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Abstract

This thesis investigates ocean circulation which is the result of either wind-wave interactions or
density variations. Part I of this study focuses on wind-wave interactions and Part II on the

processes arising from density variations.

In Part I shallow water equations are used for a rotating layer of fluid to examine the propagation
properties of Rossby waves arising from the latitudinal variation in the vertical component
of the Coriolis force, known as the beta-effect, which is closely related to the conservation of
potential vorticity. The dispersion relation and the anisotropic properties of these waves are best
understood using the Longuet-Higgins wave normal curves in the wave number space at a fixed
frequency. Longuet-Higgins showed that the phase velocity is a circle in k—space with center
displaced westward along the k,—axis with center (k;, ky) = (—f/2w,0) and with diameter 5/w.
The group velocity is examined and it is shown that the group velocity is an ellipse, whose center
is displaced westward and permits eastward and westward propagation. Furthermore it is shown
that the topographic Rossby wave has wave normal diagrams that resemble the Rossby wave
on a beta plane. However, in the case of the topographic Rossby wave, the phase velocity is a

circle displaced northwards. The group velocity is also an ellipse rotated northwards.

The Rossby wave patterns in zonal and meridional winds are then investigated. Using the
local dispersion relation in its wave normal form, the geometry thereof plays a crucial role in
illuminating the radiation patterns. In the presence of a wind or current, it is shown that the
Longuet-Higgins off-set circle of a Rossby wave on a beta plane is distorted by the Doppler shift
frequency into an ovoid shaped curve and a blocking line with an eastward indentation. The
radiation patterns generated by a compact source were calculated using the method of stationary
phase and were illuminated through a series of geometric figures given by the reciprocal polar to
the various types of wave number curves. Some of these radiation patterns resemble the Kelvin

ship wave or arise in different forms which we have not seen in literature before.

Part II of the study focuses on cross diffusive effects on thermohaline convection in a horizontal
rotating fluid in which the temperature and salinity gradients are vertically varying. In many
studies these cross diffusive parameters, the Soret and Dufour parameters, are ignored due
to their smaller magnitude in relation to the Fourier and Fick laws. The Soret and Dufour
effects are responsible for mass and heat transport essential for ocean circulation. The linear
stability theory and method of normal modes reveal that the Soret parameter delays stationary
convection, the Dufour parameter has minimal effect and rotation has a stabilizing effect on
stationary convection.

Oscillatory convection on the other hand is determined by the interaction of six dimensionless
variables, the Prandtl number, the Lewis number, the salinity Rayleigh number, Dufour and
Soret parameters and the Taylor number as we measure the critical thermal Rayleigh number

for the onset of convection. Rotation and the Soret parameters have stabilizing effects on oscilla-

v



tory convection, whereas the Dufour parameter enhances convection. Salinity delays oscillatory
convection and the Lewis number has a stabilizing effect.

A further consideration is taken into weakly nonlinear stability analysis using Fourier modes
which revealed several bifurcations as the six nondimensional parameters, the Soret and Dufour
parameters, the parameters measuring the Prandtl number, the Lewis number, the Rayleigh
number and the Taylor number, are varied. The effect of Soret and Dufour parameters on heat
and mass transports is then examined. It has been shown that the increase in the Dufour pa-

rameter enhances heat transport and the Soret parameter affects the mass transport positively.
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Chapter 1

Background and Motivation

1.1 Introduction

Geophysical fluid dynamics emerged as a field of study when oceanographers and mete-
orologists began modelling complex atmospheric and oceanic flows. More recently, with
heightened concerns regarding climate change and weather variability, better understand-
ing of the physics behind global warming and cooling has become necessary. For example,
ocean circulation is induced by either wind-wave interactions or mixing processes, which
in turn influence atmospheric weather and climatic conditions. Problems in geophysical
fluid dynamics primarily concern fluid motion with either or both of rotation and den-
sity stratification (Cushman-Roisin and Beckers, 2011). This thesis makes an attempt to
model fluids associated with oceanic and atmospheric circulation. This study presents
research focusing on these two main distinguishing characteristics of geophysical fluid dy-
namics. This study will consider types of fluid motion that are influenced by rotation,

first, as various forms of wave motions and then those that arise in mixing processes.

In the remainder of this chapter, the theoretical background to the field of study is first
outlined and motivation for this research is provided. The thesis objectives are then

outlined and the structure of the remainder of the thesis is described.

1.2 Background and Motivation for the study

This study concerns three main effects: rotational aspects, wave motion and mixing of
strata. These are described in turn below.

In a study concerning large-scale fluids, the earth’s rotation cannot be ignored. Thus,



one can expect the relevant equations of motion to have two acceleration terms:- one
related to the centrifugal force and another for the Coriolis acceleration. The former
does not play a part in geophysical fluids, but the Coriolis acceleration is an important
factor. Furthermore, rotating homogeneous fluids have a strong tendency to be vertically
rigid which is especially true with rapid rotation (Cushman-Roisin and Beckers, 2011).
However, in large-scale fluids such as oceans and atmospheres, where rotation is slow, the

fluids tend to still maintain their vertical structure.

Another large-scale effect of stratification arises when fluids have temperature gradients or
different densities. When the heavier fluid is on top and the lighter fluid is at the bottom,
stratification is considered to be stable. If the fluid is subsequently disturbed, two physical
responses may occur; their influences depending on the degree of perturbation. With small
perturbations, the fluid will maintain horizontal motion in the form of internal waves.
However, if the perturbation is large, the heavier fluid may sink due to gravitational force
and so the lighter fluid will rise, thereby experiencing a vertical motion. In some cases,
even with no external perturbations, the fluid will begin to rearrange itself, simply due
to buoyancy effects. The sinking of the heavier fluid and a rising of a lighter fluid results
in mixing and convection. This process will also be discussed in the second part of the

study.

There are several wave modes found in the ocean, including sound waves, gravity waves
(surface and internal) waves, Kelvin waves, inertia-gravity (or Poincaré) waves and Rossby
(or planetary) waves. Kelvin waves, Poincaré waves and Rossby waves exist due to the
Earth’s rotation. Stratification is the cause of internal waves and it is also important for
Poincaré waves. As expected, gravity waves are generated by gravitational force. In this
study we will look closely at propagation of Rossby waves and consider their interaction

with zonal and meridional winds.

Rossby waves were first theorized by meteorologist Carl-Gustave Rossby (1939) and are
a characteristic feature of oceans and atmospheres. They are thus important in weather
and climate science. For example, in the ocean, they play a critical role in the El Nino
effect interacting with other forces to cause warm water masses to move back and forth
across the tropical Pacific Ocean. In this way, they are one of the major ways that the
El Nino signal is transmitted across the oceans (Philander, 1990). In the atmosphere,
Rossby waves are responsible for the transport of momentum, energy and water vapour
and so they are an integral part of global circulation. Rossby waves have westward phase
propagation, but have group velocity that may be either eastward or westward depending

on their wavelength. To elaborate, long wavelength Rossby waves travel faster than



those with short wavelengths, and transport energy westward, whereas those with short
wavelength transport energy eastward. In the atmosphere, Rossby waves are excited in
the lower troposphere and so are forced to propagate vertically. Upwardly propagating
Rossby waves are believed to play an important role in phases of sudden stratospheric
warming (Holton and Hakim, 2013).

Meridionally propagating Rossby waves carry angular momentum between the tropics and
middle latitudes, and so are responsible for numerous climatic/weather effects (Holton and
Hakim, 2013). Specifically, in the mid-latitudes, they influence much of weather by their
effect on the meandering Jet Stream. Rossby waves are also important in the Western
Boundaries, for example, the Gulf Stream, as the long wavelength waves propagate west-
ward. When they reach these boundaries they are reflected eastward as short wavelength
Rossby waves, which are slower (Killworth and McIntyre, 1985). There is thus a conges-
tion at the boundaries when reflected slow short wavelength Rossby waves compete with

incoming fast long wavelength ones.

Furthermore, when Rossby waves interact with winds, they may either be absorbed or
reflected (Killworth and McIntyre, 1985). This is most notable when they are slow moving,
and it may delay weather movements or influence weather predictability. Specifically, if
the waves are absorbed, the weather condition may not happen at the predicted time
because energy is not transported as expected. Alternatively, if they are reflected, the
Rossby waves may change the course of weather patterns. Therefore these waves are
very important in the study of weather and climate. In this thesis, the study concerns
the interaction of Rossby waves with zonal and meridional winds. This is demonstrated

geometrically through wave normal curves and radiation patterns.

Geophysical fluids are generally weakly stratified. In this regard, density variations are
sufficient to drive or affect motion, but are nonetheless relatively small compared to the
reference density of the fluid. Density variations may arise from temperature or salinity
differences. Temperature differences occur because the oceans are heated from either
above, by radiation, or below, due to geothermal heating. When heated from below,
the fluid at the bottom will be less dense than the upper fluid. The fluid may then
begin to redistribute itself but its viscosity will inhibit this rearrangement. Thus for a
certain temperature distribution the system may be maintained until it reaches a critical
temperature at which the system becomes unstable due to buoyancy forces becoming
dominant. This process has been well established by experimental results of Bénard
and theoretical work of Rayleigh, and has subsequently been explained by many authors

(for example, Chandrasekhar (1961)). Hence it is often referred to as Rayleigh-Bénard



convection or simply thermal convection.

In geophysics, wave motion may arise from instability due to density variations as follows:
If, due to some initial perturbation, a fluid particle is displaced upward, it will now be
heavier than its surroundings, and so it experiences a downward force due to gravity. In
falling it acquires a vertical velocity. Upon reaching its original level, the particle’s inertia
causes it to travel further downward where it will be surrounded by heavier fluid (Holton
& Hakim, 2013). The fluid parcel, now buoyant, is propelled upwards and oscillations
persist about the equilibrium level. The quantity

Nz 99 (1.1)
pdz

where p is the fluid density, g is the acceleration and z is the vertical direction; is defined
as the stratification frequency, commonly known as the Brunt-Viisiila frequency after
the scientists who highlighted its importance in stratified fluids. If N? > 0, then we
have top-heavy configuration, and the solution exhibits exponential growth, a sure sign of
instability. If however, the lighter fluid lies above the heavier fluid, N? < 0, then we have
stability (Holton and Hakim, 2013). If a fluid is permanently destabilized for example by
heating from below or cooling from above, the fluid will remain in constant agitation, a
process called convection.
In this thesis the theoretical work by Rayleigh using hydrodynamic equations is followed
to study thermal convection as demonstrated in Chandrasekhar (1961). Rayleigh showed
that at certain critical temperature the fluid begins to be unstable and devised a nondi-
mensional number, called the Rayleigh number, to measure the strength of the buoyancy

against the viscosity, given as

R = 90ATd (1.2)
VK

where « is the thermal expansion coefficient, ¢ is the gravitational acceleration, d is the
fluid depth, v is the fluid viscosity and « is the thermal diffusion coefficient. He determined
that if R > R, then there is instability; if R < R. then the system is stable and it is at
equilibrium when R = R,.
When there are two vertical gradients involved and affecting the density in opposing
directions, and causing different rates of diffusion the process is called double-diffusive
convection. The study of double-diffusive convection is of practical importance in many
fields of study involving convective heat and mass transfer, including oceanography, as-
trophysics, geophysics, geology, atmospheric physics, chemical engineering. When the

two vertical gradients are salt and temperature, the convection is called thermohaline



(thermo-temperature, haline- salinity) convection. We shall consider this mechanism in
the latter part of the study.

Two fundamental cases of thermohaline convection were reported in the 1960’s. The
first study, by Stern (1960) concentrated on the case when the temperature gradient was
stabilizing and the salt gradient destabilizing, in other words, when salty warm water
lies above cold and salty waters, a bottom-heavy configuration. Here, Stern noted the
general properties of the motion now commonly known as ‘salt fingers’. These appear as
a close-packed array of upwards and downwards flowing convection cells, which exchange
heat laterally but diffuse little salt. The result is an advective transport of salt and, to a
lesser extent, heat, in the vertical. Typical cell widths in the ocean are 2-3 cm (Schmitt,
2001).

Veronis (1965) studied the opposite situation that occurs when the temperature gradient
is destabilizing and salinity is stabilizing, in other words, the top-heavy configuration.
The physics thereof is different from the salt finger case. In the top-heavy case, as the
cold fresh water rises, it will become cold salty water and thus more dense than when it
started moving upward. Thus instead of accelerating upward as in the salt-finger case, it is
actually driven back down with greater force than it took to initially displace it (Schmitt,
2001). This is termed ‘over-stability’ and leads to higher amplitude oscillations. In the
case of double-diffusive convection the measure of instability depends on the concentration

(salinity) Rayleigh number as given by

_ gasAS

VRg

Rs d*. (1.3)
where ag is the haline contraction coefficient, ¢ is the gravitational acceleration, d is the
fluid depth, v is the fluid viscosity and kg is the haline diffusion coefficient. There is
a plethora of studies, both experimental and theoretical in many different settings, in
the literature concerning double-diffusive convection, for example, Huppert and Turner
(1981), Turner (1973, 1974, 1985) and the citations therein. In this study we continue
with the study of thermohaline convection using linear stability and weakly nonlinear
stability theory and consider both stationary convection and oscillatory convection. We

consider the case when heating is from below.

Double diffusive convection in the ocean, in particular, thermohaline convection is likened
to a great conveyor belt (Burroughs, 2007) as it transports heat poleward and brings
nutrient-rich waters to the surface. The most vigorous conveyor belt is in the Atlantic
ocean where it carries warm water through the tropics and subtropics toward the north,

and the cold dense polar water is carried southward through the Atlantic (Burroughs,



2007). Hence double diffusive convection is essential in heat and mass transports. How-
ever, the linearised equations of motion are not sufficient for the analysis of heat and mass

transports. We will thus use the nonlinear analysis.

A further consideration is the rotational effect on thermohaline convection. Due to large-
scale motions as in oceans and atmospheres being affected by ambient rotation of the
earth, these effects should be included. It is commonly known in literature (Cushman-
Roisin and Beckers, 2011) that rotation induces vertical rigidity in the fluid, especially
when rotation is fast. However, in large-scale fluids, such as oceans and atmospheres,
rotation is slow. Nevertheless due to their large scale, oceans and atmospheres are still
affected by rotation.
In the case of Rayleigh-Bénard convection, Chandrasekhar (1961) and others showed that
the Rayleigh number depends on the rotation parameter, given by the Taylor number
T = (1.4)

2

where (2 is the angular velocity of the Earth. Furthermore, rotation has a stabilizing
effect and has a tendency to induce a component of vorticity. An extensive study on
rotational effects on double-diffusive convection has been conducted by Barnejee et al.
(1983, 1988, 1995). They showed that for the Veronis type of configuration, there will
be no oscillatory convection for certain values of the salinity Rayleigh number Rg. In
addition, Tagare et al. (2007) showed that rotation has a stabilizing effect. In contrast,
there are some studies that include Sharma et al. (2001) and more recently, Dhiman
and Goyal (2015) that showed rotation to be causing oscillatory convection and therefore
destabilizing. So we consider here the rotational influence on thermohaline convection as
well as stability analysis. Besides the effect of salinity Rayleigh number on convection,
we also here consider the rotational influence on nonlinear stability analysis and the

bifurcation patterns thereof.

In the situation above, energy flux due to temperature gradient and energy flux due to
mass concentration gradient are represented by the Soret and Dufour parameters, re-
spectively. However, in many studies, these two factors are ignored due to their smallness
compared to Fick’s law of diffusion. Nevertheless, it has been shown by Awad and Sibanda
(2010), Awad et al. (2010), Rudraiah and Siddeshwar (1998), Narayana et al. (2013),
Malashetty and Biradar (2011) that despite their relative size, cross-diffusive effects can
be significant. We note in particular, the recent study by Goyal and Garg (2015) which
concluded that the effect of cross-diffusive parameters on double-diffusive convection is so

strong that it cannot be ignored. In another study, Dhiman and Goyal (2015) considered



the Soret effect on double-diffusive convection in a rotating layer and they found that the
influence of Soret parameter is significant. However, both these studies used only linear
stability analysis. We contend that the significance of cross-diffusive factors, that is, the
Soret and Dufour parameters on the system, may be better studied by nonlinear analysis.
Therefore, besides the use of linear stability analysis to study them, in this study we
extend work on cross diffusion effects on double-diffusive convection in a rotating layer to
also include weakly nonlinear stability analysis.

In addition, the effect of cross diffusive terms on heat and mass transports is considered.
Thermohaline convection as seen as a conveyor belt transports heat polewards and brings
nutrient-rich deep waters to the surface. It is thus relevant to explore how these cross
diffusive terms act on heat and mass transports. To this end, the effect of Soret and
Dufour parameters on Nusselt and Sherwood numbers which measure heat and mass
transports, respectively, are investigated.

In summary, it has been shown that further investigation is needed with regard to some
aspects of thermohaline convection. These are the effects of cross-diffusive terms and the

rotational effects thereby when weakly nonlinear stability analysis is employed.

1.3 Thesis objectives

In response to the deficiencies in the literature identified above, this thesis will investigate

the following effects:

1. Further propagation properties of Rossby waves on a beta-plane.
2. Interaction of Rossby waves with zonal and meridional winds.

3. Soret and Dufour effects on thermohaline convection in rotating fluids.

1.4 Structure of the thesis

In essence, this thesis consists of two parts. Part I (Chapters 2 to 4) deals with wind-wave
interactions through the propagation properties of Rossby waves, which are important in
the understanding of weather patterns. In this part the types of waves relevant to ocean
circulation are investigated; particularly those resulting from the latitudinal variations
of the Coriolis force, the Rossby waves. In Chapter 2, the basic principles governing

the propagation properties of waves in geophysical fluid dynamics are investigated and



it is shown how they arise from the shallow water equations. In Chapter 3, by means
of a published paper, further propagation properties of Rossby waves not elucidated in
literature before, are shown. Chapter 4 of the study, which also consists of a published
paper, explores the interaction of Rossby waves with zonal and meridional winds. Part
IT (Chapters 5 and 6) of the thesis focuses on double-diffusive convection, in particular
thermohaline convection. In Chapter 5, the focus is on thermohaline convection and
analysis of literature thereby to set a tone for the next chapter. Chapter 6, which is
formulated as a third research paper, focuses on the effect of Soret and Dufour parameters
on thermohaline convection in rotating winds. This third paper, has been submitted for
peer review. In Chapter 7, we give our overall conclusions and make suggestions for

further research.
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Wind-Wave Interaction
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Chapter 2

Introduction

Rotating planetary atmospheres and oceans permit different types of wave modes as
discussed in many geophysical literature (for example, Pedlosky, 1987; Gill, 1982; Vallis,
2006 Cushman-Roisin and Beckers, 2011). It is also important to note that waves in
oceans and atmospheres do interact with each other and with the winds (Dickinson, 1968;
McKenzie and Webb, 2015). It is therefore necessary to study the different types of waves,
and the mechanisms that generate them, and how they propagate. Some examples of such
waves are gravity waves (surface and internal), the Kelvin wave (coastal and equatorial),
inertia-gravity or Poincaré waves, Rossby (topographic and equatorial) waves. These
waves may have gravity, rotation or stratification, or a combination of these, providing
restoring force. For example, inertia- gravity waves, Kelvin waves and Rossby waves
depend on the Earth’s rotation for their existence. More specifically, Rossby waves depend
on the latitudinal variation of the Coriolis force. Inertia-gravity waves depend on the

rotation as well as stratification.

Important wave characteristics involve the speed and direction of wave propagation. An-
other salient feature is their energy transport which influences how they contribute to
weather and climatic conditions. Wave activity around the equator must be considered
separately because of the different physics underlying waves in that region. Specific dif-
ferences and similarities exist among oceanic and atmospheric waves which include their
vorticity and inertial properties. In this regard, Rossby waves are characterised by the con-
servation of potential vorticity; inertia-gravity waves and Kelvin waves carry no potential
vorticity. To be specific, where w is the wave frequency, N the Brunt-Vaisaila frequency,
and f is the Coriolis parameter; inertia-gravity waves are super-inertial (w > f) but
(w < N). By contrast, Kelvin waves are sub-inertial (w < f). Rossby waves are also

sub-inertial but propagate at lower frequencies (w < f). Rossby waves arise due to the

11



latitudinal variation of the vertical Coriolis frequency, as will be shown in Section 2.1.1.

In the remainder of this chapter, we will first discuss what makes rotation, and specifically
the Coriolis force, important in the study of ocean and atmosphere dynamics. We then
focus on how rotation relates to some wave types. Finally, we explore shallow water
equations relevant to wave dynamics in the ocean and atmosphere, with the intention of
deriving suitable wave equations. Shallow water equations will then enable us, in later
chapters, to further explore the propagation properties of the waves and hence study their
effect on weather and climate. The main goal of this chapter is, thus, to set a tone for the
next chapter wherein new developments in the study of propagation properties of Rossby

waves are described.

Sound waves for example, depend on compressibility for existence. Other interesting
characteristics involve the speed and direction of wave propagation. One other salient
feature we will discuss is their energy transport and how they contribute to weather and
climatic conditions. The study will not discuss wave activity around the equator, called
equatorial waves, as the underlying physics is different at the equator. Sound waves due
to their high speed do not contribute to geophysical fluid dynamics. Inertia-gravity waves,
Kelvin and planetary waves depend on the Earth’s rotation for their existence. Inertia-
gravity waves also depend on stratification. Whereas planetary waves are characterised by
the conservation of potential vorticity, Poincaré waves and Kelvin waves carry no potential
vorticity. It is generally believed in literature (e.g. Pedlosky, 1987) that Poincaré waves or
inertial waves are super-inertial (w > f) but (w < N) where w is the wave frequency, N is
the Brunt-Vaisaila (buoyancy or stratification) frequency and f is the Coriolis parameter.
Kelvin waves are sub-inertial (w < f). Rossby waves are sub-inertial and propagate at
lower frequencies (w < f). They arise because of the beta-effect describing the latitudinal

variation of the vertical Coriolis frequency.

Below, there is first a discussion on what makes rotation and the Coriolis force important
in the study of ocean and atmosphere dynamics. The concept of stratification is however
not explained here, but in the latter part of the study, even as other waves, like Poincaré
and internal waves, depend on stratification for existence. Poincaré waves and internal
waves are not the focus of our study. Furthermore, although the notion of vorticity is
associated with the propagation properties of Rossby waves, that discussion is not entered
into here as it will not be used in subsequent studies on Rossby wave propagation. Shallow
water equations relevant to wave dynamics in the ocean and atmosphere are explored with
the intention of deriving Rossby wave equations. These equations are useful in further

exploring the propagation properties of Rossby waves and hence the effect of Rossby waves
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in weather and climate studies.

The main goal of this chapter is to set a tone for the next chapter wherein new develop-

ments are discussed in the study of propagation properties of Rossby waves.

2.1 Importance of Rotation

There are many studies in fluid dynamics in which rotation can be treated as an in-
finitesmal disturbance and can be ignored. However, the discussion below focuses on the
conditions for which rotation is important and justify its inclusion in the study of both

the oceanic waves and the mixing processes such as convection.

For a fluid, the ambient rotation rate, denoted by €2 is defined in Cushman-Roisin and

Beckers (2011) as
27 radians

Q= (2.1)

time of one revolution’

If fluid motions evolve on a timescale comparable to or longer than the time of one
rotation, then the fluid will be affected by the ambient rotation. We use the dimensionless

quantity

time of one revolution  27/Q 27
w= = =

= = a7 2.2
motion time scale T QT’ (2:2)

where T" denotes the time scale of the flow. If w is of the order of or less than unity
(w < 1), rotation effects should be considered (Cushman-Roisin and Beckers, 2011). For
the Earth, this occurs when T' > 24 hours. Motions with shorter timescales w > 1 but
sufficiently large spatial extent could also be influenced by rotation. Furthermore, if a
particle travelling at the speed U covers the distance L in a time longer than or comparable
to a rotating period, it is expected that the trajectory will be influenced by the ambient

rotation, so it is necessary to find

time of one revolution _ 2n/Q 27U

_ = = . 2.3
‘ time taken by particle to cover distance L at speed U~ L/U QL (23)

If e <1 we conclude that rotation is important.

From the analysis above, it can be seen that rotation is important in geophysical flows.
This is because ocean currents have speed of about 10 cm/s and flowing over a horizontal
distance of about 10 km. Furthermore, a wind blowing at 10 m/s in a 1000 km wide
anticyclonic formation will be similarly important. In both these cases, the criterion

€ <1 1is met.
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2.1.1 The Coriolis force

Relative to the rotating earth, a body experiences an inertial (or apparent) force called
the Coriolis force, which was first hypothesized by the French mathematician Gustave-
Gaspard Coriolis in 1835. Due to its importance, this force has been discussed in many
geophysical fluid publications (Gill, 1982; Pedlosky 1987, 2010; Vallis 2006, Cushman-
Roisin and Beckers 2011).

The Coriolis force, f, is equal to 22 x V| where () is the earth’s angular velocity and V'
is the relative velocity of the air (Vallis, 2006). The Coriolis force is nonzero only if the
body is in motion, and is important only if the body travels for a significant period of
time. Furthermore, the Coriolis force is larger for larger velocities. Thus, for winds in
the atmosphere’s Jet Stream, where the timescales of motion are several days to several
weeks, Earth’s vorticity about the local vertical and the y-component of the parameter f
is equal to the component of the earth’s vorticity about the local vertical and, at latitude
¢, is 2Qsin ¢. It deflects a moving body to the right in the Northern hemisphere and to
the left in the Southern hemisphere. It has its largest deflecting effect at the poles, and
is least at the equator.

If the coordinate y is directed northward and is measured from a reference latitude ¢, (say,
a latitude somewhere in the middle of the wave under consideration) then ¢ = ¢y + y/a,
where a is the Earth’s radius (6371 km). Considering y/a as a small perturbation, the

Coriolis parameter f can be expanded around ¢ = ¢, using a Taylor series

af 0f  A¢?
f=rl+ 8—¢|¢0A¢+ 8752|¢OT T
= 20 sin ¢y + 22 cos do(p — o) + O(AP?). (2.4)
Retaining only the first two terms, we write
f = fo+ Bov, (2.5)
wherein 20 cos &
: cos
fO = 2()sin ¢07 BO - —07 Yy = CLAQb, (26)

where a is the radius of the Earth. This is called the beta-plane approximation. Typical
mid-latitude values on earth are fy = 8 x 10™®m~! and By = 2 x 107" 'm~!s7!. The
Cartesian framework where the beta term is not retained is called the f-plane. Rigorous
justification of the beta-plane can be found in Pedlosky (1987).
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The beta-plane representation is validated at mid-latitudes only if the Byy term is small
compared with the leading f, term. For the motion’s meridional length scale L, this
implies

BolL

6:T<<1 (2.7)

where the dimensionless ratio S can be called the planetary number.

At the equator f = 0, that is, the Coriolis force vanishes at ¢ = 0°. Thus it is necessary
to think of the equatorial beta-plane approximation f = fy. This equatorial beta-plane
requires a geostrophic balance between eastward velocity and the north-south pressure

gradient.

The Coriolis parameter f is a function of latitude and changes sign at the equator, and
1

it has units of sec™".
f =2Qsin ¢,
fv = 2Q cos ¢. (2.8)

Whereas f is called the Coriolis parameter, f, has no traditional name is referred to as
reciprocal Coriolis parameter (Cushman-Roisin and Beckers (2011)). In the Northern
Hemisphere, f > 0, and the Coriolis force causes a moving body to appear to move to the
right of its direction of motion. In The Southern Hemisphere, f < 0, and causes the body
to move to the left. At the equator fy = 0 and we have f = Py, this is the equatorial
beta-plane approximation. f, is positive in both hemispheres and vanishes at the poles.
Eastward traveling objects can be deflected upwards (feel lighter), while the westward
traveling objects will be deflected downwards (feel heavier). This aspect of the Coriolis
force is greatest near the equator. In addition objects travelling upwards or downwards
will be deflected to the west or east respectively. This effect is also greatest near the

equator.

The Coriolis force is non-zero only if the body is in motion, and is important only if
the body travels for a significant period of time. The Coriolis force is larger for larger
velocities as well. For winds in the atmosphere’s Jet Stream, the timescales of motion is
several days to several weeks, so Earth’s rotation is very important and the winds do not
blow from high to low pressure. The same holds true in the ocean where currents last for

weeks or years and are strongly influenced by the Coriolis force.

For large-scale ocean currents, and to some extent winds, the vertical velocity is much
weaker than the horizontal velocity. Certainly, the distance that a water parcel can move

in the vertical direction is much more limited than in the horizontal direction because of
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both the differences in depth and width of the ocean and because of the ocean’s stratifi-
cation. Therefore, the Coriolis effects act mostly on the horizontal velocities and not on

the vertical ones.

2.2 Shallow water equations in rotating fluids

The shallow water theory has been well discussed by Gill (1982), Pedlosky (1987), Val-
lis (2006), McWilliams (2006) and Cushman-Roisin and Beckers (2011). Shallow water
equations represent the flow in a fluid layer with uniform density, pg, when the horizontal
velocity is constant with depth. This is most plausible where the horizontal scale, L is far
larger than the mean depth H, that is, H/L < 1. Thus they are relevant to the modelling
of oceanic and atmospheric fluid motions. Below is a discussion on shallow water equa-
tions and their governing laws. Furthermore, waves in the oceans and atmospheres, such
as surface gravity waves, Kelvin waves, Poincaré waves are mentioned and a discussion is
carried away on Rossby waves associated with shallow water equations. Surface gravity
waves, Kelvin waves and Poincaré waves are not a focus of this study but are mentioned
for completeness as they surface when discussing shallow water equations. Shallow water
equations were also discussed by Paldor et al. (2007) where they formulated a new linear
theory for the three types of linear waves of the shallow water equations on the S-plane.
The intention here is not to develop new theory for shallow water equations but to re-
visit them as they are relevant to the work on Rossby waves in the next two chapters.
We first proceed with nonlinear shallow water equations through to linear, inviscid and

homogeneous equations relevant to our study.

2.2.1 Nonlinear flows

Shallow water equations consists of momentum equations and the mass continuity equa-
tion. Their derivations arise from the Newton’s second law
Dv

“= e

(2.9)

which is the material acceleration, and D/Dt is the advective or material derivative given
by
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By Newton’s law applied to a material element of fluid

- Dv Dv
F=mad=m— = pdxdydz— 2.10
> F=mi m—r = pdedydz—r, (2.10)
where p is the density of the fluid. From Cauchy’s equation
v L o
Py =PItV 0, (2.11)
where
= 9.1+ 9yJ + gk,
is the gravity vector and o;; is the stress tensor.
The viscuous stress tensor is given by
ou ou v ou ow
Ter Toy Tex 2015, K <a_y + %) w(ge+92)
v ou v ov Jw
Tij = Tyz Tyy Tyz = |u <% —+ 8_y> 2“8_31 M (a —+ 8_y> . (212)
ow ou ow ov ow
few Tay Taz n(Ge +5:) n <8_y * £> 215,
But for moving fluids
Ogx ny Ozz -P 0 0 Tex 7_a:y Tez
Oij = |0y Oyy Oyz| =1 0 =P 0 | + |Tye Tyy Tyz| - (2.13)
Ozx Uzy 02z 0 0 —P Tz sz Tzz

We need to express the stress tensor o;; in terms of density, pressure and velocity. The
pressure force is given by .

%:+(17-V)17:—%+F’ (2.14)
where F’ represents viscuous and body forces per unit mass, and v is the velocity vector
U = (u,v,w) in the (z,y, z) direction.

Viscosity is the force due to internal motion of molecules (Vallis, 2006). In most literature
viscosity is expressed as puVZ2v where p is the viscosity. With this term momentum

equations then become

Dv

1
o T (V- V)T = —EVp+1/V217+ B, (2.15)

where v = u/p is the kinematic viscosity and Fj, represents body forces (per unit mass)
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such as gravity g. The inviscid flow assumption means that the shear and the stresses in
the force field are negligible. In effect, it also means that the boundary layer is assumed

to be very thin or of no significance to the geometry of the body fluid.

The vertical component, parallel to the gravitational force, g, of the momentum equation

18

Dw 10p
- _ Xz 2.16
where w is the vertical component of the velocity vector and § = —gk. If the fluid is

static, the gravitational term is balanced by the pressure term, thus

Ip

— = —pg. 2.17

5, = P9 (2.17)
This relation is known as the hydrostatic balance and will be a good approximation

provided vertical accelerations Dw/Dt are smaller compared to gravity. In the ocean
Dw/ Dt is small compared to gravity (Vallis, 2006).

The conservation of mass is described by the equation

Dv
— 4+ oV -7 =0. 2.18
o+ (2.18)
Equations (2.15) and (2.18) are both nonlinear due to the product of dynamic variables
terms in the material derivative. These equations are unfortunately not sufficient to close
the dynamical system. The thermodynamic equations and the equation of state need to

also be included.

Shallow water equations describe motion of a homogeneous, inviscid and incompressible
fluid.

2.2.2 Compressible and incompressible Flow

Incompressible flows are flows in which the density vary so little that they have a negligible
effect on the mass balance
op <1, (2.19)
Po
where dp is the variation in density and pg is the mean density. Therefore it becomes a
good approximation to consider the density constant. Then the mass continuity equation
Dp .

— U =0 2.20
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reduces to
V-17=0, (2.21)

preserving the volume of each material fluid element. However, this equation is not
applicable to fluid flows governed by the equation of state which relates density and
pressure. But for incompressible flows, density can be taken as constant. Furthermore,
incompressibility does not mean that we should ignore the density variations in momentum

equations, it is only in the mass continuity equation where the density is neglected.

2.2.3 Effects of rotation and stratification

Momentum equations in a rotating frame for the shallow water equations governing in-
compressible, inviscid, homogeneous flows are given by

Dv 1

— +20xv=—-Vp—-V 2.22

D V=V (2.22)
where the centrifugal acceleration is incorporated in the velocity potential ¢. In the

f-plane momentum equations are given by

Dv 10p
Dw 10p
i 2.2

where fy = 22 sin 6.

For small variations in latitude, that is, in the beta-plane, momentum equations become

Du 10p

- - _-r 2.2
Dt Jv p Ox (2.26)
Dv 10p
= == 2.2
Dt +fu p Oy (2.27)
Dw 10p
i por " (228)

2.2.4 Linear wave dynamics

The governing equations in the previous section are essentially nonlinear; consequently,
their linearisation can proceed only by imposing restrictions on the flows under consider-
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ation. We restrict ourselves to low-Rossby-number situations

~ar

where L is the length scale. This is usually accomplished by restricting attention to
relatively weak flows, large scale or fast rotation. The terms expressing the local time
rate of change of the velocity du/0t and Jv/0t are linear and are retained here in order
to permit the investigation of unsteady flows. Thus temporal Rossby number is assumed

to be on the order of unity
1

- ~1
QT

Ry,

Y

also the scale for the wave speed
L
c T >,

where T is the timescale.

We restrict ourselves to homogeneous, incompressible, inviscid flows, for which the shallow

water model is adequate. The horizontal momentum reduce to

ou on
ov on
N + fu= —ga—y, (2.30)

where 7 = h — H is the surface displacement, with h the total depth, H mean fluid

thickness. The vertical component is absent for the flow is vertically homogeneous.

Shallow water waves Shallow water equations are based on several approximations.
First, incompressible approximation that relates the mass conservation to the smallness
of the variations in density. Second, is the hydrostatic approximation expressed in the

equation
dp
az - gp’

where p is the pressure, p is the fluid density and g is the gravitational acceleration.

Under the influence of rotation, the equations governing the linear, inviscid and homoge-
neous fluid are the shallow water equations which have been discussed in many geophysical
fluid dynamics literature, including a publication by Paldor et al. (2007). The governing

equations on the f-plane about a state of rest are given by the following conservation of
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momentum and mass continuity equations:

' ou _ On
r — momentum : 5 V=95, (2.31a)
' v _On
y — momentum : o + fu= ga—y, (2.31b)
continuity : % +H (% + g—:) =0, (2.31c)

where f > 0 is the Coriolis parameter, g is the gravitational acceleration, v and v are the
velocity components in the x— and y— directions, and 7 is the surface displacement equal
to n = h — H the total depth h minus the mean fluid thickness H. The z momentum

component is absent as the fluid is vertically homogeneous.

The operations % div on the momentum equations plus f times the z component of the
curl of the horizontal momentum, and the use of the continuity equation to eliminate
div ¢ in favour of —%, and the horizontal momentum to eliminate ¢ in terms of Vn,

immediately lead to the following wave equation for the displacement 7

o K% )0 divie )| = (V) x V). (232)

in which f and ¢ may be functions of x and y.This is the combined system of Poincaré-
Rossby waves (Pedlosky, 1987).

In the low-frequency approximation (0/0t < f), this equation reduces to the Rossby

wave equations
o [f? 0? 0?

in which 8 = 0f/dy, and ¢* = gH is the shallow water speed.

We shall here not discuss the propagation properties of Rossby waves as it is a focus of

our study in the next chapter.

To obtain a dispersion relationship we look for solutions of the form
(u,v,m) = Re(u, vo, mo)e’ ™Y,

where k = ki + 1, w is the nondimensional frequency. Substituting in the above system
yields the dispersion relation

ww? — (f2+ k%) =0, (2.34)
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relating the propagation behaviour for waves. In the limit w = 0, the wave does not have
phase or energy propagation (McWilliams, 2006). This gives a stationary wave solution.

The second set of solutions satisfies the equation
w® = f*+ k.

The corresponding waves are the Poincaré waves.

In the long wave limit, k¥ — 0, and k* < f2/gH, the rotation effect dominates, yield-
ing w ~ f (McWilliams(2006) and Vallis (2006)). For intermediate wavenumbers, the
frequency w > f always, and the waves exhibit a mixed behaviour between gravity
waves and inertial oscillations, they are often called inertia-gravity waves. In the short
wave limit k% > f2/c?, the dispersion relation reduces to that of non-rotational case
(McWilliams(2006), Vallis(2006))

w = +clk| = 0. (2.35)

This condition is equivalent to requiring that the wavelength be much shorter than the
deformation radius Ly = +/gh/f but still be longer than the depth of the fluid, otherwise
the shallow water condition is not met (Vallis, 2006). The waves are non-dispersive and

will preserve their shape.

Kelvin waves exist in the presence of both rotation and a lateral boundary. Supposing
there is a solid boundary y = 0 then solutions in the y-direction are not allowable. Then

in the governing equations (2.31c) we set v = 0 everywhere (Vallis, 2006), to obtain

ou on

U _ _ o —_gd A gty 2.
oxt g@az’ fu g y + 0 (2.36)

The first and last equations giving

Pu 0%

where ¢ = /gH is the wave speed of shallow water waves. The solution thereof being a
superposition of two waves, one traveling to the positive z-direction and the other to the
negative x direction:

u=F(x+ct,y)+ Fo(z — ct,y), (2.38)
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with the corresponding surface displacement

It is shown in Vallis (2006) that
Fy=F(x+ ct)ey/Ld, F,=G(z - ct)e_y/Ld,

where Ly = \/gH/f is the radius of deformation. If y > 0, then F; must be eliminated
as it grows without bound, leaving F5 to ensure boundedness at the boundary. Kelvin
waves propagate with the coast to the right (anticlockwise) in the Northern Hemisphere
(f > 0) and to the left (clockwise) in the Southern Hemisphere, (f < 0), and the direction
is cyclonic in both Northern and Southern Hemispheres. Wang (2003) discuss these waves

in greater detail.

Below we briefly discuss the contribution of the shallow water waves to weather and
climate conditions. Rossby waves are known for their westward phase propagation whereas
the group velocity can be in either direction depending on the wavelength, as we shall see
in the next chapter. Their importance in weather and climate change lies in the impact
on western boundaries. The westward propagating Rossby waves when they reach the
Western Boundaries will be reflected. Unlike surface gravity waves the reflected waves do
not simply become the mirror image of the incident waves. The reflected waves which
were travelling westward must now have an eastward component of the group velocity
and so must be of short zonal wavelength. Moreover, they will propagate relatively slower
than the incoming waves. Thus there will be some kind of congestion at the western
boundary. And this is what causes Western Boundary intensification as at the boundary
there will be waves of short wavelength accumulating propagating against fast incoming
long wavelength (Pedlosky, 1987).

Poincaré waves play a substantial role in the circulation of the atmosphere and oceans and
they transport energy and momentum as they propagate either vertically or horizontally
thereby causing a transfer of energy and momentum to their sink where they dissipate.
This dissipation of energy and momentum when the waves break is also important as it
may cause mixing. They are known to contribute to the generation of turbulence and
to influence the thermal structure of the middle atmosphere, and in the oceans they

contribute to mixing and are a possible energy source for the thermohaline circulation.

Kelvin waves are of particular importance on eastern boundaries (as opposed to Rossby

waves) since they transfer information poleward from the equator. They are also central
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to how the equatorial ocean adjusts to changes in wind forcing, such as during an El Nino.

2.3 Conclusion

In this chapter one of the most important concept in geophysical fluids, namely, rotation,
has been revisited. Stratification will be discussed in more detail in Part II of the study.
Some of the waves generated under the influence of these two factors, their propagation
and their contribution to weather and climate conditions have been discussed. It is shown
here how the shallow water equations are relevant to model rotating fluid motions like,
Poincaré waves, Kelvin waves and Rossby waves. In particular, some of the propagation
properties of Rossby waves were highlighted because they will be the focus of our next
two chapters. In the next chapter further propagation properties of Rossby waves are

discussed, which were to the best of my knowledge not discussed before in the literature.
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Chapter 3

Propagation Properties of Rossby

waves

In this chapter, shallow water equations already introduced in section 2.2 are employed, to
first develop the general equation of motion governing the Poincaré-Rossby wave and the
low frequency Rossby wave on the -plane. The wave normal diagram is used to further
explore Rossby wave propagation properties using the dispersion equation. Some propa-
gation properties of Rossby waves have already been discussed in the previous chapter.
The discussion here emanates from work by Longuet-Higgins (1964), who observed that
the wave normal diagrams showed the phase velocity of the Rossby waves as a displaced
circle. However, the group velocity was not explored further than its parametric form as
shown in equations (18) and (19) of this chapter. Here, the group velocity is shown to

be, instead, an ellipse, in so doing, reveal the anisotropic nature of Rossby waves.

Propagation properties are further discussed where the Rossby waves arise from the shal-
low water equations in the meridional, y, direction wherein 5, = 0 on the (k,, k,) plane
using a parameter m which depends on the Mach number (or Froude number), which is,
a measure of the equatorial rotation speed QQR. It is also discussed here the Rossby wave

propagation in the limiting case of infinite Rossby deformation radius (m — o0).

Furthermore the propagation properties of topographical Rossby waves are developed;
phase velocity and group velocity diagrams, where the shallow water speed varies in
the zonal direction (8, = 0). In this case it is found that the phase velocity is also a
displaced circle in the northward direction, whereas the group velocity is also an ellipse
with northward and southward components as will be shown later in Figure 8. It is as if
the westward propagating Rossby wave has been rotated ninety degrees. These discussions

are carried out through a published paper that follows.
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Abstract. Using the shallow water equations for a rotating 1 Introduction

layer of fluid, the wave and dispersion equations for Rossby

waves are developed for the cases of both the stangtard

plane approximation for the latitudinal variation of the Cori-

olis parameterf and a zonal variation of the shallow water The propagation properties of mid-latitude Rossby waves on
speed. It is well known that the wave normal diagram for the@ #-plane are well known (Gill, 1982; Pedlosky, 1987). The
standard (mid-latitude) Rossby wave og@lane is a cir-  dispersion equation in either its dia_Lgn_ostic fokm, k) plots,

cle in wave number ( ky) space, whose centre is displaced Of wave normal form (Longuet-Higgins, 1964) shows that
—B/2 units along the negativi, axis, and whose radius Phase propagationis pure]ywestward and thatthe waves can-
is less than this displacement, which means that phase proglot Propagate above a critical frequency, at which the zonal
agation is entirely westward. This form of anisotropy (aris- 9roup velocity becomes zero for a wave number equal to the
ing from the latitudinaly variation of f), combined with the ~ inverse Rossby radius. This implies that for wavelengths less
highly dispersive nature of the wave, gives rise to a group(dreater) than the Rossby radius, the zonal group velocity is
velocity diagram which permits eastward as well as West_eastwarq (westward), while the phase velocity remains west-
ward propagation. It is shown that the group velocity dia- Ward. This “backward” property, i.e. phase and group veloc-
gram is an ellipse, whose centre is displaced westward, ani€s in opposite d|rect|on§, aIsp manifests itself ata general
whose major and minor axes give the maximum westward@ngle of phase propagation, in that poleward directed rays
eastward and northward (southward) group speeds as funéenergy flux direction) correspond to equatorward wave nor-
tions of the frequency and a parameterwhich measures ~Mal (or phase) directions.

the ratio of the low frequency-long wavelength Rossby wave [N this paper we highlight these anisotropic and dispersive
speed to the shallow water speed. We believe these propeRroperties through the use of the phase and group velocity
ties of group velocity diagram have not been elucidated indiagrams, in which the former takes the well known form of
this way before. We present a similar derivation of the wave? Circle, whose centre is displaced westward and the latter,
normal diagram and its associated group velocity curve forthe less well known form, is an ellipse, whose centre is also
the case of a zonal Jwariation of the shallow water speed, displaced westward. The important parameters are the wave

which may arise when the depth of an ocean varies zonallyjrégquency (suitably normalized) and a parameterwhich
from a continental shelf. is the ratio of the Rossby wave zonal speed (at low frequen-

cies and long wavelengths) to the shallow water speed.

In the next section we use the shallow water equations to
derive the wave equation for the system, which reduces to
the classical Rossby wave equation in the low frequency ap-
proximation. This leads to the well-known dispersion equa-
tion at mid-latitudes and is generalized to include not only
the usuals-effect arising from the latitudinal variation of the
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Coriolis force, but also a topograph#zeffect arising from  curl of Eq. (1), and the use of Eq. (2) to eliminate divip
background variations in the shallow water speed. favour of —dn/dr, and Eq. (1) to eliminate in terms of

In Sect. 3 we outline the propagation properties of the mid-V7 immediately lead to the following wave equation for the
latitude Rossby wave in terms not only of its well-known displacemeny:
wave normal diagram (Longuet-Higgins, 1964), but also its
phase and group velocity diagrams. Of particular interest is 5

2
the latter, which is normally given as expressions for the 5 [(ﬁ + f2) n —div (szn)} = (V (02f> x Vn)z,
zonal and latitudinal group speeds in terms of the wave num-

ber vectors, which can be reduced to the zonal wave nor- 3

ellipse, with centre displaced westward by an amount that delS the general equation for the combined system of Pogacar
quency to the critical frequency, above which Rossby wavedrOXi
functions of frequency and. The corresponding phase ve- 2

group velocity curve becomes a parabola, and the phase vdd which
the 2nd and 3rd quadrants). These results are supplemented

nents of the phase and group velocities are anti-parallel. Inthe topographic “B effect through spatial variations (in
rial easterly jets resulting from localized equatorial heatingthe latitudinal variation of the vertical componeyif on a

mal as the generating parameter. At a given frequency we . . .
show that the group velocityVgy. Vg0, curve is in fact an N Which £ ande may be functions ok andy. Equation (3)
pends on the “m” of the planet and the ratio of the wave fre- ROSSbY waves (Pedlosky, 1987). In the “low-frequency” ap-
mation(z; << f), this equation reduces to the classical

are evanescent. The major and minor axes yield the maxROSSPy wave equation:
imum zonal, westward, eastward and northward speeds as f2 52 52

T . : ; . S \|\s31+33 77=<EXV’7), (4)
locity diagram is a circle, with centre displaced westward. In 97 | ¢ 9x<  dy z
the limiting case ofn — oo (or infinite Rossby radius), the
locity curve becomes a line indicating constant zonal phase P 9
velocity for all directions of propagation (limited of course to B= (Bx By) =™V (C f) ®)
by the relation between the ray directignand the wave SinceVf = (0, 8,0). Equation (4) is a generalization of the
normal anglep. It is well known that the latitudinal compo- Usual Rossby wave equation (see Pedlosky, 1987) to include
terestingly, this “backward” property of the Rossby wave hasandy) of the shallow water speedas well as the variation
been invoked to explain the dipole-like formation of equato- ©f f (= fo+ By) in the classicag-plane approximation of
and at higher latitudes westerly jets (Diamond et al., 2008). SPherical planet of radiug where

In Sect. 4 we carry out similar calculations for a topo-

graphicg-effect arising from zonal variations of the shallow f = fo+ 8oy, Bo= M, fo = 2Qsinbg. (6)
water speed. In this case, itis as if the properties described in R
Sect. 3 were rotated througty2 from west to north. Here 6y is the latitude at which thg-plane is constructed

tangent to the surface @, and thereforeg measures distance
northward whilstx is directed eastward.

If the background variations of?(x,y) and f(y) are
assumed “slow” over a wavelength, the wave Eq. (4) ad-
fmits a local dispersion relation for plane waves, varying as

2 The general Poincaé-Rossby wave equation and the
low frequency Rossby wave

The linearised shallow water equations in a rotating layer o i |
fluid of depthH (x, y) may be written (Gill, 1982; Pedlosky, ©XPi(@! —kex —kyy) namely
1987)

. " Z—ﬁyk: +ﬁ>2<ky2 @)
a_7+i><2=—c2Vn @) (kX+ky+f°/c>
or
2 2 2, 02 2
o B B2 _BRERESF
5 +divo =0 ) (ky Za)) + <kx+ Zw) i oz (8)

in which Q = (Qx, Qy) = H(u, v) is the perturbation hor- For a givenw the latter wave normal form is a circle cen-
izontal momentum vectoix, v) the horizontal velocityy tred at(—py/2w, fx/2w) of radius given by the square root
the displacement of the surface from its equilibrium depthof the RHS of Eq. (8). The presence of an inhomogeneity in
H, f = 2K(sind)z is the Coriolis parameter (fbtation fre-  x (zonal eastwardy/c?/dx, gives rise to a displacement of
guency) and: = /gH the shallow water speed. The opera- the usual Rossby wave, representing purely westward prop-
tions %div on Eg. (1) plusf times thez component of the  agation(kx < 0), northward so as to permit eastward phase

Ann. Geophys., 30, 849-855, 2012 www.ann-geophys.net/30/849/2012/
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Fig. 2. The diagnostic diagrarti, k) plot for various values af.

cosy 1

SirPo, 2 -

m=pyc/f§ =

Fig. 1. The wave normal circle for various valuesmof

propagatiorikx > 0), as represented by akyointing north- ;. _ QR/c.
east with a corresponding ray directed southwest. Thus, a
northwest propagation vectargives rise to a ray directed Here we have assumed that there is no latitudinal variation of
southwest. Such are the rather peculiar propagation prope?, and therefore thg effect arises solely from the variation
erties of the Rossby wave, which follow from the theorem of f as in Eq. (6);M is a Mach (or Froude) number mea-
that the group velocity vector points along the normal to thesuring the equatorial rotation spe@d in units of the shal-
wave normal curve in the direction of increasingLighthill, low water speed, andm is in fact the ratio of the Rossby
1978). We shall now explore these properties in greater dezonal phase speed (at low frequencies and long wavelengths)
tail through the use of figures representing the wave normato ¢. Equation (10) is a circle ir(lEy,IEX) space of radius
diagram and the phase and group velocity diagrams at giver/1/4»2 — 1/m, whose centre is displaced along the negative
frequencies for different values of. ky axis by —1/2» units (Longuet-Higgins, 1964), as shown
in Fig. 1 along with the(@, k) plot in Fig. 2. Note that the
phase propagation is entirely westward and propagation re-
i . quiresw < /m /2. Figure 3 demonstrates the geometrical re-
wave: wave normal, phase and group velocity curves . L
for By #0 (B = 0) lation between the rayglreqthnand the wave normal angle

¢, both measured frork-axis, which shows the two values

The propagation properties of the Rossby wave have beefif x for any giveng. The relationship betweep and¢ is
discussed extensively, for example, in the texts by Gill (1982)found by expressing as normal to the slope of thiéy, kx)
and Pedlosky (1987). Here we develop the group velocityCUrVe i-8. ta = —1/(3ky/dkx), which yields
diagram at a fixed», which provides the counterpart to the

wave normal diagram. In the case where the Rossby Wav?anx — (sing cosp)/ (cosz¢+

(12)

3 Propagation properties of the mid-latitude Rossby

1
1—4a?/m co§¢> '

arises from inhomogeneity only in the y-directigfy = 0), —1+
the diagnostiaa, k) plot and the wave normal curves are (13)
given by
i For a giveny there are two values of, as shown in Fig. 4.
D=2 (9) We also show the limiting case — oo, which yieldsy =
k2+1/m 2¢ (lower signm in Eq. 13) andy = 7 (upper sign). In this

limit fo%/c? — 0, and the Rossby wave Eq. (4) reduces to
the classic form (see e.g. Yagamata, 1976)

2
Lo/ 1 11
Rl —) == — = 10
y+(X+2c?)> 402 m (10) ivzl//:_ﬂi;_lﬁ
x

and Eq. (8) may be written

(14)

. ot
in which & is the normalized frequency/,/Byc, k, the

normalized wave number vectlgl(c/ﬂy)l/2 andm is given
by

www.ann-geophys.net/30/849/2012/

where s is the stream function corresponding to strict 2-D
compressibility. It is for this reason we include a discussion
in the limitm — oo.
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Fig. 3. The wave normal displaced circle showing the relation be-

tween the ray directioy (given by the arrows pointing towards the

centre measured froiy) and the wave normal angie betweenk

andky. Fig. 5. The phase velocity, (a circle) and group velocityy (an
ellipse) diagrams for a fixed andm = 2.

1.t

o

X
350} _>
the phase velocity diagram reduces to the Ilrpg— —®
300f =2¢ in (Vpy, Vox) space.
250b X = The group velocityV , = dw/0k follows from Eq. (7) (in
which we putgy = 0) in the form
200 2 2 2,.2
100 A (kx2 + kyz + fOZ/Cz)
2Bkyk
. . . . v g Vgy= Phyke 5. (18)
80 100 120 140 160 18 (kx® + ky? + fo?/c?)
Fig. 4. The variation ofy (two values) withp for m = 2. In the classic texts (Pedlosky, 1987; Gill, 1972) the group ve-

locity is left in this less than perspicacious parametric form,
_ _ _ _ in which theky is the generating parameter, wijgiven in
The phase velocity, = w/k, which follows immediately  terms ofk, from the dispersion equation. Here we show that

from Eq. (7), may be written in the normalized form the group velocity diagram is in fact an ellipse. This sim-
) . ple result follows from a few algebraic steps by eliminating
72+ (Vpx—l— m)z _m” (1_ 4&) (15)  the denominator from Egs. (17) and (18) using the disper-
2 4 m |’ sion equation, so that in normalized form, Egs. (17) and (18)
become

in which Vj, has been normalized with respect to the shallow

water speed. Thus, the phase velocity diagram is a circle of Vox = @ (2+ 1/aky),
radius% /1 — 4w?/m, whose origin is displaced westward

by —m /2 units and therefore lies entirely in the regime of

westward propagation. The smallest value of the westvvarct/gy = 202 (ky /kx) (20)
Vox (in which Vpy = 0 in Eq. 15) is

(19)

Itis now straightforward to eliminate, in favour ongX from
—m 402 Eqg. (19), which on substitution into the square of Eq. (20)

Voxmin = - +2Z > 1- — (16)  gives directly the group velocit§¥gx, Vgy) curve in the form

oo (which corresponds to infinite Rossby radius or Rossbyvzy (21)

which approaches-»? asm — oo. Thus, in the limitn — 7 2 (v 2
wave speed greatly in excess of the shallow water speed)

Ann. Geophys., 30, 849-855, 2012 www.ann-geophys.net/30/849/2012/
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Vqg andthe maximum northward (southward) group speed also
1 follows as
Vivest N 172
_ 4ip?
0.8f Voymax= tam*/? (1_ 7) : (24)
0.61 Examplesof the behaviour of extremal group velocities
0.4k Voxmin: Vpxmax @nd Vpymax are shown in Fig. 6. Note that
' the ellipse collapses to the origin as— 4@?, at which the
Vnorth - .
wave normal collapses to the poigt= —1/2v. In the lim-
0.2¢ Veas iting case in whichn >> 1, which can prevail quite near the
equaton(@p — 0), Eqg. (21) tends to the parabola
t t t w
0.1 0.2 0.3 04 0.5 -\ 1/2
Vgy = £2° Yox 25
Fig. 6. The maximum westward, northward and eastward group ' 9 — @ T a2 ’ (29)
speeds as a function of frequensyor m = 1.

Vy

Vp
\ Vg

/

which is shown in Fig. 7 together with the phase velocity
diagram, which is simply the lin&px = —&?. It is of some
interest to emphasize that Rossby waves are “backward” in
the sense that the latitudinal components of their phase and
group velocities are always in opposite directions. This prop-
erty can be invoked to describe the formation of a dipole
pair of jets in the following way: Northward (away from the
equator) wave energy flux is associated with southward, to-
wards the equator, wave momentum flux; and the opposite
in the case of southward directed energy flux, away from the
equator, corresponds to northward (towards the equator) mo-
mentum flux. In other words, a poleward energy flux from
the equator is associated with an equatorward flux of mo-
mentum. Hence, Rossby wave dynamics implies that local-
ized equatorial heating gives rise to equatorial easterly zonal
jets. This “convergence” of equatorial momentum implies a
deficit at higher latitudes such that a westerly jet must neces-

Fig. 7. The group velocity (a parabola) and phase velocity (a line) sarily form there (Diamond et al., 2008).

diagrams for the case — oo.

which may also be written as

— 2
mVg - m 46y m? 46?
gy
Vax+ = (1—-— ]| =—[1-—]. (22
4@2+[9X+2< m):| 4 m (22)

4 Propagation properties of the topographic Rossby
wave: wave normal, phase and group velocity curves

for B #0 (8, =0)

In this case a zonal inhomogeneity gcfunction ofx) dis-
persion and wave normal curves given by puttiiyg= 0 in
Egs. (7) and (8), are

ky

The group velocity curve is an ellipse, whose centre is dis-“ = k2 +12§ +1/m’ (26)
placed=* (1 — 45)2/m) units along the‘_/g,X axis. The phase

and group velocity curves are shown in Fig. 5. The southward

group velocity is simply a reflection of the northward group -, - 1\? 1 1

velocity in the x-axis. The maximum eastward and westwardx T <ky - ﬁ) 402 m’ 27

group speeds are given by

_o\ 1/2 oy 1/2
_ m 4602 4602
V5§(=§<1—7> :I:l—(l——) , (23)

www.ann-geophys.net/30/849/2012/

in which » and k have been normalized tq/Bxc and
(¢/Bx)Y/?, respectively andh is now given by

C
— Bl 28
m ﬁfo (28)
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Vy
2.¢ . _or %
Hence, the group velocity curve is now given by the ellipse
v & (Vy .\
52 -4 ay gy
Vi = 4i> <ﬁ+1>—;(ﬁ+2) : (33)
or

-~ 2
sz _ m 4{“2 m2 4:_2
_4c?>g2x * [ng_ 2 (1_ 7>:| =2\t ) GY

which is shown in Fig. 8. This curve can be obtained by rotat-
ing the curve given by Eq. (22) and Fig. 5 through ninety de-
grees. Thus, the maximum northward, southward and zonal
(east or west) speeds are given by Egs. (23) and (24) in which
the labelst andy are interchanged.

<|
x

1 5 Summary

The propagation properties of mid-latitude Rossby waves are
illustrated through the local dispersion equation either in its
-0.5; diagnostic form ((w, k)plot) or as a wave normal curve for
given values ofw, both of which descriptions highlight the
dispersive and anisotropic nature of the wave. Here we de-
velop this further by showing that the group velocity diagram
is an ellipse, whose centre is displaced westward (Fig. 5)

Fig. 8. The phase and group velocity diagrams for topographicand whose major and minor axis yield the maximum west-

Rossby waves where shallow water speed varies zonally for fixegv@rd, eastward and northward (southward) group speeds as
®andm = 2. a function of frequency and the parameter(Fig. 6). This

elegant construction replaces the earlier (somewhat cumber-

some) expressions for the group velocity, which are usually

given in terms of the zonal and northward wave numbers act-

2 ing as generating parameters as in Egs. (17) and (18). Similar

By = ﬁdi (29) diagrams exist for the case of topographic Rossby waves, in
c? dx which shallow water speed varies zonally (Fig. 8). We em-

The wave normal diagram is again a circle, but now its cen-Phasize that the *backward” property of the Rossby wave has

tre is displaced 1,@ units along the positivéy axis. The been invoked to explain dipole-like formation of equatorial

corresponding phase velocity diagram is given by eastgrlyjets and at higher latitudes westerly jets, as discussed
by Diamond et al. (2008).

_ _ m2 4(2)2
(oy—7%) +V|02X:7<1——>, @) . -
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Chapter 4
Rossby waves in Winds

In the previous chapters, I alluded to Rossby waves having westward propagation and
being low frequency waves which means that they travel for days in the westward direction.
Furthermore, the energy transport can be directed westward through long wavelength
Rossby waves or eastward via the short wavelength Rossby waves. The question that arose
was what happens when Rossby waves travel westward? In other words, what happens
if Rossby waves encounter zonally propagating easterly or westerly winds in their path?
A further and similar question for meridional winds is relevant. The answer to these
questions lies in the interaction of the frequency of the Rossby wave propagation and the
frequency of the wind, that is, the Doppler shift frequency, as it now has a consequence
for the dispersion relation.

The results are demonstrated through wave number curves, as was done in the previous
chapter. The conclusion here, with respect to the westerly zonal flow, is that the displaced
Longuet-Higgins circle is distorted into an ovoid-shaped curve and a new branch consisting
of an eastward indentation develops. This indentation corresponds to the limit where the
Rossby wave frequency and the Doppler shift frequency coincide. On the other hand, in
the case of the eastward zonal flow, the indentation is entirely westward. The radiation
patterns are determined through the method of stationary phase as used by Lighthill
(1978). Some of these patterns resemble the Kelvin-ship wave and others I have not
seen before in literature. Interaction with meridional winds is more complicated and the

associated radiation patterns are remarkable.

Another intriguing result is that radiation patterns associated with the stationary wave
resemble the radiation patterns for the gravity wave as shown by Lighthill (1978). Further

results are elucidated in the following published paper.

33
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The propagation properties of Rosshy waves in zonal and meridional winds are analyzed using the
local dispersion relation in its wave number form, the geometry of which plays a crucial role in
illuminating radiation patterns and ray trajectories. In the presence of a wind/current, the classical
Rossby wave number curve, an offset circle, is distorted by the Doppler shift in frequency and a new
branch, consisting of a blocking line with an eastward facing indentation, arises from waves convected
with or against the flow. The radiation patterns generated by a time harmonic compact source in the
laboratory frame are calculated using the method of stationary phase and are illustrated through a series
of figures given by the reciprocal polars to the various types of wave number curves. We believe these
results are new. Some of these wave patterns are reminiscent of a “reversed” ship wave pattern in which
cusps (caustics) arise from the points of inflection of the wave number curves; whilst others bear a
resemblance to the parabolic like curves characteristic of the capillary wave pattern formed around an
obstacle in a stream. The Rossby stationary wave in a westerly is similar to the gravity wave pattern
in a wind, whereas its counterpart in a meridional wind exhibits caustics, again arising from points of
inflection in the wavenumber curve.

Keywords: Rosshy waves; 8-plane; Radiation pattern

1. Introduction

Rossby waves play a pivotal role in the transport of energy and momentum in the geophysical
fluid dynamics of quasi-geostrophic flows in atmospheres and oceans. The particular wave
dynamics arise from the latitudinal variation of the Coriolis acceleration (through the Coriolis
parameter f) and the near balance achieved between it and the pressure gradient. This quasi-
geostrophic balance is described within the framework of the B-plane approximation which
retains the essential dynamics, whilst the spherical geometry is replaced with a Cartesian
B-plane constructed tangential to the surface at a given latitude. These features have all been
extensively discussed in the texts of Gill (1982), Pedlosky (1987), Vallis (2006), and elsewhere.
Some of the latter will be referenced to in the following.

In this well-researched field it may be expected that there is nothing new or interesting
to reveal about the linear behavior of Rossby waves. However, recently it has been shown
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that the group velocity diagram, at a given wave frequency, is in fact an ellipse whose focus
lies at the origin (Duba and McKenzie 2012, McKenzie under review). This elegant feature
complements the wave number curve, namely an offset circle in wave number space (Longuet-
Higgins 1964), in revealing the propagation properties of Rossby waves. Furthermore, it has
been shown (Rhines 2003, McKenzie under review) that the radiation pattern of Rosshy waves
(in the wind-free case) consists of two sets of hyperbolae, confined to westward pointing Mach-
Froude like lines, in a fashion analogous to the gravity-capillary waves generated by an obstacle
in uniform motion on deep water (see Doyle and McKenzie (2013) for a recent treatment of this
classical ship wave problem). These features of the radiation pattern generated by some time
harmonic spatially compact source are illuminated by the use of the method of stationary phase
in calculating the far field disturbance. This method demonstrates that the radiation pattern isin
fact given by the reciprocal polar to the wave normal curve (Lighthill 1978, 1960, p. 372-373)
and this simple geometrical construction provides not only the mathematical expressions for,
but also a means of visualizing, the radiation pattern which, in zonal and meridional winds
reveals new and interesting patterns.

In this paper, we extend the above analysis to include the effects of zonal and meridional
winds which give rise to new and interesting features of the wave number curves resulting
from the Doppler shift in frequency. In a recent paper, Gerkema et al. (2013) call this effect a
“quasi-Doppler shift” referring to the difference between the frequency » measured by an
observer at rest (the laboratory frame) and the frequency & measured by an observer moving
with the mean flow. This shift has a profound effect on wave propagation in a moving medium,
particularly if the medium is both dispersive and anisotropic, as is indeed the case for Rossby
waves. The wave number diagrams therefore are important in revealing the propagation
properties of Rossby waves, in much the same way as the Appleton—Hartree refractive index
(Ratcliffe 1972, p. 18, section 2.5) is crucial to the understanding of electromagnetic waves in
a magneto-ionic medium, and of the slowness (k) surfaces in MHD (Lighthill 1960).

In section 2, we develop the standard equations of motion on a B-plane and derive the
wave energy equation. Although the Coriolis term makes no contribution to this equation, it
nevertheless has an indirect effect through shaping the propagation properties of the natural
modes (inertial and planetary) of the system. In section 3, we derive the coupled equations for
the northward and eastward mass flux perturbations and the excess pressure (all of which are
shown to be equivalent to the shallow water equations with an appropriate definition of the
Kelvin speed). In the case of Fourier type zonal wave modes, the coupled equations reduce to
a single second-order differential equation for the latitudinal structure of the northward mass
flux.

In section 4, we examine the wave propagation properties revealed by the dispersion equation
in the form of wave number curves at a given frequency w in the laboratory frame for different
values of the zonal and meridional wind speeds. These diagrams enable the calculation of the
radiation pattern generated by a time harmonic spatially compact source in a steady, uniform
wind, through the reciprocal polar to the appropriate wave number curve. For example, in the
case of a westerly zonal wind, its effect is to distort the Longuet-Higgins circle into an ovoid-
shaped curve, and importantly, to introduce a new branch, due to the Doppler shift, consisting
essentially of a blocking line with an indentation to the right (i.e. eastward) of this line, and
corresponds to propagation arising from waves convected with or against the zonal flow. The
reciprocal polar of the (closed) ovoid curve is a parabolic like curve corresponding to both
eastward and westward energy propagation; whilst that for the line with an indentation we have
an eastward facing deltoid, reminiscent of an inverted or “reversed” Kelvin ship wave. In this
case, the radiation pattern is confined to a Kelvin-like angle (given by a line drawn from the
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origin to the cusp point which arises from the point of inflection in the wave number curve).
The analysis for westward zonal flow (an easterly) reveals similar features with a parabolic
like curve for the reciprocal polar within which is embedded a Kelvin-like ship wave deltoid
facing the “correct” way (i.e. eastward) associated with the indented line. An analysis of the
effects of a meridional wind, including the stationary wave patterns (obtained as the limit in
which the frequency w tends to zero) yields similar interesting features but with the presence
of a north-south symmetry.

2. Linearized equations of motion in a zonal wind shear

The linearized continuity equation is given by

Dpe
— +V.q=0, 1
e+ g ®

in which D/Dt = 9/0t + Ux(y)d/ax is the convective derivative, g = pou is the mass
flux perturbation, where pg is the background density, u is the velocity perturbation, pe is the
density perturbation, and Uy (y) is a given zonal flow sheared in the y (north) direction. The x
(east), y (north), and z (vertical) components of the momentum equation are

Dax o 0Pe
Day _ 0pe

Dt + fox = By (2b)
Dg;  9pe

respectively, in which pe is the pressure perturbation and U is the derivative of Uy (y) with
respect to y. We have assumed a S-plane approximation, at a given latitude 6y on a planet with
radius R. £2 is the earth’s rotation frequency, so that the Coriolis parameter f is given by

22
f = fo + By, Bo = R COS 6. (3a,b)

The equation for adiabatic flow (which, in the dissipationless case, is equivalent to the energy
equation) takes the form (Lighthill 1978, p. 292, section 4.2)

Dpe 2 g Dpe
9o 0z + 2Dt (4)
in which the square of the Brunt—\Vaiséla frequency N is given by
1doo g _
N2 = —_——— = —= = H 1 - ! 5
g( s 0z 02> (g/H) A -y, (5)

where H is the density scale height, y is the ratio of the specific heats, and ¢y is the speed of
sound given by /¥ po/po. The background state is described by hydrostatic equilibrium and
geostrophic balance, namely

dpPo dPo

57 = —p09, 8_y = —po FUx(y). (6a,b)

In general, these equations must be supplemented by a background energy equation which
includes heating, cooling, and dissipation processes such as those resulting from viscous and
heat conduction effects, in order to completely determine the background state (0o, po, Ux).
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The perturbation equations (1), (2), and (4) can be somewhat simplified by using the
Boussinesq approximation which filters out high frequency acoustic waves. This is accom-
plished by neglecting Dpe/Dt in (1) which becomes

V. q= O’ (7)
and also by letting cg — oo in the second term on the right-hand side of (4) which becomes

Dpe_ 2
g Dt N“Qz. (8)

We note that in this approximation the continuity equation no longer evolves the density in
time which is now evolved by the incompressible form, equation (8), for adiabatic flow, with
the implication that there is now no equation which evolves the pressure. However, we note
that, if we do the operation D/Dt on (2c), we obtain

D (dpe)  D? Dpoe
Dt (E) = pr% 9o (%)
D2 )
:_<W+N )qz (9b)

The last result follows from the use of (8) to eliminate pe. Furthermore, if we do the operation
d/dz on (9b) and use continuity in its incompressible form (7) to eliminate dg;/dz, we obtain

D (92 D? )
D (97pe) _ (D7 2 (9% , %) (10)
Dt \ 9z2 Dt?2 X ay

In what follows we will use the low frequency approximation D?/Dt? « N2 (which filters

out higher frequency internal gravity waves with @ ~ N) and assume waves of the form
exp(—ikzz) in the vertical direction, so that (10) may be written

D pe 5 (00x ~ dCy 2 21,2
S Y AT & = N?/K2. 11a,b
Dt C(8x+8y)’ ¢ /¥ (11a,5)

Here, c may be called the effective Kelvin speed which, in shallow water theory, is ./gH , where
H is the depth. In this rather circuitous route, we now have an equation (11a) which evolves
the perturbation pressure pe. Hence, the system has been reduced to three “evolutionary”
equations, namely equations (2a,b) which evolve the horizontal components of the mass flux
(or velocity) in time and (11a) which evolves pe. These are equivalent to the shallow water
equations in which the speed c(= N/k;) replaces /gH, as already noted.

The system of equations, (1), (2), (4), and (8), possesses a wave energy equation which
follows by taking the scalar product of the momentum equation with q to obtain

D1 /
ot [5 (qx2 +ay° + QZZ)i| +U axGy = —q - V Pe — Gzpe0- (12)
The terms on the right-hand side may be written in the form
—Qg - Vpe=—V-(ped), (13)
onusing V.q =0, and
2
gD
—00zpe = —ma(l)e /2), (14)
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on using (8). Hence (12), after division through by pg, assumes the “conservation form” with
“sources”

D1 1
5[29 +§%pi] + V-(pel) = —peuz<p0 i Wuxuy. (15)
On the left-hand side, the first term is the rate of change of the energy density consisting of
the kinetic energy and the thermobaric potential energy (Eckart 1960), and the second term
is the divergence of wave energy flux. The “source” terms on the right-hand side represent
wave interaction with the background state through buoyancy (the first term) and shear flow
(the second term). The latter term can lead to Kelvin-Helmholtz, baroclinic type, instability,
whereas the former can generate convective instability if the atmosphere is unstably stratified,
N? < 0. Here we assume N? > 0.

3. Thelatitudinal structure equation

In this section we derive the second-order differential equation for the northward mass flux
to which the zonal mass flux and pressure are related through equations (see below). Its
hydromagnetic version including magnetic as well as velocity shear has been discussed by
Eltayeb and McKenzie (1977) and Mekki and McKenzie (1977). Here, we examine in detail
the effects of the wind, through the Doppler shift, on the propagation properties.

For Fourier wave modes of the form

(Gx. Gy, Pe) = (Qx(Y), Qy(¥). Pe(y)) exp[i(wt — kX — kz2)],
equations (2a,b) become

idQy — (f —U)Qy = iky Pe, (16a)
and
i0Qy + fQx = —%, (16b)
whilst (11a) reduces to
Pe = < (kax + 1 Qy> (17)
P dy

Here @ is the Doppler shifted frequency given by

@ = w—kyU. (18)
Eliminating Pe from equations (16a,b) using (17) yields the coupled system for Qx and Qy:
(@ — ke Qx =1 [kxc2 dey (f - U/)@Qy:| : (192)

pY. CZde Qx
OQ+ dy(w dy) [ o dy(w)“‘on} (190)

Elimination of Qy in (19b), using (19a), gives the second order differential equation for the
latitudinal structure of Qy(y):

d’Qy d 2 22\[9Qy | >
dy2 — |:@ In (a) —C kx)]W+K Qy—oa (Zoa)




Downloaded by [DUT Library] at 06:05 31 July 2014

242 C. T. Duba et al.

Kkﬁy_fg_uv+wu—u5%m0¥—&§)4¢—£ﬁ;;lg,Q%)

in which we have used d f/dy = B, dé/dy = —k,U'. At this stage the latitudinal wave
number 2 (given by (20b)) describes gravity-inertial waves (the first term of left-hand side
of (20b) and Rosshy waves (the last two terms) in the presence of a zonal shear (the middle
term). Equation (20) yields an invariant (related to the Wronskian) by multiplying it by Qy*,
and its complex conjugate form by Qy, to obtain

Im{ (Qy*de/dy — Qyd Qy*/dy)
(&2 — ky%c?)
From the viewpoint of wave dynamics this quantity is related to the conservation of wave
action except at critical points where it undergoes a discontinuous jump (Booker and Bretherton
1967, Dickinson 1968).

The connection to the classical Rossby wave latitudinal structure equation is obtained in the
limit ¢ — oo in which (20a) reduces to

2 _ "
d“Qy " (—kx2 _ w> Qy =0. (22)

} = const. (21)

dy?

In the slowly varying (JWKB) approximation, this yields the local Rossby wave dispersion
equation for ky, namely

k
ky? 4k = —fo. (23a)
where
ﬂesﬁ—u”zi(f—u’>. (23b)
dy
These results follow directly from equations (2a,b), the zcomponent of the curl of which yields
D aqy 8qx " _
E (W W) + <,B U )C]y =0, (24)
since as ¢ — oo we have the 2-D incompressibility equation
0y  90x
— 4+ —=0. 25
ay + aX (25)

The operation d/dx of (24) and the use of 2-D incompressibility condition (25) to eliminate
Ox, Yield the classical Rossby wave equation (for infinite Rossby radius), namely

D (d%qy = d%qy v 30y
— | — + — —-U)—=0. 26
Dt (8x2 + ay? + P 0X (26)

For Fourier wave modes o< Qy(y) exp i(wt — kyX) this yields (22) for the latitudinal structure,
in agreement with the limit obtained from our more general analysis in which ¢ # oo.

This last result (26) and (24) essentially express conservation of total (planetary plus zonal
shear plus wave) vorticity. At the outset one could choose a derivation with the idea of using
conservation of potential vorticity for a shallow layer, which would involve taking the curl of
the horizontal components of the equation of motion (to give (V x u);), but this would still be
coupled to an equation for the horizontal divergence, and together with suitable approximations
as given above, would lead to the Potential-Vorticity equation (Rhines 2003).
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4. Radiation patterninawind

In this section, the radiation pattern generated by a time harmonic spatially compact source
in a uniform wind is analyzed. This is equivalent to calculating wave generation by traveling
forcing effects (Lighthill 1960). The effects of the frequency Doppler shift play an important
role in wave propagation in a moving medium. This is revealed through the geometry of the
wave number curves in the laboratory frame, which in turn determine the radiation pattern
using the method of stationary phase. For uniform winds, U, the local dispersion equation is
given by (20b), which, with derivatives of U put to zero and @ « f, simplifies to

Bkx
w—k-U’
The quantity @ = w — k - U is sometimes referred to as the “intrinsic” frequency (Bretherton
and Garrett 1968, Dickinson 1968, Lighthill 1978), and where it is zero the wave is said to
exhibit critical level behavior (Booker and Bretherton 1967). At such a level the wave action
undergoes a discontinuous jump.

kG +K; + f2/c? = — (27)

4.1. Method of stationary phase

Asymptotic approximations to Fourier integrals, representing the solution of linear wave
problems, can be evaluated by the method of stationary phase (for a detailed account, see
for example, Lighthill’s classical book “Waves in Fluids” 1978, p. 351-361). In the far, or
radiation, field the dominant contribution to a Fourier integral, representing the solution of
the problem, comes from those portions of the rapidly oscillating phase which are stationary
with respect to the component of the wave number over which the integration is being carried
out. For example, in the case of a two-dimensional problem such as on a g-plane, the phase
@ (X, k) may be written, in Cartesian co-ordinates, in the form

in which  is the (given) angular frequency of the source, and k = (ky, ky) is the two-
dimensional wave number vector. These quantities are related through a dispersion relation
(for example (27) above) arising from the Fourier image of the wave operator which appears
as a simple pole, thus through the calculus of residues, reducing the two-dimensional Fourier
integral to a single integral over either (ky, Ky) space (using the residue theorem), and is given
by some relation

D(w—k-U,ky, ky) =0. (29)

Here D is an algebraic function representing the Fourier image of the wave operator in which
the Doppler shifted frequency @ = @ — k- U arises from winds or flows of velocity U relative
to the laboratory frame. This relation can be written in the polar form

D(w— kU cos(® —a),k,0) =0 (30)

in which k = k(cos 6, sinf), U = U (cos«, sin «), and may have solutions
k(©) = ki (0, ®, &, U), (31)
wherei = 1,2, ..., n represents the possible n roots of the dispersion equation representing

different modes of propagation. We refer to the solutions k; (6) as the polar form of the wave
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Figure 1. The geometrical interpretation of the reciprocal polar of the wave number curve. The example shown is
actually appropriate to the wave number k(0) for stationary waves on deep water (k(9) ~ 1/ cos2 0) generated by a
uniformly moving source (ship).

number diagrams at given values of (w, a, U) in the laboratory frame. Writing the space
coordinates (X, y) in polar form r (cos x, sin x), the phase given by (28) of the i th mode may
be written

@i =r(x)ki(@)cos (O — x), (32)

where we now regard 6, the wave number angle, as the variable over which the Fourier integral
is taken. For large r (i.e. the far field) the phase @; is stationary with respect to 6 if

0D;
50 = 0, (33)
which implies
@ =tan (@ — x) (34)
ki (0) ’
or
tan = N0 = K/Ki 1 (35)

T 1+tanoK/ky  aky ok

which defines the ray direction yx in terms of 6.
The radiation pattern is given by (32) which for a given phase ®; may be written as

D

ki (8) cos (6 — x)’
in which & may be regarded as a generating parameter for x through (34), which shows that
the ray direction yx is perpendicular to the wave number diagram at a given 6. The curve
given by (36) is therefore the reciprocal polar of the wave number curve and lends itself to
the geometrical interpretation shown in figure 1 in which OP represents the wave number
vector and OQ is the radius vector of the reciprocal polar to the curve (see also Lighthill 1978,
p. 372-373).

r(x) = (36)



Downloaded by [DUT Library] at 06:05 31 July 2014

Rossby wave patterns in zonal and meridional winds 245

Figure 2. The family of deltoids (reciprocal polars) for the classic ship wave pattern. The semi-angle of the Kelvin
wedge is sin—1 (1/3) ~ 19.5°) and arises from the point of inflection of the wave number curve.

This particular figure is, in fact, appropriate to the stationary wave number diagram for
surface gravity waves generated by a uniformly moving source, and gives rise to the deltoid
shape characteristic of the classic ship wave pattern exhibiting a Kelvin-wedge cusp associated
with the point of inflection of the wave number curve (as shown in figure 2).

4.2. Rossby radiation pattern in a zonal wind

Here, we extend the work of McKenzie (under review) on the radiation pattern of Rossby
waves to include the effects of winds or flows. In the case of a constant zonal flow U X the
Rossby wave dispersion relation (27) becomes

— Bkcoso

k2 f2 2:
+15/e (w —UKkcosh)’

(37)

which is a cubic for k(6). In the classic case of f2/c2 = 0 (corresponding to infinite Rossby
radius) this equation reduces to a quadratic with solutions

ke (0) = ﬁ (1 +/1+ 4M;, cos? 9) , My = AU /. (38a,b)
M; is a “Rossby” Mach number measuring the flow speed in units of the speed w?/8 charac-
teristic of the Rossby zonal wave speed. At mid-latitudes this speed ranges from 80 ms—! for
two day wave periods to 20 ms~? for four day periods. Therefore, M, may take a wide range
of values from the very small to of the order of or greater than unity depending upon the wind
speed and the wave period.
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Figure 3. The wave number curves k4 (9) for Rossby waves in a westerly zonal wind (U > 0), illustrating the
relation between the ray direction x and the wave number angle 6 for each curve.

4.2.1. Westerly wind

In the case of a westerly wind (U > 0, M; = 10), the wave number curves given by (38a) are
shown in figure 3.

The k_(0) is the closed ovoid-like curve lying in ky < 0 (corresponding to westward phase
propagation) modified slightly by the flow so that it extends to kx = k_(6 = ) rather than
—pB/w, whereas the k (6) is a new mode arising from the zonal flow, consisting of the line
kx = w/U with the forward facing indentation at ky = k(6 = 0).

The relation between the ray angle x and the wave number angle 6 follows from (35) in
which we use (38a) for k(@) yielding

sin@
K@) = — A+1), 39
) >0 cosZG( ) (39)
and hence
t(1x1/A
tan y = (:F—/) t=tano (40a,b)
(1+t2/A)
with
A= /1+ 4M; cos? 6. (40c)

The variation of x for ki (6) wave number curves at M, > 1 are shown in figures 4(a),(b).
The k4 (6) curves for various M; are shown in figure 5.

The radiation pattern for the closed Rossby wave normal diagram k_(0) yields a family
of parabolic like curves as shown in figure 6(a) for the case M; = 10. These are similar to
the case of no flow (Rhines 2003, McKenzie under review), which consists of two families of
hyperbolas, these being the reciprocal polars of the Longuet-Higgins offset circle. On the other
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Figure 4. (a) The (x, 0) curve for the k (6). The maximum deviation (xm) of the ray from the east arises from the
point of inflection in the k4 (6). Note 3 two values of 6 for any given x (<xm). (b) The (x, 6) curve for the k_(6)

wave number curve.

hand the reciprocal polar of the westward branch (k;.(6)), namely the “indented line”, yields
the radiation pattern as the family of deltoid-like curves shown in figure 6(b) for M, = 10.
These curves resemble a “reverse” ship wave with the disturbance confined to a Kelvin-like
wedge angle which is given by the ray direction at the point of inflection of the k(6) in
figure 3. To a good approximation this critical wedge-angle x; is given by

4

tan x = (3>3/2 (VI+4M: —1)

2 9

(41)
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Figure 5. The ky —(0) wave number curves for various values of My .

which shows that x; — 0as M, — 0, x+ >~ 22° for My = 1,and x_ — 90° as M; — oc.
The “reversed” ship wave pattern (figure 6(b) arises from the shape of the k. (9) (figure 3)
exhibiting the indentation to the right (i.e. k(6) cos 6 increases with 6).

4.2.2. Easterlywind

For U < 0 the wave number curves, for various values of M; < 0 are shown in figure 7.

The open branch with the asymptote ky = w/U and the indentation at ky = k4 (6 = ) now
lie entirely westward (kxy < 0). We note that as M; — —1/4 the open and closed branches
coalesce and for |M; | > 1/4 are joined as shown in figure 7 for M, = —0.3 and —0.275. The
associated radiation patterns are shown in figures 8 and 9.

In figure 8, we observe that the family of deltoids lie entirely to the west (in the direction
of the wind) and, in contrast to the case of a westerly, the deltoids face the same way as
would a Kelvin ship wave. This is because in the corresponding wave number curves (labeled
M, = —0.225), the line with the indentation lies to the right of the asymptote (i.e. to the west).
In the latter, the deltoid “interacts” with the parabolic-like curves.

4.2.3. Sationary wave

For the case of stationary waves in the laboratory frame, in which we let w = 0 and consider
the case f2/c? # 0 so that equation (37) becomes

k? = (B/U) — (f?/c?), ky = 0. (42a,b)

Hence, the wave normal diagram becomes a circle of radius /(8/U) — (f2/c2) if U is
westerly and less than Bc¢?/ 2, which is the long wavelength zonal phase speed of the Rossby
wave, but is otherwise evanescent when U < 0. However, the line ky = 0 is also part of the
wave number diagram, whose complete form is shown in figure 10(a).



Downloaded by [DUT Library] at 06:05 31 July 2014

Rossby wave patternsin zonal and meridional winds 249

(@ s

6% My =10

(b) 1.5 r T r T r T r T

1.0 | -

L 1
\\0.5
> 00 }

-1.0 -

15 , 1 , 1 , 1 , 1 ,
0 2 4 6 8 10

Figure 6. (a) The radiation pattern corresponding to the k_(6) wave normal is a family of parabolic-like curves,
which is reminiscent of the capillary waves generated by an object in a stream. (b) The radiation pattern (family of
reciprocal polars- deltoids) for the k4 (6) wave number for My = 10. The pattern looks like an “reversed” ship wave
pattern. The cusps result from the point of inflection in the k4 (9) curve and confine the pattern to a semi-wedge
angle xm.

The direction of the arrows (rays) are obtained from the limiting form of the general wave
normal diagram as @ — 0 (M; — o0) as shown in figure 5. This case is similar to the
two-dimensional internal gravity wave pattern generated in a horizontal flow (Lighthill 1978
p. 415, 416 figures 108(a),(b)). The reciprocal polar is shown in figure 10(b) and consists of
the semi-circle (taken twice), the double line ky = 0 (for ky > radius of circle) and the two
lines extending westwards.
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Figure 7. The k4, — () curves in an easterly wind (U < 0) for various values of M. For |[My| > 1/4 the curves

coalesce as shown.
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Figure 8. The corresponding radiation pattern for |My | < 1/4. The deltoids lying entirely to the west correspond to
the open branch (plane with an indented line), whereas the parabolic like curves are associated with the closed ovoid,
and lie both ahead (east) and behind (west).

w
N

4.3. Radiation patternsin a meridional wind

In the case of a constant meridional wind/flow, U ¥, the Rossby wave dispersion relation (27)
becomes
Bkcoso

K24 f2/g2=— " "77
+ 17 o — kU sing

(43)
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Figure 9. The radiation pattern, for |My | > 1/4 and various @, which involves an “interaction” between the deltoids
and paraboloids.

We consider the classic case ¢ — oo (but return to c finite in the case of stationary waves,
given at the end of this section). Equation (43) becomes a quadratic for k(&) with solutions
(after factoring out k = 0)

w
~ 2Using
The k() and k_(0) wave number curves for various M, are shown in figure 11. Note that
for (M; > 1/2) the open and closed curves (for k and k_, respectively) coalesce.
The radiation patterns (reciprocal polars) are calculated using equations (36) with (35) and
the wave number curves k. (9) given by (44). We obtain from (35) and (44) the relation between
the ray angle x and the wave number angle 6:

B B
tany =tand {1+ —— 1 45a
X ( Atan20>/< $tan28> (452)

A=,/1+2M,sin26, B=(1+2M tand)/(1+ A). (45Db,c)

Kt <1j:\/1+4Mr sin@cos@). (44)

with

The corresponding radiation patterns for M, < 0.5 are shown in figure 12 (for k;.(9)) and
figure 13 (for k_(#)). The cusps in the radiation pattern shown in figure 12 arise from the
points of inflection in the wave number curve k. (9) for M; = 0.4.

In the case of M, > 1/2, the open and closed curves “interact”, or coalesce, as already
noted and illustrated in figure 11. The reciprocal polars for M; = 0.45, 0.5, and 0.55 are
shown in figure 14. In this case, the k(6) curve given by (44) is complex in the angular range
0_ > 60 > 6, where

/1 — 2
sin@iz\/ljE ! 2(1/4)Mr. (46)

The angles 6 _ lie in the second quadrant.
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Figure 10. (a) The stationary wave number in a westerly wind. The arrows indicate the ray directions which can be
deduced from figure 6 for the case of My = 100 (w small). (b) The corresponding reciprocal polar.

In the case of stationary waves (w = 0), the dispersion equation becomes

B f2 B
k2 = 2 cotd — — = — (cotf — coth,), 47
5 co Z =7 cot 6¢) (47)
where U &
C
cotfe = (48)

p 12



Rossby wave patternsin zonal and meridional winds 253

Figure 11. The wave number curves k4 () and k—(0) in a meridional wind for various values of M;. The curves
coalesce for My > 1/2.
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Figure 12. The radiation pattern for the wave number k4 (9) for various @ with My = 0.4.

cot 6¢ is therefore another Rossby “Mach” number where the flow speed is measured in units of
the long wavelength Rossby speed which, at mid-latitudes, takes values from about 120 ms—1
in an ocean of depth 4 km to around 200 ms~—1 in the atmosphere.

The wave number diagrams and their associated reciprocal polars are shown, respectively,
in figures 15 and 16 for various values of 6.. The radiation patterns for various @ are shown
in figure 17 for the case 6. = 90°.
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Figure 13. The radiation pattern for k_ (6) wave number for various @ at My = 0.4, exhibiting the parabolic-type
curves similar to capillary waves.
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Figure 14. Reciprocal polar curves for the wave number curves for a meridional wind (as shown in figure 11) for
M, = 0.45, 0.5, and 0.55. Note the two “Mach”-like lines, which appear for My = 0.55 on the k-curve, and which
are associated, in the wave number curves of figure 11, with the asymptote tangent lines drawn from k, ky origin to
the two points where the rays are normal to the wave number curve.
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Figure 16. Reciprocal polar curve corresponding to stationary wave normal forms (taken twice) for a meridional
wind (figure 15).
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Figure 17. The stationary radiation pattern in a meridional wind.

5. Summary

For Fourier type zonal plane wave modes, we derive a second-order differential equation
describing the latitudinal structure of Rossby type wave perturbations on a B-plane in zonal
(and meridional) winds.

We have followed Lighthill (1978) to show how the local dispersion equation, when inter-
preted as a wave number diagram in k space at a given frequency w, can be used to construct the
radiation pattern generated by a time harmonic compact source in a laboratory frame relative
to which zonal and meridional winds flow/blow. The effect of the Doppler shift in frequency,
due to the mean flow, on the wave number curve (the Longuet-Higgins offset circle in the
rest frame) is quite dramatic and is highlighted by a series of figures 3—-8. The most important
effect is the appearance of a new branch in k-space caused by the background wind consisting
of a blocking line with an indentation. In the case of a zonal wind, the new branch consists
essentially of the line (kx = w/U) with the indentation facing to the right. In the case of a
westerly flow, the radiation pattern associated with this branch is a family of deltoids which
resemble a reverse ship wave pattern (see figure 6(b)). On the other hand, the radiation pattern
associated with the distorted Longuet-Higgins circle is a family of parabolic-like curves rather
similar to the wind-free case (e.g. see figure 6(a)). In the case of a westward wind (an easterly
flow), the radiation pattern is shown in figure 8 with the family of deltoids lying entirely to
the west and embedded in the parabolic like patterns associated with the closed wave number
curve. However, if [M;| > 1/4 an interaction between the deltoids and the parabolic curves
as depicted in figure 9 arises. The case of a meridional wind is slightly more complicated but
again these diagrams (figures 11-17) depict the diversity of the radiation patterns. In the case
of stationary waves in the laboratory frame, we obtain the interesting figures 12 and 14 for the
zonal and meridional cases, respectively. The new results here have the wave number curves
in zonal and meridional flows and their reciprocal polars which provide the various Rossby
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radiation patterns. These provide the Rossby wave problem equivalent to the classic ship wave
problem (involving both gravity and capillary waves) and internal gravity waves in a wind.
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4.1 Addendum

This small section here attempts to give an interpretation of the results in the previous
paper using the JWKB method.

JWKB Solutions and Ray paths in wind shear

A qualitative idea of the wave behaviour in a wind shear is revealed through the JWKB
approximation, in which the variations over a wavelength are assumed small, so that to

“zeroth” order, equation (22) possesses approximate solutions of the form

AQy(y) ~ ﬁ exp (ii /y ky(y) dy') (4.1)

Y

where, in the low frequency approximation w’ < f, the local wave number k, is given by
equation (23a)
k2?2 = —f2) — k% — Boky /W' (4.2)

This is the mid-latitude Rossby wave dispersion equation with the effect of the wind shear
included through the Doppler shifted frequency w' = w — k,U. As we have seen in the
paper, Duba et al. (2014), this Doppler shift has a profound effect on the geometry of
the local wave normal curves in (ky, k;) space. The effect of the zonal wind on the wave
normal diagram has already been described in the previous paper and is shown in figure
7 (for westerly U > 0), and figure 3 (for an easterly, U < 0).

We will analyze the ray paths in both westerly and easterly jets, using the geometry of
the wave normal curves. The ray direction x, drawn normal to the wave normal curve is

given by equation (35) which may be written as

_dy 1
tan xy = yri —ka/ﬁkx’ (4.3)
in which
_ ko (ky — ki) (ke — k) = (f?/?) (W/U — k)
kl = /U k) : (4.4a)
hy_ = % (1 + 1+ 45U/w2> . (4.4D)

As we have already noted equation (18) lends itself to the geometric interpretation that
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the ray direction is perpendicular to the wave normal curve at any given wave normal
angle 0. Thus a ray path in a zonal wind shear U,(y) may be determined by constructing
the wave normal curves in (k,, k,) space at successive latitudes and following the direction
of the arrows (direction of the ray) drawn normal to the wave normal curve where it is
intersected by a line k, = constant at each latitude. Note that in the course of the ray
trajectory w and k, are conserved whilst k, changes according to the local dispersion
equation as a result of the Doppler shift introduced by the wind shear U,(y). This
elegant construction has been used to examine ray paths, for example, by Lighthill (1967)
in the case of travelling forcing effects and and others, for example, Mekki and McKenzie
(1977) for Rossby waves. Here we reproduce and correct the latter’s conclusions which

supplement some related and recent work on Rossby ray paths.

First, however, we briefly discuss the reflection and critical level points associated with
the differential equation (20a) or its reduced form equation (22). A point denoted by .,
at which the local wave number k, goes to zero corresponds to a reflection point. The
differential equation approximates to the classical Airy form (e.g., Lighthill, 1978, p.385)
which describes incident and reflected waves on one side (say y < y,), accompanied by
an evanescent disturbance on the other side. On the other hand a “resonance” arises at
points where k, — oo. This occurs where the Doppler shifted frequency goes to zero, or
equivalently where the zonal phase speed equals the local zonal flow speed, and this is
called a critical level (Booker and Bretherton (1967) (for the case of gravity waves in a
wind shear), and Dickinson (1968) for Rossby waves). At such a critical level the wave (in
linear theory) is neither reflected nor transmitted but is absorbed, with the wave action
undergoing a discontinuous jump, and therefore the JWKB approximation breaks down.
In fact, the nonlinear evolution near such a level is more complicated in which it can
evolve from an absorber, to a reflector and back to an over-reflector (see Killworth and
Meclntyre (1985) and references therein for a detailed discussion).

Lighthill’s construction for the ray path in a jet stream is shown in figure 4.1, and by
joining together the arrows (at different latitudes) for given values of w and k, we obtain
the various types of ray paths shown in figure 4.1 (b), figure 4.2 (¢) and (d). For example
the ray path labelled 1 is reflected before reaching the centre of the jet and is eventually
captured at a critical latitude in the west. The ray paths 3, 4, 5 and 6 correspond to
westward phase propagation (k, < 0), with paths 3 and 4 being reflected before reaching
the jet centre, whereas those labelled 5 and 6 penetrate through the jet. Similarly, we
can construct the various ray paths for an easterly jet stream as shown in figure 4.3 with
the corresponding ray paths shown in figures 4.4 b, ¢ d, e, and f. Rays labelled 3 (figure
4.4 ¢ and 4.3 are trapped in a waveguide type path around the jet centre. The rays
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labelled 4 and 5 (figure 4.4 d exhibit critical latitude behaviour in which that latitude
acts as an absorber, whereas the rays labelled 1" and 2" (figure 4.4 e) the critical latitude
appears as an emitter, in the sense that rays emerge from the critical latitude, rather than
asymptotic approach. These results supplement the original work of Yagamata (1976)
and more recent work by Lu and Boyd (2008), Shaman et al. (2012), Karoly and Hoskins
(1982), and Farrell and Watterson (1985). El Mekke (1980) in his work on hydromagnetic
planetary waves propagating through a zonal flow and transverse magnetic field, showed
that some planetary waves are known to be blown eastwards by zonal flows at critical
levels or latitudes; westward propagation remains a characteristic of trapped planetary

modes.

For waves propagating through meridional winds, the radiation patterns are complicated
and it is not easy to follow the ray paths. Indeed, such a study would give a full description

of critical wave behaviour at critical latitude.
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Figure 4.1: (a) Geometric construction of ray paths through westerly jet (b) The ray path
labelled 1 is reflected northward before reaching the centre of the jet and is eventually
trapped at a critical latitude in the west. Ray path labelled 2 penetrates through the centre
of the jet.
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Figure 4.2:  Ray paths 3, 4, 5 and 6 correspond to westward phase propagation. (c¢) Ray
path 3 and 4 are being reflected before reaching the jet centre. Ray path 3 corresponds

to eastward energy propagation and ray 4 to westward energy propagation. (d) Ray paths
labelled 5 and 6 penetrate the jet.

60



A
> |

easterliy “joet stremanm’

Cian A 2o

Figure 4.3: Geometric construction of various ray paths in easterly jet.

61



{c) -

o 2
GRS

critical
latitudes

- D

Figure 4.4: (b) Rays 1 passes through the jet whereas ray 2 is reflected at the centre of a
jet. (c¢) Rays labelled 3 are trapped in the jet. (d) Rays 4 and & exhibit critical latitude
behaviour. (e) The critical latitude acts an emitter of rays labelled 1" and 2'. (f) Ray 6 is
trapped in the jet.
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Part 11

Effects of Density Stratification and

Double Diffusive Convection
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Chapter 5

Introduction

Geophysical fluids typically consist of fluid masses of different densities, which under
gravity tend to arrange themselves in vertical stacks corresponding to a state of minimal
potential energy (Cushman-Roisin and Beckers, 2011). At the air-water interface, it is
possible to have convection due to differing temperatures. The phenomenon of convection
occurs in different fields of study, and is thus not confined to geophysics. For instance,
besides convection in the Earth’s mantle and in the atmosphere it is also relevant in

chemical engineering where stratification is an important component of the system.

5.1 Stratification

The sun is the major source that heats up the oceans and atmosphere, thereby creating
variations in densities. An important result for this stability is that motion parallel to
gravity is inhibited and this tends to produce large-scale horizontal motions. Furthermore,
due to this stability, there is a disparity between vertical and horizontal motions. The
depth of the ocean is about 10 km whereas the horizontal distance is about tens of
thousands of kilometers. So in general, these large scale motions take place within a
very thin layer of fluid. The relation between the depth H and the horizontal scale L
will determine how these motions can be modelled. For the scale § = (H/L) < 1 is the
shallow-water limit.

Furthermore, due to stratification, if the fluid is displaced upward, and the fluid parcel
is heavier than its surroundings, the fluid will experience the downward tendency due to
gravity and falls down and in the process acquires a vertical velocity; upon reaching its

original level, the particle’s inertia causes the particle to go further downward and to be
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surrounded by heavier fluid. The parcel now buoyant is propelled upward and oscillations
persist about the equilibrium level. In such cases we can measure stability using the
Brunt-Viisila frequency. As we mentioned before if N? > 0, then we have instability and
the system is stable when N? < 0. If a fluid is permanently destabilized for example by
heating from below or cooling from above, the fluid will remain in constant agitation, a
process called convection. In a compressible fluid, density can change in one of two ways:
by pressure changes or by internal energy changes.

In many of the traditional fluid dynamics literature (e.g. Chandrasekhar (1961), Drazin
and Reid (2004)), convection is described using the critical Rayleigh number for which
the onset of convection is observed. We shall adopt this in Part II of this thesis when
studying double-diffusive convection. McKenzie (2011) made an observation during the
celebration of the life and work of Chandrasekhar, that “Chandrasekhar: The all rounder”
had omitted the use of the Brunt-Vaisaila frequency in his study of thermal instability, and
it was the atmospheric physicists who describe instability using the buoyancy frequency.
If a free surface liquid interacts with air, buoyancy and surface tension both play a role
in developing convection patterns. Buoyancy effects occur when a free surface liquid is
heated from either below or above. In this situation, the temperature differences induce
buoyancy so that the liquid experiences an overturning as colder (heavier) water sinks
and warmer (lighter) water rises. This effect is called Rayleigh-Bénard convection, or
simply thermal convection of Bénard convection. With regard to surface tension, liquid
will migrate from places of lower surface tension to places of higher surface tension; called
the Marangoni effect. Furthermore, if the liquid is heated from below, there will be a
temperature gradient through the liquid. Furthermore, as temperature increases, surface
tension drops, thus also causing liquid to flow upwards from warmer areas to cooler areas.
Again, in order to maintain the horizontal flow patterns, cooler waters will then sink and
create a downwelling. This type of convection is called Bénard-Marangoni convection or
thermo-capillary convection. So in this case the two effects of thermal convection and
thermo-capillary convection (driven, respectively, by buoyancy and surface tension) work

In concert.

A different situation arises when two opposing gradients (such as temperature and con-
centration) are involved, due to different rates of diffusion. The process is called double-
diffusive convection. In the ocean, where heat and salt diffuse at different rates, in fact,
with the rate of salt diffusion being 100 times slower, this convection is called thermoha-
line convection (thermo-temperature, haline- salt). In other fields, such as engineering,

that involve a non-haline solute, the corresponding convection is called thermosolutal con-
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vection. Thermohaline convection is important in ocean circulation because it transports

heat poleward and brings nutrient-rich deep water to the surface.

In the work below the study will consider Rayleigh-Bénard convection leading to double-
diffusive convection; specifically thermohaline convection. Because rotation contributes to
the fluid’s vertical rigidity it is a notable factor in modeling the phenomenon of convection
in the ocean where rotation cannot be ignored. To address this factor, rotational effects
are added to the mix and discuss the implications thereof. Chandrasekhar (1961) and
others discussed rotational influences in the case of Rayleigh-Bénard convection. It is

from this basis that the study considers rotational influences in thermohaline convection.

When there are two opposing gradients in the system, they often interfere with each other.
As such it is possible to have heat flux due to the concentration gradient and the mass

flux due to temperature gradient. These are called cross-diffusive factors.

The remainder of this chapter will first discuss Rayleigh-Bénard convection. The study
then focuses attention on rotational effects on Rayleigh-Bénard convection. Furthermore,
salt is included into the mix to discuss thermohaline convection. In addition, rotation
effects on thermohaline convection are considered. The chapter concludes with cross
diffusive effects. In the next chapter the study considers thermohaline convection under
rotatory influences and cross-diffusive effects and it employs linear and nonlinear stability

analysis to extend the work already undertaken in literature.

5.2 Rayleigh-Bénard Convection

Unlike the shallow water equations already discussed in Part I, which are governed by
inviscid theory, the hydrodynamic equations governing thermal convection have viscosity
as an important factor. Nevertheless, as with shallow water motion, the equations that

describe the motion with thermal convection are based on the Navier-Stokes equations.

The phenomenon of thermal convection in fluids was discovered by Rumford in 1870.
This was followed by the first quantitative experiment on the onset of thermal instability
and the recognition of the role of viscosity in the phenomenon conducted by Bénard in
the 1900s which led to his recognition of the role of viscosity in the phenomenon. In
this experiment the height of the layer was taken to be small compared to the horizontal
dimension, which is similar to the description of ocean and atmospheric flows. In 1961
Lord Rayleigh conducted a theoretical study and developed a mathematical theory for this
problem. Rayleigh asserted that instability occurs as a result of the buoyancy effect due

to heating from below. Convection due to buoyancy and its role in instability is important
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in many physical systems, especially oceanography. Instability theory is discussed in the
classical book by Chandrasekhar (1961) and in Drazin and Reid (2004). We base the

ensuing discussion on these publications.

In a fluid mass where initially there was equilibrium, when the heating is from below,
the fluid at the bottom will be lighter than the fluid at the top. As a result, the fluid
will redistribute itself, but its viscosity will also inhibit this rearrangement. Thus for a
a while the temperature at the top is the same as temperature at the bottom, and there
is equilibrium. Then the temperature at the bottom will slightly increase. The fluid
will redistribute itself but its viscosity will begin to inhibit this rearrangement. Thus
for a certain temperature distribution the system may be unchanged until it reaches a
critical temperature, at which the system becomes unstable. The subsequent fluid motion
will result in a cellular arrangement called Bénard cells. If the temperature is increased

further, turbulent flow will result, leading to chaos.

The theoretical foundations for modelling the phenomenon, as put forward by Lord
Rayleigh is a system of three dimensional equations that is based on the Boussinesq ap-
proximation. In this approximation the fluid density p is considered to be independent of
the pressure (i.e., assuming incompressibility) and to depend linearly on the temperature
T:

p=poll —a(T —Tp)], (5.1)

where pg is the reference density and Tj is the reference temperature, and « is volume
of expansion coefficient. This is called the equation of state. What this equation means
is that density variations can be ignored everywhere except in the buoyancy term they
should include the factor of gravitational acceleration g. Rayleigh’s system is based on
the conservation of momentum and mass, and includes internal energy and the equation
of state. Using a Cartesian system of coordinates (z,y, z) where x and y are horizontal

coordinates and z is the vertical coordinate:

u

p— = —Vp+uV:u+F, (5.2)
Dt

where u = (u, v, w) is the fluid velocity, p is the density, p is the molecular viscosity, p is

the pressure, and F is the external force for example, gravity and rotational effects. Here

Du Ou

E = E + (u . V)U, (53)

is the material derivative or convective derivative. Together with the momentum equation,
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there is also the continuity equation

ou Ov Ow _0 (5.4)

V'u:%—i-a—yﬁ‘a—

under the Boussinesq approximation and the equation for the temperature gradient

oT
Fri uVT = kr V2T (5.5)

where T is the temperature and kr is a (constant) thermal diffusivity.

If a fluid parcel is located at position z, it has a temperature 77 = 7, and hence density
p = p(z1). In this case the system is in equilibrium or in hydrostatic balance. Instability
will arise if there is any disturbance, small or large. Instability can be determined from
the density variations. In this regard, an incompressible fluid is unstable if density varies
with height in the absence of viscous and diffusive effects. If dp/dz > 0 then the system
is positively buoyant, if dp/dz = 0 then the system is in equilibrium, and when dp/dz < 0
then the system is negatively buoyant (Holton & Hakim, 2013). This is the same as using

the buoyancy frequency, N, which was previously introduced in Section 5.1.

In some other literature, where density only depends on temperature, the vertical variation
in temperature is used. In this case stability conditions are: if dT'/dz > 0 the system
is stable, d7'/dz = 0 implies a neutral state, but d7/dz < 0 implies an unsteady state.
In other publications, stability analysis is performed using the conservation of energy.
However, these shall not be used in the work below.

In Rayleigh-Bénard instability, Rayleigh derived a quantity now called the Rayleigh num-
ber as the measure of stability, which is given by

_ gaATd?

VKR

R (5.6)

where k is the contraction coefficient, and v is the viscosity.

Using linear stability analysis and the method of normal modes, assume that the equations
of motion are linearised with respect to small perturbations, a Rayleigh number for a free-

free surface, free-rigid, rigid-rigid surface can be derived as

(7% + a?)?
a? '

R= (5.7)

The critical Rayleigh number for the onset of stationary convection is determined by the
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condition 5R
— =0 5.8
52 (5.8)

which gives a? = 7%/2, where a is the wave number. At this wave number, the corre-

sponding Rayleigh number is

R — 277t

= 657.5. (5.9)

The critical Rayleigh number depends on the boundary conditions. Chandrasekhar (1961)
gives the critical Rayleigh numbers for free-rigid as R. = 1100.657 and that for rigid-rigid
conditions as 1707.762.

As can be seen, the conditions for Rayleigh-Bénard instability are such that if R = R,
then the system is in equilibrium; if R < R, then the system is marginally stable, and if
R > R, then the system is unstable. We follow Rayleigh’s stability analysis in subsequent

work to be considered in the next chapter.

When temperature is increased, as the system rearranges itself, the result is a pattern
formation called Bénard cells in the case of free-free surface. These Bénard cells have
introduced to convection patterns to the theory of convection. Chandrasekhar (1961)

represents Bénard cells pictorially.

5.2.1 Rotational Effects

Many flows in nature are modulated by rotational effects. Therefore, rotational influences
are relevant in many geophysical, astrophysical, geological studies. To be specific, tropical

cyclones are typical examples of geophysical flows under rotation.

It has already been noted in this regard that rotation forces the fluid to be vertically rigid
(Cushman-Roisin and Beckers, 2011). The effect of rotation on the onset of thermal in-
stability has been investigated theoretically by Chandrasekhar (1961) and experimentally
by Nakagawa and Frenzen (1955) and Rossby (1969). For this situation, Chandrasekhar
(1961) alluded to the first consequence of rotation as being the inversion of the role of
viscosity, which results from the Taylor-Proudmann and the Helmholtz-Kelvin theorems
on vorticity.

At the outset, introducing rotation effects means that, the governing equations must be
three-dimensional. So for inviscid fluids the system is expected to remain stable. However,
when viscosity is taken into consideration, then thermal instability occurs. Nakagawa and
Frenzen (1955) mentioned that it was Jeffreys in 1982 who first pointed out that “the effect

of rotation is to maintain stability”. They noted that high viscosities could actually aid
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instability by preventing the high stabilizing effect of rotation.
In addition, in his study using linear stability analysis, Chandrasekhar (1961) found that

rotation inhibits the onset of both stationary convection and oscillatory convection. The
extent of the inhibition for stationary convection depends mainly on the Taylor number
given by

For the case of oscillatory convection instability depends on both the Taylor number and
the Prandtl number
Pr = i
kT
It has been found experimentally and theoretically that rotation inhibits instability for
all adverse temperature gradients (Nakagawa and Frenzen, 1955). Furthermore, the onset
of instability will be oscillatory as long as the Prandtl number exceeds a certain critical
value (Nakagawa and Frenzen, 1955). Veronis (1968) studied large-amplitude Beénard
convection in a rotating fluid. He found that fluids with large (> 1) Prandtl number
exhibit behavior that is markedly different from that of fluids with Pr < 1. In addition
the diameters of the convection cells vary inversely with the rate of rotation. In our
discussions later will also involve analysis of convection using different nondimensional

parameters such as the Prandtl number that arise from the equations of motion.

The equations governing the system under rotation are given by

p = poll — ar(T = Tp)], (5.10)
%—?—i—u'vu—l—?Qz X u = —%VeraTngNQu, (5.11)
V-u=0, (5.12)
O L . VT = Kk V2T, (5.13)

ot

where u, p and T are velocity, pressure and temperature, whereas pg is the mean density,

v and k7 are viscosity and thermal diffusion. €2, is the rotation.

For the onset of stationary convection the Rayleigh number is given by

1
R = = [(7* + a®)® + 7°Ta] . (5.14)

Here R attains its minimum when

22 4+ 32° = 14 Ta/m*
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where a? = 7w2z. The critical Rayleigh number R. will be determined for varying Ta.

Chandrasekhar (1961) showed by the variational principle that for Ta/m* sufficiently
large,
Ta 1/3
min — | 51 )

L[ Ta\*"? -
Re—3n' (55 )  =8.60567",
T

1 1/6
Amin — (§7r2T> — 1.30487/6,

The onset of oscillatory convection, manifesting as oscillations of increasing amplitude, is

given by the condition

R=—[(1+2)*+Ta— (1+a)(1+2Pr)o?]. (5.15)

K| —

Thus instability depends on the rotation number, T'a, and the Prandtl number Pr. Since
both the rotation number and the Prandtl number depend on viscosity, it is can actually
act as a stabilizing factor as noted by Nakagawa and Frenzen (1955). Studying fluid

motions under high viscosity may yield useful results.

5.3 Double Diffusive Convection

When there are two quantities with vertical gradients, each affecting the density in an
opposite fashion, and so causing different rates of diffusion, the ensuing process is called

double-diffusive convection.

Double-diffusive convection in fluid layers, has been studied extensively for different con-
texts, both in theory and experiment. We note, in particular the publications by Turner
(1973, 1974, 1985) and Huppert and Turner (1981) which review both aspects. The study
of double-diffusive convection was extended to a Maxwell fluid by Awad et al. (2010).
Caldwell (1974) also summarized experimental studies on the onset of thermohaline con-
vection. As already mentioned, when one of the gradients is temperature, and the other
is the concentration of a solute, this phenomenon is termed thermosolutal convection, and
where the solute is salt, thermohaline convection. In the thermohaline case, heat diffuses
100 times faster than salt, resulting in instability. A common example in oceanography
occurs when heating (or cooling) and salination (or refreshing) at the sea surface become

further distributed in the oceanic boundary layer. The resulting thermohaline circulation
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is important in ocean mixing and climate change. This shall be the focus of our attention

in the next chapter.

The thermohaline convecting systems were first studied by Stommel et al. (1956). They
discovered the salt fountain, which occurs when hot salty water lies above cold fresh water.
Two fundamental cases were studied, firstly by Stern (1960) and then by Veronis (1965).
Stern’s study concentrated on the case when the temperature gradient was stabilizing
and the salt gradient destabilizing, in other words, when salty warm water lies above
cold and salty waters, a bottom-heavy configuration. Stern also confirmed the general
properties of the motion known as ‘salt fingers’. These structures appear as a closed-
packed array of up and down flowing convection cells which exchange heat laterally but
diffuse little salt. The result is a transport of salt and heat in the vertical. Typical cell
widths in the ocean are 2-3 cm (Schmitt, 2001). Veronis (1965) studied the opposite,
when the temperature gradient is destabilizing and salinity is stabilizing, the top-heavy
configuration. The physics is different from the salt finger case. In this case elevated when
cold fresh water become cold salty water then it becomes heavier than when it started
upward. Instead of rising as in the salt finger case it sinks with greater force than it
took to initially displace it (Schmitt, 2001). This is termed ‘over-stability’ or oscillatory
convection and leads to growing oscillation. Thermohaline convection shall be the focus

of our attention in the next chapter.

For thermohaline double diffusion, the equation of state is now
P = po[OéT(T - T()) - OéS(S - S())], (516)

where T is the temperature (measured in degree Celsius or Kelvin) and S is the salinity
measured in parts per thousand. Here py is the reference density measured at reference
temperature Ty, and reference salinity Sy, also measured in degree Celsius or Kelvin and
parts per thousand, respectively. Together with the equation of state, the governing

equations are

1
68—1;+u~Vu+2Qxu:—p—Vp+(OéT—Oés)g+VV2u (5.17)
0
V-u=0, (5.18)
T
8@7 +u- VT = kp V2T, (5.19)
aa—f +u-VS = kgV3S, (5.20)

where u, p and T are velocity, pressure and temperature, whereas pg is the mean pressure,
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v, kr and kg are viscosity, thermal diffusion and haline contraction coefficient. €2, is the

rotation. These are the Boussinesq equations.

Using the method of normal modes, we arrive at equations when no rotation is present as
(D? — a®)*W = —(Rr + Rs)a*W, (5.21)
with the corresponding characteristic equation at n =1 is

1
Ry = E(ﬁ + a?®)® — Rs. (5.22)

This shows that the salinity Rayleigh number

d4
Ry = 0sPsd (5.23)

RgV

will be a stabilizing effect.

For oscillatory convection Gupta et al. (2001) went on further, and prescribed upper limits
for oscillatory motions of neutral or growing amplitude in the two types of configuration
(Stern’s and Veronis’s configurations). This was carried out in such a way that it also
resulted in sufficient conditions of stability in terms of the thermal Rayleigh number Ry
and the salinity Rayleigh number Rg. It is important to note that Veronis’s (1965) work
was restricted to dynamically free boundaries, whereas Stern’s (1960) work assumed the
“principle of exchange of instabilities” (Barnejee et al., 1993). This principle may be

explained as follows.

If p = p. +1ip; is the growth rate, then the system is stable, neutral or unstable depending
on whether p, is negative, positive or zero. If p, > 0 implies p; # 0 then we have
oscillatory motions of neutral or growing amplitude. If however, p, > 0 implies p; = 0
then for p, = 0, we have p = 0. This is called the principle of exchange of instabilities,
without it we will have over-stability. If, however, instability occurs, however, then it
order to assess instability, it is not enough to know what mode of instability will occur,
but also the characteristic frequency of the oscillations.

In a dimensionless formulation four parameters are required for the description of oscilla-
tory motion, the thermal and salinity Rayleigh numbers, Ry and Rg, the thermal Prandtl

number, Pr, and the Lewis number,

Le="T. (5.24)
Rs
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All of these are assumed to be constant, for simplicity. We will show in the next chapter
how these nondimensional parameters enter the equations of motion. For given Prandtl
number and Lewis number, results may be presented as contours in a Rayleigh number
(Rr, Rs)-plane, each point on this plane representing a system with given temperature
and salinity stratification. The line Ry = Rg represents an equilibrium state of constant
density, and if Ry > Rg, the density increases upwards (Baines and Gill, 1969). As we
will see later, as more factors are added to the model, then the number of parameters

increases correspondingly, and consequently, the analysis becomes more involved.

There are fundamentally two types of convection patterns that have been described in this
type of convection; specifically, salt-fingers and layers. Salt-fingers were first described by
Stommel et al. (1956) where they termed them ‘salt fountain’. Further observations of salt
fingering were conducted by Stern (1960) when he studied convection when hot salty water
lies above cold fresh water. Veronis (1965) studied the opposite, when the temperature
gradient is destabilizing and salinity is stabilizing. In this case the elevation of cold fresh
water causes it to become cold salty water, and thus heavier. Instead of accelerating
upward as in the salt finger case, it is actually driven back down with greater force
than it took to initially displace it (Schmitt, 2001), thereby becoming layered structures.
In some cases it is possible to observe thermohaline staircases as mentioned in Schmitt
(2001), Pyolakov et al. (2012), Radko et al. (2014) and Zhou et al. (2014). Radko et al
(2014) mentioned that thermohaline staircases are still surrounded by controversy. When
temperature and salt vary in the horizontal, Schmitt (2001) observed “intrusions” which

he likened to horizontal salt fingers.

The effect of rotation on double-diffusive convection has been extensively studied (Barne-
jee et al. (1983), (1988), (1995)). It has been found that in linear stability analysis,
rotation inhibits the onset of convective instability. Sharma et al. (2001) studied ther-
mosolutal convection in Rivlin-Eriksen rotating fluid in porous medium and found that
solute and rotation has a stabilizing effect on stationary convection, but rotation also
induce oscillatory modes in the system. Similar results were recently obtained by Dhiman
and Goyal (2015) found on the study of Soret driven double-diffusion stationary convec-
tion. These results are important as we will evaluate them against our investigations in

the next chapter.
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5.4 Cross Diffusive Effects

Soret and Dufour effects are two important heat and mass transport properties. The
thermal energy flux resulting from concentration gradients is referred to as the Dufour or
diffusion-thermal effect. Similarly, the Soret or thermo-diffusion effect is the contribution
to the mass fluxes due to the temperature gradient. Therefore Soret and Dufour effects
are two important heat and mass transport properties. Typically, the energy transport
is described adequately by Fourier diffusion and the mass transport by Fickian diffusion
alone. Motjabi and Charrier-Motjabi (2005) showed that in many of the previous studies
that they cited, the Soret and Dufour effects were neglected on the basis that their magni-
tudes are of smaller order than the effects described by Fourier’s and Fick’s laws. On the
contrary, Eckert and Drake (1972) showed in their study on isotope separation that the
Soret effect cannot be ignored. Likewise, Alloui et al. (2010) examined the Soret induced
convection in a shallow cavity filled with a binary mixture where they found that both
thermal and solutal contributions are destabilizing. Together, both effects were found to
be significant in studies by Awad and Sibanda (2010) and by Awad et al. (2010),(2011).
Similarly, Narayana et al. (2013) investigated the effect of cross diffusive parameters on
the heat and mass transports of a binary viscoelastic fluid. Therefore, we contend that
there is a large body of work to show that cross-diffusive factors cannot be ignored. In

all cases, it has been shown that cross-diffusive factors cannot be ignored.

In view of the importance of these two effects, Alam and Rahman (2006) studied Dufour
and Soret effects on mixed convection flow past a vertical porous flat plate. In their study
of cross diffusive effects in coupled stress fluid system, Gaikwad et al. (2007), found that
the Dufour parameter enhances the stability of the system in case of both stationary
and oscillatory modes. A positive Soret parameter destabilizes the case in stationary
mode and stabilizes the system in the oscillatory mode. The negative Soret parameter,
however, enhances stability in both the stationary and oscillatory modes. The Dufour
parameter increases the heat transfer whereas the Soret effect has negligible influence
on heat transfer. The increase in both Dufour and Soret parameters causes an increase
in mass transfer. Gbadeyan et al. (2011) investigated heat and mass transfer for Soret
and Dufour effects in the presence of a magnetic field. In their study, an increase in the
Dufour parameter led to an increase in both the velocity and temperature profiles and a
decrease in the concentration boundary layer thickness. The Soret effect however increase

the concentration boundary layer and has little effect on the temperature of the fluid.

Maleque (2010) investigated Dufour and Soret effects on unsteady MHD convective heat

and mass transfer flow due to a rotating disk. In this case it was found that the Dufour
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parameter had marked effects on temperature profiles but no apparent effect on velocity
and mass profiles. The Soret parameter on the other hand was found to have a marked
effect on the concentration profile and no apparent effect on velocity and temperature
profiles. Basu and Layek (2013) considered the influences of these cross-diffusive effects on
the double diffusive convection without due regard to rotation. Furthermore, they studied
these effects in a layer of fluid heated and salted from above. In this case the analysis
revealed that instability depends strongly on the cross-diffusive terms, and that stationary
convection is followed by oscillatory convection provided that the Dufour parameter is
always less than the reciprocal of the Lewis number for certain typical values of the cross
diffusive parameters. Mohan (1996) studied the Soret effect on rotatory thermosolutal
convection of the Veronis type. Mohan extended the work of Barnejee et al. (1995) by
adding the Soret effect to the thermosolutal problem of the Veronis type and concluded
that the Soret effect inhibits oscillatory motion of growing amplitude for a specific ratio
of the salinity Rayleigh number, the Lewis number, and the Prandtl number. What is
missing in Mohan’s theorem is that it does not refer to the interaction of rotation and
the Soret effect and instead make conclusions on the assumption that the Taylor number
Ta is zero. Hayat et al. (2014) studied Soret and Dufour effects on MHD rotating fluid
of a viscoelastic fluid and concluded that an increase in Soret number, Schmidt number
and Dufour number increases heat transfer but decreases mass transfer. Goyal and Garg

(2015) also showed that Soret and Dufour effects cannot be ignored.

5.5 Conclusion

In this chapter, we have provided a background to the study of double-diffusion and in
particular, thermohaline convection. In the next chapter, we show how we conduct a study
of thermohaline convection in rotating fluids under the influence of cross diffusive factors
for dynamically free boundaries. As we have seen, when additional forces are added to the
equation, the number of parameters also increases. So to address these we employ both
linear and nonlinear stability analysis. The next chapter, consists of a research paper,

submitted for peer review, which will thus extend the literature.
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Chapter 6

Soret and Dufour Effects on

Thermohaline Convection in
Rotational Fluids

In the previous chapter we discussed double diffusive convection as it occurs in stratified
fluids. We first revisited stability in Rayleigh-Bénard convection and how it is influenced
by rotation. Double diffusive systems are subject to both the Dufour and Soret effects
simultaneously. The Dufour, or diffusion-thermo, effect is the energy flux caused by
a concentration gradient. The Soret, or thermo-diffusive, effect arise from mass fluxes
created by temperature gradients. Instability is also possible in double-diffusive systems.
Furthermore, as was noted in the previous chapter, in previous studiesthe Soret and
Dufour effects have often been considered small enough to be neglected. Nevertheless, the
literature cited indicated that rotation has a stabilizing effect by forcing fluid particles
into a vertically rigid structure. In view of the aforementioned, it is clear that a system
that combines rotation and stratification with the Soret and Dufour effects is complex
and yet fascinating. To the best of my knowledge I have not as yet seen work in the
literature that covers all four aspects of such a system; mass flux due to temperature
gradients, energy flux due to salt migration, rotation and double-diffusive convection. In
the paper that follows we consider the case that occurs when cross-diffusive factors, given
by the Soret and Dufour parameters, together with rotation and density stratification all
interact on a horizontal fluid layer.

In this case we employ both linear and nonlinear stability analysis. The linear stability
analysis involves first the linearised equations of motion and the derivation of the stability

parameter, given by the Rayleigh number. Due to the number of parameters, the system
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is complex and involves six parameters. In the analysis of stationary convection, there
are five parameters involved, the Dufour parameter, Soret parameter, Taylor number also
referred to as rotation parameter, Lewis number which is the ratio of diffusivities, and
the salinity Rayleigh number. We analysed the effect of each of these parameters on the
Rayleigh number. In the analysis of oscillatory convection, the Prandtl number enters the
fold. The results for both stationary convection and oscillatory convection are graphically

represented.

For nonlinear stability analysis a minimum truncated representation of a Fourier series
consisting of two terms is applied to the system. We obtained a dissipative system of
six coupled first-order equations. Fixed point analysis was complex as it depended on
which parameter is varied, a few examples have been given as the analysis could not be
exhaustive. In some cases we obtained stable nodes, and in others we obtained strange
attractors. Stability analysis corresponding to each of the parameters are represented
and they yield bifurcation diagrams some which have been seen in literature before like
Lorenzo’s “butterfly effect”. Some of the novel ones we obtained resemble the “beetle”,

the “woven fruit basket”, “tornado-like effect” and others.

Furthermore, we consider heat and mass transport when cross-diffusive factors are also
taken into account. We analyse heat and mass transport using the Nusselt and Sherwood
numbers. It is shown here that the Dufour parameter and the Lewis number enhance
heat transport whereas Soret parameter reduce the mass transport.

The remainder of this chapter consists of a paper which has been submitted for publication

in a peer reviewed journal.

Submitted to Journal of Astrophysical and Geophysical Fluid Dynamics
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Abstract

Using linear stability theory and weakly nonlinear stability theory, the effects of Soret
and Dufour parameters are investigated on thermohaline convection of a horizontal layer
of rotating fluid specifically the ocean. Thermohaline circulation is important in mixing
processes and contributes to the earth’s climate and to heat and mass transports. It is a
general conception that due to the smallness of Soret and Dufour their effect is negligible.
However, it is shown here that the Soret parameter, salinity and rotation stabilize the
system whereas temperature destabilizes and the Dufour parameter has minimal effect on
stationary convection. For oscillatory convection, the analysis is difficult as it shows that
the Rayleigh number depends on six parameters, Soret and Dufour parameters, salinity
Rayleigh number, Lewis number, Prandtl number, and Taylor number. We demonstrate
the interplay between these parameters and their effects on oscillatory convection in a
graphical manner. Furthermore, we find that the Soret parameter enhances oscillatory
convection whereas the Dufour parameter, salinity Rayleigh number, the Lewis number,
and rotation delay instability. We believe that these results have not been elucidated
in this way before for large-scale fluids. Furthermore, we investigate weakly nonlinear
stability and the effect of cross diffusive terms on heat and mass transports. We show the

existence of new solution bifurcations not previously shown in literature.

Keywords: Thermohaline Convection; Soret number; Dufour number; Heat and mass transfer
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1 Introduction

The phenomenon of thermal convection in fluids was described by Rumford in 1870, followed
by the first quantitative experimental work by Bénard in the 1900’s. Bénard studied the onset
of thermal instability and the role of viscosity in thermal convection. In 1961, Lord Rayleigh
conducted a theoretical study and developed a mathematical theory for this phenomenon.
Instability is found to be due to the buoyancy effect arising when heating is from below.
Convection due to buoyancy and the attendant modes of instability are important in many
of the physical systems, notably in oceanography. The instability theory has been discussed
in the classical book by Chandrasekhar (1961) and more recently by Drazin and Reid (2004),

from which we draw the description below.

In the case when fluid is heated from below, the fluid at the bottom becomes lighter than the
fluid at the top. As a result, the fluid begins to redistribute itself, but its viscosity will also
begin to inhibit this rearrangement. Thus for a certain temperature distribution the system may
be stably maintained until it reaches a certain critical temperature value at which the system
becomes unstable. The fluid motions will result in an arrangement as cellular cells. Rayleigh
laid the theoretical foundations and showed that the system remains stable provided that the
thermal Rayleigh number, Ry, remains less than the critical value R, = 277%/4. This Rayleigh
number is a measure of strength of the buoyancy forcing relative to the viscous term. When
Ry > R. the system becomes unstable and thermal convection (also known as Rayleigh- Bénard
convection) sets in the form of a cellular pattern (Chandrasekhar 1961) thereby distorting the
mean temperature profile. The critical value R, depends on the boundary conditions which
may be free on both surfaces, free on the one end and rigid on the other, or having both surfaces
rigid.

When there are two vertical gradients involved and affecting the density in opposing directions,
and having different rates of diffusion the process is called double-diffusive convection. The
study thereof is of practical importance in many fields involving convective heat and mass
transfer, including oceanography, astrophysics, geophysics, geology, atmospheric physics and

chemical engineering. If the two gradients involved are temperature and concentration of solute,
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the process is generally called thermosolutal convection: when the solute is salt (haline) the
convection is specifically described as thermohaline. In this case, heat diffuses 100 times faster
than salt, and as a result instability occurs. This process leads to thermohaline convection,
which is important in ocean mixing. A common oceanographic example occurs when heating
(or cooling) and salting (or refreshing) at the sea surface become distributed in the oceanic
boundary layer. This process is called thermohaline circulation and is important in ocean

mixing and climate change.

Thermohaline convecting systems were first studied by Stommel et al. (1956). In their study
of hot salty water lying above cold fresh water, they described the formation of ‘salt fountain’.
Two fundamental cases were then studied, which we describe next. In the first study, Stern
(1960) investigated a case that occurs when the temperature gradient was stabilizing and the
salt concentration gradient destabilizing. In other words, when warm salty water lies above cold
and less/more salty water, which is a bottom-heavy configuration. Stern confirmed the general
properties of motion for ‘salt fingers’. To elaborate, these structures appear as a close-packed
array of convection cells flowing both upwards and downwards. The result is vertical transport
of salt and heat. Laterally, only heat may be exchanged, but not salt. In the ocean, typical
cell widths are 2-3 cm (Schmitt 2001).

Veronis (1965) studied the opposite case of a top-heavy configuration, in other words the
situation when the temperature is destabilizing and salinity is stabilizing. The physics thereof
is different from the salt finger case. In this case elevated cold fresh water become cold salty
water, then it becomes heavier than when it started upward. Instead of rising as in the salt
finger case it sinks with greater force than it took to initially displace it (Schmitt 2001). This

is termed ‘overstability’ and leads to growing oscillation.

Following from Stern’s and Veronis’s studies on oscillatory motion, Gupta et al. (2001) went
on further to prescribe upper limits for these oscillatory motions in both these configurations.
Furthermore, they showed sufficient conditions for stability using the thermal Rayleigh number,
Rr and the salinity Rayleigh number, Rg. There are essential differences in the way Stern and
Veronis modelled the two cases. Veronis focuses his work on free boundaries, whereas Stern’s

work uses the “principle of exchange of instabilities” (Barnejee et al. 1993). This principle
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can be explained as follows. For the growth rate ¢ = o, + i0;, the system is stable, neutral or
unstable depending on whether o, is negative, positive or zero. If o, > 0 and o; # 0 then we
have oscillatory motions of neutral or growing amplitude. If however, o, > 0 and o; = 0 then
for 0, = 0, we have ¢ = 0. This is called the principle of exchange of instabilities, otherwise
we will have over-stability. If instability occurs, however, then it is not enough to know what
mode of instability will occur, but also the characteristic frequency of the oscillations (Barnejee

et al. 1993).

Four dimensionless parameters are required to describe the oscillatory fluid motion, thermal
Rayleigh number R, salinity Rayleigh number, Rg, the Prandtl number, Pr, and the Lewis
number, Le. All of these are assumed to be constant. For given Prandtl and Lewis numbers,
Baines and Gill (1969) present the results as contours in the (R, Rg)-plane; each of the points
on representing a system with given temperature and salinity stratification. They interpreted
the line R = Rg as representing equilibrium density, and when Ry > Rg, the density increased

upwards.

The main interest in thermohaline convective problems is in the regions showing deviations
from normal thermal convective motions. In this regard, two regions have been observed; the
salt-fingering region and the overstable region characterized by layering. This difference in
deviations is due to the varying diffusive rates in heat and salt. If these were equal, the system
would be characterized by one Rayleigh number, Ry. Baines and Gill (1969) found a region
of the Rg and Ry plane where the system is unstable and shows the “salt-finger” mechanism.
They also showed that at the verge of instability, these structures become very tall and thin,
a property first indicated by Stern (1960). Furthermore, they also showed that for the case

Rt > Rg, the unstable modes do not grow at the same rate as those for stable modes.

Veronis (1965) explained the second major phenomenon of interest, oscillatory convection which
results in layering. It arises when temperature gradient is destabilizing and salt concentration
gradient is stabilizing, that is, when cold dilute water lies above warm salty water. Layered
structures are rare in the oceans but are found mainly in the polar regions where temperature
and salinity frequently increase downward. Salt fingering occurs in regimes where warm salty

water lies above cold dilute water. Large regions of the subtropical and tropical oceans are
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favorable for salt-fingering processes. Zhou et al. (2014), studied double-diffusive convection
in the deep Arctic Ocean in so far as it affects thermohaline staircases. There are usually
two parameters that are used to decide if fluid motion will result in diffusion convection (DC)
staircases; namely, the density ratio R, and the buoyancy frequency N. The density ratio, 2,
describes the ratio of Rg to Ry. The buoyancy frequency shows the stability of the stratification
of the water column. Thermohaline staircases occur only when the density ratio R, < 1.7
(Schmitt 2001). Radko et al. (2014) report that no salt-finger staircases have been reported for
R, > 2. Pyolakov et al. (2012) also investigated diffusion convection staircases over the Laptev
Sea slope. The dynamics of thermohaline staircases are still surrounded by controversy and are
a topic of much debate in the literature (Radko et al. 2014). Double-diffusive convection in
a layer of fluid in different contexts has received extensive theoretical and experimental study.
The studies by Turner (1973, 1974, 1985) and Huppert and Turner (1981) give the review of
both theoretical and experimental works on double-diffusive convection. Caldwell (1974) gave

a summary of experimental studies on the onset of thermohaline convection.

When temperature and salinity gradients vary in the horizontal, the unstable structures that
occur are called ‘intrusions’ and are likened by Schmitt (2001) to horizontal salt fingers. They
displace water-mass anomalies and maintain the tightness of the mean temperature-salinity
relationship. According to Schmitt (2001), they can occur anywhere, and they are a major

lateral mixing agents in both polar and equatorial latitudes.

Rotational effects on the onset of thermal instability were theoretically studied by Chan-
drasekhar (1961) and observed experimentally by Nakagawa and Frenzen (1955) and Rossby
(1969). Nakagawa and Frenzen (1955) pointed out that it was Jeffreys in 1982 who first noted
that rotation has the effect of preserving stability. They also conceded that high viscosities
could actually aid instability by preventing the high stabilizing effect of rotation. Veronis
(1965) confirmed the work of Chandrasekhar (1961) in which he applied linear stability analy-
sis to conclude that rotational effects indeed inhibit the onset of instability. The extend of the
inhibition depends on the Taylor number, Ta, and the Prandtl number Pr. Furthermore, it is
generally agreed that the onset of instability will be oscillatory as long as the Prandtl number

exceeds a certain critical value. Veronis (1968) studied large-amplitude Beénard convection in
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a rotating fluid. He found that fluids with large (> 1) Prandtl number exhibit behavior that
differs from those of fluids with Pr < 1. In addition, Nakagawa and Frenzen (1955) found
that the diameter of the convection cells vary inversely with the rate of rotation. The effect
of rotation on double-diffusive convection has been extensively studied (Barnejee et al. 1983,
1988, 1995). The study by Zhou et al. (2014), shows that convection occurs when buoyancy due
to heat is larger than the resistance of salt stratification and rotation. The study of rotational

effects is important in geophysical, astrophysical and cosmical fluid dynamics.

The effect of rotation on double-diffusive convection, specifically, thermohaline convection, finds
its importance in geophysical fluids, particularly large-scale fluids like the ocean and atmo-
sphere. In oceanography for example, thermohaline circulation is regarded as important in
mixing processes and hence weather and climate change. For the most part, it can be described
as an ‘overturning’ circulation as it causes warm water to flow upward near the surface and
converts it into cold water (Burroughs 2007). Then the cooler water sinks and flows equator-
ward in the interior. Hence thermohaline circulation contributes to the earth’s climate as it
transports heat polewards into high latitudes. It also brings deep water filled with rich nutrients
to the surface. Hence it is essential in heat and mass transport systems. In consideration of
global warming, it has been discussed in many reports of the risk of a shutdown of thermohaline
circulation. Studies by Wood et al. (2003) and Schmittner and Stocker (1999), and literature
therein, for example, grappled with the question of whether or not thermohaline circulation

will be weakened or remain stable under the influence of global warming.

Heat and mass transports depends primarily on Dufour and Soret effects. The Dufour effect
or diffusion-thermal effect concerns the thermal energy flux that results from concentration
gradients. Similarly, the Soret or thermo-diffusion effect contributes to mass fluxes due to
temperature gradients. In general, energy transport is modelled to Fourier diffusion whereas
mass transport is by means of the Fickian diffusion. Motjhabi and Charrier-Motjabi (2005)
showed that in many of the previous studies they cited the Soret and Dufour effects have been
neglected due to their smallness in magnitude compared to effects due to Fourier’s and Fick’s
laws. However, many studies show that these cross-diffusive effects are significant and should be

included, as we discuss next. The Soret effect is large enough to be useful for isotope separation
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(Eckert and Drake 1972). In addition, for Soret induced convection in a shallow cavity filled
with a binary mixture, Alloui et al. (2010), found that both thermal and solutal contributions
are destabilizing. Furthermore, Chand and Rana (2015) also showed that Soret parameter
has a destabilizing effect in double-diffusive convection in a horizontal layer of nanofluid when
uniform vertical magnetic field is present. Similarly, the Dufour effect could not be ignored by
Eckert and Drake (1972) in their study on a mixture of gases with different molecular weights.
Together, both effects were found to be significant in studies by Awad and Sibanda (2010),
Awad et al. (2010),(2011) and Chand and Rana (2012, 2014) . Similarly, Narayana et al.
(2013) investigated the effect of cross diffusive parameters on the heat and mass transports of

a binary viscoelastic fluid.

The Soret and Dufour effects can influence the stability or otherwise of convection systems. In
this regards, Alam and Rahman (2006) considered the possibility that the effect of Soret and
Dufour parameters in stability analysis for mixed convection flows past a vertical flat porous
plate. Furthermore, in their study of cross-diffusive effects in a coupled stress fluid system,
Gaikwad et al. (2007), showed a number of influences due to the parameters. Notably a
positive Soret parameter destabilizes the system in stationary mode, with opposite effect in the
oscillatory mode; a negative Soret parameter, however, enhances stability in both the stationary
and oscillatory modes. The Dufour parameter was shown to delay instability of the system,
for both stationary and oscillatory modes. Heat transfer increased with Dufour parameter

increases whereas the Soret effect has negligible influence on heat transfer.

In the presence of a magnetic field Gbadeyan et al. (2011) found that increasing the Dufour
parameter led to an increase in both the velocity and temperature profiles with a decrease in the
concentration boundary layer thickness. The Soret effect however increases the concentration
boundary layer and has little effect on the temperature of the fluid. It is thus evident that the
Dufour and Soret effects have significant effects on diffusive systems. In the case of unsteady
magnetohydrodynamics (MHD) convective heat and mass transfer flow due to a rotating disk,
Maleque (2010) found that the Dufour parameter has a marked effect on temperature profiles
but no apparent effect on velocity and mass profiles. The Soret parameter on the other hand

was found to have a marked effect on the concentration profile and no apparent effect on velocity
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and temperature profiles.

We further note studies on these cross-diffusive effects in the context of double diffusive convec-
tion. For example, Basu and Layek (2013) found that in a layer of fluid heated and salted from
above in the absence of rotation, stability depends strongly on the cross-diffusive Soret-Dufour
terms. Mohan (1996) extended the work of Barnejee et al. (1995) and studied the Soret effect
on rotatory thermosolutal convection of the Veronis type. He concluded that, for a specific ratio
of the salinity Rayleigh number, the Lewis number, and the Prandtl number, the Soret effect
inhibits oscillatory motion of growing amplitude. What is missing in Mohan’s theorem is that
it does not include the interaction between rotation and the Soret effect. Instead, Mohan based
the conclusions on the assumption that the Taylor number, T'a, is zero. Hayat et al. (2014)
studied Soret and Dufour effects on MHD rotating fluid of a visco-elastic fluid and concluded
that an increase in Soret number and Dufour number increase heat transfer but decrease mass
transfer. Finally, in a recent study of Soret and Dufour effects in a horizontal layer, Goyal and
Garg (2015) showed that the Soret parameter has both a stabilizing and destabilizing effect
on the stationary modes, whereas the Dufour coefficient has a stabilizing effect. However, the

study concentrated only on linear stability analysis.

Based on the aforementioned studies, it is clear that there is an overwhelming body of evidence
to indicate that the Soret and Dufour effects should not be neglected. Instead, their influence on
stability of double-diffusive systems is of great importance. Furthermore, due to the increasing
complexity of the model as one adds more parameters, using only linear stability analysis does
not provide enough information. Consequently, in this paper, we employ linear and weakly
nonlinear stability theory and normal modes analysis to study the effects of the Soret and
Dufour parameters on thermohaline convection for a fluid heated from below. Such would
be the case when oceans experience geothermal heating from below. We study the onset of
both stationary and oscillatory instability by examining the Rayleigh number. In this case the
resulting Rayleigh number depends on salinity Rayleigh number, the Lewis number and the
Taylor number. In Section 2, we develop a mathematical model for the system of a rotating fluid,
heated and salted from below and subject to cross-diffusive factors. In Section 3, we discuss

linear stability theory and study both stationary and oscillatory convection in the system. In
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Section 4, we study weakly nonlinear stability theory using Fourier mode analysis. Heat and
mass transfer are then investigated in Section 5. In Section 6, the results are discussed in detail

and we make conclusions in Section 7.

2 Mathematical Formulation

We consider a horizontal layer of fluid rotating at a constant angular velocity €2 and also
heated from below as would be the case in the ocean when there is geothermal heating. We use
a Cartesian system of coordinates (z,y, z) where x and y are horizontal coordinates and z is
the vertical coordinate:- The governing equations for the rotating fluid in the presence of cross
diffusive effects are taken in such a way that the Oberbeck-Boussinesq approximation is valid.
While the validity of the Oberbeck-Boussinesq approximation for the Navier-Stokes equations
within geophysical fluid dynamics, has been under much debate (see Rajagopaul et al. 2009
and the arguments by Barnejee et al. 1983), it is not our intention here to enter the debate.
We also assume that there is coupling between the two diffusing components. The governing

equations are therefore:
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where ¢ = (u,v,w) is the velocity vector; P = p— %|Q x (] |? is the effective hydrostatic pressure;

X = (0,0, —g) is the gravitational vector; 0= (0,0,9,) is the angular velocity, v = u/pg is the

2,1

kinematic viscosity which has different values at different temperatures; v = 1.83 x 1076 m?2s~
at 0° Celsius and v = 1.05 x 107 m2s~! at 20° Celsius. The angular velocity of the Earth
Q = 7.2921159 x 10° rad.sec *. Dpg and Dgp are respectively, parameters quantifying the

contribution to the heat flux due to solutal gradients and to the mass flux due to temperature
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gradient; k7 and kg are the thermal and solutal diffusivities. In the ocean, Ky ~ 1.5 x 1077
m?s™! and kg ~ 1.5 x 107° m?s™! (Basu & Layek, 2013). The values in literature are varied as
they depend on molecular values, but what is consistent is that heat diffuses 100 times faster
than salt). The density p, of the fluid depends linearly on both the temperature, 7' measured in
degrees Celsius or Kelvin; and salinity, S measured in parts per thousand, or by the practical
salinity unit “psu”, derived from measurements of conductivity and having no units. For small
variations at a constant pressure (Boussinesq approximation), the density variations are given
by the equation

op = —polar(T —To) + as(S — So)], (5)

where a7 and ag are respectively, the thermal expansion coefficient and the haline contraction

-1

coefficient, and they are both positive (ap = 2 x 107* K=" with an error of 1.5 and ag =

7.6 x 10~* ppt~! with error of £0.2 (Vallis, 2006)); po = 1.027 x 10* kg m™? is the reference

density at reference temperature Ty = 283 K and reference salinity Sy = 35 ppt—*.

The basic state of the fluid can be described by Malashetty (2008) as

- _ _ _Z _ _ _z
qy = (0, 0, 0), Tb = Tb<Z) = TO + AT (1 d) s Sb Sb(z) S() + A (1 d> (6)
Py = po(2) = poll — ar(Ty = To) + as(Sy — So)l, By = Py(z) = —ppg + constant, (7)

where the subscipt b denotes basic state.

2.1 Perturbation of Basic State

We consider small perturbations to the physical quantities as follows:
I=q+q, T=T(:+T, S=Sz)+5, P=DB)+P, p=pz)+p. (8

Substituting the above in (1)-(4) we get

\VA g” =0, (9)
8(}” 5/ 1/ 1 / ’ A 25/ S —/

o +(q" Vg :_p_OVP + (arT" — agS) gk + vV°qg — (22 x '), (10)
o1’ dT;

o (@ VT + w'd_; = kYT + DpgV25, (11)
05’ ds,

o T V)S'+ w’d—; = ksV2S' + DgrV2T'. (12)
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We non-dimensionalise the above equations using the following new variables:

d2
(.f,y,Z) = d('r*7y*72*>7 t= _t*v P/ = ﬂp*u (ulvyluw/) = %(u*,v*,w*)

RT d?
0. 0~ 0. 1[0+ 0.~ 0 - 1
T = AT6 "=A =—i+—7+—k=- ' ==-V" (1
 B=A5 Vgt T d(8*+8y*‘7+8z*> Ve (3)
and dropping asterisks for simplicity we get
V-¢g=0 (14)
1 [0 . .
P—T{a—z—i—(@V)gf}—Vp+(RT9—Rs¢)/€+V2gT—\/Tak><cf. (15)
% + (7 V)0 —w = V0 + DuV?¢, (16)
% +(7-V)p —w = Le 1 (V?¢ + SrV?0), (17)

where P, = v/kp, is the Prandtl number, Ry = garATd?/vkr, is the thermal Rayleigh
number, Rg = gagASd®/vkr, is the salinity Rayleigh number, T'a = 4Q%d*/1v?, is the Taylor
number, Du = (Drg/kr) * (AS/AT), is the Dufour number, Sr = (Dgr/ks)(AT/AS) is the
Soret number and Le = k7/kg, the Lewis number. For the ocean, the Lewis number is 0.0125.
The Prandtl number has the value 13.4 at 0° Celsius and 7.2 at 20° Celsius. The boundary

conditions are taken as

0w

w:(), W:O, 4920, ¢:0, at z=0 (18&)
O*w

U}:O, w:(), 9207 ¢:0, at z=1. (18b)

We derive vorticity-transport equation by taking the curl of (15) twice. Thus we obtain

L0wg = L (R0 - Reo)i - 2 (Re0 — Rt
prote” VT GzazT 8 Yoz T 59
+ V(R — Rsd)k + Vi~ VTa %, (19)
1 0C B 0 ~ 0 ~ 2 m OF
r ot = &y (RTQ de))l ax(RTQ quf))] +V C—l— Ta 9. (20)

where the vorticity vector is given by ¢ =V x ¢= (0,0,¢,), and V% = g—; + 88—;.
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3 Normal Mode Analysis

In this section, we conduct both linear and nonlinear stability analysis. The z component of
the system of equations (19) and (20) are given by

10 ¢,

_ i 2 _ _
(V) = V0w + V (RT0 Rs6) = VTa 3=, (21)
1 9¢ 9
B ot =V +vT (22)
The linearised versions of equations (16) and (17) are given by
% —w = V%0 + DuV?¢, (23)
d¢ —1 (2 2
a—w—Le (V= + SrVv=0). (24)

The perturbations are assumed to be wave-like, of the form

0?9 o d?
(w,0,6,(.) = (W(2),0(2), ®(2), Z(2)) exp {ot + i(k,x + k,y)}, V? = W—I—@—F@ = @—az,
(25)
where W (z), ©(z), ®(z) and Z(z) are amplitudes, where k,, ky are horizontal wavenumbers
and o is the growth rate. Infinitesimal perturbations of the rest state may either reduce or

grow depending on the value of the parameter o.

The quantity o = o, + 10; is a complex quantity where o, is the growth rate and o; = w is the

frequency of oscillations. Substituting (25) into (21)-(24) we get

P%(D2 — @)W (2) = (D? — a®)*W(2) — a*(RrO(z) — Rs®(2)) — VTa DZ,  (26)
P%Z(z) — (D*— a®)Z(z) + VTa DW, (27)
00(2) — W(2) = (D* — a®)(O(2) + Du ®(2)), (28)
o®(2) — W(z) = (D? — a®)Le " (®(2) + Sr O(2)), (29)

where
and a® = k2 + k; is the dimensionless wavenumber. We assume stress-free, isothermal and

isohaline boundary conditions in the form:
W=DW=0=0=0 at 2=0, and z=1, (30)
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as we are not interested in the interference of topography on the circulation. A rigid bottom in
the ocean may be uneven and convection there may generate ocean waves. Equation (27) can
be written as

2 ag

(D* —a® ~ 57 = —v/Ta DW. (31)

Applying the operator (D? — a® — &) to equation (22) and using the above relation we get

Pi(Dz—cﬂ) (DQ—aQ—Pi>W — (D? - a?)? (DQ—cﬁ—i)W
T T

g
a2 (132 - ﬁ) (Rr© — Rs®) + Ta D*W. (32)

The solutions of equations (28), (29) and (32) subject to the boundary conditions can be

assumed as periodic wave solutions with sinusoidal variations in (W, ©, ®), namely
W(z) = Wysin (1z) ©O(z) = Ogsin(mz) P(z) = Pysin (7z2). (33)

Here (Wy, ©g, ®g) are the amplitudes of the velocity, temperature and salinity perturbations.

Clearly these satisfy the boundary conditions (18). Using (33) in (28), (29) and (32) we get

9 w0, 9 _ g, 2(2, 9 .
o (J +PT) Wo J (J +PT>W0+a <J +PT) (Rr©p — Rs®o)
— Ta ©*W, (34)
00— Wy = (=J*)(0y + Dudy), (35)
o®y— Wy = (=J*)Le (g + SrOy), (36)

where (D? — a?) = — (7% + a®) = —J? is the total wave number. Thus equations (34)-(36) form

a homogeneous system in Wy, 0y, ®¢. In matrix form, we have

PP+ §) +Tar® —Rra (P4 ) RBsa (P4 )| [Wo| |0
1 o+ J? J?Du Oy = |0 (37)
-1 J2Sr Le™! o+ J?Le™! d 0

For non-trivial solutions of the above homogenous system we require the determinant to vanish:

PP+ 2) +Tar® —Rpa®(PP+ %) Rsad(J2+ %)
-1 o+ J2 J?Du =0, (38)

-1 J?Sr Le ! o+ J?Le!
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which gives
O— 2
{J2 <J2 + ﬁ) +Ta 7T2} {(c 4+ J*)(0+ J?Le™") — J*Sr Du Le™ '}

+Rr a? (124 2-) {J2Du— (0 + J2Le ™)} + R o (2 + =) {(0 + J%) = J2Sr Le7'} =0,

Solving for Ry we get
{J2 (J2 + i)2 +Ta 7T2} {J*Du Sr Le™* — (0 + J*)(0 + J?Le™ ')}

Pr
@ (P4 £) (7°Du— (o + PLe )

J2Sr Le™' — (o0 + J?)
39
* RS{J?Du— (J+J2Le—1)}’ (39)

Ry =

which clearly depends on six other parameters.

3.1 Stationary convection

We observe the onset of stationary convection (exchange of instabilities) when we set 0 = 0 in

(39), and we get

o A@*+a®)?+Tan* (1— Du Sr Le — Sr
= e 4
i a2 1—Dule) "\1-DulLe (40)

where RS is the Rayleigh number for exchange of instabilities. This holds provided Du # Le™.
In the ocean, the Rayleigh number can be very large, up to 10?4 if molecular values are used

(Vallis, 2006).

The critical wavenumber a,. can be obtained by minimizing R with respect to a?, that is, we

set
ORS

0a?

—0, (41)

implying that

9 ((7*+a*)?+Tan* (1— DuSr Le — Sr B
@{ a? (1—DuLe)+RS<1—DuLe>}_O’ (42)

giving

2a° + 37%a* — (7t + Ta) = 0. (43)
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This equation gives critical wavenumber a. which only depends on the Taylor number, implying
that the influence of rotation on the onset of convection will be significant. In the absence of
rotation, T'a = 0, we get

2a° + 3n%a* — 7% =0 (44)
yielding
s
ﬁ’

and the corresponding critical Rayleigh number R, is

(45)

[

27
R. = Zw‘* = 657.5,

which confirms the result in literature (e.g. Chandrasekhar, 1961).

Goyal & Garg (2015) showed that in the limit Ta = 0 the Soret parameter has both the
stabilizing and destabilizing effects on stationary modes according to Le < Du or Le > Du.

The condition for the Soret parameter to be stabilizing arises when

OR:!
a5r =V

That is when

oSr a? DulLe — 1 Dule — 1
> 0. (46)

8R3t 2 2\3 T 2 D 1
T:(ﬂ—l—a)+ aﬂ( u )+Rs< )

This gives the condition Du > 1/Le, with Ta = 0 for the Soret parameter to be stabilizing.

Furthermore, Goyal & Garg (2015) found that the Dufour parameter has stabilizing effect for

Le # Du. In a similar manner the Dufour parameter stabilizes if and only if

ORY  [(7*+4a?)® + Tan? Le — Sr
ODu a? + Leks (1 — DulLe)?
> 0 (47)

meaning Le > Rg, with T'a = 0, for the Dufour parameter to be stabilizing.

The question that arises is why are we getting completely different results. The answer lies

in their equation (17) and our equation (13). We scaled our equations with xkr whereas they
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used kg for scaling. We are convinced that if the nondimensional parameters were the same,

we would get the same results.

We show graphically the effect of cross diffusive parameters Sr and Du as well as that of

rotation in Figures 1 and 2.

3.2 Oscillatory convection

It is well known that the oscillatory motions are possible only if some additional constraints
like rotation, salinity gradient and magnetic field are present. Consider the oscillatory mode,
o; = iw. Substituting o; = iw into (39) and imposing the condition w? > 0, which is the
requirement for w to be real in order to get overstability possible at all, yields two algebraic
equations by requiring the imaginary and the real part of (39) to vanish separately. This
provides the solution for the characteristic values of the Rayleigh number and the frequency w

of the oscillations at the margin of stability, so that (39) becomes

{J2 <J2 - ;;—) VY Tan®+ z%w} (J*Le (Du Sr— 1) +w? — iJ?(1 + Le Mw}
a2 {J(Du — Le ') + 4 44 (et — 1) J2w)}

Rs a® {J4(Sr Le™t = 1) + 5 44 (S22 1) )

05C
Ry

+ —1 9 48
P (Du— Lo ) + 5+ (P 1) ) )
which is of the form
R%sc _ (a1 + ibﬂu)(ag — ZbgCU) + (ag + ibgw)7 (49)
(ag + ibyw)
where
2 ~1
_2) R s N _ ofDu—Le 2
ag—a{J(Du Le )+Pr}’ bo—a{ By 1}J,
2 4
of 5 W 9 2J
alJ(J—P—TQ)—FT(ZTF, bl:P_r7

ag = J*Le ™ (Du Sr — 1) + w?, by = J*(1+ Le™ 1),

w? Sr Le ! —1
as = Rg a* {J4(Sr Le ! — 1)+ P_r} , bs = Rg a® <P—r — 1) J?, (50)

where R$*¢ is the Rayleigh number for the oscillatory convection. Equation (49) can further be

reduced to the form

RT = Al + iwAQ,
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where

ap(aras + b1bow? + az) + bo(braz — a1by + b3)w2

A, =
! at + biw?
ao(blag — a162 + bg — bo ajas + b1b2w2 + as
Ay, = Z 2< 5 ). (51)
ag + bgw

Since Ry is always real, this implies Im(R7) = 0, or simply that Ay = 0. That is,

ao(blag — a1b2 -+ bg) — bo(a1a2 + b1b2w2 + a3) = O (52)

Thus we have

co(w?)? + c1(w?) + ¢ =0, (53)

where

co = JY3+ Du~— Pr),
o = PrJ¥(Du—Le )3+ Le ') +2J%Le  (Du Sr — 1) — PrJ*(1 4 Le ") (J* + Ta ),
— J¥Du— Le ' — Pr){Pr(J*+ Ta n*) — J°Le " (Du Sr — 1) + 2J°(1 + Le™') + Rs a*}
+ Rga®J*(Sr Le™' — Pr —1),
¢; = PrJYDu— Le ") {2J°Le " (DuSr — 1) — PrJ*(1 4+ Le ") (J* + Tar?)}
+ Rga®J°Pr{(Du— Le ")(SrLe™" — Pr—1) — (Du— Le™" — Pr)(SrLe " — 1)}
— J*(Du—Le ' — Pr){Pr(J*+ Ta n*)J*Le " (Du Sr — 1)} . (54)

Now the expression for R is given by

ap(aras + az) + {agb1bs + bo(bras — a1by + 53)}&12

ROSC —
T
ag + biw?

, (55)

where w? is the minimum positive root of the dispersion relation (53). Figures 4-8 demonstrate

the effect of each of the parameters Sr, Du, Ta, Rg, Pr and Le on oscillatory convection.

4 Weakly Nonlinear Stability Analysis

In this section we study nonlinear stability analysis using a minimal truncated representation

of a Fourier series consisting of two terms. As the linear stability analysis fails to provide
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insight about the convection amplitudes and the rate of heat and mass transfer we revert to

the nonlinear stability analysis. We return to equation (15)

1 (07 . .
—{ y +(cT~V)<T} = —Vp+ (R — Rsd)k + V27— VTa k x §

Pr | ot
since ¢ = (u,v,w) we have k x §= —vi +uJ, thus (15) becomes
1 (0q . A
o {3_:5] + (¢~ V)q_} = —Vp+ (R — Rsp)k + V27+VTa (vi — uj). (56)

We restrict the analysis to the case of 2D rolls so that all the physical quantities are independent
of y and the equations in component form reduce to

1 [Ou ou ou _Op Pu O 1/2

— = — — = — 4+ —+T
Pr{8t+u8x+w8z} or T Taz T (57)
1 [ov  Ov v v )
— = il N _Z 7 /2
Pr {8t T T waz} o2 T T (58)
1 (ow ow ow op 0w  w
P_T{E—*—u% an}—&-Fw-f—W"i‘RTQ_RSQ (59)
and the continuity equation becomes
Ju  Ow
97 + Fr 0.

Differentiating (57) with respect to z and (59) with respect to z and subtracting we get

1[0 (0u_ow\ (0 0N (0u_ow
Pr |0t \0z Oz “ax waz 0z Ox

(0 PP du  Ow 1720V o0 1ol0)
= <@+@) (£—$> +Ta a—RTa—FRS%. (60)

We now introduce the two-dimensional stream function v (z, z) such that

oy O

U = — w = ——’
0z Ox

then the continuity equation is trivially satisfied and further

ou  ow P 0 _,
% or 02 o vV

Thus equation (60) takes the form

1[0, o, O,V 120U 0 9
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and equation (57) becomes

1 fov 0W,v)| _ o2 qn1pp0¥
{at a(x7z)}_Vv Ta 9 (62)

Similarly, by expressing 6 = 0(x, z) and ¢ = ¢(z, 2) and using the stream function we obtain
from (16) and (17), respectively,

90  0(v,0) oy

v 2 D 2
ot O(z,z) Oz VOt Du Ve, (63)

and
9 0(v, 9) L oy

—1 o2 2
o ) T or Le (Vg + Srv=0). (64)

A minimal double Fourier series describing the finite amplitude convection is given by

(e, 2,1) = A(t) sin (az) sin (r2), (65)
O(x, 2,t) = B(t) cos (az) sin (12) + O(t) sin (272), (66)
&z, 2,t) = D(t) cos (az) sin (72) + E(t) sin (272), (67)
v(z, 2,t) = F(t)sin (az) cos (12) + G(t) sin (212), (68)

where A(t), B(t), D(t), E(t), F(t) and G(t) are time dependent amplitudes. Substituting in (62)
0 (64), the following set of equations is obtained:

dA P

- T{ J*A+ 7Ta'®?F — aRrB + aRsD}, (69)

dF

- = Pr{—J?F — nTa'?A}, (70)

dB 9 2

%:—aA—JB—JDuD—waAC, (71)
AB

Cj{f =ma—- = 47*C — 47*Du E, (72)

dD —1 72 -1 2

%:_QA—Le J*D — Le 'Sr J*B — naAE, (73)

dE AD

— =Ta - An?Le 'E — 4r2Le 1SrC. (74)

Let us define the following new variables

X, = %A, X, = —nRB, X3=-wRC, X,=—wRD,
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w2aTal’? a? 472

_ _ _ _ 72
X5——’7TRE, XG—TF, R_JﬁRT’ b—F, T = Jt.

Then we arrive at the following system of coupled nonlinear equations

dX

d_Tl = Pr(=X; + Xy — NXy + Xg),

dXx

d—2 =RX, — Xy — Du X, — X, X,

-

dX X1 X

=3 -2 (X354 Du X;),

dr

dX

d—4 = RX, — Le 'SrX, — Le ' X, — X1 X5,

-

dX X1 X

= I Le N (Sr X5+ Xs),

dr 2

dX,

—% — _Pr(Ta*X; + Xe), (75)

dr
where N = % = 2‘@% is the buoyancy ratio, T'a* = j—ﬁTa.

The solution of equations (75) are uniformly bounded in time and have many characteristics
of the initial problem. Also, the system (75) is dissipative with the volume in phase-space
contracting at a uniform rate given by
0 [(dX; 0 [dXs 0 [(dX; 0 [(dX, 0 [(dXs 0 [(dXg
+ + + - -
00X \ dr 00X, \ dr 0X3 \ dr 0X, \ dr 0X5 \ dr 0Xg \ dr

= —[2Pr+ (1 + Le H(1+ b)), (76)

which is always negative, and therefore the system is bounded and dissipative. As a result, the
trajectories are attracted to a set of measure zero in the phase space; in particular, they may
be attracted to a fixed point, a limit cycle or perhaps a strange attractor. From equation (76)
we conclude that if a set of initial points in phase space occupies a region V' (0) at time 7 = 0,

then after some time 7, the end points of the corresponding trajectories will fill the volume

(Gaikwad et al., 2007)
V(r) =V (0)exp[—(2Pr + (1 + Le ")(1 + b))7]. (77)

This expression indicates that the volume decreases exponentially with time. We can also infer

that the Prandtl number, Pr, enhances dissipation.

Figures 11-18 depict the different bifurcation diagrams we obtain for different of set of param-

eters.
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5 Fixed Point Analysis

Setting Xl = X2 = Xg = X4 = X5 = Xg = 0, we have six possible solutions. One solution
which is always present is X; = Xy = X3 = Xy = X5 = Xg = 0. If we linearize about this

solution we obtain

-5X1- [ —Pr Pr 0 —N % Pr 0 Pr ] -Xl-
0Xo R -1 0 —Du 0 0 Xo
d 0X3 _ 0 0 —b 0 —bx*x Du 0 X3 (73)
dr 15X, Rx—Le'sSr 0  —Le 0 0 0 | | X,
X5 0 0 —bxLe 'Sr 0 —bxLe b 0 X5
_6X6_ | —PrxTa 0 0 0 0 —Pr| | Xe]
The Jacobian matrix of our system is given by
" Pr 0 ~N«Pr 0 pr |
R -1 0 —Du 0 0
. 0 0 —b 0 —bx* Du 0 (79)
Rx—Le'%xSr 0 —Le™! 0 0 0
0 0 —bxLe'Sr 0 —bxLe™! 0
| —PrxTa 0 0 0 0 —Pr|

To find the fixed points we determine det[.J] # 0 for different values of the parameters.

Due to the variation of many parameters, depending on the combination we get different eigen-
values and thus different reaction of the system towards these small variations. For the param-
eters R = 100, Du = 0.03, Sr = 2, Le = 0.0125, T'a = 0.48, Pr = 13.4, the eigenvalues of the
system are given by A\; = —213.762, \o = —14.4517 4 90.205¢, A3 = —14.4517 — 90.205¢, Ay =
80.3187, A5 = —2.5079, \¢ = 0.78472. In this case the system is oscillatory and unstable. For
the parameters, R = 10*, Le = 2.59, Pr = 13.4, Du = 12, Sr = 0.005 and T'a = 0.48 the cigen-
values are given by A\; = —372.779, Ay = 345.856, A3 = —13.4003, Ay, = 12.9095, A5 = —2.76522
and \g = —0.935665, system is unstable and the fixed point is a saddle node. As it can been
seen here that it is not straightforward to make any conclusions about the nonlinear stability

of the system as a set of parameters, yield a different result from a previous set of parameters.
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Furthermore, we let p = trace[J] and ¢ = det[J]. For p > 0 and ¢ > 0, we expect to obtain
the repellors; saddle points when p > 0 and ¢ < 0 and also when p < 0 and ¢ < 0. Attractors
are obtained for p < 0 and ¢ > 0. In the analysis of fixed points related to Figure 11 and
Figure 12, we obtain p < 0 and ¢ < 0 which gives us saddle points. Figure 14 shows the
first three diagrams as saddle point whereas the figure corresponding to T'a = 10 depicts an
attractor. For Figure 14 representing the effect of Rayleigh number on nonlinear stability, when
all parameters are considered the system has ¢ > 0 and p < 0 implying that we have attractors.
The variation of the Lewis number yields saddle points and attractors for the values considered
in Figure 16, whereas the parameter values considered to reproduce Figure 17, give ¢ < 0 and

p < 0 thus yielding saddle points.

In Figures, 11 and 12, we show various phase portraits generated from (X;, X/)-plane of some

of the solution sets corresponding to different sets of parameters.

6 Heat and Mass Transports

The rate of heat and mass transport per unit area, respectively, denoted by H and J are given

by

aToa aSoa

H = _I{T< atzt l>z:0 - -DTS< atzt l>z=07 (80)
IStota Tota

J = —rs(=52%): = Dr(—"") om0, (81)

where the angular bracket corresponds to a horizontal average and z is the dimensionless space

variable. The total temperature and salinity, Tjo and Sioe are given by

Tyt = To — (AT)z + (AT)O(t, z, 2), (82)
Stotat = So — (AS)z + (AS)(t, z, 2). (83)

Substituting equations (66) and (67) we obtain

Tiotar = To — (AT )z + AT[B(t) cos (ax) sin (wz) + C(t) sin 27z], (84)

Stotar = So — (AS)z + AS[D(t) cos (ax) sin (7z) + E(t) sin 27z], (85)
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and using equations (80) and (81) we arrive at

H = AT[kp(1 — 27C) + Drs(1 — 27E)), (36)
J = AS[rg(1 — 27E) + Dgr(1 — 27C)). (87)

The Nusselt and Sherwood numbers are respectively defined by

H
Nu = AT (1 =27C) + Du(l — 27 E), (88)
J
= =(1-2nF 1-2 .
Sh iAS ( TE) + Sr( 7C) (89)

Using on the scaled variable (X3, X;5) = —7R(C, E) we obtain

2 2
Nu:<1+EX3)+Du (1+EX5)’ (90)
sh=(1+2x;) +5r (14 2x (91)
- R?) T R)

It is to be noted here that the Nusselt and Sherwood numbers both depend on X; and Xs.

Figures 19a and 19b depict the effect of cross diffusive terms on heat and mass transport.
Figures 20a-23b show the effects of the other parameters on the Nusselt and the Sherwood

numbers.

7 Results and Discussion

The purpose of this investigation was to study thermohaline circulation which is important
in mixing processes and it contributes to the earth’s climate and heat and mass transports.
In this study, the onset of thermohaline convection in a rotating fluid as affected by both
Soret and Dufour parameters has been investigated using normal modes linear analysis and
weakly nonlinear analysis. Analytical expressions for the critical Rayleigh number and the
corresponding wavenumbers for the onset of stationary convection subject to cross diffusive
effects were determined using linear stability theory. It is shown here that both salinity and
rotational effects have significant stabilizing effect on stationary convection confirming the

results found in literature. The effect of cross diffusive factors is here discussed and summarized.
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Our study shows that the Soret parameter stabilizes stationary convection significantly whereas

the Dufour parameter has minimal effect (as seen in Figures 20b and 21a).

In the analysis of oscillatory convection our study shows that the critical Rayleigh number for
the onset of convection depends on six parameters, the Prandtl number Pr, Soret parameter
Sr, Dufour parameter Du, Taylor number or rotation parameter T'a, Lewis number Le and the
salinity Rayleigh number R;. In the ocean, the Lewis number, Le is 0.0125, The Prandtl number
Pr = 13.4 for 0° Celsius and Pr = 7.2 for water temperature 20° Celsius. The Rayleigh number
Ry can reach up to 10** depending on the molecular value (Vallis, 2006). In this analysis we
used smaller values to validate the results as the use of big numbers create a computational
difficulty. Since the system depends on such a big number of parameters, it thus requires some

robustness to clearly understand the effect of cross diffusive factors.

The effect of rotation and Soret parameter on the oscillatory convection is shown in Figure
4. We find that when we increase T'a the critical value of the Rayleigh number and the
corresponding wavenumber also increase implying that the rotation has a stabilizing effect
on the thermohaline convection. This means that rotation acts so as to suppress vertical
motion, and hence thermohaline convection, by restricting the motion to the horizontal plane
(Malashetty, 2008). Furthermore, Figure 4 also indicates that for small Ta the instability
manifests as stationary convection while as T'a is increased, the instability sets in as oscillatory

convection. We also observe that Soret parameter stabilizes for both negative and positive Sr.

Figure 5 shows the effect of rotation and Dufour parameter on the oscillatory convection. We
observed that an increase in the Dufour parameter shows an decrease in the critical Rayleigh
number and hence delaying the oscillatory convection. The effect of rotation stabilizes for

different values of Dufour parameter.

The variation of critical Rayleigh number for oscillatory modes with salinity Rayleigh number
Rg for different values of rotation parameters is shown in Figure 6. We observe from Figure 1
that the critical Rayleigh number increases with increase in the value of the salinity Rayleigh

number indicating that the salinity Rayleigh number delays the onset of convection.

The effect of Lewis number on the stability is shown in Figure 7. We find that Lewis number has
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a more stabilizing effect for small values whereas for large values stabilizing effect is negligible.
In the case of the ocean where the Lewis number is 0.0125. Thus the Lewis number is a

stabilizing factor.

The variation of critical oscillatory Rayleigh number for different values of Prandtl number
and Taylor number with all other parameters kept fixed is revealed in Figure 8. It is clear
that the critical value of oscillatory Rayleigh number decreases with the increase in the values
of Prandtl number indicating that it has a destabilizing effect on the system. One can also
observe that the critical Rayleigh number of overstable mode almost levels off for large Prandtl
number values meaning that after some stage increasing the Prandtl number will not have
any significant effect in controlling the stability of the system. It is also observed through the
computation that regime of overstable solutions bifurcating into the stationary solutions shifts
towards larger wavenumber region, for increasing values of the Prandtl number. Therefore the
Prandt] number increases the oscillatory convection region. However, the reverse effect has

been observed with the Taylor number.

A minimal representation of Fourier series has been employed for a weakly nonlinear stability
analysis that resulted in a sixth order generalised Lorenz model. The characterization of chaotic
solutions is quite difficult and involves seven parameters- Lewis number, salinity Rayleigh num-
ber, Prandtl number, thermal Rayleigh number, Taylor number, Soret and Dufour parameters.
Figures 11-18 show the evolution of the Lorenz equations when these parameters are varied at
various planes. These equations exhibit very interesting diagrams some of which we have not

seen anywhere in literature.

Figure 9 depicts the phase portraits mapped onto (X;, X/)-plane for X, X5, X3 and X, respec-
tively. As we can se that for X; the system starts from the origin and ends at the origin, but
for X5 and X, the path followed stays at the origin for a while but then leaves the orgin from
two exit points. For X3 the solution starts from the origin and stabilizes at some point. Figure
10 depicts the amplitude solutions for X, X5, X3 and X, respectively at different values of the
Rayleigh parameter. This shows that for any parameter that we vary, we are likely to get very

interesting results and different amplitude behaviours.
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The variation of the Dufour parameter on the (X3, X;)-plane yields Lorenz’s “butterfly” effect
as shown in Figures 11. This shows that the Dufour parameter has significant effect on the
stability of the nonlinear system (75). It has also been shown in Figure 12 that the Lorenz
equations when projected on the (X7, X3) and the Soret parameter is varied, exhibit chaotic
solutions like a process of making “woven fruit bowl“. When the Soret parameter is increased,
the system stabilizes. An increase in the Taylor number, representing the rotational effect,
causes the Lorenz equation to exhibit the spiral-like form for lower T'a values and a “tornado-
like” motion as Ta is increased and dies down exhibiting a “woven fruit bowl“ albeit different
from that in the case of the Soret effect for very large values as demonstrated in Figure 13.
The Rayleigh parameter R when varied shows that the Lorenz equations when projected on
the (X3, X4)-plane initially displays a chaotic solution from whom a “Beetle“like structure
develops, and as if it opens its “mouth” it degenerates into a stable ellipse as R increases
as shown in Figure 14. The system is chaotic at small values of the Rayleigh number, but
stabilizes to an ellipse when the Rayleigh number is increased. In this Figure 14 however, the
Lewis number is taken at Le = 2.59 which is higher than that of the seawater. When we
consider the Lewis number for seawater Le = 0.0125 the system still exhibit very interesting
bifurcations. At R = 100 Lorenz’s butterfly evolves, but with the increase in R that butterfly
disintegrates and at R = 10° a “bat-like” bifurcation is observed. At a further increase in R,

the “bat“ attractor disintegrates again and the system stabilizes into an ellipse.

Figures 16 and 17 show respectively, the sensitivity of the Lorenz equations to the Lewis
number and the Prandtl number. It is shown here that the Lewis number destabilizes whereas
the Prandtl number stabilizes. In all cases we have demonstrated that chaotic solutions exists
when a two-phase space. However, in Figure 18 we observe similar chaotic structures in 3D

phase space. Some of these bifurcations we have not seen in literature before.

Heat and mass transports were determined with the help of weakly nonlinear theory. The
Figures (19a) and (19b) simplify the findings for the heat and mass transfer. Figure (19a)
shows that the increase in the Dufour parameter enhances heat transport and Figure (19b)
clearly demonstrates that the Soret parameter affects mass transport negatively. We also

investigated the effect of other parameters the Prandtl, Taylor, Lewis and Rayleigh numbers
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in Figures 20a-22b on heat and mass trasports. It is clear in Figure 20a and 20b that the
increase in the rotational parameter, T'a reduces both the Nusselt and Sherwood numbers thus
showing a negative contribution to heat and mass transports. The Lewis number on the other
hand, enhances heat and mass trasports as shown in Figures 21a and 21b that an increase in
Lewis number, increases both the Nusselt and Sherwood numbers. The Rayleigh number and
the Prandtl number show no contribution to the Nusselt and Sherwood numbers as depicted

in Figures 22a- 23b.

8 Conclusion

The effect of Soret and Dufour parameters on thermohaline convection in rotating fluids, which
is heated and salted from below, is investigated analytically using the linear and nonlinear
theories. We applied the usual normal mode technique to solve the linear problem. The
minimal double Fourier series method is used to make the finite amplitude analysis. The

following conclusions are drawn:

The effect of Dufour parameter is to stabilize in both stationary and oscillatory convection.
The Soret parameter enhances oscillatory convection and delays stationary convection. The
Lewis number advances oscillatory convection whereas the salinity Rayleigh number delays the
onset of both stationary and oscillatory convection. The rotation parameter is always acting

as a stabilizing factor.

Nonlinear analysis depends on six parameters, Soret, Dufour, Taylor, Rayleigh, Lewis and
Prandtl numbers. The Lorenz system obtained exhibit various chaotic solutions when pro-
jected on various X; planes showing that nonlinear dynamical systems can behave in complex
ways. We have thus demonstrated here that the stability of the thermohaline convection is

unpredictable under various parameters.

The results obtained show that chaotic motions occur in rotating diffusive flows. The Soret,
Lewis and Taylor numbers have significant influence on both the existence and form of the

chaotic responses.
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The Dufour parameter and the Lewis number enhance heat transport whereas Soret parameter

reduces the mass transport. The Rayleigh number, Taylor number and the Prandtl numbers

have no influence to the heat and mass transports.
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Figure 1: Effect of Dufour and Soret number on the stationary Rayleigh number RS
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Figure 2: Effect of rotation on the stationary Rayleigh number RS
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Figure 3: Effect of Du Le and rotation on the critical RS
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Figure 4: Effect of rotation and Soret number on the critical R
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Figure 8: Effect of the Prandtl number and rotation on the critical R°.

Figure 9: Phase portraits for X;, X5, X3 and X, with values of the parameters given by
Pr =13.4, Du=0.03, Sr =2, Le = 0.0125, R = 100 and T'a = 0.48.
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Figure 10: Phase portraits of the different solutions, Xi, Xy, X3 and X, at different values of
the Rayleigh number, with other parameters kept constant at Le = 2.59, Pr = 13.4, Du = 12,
Sr =0.005 and T'a = 0.48.

Figure 11: Evolution of the Lorenz equations showing sensitivity to the Dufour parameter. The
evolution exhibits the “butterfly effect“ when projected onto the (X3, X4) plane. The values
of the Dufour parameter are (a) Du = 0.3, Sr = 0.2; (b) Du = 1.2, Sr = 0.05 (¢) Du = 2,
Sr = 0.03 and (d) Du = 3, Sr = 0.02.The other parameters are R = 100, Le = 0.0125,
Pr =134, Ta = 0.48.

(b)

Figure 12: Evolution of Lorenz equations showing sensitive dependence on Soret Parameter.
The evolution exhibits a “woven fruit bowl® effect when projected onto (X, Xs) plane. The
various values considered here are, respectively, (a) Sr = 1.5, (b) Sr = 40, (c) Sr = 100 and
(d) Sr = 10%. The corresponding Dufour parameters are (a) Du = 0.04, (b) Du = 0.0015,
(¢) Du = 0.0006, and (d) Du = 0.00006. The other parameters are given by R = 100,
Le = 0.0125, Pr = 13.4, and T'a = 0.48. These figures demonstrate the stabilizing effect of the

Soret Parameter.
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Figure 13: Lorenz Equations projected onto (Xi, X5) plane responds in a tornado-like spiral.
For smaller values of T'a we observe a limit cycle. But as Ta increases then a tornado-like

spiral forms. However, for very large T'a the spiral dies down exhibiting a “woven fruit bowl*,

albeit with a different base than that of the Soret case.The values of the Taylor number are
respectively, Ta = 70, Ta = 100, T'a = 10* and T'a = 10*. The other parameters are R = 100,
Le = 0.0125, Pr = 13.4, Du = 0.03 and Sr = 2.

Figure 14: The change in dynamics as a fraction of the Rayleigh parameter R displays the

evolution of a “Beetle” as the Lorenz equations are projected onto the (X3, Xy)-plane. We call
it the “Beetle Effect”. The values of R considered here are respectively, R = 50, R = 102,
R = 10*, and R = 10°. The other parameters are given by Le = 2.59, Pr = 13.4, Du = 12,
Sr = 0.005 and T'a = 0.48. These diagrams demonstrate that the Rayleigh number is stabilizing
the system.

120



7

o
Pdts

Figure 15: Rayleigh number stabilizes the system even with smaller value of the Lewis number
Le = 0.0125. The figure demonstrates different bifurcations at different Rayleigh numbers
which are, respectively, R = 50, R = 100, R = 10*, R = 105, R = 107, R = 10°, R = 10'° and
R = 10%*. The other values are kept constant and are given by Pr = 13.4, Du = 12, Sr = 0.005
and T'a = 0.48.
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Figure 16: Lorenz equations showing sensitivity to the Lewis number projected on to the
(X3, X3)-plane. From left to right, Le = 0.00125, Le = 0.0125, Le = 0.125 and Le = 1.25. The
other parameters are R = 100, Pr = 13.4, Ta = 0.48, Du = 12 and Sr = 0.005.
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Figure 17: When projected onto the (X, X3) plane, the Lorenz equations exhibit a “twist”
effect when the Prandtl number is varied. These figures show, respectively, Pr = 3, Pr = 7,
Pr = 13.4 and Pr = 20. Any figures more or less than these are not practical for the ocean
as the Prandtl number for the ocean is between Pr = 7 and Pr = 13.4 at 0° Celsius and 20°
Celsius, respectively. The other values are kept constant at R = 100, Le = 0.0125, Du = 12,
Sr =0.005 and T'a = 0.48.

Figure 18: The figure shows the bifurcations in 3D form for different solution sets (X;, X, X3),
(X3, X4, Xg) and (X, X3, X5) respectively, for the top figures, and solution sets (Xz, X3, X4),
(X1, X3,X4) and (X7, Xo, X3) for the bottom figures. The parameter values are given by
R =50, Le = 2.59, Pr = 13.4, Du = 12 and Du = 0,005. The last figure was constructed
using the following parameter values Le = 0.0125, R = 100, Pr = 13.4, Du = 12, Sr = 0.005
and T'a = 0.48.
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Figure 19: Effect of cross diffusive parameters on heat and mass transports. The other param-

eters are kept constant at R = 100, Pr = 13.4, Le = 0.0125, and T'a = 0.48

parameter.
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(a) Effect of Rotation on heat transport.

Figure 20: Effect of Rotation on heat and mass transports. The other values are given by

(b) Effect of Rotation on mass transport.

R =100, Le = 0.0125, Pr = 13.4, Du = 2 and Sr = 0.03.
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Figure 21: Effect of Lewis number on heat and mass transports. The other values are given by

R =100, Le = 0.0125, Pr = 13.4, Du = 2 and Sr = 0.03.

Pink : R=10°%, Green: R=10%, Blue:R = 10?

Nusselt Number
Sherwood Number

2R A A
N A

Pink : R=10°, Green: R=10°%, Blue: R=10°

T

(a) Effect of Rayleigh number on the Nusselt num-(b) Effect of Rayleigh number on the Sherwood

ber. number.

Figure 22: The other values are given by Le = 0.0125, Pr = 13.4, Ta = 0.48, Du = 12 and

Sr =0.03.
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(a) Effect of Prandtl number on the heat transport. (b) Effect of Prandtl number on mass transfer.

Figure 23: The other parameters are given by R = 100, Le = 0.0125, Du = 2, Sr = 0.03 and
Ta = 0.48.

125



Chapter 7
Conclusion

In this chapter we highlight and discuss the significance of our main findings, for each of
the three papers, which were published in peer reviewed journals or submitted for review.

We then make recommendations for further research.

7.1 Propagation Properties of Rossby waves

We studied the propagation properties of mid-latitude Rossby waves, for both shallow
water and topographic waves. We started with the shallow water equations for a rotating
layer of fluid, and developed the wave and dispersion equation for a Rossby wave on a beta
plane. The local dispersion equation, as a wave normal form, highlights the dispersive
and anisotropic nature of the wave. In particular, Longuet-Higgins (1964) used the wave
normal diagrams to show that the phase velocity is a circle displaced westward. We have
here used Longuet-Higgins’s idea and now shown that the group velocity diagram is, in
fact, an ellipse. In this way it differs from the phase velocity. The centre of this ellipse
is displaced westward, and it has major and minor axes that yield both the maximum
westward, eastward and northward (southward) group speeds. The speeds are a function
of wave frequency and the parameter m of the planet, which we found to be 3,¢/f&, where
fo = 2Qsin ¢, 2 the angular frequency of the Earth, ¢y the latitude. The parameter m
is in fact the measure the ratio of the low frequency long wavelength Rossby wave zonal
speed, to the shallow water speed, ¢ = \/gH, where ¢ is the gravitational acceleration
and H is the fluid depth.

For topographic waves, we have also further developed Longuet-Higgins’s work with shal-

low water waves by investigating topographic wave propagation properties, using wave
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normal diagrams in k = (k,, k,)-space. For these waves, like his results for shallow water
waves, we found that the wave normal diagram for the phase velocity is a circle displaced
positively along the £, axis. This means that topographic wave phase propagation is
always northward. As with shallow water waves, the group velocity diagram also gives
us an ellipse with northward and southward components. The results here are as if we

rotated the earlier results with shallow water waves by ninety degrees.

The results concerning first, the group velocity as an ellipse, and second, the phase and
group velocity diagrams of topographic waves, had not been reported until we published
them. These elegant features complement the Longuet-Higgins offset circle in revealing
the propagation properties of Rossby waves which are important in weather and climate
change. We have shown here the anisotropic properties group velocity which is responsible

for energy propagation.

7.2 Rossby waves in winds

In the study of Rossby wave interaction with winds, we first derived the second-order
partial differential equation describing the latitudinal structure of Rossby type wave per-
turbations on a beta-plane, in zonal and meridional winds. We followed Lighthill (1978)
and were able to show how the local dispersion equation, when interpreted as a wave
number diagram in k£ space at a given frequency w, can be used to construct the radiation
pattern generated by a time harmonic compact source in a laboratory frame relative to
which the zonal and meridional winds flow. The effect of the Doppler shift frequency
on the Longuet-Higgins offset circle is shown in a series of diagrams, Figures 3 to 8 of
Chapter 4. The main effect is that the offset circle is now transformed into a closed ovoid.
Furthermore, the ovoid shows an extension in a form of a blocking line or an indented
line, at k, = w/U, and a “hump”. We then investigated radiation patterns associated
with the blocking line and closed ovoid. The ovoid and blocking line, with corresponding
radiation patterns, have different forms depending on whether winds blow in the same
direction as, or opposite to, the Rossby wave. When zonal westerly winds are blowing in
the direction of Rossby wave propagation, the hump and the blocking line are directed
eastwards. The radiation patterns of the closed ovoid in this case are found to be a family
of eastward-facing paraboloids, reminiscent of capillary waves generated by an object in
a stream. These are similar to the hyperbolas in the case of no flow for which Rhines
(2003) and McKenzie (2014) investigated. On the other hand, the radiation pattern for

the blocking line is a family of deltoids, which resemble a reversed Kelvin ship wave.
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When the zonal easterly winds are blown in the direction of Rossby waves, the hump
and the indented line lie completely westward as shown in Figure 7 of Chapter 4. The
corresponding radiation pattern corresponding to the ovoid yields parabolic curves that
lie both eastward and westward. On the other hand, the radiation pattern corresponding

to the hump and the indented line are deltoids which lie entirely westward.

In the case of the stationary wave, in which w = 0, we found entirely different forms.
The wave normal diagram is a circle of radius 1/(8/U) — (f2/c?). When U > 0, that

is westerly, we obtain results similar to Lighthill’s (1978) case for the two-dimensional

internal gravity wave patterns generated in a horizontal flow as depicted in Figure 10(a).
The corresponding radiation pattern consists of a semi-circle (taken twice), the double
line £, = 0 and the two lines extending westwards.

The case of meridional winds is even more interesting but complicated and these are
depicted in Figures 11-17, of Chapter 4. They were unusual in that they showed a great
variety in patterns that have not been reported before which may suggest a phenomena

that may require further investigation.

What is significant about these results is that the study of radiation patterns is in fact
equivalent to studying wave generation by travelling forcing effects (Lighthill, 1978) and
thus the interaction of Rossby waves with these traveling winds is useful in the study of
wave propagation in a moving medium and hence of weather and climate patterns. Some

of these radiation patterns have not been reported before in literature.

7.3 Thermohaline Convection

In the third research paper, we reported on the onset of thermohaline convection in a
rotating fluid, such as is found in the ocean, under the influence of Soret and Dufour ef-
fects. We investigated the case using normal modes, linear stability analysis and weakly,
nonlinear stability analysis. Analytical expressions for the critical Rayleigh number and
the wavenumbers corresponding to the onset of stationary convection subject to cross dif-
fusion, were determined using linear stability theory. It was shown here that both salinity
and rotational effects have significant stabilizing effects on stationary convection; thereby
confirming the results found in literature. Our study shows that the Soret parameter has
a stabilizing effect on stationary convection whereas the Dufour parameter has minimal
effect.

In the analysis of oscillatory convection our study further shows that the Rayleigh number

critical for the onset of convection depends on six parameters, the Prandtl number Pr,
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Soret parameter Sr, Dufour parameter Du, Taylor number or rotation parameter Ta,
Lewis number Le and the salinity Rayleigh number R,. Such a complex system requires
some robustness to fully understand the effect of each of the parameters on thermohaline
convection. In this analysis we used smaller parameter values than those published, when
validating the results. Nevertheless, we believe that our computations are still useful

because the bigger parameter values create a computational difficulty.

We found that increasing the rotation parameter and the Soret parameter increase the
Rayleigh number critical to oscillatory convection. This means that rotation and Soret
parameter will contribute to an unstable system, and so generates oscillatory convection,
in agreement with results by Sharma et al. (2001) in their study of Rivlin-Eriksen rotating
fluids and that of Dhiman and Goyal (2015). In fact, the Soret parameter stabilizes for
both positive and negative values. This result is in contrast to Gaikwad et al. (2007) in
their study of coupled stress fluid who found that he positive Soret parameter destabilizes
and the negative Soret parameter stabilizes. Conversely, an increase in the Dufour param-
eter resulted in a lower critical Rayleigh number. In other words, with greater thermal
energy flux resulting from the concentration gradients, we can expect a delayed oscillatory

convection, confirming the results by Gaikwad et al. (2007).

A minimal representation of Fourier series has been employed for a weakly nonlinear sta-
bility analysis that resulted in a sixth order generalised Lorenz model. The characteriza-
tion of chaotic solutions was challenging and involved seven parameters - Lewis number,
salinity Rayleigh number, Prandtl number, thermal Rayleigh number, Taylor number,
Soret and Dufour parameters. Figures 10-17 show the evolution of the Lorenz equations
when these parameters are varied at various planes. These equations exhibit very inter-
esting bifurcation diagrams some of which we have not seen anywhere in literature. We
found here that the Dufour parameter and the Lewis number have a destabilizing effect
to the system, whereas the Soret parameter, the Rayleigh number, the Taylor number
and the Prandtl number are stabilizing. In most literature, the nonlinear study was not
constructed due to the many parameters that arise in rotating double diffusive convection
under cross-diffusive effects. Whereas Lorenz in his study of weather patterns obtained
a chaotic butterfly-effect whilst varying the initial conditions, our work here shows that
it is also possible to find such chaotic solutions when the system is affected by cross dif-
fusive effects. These results are important in the study of climate change. Due to global
warming, there are currently studies on ocean dynamics particularly on the stability of
thermohaline circulation. There are fears that the conveyor belt might be interrupted as

the water heats up and the sea gets desalinitized.
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Heat and mass transports were quantified with the help of weakly nonlinear theory. The
Figures 18 to 20 summarizes the findings for the heat and mass transfer. The increase in
the Dufour parameter enhance heat transport whereas the Soret parameter affects mass
transport negatively. The Prandtl and the Rayleigh numbers have no contribution what-
soever to both heat and mass transports. However, rotation has a negative contribution
towards both heat and mass transports, whereas the Lewis number enhances both heat

and mass transports.

In a nutshell, we have in Chapters 3 and 4 investigated the propagation of Rossby waves
and their interaction with the winds, respectively by means of two published papers in
peer reviewed journals. In Chapter 6 we analysed further the effect of cross diffusion on
thermohaline convection under the influence of rotation; the work which is summarized

as a research paper under peer review.

7.4 Further Research

Propagation of Rossby waves have been considered in this thesis together with the inter-
action of Rossby waves with zonal and meridional winds. Using the method of stationary
wave patterns, the study focuses on radiation patterns that arise from the interaction.
Duba et al. (2014) showed that the Doppler shifted frequency w’ = w — k,U has a pro-
found effect on the geometry of the local wave normal curve in the (k,, k,) space. The
effect of the zonal wind on the wave normal diagram has already been described by Duba
et al. (2014) for westerly wind U > 0 and for easterly wind U < 0. This work could be
extended by analysing the ray paths in both westerly and easterly jets using the geometry
of the wave normal curves. In this regard, a ray path in a zonal wind shear U,(y) may
be determined by constructing the wave normal curves in the (k,, k,) space at successive
latitudes, and following the direction of the arrows (direction of rays) drawn normal to
the wave normal curve where it is intersected by a line k, = constant at each latitude.
This elegant construction has been used to examine the ray paths by Lighthill (1978) in
the case of travelling forcing effects and by Mekki and McKenzie (1977) for Rossby waves.
It may be useful to extend their work by examining ray paths for meridional waves to
supplement work on Rossby waves. The ray tracing technique can give a full description
of wave behaviour at critical latitude where the Doppler frequency equals the frequency
of the Rossby wave, so as to determine whether it acts as absorber, reflector or emitter of
Rossby waves. Although a ray path in a meridional wind may be challenging by looking

at Figure 11 of Duba et al. (2014) it is nonetheless worth considering because such further
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knowledge would give a full description of critical wave behaviour at critical latitude.

It is also possible to consider Rossby wave interactions with cyclonic winds. Indeed,
McKenzie and Webb (2015) studied Rossby waves in azimuthal winds. It will be inter-
esting to extend the study to radiation patterns using Green’s functions as was done by
Rhines (2003) and McKenzie (2014) for Rossby waves on a beta-plane. They studied
the Green’s function wherein the disturbance is generated by a given time source. In
the other work elsewhere, Webb et al. (under review) discuss the Green’s function in az-
imuthal wind. They extend the work by Veronis (1958) who obtained the Green’s function
for the case of no wind and investigated in detail the case when the Rossby deformation
radius Ry > L, where L is the scale length of Rossby waves for which the effects of Ry
can be neglected. Webb et al. (under review) consider the case when 1/R; # 0 and when
1/Ry = 0.

For Part II of the thesis, we considered Soret and Dufour effects on thermohaline con-
vection in rotating winds. In this case we considered our boundaries to be both free. As
we have seen the cross diffusive terms have an effect on both linear and nonlinear sta-
bility analysis. The Soret effect together with rotation indeed having a stabilizing effect
for the stationary convection and the Dufour parameter stabilizing for oscillatory convec-
tion. We can extend the work by considering the free-rigid boundaries and the rigid-rigid
boundaries. It will be interesting to see what type of effects do Soret and Dufour effects
have when the boundaries are changed. Such study would be useful for systems that are

considered under these boundaries as may be the case for the bottom of the ocean studies.
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