. When creating a new process or 

applying radical modifications to an existing process to achieve greater efficiency and 

inherently less CO2 emissions, the capital expenditure is often comparatively high and is less 

likely to be accurately estimated because new downstream conditions may be created. 

Moreover, while energy requirements in some sections of the new process may be lowered, new 

energy requirements may emerge in other sections.  

On the other hand, applying retrofit technologies downstream of an existing process offer 

potentially lower capital expenditure, greater accuracy and certainty of capital cost predictions, 

better energy requirement predictions and stream conditions.  

Capital expenditure can also be justified depending on the expected operating expenditure that 

would result once all new modifications are in operation. If the operating expenditure, energy 

requirements, and stream results are expected to be promising, then it would encourage capital 

investment.  

2.3.2 Area constraints 

The area available for process modification or retrofit introduction is of inescapable concern. 

CO2 capture technologies can only be safely incorporated into a process if there is enough space 

available to accommodate the additional equipment required. If there is not enough space, then 

the plant faces serious concerns and may have to scale down to accommodate CO2 capture and 

keep within emissions regulations, or alternatively close and relocate to larger premises.  

The application of retrofit technology requires space that is more accurately predictable. If an 

existing coal power plant has abundant free area, then retrofit CO2 capture technology may be a 

better option to pursue. But if there is not enough space, then radical process modification, or 

decommissioning of the old process to build a new process, would be two options aside from 

relocating. There is however, comparatively higher uncertainty in terms of cost, process design 

and equipment setup associated with process modifications and new process development, as 

previously mentioned.    
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2.3.3 The cost of disposable components of CO2 capture technologies 

Some CO2 capture technologies involve the use of solvents, membranes, sorbents, catalysts, and 

other additives to increase efficiency. The cost of these components can affect the feasibility of 

CO2 capture, particularly if such components are not regenerable and have to be replaced or 

replenished often. Some ionic liquid solvents, zeolites and porous membranes are also of high 

cost.  

Feasibility is greatly increased and costs are justified if such components can be regenerated and 

recycled over a substantial number of times.  

2.3.4 The properties of solvents and other components 

The properties of components affect the operating efficiency and cost. Solvents that degrade 

easily upon absorption or under high temperature make the CO2 capture process unsustainable. 

Ionic liquid solvents have the problem of being of high viscosity generally, which increases 

circulation costs. Alkanolamine solvents are corrosive and have to be diluted with H2O, 

increasing energy costs.  

Many solid sorbents suffer low attrition resistance, hindering their use. Membrane stability 

under high pressure, as well as porosity and permeability influence its performance as a CO2 

separating unit.  

Flammability and toxicity of components also introduce safety concerns under continuous 

operation.     

2.3.5 Energy requirements of a capture process 

All capture processes require energy in the form of heat or refrigeration, as well as pressure and 

circulation. Capture processes also specifically require energy for the compression of CO2 after 

capture for storage and transportation. The amount of energy required forms a large portion of 

operating costs. Heat energy is typically applied using superheated steam. High energy 

requirements thus also translate into high water usage.  

In the case of preserving an existing process and adding a retrofit CO2 capture technology, the 

energy requirement of the process increases overall. The high increase in energy requirements is 

one of the main reasons why CO2 capture has not been implemented on an industrial scale yet 

(IPCC, 2005). Pinch analysis and other energy integration methods to minimise energy costs, 

are in important concern in CO2 capture pilot plant study (VNS, 2008 and Knudsen et al., 2008). 
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Modifying a process or replacing it with a new process that is more efficient and 

environmentally friendly, results in a lower energy requirement overall, lowering operating 

costs. This can only be realised if the high capital investment of new processes and process 

modifications can be overcome.      

2.3.6 The complexity of CO2 capture techniques 

Complex techniques generally result in higher investment costs, higher energy usage, larger 

space, high maintenance costs, and high probability of malfunction. Depending on the mode of 

CO2 capture, there may also be substantial changes to downstream conditions and efficiency, 

particularly in the case of pre-combustion capture.  

2.3.7 Level of development of capture techniques 

There are many techniques under evaluation as possible candidates for feasible CO2 capture. 

Some are highly developed techniques that are already in use in other processes for the capture 

of other gases. Other techniques are new, having reached only pilot plant or lab stages of 

development.  

A low level of development of capture techniques poses a hindrance to commercialisation in the 

near future. While many CO2 capture techniques seem to be successful on a lab scale, there is 

much uncertainty associated with implementing a technique on a commercial scale (NETL, 

2010). This is because of the associated low certainty of estimates such as capital and operating 

costs, safety aspects and maintenance costs required for commercial operation.  New, highly 

complex processes and process modifications also possess substantial doubt in cost estimates 

and thus the success of the venture, deterring investors.  

2.3.8 Overall cost of applying the capture technique 

In light of the above factors, the overall operating cost is ultimately the deciding factor as to 

whether the CO2 capture technique is feasible or not. High energy penalties, high costs of 

solvents or other components, and high maintenance costs reduce feasibility substantially, 

making CO2 reduction an expensive process. High safety measures also increase costs due to the 

extra precaution and monitoring by extra personnel required. In the case of power plants, high 

energy penalty for CO2 capture will substantially reduce the amount of power that the plant can 

produce for commercial use.    

In the case of other industries, high operating costs of CO2 capture result in more expensive 

product, which makes a company less competitive. 
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All of the above factors need to be addressed and optimised to ensure feasible CO2 capture. 

2.4 CO2 capture techniques 

The various CO2 capture techniques that are currently being studied worldwide are explained in 

this section. This includes a theoretical explanation of each technique, its level of development, 

advantages, disadvantages, and barriers to implementation of these techniques. 

2.4.1 Gas absorption using solvents 

The use of solvents for gas separation and recovery is a mature technology that is already used 

for processes such as flue gas desulphurisation and denitrification (Su et al., 2013). As Figure 2-

4 illustrates, the process involves passing a flue gas mixture through an absorber counter-

currently with an initially unloaded or lean liquid solvent. Gases that are soluble in the solvent 

get absorbed, while insoluble gases pass through the absorber and are recovered at the stack.  

The loaded solvent, now rich in absorbed gases, is then heated and sent to a stripper where the 

gases are desorbed from the solvent. The gases are recovered at the top of the stripper while the 

lean solvent leaves the stripper as bottoms. The lean solvent is then recycled to the absorber.  

Desorption in the stripper is facilitated by increased temperature. Increasing the temperature of 

the loaded solvent, results in a reversal of the absorption mechanism. In the case of chemical 

solvents, the reverse reaction occurs producing the initial absorbed gas.  

There are other methods to facilitate desorption in the stripper, such as temperature swing 

absorption (TSA) or pressure swing absorption (PSA). The operating temperature of the stripper 

may be increased as in TSA, or the operating pressure of the stripper may be decreased.  

 

Figure 2-4: A Typical Solvent Absorption Process (Figueroa et al., 2008) 

Many solvents have been studied for their applicability to CO2 absorption from flue gases 

emanating from coal, oil, steel and natural gas industries worldwide. The solvents are grouped 

into different categories: chemical solvents, physical solvents, hybrid solvents, and blended 
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solvents. Other compounds are also emerging and have the potential to be used as feasible 

solvents, such as ionic liquids.  

2.4.1.1 Chemical solvents 

Chemical solvents are solvents which undergo a reaction with the gases that they absorb. In the 

treatment of flue gas for CO2 removal, CO2 may undergo a multistage reaction mechanism with 

the solvent. The mechanism is known as reactive absorption. Desorption of CO2 entails 

increasing the temperature of the solvent, to facilitate the reverse reaction and hence obtain CO2 

gas.  

Many chemical solvents are studied for CO2 absorption. Ammonia (NH3) was the first chemical 

solvent under investigation. Alstom Ltd has made much progress in researching the use of 

aqueous ammonia. The advantage is that it is much less sensitive to contaminants such as NOX, 

SOX and O2, and can even simultaneously absorb these gases along with CO2. There is also less 

degradation during regeneration, which means that the solvent can be used over more cycles 

than alkanolamine solvents such as MEA (Steeneveldt et al., 2006). Ammonia however proved 

to be too corrosive for use in industrial equipment. Moreover, a high saturation pressure was 

required for solvent loading (Figueroa et al., 2008) 

Currently, the most popular chemical solvents are alkanolamines, due to their high CO2 

absorption rate. The reactive absorption mechanism between CO2 and alkanolamines is as 

follows (Mamun et al., 2005, and Austgen et al., 1991):  

CO2 phase change: CO2 (g) ↔ CO2 (aq)…………………………….(R2-4)
 

Dissociation of H2O: 2H2O ↔ OH
-
 + H3O

+
 …………………..(R2-5) 

Dissociation of CO2: 2H2O + CO2 ↔ H3O
+
 + HCO3

-
 ………………(R2-6)

 

Dissociation of Bicarbonate ion: H2O + HCO3
-
 ↔ CO3

2-
 + H3O

+
  …………. (R2-7)

 

Reactions (R2-4) to (R2-7) are common for all alkanolamines. Thereafter, the reaction 

mechanism differs according to the type of amine that is being used. Primary amines are organic 

molecules containing an amine group attached to a single carbon atom. Secondary amines and 

tertiary amines are molecules possessing an amine group attached to two and three alkyl groups 

respectively. In terms of reaction mechanisms with CO2, primary and secondary amines undergo 

Zwitterion formation mechanisms, while tertiary amines undergo alternative reaction 

mechanisms. Reaction mechanisms for primary and secondary amines with CO2 are as follows: 

Zwitterion formation: CO2 + R
1
R

2
NH ↔ R

1
R

2
NH

+
COO

-
……………………...(R2-8) 

Zwitterion deprotonation by a base: R
1
R

2
NH

+
COO

-
 + B ↔ R

1
R

2
NCOO

-
 + BH

+
………(R2-9) 
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The mechanism for tertiary amines differs from secondary amines as tertiary amines cannot 

react with CO2 directly. The tertiary amine acts as a base for CO2 to react with hydroxide in 

solution according to the following reaction mechanism (Mamun et al., 2005):  

Dissociation of Amine:  R
1
R

2
R

3
N + H2O↔ R

1
R

2
R

3
NH

+
 + OH

-
………………………(R2-10) 

Hydroxide reaction: CO2 + OH
-
 ↔ HCO3

-
……………………………………………(R2-11) 

Overall reaction ((R2-26) and (R2-27) combined): 

CO2 + R
1
R

2
R

3
N + H2O ↔ R

1
R

2
R

3
NH

+
 + HCO3

-
 …………………………………….. (R2-12) 

The above reactions were also documented in Osman (2011). Mamun et al. (2005) claimed that 

other reactions also occur, such as formation of dicarbamate and dissociation of diprotonated 

amine, but these are minor. 

Since an exothermic reaction mechanism occurs, desorption of CO2 is facilitated by heating the 

CO2-rich solvent thus reversing the reaction in the stripper. Manuel et al. (1998) provides 

kinetics for (R2-8) to (R2-12). Table 2-3 presents popular alkanolamine solvents and their 

abbreviated representation (GPA, 2004, Mamun et al., 2005).  

Table 2-3: Alkanolamine Solvents and Abbreviated Name 

Alkanolamine Solvent Abbreviation 

Mono-ethanolamine MEA 

Di-ethanolamine DEA 

Methyl-di-ethanolamine  MDEA 

Di-Glycol Amine  DGA 

Tri-ethanol Amine TEA 

Methyl Mono-ethanol Amine  MMEA 

Amino-Ethyl-Ethanol Amine AEEA 

Ethyl Amino-ethanol EMEA 

Butyl Amino-ethanol BEA 

The advantage of chemical solvents, particularly alkanolamine solvents, is that absorption can 

occur at a relatively high rate and achieve high absorption capacity even at low CO2 

composition of the flue gas (< 15 wt%). This is a particularly attractive solution especially for 

CO2 capture being applied in post-combustion mode, which possesses flue gas with low CO2 

partial pressure. A lead additive can be added for greater efficiency when high CO2 

concentrations prevail in the flue gas. 

The primary disadvantage of alkanolamines is that they are corrosive towards industrial 

equipment, which are generally metal alloys of various composition. Due to their corrosive 

nature, alkanolamines are heavily diluted with H2O resulting in a solvent consisting of 50-70 

wt% H2O. Such solvents have very limited absorption capacity, requiring an absorption process 

to utilise and recycle high volumes of solvent. H2O also possesses a relatively high heat 
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capacity, which contributes towards a high overall heat capacity of the solvent. This is 

undesirable during regeneration since substantial amounts of heat energy are required to heat the 

loaded solvent for desorption of CO2. Another disadvantage of alkanolamine solvents is their 

sensitivity to contaminants in the flue gas such as NOX, SOX, and O2. Contaminants either result 

in the decomposition of the solvent over extended periods of time, or the solvent may absorb the 

contaminants along with CO2, making pure CO2 recovery difficult.   

Not all alkanolamine solvents suffer the same drawbacks. Secondary and tertiary amines such as 

DGA, MDEA, and DEA are less corrosive and have higher CO2 loading and regeneration 

properties than primary amines such as MEA (GPA, 2004). However, secondary and tertiary 

amines provide significantly lower absorption rates of CO2. Some secondary and tertiary 

solvents also have high selectivities towards other components such as SO2, COS and other 

pollutants present in flue gas. In some cases, the amine degrades upon contact with such 

pollutants. This degradation is reversible with some solvents such as MDEA and DEA however. 

A regenerator unit may be used. 

Another class of chemical solvents that receive much attention are sterically hindered amines, 

which are organic compounds with a primary amine functional group attached to a tertiary 

carbon atom (a carbon atom which is linked to three other carbon atoms). Hindered amines are 

also formed with secondary amine groups attached to secondary carbon atoms. Exxon (Nerula 

and Ashraf, 1987) and Mitsubishi Heavy Industries (Steeneveldt et al., 2006) are at the forefront 

of this study. Steric hindrance causes unstable carbamate ions to form upon reaction with CO2, 

contrary to normal alkanolamines which form stable carbamate ions. This alternative reaction 

mechanism increases the absorption capacity of the solvent by 20-40 % for hindered amines 

(Steeneveldt et al., 2006). 

Popular hindered amine solvents are KS-1, which is a product of MHI, as well as Flexsorb (R) 

and 2-amine-2-methyl-1-propanol (AMP), which are products of Exxon-Mobil (Figueroa et al., 

2008).   

IFP Energies Nouvelles developed a solvent consisting mainly of amines together with other 

compounds. This solvent is known as the DMX
TM

 solvent. Upon absorption of CO2, the solvent 

separates into two liquid phases. One phase is a CO2 rich phase while the other is a CO2 lean 

phase. The presence of several amine functional groups creates a chance for hydrogen bonding 

to occur. After absorption and heat exchange, the bonds are broken at high temperature and 

facilitate demixing. The solvent may pass into a decanter to remove the CO2 lean phase and 

recycle it to the absorber. Only the CO2 rich phase is passed into the stripper for regeneration. 

This reduces the energy cost of the capture process since a lower amount of solvent needs to be 
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regenerated. Regenerator reboiler duty is reduced by 43% in comparison to conventional 

alkanolamine solvent containing 30 wt% MEA diluted in water (Raynal et al., 2011).    

Aside from alkanolamines, carbonate based solvents (Knuutila et al., 2008) are also gaining 

popularity as chemical solvents for CO2 absorption. Carbonate solvents are already in use for 

other gas absorption processes. Sodium carbonate is already used for flue gas desulphurisation. 

The high level of development of this technology is advantageous since equipment and systems 

may be optimised to allow for efficient CO2 capture as well. Carbonate solvents are reported to 

be less corrosive than alkanolamines and they can absorb CO2 and SO2 simultaneously 

(Knuutila et al., 2008). The reaction with CO2 is as follows: 

CO3
2-

 + H2O + CO2 → 2HCO3
-
………………………………………….……. (R2-13) 

Another popular carbonate solvent is potassium carbonate, which was studied extensively by 

Mamun (2005). Mamun (2005) presents absorption rates and CO2 loading for potassium 

carbonate. This solvent is particularly useful when combined with other solvents, forming 

hybrid or blended solvents.  

The disadvantage of carbonate solvents is the comparatively low CO2 absorption rate that they 

achieve, particularly with flue gases of low CO2 concentration. Mamun (2005) suggests that the 

use of carbonate solvents is limited to pre-combustion mode, where the CO2 concentration is 

relatively high in the syngas. The use of carbonate solvents also requires regular cleaning and 

inspection of equipment to prevent damage, as carbonate based solvents have a relatively high 

tendency to precipitate. This results in extra capital and labour costs to account for this. 

2.4.1.2 Physical solvents 

The absorption of gases such as CO2 in physical solvents occurs without any chemical reaction. 

CO2 absorption entails a rearrangement and reconfiguration of solvent molecules, to 

accommodate CO2 molecules. Industrially, gas absorption using solvents is carried out in the 

same manner, using absorbers and strippers for absorption and desorption respectively. 

Common physical solvents are Selexol® (Union Carbide), Rectisol (utilising mainly methanol) 

and Sulfinol® (Shell) (Gielen, 2003).  

Selexol, a product of the Union Carbide Corporation, is made up of a polyethylene glycol 

derivative and has many advantages. Selexol solvent can absorb CO2, water and sulphur 

compounds. The solvent is reported to be applicable and efficient at ambient pressure, 

producing relatively high absorption rates. The solvent also does not degrade appreciably and is 

thus stable and recyclable (IEA, 2004).  



26 
 
 

The disadvantage is that the solvent possesses low selectivity of CO2 over other components of 

the flue gas. The solvent can also absorb valuable paraffins, olefins, and aromatics. The 

operating temperature is also limited, from 255.15 K to ambient. This is an undesirable 

condition since flue gas is available at higher than ambient temperature.  

Methanol can also be used as a physical solvent. However, its operating conditions are 

demanding and undesirable for flue gas treatment. Due to the high volatility of methanol, the 

absorption process can only run efficiently between 200.15 and 238.15 K (GPA, 2004), with an 

operating pressure of 2 MPa (IEA, 2004).  

The latest investigations on physical solvents are that of ionic liquids for CO2 absorption, which 

are discussed in detail in Section 2.5. 

2.4.1.3 Hybrid solvents 

In an attempt to combine the best features and advantages of chemical and physical solvents, 

and minimise their flaws, researchers have tried to mix chemical and physical solvents together 

to create hybrid solvents. This is done in an attempt to produce a solvent that possesses the high 

absorption rates and capacities of chemical solvents, and low regeneration energy, low 

corrosiveness, and high stability of physical solvents.  

A well-studied and promising hybrid solvent is the Sulfinol® solvent (IEA, 2004). The solvent 

contains a mixture of sulfolane, water, and either MDEA or Di-Isopropanol Amine (DIPA), 

which enables the solvent to absorb CO2 physically and chemically. This solvent can absorb 

H2S, CO2, COS and CS2 simultaneously, which is advantageous for flue gas treatment, but also 

undesirable during CO2 recovery (Osman, 2010). Low corrosiveness and high CO2 capacity is 

claimed by Nerula and Ashraf (1987). It is also claimed to reduce CO2 concentration in flue gas 

to as low as 50 ppm. Regeneration may be done using a flash vessel rather than a stripper, hence 

the energy penalty is lower (Nerula and Ashraf, 1987).  

The solvent also results in co-absorption of hydrocarbons, which could mean loss of product or 

reactants if the process has entrainment problems, which is a disadvantage. A reclaimer may 

also be needed to recover degraded solvent and the CO2 entrained in it, making the absorption 

process more complex and likely more expensive. A further disadvantage mentioned in IEA 

(2004) is that the solvent only operates efficiently and produces high absorption rate and 

capacity for flue gases at 0.5 MPa or more.    

Another popular hybrid solvent is the Amisol® solvent (IEA, 2004), which was researched and 

developed in the 1960s by Lurgi Ltd. The most developed Amisol® solvent is a mixture of 

diethyl amine (DETA), aliphatic alkyl amines, and di-isopropyl amine (DIPAM). Previous 
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mixtures also incorporated MEA and DEA as well. Optimum absorption with this solvent 

occurs at 308.15 K and regeneration is typically done at 353.15 K. The advantage of this close 

temperature range is that a lean/rich heat exchanger is not needed. The optimum pressure is 1 

MPa (IEA, 2004). However, the exiting gas from the stripper has to undergo water washing 

after CO2 desorption and the water needs to undergo distillation to retrieve entrained volatile 

methanol, since methanol may easily be lost to the gas stream during stripping (Nerula and 

Ashraf, 1987).  

The Amisol® solvent was reported by Nerula and Ashraf (1987) to be non-corrosive. The 

solvent can also absorb sulphurous compounds such as COS, mercaptans, and HCN, and can 

reduce CO2 concentration in the flue gas to as low as 5 ppm.  

A disadvantage common to Amisol® and Sulfinol® solvents is that they also absorb 

hydrocarbons which occur in trace quantities in many flue gases. This amounts to a loss of 

valuable products. The flue gas needs to be treated for this before CO2 absorption, making CO2 

capture a complicated procedure overall.  

Duc et al. (2007) also noted the low selectivity of hybrid solvents as one of the main 

disadvantages of the solvent. In terms of absorbing multiple pollutants such as SOX and NOX 

along with CO2, the solvent seems like an attractive operation. But CO2 recovery and disposal in 

a relatively pure composition becomes difficult, requiring additional separation processes 

(Chatti et al., 2005). 

Another class of hybrid solvents that are currently receiving much attention and study, are 

functionalised ionic liquids, which are physical solvents than contain functional groups such as 

amines, which result in chemical absorption of gases as well. Ionic liquids containing functional 

groups are discussed in later Section 2.5.5 of the thesis.   

2.4.1.4 Blended solvents 

Aside from combining physical solvents with chemical solvents, another initiative is to combine 

two or more chemical solvents to achieve a superior chemical solvent. This can also be done 

with physical solvents, where two or more physical solvents may be combined to create a more 

advantageous solvent mixture.   

This strategy is popular particularly for alkanolamine solvents. Alkanolamine blends usually 

incorporate primary, secondary, and tertiary amines, in order to obtain a solvent that provides 

the high CO2 absorption rates of primary amines, together with the low corrosiveness and high 

CO2 absorption capacity of secondary and tertiary amines (Nerula and Ashraf, 1987). The 

blending of secondary and tertiary amines with primary amines also enables the solvent to 
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possess higher quantities of alkanolamine and lower quantities of H2O. This is advantageous as 

high amounts of water contribute to a high overall heat capacity of the solvent, which results in 

exorbitant energy requirements for desorption. Water has a relatively high specific heat capacity 

(4.187 kJ/kg.K (IEA, 2004)), which is why it is better if less of it is incorporated into the 

solvent.   

Blending of alkanolamines and creating solvents with higher alkanolamine concentrations also 

reduces the corrosiveness of the solvents, since tertiary amines such as MDEA are less corrosive 

than primary amines. Moreover, blending of different alkanolamines also enables the solvent to 

absorb other pollutants such as H2S, SO2 and other sulphurous compounds (Coquelet and 

Richon, 2007). There are thus numerous advantages to blending different alkanolamines. 

The challenge of blending alkanolamines is that a compromise has to be made. The resulting 

solvent usually produces trade-off results. A blend may not produce an absorption rate that is as 

high as what a single primary amine can produce, or it may not possess an absorption capacity 

that is as high as what secondary and tertiary amines produce. An optimum blend ratio needs to 

be found, as with hybrid solvents.    

Studies have found that MEA+MDEA blends were the most popular blends researched (Osman, 

2010). Ritter et al. (2006) found that the energy required to capture CO2 using MEA alone, was 

3.14 GJ/ton CO2. When MEA was used in combination with MDEA, the energy required was 

2.2 GJ/ton CO2. MEA:MDEA blend ratios are suggested by Chakravarti et al. (2001) to be 10 to 

20% MEA with 20 to 40 % MDEA.   

The same investigations were attempted with other alkanolamines. Absorption curves for 

MDEA blended with MEA, AEEA, and PZ were produced in a study by Mamun et al. (2005). 

MDEA + PZ, as well as MDEA + AEEA provided superior performance than MDEA + MEA 

blends. However, none of these blends produced higher CO2 absorption rates than unblended 

MEA solvent. Mamun et al. (2006) blended MDEA with MMEA and piperazine additives. 

MMEA and piperazine were reported to increase the reaction rate between MDEA and CO2. 5 

to 10 mol% concentrations of piperazine and MMEA were used. The study found 10 mol% 

MMEA and 5 mol% piperazine to be particularly successful in increasing the solubility and rate 

of absorption of CO2 in MDEA compared to simply using diluted MDEA solvent.  

Solvent blending is not limited to amine-based solvents. Chemical solvents such as carbonate 

based solvents may also be blended with each other and with alkanolamines. The blending of 

potassium carbonate with MEA was studied by Mamun et al. (2005). Absorption data were 

tabulated for various concentrations of MEA. The study did not produce promising results 
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however. The performance of such a blend in terms of CO2 loading and absorption rate was 

found to be comparatively lower to that of other alkanolamine blends, and even that of single 

alkanolamines.  

The relatively high level of development of absorption processes is advantageous to CO2 

capture, since this technique possesses accurate estimates for good design and decision making. 

There is much potential for the process to be retrofitted in post-combustion mode, and can 

hence have little or no effect on the rest of the process, with the exception of energy 

requirements. Installation at post-combustion mode may require preparation of the flue gas 

before CO2 capture however. Flue gas may need to undergo compression and refrigeration 

processes to bring it to optimum system conditions for efficient CO2 capture. Such requirements 

may not be necessary if an ideal solvent is found. And on the other hand, it can be used in pre-

combustion mode and achieve greater efficiency since syngas possesses higher CO2 

concentrations. 

Mass transfer kinetics are well researched for the absorption of gases in solvents. The Two-Film 

theory of gas absorption is explained in the work of Lewis and Whitman (1924) and well 

investigated for physical and chemical absorption in the work of Danckwerts (1965). Film and 

Surface Renewal models applicable to physical and chemical absorption are stated and 

explained.  

Gas absorption using solvents is also a highly flexible method. Two or more solvents may be 

combined to increase efficiency. There are different possibilities to create hybrid solvents, 

blended solvents, and investigate newly emerging solvents such as ionic liquids. The process is 

relatively simple and requires a comparatively smaller space, unless multistage operation 

involving two or more absorbers and strippers is employed. Many solvents are recyclable, 

which saves on operating costs. 

The current disadvantage and primary barrier to implementation is the high energy penalty 

associated with gas absorption as a capture method. Energy is required in the form of heat for 

regeneration, as well as cooling of the solvent, since the absorption rate decreases with 

increasing temperature (Osman, 2010). Energy is also required for compression of CO2 during 

recovery, and perhaps also for compression of the flue gas in order to ensure high CO2 partial 

pressures and efficient CO2 absorption. Absorption processes of this nature can account for up 

to 40% of the total plant energy requirements (Kanniche and Bouallou, 2007), making operating 

costs significantly high. Moreover, many solvents, especially physical solvents, are only 

feasible when treating flue gas at high CO2 partial pressure, and hence can only be applied to 
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pre-combustion (IEA, 2004). Some solvents are also particularly expensive, contributing 

towards an increased capital cost. 

Figure 2-5 below indicates the general trend between CO2 absorption achieved and the 

desorption energy required for various types of solvents. 

 

Figure 2-5: General Qualitative Trends of CO2 Solubility and Desorption Energy Required for 

Various types of Solvents 

It has been established by extensive literature review that no single solvent compound would 

achieve high CO2 solubility and require low desorption energy, which is the desired result. Pure 

physical or chemical solvents offer either low CO2 solubility with low desorption energy, or 

high CO2 solubility and high desorption energy. Hybrid and blended solvents achieve mixed 

results, from highly desirable to highly undesirable. Nevertheless, these categories of solvents 

possess the most potential for high CO2 solubility and it is thus worth pursuing research into 

hybrid solvents and solvent blends to increase the CO2 solubility achieved. Higher CO2 

solubility in a solvent implies less solvent needs to be used, thereby reducing desorption energy 

required. However, desorption energy can also be reduced through pursuing process 

optimisation.  

As mentioned previously, absorption processes have received the most attention for CO2 capture 

and are currently the most researched and closest to commercialisation of all CO2 capture 

techniques. Austria and Netherlands have managed to set up pilot plants in 2008 (VNS, 2008 

and Knudsen et al., 2008). Studies towards the industrial implementation of solvents aim to find 

an ideal solvent, which may be defined to include a high CO2 absorption capacity, high CO2 
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absorption rate, high CO2 selectivity, low viscosity, low volatility, low heat capacity, low 

corrosivity, low toxicity, and low cost. 

2.4.2 CO2 capture using membranes 

In principle, the capture of CO2 using membranes involves passing flue gas through a 

membrane contactor. CO2 selectively permeates through the membrane. Other components of 

the flue gas do not. CO2 is isolated on the other side of the membrane, compressed and 

recovered, while the treated flue gas leaves through an outlet on the entry side of the membrane. 

Refer to Figure 2-6 for an illustration. 

 

Figure 2-6: An Illustration of a Membrane Contactor with Solvent (NETL, 2007) 

Membranes are often used in combination with solvents to increase CO2 capture rate and yield. 

Figure 2-6 above shows a plate-and-frame filter containing multiple membranes, with a solvent 

present in the CO2 recovery side of each membrane. The solvent facilitates quick CO2 recovery, 

and increases the permeability and selectivity of CO2 through the membrane (Figueroa et al., 

2008).  

There are many methods of implementing membranes as a CO2 capture technique. Membranes 

may be applied as a sole CO2 capture technique, in combination with solvents as shown above, 

as a flue gas pre-treatment step for the removal of other impurities before CO2 capture, or as a 

polishing step to complement other capture techniques which may not achieve the desired CO2 

purity (Figueroa et al, 2008 and NETL, 2007).   

Figure 2-6 above shows a plate-and-frame filter. The advantage of using plate-and-frame 

membrane filtration equipment is that there are no moving parts. The unit is less likely to fail 

and require constant maintenance. If solvents are not used, then regeneration energy is not 

needed. However, plate-and-frame filters require relatively higher downtime to remove 

membranes and unplug membrane pores of other gas molecules which may have condensed or 
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precipitated in the membrane. This disadvantage can theoretically be overcome by applying the 

membranes in a rotary filter, which provides continuous operation of membrane filtration and 

cleaning.     

Many types of membranes have been studied for CO2 capture. Common membrane material 

includes polymer, silica, zeolite, and ceramic material. Alumina support is used for more fragile 

membranes to achieve high selectivity for continuous operation.  

Zeolite membranes are quite popularly investigated since the study of zeolites is well 

developed. This is due to its application in Fischer-Tropsch processes, and as molecular sieves. 

Figueroa et al. (2008) recorded zeolites to be useful in the isolation of CO2 from CO2-N2 gas 

streams. An important advantage of zeolite membranes is their resistance to degradation, even at 

operating temperatures up to 673.15 K. This enables zeolite membranes to be reused over 

numerous cycles. Figueroa et al. (2008) stated that their use is safe and effective over 400 days 

before membrane replacement.  

Steeneveldt et al. (2006) conducted studies on the use of ceramic porous membranes and Pd-

ceramic membranes. The membrane was reported to isolate H2 from a CO2-H2 gas stream, 

which is advantageous for IGCC and oxy-fuel combustion processes, which require separation 

of CO2 and H2. The membrane can also withstand high temperature. IEA (2004) reported 

however, that ceramic membranes have low CO2 selectivity. Recovery of CO2 can be as low as 

7 %, thereby necessitating multistage membrane filtration. Ceramic membranes were also 

reported to be expensive.   

Silica membranes were reported to isolate CO2 from gas streams containing CH4, O2, N2, and 

SO2 (Figueroa et al., 2008). The use of inorganic silica can also be accompanied with 

alkanolamine solvents to increase CO2 selectivity, and can be used to remove CO2 even from 

flue gas containing CO2 composition lower than 15wt%. Pore blockage however, is a 

fundamental drawback when using silica membranes. Significant downtime is required.  

Polymer membranes are advantageous since this type of membrane has comparatively high 

selectivity to CO2 (Figueroa et al., 2008), resulting in a comparatively high CO2 recovery of 

57%. Membrane filtration processes thus require fewer cycles to obtain a CO2 stream of high 

purity and yield. Polymer membranes are also comparatively thin, which result in a smaller 

filtration apparatus. The disadvantage however, is that thin polymer membranes are weaker than 

zeolite or ceramic membranes and have a high risk of damage and breakage when operating 

under high pressure. Meisen and Shuai (1997) noted that mounting polymer membranes on 

strong alumina supports effectively mitigated this problem. Figueroa et al. (2008) stated that 
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polymer membranes are suited for pre-combustion and post-combustion CO2 capture, even at 

low CO2 flue gas compositions. 

Apart from the challenge of membrane selectivity for CO2 alone, another key disadvantage of 

membrane usage for CO2 capture is the high energy penalty associated with gas compression. 

Membranes will only result in efficient CO2 removal if the flue gas is at high pressure. There is 

also a relatively low level of development regarding the use of membranes for CO2 capture. A 

balance between permeability and CO2 selectivity needs to be found. Current membrane 

simulations include multistage operation, which introduce further compression costs and result 

in high capital expenditure. It is for these reasons that membranes are suggested mostly as a 

polishing step to increase CO2 purity (Teng and Tondeur, 2006).   

While the use of membranes alone is discouraged and not well researched, the combining of 

solvents onto membranes is receiving much attention as a feasible CO2 capture solution. Teng 

and Tondeur (2006) reported that membranes combined with solvents are estimated to have the 

lowest energy penalty: capture rate ratio. Solvents are either combined with the membrane 

through a binding process, or used as a sweep fluid for easy recovery of CO2. General efficiency 

results on combining MEA solvent with membranes are provided by Teng and Tondeur (2006). 

A similar study was done by Steeneveldt et al. (2006), which focussed on combining a 

polymeric membrane with DEA solvent. The use of solvents increases CO2 recovery and 

enables smaller construction of membrane filtration processes (Meisen and Shuai, 1997). 

However, the excessive use of solvents increase energy penalty substantially, since CO2 

ultimately has to be recovered from the solvent by heating the loaded solvent in a regenerating 

column. A correct balance between the usage of membranes and solvents needs to be 

determined.   

General data on membranes and membrane-solvent combinations, in comparison to other CO2 

capture techniques and strategies, are tabulated by IEA (2004).  

Of particular interest currently, is the development of supported ionic liquid membranes 

(SILMs). Conventional membranes, such as polymer or ceramic material, are combined with 

ionic liquids to increase the permeability and selectivity of the membrane. Ionic liquids can also 

be used as liquid membranes suspended between two porous supports. The gas dissolves and 

diffuses into the ionic liquid through the pores of the solid supports and through the ionic liquid 

itself. Gas diffusion into the ionic liquid is faster than diffusion into a solid state, as with 

conventional membranes (Scovazzo et al., 2009).  
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The high viscosity of ionic liquids allows them to be well suspended in the pores of membranes. 

The solvent is used as an actual CO2 capture and separation medium in the pores of the 

membrane, in contrast to conventional alkanolamine solvents which are typically used as sweep 

fluids for CO2 recovery on the downstream side of the membrane. A further advantage of 

SILMs is that the contact area between gas and ionic liquid is increased (Hasib-ur-Rahman et al. 

2010).  Hasib-ur-Rahman et al. (2010) suggested that the mass ratio of ionic liquid:membrane 

material be 0.5-2:1. The disadvantage of high viscosity however is still noted, as high viscosities 

impede diffusion. Slow kinetics are thus achieved when using SILMs. 

SILM studies include the combining of ionic liquids with poly-ether sulphone, hydrophobic 

poly-vinylidene fluoride (PVDF), and hydrophilic PVDF membranes. Studies on SILMs 

possessing conventional ionic liquids were also done by Scovazzo et al. (2009), Scovazzo 

(2009), Luebke et al. (2007), Park et al. (2009), and Baltusa et al. (2005).  

While the idea of SILMs seems promising, they also face many of the same challenges to its 

application as any other membrane combined with any other solvent. The key issue is finding an 

optimum balance of CO2 permeability and CO2 selectivity over other components of flue gas. 

Increasing permeability often results in a decrease in selectivity, since more type of molecules 

can permeate through the membrane. While this remains an issue, the improvement over 

conventional membranes is significant due to the selectivity of ionic liquids (Seeberger et al., 

2007). Moreover, Luebke et al. (2007) and Hanioka et al. (2008) noted that higher system 

temperature increases CO2 permeability but decreases selectivity. The change in permeability 

was found to be more pronounced in larger imidazolium-based ionic liquids than smaller ones. 

However, small imidazolium-based ionic liquids encountered greater decreases in CO2 

selectivity. There is evidence to suggest also that membrane porosity increases at higher 

temperature.  

The decision to use hydrophilic or hydrophobic membranes is also of high importance. 

Hydrophilic membranes result in higher CO2 selectivity than hydrophobic membranes (Luis et 

al., 2009). However, there is a potential problem of creating water micro-environments within 

the membrane, causing pore blockage and ionic liquid displacement if a hydrophilic membrane 

is used (Lozano et al., 2011). This decreases SILM performance and selectivity, due to the 

increase of non-selective environments for solute transport. Moreover, hydrophobic membranes 

have to be used in combination with hydrophobic ionic liquids and the same applies to 

hydrophilic membranes and hydrophilic ionic liquids. Combining ionic liquids with membranes 

that possess a different affinity to water produces self-defeating results.  
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Knudsen et al. (2008) reported that a pilot plant in the Netherlands was constructed in 2008 

which accommodates CO2 capture using membranes combined with solvents.  

2.4.3 Cryogenic separation 

Cryogenic separation involves the separation of gases by a phase change. In the case of CO2 

capture from flue gas, flue gas will be cooled until CO2 exists as a liquid or solid phase. If the 

process involves the precipitating of CO2 as a solid, then the process is also popularly referred 

to as CO2 anti-sublimation. 

Burt et al. (2009) investigated processes that would be applicable as retrofit CO2 capture 

technology for post-combustion CO2 capture. Figure 2-7 provides an illustration of the process. 

 
Figure 2-7: Cryogenic CO2 Capture (Burt et al., 2009) 

Flue gas is first cooled in a heat exchanger, where moisture (H2O) is removed. The resultant dry 

gas is composed of N2, O2, CH4, CO2, and trace components such as SO2, Hg, and HCl. The dry 

flue gas is moderately compressed and sent to a heat exchanger where the flue gas is cooled to a 

temperature just above the CO2 solidification point. This temperature varies depending on the 

operating pressure, which needs to be optimised based on the flue gas conditions of any 

particular process.   

A flash unit separates SO2 and other trace compounds from the flue gas, and thereafter the flue 

gas passes through an expander. The further cooling caused by expansion results in the partial 

precipitation of CO2. In this way, CO2 is separated from the flue gas, which at this point consists 

primarily of N2 gas.   The CO2 rich stream is further pressurised and recycled, in conjunction 

with the N2 rich stream, to the heat exchanger to cool incoming dry flue gas. The temperature 

increase of the CO2 rich stream during heat exchange results in CO2 being produced in the 

liquid phase at elevated pressure. N2 remains in the gaseous phase and is recovered as well.  
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Burt et al. (2009) claimed 99% CO2 recovery at a freezing temperature of 138.15 K, and 99% 

CO2 recovery at 153.15K. Clodic et al. (2005) concluded that a temperature of 194.65 K is 

required for flue gases containing 100 vol% CO2, while 136.45 K is needed to remove CO2 from 

flue gas containing 0.1 vol% CO2.  

Burt et al. (2009) did not indicate the method of refrigeration, while Clodic et al. (2005) 

suggested a refrigerant blend of n-butane, propane, ethane, and methane.  

Burt et al. (2009) cited many advantages of cryogenic separation. Cryogenic separation can be 

used as a retrofit technology, which is less capital intensive than constructing IGCC and oxy-

fuel combustion processes. The technology also operates in less demanding temperatures and 

pressures than what is required by air separation units of IGCC and oxy-fuel combustion 

processes. Cryogenic separation is also not sensitive to contaminants in the flue gas. 

Contaminants can be removed as explained in Figure 2-7 above. There is also the potential to 

save water and energy by utilising nitrogen as a cooling fluid.  

In terms of energy comparisons, Clodic et al. (2005) claimed a 17-27% lower energy penalty 

than alkanolamine absorption retrofit technology. Baltus et al. (2004) stated that the cost of 

energy for cryogenic separation is lower than IGCC, alkanolamine absorption, oxy-fuel 

combustion with air separation, and membrane separation. The cost of CO2 removal is 40% less 

than with alkanolamine absorption. Clodic et al. (2005) stated that the energy penalty is 647.7-

1248.6 kJ/kg CO2 depending on the composition of CO2 in the flue gas. The energy required 

increases exponentially with decreasing CO2 composition in the flue gas. At low CO2 

compositions in the flue gas of 2 vol% CO2, the energy penalty for cryogenic separation could 

account for 21.95% of the total plant operational energy requirements. But for CO2 flue gas 

compositions of 10 vol% or higher, the energy penalty may be as low as 11.39%. In either case, 

the process incurs a lower energy penalty compared to conventional alkanolamine absorption, 

which may account for 37.83% of the total plant energy requirements. 

Not all estimates are promising however. Gottlicher and Pruschek (1997) performed estimations 

of electrical energy requirements of cryogenic separation in comparison to other CO2 capture 

techniques.  It was estimated that the energy required for cryogenic separation would be 0.6 to 

1.0 kWh/kg CO2, while solvent absorption (including physical and chemical solvents) was 

estimated to cost 0.09 to 0.34 kWh/kg CO2. Gottlicher and Pruschek (1997) also estimated a 

relatively low efficiency of 39% for cryogenic separation in IGCC power plants, in comparison 

to membrane processes which achieved 42% plant efficiency.  The design of the particular 

cryogenic separation system however, was not specified.   
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The benefits of high CO2 composition makes cryogenic separation a good option especially for 

pre-combustion CO2 capture, which possesses higher CO2 compositions in the flue gas.  

Different designs of cryogenic processes have been postulated and simulated. Valencia and 

Victory (1990) proposed two distillation column designs for cryogenic distillation enabling the 

recovery of solid CO2 from the flue gas. Simulation results are presented, including 

compositions, temperature, pressure and flows on each tray in the designed column. Additional, 

older designs are also presented in McGalliard and Larrabee (1980). 

The CATO programme, commissioned in Netherlands, has developed a pilot plant that also 

accommodates the study of cryogenic separation (VNS, 2008). 

2.4.4 CO2 capture by the formation of gas hydrates 

A relatively new technique of gas separation is gas hydrate formation. The technique involves 

passing a flue gas mixture through chilled water. At particular optimum temperature and 

pressure conditions, some components of the flue gas freeze together with water molecules to 

form ice-like crystals where the gas molecules are trapped inside a cage of water molecules, 

formed through hydrogen bonding. It is for this reason that gas hydrates are known as 

crystalline inclusion compounds (Figueroa et al., 2008). Figure 2-8 below provides a pictorial 

explanation of gas hydrates. 

 

Figure 2-8: Guest Molecule Trapped inside Water Molecule, forming Hydrates (Jadhawar et 

al., 2006) 

Hydrate formation occurs typically at low temperatures of 268.15-298.15 K, and very high 

pressures of 3-50 MPa (Jadhawar et al., 2006). Theoretically, CO2 and H2O are frozen together, 

forming a slurry of ice crystals in liquid water with other un-trapped gas components.  
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It is only certain gas molecules, of a certain size and form that may be trapped as hydrates and 

CO2 is fortunately one of them. Other molecules that can form hydrates are CH4 and to a lesser 

extent, N2 (Duc et al., 2007). Other gas molecules can either be trapped in substantially different 

temperature and pressure conditions, or not at all, since their size is not applicable to H2O cage 

cavities.      

The hydrates containing CO2 molecules can be separated from the other components of the flue 

gas. Thereafter, CO2 recovery entails heating the slurry and breaking the ice cages, thereby 

releasing CO2 molecules. 

The use of hydrates is also being investigated in combination with membranes. Linga et al. 

(2007) conducted simulations using three hydrate-forming units which can collectively recover 

98% of the CO2 in the flue gas, with a final membrane filtration unit which can recover the final 

2%. Membranes can also assist in removing other flue gas impurities which may be difficult for 

hydrate processes to separate.  

The primary advantage of hydrate formation as a CO2 capture technique is that water is used as 

a recyclable solvent. There are significantly fewer hazards compared to other solvents such as 

alkanolamines, carbonates or ionic liquids.  In the event of H2O becoming contaminated with 

other dissolved flue gas components, it can be disposed of and replaced at significantly lower 

expense compared to other solvents. Chatti et al. (2005) also noted that hydrate formation is 

efficient at recovering CO2 even if CO2 concentration in the flue gas is low. 99 % CO2 recovery 

can be achieved.  

One volume of hydrate is capable of accommodating 35 volumes of CO2 (Duc et al., 2007). 

While this may seem advantageous in volume terms, the sheer amount of CO2 emitted in molar 

terms would require large hydrate process units to completely remove all CO2. 

The main disadvantage is the demanding conditions at which this technique operates. A high 

energy penalty is incurred in achieving compression of up to 50 MPa, and refrigeration to as 

low as 268.15 K, in order to achieve hydrate formation conditions. Additives are introduced into 

the slurry to mitigate this problem. Duc et al. (2007) studied the use of tetra-n-butyl ammonium 

bromide (TBAB) and tetrahydrofuran (THF) in reducing the hydrate formation pressure. The 

additives reduced hydrate formation pressure to as low as 0.3 MPa, and caused hydrates to form 

more quickly. This was confirmed by Linga et al. (2007), who also investigated propane as an 

additive for flue gas containing significant H2 together with CO2. Park et al. (2006) noted the 

same effect using silica gel porous beads as an additive.  

Studies into the use of ionic liquids, particularly 1-butyl 3-methylimidazolium tetrafluoroborate, 

were done by Chen et al. (2008). The study produced mixed results. The ionic liquid increased 
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the hydrate formation pressure, which was completely undesirable and counterproductive to the 

aim of reducing hydrate formation pressure. On the other hand, the CO2 absorption rate 

increased, as more CO2 was absorbed into the ionic liquid.  

Another disadvantage is that the handling of hydrates may require substantial maintenance. 

Hydrate slurries can lead to pipeline plugging, a problem which requires downtime and pipeline 

inspection gauges to restore optimum flow. Duc et al. (2007) noted that methanol or glycol can 

inhibit pipeline plugging by hydrate slurries. The study also postulated and simulated multistage 

hydrate operation, a process which possesses much complexity. Significant studies on pipeline 

plugging by hydrate formation were done by Dholabal et al. (1993). Prevention of hydrate 

formation in offshore pipelines is a significant challenge and pilot plant studies were done to 

investigate methods to prevent this. Circulation loops provided better temperature control to 

prevent hydrate formation conditions from occurring.  

The level of development of hydrate formation as a CO2 capture solution is relatively low 

compared to other techniques such as solvents and membrane usage. There have however been 

attempts to take the technique into the phase of pilot plant study. Tam et al. (2000) planned 

setting up an IGCC pilot plant in the U.S.A. which caters for the study of CO2 capture by 

hydrate formation. Gnanendren and Amin (2004) conducted kinetic studies on a small scale 

pilot plant hydrate reactor operating in semi-batch mode. Generally though, present research 

into the commercialisation of hydrates for CO2 capture is done primarily through computer 

simulation, rather than practical trials (Duc et al., 2007 and Linga et al., 2007).      

2.4.5 CO2 capture using dry regenerable sorbents  

Another method of CO2 removal is the use of dry solid sorbents to absorb, or at least adsorb 

CO2 molecules. The sorbent is then sent to a regenerator for CO2 desorption. Refer to Figure 2-9 

below. Flue gas is cooled and sent to a carbonation reactor where CO2 is absorbed or adsorbed 

into the sorbents. This is a reactive process. The loaded sorbent is then transferred to a 

regenerator where it is heated to extract the CO2. Sorbent is then transferred back to the 

carbonation reactor (Green et al., 2004).  
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Figure 2-9: Sorbent Capture Process (Green et al., 2004)  

Sorbents may occur in the carbonation reactor as a packed bed or fluidised bed. Packed bed 

reactors are popular for inherently porous sorbents. Sorbents occur as pellets, flakes or fine 

particulate matter for fluidisation processes. The process operates in batch or continuous mode, 

depending on the efficiency of solids handling for the sorbent.   

There are many sorbents under investigation for CO2 capture. Common sorbents include 

activated coal, sodium carbonate, potassium carbonate, and calcium carbonate. Green et al. 

(2004) studied novel sorbents for CO2 capture such as Trona T-50, sodium bicarbonate, SBC#1, 

SBC#2, and SBC#3. Sorbent properties were recorded. Lee et al. (2008) investigated the use of 

different additives to sorbents such as inorganic binders, organic dispersants, supports, 

defoamers, and organic binders. Common additives in sorbents are varied amounts of sodium 

carbonate and sodium hydrogen carbonate. Modified sorbents such as Sorb N2A, N2B, N2C, 

NX, NH, and NX30 were developed in an attempt to reduce the energy penalty of the process 

and make sorbents more recyclable. Various properties were measured as a result, including 

attrition resistance. Surfactant additives were studied by Chen et al. (2011), who noted an 

increase in CO2 absorption on calcium based sorbents. CO2 recovery was 95%. 

The most popularly studied sorbents are sodium carbonate and potassium carbonate. Details of 

their operation and associated reactions are contained in Green et al. (2004), and Zhao et al. 

(2008). Green et al. (2004) reported 90% CO2 recovery in a single cycle using sodium carbonate 

sorbent at carbonation temperatures of 333.15-353.15 K and regeneration temperatures of 

393.15-473.15K, while Zhao et al. (2008) reported 85% CO2 recovery using potassium 

carbonate sorbent at a carbonation temperature of 383.15 K. While these results are 
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encouraging, the main problem with these sorbents is their low attrition resistance. Green et al. 

(2004) reported significantly reduced mass of sodium carbonate sorbent after 5 cycles of 

operation. While studies on potassium carbonate show good attrition resistance for 5 cycles, the 

sorbent began to cake due to the presence of H2O in the flue gas (Lee et al., 2008). Irreversible 

reactions with contaminants such as SOX and NOX were also reported.  

Another disadvantage of sodium and potassium carbonate is the low CO2 capture rate. Green et 

al. (2004) reported a 30 minute cycle time to obtain 50% CO2 recovery.  

With conventional carbonate based sorbents being well studied, calcium based sorbents are 

receiving much attention in recent years. Fernández et al. (2010) studied CO2 adsorption in ten 

sorbents containing varying concentrations of calcium oxide and calcium hydroxide on 

mesoporous molecular sieve supports. While the adsorption occurred at a very slow rate, the 

sorbents have been proven to be recyclable, maintaining a constant adsorption rate for over 5 

cycles. Abanades (2008) studied calcium oxide sorbents. The study showed a marked decrease 

in adsorption over ten to fifty cycles. Three calcium based sorbents were studied under fixed 

bed configurations by Gray et al. (2004). The study combined alkanolamine solvents onto the 

sorbents at 298.15-333.15 K, and this strategy proved to be beneficial in increasing adsorption 

rate. A study by Chen et al. (2011) showed that a high pressure adsorption process, exceeding 

0.5 MPa, increases the recyclability of calcium based sorbents.  

The advantages of sorbents are their high CO2 recovery and at relatively high operating 

temperatures in comparison to conventional alkanolamine solvent scrubbing. CO2 capture can 

be efficient even at low CO2 concentrations in the flue gas. Depending on the sorbent and the 

design of the process, the use of sorbents can have a potentially lower regeneration energy 

requirement than alkanolamine scrubbing (Green et al., 2004). 

The main challenge facing the use of many sorbents is their low attrition resistance, which as 

explained above, substantially reduces efficiency and feasibility in multi-cycle operation. If the 

flue gas contains high amounts of water vapour, further attrition and sorbent caking may also 

occur. Another challenge is the expensive nature of solids handling. Some sorbent processes 

operate as fluidised beds and the solids thereafter need regeneration and recycle, which requires 

conveyor belts or compressed air blast loops. Such equipment requires relatively high 

maintenance.  

Despite the current challenges, sorbent processes still possess enormous potential, especially 

with the introduction of additives and sorbent supports, as well as hybrid processes which 

combine sorbents with solvents. Manovic et al. (2008) explains the set up and operation of a 

pilot plant using sorbents for CO2 capture. The sorbents in that particular study were able to 
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operate at temperatures up to 1123.15 K in a fixed bed reactor. Small scale fluidised bed pilot 

projects have been considered in Korea and Canada (Yi et al., 2007 and Lu et al., 2008).     

2.4.6 New ideas of CO2 capture 

This section briefly explains newer, more recent strategies of CO2 capture and recovery. Some 

are retrofit CO2 capture techniques, while others are power plant modifications that can greatly 

improve the conditions of CO2 capture and lower the overall energy penalty of CO2 recovery. 

Some of these strategies are being actively investigated experimentally, while others are still 

theoretical, with any quantitative analysis being done using simulation software.       

2.4.6.1 Enzyme based systems 

The use of enzymes in the capture of CO2 forms part of a wider strategy of CO2 bio-processing. 

In the capture of CO2, enzymes are used as a liquid membrane suspended between two hollow 

fibre supports. The flue gas passes through the liquid membrane. CO2 is hydrated and permeates 

through the membrane as carbonic acid (HCO3) much faster than O2, N2 and other flue gas 

constituents. CO2 is recovered on the other side using a sweep gas (Figueroa et al., 2008). 

Figure 2-10 provides an illustration of the process.  

Carbonic Anhydrase (CA) is used as a popular enzyme for CO2 capture. Figueroa et al. (2008) 

reported a theoretical 90% potential CO2 recovery using CA.  

The enzyme is regenerated at ambient conditions, which is highly advantageous since it results 

in a significantly reduced regeneration energy penalty. This is due to the relatively low heat of 

absorption of CO2 in CA. The dissolution rate of CO2 into CA is limited by the rate of CO2 

hydration to carbonic acid. It was reported by Trachtenberg et al. (1999) that 600 000 molecules 

of CO2 are hydrated by one molecule of CA.  

Ge et al. (2002) performed elaborate studies on the permeability and selectivity of CO2 in CA. 

The results were highly encouraging, showing CO2 selectivities of 100 to 900 over O2 and N2. 

Studies on permeance were done, as well as the effect of different sweep gas conditions. 

Trachtenberg et al. (2009) reported 85.3% CO2 removal from flue gas containing 15.4 wt% 

CO2. CO2 could be recovered with 81% purity using CA.     
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Figure 2-10: CO2 Separation using Carbonic Anhydrase Enzyme (Figueroa et al., 2008) 

The technique is relatively underdeveloped. The disadvantages are the limitations at membrane 

boundary layers due to pore wetting and surface fouling, scale up uncertainties, and uncertainty 

in long term operation. Trachtenburg et al. (2009) stated that a further disadvantage is that the 

enzymes are destroyed by flue gas containing high amounts of SOX. Enzyme permeators can 

only operate on flue gases containing SOX concentrations lower than 7 ppmv, which is a very 

demanding constraint, prompting further advancement in flue gas desulphurisation methods, or 

alternatively searching for more robust enzymes.  

2.4.6.2 Metal organic frameworks 

Metal organic frameworks (MOFs) are hybrid organic/inorganic structures containing metal 

ions geometrically co-ordinated and bridged with organic bridging ligands (Plasynski et al., 

2008). This arrangement results in a structured system of molecules designed to increase surface 

area for efficient adsorption. Refer to Figure 2-11 for an illustration of metal organic 

frameworks. 

 

Figure 2-11: Structure of a Typical MetalOrganic Framework (MOF) (Long, 2010) 

http://greenoptimistic.s3.amazonaws.com/2010/06/Metal-organic-frameworks.jpg
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Figueroa et al. (2008) states that MOFs possess high CO2 adsorption capacity and the 

regeneration energy required is lower than for conventional sorbents and solvent processes. 

There are hundreds of possible MOFs that can be developed using various metal ions and 

organic ligands, and that can be tailor-made to suit various applications such as CO2 capture. 

MOFs are used as nanoporous membranes or sorbents.  

While the technology is still fairly new, studies are underway to investigate CO2 adsorption in 

MOFs. Yazaydin et al. (2009) studied the adsorption of CO2 in 14 metal organic frameworks. It 

was reported that MOFs containing magnesium and zinc ions provided higher CO2 adsorption 

than other metal ions. This was confirmed in Simmons et al. (2011) who compared 7 different 

MOFs for CO2 capture. MOF’s containing zinc ions were shown to have a higher adsorption 

capacity and higher selectivity to CO2 as a porous material.   

Despite these few attempts, the study of metal organic frameworks is still in its infancy. 

However, there is great potential in this field, as the MOF possibilities are vast and this makes it 

highly possible that an ideal MOF can be found that would achieve feasible CO2 capture and 

recovery.  

2.4.6.3 Integrated gasification steam cycle 

A U.S. consortium consisting of Jacobs Consultancy, Siemens, M.A.N., CO2 Global, and 

Imperial College London have conducted research into a modified IGCC coal combustion 

process named Integrated Gasification Steam Cycle (IGSC). This process was developed in an 

attempt to minimise the energy penalty associated with power plants containing CO2 capture. 

Waste energy is put to good use through a relatively complex system of recycle streams and 

turbines of varying pressure. Refer to Figure 2-12 below. 
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Figure 2-12: Integrated Gasification Steam Cycle (Karmarkar et al., 2009) 

The process consists of a two-stage combustion system. Coal is gasified in a quench gasifier, 

which utilises water for the maintenance of temperature. The resultant syngas contains carbon 

monoxide, hydrogen gas, and oxygen gas. Combustion occurs at 1573.15-1773.15K and at high 

pressure (Griffiths, 2008). Combustion gases are passed through an expander to generate power. 

Combustion is completed in the expander, which consists of a burner connected to a gas turbine.  

The exhaust heat is efficiently used to raise high pressure steam in a heat recovery steam 

generation (HRSG) system. This steam is then used to power an additional conventional 

condensing steam turbine, which can be retrofitted to the process.   

Thereafter, gases are cooled in a desaturator. Water is condensed, leaving a gas stream 

containing primarily CO2 with trace amounts of SO2. The desaturator utilises recycled cooling 

water and if further optimised, can drive an additional low-pressure turbine (Karmarkar et al., 

2009).  

The process has the potential to obtain 100% CO2 recovery and an increase in power plant 

output by nearly 60% (Kent, 2009). The drawback however, is the capital cost of IGSC 

processes.  Kent (2009) estimated a capital cost for IGSC processes of $4235/kW. Most of the 

cost is attributed to air separation units which provide oxygen to the gasifier, without which the 

cost is $1801/kW. However, an internal rate of return on such an investment is claimed to range 

from 8% to 12%.    

The process can be constructed using conventional turbines. It is claimed that the flue gas 

stream is available at high pressure, which would reduce CO2 compression costs. If sulphur 
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content is too high, a solvent would be needed for desulphurisation. The process is designed for 

coal input but there are claims that it can be applied to natural gas processing as well.  

The process is novel and research is being done solely by the consortium that invented it. There 

is hence no possibility of finding data from other independent sources. There is however, 

abundant information available from the consortium (Karmarkar et al., 2009).   

2.4.6.4 Chemical looping combustion 

This technology is not specifically a CO2 capture technique, but rather a modification of the 

traditional oxy-fuel combustion concept. While oxy-fuel combustion utilises pure oxygen gas, 

chemical looping combustion utilises oxygen derived from metal oxides, during redox reactions. 

The process is shown in Figure 2-13 below. 

 
Figure 2-13: An illustration of Chemical Looping Combustion (Mattisson and Lyngfelt, 2001) 

This process typically uses two fluidised bed reactors, namely the air reactor (1) and fuel reactor 

(3). Particulate metal or metal oxide is oxidised in the air reactor using air. The metal oxide now 

acts as an oxygen carrier. The oxygen carrier is then separated from unreacted components of 

air in a cyclone (2). The air, containing N2, unreacted O2 and inherent CO2, is emitted as flue 

gas into the atmosphere, while the particulate oxygen carrier is transferred into the fuel reactor 

(3).   
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The metal oxide is reduced during a combustion reaction with hydrocarbon fuel. The reduced 

metal oxide is recycled to the air reactor. The resulting hot flue gas from the fuel reactor 

contains mainly CO2 and H2O and can be used to drive turbines or alternatively heat a separate 

steam cycle loop which would be used to drive turbines. 

The metal oxides are transferred between reactors using conveyor belt systems or more 

popularly using compressed air blasts. The pressurised air acts as a medium of transfer while 

also oxidising the metal simultaneously before separation and entry into the fuel reactor. Since 

the oxidation reaction is exothermic, the compressed air also heats the oxide while transferring 

it to the fuel reactor, thereby assisting in efficient reduction.  

The general reactions of the air and fuel reactor are:  

Air reactor: O2 + 2Me → 2MeO...................................................................(R2-14) 

Fuel reactor: CnH2m + (2n + m)MeO → nCO2 + mH2O +  (2n+m)Me............(R2-15) 

The reactions in the chemical looping combustion process occur typically at 1173.15-1573.15 K 

(Mattisson, 2007). Different metal oxides can be used as the oxygen carrier, such as Fe2O3/CuO 

and MgAl2O4 (Wang et al., 2010). More recently studied oxygen carriers include nickel, 

manganese and calcium oxides (Fang et al., 2009). In order to maintain consistency in 

particulate size and shape, Mattisson (2007) investigated the use of support material such as 

Al2O3, TiO2, SiO2, sepiolite, and MgAl2O4. 

The advantage of chemical looping combustion, as with oxy-fuel combustion, is that the flue 

gas contains primarily CO2 and H2O, which can be separated by cryogenic means or multistage 

condensation as shown in Figures 2-12 or 2-13 with simultaneous driving of turbines. NETL 

(2007) reported that CO2 can be available in the flue gas at 31 wt%, which is significantly 

higher than CO2 concentrations in flue gases emitted by conventional pulverised coal (PC) 

power plants. Aside from cryogenic separation or simple condensation, other post-combustion 

CO2 capture techniques can also be used in this process, such as physical or chemical absorption 

(Figueroa et al., 2008). 

The benefit of chemical looping over oxy-fuel combustion is that there is no need for an air 

separation unit (ASU) to provide pure oxygen to the combustion reaction. Current ASU 

technologies have high operating costs and are a major challenge to the implementation of oxy-

fuel combustion. Chemical looping eliminates this challenge.  

The current disadvantage of chemical looping is the lack of development and high cost of the 

technology. Chemical looping is a new coal combustion process. It is not a retrofit CO2 capture 
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technique. Significant capital investment would be required to replace old existing power plant 

processes with chemical looping. The technology is highly promising for the construction of 

new power plants, but the feasibility of replacing conventional power plants with chemical 

looping remains uncertain. 

Another challenge to implementation is choosing an ideal oxygen carrier. The main drawback to 

the process is the formation of side reactions in the air and fuel reactor, as a result of oxygen 

being supplied through a carrier as well as impurities that can enter during introduction of the 

metal oxides. A carrier is yet to be found, which ensures efficient oxidation and transfer of 

oxygen and the burning of fuel without producing undesirable products due to side reactions 

(Wall and Liu, 2008). Fang et al. (2009) provides a summary of the common oxygen carriers 

that are currently under investigation. Mattisson and Lyngfelt (2001) studied the reactivity and 

conversion rates of various oxygen carriers at temperatures of 873.15-1473.15 K.  

Chemical looping also has potential applications in Fischer-Tropsch (FT) processes such as 

coal-to-liquids (CTL) and gas-to-liquids (GTL) processes (Mattisson and Lyngfelt, 2001). Cost 

estimates were done by NETL (2007), which found that chemical looping may have lower 

capital costs than conventional CTL and GTL processes. IEA (2004) also conducted capital and 

operating cost estimates. The study found chemical looping to be more efficient and cost 

effective than IGCC processes.   

Wall and Liu (2008) state that most of the research on chemical looping that is currently 

underway is in the finding of a suitable oxygen carrier. Despite this drawback, a pilot plant has 

been developed in Sweden to investigate the industrial operation of chemical looping 

(Mattisson, 2007 and Mattisson and Lyngfelt, 2001).  

All CO2 capture techniques, as well as power plant operations and the potential for Carbon 

Capture and Storage in South Africa have also been documented in a manuscript titled “Review 

of Carbon Dioxide Capture and Storage With Relevance to the South African Power Sector” 

recently published in the South African Journal of Science. A copy is available electronically in 

the attached CD.  

2.5 The choice of CO2 capture technique to investigate 

It is of great urgency that the reduction of CO2 emissions be achieved, in order to contribute 

towards the realisation of the goal to reduce the rate of climate change, particularly global 

temperature increase.  
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The principle, advantages, and disadvantages of each CO2 capture strategy have been explained 

in previous sections. While this study requires a review of all techniques, a decision was made 

regarding which technique to investigate with greater depth. The primary purpose of this study 

was to investigate a CO2 capture technique that has high potential for industrially feasible CO2 

capture from South African coal power plants in the near future.  

Despite the numerous advantages of many other CO2 capture techniques, gas absorption using 

solvents still remains the most promising solution for CO2 capture and recovery. Absorption and 

stripping are industrially developed technologies which are implemented in other gas treatment 

processes such as denitrification and flue gas desulphurisation. Process constraints, principles, 

parameters, equipment design and optimisation models are hence well developed and easily 

adaptable to the purpose of CO2 capture.     

In addition to this distinction, there are many possible solvents that are under investigation for 

CO2 capture. The most studied solvents are alkanolamine and carbonate based solvents. 

However, there is also high potential for the use of hybrid and blended solvents. The concept of 

utilising ionic liquids as solvents for CO2 capture further emphasises the potential that gas 

absorption using solvents has, as a CO2 capture technique. 

This study shall consider the use of ionic liquids, as well as hybrid solvents containing 

alkanolamines and ionic liquids, as possible solvents for feasible CO2 capture. A review of ionic 

liquids was conducted, including introductory information, ionic liquid synthesis, advantages, 

disadvantages, and types or classification of ionic liquids, such as room temperature ionic 

liquids (RTILs) and task-specific ionic liquids (TSILs).  

Thereafter, a review of the study of ionic liquids for CO2 absorption was conducted. This 

included analyses of CO2 Henry’s Law constants, CO2 solubility, CO2 mole fraction, enthalpy 

and entropy of absorption of CO2 in ionic liquids. A review of ionic liquid density, heat 

capacity, and viscosity was also conducted.  

2.5.1 Ionic liquids 

Ionic liquids are solvents composed of organic cations and inorganic or organic anions. While 

the liquid is composed entirely of ions, it is a neutral liquid overall. Ionic liquids differ from 

ionic solutions, which are solutions of a salt in a molecular solvent such as water, as shown in 

Figure 2-14 below. Ionic liquids contain no molecules, only ions. 
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Figure 2-14: Difference between Ionic Solutions and Ionic Liquids (Othmer, 2008) 

Molten salts are also regarded by some as ionic liquids since the heating of a salt produces a 

liquid comprised entirely of ions. However, others argue this claim since molten salts exist as 

liquids only at high temperatures, whereas other ionic liquids are in the liquid phase for a wide 

temperature range, including room temperature (Arshad, 2009). Older names for ionic liquids 

include liquid organic salts, fused salts, ionic melts, non-aqueous ionic liquids (NAILs), ionic 

fluids, and room temperature molten salts (Othmer, 2008).   

The concept of ionic liquids was first developed in the early 20
th
 century, but interest in them 

only rose in the 1950’s, due to their theoretical potential as solvents and extractants (Welton, 

1999). The first stable ionic liquids over a broad range of temperatures were created in the 

1990’s (Sen and Paolucci, 2006). Since then, hundreds of stable ionic liquids were discovered, 

containing different cation-anion combinations. Arshad (2009) conducted a study on the 

development of ionic liquids. The study found an exponential increase in publications and 

patents on ionic liquids and ionic liquid handling processes as shown in Figure 2-15 below.  

 

Figure 2-15: Number of Ionic Liquid Publications over the Period: 1986-2006 (Arshad, 2009) 
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The common cations currently under investigation are imidazolium (im), pyridinium (py), 

tetraalkylammonium, and tetraalkylphosphonium based cations as shown in Figure 2-16 

(Anderson et al., 2007): 

 

Imidazolium  Pyridinium  Tetraalkylammonium  Tetraalkylphosphonium 

Figure 2-16: Common Ionic Liquid Cation Precursors 

Cations include 1-hexyl-3-methylimidazolium (hmim), 1-hexyl-2,3-dimethylimidazolium 

(hmmim), 1-butyl-3-methylimidazolium (bmim), 1-pentyl-3-methylimidazolium (p5mim), 1-n-

ethyl-3-methylimidazolium (emim), 1-hexyl-3-methylpyridinium (hmpy), and tetrabutyl 

ammonium (N4444), as shown in Figure 2-17 below (Muldoon et al., 2007, Fredlake et al., 2004).  

  

 [hmim]     [hmmim]  [bmim] 

         

 [emim]     [p5mim]  [hmpy] 

 

 [N4444] 

Figure 2-17: Common Ionic Liquid Cations 
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(pFAP), and tris(nonafluorobutyl) trifluorophosphate (bFAP) as shown in Figure 2-18 below 

(Sen and Paolucci, 2006, Muldoon et al., 2007, Fredlake et al., 2004): 

 

[DCA]   [Tf2N]    [eFAP]         [pFAP] 

       

[bFAP]    [PF6]                            [BF4] 

Figure 2-18: Common Ionic Liquid Anions 

While the above cations and anions are commonly studied and form conventional ionic liquids, 

there are many other cations and anions being synthesized to form optimised ionic liquids for 

particular applications (Anderson et al., 2007). Wappel et al. (2009) and Anderson et al. (2007) 

explained that there are millions of ionic liquids that can be synthesized and studied for various 

uses.  

Arshad (2009) summarised the potential uses of ionic liquids. They may be used for obtaining 

the recovery of biofuels, liquid extractions, desulphurisation processes, heat storage, solar cell 

applications, membrane technology and catalysis. This study however, focuses on the use of 

ionic liquids in gas absorption, particularly the absorption of CO2 from coal power plant flue 

gas. Arshad (2009) also provided a table citing the main companies that are synthesising and 

researching ionic liquids for various potential uses.  

2.5.2 Synthesis of ionic liquids 

While some ionic liquids, such as fluorinated, imidazolium based ionic liquids are available 

commercially, most ionic liquids are presently still synthesized in laboratories. While the 

method of synthesis is becoming increasingly unique due to various functionalisations, two 

conventional methods were found to be most prominent.  



53 
 
 

Abdul-Sada et al. (1997) and Holbrey and Seddon (1999) outlined the method of ionic liquid 

synthesis as shown in Figure 2-19. In the case of imidazolium based ionic liquids, which are of 

particular interest for gas absorption, ionic liquid synthesis first begins by the alkylation of 1-

methyl-imidazole using an alkyl halide. A 1-alkyl-3-methylimidazolium precursor is the 

product. Currently, this precursor is becoming increasingly available from commercial 

suppliers, eliminating the need for the first step (Holbrey and Seddon, 1999). The temperature 

of the reaction for the first step varies depending on the ionic liquid that is intended to be 

synthesized. Holbrey and Seddon (1999) stated that the preparation temperature for the first step 

may be as low as 273 K, while Arshad (2009) suggested temperatures up to 363.15 K. The 

reaction is usually carried out at room temperature for most ionic liquids.  

Physically, the alkyl halide is added drop-wise to stirred 1-methyl-imidazole. Depending on the 

quantity (laboratory or commercial), stirring may be done using a stirrer and beaker or using an 

autoclave. Ibrahim (2011) recommended a magnetic stirrer be used. Depending on the ionic 

liquid that is to be produced, the reaction is carried out in an ice bath since the reaction is highly 

exothermic. 3-5 drops of alkyl halide may be added every 5 minutes.   

For other ionic liquids, the first step is the same, but starts with different reactants. To produce a 

1-alkylpyridinium or 1-alkyl-2,3-dimethylimidazolium derivative, pyridine or 1,2-

dimethylimidazole is reacted with an alkyl halide respectively (Arshad, 2009). Ibrahim (2011) 

however stated that imidazolium-based ionic liquids are the easiest and cheapest to synthesize, 

while pyridinium-based ionic liquids require more advanced equipment such as an autoclave 

and microwave reactor for synthesis of the precursor.  

The ionic liquid precursor is then purified either by vacuum filtration, or by repeated washing 

with organic solvents such as ether. The ionic liquid precursor is then dried in a dessicator. The 

precursor may exist in liquid form, or as a solid salt which requires heating (Ibrahim, 2011).   

Thereafter there are two reaction and separation paths for synthesising and purifying the ionic 

liquid. The ionic liquid precursor can undergo ion-exchange, where the precursor is exchanged 

with a Group I metal anion or an anion of a silver (I) salt (Holbrey and Seddon, 1999), 

represented as M[Y] in Figure 2-18. Alternatively, the precursor may undergo acid treatment 

(represented by H[Y] in Figure 2-18). Arshad (2009) stated that both of these methods are 

carried out at room temperature and in water, or other organic solvents, to produce the ionic 

liquid and halide products. Ibrahim (2011) suggested an ethanol:water solvent ratio of 4:1. 

Ethanol is used to dissolve the precursor, while water is present to dissolve M[Y] as shown in 

Figure 2-19. 
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Figure 2-19: Synthesis of Ionic Liquids (Arshad, 2009) 

Product separation differs depending on the ionic liquid produced. If the ionic liquid is insoluble 

in the solvent it was produced in (usually water), then phase separation by liquid-liquid 

extraction may be applied, removing the solvent and excess halide derivatives. The extraction 

may be conducted at room temperature and pressure conditions. However, Holbrey and Seddon 

(1999) noted easier separation if temperatures up to 343 K and vacuum were applied.  

If the ionic liquid is water miscible, then the method of separation varies according to whether 

ion-exchange or acid treatment was the method of ionic liquid synthesis. If the ionic liquid was 

produced by ion exchange, then separation entails the removal of water under reduced pressure 

and cooling to 278.15 K to precipitate MX (Arshad, 2009). Trichloromethane additive facilitates 

precipitation. Ionic liquids produced by acid treatment require repetitive washing with water to 

eventually remove the water together with HX. This is done at elevated temperatures up to 

343.15 K (Holbrey and Seddon, 1999 and Arshad, 2009). It is also possible to determine a 
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solvent that would selectively absorb unreacted compounds in order to purify the ionic liquid 

(Ibrahim, 2011).  

Thin layer chromatography (TLC), gas chromatography mass spectrometry (GCMS), and high 

performance liquid chromatography (HPLC) are used to test the purity of the ionic liquid 

product. The method of purity testing depends on how high the viscosity of the ionic liquid is, 

and if the boiling point of the ionic liquid is lower than its decomposition temperature (Ibrahim, 

2011).    

While the above methods form the basis of ionic liquids synthesis, various other unique 

techniques are applied by other sources in the production of functionalised ionic liquids.  

2.5.3 Advantages of ionic liquids 

There is a myriad of different structures and variation possibilities of cations and anions 

(Wappel et al., 2009), which can result in literally millions of ionic liquids. The potential for 

finding ionic liquids that provide feasible operation in different processes is hence very high. 

Functional groups can be added to ionic liquids to optimise physicochemical properties such as 

the melting point, viscosity and thermal conductivity of the liquid (Huang and Rüther, 2009, 

Anderson et al., 2007). The addition of a functional group can result in the ionic liquid behaving 

as a chemical solvent rather than a physical one (Anderson et al., 2007). Desirable absorption 

rates and capacity can also be achieved in this way. Anderson et al. (2007) stated that ionic 

liquids could also be tuned to be hydrophobic or hydrophilic, depending on the intended use. 

The acidity of the ionic liquid, electrochemical stability, electrical conductivity, and ion 

mobility were also reported to vary with different cations and anions (Dias and Oliveira, 2010).    

Ionic liquids have low volatility, low melting point and high thermal stability (Maginn, 2005, 

Anderson et al., 2007, and Sen and Paolucci, 2006). Many ionic liquids were reported to have 

decomposition temperatures greater than 573 K (Hasib-ur-Rahman et al., 2010). Anderson et al. 

(2007) reported ionic liquid decomposition temperatures ranging from 473 to 673 K. Dias and 

Oliveira (2010) found that some ionic liquids remain liquid even at temperatures above 573 K. 

Their low volatility was reported to result from strong interaction of ions due to Coulombic 

forces (Dias and Oliveira, 2010). This is an advantage in absorption processes as there would be 

negligible solvent losses during regeneration, through evaporation and entrainment (Anderson et 

al., 2007, Brennecke and Gurkan, 2010, Huang and Rüther, 2009). This provides little risk of 

the CO2 gas stream being contaminated with solvent during regeneration, making ionic liquid 

solvents applicable to absorption, scrubbing, and even membrane processes (Zhao et al., 2005). 
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There is also little risk of ionic liquids causing air pollution, due to their low volatility (Maginn, 

2005).  

The low melting point and non-flammable nature of ionic liquids also enables their use in 

refrigeration and various other studies at room temperature (Sen and Paolucci, 2006, Huang and 

Rüther, 2009).   

The low corrosivity of ionic liquids enables their use as undiluted solvents (Maginn, 2005, 

Anderson et al., 2007, and GovMonitor, 2010). This is a crucial advantage in CO2 absorption 

processes. Alkanolamines are corrosive towards industrial equipment, and thus require dilution 

with water, to be used as solvents for CO2 absorption. Generally, alkanolamine solvents are 

composed of 50 to 70 wt% H2O, with 30 to 50 wt% alkanolamine. This increases the cost of 

solvent regeneration, since H2O has a relatively high heat capacity. Moreover, solvent losses 

occur during regeneration because H2O has relatively high volatility. Ionic liquids on the other 

hand don’t need to be diluted. In their pure state, many ionic liquids are not corrosive 

(Brennecke and Gurkan, 2010, Wappel et al., 2009). In addition to this, many ionic liquids such 

as [bmim][PF6], [C8mim][BF4], and [C8mim][PF6]  are hydrophobic, which results in H2O from 

flue gases being selectively rejected during absorption (Hasib-ur-Rahman et al., 2010).  

Ionic liquids generally possess heat capacities which are three times lower than alkanolamine 

solvents (Hasib-ur-Rahman et al., 2010, Sen and Paolucci, 2006). Regeneration of the solvent is 

less energy intensive. GovMonitor (2010) estimates a regeneration energy reduction of up to 

60%, in comparison to conventional alkanolamine solvents (GovMonitor, 2010). Hasib-ur-

Rahman et al. (2010) suggested that pressure sweep and vacuum treatment processes can even 

be used when regenerating ionic liquid solvents. Solvents can be regenerated by adding heat or 

using N2 gas to change pressure. 

The low solvent regeneration required is also due to the fact that ionic liquids are physical 

solvents. CO2 undergoes a physical absorption mechanism. Enthalpy of CO2 absorption is 

typically 10 to 20 kJ/mol in ionic liquids, which is comparatively four times lower than the 

energy required to remove CO2 from alkanolamine solvents (Huang and Rüther, 2009).  

Huang and Rüther (2009) reported that ionic liquids are generally chemically stable, and 

resistant to oxidation and reaction with impurities. This and other factors mentioned above, 

make ionic liquids more easily recyclable than alkanolamine solvents (Anderson et al., 2007, 

Sen and Paolucci, 2006).   
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Solvent absorption is a well developed technique involving gas and liquid handling. Ionic 

liquids can be easily integrated into absorption processes, to take the place of less efficient and 

less feasible solvents. No novel processes and equipment designs may be necessary.  

GovMonitor (2010) and Anderson et al. (2007) reported ionic liquids to be of high CO2 

selectivity. This is advantageous for CO2 disposal processes. On the other hand, many ionic 

liquids have good solvation properties for other gases such as H2S, SO2 and CH4 (Anderson et 

al., 2007). This introduces the possibility of absorbing multiple harmful gases from flue gas 

streams at the same time.   

2.5.4 Disadvantages of ionic liquids 

The main disadvantage of the ionic liquids studied so far, is their high viscosity (Wappel et al., 

2009, Bates et al., 2002). Hasib-ur-Rahman et al. (2010) reported ionic liquid viscosities to be 

up to 40 times higher than alkanolamine solvents. Ionic liquid viscosity generally ranges from 

20-2000cP. Anderson et al. (2007) reported ionic liquid viscosities of up to 10000 cP. The high 

viscosity of ionic liquids is attributed to strong molecular interaction between cations and anions 

(Huang and Rüther, 2009). This restricts the use of ionic liquids in industry, due to the high 

circulation energy that would be required for its application. Regarding fluid mechanics, high 

viscosity decreases the Reynold’s number, a conclusive reflection of flow patterns and regimes. 

Absorption kinetics is also lowered due to lower diffusion coefficients. This reduces the rate of 

absorption/desorption of CO2 and other gases (Huang and Rüther, 2009, Wappel et al., 2009). A 

further issue is that the density and viscosity of ionic liquids increases upon absorption of CO2 

and other gases (Brennecke and Gurkan, 2010, Zhang et al., 2009, Huang and Rüther, 2009).  

There is uncertainty and disagreement on the effects of combining alkanolamines and other 

functional groups to ionic liquids. Hasib-ur-Rahman et al. (2010) suggested combining ionic 

liquids with alkanolamines to reduce viscosity. However, Huang and Rüther (2009) claimed that 

attaching amine functional groups to ionic liquids may increase the viscosity of the solvent. 

Viscosities of ionic liquids containing amines are reported to be 13 to 15 times higher than pure 

ionic liquids. On the other hand, adding primary amines such as mono-ethanolamine (MEA), by 

means of attaching amine functional groups to cations, were also reported to increase CO2 

absorption capacity (Huang and Rüther, 2009). The same effect can be achieved with secondary 

and tertiary amines but absorption capacity is not increased as significantly as when primary 

amines are combined. Liu et al. (2011) investigated the effect of attaching Zn to ionic liquids. 

The viscosity was reported to be 43 times higher than conventional room temperature ionic 

liquids.  
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The addition of H2O to the ionic liquid also produces mixed results. Hasib-ur-Rahman et al. 

(2010) suggested that H2O can be added to reduce viscosity. However, it is uncertain what 

effect H2O has on CO2 solubility of the ionic liquid. Some sources note a decrease in solubility 

and others note an increase, while some sources note a negligible effect (Huang and Rüther, 

2009).    

The use of ionic liquids is a relatively new development and ionic liquids are currently very 

expensive (Wappel et al., 2009). Many companies are currently producing lab quantities of 

ionic liquids rather than industrial quantities, bringing the cost of many ionic liquids to 

approximately $1-10/g ionic liquid (Arshad, 2009, Baltusa et al., 2005). Arshad (2009) also 

stated that the technology also lacks reliable physical data due to pure ionic liquids being made 

available only recently.  

A further consequence of the lack of experience of working with ionic liquids is that there is a 

lack of toxicological data on most ionic liquids (Arshad, 2009, Hasib-ur-Rahman et al., 2010).  

There have been some studies on the toxicity of ionic liquids. Fluorinated ionic liquids are 

found to be toxic and have low biodegradability (Muldoon et al., 2007). Increasing fluorination 

of anions and cations increases toxicity. Due to the low volatility of ionic liquids, there is 

minimal risk of air pollution. It is for this reason that many sources refer to ionic liquids as 

“green solvents”, posing no air pollution hazard. However, water pollution can be caused by 

toxic ionic liquids, if leakages and spillages occur (Hasib-ur-Rahman et al., 2010). Lozano et al. 

(2011) also reported that fluorinated anions such as PF6 could degrade to form HF, with is an 

environmental hazard.   

Like many other physical solvents, ionic liquids have low CO2 absorption capacity at low 

pressure, in comparison to alkanolamine solvents which are chemical solvents (Brennecke and 

Gurkan, 2010, Huang and Rüther, 2009). This is a drawback particularly for post-combustion 

CO2 capture, which produces flue gas with low CO2 partial pressure, less than ambient pressure 

(Huang and Rüther, 2009). CO2 absorption using ionic liquids are optimised at high pressure 

and low temperature, but the flue gas in coal industries is available at low pressure and high 

temperature (Huang and Rüther, 2009). Increasing flue gas pressure and lowering temperature 

increases operational costs and hence decreases feasibility.  

A popular solution to increasing the CO2 solubility and absorption rate, is to increase 

fluorination of the anion, and to a secondary extent the cation (Anderson et al., 2007). 

Increasing the length of alkyl chains in the cation also improves absorption capacity. However, 

this also increases viscosity and toxicity of the solvent (Hasib-ur-Rahman et al., 2010). 
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Brennecke and Gurkan (2010) suggested the addition of an amine functional group to the cation 

of ionic liquids, in order to increase absorption capacity. The use of non-fluorinated ionic 

liquids results in low CO2 solubility in comparison to fluorinated ionic liquids. Muldoon et al. 

(2007) suggested the addition of ethers and flexible alkyl chains to increase free volume of the 

liquid and hence have a high affinity and absorption rate for CO2. 

The industrial implications of flue gas water content produce conflicting results. While many 

ionic liquids are hydrophobic, many others are hydrophilic and this is a disadvantage for the 

treatment of flue gas which contains H2O. H2O gets absorbed into the ionic liquid in the 

absorber, thereby increasing the energy required for solvent regeneration in the stripper. 

However, ionic liquids containing low water content are claimed to provide higher CO2 

solubility (Huang and Rüther, 2009, Wappel et al., 2009). Although the hydrophilicity of ionic 

liquids poses a disadvantage, the regeneration energy required is still lower than for 

alkanolamine solvents, which contain 50-70 wt% H2O (Brennecke and Gurkan, 2010).  

While ionic liquids are highly selective towards CO2, they are not exclusively selective to this 

gas. Many ionic liquids also absorb SO2, H2S, CH4, and SO2 along with CO2 (Anderson et al., 

2007, Shokouhi et al., 2010, Huang and Rüther, 2009). Some literature sources present this as 

an advantage. However, problems arise regarding the disposal of these absorbed gases, which 

ultimately need to be separated from each other.  

2.5.5 Types of ionic liquids 

On an atomic level, ionic liquids consist of anions and cations. They are categorised according 

to the structure of different anions and cations, the conditions at which their performance is 

measured, or the purpose for which they were synthesised. This categorisation is informal and 

not standardised, but offers convenient grouping when comparing different ionic liquids, 

especially since there are thousands of possible ionic liquids that may be synthesized and have 

potential uses commercially.  

This section addresses two relevant categories of ionic liquids.  

2.5.5.1 Room temperature ionic liquids (RTILs) 

Room temperature ionic liquids (RTILs) refer to ionic liquids that are tested for their absorption 

performance as solvents, under room temperature or near room temperature conditions. These 

ionic liquids form the bulk of what is considered conventional ionic liquids. They are generally 

available commercially, albeit in laboratory scale quantities and at relatively high cost.  
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The RTILs investigated for CO2 capture generally consist of imidazolium based cations with 

fluorinated anions, although there are exceptions to this. CO2 absorption is studied at 

temperatures of 293.15 K to 313.15 K, at CO2 partial pressures up to 2 MPa. There are 

exceptions and variations in opinion of the maximum pressure and temperatures that constitute 

RTIL studies.   

Bara et al. (2010) investigated the use of RTILs for CO2 capture. Three imidazolium-based 

RTILs were synthesized and CO2 absorption measurements were done at ambient temperature 

and a CO2 partial pressure of 0.101325 MPa. A review of RTILs was done by Hasib-ur-Rahman 

et al. (2010), including CO2 absorption measurements using a thermo-gravimetric microbalance. 

CO2 mole fraction and Henry’s Law constants were recorded for CO2 at various partial 

pressures up to 1.5 MPa, mainly at 298.15 K but with some measurements done at temperatures 

up to 323.15K. Results are presented in Table 2-4 and Table 2-6.  

Palgunadi et al. (2009) investigated absorption of CO2 in fluorine-free phosphate RTILs at 

temperatures of 313 to 333 K and CO2 partial pressures of up to 5 MPa. This was done based on 

the RTIL’s performance within general RTIL measurement ranges. Measurements were then 

taken further with higher system pressure.  The synthesis of these ionic liquids and the 

experimental apparatus is discussed. Table 2-4 and Table 2-6 present some results of the 

measurements. 

CO2 Henry’s Law constants in nine fluorinated imidazolium-based ionic liquids were measured 

by Baltus et al. (2004) using a quartz crystal microbalance. Measurements were done at 

298.15K and at CO2 partial pressures up to 0.1 MPa. Results are included in Table 2-4. 

RTIL viscosity and molar volume at 298.15 K were recorded by Scovazzo (2009). This includes 

imidazolium, ammonium, phosphonium and functionalised RTILs. The functionalising of 

RTILs is given much caution however, since solvent-solvent interactions are presently not well 

understood. Results are recorded in Table 2-11. Condemarin and Scovazzo (2009) recorded CO2 

solubility in 20 ammonium-based RTILs, together with RTIL viscosity and molar volume. 

Table 2-5 and Table 2-11 present a summary of the results. Properties such as density and 

viscosity, as well as synthesis methods for imidazolium based RTILs are contained in Scovazzo 

et al. (2009), while styrene and acrylate-based RTILs are presented in Bara et al. (2007).    

The modelling of CO2 absorption in RTILs was elaborately presented in Scovazzo (2009), as 

well as Lozano et al. (2011). The popular models for CO2 absorption in imidazolium based 

RTILs are the Camper Molar Volume Model and the Kilaru Viscosity Model. COSMO-RS, 
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UNIFAC, group contribution models and LFER/Abraham also provide gas solubility 

predictions. The accuracy of each model is addressed.  

The study of ionic liquids at low temperatures often produces promising results. Relatively high 

CO2 solubilities are noted, either directly or by inference of Henry’s Law constants. This 

suggests a high suitability of ionic liquids for CO2 capture. However, problems arise when 

studying the suitability of these ionic liquids for CO2 capture on an industrial level. For coal 

combustion in particular, temperatures are high, at least over 373.15 K, and CO2 partial pressure 

may be below atmospheric pressure, which substantially reduces CO2 absorption in the ionic 

liquid. Refrigeration and compression units may be utilised to bring flue gas to ideal conditions 

for CO2 absorption, but this contributes towards a higher energy penalty. Viscosity of the RTIL 

is also high at room temperature, which contributes towards high circulation costs in terms of 

energy.  

Room temperature absorption also results in a higher energy penalty during desorption, as high 

temperature is required for CO2 desorption from the ionic liquid.   

2.5.5.2 Task-specific ionic liquids (TSILs) 

These ionic liquids are categorised as such, simply due to the purpose for which they are being 

synthesized and investigated. As previously mentioned in Section 2.5.1, ionic liquids have many 

potential uses including CO2 absorption. Research has thus been pursued to develop ionic 

liquids that are specifically suited to capturing CO2 at conditions that would minimise energy 

penalty and improve efficiency.  

These ionic liquids are usually novel, and are synthesized in the lab. Due to their specific rather 

than multiple potential uses, these ionic liquids are not typically available from commercial 

chemical companies.   

Novel developments include the use of non-fluorinated anions, cations or both. Non-

imidazolium based cations such as phosphate cations are also included in task-specific ionic 

liquid (TSIL) studies. An ongoing development of functionalised ionic liquids also forms part of 

the study on TSILs.  

Bates et al. (2002) synthesized a TSIL which possessed an imidazolium-based cation of novel 

structure. The structure is presented, along with the method of synthesis. The TSIL was simply 

termed TSIL 1 and CO2 solubility studies were done. The results are presented in Table 2-5. 

Compared to other ionic liquids, it is easily noted that TSIL 1 resulted in the highest CO2 

solubility even at higher temperature and lower partial pressure. The TSIL was also noted to be 
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recyclable. Bates et al. (2002) notes however that the main drawback to the industrial 

implementation of TSIL 1 is its high viscosity.  

Zhao et al. (2005) studied the uses of various ionic liquids, including TSILs. TSILs are reported 

to be potentially useful as versatile solvents and catalysts, for extraction purposes, solid phase 

synthesis, and the production of liquid emulsions such as liquid Teflon.  

Gurkan et al. (2010) and Brennecke and Gurkan (2010) have investigated TSILs containing 

phosphate cations with phosphate and sulphate anions. TSIL structure is shown, including 

[P66614][Met] and [P66614][Pro]. CO2 solubility measurements were taken. This was presented in 

Gurkan et al. (2010). Table 2-5 shows CO2 solubility in these TSILs to be relatively high at 

room temperature. However, Henry’s Law constant results shown in Table 2-4 were not as 

encouraging as CO2 Henry’s Law constant in other conventional ionic liquids.   

An elaborate literature study on TSILs was done by Hasib-ur-Rahman et al. (2010). It was noted 

that CO2 solubility in TSILs can be up to 3 times higher than RTILs. Table 2-4 and Table 2-5 

confirm this. CO2 solubility can be comparable with conventional alkanolamine solvents. 

However, Hasib-ur-Rahman et al. (2010) also notes that TSIL viscosities can be extremely high, 

up to 2000 cP as shown in Table 2-11 for fluorinated TSILs. This is one of the main drawbacks 

to the industrial implementation of TSILs. In addition to this, Hasib-ur-Rahman et al. (2010) 

also notes that equilibrium and TSIL regeneration time can be very high, with some requiring a 

period of 24 hours to regenerate. TSILs such as [Am-im][BF4], [Am-im][DCA], and 

[Pabim][BF4] were considered. CO2 solubility and Henry’s Law constants are presented in 

Table 2-4 and Table 2-5, while viscosity of these TSILs are presented in Table 2-11. The high 

viscosity of TSIL has led to other strategies such as blending TSILs with low-viscosity RTILs to 

maintain high CO2 solubility while reducing viscosity. 

A more detailed investigation into the amine-functionalised TSIL [Pabim][BF4] was done by 

Arshad (2009). Experimental procedures regarding CO2 absorption, as well as reaction 

mechanisms between [Pabim][BF4] and CO2, are presented. A significantly more elaborate 

study on amine-functionalised TSILs was done by Zhang et al. (2009), which included density, 

viscosity and CO2 mole fraction data for twenty amine-functionalised TSILs. Results of this 

study are presented in Table 2-6, Table 2-10 and Table 2-11 for comparison. Significantly 

higher viscosity and density are easily noted, compared to conventional ionic liquids.     

Novel TSILs will only be available commercially if they are proven to be successful on an 

industrial level.  
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2.5.6 Gas absorption using ionic liquids as solvents 

There has been increasing interest in the potential use of ionic liquids as solvents for gas 

absorption as previously explained and shown in Figure 2-4. Arshad (2009) notes an 

exponential increase in the study of ionic liquids in recent years, with over 6000 papers being 

published between 1999 and 2006 investigating the absorption of different gases. The interest in 

ionic liquids has resulted in over 700 ionic liquid patents.   

Gases of particular interest include: carbon dioxide (CO2), sulphur dioxide (SO2), hydrogen 

sulphide (H2S), nitrogen gas (N2), methane (CH4), and nitrogenous gases (NOX) (Cserjesi et al., 

2010, Scovazzo, 2009, Luis et al., 2009). These compounds form components of coal, steel and 

petrochemical process flue gas. The gas receiving the most attention particularly for coal 

industries is CO2, due to its relative abundance in flue gas emissions and overall impact on 

climate change.  

Current studies have shown the gas absorption process to be energy intensive, since a solvent 

with high CO2 absorption rate, high absorption capacity, low heat capacity, and low viscosity, is 

yet to be found. Brennecke and Gurkan (2010) summarised the energy requirements of gas 

absorption using solvents. The main energy consumption occurs during the regeneration of the 

solvent for recovery of CO2 and reuse of the solvent. This is due to the high heat capacity of the 

solvent. Most solvents, particularly alkanolamine and carbonate solvents are diluted with water 

to lower their corrosiveness. Water has a relatively high heat capacity which contributes to the 

high regeneration energy required. Secondly, circulation energy is required to pump the solvent 

between absorbers and strippers. The relatively high viscosity of solvents contributes to this 

energy penalty. Thirdly, energy is needed to compress CO2 once it is recovered from stripping. 

Depending on the desired requirements, the required compression pressure could be up to 14 

MPa (Brennecke and Gurkan, 2010). 

Elaborate studies of ionic liquid properties have been undertaken. The main properties that are 

studied include: gas solubility (mol gas/mol ionic liquid), mole fraction of gas absorbed in the 

ionic liquid, Henry’s Law constants of gases absorbed in the ionic liquid (MPa), ionic liquid 

viscosity (cP), ionic liquid density (g/cm
3
), diffusivity of gases into the ionic liquid (m

2
/s), the 

heat capacity of the ionic liquid (J.mol
-1

.K
-1

), the enthalpy of absorption of a gas into the ionic 

liquid (kJ/ mol gas), and the entropy of absorption of a gas into the ionic liquid (J.mol
-1

.K
-1

). 

Zhang et al. (2006) presented all of the above mentioned properties, as well as other properties 

of 588 ionic liquids, including combinations of 276 cations and 55 anions. Less frequently 

measured properties of ionic liquids are also contained such as ionic liquid decomposition 



64 
 
 

temperature, conductivity, melting point, glass transition temperature, polarity and 

electrochemical window.    

One of the most popular measurements of gas absorption using physical solvents, and the most 

conclusive, is the measurement and calculation of the Henry’s Law constant (MPa). Henry’s 

law states that the solubility of a gas in a liquid at a particular temperature is proportional to the 

partial pressure of that gas above the liquid.  

The Henry’s Law constant is given by: 

gas

gas

TsolventgasT
x

P
HH  ,,,1,2    ........................................(E2-1) 

where: 

Hgas,solvent,T = Henry’s Law constant (bar) of a particular gas (2) at a particular temperature in a 

particular solvent (1) 

Pgas = Partial pressure of gas above the solution (MPa) 

xgas = Mole fraction of gas in solution. 

More accurate methods of finding Henry’s Law constants from solubility data at high pressure, 

have been developed by Krichevski and Kasarnovski (1935). The Krichevski-Kasarnovski 

equation is given as follows (Carroll and Mather, 1992): 

RTPPvHxf O /)(ln)/ln( 122122 


………………………(E2-2) 

where f2 = fugacity of the solute in the mixture (1 indicates solvent) 

          


2v Partial molar volume at infinite dilution  

         OP1 vapour pressure of the solvent 

For most ionic liquids, which possess negligible vapour pressure, 
OP1 can be assumed to be 

zero. The above equation also assumes that the concentration of the solute is sufficiently small 

for activity coefficients to be unity. A plot of )/ln( 22 xf  vs )( 1

OPP  for a set of solubility 

data at constant temperature would yield a straight line with 21ln H as the intercept.  
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For activity coefficients expected to be less than unity, the equation may be modified in a 

number of ways to incorporate activity coefficient models of varying complexity. Details are 

available in the work of Carrol and Mather (1992).  

A lower Henry’s Law constant for a particular temperature suggests that a gas is more soluble in 

a solvent. This is the reason why its measurement and calculation has become so useful in 

studying ionic liquids for gas absorption, particularly CO2 absorption.   

Numerous sources have investigated the Henry’s Law constant of CO2 in various ionic liquids. 

Maginn (2005), Shiflett and Yokozeki (2005), Condemarin and Scovazzo (2009), and Cadena et 

al. (2004) obtained Henry’s Law constants for CO2 in a variety of fluorinated ionic liquids, 

within temperatures of 283.15-333.15 K. The effect of humidity on Henry’s Law constants was 

addressed by Hasib-ur-Rahman et al. (2010) and Baltus et al. (2004). Ionic liquids with 

imidazolium-based cations were studied by Anderson et al. (2007), Palgunadi et al. (2009), 

Chen et al. (2006) and Huang and Rüther (2009), to establish the effect of cation chain length on 

Henry’s Law constants. Comparatively few non-fluorinated ionic liquids were studied for CO2 

Henry’s Law constants. The most significant study was that of Palgunadi et al. (2009), which 

investigated Henry’s Law constants for seven non-fluorinated phosphate-based ionic liquids at 

temperatures of 313.15-333.15 K. The study produced comparatively high Henry’s Law 

constants to that of fluorinated ionic liquids of the same temperature, confirming that CO2 is 

more soluble in fluorinated ionic liquids. Arshad (2009), Zhang et al. (2009), and Anderson et 

al. (2007) have studied CO2 Henry’s Law constants in non-fluorinated ionic liquids to a very 

limited extent. However, their results also confirm higher solubility in fluorinated ionic liquids. 

Table 2-4 contains Henry’s Law constant data for CO2 in ionic liquids, measured by various 

literature sources.  

Table 2-4: CO2 Henry’s Law Constant Measurements by Numerous Literature Sources 

Ionic Liquid Henry's Constant/MPa Temperature/K References 

[bmim][BF4] 0.35-1.02 281.69-392.16 Shiflett and Yokozeki (2005) 
 4.19-8.4 283.15-323.15 Hasib-ur-Rahman et al. 

(2010) 
 4.18-8.86 283.15-323.15 Anderson et al. (2007) 
 4.08-8.89 283.15-323.15 Cadena et al. (2004) 
 1.71-2.35 307.15-322.15 Chen et al. (2006) 
 5.57 298.15 Huang and Rüther (2009) 
[BMIM][Bu2PO4] 4.98-6.85 313.15-333.15 Palgunadi et al. (2009) 
[BMIM][BuHPO3] 6.3-8.52 313.15-333.15 Palgunadi et al. (2009) 
[BMIM][MeHPO3] 8.68-11.29 313.15-333.15 Palgunadi et al. (2009) 
[bmim][PF6] 0.35-1.01 281.69-392.16 Shiflett and Yokozeki (2005) 
 5.34-8.13 298.15-323.15 Muldoon et al. (2007) 
 5.34 298.15 Hasib-ur-Rahman et al. 

(2010) 
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Table 2-4 (Contd.): CO2 Henry’s Law Constant Measurements by Numerous Literature Sources 

Ionic Liquid Henry's Constant/MPa Temperature/K References 

 3.88-8.13 283.15-323.15 Anderson et al. (2007) 
 3.87-8.13 283.15-323.15 Anthony et al. (2002) 
 5.34 298.15 Huang and Rüther (2009) 
 3.87-8.13 283.15-323.15 Cadena et al. (2004) 

 3.88-8.13 283.15-323.15 Arshad (2009) 
[bmim][Tf2N] 3.3-4.87 298.15-323.15 Muldoon et al. (2007) 
 2.8-1.5 283.15-323.15 Hasib-ur-Rahman et al. 

(2010) 
 2.53-4.87 283.15-323.15 Anderson et al. (2007) 
 3.7 300.65 Baltus et al. (2004) 
[bmim][Tf2N] with 2.7 wt % 
polyethylenimine 

3.8 300.65 Baltus et al. (2004) 

 3.8 298.15 Hasib-ur-Rahman et al. 
(2010) 

[bmmim][BF4] 4.57-9.22 283.15-323.15 Cadena et al. (2004) 
[bmmim][PF6]  4.73-8.85 283.15-323.15 Cadena et al. (2004) 
[bmpy][Tf2N] 1.27-5.86 293.1-493.2 Kumelan et al. (2010) 
 2.6-4.6 283.15-323.15 Arshad (2009) 
[C6H4F9mim][Tf2N] 2.84-4.85 298.15-333.15 Anderson et al. (2007) 
[C8F13mim][Tf2N] 0.6 298.15 Baltusa et al. (2005) 
[C8H4F13mim][Tf2N] 2.73-4.47 298.15-333.15 Muldoon et al. (2007) 
[DMIM][Me2PO4] Non 
Fluorinated 

10.64-15.22 313.15-333.15 Palgunadi et al. (2009) 

[DMIM][MeHPO3] 11.48-16.35 313.15-333.15 Palgunadi et al. (2009) 
[emim][BF4] 0.7-1 298.15-310.15 Shokouhi et al. (2010) 
 8.12-16.21 298.15-333.15 Arshad (2009) 
[EMIM][Et2PO4] 6.99-9.66 313.15-333.15 Palgunadi et al. (2009) 
[EMIM][EtHPO3] 9.18-12.36 313.15-333.15 Palgunadi et al. (2009) 
[emim][PF6] 5.2 298.15 Hasib-ur-Rahman et al. 

(2010) 
[emim][Tf2N] 3.7 298.15 Hasib-ur-Rahman et al. 

(2010) 
 3.9 298.15 Bara et al. (2007) 
 2.53-5.15 283.15-323.15 Cadena et al. (2004) 
[emmim][Tf2N]  2.86-6.05 283.15-323.15 Cadena et al. (2004) 
 2.86-6.05 283.15-323.15 Arshad (2009) 
[Et3NBH2mim][T2N] 3.31 298.15 Anderson et al. (2007) 
[hemim][BF4] 1.08-1.98 303.15-353.15 Shokouhi et al. (2010) 
[hexafluoroimid][Tf2N] 2.85-4.85 298.15-323.15 Maginn (2005) 
[hmim][ACE] 11.31 333.15 Muldoon et al. (2007) 
 11.31 333.15 Anderson et al. (2007) 
[hmim][BF4] 1.59-2.19 307.15-322.15 Chen et al. (2006) 
[hmim][eFAP] 2.53-4.29 298.15-323.15 Maginn (2005) 
 2.52-4.2 298.15-333.15 Arshad (2009) 
[hmim][pFAP] 2.16-3.6 298.15-333.15 Muldoon et al. (2007) 
[hmim][SAC] 13.22 333.15 Anderson et al. (2007) 
[hmim][Tf2N] 2.42-4.56 283.15-323.15 Maginn (2005) 
 3.5 298.15 Hasib-ur-Rahman et al. 2010 
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Table 2-4 (Contd.): CO2 Henry’s Law Constant Measurements by Numerous Literature Sources 

Ionic Liquid Henry's Constant/MPa Temperature/K References 

 2.42-4.56 283.15-323.15 Anderson et al. (2007) 
 3.4 298.15 Bara et al. (2007) 
 3.5 300.65 Baltus et al. (2004) 
 3.16-4.56 298.15-323.15 Muldoon et al. (2007) 
[hmpy][Tf2N] 2.53-4.61 283.15-323.15 Maginn (2005) 
 3.28-4.62 298.15-323.15 Muldoon et al. (2007) 
[mmim][MeSO4]  13.17-26.34 298.15-333.15 Arshad (2009) 
[N(1)444][Tf2N] 5.07 303.15 Condemarin and Scovazzo 

(2009) [N(1)888][Tf2N] 2.84 303.15 
[N(10)111][Tf2N] 4.46 303.15 

[N(10)113][Tf2N] 4.26 303.15 
[N(4)111][Tf2N] 6.08 303.15 

[N(4)113][Tf2N] 6.38 303.15 

[N(6)111][Tf2N] 4.36 303.15 

[N(6)113][Tf2N] 5.17 303.15 

[N(6)222][Tf2N] 5.88 303.15 
[octafluoroimid][Tf2N] 2.61 298.15 Maginn (2005) 
[omim][BF4] 1.5-2.06 307.15-322.15 Chen et al. (2006) 
[omim][Tf2N] 3 298.15 Hasib-ur-Rahman et al. 

(2010) 
[omim][Tf2N] 3 300.65 Baltus et al. (2004) 
 3 298.15 Baltusa et al. (2005) 
[omim][Tf2N] (58 
mol%)/[C8F13mim][Tf2N] (42 
mol%)  

1.5 298.15 Hasib-ur-Rahman et al. 
(2010) 

[omim][Tf2N] with 20% relative 
humidity 

3 298.15 Hasib-ur-Rahman et al. 
(2010) 

 3 300.65 Baltus et al. (2004) 
[omim][Tf2N] with 40% relative 
humidity 

2.7 298.15 Hasib-ur-Rahman et al. 
(2010) 

 2.7 300.65 Baltus et al. (2004) 
[P(14)444][DBS]  3.04 298.15 Arshad (2009) 
[P(14)666][Cl]  3.546 298.15 Arshad (2009) 
[P(14)666][DCA]  2.969 298.15 Arshad (2009) 
[P(14)666][Tf2N]  3.344 298.15 Arshad (2009) 
[P2444][DEP]  6.991 298.15 Arshad (2009) 
[p5mim][bFAP] 2.02-3.29 298.15-333.15 Muldoon et al. (2007) 
[P66614][Met] 15.7 298.15 Gurkan et al. (2010) 
[P66614][Pro] 5.7 298.15 Gurkan et al. (2010) 
[perfluoro-hmim][Tf2N] 2.55-4.2 283.15-323.15 Hasib-ur-Rahman et al. 

(2010) 
[pmim][PF6] 5.2 298.15 Baltusa et al. (2005) 
 5.2 300.65 Baltus et al. (2004) 
[pmim][Tf2N] 3.7 300.65 Baltus et al. (2004) 
[pmim][Tf2N] with constant-
density gas  

3.9 300.65 Baltus et al. (2004) 

[pmmim][Tf2N] 2.96-5.3 283.15-323.15 Hasib-ur-Rahman et al. 2010 



68 
 
 

Table 2-4 (Contd.): CO2 Henry’s Law Constant Measurements by Numerous Literature Sources 

Ionic Liquid Henry's Constant/MPa Temperature/K References 

1,4-Dibutyl-3-phenylimidazolium 
bis(trifluoromethylsulfonyl)imide 

6.3 298.15 Hasib-ur-Rahman et al. 
(2010) 

 6.3 300.65 Baltus et al. (2004) 
1-Butyl-3-phenylimidazolium 
bis(trifluoromethylsulfonyl)imide 

18 298.15 Hasib-ur-Rahman et al. 
(2010) 

 18 300.65 Baltus et al. (2004) 
58 mol % C8mimTf2N/42 mol % 
C8F13mimTf2N 

1.5 300.65 Baltus et al. (2004) 

C8F13mimTf2N 0.45 300.65 Baltus et al. (2004) 
 0.45 298.15 Hasib-ur-Rahman et al. 

(2010) 
TEGO IL K5 2.71-10.43 300.15-500.15 Heintz et al. (2009) 

CO2 solubility data is comparatively more difficult to find, since it is more difficult to measure 

and easily compare ionic liquid performance for CO2 absorption. This is due to the fact that CO2 

solubility in ionic liquids is dependent on temperature and pressure, while CO2 Henry’s Law 

constants in ionic liquids are dependent only on temperature. Brennecke and Gurkan (2010), 

Condemarin and Scovazzo (2009), and Wilkes (2004) obtained CO2 solubility data in a variety 

of ionic liquids. Condemarin and Scovazzo (2009) investigated CO2 solubility in nine 

fluorinated ionic liquids at 0.101325 MPa and 323.15 K. Bara et al. (2007) and Brennecke and 

Gurkan (2010) focussed on non-fluorinated ionic liquids, obtaining higher CO2 solubilities but 

at lower temperatures of 293.15-298.15 K. CO2 solubility data in various ionic liquids measured 

by numerous sources are presented in Table 2-5 below.  

Table 2-5: CO2 Solubility in Ionic Liquids Measured by Numerous Sources 

Ionic Liquid 
CO2 loading/           

mol CO2∙mol IL-1 
Pressure/MPa Temperature/K References 

[Am-im][BF4] 0-2 mol CO2/dm3 IL 0-1 303.15 Hasib-ur-Rahman et al. (2010) 
[Am-im][DCA] 0-1.8 mol CO2/dm3 IL 0-1 303.15 Hasib-ur-Rahman et al. (2010) 
[bmim][BF4] 0-0.8 0-1 303.15 Hasib-ur-Rahman et al. (2010) 
[bmpy][Tf2N] 0.028-6.151 mol 

CO2/dm3 IL 
1.365-10.8 413.12-293.15 Kumelan et al. (2010) 

[emim][MDEGSO4] 0.065-0.959 0.85-6.2 343.15-303.15 Hasib-ur-Rahman et al. (2010) 
[emim][Tf2N] 0.026 0.101325 298.15 Bara et al. (2007) 
[hmim][Tf2N] 0.05 0.1 298.15 Brennecke and Gurkan (2010) 
 0.029 0.101325 298.15 Bara et al. (2007) 

[N(1)444][Tf2N] 0.02 0.101325 303.15 Condemarin and Scovazzo (2009) 
[N(1)888][Tf2N] 0.037 0.101325 303.15 Condemarin and Scovazzo (2009) 
[N(10)111][Tf2N] 0.023 0.101325 303.15 Condemarin and Scovazzo (2009) 
[N(10)113][Tf2N] 0.024 0.101325 303.15 Condemarin and Scovazzo (2009) 
[N(4)111][Tf2N] 0.018 0.101325 303.15 Condemarin and Scovazzo (2009) 
[N(4)113][Tf2N] 0.016 0.101325 303.15 Condemarin and Scovazzo (2009) 
[N(6)111][Tf2N] 0.024 0.101325 303.15 Condemarin and Scovazzo (2009) 
[N(6)113][Tf2N] 0.02 0.101325 303.15 Condemarin and Scovazzo (2009) 
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Table 2-5 (Contd.): CO2 Solubility in Ionic Liquids Measured by Numerous Sources 

Ionic Liquid 
CO2 loading/           

mol CO2∙mol IL-1 
Pressure/MPa Temperature/K References 

[P66614][Met] 0.9 0.12 298.15 Gurkan et al. (2010) 
[P66614][Met] 0.9 0.1 298.15 Brennecke and Gurkan (2010) 
[P66614][Pro] 0.85 0.1 298.15 Brennecke and Gurkan (2010) 
butyl acrylate 0.204 mol CO2/dm3 IL 0.101325 293.15 Bara et al. (2007) 
butyl styrene 0.2 mol CO2/dm3 IL 0.101325 293.15 Bara et al. (2007) 
General 0.4-0.7 0.0005-0.016 383.15 Wappel et al. (2009) 
hexyl styrene 0.177 mol CO2/dm3 IL 0.101325 293.15 Bara et al. (2007) 
MDEA + 
[MDEA][BF4] + H2O 
+ PZ 

100-180e-3 mol CO2 
in 180min 

0.5-2.5 298.15-338.15 SuoJiang et al. (2010) 

methyl acrylate 0.163 mol CO2/dm3 IL 0.101325 293.15 Bara et al. (2007) 
methyl styrene 0.1815 mol CO2/dm3 

IL 
0.101325 293.15 Bara et al. (2007) 

TSIL 1 0.45 in 180min - - Bates et al. (2002) 

  0.4-0.95 0.0005-0.016 313.15 Wappel et al. (2009) 

Another approach is to simply record the CO2 mole fraction that was ultimately achieved in an 

ionic liquid at a particular temperature. This is more popular than CO2 solubility measurements, 

but less popular than Henry’s Law constant investigations, since the mole fraction of CO2 is also 

dependent on the pressure and temperature of the ionic liquid. Mole fraction measurements are 

useful if such data are accompanied by the partial pressure that they were measured in, as 

Henry’s Law constants may easily be calculated using such data. Anderson et al. (2007) and 

Muldoon et al. (2007) measured CO2 mole fractions in a variety of fluorinated and non-

fluorinated ionic liquids at temperatures of 283.15-333.15 K and pressures up to 9 MPa. 

Palgunadi et al. (2009) and Zhang et al. (2009) focussed on CO2 mole fraction measurement in 

non-fluorinated ionic liquids, at atmospheric pressure and temperatures of 298.15-334.15 K. 

Shiflett and Yokozeki (2005), Arshad (2009), and Hasib-ur-Rahman et al. (2010) considered 

fluorinated imidazolium-based ionic liquids in their studies, at temperatures of 298.15-348.15 K 

and 0.1-80 MPa.        

Table 2-6: CO2 Mole Fraction in Ionic Liquids Measured by Numerous Sources 

Ionic Liquid CO2 mole fraction Pressure/MPa Temperature/K Reference 

[aP4443][Ala] 0.155-0.17 0.1013 298.15 Zhang et al. (2009) 
[aP4443][Gly]  0.16-0.19 0.1013 298.15 Zhang et al. (2009) 
[aP4443][Leu]  0.08-0.1 0.1013 298.15 Zhang et al. (2009) 
[aP4443][Val]  0.12-0.14 0.1013 298.15 Zhang et al. (2009) 
[b2-Nic][Tf2N] 0.2-0.71 at 12-88 bar 1.2-8.8 333.15 Anderson et al. (2007) 
[b2-Nic][Tf2N] 0.3-0.7 2-9 333.15 Muldoon et al. (2007) 
[bmim][BF4] 0.02-0.36 0.01-2 283-348 Shiflett and Yokozeki (2005) 
 0.15-0.45 2-8.5 333.15 Anderson et al. (2007) 
 0.25-0.115, 0.25 0.2-1.3 323.15, 283.15 Cadena et al. (2004) 
 0-0.2 0-1.3 298.15 Arshad (2009) 
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Table 2-6 (Contd.): CO2 Mole Fraction in Ionic Liquids Measured by Numerous Sources 

Ionic Liquid CO2 mole fraction Pressure/MPa Temperature/K Reference 

[BMIM][Bu2PO4] 0.021-0.015 0.1 314.15-334.15 Palgunadi et al. (2009) 
[BMIM][BuHPO3] 0.016-0.012 0.1 314.15-334.15 Palgunadi et al. (2009) 
[bmim][C7F15CO2] 0.2-0.75 1.5-8 333.15 Muldoon et al. (2007) 
 0.2-0.78 1.5-8 333.15 Anderson et al. (2007) 
[bmim][DCA] 0.1-0.5 1.5-11.5 333.15 Anderson et al. (2007) 
 0.18-0.5 1.2-6 298.15 Arshad (2009) 
[BMIM][MeHPO3] 0.011-0.009 0.1 314.15-334.15 Palgunadi et al. (2009) 
[bmim][methide] 0.25-0.65 1.5-8 333.15 Muldoon et al. (2007) 
 0.3-0.75 2-9 333.15 Anderson et al. (2007) 
 0.38-0.74 1.2-6.2 298.15 Arshad (2009) 
[bmim][NO3] 0.08-0.45 1.5-9 333.15 Anderson et al. (2007) 
 0.23-0.55 1.8-9 313.15 Arshad (2009) 
[bmim][PF6] 0-0.2 0-1.3 298.15 Anderson et al. (2007) 
 0.01-0.31 0.01-2 283-348 Shiflett and Yokozeki (2005) 
 0-0.21 0-1.3 298.15 Hasib-ur-Rahman et al. (2010) 
 0-0.2, 0.55 0-1.3,13.5 298.15 Anderson et al. (2007) 
 0.02-0.27, 0.7 0.2-1.3,9 323.15-283.15, 

323.15 
Anthony et al. (2002) 

 0.063-0.492 0.26-4 298.15 Kim et al. (2011) 

 0.04-0.13, 0.26 0.2-1.3 323.15, 283.15 Cadena et al. (2004) 
 0.02-0.26 0.2-1.3 323.15-283.15 Arshad (2009) 
[bmim][Tf2N] 0.15-0.65 1.5-9 333.15 Muldoon et al. (2007) 
 0.3-0.75 2-13 333.15 Anderson et al. (2007) 
 0-0.3, 0.52 0-1.3 298.15, 279.15 Arshad (2009) 
 0.09-0.59 0.5-14 333.15-453.15 Raeissi et al. (2008) 
[bmim][TFA] 0.1-0.6 1-9 333.15 Muldoon et al. (2007) 
[bmim][TFA] 0.1-0.55 1-9 333.15 Anderson et al. (2007) 
[bmim][TfO] 0.1-0.5 1.5-11 333.15 Anderson et al. (2007) 
 0.2-0.64 1-6.4 298.15 Arshad (2009) 

[bmmim][BF4] 0.25-0.11, 0.21 0.2-1.3 323.15, 283.15 Cadena et al. (2004) 
[bmmim][PF6]  0.03-0.12, 0.22 0.2-1.3 323.15, 283.15 Cadena et al. (2004) 
[C6H4F9mim][Tf2N] 0-0.34 0-1.3 298.15 Anderson et al. (2007) 
 0-0.33 0-1.3 298.15 Anderson et al. (2007) 
 0.25-0.75, 0-0.8 1-9 333.15, 298.15 Muldoon et al. (2007) 
[C8H4F13mim][Tf2N] 0-0.35 0-1.3 298.15 Anderson et al. (2007) 
 0-0.35, 0.65 0-1.3,4 298.15 Muldoon et al. (2007) 
 0-0.35 0-1.3 298.15 Anderson et al. (2007) 
[C9mim][PF6] 0.186-0.554 0.89-3.4 293-298 Kim et al. (2011) 
[choline][Tf2N] 0.15-0.6 1-8 333.15 Muldoon et al. (2007) 
[DMIM][Me2PO4] 0.009-0.006 0.1 314.15-334.15 Palgunadi et al. (2009) 
[DMIM][MeHPO3] 0.008-0.006 0.1 314.15-334.15 Palgunadi et al. (2009) 
[EMIM][Et2PO4] 0.014-0.011 0.1 314.15-334.15 Palgunadi et al. (2009) 
[EMIM][EtHPO3] 0.011-0.008 0.1 314.15-334.15 Palgunadi et al. (2009) 
[emim][EtSO4] 0.1-0.3 1.8-9 313.15 Arshad (2009) 
[emim][PF6] 0.12-0.6 0-10 298.15 Hasib-ur-Rahman et al. (2010) 
[emim][Tf2N] 0.12-0.6 0-80 298.15 Hasib-ur-Rahman et al. (2010) 
 0.026 0.101325 298.15 Bara et al. (2007) 
 0.09, 0.17 0.55 323.15, 283.15 Cadena et al. (2004) 



71 
 
 

Table 2-6 (Contd.): CO2 Mole Fraction in Ionic Liquids Measured by Numerous Sources 

Ionic Liquid CO2 mole fraction Pressure/MPa Temperature/K Reference 

[EMIM][TFSI] 0-0.05 0-0.1 313.15 Liu et al. (2011) 
[emmim][Tf2N]  0.08, 0.16 0.55 323.15, 283.15 Cadena et al. (2004) 
[Et3NBH2mim][Tf2N] 0-0.3 0-1.3 298.15 Muldoon et al. (2007) 
[H2NC3H6mim][Tf2N] 0.21 0.2 333.15 Anderson et al. (2007) 
[hemim][BF4] 0.0004-0.102 0.153-1.102 353-303 Shokouhi et al. (2010) 
[hmim][eFAP] 0-0.36, 0.8 0-1.3, 9 298.15 Anderson et al. (2007) 
 0.15-0.8 1-9.2 333.15 Muldoon et al. (2007) 
 0-0.36 0-1.3 298.15 Anderson et al. (2007) 
[hmim][PF6] 0.1-0.5 1-7 333.15 Muldoon et al. (2007) 
[hmim][pFAP] 0-0.4 0-1.3 298.15 Anderson et al. (2007) 
 0-0.4 0-1.3 298.15 Muldoon et al. (2007) 
 0-0.4 0-1.3 298.15 Anderson et al. (2007) 
[hmim][Tf2N] 0-0.39 0-1.3 283.15 Anderson et al. (2007) 
 0-0.31 0-1.3 298.15 Anderson et al. (2007) 
 0-0.21 0-1.3 323.15 Anderson et al. (2007) 
 0-0.3, 0.7 0-1.3, 9 298.15 Anderson et al. (2007) 
 0-0.3 0-1.3 313.15 Brennecke and Gurkan (2010) 
 0-0.3 0-1.3 298.15 Anderson et al. (2007) 
 0.25-0.75 1.5-12 313.15 Arshad (2009) 
 0.2-0.7, 0-0.75 2-9.5 333.15, 298.15 Muldoon et al. (2007) 
[hmpy][Tf2N] 0-0.29 0-1.3 298.15 Anderson et al. (2007) 

 0-0.2 0-0.7 298.15 Anderson et al. (2007) 
 0-0.3 0-1.3 298.15 Arshad (2009) 
 0-0.3 0-1.4 298.15 Muldoon et al. (2007) 
[N4111][Tf2N] 0.15-0.7 1.5-8 333.15 Muldoon et al. (2007) 
[N4444][doc] 0.2-0.79 at 20 - 90 

bar 
2-9 333.15 Anderson et al. (2007) 

[N4444][docusate] 0.2-0.8 2-9 333.15 Muldoon et al. (2007) 
[Nbupy][BF4] 0.22-0.57 1.8-9 313.15 Arshad (2009) 
[omim][BF4] 0.23-0.7 1.8-9 313.15 Arshad (2009) 

[omim][PF6]  0.24-0.75 1.8-9 313.15 Arshad (2009) 
[omim][Tf2N] 0.25-0.80 1.5-12 313.15 Arshad (2009) 
[p5mim][bFAP] 0-0.42 0-1.3 298.15 Anderson et al. (2007) 
 0.25-0.82 1.5-9 333.15 Muldoon et al. (2007) 
 0-0.42 0-1.3 298.15 Anderson et al. (2007) 
Ecoeng 41M 0.1-0.5 at 20-90 bar 2-9 333.15 Anderson et al. (2007) 

 0.1-0.5 2-9 333.15 Muldoon et al. (2007) 
Ecoeng 500 0.2-0.7 at 15-90 bar 1.5-9 333.15 Anderson et al. (2007) 

 0.2-0.7 1.5-10 333.15 Muldoon et al. (2007) 
EM(Zn)TFSI 1-1 0-0.82 0-0.1 313.15 Liu et al. (2011) 
TEGO IL K5 0.05-0.6 0.5-3 500-300 Heintz et al. (2009) 

 

Henry’s Law constants, CO2 solubility, and CO2 mole fraction are obtained either by vapour-

liquid equilibrium (VLE) measurement, or by analysis of infinite dilution activity coefficients 

using a dilutor cell apparatus. Equipment for measurements on ionic liquids were designed to 

use as little ionic liquid sample as possible, due to the high cost of ionic liquids. 
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Anderson et al. (2007) utilised an Intelligent Gravimetric Analyser (IGA) for low pressure VLE 

measurement (0-2 MPa). Shiflett and Yokozeki (2005) explain the operation of this apparatus. 

Desorption under high temperature can also be conducted. Anderson et al. (2007) utilised a 

Rubotherm for high pressure VLE measurement. The apparatus required 0.075-1.5g ionic liquid 

samples.  

Henry’s Law constant measurement using a dilutor cell apparatus was presented in Richon et al. 

(1980), with a view to increase accuracy and speed of measurement in Richon (2011).  

Another method of measuring CO2 mole fractions and calculating CO2 solubility and Henry’s 

Law constant, is to test the loaded ionic liquid solvent using nuclear magnetic resonance (NMR) 

spectrometry (Zhang et al., 2009). Chromatography analysis is not always recommended due to 

the high viscosity of the ionic liquid. Zhang et al. (2009) successfully utilised NMR 

spectrometry for measuring CO2 absorption in 20 amine-functionalised non-fluorinated ionic 

liquids. 

Other imperative measurements in the study of ionic liquids for CO2 absorption are the ionic 

liquid heat capacity, entropy and enthalpy of absorption of CO2 into the ionic liquid. These 

measurements provide an indication of the energy that would be required to release CO2 from 

the ionic liquid, and recycle the ionic liquid. Heat capacity measurements are not popular 

regarding CO2 absorption since it is only the minimum amount of energy necessary for 

desorption that is of interest. Fredlake et al. (2004) and Liu et al. (2011) conducted heat capacity 

measurements for imidazolium-based ionic liquids at 298.15-323.15 K.  

Table 2-7: Heat capacity of Ionic Liquids Recorded by Different Sources 

Ionic Liquid Heat Capacity/J∙mol-1∙K-1 Temperature/K References 

[bmim][BF4] 351.5-358 298.15-323.15 Fredlake et al. (2004) 
[bmim][Br] 316.7-323.6 298.15-323.15 Fredlake et al. (2004) 
[bmim][Cl] 322.7-333.7 298.15-323.15 Fredlake et al. (2004) 
[bmim][dca] 364.6-370 298.15-323.15 Fredlake et al. (2004) 
[bmim][methide] 782.8-802.4 298.15-323.15 Fredlake et al. (2004) 
[bmim][Tf2N] 536.3-543.9 298.15-323.15 Fredlake et al. (2004) 
[bmim][TfO] 417.2-423.1 298.15-323.15 Fredlake et al. (2004) 
[bmmim][BF4] 375.3-406.5 298.15-323.15 Fredlake et al. (2004) 
[bmmim][PF6] 397.6-405.1 298.15-323.15 Fredlake et al. (2004) 
 433.6-449.1 298.15-323.15 Fredlake et al. (2004) 
[emim][Tf2N] 524.3-532.2 298.15-323.15 Fredlake et al. (2004) 
[EMIM][TFSI] 1.242-1.795 J.g-1.K-1 300-479.73 Liu et al. (2011) 
[emmim][Tf2N] 492.7-498.8 298.15-323.15 Fredlake et al. (2004) 
[pmmim][Tf2N] 554.5-558.7 298.15-323.15 Fredlake et al. (2004) 
EM(Zn)TFSI 1-1 1.077-2.043 J.g-1.K-1 300-479.73 Liu et al. (2011) 
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Enthalpy of absorption for non-volatile solvents such as ionic liquids may be expressed by the 

following equation (Prausnitz et al., 1999, Pg. 597): 
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Where 
L

h 2  is the enthalpy of the gas absorbed in the liquid, 
Gh2  is the enthalpy of the pure gas in 

the gas phase, x2 is the liquid mole fraction of the absorbed gas, R is the gas constant in [J.mol
-

1
.K

-1
] and T is the system temperature in [K]. 

Enthalpy of absorption is also an indication of the temperature dependence of absorption of 

particular gases in particular solvents. Solubility of a gas in some solvents decreases more 

substantially upon increasing temperature than for solubility in other solvents (Prausnitz et al., 

1999, Pg. 598).  

Table 2-8: Enthalpy of Absorption of CO2 in Ionic Liquids Recorded by Different 
Sources 

Ionic Liquid Enthalpy of Absorption (kJ/mol CO2) References 

[bmim][BF4] -15.9 Cadena et al. (2004) 
 -13.9 Arshad (2009) 
 -15.8 Chen et al. (2006) 
[bmim][PF6] -16.1 Anthony et al. (2002) 
 -16.1 Cadena et al. (2004) 
 -14.3 Arshad (2009) 
[bmim][Tf2N]  -12.5 Arshad (2009) 
[bmmim][BF4] -14.5 Cadena et al. (2004) 
[bmmim][PF6]  -13 Cadena et al. (2004) 
[bmpy][Tf2N] -10.4 Arshad (2009) 
[emim][BF4] -13 Arshad (2009) 
[emim][Tf2N] -14.2 Cadena et al. (2004) 
[emmim][Tf2N]  -14.7 Cadena et al. (2004) 
[hemim][BF4] -22.9--10.6 at 303-353K Shokouhi et al. (2010) 
[hmim][BF4] -17.3 Chen et al. (2006) 
[hmim][Tf2N] -11.8 Maginn (2005) 
 -12 Anderson et al. (2007) 
 -11.8 Anderson et al. (2007) 
[hmpy][Tf2N] -11.1 Maginn (2005) 
 -12 Anderson et al. (2007) 
 -11.5 Anderson et al. (2007) 

[mmim][MeSO4]  -12 Arshad (2009) 
[omim][BF4] -18.3 Chen et al. (2006) 
[P66614][Met] -64 Gurkan et al. (2010) 
[P66614][Pro] -80 Gurkan et al. (2010) 
[pmmim][Tf2N] -11 Arshad (2009) 
TEGO IL K5 -11.92--15.05 at 300-500K Heintz et al. (2009) 
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Maginn (2005), Sen and Paolucci (2006), and Anderson et al. (2007) studied the comparison 

between imidazolium-based ionic liquids and pyridinium- based ionic liquids, showing a 

miniscule difference in enthalpy of absorption. Anderson et al. (2007) recorded no difference, 

while Maginn (2005) and Sen and Paolucci (2006) recorded the enthalpy of absorption to be 

0.3-0.7 kJ/mol lower in pyridinium-based ionic liquids. Chen et al. (2006) studied the effect of 

increasing cation chain length on enthalpy of absorption. Smaller chain length resulted in lower 

enthalpy of absorption. Cadena et al. (2004) and Arshad (2009) summarised enthalpy of 

absorption for fluorinated ionic liquids, while Heintz et al. (2009) and Gurkan et al. (2010) 

measured enthalpy of absorption for non-fluorinated ionic liquids. Enthalpy of absorption was 

much higher for non-fluorinated ionic liquids, ranging from [-64 – -80 kJ/mol] CO2 at 298.15 K.  

Another method of quantifying the temperature dependence of solubility is the entropy of 

absorption. This is expressed by the following equation (Prausnitz et al., 1999, Pg. 597): 
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Where,  
L

s 2  is the entropy of the gas absorbed in the liquid, 
Gs2  is the enthalpy of the pure gas in 

the gas phase, x2 is the liquid mole fraction of the absorbed gas, R is the gas constant in [J.mol
-

1
.K

-1
] and T is the system temperature in [K]. 

Table 2-9: Entropy of Absorption of CO2 in Ionic Liquids Recorded by Different 
Sources 

Ionic Liquid Entropy of Absorption (J∙mol-1∙K-1) References 

[bmim][BF4] -52.4 Cadena et al. (2004) 
 -55.8 Chen et al. (2006) 
[bmim][PF6] -53.2 Anthony et al. (2002) 
 -53.2 Cadena et al. (2004) 
[bmmim][BF4] -47.7 Cadena et al. (2004) 
[bmmim][PF6]  -42.8 Cadena et al. (2004) 
[emim][Tf2N]  -46.9 Cadena et al. (2004) 
[emmim][Tf2N]  -48.7 Cadena et al. (2004) 
[hemim][BF4] -104--66.4 at 303-353 Shokouhi et al. (2010) 
[hmim][BF4] -60 Chen et al. (2006) 
[hmim][Tf2N] -38.4 Maginn (2005) 
 -48.2 Anderson et al. (2007) 
[hmpy][Tf2N] -36 Maginn (2005) 
 -38.1 Anderson et al. (2007) 
[omim][BF4] -63 Chen et al. (2006) 

A negative value for entropy of absorption indicates that absorption decreases with increasing 

temperature, which prevails for substantially soluble gases. However, for negligibly soluble 

gases, entropy of absorption may be positive, indicating that high temperature may increase 
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absorption. The increase however, will not be as substantial as soluble gases in solvents 

(Prausnitz et al., 1999, Pg. 598).   

Apart from measurements pertaining to absorption, the most important properties that were 

measured were the viscosity and density of the ionic liquid. Numerous sources have measured 

the density of fluorinated imidazolium-based ionic liquids at temperatures of 283.15-344 K. The 

density of novel ionic liquids containing phosphorous and cobalt anions was studied by Arshad 

(2009) and Palgunadi et al. (2009), at temperatures up to 353 K. Zhang et al. (2009) has studied 

20 novel ionic liquids for CO2 absorption, recording densities at temperatures of 298.15-348.15 

K.   Maginn (2005), Shiflett and Yokozeki (2005), Fredlake et al. (2004), Palgunadi et al. 

(2009), and Nishi et al. (2006) used a pycnometer to measure ionic liquid density of ionic 

liquids of all types. Zhang et al. (2009) used an Anton Paar DMA 5000 for non-fluorinated ionic 

liquid density measurement. Ignat’ev et al. (2005) used an Anton Paar Viscosimeter SVM 3000 

in conjunction with a Mettler Toledo TG-SDTA 851 for the density measurement of ionic 

liquids containing highly fluorinated FAP anions. Gan et al. (2006) produced accurate ionic 

liquid density measurements using an Anton Paar DMA 4500 U-tube density meter for 

conventional fluorinated imidazolium-based ionic liquids.  

Table 2-10: Density of Ionic Liquids at Different Temperatures Measured by Various Sources 

Ionic Liquid Density/g∙cm-3 Temperature/K References 

[aP4443][Ala] 0.9859-0.9564 298.15-348.15 Zhang et al. (2009) 
[aP4443][Arg]  0.9943-0.9942 298.15-348.15 Zhang et al. (2009) 
[aP4443][Asn]  1.0458-1.0167 298.15-348.15 Zhang et al. (2009) 
[aP4443][Asp] 0.9963-0.9908 338.15-348.15 Zhang et al. (2009) 
[aP4443][Cys]  1.0496-1.0195 298.15-348.15 Zhang et al. (2009) 
[aP4443][Gln]  1.0571-1.0265 298.15-348.15 Zhang et al. (2009) 
[aP4443][Glu]  1.0161-0.9889 298.15-348.15 Zhang et al. (2009) 
[aP4443][Gly]  0.9973-0.9682 298.15-348.15 Zhang et al. (2009) 
[aP4443][His]  0.9993-0.9720 298.15-348.15 Zhang et al. (2009) 
[aP4443][Ile]  0.9742-0.9444 298.15-348.15 Zhang et al. (2009) 
[aP4443][Leu]  0.9661-0.9363 298.15-348.15 Zhang et al. (2009) 
[aP4443][Lys] 0.9991-0.9696 298.15-348.15 Zhang et al. (2009) 
[aP4443][Met]  1.0167-0.9874 298.15-348.15 Zhang et al. (2009) 
[aP4443][Phe]  1.0220-0.9923 298.15-348.15 Zhang et al. (2009) 
[aP4443][Pro]  1.0047-0.9754 298.15-348.15 Zhang et al. (2009) 
[aP4443][Ser]  1.0262-0.9958 298.15-348.15 Zhang et al. (2009) 
[aP4443][Thr]  1.0126-0.9824 298.15-348.15 Zhang et al. (2009) 
[aP4443][Trp]  1.0596-1.0318 298.15-348.15 Zhang et al. (2009) 
[aP4443][Tyr]  1.0429-1.0138 298.15-348.15 Zhang et al. (2009) 
[aP4443][Val]  0.9750-0.9453 298.15-348.15 Zhang et al. (2009) 
[bmim][BF4] 1.21-1.17 283-348 Shiflett and Yokozeki 

(2005) 
 1.2048-1.1737 295.45-343.85 Fredlake et al. (2004) 
 1.21-1.17 293.15-363.15 Arshad (2009) 
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Table 2-10 (Contd.): Density of Ionic Liquids at Different Temperatures Measured by Various 
Sources 

Ionic Liquid Density/g∙cm-3 Temperature/K References 

[BMIM][Bu2PO4] 1.0400-1.0271 313.15-333.15 Palgunadi et al. (2009) 
[BMIM][BuHPO3] 1.0661-1.0535 313.15-333.15 Palgunadi et al. (2009) 
[bmim][CF3COO]  1.209 298.15 Arshad (2009) 
[bmim][Cl]  1.08 298.15 Arshad (2009) 
[bmim][dca] 1.0580-1.0258 297.15-355.85 Fredlake et al. (2004) 
[bmim][I]  1.44 298.15 Arshad (2009) 
[BMIM][MeHPO3] 1.1352-1.1226 313.15-333.15 Palgunadi et al. (2009) 
[bmim][methide] 1.5630-1.5288 297.65-333.25 Fredlake et al. (2004) 
[bmim][PF6] 1.38-1.33 283-348 Shiflett and Yokozeki 

(2005) 
 1.366 298.15 Kim et al. (2011) 
 1.360-1.324 298.15-343.15 Cadena et al. (2004) 
 1.3739 298.15 Arshad (2009) 
[bmim][Tf2N] 1.4386-1.4054 296.45-333.75 Fredlake et al. (2004) 
 1.4337 298.15 Arshad (2009) 
 1.44 293.15 Gan et al. (2006) 
[bmim][triflate] 1.3013-1.27 295.75-342.95 Fredlake et al. (2004) 
[bmmim][BF4] 1.0935-1.0634 300.15-323.15 Fredlake et al. (2004) 
[bmmim][PF6] 1.2416-1.2055 295.65-323.15 Fredlake et al. (2004) 
 1.242-1.174 295.65-343.15 Cadena et al. (2004) 
[bmpy][Tf2N] 1.4043-1.3885 209-309.1 Kumelan et al. (2010) 
[C9mim][PF6] 1.198-1.194 293.15-298.15 Kim et al. (2011) 
[dmim][BF4] 1.07-1.03 293.15-363.15 Arshad (2009) 
[DMIM][Me2PO4] Non 
Fluorinated 

1.251-1.2380 313.15-333.15 Palgunadi et al. (2009) 

[DMIM][MeHPO3] 1.2332-1.2222 313.15-333.15 Palgunadi et al. (2009) 
[dmim][Tf2N] 1.2746 293.15 Gan et al. (2006) 
[emim][BF4] 1.305-1.264 293-343 Shokouhi et al. (2010) 
 1.25-1.21 293.15-363.15 Arshad (2009) 
[emim][CF3SO3]  1.29 298.15 Arshad (2009) 
[EMIM][Et2PO4] 1.1386-1.1255 313.15-333.15 Palgunadi et al. (2009) 
[EMIM][EtHPO3] 1.1492-1.1363 313.15-333.15 Palgunadi et al. (2009) 
[emim][OTf]  1.39 295.15 Arshad (2009) 
[emim][Tf2N] 1.5213-1.4858 296.15-333.65 Fredlake et al. (2004) 
[emmim][Tf2N] 1.4913-1.4572 296.15-333.65 Fredlake et al. (2004) 
[hemim][BF4] 1384-1369 300-314 Shokouhi et al. (2010) 
[hexafluoroimid][Tf2N] 1.7-1.64 283.15-343.15 Maginn (2005) 
[hmim][(CF3SO2)2N] 1.377 293.15 Ignat'ev et al. (2005) 
[hmim][BF4] 1.15-1.1 293.15-363.15 Arshad (2009) 
 1.15 293.15 Ignat'ev et al. (2005) 
[hmim][Cl] 1.05 293.15 Ignat'ev et al. (2005) 
 1.03 293.15 Arshad (2009) 
[hmim][eFAP] 1.58-1.5 283.15-343.15 Maginn (2005) 
 1.56 293.15 Ignat'ev et al. (2005) 
[hmim][PF6] 1.297 293.15 Ignat'ev et al. (2005) 
 1.29 298.15 Arshad (2009) 
[hmim][pFAP] 1.62 293.15 Ignat'ev et al. (2005) 
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Table 2-10 (Contd.): Density of Ionic Liquids at Different Temperatures Measured by Various 
Sources 

Ionic Liquid Density/g∙cm-3 Temperature/K References 

[hmim][Tf2N] 1.4-1.34 283.15-343.15 Maginn (2005) 
[hmpy][Tf2N] 1.4-1.35 283.15-343.15 Maginn (2005) 
[N8881][Tf2N] 1.0823 293.15 Gan et al. (2006) 
[omim][BF4] 1.11-1.06 293.15-363.15 Arshad (2009) 
[omim][Cl]  1 298.15 Arshad (2009) 

[omim][PF6]  1.22 298.15 Arshad (2009) 
[ompy][Tf2N] 1.3327 293.15 Gan et al. (2006) 
[P66614][BF4]  0.93 303.15 Arshad (2009) 
[P66614][Cl]  0.88 303.15 Arshad (2009) 
[PC6C6C6C14][bis-
dicarbollylcobalt(III) (CoCB)] 

1-0.96 293.15-353.15 Arshad (2009) 

[PC6C6C6C14][Co(NCS)4] 0.96-0.925 293.15-353.15 Arshad (2009) 
[PC6C6C6C14][Co(NCSe)4] 1.02-0.97 293.15-353.15 Arshad (2009) 
[PC6C6C6C14][dithiomaleonitrile 
(dtmn)] 

0.945-0.905 293.15-353.15 Arshad (2009) 

[PC6C6C6C14][methylxanthate 
(xan)] 

0.92-0.88 293.15-353.15 Arshad (2009) 

[PC6C6C6C14][N(CN)2] 0.905-0.87 293.15-353.15 Arshad (2009) 
[PC6C6C6C14][Tf2N] 1.07-1.035 293.15-353.15 Arshad (2009) 
[pmmim][Tf2N] 1.4567-1.4155 295.15-344.65 Fredlake et al. (2004) 
[TBA][BEHSS]  0.993 298.15 Nishi et al. (2006) 
[THpA][BEHSS]  0.961 298.15 Nishi et al. (2006) 
[THxA][BEHSS] 0.968 298.15 Nishi et al. (2006) 
[THxA][C1C1N] 1.186 298.15 Nishi et al. (2006) 
[TOA][BEHSS]  0.952 298.15 Nishi et al. (2006) 
[TPnA][BEHSS]  0.978 298.15 Nishi et al. (2006) 
1-Pentyl-3-methylimidazolium 
[bFAP] 

1.693 293.15 Ignat'ev et al. (2005) 

bmim][acetate] 1.09-1.04 283.15-343.15 Maginn (2005) 

While the density of ionic liquids is an important indication of industrial flow rate, the viscosity 

of ionic liquids receives more attention, since ionic liquids are generally of high viscosity which 

would certainly contribute towards high circulation costs in an absorption process. The study of 

viscosity of non-fluorinated ionic liquids was pursued by Nishi et al. (2006), Zhang et al. 

(2009), and Scovazzo (2009), at temperatures of 298.15-348.15 K. The viscosity was 

significantly higher for non-fluorinated ionic liquids than for fluorinated ionic liquids, which 

were studied by numerous sources including Arshad (2009), Scovazzo (2009) and Hasib-ur-

Rahman et al. (2010). Nishi et al. (2006) used an oscillation type viscometer (VM-10A-M) for 

ionic liquid viscosity measurement. Ignat’ev et al. (2005) used an Anton Paar Viscosimeter 

SVM 3000 for measuring viscosity of imidazolium-based ionic liquids. Zhang et al. (2009) 

utilised an Anton Paar AMVn for the same measurement on non-fluorinated ionic liquids.   
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Table 2-11: Viscosity of Ionic Liquids Measured at Different Temperatures by Various Sources 

Ionic Liquid Viscosity (cP) Temperature (K) References 

[1-C3NH2-2,3-(mim)2][Tf2N]  2307 303.15 Scovazzo (2009) 
[1-Pentyl-3-(mim)][bFAP] 594 mm2/s 293.15 Ignat'ev et al. (2005) 
[aP4443][Ala] 758-54.3 298.15-348.15 Zhang et al. (2009) 
[aP4443][Arg]  1429.3-124.8 308.15-348.15 Zhang et al. (2009) 
[aP4443][Asn]  1700.7-447.1 328.15-348.15 Zhang et al. (2009) 
[aP4443][Asp] 1632.5-481.8 338.15-348.15 Zhang et al. (2009) 
[aP4443][Cys]  1543.6-775.5 338.15-348.15 Zhang et al. (2009) 
[aP4443][Gln]  1653.3-377.7 328.15-348.15 Zhang et al. (2009) 
[aP4443][Glu]  1417.5-434.9 328.15-348.15 Zhang et al. (2009) 

[aP4443][Gly]  713.9-54.2 298.15-348.15 Zhang et al. (2009) 
[aP4443][His]  1094.9-313.7 328.15-348.15 Zhang et al. (2009) 
[aP4443][Ile]  1408.1-73.8 298.15-348.15 Zhang et al. (2009) 
[aP4443][Leu]  1193.8-66.3 298.15-348.15 Zhang et al. (2009) 
[aP4443][Lys] 1432.2-81.8 298.15-348.15 Zhang et al. (2009) 
[aP4443][Met]  766.8-55.10 298.15-348.15 Zhang et al. (2009) 
[aP4443][Phe]  1985.0-88.3 298.15-348.15 Zhang et al. (2009) 
[aP4443][Pro]  1772.8-81.9 298.15-348.15 Zhang et al. (2009) 
[aP4443][Ser]  1341.7-71.7 298.15-348.15 Zhang et al. (2009) 
[aP4443][Thr]  1790.5-84.6 298.15-348.15 Zhang et al. (2009) 
[aP4443][Tyr]  1291 348.15 Zhang et al. (2009) 
[aP4443][Val]  888.2-56.3 298.15-348.22 Zhang et al. (2009) 
[bmim][BETI] 77 303.15 Scovazzo et al. (2009) 
[bmim][BF4] 5-100 282.48-383.15 Shiflett and Yokozeki (2005) 
 219 298.15 Hunt et al. (2007) 
[bmim][CF3CO2] 753-37 283.15-343.15 Maginn (2005) 
 73 298.15 Arshad (2009) 
 1630-43 283.15-343.15 Maginn (2005) 
[bmim][Cl] 40890 293.15 Hunt et al. (2007) 
 1534 323.15 Arshad (2009) 
[bmim][I]  1110 298.15 Arshad (2009) 
[bmim][PF6] 176 303.15 Scovazzo (2009) 
 10-200 282.48-383.15 Shiflett and Yokozeki (2005) 
 450 298.15 Arshad (2009) 
[bmim][Tf2N] 52 303.15 Scovazzo (2009) 
 70 298.15 Hasib-ur-Rahman et al. 

(2010) 
 52 298.15 Hunt et al. (2007) 
 52 293.15 Gan et al. (2006) 
[bmim][Tf2N], PTFE 70 298.15 Hanioka et al. (2008) 
[Bu2Nic][Tf2N] 1830-49 283.15-343.15 Maginn (2005) 
[C3NH2mim][CF3SO3] 3760 298.15 Hasib-ur-Rahman et al. 

(2010) 
 3760 298.15 Hanioka et al. (2008) 
[C3NH2mim][Tf2N] 2180 298.15 Hasib-ur-Rahman et al. 

(2010) 
 2.18E+03 303.15 Scovazzo (2009) 
[C3NH2mim][Tf2N], PTFE 2180 298.15 Hanioka et al. (2008) 
[C3NH2mim][TfO] 3760 303.15 Scovazzo (2009) 
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Table 2-11 (Contd.): Viscosity of Ionic Liquids Measured at Different Temperatures by Various 
Sources 

Ionic Liquid Viscosity (cP) Temperature (K) References 

[desmim][TfO]  554 303.15 Scovazzo (2009) 
[despyrrol][Tf2N] 1743 303.15 Scovazzo (2009) 
[dmim][Tf2N] 142 293.15 Gan et al. (2006) 
[dumbbell][Tf2N] 2420 303.15 Scovazzo (2009) 
[emim][BF4] 38 303.15 Scovazzo (2009) 
 67 298.15 Arshad (2009) 
 34 303.15 Scovazzo et al. (2009) 
[emim][CF3SO3] 45 303.15 Scovazzo et al. (2009) 
 90 298.15 Arshad (2009) 
[emim][dca] 21 303.15 Scovazzo et al. (2009) 

 21 303.15 Scovazzo (2009) 
[emim][TfO]  50 293.15 Arshad (2009) 
 45 303.15 Scovazzo (2009) 
[emim][PF6] 23 343.15 Arshad (2009) 
[emim][Tf2N] 28 298.15 Arshad (2009) 
 26 303.15 Scovazzo et al. (2009) 
 26 303.15 Scovazzo (2009) 
[EMIM][TFSI] 7-55 313.15 Liu et al. (2011) 
[Et2Nic][EtSO4] 19610-130 283.15-343.15 Maginn (2005) 
[hmim][(CF3SO2)2N] 44 mm2/s 293.15 Ignat'ev et al. (2005) 
[hmim][BF4] 314 293.15 Arshad (2009) 
 195 mm2/s 293.15 Ignat'ev et al. (2005) 
[hmim][Cl] 7453 mm2/s 293.15 Ignat'ev et al. (2005) 
 716 298.15 Arshad (2009) 
[hmim][eFAP] 74 mm2/s 293.15 Ignat'ev et al. (2005) 
[hmim][lactate] 3350-54 283.15-343.15 Maginn (2005) 
[hmim][PF6] 548 mm2/s 293.15 Ignat'ev et al. (2005) 
 585 298.15 Arshad (2009) 
[hmim][pFAP] 227 mm2/s 293.15 Ignat'ev et al. (2005) 
[hmim][Tf2N] 148-16 283.15-343.15 Maginn (2005) 
 55 303.15 Scovazzo et al. (2009) 
 55 303.15 Scovazzo (2009) 
[hmmim][Tf2N] 317-23 283.15-343.15 Maginn (2005) 
[hmpy][Tf2N] 197-17 283.15-343.15 Maginn (2005) 
[N(1)444][Tf2N] 386 303.15 Scovazzo (2009) 
[N(1)888][Tf2N] 532 303.15 Scovazzo (2009) 

[N(10)11(i-3)][Tf2N] 183 303.15 Scovazzo (2009) 
[N(10)111][Tf2N] 173 303.15 Scovazzo (2009) 
[N(4)11(i-3)][Tf2N] 85 303.15 Scovazzo (2009) 

[N(4)111][Tf2N] 71 303.15 Scovazzo (2009) 
 71 303.15 Condemarin and Scovazzo 

(2009) 
[N(6)11(i-3)][Tf2N] 126 303.15 Scovazzo (2009) 
[N(6)111][Tf2N] 100 303.15 Scovazzo (2009) 
[N(6)222][Tf2N]  167 303.15 Scovazzo (2009) 
[N8881][Tf2N] 589.3 293.15 Gan et al. (2006) 
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Table 2-11: Viscosity of Ionic Liquids Measured at Different Temperatures by Various Sources 

Ionic Liquid Viscosity (cP) Temperature (K) References 

[omim][Cl]  337 298.15 Arshad (2009) 
[omim][PF6]  682 298.15 Arshad (2009) 
[ompy][Tf2N] 26.7 293.15 Gan et al. (2006) 
[P(14)444][DBS] 3011 303.15 Scovazzo (2009) 
[P(14)666][Cl] 919 303.15 Scovazzo (2009) 
[P(14)666][Cl] 1316 303.15 Scovazzo (2009) 
[P(14)666][dca]  213 303.15 Scovazzo (2009) 
[P(14)666][Tf2N] 243 303.15 Scovazzo (2009) 
[P(2)444][DEP]  207 303.15 Scovazzo (2009) 
[P66614][Cl]  1500 298.15 Arshad (2009) 
[PP-13][Tf2N]  94.3 303.15 Scovazzo (2009) 
[S(1)22][Tf2N] 42 303.15 Scovazzo (2009) 
[S(2)22][Tf2N] 38.9 303.15 Scovazzo (2009) 
[TBA][BEHSS]  373 298.15 Nishi et al. (2006) 
[THpA][BEHSS]  690 298.15 Nishi et al. (2006) 
[THxA][BEHSS] 639 298.15 Nishi et al. (2006) 
[THxA][C1C1N] 388 298.15 Nishi et al. (2006) 
[TOA][BEHSS]  759 298.15 Nishi et al. (2006) 
[TPnA][BEHSS]  517 298.15 Nishi et al. (2006) 
Ecoeng 41M 4065-97.9 283.15-343.15 Maginn (2005) 
Ecoeng 500 10244-186.10 283.15-343.15 Maginn (2005) 
EM(Zn)TFSI 1-1 148-2000 313.15 Liu et al. (2011) 

General 14.6-388.4* 298.15 Wappel et al. (2009) 
General 7.6-54.6 323.15 Wappel et al. (2009) 
tri-iso-butyl(methyl)    
phosphonium tosylate (TSIL) 

1.65-1320** 298.15 Hasib-ur-Rahman et al. 
(2010) 

*Viscosity recorded at 50-70 wt% H2O **Viscosity recorded at 100-0 wt% H2O 
    

A study into the absorption kinetics of some novel ionic liquids has been done by Wappel et al. 

(2009), which found that ionic liquid regeneration is less energy intensive than conventional 

alkanolamine solvents. The study also found that the addition of water at 30-40wt% provides 

better absorption performance and contributed towards a significantly lower solvent viscosity 

than if pure undiluted ionic liquid was used. While the required regeneration energy is elevated 

by the dilution with water, there are potentially significant savings in circulation energy for the 

solvent. 

2.5.7 Trends exhibited in the study of CO2 absorption in ionic liquids 

The study of ionic liquids by various sources has provided many general observations. It is 

necessary to note these observations in order to commence further research into finding an ionic 

liquid which is advantageous for CO2 absorption.  

The solubility of CO2 in ionic liquids increases with increasing CO2 partial pressure, and 

decreasing temperature. Muldoon et al. (2007) explained that high pressures introduce 
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secondary interactions of CO2 with the cation, increasing CO2 solubility. SuoJiang et al. (2010) 

identified trends between temperature and CO2 solubility. It was found that high temperatures 

reduce absorption capacity, while very low temperatures reduce absorption rate. An optimum 

temperature of 318.15 K was found. Temperature also affects the significance of various 

functional groups attached to cations and anions, but no standard trend has been identified 

(Cadena et al., 2004). 

The addition of hydrogen instead of methyl functional groups are reported to provide increased 

CO2 solubility. Methyl functional groups possibly result in steric hindrance. The effect is more 

pronounced at low temperatures (Cadena et al., 2004). Lower enthalpy of absorption was also 

reported.   

In order to optimise CO2 solubility, it was observed that changing or modifying the anion 

provided far more significant changes than changing or modifying the cation, which provided a 

secondary change in results (Anderson et al., 2007, Anderson et al., 2007, Arshad, 2009). 

Cadena et al. (2004) and Huang and Rüther (2009) explained that CO2 molecules are absorbed 

and interact strongly about the anions, occurring in a tangent like arrangement. CO2 molecules 

occur diffusely around cations.  

Huang and Rüther (2009) discovered that a Lewis-acid type interaction occurs between CO2 and 

anions, with CO2 acting as a Lewis acid and anions acting as a Lewis base.  The absorption 

mechanism of CO2 in ionic liquids was studied. Coulombic interactions cause the cations and 

anions to organize themselves to form a more rigid packing than in molecular solvents. As a 

result, thermal expansion coefficients are lower than molecular solvents. CO2 absorption does 

not significantly perturb the arrangement of ions. The ionic arrangement contains a large 

amount of free volumes for CO2 absorption. The ions experience an angular displacement to 

accommodate CO2 during absorption. CO2 exists above and below ions, particularly near 

imidazolium rings and near long alkyl chains on the rings. Greater interaction occurs between 

CO2 and anions, which causes CO2 molecules to remain in close proximity to the anions. CO2 

diffuses throughout the IL, without significant disturbance to the rigid cation-anion 

arrangement. 

While cations were found to provide secondary interactions with CO2, research has shown by 

observation that imidazolium based cations are the best cations for ionic liquids used in CO2 

absorption. Arshad (2009) has compared ionic liquids containing different cations with the same 

anions. The chain length of cations was kept constant. The study found imidazolium cations to 

provide the highest CO2 solubility. Baltus et al. (2004) compared CO2 solubilities in ionic 

liquids containing imidazolium cations with phenol based cations. CO2 solubility was higher in 
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imidazolium cations. Huang and Rüther (2009) found diffusion coefficients of CO2 in ionic 

liquids with imidazolium cations to be less affected by high viscosity. Less interaction between 

cations and anions occur, resulting in less viscosity and higher diffusion coefficients. 

It was observed that increasing fluorination of the ionic liquid increases absorption rate and 

capacity. The effect was more pronounced when fluorinating the anion (Muldoon et al., 2007, 

Brennecke and Gurkan, 2010, Arshad, 2009, Baltus et al., 2004). Arshad (2009) stated that 

increasing the number of CF3 groups on the anion greatly increases CO2 solubility. Increasing 

fluorination of the cation increased CO2 solubility but not as significantly as anion fluorination. 

Huang and Rüther (2009) explained that during interaction with hydrocarbons, CO2 molecules 

act as a weak Lewis base. The oxygen atom in CO2 interacts with the C–H bond. But when 

electronegative fluorine atoms are present, the C–F bond may interact with the Lewis acidic 

carbon atom on the CO2 molecule. It is this difference in interaction or possibly the combination 

of these interactions that causes higher CO2 solubility in fluorinated ionic liquids. 

While increased fluorination of the ionic liquid provides increased absorption rate and capacity, 

it was also found to contribute to increasing toxicity of the ionic liquid (Anderson et al., 2007, 

25). Arshad (2009) reported fluorinated ionic liquids to be of poor biodegradability and are 

persistent in the environment.  

Non-fluorinated ionic liquids are more environmentally friendly but provide lower CO2 

solubility than fluorinated ionic liquids. Arshad (2009) reported ideas to mitigate this problem, 

with the addition of ester, ether and carbonyl groups to enhance the CO2-philicity of the ionic 

liquid. Palgunadi et al. (2009) suggested the introduction of alkyl phosphate and dialkyl 

phosphate anions, which were also found to increase CO2 solubility in non-fluorinated ionic 

liquids.    

Huang and Rüther (2009) suggested limiting fluorination of ionic liquids to reduce toxicity. 

Fluorination of the cation is not necessary and may be omitted, since this does not significantly 

impact on CO2 solubility compared to fluorination of anions. CO2 was reported to interact with 

anions and with the C-2 position of cations.  

The longer the alkyl chain length of cations and anions, the higher the solubility of CO2 

observed (Muldoon et al., 2007, Brennecke and Gurkan, 2010, Baltus et al., 2004). The 

increased chain length provides increased gas permeability and diffusivity. Anderson et al. 

(2007) noted that the effect is more pronounced when the system is operating at high pressure. 

Longer alkyl chains are reported to provide smaller ionic liquid density and larger free volume 

between ions to accommodate CO2 molecules (Huang and Rüther, 2009). However, Hasib-ur-
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Rahman et al. (2010) noted that too long alkyl chains can result in steric hindrance, which 

ultimately reduces absorption capacity of the solvent. Palgunadi et al. (2009) confirmed the 

effects of increasing chain length and suggested this practice as an environmentally friendly 

alternative to fluorination for increasing CO2 solubility.  

The effect of increasing chain length is not as significant as increasing fluorination of the ionic 

liquid, particularly the anion (Brennecke and Gurkan, 2010, Gonzalez et al., 2011).  

The disadvantage of increasing chain length of cations and anions is that the viscosity of the 

ionic liquid increases (Gan et al., 2006). This is an important issue as ionic liquids generally 

possess high viscosities of up to 2000 cP (Scovazzo, 2009) and some over 2000 cP. Increased 

viscosity was also reported to result in lower diffusion coefficients. Huang and Rüther (2009) 

observed the diffusion coefficient (D) of CO2 into ionic liquids with imidazolium based cations 

to decrease with increasing viscosity (μ) according to the proportion:  Dαμ-0.6
. Branched cations 

increased viscosity further (Gan et al., 2006). For phosphonium based cations, the proportion is 

Dαμ-0.35
. These proportionalities indicate that in attempts to increase chain length, it must be 

ensured that the increased chain length must increase diffusivity by a higher proportion than 

which the viscosity is increased. If this criterion is not met, then increasing chain length would 

have reached its limits.  

Additionally, Lozano et al. (2011) provided evidence of increasing toxicity of the ionic liquid, 

with increasing alkyl chain length.  

Cadena et al. (2004) reported a 10% increase in density of ionic liquids upon absorption of CO2, 

while Huang and Rüther (2009) noted increases in ionic liquid volume of 18%. This result 

differs greatly to organic solvents which undergo volume increases of up to 103% with no 

significant change in density upon CO2 absorption.  

The functionalising of ionic liquids produces varying results. Brennecke and Gurkan (2010) 

noted that the addition of amine groups to imidazolium cations provided increased absorption 

capacity. Simply adding alkanolamines to ionic liquids resulted in a hybrid solvent in which 

physical and chemical absorption occurs. This was beneficial in terms of heat requirements, 

when compared to conventional alkanolamine solvents which contain high quantities of water. 

The energy requirement of ionic liquid-alkanolamine mixtures is dictated by the heat of reaction 

between CO2 and the alkanolamine. Heterocyclic anions are used for hybrid solvents to simplify 

the reaction mechanism to provide lower increases in solvent viscosity. 

In addition to amines, the use of ether functional groups also increased CO2 solubility 

(Anderson et al., 2007). Liu et al. (2011) investigated the addition of zinc (Zn) to cations. CO2 
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solubility was 21 times higher than conventional ionic liquids, but viscosity increased, resulting 

in diffusivity values 3 times lower than conventional ionic liquids.  Huang and Rüther (2009) 

noted that when adding a functional group, it needs to be ensured that CO2 binds with the 

functional group in a thermodynamic sense and kinetics should be sufficient for fast absorption 

rate. Absorption must not be too exothermic, as required regeneration energy will be high. The 

addition of carboxylate groups to ionic liquids improved absorption capacity but not as much as 

that of conventional alkanolamines. Heat of absorption was lower than conventional 

alkanolamines however.  

Huang and Rüther (2009) also investigated the prospect of combining ionic liquids with more 

than one functional group. Amines and acid groups such as SO3 were added. The study found 

that this prospect increased solvent viscosity substantially. Hence, much consideration needs to 

be taken upon the addition of functional groups to alkyl chains of cations and anions. 
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CHAPTER 3: REVIEW OF EQUIPMENT FOR MEASURING CO2 

ABSORPTION IN SOLVENTS 

As previously mentioned in Section 2.5 of Chapter 2, it was determined by literature review that 

gas absorption using solvents showed very high potential as an industrial CO2 capture technique 

in the near future. Many advantages and challenges were found regarding the implementation of 

gas absorption using solvents for CO2 capture. The main challenge was to find a suitable solvent 

that would selectively capture CO2 at low pressure and high temperature, to avoid significant 

flue gas pre-treatment costs.  

Alkanolamines were found to be abundantly investigated while many ionic liquids received 

comparatively little attention for CO2 capture. It was thus explained in Section 2.5 of Chapter 2 

that this research would investigate the use of ionic liquids as solvents to selectively absorb 

CO2. Chapter 6 further explains that suitable ionic liquids would be combined with 

alkanolamines to create novel hybrid solvents that were also investigated for CO2 absorption. 

This chapter contains a concise review of various apparatus for measuring equilibrium gas 

absorption in various solvents, including systems containing CO2, alkanolamines, and ionic 

liquids.  

Equilibrium gas absorption in alkanolamines was successfully measured using a static analytic 

apparatus by Osman (2011) and Dicko et al. (2010). The apparatus was constructed using 

sapphire tube for high pressure and temperature conditions. Gas and liquid composition analysis 

was achieved using gas chromatography and sampled using ROLSI
TM

 samplers. The use of 

ROLSI
TM

 samplers resulted in minimal disturbance in equilibrium due to the sample size being 

in the order of magnitude of microliters. Systems containing H2O, CO2, N2, MEA, DEA, and 

MDEA were investigated. The setup is completely sealed, thereby allowing measurement of 

systems with volatile components. P-T-x-y measurements were obtainable to establish 

equilibrium absorption capacity of the solvent.  

Absorption measurements were obtained using a dynamic still by Austgen and Rochelle (1991). 

A presaturator and diluter cell were used and gas composition was measured using Fourier 

Transform Infrared (FTIR) spectroscopy. Measurements were reported to be relatively quicker 

than when using a static analytic apparatus. As previously mentioned, the use of a diluter cell 

apparatus to measure absorption by calculation of infinite dilution activity coefficients and 

Henry’s Law constants, was investigated by Richon et al. (1980) and Richon (2011). In these 

cases, analyses were done using gas chromatography. 



86 
 
 

Previous sources in literature have successfully used Fourier Transform Infrared (FTIR) 

spectroscopy for composition analysis in absorption measurements by analysing the spectra of 

samples before absorption and then after absorption at different equilibrium conditions. An 

FTIR spectrometer measures the composition of a sample by passing infrared light of multiple 

frequencies through the sample, detecting the infrared light, and establishing which frequencies 

were absorbed by the sample and which were not. Each compound vibrates at a unique 

frequency due to the vibrations that occur between different atoms in a molecule. This gives 

each compound in a mixture a unique frequency signature.  When light of multiple frequencies 

passes through a sample, certain frequencies of light match the frequency of molecules and are 

hence absorbed while frequencies not matching the vibration frequencies of the compounds in 

the sample pass through unaffected (Thermo Nicolet, 2001).  

Archane et al. (2008) utilised FTIR spectroscopy to measure CO2 absorption in aqueous DEA 

solutions. An equilibrium cell with circulation to the spectrometer was employed and an 

accurate indication of the reaction mechanism was achieved, including the carbamate 

concentration. Further studies of a similar nature with CO2 in DEA were completed by Diab et 

al. (2012). These studies differ from that of Austgen and Rochelle (1991) in that the liquid 

phase composition is analysed and an equilibrium cell is used instead of a diluter cell with gas 

phase composition analysis. Zhao et al. (2011) used FTIR spectroscopy to propose the 

absorption and desorption mechanism of CO2 in amine-functionalised ionic liquids. 

The advantages of using an FTIR spectrometer for composition analysis is that the technique is 

non-destructive,  measurements are quick, and the in-situ analysis, as was intended in this study, 

is safe due to the FTIR probe possessing no moving parts. The technique is also non-invasive in 

comparison to the use of other apparatus for composition analysis such as gas chromatography. 

Species are not disturbed at all from equilibrium during composition analysis. 

The disadvantage of using equilibrium cells with FTIR spectroscopy or gas chromatography is 

that the quantity of solvent that measurements require is substantial. This is because gas 

chromatography is an invasive measurement technique which would disturb equilibrium if 

solvent and gas quantity is too low. Although the use of FTIR is not invasive, in practise a 

significant amount of solvent is required to be circulated to the spectrometer or for the use of in-

situ infrared probes. This disadvantage is particularly significant when measuring new solvents 

such as ionic liquids, which are of very high cost and very difficult to synthesize with high 

purity. Moreover, the solvent quantity results in higher equilibration time for temperature, 

pressure and gas absorption. In the work of Osman (2011), equilibrium took up to 12 hours for 

systems containing CO2, H2O, DEA, and MDEA.   
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Gravimetric analysis was used by numerous sources in the study of CO2 absorption in ionic 

liquids and other non-volatile solvents and sorbents. This measurement technique utilises a high 

resolution microbalance to track the weight change of solvents or sorbents as they absorb a gas. 

Anthony et al. (2002) detailed measurements related to CO2 absorption in ionic liquids by 

gravimetric analysis. Further measurements of CO2 and other gases in ionic liquid solvents were 

done by Anderson et al. (2007), Cadena et al. (2004), and Shiflett and Yokozeki (2005). 

Measurements of mole fraction in the ionic liquid sample were taken for different isotherms at 

pressures of 0 – 2 MPa.  

Anthony et al. (2001) obtained VLE and LLE measurements of various gases and water in ionic 

liquids. Henry’s constant and infinite dilution activity coefficient were measured. Roper (2005) 

conducted measurements on the adsorption of CO2 on activated carbon in order to establish the 

pore size distribution of activated carbon. In this case, a sample of solid activated carbon was 

inserted and CO2 gas constituted the gas phase. The adsorption in terms of mass uptake was 

measured for different pressures at 273 K. 

Accuracy in results can be established by conducting repeated absorption and desorption of the 

sample. The hysteresis gives an indication of species purity and resultant accuracy. Shao et al. 

(2004) stated that the apparatus is fully computer controlled and can be programmed so that 

experiments can continue for several days if necessary. 

Absorption and desorption of H2 was studied at various pressures, at 333.15 K by Shao et al. 

(2004). Accurate results were achieved due to gravimetric analysers being able to maintain a 

constant pressure throughout the measurement. This is advantageous over volumetric 

measurement which fails to adequately maintain system pressure during equilibration.  

Shao et al. (2004) investigated the adsorption of H2 on various surfaces such as activated meso-

carbon microbeads. Methane was also investigated in the study. RSC (2011) also studied the 

adsorption of H2 gas on CF and CF/Pd-Hg samples at a single isotherm of 298 K, at pressures of 

0 – 2 MPa.  

A particular advantage of gravimetric analysis is that very little ionic liquid needs to be used to 

obtain accurate measurements. Anthony et al. (2002) utilised 75 mg of ionic liquid during the 

measurements of Henry’s constants for various flue gas components in ionic liquids, which is 

advantageous since ionic liquids are comparatively very expensive at present. 

RSC (2011) found that due to the high resolution of the microbalance, buoyancy effects needed 

to be accounted for. Instead of adding extra equilibration time to account for this as Anthony et 
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al. (2001) did, the measurements were mathematically corrected based on Archimedes principle 

to account for buoyancy.  

The disadvantage of gravimetric analysis is that it cannot be used for volatile solvents since the 

solvents may evaporate from the microbalance, resulting in erroneous absorption measurements. 

Moreover, simple gravimetric analysers do not encompass direct composition analysis for the 

liquid or gas phase, though this can be achieved by passing the gas phase through NMR or IR 

spectroscopy.   

Due to the high cost of ionic liquids, it was decided that gravimetric analysis would be used to 

measure gas absorption in the ionic liquid and hybrid solvents studied in this work. In the case 

of hybrid solvents, solvents contained ionic liquids and alkanolamines as explained in Chapter 

6. For each measurement the gas phase contained a single gas. The method of measurement is 

described in Section 5.3 of Chapter 5.   

In order to understand the reaction mechanism between CO2 and the hybrid solvents 

investigated, an equilibrium cell was developed using in-situ infrared spectroscopy to identify 

components in the liquid phase and measure liquid phase composition. The apparatus was found 

to be limited in measurement range. The details of this apparatus are presented in Appendix F. 
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CHAPTER 4: REVIEW OF THE MODELLING OF CO2 

ABSORPTION IN ALKANOLAMINES, IONIC LIQUIDS AND 

HYBRID SOLVENTS 

It is important to model the CO2 absorption data measured in this work in order to provide 

accurate interpolation and even extrapolation of data to wider system pressure and temperature 

ranges. Modelling saves not only time, but also resources, since absorption data can be 

calculated with fairly good accuracy using a model with parameters regressed from a reliable 

and comprehensive data set. This ensures that every single data point need not be measured, but 

can be calculated with fairly high accuracy instead.  

Moreover, regressed model parameters can be programmed into simulation software to be used 

in process simulation, a task that requires data at many more conditions that couldn’t possibly 

be achieved through measurement alone.  

The modelling of CO2 partial pressure in systems containing both ionic liquids and 

alkanolamines was highly challenging due to the presence of up to 5 components in a system, 

including CO2, MEA, DEA, MDEA, and either [Bmim][BF4] or [Bmim][Tf2N]. Moreover, the 

chemistry of the systems containing hybrid solvents is unknown due to the absence of water in 

the systems. In the systems in this work, all diffusion occurs into the ionic liquid and 

alkanolamine directly. There is no water, thus no diffusion reactions between CO2, HCO3
-
 and 

water, as that shown conventionally in reactions R2-4 to R2-12 in Section 2.4.1.1. 

Numerous models have been investigated for the prediction of CO2 partial pressure and CO2 

mole fraction for systems containing CO2 and alkanolamine solvents diluted with water. 

Accurate modelling of CO2 solubility in alkanolamines was typically made possible by taking 

into account the Debye-Huckel limiting term which accounts for non-ideality of solutions 

containing ionic solutes, which is a result of long range electrostatic interactions between ions 

(Osman, 2011). Klyamer et al. (1973) used an activity coefficient approach for the excess Gibbs 

free energy. Chemical reaction equilibrium in the liquid phase was assumed. Species interaction 

was ignored and activity coefficients were assumed equal for each species (Weiland et al., 

1993).     

The Kent-Eisenberg model thereafter accounted for non-idealities in the system by including 

them in equilibrium constant (K) values, (Benamor and Aroua, 2005 and Osman, 2011). 

Activity coefficients and fugacity coefficients were taken to be unity, and the model was found 
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to be highly useful for single alkanolamine systems. The model assumes a 6 stage reaction 

mechanism between CO2 and alkanolamines. Weiland et al. (1993) attempted to apply the 

model for alkanolamine blends and systems containing tertiary amines, with little success in 

accuracy. Lee et al. (2013) however successfully modelled systems containing mixtures of 

MEA and Benzoic Acid using the Kent-Eisenberg model. The model was successfully applied 

in steady state absorption simulations by Jayarathna et al. (2011) and more recently for 

absorption plant start-up by Jayarathna et al. (2013) for a solvent containing MEA and water.    

Modelling of CO2 absorption using the Elec-NRTL was investigated extensively in the work of 

Chen and Evans (1986), Austgen et al. (1989), and Austgen et al. (1991). Solution chemistry is 

included in the Elec- NRTL model, allowing for all liquid-phase molecular and ionic species to 

be determined (Osman, 2011). Up to 6 stage reaction mechanism is assumed, and interactions 

parameters are found by regressing solubility data. This model was successfully used in the 

simulation of gas absorption by Osman (2011). Systems involving single alkanolamines MEA 

and DEA with gases including H2S and CO2 were studied by Austgen et al. (1989) using this 

model at 298.15 to 393.15 K. Fairly accurate predictions were achieved. Systems containing 

CO2 and SO2 gas were modelled using the Elec-NRTL model by Wappel et al. (2008).  

A less complex model that is also thermodynamically rigorous and accounts for long and short 

range species interactions, is the Deshmukh-Mather model. A 6 stage reaction mechanism 

including 3 diffusion reactions between CO2 and H2O are assumed. Model development is 

found in the work of Deshmukh and Mather (1981) and Weiland et al. (1993).The model was 

successfully modified and provided good predictions for alkanolamine blends, including tertiary 

amines such as MDEA (Benamor and Aroua, 2005, Osman et al., 2012). Weiland et al. (1993) 

also investigated alkanolamine blends. Modelling of CO2 and H2S was accurately achieved.  

The Deshmukh-Mather model was used to model CO2 solubility in a variety of alkanolamines 

and alkanolamine blends. CO2 absorption in aqueous mixtures of MDEA and di-

isopropanolamine (DIPA) was modelled using the Deshmukh-Mather model at 313 to 358 K, by 

Vahidi et al. (2013). Absolute deviations of 0.2 to 40.3% were observed, with particularly high 

inaccuracy at pressure below 500 kPa. Najibi and Maliki (2013) modelled CO2 absorption in 

MDEA-Piperazine systems at 363 to 423 K and up to 204 kPa. High average absolute 

deviations were achieved at pressures below 70 kPa. Greater accuracy was achieved for systems 

containing AEEA at 313 to 368 K and pressure from atmospheric up to 4400 kPa (Zoghi et al., 

2012). Systems containing MEA and TEA were also modelled well at 313 to 373 K and up to 

120 kPa using the Deshmukh-Mather model (Cheng et al., 2010).   
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Posey et al. (1996) introduced a simple empirical model, assuming the entire reaction 

mechanism between CO2 and alkanolamines to be a single absorption reaction. Posey et al. 

(1996) systems involved a gas mixture of CO2 and H2S in single alkanolamine solvents of 

MDEA: H2O and DEA: H2O at various concentrations.  

The model was tested for systems using DEA solvent for CO2 and H2S. Dicko et al. (2010) 

confirmed the model to be relatively accurate for systems involving MDEA at concentrations of 

up to 50 wt%, despite its simplicity. Osman (2011) utilised the model for CO2 absorption in 

blends of H2O, DEA and MDEA. Inaccuracies of as low as 0.01% of the measured data were 

achieved. 

The absence of H2O in the systems in this research invalidated the complex reaction 

mechanisms assumed by more complex models. Moreover, infrared measurements were 

unsuccessful in determining liquid phase composition, due to technical limitations associated 

with the FTIR Probe apparatus as explained in Section F2 of Appendix F. It was thus decided to 

model CO2 absorption in the alkanolamine component of the hybrid solvents using the Posey-

Tapperson-Rochelle model. The extent of CO2 absorption was estimated using data from 

measurements with CO2 in pure ionic liquid systems, and noting the difference in absorption 

upon inclusion of the alkanolamines. The extent of absorption in each alkanolamine component 

however could not be determined by gravimetric analysis alone. The only option with such 

experimental circumstances was to assume a single reversible reaction and model the data based 

on this simplified case.  

Model computation is very easy to apply to any P-T-x data. P-T-x data presented in Tables A-10 

to A-21 of Appendix A were regressed. The following reaction is assumed for CO2 with all 

alkanolamines in the hybrid solvent. 

AmineH
+ 

+ HCO3
-
 ↔ Amine + CO2(aq.) + H2O …………………………(R4-1)  

Carbonate (CO3
2-

) and hydroxide (OH
-
) ion concentration are assumed to be small and 

neglected. The assumed presence of H2O does contribute to inaccuracy in prediction, since CO2 

diffusion is occurring in the ionic liquid instead of water. This is seen in Section 7.9.   

The equilibrium constant for the above reaction is given by (Posey et al., 1996, and Dicko et al., 

2010): 

Ln(KCO2) = 
5.0)( AMINE

O

TAMINE
O

T CLdCcL
T

b
a  ………………………….(E4-1) 

with C
O

AMINE = Amine concentration neglecting the presence of acid gases. 
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LiquidIonicAmine

Amine


………………………………………………..(E4-2) 

Thereafter, PCO2 can be predicted using the following formula: 

PCO2 = XCO2KCO2 
)1( T

T

L

L


……………………………………………………..(E4-3)  

Parameter “a” in Equation E4-1 represents an overall correction factor, ‘b’ represents a 

temperature correction and “c” and “d” accounting for amine concentration in the solvent. 

Parameters a to d are found by regression of measured data. CO2 partial pressure can then be 

calculated and compared to measured results. 

Gas absorption in ionic liquids has been modelled by numerous sources in literature utilising 

various models. Semi-empirical models such as COSMO-RS were utilised by Mortazavi et al. 

(2012) to predict CO2 partial pressure in ionic liquids containing imidazolium and pyridinium 

cations with fluorinated anions. The model did not provide good accuracy, with deviations from 

experimental data of up to 23%.  

Statistical Associating Fluid Theory (SAFT) equations of state have also been used for the 

prediction of CO2 partial pressure in CO2-ionic liquid systems. The SAFT models cater for the 

asymmetry of ionic liquid molecules, the Lewis-base type interactions of CO2 with ionic liquid 

molecules, as well as the presence of charges. Truncated Perturbed Chain- Statistical 

Associating Fluid Theory (tPC-SAFT) takes into account dipolar and quadrupolar interaction, as 

well as cross polar interactions between molecules of the system. Andreu and Vega (2007) 

successfully modelled CO2 absorption in ionic liquids containing [BF4] and [PF6] anions using 

the soft-SAFT EOS. TPC-SAFT was employed by Kroon et al. (2006) for similar ionic liquids 

as in the work of Andreu and Vega (2007). Good agreement between experimental and 

calculated VLE data was achieved. 

The drawback of SAFT equations of state is the complexity in computation and the resultant 

slow speed of computation (Andreu and Vega, 2007). Simpler equations of state could also be 

used to achieve fairly good accuracy with considerably less complexity and computation time. 

CO2 partial pressure was modelled by Yazdizadeh et al. (2011) using the Peng-Robinson 

equation of state (EOS) with Wong-Sandler mixing rules, for systems of CO2 with various 

imidazolium based ionic liquids with fluorinated anions. The Van-Laar model for excess Gibbs 

energy was used. Average absolute deviations between experimental and calculated results were 

3.9 to 4.9%.  
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A generic non electrolyte Redlich-Kwong EOS was employed by Shiflett et al. (2005) for CO2 

absorption in [Bmim][BF4] and [Bmim][PF6] ionic liquids, due to the presence of non-volatile 

components containing no known critical point conditions. Systems of this nature containing 

electrolytes have also been reported in literature to be successfully modelled using ordinary 

equations of state (Tillner and Friend, 1998 and Yokozeki, 2005).  

Data at 283.15 to 348.15 K and up to 2 MPa were modelled by Shiflett et al. (2005). The 

simplicity and low computation time of the RK-EOS made it an attractive choice to model the 

data in this research. Moreover, the model was proven successful at temperature and pressure 

conditions similar to that measured in this research. CO2 and O2 absorption in [Bmim][BF4] and 

[Bmim][Tf2N] was thus modelled using the RK-EOS.  

The RK-EOS is given by the following (Shiflett et al., 2005): 
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where a(T) is a function of species mole fraction and temperature. The Van der Waals-Berthelot 

mixing formula was used for this research, as successfully applied for similar conditions 

(Yokozeki, 2001).   
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mij = mji and mii = 0 and lij, lji, τij, and mij are binary interaction parameters. Coefficients βk are 

treated as adjustable fitting parameters. lij, lji, τij, mij, and βk are obtained by regression of 

measured data P-T-x data. Critical temperature and pressure for the ionic liquids studied in this 

research could not be found due to the ionic liquids decomposing before reaching their critical 

point (Valderrama and Robles, 2007). Critical temperature and pressure were computed using a 
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modified Lydersen-Joback-Reid group contribution method (Alvarez and Valderrama, 2004 and 

Valderrama and Robles, 2007):   

   


2

MMMM

b
C

TnTnBA

T
T  ……………………………..(E4-6) 

where   bMb 2.198 TnT  

 2MM

C

 


PnC

M
P ………………………………………….…..(E4-7) 

where AM = 0.5703, BM = 1.0121, CM = 0.2573, EM = 6.75 (Valderrama and Robles, 2007). n is 

the number of occurrences of any particular functional group in the molecule. Group 

contributions for ∆TbM, ∆TM and ∆PM are provided in the work of Alvarez and Valderrama 

(2004). 

The absorption of CO2 and O2 in pure ionic liquids, as well as the absorption of CO2 in the ionic 

liquid component of systems containing hybrid solvents were modelled using the RK-EOS. CO2 

absorption in alkanolamines was modelled using the Posey-Tapperson-Rochelle model, as was 

successfully applied in the work of Osman et al. (2012). All modelling was programmed in 

Matlab R2011b
TM

. The modelling of CO2 absorption in hybrid solvents is available under the 

file name “PhDModelling2.m”, while the modelling of CO2 and O2 absorption is available 

under the file name “IL_Generic_RK_EOS_Modelling.m”. These files and their supporting files 

are available electronically in the attached CD. Binary interaction and fitting parameters are 

presented in Table 7-4 and 7-5of Chapter 7, while calculated CO2 partial pressure is presented in 

Tables A-1 to A-21 of Appendix A. The results of the modelling are discussed in Sections 7.6 

and 7.9 of Chapter 7. Critical properties are presented in Table B-1 of Appendix B.   

 

 

 

 

 

 

 



95 
 
 

CHAPTER 5: APPARATUS AND EXPERIMENTAL PROCEDURE 

5.1 Refractometer for sample purity tests 

The purity of all chemicals was tested using an Atago RX-7000 CX refractometer. The 

refractometer contains an optical lense and requires approximately 1 ml of each sample to cover 

the lense. A conical design ensures even distribution of the sample over the lense. A base plate 

covers the sample to avoid contact with atmosphere, or any dust particles from invalidating the 

measurement.  

The refractometer has an LCD display and measurement time takes 10 seconds for each sample. 

Refractive indices are recorded with a resolution of ±0.000001.  

5.2 Density measurement apparatus 

Density of all ionic liquids and alkanolamines were measured using an Anton Paar DMA 

5000M vibrating U-tube densitometer. The densitometer was calibrated at each temperature 

using Ultra-pure water obtained using an Elga Purelab Option-Q Millipore Device, and dried 

air. Temperature was achieved using an internal heating and cooling mechanism within the 

device and controlled with a built-in thermostat controller with a temperature uncertainty of 

±0.01 K.      

5.3 Gas solubility apparatus 

All gas solubility measurements for this research were conducted by gravimetric analysis using 

an Intelligent Gravimetric Analyser (IGA-01) designed and constructed by Hiden Analytical 

Ltd.  
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Figure 5-1: Diagram of Intelligent Gravimetric Analyser (IGA-01) for Gas Solubility 

Measurements 

Figure 5-1 shows the setup of the gravimetric analyser. The IGA consists of a small sample 

reactor cell into which sorbents or solvents can be placed. The cell is very small, allowing for 

small volumes of material to be studied at a time. Sample size may be between 50 mg and 5 g in 

mass. The sample holder is suspended inside a stainless steel reactor by being attached to a 

tungsten and gold wire leading up to a microbalance which has a resolution of ±0.001 mg. The 

weight of the sample holder is countered using a counterweight so that only the weight of the 

sample may be tracked. The reactor is sealed using copper gaskets.  

The reactor can be degassed using a Vacuubrand GMH-MD1 vacuum pump and an Edwards 

WRGS-NW35 turbomolecular pump to achieve high vacuum of 1x10
-4

 Pa.  

Pressure was controlled using two pre-calibrated pressure controllers. One pressure controller 

controls flow out using the vacuum pumps, while the other controls gas flow and pressure into 

the reactor. The error in pressure reading was ±0.001 kPa. The control accuracy of the two 

pressure controllers was stated to be 0.025% of desired conditions.  
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Temperature is controlled using a Polyscience SD07R-20 refrigerated recirculating water bath 

and a Severn TF50/3/12/F furnace. A Pt100 probe with a resolution of ±0.01 K was located 

inside the reactor next to where the sample holder is suspended to read temperature. 

Temperature control accuracy was to 0.05% of desired conditions. 

The apparatus can conduct measurements at a system pressure in the range of 0.005 MPa to 2 

MPa. The apparatus can achieve a system temperature in the range of 273.15 to 353.15 K using 

the refrigerated recirculating water bath, and 263.15 to 773.15 K using the furnace (Roper, 2011 

and Hiden Isochema, 2011). 

The apparatus is connected to a personal computer and all measurements including temperature, 

pressure and sample weight are recorded using specialised software suited for the apparatus. 

Temperature and pressure control are set using the software as well. The apparatus is 

constructed for programmable operation. A programme of measurement for each desired 

equilibrium point may be set up and the apparatus records equilibrium points sequentially and 

automatically.  

5.4 Refractive index measurement procedure 

Equipment needed for measuring refractive indices using the refractometer included distilled 

water, acetone, compressed air, paper towels, gloves, vials and 5 ml syringes. The procedure 

below was followed: 

1. The refractometer lense and reservoir were cleaned with distilled water and dried with a 

paper towel 

2. The lense and reservoir were cleaned with acetone and dried with compressed air.  

3. 1 to 2 ml of sample was poured into a vial 

4. 1 ml of sample was drawn from the vial using a syringe and transferred to the lense. 

5. The refractometer plate covering was closed and measurement was initiated 

6. After approximately 10 seconds, the reading was displayed on the LCD screen. 

7. The sample was wiped off using a paper towel, and discarded safely. 

8. The lense and reservoir was cleaned according to step 1. 

Measurements were repeated 3 times to ensure reproducibility. The results are presented in 

Table 7-1 in Section 7.1.    
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5.5 Density measurement procedure 

Each density measurement was completed 3 times to ensure good repeatability. The uncertainty 

in density measurement was ±0.00004 gcm
-3

. In addition to the sample itself, a larger beaker, 

distilled water, acetone, gloves, paper towels, and syringes were required for density 

measurements. The procedure was as follows: 

1. The densitometer was set to 343.15 K, in case previous samples were of high viscosity. 

2. The densitometer was cleaned twice using distilled water. Water was injected into the 

densitometer, and thereafter pumped out.  

3. The densitometer was then cleaned using acetone. Acetone was injected into the 

densitometer once and pumped out. 

4. The sample was injected using a syringed and readings were taken starting at 293.15 K.  

5. Once the apparatus reached the set equilibrium temperature, density was recorded and a 

higher temperature was set.  

6. Upon reaching 343.15 K, density measurements continued by decreasing the temperature. A 

second set of measurements were obtained. 

7. Upon reaching 293.15 K again, sample was pumped out and fresh sample injected.   

The above procedure confirmed repeatability and reproducibility of density measurements. 

Density measurements are presented and discussed in Section 7.2 of Chapter 7. Low standard 

deviations were exhibited and are shown in Table 7-2.  

5.6 Sample preparation procedure for gas absorption measurements 

Pure ionic liquid samples did not undergo any preparation and were simply loaded into the 

Intelligent Gravimetric Analyser (IGA). However, hybrid solvents were prepared in 1g 

solutions, by individually measuring appropriate masses for each component using a mettler 

balance. The procedure was as follows: 

1. The following equipment was needed: 

a. Gloves 

b. Distilled water 

c. Acetone 

d. Compressed Air 

e. 2 ml syringes or droppers 

f. 2 ml sealable vials 

g. Mettler balance with ±1μg resolution 
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2. Vials were cleaned with distilled water and acetone, followed by compressed air. 1 ml of 

each component was added thereafter to each vial. 

3. An empty 2 ml vial was placed on a mettler balance and the balance was zeroed. The 

balance has an accuracy in mass measurement of ±1μg. 

4. Each component was added drop-wise into the 5ml vial using a syringe.  

5. Once all components were added, the hybrid solvent was thoroughly mixed by manual 

agitation.  

6. The vial was sealed and immediately taken for degassing using the gravimetric analyser. 

Note that only 70 to 100 mg of solvent is needed for gravimetric analysis. However, 1g samples 

were prepared to ensure accurate mass measurement, effective mixing, and high solvent masses 

in the vial with low contact with the atmosphere.  

The accuracy in mass measurement was ±1μg for each component. This resulted in a combined 

uncertainty of up to ±4μg in sample mass depending on the number of components in the hybrid 

sample. A further uncertainty of ±2 μg was added due to impurities stated by the suppliers of all 

solvents. In all cases, the impurity was stated to be water and removed by the gravimetric 

analyser upon degassing. 

5.7 Loading and gas absorption measurement procedure by gravimetric analysis 

Gas solubility measurements for CO2 and O2 in all ionic liquids, and CO2 in alkanolamine-ionic 

liquid hybrid solvents, were conducted in this research. The systems investigated are presented 

in Tables 6-1 to 6-3 of Chapter 6. Initially, all balance components were weighed using a 

Mettler balance. This included the sample container, the hook and chain in the reactor, the hook 

and chain for the counter weight, and the counterweight itself. The results of these 

measurements are presented in Section 7.3 of Chapter 7. The following procedure was 

conducted for sample preparation and use of the gravimetric analyser: 

1. All temperature and pressure control was switched off in the gravimetric analyser through 

use of IGA software on the PC.  

2. The temperature controlled water jacket was switched off and detached from the reactor 

using a screw jack. 

3. The reactor was then detached from the microbalance.  

4. The sample container inside the reactor was removed. Any previous sample was discarded 

into waste bottles.  

5. The sample container was cleaned using distilled water, acetone, and a paper towel, and 

finally dried using compressed air.  
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6. The sample container was re-attached to the microbalance and its weight reading was taken 

to ensure that its mass remained constant, indicating effective cleaning. 

7. With the gravimetric analyser prepared for a new sample, the preparation of a new sample 

then followed, as explained in Section 5.6 above. 

8. Immediately upon sample preparation, the sample was transferred from its vial to the 

gravimetric analysers sample container using a dropper. 70 to 100 mg of sample was loaded 

onto the sample container. The rough mass was checked by hooking the sample container to 

the microbalance and noting the weight reading. 

9. Once the correct mass was loaded, the reactor was reattached and sealed using copper 

gaskets. 

10. The temperature controlled water jacket was reattached to the reactor.  

11. To achieve higher accuracy in sample mass and composition, the sample was first degassed 

using the vacuum pump and turbo molecular pump. This was achieved through commands 

prompted using the IGA software. Water and other volatile impurities which may have 

existed were thus removed from the sample.  

12. Valve PIV1 as shown in Figure 5-1 above was opened to allow for stronger vacuum as low 

as 1x10
-4

 Pa, which was achieved. 

13. Thereafter, a programme of measurement was set up, with each isothermal temperature and 

gas pressure being specified. The first isotherm was 303.15 K and the first equilibrium 

partial pressure was 0.05 MPa.  

14. The measurement programme was then initiated and the gas was introduced and controlled 

at each desired equilibrium pressure and temperature. Sorption measurements were 

conducted by considering the measurement of weight change of the sample as it absorbed 

the gas. These changes and the equilibrium points were recorded in real time by the 

apparatus. 

15. For each isotherm, absorption measurements were conducted, followed by desorption 

measurements, in order to ensure good repeatability of results. CO2 Gas partial pressures of 

0.05, 0.1, 0.4, 0.7, 1, 1.3, and 1.5 MPa were considered for all solvents. O2 partial pressures 

of 0.05, 0.1, 0.4, and 0.7 MPa were considered due to limitations in gas regulation.  

16. Due to the low quantity of sample being analysed, each equilibrium absorption and 

desorption point took 2 to 4 hours measure. 

17. Once the absorption and desorption was complete for a particular isotherm, the temperature 

was increased for the next isotherm. Isotherms of 303.15 K, 313.15 K, and 323.15 K were 

considered.   

18. Once all isotherms and all equilibrium points were measured, the temperature was reduced 

to 298.15 K and the apparatus pressure control ceased.  
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19. The vent valve as shown in Figure 5-1 above, was opened to achieve atmospheric pressure 

in the apparatus and temperature control was switched off. It was then safe to unload the 

sample as explained in points 1 to 4 above.      

The systems investigated for CO2 and O2 absorption are explained in Chapter 6. The results 

were plotted to establish trends and draw conclusions, and are presented and discussed in 

Sections 7.3 to 7.7 of Chapter 7. Tabulated data for CO2 and O2 absorption and desorption are 

available in Tables A-1 to A-21 of Appendix A.   

For all systems investigated by gravimetric analysis, measurements were also conducted using 

non-absorbing nitrogen gas, in order to correct buoyancy effects brought about by significant 

changes in the density of liquid samples upon gas absorption. This effect is discussed in greater 

detail in Section 7.3 of Chapter 7 and Appendix C. Buoyancy correction data for all systems are 

presented in Appendix D.    

5.8 Liquid phase composition measurement using fourier transform infrared 

(FTIR) spectroscopy 

It was intended to determine the chemistry of CO2 absorption in pure ionic liquids and hybrid 

solvents containing alkanolamines and ionic liquids at a pressure range of 0.05 to 1.5 MPa and 

303.15 to 323.15 K using infrared spectroscopy. Despite significant investigation and 

consultation with experts, the apparatus did not produce the desired results due to the infrared 

probe being limited to the near infrared region only. Further investigation and liaison with 

consultants for the development of this apparatus is on-going, requiring further investment and 

modification into achieving the desired measurements. Details of the development of the 

apparatus and its operation are however presented in Section F1 of Appendix F. 

Recommendations regarding the modification of this apparatus is presented in Chapter 10. 
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CHAPTER 6: SYSTEMS INVESTIGATED FOR ABSORPTION 

MEASUREMENTS 

Upon conducting a significant review of ionic liquids, it was found that ionic liquids possess 

great potential in improving the technique of CO2 absorption using solvents. However, it was 

also found that since ionic liquids are physical solvents, their CO2 absorption capacity was low 

at low pressure. This was evident when comparing the CO2 mole fractions in Table 2-6 with the 

performance of conventional alkanolamine solvents in literature (Jou et al., 1994).  

Alkanolamine solvents on the other hand were found to be corrosive and need to be diluted for 

commercial use. In most cases, alkanolamines were diluted with water. While water assisted the 

alkanolamine in dissolving CO2 for reaction between the alkanolamine and CO2, water did not 

increase the absorption capacity of the alkanolamine. Moreover, dilution with water resulted in 

the solvent possessing a high heat capacity, which was undesirable due to high energy costs 

when regenerating the solvent.  

It was thus found worthy to investigate the combining of alkanolamines with ionic liquids 

instead of water. From the perspective of the ionic liquid, an addition of alkanolamines could 

result in a hybrid solvent with a high CO2 absorption capacity at low pressure. From the 

perspective of the alkanolamine, the addition of ionic liquids instead of water not only provides 

adequate dilution of the alkanolamine to reduce the corrosiveness of the solvent, but could also 

result in a solvent where all components in the solvent can absorb CO2, thereby increasing the 

CO2 absorption capacity across all pressure, especially at higher pressure. 

Studies on mixing ionic liquids with alkanolamines have received very limited attention thus 

far. Zhang et al. (2009) modified the cation synthesis of ionic liquids to include alkanolamines 

in the cation itself. Table 2-6 presents some results of the study. The study did not achieve CO2 

absorption superior to that of imidazolium based fluorinated ionic liquids. Limited studies were 

conducted by Ma et al. (2011) on MDEA+Ionic Liquid+H2O mixtures. Loading results were 

promising, yet overall absorption was low due to high H2O dilution. Very encouraging results 

were obtained in the corrosion study of BF4+MDEA hybrid solvents by SuoJiang et al. (2010), 

showing low solvent corrosiveness towards various steels. CO2 absorption in hybrid solvents 

containing MEA and DEA with undisclosed RTILs were measured by Camper et al. (2008), 

indicating superior absorption over amine functionalised ionic liquids.  
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While the above results were promising overall, the area of hybrid solvents containing 

alkanolamines and ionic liquids was found to be relatively understudied. This research thus 

aimed to investigate the use of hybrid solvents further.  

As previously mentioned, mass transfer theory of gas absorption was extensively covered by 

Lewis and Whitman (1924) and Danckwerts (1965). A more comprehensive and quantitative 

explanation, and analysis of gas absorption mass transfer theory, including reactive absorption, 

is available in Treybal (1981, pg 333). This research however, concerns a thermodynamic 

investigation into gas absorption rather than a kinetic analysis, which forms a good basis for 

research in the future.  

From the review, it was observed that ionic liquids with fluorinated anions and imidazolium 

based cations were most suited for CO2 absorption. For this research, four ionic liquids were 

first selected and tested to confirm these observations. The ionic liquids investigated are 

presented in Table 6-1: 

Table 6-1: Ionic Liquids to be Investigated Experimentally 

Ionic Liquid Abbreviation 

1-Butyl-3-methylimidazolium tetrafluoroborate [Bmim][BF4] 

1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [Bmim][Tf2N] 

Methyl trioctyl  ammonium bis(trifluoromethylsulfonyl)imide [MOA][Tf2N] 

1-Butyl-3-methylimidazolium methyl sulphate [Bmim][MeSO4] 

The above ionic liquids were selected to determine the effect of increasing fluorination of the 

anion, and the use of different cations. Imidazolium based cations were compared to ammonium 

based cations to observe the effect of cation type and chain length, and methyl sulphate anions 

were compared to intermediately fluorinated tetrafluoroborate anions and heavily fluorinated 

bis(trifluorosulphonyl)imide anions. Carbon dioxide (CO2) and oxygen (O2) absorption were 

measured in these ionic liquids to assess not only absorption capacity but also CO2 selectivity.  

A list of alkanolamines is presented in Table 2-3 of Section 2.4.1, along with an in depth 

explanation of chemical absorption in alkanolamines. The alkanolamine solvents that were 

investigated to combine with ionic liquids are presented in Table 6-2 below. 

Table 6-2: Alkanolamine Solvents to be Investigated Experimentally 

Alkanolamine Abbreviation 

Mono-ethanol amine MEA 

Di-ethanol amine DEA 

Methyl-di-ethanol amine MDEA 

The above alkanolamines were selected mainly because it was useful to determine the effect of 

combining primary, secondary, and tertiary amines with ionic liquids. MEA is a primary amine, 

DEA is a secondary amine, and MDEA is a tertiary amine. Moreover, the above alkanolamines 
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are well studied for CO2 absorption (Jou et al., 1994, Mamun et al., 2005, and Austgen et al., 

1991).  

Four ionic liquids were studied and the two ionic liquids which were found to have a high CO2 

absorption capacity and be the most selective for CO2 absorption over O2 absorption were then 

blended with alkanolamines at different compositions. The two ionic liquids were [Bmim][BF4] 

and [Bmim][Tf2N], and they were blended with MEA, DEA, and MDEA in the following mass 

compositions shown in Table 6-3 below: 

Table 6-3: Mass Composition (%) of Samples Measured for CO2 Absorption 

Sample 
Mass Composition (wt%) 

MEA DEA MDEA [Bmim][BF4] [Bmim][Tf2N] 

1 0.0 0.0 0.0 100.0 0.0 

2 29.3 0.0 0.0 70.7 0.0 

3 33.0 16.2 0.0 50.8 0.0 

4 31.8 12.1 0.0 56.1 0.0 

5 31.6 0.0 10.4 58.0 0.0 

6 30.3 0.0 21.8 48.0 0.0 

7 29.8 11.7 12.8 45.7 0.0 

8 0.0 0.0 0.0 0.0 100.0 

9 32.8 0.0 0.0 0.0 67.2 

10 32.55 21.29 0.00 0.00 46.2 

11 30.28 10.53 0.00 0.00 59.2 

12 29.9 0.0 12.6 0.0 57.5 

13 30.4 0.0 19.3 0.0 50.3 

14 29.1 10.1 12.5 0.0 48.3 

 

The reason for the above compositions was to investigate the effects of different alkanolamine-

ionic liquid compositions on CO2 absorption. Conventional solvents utilise MEA at 30wt%, 

with 70wt% water (Jou et al., 1994, Mamun et al., 2005). The advantage of this alkanolamine is 

that it is a primary amine which reacts with CO2 at a comparatively high absorption rate, with a 

reasonably high CO2 absorption capacity (Figueroa et al., 2008). It was thus decided that all 

hybrid solvents studied must include 30wt% MEA. 

Carbon dioxide (CO2), nitrogen (N2), and oxygen (O2) gas were purchased from Afrox Ltd. 

(South Africa) with a stated minimum purity of 99.9 %. CO2 and O2 absorption was measured, 

while all solvents were also tested for absorption with N2, in order to provide the correction for 

buoyancy effects described in Section 7.3 and Appendix C. 

Methyltrioctyl ammonium bis(trifluoromethylsulfonyl)amide [MOA][Tf2N] was purchased 

from Fluka Ltd. while 1-butyl-3-methyl imidazolium methyl sulphate [Bmim][MeSO4] was 
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purchased from Sigma-Aldrich Ltd.. 1-butyl-3-methyl imidazolium 

bis(trifluoromethylsulfonyl)amide [Bmim][Tf2N], 1-butyl-3-methyl imidazolium 

tetrafluoroborate [Bmim][BF4], Monoethanolamine, Diethanolamine and Methyl 

Diethanolamine were purchased from DLD Scientific Ltd.  

The purity of all ionic liquids was stated by the supplier to be ≥98% while the purity of all 

alkanolamines was stated to be ≥99%. The supplier’s method of testing purity was stated to be 

H-NMR. The purity of all chemicals was tested in this research using an Atago RX-7000 CX 

refractometer, as explained in Sections 5.1 and 5.4 of Chapter 5. Table 7-1 in Section 7.1 shows 

the refractive indices of each compound in comparison to literature values. 

Pure component densities of all ionic liquids and all alkanolamines were measured using an 

Anton Paar densitometer as explained in Sections 5.2 and 5.5 of Chapter 5. A discussion of the 

density data obtained is available in Section 7.2 of Chapter 7. 

Blending the hybrid solvents began by considering 30wt% MEA with 70wt% ionic liquid. 

Hybrid solvents thereafter considered 30wt% MEA with the addition of the secondary amine 

DEA at 10wt% and 20wt%. The same compositions were studied for the tertiary amine MDEA, 

as shown above. Finally, an inclusion of all three alkanolamines was considered for the hybrid 

solvent. These compositions were studied for both ionic liquids, as shown in Table 6-3 above. 

CO2 absorption in the above pure ionic liquids and hybrid solvents was measured by gravimetric 

analysis. Previous studies on gas absorption in numerous ionic liquids by gravimetric analysis 

was successfully accomplished in numerous other literature sources, including Shiflett et al. 

(2005),  Anderson et al. (2007), Brennecke and Gurkan (2010), and Cadena et al. (2004). The 

technique of measurement is explained in Chapter 5. Results are discussed in Chapter 7. 

Liquid phase composition was expected to be complex due to chemical absorption occurring 

between CO2 and alkanolamines in the hybrid solvents. It was thus also intended to test the 

liquid phase composition of hybrid solvents as in Table 6-3 at the same CO2 absorption 

isotherms and CO2 partial pressure using Fourier Transform Infrared (FTIR) spectroscopy. This 

was attempted using an in-situ infrared probe in a stainless steel equilibrium cell. Initial 

measurements with systems containing only CO2 were successful in tracking CO2 at different 

partial pressures. The apparatus was found to be limited however in the measurement of gas 

absorption in solvents and results were inconclusive. Details of this apparatus, preliminary 

measurements, potential advantages and measurement challenges, and recommendations on 

how to overcome these challenges are presented in Appendix F.   
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CHAPTER 7: RESULTS AND DISCUSSION OF MEASUREMENTS 

AND THERMODYNAMIC MODELLING 

The objective of this research was to identify all methods of CO2 capture that are under 

investigation throughout the world, and determine which method demonstrates the most 

promise in terms of mitigating CO2 emissions on a commercial scale in the near future. 

The technique of gas absorption using solvents was identified as the most promising CO2 

capture technique. Due to the numerous advantages of ionic liquids and alkanolamine solvents, 

it was ultimately decided to combine alkanolamines and ionic liquids in order to achieve novel 

hybrid solvents that may possess all the advantages of alkanolamines and ionic liquids while 

minimising their disadvantages.  

CO2 absorption measurements were conducted by gravimetric analysis as described in Chapter 3 

and Section 5.7 of Chapter 5. This chapter discusses the results and implications of these 

measurements. 

Four ionic liquids were first considered: [MOA][Tf2N], [Bmim][BF4], [Bmim][Tf2N], and 

[Bmim][MeSO4]. Purity and density of each ionic liquid was measured as explained in Chapter 

5. Thereafter, CO2 and O2 absorption was measured in these four pure ionic liquids, in order to 

determine absorption capacity and CO2 selectivity of the ionic liquids.  

Thereafter two most CO2 selective ionic liquids were chosen to be combined with 

alkanolamines at compositions shown in Table 6-3 of Chapter 6. Purity and density of each 

alkanolamine was also measured as explained in Chapter 5. 

All absorption measurements were modelled. The RK-EOS was used to model physical 

absorption in ionic liquid components while the Posey-Tapperson-Rochelle model was used to 

model chemical absorption in alkanolamine components.   

The results of the above are presented and discussed in this Chapter. 

7.1 Purity of solvents used 

It was imperative that the purity of all chemicals used in this research was verified. This was 

especially important in the combining of alkanolamines with ionic liquids to create hybrid 

solvents. Purity was confirmed by measuring refractive indices and pure component density. As 

mentioned in Chapter 5, a refractometer was used to obtain refractive indices, while an Anton 
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Paar densitometer was used to obtain pure component density. Table 7-1 below contains the 

measured refractive indices in comparison to literature values. 

  Table 7-1: Refractive Indices of Compounds used in this Research 

Ionic Liquid Measured 
Refractive 

index 

Standard 
Deviation 

Literature 
Refractive 

Index 

Difference/% Temperature 
/K 

Reference 

[Bmim][Tf2N] 1.428413 9.43E-6 1.428 0.03 293.15 Tariq et al. (2009) 
[Bmim][MeSO4] 1.476930 8.49E-5 1.478 -0.07 293.15 Chemicalbook (2013) 
[MOA][Tf2N] 1.439710 4.71E-6 1.439 0.05 293.15 Chemicalbook (2013) 
[Bmim][BF4] 1.423200 1.25E-4 1.42475 -0.11 293.15 Lee et al. (2012) 
MEA 1.454128 1.99E-4 1.4541 0.00 293.15 Weast et al. (1984), 

Pp. E-361 
DEA 1.476998 9.12E-4 1.4776 -0.04 293.15 Weast et al. (1984), 

Pp. E-361 
MDEA 1..469573 9.43E-6 1.469 0.04 293.15 Weast et al. (1984), 

Pp. E-361 

The indices measured in this work compare quite favourably to those reported in the literature 

(ChemicalBook, 2012, Weast et al., 1984), as Table 7-1 above shows. Refractive indices 

measured in this research differed by as much as 0.11% from values obtained in previous 

literature sources. This suggests high purity of the supplied chemicals.  

7.2 Pure component density of solvents 

Density measurements were conducted as described in Section 5.5 of Chapter 5. Table 7-2 

below presents the final results obtained. As mentioned in Section 5.5, density was measured 3 

times to ensure repeatability and reproducibility. Temperature and density values are presented 

below along with the standard deviation obtained.    

Table 7-2: Measured Density of All Compounds 

Temperature/K 
    

ρ/g∙cm-3 
    

Literature 
ρ/g∙cm-3 

Reference 

MEA   
293.15 ± 0.0013 1.0157 ± 2.11E-05 - - 
303.15 ± 0.0025 1.0077 ± 4.00E-06 1.0085 Estimated using Elec-NRTL 
313.15 ± 0.0031 0.9997 ± 4.23E-06 1.0009 Estimated using Elec-NRTL 
323.15 ± 0.0023 0.9917 ± 5.29E-06 0.9931 Estimated using Elec-NRTL 
343.15 ± 0.0019 0.9757 ± 3.16E-06 - - 

MDEA   
293.15 ± 0.0021 1.0386 ± 3.86E-05 - - 
303.15 ± 0.0013 1.0306 ± 6.05E-06 1.0298 Estimated using Elec-NRTL 
313.15 ± 0.0035 1.0226 ± 2.43E-06 1.0198 Estimated using Elec-NRTL 
323.15 ± 0.0024 1.0146 ± 4.06E-06 1.0150 Estimated using Elec-NRTL 

343.15 ± 0.0014 0.9986 ± 6.16E-06 - - 
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Table 7-2 (Contd.): Measured Density of All Compounds 

Temperature/K 
    

ρ/g∙cm-3 
    

Literature 
ρ/g∙cm-3 

Reference 

DEA   
293.150 ± 0.0028 1.0972 ± 5.39E-05 - - 
303.148 ± 0.0015 1.0905 ± 8.92E-05 1.0911 Estimated using Elec-NRTL 
313.148 ± 0.0021 1.0842 ± 1.21E-05 1.0843 Estimated using Elec-NRTL 
323.149 ± 0.0021 1.0777 ± 5.69E-06 1.0775 Estimated using Elec-NRTL 
343.149 ± 0.0015 1.0644 ± 2.00E-06 - - 

[Bmim][MeSO4]   
293.152 ± 0.0028 1.2074 ± 1.84E-05 - - 
303.15 ± 0.0000 1.2004 ± 1.34E-05 1.2088 Pereiro et al. (2007) 

313.149 ± 0.0028 1.1937 ± 7.07E-07 1.1920 Pereiro et al. (2007) 
323.149 ± 0.0014 1.1871 ± 2.83E-06 1.1903 Pereiro et al. (2007) 

343.15 ± 0.0012 1.1739 ± 2.43E-06 1.1722 Pereiro et al. (2007) 
[MOA][Tf2N]   

293.149 ± 0.0010 1.1097 ± 3.41E-05 - - 
303.148 ± 0.0012 1.1023 ± 1.00E-06 1.1032 Deenadayalu et al. (2010) 
313.148 ± 0.0031 1.0947 ± 3.21E-06 1.0957 Deenadayalu et al. (2010) 
323.149 ± 0.0026 1.0872 ± 3.79E-06 - - 
343.148 ± 0.0017 1.0723 ± 4.16E-06 - - 

[Bmim][Tf2N]   
293.148 ± 0.0032 1.4422 ± 5.86E-05 - - 
303.152 ± 0.0012 1.4319 ± 6.35E-06 1.4316 Fredlake et al. (2004) 
313.149 ± 0.0025 1.4223 ± 1.53E-06 1.4247 Fredlake et al. (2004) 
323.149 ± 0.0025 1.4128 ± 5.57E-06 1.4122 Fredlake et al. (2004) 
343.153 ± 0.0007 1.3939 ± 2.62E-05 - - 

[Bmim][BF4]   
293.149 ± 0.0030 1.0440 ± 1.44E-05 - - 
303.151 ± 0.0022 1.0380 ± 1.02E-05 1.2005 Fredlake et al. (2004) 
313.15 ± 0.0025 1.0320 ± 1.07E-06 1.194 Fredlake et al. (2004) 

323.148 ± 0.0035 1.0260 ± 1.76E-06 - - 
343.151 ± 0.0011 1.0140 ± 1.58E-06 - - 

The data shown for the ionic liquids above compares well with that measured by Deenadayalu 

et al. (2010), Jacquemin et al. (2006), and Pereiro et al. (2007). Density data for [Bmim][BF4] 

and [Bmim][Tf2N] also compares well with Baltus et al, (2004), Fredlake et al. (2004), and 

Shiflett et al. (2005) shown in Table 2-10. Pure component density was not easily avaialable in 

literature for MEA, DEA, and MDEA since these solvents are typically studied in diluted form 

with water. The measured pure component density data does however compare well with pure 

component density estimates using the Elec-NRTL model in Aspen Engineering Suite V 8.0 as 

shown. In addition to the refractive indices, this provides a supporting indication of the purity of 

the chemicals used in this research.   

The above data could also be fitted to a 1
st
 order equation for accurate interpolation of density 

data. The following 1
st
 order equations apply to the pure component density of each solvent: 
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2502.1][*0008.0][ 3   KTcmgMEA ………………(E7-1) 

2918.1][*0007.0][ 3   KTcmgDEA ………………..(E7-2) 

2731.1][*0008.0][ 3   KTcmgMDEA ………………(E7-3) 

7235.1][*001.0][ 3

]][[ 2
  KTcmgNTfBmim ……….......(E7-4) 

2199.1][*0006.0][ 3

]][[ 4
  KTcmgBFBmim …………..(E7-5) 

4038.1][*0007.0][ 3

]][[ 4
  KTcmgMeSOBmim …………(E7-6) 

3300.1][*0008.0][ 3

]][[ 2
  KTcmgNTfMOA ………...…(E7-7) 

It was also recommended by Roper (2011) to input the density of each sample into the IGA 

software at 298.15 K for the initial loading of the sample. Merely an estimate was stated to be 

recommended. Density of hybrid solvents was thus calculated by the following equation: 

Density of Hybrid solvents: 


 
n

i

iiHybrid xcmg
1

3 )(  …………………………(E7-8) 

Where n is the number of components in the solvent before absorption. The above equation was 

used for all hybrid solvents simply as initial density measurements for gravimetric analysis. 

While the above equation decreases in accuracy as the system departs from ideal gas conditions, 

the key estimates were needed at atmospheric conditions, where a high degree of ideal solution 

behaviour was assumed. Thus, excess volume was assumed to be negligible.     

7.3 Buoyancy correction for gravimetric measurements 

Gravimetric analysis produces a weight reading of the sample by taking into account all 

contributing forces in the reactor. This includes the dry sample ms [g], the mass of gas absorbed 

ma [g] the sample container and its associated attachments (hook and chains) represented by mI 

[g], the mass of the counterweight mc [g], the mass of associated attachments linking the 

counterweight to the microbalance together with the tungsten hook and gold chain linking the 

sample container to the microbalance, represented by mII [g].  

A buoyancy force is also caused by the surrounding gas displaced by the presence of the 

sample, the sample container and balance components in the reactor. These are represented by 
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VI, VC, and VII accounting for the volume of the sample container and chain, the counterweight, 

and counterweight chain respectively. The force is dependent on the density of the gas at each 

equilibrium temperature and pressure condition. Table 7-3 below contains measured masses 

and calculated volumes of each of the components explained above. The density of each 

component was given by Hiden Analytical Ltd., the manufacturer of the gravimetric analyser 

used in this research. 

Table 7-3: Measured Mass and Calculated Volume of Balance Components used in 
Gravimetric Analysis 

Balance Component Mass/g Density/g∙cm-3 Volume/cm3 

Sample Container (msc) 0.6194 7.9 0.078 

Wire (mI,1) 0.063 21 0.003 

Chain (mI,2) 0.1776 19.3 0.009 

Counterweight (mC) 0.8008 7.9 0.101 

Hook (mII,1) 0 0 0.000 

Chain (mII,2) 0.143 19.3 0.007 

A significant source of error in weight reading, especially when studying liquid samples using 

gravimetric analysis, is that the density of the sample decreases significantly upon uptake of the 

absorbing gas. This term is represented by Vas, the volume of the sample and the absorbed gas.  

The weight reading produced by the gravimetric analyser is thus given by the following 

equation: 

W = g[ms + ma - mc + mI - mII -ρf(Vas + VI - VII - Vc)]…………(E7-9) 

where W is the weight reading in [N], g is acceleration due to gravity in [m∙s
-2

], and ρf is the 

density of the absorbing gas [g∙cm
-3

].  

The samples loaded into the apparatus were pure ionic liquids and alkanolamine-ionic liquid 

hybrid solvents, all in the liquid phase throughout the entire temperature and pressure range of 

operation. Upon absorption of a gas, the density of these samples significantly decreases, 

making the sample more buoyant and thus lowering the weight of the sample. Samples thus 

appear to have a lower mass than they actually have.  

For example, the data for N2 gas in MEA:[Bmim][Tf2N] at 32.8:67.2 wt% at 313.15 K has been 

plotted below in Figure 7-1, simply for illustration of the buoyancy effect. 



111 
 
 

 

Figure 7-1: Bouyancy Measurements using N2 gas for MEA:[Bmim][Tf2N] at 32.8:67.2 wt% at 

313.15 K 

As shown in the figure above, for a constant temperature, an increase in equilibrium partial 

pressure resulting in an increase in N2 density, has made the sample more buoyant and with 

increasing gas density, a decrease in sample weight reading is observed by the apparatus. In 

reality however, it is known that the sample is not volatile and the actual mass is not changing, 

but rather the weight reading changes. Another example containing pure [Bmim][BF4] is shown 

in Figure C-1 in Appendix C.  

The above effect has to be corrected to achieve accurate solubility results. To account for this 

buoyancy effect, all sample weight readings were taken at each equilibrium pressure and 

temperature using a non-absorbing gas. Nitrogen or helium is typically appropriate. Nitrogen 

was used in this research as it molecular weight is relatively more comparable to O2 and CO2 

than the molecular weight of helium.  

The calculation procedure for buoyancy correction and the obtaining of equilibrium CO2 and O2 

liquid mole fraction by gravimetric analysis are provided in Appendix C. Further details of this 

method of correction for buoyancy effects was explained in the work of Macedonia et al. 

(2000). 

This buoyancy correction was implemented for all solvents studied in this research, including 

pure ionic liquids and hybrid solvents. The buoyancy correction data, including pressure, weight 

reading, and density of N2 is available in Tables D-1 to D-3 of Appendix D.  
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7.4 Test system proving the accuracy of technique in this research 

It was necessary to confirm the accuracy of our technique in measurement of P-T-x data using 

gravimetric analysis. Thus, a test system was measured for CO2 in [Bmim][BF4] ionic liquid at 

298.15 K and 323.15 K, comparing measured data with two independent literature sources and 

two isotherms.  

 

Figure 7-2: Test System - CO2 Absorption in [Bmim][BF4]. ▲- Measured data at 298.15 K; ∆ - 

Measured Data at 323.15 K; ♦ - Shiflett et al. (2005) at 298.15 K; ◊ - Shiflett et al. (2005) at 

323.15 K; ■ – Cadena et al. (2004) at 298.15 K; □ – Cadena et al. (2004) at 323.15 K. 

It is evident from Figure 7-2 that data measured in this work compares quite favourably to data 

measured in the literature (Cadena et al., 2004 and Shiflett et al., 2005). At a temperature of 

298.15 K, deviation of experimental was 4.04 to 16.2% of literature data, with deviations being 

greatest at low pressure and very high pressure of 1.5 MPa. At 323.15 K, experimental data 

deviated from literature data by 0.5 to 15.28% of literature data. It was also noted that the data 

from the two literature differed by up to 20.1% at low pressure and very high pressure.   

7.5 CO2 and O2 absorption measurements in pure ionic liquids 

CO2 and O2 absorption were measured in four pure ionic liquids: [MOA][Tf2N], [Bmim][BF4], 

[Bmim][Tf2N] and [Bmim][MeSO4] using the IGA-01 as explained in Sections 5.7 and Chapter 

6. Temperature, pressure, O2 and CO2 mole fraction were measured at equilibrium and the data 

is provided in Tables A-1 to A-8 of Appendix A. The data was plotted to easily demonstrate 

trends and compare solvents, and are shown in Figures 7-3 to 7-10. Note that the axes were kept 

constant so that CO2 liquid mole fractions for different solvents can be visually compared 
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conveniently. Absorption measurements were conducted and studied in depth, while desorption 

measurements were done merely to confirm the repeatability of the measurements. Figures 7-3 

to 7-6 below show the absorption of CO2 at various temperatures and pressures studied.  

 

Figure 7-3: Isothermal Solubility of CO2 in [MOA][Tf2N]: (◊) absorption, (□) desorption at 

303.15 K; (∆) absorption, (x) desorption at 313.15 K; (●) absorption, (○) desorption at 323.15 

K; - - CO2 in MEA:H2O at 30:70 wt%. *Dotted lines indicate model predictions 

 

Figure 7-4: Isothermal Solubility of CO2 in [Bmim][Tf2N]: ◊ - absorption, □ - desorption at 

303.15 K; ∆ - absorption, x - desorption at 313.15 K; ● - absorption, ○ - desorption at 323.15 K; 

- - CO2 in MEA:H2O at 30:70 wt%. *Dotted lines indicate model predictions 
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Figure 7-5: Isothermal Solubility of CO2 in [Bmim][BF4]: ◊ - absorption, □ - desorption at 

303.15 K; ∆ - absorption, x - desorption at 313.15 K; ● - absorption, ○ - desorption at 323.15 K; 

- - CO2 in MEA:H2O at 30:70 wt%. *Dotted lines indicate model predictions 

 

Figure 7-6: Isothermal Solubility of CO2 in [Bmim][MeSO4]: (◊) absorption, (□) desorption at 

303.15 K; (∆) absorption, (x) desorption at 313.15 K; (●) absorption, (○) desorption at 323.15 

K; - - CO2 in MEA:H2O at 30:70 wt%. *Dotted lines indicate model predictions 

Figures 7-3 to 7-6 indicate that the absorption of both gases was the highest at a lower 

temperature of 303.15 K, and lowest at a higher temperature of 323.15 K for each ionic liquid, 

measured at all equilibrium partial pressures. This behaviour is consistent with literature for 

other ionic liquids as well as other solvents, confirming gas absorption to be an exothermic 

process (Shiflett and Yokozeki, 2005). 
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Table E-1 of Appendix E contains enthalpy and entropy of absorption calculated by equations 

E2-3 and E2-4 of Section 2.5.6 respectively, using the absorption data measured in this work for 

pure ionic liquids. Enthalpy of absorption for CO2 in [Bmim][BF4] and [Bmim][Tf2N] compare 

well with data obtained by Cadena et al. (2004) and Chen et al. (2006). Deviations in enthalpy 

and entropy of absorption calculated was consistent with those presented in Anthony et al. 

(2002). Enthalpy and entropy of absorption were negative, indicating that absorption decreases 

with increasing temperature.  

As found in the works of Cadena et al. (2004), Arshad (2009), Heintz et al. (2009) and Gurkan 

et al. (2010), enthalpy of absorption was found to be higher in the non-fluorinated ionic liquid 

[Bmim][MeSO4] than the other three ionic liquids which were fluorinated. This indicates a 

higher temperature dependence of CO2 absorption in [Bmim][MeSO4] which is confirmed by 

comparing Figure 7-6 to Figures 7-3, 7-4, and 7-5. The effect can also be noted by comparing 

selectivities in Tables A-5 to A-8 of Appendix A. Entropy of absorption for CO2 is also highest 

in the case of [Bmim][MeSO4], indicating high temperature dependence and the unsuitability of 

[Bmim][MeSO4] to efficiently absorb CO2. 

Another observation consistent with literature (Tang et al., 2012, Rodriguez et al., 2006, 

Anthony et al., 2005) is that increased gas partial pressure resulted in increased gas absorption 

for each ionic liquid. The effect was quite significant particularly for CO2 absorption in 

[MOA][Tf2N] and [Bmim][Tf2N]  as shown in Figure 7-3 and 7-4. Higher partial pressure 

favoured absorption of the gas into the ionic liquid to reduce the pressure and maintain 

equilibrium.  

The effect of ionic liquid anion fluorination could be seen when comparing Figures 7-4 to 7-6. 

All three ionic liquids contained the [Bmim] cation. By comparing the above mentioned figures, 

it was noted that [Bmim][MeSO4] achieved the lowest CO2 absorption, with [Bmim][BF4] 

achieving higher absorption and [Bmim][Tf2N] achieving the highest CO2 absorption of all 

ionic liquids containing the [Bmim] cation. This is consistent with works done by Shiflett et al. 

(2005), Cadena et al. (2004) and Hasib-ur-Rahman et al. (2010).  

Figure 7-3 and 7-4 showed the effect of increasing cation chain length. [Bmim][Tf2N], 

containing the smaller [Bmim] cation achieved lower CO2 absorption than [MOA][Tf2N], which 

is consistent with literature findings (Hasib-ur-Rahman et al. 2010, Brennecke et al. 2010). 

[MOA][Tf2N], [Bmim][Tf2N], [Bmim][BF4] and [Bmim][MeSO4] possess molar masses of 

648.85, 419.36, 226.03 and 250.32 g∙mol
-1

 respectively. From the density measurements, the 

molar volume of each ionic liquid at 303.15 K was obtained. The molar volume of the ionic 

liquids was found to decrease in the following order: [MOA][Tf2N]
 
(588.64 cm

3
∙mol

-1
) > 
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[Bmim][Tf2N] (292.87 cm
3
∙mol

-1
) > [Bmim][BF4] (217.74 cm

3
.mol

-1
) > [BMIM]

+
[MeSO4]

-
 

(207.09 cm
3
∙mol

-1
). The same trend applies at all isotherms studied. It was observed that the 

increased cation chain length, resulting in a higher molar volume for [MOA][Tf2N], proved 

effective at increasing CO2 absorption in comparison to [Bmim][Tf2N]. Higher molar volume of 

the cation facilitated a higher amount of CO2 molecules absorbing into the ionic liquid. This is 

consistent with other comparisons of cation chain length found in literature (Anderson et al., 

2007, Shiflett and Yokozeki, 2007). 

It can thus be proposed that ionic liquids with higher molar volumes would achieve greater 

absorption of a gas solute, possibly due to an increase in the void space (free volume) of the 

ionic liquid (Zhou et al., 2013, Shannon et al., 2012). Gases may occupy these free spaces 

available in ionic liquids. (Scovazzo et al., 2004, Huang et al., 2005).   

Of the four ionic liquids studied for gas absorption, [MOA][Tf2N] achieved the highest CO2 

absorption at all four isotherms and at each partial pressure studied due to high anion 

fluorination and cation chain length, followed by [Bmim][Tf2N], [Bmim][BF4], and lastly with 

[BMIM][MeSO4] achieving the lowest CO2 absorption. These findings are consistent with the 

effects of cation chain length and anion fluorination as claimed in numerous literature sources 

(Cadena et al. 2004, Shiflett and Yokozeki, 2007, and Brennecke et al., 2010). 

The above four ionic liquids were benchmarked against a conventional solvent containing 

MEA:H2O at 30:70 wt% at 313.15 K. It can be seen that at 313.15 K in Figures 7-3 to 7-6, the 

conventional solvent achieved significantly higher equilibrium CO2 absorption at low pressure 

than all the ionic liquids studied. All ionic liquids achieved particularly low CO2 absorption at 

low pressure of 0.05 to 0.4 MPa due to only physical absorption taking place. However, it is 

also noted from the trend that the conventional solvent tends to achieve low CO2 absorption at 

higher pressure, due to the chemical solvent having limited absorption capacity. At high 

pressure the ionic liquids achieve higher CO2 absorption. It can thus be concluded that if the 

above investigated ionic liquids were to be used as pure solvents for industrial CO2 capture, the 

flue gas pressure would have to be increased for efficient CO2 capture. If the energy cost of 

compressing flue gas is high, then the conventional solvent would be beneficial over the ionic 

liquid solvents.   

The above ionic liquids were also benchmarked for CO2 absorption against other ionic liquids 

measured in literature at 323.15 K. Figure 7-7 below shows the comparison. 
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Figure 7-7: CO2 Absorption in Ionic Liquids at 323.15K. ◊ - [MOA][Tf2N]; ● – [Hmim][Tf2N] 

(Anderson et al., 2007); □ – [Bmim][Tf2N]; ○ – [Bmim][PF6] (Shiflett and Yokozeki, 2005); X 

– [Bmim][BF4]; ∆ - [Bmim][MeSO4]. 

It was found that [MOA][Tf2N] achieved higher CO2 absorption at  323.15 K than other more 

well studied ionic liquids such as [Bmim][BF4], [Bmim][Tf2N] and [Bmim][PF6] and even 

[hmim][Tf2N] as measured by Shiflett and Yokozeki (2005) and Anderson et al.(2007). A 

comparison of absorption in [Bmim][Tf2N] can be compared with absorption in [Hmim][Tf2N], 

indicating once again that increased cation chain length increases CO2 absorption. The even 

longer [MOA] cation resulted in a further increase in CO2 absorption. Anion fluorination can 

also be observed by comparing absorption in ionic liquids with [BF4], [PF6], and [Tf2N] anions. 

Absorption in the ionic liquid [Bmim][PF6] measured by Shiflett and Yokozeki (2005) is higher 

than absorption in [Bmim][BF4] but lower than in [Bmim][Tf2N], thereby neatly reconfirming 

the trend of increasing CO2 absorption with increasing anion fluorination.  

Additionally, [MOA][Tf2N] also achieved higher CO2 absorption than [bmmim][PF6], 

[bmmim][BF4], [emim][Tf2N] and [emmim][Tf2N] measured by Cadena et al. (2004), as well as 

ionic liquids with fluorinated cations such as [C6H4F9mim][Tf2N] and [C8H4F13mim][Tf2N] at 

303.15 K, investigated by Arshad (2009). This indicates that it is cation chain length that is 

more influential on CO2 absorption than cation fluorination. 

The optimum conditions for CO2 absorption in this study was a partial pressure of 

approximately 1.5 MPa, at a temperature of 303.15 K and using the [MOA][Tf2N] ionic liquid 

to achieve a maximum CO2 mole fraction of 0.343. However, studies concerning the 
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measurement of O2 absorption which was also conducted in this work provided further 

information regarding the suitability of the four ionic liquids in capturing CO2. 

Although the primary focus of this research was to investigate solvents most suitable for CO2 

absorption, the measurement of other gases was also found to be of great concern since a 

solvent for CO2 capture must not only possess a high CO2 absorption rate and capacity but also 

a high selectivity for CO2 above all other gases present in coal power plant flue gas. A review of 

the ionic liquids in this work confirmed that absorption of nitrogen in the above ionic liquids 

was negligible (Macedonia et al., 2000). The absorption of water vapour at the isotherms 

measured was not possible to accurately achieve by gravimetric analysis. However, another 

important constituent of coal power flue gas is oxygen (O2), accounting for approximately 3% 

by volume, of a pulverised coal power plant flue gas. Thus, the absorption of O2 was also 

measured for each of the four ionic liquids.    

The absorption of O2 in all ionic liquids is shown in Figures 7-8 to 7-11 below and presented in 

Tables A-5 to A-8 of Appendix A.  

 

Figure 7-8: Isothermal Solubility of O2 in [MOA][Tf2N]: (◊) absorption, (□) desorption at 

303.15 K; (∆) absorption, (x) desorption at 313.15 K; (●) absorption, (○) desorption at 323.15 K 

*Dotted lines indicate model predictions 
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Figure 7-9: Isothermal Solubility of O2 in [Bmim][Tf2N]: (◊) absorption, (□) desorption at 

303.15 K; (∆) absorption, (x) desorption at 313.15 K; (●) absorption, (○) desorption at 323.15 K 

*Dotted lines indicate model predictions 

 

 

 

Figure 7-10 : Isothermal Solubility of O2 in [Bmim][BF4]: (◊) absorption, (□) desorption at 

303.15 K; (∆) absorption, (x) desorption at 313.15 K; (●) absorption, (○) desorption at 323.15 K 

*Dotted lines indicate model predictions 
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Figure 7-11: Isothermal Solubility of O2 in [Bmim][MeSO4]: (◊) absorption, (□) desorption at 

303.15 K; (∆) absorption, (x) desorption at 313.15 K; (●) absorption, (○) desorption at 323.15 K 

*Dotted lines indicate model predictions 

For all isotherms studied, O2 absorption can be listed to occur in the following ionic liquids in 

the following order of magnitude: O2 absorption in [MOA][Tf2N] > [Bmim][MeSO4] > 

[Bmim][Tf2N] > [Bmim][BF4].   

The effect of anion fluorination on O2 absorption was inconsistent regarding O2 absorption data 

for [Bmim][MeSO4], [Bmim][BF4] and [Bmim][Tf2N]. The comparison of Figures 7-9 and 7-11 

shows that [Bmim][MeSO4] achieved significantly higher O2 absorption than [Bmim][Tf2N], 

suggesting that anion fluorination may be recommended for lower O2 absorption. However, 

[Bmim][BF4] had lower anion fluorination and yet achieved even lower O2 absorption as shown 

in Figure 7-10.  

An analysis of enthalpy of absorption for O2 in the ionic liquids also indicates that fluorinated 

ionic liquids are beneficial over non-fluorinated ones regarding higher CO2 absorption and 

lower O2 absorption. Data in Table E-1 of Appendix E shows enthalpy of absorption for O2 in 

[Bmim][MeSO4] to be substantially lower than for the other ionic liquids indicating lower 

temperature dependence for O2 absorption, an undesirable result for CO2 capture. There is no 

consistency when comparing enthalpy of absorption for [Bmim][BF4] and [Bmim][Tf2N] 

however. 

It can thus only be concluded that fluorinated anions may be beneficial compared to non-

fluorinated anions in achieving low O2 absorption, but this study found no conclusive 

correlation between increasing the fluorination of the anion and decreasing O2 absorption. 
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An undesirable result is that entropy of absorption was found to be negative for O2 absorption in 

all ionic liquids, indicating that while O2 absorption may be low for some of the ionic liquids in 

this work, it is not negligible. It implies that if any of the studied ionic liquids are used for flue 

gas treatment, some O2 absorption is to be expected, which is an undesirable result. Calculation 

of entropy of absorption at each partial pressure did however find that at low pressure, entropy 

of absorption did not remain constant but tended to be less negative, which indicates that O2 

absorption would be negligible at low pressure.  

A potentially more significant observation is that [MOA][Tf2N] achieved higher O2 absorption 

than [Bmim][Tf2N], as shown in Figures 7-8 and 7-9. [MOA][Tf2N] achieved the highest O2 

absorption at all isotherms and partial pressures of all ionic liquids studied, despite this ionic 

liquid containing a highly fluorinated anion. This suggests that the effect of cation chain length 

and type on O2 absorption is greater than the effect of anion fluorination. The high O2 

absorption could be the result of a larger cation chain length, or the fact that an ammonium 

cation was used instead of an imidazolium cation.  

The above observation also casts doubt on the applicability of [MOA][Tf2N] as a solvent for 

CO2 capture. Although this ionic liquid achieved the highest CO2 absorption, it also achieved 

the highest O2 absorption. This indicates low CO2 selectivity, which is an undesirable result for 

CO2 compression and disposal industrially.  

Included in Tables A-5 to A-8 of Appendix A are values for xCO2/xO2 for each equilibrium 

partial pressure from 0.05 to 0.7 MPa and all three isotherms, which may be used to 

quantitatively study and compare the CO2 selectivity of each pure ionic liquid. The first 

observation when studying the data for each system at each isotherm is that the CO2 selectivity 

of all ionic liquids appears highest at low pressures of 0.05 MPa, and high pressures of 0.7 MPa. 

This is due to the relatively very low O2 absorption achieved by all ionic liquids at low pressure, 

and the relatively high CO2 absorption achieved at high pressures of 0.7 MPa. CO2 selectivity 

over intermediate pressures is fairly consistent and can be averaged and compared for each ionic 

liquid.  

By comparing Tables A-5, A-6 and A-8, it can also be observed that in the case of the three 

fluorinated ionic liquids, CO2 selectivity over O2 increases with increasing temperature. This is 

due to a relatively greater drop in O2 selectivity upon increasing temperature, for fluorinated 

ionic liquids. By contrast, CO2 selectivity was fairly consistent over the temperature range in the 

case of [Bmim][MeSO4]. An increase in temperature did not increase CO2 selectivity. This can 

also be seen with the proportionate drop in CO2 and O2 absorption in Figures 7-3 to 7-11, with 

increasing temperature. 
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Another way of comparing gas absorption in physical solvents such as ionic liquids is the 

calculation of Henry’s Law constants as explained using equation E2-2 in Section 2.5.6. 

Henry’s Law constants as accurately obtained using the Krichevski-Kasarnovski equation are 

not pressure dependent. Thus, the ability of a solvent to absorb gases can be compared and 

benchmarked for each isotherm. Table A-9 in Appendix A presents CO2 and O2 Henry’s Law 

constants obtained for each system at each isotherm. The magnitudes of Henry’s Law constants 

also provide a consistent indication of the CO2 selectivity of each ionic liquid at each 

temperature.    

The xCO2/xO2 values in Tables A-5 to A-8 and the Henry’s Law constants presented in Table A-9 

of Appendix A clearly show [Bmim][MeSO4] to be the least CO2 selective ionic liquid. While 

[MOA][Tf2N] achieved the highest CO2 absorption, it also achieved the highest O2 absorption. 

A comparison of xCO2/xO2 and Henry’s Law constant values revealed [MOA][Tf2N] achieved the 

2
nd

 lowest CO2 selectivity. [Bmim][BF4], while achieving the 3
rd

 lowest CO2 absorption, 

achieved the lowest O2 absorption. The Henry’s Law constants and xCO2/xO2 values revealed 

[Bmim][BF4] to achieve the highest CO2 selectivity, with [Bmim][Tf2N] achieving the 2
nd

 

highest CO2 selectivity. 

It was thus determined that the two ionic liquids which achieved the most desirable results for 

CO2 capture were [Bmim][BF4] and [Bmim][Tf2N].  

Other factors adding to the desirability of the above mentioned ionic liquids was their 

comparatively low molecular weight and viscosity, which made these ionic liquids more 

miscible with alkanolamine solvents than [MOA][Tf2N] which would form LLE with undiluted 

alkanolamines as many higher molecular weight ionic liquids do (Chen et al., 2006). 

It was therefore decided to investigate [Bmim][BF4] and [Bmim][Tf2N] further by including 

these ionic liquids in hybrid solvents containing conventional alkanolamines. The method of 

combining components to develop hybrid solvents for study, and the measurement of CO2 

absorption in hybrid solvents was described in Section 5.6. The results of these measurements 

are discussed in Section 7.7. 

7.6 Modelling of CO2 and O2 absorption in pure ionic liquids  

The dotted lines of Figures 7-3 to 7-11 are model predictions of CO2 and O2 partial 

pressure. The absorption data in pure ionic liquids was modelled using the RK-EOS as 

explained in Chapter 4 above.  
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The inaccuracy in model prediction was calculated by the following equation for each data 

point: 

Error (%) = 100
)(exp

)()(exp

2

22 


erimentalP

calculatedPerimentalP

CO

COCO
 .................................(E4-1) 

All PCO2 values were recorded in MPa. In order to analyse the accuracy in prediction of 

absorption in each ionic liquid, a root mean square error was calculated by taking an average of 

the errors of each data point.  

Root Mean Square Error = 
n

Error
n

i

i
1

2

 ………………………..(E4-2) 

Where n = number of data points for each alkanolamine-ionic liquid hybrid system. n = 21, 

since each isotherm contained 7 points.  

Figures 7-3 to 7-11 and Tables A-1 to A-8 indicate that model estimates compare quite 

favourably with measured data. Binary interaction and fitting parameters for each system are 

presented in Table 7-4 below, along with root mean square error values. Note that the root mean 

square error merely illustrates the deviation of model predictions from experimental results.   
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Table 7-4: Binary Interaction and Fitting Parameters for CO2 and O2 in Pure Ionic Liquid Systems 

System Temperature (K) β0 β1 β2 β3 ℓ12 ℓ21 τ12 m12  

Root 

Mean 

Square 

Error/% 

(1) CO2 + (2) [MOA][Tf2N] 303.15 - 323.15 0.152 -0.0235 0 0 15.2265 1.07x1014 -230.87 0.911 0.061 

(1) CO2 + (2) [Bmim][Tf2N] 303.15 - 323.15 0.064 8.41x10-4 0 0 -0.2244 12.3078 -880.24 2.928 0.354 

(1) CO2 + (2) [Bmim][MeSO4] 303.15 - 323.15 0.172 -0.017 0 0 0.9997 0.9996 7.25x105 7.18x103 0.200 

(1) CO2 + (2) [Bmim][BF4] 303.15 - 323.15 0.000 0.000 0 0 7.278Ex1011 29.5388 -204.1327 1.151 0.235 

(1) O2 + (2) [MOA][Tf2N] 

303.15 -0.167 0.043 0 0 -6.4025 -87.5686 -1.04x10-5 2.107 0.000 

313.15 1.194 -0.232 0 0 7.27x10-8 -3.49x10-6 67.72 0.973 0.984 

323.15 3.292 -0.487 0.694 -0.157 0.000 0.000 -36729 56.153 0.050 

(1) O2 + (2) [Bmim][Tf2N] 

303.15 5.496 -1.356 0 0 6.33x10-10 -9.98x10-8 -543.60 1.172 0.100 

313.15 1.213 -0.295 0 0 -0.0062 1.1451 -102.20 0.995 0.100 

323.15 118.969 -49.527 1 1 -4.16x10-7 -6.0775 -2.53x104 39.420 0.075 

(1) O2 + (2) [Bmim][MeSO4] 

303.15 9.971 -3.050 0 0 -1.2135 -3.4655 -1.102 0.114 0.417 

313.15 3.432 -1.076 0 0 -0.0525 4.0805 -0.202 1.032 1.382 

323.15 1.027 -12.424 1 1 -518.57 -3.13x105 -325.088 1.004 0.208 

(1) O2 + (2) [Bmim][BF4] 

303.15 2.7632 -10.1738 1 1 -7.56x10-7 0.0002513 -80217 790.265 0.100 

313.15 91.0967 -44.9777 1 1 191.6243 -941.3965 8541.9 4.746 4.965 

323.15 49.5208 -19.7845 1 1 101.0326 2.45x103 2.93x103 4.015 3.822 



125 
 
 

As can be seen in Table 7-4, systems containing CO2 were regressed and are valid for all 

temperatures studied (303.15 to 323.15 K). Deviations of model predictions lower than 0.4% of 

measured partial pressure, was achieved for these systems.  

Regarding O2 absorption, it can be seen in Figures 7-8 to 7-11 above, that O2 absorption in the 

studied ionic liquids is more sensitive to temperature effects than systems with CO2. O2 

absorption decreases more significantly than CO2 absorption with increasing temperature. This 

can also be seen with the sharp increase in Henry’s Law constants as temperature is increased, 

in Table A-9 of Appendix A.  

As a result, accurate modelling of measured O2 absorption data for the temperature range was 

significantly more difficult. Isothermal data regression was thus conducted for systems 

containing O2. Fairly accurate predictions can be achieved with regressed parameters for O2 in 

each ionic liquid as shown in Table 7-4.    

Modelling of CO2 and O2 absorption in the systems above are available electronically in the 

attached CD, as Matlab
TM

 files under the file name “IL_Generic_RK_EOS_Modelling.m”.  

The above measurements and modelling were also presented and discussed in a manuscript 

submitted to the Journal of Physical Chemistry B, titled “Absorption of CO2 and O2 in Methyl 

Trioctyl Ammonium Bis (trifluoromethylsulfonyl) imide, 1-Butyl-3-Methyl Imidazolium Bis 

(trifluoromethylsulfonyl) imide, and 1-Butyl-3-Methyl Imidazolium Methyl Sulphate”. The 

manuscript is currently under review. 

7.7 CO2 absorption in hybrid solvents 

CO2 and O2 absorption and desorption was measured in four ionic liquids as explained above. 

The two most CO2-selective ionic liquids were [Bmim][BF4] and [Bmim][Tf2N]. These ionic 

liquids were combined with alkanolamines in order to create hybrid solvents, as explained in 

Section 5.6 and Chapter 6. CO2 absorption measurements were conducted by gravimetric 

analysis for pressures of 0.05-1.5 MPa and isotherms of 303.15, 313.15, and 323.15 K. The 

results of these measurements are presented in Figures 7-12 to 7-17 below. The P-T-x data are 

presented in Tables A-9 to A-21 of Appendix A.       
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Figure 7-12: Absorption of CO2 in [Bmim][BF4]:Alkanolamine Hybrid Solvents at 303.15 K. ● 

– MEA:[Bmim][BF4] at 29.3:70.7 wt%; □ – MEA:MDEA:[Bmim][BF4] at 31.6:10.4:58 wt%; ■ 

– MEA:MDEA:[Bmim][BF4] at 30.3:21.8:48 wt%; ∆ - MEA:DEA:[Bmim][BF4] at 

31.8:12.1:56.1 wt%;  ▲ – MEA:DEA:[Bmim][BF4] at 33:16.2:50.8 wt% ♦ - 

MEA:DEA:MDEA:[Bmim][BF4] at 29.8:11.7:12.8:45.7 wt%; + - Pure [Bmim][BF4]; x- Pure 

[Bmim][Tf2N] 
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Figure 7-13: Absorption of CO2 in [Bmim][BF4]:Alkanolamine Hybrid Solvents at 313.15 K. ● 

– MEA:[Bmim][BF4] at 29.3:70.7 wt%; □ – MEA:MDEA:[Bmim][BF4] at 31.6:10.4:58 wt%; ■ 

– MEA:MDEA:[Bmim][BF4] at 30.3:21.8:48 wt%; ∆ - MEA:DEA:[Bmim][BF4] at 

31.8:12.1:56.1 wt%;  ▲ – MEA:DEA:[Bmim][BF4] at 33:16.2:50.8 wt% ♦ - 

MEA:DEA:MDEA:[Bmim][BF4] at 29.8:11.7:12.8:45.7 wt%; + - Pure [Bmim][BF4]; x- Pure 

[Bmim][Tf2N]; ○ – MEA:H2O at 30:70 wt% (Park et al., 2002) 
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Figure 7-14: Absorption of CO2 in [Bmim][BF4]:Alkanolamine Hybrid Solvents at 323.15 K. ● 

– MEA:[Bmim][BF4] at 29.3:70.7 wt%; □ – MEA:MDEA:[Bmim][BF4] at 31.6:10.4:58 wt%; ■ 

– MEA:MDEA:[Bmim][BF4] at 30.3:21.8:48 wt%; ∆ - MEA:DEA:[Bmim][BF4] at 

31.8:12.1:56.1 wt%;  ▲ – MEA:DEA:[Bmim][BF4] at 33:16.2:50.8 wt% ♦ - 

MEA:DEA:MDEA:[Bmim][BF4] at 29.8:11.7:12.8:45.7 wt%; + - Pure [Bmim][BF4]; x- Pure 

[Bmim][Tf2N] 

The apparent and consistent finding with literature was that CO2 absorption increased with 

increasing CO2 partial pressure. This is evident in Figures 7-12 to 7-14 above for absorption in 

all solvents and is consistent with physical and chemical equilibrium. Regarding chemical 

absorption in alkanolamines, increasing pressure favours the primary, secondary and tertiary 

reaction mechanism between CO2 and alkanolamines, thereby increasing CO2 absorption. In the 

case of the ionic liquid in the solvent, increasing pressure favours CO2 absorption.  

A further observation is that while CO2 absorption increased quite significantly with increasing 

pressure in the case of pure ionic liquids, there was a more gradual increase in the case of CO2 

absorption in alkanolamine-ionic liquid blends. Figures 7-12 to 7-14 above show that for 

absorption in pure [Bmim][BF4] and [Bmim][Tf2N], a great increase in CO2 partial pressure 

resulted in a high increase in CO2 absorption. For example, in Figure 7-12 the equilibrium CO2 

mole fraction increased from 0.023 to 0.283 in the case of [Bmim][Tf2N] and from 0.027 to 
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0.183 in the case of [Bmim][BF4] from 0.05 to 1.5 MPa at 303.15 K. By contrast, for hybrid 

solvents containing approximately 60% ionic liquid by mass, equilibrium CO2 mole fraction 

increased by 0.064 across the same pressure range and for the same isotherm. This is likely due 

to the fact that amines are chemical solvents which react with CO2 and have an ultimate 

absorption capacity which is lower than that of physical solvents. CO2 reacts with the 

alkanolamine and once all the alkanolamine is converted to ensure equilibrium, there is not 

going to be any further absorption. This is observed in the works of Osman (2011) and Osman 

et al. (2012). Ionic liquids on the other hand are physical solvents. Absorption merely occurs 

through a rearrangement of solvent molecules to accommodate the solute. Pressure thus has a 

significant effect on the absorption of gases into the ionic liquid solvent. 

It is also observed that higher amounts of alkanolamines in the hybrid composition results in 

increased pressure having a lower effect on CO2 absorption. Figure 7-13 illustrates this. CO2 

mole fraction in the sample containing MEA:[Bmim][BF4] at 29.3:70.7 wt% at 303.15 K 

increased by 0.1 when comparing results at 0.05 MPa and 1.5 MPa, a difference significantly 

higher than for hybrid  solvents containing alkanolamines at 40 wt% composition as explained 

above. Measurements concerning [Bmim][Tf2N] shown in Figures 7-15 to 7-17 below, reveal 

that for hybrid solvents 50 wt% alkanolamines, the difference in CO2 mole fraction achieved is 

as low as 0.04 for pressures from 0.05 to 1.5 MPa.    

The most encouraging observation is that all hybrid solvents achieved higher CO2 absorption at 

low pressure than the pure ionic liquids, as well as the conventional alkanolamine solvent of 30 

wt% MEA in H2O (Jou et al, 1994, Mamun et al., 2005). This is shown in Figure 7-12 to 7-14 at 

all isotherms, with Figure 7-13 showing superior CO2 absorption at 313.15 K compared to the 

conventional alkanolamine solvent. This is a very encouraging result with significant industrial 

implications. As mentioned in Section 2.1 of Chapter 2, pulverised coal power plant flue gas is 

available at 0.1 to 0.17 MPa (NETL, 2010). CO2 is available at pressure lower than atmospheric 

pressure. Thus, it is beneficial if the solvent in the absorption process is able to absorb CO2 at 

low pressure. And this is what was observed in the programme of measurement conducted.  

The hybrid solvents also achieved higher CO2 absorption than the pure [MOA][Tf2N] ionic 

liquid. This can be seen when comparing Figures 7-12 to 7-14 with Figures 7-3. At all 

isotherms, all hybrid solvents achieved CO2 absorption than [MOA][Tf2N] for pressures up to 

0.4 MPa. The hybrid solvent containing MEA:DEA:[Bmim][BF4] at 31.8:12.1:56.1 wt% 

achieved higher CO2 absorption for pressures up to 1 MPa. However, at pressure higher than 1 

MPa, [MOA][Tf2N] achieved higher CO2 absorption. 
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For absorption at pressure up to 1 MPa, hybrid solvents containing [Bmim][BF4] are beneficial 

over conventional alkanolamine solvents and pure ionic liquids. Diluting the alkanolamines 

with [Bmim][BF4] instead of water was found to be very beneficial in terms of CO2 absorption 

achieved. 

The purpose of diluting alkanolamines such as MEA with water is to reduce the overall 

corrosiveness of the solvent and facilitate diffusion of CO2 into the solvent, as shown in 

Reaction R2-5 in Section 2.4.1.1. However as this research revealed, diluting alkanolamines 

with non-corrosive ionic liquids instead of water would not only lower the overall corrosiveness 

of the solvent and facilitate diffusion, but also increase absorption since the ionic liquid absorbs 

CO2 as well. 

Regarding the CO2 mole fraction in systems containing [Bmim][BF4] in Figures 7-12 to 7-14, it 

was found that the sample containing MEA:DEA:[Bmim][BF4] at 31.8:12.1:56.1 wt% achieved 

the highest equilibrium CO2 absorption across all three isotherms. However, the sample 

containing MEA:DEA:[Bmim][BF4] at 33:16.2:50.8 wt% achieved the lowest CO2 absorption 

from all hybrid solvents studied. This shows that while the addition of a secondary amine such 

as DEA in compositions of up to 10wt% increases CO2 absorption, further increases in DEA 

compositions achieve lower CO2 absorption, possibly due to the high viscosity of DEA which 

may impede diffusion. DiGuillo et al. (1992) conducted a density and viscosity measurements 

for many alkanolamines, including those which are studied in this work. At 303.15 K, DEA 

viscosity was measured to be 356 cP, while that of MEA and MDEA was 14.86 cP and 57 cP 

respectively, indicating a highly significant difference in viscosity. 

Enthalpy and entropy of absorption measured for all hybrid solvent systems are presented in 

Table E-2 of Appendix E. It is shown that solvents containing approximately 20 wt% DEA had 

the lowest enthalpy and entropy of absorption, and also the lowest deviation of these values. 

While this may indicate relatively lower temperature dependence than other systems, absorption 

was low anyway. Low standard deviations suggest little effect of the chemical solvent in the 

hybrid solvent mixture, possibly due to low diffusion brought about by high DEA viscosity.   

The same is noted for hybrid solvents containing MDEA. At 303.15 K, Figure 7-12 shows that 

the second highest CO2 achieved in the sample containing MEA:MDEA:[Bmim][BF4] at 

31.6:10.4:58 wt%, yet an increase in MDEA composition resulted in slightly lower absorption 

for the sample containing MEA:MDEA:[Bmim][BF4] at 30.3:21.8:48 wt%. The effect is more 

pronounced at higher temperatures of 313.15 and 323.15 K as shown in Figure 7-13 and Figure 

7-14 respectively. One possible reason in the case of samples containing MDEA is that higher 
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temperatures significantly reduce the CO2 absorption capacity of samples containing MDEA. 

The reaction mechanism between MDEA and CO2 is different to primary and secondary amines, 

as discussed in Section 2.4.1.1. Another possibility is that in the case of systems containing only 

alkanolamines  and ionic liquids, with no presence of water, the tertiary reaction mechanism 

does not occur, since MDEA needs to react directly with water, as shown in reaction R2-10 in 

Section 2.4.1.1.   

A comparison between Figure 7-12, Figure 7-13 and Figure 7-14 confirms that absorption 

decreases with increasing temperature. This is consistent in literature for both chemical and 

physical solvents, since CO2 absorption is an exothermic reaction. It is also noted that 

temperature has varying effects on different samples depending on their composition of 

alkanolamines and ionic liquid. It can be observed that samples containing higher amounts of 

MDEA achieved much lower CO2 absorption when increasing the temperature from 303.15 to 

323.15 K. CO2 mole fraction in the sample containing MEA:MDEA:[Bmim][BF4] at 

30.3:21.8:48 wt% achieved the second highest CO2 absorption at 303.15 K, yet by 323.15 K, it 

achieved the 3
rd

 lowest CO2 absorption of all hybrid solvents containing [Bmim][BF4]. A 

significant reduction in CO2 absorption is noted even in the sample containing a low 

composition of MDEA such as MEA:MDEA:[Bmim][BF4] at 31.6:10.4:58 wt%. At 303.15 K, 

this sample achieved CO2 absorption almost as high as the sample containing 

MEA:DEA:[Bmim][BF4] at 31.8:12.1:56.1 wt%. Yet at 313.15 K and 323.15 K, a significant 

difference in absorption achieved between the two hybrid solvents is noted.  

Figures 7-15 to 7-17 below present the CO2 mole fraction results for systems containing 

[Bmim][Tf2N].    
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     Figure 7-15: Absorption of CO2 in [Bmim][Tf2N]:Alkanolamine Hybrid Solvents at 303.15 

K. ● – MEA:[Bmim][ Tf2N] at 32.8:67.2 wt%; □ – MEA:MDEA:[Bmim][ Tf2N] at 

29.9:12.6:57.5 wt%; ■ – MEA:MDEA:[Bmim][ Tf2N] at 30.4:19.3:50.3 wt%; ∆ - 

MEA:DEA:[Bmim][ Tf2N] at 30.3:10.5:59.2 wt%;  ▲ – MEA:DEA:[Bmim][ Tf2N] at 

32.6:21.3:46.2 wt% ♦ - MEA:DEA:MDEA:[Bmim][ Tf2N] at 29.1:10.1:12.5:48.3 wt%; + - Pure 

[Bmim][BF4]; x- Pure [Bmim][Tf2N] 
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     Figure 7-16: Absorption of CO2 in [Bmim][Tf2N]:Alkanolamine Hybrid Solvents at 313.15 

K. ● – MEA:[Bmim][ Tf2N] at 32.8:67.2 wt%; □ – MEA:MDEA:[Bmim][ Tf2N] at 

29.9:12.6:57.5 wt%; ■ – MEA:MDEA:[Bmim][ Tf2N] at 30.4:19.3:50.3 wt%; ∆ - 

MEA:DEA:[Bmim][ Tf2N] at 30.3:10.5:59.2 wt%;  ▲ – MEA:DEA:[Bmim][ Tf2N] at 

32.6:21.3:46.2 wt% ♦ - MEA:DEA:MDEA:[Bmim][ Tf2N] at 29.1:10.1:12.5:48.3 wt%; + - Pure 

[Bmim][BF4]; x- Pure [Bmim][Tf2N]; ○ – MEA:H2O at 30:70 wt% (Park et al., 2002) 
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     Figure 7-17: Absorption of CO2 in [Bmim][Tf2N]:Alkanolamine Hybrid Solvents at 323.15 

K. ● – MEA:[Bmim][ Tf2N] at 32.8:67.2 wt%; □ – MEA:MDEA:[Bmim][ Tf2N] at 

29.9:12.6:57.5 wt%; ■ – MEA:MDEA:[Bmim][ Tf2N] at 30.4:19.3:50.3 wt%; ∆ - 

MEA:DEA:[Bmim][ Tf2N] at 30.3:10.5:59.2 wt%;  ▲ – MEA:DEA:[Bmim][ Tf2N] at 

32.6:21.3:46.2 wt% ♦ - MEA:DEA:MDEA:[Bmim][ Tf2N] at 29.1:10.1:12.5:48.3 wt%; + - Pure 

[Bmim][BF4]; x- Pure [Bmim][Tf2N] 

It is immediately noted that samples containing [Bmim][Tf2N] achieved significantly higher 

CO2 absorption than samples containing equivalent compositions of [Bmim][BF4], when 

comparing Figures 7-12 to 7-14 with Figures 7-15 to 7-17. This is also consistent with literature 

(Cadena et al. 2004, Anderson et al., 2007) that increased fluorination of the ionic liquid anion 

increases CO2 absorption as explained in Section 2.5.7.  

It is well noted that the effect of alkanolamine composition on CO2 mole fraction in systems 

containing [Bmim][Tf2N] was quite consistent with systems containing [Bmim][BF4], thereby 

providing validation of the effect of alkanolamines in alkanolamine:ionic liquid hybrid solvents 

on equilibrium CO2 mole fraction.  

As with systems containing [Bmim][BF4], it was observed for systems containing 

[Bmim][Tf2N] that lower compositions of secondary and tertiary amines achieved higher CO2 

absorption. This is noted when comparing the samples containing  MEA:DEA:[Bmim][Tf2N] at 
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32.55:21.29:46.2 wt% and MEA:MDEA:[Bmim][Tf2N] at 30.4:19.3:50.3 wt%, with 

MEA:DEA:[Bmim][Tf2N] at 30.28:10.53:59.2 wt% and MEA:MDEA:[Bmim][Tf2N] at 

29.9:12.6:57.5 wt%. In the case of samples containing DEA, it is possible that the high viscosity 

of DEA undiluted with H2O inhibits CO2 absorption. Moreover, DEA is a secondary amine with 

a lower rate of CO2 absorption than MEA, a primary amine. High concentrations of DEA are 

thus not effective at increasing CO2 absorption. 

High compositions of alkanolamines were not beneficial in achieving high CO2 absorption. As 

mentioned previously, solvents containing approximately 20 wt% of MDEA or DEA achieved 

lower CO2 absorption than solvents containing approximately 10 wt% MDEA or DEA. 

Moreover, as Figures 7-12 and 7-15 show, samples containing MEA:[Bmim][BF4] at 29.3:70.7 

wt% and MEA:[Bmim][Tf2N] at 32.8:67.2 wt% achieved higher CO2 absorption than samples 

containing approximately 20 wt% DEA. At pressures greater than 1 MPa, samples containing 

MEA:[Bmim][BF4] at 29.3:70.7 wt% and MEA:[Bmim][Tf2N] at 32.8:67.2 wt% achieved 

higher CO2 absorption than samples containing approximately 20 wt% MDEA. However, these 

samples which only contained approximately 30 wt% MEA also achieved lower CO2 absorption 

than samples containing approximately 30wt% MEA and approximately 10 wt% MDEA or 

DEA. It can thus be concluded that an alkanolamine composition of 40 wt% is the optimum 

alkanolamine composition to be included in a hybrid solvent with ionic liquids.  

Regarding temperature, when comparing the sample containing MEA:DEA:[Bmim][Tf2N] at 

30.3:10.5:59.2 wt% with MEA:MDEA:[Bmim][Tf2N] at 29.9:12.6:57.5 wt%, it was also 

observed that while both samples achieved high CO2 absorption at 303.15 K as showed in 

Figure 7-15, as the temperature increases in Figures 7-16 and 7-17 , CO2 absorption in the 

sample containing MDEA decreases more substantially and achieves the third lowest CO2 

absorption at 323.15 K, from all the hybrid solvents containing [Bmim][Tf2N]. This is 

consistent with systems containing [Bmim][BF4].  

The same can be observed when comparing the sample containing MEA:MDEA:[Bmim][Tf2N] 

at 30.4:19.3:50.3 wt% to the sample containing MEA:DEA:MDEA:[Bmim][Tf2N] at 

29.1:10.1:12.5:48.3 wt%. CO2 absorption in the system containing a higher composition of 

MDEA decreased more substantially than in the case of systems with lower amounts of MDEA, 

with an increase in temperature.  

The effect can be quantified by comparing the enthalpy and entropy of absorption for CO2 in 

hybrid solvents, which is presented in Table E-2 of Appendix E. It is noted that the hybrid 

solvents containing high amounts of MDEA, particularly those containing 
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MEA:MDEA:[Bmim][Tf2N] at 30.4:19.3:50.3 wt% and MEA:MDEA:[Bmim][BF4] at 

30.3:21.8:48 wt% had the highest enthalpies and entropies of absorption of all hybrid solvents 

studied. Even when comparing the solvents containing approximately 10 wt% MDEA with 

those containing approximately 10 wt% DEA, the solvents containing approximately 10 wt% 

MDEA had higher enthalpy and entropy of absorption, indicating higher temperature 

dependence and increased ordering of molecules upon absorption. This reflects the effect of the 

alternative reaction mechanism of MDEA, a tertiary alkanolamine, as opposed to MEA and 

DEA. 

Another observation was that enthalpies and entropies of absorption measured for systems 

containing MDEA had the highest standard deviation as shown in Table E-2, indicating a 

varying effect on absorption due to the alternative, tertiary reaction mechanism. 

Enthalpy and entropy of absorption was intermediate for systems containing only the primary 

alkanolamine MEA combined with either [Bmim][BF4] or [Bmim][Tf2N]. This suggests an 

intermediate temperature dependence and high ordering, possibly due to the high reactivity of 

MEA in comparison to DEA and MDEA.  

Regarding the samples which contained [Bmim][BF4], the sample which achieved the highest 

CO2 absorption was MEA:DEA:[Bmim][BF4] at 31.8:12.1:56.1 wt%, and regarding samples 

which contained [Bmim][Tf2N] the sample which achieved the highest absorption was 

MEA:DEA:[Bmim][Tf2N] at 30.18:10.53:59.2 wt%. The sample containing 

MEA:DEA:[Bmim][Tf2N] at 30.18:10.53:59.2 wt% achieved the highest CO2 absorption of all 

solvents studied, across all temperatures and pressures. This hybrid solvent also achieved higher 

CO2 absorption than pure [MOA][Tf2N] for the entire pressure range (0.05 to 1.5 MPa), as 

found when comparing Figures 7-15 to 7-17 with Figure 7-3. The hybrid solvent containing 

MEA:DEA:[Bmim][Tf2N] at 30.18:10.53:59.2 wt%  can thus be recommended by this study for 

further investigation into its potential as a solvent in a commercial CO2 absorption process.  

The most encouraging conclusion drawn from the measurements of CO2 absorption in hybrid 

solvents is that hybrid solvents achieve significantly superior CO2 absorption at low pressure 

than pure physical solvents such as pure ionic liquids, and conventional amine solvents such as 

MEA:H2O at 30:70 wt%. The industrial implication of this is that flue gas from an industrial 

source does not need to be greatly compressed to increase the pressure and facilitate efficient 

CO2 capture. CO2 capture can occur at lower pressures from atmospheric to 0.5 MPa, rather 

than the higher pressures of 1.5MPa. The implication is ultimately lower compression costs.  
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Moreover, the high equilibrium CO2 mole fractions achieved at low pressure also implies that 

less solvent may be used and the CO2 capture process may be scaled down and require less 

energy. Further investigation is required to confirm this.  

As with measurements concerning pure ionic liquids, absorption and desorption was measured 

for systems containing hybrid solvents. Absorption measurements were the key focus of study 

in this research, while desorption measurements were conducted merely to assess the 

repeatability and hence validity of equilibrium solubility data. Desorption data are available in 

Tables A-10 to A-21 of Appendix A. The data shows fairly good repeatability generally. 

However, for solvents containing MDEA, CO2 equilibrium desorption data was reported to be 

1-3% higher than absorption data, indicating that solvents containing MDEA may not be 

completely recyclable. Further investigation is however required for this, which is beyond the 

scope of this research.       

7.8 Absorption analysis using the FTIR probe apparatus 

As mentioned in Section 5.8 and Chapter 6, while the designed FTIR Probe apparatus could 

detect CO2 at different concentrations, it did not produce the results necessary to determine 

liquid phase species concentrations of components participating in the reaction mechanism 

between CO2 and the undiluted alkanolamines used in this research, which may have provided 

information for more accurate modelling of CO2 absorption in hybrid solvents.  

Details of the analyses attempted using the FTIR probe apparatus, and reasons for why the 

apparatus did not achieve the desired measurements, are discussed in Section F2 of Appendix F. 

Propositions for its further upgrade and development are also provided. 

 7.9 Modelling of CO2 absorption in hybrid solvents 

The modelling of CO2 absorption in alkanolamine-ionic liquid hybrid solvents has proven to be 

challenging. As explained in Sections 7.8, Chapter 3, Chapter 6 and Appendix F, the FTIR 

Probe Apparatus was intended to provide insight into the chemistry of CO2 absorption in hybrid 

solvents. The chemistry of such systems was expected to be complex due to the presence of 

physical solvents and multiple chemical solvents. Current models for chemical absorption 

assume the presence of water, with up to 4 diffusion reactions between CO2 and water included 

in the assumed reaction mechanisms.  

Due to setbacks in the development of this apparatus, the chemistry of the systems containing 

hybrid solvents remains unknown, thereby invalidating the use of more complex models for 
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chemical absorption such as the Deshmukh-Mather and Elec-NRTL models typically used by 

various sources in literature (Osman, 2011, Osman et al., 2012, Benamor and Aroua, 2005).  

Due to the lack of information on the chemistry of these hybrid systems, simpler models were 

utilised to model the data. The RK-EOS was used to model CO2 partial pressure in the ionic 

liquid component of the hybrid solvent, while the Posey-Tapperson-Rochelle model was used to 

model CO2 partial pressure in the alkanolamine components of the hybrid solvent, as explained 

in Chapter 4. The model was previously applied successfully for alkanolamine mixtures of DEA 

and MDEA by Osman et al. (2012).  

Figures 7-18 to 7-23 below provide the experimentally measured absorption data, together with 

model predictions for systems containing [Bmim][BF4] at all isotherms (303.15 to 323.15 K).  

 

Figure 7-18: Experimental Results together with Posey-Tapperson-Rochelle and RK-EOS 

predictions for the System of CO2 in [Bmim][BF4]:MEA at 70.7:29.3 wt%. ■ – 303.15 K; ▲ – 

313.15 K; ♦ - 323.15 K. *Dotted lines indicate model predictions 
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Figure 7-19: Experimental Results together with Posey-Tapperson-Rochelle and RK-EOS 

predictions for the System of CO2 in in MEA:DEA:[Bmim][BF4] at 33:16.2:50.8 wt%. ■ – 

303.15 K; ▲ – 313.15 K; ♦ - 323.15 K 

 

Figure 7-20: Experimental Results together with Posey-Tapperson-Rochelle and RK-EOS 

predictions for the System of CO2 in in MEA:DEA:[Bmim][BF4] at 31.8:12.1:56.1 wt%. ■ – 

303.15 K; ▲ – 313.15 K; ♦ - 323.15 K*Dotted lines indicate model predictions 
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Figure 7-21: Experimental Results together with Posey-Tapperson-Rochelle and RK-EOS 

predictions for the System of CO2 in in MEA:MDEA:[Bmim][BF4] at 31.6:10.4:58 wt%. ■ – 

303.15 K; ▲ – 313.15 K; ♦ - 323.15 K *Dotted lines indicate model predictions 

 

Figure 7-22: Experimental Results together with Posey-Tapperson-Rochelle and RK-EOS 

predictions for the System of CO2 in in MEA:MDEA:[Bmim][BF4] at 30.3:21.8:48 wt%. ■ – 

303.15 K; ▲ – 313.15 K; ♦ - 323.15 K *Dotted lines indicate model predictions 
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Figure 7-23: Experimental Results together with Posey-Tapperson-Rochelle and RK-EOS 

predictions for the System of CO2 in in MEA:DEA:MDEA:[Bmim][BF4] at 29.8:11.7:12.8:45.7 

wt%. ■ – 303.15 K; ▲ – 313.15 K; ♦ - 323.15 K *Dotted lines indicate model predictions 

 

Regressed RK-EOS parameters and Posey-Tapperson-Rochelle parameters for the systems 

above are presented in Table 7-5 below. Predicted data are presented alongside measured data in 

Tables A-10 to A-21 of Appendix A.  
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Table 7-5: Binary Interaction and Fitting Parameters for Predicting CO2 Absorption in Hybrid Solvents using the Posey-Tapperson-Rochelle Model with RK-EOS 

System ß0 ß1 ℓ12 ℓ21 τ12 m12 A B C D 

Root* 
Mean 

Square 
Error (%) 

CO2 in [Bmim][BF4] + MEA at 
70.7:29.3 wt% 

0.2935 -0.0563 3.92E+09 0.3843 114.2028 5.4496 14.3431 -1.53E+04 -4.79E+05 9.37E+03 6.898 

CO2 in MEA+DEA+[Bmim][BF4] at 
33:16.2:50.8 wt% 

0.3221 -0.0685 1.8355 0.6412 1.52E+03 8.2411 -48.4584 -939.8185 -5.05E+05 1.11E+04 5.878 

CO2 in MEA+DEA+[Bmim][BF4] at 
31.8:12.1:56.1 wt% 

0.293 -0.0564 1.3055 0.6216 490.9643 8.8182 -8.1056 -4.59E+03 -1.04E+05 3.79E+03 6.446 

CO2 in MEA+MDEA+[Bmim][BF4] 
at 31.6:10.4:58 wt% 

0.2567 -0.042 1.0011 0.9959 8.3398 874.5922 22.4223 -6.60E+03 -1.18E+03 689.2789 7.437 

CO2 in MEA+MDEA+[Bmim][BF4] 
at 30.3:21.8:48 wt% 

1.2752 -0.3841 0.2992 9.11E+12 -45.2823 7.0789 33.4778 -8.11E+03 3.05E+04 -264.418 7.729 

CO2 in 
MEA+DEA+MDEA+[Bmim][BF4] at 
29.8:11.7:12.8:45.7 wt% 

-5.04E-06 1.23E-06 1.13E+13 21.3223 -184.5196 1.0698 -6.8937 -2.03E+03 -9.96E+04 3.04E+03 7.482 

 CO2 in [Bmim][Tf2N] + MEA at 
32.8:67.2 wt% 

0.9253 -0.161 0.5339 6.64E+13 886.1966 5.0691 -30.2665 -1.72E+03 -3.49E+05 7.93E+03 8.726 

CO2 in MEA+DEA+[Bmim][Tf2N] at 
32.6:21.3:46.2 wt%  

0.1044 -0.0059 0.9994 1.0006 6.71E+03 -5.50E+03 171.4916 -9.20E+03 7.49E+05 -2.02E+04 7.638 

CO2 in MEA+DEA+[Bmim][Tf2N] at 
30.3:10.5:59.3 wt% 

0.1303 -0.0134 1.3495 0.659 3.66E+03 6.4368 -39.8356 -6.27E+03 -2.58E+05 8.48E+03 8.186 

CO2 in MEA+MDEA+[Bmim][Tf2N] 
] at 29.9:12.6:57.5 wt% 

0.0337 -0.0022 -6.1595 2.53E+03 60.8871 1.1021 -0.7117 -2.00E+04 -2.02E+05 7.99E+03 9.109 

CO2 in MEA+MDEA+[Bmim][Tf2N] 
at 30.4:19.3:50.3 wt% 

-0.0258 0.013 -17.7076 3.27E+03 395.0809 1.062 28.9123 -1.16E+04 -1.04E+04 1.34E+03 9.645 

CO2 in 
MEA+DEA+MDEA+[Bmim][Tf2N] 
at 29.1:10.1:12.5:48.3 wt% 

0.1331 -0.021 0.9998 1 -3.12E+04 4.75E+04 8.727 -3.59E+03 1.38E+04 521.2345 8.826 

*Root Mean Square Error for each system was calculated neglecting data measured at 0.05 and 0.1 MPa.
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Deviation in model predictions as root mean square errors were calculated using equations E4-1 

and E4-2 above. However, it is important to note that model predictions for systems including 

hybrid solvents at low pressure of 0.05 and 0.1 MPa was highly inaccurate using the proposed 

models. This can be noted visually upon inspection of Figures 7-18 to 7-23, or by analysing 

predicted data in Tables A-10 to A-21. The inaccuracy in prediction was 50 to 128% for data 

measured at pressure of 0.05 and 0.1 MPa, indicating the failure of the combined RK-Posey-

Tapperson-Rochelle model to predict the hybrid systems measured in this research at low 

pressure. Root mean square error as presented in Table 7-5 was thus calculated neglecting data 

measured at 0.05 and 0.1 MPa. n=15 for the root mean square errors presented.   

The combining of alkanolamines and ionic liquids in the absence of water had a profound effect 

on CO2 absorption at low pressure, which the RK-Posey-Tapperson-Rochelle model failed to 

predict, which is likely due to the lack of information on the chemistry of the hybrid systems. 

CO2 absorption in conventional alkanolamine solvents diluted with water is usually very low at 

low pressure due to the high dilution of the alkanolamine with water. Water at the conditions 

studied in this research would not absorb CO2 significantly. Moreover, while the ionic liquids in 

this research achieve good absorption of CO2, the absorption achieved at low pressure is also 

very low, when the solvents are pure ionic liquids, as shown in Figures 7-12 to 7-17 above. 

The magnitude of absorption achieved in this work at low pressure suggests that absorption is 

not occurring simply through absorption of CO2 into the ionic liquids and alkanolamines 

separately. There has to be significant interaction and alternative reactions occurring between 

the alkanolamines, ionic liquid and CO2. Although ionic liquids are known to be stable (Arshad, 

2005), the high absorption achieved at low pressure indicate that at the very least, the ionic 

liquid is facilitating diffusion of CO2 for the reaction with alkanolamines. Diffusion reactions 

are possibly occurring with superior kinetics to that of CO2 with water.   

The error achieved and presented in Table 7-5 indicate that even neglecting the data at low 

pressure, error of up to 9.645% was still noted. Aside from the lack of information regarding the 

chemistry of the systems, the limitations of the simple Posey-Tapperson-Rochelle model 

consistent with literature could still be observed.   

Consider the systems containing [Bmim][BF4] ionic liquid. Absorption in samples containing 

MEA only were less accurately modelled than systems containing MEA and DEA, especially 

the sample containing 33 wt% MEA with 16.2wt% DEA. This is consistent with literature 

which in the work of Posey et al. (1996), and Dicko et al. (2010), which showed better 

predictions for CO2 in blends of MEA and DEA, than for systems containing only MEA.    
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The limitations of the model are highlighted for systems containing MDEA, which was the least 

accurately modelled. 7.4 to 7.7 % error was noted for systems containing MDEA, compared to 

5.9 to 6.4 % for systems containing MEA and DEA. As explained in Section 2.4.1.1, the 

reaction mechanism between CO2 and primary or secondary amines is the same, but with 

tertiary amines, the reaction mechanism is different. However, the Posey-Tapperson-Rochelle 

model does not account for the differing reaction mechanism between CO2 and MDEA. A 

single reaction is assumed for all amines. Any combined model that includes the Posey-

Tapperson-Rochelle model would not provide accurate prediction for CO2 absorption in tertiary 

amines. This is also shown in Osman (2011) for systems containing differing concentrations of 

MDEA and DEA. 

It is also noted that systems containing higher amounts of MDEA were less accurately 

modelled. The system containing MEA:DEA:MDEA:[Bmim][BF4] at 29.8:11.7:12.8:45.7 wt% 

as shown in Figure 7-23 is more accurately modeled than the system containing 

MEA:MDEA:[Bmim][BF4] at 30.3:21.8:48 wt% shown in Figure 7-22.  

Figures 7-24 to 7-29 below show measured data and model predictions for systems containing 

[Bmim][Tf2N]. 

 

Figure 7-24: Experimental Results together with Posey-Tapperson-Rochelle and RK-EOS 

predictions for the System of CO2 in in MEA:[Bmim][Tf2N] at 32.8:67.2 wt%. ■ – 303.15 K; ▲ 

– 313.15 K; ♦ - 323.15 K *Dotted lines indicate model predictions 
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Figure 7-25: Experimental Results together with Posey-Tapperson-Rochelle and RK-EOS 

predictions for the System of CO2 in in MEA:DEA:[Bmim][Tf2N] at 32.6:21.3:46.2 wt%. ■ – 

303.15 K; ▲ – 313.15 K; ♦ - 323.15 K *Dotted lines indicate model predictions 

 

 

 

Figure 7-26: Experimental Results together with Posey-Tapperson-Rochelle and RK-EOS 

predictions for the System of CO2 in in MEA:DEA:[Bmim][Tf2N] at 30.3:10.5:59.3 wt%. ■ – 

303.15 K; ▲ – 313.15 K; ♦ - 323.15 K *Dotted lines indicate model predictions 
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Figure 7-27: Experimental Results together with Posey-Tapperson-Rochelle and RK-EOS 

predictions for the System of CO2 in in MEA:MDEA:[Bmim][Tf2N] at 29.9:12.6:57.5 wt%. ■ – 

303.15 K; ▲ – 313.15 K; ♦ - 323.15 K *Dotted lines indicate model predictions 

 

 

 

Figure 7-28: Experimental Results together with Posey-Tapperson-Rochelle and RK-EOS 

predictions for the System of CO2 in in MEA:MDEA:[Bmim][Tf2N] at 30.4:19.3:50.3 wt%. ■ – 

303.15 K; ▲ – 313.15 K; ♦ - 323.15 K *Dotted lines indicate model predictions 
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Figure 7-29: Experimental Results together with Posey-Tapperson-Rochelle and RK-EOS 

predictions for the System of CO2 in in MEA:DEA:MDEA:[Bmim][Tf2N] at 

29.1:10.1:12.5:48.3 wt%. ■ – 303.15 K; ▲ – 313.15 K; ♦ - 323.15 K *Dotted lines indicate 

model predictions 

Root mean square error is also computed and presented in Table 7-5. It is observable that 

systems with [Bmim][Tf2N] were less accurately modelled than systems containing 

[Bmim][BF4]. The accuracy regarding the effect of different alkanolamine compositions was 

found to be consistent with systems containing [Bmim][BF4]. Systems containing MDEA were 

again less accurately predicted than systems without MDEA, with systems containing MEA and 

DEA blends being the most accurately predicted. Low pressure data of 0.05 and 0.1 MPa were 

again omitted due to highly erroneous predictions, which can be noted in Tables A-10 to A-21 

of Appendix A.  

A final observation is the high magnitude of the C and D parameters for the Posey-Tapperson-

Rochelle model, indicating that the system is highly sensitive to alkanolamine concentration. 

This is contrast with results achieved by Osman (2011) which recorded very high values for the 

B parameter, which indicated very high temperature sensitivity for systems of 

MDEA:DEA:H2O at various concentrations and at high temperatures of 383.15 and 410.15 K. 

This difference is possibly due to the alkanolamines being diluted with the ionic liquid instead 

of water. 

The combined model investigated in this work, while sufficient to provide an initial estimate of 

CO2 absorption in hybrid solvents in moderate to high pressure and moderate temperature, 
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would not suffice for use in process simulation. The model could be used to regress data over a 

smaller temperature range to provide a more accurate correlation. Isothermal regression can 

provide the most accurate results.   

It is imperative however that the chemistry of such hybrid systems be better understood in order 

to determine accurate reaction mechanisms upon which reactions kinetics can be drawn. It is 

thus recommended that the FTIR Probe apparatus be modified as explained in Appendix F and 

Chapter 10 in order to grant greater insight and more accurate modelling of absorption data for 

process simulation.  
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CHAPTER 8: ASPEN SIMULATION OF CO2 CAPTURE USING 

HYBRID AND CONVENTIONAL ALKANOLAMINE SOLVENTS 

It is useful to simulate the process of CO2 absorption using hybrid solvents in order to obtain at 

least a simple indication of the industrial implications of their use over conventional 

alkanolamine solvents.  

While there are numerous sources in literature simulating absorption of CO2 in conventional 

alkanolamines, relatively little study has been pursued in the simulation of CO2 absorption using 

ionic liquids, particularly due to the lack of property data for most ionic liquids. Chang et al. 

(2007) simulated absorption using MEA and DGA in Aspen. Seven reactions were assumed to 

occur and the route for optimisation was determined. The RK-NRTL base method was used for 

vapour and liquid phase predictions. Different configurations of recycle between absorber and 

stripping columns were analysed. Mores et al. (2012) also conducted simulations of CO2 

absorption in MEA at 30 wt% concentration, using a packed absorber. The effect of reboiler 

temperature on CO2 loading was studied.  

The use of Aspen for data regression with systems containing alkanolamine solvents, and pure 

ionic liquid solvents, has been well practised by numerous sources. CO2 and H2S solubility in 

MDEA was modelled using the PC-SAFT model in Aspen by Zhang and Chen (2011). Data 

regression using the Peng-Robinson equation of state for CO2 in ionic liquids containing the 

[Tf2N] anion, was achieved by Yazdizadeh et al. (2011). Similar approaches were achieved by 

Andreu and Vega (2007).   

In this work, absorption was simulated using a Radfrac column model in Aspen Plus V8.0. 

Section 7.7 explains the success of hybrid solvents in achieving higher CO2 absorption than that 

of pure ionic liquids and conventional amine solvents, through analysing measured absorption 

data. A hybrid solvent containing the ionic liquid [Bmim][BF4] was simulated for CO2 

absorption using Aspen Plus V.8.0. The lack of properties available for [Bmim][Tf2N] made 

simulation using this ionic liquid highly erroneous and incomplete.    

A simple simulation was executed to provide a comparison of the absorption of CO2 using a 

conventional MEA:H2O solvent at 30:70% (by mass), to that of CO2 absorption using 

MEA:DEA:[Bmim][BF4] at 31.8:12.1:56.1 wt%. This composition was tested as it achieved the 

highest CO2 absorption of all hybrid solvents containing [Bmim][BF4], as shown by 

measurements.  
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Figure 8-1 below illustrates a simple absorption process without any recycle, which was used to 

benchmark the above mentioned solvent against the conventional amine solvent. The purpose of 

the simulation was to investigate the potential industrial implications of using hybrid solvents 

over conventional amine solvents. The comparison was made in terms of the extent of 

absorption achieved for CO2 and other gases in the hybrid solvent and conventional amine 

solvent.   

For both simulations, the Electrolyte Non-Random Two-Liquid-Redlich Kwong (ENRTL-RK) 

base method was used, which utilised the Redlich-Kwong equation of state to determine vapour 

phase properties, Henry’s law for solubility of supercritical gases, and the unsymmetrical 

Electrolyte NRTL model for handling reaction mechanisms involving zwitterion formation as 

described in Section 2.4.1.1. Details regarding binary interaction parameters and expressions for 

Excess Gibbs energy (G
E
) are available in the work of Osman (2011), in which the simulation of 

CO2 absorption in blends of DEA and MDEA was successfully achieved. 

Absorption data from Table A-12 of Appendix A were regressed and remaining properties were 

estimated for the hybrid and conventional solvent. The absorber and stripper contained 20 

stages. The absorber contained bubble-cap trays, 1 m in diameter and 1m height for each stage. 

The stripper contained 15 mm ceramic Raschig rings as packing. The diameter of each stage 

was 1 m and the height of each stage was 1 m.  

Flue gas was also kept consistent for both simulations. Flue gas occurred at 333.15 K and 0.17 

MPa. Flue gas composition is available in Tables 8-1 and 8-3 below. Trace compounds 

commonly present in flue gas were neglected in order to simplify the simulation for the intended 

comparison. Both solvents were available at 303.15 K. After absorption, in each case the loaded 

solvent was heated to 363.15 K. The stripping column was operated at 0.1 MPa.  

The following reversible reactions were assumed and applied from using the Aspen electrolyte 

database for the conventional amine and hybrid solvent processes: 

HCO3
-
 ↔ H

+
 + CO3

2-
………………………………………….(R8-1) 

H2O + CO2 ↔ HCO3
-
 + H

+
……………………………………(R8-2) 

H2O ↔ OH
-
 + H

+
………………………………………………(R8-3) 

MEACOO
-
 + H2O ↔ HCO3

-
 + MEA………………………….(R8-4) 

MEA
+
 ↔ MEA + H

+
…………………………………………..(R8-5) 

For the Hybrid solvent process, the following additional reactions were assumed: 
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DEA
+
 ↔ H

+
 + DEA………………………………………….(R8-6) 

DEACOO
-
 + H2O ↔ DEA + HCO3

-
…………………………(R8-7) 

 

 

Stream Description Stream Description 

1 Flue gas 5 Loaded hot solvent 

2 Solvent 6 CO2 rich stream 

3 Stack gas 7 Unloaded solvent 

4 Loaded cold solvent 
  Block Description 

 

B1 Absorber 

B2 Heat Exchanger 

B3 Regenerator 
 

Figure 8-1: Once-Through Absorption and Regeneration Process Simulated using Aspen.  

The Aspen simulation for the conventional amine absorption process is available electronically 

in the attached CD under the file name “MEASimulationSimple2.apwz”, while the hybrid 

process is available under the file name “PhD_Hybrid_RegressionSimulation.apwz”. Tables 8-1 

and 8-3 below contain results for each stream for the conventional amine process, using 

MEA:H2O at 30:70 wt%, and hybrid solvent process, using MEA:DEA:[Bmim][BF4] at 

31.8:12.1:56.1 wt%, respectively. Tables 8-2 and 8-4 below contain information pertaining to 

absorber and regenerator heat duties for the conventional and hybrid solvent processes 

respectively.  
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Table 8-1: Stream Results for Conventional Amine Absorption using the Solvent MEA:H2O at 30:70 wt% 

 
Stream 

 
1 2 3 4 5 6 7 

Temperature/K 333.15 303.15 303.15 326.25 363.15 370.35 376.25 

Pressure/MPa 0.17 0.17 0.17 0.17 0.1 0.1 0.1 

Vapour Frac 0.725 0 1 0 < 0.001 0 0 

Mole Flow/kmol∙hr-1 100 200 65.3 234.7 234.679 9.888 224.811 

Mass Flow/kg∙hr-1 2607.58 4569.63 1981.98 5195.24 5195.236 178.717 5016.519 

Volume Flow/m3∙hr-1 1179.32 4.54 966.62 5.26 5.562 0.18 5.297 

Mole Flow kmol/hr 
       MEA - 22.39 0.001 22.44 22.368 0.001 22.441 

H2O 36.11 177.51 1.432 212.234 212.2 9.864 202.37 

CO2 9.888 - 9.868 0.018 trace 0.02 trace 

O2 2.282 - 2.282 < 0.001 < 0.001 < 0.001 trace 

N2 51.721 - 51.718 0.003 0.003 0.003 trace 

MEA+ - 0.051 - trace 0.054 trace trace 

H+ < 0.001 trace - 0.002 trace trace trace 

MEACOO- - - - 0.002 0.02 trace trace 

OH- trace 0.051 - trace 0.034 trace trace 

HCO3
- < 0.001 - - < 0.001 < 0.001 trace trace 

CO3
2- trace - - trace < 0.001 trace trace 

 

Table 8-2: Absorber, Heat Exchanger and Regenerator Results for Conventional Amine 
Absorption using the Solvent MEA:H2O at 30:70 wt% 

 
Top of Absorber (B1) Top of Regenerator (B3) 

Temperature/K 303.16 380.53 

Distillate rate/kmol∙hr-1 65.30 9.888 

Heat duty/kW 
 

-311.78 

Reflux rate/kmol∙hr-1 
 

9.888 

Reflux ratio 
 

1 

 
Bottom of Absorber (B1) Bottom of Regenerator (B3) 

Temperature/K 326.28 376.15 

Bottoms rate/kmol∙hr-1 234.70 224.81 

Heat duty/kW 
 

339.88 

Boilup rate/kmol∙hr-1 
 

29.73 

Boilup ratio 
 

0.13 

Heat Exchanger (B2) Duty/kW 200.07  
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Table 8-3: Stream Results for Absorption using the Hybrid Solvent MEA:DEA:[Bmim][BF4] at 31.8:12.1:56.1 
wt%. 

 
Streams 

 
1 2 3 4 5 6 7 

Temperature/K 333.15 303.15 298.05 292.15 363.15 291.25 363.15 

Pressure/MPa 0.17 0.17 0.17 0.17 0.1 0.1 0.1 

Vapour Fraction 0.725 0 1 0 0.117 0 0 

Mole Flow/kmol∙hr-1 100 100 62.98 162.42 159.048 10.747 148.1 

Mass Flow/kg∙hr-1 2607.579 11313.59 2742.592 10984.81 10984.81 448.47 10351.7 

Volume Flow/m3∙hr-1 1179.342 10.803 667.897 < 0.001 501.618 1.116 6.14 

Mole Flow kmol/hr 
       MEA - 58.898 2.341 2.293 0.001 - 0.001 

DEA - 13.021 2.417 trace trace - - 

CO2 9.888 - 0.214 trace 10.361 9.767 0.393 

O2 2.282 - 2.208 0.074 0.074 0.07 0.004 

N2 51.721 - 51.161 0.001 0.001 0.001 trace 

H2O 36.11 - 0.97 trace 36.743 0.909 35.834 

[Bmim][BF4] - 28.081 3.67 24.411 24.411 trace 24.411 

MEA+ - - - 13.73 16.519 trace 16.519 

H+ < 0.001 - - 13.73 0.001 < 0.001 0.001 

MEACOO- - - - 0.497 trace trace trace 

OH- trace - - 13.73 trace - trace 

HCO3
- < 0.001 - - 23.014 < 0.001 < 0.001 < 0.001 

CO3
2- trace - - trace trace - trace 

DEA+ - - - 57.207 44.057 - 44.057 

DEACOO- - - - 13.73 26.88 - 26.88 
 

Table 8-4: Absorber, Heat Exchanger and Regenerator Results for Absorption using the 
Hybrid Solvent MEA:DEA:[Bmim][BF4] at 31.8:12.1:56.1 wt%. 

 
Top of Absorber (B1) Top of Regenerator (B3) 

Temperature/K 298.10 338.79 
Distillate rate/kmol∙hr-1 56.48 9.89 
Heat duty/kW 

 
-1858.23 

Reflux rate/kmol∙hr-1 
 

9.89 
Reflux ratio 

 
1 

 
Bottom of Absorber (B1) Bottom of Regenerator (B3) 

Temperature/K 274.12 454.84 
Bottoms rate/kmol∙hr-1 143.52 138.22 
Heat duty/kW 

 
4783.07 

Boilup rate/kmol∙hr-1 
 

23.40 
Boilup ratio 

 
0.17 

Heat Exchanger (B2) Duty/kW 368.877  
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Upon analysis of Tables 8-1 and 8-3 above, it is immediately observed that significantly higher 

CO2 absorption occurred in the hybrid solvent process than in the conventional amine solvent 

process. The conventional amine solvent process achieved particularly poor CO2 absorption due 

to the low operating pressure of the process. This reinforces the thermodynamic analysis 

conducted by Mamun (2005), Figueroa et al. (2007) and numerous other literature sources, that 

significant CO2 absorption in conventional amine solvents requires very high pressure. In this 

study, 100 kmol/hr of solvent was fed to the absorber for the hybrid solvent process but 200 

kmol/hr of solvent was fed in the case of the conventional amine solvent process. Yet, even 

despite doubling the molar flow of conventional amine solvent, the low operating pressure still 

greatly limited the absorption of CO2. Only 2.02% of CO2 was absorbed due to low flue gas 

pressure.  

The hybrid solvent on the other hand was highly successful in absorbing CO2. 97.8% of CO2 in 

the flue gas was absorbed using the 100 kmol/hr hybrid solvent. This is due to the hybrid 

solvent’s ability to effectively absorb CO2 at low pressure. Figure 7-12 shows that the hybrid 

solvent studied in this simulation is capable of absorbing over 20 moles of CO2 per 100 moles 

of solvent at the stated operating pressure. The simulation reflects this observation as well.  

A discouraging result regarding the hybrid solvent is that 3% of O2 gas was also absorbed from 

the flue gas. This is consistent with calculations of entropy of absorption found in Table E-1 of 

Appendix E, with shows entropy of absorption to be negative for all ionic liquids. This implies 

that O2 absorption in the ionic liquid component of the hybrid solvent is not negligible, and the 

simulation confirms this.  

By comparison no O2 was absorbed by the conventional amine solvent. This result can be 

problematic when trying to isolate pure CO2 for sequestration.  

A potentially more problematic result was that the water vapour in the flue gas was also 

absorbed. This occurred for both processes. 3.2% of oxygen and 97% of H2O was absorbed 

from the flue gas by the hybrid solvent. The conventional solvent did not absorb significant 

amounts of O2 but absorbed 96% of H2O from the flue gas. This is possibly due to the reaction 

mechanism between CO2, MEA and DEA as shown in reactions R8-2, R8-3, R8-4 and R8-7 

above, which includes dissociation reactions with water.  

As Table 8-1 and 8-3 show, water from flue gas was absorbed and either existed as water in the 

loaded solvent in stream 4, or participated in dissociation reactions. In the case of the 

conventional amine solvent process, water existed as H2O, because the solvent contains water 

anyway. But in the case of the hybrid solvent process, water was available only from the flue 
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gas and all of it participated in the reaction mechanism or was dissociated to H
+
 and OH

-
 ions. 

Water is present in the CO2 rich stream 6, reducing its purity. 

An analysis of desorption streams 5, 6, and 7 in Table 8-1 and 8-3 show that the absorbed O2 

and most of the absorbed water was never recovered, which poses a problem for solvent 

recycling. If optimisation cannot rectify this problem, then it implies that ultimately the solvent 

will have to undergo further processing before being recycled to the absorber. Alternatively, a 

known hydrophobic ionic liquid may be combined instead of [Bmim][BF4]. 

An analysis of Tables 8-2 and 8-4 show that the heat exchanger duty required to increase the 

solvent temperature for desorption is higher in the case of the hybrid solvent process. This is 

expected since the high molar mass of the ionic liquid resulted in comparatively high mass 

flows for a 100 kmol/hr solvent supply, in comparison to the conventional amine solvent. Mass 

flow of the hybrid solvent was over twice that of the conventional amine solvent mass flow. 

Despite the high mass flows, the duty required is less than twice that of the conventional amine 

solvent. Heat capacity of the ionic liquid was obtained from Arshad (2009).  

Reboiler duty in the regenerator (B3) was perceived to be very high in the case of the hybrid 

solvent process, in comparison to the amine solvent process. This is due not only to the high 

mass flows of the hybrid solvent, but also the negligible vapour pressure of the ionic liquid 

results in the simulation of boilup in the regenerator being very difficult and requiring very large 

amounts of energy. The calculation of reboiler in a conventional setup of a distillation column is 

thus futile, since in practice it is well known that trying to boilup the ionic liquid would more 

likely decompose the ionic liquid rather than vapourise it. The regenerator process can rather be 

optimised with pump-around streams instead of a boil up stream to maintain good contact and 

ensure efficient desorption.  

The limited database of properties for ionic liquids, including [Bmim][BF4] resulted in the 

simulation reporting some errors. Ionic liquid viscosity, density and heat capacity was inserted 

manually into the simulation using information from Baltus et al. (2004) and Arshad (2009). 

Getting the ionic liquid structure correct on the Aspen simulation was difficult due to the 

structure of the ionic liquid being that of an anion with a cation. This resulted in charge 

imbalances especially when simulating the absorber and regenerator.  

The negligible vapour pressure of the ionic liquid resulted in column convergence problems in 

the regenerator, and a relative error in mass balance of up to 1% of the feed stream for the 

absorber and 1.7% for the regenerator. Any further optimisation and the simulation of hybrid 

solvents containing [Bmim][Tf2N] would require more comprehensive property databases. It is 
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thus recommended that simulation software and databases be upgraded to cater for ionic liquids 

in greater depth. 

Despite these challenges, the most conclusive and important observation achieved by 

performing the simulation, was that the hybrid solvent achieved superior CO2 absorption than 

the conventional amine solvent at a low pressure of 0.17 MPa. At the current flue gas 

temperature and pressure, the process would have to be significantly optimised for the 

conventional amine solvent to achieve the CO2 absorption achieved by the hybrid solvent. This 

would entail significantly more stages and higher molar flows, with ultimately substantially 

higher mass flows. At current flue gas conditions, a definite increase in the scale of the 

conventional amine process will be necessary. A 4563.69 kg/hr mass flow rate of conventional 

amine solvent was used and absorbed 2.02% (by mole) of CO2 from the flue gas. A 11313.59 

kg/hr flow rate of hybrid solvent was used and it absorbed 97.8% (by mole) of CO2 from the 

flue gas. If the flue gas pressure can be increased marginally or the flue gas temperature 

decreased, or if different packing and other mass contacting methods be investigated, potentially 

less hybrid solvent can be used to absorb higher amounts of CO2, with a potential reduction in 

the scale of the process and also saving in material of construction due to operation at low 

pressure. 

The addition of recycle loops between the regenerator and the absorber would ultimately be 

necessary to conserve the solvent. This is especially vital in the case of the ionic liquid, which is 

expected to be of higher cost than the amine solvent. The simulation neglects the circulation 

energy required. Further study would be necessary to ensure the economic advantage of 

utilising the hybrid solvent over the conventional solvent.   
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CHAPTER 9: CONCLUSIONS 

Five CO2 capture techniques were found to be abundantly researched, which have at least 

reached the pilot plant phase of research. Four new techniques were also found, which are 

currently researched independently by various institutions. The study found gas absorption 

using solvents to be the most developed and well understood CO2 capture technique. This 

technique was found to currently have the most potential and likelihood for implementation in 

industry in the near future. The challenges of current CO2 absorption using solvents were found 

to be low CO2 absorption capacity, low CO2 absorption rate, high regeneration energy 

requirements, and high corrosivity of conventional alkanolamine solvents, thereby requiring 

dilution with water. Ionic liquids were found to possess great potential in improving the 

technique of CO2 absorption and were thus investigated experimentally in their pure state and in 

combination with conventional alkanolamine solvents. 

Gravimetric analysis was found to be the most suitable measurement technique to investigate 

gas absorption in ionic liquids and hybrid solvents. The solvents that were studied were of very 

low volatility, which made gravimetric analysis applicable. Gravimetric analysis was 

advantageous since it utilised very low amounts of solvent (80 to 100 mg), was automated using 

software-controlled equipment, and produced relatively quick measurements, and at low cost, 

due to the small quantities of solvents loaded into the apparatus. Equilibrium mole fractions 

were measured at 303.15 K to 323.15 K, and pressure of 0.05 to 1.5 MPa. 

Of the four ionic liquids studied, [MOA][Tf2N] achieved the highest CO2 absorption for the 

measured conditions, while [Bmim][MeSO4] achieved the highest O2 absorption and lowest 

CO2 absorption. [Bmim][Tf2N] and [Bmim][BF4] were found to be the most CO2 selective ionic 

liquids. While [MOA][Tf2N] achieved the highest CO2 absorption, it also achieved high O2 

absorption, resulting in lower CO2 selectivity. Furthermore, it was proven that higher pressure, 

lower temperature, increased cation chain length and increased fluorination of the ionic liquid, 

facilitated higher gas absorption capacity. The use of imidazolium cations and fluorinated 

anions was found to increase CO2 selectivity. 

Due to their high CO2 selectivity, [Bmim][BF4] and [Bmim][Tf2N] were combined with MEA, 

DEA, and MDEA at different compositions to create 14 hybrid solvents of varying ionic liquid 

and alkanolamine composition, and investigated for their CO2 absorption capacity. Hybrid 

solvents achieved superior CO2 absorption over conventional alkanolamine solvents as well as 

pure ionic liquids studied in this work and in other sources in the literature. Solvents containing 

[Bmim][Tf2N] achieved higher CO2 absorption than solvents containing [Bmim][BF4], a trend 

consistent with pure ionic liquids of increasing anion fluorination.  
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Of all the hybrid solvents containing [Bmim][BF4], the solvent containing 

MEA:DEA:[Bmim][BF4] at 31.8:12.1:56.1 wt% achieved the highest CO2 absorption. The 

solvent containing MEA:DEA:[Bmim][Tf2N] at 30.18:10.53:59.2 wt% achieved the highest 

CO2 absorption of all solvents studied. It was found that increasing the DEA and MDEA 

concentration above 10 wt% achieved lower CO2 absorption.  Enthalpy and entropy of 

absorption calculations showed that CO2 absorption in solvents containing MDEA was found to 

decrease more significantly with increasing temperature. 

P-T-x data for CO2 and O2 in all four ionic liquids were modelled using the RK-EOS. The 

deviation of model predictions was 0.04% of measured data, indicating a very good fit. While 

systems containing CO2 could be regressed easily for all isotherms, the high temperature 

sensitivity of O2 absorption required isothermal regression to be conducted. By comparison, 

modelling of CO2 absorption in hybrid solvents was found to be challenging. The RK-Posey-

Tapperson-Rochelle Model failed to model CO2 absorption at pressure for systems of 0.1 MPa 

and lower, achieving inaccuracies in CO2 partial pressure of 50 to 128% of measured data. 

Inaccuracy in model predictions, when neglecting points at low pressure, amount to 5.88-9.65% 

of measured CO2 partial pressure, for pressures of 0.4 to 1.5 MPa. As with pure ionic liquids, 

hybrid systems containing [Bmim][Tf2N] were less accurately modelled than systems 

containing [Bmim][BF4]. Systems containing MEA and DEA were the most accurately 

modelled of all hybrid systems studied with a root mean square error of 5.878% for systems 

containing [Bmim][BF4] and 7.638 for systems containing [Bmim][Tf2N]. Systems containing 

only MEA as the alkanolamine component were less accurately modelled than systems 

containing MEA and DEA, while systems containing MDEA were the least accurately 

modelled. 

Process simulations for CO2 absorption and desorption were conducted in the engineering 

program Aspen Plus V. 8.0, for a conventional solvent containing MEA:H2O at 30:70 wt% and 

for a hybrid solvent containing MEA:DEA:[Bmim][BF4] at 31.8:12.1:56.1 wt%. It was found 

that when keeping flue gas conditions and process design parameters constant, the hybrid 

solvent achieved very high CO2 absorption, capturing 97.8% of CO2 from the flue gas. By 

contrast the low operating pressure of the process resulted in the conventional solvent only 

capturing 2.02% of CO2 from the flue gas, indicating a very high dependence of absorption on 

increased system pressure.     

CO2 selectivity of both solvents was found to be poor. The hybrid solvent absorbed 3.2% of 

oxygen from the flue gas, and 97% of H2O from the flue gas. The conventional solvent did not 

absorb significant amounts of O2 but absorbed 96% of H2O from the flue gas. Additionally, heat 
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exchanger and reboiler duties were significantly higher for the process using the hybrid solvent. 

Despite the above discouraging results, the high CO2 absorption achieved by the hybrid solvent 

suggested that low pressure CO2 capture is possible and the scale of the CO2 capture process can 

be greatly reduced in comparison to processes utilising the conventional alkanolamine solvent. 
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CHAPTER 10: RECOMMENDATIONS 

 It would be beneficial to conduct equilibrium absorption measurements at flue gas 

conditions close to that produced by IGCC power plants. As Section 2.1.2 showed, flue gas 

from IGCC power plants are emitted at conditions that are more favourable to efficient CO2 

capture. This may result in the solvents studied in this work achieving higher CO2 

absorption. 

 In this work, relatively common ionic liquids containing [Bmim] cations, and [Tf2N] and 

[BF4] anions were tested for CO2 absorption in their pure state and as hybrid solvents. 

However, there is great potential to expand the study of hybrid solvents by considering 

ionic liquids with higher cation chain lengths and more highly fluorinated anions, which 

may achieve higher CO2 absorption when blended into a hybrid solvent with alkanolamines. 

More exotic TSILs may be investigated as well. 

 The FTIR Probe apparatus at its current configuration was unsuccessful in achieving 

information regarding the chemistry of alkanolamine-ionic liquid-CO2 systems, thereby 

disabling the application of more complex models such as the Deshmukh-Mather and Elec-

NRTL models which might have provided more accurate predictions of CO2 partial pressure 

in the hybrid systems. It is thus not only recommended, but imperative that this apparatus be 

upgraded to achieve Mid-infrared measurement as described in Section F2 of Appendix F. 

ATR or a high pressure circulating fluid cell accessories may be used to enable mid-infrared 

measurement, which will ensure composition analysis and identification of compounds 

associated with the reaction mechanism between undiluted hybrid solvents and CO2.  

 The lack of availability of property data for many ionic liquids posed an obstacle for 

accurate simulation of absorption processes, resulting in many errors in the simulation that 

would be redundant in practice. The main error in simulating CO2 capture using solvents 

stemmed from the negligible vapour pressure of ionic liquids, which resulted in erroneous 

simulation of the stripping column. It is recommended that simulation software and 

databases be upgraded to cater for this relatively new class of chemicals called ionic liquids.  

 This work focussed on the thermodynamic analysis of the CO2 absorption capacity of 

various solvents. In order to provide a complete picture of CO2 absorption, it is 

recommended that a kinetic study be conducted in order to ascertain the absorption rate of 

CO2 in these solvents. Such an investigation would require more in-depth data collection 

and analysis using the gravimetric analyser. Such data would also provide for more accurate 

simulations of CO2 capture using hybrid solvents.  

 Simulation results of absorption using solvents can be improved by investigating the effect 

of different column heights, packing, heat integration and solvent recycle.  
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APPENDIX A: MEASURED AND CALCULATED ABSORPTION 

DATA 

 

Table A-1: Measured Absorption and Desorption Data of CO2 in [MOA][Tf2N] 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption 

0.0499 303.18 0.017 0.0499 303.17 0.017 0.0500 

0.1000 303.21 0.031 0.0998 303.15 0.035 0.1000 

0.3998 303.18 0.122 0.3998 303.21 0.138 0.4003 

0.7000 303.18 0.198 0.7000 303.15 0.197 0.7005 

1.0000 303.18 0.263 0.9998 303.05 0.280 1.0000 

1.2999 303.17 0.319 1.2997 303.17 0.323 1.3000 

1.4999 303.23 0.343 1.4999 303.23 0.344 1.5011 

0.0499 313.25 0.019 0.0500 313.14 0.013 0.0500 

0.1000 313.09 0.027 0.0998 313.13 0.030 0.0999 

0.4000 313.13 0.104 0.3998 313.07 0.110 0.3999 

0.6999 313.15 0.173 0.7000 313.10 0.187 0.6999 

0.9997 313.13 0.235 0.9999 313.12 0.235 0.9993 

1.2999 313.16 0.287 1.2998 313.07 0.293 1.2989 

1.4996 313.17 0.313 1.4996 313.17 0.314 1.4992 

0.0500 323.26 0.0143 0.0499 323.16 0.010 0.0500 

0.1000 323.18 0.0215 0.0998 323.10 0.022 0.0999 

0.4001 323.14 0.0886 0.3998 323.22 0.094 0.3997 

0.7000 323.20 0.1511 0.6999 323.07 0.154 0.6999 

0.9999 323.19 0.1981 1.0000 323.19 0.212 0.9999 

1.3000 323.17 0.2493 1.3000 323.05 0.260 1.2993 

1.5000 323.15 0.2820 1.5000 323.15 0.282 1.4992 

Uncertainty: T = ±0.01 K; P = 1x10-6 MPa; x = ±0.00005 

 *PCalc obtained using RK-EOS with regressed parameters  

Table A-2: Measured Absorption and Desorption Data of CO2 in [Bmim][Tf2N] 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 *Pcalc/MPa 

Absorption Desorption  

0.0499 303.22 0.016 0.0499 303.17 0.014 0.0504 

0.1000 303.16 0.027 0.0999 303.13 0.028 0.0996 

0.4000 303.18 0.096 0.3998 303.14 0.104 0.3996 

0.7000 303.18 0.158 0.6994 303.06 0.165 0.7000 

0.9998 303.25 0.202 0.9996 303.06 0.219 1.0009 

1.3001 303.20 0.260 1.2996 303.10 0.263 1.3013 

1.4999 303.22 0.283 1.4999 303.22 0.283 1.5021 

0.0499 313.28 0.015 0.0499 313.17 0.008 0.0503 

0.1000 313.19 0.020 0.0998 313.15 0.024 0.0984 

0.4001 313.13 0.077 0.3998 313.10 0.083 0.3993 
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Table A-2 (Contd.): Measured Absorption and Desorption Data of CO2 in 
[Bmim][Tf2N] 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption 

0.7001 313.18 0.131 0.6997 313.05 0.135 0.6996 

1.0001 313.14 0.178 0.9995 313.07 0.182 0.9996 

1.2998 313.14 0.216 1.2999 313.12 0.223 1.299 

1.5000 313.11 0.245 1.5000 313.11 0.245 1.4977 

0.0500 323.27 0.011 0.0499 323.15 0.005 0.0501 

0.1000 323.22 0.016 0.0998 323.15 0.013 0.1019 

0.3999 323.20 0.064 0.3997 323.09 0.051 0.3992 

0.7000 323.14 0.108 0.6998 323.12 0.098 0.6994 

1.0000 323.24 0.147 0.9997 323.17 0.140 1.0000 

1.3000 323.09 0.186 1.2999 323.10 0.179 1.2985 

1.5000 323.17 0.210 1.5000 323.17 0.210 1.4974 
 *PCalc obtained using RK-EOS with regressed parameters 

 

Table A-3: Measured Absorption and Desorption Data of CO2 in 
[Bmim][MeSO4] 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption 

0.0499 303.18 0.005 0.0505 303.18 0.008 0.0500 

0.1000 303.20 0.010 0.1001 303.19 0.015 0.1000 

0.3997 303.16 0.045 0.4011 303.16 0.048 0.4000 

0.7001 303.09 0.084 0.7003 303.09 0.085 0.6998 

1.0001 303.20 0.104 0.9996 303.10 0.106 1.0006 

1.3001 303.17 0.130 1.3001 303.09 0.132 1.3003 

1.5000 303.17 0.138 1.5000 303.17 0.140 1.5012 

0.0506 313.25 0.008 0.0509 313.15 0.007 0.0500 

0.0998 313.20 0.010 0.1005 313.14 0.013 0.1000 

0.4005 313.13 0.038 0.4000 313.06 0.040 0.3998 

0.6998 313.11 0.074 0.6999 313.17 0.071 0.6994 

1.0000 313.14 0.096 0.9995 313.05 0.097 0.9994 

1.3000 313.16 0.118 1.2999 313.11 0.117 1.2989 

1.5000 313.16 0.129 1.5000 313.16 0.129 1.4988 

0.0507 323.23 0.007 0.0502 323.14 0.003 0.0500 

0.1003 323.11 0.007 0.1004 323.11 0.007 0.1000 

0.4000 323.15 0.035 0.4004 323.19 0.035 0.3997 

0.7001 323.19 0.058 0.7001 323.08 0.058 0.6998 

1.0001 323.24 0.078 1.0001 323.15 0.077 1.0001 

1.2999 323.23 0.097 1.3000 323.21 0.099 1.3004 

1.4999 323.13 0.112 1.4999 323.13 0.109 1.4991 
 *PCalc obtained using RK-EOS with regressed parameters 
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Table A-4: Measured Absorption and Desorption Data of CO2 in [Bmim][BF4] 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption 

0.0499 303.41 0.0228 0.0497 303.14 0.0218 0.0890 

0.0999 303.17 0.0200 0.0999 303.20 0.0190 0.0653 

0.3999 303.16 0.0585 0.3999 303.23 0.0555 0.3674 

0.6999 303.17 0.0969 0.7000 303.13 0.0939 0.6994 

1.0000 303.17 0.1328 1.0000 303.11 0.1268 1.0212 

1.2998 303.16 0.1642 1.2999 303.20 0.1623 1.3071 

1.5001 303.18 0.1835 1.4998 303.17 0.1844 1.4859 

0.0497 313.25 0.0140 0.0498 313.05 0.0138 0.0850 

0.0996 313.09 0.0140 0.0999 313.24 0.0138 0.0851 

0.3999 313.16 0.0472 0.3996 313.23 0.0442 0.3987 

0.6999 313.14 0.0784 0.7000 313.23 0.0744 0.7075 

0.9999 313.15 0.1081 1.0000 313.08 0.1051 1.0173 

1.3000 313.10 0.1351 1.3000 313.03 0.1341 1.3018 

1.5001 313.13 0.1522 1.5000 313.13 0.1502 1.4845 

0.0498 323.25 0.0100 0.0498 323.06 0.0090 0.0831 

0.0999 323.17 0.0095 0.0999 323.23 0.0095 0.0780 

0.3996 323.13 0.0353 0.3996 323.25 0.0350 0.3628 

0.7000 323.11 0.0671 0.7000 323.23 0.0668 0.7267 

1.0000 323.21 0.0869 1.0000 323.09 0.0861 0.9600 

1.3000 323.14 0.1174 1.3000 323.08 0.1166 1.3248 

1.5000 323.18 0.1316 1.5000 323.15 0.1301 1.4976 

 *PCalc obtained using RK-EOS with regressed parameters 

Table A-5: Measured Absorption and Desorption Data of O2 in [MOA][Tf2N] 

Pmeas/MPa T/K xO2 Pmeas/MPa T/K xO2 
*Pcalc/MPa xCO2/xO2 

Absorption Desorption 

0.0499 303.11 0.004 0.0498 303.17 0.003 0.0499 3.97 

0.0999 303.19 0.008 0.0999 303.11 0.008 0.0999 3.80 

0.3997 303.15 0.016 0.3997 303.11 0.016 0.3997 7.47 

0.6998 303.15 0.023 0.6998 303.15 0.024 0.6998 8.45 

0.0498 313.31 0.002 0.0498 313.14 0.001 0.0511 12.07 

0.0999 313.11 0.004 0.0999 313.10 0.002 0.1012 7.07 

0.3997 313.21 0.013 0.3998 313.07 0.012 0.3996 8.01 

0.7000 313.17 0.020 0.7000 313.17 0.021 0.7000 8.47 

0.0498 323.25 0.000 0.0498 323.13 0.000 0.0499 67.68 

0.0999 323.18 0.001 0.0999 323.23 0.002 0.0999 14.84 

0.3999 323.24 0.008 0.3998 323.16 0.007 0.3999 11.75 

0.6999 323.15 0.013 0.6999 323.15 0.013 0.6999 11.95 

 *PCalc obtained using RK-EOS with regressed parameters 
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Table A-6: Measured Absorption and Desorption Data of O2 in [Bmim][Tf2N] 

Pmeas/MPa T/K xO2 Pmeas/MPa T/K xO2 
*Pcalc/MPa xCO2/xO2 

Absorption Desorption 

0.0498 303.19 0.001 0.050 303.162 0.001 0.05 10.58 

0.0999 303.17 0.002 0.100 303.071 0.002 0.0999 12.54 

0.3999 303.22 0.006 0.400 303.109 0.005 0.3999 16.97 

0.7000 303.25 0.006 0.700 303.248 0.006 0.7 25.00 

0.0498 313.29 0.001 0.050 313.154 0.001 0.05 12.44 

0.0999 313.12 0.002 0.100 313.059 0.001 0.0999 11.64 

0.3999 313.12 0.004 0.400 313.054 0.004 0.3999 19.63 

0.7001 313.20 0.005 0.700 313.197 0.005 0.7001 24.36 

0.0499 323.27 0.000 0.050 323.143 0.001 0.05 29.89 

0.0998 323.09 0.001 0.100 323.220 0.001 0.0999 15.35 

0.3998 323.24 0.003 0.400 323.138 0.003 0.3998 21.17 

0.6999 323.23 0.005 0.700 323.234 0.004 0.6999 23.84 

 *PCalc obtained using RK-EOS with regressed parameters 

Table A-7: Measured Absorption and Desorption Data of O2 in [Bmim][MeSO4] 

Pmeas/MPa T/K xO2 Pmeas/MPa T/K xO2 
*Pcalc/MPa xCO2/xO2 

 Absorption  Desorption 

0.0495 303.18 0.007 0.0495 303.19 0.007 0.0500 0.70 

0.0994 303.15 0.008 0.0996 303.06 0.008 0.0999 1.27 

0.3994 303.22 0.012 0.3994 303.11 0.012 0.3989 3.72 

0.6995 303.06 0.013 0.6995 303.06 0.013 0.6997 6.37 

0.0496 313.30 0.007 0.0495 313.14 0.007 0.0486 1.22 

0.0994 313.15 0.007 0.0996 313.06 0.007 0.0973 1.37 

0.3995 313.08 0.011 0.3995 313.04 0.011 0.3942 3.51 

0.6995 313.15 0.012 0.6995 313.15 0.012 0.7000 6.13 

0.0495 323.33 0.006 0.0496 323.14 0.005 0.0496 1.29 

0.0993 323.11 0.007 0.0996 323.16 0.007 0.0999 1.09 

0.3993 323.20 0.009 0.3996 323.17 0.009 0.3992 4.16 

0.6995 323.23 0.010 0.6995 323.23 0.010 0.6995 6.04 

 *PCalc obtained using RK-EOS with regressed parameters 

Table A-8: Measured Absorption and Desorption Data of O2 in [Bmim][BF4] 

Pmeas/MPa T/K xO2 Pmeas/MPa T/K xO2 
*Pcalc/MPa xCO2/xO2 

Absorption Desorption 

0.0498 303.23 0.0010 0.0499 303.17 0.0011 0.0500 23.91 

0.0999 303.15 0.0016 0.0999 303.13 0.0016 0.0999 12.51 

0.1999 303.23 0.0022 0.1997 303.06 0.0022 0.1999 - 

0.3997 303.23 0.0026 0.3996 303.06 0.0026 0.3997 22.50 

0.7000 303.13 0.0030 0.7000 303.13 0.0030 0.7000 32.31 
0.0499 313.29 0.0003 0.0499 313.14 0.0003 0.0496 43.67 
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Table A-8 (Contd.): Measured Absorption and Desorption Data of O2 in [Bmim][BF4] 

Pmeas/MPa T/K xO2 Pmeas/MPa T/K xO2 
*Pcalc/MPa xCO2/xO2 

Absorption Desorption 

0.1000 313.14 0.0006 0.0999 313.07 0.0005 0.0979 21.91 

0.1999 313.19 0.0009 0.1998 313.07 0.0009 0.1899 - 

0.3998 313.14 0.0012 0.4000 313.07 0.0011 0.3512 39.34 

0.6999 313.10 0.0015 0.6999 313.10 0.0015 0.5228 53.44 

0.0499 323.30 0.0001 0.0497 323.24 0.0000 0.0489 77.30 

0.0999 323.19 0.0002 0.0999 323.15 0.0002 0.0958 45.38 

0.1999 323.24 0.0005 0.1998 323.24 0.0005 0.1890 - 

0.3999 323.19 0.0008 0.3998 323.24 0.0007 0.3850 43.53 

0.6999 323.19 0.0010 0.6999 323.19 0.0010 0.7706 66.45 

 *PCalc obtained using RK-EOS with regressed parameters 

 

Table A-9:                             2 and O2 (KHCO2 and KHO2) in [MOA][Tf2N], [Bmim][Tf2N], 

[Bmim][MeSO4]
  and [Bmim][BF4] Estimated from Absorption Data 

T/K 
[MOA][Tf2N] [Bmim][Tf2N] [Bmim][MeSO4] [Bmim][BF4] 

KHCO2 /MPa 

303.15 3.00 3.71 8.91 5.48 

313.15 3.17 4.88 9.67 7.43 

323.15 4.03 6.09 12.68 10.64 

 
KHO2 /MPa 

303.15 11.14 35.07 26.63 50.88 

313.15 25.23 53.31 28.92 153.13 

323.15 67.88 91.08 36.06 434.15 

 

Table A-10: Measured and Modelled Absorption and Desorption Data of CO2 in MEA:[Bmim][BF4] at 
29.3:70.7 wt% 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption 

0.0498 303.74 0.142 0.0496 303.18 0.140 0.1125 

0.1000 303.18 0.159 0.0996 303.20 0.157 0.1685 

0.3999 303.17 0.182 0.3993 303.23 0.182 0.4531 

0.6997 303.18 0.200 0.6996 303.21 0.199 0.7362 

1.0001 303.20 0.217 0.9995 303.21 0.215 1.0641 

1.2998 303.11 0.232 1.2977 303.23 0.228 1.2596 

1.5001 303.17 0.242 1.4999 303.18 0.241 1.4053 

0.0498 313.16 0.122 0.0499 313.22 0.122 0.1176 

0.1000 313.15 0.126 0.0999 313.08 0.126 0.1816 

0.3999 313.12 0.142 0.4048 313.25 0.142 0.3894 
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Table A-10 (Contd.): Measured and Modelled Absorption and Desorption Data of CO2 in 
MEA:[Bmim][BF4] at 29.3:70.7 wt% 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption 

0.6998 313.11 0.156 0.7144 313.24 0.156 0.6965 

1.0001 313.17 0.170 0.9999 313.22 0.170 0.9361 

1.3000 313.15 0.184 1.3127 313.25 0.184 1.1369 

1.5000 313.12 0.192 1.5003 313.25 0.192 1.3069 

0.0498 313.18 0.079 0.0545 323.27 0.079 0.0197 

0.0998 323.15 0.087 0.1351 323.22 0.087 0.0463 

0.3999 323.11 0.124 0.4489 323.20 0.124 0.4290 

0.7000 323.13 0.138 0.6675 323.14 0.138 0.6661 

1.0000 323.21 0.151 1.0188 323.24 0.151 1.1265 

1.3000 323.23 0.160 1.3150 323.09 0.160 1.2381 

1.5001 323.13 0.171 1.4925 323.17 0.171 1.5705 

*PCalc obtained using RK-EOS and Posey-Tapperson-Rochelle model with regressed parameters 

Table A-11: Measured and Modelled Absorption and Desorption Data of CO2 in MEA:DEA:[Bmim][BF4] 
at 33:16.2:50.8 wt% 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption 

0.0498 303.16 0.100 0.0498 303.17 0.100 0.0833 

0.1000 303.17 0.104 0.0995 303.18 0.102 0.1472 

0.3999 303.20 0.121 0.3991 303.20 0.120 0.3973 

0.6999 303.18 0.137 0.6983 303.17 0.133 0.7008 

0.9999 303.19 0.153 0.9988 303.16 0.151 1.0652 

1.3000 303.17 0.166 1.2999 303.17 0.166 1.3398 

1.5001 303.21 0.170 1.4985 303.20 0.170 1.3653 

0.0497 313.20 0.100 0.0498 313.15 0.101 0.1107 

0.0999 313.10 0.103 0.0999 313.09 0.103 0.1632 

0.3999 313.14 0.115 0.3999 313.16 0.114 0.3344 

0.6999 313.20 0.131 0.7000 313.14 0.129 0.6877 

0.9999 313.11 0.144 0.9999 313.15 0.143 1.0127 

1.2999 313.15 0.158 1.3000 313.10 0.158 1.4052 

1.4999 313.10 0.162 1.5000 313.13 0.161 1.4535 

0.0498 323.14 0.096 0.0498 323.13 0.098 0.0850 

0.0999 323.16 0.098 0.0998 323.16 0.101 0.1193 

0.3999 323.13 0.112 0.3993 323.12 0.109 0.3439 

0.7000 323.16 0.125 0.7000 323.13 0.127 0.6012 

0.9999 323.20 0.139 0.9999 323.17 0.141 1.0734 

1.2998 323.21 0.149 1.2999 323.12 0.152 1.2938 

1.5000 323.15 0.155 1.4999 323.16 0.154 1.4657 

*PCalc obtained using RK-EOS and Posey-Tapperson-Rochelle model with regressed parameters 
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Table A-12: Measured and Modelled Absorption and Desorption Data of CO2 in MEA:DEA:[Bmim][BF4] at 
31.8:12.1:56.1 wt% 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption 

0.0499 303.16 0.210 0.0498 303.21 0.208 0.1157 

0.0999 303.19 0.214 0.1000 303.12 0.210 0.1853 

0.3999 303.17 0.229 0.3999 303.14 0.225 0.4003 

0.6999 303.18 0.245 0.6999 303.17 0.240 0.7090 

1.0000 303.14 0.257 0.9999 303.25 0.254 1.0251 

1.3000 303.17 0.270 1.2999 303.21 0.267 1.3782 

1.5000 303.23 0.273 1.4999 303.20 0.273 1.3842 

0.0498 313.07 0.196 0.0497 313.28 0.192 0.1072 

0.0999 313.13 0.200 0.1000 313.05 0.203 0.1639 

0.3999 313.17 0.219 0.3999 313.23 0.215 0.4194 

0.6999 313.15 0.229 0.6999 313.25 0.224 0.7122 

1.0000 313.23 0.238 1.0000 313.08 0.234 0.8860 

1.3000 313.15 0.248 1.3001 313.11 0.245 1.1213 

1.5000 313.21 0.252 1.5000 313.15 0.253 1.2930 

0.0498 323.14 0.172 0.0497 323.27 0.168 0.0745 

0.0999 323.11 0.174 0.0999 323.22 0.169 0.0975 

0.3998 323.13 0.194 0.3999 323.20 0.190 0.3916 

0.6999 323.12 0.212 0.6999 323.14 0.208 0.6549 

1.0001 323.14 0.226 1.0001 323.24 0.222 0.9096 

1.2999 323.18 0.240 1.3000 323.09 0.245 1.3182 

1.4999 323.10 0.249 1.5000 323.17 0.250 1.7179 

*PCalc obtained using RK-EOS and Posey-Tapperson-Rochelle model with regressed parameters 

Table  A-13: Measured and Modelled Absorption and Desorption Data of CO2 in MEA:MDEA:[Bmim][BF4] at 
31.6:10.4:58 wt% 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption 

0.0498 303.15 0.187 0.0498 303.18 0.189 0.1902 

0.0999 303.15 0.195 0.0998 303.20 0.197 0.2571 

0.4000 303.19 0.213 0.3993 303.23 0.216 0.4288 

0.6997 303.17 0.233 0.7000 303.21 0.235 0.6489 

0.9998 303.25 0.247 0.9999 303.21 0.249 0.9309 

1.3000 303.18 0.261 1.2999 303.23 0.261 1.2431 

1.5001 303.14 0.272 1.4999 303.18 0.272 1.4478 

0.0499 313.16 0.177 0.0499 313.15 0.179 0.2892 

0.0999 313.18 0.180 0.0999 313.09 0.183 0.3309 

0.3997 313.14 0.199 0.4048 313.16 0.202 0.4535 

0.6999 313.15 0.218 0.7144 313.14 0.221 0.7421 

1.0001 313.13 0.232 0.9999 313.15 0.231 1.0920 

1.2998 313.17 0.249 1.3127 313.10 0.249 1.3510 
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Table  A-13 (Contd.): Measured and Modelled Absorption and Desorption Data of CO2 in 

MEA:MDEA:[Bmim][BF4] at 31.6:10.4:58 wt% 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption 

1.5001 313.15 0.257 1.5003 313.13 0.257 1.5597 

0.0498 323.13 0.143 0.0499 313.27 0.145 0.1978 

0.0999 323.16 0.146 0.1000 323.14 0.148 0.2328 

0.4000 323.12 0.164 0.4000 323.16 0.166 0.4211 

0.6999 323.13 0.181 0.7000 323.25 0.183 0.6226 

1.0000 323.17 0.195 1.0000 323.22 0.197 0.9594 

1.2999 323.12 0.206 1.3000 323.23 0.206 1.1188 

1.5001 323.16 0.216 1.4999 323.10 0.216 1.3285 

*PCalc obtained using RK-EOS and Posey-Tapperson-Rochelle model with regressed parameters 

Table A-14: Measured and Modelled Absorption and Desorption Data of CO2 in 
MEA:MDEA:[Bmim][BF4] at 30.3:21.8:48 wt% 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption 

0.0498 303.25 0.184 0.0499 303.74 0.186 0.2204 

0.0999 303.19 0.192 0.1000 303.18 0.194 0.2773 

0.3998 303.17 0.213 0.4000 303.17 0.216 0.4580 

0.6999 303.19 0.235 0.7000 303.18 0.238 0.7069 

0.9999 303.21 0.253 1.0000 303.20 0.256 0.9809 

1.2999 303.24 0.260 1.3000 303.11 0.264 1.0830 

1.5001 303.19 0.274 1.4999 303.17 0.277 1.3943 

0.0498 313.16 0.141 0.0499 313.07 0.143 0.2024 

0.0999 313.17 0.144 0.1000 313.13 0.146 0.2274 

0.3999 313.12 0.171 0.4000 313.17 0.173 0.4202 

0.6999 313.17 0.194 0.7000 313.15 0.196 0.6578 

0.9999 313.15 0.215 0.9998 313.23 0.213 0.9566 

1.2999 313.14 0.234 1.3001 313.15 0.237 1.3392 

1.5002 313.05 0.249 1.4999 313.21 0.246 1.7603 

0.0498 323.13 0.080 0.0498 323.13 0.080 0.1272 

0.0999 323.15 0.086 0.0999 323.16 0.087 0.1558 

0.3999 323.14 0.124 0.3999 323.12 0.125 0.3631 

0.6999 326.53 0.151 0.7000 323.13 0.154 0.7171 

0.9992 325.56 0.167 0.9999 323.17 0.170 0.9110 

1.3000 320.47 0.195 1.3000 323.12 0.193 1.0656 

1.4999 323.07 0.206 1.5000 323.16 0.204 1.4933 

*PCalc obtained using RK-EOS and Posey-Tapperson-Rochelle model with regressed parameters 
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Table A-15: Measured and Modelled Absorption and Desorption Data 
of CO2 in MEA:DEA:MDEA:[Bmim][BF4] at 29.8:11.7:12.8:45.7 wt% 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption 

0.0498 303.19 0.143 0.0498 303.21 0.142 0.1410 

0.1000 303.18 0.148 0.1000 303.12 0.147 0.1757 

0.3999 303.16 0.172 0.3999 303.14 0.171 0.4329 

0.6999 303.18 0.191 0.6997 303.17 0.190 0.7120 

0.9999 303.17 0.208 1.0001 303.25 0.205 1.0146 

1.2999 303.24 0.219 1.2998 303.21 0.216 1.2066 

1.4999 303.20 0.228 1.5001 303.20 0.231 1.3930 

0.0498 313.15 0.132 0.0498 313.15 0.132 0.1122 

0.0999 313.14 0.140 0.0999 313.09 0.141 0.1626 

0.3999 313.16 0.169 0.3999 313.16 0.169 0.5062 

0.6998 313.14 0.183 0.6999 313.14 0.182 0.7397 

0.9999 313.16 0.197 0.9999 313.15 0.199 1.0174 

1.3000 313.18 0.211 1.2999 313.10 0.213 1.3487 

1.4995 313.14 0.221 1.5002 313.13 0.221 1.6216 

0.0498 323.13 0.115 0.0499 323.23 0.113 0.0640 

0.0999 323.13 0.118 0.0999 323.12 0.117 0.0726 

0.3999 323.15 0.144 0.3999 323.12 0.145 0.3555 

0.6999 323.15 0.166 0.6999 323.11 0.167 0.5417 

1.0001 323.15 0.186 1.0000 323.11 0.184 0.9613 

1.3000 323.21 0.199 1.3000 323.10 0.202 1.2671 

1.5000 323.18 0.207 1.5000 323.10 0.205 1.4935 

*PCalc obtained using RK-EOS and Posey-Tapperson-Rochelle model with regressed parameters 

Table A-16: Measured and Modelled Absorption and Desorption Data of CO2 in 
MEA:[Bmim][Tf2N] at 32.8:67.2 wt% 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 *Pcalc/MPa 
Absorption Desorption 

0.0498 303.17 0.212 0.0498 303.16 0.210 0.1130 

0.0999 303.16 0.219 0.0998 303.19 0.216 0.1647 

0.4000 303.24 0.245 0.3999 303.17 0.250 0.4116 

0.6999 303.24 0.270 0.7000 303.18 0.267 0.7954 

1.0000 303.25 0.293 1.0000 303.14 0.298 1.1177 

1.2998 303.17 0.315 1.3000 303.17 0.315 1.2169 

1.4997 303.25 0.329 1.5001 303.23 0.329 1.4520 

0.0499 313.29 0.187 0.0498 313.34 0.189 0.0991 

0.1000 313.19 0.202 0.0999 313.21 0.200 0.1154 

0.4000 313.23 0.226 0.3999 313.17 0.222 0.4567 

0.7000 313.26 0.238 0.7000 313.24 0.238 0.5647 

1.0000 313.23 0.253 0.9999 313.22 0.253 0.9195 

1.3000 313.25 0.268 1.3000 313.21 0.272 1.1942 
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Table A-16 (Contd.): Measured and Modelled Absorption and Desorption Data of 

CO2 in MEA:[Bmim][Tf2N] at 32.8:67.2 wt% 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption 

1.4999 313.12 0.282 1.5000 313.13 0.282 1.3709 

0.0499 323.27 0.175 0.0499 323.14 0.177 0.0617 

0.1001 323.14 0.190 0.0999 323.16 0.188 0.1415 

0.4000 323.16 0.216 0.3997 323.13 0.220 0.4018 

0.7000 323.25 0.239 0.6999 323.16 0.241 0.7326 

1.0000 323.22 0.261 1.0001 323.20 0.261 1.1107 

1.2999 323.23 0.282 1.2998 323.21 0.285 1.4455 

1.5001 323.10 0.296 1.5001 323.15 0.293 1.6102 

*PCalc obtained using RK-EOS and Posey-Tapperson-Rochelle model with regressed parameters 

 

Table A-17: Measured and Modelled Absorption and Desorption Data 
of CO2 in MEA:DEA:[Bmim][Tf2N] at 32.6:21.3:46.2 wt% 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption 

0.0498 303.18 0.230 0.0498 303.19 0.230 0.1012 

0.1000 303.20 0.236 0.0999 303.18 0.239 0.1521 

0.3999 303.23 0.244 0.3999 303.16 0.248 0.4885 

0.6999 303.21 0.252 0.6999 303.18 0.254 0.6520 

0.9999 303.21 0.259 0.9992 303.17 0.262 0.9914 

1.3000 303.23 0.266 1.3000 303.24 0.268 1.2365 

1.5000 303.18 0.270 1.4999 303.20 0.273 1.3734 

0.0497 303.28 0.223 0.0498 313.16 0.225 0.1110 

0.1000 313.05 0.227 0.0998 313.17 0.229 0.1807 

0.3999 313.23 0.235 0.3993 313.12 0.237 0.4596 

0.6999 313.25 0.243 0.7000 313.17 0.245 0.7358 

1.0000 313.08 0.252 0.9999 313.15 0.255 1.0462 

1.3001 313.11 0.258 1.2999 313.14 0.261 1.3677 

1.5000 313.15 0.262 1.4999 313.05 0.265 1.5965 

0.0496 313.26 0.206 0.0498 313.27 0.208 0.1063 

0.1001 323.12 0.213 0.1000 323.22 0.215 0.1480 

0.4000 323.24 0.221 0.3999 323.20 0.223 0.4398 

0.6999 323.23 0.228 0.6999 323.14 0.230 0.6149 

0.9999 323.22 0.234 0.9999 323.24 0.237 0.9451 

1.3000 323.21 0.241 1.2999 323.09 0.243 1.2479 

1.5000 323.12 0.246 1.4999 323.17 0.248 1.4474 

*PCalc obtained using RK-EOS and Posey-Tapperson-Rochelle model with regressed parameters 
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Table A-18: Measured and Modelled Absorption and Desorption Data of 
CO2 in MEA:DEA:[Bmim][Tf2N] at 30.3:10.5:59.2 wt% 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption 

0.0500 302.31 0.280 0.0500 303.22 0.276 0.1157 

0.1001 300.22 0.290 0.1000 303.16 0.285 0.1690 

0.3998 303.23 0.316 0.3999 303.18 0.320 0.4549 

0.6998 303.10 0.329 0.7000 303.18 0.332 0.7330 

0.9999 303.16 0.341 1.0000 303.25 0.341 0.9544 

1.2993 303.18 0.352 1.3000 303.20 0.355 1.0946 

1.4992 303.14 0.359 1.5000 303.22 0.356 1.4345 

0.0500 313.34 0.276 0.0498 313.07 0.281 0.1019 

0.1000 313.21 0.281 0.0998 313.13 0.284 0.1661 

0.3999 313.17 0.298 0.3993 313.17 0.298 0.3989 

0.6999 313.24 0.313 0.7000 313.15 0.316 0.6697 

0.9999 313.22 0.326 0.9999 313.23 0.327 1.0118 

1.3001 313.21 0.338 1.2999 313.15 0.341 1.4872 

1.5000 313.13 0.347 1.4999 313.21 0.344 1.5664 

0.0499 323.23 0.270 0.0498 323.13 0.270 0.1625 

0.0999 323.12 0.273 0.0999 323.15 0.276 0.2117 

0.4000 323.12 0.286 0.4000 323.14 0.286 0.4226 

0.6999 323.11 0.295 0.6999 326.53 0.290 0.6435 

0.9999 323.11 0.303 1.0000 325.56 0.297 0.8073 

1.3001 323.10 0.313 1.2998 320.47 0.318 1.1368 

1.5000 323.10 0.320 1.4997 323.07 0.320 1.3568 

*PCalc obtained using RK-EOS and Posey-Tapperson-Rochelle model with regressed parameters 

Table A-19: Measured and Modelled Absorption and Desorption Data of CO2 in 
MEA:MDEA:[Bmim][Tf2N] at 29.9:12.6:57.5 wt% 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 *Pcalc/MPa 
Absorption Desorption 

0.0499 303.21 0.288 0.0498 303.17 0.291 0.0716 

0.0998 303.12 0.300 0.1000 303.16 0.305 0.1672 

0.3997 303.14 0.320 0.3999 303.24 0.323 0.4759 

0.6992 303.17 0.334 0.6999 303.24 0.339 0.8027 

0.9990 303.25 0.342 0.9999 303.25 0.346 1.0064 

1.2988 303.21 0.352 1.2999 303.17 0.358 1.1798 

1.4983 303.20 0.359 1.4999 303.25 0.359 1.4886 

0.0499 313.22 0.274 0.0498 313.15 0.278 0.1209 

0.0999 313.08 0.277 0.0999 313.14 0.279 0.1031 

0.3999 313.25 0.288 0.3999 313.16 0.293 0.3680 

0.6999 313.24 0.298 0.6999 313.14 0.304 0.6319 

0.9998 313.22 0.309 0.9992 313.16 0.314 0.8999 

1.3001 313.25 0.320 1.3000 313.18 0.324 1.2509 
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Table A-19 (Contd.): Measured and Modelled Absorption and Desorption Data of CO2 in 

MEA:MDEA:[Bmim][Tf2N] at 29.9:12.6:57.5 wt% 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption   

1.5000 313.25 0.328 1.4999 313.14 0.333 1.5613 

0.0499 323.21 0.255 0.0499 323.14 0.259 0.0958 

0.0999 323.16 0.258 0.0999 323.16 0.260 0.1543 

0.3998 323.10 0.270 0.4048 323.13 0.273 0.4982 

0.6996 323.16 0.276 0.7144 323.16 0.281 0.6097 

0.9993 323.16 0.285 0.9999 323.20 0.288 0.8868 

1.3001 323.21 0.294 1.3127 323.21 0.298 1.2386 

1.5000 323.24 0.300 1.5003 323.15 0.303 1.5482 

*PCalc obtained using RK-EOS and Posey-Tapperson-Rochelle model with regressed parameters 

Table A-20: Measured and Modelled Absorption and Desorption Data of CO2 in 
MEA:MDEA:[Bmim][Tf2N] at 30.4:19.3:50.3 wt% 

Pmeas/MPa T/K xCO2 Pmeas/MPa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption 

0.0498 303.19 0.258 0.0499 303.19 0.260 0.0993 

0.0995 303.18 0.272 0.0999 303.18 0.276 0.1512 

0.3991 303.17 0.295 0.3999 303.16 0.300 0.4532 

0.6983 303.24 0.304 0.6999 303.18 0.307 0.7179 

0.9988 303.22 0.312 1.0000 303.17 0.318 1.0608 

1.2999 303.25 0.321 1.2998 303.24 0.324 1.1936 

1.4985 303.22 0.327 1.5001 303.20 0.333 1.4630 

0.0498 313.26 0.236 0.0498 313.34 0.238 0.1186 

0.0999 313.17 0.237 0.0999 313.21 0.240 0.1695 

0.3999 313.24 0.250 0.4000 313.17 0.254 0.4184 

0.7000 313.14 0.266 0.6999 313.24 0.268 0.6064 

0.9999 313.18 0.274 1.0000 313.22 0.279 0.8853 

1.3000 313.21 0.283 1.2999 313.21 0.286 1.1701 

1.5000 313.16 0.290 1.5001 313.13 0.295 1.4160 

0.0498 323.25 0.186 0.0498 323.27 0.188 0.0889 

0.0998 323.19 0.195 0.0999 323.14 0.197 0.1359 

0.3993 323.17 0.216 0.4000 323.16 0.220 0.3143 

0.7000 323.21 0.234 0.6999 323.25 0.236 0.5733 

0.9999 323.12 0.249 1.0000 323.22 0.254 0.8997 

1.2999 323.20 0.264 1.2998 323.23 0.267 1.4040 

1.4999 323.17 0.272 1.4997 323.10 0.277 1.6362 

*PCalc obtained using RK-EOS and Posey-Tapperson-Rochelle model with regressed parameters 
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Table A-21: Measured and Modelled Absorption and Desorption Data of 
CO2 in MEA:DEA:MDEA:[Bmim][Tf2N] at 29.1:10.1:12.5:48.3 wt% 

Pmeas/Mpa T/K xCO2 Pmeas/Mpa T/K xCO2 
*Pcalc/MPa 

Absorption Desorption 

0.0496 303.09 0.247 0.0499 303.17 0.249 0.1220 

0.0996 303.14 0.263 0.1001 303.16 0.260 0.1134 

0.3993 303.17 0.277 0.4000 303.24 0.277 0.4439 

0.6996 303.25 0.287 0.7000 303.24 0.290 0.7597 

0.9995 303.25 0.297 1.0000 303.25 0.300 0.9708 

1.2977 303.24 0.307 1.2999 303.17 0.310 1.1332 

1.4998 303.24 0.317 1.5001 303.25 0.314 1.5143 

0.0499 313.18 0.232 0.0499 313.15 0.232 0.0790 

0.0999 313.21 0.241 0.0999 313.14 0.244 0.1578 

0.4048 313.24 0.257 0.3999 313.16 0.260 0.4382 

0.7144 313.24 0.268 0.6999 313.14 0.265 0.5837 

0.9999 313.26 0.280 1.0000 313.16 0.283 0.8936 

1.3127 313.19 0.296 1.3000 313.18 0.293 1.2605 

1.5003 313.23 0.301 1.5000 313.14 0.304 1.3642 

0.0545 313.31 0.215 0.0498 323.14 0.213 0.1331 

0.1351 323.15 0.216 0.0998 323.16 0.214 0.1425 

0.4489 323.23 0.238 0.3999 323.13 0.240 0.4192 

0.6675 323.17 0.254 0.7000 323.16 0.251 0.5931 

1.0188 323.24 0.270 1.0000 323.20 0.267 0.8420 

1.3150 323.23 0.286 1.3000 323.21 0.288 1.3387 

1.4925 323.21 0.295 1.5001 323.15 0.298 1.6263 

*PCalc obtained using RK-EOS and Posey-Tapperson-Rochelle model with regressed parameters 
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APPENDIX B: PROPERTIES OF IONIC LIQUIDS AND 

ALKANOLAMINES 

Table B-1: Properties of Ionic Liquids 

  Molar Mass (g/mol) Tb (K) TC (K) PC (bar) VC (cm3/mol) ω 

[Bmim][Tf2N] 419.37 784.6 1133.41 25.69 956.02 0.3526 

[MOA][Tf2N] 648.85 1190.0 1447.35 10.31 2002.30 1.0096 

[Bmim][BF4] 226.02 391.0 523.25 18.88 645.61 0.6234 

[Bmim][MeSO4] 250.32 595.0 877.42 35.51 663.94 0.3913 
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APPENDIX C: BOUYANCY AND LIQUID MOLE FRACTION 

CALCULATION   

As mentioned in Section 5.7 of Chapter 5 and Section 7.3 of Chapter 7, the weight reading 

produced by the gravimetric analyser is given by the following equation: 

W = g[ms + ma - mc + mI - mII -ρf(Vas + VI - VII - Vc)]………………….(E-C1) 

Where:  

W = weight reading [N],  

g =  acceleration due to gravity in [m∙s
-2

] 

ρf = density of the absorbing gas [g∙cm
-3

]. 

ms = dry sample mass[g] 

ma = mass of absorbed gas [g] 

mc = mass of counterweight [g] 

mI = mass of hook and chain on sample side [g]  

mII = mass of hook and chain on counterweight side [g] 

VI = volume of hook and chain on sample side [cm
-1

] 

VII = volume of hook and chain on counterweight side [cm
-1

] 

VC = volume of counterweight [cm
-1

] 

Vas = volume of sample and absorbed gas [cm
-1

] 

For systems measured using non absorbing gas such as nitrogen use in this work, the weight 

reading is expressed in E-C2 below. N2 gas was used as the non absorbing gas for buoyancy 

correction.   

W = g[ms + ma,N2 - mc + mI - mII –ρN2(VN2 + VI - VII - Vc)]……………(E-C2) 

where ma,N2 is the mass of absorbed nitrogen. ma,N2 = 0 g.  

          VN2 is the volume of sample and absorbed nitrogen. 
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The data obtained from absorption measurements using nitrogen is available in Tables D-1 to 

D-3 of Appendix D for pure ionic liquids and for hybrid solvents. The data for pure 

[Bmim][BF4] at 303.15 K has been plotted below in Figure C-1 simply for illustration of the 

buoyancy effect. Another illustration for MEA:[Bmim][Tf2N] at 32.8:67.2 wt% at 313.15 K can 

be found in Figure 7-1 in Section 7.3 of Chapter 7.  

 

Figure C-1: Bouyancy Measurements using N2 gas for [Bmim][BF4] at 303.15 K 

Equation (E-C2) may be rearranged to form the following linear equation: 

CAV
g

W
NN  )(

22
 ………………..(E-C3) 

Where constants CIII VVVA   and IIICNaS mmmmmC 
2,  

ma,N2 = 0 since absorption of N2 in the solvents studied in this work is negligible. 

A plot of weight reading W against nitrogen density
2N such as those shown in Figure C-1 and 

Figure 7-1 of Chapter 7 was drawn for each system and the gradient of the plot was found in 

order to obtain 
2NV . 

It can be assumed that Vas from Equation (E-C1) is equal to VN2 in Equation (E-C2) (Macedonia 

et al., 2000). This assumption is theoretically valid in simulating the buoyancy effect on the 

solvent without absorption actually occurring between N2 and the solvent. N2 is negligibly 

soluble in the samples in this work and possesses a molecular mass more comparable to CO2 

than the use of helium gas, thus increasing the accuracy of the assumption of Vas = VN2. 
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Thus, Vas is substituted for VN2 in Equation (E-C1) to accurately calculate the mass of gas 

absorbed (ma) in systems containing CO2 and O2. 

 asCOsa VCm
g

W
m 

2
 ………………(E-C4) 

Where Vas = VN2 

The equilibrium mole fraction xCO2 is found by the following: 

s

s

CO

a

CO

a

CO

MM

m

MM

m

MM

m

x





2

2

2
……………………………..(E-C5) 

Where MMCO2 and MMs are the molar masses of CO2 and the solvent respectively. The same 

calculation was be applied for systems containing O2.  

For hybrid solvents, the moles of each component in the hybrid solvent are calculated since the 

the composition and mass quantity of each component is predetermined during the combining of 

the solvent.  
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APPENDIX D: BOUYANCY DATA FOR ALL ABSORPTION 

MEASUREMENTS 

Table D-1: Bouyancy Data Using Nitrogen Gas for [MOA][Tf2N] and [Bmim][Tf2N] Ionic liquids 

P/MPa Weight/g N2 Density/g∙cm-3 P/MPa Weight/g N2 Density/g∙cm-3 

[MOA][Tf2N] [Bmim][Tf2N] 

303.15 K 303.15 K 

0.0498 0.08463 0.0006 0.0499 0.08338 0.0006 

0.1000 0.08461 0.0011 0.1000 0.08336 0.0011 

0.4001 0.08444 0.0044 0.4001 0.08326 0.0044 

0.7000 0.08426 0.0078 0.6999 0.08316 0.0078 

1.0000 0.08409 0.0111 1.0001 0.08305 0.0111 

1.2998 0.08392 0.0145 1.2998 0.08295 0.0145 

1.5001 0.08381 0.0167 1.5001 0.08288 0.0167 
313.15 K 313.15 K 

0.0499 0.08464 0.0005 0.0499 0.08338 0.0005 

0.1000 0.08460 0.0011 0.1000 0.08336 0.0011 

0.4000 0.08444 0.0043 0.4000 0.08328 0.0043 

0.7000 0.08430 0.0075 0.6999 0.08320 0.0075 

1.0000 0.08414 0.0108 1.0000 0.08311 0.0108 

1.3001 0.08399 0.0140 1.2996 0.08303 0.0140 

1.4998 0.08389 0.0162 1.4999 0.08296 0.0162 
323.15 K 323.15 K 

0.0499 0.08464 0.0005 0.0500 0.08339 0.0005 

0.1000 0.08460 0.0010 0.1000 0.08336 0.0010 

0.4000 0.08447 0.0042 0.3998 0.08330 0.0042 

0.6999 0.08434 0.0073 0.7000 0.08322 0.0073 

0.9999 0.08419 0.0104 0.9995 0.08314 0.0104 

1.3000 0.08406 0.0136 1.3000 0.08307 0.0136 

1.5000 0.08398 0.0156 1.4999 0.08303 0.0156 
 

Table D-2: Bouyancy Data Using Nitrogen Gas for [Bmim][BF4] and [Bmim][MeSO4] Ionic Liquids 

P/MPa Weight/g 
N2 

Density/g∙cm-

3 
P/MPa Weight/g 

N2 
Density/g∙cm-3 

[Bmim][BF4] [Bmim][MeSO4] 

303.15 K 303.15 K 

0.0499 0.08669 0.0006 0.0502 0.06918 0.0006 

0.0998 0.08668 0.0011 0.1005 0.06916 0.0011 

0.3999 0.08651 0.0044 0.4000 0.06904 0.0044 

0.6997 0.08636 0.0078 0.7000 0.06894 0.0078 

1.0000 0.08619 0.0111 0.9987 0.06883 0.0111 

1.2999 0.08605 0.0145 1.3000 0.06871 0.0145 

1.5001 0.08594 0.0167 1.5144 0.06862 0.0167 
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Table D-2: Bouyancy Data Using Nitrogen Gas for [Bmim][BF4] and [Bmim][MeSO4] Ionic Liquids 

P/MPa Weight/g 
N2 

Density/g∙cm-

3 
P/MPa Weight/g 

N2 
Density/g∙cm-3 

[Bmim][BF4] [Bmim][MeSO4] 

313.15 K 313.15 K 

0.0502 0.08678 0.0005 0.0502 0.06918 0.0005 
0.0998 0.08664 0.0011 0.1009 0.06918 0.0011 
0.3999 0.08650 0.0043 0.3999 0.06905 0.0043 
0.6999 0.08637 0.0075 0.7004 0.06897 0.0075 
0.9998 0.08623 0.0108 0.9999 0.06886 0.0108 
1.2994 0.08609 0.0140 1.2999 0.06875 0.0140 
1.5000 0.08599 0.0162 1.4999 0.06865 0.0156 

323.15 K 323.15 K 
0.0499 0.08667 0.0005 0.0499 0.06919 0.0005 
0.0999 0.08666 0.0010 0.1005 0.06915 0.0010 

0.3999 0.08651 0.0042 0.4001 0.06907 0.0042 

0.6998 0.08639 0.0073 0.7000 0.06901 0.0073 

0.9998 0.08626 0.0104 0.9999 0.06890 0.0104 
1.3000 0.08613 0.0136 1.2998 0.06881 0.0136 
1.5000 0.08604 0.0156 1.4999 0.06870 0.0156 
 

Table D-3: Bouyancy Data Using Nitrogen Gas for Hybrid Solvents 

P/MPa Weight/g N2 Density/g∙cm-3 P/MPa Weight/g N2 Density/g∙cm-3 

MEA:[Bmim][BF4] at 29.3:70.7 wt% MEA:DEA:[Bmim][BF4] at 33:16.2:50.8 wt% 

 
303.15 K 

  
303.15 K 

 0.1506 0.08026 0.0017 0.1499 0.08780 0.0017 
0.1999 0.07967 0.0022 0.2000 0.08719 0.0022 
0.3998 0.07958 0.0044 0.4000 0.08706 0.0044 
0.6999 0.07942 0.0078 0.7000 0.08687 0.0078 
0.9999 0.07925 0.0111 0.9999 0.08667 0.0111 
1.3000 0.07907 0.0145 1.3000 0.08646 0.0145 
1.5001 0.07895 0.0167 1.5002 0.08631 0.0167 

 
313.15K 

  
313.15K 

 0.1500 0.07661 0.0016 0.1500 0.08450 0.0016 

0.1998 0.07583 0.0022 0.2000 0.08379 0.0022 

0.3999 0.07573 0.0043 0.4000 0.08367 0.0043 
0.6999 0.07558 0.0075 0.6999 0.08349 0.0075 
0.9999 0.07540 0.0108 1.0000 0.08329 0.0108 
1.3001 0.07523 0.0140 1.3000 0.08309 0.0140 
1.5001 0.07510 0.0162 1.5001 0.08294 0.0162 

 
323.15 K 

  
323.15 K 

 0.1503 0.07100 0.0016 0.1500 0.08092 0.0016 
0.2000 0.07050 0.0021 0.1998 0.07995 0.0021 
0.4000 0.07027 0.0042 0.3999 0.07898 0.0042 
0.7000 0.07010 0.0073 0.6999 0.07850 0.0073 
0.9999 0.06993 0.0104 0.9999 0.07795 0.0104 
1.3001 0.06978 0.0136 1.3000 0.07776 0.0136 
1.5001 0.06960 0.0156 1.5001 0.07730 0.0156 
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Table D-3 (Contd.): Bouyancy Data Using Nitrogen Gas for Hybrid Solvents 

P/MPa Weight/g N2 Density/g∙cm-3 P/MPa Weight/g N2 Density/g∙cm-3 

MEA:DEA:[Bmim][BF4] at 31.8:12.1:56.1 wt% MEA:MDEA:[Bmim][BF4] at 31.6:10.4:58 wt% 

 
303.15 K 

  
303.15 K 

 
0.1500 0.08804 0.0017 0.1499 0.08137 0.0017 

0.1999 0.08740 0.0022 0.1999 0.08103 0.0022 

0.4000 0.08728 0.0044 0.4000 0.08093 0.0044 

0.6998 0.08709 0.0078 0.7000 0.08077 0.0078 

1.0000 0.08689 0.0111 1.0000 0.08058 0.0111 

1.3000 0.08668 0.0145 1.3001 0.08042 0.0145 

1.5002 0.08653 0.0167 1.5001 0.08029 0.0167 

 
313.15K 

  
313.15K 

 
0.1500 0.08459 0.0016 0.1501 0.08034 0.0016 

0.1998 0.08384 0.0022 0.2000 0.07937 0.0022 

0.3999 0.08372 0.0043 0.4000 0.07924 0.0043 

0.7000 0.08355 0.0075 0.7000 0.07906 0.0075 

0.9999 0.08335 0.0108 0.9999 0.07887 0.0108 

1.3001 0.08315 0.0140 1.3001 0.07869 0.0140 

1.5000 0.08300 0.0162 1.5000 0.07856 0.0162 

 
323.15 K 

  
323.15 K 

 
0.1501 0.07822 0.0016 0.1500 0.07248 0.0016 

0.1998 0.07728 0.0021 0.1998 0.07060 0.0021 

0.4000 0.07717 0.0042 0.4000 0.07034 0.0042 

0.7000 0.07626 0.0073 0.6999 0.07020 0.0073 

0.9998 0.07608 0.0104 0.9999 0.07002 0.0104 

1.2997 0.07590 0.0136 1.3000 0.06983 0.0136 

1.4945 0.07574 0.0156 1.4996 0.06967 0.0156 

 

 

Table D-3 (Contd.): Bouyancy Data Using Nitrogen Gas for Hybrid Solvents 

P/MPa Weight/g N2 Density/g∙cm-3 P/MPa Weight/g N2 Density/g∙cm-3 

MEA:MDEA:[Bmim][BF4] at 30.3:21.8:48 wt% 
MEA:DEA:MDEA:[Bmim][BF4] at 

29.8:11.7:12.8:45.7 wt% 

 
303.15 K 

  
303.15 K 

 
0.1499 0.09789 0.0017 0.1499 0.08057 0.0017 

0.1999 0.09741 0.0022 0.2000 0.08013 0.0022 

0.3998 0.09727 0.0044 0.3999 0.08003 0.0044 

0.7000 0.09704 0.0078 0.6999 0.07986 0.0078 

0.9999 0.09681 0.0111 1.0000 0.07968 0.0111 

1.3000 0.09658 0.0145 1.3001 0.07951 0.0145 

1.5000 0.09642 0.0167 1.5001 0.07939 0.0167 

 
313.15K 

  
313.15K 

 
0.1499 0.09671 0.0016 0.1501 0.07933 0.0016 
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Table D-3 (Contd.): Bouyancy Data Using Nitrogen Gas for Hybrid Solvents 

P/MPa Weight/g N2 Density/g∙cm-3 P/MPa Weight/g N2 Density/g∙cm-3 

MEA:MDEA:[Bmim][BF4] at 30.3:21.8:48 wt% 
MEA:DEA:MDEA:[Bmim][BF4] at 

29.8:11.7:12.8:45.7 wt% 

0.1999 0.09533 0.0022 0.2003 0.07836 0.0022 
0.3999 0.09517 0.0043 0.4001 0.07825 0.0043 
0.6999 0.09493 0.0075 0.7000 0.07808 0.0075 
1.0000 0.09467 0.0108 0.9999 0.07790 0.0108 
1.2998 0.09443 0.0140 1.3000 0.07771 0.0140 
1.5001 0.09424 0.0162 1.5001 0.07758 0.0162 

 
323.15 K 

  
323.15 K 

 
0.1502 0.09384 0.0016 0.1498 0.07726 0.0016 
0.1999 0.09222 0.0021 0.1998 0.07599 0.0021 
0.3999 0.09097 0.0042 0.4001 0.07587 0.0042 
0.6999 0.09073 0.0073 0.7000 0.07567 0.0073 
0.9999 0.09048 0.0104 1.0000 0.07546 0.0104 

1.3001 0.09026 0.0136 1.3000 0.07473 0.0136 

1.5001 0.09006 0.0156 1.5001 0.07461 0.0156 
 

Table D-3 (Contd.): Bouyancy Data Using Nitrogen Gas for Hybrid Solvents 

P/MPa Weight/g 
N2 

Density/g∙cm-3 
P/MPa Weight/g 

N2 
Density/g∙cm-3 

MEA:[Bmim][Tf2N] at 32.8:67.2 wt% 
MEA:DEA:[Bmim][Tf2N] at 

32.6:21.3:46.2 wt% 

 
303.15 K 

  
303.15 K 

 
0.1499 0.05993 0.0017 0.1500 0.08641 0.0017 
0.1993 0.05984 0.0022 0.1999 0.08589 0.0022 
0.3999 0.05978 0.0044 0.4000 0.08578 0.0044 
0.6999 0.05955 0.0078 0.7000 0.08562 0.0078 
1.0000 0.05922 0.0111 0.9998 0.08545 0.0111 
1.2998 0.05902 0.0145 1.3001 0.08527 0.0145 
1.5007 0.05895 0.0167 1.4997 0.08514 0.0167 

 
313.15 K 

  
313.15 K 

 
0.1500 0.05878 0.0016 0.1499 0.08487 0.0016 
0.1999 0.05787 0.0022 0.1999 0.08367 0.0022 
0.4000 0.05779 0.0043 0.3998 0.08355 0.0043 
0.6999 0.05770 0.0075 0.6999 0.08337 0.0075 
1.0000 0.05759 0.0108 0.9999 0.08319 0.0108 
1.3000 0.05749 0.0140 1.3001 0.08301 0.0140 
1.5000 0.05742 0.0162 1.5000 0.08288 0.0162 

 
323.15 K 

  
323.15 K 

 
0.1499 0.05661 0.0016 0.1500 0.08236 0.0016 
0.1998 0.05457 0.0021 0.1999 0.08089 0.0021 
0.4000 0.05440 0.0042 0.3999 0.07971 0.0042 
0.7000 0.05422 0.0073 0.7000 0.07955 0.0073 
0.9998 0.05372 0.0104 1.0000 0.07934 0.0104 
1.3012 0.05360 0.0140 1.3000 0.07915 0.0136 
1.5002 0.05355 0.0156 1.5002 0.07899 0.0156 
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Table D-3 (Contd.): Bouyancy Data Using Nitrogen Gas for Hybrid Solvents 

P/MPa Weight/g 
N2 

Density/g∙cm-3 
P/MPa Weight/g 

N2 
Density/g∙cm-3 

MEA:DEA:[Bmim][Tf2N] at 
30.3:10.5:59.2 wt% 

MEA:MDEA:[Bmim][Tf2N] at 
29.9:12.6:57.5 wt% 

 
303.15 K 

  
303.15 K 

 
0.1997 0.08308 0.0022 0.1500 0.08559 0.0017 

0.3997 0.08306 0.0044 0.2000 0.08561 0.0022 

0.6992 0.08298 0.0078 0.3997 0.08557 0.0044 

0.9991 0.08286 0.0111 0.7016 0.08547 0.0078 

1.2978 0.08273 0.0145 0.9952 0.08534 0.0111 

1.5000 0.08263 0.0167 1.3001 0.08519 0.0145 

 
313.15 K 

 
1.5065 0.08508 0.0167 

0.1994 0.07995 0.0022 
 

313.15 K 
 

0.3995 0.07985 0.0043 0.1500 0.08350 0.0016 

0.6998 0.07971 0.0075 0.2000 0.08311 0.0022 

0.9986 0.07954 0.0108 0.3998 0.08302 0.0043 

1.2997 0.07937 0.0140 0.6999 0.08270 0.0075 

1.4987 0.07922 0.0162 0.9999 0.08227 0.0108 

 
323.15 K 

 
1.2989 0.08211 0.0140 

0.1997 0.07647 0.0021 1.4988 0.08199 0.0162 

0.3991 0.07536 0.0042 
 

323.15 K 
 

0.6978 0.07524 0.0073 0.1500 0.06043 0.0016 

0.9983 0.07506 0.0104 0.2000 0.06030 0.0021 

1.2981 0.07488 0.0136 0.3998 0.06010 0.0042 

1.4991 0.07472 0.0156 0.7000 0.06003 0.0073 

   

0.9994 0.05992 0.0104 

   

1.2993 0.05961 0.0136 

      1.5001 0.05942 0.0156 

 

Table D-3 (Contd.): Bouyancy Data Using Nitrogen Gas for Hybrid Solvents 

P/MPa Weight/g 
N2 

Density/g∙cm-3 
P/MPa Weight/g 

N2 
Density/g∙cm-3 

MEA:MDEA:[Bmim][Tf2N] at 
30.4:19.3:50.3 wt% 

MEA:DEA:MDEA:[Bmim][Tf2N] at 
29.1:10.1:12.5:48.3 wt% 

 
303.15 K 

  
303.15 K 

 
0.1500 0.06972 0.0017 0.1497 0.09030 0.0017 

0.2000 0.06906 0.0022 0.1998 0.09019 0.0022 

0.3998 0.06898 0.0044 0.3994 0.09010 0.0044 

0.6999 0.06887 0.0078 0.7000 0.08996 0.0078 

0.9999 0.06874 0.0111 0.9998 0.08980 0.0111 

1.2998 0.06860 0.0145 1.2994 0.08963 0.0145 

1.4998 0.06849 0.0167 1.4995 0.08950 0.0167 

 
313.15 K 

  
313.15 K 

 
0.1499 0.08480 0.0016 0.1498 0.08620 0.0016 
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Table D-3 (Contd.): Bouyancy Data Using Nitrogen Gas for Hybrid Solvents 

P/MPa Weight/g 
N2 

Density/g∙cm-3 
P/MPa Weight/g 

N2 
Density/g∙cm-3 

MEA:MDEA:[Bmim][Tf2N] at 
30.4:19.3:50.3 wt% 

MEA:DEA:MDEA:[Bmim][Tf2N] at 
29.1:10.1:12.5:48.3 wt% 

0.2000 0.08457 0.0022 0.1997 0.08612 0.0022 

0.3998 0.08451 0.0043 0.3990 0.08600 0.0043 

0.7000 0.08440 0.0075 0.6999 0.08585 0.0075 

0.9999 0.08427 0.0108 0.9998 0.08568 0.0108 

1.3000 0.08414 0.0140 1.2986 0.08551 0.0140 

1.4999 0.08404 0.0162 1.4996 0.08538 0.0162 

 
323.15 K 

  
323.15 K 

 
0.1499 0.08090 0.0016 0.1497 0.08337 0.0016 

0.2000 0.08076 0.0021 0.1998 0.08234 0.0021 

0.3999 0.08066 0.0042 0.3999 0.08124 0.0042 

0.7000 0.08050 0.0073 0.7000 0.08108 0.0073 

0.9995 0.08033 0.0104 0.9991 0.08073 0.0104 

1.2985 0.08015 0.0136 1.2994 0.08057 0.0136 

1.5000 0.08004 0.0156 1.5000 0.08031 0.0156 
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APPENDIX E: ENTHALPY AND ENTROPY OF ABSORPTION 

DATA 

Table E-1: Enthalpy and Entropy of Absorption for CO2 and O2 in the Ionic Liquids Studied 
in this Work 

 
[Bmim][Tf2N] [MOA][Tf2N] [Bmim][BF4] [Bmim][MeSO4] 

 
∆h/kJ∙mol-1 

CO2 -13.46 ± 1.8 -10.46 ± 1.8 -14.88 ± 2.9 -18.15 ± 4.46 

O2 -26.80 ± 2.32 -25.53 ± 3.45 -46.46 ± 2.49 -9.25 ± 3.29 

 
∆S/J∙mol-1∙K-1 

CO2 -45.30 ± 5.74 -34.27 ± 4.96 -42.81 ± 4.89 -47.52 ± 5.47 

O2 -79.12 ± 19.07 -81.80 ± 11.02 -148.26 ± 7.92 -35.62 ± 2.61 
 

 

Table E-2: Enthalpy and Entropy of Absorption of CO2 in all Hybrid Solvents 

Solvent ∆h/kJ∙mol-1   ∆S/J∙mol-1∙K-1 

[Bmim][BF4] + MEA at 70.7:29.3 
wt% 

-14.9 ± 0.4 
 

-48.2 ± 1.8 

MEA+DEA+[Bmim][BF4] at 
33:16.2:50.8 wt% 

-3.9 ± 0.4 
 

-12.4 ± 1.4 

MEA+DEA+[Bmim][BF4] at 
31.8:12.1:56.1 wt% 

-5.4 ± 1.1 
 

-17.1 ± 3.6 

MEA+MDEA+[Bmim][BF4] at 
31.6:10.4:58 wt% 

-9.9 ± 0.6 
 

-31.6 ± 1.8 

MEA+MDEA+[Bmim][BF4] at 
30.3:21.8:48 wt% 

-15.9 ± 4.5 
 

-50.9 ± 14.4 

MEA+DEA+MDEA+[Bmim][BF4] at 
29.8:11.7:12.8:45.7 wt% 

-5.1 ± 1.4 
 

-16.4 ± 4.5 

[Bmim][Tf2N] + MEA at 32.8:67.2 
wt% 

-4.8 ± 0.3 
 

-15.4 ± 1.2 

MEA+DEA+[Bmim][Tf2N] at 
32.6:21.3:46.2 wt%  

-4.0 ± 0.1 
 

-12.9 ± 0.2 

MEA+DEA+[Bmim][Tf2N] at 
30.3:10.5:59.3 wt% 

-4.6 ± 0.3 
 

-14.6 ± 0.9 

MEA+MDEA+[Bmim][Tf2N] ] at 
29.9:12.6:57.5 wt% 

-7.3 ± 0.3 
 

-23.4 ± 1.0 

MEA+MDEA+[Bmim][Tf2N] at 
30.4:19.3:50.3 wt% 

-9.6 ± 2.1 
 

-30.7 ± 6.8 

MEA+DEA+MDEA+[Bmim][Tf2N] at 
29.1:10.1:12.5:48.3 wt% 

-4.2 ± 1.4 
 

-13.5 ± 4.4 
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Appendix F: LIQUID PHASE COMPOSITION MEASUREMENT 

USING A FOURIER TRANSFORM INFRARED PROBE 

APPARATUS 
 

It was desirable to determine the chemistry and reaction mechanism between CO2 and undiluted 

alkanolamines present in the alkanolamine-ionic liquid hybrid solvents, in order to employ more 

complex and accurate models for regression of measured data. The concentration of 

intermediate species could theoretically have been obtained.  

As mentioned in Chapters 3 and 6, it was proposed to conduct absorption measurements using 

FTIR spectroscopy on the systems described in Table 6-3 at the prescribed isotherms and gas 

partial pressures in order to identify and quantify the concentration of intermediate species in 

the reaction mechanism between CO2 and the alkanolamine components of each hybrid solvent.  

Below is a description of the equipment that was developed and a discussion of preliminary 

absorption results, including the limitations of the apparatus for the systems investigated in this 

research.    

F1 Apparatus construction and operation 

A near infrared (NIR) probe and spectrophotometer was purchased prior to this project and part 

of this project entailed construction and setup of an apparatus to use the infrared probe to 

achieve in-situ composition measurement at the desired pressure and temperature for the 

systems described in Table 6-3. It was desired to obtain accurate P-T-x data of each species in 

the CO2-loaded solvent, including different species associated with the reaction mechanisms 

between CO2 and primary, secondary, and tertiary alkanolamines as described in reactions R2-4 

to 2-12 in Section 2.4.1.1. Figure F-1 below shows a setup of the apparatus.  
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Figure F-1: Fourier Transform Infrared Probe Apparatus 

The cell is composed of 316 stainless steel and has a thickness of 8mm on the sides and bottom, 

with an 18 mm thickness at the top due to the probe construction. The cell has a 42mm internal 

diameter and is 218 mm in depth internally. A near infrared (NIR) probe is connected and 

sealed to the cell using rubber gaskets and a flange. The probe is constructed by Hellma 

Analytical Ltd and is 25mm in diameter. An opening to allow suspension of the solvent is 

located 25mm from the bottom of the probe.  

The probe is connected to a Shimadzu IR Prestige-21 spectrophotometer via fibre optic cabling, 

which transfers infrared light between the spectrophotometer and the probe. The 

spectrophotometer is connected to a PC for data display, study, and manipulation of infrared 

spectra.    

The cell has a pressure relief valve which limits the operating pressure of the apparatus to 2.5 

MPa, the operating limit of the probe. Two Wika P-10 pressure transmitters are located off a 

pressure relief line connected towards the top of the cell, one for accurate pressure measurement 

for a range of 0-2.5 MPa, and one for accurate measurement of vacuum conditions (0-0.1 MPa). 
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The accuracy of pressure measurement is ±1 kPa for the 0-3 MPa transmitter and ±1 Pa for the 

0-0.1 MPa transmitter. The 0-2.5 MPa transmitter recorded gauge pressure. This transmitter was 

calibrated using Wika 0-1.6 and 0-10 MPa pressure standards. Pressure transmitters were kept 

in a constant temperature aluminium block environment. Temperature was maintained at 313.15 

K using a Chuan HSIN viriac.  

An Edwards-3 vacuum pump is also connected to the pressure relief line to establish vacuum in 

the cell before liquid and gas loading. The vacuum achieved was 0.4 kPa.  

Temperature probes are located 35 mm from the bottom and 45 mm from the top of the cell, 

fixed through the side wall of the cell. Cell temperature was measured using two 3.18 mm Pt100 

Wika temperature probes calibrated using a Wika standard. The accuracy in temperature 

measurement was ±0.1 K, while the temperature differential between the bottom and top of the 

cell was 0.5 K. Temperature was controlled by submerging the cell in a 500 mm x 400 mm x 

400 mm deep water bath containing water as the controlling medium. Temperature was 

maintained a Grant GR-150 thermostat and circulator. An additional Ebmpapst M2E068 

circulator was later installed for quicker circulation. A Polyscience KR-80A cold finger was 

available for low temperature applications.   

Temperature probes and pressure transmitters were connected to an Agilent 34972A data 

acquisition unit, which was connected to a PC for data recording.  

An inlet line is located at the bottom of the cell for liquid and gas loading. Solvents mass was 

measured using a Mettler Balance and 60 ml of solvent was loaded into the cell using a 70ml 

syringe, which was adequate to submerge the opening of the NIR probe. Gas loading occurred 

after liquid loading.  

A drainage line is also located at the bottom of the cell to expel solvent under pressure. The 

solvent was continuously stirred using a magnetic stirrer controlled by a Heidolph RZR 2041 

stirrer with stirring mechanism. 

For each solvent and gas loading, the cell was first evacuated. Thereafter, a known mass of 

solvent is introduced into the cell and its IR spectrum was read using the IR probe. Thereafter, 

CO2 gas was loaded into the cell, the stirrer was switched on and the apparatus was allowed 

time to reach equilibrium at specific CO2 partial pressures and system temperatures. Once 

equilibrium was established, the IR spectrum was read again to establish the amount of CO2 

absorbed in the solvent. 
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The experiment could be run on a single solvent charge and multiple gas charges at different 

pressure. Once the first liquid and gas charge had reached equilibrium and the composition of 

the solvent is read, more gas could be added into the cell to reach equilibrium at a higher CO2 

partial pressure.  

Once all measurements were completed, the cell contents were removed under pressure. The 

cell was cleaned using distilled water and thereafter acetone, and evacuated for the next 

measurement. 

F2 Absorption analyses attempted using the apparatus 

Absorption measurements were attempted using an infrared probe which measured an infrared 

spectrum exclusively in the Near-Infrared (NIR) region. The infrared spectrum is divided into 

near, mid and far infrared regions. The far infrared region (wavenumbers below 400 cm
-1

) 

detects molecular rotational vibrations, while the mid-infared region (wavenumbers of 400 to 

4000 cm
-1

) detects linear molecular vibrations and rotation. The near infrared region 

(wavenumbers greater than 4000 cm
-1

) however, detects only combination bands and overtones, 

which are secondary vibrations produced by X-H stretching in some molecules. 

A consequence of this is that the NIR region could not be used to identify compounds, since the 

overtones produced by molecules are not unique (Thermo Nicolet, 2001). The use of the NIR 

region was thus limited to a few types of organic molecules associated mainly with the food and 

agricultural industry.  

Tests using pure CO2 with no liquid in the cell were initially encouraging. Figure F-2 below 

shows the absorbance of infrared light through CO2 at 0.5, 1, and 1.4 MPa.  

 

Figure F-2: Absorption Spectra of CO2 at 0.5 to 1.4 MPa. Blue - 0.5 MPa; Red - 1 MPa; Green - 

1.4 MPa. 
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The absorbance consistently increases with increasing CO2 pressure, and the spectra could thus 

be calibrated for pressure. CO2 overtones were detected by 3 peaks from 4800 to 5130 cm
-1

. 

It was thereafter attempted to calibrate the absorption spectra for measuring CO2 mole fraction.  

Spectra were recorded at various partial pressures from 0.1 to 1.4 MPA and at 313.15 and 

333.15 K. in an attempt to match the conditions to that of Jou et al. (1994), in order to calibrate 

the absorption spectra with the CO2 loading achieved. However, the measurements were 

unsuccessful. Figure F-3 below shows an absorption spectrum for MEA:H2O at 30:70 wt%.  

 

Figure F-3: Absorption Spectra for Unloaded and Loaded MEA:H2O Solvent at 30:70 wt%. 

Blue - Unloaded MEA Solvent; Red - MEA Solvent with CO2 at 0.4 MPa.  

As Figure F-3 shows, the spectra suffered from interference and noise. Moreover, the region 

where CO2 bands are found was masked by overtones generated by the unloaded solvent itself. 

Performing a background scan did not help, as shown in the spectrum of MEA loaded with CO2. 

Various spectra of this nature taken at different equilibrium conditions showed no consistency 

or direct correlation with the actual CO2 loading achieved. Thus, no accurate calibration 

between spectra and CO2 loading could be achieved  

Moreover, other components associated with reaction mechanism between CO2 and MEA could 

not be detected, due to the probe operating only in the NIR region. Lack of overtone and 

combination band information in the literature also made various peaks unlinked to any 

particular component or functional group. Thus, the chemistry of chemical absorption could not 

be ascertained. Different functional groups could not be identified.  

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

4000 4500 5000 5500 6000

A
b

so
rb

an
ce

/A
b

s 

Wavenumber/cm-1 



207 
 
 

While the current setup of the apparatus employing an NIR probe was proven unsuitable for the 

desired purpose, other configurations and accessories were found using the MIR region. Kock 

(2013) and Wickee (2013) proposed the use of the MIR region and establishing a circulation 

loop between the equilibrium cell and the spectrometer, using a high pressure cell with sampling 

windows and an electric heating jacket to maintain equilibrium temperature conditions (Smiths, 

2013). Such configurations have proven successful in the work of Archane et al. (2008). 

Measurements using an Attenuated total reflectance (ATR) accessory were also successfully 

applied in the work of Diab et al. (2012), though at more limited pressure conditions. 

Composition analysis using FTIR spectroscopy has been abundantly achieved using the MIR 

region. There is abundant data available for comparison and identification of compounds. As 

mentioned in Chapter 3, Zhao et al. (2011) and Austgen and Rochelle (1991) also successfully 

utilised FTIR spectroscopy for absorption measurements in the MIR region.   

Further investigating into the procurement and application of these configurations are thus 

recommended.  

 


