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Abstract 

 

Cassava (Manihot esculenta Crantz) is one of the important staple foods and plays a key role as 

a food security and income-generating crop for most smallholder farmers in sub-Saharan Africa. 

It is a multipurpose crop and could be a cheap source of starch in Rwanda. However, there are 

many factors that have an impact on its production, consumption and marketability. The main 

constraints in Rwandan cassava production are the lack of good high-yielding genotypes, with 

resistance to pests and diseases and reduced postharvest losses. The main goal of this study is 

to contribute to the increase of cassava productivity in Rwanda through participatory cassava 

breeding for high yielding cassava genotypes, with improved total carotene (TC) and delayed 

postharvest physiological deterioration (PPD). The review and feasibility study indicated that PPD 

is induced by wounds when storage roots are detached from the mother plant during harvesting, 

and it is accelerated by the reactive oxygen species (ROS), such as the oxygen ion (O2) and 

peroxide (O2)2. The antioxidant properties of carotenoids help to extend the shelf-life of cassava 

storage roots. There are two types of phytoene synthase enzymes (PSY1 and PSY2) that 

regulate the accumulation of carotenoids in cassava, and recurrent selection can be used to 

improve cassava for increased TC and delayed PPD. A participatory appraisal identified the 

cassava production constraints as a lack of clean planting material, viral diseases, late bulking 

cultivars, drought, limited knowledge, weathered soils, insufficient fertilizers, land shortage, 

limited information, the lack of a market and effective storage techniques. PPD losses have been 

estimated at 11.9% of the total production per year. Piecemeal harvesting and the underground 

storage of roots were the main indigenous practices used to tackle the effects of PPD, while a 

change in colour and taste, rotting, difficulty in removing the skin and an increase of fibres in the 

flesh, were the methods used by farmers to assess PPD. Genetic variability for TC revealed that 

a high genetic variability (61.0%) and a variation of 98.2% were explained by genotypes, while 

1.8% was due to an unknown origin. The TC had a very high heritability (H2) of 99.2% and an 

expected genetic advance (GA%) of 159.6%, indicating the potential for improvement, using 

conventional breeding through simple recurrent selection. The PPD was negatively correlated 

with TC and dry matter content (DMC), indicating that the high TC and low DMC cultivars could 

have a delayed PPD. The genotype x environment (GxE) interaction analysis divulged that the % 

variation, due to the genotype for TC, was higher (96.0%) than the variation, due to the 

environment (1.7%) and the GxE interaction (2.4%), indicating less interaction effect of the 

environment on TC accumulation. An analysis of the genetic inheritance of TC and PPD indicated 

a significant variation between genotypes and families, which is essential for genetic diversity and 

for crop improvement through conventional breeding. The general combining ability (GCA) and 
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specific combining ability (SCA) were significant for most traits, indicating the possibility of 

improving cassava through recurrent selection, for most traits. The significant GCA and SCA for 

most traits indicated the role of additive and non-additive gene action. The high GCA/SCA ratio 

and % sum of square (SS) due to GCA, indicated that TC and PPD were more controlled by 

additive gene action. The F1 clones exhibited considerable phenotypic variability among families 

and progenies for the evaluated traits. Some progenies of F1 clones had a higher fresh root 

storage yield (FRSY), β-Carotene (β-C) and PPD tolerance than their parents, which was 

attributed to transgressive segregation and heterosis. The GxE for F1 clones revealed that the 

expression of β-C and PPD is genetic, with very few environmental effects. The GCA and SCA 

for F1 clones revealed that β-C and PPD were controlled by both additive and non-additive gene 

action. The GCA for parents indicated that the genotype Mavoka had a high positive GCA for β-

C and FRSY and a high negative GCA for PPD and DMC, indicating that it is the best combiner 

in terms of FRSY, β-C and delayed PPD, and a bad combiner for DMC. This implies that 

improving β-C content in the cassava population, using Mavoka as a progenitor, could 

concurrently improve yield and delay PPD, but could reduce the dry matter content. The 

progenies from the family Mavoka x Garukunsubire expressed the highest positive heterosis for 

DMC and β-C. In terms of FRSY, the family Mavoka x Gahene had the highest positive mid-

parent heterosis, while the family Garukunsubire x Gahene and Gahene x Gitamisi also 

expressed a positive heterosis, which was an indication that the Gahene genotype could be a 

good combiner for FRSY. The mid-parent heterosis for PPD was positive for the Garukunsubire 

x Gitamisi, Mavoka x Mushedile and Ndamiraba x Gitamisi families, while most families 

expressed negative heterosis. The feasibility study to introgress carotenoids into cassava 

indicated that it is possible to improve total carotene and dry matter concurrently, while the genetic 

studies revealed the concurrent improvement of yield, β-carotene and delayed PPD. This study 

gave an insight into the feasibility of improving the cassava population, using the farmers’ 

preferred traits, and provided the basic foundation for a cassava breeding scheme in Rwanda. It 

generated improved total carotene clones, with delayed postharvest physiological deterioration 

(PPD) and high yield.  
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THESIS INTRODUCTION 

General introduction 

Cassava (Manihot esculenta Crantz) is a domesticated shrub from the Amazon Basin in South 

America (Leotard et al., 2009; Olsen and Schaal, 1999). It is widely cultivated in the tropical 

and sub-tropical lowland regions of the world, typically between 30oN and 30oS of the equator, 

and in areas where the annual mean temperature is greater than 18oC (Nassar and Ortiz, 

2007). It was introduced in Africa by Portuguese sailors during the 16th century via the West 

African ports, from where it rapidly spread throughout the continent (Sayre et al., 2011). It was 

introduced into Rwanda around 1932 and an increase in production was observed after the 

1994 genocide. However, since 2014, the yield has declined considerably, due to the 

pandemic of the cassava brown streak disease (CBSD) (Figure 1).  

 

Figure 1: Cassava production trends in Rwanda, 1994-2015 

Cassava is a staple food and an important source of calories for the approximately 500 million 

people living in developing countries (Bull et al., 2011). Among the crops providing calories, it 

is reported to occupy third place worldwide (FAO, 2008), after rice (Oryza. ssp. L) and wheat 

(Triticum spp. L). In 2014, the global production of cassava was 270 million tons, with Africa 

producing 54.3% and Rwanda producing 3.2 million tons (FAOSTAT, 2014). The potential 

yield of cassava is estimated at 90 t ha-1 of fresh mass under well-managed conditions (El-

Sharkawy, 2004). However, the average yield of 10 to 15 t ha-1 achieved in sub-Saharan Africa 
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(SSA) is considerably lower (Sayre, 2011). The average yield varies from country to country, 

with a national average of 1.5 to 4 t ha-1 for Rwanda (NISR, 2016; Nahayo and Mutuyedata, 

2012). This low yield is attributed to poor genotypes, biotic and abiotic factors (Night et al., 

2011) and poor agronomic practices. 

An estimated 250 million people in Africa are dependent on cassava as a primary food source 

(Howeler et al., 2013; Sayre et al., 2011) and it contributes over 500 kcal per day per person 

(FAO, 2010; Morante et al., 2010). Cassava is produced on marginal and sub-marginal lands 

in SSA by subsistence smallholder farmers (Howeler et al., 2013). It is an important staple 

food in Rwanda an excellent source of vegetable from its leaves, called “Isombe”, and it is 

currently being promoted as a cash crop since the establishment of cassava processing 

plants. Cassava is consumed in various forms (raw, paste or ugali, boiled for breakfast, mixed 

with beans, vegetables, etc) and its cooking and preparation methods vary from one individual 

to another (mixed with beans, boiled, paste or ugali, etc). In terms of production, it occupies 

the first place, followed by potatoes and sweet potatoes (FAOSTAT, 2014) and it reduces 

hunger and poverty in the country (Night et al., 2011). 

Cassava is of high value in Rwanda when it comes to food security. It is efficient in 

carbohydrate production, is adapted to a wide range of environments and is tolerant to drought 

and acidic soils (FAO, 2010). It tolerates poor soils, requires less labour than other crops, and 

harvesting can be delayed by months, or even up to three years (Sayre, 2011). Being drought 

tolerant, cassava can be planted at any time of the year. However, its production is threatened 

by a lack of good varieties (high yielding, disease-free and resistant), its long growing cycle, 

low soil fertility, poor agronomic practices and postharvest losses. Moreover, the small land 

size, is an additional constraint for agricultural development, because it reduces the adoption 

of perennial crop as cassava, due to complications in the cropping system (rotation and 

intercropping practices).  

As a staple food, cassava has numerous biotic and abiotic stresses that impact on its 

production, consumption and marketability (Bull et al., 2011). Furthermore, the poor 

infrastructure, combined with low storability, is the major obstacle in the value chain of 

cassava. Although initiatives by the IITA and CIAT, amongst others, have been successful in 

developing genotypes that are resistant, or tolerant, to various stress factors, the cassava 

brown streak disease (CBSD) remains a significant threat to its production in Rwanda. This 

disease occurs in isolation, or in combination with, the cassava mosaic disease (CMD), and 

cassava bacterial blight and pests (whiteflies: Bemisia tabaci and the cassava green mite: 

Mononychellus tanajoa) (Night et al., 2011), while other factors, such as poor agricultural 

http://en.wikipedia.org/wiki/Bemisia_tabaci
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practices and post-harvest losses, present a considerable constraint to the attainment of a 

satisfactory yield by poorly-resourced farmers (Patil and Fauquet, 2009). 

The short shelf-life of the cassava storage roots, which is caused by postharvest physiological 

deterioration (PPD), presents a major challenge for its increased production and utilization 

(Ceballos et al., 2004). PPD begins within 24 hours of the harvest, rapidly rendering the 

storage roots unpalatable, inedible and reducing their market value (Sánchez et al., 2006). 

With the poor road infrastructure and remote production sites, the short shelf-life severely 

limits marketing options and increases the likelihood of product losses and higher marketing 

costs. Conventional breeding and genetic engineering have been suggested as long-term 

strategies, to delay the onset of PPD (Salcedo and Siritunga, 2011). Other studies have 

reported the development of nutritious pro-Vitamin A carotenoids (pro-VAC) cassava 

genotypes, which may retard or inhibit the onset of PPP, due to the antioxidant properties of 

carotenoids (Morante et al., 2010; Sánchez et al., 2006; Zidenga et al., 2012). The 

aforementioned cassava production constraints, namely, the small land size, soil infertility, 

poor agricultural practices, the long growing cycle and the conservative attitude of farmers 

when it comes to adopting new genotypes, also hinder cassava production in Rwanda. 

Participatory breeding presents an alternative approach to changing the conservative 

behaviour of farmers, with regard to adopting new genotypes with farmer-desired traits. It is, 

therefore, the objective of this research to improve cassava production through participatory 

cassava breeding for high-yielding cultivars, with the purpose of improving the carotene 

content, delaying PPD, and incorporating the preferred traits of farmers. 

Research goal and objectives 

The main goal of this study is to contribute to an increase in cassava productivity through 

participatory cassava breeding for high yields in Rwanda and to improve cassava genotypes 

for carotenoids content and delayed postharvest physiological deterioration (PPD).  

Specific objectives 

The specific objectives of this study are: 

1. To review the existing knowledge, principles and concepts for guiding in 

methodological development and feasibility of improving total carotenoids in cassava 

and delayed postharvest physiological deterioration, 

2. To participatory assess cassava production constraints, farmers preferred traits and 

factors affecting the adoption of new genotypes in Rwanda, 
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3. To evaluate cassava genetic variability and the inter-relationship between yield and 

yield components and postharvest traits in Rwanda 

4. To analysis the genotype x environment (GxE) interaction effects on cassava yield and 

postharvest traits in Rwanda,  

5. To determine the genetic inheritance of cassava pulp colour and delayed postharvest 

physiological deterioration and undertake a diallel analysis of developed cassava 

genotypes with improved total carotenoids and delayed postharvest physiological 

deterioration at the early generation selection of F1 population 

6. To determine the combining ability and heterosis for cassava β-carotene content and 

delayed postharvest physiological deterioration and farmers’ preferred 

The thesis is structured as follows:  

Chapter I:  Literature review. 

Chapter II:  Participatory appraisal of cassava production constraints, farmers preferred 

traits and factors affecting the adoption of new genotypes. 

Chapter III:  The genetic variability of cassava and the inter-relationship between yield and 

yield component and postharvest traits 

Chapter IV:  Genotype x environment interaction analysis of cassava yield and postharvest 

traits. 

Chapter V:  Genetic inheritance and diallel analysis of cassava pulp colour and delayed 

postharvest physiological deterioration at the early generation F1 seedling 

population. 

Chapter VI:  Combining ability and heterosis for cassava β-carotene and delayed 

postharvest physiological deterioration and farmers preferred traits at F1 

clonal population. 

Chapter VII:  General overview of the research findings and implications for cassava 

breeding. 

All the chapters, except for Chapters 1 and 7, follow the IMRAD format (Introduction, Materials 

and Methods, Results and Discussion) 

Chapters 2 to 6 are written as scientific papers, in publishable format, and some of the text 

and references may therefore overlap. 
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Abstract 

The postharvest physiological deterioration (PPD) of cassava is a main constraint that affects 

the crop’s nutritional and economic value. PPD is induced by wounds that are created when 

detaching storage roots from the mother plant during harvesting. It is accelerated by the 

reactive oxygen species (ROS), such as the oxygen (O2) and peroxide (02)-2 ions. The 

carotenoids content and its antioxidant properties can help in extending the shelf-life of 

cassava storage roots. The primary mode of action of carotenoids as an antioxidant is to 

quench singlet oxygen. Cassava breeding was reported to successfully introgress carotenoids 

into cassava. The two types of the phytoene synthase (PSY) enzyme (PSY1 and PSY2) are 

the key regulators of carotenoids accumulation in cassava. Carotenoids formation and 

accumulation in cassava storage roots are induced by a single nucleotide polymorphism in 

PSY2, which causes a non-conservative amino-acid exchange. This single nucleotide 

polymorphism in the PSY gene is co-segregated with β-carotene in cassava storage roots, a 

phenomenon that could help to unravel the mechanism of the introgression of carotenoids into 

cassava. This chapter investigates the feasibility of breeding for improving the quality of 

cassava landraces in developing countries.  

 

Keywords: carotenoids; carotenoids quantification; carotenoids rapid screening method; 

conventional breeding; physiological postharvest deterioration; phytoene synthase; recurrent 

selection 



8 
 

1.1 Introduction  

Cassava is a staple food and an important source of calories for the approximately 500-800 

million people living in developing countries (Bull et al., 2011; Howeler et al., 2013). It is 

reported to occupy second place worldwide, for the production of starch, after maize (Zea 

mays L) (Howeler et al., 2013). However, post-harvest losses present a considerable limitation 

to its value chain development in developing countries. The short shelf-life of cassava storage 

roots, due to their primary and secondary deterioration, is a major challenge for increasing its 

production and utilization (Ceballos et al., 2004). The primary deterioration involves changes 

in the oxidative enzyme activities, and the generation of phenols (catechins and 

leucoanthocyanidins) which, at a later stage, polymerise to form condensed tannins (Uarrota 

et al., 2014).  

The biochemical processes involved in the rapid deterioration of cassava are essentially 

wound-healing responses, which are well-known in many plant species (Cortés et al., 2002; 

Luna et al., 2011). This deterioration is commonly referred to as postharvest physiological 

deterioration (PPD). It is an abiotic response of a cassava storage root that is damaged during 

the harvesting process and is caused by the oxidation of phenolic compounds, in particular 

scopoletin (hydroxycoumarin, involved in plant defence), by a reactive oxygen species 

(chemical reactive molecules containing oxygen i.e. an oxygen ion and peroxide) which leads 

to oxidative stress (Buschmann et al., 2000; Reilly et al., 2007). The PPD begins within 24 

hours after harvesting and rapidly renders the storage roots unpalatable, inedible and with a 

reduced market value (Sánchez et al., 2006). The PPD starts as a black-blue to black vascular 

discoloration (vascular streaking) and then spreads to the parenchyma (Figure 1.1)  

 

 

 

 

Figure 1.1: PPD signs (a: no visible sign at harvest, b: 50% of PPD after three days, 

c: total PPD and bacterial rotting after one month) 

Currently, PPD is scored visually, and due to different levels of injury caused on storage roots 

during the harvesting process, storage roots from one plant can score from 0 to 100% of the 

PPD scores. PPD scoring is therefore difficult and prone to experimental error (García et al., 

2013). In addition, PPD scoring is a destructive procedure and requires that at least seven 

transversal slices are cut along the storage roots, which must be repeated on the storage roots 

a b c 
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of the same cultivar, to minimize experimental errors. PPD experimental storage times do not 

always correspond to those found by farmers and consumers. Most of the available cassava 

cultivars in sub-Saharan Africa deteriorate after only three days. Weathley (1982), Sánchez et 

al. (2013) and Morante et al. (2010) evaluated PPD at different intervals after harvest (for 

example 3, 14 and 40 days after harvest). The time for deterioration beyond the edible state 

varies from one cultivar to another and depends on the storage conditions (room temperature, 

cool room and underground storage), consumer perceptions and the number of wounds 

incurred on the storage roots during the harvesting process. 

Poor road infrastructure and remote production sites, as well as the short shelf-life, severely 

limit the marketing options and increase the likelihood of product losses and higher marketing 

costs. The rapid deterioration affects the economic value of the crop (Morante et al., 2010), 

with a recorded loss of 29%, 10% and 8%, respectively, in Africa, Latin America and Asia 

(Salcedo and Siritunga, 2011). In addition, due to the depreciation of deteriorated cassava, 

the economic losses can reach up to 90% (Westby, 2002).  

PPD is mostly associated with other biochemical reactions. The storage root weight drops 

consistently after harvesting, due to respiration. Starch is gradually hydrolysed into sugars and 

hence starch is lost at a rate of 1% per day, which negatively affects starch properties, such 

as gel clarity, swelling power and gel viscosity (Sánchez et al., 2013). PPD is therefore a 

serious problem for the starch industry and affects the socio-economic status of farmers in 

cassava-growing areas. 

Various approaches are being implemented to tackle PPD and to improve the shelf-life of 

cassava storage roots, including breeding (Morante et al., 2010) and biotechnology (Bull et 

al., 2011). Other approaches include physical techniques, such as underground storage, 

storage in boxes with moist sawdust and storage in bags, combined with the use of fungicides, 

as well as pruning plants before harvest, cold storage (2-4⁰C), freezing or waxing the storage 

roots, to prevent access to oxygen and even chemical treatments (Ravi et al., 1996). However, 

the physical methods seem to generally be ineffective and impractical, because they are 

expensive and complicated, when handling large volumes of harvested roots (Sánchez et al., 

2013). 

Several studies have been conducted to deal with PPD in cassava. It has been discovered 

that reactive oxygen species (ROS) are involved in, and accelerate, the onset of PPD 

(Beeching et al., 2002; Reilly et al., 2004; Xu et al., 2013; Zidenga et al., 2012). The breeding 

of cassava that is enriched with carotenoids is not only interesting for developing nutritious 

cassava genotypes, but it also makes it more marketable, because of its reduced or delayed 
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PPD, as reported by Sánchez et al. (2006). The deterioration of cassava storage roots, due to 

PPD, involves oxidative stress (Xu et al., 2013; Zidenga et al., 2012). Thus, the antioxidant 

properties of the carotenoids may be the origin of delayed PPD in yellow cassava genotypes 

(Morante et al., 2010; Zidenga et al., 2012). The introgression of carotenoids into cassava 

through a breeding process could be regarded as a long-term strategy for increasing its shelf-

life, as well as improving its other traits. This chapter therefore aims at reviewing the properties 

of carotenoids, the related genes and the feasibility of introgressing carotenoids in cassava, 

to extend the shelf-life of cassava.  

1.2 Role of carotenoids in plant and human health 

Carotenoids are natural tetraterpenoid pigments that have varied functions in plants and 

animals (Cazzonelli, 2011). They are synthesized by all photosynthetic organisms and some 

non-photosynthetic bacteria and fungi (Priya and Siva, 2014). Carotenoids are present in 

photosynthetic tissues of plants, where they play an essential role in photoreception and 

photoprotection and they also prevent photodamage in plants tissues. In non-photosynthetic 

tissues, they act as colorants, precursors for plant isoprenoid volatiles and signalling 

molecules (abscisic acid and strigolactones), nutritional antioxidants and Vitamin A precursors 

(Bouvier et al., 2005; Giuliano, 2014; Priya and Siva, 2014) 

Carotenoids are among the best-known antioxidant phytochemicals, and are widely believed 

to contribute to the health-promoting properties of fruits and vegetables. As precursors of 

Vitamin A, and as antioxidants, carotenoids play a vital role in human nutrition (Priya and Siva, 

2014). The nutritive importance of carotenoids is attributed to its conversion to Vitamin A. 

Carotenoids act as antioxidants that help prevent heart attacks and cancer, lower the risk of 

cataracts and muscular disorders, enhance the immune system and maintain skin health 

(Akinwale et al., 2010; Nassar et al., 2009; Priya and Siva, 2014). Carotenoids also have the 

vitaminic activity that is required for growth, reproduction, vision and the maintenance of the 

integrity of epithelial tissue (Akinwale et al., 2010).  

The antioxidant properties of carotenoids may help to inhibit the onset of other diseases that 

are believed to be initiated by free radicals, such as atherosclerosis, age-related macular 

degeneration and multiple sclerosis (Edge et al., 1997). Furthermore, these properties are 

linked to the ability of carotenoids to quench singlet oxygen, to eliminate the deleterious effects 

of free radicals and to play a putative role in cancer prevention (Akinwale et al., 2010; Nassar 

et al., 2009; Priya and Siva, 2014; Uarrota et al., 2014).  

The yellow colour derived from carotene in the preparation of cassava flour meal (commonly 

called ugali in East Africa), makes it more acceptable to consumers in African countries and it 
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is less expensive than adding palm oil to get the colour (Akinwale et al., 2010). In addition, 

they serve as the yellow, orange, and red pigments in many flowers and fruits, to attract insects 

for pollination and seed dispersal (Siva, 2007). 

Though the β-carotene intake is different among men, women and children (WHO, 1998), the 

World Health Organisation (WHO) indicated that the average daily requirement of β-carotene 

recommended for an adult is 2.4 to 3.5 mg/day. Because of the nature of carotenoids, the 

mechanism with which the human body absorbs it and the different levels of β-carotene that 

are required for men, women and children, it is not easy to find the required quantity of β-

carotene that is necessary for people living in rural areas in sub-Saharan Africa. Thus, 

breeding to improve carotenoids cassava can reverse the effects of a low intake of β-carotene 

in developing countries.  

1.3 Carotenoids rapid screening methods  

Present efforts to increase the nutritional value of cassava, including the pro-VAC content 

through conventional breeding, have generated thousands of new genotypes for evaluation in 

most developing countries. The quantification of carotenoids is complicated, due to its nature 

(Uarrota et al., 2014). In developing countries, simple screening, using colour scoring, is the 

common technique. The yellow and orange pigmentation in cassava storage roots indicate 

certain level of carotenoids content because the colour intensity is closely related to 

carotenoids (Sánchez et al., 2006). Therefore, the total carotenoids content and colour 

intensity are strongly and positively correlated. This suggests that simple screening, based on 

the visual scoring of colour, is adequate for the initial selection of the genotypes with a 

relatively high carotenoids content. However, this technique does not quantify the total 

carotenoids. It only separates the white and yellow or orange colours and is therefore not 

completely effective. To screen and quantify carotene content in cassava, spectrophotometric 

approaches, such as near infrared spectroscopy (NIRS), are used for semi-quantification or 

screening, while high performance liquid chromatography (HPLC) is used for the precise 

quantification of each individual carotenoid (α-carotene, β-carotene, lycopene, lutein, 

violaxanthin and zeaxanthin) (Esuma et al., 2012).  

1.4 Carotenoids quantification methods 

Carotenoids are highly variable molecules with a complex chemical structure and poor 

stability, which complicates their quantification (Uarrota et al., 2014). Carotenoids analysis is 

inherently difficult, because many carotenoids exist (Rodriguez-Amaya, 2010). The analytical 

method of carotenoids in sub-Saharan Africa is further constrained by the acquisition of 

standards and low concentrations of carotenoids in biological samples (tissue and serum). 
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Carotenoids quantification is usually based on a linear relationship between the weight of the 

standard injected and the resulting chromatogram peak area. However, there are no standards 

available for all carotenoids that are likely to be analysed or measured, and in many cases, 

only one isomeric form is commercially available (Rodriguez-Amaya, 2010; Uarrota et al., 

2014).  

Carotenoids extraction has been carried out with acetone, hexane, petroleum ether, methanol 

and ethanol. Among these solvents, only acetone can dissolve both carotenes and 

xanthophylls efficiently. Hexane and petroleum ether can dissolve carotenes, but not the 

xanthophylls, while methanol and ethanol can dissolve the xanthophylls efficiently, but not the 

carotenes (Rodriguez-Amaya, 2010). Tetrahydrofuran (THF) became a popular extracting 

solvent with the advent of high performance liquid chromatography (HPLC). It was shown to 

have excellent solubility for both β-carotene and lutein (Craft and Soares, 1992). For the 

traditional extraction of carotenoids, the use of a mixture of solvents, which is capable of 

dissolving both carotene and xanthophylls, could provide good results. However, this 

conventional method is destructive, produces a large amount of waste and is not 

environmentally friendly. 

Near infrared spectroscopy (NIRS), resonance raman spectroscopy (RRS) and HPLC have 

the advantages of rapidity, simplicity, safety and low operational costs, while being non-

destructive and environmentally friendly (Rodriguez-Amaya, 2010). For wet chemistry, in order 

to obtain good results, some precautionary measures have to be taken, both at the sample 

collection stage and in an analytical laboratory. Rodriguez-Amaya (1999; 2010) suggested 

that the analysis must be conducted within the shortest possible time, to prevent the 

isomerization and oxidation of carotenoids. In addition, oxygen must be excluded, there must 

be protection from light, high temperatures and contact with acid must be avoided, while high 

purity solvents must be used that are free from harmful impurities (e.g. peroxides). There must 

also be adequate storage conditions and the execution of the analysis must occur immediately 

after sample collection. The new approaches using NIRS (Davrieux et al., 2016 and Sánchez 

et al., 2014) provides accurate quantification of carotenoids.  

1.5 The antioxidant properties of carotenoids 

Carotenoids can be broadly split into two classes, namely, those that are pure hydrocarbons, 

containing no oxygen (α-carotene, β-carotene, lycopene), and xanthophylls that contain 

oxygen, such as lutein, violaxanthin, zeaxanthin (Priya and Siva, 2014). The antioxidant 

property of carotene is its major contribution to human foods. The antioxidant properties of 

carotenoids and other antioxidants, such as Vitamins E and C, may well depend on the oxygen 

concentrations present. β-carotene is an antioxidant at atmospheric oxygen concentrations 
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and it becomes a pro-oxidant in pure oxygen. Vitamin E plays a naturally-protective role 

against such pro-oxidant effects (Edge et al., 1997). The primary mode of action of carotenoids 

as antioxidants is to quench singlet oxygen (a reactive type of oxygen) (Rodriguez-Amaya, 

2010).  

Singlet oxygen can be generated by electronic energy transfer from the excited state (normally 

triplet state) of a sensitiser (SENS), to oxygen. In biological systems, sensitisers such as 

porphyrins, chlorophylls and riboflavin, can sensitise O2 production and this can have 

deleterious effects, including DNA damage and lipid peroxidation (Azqueta and Collins, 2012; 

Edge et al., 1997; Palozza et al., 2003). These studies indicated that the β-carotene could 

inhibit photo-sensitised oxidation and it was therefore an efficient quencher of O2. Electron 

exchange energy transfer quenching is the principal mechanism of carotenoids 

photoprotection against O2 (Azqueta and Collins, 2012; Edge et al., 1997; Giuliano, 2014; 

Priya and Siva, 2014). Thus, the incorporation of the carotenoids into the liposomal membrane 

gives good protection against the effects of dye sensitisation, with β-carotene offering the best 

protection (Edge et al., 1997). The effect of dye sensitization increases sensitivity to excess 

sunlight for green and red plants. The excess sunlight can damage the plant cells responsible 

for photosynthesis, by triggering the release of unstable and highly reactive compounds, such 

as free radicals. 

1.6 Carotenoids antioxidant property and postharvest physiological deterioration in 

cassava 

Carotenoids can act as chain breaking antioxidants and thus protect cells and organisms 

against photoxidation (Azqueta and Collins, 2012; Edge et al., 1997; Palozza et al., 2003; 

Priya and Siva, 2014). The analysis of metabolites conducted five days after the cassava 

harvest, has recently revealed that PPD correlates negatively with phenolics and carotenoids, 

and positively with anthocyanins and flavonoids (Uarrota et al., 2014). The negative correlation 

between PPD, phenolics and carotenoids was possibly due to their antioxidant properties, 

while the positive correlation of PPD with anthocyanins and flavonoids, could be attributed to 

their pro-oxidant activities, which cause oxidative damage by reacting with various 

biomolecules, such as lipids, proteins and DNA (Procházková et al., 2011). According to 

Zidenga et al. (2012), the mechanical damage that occurs during harvesting operations 

initiates cyanogenesis, by bringing linamarin and linamarase into contact with each other. 

Cyanide (HCN) inhibits Complex IV in the mitochondrial electron transfer chain. The inhibition 

of Complex IV causes a burst of reactive oxygen species (ROS) production at Complexes I 

and III (Figure 1.2). This oxidative burst causes PPD. Overexpressing the mitochondrial 

alternative oxidase (AOX), which is insensitive to cyanide, prevents the overreduction of 
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Complexes I and III, thus lowering ROS production and delaying PPD. Alternative oxidase is 

a non-energy conserving terminal oxidase in the plant’s mitochondrial electron transport chain 

(Vanlerberghe, 2013). A reduction of ROS to control PPD can also be achieved by the 

overexpression of ROS scavengers (Figure 1.2). 

During the storage of cassava storage roots, the flavonoid, phenolic and carotenoids content 

changes. These changes are partly due to the de novo synthesis of those compounds and not 

to qualitative changes (Uarrota et al., 2014). The complexity of the changes occurring in 

cassava storage roots, in response to injury, commences as a non-specific response to 

wounding, during harvesting or root slicing, as a set of biochemical events take place to repair 

the damaged tissue. The increase in flavonoids may be related to the wound-healing 

responses (Uarrota et al., 2014). Reactive scavenging species and enzymes, such as 

superoxide dismutases (SOD), like MnSOD and Cu/ZnSOD, are activated as a protective form 

of the oxidative stress by cells over the PPD (Uarrota et al., 2014; Xu et al., 2013; Zidenga et 

al., 2012).  

 

Figure 1.2:  The mechanism and control of postharvest physiological deterioration in 

cassava storage roots (adapted from Zidenga et al., 2012) 
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Plants have nonenzymatic and enzymatic detoxification mechanisms to scavenge ROS. 

Nonenzymatic antioxidants include the major cellular redox buffers, ascorbate and 

glutathione, as well as tocopherol, flavonoids, alkaloids and carotenoids (Xu et al., 2013). 

Enzymatic ROS-scavenging mechanisms in plants include superoxide dismutase (SOD), 

catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase. Several groups 

have addressed the overproduction of SOD in the chloroplasts as a means of enhancing 

tolerance to oxidative stress (Apel and Hirt, 2004; McKersie et al., 2000; Mittler et al., 2004; 

Xu et al., 2013) 

Figure 1.3 illustrates the intrinsic relationship between reactive oxygen species (ROS) 

production, scavenging and homeostasis for regulating PPD in cassava storage roots.  

 

 

Figure 1.3:  Illustration showing the intrinsic mechanism of ROS and PPD (adapted 

from Xu et al., 2013) 

The exposure to oxygen or mechanical wounding during harvesting leads to increased ROS 

production in the storage root. The inefficient endogenous ROS scavenging of cassava results 

in excess ROS-inducing cell wall degradation, programmed cell death (PCD) and pathway 

and secondary metabolism, which trigger rapid PPD responses, and make it difficult to achieve 

stable ROS homeostasis in harvested cassava storage roots. The ectopic expression of SOD 

(superoxide dismutase) and CAT (catalase) associated with carotenoids (C) leads to the timely 

scavenging of excess ROS, thereby keeping the ROS homeostasis balanced and delaying 

the occurrence of PPD (Xu et al., 2013).  

C + 

Enzymatic: SOD, CAT, 
APX,... 

Non-enzymatic: AA, GSH, 
α-tocopherol, 

carotenoidss (C), 

flavonoids and proline. 
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1.7 Carotenoids accumulation and responsible genes  

Conventional breeding and genetic modification are both being applied to increase pro-VAC 

in food crops. It has been found that carotenoids accumulation is highly affected by genetic 

and environmental factors (Rodriguez-Amaya, 2010). A genetic study revealed that the flesh 

colour trait in cassava is controlled by two or more genes, which segregate together (Akinwale 

et al., 2010; Iglesias et al., 1997).  

The yellow-fleshed cassava lines overexpress phytoene synthase (PSY), which is responsible 

for the yellow colour and the high-carotenoids content (Welsch et al., 2010). It has been 

discovered that only two PSY genes (PSY1 and PSY2) are involved in carotenoids regulation 

in cassava (Arango et al., 2010). Both PSY genes present a similar contribution to carotenoids 

formation in cassava leaves. The PSY2 predominantly regulates carotenoids content in the 

floral and root parts of cassava. Thus, PSY2 plays a major role in carotenoids accumulation 

in most of the eaten parts of cassava. However, the carotenoids content in other plant species, 

such as maize, sorghum and rice, is regulated by three PSY genes (PSY1, PSY2 and PSY3) 

(Li et al., 2009; Li et al., 2008). Their transcript levels vary, depending on the species, plant 

tissues and growth conditions/stress (drought and salinity, etc). For instance, in the leaves 

and endosperm of maize, the transcript level of PSY1 is ten- to fifteen-fold over PSY2, while 

PSY3 is four- to five-fold lower than in PSY2 (Li et al., 2008), This is an inverse scenario for 

the root part of maize, where PSY3 is four-fold higher than PSY2 and ten-fold higher than 

PSY1. Therefore, the transcript levels of PSY genes, with their corresponding quantitative 

carotenoids accumulation in cassava storage roots, need further investigation. 

The PSY is a key regulator of carotenoids biosynthesis and accumulation in many staple 

crops, including cassava (Giuliano, 2014; Palaisa et al., 2004; Pozniak et al., 2007). Recent 

findings reported that there is another protein in Arabidopsis, called ORANGE (OR) that 

controls carotenoids biosynthesis, by regulating PSY (Zhou et al., 2015). The genetic control 

of carotenogenesis must be investigated further, in order to guide breeders to improve the 

carotenoids content in staple crops.  

The level of carotenoids accumulation in plant tissues is influenced by the expression level of 

PSY. It catalyses the specific reaction of prenyl lipid metabolism in the plastid, which is the 

first reaction in carotenogenesis. A single nucleotide polymorphism in PSY2, causing a non-

conservative amino acid exchange, leads to the markedly increased carotenoids formation 

and accumulation in cassava storage roots (Welsch et al., 2010). This single nucleotide 

polymorphism in a PSY gene is co-segregated with high β-carotene levels in cassava storage 

roots, determining the colour of cassava flesh (white, yellow or orange). Polymorphism results 
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in a single amino acid change in a highly conserved region of the protein, which results in 

increased catalytic activity (Giuliano, 2014).  

The allelic polymorphism is one of the two expressed phytoene synthase (PSY) genes that 

can enhance the flux of carbon through carotenogenesis, thus leading to the accumulation of 

coloured pro-VAC in storage roots (Welsch et al., 2010). However, the PSY genes from 

different plant sources differ greatly in their capacity to induce the accumulation of β-carotene 

in the endosperm of cereals (Giuliano, 2014). Thus, in some cases, the carotene desaturase 

CrtI had to be introduced, along with PSY, to increase the level of the carotenoids content in 

plant grains and roots (e.g. rice and potatoes) (Al-Babili et al., 2006; Diretto et al., 2007; 

Welsch et al., 2010). The discovery of the genes responsible for carotenoids synthesis and 

accumulation in cassava, provides an insight into a possible utilization of the gene expression 

and translation cascade in conventional and genetic engineering, to improve the nutritional 

value and storability of cassava.  

1.8 Feasibility of introgressing carotenoids in cassava  

Information coming from various studies (Morante et al., 2010; Reilly et al., 2007; Salcedo and 

Siritunga, 2011; Salcedo et al., 2010; Xu et al., 2013; Zidenga et al., 2012) indicates that 

cassava breeding, either through conventional means or genetic engineering, is an important 

tool that can be used to delay the onset of PPD. Recent studies have reported the 

development of nutritious pro-VAC cassava genotypes and that these genotypes, due to the 

antioxidant properties of carotenoids, may retard or inhibit the onset of PPD (Morante et al., 

2010; Sánchez et al., 2006; Sánchez et al., 2013; Zidenga et al., 2012). It is known that 

cassava cultivars contain different concentrations of β-carotene, ranging from 0.1 to 3 mg kg1 

fresh weight, the latter having bright yellow storage roots. This indicates that the genetic 

variability is important for breeding an improved level of β-carotene in cassava. Crop 

improvement through breeding depends on the availability of genetic variability and how easy 

this variability can be fixed in genotypes with good agronomic characteristics (Akinwale et al., 

2010). Genetic mutation that breaks the sequence of β-carotene formation can be the cause 

of a high accumulation of carotenoids in cassava (Esuma et al., 2012). 

To incorporate any traits into an existing variety, the mode of inheritance and the genes of the 

trait should be known, since this will determine the most appropriate breeding method to be 

used. It has been discovered that the inheritance of carotenoids in cassava storage roots is 

controlled by two genes (Chavez et al., 2000), the one controlling the transport of the precursor 

to the roots, and the other being responsible for the accumulation process. Akinwale et al. 

(2010) concluded that carotenoids synthesis and accumulation in cassava may be controlled 

by two or more genes. Chavez et al. (2000) reported further that epistasis affects carotenoids 



18 
 

synthesis and accumulation in cassava. Akinwale et al. (2010) also indicated that there are no 

maternal or cytoplasmic effects resulting from the inheritance of the carotenoids, hence any 

of the genotypes could be used as male or female parents in the crossing. 

Provided that the total carotenoids content is a highly heritable trait (Ceballos et al., 2013), 

conventional breeding (Figure 1.4) can generate cassava cultivars with variable carotenoids 

derivative products, including β-carotene and other antioxidant products, such as lutein and 

zeaxanthin. In Brazil, through the domestication and selection of carotenoids-enriched 

cultivars, cassava landraces have acquired a large diversity in relation to many economic 

traits, such as a high content of carotenoids and excellent palatability, among other characters 

(Esuma et al., 2012). The level of β-carotene in cassava varieties can be improved through 

simple recurrent selection, which allows the increase of favourable alleles frequency, through 

the selection and recombination of breeding populations (Akinwale et al., 2010; Ceballos et 

al., 2013; Iglesias et al., 1997). 

 

Figure 1.4:  Conventional process for developing delayed PPD cassava cultivars 

1.9 Current situation of carotenoids enriched-cassava cultivars 

The International Centre for Tropical Agriculture (CIAT) has been trying to introgress the 

tolerance to PPD into cassava that is found in the wild relative Manihot walkerae Croizat 

(Bertram, 1993). As part of the HarvestPlus initiative to improve the nutritional quality of 

different crops, the cassava genotype GM905-66 was multiplied to provide storage roots for 

the improved nutritional value (bio-fortification) of cassava (Sayre, 2011). This genotype 

http://www.google.rw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CBsQFjAA&url=http%3A%2F%2Fciat.cgiar.org%2F&ei=i-OiU5OsCcb-ygOprIFA&usg=AFQjCNGxuhxXYuJR4Rg1dA1dAqwQyJhykQ&bvm=bv.69411363,d.bGQ
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showed no sign of PPD after being stored for two months at room temperature (Morante et 

al., 2010).   

In recent years, the breeders at CIAT have produced highly-productive cassava varieties 

containing up to four-fold as much β-carotene as regular cassava. The International Institute 

of Tropical Agriculture (IITA) in Uganda evaluated 64 accessions and found that the improved 

accessions were much higher in total carotene (TC) than the landraces. As reported by Esuma 

et al. (2012), the IITA accessions had a higher mean total carotene (TC) (5.5 ± 2.01 μg/100g) 

and the landraces had the least mean TC (4.3 ± 1.32 μg/100g), with a skewness of 1.29 and 

-0.45, respectively. This breakthrough indicates that there is a possibility that the delayed PPD 

genotypes will become available to smallholder farmers in the near future. Siritunga and 

Salcedo (2011) recommended that further studies should focus on improving varieties, both 

through conventional breeding and genetic transformation. The hybridization between 

improved genotypes and landraces can drastically improve the shelf-life of cassava storage 

roots and it can consequently enhance the increased adoption of the crop in most cassava-

growing countries.   

1.10 Correlation between carotenoids and other important traits 

The introduced carotenoids-enriched cassava varieties in East Africa, mostly in Rwanda, 

recorded a low adoption rate, due to low dry matter content and associated problems, such 

as drying difficulties, taste and aspects of cooking. The low dry matter content was also 

reported for the varieties tested in Uganda, where a study showed that carotenoids content 

correlated negatively (R2=-0.46) with dry matter content (Esuma et al., 2012). This was also 

the case in Nigeria, where Akinwale et al. (2010) reported that the deeper the yellow colour of 

the cassava flesh, the lower the dry matter content. Genotypes with the highest carotene levels 

contain low dry matter, which affects the cooking quality (Akinwale et al., 2010; Ceballos et 

al., 2012; Esuma et al., 2012; Vimala et al., 2009). However, in a recent study, Ceballos et al. 

(2013), found a parallel gain of dry matter content (DMC) and carotenoids content in Latin 

American cassava, suggesting that simultaneously improvement of both traits is feasible if 

germplasm exchange happens. This finding will serve as an important input in possible future 

initiatives aimed at improving the carotenoids content of landraces, while preserving the dry 

matter content and cooking quality, which will increase the adoption rate of the developed 

varieties.  

1.11 Conclusion 

The reduced shelf-life of fresh cassava storage roots limits marketing options and increases 

the likelihood of product losses and higher marketing costs (Ceballos et al., 2004; Sánchez et 
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al., 2006; Zidenga et al., 2012). Recent studies have reported that PPD is accelerated by the 

reactive oxygen species (ROS), such as oxygen and peroxide ions (Sánchez et al., 2006; 

Sánchez et al., 2013; Xu et al., 2013; Zidenga et al., 2012). Thus, efforts in developing highly 

nutritious cassava could indirectly improve the shelf-life of fresh cassava storage roots by 

increasing the level of carotenoids, which acts as an antioxidant that is capable of quenching 

singlet oxygen (a reactive type of oxygen) (Rodriguez-Amaya, 2010).   

Both conventional breeding and genetic engineering (genetic transformation) were reported 

to be effective in improving the level of the carotenoids content in cassava and other crops. 

However, the adoption of carotene-enriched yellow/ orange fleshed cassava is not feasible in 

most sub-Saharan African countries, due to the farmers’ attitudes towards new technology, as 

well as the difficulties of integrating farmers into genetic engineering breeding or molecular 

breeding programs. Hence, participatory conventional breeding should be adopted as a cheap 

and effective approach for improving carotenoids in cassava and smoothing its adoption. To 

achieve this, an understanding of the attributes of carotenoids, the genes involved in its 

accumulation, as well as the effective screening and quantification methods, are of paramount 

importance. The finding that carotenoids is a highly heritable trait provides hope that 

conventional breeding, through recurrent selection, can be successful in developing cassava 

with a high carotenoids content, and ultimately, an effective way to extend the shelf-life of 

fresh cassava storage roots in developing countries. 
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Abstract 

Postharvest physiological deterioration (PPD) and late bulking are among the traits that make 

cassava an unattractive crop in many environments. This study aimed at assessing the main 

constraints of cassava production, the effects of late bulking, the losses due to PPD and the 

factors affecting the adoption of new cultivars in Rwanda. A participatory rural appraisal (PRA) 

and a baseline survey were conducted in March-May 2014 in three agro-ecological zones in 

the country, using a multistage sampling method. Cassava is grown on 0.29 ha, out of the 

total average land possession per household of 0.69 ha. The majority of cassava farmers 

(59.1%) practise intercropping, as their land holding is small. The average yield is 21.8 t ha-1. 

Many constraints were identified, particularly the lack of clean cuttings, viral diseases, late 

bulking cultivars, drought, limited information and knowledge, weathered soils, insufficient 

fertilizers, land shortage, the lack of a market and effective storage techniques. Losses due to 

PPD have been estimated at 11.9% of the total production per year. Piecemeal harvesting 

and the underground storage of roots were the main practices used to delay PPD. A change 

in colour and taste, rotting, difficulty in removing the skin and an increase of fibres in the flesh, 

were the methods that farmers used for assessing PPD. The time for harvesting varied from 

district to district and was attributed to genetic x environment interactions. The use of late 

bulking varieties and the lack of other yielding crops resulted in reduced food availability and 

potential food crises. Farmers’ preferences, information and extension services, performance, 

quality, market acceptability and cutting production, influenced the adoption of new cassava 

cultivars. Breeding objectives that target the end-user preferences, could therefore enhance 

the adoption of new cultivars. 
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2.1 Introduction 

Cassava (Manihot esculenta Crantz) is the staple food for approximately 500-800 million 

people living in developing countries (Bull et al., 2011; Howeler et al., 2013), and worldwide, 

it is second only to maize (Zea mays L) for the production of starch (Howeler et al., 2013). In 

the developing world, cassava is amongst the top four most important crops, in terms of 

production, after rice (Oryza sativa L), maize and wheat (Triticum spp.). The potential yield of 

cassava is estimated at 90 t ha-1 of fresh storage roots, under well-managed conditions (El-

Sharkawy, 2004). Cassava plays a key role as a food security and income-generating crop for 

many smallholder farmers in developing countries (Ceballos et al., 2004; El-Sharkawy, 2004; 

Tumuhimbise, 2013). In East Africa, cassava is eaten after boiling and processing to flour, to 

make porridge, local brew, ugali and bread, although sweet varieties lacking cyanogenic 

glycosides can be eaten raw (Kamau, 2006; Mkumbira et al., 2003; Were, 2011). Cassava is 

an important staple food in Rwanda and it is currently being promoted as a cash crop through 

the establishment of cassava processing plants. In addition to its storage root, its leaves are 

treated as a vegetable called “Isombe”. Cassava is consumed in various forms (raw, 

paste/bread or ugali, boiled for breakfast, mixed with beans, vegetables, etc) and its cooking 

and preparation methods vary from one individual to another (mixed with beans, boiled, as a 

paste or ugali, etc.). It occupies third place, after bananas and sweet potatoes, for reducing 

hunger and poverty in the country (FAOSTAT, 2011; Night et al., 2011). Cassava can be used 

as a cash crop in industries for the production of animal feed and the production of starch, as 

well as for use in the pharmaceutical and textile industries (Ceballos et al., 2004; El-Sharkawy, 

2004).   

Although cassava is a major food crop, its production is threatened by lack of good cultivars 

(early bulking, high yielding and disease resistant), low soil fertility, poor agronomic practices 

and postharvest losses. Postharvest losses are linked mainly to the short shelf-life of cassava 

storage roots, due to postharvest physiological deterioration (PPD), which presents a major 

challenge to its production and utilization (Ceballos et al., 2004). The PPD begins within 24 

hours of harvesting and rapidly renders the storage roots unpalatable, inedible and it reduces 

their market value (Sánchez et al., 2006). With poor road infrastructure and remote production 

sites, the short shelf-life severely limits marketing options and increases the likelihood of 

product losses and higher marketing costs. Physical methods, such as underground storage, 

the use of fungicides, pruning plants before harvest and cold storage (2-4⁰C) can be used to 
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limit PPD (Ravi et al., 1996). However, these techniques are ineffective and impractical, 

because they are too expensive and complicated, when handling large volumes of harvested 

storage roots (Sánchez et al., 2013). After harvesting, subsistence farmers need to store food 

for home consumption and, due to the limited land size, cassava cannot be stored 

underground (in the field) for long periods, thus there is a need for a technique that can extend 

its shelf-life for at least some weeks, and preferably several months. Conventional breeding 

and genetic engineering were suggested as long-term strategies to delay the onset of PPD 

(Salcedo and Siritunga, 2011). Recent studies elsewhere have reported the development of 

nutritious carotenoids (pro-Vitamin A with a yellow/orange flesh) cassava genotypes. Due to 

the antioxidant properties of carotenoids, these genotypes may retard or inhibit the onset of 

PPD (Morante et al., 2010; Sánchez et al., 2006; Zidenga et al., 2012). However, the 

hindrance factors for the adoption of yellow-fleshed cassava are still unclear in Rwanda. 

Moreover, the high population pressure in Rwanda, resulting in the small land size of farms, 

can be a constraint in agricultural development, because it reduces the adoption of a long 

season or perennial crop, such as cassava, due to complications in the cropping system 

(rotation and intercropping practices) (Howeler et al., 2013). Farming systems and farmers’ 

preferences vary from country to country and from one culture to another. In Rwanda, cassava 

is grown as a subsistence crop in ten out of twelve agro-ecological zones and the main farming 

system is intercropping. The type of farming system and the cassava variety preferences 

depend on the agro-socio environment, such as farm size, climate and crop utilization (Were, 

2011). Cassava is grown as a monoculture on large commercial farms and in intercropping 

systems on small land holdings, for subsistence. Mbwika and Mayala (2001) reported that 

46.9% and 15.0% of cassava is grown in intercropping and monocroping systems, 

respectively, while 38.1% is grown in mixed cropping systems in the country. Cassava is 

mainly intercropped with maize, beans, bananas, and occasionally with groundnuts or sweet 

potatoes (Mbwika and Mayala, 2001) and vegetable crops. Farmers preferred varieties based 

on traits, such as yield, dry matter content, taste, and early maturing or early bulking. The early 

bulking of cassava means a shortened growth period (Tumuhimbise et al., 2014) within which 

to accumulate starch and other yield components. Maximum cassava yields are obtained 12-

15 months after planting (Hillocks and Jennings, 2003). However, the minimum growing cycle 

of cassava in Rwanda is around 10 months for the early bulking cultivars (personal 

observation). The organoleptic qualities (taste and texture) and the ability to cook quickly are 

important traits of cassava cultivars that are grown for food in most cassava growing countries. 

For instance, sweet cultivars are grown for raw consumption or for boiling, while bitter cultivars 

must undergo processing, to reduce the cyanide content. 
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Despite the popularity and importance of cassava, there is no operational breeding scheme in 

Rwanda. The cultivars that are grown are therefore mostly non-adapted exotics (introduced 

from other countries) and a few landraces that are susceptible to the most devastating viral 

diseases in the region, such as the cassava brown streak disease (CBSD) and the cassava 

mosaic disease (CMD). There is therefore a need to understand the hindrance factors of 

adoption and the appropriate varietal selection processes that could improve the cassava yield 

in the country. The national cassava program invests much effort in evaluating the adaptability 

of introduced germplasm and focuses on yield and disease resistance as the main traits, which 

do not necessarily match all critical preferences of farmers. Although there are some improved 

cultivars introduced from other countries, their adoption level is low and the factors affecting 

their adoption are still unclear. In addition, relying on varietal introduction, there is no room for 

participatory varietal selection in Rwanda. On the other hand, the current research conducted 

in East Africa shows that the limited involvement of end-users in the formal breeding process 

negatively affected the level of adoption of new cultivars (Kamau et al., 2011; Tumuhimbise, 

2013; Were et al., 2014). Many breeding programs in developing countries fail, due to the lack 

of inclusion of participatory approaches, which negatively affects the level of adoption of 

newly-developed cultivars (Kamau et al., 2011; Were et al., 2012). Tumuhimbise (2013) 

reported that taste, cooking qualities and earliness are just a few of the dozens of crop traits 

of interest to smallholder farmers. Were et al. (2012) also reported that farmers have an 

indigenous knowledge that could be of value to cassava improvement processes and it could 

improve their adoption. In some countries, farmers are conservative, understanding the factors 

that affect the adoption of new genotypes could be important in enhancing adoption.  

Participatory plant breeding (PPB) utilizes the farmers’ skills in the identification and selection 

of their preferred traits, it breaks down the barrier between farmers and breeders, reduces the 

gap between variety development and adoption and improves the availability of planting 

materials to farmers (Kamau et al., 2011; Kanbar and Shashidhar, 2011; Smith et al., 2001). 

PPB is convenient for the adoption of new varieties, because farmers participate in the 

selection of parents and offspring. When farmers and breeders select the parents and new 

genotypes together, the breeding programs will be more efficient and effective (Ceccarelli, 

2006). Participatory plant breeding utilizes many approaches, such as surveys and focus 

group discussions, in so-called “participatory rural appraisal” (PRA) approaches. The PRA 

relies heavily on the participation of the communities. This method is designed to enable local 

people to be involved, not only as sources of information, but as partners in gathering and 

analysing the information. These two approaches provide vital information on what is needed 

by farmers (Kamau et al., 2011; Were et al., 2012). The involvement of farmers at some 

breeding stages could change their conservative behaviour and promote the adoption of new 

genotypes that contain the preferred traits. Thus, the reorientation of cassava breeding and 
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the adoption of decentralised participatory breeding (Were et al., 2014) could enhance the 

adoption of new cultivars. Participatory rural appraisal (PRA), which is aimed at identifying 

gaps in cassava production, could help to build a strong foundation for a cassava breeding 

scheme in Rwanda. 

2.1 Materials and methods 

2.2.1 Study sites 

This study was conducted in three major cassava-growing districts in Rwanda, namely, 

Bugesera, located in the Eastern Province, Kamonyi, located in Southern Province, and 

Gakenke, located in Northern Province (Figure 2.1). Geographically, Bugesera lies at 

02°12′18″S 30°08′42″E, Kamonyi, at 2°0′0″S, 29°54′0″E and Gakenke at 1°42′0″S, 29°47′0″E 

(Figure 2.1). 

 

Figure 2.1:  Map of Rwanda showing the study areas 

The selection of these districts was based on cassava production levels, which could be 

influenced by different factors, including altitude, temperature, rainfall and type of soil (Table 

2.1).  
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Table 2.1:  Description of study area 

Districts 
Altitude (m) Average 

precipitation 
Temperature 

(oC) 
Soil type Potential cassava 

production 

Bugesera 1300-1500 900 18-30 Strongly 
altered clay 

Very Good 

Kamonyi 1400-1600 1050 16-30 Clay soils, 
schist  

Good  

Gakenke  1500-1900 1200 14-29 Diverse 
humic soils 

Poor 

 

2.2.2 Data collection  

In order to assess cassava production constraints, preferred traits, factors affecting the 

adoption of new cassava cultivars, cassava market aspects, as well as losses due to 

postharvest physiological deterioration (PPD), data were collected through focus group 

discussions (FGD) and interviews with farmers. To facilitate data collection, FGD checklists 

and questionnaires were translated into the local language (Kinyarwanda). Three FGDs were 

conducted in each district, making it a total of nine for the whole study. Each FGD was 

composed of ten participants, namely, one district agronomist, one district extension officer, 

one cassava extension specialist from the Rwanda Agriculture Board (RAB), and seven farmer 

representatives from different groups of farmer field schools (FFSs). Some participants, mainly 

district and RAB staff, participated in all the FGDs within a district. Gender was balanced, with 

women taking up two-thirds of the group, because they are much more involved in agricultural 

activities than the men in the country. 

Semi-structured questionnaires were developed that were to be administered to cassava 

farmers, cassava traders and processors. Sampling was done within FFSs at district level, 

where a total of 60 cassava farmers from each district were selected. Multistage sampling was 

performed, based on the cassava-growing areas, and three districts were chosen. Random 

sampling was done within the FFSs, where ten FFSs were selected from each district. 

Random sampling was also performed at household level, where six households were 

selected from each FFS, to participate in the interviews. This makes a total sampling size of 

60 participants per district and 180 participants in total.  

2.2.3 Data analysis 

A pair-wise ranking matrix and scoring matrix (Andrew et al., 2007) were used to compute the 

data from PRA. Data for land size, land allocated to cassava, losses due to PPD, the time to 

harvest and cassava yield were analysed, using the post hoc test, ANOVA (Hilton and 

Armstrong, 2006). Other collected social data were screened and coded, to be analysed using 
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the Statistical Package for Social Sciences (SPSS), 16th Version. Percentages, means and 

cross tabulations are presented in the following Results section. 

2.3 Results 

2.3.1 Cassava farming system in Rwanda 

2.3.1.1 Main food crops grown in Rwanda 

Cassava, bean (Phaseolus vulgaris L), sweet potatoes (Ipomoea batatas L) and maize are 

the major crops grown in the study areas. In the Bugesera and Kamonyi Districts, cassava 

ranked first among 90.0% and 75.0% of respondents, respectively, while in the Gakenke 

District, it occupies fifth place after bananas (Musa spp. L), bean, maize and sweet potatoes. 

Maize occupies the second place in the Bugesera District, while bean occupies the same 

place in the Kamonyi and Gakenke Districts (Table 2.2). The places of other crops vary from 

district to district. Rice, coffee (Coffea arabica L), pineapple (Ananas comosus L) and 

sunflower (Helianthus annuus L) were ranked as minor crops in all districts.  

Table 2.2:  Ranking of cassava and other main crops in three districts of Rwanda 

(2014) 

Ranking Districts 

Bugesera Kamonyi Gakenke 

1st Cassava (90.0%) Cassava (75.0%) Bananas (47.5%) 
2nd Maize (43.3%) Bean (46.7%) Bean (41.1%) 
3rd Sweet potatoes 

(40.0%) 
Irish potato 
(38.1%) 

Maize (33.3%) 

4th Bean (35.0%) Soybean (33.3) Sweet potatoes (28.8%) 
5th Groundnut (25.9) Maize (30.0%) Cassava (27.1%) 
6th Sorghum (23.5%) Bananas (25.9%) Vegetables (28.1%) 
7th Soybean (21.7%) Taro (25.5%) Taro (26.6%) 

 

2.3.1.2 Land size and cassava yield  

The land allocated to cassava differed significantly from district to district (p < 0.001) and, in 

general, it was greater than the land allocated to other crops. On average, the total land was 

0.69 ha per household, while the average land allocated to cassava was 0.29 ha. The majority 

of farmers had a total land size of less than one ha and therefore practised intercropping 

systems (Table 2.3). Legumes (beans and soybeans) were the most common crops that were 

intercropped with cassava in the study area. However, some farmers mixed cassava with 

maize, pineapple, shrub crops and young trees, such as eucalyptus. The farmers with a land 

size larger than one ha, grew cassava as a monoculture (Table 2.3).  
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Table 2.3:  Land size and cassava cropping system in Rwanda (2014) 

Districts Land size mean Farming system Estimated 
cassava 

Yield (t ha-1) 
Total Land 

size 
Land allocated 

to cassava 
Monoculture 

(%) 
Intercropping 

(%) 

Bugesera 0.97 0.46 55.0 45.0 24.5 
Kamonyi 0.52 0.23 43.3 56.6 24.2 
Gakenke 0.56 0.20 33.3 66.7 16.7 
Mean 0.69 0.29 43.9 56.1 21.8 
LSD 0.15 0.08 - - 6.86 
P value <0.001 <0.001 - - 0.045 

LSD= Least significant differences of means (5% level) 

The yield of cassava varied significantly (p = 0.045) from district to district. Focus group 

discussions reported yields of 24.5, 24.2 and 16.7 t ha-1 in the Bugesera, Kamonyi and 

Gakenke Districts, respectively (Table 2.3). 

2.3.1.3 Growing cycle, causes and effects of late bulking cultivars  

Time to harvest varied significantly (p < 0.001) between districts and ranged from 6 to 24 

months, but 16 months was the average bulking time for all districts. Early bulking cultivars (6-

8 months) were reported in the Bugesera and Kamonyi Districts, while early bulking occurred 

at 12 months in the Gakenke District (Table 2.4).  

Table 2.4:  Time to harvest per district 

Districts 
Time to harvest 

(months) 
Minimum time to 
harvest (months) 

Maximum time to 
harvest (months) 

Bugesera 13 6 24 
Kamonyi 14 8 24 
Gakenke 19 12 24 
Mean 16 8.6 24 
LSD 1.444 - - 
P value <0.001 - - 

LSD= Least significant differences of means (5% level) 

The first cause of the late harvest was the late bulking cultivars, which is inherent in cassava 

cultivars, as indicated by the majority of farmers in the study area. Agricultural practices and 

the cold environment were commonly reported to be the second cause of late bulking. Farmers 

from the Bugesera District suspected that planting cassava at the wrong time of the year (out 

of season) is the cause of late maturity (Table 2.5) and that this affected the yield. The best 

planting time in Rwanda is between September-October each year. 
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Table 2.5:  Farmer perceptions on the causes and effects of late bulking cultivars 

Perceptions 
Districts Mean 

(%) 
Rank 

Bugesera (%) Kamonyi (%) Gakenke (%) 

Causes of late bulking      
Agricultural practices/ 
farming system 

75.7 100.0 25.1 66.9 1 

Cold climate and storms 10.5 100 73.1 61.2 2 
Drought 97.3 - - 32.4 3 
Planting at wrong time 10.5 - - 3.5 4 
Effects of late bulking   
Losses of other crops’ yields 75.4 87.5 99.4 87.4 1 
Food crisis (lack of food, 
malnutrition and prolonged 
hunger) 

73.9 59.2 16.7 49.9 2 

Poverty 38.9 33.5 - 24.1 3 
Crop rotation impediment - - 62.8 20.9 4 
Delayed return of investment 6.9 15.4 14.9 12.4 5 
Lack of cuttings 5.0 4.3 6.4 5.2 6 

Food crises (the shortage of food, malnutrition and prolonged hunger), lack of cuttings, the 

loss of other crop yields and the delayed return on investments, were commonly reported as 

the main effects of late bulking cassava cultivars. Farmers in the Bugesera and Kamonyi 

Districts also highlighted poverty and crop rotation as being impediments (Table 2.5). 

2.3.1.4 Availability of clean cuttings  

The majority of farmers (an average of 66.6% in all districts) confirmed that the availability of 

clean cuttings was a problem. The sources of clean cuttings were research institutes, farmers’ 

groups, cooperatives and NGOs (Figure 2.2). Farmers lacked a source of clean cuttings from 

neighbouring farmers and their own previous cassava crops (Figure 2.2). However, farmers 

were unsure of the health status of the available cuttings.  

 

 

Figure 2.2:  Availability of clean cuttings  
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2.3.2 Cassava production constraints in Rwanda 

The majority of farmers (99.4%) confirmed the presence of cassava production constraints. 

The lack of clean cuttings, late bulking cassava cultivars and diseases, especially CBSD and 

CMD, were the main constraints of cassava production. Drought was the second most 

challenging constraint in the Bugesera District, while the lack of clean cuttings was ranked the 

same in the Kamonyi and Gakenke Districts (Table 2.6).  

Table 2.6:  Constraints to cassava production per district 

Rank of 
constraints 

Constraints per districts 

Bugesera (98.3%) Kamonyi (100%) Gakenke (100%) 

1st Lack of clean cuttings Late bulking cassava 
cultivars 

Diseases (CBSD and 
CMD) 

2nd Drought  Lack of clean cuttings  Lack of clean cuttings 
3rd Weathered soils Diseases (CBSD and 

CMD) 
Insufficient fertilizers 

4th Insufficient fertilizers  Small land size  Late bulking cassava 
cultivars  

5th Limited access to 
information 

Insufficient fertilizers Limited access to 
information 

6th Lack of market Weathered soils  Storage of fresh and 
dried cassava  

7th Theft and animal damage Limited access to 
information  

Agriculture policy of 
crop regionalization  

8th Small land size Storage of fresh and 
dried cassava 

Cold climate  

Other minor 
constraints 

Limited knowledge on 
cassava cropping systems 

Limited knowledge on 
cassava cropping system 

Heavy rainfall and 
storms  

 Agricultural policy of crop 
regionalization  

- - 

CBSD: cassava brown streak disease; CMD: cassava mosaic disease 

The other major challenging constraints, per ranking order, were weathered soils, insufficient 

fertilizers, small land size, limited information and access to information, and lack of a market, 

storage of fresh and dried cassava, theft and animal damage and agricultural policy of crop 

regionalization. Several minor cassava production constraints, such as cold environment, 

heavy rainfall and storms, as well as limited knowledge on cassava cropping, were identified 

by farmers and varied from district to district (Table 2.6).  

2.3.3 Postharvest physiological deterioration of cassava 

2.3.3.1 Fresh root cassava storage constraints and storage techniques  

A total of 96.7%, 98.3% and 70.7% of farmers in the Bugesera, Kamonyi and Gakenke 

Districts, respectively, confirmed the lack of effective storage techniques (Figure 2.3).  
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Figure 2.3:  Effective cassava storage constraints 
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storage roots to flour, was the most widely used technique to deal with PPD, and this was 

confirmed by the majority of farmers (89.2%) across the districts. Piecemeal harvesting 
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by 71.9% of farmers interviewed in the study area. However, once harvested, the underground 

storage of cassava roots in the soil (interment) conserves the storage roots for only four days, 

on average, which was confirmed by 53.8% of the farmers (Table 2.7). Less common 

techniques highlighted by farmers in the Kamonyi District were the storage of peeled cassava 

in water and precooking it. However, the latter cannot conserve cassava storage roots for 

more than three days. 

Table 2.7:  Traditional storage techniques of cassava fresh storage roots in 

Rwanda  

Storage techniques 

 Districts  
Means 

(%) 
Rank Bugesera 

(%) 
Kamonyi 

(%) 
Gakenke 

(%) 

Storage of flour (drying 
and processing in flour) 

87.5 80.0 100 89.2 1 

In the field (piecemeal 
harvesting)  

72.7 55.9 87.0 71.9 2 

Interment in the soil of 
harvested roots 

60.0 56.9 44.4 53.8 3 

Precooking - 25.9 - 25.9 4 
Dumping in water - 17.6 - 17.6 5 

 

2.3.3.2 Local methods for detecting PPD in Rwanda  

The colour change of the cassava flesh was the most common method for measuring PPD, 
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classified as second and third most common methods used to assess PPD damage (Table 

2.8). However, FGDs indicated that local methods used to detect PPD included the difficulty 

experienced when removing the skin (peeling) and an increase in fibres in the cassava flesh. 

Table 2.8:  Local methods to detect PPD damage 

PPD measuring 
methods 

Districts Mean 
(%) Bugesera Kamonyi Gakenke 

Colour change of 
cassava flesh 

89.8% 80.7% 86.4% 85.6% 

Rotting of cassava flesh 55.6% 28.3% 43.8% 42.6% 
Changing taste of 
cassava flesh 

11.1% 79.2% 18.8% 36.4% 

Unclassified methods     
Difficult to remove 
cassava skin (peeling) 

Yes Yes No - 

Increase of fibers in 
cassava flesh 

No No Yes - 

 

2.3.3.3 Losses due to PPD and value given to damaged cassava storage roots 

There was no significant difference (p = 0.259) in cassava production losses due to PPD in 

the study area. Losses of 12.6%, 10.3% and 13.3%, respectively, were reported in the 

Bugesera, Kamonyi and Gakenke Districts. The PPD appeared approximately three days after 

harvest (Table 2.9). 

Table 2.9:  PPD appearance after harvest and PPD losses in Rwanda 2014 

Districts PPD appearance after 
harvest (days) 

PPD losses % 

Bugesera 3.0 12.6 
Kamonyi 2.9 10.3 
Gakenke 2.7 13.8 
Mean 2.9 11.9 
P value - 0.26 

In case of total deterioration due to PPD, the deteriorated roots processed into flour and given 

to poor families of a lower social class, or used to feed animals, especially pigs. Some farmers 

in the Kamonyi and Gakenke Districts indicated that deteriorated cassava was processed into 

flour for constructing their houses (i.e. for painting and mixing with cements). However, 44.1%, 

41.0% and 14.5%, respectively, of farmers in the Bugesera, Gakenke and Kamonyi Districts, 

reported that damaged cassava was considered to be garbage (Table 2.10). 
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Table 2.10:  Place and value given to deteriorated cassava due to PPD 

Value given to 
damaged storage roots 

Districts Mean 
(%) 

Rank 

Bugesera (%) Kamonyi (%) Gakenke (%) 

Drying and processing in 
flour 

26.7 87.5 40.5 51.6 1 

Garbage 44.1 14.5 41.0 33.2 2 
Food for the poor 14.3 41.8 23.1 26.4 3 
Flour processing for 
painting houses 

- 50.0 23.1 24.4 4 

Animal feed  45.8 - 23.1 23.0 5 

 

2.3.3.4 Availability of PPD tolerant cassava cultivars in Rwanda 

Although PPD normally begins to appear after 24 hours, the farmers indicated that some 

cultivars showed evidence of PPD only after three days, which they saw as an indication of 

PPD tolerance. The common popular cultivars with delayed PPD were Rwizihiza, Mavoka, 

Cyizere, Seruruseke and Mbakungahaze (Table 2.11). Most of these cassava cultivars are 

assumed to have high yield, be disease resistant and possibly improved dry matter, 

carotenoids content and other valuable traits. Some landraces (Gahene, Nyiramabuye, 

Rutanihisha, Yangwe, Rwicabana and Gapfutsi) were also reported to tolerate PPD. These 

landraces are bitter, with a high cyanide content, which could delay microbial attacks. The only 

sweet landraces tolerant to PPD were Gacyalicyali and Mushedile. However, farmers 

indicated that none of the cultivars tolerate PPD beyond three days, under normal conditions 

of storage i.e. at room temperature. This shows that there is no cultivar in Rwanda that is 

tolerant to PPD, compared to cultivars in other countries, which can withstand PPD from one 

week, to several weeks.  
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Table 2.11:  Some cassava cultivars in which symptoms of PPD were delayed 

Delayed PPD 
cultivars 

Districts PPD delayed time to 
symptom expression 

(days)a 
Bugesera 

(%) 
Kamonyi 

(%) 
Gakenke 

(%) 

Gehene 46.5 - - 3 
Nyiramabuye 3.4   1 
Rwizihiza 33.7 56.2 6.7 3 
Mavoka 26.0 10.7 50.7 3 
Gitamisi 21.0 - 36.0 2 
Cyizere 48.4 100.0 8.0 2 
Improved 
cultivars 

13.1 - - 3 

Rutanihisha 9.6 40.6 - 2 
Seruruseke 42.8 33.3 75.0 3 
Yangwe 7.2 - 13.3 3 
Gacyalicyali - 20.8 28.0 2 
Rwicabana -  12.0 3 
Gapfutsi 21.6 - - 3 
Mushedile 3.8 - - 1 
Mbakungahaze 18.8 34.7 45.0 2 

a measured from 24 hours after harvesting 

2.3.4 Farmer preferred cassava traits in Rwanda 

The adoption of newly-introduced cassava cultivars must correspond to the preferences of 

farmers and consumers. In order of importance, the preferred cassava traits were sweet taste, 

high yield, good quality ugali (viscosity and colour), resistance to pest and diseases, early 

bulking, being multipurpose, good colour of the flesh and flour, many clients, delayed PPD, 

dry matter content, good odour/ smell, long storage in the field, many cuttings produced and 

good cookability (Table 2.12).  
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Table 2.12:  Consumers and farmers’ traits preference 

Preferred cassava traits 

Districts 
Mean 
(%) 

Rank Bugesera 
(%) 

Kamonyi 
(%) 

Gakenke 
(%) 

Sweet taste 95.3 60.7 100.0 85.3 1 

High yield 80.0 72.8 64.5 72.4 2 

Good ugali (good quality: 
taste, colour and 
viscosity) 

91.2 38.3 74.8 68.1 3 

Resistance to diseases 50.8 40.5 80.3 57.2 4 
Early bulking 47.0 53.8 53.4 51.4 5 
Multipurpose 32.6 100.0 17.8 50.1 6 
Good colour of flesh 
(preferably white colour) 

30.7 94.4 5.3 43.5 7 

Many clients (level of 
acceptability at market) 

69.6 21.2 8.3 33.0 8 

Delayed to PPD - 65.0 6.2 23.7 9 
Dry matter content 16.5 21.5 30.5 22.8 10 
Good odour 42.9 18.6 - 20.5 11 
Long storage in field 26.5 3.3 6.2 12.0 12 
Many cuttings produced 13.7 - 3.5 5.7 13 
Cooked well (cookability) 3.4 - 4.2 2.5 14 

2.3.5 Farmer perceptions on yellow-fleshed cassava 

All farmers confirmed the availability of two yellow cassava cultivars. However, the majority of 

them (95%, 55% and 52.3% in the Bugesera, Kamonyi and Gakenke Districts, respectively) 

disliked yellow-fleshed cassava. They highlighted some reasons for its unpopularity, namely, 

drying problem (low dry matter), bad colour of the flour, lack of taste, rapid rotting, the carotene 

odour from volatile carotenoids compounds, low demand (few clients), poor storage in the field 

(spoiled when kept in the field) and the fact that it did not cook well. However, 33% of the 

respondents like yellow-fleshed cassava cultivars for its early bulking, its resistance to CMD, 

its high yield, good ugali, its multipurpose use (eaten as raw or processed into flour for ugali), 

its Vitamin A content and its cookability (Table 2.13).  
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Table 2.13:  Farmers’ perceptions on yellow-fleshed cassava 

Preferences of yellow 
cassava cultivar 

Districts 
Mean 
(%) 

Rank Bugesera 
(%) 

Kamonyi 
(%) 

Gakenke 
(%) 

High preference 5.0 45.0 47.7 32.6 - 

Less preference 95.0 55.0 52.3 67.4 - 

Reasons for high preference   
Early bulking 100.0 100.0 62.7 87.6 1 
Resistant to pest 
and diseases 

66.7 51.9 28.0 48.9 2 

High yield 33.3 22.2 52.9 36.1 3 
Good ugali 7.7 76.8 13.6 32.7 4 
Multipurpose - 40.7 - 13.7 5 
Sweetness - - 21.6 7.2 6 
Vitamin A - 8.3 12.0 6.8 7 

Cooked well  - 9.1 3.0 8 

Reasons for less preference   
Drying problem 16.7 100 16.0 44.2 1 
Bad colour 10.9 75.8 44.6 43.8 2 
Without taste 77.0 10.0 42.9 43.3 3 
Rapid rotting in 
the field 

38.8 6.1 60.0 35.0 4 

Carotene odour 26.0 40.0 28.6 31.5 5 
Fewer clients 54.2 30.0 8.0 30.7 6 
Low dry matter 38.9 - - 13.0 8 
Poor storage in 
the field 

14.5 25.0 - 13.2 7 

Not cooking well 15.2  2.9 6.0 9 

2.3.6 Factors influencing adoption of new cassava genotypes 

Focus group discussions revealed some factors that affect the adoption of new cassava 

cultivars. Pair-wise ranking listed the factors in descending order, namely: farmer preferences, 

information and extension services, performance (yield, early bulking, disease resistant), 

quality (cooking aspect, taste, dry matter, viscosity of ugali, colour of ugali), market 

acceptability and stake production. These proved to be the main factors that influence whether 

farmers adopt or reject the newly-introduced cassava genotypes in Rwanda (Table 2.14). 
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Table 2.14:  Pair wise ranking of factors affecting adoption of new cassava cultivar 

in three districts of Rwanda 

Factors 
Ranking per district 

Bugesera Kamonyi Gakenke Overall rank 

Farmer consultation before 
development of a new cultivar 

1 2 1 1 

Performance (yield, early bulking, 
diseases resistant) 

3 1 2 2 

Quality (cooking aspect, taste, dry 
matter, viscosity of Ugali)  

4 3 3 3 

Market acceptability 2 4 6 4 
Information and extension services 6 5 4 5 
Stake production 5 6 5 6 

2.4 Discussion and conclusion 

This study aimed at identifying the main constraints of cassava production, the preferred traits 

of farmers, the effects of late bulking cultivars, losses due to PPD, and factors affecting the 

adoption of new genotypes. An understanding of these aspects in the cassava farming system 

provides guidelines and objectives for the cassava breeding program in Rwanda. 

The study found that cassava is one of the main food crops in the country, but its place varies 

from district to district. This agrees with Stephen and Lecumberri (2011), who reported that 

cassava, beans, maize, bananas and sweet potatoes are the main food crops grown in 

Rwanda. The findings showed that the average farm size was 0.69 ha, with an average of 

0.29 ha being allocated to cassava per household. However, many farmers possess a farm 

size of less than the average (0.6 ha). This is corroborated by Rurangwa (2013), who reported 

that the majority of Rwandan households have less than 0.2 ha. The land allocated to cassava 

was greater than for other crops and the predominance of intercropping was attributed to the 

small size of land available. This is a result of the dense population of the country (407 

people/km2, according to Rwanda’s National Institute of Statistics in 2012), which is the 

greatest in the SSA region (Rurangwa, 2013). Land in the study area was fragmented, 

necessitating subsistence farming. Subsistence farming was associated with the large spacing 

(1 x 1 m/10000 plants per ha) required for cassava and the need for food diversification. 

Households with small plots tended to practise intercropping, in contrast to those with larger 

plots, which mostly practised monoculture. This is corroborated by Mbwika and Mayala (2001) 

who found that the majority of cassava farmers in Rwanda practised mixed cropping. Many 

scientists (El-Sharkawy, 2004; Munga, 2008; Were et al., 2012) report that cassava is grown 

by small-scale farmers in intercropping and mixed cropping systems in developing countries.  

The results revealed that the lack of clean cuttings, the occurrence of pests and diseases 

(especially CBSD and CMD) and late bulking cultivars, were the main constraints of cassava 

file:///C:/Users/hp/Desktop/Revised%20papers/PRA%20paper/FOSE14-00271%20Manuscript%20TCA%2026.1.16.docx%23_ENREF_12
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production in the study area. These findings agree with Tumuhimbise (2013), who showed 

that virus diseases, such as CBSD and CMD, are the most challenging constraints in Uganda, 

followed by the lack of early bulking cultivars, which was reported by Kamau (2006) to be a 

challenging constraint of cassava production in the East African region. 

The majority of farmers confirmed the lack of effective storage techniques. This was linked to 

postharvest physiological deterioration (PPD), which starts a few hours after harvest. Most 

cassava production is marketed as fresh roots for consumption, freshly-boiled cassava, or for 

processing, which means that they need to be free from any deterioration (PPD and bacterial 

rots). PPD differs from bacterial rot in that there is a change in colour of the flesh, due to 

physiological activity. This begins within 24 hours after harvest and starts as blue-black to 

black vascular discoloration (vascular streaking). It then spreads to the parenchyma, thereby 

rendering the storage root unpalatable, due to its flavour, odour and colour, and therefore 

unmarketable (Morante et al., 2010; Reilly et al., 2007; Sánchez et al., 2006). Ceballos et al. 

(2004) also reported that this results in a short shelf-life and presents major challenges in 

developing countries, when it comes to increasing production and utilization. Tackling the 

effects of PPD needs much effort; therefore, the private sector and government must invest in 

infrastructures and cassava processing plants, in order to reduce the time between harvest, 

marketing and the initiation of processing activities. 

The traditional measures used in the study area to tackle losses caused by PPD were to keep 

cassava storage roots in the field, using gradual (piecemeal) harvesting and the underground 

storage, which conserves the roots for at least four days. The former can conserve cassava 

storage roots for approximately one year, but it can also compromise agriculture practices 

(rotation), because it occupies land for longer periods. Sayre (2011) reported that harvesting 

cassava can be delayed by months, or even up to three years. On the other hand, cassava 

storage roots that are kept in the field for long periods can become woody and their quality 

and flavour may be affected.  

The traditional ways in which farmers assess PPD include noting a change in colour and taste, 

rotting, difficulty in removing skin (peeling) and increased fibre. The difficulty in peeling could 

be attributed to an increase in fibres, which may be a defence mechanism of cassava against 

bacterial attack, after wounding (Kpémoua et al., 1996; Luna et al., 2011; Uarrota et al., 2014). 

The study found that, on average, 11.9% of cassava production losses occur due to PPD. 

FAO (2000) reported total postharvest losses of 29%, 10% and 8% in Africa, Latin America 

and Asia, respectively. Rwandan farmers consider cassava to be totally deteriorated 

approximately three days after harvest. This may be the result of a bacterial attack, which can 

cause total rotting of cassava flesh, leading to a total financial loss. For non-bacterial PPD, 

file:///C:/Users/hp/Desktop/Revised%20papers/PRA%20paper/FOSE14-00271%20Manuscript%20TCA%2026.1.16.docx%23_ENREF_2
file:///C:/Users/hp/Desktop/Revised%20papers/PRA%20paper/FOSE14-00271%20Manuscript%20TCA%2026.1.16.docx%23_ENREF_84


44 
 

farmers minimize the financial loss by feeding the affected cassava to animals (especially 

pigs) (Ubalua, 2007), by selling it at a low price as food to poor families of a lower social class, 

and by processing the flour, for use in cement and house paints. Okafor (2008) reported that 

cassava flour performs satisfactorily as a water reducing admixture in concrete. Cassava 

starch prevents floor cracks, by stopping the formation of calcium silicate hydrates (CSH) in 

concrete mixtures, and is mainly responsible for adding quick strength to the quality of 

standard cement (Abalaka, 2012).  

The significant differences in harvesting time observed in the districts, was attributed to the 

genotype x environment interactions and ecological differences among districts. The majority 

of farmers reported that bulking time is an inherent characteristic of the cultivar and the 

growing environment. The food crisis (lack of some important foods at specific times and 

locations, which leads to malnutrition) and the lack of other crop yields, were linked to the late 

bulking cultivars occupying land for long periods of time. These findings agree with those of 

Tumuhimbise (2013) and Kamau (2011), who reported that the late bulking cultivars occupy 

land for extended periods and that the land can consequently not be effectively utilised for the 

sequential cultivation of other crops. Zidenga et al. (2012) reported that the land may need to 

be released for other uses, in a semi-commercial setting. The lack of cuttings was also 

perceived as a result of late bulking cultivars.  

A sweet taste, high yield, good ugali (good quality taste, colour and ugali viscosity), resistance 

to diseases, early bulking and multipurpose uses, were the most preferred traits, according to 

the farmers. These traits, except the multipurpose trait, were reported by Tumuhimbise (2013) 

in Uganda, where farmers selected cultivars that focused largely on high fresh root yield, early 

bulking, resistance to pests and diseases, and sweetness. The needs of farmers, the 

behaviour of consumers, the priorities of farmers, the production environment, the available 

transformation technologies and the farming systems should be some of the factors that 

dictate cassava selection. 

The introduction and breeding of a yellow-fleshed cassava cultivar could be an effective way 

of reducing postharvest losses caused by PPD. Many scientists (Bayoumi et al., 2010; 

Sánchez et al., 2006; Sánchez et al., 2013; Xu et al., 2013; Zidenga et al., 2012) reported that 

carotenoids could delay the onset of PPD, owing to their antioxidant properties (Morante et 

al., 2010; Zidenga et al., 2012). Despite the availability of some yellow-fleshed cassava in the 

country, their adoption is hampered by their yellow/orange colour being linked to traits, such 

as low dry matter content and carotene odour, when consumed fresh or when boiled. 

However, the carotene odour disappeared when improved carotenoids cultivars were 

processed into flour, in order to produce cassava paste or ugali. This odour could originate 
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from volatile compounds that are derived from boiling (heating) cassava storage roots with a 

high carotenoids content. Rios et al. (2008) and Zepka et al. (2014) reported that oxidation 

and thermal treatment cause the degradation of carotenoids, which influence the aroma and 

flavour of the products that contain them. This explains the non-adoption of yellow cultivars 

with high β-carotene content. Salcedo and Siritunga (2011) reported that several agronomic 

traits, such as starch and dry matter, are negatively correlated with PPD and Wenham (1995) 

confirmed that delayed PPD was associated with reduced dry matter content. 

In conclusion, this study revealed the main constraints of cassava production and the losses 

caused by PPD, the farmers’ preferred traits, as well as the factors affecting the adoption of 

new cultivars in Rwanda. The lack of clean cuttings, the occurrence of pests and diseases 

(CBSD and CMD) and late bulking cultivars, are associated with an 11.9% loss, due to PPD, 

and this handicaps the cassava sector in the country. The newly-introduced yellow cultivars, 

which are resistant to CMD, have early bulking (eight months) and a high yield could be an 

option, to reverse the main constraints reported by farmers. However, the lack of a local 

participatory breeding program has affected the adoption of introduced cultivars. Participatory 

plant breeding and involving farmers at some stages of the breeding process, could promote 

the ownership of the developed cultivars and could consequently enhance their adoption. The 

development and adoption of the improved carotene cultivars for paste (ugali), early bulking, 

disease resistance and delayed PPD, are expected to promote the cassava sector and 

improve the livelihood of cassava growers in Rwanda. 
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CHAPTER III 

Cassava genetic variability and inter-relationship between yield and yield component 
and postharvest traits in Rwanda 

 

Abstract 

Genetic variability is the backbone of crop improvement. However, breeding for some traits 

progresses slowly, due to insufficient information on genetic variability among the populations. 

This study aimed at examining the extent of genetic variability in cassava for yield, yield 

components and postharvest physiological deterioration (PPD). During 2014 and 2015, 

experiments were conducted in five contrasting environments in Rwanda. The data collected 

were based on the cassava farmers’ preferred traits and they were subjected to the variance 

analysis, using GenStat 17th Edition. The results showed a high genetic variability (61.0%) 

among 30 genotypes that were collected across the country. The lowest determinant 

coefficient (R2) was 0.734 for the dry storage root yield (DSRY) and the highest (0.982) was 

recorded for total carotenoids (TC), indicating that 73.4% of the DSRY variation was due to 

genotype, 26.6% of the variation was from an unknown origin, while 98.2% of the TC variation 

was explained by genotypes and only 1.8% was due to an unknown origin. Similarly, TC had 

a very high heritability (H2) of 99.2% and an expected genetic advance (GA %) of 159.65%. 

The phenotypic variance coefficient (PCV %) for all traits was higher than the genotypic 

variance coefficient (GCV %), except for the viral diseases traits (CMD and CBSD). The high 

H2 (%) and GA (%) for carotenoids content was an indication that conventional breeding could 

improve the carotenoids content in cassava, using simple recurrent selection. The PPD, 

evaluated at four different stages (1, 3, 7 and 30 days after harvest), showed a significant 

(p<0.05) negative correlation with TC and dry matter content (DMC), indicating that the high 

TC and low DMC cultivars could have a delayed PPD. Two out of the 30 genotypes were 

yellow-fleshed cultivars (Garukunsubire and Mavoka, with 1.84 to 2.32 µg/g TC, respectively), 

could form the basis for improved carotenoids content for cassava and could contribute to the 

development of delayed PPD cultivars in Rwanda. The information generated by this study 

will guide cassava breeders in improving the landrace population, based on the genetic 

variability observed in the country.  

 

Key words: Broad sense heritability, Carotenoids content, Genetic advance, Genotypic 

variance coefficient, Phenotypic variance coefficient, Physiological postharvest deterioration, 

Viral diseases 
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3.1 Introduction 

Cassava plays a key role as a food security and income-generating crop for many smallholder 

farmers in developing countries (Ceballos et al., 2004; El-Sharkawy, 2004; Sewando, 2014; 

Tumuhimbise, 2013). An estimated 250 million people are dependent on cassava as a primary 

source of food in Africa (Sayre et al., 2011), and it contributes over 500 kcal per day per person 

(FAO, 2010; Morante et al., 2010). Cassava is produced mostly by smallholder farmers on 

marginal and sub-marginal lands in Africa. Cassava tolerates poor soils, requires less labour 

than other crops, and harvesting can be delayed by months, or even up to three years (Sayre, 

2011). However, cassava as a staple food has numerous biotic, abiotic and physiological 

stresses that impact on its production, consumption and marketability (Bull et al., 2011). Viral 

diseases, such as the cassava mosaic disease (CMD) and the cassava brown streak disease 

(CBSD), cassava bacterial blight, pests (whiteflies: Bemisia tabaci; and cassava green mite: 

Mononychellus tanajoa) (Night et al., 2011), and other factors, such as poor agricultural 

practices and post-harvest losses, present considerable constraints to the attainment of a 

satisfactory yield by resource-poor farmers (Patil and Fauquet, 2009). Crop improvement 

could play a vital role in overcoming all the stress factors in cassava production. 

Genetic variability is the backbone of crop improvement and it is very important when selecting 

suitable genotypes for crop improvement (Hakeem et al., 2013; Sinha and Mishra, 2015; 

Tumuhimbise et al., 2015). Cassava has considerable genetic variability for different 

agronomic traits (Kundy et al., 2015), though the potential of this variability has not yet been 

fully explored (Ntawuruhunga and Dixon, 2010). Crop improvement through breeding depends 

on the availability of genetic variability and how these desired traits can be fixed in genotypes 

with good agronomic characteristics (Akinwale et al., 2010). According to Kundy et al. (2015), 

the improvement of many traits can significantly be achieved through selection that is based 

on several components, rather than one component.  

In order to develop a successful breeding program, cassava breeders need a good knowledge 

of the genetic variability of various traits (Tumuhimbise et al., 2015). This knowledge is 

essential in assisting breeders to estimate genetic parameters for quantitative traits and their 

correlation, which permits smooth parental selection, based on genetic variability (Bello et al., 

2012; McAdam et al., 2014). Understanding the information on the genetic variability within a 

population is an important requirement for crop improvement, because it predicts the 

possibility of phenotypic selection for significant genetic gain (Bello et al., 2012; Tumuhimbise 

et al., 2015). In addition, it can allow the selection of parental combinations and the formation 

of heterotic groups for good genetic gain (Turyagyenda et al., 2012), based on adequate 

genetic variability.  

http://en.wikipedia.org/wiki/Bemisia_tabaci
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Farmers prefer cultivars with a high storage root yield, which is one of the main goals in 

cassava improvement (Ntawuruhunga and Dixon, 2010). However, cassava yield is a complex 

trait that is controlled by many quantitative genes and its expression is highly variable (Kundy 

et al., 2015; Shi et al., 2009) and difficult to assess in large populations, compared to other 

phenotypically observable traits (Ntawuruhunga and Dixon, 2010). Thus, the correlation 

between various components that contribute to the yield increase, must be analysed. Various 

studies (Kundy et al., 2015; McAdam et al., 2014; Ntawuruhunga and Dixon, 2010) have 

indicated that storage root yield is genetically influenced by the storage root number per plant, 

the storage root size, the harvest index, the stem girth, and the canopy width. The success of 

selection for high yield depends largely on the nature and the extent of available heritable yield 

components in populations (Tumuhimbise, 2013).  

Though high cassava storage root yield is the farmer’s number one preference, in most 

cassava production areas, postharvest losses are still high and affect cassava production. 

This is due to the physiological nature of the cassava storage root, which starts to deteriorate 

immediately after harvesting (Beeching et al., 2002; Sánchez et al., 2006). The rapid 

deterioration affects the economic value of cassava (Morante et al., 2010) with a recorded loss 

of 29%, 10% and 8%, respectively, in Africa, Latin America and Asia (Salcedo and Siritunga, 

2011). Postharvest losses affect the nutritional and economical value of cassava, and the 

economic losses, due to the depreciation of deteriorated cassava, which can reach up to 90% 

(Westby, 2002). Therefore, postharvest physiological deterioration (PPD) could hinder the 

adoption of cassava in remote areas that have a poor infrastructure for cassava processing. 

Like other quantitatively inherited traits, PPD has relationships with other traits, such as dry 

matter and carotenoids content (Beeching et al., 2002; Sánchez et al., 2006). Morante et al. 

(2010) indicated that there is limited progress in improving the tolerance to PPD, through 

genetic enhancement. However, exploring the large genetic variability of cassava carotenoids 

and dry matter content, as reported by Esuma et al. (2012) and Ceballos et al. (2013), could 

help in the breeding of delayed PPD cultivars. Morante et al. (2010) reported that most of the 

germplasm is generally discarded in the early stages of selection in a breeding program, which 

could reduce the genetic variability for PPD. Tumuhimbise et al. (2015) reported that a large 

portion of phenotypic variance in PPD, which is accounted for by the genotypic component, 

indicates large genetic variability for PPD in Ugandan germplasm. The genetic variability for 

PPD in cassava, as well as the inter-relationship between PPD and other important traits, 

needs further study. There is a need to estimate genetic variability, heritability, expected 

genetic advance for PPD resistance, and the correlation between the yield and postharvest 

traits of cassava genotypes. This study therefore aimed at examining the extent of genetic 

variability in cassava for yield and yield components, and PPD and its related traits. 
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3.2 Material and methods 

3.2.1 Experimental site 

The experiments were conducted at five locations, namely, at the KaramaI, Muhanga and 

Karama II research stations, and on the farmers’ cooperative farms, at Kamonyi and Gakenke 

Districts. The experimental fields were selected, based on altitude, and were established at 

altitudes ranging from 1338 to 1875 m above sea level (asl) (Table 3.1). The geographic 

coordinates were recorded from the centre-point of the experiment field. 

Table 3.1:  Geographical coordinates of experiment locations 

Location Longitude Latitude Altitude Province 

KaramaI 2o15’54.126’’S 30o15’22.46’’E 1338 South-Eastern 
Karama II 2o 15’59.2308’’S 30o15’21.32’’E 1336 South-Eastern 
Muhanga 2o04’12.274’’S 29o43’24.69’’E 1875 West-Southern 
Kamonyi  2o02’41.049’’S 29o54’34.25’’E 1637 East-Southern 
Gakenke 1o40’57.084’’S 29o47’39.29’’E 1614 South-Northern 

Soil and climatic factors indicated that the experiment fields were diverse (Table 3.2).  

Table 3.2:  Soil and climatic parameters of experimental locations 

Parameters 
Locations 

KaramaI KaramaII Kamonyi Muhanga Gakenke 

Soil parameters 

pH 5.8 5.6 5.7 5.7 5.4 

Available P (mg kg-1) 3.2 3.4 3.2 4.8 3.9 

Exch K (cmol kg-1) 0.75 0.79 0.56 0.58 0.48 

Total N (%) 0.28 0.24 0.12 0.38 0.21 

Organic C (%) 1.71 1.69 1.18 3.06 2.8 

Exch Ca(cmol kg-1) 2.33 2.28 2.05 3.06 2.65 

Exch Mg(cmol kg-1) 0.32 0.31 0.64 0.14 0.28 

Exch Na(cmol kg-1) 0.02 0.03 0.08 0.04 0.01 

CEC (cmol kg-1) 10.82 10.6 8.74 16.3 14.2 

Clay (%) 71.2 67.1 28.3 67.5 63.1 

Sand (%) 26.1 28.3 61.1 28.3 23.4 

Silt (%) 2.7 4.6 10.6 4.2 13.5 

Climatic parameter* 

Rainfal (mm) 889 914 1134 1222 1298 

Av min temperature (Co) 15.2 15.1 14.4 13.2 13.1 

Av max temperature (Co) 30.2 29.8 29.8 28.7 26.8 
*the data sourced from nearby weather station,  

3.2.2 Experimental germplasm 

Thirty cassava genotypes (Table 3.3) were selected from research institutes, farmers’ 

cooperatives and private farms. The selection of genotypes was purposefully conducted 

through consultative discussions between local scientists, researchers and farmers. The main 
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traits for selection were high yield, CMD and CBSD resistance and the yellow-flesh colour 

(only two yellow-fleshed genotypes were available and collected). 

Table 3.3:  Cassava genotypes evaluated at five locations in Rwanda (2014/2015) 

No of genotypes Code of genotypes Name of genotypes Colour of flesh 

1 G1 Mavoka Yellow 
2 G2 Garukansubire Yellow 
3 G3 Gahene White 
4 G4 Mushedile White 
5 G5 Kibombwe White 
6 G6 Ndamirabana White 
7 G7 Gitamisi White 
8 G8 Rwizihiza White 
9 G9 Cyizere White 
10 G10 Kwatamumpare White 
11 G11 Creolina White 
12 G12 Gacyacyali White 
13 G13 Serukuseke Cream 
14 G14 PDB/10 White 
15 G15 Kavumu White 
16 G16 PDB/11 White 
17 G17 NAS3OP/4 White 
18 G18 MH98/0105 White 
19 G19 Bukarasa White 
20 G20 Gikorumunyu White 
21 G21 Bereryinkumi White 
22 G22 Mbakungahaze White 
23 G23 Nyirakarasi White 
24 G24 MM96/2536 White 
25 G25 MM96/0669 White 
26 G26 MM96/0316OP/21 White 
27 G27 Mbagarumbuse White 
28 G28 Gapfutsi White 
29 G29 Rwicabana White 
30 G30 Wadada White 

3.2.3 Experimental design and management  

The experiments were laid in 5 x 6 alpha design, with two replicates. Cuttings of 25 cm lengths, 

with at least four nodes, were taken from mature cassava and planted horizontally in a flat 

seedbed at a spacing of 1 x 1 m, giving a population density of 10 000 plants ha-1. Each plot 

comprised three rows with eight plants each, which made a total of 24 plants per plot. The 

data were collected from the inner rows, while the outer rows served as border rows, to 

minimize the competitive genetic effects. The plots and blocks were separated by 1.5 m and 

2 m alleys, respectively, to reduce inter-plot and inter-block plant competition. The trials were 

weeded manually and no fertilizers and irrigation were applied.  
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3.2.4 Data collection  

The data were collected from four randomly-selected plants from each plot. The data collected 

included the following: storage root number (SRN), storage root size (SRS), storage root mass 

(SRM), shoot mass (STM), total biomass mass (TBM), harvest index (HI), dry matter content 

(DMC), fresh storage root yield (FSRY), dry storage root yield (DSRY), cassava mosaic and 

cassava brown streak disease severity (CMD-S and CBSD-S), cassava brown streak disease 

root necrosis (CBSD-RN), total carotenoids (TC) and postharvest physiological deterioration 

(PPD).  

Data on CMD and CBSD severity (CMD-S and CBSD-S) were collected from the leaves and 

stems, six months after planting, while CBSD root necrosis (CBSD-RN) was collected at 

harvest, using the 1-5 scale, namely: 1 = no symptoms on leaves, stems and roots; 2 =  slight 

chlorotic spots on leaves and stems, necrosis in roots; 3 = moderate chlorotic spots on leaves 

and/or stems, necrosis in roots; 4 = severe chlorotic spots on leaves and/or stems/necrosis in 

roots; 5 = very severe chlorotic spots on leaves and/or stems/necrosis in roots (Hahn et al., 

1980; Hillocks et al., 1996; Rwegasira and Rey, 2012). Total carotenoids was analysed, using 

a spectrophotometric procedure proposed by Rodriguez-Amaya and Kimura (2004), where 

total carotenoids content (µg g-1) was calculated, using the following formula: 

𝐓𝐂(µ𝐠 𝐠−𝟏) =
𝐀 𝐱 𝐯𝐨𝐥𝐮𝐦𝐞 (𝐦𝐋)𝐱 𝟏𝟎𝟒

 𝐀𝟏𝐜𝐦
𝟏%  𝐱 𝐬𝐚𝐦𝐩𝐥𝐞 𝐰𝐞𝐢𝐠𝐡𝐭 (𝐠)

  

 

Where A is the absorbance; volume is the total volume of extract (25 mL); and A1cm
1%  is the 

absorption coefficient of β- carotene in petroleum ether (PE). 

The method developed by CIAT (Morante et al., 2010; Zidenga et al., 2012) was used to 

evaluate PPD, where the proximal and distal ends of the cassava storage roots were removed 

immediately after harvest. The proximal ends were exposed to the air and the distal ends were 

covered by using food plastic wrappers. The room temperature ranged from 21-28oC and the 

relative humidity was 70-80%. The assessment was conducted at 1, 3, 7 and 30 days after 

harvest (PPD-1, PPD-3, PPD-7 and PPD-30, respectively), using the score 1-10 to represent 

the discoloration, where score 1 = 10%, 2 = 20%,….., 10 = 100% (Chávez et al., 2005; 

Wheatley et al., 1985) on the transversal 10 slices that were 2 cm thick. They were cut along 

each storage root and, at each data collection, two storage roots were cut to score the slices, 

and the mean score from 20 slices per genotypes was calculated. 

FSRY expressed in t ha-1 was estimated using the formula: 

𝐅𝐒𝐑𝐘 (𝐭 𝐡𝐚−𝟏) =
𝐒𝐑𝐌𝐱𝟏𝟎 𝟎𝟎𝟎

𝟒
𝐱 𝟏𝟎𝟎𝟎 
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HI was obtained using the formula: 

𝐇𝐈 =
𝐒𝐑𝐌

𝐓𝐁𝐌
 , where SRM is the storage root mass, TBM represents the total biomass mass.  

DMC (%) was determined using the oven-drying method. Cassava storage roots from the 

individual four plants were washed, sliced into small pieces that had been picked randomly 

from apical, distal and middle sections of the storage root, and 100 g were dried in an oven 

for 48 hours at 80oC to reach constant weight. The samples were reweighed to obtain the dry 

mass and the DMC (%) was then calculated, using the formula: DMC (%) =
DM

FM
x100, where 

DM is the dry mass of the sample, and FM is the fresh mass of the sample. 

DSRY (t ha-1) was obtained by using the formula:  

𝐃𝐒𝐑𝐘 𝐭 𝐡𝐚−𝟏 =
𝐃𝐌𝐂 (%)𝐱 𝐅𝐒𝐑𝐘 (𝐭 𝐡𝐚−𝟏)

𝟏𝟎𝟎
 

3.2.5 Data analysis  

The analysis of variance (ANOVA) to determine the differences between genotypes was 

performed, using the REML analysis in GenStat 17th Edition. Using Hartley's Fmax, test (Ott 

and Longnecker, 2008), the locations variance was not significant (p >0.05), thus a combined 

ANOVA across the locations was performed. During statistical analysis, the genotype was 

considered as a fixed effect, while locations and replicates were random effects, using the 

following model:  

𝐏𝐢𝐣𝐤 = µ +  𝐠𝐢 +  𝐥𝐣 +  𝐠𝐥𝐢𝐣 + 𝐞𝐢𝐣𝐤,  

Where Pijk is phenotypic value due to genotype i in j replicates and k location; μ is population 

mean; gi is genotype effects; lj is locations effects (environments); glij is genotype x 

environment interaction effects; eijk is environment error associated to genotype i, 

environment j and replications k. 

The genotype and environment effects were considered random in the statistical model 

(Payne et al., 2011), in order to estimate the genotype, environment and their interaction 

variance components for each trait. The phenotypic variance component for each trait was 

partitioned into observational components of variance, as reported by Hallauer et al. (2010). 

δ2
p =  δ2

G +  δ2
E + δ2

GE , where σ2p is phenotypic variance; δ2
G variance due to genotype; δ2

E 

is variance due to environment; δ2
GE is variance due to genotype x environment interaction.  
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The broad sense heritability (H2) was calculated as the % ratio of genotypic and phenotypic 

variances as follows; H2 =
δ2

G

δ2
p

 x 100 

To determine the response of traits to selection and the magnitude of variation responsive to 

selection, the phenotypic coefficient of variation (PCV) and genotypic coefficient of variation 

(GCV) were calculated, using the method of Burton and de Vane (1953) and Shabanimofrad 

et al. (2013): PCV (%) =
√δ2

p

X
 x 100, GCV (%) =

√δ2
G

X
 x 100, where X represents the mean of 

each trait.  

The expected genetic advance (GA) under selection for each trait was calculated, according 

to Singh and Chaudhary (1985), as follows: GA = 𝑖 x δpx H2 , where i is the selection 

differential, which varied with selection intensity (5% intensity was used at which I = 2.06). The 

δp is the phenotypic standard deviation and H2 is the heritability in a broad sense.  

The expected GA (%) of the mean was calculated according to the Shukla et al. (2006): 

𝐆𝐀 (%) =
𝐆𝐀

𝐗
𝐱𝟏𝟎𝟎 

The phenotypic correlation using simple correlations and a principal component (PC) biplot 

were used to compare the traits. In the PC biplot, the angles between the biplot axes represent 

the correlations between the variables, and lines in opposite directions indicate negative 

correlation (Simon and Payne, 2104). The closer the angle is to 90, or 270 degrees, the smaller 

the correlation. An angle of 0 or 180 degrees reflects a correlation of 1 or -1, respectively 

(Kohler and Luniak, 2005). 

3.3 Results 

3.3.1 Combined analysis of variance for yield and yield components, viral diseases 

and postharvest traits at five locations 

Genotypes mean squares (MS) were significantly different (P<0.001) for all traits. Locations 

MS also were significantly different (P<0.001) for all traits (Table 3.4). Genotype x locations 

interactions were significant (P<0.05) only for some traits, namely, SRN, DMC, CMD-S, 

CBSD-S, PPD-3 and PPD-7. Replicates MS also were significant (P<0.05) for some traits, 

such as SRN, FSRY, DSRY, HI, PPD-7 and PPD-3. The determinant coefficient (R2) ranged 

from 0.734 for DSRY to 0.982 for total carotenoids (Table 3.4). 

  



57 
 

Table 3.4:  Combined analysis variances of cassava yield and yield components, 
viral diseases and postharvest traits at five locations in Rwanda  

Source of 
variation 

DF Mean squares 

SRN FSRY DMC DSRY HI CMD-S 

Rep 1 30.56** 569.50*** 13.52 53.32*** 0.080** 0.48 
Loc 4 33.42*** 514.03*** 41.71*** 43.45*** 0.18*** 6.14*** 
Gen 29 28.73*** 171.04*** 74.39*** 14.81*** 0.06*** 13.38*** 
Rep.Loc 4 0.70 303.31*** 3.28 24.17*** 0.002 1.37 
Rep.Gen 29 4.91 54.51 4.38 4.94 0.01 1.38* 
Loc.Gen 116 6.07* 47.94 6.51** 4.13 0.01 2.23*** 
Rep.Loc.Gen 116 3.94 48.13 3.77 4.30 0.01 0.77 
R2   0.80 0.74 0.88 0.73 0.78 0.89 
CV (%)  43.92 70.59 6.41 70.70 32.38 29.88 

Table 3.4: Continued 

Source of 
variation 

DF Mean squares 

 CBSD-S CBSD-RN TC PPD-3 PPD-7 PPD-30 

Rep 1 1.61 0.30 0.001 2499.9*** 2945.3*** 34.7 
Loc 4 107.11*** 72.32*** 0.248*** 5567.5*** 3200.1*** 859.0*** 
Gen 29 1.90*** 3.11*** 1.952*** 1158.6*** 1886.9*** 1028.4*** 
Rep.Loc 4 6.25*** 0.95 0.094*** 356.6* 1250.5*** 120.7 
Rep.Gen 29 0.96* 0.82 0.037*** 198.4* 424.6*** 348.6** 
Loc.Gen 116 0.86* 0.97 0.012 355* 441.4*** 175.9 
Rep.Loc.Gen 116 0.57 0.72 0.009 111.4 160.7 165.3 
R2   0.90 0.86 0.982 0.892 0.882 0.770 
CV (%)  23.49 34.30 17.07 43.03 30.05 15.11 

R2=(1-
SS err

SS tot
): coefficient of determination, DF = degrees of freedom; FSRY = fresh storage root yield (t ha-1); HI = harvest index; 

DMC = dry mass content (%); DSRY = dry storage root yield (t ha-1); SRN = storage root number plant-1; PPD-3, -7, -30 = 

postharvest physiological deterioration (%) after 3, 7 and 30 days respectively, CMD-S= cassava mosaic disease severity, 

CBSD-RN = cassava brown streak disease root necrosis scored on a scale of 1 -5; TC=Total carotenoids, CV = coefficient of 

variation (%); * = P<0.05; ** = P<0.01; *** = P<0.001 

3.3.2 Genetic variability and inter-relations for dry matter, total carotenoids and PPD 

The genotypic variance component at five environments was higher for all traits, except PPD-

3, compared to the variance for environment and genotype x environment interactions. The 

broad sense heritability (H2) for those traits ranged from moderate to very high, with PPD-30 

and TC leading the group with 100 and 99.2%, respectively (Table 3.5). The PCV for DMC 

and TC were higher than the GCV for both traits, while GCV was higher than PCV for PPD 

evaluated at three different periods after harvest (1, 3, and 7). A very high expected GA (% of 

mean) was recorded for TC (Table 3.5).  
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Table 3.5:  Variance components for three postharvest traits scored over five 
environments 

Traits δ2
g δ2

p δ2
GE δ2

E 𝐗 GCV(%) PCV(%) H2
(%) GA(%) 

DMC 6.79 8.66 1.28 0.59 30.30 8.6 9.7 78.4 15.7 
TC 0.19 0.20 0.00 0.00 0.57 77.9 78.2 99.2 159.6 
PPD-1 21.53 41.90 9.95 10.42 11.40 56.8 40.7 51.4 60.1 
PPD-3 80.40 269.50 102.2 86.90 35.19 46.6 25.5 29.8 28.7 
PPD-7 144.6 281.60 91.00 46.00 59.03 28.4 20.4 51.3 30.1 
PPD30 85.2 85.20 -11.40 11.40 91.29 10.1 10.1 100.0 20.8 

DMC: dry matter content, TC: total carotene, PPD-1: postharvest physiological deterioration after one day, PPD-3: postharvest 

physiological deterioration after three days, PPD-7: postharvest physiological deterioration after seven days, PPD-30: 

postharvest physiological deterioration after thirty days, δ2
g: genotypic variance, δ2

p: phenotypic variance, δ2
E: environment 

variance, δ2
GE: GxE interaction variance, GCV: genotypic coefficients of variation; PCV: phenotypic coefficients of variation; H2: 

broad sense heritability; GA (%): genetic advance % of the mean 

Correlations between DMC, TC and PPD were highly significant (p<0.001). The correlation 

between TC and DMC and PPD was negative and significant, while the correlation for DMC 

and PPD scored at 1, 3, 7 and 30 days after harvest was positive and significant (p<0.001) 

(Table 3.6). The Pearson’s correlation indicates a strong negative relationship between TC 

and DMC, while the correlation between DMC and PPD was positively weak to moderate (r= 

0.2 - 0.4). 

Table 3.6:  Correlation matrix of three postharvest traits of cassava 

Traits DMC TC PPD-1 PPD-3 PPD-7 PPD-30 

DMC  -      
TC -0.4158***  -     
PPD-1 0.4842*** -0.1748***  -    
PPD-3 0.3496*** -0.1974*** 0.4863***  -   
PPD-7 0.3368*** -0.2312*** 0.417*** 0.7961***  -  
PPD-30 0.2885*** -0.293*** 0.2536*** 0.4064*** 0.5228***  - 

DMC: dry matter content, TC: total carotene, PPD-1: postharvest physiological deterioration after one day, PPD-3: postharvest 

physiological deterioration after three days, PPD-7: postharvest physiological deterioration after seven days, PPD-30: 

postharvest physiological deterioration after thirty days, *: significance level at 5% where * = p<0.05; ** = p<0.01; *** = p<0.001 

The PC biplot explained 94.7% of the inter-relationship between postharvest traits. The TC 

line had a negative direction on PC-2, compared to the PPD-1, PPD-3, PPD-7 and DMC lines, 

which indicated a negative inter-relationship between TC and PPD (Figure 3.1). The inter-

relationship between TC and PPD-30 also was explained by the opposite direction of PPD-30 

line vs TC line.  
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Figure 3.1:  PC biplot explaining interrelation between postharvest traits 

The 30 genotypes evaluated at five environments had significant (p<0.001) variability on 

selected postharvest traits. The TC varied from 0.3-2.32 µg g-1 among genotypes, where G1, 

G2 and G13 recorded a high TC of 2.32, 1.84 and 0.94 µg g-1, respectively (Table 3.7). The 

colours of flesh of those three genotypes were yellow for G1 and G2, and cream for G13 

(Table 3.3). The genotype with the highest TC had the lowest DMC of 25.2%. The genotypes 

with high DMC (%) were G19, G7, G8, G27 and G3 with 35.2%, 33.8%, 33.8%, 33.5% and 

33.2%, respectively. The PPD evaluated at different periods showed that G1, followed by G17 

and G18, were the best genotypes with the lowest PPD rate, compared to the other genotypes 

(Table 3.7). The rank, based on the average rank across five environments, indicated that G1 

(Mavoka, a yellow-fleshed root), G18, G14, G16 and G25 were the best genotypes in terms 

of storability of cassava storage root at ambient room conditions. 
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Table 3.7:  Performance and ranking of genotypes for TC, DMC and PPD across 
five environments 

Genotype
s 

Cassava genotypes performance Over
all 

rank 
TC (µg 
g-1) 

Rank DMC 
(%) 

Rank PPD-3 
(%) 

Rank PPD-7 
(%) 

Rank PPD-30 
(%) 

Rank 

G1 2.32 1 25.2 30 6.6 1 20.5 1 55.0 1 1 
G10 0.37 22 31.0 14 31.0 8 49.0 5 91.0 12 8 
G11 0.38 19 28.8 22 26.0 6 52.0 10 88.0 7 12 
G12 0.38 20 30.2 18 39.0 18 63.0 18 86.5 8 22 
G13 0.94 3 30.5 17 44.0 26 67.0 22 100.0 23 20 
G14 0.67 5 29.0 21 26.0 4 51.0 6 88.0 11 3 
G15 0.44 15 33.0 6 53.0 30 77.0 27 98.0 18 25 
G16 0.47 12 31.4 12 27.5 9 52.0 8 100.0 23 4 
G17 0.38 20 26.7 26 11.5 2 29.5 1 73.0 3 7 
G18 0.84 4 26.5 27 22.0 3 39.0 3 77.0 2 2 
G19 0.35 23 35.2 1 45.0 25 71.0 24 91.0 12 21 
G2 1.84 2 27.5 25 36.5 15 60.0 19 88.0 9 15 
G20 0.44 16 30.8 15 47.0 26 67.0 21 92.5 14 24 
G21 0.33 27 32.4 8 50.0 29 80.0 30 97.0 15 30 
G22 0.48 11 28.2 23 36.0 16 61.0 15 100.0 23 19 
G23 0.33 26 31.1 13 42.5 24 62.0 20 98.0 18 26 
G24 0.53 8 26.0 28 24.0 4 50.5 7 85.5 10 6 
G25 0.52 9 28.0 24 31.7 10 47.5 4 78.0 5 5 
G26 0.55 6 30.6 16 31.5 11 63.0 22 98.0 18 13 
G27 0.45 13 33.5 4 40.0 19 64.0 14 96.3 22 11 
G28 0.54 7 29.1 20 35.5 14 55.0 9 91.0 15 9 
G29 0.39 17 25.7 29 34.0 12 78.0 27 100.0 23 28 
G3 0.30 30 33.2 5 33.5 13 55.0 13 100.0 23 16 
G30 0.32 29 29.2 19 27.0 7 52.0 10 85.0 4 18 
G4 0.35 24 32.0 11 43.0 20 69.0 17 100.0 23 23 
G5 0.35 24 32.2 10 48.0 28 74.0 27 96.0 17 29 
G6 0.45 14 32.4 9 36.0 17 56.0 12 91.0 5 9 
G7 0.39 18 33.8 2 42.0 21 61.0 16 98.0 18 14 
G8 0.52 10 33.8 3 44.0 22 72.0 26 98.0 23 16 
G9 0.32 28 32.4 7 42.0 23 73.0 24 99.0 23 26 
Mean 0.57 - 30.30 - 35.19 - 59.03 - 91.29 - - 
LSD 0.10 - 1.98 - 13.34 - 15.62 - 12.15 - - 
P value <0.001 - <0.001 - <0.001 - <0.001 - <0.001 - - 
CV (%) 20.31 - 7.42 - 43.03 - 30.05 - 15.11 - - 

G: Genotype, LSD: least significant difference, CV: coefficient of variation, DMC: dry matter content, TC: total carotenoids, 

PPD-1: postharvest physiological deterioration after one day, PPD-3: postharvest physiological deterioration after three days, 

PPD-7: postharvest physiological deterioration after seven days, PPD-30: postharvest physiological deterioration after thirty 

days 

3.3.3 Genetic variability and interrelationship of cassava yield and yield components 

Genotypic variance components were higher than environment and GxE interaction variance 

components for RN, FSRY, DMC, DSRY and HI. Inversely, the environment variance 

component was higher than the genotypic variance for TB (Table 3.8). The PCV (%) was 

higher than GCV (%) for all traits. The H2
 (%) ranged from 20.5% for TB, to 93.1% for DSRY. 

As expected for TB, all traits recorded moderate to high H2
 (%). The expected GA (% of mean) 

was high for DSRY, FSRY and RN, with 70.0%, 68.4% and 54.0%, respectively. 
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Table 3.8:  Variance components for yield and yield component traits scored over 
five environments 

Traits δ2
g δ2

p δ2
GE δ2

E 𝐗 GCV(%) PCV(%) H2(%) GA(%) 

RN 2.265 3.649 0.928 0.456 4.520 33.3 42.3 62.1 54.1 
TB 35.100 170.400 6.400 128.900 26.690 22.2 48.9 20.6 20.8 
FSRY 12.310 14.230 -5.850 7.770 9.828 35.7 38.4 86.5 68.4 
DMC 6.788 8.658 1.283 0.587 30.300 8.6 9.7 78.4 15.7 
DSRY 1.068 1.147 -0.576 0.655 2.933 35.2 36.5 93.1 70.0 
HI 0.004 0.009 0.001 0.003 0.316 21.2 29.4 52.1 31.7 

RN: root number, TB: Total biomass, FSRY: fresh storage root yield (t ha-1), DMC: dry matter content, DSRY: dry storage root 

yield (t ha-1); HI: harvest index, δ2
g: Genotypic variance, δ2

p: phenotypic variance, δ2
E: environment variance, δ2

GE: GxE 

interaction variance, GCV: genotypic coefficients of variation; PCV: phenotypic coefficients of variation; H2: broad sense 

heritability; GA (%): genetic advance % of the mean 

Correlations matrix of yield and yield components revealed a significance (p<0.001) 

correlation between yield and yield component traits. The Pearson’s correlation indicated that 

RN correlated moderately and positively with TB, FRSY, HI and DRSY (Table 3.9), while the 

DMC correlated negatively with all yield and yield components traits, which indicated that dry 

matter could affect the final yield. 

Table 3.9:  Correlation matrix of yield and yield components traits of cassava 

Traits RN TB FRSY DMC DRSY HI 

RN  -      
TB 0.6647***  -     
FSRY 0.669*** 0.7716***  -    
DMC -0.0331ns -0.0616ns -0.1529**  -   
DSRY 0.5169*** 0.209*** 0.5502*** -0.1049ns  -  
HI 0.669*** 0.7716*** 1.000*** -0.1529*** 0.5502***  - 

RN: root number, TB: Total biomass, FSRY: fresh storage root yield (t ha-1), DMC: dry matter content, DSRY: dry storage root 

yield (t ha-1); HI: harvest index, *: significance level at 5% where * = p<0.05; ** = p<0.01; *** = p<0.001 

The principal component (PC) biplot explained 95.9% (PC1 and PC2 represent 87.9% and 

8.0%, respectively) of the inter-relationships and revealed the inter-relationship between yield 

and yield components traits (Figure 3.2). The DMC (%) had a negative direction on PC1, while 

HI, RN, FSRY and DSRY had a positive direction on the same PC, which indicates the 

negative coefficients expressing the negative inter-relations between DMC (%) with the other 

traits. All traits have a positive direction on PC2, expect TB, which is on flat direction vs PC2, 

indicating the neutral direction and negligible interrelation coefficients with DMC (%). 

  



62 
 

 

Figure 3.2:  PC biplot explaining correlation between yield and yield components 
traits 

There were significant (p<0.001) differences for all yield and yield component traits. The 

average mean across five environments indicated that G23, G13, G7, G25 and G16 were the 

top five genotypes, while G20, G11, G5, G29 and G15 were the poorest performing genotypes 

in terms of RN (Table 3.10). The G1, G14, G23, G4, G25 had a high TB. In terms of FRSY, 

the yield ranged from 3.5 - 19.4 t ha-1; G23 had the highest yield of 19.4 t ha-1, followed by G1 

and G4, with yields of 18.1 and 16.7 t ha-1, respectively. The lowest yielding genotype was 

G5, with 3.5 t ha-1. Similarly, for the DSRY, the genotype G23 recorded the highest yield of 

6.0 t ha-1, while G5 had the lowest yield of 1.1 t ha-1. The HI varied from 0.4 to 0.1. Thirteen 

genotypes had a similar HI of 0.4, while the genotype with lowest HI was G20, with 0.1 (Table 

3.10). The averaged rank of 30 genotypes tested at five environments revealed that G23, G4, 

G7, G14 and G8 were the best-performing genotypes in terms of yield and yield components.  
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Table 3.10:  Performance and ranking of genotypes for yield and yield components 
across five environments 

Genoty
pes 

Cassava genotypes performance Over
all 

rank 
RN Ra

nk 
TB (t 
ha-1) 

Ra
nk 

FSRY 
(t ha-1) 

Ra
nk 

DMC 
(%) 

Ra
nk 

DSRY 
(t ha-1) 

Ra
nk 

HI Ra
nk 

G1 4.8 11 40.7 1 18.1 2 25.17 30 4.6 3 0.4 5 7 
G10 3.8 21 19.3 25 6.9 19 30.95 14 2.1 20 0.3 19 21 
G11 2.6 28 16.1 29 5.9 25 28.79 22 1.7 27 0.3 22 29 
G12 4.7 12 20.2 22 6.0 24 30.16 18 1.8 24 0.2 23 23 
G13 7.1 2 28.9 13 11.1 11 30.47 17 3.4 11 0.4 3 10 
G14 5.4 8 39.3 2 14.5 4 28.95 21 4.2 4 0.3 16 4 
G15 1.9 30 20.1 23 5.8 26 33.04 6 2.0 22 0.2 24 26 
G16 6.4 5 30.1 9 10.8 13 31.40 12 3.4 12 0.3 15 9 
G17 4.2 18 22.5 19 9.6 17 26.66 26 2.6 18 0.4 8 19 
G18 3.5 22 35.6 6 11.0 12 26.45 27 2.6 17 0.2 29 17 
G19 2.9 25 22.2 20 4.9 28 35.20 1 1.8 26 0.2 26 24 
G2 5.2 10 30.1 10 12.7 7 27.46 25 3.5 10 0.4 6 13 
G20 1.9 29 16.3 28 4.0 29 30.75 15 1.2 29 0.1 30 30 
G21 3.0 24 20.0 24 6.4 22 32.41 8 2.1 21 0.2 27 22 
G22 4.7 13 29.7 11 10.6 15 28.16 23 2.9 15 0.3 20 14 
G23 9.4 1 38.2 3 19.4 1 31.06 13 6.0 1 0.4 1 1 
G24 5.5 7 30.9 8 12.9 5 26.00 28 3.4 13 0.4 9 12 
G25 6.7 4 35.7 5 12.7 6 28.03 24 3.6 8 0.4 4 6 
G26 4.0 19 28.3 15 8.8 18 30.64 16 2.6 16 0.3 17 15 
G27 4.4 14 18.9 26 5.5 27 33.50 4 1.9 23 0.3 14 18 
G28 3.9 20 27.1 17 10.6 14 29.05 20 3.1 14 0.4 12 16 
G29 3.1 23 23.9 18 6.6 20 25.71 29 1.7 28 0.2 28 27 
G3 2.8 27 16.5 27 6.6 21 33.21 5 2.2 19 0.4 10 20 
G30 4.2 17 22.0 21 6.2 23 29.18 19 1.8 25 0.3 21 25 
G4 5.3 9 36.8 4 16.7 3 32.04 11 5.3 2 0.4 2 2 
G5 2.8 26 13.7 30 3.5 30 32.23 10 1.1 30 0.2 25 28 
G6 4.3 15 27.5 16 12.1 9 32.40 9 3.9 7 0.4 7 11 
G7 6.9 3 28.8 14 12.0 10 33.79 2 4.1 6 0.4 13 3 
G8 6.2 6 32.3 7 10.4 16 33.76 3 3.5 9 0.4 11 5 
G9 4.2 16 29.1 12 12.4 8 32.44 7 4.1 5 0.3 18 8 
Mean 4.5 - 26.7 - 9.8 - 30.30 - 2.9 - 0.3 - - 
LSD 1.97 - 12.75 - 6.15 - 1.98 - 1.83 - 0.10 - - 
P value <0.001 - <0.001 - <0.001 - <0.001 - <0.001 - <0.001 - - 
CV (%) 49.45 - 54.27 - 71.05 - 7.42 - 70.66 - 34.27 - - 

G: Genotype, LSD: least significant difference, CV: coefficient of variation, RN: root number, TB: Total biomass, FSRY: fresh 

storage root yield (t ha-1), DMC: dry matter content, DSRY: dry storage root yield (t ha-1); HI: harvest index, 

3.3.4 Genetic variability and inter-relationships for severity of viral diseases  

The variance components analysis for CMD and CBSD revealed that the genotypic variance 

component was higher, compared to the environment and GxE interaction variance 

components for CMD-S traits. On the contrary, the environment variance component was 

higher than the genotypic variance components for both evaluated traits of CBSD (CBSD-S 

and CBSD-RN) (Table 3.11). The PCV (%) was higher than GCV (%) for both diseases. The 

H2
 was 60.4% for CMD, 14.1% for CBSD-RN and 5.5% for CBSD-S. A similar observation was 

noted for GA (%), where CMD had a higher GA (%), compared to the two severities of CBSD. 

This implies that breeding for CBSD could progress slowly. 
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Table 3.11:  Variance components for viral diseases scored over five environments 

Traits δ2
g δ2

p δ2
GE δ2

E Mean GCV(%) PCV(%) H2
(%) GA(%) 

CMD-S 1.12 1.85 0.67 0.07 2.93 36.0 46.3 60.4 57.7 
CBSD-S 0.10 1.90 0.03 1.77 3.23 10.0 42.7 5.5 5.0 
CBSD-RN 0.21 1.52 0.12 1.19 2.47 18.7 49.9 14.1 14.6 

CMD-S= cassava mosaic disease severity, CBSD-RN = cassava brown streak disease root necrosis scored on a scale of 1 -5, 

δ2
g: Genotypic variance, δ2

p: phenotypic variance, δ2
E: environment variance, δ2

GE: GxE interaction variance, GCV: genotypic 

coefficients of variation; PCV: phenotypic coefficients of variation; H2: broad sense heritability; GA (%): genetic advance % of 

the mean 

The Pearson’s correlation showed a significant (p<0.001) negative correlation between CMS-

S and FSRY. Similarly, both traits of CBSD (CBSD-S and CBSD-RN) indicated a significant 

(p<0.05) negative correlation with the FSRY (Table 3.12). CMS-S does not present a 

significant correlation with the two traits of CBSD, while the two CBSD traits were strongly and 

positively correlated (p<0.001). 

Table 3.12:  Correlation matrix for viral diseases and FRSY of cassava 

Traits CMD-S CBSD-S CBSD-RN FRSY 

CMD-S  -    
CBSD-S 0.0558ns  -   
CBSD-RN 0.0731ns 0.7177***  -  
FSRY -0.2573*** -0.189*** -0.2048***  - 

CMD-S= cassava mosaic disease severity, CBSD-RN = cassava brown streak disease root necrosis scored on a scale of 1 -5, 

*: significance level at 5% where * = p<0.05; ** = p<0.01; *** = p<0.001 

The PC biplot for multivariate analysis revealed the inter-relationship between CMD and CBSD 

traits. The PC 1 accounted for 92.8% of the inter-relationship between viral disease and FSRY 

(the FSRY served as an indication of how viral disease affects the cassava yield in general). 

The PC2 accounted for only 4.7 % of the inter-relationships. The FSRY presented a negative 

direction (negative coefficients) with both PCs (Figure 3.3), which indicated that all viral 

diseases negatively affected the cassava yield. 
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Figure 3.3:  PC biplot explaining correlation between viral diseases and FRSY of 
cassava 

The severity of CMD and CBSD differed significantly between the genotypes. Only two 

genotypes (G1 and G16) did not show CMD symptoms, six months after cassava planting 

(Table 3.13). The symptoms of both CBSD traits were present in all genotypes, with 

significantly (p<0.001) different severities. The viral diseases ranking across five environments 

indicated that G1, G16, G8, G13 and G2 were more resistant to CMD compared to other 

genotypes. The genotype G4 (Mushedile, a landrace grown mainly in the western province of 

Rwanda) showed the lowest CBSD severity in the storage roots. 

  



66 
 

Table 3.13:  Performance and ranking of genotypes for CMD-S and CBSD-S and 
CBSD-RN across five environments 

Genotypes Cassava genotypes performance Overall 
rank CMD-S Rank CBSD-S Rank CBSD-RN Rank 

G1 1.0 1 3.7 26 3.1 25 16 
G10 4.7 29 3.3 16 2.2 10 27 
G11 4.6 28 3.0 6 2.8 20 20 
G12 4.9 30 3.0 6 2.9 21 24 

G13 1.5 4 2.6 3 1.7 3 1 
G14 1.8 7 3.7 26 2.6 17 18 
G15 3.7 21 3.1 12 2.3 11 17 
G16 1.0 1 3.6 24 3.2 28 14 
G17 2.1 11 2.1 1 1.3 2 2 
G18 2.9 14 3.0 6 3.0 24 8 
G19 3.9 23 3.7 26 2.4 12 29 
G2 1.7 5 3.3 16 2.1 8 6 
G20 4.3 27 3.6 24 2.0 6 29 
G21 3.5 19 4.1 30 2.0 6 28 

G22 3.1 16 3.5 22 2.4 12 23 
G23 2.8 13 3.2 14 2.6 17 12 
G24 3.4 17 3.0 6 2.4 12 7 
G25 2.7 12 3.3 16 1.9 4 9 
G26 1.9 8 4.0 29 2.9 21 25 
G27 2.9 14 2.9 5 2.1 8 4 
G28 3.9 23 3.1 12 2.5 16 19 
G29 3.5 19 2.8 4 3.1 25 10 
G3 4.2 26 3.2 14 2.9 21 26 
G30 3.4 17 3.4 20 2.4 12 22 

G4 3.7 21 2.4 2 1.2 1 5 
G5 4.0 25 3.0 6 3.3 29 20 
G6 1.9 8 3.0 6 1.9 4 3 
G7 2.0 10 3.3 16 2.6 17 11 
G8 1.3 3 3.5 22 3.3 29 15 
G9 1.7 5 3.4 20 3.1 25 13 
Mean 2.9 - 3.2 - 2.5 - - 
LSD 1.074 - 0.7599 - 0.8097 - - 
P value <0.001 - <0.001 - <0.001 - - 
CV (%) 41.56 - 26.74 - 37.14 - - 

G: Genotype, LSD: least significant difference, CV: coefficient of variation, CMD-S= cassava mosaic disease severity, CBSD-

RN = cassava brown streak disease root necrosis scored on a scale of 1 -5.  

3.4 Principal component analysis of cassava traits’ contribution to genotype 

variations  

The principal components analysis on selected postharvest, viral diseases and yield and yield 

components traits indicated that the first three principal components explained 60.9% of the 

total variation. Only four components were presented, because their eigenvalues were <1. 

The PC1 (29.24%) explained more variation than PC2, PC3 and PC4, which accounted for a 

variation of 20.09%, 11.65% and 8.45%, respectively. For PC1, the FSRY, DSRY, TB, SRN, 

and HI contributed positively to the variation, while for the PPD-3, PPD-7, CMD-S, DMC and 

PPD-1, much of variation was accounted for by PC2 (Table 3.14). The variation due to PC3, 
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positively contributed to only two traits, namely CBSD-S and PPD-30, while the TC and CMD-

S contributed negatively to the PC4 variation. In contrast, the HI and CBSD-RN contributed 

positively to the variation due to PC4. 

Table 3.14:  Principal component analysis of cassava trait contribution to genotype 
variations 

Traits Principal Component (PC) 

PC1 PC2 PC3 PC4 

FSRY 0.942 0.047 0.007 0.047 
DSRY 0.905 -0.028 -0.010 0.130 
TB 0.869 -0.176 -0.072 -0.135 
SRN 0.830 -0.046 0.002 0.017 
HI 0.436 0.161 -0.158 0.427 
PPD-3 -0.131 0.903 -0.059 0.097 
PPD-7 -0.060 0.894 -0.270 0.087 
PPD-1 -0.061 0.662 0.115 -0.029 
DMC 0.090 0.579 0.169 -0.239 
PPD-30 -0.034 0.015 0.924 0.087 
CBSD-S -0.049 -0.042 0.901 0.056 
CBSD-RN -0.037 -0.152 0.111 0.785 
TC -0.193 -0.119 -0.061 -0.606 
CMD-S 0.172 0.452 0.138 -0.497 

Eigen value 4.093 2.812 1.631 1.183 
Percentage variation 29.2 20.1 11.6 8.5 
Cumulative percentage variation 29.2 49.3 61.0 69.4 

RN: root number, TB: Total biomass, FSRY: fresh storage root yield (t ha-1), DMC: dry matter content, DSRY: dry storage root 

yield (t ha-1); HI: harvest index, TC: total carotenoids, PPD-1: postharvest physiological deterioration after one day, PPD-3: 

postharvest physiological deterioration after three days, PPD-7: postharvest physiological deterioration after seven days, PPD-

30: postharvest physiological deterioration after thirty days, CMD-S= cassava mosaic disease severity, CBSD-RN = cassava 

brown streak disease root necrosis scored on a scale of 1 -5. 

3.5 Discussion and conclusions 

This study aimed at examining the extent of genetic variability in cassava for yield and yield 

components, viral disease severity and physiological postharvest deterioration. To achieve 

this objective, many traits, such as SRN, TB, HI, DMC, FSRY, DSRY, CMD-S, CBSD-S, 

CBSD-RN, TC, and PPD (PPD-1, PPD-3, PPD-7 and PPD-30), were recorded. It is expected 

that the information generated by this study will guide future cassava breeders to improve 

landrace populations, based on the genetic variability for farmers’ preferred traits in Rwanda, 

such as high yield, resistance to viral diseases and delayed PPD cultivars, in addition to other 

important traits.  

The significant variation of the mean squares of genotypes observed for all traits indicated that 

genotypes were significantly different; thus a genetic advance could be achieved by the 

hybridization of the evaluated genotypes. Locations were also significantly different, which 

could be attributed to the environmental effects on the genotype performance of different traits. 

The significant difference observed between replicates could be attributed to the soil variation. 

This is in agreement with Tumuhimbise (2015), who reported a variation among genotypes, 
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which will result in genetic advance through crossing contrasting genotypes. The significant 

variation among environments can affect the performance of various cassava traits 

(Ntawuruhunga and Dixon, 2010; Ssemakula and Dixon, 2007), due to the unpredictable 

features of the environment. 

The determinant coefficient (R2) ranged from 0.734 for DSRY, to 0.982 for total carotenoids, 

indicating that 73% of the variation of DSRY was due to genotypes, while 27% variation was 

of unknown origin. Total carotenoids variation was explained as 98% by the genotype variation 

and only 2% was due to an unknown origin. This implies that carotenoids could be selected 

phenotypically, based on storage root flesh colour. Similarly, Ceballos et al. (2013) reported 

the possibility of improving carotenoids in cassava conventionally in Africa, in parallel with 

DMC. Njenga et al. (2010) reported that 98% of the variability in carotene content can be 

explained phenotypically by the variability in colour of the cassava storage root.  

The higher genotypic variance components observed for yield, CMD and CBSD severity and 

postharvest traits (RN, FSRY, DMC, DSRY, HI, TC, CMD, PPD-1, PPD-7 and PPD-30), 

compared to the variances for environment and GxE interactions components, indicated the 

great variability of genotypes. The H2(%) for those traits ranged from moderate to high, the 

high H2(%) indicated a considerable genetic variation among the 30 cassava genotypes that 

were unaffected by the environment, which implies that a substantial genetic advance could 

be achieved by the hybridization of the genotypes. The highest heritability (>50%) was 

observed on RN, FSRY, DMC, DSRY, HI, TC, CMD, PPD-1, PPD-7 and PPD-30, and could 

be attributed to the high genetic variability of genotypes evaluated in this study. The high 

heritability of carotenoids content that was found in cassava storage roots in this study, agrees 

with the findings of Morillo-C et al. (2012) and Ceballos et al. (2013), who reported a high 

narrow sense heritability of carotenoids in cassava storage roots.  

The high genetic advance (%) for the traits recorded >50% of H2, indicated that good progress 

could be made in improving the traits. The substantial genetic advance through conventional 

breeding for most important cassava traits was reported by Ceballos et al. (2013), Boakye et 

al. (2013) and Tumuhimbise et al. (2015). These findings agree with Pradeepkumar et al. 

(2001), Kalia and Sood (2005) and Okwuagwu et al. (2008), who reported that the high 

heritability estimates, along with high genetic advance for most of the cassava traits. The 

heritability alone could not be used for selection, due to the occurrence of non-additive 

variance, which implies that genetic advance, as a percentage of the mean, becomes a useful 

indicator of the progress that can be expected as a result of the selection of a population for 

specific traits. 
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The PCV was higher than its corresponding GCV for DMC and TC, which indicated the 

significant role of the environment in the expression of these traits. These findings agree with 

those of Ntawuruhunga and Dixon (2010), Manu-Aduening et al. (2013) and Tumuhimbise et 

al. (2015). In contrast, for the PPD, the GCV was higher than PCV, which indicated little effect 

of the environment on PPD expression. The latter finding agrees with that of Tumuhimbise et 

al. (2015), who reported a low environment effect on PPD expression. The high GCV suggests 

a higher selection progress in this population, while low GCV values indicate reduced genetic 

variability (Okwuagwu et al., 2008). 

The Pearson’s correlation and PC biplot analysis, as a procedure used on multivariate analysis 

for genetic variability studies, indicated that TC correlated negatively with PPD and DMC. The 

negative relationship between TC and PPD could be attributed to the antioxidant properties 

present in carotenoids. Several authors have reported that carotenoids have antioxidant 

properties (Azqueta and Collins, 2012; Edge et al., 1997; Priya and Siva, 2014; Rodriguez-

Amaya, 2010; Uarrota et al., 2014), which could delay the onset of PPD. The negative 

relationship between TC and PPD agreed with the reports, indicating that carotenoids is 

negatively correlated with PPD (Sánchez et al., 2006; Sánchez et al., 2013; Uarrota et al., 

2014; Xu et al., 2013; Zidenga et al., 2012). The findings on the correlation between DMC and 

PPD corroborate those of Chávez et al. (2005), Sánchez et al. (2006) and Morante et al. 

(2010), who reported that DMC correlates positively weak with PPD. The DMC correlated 

negatively with TC, which indicated challenges for the improvement of carotenoids-enriched 

cassava, because the negatively-correlated traits are not easily improved in parallel. All 

enriched carotenoids cultivars were recently introduced into the country from IITA and could 

face adaptation problems to the local conditions, which could consequently impair the 

simultaneous improvement of TC and DMC. However, Ceballos et al. (2013) reported 

simultaneous gains for TC and DMC through rapid recurrent selection. 

The main principal component (PC1) and second principal component (PC2) contributed 

much value towards the total variation of the traits, and were as high as 29.2% and 20.1%, 

respectively, for the genotypes evaluated in this study. TC negatively contributed to the total 

genetic variation, as indicated by PCA, which could be attributed to the low number of locally-

available carotenoids-enriched cultivars. In view of the role of carotenoids in human nutrition 

and their ability to delay PPD, there is a need to conventionally improve the local cassava 

population, in order to increase its genetic variability towards carotenoids content. 

In conclusion, this study revealed a high genetic variability (61.0%), with high broad sense 

heritability and GA (% of mean) for the important cassava traits evaluated in Rwanda. This is 

an opportunity for the breeders to improve landraces, based on phenotypic selection. Though 
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some traits showed negative inter-relations among them, such as TC and DMC, the high 

heritability of TC indicated that selecting genotypes enriched in carotenoids can improve the 

cassava population in Rwanda and, consequently, the storability of cassava storage root will 

be achieved. The low genetic variability of TC (only G1 and G2 are yellow-fleshed cassava) 

in the local cassava population can be improved by inter-mating the two genotypes with 

available landraces in diallel and other factorial mating designs. This study suggests further 

exploration on the extent of combining ability of locally-available enriched carotenoids 

genotypes and landraces, in order to improve the carotenoids content and delay the PPD of 

cassava in Rwanda. 
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CHAPTER IV 

Genotype x environment interaction effects analysis of cassava yield and postharvest 
traits in Rwanda  

 

Abstract 

The genotype x environment interaction (GEI) effects complicate selection of, and 

recommendations for high performance genotypes. The general or specific adaptation of 

cultivar traits is the main goal of breeders. This study analysed the GEI effects of postharvest 

(total carotene – TC, postharvest physiological deterioration - PPD), viral disease severity and 

yield traits of 30 cassava genotypes. The experiments were conducted in the 2014/15 season 

at five different locations in Rwanda. The collected data were analysed using the additive main 

effects and multiplicative interaction (AMMI) model, AMMI stability value (ASV) and genotype 

stability index (GSI) analysis. The results indicated that all traits were significantly affected by 

genotypes. The TC, PPD and viral disease traits (cassava mosaic severity - CMD-S, cassava 

brown streak disease on leaves stem CBSD-LS and root necrosis CBSD-RN) were 

significantly affected by the environment. The GEI was insignificant for TC, but significant for 

viral disease traits, and PPD evaluated three days after harvesting. The interactive principal 

component axis (IPCA1) was significantly different for all traits, while IPCA2 was significantly 

different for dry matter content (DMC), CMD-S and PPD. The % sum of square (SS) of 

variation due to genotypes was higher than % SS variation due to the environment for all traits, 

except CBSD-RN and CBSD-S, indicating the influence of the environment on the severity of 

the viral diseases. The % variation due to the genotype for TC was higher (96%) than the 

variation due to the environment (1.7%) and GxE interaction (2.4%), indicating less interaction 

effect of environments on TC accumulation. The ASV indicated that G1 (a higher TC genotype) 

was an unstable genotype for TC, while the GSI ranked the same genotype as the most stable 

for PPD. The AMMI biplot indicated that G1 had a general adaptation to all locations, and 

delayed the onset of PPD more than other genotypes. In terms of fresh storage root yield 

(FSRY) and CMD-S, G1 was the ideal genotype for all environments. The correlation between 

TC and PPD was significantly negative, indicating the possible effect of carotenoids in delaying 

the onset of PPD. 

 

Keywords: additive main effects and multiplicative interaction; genotype adaptation; genotype 

stability index; physiological postharvest deterioration; total carotenoids content 
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4.1 Introduction 

Cassava is among the food security crops in developing countries that are located in the 

tropical and sub-tropical lowland regions of the world. It is efficient in carbohydrate production, 

adapted to a wide range of environments and tolerant to drought and acidic soils (FAO, 2010). 

It tolerates poor soils, requires less labour than other crops, and harvesting can be delayed 

by months, or even up to three years (Sayre, 2011). It is a food security crop that is generally 

grown for subsistence by smallholder farmers on marginal and sub-marginal lands in Africa 

(Sayre, 2011). Although cassava grows well in different environments, its production varies 

from genotype to genotype, and from one environment to another. This variability is attributed 

to the inherent genotype properties, environmental conditions and GxE interactions (Falconer 

and Mackay, 1996). During varietal selection, breeders aim to select high yielding genotypes, 

which are stable across all environments (Akinwale et al., 2011). The GxE interactions could 

complicate the selection process (Bondari, 2003; Ding et al., 2007; Kvitschal et al., 2009; 

Tumuhimbise, 2013; Tumuhimbise et al., 2014), therefore, the breeders must conduct multi-

environment tests to study the effects of GxE interactions. It is important for breeders to 

understand the effects of GxE interactions for the varietal recommendation of a specific 

genotype for a specific environment. 

The GxE interaction is a result of the differential response of genotypes across environments 

(Malosetti et al., 2013). The phenotypic characteristics of an individual are determined by the 

effects of genotype and the environment, which are not always additive, because of GxE 

interactions (Akinwale et al., 2011; Falconer and Mackay, 1996). Good progress of a breeding 

program depends on the degree and nature of genotypic and non-genotypic variation for 

various characteristics (Safavi et al., 2015). Complex traits, such as yield, carotenoids content 

and PPD, could be greatly influenced by various environmental conditions (Cummings, 2015; 

Wu et al., 2012). The yield performance of cassava depends on genetic and environmental 

factors, thus understanding these factors helps breeders to select stable performing 

genotypes, which requires specific statistical methods and tools. 

The GxE interactions in multi-environment trials complicates the analysis and interpretation of 

the generated results, and can consequently lead to low efficiency in the selection of the best 

stable genotypes (Agyeman et al., 2015). To determine the significance and magnitude of GxE 

interaction, various methods and techniques have been suggested (Agyeman et al., 2015; 

Booyse, 2014; Gauch et al., 2008; Kvitschal et al., 2009; Yan et al., 2007). According to 

Booyse (2014), the additive main effects and multiplicative interaction (AMMI), the genotype 

main effects and genotype x environment interaction biplot (GGE), cluster analysis, principal 

component analysis and linear discriminant (canonical variate) analysis, are the most common 

multivariate statistical methods used to investigate GxE interactions. According to Agyeman 
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et al. (2015), the AMMI and GGE biplot analyses are two methods that are widely used to 

overcome the difficulties in the data analysis of multi-environment trials. The AMMI analysis 

method is the most accurate in detailing the specific adaptations of cassava genotypes to 

favourable and unfavourable environments (Kvitschal et al., 2009). The AMMI model 

estimates the magnitude and significance of the GxE interaction effects of each genotypes’ 

response, by using a single model, combining the analysis of variance for the main effects of 

genotypes and environments, as well as the principal component analysis (PCA) for the GxE 

interaction (Kang and Gauch, 1996). The GGE biplot provides more information with regards 

to environments and genotype performance than the AMMI biplot analysis (Agyeman et al., 

2015). However, the GGE biplot method is unable to separate the genotype effects from the 

GEI effects, which is not the case in the AMMI (Gauch et al., 2008).  

Most local cassava breeding programs select the genotypes based on yield and yield 

component traits, which are of importance to farmers. However, the adoption of cultivars 

depends on various factors, including social-economic and environmental conditions (Hahn et 

al., 1992). The postharvest physiological deterioration and total carotenoids content are 

generally ignored by cassava breeders in sub-Saharan Africa (SSA), which could explain the 

considerable postharvest losses and low β-carotene content of available cassava cultivars in 

the region. Therefore, the analysis of GxE interaction involving postharvest traits, yield and 

yield components, and viral diseases traits were conducted in this study, using the AMMI biplot 

analysis: i) to investigate the significance and magnitude of GxE interactions of 30 cassava 

genotypes for yield and postharvest traits, and ii) to identify the most stable and high yielding 

genotypes at five contrasting environments in Rwanda.  

4.2 Material and methods 

4.2.1 Experimental site 

The description of experimental sites, their geographic coordinates and soil and climatic 

parameters were described previously in Chapter III (Tables 3.1 and 3.2). 

4.2.2 Experimental germplasm 

The germplasm used in this experiment is described in Table 3.3 of Chapter III. 

4.2.3 Experimental design and management  

The experiments were laid in 5 x 6 alpha designs, with two replicates. Cuttings of 25 cm 

lengths, with at least four nodes, were taken from mature cassava, and planted horizontally in 

a flat seedbed at a spacing of 1 x 1 m, giving a population density of 10 000 plants ha-1. Each 
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plot was comprised of three rows with eight plants each, which made a total of 24 plants per 

plot. The data were collected from the inner rows, while the outer rows served as border rows, 

to minimize the competitive genetic effects. The plots and blocks were separated by 1.5 m 

and 2 m alleys, respectively, to reduce inter-plot and inter-block plant competition. The trials 

were weeded manually and no fertilizers and irrigation water were applied.  

4.2.4 Data collection  

The data were collected from four randomly-selected and hand-uprooted plants from each 

plot. The data collected included the following: storage root number (SRN), storage root size 

(SRS), storage root mass (SRM), shoot mass (STM), total biomass mass (TBM), harvest index 

(HI), dry mass content (DMC), fresh storage root yield (FSRY), dry storage root yield (DSRY), 

cassava mosaic and cassava brown streak disease severity on leaves and stem (CMD-S and 

CBSD-LS), cassava brown streak disease root necrosis (CBSD-RN), total carotenoids (TC) 

and postharvest physiological deterioration (PPD).  

Data on CMD and CBSD severity (CMD-S and CBSD-LN) were collected from the leaves and 

stems six months after planting, while CBSD storage root necrosis (CBSD-RN) was collected 

at harvest, using the 1-5, scale: 1 = no symptoms on leaves, stems and storage roots, 2 = 

slight chlorotic spots on leaves and stems/necrosis in storage roots, 3 = moderate chlorotic 

spots on leaves and or stems/necrosis in storage roots, 4 = severe chlorotic spots on leaves 

and or stems/necrosis in storage roots, and 5 = very severe chlorotic spots on leaves and or 

stems/necrosis in storage roots (Hahn et al., 1980; Hillocks et al., 1996; Rwegasira and Rey, 

2012). Total carotenoids was analysed from homogeneous representative sample of 15 g per 

genotype, using the spectrophotometric procedure proposed by Rodriguez-Amaya and 

Kimura (2004), where total carotenoids content (µg g-1) was calculated, using the following 

formula: 

 

𝐓𝐂(µ𝐠 𝐠−𝟏) =
𝐀 𝐱 𝐯𝐨𝐥𝐮𝐦𝐞 (𝐦𝐋)𝐱 𝟏𝟎𝟒

 𝐀𝟏𝐜𝐦
𝟏%  𝐱 𝐬𝐚𝐦𝐩𝐥𝐞 𝐰𝐞𝐢𝐠𝐡𝐭 (𝐠)

  

 

Where A is the absorbance; volume is the total volume of extract (25 mL); and A1cm
1%  is the 

absorption coefficient of β- carotene in petroleum ether (PE). 

To evaluate PPD, the method developed by CIAT (Morante et al., 2010; Zidenga et al., 2012) 

was used with modification, where the proximal and distal ends of cassava storage roots were 

removed immediately after harvest. The proximal ends were exposed to the air and the distal 

ends of the storage root were covered, using food plastic wrappers. The room temperature 

ranged from 21-28oC, and the relative humidity was 70-80%. The assessment was conducted 
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at 3, 7 and 30 days after harvest (PPD-3, PPD-7 and PPD-30, respectively) on ten transversal 

slices of 2 cm thick cut along each storage root, using the score of 1-10 to represent the 

discoloration, where score 1 = 10%, 2 = 20%,….., 10 = 100% (Chávez et al., 2005; Wheatley 

et al., 1985). At each data collection, two storage roots were cut to score the slices, and the 

mean score from 20 slices per genotype, was calculated. 

FSRY expressed in t ha-1 was estimated using the formula: FSRY (t ha−1) =
SRM x 10 000

4

1000
, where 

SRM is the storage root mass, 10000 represents the total number of plants per ha, while 4 is 

the plants sampled.  

HI was obtained using the formula: HI =
SRM

TBM
, where SRM is the storage root mass, and TBM 

represent total biomass mass. 

DMC (%) was determined using the oven drying method. Cassava storage roots from the four 

plants were washed, sliced into small pieces picked randomly from apical, distal and middle 

sections of the storage root, and 100 g were dried in an oven for 48 hours at 80oC. The 

samples were reweighed to obtain the dry mass, and DMC (%) was then calculated, using the 

formula:  

DMC (%) =
DM

FM
x100, where DM is the dry mass of the sample, FM is the fresh mass of the 

sample. 

DSRY (t ha-1) was obtained by using the formula: DSRY (t ha−1) =
DMC (%) x FSRY (t ha−1)

100
 

4.2.5 Data analysis 

The analysis of variance (ANOVA) was performed for each location, using GenStat 17th 

Edition. Then the Hartley's Fmax test for variance homogeneity (Ott and Longnecker, 2008) was 

conducted to reveal the homogeneity of variance across locations. The combined AMMI 

analysis was performed across locations, using the model suggested by Gauch and Zobel 

(1996) below: 

𝐘𝒊𝒋 = 𝝁 + g𝒊 + e𝒋 + ∑ 𝛌𝒏𝛂𝒊𝒏𝛄𝒋𝒏

𝑵

𝒏=𝟏
 + 𝛒𝒈𝒆   + 𝛆𝒊𝒋  

Where: Y𝑖𝑗: yield of genotypes; 𝜇: grand mean; g𝑖: genotypic main effect; e𝑗: environmental 

main effect; N: number of PCA axes considered; λ𝑛: singular value of the nth PCA axis; α𝑖𝑛: 

scores for the ith genotype on the nth axis; and γ𝑗𝑛: scores for the jth; ρ𝑔𝑒: residual for IPCAs 

not fitted; ε𝑖𝑗: error term. 
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The AMMI stability value (ASV) proposed by Purchase et al. (2000) was used to quantify and 

rank genotypes according to their yield stability. Although there are other statistical methods 

that are widely used to measure stability, the ASV statistic is the most suitable for the AMMI 

analysis (Farshadfar, 2008). The ASV has been defined as the distance from the coordinate 

point to the origin in a two-dimensional scatterplot of the first interaction principal component 

axis (IPCA1) scores, against the second interaction principal component axis (IPCA2) 

(Farshadfar et al., 2012; Purchase et al., 2000). The IPCA1 accounts for most of the GE 

variation, and the IPCA1 scores are weighted by the ratio of IPCA1 SS (from AMMI ANOVA) 

to IPCA2 SS in the ASV formula below: 

𝐀𝐒𝐕 = √[
𝐒𝐒𝐈𝐏𝐂𝐀𝟏

𝐒𝐒𝐈𝐏𝐂𝐀𝟐
(𝐈𝐏𝐂𝐀𝟏 𝐬𝐜𝐨𝐫𝐞)]

𝟐  

+ (𝐈𝐏𝐂𝐀𝟐 𝐬𝐜𝐨𝐫𝐞)𝟐 

The lower the ASV, the more stable a genotype is.  

Genotype selection across environments entails various complementary techniques. In this 

study, ranking based on genotypes performance, AMMI stability value (ASV) and genotype 

stability index (GSI) were used to determine the best performing stable genotypes across five 

environments. The GSI simultaneously selects genotypes for performance and stability 

(Farshadfar, 2008). The GSI is calculated, based on the ASV and yield performance rank of 

genotypes, as per the following equation: 

GSI𝑖 =  RASV𝑖 +  RY𝑖 

Where: GSIi is the genotype stability index for the ith genotype across environments for each 

trait; RASVi represents the rank of the ith genotype across environments, based on ASV; and 

RYi is rank of the ith genotype, based on mean performance across environments. A genotype 

with the lowest GSI for a specific trait is considered to be the best for combined performance 

and stability across environments (Farshadfar, 2008; Farshadfar et al., 2012). The sum of GSI 

rank for all traits was calculated, to identify the most stable genotypes for all traits and 

environments, and the genotype with the smallest rank sum was considered to be the best 

across traits. 

4.3 Results  

4.3.1 Effects of environment and genotype interactions on trait variations 

The results of the combined analysis of variance for genotypes showed significant (p<0.001) 

differences for all traits. The DMC, HI, CBSD-S, CBSD-RN, PPD-3 and PPD-30 were 

significantly (p<0.001) influenced by environments. The TC and CMD-S were significantly 
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(p<0.05) affected by environments. Blocks showed significant differences for some traits, such 

as FSRY, DSRY, CMD-S, CBSD-LS, TC, PPD-3 and PPD-7, which indicates the possibility of 

a soil characteristic variation between blocks, which affects the expression of these traits 

(Table 4.1). The GxE interaction also indicated significant differences (p<0.05) for some traits, 

namely, DMC, CMD-S, CBSD-LS, cassava brown streak disease root necrosis (CBSD-RN) 

and PPD-3, which demonstrates the combined effects of genotypes and environments on the 

expression of those traits. 

The interaction principal component analysis (IPCA1) was significantly different (p<0.05) for 

all traits, while IPCA2 was significantly different for DMC, CMD-S, PPD-3 and PPD-7 (Table 

4.1). The significant IPCA2 justified the use of the AMMI2 model for those traits, but the AMMI1 

model was also applied to the significant traits with IPCA1 only. The % SS variation due to 

genotype, was higher than the % SS variation due to environment for all traits, except CBSD-

RN and CBSD-S, which explains the effect of the environment on the expression of CBSD. 

The % SS variation for FSRY and DSRY showed that the GxE interaction had a higher % SS 

variation, compared to the % SS for genotypes and environments separately, which indicates 

the influence of GxE interaction on the expression of such traits. 

The GxE interaction variation, partitioned to IPCA1 and IPCA2, showed that IPCA1 accounted 

for a much higher % SS variation than IPCA2 and the residual. The IPCA1 captured almost 

double the % SS variation, compared to IPCA2 for all traits, except the postharvest 

physiological deterioration evaluated after 30 days (PPD-30), which was explained 100% by 

IPCA1 (Table 4.1). The residual % SS variation for FRSY was higher, compared to that of the 

other traits, which indicated that FRSY is influenced by many factors, the 22.5% variation of 

which was due to unknown factors in the GxE interactions. The % variation due to genotype 

for TC was higher (96%) than the variation due to environment (1.7%) and GxE interaction 

(2.4%). The GxE interaction variation, partitioned into principal components, indicated that 

IPCA1 counted 80.8%, IPCA2 counted 18.4%, while the residual was 0.8% of all variations 

(Table 4.1). 
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Table 4.1:  Combined AMMI analysis for nine traits of 30 cassava genotypes evaluated at five locations in Rwanda in 2014-2015 
Source of variation Mean squares 

DF FSRY DMC DSRY HI CMD-S CBSD-S CBSD-RN TC PPD-3 PPD-7 PPD-30 

Treatments 149 84.4*** 20.67*** 7.26** 0.02653*** 4.321*** 3.92*** 3.313*** 0.3959*** 651*** 797*** 360.1*** 
Genotypes (G) 29 171*** 74.39*** 14.81*** 0.05827*** 14.196*** 1.9*** 3.057*** 1.9516*** 1159*** 1887*** 1028.4*** 
Locations (E) 4 514 41.71*** 43.45 0.17766*** 4.547* 107.11*** 72.775*** 0.2479* 5568*** 3200 859*** 
Block 5 356.5*** 5.33 30*** 0.0174 1.617 5.32*** 0.913 0.0754*** 785*** 1589*** 103.5 
Interactions (GEI) 116 47.9 6.51** 4.13 0.0134 1.845*** 0.86* 0.982* 0.012 355*** 441*** 175.9 
IPCA 1  32 93.4** 15.72*** 8.4** 0.02786*** 4.018*** 1.74*** 1.91*** 0.0315** 774*** 906*** 438.7*** 
IPCA 2  30 43.9 7.09* 3.45 0.0128 1.831** 0.97 1.285 0.0077 441*** 546*** 143.1 
Residuals  26 23.2 0.03 1.51 0.0006 0.565 0 0 0.0005 59 108 38.3 
Error 145 49.4 3.9 4.43 0.0104 0.837 0.65 0.734 0.0148 129 213 202 

Source of variation 
Sum of squares 

DF FSRY DMC DSRY HI CMD-S CBSD-S CBSD-RN TC PPD-3 PPD-7 PPD-30 

Treatments 149 12577 3079 1082.1 3.953 643.9 583.6 493.7 58.98 97054 118720 53660 
Genotypes (G) 29 4960 2157 429.5 1.69 411.7 55.2 88.7 56.6 33601 54720 29823 
Locations (E) 4 2056 167 173.8 0.711 18.2 428.5 291.1 0.99 22270 12801 3436 
Block 5 1783 27 150 0.087 8.1 26.6 4.6 0.38 3926 7947 518 
Interactions (GEI) 116 5561 755 478.8 1.553 214 99.9 113.9 1.39 41183 51200 20402 
IPCA 1  32 2989 503 268.8 0.892 128.6 55.7 61.1 1.01 24755 28996 14038 
IPCA 2  30 1317 213 103.4 0.383 54.9 29.2 38.6 0.23 13221 16376 4294 
Residuals  26 1254 1 39.2 0.017 30.5 0 0 0.01 3207 5828 2069 
Error 145 7164 565 641.9 1.505 121.4 94.4 106.4 2.15 18677 30952 29284 
% variation due to G  39.4 70.1 39.7 42.7 50.7 9.5 18 96 34.6 46.1 55.6 
% variation due to E  16.3 5.4 16.1 18 32.4 73.4 59 1.7 22.9 10.8 6.4 
% Variation due to GE  44.2 24.5 44.2 39.3 16.9 17.1 23.1 2.4 42.4 43.1 38 
% GEI due to IPCA1  53.76 70.15 65.34 69.04 60.1 65.61 61.28 80.8 60.1 56.6 68.8 
% GEI due to IPCA2  23.69 29.71 25.13 29.64 25.7 34.39 38.72 18.4 32.1 32 21 
% residual  22.55 0.14 9.53 1.32 14.3 0 0 0.8 7.8 11.4 10.1 

IPCA1= interaction principal component axes one, IPCA2= interaction principal component axes two, FSRY = fresh storage root yield (t ha-1); HI = harvest index; DMC = dry mass content (%); 

DSRY = dry storage root yield (t ha-1); PPD-3, -7, -30 = postharvest physiological deterioration (%) after 3, 7 and 30 days respectively, CMD-S= cassava mosaic disease severity scored on a scale 

of 1 -5, CBSD-RN = cassava brown streak disease root necrosis scored on a scale of 1 -5, CBSD-LS=cassava brown streak disease on leaves and stem scored on a scale of 1 -5, TC=total 

carotene (µg 100g-1); significance level * = P<0.05; ** = P<0.01; *** = P<0.001 
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4.3.2 Effects of genotypes and environment interaction on postharvest traits across 

environments 

The IPCA2 was significant for PPD-3 and PPD-7, and not significant for TC and PPD-30, 

hence the AMMI1 model was used for TC and PPD-30, while the AMMI2 model was used for 

PPD-3 and PPD-7. The AMMI1 indicated that most variations for TC and PPD-30 were 

accounted for by PC1 (72.3% and 68.8%, respectively, of the GxE interaction) (Figure 4.1 A 

and D). The distribution of genotypes in AMMI1 biplot 4.1 indicated that most of genotypes 

are scattered closer to the origin (the centre of the biplot), indicating less interaction with the 

environment for TC. The genotype G18 exhibited good general adaptation, with a mean 

greater than the general mean, and its IPCA score is close to zero for TC for all environments, 

while G1, G2, G13 exhibited specific adaptation for the Muhanga location, with a higher value 

than general mean and a large value of IPCA. (Figure 4.1 A). The genotype selection index 

(GSI) revealed that the carotenoids-enriched genotypes were not stable, where G1, G2 and 

G13 had higher carotenoids content, while G28 was the most stable, followed by G26, G18, 

G27 and G29 (Table 4.2). The most unstable genotypes were G30, G23, G3, G10 and G5 and 

these genotypes also had a low carotenoids content (Table 4.2). Figure 4.1 D indicated that 

G17 had good general adaptation for PPD-30, but it had less PPD damage than the general 

mean and an IPCA score of close to zero. The genotype points were more scattered than the 

location points, indicating that the variability due to genotypes is higher than the location 

variability. Though G1 was unstable across locations, it showed a delayed PPD-30, compared 

to other genotypes. 

The AMMI2 biplots for PPD-3 and PPD-7 indicated that most of the genotypes were scattered 

far from the biplot centre, showing that most genotypes were unstable (Figure.4.1 B and C). 

In Figure 4.1 B for PPD-3, genotypes G1, G4, G23 and G27 were scattered close to the origin 

of the biplot (0, 0), indicating less interaction with the locations scattered away from the biplot 

centre and exhibiting maximum interaction with locations. The mean rank and GSI rank 

showed that G1 is the best genotype to withstand PPD-3 (Table 4.2). Based on the projection 

judgement of genotype points on the environment for PPD-3, the genotypes G18, G14, G26 

and G16 had a positive interaction with the Gakenke, Kamonyi and KaramaII locations (Figure 

4.1), hence indicating a specific adaptability to these locations. Genotypes G2, G5, G22, G8 

and G11 showed a specific adaptability to the Karama location, while G9, 23 and G28 were 

specifically adapted to the Muhanga location (Figure 4.1 B). For the PPD-7, genotypes G1 

and G16 were closer to the biplot origin (0,0) indicating a general adaptation to locations, and 

these genotypes were ranked first and second, respectively, by GSI (Table 4.2). The projection 

of genotype points on environments for PPD-7 indicated that genotypes G18, G24 and G30 
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had a positive interaction with the KaramaII and Kamonyi locations (Figure.4.1 C), revealing 

their specific adaptability to both locations. Based on the length of the vectors from the origin, 

the Muhanga and Karama locations exhibited a high interaction with genotypes for PPD-3 and 

PPD-7 (Figure.4.1 B and C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

      A: AMMI 1 biplot for TC   B: AMMI2 biplot for PPD-3 

  

        C: AMMI2 biplot for PPD-7           D: AMMI 1 biplot for PPD-30  

 

Figure 4.1:  AMMI 1 biplot A for TCC and D for PPD-30 and AMMI2 biplot B for PPD-3 and C for 

PPD-7 
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Table 4.2:  Ranking of 30 genotypes over five environments for postharvest traits 
Genotypes TC PPD-3 

Means  Rank ASV AVS 
Rank 

GSI GSI 
Rank 

Means Rank ASV AVS 
Rank 

GSI GSI 
Rank 

G1 2.32 1 2.22 30 31 14 6.6 1 1.69 4 5 1 
G2 1.84 2 1.54 29 31 14 36.5 17 4.06 22 39 22 
G3 0.3 30 0.47 17 47 28 33.5 12 2.39 10 22 8 
G4 0.35 24 0.39 12 36 21 43 23 0.84 3 26 13 
G5 0.35 24 0.56 20 44 26 48 28 5.87 26 54 29 
G6 0.45 14 0.55 19 33 18 36 15 3.4 16 31 17 
G7 0.39 18 0.56 21 39 23 42 20 4.81 25 45 26 
G8 0.52 10 0.17 10 20 5 44 24 2.31 8 32 19 
G9 0.32 28 0.13 9 37 22 42 20 6.09 27 47 27 

G10 0.37 22 0.63 23 45 27 31 9 2.34 9 18 3 
G11 0.38 19 0.12 6 25 11 26 5 3.64 18 23 9 
G12 0.38 20 0.45 14 34 19 39 18 2.06 6 24 11 
G13 0.94 3 1.1 28 31 14 44 24 3.84 20 44 25 
G14 0.67 5 0.82 27 32 17 26 5 4.02 21 26 13 
G15 0.44 15 0.12 7 22 8 53 30 2.45 11 41 23 
G16 0.47 12 0.36 11 23 9 27.5 8 2.15 7 15 2 
G17 0.38 20 0.04 1 21 7 11.5 2 3.55 17 19 5 
G18 0.84 4 0.42 13 17 3 22 3 6.31 28 31 17 
G19 0.35 23 0.48 18 41 24 45 26 7.72 29 55 30 
G20 0.44 16 0.12 8 24 10 47 27 4.45 24 51 28 
G21 0.33 27 0.46 16 43 25 50 29 1.87 5 34 20 
G22 0.48 11 0.45 15 26 12 36 15 3.37 15 30 16 
G23 0.33 26 0.66 24 50 29 42.5 22 0.12 1 23 9 
G24 0.53 8 0.62 22 30 13 24 4 3.03 14 18 3 
G25 0.52 9 0.78 26 35 20 31.7 11 7.98 30 41 23 
G26 0.55 6 0.11 4 10 2 31.5 10 3.84 19 29 15 
G27 0.45 13 0.11 5 18 4 40 19 0.4 2 21 7 
G28 0.54 7 0.08 2 9 1 35.5 14 4.24 23 37 21 
G29 0.39 17 0.11 3 20 5 34 13 2.89 12 25 12 
G30 0.32 29 0.66 25 54 30 27 7 2.98 13 20 6 

Table 4.2: Continued 

Genotypes 

PPD-7 PPD-30 

Means Rank AVS AVS 
Rank 

GSI GSI 
Rank 

Means  Rank AVS AVS 
Rank 

GSI GSI 
Rank 

G1 20.5 1 0.77 2 3 1 55 1 12.78 29 30 14 
G2 60 14 3.72 16 30 12 88 8 7.12 25 33 17 
G3 55 11 2.86 9 20 5 100 25 2.46 8 33 17 
G4 69 23 4.47 23 46 28 100 25 2.46 8 33 17 
G5 74 27 4.37 21 48 29 96 16 2.66 15 31 15 
G6 56 13 3.49 15 28 10 91 11 7.92 27 38 28 
G7 61 15 5.34 27 42 26 98 19 0.65 1 20 3 
G8 72 25 2.13 6 31 14 98 19 3.39 19 38 28 
G9 73 26 2.9 10 36 21 99 24 2.92 16 40 30 

G10 49 5 2.51 8 13 3 91 11 2.02 7 18 2 
G11 52 8 5.55 29 37 22 88 8 4.15 20 28 10 
G12 63 18 1.58 5 23 9 87 7 5.51 21 28 10 
G13 67 21 4.16 20 41 25 100 25 2.46 8 33 17 
G14 51 7 3.25 14 21 6 88 8 9.09 28 36 27 
G15 77 28 2.44 7 35 19 98 19 0.65 1 20 3 
G16 52 8 0.71 1 9 2 100 25 2.46 8 33 17 
G17 29.5 2 3.16 13 15 4 73 2 2.65 14 16 1 
G18 39 3 4.83 25 28 10 77 3 6.91 24 27 9 
G19 71 24 3.91 18 42 26 91 11 6.32 22 33 17 
G20 67 21 3.04 12 33 15 93 15 1.01 6 21 7 
G21 80 30 0.98 3 33 15 97 18 0.79 5 23 8 
G22 61 15 4.46 22 37 22 100 25 2.46 8 33 17 
G23 62 17 1.43 4 21 6 98 19 0.65 1 20 3 
G24 50.5 6 4.48 24 30 12 86 6 7.61 26 32 16 
G25 47.5 4 8.99 30 34 17 78 4 15.8 30 34 25 
G26 63 18 3.88 17 35 19 98 19 0.65 1 20 3 
G27 64 20 4.11 19 39 24 96 17 3 17 34 25 
G28 55 11 2.91 11 22 8 91 11 3.25 18 29 13 
G29 78 29 5.47 28 57 30 100 25 2.46 8 33 17 
G30 52 8 5.18 26 34 17 85 5 6.51 23 28 10 

ASV= AMMI stability value, G= genotype; GSI = genotype selection index, PPD-3=postharvest physiological deterioration after 

three days, PPD-7= postharvest physiological deterioration after seven days, PPD-30= postharvest physiological deterioration 

after thirty days, TC= total carotenoid (µg g-1) 
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4.3.3 Effects of genotypes and environment interaction on yield traits across 

environments 

The IPCA2 was significant for all yield traits (HI, FRSY, DMC and DRSY), thus the AMMI2 

model was used to analyse the GxE interaction on yield and yield components across five 

environments. The AMMI2 for all yield traits showed that most of the genotypes were scattered 

far from the biplot centre (0,0), indicating that most genotypes were unstable (Figure 4.2). The 

AMMI stability value (ASV) is the distance in two dimensional scatterplots of IPCA1 and IPCA2 

scores, which are measured by using the theorem of Pythagoras (Purchase et al. 2000); the 

genotypes with the lowest ASV are the most stable genotypes. In terms of FRSY, the AMMI 

biplot and ASV indicated that G8 and G12 were the most stable genotypes, while the most 

unstable genotypes were G23 and G24 (Figure 4.2 B and Table 4.3). ASV quantifies GxE 

interaction variation, but does not indicate the best genotype (high yield and stable). The 

genotype selection index (GSI) combines both genotype stability and high yield, giving a useful 

method to determine the ideal genotypes. Based on GSI, genotypes G25, G2, G8, G14 and 

G1 were ideal for all environments for FRSY (Table 4.3). The distance from biplot origin (0, 0) 

indicated that the Gankeke and Kamonyi locations had the lowest interaction with genotypes 

for FRSY (Figure 4.2 B). 

The AMMI biplot and ASV indicated that G21 and G16 were the most stable genotypes 

(Figure.4.2 A and Table.4.3), while the GSI showed that G17, G2, G1, G28 and G16 were the 

most ideal genotypes for HI. The high dry matter content (DMC) is among the consumers’ 

preferred cassava traits, and genotypes G4 and G1 were most stable for DMC, as shown by 

ASV and the AMMI biplot, while the GSI indicated that G15, G4, G19, G21 and G7 were the 

ideal genotypes (Figure 4.2 C and Table.4.3). In terms of dry storage root yield (DSRY), the 

AMMI biplot and ASV indicated that genotypes G12 and G8 were most stable, while the GSI 

revealed G8, G25, G28, G16 and G4 as ideal genotypes (Figure 4.2 D and Table 4.3). Based 

on the distance from the biplot origin (0, 0), the highest GxE interaction for DRSY was found 

at the Karama and KaramaII locations (Figure 4.2.D). 
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           A: AMMI 1 biplot for HI   B: AMMI 1 biplot for FSRY

  

           C: AMMI1 biplot for DM           D: AMMI1 biplot for DSRY 

 

 Figure 4.2:  AMMI 1 biplot A for HI, B for FSRY, C for DM and D for DSRY 
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Table 4.3:  Overall mean and ranking of 30 genotypes over five environments for 
yield and yield components 

Genotypes Harvest Index Fresh Storage Root Yield (t ha-1) 

Means Rank ASV AVS 
Rank 

GSI GSI 
Rank 

Means  Rank ASV AVS 
Rank 

GSI GSI 
Rank 

G1 0.393 5 0.187 11 16 3 18.112 2 2.744 20 22 5 
G2 0.391 6 0.18 9 15 2 12.708 7 1.252 9 16 2 
G3 0.363 10 0.265 17 27 11 6.593 21 0.723 4 25 8 
G4 0.432 2 0.684 29 31 18 16.746 3 5.078 28 31 15 
G5 0.238 25 0.558 27 52 30 3.488 30 1.021 7 37 22 
G6 0.388 7 0.187 12 19 6 12.148 9 2.037 16 25 8 
G7 0.355 13 0.191 13 26 9 11.996 10 2.985 22 32 17 
G8 0.356 11 0.275 18 29 13 10.41 16 0.055 1 17 3 
G9 0.283 18 0.502 23 41 24 12.439 8 3.123 23 31 15 

G10 0.283 19 0.264 16 35 20 6.916 19 1.615 13 32 17 
G11 0.259 22 0.161 8 30 15 5.879 25 1.255 10 35 20 
G12 0.241 23 0.076 3 26 9 6.038 24 0.064 2 26 10 
G13 0.411 3 0.418 21 24 7 11.128 11 1.762 15 26 10 
G14 0.334 16 0.199 14 30 15 14.465 4 2.141 17 21 4 
G15 0.241 24 0.1 5 29 13 5.835 26 1.744 14 40 24 
G16 0.336 15 0.033 2 17 5 10.786 13 1.321 11 24 7 
G17 0.387 8 0.124 6 14 1 9.593 17 1.363 12 29 13 
G18 0.198 29 0.454 22 51 29 10.991 12 4.091 26 38 23 
G19 0.237 26 0.346 19 45 26 4.931 28 0.929 5 33 19 
G20 0.142 30 0.254 15 45 26 3.988 29 2.344 18 47 29 
G21 0.234 27 0.02 1 28 12 6.428 22 0.951 6 28 12 
G22 0.279 20 0.527 25 45 26 10.552 15 3.958 25 40 24 
G23 0.439 1 0.516 24 25 8 19.371 1 5.241 29 30 14 
G24 0.378 9 0.603 28 37 22 12.9 5 5.593 30 35 20 
G25 0.396 4 0.536 26 30 15 12.719 6 0.635 3 9 1 
G26 0.286 17 0.365 20 37 22 8.843 18 4.716 27 45 27 
G27 0.338 14 0.786 30 44 25 5.463 27 2.362 19 46 28 
G28 0.356 12 0.1 4 16 3 10.607 14 1.115 8 22 5 
G29 0.233 28 0.147 7 35 20 6.622 20 2.756 21 41 26 
G30 0.271 21 0.181 10 31 18 6.152 23 3.395 24 47 29 

Table 4.3: Continued 
Genotypes Dry matter content (%) Dry Storage Root Yield (t ha-1) 

Means Rank ASV AVS 
Rank 

GSI GSI 
Rank 

Means  Rank ASV AVS 
Rank 

GSI GSI 
Rank 

G1 25.17 30 0.324 2 32 14 4.565 3 1.526 18 21 4 
G2 27.46 25 2.477 26 51 27 3.455 10 0.857 11 21 4 
G3 33.21 5 2.609 27 32 14 2.215 19 0.728 8 27 10 
G4 32.04 11 0.31 1 12 1 5.347 2 3.411 29 31 16 
G5 32.23 10 2.463 25 35 19 1.107 30 0.654 5 35 20 
G6 32.4 9 2.674 28 37 22 3.941 7 1.05 14 21 4 
G7 33.78 2 1.398 15 17 5 4.098 6 2.292 25 31 16 
G8 33.76 3 1.64 18 21 9 3.496 9 0.128 1 10 1 
G9 32.44 7 1.346 11 18 6 4.106 5 2.108 24 29 13 

G10 30.95 14 0.601 4 18 6 2.092 20 0.992 13 33 19 
G11 28.79 22 1.782 20 42 25 1.739 27 0.795 10 37 21 
G12 30.16 18 1.383 14 32 14 1.78 24 0.129 2 26 9 
G13 30.46 17 1.853 21 38 24 3.408 11 1.351 16 27 10 
G14 28.95 21 0.656 5 26 10 4.187 4 1.737 21 25 8 
G15 33.04 6 0.85 6 12 1 1.96 22 1.153 15 37 21 
G16 31.4 12 2.252 23 35 19 3.393 12 0.741 9 21 4 
G17 26.66 26 1.473 16 42 25 2.57 18 0.979 12 30 15 
G18 26.45 27 3.278 29 56 30 2.585 17 1.831 22 39 23 
G19 35.2 1 1.357 12 13 3 1.75 26 0.541 3 29 13 
G20 30.75 15 0.357 3 18 6 1.209 29 1.47 17 46 28 
G21 32.41 8 0.986 7 15 4 2.085 21 0.678 6 27 10 
G22 28.16 23 3.826 30 53 28 2.878 15 2.429 26 41 24 
G23 31.06 13 1.666 19 32 14 6.048 1 3.426 30 31 16 
G24 26 28 0.997 8 36 21 3.388 13 3.121 28 41 24 
G25 28.03 24 1.377 13 37 22 3.565 8 0.691 7 15 2 
G26 30.64 16 1.524 17 33 18 2.622 16 2.678 27 43 27 
G27 33.5 4 1.895 22 26 10 1.857 23 1.539 19 42 26 
G28 29.05 20 1.085 9 29 12 3.084 14 0.545 4 18 3 
G29 25.71 29 2.436 24 53 28 1.7 28 1.545 20 48 29 
G30 29.18 19 1.29 10 29 12 1.753 25 1.847 23 48 29 

ASV= AMMI stability value, DMC: dry matter content, DSRY: dry storage root yield (t ha-1), G= genotype, GSI = genotype 

selection index, FSRY: fresh storage root yield (t ha-1), HI: harvest index 
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4.3.4 Effects of genotypes and environment interaction on CMD and CBSD severity 

across environments 

The IPCA 2 was significant for CMD and CBSD severity; hence, the AMMI2 model was 

adopted to analysis the GxE interaction. Most genotypes were scattered far away from the 

AMMI biplot centre (0, 0) for the cassava mosaic disease (CMD) and the cassava brown streak 

disease (CBSD) severity, indicating that most of genotypes were unstable across five 

environments (Figure.4.3). For CMD-S, the ASV and AMMI biplot indicated that G14, G13, 

G24, G11 and G10 were the most stable genotypes, but not with the lowest severity, while the 

GSI revealed that G1, G13, G16 had the lowest severity and were the most stable genotypes 

(Table 4.4). The distance from biplot origin (0,0) indicated that G27 and G19 were positively 

interacting with Karama and Karama II, indicating their specific adaptation to such locations. 

Genotypes G29 and G22 had a specific adaptation to Gakenke location, G2 and G15 were 

specifically adapted to the Kamonyi location, while G4 and G21 presented a positive 

interaction with Muhanga location, showing specific adaptation (Figure.4.3 A). 

The CBSD severity on leaves and stems (CBSD-LS), analysed using ASV and the AMMI 

biplot, indicated that G3, G29, G23, G15 and G25 were the most stable genotypes (Figure 4.3 

B), while GSI revealed that G29, G3, G15, G13 and G28 were among the genotypes that had 

low severity and stability (Table .4.4). The genotypes and environments falling in the same 

biplot sector interact positively; a genotype with a high positive interaction in a specific 

environment indicates a specific adaptation to such an environment. Thus, G6 had a specific 

adaptation to the Gakenke location, G17 showed a specific adaptation to Muhanga, G1 had a 

specific adaptation to KaramaII, while G5 presented specific adaptability to the Karama 

location (Figure.4.3 B). 

The CBSD necrosis on storage root (CBSD-RN) causes a considerable loss of products and 

affects food security for cassava farmers in East African countries. The ASV and AMMI biplot 

determined the stability and adaptability of genotypes for CBSD-RN, and showed that G10, 

G12, G9, G22 and G2 were the most stable genotypes across five environments (Figure.4.3 

C). The GSI analysis divulged that G25, G6, G22, G30 and G10 were among the genotypes 

with the lowest severity and good stability. However, G2 was specifically adapted to the 

Karama location, G28 adapted to the Kamonyi and Gakenke locations, while G4 was 

specifically adapted to the Karama and KaramaII locations (Figure.4.3 C). 
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     A: AMMI 1 biplot for CMD-S          B: AMMI 1 biplot for CBSD-LS  C: AMMI 1 biplot for CBSD-RN 

 

 

 

Figure 4.3:  AMMI 1 biplot A for CMD-S, B for CBSD-LS, C for CBSD-RN 
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Table 4.4:  Ranking of 30 genotypes over five environments for viral diseases in 2014-2015 

ASV= AMMI stability value, CMD-S= cassava mosaic disease severity scored on a scale of 1 -5, CBSD-RN = cassava brown streak disease root necrosis scored on a scale of 1 -5, CBSD-LS=cassava 

brown streak disease on leaves and stem scored on a scale of 1 -5, G= genotype; GSI = genotype selection index 

 

 

Genotypes 

CMD-S CBSD-LS CBSD-RN 

Means Rank ASV ASV 
Rank 

GSI GSI 
Rank 

Means Rank ASV ASV 
Rank 

GSI GSI 
Rank 

Means Rank ASV ASV 
Rank 

GSI GSI 
Rank 

G1 1 1 0.261 7 8 2 3.1 21 1.142 25 46 30 2.3 16 0.595 15 31 15 
G2 1.7 5 1.074 16 21 9 3 16 1.445 29 45 29 1.9 6 1.755 30 36 20 
G3 4.2 26 0.552 10 36 16 2.9 11 0.185 1 12 2 2.6 22 0.864 26 48 28 
G4 3.5 18 1.268 18 36 16 2 1 1.153 26 27 14 1 1 0.846 25 26 11 
G5 4 25 1.358 22 47 28 2.8 7 1.36 28 35 20 2.8 25 0.664 17 42 26 
G6 1.7 5 0.612 11 16 7 3 16 1.344 27 43 25 1.8 5 0.337 5 10 2 
G7 1.9 10 0.738 14 24 11 3.1 21 1.086 23 44 28 2.4 18 0.476 11 29 14 
G8 1.3 3 0.673 12 15 6 3.1 21 0.537 13 34 18 3.1 29 0.369 10 39 23 
G9 1.7 5 0.216 6 11 5 3 16 0.767 19 35 20 3.1 29 0.28 3 32 16 
G10 4.7 29 0.208 5 34 14 3.3 26 0.614 17 43 25 2.2 14 0.125 1 15 4 
G11 4.5 28 0.204 4 32 13 2.9 11 1.763 30 41 23 2.6 22 1.172 29 51 29 
G12 4.9 30 0.284 9 39 19 2.6 3 0.77 20 23 8 2.4 18 0.235 2 20 7 
G13 1.3 3 0.116 2 5 1 2.6 3 0.588 15 18 4 1.7 3 0.697 20 23 8 
G14 1.8 9 0.11 1 10 4 3.2 24 0.452 8 32 16 2.1 10 0.52 13 23 8 
G15 3.7 21 1.938 26 47 28 2.9 11 0.352 4 15 3 2.1 10 0.896 27 37 21 
G16 1 1 0.261 7 8 2 2.9 11 0.514 12 23 8 2.9 28 0.77 23 51 29 
G17 1.7 5 1.414 24 29 12 2.1 2 1.13 24 26 13 1.3 2 0.593 14 16 6 
G18 2.8 13 2.453 29 42 23 2.6 3 0.85 21 24 11 2.8 25 0.494 12 37 21 
G19 3.9 22 1.306 19 41 22 3.2 24 0.452 8 32 16 2.2 14 0.686 19 33 17 
G20 4.3 27 0.834 15 42 23 3.4 28 0.413 6 34 18 2 7 0.75 21 28 13 
G21 3.6 20 2.235 28 48 30 4 30 0.476 11 41 23 2 7 1.169 28 35 19 
G22 3.1 16 2.157 27 43 26 3.3 26 0.457 10 36 22 2.1 10 0.282 4 14 3 
G23 2.8 13 1.495 25 38 18 3 16 0.366 5 21 7 2.3 16 0.357 7 23 8 
G24 3.1 16 0.153 3 19 8 2.8 7 0.898 22 29 15 2.4 18 0.763 22 40 24 
G25 2.4 12 1.392 23 35 15 3 16 0.325 3 19 6 1.7 3 0.342 6 9 1 
G26 1.9 10 0.71 13 23 10 3.6 29 0.564 14 43 25 2.6 22 0.672 18 40 24 
G27 2.9 15 3.032 30 45 27 2.7 6 0.701 18 24 11 2.1 10 0.66 16 26 11 
G28 3.9 22 1.165 17 39 19 2.9 11 0.434 7 18 4 2.5 21 0.836 24 45 27 
G29 3.5 18 1.328 21 39 19 2.8 7 0.247 2 9 1 2.8 25 0.365 9 34 18 
G30 3.9 22 1.319 20 42 23 2.8 7 0.607 16 23 8 2 7 0.362 8 15 4 
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4.4 Phenotypic correlation of important cassava traits 

The Pearson’s correlation showed significant correlation between FSRY and other traits, 

except PPD-3 (Table.4.5). A negative correlation was observed between FSRY and DMC, 

CMD-S, CBSD-RN and CBSD-LS, indicating the influence of these traits on the overall yield 

of cassava. The correlation matrix revealed a significant negative correlation between harvest 

index with viral diseases (CMD-S, CBSD-RN and CBSD-LS), indicating the effects of viral 

diseases on HI. Dry matter content had a significant negative correlation with DRSY and TC, 

hence these traits could be influenced by DMC. There was a significant positive correlation 

between of CBSD-LS and CBSD-RN, indicating the influence of CBSD-LS on the presence of 

CBSD-RN. CBSD-RN and PPD cause cassava postharvest loss, due to storage root necrosis 

and physiological deterioration, and the correlation analysis revealed a significant negative 

correlation between both traits, suggesting that CBSD-RN symptoms could mask the PPD 

signs. The correlation between TC and PPD-3 was significantly negative, indicating the 

possible effects of carotenoids in delaying the onset of PPD. 

Table 4.5:  Phenotypic correlation between yield, postharvest and viral disease 
traits 

Traits FSRY HI DMC DSRY CMD-S CBSD-LS CBSD-
RN 

TC PPD-3 

FSRY 1         
HI 0.550*** 1        
DMC -0.153** -0.105 1       
DSRY 0.982*** 0.546*** -0.005*** 1      
CMS-S -0.276*** -0.309*** 0.070 -0.267*** 1     
CBSD-LS -0.192*** -0.207*** 0.131 -0.170** 0.070 1    
CBSD-RN -0.202*** -0.274*** 0.092 -0.184 0.089 0.640*** 1   
TC 0.227*** 0.195*** -0.416*** 0.143 -0.328*** -0.013 -0.058 1  
PPD-3 -0.008 0.052 0.350*** 0.049 0.021 -0.193*** -0.164*** -0.197*** 1 

FSRY = fresh storage root yield (t ha-1); HI = harvest index; DMC = dry mass content (%);DSRY: dry storage root yield (t ha-1); 
CMD-S= cassava mosaic disease severity scored on a scale of 1 -5, CBSD-RN = cassava brown streak disease root necrosis 
scored on a scale of 1 -5, CBSD-LS=cassava brown streak disease on leaves and stem scored on a scale of 1 -5, TC: total 
carotenoids, PPD-3: postharvest physiological deterioration after three days, PPD-7: postharvest physiological deterioration after 
seven days, significance level; * = P<0.05; ** = P<0.01; *** = P<0.001. 

 

4.5 Discussion and conclusions 

The AMMI analysis of 30 cassava genotypes revealed significant genotype effects for all 

evaluated traits, indicating the presence of genetic variation in Rwandan germplasm. The 

observed genetic variation implies that good progress for improved cassava for various traits 

could be achieved by selection and hybridization. The environments significantly affected most 

traits evaluated in this study, indicating the importance of conducting multi-location trials to 

identify the generally stable genotypes and genotypes specifically adapted to certain 

environments. To select and recommend high yielding and stable genotypes for various 

environments, the analysis of multi-location trials often identify GxE interaction, which causes 
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difficulties in interpretation (Agyeman et al., 2015). This is overcome by using the AMMI biplot 

analysis, a method that is widely used for multi-location trial data analysis (Agyeman et al., 

2015; Noerwijati et al., 2014; Sholihin, 2015) to determine the stability of genotypes across 

environments. 

The GxE interaction significantly affected traits such as DMC, CMD-S, CBSD-S and CBSD-

RN, demonstrating the combined effects of environment and genotype for the expression of 

such traits. The effect of GxE interaction on DMC corroborates with studies by Ssemakula and 

Dixon (2007), who reported on the influence of environment on cassava dry matter content. 

On the contrary, Benesi et al. (2005) reported that DMC is not highly controlled by 

environments and they suggested it was controlled by one, or a few, major genes. The GxE 

interaction for CMD-S indicated that genotypes respond differently to CMD in various 

environments, explaining the need for a specific adaptation analysis for the trait, as reported 

by Ssemakula and Dixon (2007). The significant GxE interaction for CBSD expression 

suggests a quantitative nature of a multi-gene trait, as reported by Pariyo et al. (2015). The 

findings on the GxE interaction for yield and viral disease severity traits agreed with several 

studies (Baiyeri et al., 2008; Njoku et al., 2015; Ntawuruhunga and Dixon, 2010; Tumuhimbise 

et al., 2015), which reported that GxE interaction analysis is important to recommend 

genotypes with adequate adaptation to target environments. The insignificant GxE interaction 

for PPD-30, FSRY, DSRY, HI and TC highlighted the stable performance of genotypes for 

these traits across various locations. The stability performance of genotypes for PPD at 

various environments was reported by Tumuhimbise et al. (2015) in Uganda. 

The TC had 96%, 2.4% and 1.7% variation, respectively, due to genotype, GxE interaction 

and environment. The AMMI1 biplot indicated a low interaction of environment with TC. The 

low interaction between environment and TC expression can be explained by the qualitative 

nature of this trait, as most qualitative traits are generally controlled by a few genes and are 

less prone to environmental effects (Ssemakula et al., 2007). The observed high variation due 

to genotypes and low environmental effects, and the relatively low GxE interaction for TC, 

indicated that it would require evaluation over only a few environments, to determine and 

recommend stable and high performing genotypes for TC. These findings agree with those of 

Rodriguez-Amaya (2010) and Ssemakula and Dixon (2007), who reported high genetic effects 

for carotenoids accumulation. Iglesius et al. (1997), Ssemakula et al. (2007) and Akinwale et 

al. (2010) reported similar findings, speculating that carotenoids accumulation in cassava is 

controlled by a few genes, which implies that a few environments suffice for the evaluation 

and selection of carotenoids-enriched cassava clones. 
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ASV and GSI determine the stability and performance of genotypes evaluated at various 

environments (multi-locations). The genotypes with the highest carotenoids content were 

specifically adapted to some environments. For instance, G1, a genotype with high 

carotenoids, was specifically adapted to Muhanga. Though unstable across environments, 

this genotype delayed PPD-30 more than other genotypes across locations. Thus, the 

hybridization of G1 with other cassava genotypes could improve the level of carotenoids 

content and the postharvest quality of cassava, including the delayed onset of physiological 

postharvest deterioration. The significant correlation between CBSD-LS and CBSD-RN was 

an indication of the effects of CBSD-LS on storage root quality and yield. The correlation 

analysis confirmed that there is a negative correlation between PPD and total carotenoids 

content. This corroborates the finding of Sánchez et al. (2006), Morante et al. (2010) and 

Uarrota et al. (2014), who reported that PPD correlates negatively with carotenoids, indicating 

that carotenoids could delay the onset of PPD. The mechanism by which carotenoids delays 

the onset of PPD was reported by several scientists (Azqueta and Collins, 2012; Edge et al., 

1997; Palozza et al., 2003; Priya and Siva, 2014; Rodriguez-Amaya, 2010; Xu et al., 2013), 

who indicated that as non-enzymatic antioxidants, carotenoidss can act as chain-breaking 

antioxidants and thus protect cells and organisms against photoxidation, by quenching singlet 

oxygen (a reactive type of oxygen). 

In conclusion, this study indicated that the genotype effects observed for all traits explained a 

wide genetic variation among the cassava genotypes in Rwanda, hence selection and 

hybridization can result in good progress in the development of improved cassava for 

postharvest quality. The GxE interaction for TC and FSRY was not significant, implying that 

few complications in selection for TC and FSRY over different locations can be expected. The 

PPD scored three and seven days after harvest, were affected by GxE interaction, indicating 

that selection for delayed PPD could be complicated by the GxE interaction, and hence the 

selection and recommendation for delayed PPD genotypes must be done with caution. 

4.6 References  

Agyeman, A., E. Parkes and B. Peprah. (2015). AMMI and GGE biplot analyses of root yield 

performance of cassava genotypes in forest and coastal ecologies. International 

Journal of Agricultural Policy and Research 3: 122-132. 

Akinwale, M., B. Akinyele, A. Odiyi and A. Dixon. (2011). Genotype x Environmnet interaction 

and yield performance of 43 improved cassava (Manihot esculenta Crantz) genotypes 

at three Agro-Climatic zones in Nigeria. Biotechnology Journal 1: 68-84. 



95 
 

Akinwale, M., R. Aladesanwa, B. Akinyele, A. Dixon and A. Odiyi. (2010). Inheritance of ß-

carotene in cassava (Manihot esculenta crantz). International Journal of Genetics and 

Molecular Biology 2: 198-201. 

Azqueta, A. and A. R. Collins. (2012). Carotenoidss and DNA damage. Mutation 

Research/Fundamental and Molecular Mechanisms of Mutagenesis 733: 4-13. 

Baiyeri, K., G. Edibo, I. Obi, F. Ogbe, C. Egesi, O. Eke-Okoro, E. Okogbenin and A. Dixon. 

(2008). Growth, yield and disease responses of 12 cassava genotypes evaluated for 

two cropping seasons in a derived savannah zone of South-Eastern Nigeria. Agro-

Science, Journal of Tropical Agriculture, Food, Environment and Extension 7: 162-169. 

Benesi, I., M. Labuschagne, A. Dixon and N. Mahungu. (2005). Genotype x enviroment 

interaction effects on native cassava starch quality and potential for starch use in the 

commercial sector. African Crop Science Journal 12: 205-216. 

Bondari, K. (2003). Statistical analysis of genotype x environment interaction in agricultural 

research. The Proceedings of the South East, SAS Users Group, St Pete Beach. 

Institute for Advanced Analytics. 

Booyse, M. (2014). Biometrical approaches for investigating genetic improvement in wheat 

breeding in South Africa. University of the Free State Bloemfontein, SA. 

Chávez, A. L., T. Sánchez, G. Jaramillo, J. M. Bedoya, J. Echeverry, E. A. Bolaños, H. 

Ceballos and C. A. Iglesias. (2005). Variation of quality traits in cassava roots 

evaluated in landraces and improved clones. Euphytica 143: 125-133. 

Cummings, M. R. (2015). Human heredity: principles and issues. 11 ed. Cengage Learning, 

Boston, USA p.496. 

Ding, M., B. Tier, W. Yan, H. Wu, M. Powell and T. Mcrae. (2007). Application of GGE biplot 

analysis to evaluate Genotype (G), Environment (E) and GxE interaction on P. radiata: 

a case study. Australasian Forest Genetics Conference Breeding for Wood Quality. 

Edge, R., D. Mcgarvey and T. Truscott. (1997). The carotenoidss as anti-oxidants-a review. 

Journal of Photochemistry and Photobiology B: Biology 41: 189-200. 

Falconer, D. S. and T. F. C. Mackay. (1996). Introduction to quantitative genetics. 4th ed. 

Pearson Prentice Hall, Harlow, England p.464. 

FAO. (2010). Cassava disease in Africa a major threat to food security: Strategic program 

framework 2010-2015. FAO, Rome, Italy. 

Farshadfar, E. (2008). Incorporation of AMMI stability value and grain yield in a single non-

parametric index (GSI) in bread wheat. Pakistan Journal of Biological Sciences 11: 

1791. 

Farshadfar, E., M. Geravandi and Z. Vaisi. (2012). Chromosomal localization of QTLs 

controlling genotype× environment Interactions in barley. International Journal of 

Agriculture and Crop Sciences 4: 317-324. 



96 
 

Gauch, H. and R. Zobel. (1996). AMMI analysis of yield trials. In ‘Genotype by environment 

interaction’.(Eds MS Kang, HG Gauch) p. 85–122. CRC Press: Boca Raton, FL. 

Gauch, H. G., H.-P. Piepho and P. Annicchiarico. (2008). Statistical analysis of yield trials by 

AMMI and GGE: Further considerations. Crop Science 48: 866-889. 

Hahn, S., L. Reynolds and G. Egbunike. (1992). Cassava as Livestock Feed in Africa: 

Proceedings of the IITA/ILCA/University of Ibadan Workshop on the Potential 

Utilization of Cassava as Livestock Feed in Africa: 14-18 November 1988, Ibadan, 

NigeriaIita. 

Hahn, S., E. Terry and K. Leuschner. (1980). Breeding cassava for resistance to cassava 

mosaic disease. Euphytica 29: 673-683. 

Hillocks, R., M. Raya and J. Thresh. (1996). The association between root necrosis and above‐

ground symptoms of brown streak virus infection of cassava in southern Tanzania. 

International Journal of Pest Management 42: 285-289. 

Iglesias, C., J. Mayer, A. Chavez and C. Fernando. (1997). Genetic potential and stability of 

carotene content in cassava roots. Euphytica 94: 367-373. 

Kang, M. S. and H. G. Gauch. (1996). Genotype-by-environment interaction, CRC Press, 

Taylor and Francis group, USA 

Kvitschal, M. V., P. S. Vidigal Filho, C. A. Scapim, M. C. Gonçalves-Vidigal, E. Sagrilo, M. G. 

Pequeno and F. Rimoldi. (2009). Comparison of methods for phenotypic stability 

analysis of cassava (Manihot esculenta Crantz) genotypes for yield and storage root 

dry matter content. Brazilian Archives of Biology and Technology 52: 163-175. 

Malosetti, M., J.-M. Ribaut and F. A. Van Eeuwijk. (2013). The statistical analysis of multi-

environment data: modeling genotype-by-environment interaction and its genetic 

basis. Frontiers in Physiology 4: 44. 

Morante, N., T. Sánchez, H. Ceballos, F. Calle, J. C. Pérez, C. Egesi, C. E. Cuambe, A. F. 

Escobar, D. Ortiz, A. L. Chávez and M. Fregene. (2010). Tolerance to postharvest 

physiological deterioration in cassava roots. Crop Science 50: 1333-1338. 

Njoku, D. N., V. E. Gracen, S. K. Offei, I. K. Asante, C. N. Egesi, P. Kulakow and H. Ceballos. 

(2015). Parent-offspring regression analysis for total carotenoidss and some 

agronomic traits in cassava. Euphytica 206: 657-666. 

Noerwijati, K., Nasrullah, Taryono and D. Prajitno. (2014). Fresh tuber yield stability analysis 

of fifteen cassava genotypes across five environments in East Java (Indonesia) using 

GGE biplot. Energy Procedia 47: 156-165. 

Ntawuruhunga, P. and A. G. Dixon. (2010). Quantitative variation and inter-relationship 

between factors influencing cassava yield. Journal of Applied Biosciences 26: 1594-

1602. 

https://www.google.com/search?biw=1366&bih=605&noj=1&q=Taylor+%26+Francis&stick=H4sIAAAAAAAAAOPgE-LUz9U3ME7LK09SAjNTUtIyzLWUM8qt9JPzc3JSk0sy8_P084vSE_MyqxJBnGKrgsSi1LwSABvWCYM9AAAA&sa=X&ved=0ahUKEwjvv4T3xoDQAhXH6SYKHRl9CxwQmxMIhwEoATAP


97 
 

Ott, R. and M. Longnecker. (2008). An introduction to statistical methods and data analysis. 

Brooks/Cole Cengage Learning, Australia p.1296. 

Palozza, P., S. Serini, F. Di Nicuolo, E. Piccioni and G. Calviello. (2003). Prooxidant effects of 

beta-carotene in cultured cells. Molecular Aspects of Medicine 24: 353-362 

Pariyo, A., Y. Baguma, T. Alicai, R. Kawuki, E. Kanju, A. Bua, C. A. Omongo, P. Gibson, D. 

S. Osiru and D. Mpairwe. (2015). Stability of resistance to cassava brown streak 

disease in major agro-ecologies of Uganda. Journal of Plant Breeding and Crop 

Science 7: 67-78. 

Priya, R. and R. Siva. (2014). Phylogenetic analysis and evolutionary studies of plant 

carotenoids cleavage dioxygenase gene. Gene 548: 223-233. 

Purchase, J., H. Hatting and C. Van Deventer. (2000). Genotype× environment interaction of 

winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield 

performance. South African Journal of Plant and Soil 17: 101-107. 

Rodriguez-Amaya, D. B. (2010). Quantitative analysis in vitro assessment of bioavailability 

and antioxidant activity of food carotenoidss-A review. Journal of Food Composition 

and Analysis 23: 726-740. 

Rodriguez-Amaya, D. B. and M. Kimura. (2004). HarvestPlus handbook for carotenoids 

analysisInternational Food Policy Research Institute (IFPRI) Washington, DC, USA. 

Rwegasira, G. M. and C. M. Rey. (2012). Response of selected cassava varieties to the 

incidence and severity of cassava brown streak disease in Tanzania. Journal of 

Agricultural Science 4: 237-245. 

Safavi, S. M., A. S. Safavi and S. A. Safavi. (2015). Assessment of genetic diversity in 

sunflower (Helianthus annus L.) genotypes using agro-morphological traits. Journal of 

Biodiversity and Environmental Sciences (JBES) 6: 152-159. 

Sánchez, T., A. L. Chávez, H. Ceballos, D. B. Rodriguez-Amaya, P. Nestel and M. Ishitani. 

(2006). Reduction or delay of post-harvest physiological deterioration in cassava roots 

with higher carotenoids content. Journal of the Science of Food and Agriculture 86: 

634-639. 

Sayre, R. T. (2011). Biofortification of cassava for Africa: the BioCassava Plus program. In: 

Charles, P., Access not excess: The search for better nutrition. Smith-Gordon. p. 113-

120. 

Sholihin. (2015). Stability of Cassava Promising Clones Based on Additive Main Effect and 

Multiplicative Interaction (AMMI) Model. Energy Procedia 65: 337-343. 

Ssemakula, G. and A. Dixon. (2007). Genotype x environment interaction, stability and 

agronomic performance of carotenoids-rich cassava clones. Scientific Research and 

Essay 2: 390-399. 



98 
 

Ssemakula, G., A. Dixon and B. Maziya-Dixon. (2007). Stability of total carotenoids 

concentration and fresh yield of selected yellow-fleshed cassava (Manihot esculenta 

Crantz). Journal of Tropical Agriculture 45: 14-20. 

Tumuhimbise, R. (2013). Breeding and evaluation of cassava for high storage root yield and 

early bulking in Uganda. PhD Thesis, University of KwaZulu-Natal, Pietermaritzburg, 

SA. 

Tumuhimbise, R., R. Melis and P. Shanahan. (2015). Genetic variation in cassava for 

postharvest physiological deterioration. Archives of Agronomy and Soil Science 61: 

1333-1342. 

Tumuhimbise, R., R. Melis, P. Shanahan and R. Kawuki. (2014). Genotype × environment 

interaction effects on early fresh storage root yield and related traits in cassava. The 

Crop Journal 2: 329-337. 

Uarrota, V. G., R. Moresco, B. Coelho, E. D. C. Nunes, L. a. M. Peruch, E. D. O. Neubert, M. 

Rocha and M. Maraschin. (2014). Metabolomics combined with chemometric tools 

(PCA, HCA, PLS-DA and SVM) for screening cassava (Manihot esculenta Crantz) 

roots during postharvest physiological deterioration. Food Chemistry 161: 67-78. 

Wheatley, C., C. Lozano and G. Gomez. (1985). Post-harvest deterioration of cassava roots. 

In: Cock, J. H. and Reyes J. A., Cassava: Research, production and utilization. UNDP-

CIAT, Cali, Colombia. p. 655-671. 

Wu, X., X. Chang and R. Jing. (2012). Genetic insight into yield-associated traits of wheat 

grown in multiple rain-fed environments. PloS one 7: e31249. 

Xu, J., X. Duan, J. Yang, J. R. Beeching and P. Zhang. (2013). Enhanced reactive oxygen 

species scavenging by overproduction of superoxide dismutase and catalase delays 

postharvest physiological deterioration of Cassava storage roots. Plant Physiology 

161: 1517-1528. 

Yan, W., M. S. Kang, B. Ma, S. Woods and P. L. Cornelius. (2007). GGE biplot vs. AMMI 

analysis of genotype-by-environment data. Crop Science 47: 643-653. 

Zidenga, T., E. Leyva-Guerrero, H. Moon, D. Siritunga and R. Sayre. (2012). Extending 

cassava root shelf-life via reduction of reactive oxygen species production. Plant 

Physiology 159: 1396-1407. 

  



99 
 

CHAPTER V 

Genetic inheritance and diallel analysis of cassava pulp colour and delayed 
postharvest physiological deterioration at early generation selection of F1 seedling 
population 

 

Abstract 

Early selection at seedling stage for quantitative and qualitative traits of cassava could shorten 

varietal release time and could help to reduce viral disease build-up in successive generations. 

Genetic inheritance analysis provides the essential breeding information for the development 

of improved cultivars. This study aimed to develop F1 segregating cassava populations and 

to determine the inheritance mode of pulp colour and other important traits at the F1 seedlings 

stage. Fifteen families were generated from a 6x6 half diallel established and evaluated at the 

Karama research station in Rwanda. The 15 F1 families exhibited significant variation between 

genotypes and families, indicating genetic diversity that is essential for crop improvement 

through conventional breeding. General combining ability (GCA) was significant (p<0.01) for 

all traits, except for the cassava brown streak disease on leaves (CBSD-L), while the specific 

combining ability (SCA) was significant (p<0.01) for all evaluated traits (height, CBSD-L: 

cassava brown streak disease on leaves, CBSD-S: cassava brown streak disease on stem, 

CBSD-RN: cassava brown streak disease root necrosis, SRN: storage root number, SRL: 

storage root length, SRG: storage root girth, FSRY: fresh storage root yield, HI: harvest index, 

DMC: dry matter content, pulp colour, and PPD: physiological postharvest deterioration). The 

significant GCA indicated the possibility of improving cassava through recurrent selection for 

most of the evaluated traits. Based on the significance and direction of GCA, genotypes G2 

and G7 were good general combiners for improving fresh storage root yield, while G1 and G2 

were good general combiners for improving carotenoids (yellow/orange pulp colour) and 

delayed physiological postharvest deterioration. The significance of GCA and SCA effects for 

most traits indicated the role of both additive and non-additive gene action in controlling most 

of the cassava traits. The highest GCA/SCA ratio and % sum of square (SS) due to GCA were 

recorded for CBSD-RN, SRN, FSRY, HI, pulp colour and PPD, indicating that these traits were 

mostly controlled by additive gene action. The first three principal components (PCs) were 

most important and explained 71.2% of total variation among families for all traits, which 

indicated the potential for success of early selection for all traits. This information is very 

important and can contribute to shortening the breeding cycle for pulp colour (as carotenoids 

indicator), PPD and other important traits. 
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5.1 Introduction 

Cassava is a multipurpose crop in developing countries and a cheap source of starch across 

sub-Saharan Africa (SSA). It is an amphidiploid allopolyploid (2n = 36 chromosomes), has a 

regular bivalent pairing and behaves as a diploid (El-Sharkawy, 2004). Recently the diploid 

nature of cassava was confirmed by Aiemnaka et al. (2012). The cassava plant is monoecious, 

bearing separate male and female flowers on the same plant (Chavarriaga-Aguirre and 

Halsey, 2005). It is classified as heterozygous, because it is a cross-pollinated plant (Jennings 

and Iglesias, 2002). However, the duration of flowering on the same plant is variable and can 

last up to two months, which can cause self- and sib-fertilization, hence there is a need for 

controlled pollination.  

Cassava is the cheapest source of calories in many countries of SSA. Its storage roots contain 

significant amounts of various vitamins and proteins. In addition, its starch can be used in 

industries, such as food manufacturing, pharmaceuticals, textiles, plywood, paper and 

adhesives, and as feedstock to produce ethanol biofuel (FAO, 2013). In Rwanda, cassava is 

among the important staple foods, and it has a double role in nutrition, by providing starch 

from its roots and protein from green leaves. Furthermore, it has the ability to provide a 

piecemeal harvest which can be extended from eight months to two years. Thus, it is one of 

the most reliable food security crops in the country.  

Despite being a food security crop and cheap source of calories, it is exposed to production 

losses, due to postharvest physiological deterioration (PPD) and cassava brown streak 

disease root necrosis (CBSD-RN) in the country. The PPD is an abiotic response of cassava 

storage roots damaged during harvesting process, which induces a progressive loss of 

production, while its secondary stage results in bacterial attack, causing a total loss of 

production. It has been reported that introgressing carotenoids content, with its antioxidant 

properties, in cassava, can help in extending the shelf-life of storage roots for some days 

(Sánchez et al., 2006; Nduwumuremyi et al., 2016a). The primary mode of action of 

carotenoids as antioxidants is to quench singlet oxygen (Rodriguez-Amaya, 2010). Though 

conventional breeding (recurrent selection) is feasible to improve the carotenoids content 

(Ceballos et al, 2013) in most developing countries, there is the challenge of quantifying 

carotenoids in the thousands of new genotypes that are generated. The yellow colour intensity 

of the pulp is highly correlated to the carotenoids content in cassava storage roots (Chávez et 

al., 2005). A simple screening method, using colour scoring, can be used for the initial 



101 
 

selection (seedlings F1) of the storage roots of cassava genotypes with a relatively high total 

carotenoids content.  

The CBSD-RN is caused by the attack of a virus affecting the above-ground parts and 

extending to the storage roots. Depending on the level of infestation, CBSD-RN can cause up 

to a 100% loss of total production. The speed of build-up of the virus differs from one genotype 

to another, which can explain the resistance and/or tolerance levels. The heterogeneous 

nature of cassava results in the wide and unpredictable diversity of F1 seedlings, which is 

interesting for breeders, but presents difficulties in propagation (Ceballos et al., 2004). The 

genetic diversity of F1 seedlings can produce hybrids possessing all the important 

characteristics, including high yield, disease resistance, high level of carotenoids, and delayed 

physiological postharvest deterioration. The vegetative propagation of cassava through stem 

cuttings easily transmits viral diseases (Sastry, 2013). The early selection in a segregating F1 

population can help to shorten the breeding scheme. The early selection in F1 seedlings is 

generally based on high heritability traits, such as plant height, branching habits, flowering, 

and certain diseases (Ceballos et al., 2004). However, in some areas seedlings produce many 

storage roots; hence, the fresh storage root yield, harvest index, dry mass content, carotenoids 

content and PPD can be selected at the F1 seedling stage. The high-heritability traits can be 

selected for in early stage of cassava evaluation. Njenga (2014) suggested that carotene 

content can be selected in the early stages of the breeding cycle. 

To develop F1 hybrids, the half-diallel mating design is one of the most used designs in 

cassava breeding for generating half-sib offspring in genetic studies, as it helps to identify the 

good general (parents) and specific combiners (Ram, 2014). According to Griffing (1956b), 

the analysis of diallels uses the random or fixed model and one of four methods (1 = parents, 

one set of F1s and reciprocals; 2 = parents and one set of F1s without reciprocals; 3 = one 

set of F1s and the reciprocals are included; and 4 = only one set of F1s). Method 4 is the most 

common in the diallel crossing systems. A random model is useful for estimating GCA and 

SCA variances. In contrast, when parents are considered fixed effects, the aim is to measure 

the GCA effect for each parent and the SCA effect for each pair of parents. The diallel with 

selfs and reciprocals is neither practical nor useful, as cassava does not possess maternal 

effects, selfing fixed genes in homozygous state, but it does not contribute to the 

recombination of genes between different parents, and recombination is achieved by crossing 

in one direction making reciprocals unnecessary (Acquaah, 2012). The fixed model of 

Methods 3 or 4 is the most appropriate for obtaining unbiased estimates of combining abilities 

and gene action (Shattuck et al., 1993). This method is most suitable when there are no 

genotypic reciprocal effects (Griffing, 1956a).  
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This study was conducted: (1) to develop an F1 cassava population segregating for improved 

carotenoids content, delayed postharvest physiological deterioration and other important 

traits; (2) to analyze a half-diallel crossing population for the general combining ability (GCA) 

and specific combining ability (SCA) effects for cassava pulp colour, delayed postharvest 

physiological deterioration and other important traits; and (3) to determine the genetic 

inheritance of cassava pulp colour, delayed postharvest physiological deterioration and other 

important traits. 

5.2 Material and methods 

5.2.1 Germplasm selection and hybridization  

Twelve genotypes (Table 5.1) were selected from research institutes, farmer’s cooperatives 

and private farms. The selection of genotypes was done in a participatory manner through 

consultative discussion between local scientists and farmers. The main traits for selection 

were high yield, cassava brown streak disease (CBSD) resistance and pulp colour. The 

parents were planted in crossing block paired rows at the Karama research station, located at 

2o15’54.126’’S, 30o15’22.4619’’E, with an altitude of 1338 m asl. Among the twelve parents, 

only six parents produced flowers and showed genetic compatibility. Due to the high pressure 

of viral diseases, coupled with the lack of irrigation facilities, four parents did not produce 

flowers and for another two parents the abortion rate was high, an indication of sterility and 

genetic incompatibility. Hence a 6 x 6 half- diallel was produced to generate fifteen families. 

Hand pollination was performed following the procedure proposed by Kawano (1980). 

Approximately three months after hand pollination, the botanical seeds were harvested and 

stored for about three months, to break the dormancy. Seeds were soaked overnight in 

gibberellic acid to enhance germination. The soil was vapour sterilized. Seeds were planted 

in a small screenhouse made from transparent plastic, to create favourable conditions for 

germination. The temperature inside the screenhouse ranged from 28 to 38oC. 

  



103 
 

Table 5.1:  List of parental germplasm 

No Code of 
genotypes 

Name of 
genotypes 

Type Yield CMD CBSD Pulp 
colour 

1 G1 Mavoka Improved High Resistant Susceptible Yellow 
2 G2 Garukansubire Improved High Resistant Susceptible Yellow 
3 G3 Gahene Landrace High Susceptible Susceptible White 
4 G4 Mushedile Landrace High Susceptible Tolerant White 
5 G5 Kibombwe Landrace Medium Susceptible Susceptible White 
6 G6 Ndamirabana Improved High Resistant Susceptible White 
7 G7 Gitamisi Landrace High Susceptible Tolerant White 
8 G8 Rwizihiza Improved High Resistant Susceptible White 
9 G9 Cyizere Improved High Resistant Susceptible White 
10 G10 Kwatamumpare Landrace Medium Susceptible Susceptible White 
11 G11 Creolina Landrace Medium Susceptible Susceptible White 
12 G12 Gacyacyali Landrace Low Susceptible Susceptible White 

 

5.2.2 Experimental design and management  

The fifteen F1 seedling families were planted in November 2014 in a randomised complete 

block design (RCBD). Each family comprised of 33 selected seedlings that were divided into 

three groups of 11 seedlings each. Each group was planted on one line, representing one 

replicate. Planting spacing was 1 x 1 m, which gives a population density of 10,000 plants ha-

1. Regular weeding was performed and no fertilizers or pesticides were applied.  

5.3.4 Data collection 

The selected twelve cassava traits recorded were as follows: height, CBSD-L: cassava brown 

streak disease on leaves; CBSD-S: cassava brown streak disease on stem; CBSD-RN: 

cassava brown streak disease root necrosis; SRN: storage root number; SRL: storage root 

length; SRG: storage root girth; FSRY: fresh storage root yield; HI: harvest index; DMC: dry 

matter content, pulp colour; and PPD: physiological postharvest deterioration. These were 

recorded for the F1 seedlings to analyse the phenotypic differences among generated families. 

The height (cm) was measured as the distance from the ground to the shoot tip. The CBSD-

L, CBSD-S and CBSD-RN were scored on a scale of 1 to 5 where: 1 = no visible necrosis, 

and 5 = severe necrosis (Hillocks et al., 1996). The storage roots per plant were counted and 

weighed to obtain the storage root number (SRN). The SRL (cm) was measured as the length 

between the ends of a storage root, while SRG (cm) was measured as the circumference at 

the widest point of the mid-section of the storage root. The FSRY (t ha-1) was estimated from 

the storage root mass of each plant. To estimate FRSY (kg ha-1), the following formula was 

used:  

𝐅𝐑𝐒𝐘 (𝐤𝐠 𝐡𝐚−𝟏) = 𝐒𝐑𝐌 (𝐤𝐠 𝐩𝐥𝐚𝐧𝐭−𝟏)𝐗 
𝟏𝟎𝟎𝟎𝟎 

𝟏𝟎𝟎𝟎
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Harvest index (HI) was determined by expressing the fresh storage root mass (kg plant -1) as 

a proportion of total biomass (kg plant -1) (Fukuda et al. 2010). The DMC was determined 

using the specific gravity method (Chávez et al., 2005; Kawano et al., 1987) together with the 

following formula: 

 DMC (%)= (
WA

WA-WW
X158.3) -142  

Where WA and WW are weight measured in the air and water, respectively. 

The pulp colour, to estimate the total carotenoids content level, was determined by using a 1-

4 scale (1: white, 2: cream, 3: yellow, 4: orange). The PPD was determined by using the 

method developed by CIAT (Morante et al., 2010; Zidenga et al., 2012) with some 

moditifcation, whereby the proximal and distal ends of cassava storage roots were removed 

immediately after harvest. The proximal ends were exposed to the air and the distal ends were 

covered by food plastic wrappers. The storage room temperature ranged from 21 to 28o C, 

and the relative humidity ranged from 70 to 80%. The assessment was conducted at seven 

days after harvest, using a score of 1-10 to represent the discoloration, where score 1 = 10%, 

2 = 20%,….., 10 = 100% (Chávez et al., 2005; Wheatley et al., 1985) on ten transversal slices 

of 2 cm thick, cut along each storage root. Two storage roots were cut to score the slices and 

a mean score obtained from 20 slices per individual plant. 

5.2.5 Data analysis  

Data collected from the individual plants of a family were averaged for statistical analyses. 

The analysis of data was done using SAS Version 9.3 (SAS Institute Inc, 2011). The Griffing’s 

(1956b) diallel Method 4 (crosses only), Model 1 (fixed effects) was used to estimate the GCA 

and SCA effects: 

 

𝒀𝒊𝒋 = 𝝁 + 𝒗𝒊𝒋 + 𝒃𝒌 + 𝒆𝒊𝒋𝒌𝒍,  

 

where, Yij = observed value of the cross between parent i and j; μ = overall mean; 𝑣𝑖𝑗 = F1 

hybrid effect; 𝑣𝑖𝑗 = 𝑔𝑖 + 𝑔𝑗 + 𝑆𝑖𝑗 where, gi = GCA of the parent i; gj = GCA of the parent j; sij 

= SCA of the cross between parents i and j;  

bk = effect of the kth block; and eijkl = experimental error. 

The GCA and SCA effects were estimated according to Griffing’s (1956b) Method 4, Model 1 

using the DIALLEL-SAS05 program developed by Zhang et al. (2005). The significance of 

combining ability effects was determined by using the t-test at 0.05, 0.01 and 0.001 levels of 

probability, adapted from the combining ability analysis of variance output. The GCA and SCA 
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effects for each trait were determined from the percentage of a families’ sum of squares (SS) 

due to GCA and SCA (Tumuhimbise et al., 2014). The importance of GCA and SCA effects 

was calculated using GCA/SCA ratio. A ratio greater than one (unity) indicates that additive 

effects are more important than non-additive effects in the inheritance of a selected trait, while 

a ratio smaller than one indicates that dominance effects are more important in the inheritance 

of a selected trait. The principal component analysis using GenStat software (Payne et al., 

2011) determined components loadings to explain variation among traits. 

5.3 Results  

The seedlings derived from F1 botanical seeds were evaluated for the selected traits. The 

traits evaluated were height, cassava brown streak disease on leaves (CBSD-L), cassava 

brown streak disease on stem (CBSD-S), cassava brown streak disease root necrosis (CBSD-

RN), storage root number (SRN), storage root length (SRL), storage root girth (SRG), fresh 

storage root yield (FSRY), harvest index (HI), dry mass content (DMC), pulp colour and 

postharvest physiological deterioration (PPD) one week after harvest. 

5.3.1 Performance of fifteen families for selected important traits 

The fifteen families were highly significant (p<0.001) in terms of performance, except for the 

CBSD-L, CBSD-S and HI traits, which were significant at a statistical level of p<0.05. The 

mean performance of the fifteen families is presented in Table 5.2. The families G1xG2, 

G1xG3, G1xG6, G1xG7, G2xG6, G2xG7 and G4xG7 were the tallest, compared to the 

families’ average. The families G1xG2, G1xG4, G2xG6, G3xG4, G3xG6, G4xG7, and G6xG7 

had the lowest CBSD-L. The families G1xG2, G1xG3, G2xG4, G2xG6, G2xG7, G3xG4, 

G4xG6, G4xG7 and G6xG7 showed the lowest CBSD-S, while the families G1xG2, G1xG3, 

G1xG6 and G2xG7 had the highest CBSD-RN. The families G1xG2 and G6xG7 did not show 

CBSD symptoms on leaves and stems. The family average for FSRY was 25.3 t ha-1. The 

yield of seven families, G1xG2, G1xG3, G2xG3, G2xG4, G2xG7, G4xG7 and G6xG7, was 

above the average. In terms of pulp colour, the families G1xG2, G1xG4, G1xG6, G1xG7, 

G2xG4, G2xG6 and G2xG7 showed pulp colour ranging from bright yellow to deep yellow, 

and these families had a low PPD, compared to the families’ average (Table 5.2).  
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Table 5.2:  Mean performance of F1 seedlings in 15 families 

Family  Height 
(cm) 

CBSD-
L 

CBSD-
S 

CBSD-
RN  

SRN  SRL 
(cm)  

SRG 
(cm) 

FSRY 
(t ha-1)  

HI DMC 
(%) 

Pulp 
colour  

PPD -
7 (%)  

G1 x G2 198.61 1.00 1.09 1.76 10.09 31.36 18.63 26.10 0.40 31.32 2.85 25.03 

G1 x G3 219.85 1.12 1.25 1.57 10.09 32.54 17.45 27.30 0.37 35.70 1.82 28.79 

G1 x G4 189.21 1.05 1.35 1.39 8.15 19.73 14.32 16.73 0.51 34.62 2.46 25.12 
G1 x G6 213.27 1.11 1.52 1.97 9.79 34.97 16.73 22.00 0.45 35.81 2.70 19.54 
G1 x G7 198.85 1.17 1.91 1.33 9.88 32.97 17.18 21.05 0.47 37.81 3.82 12.27 
G2x G3 169.76 1.25 1.46 1.15 9.76 25.85 14.46 26.57 0.38 37.55 1.97 21.21 
G2 x G4 186.42 1.22 1.16 1.36 9.30 25.30 13.49 31.86 0.31 32.00 2.12 17.12 
G2 x G6 211.06 1.08 1.22 1.36 10.30 33.67 15.91 20.48 0.51 34.99 2.76 21.36 
G2 x G7 216.09 1.20 1.10 1.55 12.79 37.97 16.91 43.85 0.30 35.26 2.52 20.00 
G3 x G4 196.63 1.09 1.23 1.24 9.30 26.21 12.79 16.96 0.55 35.62 1.24 39.70 
G3 x G6 196.19 1.01 1.32 1.39 8.27 29.39 15.58 13.85 0.62 36.34 1.12 43.64 
G3 x G7 188.30 1.13 1.28 1.27 9.37 32.21 14.60 20.68 0.45 34.43 1.00 34.09 
G4 x G6 176.75 1.12 1.16 1.30 8.76 25.82 12.82 20.77 0.47 36.62 1.09 34.85 
G4 x G7 200.88 1.03 1.09 1.27 10.70 33.33 15.42 37.67 0.30 34.76 1.06 35.30 
G6 x G7 194.46 1.00 1.09 1.09 10.06 27.36 15.24 33.81 0.30 36.41 1.06 35.61 

Mean 197.09 1.11 1.28 1.40 9.77 29.91 15.44 25.31 0.43 36.62 1.97 27.58 
LSD(5%) 16.46 0.15 0.35 0.21 1.32 4.36 0.96 11.35 0.15 3.5 0.3 4.4 
P value <0.001 0.0306 0.006 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 <0.001 <0.001 

Cassava brown streak disease on leaves=CBSD-L), cassava brown streak disease on stem=CBSD-S), cassava brown streak 
disease root necrosis=CBSD-RN), storage root number=SRN, storage root length=SRL, storage root girth=SRG, fresh storage 
root yield=FSRY (t ha-1), harvest index=HI, dry mass content=DMC (%) and postharvest physiological deterioration after one 
week of harvest=PPD-7(%) 

5.3.2 Combined analysis of variance of diallel crosses and gene action for selected 

traits 

The analysis of variance indicated that variation between families was significantly for all 

evaluated traits at various significance levels (0.05, 0.01 and 0.001). A high significant 

difference (p<0.001) was observed for all traits, except CBSD-L, CBSD-S and HI. The ANOVA 

of diallel revealed a significant difference for the general and specific combining ability (GCA 

and SCA) effects for most evaluated traits. The GCA effect was highly significant (p<0.001) 

for height, CBSD-RN, SRN, SRL, SRG, FSRY, DMC, pulp colour and PPD; the GCA for HI 

and CBSD-S were significant at p<0.01 and p <0.05, while it was insignificant for CBSD-L 

(Table 5.3). The SCA effect was significantly different for all evaluated traits. Most of the traits 

had significant GCA and SCA effects indicating the effects of both additive and non-additive 

gene action for their expression. 

The ratio GCA/ SCA for CBSD-RN, SRN, FSRY, HI, pulp colour and PPD was more than one 

(one unity). In addition, these traits indicated >40% of SS due to GCA. The highest % of SS 

due to GCA was recorded for FSRY (75.5%), PPD (74.2%), CBSD-RN (46.6%), SRN (45.6%), 

pulp colour (41.6%), HI (40.7%), respectively. In contrast, the highest % of SS due to SCA 

was recorded for height (55.8%), SRG (55.8%), SRL (43.4%) and CBSD-S (42.2%), 

respectively (Table 5.3). 
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Table 5.3:  Combined analysis of variance of 6x6 half-diallel for selected traits in F1 

cassava seedlings 

Source of variation  DF Height 
(cm) 

CBSD-L CBSD-
S 

CBSD-
RN 

SRN SRL 
(cm) 

Family 14 595.25*** 0.02* 0.14** 0.16*** 3.65*** 68.29*** 
GCA 5 432.63** 0.02 0.13* 0.25*** 6.27*** 91.63*** 
SCA 9 685.59*** 0.02* 0.15** 0.11*** 2.20** 55.33*** 
Error 28 98.60 0.01 0.04 0.02 0.63 6.79 
R-Square  0.75 0.56 0.62 0.83 0.75 0.83 
CV (%)   5.04 7.68 15.99 9.00 8.01 8.74 
GCA/SCA (SS ratio) 0.35 0.40 0.48 1.28 1.58 0.92 
% SS due to GCA 19.58 16.02 20.24 46.69 45.66 39.97 
% SS due to SCA 55.86 39.99 42.21 36.36 28.82 43.44 
% SS due to error 24.55 43.99 37.55 16.94 25.52 16.59 

Table 5.3: Continued 

Source of 
variation  

DF SRG 
(cm) 

FSRY (t 
ha-1) 

HI DMC (%) Pulp 
colour 

PPD - 7 

Family 14 9.01*** 211.57*** 0.03** 31.44*** 2.26*** 253.49*** 
GCA 5 20.46*** 346.29*** 0.04** 46.90*** 4.83*** 480.48*** 
SCA 9 2.65*** 136.73* 0.03** 22.85*** 0.83*** 127.38*** 
Error 28 0.33 46.06 0.01 4.39 0.03 6.93 
R-Square  0.93 0.70 0.66 0.78 0.97 0.95 
CV (%)  3.74 26.35 20.54 5.65 9.10 9.38 
GCA/SCA (SS ratio) 0.35 4.29 1.41 0.90 1.14 3.23 
% SS due to GCA 19.58 75.56 40.72 31.25 41.65 74.24 
% SS due to SCA 55.86 17.61 28.94 34.76 36.53 22.98 
% SS due to error 24.55 6.83 30.33 33.99 21.82 2.78 

GCA=General combining ability, SCA=specific combining ability, SS=sum of squares, CV=coefficient of variation, Cassava brown 
streak disease on leaves=CBSD-L), cassava brown streak disease on stem=CBSD-S), cassava brown streak disease root 
necrosis=CBSD-RN), storage root number=SRN, storage root length=SRL, storage root girth=SRG, fresh storage root 
yield=FSRY (t ha-1), harvest index=HI, dry mass content=DMC (%) and postharvest physiological deterioration after one week of 
harvest=PPD-7(%) 

5.3.3 General combining ability effects 

The general combining ability effects indicated direction and compared the performance of 

parents in generating progenies with good characteristic (good combiners). The GCA effects 

for G1 (Mavoka) was positive and highly significant (p<0.001) for CBSD-S, CBSD-RN, SRG, 

DMC, pulp colour, and negatively and highly significant for PPD-7. The parent G2 was highly 

significant and positive for SRN, SRG, pulp colour and highly significant and negative for PPD-

7 (Table 5.4). In contrast to the first two parents, the G3 was highly significant and negative 

for SRG and pulp colour, while it was highly significant and positive for PPD-7. The G4 had a 

highly significant negative GCA effects for SRL, SRG, DMC and pulp colour, and a highly 

significant positive GCA for PPD-7. The G6 had a highly significant negative and positive GCA 

effects for pulp colour and PPD-7, respectively. The G7 had a highly significant positive GCA 

for SRN, SRL, SRG, FSRY, and a highly significant negative GCA effects for CBSD-S (Table 

5.4).  
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Table 5.4:  General combining ability effects for cassava selected traits 

Parents Height (cm) CBSD-L CBSD-S CBSD-RN  SRN  SRL (cm) 

G1 8.59** -0.02 0.26*** 0.26*** -0.22 0.5 
G2 -0.88 0.06* 0.04 0.04 0.84*** 1.15 
G3 -3.68 0.02 -0.09** -0.09** -0.52* -0.84 
G4 -8.89** 0 -0.11** -0.11** -0.67** -4.79*** 
G6 1.57 -0.05* 0.03 0.03 -0.42* 0.41 
G7 3.28 0 -0.12*** -0.12 0.98*** 3.57*** 
SE 2.62 0.02 0.03 0.03 0.21 0.69 

Table 5.4: Continued 

Parents SRG (cm) FSRY (t ha-1) HI DMC (%) Pulp colour PPD-7 (%) 

G1 1.78*** -3.35 0.02 3.05*** 0.95*** -6.78*** 
G2 0.55*** 5.58** -0.06* -0.49 0.59*** -8.29*** 
G3 -0.57*** -5.30** 0.06* 1.64** -0.68*** 7.39*** 
G4 -2.09*** -0.64 0 -2.37*** -0.47*** 3.55*** 
G6 -0.23 -3.91* 0.06* -0.73 -0.28*** 4.28*** 
G7 0.55*** 7.63*** -0.08** -1.1 -0.10* -0.15 
SE 0.15 1.76 0.02 0.55 0.05 0.68 

Standard error=SE, cassava brown streak disease on leaves=CBSD-L), cassava brown streak disease on stem=CBSD-S), 

cassava brown streak disease root necrosis=CBSD-RN), storage root number=SRN, storage root length=SRL, storage root 

girth=SRG, fresh storage root yield=FSRY (t ha-1), harvest index=HI, dry mass content=DMC (%) and postharvest physiological 

deterioration after one week of harvest=PPD-7(%) 

5.3.4 Specific combining ability effects 

Two families (1x3 and 2x3) had a significant (p<0.001) positive SCA effects for height, while 

one family (1x2) had a highly significant (p<0.001) negative SCA effects for CBSD-L. The 

CBSD-S and CBSD-RN had the same magnitude of SCA effects, whereby five families (1x6, 

2x3, 1x7, 2x7 and 6x7) showed a highly significant SCA effects. The families 1x3 and 1x7, 

and 2x6, and 3x7 had a significant SCA effects at p<0.001, and p<0.01, and p<0.05, 

respectively, for the FRSY. The families 1x3, 1x4, 1x6, 3x7, 4x6 and 1x2 had a significant SCA 

effects at a different significance level (Table 5.5) for DMC. The families 1x2, 1x3, 2x6, 3x4, 

1x7, 4x7 and 5x7 exhibited a high significant (p<0.001) SCA effects for pulp colour, while the 

seven families (1x2, 1x6, 2x3, 2x4, 3x6, 1x7 and 4x7) revealed a high significant (p<0.001) 

SCA effects for PPD-7 (Table 5.5).  

  



109 
 

Table 5.5:  Specific combining ability effects for important cassava traits 

Families Height (cm) CBSD-L CBSD-S CBSD-RN SRN SRL (cm) 

1x2 -6.19 -0.14*** 0.06 0.06 -0.31 -0.2 
1x3 17.86*** 0.01 0.01 0.01 1.05** 2.97* 
1x4 -7.58 -0.03 -0.16** -0.16** -0.74* -5.89*** 
1x6 6.03 0.08 0.29*** 0.29*** 0.65 4.14*** 
2x3 -22.78*** 0.07 -0.20*** -0.20*** -0.34 -4.37*** 
2x4 -0.9 0.07 0.03 0.03 -0.65 -0.96 
2x6 13.28** -0.03 -0.11 -0.11 0.11 2.2 
3x4 12.11** -0.03 0.04 0.04 0.71* 1.93 
3x6 1.21 -0.06 0.06 0.06 -0.56 -0.09 
1x7 -10.11 0.09* -0.20*** -0.2*** -0.66 -1.01 
2x7 16.6 0.04 0.23*** 0.23*** 1.19** 3.34** 
3x7 -8.39 0.01 0.09 0.09 -0.87* -0.43 
4x6 13.02 -0.07 0.02 0.02 -0.07 -0.29 
4x7 9.39 -0.08 0.1 0.1 0.61 4.64*** 
5x7 -7.49 -0.05 -0.21*** -0.21*** -0.27 -6.53*** 
SE 4.44 0.04 0.06 0.06 0.35 1.17 

Table 5.5: Continued 

Family SRG (cm) FSRY (t ha-1) HI DMC (%) Pulp colour PPD-7(%) 

1x2 0.86** -1.44 0.02 2.15* -0.66*** 12.52*** 
1x3 0.81** 10.63*** -0.14** 4.40*** -0.42*** 0.61 
1x4 -0.82** -4.59 0.06 -2.68** 0.01 0.77 
1x6 -0.27 3.95 -0.05 -3.12** 0.07 -5.53*** 
2x3 -0.96*** 0.99 -0.05 -0.21 0.09 -5.46*** 
2x4 -0.42 1.61 -0.06 -1.76 0.03 -5.72*** 
2x6 0.14 -6.50* 0.09* -0.41 0.48*** -2.21 
3x4 0.01 -2.41 0.06 -0.27 0.42*** 1.18 
3x6 0.94*** -2.25 0.08 -1.19 0.11 4.40*** 
1x7 -0.58* -8.54** 0.10* -0.75 1.00*** -8.37*** 
2x7 0.37 5.34 0.01 0.23 0.06 0.86 
3x7 -0.80** -6.96* 0.04 -2.72** -0.19* -0.72 
4x6 0.31 -0.01 0.02 -3.10** 0.13 0.56 
4x7 1.53*** 5.38 -0.05 1.62 -0.34*** 4.33*** 
5x7 -0.51 4.79 -0.10* 1.62 -0.53*** 3.90** 
SE 0.26 2.98 0.04 0.93 0.08 1.16 

Standard error=SE, cassava brown streak disease on leaves=CBSD-L), cassava brown streak disease on stem=CBSD-S), 

cassava brown streak disease root necrosis=CBSD-RN), storage root number=SRN, storage root length=SRL, storage root 

girth=SRG, fresh storage root yield=FSRY (t ha-1), harvest index=HI, dry mass content=DMC (%) and postharvest physiological 

deterioration after one week of harvest=PPD-7(%) 

5.3.5 Contribution of traits to variability of fifteen families 

The principal components (PC) analysis revealed that the first three principal components 

accounted for 71.2% of the total variation of the fifteen families. The PC1 explained 34.9% of 

the total variation, whereby SRN, SRL, SRG, height, FSRY, CBSD-RN, pulp colour had a 

considerable positive contribution, while HI and PPD showed a negative contribution. The PC2 

showed 20.4% of the total variation, in which pulp colour, CBSD-S and HI contributed 

positively much of the variation (Table 5.6). The PPD and DMC expressed a considerable 

positive variation to the PC3 (15.9%), while the CBSD-L contributed negatively. The fourth PC 
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indicated 7% of the total variation, in which CBSD-L and DMC were the most contributing 

factors (Table 5.6). 

Table 5.6:  Principal components analysis of 12 selected traits in F1 seedlings of 15 

families 

Traits Principal Component (PC) 

PC1 PC2 PC3 PC4 

SRN 0.810523 -0.39457 -0.02922 0.177492 

SRL 0.807107 -0.09515 0.224897 0.062593 

SRG 0.784913 0.321997 0.360499 -0.02214 

Height 0.701026 -0.0019 0.374577 -0.03153 

FSRY 0.678931 -0.64836 -0.20782 -0.01957 

HI -0.5921 0.563496 0.297321 0.105727 

CBSD-RN 0.509106 0.423682 0.363 -0.28471 

Pulp colour 0.552686 0.700638 -0.29786 -0.1403 

CBSD-S 0.004925 0.679898 -0.34837 0.03644 

CBSD-L 0.188924 0.039291 -0.68549 0.502723 

PPD -0.58441 -0.44672 0.594831 0.06883 

DMC 0.134719 0.328554 0.537597 0.657233 

Eigen value 4.18748 2.448028 1.907872 0.839962 

Percentage variation 34.89566 20.40023 15.89893 6.99968 

Cumulative percentage 
variation 

34.89566 55.29589 71.19483 78.19451 

Cassava brown streak disease on leaves=CBSD-L), cassava brown streak disease on stem=CBSD-S), cassava brown streak 
disease root necrosis=CBSD-RN), storage root number=SRN, storage root length=SRL, storage root girth=SRG, fresh storage 
root yield=FSRY (t ha-1), harvest index=HI, dry mass content=DMC (%) and postharvest physiological deterioration =PPD, 
Principal component =PC 

5.4 Discussion and conclusion  

The genetic variability and inheritance mode of targeted traits in a cassava breeding program 

are the keys for achieving good progress. An understanding of the genetic inheritance of such 

traits is very important in order to develop a cassava breeding strategy. Firstly, this study 

aimed to develop F1 cassava populations segregating for pulp colour, delayed postharvest 

physiological deterioration and other important traits. Secondly, it aimed to analyse the diallel 

data for general combining ability (GCA) and specific combining ability (SCA) effects, and 

finally, to determine genetic inheritance of the above-mentioned traits. 

The F1 segregating populations, comprising of fifteen families, exhibited significant differences 

for all evaluated traits. This indicates considerable genetic variation among the generated 

progenies, as well as their parents. The significant variability observed between families was 

evidence of successful diallel mating. A wide genetic variability in cassava was reported by 

many scientists (Kundy et al., 2015; Laila et al., 2015; Njenga et al., 2010; Ntawuruhunga and 

Dixon, 2010; Tumuhimbise et al., 2015). This implies that hybridization and selection for 

important traits in cassava can result in good progress in generating improved cultivars. 
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The diallel analysis for combining ability revealed significant general and specific combining 

ability effects of most evaluated traits. The general combining ability (GCA) effects was 

significant for all traits, except CBSD-L, while the SCA effects was significant for all evaluated 

traits. The significant GCA effects indicated the possibility of improving cassava through 

recurrent selection. Griffing (1956b) indicated that the GCA variance indicates additive effects, 

while SCA variance contains non-additive effects. Sharma et al. (2013) reported that GCA is 

mainly the result of additive gene effects and additive × additive interactions, while SCA is the 

consequence of dominance, epistatic deviation and genotype × environmental interactions. 

The significant GCA and SCA effects found in this study corroborate the finding of Chipeta et 

al. (2015), who reported the significance of GCA and SCA effects for most cassava traits. The 

parents with considerable significant GCA effects for the desirable traits, either positive or 

negative, could be considered as good combiners, depending on the nature of the targeted 

traits. The parents G2 and G7 had a significant positive GCA for FSRY, indicating that they 

are good general combiners for FSRY. The G1 and G2 had a significant positive GCA effects 

for improved carotenoids (yellow/ orange pulp colour), and a significant negative GCA effects 

for PPD, indicating that they are good general combiners for both traits. The last two parents, 

having deep yellow colour, could generate offspring with a high carotenoids content and a 

delayed PPD, because of the antioxidant properties reported in high carotenoids genotypes. 

Sánchez et al. (2006), Morante et al. (2010) and Zidenga et al. (2012) reported that 

carotenoids delays the onset of PPD due to its antioxidant properties.  

The CBSD-RN, SRN, FSRY (t ha-1), HI, pulp colour and PPD recorded the highest GCA/ SCA 

ratio and % SS due to GCA, indicating a considerable contribution of additive gene action in 

controlling these traits. This agrees with the findings of Tumuhimbise (2013), who reported the 

predominance of additive gene action in expression of FSRY, HI and CBSD-RN. Njenga et al. 

(2014) reported that additive gene action plays an important role in the inheritance of pulp 

colour of the cassava storage root, while the findings on PPD corroborate those of Thompson 

(2013), who reported that PPD is controlled by multiple genes acting additively.  

The contribution of traits to the variability of the fifteen families using PC analysis (PCA), 

indicated that the first three PCs were most important and explained 71.2% of the total 

variation among families. The evaluated twelve traits (SRN, SRL, SRG, height, FSRY, CBSD-

RN, pulp colour, HI, PPD, CBSD-S, DMC and CBSD-L) indicated the possibility of selection 

for these traits at an early stage of the cassava breeding process. This can contribute to 

shortening of varietal release and saving resources. Tumuhimbise (2013) reported that the 

early selection of cassava (at the seedling stage) could save time and resources in breeding 

programs. In addition, it can reduce degeneration, due to the accumulation of viruses and yield 

file:///C:/Users/hp/Documents/Athanase%20docs%20acedmic%20&amp;%20research/Acci%20docs/PhD_thesis%20draft%20and%20papers/CHAPTER%20V_Genetic%20inheritance%20and%20diallel%20analysis%20of%20cassava%20pulp%20colour%20and%20PPD%20at%20seedling%20stage.docx%23_ENREF_32
file:///C:/Users/hp/Documents/Athanase%20docs%20acedmic%20&amp;%20research/Acci%20docs/PhD_thesis%20draft%20and%20papers/CHAPTER%20V_Genetic%20inheritance%20and%20diallel%20analysis%20of%20cassava%20pulp%20colour%20and%20PPD%20at%20seedling%20stage.docx%23_ENREF_25
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losses reported in vegetatively-propagated crops in successive cycles of propagation 

(Torrance, 2015; Sastry, 2013).  

In conclusion, the fifteen F1 families exhibited significant variation between parents and 

families, which indicated the significant genetic diversity that is essential for crop improvement 

through conventional breeding. The significant GCA effects indicated the possibility of 

improving cassava through recurrent selection for most traits. Based on the significance and 

direction of GCA effects, genotypes G2 and G7 could be used as good general combiners for 

improving fresh storage root yield, while G1 and G2 could be good combiners for improved 

carotenoids (yellow/orange pulp colour) and delayed physiological postharvest deterioration. 

The significant GCA and SCA effects for most of evaluated characteristics in this study 

confirmed the role of additive and non-additive gene action in cassava traits expression. The 

high significance of SCA effects for traits, explained the greater importance of dominance 

effects than the additive gene effects for most cassava traits. However, the high GCA/ SCA 

ratio and % SS, due to GCA for CBSD-RN, SRN, FSRY, HI, pulp colour and PPD, indicated 

that these traits are controlled by the additive gene action. The PCA indicated that early 

selection is possible and that it could shorten the varietal release period and reduce the 

degeneration and yield losses due to the build-up of viruses in successive cycles of cassava 

propagation.  
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Chapter VI 

Combining ability and heterosis for cassava β-carotene, delayed postharvest 
physiological deterioration and farmers’ preferred traits 

 

Abstract 

Combining ability and heterosis generate important information to assist in generating 

improved cassava recombinants. This study aimed at determining the combining ability and 

heterosis for cassava traits evaluated in F1 clones, generated from a half-diallel (6 x 6) mating 

design. The F1 clones exhibited considerable agronomic and morphological variability 

between families and offsprings. The best F1 clones produced a higher fresh root storage 

yield (FRSY) (44.2 t ha-1) than the best parent (26.3 t ha-1). Similarly, the best F1 progenies 

had a higher amount of β-carotene (β-C) of 6.12 mg 100 g-1 against 1.32 mg 100 g-1 of the 

best parent. This could be attributed to the recombination of additive alleles and epistasis. The 

environments did not exhibit a significant influence on the expression of β-C and postharvest 

physiological deterioration (PPD), indicating that the expression of such traits is mostly 

genetically determined. The general combining ability (GCA) and specific combining ability 

(SCA) effects for both β-C and PPD were highly significant, indicating the role of both additive 

and non-additive gene action in controlling such traits. The storage root traits (cassava brown 

streak disease root necrosis, CBSD-RN, β-C and PPD) were highly influenced (over 50% of 

variability) by GCA effects, indicating that such traits are predominantly controlled by additive 

gene action. The disease and yield traits (cassava mosaic -CMD, cassava brown streak 

disease on leave and stem -CBSD-L, -CBSD-S, total biomass -TB, FSRY, harvest index -HI 

and dry matter content -DMC) were considerably influenced (over 50% of variability) by SCA 

effects, indicating a predominance of non-additive gene action in controlling these traits. The 

GCA indicated that genotypes Mavoka and Garukunsubire had a significant desirable and 

positive GCA for β-C, an undesirable significant and negative GCA for DMC, and desirable 

significant negative GCA for PPD. This implies that improving β-C in cassava population. using 

Mavoka and Garukunsubire as progenitors, could concurrently improve yield and delay PPD. 

However, this should be done carefully, so as not to reduce the DMC. The F1 progenies from 

the family Mavoka x Garukunsubire expressed the highest positive heterosis for CMD, DMC 

and β-C. The high positive heterosis for DMC in this family could be linked to transgressive 

segregation, because one of the parents was a poor combiner for DMC. This study generated 

new clones with an improved β-C, FRSY, delayed PPD and other farmers’ preferred traits, 

and it provided the foundation for a cassava breeding program in Rwanda. 
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Key words: transgressive segregation, additive gene action, non-additive gene action, 

general combining ability, specific combining ability, cassava brown streak disease, dry matter 

content 

 

6.1 Introduction 

Cassava is a food security crop and generates cash income for smallholder farmers in many 

countries of tropical and subtropical Africa, Asia, and Latin America. In Africa, its annual per 

capita consumption is around 80 kg per person (IITA, 2016). In sub-Saharan Africa (SSA), 

cassava is mainly a subsistence crop for small-scale farmers. In Rwanda, the preferred 

cassava traits are a sweet taste, a high yield, good quality ugali (viscosity and colour), 

resistance to pest and diseases, early bulking, multipurpose, good colour of flesh and flour, 

delayed post-harvest physiological deterioration (PPD), high dry matter content, good odour/ 

smell, long storage ability in the field, many cuttings produced and good cookability 

(Nduwumuremyi et al., 2016b). 

The viral diseases and postharvest losses are the most serious challenges for cassava 

production in developing countries. Cassava brown streak disease (CBSD) and cassava 

mosaic disease (CMD) affect the cassava yield and storage root quality in most parts of East 

Africa (Ephraim et al., 2015; Rwegasira and Rey, 2012). In addition, PPD causes significant 

postharvest losses, as the storage root perish rapidly (Kiaya, 2014). Cassava breeding is the 

most sustainable strategy to generate new high yielding recombinants that are resistant to 

diseases, with delayed physiological deterioration. During the breeding process, information 

generated on the combining ability and heterosis assists in the development of new improved 

recombinants (Mendes et al., 2015; Zhao et al., 2016). At present, there is limited genetic 

information on the combining ability and heterosis for yield, postharvest and disease traits, 

and other important cassava traits in Rwanda. 

To generate new recombinants, the half-diallel mating design is most commonly used by 

cassava breeders (Nduwumuremyi et al., 2013; Tumuhimbise, 2013). The diallel analysis 

provides information on the general combining ability (GCA), the specific combining ability 

(SCA) and heterosis (Glover et al., 2005). The combining ability indicates the capacity to 

transmit characteristic from parents to offspring (Upadhyay and Jaiswal, 2015). A knowledge 

of the combining ability helps to determine gene action and the identification/selection of the 
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best genotypes (parents) for hybridization, as well as the identification/selection of the best 

combinations (crosses) for population improvement. This information is very important for 

designing suitable breeding strategies for cassava improvement. Therefore, this study aimed 

at:  

(i) determining the combining ability of six cassava genotypes and the heterosis of fifteen 

cassava families for cassava pulp colour and delayed physiological postharvest deterioration, 

and other farmers preferred traits; and  

(ii) selecting promising high yielding cassava clones with improved carotenoids and delayed 

physiological postharvest deterioration, and other farmer preferred traits.  

6.2 Materials and methods 

6.2.1 Experiment location 

The experiment was conducted at two locations, namely, the Karama and Muhanga research 

centres. Karama is located at 2o16’ 0.927’’S, 30o15’ 20.693’’E, with an altitude of 1332 m 

above sea level m (asl), while Muhanga is located at 2o04’9.842’’S, 29o43’ 9.842’’E, with an 

altitude of 1879 masl. The two locations experience bimodal rainfall with different amounts of 

rain and temperatures. The Muhanga location is cooler and receives a higher amount of rain 

than the Karama location (Table 6.1). 

Table 6.1:  Soil and climatic parameters of experimental locations 

Parameters Locations 

Karama Muhanga 

Soil parameters 
pH 5.4 5.9 
Available P (mg kg-1) 3.1 4.3 
Exch K (cmol kg-1) 0.78 0.58 
Total N (%) 0.23 0.38 
Organic C (%) 1.69 3.06 
Exch Ca (cmol kg-1) 2.36 3.06 
Exch Mg (cmol kg-1) 0.38 0.14 
Exch Na (cmol kg-1) 0.04 0.03 
CEC (cmol kg-1) 10.82 16.3 
Clay (%) 71.2 67.5 
Sand (%) 26.1 28.3 
Silt (%) 2.7 4.2 
Climatic parameter* 
Rainfal (mm) 895 1320 
Av min temperature (Co) 14.6 12.0 
Av max temperature (Co) 30.8 28.4 

*the data sourced from nearby weather station,  
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6.2.2 Germplasm  

The six parents described in the Chapter V (see Table 5.1) constituted the crossing block of 6 

x 6 half-diallel mating design, and generated 15 families of 33 full-sib plants each. In this clonal 

evaluation trial, the total numbers of genotypes were 450, derived from 15 families. Within 

each family, 30 full-sib plants, producing enough cuttings (at least 12), were selected from the 

33 full-sib plants. The 12 cuttings were subdivided into two groups of six cuttings each, to 

undergo trials at two locations (environments). 

6.2.3 Experimental design and management  

The 450 genotypes (clones) selected from the seedling trial were planted in October 2015 at 

two locations, in randomised complete block design (RCBD) with three replications. One plot 

represented one family and had 60 plants (two plants per clone and 30 clones per family) 

whereas one block had 900 plants (60 plants per plot and 15 families/ or 15 plots per block). 

The plant spacing between and within the rows was 1 x 1 m, indicating a population density 

of 10000 plants ha-1. The distance between blocks was 2 m, to minimize competition. In 

addition to the clonal trial, the six parents were evaluated along their offspring in another 

RCBD. The weeding was conducted regularly and ridging was performed once, three months 

after planting, while no fertilizers, pesticides and water irrigation were applied.  

6.3.4 Data collection 

The trials were harvested at nine months after planting as described by Tumuhimbise (2013), 

who reported that most cassava genotypes attain a relatively high early fresh storage root 

yield at nine months after planting in Uganda. The data were collected on each individual plant 

for cassava mosaic disease (CMD), cassava brown streak disease (CBSD) severity, and 

cassava brown streak disease root necrosis (CBSD-RN), scored on a scale of 1 -5, where: 1 

= no symptoms; and 5 = very severe symptoms (Hillocks et al. 1996). The fresh root storage 

yield (FSRY) (t ha-1) was estimated from storage root mass per plant. To estimate FRSY, the 

storage root mass (SRM) was used following the formula:  

𝐅𝐑𝐒𝐘 (𝐤𝐠 𝐡𝐚−𝟏) = 𝐒𝐑𝐌 (𝐤𝐠 𝐩𝐥𝐚𝐧𝐭−𝟏)𝐗 
𝟏𝟎𝟎𝟎𝟎 

𝟏𝟎𝟎𝟎
. 

The harvest index (HI) was determined by expressing fresh storage root mass (kg plant-1) as 

proportion of total biomass (kg plant-1) (Fukuda et al., 2010). The DMC was determined by 

using the specific gravity method (Chávez et al., 2005; Fukuda et al., 2010; Kawano et al., 

1987), as per the following formula: 

 DMC (%)= (
WA

WA-WW
X158.3) -142  
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Where WA and WW are weight measured in air and water, respectively. 

The β-carotene (β-C) was estimated using the colour chart that was used in estimating β-C in 

sweet potatoes, as described by Burgos et al. (2009). The PPD was determined using the 

method developed by Wheatley et al. (1985) with some modification. The proximal and distal 

ends of cassava storage roots were removed immediately after harvesting. Proximal ends 

were exposed to the air and distal ends of the storage root were covered using food plastic 

wrappers. The room temperature ranged from 22-28o C and the relative humidity was between 

70-80%. The assessment was conducted seven days after harvest, using the score 1-10 to 

represent the discoloration, where 1 = 10%, 2 = 20%, 10 = 100% (Chávez et al., 2005; 

Wheatley et al., 1985). The two storage roots per genotype were cut into ten transversal slices, 

each 2 cm thick, and the mean score obtained from the 20 slices from the two selected storage 

roots.  

6.2.5 Data analysis  

Data collected from individual plant, which constitute a family, were averaged for statistical 

analysis. The analysis of data was done using SAS studio (University edition). The Griffing’s 

(1956b) diallel Method 4, Model 1 for fixed effects was fitted, to estimate the GCA and SCA 

effects: 

 

𝒀𝒊𝒋 = 𝝁 + 𝒗𝒊𝒋 + 𝒃𝒌 + 𝒆𝒊𝒋𝒌𝒍 

 

Where, Yij = observed value of the cross between parent i and j;  

μ = overall mean; 𝑣𝑖𝑗 = F1 hybrid effect, 𝑣𝑖𝑗 = 𝑔𝑖 + 𝑔𝑗 + 𝑆𝑖𝑗 where, gi = GCA of the parent i; 

gj = GCA of the parent j; sij = SCA of the cross between parents i and j; bk = effect of the kth 

block; and eijkl = experimental error. 

 

The GCA and SCA effects were estimated according to Griffing’s (1956b) Method 4, Model 1 

using the DIALLEL-SAS05 program developed by Zhang et al. (2005). The significance of 

combining ability effects was determined using t-test at 0.05, 0.01 and 0.001 levels of 

probability. The GCA and SCA effects for each trait were determined from the percentage of 

families’ sum of squares (SS) due to GCA and SCA (Tumuhimbise et al., 2014). The relative 

importance of the GCA and SCA effects for each trait was determined from the percentage of 

the families’ sum of squares (SS) (Tumuhimbise, 2013; Were et al., 2012). The mid-parent 

(MP) and best parent (BP) heterosis was analysed, using the formula MPH (%) =

( F1-MP)

MP
X 100, and BPH (%)=

( F1-BP)

BP
X 100. The selection of the best clones for advancement 

was done by using the selection index (SI) proposed by Ceballos et al. (2004), with some 
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modifications. SI = (FRSY ∗ 5) + (βCarotene ∗ 4) − (PPD ∗ 3) − (CBSD − RN ∗ 2) , and the 

variables were standardized, using the following formula: Xi = (Xi − µ)/ St. Dev. 

6.3 Results 

6.3.1 Descriptive statistics of ten important selected traits of F1 cassava clones  

The ten important cassava traits evaluated in this study, showed a considerable variation 

among the F1 clones of fifteen families generated through 6 x 6 half diallel mating design. The 

FSRY, β-C and TBM were highly skewed, while the CMD-S and HI were moderately skewed, 

explaining the genetic diversity among the generated F1 clones. The FSRY ranged from 2.0 

to 44.2 t ha-1 with an average of 8.7 t ha-1, while DMC ranged from 26.1 to 42.1%, with an 

average of 34.0%. The β-C ranged from 0.001 to 1.88 mg 100 g-1 with an average of 0.34 mg 

100 g-1, while the PPD evaluated showed a deterioration of 10 to 60.5% after one week (Table 

6.2). 

 

 

  

Figure 6.1:  New developed clones with high carotenoids and delayed PPD. A: 
Flowers covered to avoid free cross pollination, B: new clone with high yield, 
C: Deep yellow of cassava pulp, D and E: Orange and or pink of cassava 
pulp, F: Orange fleshed cooked cassava  

A B C 

D E F 
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Table 6.2:  Summary statistics of 10 traits measured in clonal F1 of 15 cassava 
families evaluated at two sites 

Traits Mean SE SD Kurtosis Skewness Minimum Maximum 
CMD-S 1.49 0.05 0.44 1.21 0.98 1.00 3.10 
CBSD-L 2.01 0.03 0.31 -0.30 -0.27 1.20 2.67 
CBSD-S 2.18 0.05 0.46 0.04 -0.25 1.00 3.29 
CBSD-RN 2.14 0.09 0.87 -1.51 0.14 1.00 3.50 
FSRY 8.70 0.67 6.32 10.17 2.47 1.98 44.20 
TB 2.66 0.11 1.02 1.15 1.09 1.07 6.45 
HI 0.30 0.01 0.10 1.99 0.78 0.10 0.69 
DMC 33.97 0.35 3.36 -0.09 -0.49 26.10 42.10 
β-C 0.32 0.05 0.45 2.83 1.79 0.001 1.88 
PPD 33.85 1.51 14.37 -0.91 0.26 10.00 60.55 

SE: standard Error, SD: standard deviation, CMD-S: cassava mosaic disease severity, CBSD-L: cassava brown streak disease 
on leaves, CBSD-S: cassava brown streak disease on stem, CBSD-RN: cassava brown streak disease root necrosis, FSRY: 
fresh storage root yield, TB: total biomass, HI: harvest index, DMC: dry matter content, β-C: β-Carotene, PPD: physiological 
postharvest deterioration 

6.3.2 Diallel analysis for cassava β-carotene, delayed postharvest physiological 

deterioration and farmers’ preferred traits 

The environment (E) significantly (p<0.001) influenced the expression of all traits, except 

CMD, DMC and PPD. The families exhibited significant differences for CBSD-S, FSRY and HI 

at p<0.05 and at p<0.001 for the remaining traits. The effects due to families were further 

partitioned into two components, namely, the effects due to GCA and SCA. The GCA was 

significant (p<0.05) for CMD and DMC, and significant (p<0.001) for β-C and PPD. The SCA 

was significant for β-C and PPD at p <0.001, CMD and DMC at p <0.01, and TB and CBSD-L 

at p <0.05. 

The relative importance of additive and non-additive gene effects for the expression of the 

studied traits was partitioned into GCA and SCA effects, expressed as a percentage of the 

sum of squares. The variability of the trait expression among families indicated that the pulp 

traits (CBSD-RN, β-C and PPD), were highly influenced (over 50% of variability) by the GCA 

effects, while CMD, CBSD-L, CBSD-S, TB, FSRY, HI and DMC, leaves and yield traits were 

considerably influenced (over 50% of variability) by the SCA effects (Table 6.3). 
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Table 6.3:  Combined analysis of variance for important traits of 15 families of 
cassava clones generated from 6 x 6 half-diallel 

Source of variation  Mean squares 

DF CMD CBSD-L CBSD-S CBSDN TB 

Environments (E) 1 0.06 1.20*** 5.34*** 56.64*** 25.26*** 
Families 14 0.42*** 0.16*** 0.19* 0.21*** 1.73*** 
E x Families 14 0.36*** 0.18*** 0.34*** 0.36*** 1.77*** 

GCA 5 0.37* 0.09 0.24 0.32 0.68 
SCA 9 0.44** 0.18* 0.16 0.14 2.31* 
Error 74 0.10 0.04 0.09 0.05 0.32 
CV (%)  22.03 10.01 13.89 10.06 21.3 
% SS due to GCA  31.6 22.6 46.3 55.8 14.1 
% SS due to SCA  68.4 77.4 53.7 44.1 85.9 

Table 6.3: Continued 

Source of variation Mean squares 

DF FSRY HI DMC β-C PPD 

Environments (E) 1 705.31*** 0.21*** 0.64 0.35*** 57.36 

Families 14 51.27* 0.01* 26.08*** 1.00*** 912.69*** 

E. Families 14 58.28** 0.00 15.45* 0.13*** 35.50 
GCA 5 34.16 0.01 23.13* 2.31*** 1564.96*** 
SCA 9 60.78 0.00 27.71** 0.27*** 550.32*** 
Error 74 21.24 0.00 7.38 0.02 84.46 

CV (%)  52.9 24.12 7.99 46.72 27.15 

% SS due to GCA  23.8 42.1 31.7 89.5 61.2 
% SS due to SCA  76.2 57.9 68.3 10.5 38.5 

GCA: general combining ability, SCA: specific combining ability, CV: coefficient of variation, %SS: percentage sum of squares, 
CMD-S: cassava mosaic disease severity, CBSD-L: cassava brown streak disease on leaves, CBSD-S: cassava brown streak 
disease on stem, CBSD-RN: cassava brown streak disease root necrosis, FSRY: fresh storage root yield, TB: total biomass, HI: 
harvest index, DMC: dry matter content, β-C: β-Carotene, PPD: physiological postharvest deterioration 

6.3.3 General combining ability effects for cassava β-carotene, delayed postharvest 

physiological deterioration and other farmers’ preferred traits 

The GCA effects of ten important selected traits of six cassava parents were analysed across 

two locations. Mavoka had a significant (p<0.001) positive GCA effects for β-C, an undesirable 

significant (p<0.01) negative GCA effects for DMC, and a desirable significant (p<0.001) 

negative GCA effects for PPD. Garukunsubire also presented a significant (p<0.001) positive 

GCA effects for β-C and a significant (p<0.001) negative GCA effects for PPD. The GCA 

effects for Mavoka and Garukunsubire indicates the ability of both parents to improve the level 

of β-C and delayed PPD. Gahene, Ndamirabana and Gitamisi showed a significant (p<0.001) 

negative GCA effects for β-C and a positive GCA effects for PPD, while Mushedile also had 

significant negative GCA effects for β-C (Table 6.4). In addition, Mavoka had the highest mean 

of β-C, followed by Garukunsubire. 
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Table 6.4:  Means and general combining ability effects for important traits of 15 
families of cassava clones generated from 6 x 6 half-diallel 

Parents 
CMD CBSD-L CBSD-S CBSD-RN FSRY(t ha-1) 

𝐗 GCA 𝐗 GCA 𝐗 GCA 𝐗 GCA 𝐗 GCA 

Mavoka 1 -0.10 4 0.05 3 0.06 3 0.16 17.3 1.41 
Garukunsubire 1 0.02 4.5 0.00 4 -0.07 4.5 -0.16 12.6 0.72 
Gahene 4.5 0.02 4 -0.02 4 0.00 4 -0.08 2.4 -0.85 
Mushedile 3.5 0.22** 2.5 -0.10* 1 -0.14 1 -0.00 26.3 -1.81 
Ndamirabana 1.5 -0.05 2 0.01 3 0.00 2 0.08 19.3 -0.20 
Gitamisi 3 -0.11 3 0.07 2 0.14 3 0.00 9.13 0.73 
Means 2.4  3.3  2.8  2.9  14.5  
SE 0.3  0.2  0.2  0.3  1.9  

Table 6.4: Continued 

Parents 
TB HI DMC (%) βC (mg 100g-1) PPD (%) 

𝐗 GCA 𝐗 GCA 𝐗 GCA 𝐗 GCA 𝐗 GCA 

Mavoka 5.5 0.15 0.31 0.00 26.0 -1.72** 1.32 12.27*** 10. -11.72*** 
Garukunsubire 5.5 0.15 0.23 0.01 29.4 0.23 0.03 6.59*** 55. -7.30*** 
Gahene 0.9 -0.24 0.27 0.00 33.1 0.68 0 -7.01*** 50. 5.24** 
Mushedile 5.6 -0.15 0.47 -0.04* 32.5 1.12* 0 -4.01*** 55. 9.98*** 
Ndamirabana 5.2 -0.00 0.37 -0.00 31.3 -0.25 0 -4.01*** 40. 1.27 
Gitamisi 4.5 0.09 0.2 0.01 33.5 -0.06 0 -3.82*** 50. 2.52 
Means 4.5  0.31  30.9  0.25  43.3  
SE 0.4  0.02 0.6  0.12  3.8  

SE: standard error, X;means, GCA: general combining ability, CMD-S: cassava mosaic disease severity, CBSD-L: cassava 

brown streak disease on leaves, CBSD-S: cassava brown streak disease on stem, CBSD-RN: cassava brown streak disease 
root necrosis, FSRY: fresh storage root yield, TB: total biomass, HI: harvest index, DMC: dry matter content, β-C: β-Carotene, 
PPD: physiological postharvest deterioration 

6.3.4 Specific combining ability effects for cassava β-Carotene, delayed postharvest 

physiological deterioration and farmers’ preferred traits 

The mean performance and SCA effects were analysed for fifteen families grown over two 

locations. The family Garukunsubire x Gahene had a desirable significant (p<0.05) negative 

SCA effects for CMD, and no CMD symptoms. The families Mavoka x Mushedile and Gahene 

x Ndamirabana recorded the least CBSD-L (1.7) with a significant (p<0.05) negative SCA 

effects. The family Garukunsubire x Gahene had a positive SCA effects for FSRY, and the 

highest average FSRY (13.7 t ha-1), while the family Mavoka x Mushedile had the lowest 

average FSRY (3.9 t ha-1), with a significant (p<0.05) negative SCA effects (-4.40). The family 

Garukunsubire x Gahene had the highest average of TB per plant (3.63 kg) and a significant 

(p<0.05) positive SCA effects, while the family Garukunsubire x Ndamirabana showed the 

highest HI (0.34), with a significant positive SCA effects. The family Mavoka x Garukunsubire 

had the highest average of DMC (35.9%), with a high significant (p<0.001) positive SCA 

effects, while the family Mavoka x Ndamirabana recorded the lowest average of DMC (28.4%), 

with a significant (p<0.001) negative SCA effects (-3.62). The family of Mavoka x 

Garukunsubire had a significant (p<0.001) positive SCA effects for β-Carotene, and the 

highest average β-C. The family Mavoka x Ndamirabana had the least PPD (13.3%) recorded 

after one week of storage (Table 6.5).  
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Table 6.5:  Means and specific combining ability effects for important traits of 15 
families of cassava clones generated from 6x6 half-diallel 

Families CMD-S CBSD-L CBSD-S CBSD-RN FSRY (t ha-1) 

 𝐗 SCA  𝐗 SCA 𝐗 SCA  𝐗 SCA  𝐗 SCA 

G1xG2 1.39 -0.01 1.98 -0.07 2.16 0 2.18 0.05 7.28 -3.55 
G1xG3 1.46 0.05 2.18 0.14 2.14 -0.1 2.3 0.08 13.13 3.87 
G1xG4 1.84 0.24* 1.73 -0.22* 2.12 0.02 2.13 -0.16 3.9 -4.40* 
G1xG6 1.31 -0.02 2.08 0.01 2.28 0.02 2.4 0.02 11.19 1.27 
G1xG7 1 -0.26* 2.27 0.13 2.44 0.05 2.3 0 13.66 2.8 
G2xG3 1.26 -0.27* 2.12 0.13 2.27 0.16 2.01 0.12 6.36 -2.2 
G2xG4 1.94 0.21 1.79 -0.1 1.86 -0.09 1.98 0.02 11.7 4.08* 
G2xG6 1.44 -0.02 2 -0.01 2.13 0.01 1.82 -0.23 10.36 1.14 
G2xG7 1.5 0.1 2.15 0.06 2.16 -0.08 2 0.03 10.68 0.52 
G3xG4 1.56 -0.16 1.96 0.08 2.18 0.14 2.02 -0.02 5.94 -0.09 
G3xG6 1.87 0.41** 1.77 -0.22* 1.9 -0.29* 1.99 -0.14 8.16 0.52 
G3xG7 1.36 -0.02 1.9 -0.15 2.41 0.08 2.02 -0.03 6.48 -2.09 
G4xG6 1.22 0.42*** 2.17 -0.26** 2.16 -0.11 2.47 -0.25 6.03 0.65 
G4xG7 1.72 0.13 1.94 -0.02 1.98 -0.19 2.05 -0.08 8.67 1.05 
G6xG7 1.36 0.05 2.06 -0.03 2.46 0.13 2.31 0.08 6.93 -2.29 
Means 1.48  2.01  2.18  2.13  8.7 0.09 
SE 0.046  0.032  0.048  0.092  0.666  
P Value <.001   <.001   <.001   <.001   <.001   

Table 6.5: Continued 
Families TB (kg plant-1) HI DMC (%) β-C (mg 100g-1) PPD (%) 

 

SCA  SCA  SCA  SCA  SCA 

G1xG2 2.39 -0.57 0.29 -0.03 35.9 3.42*** 1.47 5.49*** 32.5 17.68*** 
G1xG3 3.2 0.63* 0.34 0.02 33.28 0.35 0.26 -3.97*** 24 -3.36 
G1xG4 1.62 -1.02* 0.23 -0.02 34.65 1.28 0.63 -0.36 35.83 3.72 
G1xG6 3.04 0.23 0.33 0.02 28.36 -3.62*** 0.46 -2.94** 13.33 -10.06*** 
G1xG7 3.63 0.72* 0.33 0 30.75 -1.42 0.79 1.78 16.66 -7.98** 
G2xG3 2.25 -0.31 0.27 -0.04 34.04 -0.84 0.20 -1.48 24.16 -7.61** 
G2xG4 3.29 0.63* 0.34 0.06* 33.26 -2.06* 0.32 -1.54 34.16 -2.35 
G2xG6 2.91 0.1 0.33 0.01 33.36 -0.58 0.50 1.02 25 -2.81 
G2xG7 3.05 0.14 0.32 -0.01 34.21 0.07 0.19 -3.49*** 24.16 -4.9 
G3xG4 2.41 0.16 0.23 -0.01 35.87 0.09 0.00 1.85 50 0.92 
G3xG6 2.45 0.04 0.32 0.02 35.5 1.1 0.00 1.85 50.17 9.81*** 
G3xG7 1.98 -0.52 0.32 0 33.86 -0.71 0.00 1.74 41.85 0.23 
G4xG6 2.57 -0.08 0.21 0.04 35.7 -0.86 0.00 -0.08 39.16 5.94* 
G4xG7 2.73 0.14 0.29 0.02 34.85 -0.17 0.00 -0.03 50 3.64 
G6xG7 2.26 -0.47 0.29 -0.02 35.88 2.24* 0.00 -0.01 46.66 9.01** 
Means 2.65  0.29  33.96  0.32  33.84 0.79 
SE 0.108  0.01  0.35  0.049  1.514  
P Value <.001   <.001   <.001   <.001  <.001  

SE: standard error, X:means, G1: Mavoka, G2: Garukunsubire, G3: Gahene, G4: Mushedile, G6: Ndamirabana, G7: Gitamisi, 

SCA: specific combining ability, CMD-S: cassava mosaic disease severity, CBSD-L: cassava brown streak disease on leaves, 
CBSD-S: cassava brown streak disease on stem, CBSD-RN: cassava brown streak disease root necrosis, FSRY: fresh storage 
root yield, TB: total biomass, HI: harvest index, DMC: dry matter content, β-C: β-Carotene, PPD: physiological postharvest 
deterioration 

6.3.5 Estimates of mid-parent heterosis of selected traits of cassava clones across 

two locations 

The family Mavoka x Garukunsubire expressed the highest positive heterosis for CMD, DMC 

and β-C. Out of fifteen families, only three families (Movaka x Mushedile, Mushedile x 

Ndamirabana and Mushedile x Gitamisi) had a desirable positive mid-parent heterosis for 

CBSD-S and CBSD-RN resistance. This indicates that Mushedile could be the better parent 
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for improving cassava resistance to CBSD. In terms of FRSY, the families Mavoka x Gahene, 

Garukunsubire x Gahene and Gahene x Gitamisi had the highest positive mid-parent 

heterosis, while the remaining families expressed a negative heterosis for FRSY (Table 6.6). 

The heterosis for β-C was positively higher for all families with parent Garukunsubire, 

indicating that it could be a good combiner to improve β-C. The mid-parent heterosis for PPD 

was positive for the families Garukunsubire x Gitamisi, Mavoka x Mushedile and Ndamiraba x 

Gitamisi, while most of families expressed the desirable negative heterosis (Table 6.6).  

Table 6.6:  Mid-parents heterosis for important cassava traits evaluated at clonal 
stage across two sites 

Families 
CMD CBSD-S CBSD-RN FSRY (t ha-1) 

Mean MPH Mean MPH Mean MPH Mean MPH 

G1xG2 1.39 39.33 2.16 -38 2.18 -41.65 7.28 -51.12 
G1xG3 1.46 -46.89 2.14 -38.62 2.30 -34.22 13.13 33.71 
G1xG4 1.84 -17.83 2.12 6.29 2.13 6.62 3.90 -82.05 
G1xG6 1.31 4.89 2.28 -23.92 2.40 -3.61 11.19 -38.73 
G1xG7 1.00 -50 2.44 -2.05 2.30 -23.27 13.66 3.56 
G2xG3 1.26 -54.06 2.27 -43.05 2.01 -52.63 6.36 -14.89 
G2xG4 1.94 -13.36 1.86 -25.36 1.98 -27.68 11.70 -39.75 
G2xG6 1.44 15.56 2.13 -39.12 1.82 -43.88 10.36 -34.9 
G2xG7 1.50 -25 2.16 -27.86 2.00 -33.02 10.68 -1.54 
G3xG4 1.56 -60.89 2.18 -12.68 2.02 -19.01 5.94 -58.53 
G3xG6 1.87 -37.39 1.90 -45.67 1.99 -33.45 8.16 -24.67 
G3xG7 1.36 -63.56 2.41 -19.58 2.02 -42.03 6.48 12.43 
G4xG6 1.22 -45.37 2.16 8.02 2.47 65.17 6.03 -73.52 
G4xG7 1.72 -47.06 1.98 32.49 2.05 2.68 8.67 -50.99 
G6xG7 1.36 -39.27 2.46 -1.43 2.31 -7.51 6.93 -51.18 
G1 1  3  3  17.3  
G2 1  4  4.5  12.6  
G3 4.5  4  4  2.4  
G4 3.5  1  1  26.3  
G5 1.5  3  2  19.3  
G6 3  2  3  9.13  

MPH: mid-parent heterosis, G1: Mavoka, G2: Garukunsubire, G3: Gahene, G4: Mushedile, G6: Ndamirabana, G7: Gitamisi, SCA: 
specific combining ability, CMD-S: cassava mosaic disease severity, CBSD-S: cassava brown streak disease on stem, CBSD-
RN: cassava brown streak disease root necrosis, FSRY: fresh storage root yield, 

  



127 
 

Table 6.6: Continued 

Families 
HI DMC (%) β-C (mg 100 g-1) PPD (%) 

Mean MPH Mean MPH Mean MPH Mean MPH 

G1xG2 0.29 8.14 35.90 29.64 1.47 117.8 32.50 0 

G1xG3 0.34 18.22 33.28 12.72 0.26 -60.6 24.00 -20 

G1xG4 0.23 -38.96 34.65 18.54 0.63 -4.6 35.83 10.26 

G1xG6 0.33 -1.79 28.36 -0.86 0.46 -30.4 13.33 -46.67 

G1xG7 0.33 31.53 30.75 3.46 0.79 19.6 16.66 -44.44 

G2xG3 0.27 11.73 34.04 8.94 0.20 1190.3 24.16 -53.97 

G2xG4 0.34 -1.97 33.26 7.44 0.32 1964.5 34.16 -37.88 

G2xG6 0.33 11.52 33.36 10 0.50 3125.8 25.00 -47.37 

G2xG7 0.32 49.76 34.21 8.79 0.19 1125.8 24.16 -53.97 

G3xG4 0.23 -34.86 35.87 9.4 0.00 0.0 50.00 -4.76 

G3xG6 0.32 3.36 35.50 10.38 0.00 0.0 50.17 11.5 

G3xG7 0.32 38.85 33.86 1.78 0.00 0.0 41.85 -16.3 

G4xG6 0.21 -48.53 35.70 12.02 0.00 0.0 39.16 -17.54 

G4xG7 0.29 -11.91 34.85 5.67 0.00 0.0 50.00 -4.76 

G6xG7 0.29 3.49 35.88 10.91 0.00 0.0 46.66 3.7 

G1 0.31  26  1.32  10  
G2 0.23  29.4  0.03  55  
G3 0.27  33.1  0  50  
G4 0.47  32.5  0  55  
G6 0.37  31.3  0  40  
G7 0.2  33.5  0  50  

MPH: mid-parent heterosis, G1: Mavoka, G2: Garukunsubire, G3: Gahene, G4: Mushedile, G6: Ndamirabana, G7: Gitamisi, SCA: 
specific combining ability, HI: harvest index, DMC: dry matter content, β-C: β-Carotene, PPD: physiological postharvest 
deterioration 

6.3.6 Selection of F1 clones based on farmer preferred traits 

The selection of genotypes was performed using a selection index that was based on the key 

four traits (FRSY, CBSD-RN, β-carotene and PPD) across two locations. The clone 183 from 

the family Garukunsubire x Gitamisi had the highest FRSY, followed by clone 115 generated 

from the family Mavoka x Gahene with a yield of 45.6 t ha-1 and 44.0 t ha-1, respectively. In 

terms of FSRY, fourteen clones out of the top twenty selected clones performed beyond the 

better parent (Table 6.7). The highest β-carotene (6.12 mg 100 g-1) was observed from two 

clones, 670 and 93, generated from families Mavoka x Garukunsubire and Mavoka x Gitamisi, 

respectively. The same clones expressed the lowest postharvest physiological deterioration 

(5%) after one week of storage at room temperature. Unfortunately, several of the top twenty 

clones had storage root necrosis due to cassava brown streak disease.  
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Table 6.7:  Mean performance, best parent heterosis and ranking based on fresh 
storage root yield, cassava brown streak disease, β-carotene and delayed 
postharvest physiological deterioration of top best 20 clones  

Clones Pedigree 
FSRY CBSD-RN β-Carotene PPD 

SI 
𝐗 BPH 𝐗 BPH 𝐗 BPH 𝐗 BPH 

426 G1xG7 41.7 141.0 4.0 33.3 1.65 25.0 8 -73.3 185.6 
96 G1xG7 40.5 134.1 3.0 0.0 1.65 25.0 8 -73.3 183.6 
670 G1xG2 31.4 81.5 2.0 -33.3 6.12 363.6 5 -83.3 161.5 
115 G1xG3 44.0 154.3 1.0 -66.7 0.03 -97.7 30 0.0 160.3 
401 G1xG6 30.3 75.1 2.0 -33.3 1.32 0.0 10 -66.7 131.6 
183 G2xG7 45.6 136.3 3.0 0.0 0.00 -99.3 60 9.1 100.2 
216 G1xG7 23.6 36.4 2.0 -33.3 1.32 0.0 10 -66.7 98.1 
93 G1xG7 23.8 37.6 1.0 -66.7 0.15 -88.6 15 -50.0 89.6 
272 G1xG7 25.5 47.4 1.0 -66.7 0.15 -88.6 20 -33.3 88.1 
78 G1xG3 19.0 9.8 1.0 -66.7 1.32 0.0 10 -66.7 79.1 
52 G1xG3 17.9 3.5 1.0 -66.7 1.65 25.0 8 -73.3 78.6 
52 G1xG3 19.5 12.7 2.0 -33.3 1.32 0.0 10 -66.7 77.6 
79 G1xG6 26.8 54.9 4.0 33.3 0.03 -97.7 30 0.0 62.3 
79 G1xG6 26.8 54.9 4.0 33.3 0.03 -97.7 30 0.0 62.3 
50 G1xG3 15.5 -10.4 2.0 -33.3 1.32 0.0 10 -66.7 57.6 
423 G1xG3 15.5 -10.4 1.0 -66.7 0.15 -88.6 15 -50.0 48.1 
93 G1xG7 9.5 -45.1 4.0 33.3 6.12 363.6 5 -83.3 44.0 
25 G1xG2 10.3 -40.5 1.0 -66.7 1.65 25.0 8 -73.3 40.6 
50 G1xG3 13.9 -19.7 1.0 -66.7 0.15 -88.6 15 -50.0 40.1 
288 G1xG2 13.0 -24.9 1.0 -66.7 0.15 -88.6 15 -50.0 35.6 

BPH: best parent heterosis, SI: selection index, G1: Mavoka, G2: Garukunsubire, G3: Gahene, G4: Mushedile, G6: Ndamirabana, 
G7: Gitamisi, CBSD-RN: cassava brown streak, FSRY: fresh storage root yield, PPD: postharvest physiological deterioration  

6.4 Discussion and conclusions 

This study was conducted on 450 clones of fifteen families generated from 6x6 half-diallel 

mating design. The F1 clones exhibited considerable phenotypic variability among families 

and progenies for the evaluated traits, such as FSRY, β-C, DMC, TBM, CMD-S, HI, CBSD-S, 

CBSD-RN and PPD. Some F1 clones produced higher FRSY than the best parents; the lowest 

FRSY was 1.98 t ha-1, while the highest was 44.20 t ha-1. Similarly, some F1 progenies had 

higher amounts of β-C and higher PPD tolerance than their parents, which could be attributed 

to the transgressive segregation and heterosis, which are desirable for the improvement of 

most cassava traits. Similar findings reported by Tumuhimbise (2013) and Njenga et al. (2014) 

indicated that some cassava progenies outperformed their parents in terms of various traits, 

including FRSY and pulp/flesh colour (an indication of β-C content). 

The environments did not exhibit a significant influence on the expression of β-C and PPD, 

indicating that the expression of such traits is mostly controlled by the plant genes. 

Tumuhimbise et al. (2015) reported a low environmental effect on PPD expression, while the 

low environmental effects on β-C agrees with the findings of many authors (Akinwale et al., 

2011; Rodriguez-Amaya, 2010; Ssemakula and Dixon, 2007), who indicated that the 

accumulation of β-C is predominately governed by genetic effect, with a low GxE interaction. 
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The families’ mean squares exhibited a significant difference for all traits, indicating significant 

variation among families. The ExFamilies interaction effects were significant for most traits, 

except HI and PPD, indicating that they are unstable, and that selection for these two traits 

cannot be performed solely at one location. The remaining traits were stable and could be 

selected at each location. The GxE interaction effects indicated that most traits had a stable 

performance across two locations. These findings agree with many authors (Baiyeri et al., 

2008; Njoku et al., 2015; Ntawuruhunga and Dixon, 2010; Tumuhimbise et al., 2015; Were et 

al., 2012), who reported significant GxE interaction effects for most agronomic and 

morphological cassava traits. The number of sites was low because of the small number of 

stakes available and further studies on GxE interaction are needed 

The GCA and SCA effects for both β-C and PPD were highly significant, indicating the role of 

additive and non-additive gene action in controlling such traits. The relative importance of 

additive and non-additive gene effects revealed that the pulp traits (CBSD-RN, β-C and PPD) 

were highly influenced (over 50% of variability) by GCA effects, indicating that such traits are 

predominantly controlled by additive gene action. A similar finding was reported by 

Tumuhimbise (2013) and Kulembeka et al. (2012), who indicated that CBSD-RN severity and 

PPD are predominantly controlled by additive gene action. The β-C was controlled by additive 

gene action, which is desirable as the trait that can be improved through recurrent selection. 

This is supported by Njenga et al. (2014) who reported that the pulp colour of the cassava 

storage root is positively controlled by additive gene action. Ceballos et al. (2013) and 

Nduwumuremyi et al. (2016a) reported that carotene can be selected through recurrent 

selection in the cassava breeding scheme. The GCA results indicated that the pulp traits are 

highly heritable and should react positively to selection. This agrees with Perkes et al. (2013), 

who reported that the traits with a predominance of additive gene action are highly heritable 

and react positively to selection. 

The viral diseases and yield traits (CMD, CBSD-L, CBSD-S, TB, FSRY, HI and DMC) were 

considerably influenced (over 50% of variability) by SCA effects, which showed a 

predominance of non-additive gene action in controlling these traits. Several authors (Chipeta 

et al., 2015; Kulembeka et al., 2012; Tumuhimbise, 2013; Were et al., 2012) reported on the 

non-additive gene action for FRSY and most of the cassava traits. The non-additive gene 

action found for CMD disagreed with Tumuhimbise (2013) and Parkes et al. (2013), who 

reported that CMD resistance is predominantly controlled by additive gene effects.  

The GCA effects for parents indicated that genotype Mavoka had a significant desirable 

positive GCA for β-C and FRSY, an undesirable significant negative GCA for DMC, and a 

desirable significant negative GCA for PPD. The genotype Garukunsubire presented similar 
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attributes, indicating the ability of both parents to improve the level of β-Carotene and delayed 

PPD, when combined in a hybridization scheme. The improvement of β-C content in the 

cassava population using Mavoka as progenitor, could be used to concurrently improve yield 

and delayed PPD, but could lead to a reduction in the dry matter content. The findings on the 

negative correlation between carotenoids and dry matter was reported by many authors 

(Akinwale et al., 2010; Ceballos et al., 2012; Esuma et al., 2012; Nduwumuremyi et al., 2016a; 

Vimala et al., 2009), which could negatively affect the farmers’ adoption. The antioxidant 

properties of carotenoids could delay the PPD by protecting the wounded part of the storage 

root against reactive oxygen, as reported by many authors (Azqueta and Collins, 2012; Edge 

et al., 1997; Giuliano, 2014; Nduwumuremyi et al., 2016a; Priya and Siva, 2014; Xu et al., 

2013; Zidenga et al., 2012), and could promote the adoption of improved carotenoids cassava 

clones. 

In terms of CMD, the clones from the families Garukunsubire x Gahene and Garukunsubire x 

Mushedile had the desirable high negative SCA, indicating that Garukunsubire could be a 

good combiner for CMD resistance. The individuals from the family Mushedile x Ndamirabaha, 

followed by Mavoka x Mushedile and Garukunsubire x Gitamisi, had a desirable high negative 

SCA (-0.26, -0.22, respectively) for CBSD-L. The family Mavoka x Garukunsubire had the 

highest average DMC (35.9%) and a desirable significant positive SCA effects while the family 

Mavoka x Ndamirabana recorded the lowest average of DMC (28.3%), and an undesirable 

significant negative SCA effects (-3.62). The family Mavoka x Garukunsubire had the highest 

average β-Carotene, with a desirable positive SCA effects, while the family Mavoka x 

Ndamirabana had the lowest PPD (13.3%) after one week of storage and a desirable negative 

SCA effect (-10.06). 

The progenies from family Mavoka x Garukunsubire expressed the highest positive heterosis 

for CMD, DMC and β-C. The high positive heterosis for DMC in this family is an interesting 

scenario, which could be linked to transgressive segregation, because one of the parents was 

a bad combiner for DMC. The progenies from three families (Movaka x Mushedile, Mushedile 

x Ndamirabana and Mushedile x Gitamisi) had a desirable positive mid-parent heterosis for 

CBSD-S and CBSD-RN resistance, indicating that Mushedile could be used for improving 

cassava resistance to CBSD. In terms of FRSY, the families Mavoka x Gahene, 

Garukunsubire x Gahene and Gahene x Gitamisi had the highest positive mid-parent 

heterosis, indicating that Gahene could be a good combiner for FRSY. The mid-parent 

heterosis for PPD was positive for the families Garukunsubire x Gitamisi, Mavoka x Mushedile 

and Ndamiraba x Gitamisi, while most of the families expressed negative heterosis. The 

heterosis for FRSY, DMC, CMD, CBSD, β-C and PPD indicates the genetic diversity of the 

parents used.  
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In conclusion, good progress was made to improve β-C, FRSY, delayed PPD and other 

important cassava traits using the available wide genetic diversity of the cassava. This study 

gave an insight into the feasibility of improvement of the above traits, and provides the 

foundation for a cassava breeding program for Rwanda. The selection of the genotypes for 

advancement was performed using a selection index. Unfortunately, most of the selected top 

twenty clones had storage root necrosis, due to cassava brown streak disease. Therefore, 

more investigation is needed to identify new sources of resistance to CBSD and the 

development of a protocol for the rapid multiplication of cuttings to facilitate the dissemination 

of newly- developed cassava hybrids.  
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CHAPTER VII 

General overview of the research findings and implications for cassava breeding 

7.1 Introduction 

Cassava is among the important staple foods and plays a key role as a food security and an 

income-generating crop for most smallholder farmers in tropical and subtropical developing 

countries (Ceballos et al., 2004; El-Sharkawy, 2004; Tumuhimbise, 2013). It is a multipurpose 

crop and a cheap source of starch in Rwanda. However, there are many factors that impact 

on its production, consumption and marketability. The main constraint in cassava production 

in the country is the lack of good genotypes with high yield, that are resistant to pests and 

diseases and that have minimum postharvest losses. The improvement of cassava through 

breeding approaches is the key for addressing the most challenging constraint factors in the 

development of cassava in the country. 

The main goal of this study was to contribute to the increase of cassava productivity through 

participatory cassava breeding for high-yielding cassava genotypes, with improved 

carotenoids content and delayed postharvest physiological deterioration (PPD) for Rwanda. 

This was achieved through the following activities:  

1. A review of the existing knowledge, principles and concepts for guiding the 

methodological development of improved carotenoids cassava with a delayed 

physiological postharvest deterioration; 

2. A participatory appraisal of the preferred traits, production constraints and postharvest 

challenges of cassava farmers; 

3. An evaluation of cassava genetic variability for total carotenoids and the farmers’ 

preferred traits; 

4. An analysis of genotype x environment (GxE) effects on total carotenoids content and 

farmers’ preferred traits; and  

5. The development of F1 clones and the determination of the genetic inheritance of 

cassava families for high yield, improved carotenoids and delayed PPD. 
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7.2 Summary of the findings 

Review of the existing knowledge and feasibility of improving carotenoids content and 

delaying physiological postharvest deterioration 

 PPD is induced by wounds, when detaching storage roots from the mother plant 

during harvesting; 

 It is accelerated by the reactive oxygen species (ROS), such as oxygen ion (O2-) and 

peroxide (O2
2-

); 

 Carotenoids content and its antioxidant properties help to extend the shelf-life of 

cassava storage roots; 

 The two types of phytoene synthase (PSY) enzymes (PSY1 and PSY2) are key 

regulators of carotenoids accumulation in cassava;  

 Carotenoids is a highly heritable trait, which provides hope that conventional 

breeding through recurrent selection can be successful in improving the carotenoids 

content of cassava; and  

 Consequently, it can effectively extend the shelf-life of fresh cassava storage roots in 

developing countries. 

Participatory appraisal of farmer preferred traits, production constraints and 

postharvest challenges for cassava farmers 

 Cassava is grown on 0.29 ha, out the total average land possession per household of 

0.69 ha in the study area; 

  The majority of cassava farmers (59.1%) practice intercropping; 

  The average yield was 21.8 t ha-1; 

 The constraints, per order of importance are: lack of clean cuttings, viral diseases, 

late bulking cultivars, drought, limited knowledge, weathered soils, insufficient 

fertilizers, land shortage, limited information, lack of market and effective storage 

techniques; 

 The losses due to PPD were estimated at 11.9% of the total production per year;  

 A piecemeal harvesting and the underground storage of roots were the main 

practices used to tackle the effects of PPD;  
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 A change in colour and taste, rotting, difficulty to remove skin and an increase in 

fibres in the flesh were the methods used by farmers to assess PPD; and  

 Farmers’ preferences influenced the adoption of new cassava cultivars.  

Cassava genetic variability for total carotenoids and farmers’ preferred traits 

 A high genetic variability (61.0%) exists among the 30 genotypes collected across 

the country; 

 The 98.2% of total carotene (TC) variation was explained by genotypes and only 

1.8% were due to an unknown origin; 

 Total carotene had a high heritability (H2) estimates of 99.2% and an expected 

genetic advance (GA %) of 159.6 %; 

 The high H2 estimate (%) and GA (%) for TC indicated that conventional breeding 

could improve carotenoids in cassava, using simple recurrent selection; and 

 The PPD was negatively correlated with TC and dry matter content (DMC), indicating 

that the high TC and low DMC cultivars could have a delayed PPD.  

GxE effects on total carotenoids content and farmers’ preferred traits 

 The TC, PPD and viral diseases traits were significantly affected by the environment; 

 The % variation due to genotype for TC was higher (96%) than the variation due to 

environment (1.7 %) and GxE interaction (2.4 %), indicating less interaction effect of 

environment on TC accumulation; and 

 The Mavoka cultivar was generally adapted to all locations, and had a higher 

carotenoids content with delayed onset of PPD than other genotypes. Thus, it could 

be a good genetic source for improving the carotenoids content and extending the 

shelf-life in cassava.  

Diallel analysis and genetic inheritance of total carotenoids and delayed postharvest 

physiological deterioration  

 The fifteen F1 families exhibited a significant variation between the genotypes and 

families, indicating the significant genetic diversity essential for crop improvement 

through conventional breeding;  
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 The general combining ability (GCA) effects was significant (p<0.01) for all traits, 

except for cassava brown streak disease on leaves (CBSD-L), while specific combining 

ability (SCA) effects were significantly different (p<0.01) for all evaluated traits (height, 

CBSD-L: cassava brown streak disease on leaves, CBSD-S: cassava brown streak 

disease on stem, CBSD-RN: cassava brown streak disease root necrosis, SRN: 

storage root number, SRL: storage root length, SRG: storage root girth, FSRY: fresh 

storage root yield, HI: harvest index, DMC: dry matter content, pulp colour, and PPD: 

physiological postharvest deterioration);  

 The significant GCA effects indicated the possibility of improving cassava through 

recurrent selection for most of evaluated traits. Based on the significance and direction 

of GCA effects, the parents G2 and G7 were the best general combiners for improved 

fresh storage root yield, while the parents G1 and G2 were the best general combiners 

for improved carotenoids (yellow/orange pulp colour) and delayed physiological 

postharvest deterioration;  

 The significant GCA and SCA effects for most traits indicated the role of both additive 

and non-additive gene action in expressing most of the cassava traits;  

 The highest GCA/ SCA ratio and % sum of square (SS) due to GCA were recorded for 

CBSD-RN, SRN, FSRY, HI, pulp colour and PPD, indicating that these traits were 

primarily controlled by additive gene action; and  

 The first three principal components (PCs) were most important and explained 71.2% 

of total variation among families for all traits, which indicated the possible success of 

early selection for all traits.  

Combining ability effects and heterosis for cassava β-Carotene and delayed 

postharvest physiological deterioration and farmers’ preferred traits at F1 clonal 

evaluation 

 The F1 clones exhibited considerable phenotypic variability among families and 

offspring for the evaluated traits, such as FSRY, β-C, DMC, TBM, CMD-S, HI, CBSD-

S, CBSD-RN and PPD. Some F1 clones produced higher FRSY, β-C and PPD 

tolerance than their parents, and this could be attributed to the transgressive 

segregation and heterosis, which are desirable for the improvement of most cassava 

traits; 

 The environments did not exhibit a significant influence on the expression of β-C and 

PPD, indicating that the expression of such traits is mostly genetically controlled; 

 The environments x families’ interaction effects were significant for most traits, except 

HI and PPD, indicating that they are unstable, and the selection for these two traits 
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cannot be performed solely at each location. The remaining traits were stable and 

could be selected at each location; 

 The GCA and SCA effects for both β-C and PPD were highly significant, indicating the 

role of additive and non-additive gene action in controlling such traits; 

 The GCA effects for parents showed that the genotype Mavoka had a high positive 

GCA effects for β-C and FRSY, and a high negative GCA effects for PPD and DMC, 

indicating that it is the best combiner in terms of FRSY, β-C and delayed PPD and a 

poor combiner for DMC, as it can reduce the dry matter content. This implies that 

improving β-C content in the cassava population, using Mavoka as a progenitor, could 

concurrently improve the yield and delay PPD, but it would reduce the dry matter 

content; 

 The individuals from the family Mavoka x Garukunsubire expressed the highest 

positive heterosis for CMD, DMC and β-C. In terms of FRSY, the families Mavoka x 

Gahene, Garukunsubire x Gahene and Gahene x Gitamisi had the highest positive 

mid-parent heterosis, indicating that Gahene could be a good combiner for improving 

FRSY. The mid-parent heterosis for a delayed PPD was positive for the families 

Garukunsubire x Gitamisi, Mavoka x Mushedile and Ndamiraba x Gitamisi; and  

 This study gave a detailed insight into the opportunities for developing improved 

cassava cultivars for Rwanda. A selection index was used to identify the most 

promising new clones (Ceballos et al., 2013). Unfortunately, several of the selected 

top twenty clones had storage root necrosis, due to cassava brown streak disease.  

7.3 Implication of the findings and further research  

The present study gave insight into the feasibility improvement of the cassava population, and 

provided the foundation for a cassava breeding scheme in Rwanda. It generated improved 

carotenoids clones with a delayed postharvest physiological deterioration (PPD) and high 

yield. The study to introgress high carotenoids content into cassava indicated that it will be 

possible to concurrently improve carotenoids and dry matter, while the genetic studies 

revealed the concurrent improvement of yield, β-carotene and delayed PPD. As several of the 

selected top twenty clones had storage root necrosis, due to cassava brown streak disease, 

there is a need to screen for CBSD and CMD resistance in subsequent selection stages (multi-

location trials, on-farm and demonstration trials of selected promising clones), and to initiate 

breeding for CBSD and CMD resistance in the country. In addition, there is a need to develop 

a rapid multiplication protocol for disease-free cassava stakes. The involvement of cassava 

stakeholders (extension service, farmers, cooperatives, processors, traders, etc) will ensure 

the quick and sustainable adoption of improved cassava varieties.  
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