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ABSTRACT

In this thesis the performances and the applications of several types of

gas lenses are analysed . A gas l ens consist s of a region of space in which

gas is forced into a particular spati al dens ity distribution which can

result in the focusing or defocusing o f a las er beam. From basic optics

theory , a refractive index gradient follows a ny densit y gradient present in

a gas . This is the same effect that causes m i rages when temperature and

density gradients are present in the lowest l a y e r of the earth's atmosphere.

There are two possible types of mirage that on e can observe on the earth's

surface . A brief description on how mira ge s form is useful in order to

introduce the working principle s of gas len se s .

In the first case there is a cold la yer of a i r close to the ground with a

hotter layer above . The situation d escrib ed above is commonly called

'thermal inversion' because the standard situation in which the

temperature decreases with the increasing a lt i t u d e is reversed . In this

case the refractive index decr eases with h ei ght . As a consequence the

refractive index gradient bends the light ra ys d o w n w a r d s . In exceptionall y

still atmospheric conditions this situation ca n create upright images of

distant objects whose direct line of sight would lie below the horizon .

This phenomenon is only seen under still weather conditions and requires

a highly reflecting surface , such as ice . The g round has to reflect most of

the sun's radiation in order to maintain th e lo w temperature of the lowest

layer of air.

The second type of mirage is the most commonly seen at temperate and

tropical latitudes and it creates in verted images of objects above the earth

surface's line of sight. This is the same optic al effect responsible for the

'water pools' that one might obser ve in su mmer while driving along a tar

road , which in fact are inverted images of patches of sky . The air is

heated in the boundary layer where it exchanges heat with the hot ground ,

thus its density decreases . The refracti ve index gradient is then directed

upwards and the light rays are bent awa y f rom the ground. In this second

case the mirages are always accompanied b y turbulence due to the uneven

effect of gravity on equal volumes of cold a nd hot air. This results in

convective flow , and the image is ne ver stil l.

A class of gas lenses , known since the 19 60's as 'Thermal Gradient Gas

Lenses' , uses the thermal gradient created in a gas by a hot pipe in order



to establish an average radial r e f r a c t i v e i n d e x gradient inside its

cylindrical volume .

A thermal gradient gas lens is in effect a folded mirage. If the hot gas

lies in the outer part of the c ylinder , w e h ave a converging lens that

focuses light to a point , while if the hot ga s is in the core of the cylinder ,

we have a diverging lens. In the latter cas e the pipe must be cooled with

respect to room temperature.

When we consider the effect of gra vit y o n the spatial gas density

distribution of a thermal gradient gas le ns , we note that a horizontal ,

cylindrically symmetric distribution is uns table and that convective cells

are going to form a short time after the hea t ing is switched on.

A cylindrically symmetric temperature field i s achieved only when the

pipe is kept vertical. The convective cells can be destroyed by flowing the

gas longitudinally down the pip e , if its cr oss section is small , or b y the

vortical gas flow resulting from spinning the hot pipe about its

geometrical axis. As examined in the second chapter of this thesis , where

a spatially resolved temperature measurement i s presented , this option can

give a fairly stable and large aperture gas l ens. The latter device , the

Spinning Pipe Gas Lens (or SPGL) , was de v eloped in recent years at this

University.

But why should one use these de vices rather th an just a quartz , a glass or

a polymer lens?

Gas lenses are cumbersome devices and , al though their optical quality is

good , it cannot compete with the optical qualit y achievable with a well cut

solid state device. The main ad vantage lies in t h e high threshold at which

optical breakdown occurs .

It is well known that if a v e r y intense beam of optical radiation

propagates through a solid state material , s u r f a c e or bulk radiation

damage can be observed . Moreover , the damage is not simply cumulative ,

it can increase e x p o n e n t i a l l y after the fir st defect has been created. In

addition , the 'theoretical' radiation damage threshold can decrease

dramatically in a real working environment (a dusty laboratory or a

workshop) .

Gas lenses do not have any surfaces to which dust or grease can adhere nor

do they require AR coatings . The latter is naturally achieved by the

smooth refractive index increase from unit y a long the optical axis. Gas

lenses have an optical breakdown threshold two orders of magnitude higher

and , if a breakdown occurs , there is not an y p ermanent damage . The lens

can recover after a few milliseconds .
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A secondary advantage of gas lenses is the wide wavelength range over

which they can be used , which depends on the dispersion relation of the

particular gas utilised.

Gas lenses have an optical breakdown th reshold of the order of

100GW/cm 2 . Such a high level of optical powe r can be delivered as short

bursts of laser radiation . When the techn iques of Q-switching, or of a

pulsed gas discharge are utilised , the pulse duration of the radiation burst

of a typical commercial laser is in the order of 5-40 ns.

We can then ask the following question : Wh y do we need a steady state gas

lens that works continuously, if it is going to be utilised for a few

billionths of a second? In the framework of this idea we developed a

pulsed gas lens, as described in the third chapter. The working principle

relies on the compression of a dense centr al core of gas by the action of

multiple converging shock waves . Various designs of Colliding Shock Lens

(or CSL) were developed , all based on the gas compression operated by the

central collision of multiple shock waves converging in cylindrical

symmetry. Each shock wave is generated by an arc discharge between two

pin electrodes facing along the arc of a circle . The CSL is a v a r i f o c a I

lens , whose focal length and optical aperture typically vary on the

microsecond time scale. Such a p u l s e d lens , in combination with a pinhole

can b e uti 1i sed a s a h i g h power 0 p tic a 1 s w i t c h 0 r a san 0 p tic a 1 i sol a tor for

switching speed on the lOO's of ns timescale.

In the fourth chapter we present an application of both the Colliding

Shock Lens and the Spinning Pipe Gas Lens , the 'all gas Q-switching' of a

ruby laser. In this experiment the Q-spoiling of a ruby laser is achieved

utilising almost entirely gas elements . By inserting a pulsed lens (CSL)

in tandem with a converging lens (SPGL) inside the flat-flat resonator of

the rub y 1a se r, m a d e 0 f a 1 00% fu 11 re fl e c tor and 0 f a 50% 0 u t put c o u pie r ,

we realise a time varying resonator geometry. Laser radiation will occur

in the form of a single or double pulse as soon as the resonator becomes

stable and the losses become low. For this application , a fast shock

collision dynamic and a low f-number pulsed lens are important

requirements.

Aft er the des cri pt ion and the mod e II i n g 0 f the Q - s wit chi n g ex per i men t , the

optical quality of the CSL is examined in greater detail.

In the fifth chapter of the thesis some Mach-Zehnder interferograms of the

CSL are analysed. The interferograms were recorded using a nitrogen

probe laser (337nm wavelength , I ns pulse duration) developed and built

in our laboratory. The interferograms were taken at different time delays

i i i



after the central collision of the shock wave s b y electrically synchronising

the probe laser. Each interferogram gives an instant picture of the

refractive index distribution inside the lensing region and the optical

quality of the CSL can then be theoretica ll y determined at each delay .

Despite some significant longitudinal aberr at ion it was found that the

optical performances of the CSL can be almost diffraction-limited when

the probe laser is synchronised at some optimum dela y after the central

shock collision.

Up to this stage the shock waves have a lw a y s been colliding with

cylindrical symmetry with respect to the opti cal axis . However , another

interesting feature of the Colliding Shock Lens geometry lies in the

possibility of shaping the imploding shock f ront and consequentl y the

lensing region. For example by placing the shock launching points along

the arc of an ellipse rather than along the arc o f a circle , we can make an

elliptical lens . This is the case examined theor eticall y and experimentally

in the sixth chapter . In an elliptical lens the r efractive index level curves

are ellipses rather than circles . A unifor m i ntensit y diffraction-limited

laser beam is focused by a cylindrically symm etric CSL into a pattern that

approximates the Airy pattern . Con versel y in the case of an elliptical

lens , the intensity distribution in the focal plane is something in between

a line focus and a two lobed focus , as was o b s e r v e d experimentally.

i v



CHAPTER 1:
INTRODUCTION

1 .1 THE LASER

The aim of this thesis is to demonstrate that non-uniform gas distributions

can be useful in the field of laser physics . At most wavelengths , the

increase of laser radiation power is actuall y limited by the radiation

damage of the solid state components act ing either as a resonator or as the

active medium. Gas optics have a radiation damage threshold that is a few

orders of magnitude higher than conventional solid state components and

are natural candidates for high power laser applications. In the

experiments described in chapters 2 , 3 and 6 , lasers are utilised only as a

diagnostic tool. In chapter 4 we will demonstrate how a laser resonator

can be made by utilising almost entirel y ga s elements . In the first section

of the present chapter we briefly describe the principles of laser action.

Laser is an acronym which stands for Light Amplification by Stimulated

Emission of Radiation . The laser mechanism is easily understood in the

light of the theory of the Einstein coefficie nts [Einstein 1917] .

1 .1 .1 THE EINSTEIN COEFFICIENTS

Consider an isolated cavity [London 1983 , Bransden 1983] , in which a

collection of two-level oscillators are in thermal equilibrium with

radiation. A two-level oscillator can consist of any atomic or molecular

system present in the cavity in two states of different excitation. The two

states are separated by an energy gap and are linked by an allowed

r a d i a t i v e transition.

The lower energy level is taken by convention to be the ground state ,

having zero energy . The energy difference between the two levels is b.E , gl

and g2 are the degeneracies of the two levels and p I to ) is the radiation

energy density. Then , according to the basic principles of statistical

mechanics , the ratio between the level populations is:

~ = ~exp(- ~E)
NI g, kT

1. 1. 1
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In this treatment we will consider onl y o n e - p h o t o n processes . The

treatment is then correct only at low and i nt ermediate radiation densities

for real atoms and molecules .

There arc three possible interaction process es between oscillators and

radiation: absorption , stimulated emission a n d spontaneous emission.

Absorption is the process by which a photon is absorbed by an atom in the

ground state , which then becomes exci ted . Spontaneous emission is the

spontaneous decay of an excited atom with t he creation of one photon .

Stimulated emission is a process b y which one p h o t o n hits an excited atom

and two identical photons are emitted . Bot h the photons generated in this

process have the same physical properties as t he initial one: polarisation ,

phase , energy and direction. In the presence o f radiation , the effects of

these three interactive processes on the p o pu l a t i o n variation rates are

given by the following three relations :

aNI
- BI2P( co )N1 1. 1. 2--

at

aNSP
2 -A21N2 1. 1. 3

at

8Nst
2

-B2IP(co )N2
-- I. 1. 4

at

Since the oscillators arc at equilibrium with the radiation , as many

photons are absorbed as are emitted .

1. 1. 5

putting together the last four relations , we obtain

By using the Boltzmann relation between le vels' populations (equation

1.1.1) we obtain an expression for the radia tion density in the cavity :

2



p( o ) 1. 1. 6

But the cavity emits radiation with the bla ck -bod y spectrum

ro 2 tzro
p(o ) --. 1. 1. 7

n: 2
C

3

( tu» Jexp kT - 1

and the comparison between 1 . 1 . 6 and 1.1 .7 allows one to find the

following relations between the a b s o r p t i o n a n d the emission coefficients :

gl
and B

21
= - B12

g2
1. 1. 8

This derivation was performed assuming the hypothesis that the energy gap

between levels , ~E , is infinitel y sharp . This is reasonable since the black

body radiation spectrum is spread over a frequency range which is much

wider than the transition line-width . This h ypothesis ceases to be valid

when we study the interaction of atoms with laser radiation .

1.1.2 THE INTERACTION OF A TWO- LEVEL S YSTEM WITH LASER LIGHT

We don't want to introduce laser beams before defining them , but we can

safely say that the radiation line-width of an y laser system is much

sharper than the atomic transition line-width from which it originated.

Consistently , when we deal with the formation and the propagation of a

laser beam in the presence of a collection of atoms , we can approximate

laser radiation l t e ) with a monochromatic wa ve whose frequency is centred

about cos '

l( ro )do 1. 1. 9
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while the atomic transition energy exhibits a finite line-width,

N(ro ) 1.1.10

The function g, gives the spectral distribution of the atomic transition

rate and is centred about the frequency CJ) o· The finite line-width of the

transition is due to many physical phenomena whose detailed treatment can

be found in many laser textbooks [Loudon 1983].

The 1i ne - s h ape fu n c t ion g is nor m a lis e d to un i t Y,

1 1.1.11

The equations 1.1.2 ,1.1.3 and 1.1.4 can be rewritten in the following

way:

aNI
-B 12P(ro )N 1g(ro ,0)0) 1.1.12

at

aN!>1l
2

- A 21 N 2 g(0) ,0)0 ) 1 .1.13
at

aN~
2

B21P(0) )N2 g(0) ,0)0) 1 . 1 . I 4
at

We assume that the radiation , whose frequency is centred on C!)S ' is

incident on a thin absorbing sample of thickness d x . Let the radiation

density be high enough to neglect the spontaneous emission contribution .

The number of photons is given by the balance

8N2 aNI
1.1.15

Multiplying both sides of 1.1.15 with the photon energy h v and dividing

by the volume V we get an expression for the energy density:

4



1.1.16

Equation 1.1.16 gives the rate of abso rpti on of energy in the frequency

interval d e . As the beam propagates in the m aterial , the radiation density

varies according to

1.1. 1 7

where we have defined the quantit y n as

1.1.18

If we integrate with respect to x the equ ation 1 .1.17 , we find an

exponential solution

1 .1. 19

We define the absorption coefficient a(ffi s )

1.1.20

and finally get:

1.1.21

Equations 1.1 .18 to 1.1.21 are fundamental in order to understand how a

laser works. Depending on the v a l u e of the v a r i a b l e n , the population

inversion , light can be absorbed , transmitted or amplified .

5



1.1.3 THE POPULATION INVERSION AND THE GAIN

According to the Boltzmann distribution 1.1 .1 for a collection of two-level

oscillators at thermal equilibrium , the p opu lation inversion is always

negative . In other words , at equilibrium the re are always more atoms in

the lower than in the upper energ y state . S uppose now that we are able to

generate a non-equilibrium situation in which

1.1.22

From equation 1 .1.20 and 1.1 .21 we see tha t th e absorption coefficient has

become negative and the radiation densit y in creases e x p o n e n t i a l l y as it

travels in the 'inverted' medium . \Ve define G , o r small signal gain as:

8p((0) == Gp(00 )

ax 1.1.23

When the population inversion i s positive , t he absorption is negative and

the gain is positive . The intensit y I which i s p roportional to the radiation

density ,

1((0) = p(ro)1iooc 1.1 .24

and increases e x p o n e n t i a l l y as the wave pro pag ates in the active medium.

01
- = Glx
ox
I(x) = 10 exp( Gx)

1.1.25

The exponential solution 1 .1 .25 is val id onl y while the intensity is not too

high , such as to affect the population in ver sion and the gain. In fact from

equation 1.1.14 we learn that equation 1 .1. 25 must always be solved

together with an analogous equation for the population inversion change

rate :

an ( g, J B- = - I + - . g{oo ,00 )p{oo ) _21 n
OX g sOs

1 C

6

1.1.26



The upper level population is d epleted whil e r adiation is amplified in the

active medium. Then the exponential soluti on 1 .1 .25 is correct only at low

intensities , and the equations 1 .1.17 and 1 .1 .2 6 should always be solved

together .

1.1.4 HOW TO CREATE POPULATION INVE RSION

It is clear from the results of the pre vious p a r a g r a p h that we cannot create

a positive population inversion b y feedi ng radiation into a cavity

containing a collection of two le vel osc illator s . From equation 1 .1.26 , as

the radiation density increases , the popul at ion inversion tends to the

asymptotic condition , n=O :

1.1.27

When condition 1.1.27 is realised , the abso rption is z e r o [cx.(co)=O] and the

medium is transparent.

Before examining how to create a population i nversion , we will introduce

the three following quantities , for any two e nergy levels a and b , with

Ea<Eb: The spontaneous emission le vel l ifetime 'tba ' the stimulated

emission spectral cross section O" b a (co ) and th e absorption spectral cross

section Gab(co) [Koechner 1976] :

1

Aba

licoBba

--g{co s ' coo)
c

1.1.28

Where n j is the refractive index and 11. 0 is the wavelength . The spontaneous

emission lifetime coincides with the level l ifetime only for two-level

7
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atoms . Other possible radiative and non-radia tive decay processes result

in the level lifetime being shorter than the s po n t a n e o u s emission lifetime

in real atoms or molecules . In order to achie ve population inversion we

need at least three energy levels , but most actu al lasers make use of active

media with four levels . The onl y three-level l a s e r still in use is the Ruby

laser. In one of the experiments discussed i n this thesis (chapter 4) we

have been using such a device .

No matter how many levels there are , the tr a n s i t i o n s between each pair of

levels are still ruled by the equations 1 .1.12 to 1.1.14 . In figure 1.1 .1 we

show the transition scheme of a three-le vel las er system.

The idea is that some energy source , which we call the pump (W 1 3 ) , can

channel some atoms from the ground state ( I ) to the upper level (3) . The

atoms in level (3) will spontaneousl y dec ay to populate the upper laser

level (2) . Lasing will occur once a positive po pulation inversion has been

established between level (2) and (1) . Of course the transition between

level (2) and (1) must be an allowed r a d i a t i v e transition , while the

transition between (3) and (1) must be forbidden , or ''(31)>''(21 ' Two other

general conditions that the s ystem must s a tis f y are the following: The

first is that ''(31)>''(32 ' in order to establish population inversion . The

second is that "(32«"(21 ' for the population inversion to be conspicuous .

When these conditions are satisfied , the numb er of atoms in the level (3)

is negligible and we can say that the atoms are either in level (1) or (2) .

1.1.29

where n t o t is the total number of atoms .

In the four-level case the conditions on the transition rates are similar :

"(30 '''(31»''(32 and ''(21)>''(32 '''(10 ' Though , in this second configuration , there

is one important difference: the lower laser level is not the ground level

of the atoms and consequently , if "(10 is ver y short , level (1) is always

empty . Population inversion can then be achieved with a much lower pump

power (W 0 3 ) and a higher efficienc y than in the three-level case. When the

above conditions on the transition rates are true , we can again say that

1.1.30

where n t o t is the total number of atoms . The next figure shows the

transition scheme of a four level s ystem.

9
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1.1.4 THE LASER MECHANISM AND THE RATE EQUATIONS

When an inverted medium is placed in an o p t i c a l cavity , laser radiation

can be observed . When some spontaneous radiat ion is emitted by the active

medium , it is amplified by the stimulated emission mechanism that

provides a positive gain. A travelling r adiation wave then starts to

develop in the active medium. It propagates and it is amplified according

to equations 1.1.17 and 1.1.26 . A m inimum active medium length is

necessary for the energy to be extracted b y t he beam . In order to keep

compact the dimensions of the s ystem , i t i s possible to achieve the same

effect of enhancing the active medium lengt h b y placing it inside an

optical cavity (or resonator) . In its commonest configuration the optical

cavity consists of two spherical or plane mirrors , one of which is fully

reflective (full reflector) , the second bei ng partially reflective (output

coupler) . The partial reflectivit y is necessar y for the beam extraction . We

can describe the dynamic behaviour of a laser with a set of coupled rate

equations [Koechner , 1976] . In their simplest form they consist of two

coupled equations for the population in version and for the photon density

inside the cavity . The photon density <t> can be expressed in terms of the

related quantity p t oi ) as :

B21P((0)
<I> =-­

CO" 21 ((0 )
1.1.31

For a three-level laser system , using the 1.1 . 29 and 1.1 .28 ,

1.1.32

dt dt

Extracting the population inversion in 1.1.32 and substituting the 1.1.31

in 1 .1 .16 , we obtain

1 1



dn

dt

d<t>

dt

(
s. ) n + g2 /s, . ntot )

- 1 + - nccc - ------- + W31 (n tot - n
g, t 21

<t>
noec - - + S

t e

1.1 .33

where 't
c

is the photon deca y time in th e resonator and S is the

spontaneous emission contribution . The photon equation takes into account

the photons lost from the output couple r through the loss term

proportional to l/'t c '

Correspondingly in the four-le v el cas e the rate equations arc:

n
-n<t>crc - - + W03 (n

tot
- n]

t 2 1
1 .1. 34

1.1.5 SOME CONSIDERATIONS ABOUT LASER S

The laser rate equations give a v e ry general d escription of a typical laser

s ystem. Depending on the values of the ph ysic al parameters of the s ystem ,

lasers exhibit a wide range of different beha vi ours . What is common to all

laser systems is their nature of coherent "Amplifiers of Quantum Noise" .

The most interesting properties of l asers lie in the thermodynamic and

coherence properties . Let us consider a fl ash-lamp pumped laser. From a

pump source which is a source of chaotic r ad iation , having poor spatial

and temporal coherence , we can generate a beam with the two following

features :

a) Temporal Coherence~

b) Spatial Coherence~

The temporal coherence implies that the radiat ion is emitted into a narrow

spectral line , while the spatial coherence impl ies a high beam brightness .

It is due to these two features that laser light found so many applications.

In the pumping process , an appreciable fraction of the pump energy can be

transferred to a highly collimated radiat ion beam . If such a beam is

I 2



focused onto a target , it can c r c a t e a plasma wi th a t e m p e r a t u r e of several

kV , much h o t t e r than the pump itself. The g e n e r a t i o n and the handling of

such energetic beams of light is a big technolo gical problem and involves

many branches of applied physics and engineering .

1 .2 THE PROPAGATION O F LIGHT

In this section we will introduce Maxwell's eq uations for the propagation

of an electromagnetic field in a medium which has a linear response . In

the next section we will deal with a particular a p p r o x i m a t i o n of Maxwell's

e q u a t ion s k now n a s G e 0 met r i c a lOp tic s . Th e I a t t e r w i I I a I low u s t 0 sol v e

numerically the problem of the propagation of a laser beam inside a gas

le n s .

1.2.1 THE MAXWELL EQUATIONS AND THE W AVE EQUATION

Let us consider the electromagnetic field in a n isotropic material with

linear response characteristics . In a line ar m e d i u m we can define the

polarisation Pas ,

1. 2 . 1

and the dielectric induction vector D ,

1. 2.2

for an external e l e c t r i c field E of finite amplitude.

Analogously we define the magnetic permitti vit y f.l. and the magnetic vector

H to express the linear response to a finite amplitude magnetic induction

field B.

1. 2 .3

8 0 = 8.854.10-
12

F/m and ~lo = 47t .10-7 HIm are the electric permittivity and

the magnetic pcrmeability of free space . E r and f.l.
r

equal unity in free

space and never differ much from a few times unit y in most materials (at

I 3



least in non-ferromagnetic materials) . The v a l u e s of f;r and ~r must be

calculated with the help of a microscopic theor y for each medium and can

depend on some characteristics of the externa l f i e l d such as its frequency.

Since they are defined as linear responses , the y do not depend on the field

amplitude. In such linear and isotropic media , the laws that govern the

evolution of the electric and magnetic field are the Maxwell equations

[Born and Wolf 1993]:

o

- _ 1 _ 41t _
V 1\ H - - D" = - J

c c
- _ I_
V 1\ E + - B"

c

V· D = 41tp

V· B = 0

1. 2 .4

We must add to Maxwell's equations the material equations 1.2.2 and

1.2.3 , and

- -
J = crE I . 2. 5

to define the response of the medium . Here (J is the specific conductivity

of the medium and equation 1.2 .5 describes the motion of the free charged

particles under the effect of the field.

After some manipulation we can separate th e el ectric and magnetic field in

the 1.2 .4 to get two propagation equations for the electric and magnetic

field:

V
2 E - E~ E" + (V log Jl) 1\ (V 1\ E) - v( E. Vlog E) = 0

C
1. 2.6

1. 2.7

Where the medium is homogeneous , the gradient of the dielectric constant

and of the magnetic permeabilit y are zero , and 1.2 .6 and 1.2.7 reduce to:

1 4



1. 2.8

These are the standard wave equations. Their

electromagnetic waves propagating with the ve l o c i ty :

solutions are

c
v =: Ivl - r:::-:

vEJl
I . 2 . 9

The constant c is the velocity of the EM w aves in vacuum . Its value is

c=299792 .458 Km/s and it is a uni versal co ns tant.

The ratio between the electromagnetic wave v el o c i ty in vacuum and in the

m e d i u m , is known as the refracti v e index of the medium n ,

C
D =:­

V
1.2 .10

n can be measured or it can be calculated with the help of a microscopic

theory of the medium .

1 .3 GEOMETRICAL OPTICS

The wave equations 1.2 .6 and 1 . 2 .7 cannot be s ol ved in their general form .

We will look for some approximations that make them easier to handle .

The typical wavelength of a laser radiation r anges between 200nm to a few

tens of microns , that is from ne ar ultra viol et to far infrared. Suppose now

that the dielectric constant and the magnetic permeability relative

variations are small on the spatial scale of one wavelength . Under these

conditions light propagation ob e ys much simpl er rules than in the general

case.

Alternatively , we can imagine d ealing with electromagnetic fields whose

wavelengths tend to O. The light propa gation properties in this

approximation (A ~ 0) constitut e a branch o f optics known as Geometric

1 5



Optics. The limitations of applicability of the geometric optics become

evident when light is propagated through s patial structures whose typical

dimension is comparable to the radiation wa velength , such as diffraction

gratings , pinholes and edges of sharp objects .

At the moment we are interested in a set of e q u a t i o n s that describe the

way light propagates through non-homogeneou s media , where the spatial

scale of the in-homogeneities is much large r than the wavelength. In

particular we will investigate the propagation of light into non-uniform

gas density distributions .

1.3.1 THE EIKONAL EQUATION

We will now derive the propagation equat ion s of light in the geometric

optics approximation . Consider the generic time harmonic field , or quasi-

monochromatic wave :

E(r, t) = Eo (r) exp(- iot )

H(r, t) = Ho (r) exp(- iot)
1. 3 . I

We can decouple the spatial variation of the f ield into a fast plane wave

dependence and a slow variation .

cok =_0

o C

Eo (r) = e(r) exp]ikocr(r)]

Ho (r) = her) exp[ikocr(r)]

21t

1. 3 . 2

The second factor on the right hand side of 1.3 .2 varies over the spatial

scale of one wavelength , while the first va r i e s over the spatial scale of

se v era I t i me s the w a vel e n g t h. a ( r) is a s c a I a r fu n c t ion 0 f the po sit ion and

it is known as the Optical Path .

Equation 1.3 .2 is our trial solution to be substituted into the wave

equations 1.2.6 and 1.2 .7 .

By using well known vector identities and grouping the members according

tot h e power 0 f f. 0 (0 r 1 / k 0) w e 0 b t a i nth e f 0 1low i n g e q u a t ion :

1 6



1 1
K(e,CJ,n) +-L(e,cr,n,~) +-M(e,E ,~L) = 0

iko ik~

with

K(e,cr,n) = [n' - (vcr)'}:

L(e,cr,n,~) = [Vcr. Vlog~ - V2~]e - 2[e. V logn]Vcr - 2(Vcr . v)e

M(e,E,~) = (V /\ e) 1\ Vlog~l- V2e - V(e. VlogE)

1. 3 . 3

while the equation for the magnetic fi eld , taking into account the

symmetry of the wave equation , is the follo w i n g :

I .3 . 4

with K ,L ,M defined as in 1 .3 .3 where ~ and E have been swapped. In the

hypothesis that the wavelength of the electromagnetic field tends to z e r o,

Ao ~ 0, k, ~ 00 , and w e can n e g I e c t the s ec 0 n d and t h i r d t e r m s 0 f

equations 1.3 .3 and 1.3 .4. The r esulting equation is known as the eikonal

equation :

1. 3 . 5

The eikonal equation is the basic equation of geometric optics . The

surfaces cr(r)=constGnt defines the geometrical wave-front of the

propagating wave in the refracti ve index field.

1.3.2 THE LIGHT RAYS AND THE RAY EQUATION

The eikonal equation 1 .3.5 defines the geometrical wave-front , that is the

surfaces on which the electromagnetic field has a constant phase. Consider

1 7



the expressions of the electric and mag n etic energy density and the

Poynting vector:

E ~ - -*(w ) = - e. e* (Wb) = - h . h
e 16n 16n

(s) =~ Re(e A h* )
8n

1. 3 .6

If we use the second of the Maxwell equations 1.2 .4 in the limit of

g e 0 met r i cop tic s (Vcr A e - ~ = 0) , the Po y n tin g v e c tor can bee x pr e s sed in

terms of the electric and magnetic energ y d en sity :

I .3 . 7

The Poynting vector can be expressed in terms of s , the unitary vector

perpendicular to the wave-front

Vcr
I .3 . 8

n

c
(s) = - {w)s = v{w)s

n

with (w) = (we) + (wb )

I .3 . 9

The cycle averaged Poynting vector lies in the direction normal to the

geometrical wave-front . Consequentl y t h e average energy density

propagates perpendicularly to the wave-front , with velocity v=c/n .

We define now the light ra ys as the orthogonal trajectories to the

geometric wave-front (defined as cr=constant) . The solution of the eikonal

equation involves the determination of the surfaces cr=constant and it is

equivalent to the determination of the ra ys' tra jectories .

Let r be the position vector of the ra y ,

I 8



di
-= S
ds

and ,

1. 3 .10

di -
n - = Vcr 1 . 3 . 1 1

ds

The intensity I is defined as the absolut e va l u e of the cycle averaged

Poynting vector , then , from equation 1. 3 .9

I = 1(5)1 = v(w) 1.3 .12

The energy conservation assumes the follow in g e x p r e s s i o n:

divl Is) = 0 1. 3 .1 3

In figure 1 .3.1 we show a simple and intuitiv e geometrical interpretation

of 1.3 .13 as a conservation law .

The calculation of the rays' tr aj ectories , to ge ther with the 1 .3 .13 allows

one to calculate the value of th e c ycle a vera ged electric field at an y point

in space .

Fig 1.3.1 Geometrical interpretation of the intensity conservation law : the

intensit y flux is const ant
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1 .3 .2 DIFFERENTIAL EQUATIONS FOR THE L I G H T RAYS

The direct solution of the eikonal equatio n , that is the determination of

the surfaces of constant phase , is a much harder problem than the

computation of the rays' trajectories . We s ta rt from equation 1.3 .11 and

we differentiate again with respect to s :

d (df) d (- )- n- = - Vcr
ds ds ds

d ( dr) 1 (- 2)- n- = - Vn
ds ds n2

d(df) -
ds n ds = Vn

1. 3 .14

Each of the equations 1 .3 .14 consists of a s y st em of ordinary second order

differential equations and allows one to sol v e the ray trajectories once the

refractive index spatial profile is known . Given the ray trajectories and

the conservation equation 1.3 .1 3 it is possible t o calculate the intensity at

any point in space. The onl y assumption bein g that the geometric optics

approximation is justified.

1.3 .4 THE PARAXIAL RAYS' APPROXIMATION

A further approximation that simplifies the solution of 1.3 .14 , can be

performed when the wave-front propagates mainly in one direction and the

refractive index gradients perpendicular to th e propagation direction are

weak . As an example , consider a narrow beam of light , such as a laser

beam , propagating along the z direction a nd finding along its trajectory

only small refractive index gradients: the deflection angle will also be

small. If it is so small that ds t: dz . equation 1. 3.14 can be written as

d( df)
dz n dz = Vn 1.3.15

and two independent differential equations for the two transverse
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directions x and y can be written :

d(dX) an- n- =-
dz dz dx

d(dY) an- n- =-
dz dz dy

1. 3 .16

Moreover , if the refractive inde x is close t o u n i ty, such as in a gaseous

medium at nearly atmospheric pressure (11 ~1 ) , the rays' equations take a

particularly simple form :

d2x 1 an
--
dz' n dx

1.3. 1 7
d2y lan
-- --
dz" n dy

or

d2x an
--
dz" dx

1. 3 .17a
d2y an
- -
dz" dy

Depending on the characteristics of the mediu m and on the initial wave­

front geometry , it is possible to utilise th e r ay equations 1 .3 .14 , 1.3.16 ,

1.3 .17 or 1.3 .17a.

1.4 THE REFRACTIVE INDEX AND THE DISPERSION RELATION

1.4.1 THE MATERIAL RELATIONS : MICROSCOPIC THEORY

During our derivation of the eikonal equation and the refraction law we

assumed the material relations 1.2 .2 and 1.2 .3 . In non-conducting

materials which are transparent to the v i si b l e wavelengths , say between

the near DV and the near JR , the magnetic permeability J.1. is close to
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unity . The relations 1.2 .13 and 1.2 .14 defin e t he refractive index as:

n 1. 4. 1

but the only contribution that renders the r efractive index significantly

different from unity comes from the dielect ri c c o n s t a n t E . Then from now

on , we will say that

1. 4 .2

The quantity X is known as the dielectric su sceptibility of the material

and is due to the polarisation of the atoms as the light propagates in the

material. When the radiation fr equenc y is s u c h as to excite an atomic

transition the refractive index v a r i e s sharpl y with the wavelength and

absorption appears . A bit further awa y fro m the transition frequency , the

dielectric constant still depends on the wa v e f re q u e n c y, but we can neglect

absorption . In the following treatment we will consider radiation whose

frequency is far enough from an y transi tion of the material, for the

absorption to be negligible . In the follow in g paragraph we start from a

very simple classical model (The Lorent z -Lorcntz model) of the atom

radiation interaction to get an expression for the dispersion relation of

gases.

1.4 .2 ATOMIC POLARISABILITY AND REFRACTIVE INDEX

Following [Born and Wolf 1993] , let us consider a non-conducting medium.

It is possible to demonstrate that the microscopic electric field El

experienced by the atoms (or molecules) is rela ted to the macroscopic field

E and to the polarisation P by

- 4n _
E+-P

3
1. 4 .3

The p o l a r i s a b i l i t y a is the linear response per atom to the microscopic

electric field

1 .4 .4
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where N is the number of atoms per unit vo lum e. Equation 1.2 .1 together

with 1 .4.3 and 1.4.4 gives

1. 4.5

81t
l+ -Nu

3
41t

I- -Nu
3

£ = ---"----

and its inverse:

u=--·--=--·
41tN £ + 2

3 £ - 1 3

41tN
1. 4 . 6

In a gas , the refractive index n is close to u n i ty and equation 1 .4.6 can be

simplified.

n2
- 1 2(n - 1)

a~ ~----

41tN 41tN
1. 4 .7

Co m bin in g the I . 4 . 7 wit h the e q u a t ion 0 f s tat e for ape r f e c t gas P = NRT

and wit h the den sit y rei a t ion p = NM, w her e M is the a v era gem 0 I e cui a r

weight ,

n
p P

1 + 21tu- = 1 + 21tu-
M RT

1. 4 .8

Equation 1.4.8 expresses the relation between the refractive index of the

gas and its density. The relationship in which the density is replaced by

the pressure is valid where the medium behaves as a perfect gas. Equation

1.4.8 is rather important for gas optics , si nce it governs the performance

of a class of gas lenses known as Thermal Grad ient Gas Lenses. In a gas at

constant pressure , the hotter the gas the lower i t s refractive index .
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1.4.3 THE DISPERSION RELATION

In the previous paragraph we h av e seen how to relate the refractive index

to the p o l a r i s a b i l i t y of the medium. This relation is important since it

constitutes a bridge in between microscopic ph ysics and a macroscopic and

measurable quantity such as the refractive index. The polarisability a is

the linear response of the atoms (or molecules) to the rapidly oscillating

microscopic electric field , and , as we anticipated , is a function of the

field pulsation m. The relation n I oi is known a s the dispersion relation.

In most materials transparent at v i s i b l e wa velength , n t ro ) is an increasing

fu n c t ion 0 f m. A ve r y si m pie c I ass i c a I mod e I 0 f the in t era c t ion bet wee n

the external field and atoms can explain se vera l qualitative features of the

dispersion relation and to a quantitati ve s e mi - e m p i r i c a l formula for the

latter .

Let the electron charge e be distributed on a hard shell of mass m around

the nucleus and let the hard shell be bound t o the nucleus by an elastic

force IAshcroft 1976] .

Q -qr I . 4. 9

Where r is the displacement of the hard shell due to the external field .

The equation of motion for the electron she ll is ,

mr" + qf = eE'

Using the trial time solution ,

f = fo exp( - iot]

we get the following condition:

eE'
f = -..,-----~

m(q/m - co 2) - m(co ~ - co 2)

The p o l a r i s a b i l i t y a then is :

I .4 . I 0

1.4 .11

1.4 .12
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Substitution in 1.4.7 immediately gives an expression for the refractive

index.

nf m) 1 + 2nNa ( 0) )

2nNe2

1+---
m

1
1.4 .13

In most materials transparent to the visible wavelength there are strong

absorption bands in the DV side of the spectrum due to electronic

transitions and weak absorption bands in the IR side due to photon-phonon

interaction in solids and excitation of vibrational or rotational transitions

in molecular gases. This explains why the refractive index normally

increases with the field frequency 00 . At pulsat ions closer to 00 0 a damping

term can be introduced in equation 1.4 .13 , in order to account for

absorption.

In the case of several electron shells tied to the nucleus , each by its own

elastic force , we have several resonance fr equ encies. Equation 1.4.13 can

be rewritten as:

with
e2

N-flenm
1.4.14

I nth i s e q u a t ion the e x t ern a 1 fie 1d (E 0 e j(t)t) d i s P I ace sea c h e I e c t r 0 n i c she 1I

independently and the interaction between the displaced shell's fields is

not taken into account. The model is thus valid only for low density

m ate r i a I s s u c has gas e s [A s h c r 0 ft 1 976 ]. In the cas e 0 f sol id s 0 r I i qui d s

an equation similar to 1.4.14 can be derived by using the relation 1.4.6

rather than 1.4.7.

The classical formulation of the atom-radiation interaction, which lead us

to equation 1.4.14, does not allow us to calculate the refractive index of

real gases to any degree of accuracy .

Anyhow when the calculations are performed on the basis of quantum

mechanics, an equation formally identical to 1.4.14 is found [Landenburg

1921, Landenburg 1928], where the coefficients f k are replaced by their

quantum counterpart.

In the classical formula the numbers f k represent the density of hard

electronic shells that exhibit resonance at "k=21too k. In the quantum
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mechanical formulation they do represent the transition probabilities to

each virtual state. Although the virtual states (a n d then the numbers f k )

are infinite in number, i t is found [Mitchell 1 97 1 ] t hat on I y few of them

give an appreciable contribution to the refracti ve index .

Equation 1.4.14 can be rewritten as

2 "bk
n(A) = 1 + a + LJ 2 2

k A - Ak

wi th:

I . 4. 1 5

1.4.16

From the above discussion it is clear that 1 .4 .15 is a good starting point

for a semi-empirical formula to represent the dispersion relation of gases

in the visible to near DV range. In a range that does not contain resonance

frequencies , equation 1 .4.15 can be developed in power series of v (or

1 / I. ) . T a kin gin t 0 a c c 0 u n ton I y the s t r 0 n g (d u e toe I e c t r 0 n i c t ran sit ion s )

absorption bands in the DV side of the spe ctrum and retaining only terms

proportional to 1/1.• 2 we obtain Cauchy's formula . In the case of a gas at

about atmospheric pressure , the refractiv e index is close to unity and

n' - 1 = 2 . (n - 1).

n(A) 1.4 .17

The coefficients Al and B I can be either calculated from first principle

performing a quantum mechanical calculation or obtained from a

dispersion measurement as empirical parameters .

In table 1.4.1 the measured values of the constants Al and B I , when A is

expressed in cm , are reported for various gases .

The Cauchy formula is an excellent empirical formula for gases at about

atmospheric pressure in the wavelength range between 300nm and 800nm.

The condition for the validity of Cauchy's formula for each gas is that the

26



GAS A .105 B .1011 cm- 2
1 1

Argon 27.92 5.6

Nitrogen 29 .19 7.7

Helium 3 .48 2.3

Hydrogen 1 3 .6 7.7

Oxygen 26.63 5.07

Air 28 .79 5 .67

Ethane 73.65 9.04

Methane 42.4 1 4 . 4 1

Table 1.4 .1 constants of the Cauchy's dispersion formula for different

gases at standard conditions

A(nm) 10 8(n-l)

200 32408

210 31746

250 30146

300 29155

340 28698

400 28275

500 27896

600 27697

700 27579

760 27530

1000 27416

1500 27330

2000 27300

Table 1.4.2 Refractive index of air at standard conditions
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wavelength A is longer than the electroni c absorption band wavelength ,

which generally falls in the DV .

Cauchy's formula is good for our purposes , since in the experiments

treated in this thesis we have been using rub y lasers (763nm) and nitrogen

1a s e r s (3 3 7 n m) who s e w a vel e n g t h fa 11s well w it h i nit s v a 1i d i t Y ran g e .

Finally in table 1.4 .2 we report the values of the index of refraction of air

at s tan d a r d con d i t ion sas a fu n c t ion 0 f t h e w a vel e n g t h [C R C Ha n db 0 0 k

1995 , Edlen 1966].

1 .5 GAS LENSES

In this section , after a simple and intuiti ve description of the thin

spherical glass lens , we describe in detail th e g r a d e d index lens and other

gas lenses .

1.5.1 THE THIN GLASS LENS

The laws for reflection and refraction a t t h e interface between two

dielectric materials , having refractive indices n 1 and n 2 , arc well known .

In a refraction process , the transmitted ra ys will emerge at angles

according to the refraction law . If S r and Si are the angles about the

normal to the surface :

sin(eJ n1

sin(Sr) n2

While in the case of reflection : Sr = Sj. Let us consider a thin slab of

dielectric material in air . The two interfac es being described by the

surfaces obtained from rotating the cur ves .h(r) and 12(1') about a common

axis , the optical axis.

The refractive index of air can be approximated to equal unity and the

dielectric refractive index is n>l . We will consider only homocentric

paraxial rays, that is rays starting from a common point on the optical

axis and having small angles S about the ax is , such that :

28



n=1 n>1

Optical Axis

z

Fig 1.5 .1 Geometry of a Gl ass Lens

e.
I

f (r)
1

el

.
I

f (r)
2

O.A.
--------- ------------------- -

Fig 1.5.2 Refraction from a thin lens
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sin(8) == tan(8) == 8

Given the beam characteristics of most lase rs , i t is in general a very good

approximation to model a laser beam with p a r axial homocentric rays. The

same approximation is not necessaril y valid wh e n we study the formation

of images from wide angle objects .

A ray incident in r with the angle 8 1 about the optical axis is refracted

according to Snells law

1e = -8.
r I

n
1. 5 .1

1. 5 . 2

In the thin lens hypothesis rays will not b e di splaced inside the lens and

the exit point r' will coincide with the entr ance point r .

8'
r

n8~
I

1. 5 .3

'{r) df, df8. r = - + - - 8
I dr dr r

I . 5 . 4

The refraction scheme is depict ed in figure 1.5.2 . The deflection angle

after the two interfaces is given b y the 1.5.3 together with the 1.5 .4 ,

1.5 .1 and 1.5.2 .

(
df1 df2 )8' = n -+- +8

r dr dr I dr

( ) (
df ur, Jerr = n - 1 . - + - + 8
dr dr }

1. 5 .5

Let for s imp I i c i t Y the two cur v e s c 0 i n cid e , f ( r )} = f
2

( r ) = f ( r ). For par a x i a I

rays we can approximate the cur ve fer) with a parabola

f'(r ) = a - br' I . 5 . 6

Substitution in equation 1.5 .5 gi ves immedi atel y :
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- 2b(n - 1)r + 81 == 81 - ar 1 . 5 . 7

Equation 1.5.7 means that the larger the distance of the rays from the

optical axis the more they are deflected . A collection of parallel rays

incident on the thin lens with a profile such as the 1.5 .6, will all meet at

one point, the focus (fig.1.5.3) .

L

Fig 1.5.3 Parallel rays incident on a thin lens are focused to a sharp

point.

In general the distance L at which the rays will cross the optical axis of

the system is a function of the distance from the axis r . In this case we

speak of longitudinal aberration . But for a profile such as 1.5 .6 with the

thin lens hypothesis , we have:

L r/ tan [8( r )] r/8 (r)
1

a
- f 1.5.8

which is independent of r. This analysis was performed with the
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hypothesis of paraxial rays , homocentric ra ys and of a thin lens. These

three hypotheses remove aberrations from our discussion. Longitudinal

aberrations are defined as non-ideal properties of a lens that prevent its

focal length f from being constant , but rather a function of the distance

from the optical axis and of the wavelength . From the previous discussion

it is clear that a spherical glass lens suffer s from longitudinal aberrations

for two reasons: first , as soon as the incoming rays cease being paraxial

the curvature cannot be approximate as a p arabola , and second , the higher

the angle e (and the thicker the lens ), the higher is the ray displacement

inside the lens.

Moreover the focal distance f as defined in equation 1.5.8 is inversely

proportional to the difference between the refra-ctive index and unity .

Since this quantity depends on the wave length through the dispersion

relation, the focal length depends on colour. This effect is called

chromatic aberration and it is in general negligible for lasers because of

their narrow spectral emission.

Other classes of aberrations arise when we consider homocentric s k e w

rays. In this case , and especially at large a ngles , we cannot define a focal

plane but rather a curved focal surface . Moreo ver the latter configuration

introduces astigmatism , because the lens is not seen by the homocentric

beam as rotationally symmetric . Astigmatism rises even in the case of

homocentric meridional rays , if the surface of the lens is not rotationally

symmetric , such as for the elliptical eSL described in chapter 6.

Detailed discussion of aberration theory is beyond the scope of this thesis .

The design and realisation of aberration-free lenses is an applied optics

and an engineering problem and aberration-free lenses are realised in

practice [\Velford 1974 , Slyusarev 1984].

The previous analysis is a geometrical optics approach and diffraction is

not included. Including diffractive effects makes the rays of an

aberration-free lens not all arrive at a point , but within a finite region of

space . An ideal lens can hope to be diff raction-limited. A diffraction­

limited lens focuses light into the smallest possible region of space

according to the basic principles of wave mechanics. A lens that suffers

any aberration whose effect is negligible when compared to diffraction , is

an ideal lens. The importance of realising a diffraction-limited optical

system is evident when we consider either classical applications of lenses

such as microscopy , telescopy and photography , or the focusing of high

power laser beams to achieve very high intensities .
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1.5.2 GRADED INDEX LENSES

In a gas , the refractive index is proportional t o the density. The case of

spatial gas refractive index distribut ions h av i n g cylindrical symmetry is

interesting [Marchand 1978] . In general , by controlling the local

temperature and/or the density w i t h i n a ga s v o l u m e, figure 1 .5 .4 , we can

control the propagation of light within its boundaries , performing many

kinds of operations on the transmitted w a v e vf r o n t [Marcuse 1972] . In this

section we will assume that the ra y optics approximation is valid and we

will neglect diffractive effects due to th e finiteness of the transverse

wave-front dimension .

Most often , in a gas , sharp discontinuities in the refractive index are not

present. Let us consider a shock . A shock is a discontinuity in the local

thermodynamic properties of a gas , such as pr e ssure and density . In theory

a shock wave can be as thin as the mean fr e e path of the gas molecules ,

roughly 10- 7 m [Zel'dovich , 1966] , but i n practice , due to energy

dissipation on the shock-front (the gas v i s c osity ) , a shock wave is seldom

narrower than several tens of u m ' s . A sho ck p r o d u c e d by a spark in air

was measured to be as thin as 10- 4 m [Hama mot o 1981] . Such discontinuity

is seen as a smooth refractive index variati on for visible light whose

wavelength is less than lO-6 m , thus th e r a y optics is an adequate

description.

If we make a lens out of gas , we can not use refractive index

discontinuities to deflect rays as in the cas e of the glass lens. In order to

obtain two relations such as 1.5 .7 and 1 .5 .8 with a gas device we must use

smooth gradients . Devices that utilise smooth r efractive index gradients to

achieve focusing or imaging are called grad ed i ndex or "GRIN" lenses .

GRIN lenses can be realised either by dopin g g la s s e s with ions that locally

modify the refractive index or b y staking to gether slabs of glass with

different refractive indices . The human eye is a GRIN lens that achieves

diffraction-limited performances in the fovea .

The general problem of a radial and axial refractive index gradient does

not have an analytical solution . In the case of a purely radial gradient the

rays' equations can be solved explicitly onl y in a few special cases

[Marchand 1972]. In the case of a c ylindrical rod having a radial profile :

n( r) n.sech]ar)
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Fig 1 .5.4 Possi ble effect of a non-uniform g a s density distributi on on the

propagation of a plane wave-front
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f ig 1 .5 .5 Cylindrical geometry of a gas lens

34



Every fan of meridional rays is periodica ll y sharply imaged within the

rod. Such a profile does not image skew ra ys sharply since they travel

inside the rod along helical trajectories .

Another interesting case is when the refractive index profile is:

where the rays' trajectories have a particularly simple form. The rays just

oscillate about the optical axis. (The problem is separable in x and y).

1.5.3 GAS LENSES

Let us consider a cylinder of length L filled with gas whose refractive

index is a function of the radial distance r and of the position along the

optical axis Z. We will look for a solution of the rays' trajectory only in

the case of the paraxial rays approximation (paragraph 1.3.3) . Only the

radial gradients contribute to the rays deflection ,

G(r,z) 1. 5.9

If the function G(r ,z) is known , we can easily calculate the rays'

trajectories inside the gas cylinder and the lens performances. Conversely ,

now we want to compute the refractive index gradient profile G that gives

a point focus for an input beam of parallel rays . Again we use the paraxial

ray approximation. Writing equations 1.3 .17 in cylindrical coordinates ,

and taking into account that at densities reasonably close to atmospheric

the refractive index differs very little from unity , the rays propagate

inside the gas cylinder according to:

d'r 1 do do
--2 =-- ~-
dz 0 dr dr

1.5.10

Equation 1.5.10 must be integrated in z . Since the ray position r changes

as the beam travels along the optical axis z , the equation 1.5 .10 does not

have a general analytical solution r(z) . Though , under one hypothesis
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similar to the 'thin lens' , we can get one . L et t he refractive index gradient

be small , such as that

an
-L« 1
Or

the dependence r(z) is then ver y weak . In other words , the ray position r

does not vary appreciably along the traject or y within the refractive index

gradient region. This implies that the devic e 's focal length is much larger

than L . With this hypothesis we find an anal y tical expression for the ray

deflection:

dr = 1dn dz =L dn
dz 0 dr dr

1 . 5 . 1 1

In order to get a point focus (paragraph 1.5 .1 ) ,

dr

dz

do

dr
ex -r 1.5 .12

The latter equation can be solved in n , its solu tion being :

nf r ) I . 5 . I 3

In the hypothesis that the ray position r does not change as light travels

inside the gas lens , a parabolic density profile produces a sharp focus . By

direct substitution in equation 1 .5 .10 we disco ver that the profile that we

just found gives a point focus even without the hypothesis that r is

constant along the ray trajector y . The solut ion of 1 .5 .10 is:

1.5 .14
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If we let the initial angle of the ra y 8 0 be ze r o, both the final angle and

position of the ray are directl y proportional to the initial radial distance

from the optical axis and at an y position z we h av e:

dr = -ro~sin(~L)
dz L

rlz = rosin(~L) oc ro

1 . 5. 1 5

Since the focal length is proportional to th e r a t i o between the first and

the second of the 1 .5 .15 , the refract i ve i n dex profile in 1 .5 .13 gives a

point focus .

We have reduced the problem of making a gas 1ens to the problem of

creating a gas density profile close to p ar abolic . Optical fi b r e wit h

parabolic refractive index profiles , or self-focusing wave-guides , are

widely used in long-distance communications . The beam is r e f r a c t i v e l y

confined in the centre of the fibre and there i s z e r o reflective loss .

1.5 .4 STEADY STATE AND PULSED GAS LENS ES

A gas density distribution such as 1.5 .13 i s not in dynamic equilibrium.

More generally , most non-uniform gas distrib ut ions are not in equilibrium .

This is a simple consequence of the gas-d ynamic equations , where a gas

flow follows any pressure gradient [Bejan 1984 ] . The presence of a density

gradient and consequently of a gas pressure gr adient causes a gas flow in

its direction , to establish equilibrium and uni formit y again. We have two

options in order to realise in practice a profile like 1.5.13 . The first is to

build a device that forces the gas to achie v e a steady state condition in

which a parabolic density profile is maintained. The second consists in

creating a transient non-uniform gas distribution and in using it as a lens

only for the time that its refracti ve index profile is convenient for

focusing.

A steady state gas lens is ideal for use with CW laser sources , while a

pulsed lens can be coupled with a pulsed l aser . The typical duration of a

q-switched laser pulse is !1t 1=10ns while a density perturbation propagates

at the typical speed (in air) of v =3 3 0 m /s (the speed of sound) , thus
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moving a few u m l s during the laser pulse d ur ation and then maintaining

almost unchanged its focusing properties .

Both the options of continuous and pulsed l enses ha ve been investigated in

this thesis . We will first talk about the opt ic al quality of a steady state

gas lens known as 'Spinning Pipe Gas Lens' or SPGL [Notcutt 1988] in

Chapter 2, then in Chapter 3 we will descri b e a pulsed gas lens that works

on the principle of multiple shock collision in air , the 'Colliding Shock

Lens' , or CSL.

1.5.5 OPTICAL BREAKDOWN AND DAMAGE I N GASES AND SOLIDS

There is a twofold convenience in preferrin g a gas to a solid state optical

component for high power laser a p p l i ca ti o n s . First , the breakdown

threshold is about three orders of magnitud e h i g h e r . Second , the optical

damage eventually following the breakdown is permanent only for the solid

state component.

Optical damage occurs when high power rad ia tion is unduly absorbed by

the component . Optical damage can then oc cur either internally or on the

surface of the optical material. Internal dam age can be due to : multi­

photon absorption , presence of internal inclusions , defects or self

focusing of the laser beam . The latter case occ ur when a CW or long pulse

laser beam locally heats the optical material t h u s creating a GRIN lens .

Surface damage risk is dram aticall y incre ased by the presence of

scratches , dust or dirt on the component's s u r f a c e . High power lasers are

thus incompatible with many real e nv i r o n m e n t s , especially where the

wavelength (IR and DV) requires expensi ve and soft optical materials (e .g .

ZnSe for CO 2 lasers).

When the laser pulse duration is in the lOts of ns range , typically the best

coatings achieve a fluence damage threshold of 10J/cm 2 while the best raw

polished surfaces reach the breakdown threshold of 20J/cm 2 [Melles Griot

Catalogue 1992]. We must stress the cumulative and diverging nature of

the optical damage that can cause the complete destruction of the

component only a few shots after the first appearance of the damage.

It is experimentally found [Gower 1981 , Raizer 1990] that the breakdown

threshold of air is 1011W/cm 2 for the KrF w avelength of 248nm and a

pulse duration of 18ns.

In the case of helium the breakdown irradiance value rises to 10 13W/cm 2 .
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It is then clear that a laser whose compone nt s a r e entirely made out of gas

can produce radiation fluences about thre e orders of magnitude higher

before optical breakdown intervenes .

1 .6 BRIEF NOTES ON INTERFERENCE AND DIFFRACTION OF

LIGHT

We will give here a very simple descripti on to two important phenomena

such as interference and diffraction of EM w ave s. Interference provides us

with a sensitive and useful tool to measu re local refractive index in­

homogeneities . In chapter 3 we will utilise a Mach-Zehnder interferometer

to measure the refractive inde x radial distrib ution inside a small pulsed

gas lens. Then , in chapter 5 , b y using the r esults of this measurement we

will determine the optical qualit y of t h e device . Diffraction theory

determines the ultimate physical limit f or t h e "concentration" of EM

energy into a small volume of space . It def in es the limiting performance

of any lens given its focal length and diam eter , and the quality of our gas

lenses will be determined by the comparison w it h the diffraction limit.

1 .6 .1 TWO BEAM INTERFERENCE

As seen in section 1.3 , the intensit y I is th e a mount of energy that crosses

the unit area perpendicular to the propaga tion direction of the field . Let

us consider a quasi-monochromatic beam of light . In the geometrical

optics approximation , using 1 .3 .12 , 1 . 3 .6 and 1 .3 .7 , we get the following

expression for the intensity ,

I 1. 6 .1

where the electric vector E can be expressed as the real part of a complex

amplitude:

E = Re[A(r ) exp(- irot) ] 1. 6 .2
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We want to calculate the intensit y I in a reg io n of space where two beams

of equal frequency (0 overlap. Let the t wo e l e c t r i c fields be linearly

polarised along the same direction .

At any point of space where the two quasi-monochromatic waves are

superimposed , the total field is :

E = El + E2

1= (E~) + (E~) + 2(El . E2 ) = 11 + 12 + Il2

1 .6 . 3

The Intensity equals the sum of the i n t e n s i tie s of the single beams plus an

"Interference" term . From equation 1 .6 . 3 it follows -that ,

1 . 6 . 4

the functions A contain the spatial variation o f the field , which , for plane

waves , is:

1. 6. 5

For simplicity we let the field be directed a l o n g the X axis , Z being the

propagation direction . With thes e hypothesis w e rewrite equation 1.6 .4 as :

2.Jf:f; cos(8) 1. 6 .6

with

_ () 2n8 = k· [ - [ + th - th == - ~s
2 I \lI2 \lI1 A 1. 6 .7

<5 is the phase difference , while I1S is known as the optical path difference

between the two beams . Substituting the 1.6 .6 into 1.6.3 , we see that if

the phase or the optical path difference are varied , the intensity oscillates

between a maximum and a minimum v a l u e . As an example we can observe

the interference of two plane waves incident a t an angle on a flat screen .
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The ph a sed i ff ere n c e will be a fu n c t ion 0 f the s c r e e n coo r din ate x ,

8(x)
21t
- sin(e)x
A

1 .6 .8

and the spatial periodicity of the intensity patt ern on the screen is ~x

~x
sin(e)

I. 6.9

quasi-

observeto

wi t hdeal

order

a constant phase

difference during the recording or obser v ation time . This sets a few

stringent conditions on the interfering waves .

a) They must be quasi-monochromatic , be cau se for each wavelength we

would get a different intensity pattern periodic ity (equation 1 .6.9».

b) It is almost impossible to compel two indep endent sources to interfere.

Consider atomic vapour lamps , which emit light on a narrow atomic line.

Phase jumps occur in the emitted radiation on the time-scale of the

average time between two atomic collisions [Loudon 1983]~ the coherence

time is then much smaller than the typical observation interval. The two

light sources maintain a precise phase relation only over the time 're

which is called the coherence time , in other words , the quantity 're is the

time over which the field remains correlated wi th itself .

If one overlaps two independent beams in ord er to observe interference ,

the intensity pattern will change over a time-scale equal to the shorter of

the two coherence times .

Interference is a very common phenomenon when we

monochromatic light sources such as lasers.· In

interference between two waves , the y must maintain

c) The two beams must be spatially coherent . In the example shown in

figure 1.6.1 , we would observe straight fringes only if the two beams are

spatially coherent. Spatial incoherence would first bend the fringes and

then make them disappear when coherence is lost over the spatial scale of

a few pixel elements of the detector .

A straightforward way of creating two temporally coherent beams is to

split any quasi-monochromatic beam by means of the partial reflection of a

dielectric surface (beamsplitter) .
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Fig 1.6 .1 Interference o f two plane wav e s on a flat sc reen .
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1.6.2 THE MACH-ZEHNDER INTERFEROMETER

The interferometer is an optical instrument that allows the observer to

measure the fringe pattern of two interfering beams. An interferometer

allows one to measure the local variation of phase along the beam cross­

section as one of the two beams propaga tes through a phase object. A

phase object is a refractive index spatial distribution. There are many

possible interferometer configurations . Let us study in detail the Mach­

Zehnder interferometer , as shown in Fig .1.6 .2 .

The mirrors Ml and M4 are partiall y reflecti ve dielectric mirrors, while

the mirrors M2 and M3 are totall y reflecti ve mirrors. MI initially splits

the b e a m i n two . Par t 0 f the b e a m t r a vel salon g P a t h 1 and rea c h est h e

screen. The other half travels along path 2 , passes through the Phase

Object and interferes with the other part on a screen . The screen can be a

detector such as a T.V . camera face plate or a photographic film. It is

vital in this configuration that beam 2 is not deflected inside the phase

object , which is not always the case when there are refractive index

gradients perpendicular to its propagat ion direction . If there is

deflection , a fringe pattern due to refr action overlaps with the

interference fringes , and one must use a pos it ive lens to image the phase

object plane onto the detector. The latter pro cedure is then correct only

for thin refractive objects. A simple test to a void this problem is to check

the absence of any fringe on the screen whil e the beam 1 is blocked . When

the interferometer is optimall y aligned the two beams interfere on the

screen either constructively or destructivel y , giving rise to a constant

intensity profile.

According to Fig.1.6.3 , the phase delay th at the beam 2 experiences as it

passes through the Phase Object is :

2n L 2n L

8(x, Y) = T f n(x, Y, z)ds == - f n(x , Y, z)dz
o A 0

1.6 .10

and a succession of dark and bright fringes will be seen on the screen. We

can relate the local fringe intensity to the phase delay experienced by the

beam 2.

On the peak intensity of a bright fringe there i s constructive interference:
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8(x,y) = 2nn: n = 0,1,2, ... 1 .6 .l0a

While at the minimum of a dark fringe the interference is destructive :

8(x,y) 2(n + l)n: n=0,1,2, ... 1.6 .l0b

From the maxima and minima positions on the screen we get in a

straightforward way the value of the refrac ti ve index integrated along the

optical path of the ray :

L

ii ( X , y) = f n(x, y , z) dz 1 . 6 . 1 1

o

The problem of this "optimall y aligned" c onfiguration is that we cannot

measure phase variations larger than 21t .

If we misalign the Mach-Zehnder Ln t e r f e r o m e t e r , by tilting any of the four

mirrors , we can make the two beams overlap at an angle , and create on the

screen a regular pattern of straight fringes . T h e fringes are straight when

there is no phase object in the interferom eter and are bent when a local

phase delay is introduced . We follow each fri nge in the x i y plane of the

screen and by measuring its deflection from the straight pattern , we find

the phase change due to the object.

While the measured phase change is determ ined only within 21t in a

perfectly aligned Mach-Zehnder interferog ram , on the contrary when we

measure the deflection of straight fringes , w e lose information only when

there is a phase change of more than 21t wit hin a fringe period.

1.6.3 REFRACTIVE FRINGES

We have seen how partial reflections from di electric surfaces can cause

interference. In general , any beam deflection causes interference as soon

as two or more mutually coherent regions of the beam are overlapped . Let

a spatially coherent beam arrive on a screen after being deflected (such as

In fig.l .6.3) . At each po in t x , y we will have to add together the

contributions from the electric fields (of all the rays falling in x ,y)

taking into account the relative p ha se due to the different optical paths.
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Fig.1.6.2 The Mach-Zehnder int erferometer scheme .
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Fig.1.6 .3 Propagation inside a phase object.
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It is possible to get some information about t h e refractive index spatial

distribution from the refractive fringes [Mi ch aelis B 1991], although the

information is more convoluted than in an interferogram were it can be

extracted in the straightforward wa y described i n the previous paragraph .

1.6.4 DEPARTURE FROM GEOMETRICAL O PTI CS

Light always propagates straight in v a c u u m . This is true only in the

approximation of geometric optics . Examples we r e light does not propagate

straight are well known : light passing clos e t o an obstacle or through a

slot is deflected . In general diffracti on i s a consequence of the

uncertainty relation of Heisenberg applied t o s ingle photons. On the other

h a n d , and more intuitively , it is a consequ enc e of the wave-like nature of

light. Interference and diffraction are cl os el y linked together. When a

coherent beam is diffracted , fringes a p pea r as the deflected light

interferes with the non-deflected part of the beam . A conceptually simple

theory of diffraction is the Hu ygens-Fres n el construction . It postulates

that any point of the propagating wa ve-fro nt a cts as a source of secondar y

spherical wave-fronts which mutuall y interfer e . A more exact theor y was

formulated by Kirchhoff : let the spherical w a v e-front

f (r]
A exp( ikr)

r
I . 6. 1 2

hit a wall with an aperture B . If the radius of the wave-front is much

1a r g e r t h ant he 1i ne a r dim ens ion 0 f the ap e r t u r e ~ the F res n e 1- K i r c h h 0 ff

diffraction formula states that the perturbanc e a t the point P i s ,

1.6 .13
rs

exp]ikl r + s)]
------=- [cos(n , r) - cos( n , s)]dSU(P)

Particularly relevant for laser ph ysics i s t h e Fraunhofer diffraction

formula which is an approximation of the Kirchhoff diffraction formula in

some operating conditions . The t ypical lase r beam characteristics make the

Fraunhofer diffraction formula a ver y good approximation. We will

consider the diffraction pattern from an aperture on a plane screen . The
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approximation consists in letting both rand s be much larger than the

linear dimension of the aperture , so that th e y can be replaced by r' and s' ,

as shown in figure 1.6.5. Moreo ver the cos i ne term will remain constant as

w e i n t e g rat e 0 nth e s c r e e nap e r t u re , t ha t i s cos(n , r) - cos(n, s) == 2 cos8.

The diffraction formula becomes :

D(P) ~ _ Ai cos(8 ) If
A r's'

B

exp[ik (r + s)] dS 1.6 .14

in the aperture a n d u ,v its coordinates. In theLet q be a generic point

hypothesis that r'A» d and s'A» d , (w h e r e · d i s the maximum

t ran s v e r sed i men s ion 0 f the ape r t u re) e q u a t ion 1 . 6 . 1 4 can be fu r the r

simplified. After some manipulation we get

D(P) = cff expj ikt pu + qv)}iS
B

x Xop = -+-,
s' r'

Y Yoq =-+-
s' r'

1 . 6 . 1 5

A collimated beam produces a Fraunhofer d i f f r a c t i o n pattern at infinity ,

or equivalently in the focus of a well c o r re c t e d lens . The diffraction

pattern given by 1 .6 .15 can be analyticall y c alculated only in few special

cases , such as the rectangular aperture and the circular aperture . The last

one is of particular interest for laser physics .
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1.6.5 DIFFRACTION-LIMITED LASER BEAMS AND DIFFRACTION­

LIMITED FOCUSING OPTICS

The deflection of light produced by diffraction sets the ultimate limit on

the collimation that we can expect from a lase r beam . In particular let us

consider a circular laser beam . The Fraunhofer diffraction pattern of a

circular aperture is given by

I(r) I .o

(
21traJ2J -

1

AL
2ma

AL

1.6 .16

Where a is the radius of the circular aperture , 1 1 is the well known Bessel

function [Guenther 1990] and L is the focal l ength of the "well corrected

lens" that we are using to focus the beam .

The radial profile of the Bessel function 1 1 will tell us the minimum spot

size we can focus a laser beam . It is found that almost 85% of the beam

energy falls within its first minimum. The first dark ring occurs at :

AL
1.22­

2a
1.6 .17

The radius of the first minimum , given in 1 .6 .17 , coincides with the

intensity FWHM spot diameter.

Conversely , starting with a laser beam which is diffraction-limited , we

can define a diffraction-limited lens as a d ev ic e able to focus 85% of the

beam energy into a spot similar in si ze to 1. 6. 1 7. Thus the quantity given

in 1.6 .17 defines absolute ph ysical units to measure the optical quality

both of lenses and laser beams .
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CHAPTER 2:
THE SPINNING PIPE GAS LENS

2 .1 EXPERIMENTAL SYSTEM

In this section we describe in detail the s p i n n i n g pipe gas lens and the

experimental system on which we performed a temperature profile

measurement [Lisi 1994] . A spatiall y resol ved t e m p e r a t u r e measurement in

a device of aperture 2.25 cm and of length 1 m is presented.

2.1.1 THE SPGL

The spinning pipe gas lens investigated i n th is chapter was developed at

the University of Natal in recent y e a r s . Th ermal gradient gas lenses are

typically long focal length , small aperture d e vices . In the early versions ,

the thermal gradient gas lense s consisted of a small cross section metal

pipe in which a gas was fluxed along the opti cal axis [Marcuse 1965 , Xie

1985] . Heat exchange processes heated the g a s close to the pipe , giving

rise to a radial temperature gradient . Th e obvious difficulty that is

encountered in scaling up the aperture w hi le keeping the focal length

short is the consequent increase of the temperature radial gradients . These

larger gradients give rise to convection currents which impair or e ven

destroy the action of the lens [Gloge 196 7] . S o m e improvement could be

obtained by spinning the lens [Notcutt 1988], in order to eliminate the

convection cells . In this case the gas flow stops being laminar and

directed only along one direction. No anal ytical theor y is available to

des cri bet h e gas flow . Ask e t c h 0 f the S P G L is s how n in fi g u re 2 . 1 . 1 .

The gas lens consists of a pipe spun at the t yp ical speed of some 10 Hz by

a variable speed AC motor. The pipe is heated by a resistor , powered by a

variable voltage power supply. It is possible to v a r y independently both

rotation speed and pipe temperature in order to optimise the performances .

There are a few strict requirements on the pipe characteristics .
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Fig 2 .1 .1 The S pinning Pipe Gas Lens . It consists of a spinni ng h e a t e d
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Fig 2.1.2 Simp l e scheme of the air flow inside a spinni n g p ip e .
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1) It must be straight within a good degr ee of accuracy in order not to

vibrate when spun.

2) The thermal expansion ' coefficient of the material must be as low as

possible to avoid deformations . Deformations h ave to be avoided since they

introduce vibrations as the pipe is spun.

Any vibration can destroy the steadiness of the gas flow and of the

temperature profile, impairing the optical quality . The SPGL we have

utilised in our experiment has the following specifications: Length L=lm ,

Diameter d=2.25cm , Pipe Temperature<IOOC , R evolution Rate<50Hz.

The gas flow inside the pipe is comple x and no analytical theory is

available , but an heuristic description of the g as flow can be as follows:

A s the pip e i s s pun , col d air f low sin fro m th e e d -g e s 0 f the pip e tow a r d s

the centre. Meanwhile it is accelerated in the angular direction by friction

with the air in the boundary layer , co-rotatin g with the pipe . As the gas

spins faster and faster in the centre of the pipe , it is centrifuged out ,

flowing along the pipe boundaries. Correspond ingly the cold air is sucked

in along the pipe axis. The pipe being hot , the air that flows out close to

its boundaries is hotter than the air sucked in a l o n g its spinning axis . The

density distribution resulting from this flow w as found to give a good , but

high f-number lens.

In a perfect gas , the temperature and the refra ctive index are related by a

simple thermodynamic relationship . The refractive index difference from

unity is proportional to the gas density , and the density at constant

pressure , is inversely proportional to the temperature . As seen in section

1.4 , relation 1.4 .19 tells us that :

p
n ~ 1 + 21tu­

RT

If we define no as the refractive index at s tandard atmospheric conditions

(T=273.3K , P=lAtm) then :

n(T) = 1 + (n - 1) To
o T 2. 1. 1

The value of the refractive index at standard atmospheric conditions is a

well known experimental quantity (table 1.4.2) . It weakly depends on the

radiation wavelength as given by the Cauchy formula 1 .4.18 and in table
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1.4.2. At visible wavelengths its value is:

n -1o 2.93 . 10- 4 1.000293 273.3K .

Once the temperature profile inside the pipe is known , so is the refractive

index and we can then determine the optical properties of the lens.

2.1.2 THE TEMPERATURE MEASUREMENT

In an early device [Steier 1965] the temperature profile was measured for

a fl u x e d s m a 11 d i a met erg a s 1ens and the res u 1t s 's how e d g 0 0 d a g r e e men t

with the theory. We have measured the temperature profile of our spinning

pipe gas lens both along the optical axis a n d along the vertical section .

We preferred the vertical direction to the hori zontal in order to check for

eventual gravitational effects on the temper ature distribution of the gas .

Our aim was to measure the gas temperat ur e inside the heated spinning

pipe with a spatial resolution of I.Omm along the radius of the lens and

I.Ocm along its optical axis . A temperature g auge for such measurement

must have the following characteristics:

I) Small dimensions. Since we want a radial resolution of I.Omm , the

probe dimensions must not exceed at least O. 5mm . «O .5mm). Moreover ,

the smaller the probe , the less it affects the ga s circulation .

2) The temperature difference between a m bi e n t atmosphere and pipe

surface temperature is about lOOK. The temperature difference between air

at the edge and air at the centre will be r ather smaller (about 50K)

because of the fast flow rapidl y replacing th e hot gas in the bounda ry

layer. We expect the temperature profile to be r o u g h l y parabolic along the

radial direction of the pipe . This gives a t emperature difference over the

first radial 1.0mm of about IK . The temperature resolution must then be at

least ~T<O.5K.

3) The thermal capacity of the detector must be small , in order to reach

thermal equilibrium fast enough as we change the probe position. The

measurement must then be as fast as possible in order to avoid

fluctuations in the system.

4) The detector must exchange heat only with the gas , for this to be

possible it has to be thermally insulated from its support. Moreover the

electrical connections of the thermocouple must be performed with thin
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wire for heat not to be lost through them .

Given the previous four points our choice was for a Ni-Cr thermocouple.

We made it by welding two Ni and Ni-Cr 20 0~m diameter wires. (This is as

small as feasible in our workshop) . The Thermocouple was secured via a

thermally insulated material (epox y glue) on a thin steel wire (d=400llm)

which was suspended between two XYZ mounts . The mounts were held on a

long optical bench. The experimental set-up , shown in figure 2.1.3 allows

us to move the probe inside the lens with t he required precision . The

alignment is performed by checking the wire position both at the entrance

and at the exit of the pipe with micropositi oners .

The probe thermocouple is referenced t o a s econd Ni-Cr thermocouple ,

submerged in a mixture of ice and water at 27 3 .3K. The output voltage is

read on a Keithley 199 Voltmeter and the m easured voltage values are then

normalised according to the pol ynomial for t ype k (Ni-Cr) thermocouples

[Pr a c t i c a l Temp . Meas.]. The circuit is sho wn in figure 2 .1.4.

The presence of a reference thermocouple is necessary to eliminate the

effect of the two thermocouples introduced b y t h e copper (Cu) contacts of

the Voltmeter with two different metal wir e s (Ni and Cr) . The output

voltage is then normalised to the t ype k thermocouple reference

polynomial (8th order) and this will give the p robe temperature difference

from 273.3K. In figure 2.1 .5 we show the m easured temperature profile

and in the following figure , 2.1 .6 , the ref ra ct ive index profile computed

with the help of equation 2 .1 .1 .

The temperature distribution is fl a t in the middle region oft h e pip e (50 cm

on the optical a xis) whe re the co-rotating v o r t e x e s [Michaelis B 1991]

meet and there i s almost no longitudinal gas flow (figure 2.1.2) w h i 1e two

regions of strong transverse thermal gradients are present near the edges

of the pipe. The asymmetry between these two regions is due to the

asymmetry in the heating of the pipe . It was found empirically that the

lens works better under such conditions.

During the experiment we kept the rotation speed of the lens at 30Hz and

the temperature of the pipe at 400K , which gave a focal length of 2m .

Figures 2.1.7 and 2.1.8 show the vertical as ymmetry eventually caused by

gravity in greater detail . In these two figures we show the contour lines of

the surfaces shown in the figures 2 .1 .5 and 2.1 .6 .
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2.1.2 SOME OBSERVATIONS ABOUT THE EXPERIMENT

Aft ere h a n gin g the m e a sur em en t po sit ion 0 u r pro bet y pie a 11y re qui res a

few seconds to reach a steady asymptotic value. While taking the

measurement, we noted that the gas flow inside the spinning pipe is very

sensitive to the flow conditions surrounding the lens , such as draughts in

the laboratory. Big fluctuation in local temperature are sometimes

observed corresponding to small external perturbations. To obtain

reproducible results, as with all continuous gas lens experiments , a still

environment is essential. We also verified that there was no horizontal

(X) axis asymmetry. The finite size of the probe could possibly have an

effect on the gas flow . We assumed , justifi ed by the reproducibility of the

results with different geometries , the effect to be negligible.

2 .2 TRACING RAYS INTO THE MEASURED REFRACTIVE INDEX

PROFILE

In this section we will perform some ray tracing through the measured

refractive index profile . We show that by reducing the optical aperture of

the lens (to 1 cm) , an angular resolution of twice the diffraction limited

is obtainable.

2 .2 .1 THE SOLUTION OF THE RAY EQUATION

The ray equation in the paraxial ray approximation is , with the help of

equation 2.1.1:

d2x 1 dn dn (no - l)To dT
-- =--=::- -
dz ' n dx dx T 2 dx
d2y 1 dn dn (no - l)To dT
-- ---- = - 2.2. 1dz" n dy dy T 2 dy

T = T(x,y,z)

Equations 2.2.1 are a system of second order non homogeneous differential

equations . In the right hand side we can use either the temperature profile
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shown in figure 2.1.5 or the refracti ve index profile shown in figure

2.1.6 . The solutions have the form :

( ) = {x(z)
r z y(Z) 2 .2 .2

and are the rays' trajectories inside the SPGL. They are completely

determined when we know the temperature or r efractive index field inside

the pipe (figures 2.1.5 and 2.1.6) . We numer ic ally solved the ray equation

2.1.2 in the three dimensional refracti ve i n d e x profile obtained by

interpolating the experimental points . To r e d u c e c o m p u t a t i o n a l time , our

interpolation is with splines along the vert ical direction (Y) , linear along

the optical axis (Z) and with a combination of s i n e and cosine terms to get

the re fr act i v e in d e x v a 1u e 0 ff the Y a xis . A fu 11y 3 D s moo t h in t e r po 1at ion

is time consuming and the paraxial ra y equations 2 .2 .2 require smooth

gradients only in the direction trans verse t o the ray propagation. The

program (listed in Appendix A) can give a h i s t o g r a m representation of the

light intensity from an input object at an y i m a g e plane . As is shown in

figure 2.2 .1 , we start from a uniform distribution of rays arriving from

the point source on the entrance plane of t h e SPGL . Each of these rays is

represented by its positions x and)" on t h e entrance plane and by its

initial angles 8 x and 8 y . Their trajectory in t he non uniform temperature

region enclosed in the spinning pipe is obtained by the numerical

solutions of the ray equations 2 .2 .1. We opted for a Runge-Kutta fourth

order integration with a constant step size . On the exit plane we save the

values of the ray positions and angles . After t he exit plane the light will

propagate straight again so that the ra ys' path i s determined geometrically

in terms of the four quantities xl ,yl ,8 x 1 and 8 y l . The distribution of

these four numbers onto the exit plane will define the radiation intensity

a tan y pia n e aft er the ex i t pia ne .
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Remembering what we said about geometrical optics in paragraph 1 .3 .2 (in

equation 1.3 .6) we can interpret the ra ys as th e field line of the intensity

field , which has zero divergence . The radi atio n intensity that crosses the

unit surface area at some point after the SPGL is then proportional to the

local density of rays. A histogram representation of the rays' intersections

with any image plane is then proportional to t h e intensity field onto the

image plane. The proportionalit y factor i s easily found from the

normalisation condition. Ray tracing was pe rformed also using a non­

paraxial rays algorithm [Sharma 1982], bu t we could not note any

difference in the outputs.

2 .2.2 DETERMINATION OF THE SPGL LIMIT RESOLUTION

The procedure described at the end of the pre vious section consists of a

computational imaging of an incoherent source of light. We choose to

image two distant point sources and to decr ease their angular separation

until they became unresolvable onto the imag e plane. Since we are imaging

distant sources , the image plan e coincides wit h the focal plane. We tried

to apply Rayleigh criteria of resolution , wh ich is nontrivial when the

focus resembles more a ring (figure 2 .1.8) th an a Bessel function . Some

images were recently taken with the same g as l ens [Michaelis C 1991]. The

best results were obtained limiting the a perture to cm , and features

close to the diffraction limit were observed . For the full aperture device

(2.0 cm) the limit resolution obtainable is c ertainly worse than 0 .2 mrad

(see figures 2.2 .2 and 2.2 .3) which is very poor if compared to the

diffraction limit. Moreover most of the energ y hitting the lens is focused

well outside the central area .

The focal length , in the following figures , i s defined as the distance

between the exit plane and the image plane , wh en the source is at infinity .

By 1i m i tin g the use fu 1 ape r t u re to 1 cm i t is po s sib 1e too b t a in are sol uti 0 n

of 0.2mrad (figures 2 .2 .4 and 2 .2 .5) which is only about twice the

diffraction limit . It can be easil y seen that th e outer rays are too weakly

refracted to arrive in the same focus as the inner rays. Possibly the worst

feature of the SPGL is that part of the light is spread out on a large ring

around the point focus due to the central region of the lens .
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In figure 2.2.6 we show how the focal length v a r i e s as a function of the

distance from the optical axis along the v er tical direction . This is a

quantitative measurement of the longitudinal a b e r r a t i o n s of the lens . It

explains too the reason why it is necessar y to l i m i t the gas lens diameter

in order to achieve decent performances . The focal length is measured

from the exit plane of the pipe .

The sharp increase in focal length close to optical axis is rather a feature

of the simple method utilised to calculat e th e focal length than a real

physical feature of the lens. Gi ven the qu ant ities 8 y and y , the generic

angle and position on the exit plane ( f i g u r e 2 . 2 . 1 ), the focal length L is

determined geometrically as

2 .2 .3

since 8 y t e n d s to zero as y goes to z e r o , the focal length is not determined

close to the optical axis , since a small e x pe r i m e n t a l uncertainty on 8

leeds to big fluctuation of L . We remember that 8 y is d e t e r m i n e d by

ray-tracing into the measured r e f r a c t i v e inde x profile .

In other words rays close to the optical ax is m i g h t never cross it , giving

an infinite focal length according to 2 .2 .3 , but then they end up a few J.1m

away from the optical axis at the image plan e , thus contributing to the

intensity in the focus . The focal length of th is gas lens is more or less

constant for diameters up to lcm and incre as es rather sharply at larger

diameters. Lastly in figure 2 .2 . 7 we sho w t he focal length against the

anglc about the axis of the input beam l yin g o n the horizontal plane . At a

small angle the focal plane is reall y a plane and not a curved surface . At

each horizontal angle about the optical axis a curve similar to the one

shown in figure 2.2.6 was determined . The a v erage focal length within a

lcm aperture was then determined . The v a l u e s c o i n c i d e within 1% at small

angles . At larger angles the beam is cut by t h e e d g e s of the p i p e .

Another feature , visible in figures 2 .2 .3 , 2 .2 .5 and 2.2 .6 (where the

"vertical axis" has been shifted b y O.3mm) , is that the focus is displaced

along the vertical direction , belo w the optical axis , due probably to the

effect of gravity on the temperature distribution (figure 2.1.6) .

Ray tracing through the measured refracti ve index profile of a spinning

pipe gas lens , satisfactorily explains two important features : decrease in

optical quality as the optical aperture approa ches that of the pipe , and

lowering of the image centre due to gra vity .
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2.3 THE SPGL AS AN INTRACAVITY PASSIVE OPTICAL

ELEMENT

The SPGL optical quality is found to be good , though not excellent. Its

advantages are: Very high optical breakdown threshold , good optical

quality at low aperture , absence of reflecti v e surfaces . Its disadvantages

are the high f-number and the longitudinal aberration. The latter effect

increases with the increasing aperture and i s clearly visible in figure

2.1.6.

Moreover the Spinning Pipe Gas Lens performances can be unstable , being

sensitive to draught and requiring still labo ratory conditions . Last the

spinning pipe can introduce vibrations .

As seen in the previous paragraph its optic al quality is good for apertures

up to cm , which is the typical transvers e dimension of a commercial

laser beam . The absence of reflective surface s and its long focal length

suggests use as a laser intracavit y optical element. When employed so , It

is important to decouple the vibrations introduced by the spinning pipe

from the laser resonator optics , though this is a relatively easy problem to

solve. Inside a laser cavity , the absence of r eflective surfaces renders the

radiation losses equal to zero . In an earl y e xperiment performed at the

Bell Laboratories a gas lens waveguide as long as 70 m was inserted inside

a He-Ne cavity , and did not prevent it from las ing [Beck 1967]. As we will

see in a following chapter the performances of a SPGL as an i n t r a c a v i t y

element can be very good , even superior to an equivalent glass lens.
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CHAPTER 3:
THE COLLIDING SHOCK LENS

In reference [Buccellato A 1993] a macroscopic pulsed gas lens is

described that could be used as a final focusing element in a laser driven

the r m 0 nu c I ear fu s ion ex per i men t. Her ewe des cri b e a no vel t y pe 0 f p u I sed

gas lens which would be suitable for operation in conjunction with a small

pulsed laser , the colliding shock lens (CSL) [Buccellato B 1993 ,

Buccellato 1994]. In the first section of this chapter we describe in very

general and heuristic terms , the working p rinciple of the colliding shock

lens. In section 3.2 we will experimentally characterise the focusing

performance of the very early version of the device , a small , 8 pin , I cm

electrical diameter CSL. In section 3 .3 we will present a measurement of

the refractive index profile of a larger version of the same device , an 8

pin, 3 cm electrical diameter lens. The measurement was performed using

a Mach-Zehnder interferometer. The refracti ve index profiles will be

analysed in detail in a later chapter to determine the optical quality of

the CSL. In section 3.4 we will characterise its use as a high power

electro-optical switch and discuss some other potential applications.

3.1 THE WORKING PRINCIPLE

The colliding shock lens working principle relies on the interaction of

multiple shocks in air in order to create a non-uniform density

distribution in a gas. The transient density perturbation deflects and

focuses light. We can divide the study of the CSL into two main subjects :

Gas Dynamics and Optics. Wc will give here only an heuristic description

of the gas dynamics and we will concentrate our efforts on the study of its

optical properties in a later chapter. The gas d ynamics of colliding shocks

are discussed in detail in [Buccellato 1994] .

3.1.1 SHOCK WAVES

There are several possible approaches to a description of shock waves in a

gas. It depends first on the picture that one has in one's mind of the gas
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itself and secondly on the level of precision that one wants the description

to achieve. From the thermodynamic point of view , a shock is a surface

discontinuity of the values of the thermod ynamic quantities such as

temperature, pressure, entropy and mean molecular velocity (t,P,s and u).

The strength of a shock can then be defined in terms of the quantity Mo ,

the Mach number. The Mach number is the ratio of the discontinuity

propagation speed to the sound speed of the medium. If one wants then to

solve the discontinuity into a continuous spatial profile, as experimentally

observed, the thermodynamic description must be replaced by a gas­

dynamic description . Since one of the basic h ypotheses in order to write

down the gas-dynamic equations is the cont inuity of the medium , the

discontinuity is replaced by a sharp but continuous variation of the

physical properties across the shock-front. The gas-dynamic equations are

partial differential equations and can be solved by many numerical

methods. Dealing with a shock , though , is complex and the reason is the

spatial scale of the phenomenon . All the numerical methods concerned are

based on dividing the space into a grid of cells and substituting the

derivative with "finite differences". Since the shock width can be orders

of magnitude smaller than the dimensions of the system and the cell

dimension must be much smaller than the shock-width , a very high number

of cells is necessary to model a realistic shock. Often beyond the

performances of big computers for realistic three-dimensional situations.

Moreover the continuity hypothesis becomes invalid when sharp density

gradients are on a spatial scale comparable to the average molecular

distance. In the latter case the gas-dynamic e q u a t i o n s cease to be valid

and a statistical model becomes necessary.

The situation is further complicated by energ y dissipation on the shock­

front which has to be taken into account when the local temperature is

such as to excite electronic transitions of the gas molecules (or

vibrational transitions, at a much lower temperature). The situation is

already complex enough for a plane shock but becomes much harder when

we deal with the interaction of many shocks and/or with shock-fronts of

non-planar geometry.

Shock theory and modelling has become a science in itself , as often

happens when physics investigates a system away from its equilibrium. For

the purpose of this thesis, we see a shock wave as a gas compression wave

which travels faster than sound does. The speed of the "Shock" depends on

the peak density at the shock front of its profile . It is in general easier to
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measure the density profile and its ve lo c i ty, for

interferometric techniques , than to tr y to comp ute it.

3 .1.2 SPHERICAL SHOCKS

example wit h

Let us consider a point explosion in air. Durin g an explosion in a gaseous

medium , energy is transferred to the gas molec ules and part of it goes into

their kinetic energy. The increase in partic le ve l o c i t y, that is , in pressure

and temperature , creates a lo w densit y r eg io n close to the explosion

centre . In a simple picture , the gas which w a s contained in a sphere of

volume V is distributed after the e xplos io n in ' a thin spherical layer

around an empty volume V. The gas compress ion generates a spherically

symmetric expanding compression wa ve . The i ntensity of the perturbation

decreases as the shock expands for two reason s . The first is the increase

(with the square of the radius) of the v o l u m e concerned by the

perturbation as it moves away from the explo sion centre with the sound

speed. The second is the energ y dissipation a t the shock-front. The shock

"intensity" , or its Mach number Mo , t ypica ll y decreases with a power law

with the distance from the explosion centre . T h e problem of shock wave

motion in cylindrical and spherical s ymm etr y was first formulated and

solved by Guderley [Guderley 1943] and Ta ylor [Taylor 1946]. Guderley

first developed a method for the solution of t h e gas-dynamic equations in

spherical symmetry. It is found that a weak s p h e r i c a l shock propagates

radially with a constant velocit y , t h e soun d s pe e d of the medium. This is

the case when the flow is isentropic , that is t h e r e is not entropy change

across the shockfront . In other words the gas d oes not increase its entropy

as the shock wave passes through .

Conversely it was found [Taylor 1946] tha t the radius of a strong

spherical shock (or a blast wave) does not incr ease linearly with time , but

obeys to a power law with exponent less than one :

R(t) 3 . 1. 1

Where ...... is a constant of the medium. It is intuitive that during

propagation , as the velocity of the shock de creases the shock becomes

weaker and weaker . The flow becomes isentropic and the shock velocity

equals the sound speed.
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When two spherical shocks in a ir coll ide , t h e i n t e r a c t i o n depends on their

strength [Courant 1948] . At Mach numbers close to unity the waves

simply pass unmodified through one anoth e r. At intermediate Mo the y

pass but are somewhat delayed . At higher Mo , there is a period of

stagnation during which the fronts merge into a high density plane slab ,

and at very high Mo the collision gener at es turbulence . When several

shocks are launched from explosion points placed on the arc of a circle ,

one might expect behaviour similar to t hat of the double shock

interaction. Moreover , since man y shocks n o w collide at one point , non­

linearities in the shock interaction are exp ected to occur at lower Mo than

for two colliding shocks . The regime of interest here , is at an

intermediate Mo when the fronts interact in a ' n o n - l i n e a r but orderly

manner [Courant 1948] .

3.1 .3 THE COLLIDING SHOCK LENS

When several spherical shocks , produced b y arc discharges , expand from

points equi-spaced on a circumference , a c ylindrically symmetric

converging shock-front is formed . In the a ct u a l device , the shock waves

are produced by arc discharges between o ppo sing pin electrodes. In the

configurations described in this thesis ther e are eight pairs of electrodes ,

but we tried geometries with 16 , 32 and 3 6 arcs . When the expanding

spherical shock-waves , launched from points e q u i - s p a c e d on the arc of a

circle , collide at the centre , a c ylindricall y s ymmetric cigar shaped

density distribution results at the centre , as s h o w n in figure 3 .1.1 . The

cylindrical symmetry is obtained starting from a polygonal shaped shock­

front , due to the non-linear interaction bet ween shock-waves , such as

Mach reflections . In figure 3 ,1.1 and 3 .1 .2 , for simplicity we display only

four of the shocks.
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converging shock-front cylindrically symmetric before and after collision .
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Fig u re 3.1 .3 The Colliding Shock Lens . Th e arc discharge s b e t w e e n

o ppos i n g p i n s can be enclosed in side a Plexiglas p ip e .
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In [Schwendeman 1987] it was noted that co nverging cylindrical shocks

with regular polygonal shaped cross-sections a re stable and tend towards a

circular cross-section. Converging c ylindrica lly symmetric shock waves

produce a condition of high pressure , temp erature and density in the

re g ion 0 f imp I 0 s ion . Aft er the s p her i c a Ish 0 c k con v erg est 0 a po i n t , a

regular and stable [Mat suo 1981] axi-s ymme tr ic cigar shaped expanding

density distribution results . It is in th i s r egion that we expect the

density distribution to act as a graded-index lens . Figure 3.1.3 is a

schematic diagram of an 8 arc CSL .

3 .2 FOCUSING EXPERIMENT

The first diagnostic utilised in conjunction w ith the CSL consisted of a

single probe laser beam directed along i t s optical axis . The laser beam

intensity profile was then recorded on th e fa ce plate of a T.V. camera.

This simple set-up detects refra cti ve fring e s a s well as focusing due to the

passage through the gas lens.

3 .2 .1 EXPERIMENTAL SET-UP

The spherical shocks were created at points equi-spaced on a

circumference (diameter=llmm ) b y eight p airs of opposing electrodes . We

utilised needles of diameter 850J.lm and an a r c gap spacing of l m m . The

electrodes are mounted on two opposing Ple xiglas plates with a circular

hole in the centre (diameter=7 .5mm) allow ing the probe laser beam to be

directed along the axis of the CSL . The gaps w e r e connected in series in

order to breakdown simultaneousl y . The breakdown occurs in nanoseconds

and appears to be instantaneous on the microseconds time-scale of the

lens . In figure 3 .2.1 the geometr y of the colliding shock lens is

represented .
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Fig.3 .2.1 Eight pin Colliding Shock Lens geometry and driving circuit in

the focusing experiment: Storage capacitor C=5nf , Breaking Capacitor

C 1=lnf, Charging Inductance L=O.IH , Hole for the laser beam H=8mm ,

Electrical Diameter ED=llmm , Electrode Gap G=lmm. S.G: S park Gap.
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Fi g . 3 . 2 . 2 E xp e r im ent al set-u p for the foc using ex pe r i m e n t.
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A spatially filtered and expanded nitro g en laser beam (FWHM=lns ,

'A= 3 3 7 n m ) was directed through the collision r e g i o n onto a T.V . camera

face plate through an imaging lens and a n itrogen interference filter

(330nm , Band-width=10nm) . A PC s ynchron is ed the triggering of the CSL

with the image digitiser . The signal from a Rogowsky coil in the CSL

high voltage circuitry , triggered the nitro gen laser via a variable delay

box . The value of the capacitor C determi nes t h e energy provided to the

colliding shocks and a 5nF capacitor was chosen . A schematic

representation of the experimental set-up is shown in figure 3 .2 .2.

3 .2.2 EXPERIMENTAL RESULTS

The CSL properties were investigated by r ec ording images at different

distances from the CSL and at different dela ys . Parasitic fringes were due

to the interference filter. A t ime s equence for the colliding shocks is

given in figure 3.3.3 (M o= I . 5 ) . From left to r ight and from the top down

we can follow the collision sequence . The f irst frames (1-5) show the non­

linear interaction between the shock waves r e s u l t i n g in non-cylindrically

symmetric illumination patterns . As the shock -front implodes , the angles

between colliding shocks tend to be smeare d out and the front tends

towards cylindrical symmetry . The interest ing point is that after the

shocks have collided at the centre (frame s 6, 7 ) there is a cylindricall y

symmetric core. "The shocks have forgotten wh ere they originated". A high

density expanding region is created (fr ame 8-16) . A sharp focus is

observed in frames 8 and 9. Frames 10 to 16 show the typical diffraction

pattern when focusing is achieved further awa y from the CSL .

The detailed illumination pattern (i.e . dar k a nd bright rings , coarse and

fine fringes) in figure 3.2 .3 is best understood by referring to articles on

re fr act i v e fr in g e d i a g nos tic s 0 f s Pher i c a Ish 0 c k sin air [C u n n i n g h a m 1 986 ,

Waltham 1987 , Michaelis A 1991 , Michaelis D 1991]. The next figure

3 .2.4 shows in details the focusing obtained with the eight arc CSL

(C=5nF) at a distance of 39cm . In the central region of high intensity the

camera is heavily saturated .
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Fig . 3.2 .3 . From the top left , time sequen ce of an eight arc CSL imaged

48.7cm from the CSL at (1) 3 .2~s , (2) 5~s , (3 ) 6~s , (4) 6.9~s , (5) Sji s , (6)

IO~s , (7) lO.4~s , (8) 10.9~s, (9) II .3~s , ( 1 0 ) 11.6~s , (11) I1.8~s , (12)

12 .2~s , (13) I2.4~s , (14) I3 .I~s , (1 5) I4~s , (16) 15.6~s.
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Fig.3.2.4 Eight arc CSL focal spot (focal length=39cm, delay=11.8~s).
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Fig.3.2.5 Intensity plot of the eSL focal spot .

84



If the same image as the 3 .2.4 is recorded w ith an additional filter in

order to avoid the saturation of the camera , a FWHM focal spot diameter

of lOO~m is obtained [Buccellato B 1993] .

Here we do not show the unsaturated im ag e , but figure 3.2 .5 shows a

three-dimensional intensity plot taken from its central region.

The eSL is a varifocal lens in which t he f o c a l length and the lens

diameter vary with time according to the cur ve s shown in figure 3.2 .6 and

figure 3 .2 .7.

The effective lens diameter was obtained b y imaging with the lens Lt on

the shock collision plane . Due to the expansi on of the shock-front after

the collision , the effective lens diameter i ncreases with time : figure

3 .2 .3. As the eSL diameter varies , the relati ve diffraction limited spot

size changes.

This time dependence is in agreement with t h e measured evolution of the

focus spot size reported in figure 3 .2 .8. In this figure the diffraction

limited spot size is calculated according to equation 1.6 .7 . The values of

lens diameter are obtained by linearl y int erpo lating figure 3.2.7 at each

time e x p e r i m n e t a l images of the focal spot s iz e were a vailable (at a known

focal length).

Even the position of the rings surroundin g the central spot (as seen in

figure 3 .2 .4) is in reasonable agreement with the theoretical Airy rings

radii (see figure 3.2.9) . A detailed stud y of the eSL optical quality taking

diffraction into account is reported in chapter 5.

The eSL was utilised to focus a rub y laser b eam (FWHM =30ns , E=500mJ)

onto photographic paper in order to obtain a burn pattern at the distance

of 39cm . The Q-switched ruby beam was s ynchronised in order to fire at

the corresponding time delay . First the dif fr action-limited ruby beam was

directed through the lensing region and a b urn -pattern was obtained. Then

a glass convex lens of equal focal length was apertured to 1.3mm , which is

the effective aperture of the eSL at the focal length of 39cm , and a

comparison burn pattern was obtained . The central burn regions for both

lenses were approximately 200~m in diameter [Buccellato B 1993].
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3.3 REFRACTIVE INDEX PROFILE MEAS U R E M E N T

After the promising results obtained with a 10mm electrical diameter

colliding shock lens presented in the previ ous s e c t i o n, a larger version of

the eSL was developed . The new version di ff ers from the one shown in

figure 3.2.1 in two ways . The first differenc e is in the dimensions which

are larger . The second important feature of t he new device is that the arc

discharge region is confined inside an enclos ed region . In particular we

utilised a Plexiglas pipe . The energ y is d el i vered b y the arc discharges

into shock waves which are no w confined i ns i d e the pipe . This new eSL

design is shown in figure 3 .3.1 .

As shown in figure 3.3 .1 the arc gap is 1 .5mm a n d the Electrical Diameter

is 3cm. Due to the larger dimension of th e d e vice we were forced to use

higher values of the discharge capacitor , bet we en C=20nF and C=100nF. In

order to withstand more energy , the new electrodes were made with 2mm

steel screws filed down to a conical tip . This new version of the colliding

shock lens has been characterised with the experimental set-up described

in the previous section . In figure 3 .3 .2 we present the main results , the

time evolution of the focal length and t he t i m e evolution of the lens

diameter for the capacitor value C=IOOnF.

In figure 3.3.2 we note that the eSL works up to diameters of 5mm . This

diameter starts to be an interesting value for some applications . Given the

good performance of this upgraded version of the CSL we decided to

measure the refractive index profile to quantify its optical performance

and quality . In this experiment we used a Mach-Zehnder interferometer

(Paragraph 1.6 , figure 1.6.1) and an experimental set-up very similar to

the one shown in figure 3 .2.2.

The data shown in figure 3.3 .2 were obtained with the same experimental

set-up as that described in the previous section , consisting of a probe

nitrogen laser beam , some imaging optics and a recording camera.

90



Plexiglass Pipe,

Laser
\..

Pin electrode

: :

;i

H
G

Fig .3.3 .l Enclosed version of th e Collidin g Sh ock lens . The arcing circuit

is the same as for figure 3 . 2 . 1. Th e compon ent v a l u e s are : Storage

Capacitor C=20-l00nF , Pin electrode gap G =1.5mm , Electrical diameter

ED=3cm , Hole f o r the laser be am H=lcm.
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3.3.1 EXPERIMENTAL SET-UP

The Mach-Zehnder interferometer has been described in section 1.6. The

CSL was placed in one of its arms , as shown in the next figure 3 .3.3.

Beam 2

M1
Beam 1

CSL

M4

Fig.3.3.3 The Mach-Zehnder interferometer and the CSL .

A schematic diagram of the complete experimental set-up is given in

figure 3.3.4. The Nitrogen probe laser is synchronised with the arc

explosion of the CSL and the interferograms were recorded on the face

plate of a T.V . Camera . The lens LI allows one to image the shock

collision plane. While recording the interferogram , it is necessary to

image the collision plane in order to cancel the refractive contribution to

the fringes.

The experimental set-up is almost exactly the same as for the experiment

discussed in the previous section .
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F ig .3 .3 . 4 Ex pe rime nta l set-up for t he refractive i n de x profil e

measurement.
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3.3.2 EXPERIMENTAL RESULTS

As described in section 1.6 there are mainl y two ways of recording and

analysing interferograms . Let us briefly summa rise the two procedures.

1) The interferometer is well aligned . Whe n no phase object is present (in

our case the CSL is not fired) no fringes ar e v is i b l e over the whole imaged

field. When we insert the phase object (we fir e the CSL) , it introduces a

phase shift and creates a pattern of bright a n d dark fringes on the screen .

Each dark-bright period corresponds to a re la ti ve phase change of 21C . This

technique allows the experimenter to measur e the exact value of the phase

unless it exceeds 21C. There is no wa y of de cidi ng if the "next" dark-bright

period is due to a phase increase or a phase de crease .

2) The interferometer is "misaligned" in ord er to create a regular pattern

of straight fringes over the imaged field . In this case the relative phase of

the two beams increases linearl y in the di rection perpendicular to the

fringes. The presence of the phase object will bend each fringe by an

amount proportional to the phase change . Th is technique gives a better

measurement of the value of the phase . Sinc e we follow the shifts of the

fringe maxima or minima , the spatial resolution is typically of the order

of half the separation between unperturbed f r i ng e s.

In our experiment we utilised the second tec hnique. In figure 3.3.6 we

show a reference shot . The unperturbed fring e pattern is visible in this

picture where the shocks have not yet arri ved . In the next four images

3 .3.7-3.3 .10 we can follow the eight shocks during their collisions.
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Fig.3.3.6 Reference shot, before shock col lision. Delay=28.8~s after arc

explosions .
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Fig .3 .3 .7 CSL interferogram . D elay=36 .1Jls .
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Fig.3 .3.8 CSL interferogram . D elay=36 .7 u s
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Fig.3 .3.9 CSL interferogram . D ela y=38 .2~s.
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Fig.3.3.10 CSL interferogram. Delay=39.0~s.
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To be exact we cannot extract from the interferogram the three­

dimensional r e f r a c t i v e index profile without any h ypothesis about its

spatial symmetry [Bockasten 1960] .

Since in the shock collision region we expec t a rather complex spatial

density distribution , we cannot determine the c o m p l e t e three-dimensional

refractive index profile. However , for the o p t i c a l analysis of the device ,

the interesting quantity to measure i s the two dimensional (planar)

distribution of the 'optical path length' on the s h o c k collision plane. Once

t his q u ant i t Y is k now n we can q u ant i f y the 0 p t ic a I q u a 1i t Y 0 f the CS L and

no further information on the density profil e is required .

Let us explain this point with the help of graphs and formulas . The radial

density profile of a single expanding spher ical shock wave has been

measured by several authors [Waltham 1985 , Michaelis A 1991]. We can

briefly summarise their results in the profile shown in figure 3.3.11.

The typical linear scale of the shock-front i s a round 100j.lm , depending on

the mach number Mo and on the t ype of gas .

If the shocks were passing unperturbed through each other , we would

expect the geometry shown in figure 3 .3 .1 2 . Despite the non-linear

interactions , the geometry will be rather similar as it can be seen in the

interferograms in figures 3 .3 .6-3 .3 .10 .

We image the shock collision plane with the lens Ll onto the face plate of

the camera where we introduce the coordinate system (xl ,yl) . The

interferogram appears as an almost periodic pattern of dark and bright

fringes. We analyse them in the following way . Given a point of the image

plane where the fringes are bent , we move along the locus of points having

the same intensity until we get to the region where the fringes are

straight. In other words we follow the fringe until we get to the

unperturbed region . At each point , the distanc e of our trajectory from the

straight fringe (and perpendicular to it) , di vided by the width of the

unperturbed f ringe , gives the phase difference in 2n's .
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Fig.3.3 .ll Geometry of an expanding shock w a ve . The t ypical spatial scale

of sharp density gradients is in the r a n g e of 0 .1 mm .
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Fig 3.3.12 The C olliding Shock Lens geometry. Electrica l di a m e t e r

ED=3cm: Lens Diameter LD =0-5mm.
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In practice we can follow the fringe without errors only where it is

darkest or brightest , and this limits t h e spatial resolution of the

measurement to half of the fringe spacing . As a result , at each point X,)'

we measure the following quantit y :

L (x,y )

ii(x,y) = Jn(x,y,z)dz
o

3 . 3. 1

Where z is the optical axis (and the laser b e am) direction and L(x,)') is

the distance travelled at X,)' inside the colliding shock region. Since after

the central collision the shock front is c y lindricall y symmetric with

respect to the optical axis .

L l r )

ii(r) = Jn(r, zldz
o

3.3. 2

According to geometrical optics and under th e p a r a x i a l ray approximation ,

the deflection angle for a light ra y travelli ng at X ,Y will be :

L (r ,z ) 8n(r z)
S(r) = J 'dz

Oro
3 .3.3

We use now the very reasonable hypothesis th at rays do not change their

position r while they travel inside the eSL , which is fully justified given

the lens diameter and focal length which are in play (figure 3 .3.2). Since

r does not change along the trajector y , which is the integration path , we

can say that:

a L(r ) a
S(r) = - Jn(r ,z)dz = -ii(r)ar o ar 3 .3 .4

In conclusion , under these rather general conditions , the Optical Path

Length (ii(r) can be directly measured from the interferograms and then

linked to the optical quality of the device.
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3.3 .3 ANALYSIS OF THE EXPERIMENTAL RES ULTS

In this paragraph we will briefl y anal yse th e four interferograms shown in

figures 3.3.7 ,3.3 .8 ,3 .3 .9 and 3.3 .10 . The frin ge analysis is performed as

described in paragraph 3.3.2 and the optical pa th lenght radial profile and

lens optical diameter are determined .

Then the optical prformances of the collidi ng s h o c k lens can be computed

from the OPL radial profiles . Chapter 5 wil l be completely dedicated to

t his fu r the ran a 1y s is . In t his par a g rap h w e wi l l de t e r m i ne 0 n 1y the 0 P L

radial profiles.

The reader can refer now to figures 5 .1 .5 to 5 .1 .8 for the focal lenght

radial profile .

The four 'Optical Path Length' (OPL or n(r) profiles are shown below in

figures 3.3.13 to 3.3.16 together with the r elative polynomial fits . One

problem of the measurement is that the fring es can undergo a big shift as

they cross t h e shock-front which expands a ft er the collision . If the phase

jump is m o r e than 2n: on the spatial scale of a few p i x e l s we see a

discontinuity . In this case we can d e t e r m i n e only the relative value of the

OPL inside the region e n c l o s e d b y the expanding shock-front . Though , as

seen in equation 3 .3.4 , the interesting quantity to use to dcfine the

optical quality of the CSL is the radial g r a d i e n t of the OPL , which is

insensitive to such uncertainty .

In t a b l e 3.3.1 we report the values of the polynomial coefficients for the

fits of t h e OPL profiles . In table 3 .3.2 the rad ial dimension of the CSL is

reported at the corresponding times . Duc to th e radial symmetry only the. . , .
even terms are different from zero .

105



Time a{\ a " aLl at:: a Q

2 . 1 ~ s 2 .3 3e-6 1. 0 7 -6.2 3e6 9 .88e12 -5 .6IeI8

2.7 J.l s 3 .33e-6 - 1. 2 3 1. 72e5

4 . 1 u s 3 .67e-6 - 0 . 4 7 1. 21e4

5 ~ s 3 .44e-6 - 0 . 2 1 - 7. 4 I c 3

Table 3.3 .1 Pol ynomial fit coeff i c i en t s of the O P L profiles at the v a r i o u s

interferograms record i n g times a fter the shock collision .

Ti m e Ra diu s

2 . 1 ~ s 0 .81m m

2 . 7 u s 1.4 m m

4 . 1 ~ s 2 .1 m m

5 ~ s 2.4m m

Table 3.3 .2 C S L r adiu s v s Time .
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Enclosed CSL, 35.1 ~s after explosion
Measured Optical Path Length VSa Position

Eigth order polynominal fit
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Fig .3 .3.13 OPL radial profile j u st after coll is ion . From the interferogram

sho w n i n fig.3 . 3.7.
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Enclosed CSL, 36.7 ~s after explosion
Measured Optical Path Length Vs. Position

Fourth order polynaminal fit
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Fig .3.3.14 OPL profile from the interferogram in fig.3.3.8
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Enclosed CSL, 38.2 #s after explosion
Measured Optical Path Length Vs. Position

Fourth order polynominal fit
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Fig 3 .3.15 OPL profile from the interfe rogram in fig .3 .3 .9.
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Enclosed CSL, 39.0 ~s after explosion
Measured Optical Path Length Vs. Position

Fourth order polynominal fit
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3.4 APPLIC.A.TIONS OF THE COLLIDING SHOCK LENS

In the last section of this chapter we pro pos e and discuss some of the

possible applications of the CSL [Michaeli s 1 994]. The operation of the

CSL as an optical switch will be treated in detail. The time evolution ,

scaleability and repetition rate operation are i nvestigated. This section is

divided into two parts : a characterisation of th e CSL as an electro-optical

switch and a list of potential applications s uitable for the CSL .

As previously stated , it is important to distinguish between the electrical

diameter ED being that of the circle of arc s and the optical aperture (the

lens diameter LD), being that of the effect i ve lens (figure 3 .3 .12). The

optical aperture turns out to be an order of magnitude smaller than the

electrical diameter . It is not yet clear wh ether the optical aperture will

scale with t.he system geometr y or with the typical shock width

dimensions. The former would mean that the f -number could remain more

or less constant with increasing optical a p e r t u r c ; the latter , that it does

not scale at all. A first attempt at scaling up the first l.lcm electrical

aperture device to 3cm , (figure 3 . 3 .2) i n d i c a t e s that the truth lies

somewhere in between .

3 .4.1 THE COLLIDING SHOCK LENS AS A SWI TCH

We have measured the CSL switching ability . Our experimental apparatus

(depicted in figure 3 .4 .1) is ver y simple and consists of a 10 mW HeNe

laser followed by the small CSL (figure 3 .2 .1) and a receiving photodiode

at a distance L with a pinhole of diameter <l> immediately in front of it.

The HeNe laser beam was spatiall y filtered and expanded .

We vary the distance L , the diameter <l> and also the energy delivered to

the shocks by changing the discharge capacitor (C in figure 3.2 .1). On a

digital oscilloscope we read the trace of the photodiode signal . Figure

3.4 .2 shows a typical switching time curve . The pinhole diameter is here

<1>=300J.lm , L=40cm and C=5nF.

The voltage output of the oscilloscope h as been normalised to a

comparable but arbitrary constant signal. We chose the voltage signal read

when focusing the HeNe laser beam with a 3mm aperture , 50cm focal

length , pIano-convex glass lens on the s ame photodiode and a pinhole

<1>=250J,tm.
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Fig 3 .4 .1 Experimental set-up . Measuring the eSL switching p e r f o r m a n c e s .

L I =3 c m, L 2= 15cm .
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Starting with a capacitor value of InF . In fig ure 3 .4.3 we show how the

switching risetime and the maximum signal va ry with the pinhole size <D at

a fixed distance L. In figure 3.4 .4 , how the same quantities vary with the

focal length L at a fixed <D.

In figure 3 .4.5 and 3 .4.6 we repeat the last me asurements with a discharge

capacitor of 5nF.

As can be seen from switching curves like figure 3 .4 .2 , the fall-time of

the signal is always comparable with the r i s e - t i m e (to within say 500/0) ,

the latter being a less critical quantit y for an efficient quality switching

of a laser cavities (Q-switching) . As w e expe cted , by increasing the shock

energy we can make the switching faster . Though if one compares figures

3.4.4 and 3 .4 .6 we see that the increase in shock energy impairs the

optical quality of the CSL at short fo cal length and small optical

diameter.

3 .4.2 POTENTIAL APPLICATIONS

a. Drilling , cutting and welding .

A good reaso n why lasers have not penetrat ed every industrial workshop is

that their ou tput windows and lenses are e xpensive and sensitive devices .

It has already been

capable of drilling

shown that CO 2 las ers coupled to gas lenses are

through thick steel sheets [Michaelis E 1991] .

However , the lenses that were used were u n wi e l dy CW devices with very

long focal lengths (of order l m ) . The "dr eam " gas lens for this purpose

would be a short focal length device (IOcm) , capable of being "rep-rated"

(100Hz .) , with an optical aperture of a t l east one centimetre and a

minimal power consumption and a minimal w ei ght .

b . Q-switching and laser i n t r a c a v i t y operation .

The combination of a pulsed lens (CSL) and a CW lens , (such as a

conventional glass or gas lens) in a laser resonator could in principle

perform simultaneously the Q-switching and the mode selection of the

laser oscillation [Lisi 1994] . In the previous paragraph we characterised

the CSL as a switch and opening times of about 0.5J..ls were obtained. Q­

switching requires that the cavit y losses decrease on the time-scale of 10's

or lOO's of ns [Siegman 1986] . Such s witching performances can be

achieved with the colliding shock lenses . In the next chapter we will

demonstrate the feasibility of the CSL Q-switching.
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For engineering applications (point a), th e f o c a l length should not vary

too quickly , whereas for Q-switching and b eam handling (e.g . optical

isolator) functions , fast switching is essent ia l .

c . Ultra high power and "all gas" lasers .

It is well known that even under clean room c o n d i t i o n s lenses operating

for pulse lengths of tens of nanoseconds st ar t t o fail at intensities in the

GW/cm 2 range. Also multi-photon proce sses at ultra-high intensities

render conventionally transmitting material s opaque or absorbing . We have

previously pointed out that gas lenses could he lp alleviate these problems .

We foresee , without having the means to observe it , that ver y high

intensities will ionise the gas in the shock fr o n t region. This laser shock

interaction might create a plasma that destro y s the optical quality of the

CSL , though those damages do not cumula t e such as on the surface of a

solid state lens . But for intermediate pow ers , the CSL could fill the

present gap. The final application we envi sa g e is that of an "all gas" (or

nearly all gas) system . Conventional pulsed g as laser systems are designed

with beam diameters corresponding to the b reakdown thresholds of solid

optical components. A combination of aerod y namic windows , diverging and

converging gas i n t r a c a v i t y elements could g iv e gas laser design a new

degree of freedom .

3. 4 . 3 SUMMARY OF CSL PERFORMANCES

All the applications listed above pose the follo wing questions:

a . How good is the focus? Is it near diffraction -limited?

b . How short is the focal length ?

c . How large is the aperture and is an y light lost ?

d. Can they be "rep-rated" ? How much powe r do they consume?

a . From the very first experiments , we realised that this was somewhat

surprisingly , given the limited number of arcs , an excellent lens . In figure

3 .2.5 we showed the relative intensit y plot of a t ypical focus of the small

eSL . In figure 3.2 .6 and following , the optical performance of the same

device is analysed.

b . The shortest focal length for an eight arc device is about 20cm . This is

too long for many applications.
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c. Possibly the worst feature of CSL's is the large electro-optic aspect

ratio. The largest aperture obtained so far was only about 5mm. In the

fu t u re we p Iant 0 t est a 1 0 c m e I e c t r i c a I d i a met e r le n sin the hop e 0 f

obtaining a 10 mm . optical aperture .

d . The question of "rep-rating" the lens has only been partially answered

experimentally for want of a suitable hig h v o l t a g e power supply . 10Hz

operation confirmed our expectations that the lens could run at moderate

frequencies without degradation of the fo cu s . At this repetition rate a

typical switching curve such as that i n fi gure 3 .4 .2 remains virtually

unaltered . Based on dimension and speed o f s o u n d arguments , we would

expect the limiting period to be of order :

Electrical Aperture
::::: l ms

Sound Speed

The corresponding "rep-rate" would be 1 k Hz, a useful frequency for

industrial applications . The final question i s t h a t of power consumption .

At a rep. rat e of f=lkHz , our present small eight pin lens (figure 3 .2.1)

would consume:

1 2
W = r -CV

2
lkW. (C 5nF,V 20kV)

This is a considerable amount of pulsed power , especially if w e increase

the electrical diameter of the CSL and consequently the capacitor value.

In order to reduce the power in the larger de vices w e made the enclosed

CSL which confines the shocks in its interior (figure 3 .3 .3) , and a

considerable reduction in energ y consumption and noise occurred.
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important method of

1984 , Siegman 1986] .

have generally been

devices based on the

CHAPTER 4:
T HE C OL L I D ING SHOCK LENS AS AN INTRACA VITY

Q-SWITCHING ELEMENT

4.1 INTRODUCTION

Quality factor or "Q-switching" of lasers is an

enhancing the power of pulsed lasers [Koechner

Mechanical Q-switches and dye cell switches

discarded in favour of triggerable opto-electronic

Kerr or Pockels effect.

In this chapter we show how a varifocal pulsed gas lens , the Colliding

Shock Lens , can be utilised as an i n t r a c a v i t y element to Q-switch a ruby

laser [Lisi B 1994] . By placing the shock lens in tandem with a second

lens a giant pulse is obtained. The second lens may be a conventional

glass lens or a continuous w a v e gas lens .

4 .1.1 OPERATION PRINCIPLE

The principle of colliding shock Q-switching (CS-QS) , relies on the

insertion of a steady state c o n v e r g i n g lens and of the rapidly varying CSL

in a laser cavity . The CSL focal length and lens diameter increase with

time over a few microseconds (see figure 3 .3 .2) . When the CSL is switched

off , the steady state lens renders the cavity unstable . Only when the CSL

is switched on and while the focal regions of the two lenses overlap , does

the laser cavity become stable and the losses low . If this condition is

achieved when the population inversion is at its peak in the active

medium , lasing o c c u r s in the form of a giant pulse . As soon as the two

focal lengths overlap we have a telescop ic resonator. Telescopic laser

resonators have been used in ref. [Hanna 1981 , Routledge 1986] in order

to achieve large volume Q-Switched diff raction limited TEMOO beams

whilst keeping the laser cavity short . Q-Switched pulse rise-time is

roughly proportional to the cavity transit time . As a secondary advantage

of this configuration one can utilise the telescope to compensate for the

thermal expansi on of the laser rod in high rep . rate operations. The main

disadvantage o f the configuration is the possibility of optical damage on
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the intracavi ty optical components which are in the de-magnified side of

the laser beam.

Potential advantages of CS-QS over other electro-optic switches are

economy, simplicity and robustness. The economy lies in the absence of

solid state optical components (e.g . pile of plates polariser and Pockels

cell). The simplicity and robustness stem from the absence of polarisers

and the nee d to a dj us t the po 1a r is a t ion . 0 n e 0 b vi 0 u sdi sad van tag e is the

possibility of laser breakdown in the confocal region , though the risk of

this happening may be mitigated by gas lens aberrations .

4.2 EXPERIMENT

In order to test this new Q-Switching operation scheme we designed a

separate experiment. We utilised a commercial ruby laser and the enclosed

CSL described in section 3.3.

4.2.1 EXPERIMENTAL SET-UP

In the experiment designed to test the CS-QS concept , a commercial ruby

laser was modified to incorporate the additional Q-Switching components.

Figure 4.2.1 is a schematic of the experiment. The laser consists of a ruby

head, a full reflector R2 and an output mirror RI . The Q-Switching

components are the Colliding Shock Lens L2 with the relative arc

discharge electronics , a continuous lens Ll and a fluorescence-sensing

photodiode PDI . The value of the discharge capacitor of the CSL was set

to C=IOOnF. The distance from the output coupler RI and the lens LI is

dl. The distance between the two lenses is d and finally the distance

bet wee nth e CS L and the fu 11 re fl e c tor is d 2 . We air e ad y des cri bed the

CSL in detail in the previous chapter. Very briefly the CSL consists of

eight arc discharges , struck simultaneously between pairs of opposing

points located on the arc of a circle (figure 3.3.1). Each point explosion

pro d u c e san ex pan din g s ph e r i c a Ish 0 c k w a v e. Aft e r the e i g h t s hoc k w a v e s

collide at the centre of the circle , a cigar shaped , high density, axially

symmetric core expands outwards . Lensing is due to the radially symmetric

density gradients within the expanding region .
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Fig 4 .2.1 Experimental set-up of the Collidin g Shock Lens Q-Switching

( C S L - Q S ) .
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As the lens diameter increases , the densit y diminishes and the focal

length increases as depicted in figure 3 . 3 .2 . The CSL used for these

experiments , was specially chosen for its f as t switching and acceptable

optical aperture . It consists of a 5cm diam eter cylinder closed at both

ends . The gaps are set to 1.5mm and the diam eter of the circle of pins is

3cm . The central windows are lcm in d iam eter. A 100 nF capacitor ,

charged to 15KV , is connected to the eight gap s in series via a triggerable

spark gap . This series connection ensures simultaneous arcing.

4 .2 .2 THE LENS Ll

The lens L I can be either a conventional so lid s t a t e device or a continuous

wave gas lens. The Spinning Pipe Gas Lens , which we described in detail

in chapter 2 , was used in some experiments . The device consists of a l m

Ion g , 2 c m d i a met er he ate d tub e , s pun at 3 0 H z . The rot a t ion c e n t r i fu g e s

warm air out of the two ends and causes cold air to be aspired along the

axis . The resulting density and refracti ve i n d e x gradient produces a long

focal length lens , the quality of which fluctuates . The focal length can be

varied from 1.5m to several meters (as measured from the centre of the

pipe) by changing the pipe temperature and rotation speed . The laser head

is a commercial ruby laser [Korad Kl] , the two flat end mirrors are a Full

Reflector (measured reflectivit y RI=96% ), and an Output Coupler

(measured reflectivity R2=45%) .

4.2.3 OPERA TION PROCEDURE

The operation sequence for all CS-QS experiments is the following . First

the ruby flashlamp is fired and the PD 1 photodiode detects the

fluorescence signal from the active medium. This signal is electronically

delayed and used as a trigger for the CSL master spark gap circuit (figure

3 .2.1). The signal from the photodiode PD2 , placed behind the full

reflector RI , is read by a storage oscillos cope and gives the laser pulse

waveform . The laser beam energ y is measur ed w i t h an energy meter on the

main output beam. A burn pattern of the attenuated beam at the focus of a

lens is used to measure the divergence .
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4.2.4 MODES OF OPERATION

Depending on the choice of the lens Ll and on the intracavity distances

dl , d and d2 we can operate the cavit y in man y different conditions . We

decided to operate the cavity in onl y th ree different modes described

below.

Mode a, maximises the output energ y and be am diameter .

Mode b, minimises the Q-switched laser pul se-duration .

Mode c, explores the feasibility of a c avi t y with intracavity beam

expansion optics consisting entirel y o f gas .

As we will s e e in much greater detail in the second and theoretical part of

the chapter , the stability of the laser resonator can be determined in terms

of the complex parameter m. In the f o r m a li s m of ray matrix optics m is

half the trace of the round trip resonator matrix [Siegman 1986 , Kogelnik

1974]. For an unstable resonator , the absolute value of m is greater than

one (a b s t m j >L) . For this case we can introduce the magnification M as :

if m > 1 (positive branch)

if m < - 1 (negative branch)
4 .2 .1

where M is the amplification of the beam c ross section per round trip and

can be related to the cavity losses . When abs (m)<l the cavity is stable .

A b s ( m ) = 1 for a p I a n e par a I I e I con fig u rat ion w h i c h cor res p 0 n d s tot h e

confocal situation of our i n t r a c a v i t y "telescope". The cavity losses can be

directly related to the cavity geometr y , that is to the parameter m (or M).

Generally speaking we can state that the ca vit y losses are high when the

resonator is unstable and the value of M is high , becoming progressively

lower as the value of M is decreased . In the present simple scheme we can

say that the losses become zero when the cavity configuration is plane

parallel or stable . After the shock collision , as the CSL focal length

increases , the cavity geometry will go through stable and unstable phases .

In the light of this simple analysis let us e xamine the three operating

modes in detail.
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Fig .4.2.2 Measured intensity profiles of the Q-Switched laser pulse .
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Mode a. LI is a 200cm focal length glass lens . The lens separation d is

250cm. The condition abs(m)=l is achieved when f C S L=50cm. The CSL

lens aperture is d C S L=3 .0mm (see figure 3.3.2) and the beam fills the ruby

rod (IOmm) . At slightly later times , the resonator becomes stable and we

expect lasing to occur. A drawback of this operating condition is that the

cavity is long (3m) as is consequently the rise-time of the laser pulse. In

this case the initial magnification of the resonator (before the CSL is

operated) is low: M=2.8 . We must therefo re operate the flashlamp below

4.3kV to avoid free running lasing . A 2J laser pulse of duration 360ns

(FWHM) is observed 5J.!s after the shock collision. Figure 4 .2 .2 shows the

pulse waveform.

Mode b . LI is a 50 cm focal length glass lens (d=IOOcm) . Again m=l is

achieved when f C S L=50cm , d C S L=3.0mm and the beam diameter on the

output coupler is expected to be 3.0mm. The initial magnification is now

M=4.4 and free running is inhibited at any flashlamp voltage. We operated

at 4.5 kV. In this case we expect shorter pulses and a very narrow beam

together with lower energy. A 100mJ pulse , of duration 175ns (FWHM) is

observed 5 .51J.s after the shock collision (see figure 4.2.2). On a few

occasions when the CSL alignment appeared to be optimised, a pulse

length of about 50ns was observed .

Mode c. L 1 is a spinning pipe gas lens operated at 200cm focal length. For

this "all gas" Q-switch we expected similar performance to mode a. Figure

4.2.2 s how s a 375 n s (F W H M) P u 1se 4 .5 J.! s aft e r s hoc k coli i s ion. How eve r ,

the energy for this mode is slightly higher (3 J). The absence of reflective

losses in the cavity appears to outweigh the effect of the spinning pipe gas

lens aberrations. The scheme of the "all gas Q-switch is in figure 4.2.3.

In Table 1 we summarise the results of the experiment: laser energy , pulse

length , beam diameter and beam divergence for all three operating modes.

The energy values reported in this paper are the maximum values obtained

over a large number of experiments.
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L2
CSL

d2
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Fig .4 .2 .3 Laser resonator schem e f o r the "a ll ga s " Q-Switching experiment

Em ,,,. / ] ~ tins <D /mm Div (mrad)

Mode a 2 .0 360 8. 0 1.0

Mode b O. 1 1 7 5 2 .0 3.3

Mode c 3.0 375 8.0 1.4

Table.4.3.1 . Summar y of the r e sults o f th e C ol l i d i n g Shock Q-Switching

experiment. Emax is the maxim um re corded val u e of the output energ y i n

the three different resonator geometr ies . ~ t is the t ypical pulse duration

(FWHM) . <D is the laser spot diameter a n d Div is the divergence .
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Although the fluctuations are large , espec iall y for mode c , due in this

case to the unstable behaviour of the SPGL [ L i s i A 1994], we noted that the

operations do not critically depend on the c a vit y alignment and gas lens

aberrations . After tilting mirror R2 b y 3 mr a d, enough to completely

inhibit the free running laser output , the Q-switched pulse decreases by

only 50% (1.5J) . Furthermore w e must note that the aberrations of the

spinning pipe lens and its focusing instabil ities seemed to affect the

output energy much less than expected. La se r r a d i a t i o n occurs as soon as

the CSL focal length sweeps through the righ t value that allows light to

resonate with low losses . In a st able ca vi t y the above condition is

satisfied for a broader range of modes than for the plane parallel cavity of

the free runn ing laser.

4 .3 THEOR'''{ AND MODELS

This third section contains a detailed descr iption of a computer model that

was proposed in order to compute the tempora l evolution of the radiation

density and the population inversion of th e ruby laser system during CSL

Q-Switching operations . The listing of the programmes is in Appendix B .

4.3.1 THE RATE EQUATIONS

It is well known that it is possible to model the behaviour of a laser

s ystem us i n g the rate equations [Koechner 1984]. The rate equations

consist of a system of coupled non-linea r fir s t order differential

equations. In the most general and e x act f o r m they relate the t i me

evolution of the upper level's population a t each po in t of the laser

medium , to the local radiation density . The temporal evolution of the

population of each level is then determined by the initial population

values , by the radiation densit y and by the transition probabilities. The

pump contribution , for a flash lamp pumped laser , is included into the

radiation density term. The population values of the three (or four) levels

at any location in the active medium are coupled to the population values

at different positions via the mode structure of the radiation. The

coupling coefficients are proportional to the absorption and stimulated

emission cross sections. The mode structure depends on the resonator
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geometry and on the spatial structure of th e gain in the active medium

[Statz 1965] , which is determined b y the population difference between

upper and lower laser level . The upper laser l ev e l population by itself has

the important effect of triggering the las er amplification , via the

radiation initially emitted by spontaneous decay . A complete solution of

the three-dimensional case is computationall y hard , especially when the

number of radiation modes in the cavit y becom es high . Nor does it help to

reduce the dimensions to two as , for exampl e , with cylindrical symmetr y.

Under some general conditions it is possible t o model a laser system with

a set of zero-dimensional equations which ar e s i m p l e to solve numerically.

The conditions are :

1) Spatial uniformity of the gain .

2) Spatial uniformity of the radiation inte nsit y along the cross section of

the beam.

3) Laser pulse duration longer than the round trip time.

The conditions 1) and 2) are never comple te l y true , but in many cases of

practical interest they represent a very good approximation .

4 .3 .2 THE ZERO-DIMENSIONAL RATE EQUATIONS

In the zero-dimensional case we can describe t h e evolution of the photon

density in the cavity with onl y one equation . A ruby laser is a three-level

s y s t em . The z e r 0 - dim ens ion a I rat e e q u a t ion s , aft era n i nit i a I pop u I a t ion

inversion has been established , can be written in the following form :

(
lA In(l - e( t ) )J

<t> nca~ - + -----
le L R

an
at = -<t>ynca st

4 . 3 . 1

4 . 3 .2

Where le is t he cavity length and lA is the act ive medium length , n is the

population inversion , f/J the photon densit y , e the speed of light , a
s t

the

stimulated emission cross section , y is the degeneracy of the upper laser

level and 't R is the round trip time.
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Normal Q-Switching operations c a n b e in v esti gated by splitting the loss

term E in three parts .

4 .3.3

The first two are constant , they take into a ccount the transmission of the

output coupler the first and the scatterin g b y defects , reflections from

glass lenses and diffraction losses the s econd . The third term is set

artificially high at the beginning (for ex ample by means of crossed

polarisers) in order to establish a high population inversion without

allowing lasing to occur . As the gain reache s its peak , the losses are

suddenly lowered to a value that allows amplification to occur in the

cavity. Amplification occurs now at a rate mu c h higher than if the losses

had remained low. In the latter case , a rub y la ser releases its energy in a

train of low intensity pulses , or free runn ing . Conversely the result of

the Q-Switching operation is a giant pulse in w h i c h all the energy stored

in the upper level of the active medium is rel eased in a very short time.

According to an approximate theor y [Koech ner 1984], the laser pulse rise

time is inversely proportional to the cavity r o un d trip time 'tR.

4 .3 .3 RATE EQUATIONS FOR OUR SYSTEM

We want to write down the zero-dimensional rate equations to model the

system described at the beginning of this ch apter and shown in figure

4 .3 .1 . We will utilise the equations 4 .3 .1 and 4 .3 .2 . The most important

issue to solve in order to set a correct model is to find a suitable

expression for the loss term E . The constant term Losl is easily calculated

(or guessed) to be about 30%. The variable second term requires more

attention. We have to take into account that in our Q-Switching

configuration the resonator geometry , and not only the quality factor Q , is

changed during the operations.
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4.3.5 THE CAVITY GEOMETRY

A laser resonator is a periodic focusing system . This can be treated in the

formalism of ABCD matrix optics [Siegm an 1986] in the paraxial ray

approximation . The paraxial ra y approxim at ion is fully justified in our

system since , given the maximum beam d iameter (lcm) and the cavity

length (3m) , the maximum angle about the opt ical axis that radiation can

exhibit is <3 .5mrad . The resonator scheme is shown in figure 4 .2.1. dl is

the distance between output coupler and lens L l , d is the distance between

the two le n s e san d d 2 is the d is tan c e bet we e nth e CS L (L 2) and the fu 11

reflector. We can divide a round trip insid e this resonator into nine

successive steps (figure 4 .3.1) . Each step c o n s i s t s in a propagation in

vacuum or a focusing by positive lenses .

According to the ABCD matrix theor y , eac h step can be represented by a

two-by-two matrix . The matrix acts on a t wo component vector (or ray) ,

the first component is the radial distance f rom the optical axis and the

second one is the angle.

The product of all these matrices will give the round trip resonator

matrix . We call it M t o t :

MTot = ABCDEFGHI 4 .3 .4

I and A represent propagation through d l , Hand B the focusing due to Ll ,

C and G the propagation through d , F and D represent the focusing due to

the CSL (L2) and finally E is a propagation through 2d2 . The matrices F

and D depend explicitly on time .

Cdl) B = H = ( ~ll ~)A = I = 0 1

C = G = (~ ~) D = F = (f;:~) ~J 4.3 .5

E = (~ 2~2)
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D.C . F.R D.C.
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Fig 4.3.1. Resonator scheme . The path of each ray can be subdivided in

nine steps per round trip . O .C . : output Coupler , F .R .: Full Reflector , L2:

Colliding Shock Lens , L I: Ca vity Lens .
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We now set on to the rays the condition that t h e y must resonate . This is

done by imposing on the ra ys a matching condition at the edges of the

resonator after one or more round trips . T his gives us an eigenvector

equation:

4 .3 .6

Where X is a ray. As previousl y mentioned , X(l) is the distance from the

opt i c a I a xis and X ( 2) i s the a n g le. The two e i g e n v a I u e s I~ 1 and A2 can b e

determined as the solutions of the following equation :

I,} - 2A . tr(MTot ) + det(M
Tot

) = 0 4 .3.7

We introduce now the parameter m as half the trace of the resonator

matrix M t o t ' Taking into account that the ABeD matrices are always

unitary , equation 4.3 .7 becomes :

;? - 2nl A. +1=0 4 . 3 .8

I f a b s ( m ) > I the e i g e n v a I u e s are rea I w h i I e i f a b s ( m ) < 1 the y are i m a gin a r y .

When abs(m)=1 the eigenvalues equal unit y .

Al = I} if abs (m) = 1
A2 = 1

Al m+.Jm2

2

-1} l'f abs(m) > 1
A2 = m - .Jm - 1

Al = exp[i . areos( m) ] }
if abs(m) < 1

A2 = exp]-i . areos( m)]

4 .3 .9 a

4 .3.9b

4 .3 .9c

In the first case we have an unstable resonator [Anan'ev 1972], in the

second one a plane parallel cavit y and in the third case a stable resonator.

Soon we will see how we can relate the losses to the e i g e n v a l u e s , but

before we will discuss in some detail the unstable resonator case. The two

eigenvalues assume the form :
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A = M }
A~ = 1/ M

if abs(m) > 1 4.3 . 1 0

where we have defined M as the ca vit y m agnification . The physical

interpretation is rather simple . If w e start w i t h an arbitrary beam , we can

d e c 0 m p 0 s e i tin tot het woe i g ens tat e s cor r es p 0 n din g tOt" 1 and A2' Aft e r

several round trips , if m>1 then onl y the eig e n s t a t e corresponding to Al

will survive while if m<-1 onl y the eigen stat e corresponding to A 2 . We

talk in this cases of Positive Branch ( m > l) or Negative Branch (m< -I)

unstable resonators.

4.3.5 CAVITY LOSSES

We consider now a beam carry ing an intensit y 10 on the active medium

surface S . After one round trip , its cross section will be linearly

amplified by M. The intensity 10 will then be spread over the surface SM2 .

The intensity will consequentl y decrease b y 11M2 . When the cavity is

unstable , the variable loss term in our cavit y is then:

if abs(m) > 1 4 . 3 .11

Let us now examine the stable cavit y case . W ithout going into too much

detail , we can simply say that the v a l u e of the position and angle of a ray

at the active medium position oscillates about the zero value after one or

more round trips . Then a beam of intensity 10 o ver several round trips will

lose no intensity. We can say that :

o if abs(m) ~ 1 4 . 3 .12

We have found so far an expression for th e intensity losses both for the

un s tab 1e and the s tab 1e c a vi t y cas e s . 10 s 2 is an ex p 1 i c i t fu n c t ion 0 f t i m e as

seen from equations 4 .3 .11 , 4 .3.9 and 4 .3.5 . We can now put the loss

expression 4.3.11 , 4 .3 .12 into the Zero-Dimensional rate equations. We

expect the losses to become low w h e n the configuration of the resonator is
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approximately plane parallel. Two such configurations exist for two

different values of the CSL focal l e n g t h ; t heir ray diagrams are depicted

in figure 4.3.2. In case a) the CSL is in its weak condition but is just

strong enough to render the diverging rays parallel. In case b) the eSL is

strong and focuses the diverging rays to a p o i n t onto the mirror. We note

that configuration b) occurs in time before configuration a), but the CSL

optical diameter in configuration b) is much smaller than in configuration

a) . This is a dangerous situation if lasing occurs because the mirror can

be damaged. To avoid this damage it is necessary to make the distance dl

(between CSL and Full Reflector) as small as possible .

In figures 4.3.3, 4.3.4 and 4 .3 .5 we show the computed evolution of:

Stability parameter m , Cavity losses and magnification and laser pulse

intensity for Mode a: dl=25cm , d2=IOcm , d=2 50cm , Ll=200cm. In figures

4.3 .6 to 4 .3.9 the same quantities are report ed for Mode b: dl=25cm ,

d2=10cm , d=100cm , Ll=50cm . Again in figures 4 .3.9 to 4.3 .11 for Mode c :

dl=75cm, d2=10cm , d=250cm , Ll=200cm (SPGL ) .

It can be seen that in all three configur at ions , the losses exhibit two

minima , which corresponds to the plane parallel ray diagrams shown in

figure 4.3.2 . The first minimum does not l ast long enough for laser

radiation to develop .
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F ig.4.3.2 Pl a n e p a r a l l e l configurations of the resonator. A pl an e - w a v e

in c om i ng from th e ou tpu t c oupler is transforme d b y the res o n a t o r in a n

e q u iv a le n t pl an e- wa v e af te r o n e round trip . fl : focal l en ght of th e LI l ens .

a) Th e focal l en ght o f th e CSL i s su ch that l/( d-f l)= l/ f c s l.

b ) Th e f o c a l le ngh t of th e CSL is such tha t l / (d- fl ) +l /dl =l/fcsl.
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4.3.6 LIMITS OF THE ZERO-DIMENSIONA L MODEL

In 0 u r s y s tern , the fu n d a men tal 1i m ita t ion 0 f a z e r 0 - dim ens ion a 1 sol uti 0 n

of the rate equations is that the loss c alculation does not take into

account the presence of apertures in the ca vit y . We must remember that , as

shown in figure 3.3 .2 , the CSL diameter in cr eases with time on a scale of

microseconds and its value is in the milli metre range . We expect this to

have a large effect on the beam diameter of the Q-Switched laser and

consequently on the output energ y . Onl y t h e l a s e r radiation that travels

close to the optical axis will not see any ap er ture and the expression for

the losses will be given by equations 4 .3 .12 , 4 .3.13 . But some of the

intensity of the radiation that tra vels furt her a w ay from the axis is lost ,

due to the finite aperture of the CSL. The l atte r acts as a pinhole .

4 .3 .7 ONE-DIMENSIONAL MODEL , RADIAL PROFILES

The calculation of the fractional intensit y lost per round trip is

accomplished in the following wa y. We divid e t h e v a r i a b l e loss term Los2

into three contributions .

los, (R, t) = 1 - trans, . trans, . trans, 4 .3 .13

The loss e , as defined in equation 4 .3 .3 , is now a function of beam radius

and time. A collimated "input" light beam of radius R enters the cavity

from the output coupler. R is taken to be less than or equal to the ruby rod

radius. As the initial ray (R ,O), propagates i n the cavity , its components

expand and contract according to the matrix algebra as previously

introduced . When the beam "arri ves" at the CS L location in the cavity we

determine its diameter. From the ratio of the square of the beam diameter

and the square of the CSL diameter we can determine the fractional

intensity loss . A new beam is then propagated from the CSL position ,

ha ving the same diameter as the CSL . The procedure is then repeated as

the beam comes back to the CSL after a reflection from the back mirror

and again as it reaches the rub y acti ve medium . After one round trip we

have calculated three intensity transmission co efficient. From the product

of the three of them we calculate the fract ional intensity loss per round

trip according to equation 4 .3.13 . It is easil y seen that the loss term
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coincides with the one calculated from equations 4 .2 .11 ,4 .3 .12 for input

beams of small cross section . Bu t the losses b e c o m e much higher as the

input beam diameter increases . The loss term s , as defined in equation

4.3.3) , is now a function of beam radius and time.

E = E(R, t) 4 . 3 .14

Onc e t his fu n c t ion is k now n , a 0 n e dim ens i o n a 1 g e n era 1i sat ion 0 f the 1a se r

rate equation can be set as follows . W e di vide the laser beam into a

collection of N s h e ll annular beams . The jth an nulus having radius R j . We

set the losses of an annular beam of radius R j equal to the losses of an

"input" beam of the same radius R j . In each annulus we solve

independently the zero-dimensional laser rat e equation .

(

l A In(I - E ( Ri' t) )J
<» . n.cO'st - + -------

J J I L
c R

4 .3 .1 5

an.
J

4 . 3 . 16

j = 1.... NshelI

The output intensity of the laser beam now exhibits a radial profile . The

two approximations in this treatment are th e following :

1) In the computation of the losses , the r a di a l intensity profile of the

"input" beam is taken to be uniform during i t s propagation in the cavity .

2) The laser beam is perfectly collimated and , as a consequence , there is

absence of energy exchange between different annuli.

We expect the effect of these two approximations to be small and in the

spirit of a simplified model of the s ystem . In figure 4 .3.12 we show the

computed radial energy density profiles fo r the three different operating

modes. The energy density is the time integral of the laser pulse intensity

waveform as shown in figures 4 .3 .5 ,4 .3.8 a nd 4 .3 .11 .
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4.3.8 BEAM DIVERGENCE CALCULATION

The previous model can be regarded as a first order approximation to

solve the radial profile of the laser beam . As stated at the end of the last

paragraph, this approximation holds in the case that the laser radiation is

perfectly collimated within the cavity . Again in the spirit of greater

simplification we want to solve the angular profile of the laser beam using

a different approach. We generate a uniform planar distribution of rays at

the active medium position . We follow the n the path of each of them for

several round trips , recording the values of their position and angle on

the output coupler. A histogram representation of the angular values will

give us the angular distribution of the lase r beam . In our system the

cavity geometry varies with time , as do es t h e laser divergence . This

calculation is then performed for the ca v it y geometry that occurs when

lasing is at its peak . The time at which the r ad iation intensity is maximum

is calculated by the computer program des cribed in the previous section .

In figure 4.3.6 we show the computed angular profile of the beam for the

three operating modes .

As we could expect , the short resonator configuration gives a narrow laser

beam with a rather large divergence . The oth er two configurations give

results comparable with the measurements . Ac cording to [Statz 1964] the

output of our laser is multimode .
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4.3.10 DOUBLE PULSE

In some early results we observed the formation of a double laser pulse.

The system was then operated in Mode a , but the distance between the CSL

and the full reflector (RI) was d2=40cm. In figures 4.3.14 and 4.3.15 we

show the evolution of the stability parameter , cavity magnification and

losses for this specific configuration .

d=250cm, dl=25cm, d2=40cm , Ll=200cm .

The double pulsing is easily explained referring to figure 4.3.2. The plane

parallel configuration is first achieved when F C S L=25cm, soon after the

losses are high again. Later , as the F C S L=40cm the losses are low again .

The losses are low twice at a time distance of few J-lS which is the delay

between the two pulses as experimentally measured .

Double pulsing must be avoided. As can be seen in figure 4 .3.2 the

radiation density on the full reflector during the first pulse can be very

high and we observed surface damages on the full reflector coating . In

figure 4.3.16 we have shown the intensity waveform of the double pulse.
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Ern !! v /J ilt/ns <I> / m m Di v (mrad )

Mode a 2 .0 225 10 1

Mode b 0 .1 3 105 2 .8 4

Mode c 3 .0 200 1 0 0 .9

Table .4 .3 .2 . Summar y of th e c omputational resu lts of the Colliding Shock

Q-Switching . E is th e energ y , ilt is the FWHM puls e-duration , <I> is the

laser beam diam e t e r and d i v is the d i v erg ence .
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4.4 CONCLUSIONS

Finally in Table 4.3.2 we report the comput ed v a l u e s of the laser energy ,

pulse-length , beam diameter and di vergenc e to be compared with the

experimental values of Table 4 .3 . 1. Reaso nable agreement is obtained

between experimental and measured v a l u e s b earing the approximations of

the one dimensional model in m ind .

In conclusion we have demonstrated a no v el Q -Switching configuration

that can use only gas optics . The ad vantag e s o f the method are : no laser

damage threshold , both for high peak power a n d a verage p o w e r ; absence of

polarisation and polariser. A major dis ad va ntage is the necessity of

having a long cavity which results in a long l aser pulse. Improvements in

the colliding shock lens design and p erform an ce may correct this problem

b y scaling down the CSL f-numb er .
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CHAPTER 5:
OPTICAL QUALITY OF THE COLLIDING SHOCK LENS

In chapter 3 we recorded some interferograms of the colliding shock lens

(CSL) at various delays , b y using an e l e c tr i c a ll y synchronised probe

nitrogen laser. In that chapter w e in te rp r et ed the interferograms and

determined the optical path len gth (OPL ) r ad ia l profiles (shown in figures

3.3 .13 to 3 .3 .16 and in table 3 . 3 .1) and th e op tical aperture of the device

(reported in table 3 .3 .2) of the e n c l o s e d v e r si on of CSL .

The present chapter is completel y dedicat ed to the determination of the

optical quality of the CSL through the ana l ys is of these OPL profiles .

In section 5.1 we will compute the CSL's foc al length by using simple ra y

optics . Then we determine the r efractive i n de x radial profile , with the

working hypothesis that the refractive inde x is constant along any line

parallel to the optical axis . In the following section 5 .2 we will define a

focal plane for the CSL and we will compute the intensity profile for a

uniform input laser beam . The two cas es o f diffraction limited and

divergence limited laser beams are examined .

5 .1 THE ANALYSIS OF THE INTERFEROGRAMS

We are going to analyse the radial profile of t he OPL inside the colliding

shock lens. The experimental profiles , toget her with a polynomial fit ,

have already been shown in figures 3 .3.11 to 3 . 3.14 and in table 3.3.1 . For

clarity and easier reference of the later results we will show again in

figures 5.1.1 ,5.1.2 ,5 .1.3 and 5 .1.4 the pol yn omial fit of the OPL radial

profiles.
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5.1.1 FOCAL LENGTH RAD IAL PROFILES

In the approximation of geometrical optics , when a light ray passes

through a thin phase object , such as the coll iding shock lens , its angular

deflection coincides with the radial deriva tive of the optical path length

(equation 3.3.5) . By thin phase object we jus t mean that the deflection of

the light ray within the phase object is negligible .

Due to the radial symmetry , the pol ynomial fit contains only the even

coefficients , which are reported in table 3 . 3 .1 .

ii(r ) 5 . 1. 1

5 . I . 2

It is then straightforward to compute the CSL focal length from the OPL

polynomial fit coefficients .

f (r)
r

5 .1.3

From the equation 5.1 .3 we find how the focal length of the device varies

with the radial distance . This is a quantitative measurement of the

longitudinal aberrations of the lens . For a n id eal lens the focal length is

independent of r. If we stop the pol ynomial expansion to the second order

in equations 5.1.1 we have an ideal lens for paraxial rays , while the

higher expansion terms introduce longitudinal aberrations . In the next

four figures we show the radial focal length profiles . First , we can note

from figure 5 .1.5 that the profile in figure 5 .1.1 does not focus at all. The

focal length varies too sharply with the radial distance . Moreover, in the

central region , due to the local negative cur vature of the OPL (the 'hole'

in the density distribution), the CSL acts as a diverging lens. This profile

was taken too early after the shock collision for focusing to occur.
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As the time passes, the density profile becomes smoother and the focal

length increases, the radial profile , initially convex , becomes flatter and

fl a t t er, un t i 1 ab 0 u t 5. 0 ~ s aft er coli i s ion w hen it be corn e s con c a v e . We

expect the optimum performances of the lens during this convexity

transition period.

5.1.2 REFRACTIVE INDEX PROFILES

In order to compute the refractive index (or density) profile from the OPL

profile we have the two following problems:

1) We already mentioned in section 3 .3 . that i t is impossible to compute

the refractive index three dimensiona l spatial profile from the

interferograms , unless we set some very stringent hypotheses about the

symmetry of the profile itself (such as radial or cylindrical).

2) If the fringes are discontinuous across the shock-front , only the

relative value of the fringe-shift can be measur ed in the interferograms .

Concerning the first problem , our approach is the following: we take the

refractive index to be constant along the ra ys' trajectories inside the cigar

shaped graded index region.

As regards the second problem , wc ha ve little to do , and we have to accept

that only the relative refractive index profi le c an be determined.

It follows that the results that we will be g etting will be approximate

because of the first statement and less than correct because of the second.

The approximation that we introduce b y ta king the refractive index to be

constant along the rays' trajectories is unavoidable. The error that is

introduced by the discontinuity of the fring es across the shock-front could

be avoided by a better measurement . Howe ver it is complex to solve the

fringe pattern across the shock-front whil e r etaining enough sensitivity

where the density profile is smooth .

Given that , let us compute the refractive inde x profile . If the refractive

index is constant along the trajectories , we hav e:

ii(r)
L(r )

2 f n(r,z)dz = 2n(r)L(r)
o

5.1.4

In figure 5.1 .9 , we report the geometr y of the s ystem .
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Fig .5.1.9 Calculation of the refractive ind ex inside the CSL . The

refractive index depends only on the radial dis tance r . Electrical diameter

ED=3cm . Lens diameter LD.
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From figure 5.1.9 , it is eas y to find a g e om e t r i c a l expression for the

fu n c t ion L (r) :

(ED LD)2 (ED )2
L(r) = 2 2+2 - 2+ r 5 .1.5

Equations 5.1.5 and 5 .1.4 allow one to compu te the approximate value of

the refractive index difference from unit y ins ide the CSL . The computed

quantity is proportional to the a verage gas den sity at the position r .

In the next four figures (5 .1.10 to 5 .1 .13 ) we show the refractive index

radial profiles. The fringe discontinuit y a c r o s s the shock-front is

significant in the first two interferograms , w he r e the shock-front is more

energetic , while in the last two i n t e r f e r o g ra m s we are quite confident that

the measured value of the refracti ve index is close to the real one . Near to

the edges of the lens we note a sharp increase of the refractive index . This

effect can be understood b y referring to th e s ingle spherical shock radial

density profile , shown in figure 3 .3 .4 , as the s h o c k - t a i l of the expanding

cylindrical shock. In the light of these results it is evident that the

'cigar' geometry plays a vital role in the per formances of the CSL . The

refractive index profiles shown in the nex t four pictures can focus light

only when 'wrapped' in the geometr y of the colliding shock lens . The

approximation that we made b y l etting the refractive index be constant in

z is essential for the calculation of the refractive index and we cannot

calculate anything without it . Through thi s h ypothesis we discovered the

importance of the 'cigar' geometr y of the coll iding shock lens . However ,

we expect the refractive inde x to be a function of z too , and our

hypothesis must be regarded as a zero-orde r approximation. The real

experimental quantity that we measure is the fringe shift , which is the

refractive index integral along the ra ys' trajectories . Gas-dynamic

simulations of colliding shocks , and their comparison with the

experimental results , can give a deeper insight into the detailed spatial

structure of the gas density distribution [Buccellato B 1994] .
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5.2 REFRACTIVE FRINGES AND RADIAL INTENSITY PROFILES

In this section we will perform some ray tracing into the OPL radial

profiles, or better into the polynomial fits of figures 5 .1.1 to 5.1.4. The

angular deflection of the light rays as they go through the central region

of the CSL is simply given by the gradient of the radial OPL profile. In

this respect we consider the refractive index distribution to be squeezed

on a thin disk avoiding the solution of the ra y equations in a graded index

medium . The radial intensity profiles at an y image plane after the CSL for

an input laser beam are numerically computed with the help of diffraction

and refraction theory. As an initiall y plane wave-front is propagated

through the OPL radial profile a radial phase term is added and the wave­

front is consequently curved. The wave-fron t is propagated through a

plane aperture , due to the sharp refractive index discontinuity introduced

by the shock-fronts , onto the colliding shock plane . The result of this

computation is the fringe pattern for a laser beam which is diffraction

limited by the aperture of the colliding shock l e n s. In order to include in

our description the effect of the divergence of the input laser beam ,

finally a spatial averaging on the image plane can be included . For a

better comparison with the experimental results , we utilised the laser

beam parameters (wavelength and divergence) of the spatially filtered and

expanded nitrogen laser described in Chapter 3.

5.2 .1 DIVERGENCE AND DIFFRACTION

The divergence of an expanded and spatiall y filtered laser beam can be

estimated from the spatial filter parameters. The spatial filter geometry is

shown in figure 5 .2 .1. We can imagine the pinhole <1> as a spatially

incoherent source of light. The filtered and expanded nitrogen laser beam

divergence is then :

<I>
~

f
51'

50 .10- 6

0.15
5.2 .1

If we focus such laser beam with an ideal , aberration free lens of focal

length f , the minimum spot diameter at the focus is :

5 .2 .2
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Let us consider diffraction. For a c ir cula r b eam , the diffraction theor y

(1.6) tells us that:

<1>diff

2.44"'­

d
"'- = 337nm 5 .2 .3

5 .2 .4

The minimum spot size taking onl y diffraction i n t o account depends on the

beam or the lens diameter , the smallest of the two , that we call d .

The minimum spot size due to divergence i s constant in d. Both the

diffraction limited and divergence limited spot diameters increase linearly

with the focal length . At small diameters d the effect of diffraction will

be larger than the effect of divergence , whi le a t larger diameters d , it will

be the opposite . We call d* the lens diameter a t which the two effects are

equal:

2.44A.
~8div

2.5 .10- 3 mm 5 .2.5

We can separate the two effects by sa ying th at for diameters which are

smaller than d* , the focal spot size is limit ed b y diffraction , while at

larger diameters the focal spot size is l imit ed b y divergence. Consider now

the colliding shock lens as an ideal aberration free lens . Taking into

account the lens diameter , we note that for the small CSL (described in

section 3 .2) w e had to perform a diffraction a n a l y s i s , while for the big

enclosed CSL (section 3.3) we should rath er take into account the

divergence of the probe laser beam . Giv en our intermediate operating

conditions , both the effect of diffract ion and divergence must be taken

into account.

5 .2.2 FRAUNHOFER DIFFRACTION THEORY OF THE COLLIDING SHOCK

LENS

In Chapter I we found the Fraunhofer formula for the diffraction produced

by an aperture on a plane screen . We shall apply the diffraction theory in

order to compute the intensit y profil e and the fringe pattern at any
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distance from the CSL , including the effect o f the longitudinal aberration

in our discussion. In figure 5 .2 .2 we show t he g e o m e t r y of the system .

According to the diffraction theor y [Guenthe r 1990] each point PO of the

source generates a spherical w a ve-front . The electric field at the lens

plane depends on the source geometr y and o n t he distance r :

5 .2 .6

In the hypothesis that the diameter of t he a perture is much larger than the

distance between the source and the ap er ture , we can introduce the

following approximation (the sagittal appro x im ation) :

5 .2 .7

The electric field at the lens plane can then b e rewritten as :

( iA If ((Xs - XL)2 (y - y YJE XL' YL) = - exp(- ikr) f( Xs ,Ys ) exp - ik - ik s L dx dx
Ar' r' r' S S

5.2.8

The pas sag e t h r 0 u g h the le n sin t rod u c e san add i t ion a I ph as e s h i ft t hat

renders the wave-front curved .

The phase shift at each point coincides with t h e optical path length ( o r

OPL) radial profile. As reported earlie r in thi s thesis we do approximate

the OPL radial profile with a fourth order pol ynomial containing only even

terms. As a result , the electric field after the beam has passed through the

CSL can be expressed as :

5 .2 .9
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Our goal is to compute the electric field at a p o i n t P in the 11,1; plane at

the distance s' from the CSL . Then we pr op a gate the expression for the

electric field in equation 5 .2 .9 of the d ista nc e s:

5.2 .10

From equation 5 .2.10 on we will neglect the n ormalisation coefficients in

front of the propagation integrals . The latter c a n be easily computed as a

final step using the energy conser vation condit ion .

The case of a laser beam , or a w e l l co llim a t e d beam , is well represented

b y a point source at a large distance from t he lens . In this case we can

imagine that r' goes to infinit y and the sourc e shape function becomes a

two dim ens ion aiD i r a c del t a fu n c t ion :

5 . 2 . 1 1

The hypothesis of a point source greatl y si mp li fies our calculations :

5 .2 .12

In equation 5.2 .12 we notice that i n the case that the fourth order

coefficient of the wave-front cur vature is ze r o ( a 4 = O) , the planes at s' and

at r' are conjugate planes if:

5 .2 . 1 3

In other words , an aberration free lens produces into the conjugate plane

of a point source the two dimensional Fourier transform of the lens

t ran S ID is s ion fu n c t ion .
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In our case, given that the lens it is not aberration-free, we cannot define

the two conjugate planes and eliminate the second and fourth order radial

dependencies of the exponential inside the integral of equation 5.2 .12 .

The result is not straightforward and the intensity pattern at the plane Tl,S

must be computed numerically .

In our case the lens is circular having a radius R defined by the expanding

shock-front. We rewrite equation 5.2 .12 in polar coordinates:

27t R [ (1 1 )]U(p) =' [ de [ exp - ikr' 2s' + 2r' - a2 explika,r')

. exp[ i 2~' pr(cose cos q> + sine sine }dr .

5.2.14

The integration in e can be performed analytically , to give the following

one-dimensional integral:

R

U(p) = f exp] iar2
) exp] iBr4

) • 10 (ypr)rdr
o

5 .2 . 15

Where J o is the first of the Bessel function and :

a = _k(_l + _1 _a )
2r' 2s' 2

k
P = ka, y-

- 2s'

5 .2.16

B.'·T t a k i n g the square of the i n t e g r a l 5 2 15 b t a i th . t ., " we 0 aln e In e n s i t y

pattern:

R 2

I(p) = f coslar2 + pr4 )1
0
(ypr)rdr

o

R

+ f sin(ar2 + Br4
) 10 ( ypr)rdr

o

2

5.2. I 7

The integration in 5.2 .17 can be accomplished numerically by any of the

standard methods. We stress the fact that the sine and cosine terms in

5.2.17 do oscillate very rapidly . Consequently it is opportune to utilise

the simplest integration method in order to e valuate the function in the
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largest number of points as possible whilst k ee p i n g the computation time

short.

Due to the lens longitudinal aberration we c annot unequivocally define a

focal plane for the CSL . We ha ve two possibl e choices. One is to define

the focal plane as the plane at which the int ensity pattern presents the

maximum peak intensity at the centre . The s econd would be define the

focal plane as the plane where the maximum amount of energy is focused

within a given finite radius , sa y R* . While the latter option could be more

interesting from the point of view of some of the potential applications ,

the first criterion has the advantage of the s implicity. Moreover it will

not produce results much different from the second , if the radius R* is

small enough . On the same graph we report f or comparison the intensity

pattern due to an ideal , aberration free , l e n s ha v i n g the same focal length .
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diffraction limited lens is reported for comparison , dashed line . The thin

solid line trace shows the intensity profile when the divergence of the

probe laser beam is taken into account.

181



32.521.510.5

1

e.l

lE-006

lE-eea

lE-ea?

>- e.eel~......
a.n
Si

......,:a
c:::...... 0.ee01
DJ
>......

......,:a
ra
~ lE-ee5~

Distance from the axis (mm)

Fig 5.2 .8 Intensity logarithm in the focal plane of the CSL , solid line.

Lens d i a m e t e r = 4.8mm . Focal length = 19 7 .0cm . The Airy pattern of an
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line. The thin solid line trace shows the in tensity profile when the

d i v e r g e n c e o f the probe laser beam is t aken into acc o unt.
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5 .2.3 THE EFFECT OF THE LASER BEAM D IVERGENCE ON THE

INTENSITY PROFILE

Finally we can perform an averaging in th e image plane in order to take

into account the divergence of the input laser beam. We can imagine

substituting the input plane wave with an a ngular distribution of mutually

incoherent plane waves . Since , b y definition t h e plane waves travelling at

different angles do not have an y precise mutual phase relation , they do not

create any interference pattern on an obser vabl e timescale. Consequently a

spatial averaging onto the image plane wi ll be sufficient to account for

the phenomenon. The spatial a veraging mu st t ake accurately into account

the cylindrical geometry of the s ystem , in o rder to preserve the total

energy .

The intensity angular distribution that we ha ve chosen is a normalised

cos i ne d is t rib uti 0 n 0 f the 0 p p 0 r tun e w i d t h . S u c h an g u 1a r d is t rib uti 0 n 0 ft e n

well represents the output of a multi mode las er beam .

1(8) = _1 cos( n8di )

2n 2i\8 v

1(8) = 0

5 .2 . 1 2

The third curve shown in figure 5 .2 .3 to figure 5 .2 .8 , the thin solid curve ,

shows the radial intensity plot on the focal plane when the effect of a

laser divergence of 0.25 mrad is taken into account.

The programs performing the diffraction integral computation first and

then the final spatial averaging onto the focal plane are written in Pascal

and run on a PC. The listing are in Appendix C .
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CHAPTER 6:
THE ELLIPTICAL COLLIDING SHOCK LENS

In chapter 3

demonstrated

and 5 , and in [Buccellato B 1 993], it has recently been

that the central collision of several shock-waves in a

solid state device

of the imploding

different from the

gaseous medium can generate a density and refractive index distribution

that can efficiently focus laser light into a sha rp focus . In this chapter we

demonstrate how , by shaping the implodin g shock-front , we can generate

an elliptical lens , useful for line focusing appl ications .

The working principle relies on the refracti v e properties of non-uniform

gas density distributions and on the gas-d ynamic interaction of multiple

shock waves in order to obtain a gas de nsit y distribution suitable for

focusing. The CSL presents se veral advanta ges over an equivalent f­

number solid state device , such as the hig h b reakdown threshold and the

damage resistance , besides its being a varifocal device .

An other advantage of the CSL over a con v entional

consists on the possibility of shaping the g e o m e t r y

shock-front in order to obtain geometries wh ich are

c ylindrically symmetric one. If the CSL is utilised to focus a collimated

laser beam on a flat target , the shaping of the imploding shock-front

results in a different spatial distribution of the irradiance on target.

When we create a density distribution whose cr oss section is an ellipse , we

can focus a laser beam into a l ine focus , sui table for some applications

such as x-ray lasers .

6 .1 ELLIPTICAL LENS THEORY

6 .1 .1 GEOMETRICAL OPTICS DESCRIPTIO N

We have shown in chapter 1 [Marchand 1978] how a radially symmetric

parabolic refractive index profile such as ,

nf r) 6 . 1 . 1

can produce a sharp focus . If we let the refractive index contour line be

elliptical rather than circular , thus loosing the cylindrical symmetry , the

refractive index profile becomes :
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n(x,y) 6 .1.2

In the latter case , we can solve analyticall y th e ray equations , such as for

the nni-dimensional case :

82 x an
--=-
8z2 ax
82y an
az2 ay

6 .1.3

And we get two independent equations for the ra ys' deflection along the

two directions x and y ,

x
8x(x)

-2a2x

x fx
6 .1.4

8y(Y) -2a~y
y

--
f

y

Equation 6.1.4 tells us that there are two stigmatic foci at two different

distances from the elliptical lens . The ratio b etween the distances of the

two foci equals the eccentricity of the elliptical profile. In this sections

we briefly analysed the performances of an elliptical GRIN lens in the

paraxial ray optics approximation . The deta il ed paraxial diffraction theory

of the elliptical CSL can be found in the ne xt paragraph .

6 .1.2 THE ELLIPTICAL CSL DIFFRACTION THEORY

In Chapter 1 we found the Fraunhofer formula for the diffraction produced

by an aperture on a plane screen. This theor y allows one to compute the

intensity profile in the focal plane when a lens is uniformly illuminated

by laser light. In chapter 5 we did appl y such a theory in order to compute

the intensity profile in the focal plane of the CSL , whilst taking the CSL

longitudinal aberrations into account. We shall now apply the Fraunhofer

theory to the elliptical CSL . In figure 5.2 .2 the geometr y of the system is
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Fig 6.1.1 Geometry of the diffraction from the elliptical CSL .
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reported. The calculation proceeds as in chapter 5 up to equation 5.1.8 ,

when the wave-front reaches the CSL.

6.1.5

The function f(xs 'Y s) is the source shape . T he passage through the lens

introduces an additional phase shift that renders the wave-front curved. In

the actual case the wave-front is a two dim ensional paraboloid , with an

elliptical cross-section.

The phase shift at each point of the CSL plan e coincides with the optical

path length (or OPL) . In the case of the elliptical CSL , the OPL is a

function of x and y and is given b y equation 6 .1.2 . The electric field after

the beam has passed through the CSL can be expressed as :

6 .1.6

In the 1l,S plane at the distance s' from the CSL the expression for the

electric field in given , as in equation 5 . 2 .10 , b y equation 6.1.7 . As in

chapter 5 we neglect the numerical coeffi ci ents in front of the electric

field expressions .

6 .1 .7

Where the function fL(xL 'YL) is the aperture function of the elliptical

lens . The case of a laser beam , or a well collimated beam, it is well

represented by a point source at a large distance from the lens . In this

case we can imagine that r' goes to infinity and the source shape function

be corn e sat w 0 dim ens ion aID i r a c del t a fu n c t ion :

6 .1.8
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The hypothesis of a point source greatl y si mp li fies our calculations :

6.1.9

Making use of the relations 6.1 .4 we can sho w t h a t there are two stigmatic

focal planes , at the positions:

1 1
_+_ = a 2

2r' 2s' x

11
2-+-=a

2r' 2s' y

6 .1.10

If the eccentricity of the ellips e is set to o n e , the lens becomes circular

and we can define two conjugate planes s u c h as for an aberration free

1ens .

In our case , we can define two sets of conjug ate planes corresponding to

the two stigmatic foci . Let us chose the pla n e corresponding to the first of

the two f o c i , at which:

1 1 1
-+-=-
2r' 2s' 2fx

6 .1.11

B y introducing polar coordinates both in the lens and in the 'first focal'

plane the electric field expression becomes :

J.
2nJ.R(8) [. 2( 1 1 J] (. rp cos8 cos \jf ) (. rpsin8Sin\jf )exp iky L - - - • exp ik exp ik rdrd8
o 0 f f f f

y x x x

R(8) = ax + (a y - ax ) cos8

6 .1.12
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Where A and B are the two s e m i a x e s of t he CSL. The double integral

appearing in equation 6 .1.12 can be e valuated n u m e r i c a l l y but its solution

is t i me con sum i n g . T h u s we 0 n l ye v a I u ate d t h e fu n c t ion U ( p , \V) a Ion g two

perpendicular axes into the 'first focal' plan e ( see figure 6.1.1) \V=O and

\V=7t/2.

x,y

r ,8 P,\V

Fig.6 .1.2 Elliptical lens plane and f i r s t focal plane .

The equation 6.1.12 there becom es :

f271 fR( 8 ) [ 2( 1 1 J] (rpcaS8)
U(p,O) = J. J. exp ik( rsinu) r: -r: .exp ik f, rdrde

R (8) = a x + (a y - a x ) cos8

( 1t) f271 fR(8) [ 2( 1 1 J] (rpSin8)
U P'"2 = J. J. exp ik( rsine ) r: -r: .exp ik f, rdrdd

R (e) = a x + (a y - a x ) cos 8

6 .1.13

6.1.14

The two integrals can be sol ved numeri call y as a function of p , by

ex pr e s sin g the c o m pIe x ex p 0 n e n t i a I a sas i n e and cos i n e fu n c t ion as don e

in chapter 5. Finally by taking the square of the function U , we obtain the

intensity pattern along the two directions into the focal plane . In figure

6.1.3 we report the results of the numerical calculation . For the latter
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calculation we chose the correct experimen tal values for the system

parameters such as semiaxes , eccentricit y and focal distance. The

numerical programs utilised for this calculat ion are listed in appendix D .

The scale in the previous picture is not the s a m e along the two directions

and can be found by scaling one curve respect to the other until the values

at the zero position do coincide . We immed iate l y note that intensity is not

uniform along the direction of the line focus . This device is then more

properly speaking a 'two foci' de vice , rat he r t h a n a 'line focus' device .

Agreement with the measured intensit y patt er n can be found in the next

paragraphs where we introduce the experimenta l results .

6 .1.2 THE ELLIPTICAL CSL

Suppose now that we are able to generate a n e x p a n d i n g elliptical shock­

front having the semiaxis a x and ay ' and cons equently the eccentricity E:

6 .1.15

We can reasonably presume the densit y (and refractive index) contour

lines to be parallel to the shock -front , thu s ha ving the same eccentricity .

By placing the electric arc explosion equi-sp aced along some curve , we

can obtain that , after the central collision , t he shock-front emerges with

an elliptical profile .

In order to find such a curve , we should sol ve in theory both a simple

geometrical and a complex gas-dynamic p r o b l e m . The velocity of the

single unperturbed expanding spherical shock w a v e caused by a single arc

explosion decreases according to a power law , converging on the sound

speed (M o=l) at large distance from the explosion centre . Under this

hypothesis , that is when the shock velocity v a r i e s only with the distance

from the explosion centre , if we equi-space the shock launching points on

the arc of an ellipse , the shock-front w i l l expand after the central

collision with an elliptical profile .

When several shock waves come together and overlap while converging

towards the centre , they do interfere and their v e l o c i t y varies . During this

p h a s e , some distortion of the shock-front from the elliptical profile could

be expected if the shock energ y is high (M o»l) . In our conditions ,
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supported by the experimental results , we e xpect the latter effect to be

negligible.

Let us consider the curve defined b y the en velope of all the spherical

shocks generated by the point explosions in air . Each point of such a

curve moves in time towards the direction de fined by the normal of the

curve itself. Let the arc explosions be equi- spaced along the arc of an

ellipse with semiaxis d x and d ,. . During the propagation of the shock­

front , we note that the eccentricit y of the ellipse is not conserved at some

times the shock-front is not even an ellipse (f i gure 6 .1.4 and 6 .2.3c).

Let the semiaxes of the ellipse we want to g e n e r a t e be a x and ay' the

semiaxes of the initial shock-front must be :

d -A-ax - x
6 .1.17

Where A can be chosen within a u s e f u l r a n g e according to physical

criteria . The lens cannot be too larg e or e lse the shock waves loose too

much energy before the collision , and cert ainl y must not be smaller than

the ellipse that we want to generate . Basing ou r assumptions on experience

gained with cylindrically symmetric eSL d e vices we choose the following

values :

a, =2mm

ay =4mm

A= 17mm

In figure 6.1.4 we show a geometrical const ruction that represents the

collision and successive expansion of the ellipt ical wave-front at different

times from the arc explosion . The program utilised to generate this

construction is in appendix D .
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6.2 EXPERIMENT

6 .2 .1 EXPERIMENTAL SET-UP

The elliptical CSL has been designed wi t h equi-spaced discharge

electrodes. The distance between each cou pl e of electrodes and the next

was kept constant. The experimental set-up ha s already been described in

chapter 3 , it briefly consist of a n ar c d ischarge circuit which is

electronically triggered via a spark-gap and of spatially filtered probe

nitrogen laser which is electronicall y s ynchronised via a variable delay .

The discharge circuit , together w i t h a sketc h of the elliptical CSL is

shown in figure 6 .2 .1 . The discharge cap acitor value was chosen to be

C=IOOnF and the gap between opposing electrodes G=lmm . The discharge

electrodes are connected in series in order to e n s u r e simultaneous arcing.

The recording apparatus consists of a TV came ra and an Oculus 200 frame

grabber , connected to a personal computer . B y using a 20cm focal length

lens , the camera can image an y object plane , including the shock collision

plane . A sketch of the experimental set-up is r eported in figure 6 .2 .2 .

6.1.2 EXPERIMENTAL RESULTS

In figure 6.2.3 we report a sequence of the elliptical shock-front

convergence , imaged onto the shock collision plane . In figure 6.2 .4 , 6 .2 .5

and 6 .2 .6 , we show the intensit y pattern of three stigmatic line foci at

three different delays and distances from the elliptical CSL .

As seen in the pervious section , according t o the elliptical CSL theory , at

any fixed time delay there are two stigmatic line foci . In figure 6.2 .4 we

only show the first of the two foci , f x ' the one closer to the lens .

In figure 6.2.5 we report the time evolution of t h e two semiaxes a and a
x y '

We note that the elliptical CSL is a v a r i f o c a l device , whose 'diameters'

and aspect ratio vary sharply with time on the JlS time-scale .
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Figure 6 .2.1. The elliptical C o l li ding S h o c k Lens . Consists of a CSL

where the discharge pins are eq u i - spa c ed a l o n g t h e arc of an ellipse rather

then along the arc of a circle . D i sch a r g e cir c u i t. L =IOH , C =IOOnf , C 1 =lnf ,
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Figure 6 .2.2 Experimental set-up for the focusing experiment of the

ell iptical CSL .
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Figure 6.2.3 The elliptical colliding shock lens imaged onto the shock

collision plane. From left to right and up to down: a)Delay=23 .3Jls ,

b)Delay=28.2Jls , c)Delay=29 .0Jls , d)Del a y =29 .2Jls , e)Delay=30.0Jls ,

f)Delay=32.8Jls . The shock collision i s at Delay=29.0Jls.
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Fig .6.2.4 Images of the first focal plane . From the top down :

a) f x=O .5m , Delay =30J.ls ,

b)fx=O .9m , Dela y=30 .9J.ls ,

c)fx=1 .5 , Dela y =31 . 5J.ls.
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6.3 CONCLUSIONS

In chapter 3 we characterised the CSL an d i t s performances. One of the

possible advantages over a solid state lens re sulted that its focal length

varies with time. In this chapter we stress a n o t h e r feature of the CSL . The

possibility of varying the shape. In order to demonstrate this possibility

we made an elliptical CSL . An elliptical le ns , according to the diffraction

theory, gives at the focal plane something w h i c h lies in between a "line

f 0 c us" and a "t W 0 f 0 c i" 0 r t \V 0 lob e din ten sit Y d i s t rib uti 0 n. The e x per i men t

confirmed this prediction.

This is only a first step , and CSL with differ ent initial shock-front shapes

can give a whole range of spatial inten sit y distributions in the focal

plane. As discussed earlier in this thesis the main advantage of a CSL

over an equivalent solid state de vice is the rad iation resistance .
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CONCLUSIONS

Gas lenses were first proposed in 1960's as light wave guides. The

discovery of fibre-optics with their superior performances and

reliability, interrupted the early research on these devices. The early

devices were basically thermal gradient gas l e n s e s. In a gas lens , the

wave-front is shaped by a refractive index g radient distributed over a

volume , rather than by the refraction at an interface such as in

conventional solid state lenses . The gas lenses are GRIN lenses.

As we have seen in chapter 2 , a spinning pipe gas lens , a thermal

gradient gas lens , typically has a long focal length and a fairly high

numerical aperture.

In a thermal gradient gas lens , the refractive index radial gradient

that allows focusing to occur , follows the local structure of the

temperature: The higher the temperature , the lower the gas density

and the lower the refractive index. Such devices are in general bulky

and heavy , and are sensitive to the surrounding conditions. Still air

is a necessary condition for steady opera tions. The main advantage of

a spinning pipe gas lens is the lack of reflective surfaces (or AR

coatings) and the very high laser damage threshold.

As seen in chapter 4 , the spinning pipe gas lens , can be employed

advantageously during high power laser intracavity operations.

In chapter 3 we have introduced a novel type of gas lens: The

Colliding Shock Lens (CSL) . In this device , shock waves are utilised

to compress a gas in a central dense core. The radial density gradient

inside this core can focus the light of a laser beam to an almost

diffraction limited focal spot. The Collid ing Shock Lens has been rep­

rated up to 10Hz but there is no physical limit to repetition rates up

to few KHz.

In our geometry we make use of the non-linear properties of the

interaction between shock-waves in order to produce a cylindrically

symmetric high density core , starting from a polygonally shaped

imploding shock-front. After the central implosion of the shocks, a

cylindrically symmetric expanding density distribution occurs .

Typically the CSL focal length and diameter vary on the u s time­

scale.
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The CSL can be utilised as a high pow er e l e c t r o - o p t i c a l switch . In

chapter 4 we presented a no vel t ype of Q- switching technique that

merge together the advantages of intraca v i t y optical gas elements and

of telescopic cavities .

In chapter 5 we analysed in detail the opt ica l performances of the CSL

during its time evolution . The anal y s i s is performed onto the

interferograms that we recorded during an experiment reported in

chapter 3 . Our numerical anal ysis confi r med the optical performances

of the CSL . At the optimum distance fr o m the CSL , and at the

corresponding optimum dela y from the cen tral shock collision , the

CSL is really a diffraction limited de vice .

Finally in chapter 6 we exploited a n o t h e r in t e r e s t i n g property of the

CSL : the possibility of var ying the implosion geometry. By shaping

the imploding shock-front we can v a ry th e s h a p e of the lens and the

optical properties change as well . In orde r to test the concept we

made an elliptical CSL .

According to the Fraunhofer diffractio n theor y , an aberration free

elliptical lens has two stigmatic "focal plan es" . The intensity pattern

in the first "focal plane" is something i n b etween a line focus and a

two lobed focus , which is obser ved experimentall y.

In conclusion we have demonstrated that t h e gas lenses are remarkabl y

flexible devices . They can be operated both continuously and pulsed ,

both at low and high repetition rate . While the continuous gas lenses ,

the the'rm III g r a die n t d e v ice s , r e qui rep art i cui a r 1y s till 0 per a t i n.g

conditions , the pulsed devices (the CSL ), do not and can be operated

~p. repetitive mode. The main difficult y th at one encounters is the

improvement of the numerical aperture of the devices , that is

increasing the aperture while keeping a short focal length and a

consistent optical quality . This is mo re a physical than a

technological problem . since as the density gradient increases so does

the perpendicular gas flow and the gas d istr ibution becomes more and

more difficult to control.

A combination of pulsed devices with different geometries and

continuous gas lenses , can perform a wid e sp ectrum of operations on a

high power laser wave front .
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App. A

APPENDIX A

In this appendix we report the listing of t he program utilised in Chapter

2 . The program solves the rays trajectories inside the spinning pipe gas

lens. The measured refractive index profile is utilised. Given a point

source or a combination of se veral po i n t sources of whi te I i g h t at any

object plane , the program computes the inte nsit y profile at any image

p I a ne aft e r the ex i t of the pipe . In chapt er 2 we imaged a single po i n t

source . The program can give se veral other graphic outputs .

(******************************** * * * **** * * * **** * * * * ******)
(* Ray tracing through a thermal grad i en t g a s l en s : *)
(* Paraxial rays approximation . *)
(* The program requires The refracti v it y i n dex o f t h e gas , at a *)
(* given temperature , and the two dim en s ion al *)
(* temperature spatial profile in a pl a n e co n ta i n i ng t h e o p t ic a l *)
(* axis . *)
(* The system has not cylindrical sy m me try *)
(******************************** * * * * * ** * * **** ** * * * ** * ***)

Program rtglexp ;

uses
crt ,graph ;

c on s t
n r = 6 ;
nz =17 ;
maximpoint =2000 ;
maxlaspoint =200 ;
npoint = 2; (* Points of th e o bje c t *)
nimagi = 990 ;

diam 1.0; (* Diameter of th e diaphr agm i n f r o n t of th e lens *)

t ype
glnarray = array [1 . . 4] of real ;
datar array [I . . nr] of real ;
dataz array [I .. nz] of real ;
datat array [1 .. 3 ,1 .. n z ,1 . . nr] of r e al ;

var
maino , laso ,imo :integer ;
nray ,nstep ,nimag :integer;
d , del tar , I , d z, to , nO , 0 bj an g , 0 bj d i s t: r ea I ;
distz ,distr:array[I . . 200] of real ;
distx ,disty,gradx ,grady:array[l..ma ximpoint] of real ;
rdata:datar;
zdata:dataz;
tdata,dtdata:datat ;
n fi le, c f , con t r 0 I : s t r i n g ;

(******************************)
(*** Initialize to 0 all vectors ***)
(******************************)

procedure initialize ;

v a r
i ,j ,k :integer ;
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beg i n
for i: =l to m a x l a s p o i n t do
beg i n

d i s t z l i l i v Ov u ;
distr[i]: =O.O ~

end ~

for i: =l to maximpoint do
beg in

distx[i]: =O .O ;
disty[i] := 0. 0 ;
gradx[i] : =O .O ;
grady[i] : =O.O ~

end ~

for i : =l to nr do
r d a t a j i j i v O vu ;

for i: =1 to nz do
zdata[i]: =O.O;

for k: =l to 3 do
for j:=l to nz do

for i: =l to nr do
t d a t a [k ,j, i] : = 0 .0 ;

end ~

(******************************)
(*** Loading Experimental data ***)
(******************************)

Procedure l o a d e x p d a t a ;

v a r
ft :text ;
k ,i ,j :integer ;

beg i n
ass i g n ( ft , 'e : \ d a t a \ t e m p e . d a t I ) ;

res e t ( ft ) ;
for j : =l to nr do

rea din (ft, r d a t a [j ] ) ;
for i: =l to nz do

rea din (ft , z d a t a [ i ] ) ;
for k : =2 downto I do

for i : =1 to nz do
for j : =l to nr do

readln (ft ,tdata[k ,i ,j]) ;
d: =2*rdata[nr];
I: =zdata[nz] ;
close(ft) ;

end ;

(*************************************** *******)
(* *********** Derivative of the refra ctive * ***** * ** )
(************ index profile ***** ** **)
(********************************** ** **********)

procedure dnxy(xx ,yy ,zz:real ; v a r dnd x ,dnd y :real) ;

var
t ,dtdy ,dtdx:real ;

procedure temp(ax ,ay ,az:real ; var at ,adtdx ,adtdy:real) ;

v a r
ar,dt ,dyl ,dyn ,atl :real ;
ydata ,ddy:datar ;

(********************************)
(*** 2-D interpolation subroutine ***)
(********************************)

PROCED URE spline(x , y : datar ; n: integ er ; y p l,y p n: real ;
VAR y2 : datar);

VAR
i ,k : integer;
p ,qn ,sig,un : real ;
u: d a t a r ;

2
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BEGIN
IF (ypl > 0.9ge30) THEN BEGI N

y2[1] := 0.0;
u[l] : = 0.0

END ELSE BEGIN
y2[1] : = -0 .5;
u[l] : = (3.0 /(x[2]-x[I]»*« y[2]- y[I]) /( x[2]- x[ I ] ) - ypl)

END ;
FOR i := 2 to n-l DO BEGIN

sig : = (x[i]-x[i-l]) /(x[i +l]-x[i-l]) ;
p : = sig*y2[i-l] +2 .0 ;
y2[i] := (sig-l.0) /p;
u[i] : = (y[i +l]-y[i]) /(x[i +l] -x[i])

-(y[i]-y[i-l]) /(x[i]-x[i-l]) ;
u[i] := (6.0*u[i] /(x[i +l]-x[i-l]) - s ig*u[ i -l]) /p

END;
IF (ypn > 0.9ge30) THEN BEGIN

qn : = 0.0;
un : = 0.0

END ELSE BEGIN
qn : = 0.5 ;
un: = (3.0 /(x[n]-x[n-l]»*( ypn -( y[n]- y[n-l]) / ( x[ n ] - x[n-l]»

END ;
y2[n] := (un-qn*u[n-l]) /(qn*y2[n-l] +1.0) ;
FOR k := n-l DOWN TO 1 DO BEGI N

y2[k] y2[k]*y2[k +l] +u[k]
END

END ;

PROCEDURE splint(xa ,ya ,y2a : datar ; n : i ntege r ;
x : real; VAR y , d y : real ) ;

VAR
klo ,khi ,k: integer ;
h ,b ,a : real ;

BEGIN
k I 0 : = 1;
k hi: = n ;
WHILE (khi-klo > 1) DO BEGI N

k : = (khi +klo) DIV 2 ;
IF (xa[k] > x) THEN khi := k E L SE klo k

END;
h xa[khi]-xa[klo];
a := (xa[khi]-x) /h ;
b : = (x-xa[klo]) /h ;
y : = a*ya[klo] +b*ya[khi] +

«a*a*a-a)*y2a[klo] +(b*b*b-b)* y2a[khi]) *(h*h) /6 . 0 ;
dy : = (ya[khi]-ya[klo]) /h-(3 *sqr(a)-1 .0) /6 .0 *h* y2a[klo] +

(3*sqr(b)-1 .0) /6.0*h* y2a[khi] ;
END ;

procedure interlin(bx ,by,bz ,br :real ; va r b ydata :dat ar) ;

c o n s t pi =3.14159;

var
ik ,jk,jj :integer;
th :real;
ydatal ,ydata2 ,ydata3:datar ;

beg in
ik : =nz-l;
jk : =nr-l;
while «ik >l)and(not«(bz > =zdata[ik]) and (bz <zdata [ik +l]»») do

dec(ik);
while «jk >l)and(not«(br > =rdata[jk]) and (br <rd ata[jk +l]»») do

dec(jk) ;
for jj:=1 to nr do
beg i n

ydatal[jj]: =tdata[l ,ik,jj] +(tdata[l ,ik +l ,jj]-td ata[l ,ik ,jj]) /
(zdata[ik+l]-zdata[ik])*(bz-zdata[ik] ) ;

ydata2[jj]: =tdata[2 ,ik,jj] +(tdata[2 ,ik +l ,jj]_td ata[2 ,ik ,jj]) /
(zdata[ik +l]-zdata[ik])*(bz-zdata[ik]) ;

ydata3[jj]: =(ydatal [jj] +ydata2[jj]) /2 .0 ;
en d ;
if by < >O.O then
beg i n

3
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th : =arctan(abs(b x /b y» ;
if «bx > =O .O)and(b y >O .O» th en

for jj : =l to nr do .. ..
b y d a t a [j j ] : = y d a tal [j j] + (y d a t a 3 [J J ] - y d a t al [ J J ])
*th /pi*2 .0

e l s e if «bx > =O.O)and(b y <O .O » th en
for jj : =l to nr do .. ..

bydata[jj] : =ydata2[jj] + ( ydat a 3[JJ]- ydata2[ J J ] )
*th /pi*2.0

else if «bx < =O.O)and(b y <O .O)) th e n
for jj : =l to nr do ....

by d a t a [j j ] : = y d a t a 2 l i j ] + ( y d a t a 3 [J J ] - y d a t a 2 [ JJ ] )
*th /pi*2.0

else if «bx < =O .O)and(b y >O .O)) th en
for jj: =l to nr do

bydata[jj]: =ydatal[jj] +( yd at a 3[ jj] - ydatal [ j j ] )
*th /pi*2.0 ;

end
else if by =O.O then

for jj : =l to nr do
b ydata[jj] : = ydata3[jj] ;

end ;

b eg in
ar: =sqrt(sqr(ax) +sqr(a y» ;
interlin(ax ,a y ,az ,ar , ydata) ;
d yl: =O .O ;
d yn : =O.O ;
spline(rdata , ydata ,nr ,d y 1 , d y n , d d y );
s p l i n t ( r d a t a, y d a t a, d dy , n r, a r,a t, d t) ;
if ar < >O .O then
beg i n

a d t d x:= d t * a x / a r;
a d t dy: = d t* ay / a r ;

end
e I se
be g i n

adtd x : =O .O ;
a d t dy := O . O;

end ;
e n d;

b eg in
temp( xx , y y , z7 ,t ,dtd x ,dtd y) ;
dnd x : =-(nO-l .O)*tO / sqr(t ) *dtd x ;
dnd y : =-(nO-I .O)*tO / sqr (t ) *dtd y ;

e n d;

( ************* ***** **** ** ***)
( * ** Differential equation s * ** )
( *** definition ** *)
(******************* ** ** ****)

Pro c edure derivs(x:real ; y : g l n a r r ay; var d yd x : glna r r a y ) ;

var
dnd x ,dnd y:r eal ;

beg in
dn xy(y[ I ], y[3], x ,dndx ,dnd y) ;
d ydx[2]: =dnd x ;
d yd x[I] : = y[2];
d ydx[4] := d n dy;
d yd x[3] : = y[4];

end ;

( *** ********************)
(*** Runge Kutta fourth ***)
(*** order method ***)
( ***********************)

PROCED URE rk4(var y :glnarra y ; d yd x : g l n a r r ay; n : int eger ; x ,h : real) ;

VA R
i: integer ;
xh ,hh ,h6: real ;
d ym ,d yt ,yt : g l n a r r a y ;

4
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BEGIN
hh h*0.5 ;
h6 : = h /6.0 ;
xh : = x +hh;
FOR i : = I to n DO BEGIN

yt[i] : = y[i] +hh*dydx[i]
END;
derivs(xh ,yt ,dyt);
FOR i : = I to n DO BEGIN

yt[i) := y[i) +hh*dyt[i]
END;
derivs(xh ,yt,dym);
FOR i : = I to n DO BEGIN

yt[i] := y[i]+h*dym[i];
dym[i] : = dyt[i] +dym[i]

END;
derivs(x +h ,yt,dyt) ;
FOR i I to n DO BEGIN

y[i] y[i] +h6*(dydx[i] +dyt[i] +2 .0*dym[i])

END
END;

(*************************************)
(*** Initial data entry for a laser beam ***)
(*************************************)

Procedure datalasentry ;

var
11 : integer ;
nrays ,nsteps : string ;

begin
i i : = I ;
w r i t e l n ;
writeln('Parameters for the ray tracing computati on ') ;
w r i t e l n ;
write('How many ra ys ( /2) [' ,nra y ,'] N r ay = ') ; r e a d l n ( n r a y s ) ;
if length(nrays) < >O then val(nrays ,nra y ,ii) ;
write('Steps for each trajector y [' ,nstep ,'] N s t e p = ' ); r e a d l n ( n s t e p s );
if length(nsteps) < >O then val(nsteps ,n step ,ii );

end ;

(********************************)
(*** Initial data entry for imaging ** *)
(********************************)

Procedure d a t a i m e n t r y ;

var
ii: integer ;
nsteps ,objangs ,objdists : string ;

beg i n
i i : = I ;
w r i t e l n ;
writeln('Parameters of the i m a g i n g ") ;
writeln ;
write('Angular dimension of the object (rad) [' ,
objang ,'] objang = ');readln(objang s) ;
if length(objangs) < >O then val(objangs ,objang ,ii);
w r i t e l n ;
write('Distance of the object (cm) [' ,
trunc(objdist),'] (cm) objdist ');readln(objdists);
if length(objdists) < >O then val(objdists ,objdist ,i i) ;
write In;
writeln(,Enter parameters for the ra y tracing computation') ;
writeln ;
write('Steps for each trajectory [' ,nstep , '] N s t e p = ' ); r e a d l n ( n s t e p s ) ;
if length(nsteps) < >O then val(nsteps ,nstep ,ii) ;

end ;

(******************************)
(*** Setting the defaults values ***)
(******************************)

procedure setdefaultval ;

beg i n

5
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nO: =1.000293;
to: =273.3 ;
nray : =lO;
nstep: =lO ;
objang: =1.Oe-3 ;
objdist : =1.Oe8;

end ;

(************************)
(*** setting more values ***)
(************************)

procedure setmoreval ;

beg i n
deltar: =d /2 .0 /nray ;
dz: =l /nstep;

end;

(********************)
(*** Begin graphics ***)
(********************)

procedure begraph ;

var
grdriver ,grmode :integer ;

beg in
grdriver: =vga; grmode : =vgahi ;
initgraph(grdriver ,grmode ,'c: \tp6') ;
setviewport( 1 0 , 1 0 ,630 ,470 ,false) ;
rectangle(0 ,0 ,620 ,460) ;

end ;

(*******************)
(*** End Graphics ***)
(*******************)

procedure endgraph ;

beg i n
closegraph ;
restorecrtmode;

end ;

(********************** ***** ***** ** *** ** )
(*** Procedure to convert ph ysical valu es ***)
(*** in screen cohordinates ** * )
(******************************* ** * * ** ** )

procedure convert(xmin ,ymin ,xmax , yma x ,a ,b :real ; v a r n a ,nb :integer) ;

beg i n
n a : = r 0 u n d « a - x m in) / ( x m a x - x m in) * 6 2 °);
nb: =460-round«b-ymin) /(ymax-ymin)*460 ) ;

end ;

(*******************************)
(*** determination of minimum ***)
(*** and maximum focal distance ***)
(*******************************)

procedure zmaxmin(var max ,min:real) ;

var
i:integer;

beg i n
max: =distz[l);
min: =distz[l );
for i: =l to nray do
beg i n

if distz[i] >max then max: =distz[i);
if distz[i] <min then min: =distz[i);

end;
end;

(***************************)
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(*** Rays trajectories of an ***)
(*** input laser beam ***)
( ***************************)

procedure drawlasray ;

v a r
r ,drdz :glnarray ;
gr ,gz ,j ,i :integer;
mr:string[40];
disp ,z :real;

beg i n
begraph;
line(O ,230 ,620 ,230) ;
outtextxy(200 ,462 ,' Ra ys trajector y i n the l e n s' ) ;
str(d :O:2 ,mr) ;
mr : =concat('lens diameter = ' ,mr , ' cm') ;
outtextxy( 1 ,-8 ,mr) ;
for i : =l to 2*nra y-l do
beg i n

z : = d z ;
r[3] : =-d /2 .0 +i*deltar ;
r[2]: =O .O ;
r[l] : =O .O ;
r[4] : =O .O ;
drdz[I] : =O .O ;
drdz[2]: =O .O ;
drdz[3]: =O.O ;
drdz[4] : =O .O ;
con v e r t( 0 , - d / 2 , I , d / 2 , z , r [ 3 ] , g z , g r ) ;
moveto(O ,gr) ;
for j : =l to n step do
beg i n

z : =O .O +j*dz ;
derivs(z ,r ,drdz) ;
rk4(r ,drdz ,4 ,z ,dz) ;
convert(O , -d /2 ,I ,d /2 , z ,r[3] ,g z , gr ) ;
lineto(gz ,gr) ;

end ;
disp : =O .7e-l ;
r[3] : =r[3] +disp ;
if r[4] < >O then distz[i] : = -r[3] /r[ 4 ]
else dist z[i]: =O .O ;
di str[i] : =r[3];
if dist z[i] >IOOOO .O then dist z[i] : = l OOOO. O;

e n d ;
repeat until readke y = ' ' ;
e n d g r a p h;

end ;

(********* **************)
( * ** La ser fo cu sing f ile * * *)
(****** **** * ************ )

proc edure la sfile ;

v a r
flas :te xt ;
con , I a s f , I a s fs : s t r i n g [ 8 ] ;
lasfl :string ;
i:integer;

beg i n
clrscr ;
lasf: ='lasfocus';
write('do you want the data to a fil e y / [ n ]') ;
readln(con);
if con ='y' then
begin

write('Enter filename [' ,lasf,'] ') ;
readln(lasfs) ;
if length(lasfs) < >O then las f: =la s f s ;
lasfl := c o n c a t ( ' c: \ d a t a \ ' , l a s f,'. d a t') ;
assign(flas ,lasfl ) ;
rewrite(flas) ;
for i: =l to 2*nray-2 do

writeln(flas ,distr[i] , ' ', d i s tz [ i ]) ;
close(flas) ;

end;
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en d ;

(*************************)
(*** Focus drawing for an ***)
(*** input laser beam ***)
(*************************)

procedure drawlasfocus ;

v a r
nz,nr ,nzO ,nrO,i:integer;
mmin,mmax:string[ 12];
mr:string[40L
max,min:real;

beg i n
clrscr;
b e g r a p h ;
line(0 ,230,620,230);
zmaxmin(max ,min) ;
for i : =l to 2*nray-2 do
beg i n

if (distz[i] >O.O) then
beg i n

convert(0,-d /2 ,max ,d /2 ,0 ,distr[i] ,nzO ,nrO) ;
con vert (0, - d I 2 , m a x , d I 2 , d i s t z [i] , 0 , nz , n r ) ;
line(nzO ,nrO ,nz,nr) ;
con vert (0 , - d I 2 , m a x , d I 2 , d i s t z [i] , 0 , nz , n r ) ;
convert(0,-d /2 ,max ,d /2 ,ma x ,-di str[i]* (m a x-d i st z[i]) /distz[i] ,nzO ,nrO) ;
line(nzO ,nrO ,nz ,nr) ;

end ;
en d ;
str(max:O:2,mmax) ;
mmax: =concat(mmax ,' cm') ;
outtextxy(540,462,mmax) ;
str(0.0:O :2 ,mmin) ;
mmin: =concat(mmin ,' cm') ;
outtextxy( 1,462 ,mmin);
outtextxy(200,462 ,' Rays trajector y a f te r th e len s' ) ;
str(d:O:2,mr);
mr: =concat('lens diameter = ' ,mr ,' c m');
outtextxy( 1,-8 ,mr) ;
repeat until readkey =' r ,

endgraph;
end ;

(****************************** *** )
(*** istogram of the focal distance * * * )
(*** for an input laser beam *** )
(********************************* )

procedure drawlasisto ;

var
numax,dz ,z 1 , z 2, m a x, m i n, y i s t o,y i s t o 1 : r e a l ;
nisto ,is ,istmax,i,nzl,nz2 ,nnl ,nnr :inte g er ;
mmax ,mmin:string[ 12];
num;array[l. .50] of real ;

(*********************************** *************)
(*** Setting parameters for the istogram of th e focus * **)
(************************************************)

procedure i s t o t i t l e ;

var
mins,maxs,nistos ,yistos: string;
istr: integer;

be gi n
w r i t e l n ;
writeln(' Histogram Of The Laser Ra ys Along Z ' );
w r i t e l n ;
write('For which Y value you want the istogram Y [' ,yisto ,'] cm ');
readln(yistos);
if length(yistos) < >O then val(yisto s , yisto ,istr) ;
write('how many intervals ( < 50 ) Nisto [' ,

nisto ,'] ') ;
readln(nistos);
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if length(nistos) < >O then val(nistos ,ni sto ,i str) ;
write('Minimum value in the z axis Min I ' ,

min,'] cm ') ;
readln(mins);
if length(mins) < >O then val(mins ,min , istr) ;
write('Maximum value in the z axi s Ma x I ' ,

max,'] cm ') ;
readln(maxs);
if length(maxs) < >O then val(maxs ,m a x ,i str ) ;

end ;

beg i n
zmaxmin(max,min) ;
if min <O .O then min : =O .O ;
numax: =O.O;
nisto : =nray;
yisto: =O.O ;
yistol : =O .O ;
istotitle;
for i: =1 to 2*nray-2 do

d i s t z [ i ] : = d i s t z [ i ] * « d i s t r [ i ] - y i s to ) / ( d i s t r [ i ] - y i s t 0 1 ) ) ;
dz : =(max-min) /nisto ;
yistol : =yisto;
for is: =1 to nisto do
beg i n

num[is]: =O.O ;
zl := m i n+ ( i s - l )*dz ;
z2: =zl +dz;
for i : =1 to 2*nray-2 do

if «(distz[i] >O .0)and(distz[i] > = zl)a nd «di st z [ i] < z2))))
then num[is]: =num[is] +l.O ;

if num[is] >numax then
beg in

numax: =num[is];
istmax: =is ;

end ;
end ;
numax : =numax + 1 .0;
begraph;
for is: =l to nisto do

if num[is] < >O .O then
beg i n

z I : = m i n + ( i s - l )*dz ;
z2: =zl +dz;
con vert (m in , 0 .0 , m a x , n u m a x , z I , 0. 0, n z I , n n I) ;
con vert (m in, 0.0 , m a x , n u m a x , z 2 , nu m [ i s ], n z 2 , n n r ) ;
setfillstyle( I , 2 ) ;
bar3d(nz I , n n l, n z 2 , n n r , l ,false ) ;

end ;
str(max :0:2 ,mmax) ;
mmax: =concat(mmax ,' cm') ;
outtextxy(540,462,mmax) ;
s t r ( m in: 0 : 2 , m m.i n ) ;
mmin: =concat(mmin ,' cm ') ;
outtextxy( I ,462 ,mmin) ;
outtextxy(200 ,462,' Focal distance' ) ;
outtextxy(I,-8 ,' Rays density at the f ocu s ( h is t o g ra m) ') ;
repeat until readkey =' r •

endgraph ;
end ;

(***************************)
(*** Rays trajectories of an ***)
(*** input image ***)
(***************************)

procedure drawray;

var
r , d r d z , fi : gIn a r ray ;
gr,gz ,j,i,k ,kl :integer ;
mr :string[40] ;
thd,z:real ;
xo ,yo:array [l..npoint] of real ;
x ,y :array [1 .. nimagi] of real ;

(***********************)
( *** Initialize variables ***)
(***********************)
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pr ocedure inima;

var
i r i n t e g e r ;

beg i n
for i: =1 to npoint do
beg i n

xo[i]: =O.O ;
yo[i]:=O.O ;

end;
for i : =1 to nimagi do
beg i n

x [i]: = 0.0 ;
y [i]: = 0 .0;

end ;
end;

(* *******************************)
( *** Define the object and the grid ** * )
(*** at the entrance of the len s * * *)
(* ** The grid is a random mesh of * * * )
( * ** Points. ***)
( ************** ******* ** ** * ** * * * *)

procedure objgrid ;

var
nn ,ii,jj ,li ,lo :integer:
dx y ,dim:real;

beg i n
dim : =objang*objdist ;
if npoint =1 then
beg i n

y o [ I ]: = O. O ;
xo[I]: =O.O;

end
e I se

for 10: =1 to npoint do
beg in

yo[lo] : =(lo-l) *dim /(np oint-l) :
xo[lo] : =O .O ;

end ;
I i : = 1 :
r a n d o m i z e ;
repeat

x[li] : =random(rollnd(diam * 1 .0e4 » /1 . 0e4 -diam / 2 . 0 ;
y [ l i ] : =random(rollnd(diam * 1 .0e4 » / 1 . 0e4-diam / 2 . 0 ;
if ( sqr(x[li]) + s q r ( y [ l i ] ) < = s q r( d ia m /2) ) th en in c(li) ;

until li =nimagi ;
end ;

(********************************* * * ** *****)
(* ** initial conditions for the imagin g * * *)
(******************************* ** * * ** ** ***)

procedure inipos(11o ,11i :integer ; var a r:g l n a r r ay ) ;

var
xl ,yl ,zl ,x2,y2 ,z2 ,ddx ,dd y ,ddz:real ;

beg in
xl: =xo[llo];
yl : =yo[llo] ;
z 1 := - o b j d i s t;
x2 : =x[lli];
y 2 : = y [ l l i ];
z2 : =0.0;
ddx: =(x2-xl );
ddy: =(y2-yl ) ;
ddz: =(z2-z1);
ar[I]: =x2;
ar[2] : =ddx /ddz;
ar[3] : =y2;
ar[4] : =ddy /ddz ;

end;

(*****************************)
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beg i n
in i ma;
objgrid;
begraph ;
outtextxy(200,462,' Rays trajector y in the l ens') ;
str(d:0:2,mr);
mr : =concat('lens diameter = ' ,mr ,' c m ');
outtextxy( 1 ,-8 ,mr) ;
k I : = I ;
for i: =1 to npoint do
beg in

for j : =1 to nimagi do
beg i n

inipos(i ,j ,r) ;
z· = 0 O '
thd :~( i . 0 - r a n d o m ( 2 ) ) * 1 .22*6 .0e-7 /diam * 100 / sqrt (2) ;

drdz[I]: =r[2] +thd ;
drdz[2] : =0.0 ;
drdz[3]: =r[4] +thd;
drdz[4] : =0 .0 ;
convert(0 ,-d ,l ,d ,z ,r[3] ,gz ,gr) ;
moveto(O ,gr) ;
for k : =1 to n step +1 do
beg i n

z: =(k-I)*dz ;
derivs(z,r ,drdz) ;
rk4(r ,drdz ,4 ,z ,dz) ;
if (sqr(r[I]) +sqr(r[3])) > = sq r (d / 2 .0 ) then
beg in

r [ I] : = d ;
r[2]: =0 .0 ;
r [3] : = d ;
r[4]: =0 .0 ;

end
else
beg in

convert(0 ,-d ,l,d ,z ,r[3] ,g z ,gr ) ;
lineto(gz ,gr):

end ;
end;
if (sqr(r[I]) +sqr(r[3])) <sqr(d /2 .0) then
beg i n

distx[kl] : =r[1 ];
gradx[k I] : =r[2];
disty[kl] : =r[3] ;
grady[k I] : = r [ 4 ]:
inc(kl) ;

end ;
end ;
nimag : =kl-l ;

end:
repeat until readkey =' ' ;
e n d g r a p h ;

end ;

(*********************)
(* ** Image drawing ***)
(*********************)

procedure drawimag(imdist:real) ;

v a r
i ,gx ,gy :integer;
ximag, yimag ,ximagmax ,yimagmax ,ximagmin , yimagmin ,
xlmin,xlmax,ylmin ,ylmax,a :real ;

(************)
(*** Axis ***)
(************)

procedure axis :

var
g x I ,gy I , g x 2, g y 2: integer ;
ximagmins ,ximagmaxs ,yimagmins , yimagma x s ,imdi st s :string[lOO] ;

beg i n
convert(xlmin ,ylmin ,xlmax ,ylmax ,ximagmin ,0 ,gx2 ,gy2) ;
convert(xlmin ,ylmin ,xlmax ,ylmax , ximagmax ,O ,g xl ,g yl) ;
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line (gx2 ,gy2 ,gxl ,gyl);
convert(xlmin,ylmin ,xlmax ,ylma x , ximagmin , yima gmi n ,gx2 ,gy2) ;
convert(xlmin ,ylmin ,xlmax ,ylmax , ximagmax , yim ag mi n ,g xl ,gyl) ;
line (gx2 ,g y2 ,gxl ,gyl);
convert(xlmin ,ylmin ,xlmax ,ylmax , ximagma x , yim a g ma x ,gx2 ,g y2) ;
line (gxl,gyl ,gx2 ,gy2);
convert(xlmin,ylmin,xlmax ,ylmax , x imagmin , yima g ma x ,gxl ,gyl) ;
line (gx2 ,gy2 ,gxl ,gyl) ;
convert(xlmin ,ylmin ,xlmax , ylmax , x imagmin , yim a g m i n ,gx2 ,g y2) ;
line (gxl ,gyl ,gx2 ,gy2) ;
str(ximagmin :8 :2 ,ximagmins) ;
str(yimagmin:8 :2 , yimagmins) ;
str(ximagmax:8 :2 ,ximagmaxs) ;
str(yimagmax:8:2 ,yimagmaxs) ;
str(imdist:8:2 ,imdists) ;
ximagmins: =concat('t."linimum x = ', x i m a g m i n s, ' c m') ;
ximagmaxs: =concat( 'Ma ximum x = ', x i m a g m a x s, ' cm') ;
y i m a g m i n s : = c o n c a t ( ' M i n i m u m y = ', y i m a g m i n s, ' c m') ;
y i m a g m a x s: = c o n c a t (' M a x i m u m y = ', y i m a g m a x s, ' cm') ;
imdists : =concat('Distance from the l en s = ', i m d i s ts, ' cm' );
outtextxy( 1 O,462 ,ximagmins);
outtextxy(240 ,-8 ,ximagmaxs) ;
outte xtx y(210 ,462 , yimagmins);
outtextx y(440 ,-8 ,yimagmaxs) ;
outtext x y( lO ,8 ,imdists) ;

end ;

(*** *******)

beg i n
x i m a g m i n : = O . O ;
ximagmax : =O.O ;
y i m a g m i n : = O. O ;
yilllagmax: =O .O ;
for i: =l to n i m a g do
b eg in

ximag: =di stx[i] +gradx[i] *imdi st ;
y i m a g : = d i s ty [ i ] + g r a dy [ i ]* i m d is t ;
if x i m a g >x i m a g m a x then ximagm a x : = x im a g ;
if ximag <ximagmin then x i m a g m i n i v x i m a g ;
if y i m a g >y i m a g m a x then y i m a g m ax: =y i m ag ;
if y i m a g <y i m a g m i n th en y i m a g m i n : =y i mag ;

end ;
a : =(yilllagma x- yimagmin) /2 ;
if (2 *(ximagmax-ximagmin) /2»1 .5 * a th en a : =(x imagmax-x i m a g m i n ) / 2;
xlmin: =(x imagmin +ximagmax) /2-2 * a ;
xlmax : =(ximagmin + ximagmax) /2 +2 * a ;
y l m i n: = ( y i m a g m i n +y i ma g llla x ) / 2 - 1. 5*a ;
y l m ax: = (y i m a g m i n +y i ma g m a x) / 2 + 1 .5*a ;
c le a r dev i ce ;
a xis ;
for i : =l t o nimag do
beg i n

ximag : =distx[i] +gradx[i]*illldist ;
yimag : =di st y[i] +grady[i]*imdi st ;
c ~ nv e r t ( x 1 min , y l m i n i x 1 ma x , y 1 m a x , x i m a g , y im a g , g x , g y ) ;
clrcle(gx ,g y ,4 );

end ;
end ;

( *************)
( *** defdist ***)
(* **** ***** ***)

Procedure defdi st ;

var con :string ;
i i r i n t e g e r ;

imdists:string ;
imdist :real ;

beg i n
imdi st : =O .O ;
begraph;
drawimag(imdist) ;
repeat until readke y =' '.
endgraph ;
repeat

w r i t e l n ;
writeln(' Press q to stop , an y oth e r key t o d efi n e a new di stance');
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c o n: = r e a d k ey;
i f c o n=' q ' then e xit ;
w r i te In ;
writeln( ' Distanc e o f th e i mage pl an e f r o m t he l ens ');
write(' [ ' ,(imdist) ,'] (cm ) Imdist = ');readln( i m d i s ts);
if l ength(imdists) < >O then v a l (i m dis ts , i m dis t ,i i) ;
b e g r a p h ;
drawimag(imdist) ;
repeat until readke y = ' r •

e n d g r a p h;
until 1 =0 ;
e n d g r a p h ;

end ;

( ****** ***** ********)
( *** W EIRD TRIP * **)
(***** * *************)

procedure trip ;

var
i t i n t e g e r ;
imdist ,m :r eal ;
as :string ;

(* * *** *** *** *** *)
(*** Trip title ***)
( *** *** * **** ****)

Procedur e t r i p t i t l e ;

b eg i n
clrscr ;
w r i t e l n ;
writeln('Thi s IS a se r io us trip . P r e s s - t o s low d o w n ') ;
writeln(' Pr e s s + to acce le ra te ') :
writeln(' Pre s s z t o change direc tion ' );
writ eln(' Pr e s s s t o s top '):
writeln(' Pre s s s p a ce b a r t o res tar t ');
writeln(' Pre s s q t o quit ') ;
writeln(' N o w s p a c e b a r t o s ta r t ' ) ;
repeat until r eadk e y =' ' .

end ;

b eg i n
m : = 3 . 0 :
imdi st: =O .O ;
begraph ;
repeat

if k e y p r e s s e d th en
b eg in

a s: =r e adke v :
if a s =' +' tl;en m : =m *2 .0
e l s e if as = '-' then m : =m /2.0
e ls e if a s =' z' then m : =-m
el se if as =' s ' then r ep eat unti l r e a d k e y > '

end ;
imdi st : =imdi st +m ;
draw imag(imdi st) ;

until as ='q' ;
endgraph ;

end ;

(** ***** ****** ********** * )
( * * * Intensit y Hi stogram * * *)
(* ******** ** ** ********** *)

procedure istoimag(istdi st ,xistmin , xi stma x , yi stmin , yi stma x :real) ;

con s t
nc =14 ;

var
i ,gx,g y ,nmax ,gxl ,gyl ,ncol ,kx ,k y :int e g er ;
a ,dxbox ,dybox ,xbox ,ybox ,xist , yist , xlb o x , ylb o x , xl m in :r eal ;
xlmax , ylmin , ylmax:real ;
nist:arra y[l . . nc +l ,l .. nc +l] of int e g er ;

(* ***** ****** **)
( * * * Axisisto * * * )
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(** ************)

procedure axisisto ;

v a r
gxl ,g yl,gx2 ,gy2:integer ;
xistmins ,xistmaxs , yistmin s , yi stm a x s , i stdi s t s : str i n g [ l O0] ;

be gin
convert(xlmin ,ylmin ,xlma x ,ylma x , x i stmi n , 0 , g x 2 , g y2 ) ;
convert(xlmin ,ylmin ,xlma x , ylma x , x i stma x , O,g x l , g yl ) ;
line (gx2 ,gy2 ,gxl ,g yl) ;
convert(xlmin ,ylmin ,xlmax , ylma x , x i s tmi n , y i st m i n , g x2 ,g y2) ;
convert(xlmin ,ylmin ,xlmax , ylma x , x i stma x , y i stm i n , g xl ,g yI) ;
line (gx2 ,gy2 ,g xl ,gyl) ;
convert(xlmin ,ylmin ,xlmax , ylma x , x i stm a x , y i stm a x , g x2 ,g y2) ;
line (gxl ,gyl ,gx2 ,g y2) ;
convert(xlmin ,ylmin ,xlmax , ylma x , x i stmi n , y i st m a x , g xl ,g yI) ;
line (gx2 ,gy2 ,gxl ,g yl) ;
con vert (x 1 m in , y 1 m in , x 1 m a x , y I m a x, xis t m in , y i s t m in , g x 2, g Y2) ;
line (gxl ,gyl ,gx2 ,gy2) ;
str(xistmin:8:2 ,xistmins) ;
str( yistmin:8:2 ,yistmin s) ;
str(xistmax :8:2 ,xistma xs) ;
str(yi stma x:8 :2 ,yistmaxs) ;
str(istdist:8 :2 ,istdists) ;
xi stmins : =concat('Minimum x = ', x i s t m i n s , ' c m');
xi stma xs : =c oncat('Ma x imum x = ',xist m axs ,' c m') ;
y i s t m i n s:= e o n c a t ( ' Mi n i m u m y = ' , y i s t m i n s , ' e m ');
y is t m a x s:= e o nc a t ( ' M a xi m u m y = ' , y i s t m a x s, ' c m');
istdi sts : =coneat( 'Distan c e fr om th e lens = ', i s t d i s t s, ' c m') ;
outtextx y( 1 0 ,462 , xistmin s) ;
outtextx y(240 ,-8 , xistma x s) ;
outte xtx y(2l0 ,462 , yi stmin s) ;
o u t t ex t xy ( 4 4 0, - 8,yis t maxs);
o u t te x txy ( I 0 ,8 ,i stdi st s ) ;

e n d;

( * * * * * * * * * * * * ** * * * * * * ****)
( * Procedur e setnikcolor *** )
( ***************** * * **** * )

Procedure setnikeolor(ne:int e ger ) ;

v a r
nel : i n t e g e r;

b e gin
if eontrol ='e' then

if ne =O then nel : = 0
else if ne =l th en nel : =8
else if ne =2 then nel : =6
el s e if ne =3 then n cl : =7
else if n e =4 then nel : =l
el s e if ne =5 then nel : =9
e lse if ne =6 then nel : = 3
els e if ne =7 then n el : =ll
e lse if ne =8 then n e 1 : =2
el se if ne =9 then nel : =IO
else if ne =lO then nel : =5
e ls e if ne =ll then nel : = 1 3
else ifnc =12 then nel : =4
else if ne =13 then nel : =12
else if nc =14 then nel : =14
else if ne =15 then ncl : =15 ;

if control ='g' then
if nc =O then nel : =O
else if ne =l then nel: =ll
else if ne =2 then nel : =13
else if ne =3 then nel : =12
else if ne =4 then ncl : =2
else if ne =5 then nel : =5
e l s e if ne =6 then ncl : =4
else if ne =7 then n c L t v L :

s e t e o l o r ( n e l ); .,
setfillstyle( I , n e 1) ;

end ;

(************************)
( *** Procedure colorseale ***)
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(******************* *****)

Procedure colorscale ;

var
i :integer ;

b e ~in, ,
i f control = c then

for i : =O to 15 do
beg in

setnikcolor(i) ;
bar(20 ,400-10*i ,30 ,400-10*i -IO ) ;

end
else if control ='g' then

for i : =O to 7 do
beg i n

setnikcolor(i) ;
bar(20 ,400-10*i ,30 ,400-10*i-IO) ;

end ;
end ;

(********************************* * * * *)
(*** Writes on file the histogram valu e s ** *)
(********************************* ** ** )

procedure w r i t e f i l e ;

v a r
nfileb:string ;
fhis:text ;
ntot ,i ,j:integer ;

beg i n
ntot : =O ;
for i: =1 to nc +1 do

for j : =1 to nc +1 do
ntot : =ntot +nist[i ,j) ;

n fi I e b : = con cat (' c : \ d a t a \ ' , n fi le , , . d at ' ) ;
ass i g n ( fh is , n f i I e b ) ;
re w r i t e ( fh is) ;
writeln(fhis , ' \ Total energ y in th e f i eld = ', n t o t, ' / ', n i m a g ) ;
w r i t e I n ( fh is , ne + I " " n c + I ) ;
w r i t e ( fh is , 0 . 0 " ') ;
for i: =1 to nc +1 do

w r i t e (fh is , xis t m i n + (i - 0 .5) * d x b o x , ' ');
w r i t e I n ( fh i s) ;
for j : =1 to nc +1 do
beg i n

w r i t e ( fh is , y i s t m i n + (j - 0 . 5 ) * d y bo x , ' ' ) :
for i: =1 to nc +1 do

write(fhis ,nist[i ,j) /nmax , ' ' ) ;
w r i t e In ( fh is) ;

end ;
close(fhis) ;

end ;

(**********)

beg i n
nmax: =O;
c l e a r d e v i c e ;
for kx : =1 to nc +1 do

for ky : =1 to nc +1 do
nist[kx ,ky): =O ;

dxbox: =(xistmax-xistmin) /(nc + I) ;
dybox : =(yistmax-yistmin) /(nc + I) ;
for kx: =1 to nc +1 do
beg i n

xbox: =xistmin +(kx-I )*dxbox ;
for ky: =1 to nc +1 do
beg i n

ybox : = yistmin +(k y-I)*d ybox ;
for i : =1 to nimag do
beg i n

xist: =distx[i] +gradx[i]*istdist ;
yist: =disty[i] +grad y[i]*istdist ;
if (xist >xbox) and (xist <xbo x +d xbox) and (y i s t > y b o x )
. an.d (yist <ybox +dybox) then nist[k x ,k y] : =nist[kx ,ky] +I ;
i f nlst[kx,ky] > =nmax then nmax : =nist[kx ,k y];
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end;
end ;

end;
if cf ='y' then w r i t e f i l e ;
a: =(yistmax-yistmin) /2;
if (2*(xistmax-xistmin) /2»1.5*a then a: =(xistmax-xi stmin) /2;
xlmin: =(xistmin+xistmax) /2-2*a;
xlmax: =(xistmin +xistmax) /2 +2*a ;
ylmin: =(yistmin +yistmax) /2-1.5*a ;
ylmax: =(yistmin +yistmax) /2 +1 .5*a ;
cleardevice ;
colorscale;
for kx : =l to nc +l do
begin

xbox:=xistmin +(kx-l )*dxbox ;
x l box:=xistmin +kx*dxbox ;
for ky: =l to nc +l do
beg in

ybox: =yistmin +(ky-l )*dybox ;
yl box: =yistmin +ky*dybox ;
convert(xlmin ,ylmin ,xlmax,ylmax ,xbox ,ybo x ,gx ,gy) ;
convert(x I m i n i y I min,x 1 max ,y 1 max ,x 1 box ,y I box ,gx 1 , g y 1) ;
if control ='c' then ncol : =round(nist[kx ,k y]*15 .0 /nmax)
else if control ='g' then ncol : =round(nist[kx , k y)*7.0 /nmax) ;
setnikcolor(ncol) ;
bar(gx ,gy ,gx I , g y 1) ;

end;
end ;
setcolor(white);
a x i s i s t o ;
repeat until readkey =' ' .

end;

(**************)
(*** dististo ***)
(**************)

Procedure d i s t i s t o :

var
con :string;
i i r i n t e g e r ;
is t d i s t s , xis t m ins , xis t m a x s , y i s t m ins , y i s t m a x s , c o n t r 0 I s , c fs : s t r i n g ;
istdist,xistmin ,xistmax ,yistmin ,yistma x :real ;

beg in
istdist: =O.O ;
xistmin: =-1.0;
xistmax: =l.O;
yistmin: =-1.0 ;
yistmax: =1.0:
control : ='g' ;
c f : = ' n ";
repeat

c l r s c r ;
w r i t e l n ;
writeln(' Press q to stop , any other ke y to define a new distance') ;
con: =readkey;
if con ='q' then exit ;
w r i t e l n ;
writeln(' Distance of the Hi stogram plane fr om the lens ');
write(' [' ,(istdist),') (cm) Histogram di st an ce = ') ;
readln(istdists);
if length(istdists) < >O then val(istdists ,istdist ,ii) ;
w r i t e l n ;
writeln(' Minimum X value') ;
write(' [' ,(xistmin) ,'] (cm) Minimum X = ') ;

readln(xistmins);
if length(xistmins) < >O then val(xistmins ,xistmin ,ii ) ;
w r i t e l n ;
writeln(' Maximum X value ') ;
write(' [',(xistmax) ,'] (cm) Maximum X = ') ;
readln(xistmaxs);
if length(xistmaxs) < >O then val(xistmaxs ,xistmax ,ii) ;
w r i t e l n ;
writeln(' Minimum Y value') ;
write(' [',(yistmin) ,'] (cm) Minimum y = ') ;
readln(yistmins);
if length(yistmins) < >O then val( yi stmins , yistmin ,ii) ;
w r i t e l n ;
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writeln(' Maximum Y value') ;
write(' [',(yistmax) ,'] (cm) Maximum Y = ' ) ;
readln(yistmaxs) ;
if length(yistmaxs) < >O then val( yistma xs ,yistmax ,ii);

w r i t e l n ;
write(' False colors (c) or Grayscale (g) [' ,(co ntrol),'] ');
readln(controls) ;
if length(controls) < >O then control: =controls ;
write('Do you want a file of the histogram [' ,c f ,' ] ') ;
readln(cfs);
if length(cfs) < >O then cf: =cfs ;
if cf ='y' then

repeat
w r i t e l n ;
write('Enter name of the file ') ;
readln(nfile) ;

un t i I le n g t h (n fi le) < > 0 ;
begraph;
istoimag(istdist ,xistmin ,xistmax , yistmin , yistm a x ) ;
endgraph;

until 1 =0;
end;

(************************************)
(* Menu selection of the program options *)
(********************************* ***)

procedure m a i n m e n u ;

beg in
c l r s c r ;
write In;
writeln(' RAY TRACI NG OF A GAS L E NS ') ;
w r i t e l n ;
writeln('Select one of the following option') ;
write In;
writeln('Laser beam through the vertical s e c t i o n ( I ) ' );
w r i t e l n ;
writeln('Imaging through the gas len s (2 ) ' ) ;
w r i t e l n ;
writeln('End main menu (3)');
w r i t e l n ;
write('option ? ') ;readln(maino) ;

end ;

procedure l a s m e n u ;

beg i n
c l r s c r ;
w r i t e In ;
writeln(' LASER THRO UGH A GAS L E NS ') ;
w r i t e l n ;
writeln('Select one of the following option') ;
w r i t e l n ;
w r i t e I n ( , La s e r b e a m f 0 c u sin g (a ft e r the I ens) ( 1 ) , ) ;
w r i t e l n ;
writeln('Histogram of the intensity on the optical axi s (2) ');
w r i t e l n ;
writeln('End laser menu (3) ') ;
w r i t e l n ;
write('option ? ');readln(laso);

end;

procedure immenu;

beg in
c l r s c r ;
w r i t e l n ;
writeln(' IMAGING THROUGH A GAS LE NS ');
w r i t e l n ;
writeln('Select one of the following option ') ;
w r i t e l n ;
writeln('Image projection on a particular plane (I)');
w r i t e l n ;
writeln('Intensity histogram on a particular plane (2)');
w r i t e l n ;
writeln('Trip along the optical axis looking at the image (3)');
w r i t e l n ;
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writeln('End imaging menu
writeln ;
write('option ? ');readln(imo) ;

end ;

(*********************)
(*** 1\IAIN PROGRAM ***)
(*********************)

beg i n
clrscr ;
in i t i a I i z e ;
loadexpdata;
setdefaultval ;
repeat

mainmenu ;
if maino =l then
beg i n

datalasentry ;
s e t m o r e v a l ;
d r a w l a s r a y ;
repeat

lasmenu;
if laso =l then
beg in

I as f i le;
d r a \\1 I a s f oe us ;

end
el se if laso =2 then drawlasi st o

untillaso =3 ;
end
else if maino =2 then
beg i n

d a t a i m e n t r y ;
s e t rn o r e v a l ;
d r a w r a y ;
repeat

i rn m e n u ;
if imo =l then d e f d i s t
else if imo =2 then disti st o
else if imo =3 then trip ;

until imo =4;
end ;

until maino =3 ;
End .

1 8
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APPENDIX B

The program listed below was utilised in chapt er 4 to model the colliding

shock q-switching of a rub y laser . At each t ime after the shock collision

the focal length and the CSL diameter ar e ca l c u l a t e d and the resonator

geometry is solved by utilising ra y mat ri x optics. At each time the

resonator configuration , the ca vit y magnification and the losses are

known , so that the rate equat ion for th e population inversion and the

photon density can be solved numericall y . A Runge Kutta algorithm with

variable step size is utilised .

(******************** *********** * * * * ** * * * )
( *** This program sol ves the rate equ a t i on s ***)
( ** * for the q v s w i t c h e d rub y la ser ***)
( *** Computing the lo sse s f or th e cavity ***)
(*** with the CSL ***)
( * ******* ** * * * ** ***** *** * * * * * * * * * * * * * * * * * )

Program qswi ;

u ses crt ,graph ;

co n s t
d1 =75 .0e-2 ;
d2 =250 .0e-2 ;
d3 =10 .Oe-2 ;
f1 = 2 0 0 . 0 e - 2 ;
tmax =10.0e-6 ;
tiniwr =3 .0e-6 ;
tfinwr =10 .0e-6 ;
nruby =I.75 ;
cl =3 .0eI0 ;
s 2 1 = 2 . 5 e - 2 0;
Ires =d1 +d2 +d3 ;
Irod =10 .4e-2;
gamma =1 .5 ;
ni =I.58e19 ;
tr =2.0* 100*lres /cl ;
nloss =500:
refl1 =O.45 ;
hplank =6 .63e-34;
dt start =I.Oe-9 ;
rrub y =0 .5e-2 ;
ntime =400 ;
tsw =4 .0e-6 ;
los =0 .27 ;
ininver =ni *0.33 ;
nshell =30 ;
dr =rruby /nshell ;

( * di stanc e bet w e en O C a n d lens ( m)
(* di stan ce bet w e en l en s a n d CSL

( * distance bet w e en C S L a n d F R
( * f o cal length of th e l en s in the cav i ty
(* maximum tim e t o so lv e th e la se r e q u a t io n

(* initial data w r i t i ng tim e
(* final data writin g tim e

(* Ruby r efracti v e ind e x
( * cm /s
(* stimul at ed e missio n c ross sectio n (c m 2 )

( * re s onat or l en g th
( * r od length
( * l e vel degen e r a c y

(* er i on d en si t y c m-3
( * r ound trip t im e ( s )

(* number of tim e p oint to co mp ute th e lo sse s
( * Output coupl er r efl e ctivit y

(* plank const ant
( * initial gues s fo r th e RK4 t ime s te p
(* Radius of th e r u by r od
( * N u m b e r o f o u t p u t p oin t s
( * Swit ching t im e

(* Diffracti on , R e fl e ct i on s , S ca t te r i ng l o sse s
(* Initial populati on in v er si on

(* N u m b e r of sh ell s
(* Radial in cr em ent

* )
* )
* )

* )
* )
* )
* )
* )
* )
* )
* )

* )
* )

* )
* )
* )
* )
* )
* )
* )

* )
* )
* )
* )
* )
* )

type
glnarray = ARRAY [1 .. 2] OF double ;
arrtime = array [1 .. nloss] of doubl e ;
result = array [l. .ntime +l] of doubl e ;
mat =array[1 .. 2 ,1 .. 2] of double ;
ra y =array[I .. 2] of double ;
shell =array[l .. n s h e l l ] of double ;

v a r
arrloss : arrtime;
time,inten ,lost ,intave :result ;
~ n e r., e psi , I c 0 up, t , I a s I , I a s 2 , i n t , d t : d 0 ubi e ;
j c k t i n t e g e r ;
intmax ,ene ,tlas ,radius :shell ;
las ,dlasdt :glnarray ;
a ,b ,c ,d ,e ,f ,g ,h ,i ,mtot ,firhalf ,sechalf :mat ;
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nfl ,nf2,nf3 :text ;
n fi 1el , n fi 1e 2 , n fi I e 3 : s t r i n g ;

(***********************)
(*** Matrix 2*2 product ***)
(***********************)

procedure prod(x ,y :mat ; var pro :mat) ;

beg in
pro[1 ,1]: =x[I,I]*y[I ,I] +x[I ,2]*y[2 ,1] ;
pro[I ,2]: =x[I,I]*y[I,2] +x[I ,2]*y[2 ,2] ;
pro[2 ,1] : =x[2,1]*y[I,I] +x[2 ,2]*y[2 ,1] ;
pro[2 ,2]: =x[2 ,1]*y[1 ,2] +x[2 ,2]*y[2 ,2] ;

end ;

(**********************)
(*** Procedure equalm ***)
(**********************)

procedure equalm(ml:mat ; var m2 :mat) ;

beg i n
m2[1 ,1]: =m1[1,1] ;
m2[1,2]: =m1[1 ,2] ;
m2[2 ,1): =ml[2 ,1];
m2[2,2): =m1 [2 ,2];

end ;

(*********************)
(*** Procedure e q u a l r ***)
( *********************)

Procedure equalr(rl :ray; var r2 :ray) ;

beg i n
r2[1] : =r1[1];
r2[2] : =rl[2];

end ;

(***************************)
(*** Procedure set m to idm ***)
(***************************)

procedure i d m I v a r m t m a t ) :

beg i n
m[I,I) : =1 .0 ;
m[I ,2]: =0 .0 ;
m[2 ,1) : =0 .0 ;
m[2,2]: =1.0 ;

end;

(********************************)
(*** Propagate a ray of matrix mz ***)
(******************** ***** * ******)

procedure propagm(m :mat ; x:ra y ; v a r x l cr a y ) ;

beg i n
xl[I]: =x[I]*m[I ,I] +x[2]*m[1 ,2] ;
xl[2] : =x[I]*m[2 ,1] +x[2]*m[2 ,2] ;

en d ;

(************************************ ******* ** *** )
(*** Define resonator matrix for the constant optics * **)
(************************************************ )

procedure defmatrix ;

var
j:integer ;

beg in
for j: =1 to 2 do
beg in

a[j,j]: =1.0 ;
b[j ,j]: =1.0 ;
c[j,j]: =1.0;
d[j,j]: =1.0;

2
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e[j ,j]: =1 .0 ;
f[j ,j]:=l.O ;
g[j,j]: =1.0 ;
h[j,j] : =1.0 ;
i[j ,j] : =1 .0 ;

end ;
a[2 ,1] : =0.0 ;
a[1 ,2] : =d1;
c[2 ,1]: =0.0 ;
c[1 ,2] : =d2 ;
e[2 ,1]: =0 .0 ;
e[1,2]: =2.0*d3 ;
b[1 ,2]: =0 .0 ;
b[2,1] : =-1.0 /f1 ;
h[1,2] : =b[1 ,2];
h[2 ,1]: =b[2 ,1];
g[1 ,2] : =c[1 ,2];
g[2 ,1] : =c[2 ,1];
i[1 ,2]: =a[1 ,2];
i[2 ,1]: =a[2 ,1];

end ;

(*****************************)
(*** CSL focal length Vs . Time ***)
(*****************************)

function f2(time :double) :d ouble ;

var
fl ,tl:arra y[0 .. 4] of doubl e ;
j:integer ;

beg i n
tl[O]: =tsw ;
fl[O]: =O .O ;
tl[1]: =tsw +2 .7e-6 ;
fl[1] : =0 .4 ;
tl[2] : =tsw +3 .2e-6 :
fl[2] : =0.5 ;
tl[3] : =tsw +4 .4 e-6 ;
fl [ 3 ] : = 0 . 9 1 ;
tl[4] : =tsw +4.7e-6 ;
fl[4]: =1 .3;
if time < =tsw then

f2: =1.0elO
else if time > =tl[4] then

f2 : = fl [4] + (fl [4] - fl [3 ] ) 1 ( t I [4]- t I [ 3] ) * ( t i m e - t 1[ 4] )
else for j : =O to 3 do

if (time > =tl[j])and(time <tl[j +l] ) t h e n
f2 : =fl[j] + (fl[j +l]-fl[j] ) / (tl[j +l] -tl[ j] ) * ( t im e -t l[ j] ) :

end ;

(**************** ********)
(* ** Variable lens matrix ***)
(*************** * ********)

procedure varlen s(a:double) ;

beg i n
d[1 ,2] : =0.0 ;
d[2 ,1]: =-1 .0 /f2(a) ;
f[1 ,2] : =d[1 ,2] ;
f[2 ,1]: =d[2 ,1];

end ;

(**************************)
(*** CSL diameter Vs. time ***)
(**************************)

fu n c t ion d f2 (t i me : do ubi e ) : do ubi e ;

con s t
d d f2 d t = 7 .5 e - 3 18.4 e - 6 ; (* CSL diamet er tim e gr ad ient *)

beg i n
if time <tsw then

df2: =1.0e-2
else

d f2 : = d d f2 d t * (t i m e - t sw) ;
en cl;
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( *********** ***************)
( * * * Procedure find FirHalf * * * )
( ******** ******************)

Procedure findfirhalf ;

b eg i n
pro d (b , a , fi rh a 1f) ;
prod(c ,firhalf ,firhalf) ;
pro d (d , fi rh a If , fi rh a If) ;

end ;

(**************************)
(*** Procedure find SecHalf ***)
(*** ***********************)

Procedure findsechalf ;

beg i n
prod(g ,f ,sechalf);
prod(h,sechalf ,sechalf) ;
prod(i ,sechalf ,sechalf) ;

end ;

(* ***********************)
( * * * Pro c e d u r e f i 0 d ~1 tot * * * )
( ********** * ** * ** ** * *****)

Procedure f i n d m t o t :

beg in
prod(b ,a ,mtot) ;
prod(c ,mtot ,mtot) ;
prod(d ,mtot ,mtot);
prod(e ,mtot ,mtot) ;
prod(f ,mtot ,mtot) ;
prod(g ,mtot,mtot) ;
prod(h ,mtot ,mtot) ;
prod(i ,mtot ,mtot) ;

end;

(***************************** * *** * * * * )
( *** This procedure solve s the re sona t or ***)
( *** In matrix algebra ***)
(* ********** ******** ** ** ** ** * * *** * * * * * )

pr ocedure reso(t :double : x i d o u b l e ; v a r l o s s t d o u b l e ) ;

var
absl,abs2,aa,tran s ,tran sl ,tran s2 ,tr an s 3 , xl , x2 ,x 3 ,m ,m a g ,dthdx :d ollble ;
rentr ,rexit :ra y ;
cond 1 , co n d 2, c o n d 3 : b oo l e a n ;
nm,mi :integcr ;

beg in
d e f m a t r i x ;
v a r l e n s I t ) ;
a a : = d f2 (t) / 2 ;
n m : = 1 0 ;
f i n d m t o t ;

fiodfirhalf ;
findsechalf ;
m: =O.5*(mtot[I ,I] +mtot[2 ,2]) ;
if abs(m» =1 then
beg i n

if m =1 then
dthdx: =O .O

else
beg i n

if m > I then mag: =m +sqrt(sqr(m)-I) ;
if m <-1 then mag: =m-sqrt(sqr(m)-I) ;
dthdx: =(mag-mtot[ 1,1 ]) /mtot[ 1 , 2 ];

end ;
rentr[I] : =x ;
rentr[2] : =dthdx*rentr[ 1];
pro p a gm (fi rh a 1 f , r e n t r , re x it) ;
xl : =abs(rexit[I]) ;
condl : =xl >aa ;
if c o n d l then

4
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beg i n
r e x i t [ 1 ] : == a a * r e x i t [ 1 ] 1 x l ;
r e x i t [ 2 ] : == r e x i t [ 2 ] * a a 1 x L ;

end'
pro~agm(e,rexit,rexit);
x2 : ==abs(rexit[1]) ;
cond2: ==x2 >aa;
if cond2 then
beg i n

re xit[ 1] :== a a * r e x i t[ 1 ] /x2 ;
rexit[2]: ==rexit[2]*aa /x2 ;

end '
pro~agm(sechalf ,rexit ,rexit) ;
x3 : ==abs(rexit[1]) ;
cond3 : ==x3 >x ;
if cond1 then

tran s1: =sqr(aa) /sqr(x1)
else trans1: ==1 ;
if cond2 then

trans2: ==sqr(aa) /sqr(x2)
else trans2 : ==1 ;
if cond3 then

trans3: ==sqr(x) /sqr(x3)
else trans3 : ==1 ;
trans : ==trans1*tran s2*trans3 ;

end
el se if ab s(m) <l then
beg i n

rexit[l] : ==x ;
re xit[2] : ==O ;
tran s : ==l ;
for mi : ==l to n m do
beg in

pro p a gm (fi rh a If , r ex it , re x it) ;
x l : == a bs ( r e x i t[ 1 ]) :
cond1 : ==x1 >aa :
if cond1 then
beg i n

rexit[1]: ==re xit[1] *aa /x1 ;
rexit[2] : ==rexit[2]*aa /x1 ;

end ;
propagm(e,rexit ,rexit) ;
x2 :== a b s ( r e x i t[ 1]) :
cond2 : ==x2 >aa:
if cond2 then
beg i n

r e x i t ] 1 ] : ==rexit[ 1 ] *aa /x2 ;
r e x i t [ 2 ] : == r e x i t [ 2 ] * a a / x 2 ;

en cl ;
pr opagm(se chalf .rexit ,r exit) :
x3 :==a b s ( r e x i t[ 1]) ;
cond3 : ==x3 >x ;
if cond3 then
beg i n

rexit[1] : ==rexit[1]* x /x3 ;
r e x i t [ 2 ] : == r e x i t [ 2 ] * x 1x 3 ;

end ;
cond1 : ==x1 >aa ;
cond2 : =x2 >aa ;
cond3: ==x3 >x:
if cond1 then

trans1 : ==sqr(aa) /sqr(x1)
else trans1 : ==1;
if cond2 then

trans2: =sqr(aa) / sqr(x2)
else trans2 : ==1 ;
if cond3 then

trans3: ==sqr(x) /sqr( x3)
else trans3: ==1 ;
trans : ==trans*trans1*trans2 *tran s 3 ;

end ;
end;
l o s s i e Lvt r a n s ;

end ;

(***************************** *** * * * * * ** ** * * * ** * * ** )
(*** Procedure to calculate the losses at differ ent time s ** *)
(******************************** ** *** ********* ** ** )

procedure lossarrcal(rr:double) ;
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var
a ,tl,dtl:double ;
k:integer;

he gin
dtl: =tmax /nloss;
for k: =1 to n l o s s do
beg i n

tl: =k*dtl;
reso(tl,rr,a);
arrloss[k]:=a;

end;
end;

(******************************************)
(*** Function to interpolate the array a r r l o s s ***)
(******************************************)

fu n c t ion cl 0 S S (t : d 0 ubi e ) : do ubi e ;

var
tl ,tll ,dtl:double;
k:integer ;

he gin
closs : =O.O;
dtl: =tmax /nloss;
if t <dtl then closs: =arrloss[l]
else

for k : =1 to nloss-l do
beg i n

tl: =k*dtl;
t l l : = ( k+ 1 )*dtl ;
if (t > =tl) and (t <tll) then

closs: =arrloss[k] +(arrloss[k +l)-arrl o s s[k) ) /dtl*(t-tl) :
end;

end;

(*********************** ******)
(*** Define the rate equations ***)
(*****************************)

PROCEDURE d e r i v s r x r d o u b l e ; y :glnarra y : V AR d y d x i g l n a r r a y ) ;

var
sp21 ,loss:double ;

beg i n
sp21: =y[I)*1 .0e-6 ;
loss: =closs(x)-In(refll ) +Ios :
d y d x ] I ] : =-y[2]*s21 *cl /nruby*gamma *y[ I] ;
dydx[2) : =y[2)*(s21*y[I]*cl /nrub y*lr od /lre s-los s /tr ) + sp21 ;

end;

(****************************)
(*** Runge Kutta fourth order ** *)
(****************************)

PROCEDURE rk4(y ,dydx : glnarra y ; n : integer ; x ,h : double ; V A R yout: g l n a r r a y ) ;

VAR
i : i 11 t e g er ;
xh ,hh,h6: double;
dym,dyt ,yt: glnarray ;

BEGIN
hh h*0 .5;
h6 : = h /6.0;
xh := x +hh;
FOR i : = 1 to n DO BEGIN

yt[i] := y[i] +hh*dydx[i]
END ;
derivs(xh,yt ,dyt);
FOR i : = 1 to n DO BEGIN

yt[i] : = y[i] +hh*dyt[i]
END;
derivs(xh ,yt ,dym);
FOR i := 1 to n DO BEGIN

yt[i] : = y[i] +h*dym[i];
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dym[i] : = dyt[i] +dym[i]
END;
derivs(x +h ,yt,dyt);
FOR i : = 1 to n DO BEGIN

yout[i] y[i] +h6*(dydx[i] +dyt[i] +2 .0*dym[i] )
END

END ;

(******************************)
(*** Procedure saveresult to file ***)
(******************************)

Procedure saveresult(k :integer ; tt ,ii ,ll :result ; v a r n f: t ex t );

var
j:integer;

he gin
if K =l then

for j : =l to ntime do
writeln(nf,tt[j]-tsw,' ' ,ii[j],' ' ,ll[j]) ;

end;

(**************************************)
(*** Procedure to save radial information ***)
(*********************************** ***)

Procedure saveradial(ra ,en ,inm ,tl :shell ; entot :douh le ; va r nf:text) ;

var
k:integer ;

beg i n
writeln(nf) ;
for k: =l to nshell do
beg i n

writeln(nf ,' \ ',k , ' Ene = ' ,en[k] ,' Intmax =' ,inm[k]) ;
writeln(nf,' \ ',k,' Tlas =' ,tl[k]-tsw ,' radiu s =' ,ra[k]) ;
writeln(nf ,ra[k] ,' ' ,en[k] ,' ' ,inm[k] ,' ' ,tl[k]-t s w) ;

end;
end:

(**************************)
(*** Procedure to open file ***)
(**************************)

Procedure open(var nf:text : v a r nfile : string) ;

var
nfile 1 :string;

beg i n
n fi I e 1 : = con cat (' c : \ d a t a \ ' , n fi le , , . d at') ;
assign(nf,nfilel ) ;
rewrite(nf) ;

end ;

(********************************** **)
(*** Procedure to initialize data value s ** *)
(************************************)

procedure initializel ;
beg in

n fi I e 1 : = ' mod e c m a x' ;
n fi I e 2 : = 'm 0 d e c r ad' ;
open(nfl , n f i l e l);
lcoup: =( 1.0-refl 1 ) /( 1 .0 +refl 1 )*sqr(cl)*hplank /0 . 693e -4 ;
ener: =O .O;
for j: =l to ntime +l do
beg i n

~ime[j) : =tiniwr +(tfinwr-tiniwr) /ntime*(j-l) ;
lnten[J]: =O.O;
intave[j]: =O.O ;
lost[j] : =0.0 ;

end;
end;

(************************************)
(*** Procedure to initialize data values ***)
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( ********* *************** * ** ** * * * * ** *)

Procedure initialize2 ;

beg i n
radius[k] : = k * d r;
intmax[k] : =O .O ;
ene[k] : =O.O ;
tlas[k]: =tsw ;
las[l] : =ininver ;
las[2]: =O ;
j : = 1 ;
dt: =dtstart ;
t: = 0.0 ;

end ;

(********** *********)
(*** Main program ***)
(*******************)

(* Initial in v e r si on *)
(* i n i t i a l i n te ns i ty * )

Beg i n
initializel ;
for k: =l to n shell do
beg in

initiali ze2 ;
lossarrcal(radius[k]) ;
while (t <tmax) do
beg in

la sl: =las[l];
las2: =las[2];
d e r i v s ( t , I as , d I a s d t ):
rk4(las ,dlasdt ,2 ,t,dt ,la s ) ;
int: =las[2] *lcoup ;
if int >intmax[k) then
beg in

intmax[k] : = i n t;
tla s[k] : =t ;

end ;
ene[k] : = e n e [ k ] + i n t * d t ;
if (lasl =O .O) or (las2 =0 .0 ) th en e psi : =O
else epsi : =l .Oel*ab s«(las[1]-l a sl ) /l a sl +ab s (l a s [ 2] -la s2) /1a s2) /2 .0) ;
dt: =(dtstart /(O .08 +epsi) +dt) /2 ;
if (t >time[j]) and (t <time[j +l ]) th en
beg i n

inten[j] : =int ;
if k =l then

int ave[j] : =intave[j) +int en[j) * sqr ( r adiu s[ l) / sqr (rrub y)
e I s e

intave[j] : =intave[j] +inten[ j) *
( sqr(radiu s[k)- sqr ( radiu s[k -l) ) ! s qr(rrub y) ;

10 s t [j] : = c I 0 s s (t) ;
writeln(time[j] ,inten[j]) ;
i n c I j ) ;

end ;
t : = t + d t ;

end ;
if k =l then

ener : =ener +ene[ l)*pi* sqr(radiu s[ 1) * 1 . Oe4
else

ener : =ener +ene[k]*pi*( sqr(radiu s[k] )- sqr (r adiu s[ k-l] » *1 .Oe4 ;
writeln(k) ;
write1n('Laser Pulse Energy = ' , e n e [ k ], ' J /cm2 ');
writeln('laser pulse at time t =', t las [ k ) - ts w ) ;
saveresult(k ,time ,inten ,lost ,nfl ):

end ;
close(nfl) ;
writeln('Energy = ' , e n e r ) ;
ope n (n f2 , n fi I e 2 ) ;
s a v era d i a I (r a diu s , en e , i n t m a x , t I as , en e r, n f2 );
close(nf2) ;

end.
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APPENDIX C

The following program was utilised in chapter 5 to compute the diffraction

pattern due to the colliding shock lens. Both the refraction due to the

refractive index profile experimentally measured and the diffraction from

the circular aperture of the CSL are taken i nto account.

(********************************** *********** ***** )
(*** This program computes the diffraction pattern due ***)
(*** to the Colliding Shock Lens at an y image plan e ***)
(****************************************** ***** * * * )

program difesl ;

uses
c r t , graph ;

eo n s t
a2 =0 .21;
a4 =7.4Ie3;
rmax =2.4e-3 ;
nr =5000;
pmax =3.0e-3 ;
np =400;
lambda =0.337e-6 ;

v a r
r , r 1 • p , d r, d p , r 24, r j , a I fa, bet a , g a m m a , i n t c , in t s , i n t m a x , Z m a x : do ubi e ;
intint ,intref,norm:double;
f l i t e x t ; .

i p c i r r i n t e g e r ;
int ,ref:array[I . . np] of double ;

F UNCTION b e s s j OLx : double) : double ;

VAR
a x v x x i z : double ; y ,ans ,ansl,ans2 : d ouble ;

BEGIN
IF (abs(x) < 8.0) THEN BEGIN

y : = sqr(x);
ansl : = 57568490574.0 +y*(-13362590354 .0 +y* (651619640 .7

+ y * ( - 1 1 2 1 4 4 2 4 . 1 8+ y * ( 7 7 3 9 2 . 3 3 0 1 7+ y * ( - 1 8 4 . 9 0 5 2 4 5 6 » » ) ;
ans2 : = 57568490411.0 +y*(1029532985 .0 + y*(9494 680 .718

+ y * ( 5 9 2 7 2 . 6 4 8 5 3+ y * ( 2 6 7 . 8 5 3 2 7 1 2+ y * I. 0 » »;
bessjO : = ansl /ans2 END

ELSE BEGIN
a x : = abs(x) ; z : = 8 .0 /ax ; y : = sqr(z) ; x x : = ax -0.7 85398164 '
ansl : = 1.0 +y*(-0.1098628627e-2 +y*(O.273451 0407e_4 '

+ y * ( - 0 . 2 0 7 3 3 7 0 6 3 g e - 5+ y * 0 . 2 0 9 3 8 8 7 2 1 I e _6 »);
ans2 : = -0 .1562499995e-l +y*(0.1430488765e_3

+ y * ( - 0 . 6 9 1 1 1 4 7 6 5 I e - 5+ y * ( 0 . 7 6 2 1 0 9 5 1 6 I e _6
-y*0.934945152e-7»);

ans :. = sqrt(0 .636619772 /ax)*(eos(xx)*ans 1-z*sin(x x)*ans2);
b e s s j O : = ans END

END;

FUNCTION bessj1(x : double): double ;
VAR

ax,xx,z : double; y,ans,ans1 ,ans2 : double ;
FUNCTION sign(x: double): double;

BEGIN
IF x > = 0.0 THEN sign 1.0
ELSE sign -1.0 ;

END;
BEGIN

IF (abs(x) < 8 .0) THEN BEGIN
Y : = sqr(x);
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ansl := x*(72362614232.0 +y*(-7895059235 .0 + y * (242396853 .1
+ y * ( - 2 9 7 2 6 1 1. 4 3 9+ y * ( 15704.48260 +y*(-30 .1603 6606»))))) ;

ans2 := 144725228442 .0 +y*(2300535178.0 +y *(185 83304 .74
+ y * ( 9 9 4 4 7 . 4 3 3 9 4 + y * ( 3 7 6. 9 9 9 1 3 9 7+ y * 1 .0»»;

bessj1 : = ans1 /ans2 END
ELSE BEGIN

a x : = abs(x); z : = 8.0 /ax ; y : = sqr(z ); x x : = ax- 2 .3 56194491 ;
ans1 := 1.0 +y*(O.183105e-2 +y*(-0.3516396496e-4

+y*(O.2457520174e-5 +y*(-0 .24033701ge-6»» ;
ans2 := 0.04687499995 + y*(-0 .2002690873 e-3

+ y * ( O . 8 4 4 9 1 9 9 0 9 6 e - 5+ y * ( - 0. 8 8 2 2 8 9 8 7 e - 6+ y * 0. 1 0 5 7 8 7 4 1 2 e - 6 » ) ;
a n s : = sqrt(O .636619772 /ax)*(co s ( x x)*ans1

-z*sin(xx)*ans2)*sign(x) ;
b e s s j l ans END

END ;

(********************************* * * **** *)
(*** Finds the normalisation of the integral * * *)
(********************************** ******)

procedure normint(var i i n t m a x i d o u b l e ) ;

var
iints,iintc ,rr ,rr24 ,rrj:double ;
i i r i i n t e g e r ;

beg i n
iintc : =O .O ;
iints: =O.O ;
for iir : =l to nr do
beg i n

rr : =iir*dr ;
rr24: =alfa*sqr(rr) +beta * sqr( sqr(r r » ;
rrj : =p*rr*gamma ;
iintc : =iintc +leIO*cos(rr24)*rr:
iints : =iints + 1 e 1 0 *sin(rr24)*rr ;

en d ;
iintmax: =sqr(iints) +sqr(iintc) :

end;

(*********************** * ** * ** * * * * * * * * * * * * * * * * * * * * * * * ***)
(*** Finds the intensity at the centre o f th e i n te nsity p attern * **)
( ********************** ** ** **** * * * * ** ** * * * * ** * * * * * * *****)

procedure find10(z:double ; v a r l u r d o u b l e ) ;

var
i r t i n t e g e r ;
in t c, i n t s , r , r 24 , a I fa , bet a , g a III m a : d o u b l e ;

beg i n
a I fa : = 2 * P i I I a m b d a * (a 2 - 0 . 5 I z ) ;
beta: =2*pi /lambda*a4 ;
gamma : =pi llambda /z ;
intc : =O.O;
ints: =O.O;
for ir : =1 to nr do
beg i n

r : =ir*dr;
r 24: = a I fa * s q r (r) + bet a * s q r (s q r (r» ;
intc: =intc + 1 e 1 0*cos(r24)*r ;
ints : =ints + 1 e I 0*sin(r24)*r ;

end;
IO: =sqr(ints) +sqr(intc) ;

end;

(******************************* ****** ***** *** * * * ** **** *** *)
(*** Finds the focus as the plane with maximum cen tral intensity ***)
(*********************************** ******* **** ************)

procedure findzmax(var z m a x i d o u b l e j ;

v a r
i,nz :integer ;
za ,zb,z 1 , z 2 , d z, I 1 ,I2 ,Imax :double ;

beg i n
imax: =O.O ;
nz: =10 ;
za: =1.0;

2
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zb : =3 .0 ;
dz : =(zb-za) /nz ;
for i: =l to nz +1 do
beg i n

zl : =za +(i-1)*dz ;
findiO(zl ,i1) ;
if i1 >imax then
beg i n

imax: =i1 ;
zmax : =zl ;

end ;
end;
zl : =zmax-dz ;
z2 : =zmax +dz ;
while abs(zl-z2»1 .0e -4 do
beg i n

findlO(z 1 ,11);
findI0(z2,12) ;
writeln('zl = ' , z l , ' 11 = ' , i 1 ) ;
writeln('z2 = ' , z 2 , ' 12 = ' , i 2 );
w r i t e l n ;
if 11 > =12 then

z2 : =zl +abs(zl-z2) /2
else if 11 <12 then

z l : =z l + a b s ( z l - z 2 ) / 2;
end ;
zmax: =( zl +z2) /2 ;

end ;

(******* ************)
( * ** !\Iain program * **)
( ********* ***** ** ** *)

beg in
dp : =pmax /np ;
dr : =rmax /nr;
findzmax(zmax) ;
a I fa : = 2 * P i / I a m b d a * (a 2 - 0 . 5 / z m a x ) ;
beta : =2*pi /lambda*a4 ;
gamma : =pi /lambda /zmax ;
normint(intmax) ;
intint : =O .O;
intref : =O .O ;
for ip: =l t o np d o
beg i n

p : =ip *dp ;
intc : =O .O ;
int s : =O .O ;
for ir : =l to nr d o
beg in

r : =ir *dr;
r 24 : = a I fa * s q r (r) + b et a * s q r ( s q r (r» ;
rj : =p*r*gamma ;
in t c : = i n t c + 1 e 1 0 * cos ( r 24) * b e s sj 0 (r j ) * r ;
in t s: = in t s + 1 e 1 0 * s i n ( r 2 4 ) * be s s j 0 ( r j ) * r ;

end ;
int[ip] : =( sqr(ints) + sqr (int c » /int m a x :
r1 : = g a m m a* p * r m a x ;
re f[ i p] : = s q r (2 .0 * b e s s j 1 (r 1 ) / r 1 ) ;
intint : =intint +int[ip]*p ;
intref : =intref +ref[ip]*p ;
writeln('at ' ,p ,': ', i n t[ i p ], ' ', ref [ i p ] ) ;

end ;
norm: =intref /intint ;
ass i g n (fl , 'c : \ d a t a c s I \ 14 f. d at') ;
rewrite(fl) ;
writeln(fl ,' \ Focal length = ' , z m a x ) ;
writeln(fl ,O.O ,' " 1 .0*norm ,' ' ,1 .0 ) ;
for ip: =l to np do
beg i n

writeln('at ' ,ip*dp ,' = ', i n t[ i p ]* norm ,' ' , r e f[ i p ] ) ;
w r i t e l n ( f l , i p * d p , ' ' ,int[ip] *n orm , ' ' ,re f [i p ] ) ;

end ;
c l o s e i f l ) ;

end .
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The next program reads the output files written by the previous program

and simulates the effect of the divergence o f th e laser on the intensity

profile.

(***************************** ** ** * * ** * * *** *** * * * ** )
(*** This program computes the diffra cti on patt ern du e * * * )
(*** to the Colliding Shock Lens at an y imag e plan e ***)
(*** including the divergence of the la s er beam ***)
(******************************** * * * * *** * ** *** * * * * * )

program difcslav;

uses dos ,crt;

con s t
np =400 ;

t ype
arrival =arra y[l . . np] o f d ouble ;

var
i :integer ;
fl ,fla :text ;
I ,dth ,dr :double ;
r ,int ,ref,inta :arrival :

(*********************** ***** ** *** * * * * * * * * * ** * * * * * )
( *** Procedure to average the fringe pr ofil e a c c or d in g ** * )
( *** to the divergence of the laser ** * )
(*** **************** ***** ** *** * * * * * * * * * * * * * * * * * * * * )

procedure calca ve(int :arrival ; v a r i n t a v e r a r r i v a l ) ;

v a r
ndr ,i :integer ;
m,ii ,jj :longint ;
n n , a a , r ij 2 , r n 2 , i n t pr : d o ubi e ;

beg i n
ndr : =round(l *dth /2 .0 /dr) ;
if ndr =O then ndr : = 1 ;
rn2 : =ndr ;
for i : = 1 to np-ndr-l do
beg i n

n n: = 1 ;
intpr : =O .O ;
for ii : =-ndr to ndr do

for jj : =-ndr to ndr do
beg i n

rij2: =sqrt(sqr(ii) + sqr(jj» ;
if rij2 < =rn2 then
beg i n

m : =round(sqrt( s q r ( i + i i ) + s qr( jj) » ;
if 01 =0 then 01 : =1 ;
aa : =co s(rij2 /rn2*pi /2) ;
intpr: =intpr +int[m]*aa ;
nn: =nn +aa ;

end ;
end;

i n t a v e [ i ] : = i n t p r / n n;
end ;

end ;

(*******************)
(*** Main Program ** *)
(*******************)

beg in
1 : =1.97;
dth : =3.3e-4;
ass i g n ( fl , 'c : \ d a t a c s I \ 14 f . d at' ) ;
r e s e t t f l ) ;
readln(fl);
for i: =l to np do
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beg i n
rea d (fl , r [i) , i n t [i) ,r e f[ i ) ) ;
writeln('at ' ,r[i],' = ' ,int[i],' ' ,r e f[i) ;

end ;
close(fl) ;
dr : =r[2]-r[1];
calcave(int ,inta) ;
for i: =l to np do
beg i n

if inta[i) <I .Oe-7 then inta[i) : =I . Oe -7 ;
writeln(r[i],' ' ,int[i],' ', i n t a [ i ) ;

end ;
as s i g n (fl a , ' c : \ d a t a c s 1\ 14 fa . d a t ');
rewrite(fla);
for i : =l to np do

writeln(fla ,r[i) ,' ' ,inta[i) ;
close(fla) ;

e n d .
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APPENDIX D

The stigmatic focusing properti es of the e lliptical CSL are investigated

with the help of the next two programs . Gi ven that there is no circular

symmetry , the calculation of the intensit y pattern over the whole focal

P I a n e involves a two dimensional calculat ion and wou Id be excessively

t i me consuming. Consequently the calculat ion was performed on I y a Ion g

the two axes parallel to the semi-axes o f the elliptical CSL and

perpendicular to the optical a x i s. The first of the two programs listed

below computes the intensity profile along th e x - a x i s and the second along

the y - a x i s.

(****************************** ** * * * * ** * * * * * ** * * * * * )
( ** * This program compute s the diffr a cti on p att ern du e * * * )
( *** to the elliptical lens along the x-ax is * * * )
(*** (perpendicular to the line focu s) * **)
(***************************** ** ** * * * * * * * ** ** * * * * * * )

program d i f e l l ;

u ses
do s ,crt ,graph ;

c on s t
ec =2.9 ;
fx = I . 5;
f y =ec*fx ;
rmax =I .4e-3 ;
nr =300 ;
nth =67 ;
pmax =0.5e-3 ;
np =200 ;
lambda =0.337e-6 ;

var
a , a r g , r , p , t h , d r , d p , d t h , a I fa , bet a , r a I fa, r b et a ,
max ,intc ,ints,intthc ,intth s :double :
fl : t e x t ; .
ip ,ir ,ith :integer ;
int :array[l . . np) of double ;

( * ******** ****** ** ** * * **)
( ** * Function rm(theta) ***)
( *** ***** ***************)

fu n c t ion r m ( the t a : do ubi e ) : do ubi e ;

beg in
rm: =rmax*( 1 + ( e c - l )*sin(theta» ;

end ;

(*******************)
( *** Main program ***)
(*******************)

b eg in
a: = 0.5 * (1 I fy - 1 I f x ) ;
dp : =pmax /np;
dth: =2*pi /nth ;
beta: =2*pi /lambda*a ;
for ip: =1 to np do
beg in

p: =ip*dp:
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a I fa : = 2 * p i / I a m b d a / fx * p ;
intc : =O.O;
ints: =O.O;
for ith: =l to nth do
beg in

intthc: =O .O;
intths: =O .O ;
th: =ith*dth;
dr: =rm(th) /nr;
ralfa: =alfa*cos(th) ;
rbeta:=beta*sqr(sin(th» ;
for ir: =l to nr do
beg i n

r : =ir*dr;
arg: =ralfa*r +rbeta*sqr(r);
intthc: = i n t t h c + 1 e 1 0 *r*cos(arg);
i n t t h s : = i n t t h s + 1 e 1 0 * r * sin ( a r g );

end;
intc: =intc +intthc;
ints : =ints +intths;

end'
in t ['i p 1: = s q r ( in t s * d r * d t h / 1 . 0 e 1 0) + S q r (i n t c * d r * d t h / 1 . 0 e 1 0) ;
writeln( 'at ',p ,' : ' ,int[ip] /int[l] );

end;
max: =int[l];
for ip: =l to np do

if int[ip] >max then max : =int[ip];
ass i g n (fl,' c: \ d a t a c si \ d i f e II x 4 . d at') ;
r e w r i t e t f l ) ;
for ip : =l to np do
beg i n

writeln('at ' ,ip*dp ,' = ' ,int[ip] /ma x) ;
writeln(fl ,ip*dp ,' ' ,int[ip] /max) ;

end;
close(fl) ;

end.

(********************************* ******* ****** ****)
(*** This program compute s the diffracti on pattern due * * * )
(*** to the elliptical lens along the y - a x i s ***)
(*** (parallel respect to the line focu s ) * * * )
(************************ * ****** ** * *** *** * ****** *** )

program d i f e l l ;

uses
dos,crt ,graph ;

con s t
ec =2.9 ;
fx =1 .5 ;
fy =ec*fx;
rmax =1 .4e-3 :
nr =300 ;
nth =67 ;
pmax =3 .0e-3 ;
np =300;
lambda =0.337e-6;

vaT
a ,arg ,r ,p,th ,dr,dp ,dth ,alfa ,beta,ralfa ,rbeta ,
max,intc,ints,intthc ,intths :double ;
fl :text ;
ip,ir,ith:integer ;
int :array[l . . np] of double ;

(***********************)
(*** Function rm(theta) ***)
(***********************)

f u net ion r m (t het a: do ubI e) : do ubI e ;

beg i n
rm: =rmax*( 1 + ( e c - l )*sin(theta»);

end ;

(*******************)
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(*** ~Iain program ***)
( ********** * ********)

beg in
a : = 0.5 * ( 1 / fy - 1 / f x ) ;
dp: =pmax /np ;
dth: =2*pi /nth ;
beta : =2*pi /lambda*a;
for ip : =l to np do
beg in

p: =ip*dp;
a 1fa : = 2 * P i / 1a m b d a / fx * p ;
intc : =O.O ;
ints: =O.O;
for ith : =l to nth do
beg i n

intthc : =O .O;
intths: =O.O;
th: =ith*dth;
dr : =rm(th) /nr;
ralfa: =alfa*sin(th);
rbeta : =beta*sqr(sin(th» ;
for ir : =l to nr do
beg in

r: =ir*dr;
a r g: = r a 1fa * r + r bet a * s q r (r) ;
intthc: =intthc + 1 e 10*r*cos(arg) ;
intths : =intths + 1 e 1 O*r*sin(ar g) ;

end ;
intc: =intc +intthc ;
ints: =ints +intths ;

end;
int[ip]: =sqr(ints*dr*dth /l .OelO) +sqr(int c *dr*dth /l . Oel0) ;
writeln('at ' ,p ,' : ' ,int[ip] /int[l]) ;

end;
max: =int[l];
for ip: =l to np do

if int[ip] >max then max : =int[ip];
ass i g n (fl ,' c : \ d a t a c s 1\ d i f e 11y 4 . d at') ;
rewrite(fl);
for ip: =l to np do
beg i n

writeln('at ' ,ip*dp,' = ' ,int[ip] /max) ;
writeln(fl,ip*dp,' ' ,int[ip] /max) ;

end;
close(fl) ;

end .
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The following program reconstruct the initial shockfront geometry that

would generate an elliptical lens after the central implosion . We utilised

the hypothesis is that the shock velocity is constant. Nevertheless , the

calculation is performed numerically rather than analytically in order to

have a more flexible tool. With little modifications it is possible to take

into account of the shock velocit y variations (of course not through gas

dynamics) and to change the geometry from elliptical.

(******************************************)
(*** Calculates the shockfront that generates ***)
( * * * a n ell i p sea ft er coil i s ion * * * )
(******************************************)

program ellipse;

uses
dos ,crt,graph ;

con s t
n = 5 0 ;
n c = I 0 ;

var
x,xmax,ymax ,xell,yell: double ;
i ,ii,ic,j,sigx,sigy,gx,gy: integer ;
a,b ,c ,cmax: double;
angle,ypos.xpos: array [1 .. n +l] of double ;
fl:text;

(********************)
(*** Begin graphics ***)
(********************)

procedure begraph;

var
grdriver .grmode :integer ;

beg i n
grdriver: =vga; grmode : =vgahi ;
initgraph( grdri ver,grmode , 'c : \ t p ' ) ;
setviewport( I 0, I 0 ,630,470,false);
rectangle(0,0,620,460);

end;

(******************)
(*** End Graphics ***)
(******************)

procedure endgraph;

beg i n
closegraph;
restorecrtmode;

end;

(**************************************)
(*** Procedure to convert physical values ***)
(*** in screen cohordinates ***)
(**************************************)

procedure convert(xmin ,ymin,xmax,ymax ,a ,b :real ; var na ,nb:integer) ;

beg i n
na: =round«a-xmin) /(xmax-xmin)*620) ;
nb : =460-round«b-ymin) /(ymax-ymin)*460) ;

end;
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fu n c t ion d y i d x 1 ( x x : do ubi e ) : do ubi e ;

beg i n
if xx > =a then dyldxl : =l .OelO
else d yldxl : = s q r ( b / a ) * x x / s q r t ( s q r ( b)-s q r ( b*xx / a»;

end ;

fu n c t ion y 1 ( x x: do ubi e ) : do u b l e ;

beg i n
if xx > =a then yl: =O .O
else yl : =sqrt(sqr(b)-sqr(b /a*xx» ;

end ;

procedure selectsign(quad :integer ; v a r s i gx ,si gy : i n tege r);

begin
if quad =1 then
beg i n

sigx: =-I ;
sigy: =-I ;

end
else if quad =2 then
beg in

sigx: =-I ;
s i g y:= I ;

end
else if quad =3 then
begin

s i g x: = I;
s i gy := I;

end
else if quad =4 then
beg i n

s i g x : = I;
s i g y : = - I ;

end ;
end ;

beg i n
a : = 4.0 ;
b : = 6 .0 ;
cmax: =19.0 ;
xmax: =O.O ;
y m a x i v Ov n ;
for i: =1 to n +l do
beg i n

x: =(i-l)*a /n ;
angle[i]: =arctan(dyldxl(x» ;
y p o s [ i ]: = y l ( x ) ;
xpos[i]: =x ;

end ;
ass i g n (fl , , c : \ d a t a c s I \ ell i p . d at') ;
rewrite(fl) ;
begraph;
for ic : =1 to nc +l do
beg i n

c: =(ic-l ) *cmax /nc ;
writeln(fl) ;
writeln(fl) ;
writeln(fl ,204 ,' ' ,ic) ;
writeln(fl ,' \ curve number n ' , i c ) ;
for j : =1 to 4 do
beg i n

se I e c t s i g n (j , s i g x , s i g y) ;
for i : =l to n +l do
beg i n

if j mod 2 = 0 then ii: =n +2-i else ii : =i ;
xell: =-sigx*xpos[ii] +sigx*c * sin(angle[ii]) ;
yell : =-sigy*ypos[ii] +sigy*c* cos(angle[ii]) ;
if xell >xmax then xmax: =xell ;
if yell >ymax then ymax: =yell ;
w r i t e I n ( fl , x ell ,' , , ye II ) ;
convert(-cmax* 1 .4 ,-cmax ,cma x* 1.4 , cmax ,x ell , yell ,gx ,gy) ;
if i =1 then

moveto(gx,gy)
e I s e

lineto(gx ,gy) ;
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end ;
end ;

end ;
close(f1) ;
repeat until readke y =' ' .
endgraph ;
writeln('E X semiaxis
writeln('T X semiaxis
repeat until readke y =' ' ;

end .

x In a x ,'
c - a "

Y s e m i ax i s _ . y m a x ) ;
Y se m i axis = ', c-b );
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Intensity Profile.
F=2.0 m Th=O.3 mrad
Optical Aperture = 1 cm

Spinning pipe gas lens : N. Lisi et al.
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(Fig. 3(b)), which is only about twice the diffraction
limit. It can be easily seen that the outer rays are
too weakly refracted to arrive in the same focus as
the inn er rays . Another feature , visible both in
Fig. 3 and Fig. 4, is that the focus is displaced
alo ng the vertical, below the optical axis , due to
the effect of gravity on the temperature distribution
(see Fig. 2(b)).

Conclusions

Ray tracing th rough the measured refractive index
profile of a spi nning pipe gas lens, satisfactorily
explains two importa nt features : the decrease in
optical qua lity as the optical aperture approaches that
of the pipe, an d the lowering of the image centre due
to gra vity. Reasonable numerical agreement is
obtained.

References

Marcuse D., Theory of thermal gradient gas lens, IEEE
Trans Microwave Theory and Techniques MTT-13 (1965) 734

2 Nottc utt M., Michaelis M. M., Cunningham P. F., Waltham
J. A., Spinning pipe gas lens, Opt Laser Tee/mol 20 (1988) 243.

3 Michaelis M. M., Dempers C. A., Kosch M., Prause A.,
Nottcutt, M., Cunningham P. F., Waltham J. A., A gas-lens
telescope, Nature 353 (1991) 547

4 Gloge D., Bell Syst Tech J 46 (1967) 357
5 Steier W. H., Measurement of a thermal gradient gas lens, IEEE

Trans Microwave Theory and Techniques MTT-13 (1965) 740
6 Practical Temperature Measurements, Hewlett Packard,

Appl ication Note 290, 8
7 Michaelis M. M., Cunningham P. F., Cazalet

R. S. , Waltham J. A., Nottcutt M., Gas lens applications,
Laser and Particle Beams 9 (1991) 641



A pulsed colliding shock lens is develop ed whe re the shocks we re genera ted by elec tric d ischarges. Near d iffract ion limitei

focusing was observed.
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When several spherical shocks. produced by art

discharges. expand from points equi- spaced on a cir
curnfercnce. a cylindrically symmetric convergin]
shockfront is formed. Schwcnd crnan and \Vithan
[6 ] have noted that converging cylindrical shock
with regular polygonal shap ed cross-section s arc sta
ble and tend towards a circular cross-section . Con
verging cylindrically symmetric shock waves pro
duce a condition of high pressure . temp erature anc
density in the region of implosion. After the spher­
ical shock converges to a point. a regular and stabk
[7 ] axi-symmctric cigar shaped expanding densir,
d istribution results. It is in this region that we expcci
the densit y distribution to act as a graded index lens
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Colliding shock lens

2. Colliding shock lens principle

Gas lenses have recentl y been shown to be more
versatile than expected [1,2]. Cont inuous wave gas
lenses have industrial potential and even show
promise in astronomy [3]. In ref. [4 ] we consider
a macroscopic pulsed gas lens that could be used as
a final focusing element in a laser dri ven thermo­
nuclear fusion experiment. In this article we describe
a novel type of pulsed gas lens which would be suit ­
able for operation in series with a small pulsed gas
laser: the colliding shock lens (CSL ).

1. Introduction

Optics Communicat ion s 101 ( 1993) 350-355
North-Holland

When two spherical shocks collid e, the interaction
depends on their strength [5]. At low Mach number
(Ala) the waves simply pass unmodified throu gh one
another. At intermediate 1\10 they pass but are some­
what delayed. At higher 1\10 , there is a period of stag­
nation during which the fronts merge into a high
density plane slab , and at very high Alo the collision
generates turbulence. When several shocks are
launched from explosion points placed on the arc of
a circle, one might expect similar beha viour to that
of the double shock interaction. Moreover, since
many shocks now collide at one point, nonlinearities
in the shock interaction are expected to occur at lower
!vIa than for two colliding shocks . Th e regime of in­
terest here , is at an intermediate 1\10 when the fronts
interact in a nonlinear but orderly manner.

350
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The CSL properties were investigated by record­
ing images at different distances from the CSL and
at different delays. Parasitic fringes were due to the
interference filter.

A time sequence for the colliding shocks is given
in fig. 2 ( .\10 ::::: 1.5) . After the eight shocks have col­
lided (figs. 2f. 2g) a high density expanding region

4. Results

fcrcncc filter (330 nrn, bandwidth 10 nm ). A PC
synchronised the triggering of the CSL with the im­
age digitiser. A Rogowsky coil in the CSL circu itry
triggered the nitrogen laser via a variable delay box.
The value of the capacitor C determines the energy
provided to the colliding shocks. .-\ 5 nF capacitor
was used.

A schematic representation of the experimental
setup, including the colliding shock lens, is shown in
fig. I. The spherical shocks were created at points
equi-spaced on a circumference (diameter II mm)
by eight pairs of opposing electrodes (for simplicity
only four pairs of electrodes are shown in fig. I). We
utilized needles of diameter 0.85 mm and an arc gap
spacing of I mm. The electrodes were mounted on
two opposite plexiglass plates with a circular hole in
the center (diameter 7.5 mm) allowing a laser beam
to be directed along the axis of the CSL. The gaps
were connected in series in order to have approxi­
mately simultaneous breakdown. A spatially filtered
nitrogen laser beam (fwhrn ::::: I ns) was directed
through the collision region onto a T.V. camera face
plate through an imaging lens and a nitrogen inter-

3. Experimental setup

~~~. ~o ~ime sequence of a~ eight arc ~SL imaged 19 cm from the CSL at (a ) 3.2 I.lS, (b ) 5 I.lS. (c) 6 I.lS. (d) 6.9 I.lS. (e) 8 I.lS, (f) lOll S.
. I.ls.(h) IO.9I.ls. ( I ) 11.3I.ls.(J) 11.6I.ls.(k) 11.8I.ls,(I) 12.2I.ls. (m ) 12.4 I.l s. ( n ) 13.IIlS.(O) 14Ils. (p ) !5. 611S.

i
•I
i
I
t
i

i
I

1
I

j
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j
j

e Iy
:1
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d.
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Fig. 3. (a) Eight arc eSL focal spot (focal length 39 cm , dela y 11.8 us ). (b ) Focal spot with an additional filter. (c) 3D relat ive intcnsity
distribution of the central region. (d) Relative inte nsity contour plot of the central region (bar= I mm) .
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is created (figs. 2h, 2p). Focusing is achieved in figs.
2h and 2i. Figures 2j-m show the typical diffraction
pattern when focusing is achieved closer to the TV
camera. Figure 3a shows the focusing obtained with
the eight arc CSL (C=5 nF) at a distance of 39 cm,

The image in fig. 3b was recorded with an addition
filter (ND = I ). A three-dimensional representat ion
of the relative intensity of the central region is shown

in fig. 3c and the associated contour plot is shown in

fig. 3d. The fwhm focal spot diameter is I00 urn, The

CSL is a varifocal lens in which the focal length in­
creases with time: fig. 4a. The effective lens diameter
was obtained by imaging on the shock collision plan e.
Due to the expansion of the shockfront after the col­
lision, the effective lens diameter increases with time
( fig. 4b ) . Consequently, the relative diffraction lim­
ited focal spot size is expected to vary with time and

is consistent with the measured focal spot size (fig .

4c) . The position of the rings surrounding the cen­

tral spot (fig. 3a) is in reasonable agreement with
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Fig. 5. (a) Eight arc CSL burn pattern (focal length 39 cm , dela y 11.8 us ). (b) Equivalent glass lens burn pattern.

the theoretical Airy rings value (fig. 4d).

The eSL was used to focus a ruby laser beam
(fwhrn ~ 30 ns, E ~ 0.5 J) onto photographic paper
in order to obtain a burn pattern. We chose a focal
length of 39 cm. The diffraction limited ruby beam
was directed through the lensing region and the burn
pattern shown in fig. 5a was obtained. For compar­
ison a glass convex lens of equal focal length was ap-

354

ertured to 1.5 mm. This is the effective aperture of
the CSL. The burn pattern of fig. 5b was obtained.
The secondary spot in the lower region of the burn
patter is due to secondary reflections by the prisms
used to direct the beam through the lens. The central
burnt regions for both lenses were approximately 200
urn in diameter.
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We have developed a novel type of focusing de­
vice, the colliding shock lens, where near diffraction
limited focusing was observed . Although the useful
aperture of this lens is small we are in the process of
scaling up its dimensions.
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Colliding shock lens
as an intracavity Q-switch element

N. Lisi, M. M. Michaelis, R. Buccellato, M. Kuppen, and A. Prause

We show how a varifoc al pu lsed gas lens, the colliding shock lens , can be used as an intracavity element to
Q switch a ruby laser. By placement of th e shock lens in tandem with a second lens , a giant pulse is
obtained. The second lens may be a conventional glass lens or a cont inuous-wave gas lens .

The quality factor or Q switching of lasers is an
important method of enhancing the power of pul sed
lasers.' Mechanical Q switches and dye cell switches
have generally been discarded in favor of triggerable
opto-electronic devices based on rotation of polariz a­
tion by the use of the Kerr or Pockels effect . In thi s
paper we discuss another form of triggerable Q
switching that makes use of a new kind of gas lens.
This lens, the colliding shock lens (CSL),Z was devel­
oped in our laboratory, in step with the recent revival
of interest in gas-lens optics.v'

The principle of colliding shock Q switching (CS­
QS) relies on the insertion of a steady-state converg­
ing lens and of the rapidly varying CSL in a laser
cavity. The CSL focal length and lens diameter
increase with time over a few microseconds. When
the CSL is switched off, the steady-state len s renders
the cavity unstable. Only when the CSL is switched
on and while the focal regions of the two lenses
overlap does the laser cavity become stable and the
losses low. If this condition is achieved when the
population inversion is at its peak in the act ive
medium, lasing occurs in the form of a giant pulse.

In the experiment designed to test the CS-QS
concept, a commercial ruby laser (1975 Korad Model
Kl) was modified to incorporate additional Q-switch­
ing components. Figure l(a) is a schematic of the
experiment. The laser consists of a ruby head, full
reflector RI, and output coupler R2. The Q-switch­
ing components are CSL L2, continuous lens Ll , and
fluorescence-sensing photodiode PDl.

The authors are with the Plasma Physics Research Institute,
University of Natal , Durban, South Africa 400l.
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Th e CSL consists of eight arc discharges , struck
simultaneously between pairs of opposing points lo­
cated on the arc of a circle as illustrated in Fig. l tb).
Each point explosion produces an expanding spheri­
cal shock wave. After the eight shock waves collide
at th e center of the circle, a cigar-shaped, high­
den sity, axially symmetric core expands outward.
Focusing is due to the radially symmetric density
gradients within the expanding region. As the lens
diam eter increases, the density diminishes and the
focal length increases as depicted in Fig. 2. The CSL
used for these experiments was specially chosen for
its fast switching and large optical aperture. It
consists of a 5.0-cm-diameter cylinder closed at both
ends. The end plates that carry the 16 pins that
form the eight gaps are l.0 cm apart. The gaps are
set to l.5 mm, and the diameter of the circle of pins is
3.0 cm. The central apertures are l.0 cm in diameter.
A 100-nF capacitor , charged to 17 kV, is connected to
the eight gaps in series by a triggerable spark gap .
This series connection ensures simultaneous arcing.

Lens Ll can be either a conventional solid-state
device or a continuous-wave gas lens. The spinning­
pipe gas lens" used in some experiments, consists of a
l.O-m-long, 2.0-cm-diameter heated tube, spun at 30
Hz. The rotation centrifuges warm air out of the
two ends and causes cold air to be aspired along the
axis. Th e resulting density and refractive-index gra­
dient produces a long-focal-length lens, the quality of
which fluctuates." One can vary the focal length
from l.5 m to several meters (as measured from the
center of the pipe) by changing the pipe temperature
and rotation speed. The two flat end mirrors are a
full reflector, RI = 96%, and an output coupler, Rz =
45%.

Th e operation sequence for all CS-QS experiments
is the following: First the ruby flash lamp is fired
and the PDl photodiode detects the fluorescence
signal from the active medium. This signal is elec-
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The stability of the laser resonator can be deter­
mined in terms of the complex parameter m, which,
in the formal ism of the ray matrix optics, is half the
trace of the round-trip resonator matrix." For an
unstable resonator, abs(m) > 1. In this case we
define th e magnification M as

{

m + (m2 - 1)1/2 if m > 1 (positive branch)
M=

m - (m2 - 1)1/2 if m < -1 (negative branch),

(1)

LENS

ARC
(b)

Fig. 1. (a I Schematic of the eS-Qs experiment: PD's. photodi­
od es: CAL.l·alorimctcr. (b ) eSLgeometry.

tronically delayed and used as a trigger for the CSL
master spark-gap circuit. The signal from photodi­
ode PD2, placed behind full reflector RI, is read by a
storage oscilloscope and yields the laser-pulse wave­
form. The laser-beam energy is measured with a
calorimeter. A burn pattern of the attenuated beam
at the focus of a lens can be used to measure the
divergence of the beam.

The cavity is operated in three different modes
described below in detail. Mode a maximizes the
output energy and beam diameter. Mode b mini ­
mizes the Q-switched laser-pulse duration. Mode c
explores the feasibility of a cavity with intracavity
beam-expansion optics consisting entirely of gas .

where M is the amplification of the beam cross section
per round trip and can be related to the cavity losses .
When abs(m) < 1, the cavity is stable, while abs(m) =
1 for a plane-parallel configuration, which corre­
sponds to the confocal situation of the intracavity
telescop e.

In mode a, Ll is a 200-cm focal-length glass lens.
Th e lens separation d is 250 cm. The condition
abs(m) = 1 is achieved when fCSL = 50 cm. The CSL
lens aperture (dcsd is 3.0 mm (see Fig. 1), and the
beam fills the ruby rod (10 mm). At slightly later
t imes, the resonator becomes stable, and we expect
lasing to occur . A drawback of this operating condi­
t ion is that the cavity is long (3.0 m), as is conse­
quently th e rise time of the laser pulse. In this case
th e initial magnification of the resonator (before the
CSL is operat ed) is low, M = 2.8. \Ve must therefore
operate th e flash lamp below 4.3 kV to avoid free­
running lasing. A 2.0-J laser pulse of a duration of
360 ns (FWHM) is observed 5 us after the shock
collision . Figure 3 shows the pulse waveform.

In mode b, Ll is a 50-cm focal-length glass lens
(d = 100 cm). Again m = 1 is achieved when fi = 50
cm, dCSL = 3.0 mm , and the beam diameter on the
output coupler is expected to be 3.0 mm. The initial
magnifi cat ion M is now 4.4, and free running is
inhibited at any flash-lamp voltage. We operated the
flash lamp at 4.5 kV. In this case we expect shorter
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Table'. Summary of the Results of the cs-as Experiments

aEmaJ" maximum recorded value of the output energy in the three
different resonator geometries; I". typical pulse duration (FWHM);
d , laser spot diameter; div, divergence.

where L is the fractional intensity loss of an input
beam that is entering the output coupler and whose
linear magnification over one round trip is M. The
evolution of M and the corresponding L is shown in
Fig. 4 for mode a.

A simple model of the laser system was developed.f
Because of the presence of apertures in the cavity,
such as the ruby-rod external diameter and the CSL
aperture, the expression for the loss term is more
complex than that given by Eq. (2) and depends on the
input beam cross section. The expression for the
loss term coincides with Eq. (2) only for light that is
traveling close to the optical axis. This was taken

..- 20
(\/

E
o
<,

15~
6
~ 10'(i)
C
ID
E;

5

into account in the calculation of the losses as a
function of the distance from the optical ax is, which
was carried out with the formalism of matrix optics.
The laser beam was subdivided into a collection of
a nn ular beams. The laser rate equations were solved
for each annulus, using the fourth-order Runge Kutta
nume r ical method with variable step size. Indepen­
den tly an approximate computation of the beam
divergence is performed for the resonator geom etry
that exists when lasing is at its peak. \Ve generate a
uniform planar distribution of rays at the position of
the r uby rod, and we follow the path of each of the
rays for a given number of round trips, recording the
va lues of their angle at the output coupler. These
values are used to calculate the beam divergence.

Figure 5 shows the computed laser-beam-intensity
waveform in the center of the beam for modes a , b,
and c. The computed values of the laser energy,
pul se lengt h , beam diameter, and divergence are
su mmar ized in Table 2. The discrepancy between
t he measured and the computed pulse lengths can be
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Fig. 5. Computed laser-pulse intensities in the center of the
beam.
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pulses and a very narrow beam together with lower
energy. A lOO-mJ pulse of a duration of l 7? ns
(F\VHM) is observed 5.5 J-lS a fter the shock collision
(see Fig. 3). On a few oc~as.ions wh en t he CSL
alignment appeared to be op t imi zed , a pu lse length of
approximately 50 ns was observed.

In mode c, Ll is a spinning-pipe gas len s ope~'ated at
a 200-cm focal length. For this all-gas Q sWI~ch , we
expected similar performance to mode a. FIgure 3
shows a 375-ns (FWHM) pulse 4.5 J-lS after the shock
collision. However, the energy for this mode is now
slightly higher (3.0 J). The absen~e of reflective
losses in the cavity appears to outweigh the effect of
spinning-pipe gas-lens aberrations. .

In Table 1 we summarize the results of the expert­
ment. The energy values reported in this paper are
the maximum values obtained over a large number of
experiments. Although the. fluc~uatiox:s are large,
especially for mode c, which 111 this case IS due to the
unstable behavior of the spinning-pipe gas lens.! we
noted that the operations do not critically depend on
the cavity alignment and the gas-lens aberrations.

We now examine in greater detail the evolution of
the cavity geometry after the CSL shocks have col­
lided and how this affects the cavity losses. The
losses can be split into two terms. The first term is
constant and takes into account diffraction, surface
reflections from lens L1, and the ruby-rod surface
imperfections.

The second term depends on the cavity geometry
and will vary explicitly with time. If no apertures
are present in the cavity, the losses depend on only
the parameter m and can be calculated according to
the loss formula'

944 APPLIED OPTICS / Vol. 34, No. 6 / 20 February 1995



Table 2. Summary of the Computational Results of the cs·as

Mode ElIl ax (J) ' ,. (ns) d(mm) div (mrad)

Do 2.0 225 10.0 1.0
b 0.13 105 2.8 4.0
c 3.0 200 10.0 0.9

attributed to the aberrations of the gas lenses, which
are not included in the model.

In conclusion, we have demonstrated a novel
Q-switching configuration that can use gas optics
only. The advantages of the method are no damage
threshold, both for high peak power and average
power, and the absence of polarization and a polarizer.
A major disadvantage is the necessity of having a long
cavity, which results in a long laser pulse. Improve­
ments in CSL design and performance may correct
this problem.

We thank W. de Beer and D. Davies for unflagging
technical support, P. Di Lazzaro, M. A. Hellberg, and
M. H. Key for discussions, and the Foundation for
Research and Development and the Laser Applica-

Lions Research Institute of South Africa for financial
support.
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1. Introduction

The colliding shock lens is described briefly. Poss ible applications, industrial drilling and
cutting, laser Q-switching and spatial filtering , ultrahigh-power a~~lications, and '~all gas
lasers" are proposed. The time evolution , scaleability, and repetition rate operation are

investigated.

At a previous ECLIl\1, we described work with continuous gas lenses (Michaelis et al.
1991 a). A novel pulsed gas lens has now been developed relying on the interaction of con­
verging shocks in air. Here we report on the init ial studies of the parameters of this lens
undertaken to see which applications, if any, show promis e. The articl e is divided into four
parts: a brief description of the collid ing shock lens (CSL); a list of potential applications
suitable for the CSL; a study of the performance of various CSL design s; and concluding
remarks.
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Applications of the colliding shock lens
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2. The colliding shock lens

Gas lenses invented at Bell Labs in the earl y 1960s were soon discarded as bulky devices
with a narrow field of view. A slight rene wal of intere st has resulted from a demonstra­
tion that they are able to focus laser light to drill holes (Notcutt et al. 1988; Michaelis
et al. 1991 a) or to generate laser-produced plasmas (Waltharn et al. 1990). \Ve have shown
that they have sufficiently good op tical quality to serve as objective lenses in telescopy
(Michaelis et al. 1991 b). \Ve have also proposed that large aperture pulsed gas lenses could
play an important part as the final focusin g elemen t in a laser-driven fusion reactor (Buc­
cellato et al. 1993a). More recentl y (Buccellato et al. 1993b) we have described a different
type of pulsed gas lens, the CSL.

The simplest CSL consists of 16 needles disposed in opposition on the arc of a circle (fig­
ure 1a). Eight electric arcs are struck between opposing points and generate eight shock
waves that converge at the center. A cigar-shaped region of high gas density gradient results.
If a pulsed laser is synchronized soon (500 ns) after the shock collision and directed through
the center, it can produce a focus. Figures 1band le show other CSL designs with differ­
ent number of arcs and different diameters. We distinguish between the "electrical diam­
eter," that of the circle of arcs, and the optical aperture, that of the effective lens. The
optical aperture turns out to be an order of magnitude smaller than the electrical diameter.
It is not yet clear whether the optical aperture will scale with the system geometry or with
the typical shock width dimensions. The former would mean that the f -number could
remain more or less constant with increasing optical aperture; the latter, that it does not
scale at all. A first attempt at scalin g up the first 1.2-cm electrical diameter device to 3 cm

(~' 1994 Cambridge Universit y Press 0263-0346/94 S5.00 + .00
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FIGURE 1. Colliding shock lenses. (a) 16-pin, 8-arc device. Electric diameter 1.2 cm. Optical aper­
ture 2 mm. (b) 3-cm electric diameter device. Optical apertu re approximately 3 mm. (c) 36-pin, 3-cm
electric diameter device.

. ;~

~ . . :

f.

(b)

(c)

(3)

(figure Ib) indicates that the truth lies somewhere in between. Increasing the number of
pins (figure le) did not have any obvious effect.

Depending on the time at which the pulsed laser is fired with respect to the arcs, a vari­
ety of illumination patterns results; figure 2 shows a sequence obtained with an eight-arc
device. The frames are taken directly with a lensless television camera disposed 40 cm away
from the center of the lens. The first three frames show the shock waves propagating almost
undisturbed through one another. The detailed illumination pattern (i.e., dark and bright
rings, coarse and fine fringes) is best understood by referring to articles on refractive fringe
diagnostics (Bacon et al. 1989; Michaelis et al. 1991c). The next frames show nonlinear inter­
action between the shock waves resulting in noncylindrically symmetric illumination pat-
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FIGURE 2. Illumination patterns 40 cm from the lens of figure l a , at various times after the arcs:
3 .2, 5, 6, 6.9, 8, 1O. l OA . 10 .9. 11.3 , 11.6. 11.8 , 12.2, 12. -l, 13. 1, 14, 15 .6 {t S .

terns. The interesting point is that aft er th e shocks have collided at the ceruer , there is a
cylindrically symmetric core. The shocks have for gott en where they originated. A sharp
focus is seen in the seventh frame. An enlargement of th e focal region (figure 3) shows an
interesting set of Airy ring-like patterns centered on th e strongly sa tura ted focus.

3. Potential applications

3.1. Drilling, cutting, and welding

A good reason why lasers have not penetrated every industrial workshop is that their out­
put windows and lenses are expensive and sensitive devices. \Ve have already shown that
CO2 lasers coupled to gas lenses are capable of drilling through thick steel sheets
(Michaelis et al. 1991a). However, the lenses we used were unwieldy C\V devices with very
long focal lengths (of the order of 80 cm.) The "dream" gas lens for this purpose would
be a short focal length device (l0 cm) capable of being "rep-rated" (lOO Hz), with an opti­
cal aperture of at least 1 cm and minimal power consumption and weight.

3.2. Qsswitching and spatial filtering

The combination of a CSL and a pinhole within the laser resonator could in principle
serve to simultaneously Q-switch and spatially filter a laser oscillator. The pinhole would
need to be under vacuum or, if the pulse is short enough, in helium gas to prevent break­
down. But Q-switching requires opening times of about 10-100 ns (Siegman 1986). For engi­
neering applications, the focal length should not vary too quickly; whereas for Q-switching
and beam handling (e.g., isolator) functions, fast switching is essential.
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FIGURE 3. Magnified cen tra l region of 11.3-lls frame. (Bar = I mm)

3.3. Ultrahigh-power and Hall gas" lasers

It is well known that even under clean room conditions lenses operating for pulse lengths
of tens of nanoseconds start to fail at intensities in the GW/cm 2 range. Also, multipho­
ton processes at ultrahigh intensities render conventionally transmitting materials opaque
or absorbing. \Ve have previously pointed out that gas lenses could help alleviate these prob­
lems (Michaelis et al. 1991a). We foresee, without ha ving the means to observe it, that very
high powers may heat the gas and change the characteristics of the lens, just as in atmo­
spheric "thermal blooming" (Barnard 1989). But for intermediate powers, the CSL could
fill the present gap.

The final application we envisage is that of an "all gas" (or nearly all gas) system. Con­
ventional pulsed gas laser systems are designed with beam diameters corresponding to the
breakdown thresholds of solid optical components. A combination of aerodynamic win­
dows and diverging and converging gas lenses could give gas laser design a new degree of
freedom.

4. Performance of the CSL

All the applications listed above pose the following questions:

a. How good is the focus? Is it near diffraction limited?
b. How short is the focal length?
c. How quickly do CSLs switch, and how long do they last?
d. How large is the aperture, and is any light lost?
e. Can they be "rep-rated"? How much power do they consume?

_ ......._---------------
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FIGURE 4. 130-J.1m burn pattern in alurninum foil obtained with lens of figure lb.
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a. From the very first experiments, we realized that this was somewhat surprisingly, given
the limited number of arcs, an excellent lens. Figure 4 shows a burn pattern in aluminum
foil obtained with an eight-arc lens. The op tical apert ure of the lens was 3 mm and the focal
length 40 cm, so the diffraction limit would give a 130-jlm hole. The central hole is approx­
imately 130 jlm.

b. The shortest focal length for an eight-arc device is about 20 cm. This is too long for
many applications. \Ve have already begun testin g a double-ring device, and there is no
apparent reason why several rings should not reduce the focal length to the 10-cm range.

c. For this purpose we have measured the switching ability. Our experimental appara­
tus is very simple and consists of a 1O-m\V HeNe lase r followed by the CSL and a receiv­
ing photodiode at a distance L with a pinhole of diameter <I> immediately in front of it. \Ve
vary the distance L, the diameter <P, and also the energ y delivered to the shocks by chang­
ing the discharge capacitor. Figure 5 shows a typical switching time curve. In figure 6 we
show how the switching rise time and the maximum signal vary with the pinhole size <P at
a fixed distance L, and in figure 7 we show how the same quantities vary with the focal
length L for fixed <P. As can be seen from switching curves like those in figure 5, the fall
time of the signal is always comparable with the rise time (to within, say 50070), the latter
being the critical quantity for Q-switching. The signals have been normalized to the signal
produced by a 3-mm aperture, 50-cm focal length , spherical glass lens on the same photo­
diode and a pinhole <P = 250 Jlm. Figure 8 is like figure 6, but for a capacitor value of
1 jlE We believe that by increasing the shock energy we can make the switching faster.

The present CSL is thus a little too slow for Q-switching. But we have a concept for speed­
~ng it up that involves a multiple lens. Another problem in using this device for Q-switching
IS that it requires the presence of a pinhole in the cavit y and the concomitant possibility
of too high a radiation flux through it. Our idea is that this system could be worthwhile
for cheaply Q-switching a small laser system.
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d. Possibly the worst featu re of CSLs is the large electro-optic aspect ratio. The largest
aperture obtained so far was onl y 4 mm . \Ve plan to test a 10-cm electrical diameter lens
in the hope of obtaining an 8-mm optica l aperture. Another worrying feature of these lenses
is that they are lossy. This, we believe, is inhere nt to their shock wave structure. The rear
of the reflected shock refracts some light "in the wrong direction." This is to be expected
from refractive fringe studies of shocks (Michaelis et al. 1991 c). Orientatively we estimate
the loss to be about 10070, slightly larger th an that due to reflection in conventional lenses.

e. The question of "rep-rating" the lens has only been partially answered experimentally
for want of a suitable high-voltage power supply. Operation at 10 Hz confirmed our expec­
tations that the lens could run at moderate frequ encies without degradation of the focus .
At this repetition rate a typical switching curve such as that in figure 5 remains virtually
unaltered. Based on dimension and speed of sound arguments, we would expect the limit­
ing period to be of the order

electrical diameter
== 1 ms.

sound speed

The corresponding "rep-rate" would be I kH z, a useful frequency for industrial applica­
tions. The final question is that of power consumptio n. At a rep rate of f = I kHz, our
present eight-pin lens would consume

i
i
\

I

\
\

~v =j·1 /2·CV 2 = I k\V (C = 5 nF, V = 20 kV).

This is a considerable amount of pulsed po wer. To reduce this we tested an enclosed CSL
that confines the arcs to two rather than th ree dimensions. An order of magnitude reduc­
tion in energy consumption occurs . How ever, that may be counteracted by the necessity
of increasing the electrical diameter.

5. Conclusion

The novel CSL appears to be on the borderl ine of beco ming a promising optical com­
ponent. The focus is good, but the lens is slightly lossy. The lens focuses quickly, but not
quite quickly enough for efficient Q-switching. Th e apert ure is disappointingly small but
might be scaleable. The lens may be rep-rated but consumes appreciable electrical power
and could be incredibly noisy.
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scaling up the colliding shock lens
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In this paper we characterize the behavior of a new pulsed gas lens. the colliding shock le.ns. We
show how input energy. electrical diameter, number of discharge electrodes, and enclosing the
discharges, affect its optical aperture and focal length. Experimental results are presen.ted for.three
different lenses and for a 1 cm aperture lens with a focal length of 1.5 m. \Ve derive a simple
colliding shock lens scaling law. © 1995 American Institute of Physics.

1.INTRODUCTION

With the ever-increasing power of pulsed lasers,
breakdown-induced damage to solid state optics is becoming
., crowina concern. The use of gas rather than solid lenses
;x7ends the breakdown threshold by three orders of magni­
tude. For 20 ns pulses of visible light for example, the
threshold intensity for uncoated glass optics lies in the 1
G\V/cm'l ranze. an intensity easily reached at the output win­
dow of tablc-top systems. Breakdown in air at STP, for th~
same pulse length occurs at just below the terawatt/cm

level,
Recently. our group developed a novel pulsed gas lens.

the collidins shock lens or CSL. ( I) Fig. I(a). This is a spin
~ff from o~r study of the refractive fringe diagnostic of
shocks in air reported in this journal (:2) and of the plasma
lens/isolator invented by Rumsby and Michaelis. (3) In the
latter device four converging laser-produced plasmas were
used either to focus or to interrupt a laser beam. The first
CSL was very similar. Four electric arcs are stuck in air on
the circumference of a circle to generate four converging
shock waves. These shocks create a cigar-shaped region of
high density air at the ccnter of the circle which acts as a
graded index or GRIN lens. By adjusting the time delay be­
tween convergence and the arrival of the pulsed laser beam.
the aperture and focal length of the lens can be varied. Typi­
cal parameters for the first lens are an optical aperture of I
mm for a focal length of 50 cm. The focus [Fig. 1(b)] is
near-diffraction limited and the diameter of the circle of arcs
is 1 cm. In this form it is unlikely to be a useful device.

Converging shocks have been extensively studied from
the early 1940s primarily because of their ability to produce
extremely high pressures and temperatures on convergence.
This property also made them very attractive for use in laser
fusion schemes. The theoretical treatment by Guderley" of a
converging strong cylindrical or spherical shock wave has
served as the basis for much of this work.

The method of converging shock creation ranged from
the experiment of Perry and Kantrowitz.' which involved the
use of a tear-drop-shaped body placed in the center of a
shock tube to force a planar incident shock wave to implode:
to cylindrically imploding shocks created by detonating cy­
Iindrical explosive shells (Matsuo and Fujiwara)." Some
experimenters7 used multiple detonations to create what was
initially a polygonal-shaped converging structure. This poly-

gon was found to produce a circular (or cylindrical) converg­
ina shock wave prior to implosion.
~ Other methods involved the rupturing of two glass

spheres each containing gases at different pressures, to study
the bchavior of the collision of two shock waves".

Experimental evidence has shown that for moderately
strona shocks (M~2.4) , converging cylindrical shock waves
are s;able. Knystautas, Lee, and Lee' showed that when a
number of planar detonation waves converge towards a cen­
ter, Mach reflections result in a smooth cylindrical converg­
ine shock wave provided the obtuse included angle between
the intcrsectine wave fronts is of the order of 100° or greater.

Since most of the work involving converging shocks was
directed towards understanding the creation of the high tern­
perature and pressure region at the point of convergence.
much attention was civen to the implosion stage of the pro­
cess. Very little attention was paid experimentally to the ex­
panding stage.

Also, although much work was done on shocks gener­
atcd bv electric arcs in air.lJ,lll to the best of the authors'
kno\\'l~d ~c thev have not been used before for the produc-

- ' • I
tion of converaina shock waves. Our first refractograms of
the convcr!!in~ SllOCks indicated that a i\lach addition of
more than four shocks. would make the lens more effective.
The first prototype was improved by providing it with eight
pairs of opposing electrodes. The optical aperture increased
to 2 mm for the same 50 cm focal length.

11. THE CSL AND THE SCALING QUESTION

As mentioned above. the first CSL had too small an ap­
erture to be useful. although its optical quality seemed prom­
ising. But it did serve to pose the following question: could
the CSL be scaled up? Two contradictory arguments were put
forward.

According to the pessimist's view. refraction towards the
focus is caused only by the narrow shock front gradient. This
view is supported by our own refractive fringe study of
shocksv'" and is illustrated by Fig. ltc) in which the weak
shocks have passed through each other, virtually undisturbed.
According to this view, the lens would only work so long as
the separating shock fronts are not too far apart. which ex­
plains why the first lens has a millimetric aperture. The ap­
erture of the CSL would not scale up beyond a small geo­
metric factor times the shock front thickness.

The optimistic counterargument runs as follows. The

~ev. sa, Jnstrum. 66 (10), October 1995 0034-6748/95/66(10)/5037/8/$6.00 © 1995 American Institute of Physics 5037
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central collision of converging shocks produces a region of
high density in which all "memory" of the early shocks is
erased by nonlincar effects. This view is supported by the
post-collision frames of Ref. I which show a circular rather
than polygonal expansion front. This front may have a
weaker gradient tl1:1I1 the initial shocks and is therefore
broader. The angular deflection of a ray being low. it is per­
missible to integrate the density along the ray, assuming that
the ray's radial position does not change inside the lens. In­
tegration of the hollow cigar gives the familiar lenticular
shape: Figs. I (d) and 3(b). Although it is true that only the
front refracts light "inwards," the gradient of the shock rear
is not strong enough to cancel the effect of the front. Gas
inside the cigar plays a compensatory role which cannot be
forgotten as in the first argument.

A millimetric gas lens is useless. A centimetric CSL
would have many industrial applications. A decimetric
pulsed gas lens could serve as the final focusing element for
a laser fusion reactor. I I Not being able to resolve the above
discussion cornputationally, we decided it experimentally. In
this paper we report how various factors (input electrical
energy. electrical diameter, lens geometry) affect the optical
aperture and focal length. With the successful operation of a
1.5 cm aperture CSL. we now believe the more complex
second scenario.

111. EXPERIMENTAL APPARATUS

TIle experimental apparatus used for the followinc set of
experiments was the same as that used by Bucccllato et al.l
Figure 2 is a schematic representation of the circuit in which

C refers to the charaina capacitor whicb is discharged
throug h the electrodes of the CSL.

The CSL consists of two S-mrn-thick plexiglass plates
which support eight or sixteen pairs of opposing electrodes:
Fig. I. (The plates can be either square as in Fig. 2. or cir­
cular as in Fig. I). The separation between the plates can be
adjusted from I to 4 cm.

The electrodes used in this experiment are constructed
from 0.5-. 1-. 2-mm-diam stainless steel pins depending on
the maximu m energy to be stored in the capacitor. The elec­
trode separation was always set at 0.5 mm. The electrode s
are conne cted in series to ensure that the gaps break down

simultaneously. A circular window is cut out of each of the

18 K \
4-j'.f+.-.---...,....-----.---+---"M1'--

10 H 1 PNitrogen .~--:--- ; T ressurised

Laser O· C ~ SparkT Gap

~
o: S~,~t~~1 ~,. ~_~ Rooow$k,+- ::::.: i 1 Co,l

y:'e~~~~,cs~

FIG. :!. Schematic representation of the CSL experimental setup. C refers to
the charging capacitor.
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D. Enclosure

V. RESULTS AND DISCUSSION

B. Electrical dia met er

5039Colli ding shock lens

In order to better understand the scaling results we first
briefly reexarnine the process of GR IN lens formation.

When the pressurized spark gap in the CSL power sup­
ply breaks down. the electrical discharges between opposing
pairs of electrodes in the CSL act as point sources for spheri­
cally expanding shock waves. As mentioned before , these
shock waves collide at the center of the CSL. On collision of
two or more shock waves. a high density, pressure. and tem­
peratu re region forms. In our experiments where M= 1.5. we
do not expect the region to become turbulent. except for
higher energies. as explained below. This reaion then ex­
pands to form the cigar-shaped region already described .
Figure 3(a) is a computed density profile that results during

\Ve experiment with enclo sed and unenclosed CSLs to
determine whether confinement of the shocks affects the
quality of the lensing. The CSL is enclosed by encasing it in
a Plexiglass tube and reducing the separation of the vertical
walls.

\Ve now present a summary of the physical characteris­
tics of the four CSLs constructed to test these concepts. The
CSLs will be labelcd CSL I--L

CSLI : This is the original CSL (see Bucccllato et u/ . ).I

It has eight pairs of electrodes arranged on a circle of diam­
eter 1I mm. The diameter of the wind ows is 7.5 mm. CSL I
is unenclosed.

CSL2 : This CSL has an electri cal diameter of 33.5 mm
and a window diameter of II mm. This second unenclosed
CSL has eight pairs of electrodes.

CSL3 : To see how enclosing the CSL would affect its
leasing prope rties. we constructed a CSL with the same elec­
trical diameter and windows as the preceding one but en­
closed it in a plexigluss cylinder of diameter of 40 mm. This
CSL like the preceding two is also fitted with eight pairs of
electrodes . The wall separation was reduced from -la to 10
mm.

CSU : The final CSL has an electrical diameter of SO
mm and a window diameter of 50 mm. The distance between
the end plates is 21.S mm and the diameter of the plexiglass
tube is 120 mm. This lens can be fitted either with eight or
sixteen pairs of electrode s.

By increasing (or decreasing) the number of pairs of
electrodes on the CSL, we can change the shape of the im­
ploding shock structure and hence the shape of the lensing
region.

C. Number of electrodes

The electrical diameter is increased by using different
CSLs. Some half-dozen CSLs were constructed to gain ex­
perience with these devices.

the shock strength is varied by changin g the capacitance of
the charging capacitor while keeping the voltage constant.

To characterize the CSL one must determine the extent
to which the various parameters (energy, electrical diameter,
number of electrodes, wall geometry) affect the optical aper­
ture, the focal length, and the quality of the focus. To this end
the following parameters were varied.

A. Shock strength

The first question that needs to be answered is how the
shock strengt h affects the lensing region. In our experiments.
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lV. CHOICE OF VARIOUS CSL DESIGNS

plexiglass plates to allow a nitrogen laser beam (337 nm) to
be shone through. It is with this beam that the properties of
the CSL are studied .

The charging capacitor (C) is initially charged to 18 kV
through a 10 H inductor by means of a high voltage dc
power supply. A 5 V computer signal triggers the pulse gen­
erator resulting in a 30 kV pulse of 1 JlS duration being sent
to the extra electrode of the pressurized spark gap. This
causes the spark gap to break down , pulling one side of the
CSL to ground. The 1 nF capacitor provides the initial en­
ergy to break down the spark gap. The potential differenc e
across the CSL produces the ring of simultaneous arc dis­
charges. Each of these arcs generates an expandin g spherical
shock wave. The expanding shock waves collide at the center
of the CSL and a high pressure. temperature, and density
region is created. We call this the "implosion stage." A short
time (of the order of microseconds) after collision, the ex­
pansion of this high density region results in the axisymrnet­
ric "cigar" -shaped density distribution which forms the
graded index lens.

The detection circuit for this experiment is capable of
detecting either the shock structure at various times or the
focal spot for different focal lengths. This is accomplished in
the following way: a Rogowsky coil in the CSL discharge
circuit sends a signal to a delay box when the CSL " fi res.'
This signal is then delayed and used to trigger the spatially
ri ltered and expanded nitrogen laser beam. The beam then
passes through the windows of the CSL before falling on the
face plate of a charge-coupled device camera and is digitized
by means of an Oculus 200 frame grabber. A 330 nm inter­
ference filter with a bandwidth of 10 nm is placed in front of
the camera to select out the nitrogen beam from the light
generated by the arcs. To study the behavior of the shock
waves, a convex lens is used to image in the shock plane
(Fig. 2). By varying the delay of the nitrogen laser one ob­
rains a sequence of shadowgrarns for the shock waves, from
convergence to collision and finally divergence. This enables
us to calculate the size of the lensing region formed by the
cigar.

By removing the imaging lens and allowing the laser
beam to fall directly on the face plate of the camera. the
quality and size of the focal spot can be evaluated for differ­
ent focal lengths. To avoid confusion in the terminology, we
henceforth refer to the maximum diameter of the cicar­
shaped lensing region as the ;;optical aperture" of the lens, to
the plexiglass structure incorporating the electrodes as the
CSL, and to the diameter of the circle of electrod es as the
"electrical diameter."

; ,.,'



FIG. 3. Computed refractive index held of the CSL I J-LS after initial shock
wave reflection. Inset below: integrated optical path length differen ce.

By using CSL2 and keeping the same charging capac i­
tor. we are able to determine the effec t an increase in elec­
trical diameter has on the focal length and optical aperture

the expansion phase.l ' Only half the lensing region or "ci­
gar" is shown. The refractive index increases sharply near
the edges of the cigar and a depression is visible in the cen­
ter,

Intuitively it would seem that by enclosing a CSL. re­
ducing the loss of energy. and confini ng the shock waves to
two dimensions rather than three. we should be able to pro­
duce stronger shock waves and hence better focusing (i.e..
shorter focal lengths and larger optical apertures than with
the unenclosed lens). \Ye therefore constructed CSL3 which
is an enclosed version of CSL2 .

Figure 5(a) shows the focal length versus optical apcr­
ture for CSL2 and CSL3. The capacitor used was the same
for both (5 rif). hence the input energy was the same as \\'e11
W.SI J). \Ve also plot f number versus focal length for CSL2
and CSL3 [Fig. 5(b)].

The difference in the behavior of the two CSLs is strik­
ing. CSL3 has an optical aperture of 2.2 mm at 0.9 m focal
length while CSL2 has an aperture of 0.7 mm for the same
focal length. The f number of CSL3 is better than that of
CSL2 by a factor of = 3.

A quantitati ve assessment of how different types of en­
closure strengthen the shocks. will require further investiga­
tion. But clearly. this is a promising feature of colliding
shock lenses.

B. Encl os ing the CSL

C. Varying the energy

Having established that the enclosed lens works well. we
now adopt it for the energy dependence studies.

Three different capacito r sizes are used with CSL3. They
are 5. 21. and 100 nF. These corres ponded to energies of O.S.
3. and 16 J. respectively. The energy increases by up to a
factor of 20.

Figure 6(a)shows the focal length versus optical aperture
for CSL3 at the different energies. \Ye achieve an optical
aperture of 4- mm at a focal length of 1.3 m for 100 nF.

for the unenclosed CSLs. "Vc would expect that since the
energy falls off with shock radius R. the larger CSL (CSL2)
should produce a weaker converging shock wave. since the
shocks travel a greater distance before colliding. Hence,
CSL I should have a shorter focal length than CSL2 for the
same optical aperture (or conversely a larger optical aperture
for the same focal length).

Figure 4(a) shows a plot of optical aperture versus time
after collision for CSL2. This is obtained by imaging in the
shock plane of the CSL. We can see that the optica l aperture
increases with time. The focal length also shows the same
trend [Fig. 4(b)]. Combini ng these t\VO results, we obtain a
plot of focal length versus optical aperture [Fig. 4(c)]. To
compare CSL2 with CSL 1. we read off the optical aperture
for a known focal length, i.e.. 52 cm. The lens diameter for
this length is 0.5 mm (2 mm for CSL I). It is clear that the
strength of the shocks on implosion is greater for CSL I than
for CSL2. For the same optical aperture. CSL I has a shorter
focal length than CSL2.

We can conclude that for the unenclosed case. increasing
the electrical aperture must be accompanied by a correspond­
ing increase in input energy to maintain and in fact improve
the performance of the CSL.
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Although this profile looks extraord inarily complicated.
its computation allows one to verify the following statement.
which simplifies the ray optics. There are virtually no radial
deviations within the lens. This is because the refractive in­
dex differs from unity by less than one percent and the re­
fractive index gradients and the angular deflections are small.
(Less than 5 degrees).

To calculate the latter it suffices to intecrate the density
along the path of each fi xed radius paraxial ;ay. The comp li­
cated profile then reduces to the familiar lenticular shape:
Fig. 3(b) (The central " hole" may be computational).

We now comp are the performance of various lenses.
Typical parameters reported for the fi rst eiuht arc col lidinz

I . ~ ~

shock lens were an optical aperture of 2 mm for a focal
length of 52 cm and an input energy of O.S 1. (C=5 nF). The
focal spot size was near-diffraction limited.

A. Increasing the electrical aperture (unenclosed
CSL)
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Plotting the f number versus focal length [Fig. 6(b)] we see
an improvement in the f number for 100 nF as compared to
the 5 and 2 I nF.

An attempt to use a 250 nF capacitor to increase the
input energy by a factor of 2.5, was not successful. Although
a cigar-shaped core did form, the quality of the focus was
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FIG . 5. ( a ) Comp arative focal length YS optical aperture far the CSL2- and
CSU - 5nF charging capacitor. ibl f number vs focal length for CSL2- and
CSU-5nF charging capa citor.

very poor indeed. \Vc attribute this to the onset of turbulence.
known to occur when strong shocks collide.

D. Increasing the electrical diameter (enclosed CSL)

Increasing the electrical diameter alone will not result in
a larger optical aperture for similar focal lengths. This in­
crease must also be accompanied by an increase in the input
energy. There are two reasons for this. The first is that Mach
addition requires large included angles. The second is that
addition only occurs for strong shocks.

A larger electrical diameter results in weaker shock
waves colliding near the center. Circular symmetry may then
not be attained. We tried CSL4 with an eight electrode pair
configuration. As expected this does not form a good lens
since circular symmetry of the cigar is not achieved. Figure
7(a) shows the polygonal shock structure created by the col­
lisions in this configuration . Circular symmetry has not been
obtained .

E. Changing the number of electrodes

To regain circular symmetry in CSL.f. eight more pairs
of electrodes were inserted converting it into a sixteen pair
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VI. CSL SCALING THEORY

FIG. 7. (a) Sequence of colliding <hock inugl'o; [Ial implo-ion: Ibl 6.2 u«:

(c) 7.4 u»: and (UI 14 ps after implosion] taken using CS1A ha\ing an eight
pair electrode pair configuration and a charging capacitor ul" lOO nF
i\lagnitication=O.3.i. (bl Sequence of ' colliding shock images [Ial 1!.3 p s: tbl

1.5 p s: (cl .i.9 us, and l uI 4.3 p s after implo-ion l takcn using CSIA with a
sixteen electrode pair contiguration and a charging capacitor 1)1" I()O nF.
Magnification=0.5 .
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FIG. 6. (a) Focal length vs optical aperture for CSL3 using 5. :21. and 100
nF charging capacitors. (b) f number vs focal length for CSL3 using 5. :21.
and 100 nF charging capacitors.

electrode CSL. The imploding shock waves achieve symme­
try early. This can be seen from the sequence of four pictures
showing the shocks after collision [Fig. 7(b)]. The circularly
symmetric nature of the shock structure is evident. So adding
more shocks was necessary for this large diameter CSL to
sy mmetrize and to form a lens.

Figure 8 shows the focal length versus optical aperture
for three different capacitor size s viz. 21, 100, and 250 nE
Since we now have larger radii shock waves forming an
axisyrnmetric cigar, we can expect a larger optical aperture.
But since the density gradients for the same input en ergy
may be weaker. we would expect to see an increase in the
focal length (see Fig. 9).

It is interesting to note that CSL3 becomes turbulent at
250 nE If we could increase the input energy into this CSL.
it would perform better than CSL4. However every CSL has
an upper limit for input energy. CSL4 with sixteen pairs of
electrodes was very stable for the 250 nF capacitor. From
Fig. 8 we see that CSL4 at 250 nF has an optical aperture of
8.2 mm for a focal length of 1.3m. The focal spot at this
distance is shown in Fig. 10. It has a full width at half­
maximum of :200 ,urn. By gas lens standards, this is close to
diffraction limited.

An approx imate scaling theory for CSL s can be de rived
with the he lp of the following assumptions.

(i) All the electrica l energy stored in the charging capaci ­
tor is transferred to the shock wave s by the arc s.
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E100
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c
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FIG. R. Focal length vs optical aperture for CSL4 (sixteen electrode pair, I
using 21. 100. and 250 nF charging capacitors.
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(ii] A certain fraction of this energy is contained in the
gas forming the lens. This fraction is represented by
the product of a "geometric energy factor" C and a
"shock weakness factor" C'.

(iiil For the purpose of calculating refraction. the actual
density profile, however complex. can be approxi ­
mated by a cigar-shaped, high density region with a
constant refractive index gradient.

(iv] A simple order of magnitude focal length calculat ion
is acceptable.

Clearly. all these assumptions can be examined and re­
fined in great depth. But at this stage of development. we
find the following simple calculation useful.

Only a fraction \\'=G C' ( l/2CV2) of the total enercv in
the shocks is contained in the compressed gas of the le;;ing
region. ' vhere

2_1.(,.)3C -- -
20 R

and C' is a fitted parameter. C is the areal cross section that
the lens offers up to the sphcrically expanding shock front. It
is obtained by assimilating the cigar to two cones. each of
height Jand base radius r. Simple trignornetry shows that the
half-length of the cigar is

FIG. 10. FOQI spot at 1.3 m away from CSL-t (250 nF charging capacitor}.

1= ~2 rR ,

where R is the radius of two intersecting shocks.
C' represents the fraction of shock wave energy con­

tained in the supersonic front as opposed to that which has
been dissipated in forming the long shock rear and the shock
tail. No figures are available for this factor, but simple visual
exami nation of typical density and temperature curves,13.14
show that it can vary from unity (all the energy is in the
strong shock) to a few percent (very little energy is left in the
shock itself which now resembles a sound wave). C' is also
made to contain the small geometric errors, deliberately
made in the rough calculation of C and that following for the
focal length f

In order to calculate the density of the gas in the lens, we
now assume that the lens is formed adiabatically, so that

where the symbols have their usual meaning. The known
quantitie s in this expression are the volume of the lens Vf
and the initial pressure: Po' The volume of the lens is ap­
proximatcd to that of two cones:

')

V,=~jjr21.
. .)

Taking y = lA and writing

!J \' Y=I) .\' Y
"0 . J J

one obtain s

Pi _ (pr) I/y _ OAW

r; .r; PoVf '

The right-hand side is known and Pf /p" may be obtained
graphically.

Knowing the average density Pf = (V" /\'/) o; in the
lens. the refractive index gradient may be calculated very
approximately as follows.

The refractive index of air is roughly /1= I +3 x 10--Ip.
The uniform refractive index aradient is therefore (n -/1 )/1'

and a median ray traversing the lens 1'12 mm awav from
o

the
~ .

axis. is retracted by an angle

8=/(n-/1o)/r

and come s to a focus a distance f= (1'/2)/ e away. (no is the
refractive index of undisturbed air).

A little algebra yields the convenient formula

1 4r 3

f2=(p~I)2R·

where f is in meters and rand R in millimeters.
We now attempt to model our large lens. CSL4. This has

an electrical diameter of 8 cm, which yields an 8 mm GRIN
lens with a focal length of the order of one meter. If C' is
taken as unity, then the calculated focal lenath is too small.

This example and others. show that ~predicted focal
lengths are a little short for strong shocks and far too short
for weak. This was the reason for introducing the C' correc­
tion factor. If we take C' as 1for the strong~250 nF shocks,

te
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-so for the weaker 100 nF, and Il
IX

I for the very weak 2 I nF, we
obtain rough agreement. (See the calculated curves for Fig.
8). This simple theory and the scaling experiments described
in earlier sections lead us to construct a final enclosed CSL
with an electrical diameter of 26 cm powered by a half J.LF
capacitor charged to 17 kY. Our first experiments with this
lens showed it to be capable of generating a 1.5 cm aperture
lens with a focal length of 1.5 m.

In this attempt to determine whether the aperture of the
CSL can be scaled lip, we find the following.

(l) Enclosing the lens improves its performance.
(2) Increasing the input energy also increases the aperture

and decreases the focal length. However there is an up­
per limit to the amount of energy one can put into the
shocks. The small lens (CSL3) with eight pairs of elec­
trodes becomes unstable with the 250 nF capacitor
whereas with more electrodes and a larger electrical ap­
erture, CSL4 (sixteen electrode pairs) is very stable.

(3) Simply scaling up the electrical diameter does not nec­
essarily increase the lens aperture. There has to be an
accompanying increase in energy and perhaps more im­
portant. enough shocks for circular symmetry to be at­
tained before implosion. The smaller CSLs (2 and 3)

worked with eight sets of electrodes whereas the large
CSL (CSL-l) needs more electrodes to achieve symme­
try.

In conclusion, we have shown that the colliding shock
lens can be scaled up to useful apertures and how to do so.
'Ne have derived a simple CSL scaling law.
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