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ABSTRACT

In this thesis thec performances and the applications of several types of
gas lenses are analysed. A gas lens consists of a region of space in which
gas is forced into a particular spatial decnsity distribution which can
result in the focusing or defocusing of a lascr beam. From basic optics
theory. a refractive index gradient follows any density gradient present in
a gas. This is the same effect that causecs mirages when temperature and
density gradients are present in the lowest layer of the earth's atmosphere.
There are two possible types of mirage that one can observe on the earth's
surface. A brief description on how mirages form is useful in order to
introduce the working principles of gas lences.

In the first case there is a cold layer of air close to the ground with a
hotter laver above. The situation described above is commonly called
‘thermal inversion' ©because the standard situation in which the
temperature decreases with the increcasing altitude is reversed. In this
case the refractive index decrcases with height. As a consequence the
refractive index gradient bends the light rays downwards. In exceptionally
still atmospheric conditions this situation can create upright images of
distant objects whose direct line of sight would lie below the horizon.
This phenomenon is only seen under still weather conditions and requires
a highly reflecting surface. such as ice. The ground has to reflect most of
the sun's radiation in order to maintain the low temperature of the lowest
laver of air.

The second type of mirage is the most commonly seen at temperate and
tropical latitudes and it creates inverted images of objects above thec earth
surface's line of sight. This is the same optical effect responsible for the
‘water pools' that one might observe in summer while driving along a tar
road. which in fact are inverted images of patches of sky. The air is
heated in the boundary layer where it exchanges heat with the hot ground.
thus its density decreases. The refractive index gradient is then directed
upwards and the light rays are bent away from the ground. In this second
case the mirages are always accompanied by turbulence due to the uneven
effect of gravity on equal volumes of cold and hot air. This results in
convective flow, and the image is never still.

A class of gas lenses. known since the 1960's as 'Thermal Gradient Gas

Lenses'. uses the thermal gradient created in a gas by a hot pipe in order



to establish an average radial refractive index gradient inside its
cylindrical volume.

A thermal gradient gas lens is in effect a folded mirage. If the hot gas
lies in the outer part of the cylinder, we have a converging lens that
focuses light to a point, while if the hot gas is in the core of the cylinder.
we have a diverging lens. In the latter casz the pipe must be cooled with
respect to room temperature.

When we <consider the effect of gravity on the spatial gas density
distribution of a thermal gradient gas lens. we note that a horizontal.
cvlindrically symmetric distribution is unstable and that convective cells
are going to form a short time after the heating is switched on.

A cylindrically symmetric temperature field is achieved only when the
pipe is kept vertical. The convective cells can be destroyed by flowing the
gas longitudinally down the pipe. if its cross section is small. or by the
vortical gas flow resulting from spinning the hot pipe about its
geometrical axis. As examined in the second chapter of this thesis, where
a spatially resolved temperature measurement is presented, this option can
give a fairly stable and large aperture gas lens. The latter device. the
Spinning Pipe Gas Lens (or SPGL). was developed in recent years at this
University.

But why should one use these devices rather than just a quartz, a glass or
a polymer lens?

Gas lenses are cumbersome devices and, although their optical quality 1is
good, it cannot compete with the optical quality achievable with a well cut
solid state device. The main advantage lies in the high threshold at which
optical breakdown occurs.

It is well known that if a very intense beam of optical radiation
propagates through a solid state material. surface or bulk radiation
damage can be observed. Moreover, the damage is not simply cumulative.
it can incrcase exponentially after the first defect has been created. In
addition. the ‘'theoretical' radiation damage threshold can decreasc
dramatically in a real working environment (a dusty laboratory or a
workshop).

Gas lenses do not have any surfaces to whick dust or grease can adhere nor
do they require AR coatings. The latter is naturally achieved by the
smooth refractive index increase from unity along the optical axis. Gas
lenses have an optical breakdown threshold two orders of magnitude higher

and. if a breakdown occurs. there is not any permanent damage. The lens

can recover after a few milliseconds.
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A secondary advantage of gas lenses is the wide wavelength range over
which they can be used, which depends on the dispersion relation of the
particular gas utilised.

Gas lenses have an optical breakdown threshold of the order of
100GW/cm?2. Such a high level of optical power can be dclivered as short
bursts of laser radiation. When the techniques of Q-switching, or of a
pulsed gas discharge are utilised, the pulse duration of the radiation burst
of a typical commercial laser is in the order of 5-40 ns.

We can then ask the following question: Why do we need a steady state gas
lens that works continuously, if it is going to be wutilised for a few
billionths of a second? In the framework of this idea we developed a
pulsed gas lens, as described in the third chapter. The working principle
relies on the compression of a dense centrzl core of gas by the action of
multiple converging shock waves. Various designs of Colliding Shock Lens
(or CSL) were developed. all bascd on the gas compression operated by the
central collision of multiple shock waves converging in cylindrical
symmetry. Each shock wave is generated by an arc discharge between two
pin clectrodes facing along the arc of a circle. The CSL is a varifocal
lens, whose focal length and optical aperture typically vary on the
microsecond time scale. Such a pulsed lens, in combination with a pinhole
can be utilised as a high power optical switch or as an optical isolator for
switching speed on the 100's of ns timescale.

In the fourth chapter we present an application of both the Colliding
Shock Lens and the Spinning Pipe Gas Lens. the 'all gas Q-switching' of a
ruby laser. In this experiment the Q-spoiling of a ruby laser is achieved
utilising almost entirely gas elements. By inserting a pulsed lens (CSL)
in tandem with a converging lens (SPGL) inside the flat-flat resonator of
the ruby laser, made of a 100% full reflector and of a 50% output coupler,
we realise a time varying resonator geomelry. Laser radiation will occur
in the form of a single or double pulse as soon as the resonator becomes
stable and the losses become low. For this application, a fast shock
collision dynamic and a low f-number pulsed lens are important
requirements.

After the description and the modelling of the Q-switching experiment, the
optical quality of the CSL is examined in greater detail.

In the fifth chapter of the thesis some Mach-Zehnder interferograms of the
CSL are analysed. The interferograms were recorded using a nitrogen
probe laser (337nm wavelength. 1 ns pulse duration) developed and built

in our laboratory. The interferograms were taken at different time delays
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after the central collision of the shock waves by electrically synchronising
the probe laser. Each interferogram gives an instant picture of the
refractive index distribution inside the lensing region and the optical
quality of the CSL can then be theoretically determined at each delay.
Despite some significant longitudinal aberration it was found that the
optical performances of the CSL can be almost diffraction-limited when
the probe laser is synchronised at some optimum delay after the central
shock collision.

Up to this stage the shock waves have always been colliding with
cvlindrical symmetry with respect to the optical axis. However, another
interesting feature of the Colliding Shock Lens geometry lies in the
possibility of shaping the imploding shock front and consequently the
lensing region. For example by placing the shock launching points along
the arc of an ellipse rather than along the arc of a circle. we can make an
elliptical lens. This is the case examined thecoretically and experimentally
in the sixth chapter. In an elliptical lens the refractive index level curves
arc ellipses rather than circles. A uniform intensity diffraction-limited
laser beam is focused by a cylindrically symmetric CSL into a pattern that
approximates the Airy pattern. Conversely in the case of an elliptical
lens. the intensity distribution in the focal plane is something in between

a line focus and a two lobed focus. as was observed expecrimentally.

1v



CHAPTER 1:
INTRODUCTION

1.1 THE LASER

The aim of this thesis is to demonstrate that non-uniform gas distributions
can be useful in the field of laser physics. At most wavelengths, the
increase of laser radiation power is actually limited by the radiation
damage of the solid state components acting either as a rcsonator or as the
active medium. Gas optics have a radiation damage threshold that is a few
orders of magnitude higher than conventional solid statec components and
are natural candidates for high power laser applications. In the
experiments described in chapters 2. 3 and 6. lasers arc utiliscd only as a
diagnostic tool. In chapter 4 we will demonstrate how a laser resonator
can be madc by utilising almost entirely gas clements. In the first scction
of the present chapter we briefly describe the principles of laser action.

Laser is an acronym which stands for Light Amplification by Stimulated
Emission of Radiation. The laser mechanism is casily understood in the

light of the theory of the Einstein coefficicnts [Einstein 1917].

1.1.1 THE EINSTEIN COEFFICIENTS

Consider an isolated <cavity [Loudon 1983. Bransden 1983], in which a
collection of two-level oscillators are in thermal equilibrium with
radiation. A two-level oscillator can consist of any atomic or molecular
system present in the cavity in two states of diffcrent excitation. The two
states are separated by an cnergy gap and are linkcd by an allowed
radiative transition.

The lower energy level is taken by convention to be the ground state,.
having zero energy. The energy difference between the two levels is AE, g,
and g, are the degencracies of the two levels and p(o) is the radiation
energy density. Then, according to the basic principles of statistical

mechanics, the ratio between the level populations is:



In this treatment we will consider only onc-photon processes. The
treatment is then correct only at low and intermediate radiation densities
for real atoms and molecules.

There are three possible interaction processcs between oscillators and
radiation: absorption, stimulated emission and spontaneous cmission.
Absorption is the process by which a photon is absorbed by an atom in the
ground state, which then becomecs excited. Spontaneous emission is the
spontaneous decay of an excited atom with the creation of one photon.
Stimulated emission is a process by which one photon hits an excited atom
and two identical photons are emitted. Both the photons generated in this
process have the same physical properties as the initial one: polarisation,
phase, energy and direction. In the presence of radiation, the effects of
these three interactive processcs on the population variation rates are

given by the following three relations:

oN,
P -B,p(0)N, 1.1.2
== AN, 1.1.3
N3
Pl -B, p(0)N, 1.1.4

Since the oscillators are at cquilibrium with the radiation. as many

photons arec absorbed as arc cmitted.

putting together the last four relations, we obtain

N2A21 + sz(w)Bu = Nlp(o‘))BlZ

By wusing the Boltzmann relation between levels' populations (equation

1.1.1) we obtain an expression for the radiation density in the cavity:



p(c)): Azx/le ) 1.1.6
i1

ho
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But the cavity emits radiation with the black-body spectrum

o’ ho
pla)=—:- = 1%, 7
n’c
exp| - =%
kT

and the comparison betwcen 1.1.6 and 1.1.7 allows one to find the

following relations between the absorption and the cmission coefficients:

21 gl

= and B, = —B_, 1.1.8
B, mc 2,

This derivation was pcrformed assuming the hypothesis that the cnergy gap
between levels., AE. is infinitely sharp. This is reasonablc since the black
body radiation spcctrum is spread over a frcquency range which is much
wider than the transition linc-width. This hypothesis ceases to be valid

when we study the interaction of atoms with laser radiation.

1.1.2 THE INTERACTION OF A TWO-LEVEL SYSTEM WITH LASER LIGHT

We don't want to introduce laser beams before defining them, but we can
safely say that the radiation line-width of any laser system 1is much
sharper than the atomic transition line-width from which it originated.
Consistently, when we deal with the formation and the propagation of a
laser beam in the presence of a collection of atoms, we can approximate
laser radiation I(o) with a monochromatic wave whose frequency is centred

about o,

(o)do = p(0)d(o -0, )do 1.1.9



while the atomic transition energy cxhibits a finite line-width,
N(o) = glo,0,)N 1.1.10

The function g, gives the spectral distribution of the atomic transition
rate and is centred about the frequency o . The finite line-width of the
transition is due to many physical phenomena whose detailed treatment can
be found in many laser textbooks [Loudon 1983].

The line-shape function g is normalised to unity,

o

jg((o,o)())do):l 1.1.11

0

The equations 1.1.2. 1.1.3 and 1.1.4 can be rewritten in the following

way:

NG
— = B,,p(o)N,g(0,0,) 11,14
ct

We assume that the radiation. whose frequency is centred on o, is
incident on a thin absorbing sample of thickness dx. Let the radiation
density be high cnough to neglect the spontancous cmission contribution.

The number of photons is given by the balance

ot ct g

Multiplying both sides of 1.1.15 with the photon cnergy hv and dividing

by the volume V we get an expression for the energy density:



O
C

ot

[p(cos)d(o] = —p(cos)dO)BZIhu)sg(cos,(oo)[—n, - n, J 1.1.16

Equation 1.1.16 gives the rate of absorption of energy in

the frequency

interval do. As the beam propagates in the matcrial, the radiation density

varies according to

= plo,)glo,,0,)B,n 1.1.17

If we integrate with respect to x the cquation 1.1.17.

exponential solution

X
plo,) :po(cos)exp[hc)sg(c)s,coo)len—} 1.1.19
¢

We define the absorption coefficicent a(o,)

fic

a{o,) = -nglo,,0,)B, k. 1.1.20
C

and finally get:

p((os) = po(ws)exp[—a(ms)x] 1.1.21

we

find

an

Equations 1.1.18 to 1.1.21 are fundamental in order to understand how a

laser works. Depending on the value of the variable n.

inversion, light can be absorbed. transmitted or amplified.

v

the

population



1.1.3 THE POPULATION INVERSION AND THE GAIN

According to the Boltzmann distribution 1.1.1 for a collection of two-level
oscillators at thermal equilibrium, the population inversion 1is always
negative. In other words, at cquilibrium there are always more atoms in
the lower than in the upper energy state. Suppose now that we are able to
genecrate a non-cquilibrium situation in which

nZ nl

—_— > — (with E, > E ) 1.1.22

gz gl

From cquation 1.1.20 and 1.1.21 we see that the absorption coefficient has
beccome negative and the radiation density increases exponentially as it

travels in the 'inverted' medium. We define G. or small signal gain as:

= Gp(w) 1.1.23

When the population inversion is positive. the absorption is negative and
the gain is positive. The intensity I which is proportional to the radiation

density,
(o) = plo)hoc 1.1.24
and increases exponcntially as the wave propagates in the active medium.

ol
— = Glx
X

(X) = I0 eXp(GX)

—
—
—
N
’Jl

The exponential solution 1.1.25 is valid only while the intensity is not too
high. such as to affect the population inversion and the gain. In fact from
equation 1.1.14 we lecarn that equation 1.1.25 must alwavs be solved

together with an analogous equation for the population inversion change

rate:

on 2 B

— =1+ 2. 9le . y ) 2

ox [ +g1] g(os,oo)p(os) o n 1.1.26



The upper level population is depleted while radiation is amplified in the
active medium. Then the exponential soluticn 1.1.25 is correct only at low
intensities, and the equations 1.1.17 and 1.1.26 should always be solved

together.

1.1.4 HOW TO CREATE POPULATION INVERSION

It is clear from the results of the previous paragraph that we cannot create
a positive population inversion by feeding radiation into a «cavity
containing a collection of two level oscillators. From equation 1.1.26, as
the radiation density increases, the population inversion tends to the

asymptotic condition, n=0:

ng =n,g, 1.1.27

When condition 1.1.27 is realised. the absorption is zero |a(®)=0] and the
medium is transparent.

Before examining how to create a population inversion, we will introduce
the three following quantities, for any two energy levels a and b, with
E;<Ep: The spontancous emission level lifetime Tpa.. the stimulated
emission spectral cross section o,,(v) and thc absorption spectral cross

section oap(w) [Koechner 1976]:

1
Tba =
Aba

AL A hioB,,

o, (0,) = glo,,0,) = glo,,0,) 1.1.28
4n} c

g
o, (0,) = o,

&,

Where n; is the refractive index and %.o is the wavelength. The spontancous

emission lifetime coincides with the level lifetime only for two-level
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atoms. Other possible radiative and non-radiative decay processecs result
in the level lifetime being shorter than the spontaneous emission lifetime
in real atoms or molecules. In order to achieve population inversion we
need at least three energy levels, but most actual lasers make use of active
media with four levels. The only three-level laser still in use is the Ruby
laser. In one of the cxperiments discussed i1in this thesis (chapter 4) we
have been using such a device.

No matter how many levels there are, the transitions between each pair of
levels are still ruled by the equations 1.1.12 to 1.1.14. In figure 1.1.1 we
show the transition scheme of a three-level laser system.

The idea is that some energy source. which we call the pump (W, ,3), can
channel some atoms from the ground state (1) to the upper level (3). The
atoms in level (3) will spontaneously decay to populate the upper laser
level (2). Lasing will occur once a positive population inversion has been
established between level (2) and (1). Of course the transition betweccn
level (2) and (1) must be an allowed radiative transition, while the
transition between (3) and (1) must be forbidden, or T3,>>7T,5;. Two other
general conditions that the system must satisfy are the following: The
first is that 73,>>1t3,. in order to establish population inversion. The
second is that t3,<<t,,, for the population inversion to be conspicuous.
When these conditions are satisficd. the number of atoms in the level (3)

is negligible and we can say that the atoms are either in level (1) or (2)

n +n, =n 1.1.29

tot

where n,, is the total number of atoms.

In the four-level case the conditions on the transition rates are similar:
T309-T31>>T3, and 7,,>>13,.7;,. Though. in this second configuration. there
is one important difference: the lower laser level is not the ground level
of the atoms and consequently. if 7,, is very short, level (1) is always
empty. Population inversion can then be achieved with a much lower pump
power (Wg,3) and a higher efficiency than in the three-level case. When the

above conditions on the transition rates are true, we can again say that

n, +n, = n 1.1.30

where n,,, is the total number of atoms. The next figure shows the

transition scheme of a four level system.
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1.1.4 THE LASER MECHANISM AND THE RATE EQUATIONS

When an inverted medium is placed in an optical cavity, laser radiation
can be observed. When some spontancous radiation is cmitted by the active
medium. it is amplified by the stimulated emission mechanism that
provides a positive gain. A travelling radiation wave then starts to
develop in the active medium. It propagates and it is amplified according
to equations 1.1.17 and 1.1.26. A minimum active medium length 1is
necessary for the energy to be extracted by the beam. In order to keep
compact the dimensions of the system, it is possible to achieve the same
effect of enhancing the active medium length by placing it inside an
optical cavity (or resonator). In its commonest configuration the optical
cavity consists of two spherical or planc mirrors. one of which is fully
reflective (full reflector), the second beirg partially reflective (output
coupler). The partial reflectivity is nccessary for the beam extraction. We
can describe the dynamic behaviour of a lascr with a set of coupled rate
equations [Koechner, 1976]. In their simplest form they consist of two
coupled cquations for the population inversion and for the photon density
inside the cavity. The photon density ¢ can be expressed in terms of the

related quantity p(o) as:

B,,p(®)
o, (0)

For a threc-lcvel laser syvstem, using the 1.1.29 and 1.1.28.

dn, g, n,
— =|n, -—n, leéc + — - W, n,
dt & T 1.1.32
dn, dn, N
dt dt

Extracting the population inversion in 1.1.32 and substituting the 1.1.31

in 1.1.16. we obtain
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dn 2, n+g, /g1 JRLMS

— = —| 1 +—|nodc - +W31(nm—n)

dt g Tar 1.1.33
do

— = nopc — — + S

dt T

c

where 1, is the photon decay time in the resonator and S 1is the
spontaneous emission contribution. The photon equation takes into account
the photons lost from the output coupler through the loss term
proportional to 1/t_.

Correspondingly in the four-level casc the ratc equations arc:

cn n
= —ndoc - — + Wos(“m, - n)
ot Ty
1.1.34
— =npoc — — + S
ct T

c

1.1.5 SOME CONSIDERATIONS ABOUT LASERS

The laser ratc equations give a very general description of a typical laser
system. Depending on the values of the physical parameters of the system,
lasers exhibit a wide range of different bechaviours. What is common to all
laser systems is their nature of coherent "Amplificrs of Quantum Noise".
The most interesting properties of lascrs lie in the thermodvnamic and
cohcrence properties. Let us consider a flash-lamp pumped laser. From a
pump source which is a source of chaotic radiation, having poor spatial
and temporal coherence, we can generate a beam with the two following
features:

a) Temporal Coherence:

b) Spatial Coherence;

The temporal coherence implies that the radiation is emitted into a narrow
spectral line. while the spatial coherence implies a high beam brightness.
It is due to these two features that laser light found so many applications.
In the pumping process, an appreciable fraction of the pump energy can be

transferred to a highly collimated radiation beam. If such a beam is
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focused onto a target. it can crcatc a plasma with a temperature of several
kV. much hotter than the pump itself. The gencration and the handling of
such energetic beams of light is a big technological problem and involves

many branches of applied physics and enginecring.

1.2 THE PROPAGATION OF LIGHT

In this section we will introduce Maxwell's equations for the propagation
of an electromagnetic field in a medium which has a linear response. In
the next section we will deal with a particular approximation of Maxwell's
equations known as Geometrical Optics. The latter will allow us to solve
numerically the problem of the propagation of a laser beam inside a gas

lens.

1.2.1 THE MAXWELL EQUATIONS AND THE WAVE EQUATION

Let us consider the electromagnetic ficld in an isotropic material with
linear response characteristics. In a lincar medium we can define the

polarisation P as.

P = yE 1.2.1

and the dielcctric induction vector D.

D=¢geE=(1+y)E 1.

o
[\

for an external elcctric field E of finite amplitude.
Analogously we define the magnetic permittivity p and the magnetic vector

H to express the linear response to a finite amplitude magnetic induction
field B.

B=puH 1.2.3

_ -12 -
€, = 8.854-10™" F/fm and p, =47n-107 H/m are the clectric permittivity and
the magnetic permeability of freec space. e and p,. equal unity in frece

space and never differ much from a few times unity in most materials (at

13



least in non-ferromagnetic matcrials). The values of £, and p, must be
calculated with the help of a microscopic theory for cach medium and can
depend on some characteristics of the external field such as its frequency.
Since they are defined as lincar responses. they do not depend on the field
amplitude. In such linear and isotropic mecdia. the laws that govern thec
evolution of the electric and magnetic field are the Maxwell equations

[Born and Wolf 1993]:

_ -~ 1. 47 .

VAH--D"=—]
C c

- 1.

VAE+—-B"=0 1.2.4
c

V.D=4np

V-B=0

We must add to Maxwell's equations the material cquations 1.2.2 and
1.2.3. and

J=0E 1.2

o

to define the responsc of the medium. Herc o is the specific conductivity
of the medium and equation 1.2.5 describes the motion of the free charged
particles under the effect of the ficld.

After some manipulation we can scparate the clectric and magnetic ficld in

the 1.2.4 to get two propagation equations for the electric and magnetic
field:

Vzl—i—%ﬁ"+(§logu)A(<7AE)—@(E-vloga)::O 1.2.6
vlﬁ_%ﬁr'+(vlogg)A(vAﬁ)v?(ﬁ.vlogu):o 1.2.7

Where the medium is homogenecous, the gradient of the dielectric constant

and of the magnetic permeability are zcro, and 1.2.6 and 1.2.7 reduce o
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e

vAE- DA =0
¢ 1.2.8
- EN -
V’E - —Z—E" =0
C
These are the standard wave equations. Their solutions are

electromagnetic waves propagating with the veclocity:

C
v =V = 1.2.9

Jon

The constant ¢ is the velocity of the EM waves in vacuum. Its value 1s
c=299792.458 Km/s and it is a universal constant.
The ratio between the electromagnectic wave velocity in vacuum and in the

medium. is known as the refractive index of the medium n,

C
n=_ 1.2.10
A%

n can be mcasured or it can bc calculated with the help of a microscopic

theory of the medium.

1.3 GEOMETRICAL OPTICS

The wave equations 1.2.6 and 1.2.7 cannot be solved in their gencral form.
We will look for some approximations that make them easier to handle.
The typical wavelength of a laser radiation ranges between 200nm to a few
tens of microns, that is from near ultraviolect to far infrared. Suppose now
that the dielcctric constant and the magnectic permeability relative
variations are small on the spatial scale of one wavelength. Under these
conditions light propagation obeys much simpler rules than in the general
case.

Alternatively, we can imagine dealing with electromagnetic ficlds whose
wavelengths tend to 0. The light propagation properties in this

approximation (A — 0) constitute a branch of optics known as Geometric
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Optics. The limitations of applicability of the geomelric optics becomec
evident when light is propagated through spatial structures whose typical
dimension is comparable to the radiation wavelength., such as diffraction
gratings., pinholes and edges of sharp objects.

At the moment we are interested in a set of equations that describe the
way light propagates through non-homogeneous media, where the spatial
scale of the in-homogeneities is much larger than the wavelength. In
particular we will investigate the propagation of light into non-uniform

gas density distributions.

1.3.1 THE EIKONAL EQUATION

We will now derive the propagation equations of light in the geometric
optics approximation. Consider the generic time harmonic field, or quasi-

monochromatic wave:

E(7,t) = E (T) exp(—iot)
H(7,t) = H, (F) exp(-iot)

We can decouple the spatial variation of the ficld into a fast plane wave

dcpendence and a slow variation.

H, (7) = h(7) exp[ik,o(7)] 1.3.2
o 2

k, = Bo _ 2T
c A

The second factor on the right hand side of 1.3.2 varies over the spatial
scale of one wavelength, while the first varies over the spatial scale of
scveral times the wavelength. o(r) is a scalar function of the position and
it is known as the Optical Path.

Equation 1.3.2 is our trial solution to be substituted into the wave
equations 1.2.6 and 1.2.7.

By using well known vector identitics and grouping the members according

to the power of 2., (or 1/k,) we obtain the following equation:
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1 1
K(e,05,n) + — L(&,0,n,u) + — M(E,e,pn) = 0
ik ik?

0 0

with
K(é,c,n)—l:n2 —(@o)z]é 133, 3
L(g,0,n,1) = [% -Viegu — Vzu]é ~ 2[6 .V log njVo - 2(@0 : V)é

M(€,e,pn) = (? A é) AViogu — V€ - v(é .V log 8)

while the equation for the magnetic ficld. taking into account the

symmetry of the wave equation. is the following:

with K.L.M defined as in 1.3.3 where p and & have becn swapped. In the
hypothesis that the wavelength of the clectromagnetic field tends to zero.

A, >0,k, >x. and we can ncglect the sccond and third terms of

equations 1.3.3 and 1.3.4. The rcsulting cquation is known as the eikonal

cquation:

Ve = n’

- 2 A N2 A \?
¢0) léle] ée) R 1.
— | +|— | +|—| =n’(x,y,2)
CX oy CZ

The c¢ikonal equation 1is the basic cquation of geometric optics. The

(V8]
n

surfaces o(r)=constant defines the geometrical wave-front of the

propagating wave in the refractive index field.

1.3.2 THE LIGHT RAYS AND THE RAY EQUATION

The eikonal equation 1.3.5 defines the geometrical wave-front, that is the

surfaces on which the electromagnetic field has a constant phase. Consider
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the expressions of the electric and magnetic cnergy density and the

Poynting vector:

1.3.6
(S) = Sc—nRe(é AR

If we use the second of the Maxwell cquations 1.2.4 in the limit of
geomelric optics (@G/\E—uﬁ =0). the Povnting vector can be expressed in

terms of the electric and magnetic energy density:

(S)Zn—zz((we)Jr(Wh))VG 1.3.7

The Poynting vector can be cxpressed in terms of s. the unitary vector

perpendicular to the wave-front

(S) = %(w)i = v{w)s

with (w) = (w, )+ (w,)

The cycle averaged Poynting vector lies in the direction normal to the
geometrical wave-front. Consequently the average energy density
propagates perpendicularly to the wave-front, with velocity v=c/n.

We define now the 1light rays as the orthogonal trajectories to the
geometric wave-front (defined as o=constant). The solution of the eikonal
equation involves the determination of the surfaces o=constant and it is
equivalent to the determination of the rays' trajectories.

Let r be the position vector of the ray,
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dr

=3 1.3.10
ds
and.
dr _
n— = Vo 1.3.11
ds

The intensity 1 is defined as the absolute value of the cycle avcraged

Poynting vector. then, from equation 1.3.9

I=[(S)] = v{w) 1.3.12

The energy conservation assumes the following cxpression:
div(Is) = 0 1.3.13

In figure 1.3.1 we show a simple and intuitive geometrical interpretation
of 1.3.13 as a conservation law.

The calculation of the rays' trajectories, togecther with the 1.3.13 allows
one to calculate the value of the cvcle averaged clectric field at any point

in space.

Fig 1.3.1 Geometrical interpretation of the intensity conservation law: the

intensity flux is constant
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1.3.2 DIFFERENTIAL EQUATIONS FOR THE LIGHT RAYS

The direct solution of the cikonal equatior, that is the determination of
the surfaces of constant phase. is a much harder problem than the
computation of the rays' trajectories. We start from equation 1.3.11 and

we differentiate again with respect to s:

d dry d (_ )

—|n—|=—{Vo
ds ds ds
( dr 1,2
—|n—|=—(Vn’ 1.3.14
ds{ ds nz( )
( dr _
—|n— | =Vn
ds ds

Each of the cquations 1.3.14 consists of a system of ordinary sccond order
differential equations and allows one to solve the ray trajectorics oncc the
refractive index spatial profile is known. Given the ray trajectories and
the conservation equation 1.3.13 it is possible to calculate the intensity at
any point in space. The only assumption bcing that the gcomctric optics

approximation is justificd.

1.3.4 THE PARAXIAL RAYS' APPROXIMATION

A further approximation that simplifies the solution of 1.3.14. can bec
performed when the wave-front propagates mainly in one direction and the
refractive index gradients pcrpendicular to the propagation direction are
weak. As an example, consider a narrow beam of light, such as a laser
beam. propagating along the z dircction and finding along its trajectory
only small refractive index gradients: the deflection angle will also be

small. If it is so small that ds = dz. equation 1.3.14 can be written as

n

af @)
E— n_ =
iz dz) " b

and two independent differential equations for the two transverse
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directions x and y can be written:

d dx
—n— =
dz dz

d dy
_n—
dz\ dz

Moreover. if the refractive index is close to unity. such as in a gaseous

1.3.16

It

gly gl2

medium at nearly atmospheric pressure (n=1), the rays' equations take a

particularly simple form:

d’x 1¢n
=
dz n dx L3 17
ry_ton
dz> ndy
or
d’x _(n
~ =
df (EX 1.3.17a
dy «¢cn
dz> dy

Depending on the characteristics of the mecdium and on the initial wave-
front geometry, it is possible to utilisc thc ray cquations 1.3.14. 1.3.16.

1.3.17 or 1.3.17a.

1.4 THE REFRACTIVE INDEX AND THE DISPERSION RELATION
1.4.1 THE MATERIAL RELATIONS: MICROSCOPIC THEORY

During our derivation of the eikonal equation and the refraction law we
assumed the material relations 1.2.2 and 1.2.3. In non-conducting

materials which are transparent to the visible wavelengths, say between

the near UV and the near IR, the magnetic permeability p is close to
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unity. The relations 1.2.13 and 1.2.14 definc the refractive index as:

n = Jep 1.4.1

but the only contribution that renders the rcfractive index significantly
different from unity comes from the dielectric constant ¢. Then from now

on, we will say that

n=+e =J1+x 1.4.2

The quantity y is known as the diclectric susceptibility of the material
and is due to the polarisation of the atoms as the light propagates in the
material. When the radiation frequency is such as to excite an atomic
transition the refractive index varies sharply with the wavelength and
absorption appears. A bit further away from the transition frequency, the
dielectric constant still depends on the wave frequency, but we can neglect
absorption. In the following treatment we will consider radiation whose
frequency 1is far enough from any transition of the material. for the
absorption to be negligible. In the following paragraph we start from a
very simple classical model (The Lorentz-Lorcntz model) of the atom
radiation interaction to get an expression for the dispersion relation of

gases.
1.4.2 ATOMIC POLARISABILITY AND REFRACTIVE INDEX
Following [Born and Wolf 1993]. let us consider a non-conducting medium.

It is possible to demonstrate that the microscopic electric field E'

cxperienced by the atoms (or molecules) is related to the macroscopic field

E and to the polarisation P by

The polarisability o is the linear response per atom to the microscopic
electric field

P = NaE’ 1.4 4
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where N is the number of atoms per unit volume. Equation 1.2.1 together

with 1.4.3 and 1.4.4 gives

and its inverse:

3 8—1_ 3 n* -1
ST U4IN £+2 47N nd +2

1.4.6

In a gas, the refractive index n is closc to unity and cquation 1.4.6 can be

simplified.

n -1 2(n-1)
a = x 1.4.7
47N 47N

Combining the 1.4.7 with the equation of state for a perfect gas P = NRT

and with the density rclation p = NM. where M is thc average molecular

weight,

p P
n=1+2na— =1+ 2not — 1.4.8
M RT

Equation 1.4.8 expresses the relation between the refractive index of the
gas and its density. The relationship in which the density is replaced by
the pressure is valid where the medium behaves as a perfect gas. Equation
1.4.8 is rather important for gas optics., since it governs the performance
of a class of gas lenses known as Thermal Gradient Gas Lenses. In a gas at

constant pressurc, the hotter the gas the lower i1ts refractive index.

23



1.4.3 THE DISPERSION RELATION

In the previous paragraph we have secen how to rclaic the refractive index
to the polarisability of the medium. This rclation is important since it
constitutes a bridge in betwecen microscopic physics and a macroscopic and
measurable quantity such as the refractive index. The polarisability o is
the lincar responsc of the atoms (or molecules) to the rapidly oscillating
microscopic electric field, and. as we anticipated, is a function of the
field pulsation o. The relation n(w) is known as the dispersion relation.
In most materials transparent at visible wawvelength, n(o) is an increasing
function of . A very simple classical modecl of the intcraction between
the external field and atoms can explain several qualitative features of the
dispersion relation and to a quantitative scmi-empirical formula for the
latter.

Let the elcctron charge e be distributed on a hard shell of mass m around
the nucleus and let the hard shell be bound to the nucleus by an eclastic

force [Ashcroft 1976].
Q= —qr 1.4.9

Where r is the displacement of the hard shell duc to the external ficld.

The equation of motion for the electron shell is,
mi” + qf = eE’ 1.4.10

Using the trial time solution.

T = T, exp(-iot)

we get the following condition:

= eE’ eE’
T = ; = L%, 1%
m(g/m -0’) ~ m(0} - o)
The polarisability o then is:
er ¢’ 1
)= == —— L. ok, 172
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Substitution in 1.4.7 immediately gives an expression for the refractive
index.
2niNe’ 1

nfle) =1+2mNa(o) =1+ - 1.4.13
m o, -0

In most materials transparent to the visible wavelength there are strong
absorption bands in the UV side of the spectrum due to electronic
transitions and weak absorption bands in the IR side duc to photon-phonon
interaction in solids and excitation of vibrational or rotational transitions
in molecular gases. This explains why the refractive index normally
increases with the field frequency ®. At pulsations closer to o, a damping
term can be introduced in equation 1.4 13, in order to account for
absorption.

In the case of several electron shells tied to the nuclecus , each by its own
elastic force. we have several resonance frzquencies. Equation 1.4.13 can

be rewritten as:

¢
n(A)" =1+> 5.~ with P = N1, 1.4.14
k

In this cquation the cxternal field (E,c™) displaces cach electronic shell
independently and the interaction betwecen the displaced shell's fields is
not taken into account. The model is thus valid only for low density
materials such as gases [Ashcroft 1976]. In the case of solids or liquids
an equation similar to 1.4.14 can be dcrived by using the relation 1.4.6
rather than 1.4.7.

The classical formulation of the atom-radiation intcraction, which lead us
to equation 1.4.14, does not allow us to calculate the refractive index of
rcal gases to any degree of accuracy.

Anyhow when the calculations are performed on the basis of quantum
mechanics, an equation formally identical to 1.4.14 is found [Landenburg
1921, Landenburg 1928], where the cocfficients f, are replaced by their
quantum counterpart.

In the classical formula the numbers f, represent the density of hard

electronic shells that exhibit resonance at vi=2mo,. In the quantum
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mechanical formulation they do represent the transition probabilities to
each virtual state. Although the virtual states (and then the numbers f)
are infinite in number, it is found [Mitchell 1971] that only few of them
give an appreciable contribution to the refractive index.

Equation 1.4.14 can be rewritten as

b
n(AY =1+a+ > —— 1.4.15
Zk:}\'z _}\‘21(

with:

1 2
a = X Zpk?\.k

c k

1.4.16

bk = C—zpk;\.4k

From the above discussion it is clear that 1.4.15 is a good starting point
for a semi-empirical formula to represent the dispersion relation of gases
in the visiblce to near UV rangc. In a range that does not contain resonance
frequencies. equation 1.4.15 can be developed in power series of v (or
1/7%). Taking into account only the strong (due to elecctronic transitions)
absorption bands in the UV side of the spectrum and retaining only terms
proportional to 1/2.2 we obtain Cauchy's formula. In the case of a gas at

about atmospheric pressure. the refractive index is close to unity and

n -1=2-(n-1).

B
n(x)_1+A1[1+K—2‘) 1.4.17

The coefficients A, and B, can be either calculated from first principle
performing a quantum mechanical <calculation or obtained from a
dispersion measurement as empirical parameters.
In table 1.4.1 the measured values of the constants A, and B,. when A is
expressed in cm, are reported for various gases.

The Cauchy formula is an excellent empirical formula for gases at about
atmospheric pressure in the wavelength range between 300nm and 800nm.

The condition for the validity of Cauchy's formula for cach gas is that the
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GAS A, 10 B, - 10" cm™?
Argon 27.92 5.6
Nitrogen 29.19 7.7
Helium 3.48 2.3
Hvdrogen 13.6 7.7
Oxygen 26.63 5.07
Air 28.79 5.67
Ethane 73.65 9.04
Methane 42.4 14.41

Table 1.4.1 constants of the Cauchy's dispersion formula for different

gases at standard conditions

A(nm) 108(n-1)
200 32408
210 31746
250 30146
300 29155
340 28698
400 28275
500 27896
600 27697
700 27579
760 27530
1000 27416
1500 27330
2000 27300

Table 1.4.2 Refractive index of air at standard conditions
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wavelength % is longer than the eclectronic absorption band wavelength.
which generally falls in the UV.

Cauchy's formula is good for our purposes. since 1in the experiments
treated in this thesis we have been using ruby lasers (763nm) and nitrogen
lasers (337nm) whose wavelength falls well within its validity range.
Finally in table 1.4.2 we report the values ¢f the index of refraction of air
at standard conditions as a function of tae wavelength [CRC Handbook

1995, Edlen 1966].

1.5 GAS LENSES

In this scction. after a simple and intuitive description of the thin
spherical glass lens, we describe in detail the graded index lens and other

gas lenses.

1.5.1 THE THIN GLASS LENS

The laws for reflection and refraction at the interface between two
dielectric matcrials. having refractive indices n; and n,. arc well known.
In a refraction process., the transmitted ravs will emerge at angles
according to the refraction law. If 6_ and 0, arec the angles about the

normal to the surface:

1

sin(0.) n

sin(6. ) n,

While in the casc of reflection: er :Qi. Let us consider a thin slab of
dielectric material in air. The two interfaces being described by the
surfaces obtained from rotating the curves fl(l) and fz(r) about a common
axis, the optical axis.

The refractive index of air can be approximated to equal unity and the
diclectric refractive index is n>1. We will consider only homocentric
paraxial rays. that is rays starting from a common point on the optical

axis and having small angles 6 about the axis. such that:
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£(1) / fo(r)

n=1 n>1

Z
>
Optical Axis

Fig 1.5.1 Gecometry of a Glass Lens

Fig 1.5.2 Refraction from a thin lens
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sin(0) = tan(B) = O

Given the beam characteristics of most lasers. it is in gcneral a very good
approximation to model a laser beam with paraxial homocentric rays. The
same approximation is not necessarily valid when we study the formation
of images from wide angle objects.

A ray incident in r with the angle 6, about the optical axis is refracted

according to Snells law

+ — 1.5.2
dr

In the thin lcns hypothesis rays will not bc displaced inside the lens and

the exit point r' will coincide with the entrance point r.

0! = nb; 1.5.3

The refraction schemec is depicted in figure 1.5.2. The deflection angle
after the two interfaces is given by the 1.5.3 together with the 1.5 4.
1.5.1 and 1.5.2.

—
n

df, df
9"—(n—1)-[ '+—3]+9l

Edr

Let for simplicity the two curves coincide. f(r)1 = f,(r) = f(r). For paraxial

rays we can approximate the curve f(r) with a parabola

f(r) =a—br’ 1.

N
(=)}

Substitution in equation 1.5.5 gives immediately:
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. =-2b(n-Dr+6 =6 —ar 1.5.7
Equation 1.5.7 mcans that the larger the distancc of the rays from the
optical axis the more they are deflected. A collection of parallel rays
incident on the thin lens with a profile such as the 1.5.6. will all meet at

one point, the focus (fig.1.5.3).

Fig 1.5.3 Parallel rays incident on a thin lens arc focused to a sharp

point.

In general the distance L at which the rays will cross the optical axis of

the svstem is a function of the distancc from the axis r. In this case we

speak of longitudinal aberration. But for a profile such as 1.5.6 with the

thin lens hypothesis, we have:

1
L = r/tan[@(r)] =rf6(r)=—=1f 1.5.8
a

which is independent of r. This analysis was performed with the
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hypothesis of paraxial rays. homocentric rays and of a thin lens. These
three hypotheses remove aberrations from our discussion. Longitudinal
aberrations are defined as non-ideal propertics of a lens that prevent its
focal length f from being constant. but rather a function of the distance
from the optical axis and of the wavelength. From the previous discussion
it is clear that a spherical glass lens suffers from longitudinal aberrations
for two reasons: first, as soon as the incoming rays cease being paraxial
the curvature cannot be approximate as a parabola. and second. the higher
the angle 6 (and the thicker the lens). the higher is the ray displacement
inside the lens.

Morecover the focal distance f as defined in cquation 1.5.8 is inversely
proportional to the difference bectween the refractive index and unity.
Since this quantity depends on the wavclength through the dispersion
relation, the focal Ilength depends on <colour. This effect 1is called
chromatic aberration and it is in general negligible for lasers because of
their narrow spectral emission.

Other classes of aberrations arise when we consider homocentric skew
rays. In this case. and especially at large anglcs. we cannot define a focal
plane but rather a curved focal surface. Moreover the latter configuration
introduces astigmatism. bccause the lens is not secn by the homocentric
beam as rotationally symmectric. Astigmatism rises cven in the case of
homocentric meridional rays. if the surfacc of the lens is not rotationally
symmetric. such as for the clliptical CSL described in chapter 6.

Dctailed discussion of aberration theory is bevond the scope of this thesis.
The design and realisation of aberration-frece lenses is an applied optics
and an enginecring problem and aberration-frec lenses are realised in
practice [Welford 1974, Slvusarcv 1984].

The prcvious analysis is a geometrical optics approach and diffraction is
not included. Including diffractive effccts makes the ravs of an
aberration-frec lens not all arrive at a point, but within a finite region of
space. An ideal lens can hope to be diffraction-limited. A diffraction-
limited lens focuses light into the smallest possible region of space
according to the basic principles of wave mechanics. A lens that suffers
any aberration whose effect is negligible when compared to diffraction, is
an ideal lens. The importance of realising a diffraction-limited optical
system is evident when we consider either classical applications of lenses
such as microscopy, telescopy and photography. or the focusing of high

power laser beams to achieve very high intensities.



1.5.2 GRADED INDEX LENSES

In a gas, the refractive index is proportional to the density. The case of
spatial gas refractive index distributions having cylindrical symmetry is
interesting [Marchand 1978]. In general. by controlling the local
temperature and/or the density within a gas volume, figure 1.5.4, we can
control the propagation of light within its boundaries. performing many
kinds of operations on the transmitted wave-front [Marcuse 1972]. In this
section we will assume that the ray optics approximation is valid and we
will neglect diffractive effects due to the finiteness of the transverse
wave-front dimension.

Most often, in a gas, sharp discontinuities in the refractive index are not
present. Let us consider a shock. A shock is a discontinuity in the local
thermodynamic properties of a gas. such as pressure and density. In theory
a shock wave can be as thin as the mcan free path of the gas molecules.
roughly 10-7m [Zel'dovich., 1966]. but in practice, due to energy
dissipation on the shock-front (the gas viscosity), a shock wave is seldom
narrower than several tens of pm's. A shock produced by a spark in air
was mcasured to be as thin as 10°%m [Hamamoto 1981]. Such discontinuity
is seen as a smooth refractive index variation for visible light whose
wavelength is less than 10°°m. thus the ray optics is an adequate
description.

If we make a lens out of gas. we <cannot wusc refractive index
discontinuities to deflect rays as in thc casc of the glass lens. In order to
obtain two reclations such as 1.5.7 and 1.5.8 with a gas device we must use
smooth gradicnts. Devices that utilise smooth rcfractive index gradients to
achieve focusing or imaging are called graded index or "GRIN" lenses.
GRIN lenses can be rcalised either by doping glasses with ions that locally
modify the refractive index or by staking together slabs of glass with
different refractive indices. The human eyc is a GRIN lens that achieves
diffraction-limited performances in the fovea.

The general problem of a radial and axial rcfractive index gradient does
not have an analytical solution. In the case of a purely radial gradient the
rays' cquations can be solved explicitly only in a few special cases

[Marchand 1972]. In the case of a cylindrical rod having a radial profile:

n(r) = n,sech(ar)
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Fig 1.5.4 Possible effcct of a non-uniform gas density distribution on the

propagation of a plane wave-front

n(r,z) L

fig 1.5.5 Cylindrical geometry of a gas lens
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Every fan of meridional rays is periodica.ly sharply imaged within the
rod. Such a profile does not image skew rayvs sharply since they travel
inside the rod along helical trajectories.

Another intercsting case is when the rcfractive index profile is:

n(r) = yn) — br’

where the rays' trajectories have a particularly simple form. The rays just

oscillate about the optical axis. (The problem is separable in x and y).

1.5.3 GAS LENSES

Let us consider a cylinder of length L filled with gas whose refractive
index is a function of the radial distance r and of thec position along the
optical axis Z. We will look for a solution of the rays' trajecctory only in
the case of the paraxial rays approximation (paragraph 1.3.3). Only the

radial gradients contributc to the rays deflection,

If the function G(r.z) 1is known. wc can casily calculate the rays'
trajectories inside the gas cylinder and the lens performances. Conversely,
now we want to compute the rcfractive index gradient profile G that gives
a point focus for an input becam of parallel ravs. Again we use the paraxial
ray approximation. Writing cquations 1.3.17 in cvlindrical coordinates,
and taking into account that at densities rcasonably closc to atmospheric
the refractive index differs very little from unity. the ravs propagate

inside the gas cylinder according to:

d’r 1 dn dn
- = —— = — 1.5.10
dz n dr dr

Equation 1.5.10 must be integrated in z. Since the ray position r changes
as the beam travels along the optical axis z, the cquation 1.5.10 does not

have a general analytical solution r(z). Though, under one hypothesis



similar to the '"thin lens'. we can get one. Le¢t the refractive index gradient

be small. such as that

on
TL << 1
cr

the dependence r(z) is then very weak. In other words, the ray position r
does not vary appreciably along the trajectory within the refractive index
gradient region. This implies that the device's focal length is much larger
than L. With this hypothesis we find an analytical expression for the ray
deflection:

—dz =L — 1.
dr dr

11

W

dr % dn dn
dz J.

0

In order to get a point focus (paragraph 1.5 1),

dr dn
—_— = — X —T 1.5.12
dz dr

The latter cquation can be solved in n. its solution being:

'
—
)

n(r) = n, - pr’ .3

In the hvpothesis that the ray position r docs not change as light travels
inside thc gas lens. a parabolic density profile produces a sharp focus. By
direct substitution in equation 1.5.10 we discover that the profile that we
just found gives a point focus even without the hypothesis that r is

constant along the ray trajectory. The solution of 1.5.10 is:

d’r 5

dz? Pr

T =1, cos(,/ZBz) + —ﬁ— sin(,/ZBz) 1.5.14
V2P

dr

U i 25e) 0, col )

36



If we let the initial angle of the ray 04 be zcro. both the final angle and
position of the ray are directly proportional to the initial radial distance

from the optical axis and at any position z wc have:

dr

—| = —romsin(mla) x T

dz| 1.5.15

r|z - rosm(\/%]-’) x T

Since the focal length is proportional to the ratio between the first and
the second of the 1.5.15, the refractive index profile in 1.5.13 gives a
point focus.

We have reduccd the problem of making a gas lens to the problem of
creating a gas density profile close to parabolic. Optical fibre with
parabolic refractive index profiles. or sclf-focusing wave-guides, are
widely used in long-distance communications. The becam is refractively

confincd in the centre of the fibre and there 1s zcro reflective loss.

1.5.4 STEADY STATE AND PULSED GAS LENSES

A gas density distribution such as 1.5.13 is not in dvnamic equilibrium.
More genecrally. most non-uniform gas distributions are not in cquilibrium.
This 1s a simple consequence of the gas-dvnamic equations. where a gas
flow follows any pressure gradient [Bejan 1984]. The presence of a density
gradicnt and consequently of a gas pressure gradient causes a gas flow in
its direction. to establish equilibrium and uniformity again. We have two
options in order to realisc in practice a profile like 1.5.13. The first is to
build a device that forces the gas to achieve a steady state condition in
which a parabolic density profile is maintaincd. The second consists in
creating a transient non-uniform gas distribution and in using it as a lens
only for the time that its refractive index profile is convenient for
focusing.

A steady state gas lens is ideal for use with CW laser sources, while a
pulsed lens can be coupled with a pulsed laser. The typical duration of a
g-switched laser pulse is At;=10ns while a density perturbation propagates

at the typical speed (in air) of v=330m/s (the speed of sound). thus
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moving a few pm's during the laser pulse duration and then maintaining
almost unchanged its focusing propertics.

Both the options of continuous and pulsed lenscs have been investigated in
this thesis. We will first talk about the optical quality of a steady state
gas lens known as 'Spinning Pipe Gas Lens' or SPGL [Notcutt 1988] in
Chapter 2, then in Chapter 3 we will describe a pulsed gas lens that works
on the principle of multiple shock collision in air. the 'Colliding Shock

Lens', or CSL.

1.5.5 OPTICAL BREAKDOWN AND DAMAGE IN GASES AND SOLIDS

There is a twofold convenience in preferring a gas to a solid state optical
componcnt for high power laser applications. First. the breakdown
threshold is about three orders of magnitude higher. Second. the optical
damage eventually following the breakdown is permanent only for the solid
state component.

Optical damage occurs when high power radiation is unduly absorbed by
the component. Optical damage can then occur cither internally or on the
surface of the optical material. Internal damage can be due to: multi-
photon absorption. presence of internal inclusions. defects or self
focusing of the laser beam. The latter case occur when a CW or long pulse
lascr beam locally heats the optical matcrial thus creating a GRIN lens.
Surface damage risk 1is dramatically increased by the presence of
scratches. dust or dirt on the component's surface. High power lasers are
thus incompatible with many real cnvironments. ec¢specially where the
wavelength (IR and UV) requires cxpensive and soft optical materials (e.g.
ZnSe for CO, lasers).

When the laser pulse duration is in the 10's of ns range, typically the best
coatings achieve a fluence damage threshold of 10J/cm?2 while the best raw
polished surfaces reach the breakdown threshold of 20]J/cm? [Melles Griot
Catalogue 1992]. We must stress the cumulative and diverging nature of
the optical damage that can cause the complete destruction of the
component only a few shots after the first appearance of the damage.

It is experimentally found [Gower 1981, Raizer 1990] that the breakdown
threshold of air is 10''W/cm? for the KrF wavelength of 248nm and a

pulse duration of 18ns.

In the case of helium the breakdown irradiance value rises to 10!'3W/cm?.



It is then clear that a laser whose componecrts arc entirely made out of gas
can producc radiation fluences about threc orders of magnitude higher

before optical breakdown intcrvenes.

1.6 BRIEF NOTES ON INTERFERENCE AND DIFFRACTION OF
LIGHT

We will give here a very simple descripticn Lo two important phenomena
such as interference and diffraction of EM waves. Interference provides us
with a sensitive and useful tool to measure local refractive index in-
homogeneities. In chapter 3 we will utilisc a Mach-Zchnder interferometer
to measure the refractive index radial distribution inside a small pulsed
gas lens. Then. in chapter 5, by using the recsults of this measurement we
will determine the optical quality of the device. Diffraction theory
determines the wultimate phyvsical limit for the "concentration" of EM
energy into a small volume of space. It defincs the limiting performance
of any lens given its focal length and diamzter. and the quality of our gas

lenses will be determincd by thec comparison with the diffraction limit.

1.6.1 TWO BEAM INTERFERENCE

As scen in section 1.3, the intensity I is the amount of cnergy that crosses
the unit arca perpendicular to the propagation direction of the field. Let
us consider a quasi-monochromatic beam of light. In the gecometrical

optics approximation. using 1.3.12. 1.3.6 and 1.3.7. we get the following

expression for the intensity,

2c¢ c (&
R e E<E2> 1.6.1

where the electric vector E can be expressed as the real part of a complex

amplitude:

E = Re[f\(r)exp(—icot)] 1.6.2
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We want to calculate the intensity I in a region of space wherc two beams

of equal frequency ® overlap. Let the two electric fields be lincarly

polarised along the same direction.

At any point of space where the two quasi-monochromatic waves are

superimposed. the total field 1is:

E=E +E,

~ ~ 1.6.3
1=(E)+(E)+2(E -E,) =L +1, + I,

The Intensity equals the sum of the intcnsities of the single beams plus an

"Interference”" term. From cquation 1.6.3 it follows:-that,

(A, AT+ A -A) 1.6.4

the functions A contain the spatial variation of the field. which. for plane

waves. iISs:

For simplicity we let the field be directed along the X axis. Z being the

propagation dircction. With thesc hypothesis we rewrite cquation 1.6.4 as:

11:5312’ 12:532, [, =aa, cos(d) = 2/I.1, cos() 1.6.6
with

~ 2n
B:k-(rz—q)+¢2—¢lzTAS 1.6.7

d 1s the phase difference. while AS is known as the optical path difference
between the two becams. Substituting the 1.6.6 into 1.6.3. we see that if
the phase or the optical path difference arc varicd, the intensity oscillates
between a maximum and a minimum value. As an example we can observe

the interference of two plane waves incident at an angle on a flat screen.
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The phase difference will be a function of the screen coordinate x.

271
8(x) = —k—sin(e)x 1.6.8

and the spatial periodicity of the intensity pattcrn on the screen is Ax

A A 1.6.9
* = in(6) o

Interference is a very common phenomenon when we deal with quasi-
monochromatic light sources such as Jasers. .In order to observe
interference between two waves, thcy must maintain a constant phase
difference during the recording or obsecrvation time. This sets a few
stringent conditions on the interfering waves,

a) They must be quasi-monochromatic. because for each wavelength we
would get a different intensity pattecrn periodicity (equation 1.6.9)).

b) It is almost impossiblc to compel two independent sources to intcrferc.
Consider atomic vapour lamps. which emit light on a narrow atomic line.
Phase jumps occur in the cmitted radiation on the time-scale of the
average timec betwecen two atomic collisions [Loudon 1983]: the coherence
time is then much smaller than the typical observation interval. The two

light sources maintain a precisc phase relation only over the time =,
which is called the coherence time. in other words. the quantity . is the
time over which the field remains corrclated with itself.

If one overlaps two independent bcams in order to observe interference.
the intensity pattern will change over a time-scale cqual to the shorter of
the two coherence times.

c) The two beams must be spatially cohercnt. In the cxample shown in
figure 1.6.1. we would observe straight fringes only if the two beams are
spatially coherent. Spatial incoherence would first bend the fringes and
then make them disappear when coherence is lost over the spatial scale of
a few pixel elements of the detector.

A straightforward way of creating two temporally coherent beams is to
split any quasi-monochromatic beam by means of the partial reflection of a

dielectric surface (beamsplitter).
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Fig 1.6.1 Interference of two plane waves on a flat screen.
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1.6.2 THE MACH-ZEHNDER INTERFEROMETER

The interferometer is an optical instrument that allows the observer to
measure the fringe pattern of two interfering beams. An interferometer
allows one to measure the local variation of phase along the beam cross-
section as one of the two beams propagates through a phase object. A
phase object is a refractive index spatial distribution. There are many
possible interferometer configurations. Let us study in detail the Mach-
Zehnder interferometer, as shown in Fig.1.6.2.

The mirrors M1 and M4 are partially reflective dielectric mirrors, while
the mirrors M2 and M3 are totally reflective mirrors. M1 initially splits
the beam in two. Part of the beam travels along path 1 and reaches the
screen. The other half travels along path 2. passes through the Phase
Object and interferes with the other part on a screen. The screen can be a
detector such as a T.V. camera face plate or a photographic film. It is
vital in this configuration that beam 2 is not deflected inside the phase
object. which is not always the case when there are refractive index
gradients perpendicular to its propagation direction. If there 1is
deflection., a fringe pattern due to refraction overlaps with the
interference fringes. and one must use a positive lens to image the phase
object planec onto the detector. The latter procedure is then correct only
for thin refractive objects. A simple test to avoid this problem is to check
the absence of any fringe on the screen while the beam 1 is blocked. When
the interferometer is optimally aligned the two becams interfere on the
screen cither constructively or destructively. giving rise to a constant
intensity profile.

According to Fig.1.6.3. the phase delay that the becam 2 experiences as it
passes through the Phase Object is:

21k 27wk
8(x,y) = — | n(x,y,z)ds = — ,y,z)d 1.6.
(x,y) AJ:(XYZ)S . n(x,y,z)dz 6.10

0

and a succession of dark and bright fringes will be seen on the screen. We

can relate the local fringe intensity to the phase delay experienced by the

beam 2.

On the peak intensity of a bright fringe there is constructive interfercnce:



8(x,y)=2ntr n=0,1,2,... 1.6.10a
Whilce at the minimum of a dark fringe the intcrference is destructive:
S(x,y)=2(n+1)n n=0,1,2,... 1.6.10b

From the maxima and minima positions on the screen we get in a
straightforward way the value of the refractive index intcgrated along the

optical path of the ray:

L
ﬁ(x,y):_[n(x,y,z)dz 1.6.11
0

The problem of this "optimally aligned" configuration is that we cannot
measure phase variations larger than 2n.

If we misalign the Mach-Zehnder Interferometer. by tilting any of the four
mirrors. we can makec the two bcams overlap at an angle. and create on the
scrcen a regular pattern of straight fringes The fringes are straight when
there is no phasc object in the intcrferometer and are bent when a local
phase delay is introduced. Wec follow cach fringe in the x.v plane of the
screen and by measuring its deflection from the straight pattern. we find
the phasc change due to the object.

While the mcasured phase change is determined only within 2x in a
perfectly aligned Mach-Zchnder interferogram. on the contrary when we
measurc the deflection of straight fringes, we lose information only when

therc is a phasc change of more than 27 within a fringe period.

1.6.3 REFRACTIVE FRINGES

We have scen how partial reflections from dielectric surfaces can cause
interference. In general, any beam deflection causes interference as soon
as two or more mutually coherent regions of the beam are overlapped. Let
a spatially coherent beam arrive on a screen after being deflected (such as
in fig.1.6.3). At cach point x.y we will have to add together the
contributions from the electric fields (of all the rays falling in x.y)

taking into account the relative phase due to the different optical paths.
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Fig. 1.6.2 The Mach-Zehnder interferomecter scheme.

Beam 2

Fig.1.6.3 Propagation inside a phase object.
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It is possible to get some information about the refractive index spatial
distribution from the refractive fringes [Michaelis B 1991]. although the
information is more convoluted than in an interferogram were it can be

extracted in the straightforward way described in the previous paragraph.

1.6.4 DEPARTURE FROM GEOMETRICAL OPTICS

Light always propagates straight in vacuum. This is true only in the
approximation of geometric optics. Examplcs were light does not propagate
straight are well known: light passing close to an obstacle or through a
slot 1s deflected. In genecral diffracticn 1is a consequence of the
uncertainty relation of Heisenberg applied to single photons. On the other
hand. and more intuitively, it is a consequencec of the wave-like nature of
light. Interference and diffraction are closcly linked together. When a
coherent beam is diffracted. fringes appear as the deflected light
interferes with the non-deflected part of the beam. A conceptually simple
theory of diffraction is the Huygens-Fresnel construction. It postulates
that any point of the propagating wave-front acts as a source of secondary
spherical wave-fronts which mutually interferc. A more exact theory was

formulated by Kirchhoff: let the spherical wave-front

_ Acexp(ikr)

T

f(r)

1.6.12

hit a wall with an aperture B. If the radius of the wave-front is much
larger than the lincar dimension of the apecrture. the Fresnel-Kirchhoff

diffraction formula states that the perturbance at the point P is,

iA exp[ik(r + s)
um =g ff

B

[cos(n,r) — cos(n,s)dS 1.6.13

Particularly relevant for laser physics is the Fraunhofer diffraction
formula which is an approximation of the Kirchhoff diffraction formula in
some operating conditions. The typical laser bcam characteristics make the
Fraunhofer diffraction formula a very good approximation. We will
consider the diffraction pattern from an aperture on a plane screen. The
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approximation consists in letting both r and s be much larger than the
linear dimension of the aperture, so that they can be replaced by r' and s'.
as shown in figure 1.6.5. Moreover the cosine term will remain constant as

we integrate on the screen aperturc. that is cos(n,r) — cos(n,s) = 2 cosd.

The diffraction formula becomes:

Ai cos(d)

UP) ~ - — o

” exp[ik(r +s)]dS 1.6.14

B

Let q be a generic point in the aperture znd u.v its coordinates. In the
hypothesis that 1A >>d and s'A >>d. (where- d is the maximum
transverse dimension of the aperture) equation 1.6.14 can be further

simplified. After some manipulation we get

U(P) = C” exp[ik(pu + qv)]dS

XX Y Y,
pP=o+t—» 4=+
S r S T

A collimated beam produces a Fraunhofer diffraction pattern at infinity.
or equivalently in the focus of a well corrected lens. The diffraction
pattern given by 1.6.15 can be analytically calculated only in few special
cases. such as the rectangular aperture and the circular aperture. The last

one is of particular interest for laser physics.
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Fig.1.6.4 Geometry of Kirchhoff diffraction

Fig.1.6.5 Fraunhofer diffraction scheme.
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1.6.5 DIFFRACTION-LIMITED LASER BEAMS AND DIFFRACTION-
LIMITED FOCUSING OPTICS

The deflection of light produced by diffraction sets the ultimate limit on
the collimation that we can expect from a laser beam. In particular let us

consider a circular laser beam. The Fraunhofer diffraction pattern of a

circular aperturc is given by

I(r) =1, | ——= 1.6.16

Where a is the radius of thc circular aperturc. J; is the well known Besscl
function [Guenther 1990] and L is the focal lcngth of the "well corrected
lens" that we are using to focus the beam.

The radial profile of the Bessel function J; will tell us the minimum spot
size we can focus a laser beam. It is found that almost 85% of the beam

energy falls within i1ts first minimum. The first dark ring occurs at:

AL
r, =1.22— 1.6.17
2a

The radius of the first minimum, given in 1.6.17, coincides with the
intensity FWHM spot diameter.

Conversely. starting with a laser beam which is diffraction-limited. we
can define a diffraction-limited lens as a device able to focus 85% of the
beam energy into a spot similar in size to 1.6.17. Thus the quantity given
in 1.6.17 defines absolute physical units to measure the optical quality

both of lenses and laser beams.
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CHAPTER 2:
THE SPINNING PIPE GAS LENS

2.1 EXPERIMENTAL SYSTEM

In this section we describe in detail the spinning pipe gas lens and the
experimental system on which we performed a temperature profile
measurement [Lisi 1994]. A spatially resolved temperature measurement in

a device of aperture 2.25 cm and of length 1 m is prescnted.

2.1.1 THE SPGL

The spinning pipe gas lens investigated in this chapter was developed at
the University of Natal in recent years. Thermal gradient gas lenses arc
tyvpically long focal length, small aperturc devices. In the early versions.
the thermal gradient gas lenses consisted of a small cross section metal
pipe in which a gas was fluxed along the optical axis [Marcuse 1965, Xic
1985]. Heat exchange processes hecated the gas close to the pipe. giving
rise to a radial temperature gradient. The obvious difficulty that is
encountered in scaling up the apcrturc while keeping the focal length
short is the consequent increase of the temperature radial gradients. These
larger gradicnts give rise to convection currents which impair or even
destroy the action of the lens [Gloge 1967|. Some improvement could be
obtained by spinning the lens [Notcutt 1988]. in order to eliminate the
convection cells. In this casc the gas flow stops being laminar and
directed only along one direction. No analvtical theory is available to
describe the gas flow. A sketch of the SPGL is shown in figure 2.1.1.

The gas lens consists of a pipe spun at the typical speed of some 10 Hz by
a variable speed AC motor. The pipe is heated by a resistor, powered by a
variable voltage power supply. It is possible to vary independently both
rotation speed and pipe temperature in order to optimise the performances.

There are a few strict requirements on the pipe characteristics.
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Fig 2.1.1 The Spinning Pipe Gas Lens. It consists of a spinning heated
pipe.
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Fig 2.1.2 Simple scheme of the air flow inside a spinning pipe.
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1) It must be straight within a good decgree of accuracy in order not to
vibrate when spun.

2) The thermal expansion- coefficient of the material must be as low as
possible to avoid deformations. Deformations have to be avoided since they
introduce vibrations as the pipe is spun.

Any vibration can destroy the steadiness of the gas flow and of the
temperature profile, impairing the optical quality. The SPGL we have
utilised in our experiment has the following specifications: Length L=1m.
Diameter d=2.25cm. Pipe Temperature<l00C, Revolution Rate<50Hz.

The gas flow inside the pipe is comples and no analytical theory is
available. but an heuristic description of the gas flow can be as follows:
As the pipe is spun. cold air flows in from the edges of the pipe towards
the centre. Meanwhile it is accelerated in the angular direction by friction
with the air in the boundary laver. co-rotating with the pipe. As the gas
spins faster and faster in the ccntre of the pipe. it is centrifuged out,
flowing along the pipc boundaries. Correspondingly the cold air is sucked
in along the pipe axis. The pipc being hot. the air that flows out close to
its boundaries is hotter than the air sucked in along its spinning axis. The
density distribution resulting from this flow was found to give a good. but
high f-number lens.

In a perfect gas. the temperature and the refractive index are related by a
simple thermodynamic relationship. The refractive index difference from
unity is proportional to the gas density. and the density at constant
pressure. is inverscly proportional to the tcmperature. As seen in section

1.4, relation 1.4.19 tells us that-

n=1+2na0 —
RT

If we define n, as the refractive index at siandard atmospheric conditions
(T=273.3K, P=1Atm) then:

n(T) =1+ (n, - 1)%

The value of the refractive index at standard atmosphecric conditions is a
well known experimental quantity (table 1.4.2). It weakly depends on the

radiation wavelength as given by the Cauchy formula 1.4.18 and in table
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1.4.2. At visible wavelengths its value 1is:
n,-1=2.93-10* n, =1000293 T, = 273.3K.

Once the temperature profile inside the pipe is known. so is the refractive

index and we can then determine the optical properties of the lens.

2.1.2 THE TEMPERATURE MEASUREMENT

In an carly device [Steier 1965] the temperature profile was measured for
a fluxed small diameter gas lens and the results showed good agreement
with the theory. We have measured the temperaturc profile of our spinning
pipe gas lens both along the optical axis and along the vertical section.
We preferred the vertical direction to the horizontal in order to check for
eventual gravitational effects on the temperature distribution of the gas.
Our aim was to measure the gas temperature inside the heated spinning
pipe with a spatial resolution of 1.0mm along the radius of the lens and
1.0cm along its optical axis. A temperature gauge for such mecasurement
must have the following characteristics:

1) Small dimensions. Since we want a radial resolution of 1.0mm, the
probe dimensions must not exceed at least 0.5mm. (<0.5mm). Moreover.
the smaller the probe. the less it affects the gas circulation.

2) The temperature difference between ambient atmosphere and pipe
surface temperature is about 100K. The temperature difference between air
at the edge and air at the centre will be rather smaller (about 50K)
because of the fast flow rapidly replacing the hot gas in the boundary
layer. We expect the temperature profile to be roughly parabolic along the
radial direction of the pipe. This gives a temperature difference over the
first radial 1. 0mm of about 1K. The temperature resolution must then be at
least AT<0.5K.

3) The thermal capacity of the detector must be small. in order to reach
thermal equilibrium fast enough as we change the probe position. The
measurement must then be as fast as possible in order to avoid
fluctuations in the system.

4) The detector must exchange heat only with the gas. for this to be
possible it has to be thermally insulated from its support. Moreover the

electrical connections of the thermocouple must be performed with thin
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wire for heat not to be lost through them.

Given the previous four points our choice was for a Ni-Cr thermocouple.
We made it by welding two Ni and Ni-Cr 200pum diameter wires. (This is as
small as feasible in our workshop). The Thermocouple was secured via a
thermally insulated material (epoxy glue) on a thin steel wire (d=400um)
which was suspended between two XYZ mounts. The mounts were held on a
long optical bench. The experimental set-up, shown in figure 2.1.3 allows
us to move the probe inside the lens with the required precision. The
alignment is performed by checking the wire position both at the entrance
and at the exit of the pipe with micropositicners.

The probe thermocouple is referenced to a second Ni-Cr thermocouple.
submerged in a mixture of ice and water at 273.3K. The output voltage is
read on a Keithley 199 Voltmeter and the measured voltage values are then
normalised according to the polynomial for type k (Ni-Cr) thermocouples
[Practical Temp. Meas.]. The circuit is shown in figure 2.1.4.

The presence of a reference thermocouple is necessary to eliminate the
effect of the two thermocouples introduced by the copper (Cu) contacts of
the Voltmeter with two different metal wires (Ni and Cr). The output
voltage is then normalised to the type k thermocouple reference
polynomial (8th order) and this will give the probe temperature difference
from 273.3K. In figure 2.1.5 we show the measured temperature profile
and in the following figure. 2.1.6, the refractive index profile computed
with the help of equation 2.1.1.

The temperature distribution is flat in the middle region of the pipe (50cm
on the optical axis) where the co-rotating vortexes [Michaelis B 1991]
mecet and there is almost no longitudinal gas flow (figure 2.1.2) while two
regions of strong transverse thermal gradients are present near the edges
of the pipe. The asymmetry between these two regions is due to the
asymmetry in the heating of the pipe. It was found empirically that the
lens works better under such conditions.

During the experiment we kept the rotation speed of the lens at 30Hz and
the temperature of the pipe at 400K, which gave a focal length of 2m.
Figures 2.1.7 and 2.1.8 show the vertical asymmetry eventually caused by
gravity in greater detail. In these two figures we show the contour lines of

the surfaces shown in the figures 2.1.5 and 2.1.6.
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Fig.2.1.4 Electric circuit for the temperature measurement.
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Fig 2.1.5 Measured temperature profile inside the Spinning Pipe Gas Lens.
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Fig.2.1.6 Refractive index profile calculated from the temperature profile

shown in figure 2.1.5.

57

Refractive Index - !



Temperature Contour Lines

100

Optical Axis (cm)

Vertical Axis (cm)

Fig.2.1.7 Isothermal lines from fig.2.1.5.
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Fig.2.1.8 Refractive index contour lines from fig.2.1.6.
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2.1.2 SOME OBSERVATIONS ABOUT THE EXPERIMENT

After changing the measurcment position our probe typically requires a
few seconds to reach a steady asymptotic value. While taking the
measurement, we noted that the gas flow inside the spinning pipe is very
sensitive to the flow conditions surrounding the lens, such as draughts in
the laboratory. Big fluctuation 1in local temperature are sometimes
observed corresponding to small external perturbations. To obtain
reproducible results., as with all continuous gas lecns cxperiments. a still
environment is essential. We also verified that there was no horizontal
(X) axis asymmetry. The finite size of the probe could possibly have an
cffect on the gas flow. We assumed. justified by the reproducibility of the

results with different geometries, the effect to be negligible.

2.2 TRACING RAYS INTO THE MEASURED REFRACTIVE INDEX
PROFILE

In this section we will perform some ray tracing through the measured
refractive index profile. We show that by reducing the optical aperture of

the lens (to 1 cm). an angular resolution of twice the diffraction limited

is obtainable.

2.2.1 THE SOLUTION OF THE RAY EQUATION

The ray equation in the paraxial ray approximation is. with the help of

equation 2.1.1:

d’x 1dn dn  (n, - )T, dT

dz2  ndx  dx  T*  dx

dy 1dn dn (n, - 1)T, dT

& hy G T 4 221
T = T(x,y,z)

Equations 2.2.1 are a system of second order non homogeneous differential

equations. In the right hand side we can use cither the temperature profile
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shown in figure 2.1.5 or the refractive index profilec shown in figurc

2.1.6. The solutions have the form:

r(z) = ;23 2.2.2

and are the rays' trajectories inside the SPGL. They are completely
determined when we know the temperature or refractive index field inside
the pipe (figures 2.1.5 and 2.1.6). We numerically solved the ray equation
2.1.2 in the three dimensional refractive index profile obtained by
interpolating the cxperimental points. To reduce computational time, our
interpolation is with splines along the vertical direction (Y), lincar along
the optical axis (Z) and with a combination of sine and cosine terms to get
the refractive index value off the Y axis. A fully 3D smooth interpolation
is time consuming and the paraxial ray equations 2.2.2 require smooth
gradients only in the direction transverse to the ray propagation. The
program (listed in Appendix A) can give a histogram reprcsentation of the
light intensity from an input object at any image plane. As is shown in
figure 2.2.1, we start from a uniform distribution of rays arriving from
the point source on the entrance plane of tae SPGL. Each of these ravs is
recpresented by its positions x and y on the entrance plane and by its
initial angles ©_ and G)},. Their trajcctory in the non uniform temperature
region c¢nclosed in the spinning pipe is obtained by the numerical
solutions of the ray cquations 2.2.1. We opted for a Runge-Kutta fourth
order integration with a constant step size. On the exit plane we save the
values of the ray positions and angles. After the exit plane the light will
propagate straight again so that the rays' path is determined geometrically
in terms of the four quantities x1.y1.®_, and ©_,. The distribution of
these four numbers onto the exit plane will define the radiation intensity

at any plane after the exit plane.
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Fig.2.2.1 Imaging scheme with the SPGL.
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Remembering what we said about geometrical optics in paragraph 1.3.2 (in
cquation 1.3.6) we can interpret the rays as the field line of the intensity
field. which has zero divergence. The radiation intensity that crosses the
unit surface area at some point after the SFGL is then proportional to the

local density of rays. A histogram representation of the rays intersections
with any image plane is then proportional to the intensity field onto the
image plane. The proportionality factor is easily found from the
normalisation condition. Ray tracing was performed also using a non-
paraxial rays algorithm [Sharma 1982]. but we could not note any

difference in the outputs.

2.2.2 DETERMINATION OF THE SPGL LIMIT RESOLUTION

The procedure described at the end of the previous section consists of a
computational imaging of an incohcrent sourcc of light. We choose to
image two distant point sources and to decrease their angular separation
until they becamc unresolvable onto the image plane. Since we are imaging
distant sources, the image piane coincides with the focal plane. We tried
to apply Rayleigh criteria of resolution, which is nontrivial when the
focus resembles more a ring (figure 2.1.8) than a Bessel function. Some
images were recently taken with the samc gas lens [Michaelis C 1991]. The
best results were obtained limiting the aperture to I c¢cm. and features
close to the diffraction limit were observed. For the full aperture device
(2.0 cm) the limit resolution obtainable is certainly worse than 0.2 mrad
(see figures 2.2.2 and 2.2.3) which is very poor if compared to the
diffraction limit. Moreover most of the energy hitting the lens is focused
well outside the central area.

The focal length, in the following figures, is defined as the distance
between the exit plane and the image plane. when the source is at infinity.
By limiting the uscful aperture to lcm it is possible to obtain a resolution
of 0.2mrad (figures 2.2.4 and 2.2.5) which is only about twice the
diffraction limit. It can be casily seen that the outer rays are too weakly
refracted to arrive in the same focus as the inner rays. Possibly the worst
feature of the SPGL is that part of the light is spread out on a large ring

around the point focus due to the central region of the lens.
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longitudinal aberration of the lens.
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In figure 2.2.6 we show how the focal length varies as a function of the
distance from the optical axis along thc vertical direction. This is a
quantitative mecasurement of the longitudinal aberrations of the lens. It
explains too the reason why it 1s necessary to limit the gas lens diameter
in order to achieve decent performances. The focal length is measured
from the exit plane of the pipe.

The sharp increase in focal length close to optical axis is rather a feature
of the simple method utilised to calculate the focal length than a real
physical feature of the lens. Given the quantities O, and y. the generic
angle and position on the exit plane (figure 2.2.1), the focal length L is

determined geometrically as

L=—F 2.2.3

since Oy tends to zero as y goes to zero. the focal length is not determined
close to the optical axis, since a small experimental uncertainty on 0
lceds to big fluctuation of L. We remember that 6y, is dectermincd by
ray-tracing into the measurcd refractive index profile.

In other words rays close to the optical axis might never cross it. giving
an infinite focal length according to 2.2.3. but then they end up a few um
away from the optical axis at the image plane, thus contributing to the
intensity in the focus. The focal length of this gas lens is more or less
constant for diameters up to lcm and increascs rather sharply at larger
diameters. Lastly in figure 2.2.7 we show the focal length against the
angle about the axis of the input beam Iving on the horizontal plane. At a
small angle the focal plane is really a planc and not a curved surface. At
ecach horizontal angle about the optical axis a curve similar to the one
shown in figure 2.2.6 was determined. The average focal length within a
lcm aperture was then determined. The values coincide within 1% at small
angles. At larger angles the beam is cut by the cdges of the pipe.

Another feature, visible in figures 2.2.3. 2.2.5 and 2.2.6 (where the
"vertical axis" has been shifted by 0.3mm). is that the focus is displaced
along the vertical direction, below the optical axis, due probably to the
effect of gravity on the temperature distribution (figure 2.1.6).

Ray tracing through the measured refractive index profile of a spinning
pipe gas lens, satisfactorily explains two important fcatures: decrease in
optical quality as the optical aperture approaches that of the pipe. and

lowering of the image centre due to gravity.
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2.3 THE SPGL AS AN INTRACAVITY PASSIVE OPTICAL
ELEMENT

The SPGL optical quality is found to be good. though not excecllent. Its
advantages are: Very high optical breakdown threshold., good optical
quality at low aperture, absence of reflective surfaces. Its disadvantages
are the high f-number and the longitudinal aberration. The latter effect
increases with the increasing aperture and is clearly visible in figure
2.1.6.

Moreover the Spinning Pipe Gas Lens performances can be unstable, being
sensitive to draught and requiring still laboratory conditions. Last the
spinning pipe can introduce vibrations.

As seen in the previous paragraph its optical quality is good for apertures
up to 1 cm, which is the typical transverse dimcnsion of a commercial
laser beam. The absence of reflective surfaces and its long focal length
suggests use as a laser intracavity optical clement. When cmployed so, It
is important to decouple thc vibrations introduced by the spinning pipe
from the laser rcsonator optics. though this is a rclatively easy problem to
solve. Inside a laser cavity, the absence of reflective surfaces renders the
radiation losscs equal to zero. In an early cxpcriment performed at the
Bell Laboratories a gas lens waveguide as long as 70 m was inserted inside
a He-Ne cavity, and did not prevent it from lasing [Beck 1967]. As we will
see in a following chapter the performances of a SPGL as an intracavity

element can be very good, even superior to an equivalent glass lens.
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CHAPTER 3:
THE COLLIDING SHOCK LENS

In reference [Buccellato A 1993] a macroscopic pulsed gas lens is
described that could be used as a final focusing element in a laser driven
thermonuclear fusion experiment. Here we describe a novel type of pulsed
gas lens which would be suitable for operation in conjunction with a small
pulsed laser, the <colliding shock lens (CSL) [Buccellato B 1993,
Buccellato 1994]. In the first section of this chapter we describe in very
general and heuristic terms, the working principle of the colliding shock
lens. In section 3.2 we will experimentally characterise the focusing
performance of the very early version of the device. a small, 8 pin, 1 c¢cm
electrical diameter CSL. In section 3.3 we will present a measurement of
the refractive index profile of a larger version of the same¢ device. an 8
pin, 3 cm electrical diameter lens. The measurement was performed using
a Mach-Zechnder interferometer. The refractive index profiles will be
analysed in detail in a later chapter to dctermine the optical quality of
the CSL. In section 3.4 we will characterisc its use as a high power

clectro-optical switch and discuss some other potential applications.

3.1 THE WORKING PRINCIPLE

The colliding shock lens working principle relies on the interaction of
multiple shocks in air in order to «crcate a non-uniform density
distribution in a gas. The transient density perturbation deflects and
focuses light. We can divide the study of the CSL into two main subjects:
Gas Dynamics and Optics. We will give here only an heuristic description
of the gas dynamics and we will concentrate our efforts on the study of its
optical properties in a later chapter. The gas dynamics of colliding shocks

are discussed in detail in [Buccellato 1994].

3.1.1 SHOCK WAVES

There are several possiblc approaches to a description of shock waves in a

gas. It depends first on the picture that one has in one's mind of the gas
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itself and secondly on the level of precision that one wants the description
to achieve. From the thermodynamic point of view, a shock is a surface
discontinuity of the values of the thermodynamic quantities such as
temperature, pressure, entropy and mean molecular velocity (t.p.s and u).
The strength of a shock can then be defined in terms of the quantity My,
the Mach number. The Mach number i1s the ratio of the discontinuity
propagation speed to the sound speed of the medium. If one wants then to
solve the discontinuity into a continuous spatial profile, as experimentally
observed, the thermodynamic description must be replaced by a gas-
dynamic description. Since one of the basic hypotheses in order to write
down the gas-dynamic cquations is the continuity of the medium, the
discontinuity is replaced by a sharp but continuous variation of the
physical properties across the shock-front. The gas-dynamic equations are
partial differential equations and can be solved by many numerical
methods. Dealing with a shock, though, is complex and the reason is the
spatial scale of the phenomenon. All the numecrical methods concerned are
based on dividing the space into a grid of cells and substituting the
derivative with "finite differences". Since the shock width can be orders
of magnitude smaller than the dimensions of the system and the cell
dimension must be much smaller than the shock-width, a very high number
of cells is necessary to model a realistic shock. Often beyond the
performances of big computers for realistic threce-dimensional situations.
Morecover the continuity hypothesis becomes invalid when sharp density
gradients are on a spatial scale comparable to the average molecular
distance. In the latter case the gas-dynamic cquations cease to be valid
and a statistical model becomes necessary.

The situation is further complicated by cnergy dissipation on the shock-
front which has to be taken into account when the local temperature is
such as to excite electronic transitions of the gas molecules (or
vibrational transitions, at a much lower temperature). The situation is
already complex cnough for a planc shock but becomes much harder when
we deal with the interaction of many shocks and/or with shock-fronts of
non-planar geometry.

Shock theorv and modelling has become a science in itself, as often
happens when physics investigates a system away from its equilibrium. For
the purpose of this thesis, we seec a shock wave as a gas compression wave
which travels faster than sound does. The speed of the "Shock" depends on

the peak density at the shock front of its profile. It is in general easier to
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measure the density profile and its velocity, for example with

interferometric techniques, than to try to compute it.

3.1.2 SPHERICAL SHOCKS

Let us consider a point explosion in air. During an explosion in a gaseous
medium, energy is transferred to the gas molecules and part of it goes into
their kinetic energy. The increase in particle velocity, that is, in pressure
and temperature, creates a low density region close to the explosion
centre. In a simple picture, the gas which was contained in a sphere of
volume V 1is distributed after the explosion in 'a thin spherical layer
around an empty volume V. The gas compression generates a spherically
symmetric expanding compression wave. The intensity of the perturbation
decreases as the shock expands for two recasons. The first is the increase
(with the square of the radius) of the ~volume concerned by the
perturbation as it moves away from the explosion centre with the sound
speed. The second is the energy dissipation at the shock-front. The shock
"intensity", or its Mach number M. typically decreases with a power law
with the distance from the explosion centre. The problem of shock wave
motion in cylindrical and spherical symmetry was first formulated and
solved by Guderley [Guderley 1943] and Tavlor [Taylor 1946]. Guderley
first developed a method for the solution of the gas-dynamic equations in
spherical symmetry. It is found that a weak spherical shock propagates
radially with a constant velocity. the sounc speed of the medium. This is
the casec when the flow is isentropic. that is there is not entropy change
across the shockfront. In other words the gas does not incrcasc its entropy
as the shock wave passes through.

Conversely it was found |[Taylor 1946] that the radius of a strong
spherical shock (or a blast wave) does not incrcase linearly with time. but

obeys to a power law with exponent less than one:

R(t) = Z¢*° 3.1.1

Where Z is a constant of the medium. It is intuitive that during
propagation, as the velocity of the shock decreases the shock becomes

weaker and weaker. The flow becomes isentropic and the shock velocity

equals the sound speed.
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When two spherical shocks in air collide, the interaction depends on their
strength [Courant 1948]. At Mach numbers close to unity the waves
simply pass unmodified through one another. At intermediate M, they
pass but are somewhat delayed. At higher M, there is a period of
stagnation during which the fronts merge into a high density plane slab,
and at very high M, the collision gencrates turbulence. When several
shocks are launched from explosion points placed on the arc of a circle,
one might expect behaviour similar to that of the double shock
interaction. Morcover, since many shocks now collide at one point, non-
linearities in the shock interaction are expected to occur at lower M, than
for two <colliding shocks. The regime of interest here, 1is at an
intermediate M, when the fronts interact in a 'non-linear but orderly

manner [Courant 1948].

3.1.3 THE COLLIDING SHOCK LENS

When several spherical shocks, produced by arc discharges, expand from
points equi-spaced on a circumference. a cylindrically symmetric
converging shock-front is formed. In the actual device, the shock waves
are produced by arc discharges between opposing pin clectrodes. In the
configurations described in this thesis therc are eight pairs of electrodes.
but we tried geometries with 16, 32 and 36 arcs. When the expanding
spherical shock-waves. launched from points cqui-spaced on the arc of a
circle. collide at the centre, a cylindrically symmetric cigar shaped
density distribution results at the centre, as shown in figure 3.1.1. The
cylindrical symmetry is obtained starting from a polvgonal shaped shock-
front, due to the non-linear interaction between shock-waves. such as

Mach reflections. In figure 3.1.1 and 3.1.2, for simplicity we display only

four of the shocks.
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In [Schwendeman 1987] it was noted that converging cylindrical shocks
with regular polygonal shaped cross-sections are stable and tend towards a
circular cross-section. Converging cylindrically symmetric shock waves
produce a condition of high pressure. temperature and density in the
region of implosion. After the spherical shock converges to a point, a
regular and stable [Matsuo 1981] axi-symmetric cigar shaped expanding
density distribution results. It is in this region that we expect the
density distribution to act as a graded-index lens. Figure 3.1.3 1is a

schematic diagram of an 8 arc CSL.

3.2 FOCUSING EXPERIMENT

The first diagnostic utilised in conjunction with the CSL consisted of a
single probe laser bcam directed along its optical axis. The laser beam
intensity profile was then recorded on the face plate of a T.V. camera.
This simple set-up detects refractive fringes as well as focusing due to the

passage through the gas lens.

3.2.1 EXPERIMENTAL SET-UP

The spherical shocks were <created at points cqui-spaced on a
circumference (diameter=11mm) by eight pairs of opposing clectrodes. We
utilised ncedles of diameter 850pum and an arc gap spacing of Imm. The
electrodes are mounted on two opposing Plexiglas plates with a circular
hole in the centre (diameter=7.5mm) allowing the probe laser beam to be
directed along the axis of the CSL. The gaps were connected in series in
order to breakdown simultaneously. The breakdown occurs in nanoseconds
and appecars to be instantaneous on the microseconds time-scale of the

lens. In figure 3.2.1 the geometry of the colliding shock lens is

represented.
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Fig.3.2.2 Experimental set-up for the focusing experiment.
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A spatially filtered and expanded nitrogen laser beam (FWHM=1ns,
2=337nm) was directed through the collision region onto a T.V. camera
face plate through an imaging lens and a nitrogen interference filter
(330nm, Band-width=10nm). A PC synchronised the triggering of the CSL
with the image digitiser. The signal from a Rogowsky coil in the CSL
high voltage circuitry, triggered the nitrogen laser via a variable delay
box. The value of the capacitor C determires the energy provided to the
colliding shocks and a 5nF capacitor was chosen. A schematic

representation of the experimental set-up is shown in figure 3.2.2.

3.2.2 EXPERIMENTAL RESULTS

The CSL properties were investigated by recording images at different
distances from the CSL and at different delavs. Parasitic fringes were due
to the interference filter. A timec sequence for the colliding shocks 1is
given in figure 3.3.3 (My=1.5). From left to right and from the top down
we can follow the collision sequence. The first frames (1-5) show the non-
linear interaction between the shock waves resulting in non-cylindrically
symmetric illumination patterns. As the shock-front implodes, the angles
between colliding shocks tend to be smcared out and the front tends
towards cylindrical symmetry. The intercsting point is that after the
shocks have collided at the centre (frames 6.7) there is a cylindrically
symmetric core. "The shocks have forgotten where they originated". A high
density expanding region 1is created (frame 8-16). A sharp focus is
observed in frames 8 and 9. Framcs 10 to 16 show the typical diffraction
pattern when focusing is achieved further away from the CSL.

The detailed illumination pattern (i.e. dark and bright rings. coarse and
fine fringes) in figure 3.2.3 is best understood by referring to articles on
refractive fringe diagnostics of spherical shocks in air [Cunningham 1986,
Waltham 1987, Michaelis A 1991, Michaelis D 1991]. The next figure
3.2.4 shows in details the focusing obtained with the eight arc CSL
(C=5nF) at a distance of 39cm. In the central region of high intensity the

camera is heavily saturated.
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Fig. 3.2.3. From the top left, time sequence of an eight arc CSL imaged
48.7cm from the CSL at (1) 3.2ps, (2) S5us, (3) 6pus. (4) 6.9us, (5) 8us, (6)
10ps, (7) 10.4us, (8) 10.9pus, (9) 11.3pus, (10) 11.6pus, (11) 11.8pus, (12)
12.2us, (13) 12.4ps, (14) 13.1ps, (15) 14us, (16) 15.6pus.
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Fig.3.2.4 Eight arc CSL focal spot (focal length=39cm, delay=11.8pus).
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y plot of the CSL focal spot.

Fig.3.2.5 Intensit
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If the same image as the 3.2.4 is recorded with an additional filter in
order to avoid the saturation of the camera. a FWHM focal spot diameter
of 100pm is obtained [Buccellato B 1993].

Here we do not show the unsaturated image. but figure 3.2.5 shows a
three-dimensional intensity plot taken from its central region.

The CSL is a varifocal lens in which the focal length and the lens
diameter vary with time according to the curves shown in figure 3.2.6 and
figure 3.2.7.

The effective lens diameter was obtained by imaging with the lens L1 on
the shock collision plane. Due to the expansion of the shock-front after
the collision. the effective lens diameter incrcases with time: figure
3.2.3. As the CSL diameter varies, the relative diffraction limited spot
size changes.

This time dependence is in agreement with the measured evolution of the
focus spot size reported in figure 3.2.8. In this figure the diffraction
limited spot size is calculated according to equation 1.6.7. The values of
lens diameter are obtained by linearly interpolating figure 3.2.7 at each
time cxperimnetal images of the focal spot size were available (at a known
focal length).

Even the position of the rings surrounding the central spot (as seen in
figure 3.2.4) is in reasonable agreement with the theoretical Airy rings
radii (see figure 3.2.9). A detailed study of the CSL optical quality taking
diffraction into account is reported in chapter 5.

The CSL was utilised to focus a ruby laser beam (FWHM =30ns. E=500m]J)
onto photographic paper in order to obtain a burn pattern at the distance
of 39cm. The Q-switched ruby beam was synchronised in order to fire at
the corresponding time delay. First the diffraction-limited ruby beam was
directed through the lensing region and a burn-pattern was obtained. Then
a glass convex lens of equal focal length was apertured to 1.3mm, which is
the effective aperture of the CSL at the focal length of 39cm. and a
comparison burn pattern was obtained. The central burn regions for both

lenses were approximately 200um in diameter [Buccellato B 1993].
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3.3 REFRACTIVE INDEX PROFILE MEASUREMENT

After the promising results obtained with a 10mm electrical diameter
colliding shock lens prescnted in the previcus scction, a larger version of
the CSL was developed. The new version differs from the one shown in
figure 3.2.1 in two ways. The first diffcrence is in the dimensions which
are larger. The second important feature of the new device is that the arc
discharge region is confined inside an enclosed region. In particular we
utilised a Plexiglas pipe. The energy is delivered by the arc discharges
into shock waves which are now confined inside the pipe. This new CSL
design is shown in figure 3.3.1.

As shown in figure 3.3.1 the arc gap is 1.5mm and the Electrical Diameter
is 3cm. Due to the larger dimension of the device we were forced to use
higher values of the discharge capacitor. between C=20nF and C=100nF. In
order to withstand more encrgy, the new elcctrodes were made with 2mm
stcel screws filed down to a conical tip. This new version of the colliding
shock lens has been characterised with the experimental set-up described
in the previous section. In figurc 3.3.2 we present the main results. the
time evolution of the focal length and the time evolution of the lens
diameter for the capacitor value C=100nF.

In figure 3.3.2 we note that the CSL works up to diameters of Smm. This
diameter starts to be an interesting value for somc applications. Given the
good performance of this upgraded version of the CSL we decided to
measure the refractive index profile to quantify its optical performance
and quality. In this experiment we used a Mach-Zehnder interferometer
(Paragraph 1.6, figure 1.6.1) and an experimental set-up very similar to
the one shown in figure 3.2.2.

The data shown in figure 3.3.2 were obtained with the same experimental
sct-up as that described in the previous section. consisting of a probe

nitrogen laser beam, some imaging optics and a recording camera.
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Fig.3.3.1 Enclosed version of the Colliding Shock lens. The arcing circuit
is the same as for figure 3.2.1. The component values are: Storage

Capacitor C=20-100nF, Pin electrode gap G=1.5mm, Electrical diameter

ED=3cm. Hole for the laser beam H=1cm.
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3.3.1 EXPERIMENTAL SET-UP

The Mach-Zchnder interferomecter has been described in section 1.6. The

CSL was placed in one of its arms. as shown in the next figure 3.3.3.

M1 M2

CSL

M3 M4

Fig.3.3.3 The Mach-Zehnder interfcrometer and the CSL.

A schematic diagram of the complete experimental set-up is given in
figure 3.3.4. The Nitrogen probe laser is synchronised with the arc
explosion of the CSL and the interferograms were recorded on the face
plate of a T.V. Camera. The lens L1 allows one to image the shock
collision plane. While recording the interferogram. it is necessary to
image the collision plane in order to cancel the refractive contribution to
the fringes.

The ecxperimental set-up is almost exactly the same as for the experiment

discussed in the previous section.
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Fig.3.3.4 Experimental sct-up for the refractive index profile

measurement.
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3.3.2 EXPERIMENTAL RESULTS

As described in section 1.6 there are mainly two ways of recording and
analysing interferograms. Let us briefly summarise the two procedures.

1) The interferometer is well aligned. When no phase object is present (in
our case the CSL is not fired) no fringes are visible over the whole imaged
field. When we insert the phase object (we fire the CSL), it introduces a
phase shift and creates a pattern of bright and dark fringes on the screen.
Each dark-bright period corresponds to a rclative phase change of 2n. This
technique allows the experimenter to measure the exact value of the phase
unless it exceeds 2n. There is no way of deciding if the "next" dark-bright
period is due to a phase increasc or a phase decrease.

2) The interferometer is "misaligned" in order to create a regular pattern
of straight fringes over the imaged field. In this case the relative phase of
the two beams increases lincarly in the dircction perpendicular to the
fringes. The presence of the phase object will bend each fringe by an
amount proportional to the phase change. This technique gives a better
measurement of the value of the phase. Since we follow the shifts of the
fringe maxima or minima, the spatial resolution is tvpically of the order
of half the separation between unpecrturbed fringes.

In our experiment we utilised the second technique. In figure 3.3.6 we
show a refcrence shot. The unperturbed fringe pattern is visible in this
picture where the shocks have not vet arrived. In the next four images

3.3.7-3.3.10 we can follow the cight shocks during their collisions.

95



28.8us after arc

Delay

before shock collision.

i

Fig.3.3.6 Reference shot

explosions.
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36.1ps.

Fig.3.3.7 CSL interferogram. Delay
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Fig.3.3.8 CSL interferogram. Delay=36.7 us
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=38 2us.

Delay

Fig.3.3.9 CSL interferogram.
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Fig.3.3.10 CSL interferogram. Delay=39.0ps.
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To be exact we cannot extract from the interferogram the three-
dimensional refractive index profile without any hypothesis about its
spatial symmetry [Bockasten 1960].

Since in the shock collision region wec expect a rather complex spatial
density distribution, we cannot determine the complete three-dimensional
refractive index profile. However, for the optical analysis of the device,
the interesting quantity to measure is the two dimensional (planar)
distribution of the 'optical path length' on the shock collision planc. Once
this quantity is known we can quantify the optical quality of the CSL and
no further information on the density profile is required.

Let us explain this point with the help of graphs and formulas. The radial
density profile of a single expanding spherical shock wave has been
measured by several authors [Waltham 1985. Michaelis A 1991]. We can
briefly summarise their results in the profile shown in figure 3.3.11.

The typical linear scale of the shock-front 1s around 100pum, depending on
the mach number M, and on the type of gas.

If the shocks were passing unperturbed through each other., we would
expect the geometry shown 1in figure 3.3.12. Decspite the non-linecar
interactions. the geometry will be rather similar as it can be seen in the
interferograms in figures 3.3.6-3.3.10.

We image the shock collision plane with the lens L1 onto the face plate of
the camera where we introduce the coordinate system (xl,yl). The
interferogram appears as an almost periodic pattern of dark and bright
fringes. Wc analyse them in the following wav. Given a point of the image
plane where the fringes are bent., we move along the locus of points having
the same intensity until wec get to the region where the fringes are
straight. In other words we follow the fringe until we get to the
unperturbed region. At each point, the distance of our trajectory from the
straight fringe (and perpendicular to it). divided by the width of the

unperturbed fringe, gives the phase difference in 2xn's.
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Fig.3.3.11 Geometry of an expanding shock wave. The typical spatial scale

of sharp density gradients is in thc range of 0. 1mm.
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Fig 3.3.12 The Colliding Shock Lens geometry. Electrical diameter

ED=3c¢cm: Lens Diameter LD=0-5mm.
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In practice we can follow the fringe without errors only where it 1is
darkest or brightest., and this limits the spatial resolution of the
measurement to half of the fringe spacing. As a result. at cach point x,y¥

we measure the following quantity:

L{x,y)

a(x,y) = jn(x,y,z)dz 3.3.1

Where z is the optical axis (and the laser beam) direction and L(x,y) is
the distance travelled at x,y inside the colliding shock rcgion. Since after
the central collision the shock front is cyvlindrically symmetric with

respect to the optical axis.
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According to geometrical optics and under the paraxial ray approximation.

the deflection angle for a light ray travelling at X.Y will be:

Lir,z) ~
3(r) = J. (—jzldz 3.3,
cT

j¥S]
(93]

We usc now the very reasonablce hypothesis that rays do not change their
position r while they travel inside the CSL. which is fully justified given
the lens diameter and focal length which are in play (figure 3.3.2). Since
r does not change along the trajectory. which is the intcgration path. we

can say that:

“‘; L(r)

fn(r zZ)dz =

9(r) = = n(r) 3.3.4

-~
_§)| )

In conclusion. under these rather general conditions. the Optical Path
Length (ﬁ(r)) can be directly measured from the interferograms and then

linked to the optical quality of the device.
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3.3.3 ANALYSIS OF THE EXPERIMENTAL RESULTS

In this paragraph we will briefly analyse the four interferograms shown in
figures 3.3.7, 3.3.8. 3.3.9 and 3.3.10. The fringe analysis is performed as
described in paragraph 3.3.2 and the optical path lenght radial profile and
lens optical diameter are determined.

Then the optical prformances of the colliding shock lens can be computed
from the OPL radial profiles. Chapter 5 will be completely dedicated to
this further analysis. In this paragraph we¢ will determine only the OPL
radial profiles.

The reader can refer now to figures 5.1.5 to 5.1.8 for the focal lenght
radial profile.

The four 'Optical Path Length' (OPL or ﬁ(r)) profiles are shown below in
figures 3.3.13 to 3.3.16 together with the relative polynomial fits. One
problem of the mcasurement is that the fringes can undergo a big shift as
they cross the shock-front which expands aflter the collision. If the phasec
jump is morc than 2nm on the spatial scale of a few pixels we sce a
discontinuity. In this case wc can determine only the rclative value of the
OPL inside the region cnclosed by the expanding shock-front. Though. as
scen in equation 3.3.4, the intcresting quantity to use to define the
optical quality of the CSL is the radial gradient of the OPL. which is
insensitive to such uncertainty.

In table 3.3.1 we report the values of the polynomial coefficients for the
fits of the OPL profiles. In table 3.3.2 the radial dimension of the CSL is
reported at the corresponding times. Due to the radial symmetry. only the

even terms ar¢ different from zero.
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Time ag a, a, a. ag
2.1us 2.33¢-6 1.07 -6.23¢6 9.88¢l2 -5.61el8
2.7us 3.33e-6 -1.23 1.72e¢5

4. 1ps 3.67¢-6 -0.47 1.21¢4

S5ps 3.44e-6 -0.21 -7.41¢3

Table 3.3.1 Polynomial fit coefficients of the OPL profiles at the various

interferograms recording times after the shock collision.

Time Radius
2.1us 0.8l mm
2.7us 1. 4mm
4.1us 2. 1lmm
Sps 2. 4mm

Table 3.3.2 CSL radius vs Time.
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Enclosed CSL, 36.1 us after explosion
Measured Optical Path Length Vs. Position
Eigth order polynominal fit
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Fig.3.3.13 OPL radial profile just after collision. From the interferogram

shown in fig.3.3.7.
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Optical Path Length (um)

Enclosed CSL, 36.7 ps after explosion
Measured Optical Path Length Vs. Position
Fourth order polynominal fit
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Fig.3.3.14 OPL profile from the interferogram in fig.3.3.8
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Optical Path Length (um)

Enclosed CSL, 38.2 ps after explosion
Measured Optical Path Length Vs. Pasition
Fourth aorder polynominal fit

3.5 F

o
¥ L) I L]

NO
¥ L] ] I I ] v ]

[—
-]
Ui
I
:

Distance from the centre (mm)

Fig 3.3.15 OPL profile from the interferogram in fig.3.3.9.
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Enclosed CSL, 39.0 pus after explosion
Measured Optical Path Length Vs. Position
Fourth order polynominal fit
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Fig 3.3.16 OPL profile from the interferogram in fig.3.3.10.
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3.4 APPLICATIONS OF THE COLLIDING SHOCK LENS

In the last section of this chapter we propose and discuss some of the
possible applications of the CSL [Michaelis 1994]. The operation of the
CSL as an optical switch will be treated in detail. The time evolution,
scaleability and repetition rate operation are investigated. This section is
divided into two parts: a characterisation of the CSL as an clectro-optical
switch and a list of potential applications suitable for the CSL.

As previously stated, it is important to distinguish between the electrical
diameter ED being that of the circle of arcs and the optical aperturc (the
lens diameter LD), being that of the effective lens (figure 3.3.12). The
optical aperture turns out to be an order of magnitude smaller than the
electrical diameter. It is not yet clear whether the optical aperture will
scale with the system geometry or with the typical shock width
dimensions. The former would mean that the f-number could remain more
or less constant with increasing optical aperture; the latter, that it does
not scale at all. A first attempt at scaling up the first l.lcm electrical
aperturec device to 3cm. (figure 3.3.2) indicates that the truth lies

somewhere in between.

3.4.1 THE COLLIDING SHOCK LENS AS A SWITCH

We have measured the CSL switching ability. Our experimental apparatus
(depicted in figure 3.4.1) is very simple and consists of a 10 mW HeNe
laser followed by the small CSL (figure 3.2.1) and a receiving photodiode
at a distance L with a pinhole of diameter ® immediately in front of it.
The HeNe laser beam was spatially filtered and expanded.

We vary the distance L, the diameter ® and also the energy delivered to
the shocks by changing the discharge capacitor (C in figure 3.2.1). On a
digital oscilloscope we recad the trace of the photodiode signal. Figure
3.4.2 shows a typical switching time curve. The pinhole diameter is here
©=300pm, L=40cm and C=5nF.

The voltage output of the oscilloscope has been normalised to a
comparable but arbitrary constant signal. We chose the voltage signal read
when focusing the HeNe laser beam with a 3mm aperture, 50cm focal

length, plano-convex glass lens on the same photodiode and a pinhole
DO=250pum.
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Fig 3.4.1 Experimecntal set-up. Measuring the CSL switching performances

Ll1=3cm.L2=15cm.

112



2.6 |
2.5 |
P.4 F
2.3 |
2.2 |
2.1 |
2 |

_@u]-:IlllllllllljllllllllllII_IIIII
7 8 9 18 11 12 13

Time after arc explosions (us)

Normalised voltage

Fig.3.4.2 Normalised photodiode voltage during switching. C=5nF,
F=300mm, L=40cm. (tvpical trace)
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Fig.3.4.3 Small CSL C=1nF. Switching vs Pinhole size.
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Starting with a capacitor value of 1nF. In figure 3.4.3 we show how the
switching risetime and the maximum signal vary with the pinhole size @ at
a fixed distance L. In figure 3.4.4. how the same quantities vary with the
focal length L at a fixed @.

In figure 3.4.5 and 3.4.6 we rcpeal the last measurements with a discharge
capacitor of InF.

As can be seen from switching curves like figure 3.4.2, the fall-time of
the signal is always comparable with the risc-time (to within say 50%).
the latter being a less critical quantity for an efficient quality switching
of a laser cavities (Q-switching). As we expccted. by increasing the shock
energy we can make the switching faster. Though if one compares figures
3 4.4 and 3.4.6 we scc that the increase in shock energy impairs the
optical quality of the CSL at short focal length and small optical

diameter.

3.4.2 POTENTIAL APPLICATIONS

a. Drilling. cutting and welding.

A good reason why lasers have not penetrated every industrial workshop is
that their output windows and lenses arc cxpensive and sensitive devices.
It has alrcady been shown that CO, lasers coupled to gas lenscs are
capable of drilling through thick steel sheets ([Michaelis E 1991].
However. the lenses that were used were unwieldy CW devices with very
long focal lengths (of order Im). The "dream" gas lens for this purpose
would be a short focal length device (10cm). capable of being "rcp-rated”
(100Hz.). with an optical apcrture of a: lcast one centimetre and a
minimal power consumption and a minimal wcight.

b. Q-switching and laser intracavity operation.

The combination of a pulsed lens (CSL) and a CW lens, (such as a
conventional glass or gas lens) in a laser resonator could in principle
perform simultaneously the Q-switching and the mode selection of the
laser oscillation [Lisi 1994]. In the previous paragraph we characterised
the CSL as a switch and opening times of about 0.5us were obtained. Q-
switching requires that the cavity losses decrease on the time-scale of 10's
or 100's of ns [Siegman 1986]. Such switching performances can be
achieved with the colliding shock lenses. In the next chapter we will

demonstrate the feasibility of the CSL Q-switching.
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For engineering applications (point a), the focal length should not vary
too quickly, whereas for Q-switching and beam handling (e.g. optical
isolator) functions. fast switching is essentral.

c. Ultra high power and "all gas" lasers.

It is well known that even under clean room conditions lenses operating
for pulse lengths of tens of nanoseconds start to fail at intensities in the
GW/cm? range. Also multi-photon processes at ultra-high intensities
render conventionally transmitting materials opaque or absorbing. We have
previously pointed out that gas lenses could help alleviate these problems.
We foresee. without having the means to obsecrve it, that very high
intensities will ionise the gas in the shock front region. This laser shock
interaction might create a plasma that destroys the optical quality of the
CSL. though those damages do not cumulare such as on the surface of a
solid state lens. But for intermediate powers, the CSL could fill the
present gap. The final application we envisage is that of an "all gas" (or
nearly all gas) system. Conventional pulsed gas laser systems are designed
with beam diameters corresponding to the breakdown thresholds of solid
optical components. A combination of acrodynamic windows, diverging and
converging gas intracavity elements could give gas laser design a new

degree of frecedom.

3.4.3 SUMMARY OF CSL PERFORMANCES

All the applications listed above pose the following questions:
a. How good is the focus? Is it ncar diffraction-limited?

b. How short is the focal length?

¢. How large is the aperture and is any light lost?

d. Can they be "rep-rated”"? How much power do they consume?

a. From the very first experiments. we realised that this was somewhat
surprisingly. given the limited number of arcs. an excellent lens. In figure
3.2.5 we showed the relative intensity plot of a typical focus of the small
CSL. In figure 3.2.6 and following, the optical performance of the same
device is analysed.

b. The shortest focal length for an eight arc device is about 20cm. This is

too long for many applications.
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¢. Possibly the worst fcature of CSL's is the large electro-optic aspect
ratio. The largest aperture obtained so far was only about S5mm. In the
future we plan to test a 10cm elcctrical diameter lens in the hope of
obtaining a 10 mm. optical aperture.

d. The question of "rep-rating" the lens has only been partially answered
experimentally for want of a suitable high voltage power supply. 10Hz
operation confirmed our expectations that the lens could run at moderate
frequencies without degradation of the focus. At this repetition rate a
typical switching curve such as that in figure 3.4.2 remains virtually
unaltered. Based on dimension and speced of sound arguments. we would

expect the limiting period to be of order:

Electrical Aperture
~ lms

Sound Speed

The corresponding "rep-rate" would be 1kHz. a useful frequency for
industrial applications. The final question is that of power consumption.
At a rep. rate of f=1kHz. our present small cight pin lens (figure 3.2.1)

would consume:

1
W = f-Ecvz = 1kW. (C = 5nF,V = 20kV)

This is a considerable amount of pulscd power. cspecially if we increase
the electrical diameter of the CSL and consequently the capacitor value.
In order to reduce the power in the larger devices we made the encloscd
CSL which confines the shocks in its interior (figure 3.3.3), and a

considerablc reduction in energy consumption and noise occurred.
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CHAPTER 4:
THE COLLIDING SHOCK LENS AS AN INTRACAVITY
Q-SWITCHING ELEMENT

4.1 INTRODUCTION

Quality factor or "Q-switching" of lascrs is an important method of
enhancing the power of pulsed lasers [Koechner 1984, Siegman 1986].
Mechanical Q-switches and dye «cell switches have generally been
discarded in favour of triggerable opto-electronic devices based on the
Kerr or Pockels effect.

In this chapter we show how a varifocal pulsed gas lens. the Colliding
Shock Lens. can be utilised as an intracavity clement to Q-switch a ruby
laser [Lisi B 1994]. By placing the shock lens in tandem with a second
lens a giant pulse is obtained. The second lens may be a conventional

glass lens or a continuous wave gas lens.

4.1.1 OPERATION PRINCIPLE

The principle of colliding shock Q-switching (CS-QS), rclies on the
insertion of a steady state converging lcns and of the rapidly varying CSL
in a laser cavity. The CSL focal length and lens diameter increase with
time over a few microseconds (see figure 3.3.2). When the CSL is switched
off, the steady statc lens renders the cavity unstable. Only when the CSL
1s switched on and while the focal regions of the two lenses overlap. docs
the lascr cavity become stable and the losses low. If this condition is
achieved when the population inversion 1is at its peak in the active
medium, lasing occurs in the form of a giant pulse. As soon as the two
focal lengths overlap we have a telescopic resonator. Telescopic laser
resonators have been used in ref. [Hanna 1981, Routledge 1986] in order
to achieve large volume Q-Switched diffraction limited TEMOO beams
whilst keeping the laser cavity short. Q-Switched pulse rise-time is
roughly proportional to the cavity transit time. As a secondary advantage
of this configuration one can utilise the telescope to compensate for the
thermal expansion of the laser rod in high rep. rate operations. The main

disadvantage of the configuration is the possibility of optical damage on
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the intracavity optical components which are in the de-magnified side of
the laser beam.

Potential advantages of CS-QS over other elecctro-optic switches are
economy, simplicity and robustness. The economy lies in the absence of
solid state optical components (e.g. pile of plates polariser and Pockels
cell). The simplicity and robustness stcm from the absence of polarisers
and the need to adjust thc polarisation. One obvious disadvantage is the
possibility of laser breakdown in the confocal region, though the risk of

this happening may be mitigated by gas lens aberrations.

4.2 EXPERIMENT

In order to test this new Q-Switching operation scheme we designed a
separate expcriment. We utilised a commercial ruby laser and the enclosed

CSL described in section 3.3.

4.2.1 EXPERIMENTAL SET-UP

In the expcriment designed to test the CS-QS concept, a commercial ruby
laser was modified to incorporate the additional Q-Switching componecnts.
Figure 4.2.1 is a schcmatic of the experiment. The laser consists of a ruby
head. a full reflector R2 and an output mirror R1. The Q-Switching
components arc the Colliding Shock Lens L2 with the relative arc
discharge electronics, a continuous lens L1 and a fluorescence-sensing
photodiode PD1. The value of the discharge capacitor of the CSL was set
to C=100nF. The distance from the output coupler R1 and the lens L1 1is
dl. The distance between the two lenses is d and finally the distance
between the CSL and the full reflector is d2. We already described the
CSL in detail in the previous chapter. Very briefly the CSL consists of
eight arc discharges, struck simultaneously between pairs of opposing
points located on the arc of a circle (figure 3.3.1). Each point explosion
produces an expanding spherical shock wave. After the eight shock waves
collide at the centre of the circle. a cigar shaped, high density. axially
symmetric core expands outwards. Lensing is due to the radially symmetric

density gradients within the expanding region.
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Fig 4.2.1 Experimental set-up of the Colliding Shock Lens Q-Switching

Delay & Trig

(CSL-QS).
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As the lens diameter increases. the density diminishes and the focal
length incrcases as depicted in figure 3.3.2. The CSL used for these
experiments, was specially chosen for its fast switching and acceptable
optical aperture. It consists of a 5cm diameter cylinder closed at both
ends. The gaps are set to 1.5mm and the diameter of the circle of pins is
3cm. The central windows are lcm in diameter. A 100 nF capacitor,
charged to 15KV, is connected to the eight gaps in series via a triggerable

spark gap. This series connection ensures simultaneous arcing.

4.2.2 THE LENS L1

The lens L1 can be either a conventional solid state device or a continuous
wave gas lens. The Spinning Pipe Gas Lens, which we described in detail
in chapter 2, was used in some expcriments. The device consists of a 1m
long. 2cm diameter heated tube. spun at 30 Hz. The rotation centrifuges
warm air out of the two ends and causes cold air to be aspired along the
axis. The resulting density and refractive tndex gradient produces a long
focal length lens. the quality of which fluctuates. The focal length can be
varied from 1.5m to several meters (as mcasured from the centre of the
pipe) by changing the pipe temperature and rotation speed. The laser head
1s a commercial ruby laser [Korad K1]. the two flat end mirrors are a Full
Reflector (measured reflectivity R1=96%). and an Output Coupler

(measured reflectivity R2=45%).

4.2.3 OPERATION PROCEDURE

The operation sequence for all CS-QS experiments is the following. First
the ruby flashlamp is fired and the PDI! photodiode detects the
fluorescence signal from the active medium. This signal is electronically
delayed and used as a trigger for the CSL master spark gap circuit (figure
3.2.1). The signal from the photodiode PD2. placed behind the full
reflector R1, is read by a storage oscilloscope and gives the laser pulse
waveform. The laser beam energy is measured with an energy meter on the
main output beam. A burn pattern of the attenuated beam at the focus of a

lens is used to measure the divergence.
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4.2.4 MODES OF OPERATION

Depending on the choice of the lens L1 and on the intracavity distances
dl1. d and d2 we can operate the cavity in many different conditions. We
decided to operate the cavity in only three different modes described
below.

Mode a, maximises the output energy and beam diameter.

Mode b, minimises the Q-switched laser pulse-duration.

Mode ¢, explores the feasibility of a cavity with intracavity beam
expansion optics consisting entirely of gas.

As we will see in much greater detail in the second and theoretical part of
the chapter, the stability of the laser resonator can be determined in terms
of the complex parameter m. In the formalism of ray matrix optics m is
half the trace of the round trip resonator matrix [Siegman 1986, Kogelnik
1974]. For an unstable resonator. the absolute value of m is greater than

one (abs(m)>1). For this casc we can introduce the magnification M as:

m+ (m’ - 1) ifm>1 (positive branch)
M = 421

m-(m’>-1)" ifm < -1 (negative branch)

where M is the amplification of the beam cross section per round trip and
can be rclated to the cavity losses. When abs(m)<1l the cavity is stable.
Abs(m)=1 for a plane parallel configuration which corresponds to the
confocal situation of our intracavity "telescope". The cavity losses can be
directly related to the cavity geometry. that is to the parameter m (or M).
Generally speaking we can state that the cavity losses are high when the
resonator is unstable and the value of M is high, becoming progressively
lower as the value of M is decreased. In the present simple scheme we can
say that the losses become zero when the cavity configuration is plane
parallel or stable. After the shock collision. as the CSL focal length
increases, the cavity geometry will go through stable and unstable phases.

In the light of this simple analysis let us examine the three operating

modes in detail.
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Fig.4.2.2 Mcasured intensity profiles of the Q-Switched laser pulse.
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Mode a. L1 is a 200cm focal length glass lens. The lens separation d 1is
250cm. The condition abs(m)=1 is achieved when f.¢;=50cm. The CSL
lens aperture is dogp=3.0mm (sce figure 3.3.2) and the beam fills the ruby
rod (10mm). At slightly later times, the resonator becomes stable and we
expect lasing to occur. A drawback of this operating condition is that the
cavity is long (3m) as is consequently the rise-time of the laser pulse. In
this case the initial magnification of the resonator (before the CSL 1is
operated) is low: M=2.8. We must thercfore operate the flashlamp below
4.3kV to avoid free running lasing. A 2J laser pulse of duration 360ns
(FWHM) is observed 5pus after the shock collision. Figure 4.2.2 shows the

pulse waveform.

Mode b. L1 is a 50 cm focal length glass lens (d=100cm). Again m=1 is
achieved when f.gq;=50cm, dcgy=3.0mm and the beam diameter on the
output coupler is expected to be 3.0mm. The initial magnification is now
M=4.4 and frece running is inhibited at any flashlamp voltage. We operated
at 4.5 kV. In this case we expect shorter pulses and a very narrow beam
together with lower energy. A 100mJ pulse, of duration 175ns (FWHM) is
observed 5.5us after the shock collision (see figure 4.2.2). On a few
occasions when the CSL alignment appeared to be optimised, a pulse

length of about 50ns was observed.

Mode c¢. L1 is a spinning pipe gas lens operated at 200cm focal length. For
this "all gas" Q-switch we expected similar performance to mode a. Figure
4.2.2 shows a 375ns (FWHM) pulse 4.5us after shock collision. However,
the energy for this mode is slightly higher (3 J). The absence of reflective
losses in the cavity appears to outweigh the effect of the spinning pipe gas
lens aberrations. The scheme of the "all gas Q-switch is in figure 4.2.3.

In Table 1 we summarise the results of the experiment: laser energy, pulse
length, beam diameter and beam divergence for all three operating modes.

The energy values reported in this paper are the maximum values obtained

over a large number of experiments.
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Ruby SPGL L2

CSL

Fig.4.2.3 Laser recsonator scheme for the "a’'l gas" Q-Switching experiment

E  ../] At/ns ®/mm Div (mrad)
Mode a 2.0 360 8.0 1.0
Mode b 0.1 175 2.0 3.3
Mode ¢ 3.0 375 8.0 1.4

Table.4.3.1. Summary of the results of the Colliding Shock Q-Switching
experiment. Emax is the maximum recorded value of the output energy in
the three different resonator geometries. At is the typical pulse duration

(FWHM). @ is the laser spot diameter and Div is the divergence.
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Although the fluctuations are large, especially for mode c. due in this
case to the unstable behaviour of the SPGL [LisiA 1994], we noted that the
operations do not critically depend on the cavity alignment and gas lens
aberrations. After tilting mirror R2 by 3mrad, enough to completely
inhibit the free running laser output, the Q-switched pulse decreases by
only 50% (1.5J). Furthermore we must note that the aberrations of the
spinning pipe lens and its focusing instabilities seemed to affect the
output energy much less than expected. Laser radiation occurs as soon as
the CSL focal length sweeps through the right value that allows light to
resonate with low losses. In a stable cavity the above condition is
satisfied for a broader rangec of modes than for the plane parallel cavity of

the free running laser.

4.3 THEORY AND MODELS

This third section contains a detailed description of a computer model that
was proposcd in order to compute the temporal evolution of the radiation
density and the population inversion of the ruby laser system during CSL

Q-Switching operations. The listing of the programmes is in Appendix B.

4.3.1 THE RATE EQUATIONS

It 1s well known that it is possible to model the behaviour of a laser
system using the rate equations [Koecchner 1984]. The rate equations
consist of a system of coupled non-lincar first order differential
equations. In the most general and exact form they relate the time
evolution of the upper level's population at each point of the laser
medium, to the local radiation density. The temporal evolution of the
population of each level is then determined by the initial population
values. by the radiation density and by the transition probabilities. The
pump contribution, for a flash lamp pumped laser, is included into the
radiation density term. The population values of the three (or four) levels
at any location in the active medium are ccupled to the population values
at different positions via the mode structure of the radiation. The
coupling coefficients are proportional to the absorption and stimulated

emission cross sections. The mode structure depends on the resonator
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gecometry and on the spatial structure of the gain in the active medium
[Statz 1965]. which is determined by the population difference between
upper and lower laser level. The upper laser level population by itself has
the important e¢ffect of triggering the laser amplification, via the
radiation initially emitted by spontaneous decay. A complete solution of
the three-dimensional case is computationally hard, especially when the
number of radiation modes in the cavity becomes high. Nor does it help to
reduce the dimensions to two as, for example. with cylindrical symmetry.
Under some general conditions it is possible to model a laser system with
a set of zero-dimensional equations which are simple to solve numerically.
The conditiorns are:

1) Spatial uniformity of the gain.

2) Spatial uniformity of the radiation intensity along the cross section of
the bcam.

3) Laser pulse duration longer than the round trip time.

The conditions 1) and 2) are never completely true, but in many cases of

practical interest they represent a very good approximation.

4.3.2 THE ZERO-DIMENSIONAL RATE EQUATIONS

In the zero-dimensional case we can describe the evolution of the photon
density in the cavity with only onc equation. A ruby laser is a three-level
system. The zero-dimensional rate equations, after an initial population

inversion has been established. can be written in the following form:

86 I, In(1- (1))

T:d) nc¢c, —+ — 4.3.1
ot I, Tq

on

T:—d)ynccn 4. 3.2
ct

Where 1, is the cavity length and l4 is the active medium length, n is the
population inversion, ¢ the photon density, ¢ the speed of light, o the

stimulated emission cross section. y is the degeneracy of the upper laser

st

level and Ty is the round trip time.
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Normal Q-Switching operations can be investigated by splitting the loss

term £ in three parts.

e(t) = 1.0 - {R, -[l—losl]~[lflosz(t)]iL 4.3.3

The first two are constant, they take into account the transmission of the
output coupler the first and the scattering by defects, reflections from
glass lenses and diffraction losses the second. The third term is set
artificially high at the beginning (for example by means of crossed
polarisers) in order to establish a high population inversion without
allowing lasing to occur. As the gain reaches its peak, the losses arc
suddenly lowered to a value that allows amplification to occur in the
cavity. Amplification occurs now at a rate much higher than if the losses
had remained low. In the latter case, a ruby laser releases its energy in a
train of low intensity pulses. or free running. Conversely the result of
the Q-Switching operation is a giant pulse in which all the energy stored
in the upper level of the active medium is released in a very short time.
According to an approximate theory [Koechner 1984]. the laser pulse rise

time is inversely proportional to the cavity round trip time TR.

4.3.3 RATE EQUATIONS FOR OUR SYSTEM

We want to write down the zero-dimensional rate equations to model the
system described at the beginning of this chapter and shown in figure
4.3.1. We will utilise the equations 4.3.1 and 4.3.2. The most important
issue to solve in order to set a correct model is to find a suitable
expression for the loss term . The constant term Losl is easily calculated
(or guessed) to be about 30%. The variable second term requires more
attention. We have to take into account that in our Q-Switching
configuration the resonator geometry, and not only the quality factor Q, is

changed during the operations.
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4.3.5 THE CAVITY GEOMETRY

A laser resonator is a periodic focusing system. This can be treated in the
formalism of ABCD matrix optics |[Siegman 1986] in the paraxial ray
approximation. The paraxial ray approximation is fully justified in our
system since, given the maximum beam diameter (lcm) and the cavity
length (3m), the maximum angle about the optical axis that radiation can
exhibit is <3 Smrad. The resonator scheme is shown in figure 4.2.1. d1l is
the distance between output coupler and lens L1, d is the distance between
the two lenses and d2 is the distance between the CSL (L2) and the full
reflector. We¢ can divide a round trip inside this resonator into nine
successive steps (figure 4.3.1). Each step consists in a propagation in
vacuum or a focusing by positive lenses.

According to the ABCD matrix theory, each step can be represented by a
two-by-two matrix. The matrix acts on a two component vector (or ray).
the first component is the radial distance from the optical axis and the
second one is the angle.

The product of all these matrices will 2Zive the round trip resonator

matrix. We call it M =

M., = ABCDEFGHI 4.3.4

Tot

I and A represent propagation through dl. H and B the focusing due to L1.
C and G the propagation through d, F and D represent the focusing due to
the CSL (L2) and finally E is a propagation through 2d2. The matrices F

and D depend explicitly on time.

1 dl 10
A:I:( J B=H=|"1

— 1
0 1 1
C:G:(0 J D=F=| —1 4.3.5
f2(t)

1
E - ( 2d2)
0 1
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0.C. F.R 0.C.

Componentdt L1 d L2 2d2 L2 d L1 di
Step 1 2 3 4 5 6 7 8 9
Matrix A B C D E F G H |

Fig 4.3.1. Resonator scheme. The path of each ray can be subdivided in
nine steps per round trip. O.C.: output Coupler, F.R.: Full Reflector. L2:
Colliding Shock Lens. L1: Cavity Lens.
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We now set on to the rays the condition that they must resonate. This is
done by imposing on the rays a matching condition at the edges of the
resonator after one or more round trips. This gives us an eigenvector

equation:

M. X = AX 4.3.6

Tot

Where X is a ray. As previously mentioned. X(l) is the distance from the
optical axis and X(2) is the angle. The two eigenvalues A, and %, can be

determined as the solutions of the following equation:
AN =20 tr(M,, ) + det(M,, ) =0 4.3.7

We introduce now the parameter m as half the trace of the resonator

matrix M Taking into account that the ABCD matrices are always

tot-

unitary. equation 4.3.7 becomes:
A =2mA+1=0 4.3.8

If abs(m)>1 the eigenvalues are real while if abs(m)<1 they are imaginary.

When abs(m)=1 the eigenvaluecs equal unity.

e I

if abs(m) = 4.3.9
- s(m) 2
A, =m+m’ -1 it abs(m) > 1

__ ¢ i abs(m) > 4.3.9b

A, =m-+vm’ -~ 1
A, = exp|i- arcos(m)
] [ ] if abs(m) < 1 4.3.9c¢

, = exp[—i - arcos(m)]

In the first case we have an unstable resonator [Anan'ev 1972], in the
second one a plane parallel cavity and in the third case a stable resonator.
Soon we will see how we can relate the losscs to the eigenvalues, but

before we will discuss in some detail the unstable resonator case. The two

cigenvalues assume the form:
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A =M ,
if abs(m) > 1 4.3.10

A, =1/ M

where we have defined M as the cavity magnification. The physical
interpretation is rather simple. If we start with an arbitrary beam, we can
decompose it into the two eigenstates corrzsponding to %; and 7,. After
several round trips, if m>1 then only the cigenstate corresponding to 7,
will survive while if m<-1 only the eigenstate corresponding to %,. We
talk in this cases of Positive Branch (m>1) or Negative Branch (m<-1)

unstable resonators.

4.3.5 CAVITY LOSSES

We consider now a beam carrying an intensity I, on the active medium
surface S. After one round trip., its cross section will be linearly
amplified by M. The intensity I, will then be spread over the surface SM2,
The intensity will consequently decrease by 1/M2. When the cavity 1is

unstable, the variable loss term in our cavity is then:

1
1052:1~W if abs(m) > 1 4.3.11

Let us now cxamine the stable cavity case. Without going into too much
detail, we can simply say that the value of the position and angle of a ray
at the active medium position oscillates about the zero value after one or
more round trips. Then a beam of intensity I, over several round trips will

lose no intensity. We can say that:

los, =0 ifabs(m) <1 4.3.12

We have found so far an expression for the intensity losses both for the
unstable and the stable cavity cases. los, is an explicit function of time as
seen from equations 4.3.11. 4.3.9 and 4.3.5. We can now put the loss
expression 4.3.11, 4.3.12 into the Zero-Dimensional rate equations. We

expect the losses to become low when the configuration of the resonator is



approximately plane parallel. Two such configurations exist for two
different values of the CSL focal length: their ray diagrams are depicted
in figure 4.3.2. In case a) the CSL is in its weak condition but is just
strong enough to render the diverging rays parallel. In case b) the CSL is
strong and focuses the diverging rays to a point onto the mirror. We note
that configuration b) occurs in time before configuration a), but the CSL
optical diameter in configuration b) is much smaller than in configuration
a). This is a dangerous situation if lasing occurs becausc the mirror can
be damaged. To avoid this damage it is necessary to make the distance dl
(between CSL and Full Reflector) as small as possible.

In figures 4.3.3, 4.3.4 and 4.3.5 we show the computed evolution of:
Stability parameter m, Cavity losses and magnification and laser pulse
intensity for Mode a: d1=25cm, d2=10cm, d=250cm, L1=200cm. In figures
4.3.6 to 4.3.9 the same quantities are reported for Mode b: dl1=25cm,.
d2=10cm. d=100cm, L1=50cm. Again in figures 4.3.9 to 4.3.11 for Mode c:
dl=75cm. d2=10cm. d=250cm, L1=200cm (SPGL).

It can be seen that in all three configurations, the losses exhibit two
minima. which corresponds to the planc parallel ray diagrams shown in
figure 4.3.2. The first minimum does not last long enough for laser

radiation to develop.
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O.C. L1 L2 F.R.
d-f1

A
\/

Fig.4.3.2 Plane parallel configurations of the resonator. A plane-wave
incoming from the output coupler is transformed by the resonator in an
equivalent plane-wave after one round trip. f1:focal lenght of the L1 lens.
a) The focal lenght of the CSL is such that 1/(d-fl)=1/fcsl.

b) The focal lenght of the CSL is such that 1/(d-f1)+1/d1=1/fcsl.
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Fig.4.3.3 Stability parameter m for Mode a.
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Fig.4.3.6 Stability parameter m for mode b.
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4.3.6 LIMITS OF THE ZERO-DIMENSIONAL MODEL

In our system., the fundamental limitation of a zero-dimensional solution
of the rate equations is that the loss calculation does not take into
account the presence of apertures in the cavity. We must remember that, as
shown in figure 3.3.2, the CSL diameter increases with timec on a scale of
microseconds and its value is in the millimetre range. We expect this to
have a large effect on the beam diameter of the Q-Switched laser and
consequently on the output energy. Only the laser radiation that travels
close to the optical axis will not see any aperture and the expression for
the losses will be given by equations 4.3.12., 4.3.13. But some of the
intensity of the radiation that travels furtker away from the axis is lost.

due to the finite aperture of the CSL. The latter acts as a pinhole.

4.3.7 ONE-DIMENSIONAL MODEL. RADIAL PROFILES

The calculation of the fractional intensity lost per round trip s
accomplished in the following way. Wc divide the variable loss term Los?2

into three contributions.

los, (R,t) = 1 — trans, - trans, - trans, 4.3.13

The loss ¢, as defined in equation 4.3.3. is now a function of beam radius
and time. A collimated "input" light beam of radius R enters the cavity
from the output coupler. R is taken to be less than or equal to the ruby rod
radius. As the initial ray (R.0). propagates in the cavity., its components
expand and contract according to the matrix algebra as previously
introduced. When the beam "arrives" at the CSL location in the cavity we
determine its diameter. From the ratio of the square of the beam diameter
and the square of the CSL diameter we can determine the fractional
intensity loss. A new beam is then propagated from the CSL position,
having the same diameter as the CSL. The procedure is then repeated as
the beam comes back to the CSL after a reflection from the back mirror
and again as it recaches the ruby active medium. After one round trip we
have calculated three intensity transmission coefficient. From the product
of the three of them we calculate the fractional intensity loss per round

trip according to equation 4.3.13. It is casily seen that the loss term
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coincides with the one calculated from equations 4.2.11, 4.3.12 for input
beams of small cross section. But the losses hecome much higher as the
input beam diameter increases. The loss term &, as defined in equation

4.3.3)., is now a function of beam radius and time.
e = e(R,t) 4.3.14

Once this function is known, a one dimensional gencralisation of the laser
rate equation can be set as follows. We divide the laser beam into a
collection of N .y annular beams. The jt" annulus having radius R;. We
set the losses of an annular beam of radius Rj equal to the losses of an
"input" beam of the same radius R;. In each annulus we solve

i
independently the zero-dimensional laser rate cquation.

39, I, In(1-e(R,,t)
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The output intensity of the laser beam now exhibits a radial profile. The
two approximations in this treatment are the following:

1) In the computation of the losses, the radial intensity profile of the
"input" beam is taken to be uniform during its propagation in the cavity.
2) The laser beam is perfectly collimated and, as a consequence, there is
absence of energy exchange between different annuli.

We expect the effect of these two approximations to be small and in the
spirit of a simplified model of the system. In figure 4.3.12 we show the
computed radial energy density profiles for the three different operating
modes. The energy density is the time integral of the laser pulse intensity

waveform as shown in figures 4.3.5, 4.3.8 and 4.3.11.
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Fig.4.3.12 Radial intensity profiles for mode a.b and c
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4.3.8 BEAM DIVERGENCE CALCULATION

The previous model can be regarded as a first order approximation to
solve the radial profile of the laser beam. As stated at the end of the last
paragraph, this approximation holds in the case that the laser radiation is
perfectly collimated within the cavity. Again in the spirit of greater
simplification we want to solve the angular profile of the laser beam using
a different approach. We generate a uniform planar distribution of rays at
the active medium position. We follow then the path of ecach of them for
several round trips, recording the values of their position and angle on
the output coupler. A histogram representation of the angular values will
give us the angular distribution of the laser beam. In our system the
cavity geometry varies with time, as doecs the laser divergence. This
calculation is then performed for the cavity gecometry that occurs when
lasing is at its peak. The time at which the radiation intensity is maximum
is calculated by the computer program described in the previous section.
In figure 4.3.6 we show the computed angular profile of the beam for the
threc operating modes.

As we could expect, the short resonator configuration gives a narrow laser
beam with a rather large divergencce. The other two configurations give
results comparable with the measurements. According to [Statz 1964] the

output of our laser is multimode.
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Fig.4.3.13 Angular Intensity profile of the lascr beam for mode a,b and ¢
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4.3.10 DOUBLE PULSE

In some early results we observed the formation of a double laser pulse.
The system was then operated in Mode a, but the distance between the CSL
and the full reflector (R1) was d2=40cm. In figures 4.3.14 and 4.3.15 we
show the evolution of the stability parameter, cavity magnification and
losses for this specific configuration.

d=250cm, d1=25¢cm, d2=40cm, L1=200cm.

The double pulsing is easily explained referring to figure 4.3.2. The plane
parallel configuration is first achieved when F,g;=25cm, soon after the
losses are high again. Later, as the F.g;=40cm the losses are low again.
The losses are low twice at a time distance of few ps which is the delay
between the two pulses as experimentally measured.

Double pulsing must be avoided. As can be seen in figure 4.3.2 the
radiation density on the full reflector during the first pulse can be very
high and we observed surface damages on the full reflector coating. In

figure 4.3.16 we have shown the intensity waveform of the double pulse.
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! d At/ns ®/mm Div (mrad)
Mode a 2.0 225 10 1
Mode b 0.13 105 2.8 4
Mode ¢ 3.0 200 10 0.9

Table.4.3.2. Summary of the computational results of the Colliding Shock

Q-Switching. E is the energy, At is the FWHM pulse-duration, @ is the

laser beam diameter and div is the divergence.
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4.4 CONCLUSIONS

Finally in Table 4.3.2 we rcport the computed values of the laser energy,
pulse-length, beam diameter and divergence to be compared with the
experimental values of Table 4.3.1. Reasonable agreement is obtained
between experimental and measured values bearing the approximations of
the one dimensional model in mind.

In conclusion we have demonstrated a novel Q-Switching configuration
that can use only gas optics. The advantages of the method are: no laser
damage threshold, both for high peak power and average power; abscnce of
polarisation and polariser. A major disadvantage is the necessity of
having a long cavity which results in a long laser pulse. Improvements in
the colliding shock lens design and performance may correct this problem

by scaling down the CSL f-number.



CHAPTER 5:
OPTICAL QUALITY OF THE COLLIDING SHOCK LENS

In chapter 3 we recorded some interferograms of the colliding shock lens
(CSL) at various delays. by using an electrically synchronised probe
nitrogen laser. In that chapter we interpretecd the interferograms and
determined the optical path length (OPL) radial profiles (shown in figures
3.3.13 to 3.3.16 and in table 3.3.1) and the optical aperture of the device
(reported in table 3.3.2) of the enclosed version of CSL.

The present chapter is completely dedicated to the determination of the
optical quality of the CSL through the analysis of these OPL profiles.

In section 5.1 we will compute the CSL's focal length by using simple ray
optics. Then we determine the refractive index radial profile, with the
working hypothesis that the refractive index is constant along any line
parallel to the optical axis. In the following section 5.2 we will define a
focal plane for the CSL and we will compute the intensity profile for a
uniform input laser beam. The two cases of diffraction limited and

divergence limited laser beams are examined.

5.1 THE ANALYSIS OF THE INTERFEROGRAMS

We are going to analysc the radial profile of the OPL inside the colliding
shock lens. The experimental profiles, together with a polynomial fit.
have already been shown in figures 3.3.11 to 3.3.14 and in table 3.3.1. For
clarity and casier reference of the later results we will show again in

figures 5.1.1. 5.1.2. 5.1.3 and 5.1.4 the polynomial fit of the OPL radial
profiles.
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5.1.1 FOCAL LENGTH RADIAL PROFILES

In the approximation of geometrical optics,. when a light ray passes
through a thin phase object, such as the colliding shock lens, its angular
deflection coincides with the radial derivative of the optical path length
(equation 3.3.5). By thin phase object we just mean that the deflection of
the light ray within the phase object is negligible.

Due to the radial symmetry. the polynomial fit contains only the even

coefficients, which are reported in table 3.3.1.

2n

W
—
—

n(r) = a, +a,r’ +a,r'+...+a,r

; 1

Oly) =

h

= 2a,r + 4a,r’ +...+ 2ma,, r"" 3.2

|

It is then straightforward to compute the CSL focal length from the OPL

polynomial fit coefficients.

r
[Eﬁ)
tan :
or

b

W

f(r) = -

From the equation 5.1.3 we find how the focal length of the device varies
with the radial distance. This is a quantitative measurement of the
longitudinal aberrations of the lens. For an idecal lens the focal length is
independent of r. If we stop the polyvnomial expansion to the second order
in equations 5.1.1 we have an ideal lens for paraxial rays. while the
higher expansion terms introduce longitudinal aberrations. In the next
four figures we show the radial focal length profilcs. First, we can note
from figure 5.1.5 that the profile in figure 5.1.1 does not focus at all. The
focal length varies too sharply with the radial distance. Moreover, in the
central region, due to the local negative curvature of the OPL (the 'hole'
in the density distribution), the CSL acts as a diverging lens. This profile

was taken too early after the shock collision for focusing to occur.
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As the time passes, the density profile becomes smoother and the focal
length increases. the radial profile. initially convex, becomes flatter and
flatter. until about 5.0us after collision when it becomes concave. We
expect the optimum performances of the lens during this convexity

transition period.

5.1.2 REFRACTIVE INDEX PROFILES

In order to compute the refractive index (or density) profile from the OPL
profile we have the two following problems:

1) We already mentioned in section 3.3. that it is impossible to compute
the refractive 1index three dimensional spatial profile from the
interferograms, unless we sel some very stringent hypotheses about the
symmetry of the profile itself (such as radial or cylindrical).

2) If the fringes are discontinuous across the shock-front, only the
relative value of the fringe-shift can be mcasured in the interferograms.
Concerning the first problem. our approach is the following: we take the
refractive index to be constant along the rayvs' trajectories inside the cigar
shaped graded index region.

As regards the second problem, we have little to do. and we have to accept
that only the relative refractive index profile can be determined.

It follows that the results that we will be gectting will be approximate
because of the first statement and less than correct because of the second.
The approximation that we introduce by taking the refractive index to be
constant along the rays' trajectories is unavoidable. The error that is
introduced by the discontinuity of the fringes across the shock-front could
be avoided by a better measurement. However it is complex to solve the
fringe pattern across thc shock-front while retaining enough sensitivity
where the density profile is smooth.

Given that, let us compute the refractive index profile. If the refractive

index is constant along the trajectories, we have:

L(r)
fi(r) =2 Jn(r,z)dz = 2n(r)L(r) 5.1.4

0

In figure 5.1.9, we report the geometry of the system.
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From figure 5.1.9, it is casy to find a geometrical expression for the

function L(r):

ED LDY ED :
L(r):2 T+7 —|—+T 5.1.5

Equations 5.1.5 and 5.1.4 allow one to compute the approximate value of
the refractive index difference from unity inside the CSL. The computed
quantity is proportional to the average gas density at the position r.

In the next four figures (5.1.10 to 5.1.13) we show the refractive index
radial profiles. The fringe discontinuity across the shock-front 1is
significant in the first two interferograms. where the shock-front is more
energetic, while in the last two interferograms we are quite confident that
the measured value of the refractive index is close to the real one. Near to
the edges of the lens we note a sharp increase of the refractive index. This
effect can be understood by referring to the single spherical shock radial
density profile, shown in figure 3.3.4, as the shock-tail of the expanding
cvlindrical shock. In the light of these results it is evident that the
‘cigar' geometry plays a vital role in the performances of the CSL. The
refractive index profiles shown in the next four pictures can focus light
only when 'wrapped' in the gecometry of the colliding shock lens. The
approximation that we made by letting the refractive index be constant in
z is essential for the calculation of the refractive index and we cannot
calculate anything without it. Through this hypothesis we discovered the
importance of the 'cigar' geometry of the colliding shock lens. However,
we expect the refractive index to be a function of z too, and our
hypothesis must be regarded as a zero-order approximation. The real
experimental quantity that we measure is the fringe shift, which is the
refractive index integral along the rays' trajectories. Gas-dynamic
simulations of colliding shocks, and their comparison with the
experimental rcsults, can give a deeper insight into the detailed spatial

structure of the gas density distribution [Buccellato B 1994].

166



0.001
8.0003 |
0.0008
0.0007
0.0006
0.0005 F
0.0004 |
3.0003 |
2.0002 F
0.0001 |

8 Coavnandua ey bovaa b by b bvean b by bowaa buuun

-3-2.5-2-1.5-1-6.58 8.5 | 1.5 2 2.5 3

Radial distance (mm)

Refractive index n-1

Fig 5.1.10 Refractive index profile 2.1us after collision

2.001
0.0009 |
0. 0008
0. 0007
2. 0006
2.0005
0.0004
0.0003 e y
0.0002 T ‘
0.0001 |

@ . TNV ST IV NN T T PR ST A SRR FYE T AR U N RN FR VI FUT
-3-2.59-2-1.5-1-8.58 8.5 1 1.5 2 2.5 3

Radial distance (mm)

LELEE LB B L S B L

Refractive index n-1

Fig 5.1.11 Refractive index profile 2.7pus after collision

167



0.001
2.0009
0.0008 |
0.0007 |
0.0005 |

0.0005 T
0.0004 |
2.0003 | L -

0.0002 £
0.0001 F

@ :11..I...lluulu“lunluulj NI ETE AN INUTE RN RN
-3-2.5-2-1.5-1-80.08 8.5 1 1.5 2 2.5 3

Radial distance (mm)

Refractive index n-1

TTT

Fig 5.1.12 Refractive index profile 4.2pus after collision

0.001
2.0009 |
0.0008 |
0.0007
0.0006

0.0005
. 0004

0.0003 ’\\\\\\\
2. 0002 E g

0.0001 :

@ lllJllIllJlllllllll]llll‘IllllIIll]llllLLl]lllllllllllIllll

-3-2.9-2-1.5-1-8.50 8.5 1 1.5 2 2.5 3

Radial distance (mm)

Refractive index n-1

Fig 5.1.13 Refractive index profile 5.0us after collision

168



5.2 REFRACTIVE FRINGES AND RADIAL INTENSITY PROFILES

In this section we will perform some ray tracing into the OPL radial
profiles, or better into the polynomial fits of figures 5.1.1 to 5.1.4. The
angular deflection of the light rays as they go through the central region
of the CSL is simply given by the gradient of the radial OPL profile. In
this respect we consider the refractive index distribution to be squeeczed
on a thin disk avoiding the solution of the ray equations in a graded index
medium. The radial intensity profiles at any image plane after the CSL for
an input laser beam are numecrically computed with the help of diffraction
and refraction theory. As an initially plane wave-front is propagated
through the OPL radial profile a radial phase term is added and the wave-
front is consequently curved. The wave-front is propagated through a
plane aperture, due to the sharp refractive index discontinuity introduced
by the shock-fronts, onto the colliding shock plane. The result of this
computation is the fringe pattern for a laser beam which is diffraction
limited by the aperture of the colliding shock lens. In order to include in
our description the effect of the divergence of the input laser beam,
finally a spatial averaging on the image plane can be included. For a
better comparison with the experimental results, we utilised the laser
beam parameters (wavelength and divergence) of the spatially filtered and

expanded nitrogen laser described in Chapter 3.

5.2.1 DIVERGENCE AND DIFFRACTION

The divergence of an expanded and spatially filtered laser beam can be
cstimated from the spatial filter parameters. The spatial filter geometry is
shown in figure 5.2.1. We can imagine the pinhole ® as a spatially

incoherent source of light. The filtered and expanded nitrogen laser beam

divergence is then:

o D 50-10°°¢ )
ABY = ¢ = RG =3.3-10 *rad 5.2.1
v )

If we focus such laser beam with an ideal. aberration free lens of focal

length f, the minimum spot diameter at the focus is:
O = AO™f 5.2.2
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Let us consider diffraction. For a circular bcam. the diffraction theory

(1.6) tells us that:

2.44\
Ae‘“":T A = 337nm 5.2.3
P = A f 5.2.4

The minimum spot size taking only diffraction into account depends on the
beam or the lens diameter, the smallest of the two. that we call d.

The minimum spot size duec to divergence is constant in d. Both the
diffraction limited and divergence limited spot diameters increase linearly
with the focal length. At small diameters d the effect of diffraction will
be larger than the effect of divergence, while at larger diameters d. it will
be the opposite. We call d* the lens diameter at which the two effects are

equal:

o 2.44)

A =2.5-10 *mm 5.2.5

We can secparate the two c¢ffects by saying that for diameters which are
smaller than d*, the focal spot size is limited by diffraction, while at
larger diamcters the focal spot size is limited by divergence. Consider now
the colliding shock lens as an ideal aberration free lens. Taking into
account the lens diameter, we note that for the small CSL (described in
section 3.2) we had to perform a diffraction analysis. while for the big
enclosed CSL (section 3.3) we should rather take 1into account the
divergence of the probe laser bcam. Given our intermediate opcrating
conditions, both the effect of diffraction and divergence must be taken

into account.

5.2.2 FRAUNHOFER DIFFRACTION THEORY OF THE COLLIDING SHOCK
LENS

In Chapter 1 we found the Fraunhofer formula for the diffraction produced
by an aperture on a plane screen. We shall apply the diffraction theory in

order to compute the intensity profile and the fringe pattern at any
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distance from the CSL, including the effect of the longitudinal aberration
in our discussion. In figure 5.2.2 we show the geometry of the system.

According to the diffraction theory [Guenther 1990] each point PO of the
source generates a spherical wave-front. The electric field at the lens

plane depends on the source geometry and on the distance r:

1A

(xs,ys) exp(—lk )dxsdy5 526

E(x,,y,)

In the hypothesis that the diameter of the aperturc is much larger than the
distance between the source and the aperture, we can introduce the

following approximation (the sagittal approximation):

, (XL_xs)2 +(yL_YS)z
2r' 21

The electric field at the lens plane can then be rewritten as:

iA _ X, — X, ) —y. )
E(x, YL ) = —,exp(—lkr)“ f(xs,ys) exp| —ik ( > ; ) — ik (ys yL) dxdxq
Ar T r

The passage through the lens introduces an additional phase shift that
renders the wave-front curved.

The phase shift at each point coincides with the optical path length (or
OPL) radial profile. As reported earlier in this thesis we do approximate
the OPL radial profile with a fourth order polynomial containing only even

terms. As a result, the electric field after the beam has passed through the

CSL can be expressed as:

¥(x,,y,) = E(XL,yL)exp[ikaz(Xi +y7) +ika, (x2 + yi)z] 5.2.9
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Our goal is to compute the electric field at a point P in the m,& plane at
the distance s' from the CSL. Then we propagate the expression for the

clectric field in equation 5.2.9 of the distarce s:

2 2
(XLTE’) vik(XL ,i) dx,dy, 5.2.10
S S

un.g) = [ £ (x,y.)¥(x,,y, ) exp| —ik

From equation 5.2.10 on we will neglect the normalisation coefficients in
front of the propagation integrals. The latter can be ecasily computed as a
final step using the energy conservation condition.

The case of a laser beam. or a well collimated beam. is well represented
by a point source at a large distance from the lens. In this case we can
imagine that r' goes to infinity and the source shapec function becomes a

two dimensional Dirac delta function:

fs(xsvys)zé(xsays) 5211

The hypothesis of a point source greatly simplifies our calculations:

2s"  2r

0(n8) = Jf e ikl +52){ 5+ o ol + 3tV

o

.12
X X

- exp ik——£ exp anl f (x,,y, )dx, dy,
2s’ 2s’

In equation 5.2.12 we notice that in the case that the fourth order
cocfficient of the wave-front curvature is zero (a,=0). the planes at s' and

at r' arc conjugate planes if:

1 1
+—=a,l=— 5.2,
20 2y T gf 213

In other words. an aberration free lens produces into the conjugate plane

of a point source the two dimensional Fourier transform of the lens

transmission function.

174



In our case, given that the lens it is not abzrration-free, we cannot define
the two conjugate planes and eliminate the second and fourth order radial
dependencies of the exponential inside the integral of equation 5.2.12.
The result is not straightforward and the inrensity pattern at the plane n,¢§
must be computed numerically.

In our case the lens is circular having a radius R defined by the expanding

shock-front. We rewrite equation 5.2.12 in polar coordinates:

1 1

ot

2m R
= |d —ikr?
)= fof el oo 55+ 5

5.2.14

k
-exp[i > pr(cos0 cos @ + sind sincp)}rdr _
S

The integration in 6 can be performed analytically. to give the following

one-dimensional integral:

U(p) = _Texp(iarz)exp(iBr“) - J,(ypr)rdr 5.2.15

Where J, is the first of the Bessel function and:

5.2.16

By taking the square of the integral 5.2.15 we obtain the intensity

pattern:

2 2

I(p) = J.cos(ou2 + Br")]o(ypr)rdr 0 _[sin(ocrz + Br“)]o(ypr)rdr 5.2.17
0 ]

The integration in 5.2.17 can be accomplished numerically by any of the

standard methods. We stress the fact that the sine and cosine terms in
5.2.17 do oscillate very rapidly. Conscquently it is opportune to utilise

the simplest integration method in order to evaluate the function in the

175



largest number of points as possible whilst keecping the computation time
short.

Due to the lens longitudinal aberration we cannot unequivocally define a
focal plane for the CSL. We have two possible choices. One is to define
the focal plane as the plane at which the intensity pattern presents the
maximum peak intensity at the centre. The second would be define the
focal plane as the plane where the maximum amount of energy is focused
within a given finite radius, say R*. While the latter option could be more
intcresting from the point of view of some of the potential applications,
the first criterion has the advantage of the simplicity. Moreover it will
not produce results much different from the second, if the radius R* 1is
small enough. On the same graph we report for comparison the intensity

pattern due to an ideal, aberration free, lens having the same focal length.
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Fig 5.2.3 Intensity in the focal plane of the CSL, solid line. Lens diameter

= 2.6mm. Focal length = 53.0cm. The Airy pattern of an equtvalent

diffraction limited lens is reported for comparison, dashed line. The thin

solid line trace shows the intensity profile when the divergence of the

probe laser beam is taken into account.
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Fig 5.2.4 Intensity logarithm in the focal plane of the CSL, solid line.
Lens diameter = 2. 6mm. Focal length = 53.0cm. The Airy pattern of an
equivalent diffraction limited lens is reported for comparison, dashed
line. Note that the Airy pattern is zero at some distances from the optical
axis and the log should diverge. This does not happen because of the
numerical algorithm utilised to compute the Bessel function J,. The thin
solid line trace shows the intensity profile when the divergence of the

probe laser beam is taken into account.
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Fig 5.2.5 Intensity in the focal plane of the CSL, solid line. Lens diameter
= 4.2mm. Focal length = 120.0cm. The Airy pattern of an equivalent
diffraction limited lens is reported for comparison, dashed line. The thin
solid line trace shows the intensity profile when the divergence of the

probe laser beam is taken into account.
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Fig 5.2.6 Intensity logarithm in the focal plane of the CSL, solid line.

Lens diameter = 4.2mm. Focal length = 120.0cm. The Airy pattern of an

equivalent diffraction limited lens is reported for comparison, dashed
line. The thin solid line trace shows the intensity profile when the

divergence of the probe laser beam is taken into account.

180



1 .
0-9 E-\'. — I N ‘ %
0.8 b === L
X |
817 : T/ 77‘!777 ] T l
= [ |
.E 8.6 __ ———— - - ‘ |
o, -
£ : |
«—t 8.5 - = i = — = ey |
g - |
e [ ;
I—m| al4 ?_ (= = o B - L o
& - |
- L
0.3
-
8.2 | -
0.1 [ —
a : 1 1 1 4 ' { [ q

o

0.2 0.4 0.6 0.8 1

Distance from the axis (mm)

Fig 5.2.7 Intensity in the focal plane of the CSL. solid line. Lens diameter
= 4.8mm. Focal length = 197.0cm. The Airy pattern of an equivalent
diffraction limited lens is reported for comparison, dashed line. The thin
solid line trace shows the intensity profile when the divergence of the

probe laser beam is taken into account.
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Fig 5.2.8 Intensity logarithm in the focal plane of the CSL, solid line.

Lens diameter = 4. 8mm. Focal length = 197.0cm. The Airy pattern of an
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line. The thin solid line trace shows the intensity profile when the

divergence of the probe laser beam is taken into account.
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5.2.3 THE EFFECT OF THE LASER BEAM DIVERGENCE ON THE
INTENSITY PROFILE

Finally we can perform an averaging in the image plane in order to take
into account the divergence of the input laser beam. We can imagine
substituting the input plane wave with an angular distribution of mutually
incoherent plane waves. Since, by definition the plane waves travelling at
different angles do not have any precise mutual phase relation, they do not
create any interference pattern on an observable timescale. Consequently a
spatial averaging onto the image plane wi |l be sufficient to account for
the phenomenon. The spatial averaging must take accurately into account
the cylindrical geometry of the system., in order to preserve the total
energy.

The intensity angular distribution that we have chosen is a normalised
cosine distribution of the opportune width. Such angular distribution often

well represents the output of a multimode laser beam.

1(6) = — ™ 0] < AB*
EET R YT <

1(8) = 0 8] > AG*

5.2.12

The third curve shown in figure 5.2.3 to figure 5.2.8, the thin solid curve.
shows the radial intensity plot on the focal plane when the effect of a
laser divergence of 0.25 mrad is taken into account.

The programs performing the diffraction intecgral computation first and
then the final spatial averaging onto the focal plane are written in Pascal

and run on a PC. The listing are in Appendix C.
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CHAPTER 6:
THE ELLIPTICAL COLLIDING SHOCK LENS

In chapter 3 and 5. and in [Buccellato B 1993], it has recently been
demonstrated that the central collision of several shock-waves in a
gaseous medium can generate a density and refractive index distribution
that can efficiently focus laser light into a sharp focus. In this chapter we
demonstrate how, by shaping the imploding shock-front. we can generate
an elliptical lens, useful for line focusing applications.

The working principle relies on the refractive properties of non-uniform
gas density distributions and on the gas-dvnamic interaction of multiple
shock waves in order to obtain a gas density distribution suitable for
focusing. The CSL presents several advantages over an e¢quivalent f-
number solid state device. such as the high breakdown threshold and the
damage resistance, besides its being a varifocal device.

An other advantage of the CSL over a conventional solid state device
consists on the possibility of shaping the geometry of the imploding
shock-front in order to obtain geometries which are different from the
cylindrically symmetric one. I[f the CSL is utilised to focus a collimated
laser beam on a flat target. the shaping of the imploding shock-front
results in a different spatial distribution of the irradiance on target.

When we create a density distribution whosc cross section is an ellipse. we
can focus a laser beam into a line focus. suitable for some applications

such as x-ray lasers.

6.1 ELLIPTICAL LENS THEORY
6.1.1 GEOMETRICAL OPTICS DESCRIPTION

We have shown in chapter 1 [Marchand 1978] how a radially symmetric

parabolic refractive index profile such as.

n(r) = n, - o’r’ 6.1.1

can produce a sharp focus. If we let the refractive index contour line be

elliptical rather than circular. thus loosing the cylindrical symmetry, the

refractive index profile becomes:
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n(x,y) = n, - a’x’ — o}y’ 6.1.2

In the latter case. we can solve analytically the ray equations. such as for

the uni-dimensional case:

O’x  On

7 T A
oz 6.1.3
oy  oOn

And we get two independent equations for the rays' deflection along the

two directions x and y.

Il

6,(x)

“2alx = -
6.1.4
0,(y) = 2ajy = -

S| T e

Equation 6.1.4 tells us that there are two stigmatic foci at two different
distances from the elliptical lens. The ratio between the distances of the
two foci equals the eccentricity of the eclliptical profile. In this sections
we briefly analyscd the performances of an elliptical GRIN lens in the
paraxial ray optics approximation. The detatled paraxial diffraction theory

of the elliptical CSL can be found in the next paragraph.

6.1.2 THE ELLIPTICAL CSL DIFFRACTION THEORY

In Chapter 1 we found the Fraunhofer formula for the diffraction produced
by an aperture on a plane screen. This theory allows one to compute the
intensity profile in the focal plane when a lens is uniformly illuminated
by laser light. In chapter 5 we did apply such a theory in order to compute
the intensity profile in the focal plane of the CSL, whilst taking the CSL
longitudinal aberrations into account. We shall now apply the Fraunhofer

theory to the elliptical CSL. In figure 5.2.2 the geometry of the system is
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Fig 6.1.1 Gcometry of the diffraction from the clliptical CSL.
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reported. The calculation proceceds as in chapter 5 up to equation 5.1.8.

when the wave-front reaches the CSL.

2 2
(=% ) o b ’yL) dx dx,
r

E(xL,yL)=-—exp(—lkr)H xs,¥s ) exp| —ik -

=)}

The function f(x,,y¢) is the source shape. The passage through the lens
introduces an additional phase shift that renders the wave-front curved. In
the actual case the wave-front is a two dimensional paraboloid. with an
elliptical cross-section.

The phase shift at each point of the CSL planc coincides with the optical
path length (or OPL). In the case of the clliptical CSL. the OPL is a
function of x and v and is given by cquation 6.1.2. The electric field after

the beam has passed through the CSL can be expressed as:

¥(x,,y,) = E(x_,y,) exp[ik(aixi + aiyi)] 6.1.6

In the n,& plane at the distance s' from the CSL the expression for the
electric field in given. as in equation 5.2.10. by ecquation 6.1.7. As in
chapter 5 we neglect the numerical coefficients in front of the electric

field expressions.

:” f(x.,y, )¥(x, .y, )exp| ~ik — — — 1k v dx, dy, 6.1.7

Where the function f;(x;.,y;) is the aperture function of the elliptical
lens. The case of a laser beam, or a well collimated becam, it is well
rcpresented by a point source at a large distance from the lens. In this
case we can imagine that r' goes to infinity and the source shape function

becomes a two dimensional Dirac delta function:

f(x,ys) = 8(x4,v5) 6.1.8

187



The hvpothesis of a point source greatly simplifies our calculations:

1 1 1 1
_ o 2 _ 2 3 20 - 2
U(na&) - J.[ exp\: lka [ 25, + 21" ax )i| expl: lkyL( 257 t 21.' a)’ )]

X . XM
- exp iki exp| ik — fL(xL,yL)dedyL
2s’ 2s’

Making use of the relations 6.1.4 we can show that there are two stigmatic

focal planes, at the positions:

S
+— =0’ =
2t 28 2f,
1 6.1.10

If the eccentricity of the ellipse is set to one. the lens becomes circular
and we can define two conjugatec plancs such as for an aberration frec
lens.

In our case. we can define two sets of conjugate planes corresponding to
the two stigmatic foci. Let us chose the plane corresponding to the first of

the two foci. at which:

1 1 1
— t— = — 6.1.11
2r  2s" 2f

By introducing polar coordinates both in the lens and in the 'first focal'

plane the electric field expression becomes:

2m oR(0) . 1 1 _ 1pcosO cos " rpsinBsin
U(p,y) = Jo L exp| iky? it exp(lk : hd ] exp[ik ¥)rdrd@
y x

x X

R(0) =a_+ (ay —a,)cos6

6.1.12
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Where A and B are the two semiaxes of the CSL. The double integral
appearing in equation 6.1.12 can be evaluated numerically but its solution
is time consuming. Thus we only evaluated the function U(p,y) along two
perpendicular axes into the 'first focal' plane ( see figure 6.1.1) y=0 and

y=n/2.

r,0 y=n/2 P\

AR

Xy .3

Fig.6.1.2 Elliptical lens plane and first focal plane.

The equation 6.1.12 there becomes:

2 eR(O) 1 1 rp cos O
U(p,0) = ik(rsin6)*| — - — || - exp| ik ——— |rdrd0
(r.0) L J" exp| ik( ) f, f p[ f 6.1.13
R(0) =a, + (ay —a,)cos®
T pamogw(e) ) Ll 1 1 .. Tpsind
U[p,;) = L J.o exp| ik(rsin0) [{ P exp[lk f, rdrd® .

R(6) = a, + (ay ~a,)cos®

The two integrals can be solved numerically as a function of p, by
expressing the complex exponential as a sine and cosine function as done
in chapter 5. Finally by taking the square of the function U, we obtain the
intensity pattern along the two directions into the focal plane. In figure

6.1.3 we report the results of the numerical calculation. For the latter
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calculation we chose the correct experimental values for the system
parameters such as semiaxes, eccentricity and focal distance. The
numerical programs utilised for this calculation are listed in appendix D.

The scale in the previous picture is not the same along the two directions
and can be found by scaling one curve respect to the other until the values
at the zero position do coincide. We immediately note that intensity is not
uniform along the direction of the line focus This device is then more
properly speaking a 'two foci' device, rather than a 'line focus' device.
Agreement with the measured intensity pattern can be found in the next

paragraphs where we introduce the experimental results.

6.1.2 THE ELLIPTICAL CSL

Suppose now that we are able to generate an cxpanding elliptical shock-

front having the semiaxis a_ and a. and conscquently the eccentricity

We can rcasonably presume the density (and refractive index) contour
lines to be parallel to the shock-front. thus having the same eccentricity.
By placing the clectric arc explosion cqui-spaced along some curve. we
can obtain that, after the central collision, the shock-front emerges with
an elliptical profile.

In order to find such a curve., we should solve in theory both a simple
geometrical and a complex gas-dynamic problem. The velocity of the
single unperturbed expanding spherical shock wave causecd by a single arc
explosion decreases according to a power law, converging on the sound
speed (M ;=1) at large distance from the explosion centre. Under this
hypothesis, that is when the shock velocity varies only with the distance
from the explosion centre, if we equi-space the shock launching points on
the arc of an ellipse, the shock-front will expand after the central
collision with an elliptical profile.

When several shock waves come together and overlap while converging
towards the centre, they do interfere and their velocity varies. During this
phase, some distortion of the shock-front from the elliptical profile could

be cxpected if the shock energy 1is high (My>>1). In our conditions,
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supported by the experimental results, we cxpect the latter effect to be
negligible.

Let us consider the curve defined by the envelope of all the spherical
shocks generated by the point explosions in air. Each point of such a
curve moves in time towards the direction defined by the normal of the
curve itself. Let the arc explosions be equi-spaced along the arc of an
ellipse with semiaxis d, and d).. During the propagation of the shock-
front, we note that the eccentricity of the e¢llipse is not conserved at some
times the shock-front is not even an ellipse (figure 6.1.4 and 6.2.3c¢).

Let the semiaxes of the ellipse we want to generate be a, and a the

y’
semiaxes of the initial shock-front must be:

Where A can be chosen within a useful range according to physical
criteria. The lens cannot be too large or else the shock waves loose too
much energy before the collision. and certainly must not be smaller than
the ellipse that we want to genecrate. Basing our assumptions on experience

gained with cylindrically symmetric CSL devices we choose the following

values:

a, =2mm
a; =4mm
A =17mm

In figure 6.1.4 we show a geometrical construction that represents the
collision and successive expansion of the elliptical wave-front at different
times from the arc explosion. The program utilised to generate this

construction is in appendix D.
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Fig.6.1.4 Converging elliptical wave-front. Geometrical construction in

the hypothesis of constant shock velocity.
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6.2 EXPERIMENT
6.2.1 EXPERIMENTAL SET-UP

The elliptical CSL has been designed with equi-spaced discharge
electrodes. The distance between ecach couple of electrodes and the next
was kept constant. The experimental set-up has already been described in
chapter 3, it briefly consist of an arc discharge circuit which is
electronically triggered via a spark-gap and of spatially filtered probe
nitrogen laser which is electronically synchronised via a variable delay.
The discharge circuit, together with a sketch of the elliptical CSL is
shown in figure 6.2.1. The discharge capacitor value was chosen to be
C=100nF and the gap between opposing eclectrodes G=1mm. The discharge
clectrodes are connected in series in order to ensure simultaneous arcing.
The recording apparatus consists of a TV camera and an Oculus 200 frame
grabber. connected to a personal computer. By using a 20cm focal length
lens., the camera can image any object plane. including the shock collision

plane. A sketch of the experimental set-up is rcported in figure 6.2.2.

6.1.2 EXPERIMENTAL RESULTS

In figure 6.2.3 we report a sequence of the elliptical shock-front
convergence. imaged onto the shock collision plane. In figure 6.2.4, 6.2.5
and 6.2.6, we show the intensity pattern of three stigmatic line foci at
three different delays and distances from the elliptical CSL.

As seen in the pervious section, according to the elliptical CSL theory, at
any fixed time delay there are two stigmatic line foci. In figure 6.2.4 we
only show the first of the two foci. f,, the one closer to the lens.

In figure 6.2.5 we report the time evolution of the two semiaxes a, and a,.
We note that the elliptical CSL is a varifocal device. whose 'diameters'

and aspect ratio vary sharply with time on the us time-scale.
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Figure 6.2.1. The elliptical Colliding Shock Lens. Consists of a CSL
where the discharge pins are equi-spaced along the arc of an ellipse rather

then along the arc of a circle. Discharge circuit. L=10H, C=100nf, C,=1nf,

G=1lmm.
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Figure 6.2.2 Experimental set-up for the focusing experiment of the

elliptical CSL.

195



Figure 6.2.3 The elliptical colliding shock lens imaged onto the shock

collision plane. From left to right and up to down: a)Delay=23.3us,
b)Delay=28.2pus, c)Delay=29.0pus, d)Delay=29.2ps, e¢e)Delay=30.0pus,
fyDelay=32.8us. The shock collision is at Delay=29.0ps.
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Fig.6.2.4 Images of the first focal plane. From the top down:
a) f,=0.5m, Delay=30ps,
b)f,=0.9m, Delay=30.9ps,
c)f,=1.5, Delay=31.5ps.
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Figure 6.2.5 Time evolution of the elliptical CSL semiaxis.
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6.3 CONCLUSIONS

In chapter 3 we characterised the CSL and its performances. One of the
possible advantages over a solid state lens resulted that its focal length
varies with time. In this chapter we stress another feature of the CSL. The
possibility of varying the shape. In order to demonstrate this possibility
we made an elliptical CSL. An elliptical lens, according to the diffraction
theory, gives at the focal plane something which lies in between a "line
focus" and a "two foci" or two lobed intensity distribution. The experiment
confirmed this prediction.

This is only a first step, and CSL with different initial shock-front shapes
can give a whole range of spatial intensity distributions in the focal
plane. As discussed earlier in this thesis the main advantage of a CSL

over an equivalent solid state device is the radiation resistance.
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CONCLUSIONS

Gas lenses were first proposed in 1960's as light wave guides. The
discovery of fibre-optics with their superior performances and
reliability, interrupted the early research on these devices. The early
devices were basically thermal gradient gas lenses. In a gas lens. the
wave-front is shaped by a refractive index gradient distributed over a
volume, rather than by the refraction at an 1interface such as in
conventional solid state lenses. The gas lenses are GRIN lenses.

As we have seen in chapter 2. a spinning pipe gas lens, a thermal
gradient gas lens, typically has a long focal length and a fairly high
numerical aperture.

In a thermal gradient gas lens, the refractive index radial gradient
that allows focusing to occur., follows the local structure of the
tempcrature: The higher the temperature. the lower the gas density
and the lower the refractive index. Such devices are in general bulky
and heavy, and are sensitive to the surrounding conditions. Still air
i1s a necessary condition for steady operations. The main advantage of
a spinning pipe gas lens is the lack of reflective surfaces (or AR
coatings) and the very high laser damage thrcshold.

As seen in chapter 4, the spinning pipe gas lens, can be employed
advantageously during high power laser intracavity operations.

In chapter 3 we have introduced a novel type of gas lens: The
Colliding Shock Lens (CSL). In this device. shock waves are utilised
to compress a gas in a central dense core. The radial density gradient
inside this core can focus the light of a laser beam to an almost
diffraction limited focal spot. The Colliding Shock Lens has been rep-
rated up to 10Hz but there is no physical limit to repetition rates up
to few KHz.

In our geometry we make use of the non-linear properties of the
interaction between shock-waves in order to produce a cylindrically
symmetric high density core, starting from a polygonally shaped
imploding shock-front. After the central implosion of the shocks, a
cylindrically symmetric expanding density distribution occurs.

Typically the CSL focal length and diameter vary on the ps time-
scale.
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The CSL can be utilised as a high power electro-optical switch. In
chapter 4 we presented a novel type of Q-switching technique that
merge together the advantages of intracavity optical gas elements and
of telescopic cavities.

In chapter 5 we analysed in detail the optical performances of the CSL
during its time evolution. The analysis 1is performed onto the
interferograms that we recorded during an experiment reported in
chapter 3. Our numerical analysis confirmed the optical performances
of the CSL. At the optimum distance from the CSL, and at the
corresponding optimum delay from the central shock collision, the
CSL is really a diffraction limited device.

Finally in chapter 6 we exploited another interesting property of the
CSL: the possibility of varying the implosion geometry. By shaping
the imploding shock-front we can vary the shape of the lens and the
optical properties change as well. In order to test the concept we
made an elliptical CSL.

According to the Fraunhofer diffraction thecory, an aberration free
elliptical lens has two stigmatic "focal planes". The intensity pattern
in the first "focal plane" is something in bctween a line focus and a
two lobed focus., which is observed experimentally.

In conclusion we have demonstrated that the gas lenses arc remarkably
flexible devices. They can be operated both continuously and pulsed,
both at low and high repetition rate. While the continuous gas lenses,
the thermal gradient devices, require particularly still operating
conditions, the pulsed devices (the CSL). do not and can be operated
ip repetitive mode. The main difficulty that one encounters is the
improvement of the numerical aperture of the devices, that is
increasing the aperture while keeping a short focal length and a
consistent optical quality. This is more a physical than a
technological problem. since as the density gradient increases so does
the perpendicular gas flow and the gas distribution becomes more and
more difficult to control.

A combination of pulsed devices with different geometries and

continuous gas lenses, can perform a wide spectrum of operations on a

high power laser wave front.
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App. A

APPENDIX A

In this appendix we report the listing of the program utilised in Chapter
2. The program solves the rays trajectories inside the spinning pipe gas
lens. The measured refractive index profile is utilised. Given a point
source or a combination of several point sources of white light at any
object plane, the program computes the intensity profile at any image
plane after the exit of the pipe. In chapter 2 we imaged a single point

source. The program can give several other graphic outputs.

(*’i******************************************************)

(* Ray tracing through a thermal gradient gas lens: *)
(* Paraxial rays approximation. *)
(* The program requires The refractivity index of the gas, at a *)
(* given temperature, and the two dimensional *)
(* temperature spatial profile in a plane containing the optical *)
(* axis. )
(* The system has not cylindrical symmetry *)

(********#***********************************************)

Program rtglexp;

uses
crt,graph;

const
nr=6;
nz=17;

maximpoint=2000;
maxlaspoint=200;
npoint = 2; (* Points of the object *)
nimagi = 990;

diam = 1.0; (* Diameter of the diaphragm in front of the lens *)

type

glnarray = array [1..4] of real;

datar = array [1..nr] of real;

dataz = array [1..nz] of real;

datat = array [1..3,1..nz,1..nr] of real;
var

maino, laso,imo:integer,
nray,nstep,nimag:integer;
d,deltar,1,dz,t0,n0,0bjang,objdist:real
distz,distr:array[1..200] of real;
dislx,disty,gradx,grady:array[l..maximpoint] of real;
rdata:datar;

zdata:dataz;

tdata,dtdata:datat;

nfile,cf,control:string:

(******************************)

(*** Initialize to 0 all vectors * ok k)
(******************k***********)

procedure initialize;

var
i.j.k:integer;
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begin

for i:=1 to maxlaspoint do

begin
distz[i1]:=0.0;
distr[1]:=0.0;

end;

for i:=1 to maximpoint do

begin
distx[i]:=0.0;
disty[i]:=0.0;
gradx[i1]:=0.0;
grady[i]:=0.0;

end

for i:=1 to nr do
rdata[1]:=0.0;

for i:=1 to nz do
zdata[1]:=0.0;

for k:=1 to 3 do
for j:=1 to nz do

for i:=1 to nr do
tdata[k,j,i]:=0.0;
end;

(********************i‘********#)

(*** Loading Experimental data ***)
(******************************)

Procedure loadexpdata:

var
ftitext:
K.i.j:integer:

begin
assign(ft,'c::data‘tempe.dat’);
reset(ft):
for j:=1 to nr do
readln (ft,rdataf[j]):
for i:=1 to nz do
readln (ft,zdatali1]);
for k:=2 downto 1 do
for i:=1 to nz do
for j:=1 to nr do
readln (ft,tdata[k.i.j]):
d:=2*rdata[nr]:
l:=zdata[nz];
close(ft):

end

(*****?’I‘***’.‘***********************************)

-------- ¥** Derivative of the refractive

(***********i‘ indef\' profile

(*************i‘************?*********i‘*********)

procedure dnxv(xx,vy,zz:real: var dndx.dndv:real);

var
t.dtdy.dtdx:real;

procedure temp(ax,ay.,az:real; var at,adtdx,adtdy:real);

var
ar,dt, dyl,dyn,atl:real;
ydata,ddy:datar;

(****t*i*************************)

(*** 2-D interpolation subroutine **x*)
(*******************************I’()

PROCEDURE spline(x.y: datar; n: integer; ypl,ypn: real;

VAR y2: datar);

VAR
i.k: integer:
p-qn.sig,un: real;
u: datar;
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BEGIN
IF (ypl > 0.99e30) THEN BEGIN
y2[1] := 0.0;
u[l] := 0.0
END ELSE BEGIN
y2[1] := -0.5;
ull] := (3.0/(x[2]-x[L]IN)*((y[2]-y[11)/(x[2]-x[1])-ypl)
END;

FOR 1 := 2 to n-1 DO BEGIN
sig 1= (x[i]-x[1-1])/(x[1+1]-x[i-1]):
p := sig*y2[i-1]+2.0;
y2[i] := (sig-1.0)/p:
uli}] := (y[i+1]-y[i])/(x[i=1]-x[i])
-(y[i]-y[i-1])/(x[i]-x[i-1]);

uf[i] = (6.0*ul[i]/(x[i+1])-x[i-1])-sig*ul[1-1])/p
END;
IF (ypn > 0.99e30) THEN BEGIN
qn := 0.0;
un := 0.0
END ELSE BEGIN
qn := 0.5;
un := (3.0/(x[n]-x[n-11))*(ypn-(y[n]-y[n-1])/(x[n]-x[n-1]))
END;
y2[n] := (un-gqn*u[n-1])/(qn*y2[n-1]+1.0);
FOR k := n-1 DOWNTO 1 DO BEGIN
y2[k] := y2[k]*y2[k+1]+u[k]
END

END;

PROCEDURE splint(xa,ya,y2a: datar; n: integer;
x: real; VAR y,dy: real):

VAR
klo,khi,k: integer;
h.b,az peal:

BEGIN
klo := 1,
khi := n;
WHILE (khi-klo > 1) DO BEGIN
kri=:(Ckhi®klo)y DIV 2z

IF (xa[k] > x) THEN khi := k ELSE klo := k

END;

h := xa[khi]-xa[klo];

a := (xa[khi]-x)/h;

b := (x-xa[klo])/h;

y := a*yal[klo]+b*ya[khi]+
((a*a*a-a)*y2a[klo]+(b*b*b-b)*y2a[khi])*(h*h)/6.0;

dy := (ya[khi]-ya[klo])/h-(3*sqr(a)-1.0)/6.0*%h*y2a[klo]~+

(3*sqr(b)-1.0)/6.0*h*y2a[khi];
END;

procedure interlin(bx,by,bz.br:real; var bydata:datar);
const pi=3.14159;

var
ik,jk.jj:integer;
th:real;
ydatal,ydata2,ydata3:datar;

begin
ik:=nz-1;
jk:=nr-1;
while ((ik>1)and(not(((bz>=zdata[ik]) and (bz<zdata[ik+1]))))) do
dec(ik);
while ((jk>])and(not(((bri»=rdata[jk]) and (br<rdata[jk+1]))))) do
dec(jk);
for jj:=1 to nr do
begin
ydalal[jj]:—tdata[l,ik,jj]+(tdata[1,ik+l,jj]-tdata[l,ik,jj])/
(zdata[ikf1]-zdala[ik])*(bz-zdala[ik]);
ydata2[jj]::tdata[Z,ik,jj]+(tdata[2,ik+l.jj]-tdata[Z,ik,jj])/
(zdala[ik+1]-zdata[ik])*(bz—zdata[ik]):
g’dataS[jj]::(ydatal[jj]+ydata2[jj])/2.0;
end;
if by<>0.0 then
begin
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th:=arctan(abs(bx/by));
if ((bx>=0.0)and(by>0.0)) then
for jj:=1 to nr do
bydata[jjl:=ydatal[jj]+(ydata3[jj]-vdatal[ij])
*th/pi*2.0
else if ((bx>=0.0)and(by<0.0)) then
for jj:=1 to nr do
bydata(jj]:-ydata2[jj]+(ydata3[jj]-vdata2[jj])
*th/pi*2.0
else if ((bx<=0.0)and(by<0.0)) then
for jj:=1 to nr do
bydata[jjl:=ydata2[jj]+(ydata3[jjl-ydata2{jj])
*th/pi*2.0
else if ((bx<=0.0)and(by>0.0)) then
for jj:=1 to nr do
bydata[jjl:=ydatal[jj]+(ydata3[jj]-vdatal[jj])
*th/pi*2.0;
end
else if by=0.0 then
for jj:=1 to nr do
bydata[jjl:=ydata3[jj]:
end;

begin
ar:=sqrt(sqr{ax)+sqr(ay)):
interlin(ax,ay,az.,ar,ydata);
dyl:=0.0;
dyn:=0.0;
spline(rdata,ydata,nr,dyl,dyn,ddy):
splint(rdata,ydata.ddy,nr.ar,at,dt);
if ar<>0.0 then
begin
adtdx:=dt*ax/ar;
adtdy:=dt*ay/ar;
end
else
begin

begin
temp(xx.yv,zz.t,dtdx.dtdy);
dndx:=-(n0-1.0)*t0/sqr(t)*dtdx;
dndy:=-(n0-1.0)*t0 'sqr(t)*dtdy;
end;

*****************i‘***i‘*****)

(*** Differential equations 2D
(*** definittion )
(***************************)

Procedure derivs(x:real: y:glnarray; var dydx:glnarray):

var
dndx,dndy:real:

begin
dnxy(y[1].¥y[3].x,dndx.dndy):
dydx[2]:=dndx;
dydx{1]:=y[2]:
dvdx[4]:=dndy;
dydx[3]:=y[4];

end:

(***********************)

(*** Runge Kutta fourth **¥*)

(*** order method * ok ok
(***************i*******)

PROCEDURE rkd4(var y:glnarray; dydx: glnarray; n: integer;

VAR
i: integer;
xh.hh,h6: real;
dym.,dyt,yt: glnarray;

X

Lhe

real);
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BEGIN

hh := h*0.5;

h6 - h/6.0;

xh := x+hh;

FOR i := 1 ton DO BEGIN
vt[i] := y[i]+hh*dydx[i]

END:

derivs(xh,yt.dyt);

FOR i := 1 ton DO BEGIN
yt[i] := y[i]+hh*dyt[i]

END:

derivs(xh,yt,dym);

FOR i := 1 to n DO BEGIN
yt[i] := y[i]+h*dym[i];:
dym[i] := dyt[i]+dym[1]

END;

derivs(x+h,yt,dyt);

FOR i := 1 ton DO BEGIN
y[i] = vi{i}+h6*(dydx[i]+dyt[i]+2.0%dym[i])

END

END;:

(*****’l‘*******************************)

(*** Initial data entry for a laser beam ***)
(*****i‘***************************i‘***)

Procedure datalasentry;

var
ii: integer;:
nrays.nsteps: string;

begin
ii:=1;
writeln:
writeln('Parameters for the ray tracing computation’):
writeln:

write('How many rays (/2) ['.nray,'] Nray = '):readln(nrays):
if length(nrays)<>0 then val(nrays.nray,ii):
write('Steps for each trajectory [‘.nstep.'] Nstep = ")ircadln(nsteps);
if length(nsteps)<>0 then val(nsteps.nstep.ii);

end:

***#***************************)

(*
(*** Initial data entry for imaging ***)
(**********#*********************)

Procedure dataimentry:

var
1i: integer:
nsteps,objangs,objdists: string;

begin
ii:=1;
writeln;
writeln('Parameters of the imaging'):
writeln;
write('Angular dimension of the object (rad) |[',
objang.,'] objang = '):rcadln(objangs);
if length(objangs)<>0 then val(objangs.objang,i1);
writeln;
write('Distance of the object (cm) [,
trunc(objdist),'] (¢cm) objdist = '");readln(objdists);
if length(objdists)<>0 then val(objdists,objdist, 11);
writeln;
writeln('Enter parameters for the ray tracing computation');
writeln;

_wrile('Sleps for each trajectory [".nstep,'] Nstep = '):readln(nsteps);
if length(nsteps)<>0 then val(nsteps.nstep,ii);
end;

(***************************’k**

(*** Setting the defaults values ***)
(******************************)

procedure setdefaultval;

begin
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n0:=1.000293:
t0:=273.3;

nray:=10;

nstep:=10;

objang:=1.0e-3:

objdist:=1.0e8;
end:

(***i********************)

(*** setting more values ***)
(************************)

procedure setmoreval;

begin
deltar:=d/2.0/nray;
dz:=1/nstep;

end;

***t************!‘***)

(*** Begin graphics ***)
(**i****************t)

procedure begraph;

var
grdriver,grmode:integer;

begin
grdriver:=vga; grmode:=vgahi:
initgraph(grdriver.grmode,'c:'tp6'):
setviewport(10,10,630.470,i‘alse);
rectangle(0.0,620.460):

end;

(*******************)

(*** End Graphics ***)

(********i‘**********)
procedure endgraph;
begin

closegraph:
restorecrtmode;

end:;
(.***********i‘*********#************i***)
(*** Procedure to convert physical values ***)

(*** in screen cohordinates %%
(**************************************i‘)

procedure convert(xmin,ymin,xmax,ymax.a,b:real; var na,.nb:integer):

begin
na:=round((a-xmin)/(xmax-xmin)*620);
nb:=460-round((b-ymin)/(ymax-ymin)*460):
end;

(*******************************)

(*** determination of minimum * okok

(*** and maximum focal distance ***)
(*******************i‘***********)

procedure zmaxmin(var max,min:real):

var
irinteger;

begin
max:=distz[1];
min:=distz[1];
for i:=1 to nray do
begin

if distz[i]>max then max:=distz[i]:
if distz[i]<min then min:=distz[i];
end;
end;

(#*********t******!*********)
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**x% Rays trajectories of an ***)
y J

(*** input laser beam * R oxy
(*********************#*****)

procedure drawlasray;

var
r,drdz:glnarray;
gr,gz,j,l:integer;
mr:string[40];
disp,z:real;

begin
begraph;
1ine(0,230,620,230);
outtextxy(200,462.' Rays trajectory in the lens');
str(d:0:2,mr);
mr:=concat('lens diameter =
outtextxy(l.,-8,mr);
for i:=1 to 2*nray-1 do
begin
z:=dz,;
r[3]:=-d/2.0+1*deltar;
r[2]:=0.0;
r[1]:=0.
0
]

.mr," cm').

>

o o

r[4]:=
drdz{1]:
drdz[2]:
drdz[3]:
drdz[4]:~= )
convert(0,-d/2,1,d/2.z.r[3].,82,871);
moveto(0,gr);
for j:=1 to nstep do
begin
z:=0.0+j*dz;
derivs(z,r,drdz);
rkd4(r,drdz,4,z.dz):
convert(0,-d/2,1,d/2,z,r[3],8z.8r):
lineto(gz.gr):
end;
disp:=0.7e-1;
r[3]:=r[3]+disp;:
if r[4]<>0 then distz[i]:=-r[3]/r[4]
else distz[1]:=0.0;
distr[i]:=r[3];
if distz[i]>10000.0 then distz[i]:=10000.0;
end;
repeat until readkey="
endgraph;
end;

i<

cocoot

it

5

coo o

(***********************

(*** Laser focusing file ***)
(****************i‘******)

procedure lasfile;

var
flas:text,
con,lasf,lasfs:string[8];
lasfl:string;
irinteger;

begin
clrscr;
lasf:="'lasfocus';
write('do you want the data to a file y/[n]");
readln(con);
if con="y' then
begin
write('Enter filename [',lasf,'] "):
readln(lasfs);
if length(lasfs)<>0 then lasf:=1lasfs;
lasfl:=concat('c:\data\',lasf,'.dat’);
assign(flas,lasfl);
rewrite(flas);
for 1:=1 to 2*nray-2 do
writeln(flas,distr[i]," ",distz[i]);
close(flas);
end;



*****’k*******************)

(*** Focus drawing for an ***)

(*** input laser beam * kxS
(*************************)

procedure drawlasfocus;

var
nz,nr,nz0,nr0,i:itnteger;
mmin. mmax:string[12];
mr:string[40];
max.min:real;

begin
clrscr;
begraph;
line(0,230,620,230);
zmaxmin{(max,min);
for i:=1 to 2*nray-2 do
begin
if (distz[i]>0.0) then
begin
convert(0,-d/2,max,d/2.0,distr[i].nz0,nr0);
convert(0,-d/2,max,d/2.distz[1],0.,nz.nr);
line(nz0O.,nr0.nz,nr);
convert(0,-d/2,max.d/2,distz[i].0,nz,nr);
convert(0,-d/2,max.d/2, max,-distr[i]*(max-distz[i])/distz[i],nz0,nr0);
line(nz0,nr0.nz,nr);
end:
end;
str(max:0:2. mmax);
mmax:=concat(mmax.,' ¢cm');
outtextxy(540.462 mmax):
str{(0.0:0:2. mmin);
mmin:=concat(mmin,' c¢m');
outtextxy(l,462 mmin):
outtextxy(200,462," Rays trajectory after the lens’);
str(d:0:2,mr);
mr:=concat('lens diameter = '‘mr.,' ¢m’');
outtextxy(l.-8,mr);
repeat until readkey="";
endgraph;
d;

o
=

********************************)
** jstogram of the focal distance **%*)

** for an input laser beam ko ok )
********************************)

LR I

(
(
(
(
procedure drawlasisto;

var

numax,dz,z1,z2 max,min,visto,vistol:real:
nisto,is,istmax,i,nzl,nz2,nnl.nnr:integer;
mmax, mmin:string[12];

num:array[1..50] of real;

************************************************)

(*** Setting parameters for the istogram of the focus ***)
(************************************************)

procedure istotitle;

var
mins. maxs,nistos,yistos:string;
istr:integer;

begin
writeln;
writeln(' Histogram Of The l,aser Rays Along Z ');
writeln;
write('For which Y value you want the istogram Y = [",yisto,'] em '),
readln(yistos);
if length(yistos)<>0 then val(yistos,yisto,istr);
write('how many intervals (<50 ) Nisto = [,
nisto.'] ');
readln(nistos);
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if length(nistos)<>0 then val(nistos,nisto,istr);

write('Minimum value in the z axis Min = [',
min,'] cm ');

readln(mins);

if length(mins)<>0 then val(mins,min.istr);

write('Maximum value in the z axis Max = ['.
max,'] cm ');

readln(maxs);

if length(maxs)<>0 then val(maxs,max,istr);

end;

begin

zmaxmin(max,min);

if min<0.0 then min:=0.0;

numax:=0.0;

nisto:=nray;

yisto:=0.0;

yistol:=0.0;

istotitle;

for i:=1 to 2*nray-2 do
distz[i]:=distz[i]*((distr[i]-yisto)/(distr[i]-yistol));

dz:=(max-min)/nisto;

yistol:=yisto;

for is:=1 to nisto do

begin
num[is]:=0.0;
zl:=min+(is-1)*dz:
z2:=z1+dz;
for i:=1 to 2*nray-2 do

if (((distz[i]>0.0)and(distz[i]>-z1)and((distz[1]722))))
then num[is]:=num[is]+1.0;

if num[is]>numax then

begin
numax:=num[is];
istmax:=1is;
end;
end;
numax:=numax+1.0;
begraph;

for is:=1 to nisto do
if numf[is]<>0.0 then
begin
zl:=min+(is-1)*dz;
z2:=z1+dz;
convert(min,0.0 max,numax,z1,0.0,nzl.nnl);
convert(min,0.0, max,numax.z2.num/[is].nz2.nnr);
setfillstyle(1.2);
bar3d(nzl,nnl,nz2,nnr,1,false):
end;
str(max:0:2. mmax);
mmax:=concat(mmax,' ¢cm');
outtextxy(540,462 mmax);
str(min:0:2 , mmin);
mmin:=concat(mmin,' ¢m');
outtextxy(1,462, mmin);
outtextxy(200,462,' Focal distance');
outtextxy(1l,-8," Rays density at the focus (histogram) ');
repcat until readkey="";
endgraph;
end;

(***************************)

(*¥** Rays trajectories of an **x*)

(*** input image kK
(***************************)

procedure drawray,;

var
r.drdz,fi:glnarray;
gr,gz.j,i,k,kl:integer;
mr:string[40],;
thd,z:real;
Xo,yo:array [l..npoint] of real;
X,y:array [l..nimagi] of real;

(***********************

(*** Initialize variables **x)
(***********************)
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procedure inima;

var
irinteger;

begin
for i:=1 to npoint do
begin
xo[i]:=0.0:
yo[1]:=0.0;
end;
for i:=1 to nimagi do
begin
x[1]:=0.0;
yv[i]:=0.0;
end;
end;

(***’ki‘*i*************************)

(*** Define the object and the grid ***)

(*** at the entrance of the lens * kX
(*** The grid is a random mesh of ***)
(*** Points. k%)

(****************i**********i***k)

procedure objgrid;

var
nn.ii.jj.li.lorinteger:
dxv.dim:real;

begin
dim:=objang*objdist;
if npoint=1 then
begin
vo[1]:=0.0:
xo[1]:=0.0:

end
else
for lo:=1 to npoint do
begin
vo[lo]:=(lo-1)*dim (npoint-1):
xo[lo]:=0.0:
end;
li:=1:
randomize:
repeat

x[li]:=random(round(diam*1.0c4))/1.0ed4-diam/2.0:
v[ili]:=random(round(diam*1.0c¢4)) ' 1.0cd-diam 2 0:
if (sqr(x[ti]) = sqr(v[li]) <= sqr(diam:2) ) then inc(li):
until li=nimagt;
end;

(***************)I(*********************i****)

(*** initial conditions for the imaging ***)
(*’1‘*****’3*********************’S************)

procedure inipos(llo,llitinteger; var ar:glnarray);

var
xl,yl,z1.,x2.v2,z2,ddx,ddy.ddz:real;

begin
xl:=xo[llo]:
yl:=vo[llo]:
zl:=-objdist;
x2:=x[111];
y2:=y[lli]:
z2:=0.0;
ddx:=(x2-x1);
ddy:=(vy2-yl):
ddz:=(z2-z1);
ar[1]:=x2;
ar[2]:=ddx/ddz;
ar[3]:=v2:
ar{4]:=ddy/ddz;

end;

It

(***i#******i*****************)

10
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begin
inima;
objgrid:
begraph;
outtextxy(200.462.' Rays trajectory in the lens'):
str(d:0:2,mr);

mr:=concat('lens diameter = ',mr," ¢m'):
outtextxy(1l,-8,mr);
kl1:=1;
for i:=1 to npoint do
begin
for j:=1 to nimagi do
begin
inipos(i.j.r):
z:=0.0;
thd: 0-random(2))*l.22*6.0::-7/diam"‘lOO’sqrt(2):

=(1.
drdz[l]:=r[2]+thd;
drdz[2]:=0.0;
drdz[3]:=r[4]+thd;
drdz[4]:=0.0;
convert(0,-d,1,d.z.r{3]),8z.8r);
moveto(0.gr):
for k:=1 to nstep-1 do
begin

z:=(k-1)*dz;

derivs(z.r.drdz).

rkd4(r,drdz.4.z.dz).

if (sqr(r[1])+sqr(r[3]))>=sqr(d 2.0) then

begin
r[1]:=d:
r[2]:=0.0;
r[3]:=d:
r[4]:=0.0;

end

else

begin

convert(0,-d,l.d,z.r[3].gz.gr):
lineto(gz.gr):
end:
end;
if (sqr(r[1])+sqr(r{3]))<sqr(d:2.0) then
begin
distx[kl]:=r[1]:
gradx[kl]:=r[2];
disty[kl]:=r[3]:
grady|k1l]:=r[4]:
inc(kl):
end:
end;
nimag:=kl-1:
end:
repeat until readkev="":
endgraph:
end:
(*********************
(*** Image drawing **%*)

(*********************)

procedure drawimag(imdist:real):

var
i.gx,gyv:integer:
Ximag,yimag.ximagmax,yimagmax,ximagmin,yimagmin,
xImin,xImax,ylmin,ylmax,a:real;

(************)

(*** AAXiS **’k)
(******’k#****)

procedure axis;

var
gxl.gyl.gx2.gy2:integer;
Ximagmins,ximagmaxs.yimagmins,yimagmaxs,imdists:string[100];

begin
convert(xImin,ylmin,xImax,ylmax,ximagmin,0,gx2,gy2);
convert(xImin,ylmin,xImax,ylmax,ximagmax,0,gx1,gyl);

11
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line (gx2,g8v2.,gxl,gyl):
convert(xImin,ylmin,xImax,ylmax.ximagmin,yimagmin,gx2,gy2);
convert(xlmin,ylmin.,xlmax.ylmax, ximagmax,yimagmin gx1l,gyl):
line (gx2.gv2,gxl.gyl);
convert(xlmin,ylmin,xlmax.ylmax,ximagmax,yimagmax,gx2.8y2);
line (gx1l,gyl,gx2.8y2):
convert(xlmin,ylmin,xIlmax,ylmax,ximagmin,yimagmax,gxl,gyl);
line (gx2,gy2,gxl,gyl):
convert(xlmin,ylmin,xlmax.ylmax.ximagmin,yimagmin,gx2,gv2):
line (gxl.gvl,gx2.8y2):

str(ximagmin:8:2.ximagmins);

str(yimagmin:8:2,yimagmins);

str(ximagmax:8:2 Xximagmaxs);

str(yimagmax:8:2,yimagmaxs);

str(imdist:8:2,imdists);

ximagmins:=concat('Minimum x =' ximagmins,' ¢cm');
ximagmaxs:=concat('Maximum x ='.ximagmaxs,' cm');
vimagmins:=concat('Minimum y =',yimagmins,' ¢m'),
yimagmaxs:=concat('Maximum y ='.yimagmaxs,' cm'):
imdists:=concat('Distance from the lens ="'/ imdists,' ¢cm'");

outtextxy(10,462,ximagmins);
outtextxy(240,-8, ximagmaxs);
outtextxy(210,462.yimagmins):
outtextxy(440,-8, yimagmaxs);
outtextxv(l0.8,imdists);

end;

(**********)

begin
ximagmin:=0.0:
ximagmax:=0.0;
yimagmin:=0.0
vimagmax:=0.0
for 1:=1 to nimag do
begin
ximag:=distx[i]+gradx[i]*imdist:
vimag:=disty[i]+grady[i]*imdist;
if ximag>ximagmax then ximagmax:-ximag;
if ximag<ximagmin then ximagmin:=ximag;
if yimag>yimagmax then yimagmax:=yimag;
if yimag<yimagmin then yimagmin:-yimag;
end;
a:=(yimagmax-yimagmin)/2;
if (2*(ximagmax-ximagmin)/2)>1.5*%a then a:=(ximagmax-ximagmin)/2;
XImin:=(ximagmin+ximagmax)/2-2%a;
Xlmax:=(ximagmin-ximagmax)/2+2%a;
ylmin:=(yimagmin+yimagmax)/2-1.5%a;
ylmax:=(yimagmin+yimagmax)/2+1.5%a;
cleardevice:
axis;
for i:=1 to nimag do
begin
ximag:=distx[i]+gradx[i]*imdist;
yvimag:=disty[i]+grady[i]*imdist:
con\'crl(xlmin.y1min.xlmax,_\'lma,\'_ximag.}'imag.gx..g_\');
circle(gx.gy.4):
end;
end;

>

(***’k*********)
(*** defdist **x*)

(*************)

Procedure defdist;

var con:string:
ii:integer;
imdists:string;
imdist:real;

begin
imdist:=0.0;
begraph;
drawimag(imdist);
repeat until readkey=" ";
endgraph; ’
repeat

writeln:

writeln(' Press q to stop. any other key to define a new distance');

12
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con:=readkey:
if con="q' then exit;
writeln;

writeln(' Distance of the image plane from the lens
write(' ['.(imdist),"] (c¢m) Imdist = ');rcadln(imdists);
if length(imdists)<=0 then val(imdists,imdist. ii);

begraph;

drawimag(imdist);

repeat until readkey="";

endgraph;
until 1=0;
endgraph:
end;

(*******************)

(*** WEIRD TRIP ***)

(t*’k**t**#**********)

procedure trip;

var
i:integer;
imdist,m:real;
as:string:

(**)’s************)

(*** Trip title ***)
(***************)

Procedure triptitle;

begin
clrscr;
writeln;
writeln('This is a serious trip. Press - to slow down "):
writeln(' Press - to accelerate ")
writeln(' Press z to change direction )
writeln(' Press s to stop ")
writeln(' Press spacebar to restart i T
writeln(' Press g to quit ")
writeln(' Now spacebar to start '):
repeat until readkey="",
end,;

C

begin
m:=3.0:
imdist:=0.0;
begraph:
repeat
if kevpressed then
begin
as:=readkey:
if as="+'then m:=m*2.0

else 1f as="'-' then m:=m/2.0
else if as='z' then m:=-m
else if as="'s' then repeat until readkey=" ":

end:;
imdist:=imdist+m;
drawimag(imdist);
until as="'q";
endgraph;
end;

(t*******i‘***************)

(*** Intensity Histogram *¥*¥)
(************************)

procedure istoimag(istdist,xistmin,xistmax.,yistmin,yistmax:real);

const
nc=14:

var
i,gx,gy.nmax,gxl,gyl,ncol,kx ky:integer;
a,dxbox,dybox,xbox,ybox,xist,yist,xlbox,ylbox,xImin:real;
xlmax,ylmin,ylmax:real;
nist:array[l..nc+1,1..nc+1] of integer:

(%R R XK OR R X OR K

(*** Axisisto ***)

13
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(**************)
procedure axisisto:

var
gxl,gyl,gx2.gy2:integer: . . )
xistmins,xistmaxs,yistmins,yistmaxs,istdists:strirg[100];

begin
convert(xImin,ylmin,xImax,ylmax,xistmin,0,gx2,8y2);
convert(xlmin,ylmin,xImax,ylmax,xistmax,0,gxl.gyl):
line (gx2,gy2.gx1,gvyl);
convert(xlmin,ylmin,xIlmax,ylmax,xistmin,vistmin,gx2,gy2);
convert(xlmin,ylmin,xImax,ylmax,xistmax,yistmin,gxl,gyl);
line (gx2,gy2,gx1l,gyl);
convert(xIlmin,ylmin,xImax,ylmax,xistmax,yistmax,.gx2,gy2);
line (gxl,gyl,gx2,8y2);
convert(xlmin,ylmin,xImax,ylmax,xistmin,yistmax,gxl,gyl);
line (gx2,gy2,gx1,gyl);
convert(xImin,ylmin,xImax,ylmax,xistmin,vistmin,gx2,gy2);
line (gxl,gyl,gx2,g8y2);
str(xistmin:8:2,xistmins);
str(ytstmin:8:2 yistmins);
str(xistmax:8:2,xistmaxs);
str(ytstmax:8:2,yistmaxs);
str(istdist:8:2,istdists);

xitstmins:=concat('Minimum x =',xistmins,' cm');
xistmaxs:=concat('Maximum x =' xistmaxs,' ¢m');
yistmins:=concat('Minimum y =',yistmins,' ¢m');
vistmaxs:=concat('Maximum y =',yistmaxs,' cm');
istdists:=concat('Distance {from the lens ='.istdists,' cm');

outtextxy(10,462 xistmins);

outtextxy(240,-8,xistmaxs);

outtextxyv(210,462,vistmins);

outtextxy(440,-8,yistmaxs),

outtextxy(l0,8,1stdists);
end;

(**i‘*’k******************’E‘)

(* Procedure setnikcolor **¥*)
(i‘***********************)

Procedure setnikcolor(nc:integer);

var
ncl:integer;

begin
if control="c¢c’ then
if nc=0 then ncl:=0

else if nc=1 then ncl:=
else 1f nc=2 then ncl:=6
else if nc=3 then ncl:=7

else if nc=4 then ncl:=1
else if nc=5 then ncl:=

else if nc=6 then ncl:=
else if nc=7 then ncl:=11
else if nc=8 then ncl:=2
else if nc=9 then ncl:=10
else if nc=10 then ncl:=5
else if nc=11 then ncl:=13
else if nc=12 then ncl:=4
else if nc=13 then ncl:=12
else if nc=14 then ncl:=14
else if nc=15 then ncl:=15;
if control="g' then

if nc=0 then ncl:=
else if nc=1 then ncl:=1
else if nc=2 then ncl:=1
else if nc=3 then ncl:=1
else if nc=4 then ncl:=2
else if nc=5 then ncl:=5
else if nc=6 then ncl:=4
else if nc=7 then ncl:=1
setcolor(ncl);
setfillstyle(l,ncl);
end;

(**********‘****#********)

(*** Procedure colorscale **x)

14
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(***************#********)

Procedure colorscale;

var
iinteger;

begin
if control="c' then
for 1:=0 to 15 do
begin
setnikcolor(i):
bar(20.400-10*i,30,400-10*i-10);
end
else if control="'g' then
for 1:=0 to 7 do
begin
setnikcolor(i);
bar(20,400-10*i.30,400-10*i—l(J);
end;
end;

(***t**!*******i‘*****i‘********1‘*******)

(*** Writes on file the histogram values ***)
(**l‘*******ﬁ**************************)

procedure writefile;

var
nfileb:string,
fhis:text:

ntot,i.jrinteger:

begin
ntot:=0;
for i:=1 to nc+1 do
for j:=1 to nc+1 do
ntot:=ntot+nist[i.j]:
nfileb:=concat('c: datai' . nfile,". dat'):
assign(fhis,nfileb);
rewrite(fhis);
writeln(fhis.”> Total energy in the field ='.ntot."/".nimag}):
writeln(fhis,ne+1," "_nc+1):
write(fhis,0.0," ");
for i:=1 to nc+1 do
write(fhis,xistmin+ (i-0.5)*dxbox." "):
writeln(fhis);
for j:=1 to nc~1 do
begin
write(fhis,yistmin~(j-0.5)*dybox." "):
for 1:=1 to nc-1 do

write(fhis.,nist{t.j] nmax." "):
writeln(fhis):
end:
close(fhis);
end;

(****#*****)

begin

nmax:=0;

cleardevice;

for kx:=1 to nc+1 do
for ky:=1 to nc+1 do

nist[kx,ky]:=0;

dxbox:=(xistmax-xistmin)/(nc+1);

dvbox:=(yistmax-yvistmin)/(nc+1):

for kx:=1 to nc+1 do

begin
xbox:=xistmin+(kx-1)*dxbox;
for ky:=1 to nc+1 do

begin
vbox:=yistmin+(ky-1)*dybox;
for i:=1 to nimag do
begin

xist:=distx[i1]+gradx[i1]*istdist;
yist:=disty[i]+grady[i]*istdist;

if (xist>xbox) and (xist<xbox+dxbox) and (vist>ybox)

) an_d (yist<ybox+dybox) then nist[kx,ky]:=nist[kx,ky]~+1;
if nist[kx.ky]>=nmax then nmax:=nist[kx,ky];

15
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end;
end;
if cf="y"' then writefile;
a:=(yistmax-yistmin)/2; ) ,
if (2*(xistmax-xistmin)/2)>1.5%a then a:=(xi1stmax-xistmin)/2;
XIlmin:=(xistmin+xistmax)/2-2%a:
XxIlmax:=(xistmin+xistmax)/2+2%a;
ylmin:=(yistmin+yistmax)/2-1.5%a;
ylmax:=(yistmin+yistmax)/2+1.5%*a;:
cleardevice;
colorscale:
for kx:=1 to nc+1 do
begin

xbox:=xistmin+(kx-1)*dxbox;

Xxlbox:=xistmin+kx*dxbox;

for ky:=1 to nc+1 do

begin
ybox:=yistmin+(ky-1l)¥*dybox;
ylbox:=yistmin+t+ky*dybox;

convert(xlmin,ylmin,x1max,ylmax.xbox.ybox,gx,gy);
convert(xImin,ylmin,xImax,ylmax,xlbox,ylbox,gxl,gyl):
if control="c' then ncol:=round(nist[kx,ky]*15.0/nmax)
else if control="g' then ncol:=round(nist[kx,ky]*7.0/nmax);
setnikcolor(ncol);
bar(gx,gy.gxl.gyl):
end;
end;
setcolor(white);
axisisto:
repeat until readkey="
end;

(**************)

(*** dististo ***)
(**************)

Procedure dististo:

var
con:string;
tiinteger,
istdists.xistmins,xistmaxs,vistmins,yistmaxs,controls,cfs:string;:
istdist,xistmin,xistmax,yvistmin,vistmax:real;

begin
istdist:=0.0;
Xistmin:=-1.0;
Xxistmax:=1.0:
yvistmin:=-1.0.
vistmax:=1.0:
control:="'g":
cf:='n";
repeat
clrser;
writeln;
writeln(' Press q to stop, any other key to define a new distance'),
con:=readkey;
if con='q’ then exit:
writeln;
writeln(' Distance of the Histogram plane from the lens )
write(' [".(istdist).'] (¢em) Histogram distance = ');
readin(istdists):
if length(istdists)<>0 then val(istdists.istdist ii);
writeln;
writeln(' Minimum X value');
write(' ['.(xistmin),'] (¢m) Minimum X = ');
readln(xistmins);
if length(xistmins)<>0 then val(xistmins,xistmin,ii);
writeln;

writeln(' Maximum X value'):

write(' ['.(xistmax).'] (¢cm) Maximum X = ‘)
readln(xistmaxs);

if length(xistmaxs)~ >0 then val(xistmaxs,xistmax,ii);
writeln;

writeln(" Minimum Y value');

write(' ['.(yistmin).'] (¢m) Minimum y =');

readin(yistmins);
if length(yistmins)<>0 then val(vistmins,yistmin,ii);:
writeln;
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writeln(' Maximum Y value');
write(' ['.(yistmax),"] (¢cm) Maximum Y = ");
readln(yistmaxs); ) N
it length(yistmaxs)<>0 then val(yistmaxs,yistmax.i1):
writeln:
write(' False colors (¢) or Grayscale (g) [".(coatrol)."] ");
readln(controls):
if length(controls)<>0 then control:=controls;
write('Do you want a file of the histogram [',ef, '] ")
readln(cfs);
if length(efs)<>0 then cf:=cfs;
if cf='y"' then
repeat

writeln;

write('Enter name of the file ');

readln(nfile);

until length(nfile)<=>0;
begraph;
istoimag(istdist,xistmin,xistmax,yistmin.yistmax):
endgraph;
until 1=0;
end;

(l***********************************)

(* Menu selection of the program options *)
(’?*************)!‘*********************)

procedure mainmenu;

begin
clrser;
writeln;
writeln("' RAY TRACING OF A GAS LENS ')
writeln;
writeln('Select one of the following option'):
writeln;
writeln('Laser beam through the vertical section (1)"):
writeln;

writeln('Imaging through the gas lens (2)"):
writeln;
writeln('End main menu (3)"):

writeln;
write('option ?
end:

y:readln(maino);

procedure lasmenu:

begin
clrscer;
writeln;
writeln(' LASER THROUGH A GAS LENS "):
writeln;
writeln('Select one of the following option');
writeln;
writeln('Laser beam focusing (after the lens) (1))
writeln;
writeln('Histogram of the intensity on the optical axis (2)');
writeln;
writeln('End laser menu (3)"):
writeln;

write('option ? ');readln(laso);

end;

procedure immenu;

begin
clrscr;
writeln;
writeln(' IMAGING THROUGH A GAS LENS ");
writeln;
writein('Select one of the following option'):
writeln;

writeln('Image projection on a particular plane (1)");
writeln;
writeln('Intensity histogram on a particular plane (2)");
writeln;

writeln('Trip along the optical axis looking at the image (3)"):
writeln;
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writeln('End imaging menu (4)"):

writeln;

write('option ?
end:

Y:readln(imo);

(********i********i***)

(*** MAIN PROGRAM ***)

(*********************)

begin
clrscer;
initialize;
loadexpdata;
setdefaultval,
recpeat
mainmenu;
if maino=1 then
begin
datalasentry;
setmoreval;
drawlasray:
repeat
lasmenu;
if laso=1 then
begin
lasfile:
drawlasfocus;
end
elsc it laso -2 then drawlasisto
until laso= 3,
end
else if maino- 2 then
begin
dataimentry:
setmoreval:
drawravy,
repeat
immenu;
if imo=1 then defdist
else if imo=2 then dististo
else if itmo=3 then trip:
until imo=4:
end:
until maino- 3:
End.
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APPENDIX B

The program listed below was utilised in chapter 4 to model thec colliding
shock q-switching of a ruby laser. At cach time after the shock collision
the focal length and the CSL diameter arc calculated and the resonator
geometry is solved by wutilising ray matrix optics. At each time the
resonator configuration, the <cavity magnification and the losses are
known. so that the rate equation for the population inversion and the
photon density can be solved numerically. A Runge Kutta algorithm with

variable step size is utilised.

(***************************’k****k*******)

(*** This program solves the rate equations **%*)

(*** for the g-switched ruby laser KK
(*** Computing the losses for the cavity * k%
(*** with the CSL Hoxox Y

(*’f‘*******************i‘***************i‘**)
Program gswi:

uses crt,graph;

const
dl1=75.0e¢-2: (* distance between OC and lens (m) *)
d2=250.0e¢-2: (* distance between lens and CSL *)
d3=10.0e-2: (* distance between CSL and FR *)
f1=200.0e-2: (* focal length of the lens in the cavity *)
tmax=10.0e-6; (* maximum time to solve the laser equation *)
tiniwr=3.0e-6: (* 1nitial data writing time *)
tfinwr=10.0e-6; (* final data writing time *)
nruby=1.75: (* Ruby refractive index *)
cl-3.0e10; (* cm's *)
§21=2.5e-20: (* stimulated emission cross section (¢m2) *)
lres=dl1+-d2-d3; (* resonator length *)
lrod=10.4¢-2: (* rod length *)
gamma=1.5; (* Tevel degeneracy *)
ni=1.58el19: (* Cr ion density ¢cm-3 *)
tr=2.0%100*1res cl; (* round trip time (s) *)
nloss=500: (* number of time point to compute the losscs *)
refll1=0.45; (* Output coupler reflectivity *)
hplank=6.63¢-34: (* plank constant *)
dtstart=1.0e-9: (* initial guess for the RK4 time step *)
rruby=0.5e-2; (* Radius of the ruby rod *)
ntime-400; (* Number of output points *)
tsw=4.0¢-6. (* Switching time *)
los=0.27, (* Diffraction. Reflections. Scattering losses *)
ininver=ni*0.33; (* Inttial population inversion *)
nshell=30; (* Number of shells *)
dr=rruby/nshell; (* Radial increment *)

type
glnarray = ARRAY [1..2] OF double;
arrtime = array [1..nloss] of double:
result = array [l..ntime+1] of double;

mat=array[1..2,1..2] of double;
ray=array[l..2] of double:
shell=array[l..nshell] of double;

var
arrloss: arrtime;
time,inten,lost,intave:result;
ener,epsi,lcoup,t,lasl.las2,int.dt:-double:
j.Kk:integer;
intmax.ene.tlas.radius:shell;
las.dlasdt:glnarray;
a,b.c.d,e.f,g,h,i,mtot.firhalf.sechalf:mat;
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nfl.nf2 . nf3:text:
nfilel,nfile2,nfile3:string:

****iﬂ******************)

(*** Matrix 2*2 product ***)
(*i‘*********************)

procedure prod(x,y:mat; var pro:mat);

begin
pro[l.1]:=x[1.1]*y[1. 1]=x[1.2]*v[2.1]
pro[1.2]: x[1,1]1*y[1,2)+x[1,2]*y[2.2]
prof2.1]:=x[2,1]*y[1,1]+x[2,2]*y[2.1]
pro[2.2]:=x][2 Tl*v[1,2)+x[2.2]*y([2 2]
end:

(**********************)

(*** Procedure equalm ***)
(************i‘********i)

procedure equalm(ml:mat; var m2Z:mat);

begin
m2[1.1]:=ml1fl.,1]
m2{1.,2]:=ml1{1,2];
m2[2.1]:=m1[2.1];
m2[2.2]:=m1[2,2]:
end

(*********************)

(*** Procedure equalr ***)
(****’3****************)

Procedure cqualr(rt:ray: var r2:rav):

(*********#*****************)

(*** Procedure set m to 1dm ***)
(**********#****************)

procedure tdm(var m:mat):

begin
mf{l.1]:=1.0:
m(1.2]:=0.0:
m[2.1]:=0.0:
m[2.2]:=1.0:
end:

(*************i‘*********#*****“.‘**

(*** Propagate a ray of matrix mz ***)

procedure propagm(m:mat; x:ray; var xl:ray);

begin
x1[1] ¥IL*m Y LI pR[21*m[dy2];
7] S| A2 B A2 Fm 2020
end;

(***************************************i********)

(*** Define resonator matrix for the constant optics ***)

(*****#********i****k*i‘*****************i*#******)

procedure defmatrix;

var
jiinteger;

begin
for yj:=1 to 2 do
begin
afj.jl:=1.0;
b[j.j]::l.O:
L (0% % =
dij.j]:=1.0;



e[j,i] =1.0;
flj.jl:=1.0;
gli.jli=1.0;
h[j.j]:=1.0;
i[j.g):=1.0;
end;
a2 1{1=0.0¢
a1 2)r=d T3
6[2,1]:=0.0;
e[ 1a2))i=d2,
&f2;1]t=0-073
e[1.,2]:=2.0*d3
bi1:2):=0.0;
bi2,1]:=-1.0/£1;
h{l,2]:=b[1,2].
hf2,1y:=k42,1];
gll.2]=z=¢[1,2]):
12 )i = R ]
i [T 2 )i a0 2]
PRt z=ez5 0]
end;

****1‘***********************)

(*
(*** CSL focal length Vs. Time *%%*)
(*

****************************)

function f2(time:double):double:

var
fl.tl:array[0..4] of double:
jiinteger:

begin

ti[O]:=tsw
f1{0]:=0.0
t1[l]:=tsw+2.7e-6;
fl[1]:=0.4;
tI[2):=tsw~-3.2¢-6:
fi]2]:=0.5:
tl[3]:=tsw+4d.de-6.
fi[3]1:=0.91
ti[4]:=tsw+4.7e¢-6:
fl[4]:=1.3:

if time<=tsw then

f2:=1.0¢c10
else if time>=t1[4] then

£2:=f1[4]+(FI[4]-T1[3]) (LI[4]-tI[3])*(time-t1[4])
else for j:=0 to 3 do

it (time>=tl[j])and(time~ " tl[3-1]) then

F2:=f1 [~ =1 ] -C0]j)y/ el 1]-ti[j])*(time-t1[j]):
end:

(************************)

(*** Variable lens matrix ***)
(*’Z‘*************#********)

procedure varlens(a:double):

begin
d{1,2]:-0.0;
d[2,1]:=-1.0/f2(a);
ff1,2]:=d[1.,2];
f{2.1]:=d[2.,1]:
end;

(*************l‘************)

(*** CSL diameter Vs. time ***)
(******i****#**************)

function df2(time:double):double:

const
ddf2dt=7.5¢-3/8.4¢-6; (* CSL diameter time gradient *)

begin
if time<tsw then
df2:=1.0e-2
else
df2:=ddf2dt*(time-tsw):
end;
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(**************************)

(*** Procedure find FirHalf **%*)

(******i‘****i‘**************)

Procedure findfirhalf:

begin
prod(b,a,firhalf);
prod(c,firhalf,firhalf);
prod(d.firhalf,firhalf):
end;

(**************************)

(*** Procedure find SecHalf **%*)

(****8*****************’k**i)

Procedure findsechalf;

begin
prod(g.f.sechalf);
prod(h,sechalf,sechalf);
prod(i,sechalf.sechalf):
end;

(% R RO R CR RO R K R K R K K Kk

(*** Procedure find Mtot ***)
(****************?*******)

Procedure findmtot:

begin
prod(b.a,mtot):
prod{(c.,mtot. mtot):
prod(d.mtot mtot);
prod(e.,mtot.mtot);
prod(f.mtot. mtot):
prod(g.mtot,mtot);
prod{h.mtot mtot):
prod(i.mtot. mtot):

end;

*********x‘(************!***********’k**)

(*** This procedure solves the resonator ***)

(*** In matrix algebra * Ak
(*****’2‘***************************!***)

procedure reso(t:double: x:double; var loss:double);

var
absl,abs2.aa.trans,transl. trans2.trans3.x1.x2.x3 . m,mag.dthdx-double:
rentr.rexit:ray:
condl.cond2,cond3:boolcan:
nm.mi:integer:

begin
defmatrix;
varlens(t);
aa:=df2(t)/2;
nm:=10;
findmtot;
findfirhalf;
findsechalf,;
mi=0.53*mtot[1,l]+mtot]2,2]);
if abs(m)>=1 then
begin
if m=1 then
dthdx:=0.0
else
begin
if m>1 then mag:=m+sqrt(sqr(m)-1);
if m<-1 then mag:=m-sqrt(sqr(m)-1);
dthdx:=(mag-mtot[1,1]) mtot[1,2]:
end;
rentrfl]:=x;
rentr[2]:=dthdx*rentr[1]:
propagm(firhalf,rentr,rexit);
xl:=abs(rexit[1]);
condl:=x1>aa;
if condl then
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begin

rexit[1]:=aa*rexit[1]/x1];
rexit[2]:=rexit{2]*aa/x1;

end;
propagm(e.rexil,rcxil);

X2:

=abs(rexit[1]):

cond2:=x2>aa;
if cond2 then
begin

rexitfl]:=aa*rexit[1]/x2;
rexit[2]:=rexit[2]*aa/x2;

end;
propagm(sechalt‘,rexi&,rexil)'.
x3:=abs(rexit[1]);
cond3:=x3 X,

if condl then

transl:=sqr(aa)/sqr(x1)

else transl:=1:
if cond2 then

trans2:=sqr(aa)’sqr(x2)

else trans2:=1:
if cond3 then

trans3:=sqr(x)’sqr(x3)

else trans3:=1:
trans:=transl*trans2*trans3:
end
clse if abs(m)<1 then
begin
el ] =

X1
rexit[2]:=0;

trangi=7[1"
for mi:=

] to nm do

begin

else trans3:=1;
trans:=trans*transl *trans2*trans3;
end;
end;
loss:=1-trans:

end;

(%R %R R R R R R R ROk R R R R R R R K K OK R R R R R  R R R R R R R R K R R K k)

(***

procedu

Procedure

propagm(firhalf rexit.rexit);

xl:=abs(rexit[1]):
condl:=x1>aa;
if condl then
begin
rexit[1]:=rexit[l]*aa/x1;
rexit[2]:=rexit[2]*aa/x]1:
end:
propagm(e.rexit,rexit);
x2:=abs(rexit[1]):
cond2:=x2>aa;
if cond2 then
begin
fesit [T :=cexit[1]*aalx2;
rexit[2]:=rexit[2]*aalx2;
end:

propagm(scechalf.rexit.rexit):

x3:=abs(rexit[1]):

cond3 e L3 FN;

if cond3 then

begin
rexitfl]:=rexit[1]*x/x3;
eIV 2] rareXit [ 2)EFEET;

end:

condl i=x] ¥an;

cond2:=Xx2>aa:

cond3:=x3>x:

if condl then
transl:=sqr(aa)/sqr(xl)

else transl:=1;

if cond2 then
trans2:=sqr(aa)/sqr(x2)

else trans2:=1;

if cond3 then
trans3:=sqr(x)/sqr(x3)

re lossarrcal(rr:double);

to calculate the losses at different
(***************S‘**********************************)

W

times

*#*)
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var
a.tl.dtl:double:
k:integer:

begin
dil:=tmax/nloss;
for k:=1 to nloss do
begin
tl:=k*dtl;
reso(tl.rr.a);
arrloss|k]:=a;
end;
end;

*!i********************************i****i‘*)

(*** Function to interpolate the array arrloss **%*)
(******************************************)

function closs(t:double):double:

var
tl.tll,dtl:double;
k:integer;

begin
closs:=0.0:
dtl:=tmax/nloss;
if t<dtl then closs:=arrloss[1]

else
for k:=1 to nloss-1 do
begin
tl:=k*dtl;

tll:=(k+1)*dtl;
if (t>=t1) and (t<tll) then

closs:=arrloss|Kk]-(arrloss[k+1]-arrloss[k])/dtl*(t-tl):

end:
end:
(************************i‘****)

(*** Define the rate equations ***)
(*****************************)

PROCEDURE derivs(x:double: y:rglnarray: VAR dvdx:glnarray):

var
sp2l,loss:double:

begin
sp2l:=y[1]*1.0e-6.

loss:=closs(x)-In(refll)~los:

dydx[1]:=-v[2]*s21*cl nrubyv*gamma*yv|[1]:

dvdx[2]:-v[2]*(s21*v[1]*cl nruby*lrod lres-loss tr)+sp21:
end;

(***********************i‘****)

(*** Runge Kutta fourth order ***)
(F KRR R KR R R R Rk R K R K K R K K R X K K

PROCEDURE rk4(y.dydx: glnarray: n: integer: x,h: double: VAR yout:

VAR
i integer:
xh.hh.h6: double;
dym,dyt,vt: glnarray,;

BEGIN

hh := h*0.5;

hé := h/6.0;

xh 1= x+hh;

FOR i 1 ton DO BEGIN
vi[i] := y[i]+hh*dydx][i]

END;

derivs(xh,yt.dyt);

FOR 1 := 1 ton DO BEGIN
vt[i] := y[i]+hh*dyt[i]

END:

derivs(xh,yt,dym);

FOR 1 := 1 ton DO BEGIN
vi[i] := y[i]+h*dym[i];

glnarray);
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dymli] = dyt[i]+dym[1]
END;
derivs(x+h,yt,dyt);
FOR i := 1 ton DO BEGIN )
yvout[i] := y[i]+hé6*(dydx[i]+dyt[i]+2.0*dym][1]]
END
END;

(***************************’K**

(***% Procedure saveresult to file ***)
(*************!‘****************)

Procedure saveresult(k:integer; tt,it,ll:result; var rf:text):

var
jrinteger;

begin
if K=1 then
for j:=1 to ntime do
writeln(nf, tt[j]-tsw," "Jii[j]," ".11[j]):
end;

(**************************************)

(*** Procedure to save radial information ***)
(%R B RR R RCR R R R KR R K R R R R K R R R R R R OR R R R K R K

Procedure saveradial(ra,en.inm,tl:shell; entot:double; var nf:text);

var
k:integer;

begin
writeln(nf);
for k:=1 to nshell do

begin
writeln(nf,"V " k," Ene= ".en[k].’ Intmax=".inm[k]):
writeln(nf,"v ",k," Tlas="_tl[k]-tsw,’ radius=",ra[k]):
writeln(nf.ra[k]." "en[k]." "Jinm[k]." ".ti[k]-tsw);
end:
end:

(**************************)

(*** Procedure to open file ***)
(**************************)

Procedure open(var nf:itext: var nfile:string);

var
nfilel:string.

begin
nfilel:=concat('c:'data ", nfile,' dat');
assign(nf.nfilel):
rewrite(nf);

end;

(********’I‘*’l‘*************************)

(*** Procedure to initialize data values * Kok
(i*****************i‘*****************)

procedure initializel;

begin
nfilel:='modecmax';
nfile2:='modecrad"';

open(nfl . nfilel);

lcoup::(I.O-refl1)/(1.0+rcfl1)*sqr(cl)*]1plank/0.693e-4;

ener:=0.0;

for j:=1 to ntime+1 do

begin
lime[j]::tiniwr*(tfinwr-tiniwr)/nlime*(j-I):
inten[j]:=0.0;
intave[j]:=0.0;
lost[j]:=0.0;

end;

end;

(***************************’l********

(*** Procedure to initialize data values ¥ xoxy

7
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(’.‘***********************************)
Procedure initialize2:;

begin
radius[k]:=k*dr;
intmax[k]:=0.0:
ene[k]:=0.0:
tlas[k]:=tsw;

las[l]:=ininver; (* Initial inversion *)
las[2]:=0: (* initial intensity *)
=
dt:=dtstart:
t:=0.0;

end:

(******************’?)

(*** Main program ***)
(*************i*****)

Begin
initializel;
for k:=1 to nshell do
begin
initialize2;
lossarrcal(radius[k]):
while (t<tmax) do
begin
lasl:=las|[1]:
las2:=las[2]:
dertvs(t.las.dlasdt):
rkd(las,dlasdt,2,t.dt.las):
int:=las[2]*lcoup:
if int intmax[k] then

begin
intmax|k]:=int:
tlas[k]:=t:

end:

encfk]:=ene[k]-int*dt:
if (las1=0.0) or (las2=0.0) then epsi:-0
elsec epsi:=1.0cl*abs(((lasfl]-Tasl) lasl-abs(las[2]-1las2)/las2)/2.0);
dt:=(dtstart./(0.08epsi)~dt) 2:
if (t*time[j]) and (t<time[j~-1]) then
begin
inten[jl:=1nt:
if k=1 then
intave[j]:=intave[j]-intenfj]l*sqr(radius[1l]) sqr(rruby)
else
intave[j]:=intave[j]-inten|j]*
(sqr(radius[k])-sqgr(radius[k-1])) sqr(rruby):
lost[j]:=closs(t):
writeln(time[j].inten[j]):
inc(j):
end;
t:-t-dt:
end;
if k=1 then
ener:=ener-enefl|*pi*sqr(radius[1])*1.0c4
else
ener:=ener~ene[k|*pi*(sqr(radius[k])-sqr(radius[k-1]))*1.0ec4;
writeln(k):
writeln('Laser Pulse Energy =',ene[k]," Jrem2 '}.
writeln('laser pulse at time t ="' tlas[k]-tsw):
saveresult(k.time,inten,lost.nf1):

end;
close(nfl);
writeln('"Energy =',ener):

open(nf2.,nfile2):
saveradial(radius.ene.intmax.tlas,ener.nf2):
close(nf2):

end.
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APPENDIX C

The following program was utilised in chapter 5 to compute the diffraction
pattern duc to the colliding shock lens. Both the refraction due to the
refractive index profile expcrimentally mcasured and the diffraction from

the circular aperture of the CSL are taken iato account.

(K %R R OR KRR KRR K R K K KRR ROR KO K X R K KK XK K K KK X R R K K R KR K
(*** This program computes the diffraction pattern due **¥)

(*¥** to the Colliding Shock Lens at any image planc * Ak
(’.‘****’l"**************************#*#**********i‘****‘)

program difesl;

uses
crt. graph;

const
a2=0.21,
ad4=7. 41e¢3;
rmax=2.4¢-3
nr=5000;
pmax=3.0e-3;
np=400;
lambda=0.337¢-6;

var
r.rl.p.dr.dp.r24.rj.alfa,beta.gamma . intc.ints.intmax.zmax:double:
intint . intref,norm:double:
fl:text:
ip.ir:integer:
int.ref:arrav({l..np] of double:

FUNCTION bessjO(x: double): double:

VAR
ax,Xxx,z: double: v,ans,ansl_.ans2: double:

BEGIN
IF (abs(x) < 8.0) THEN BLELGIN
Yy = sqr(x);
ansl := 57568490574.0+y*(-13362590354.0+y*{651619640.7
~_v*(-11214424.184-}'*(77392.33017+y*(-184.9052456)))));
ans2 1= 57568490411.0+y*(1029532985.0+v*(9494680.718
‘_\7*(5‘)272.64853+y*(267.85327l2‘_\'*1.0)))).
bessj0 := ansl/ans2 END
ELSE BEGIN
ax 1= abs(x): z := 8.0/ax; y := sqr(z): xxX := ax-0.785398164:
ansl := 1.0+y*(-0.1098628627e¢-2-v*(0.2734510407e-4
+y*(—0_2073370639e-5*_\'*0‘20938872116-6))):
ans2 1= -0.1562499995e-1+v*(0.1430488765¢-3
TY*(-0.6911147651e-5+v*(0.7621095161¢c¢-6
-y*0.934945152e-7)));
ans := sqrt(0.636619772'ax)*(cos(xx)*ansl-z"‘sin(x.\')*ansZ);
bessjO := ans END
END:

FUNCTION bessjl(x: double): double:
VAR

ax,xx,z: double: vy,ans,ansl.ans?2: double;
FUNCTION sign(x: double): double:

BEGIN
IF x >= 0.0 THEN sign := 1.0
ELSE sign := -1.0;

END;

BEGIN
IF (abs(x) < 8.0) THEN BEGIN
vV = sqr(x):
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ansl 1= x*(72362614232.0+y*(-7895059235.0+y*(242396853.1
Yy *(-2972611.439+y*(15704.48260+y*(-30.16035606)))))):

ans2 = 144725228442 .0+y*(2300535178.0+y*(18583304.74
+y*(99447.43394+y*(376.9991397-yv*¥1.0))));

bessjl := ansl/ans2 END

ELSE BEGIN

ax := abs(x); z := 8.0/ax; y 1= sqr(z): xx := ax-2.356194491;

ansl := 1.0+y*(0.183105e-2+y*(-0.3516396496¢-4
+y*(0.2457520174e-5+y*(-0.240337019%¢-6)))):

ans2 := 0.04687499995-v*(-0.2002690873¢-3
+y*(0.8449199096e-3+y*(-0.88228987¢-6+v*0.105787412¢e-6))):

ans := sqrt(0.636619772/ax)*(cos(xx)*ans]l
-z*sin(xx)*ans2)*sign(x);

bessjl := ans END

END:

(%R R OROR KK R OR HOK K KR R K KR R R K RO Rk K K K R R K R x ke

(*** Finds the normalisation of the integral ***)
(-k****#**********************************)

procedure normint(var iintmax:double):

var
iints,iinte,rr,rr24,rrj:double;
iir:integer;

begin
iinte:=0.0;
iints:=0.0;
for 1ir:=1 to nr do
begin

rro=iir*dr;
rr2d:=alfa*sqr(rr)~beta*sqr(sqr(rr)):
rrjo=p*rr*gamma:
tintc:=tintc+lelO*cos(rr24)*rr:
iints:=i1ints+1lelO0*sin(rr24)*rr,

end:

tintmax:=sqr(iints)-sqr(iintc):

end;

procedure findlO(z:double: var I0:double);

var
ir:integer:
inte,ints,r,r24 alfa.beta.gamma:double;

begin
alfa:=2*pi/lambda*(a2-0.5 z):
beta:=2*pi/lambda*ad:
gamma:=pi‘lambda/z;
inte:=0.0:
ints:=0.0:
for ir:=1 to nr do
begin
r:=ir*dr;
r24:=alfa*sqr(r)~beta*sqr(sqr(r)):
intc:=intc+lelO*cos(r24)*r;
ints:=ints+lelO*sin(r24)*r;
end;
I0:=sqr(ints)+sqr(intc);
end;

(********i‘*’l‘************#**i***i‘****i**i*******************)

(*** Finds the focus as the plane with maximum central intensity gLl
(*******t*************************************************’;)

procedure findzmax(var zmax:double);

var
i.nz:integer;
za,zb,z1,z2,dz, 11,12, Imax:double;

begin
imax:=0.0;
nz:=10;
Z-a:7 = 170
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zb:=3.0;
dz:=(zb-za)/nz;
for i:=1 to nz+1 do
begin
zl:=za+(i-1)*dz:
findiO(zl.11):
if il1>imax then
begin
imax:=il;
zmax:=2z1;
end;
end;
zl:=zmax-dz:
z2:=zmax+dz:
while abs(zl-2z2)>1.0e-4 do
begin
findl0(z1,11);
findl0(z2.12):
writeln('z1 ='.z1," I1 =",i1);
writeln('z2 =',z2," 12 =",i2);
writeln:
if I1>=12 then
z2:=z1+abs(z1-22)/2
else if 11-12 then
zl:=z1+abs(z1-22)/2:
end;
zmax:=(zl+z2)/2;
end:

(*i*****************)

(*** Main program ***)
(*******************)

begin
dp:=pmax/np;
dr:=rmax/nr;
findzmax(zmax);
alfa:=2%pi'lambda*(a2-0.5 zmax):
beta:=2*pi/lambda*a4d;
gamma:=pi/lambda’zmax:
normint(intmax):
intint:=0.0:
intref:=0.0;
for ip:=1 to np do

begin
p:=ip*dp:
inte:=0.0:

ints:=0.0;
for ir:=1 to nr do
begin
r:=ir*dr:
r24:=alfa*sgqr(r)~beta*sqr(sqr(r)):
rj:=p*r*gamma:
intc:~intc+1lelO0*cos(r24)*bessjO(rj)*r:
ints:-ints-lelO*sin(r24)*bessjO(rj)*r:
end;
int[ip]:=(sqr(ints)-sqr(intc))/intmax:
rl:=gamma*p*rmax:
ref[ip]l:=sqr(2.0*bessjl(rl)/rl):
intint:=intint+int[ip]*p.:
intref:=intref~ref[ip|*p:
writeln('at ‘,p.': 'Jint[ip],' ".ref[1p] ):
end;
norm:=intref/intint;
assign(fl,'c:vdatacsl 14f.dat");
rewrite(fl);
writeln(fl.'\ Focal length =',zmax):
writeln(fl,0.0," '.1.0*norm." ".1.0):
for ip:=1 to np do

begin
writeln('at "Jip*dp.' = ".int[ip]*norm.' "‘ref[ip] ):
writeln(fl ip*dp.' ‘'.int[ip]*norm.' '.ref[ip] ):
end;
close(fl):
end.
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The next program reads the output files written by the previous program
and simulates the effect of the divergence of the laser on the intensity

profile.

(***i*********************#********************!***)

(*** This program computes the diffraction pattern due **¥*)
(*** to the Colliding Shock Lens at any image planc * ko
(*** including the divergence of the laser beam * ook
(**#***********************************************)

program difeslav;
uses dos.crt;

const
np=400:

type
arrival=arrav[]l..np] of double,

var
itinteger:
fl.fla:text;
l.dth,dr:double:
r.int.ref. inta:arrival;

(*************************************************)
(*** Procedure to average the fringe profile according ***)
(*** to the divergence of the laser xR
(*************************************i******#****)

procedure calcave(int:arrival: var intave:arrival):

var
ndr,izinteger;
m,ii,jj:longint;
nn.aa.r1j2.rn2.intpr:double:

begin
ndr:=round(l*dth 2.0/dr):
if ndr=0 then ndr:-1;
rn2:=ndr;
for i:=1 to np-ndr-1 do

begin
nn:=1;
intpr:=0.0:
for ii:=-ndr to ndr do
for jj:--ndr to ndr do
begin
rij2:=sqrt(sqr(ii)sqr(jj)):
if rij2<=rn2 then
begin
m:=round(sqrt( sqr(i~ii) ~ sqr(jj) )):
if m=0 then m:=1,;
aa:=cos(rij2/rn2*pi/2):
intpr:=intpr+int[m]*aa;
nn:=nn+aa;
end:;
end;
intave[i]:=intprinn:
end:
end;

(***#**1************)

(*** Main Program ***)
(*!****************’I‘)

begin
Le=30e017
dth:=3.3¢-4;
assign(fl,'c:\dalacsl\l4f.dal');
reset(fl):
readln(fl);
for i:=1 to np do
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begin

recad(fl,r[i],int[1],ref[i]);

writeln('at ",r[i]," = ",int[i]," ".refl1]);
end;

close(fl);
dro=r[2]-r[1];
calcave(int,inta);
for 1:=1 to np do
begin
if inta[i]<1.0e-7 then inta[i]:=1.0e-7;
writeln(r[i]," ",int[1]," ",inta[1]);
end;
assign(fla,'c:\datacsl\l4fa.dat");
rewrite(fla);
for i:=1 to np do
writeln(fla,r[i]," '.inta[i]);
close(fla);
end.
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APPENDIX D

The stigmatic focusing propcrties of the elliptical CSL are investigated
with the help of the next two programs. Given that there is no circular
symmetry, the calculation of the intensity pattern over the whole focal
plane involves a two dimensional calculation and would be excessively
time consuming. Consequently the calculation was performed only along
the two axes parallel to the semi-axes of the elliptical CSL and
perpendicular to the optical axis. The first of the two programs listed
below computes the intensity profile along the x-axis and the second along

the v-axis.

(’l‘*****************72‘*’B’Z‘**i*********k*******’:‘**i‘*i‘**)
(*** This program computes the diffraction pattern due ***)
(*** to the elfliptical lens along the x-axis * ¥y

(*** (perpendicular to the line focus) kxR
(*************************************i************)

program difell:

uses
dos,crt.graph;

const
ec=2.9;
fx=1.5;
fy=ec*fx:
rmax=1.4¢-3;
nr=300:
nth=67,
pmax=0.5e-3:
np=200;

lambda=0.337¢-6:

var
a,arg.r,p,th.dr.dp.dth.alfa,beta.ralfa.rbeta.
max.intc.ints,intthc.intths:double:
fl:text;
ip,ir.ith:integer;
int:array[l..np] of double;

(*ii********************

(*** Function rm(theta) ***)
(***********************)

function rm(theta:double):double;

begin
rm:=rmax*(l+(ec-1)*sin(theta)):
end:

(*******************)

(*** Main program ***)
(*******************)

begin
a:=0.5*(1/fy-1/fx);
dp:=pmax/np;
dth:=2*pi/nth;
beta:=2*pi/lambda*a;
for ip:=1 to np do
begin

p:=ip*dp:
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alfa:=2*pi/lambda/fx*p;
intc:=0.0;
ints:=0.0;
for ith:=1 to nth do
begin
intthe:=0.0;
intths:=0.0;
th:=ith*dth;
dr:=rm(th)/nr;
ralfa:=alfa*cos(th);
rbeta:=beta*sqr(sin(th));
for ir:=1 to nr do
begin
r:=1r*dr;
arg:=ralfa*r+rbeta*sqr(r);
intthc:=intthc+1lelO*r*cos(arg):
intths:=intths+1lelO*r*sin(arg);
end;
intc:=intc+intth
ints:=ints+intth
end;
int[ip]:=sqr(ints*dr*dth/1.0el0)rsqr(intc*dr*dth: 1.0e10);
writeln('at ',p,': ‘',int[ip]/int[1]);
end;
max:=int[1l]:
for ip:=1 to np do
if int[ip]>max then max:=int[ip]:
assign(fl,'c:'datacslidifellxd.dat'):
rewrite(fl):
for ip:=1 to np do
begin

¢
s,

writeln('at "Jip*dp.' = ".int[ip]/max):
writeln(fl,ip*dp,' ',int[ip]/max):
end;
close(fl):
end.
(**************************************************)
(*** This program computes the diffraction pattern due ***)
(*** to the elliptical lens along the y-axis Ly
(*** (parallel respect to the line focus) LE 2y
*

’.‘**********************************************)
program difell;

uses
dos.crt,graph;

const
ec=2.9;
fx=1.5;

Ey=~ec™iix;
rmax=1.4e-3;

Ay =30-0r;

nth=67;
pmax=3.0¢-3;
np=300:
lambda=0.337¢-6;

var
a,arg,r,p,th,dr.dp.dth,alfa,beta,ralfa,rbeta,
max,intc,ints,intthc,intths:double;
fl:text,
ip,ir.ith:integer;
int:array[l..np] of double;

(***********************)

(*** Function rm(theta) ***)
(***********************)

function rm(theta:double):double;

begin
rm:=rmax*(l+(ec-1)*sin(theta));
end;

(**************’k****)
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(&*% Main program *¥%)

(*******************)

begin

a:=0.5*(1/fy-1/fx);

dp:=pmax/np:

dth:=2*pi/nth;

beta:=2*pi/lambda*a;

for ip:=1 to np do

begin
p:=ip*dp:
alfa:=2*pi/lambda/fx*p;
Litse=0 0.

ints:=0.0;
for ith:=1 to nth do
begin

intthec:=0.0;
intths:=0.0;
th:=ith*dth;
dr:=rm(th)/nr;
ralfa:=alfa*sin(th):
rbeta:=beta*sqr(sin(th));
for ir:=1 to nr do
begin
r:=ir¥*dr;
arg:-ralfa*r+rbeta*s
intthc:=intthc+1el0O*
intths:=intths+1el0*
end;
intc:=intc+intthc:
ints:=ints+intths;

*cos(arg):

qr(r):
r
r¥sin(arg):

end:
int[ip]:=sqr(ints*dr*dth,;/1.0e¢10)-sqr(intc*dr*dth/1.0e10):
writeln('at ',p,': ‘,int{ip]/int[1]):

end:

max:=int[1]:
for 1p:=1 to np do

if int[ip]>max then max:=int|ip]:
assign(fl.'c::datacsl -difellyd.dat’):
rewrite(fl):
for ip:=1 to np do

begin
writeln('at '[ip*dp.' = '[int[ip] / max),
writeln(fl.ip*dp." ',int[ip]/max);
end:
close(fl):
end.

[U8]
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The following program reconstruct the initial shockfront geometry that
would gencrate an clliptical lens after the central implosion. We utilised
the hypothesis is that the shock velocity is constant. Nevertheless, the
calculation is performed numerically rather than analytically in order to
have a more flexible tool. With little modifications it is possible to take
into account of the shock velocity variations (of course not through gas

dynamics) and to change the geometry from clliptical.

(****t**#***1(‘**#********i*********i**i*#***)

(*** Calculates the shockfront that generates ***)

(*** an ellipse after collision * ok ok
(***t**************************************)

program ellipse:

uses
dos.crt.graph;

const
n=50:
nc=10;
var

X.xmax,ymax,xell,yell: double;
i.ii,ic.j.sigx.sigy.gNx.gy: integer:
a.b.c.cmax: double:

angle.vpos.xpos: array [l..n~1] of double;
fl:text,

(******************i*)

(*** Begin graphics ***)
(********************)

procedure begraph;

var
grdriver.grmode:integer:

begin
grdriver:=vga: grmode:=vgahi;
initgraph(grdriver,grmode,'c:'tp');
setviewport(10.10,630,470,false);
rectangle(0,0,620,460);

end;

GEAEEEEREEEEEER LR R

(*** End Graphics **#%)

(***************i**)

procedure endgraph:

begin
closegraph;
restorecrtmode;
end;

(************i**********************i**)

(*** Procedure to convert physical values * k¥

(*** in screen cohordinates * KKy
(******************************t*&*****)

procedure convert(xmin,ymin,xmax,ymax.a,b:real; var na,nb:integer);

begin
na:~'round((a—xmin)/(xmax-xmin)*620);
nb::460-round((b-ymin)/(yma_\'-ymin)*460):
end;
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function dyldxl(xx:double):double:

begin

if xx>=a then dyldx1:=1.0e10 )

else dyldxl:=sqr(b/a)*xx/sqrt(sqr(b)-sqr(b*xx./a)):
end;

function yl(xx:double):double:
begin

if xx>=a then yl:=0.0

else yl:=sqrt(sqr(b)-sqr(b/a*xx));

end;

procedure selectsign(quad:integer; var sigx.sigy:integer);

begin
if quad=1 then
begin
sigx:=-1;
sigy:=-1;
end
else if quad=2 then
begin
sigx:=-1;
sigyi=la
end
else if quad=3 then
begin
sigx:=1;
sigy:=1;
end
else if quad=4 then
begin
Eigas=l;
sigy:=-1;
end;
end;
begin
a:=4.0
b:=6.0
cmax:=19.0
xmax:=0.0;
ymax:=0.0;
for i:=1 to n+1 do
begin

x:=(i-1)*aln;
angle[i]:=arctan(dyldx1(x)):;
ypos[i]:=y1l(x);
xpos[i]:=x:
end;
assign(fl,'c: datacsl'ellip.dat');
rewrite(fl);

begraph;
for ic:=1 to nc+1 do
begin

c:=(ic-1)*cmax/nc;
writeln(fl):
writeln(fl):
writeln(fl.204.' " ic):

writeln(fl.'"V curve number n = ' ic):
for j:=1 to 4 do
begin

selectsign(j.sigx,sigy);
for i:=1 to n+1 do

begin
if j mod 2 = 0 then li:=n+2-i else ii:=i;
xell:=-sigx*xpos[ii]+sigx*c sin(angle[ii]):
yell:=-sigy*ypos[ii]+sigy*c cos(anglefii]);

*
if xell>xmax then xmax:=xel
if yell>ymax then ymax:=yel
writeln(fl,xell,’ ', yell);
converl(-cmax*1.4,-cmax,cmax*1.4ﬂcmax,xe]l,yell.gx,gy);
if i=1 then

moveto(gx,gy)
else

lineto(gx,gy):

1
1.
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end;
end:
end;
close(fl);
repeat until readkey="";
endgraph;
writeln('E X semiaxis = ', xmax,' Y semiaxis =', ymax);
writeln('T X semiaxis = ', c-a ,' Y semiaxis ="' ¢-b);
repeat until readkey="";
end.
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(Fig. 3(b)), which is only about twice the diffraction
limit. It can be easily seen that the outer rays are
too weakly refracted to arrive in the same focus as
the inner rays. Another feature, visible both in

Fig. 3 and Fig. 4, is that the focus is displaced
along the vertical, below the optical axis, due to
the effect of gravity on the temperature distribution
(see Fig. 2(b)).

Conclusions

Ray tracing through the measured refractive index
profile of a spinning pipe gas lens, satisfactorily
explains two important features: the decrease in
optical quality as the optical aperture approaches that
of the pipe, and the lowering of the image centre due
to gravity. Reasonable numerical agreement is
obtained.
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A pulsed colliding shock lens is developed where the shocks were generated by electric discharges. Near diffraction limites

focusing was observed.

1. Introduction

Gas lenses have recently been shown to be more
versatile than expected [1,2]. Continuous wave gas
lenses have industrial potential and even show
promise in astronomy [3]. In ref. [4] we consider
a macroscopic pulsed gas lens that could be used as
a final focusing element in a laser driven thermo-
nuclear fusion experiment. In this article we describe
a novel type of pulsed gas lens which would be suit-
able for operation in series with a small pulsed gas
laser: the colliding shock lens (CSL).

2. Colliding shock lens principle

When two spherical shocks collide, the interaction
depends on their strength [5]. At low Mach number
(Afy) the waves simply pass unmodified through one
another. At intermediate 1/, they pass but are some-
what delayed. At higher 1/, there is a period of stag-
nation during which the fronts merge into a high
density plane slab, and at very high A7, the collision
generates turbulence. When several shocks are
launched from explosion points placed on the arc of
a circle, one might expect similar behaviour to that
of the double shock interaction. Moreover, since
many shocks now collide at one point, nonlinearities
in the shock interaction are expected to occur at lower
M, than for two colliding shocks. The regime of in-
terest here, is at an intermediate Af, when the fronts
interact in a nonlinear but orderly manner.

When several spherical shocks. produced by ar
discharges. expand from points equi-spaced on a cir
cumference. a cylindrically symmetric converging
shockfront i1s formed. Schwendeman and Withan
[6] have noted that converging cvlindrical shock:
with regular polvgonal shaped cross-sections are sta
ble and tend towards a circular cross-section. Con
verging cvlindrically symmetric shock waves pro
duce a condition of high pressure. temperature anc
density in the region of implosion. After the spher
ical shock converges to a point. a regular and stable
[7] axi-symmetric cigar shaped expanding density
distribution results. It is in this region that we expec!
the density distribution to act as a graded index lens
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3. Experimental setup

A schematic representation of the experimental
setup. including the colliding shock lens, is shown in
fig. 1. The spherical shocks were created at points
equi-spaced on a circumference (diameter 11 mm)
by eight pairs of opposing electrodes (for simplicity
only four pairs of electrodes are shown in fig. 1). We
utilized needles of diameter 0.85 mm and an arc gap
spacing of 1 mm. The electrodes were mounted on
two opposite plexiglass plates with a circular hole 1n
the center (diameter 7.5 mm) allowing a laser beam
to be directed along the axis of the CSL. The gaps
were connected in series in order to have approxi-
mately simultaneous breakdown. A spatially filtered
nitrogen laser beam (fwhm =1 ns) was directed
through the collision region onto a T.V. camera face
plate through an imaging lens and a nitrogen inter-
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ference filter (330 nm. bandwidth 10 nm). A PC
synchronised the triggering of the CSL with the im-
age digitiser. A Rogowsky coil in the CSL circuitry
triggered the nitrogen laser via a variable delay box.
The value of the capacitor C determines the energy
provided to the colliding shocks. A 5 nF capacitor
was used.

4. Results

The CSL properties were invesiigated by record-
ing images at different distances from the CSL and
at different delays. Parasitic fringes were due 1o the
interference filter.

A time sequence for the colliding shocks is given
in fig. 2 (My=1.5). After the eight shocks have col-
lided (figs. 2f. 2g) a high density expanding region

quence of an eight arc CSL imaged 19 ¢m from the CSL at (a)3.2ps, (b) 5 ps. (c) 6 ps.
8)10.4 s, (h) 10.9 ps. (i) 113 us. (j) 11.6 s,

(d) 6.9 ps. (&) 8 s, (f) 10 us.
(k) 11.8 ps, (1) 12.2 s, (m) 12,4 ps. (n) 13.1 ps. (0) Idus. (p) 136 us.

[9P]
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Fig. 4. (a) Focal length of cight arc CSL at different times after arcing. (b) Effective lens diameter. (¢) Comparison of focus diameters
(fwhm) with time, O: experimental focus diameter, X: diffraction limit. (d) Dark fringe number versus dark fringe normalized position
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0f 0.84 mm, focal length is 19.1 cm; X: lens diameter of 1.3 mm and focal length of 39.1 cm.

is created (figs. 2h, 2p). Focusing is achieved in figs.
2h and 2i. Figures 2j—m show the typical diffraction
pattern when focusing is achieved closer to the TV
Camera. Figure 3a shows the focusing obtained with
the eight arc CSL (C=5 nF) at a distance of 39 cm.
The image in fig. 3b was recorded with an addition
filter (ND=1). A three-dimensional representation
f)flhe relative intensity of the central region is shown
In fig. 3¢ and the associated contour plot is shown in
fig. 3d. The fwhm focal spot diameteris 100 pm. The

CSL is a varifocal lens in which the focal length in-
creases with time: fig. 4a. The effective lens diameter
was obtained by imaging on the shock collision plane.
Due to the expansion of the shockfront atter the col-
lision, the effective lens diameter increases with time
(fig. 4b). Consequently, the relative diffraction lim-
ited focal spot size is expected to vary with time and
1s consistent with the measured focal spot size (fig.
4c). The position of the rings surrounding the cen-
tral spot (fig. 3a) is in reasonable agreement with
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Fig. 5. (a) Eight arc CSL burn pattern (focal length 39 cm, delay 11.8 ps). (b) Equivalent glass lens burn pattern.

the theoretical Airy rings value (fig. 4d).

The CSL was used to focus a ruby laser beam
(fwhm=~30 ns, Ex0.5 J) onto photographic paper
in order to obtain a burn pattern. We chose a focal
length of 39 cm. The diffraction limited ruby beam
was directed through the lensing region and the burn
pattern shown in fig. 5a was obtained. For compar-
ison a glass convex lens of equal focal length was ap-

354

ertured to 1.5 mm. This is the effective aperture of
the CSL. The burn pattern of fig. 5b was obtained.
The secondary spot in the lower region of the burn
patter is due to secondary reflections by the prisms
used to direct the beam through the lens. The central
burnt regions for both lenses were approximately 200
pum in diameter.
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5. Conclusion

We have developed a novel type of focusing de-
vice, the colliding shock lens, where near diffraction
limited focusing was observed. Although the useful
aperture of this lens is small we are in the process of
scaling up its dimensions.
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Colliding shock lens
as an intracavity Q-switch element

N. Lisi, M. M. Michaelis, R. Buccellato, M. Kuppen, and A. Prause

We show Low a varifocal pulsed gas lens, the colliding shock lens, can be used as an intracavity element to
@ switch a ruby laser. By placement of the shock lens in tandem with a second lens, a giant pulse is
obtained. The second lens may be a conventional glass lens or a continuous-wave gas lens.

The quality factor or @ switching of lasers is an
important method of enhancing the power of pulsed
lasers.! Mechanical @ switches and dye cell switches
have generally been discarded in favor of triggerable
opto-electronic devices based on rotation of polariza-
tion by the use of the Kerr or Pockels effect. In this
paper we discuss another form of triggerable @
switching that makes use of a new kind of gas lens.
This lens, the colliding shock lens (CSL),%2 was devel-
oped in our laboratory, in step with the recent revival
of interest in gas-lens optics.3+

The principle of colliding shock @ switching (CS-
QS) relies on the insertion of a steady-state converg-
ing lens and of the rapidly varying CSL in a laser
cavity. The CSL focal length and lens diameter
increase with time over a few microseconds. When
the CSL is switched off, the steady-state lens renders
the cavity unstable. Only when the CSL is switched
on and while the focal regions of the two lenses
overlap does the laser cavity become stable and the
losses low. If this condition is achieved when the
population inversion is at its peak in the active
medium, lasing occurs in the form of a giant pulse.

In the experiment designed to test the CS-QS
concept, a commercial ruby laser (1975 Korad Model
K1) was modified to incorporate additional @-switch-
ing components. Figure 1(a) is a schematic of the
experiment. The laser consists of a ruby head, full
reflector R1, and output coupler R2. The Q-switch-
ing components are CSL L2, continuous lens .1, and
fluorescence-sensing photodiode PD1.

The authors are with the Plasma Physics Research Institute,
University of Natal, Durban, South Africa 4001.
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The CSL consists of eight arc discharges, struck
simultaneously between pairs of opposing points lo-
cated on the arc of a circle as illustrated in Fig. 1(b).
Each point explosion produces an expanding spheri-
cal shock wave. After the eight shock waves collide
at the center of the circle, a cigar-shaped, high-
density, axially symmetric core expands outward.
Focusing is due to the radially symmetric density
gradients within the expanding region. As the lens
diameter increases, the density diminishes and the
focal length increases as depicted in Fig. 2. The CSL
used for these experiments was specially chosen for
its fast switching and large optical aperture. It
consists of a 5.0-cm-diameter cylinder closed at both
ends. The end plates that carry the 16 pins that
form the eight gaps are 1.0 cm apart. The gaps are
set to 1.5 mm, and the diameter of the circle of pins is
3.0cm. Thecentral aperturesare 1.0 cm in diameter.
A 100-nF capacitor, charged to 17 kV, is connected to
the eight gaps in series by a triggerable spark gap.
This series connection ensures simultaneous arcing.

Lens L1 can be either a conventional solid-state
device or a continuous-wave gas lens. The spinning-
pipe gas lens® used in some experiments, consists of a
1.0-m-long, 2.0-cm-diameter heated tube, spun at 30
Hz. The rotation centrifuges warm air out of the
two ends and causes cold air to be aspired along the
axis. The resulting density and refractive-index gra-
dient produces a long-focal-length lens, the quality of
which fluctuates.® One can vary the focal length
from 1.5 m to several meters (as measured from the
center of the pipe) by changing the pipe temperature
and rotation speed. The two flat end mirrors are a
full reflector, R, = 96%, and an output coupler, R, =
45%.

The operation sequence for all CS-QS experiments
is the following: First the ruby flash lamp is fired
and the PD1 photodiode detects the fluorescence
signal from the active medium. This signal is elec-



R1 12 L1 R2
L N ]
[ RUBY
PD2 CAL
CSL
PD1
«—d—
(a)
ELECTRODES

\ LENS

ARC

LASER BEAM

(b)
(ay  Schematic of the CS-QS experiment:

Fig. 1.
odes; CAL, calorimeter.  (b)

PD’s. photodi-
CSL geometry.

tronically delayed and used as a trigger for the CSL
master spark-gap circuit. The signal from photodi-
ode PD2, placed behind full reflector R, is read by a
storage oscilloscope and yields the laser-pulse wave-
form. The laser-beam energy is measured with a
calorimeter. A burn pattern of the attenuated beam
at the focus of a lens can be used to measure the
divergence of the beam.

The cavity is operated in three different modes
described below in detail. Mode a maximizes the
output energy and beam diameter. Mode b mini-
mizes the @Q-switched laser-pulse duration. Mode ¢
explores the feasibility of a cavity with intracavity
beam-expansion optics consisting entirely of gas.
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Fig. 2. CSL characteristics: Evolution of focal length and effec-

tive diameter after the shock collision.

The stability of the laser resonator can be deter-
mined in terms of the complex parameter m, which,
in the formalism of the ray matrix optics, is half the

trace of the round-trip resonator matrix.” For an
unstable resonator, abs(in) > 1. In this case we
definc the magnification M as

m + (m?—1)/2
m — (m?—1)"2 ifm < —1(negative branch),

(1)

where M is the amplification of the beam cross section
per round trip and can be related to the cavity losses.
When abs(m) < 1, the cavity is stable, while abs(m) =
1 for a plane-parallel configuration, which corre-
sponds to the confocal situation of the intracavity
telescope.

In mode a, L1 is a 200-cm focal-length glass lens.
The lens separation d is 250 cm. The condition
abs(m) = 1is achieved when fcg, = 50 cm. The CSL
lens aperture (dcsy) is 3.0 mm (see Fig. 1), and the
beam fills the ruby rod (10 mm). At slightly later
times, the resonator becomes stable, and we expect
lasing tc occur. A drawback of this operating condi-
tion is that the cavity is long (3.0 m), as is conse-
quently the rise time of the laser pulse. In this case
the initial magnification of the resonator (before the
CSLis operated)is low, M = 2.8. We must therefore
operate the flash lamp below 4.3 kV to avoid free-
running lasing. A 2.0-J laser pulse of a duration of
360 ns (FWHM) is observed 5 ps after the shock
collision. Figure 3 shows the pulse waveform.

In mode b, L1 is a 50-cm focal-length glass lens
(d = 100 cm). Againm = 1is achieved when f; = 50
cm, des;, = 3.0 mm, and the beam diameter on the
output coupler is expected to be 3.0 mm. The initial
magnification M is now 4.4, and free running is
inhibited at any flash-lamp voltage. We operated the
flash lamp at 4.5 kV. In this case we expect shorter

if m > 1 (positive branch)
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Fig. 3. Measured laser-pulse-intensity waveforms.
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pulses and a very narrow beam together with lower
cnergy. A 100-mdJ pulse of a duration of 175 ns
(FWHM) is observed 5.5 ps after the shock collision
(see Fig. 3). On a few occasions when the CSL
alignment appeared to be optimized, a pulse length of
approximately 50 ns was observed.

In mode ¢, L1 is a spinning-pipe gas lens operated at
a200-cm focal length. For this all-gas @ switch, we
expected similar performance to mode a. Figure 3
shows a 375-ns (FWHM) pulse 4.5 ps after the shock
collision. However, the energy for this mode is now
slightly higher (3.0 J). The absence of reflective
losses in the cavity appears to outweigh the effect of
spinning-pipe gas-lens aberrations.

In Table 1 we summarize the results of the experi-
ment. The energy values reported in this paper are
the maximum values obtained over a large number of
experiments. Although the fluctuations are large,
especially for mode ¢, which in this case is due to the
unstable behavior of the spinning-pipe gas lens,® we
noted that the operations do not critically depend on
the cavity alignment and the gas-lens aberrations.

We now examine in greater detail the evolution of
the cavity geometry after the CSL shocks have col-
lided and how this affects the cavity losses. The
losses can be split into two terms. The first term is
constant and takes into account diffraction, surface
reflections from lens L1, and the ruby-rod surface
imperfections.

The second term depends on the cavity geometry
and will vary explicitly with time. If no apertures
are present in the cavity, the losses depend on only
the parameter m and can be calculated according to
the loss formula!

1-1/M* ifabs(m) > 1
L= . (2)
0 if abs(m) < 1,
where L is the fractional intensity loss of an input
beam that is entering the output coupler and whose
linear magnification over one round trip is M. The
evolution of M and the corresponding L is shown in
Fig. 4 for mode a.

A simple model of the laser system was developed.8
Because of the presence of apertures in the cavity,
such as the ruby-rod external diameter and the CSL
aperture, the expression for the loss term is more
complex than that given by Eq. (2) and depends on the
input beam cross section. The expression for the
loss term coincides with Eq. (2) only for light that is
traveling close to the optical axis. This was taken

Table 1. Summary of the Results of the CS-QS Experimenta

Mode Eiiax(d) t, (ns) d (mm) div (mrad)
a 20 360 8.0 1.0
b 0.1 175 2.0 3.3
c 3.0 375 8.0 1.4

9E max, maximum recorded value of the output energy in the three

different resor?ator geometries; ¢, typical pulse duration (FWHM)
d, laser spot diameter; div, divergence.
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Fig. 4. Evolution of the cavity magnification M and losses L for

the paraxial rays (mode a).

into account in the calculation of the losses as a
function of the distance from the optical axis, which
was carried out with the formalism of matrix optics.
The laser beam was subdivided into a collection of
annular beams. The laser rate equations were solved
for each annulus, using the fourth-order Runge Kutta
numerical method with variable step size. Indepen-
dently an approximate computation of the beam
divergence is performed for the resonator geometry
that exists when lasing is at its peak. We generate a
uniform planar distribution of rays at the position of
the ruby rod, and we follow the path of each of the
rays for a given number of round trips, recording the
values of their angle at the output coupler. These
values are used to calculate the beam divergence.
Figure 5 shows the computed laser-beam-intensity
waveform in the center of the beam for modes a, b,
and c¢. The computed values of the laser energy,
pulse length, beam diameter, and divergence are
summarized in Table 2. The discrepancy between
the measured and the computed pulse lengths can be

25
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Fig. 5. Computed laser-pulse intensities in the center of the
beam.




Table 2. Summary of the Computational Results of the CS-QS

Mode E i (d) t, (ns) d (mm) div (imrad)
a 2.0 225 10.0 1.0
b 0.13 105 2.8 4.0
c 3.0 200 10.0 0.9

attributed to the aberrations of the gas lenses, which
are not included in the model.

In conclusion, we have demonstrated a novel
Q-switching configuration that can use gas optics
only. The advantages of the method are no damage
threshold, both for high peak power and average
power, and the absence of polarization and a polarizer.
A major disadvantage is the necessity of having a long
cavity, which results in a long laser pulse. Improve-
ments in CSL design and performance may correct
this problem.

We thank W. de Beer and D. Davies for unflagging
technical support, P. Di Lazzaro, M. A. Hellberg, and
M. H. Key for discussions, and the Foundation for
Research and Development and the Laser Applica-

tions Research Institute of South Africa {or financial
support.

References

1. W.Koechner, Solid-State Laser Engincering, 2nd ed. (Springer-
Verlag, Berlin, 1988), Chap. 8, p. 410.

2. R. Buccellato, N. Lisi, and M. M. Michaclis, “Colliding shock
lens,” Opt. Commun. 101, 350-355 (1993).

3. M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M.
Notcutt, P. F. Cunningham, and J. A. Waltham, “A gas
telescope,” Nature (London) 353, 547-548 (1991).

4. B. L. Xie, 8.J. Xia, and Q. T. Chow, “Gas varifocal lens,” Chin.
Phys. Lett. 2, 509-512 (1985).

5. M. Notcutt, M. M. Michaelis, P. F. Cunningham, and J. A.
Waltham, “Spinning pipe gas lens,” Opt. Laser Technol. 20,
243-250 (1988).

6. N. Lisi, R. Buccellato, and M. M. Michaelis, ‘‘Optical quality and
temperature of a spinning pipe gas lens,” Opt. Laser Technol.
26, 25-27(1994).

7. A. E. Siegman, Lasers, 2nd ed. (University Science, Mill Valley,
Calif., 1986), Chap. 15, p. 599.

8. N. Lisi, “C.S.L. @ switch,” Internal rep. (Department of
Physics, University of Natal, Durban, South Africa, 4001,
Februaary 1993).

20 February 1995 / Vol. 34, No. 6 / APPLIED OPTICS 945




Laser and Particle Beams (1994), vol. 12, 1io. 3, pp- 531-538
printed in the United States of America

sulg. =

: Applications of the colliding shock lens
ury . %
'nd. By M.M. MICHAELIS, N. LISI, R. KUPPEN,
Ry e R. BUCCELLATO, axp A. PRAUSE
ner- é‘ Department of Physics, University of Natal, Durban, South Africa
s =
{ (Received 10 January 1994; accepted 19 January 1994)

the

ing t The colliding shock lens is described briefly. Possible applications, industrial drilling and
ing } cutting, laser Q-switching and spatial filtering, ultrahigh-power applications, and “all gas
ec- , lasers” are proposed. The time evolution, scaleability, and repetition rate operation are
me ; investigated.

in i

lly j

" ; 1. Introduction

1d !

‘n At a previous ECLIM, we described work with continuous gas lenses (Michaelis er al.
e 1991a). A novel pulsed gas lens has now been developed relying on the interaction of con-
re verging shocks in air. Here we report on the initial studies of the parameters of this lens
5 undertaken to see which applications, if any, show promise. The article is divided into four

parts: a brief description of the colliding shock lens (CSL); a list of potential applications
- suitable for the CSL; a study of the performance of various CSL designs; and concluding
remarks.
1 2. The colliding shock lens
t=

Gas lenses invented at Bell Labs in the early 1960s were soon discarded as bulky devices
with a narrow field of view. A slight renewal of interest has resulted from a demonstra-
tion that theyv are able to focus laser light to drill holes (Notcutt er a/. 1988; Michaelis
et al. 1991a) or to generate laser-produced plasmas (Waltham er a/. 1990). We have shown
that they have sufficiently good optical quality to serve as objective lenses in telescopy
(Michaelis er al. 1991b). We have also proposed tha: large aperture pulsed gas lenses could
play an important part as the final focusing element in a laser-driven fusion reactor (Buc-
cellato er al. 1993a). More recently (Buccellato er af. 1993b) we have described a different
type of pulsed gas lens, the CSL.

The simplest CSL consists of 16 needles disposed in opposition on the arc of a circle (fig-
ure la). Eight electric arcs are struck between opposing points and generate eight shock
waves that converge at the center. A cigar-shaped region of high gas density gradient results.
If a pulsed laser is synchronized soon (500 ns) after the shock collision and directed through
the center, it can produce a focus. Figures 1b and 1c show other CSL designs with differ-
ent number of arcs and different diameters. We distinguish between the “electrical diam-
eter,” that of the circle of arcs, and the optical aperture, that of the effective lens. The
optical aperture turns out to be an order of magnitude smaller than the electrical diameter.
It is not yet clear whether the optical aperture will scale with the system geometry or with
the typical shock width dimensions. The former would mean that the f-number could
remain more or less constant with increasing optical aperture; the latter, that it does not
scale at all. A first attempt at scaling up the first 1.2-cm electrical diameter device to 3 cm
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(a) (b)

(c)

FiGure 1. Colliding shock lenses. (a) 16-pin, 8-arc device. Electric diameter 1.2 cm. Optical aper-

ture 2 mm. (b) 3-cm electric diameter device. Optical aperture approximately 3 mm. (c) 36-pin, 3-cm
electric diameter device.

(figure 1b) indicates that the truth lies somewhere in between. Increasing the number of
pins (figure 1c) did not have any obvious effect.

Depending on the time at which the pulsed laser is fired with respect to the arcs, a vari-
ety of illumination patterns results; figure 2 shows a sequence obtained with an eight-arc
device. The frames are taken directly with a lensless television camera disposed 40 cm away
from the center of the lens. The first three frames show the shock waves propagating almost
undisturbed through one another. The detailed illumination pattern (i.e., dark and bright
rings, coarse and fine fringes) is best understood by referring to articles on refractive fringe
diagnostics (Bacon et al. 1989; Michaelis ef al. 1991c). The next frames show nonlinear inter-
action between the shock waves resulting in noncylindrically symmetric illumination pat-
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Applications of the colliding shock lens 53

Ficure 2. Illumination patterns 40 cm from the lens of figure la, at various times after the ares:
3.2,5,6,6.9,8, 10, 10.4,. 10.9, 11.3, 11.6, 11.8, 12.2, 12,4, 13.1, 14, 13.6 us.

terns. The interesting point is that after the shocks have collided at the center, there is a
cylindrically symmetric core. The shocks have forgotten where they originated. A sharp
focus is seen in the seventh frame. An enlargement of the focal region (figure 3) shows an
interesting set of Airy ring-like patterns centered on the strongly saturated focus.

3. Potential applications

3.1. Drilling, cuiting, and welding

A good reason why lasers have not penetrated every industrial workshop is that their out-
put windows and lenses are expensive and sensitive devices. We have alrecady shown that
CO, lasers coupled to gas lenses are capable of drilling through thick steel sheets
{Michaelis er al. 1991a). However, the lenses we used were unwieldy CW devices with very
long focal lengths (of the order of 80 ¢cm.) The “dream” ¢as lens for this purpose would
be a short focal length device (10 cm) capable of being “rep-rated” (100 Hz), with an opti-
cal aperture of at least 1 cm and minimal power consumption and weight.

3.2. Q-switching and spatial filtering

The combination of a CSL and a pinhole within the laser resonator could in principle
serve to simultaneously Q-switch and spatially filter a laser oscillator. The pinhole would
need to be under vacuum or, if the pulse is short enough, in helium gas to prevent break-
down. But Q-switching requires opening times of about 10-100 ns (Siegman 1986). For engi-
neering applications, the focal length should not vary too quickly; whereas for Q-switching
and beam handling (e.g., isolator) functions, fast switching is essential.




FiGure 3. Magnified central region of 11.3-us frame. (Bar = 1 mm)

3.3. Ultrahigh-power and “all gas” lasers
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It is well known that even under clean room conditions lenses operating for pulse lengths
of tens of nanoseconds start to fail at intensities in the GW/cm? range. Also, multipho-
ton processes at ultrahigh intensities render conventionally transmitting materials opaque
or absorbing. We have previously pointed out that gas lenses could help alleviate these prob-
lems (Michaelis er al. 1991a). We foresee, without having the means to observe it, that very
high powers may heat the gas and change the characteristics of the lens, just as in atmo-
spheric “thermal blooming” (Barnard 1989). But for intermediate powers, the CSL could
fill the present gap.

The final application we envisage is that of an “all gas” (or nearly all gas) system. Con-
ventional pulsed gas laser systems are designed with beam diameters corresponding to the
breakdown thresholds of solid optical components. A combination of aerodynamic win-
dows and diverging and converging gas lenses could give gas laser design a new degree of
freedom.

4. Performance of the CSL
All the applications listed above pose the following questions:

How good is the focus? Is it near diffraction limited?

How short is the focal length?

How quickly do CSLs switch, and how long do they last?
How large is the aperture, and is any light lost?

Can they be “rep-rated”? How much power do they consume?

pan o




Figure 4. 130-pm burn pattern in aluminum foil obtained with lens of figure 1b.

a. From the very first experiments, we realized that this was somewhat surprisingly, given
the limited number of arcs, an excellent lens. Figure 4 shows a burn pattern in aluminum
foil obtained with an eight-arc lens. The optical aperture of the lens was 3 mm and the focal
length 40 cm, so the diffraction limit would give a 130-um hole. The central hole is approx-
imately 130 pm.

b. The shortest focal length for an eight-arc device is about 20 cm. This is too long tor
many applications. We have already begun testing a double-ring device, and there is no
apparent reason why several rings should not reduce the focal length to the 10-cm range.

c. For this purpose we have measured the switching ability. Our experimental appara-
tus is very simple and consists of a 10-mW HeNe laser followed by the CSL and a receiv-
ing photodiode at a distance L with a pinhole of diameter & immediately in front of it. We
vary the distance L, the diameter &, and also the energy delivered to the shocks by chang-
ing the discharge capacitor. Figure 5 shows a typical switching time curve. In figure 6 we
show how the switching rise time and the maximum signal vary with the pinhole size ¢ at
a fixed distance L, and in figure 7 we show how the same quantities vary with the focal
length L for fixed . As can be seen from switching curves like those in figure 5, the fall
time of the signal is always comparable with the rise time (to within, say 50%), the latter
being the critical quantity for Q-switching. The signals have been normalized to the signal
PFOduced by a 3-mm aperture, 50-cm focal length, spherical glass lens on the same photo-
diode and a pinhole ¢ = 250 pm. Figure 8 is like figure 6, but for a capacitor value of
I uF. We believe that by increasing the shock energy we can make the switching faster.
) T_he present CSL is thus a little too slow for Q-switching. But we have a concept for speed-
Ing 1t up that involves a multiple lens. Another problem in using this device for Q-switching
Is that it requires the presence of a pinhole in the cavity and the concomitant possibility
of too high a radiation flux through it. Our idea is that this system could be worthwhile
for cheaply Q-switching a small laser system.
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Figure 5. Switching curve. L =40 ¢cm, ¢ = 300 pum, C = 3 nF-.
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d. Possibly the worst feature of CSLs is the large electro-optic aspect ratio. The largest
aperture obtained so far was only 4 mm. We plan to test a 10-cm electrical diameter lens
in the hope of obtaining an 8-mm optical aperture. Another worrying feature of these lenses
is that they are lossy. This, we believe, is inherent to their shock wave structure. The rear
of the reflected shock refracts some light “in the wrong direction.” This is to be expected
from refractive fringe studies of shocks (Michaelis et al. 1991c¢). Orientatively we estimate
the loss to be about 10%, slightly larger than that due to reflection in conventional lenses.

e. The question of “rep-rating” the lens has only been partially answered experimentally
for want of a suitable high-voltage power supply. Operation at 10 Hz confirmed our expec-
tations that the lens could run at moderate frequencies without degradation of the focus.
At this repetition rate a typical switching curve such as that in figure S remains virtually
unaltered. Based on dimension and speed of sound arguments, we would expect the limit-
ing period to be of the order

electrical diameter

= | ms.

sound speed
The corresponding “rep-rate” would be 1 kHz, a useful frequency for industrial applica-
tions. The final question is that of power consumption. At a rep rate of f = | kHz, our
present eight-pin lens would consume

W= f1/2:CV-=1 kW (C=5nF, V=20kV).

This is a considerable amount of pulsed power. To reduce this we tested an enclosed CSL
that confines the arcs to two rather than three dimensions. An order of magnitude reduc-
tion in energy consumption occurs. However, that may be counteracted by the necessity
of increasing the electrical diameter.

5. Conclusion

The novel CSL appears to be on the borderline of becoming a promising optical com-
ponent. The focus is good, but the lens is slightly lossv. The lens focuses quickly, but not
quite quickly enough for efficient Q-switching. The aperture is disappointingly small but
might be scaleable. The lens may be rep-rated but consumes appreciable electrical power
and could be incredibly noisy.
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scaling up the colliding shock lens
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In this paper we characterize the behavior of a new pulsed gas lens, the colliding shock lens. We
show how input energy, electrical diameter, number of discharge electrodes, and enclosing the
discharges, affect its optical aperture and focal length. Experimental results are presented for three
different lenses and for a 1 cm aperture lens with a focal l2ngth of 1.5 m. We derive a simple
colliding shock lens scaling law. © 7995 American Institute of Physics.

1. INTRODUCTION

With the ever-increasing power of pulsed lasers,
rreakdown-induced damage to solid state optics is becoming
a2 growing concern. The use of gas rather than solid lenses
extends the breakdown threshold by three orders of magni-
tude. For 20 ns pulses of visible light for example, the
threshold intensity for uncoated glass optics lies in the |
GW/cm® range. an intensity easily reached at the output win-
dow of table top systems. Breakdown in air at STP, for the
same pulse length occurs at just below the terawatt/cm”
level.

Recently. our group developed a novel pulsed gas lens.
the colliding shock lens or CSL. (1) Fig. 1(a). This is a spin
off from our study of the refractive fringe diagnostic of
shocks in air reported in this journal (2) and of the plasma
lens/isolator invented by Rumsby and Michaelis. (3) In the
latter device four converging laser-produced plasmas were
used either 1o focus or to interrupt a laser beam. The first
CSL was very similar. Four electric arcs are stuck in air on
the circumference of a circle to generate four converging
shock waves. These shocks create a cigar-shaped region of
nigh density air at the center of the circle which acts as a
graded index or GRIN lens. By adjusting the time delay be-
tween convergence and the arrival of the pulsed laser beam.
the aperture and focal length of the lens can be varied. Typi-
cal parameters for the first lens are an optical aperture of 1
mm for a focal length of 50 cm. The focus [Fig. 1(b)] is
near-diffraction limited and the diameter of the circle of arcs
is 1 cm. In this form it is unlikely to be a useful device.

Converging shocks have been extensively studied from
the early 1940s primarily because of their ability to produce
extremely high pressures and temperatures on convergence.
This property also made them very attractive for use in laser
fusion schemes. The theoretical treatment by Guderley* of a
converging strong cylindrical or spherical shock wave has
served as the basis for much of this work.

The method of converging shock creation ranged from
the experiment of Perry and Kantrowitz® which involved the
use of a tear-drop-shaped body placed in the center of a
shock tube to force a planar incident shock wave to implode:
10 cylindrically imploding shocks created by detonating cy-
lindrical explosive shells (Matsuo and Fujiwara).f’ Some
experimenters’ uscd multiple detonations to create what was
initially a polygonal-shaped converging structure. This poly-
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gon was found to produce a circular (or cylindrical) converg-
ing shock wave prior to implosion.

Other methods involved the rupturing of two glass
spherzs each containing gases at different pressures. to study
the behavior of the collision of two shock waves®.

Experimental evidence has shown that for moderately
strong shocks (M=2.4), converging cylindrical shock waves
are stable. Knystautas, Lee, and Lee’ showed that when a
number of planar detonation waves converge towards a cen-
ter, Mach reflections result in a smooth cvlindrical convera-
ing shock wave provided the obtuse included angle between
the intersecting wave fronts is of the order of 100° or greater.

Since most of the work involving converging shocks was
directed towards understanding the creation of the high tem-
perature and pressure region at the point of convergence.
much attention was given to the implosion stage of the pro-
cess. Very little attention was paid experimentally to the ex-
panding stage.

Also, although much work was done on shocks gener-
ated by electric arcs in air”™' 1o the best of the authors’
knowledge, they have not been used before for the produc-
tion cf converging shock waves. Our first refractograms’ of
the converging shocks indicated that a Mach addition of
more than four shocks. would make the lens more effective.
The first prototype was improved by providing it with eight
pairs of opposing electrodes. The optical aperture increased
to 2 ram for the same 50 ¢cm focal length.

Il. THE CSL AND THE SCALING QUESTION

As mentioned above, the first CSL had too small an ap-
erture to be useful. although its optical quality seemed prom-
ising. But it did serve to pose the following question: could
the CSL be scaled up? Two contradictory arguments were put
forward.

According to the pessimist’s view, refraction towards the
focus is caused only by the narrow shock front gradient. This
view is supported by our own refractive fringe study of
shocks®'? and is illustrated by Fig. 1(c) in which the weak
shocks have passed through each other, virtually undisturbed.
According to this view, the lens would only work so long as
the separating shock fronts are not too far apart. which ex-
plains why the first lens has a millimetric aperture. The ap-
erture of the CSL would not scale up beyond a small geo-
metric factor times the shock front thickness.

The optimistic counterargument runs as follows. The

© 1995 American Institute of Physics 5037
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(d)

FIG. 1. ta1 Schematic representation of the CSL.. ib) Focus obtained with the lirst CSLata focal length of 20 cm. (¢) Schematic showing the lensing propertics

of weak shocks after collision. (d) Schematic showing the lensing properties ot strong shocks afier

central collision of converging shocks produces a region of
high density in which all “memory” of the early shocks is
erased by nonlinear effects. This view is supported by the
post-collision frames of Ref. 1 which show a circular rather
than polygonal expansion front. This front may have a
weaker gradient than the initial shocks and is therefore
broader. The angular deflection of a ray being low. it is per-
missible to integrate the density along the ray, assuming that
the rayv’s radial position does not change inside the lens. In-
tegration of the hollow cigar gives the familiar lenticular
shape: Figs. 1{d) and 3(b). Although it is true that only the
front refracts light “inwards,” the gradient of the shock rear
is not strong enough to cancel the effect of the front. Gas
inside the cigar plays a compensatory role which cannot be
forgotten as in the first argument.

A millimetric gas lens is useless. A centimetric CSL
would have many industrial applications. A decimetric
pulsed gas lens could serve as the final focusing element for
a laser fusion reactor.!’ Not being able to resolve the above
discussion computationally, we decided it experimentally. In
this paper we report how various factors (input electrical
energy, electrical diameter, lens geometry) affect the optical
aperture and focal length. With the successful operation of a
1.5 cm aperture CSL, we now believe the more complex
second scenario.

1ll. EXPERIMENTAL APPARATUS

The experimental apparatus used for the following set of
experiments was the same as that used by Buccellato er al.’
Figure 2 is a schematic representation of the circuit in which
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collision.

C refers to the charging capacitor which s discharged
through the electrodes of the CSL.

The CSL consists of two S5-mm-thick plexiglass plates
which support eight or sixteen pairs of opposing electrodes:
Fig. 1. (The plates can be either square as in Fig. 2. or cir-
cular as in Fig. 1). The separation between the plates can be
adjusted from 1 to 4 cm.

The electrodes used in this experiment are constructed
from 0.5-. 1-. 2-mm-diam stainless steel pins depending on
the maximum energy to be stored in the capacitor. The elec-
trode separation was always set at 0.5 mm. The electrodes
are connected in series to ensure that the gaps break down
simultancously. A circular window is cut out of each of the
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FIG. 2. Schematic representation of the CSL experimental setup. C reters ©
the charging capacitor.
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plexiglass plates to allow a nitrogen laser beam (337 nm) to
be shone through. It is with this beam that the properties of
the CSL are studied.

The charging capacitor (C) is initially charged to 18 kV
through a 10 H inductor by means of a high voltage dc
power supply. A 5 V computer signal triggers the pulse gen-
erator resulting in a 30 kV pulse of 1 us duration being sent
to the extra electrode of the pressurized spark gap. This
causes the spark gap to break down, pulling one side of the
CSL to ground. The 1 nF capacitor provides the initial en-
ergy to break down the spark gap. The potential difference
across the CSL produces the ring of simultaneous arc dis-
charges. Each of these arcs generates an expanding spherical
shock wave. The expanding shock waves collide at the center
of the CSL and a high pressure. temperature, and density
region is created. We call this the “implosion stage.” A short
time (of the order of microseconds) after collision, the ex-
pansion of this high density region results in the axisymmet-
ric “‘cigar”-shaped density distribution which forms the
graded index lens.

The detection circuit for this experiment is capable of
detecting either the shock structure at various times or the
focal spot for different focal lengths. This is accomplished in
the following way: a Rogowsky coil in the CSL discharge
circuit sends a signal to a delay box when the CSL “fires.”
This signal is then delaved and used to trigger the spatially
dltered and expanded nitrogen laser beam. The beam then
passes through the windows of the CSL before talling on tihe
face plate of a charge-coupled device camera and is digitized
by means of an Oculus 200 frame grabber. A 330 nm inter-
ference filter with a bandwidth of 10 nm is placed in front of
the camera to select out the nitrogen beam from the light
generated by the arcs. To study the behavior of the shock
waves, a convex lens is used to image in the shock plane
itig. 2). By varying the delay of the nitrogen laser one ob-
tains a sequence of shadowgrams for the shock waves, from
convergence to collision and finally divergence. This enables
us to calculate the size of the lensing region formed by the
cigar.

By removing the imaging lens and allowing the laser
beam to fall directly on the face plate of the camera. the
quality and size of the focal spot can be evaluated for differ-
ent focal lengths. To avoid confusion in the terminology, we
Fenceforth refer to the maximum diameter of the cigar-
shaped lensing region as the “optical aperture™ of the lens. to
the plexiglass structure incorporating the electrodes as the
CSL, and to the diameter of the circle of electrodes as the
. “electrical diameter.”

IV. CHOICE OF VARIOUS CSL DESIGNS

To characterize the CSL one must determine the extent
o which the various parameters (energy, electrical diameter,
Number of electrodes, wall geometry) affect the optical aper-
ture, the focal length, and the quality of the focus. To this end
the following parameters were varied.

A. Shock strength

The first question that needs to be answered is how the
shock strength affects the lensing region. In our experiments,
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the shock strength is varied by changing the capacitance of
the charging capacitor while keeping the voltage constant.

B. Electrical diameter

The electrical diameter is increased by using different
CSLs. Some half-dozen CSLs were constructed to gain ex-
perience with these devices.

C. Number of electrodes

By increasing (or decreasing) the number of pairs of
electrodes on the CSL. we can change the shape of the im-
ploding shock structure and hence the shape of the lensing
region.

D. Enclosure

We experiment with enclosed and unenclosed CSLs to
determine whether confinement of the shocks affects the
quality of the lensing. The CSL is enclosed by encasing it in
a Plexiglass tube and reducing the separation of the vertical
walls.

We now present a summary of the physical churacteris-
tics of the four CSLs constructed to test these concepts. The
CSLs will be labeled CSL -4,

CSL1 : This is the original CSL (see Buccellato er al.!
It has eight pairs of electrodes arranged on a circle of diam-
eter 11 mm. The diameter of the windows is 7.5 mm. CSLI
is uncnclosed.

CSL2 : This CSL has an electrical diameter of 33.3 mm
and ¢ window diameter of Il mm. This second unenclosed
CSL has eight pairs of electrodes.

CSL3 : To see how enclosing the CSL would aftect its
lensing properties. we constructed a CSL with the same elec-
trical diameter and windows as the preceding one but en-
closed it in a plexiglass cylinder of diameter of 40 mm. This
CSL iike the preceding two is also fitted with eight pairs of
electrodes. The wall separation was reduced from 40 o 10
mm.

CSL+4 : The final CSL has an electrical diameter of 80
mm and a window diameter of 50 mm. The distance between
the end plates is 21.5 mm and the diameter of the plexiglass
tube is 120 mm. This lens can be fitted either with eight or
sixteen pairs of electrodes.

V. RESULTS AND DISCUSSION

In order to better understand the scaling results we first
briefly reexamine the process of GRIN lens formation.

When the pressurized spark gap in the CSL power sup-
ply breaks down. the electrical discharges between opposing
pairs of electrodes in the CSL act as point sources for spheri-
cally expanding shock waves. As mentioned before, these
shock waves collide at the center of the CSL. On collision of
two or more shock waves. a high density. pressure, and tem-
perature region forms. In our experiments where M=~1.5. we
do not expect the region to become turbulent. except for
higher energies. as explained below. This region then ex-
pands to form the cigar-shaped region already described.
Figure 3(a) is a computed density profile that results during

Colliding shock lens 5039
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the expansion phase.'? Only half the lensing region or “ci-
car” is shown. The refractive index increases sharply near
the edges of the cigar and a depression is visible in the cen-
ter.

Although this profile looks extraordinarily complicated,
its computation allows one to verify the following statement,
which simplifies the ray optics. There are virtually no radial
deviations within the lens. This is because the refractive in-
dex differs from unity by less than one percent and the re-
fractive index gradients and the angular deflections are small.
(Less than 5 degrees).

To calculate the latter it suffices to integrate the density
along the path of each fixed radius paraxial ray. The compli-
cated profile then reduces to the familiar lenticular shape:
Fig. 3(b) (The central “hole” may be computational).

We now compare the performance of various lenses.
Typical parameters reported for the first eight arc colliding
shock lens' were an optical aperture of 2 mm for a focal
length of 52 cm and an input energy of 0.8 J. (C=35 nF). The
focal spot size was near-diffraction limited.

A. Increasing the electrical aperture (unenclosed
CSL)

By using CSL2 and keeping the same charging capaci-
tor, we are able to determine the effect an increase in elec-
trical diameter has on the focal length and optical aperture
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for the unenclosed CSLs. We would expect that since the
energy falls off with shock radius R. the larger CSL (CSL2)
should produce a weaker converging shock wave, since the
shocks travel a greater distance before colliding. Hence,
CSL1 should have a shorter focal length than CSL2 for the
same optical aperture (or conversely a larger optical aperture
for the same focal length).

Figure 4(a) shows a plot of optical aperture versus time
after collision for CSL2. This is obtained by imaging in the
shock plane of the CSL. We can see that the optical aperture
increases with time. The focal length also shows the same
trend [Fig. 4(b)]. Combining these two results, we obtain a
plot of focal length versus optical aperture [Fig. 4(¢)]. To
compare CSL2 with CSL1. we read off the optical aperture
for a known focal length, i.e.. 52 ¢cm. The lens diameter for
this length is 0.5 mm (2 mm for CSLI). It is clear that the
strength of the shocks on implosion is greater for CSLI than
for CSL2. For the same optical aperture. CSL1 has a shorter
focul length than CSL2.

We can conclude that for the unenclosed case. increasing
the electrical aperture must be accompanied by a correspond-
ing increase in input energy to maintain and in fact improve
the pertormance of the CSL.

B. Enclosing the CSL

Intuitively it would seem that by enclosing a CSL. re-
ducing the loss of energy. and confining the shock waves to
two dimensions rather than three. we should be able to pro-
duce stronger shock waves and hence better focusing (i.e..
shorter tocal lengths and larger optical apertures than with
the unenclosed lens). We therefore constructed CSL3 which
is an enclosed version of CSL2.

Figure S(a) shows the focal length versus optical aper-
ture for CSL2 and CSL3. The capucitor used was the same
for both (5 nF). hence the input energy was the same as well
(0.81 1. We also plot fnumber versus focal length for CSL2
and CSL3 [Fig. 3(b)].

The difference in the behavior of the two CSLs is strik-
ing. CSL3 has an optical aperture of 2.2 mm at 0.9 m focal
length while CSL2 has an aperture of 0.7 mm for the same
focal length. The f number of CSL3 is better than that of
CSL2 by a factor of =~ 3.

A quantitative assessment of how different types of en-
closure strengthen the shocks. will require further investiga-
tion. But clearly. this is a promising feature of colliding
shock lenses.

C. Varying the energy

Having established that the enclosed lens works well. we
now adopt it for the energy dependence studies.

Three different capacitor sizes are used with CSL3. They
are 5. 21, and 100 nF. These corresponded to energies of 0.3.
3. and 16 J. respectively. The energy increases by up to @
tactor of 20.

Figure 6(a)shows the focal length versus optical aperture
for CSL3 at the different energies. We achieve an optical
aperture of 4 mm at a focal length of 1.3 m for 100 o
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Plotting the f number versus focal length [Fig. 6(b)] we see
an improvement in the f number for 100 nF as compared to
the 5 and 21 nF.,

An attempt to use a 250 nF capacitor to increase the
input energy by a factor of 2.5, was not successful. Although
a cigar-shaped core did form, the quality of the focus was
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very poor indeed. We attribute this to the onset of turbulence.
known to occur when strong shocks collide.

D. Increasing the electrical diameter (enclosed CSL)

Increasing the electrical diameter alone will not result in
a larger optical aperture for similar focal lengths. This in-
crease must also be accompanied by an increase in the input
energy. There are two reasons for this. The first is that Mach
addition requires large included angles. The second is that
addition only occurs for strong shocks.

A larger electrical diameter results in weaker shock
waves colliding near the center. Circular symmetry may then
not be attained. We tried CSL4 with an eight electrode pair
configuration. As expected this does not form a good lens
since circular symmetry of the cigar is not achieved. Figure
7(a) shows the polygonal shock structure created by the col-

lisions in this configuration. Circular symmetry has not been
obtained.

E. Changing the number of electrodes

To regain circular symmetry in CSL4. eight more pairs
of electrodes were inserted converting it into a sixteen pair
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electrode CSL. The imploding shock waves achieve symme-
try early. This can be seen from the sequence of four pictures
showing the shocks after collision [Fig. 7(b)]. The circularly
symmetric nature of the shock structure is evident. So adding
more shocks was necessary for this large diameter CSL to
symmetrize and to form a lens.

Figure 8 shows the focal length versus optical aperture
for three different capacitor sizes viz. 21, 100, and 250 nF.
Since we now have larger radii shock waves forming an
axisymmetric cigar, we can expect a larger optical aperture.
But since the density gradients for the same input energy
may be weaker, we would expect to see an increase in the
focal length (see Fig. 9).

It is interesting to note that CSL3 becomes turbulent at
250 nF. If we could increase the input energy into this CSL,
it would perform better than CSL4. However every CSL has
an upper limit for input energy. CSL4 with sixteen pairs of
electrodes was very stable for the 250 nF capacitor. From
Fig. 8 we see that CSL4 at 250 nF has an optical aperture of
8.2 mm for a focal length of 1.3m. The focal spot at this
distance is shown in Fig. 10. It has a full width at half-

maximum of 200 gm. By gas lens standards. this is close to
diffraction limited.
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FIG. 7. ) Sequence of colliding shock images [1ar implosion: 1h) 6.2 ux:
(¢) 74 pa.and (d1 14 us after implosion] taken using CSL4 having an eight
pair electrode pair configuration and a charging capacitor ot 100 nf

Magnification=0.33. (b) Sequence of colliding shock inages [1i) 0.3 s b
1.5 s f¢) 3.9 ws, and (d) 4.3 s after implosion] tken using CSL4 with a
sixteen electrode pair contiguration and a chargme capacitor of 100 b
Magnification=0.3.

VI. CSL SCALING THEORY

An approximate scaling theory for CSLs can be derived
with the help of the following assumptions.
(1) All the electrical energy stored in the charging capaci-
tor is transferred to the shock waves by the arcs.

150
a a [¢]
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c
K3
@
O
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a 21nF
-s-theory

0 1 2 3 4 5 6 7 8 9
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FIG. 8. “ocal length vs optical aperture for CSL4 (sixteen electrode pairs!
using 21, 100, and 250 nF charging capacitors.
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(i1) A cerain fraction of this energy is contained in the
cas forming the lens. This fraction is represented by
the product of a “geometric energy factor™ G and a
“shock weakness factor™ G'.

(i1} For the purpose of calculating refraction. the actual
density profile. however complex, can be approxi-
mated by a cigar-shaped. high density region with a
constant refractive index gradient.

Uyl Assimple order of magnitude focal length calculation
Is acceptable.

Clearly. all these assumptions can be examined and re-
fined in great depth. But at this stage of development. we
find the following simple calculation useful.

Only a fraction W=G G'(1/2CV?) of the total energy in
the shocks is contained in the compressed gas of the lensing
region. where

3

6=5 %

and G’ is a fitted parameter. G is the arcal cross section that
the lens offers up to the spherically expanding shock front. It
1s obtained by assimilating the cigar to two cones, each of
height 7 and base radius r. Simple trignometry shows that the
half-length of the cigar is

FIG. 10. Focal spot at 1.3 m away from CSL4 (250 nF charging capacitor).
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In order to calculate the density of the gas in the lens, we
now assume that the lens is formed adiabatically, so that

1
W= —(pfvf_[)uvn)'

v— I
where the symbols have their usual meaning. The known
quantities in this expression are the volume of the lens V,
and the initial pressure: p,,. The volume of the lens is ap-
proximated to that of two cones:

4

Vio=—=mr{.

!

[SSY )

Taking y =1.4 and writing
ABEY \’]

one obtains
proo(paY 04w
; _lIZJ :PUV/"

The right-hand side is known and p, /p, may be obtained
eraphically.

Knowing the average density py = (V, V) p, in the
lens. the refractive index gradient may be calculated very
approximately as follows.

The refractive index of air is roughly n=1+3x10""p.
The uniform refractive index gradient is therefore (n—n,)/r
and a median ray traversing the lens /2 mm away from the
axis. is refracted by an angle

O=Iln—n)lr
and comes to a focus a distance f=(r/2)/6 away. (n, is the
refractive index of undisturbed air).
A little algebra yields the convenient formula
1.4
(p=1)°R"

-

f:

where f'is in meters and » and R in millimeters.

We now attempt to model our large lens, CSL4. This has
an electrical diameter of 8 cm, which yields an 8 mm GRIN
lens with a focal length of the order of one meter. If G' is
taken as unity, then the calculated focal length is too small.

This example and others. show that predicted focal
lengths are a little short for strong shocks and far too short
for weak. This was the reason for introducing the G’ correc-
tion factor. If we take G’ as 1 for the strong 250 nF shocks,
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3; for the weaker 100 nF, and 1 for the very weak 21 nF, we
obtain rough agreement. (See the calculated curves for Fig.
8). This simple theory and the scaling experiments described
in earlier sections lead us to construct a final enclosed CSL
with an electrical diameter of 26 cm powered by a half uF
capacitor charged to 17 kV. Our first experiments with this
lens showed it to be capable of generating a 1.5 cm aperture
Iens with a focal length of 1.5 m.

In this attempt to determine whether the aperture of the
CSL can be scaled up, we find the following.

(1) Enclosing the lens improves its performance.

(2) Increasing the input energy also increases the aperture
and decreases the focal length. However there is an up-
per limit to the amount of energy one can put into the
shocks. The small lens (CSL3) with eight pairs of elec-
trodes becomes unstable with the 250 nF capacitor
whereas with more electrodes and a larger electrical ap-
erture, CSL4 (sixtecn electrode pairs) is very stable.

(3) Simply scaling up the electrical diameter does not nec-
essarily increase the lens aperture. There has to be an
accompanying increase in energy and perhaps more im-
portant, enough shocks for circular symmetry to be at-
tained before tmplosion. The smaller CSLs (2 and 3)
worked with eight sets of electrodes whereas the large
CSL (CSL4) needs more electrodes to achieve svimme-
.
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In conclusion, we have shown that the colliding shock
lens can be scaled up to useful apertures and how to do so.
We have derived a simple CSL scaling law.
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